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Generally it is recognised that scientifically designed clinical trials play an
important part in the development and the evaluation of medical treatments. Such
trials fundamentally contain natural administrative and ethical conflicts.

In the course of this thesis we will look at the developments in the analysis of
failure time data and deal with study of interrelationships within clinical trial data.
The general wutilisation of such analytical methods have been made possible by the

distribution of fast computerised processing power.

In the area of survival distributions we will consider various empirical distributions
and perform a comparative study of the non-paramtric and parametric methods and deal
with the recent developments in the area of semi non-parametric methods, using the Cox's
proportiocnal hazard model. We will perform an assessment of power efficiencies of
tests for computer simulated clinical trial data, under varying, sample sizes, censoring
levels, significance limits, asymptotic normality and likelihood tests, time dependency
assumptions, and a raage of treatment and prognostic esffect wvalues.

We consider interrelationships of relevance in the context of trials to be those of
prognostic effects as well as the event time variabilities under a multivariate failure

time context.

We will deal with two data sets, both of which relate to breast cancer. Initially
we consider a data set from a clinical trial organised in Edinburgh, and study prognostic
and treatment effects for a set of risk factors such as local recurrence, metastatic
recurrence and death. Finally we use a data set on breast cancer patients purely
for the assessment of prognostic effects. In the latter study we consider a set of
accepted prognostic effects as well as a set of measurements dealing with tumour
change and extent. In the discussions of the above we present various models in
order to test time periods to and from intervening events in a multivariate study.

We will also consider time dependency of various effects in order to check on the
persistance of an effect on the time scale.
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CHAPTER 1

INTRODUCTION

Statistical inference has been increasingly regarded as
a necessary tool for the assessment of risks in its various forms.
This necessity to examine and compare risks is becoming an essential
part of the methodology of a large number of subjects that deal with
risk in its varied and distinct forms such as occupational hazards,
industrial developments, environmental risks and patient management
in hospitals. As an abstract formulation we can regard the general
problem as that of choosing between two or more courses of action
knowing that the courses of action have risk values attached to them.
Part of these risks are in terms of costs and benefits to the
individual and partly to the collective society. We can
thus identify a set of general questions by which finding relevant
answers for each particular context is the essential part of the
methodology. How much information is sufficient for discriminating
between the courses of action? What are the acceptable levels of
benefit for introducing a new course cof action? What are the

appropriate/



appropriate measures of risk? What are the conflicting rights
of the individuals and institutions, and finally, how do we collect

the relevant information?

The principal part of the notion of risk and its
appraisal is introduced as soon as one considers social and human
dimensions of a decision. In contrast, within the framework of
most natural experiments the concept of risk does not usually
arise and is substituted with that of deriving optimal rules
for obtaining appropriate measures at minimum csst and time

in collecting the relevant information.

The methcdology we are dealing with in this thesis relates to

that of a clinical trial and analysis of failure time data for a
clinical trial. The principal aims are to show that for this
particular application, within the limits of contrclled experiments
how concepts such as control of concomitant infcrmation, exploratory
approach in analysis and that of studv of association between
various risks may be employed to provide a better understanding

of the data.



1.1 HISTORY.

In 1693 E. Halley the well-known discoverer of the
Halley's Comet produced a life table of the population of Breslau
in Germany. This data was based on the city records and was
published in the philosophical transactions of the Royal Society
of London, with the title of "An estimate of the decree of mortality
of mankind, drawn from the curious tables of the birth and funerals
in the city of Breslau." The data was composed of the age and time
of death and more importantly the cause of Death was specified to

be small pox or other causes.

This £inal small detail on the cause of death in Halley's
data, later on led Daniel Barnoulli in 1760 to reformulate the
problem. In his paper which was read at the Royal Academy of
Science, Paris, Barnoulli adopts an ingenious and simple argument
to derive for each individual, who died of small pox, his determined

length of 1ife had the risks of death from small pox been eliminated.

However, the method is based on the assumption that
the disease affects the total population in a uniform manner, and
thus the method is not sensitive to the possibility of structural
variability for smaller subgroups such as, a small subgroup of
patients being strong and thus more immune from the disease. One
rather obvious source of structural variability was pointed out by
D'Alembert (1761), the eminent French mathematician of the time.
He noted that the probability of contracting small pox as well as

dying from it may well be dependent on age.

At/



At the time when d'Alembert and Bernoulli were constructing
the early life tables, mathematical tools had not been developed for
a more refined analysis. The method is based on a deterministic
analysis of the numbers in a time period while it does not provide
a probabilistic interpretation. Further it seems that although Halley
may have been interested in a functional form of parameters to
investigate the total population and possibly a population distribution
(being and astronomer himself.) Bernoulli adopted a non-
parametric approach at each interval, based cn a number of cases,
to determine the expected values. (The distinction between
parametric and non-parametric methods will be discussed more

extensively later).

In actuarial studies a similar problem arises where a population
is measured for the risk of death. At the time of analysis some
members of the population may not have completed their time to

the response of interest (death) and therefore no information is
available on their time of death. By 1825, Probability Theory
had been well developed and Gompertz (1825) had produced a
function to approximate such a population survival distribution
with the above property of some cases not contributing to death
times. This distribution known as Gompertz-Makeham has beern the
central theme of many models in actuarial theory. The model
proposed by Gompertz and further by W.M. Makeham (5875) is very
realistic in that, the basis of its philosophy is to allow
separate risks of withdrawals from the population with a response,
such as death due to a particular cause (2.g. cancer), or due to
other causes. In fact by ignoring the possibility of different

rates/



rates of death due to different causes would at times invalidate

the conclusions of the stud?. However, the above flexible approach
allows a check on the assumptions regarding the relevant causes of
death. The importance of this approach in allowing different risks
was not introduced into medical studies until the mid-1950's with
the contribution of J. Cornfield in application to clinical trials.
Studies carried out as late as 1939 by Bérnstein, Binham and Ach

came to an invalid conclusion through overlooking the problems of
choice of relevant respoﬁse rates as the final events of interest.
Prior to the works of Cornfield, similar developments were taking
place in another branch of applied mathematics. Emergence of complex
mechanical devices and early electronic networks required mathematical
models for a representation of the logical flow of the chance of
failure, and a final assessment of the probability of failure of the
system. These areas were named reliability and life-testing.

At present a major application of these techniques is related to
development of defence systems in U.S.A. and U.S.S.R. There are
many similarities between reliability studies and survival studies

of a population. The conceptual simplicity of the electronic
systems were partly responsible for the emergence of recent trends in
multivariate. failure time analysis. Any device may be composed

of a number of components each with its own risk of development of

a failure. These components may be in series and thus failure of

a single component can result in a system failure or may be in
parallel. A medical example of the latter would be a study of
kidney failure where damage to one kidney would not be fatal. The
basis of this approach in medical studies and population studies

has been laid by Fix and Neyman in 1951 and Chiang in 1960.
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As was pointed out a sound methodology had been developed
by the mid-1950's to apply statistical methods to clinical trials.
The Epochal Streptomycin triai conducted under the auspices
of the Medical Research Council first reported in 1948 by MRC
and later by Bradford-Hill (1962) may also be considered as one of
the contributors to present trends. What is important about this
study is its impact on medicine by the introduction of scientific
attitudes to the study of treatments. Further development of
methodology in clinical trials was diversified from those of analytical
methods derived from reliability and life testing to a shift of
emphasis towards the proper scientific practice of considering a good
design as a primary aim.

Within the medical literature Peto et al (1977) proposed
a major set of guide lines for the conduct of trials. Most of the
emphasis in their report is on the construction of a well-designed
trial. For the analysis of data however they adopt a standard
statistical method for use in a clinical trial.

Some of the works of J. Cornfield were responsible for
early application of statistical analysis methods in clinical trials.
He also pointed out some of the problems of statistical interpretation,
for example, in the area of multiple risks. Although the framework
of risks associated with components of a system failure is simple
enough for mechanical applications, in medicine there are more major
difficulties. Some of the developments of the thesis will be related
to these difficulties.

Finally, it seems that a change of emphasis has taken place.
In early studies of the development of risk of a disease, most
applications were on communicable diseases. An epidemic develops

and/



and initially there is a high risk of failure (death) from
contracting the disease. With the passage of time chance: of
progression of the disease decreases and falls to zero. That is

for survivors within a relatively short period of time there is often

a possibility of return to normality. The present context for chronic
diseases must assume that from the start of the process, failure begins

and so with any secondary event the chances of death increase.

1.2 Some Methodological Concepts in Clinical Trials.

In this section we present some of the special features
of clinical trials.” Basically the aim of a clinical trial is the
management of the unknown in a clinical setting, so that some knowledge
or dogma that has been obtained due to historical reasons may be
refuted or substantiated. The information gained is then useful in
practic in the administration of treatments. In this respect a trial
does not differ from an experiment in the natural sciences. However
any form of a scientific enquiry which involves the collection of data
within the human environment is open to various constraints. Some are
related to the impact of the study on the subject under study and some
are related to the actual validity of conclusions drawn from the study.
Although none of the above problems undermine the fact that the final
scientific answer is important, they do make a contribution to the
quality of the data which is gathered and the role data gathering
plays in the administrative and ethical areas. From a medical point
of view the question is not only of legitimacy of the approach in terms
of how scientific the trial is, but also whether the trial can be
administratively and ethically accepted. Difficulties in the management

of the unknown is present in many areas. In other forms of trials that

may/



may take place outside of medical fields the experimental unit may be
subject to far greater risks. In fact the introduction of any new
policy can be thought of as posing initial high risks. Within the
framework of medicine, the problem of risk is due to the rights of the
individuals and how the uncertain effects and its conclusion may

benefit the society through the works of institutions.

In here a distinction may be made between two types of
risks involved. One form of risk is due to possible progression
of disease or expected status of disease over time if there is no
intervention. The other risk is related to the new method of control
of progression of the disease with expected side effects over time.
Depending on the phase of testing of a new drug clearly a different

level of risk may be present in treatment.

Three stages have been recognised in the development of
a new drug. We will in here mention these three phases but the area
of particular interest for our study is mainly related to one phase

only and deals with controlled trials.

Initial study of a new drug is often referred to as a phase
one trial. There is little emphasis on actual statistical testing
but more on obtaining insight into acceptable dosage and practical

limits in administration.

Next stage is a screening study to assess efectiveness of
drug under study and its value in performing further controlled
studies. Finally a phase three trial is the stage where a comparison

of two or more treatment regimes is needed.

The/



The phase two trials have been at times the subject of
controversy as to their place between phase one and phase three.
Often a balance is made between the level of advance of the disease
and the risk it subjects the patient to with that of accepted value

of the treatment.

The first and foremost motivitation in proceeding with a
trial is to find scientifically wvalid answers with the minimum number
of patients in the shortest period of time. A well designed trial
has been encouraged from various approaches by many authors.

Peto et al (1977) consider the roles of factorial designs in trials.
Simons (1979) considers the role of stratification in design stages

of a trial and Brown (1980) discusses the role of cross over trials
although it is not relevant to survival studies. We have mentioned
these methods for completeness and consider some of them during
analysis of trials in later chapters. At the centre of these
approaches lies the principle of randomisation of the patients to

the various arms of a trial. Randomicsation is seen from a scientific
view to hold a central role. Also it has been received increasingly
by the medical profession as having an important place in all

assessments of comparative patient management.

An alternative to controlled clinical trials is the use
of historical controls which has found favour in certain clinical
circles. The latter approach does not resolve the important problems
of personal bias of the investigator, and the passed on institutional
dogma. At the present time the value of randomised contrclled

clinical/
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clinical trials is recognised by most medical investigators, although
their proper practice in data collection and interpretation have

been the subject of discussion, in different situations. Ethics

and value of scientific refutability form the framework of discussion _

in this circumstance.

In the past, two ¢general types of historical controls have
been reported. One group is related to comparison of patient groups
treated by different methods at different times within the same
institution, and a second type which allows the comparisons to take
place across various institutions. Neither of these two methods
provide a satisfactory basis for allowing a like with like comparison
of two groups that have been treated by different methods without
making unjustifiable assumptions. Clearly the problem of final
interpretation is that, it becomes difficult to distinguish effects
due to treatment with those of institutional and/or time variability.
For example, Pocock (1974) has reported the unreliability of
historical control results from three cancer chemotherapy co-operative
groups. In this study a comparison is made between similar treatments
which are used consecutively. 19 such instances were identified with
the changes in the death rate ranging from - 46% to +24% and with 4
instances giving a significant difference at the 2% level. The
phase two trials that we mentioned may at times be defined to belong

to this class of historical controls.

If a treatment is found to perform a major significant
improvement on cure, thz weight of such evidence may be so overwhelming
that a controlled trial is not necessary and thus confounding of

treatment/
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treatment effect and time effect is judged unimportant. Although
it must be emphasized what may seem very overwhelming evidence to
ignore time confounding for some is not necessarily overwhelming

evidence to others at all times.

Problems of historical controls are not only confined
to their philosophical position. In practical terms there are
some further difficulties. Missing information is usually a
probelm in statistical analysis and the time gap between treatment
methods does not provide a uniform setting for the recording of
relevant information. Prognostic indicators are often subject
to various forms of interpretation and again.across institutional
variabil;ty combined with time variability can introduce additional
bias. In terms of analysis the historical control data analysis
require relatively more control of various factors. These effects
will make the analysis firstly more complex -‘and secondly more
dependent on model assumptions and open to differing interpretations.
The above were some of the problems of historical controls given
that patient environment does not introduce its own bias.
Eligibility criterion, wrong patient mix, adjuvant patient care,
observors perception of patients final status are all various factérs

that open the ways for introducing bias from medical participants

in a trial.

Although we have put randomisation as the central
argument of a scientific approach to trials, there are a few other
issues involved in.a good statistical design. For reasons of
efficiency and representativeness one can use multi-centre trials
with reasonable levels of stratifications. Further, depending on

the/



the form of questions, one may proceed with a cross over or factorial

design trial.

For a good scientific conclusion, there is a need to
organise a trial with a sufficiently large number of patients. In
order for a trial to be able to detect differences of clinical
importance between the. treatments and be likely to judge this
difference as.statistically significant, either the period of accrual
of patients has to be long enough to allow a large number of
homogenous patients to be allocated to various treatments, or
alternatively a multi-centre approach could be adopted by which
a number of institutions such as hospitals and medical centres
refer the decision making to a central trials office. The last
approach at times can lead to an introduction of more heterogenity
in the total population, due to environmental, varied practice or
institutions or population structure differences of the different
areas. In here a distinction must be made between institutional
variability that is controlled by the randomisation and those of
historical controls. In controlled trials although extra variab-
ility is introduced by the institution, the within institutional
strata randomisation ensures that no bias is involved in the final
assessment. The 1ohg accrual period also has a slight similarity
with historical controls in that it spans through time. However,
the distributional. variability of the patients prior to treatment
allocation can be thought of as being more consecutive in controlled

trials.

Once a large number of patients are allocated and randomised
to different treatments, then the patients are followed up for a
long period. Continuously the patients are monitored for develop-

ment/
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13
ment of patterns of progression of the disease, with respect to
survival, side effects, disease spread, together with treatment,
stratifying and concomitant variables. Further it is necessary to
perform the analysis of the data at various times with up-dated
follow-up information mainly for ethical and administrative purposes.
It is likely that at the time of analysis some patients may not have
responded for each particular time ﬁeasurement. This effect 1is known
as censoring of the survival time for the patients, in that no res-
ponse is known and survival time is cut off by other events before the
patient has had a sufficiently long period of follow-up for responding.
Censoring is a special effect present in study of failure time data.

A few special problems arise in presence of censoring. The major one
is related to "lost to follow-up" cases. It is possible that in
certain trials a group of patients produce a different distribution

as regards to the number of patients that are lost at time of analysis.
Such effects are mainly due to administration of the trials and are
undesirable. In the next section we will deal with censcring in more

detail.

The randomisation can provide a good setting for control of
administrative bias. However it provides no guarantee that differ-
ences between the groups towards the end of study are only due to
treatment effects. It is important that together with the formula-
tion of an a priori hypothesis, a framework is set up so that the
patients 1in the two groups are in some sense comparable in terms of
their known prognostic indicators and follow-up procedures. This
framework in practice is extended to a protocol that all participants
agree to conform to. In this way the data collection and interpre-

tation of effects and some of the clinical practices are standardised.



From a scientific point of view the emphasis on the better
design of a trial will clearly enhance the reliability of a conclusion
that is drawn from a trial. Much of the respectability of hard data
sciences such as physics and chemistry is attributed to the develop-
ment of good calibration and development of instruments for proper
measurement. The development of better recording facilities and
computer storage and analysis may go in some way to provide more

uniform standards in clinical assessment.

Some of the prognostic indicators later form the basis of
further analysis of survival times. At times such analysis can
suggest a path for formulation of a new hypothesis. In here there
is a need to distinguish between two forms of questions that may
arise. All the above discussions have dealt with the value of a
treatment in terms of the individual survival times. However, other
failure time indicators related to progress of disease, side effects
and changing prognostic indicators at times can be used to provide

information on the biological nature of the treatment and disease.

This latter distinction between the two types of guestion

is made due to the recognition of the fact that trials are not experi-
ments in the pure hard data sense of the word. What may be termed

in the 'hard' sciences as data dragging and problems of multiplicity
may justifiably be recognised as locally valued exploratory data
analysis in the clinical trial data context. The problem is that
what is often considered as valuable research is related to the
unknown and it is in the area of the unknown where clinical judgement
may be thought to be at its strongest value. This type cf explor-

atory/

14



atory analysis therefore can provide a framework for reduction of

the data and secondary analysis. Part of the benefits of local
exploratory analysis will be in the formulation of new hypothesis and
part of the benefit may be in terms of an improvement in the quality
of the data that is collected. However it must be emphasised that
a proper placing of secondary (exploratory) analysis is achievable

only by a utilisation of diverse and relevant methods of analysis.

1.3 Trends, Philosophy and Ethics.

In the previous section an overview of the main topics
of clinical trials was given. In this section of this chapter
come trends and developments in the light of the present definitions
will be given. Clinical trials play an important role both in
terms of the wvalue of the information they produce and in their impact
on the géneral public. They introduce problems of ethics in a
situation where there are conflicting interests and risks involved.
Further, to resolve the real problems that exist and to arbitrate
between conflicting risks and advantages we use scientific method-

ology. This is at a time when the distinction between science in

its pure sense of the work and its applications are diminishing.

In the previous pages, we discussed the setting within which
a trial is performed and we touched on a few topics that determine the
design stages of a trial. We will now continue with the quality and
form of the data that arises and the type of information that is
considered to be essential for providing an answer to the questions

on trials.

The/
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The minimum data required for the analysis of a trial is
the information on treatment allocation to the individual patients
and the survival distributions at the end of the study. A slightly
more elaborate analysis may also require auxilliary covariate
information on the prognostic indicators. In the course of this
thesis we will mention some of the established methods for an
extensive analysis and concentrate on the propor:ional hazard method

of Cox (1972), read at the Royal Statistical Society.

The proportional hazards model and some of the recent

extensions constitute a major development in the methods of analysis.

The model allows a comparison of the history of the disease by use
of prognostic indicators that may change through time. For a statis-
tical method of analysis, the approach can allow an expansion of the

methodology of analysis of event time variability.

In here we will mention a few recent approaches that have

been attempted in various fields. Later in the course of the thesis

we will concentrate on cancer trial data only.

1. Di prete 1981, Considers a study of duration of employment
in which adult members of a labour force pass from various
states of unemployment to employment.

2. Hannan, Tuma and Greenveld 1978, consider effects of income and
other effects on the periods of marriage and divorce.

3. Hannan and Carroll 1981, study of effects of various character-
istics in society that lead to various forms of government and

the times of remaining in one political status.

4./
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4., Crowley and Hu 1977, study heart transplant data and various
characteristic variables in determining survival times.
5. P.K. Anderson and N.K. Rasmusson (1982) consider times of

admission of a group of women attending psychiatric hospitals.

Although the above studies arise in different settings,
all deal with the progression or development of a process through
time. This parallels the progress of disease in time and possible
events that may occur in this process. The emphasis in here is
not so much that of desirability of the approach in a clinical
setting but more in dealing with practicality in providing a

flexible model for the interpretation of the data.

The need for organised experimentation arose in the
natural science due to a need to replace occasional fragmentary
experience with harder unbiased evidence. In such contexts the
experimental unit is an inanimate object with no morals, collective
memory or values. The need to perform experiments on human
subjects in general arises out of a wish to answer important
questions on the nature and treatment of various diseases with
some degree of scientific and ethical accountability. The final
result is scientific and technical progress for the benefit of
society. In the biomedical fields in particular the inétitution—
al demands and individual rights play a major part in the final
outcome of the study. In general two types of experiments are
identified in this context, therapeutic and non-therapeutic. We

will now give a brief description of the two.

Non/
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Non-therapeutic experiments are primarily performed for
the purpose of gaining new knowledge and not so much for reasons of
benefit to the subject. An example is the use of healthy human

volunteers in early phases of drug testing.

More important are the therapeutic experiments. The
primary aim is to benefit the patients by intervening in the progress
of a disease. However similtaneously the intervention is organised
in a controlled manner so that a valid scientific conclusion may
be possible at the end of the study. On the scientific importance
of such trials, M. Baum, R. Kay and H. Scheurlen (1982) have written:
"Over—-enthusiastic and uncritical adoption of a conceptual framework

by some clincians has led to therapeutic dogma and consequent
erection of new ethical constraints. Factors outside the control

of the clinicians which are active in hindering progress are an
increasing public awareness of the probtem, the clamour for informed
consent, scrutiny by the legal profession, the involvement of nation-
al government agencies and the escalating costs of treatment. Those
developments also force us to reconsider the scientific fundament-

als of clinical trials as opposed to other approaches to scientific
questioning”.

The key word in statistics is information and evidence
and it has always dealt with 3 practical problems. What are the
assumptions of analysis? What are the assumptions of collection?
and finally, how relevant is the data? The abcve problems are
particularly relevant in trials in thaé results may not be know for
a long pericd. As far as the attitudes of the clinicians involved
in treatment and measurement are concerned, changes may take place.
This may result in premature withdrawal from a trial with the result
that the objectives of the.trial are not fulfilled. Alternately,

their assessment of patients may change over a period of a trial.



This final remark will be emphasized to some extent in
the course of the thesis on the effect of varying definitions such
as progression of the disease that may arise. These changes of
concept may affect the clinicians from many directions, from those of
personal motivation to be right to those of individual responsibility.
The final effect is that there is potential for conflict between phe
scientific objectives of the trial and the subjective decisions of
the clinicians. In here science is dependent to some extent on the
background assumptions. In the physical sciences. performing standard
uniform methods of measurement is possible, but in a clinical
setting even with a willingness to conform systematically with
the protocol, the measurement will not necessarily be free from
preconceptions. One further difficulty mentioned in the last
section is human involvement as an experimental subject and the fact
that individual rights are at the forefront of any responsibility.
There are different modes of ethics present. First of all cancer is
a problem and it is ethical for our institution to find the relevant
answers. Also it is ethical to utilize resources efficiently and
be aware of their value and obtain relevant inference. Further,
there are clinical ethics based on the personal judgement of the
physician and finally there are interests of the individual and a

choice preference he or she may want to excercise.

In here a difference exists between the observational
requirements of the natural sciences and the ethical attitudes of the
individual physician, mainly due to the limited form of information
available to them at a time. For example during the progress of a
trial a physician may gain the impression from incomplete data that

one/
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one treatment is more successful that another, posing him an

ethical dilemma as to whether to continue with the trial or withdraw.
It is difficult to consider any of the above mentioned problems

in isolation from the role of computer and information networks in
the developments of future procedures. Science as a common
arbitrator is confronted with many information techniques ranging
from multivariate statistical methods to those or data base manage-
ment systems. A general and undisciplined use of the above methods
would lead to an increased likelihood of eithical conflict. On the
other hand a utilisation of relevant methods of secondary analysis,

in the corréct context and specified fully by a protocol in the
beginning of the study may contribute towards a better participation.
With respect to the role of feedback of information, Prescott (1978)
based on patient entry into Edinburgh trials, indicates that with

a feedback of information it may be possible’:to maintain the level

of interest in a multicentra trial.

1.4 Definitions and Mathematical Functions.

In this section we will develop and define some of the
initial concepts in survival or failure time analysis. Before we
commence with various definitions that we need in this thesis it
must be emphasised that the titles survival or failure time analysis
are a little misleading in that basically we are interested in an
analysis of progress of various events in time and this event in time
need not be death or regression but can be discharge from hospital,

or any other event not necessarily representing a failure.

In/
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In the study of survival time three mathematical functions
are often used. These are survival function, hazard rate and the
density function. These functions are in fact different transform-
ations of cne another. For reasons of interpretation however a
particular function is usually used and in the course of the thesis

we will mention certain practical advantages of each.

For all of our cases we have a time ti available which
in the observed period for that case until a particular event of
interest for example death. Clearly ti is always greater than zero.
We define for the density function of T the function £(t) and for
the distribution function F(t) as is the usual practice in the
statistical literature. We can thus define a more useful function
for these applications, namely survival function S(t) giving.

S(t) = 1 - F(t) Pr {T >t} = Pr (survival for a case exceeds t)

Also

f(t) = ;—i S(t)

(and as usual J_m £leyde = 1 )

Another useful function is the hazard rate or hazard function.
In epidemiology, this is named as a force of mortality. We have

here the hazard function given by:

! £(t)
ME) =56
}\{t)=Pr{t<T<t+dt T > €}

pr ,death in a small interval/given survival}
X dt up until time t

We/
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We can now explore the functions in relation to each other.

t _ |t £f(u) - _ - t
J A (u) du = Ja ETET du = [ log {1 F(u)} ]u

-log [ 1 =-F(t) ] = - log S(t)
which implies the important relationship

8 a () au
S(t) = e

These concepts have been defined here for a continuous case but can

be extended to discrete form of T.

In practice what distinguishes survival analysis from
most other branches of statistical analysis is that at the end of
the study or at the time of analysis we dc not have a failure time
for some of the cases. That is we know that they have survival up
until the last follow-up and also know that they will fail in the
future. This effect is known as censoring of the failure times

and will be discussed for the rest of this section.

For each case we will have a time Yi or ci, available,
indicating resprctively that the observed time was terminated by a
failure or that the case has not had enough fcllow-up time to produce
a failure. In industrial applications two types of censoring namely
type I and type II are usually used. Both of these types of censor-
irg imply that all cases are put on trial simultaneously at time zero.

1£/
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If a fixed maximum time of failure is considered sufficient before
the end of a trial we will have a type I censoring and if the
stopping criterion is taken to be the ratio of censored to sample
size we will have a type II censoring. An example is the situation
of monitoring a set of light bulbs on time. We will not develop
these concepts any further but continue with a form of censoring

that will be used later in the thesis.

In biomedical applications a different type of censoring
is produced by the data and usually named as random censoring.
Patients are entered into a trial at different times and then are
observed after treatment for a number of years. We therefore have

a time ti for case i and it is,

t. = Min (y. , c.) , that is we. observe either censoring
i i i : . ; ;
or failure whichever is first.
and ; ;
AL Y, > ci ‘ ti is censored
Gi 5 E 1 uf yi < Ci ' ti is not censored (This notation

will be used in the develop-

ment of various models)

In practice some further complications arise. What we
have defined to be death or censoring can be in fact a subset of

a final outcome of a more complex process with more end points.

For example at times a patient decides to leave the
geographic area within which a trial is prepared and thus the case
is a lost to follow-up. At tiﬁes terminations other than one

of/
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of interest occurs;' say a death from a second illness or a car
accident and thus the final result can be open to different

interpretations.

Generally we assume that censoring times are independent
of death times. This assumption is quite valid for most trials.
However if dropping out of the treatment is more common for one arm
of trial the effect is at least loss inlefficiency and more
seriously b possible introduction of bias. In the thesis we will
also discuss the possibility of analysis of data with more than one
type of failure and in these contexts certain types of dependence

on death times and censoring can be tested.

1.5 Outline of Thesis.

ﬁthics and certain scientific stands give trials properties
that are slightly different from scientific experimentation in
the natural sciences. The role of large, cheap and accessible
computer information banks and fast end processing is new to this
area and 1is changing the statistical methodology which can be
applied. The recent developments in the field of failure time
analysis originating mainly from Cox (1972) and his proportional

hazard models are the main subject of our discussion.

We will study the applications of this model to clinical
trial data with various forms of interrelations. The variety of
interrelations will be defined t@ be both in terms of covariate
effects and actual events where more than one event is present on
the time scale. Further we will study the flexibility of the

method/



method in dealing with the different forms of interrelationship
that arise in situations where the regression parameters are

not necessarily fixed and their influence can best be described

in terms of a process through time rahter than a cause and effect
situation. The major emphasis of our discussion will be on the
exploratory use of the analysis and the variety of the models
available in the framework of proportional hazards. At times
when the limitation of the proportional hazard method makes them
inappropriate for example in the study of the actual distribional

shape of the hazard rates, we will discuss altervative methods.

In the context of the proportional hazard models with
intervening events and time dependent covariates, there is a
deviation from the traditional regression approach. Proportional
hazards do not provide the same restrictive assumptions in the
distinction between the exogenous and endogencus variables (in
this framework fixed covariates and final response times). With
the use of this extra fézxibility a greater number of models are
available for analysis with the proportional hazard assumptions.
The need for this flexibility aims at a different interpretation

of cause and effect, and more on the interpretation of the

structure of change.

Although from a scientific point of view it is
desirable that all measurements are made under uniform conditions
throughout the trial, it may not be possible to isolate totally
clinical judgement which may change with experience, from clinical
measurement. Further the individual behaviour of the patients
and also the long time scale in data collection may also play a
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role in the different pattern of development occuring for
different subgroups of patients. We will not analyse data
according to all of the above possibilities. However time
dependency does provide a good construct for such an analysis.
We will be looking at certain aspects of time dependengy within

the thesis.

In outline the structure of the rest of the thesis is
as follows:- In chapter two we will consider the non parametric
methods and their advantages. Also in this chapter we will study
a general group of tests that have been used in the analysis of
trial data. Chapter three deals with parametric methods and
the various advantages and the disadvantages of the expcnential,
Weibull and a few less known but more complex distribution.

In chapter four we deal with the semi-parametric proportional
hazard of Cox (1972). We wili consider various regression
forms of the proportional hazard models and consider its position
in relation to different parametric and non-parametric methods.
Chapter five considers a realistic simulation method for the
generation of clinical trial data. These simulations are
carried out for treatments and one covariate parameter in the
presence of proportional hazard assumptions and deviation from
it, using the various approaches of analysis described above.
Chapters six and seven consider and analysis data from a
clinical trial which was organised in Edinburgh. In particular
in chapter seven we will consider multivariate approaches to
survival analysis and the effect of different intervening events
in the patient progress. Chapter eight considers a different

data/



data set for the purpose of study of various prognostic
indicators and the.use of time dependency in prognosis.

Finally, in chapter nine we will bring together the findings from

the earlier chapters.
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CHAPTER 2

NON- PARAMETRIC METHODS

2.1 Initial Developments of Life Tables.

In this chapter we introduce the non-parametric
methods of analysis of survival data. These methods are closely
related to the life tabel method originally proposed by
Halley (1693) and which was mentioned in the introduction.
Such life tables according to their particular applications
have been refered to as population life tables, clinical life
tables and cohort life tables. We do not intend to discuss
the difference between the applications but to concentratebon
the clinical life tables, because of their relevance to failure
time data. In here however w2 generalise the area of applications
by rephrasing to length of stay in a particular state; for
example time from entry to a hospital to time of death or

operation.

Some of the developments outside the field of clinical
life tables such as those of competing risks are relevant to
multiple failure time analysis and we refer to these methods in
chapter 6, as multivariate competing risks. There have also been
developments in which some of the methodology and techniques
initially used in the analysis of failure time data have found

use /
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use in life tables outside of clinical studies. An example is
Breslow (1982) on the use of Cox's method for cohort studies. We
will return to this area again later in chapter 4 when we allocate
a chapter to Cox's approach. Although at times we refer to
similar developments in neighbouring fields we concentrate on
applications to clinical trial data methodology. Two other types
of life tables that are used extensively in other applications are
population life tables and cohort tables. The population life
tables require two sources of data. These are (a) census data

on number of individuals alive in a particular age group and

(b) vital statistics on number of deaths in a given year for

each age group. Cohort studies on the other hand concentrate

on describing the actual survival experience of a group born at

about the same time.

In clinical life-table data we use data from a group
of patients and the data refers to entry to a particular state
until removal from that state. The. nature of removal from the
state however often has to be conditional either on removal due
to response, e.g. death, progression of disease or it can be
a removal due to withdrawal, censoring, death from other
causes etc. Furtker we are interested in a comparison of
two or more treatments and thus the analogy with population
studies is not carried further. In pcpulation studies one is
oten comparing a survival rate of a group with a rate from
census data or vital statistics, much of which is historically
based information. In trials however, we refer to two arms of
a trial. The comparison of interest is performed based on a

measure/
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measure of difference between rates of failure betwe:2n the two
treatment arms. There are some trials based on more than two
treatment options but the principle of the analysis is the same.
In terms of structure however the method of clinical life tables
as proposed originally are similar to population life tables
in that the data is grouped into intervals and that the
probability of survival is estimated for each time interval.
Chiang (1966) produced variance estimates of the probability
of survival at any fixed point in time for describing the two
treatment groups. Later it was discovered by Kuzma (1967) that
these estimates can underestimate the variance of survival
probabilities quite significantly if the censoring percentage

is high.

Better estimates of survival rates can be obtained by
use of parametric methods, given that the relatively restictive
assumptions of the parametric distribution of interest are not
violated. This conflict of interest between robustness of an
estimating procedure versus its efficiency is part of the

disussions in chapter 3 and 4.

2.2 Product Limit of Survival Times.

In this section we will describe the product limit
estimate or the Kaplan and Meier estimate and later show that by
the method of Johanson (1978) that the product 1limit estimator
can be derived.as maximum likelihood estimators. The product
limit estimate of survival for n observed response times and

censoring/



censoring times was initially proposed as a descriptive method
rather than a methcd of inference. However recently it has become
the most commonly used method of estimation of life tables in the

context of clinical forms of survival data.

The product limit method is different from the methods
of the previous section in that rather than using a fixed time
interval it is based on forming a rank set of survival times in
such a way that, for equivalent death and censoring times it is
defined that the censoring times shculd have a rank greater than
its equivalent death time. The product limit estimators are of
special interest in that they form the basis of a large number of
non parametric tests and are closely linked to the proportional
hazard model. We will now proceed with a derivation of the
product limit estimators using the maximum likelihood estimation.
Throughout we will assume a continuous time scale so that there
are no tied events for each rank. All results however may be
generalised to tied data with slight extensions.

First we order the survival data into a rank order.

t < % < aaun R B

(1) (2) {n)
Further for each t(i) there exists an indicator variable Gli) such
that,
1 1£f £, ., 1is a response
8 _ E (1) =
(i)

( 0 if £ ., 1is a censored observation.

i)
we then define

P, = P [ Surviving at t,. iven survival until Et,.
1 . J (1) J (1)]

= > 3
S 2 T N '8 teoqy]
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giving

= = { i where n, = A=1Ye £ 8 1 w0 o ow N

: if By = 0 (3.3.10

From definition of chapter 1 we obtain

~

S (t)

]
=
o]
1]
=
_—
—
|
b= Y
S

Then the corresponding estimate of standard error is

- B
_ (i)
s.e. [S(B)] = S () A T T

%
}

Z
R <ol o
(1%
We will now express the survival distribution in terms of a
likelihood function based on produc% limit estimates and show

that(2.2.1) can in fact be considered as the maximum likelihood

estimates of the likelihood function.

Likelihood L

(terms due to cases dead) (terms due to censored

times)
n § i) 1-6 (1)
L = I Pr[T=t.]( Pr [T >t .. ]
g (1) (1)
i=1
n 5 n 1—6(.)
= I [Pr (T=tg ) I Pr (Tt &b
i=1 : i i (=

8 1- 6

E R.
{ ; ]
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we can thus define the hazard rates conveniently as

n - n
li= R, [ I Ri] with I R, =1
§ ‘a4 j=1
we thus have
) 38 . B, R,
1 - li = 1__1 = ng'#_ (2.2.2)
R. p 5
J él 3 J gl J
and
n n
z R. = (1 = 2A.) z R, = (1 =2Xx,)(1 =21 Y B R.
j 2i+1 3 o= ol i-1 j=i-1
n
= (1 =2.)(1 = A, Y e s e T = A) z R.
i i=-1 2 Y j
n
= (1 - Ai)(I - ki—1) % » & M@ = A2(1 - 11} .Z R.
J%1 =3
i-1 n
= I (1 = Xx.) since I R = 1 (2.2.3.)
j=1 g j=1
Also
Rl Rl
Ai 7 R. i-1
j 3i J I (1 - A.)
j= 1 ;
i-1
giving Ri = Ai .H (1 - lj) (2.2.4)
a9
Thus expressing the likelihood in terms of the hazard rates
we get
n i-1 s . i-1 1 =5,.
L = T (A, T (=230 (1 @1=a1) =
i-=1 j=1 J =1 J
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n G(i) i-
= 0 [, (1 N
faed i 521 {1 lj 11
§(;) §(,) §(g) §(n)

= l.; o lz (1 —Xl} o K, (1"' Ax){‘l - 12) . = ln (1“ 11) .

.onn(1 -ln-1)
8§ (n)
Blit A = 1 by definition
n
Therefore
NG 5
= l TR e el - —’
L ( Ay ln (n) ) (1 "R:Jn 1,0(1 -l,)n 2_° (1_ln_1)n (n )o
n-n
(1 - An}
n--1 0.
w o ox B g -J\i)" 2
i=1 i

Now we take logarithm of the likelihood in order to obtain a

maxima with respect to Ai

§ Log L _ ‘W), -9, (-1 o
. A T -,
1 1 1

“_li)d{i) + (n-i)(-l)li=0

=2 Ay, = 8. / (8§, +n-=-1)
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But 6[1) is either 0 or 1, giving

B oo
S - S .

P
1]

For the product limit estimator by definition & (2.2.5) we get

~ ~ i“'1 ~
R1 = li I (1 =)
j=1 3
By i-1 & i
- = SR | ) J.
14+ n-i j=1 n-3j+1
Thus by definition of §&(t) we have

~ 5(1) i-1 & 5 6(1)
Ri - 1T+n-=-1 E ( n -3+ 1) (2 26)

Therefore we conclude that the Ri are the required maximum likelihood

estimators of survival times.

2.3Nonparametric methods for two treatments

First we consider the log rank test, Peto (1972 a), which is also
named mantel, Mantel-Haenzel, Mantel-Peto-Cox, or Savage-Mantel-
Peto-Cox statistics. In this method, which is based on the observed
and expected values of numbers of events in a particular time (under
the Null hypothesis) we derive a form of chi squared test which is
indirectly related to the ranks of survival times. The ranks are
then transfermed to a comparative ratio of numbers responding and
numbers at risk. By this method any probability wvalue that we

obtain is used for the main objective of discrimination between

treatments./



36

treatments. This enables us to infer that the difference between
observed and expected values of the survival rates is either compatible
with the Null hypothesis of no treatment difference, or that it is

due to the effects of the alternative hypothesis that there are
treatment differences. There are certain assumptions necessary for
an analysis based on the log rank test. Later we will compare these
assumptions with those of the Wilcoxon test and present a general
form of test which incorporates both tests as special cases. At this
stage however we only mention that the method can be derived and is

related to Cox's proportional hazard model of Chapter 4.

Initially the same procedure as that of Kaplan and Meiers
is used to transform the survival times. Similarly a vector or

survival times is obtained based on

t <t < ¢ W oW w0 ow B
(1 (2) (r)
Thus at the beginning of each of these time points, say t{j) we
form a 2 x 2 table to categorise the total number of patients at
risk, according to treatment grouping and status at end of t{j}period.
Observed events
Number in group (deaths) in Alives
at time t,, roup at t, .
(3) FEER (3)
Gro 1 N,. ; . .
up 15 01] (NTJ 14
Group 2 N o : : :
P 23 023 a5 ~ %23
Total N. 0. (N. 0.)
2| ] ] ]
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1]
V]
0]
w
o
m

Then we have a contingency table giving Eij

expected number of responses at tj in group i.

We thus represent the above as a 2 x 2 x r table with the log rank

statistics
r
[ obi 1050 o E..)2 | 2
i =1 13 2J s =8 (2:3.9)
LR r v
¥V
j=1 7

Using the hypergeometric distribution and the corresponding

moment generating functions we have the first two moments giving

N,. O, N,. N .0, (N, =0,)
By = 13NJ and v, = 13 33 s il ]
j ND (N, =1
] j N )

which can be used in (2.3.1)
For a single level x2 test where r = 1 we can then present a

X2 for a single level of j giving

2 By Bty & Ryl = oy Blyg = 04yl !

0. (N, = 0,
( J)

Now by referring to the table of the chi square distributions with
one degree of freedom we can accept or reject the null hypothesis of
equality of survival rates for the two treatment groups against the

alternative of different survival rates.

The log rank test is based on the Kaplan and Meier estimates.
It acts ind;scriminantly in combining expected rates of number of
failures. Like the Kaplan and Meier estimates the expected values
of numbers of events in each category is obtained by a ratio of

numbers/



numbers of events by the number at risk. However in some
circumstances a more efficient estimation of the survival
differences may be possible if a weighting is attached to the
expected number of events. We will consider those conditions later
in this section when we deal with Gehan's generalisation of the

Wilcoxon test.

The special property of the Wilcoxon test is that contin-
uously the congtribution to the likelihood is weighted by the total

number at risk at t This statement is analogous to a special

(3)°
form of time dependancy in proportional hazards. In terms of

" interpretation however the null hypothesis is slightly different
between the two tests in that for the Wilcoxon test the null
hypothesis i3 based on the equality of the survival rates between

the two groups together with equality of the censoring rates.

In the log rank test this latter assumption 1is not required.

Thus in the Wilcoxon test early events are weighted
slightly higher than late events. The log rank test may be

expressed in vector form by -

X = (0-%8"'v"" (0-E

The notations for E, O and V are expressed in matrix form
below for a similar expression of the Wilcoxon test; equivalently

the Wilcoxon test can be expressed as -

2" ©-8)1'12'va ' [2'©-E) ]

where for a comparison of two treatments we let,

1
« e .Er}, o = (011. 0w oDy ) o B = {E11...E1r)
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and

Further £j is set to Nj numbers at risk at t(j)

The above formulation was first used by Tarone (1975) on a

test for departure from trends. Tarone and Ware (1977) show that
the difference between the logrank rest and the Wilcoxon test is
in fact due to the choice of weights as a function of the number

of individuals at risk at the time of each death. Once again with

one degree of freedom we have a chi-square ,

3 2
I w, (0,. - E,.)
2 j=1 3 13 13
XTW = = {2.3:2)
/.E w. W,
I=1 ]
where
v = N N.. O N. - 0, 2
j 13 23 3 ( J j) / N, (N. = 1)
] J
and E =

: N, (e,
13 133/Nj

Thus this general result gives the lcogrank test for Wj = 1 and
the Wilcoxon test for wj = Nj. Taron and Ware suggest a
different function of weights, namely wj = JNj and claim that

it has better efficiency over a range of alternatives.

The above approach is closely related to time dependency
scaling of the proporticnal hazards. The Wilcoxon test considers
the distribution of censoring times as well as death times. There
is however no reason why wj must be defined as a function of Nj

alone/
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alone. In fact later in chapters on proportional hazards we will
consider time dependencies as a function of metastatic or other

intervening events.

Now we expand the logrank and Wilcoxon test to the
multivariate situation. For this purpose the general Tarone
and Ware statistics generalisation is used. We will continue with
Oij y Eij and vij presentations.

In cases where there are a number of subgroups we
present for say a set of different levels of an outccme, the

following formulations.

Level d0 d1 P MR B N e & dk Total at t{j)
Event ﬂOj OTj ij 0+j
at risk N.. N.. N . N .

0] 13 kJ +]

We then have a longrank type null hypothesis for the equality
of survival rates 0 to k and a Wilcoxon type null hypothesis for

equality of all survival rates and also all censoring rates.

Once again we have a chi-squared test with (k= 1)

degrees of freedom,

(0 -E)' VvV ' (0 - E) (2.3.3)

o]
1}

where

‘(0 - B)

i
[n
€
©
I
)

By the first 3 moments of the hypergeometric distributions we
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get -

Bey = Mys Wy LBy
v = w? z i4
J i J
and
N,. - ] : N -N__.Np
= e O s +3 034 _ K3 pi *3
z alw { } (1 }l .
. B | Mot o 1 N, . N, 2
J J : 2] ; +3
N . . 5
2 k k
< . 1
N, +3 +7
Ep | 3 J.J

NMow referring to (2.2.1) and (2.2.2) it can be seen that (2.2.3) is

a generalisation of the previous tests. Once again Wj = 1 gives

J +]
test and wj = JN+j gives a Tarone and Ware type statistic.

a general form of the logrank tests. w. = N . gives the Wilcoxon

2.4. Stratification.

In the introduction we mentioned uses of stratification
in conjunction with randomisation, and considered it to be a proper
method of conduction of a trial at times. We did nect consider
the necessary analytical techniques in the development of the
methods. We will now consider stratification methods in conjunction
with the non parametric methods of analysis which can describe the

general advantages of stratification.

In many trials apart from the treatment assessment
information an array of different types of exploratory data is

also/



also collected on patients, often referred to as prognostic
indicators or covariates. A few examples of each data that we will
be referring to are , age, node status, size of tumour etc. This
type of covariate information is a reflection of the underlying
make up of the group of patients to whom the inference is relating.
A proper randomisation in a large sample would imply that the patient
variability between the two groups are suitable. In some trials
however purely leaving the allocation of patients to randomisation
may not provide a satisfactory final outcome of the patient mix.

In practice the type of adjuvant care.or therapy can be dependent

on the prognostic conditions of the patient; this condition can
provide a framework by which the two arms of the trial are not
comparable. An example is a situation where the amount of radio-
therapy given may be influenced by size of the tumour, and thus

the size of the tumour may mainly influence the survival rates

of the two arms of a trial. In other situations where there is

a perfectly standard treatment for all patients, it may be known
from preset that a group of patients that have less advanced
disease, will be generally better in survival regardless of the

type of treatment. Such differences can lead possibly to a

correlated prognostic and treatment effect and furthermore may

bias the inference. The remedy is often a prospective stratif-
ication. The utilisation of stratification has been subject of
some controversy. Peto et al (1976) considers stratification

often as unnecessary and unjustified administrative inconvenience.
The basis of this view is that for large trials often the gain
in power of tests is nominal where randomisation guarantees

comparable/
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comparable treatment groups. An alternative view which is in
favour of stratification considers, firstly small trials to be
common in practice and an important part of research, secondly for
large trials an interim analysis can be based on small numbers of
patients which consequently may condition the conclusions on the

type of patient mix.

It should be pointed out that although stratification adds
a form of control on the randomisation procedure it in no way
influences the chances of treatment assignment to a treatment arm.
Apart from stratification at design the relation between stratif-
ication and analysis is also important and at this point we can
make a few comments which. can also apply to the methods that we
will be considering later. In either of the situations where
the sample size is large enough to achieve a balance of treatment
arms in terms of prospective effects, or the situation of
stratified trials and balanced prognostic effects, it is useful
to account for any of the possible survival differences that
as a priori is considered relevant to the trial. There are two
major aims for this type of analysis which may not have been so
clear from the discussion of stratification and design. Firstly,
we may aim to study the whole patient group and so it may be of
some importance to know characteristics of prognosis in different
stragiand account for heterogenity of patient survival rates.
However, care is needed in the interpretation of such assessments
for it is possible that any such inferences are conditioned on
sample size and/or other prognostic effects. Secondly, it is

possible to use prognostic factors to define the treatment

comparisons/
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comparisons, we may thus obtain a test statistic for each stratum
of a prognostic variable, in order to compare treatment effects
within each stratum. In the next section we will present the
results of a trial data by which we obtain tests statistics by
considering a fraction of data belonging to a particular prognostic
category. It is then necessary to obtain an overall observed and
an overall expected (extent of exposure) comparison. The overall
test is important in that even if a treatment difference for a
prognostic group is not significant, the overall test provides a
test by which if the directions of the influence cof the treatments
are in the same direction they can give an overall influence.

This overall test will then remove any consequences of a possible
correlation between prognostic variable and treatment effect.

An important condition where the above consideration is important is
when the tests for the different strata in fact do not point to a
treatment difference in the same direction. Once again we will
study such effects more careful%ﬁin the data analysis section of

this chapter and the subsequent chapters.

2.5 Comparative application of non-parametric tests.

Consider a trial in which a set of treatments have been
allocated and further stratification has been performed on some of
the prognostic variables, either prospectively or retrospectively.
The development of the logrank rank test are then useful in
expressing group differences in a single statistic. The development
of the previous section reinforce the notion that the logrank test
is a useful test for trials and further that it can be set within

a larger theoretical framework.

In/
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In practice we are interested in a comparative study

of the general expressions of (2.3.1), (2.3.2) and (2.3.3) as

applied to a set of clinical trial data from Edinburgh. At this
stage we will consider the relation of the special forms of the
w vector of the last section to the various hazard rates of the
prognostic group. We will not deal with inferences drawn for the
shape of the hazard rates, since chapters.4 and 6 medels are more
appropriate for this. The actual data will be discussed in greater
detail in chapter 7, with some history of the topics and problems

related to the treatment of breast cancer.

Basically the data consists of 561 cases treated for
breast cancer either by radical mastectomy or simple mastectomy

plus radiotherapy to the axilla.

In here we record the survival times only and the primary
purpose in the use of this data is to assess the relative merit of
the arms of the trial for the total group of patients and then
according to various prognostic factors. In chapter 7 we deal with
the situation of more than one response variable and consider
intervening events such as development of local and metastatic

disease.

The Wilcoxon as was explained attaches more weight
to early events and thus gives a slightly different chi-squared
value to the logrank test for most of the groups in our data.
Earlier we presented these tests as 2 x 2 X r contingency tables.
In fact the logrank is the most powerful test given that the

second/



46

second order interaction is negligible.

In general there may be more than one set of independent
variables acting and thus we will perform an analysis based on the
various subgroups of patients. Thus our data can be expressed
by wvarious probability wvalues, related through a likelihood

function by the following formulation.

I terms due to cases dead

Likelihood (particular subgroup)

I terms due to cases censored

[}

I terms due to time dependencies.

In the above likelihood formulation we have introduced
time dependency. It is difficult to establish a complete meaning
of time dependency without resorting to empirical hazard rates. We
will do so in chapter 3. For the present section it is important
to consider a comparison of the Wilcoxon and-the logrank test, using
a trial data. Such a comparison is intended to serve as a
representation of the effects of the two tests-for different hazard
rates. As we will indicate in the discussion of the data the
two tests produce the same interpretation of the data. On the use
of time dependency however we confine their difference to that of
having a different &vector ¢f weights in the overall X2 test.

The effect of such weights is of importance only if the
variability of the difference of the propor..tion of rates is

of relevance.

In an extreme situation that 1is rarely detected in
practice one may encounter Ccrossing sucrvival rates.

However/
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However in the comparison of the logrank and the Wilcoxon test
any time dependency if it exists will be reflected by the influence
of late events versus early events. °~ For the purpose of estimation the
logrank and the Wilcoxon test in fact ignore the last term of the
likelihood. In fact practically for most situations one can assume
that the effects due to the last term of the above likelihood are
negligible. The slight difference that we will detect for the
logrank and the Wilcoxon test is due to the structural differences
between the two tests. This structural difference however is
essential for the power of the tests in the presence of the most
relevant alternative hypothesis. In the chapters on proportional
hazards, time dependency effects can in fact be tested directly by more

suitable methods.

In the first steps of the analysis we will obtain the
product limit estimates of the two treatments and the corresponding
hazard rates, Figs. (2.5.1) and (2.5.2). The mthod used for the
plot of the hazard rates is described by Johnson and Johnson (1981).
We use a grouping period of 30 months for all the hazard rate plots.
By the use of the logrank test and then the use of the Wilcoxon test
we obtain the probability values for the difference between the

two survival rates, Table (2.5.1)

No. of No.of Expected 2 x2 af p p
cases Responses Responses LR W LR w
Radical — ,g8 135 162.05 )
Surgery )
)
)10.04 12.23 1 .0015 .0005
Simple )
Surgery 273 161 133.95 )
+ XRT

Table 2.5.1
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Later we use the modified version of the logrank and Wilcoxon test, so
that apart from obtaining the difference between actual survival

causes of the total treatment groups, we also obtain an overall
treatment comparison adjusted for prognostic variability. In the
process of obtaining the adjusted comparisons, a comparison for each
level of the prognostic indicators is estimated and the final adjusted
comparison is based on weighted differences of the observed ard

expected values of each subgroup.

The primary purpose in the comparison of each logrank
statistic and the Wilcoxon test is to study a difference in their
corresponding chi-squared and probability wvalues. Further we
examine, the shape of the hazard function and the association between
the patterns of differences between the rates of failure and the way

in which the Wilcoxon test puts more emphasis on early events.

Another manner of looking at the effects of time scale
will be done in Chapter 7 by use of the regression 1like models of the
life tables. In these models we relate the shape of the hazard and

the time dependency indicators.

The prognostic indicators that we use are namely, Age,

Node, Stage, Size and Menopausal status.

50



Premenopausal

Menopausal

Postmenopausal

Pre & R
Pre & S
Meno & R
Meno & S
Post & R

Post & S

Node Status
Ng

N1

N@R

Ng@S

N1R

N1S

Tumour size

T1
T2

T3

T1R/

No. of No. of
Cases Deaths
163 59
38 29
359 216
89 27
74 32
21 11
17 9
178 97
181 119

ADJUSTED (R V S)
for Logrank

375 184
181 112
199 83
179 101
88 51
93 61

ADJUSTED (R V S)

for Logrank

56 17
397 213
107 65

Expected 2 2

No. of xLR X df

Deaths

98.53 )

]
20.26 ) 25.12 21.97 2

)

176.21 )

35.74 )
) 3.17 1

25.26 )

11.66 )
) 0.09 1

8.34 )

115.21 )
) 6.21 1

100.79 )
9.05 2

210.02 )
) 10.96 10.84 1

185.98 )

102.54 )
) 8.56 1

81.46 )

58.19 )
) 1.90 1

53.81 )
9.94 1

35.76)

)
208.11) 13.82 10.62 2

)

51:13 )

Table Continued.

.0010

.000 .000

.0752

.7618

.0127

.0021

.0007

.0009

.0034

.1683

.0016

.0047
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Tumour

size (contd) Cases

TR
T1S
T2R
725
T3R

T3S

S1
52
S3
S1R
S1s
S2R
525
S3R

S3s

Age
-40
40-50
50-60
60+
-40 R

-40 S

40-50/

No. of No. of

Deaths
37 13
19 4
198 40
199 123
53 32
54 33

ADJUSTED (R
for Logrank

vV S)

307 147
141 79
112 69
164 65
143 82
67 I35
74 44
57 35
55 34

ADJUSTED (R ¥ S)
for Logrank

31 14
168 66
174 96
188 120

20 8

11 6

Expected

No. of
Deaths

10.96 )

6.04 )
115.88 )
97.12 )
33.84 )

32.16 )

171.76)
)
69.91)

)
53.33)

85.15)

)
61.84)

39.65)

)
39.33)

35.67)
)
33.33)

1751}
)
96.40)
)
88.75)
)
93.34)

9.23)

)
4.77)

1.08

12.76

9.41 10.97

11.41

1.11

06.03

K 3%

18.65 23.70

.48

52

df P P

LR w

1 .2981

1 .0004

1 .8343

1 .0038

2 .0090 .0067

1 .0007

1 .2914

1 .8714

3 .0003 .0000

1 .4863

Table continued



Age (contd)
40-50R
40-50s
50-60R
50-60S
60+R

60+S

No. of
Cases

89

79

85

89

94

94

No. of

Deaths

35

31

39

57

53

67

ADJUSTED (R ¥V S)
for Logrank

Expected

No. of

Deaths
35.65 )
30.35 )
50.64 )
45.36 )
67.07 )

52.93 )

Table (2.5.2)

.03

5.70

6.78

10.52

df

1

1

LR

.8721

.0170

.0092

.0012

53
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A point to note regarding the tests in the table (2.5.2)
is that we intend to compare the logrank test with the Wilcoxon test.
The most noticeable source of discrepancy if any in terms of
magnitude will be detectable in the study of the actual prognostic
indicators rather than treatment comparisons. For this reason a
comparison of the two tests based on prognostic differences will
suffice. A consideration of the results of table (2.5.2) indicates
that the radical surgery without radiotherapy is producing longer

survival times than the simple surgery with radiotherapy.

The prognostic factors indicate that stage one, two and
three are respectively ordered in terms of their progress of the
disease and the later risks of development of the disease. The
stage one group produce a treatment difference that is much greater

than étage two and thrée tumours. This is an indication that the
actual value of the stage may be interacting with treatment. Tt
is not possible now to discuss this point furthes or substantiate

with a formal test. In Chapter 6 we will do so.

The indication of different values of the treatment effects
appears for some other prognostic indicators. Menopausal status and
age indicate that post menopausal patients and for age over 50's
group, the treatment differences are at their heighest. This, as
was pointed out earlier, may be due to sample size rather than the
treatment effects on prognostic strata. The number of patients
in the menopausal group are rather low and thus with the present

method we will not study the effect of treatment status further.

The/
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The adjusted rates on logrank statistics for each of the
prognostic indicators carry the same message as the unadjusted rates.

That is we detect a better survival rate for the radical surgery group.

In the case of age, the subgroups contain a reasonable
numter of cases in each category and a statement in a descriptive
manner may be made regarding interaction between age and treatment.
The survival rates for the 50-60 group give a significance level for
the treatment difference of 0.0170 and for the 60+ group a level
of 0.0092. The younger patients give probability levels that are
not significant in terms of treatment differences. This effect is
more notable for the 40-50 group. It must be noted however that
this apparent difference is not a statistical indication of a difference
in treatment effectiveness for the different age groups. Such formal

tests will be performed in Chapters 6 and 7.

On considering the hazard rates and the corresponding logrank
tests, there is an indication that the treatment effects are in a
similar direction for all prognostic subgroups. However it must
be pointed out that in terms of extent of the risks on the time
scale they are not always similar. Figures (2.5.5) and (2.5.6)
together with the corresponding logrank tests suggest that older
patients produce a higher failure rate when they are treated with
simple mastectomy and radiotherapy. Further there seems to be an
indication that risks are reduced for the 50+ group 7 years after
treatment, while risks remain the same for the rest. Figures
(2.5.7) and (2.5.8) with the corresponding logrank tests suggest
a similar pattern for the menopausal status, which conforms to the

age/
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age interpretations. Both menopausal and premenopausal groups produce
higher initial hazard rates than the postmenopausal groups but the
rates later converge. In Chapter 6 we will perform tests on such

time dependencies.

For the size of the tumour, there is a slight indication that
hazard rates are of similar pattern for all groups during most of
the time sczle. However, the larger tumours after an initial period
of constant risx produce lower levels in later stages of the disease.
The main purpose for putting this emphasis on time dependency of
size and age is to relate the findings to logrank and Wilcoxon tests.
The above points are similarly noted for the differences between the
two tests. Wilcoxon test for the categories of age survival gives
a chi-squared wvalue of 23.7 against logrank wvalue of 18.05. The
reverse is true for the size of the tumour. That is the Wilcoxon
‘test gives a chi-squared value of 10.62 and the logrank test gives
a higher value of 13.82, indicating that the differences may be due
to later events. The two tests do not differ to an important degree
and other main effect prognostic categories show even lower
differences. In fact the difference between the two tests of size
may be coincidental. Inferences about variables of prognostic
importance from this study will be considered again in Chapters 6
and 7. In these chapters a more detailed model will be used and
indirectly we will explain some of the differences between the

logrank and the Wilcoxon tests.
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CHAPTER 3

PARAMETRIC METHODS AND HAZARD FUNCTIONS

In the previous chapter we discussed a set of non-
parametric statistical methods for the analysis of survival data.
In this chapter we will be dealing with the parametric methods.
Within the descriptions of this chapter we will discuss a few

possible hazard functions from empirical data.

3.1 Commonly used parametric methods in survival analysis.

These methods follow the general philosophy of parametric
statistics by which we assume that time to a critical event is a
random variable and based on this postulate we may assign a
frequency distribution to the survival times. Basically the
distribution functions must be able to approximate to the empirical
life-tables which present the cumulative proportion of cases
surviving against the time scale of events. It is often difficult
to visualise differences between classes of survival functions or
identify them purely based on an inspection of the distribution
function, in that the survival distribution is always a decreasing
function. However for purposes of defining and classifying between
distribution\functions, their transformation to hazard functions
plays an important role, so that by a visual display of such
functions a pattern of events can be observed. The hazard rates
in fact present the rate of change of the survival curves and thus

the/



the pattern of the hazard can be useful for the purpose of identif-
ication between the empirical and frequency distributions. In the
early stages of the chapter we are not interested in the effects of
treatments or prognostic variates, but rather, in the possible
families of distribution functions that may be useful in the
applications of fitting parametric distribution functions to

life-tables.

First we describe 3 rather general methods and the plots of

their hazard functions.

Name of Hazard Rate Death Density Function Survivorship
Distribution Function

Exponential A(t) = A f(t) = Aexp(=-it) ,A>0; t>0 S(t)=exp(-At)
Weiball Me) = wt’™ ! £(e) = pot” exp(~ut?) >0 S (&) =exp (~ut’)

v>0; t>0

Rayleigh A(E)=A +2),t f(t)=(l°+l1t)exp(-kot-l1t2) S (t)=exp (=i, t-

Ag>0,1.>0,£>0 k1t2]

1

The first two of the above distribution are in fact members of
the same set and the final distribution will be referred to as

a special case of Taulbee's approach later in this chapter.
Figures (3.1.1) to (3.1.9) illustrate the various functions for the

three distributions at variable parameter values.

In the previous chapter we presented some of the empirical
hazard rates for the old Edinburgh trial data, in specific subgroups
of patients. It is important to note that at this stage we mention
hazards in general terms for the total population. In practice
hazard rates can show different quantitative failure rates for
different subgroups. Under a parametric context for a comparative

study/
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study of the survival rates we are interested in the magnitude of

a parameter that can best describe the differences between the
various subgroups of patients. Later in this chapter we will
derive the necessary estimates of the above distributions with
covariate effects present. In applying such methods we make certain
assumptions on the actual form of the hazard rates in choosing a
particular model for describing the relevant differences. By a
visual inspection of the hazard rates one can then judge how well the

data conforms to the assumptions of the statistical method.

3.2 Examples of hazard functions and families of distribution for
survival analysis.

The most common parametric distributions used in clinical
trials for the survival of patients are the exponential and the
Weiball distribution. The Weiball offers a wide range of increasing
and decreasing hazard rates, with the exponential function being
a spectal case for a constant hazard model. As will be shown, these
two distributions belong to a family of proportional hazard models
with covariates. The assumptioﬁ of proportional hazards regquires
that the hazard rates for all subgroups must be a multiple of a base
time hazard rate for the entire set of subgroups. S. Gore (1981)
Figure (3.2.1) shows the example of breast cancer trial data in which
the assumptions of proportional hazards are violated. Without a
visual inspection of the hazard functions, there is a strong
temptation to use one of the robust proportional hazard models, such
as that described in Cox's (1972) paper. An inspection of the
hazard function can also lead to choosing a more efficient analysis

based/
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based on parametric methods, while an approach purely based on tests
of significance using completely non-parametric methods may over-

generalise the pattern of failure.

In the plots of exponential, Weiball and Ragleigh distribu-
tion some forms of constant increasing and decreasing failure rates
were presented. Later we will discuss some u-shaped and cone-shaped

hazard rates that can arise from a trial data.

Turner et al (1976) consider a general 3 parameter family
of survival distributions. This family is able to generate an

extensive number of distributions that can be used in a survival

analysis. The general survival function is given by
s(t) = {1 +— [% (1——“—+sm:t)—1/91}"/“
inj iny P {3:2:1)

For t 20, 8>0, p >0
and =»< n < =»

The probability density function is

(1+n) / (1+p) T+p

£(t) = B{—-E-—i [ sqey VTERMANR) | g

| 11

(3.2.2)

These functions provide a set of highly flexible distributions with
many differing shapes for the hazard functions, such as increasing,
decreasing, constant and cone shaped hazards. This variability

of the hazard rates can be mimicked by the range of the distributions
of form, Gamma, Weiball, Lognormal, Ragleigh, Single hit and Arheus
distributions. The most important advantage in the use of Turner's
family of distributicns is that all these distributions can be

defined/
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defined by only 3 parameters. This offers a formal test for

comparison of shapes of hazards. In a related paper by Bertanou

et al (1978) the Turner's family of distributions with concomitant
variables is used. They use a maximum likelihood estimator for

the parameters using a method of Hazelrig et al (1978), The most
important problem in the general use of this appreach in survival
analysis so far has been ‘that of adopting an estimation procedure

capable of dealing with the complications of the censored survival

data.

Bertanou et al (1978) compare life expectancy in two
groups of children treated without surgery in Tetralogy of Fallot.
The data is not based on a randomised trial, but is formed of clinical
information and autopsy data. In this approach the analysis begins
- with the study of the possibility of detecting changing risk patterns
among subgroups. Further, a comparison of estimates within each
group can easily be made without making the restrictive assumptions
that the two subgroups have.similarly shaped survival distributions.
It may well be expected that this approach by being a parametric one
provides a better approximation to the hazard functions. The result
is an effective procedure for estimating parameters of the distribut-
ion. In their conclusion Bertanou et al (1978) support the generally
accepted view that "the natural history of person born with
tetralogy of Fallot is determined primarily by the severity of the
pulmonary sterosis, as demonstrated by the tendency of the person
with pulmonary uteria to die at a young age than those without

pulmonary uteria or the group as a whole".

Using/
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Using this parametric approach, the conslusions
regarding the results, both in terms of survival times of treatment
main groupscand the subgroups are the same as the alternative non-
parametric or single parametric approaches. However, within the
present setting they provide the corresponding hazard functions for

the different groups, Figure (3.2.2).

It is clear that the highest risk period for pulmonary
steriosis is the first two years and unlike pulmonary uterisia, the
risk 'of death does not decline in the later years, probably due to

relatively high risks in the second decade.

With the parametric estimation of the hazard rates clear
cut functions are produced that are intelligible in reducing the
data on the timescale. An empirical plot would yield the same
patterns aﬁd the same information. However the Turner's generic
family of survival curves has the distinct advantage that by
inclusion of extra parameters, there is a possibility of testing the
hazard functions and obtaining a distribution from its hierarchy that
yields the best parsimonious fit. The difficulty with this approach
can be the interpretation of the results if the estimating parameters
of the hazards differ greatly. Since there are 3 parameters it will
be difficult to decide on the meaning of such ratterns. An extreme
example is a situation where one group has a higher initial hazard
rate followed by a constant hazard rate and another group having
initially a low hazard rate followed by a high rate. The outcome
can be two survival curves that cross each other somewhere in the

time/
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time scale. In the extension of the Weiball model with covariates
to a proportional hazards model of the next section we will discuss

these points in less extreme situations.

With a non-parametric approach tests can also be
constructed to assess hazards. However if a parametric approach
is justified, there will be a loss in efficiency in adopting a non-
parametriclmethod. It must also be emphasized that in practice the
Turner's generic family may be too generous in providing a range of
distributions, where the main aim is to assess effects of treatments

and covariates.

Barlow et al (1978) adopt a more confined approach in
classification of survival distributions. In their terminology, they
adopt a failure rate rather than hazard rates. Three classes of
distributions are defined by their terminology, (a) increasing
failure rates, (b) decreasing failure rates, (c) u—shapea failure
rates. The Turner's family also includes a cone shaped hazard which
belongs to the Arhenous distribution, as was mentioned earlier in this

section.

An example of an increasing failure rate would be a healthy
population of over 50 years‘of age. In such a group one would expect
that the effects of old age will become increasingly dominant and
hence with increasing age the number of deaths will increase. A
possible hazard curve for such a population is the Weiball distribution
with shape parameter p = 1.5 Figures (3.2.3) and (3.2.4) represent

the /
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the hazard rate with the corresponding survival rates.

The time immediately after a major operation is a
critical period for the patients. Often the patient is recovering
from anaesthetics, which add extra risk to the survival of the
patients. However if there is no progression of disease and the
population is young enough not to be affected by old age a possible
survival distribution would have a relatively high rate of death
in the beginning of the time scale. With the passage of time the
normal functions of body can take over and the survival rates could
decrease and conform to a healthy population. A Weiball distribution
with the parameter p = 0.5 can be a possible distribution to approxi-
mate such a population. Figures (3.2.5) and (3.2.6) represent the

corresponding hazard and survivor function.

Had we not taken the above assumptions, regarding the age
of patients, then the effects of old age become increasingly dominant
in our population. Further assuming that after the operation there
is still some possibility of the progress of disease, as the case may
be in a population of post-menopausal Stage I and II brease cancer
' patients treated by mastectomy and operative radiotherapy, then the
hazard rate will be composed of a declining hazard rate followed by
an increasing hazard. In fact the life table of all ages of
population of a country saows such a hazard rage. At birth the
newly born experiences the highest risk of illness and death; with
development and growth of the child the risks decrease until later in

life new risks of death develop due to old age. Figure (3.2.3)

The/
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The u-shaped pattern of failure, Figure (3.2.7) can be
interpretated as suggesting two forms of failure. One due to risks
of early life and birth and the other due to old age. In a
clinical trial situation if such a pattern is apparent, the constant
hazard period in the middle tends to be much shorter. This gives
rise to one of the important methodological problems in clinical

trials; that is defining the relevant causes of death.

In the previous example on breast cancer treatment, three
processes were taking place, each of which can contribute to death.
The first factor is the side effects of the treatment, that is
mastectomy and radiotherapy in the initial period. Secondly there
are risks due to the general progress of the disease either locally

or due to metastatic disease and finally there is death due to old age.

The next example of a hazard function we consider is a
cone shaped hazard. The u-shaped hazard was a combination of a
decreasing hazard rate followed by an increasing hazard rate. The
cone shaped hazard is the reverse of this. It begins with an
increasing failure rate, reaches a peak and then falls. Time to
development of metastatic disease in cancer patients can have a cone

shaped hazard.

In the early stages, the disease is confirned to local areas
and hence there is a low probanility of development of metastatic
disease, depending on the form of cancer. With the passage of time
the chances of developing metastatic disease increases. For operable

breast/
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breast cancer patients this peak may be reached within 5 years of the
detection of the disease. In such a group of patients, there will be
some patients with a better prognosis who will not develop metastatic
disease. These patients can be increasingly distinguished from the
rest who have developed metastatic disease by passage of time. If

a patient has not developed metastatic disease in the first five years,
the chances of devloping metastatic disease diminishes in the sub-
sequent years. For this reason the peak in the 5th year hazard

rate should begin to fall. Figures (3.2.8) and (3.2.9) relate to

the hazard rates and survival functions of {he above discussion.

Prout, Slack and Bross (1973) discuss a rather interesting
population of invasive bladder cancer patients. Criterion for entry
into the trial is that patients must have non-invasive bladder cancer,

but also must pass a test indicating that there is no metastatic

disease present. After 10 years of follow-up the hazard rate is
observed. The hazard curves show two separate peaks for the
population. Proust et al consider the reason for the appearance of

two cones to be due to the population being composed of two very
different prognostic groups. This effect is also later indicated

by biological evidence. One major entry criterion is a negative
result on metastatic disease test. Patients who enter the trial

must have shown a negative result with the test. However a group of
patients who do not show any evidence of metastatic disease and are

test negative are in fact metastatic patients who have not been detected
by the test. The first peak of the hazard is due to these patients.
The second peak is due to the rest of the population, who are non-
metastatic at the time of entry, but develop metastatic disease

later/
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later in the course of the progress of disease. Figures (3.2.10)
and (3.2.11) present the hazard and survivorship functions for this

population.

Finally in a paper, L.E. Rutquist et al (1982) set out
to answer the question "is breast cancer a curable disease?" They
consider cure to be synonymous with a pattern of survival rates
conforming to survival rates of a normal healthy population. For
reasons of comparison they-note that there exists two different.
mortality rates, one due to the uncured cases assumed to be constant
over time and the other for the cured patients subject to risks of
a normal healthy population. Therefore they assume a two paraneter
model representing sums of two exponential models as appropriate.
Further they consider a log normal distribution giving a low initial
mortality which rapidly increases to a maximum and with a slow
decrease in mortality after the maximum has occured. In their
conclusion it is noted that excess mortality from breast cancer is

noted at least 18 years after treatment.

One point to note in the above study as well as in some
of the previous methods is that for purposes of inference they adopt

a X2 test of goodness of fit for the comparison of the expected and

observed values of the survival distributions. Another commonly used

method for the estimation of relevant parameters is the maximum
likelihood method. We will discuss this approach in more detail

within the discussions of the covariates.

In the above discussions much importance was attached to
the shape of the hazard rates. Examples of empirical data were

discussed/
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discussed and some parametric distributions were mentioned that

can approximate the distributions. The shape of the hazard may

give useful information as far as the biological nature of the
progress of disease is concerned. It can also introduce tests of
significance. For example we could test the null hypothesis of a
constant hazard (exponentially distributed density function) against
the alternative with increasing or decreasing hazards (Weiball density
functions) . In the next section we will discuss parametric
distributions purely for the purpose of testing tae effects of

treatments and other concomitant variables, by the use of covariates.

3.3 Inclusion of Covariates.

Once a decision is made on the shape of the hazards that

may be fitted to the population, an additional function may be
combined with the hazard function to form a hazard function for a
specific sub=-population. This additional information is related to
the extra function and is refered to as the concomitant information.
Examples of concomitant information are indicators for the treatment
effects, age of patient at entry, stage of disease, size of tumour
and other prognostic indicators. These additional sets can be
used either singly or in combination to estimate parameters so that
a distinct survival distribution may be fitted to each subgroup.
The estimated value of such parameters will be used to assess the

significance of the survival differences between two or more subgroups.

In the above discussion we have made a necessary distinction
between the hazard functions and the concomitant variables. The
former provides information on the rate of failure of the patients while

the /



the latter defines subgroups of patients. The distinction may be
more complex and difficult at times in deciding which parametar is
appropriate for assessment and comparison of the subgroup. Using
the extreme example of crossing survival curves, an interpretation of
the parameter estimates can depend to some extent on the weighting
attached to the various points in time. However it is not a problem
that one often encounters in practice. We proceed now with the
development and representation of parametric statistical methods

which are useful in clinical trials.

For each case entered into the trial, in addition to
failure time or censoring time tiand the indicator variable Gi y
(o for censored, 1 for uncensored response), there exists a vector
Zi =i f z1i 3 % i w Zri} of covariate indicators or explanatory

variable indicators. Then according to the previous definitions

of the hazard rates for each subgroup we can represent the hazard rate

as .

(Hazard at time t, for subgroup k) = (General hazard at time t)
(Function of wvariable indicator
for subgroup k)

In the simple case of the exponential distribution with the general

hazard rate A, we can write the above as
= o ¥
A(t1 Zi} Ao EXP (B zi)

where EXP (8' Zi} is a mathematically convenient function for
representing multiplicative effects of indicator wvariables. B is
a vector to be estimated and represents a set of coefficients
associated with the covariates and is used for the testing of

prognostic/
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prognostic effects indicators. One point to note at this stage is
that our formulations need not be as restrictive as the above
formulation. Later we will discuss a group of models that are

based on the following formulation.

(Hazard at time t, for subjroup k) = (General hazard at time t
for subgroup k)° (Function
of variable indicators for
subgroup k)
The former models are in general named as proportional hazard model

and an example of the latter model is the accelerated failure time

model.

The proportional hazard mcdels are expressed as -

Mua %) o= A (8] exp {8 3y)

where *gt) is a function of time referring to a base line hazard
rate. In the case of the exponential it is not dependent on time
and in the case of the Weiball it is expressed as A, (t) = pu t

where yu and vare scale and shape parameters.

One point in introducing the concept of covariates is that

it enables us to compare different treatments for a single disease.
Further it is possible to identify auxillary factors that influence
survival times. The use of concomitant information is an approach
for identifying the factors that are associate with the survival
times in relative terms. This latter emphasis is different to the
discussion of earlier parts of this chapter on parametric methods,
which dealt with parametric estimation of survival times and a
possible interpretation based on the functional form of the

parametric/
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parametric models. The procedure commonly used for the estimation
and testing of 'the effects of the covariates is termed as the

maximum likelihood estimation and is dealt with by S.D. Silvey (1975).
Basically, to assess the effects of factors influencing the survival
times we require a function that can express the survival experience

of all cases.

Thus
likelihood function = i (lLikelihood of survival
all experience of a case)
patients

Further we can distinguish censored cases and responding cases,
and thus we write;

likelihood function = 1 (death density I (survival
deaths 9 alives .
function) function)

By the definitions of the hazard functions, survival functions and
density functions we can write the above equivalently as,

likelihood function = it (hazard function) 0 (survival

deaths all function)

EFach of the above function in brackets can have a mathematical
formulation, based on insight into the distributional form of the
data. Further each of these formulations may be defined by a set
of parameters. Qur intention is to use a procedure to estimate
the best values of parameters that can explain the survival
experience of the population with the least number of parameters
and with an acceptably low difference between estimated, expected and
actual survival times. Later in this chapter we will develop the
above formulation for the exponential, Weiball and Taulbee approach.
Also based on the distributions we will define general families of

functions.

When/
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When parametric methods are used in conjunction with
covariate effects more care is needed for identifying the correct
functions. What is crucial in survival analysis as in any branch of
applied statistics is obtaining a reasonable fit to the data. A
commonly used indicator of a good model for the data is the pattern
of the residuals, where the residuals are defined to be a function of
the difference between predicted and observed values. Further a plot
of the data can at times indicate whether the theoretical model's range

can fall within the variability of the data.

An example is the situation where it is assumed that there
exists a constant hazard rate. for a population. Therefore the best
model to fit is conjectured to be the exponential distribution, which
has a constant hazard rate. Once the data is fitted and the values
of the residuals are compared, possible short comings of the model may
become apparent. If the conjecture is substantiated by the data,
then the outcome would be a set of residuals that follow a constant
pattern through time. In situations that the hazard rate is
increasing or decreasing a similarpattern will be reflected by the

residuals.

In the formulation of the likelihood with the proportional
hazard assumtion the hazard rate is assumed to be dependent on the
covariates only through the EXP ( B2) function. It is however possible
that in some situations with the passage of time the effects of co-
variates may change. One manner in which we can test the time
dependency assumtions of covariates in a proportional hazard medel

is by formulation of a likelihood such as;
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likelihood function = I (hazard I (survival
death function) all furction)
cases cases

I (time depencency
all function)

HAges (3.3.1)

In the following sections of this chapter we will study
in detail different methods of the estimation of covariate effects
for different shapes of hazard rates. Before doing so we will remark
on the various advantages of the approaches that have been discussed

so far.

Earlier we mentioned Turner's family of distributions
as a flexible multi-parametric method by which it is possible to
obtain a close fit to the subgroups of the data as a method for
data reduction. For reasons of comparison between subgroups, there
may be situations where it is sufficient to use a multi-parametric
method for a base line hazard rate together with a simple single
parameter relative risk. Clearly estimation of a large number of
nuisance parameters is an important consideration in such a study.
Alternatively in other situations a multi-parametric method may be
used with a multi-parameter relative risk for each subgroup. This
approach has the disadvantage that the interpretation of the
inference of the subgroup may not be easy. The likelihood
function (3.3.1) has a major advantage in that the interpretation of
the covariate effects is much simpler than when separate distribut-

ions are fitted to different subgroups.

In terms of the survival curves the above formulation of the
proportional hazards may be interpreted as follows. Between the range

of all/
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of all possible survival curves for the set of prognostic and

treatment groups, there exists a base hazard rate. All other
survival curves can further be generated after multiplying the

base hazard rate by the corresponding function of EXP (2 8) , which

is a scaler for each subgroup. If the proportional hazard assumption
holds the final term in (3.3.1) contributes nothing to the covariate
effects. If alternatively the hazards behave as non proportional
rates then a time dependent functional form of Z(t) must be used

instead of Z.

3.4 Polynomial Hazard Rates.

Taulbee (1979) discusses a generalised form of the

Ragleith distribution, in which the hazard has a polynomial pattern.

(3.4.1)

where m refers to the degree of the polynomial.

In the presence of covariate effects Zj Eor J = l.ssS

we may then adopt a substitution for Ak such as lk exp ( Bkzi) giving

= k
kk(t,zi) Ak t exp (Bk Zi)

for ¥k = 0, 1 wwes W

Where in the above definitions we have considered Bk to be a parameter

set to be estimated for each of k = 0 to m. Further for each Bk
there exists a representation B = ékl' i W s BI< ) and for
s
the vector Z, ther is a representation 2, = (Z., . . . .2, ).
1 1 1 18

Where/
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Where s is number of covariates and i refers to a particular case.

EXP (Ek zi) is numerically the most convenient function

although in general we can express the above as

A k

K (t,zi) = Ak t h(zi, Bk} (3.4.2)
and let h ( Bk' Zi] be for example EXP ( Bkzi)' (1+Bkzi) or
(1+ Bkz.’i_‘:-1 & In here we adopt a general definition of Bk' However
later we will adopt a restricted £ orm of Bk where B0 = Bl= B2,

giving a proportional hazard type of the model.

In analogous manner to that of other parametric models such
as the Weiball, it seems necessary that a good prior knowledge is
required for use of any particular hazard shape. Further the functional
form of h[Bk, Zi) is related to the derivation of the functional form
of the subgroup hazard rates from that of the base line hazard,
Ak (£,0). In particular this relation is important for the
proportional hazard restriction form of the model. We will discuss
these points later with the use of a particular form of Rayleigh
distribution with increasing hazards, that is A0> 0 and 11 >0.

By substituting (3.4.2) and expanding (3.4.1) we write the general

hazard function as

m
Am (t,Zi) A h(Zi, BO} + ,\.Ih(Zi, B.I)t F owow owE Amh(Zi, Bm)t

0

[
I =13

kkh{zi, Bk}t

Using/
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Using the definitions from the introduction we have

t

S(t) = EXP [ -J A () du]
0
giving
|‘t m k
S (t,2.) = EXP[ - LI X, h{(Z., B )u du]
m i Jo k=0 k i k
m t K
= BXP [ - 3 A2y Bk}{J’ u du} ]
k=0 0
m A
k k+1
= EXp [- {kio E:T h(Zi, Bk} t ]

Fur:her using usual apprcaches in the construction of the likelihoods

we have
Likelihood = I (Hazard function) 1 (Survivor function)
All All
deaths cases
= I A B L) I
deaths ¢ all Sm(t’zi}
(1) (i)
m m A
= T T % hig. Bk}tk . T EXP{-[ = ﬁ h{zi,Bk)tk+
D k=0 A k=0
(1) (1)

Then the likelihood function L, for a 2 degree hazard is given by

(we eliminate subscript i, for the moment for brevity).

2
= B ]
L I th{Z, 0) + X1h(Z, B*}t & lzh(Z, Bz}t |

D

X, h(z, B1)t2 A h(z, Bz)t3
't + > + . ]

+ INEXP {-[ xoh(z, B

A 0

1

11
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We now reinsert subscript i

giving
£ = 1lnL = Z Gi 1n(F Ti) + F 21
All
(i)
where,
2
F1i = [th (Zi, Bo) + A1h(zi, B1)t + kzh{zi, Bz)t ]
and 2 3
A1h{Zi, Bl}t hzh(Zi. Bth
in = [=- {th(zi, Bo)t + 5 + 3 }

Now we do a differentiation of the necessary parameters for maximum

likelihood estimates

0
o w p B + (-h (Z., B.) t)
Ry AT . PR L
- i
(1)
h (2., B )t h(z., B.)t2
R i + (- il )
Ba4 a11 * B 3
(1)
2 3
5 , BB B i h(z,, Byt )
3 Afl i F1 3
2 (i)
z 6 1 ah (Z..;- .) ( r B }
g = ( = ) _5_.3.1_1303_ (= A _t) 58 °J
8 All i B o3 2 Boj
03 (1)
(Z B ) =-A t2 ah(2..,B8,.)
31 _ 3h ij' 1 Y
R = z 51 ( 71 ) 3B (11t} | 2 ) B
15 All i 15 15



; 3
3132] All i F1 asz 2 3 asz
(%)
Where Gi = 1 for deaths and Gi = 0 for censored cases.

’ B]j’ sz are covariates for each degree of the polynomial.

(In this case a 2 degree polynomial.)

Bz
oj

AO,A o A2 refer to the hazards polynomial,

1
and i is a subscript for each case and j is the number of covariate
effect under test.

In the above formulations we have allowed B, to vary

k
depending on the degree of the polynomial that approximates the

hazard rate. This generality is violating the proportional hazards

assumption. A restriction such as Bk =B for all k, converts the

approach to a proportional hazards version. In such a situation the

hazard is,

5 k
Moo BF BN) = (B A B ) ki 2,58 )
m 1 k=0 k i
giving for a 2 degree hazard
X (e, 2. = (2 +J\t+kt2)°Exp(BZ}
- D 0 1 2 i

Further l1(t, Zi} using the above generality is an example of

the Rayleigh distribution hazard rate, with covariates

A (t, Z;,) = Q4+ A, t) ° Exp (BZ;)

> >
forl0 0 and A1 0

We proceed with this approach in an analysis of the Edinburgh trial

data/
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data, using maximum likelihood estimation. For our particular use
we adopt a method of maximising the likelihood function using the
P3R programme of the BMDP for estimation of non-linear regression
medels by the Newton-Raphson procedures. This programme is a
flexible enough procedure for the estimation of the relevant

parameters of the above named functions.

The programme requests the actual likelihood function,
the derivaatives with respect to the estimating parameters and

a loss function. In the last section we produced the necessary

functions and derivatives for a general Taulbee approach. Initially

we analyse the data for a linear hazard model with the proportional
hazard assumption. In this analysis we use the treatment option
given by Radiotherapy and simple surgery against radical surgery

as the main effect of the study. Later with use of the other
covariates we approach the analysis with the Weiball and the
exponential models. Throughout we use a survival time scale in

months.

First we fit a model with a zero rate hazard. This is

equivalent to an exponential model with the proportional hazard

assumption. With m = 0 we have
Alt, 2) = 10 o Bxp( BZ)
L = I x, Exp(B2Z) , I Exp [- A, Exp( 8Z) t ]
DG A 2

giving the estimated parameters

A 0.00309

0
B

.0041 S.E.

)
) df = 559 1lnL = -1741.82
)

1.4821 S.E. 0.4021

n
1]



Now we can expand the model by allowing the hazard to have a straight
line passing through the origin. If we set *0 = 0, then hazard is

Ale, 2) = | A, 8) - Exp(B Z)

The present model is not suitable for the purpose of analysis in
that we have introduced two types of restriction, one indicating
10 = 0 and the other assessing the proportionality of hazards.

As a more suitable model we use the next memeber of this calss of

distribution.

We now fit a model of the hazard form that allows the
straight line hazard not to pass through the origh. We therefore
have to estimate both parameter AO and A1 simultaneocusly as well as

the Bpa:ameter for the covariates.

We thus obtain the following estimated parameter for the

model given by

A(t, 2) = | 10 + 11 t) . Exp(B Z)
G = m, Exp (B Z) + XA Exp ( BZ)t. I Exp [- X\ Exp(B 2)t +
s 1 0
A\, Exp (B 2) t2
> ) ]
10 = 0.008762 S.E. = 0.00186 )
)
A, = 0.000438 S.E. = 0.00382 ) d.f. = 558,
)In L = 1739.85

B = 1.4951 S.E.

0.4037 )

The wvalue of 11 is close to zero. In fact there is little improve-

ment/
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ment over the original sctraight line model with AO parameter used as
the hazards function only. Now, although the base line is approximated
better and is less restricted, the estimator of the treatment effect
is virtually unchanged. This indicates that the covariate effect
part of the hazard namely Exp( BZ) is consistant if we can assume

the proportionality of the hazards.

The next model we consider, relaxes the proportional
hazards assumption. This is a useful model for checking the
proportionalities of linear type. Returning to the original derivat-

ions of the model we can express the hazard rates of the next model

as,
A =
(t, 2) Ao Exp( ByZ) + A, Exp( B, 2)t
L = g Ao (Exp(B 2) + A, Exp( B,2)t . g Exp[- (A, Exp( B,2)t +

11 Exp( B1Z)t2
2

) 1

giving the estimator

10 = 0.009674 S.E. = 0.00257 )

AT = 0.000511 S.E. = 0.00376 ; d.f. = 557

30 = 1.12 S.E. = 1.311 ; In L = -1737.97
B8 = 1.4848 S.E. = 0.4121 ;

The value of 30 is not significant. A comparison of the log likeli-
hood of this model with 557 degrees of freedom and the previous model
with 558 degrees of freedom gives the difierence of - 21ln L = 3.76,

which according to the chisquared distribution is not significant.

We therefore do not reject the proportionality of hazards assumtion.

By/
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By the above models the linear structure of the hazard shapes may not
allow an efficient estimation of the effects. This point is expressed
more vividly when we deal with the Weiball models of the next section.
In the discussions of the exponential model estimator it will be made
clear that the actual value of A, is arbitrary in so far as the

0

comparison of g's for different subgroups are concerned.

So far in the study of the application of polynomial hazard rates,
the above linear hazard rate has been the most appropriate. We will
now estimate some of the subgroup covariate effects by this model and
observe their contribution to a proper explanation of patient survival
variation. The prognostic categories that are of particular interest
now and which will be discussed in more detail later are, menopausal
status, initial size of the tumour and node histology status. Later
in chapter 6 we will define the indicators in greater detail. 1In here
we will only use them for the purpose of illustration.

We fit covariate effect models to the data for each of the
above main effects in presence of the treatment effects. Consistgntly
we note that there is a reduction in treatment effect of E estimator
and a comparison of tie covariate functions does not show any important

difference in the treatment effect estimators. This indicates that

the treatment effect is stable for the different prognostic groups.

Model with treatment and node,

1}

1.4521 S.E. 0.4072

1}

treatment

B

T 0.6410

1.2182 S.E.

Model/
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Model with treatment aad size,

1.4486 S.E. = 0.4513

1}

. treatment

B

: 1.1087 S.E. = 0.6834
size

Model with treatment and menopausal status, where we consider
post menopausal and menopausal group as one category and

pre-menopausal as another.

1.2730 S.E. 0.4481

Streatment

1.3051 0.5913

v
=
]

Bmenopausal

3.5 Exponential distribution for censored survival data with covariates.

The exponential distribution has been used extensively as a basis
for study of survival distributions. The simplicity of this model has
been the main reason for its common usage. However, at times it has
been used in situations where the assumption of constant hazards has been
violated. The model is simple to estimate and has only one parameter
for defining the failure rate which is not dependent on time. Thus in
this model the risk of death is independent of time.

»

In an early demonstration of the exponential survival distribution
Boag (1949) applied the distribution to the survival of cancer patients.
David (1952) examined the distribution in relation to the field of
reliability and applied the method to 26 mechanical survival situations.
Several authors, Halperin (1952) and Epstein and Sobel (1953, 1954)
investigated the maximum likelihood estimation of the one parameter case,
l,for censored data. Fiegle and Zclen (1965) investigated the problem

of /
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of estimation c¢f constant linear hazards X with covariates. The
exponential distribution at times has been termed as the "memory less

distribution" since the hazard rate is not a function of time.

The median of the distribution is In(2} / A mean is 1/A and
the variance is P2 Where A is interpreted as the force of
mortality. The larger the value of A , the shorter .s the mean life.
The estimation for the uncensored case of the distribution is relatively
simple. Using the maximum likelihood estimation there is a closed

bound solution for the mean and variance.

For a situation of random censorship, defined in the introduction

to be the most common censoring in trials, we have the likelihood

L = i f(ti) I S(ti}
Deaths (1) Censored (i)
= I ie ™ Yy I oy
Deaths (i) Censored (i)
n $.
. L e —Ati ) i (g Ati)l —Gi
i=1
n S,
= I3+ (e~ A%
i=1

*
where n = number of uncensored o. deaths

giving

% n
iInL = n 1n(*) - A Z t

3ln L
aA




=> the maximum likelihood estimator of ihas wvalue

1 s i 0

The second derivative of the log likelihood with respect to A yields

22 ot
so that ~
A =)
/lz/n* is approximately normally distributed as N(0,1)

Using the asymptotic normality results on likelihoods. Further

a transformation by the delta method gives

~

NN (A, AR L)

The exponential distribution with only one parameter A is rather simple
to obtain. The next stage of the development of the exponential
distribution is to use covariates. The use of covariates with an
exponential hazard rate may be developed with the maximum likelihood
estimation and the Newton-Raphson procedure. The reason for the use
of the Newton Raphson procedure is that we often do not have a closed
bound solution of the estimator. The interpretation of the results
are also straight forward if the assumption of time independent hazards
holds. In the above we obtain a method for the estimation of the
nazard rate X . In the situation of analysis with covariates and use
of maximum likelihood estimation, XA in fact is not needed and it is
possible to derive an inference for the covariates by setting i, the
base hazard rate value to 1. In the section oa the Weiball we will

derive/
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derive functions for a maximum likelihood estimation of covariates and

the Weiball shape parameter.

The expoaential with covariates is a special case of that

procedure and will be discussed in more detail there.

3.6 the Weiball distribution.

The Weiball distribution was originally used by a Swedish
physicist, Waladdi Weiball, who was interested in measuring the breaking
strength of materials. The main reason for the initial interest on the
Weiball distribution was that unlike the exponential it was able to
fit the data, even when the breaking rate was not constant. Later
A.C. Cohen produced maximum likelihood estimators for estimation of

uncensored and censored cases.

The Weiball distribution is an extension of the exponential
distribution. In the graphical presentation of the first section of
this chapter, it was shown how, with a shape parameter set to one the
Weiball distribution reduces to the exponential. Apart from the
situation with the shape parameter set to one, the hazard function in
the Weiball is time dependent, and thus the rate of failure changes

with the passage of time.

For the distributional definitions of Weiball in section 3.1

1/v
we have; the median of the Weiball is given by (1n (2) /u ) ;

the mean 1is given by

1+ V
) 1/v
H

v) and the variance 1is
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Coas 27 = (01 1+ Y

2
u/“

In here Y is related to the hazard rate. The actual intevpretation

of the v for cases greater that one and less than one 1is the same as

those for applications in which rate of death changes because of the

underlying biological process. The estimation procedure is more complex

than the exponential case. Neither in uncensored nor in censored models

does there exist a closed maximum likelihood estimator. We now proceed
with the derivation of the maximum likelihood estimator for a Weiball

model with covariates.

In the last section concomitant information was introduced into
the likelihood function for the Taubles general model. According to the
hazard functions, the subgroups affect the rate of events in terms of
intensity with a relationship of exp (B 2). However, the covariate part

of the model does not effect the shape of the bhase line hazard rates.

The effect of the covariate on the Weiball hazard is repre-

sented by

v
At , 2) = wvu(t) ! . ezB

The latter part Exp (Z 8) refers to covariates and is independent
of time. This is basically a similar assumption as the one used in
the last section to derive some of the results, for concomitant informat-

ion.

According to the relations in section 3.1 and the above
hazard rates, the density function and survival function for the

Weiball with covariates are
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=1
£(e, 2) = vi(e) VT EB Expl- wt’ &P )
S(t, 2) = uExp [ - ut’ &P

All the above expressions of the hazard rate, density function and the
survival function can be considered as a generalisation of the
exponential distribution with concomitant variables , simply by
allowing v to be set to one. These results can serve as a general
purpose model for the different forms of the exponential and Weiball
models, when the emphasis is on the estimation of the covariate effects.
Using the formulations from previous sections, the likelihood function
is -

B Z,
i

1 Expr(-t’ wc ) 1

n
likelihood = I §{ pwt ¥~ Exp(82,) ]

1 fer death and
0 for censorings

where as before Gi

and n is thé total sample
and n* is the number of deaths.

5, S5 87,
i v =1

n
- @ Wk Exp( 8 2,) 1 Exp [(-t' e )l

The value of pu is independer.it of the time t and covariate effect
Exp ( BZj}. Thus it is a scaling measure and u does not have an effect
on the comparative values of 8 and 3 . In the following expression

for the log likelihood, the terms involving p are omitted.

s v =1 v B zi
= z - e
InL = . Gi In[ v ti ExXp (B Zi)] + ( ti e )
i=1
5 v Bzi
= E Gi(ln v + (v=1)1n ti + szi) - (—ti e )

n BZ .

v i

= n* logv + £ 8, E{v=1)1ln €. + BZ. ] + (=t. = )
i=1 i i i 4
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BZ

InL =n*1n v + §. 0 91 &, + B2.) # (~t7 @ T)+8.1n £,
1 1 1 1 1 1

[ B

i=1
The last part Gi 1n ti is not dependent on parameters 9 and B8 .

Thus in terms of the proportionality of the likelihood we let

Bz
3 .
R. = t, e ' and 1n R, = v log t. + B2,
L 1 1 1 1
giving
n
InL = n* lnv + z

§.(1n R,) - R,
: i T i
i=1

Now we obtain the derivatives of the logarithms of the likelihood.

These derivatives at values equal to zero give the best estimators

of the maximum likelihood function.

3 n 8 2. n
l: 3 I By B - tz c t. Zyi T By =RV,
4 i=1 - S ]
=0
n RZ n
* 3 *
Mk o P L 3 b It Rl MY o thoE e B OSs K)
av v i=1 1 1 1 1 AY) i=1 1 1
In £, =0

In the procedure for estimator of @j and U we also need to know the
second derivatives of the logarithms of the likelihood. These values
are used in the maximising procedures of the Newton-Raphson as well
as deriving the information matrix to obtain the variance covariance

esimators.

2 n BZ n
SB 12 g = . - t1 - Zi' g zik W P Rl zi' ik
j ¢ PR i=1 4 i=1 .
2 n BZ . n
Ltk . 1 -t e Y . z,..1lnt.,=-3I R, Z..1nt
- i ij i T T i
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2 n BZ
a3 n L -n* v
1 - + £ -(t) e YH.1nt..1lnt, =
sl i 2 A i i i
3v v i=1
n
-7 %
R % R - R )
2 . i i
v i=1

The above functions are thus the necessary functions that may be
used in conjunction with a standard Newton-Raphson maximisation.

S.D. Silvey (1975) describes such a procedure.

3.7. Interpretation of the models with use of the old Edinburgh
Trial Data.

In this section we perform an analysis of the old Edinburgh
trial data, with the parametric methods. The general purpose is
to give a comparative illustration of the parametric and non-parametric
methods as discus=zed in the last section. First we perform an
exponential and then a Weiball model analysis with only one regression

coefficient.

The first covariate we test is the treatment effect, that
is a comparison of survival times for simple surgery and radio-
therapy against radical surgery. A t shape parameter value fixed
to one we are in fact using an exponential model. Further the

variation of the shape parameter from one indicates a Weiball

model.
Shape parameter set to one 3 ; = 1.4821 S.E. = .4021 d4.f.= 559
option
Shape parameter estimated = 1.36 g ; = 1.6321 S.E=.4043
option

d.f. = 558.

(S.E. of the shape parameter = 1.18)
We continue the estimation procedure with inclusion of anocther

covariate/
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covariate, the menopausal status. Once again we consider post-
menopausal and menopausal as one category and the pre-menopausal

as a separate category.

Shape parameter Boption S.E. B meno 5.E. dEs
set to one 1.3819 .4921 Vu3722 .3821 558
estimated = 1.53 1.3521 .4185 1.3986 .2581 557

In both of the above models we note that option and menopausal
status play an important role in describing the survival rate of the
patients. Then we consider the addition of tumour size.

Shape parameter Boption S.E. 8 meno B4 8 size S.BE. d.Ef.

set to one 1.4181 .4931 1.3843 .3840 1.1927 .3192 557

estimated=1.54 1.4961 .4166 1.3506 .2931 1.1159 .2901 556

Now we add a term for node status to the above models -

B B B B8
Shape para. option S.E. meno S.E. size S.E. node S.E. d.f.

set .to one 1.423 .4930 1.4134 .3872 1.3741 .3793 1.4721 .5128 556

est.= 1.54 1.478 .4381 1.3902 .2881 1.1462 .3121 1.531 .6321 555

The above models show that the survival differences of the patients
can be attributed to the above covariate indicators. So far we have
not considered significance levels of the different estimators for
the parametric methods. In Chapter 6 we put more emphasis on the
analysis and interpretation of the data rather than a comparison of
the aralytical methods. In summary the above models indica:e that
for the above covariates there is very little to choose from the
exponential and the Weiball. The results of the Taublees family for
the 2nd term, also show very similar results which, because of their

close similarity are not detailed here.

Now/



Now we intrcduce the concept of interaction and its use in the
framework of a parametric model. In the second stage of the last
analysis with the exponential and the Weiball models, the information
from option and menopausal status played the.most important role.

One advantage in use of a regression model is that we are able to

do a formal test of interaction effects. These tests assess if the
effect of covariates acting simultaneously is any different from an
addition of the two effects acting independently. Once again we
represent menopausal status in two categories of pre-menopausal

and menopausal + postmenopausal. The effect of the latter two
categories of the menopausal status can be seen from the shape of
the hazards, which are in fact very similar. Further, for the
present purpose such a transformation of the menopausal status suff-

ices.

We begin with a model which was presented at above and
included menopausal status and the treatment option as the only
two effects. Now we continue with a test of an interaction effect

for treatment and menopausal effects.

B

Shape option S.E. ? meno s.E. P size g.E. 4.f.

parameter
set to one 1.3839 .4938 1.2121 .3109 .2127 .3782 557

estimated=
1.52 " 1:3210 4179 1:2382 42052 46171 <6312 556

This result indicates that all the necessary information may be
contained within the two main effects. We, therefore conclude

that the radical treatment group perform better in terms of survival
time. The effect of treatment is consistently the same for the
various categories of the prognostic indicators, size, node and

menopausal/
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menopausal status. The behaviour of the various categcries of
the indicators is as may be expected. That is, the smaller tumours
. younger patients and the node negative tumours are the good prognosis
groups and the older patients, larger tumours and node positive

are the group providing the worst survival times.

None of the main effects of the prognostic values show
an important interaction with treatment effects. That is all sub-
group variability of the survival times can be described in an

additive manner.

The final model of the Weiball and the exponential
distribution with all three covariateé and treatment effect included
shows very similar estimators of the prognostic main effects in com-
parison to models with treatment and one covariate effect included,
thus once again sdggesting that prognostic values are consistently

the same given the present framework of the Weiball model.

3.8. Families of distribution with covariate effects.

The Taulbee or Turner family of distribution can provide
a flexible set of distribution for use in failure time analysis.
When we deal with covariates there is another approach to classify-
ing distribution according to a combination of hazard rates and
covariate effects. The most commonly used method is to assume
that the population has a single underlying failure rate according
to the inherent nature of disease. Further any difference in
failure rates for the subgroup originates from a separately
identified covariate effect. This class are termed on the proportion-

al/



hazards model and the exponential , Weiball and the polynomial

models of the previous section were based on its assumptions.

An alternative useful approach is to consider the failure rate

to have a function dependent on time and the covariate structure.
This group is known as the accelerated failure time model and we will

consider them later in this section.

The group of regression models with the assumptions of

the proportional hazards are generalised as models of the form

A(t, 2) = A,(t) Exp(B 2Z) (3.8.1)
Now if we let A ,(t) to be independent of time and set A ,(t) = A
we have an exponential distribution with covariates. Alternatively,

if we let Aq{t) to be time dependent with a shape parameter p and set

NgiEY = pw g (3.8.2)

We have a Weiball distribution. In case of the Reyleigh family
of distribution or a restricted Taulbee approach we deal with
hazards of the form,

A (B) = Xpd N6 (3.8.3)
In terms of the reduction of the data into a useful statistic,
it is clear that estimation of the B gives the relevant information
on effects due to membership of a particular subgroup. The assumpt-
ion that must hold is that, the membership into a particular subgroup
does not effect the sape of the A,(t). That is, there exists a base
line hazard rate for the total population and any effects due to
covariates take the form of a proportional effect introduced as

Exp ( B 2).

‘In the estimation of the maximuin likelihood for the

exponential/
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exponential and the Weiball, the actual scale of the hazard

curve plays an arbitary role in the relative effects of the

covariates. What matters is in fact only the shape parameter of

the Weiball. The important assumption that must hold again due to

the proportional hazérds, is the fact that regardless of the

subgroup, the total population must have the same shape parameter.

In terms of interpretation we require that the base line hazard rate

can be projected on to the subgroup rates for the entire population.

Up until now we have considered a general proportional
hazard model in which, the entire population has had the same base
line hazard rate. There is an extension with which we can allow more
than one base line hazard rcte. However the information contributing
to the covariate effects is inherently the same. These models are
useful in situdations that a population is composed of different
strata. The information regarding membership of a particular
strata is not testable, but information regarding some other covariate
must be estimated by allowing for the strata effects. The model
has the form.

Aj (t, 2) = haj(t) Exp (B 2)

where j refers to a particular strata. This functional form of

Aoj{t}, can in fact be used for any of the parametric models. The

semi parametric model of Cox (1972) can also be used by the above
definitions and interpretations. As an example we can allow
different hazard rates for the different strata, say young patients
and older patients. This topic in general 1is also related to the
time dependency of the covariates and it will be studied later in

Chapter 7.
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Apart from the proportional hazards model there is another
group of regression models with a multiplicative effect on the
regression parameters, namely, accelerated failure time models.

The general formulation of the model is

SO L e
For this model unlike the model discussed previously, the effect of
the covariates under test can have a direct effect on the base line
hazard rate that is estimated. It is important to note that both
the proportional hazards models and the accelerated failure time models
are log-linear models with additive effects of the hazard function,

the covariates and the logarithm of the time.

These models are most useful in terms of a generalised
model for the estimation of the regression parameters. - The method
mentioned based as Turner's family of distribution is. also useful in
that it provides a useful way of classifying hazard rates. However,
the main advantages of the proportional hazards compared to that
of Turner's family or accelerated failure time is that the inter-

pretation of events is much simpler.

3.9 Parametric, non-parametrics and Cox's approach.

In the above approaches and derivations an assumption has
consistently been used in order to try to distinguish between the
different survival rates. We kept the postulate that the time to
a critical event is a random variable and that it can be explained
by a continuous function. In the last chapter, however, the methods

initially/
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initially began with the reduction of the data into some form of a
rank order. This reduction ultimately implies a loss of precision,
in distinguishing the survival rates for the subgroup of the data.

The advantage however in use of a non-parametric method based on

ranks is that non-parametric tests are more robust. Extensive
comparative atudiec of non-parametric and parametric methods have

been done by various authors and we will deal with those in Chapter 5.
The Cox's method which offers a practical comprcmise between para-
metric and non-parametric methods is also considered in Chapter 5.

We will perform simulations to assess small sample properties of

the Cox's method for trial data.

The analytical results of Chapter 2 and the present chapter
have been based on the analysis of the old Edinburgh trial. As may
be expected there are no qualitative differences in terms of the
conclusions of the results. However there are slight variations bf
which we can reiterate the theoretical results of the earlier part of
this section on hazard rates. The importance of parametric methods
in here is not only that of precision alone, but rather due to an
ease by which parametric methods are able to provide a conceptual
frame for classifying the distributions of survival data into families
of mathematical models. This flexibility to classify distribution
is however compensated by a greater loss in robustness. Although all
the families of distributions mentioned in this section provide flexible
frameworks within which a large number of distributions for survival
anzlysis are placed, it is difficult to imagine what may be done with an
estimating procedure more complex than the Taulbee approach. In fact
so far as a description of the progress of the disease matters, a plot of

the/
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the empirical hazard rates may suffice. If one is prepared to take
the position, that hazard rates are mainly useful indescribing the
biological progress of disease, then any robust general approach must
lie somewhere between the non-parametric and parametric methods. The
basic assumption then is that the actual rates of events are not
important and need not be parameterised, but the difference between
the failure rates in various groups must be estimated as precisely as
possible. The final fesult will add to the robustness of the

general method.

Jox (1972) presented a proportional hazard model by which the
data is reduced to ranks and thus adopts an estimating procedure for
which the rates of events are not important. The method offers a
robust and flexible approach for the analysis of survival data and

it is discussed 1in the next chapter.
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CHAPTER 4

Cox's Proportional Hazards Model

For all of this chapter we will be dealing with the study
of the method proposed by Cox (1972) for survival data. In this
chapter we cover topics related to the usefulness of the method as
applied to clinical trials. Some of the derivations from the original
appraoch and the derivation of some of the central results are
covered so that we may deal with the advantages and the disadvantages

of the approach,

There are a few major factors that distinguish the method of
the previous 2 chapters form the propertional hazards approach. .The
latter method is more efficient than the non-parametric methods that were
discussed in the last chapter. The method in fact allows comparison of
the covariate effect to be made without making unduly restrictive assum-
ptions. In relation to the completely non-parametric methods however
it is more suitable for providing a useful conceptual model for consid-
ering and testing the relationships of the effects efficiently in part-
icular when several covariates are tested. Further it considers the
relative effects of covariates as the relevant information for analysis
and thus is more robust than the parametric methods where the require-

ment is closer approximation to the survival rates for the various groups.

There are certain requirements that must be satisfied in use

of/
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of the method. One is related to the proportional hazards assumpt-
ion in a non-parametric setting, The other requirement is on the
type of information that is available on each case i. = We must have

a set of covariates Zi(t), so that predictions on the survival times of
the population may be made. The time we consider, from definitions
of the previous chapter can be either time to the terminating event,
e.g. death, or to the follow-up event e.g. censoring. However, the
functional form of Zi(t) refers to development of the covariate process

in the survival time scale.

In the above discussion we mentioned the core of the topics

of this section later we will consider these topics in greater detail.

4.1 Development of survival functions.

We use a similar methodology to that used for the parametric
methods. S(t) is the survival function; f(t) is the density function
and the hazard function is given by A(t). Such that if T is a random
variable representing failure time, then for sufficiently short periods

of time h, the hazard rate at time t is give by

A(t) = 1lim % Pr (tg Ts,t+h\T>,t) (4.1.1)
h—s o+h
What the above basically implies is that the rate of failure is the
conditional probability of an event at time t, given that, the individ-
ual has survival until a time immediately previous to it. For a contin-
uous distribution we mentioned a similar definition in the introduction.
However we now have a situation in which time T has a discrete

distribution/
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distribution and observed times have values t1< t2< s = w B

It follows that,

£(t) = Pr (T =)
S(t) = I f(t,)
i\t <t )
j
& Aty = Br(T=%\T>2 % (4.1.2)

The above formulation of (4.1.2) is an extension of previous

definition of (4.1.1) with the difference that T is now discrete.

The theoretical distinction between discrete and continuous forms of
the hazard rate does not prohibit extension of the proportional hazards
to a discrete analogue. For the above distribution with a covariate

set Z a corresponding survival function is
S(t,2) = [SO (t)]Exp (Z B8)

Where SO(t) represents a base line survival rate at Z=0 and has a
corresponding base line hazard rate given by lo(t) . We will return
to the above formulation in section 4.4 for the construction of the likeli-

hood.

In the context of the general proportional hazards model we can

express the hazard rates as,
A, Z) = gy (B) 1 (2,8 ) (4.1.3)
Where all the relevant information regarding the difference for survival

rates is decomposed by the relative rates of failure in the r(Z, 8 ) fun-

tion. Cox uses an exponential decomposition of the r(Z, 8) giving

A(t, 2) =Xy (t) Exp (B2Z) (4.1.4)



132

For the base line hazard rate of the proportional hazard model Cox
uses a discrete form of Ao(t), based on ranks of times. The aim is
that by use of this form of base line hazard rate robustness may be
introduced into the model, for the estimation of what remains relevant,
i.e. the relative risks. The base line hazard rate is a form of a
nuisance parameter and we will deal with nuisance parameters later.
As to the interpretation of the .\O(t) within the statistical theory, in
chapter 2 we showed a maximum likelihood estimation of the Kaplan
and Meier estimation and they are essentially the same. The values
of the p estimators are similar in interpretation to the case of the

parametric models.

The derivation of the Kaplan and Meier estimates as maximum
likelihood estimators justifies the use of a discrete distribution and a
parametric decomposition. In this form of the proportional hazards
model, the discrete form of the base line hazard variability is removed
and the data is transformeci to a base line of Kaplan and Meier
estimates. Cox (1972) discusses both discrete and continuous failure
time data and shows a unification in the approach by which both the
discrete and the continuous cases can be accommodated in essentially
the same way. The term lo(t) is a transformation of survival times
in to the rank based product limit estimates for the hazard rates.

§ . i . <
Thus we have ranks t(l) < t(k)

NE) = no. of deaths at t(i) (4.1.5)

m,.
IE r(l) G(t = t(l))
1=, (1) no.at risk at t(i)

i £ _ - ()
ty<t i< b £ ;.



The function §(t - t(i)) represents a dirac delta of values 0 or 1.
It is 1 in case of a failure at t(i) and 0 elsewhere. m(i) refers to
number of events at rank (i) and r(i) referes to number at risk.

This is a generalisation of the Kaplan and Meier estimates. In order

to avoid problems associated with censoring times tied with failure times

we adopt the convention of letting censoring occur just after the failure.

Now, regarding the relative risk part of the equation (4.1.3),
we intend to categorise our population accoring to a set of measurements
available on the patients. The measurements in this context are refer-
red to as covariates. The B8's are values that must be estimated and
they provide information on the effects of covariates. Once again
similar to the definitions of chapter 3 we refer to g's as the regression

parameters.

In equation (4.1.3) we separated the effects into r(8,Z) and
a time dependent function Ao(t). Depending on the form of the
covariate effects it is possible that the explanatory variable Z.1 , be
also a function of time. That is the contribution of the covariate is
allowed to be a random variable, that changes with time, so a formula-
tion such as Zl(t), Coee 2 (t) may be more appropriate. If our
population consists of n patients and s covariate measurements, then a
s x n matrix set as follows can define all auxilliary information.-

(Information apart from death not censorings).

~ -
le(t) 221(t) ...... an(t)
le(t) Zzz(t) th(t)

& A : (4.1.6)
Z

15" 2 s ()
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Thus a general form of the Cox (1972) proportional hazards model with

regression parameters is given by

A(t, Z(t) ) = x(t) Exp ( BZ(t) ) (4:1:7)
Before proceeding with the discussions of the various assumptions
necessary for the estimation of the regression parameters, B, we discuss

the role of Ao(t) in the framework of the model.

4,2 Role of the Nuisance functions and the relative risks.

Meaningful isolation of relevant information is the major
intention in much of statistical work. This intention can be achieved
at times only by estimation of parameters that specify a distribution.
In some complex processes we require a reduction_of the data in a more

elaborate manner.

The figures (4.2.1) and (4.2.2) present the survival rates and
the disease free interval for a group of (337) patients who were entered
into a randomised adjuvent chemotherapy trial, in the South East of
Scotland for four years from 1.4.74. Our purpose in presenting these
results is to consider the relevance of the proportional hazards to such
studies., A comparison of the rates of failure by survival A and B is
sufficient in giving relative rates of failure.  However a more robust
and thus a less restrictive estimating procedure may be achieved by
realising that the relvant information in terms of the difference between
survival rates of A and B in either figure is in fact contained within
the shaded region C. Thus the information relating to shape of A or
B at times need not play a significant role in the interpretation of the

data,
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Parameters relating to actual shapes of curve A & B are
referred to as' nuisance parameters. In model (4.1.3) , 10(1:) is a
function that must be estimated, in relation to effects of covariates Zi
and its estimator is a nuisance parameter. In fact a set of sufficiént
statistics for the estimation of parameters generating the shaded region
is composed of the 8 parameters of the Z covariates. Thus in the case
of a clinical trial we perform a trial L, and obtain a data set (L, Z) )

where for each element of Z a measurement has been made to assess its

value for aparticular patient i.

In the most elementary form of applying the probability
theory, we have 3 general abstractions. A sample space X which is
the set that conclusions refer to, a subset of X which is the total data
set, a reduction of X, given by the model M, and a further abstraction
P, which is a probability measure on model M and represents a form of

variability of the data from the model.

In the context of models of survival time P is in fact composed
of a subset Pz for each particular covariate and a PH for the hazard
rate. In an ideal situation we would like to have a one to one mapping
of Z-er for each covariate. In the case of a trial with the model
(4.1.3) form, the above restriction would rquire specifying the distribu-
tion of the survival function and the covariates for each form of risk
that depends on the covariate set. However for reasons of generality
and robustriess a reduction is made. If in a trial the actual form
of the hazard rate for each competing risk is not of interest, then the

two subsets of P, namely Pz and PH can be defined as follows. PZ

relates/
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relates to a probability measure in terms of relative risks of covariates
and PH to probability measures for the hazard rates. The nuisance

function in proportional hazards models is related to PH.

There are certain points that must be considered in relation
to the nuisance parameters. The actual trial and the way it is planned
plays arole for maximising the support we obtain from the data. Since
the relevant information is related to the covariates rather than time,
we can maximise this form of information by the usual procedure of
randomisation and possible stratification of prognostic indicators ard
treatments. The maximisation of support in no way needs to be related
to a time factor. The model achieves its robustness by transforming
the time scale into a rank order, and thus the new scale is sufficient
to measure the amount of support the data gives to various values of g,
The maximum likelihood approach provides a setting for optimising

these values and hence obtain the various required estimates. This
data reduction in Cox's approach as described so far requires the
proportional hazards assumption. That is we expect the hazards

for the subgroups to be multiples of a base line hazard. In the above
paragraphs we discussed the issues related to nuisance parameters

and some of the necessary assumptions that are related to it. The
expansion of the above can include time dependency of hazards,
multiple competing risks, censoring and stratification of the data,

when this type of model is used for analysis. Later in this chapter

and in Chapter 7 we will return to these points.

Continuing for the moment with the proportional hazard

situation,
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situation, the relative risk part of the model provides the necessary
framework for extraction of relevant information. Here B8's must

be estimated and they give a representation of the dependence of the
distribution of survival time T on the subgroups. The covariate set

Z provides the necessary information on treatments, categories of
prognostic indicators or some other measurements that are considered

to be relevant at the beginning of the study. g is a 1l x S vector
and it follows that one element of 8 has to be estimated for each Z
(f=dy v o« « 8) o The actual functional form of r(Z,8 ) is oftentaken
to be of the type Exp( B Z). Cox adapts the above exponential
decomposition but also allows Z's to be time dependent of the form

Exp ( B, Z(t) ). By allowing the time dependent form of Z(t) to
operate we are in fact allowing the data to generate a model with
non-proportional hazard assumptions. This inclusion of time dependent
covariates allows us to assess and test if the effect of certain prognostic
indicators diminishes over time., It is difficult to separate topics

such as time dependency, .censoring with dependent effects,and
competing risks when some of the withdrawals are in fact events due

to other causes.

Thomas (1980) concentrates on the functional form of
r(Z, B) and produces a set of relative risk functions e.g.
1+ (Z x B), 1 + (Exp(B8) x Z) , etc.
Gore (1981) considers an exponential decomposition form of
-p,t -p,t
Exp( B1e 1 Z1 + Bze 2 22)

Kalbfleischand Prentice (1972) suggest time dependent covariates

such as

Exp(BlZ' +E§2tzl)
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function

Effron (1977) shows that r{Z, g) can in fact be any positive
and uses a logistic dependence form ratio log(l + exp( g Z) )
They

4.3 Limitations and assumptions of the model.
In the formulation of likelihood functions we have used 2

functions and considered these to contain relevant information.
A fuller likelihood may contain an

are namely A(t) and rZ,8 ).
extra function given by
(4.3.1)

likelihood = A(t) . r(Z,8 ). Y(B8,Z, t)
The form of the hypotheseis of Gore (1981) can also be tested by an
expression of the form

Alt) . Exp(Zl By ¥ Z2 ;32) Exp(—Zl By Plt - 22 B> Pzt)

Pt -Pt

. + )

l—Pit+(-é—)%... :

-P.t
greater than or equal to two are of negligible

e

‘e

given that

and that powers of
effects.
A slightly different analysis may use a model of form

Exp (Z BL+ZB

t* = (t-'E)fgt

where
It is interesting to note what kind of effect is produced by weighting

* 2
*
2t+233t)

the relation between Z and t differently in a family of transformations

and In(y) where y is a function of t.
Y(B, Z, t) in (4.3.1) may give

such as y(a) = ylf *
For example a substitution for
1/a

BZ In(t) or BZ (t)

We/
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We will now examine the above time dependency concepts for the
family of the Weiball distribution as described in Chapter 3. The

survival rates for a two group sample can be expressed as

g o |

TE R, “u, "% B
S. = Exp [—} @, t e dtl=Exg| ————— €
1 0 1 Y_+ 1
1

The above is a proportional hazard expansion of Weiball distribution
however for a time dependency effect we will allow @, Y, as well as Bi

to depend on group membership.

T % 3
S =
ln(i) Ti+1 e

For an expression of the Lehman alternatives we have

In (51) Y1—Y2(31" B%
w(sy - ¢t £ ’
210 Y2
for C = ( + 1)

0'-2( Y.+ 1)

=c eB178F (vimv2 In (1))
The relative risk expression may thus be expressed as

*
Exp. ¢*, In (t) 2, + 8"1 21)
where Yf and BT are parameters that must be estimated and Z,is the
indicator of the subgroups. The In(t) transformation will thus prvide

a natural scaling for the range of the Weiball distribution.

They ® ,Z,t) part of (4.3.1) in fact contains no relevant inform-

ation if we deal with a proportional hazard situation in which cases

are/
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are monitored continuously and censoring is non-informative. More
important however is a situation where there is a need to test the

effect of a covariate according to the time scale. An example is a

test for assessing the persistancce of a prognostic indicator as an
indicator of short survival. In practice measurements on patients

are done in the beginning of the study and thus time dependency of
the covariates may be assessed by the above function. We list some

of the theoretical problems that may give us unwanted assumptions.

The list is not composed of a set of mutually exclusive topics and the
severity of the assumptions is not often significant in trials.

(1) There exists a minimum observation time and depending on this
minimum observation time some information regarding censorings may be
lost.  Also in some studies the minimum practical observation time may
not correspond to the minimum observation time at the analysis. For
example, recording of deathr may be correct to day of death, but analysis
is performed in weeks of survival.

(2) One further implication of the existence of a minimum observation
time in (1) is that the data is discrete and some ties may be present

in the data.

(3) Time between ranks are assumed to be non informative. (Kalb-
fleisch (1980) considers a Baysian approach with Gamma prior distri-
butions between ranks.

(4) Censoring times may be informative with respect to certain covar-
iates. A related situation is where a second cause of the event is
recorded. The problem is that an auxillary cause of death, if included
among censorings may cause censoring patterns to be informative, in the
sense that by excluding or including a particular cause of death from,
or into the event set, inconsistant conclusions may be possible.

(5)/
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(5) Effect of treatment or covariates may not be consistent in time.
The r(Z, 8 ) relative risk assumes that a single function independent
of time is sufficient. The topics of (4) & (5) refer to trials in which
the time variable interacts with covariate effects. In such cases
although we can assess the effect by the r(Z, g (t)) part of the model,
the conclusions are limited unless we move to a multivariate competing

risk model.

We illustrate the above points by the following example.
The figure (4.3.1) represents possible outcomes that may be recorded
for a case. C refers to censoring, D to an event of interest say

death and O to some other event, or auxillary event.

For a situation that all assumptions hold we require the
concentration of events to have the patterns of (4.3.2a), (4.3.2b),
(4.3.2c) figures for the censoring times, death times and the other
auxillary event respectively. The shaded regions refer to areas with
higher concentration of events. The censoring and auxillary event
in (4.3.2a) and (4.3.2c) are uniformly and equally distributed and s©
do not provide useful information. If on the other hand the auxillary
event was somehow related to lost to follow-up because of the effects
of treatments, or the event of interest is metastatic disease and
auxillary case is death with no previous metastatic sign, then instead
of (4.3.2c) we may obtain distributions such as (4.3.2d), (4.3.2e)
and (4.3.2f) for the auxillary events, where the events for treatments
A and B are not uniformly distributed. We will return to this topic
after more development of the mathematics. Further in Chapter 5
we will study the implication of some of the above assumptions in small

samples/
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camples for a realistic simulation of clinical trial data.

4.4 The construction of the likelihood and its properties.

Now we consider the methods for the estimation of the regression
parameter and the construction of the relevant likelihood equations.
Censoring is dealt with in the manner of Chapters 2 & 3. We observe
minimum of either Ti’ the failure time, or Ci the censoring time.

The above statements can be expressed as
(Ti < Ci) => Failure
(Ti > Ci) == Censoring time precedes failure time.

According to definition of proportional hazards we have

— — ft
S, (t) = Exp{ JOAO (u) du}
(4.4.1)
t
and Sz (t) = Expl —J i Exp ( BZ) '\o (u) du !
giving S, () = [S_(t) 1¥*P ) (4.4.2)

which is an example of a Lehman Alternative, by which a reduction
of relevant information may be made by the ratios of the two survival
distributions. A simple example is to take a single covariate case with
treatment covariate Z, set to 1 for new treatment and Z set to 0 for

controls. Hence

_ Exp8
S1 (t) = [ S, (t)] (4.4.3)

Thus the two survival distributions are related in a multiplicative
manner. The relation between a function of the ratios of S‘(t)

&/
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& So(t) is equivalent to a constant transformation of g and does not

involve the time factor. In other words So(t) can be projected onto

S'(t) and by a function of B8 . The general aim of the derivations

of this section is to estimate the values of g's with nonparametric
hazard of the form lo(t). Although the method considersxo(t) and
functions of gthe method can also be used to generate a transform-

ation of ;\o(t) to estimate the survival functions.

In the original approach Cox, adopts a conditional argument to
construct the likelihood. At any moment in time, there exists a
particular risk set R(t(i))' Any failure at the unique i'th in time
namely t(i)must have arisen from this set. Therefore, probability of
failure at t(i) given the risk set R(t(i)) ( or given survival up until

t(i) ) is

L, = Exp(sZ) / , Exp (82) (4.4.4)
IGR(t(i))

For the population of size n we have the likelihood function to be

composed of the following function and allow censorings to occur without

contributing to the likelihood.

e di _ Exp(8 Z.) /
L = iia [ L] - 'fl[ ! L Exp( 8 Z) ]di
IRE ;)
(4.4.5)
for di = censored

d. =1 Death

1

(4.4.5) refers to a situation where no ties are present in the data.

Later/
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Later we will consider a more general risk set for dealing with more

than one event at a given time.

Now for a general likelihood (4.4.4) & (4.4.5) with the
proportional hazard assumption we generate a population of size 5
and allocate the likelihood factor contributions, as in table (4.4.1)

Rank Survival time Censoring

0 Z. Contribution to
1 i d

Death Likelihodd [Li] i
1 1 1 0 1/3 + 2 exp(B)
2 5 1 1 exp(B)/2 + 2exp(B)
3 10 0 1 [exp(B)/2+exp(B)]°
4 20 1 0 12
5 30 1 0 T/,

Table (4.4.1)
On taking logarithms of the Cox's conditional log likelihood function

of survival time we have

Inh L. = z BZi - T log | I Exp( BZI) } (4.4.6)
Deaths Death Risk set 1
i i at time t(i)

The argument is straight forward with conditionality and a single
factor as in equation (4.4.4) for the case i.

However Peto (1972b) raised some related points regarding treatment

of ties and censorings. Later Kalbfleish and Prentice (1973) chalenged

this terminology since the conditionality for a single case does not carry

over to the full set population. As is clear from Table (4.4.1) , the

3rd survival time is equal to 10 and is a censored time. This implies

that there is no contribution for this case to the likelihood function.

The Cox's conditionality argument makes an extrapolation on the

state of failure of the remaining set. This extrapolation is related to

the/
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the pattern of ties in the presence of possible censoring and assumes
that the distance between the events does not contain relevant
information. The extent of the assumptions can be judged by con-

sidering the types of events that can occur.

In reducing the time of events into ranks we produce 3 types
of observable events. Within any ranking point say ith to ith + 1,
for the risk set at t(i) the information on time may contain any of the

following 3 groups.

First class are those present at the beginning
and the end of the time period. The consequence

to the likelihood is that full information is contain-
member of R (t.)
>

ed within the risk set

i i+l
Next class are those that die within the period.
The consequence to the likelihood is that maximum
information is contained if deaths occur just prior
fo i+, Clearly a death can occur anywhere within

the minimum observable time. In here we have -

considered death to be the event of interest.

Finally the group that are not present during
all or part of the period. That is cases with

death at t(i) and cases with censoring at t(i)

to In this situation the consequence D

1:{i+1)'

to the likelihood is made most realistic by ranking

X QO

)
¥,

censorings after deaths.

i+1

i+1
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Next we will show how the general likelihood is a deviation from
the full likelihood. Later we will mention situations where the two
likelihoods give close estimators. We begin- with an explanatory

definition for (4.4.4)

exp ( BZ(i)) \ .
L.1 =5 exp( le) = Pr (Individual (i) fails\risk set at
IGR(ti) t(i)&’t(i) has at least one death)

= Pr(Death at t(i)\all previous cen-
soring and present failure information
at t .
(1)
The last expression is in fact the set of sufficient information necessary

to obtain column 5 of table (4.4.1).

Any L, for a failure at t(i) is more generally conditional on
"past history", which was expressed as risk set at t(i),and the fact
that the event is a failure. Thus sufficient information for "past
history" is, 1 to (i-1), censoring and failure information + the
ith censoring information. In other words the probability regarding
death at t(i) is made conditional upon the information regrading the
occurrence of all previous deaths and censorings, and also including
the information regarding censoring at current time. The probability
regarding a censoring at t(i) is conditional upon the information
regarding the occurrence of the previous deaths and censorings.

This is expressed as

o
1]

Pr (Death at ti\lto (i-1) censoring & death & ith censoring)

[
L
I

Pr (Censored at ti\l to (i-1) censoring & deaths)



The full likelihood is a combination of the above and using the
previous definitions, by the general arguments of the survival

analysis we take the full likelihood to be

= IT I 3
L Denths (Hazard) . all (Survivals) (4.4.7)
Let D = [1i : 1:.1 FS ci] be no. of cases prior to the last death
D B Zi(ti) a t; B8 Zi(u)
L = 1 Agt)e T exp [ -] Awe du]
: i .
1= i=1 0

(4.4.8)
The above is from (4.4.7)and (4.4.1)

In a population of size 3 with the first two cases failing at tl & 1:2

and the third case censored at cy we obtain, on expansion of (4.4.8)

such that for i=1 we have

Bzi(t) ty le (t)
L, & M(tl) e exp | -—J Miu) e du]
0
for 1 =1, 2 we have
gZ,(t) gZ (t) t g Z.(t)
L o= a(t)) e . A, (t5) e 4 exp [ —J 1%(“)3 .
0
du]
t g Z,(t) BZ,(t)
o exp | —J ly\n(u)e . du] exp [-[2 A, (u)e . du]
0 1
for i=1,2,3 we have
B2 (t) BZ,(t) B
L = 5,0t e 17770 x, (ty)e " 72 i | -ngko(u) . Zl(t)du]
t B Z {t)
e« exp [ -J 1,\0 (u)e 2 du]
0
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t, B Z,(t) t 825(t)
. exp [ -J A(u)e du] exp{-[ A, (w)e du]
0
t'I
t, B 23(t) ¢, 323(t)
. exp[-J A,(u)e du] epr—J Afule du]
t1 t2
Y
By rearanging the exponential term for each integral periodj
£
we get
£ BZ.(u)
[1?[ exp [ -{ ! ;\D(u) T e J du] (4.4.9)
i=l ’ ti _1 jeR

The rest of (4.4.8) are the contributions of the deaths, and is the

first part of the equation, given by

D
i I g At exp | E;Zji (T,)] (4.4.10)

Note (4.4.8) is (4.4.9) & (4.4.10)

By combining (4.4.9) & (4.4.10) we obtain

ﬁ ¢, BZ.(u) 82 (t,)

=1 ( lexp [— Jl Afu) e ! du].&o(ti) g e 1]
ti g j€R j€R

exp (8 Zji(Ti)

z Z.(t.)
j€R e 3t

(4.4.11)
" 32.(1:1)
Note that the above is equivalent to (4.4.8) with the term j{-Re J

introduced to the equation. The part (2) of the equation is clearly

the/
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the usual partial likelihood and part (1) gives the extra contributions
for the full likelihood. If A{t) is unknown then part (1) provides
little information about Bg's. Thus (4.4.11) reduces to the likelihood
(4.4.5).

Now we will return to the generalisation of the closing parts
of section 4 .3, using the above mathematical notations. The parts
(1) and (2) of the full liléelihood (4.4.11) have two time quantities,
A,(u) and the other Z(u). We can often assume that part (2) of
the likelihood does not contribute to the information on covariates.
This is a true assumption by an independency of Z(u) from i u) in
the integral of ti-1 to ti'

The problem of tied observation was treated by Cox (1972) in
the following manner.

Say two observations are tied a & b. Due to the fact that we do not
know the order of these events, the actual probability contributed to

the likelihood is

exp ( Bza) . exp ( th}) § exp( BZb) ‘ exp( B Za)

z exp(B Z,) Lexp(B Z,) I exp(B2Z,) I exp(BZ,)

J€R J iR ) €R e j
a£R bgR

Cox's approximation is

T 2exp(B Z,) [/
. i
1= a;b

(zexp(B Z,))- exp ( BZ.)
i=a, b ] :

Peto (1972b) suggested an approximation to the tied ranks distribution

and/



and later Kalbfleish (1972) referred to this likelihood as marginal
likelihood. He pointed out that this assumption prohibits use of

time dependent covariates. The expression for the above is

I exp(BZi) /-r m
s 05 [m]( s Bww G 23 Fed
jeR J
where r is no. at risk at time ties have occurred and m is no. of

events tied.

By use of the approach proposed by Cox in dealing with ties
the calculations become exceedingly cumbersome. The ratio of
calculations in fact multiply as the number of ties increase in the
sample. However in our study this method is used mainly because
the use of the alternative approach implies the prohibition of the use
of time dependent covariates. The partial likelihood of (4.4.11) can
be expressed as a function of the log likelihood of k distinct deaths
as

Inli = Ll gy = [ 3Zi -1In ( 1 exp( B‘Zj) )] (4.4.12)

1 J{-Rl

For use of the maximisation method of Newton-Raphson we first require
two derivatives of the likelihood with respect to 8. Different

derivations of the likelihood may introduce different restrictions on

the form of Zi(t). However the following can be obtained without
loss of generality. zexp (83Z.) .« Z.
s L(3) S R, P
el = X B — (4.4.13)
LR i=1 P b exp (8 Z.)
jeR, )

Thus/
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Thus we want solutions to

Z -
k iER. [Z. exp (B Z.):I
TR B Soslttn - B, P
i=1 P I exp (BZ)

jeR, J

The equation can be solved by Newton Raphson procedure and use of

the following 2nd partial derivatives.

> A z o
. exp( B Z.)K . Z. Z. exp (B Z.)])
k JéRi[ 3 J]‘ J'-‘Ri[]P jq =P & &

LEES 10 M
s8 8B i=1 ( E s’ 2
: ex Z,
P q jeR, p ( J) )
(2 Z, exp(BZW I 2 exp (BZ))
jer, 1P Wer, ia j
_ ) (4.4.14)

"2 exp (B Z.) ]2
jeR, ]

We can thus estimate the B values in (4.4.12) and thereby assess the
effects of the Z concomitant variables. Using the above derivations

we will now proceed with a few commonly used testing procedures.

For testing the global null hypothesis that all coefficients
are identically zero Cox gives the the efficient score statistics of Rao
based on

Q = U (0 1" (0) U (0)
where U is a vector of all first derivatives given by (4.4.13) . I is
the information matrix and is composed of elments given by second
derivatives as in(4.4.14). Q has a chi-squared distribution with r

concomitant variables and v degrees of freedom. In studies where

r/
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r is large like the situation of most clinical trials, Cox suggests
the use of significance tests for subset of parameter estimates.
The two commonly used tests are the asymptotic likelihood and the

asymptotic normality tests.

For the likelihood ratio test with one degree of freedom

we have,

-2 (L (8) -L(8))
where 8 and B are vectors of parameter estimates that are
included in the likelihood model. Bain fact spans a space which

~

is a subset of 8, and the two often have a dimensional difference of
one. The test then has a chi-squared distribution with one degree
of freedom under thenull hypothesis.that the concomitant information

~ ~

missing in the likelihood of Ba has an estimator zero in Bb .

With the assumption of asymptotic normality for a one-sided

a3 significance level we have

1(ep)1*>ta Y= i

Pr( B,/ [1
where t refers to the percentage point of the t distribution with o

significance level, The above tests are used extensively in the

simulation studies of the Chapter 5.

In the final part of this section we will show that the first and
the second derivatives, namely (4.4.13) and (4.4.14) are in fact tra-
a.

nslation invarient. This result is of interest when we consider

transformation/
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transformation of the covariates for the fast convergence of the

iterative methods.

The values of g are translation invariants under a
translation of Zj to (Zj + a) where a is any vector of constants.
At this stage we substitute values of (Zj + a) with Zj in the

equation (4.4.13) & (4.4.14) and show that the ratios remain the

same. We have
z -
k : I e B L2, +
L ]fRiE % ap) xp (8 [ ; a])]
-=1( L B * Al z - )
jR ; exp (8 [Z]- + al)
k exp(B' a) (.2 Z..exp(B' Z ) + a Z exp(B'Z))
=ka_ + 2. [2Z - JeR: JP R JERs ]
p i=1 ip exp(B' a) ]Xét{exp(ﬁ‘ Zj)
5

L Z. i/ { s ‘g ]
_jer; Gp xR Z) 3 lir (expls ZJL))

k
ka + 2 Z.
a4 [ exp (8' Z.)

P =1 ip

z X 3 ]
jéR,eXp (g' Zj) j€Ry j

z
5 7 awnle 2.
jeR, 4jpxP(F' 2)

M I
j&ZR; Exp (B Zj)

k
1 -
xap + i=r1 ( Zip ) kap

Lo Z, e Z.
(g, - i ip R
1= 1p b

. ex B' Z,
jer; P L

and hence by letting the equations once again to be set to zero,

we will have the same values for the B estimators.

For the 2nd derivatives we have



(JeR spiBra 0y ( 5 iR, “ip %iq exp(8'2,))

8 ZL(B} - ';
éB GB i=1 L e BY %.
P (Z]t’:Ri s JDZ
z . e BE 3. L 2. e Brz .
JéR JP ik ZI)) (JéRi iq P J))
= ( r o {B‘z'»z :(*)
Je R, J
1
again using the same substitution we get
-ezs'a(_x exp(B'Z )) ( .+ a)(z. + a) Exp(8'2.))
k JER JP P 3 q ]
= =
L]
i=1 [ em""L (5 exp(B* 2.) )7
JeR, ?
1
.. (%, (z, + a o) ERD (B2 })( (z, + a )Exp(8' 2.))
JeR. 3P JeR; g q ]
28'a , I i
e (jeRiExp{B zj))2
k

a 2. exp(B'Z.) +a I Z. exp(B'Z) +a a exp(B'Z.)
o sq TB(E'T, _ jq SXP(6'2) § 5 P82,
( jr:-Ri jeRi

: . L exp(B'Z.)
i=1 /3 ¥ j

((z exp(B'ZJ)(z Z. FExp(B'Z. })+a(2 Exp(8'2.))
JLR 15R Jq gq :lf:R ]

ol 5 7. Exp(8'z.) ) + a.a (£, Exp(8" zj))z)

JER; 3P 3 Pa JeR;

% R #2,)

*+(¥)

= (30
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The above results indicate that the a translation of tho Z]. +. &
leaves the function of the second derivatives of the log likelihood

with respect to B8 values the same.

As was mentioned the functions of second derivatives are used

in the estimation of the variance of the B8 estimators. It is defined
to be Var (B8) = (;6_;2]'_.___3_%1__)—1 The value of the second partial
P g

derivatives are also used in the estimator procedure of Newton Raphson
where a function is formed to obtain a convergence of the equation

(4.4.12).

The method is iterative and it spans the likelihood surface until
it finds the required maxima. The rate of convergence to the maxi-
ma depends on the slope and shape of the likelihood surface.
Primarily the rate of convergence is slow if a number of covariates
have a large scale range and these show a degree of correlation.

The consequence is that the variance covariance matrix at inversion
will have a determinant which is almost zero. The problem of scale
range can be remedied by subtracting the mean value of the covariate

effects from the covariate if they have a large scale range.

In Chapter 6 we will use the above and alternative methods

based on the categorisation of the continuous variables,

4.5 Covariate interaction and time dependency..

In/
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4.5 Covariate Interaction & Time-Dependency.

In this section we will consider the proportional hazards
model in terms of possible functional forms of the relative risk part
of the model. We will describe the possible functions that may be
useful and efficient in an analysis of clinical trial data. We will
relate these functions to appropriate hazard rate patterns and in
the future chapters some of the topics and models of this section
will be used in analysis and interpretation of the results. In
here we will keep the definition of Ao(t) to be as that of previous
sections of this chapter. The r(Z, g,t) function measures the
relative risk differences in relation to the base line hazard and
the projected subgroup hazard rates. We reiterate the point that
this difference may be due to various forms of time-dependency or
purely due to fixed covariate effects.  This distinction is not in
most circumstances very clear especially in an exploratory analysis
or a situation of measurement over time. This effect may be referred
to as time confounding and is related to the influence of the various
covariates on each other within the time scale. An example is a
situation where treatment effect comparisons may show a different
relative risk pattern for younger patients and the older patients.
Such an effect is testable by a complete model of age and treatment.
A different approach may attempt to test the adequacy of the func-
tional form of r(Z,g ) by inclusion of a treatment and time dependent
covariate based on the time scale itself. Much of this section is
related to various developments of r(Z, g,t) and the way it can
influence, time dependency, interaction and confounding. In a
situation of stratified analysis of the data with say an exponential

decomposition/
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decomposition of the relative risks we have

’*k(t'z) = J"t)k(t) zok Exp( lel + 2282 + v % )

Where Zo is set to be dummy variable and conditions the analysis

k

on the strata of interest k.

That is
1 case belongs to strata of interest, k

ok

0 case does not belong totherelevart strata k

In effect by repeating the analysis for the various strata it will
result in a different base line hazard being produced for each strata
set. The significance of this point is merely attributed to the
method by which stratified analysis may be incorporated into the
general procedures. The resultant effect on the partial likelihood

argument is the introduction of a conditionality parameter such that,

Pr (subject i failing at ti\ presence until c, or t, and also

membership of strata) = zok r(Z‘, 3‘)/ z

% Zokr(Zl B8

1)

ozl,:cr(zl Bl)

fgghe 72187

where k* is the new risk set and excludes all cases not belonging
to the particular strata. A point that must be noted is that
zok function in the above may be interpreted as a function adjusting

J\ok(t) rather than one acting on r(Z,8).

Then/
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Then

1]
fond
I
|
Yo le~
[N
~—
N

"ok(t)

An example is a situation of separate analysis for the older patients,

such that
if age > d then Zo =0
and age { d then Z =1 , where d is a constant on the age

ok
scale.

Now we consider a situation where Z, is related to a categor-

1
ised separation of a continuous variable say time or size. Suppose
we set Z1 = (-1,0,1). We then test the effect of Zl, with above
categorisation assumption, that the relative risk at the lower level
of Zl= -1 is related to the middle level of Z1
which relates the middle level of tho the higher level of Zl-—' L

= 0 by the same scale

A more elaborate analysis will allow the 3 levels of tho act independ-
ently by introducing (Zl)z_ such that Exp (Z1 By * (21)2 ez)
In the case of interaction effects being present in the data between

the two covariates we may have expressions of the form

Exp(le 1 + 22 B, + 2122 312).

Under this assumption we are testing the multiplicative effect of

Zl & 22 on each other and on Ao(t). i.e. the relative risks.

]
Exp (Zlal) 2 Exp(Zzsz) i Exp(zlz2 12)

For an actual trial we can represent the various subgroups for

say/
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say, treatment A and treatment B and node positive and negative

groups such that hazard rates for the two treatment groups are

;\O(t) For patients of group A treatment
J\(t’zt) - Ao(t) e®t For patients of group B treatment

The common lo(t) base line hazard is clearly a nuisance parameter.
. 2 B

The relative riks e : represents the effect of treatment. The

greater its deviation from 1, the greater is the importance of new

treatment.

For the two prognostic subgroups a similar pattern may be represented

Jx(t,Zt,Zrl ) = lo(t) group with treatment A, node negative
ko(t) gt group with treatment B, node negative
AL (t) eBn group with treatment A, node positive

0
B
A ft) e * IEEﬂgroup with treatment B, node negative.

The above structure however is considering St and Bnto be of
similar effect if they are present singly or both simultaneously.
There is an extension to the model by which one can test the

effect of both treatment and node,while one is testing their eiffective

simultaneous presence.

A(t, Zt’ Zn) = AO(t) group with treatment A, node negative
B
Ao(t) e 2 group with treatment B, ncde negative
8 . .
Ao(t) g B group with treatment A, node positive

B B_B

-

lo(t) e “e e : group with treatment B, node negative

Then if BI is significantly different from 0 then there is a

suggestion/



163

suggestion that the new treatment may be more effective for one
prognostic group than the other. In the above we have dealt with
binary treatment and prognostic categories. In a case of 3 categor-
ies of a prognostic indicator say size divided into 3 separate classes
small, medium and large tumours, an expansion of the concept of
interaction is possible. Like the example of the node we may have
alinear interaction of the size with treatment. However due to the
fact that there are 3 levels of size present we may have various
quadratic effects acting. That is the larger tumours may be
behaving in a way completely different to those of small and medium.
We may then introduce two different sets of covariates Zs = (~-1,0,1)
and Zz = (-J.,O,l)2 so that a test of size effect may be done in such

a way that various main effects and interaction effects of size are

independent.

In a situation where time may effect the influence of certain

covariates, we may represent the time interaction by

Exp(slzl + Bt.th*) , for t* a function of time.
A Taylor series expansion of the time dependent effect gives.
.t*)J-’ 0

*
(1 8, Z g Exp(B1 Zl) for(Bt. Z

1 1

as B> 0 for j) 2

In the previous model the factors of order j » 2 have been
considered insignificant by the Taylor series expansion. Clearly
other possible situations for detecting departures of specific type

from/
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from the proportional hazard assumption can require a model of form

(z1 Btt*}z
A(t, Z) = "U(t) [l + (let %) +—2—!————I- Exp (8 2Z)

When considering time dependencies the functional form of t* is

also of importance for an efficient analysis. It may be necessary

tla=. ¢

¢

is influenced exponentially with time we use (In(t) - ln(-t.)).

to transofrm t to Alternatively if the effect on covariate
p- .

An analgous approach may use a transformation of the time scale

t* to 0 or 1 scale, so that effects of intervening events such as

metastatic recurrence may be studied.

In here we must make a n important distinction between the
various forms of time dependency which have been considered.
It can be that a measurement over time like age is considered an
independent value which affects the survival time. It may be that
age is considered to have a time scale which is inappropriate under
the proportional hazard assumption and therefore study of departures
of particular types based on the functional form of t* may be of
interest. Finally we may be interested in the study of intervening

events like the metastatic recurrences.

In the analysis of the data presented in the next chapter
we will use a functional form of the r(Z, 8 ) referred to in the
Cox's paper on the exponential decomposition of the relative risk
Exp (B Z). We will return to this topic of time dependency in
Chapter 7 and 8 where a more detailed study and analysis of
trial data will be performed. As we mentioned in section (4.3)

the/
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the In(t) is a natural transformation for testing time dependency

of Weiball form, in a proportional hazards setting. In Chapter 8
we will relate these topics to concepts of change and random
covariate effects. In Chapter 7 we will consider various functional
forms of the time dependency such as logarithmic or linear time
dependency. Further we will study effects of intervening effects

by transformations of the time scale in to binary 0 or 1 scale.
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CHAPTER 5§

SIMULATION OF PATIENT ACCRUAL TIME TO RESPONSE. In a clincial

trial with proportional and non proportional hazard rates.

In this chapter we will describe a method for generating
random samples of survival times with a given distributional assump-
tion. The distributional form of the generated sample will clearly
play a major role in value of an analysis method. Further we will
develop a method of producing different levels of censoring times
as an analogous situtation to that of random arrival of patients into

the trial, and early analysis when some patients are still alive.

It is intended that by such an approach a comparative
study of the generated small samples of survival data may be made
with varying values of covariates, censoring percentages, sample

sizes and the hazard rate of cases.

For reasons of comparison we explain type I and type II

errors in the context of the present study and finally the results

are presented and discussed.

5.1 Generation of survival times.

In Chapter 3 we described some of the possible
distributional forms of the survival times. We also presented some

of/
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of the empirical results to show that different patterns of failure
rates do occur in practice. One major aim for any system of generat-
ing random samples is that the method should be flexible, so that

we may produce a range of survival times with a good level of control

over the many factors under study.

We will present a marageable method of simulating random
survival distributions with proportional and non-proportional hazards,
relevant to failure time analysis. Further for a realistic simulat-
ion of trials we will develop an approach for accrual and censoring

times.

We confine the study to the most commonly used distributions,
exponential and the Weiball under covariate constraints. The method
of generation provides a good methodology for producing distributions
both in the framework of covariates and also in terms of time-
dependency . However it does not extend to censoring. Later on in

this section we will describe an algorithm for censorings.

The conditional survival distribution function of Weiball
survival in presence of covariates may be presented by

S(t, 2) = Exp [ - ( ut)” & B (5.1.1)

Where v is the shape parameter in the Weiball distribution. Clearly
at v = 1 we have a special case. of the exponential distribution.
We thus have the survival time T is always greater than or equal to
zero, Z is a vector of explanatory indicators, B is the vector of
parameter that eventually has to be estimated and p is a parameter

for/
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for "adjusting" the rate of the hazard functions. The conditional
probability density functions and the conditional hazard function for

T then follow from (5.1.1).

-a8(t, 2) = £t 2) = wi(ut)” %P Expr-(ut)¥ &2F)
at
(S5:.71.2)
and
Bl 7 = Nt B = av fat)” ) &2 (5.1.3)
S (t,2)

In making the functions more manageable we use a two stage transform-
ation. In its present form it is not easy to recognise a probability
distribution function of the above. However after the transformat-
ions we will relate the distribution to the extreme value distribution.
We let Y have a probability density function fY(y). If h(y) is
either increasing or decreasing in y, then U = h(Y) has the density
function given by

-1

3 dy .
Fy (W) = £, [ (w] [|Z] (5.1.4)

A useful method is finding the density function of ¥ = log T.

g =
Therefore we use function h(t) = log t, giving h (y) = Exp(y) .
3(h” (y))
ay Exp (y) Y
Now substituting for t = exp (y) in f£(t,2) and multiplying by

|[Exp(y)| we get

v=1 ZB

£(y,2) = HY( e e?® Expl -(u en)¥ 2F 1 &

e
This gives

Zg

S(y,2) = Exp [ - ( uet)’ "% ]

which/
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which can be derived from using f(v,2) = = 3S(y,Z2) / 3y
For manageability we use a further transformation of Y,
W = Ywv - av+ Z2 B
where o« = - log (u)

The density function of interest is

B ey = By & - AR
v v
-1
3 (h (w) T |
a(w) v
- ; ; W ' ZB8
Then we obtain f£(w,Z) by suostituting y = o Y ¢ S

and multiplying by |% I we have the probability density function of

w and 2 as ,

Bud.- L8
f(w, 2) = e_ ¢ u(e- ue 3 Z; ) e ezi Z8
- 0 FETN am T Y E TS5 4
. Exp.[-( e e ) le . 55
w _ 28 w o _ 2B
. 5y ev u)u eZB Expl < {e“ v )v eZB] %
- 78 =
- (ew Z ) eZB Exp [ - (ew ZB) eZ B]
= (") Exp [- (") ] = Exp (w - e") (5.1.5)

The above is an example of the extreme value distributed random

variable for w, with the distribution function.

F(w) = Exp (—eww) - < w < o (5.1.6)

Now (5.1.6) is in a convenient form so that the required distributions

may be generated.

In/



In cases where there are no covariates present the survival
distribution reduces to
Y
S(t) = u Expl - ( ut )]

and it follows that the generator is

y = ‘% + Q where u = exp (- a)
When v is equal to 1, the Weiball distribution reduces to an
exponential distribution with the survival distribution given by
S(t) = uwExp (-ut)
and the generating function is y = w + a
In here we will not discuss the actual values for v , a, B and u.
However later we will mention the actual values that are used in the

study.

The extreme value distributed random variables can be
easily generated using the operation of two logarithms on a set of
unifromly distributed random variables, between 0 and 1, so that

W = 1log (-log U), for U, uniformly distributed between
0 and1l.

One result that may be of practical importance although we do not

use it further in this thesis is the pattern by which the lognormal
distribution can mimic the standard extreme value distribution. This
will allow a similar expansion of the methods, so that other
distribution may be approximated to produce other shapes of the
hazard functions, using the same procedures.

Standardised Cumulative Distribution Functions

X Extreme Value Lognormal
-2.0 .00063 .0002

-1.5 .02140 .0196

170
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Standardised Cumulative Distribution Functions (cont'd)

X Extreme Value Lognormal
-1.0 .1321 .1324
-0.5 .3443 .3471
0.0 .5704 .5700
0.5 .7440 .7423
1.0 .8558 .8546
1.5 .9224 .9207
2.0 .9577 .9579
2.5 .9775 .9773
3.0 .9881 .9884
3.5 .9937 .9939
4.0 .9967 .9968

The above extreme value distribution is the standardised extreme
value distribution with
S(X) = Exp[ - exp (-1.28254 x - 0.57722)]
The Lognormal then has the distribution
1 [u{x)

S(X) = ( y2r ) exp (=% a2yan

with

U(x) = 6.5277 Log10 (X + 2.74721) - 2.68853.

We will now describe the present extreme value distrikution
more specifically. We will use the standard prooability density
function of X as a unimodal exp(w - ew}, with skewness =-1.14,Kurtosis
2.4, variance [ M2/6] = (1.282)2 and the mean -0.5722, which is the
negative of Eulers constant.

Before we proceed with a discussion of the distributional
properties of the extreme value distribution generations for various

sample
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sample sizes, we mention a few words on the uniform random number

generator.

The uniform random number generator used in the computer
procedures is based on the standard random number generator of the
Unix operating system version V Library of Pregrams. The system is
available on the PDP II Computer at the Medical Computing and
Statistics Unit of the Edinburgh University. For all of the
simulations we have used the seventh edition of the Unix operating
system and its various. software on the PDP II computer. The
uniform random generator asks for 2 initial seeds to begin the
simulations. We have used values 1 and 2 as the initiators of our
generations. In order to allow the random numbers to reach stability
we proceed with the generation of 500 random numbers and then use
the 501 st generator as the first effective random number for the
survival samples. The returning value of the generator is within
the range of values 0 and 1. We repeat the generations for the

various values of sample size and note that the generations conform

2
+ -
to a mean value of E—E—l— and the variance of EL-TE—_l

for various sampl: sizes that are greater than 20 over the range

of values that we examined.

Prior to proceeding with the generation of random
survival samples, the extreme value distributed random variables were
generated, for different sample sizes. The purpose is to assess
the capability of the generator in conforming to the above specificat-
ions.

10/



173

10 Standard extreme value distributed random variables

with the sample size of 50

Sample No. Mean Variance Skewness Kurtosis
1 -.732 1.504 -0.271 9.581
2 -.716 1.249 -0.543 -0.135
3 -.397 1.166 -0.133 -0.146 .
4 -.727 1.241 -0.151 -0.681
5 -.42¢ 1.262 -2.351 -0.683
6 -.495 1.058 0.223 -1.711
7 -.658 1.417 -0.446 5.597
8 -.280 1.005 -3.1¢7 -2.084
9 -.391 1.150 -0.730 -0.331
10 -.456 1.361 -0.606 0.984.

5 Standard extreme value distributed random variables

with the sample size of 100.

Sample No Mean Variance Skewness Kurtosis
1 -0.581 1517 =-3.745 9.480
2 -0.496 1.075 -0.177 -1.505
3 -0.454 1.412 -2.540 9.669
4 -0.637 1.295 -0.775 0.545
5 -0.568 1.354 -0.965 1.821

5 Standard extreme value distributed random variables
with the sample size of 200.
Sample No. Mean Variance Skewness Kurtosis

1 -0.597 1.362 -2.187 9.462



5 Standard extreme value distributed

with the sample size of 200 (cont'd)

Sample No.
2

3

Mean

-0.494

-0.458

-0.462

-0.663

Variance

1.364

1.209

1.315

1.270

random variables

Skewness

-1.476

-1.005

-1.164

Kurtosis

3.721

-0.724

2.408

1.421

5 Standard Extreme value distributed random variables

with the sample size of 1000

Sample No.

2 Standard extreme wvalue distributed

Mean

-0.592

-0.584

-0.575

-0.557

-0.459

Variance

1.260

1.288

1.272

1.271

1.188

with the sample size of 30,000

Sample No.
1
2

3

Mean

-0.591

-0.569

Variance

1.2¢3

1.287

1.285

Skewness

-1.151

-1.207

-1.118

-1.118

-0.678

Kurtosis
2.656
2.384
2.343
2.670

2:521

random variables

Skewness

-1.184

-1.125

-1.159

Kurtosis

2.712

2.354

2.674

One important point to note is that the above are random samples

and that there has been no selection.

The sample with n = 30,000 clearly shows that we

the/

are generating
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the appropriate distribution and therefore asymptomatically all
moments are stabilised and conform to the theoretical values. In
so far as the small sample properties are concerned the first
moment mean is stabilised at n = 100 , variance at 200, Kurtosis

at n = 1000 and Skewness is the last. to stabilise at before n =30,000

over the range of values examined.

For practical purposes. we only study small sample
properties of the statistical methods, therefore is is of interest
to know how well mean. and variance conform to the theoretical values.
However for the sake of consistency it is important to know that
given a large enough sample size the distribution conforms fully,
as ‘far as skewness and Kurtosis are concerned with the generated

population.

5.2 Illustration of the method of generation.

Now for the purpose of illustrating the generation of
survival times in the simulation procedure we define a population with
the following characteristics.

Let the hazard be constant and fixed at, exp(-5.2983) giving

A

0.005. Allow two parameters 81 and 32 to have values 0.99 and

0.49 respectively. Let the cvovariate indicator vectors Z and z2
1
be equally and unifo:mly allocated to values of 0 to 1. Finally it

is assumed that none of the survival times have been censored.

Since we are assuming a constant hazard we use the

generating/
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generating expression as
= R &8 = Bahy = Lg8)
since there are 2 covariates each at 0 or 1 1level,, 4 distribut-
ions are generated by the subroutine:
Namely, S(t,0,0) , S(t,1,0), S(t,0,1) and S(t, 1, 1). These

survival distributions may be obtained by substituting in the

general distribution for

- O
S(t, 21, zz ) = Exp[- e t. e 1 2 . ]
wihere 31 = 0.99
and 32 = 0.49
giving
S(t, 0, 0) = Exp [-0.005 t]
S(t, 0, 1) = Exp [-0.005 t. 1.6323]
S(t, 1, 0) = Exp [ -0.005 .t.2.6912]
S(t, 1, 1) = Exp [ -0.005 . t. 4.3928]

With a perfect approximation to the above theoretical distributions
the estimated values of 31 and 32 must correspond to values 0.99
and 0.49 respectively. The 4 distributions are illustrated in the
figure (5.2.1). & table (5.2.1) give the details of the sample size

of 50 which was generated.



177

Survival Hazard
Time Function i

Il =1 00

Z.8,

I B ¢ W ¥ Z1 22
44.0 0.00500 0.49000 -1.00926 3.79906 0.00000 1.00000
30.0 0.00500 1.48C00 -0.39407 3.42425 1.00000 1.00000
64.0 0.00500 0.49000 -0.63759 4.17073 0.00000 1.00000
62.0 0.00500 0.49000 -0.67770 4.13062 0.00000 1.00000

270.0 0.00500 0.49000 0.79077 5.59908 0.00000 1.00000

264.0 0.00500 0.00000 0.27990 5.57822 0.00000 0.00000
19.0 0.00500 0.49000 -1.84074 2.96758 0.00000 1.00000
16.0 0.00500 0.99000 -1.53203 2.77629 1.00000 0.00000

220.0 0.00500 0.00000 0.09956 5.39788 0.00000 0.00000
20.0 0.00500 0.99000 -1.28939 3.01893 1.00000 0.00000
65.0 0.00500 1.48000 0.35743 4.17575 1.00000 1.00000
64.0 0.00500 0.99000 -0.13930 4.16902 1.00000 0.00000
68.0 0.00500 1.48000 0.41424 4.23255 1.00000 1.00000

7.0 0.00500 1.48000 -1.77981 2.03851 1.00000 1.00000

151.0 0.00500 0.99000 0.71370 5.02202 1.00000 0.00000
71.0 0.00500 0.99000 -0.03391 4.27441 1.00000 0.00000
16,0 0.00500 0.99000 -1.51903 2.78%929 1.00000 0.00000
80.0 0.00500 0.00000 -0.90993 4.38838 0.00000 0.00000
84.0 0.00500 0.99000 0.12893 4.43724 1.00000 0.00000

357.0 0.00500 0.00000 0.58049 5.87881 0.00000 0.00000
11.0 0.00500 1.48000 -1.34890 2.46941 1.00000 1.00000
81.0 0.00500 1.48000 0.58743 4.40575 1.00000 1.00000
79.0 0.00500 0.49000 -0.42989 4.37843 0.00000 1.00000

242.0 0.00500 0.00000 0.19377 5.49208 0.00000 0.00000

4.0 0.00500 0.00000 -3.84875 1.44957 0.00000 0.00000
71.0 0.00500 0.49000 -0.54172 4.26660 0.00000 1.00000
30.0 0.00500 0.00000 -1.87210 3.42621 0.00000 0.00000
23.0 0.00500 0.49000 -1.64768 3.16062 0.00000 1.00000

2.0 0.00500 1.48000 -2.86412 0.95420 1.00000 1.00000
18.0 0.00500 0.49000 -1.90699 2.90133 0.00000 1.00000
74.0 0.00500 0.99000 0.00538 4.31370 1.00000 0.00000
12.0 0.00500 0.99000 -1.78716 2.527116 1.00000 0.00000
77.0 0.00500 0.99000 0.04566 4.35398 1.00000 0.00000

119.0 0.00500 0.49000 -0.02331 4.78501 0.00000 1.00000
85.0 0.00500 0.49000 -0.36473 4.44359 0.00000 1.00000

0.0 0.00500 0.99000 -5.07574 -0.76742 1.00000 0.00000

121.0 0.00500 0.00000 -0.50017 4.79814 0.00000 0.00000

201.0 0.00500 Q.49000 0.49686 5.30518 0.00000 1.00000
35.0 0.00500 0.99000 -0.75237 3.55595 1.00000 0.00000

2.0 0.00500 1.48000 -2.81221 1.00611 1.00000 1.00000

242.0 0.00500 0.99000 1.18442 5.49274 1.00000 0.00000
16.0 0.00500 1.48000 -1.00116 2.81715 1.00000 1.00000
48.0 0.00500 0.99000 -0.42716 3.88116 1.00000 0.00000
12.0 0.00500 0.49000 -2.26778 2.54053 0.00000 1.00000

405.0 72.00500 0.99000 1.69616 6.00448 1.00000 0.00000

385.0 0.00500 0.49000 1.14530 5.95361 0.00009 1.20000
15.0 0.00500 0.49000 -2.08965 2.71867 0.00000 1.00000

154.0 0.00500 0.99000 0.73326 £.04158 1.00000 0.00000
11.0 0.00500 1.48000 -1.407%3 2.41039 1.00000 1.00000
43.0 0.00500 0.49000 -1.04437 3.763%4 0.00000 1.00000

Table (5.2.1) Actual survival times generated from distributions o©of

figure (5.2.1)
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The values for the columns of the table (5.2.1) correspond to

Y = W + o - 2.8 - Z,8

As an example for the first row we have

a = - 1n (0.005) = 5.2983

2181 + 22 82 = 0.49

W = -1.00926

Y = -1.00926 + 5.2983 - 0.49 = 3.79906
Time = Int [Exp (3.79906) ] = 44

We can plot the above data using life table analysis methods to

derive cumulative survivals (as mentioned before). The purpose at

179

this stage is not to do a detailed comparison of the estimation methods

bur rather a general overview of the survival generator.

The following 4 tables give comparisons of the cumulative
survival estimates using the product limit estimation, as in Figure

(5.2.2) and the theoretical value of the exponential distributions

in Figure (5.2.1)
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Time Cumulative Survival S.E. Theoretical S(to,o0 )

4 .8750 .1169 .9801
30 .7500 ' .1531 .8601
80 .6250 L1712 .6703

121 .5000 .1768 . 5460
220 .3750 1712 .3328
242 .2500 . 1531 .2981
264 .1250 .1169 .2671
375 .0000 .0000 .1533

Table (5.2.2)

Time Cumulative Survival S.E. Theoretical S(t,o,1)
12 .9375 .0605 .9067
15 .8750 .0827 .8847
18 .8125 .0978 .8633
19 .7506 .1083 .8563
23 .6875 .1159 .8288
43 .6250 .1210 .7040
44 .5625 .1240 .6983
62 .5000 .1250 .6028
64 .4375 .1240 .5431
71 .3750 .1210 .5601
79 | .3125 .1159 .5247
85 .2500 .1083 .4997
119 .1875 .0976 .3780
201 . 1250 .0827 .1938
270 .0625 .0605 .1104
385 .0000 .0000 .0431

Table (5.2.3)



Time

0

12

6

16

20

35

48

64

71

74

77

84

131

134

405

Time

2

11

11

16

30

65

68
81
242

Cumulative Survival S.E.
.9333 .0644
.8667 .0878
.7333 .1142
.6667 .1217
.6000 .1265
.5333 .1288
.4667 .1288
.4000 .1265
.3333 .1217
.2667 .1142
.2000 .1033
.1333 .0878
.0667 .0644
.0000 .0000

Table (5.2.4)

Cumulative Survival S.E.
.8182 .1163
.7273 .1343
.5454 .1501
.4545 .1501
.3636 . 1450
.2727 .1343
.1818 .1163
.0909 .0867
.0000 .0000

Table (5.2.5)

Theoretical S(t,1,0)
1

.8508

.3063
.7640
.6244
.5241
.4226
.3846
.3694
.3548
.3229
«1310
. 1259

.0043

Theoretical S(t,1,1)

.9570

.8574

.7853
.7036
.5174
.2398

.2245
.1687
.0049

182



183

5.3 Generation of Censored Survival Times.

As we described earlier, in the first step we generate
a survival distribution S(t) according to a set of covariates and
the shape of the hazard function. A sorted plot of this sample
will show a survival pattern as in figure (5.3.4). It is assumed
that all patients enter the study at time zero. In this sample
there are no censored cases. In terms of clinical trials it is
assumed that sufficient time has passed since the start of the trial

to allow an observation of full length of survival.

In real data from a clinical trial the situation is slightly
different. Patients do not arrive simultaneously into the study.
Patients are not observed for a full length of survival,either because
they drop out of the study, or analysis is performed at a time that
not all patients have had the chance of producing a complete survival

time.

First we consider the problem of arrival or accrual period.
This kind of follow-up study is composed of two periods, accrual and
follow-up period. The accrual is a period to allow a sufficient
number of patients entre the study so that a reasonable statistical
comparison may be made of the patients. Thus the accrual period
in such a study becomes a function of the required sample size and
the rate of arrival of patients. In effect the accrual period
is prejudged by the value of treatment difference which the study
is designed to detect. In general it may be assumed that all
patients entre the study uniformly, and that there are no trends or
seasonal patterns present in the covariates according to the accrual

period/.
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period, In practice randomisation of the patients provides this
condition for the main treatments. However the conditions may not
hold for the prognostic factors. An example can be a situation
where by chance younger patients are entered in the first year of

a study and older patients in the second vear.

Another period we consider is the follow-up time. In
so far as the clinical trial procedure is concerned a good clinical
trial provides conditions and procedures so that all patients may
be followed-up and that at the end of study or time of the interim
analysis, survival status is recorded for all of the patients. Such
a condition guarantees that censoring., if it occurs, is only due to
reasons of treatment, disease and patients and not due to the
procedures of follow-up and withdrawals. In the simulations of this
chapter we assume that the above condition. holds. Follow-up period
is in practice often dependent.on many external factors, due to
constraints from management of patient care. Further it is custom-
ary to do a number of interim analysis of the data. For an
efficient unambiguous analysis there should be no crossing patterns
present in the survival rates. It is often the case in practice
and any variability in the number of survivors may be attributed to

the survival rates of the subgroups of patients.

There is one complicating factor in practice which
arises in multiple failure studies. If there is more than one
form of failure responsible for the reduction of the cases, the
usual approach of analysis is then by classifying one set of end

points/
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points as deaths and another set as censored. Such a methodology
requires a different me-hoc of generation of censoring allocations.
This method. can also be used in a way to allow a different censoring
rate to be present for each covariate set, so that the problem of
lost to follow-up for different groups can be. assessed. Within

the present simulations we assume that there is only one single cause
of death and that all censorings are by definition due to the fact that
not enough time has passed since the entry of a case for a death to

take place.

In the introduction we mentioned the various forms of
censoring and stated that in trials often we are interested in random
censoring, by which arrival of patients is not fixed but occurs within
an accrual period and thus any censoring at time of the analysis is a
random censoring.  This latter procedure is the method we use for
the generation of the random samples. However as will be described
later rather than fixing the time of the analysis we allow time of
the analysis to vary slightly so that we can have fixed censoring
percentages at time of each analysis. Thus we summarise.

Total length of study = . Accrual period + Follow-up
period.

For each individual patient we have a time ti which is generated
from S(t), and a time from start of the trial to the entry of
patient 1i. We will let ai denote this time and is a uniformly
distributed random variable between O and A.
Thus the total length of study for the patient i is -

Ti = ai + ti

We can now transform the figure (5.3.1) into the figure (5.3.2)

in/
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in which the accrual period is also represented. Now we can produce

the figure (5.3.3) in which the data is sorted accrding to the wvalues

As we mentioned before most trials are analysed in one
of the following two situations. Either. a final analysis is
performed prior to the minimum sufficient time for producing a
complete survival time, or that the clinical trial results have
been formed and discussed at an interim stage. In both cases we
car: generalise to the following: every trial analysis has a fixed
value I which is a point in the time of the study when survival
information prior to it are complete and all possible events after

this time are taken to be censored.

A crucial factor before the start of a trial 1is a decision
on the 1likely number of events. Two factors that are in practice
of considerable interest in design of a trial, are the accrual
period and the number of patients in the study. Based on these
assessments a decision is finally made on the appropriate times at
which interim analysis and the main analysis may be performed.

Now it seems proper to summarise some of the generalisations

that have been made in the course of our discussions.

(1) It has been assumed that censoring is synonymous with non-
informative censoring. Therefore there are no situations that
patients leave the study due to side effects or other forms of
failure. Thus patient censoring times are distributed in the same
manner between subgroups. An example of the violation of the above
assumption would beia higher dropout rate from an arm of a trial due

to/
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to a particular prognostic indicator or treatment.

(2) Further if the relative rate of failure is not constant between
subgroups, that is there exists a time dependent relative risk between
their corresponding failure rates, then the level of censoring must
follow a trend in time. That is the presence of time dependency

has a direct effect on number of cases that are dead or are
censored at any given time. As an example if one subgroup has a
higher failure rate at the end of study, a measure of censoring
percentage will give a different relative difference at early and
late stages of time scale. Aternatively no time trends will

imply a constant relative rate of censoring.

The relation between (1) and (2) is an interesting one and
represents the relationship of problems.of competing risks and the
time dependency of the hazard rates. Due to the methods of
generation of censoring times we do not proceed with the study of
method (1) . However by use of differing failure rates we will study
the effects of time dependency. In a descriptive manner we consider
(1) to be a causal situation within which we have a fixed set for
a cause of death. Using the example given in (1) a good analysis
may indicate a link if it exists between a prognostic variable
and a particular cause of death. In the example (2) however we
are describing the failure rate as a form of a function of time.
This function of time however need not be of a continuous form as
described in the example given in (2). In fact the description
of (1) and (2) and their examples can be exchanged at times in the
language of the other, with (2) being slightly more flexible. We

can describe cause of death in (1) in terms of time dependency of

(2)/
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(2) by letting time dependency be a parametric function of the type
failure. An example is the effect of old age or survival distribu-
tions. For reasons of consistency of the conclusions one may use

an approach by which deaths suspected of old age are dealth with as
censored, or alternatively define a functional form of the old

age and incorporate this function into the relative risk as a diagno-
stic check of the relative risk. As we pointed out in this

section we will concentrate on the simulation of time dependent type,
and later in Chapters 7 and 8 we will consider introduction of

types (1) and (2) in appropriate application with various functional

forms of time dependency.

Finally in this section we discuss some of the points
regarding Censoring times. A purpose of this study is to evaluate
the power of different tests according to their level of censoring.

An analytical assessment is impossible, thus we require some criterion.
Such a criterion must be general enough to be relevant to real life
practice and thus easy to draw relevant conclusions from. In the
next section we will discuss such a criterion. However on the point
of censoring the accrual period and follow-up period both can be
thought of as some form of fixed variables and thus we can generate
different levels of censoring according to the relationship between

them.

As an alternative to the above we can fix the level of
censorings. Thus a 10% censoring in a sample of 50 implies that

the interim time is somewhere between (a + t45) and (a + i)

45 46 46

see figure (5.3.3). Again since we are only considering a fixed

percentage/



percentage value for the level of censoring at interim analysis, in

case of ties being present, the exact value of I may be adjusted by
a uniform distvibution between 45th and 46th survival times. All
accrual time plus survival times after this point in time are

censored.

The procedure is thus fixed by a set of covariates,the
percentage of censoring, a fixed value of hazard rate and a fixed
value of accrual period for the sample . It is important to note
that the value of hazards must be fixed so that reasonable survival
times are produced. Similarly the wvalue of accrual period also
has to be adjusted so that a realistic sample is generated. For
the following simulations we fix the base line hazard at a constant
value of Exp(-=5) = 0.00674, with an accrual period of 50 units
(which may be considered as months). For. each single simulation
level of the above values we repeat the simulations 300 times.
this value of 300 is set to be fixed for all simulations presented

in this study.

5.4 Criteria for the Comparison of the methods of analysis.

A widely held view among statisticians involved with the

design of clinical trials is that, the sample size and power assess-

ment are the most crucial factors in proceeding with a scientificalily

sound trial. This scientific stand is in practice often confronted
with management constraints. that eventually lead to a form of

compromise in the design of trial.

In/
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In the introduction we mentioned some of the drawbacks and
difficulties in the analysis of data with small samples in the
presence of a number of covariate effects and.a process of time
dependency . We termed such effects in general to be interrelations.
Later we will analyse real clinical trial data with an exploratory
emphasis and use of such interrelations. In the later chapters we
we will discuss functional. forms of time dependency. We will now
deal with small sample properties of the Cox's proportional hazard
models. The main aim is to establish a criterion for a comparative
studv of small sample sizes, under trial design constraints. The
factors that we have taken into account in the generation of the
survival samples have been chosen with a particular emphasis on
crucial design factors in a realistic clinical trial. These factors
are accrual period, censoring, sample size and interim analysis
time. In the process of the generations we haye constantly adopted
a generating procedure that we have considered useful for a range of
applications in the later chapters. However a more detailed theoret-
ical study based on asymptomatic properties can take a route different
from the one we have taken. Areas which may pose interesting
directions are situations of competing risk generations and stratified
analysis with varying accrual periods. It seems that study of small
sample properties of methods as opposed to a more theoretical study
of the asymptomatic properties of the method of analysis is a useful
approach in a better understanding of the scientific design constraints.
S.D. Silvey (1975) discusses in detail -:small sampie properties of
statistical tests with simple hypothesis (only one estimatcr) and
composite hypothesis (with more than one estimator or nuisance
parameters) . Such properties are related to a function of

different



different errors that take part in any statistical hypothesis,
namely, Type I error and Type II error, represented by Ea (false
positive) and ER (false negative) respectively. ( Although a

and B are often denoted in this context from now we refer to them
as Ea and ER to avoid confusion with B covariates).

In this work we are dealing with survival data, however these
definitions can be generalised to all statistical tests. In fact
in a clinical trial setting another branch of tests are used that
are based on a simple proportion and at times this simple proportion

can provide all the necessary information regarding a new treatment.

The tests based on time to failure are playing an increasing
role. Such tests are based usually on producing some form of approxi-
mation to the probability distribution of failure times or life tables.
In the chapters 2 and 3 we made the necessary distinction between the
distribution free‘tests and parametric approaches that are related
to life tables and discussed their properties. In the evaluation of

the sample size however at start of treatment, some form of parametric

assumption must be made. The most common is to assume an exponentially

distributed survival time, with the proportion of survivors approxi-
mated by

s %
S(t) = e b

For N patients with the mean survival time M, and the hazard estimated
by M_1, which is asymptotically L e N {l,kz / N). These results are
analogous to the results of the Chapter 2 on the discussion of the
exponential distribution. Much of the early works in efficiency
studies were based on the study of the asymptotic properties of the
proportional hazards model and the exponential approximation. Such

comparisons/
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comparisons are useful in practice due to conflicting benefits of the
methods. For example, although the exponential analysis is more
efficient given that the sample is generated from an exponential
distribution, the proporticnal hazard model has a far better robustness
property, when the data is not exponentially distributed. Various
authors have discussed asymptotic properties of the Cox's approach.
Kalbfleish (1974) discusses the asymptotic efficiency for a single
covariate model. Efron (1977) discusses conditions for full asympt-
otic efficiency, Kay (1979) provides a comparison of two covariate
models with the exponential and Kalbfleish and Macintosh (1977) expand
the results to time dependent situtation. The results indicated that
for covariates not dependent on time,the estimations based on ranks
is fully efficient for B = 0 and has good properties for B $ 0.

For the case of time-dependent covariates the asymptotic properties
are related to the ratio of the hazard rates. From a different
position properties of the proportional hazard models have been
studied in relation to the logrank test. (Crowley (1974) and

Tarone and Ware (1979).) It is shown that asymptotically the Cox's
method can lead to the logrank test. Lustbar (1980) derives the
Wilcoxon test as a special case of Cox's model with a time dependent
covariate. It is shown that the two fully distribution-free tests

in fact differ only in their choice of weights as functions of the
number of cases at risk. A more detailed discussion of those tests

was given in Chapters 2 & 3.

Although the above studies are useful in allowing some form
of comparison between the methods, they do not allow comparisons for
differing sample sizes, censoring rates and censoring methods. The

point/
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[*=
point is made by Oaks (1981), that in small sample studies the

expectations may be different and preculiarities may be present.

In the study of the proportional hazard models and the
parametric models, two tests have been used in general. One is the
maximum likelihood estimation with asymptotic normality assumption and
the other is the likelihood ratio test. These results are given in
more detail fior parametric methods in Chapter 3 and for proportional

hazards in Chapter 4.

It seems proper now to follow the study of small sample
properties in the following directions:
(1) Study more than 1 covariate with constant hazards.
(2) Study non-constant hazards.

(3) Study non-proportional hazards.

In the first instance we study the different methods on
exponentially generated samples with two covariates, firstly, as a
matter of comparing relative power of the small samples and secondly
as an expansion of the 1 covariate study. As we mentioned earlier
two types of error are of interest. Now we develop these definitions
so that they may be used as a criterion for the comparisons. Type I

error represented by E, is under the control of statistician at the

end of study and type II error, EB is dependent on sample size and
the value of the covariate. The hypothesis of special interest for
all practical reasons is that of 32 = 0. The power of this test

and B over the.different

is then noted for the varing levels of 8 5

1
simulations. Another hypothesis we consider is for a composite test

of { 81, 82]. The main purpose for this test is a theoretical one and

may/
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may be useful in exploratory stepwise regression techniques. The
theoretical basis of this point will be made clear later. The rate
of acceptance of the null hypothesis as the actual 31 & 32 values
differ from zero will give a measure of type II error. Namely it is
a function of the proportion of times that we may wrongly accept the
null hypothesis when it is false. At values of BT& 32 fixed at zero
however, the same proportion is a function of the type I error which
has the proportion of times we wrongly reject the null hypothesis when
it is true. The last statement in computational terms may be
represented by an equivalent rephrasing in which value of 81 is fixed

and value of B, is set to B8 and we test the null hypothesis as

at @ ) 02

01

( 61 82) =( B B8 The power of a test is a function of the alter-

01 02)'

native hypothesis and is related to EB , in the following way. The
sample space of an observation in any test may be divided into two
regions. One region is called the acceptance region and if the estimates
fall into this space we accept the null hypothesis. The rest of the
space is called the critical region.
Thus -
Prob(estimator falls within the critical region\HI) = 1-Eé =
Power.
and Prob(estimator falls within the acceptance reghm1\H1} = Eg
similarly for the null hypothesis.
Prob(estimator falls within the critical region\f%ﬂ = Ea
So far we have defined the power and acceptance region in
terms of the null hypothesis and the alternative hypothesis. Going
back to the opening section of this chapter we rephrase by saying that
in general we seek a critical region such that the power is as large

as possible. Then in addition to the control of probability of

Type/
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Type I error at E . Ve shall have minimized the probability of
Type II error at E 8.

These definitions in terms of the survival analysis are

always further complicated by the fact that we are only interested in
testing a subset of the estimators that define our parameter space of
the critical region and thus we always deal with a compositerhypothesis,
as opposed to a simple hypothesis where all the distribution is fully
defined. This point in general is related to the effects of the hazard

functions in the estimation of the relevant covariate estimators.

The above points regarding the composite hypothesis for
small samples is mainly a problem of illustration in here rather than a
theoretical one. Neyman and Pearson (1933) justify a method in
testing a single hypothesis against a simple alternative. That is
if we are choosing between two completely specified distributions
then problems of finding a best critical region is simple and they
provide a solution. Further results of Lehman & Scheffer (1950)
permits us to reduce the above problem of finding a most powerful
region for a composite hypothesis to a familiar problem of finding

a best critical region for a simple hypothesis.

Now we illustrate the problem for a simple case as that
of obtaining an area of overlap of the error distribution of the
estimator and the sample parameter distribution. Figure (5.4.1)

represents the error regions for a one sided test. The null
2
hypothesis relates to the estimator with N(wu., S ) and the alternative

2
is N({ u,, q ) . If we adopt a significance legel of EQL for H. then,

1 0

chances of type I error is Ea ¥ , that we obtain the wrong conclusion

when/
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when Ho is true.

The possibility of obtaining a type II error is E_ , that

B8
is opting for the wrong conclusion when I-I0 is false. The actual
value of the percentage of the rejections is clearly dependent on

the form of the hypothesis that we adopt, and the actual value of
the coefficients associated with the covariates. These will produce

an indication of type I and type II errors. For a single covariate

situation we have.

Conclusion
B= 0 8% 0
Reality g = 0=> HO true 1 - E:u Type I = Eu

B # 0 =>H, false Type II = Bl -~ B, =
Power

- In the above the percantage of rejections are represented by the
number of cases that fall into the second column of the table.
Given that the null hypothesis H0 : B =0 is true, we obtain a
measure of Ea , the observed significance level. Given that
the null hypothesis is false we obtain a measure of the power of

the test, which is a fuction of sample size, censoring percentage

and the magnitude of the coefficients of the covariates.

The final remark on the method of simulations relates to
the allocation of the covariates in each sample generation. As
was remarked earlier the variance covariance matrix of the covariates
plays an important role on the type II error. It is well known that
if different subgroups are numerically divided in an equal manner then
the efficiency is at maximum. Further the covariances between these
values play an important role, in that, depending on the value of

each/



201

each covariate a high correlation can reduce the efficiency.

5.5 Description of parameter range for the trial simulations.

In the generation of the (ZT' Zz} matrix we use the same
random number generator as before. We randomly allocate -1, and
1 values as a dichstomos function to Z1 and z2 for each patient. We
obtain these values by dividing the 0 t¢ 1 range of the uniform
random numbers into appropriate segments. Thus there are 4 sets
of patients in the data with the Z1and zzvalues set to (-1, -1),
(=1, 1), (1,=1) and (1,1).

A well designed trial would allocate. equal numbers of patients
to each arm of the trial. Any other covariate set is not usually
controlled. All other uncontrolled effects due to a large sample size
at times do level out in terms of treatment effects and within each
type approximately equal numbers are usually allocated to each arm of
a trial. The importance of equal subgroups is mainly noticed in the
power of the tests. Tests usually are at their maximum efficiency if

they are composed of equal subgroups.

In the generation of the covariate sets we use a uniform random

number generator. The covariate sample generations however are fixed

so that for a given sample size every simulation is composed of exactly
the same covariate sets. Within the sample set however we intend to
balance the treatment effect so that there is a 50:50 likelihood of
allocations to a particular treatment. For the covariate set a diff-
erent ratio of the two covariate values are used, so that we do not

have a symmetrical relationship between 31 and 32. Thus a particular

set/



set of values of (Bl' sz = (a,b) does not necessarily correspond
to a power efficiency value for (81, 82) = (b,a). The consequence

of this effect is similar to the use of a lower sample size for 81

in comparison with 82

At this point a few remarks are needed regarding the different
possibilities of the generation of the covariate effects. One method
- of generation of the covariate effects would be to allocate a different
17 22 variables at each simulation. Such a method implies

that any power assessment is complicated by the sample covariate variab-

set of 2

ility. An alternative is to fix the 21, 22 variable set for any
required pgcoportion within the covariate categories and treatment
groups. The resultant consequence is that the final results are
conditional on the generated proportions within the corresponding
treatment and covariate groups. Bryson and Johnson (1981) discuss

a method for the generation of the earlier approach and point out
some of the theoretical problems with generation of monotone likelihoods
in such generated samples. However, this problem could be avoided
since it is realistic to add a restriction within generated simulations
so that no subgroup should be generated which contains less than say
10% of the total number of sample size. The rest of the procedure
would then be confined to dividing the uniform random distribution
raage from 0 to 1 into the relevant segments as required. However,

we are restricting ourselves to a fixed covariate set for all
samples and so the above problem does not arise. The method for the
generation of the 40:60 ratio prognostic covariate set, 21, and the

50:50 ratio treatment set , 2 is to divide the uniform random

2!’

number scale to the following categories. We let generations carres-

ponding/
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ponding to uniform random numbers between 0 anc¢ 0.4 to be the

low level of Z1 and values of random numbers greater than 0.4 and

less than 1.0 to correspond to the high level of 2 Further we

1°
subdivide the two parts of the range of the uniform random number

corresponding to high and low levels of Z, into two equal parts. So

1
that within 0 to 0.4 range there is a 50:50 chance of allocation to
high and low levels of 21 and within 0.4 to 1.0 there is a 50:50
chance of allocation to low and high levels of treatment effect. As
an asymptotic property of the sample the ratios of the margninals of

the treatment and covariate indicators will then approach the required

ratios. As we pointed out earlier the major emphasis is on small

203

sample properties and although the above approach may be justified under

certain theoretical conditions, in a simulation of a clinical trial
it is sufficient to condition our results on a generated sample that

conforms fully with the required ratios.

Now we summarise the properties of the generated sample and
the value of each parameter.
The random variable W has the standard extreme value distribution.

In terms of the survival times it is related to it by the function.

Where ¥ 1is the log of survival times. (In the process of derivation

of the above Weiball generating function we have used VY in place of p)

a = 5 giving A = 0.00674 in A = Exp(-a)

8, values range contains (-1, -.5, -.2, =-.1, 0,.1,.2,.5, 1)

1

g, values are (G, .1, .2, .5, 1)

2
p is/
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P is varied from Exp (-.3) to Exp(+.3)
For the censoring patterns we distinguish between accrual times
and the survival times. The survival times are generated by the
above function. The accrual times are uniformly distributed between
0 and 50. The levels of censoring are fixed at 0, 5%, 10% and 30%.
The significance levels are set at 0.05, 0.01, 0.005. The sample
sizes vary at 25, 50, 100. We set the null hypothesis to be

Ho : B = 0 and later

2

Ho : (81,8 ) =(0;0) and vary the values of B, &8

2 1 2

in the region that we mentioned.

The low end of the magnitude of |8 and |B where E1 =g, =0

1‘ 2| 2

The power represents the type I errors. We repeat the simulations
for the one sided alternative hypothesis which is the necessary
condition of some clinical trials. The above range of sample size
and censoring levels form the complete simulated sets. However, if
the results are at times very close to each other we will only comment

on their overlap.

5.6 Discussion of the simulation results.

In the first instance we refer to figures (5.6.1) to
(5.6.6) in which a represeatation of the power efficiency is given
for the null hypothesis of Ho : 32 = 0. Clearly by the figures
we obtain almost parallel lines for the range of the various covariate
values. In fact the main determinant of the efficiency is the value

of the 82 magnitudes. At the B, values equal to zero we obtain a

2

representation of the type I error in all cases, and this value is
- e

consistant over a range of factors. The most striking feature of the

results/
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results of the above null hypothesis is the consistency of power

values of Cox's test regardless of the value of the 81 covariates.
Clearly as we may expect the efficiency of the tests do deviate to
scme extent according to the value of sample size,censoring and the
significance level, however, none of these factors seem to effect the
lack of influence of 81 covariates in the power of treatment effect
tests. This finding is clearly in contrast with a view expressed by
C.L. Chastang (1983) where it is reported that the efficiency of treat-
ment effect is dependent on the value of prognostic effects, even
when it is not included in the model. We will return to this hypothe-
sis of treatment effect later in this chapter when we consider
alternative parametric models in the study of proportional and non-
proportional hazard distributed samples. Now we will consider the

results of the tests of the simple treatment effect hypothesis in more

detail.

At the value of 32 = 1and n = 25, ¢ = 0.05, we have a
separation in censoring levels of almost 7% in power over the range
of B1 values, (Figure 5.6.1). An increase in the sample size to

50 diminishes the separation of the 0% censoring and 30% censoring

(Figure 5.6.2). At 82 = 0 we have a difference of 3% for the range

of B values. At B .5 we have a separation of almost consist-

1 2

and 5% over the range of B1 values.

A point to note is that the decline in the value of power
of tests due to censoring seems to be affected by sample size to some
extent. At the higher sample size of 100 the separation between the
0% censoring and 30% censoring at value of 32 = .5 are almost 4%

(Figure 5.6.3), while the same separation in n = 25 is 7%, Figure (5.6.1)

When/
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When we consider a lower significance level of a« = 0.005, the
separation between values of censoring levels declines so that
at n = 100 and BZ = .5 the 0% censoring and 30% censoring have
a maximum separation of 3%, Figure (5.6.6). The same separation in
power for n = 25, Figure (5.6.4) is 6%. Up until now we have dealt
with simple tests of hypothesis, now we discuss a set of power curves
for the composite test. The following simulations have a slight change
of emphasis. The previous simulations asserted the power of tests for
a practical assessment of the BI & 32 values &n a trial. What follows
ia presented for th=2oretical interest and completeness. Tolley (1978)
discusses @ group of non parametric tests in survival analysis where
a composite test of hypothesis may be of interest. Such tests have
certain computational advantages when dealing with a large data set
and a stepwise variable selection is adopted. The results of
Tolley imply that that large sample distribution of a composite testc
has a chi-squared distribution with q degrees of freedom. The
value of the test statistics is then given by:

% T % T Y% -9
Where there are (r) concomitant variables in the fuller model and
(r-q) in the simpler mocdel. In a more complex hypothesis with

Ho ; CB8= 0 where C is a (g x r) contrast matrix the wvalue of Qq

is then:
. -1 . -1 -1 -1
Qq = U' (0) I (0) ¢* [ eI (0) Cc' ] CI (0) U (0)

where as in the notations of section 4.4 on Cox's method we consider
U(0) as asymptotically normal with zero mean vector, covariance
matrix I(0) and the test statistics;

uU' (@ [ I (0] U (0)

We will next present the results and show that the Cox's method

has /
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has good, predictable small sample properties where 81 and B, are

2
independent. In the simulation again we use a 50:50 allocation of

22 values anda 40:60 allocation of Z1 values. Where Z1 is taken

to be a prognostic effect. One form of trial that has been used

to some extent recently is based on 2 x 2 factorial trials. Such
designs by randomisation will allocate 50:50 ratio to both 21 and 22
indicators. Although the ratio of the simulations in our results

are different from the requirements of a 2 x 2 trial the good properties
of the composite test efficiency may be attributed to the suitability
of the Cox' s method when used for simple tests of 2 x 2 trials.

Thus for more conclusive results in this respect, simple tests based

on a symetric 50:50 proportion of binary variables of Z, and ZZ are

1

needed.

In the comparisons of the small sample properties of what
follows we will use a few terms :hat need an explanation. The term
maximum deviation is used when two power curves that are compared have
a similar pattern and thus we only report the maximum deviation between
the two graphs, since it is the most suitable descriptor . Relative
efficiency is used when two single simulations are compared and is
the difference between them. Finally we use the term balanced in
situations where changes of censoring or sample size does not effect

relative efficiency by a major degree.

Initially we concentrate on the situation of Bi > 0 and

B, > 0 with varying levels of significance of type I error, o, censoring

2
levels and sample size. Later we will look at the situation of B1<0
and finally at non-proportional hazards. In the final part we consider

both/
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both increasing and decreasing non proportionaity with positive and
negative values of 81 . When we discuss efficiency or power of

tests it must be noted that in the interesting situtations we are
dealing with tests that have power less than the full efficdency of 1.
In the figures of power representation often a pattern of converging
power curves appear. Up to a particular value of {81 62} set the
tests deviate from the entity they are estimating. However at
higher values of (81 62) or high sample sizes, the variability due

to factors of interest like censoring and significance levels are not
apparent due to the dominance of the covariate effects. Thus the

efficiency values converge towards the maximum full efficiency of 1.00.

We first consider type I error which relates to the number
of times the null hypothesis was rejected when it is true. Figure (5.6.7)
to (5.6.12) contain such information for the proportional hazard
cases. The generated samples conform to the a level probability
limit of the type I error. Asympototic properties of the type I error
are best summarised in the B8 = 0 &8 = 0. At value of

1 2
8 PR 0 and 82 = 0 we have a balanced configuration of the power
curves in that we note by differing the value of censoring and signifi-
cance level the power variability is small or nill for sample sizes at

25, 50 and 100.

We now consider in this paragraph simulations where 31 = 0.
From the no censoring to a 30% censoring with the sample size of 25 and
the 5% significance level in the range of 82 values the maximum deviat-
ion is a 5% 10Ss. These results in fact complement the earlier

results on the simple tests. Once again at a higher sample size or

the
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the significance level of o = 0.005 the differences diminish.

For the above configuration the likelihood ratio test and
the asymptctic normality give reasonably close efficiency wvalues.
iThe figure (5.6.13) presents these ratios fora = 0.005 at sample size

of 25 at 81 and range of 82 values.,The maximum deviation between the

two tests is 1% and it 1is at 30% censoring. (This.is the only figure
presented since other sample sigzes and a- values do not produce

figures different from the general pattern.)

Up until now we have been considering 31 = 0 values. We now

consider the changing of values of 81 to .1, .2, .5 & 1.0 and repeat

for each corresponding value cf 82. Clearly for 83 >B?, there is a

slightly higher small sample power distributed at ( 33, Bq) against

{ B? i BE) figure (5.6.7) to (5.6.13). This represents a slight

lack of symmetry for the 21 and 22 ratios thus resulting in a higher

relative power for B This imbalance is most noticeable at the

5 *
lower sample sizes and decreases with increasing sample sizes at
50 and 100. In the same figures we have also represented the different
censoring values. As may be expected the value of small sample power
decreases with increasing censoring levels. Although again by an
increase in the sample size the effect of censoring is minimised. In
general a decrease in the significance level also produces a reduction
in power. Now with reference to the above figures we consider the
magnitude of relative efficiency for 81 & 82 values. In general we

note that by an increase in the 8_ values. the efficiency increases for

2

fixed values of 81. On grounds of relative efficiency for a 25 sample

size/
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size with censoring present we note that by an increase of BZ =0
toB2 = .1, the relative efficiency between no-censoring and 30%
censoring deviates from a 11% loss to a stable 4%. This 4% relative

loss of power for censoring is in fact consistantly the same for

higher values of 82, figure (5.6.7).

For the sample size of 50 a value of relative loss of 5%
accurss regularly for most values of 81 and 82 frérﬂ to 1, figgre
(5.6.8) . The sample size of 100 gives a stable 2% loss cf efficiency
with 30% censoring, figure (5.6.9). Thus apart from the 30% censoring
for the sample size of 25 with no covariate effects present, the loss
of efficiency is very reasonable and at worst cases of the sample size

of 25 a 30% censoring produces a relative loss below 10%. This 10% loss

however will be discussed later and is far less for a balanced effect.

A point that may be.madé here is that if we consider 10%
and 5% censoring we obtain stable losses of efficiency throughout simul-
ation even at lower sample sizes. At the significance level of 0.005
there is a maximum efficiency loss of 12% at the sample size of 25,
figure(5.6.10). This value does not stabilise and constantly diminishes
reaching a wvalue of 7% for the higher wvalue of 32. dowever at the
sample size of 50 and the same significance level the loss in
efficiency due to censoring stabilises at 5% for value of 32 >.1
and at 8% for 82 = 0, figure (5.6.11). For the sample size of 100
the loss in efficiency is a regular 4%. Thus once again reasonable
efficiency losses are produced at 30% censoring, figure (5.6.12).
The 5% and 10; censorings even with a significant level of 0.005 prcduces

constantly very low efficiency losses. Once again we note that although

the/
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the 10% loss at 30% censoring is not problematic it is pointed out that
some of this value may be attributed to lack of balance for the covariate

effect.

We can thus summarise that in all sample sizes a reduction
in the wvalues of & reduces the power. In relative terms, the increase
in power of the test due to increase in the sample size however is
greater at low sample sizes, and at low type I error levels. Again
in relative terms the higher censoring ?ffects appear with lower
sample sizes and low value of d. The relative difference due to
sigr.ificance level and censoring effects are thus minimised for
sample size 100, within the range of our simulations. We also note
that the improvement in the power of the tests from sample size of 25 to

50 is greater than the improvement from the sample size of 50 to 100.

As we pointed out earlier an imbalance has been introduced
into the covariate effects. Thus the power of the tests are slightly
different for ( 3:, BE) and {33, B?} values. In other words a

(B 32) value referring to a particular covariate and treatment effect

1
does not refer to a set within which covariate and treatment effects
have been exchanged. The same condition applies to the varying
censoring levels and samp.ie sizes. In the higher censorings and

low sample sizes the effect of the differente in the comparable magni-

tudes of B} and B8 appear more substantial. At the sample size

2
of 50 and 100 the relative effects of censoring diminish substanti-
ally and the resultant loss of power from 0% to 30% censoring

remains the same for ( B*, 83] and ( 83, B?). The lack of symmetry

between the covariates has a resultant power difference of 20% for

the/



the worst case of the sample size 25 at the significance level of
5%. This value diminishes for the sample sizes of 50 to 10% at the
worst case and at 100 to bout 7% for the significance level of 5%.
The relative difference in loss of efficiency for the 30% censoring is
10% for {81; Bz) = (.5, 0) and 6% for {BT 82J = (0., «5) as the
most extreme case for the loss in efficiency. At the sample size of

50 for the same significance level, censoring and ( 81,82) values we

note 5% and 3% relative losses in efficiency.

At the significance level of 0.005 for the worst case at the
25 sample size and 30% censoring, we obtain a 12% loss in efficiency
for the lack of balancé in the worst case. Although at the extreme
worst case the relative loss is the same for the two significance levels
of 0.05 and 0.005, at the latter value the results are more regular
and towards a higher range of magnitude. At the 50 sample size the
results of 0.005 significance level is similar to the 0.05 level
both in terms of the magnitude of the worst case and the regularity of
the losses. At the 100 sample size we note a similar pattern as
above in relation to loss in efficiency due to the 5% and 0.5%

signifieance levels.

For the relative loss in efficiency of the above discussion,
the worst case is the relative loss due to the significance level at
0.005 and 30% censoring giving a 11% loss at 25 sample size. This
value is reduced to 5% and 4% losses for the samples of 50 and 100

respectively.

Referring back to the 20% imbalance of the covariate effect

225
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21 and fully balanced treatment effect Zz, in relative terms at the
30% censoring level the loss in efficiency is more serious for the
unbalanced variable than the balanced variable. In fact the 11%
difference at the sample size of 25 diminishes to a reasonable 4%

loss which is a stable loss for values of significance limit at 0.05

and 0.005. Although we have considered the only reason for the power
differences of the above type 2o be those of the lack of balance in
Z, under small sample properties, other investigations Kay(1979) have

1

presented asymptotic results which are compatible. with our findings.

In this study we also consider the effect of type of test
used. That is the efficiency of the asymptotic normality against
the asymptotic likelihood test. The difference between the tests
again diminishes for the higher sample sizes and is most pronounced for
the sample size of 25. Almost consist%ntly the asymptotic normality
turns out to be the more conservative test and this is true in particu-
lar as 81 and Bz deviate from zero. Censorings. do not produce
a major difference on the relative difference of the asymptotic likeli-
hood and normality. In magnitude the maximum difference is at 6% for
30% censoring and sample size 25 and significance 1level of 0.005.
All other relative variability of power between the two tests are less
than this wvalue. We will return to a comparison of the two tests
under conditions that the proportionality of the hazard assumption is

not. valid, later in this section.

Up until now we have dealt with the generation of exponential
samples in our simulaticns. Most of the results so far are in fact
very closely in line with what may be expected of suca simulations.

Next/
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Next we will consider the generation of Weiball type of distributions.
Initially we generate the samples in such a way so that the assumption
of the proportionality of hazards is not violated. Later we will
generate samples in which there is non-proportionality of the hazard
present. As shown before we will use P to contrel the shape of hazard

rates and for producing non-constant Weiball type hazard rates. Using

o
]

a + ow - Z1B 1 g = Z2 82 ]

P J has been fixed at P = 1 so far. Therefore

The value of 3
all hazard rates have had constant rates for all subgroups. Now we will
vary the value of P and proceed with the generation of samples of varying
sizes that produce proportional hazards of Weiball type with increasing
or decreasing hazard rates. By the definition of the proportional
hazards, such effects should play a nominal role in the estimation of

the B's. This is true mainly due to definition, that 3's are estimated
in terms of relative effects on subgroups. It is however known that

in the estimation of partial likelihood in the treatment of ties and
also the effect of censorings certain assumptions have been introduced.
The results for (P = 1.5) increasing hazard and (P = 0.5) decreasing
hazards are identical when there is no censoring. However with 30%
censoring there was a slight deviation of 1 to 2 samples in 300
generations which is nominal. At P = 0.5, that is decreasing

hazards, with rather high initial failure rate we may notice a

larger number of failure times at zero, therefore the chances of
producing tied observations at the beginning of survival times

is higher and again there is a lower efficiency for these groups.
Altogether all Bsets that were tried, produced very close efficiency
value of order of 3 in 300 generations in the extreme worst cases.

Due to the close similarity of these results we will not produce

any/



any graphical presentations. However, we study two sample generators
one at P = 0.5 (decreasing hazard) and one at P = 1.5 (increasing

hazard) .

Fix o at 0.0001, 31 = Dy = .1 and no censoring n = 25

82

we obtain the following estimators

P = 1.5 p = 0.5
B, = .233 By = .232
B, = .139 B, = .138
var (8,) = .043 var (8,) = .043
var (8, = .032 var (8, = .032
Lik (B, ,B,) = -16.85 Lik (8., B,) = =16.92
Lik (B,, 0) = =-18.53 Lik (8., 0) = =18.59
Lik (0, 8,) = =17.47 Lik ( 0,8, = 17.51

The above results clearly indicate very similar estimates for values
of B. This close resemblance is mainly due to the non-parametric

nature of the method. An interesting question however is related

228

to the study of the effects of the covariates when the actual regress-

ion coefficients are time dependent. This effect can best be
generated by allowing different subgroups of the patients to have

different hazard rates.

A

In the study of the effects of non-proportionality of

the hazards we continue with 2 covariate generating models. The effect

of non proportionality can thus be more complicated in that it effects

both 31 &B_ at similar times, simultaneously.We use the same model

2

as before however the value of P 1is dependent on value of Z.

Hence
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The value of P = 1 for all samples reduces to exponential
decomposition of the hazard rates. The value of P 3 1 is
however important in that it indicates a measure of deviation from

proportionality.

We repeat the simulation for similar ranges of 81 & Bz
using the same hypothesis with the same sample sizes. This time the
value of asymptotic normality and the asymptotic likelihoods are of

special interest.

In the above we have assumed that time dependency is acting
equally on the high levels of ZT & zz. This need not be the case in
a more restrictive simulation study. One may allow time dependency
to be an effect of one of the covariates. A usual manner of analysis
is to stratify the data into early and late effects, and thus one
produces two base line hazards for the population. In terms of a
population with one time dependent effect the two strata should produce

contours of the type in figure (5.6.14)in presence of the normality

of their B estimates.

St1 and St2 refer to the two strata for early and late
events when both 31 and32 are greater than zero. Although we have
presented one figure with two different contour sets, it may be
considered as two different figures for each strata when they are
superimposed. For the cases of two time dependent covariates or
a situation where time dependency is latent within the population the
contour generated by our model may be represented as in figure (5.6.15).
We have a continuous time dependent effect influencing covariates in

both/
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both 31 and 32 directions.

For reasons of dimensional symmetry we use a transformation
of P to P* = 1log (P) so that the negative values of P* refer to
decreasing hazards. We therefore use values of P* set to -.3, -.2,

~s13 O il 24 3. At first we consider the effect of

W
(=]

P* on 31 & B Figure (5.6.16) to
(5:6:21) 5

Consistently we see a reduction in the type I error less than the actual
level of significance level a . In relative terms the power decreases
with increasing deviation from the proportionality of hazards. Using
figure (5.6.16) and (5.6.17) we note that the reduction in type I
error is to the reasonable numerical low level of 4% compared to

the nominal 5% significance level, for the maximum deviation from
proportionality at P* = .3 and P* = -,3. Further it is noted that

at 81 = 0 and B2 = 0, there is not a reduction in the relative loss
of power (in terms of the proportional to the non-proportional hazards)
with an increase of the sample size, Figure (5.6.18) and (5.6.20).
Thus indicating that the loss is due to the systematic effect of

time dependency. For the lower values of increasing and decreasing
non-proportionality at P* = -.2, -.1, .1 and .2, the reduction in
efficiency is also within a range of 4%. 1In comparison of the relative
loss of power for the corresponding magnitudes of the increasing and
decreasing hazards once again we note a reduction in type I error

of the increasing non-proportionality compared to those of decreasing

non-proportionality rates. This effect is at 2% for the maximum

difference of P* = ,3 and P* = -.3.

Once/
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Once again we note the asymptotic likelihood and normality
at (81, BZ} = (0 0); which indicates a measure of type I errors. The
relative loss of asymptotic normality to asymptotic likelihood is 2%
at the sample size of 25 with the maximum reduction die to non-proportion-
ality at P* = -.3, Figure (5.6.23). For the sample size of 50,
Figure (5.6.24) this relative deviation of type I error reduces to
just under 1%, which is at a similar level to the relative difference
of type I error for the proportional hazard rates. We thus conclude
that the relative difference in type I error in situations of non-
proportionality of hazards at the sample size of 25 is at a low
value of approximately 2% and the relative loss reduces to those of the

proportional hazard situation as the sample size increases to 50.

We continue with the simulations by letting the 82 value for
treatment effect be at zero and the 31 covariate effects vary over a
range of values .1, .2, .5 and 1.0. We note that the non-proportion-
ality of hazards at the sample size of 25 with significance level at
5% produces a maximum loss of power of 25% with decreasing non-propor-
tionality rate of P* = -.1. This loss is at a reasonable 5% level
for decreasing rates of P* = -.3. An increase of the sample size
to 50 reduces this relative loss for the maximum decreasing rate to
15%. At the sample size of 100 the relative loss of power at P* = -.3
reduces. to a reasonable value which is less than 6% and this value is
stable for a range of 31 values at .1,.2 and .5. We thus state
that decreasing hazards do lead to a loss of power and the magnitude of
this loss at 52 = 0 is dependent to some extent on the values of 81-
This effect of dependence of 31 values on the non-proportionality rates
reduces to nominal levels at 50 and 100 sample sizes. For the sample

size/
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of 25 however, with non-proportionality at a decreasing rate of
P* = -.3 and the covariate B1effect at a high value of 1 the loss in

efficiency is unacceptable.

In terms of increasing hazards again we obtain the same
results of loss of power. However there is less relative loss of
power compared with decreasing deviations from proportionality (negative
value of P*). In considering various sample sizes once again the
same conclusions may be drawn. In fact the magnitude of increasing
hazard rate at P* = .3 produces very stable values of relative loss of
power at less than 6% for the sample size of 50 and lower values for the
sample size of 100. At the sample size of 25, the maximum variability
due to increasing non-proportionality rate is due to P* = .3
and the wvalue of 31 at its maximum 1.0. Sucp an effect in terms of
decreasing rates was noted to be 25% and judged unacceptable but now it
is reduced to 12%. Although the value of sample size at 50 and 100
gives reasonable values of power loss due to non-proportionality of
decreasing and increasing types, extreme caution is needed for sample
size of 25 in presence of decreasing non-proportionality rates and

higher value of covariate effect BT'

Up until now we have considered the effect of 81 values
on power for the different sample sizes, now we continue with a few
words on the relative gain in power by increasing sample sizes.
An increase in sample size of 25 to 50 gives a maximum gain of 14% in
relative efficiency of the proportional hazard rates. Change in sample
size from 50 to 100 gives an increase of less. than 8% in relative power

of proportional hazard rates. Clearly the increase in sample size

plays/
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plays a more significant role for the non-proportional hazard rates.

At the maximum non-proportionality of P* = -.3 an increase of 27% is
obtained at covariate value 81 set to 1. This improvement is important
in the sense that at higher values of 31 the loss of power due to
non-proportionality reduces to an acceptable level. For the sample
size of 50 t0 100 for a similar generation of 61 and 82 values we
obtain a gain of 13% in power. However this is achieved at a point

in which the sample size of 100 with P* = -.3 and 81 = 1 has the

full maximum efficiency at 1.0.

In the study of non-proportionality we observe that Exp(-.3)
= P, produces the best representation of the results for 31 and 52
values and thus we continue with this sample for values of 82 > 0 and

B.< 0, using an analgous one sided alternative hypothesis. Figures

1
(5.6.22) to (5.6.25).

First we deal with maximum likelihood estimator with constant
hazard rates. At the constant hazard rate the relative efficiency is
clearly symmetric about 81 = 0, Figure (5.6.22). The figure (5.6.23)
presents a decreasing hazard rate and there is clearly a lack of
symmetry about 61 = 0. As we showed earlier values of P < 1
produced a larger level of variability thar P > 1 hazard rates and
now we note that there is a lack of symmetry about 81 = 0. The
following figure can describe what is happening in terms of converging

or diverging forms of the proportionality of the hazards,
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A A
p>1. 8 >0
P =1.8>0

P<1,82>0

loft)r base line

p>1, 8<0

p=20, 8<0

P <1.8<0

The above figure presents increasing, decreasing and constant Weiball
hazard rates together with positive and negative g wvalues. In the
discussions of figures (5.6.16)to (5.6.21) we presented results in which
for positive values of B, the P > 1 simulations were more stable and
efficient than P < 1 values. Using the above figure we note that

for g8 > 0, P > 1 implies diverging hazards, while P < 1 implies
converging hazards. In the describtion of figures (5.6.22) and(5.6.23)
again the above figure can help, in that for P <1 we note that B8< 0
(diverging hazard) compared to B8 > 0 (converging hazard) produces high
efficiency. That is in either case as may be expected divergence from

the base line hazard produces higher efficiencies.

We once again observe that due to the imbalance of 20% for
the covariate effect, corresponding values of power efficiency of (81,82)
and ( 32, 31)deviate slightly from each other. For the various values

of treatment effect and covariate 81 > 0 we note that there are

By

important losses of power with the magnitude as high as 28% for n = 25.
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In the previous discussions of non-proportionality with
82 = 0 a high efficiency loss in fact presented stable levels of
efficiency, and often stable levels of efficiency for the ranges of
31 & 82 corresponded with low efficiency levels. In here as we pointed
out in the discussion of non-proportionality at sample size of 25
and 82 = 0 extreme caution is needed if ever used in practice.
However there is a pattern emerging from the sample siz e of 25
simulations which represent the relative efficiency in terms of
variability of 31 and 8, and P*, Figure (5.6.23)

The worst region in terms of relative loss of power between
figures (5.6.22) and (5.6.23), is due to the covariate effect values
of 51 between 0 and .2 for 32 values greater than 0.2, and 31
values between 0 and 1 for 52 values less than .2. The losses for

the earlier group ranges with 15% efficiency loss and the latter group

produces efficiency loss of 28%

For the negative values of 31 we observe a pattern is
emerging indicating that for wvalues of'81< -.2, the relative loss in
efficiency in comparison to the proportional hazard samples is dec-
reasing steadily. In fact between 81 values of -.1 and 0 for
each particular level of 52, the difference in efficiency is within

24% , while outside of this range of generations of 81 values the

efficiency is closer to the proportional hazard situation.

Thus we summarise that with the sample size of 25, there
is a loss of symmetry Figure ( 5.6.23). This relative difference for

By < J/
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B 1< 0 and 81 > 0 is restored with an increase in the sample size.

It must. be noted that 81 >0, 82 > 0 with P* > 0 1is not comparable

with 81 < 0 and 82 >0 and P* < 0.

We now proceed with a similar simulation as those of sample
size 25 with the non-proportionality set to P* = =.3. However this
time we increase the sample size to 50 and 100 to study the effect of
deviation from non-proporticnality at higher sample.sizes, Figure (5.6.24)
and (5.6.25). The first point we note is that. there is less asymmetry
about the 31 = 0 axis when the sample size is increased. In the
range of 51 and 32 values we also note that doubling the sample size
from 50 to 100. At values of sample size of 100 and 32 values greater
than zero we obtain a maximum loss 1in efficiency of 7% for this
particular level of non-proportionality, if we confine to positive
values of 31. For the negative values orf 31 the loss in efficiency
is even less when proportionality does not hold. At the sample size
of 50 the relative loss due to non-proporticnality is at 10% compared

to 7% for the sample size of 100.

So far in the discussions of non-proportionality we have only
mentioned the asymptotic likelihoods. As we pointed out the results
from asgmptotic normality follow a very close pattern when we deal with
a proportional hazard situation. This deviation increases with deviat-
ion from proportionality, however remains at minimal levels for all

sample sizes of 50 and 100 generations.

Now we continue with the simulations for cthe non-proportional

case/
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case and use graphical representation on 32 > 0, P = -.3 and repeat

for 81 >0, 31 < 0 and sample sizes 25, 50 and 100 and « set to 5%
and no censoring present.in the data figures (5.6.23) to (5.6.25).
There is a slight indication that asymptotic normality behaves in

a more symnetric manner on the two sides of the 31 axis. The
asymptotic likelihood however is consistently less conservative than

the asymptotic normality test. The relative power difference of

the two tests diminishes with increasing sample size. The actual
magnitude of parameter [Bi] are clearly playing a role in the power

of the tests. Generally the increase in value of |Bi| reduces

the relative power difference of the asymptctic likelihood and normality.
This is partly due to the fact that non-proportionality variability is
reduced by the increase in sample size and partly by the actual covari-

ate effect becoming more dominant and thus producing a reduction in

its variability.

Finally we present the tables (5.6.1), (5.6.2) and (5.6.3)
which give the various values of range of 81 and Bz values used in the

simulations and the corresponding 81 and 82 estimates with their
variar.ce, under the proportional hazard assumptions. Clearly the B8
estimators are very close to the actual B wvalues. There is a

negligible bias present over the range of the simulations for the

given covariate se:, which declines with increase in the sample size.



@1
-.9946
-.4961
-.1987
-.0993

.0004
.1012
.2019
.5051

1.0073

-.9948
-.4962
-.1978
-.0993
-.0004
.1011
.2017
.5049

1.0070

-.9949
-.4965
-.1991
-.0994
-.0004
.1011
.2014
.5049

1.0069

VAR (8.)
.077
.057
.043
.041
.031
.043
.047
.059

.079

.075
.056
.043
.041
.030
.042
.046
.057

.078

.071
.054
.041
.039
.030
.041
.046
.055

.074

B
.0005
.0006
.006
.0007
.0007
.0007
.0007
.0006

.0005

.1008
.1008
.1009
.1009
.1009
.1009
.1008
.1008

.1008

.2010
.2011
.2011
.:2013
.2013
.2012
.2012
.2009

.2006

VAR (62)
.026
.027
.027
.027
.027
.027
.027
.027

.027

.032
.033
.036
.038
.039
.037
.037
.036

.033

.042
.043
.043

.044
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.5 -.9956 .064 .5032 .050
.5 | -.4971 .051 .5035 .051
.5  =.1992 .040 .5038 .051
<5  =.0996 .037 .5038 .052
%5 .0003 .029 .5039 .052
+5 .1010 .037 .5037 .051
«5 .2011 .043 .5034 .050
.5 .5045 .052 .5031 .049
«5 1.0063 .069 .5027 .047
1 -.9962 .054 1.0060 .050
1 -.4978 .047 1.0066 .058
1 -.1994 .038 1.0068 .064
1 -.0997 .033 1.0069 .067
1 -.0002 .029 1.0070 .069
1 .1008 .035 1.0069 .066
1 .2001 .041 1.0067 .062
1 .5043 .050 1.0065 .059
1 1.0059 .057 1.0059 .045

Table (5.6.1) n = 25, no censoring, P* = 0



B
-.9475
-.4981
-.1989
-.0998
-.0003

.1007
.2012
.526

1.0039

-.9975
-.4982
-.1990
-.0997
-.0003
.1006
.2011
.5025

1.0038

-.9979
-.4983
-.1993
-.0999
-.0002
.1005
.2010
.5024

1.0037

1

VAR ( B.)
.033
.025
.021
.019
.015
.019
«021
.027

.034

.033
.025
.020
.019
.014
.019
.N21
.026

.034

.031
.024
.019
.018
.015
.019
.021
.024

.033

B
.0003
.0003
.0002
.0003
.0003
.0002
.0003
.0002

.0002

.1006
.1004
. 1006
.1003
.1002
.1003
. 1004
.1004

.003

.2008
.2009
.2009
.2009
.2008
.2008
.2007
.2007

.2006

VAR (B,)
.015
..016
016
.016
.016

.016
.016

.J16

.016

.017
.018
.021

.021

-.021

.020

.020

.000

.048

.022

.023

.023

.023

.023

.023

.022

.022

.021.
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-.9978
-.4982
-.1992
-%0998
-.0002
.1005
.2011
.5025

1.0037

-.9980
-.4983
-.1993
-.0999
-.0001
-.1005

.2010

.5024

1.0037

Table (5.6.2) n = 50, no censoring,

.027

.023

.019

.018

.014

.018

.020

.024

.029

.023

.021

.018

.016

.013

.017

.019

.023

.025

.5019

.5017

.5017

.5015

.5016

.5017

.5017

.5017

.5018

1.0029

1.0029

1.0030

1.0032

1.0032

1.0031

1.0029

1.0028

1.0027

.026

.026

.026

.025

.025

.026

.027

.027

.024

.027

.030

.032

.033

.031

.030

.028

.025
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gi
-.9989
-.4990
-.1996
-.1001
.0000

.1005

.2008

.5017

1.0019

-.9989

.0001

.1005

.2008

.5017

1.0020

-.9990

-.4991

-.1997

-.1001

.0001

.1005

.2007

.5016

1.0021

VAR {@,)

.018
.015
.013
.012
.011
.011
.012
.016

.019

.018
.015
.012
.012
011
.012
.012
.015

.019

.017
.014
.012
.012
011
.013
.013
,014

.08

B
.0001
.0001
.0001
.0001
.0000
.0001
.0001
.0001

.0002

.1004
.1004
.1004
.1005
.1005
.1004
.1004
.1004

.1004

.2008
.2008
.2007
.2007
.2007
.2007
.2008
.2008

.2009

VAR :@2)
.011
.011
.012
.012
.012

.012

.012
.013
.015
.015

.014

.014
013

.013

.015
.015
.015
.015

.015
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"02

.S

.5

.5

.5

.5

.5

-5

.5

-.9990

-.1998

-.1001

.0001

.1004

.2007

.5017

1.6023

-.9991

-.4995

-.2000

-.1001

.0000

.1004

.2007

.5015

1.0023

.015

.013

.011

.011

.010

.011

.012

.015

.016

.013

.012

011

.010

.010

.011

.012

.013

.015

.5015

.5014

.5014

.5013

.5012

.5013

.5014

.5014

.5015

1.0021

1.0020

1.0019

1.0017

1.0016

1.0017

1.0019

1.0020

1.0022

.018

.017

.017

.016

.016

.016

.017

.018

.018

.014

.016

.019

.019

.019

.018

.017

.017

.016

Table (5.6.3) n = 100, no censoring, P*=0
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Earlier we showed that in the study of the Cox's method the exponential
and Weiball generated samples are very similar in terms of testing
significance of covariates and in fact the interesting situation is
that of effect of non-proportionality of the hazards. Now we will
consider the simple tests of the treatment effect for the various
values of the non-proportional hazard generations. The tests once
again correspond to a similar set of B1 and 52 values, both greater

than zero. In the following generations however we will repeat the

255

simulations and the analysis of the generated sample according to differ-

ent generalised linear models. As we described in chapter 3 the most
commonly used models in this respect are the Weiball and the exponential

models. We will report the simulations initially for the proportional

hazard generations. In the analysis we will consider (a) the fixed

covariate Cox's method, (b) time dependent Cox's method which is more

suitable for the non-proportional situation, (c) stratified Cox's method

(d) Weiball model with the generalised linear model assumption and

finally (e) the exponential model.

The non-proportional generations. are all of the Weiball type.
This is an arbitrary checice in so far as deviation of the exponential
decomposition of the relative risk is concerned. For the purpose of
the analysis we deal only with exponential and Weiball parametric
models. These two models are in practice the most relevant for the
decomposition of the relative risks in survival studies. Due to an
introduction of non-proportionality into the generated samples an
alternative approach based on the non linear models of Weiball type
may be possible. However in this respect the interpretation of the

8 estimates/
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B estimates are not relevant to the aims of the study. In here
a point which must be noticed is the important distinction between the
non-proportionality mentioned in the parametric Weiball models and the
non-proportionality under the semi-parametric constraint of the Cox's
method. In the Weiball model the problem is essentially specification
of the wrong model in the presence of time dependency, which is similar
to that of specifying the Cox's proportional hazard model without time

dependency.

A further point that requires some attention 1is related to
the results of the previous study of Bz efficiency in the presence of 31.
We assumed there is no correlation between BT and 82 and thus there was
no confounding effects present. It was generally clear that the
value of 31 does not effect the power of tests for 82. We will now
repeat the same values of B1 and 82 and analyse the samples with the
above mentioned models. Once again there is a distinction in that
absence of confounding between 81 and 82 entails a constant relative
power for the estimation of treatment effects. For the time dependent

situation however any loss of power is essentially attributed to the use

of wrong models.

In general we will ignore the exponential model in our discuss-
ions, it is presented for iilustration in the figures and later we will
make a few comments on the inferiority of the exponential model. In
all of what follows we take a significance level of 0.05 and no
censoring situations. Initi#ally we consider the sample size of 25,
figure(5.6.26) . At 82 set to zero there is clear agreement between all
the models at power levels around 0.05. This value is constant and does

not/
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not change with incfeasing values of 81 from 0 to 1. Next we consider
values of 82 greater than zero. We note that with the proportional
hazard generations consistantly, the parametric model, Weiball, has more
power than the other models. The worst model (ignoring exponential)
when the samples have proportional hazards is the Cox's non-proportional
hazard model. The other models Cox' proportional hazards and the
stratified Cox's model both have power properties between the Weiball
and the non-proportional Cox and this is true for all values of B1 and

82 simulations.

The difference between the power of Cox's non-proportional
hazard and the Weiball proportional hazard is about 5%. near 81 =0
and about 9% near 81 = 1, when 82 is equal to 0.2 for both. The
difference increases with increasing values of 82 so that at 82 =1
with values near B,I = 0, the difference is 12% and at 82 = 1 it is
13%. There is clearly a lack of consistency in the power efficiency of
some of the models, in so far as values of 31 are concerned. The more
superior models namely Cox's proportional hazards and the Weiball in
fact consistantly produce the same power value for a given 82 regardless
of values of 51. The difference in power for any given value of 82
in fact for either of Cox's proportional hazard or Weiball does not

vary by more than 3% over the range of 81 values. For the less

appropriate models, the Cox's non-proportional hazard, we note a

slight declining trend at n = 25,with increasing 31 values. As an
example at 32 = 5 and 51 = 0 the power is 69% and the value declines to
63% when B1 = 1.

The stratified Cox's model also produced consistantly similar

values/
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"values of power for the test of 52 regardless of 81, although there
is a slight loss ¢f power compared to the Cox's unstratified model.

The difference betweer: their power value is almost consistantly 4%

Next we consider the sample size of 25, significance level 0.05,
the increasing non-proportionality at P* =0.3 and the decreasing non-
proportionality at P* = -=.3. Generally the power values of the P*>(0
are slightly superior to similar values of P*< 0. This is mainly due
to the convergence or the divergence of the hazard rates for the given
range of 31 and B, values.

2

First we deal with P* = +.3, figqure (5.6.27). At 82 = 0 the
power of all tests and all models 1is once again very close {0 the value
of the significance level 0.05. In fact there is very little to
separate the power of tests according to type of the model or the range
31 values. For values of 32 > 0 once again there is a slight difference
between the power of tests according to the type of the model. Consis-
tantly the exponential is the worst model in the analysis of non-propor-
tionality. The best model for such samples is the Cox's non-propor-
tional hazard model. The stratified Cox's model also produces relative-
ly superior power ‘alues compared to the Weiball or the Cox's proportion=-
al hazard models. The non-proportional hazard model produces very
consistant power values for 52 regardless of 81 values. This point 1is
in fact also true of the stratified models of Cox. The two less
powerful tests in the analysis of non-proportional samples are the
proportional hazard Cox and the propcrtional hazard Weiball. At the
value of 32 = .2 we note that the value of 81 does not effect the power

of any of the tests and the maximum difference for the ranges of 8T
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value is 3%.

There is a lack of consistancf in the power of 81 tests as the
magnitude of 82 increases. This pattern is not present for the
correctly specified models namely Cox's non-proportional hazard and
the stratified Cox's model. With the proportional hazard model Cox
and Weiball however we note a decline in the efficiency of the tests.
The decline in efficiency for the 82 =.1 over the range of 61 from
0 to 1 is about 9% if a proportional hazard .model is used. Before we
finish this point however, we must remark that this pattern is present
at this magnitude only at the relatively low sample size of 25. The
value of P* = -.3 figure(5.6.28), produces non-proportionality which
implies generally a higher loss of power compared to P* = ,3. At the
value of 32 = 0, the power is at about 0.05 for all tests and all values

of 31. However there is a slightly higher variability over the range

of B1 values for the different models compared to the situation of

On increasing values of 32 there is a general increase in the
overall power of tests, which indicates that for all models, wvalues of
B, is the major factor influencing power. The pattern is similar to
P* > 0, indieating that non-proportional hazard Cox's model and the
stratified Cox's method are the superior models. This once again
indicates that the correct specification of model implies a general
constant powcr for the 82 values regardless of 81 values. The
worst situation occurs for the Weiball and the Cox's proportionak
hazard model in the P* = -.3. There is once again a slight indicat-

ion that increasing values of 81 may influence the power, which is to

some/
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some extent due to a low sample size and partly due to lack of

balance due to non-proporticnality.

By an increase of sample size to 50, figure (5.6.29) to
(5.6.31) ard to 100, figures (5.6.32) to (5.6.34) a similar pattern as
before is repeated. However the differences. between the appropriately
fitted models and the unsuitable models in either of proportional and
non-proportional hazard situations decline. Under the proportionality
of hazards, Weiball, is in fact the most suitable model and produces the
highest power of the tests. (It must be noted however that the gener-
ation are also of proportional hazard of Weiball type). Cox's
propartional hazard is also suitable in that it is not influenced by
varying values of 81. The two relatively unsuitable models are
stratified Cox and the time dependent Cox, although their loss of
efficiency is relatively small. In the analysis of the generation of
non-proportional hazard type both Weiball and proportional hazard Cox

decline in nower.

As we pointed out earlier, clearly the exponential model is the
least suitable model and we have included the model purely for reference

in the graphs.

In conclusion, the stratified Cox's model and the time dependent
Cox's model are both suitable for the analysis of non-proportional
generations. The value of covariate effect 81 in this respect does not
vary the power of the test. As may be expected the power of the test
is purely dependent on the magnitude of the treatment effect. In the
situation of proportional hazards both Weiball and Cox's proportional

hazard/
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hazard have good power properties. Once again the power is dependent
on the magnitude of the treatment effect and is not influenced by the
covariate effects. This is in opposition with the findings of a similar
study in situations of proportional hazards where unreasonable loss of
power is detected due to the magnitude of the covariate effect (C.L.
chastong 1983). In our study specification of wrong models does imply
a loss of power which,with the small sample size of 25 can beccme

unreasonably dependent on the magnitude of the covariate =ffect.

For all practical reasons the semi non parametric methods

provide a robust constr uct for the analysis of the data.
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CHAPTER 6

ANALYSIS OF THE OLD EDINBURGH DATA

In this chapter we proceed with the analysis of data from
a clinical trial. The purpose of this chapter 1is to illustrate some
of the results of the previous sections, using the proportional hazards
model. Since the analysis of the breast cancer trial data is the main
part of the discussion, we will begin this chapter with a history of the
treatment of the disease. In the later sections a general overview of
the subject will be presented. Then our data is described and the
procedures which were adopted to collect it will be presented. Finally
we analyse the data using the general methods with a single eveatof

interest and multiple coefficient models with tests of interactions.

In the present chapter we only consider time independent

covariates, however in chapter 7 we will deal with time dependency

and multivariate risks.

6.1 Randomised Trials in early breast cancer.

Breast cancer 1is the most common form of cancer among women
in the Western Hemisphere. Despite this, there is no general agreem-
ment as to the best treatment of an early case. This disagreement is

related/



related to both types of surgery and the value of radiotherapy.
Recently various forms of post operative drug treatments have also

added a new dimension to the decision making efforts.

Breast cancer is one of the few malignant diseases in which
there are well documented data on long term survivals in untreated
patients in existence. The earliest efforts for the purpose of the
treatment of the disease took place some 80 years ago. However
later, during the 1950's, epidemiologists gathered the first empress-
ive arguments against the use of the established treatment of the
time which was radical surgery. It seemed that treatment did not
cure the patients in terms of their long run survival or proportion of

the development of metastatic disease.

Following the above developments many studies were carried out
to assess a range of different treatments which consisted mainly of loco-
regional treatment by various forms of surgery and radiotherapy. Sub-
sequently some ovarian ablation by oopherectomy or by irradiation has
also been used. None of these treatments, however, produce a major
improvement in terms of over all survival. Much of this lack of success
in treatment had been ascribed to the fact that patients with the
possibility of developing metastatic disease are not influenced by
the loco-regional treatments and the development of the metastatic

disease has not been attacked by the treatment.

At present there are new trials taking place in which surgery
is followed up by chemotherapy. The value of such drug treatments

occurs/
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occurs by not only considering the benefits in terms of local
progression but in terms of systemic general progression of the
disease. Some of the methods we study in the next chapter are in
fact appropriate for the proper assessment of the effects for this

form of trial.

Often the evaluation of the treatment of breast cancer is
made difficult by the fact that patients differ considerably in their
individual form of the development of the disease. Various prognostic
factors in the past have been assessed in terms of effects of various
treatments. Some of the indicators that have been given an
importance in the past are, the size of the initial tumour, axillary node
involvement and the menstrual status. In chapter 8 we will deal in more
detail with the important prognostic effects. Generally size of the
tumour is invariably related to survival and this is a result that has
been shown to be true consistﬁhtly. Another strong prognostic
indicator is the extent of axillary node involvement. This can be
measured as a form of index with involved or not involved categories;
or by an index representing extent of the involvement by the number
of nodes examined and the number that were found to be involved.
Age and menstrual status are two factors that are closely related
to each other and ata of less strength in assessing the chance of
survival of a patients due to the disease in comparison with node or

size.

It has often been shown that with increasing age the chance
of survival increases until the menopause. After the menopause the

survival/
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survival rates decline at a slower rate. The effect of the other prog-
nostic factors are also present if we do a separate stratified analysis

of the various age categories.

6.2 Description of the data.

The objective of this trial has been to assess the pattern
of survival rates for a group of patients with the invasive carcinoma
of the breast, who were treated in a clinical trial in the South East

of Scotland from 1964 to 1971.

In the protocol, the general criterion for selection was
taken to be, all female patients between the ages 35 - 69 inclusive.
Further it was considered essential that all patients must be suitable
for treatment by either arms of the trial, so that a reasonable level
of homogeneity of patients is established in terms of prior treatment
status.
The two trial options were:
(1) Radical mastectomy: The breast, the pectoral muscles and the
axillary cortices were removed.
(2) Simple mastectomy plus post-operative radiotherapy: The breast
was removed from the fascia overlying pectoralia major via an
elliptical oblique incision. This included the nipple and the areola.
Post operative radiotherapy was given by a 2 Mer vander Graff generator.
The axilla and the supraclaricular fossa were irradicated using parallel
semi-opposed fields to 4250 rad. maximum dose in 10 factions in 4
weeks. The chest wall and the internal mammary nodes were irradiat-

ed/
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by parallel tangential fields to 4500 rad. in fractions in 4 weeks.

All patients were categorised into stage 1,2 and 3 patients
according to the then aurrentInternational Staging Systems based on
TNM, (codes for Tumour size, Nove involvement and Malignancy status
respectively) . [n chapter 8 we consider the development of the

TNM staging in greater detail.

Thus the stage I patients were composed of patients with
tumours of size 5 cm or less in the maximum diameter, Skin fixation
absent or incomplete, nipple may be retracted or pagets disease present,
pectoral muscle fixation absent, chest wall fixation absent, no homo-

ateral axillary nodes palpable and no distant metastases prasent.

Stage II patients had primary tumours as in Stage I but
also include homolateral axillary nodes palpable, movable and not

fixed to one another.

Further certain members of Stage III were also defined as
elligible to take part in the study. Such cases may have tumour of
any size, skin fixation complete or ulceration not exceeding 3 cm
in diameter, peau d'orange present in tumour area only, pectoral
muscle fixation complete or incomplete. Stage III patients which
were excluded were cases with skin involvement wide of tumour or
ulceration greater than 3 cm, peau d'orange wide of tumour, chest
wall fixation present, homolateral axillary nodes fixed to each other
or to adjacent structures, oedema of the arm, homolateral supra-

clavicular/
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clavicular or infraclavicular nodes movable or fixed. All Stage
IV patiants were excluded. These are in fact patients with distant

metastasis.

Apart from the above, certain other patients were excluded
from the trial:-
(a) Previous treatment for carcinoma of the breast.
(b) Bilateral breast carcinoma
(c) Any other malignancy.
(d) Breast carcinoma having arisen during or presenting in association
with pregnancy or lactation.
(e) Previous bilateral ovariectomy cr pelvic irradiation
(f) Peripheral vascular disease of the upper limb.
(g) Certain tumours in axillary tail unsuitable for treatment by radio-

therapy because of position.

Patients with advanced disease are usually subjected to high
risks under operation. On ethical grounds this entails the exclusion
of all such patients from the arms of the trial. For scientific
reasons a few conditions in this respect are of importance. Advanced
patients have often short survival times due to external factors and thus
their distribution can mask the treatment survival patterns. The
number of such patients is often small and an unbalanced distribution of
these patients can make the treatment comparisons contrcoversial. There-
fore in order to obtain more uniform groups of patients for the final

comparisons it is reasonable to exclude the advanced patients.

All/
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All elligible patients were further stratified according to
age and stage of the disease. Such criteria were taken to be the
minimum data necessary for a random allocation of patients into the
trial. Clinical stages form 3 strata (a) stage I, (b) stage II and
(c) stage III. Age 1is also categorised into three strata, (a) 35-44,

(b) 45-59 and (c) 60 - 69.

A randomisation office was set up and on receipt of name,
age and the stage of the disease at the initial examination from a
peripheral hospital, the units concerned were informed of the treatment

by telephone and by writing.

The benefits of a stratified allocation of treatments can
be maximised by an accurate assessment of the categories. Age seems
not to be a major problem since it is a single measurement in a
continuous scale. However stage is a Eollection of various infor-

mations based on T, size ard N, node staging.

The M staging, presence of metastatic disease in this trial
reflects only a group of inelligible patients and it is important that
assessment of presence or absence of metastatic disease is very
accurate. In order to reduce the chances of including cases with
skeletal metastasis, it was stated in the protocol that X=-rays of
chest and pelvis should be taken in all the cases included in the
trial. It stated further that if possible this should be dcne by

the surgical unit and films must be sent with the patients.

The/



The total group of patients who were randomised by this
procedure included approximately 50% of patients found at the time of
operation to have benign breast disease. These patients were excluded
from the trial for all purposes. As we will point out later, this
procedure resulted in the allocation of unequal numbers of patients for
each comparable strata of the treatment arm. However the final imbal-
ance in terms of the number of the malignant patients is not of practi-

cal importance.

6.3 Recording of Information.

A general procedure was adopted so that information on the
patients could be standardised and so processed by a computer. However
it was noted in the last review of the data performed in 1981 that
certain concepts and categories defined by the protocol were not in
accord with more recent practice. Most of these changes did not
create a major problem of interpretation. The major source of
inconsistency among the changing definitions seemed to be concepts
related to the recurrence of the disease. In fact in the original
protocol thers was no mention of the définition of recurrence of the
disease, although in the data forms space was allocated to recording

of such information.

Basically there were 4 standard forms available for processing
Form 1 - the Initial Examination form, Figure (6.3.1)
Form 2 - The Primary Treatment form , Figure (6.3.2)
Form 3 - The Anniversary Record form, Figure (6.3.3)

Form 4 - The Pathology Report form, Figure (6.3.4)
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INITIAL EXAMINATION [A]
Serial Number | [ 1
SURNAME
GIVEN NAMES
ADDRESS
COUNTY
UNIT SURGEON
MARITAL STATE — Enter M or S in box j
DATE OF BIRTH =~ Enter day 01 to 31, month 01 to 12, Doy | Month | Year
and last two digits of year. I | I
(AGE:~ )
MENSTRUAL STATE
Premencpausal ~ enter ]
Menopausal —  enter 2 I
Post-menopausal — enter 3
AGE AT MENOPAUSE (years last birthday) 11
~ HISTORY AND CLINICAL FINDINGS ‘ | ;
, z . Day Month Year
DATE FIRST SYMPTOM OR SIGN NOTICED 4] I I
PRIMARY TUMOUR
SIDE = EnlerRiorl. ]
SITE .
Medial half only - enter |
Lateral half only - enter 2 I
Central - enter 3
- Both halves - enter 4 :
Whole breast - enter 5 \
Unknown or other - enter 6
SIZE - greatest diameter in cm. ::
TMN CATEGORIES
T — enter appropricte number I :I
N — enter appropriate number L.t
CLINICAL STAGE -~ Enter appropriate number l
If tumour is STAGE IlI: ,
(a) State SKIN INVOLVEMENT (T1, 2 or 3) : -
(b) State PECTORAL MUSCLE INVOLVEMENT [
' (T1 or 3) |
SELECTED TREATMENT OPTION _
Enter oppropriate ~ode — R1, R2, 51 or 52 :D




FORM 2

PRIMARY TREATMENT

Serial Number

SURNAME

GIVEN NAMES

ADDRESS

.
4

280

" PRIMARY TREATMENT

Date of first treatment

Day

Month

Year

SURGERY (enter 0 if NO and 1if YES for each item below)

Simple mastectomy

Node or nodes removed

Part of pectoral fascia removed

Part of pectoral muscle remeved

1w m
Radical mastectory

Closure without skin graft

Closure with skin graff.

DAYS IM HOSPITAL

RADIOTHERAPY -~ enter 0if NO, 1if YES

Min. Dose (enter rads) -
Max. Dose (enter rads)

Time (weeks)

SUPPLEMENTARY TREATMENT

If none — enter 0
If ovariectomy ~ enter |
|f ovarian radiation enter 2

If ovarian radiation

enter 1

|

Completed

Incomplete — enter-2

)
}

| :[ JU0 0ooh

i




FORM 3
i i e . 281
AMNIVERSARY RECORD Serial Number |
SURNAME
GIVEN NAMES
ADDRESS
Anniversary year I
LLATE COMPLICATIONS )
Enter 0 if NO, ( Oedema of arm
3 1if YES ( Limitation of shoulder movement
in each case ( Other late complications
Specify
LOCAL RECURRENCE Wonth | Yeor

Date of first evidence of local recurrence (if in this anniversary year)

Enter 0 if NO, ( SITE 01 Chest wall
1if YES (~ 02Axilla
for each item ( 03 Supraclavicular fossa
( 04 Internal mammary node

Enter number (above) of first site of recurrence if it occurred in this anniversary year.
(If more than one site observed simulianeously enter 05.) Otherwise enter 00,

DISTANT METASTASIS

Date of first evidence of distant metastasis (if in this anniversary year)
Enter 0 if NO, ( SITE 06 Skeleton
1if YES , i 07 Lung
for each item ( 08 Pleural effusion
( 09 Other
Specify

Enter number (above) of first site of recurrence if it occurred in this anniversary year.
(If more than one site observed simultaneously enter 10.) Otherwise enter 00,

SECONDARY TREATMENT (commenced in this anniversary year)

Surgical excision of metastases

Radiotherapy

Hormone therapy (cestrogens, androgens or steroids)

Endocrine surgery (cophorectomy, adreaalectomy, hypophysectomy)
Cancer chemotherapy

Enter 0 if NO,
1if YES

for each item

— e, — ———

Other
Specify
DEATH during this anniversary year (Enter 0 if NO, 1 if YES)
CAUSE OF DEATH If YES: Date of deatn
If carcinoma of breast “enter 1 )
|f other cause but recurrence of breast enter 2 )
carcinoma present )
|f other cause but no evidence of recurrence enter 3 )
)

of breast ccrcinoma

'f other cause was:

Complication of primary treatment enter 1 )

Complication of secondary treatment enter 2 )

Other primery ncoplasm enter 3 )

Other intercurrent condition enter 4 )
Specify .

(1f due primarily to carcinoma of breast enter 0.)

Year

ol

Month

Year




FORM 4

282
“ATHOLOGY
Serial Number
SURNAME
GIVEN NAMES
ADDRESS
-ABORATORY
PRIMARY TUMOUR
Carcinoma -0
Sarcoma; specify -1
Non Malignant - D
jize - greatest diameter in cm.
* N.S. = XX
Jescriptive
Scirrhous -0 Paget's -6
Comedo -1 - Other; specify -7
Papillary -2 More than one -8
Medullary -3 * N.S. - X
Mucoid -4 < N.A, -Y
Squamous -5

Jifferentiation

Well Ditferentiated -0

Moderately Differentiated -1

Pocrly Differenticted -2

Anaplastic -3

N.S. - X

N.A. -Y
ell Type

Plesmorphic =0
Large Cell -1
Small Cell -2
Spheroidal -3

Duct Cell -4
N.S. - X
N.A. =Y
lucts
No intraduct tumour noted -0
Intraduct tumour present -1
Intreduet tumour alone =2
N.S. = X

N.A, -Y
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Form 1 provides the necessary informaticn used by the
surgeons to make the initial decisions regarding eligibility and the
stratification of the patients. On this form all the information re-
garding staging is placed. Also site of the disease is recorded.
at the end of this form the treatment that is allocated is recorded.
The treatment categories R1, R2, S1, S2 include a random division of both
the radical mastectomy group and the simple mastectomy plus radiotherapy
group into subgroups. At the time of trial design, many of the
currently available statistical techniques were unknown, and the
initial intention for the design of these subgroups was to allow some
crude estimation of the effect of randomisation. These subgroups are

ignored in this thesis.

Form 2, primary treatment form: This form records the basic
data necessary to categorise patients on the treatments administered and
also allows possibility of checking any violations from the allocated
treatments of the protocol. It 1is important to stress that although
this trial was initiated at an early time with respect ro randomosed
trials, the concept of standardised treatment is clear and the inform-
ation that was collected for assessing the diversity in terms of

surgery and radiotherapy indicates good conformity with the protocol.

Form 3, Anniversary Record; all follow-up information was
envisaged to be recorded on this form. Initially the major concern on
the follow-up information in the protocol was that of devising a
procedure by which all patients may be seen at a specific follow-up
clinic, However it was requested that on radiotherapy case records

information/
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information on oedema of the arm, limitations of the shoulder movement
chest pain and dyspnea due to post-irradiation pulmonary fibrosis

and post-irradication skin atrophy should be recorded, for the purpose
of a retrospective assessment of their occurrence. On the actual
diagnosis of recurrence of disease it was requested that information
should be provided for site, date of appearance of metastasis and the
subsequent treatment. Finally on the anniversary form the cause and

time of death is also recorded.

Form 4, pathology report form; this form keeps the
information on size of tumour and the number of nodes found to be

involved.

Initially 1099 patients were randomised according %o one
of the two trial options. Of these number 512 were found to have
benign disease and so were withdrawn and so thereafter no data was
collected on them for the purpose of the trial. The remaining 587
who had histological proof of carcinoma, were formed of 273 patients
treated by simple mastectomy and X-ray therapy and 288 patients

treated by radical surgery and 26 ineligibles.

In an initial analysis of the data, 87 cases who had breast
cancer were withdrawn for reasons of violations of the protocol. Such
violations included - case not belonging to proposed protocol population,
case having ineligible form of malignancy and protocol violation due
to inappropriate treatment. Decisions in regard to trial violation
were made by a trial committee and it was decided to exclude all such
cases from the final analysis. However in a review analysis of this

data/
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data some of the follow-up concepts were altered and the number of
eligible patients for analysis was increased to 273 for simple mastectomy
and radiotherapy and 288 for radical mastectomy. The main reason for
this increase in the numbers of eligible patients for analysis was

the introduction of a policy of comparison of patients according to

the treatment allocated rather than the treatment performed. Table
(6.3.1) gives details of the relevant reasons for the exclusion or

inclusion of the original deviants and other cases.

Another area that at the time of the review of the
follow=-up data implied slight changes in the form of concepts adopted
was 1in dealing with the assessment of respcnse due to the treatment
following the recurrence of the disease and general concepts such as
local and metastatic disease. For this particular trial it is import-
ant to consider response to the treatment in terms of the delay in
the development of the local disease. Similarly it is of interest to
consider disease free survival and the time to metastatic recurrence.
In terms of times after the recurrence of the diseas2 it is generally
expectad thet the treatment will not =ffect the survival of the patients

a great deal after the detection of metastatic recurrence.

For the general recurrence categories the position of
contralateral disease classification had been reviewed. In the past all
secondary tumours were considered to be a metastatic recurrence, however
with the new review some had been classed as new malignancies. There-
fore it seems important that for future collection of any trial data,
allowance must be made for the possibility of changing definitions.

It seems that in general all categorisation relating to time such as

response/
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response or a duration of an interval, will eventually be indexed

in more detail in terms of length of duration, extent and form. It
may well be the case that metastatic disease will eventually be looked
at in terms of extent and duration. This is going to become more
common as multiple failure analysis becomes more common. In the past
success or failure of surgical treatment has been assessed mainly by
survival. With the new drug treatments assessment of response to
disease and the detection of recurrence is playing an increasingly

important role.

In the last section the data was described. In so far as
prognostic information is concerned, the data is held on the initial
examination form. Later in this chapter cross tabulations of different
prognostic factors will be presented. It must be noted for some of
the factors with a continuous scale,it may be desirable to categorise
such variables. Age of the patient is such an example by which it is
possible to split the population into different groups and then study

survival distribution for each category.

For the events after treatment that may contribute to the
understanding of the disease treatment process, there are 4 major events
that we consider as important. These are local recurrence, metastatic
recurrence, death and the last follow-up date. Clearly these events
can produce in combination a large number of measurable periods. Using
These periods it may be useful to study time to a particular stage
of the development of the disease or it may be possible to stratify sub-
groups of patients according to some prior event. For example, one
can stratify the population according to time to local disease and

observe/



observe the distribution of time from local disease to death.

Treatments according to option drawn. RMX SMX+XRT
Treatment according to protocol 257 243
Correct treatment minor option modification* 6 14
Randomised therapy deviations.*
Immediate XRT given though not indicated 4 1
Surgery only - diazd before XRT 0 4
Incorrect oophorectomy 7 9
Wrong surgery 14 2
Entered for this analysis. 288 273
Legitimate withdrawals after randomisation

Benign disease 277 235

Ineligible but malgnant 13 13
Total patients randomised 578 521

* A detailed survival study according to malignant withdrawals and
exclusions will deviate from the general course of study. — I n

terms of conclusions they do not effect the overall results.

Table (6.3.1)

287
Total

500

20

16

16

561

512

26

1099
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A general discussion on the methods of construction of the
likelihood functions for a stratified analysis of the data is given
in chapter 7. Figure (6.3.5) represents a possible path for a

progression of disease described in the above paragraph

lLocal disease

‘ itial treatment //' L. .
m —_,II T — Metastatic d:.sease]

Figure (6.3.5)

In the first instance for the analysis of the data we consider cross
tabulations of various categories. Then we study the failure
distribution of the population in terms of survival times. For the
estimation of the important poognostic factors we use Cox's proportional
hazard model later in this chapter. In chapter 7 we consider time
dependency of various prognostic indicators with different functional
foms of time dependency. Using the same data later in chapter 7 we
consider the effect of multiple events present in the time scale with

the use of sem-markov hazard models.

6.4 Initial analysis with cross tabulation tables.

A gcod preliminary study of the data can be performed by
a set of cross tabulations. The value of the Pearson chi-square can
indicate a possible association between the distributions of the two
factors. At this stage we are only trying to assess whether the
data is distributed according to expectations of the previous studies.
Appendix A presents important cross tabulations for the prognostic fact-

ors/
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ors. The data is described by the following factors.

1. Menopausal status; premenocpausal, menopausal, post menopausal.

2. Side of the lexion; right, left.

3. Site of the lesion: Medical half only, lateral half only, central
both halves, whole breast.

4, Size stage: ., T2, T3.

5. Node stage: NO, N1.

6. State stage: S1, S2, S3. (stratifying factor)

7. Skin involvement: not relevant. T1, T2, T3.

8. Pectoral muscle involvement. Not relevant, T1, T3.

9. Treatment option: Radical mastectomy, Simple mastectomy and Radio-
therapy.

10. Disease status: Local & metastatic recurrence, Metastatic recurrence,
Local recurrence, None.

11. State: alive, dead.

Most of the above factors (1 to 6) are related to prognostic state of

the patient. Skin and pectoral muscle involvement refer to extent and

site of early developments of the disease. Disease status and state

fiflally refer to indicators of the progression of the disease at time

of last follow-up. The option which defines the treatment allocated is

also looked at for assessing distribution of the prognostic factors.

The. first tables we will consider are the set (A.1) within
Appendix A. As may be expected the largest number of patients are post
menopausal (395). There are 38 menopausal and 163 pre-menopausal
patients. When we consider the distribution of the 3 categories of
menopausal states against other prognostic factors there are no statis-
tically significant associations (except for age). The most signifi-
cant value is for node status, with X2 = 3,0, 2 d.£f. giving the

probability/
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probability value of 0.22, which is not significant but indicates more
G ; , 2

node palpability with pre menopausal patients. X = 4.9, 4 d.f.and

p = 0.29 is obtained for T stage, indicating smaller tumours for pre

menopausal patients and larger tumours for post menopausal patients.

There are 284 right side main lesions and 276 left side lesions.

Side of the lesion is not an important factor in defining a patient even
when we consider site of the main lesion categories. The most signifi-
cant association with side is for T stage with x2 = 3.3, 2 d.£. and

p = 0.18, which is not significant. Site of the lesion has been
categorised in a way that basically indicates the size of the tumour.
There are 286 patients with their lateral half involved, 183 with medial
half involved and 67, 22 and 2 with central, both or whole breast invol-

ved by the tumour respectively.

The T stage in fact give Xz = 17.7, 8 d.f. and p = 0.02
and implies T3 (larger tumours) with central and both halves involved.
Smaller tumours correspond with the medial half or lateral half alcne

involved.

Node status gives X2 = 7.6, 4 d.£., p = 0.10 giving more
node positive patients with central or both halves involved. (or perhaps

basically with larger tumours)

Stage of the disease was defined to be a combination of
the T stage and the Node status and the following tables clearly

indicate this:-
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T. Stage
T1 T2 T3 Total
Node State NO a5 273 67 375
N1 21 124 40 185
Total 56 392 107 560
S Stage
S1 s2 S3 Total
T stage T1 5 17 4 56
T2 272 124 1 397
T3 0 0 107 107
Total 307 141 112 560
S Stage
Node state S1 s2 S3 Total
NO 307 0 68 375
N1 0 141 44 185
Total 307 141 112 560

T stage with node state cross tabulation gives a x2 = 2.0 with 2 d.f.

and p = .37
As presented in tables (a.1), stage is significantly associated with
site. Stage 1 patients (good prognosis) more commonly have medial

tumours or laterals half alone involved, which reflects the previously

mentioned association with size.

Now/
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Now we will consider the distribution of the prognostic
indicators with the two arms of the trial. It must be reiterated
that treatments were allocated before malignancy was diagnosed and
therefore some of the patients were later removed for trial purposes
since they had benign tumours. The total number of radical surgery
patients is 288 and the simple mastectomy and radiotherapy patients
are 272. The treatment options were also stratifiecd according to age
and the stage of the disease, but again the benign disease exclusions
could affect this balance. Table (6.5.1) in fact shows that in most
respects a good balance between the treatment groups resulted from the
randomisation, with only slightly more T1 patients being allocated to

the radical mastectomy group.

The next set of categories which were studied by the cross
tabulations were the disease progress indicators and the spread of the
initial tumour. In here we must emphasise that the disease indicator
such as progression of the disease and final state of the patients will
be studied more extensively in the next chapter. The present method
of considering the cross tabulations does not allow an independent
survival and censoring analysis and the X2 values reported should not
be interpreted as representing value of a treatment at this stage.

These tables are presented within section (A.2) of the Appendix A.

Menopausal status shows a degree of association with the
spread of the initial tumour indicators, in terms of skin and pectoral

muscle involvement. The pre-menopausal patients have a lower level

of skin and pectoral muscle involvement, x2 17.5, 8 d.£.p=0.02

at/
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2 ;
at X = 11.1, 6 d.f., p = 0.08 respectively. The status of the

patients at the end of the study indicates x2 = 25.8 with 2 d4.£. and
p< 9.0001 giving much better survival for the younger patients.
Surprisingly the disease recurrence does not reach a significance with
the present method, giving = = 0.11 with less local or metastatic

disease among younger patients.

Side of the lesion does not play an important role for the
final or initial disease progress. The highest value for the side is
by skin involvement, x2 = 3.6; 4 d.£., p =.46. Categorisation by site
however plays an important role for the pectoral and skin involvement.
X2 = 27.8, 16 d.£., p = 0.03 and X2 = 24.4, 12 d.f., p = 0.02 respect-
ively for skin and pectoral muscle involvement. As we mentioned

previously site is a reflection of the size of the tumour and in

general medial or lateral halvesinvolved produce less skin and pectoral

involvement than other sites. The same pattern appears with the disease
progression. More local or metastatic recurrence is noticed with both
halves or central area tumours, X2 = 21.0, 12d.f . p = 0.06. Follow-

ing the above, lateral and medial half only, produce best number of

survivors X2 = 8.9, 4 d4d.f., p = 0.06.

T1 patients described earlier are a better prognostic
group. By definition they have less initial skin and pectoral muscle
involvement and finally less local or metastatic recurrence and there-
fore are better survivors.
T stage of the Eumour

X d.f, P
Final disease condition 19.74 6 .0031

Final survival status 14.14 2 .0009
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Node status does not produce any association with skin and
pectoral muscle involvement. However with the node negative patients
there is less recurrence of the disease at the end of the study, X2=22.?
3 d.£., p<0.0001. Further node negative patients are better survivors

than the node positive patients

S1 cases are taken to be a good prognosis group and Stage 2
and 3 respectively worse. This is true both fob the survival number and
for the number of recurrences. Stage 1 groups give the highest
proportion of disease free survivors x2 = 27.6, 6 d.f., p = 0.00071,
and a better number of final survivors, X2 = 7.05, 2 d.f., p = 0.03.
For the pectoral and skin involvement there is a defined relation

between S stage and involvement

In the above discussion prognostic factors that indicate a
significant skin involvement also indicate a pectoral muscle involvement.
The two are very closely related and often coincide. However pectoral
skin involvement does not have a significant association with disease

2 2
recurrence, X = 13.8, 12, d.f., p = .31 and X = 12.%, 9 d.fe; p = 0.2
respectively. Nor do skin and pectoral involvement show a significant
2

association with the status at the end of the study, X = 4.29, 4 d.f.,

2 :
p = 0.36 and X = 5.51, 3 d.f., and p = 0.13 respectively

Disease recurrence and final status of the patients are very
closely related as expected with metastatic recurrence producing a
larger portion of dead cases. Treatment option and disease progress
will be studied in later sections. In so far as the numBerical distrib-
utions are concerned, treatment option is not associated with the skin

pectoral/



295

pectoral involvement or disease progress. Disease recurrence and cption
give x2 = 1.83 with 3 d.£f. and p = .60. However final status of the

patients seems to be related to option, X2 = 8.2, 1 d.f., p.= 0.004.

So far the description of the data has been concerned with
sets of categorical wvariables. The picture emerging is that T stage,
S stage, menopausal status, node involvement and treatment options
are factors producing the major associations with the categories of
final disease status and survival status. Menopausal, T stage and
S stage are related in effect to two important continuous variables
namely age for menopausal status and size for T stage and therefore
S stage. It seems proper to look at the distribution of these
variables. Table (6.4.1) gives the means and the standard deviations
of age and size, for all the 561 cases; menopausal status is one factor
that is of course related to age. The distributions according to
the table clearly indicate this. The size of the tumour is similarly

related to T stage, and this is clearly shown by the table.



Pre menopausal
Menopausal

Post menopausal

Right side

Left side

Site medial
Site lateral
Site central

Site both

T1
T2

T3

Ng

N1

S1
s2

S3

Skin involvement TO

T

T2

T3

Mean

44.18

48.62

59.91

54.27

54.87

55.05
54.08
55.30

55.41

51.44
54.77

55.45

55.42

52.84

55.22
52.51

55.38

51.72
50.47
56.12

56.21

AGE

8.62

9.23

10.26

mean

3.45

3.87

3.62

SIZE

s.d.

1.48

1.44

1.41

D?O

1.01

1.68

1.38

1.54

1.14

1.080

1.85

'58

2.48

1.89

1.50

163

38

359

284

276

183

286

67

22

56

397

107

375

186

307

141

112

12

70

36

296



Not involved

Pectoral muscle involvement T@

Not involved

Radical MX

Simple MX + XRT

L + M Recurrence
M Recurrence
L Recurrence

No Recurrence

Alive

Dead

T1

T3

TABLE

AGE

Mean

54.31

57.73
54.94
55.97

54.32

34.18

54.97

54.47
55.40
55.62

54.14

52.59

56.33

(6.4.1)

s.d.

9.00

0.12

8.77

8.74
8.21
7.62

9.43

Mean

3.32

3.75

5.21

4.05

3.32

3.59

3.60

3.98

3.89

3.81

3.31

3.85

SIZE
g.d%

1.44

1.45

1.28

1.37

1.39

1.43

440

14

63

43

440

288

273

114

141

16

290

265

296

297
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6.5 Survival time analysis of the old Edinburgh Trial data.

At randomisation the patients were stratified according to
age and clinical stage of the disease. The table (6.5.1) indicates
a balanced distribution of patients to the treatment options within
each stratum. A comparison of the number of patients allocated to
each treatment by the year of entry, also gives an almost uniform
pattern of the accrual of the patients. There 1is a slight deviation
for some years. However the reason is that the treatments were
allocated prior to histology and so some patients were allocacted a
treatment while they were non malignant and so had to be excluded from

the trial.

An unstratified comparison of the survival of radical mastect-
omy patients and simple mastectomy patients gives a log rank, X2 value
of 10.04 with 1 d4.£f. which is highly signficant (p = 0.0015). Figure
(2.5.1) gives a plot of the Kaplan and Meier survival probabilities of

the two crude survival times.

Further for each strata a separate analysis of the survival
times is performed. Certain of the subgroups indicate a highly
significant difference between the survival probabilities.

Table (2.5.2) refers to a summary of the analysis of the various strata
using the logrank test. Generally speaking the treatment effect is
consistent for the various subgroups with the most significant differ-
ences being indicated by the subgroups with larger number of patients.
One interesting pattern that emerges, however, from the survival

distributions is indicated in the survival plots of node status,

Age/
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age, T stage and menopausal status with respect to survival time,
Figures (2.5.1) to (2.5.12). The crude hazard rates of treatments
showed proportional rates of failure for the two groups, Figure (2.5.2).
This pattern is not so clear once we look at the subgroups of T stage
age and menstrual status. The sugvival patterns can be explored
further by a plot of the hazard rates. Clearly the plots indicate
that depending on the time of observations of each subgroup the rate
of failure is slightly different. At this stage it is not possible
to explore this point further and assess the sifnificance of such a
hypothesis, but only to observe it. In later chapters more relevant
questions with more advanced statistical methods may be asked. These
methods will be based on the validation of the proportional hazard
assumption. Meanwhile the methods of the present chapter are
based on the assumption of proportional hazards. One important
point to note is that we have so far only stated slight differences
in the significance levels of the different parametric survival
families and the various ncn-parametric tests, as fitted to our data.

We have not considered tests of the model assumptions in order to

attach a significance level to the model differences.

The analysis so far, presented in table (2.5.2) indicates a
poorer survival for all patients treated with simple mastectomy and
radiotherapy. A categorisation according to stage indicates a
significant difference in the same direction for the stage 1 patients
and not a major difference between radical mastectomy and simple
mastectomy and radiotherapy, for the stage two and stage three patients.
By the age categorisation indicators, patients less than 50 year old
do not show a significant difference between the two treatments, while

older/



ENTRY
1964
1965
1966
1967
1968
1969
1970

1971

Age
Size
T1
T2

T3

Ng

N1

S1
s2

S3

Pre
Meno

Post

R x Mx

43

61

41

36

38

33

28

288

1+

54.2

I+

37

198

53

199

88

164

67

57

89

21

178

9‘2

S Mx + XRT

41
48
60
36
30
35

21

199

54

179

93

143
74

55

17

181

TABLE (6.5.1)

300

Total

84

109

101

72

68

68

49

10

56

397

107

378

181

307

141

163

38

359
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older patients (greater than 50 years old) seem toc benefit from a
radical surgery treatment. In so far as menopausal status is concern-
ed , post menopausal patients benefit from a radical mastectomy treat-
ment. Node positive patients with radical mastectomy show an improved
survival while node negative patients treated by radical mastectomy

or simple mastectomy and radiotherapy show similar survival patterns.

6.6 Analysis of the data using the Cox's proportional hazards model.

From the previous section there are certain points that we notice.
One is that for certain covariates the relative hazard rate is dependent
not only on the covariate understudy but also the time at which the
covariate is looked at. That is there seems to be a suggestion that
the effects of some covariates are not tniformly the same for the
subgroups but are time dependent. There is also a slight form of
inconsistency in the manner in which treatments effect patients with

different prognostic status.

The effects described above are basically different forms of
interaction that may be present in our data. The first set describes
a possible interaction between time and a covariate while the latter
describes an interaction between the two covariates. Although we have
intoduced the idea of interaction in here we are not implying that
the interaction is statistically significant and the difference between
the significance levels 1in various strata may be attributed purely to
the sample sizes of each subgroup. It is a point we will examine

in later parts of this section in more detail.

The/



The model we are concerned with is of the form

A{t1Z) = lo(t) Exp ( 81 Z1 + BZ 22 +8 12f{21.22)) (6.6.1)

17 22 covariate

The above is a 3 parameter model representing a 2
interaction. Alternatively a time dependent covariate model may
be represented by

l(tIZ) = lo(t) Exp ( 8121 + Bzf{Z1,t) + . < . ) (6.6.2)

Depending on the form of the variable under study, the number of

covariates will vary and we may end up with more than 3 and 2 covari-
ates in the above models respectively. For example T stage represents
size of the tumour and is composed of 3 categories. For a represent-

ation of such a variable we require two variables say Z, and Z_, giving

1 2
2 = = W 1
2, 0, 32 0 For 711
Z1 = 1, 22 = 0 For T2
and Z1 = 0, 22 = 1 For T3

Using’the above parameterisations we can test the significance of

T stage values as a prognostic indicator without making assumptions

on the order level of the categories. An alternative approach would
be to allow a variable Z with values -1, 0 and 1, to indicate a linear

categorisation of the T stage wvalues.

In general the numerical wvalues attached to the guantit-
ative covariates should not be a major problem. For the example of
T staging there may be a slight loss of efficiency with the latter
approach if there is a difference in the pattern of the influence of
the size. On the other hand using two covariates for removing the
effects of size in the former description with 21 and ZZ is less

convenient and time consuming if the effect of size is uniformly the

same/
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same on survival. For a broad purpose of exploratory analysis
of the data thoughtful parameterisation allows the possibility of
study of a large number of independent variables without introducing

a--large number of covariates.

Initially we are only interested in the main effects of

the described parameters in exploring the variability of the failure
time from randomisation to time of death. However later we will study
other failure times and intervening events. The method we adopt to
explore the data is in some ways similar to what is wusually termed as
a stepwise regression method, by which certain levels of introducirg
variables is adopted for inserting covariate estimates into the model.
We set the limits to be probability value of 0.100 for entry and
probability level of 0.150 for removal. At each step we estimate
all relevant parameters and consider the parameters that are significant
and introduce only the most significant into the model. At each stage,
if a parameter estimator that is already in the model becomes non
significant (because of its association with wvariables added to the
model) , we will remove the newly non-significant effects. We will
deviate from the above approach in our exploratory approach by
considering certain strata variabilities separately. Further unlike
the initial stages where we will study the parameters in relation to
main effects of covariate only, in the next stage we will consider models
of the form with main effects and a corresponding prognostic and treat-
ment interaction term. One point to note is that at any time we mention
size and age covariates in this chapter, we will use a normalided trans-
formaticon of the effect by letting,

Zij-——q {Zij - mean (2 j}) /4 SuDa (2 j)

where/
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where zij refers to a covariate for a patient, Mean (Zj) and S.D.(zj)
refer to mean and standard deviation of a particular covariate for

all patients.

In the first stage of the stepwise procedure both age and
menopausal status are highly significant (p < 0.0001), with the
menopausal status being a slightly stronger prognostic factor than

the actual age parameterisation.

We thus continue with a categorised analysis of the relative
risks, due to age. In stead of considering age as a continuous variable
we categorise the scale into younger than 50 years of age and older than
50 years. The value of the B relative risks are then noted. As we
pointed out the relative risk value is signfiicant at a probability
value p <0.0001,. Now in a comparison of the age effect tested by
the two methcds, the age effect as a continuous variable gives a B
value of 0.3198 and a standard error of 0.0798, while as a categorised
variable almost coinciding with the sectors of menopausal status it
presents a B value of 0.3321 and the standard error of 0.0745. We
perform an analysis by stratifying the data into premenopausal and post-
menopausal groups. The two groups are then analysed by assessing the
age effect on them separately. The analysis indicates that the age
effect reduces to insignificant levels. Later we will consider the
age effect with time dependent parameters so that rather than
categorise the age variability we may obtain a similarly flexible

indication by a parametric function of the age effect.

Following/
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Following the age and menopausal status of the patients the
most direct prognostic factors are the actual size (p <0.0001), T stage
(p = .0004) Node status (p % .0007) , treatment option (p = .0016) and
S stage (p = .0024). Clearly treatment is a significant effect and
is of special importance to our study. At this stage we continue
with the stepwise regression as described. Later we will consider
forcing the treatment effect in the first step so that we may check
consistancy of the model in a situation where treatment effect has
a priori precedence. Site of the disease seems to play a marginal

role only due to the lateral half involvement (p = .11)

Before dispensing totally with the various sites of disease
indicators, we consider a stratified analysis for each of the different
sites of the initial tumour, we perform a stratified analysis based on
each single site as defined in the section 6.4, and the set of
covariate effects that have been considered significant up until
now. Without presenting too much detail once again age and
menopausal status play the most important role in defining the
survival rates. The relative risk rates are closely related for
each of the strata and there is an indication that the age andl
menstrual status effects are consistently in a similar direction

within the various sites.

The rest of the covariates we have been interested in
at this stage for this particular failure time do not reach a signifi-
cant level. The covariates that we will ignore for the rest of the
analysis of this particular event are, side of the initial lesion,

other/



other sites of lesion and patient conception of the time from

first noticing the tumour to the time of the operation.

The most direct prognostic indicator is the menopausal status
of the patient. We introduce this variable into the general model
of the Cox's approach.

8 - = 0.03558 S.E. = 0.0720

with this model the pattern of the significance of the remaining
prognostic factor changes to some extent. Actual size remains the
most important factor in describing the remaining variability in
survival (P< 0.0001). Node status becomes more significant
(P = .0002) than the T categorisation of the size of tumour (P = .0008).
The S stage is still significant at (P = .0018) and finally for this
stage of the stepwise regression, the treatment option produces a

significant contribution with P = 0.0029.

The menopausal variable clearly removes the contributions
of actual age in explaining survival totally, with the significance

value reduced to, P = .42. The premenopausal patients are generally

306

better survivors than the menopausal patients or post-menopausal patients.

We can also state that larger tumours are an indication of
a worst survival. A stratified analysis based on node status
indicates that this statement 1is true for both node negative and pos-
itive patients. In terms of menopausal status a stratified analysis
of menopausal status with covariate analysis of size indicates that

the/
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the larger size of the initial tumour is consistently an indicator

of bad prognosis, for both pre and post menopausal patients, with the
effect of size being more significant among younger patients.with

P= 0.004 and P = 0.021 as the significance level of size in premeno-
pausal-and post-menopausal patients respectively. Similarly a covariate
analysis of node indicates that the node positive patients are worst
survivors. The effect is once again more significant among the pre-
menopausal group, with the significance levels P = 0.0007 and P = 0.0011
for the pre and post menopausal groups. Thus we may summarise that the
size and node are important contributors to the various survival patterns.
However there is a .suggestion that their effect is more significant

among the younger patients. it seems that by introducing more factors
into the model apart from the menopausal status we can still define the
survival time more precisely. The most effective prognostic factor
after introducing menopausal status was the actual size. Therefore it
is the next term to be iﬁtroduced into the model. The previous indic-
ations by the stratified analysis also are suggesting that size is
having a consistently similar effect in sense of direction for both

pre and post menopausal groups.

0.3643 S.E. 0.0723

™
1}

men
0.2079 S.E. = 0.0402

w
1]

size
The above coefficients are positive and therefore indicate that smaller
tumours as may be expected are better survivors. It is rather interest-
ing to note that among age and menopausal status, the more important
contribution was the menopausal status which is a categorised variable.
However, in the case of the size of the tumour some efficiency is lost
by categorisation of size into different T stage values. After

introducing/
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introducing size of the initial tumour, significant value of T stage
reduces to P = 0.60. Also the stage significance reduces to P = 0.25.
The only covariates which still show significant levels are node status

and treatment options with P = 0.0004 and P = 0.0017 respectively.

In the next step we introduce the node status covariate

] = 0.3864 S.E. 0.0729
men

B_. = 0.1981 S.E. = 0.0399
sSlze

BN = 0.4315 S.E. = 0.1205

Node negative patients are a better prognostic group than the node
positive patients. After introducing the 3 major prognostic factors
namely, menopausal status, actual size of the tumour and node histology,
the only factor remaining that still shows a significant contribution
to survival is the trial option, P = 0.0017. With stratified analysis
we study the two effects that do not show any significance, namely T
stage and the S stage of cases, to make sure that the reason for

this loss of significance is not due to the assumptions of the
proportional hazards. The T stage is only a function of the size and
this is reflected in the stratified analysis of T stage in the way

in which the variability in survival due to the size effect reduces

to insignificant levels. For menopausal status we obtain similar B
estimators of .34, .38 and .39 on the relative risk factor within

T1, T2 and T3 strzata respectively.

By the definition of the S stage, node status has a direct
role in defining the staging systems. We note that the 3 strata of

stage/
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stage give similar directions of association for the menopausal status

and size of the tumour in terms of survival tcime.

It is also important to note that the significance of different
prognostic factors generally vary with the introduction of different
terms into the model. This is due to their inter-relationship.
However, the significance of the treatment option becore introducing
any term in our model is P = 0.0016 and after introducing 4 terms the
significance is P = 0.0017 which is very close to the original wvalue
reflecting the similarity of the treatment groups with respect tc the

distribution of other covariates.

The coefficients of the model after the introduction of the

option indicators are:=-

B8 = 0.3847 S.E. = 0.0730
men

B = 0.2040 S.E. = 0.0401

SlzZe

%J = 0.4319 S.E. = 0.:206

BOption = 0.3656 S.E. = 0.1169

The two treatment options are radical mastectomy and simple mastectomy
with radiotherapy, and the model indicates that patients may benefit

from radical mastectomy in terms of their survival.

We finally perform additional analysis in order to be certain
that the general final model is representative for the subgroups and
categories that it represents. The main aim would be to check on the
possibility of the extistence of smaller subgroups showing a pattern of

survival/
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survival rates which is different in direction to the general model.

We per:Zorm an analysis based on a stratified analysis of each category
of a covariate with respect to other covariates. At this stage we
ignore treatment option but later do formal tests on them. Altogether
there is a slight deviation based on the sample size of each covariate
set, however it is noted that the stratified analysis does not suggest
that there exists a subgroup with a significantly different suggestion

of prognostic value in the opposite direction to the general model.

Up until now in the study of the relative effects of the
prognostic factors we have introduced the covariates according to their
level of significance. Study of the treatment option however is
the major objective of a trial. Now in the initial step of the
categorising of the patient population we introduce the treatment
option. Further for each main zffect prognostic factor we introduce
a set of first order interaction covariates that act multiplicatively
between option and the other prognostic factors in terms of the model
(6.6.?)._ It is important to note that if our intention at this stage
was purely a study of the interaction effects, then we would have
continued with inserting interaction effects into the above 4 covariate
models. However as an alternative to the previous stepwise procedure,
we introduce the option effect 1in the first step to study behaviour
of the different models and also check the consistency of the final

model. We use a generalisation of the model (6.6.1) as,

A(t,2) = x, (t) Exp{BTZI+BZ + 8 o @ ei)

0 242 1221%2 *

where 812 is introduced for assessing an interaction between treatment

and/
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and a prognostic effect. The two variables size and age are continuous

and may be time dependent. We will deal with these models in Chapter 7.

In what follows in this section we will consider functional

forms of f(ZT, ZZJ from (6.6.1). In the case of binary categorisat-
ion of a variable a functional form of 212 =%y 22 is sufficient

(as we have used (€, 1 to indicate the two levels.) so long as enougn
consideraticn has been given to ease of interpretation. In fact most

of the variables we will be considering are of the above binary form.

The continuous variables like age and size can also be transformed to
binary categorisations by considering the high and low levels of their
scale and indsbendent dummy variables. Later in this chapter we will
consider continuous form of size and age variables. In these conditions

a continuous parametric representation may be useful. We will later

consider a possible functional form of age and size 1in the presence

of binary treatment effect. Namely models of the form

A(t, Z) = Xx_ (t) Exp ( B.,Z + B2 + B2 + B 22 +8 Zz}
: = %o P 11 ) 373 22" 2 333

and

A(t,2) = ko(t] Exp (B,IZ,I + 6232 + 8323 + 6422231122 + Z3 )

to age and Z., to size.

where 2, refers to treatment, 2 3

1 2

Initially we consider categorised variables with binary
interaction effects, 212 = 21. 22 for the different subgroups. We
introduce the effect of treatment option into the total sample. The
main effect of option is therefore represented in the relative risk
function by

B
option = 0.3677 S.E.

0.1168
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Now the overall wvariance due to other prognostic main effects
increases and so. their significance value is reduced. However their
relative significance does not change to the one prior to introducing

treatment option.

Menopausal status (P < 0.0001) and age (P <0.0001) are the
most important factors followed by size (P <0.0001) , T stage (P = 0.0008),
Node status (P = 0.0009), and S stage (P = 0.0044). Sites of the
tumour that have lateral half involvement are again only marginally
significant (P = 0.06). At this stage prior to introducing other
main effects is not possible to try to interpret the value of the
interaction effect parameters. It must be noted that interaction
effects prior to introduction of the main effects do often show a
significance, with a probability walue slightly lower than that of

the corresponding main effects.

An explanantion is in order in regard to the value of such
interaction effects. The main reason being due to the fact that the
variability due to the main effect is not removed yet. We further note
that the significance of probability level of the interaction paraﬁiers
are lower than their main effects. The major variability is due to
the main effect of age at (P < 0.0001) and its interaction effect
P = 0.0021. In terms of B estimators of the relative risk function
we also note less significant wvalues for the interaction effect while
the actual magnitude for the direction of the effect is always positive
and at a lower level. This pattern implies that the only type of

interaction effect that we may expect to find will have a positive

multiplicative/
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multiplicative effect.

Once again the major variability is due to age and its
interaction effect with g = 0.0042 and B = 0.0042 respectively,
closely followed by menstrual status main effect at g = 0.3492 and
its interaction effect g = 0.3022. It seems reasonable to add further
prognostic factors that show a significant probability wvalue. We thus
introduce the main effects into the model one by one depending on
their relative significance at each stage. First we introduce meno-
pausal status with option.

B 0.1168

]
]

option 0.3475 5.E.

B

men.

0.3492 S.E. 0.0720

By this covariate all variability due to age is again also explained.

The interaction effect for age option and menopausal option also become

insignificant. Size (P < 0.0001), N (P = 0.0002), T (P = 0.0014)
S(P = 0.0026) are al. significatn. Site with lateral half tumours
also increase in significance (P = 0.028). Now we introcduce the size

of the tumour.

R . = 0.3650 S.E. = 0.1169
option
8 = 0.3598 S.E. = 0.0723
men
B = 0.2045 S.E. = 0.0406
size

The only remaining facter that makes a significant contribution is
node histology. We also note that by introducing main effects of
the prognostic factors the interaction effects are also explained.

Hence finally we obtain the same models with the same prognostic factors

as/
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as the previous approach, since none of the interaction effects have

contributed substantially to the explanation. of the survival rates.

B = 0.3847 S.E. = 0.0730
men
B . = 0.2040 S.E. = 0.0401
size
BN = 0.4319 S.E. = 0.1206
B . = 0.3656 S.E. = 0.1169
option

In the above discussions the general conclusion is that menopausal
status, Size of the initial tumour and node histology are the main
prognostic factors that define a survival time for a group of patients.
However, size with the T stage and menstrual status with age also
show a high level of dependence and introducing one factor generally

compensates for the information due to the other factors. The same

may be said for the stage of the disease. Stage is a combination of
the node and size categories. However it seems that a better assess-
ment may be made by introducing node and size separately. In fact

on considering a model of the form with menstrual status, treatment

option and the effect of S stage represented by two covariate indicators

we obtain
= 0.3921 S.E. = 0.0782
men ¢
851 = 0.3952 S.E. = 0.0281
BS2 = 0.3161 S.E. = 0.9791
BOption = 03721 S E. = 01291

There is not a major difference noted for the new option and meno-
pausal status estimator. We further introduce 2 interaction effects

of option with B S1 and B8 52 parameters and they do not reach

a/



a significant level. In terms of interpretation the previous

model was probably more straight forward than the present approach
since by the latter, one must always refer back to the interpre-
tation of S1 and S2, while the model of size and node give a clearer

interpretation.

Now we use a method which is alternative to the stepup proced-
ure and is usually termed as a step down procedure. It is again a
study of the relative significance of eaeh factor when other factors
are present. We begin with fitting a model to the data in which
all the prognostic factors have been introduced. In the consequent
steps we remove the effects one by one depending on the level of
significance, that the particular estimator contributes in regard
to defining the wvariability of the data. As before we will deviate
féom the standard procedure however by looking at different strata
at each stage. In the stepdown procedure we will only consider the
main effects, since up until now there has not been a major inconsist-
ency in the direction of the eifects. The probability levels we
adopt are again 0.100 for re-entry of a term previously removed and
0.150 for removal of an effect from the model. The main purpose in
using this approach is to check on the consistency of the final model
of the last section in being able to describe the variability in the

survival rates. Further by an extensive comparison of different
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covariate effects we describe the improvements in the estimators of the

treatment parameters and also the ease of interpretation for each

prognostic effect.

Finally the most relevant significant levels in the stepdown

procedure/



procedure are the significance levels for the removal of effects from
the model (unlike the step=-up method) . As before the value of the

significance levels for each effect changes at each step.

The first model we consider 1is the full model. containing all
covariate effects that are suspected to play a part in defining the

survival times. The following model is hence obtained.

B = 0.3231 S.E. = .1138
men
B = 0.0014 S.E. = ‘1183
side v
B . = 0.9933 S.E. = .0731
site
B = 0.15&0 S.E. = .0508
size
BT = 0.3847 S.E. = .2311
BN = 0.6381 S.E. = .1772
BS = 0.2510 S.E. = .1538
P 0.3787 S.E. = .1191
option
B = 0.0077 S.E. = .0110
size
= 0.0008 S.E. = .0028
year

Now by reviewing each of the above terms from the model once again
we can assess the relative importance of each factor with the above
restrictions. Basically there is no inconsistency with the previous
approach and the model considers the same factors as important progno-

stic indicators. However there are slight differences in the order
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of their significance. Node histology is the most significant indicat-

or (P = 0.0002) followed by option (P = 0.0074), size (P = 0.0016),

menopausal/
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menopausal status (P = 0.0045), T(P = 0.0867) and S(P = 0.0936).

The rest of the covariates are treated as factors consributing
insignificant levels. These factors are respectively, lateral half
involvement, age, symptom and side of the tumour. The value of the
important prognostic factor seems not to change if the insignificant
factors are removed one by one. However, value of the covariates for
each significant prognostic factor 1is slightly different and generally
the probability values are higher. The model we obtain after the

L4 <A
removal of the i{asignificant factor is -

B = 0.3788 S.E. = 0.0731
men

B . = 0.1653 S.E. = 0.0505

size

B = 0.4054 S.E. = 0.2295

BN = 0.6521 S.E. = 0.1739

BS = 0.2617 S.E. = 0.1529
B ; = 0.3585 5:B.: = 0,117
option

i
Giving menopausal status ( P<0.0001) as the most signficant factor,
Node (P = 0.0001) as the second factor, size ( P = 0.0009) and

option (P = 0.0022) as significant, and T(P = 0.0687) and S(P=0.0912)

as marginally significant. At a more conventional 5% significant
level, we can also remove T and S staging. This reduces the model
to the initial 4 covariate model. The slight indication for the

T significance level shows that size may not have a linear effect in
the time scale. This will be looked at more closely later in this

section.

Now we continue with the analysis for the assessment of the

important/
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important prognostic factors for the period of randomisation time

to the metastatic spread of the disease. The study of the time to the
development of metastatic disease is also important in that it defines
the spread of the disease more directly and unlike the time to death
is not affected by factors such as death from old age, or other causes.
Considered singly initially the major prognostic factor is the size

of the initial tumour ( P <0.0001) followed by the closely related

S stage (P <0.0001) N node status (p < 0.0001) and T stage (P=0.0001).
However the menopausal status is only important after the size effect
with (P = 0.0001) and age is now even less significant at (P = 0.0493).
Option is again significant although with a loss in significance.

The site of the tumour being lateral however seems to play a more
important role with (P = 0.014). If we introduce the size effect

into the model then the effects due to T stage (P =0.4) and S stage

(P = 0.03) are reduced. The effect of node status (P = 0.0001)
remains highly important. The relative importance of age (P = 0.11)
and option are both reduced. Site of the tumour being in the lateral

half is significant only marginally (P = 0.05).

0.2421 S.E. = 0.0426

Bsize

In the study of time to death menopausal status of the patient played
the most important role. In the study of the variability due to
time to metastatic disease, the most important contributions are made

by the size of the tumour followed by the node histology.

0.0421

0.2255 S.E.

W
I

SiLzZe

0.1280

8 0.5025 S.E.

N
The menopausal status cf the patients is then highly significant

(P=0.0001)/
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(P = 0.0001) only after the above two variables. The menopausal status
is then followed in significance level by age (P = 0.02), however it

is reasonable to assume that the age effect will be explained by the
menopausal status. Finally treatment option is then followed with

(P = 0.04). After the introduction of size and node histology, the
previously major contributions of T and S reduce to insignificant
levels. This represents once again a slight deviation from the
analysis of time to death, since the stage of the disease with node

and size effects present was showing a marginal significance.

Therefore perhaps it is indicative of a node status or size interaction

within the time scale to death.

Finally we introduce the treatment option.

B . = 0.2234 S.E. = 0.0431
size

BN = 0.5043 S.E. = 0.1321

B = 0.2967 S.E. = 0.0751
men

B8 y = 0.2641 S.E. = 0.1432
options

Now, we approach the study of the response variable (time to metastatic
disease) , with the actual treatment forced into the model. At the

same time we are interested in the study of the effects of any possible
prognostic factor with the ovtion interactions that may be present.
With only the treatment option present we obtain.

B : = 0.2532 S.E. = 0.1254
option

Once again in consistency with previous study of time to metastatic
disease actual size of the tumour plays the most important role, followed
by node histology, T stage and S stage.

Bsize/
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B = 0.2440 S.E. 0.0426

size

0.2638 S.E. 0.1254

1}

Boption=
Following the introduction of the size and option effects we note that
the interaction effects for the two variables gives P = 0.9.
Node histology also has a significant effect while size and option
effects have both been introduced into the model. However once again
unlike the time to death response variable menopausal status is

relatively less significant

g . =  0.2283 S.E. = 0.0422
slze

BN = 0.4979 S.E. = 0.1271
8 .. = 0.2560 S.E. = 0.1255
option :

Again no interaction effect is noted for the node status and option.

The most significant factor remaining is the menopausal status. With
the entry of this later factor the major factor that influences survival
are once again the major factors that influence time to the metastatic

disease.

8 = 0.2967 S.E. = 0.0751
men

B = 0.2234 S.E. = 0.0431
slze

BN = 0.5043 S.E. = 0.1321

BOption = 0.2641 S.E. = 0.1432

Once again we observe the influence of possible interaction effects
with the treatment option and again there seems to be none acting.
The site of the tumour being later.l was a factor that for time to
death was initially marginally significant and with the removal

of other major factors becomes less and less significant. In the

study/
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study of the time to metastatic disease there seems to be a similar
trend present, and at the end lateral half involvement is not signifi-
cant with a probability wvalue of P = 0.09. The next response
variable that we study in relation to the exploratory wvalue of the
prognostic indicators is the time from randomisation to the local
progression of the disease. Once again we us# a stepwise procedure
approach similar to the last section. One by one we introduce import-
ant prognostic factors and observe their effects. Finally we allow
test of interaction between the treatment main effect and the
prognostic indicators. The final model of the relative risks para-
meters that we obtain are similar in terms of order of importance of
the prognostic covariates to the parameters obtained for the models of
time to metastatic disease. However the magnitude of the various

estimators are different. The final model is thus composed of para-

meters

8 = 0.2481 S.E. = 0.0621

men
B . = 0.2013 S.E. = 0.0510

size
B = 0.5518 5.+ = 0. T5H

N

BOption = 0.2421 S.E. = 0.1080

Before we finish with this chapter which has been based on categories
of the various variables we consider functional forms of the two

major prognostic indicators, namely size of the initial tumour and

age of the patient, when they are both considered to be continuous
variables. We will initially consider a model of the form with the
age and size and no interaction in the model with the treatment effect
present. A main effect model of size and age with treatment gives

a relative risk function with the following parameters
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Bﬂption = 0.3511 S.E. = 0.1172
BAge = 0.0068 S.E. = 0.0171
BSize = 0.1990 S.E. = 0.0432

In the earlier discussion in dealing with categorised size variability
and age represented by menstrual status we concluded that there is no
susjgestion of an interaction between size of the initial tumour and

age of patients at entry in describing the survival times. However
we noticed a slight improvement in the treatment effect estimators of
the B parameters. We will now introduce a model of the relative

risks by which we assess the age and size effect in a continuous man-
ner. The first model we consider 1is a relative risk functicn given
by linear effects of age and size as well as their independent quadra-

tic effects, giving the hazard rate

2 2
J\(t1 Z) = AO(t) Exp(3121 + 3222 + 5323 + 32232 + 33323)

when 1 refers to treatment option, 2 to age and 3 to size, and

giving the following parameter estimates

BOption = 0.3578 S.E. = 0.1151
BAge = 0.0068 S.E. = 0.0171
BSize = 0.1987 S.E. = 0.0451
822 = 0.0003 S.E. = 0.0241
833 = 0.0170 S.E. = 0.0642

Clearly there is no suggestion of size and age playing a quadratic

role in the explanation of the survival times.

Finally/



323

Finally we consider an interaction of the continuous age
and size. In the following model of the relative risk function we
will consider an interaction of the form in which not only a multi-
plicative effect of the prognostic indicator is present but also
simultaneously there is an additive effect present. We then have

a model of the form
’ -
x(t,2) Ao(t) EJ{];?‘{BIZ.I + 3222 + 3323 + 342223JZZ+ z3 x 10 )

In the above model, 1 refers again to treatment, 2 to age, 3 to size
and 4 to the interaction parameter. Further for the convergence

of the maximum likelihood estimator we will transfer the actual covar-

iate indicators so that they are almost normalised. That is we let
22 = (Age - Mean Age) / Standard deviation of Age
23 = (Size - Mean size) / Standard deviation of size.
and
{Zz + 83 x 10 = [(Age + 10 x size - mean (age + size x 10) ) /

%

Standard deviation of (Age + size x 10)]

We thus have

Baption = 0-3912 S.E. = 0.1018
Bage = 0.0067 S.E. = 0.0168
Bsing = 0.2012 S.E. = 0.0419
84 = 0.0003 S.E. = 0.0041

Once again there is no suggestion of an additive with multiplicative
relative risks of size and age interaction. It seems useful to
consider various interactions of the prognostic effects when they are

of /
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of continuous form. A better aprroach and to some extent related
approach is adopting time dependencies of the continuous effects.

In Chapters 7 and 8 we will consider such time dependencies. In the
next chapter we will also consider multiple risk approaches. At this
stage we will only mention the relevance of the present apprcach to
the multiple risk and continue with the analysis in the next chapter
after some further methodological developments. Apart from the res-
ponse variables looked at so far there are some other response variab-
les that are of interest, like the time from local disease to death
or the metastatic disease to death. For such variables we will
require an adjustment of the initial time segment for the proper
assessment of the treatment and covariate effects. With the
approach we have followed up until now one can do such an adjusting

by stratifying the response variable according to time from random-

isation to the present event. We may then have models of the form

A, (£,2) = A.(t) E Bs2
5 (t,2) J{ ) Exp (B,2)

Where in the above example xj refers to hazard rate for time from
metastatic disease to death, then J signified categories of the time
to metastatic disease. Cle:urly this is an example of a situation in
which we have multiple events. An alternative is to use time depend-
ency as described above rather than stratification of the basic line
hazard Aj(t). These two latter considerations make the proportional

hazards model a flexible method for such studies.
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CHAPTER 7

MULTIVARIATE RISKS

Once we confine the method of analysis to the approaches
discussed in the previous section we may not be able to assess the
effects of various treatments in the presence of progression,metastatic
disease, or other forms of intervening events most efficiently. The
main parts of this chapter deal with situations of a trial with multi-
ple events within the time scale of study. Initially we will deal with
models in which cases move from one state to another. In particular
we refer to those of semimarkov models and the analysis of data in
groups. Such models allow a quick analysis to be performed and are
useful for an exploratory analysis. More importantly for this thesis
they make a good conceptual shift from models of the previous chapter
to a situation of multiple risks. Later we will deal with the

development of the proportional hazards approach with a functional

form of a time dependent factor for the intervening event.

7.1 Initial developments of the methodology.

In 1959, Bartlett in a paper on the impact of the theory
of stochastic processes on statistics, stated, "correct specification
of statistical problems has only become possible in terms of stochastic

process"/
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process". Earlier in 1950 Neyman had written a chapter on "com-

peting risks" in his text book on statistics and probability theory.
These methods were inferred from a relatively simple illness and death
model. His original ideas on this work had arisen from works
similar to those of Daniel Bernoulli which were mentioned in the
introduction. In particular Neyman was interested in the problem of
assessing risks of dying from breast cancer b§ a comparison of risk
of dying from cancer after treatment with that of dying from other
causes or being lost to follow-up. This method of Neyman often
referred to as Fix-Neyman clearly differs from ordinary survival
analysis in that, in the latter there is only one transient state
(entry) and one obsorbing state (death), while 1in the present
context one is concerned with different causes of death, progression,

regression and possibly other stages.

When there are several end points present, there is a
general and almost traditional way of analysing the data based c¢n
3 assessments:- crude probability, partial crude and net probabilities
of survival. These concepts have been used by people who have
been studying failure time in ocrcupational health studies or the
epidemiological studies of chronic diseases. However comment made
by Stormer et al (1980) expresses fully the associated problems.
"There is now mounting evidence in the biomedical literature to
suggest that experimental methodologies are deficient when applied
to the investigation of chronic diseases. Chronic disease appears
to be substantially more complex than acute disease in several respects:
chronic disease is dynamic. It represents the long term cumulative
effects of interactions between a host biological system and the

surrounding/
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surrounding environment. The environmental influences are not static,
so chronic disease acquires a time varying characteristic... it is
possible that any combination of the above factors be influencing a
trial to a significant extent". Although our position does not go
along with some of the comments made in the above regarding the
generality of the environmental effects, one aspect of the statement
holds even within randomised trials; the fact that the complexity of
chronic disease requires complex processes by which time varying

characteristics may be incorporated.

Such problems initially were related to an approach that
was named competing risk. J. Cornfield (1957) on competing risks
and clinical trials puts the approach in the following perspective of
the language of cause and effect. He defines a formal effect as if
individuals died from some extraneous cause and had no chance of
dying from cause under study. Further empirical effects relate to
those who died from extraneous causes and might have a probability of
developing the disease of interest, which differs from probability of
those who died from disease of interest. The latter effects are then

suggested to be analgous with withdrawal at time of the analysis.

C.L. Chiang (1964) develops the concept of probability for
competing risks in a formal manner by defining 3 separate functions:
(1) The crude probability of survival.

Qi(t) = (probability that individual alive at t will fail in
t + h from cause i in the presence of all other risks).
(2) The Net probability of survival
Hi{t) = (probability that individual alive at t will fail in
t + h if risk 1 was the only risk acting).

(3)/
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(3) The partial crude probability of survival.
Qi j(t) = (probability that indivicdual alive at t will fail in

t + h, from cause i, if cause j was eliminated as a

cause of death).

In a discrete situation we may divide the time scale into
segments and apply life table approaches. For a continuous case based
on distributional assumptions,parametric methods may be used. CuL
Chang (1976) has extended the method and as an alternative approach
has used Fix-Neyman model for the two transient states and more than
two absorbing states. Such a model of two transient states is a
realistic model in which different patients with separate prognostic
values can be placed on different transient states. Individuals may
thus move from one transient state to another until in a finite time
they enter one of the absorbing states. An adequate form of explain-
ing such a phenomenon would then be based on the recorded number of
transitions and the times of the transitions between any two states.
C.L. Chang (1979) developes this method further for the particular
case of chronic conditions. He makes the observation that, the
disease advances with time from mild through intermediate stage to se-
vere to death. The cases may die in any one of these states. A
few practical situations where the above assumptions can aid in the
analysis are given below. Later in this chapter we will describe
a more natural method for analysis.

(1) Definition of stages in diabetes.

Chemical diabetes Clinical diabetes 35 To diabetes with

_ 7 I complication

2/
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(2) Progression and treatment of leukemia

Detection |——>| Bone marrow | Progression |
raftin :::: °
3 J ] Host versus graft disease

(3) Breast cancer

 Treatment !] Recurrence, local Death

or general

I-————;

What the above examples have in common is that the processes are always
irreversible; this is an observation which is useful in the further
development of the methodology. One further restriction that has
often hindered the general use of such approaches has been that of
robustness. It is often possible to develop a general maximum
likelihood function for the paths of progression, however if one
considers distributions more complicated than the exponential distrib-
ution, the method of maximum likelihood estimations becomes unreal-

istic in terms of the quantity of calculations.

It is clear that what may be required for our form of
problem is a model that takes care of the problem of censoring and
uses the assumptions of irreversibility. Such an approach is suggested
by Lagakos, Summer and Zelen (1978) by which a non-parametric method
based on ranks of the sojourn times between the states is used. The
main purpose for the use of this approach is that of analysis of the
data with an exploratory approach and a better description of the
semimarkov models. However later we will extend the methodology
to the proportional hazards models in which similar tests can be
incorporated into the functional forms of time dependency with less

restrictive/
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restrictive assumptions, than the present semimarkov models.

The semimarkov models for the partially censored data
provide a good construct for situations when patients move from
one state to another. We assume that there exists h state

denoted by ST' S SE LG B b S ome of these states may be

N3 h

transient states, that is one may assume that the stay in that state
is finite. All other states are restricted to absorbing states that
is patients after entry into this type of state will remain there until
the end of study. Without loss of generality one assumes that the

first states are transient and the rest are absorbing. For any case

history we have.

H=(SO,T1,S,T S

A A R Sm) (7.1.1)
r

Where Ti refers to the time of transition or sojourn between states
S. to Si' For the assumption of a semi-markov process to be true
we must have two conditions present. One is that the next state
of a patient will only depend on the current state and not on the
previous state, and secondly that the sojourn timesbetween states
are independent from each other. Therefore the length of a sojourn

time will depend only on the adjoining states.

We can thus define the following properties for the
semimarkov processes in a more mathematical setting. The case
history such as (7.1.1) in fact can be represented by the following
terms a(i), a(i,j) and F(t,i,]j) where,

a(i) = Pr (S0 = ij, probability that the initial state is i.

a/
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a(i,j) = Pr {Sn+1 = ﬁ\\sn = 1), probability that the next state is
j given the present state 1i.
F(t,i,j) = Pr {Tn > t\\Sn_1=i, Sn = j), probability that the sojourn

time between state n-1 and n exceeds t.

- aF(t,i,j)

Further we let F' (t,i,3) = at

to be derivative of F with
respect to time.

We can thus represent the probability element associated with a

single history as

m
I '
a(s,) [a(s__q» S) F' (t,S ., S)
n=1
In biomedical studies we require to have an absorhing state related
to the censoring times. We can allow such a state to exist and whithout

loss of generality let the last state to be a censoring time represent-

ed by (h + 1). A case history is then represented by.
m-—1
L]
a(sy)) nm [ a(s _,,S) F'(t »S _,,S]J
n=1
i u(h=S_)
X[ af Sn_ ' Sn) F (tn: Sn_1: Sn) ] m

1

u(Sm-h—1)

x| 28 qr B FlEy Sy g0 DI

[ e e

J
(7.1.2)

where h is the last disease state, h+1 is censoring, and u(i) is set
to zero for i< 0 and u(i) = 1 for i 2 0.

The distribution of F(t,i,j) can take various forms for the different
states. A simple method would be to consider an exponential distrib-
ution based on F(t,i,j) = exp (- kij £Y.o This distribution however
may be too ;estrictive. This choice of the distributional form of

the/
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the sojourn time is the major drawback in the proper use of this

type of method.

A more robust prgcedure however may be adopted by use
of the ranks of the sojourn times. We will present the method by
deriving the relevant likelihood functions. Later we will expand
the results of Lagekos, Sommer and Zelen by deriving survival

estimators based on a predictor -corrector method.

In order to express the (7.1.2) likelihood in terms of
non-parametric maximum likelihood estimators a parameterisation is
used by which survivorship function G(t, i, j) is given by

h h

r a(i,j) F(t,i,3) = Il G(trirj}
3=1 3=1

The full likelihood is then expressed by the above authors as

i B
I .
i transient states L) p. Lij (1530
3 1]
(1)
where
M h+1 j=1
Loy I = R | b m, log G(r, ,i,j¢ & m, log G(r, _ vl
ij £ 1=34+1 ilk k Tei ilk k-1
+ mijk log (G(rk_1,l,]) - G{rk, a0 1) (7.1.4)

Where r_ < ... <L, are the distinct sgourn times from the state i

1 M
INEG <% mijk is the number of sojourn times from state i to j of
length rk. li is number of subjects starting at state 1i.
By defining Pljk = G(rk! ifj) / G(rk_»Ir ilj]

so that
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G (rkr 1:]) =

n ==
o

1 ijl {7+1+5)

The (7.1.4.) may be rewritten as

M
ki1 R Megp = - Bis) 100 B4y -+ e 100 (10 40)
he1 h+1 M
where N, . = z m. =+ z z m.
ijk 1=§ ilk 1=1 caket ilr

It follows that Pi. has the maximum likelihood estimator.

jk
P,. 5 4= M. 7
ijk ijk Nijk

where Pijk = 1 if Nijk =0
And also giving

~ -~ j-T ~ h k-1 ~

a(i;j;r ) = (1‘-P.. } 1.[ P. I I P.

k ijk 1=1 ilk Tl ilr

The result as presented has an intuitive appeal in that, when
there are only two states the Pijk estimator reduces to the analogous
product limit estimator. In the situation of K states the results

yield a competing risk model given by Hoel (1972).

With the situation of multiple risks the above estimators
can in fact be dependent on the assumption inherent in the
reparameterisation of the survival rates as in (7.1.5). This point
regarding the arbitrariness of the conventions in situations of more

than two states is in fact accepted by the authors.

The/
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The (7.1.4) may be made more general by reparametering
(7.1.5) differently. We will do so with the aim of correcting the
estimators closer to the product limit estimator in the situation of
single risks. The major problem with adopting a maximum likelihood
approach then would be the problems associated with the estimation.
It is quite likely that the Pijk will not have a closed estimator.
An alternative method would be to use a prediction corrector method

by using a(i,j,r, )( probability of transition from state i into j

k

of duration rk). The pijk may then be reparameterised according to

(0) ss o
k 1-a {(1+3+L:) k ¢
G(” (rk. i,j) = 1 Pi({.}i 5 0 & = nP‘”
1=1 % 4= P a0 1=1 ijl
25 1
J=3
where in the above a(O) in one step of estimators are used to form
new survival function G(1). Clearly in the first step a(O)values

are set to zero. The corrector part in the above model is then the.
ratio of the probability of a case not making sojourn time less than
a par:icular duration (rl} from state i to j, over the probability of
not making sojourn time less than the same duration from state 1 to
any state. Such a weighing of the transition probabilities will then
correct the originai probabilities by the ratio of the units of time

available for transition at each state for a given time.

We will now continue with the.analysis of the data based on
the described method. We will later plot the semi markov probabil-
ity plots based on a single step and a three step procedure.

In all of what follows we will be presenting transition rate
schemes for the relevant disease states. We will not estimate

transition/
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transition times to censorings since they do not have the same

interpretation in terms of the disease.

The 561 breast cancer patients are observed under a
semimarkov setting. We assume there are three transient states.

Randomisation —> Local recurrence —x metastatic recurrence

We assume no local recurrence after a general recurrence which 1is

a justifiable assumption based on clinical definitions. We also
assume that there is a further state for censored cases although there
is no reason for presenting the probability distributions for these

classes of patient.

The data consists of 921 epochs of the 561 patient. All
patients begin from state 1 (not a necessary assumpticn), then all
patients transfer from one state to the other until the history of

(a]
4bservation for a patient ends in an absorbing state ( Dead, censored).

Case Number Time of Sojourn Arriving state.
1 52 2
0 3
0 4
2 193 5
192 5

TR
LU

In the above sub sample of the data the first patient has "local and
metastatic recurrence in the 52 month, and zero transition time to
death.

Case/



Case 2 has a survival for 193 months with no recurrence.
Of the 561 patients, 105 have local recurrence; 166 have general
recurrence and 63 are dead after the first transition from randomisa-

tion, giving

Pr (Transition 1,1) 0.29 + 0.025

Pr (transition 1,3) 0.50 % 0.037

0.21 + 0.029

[}

Pr (transition 1,4)
For the 105 patients with local recurrence, 89 die with metastatic

recurrence and 7 die with no metastatic recurrence.

Pr (transition 2,3) 0.93 + 0.038

Pr (transition 2,4) 0.07 + 0.027

255 patients have metastatic recurrence and 226 of them die. The
rest are censored.

Pr (transition 3,4) = 1.00

The semimarkov appraoch introduces certain assumtpion which are

too restrictive and to some extent unnatural for survival studies.
We will mention these assumption here for the present analysis but
later we will introduce non-proportionality of hazards as a good

basis for study of the scale of survival times. The set of

metastatic patients are in fact composed of two groups. The group

336

with previous local recurrence and the group with no record of previous

recurrence. A property of semimarkovs is that the transitions at
any stage do not depend on the previous states and hence in this case
we assume t hat the assessment of the progression of the disease from
metastatic disease to death is not affected by presence or absence of
local disease. Further in the semimarkov models time of transition
from previous states do not play any role in the pattern of develo-
pment of the disease at present state. Hence regardless. of the time

that/
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that a patient becomes metastatic , the analysis of a sojourn time

is performed from the moment the patient enters that sojourn time

onwards.
.21 Death
. ” 0 - 5 0
Randomisatcion »General ——— sDeath
29 9 > Death
LocalT>Gene ral —————>Death

We will not present the cumulative probability of transitions, that is
conditionalprobability of transition from one state to the other exceed-
ing a time t.

P r(transition at t, i, j) = P[ Tn >t \ present state 1is i,next is j]

The figure (7.1.1) to (7.1.3) show a plot of the probabilities
against months of transition from randomisation, local and general
recurrence. Once there is a local or general recurrence there is

a fast progression to death, figures (7:1.2) and (7.0.3) . There is
some similarity between transition from local or general disease to
death although the local to death set 1is very small. In figure
(7.1.2) the plot of general recurrence probability appears to start
at 0.7, the reason is due to the subgroup showing simultaneous local
and general disease. In such cases time of transition from random-
isation to local recurrence was recorded as a time from state 1— 2

and a zero transition from 2 — 3.

Although we do not emphasise a statistical test of
the wvarious subgroups of the data we will report the calculations
of the transition probabilities for the two transient options of the
trial. A formal test based on the proportiocnality of the hazards
will be developed later. Figure (7.1.4) to (7.1.7) summarise such

relationships/
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relationships. In terms of the interpretations of the figures

(7.1.1) to (7.1.7) a point must be emphasised that distinguishes

such plots from the earlier Kaplan and Meier estimators. The

present plots are transition probabilities as they occur and therefore
at the end of a time scale there is always a descent of the probability

values to zero.

We will now use the extensions of the method as described
earlier. We will use. probabilities of transition from one state to
another with a given duration for obtaining a corrected value of the
analogous survival times (which is the G function). We repeat the
method for the different transition times and in fact after three
stages of the method the estimated values reach a value such that the
fourth step dces not contribute. The three step rates are presented
in the same figures as the one step method, for the transition times
from randomisation. In general we will obtain rates which are closer
to those from the product limit estimator For the times other than
the initial state at randomisation we will obtain values close to

those of the one step methods and therefore are not presented.

In general the method has a drawback in that it assumes that
censorings are unimportant. This effect is most important in
terms of interpretations of figures if we are considering the lowest
levels of survival probability levels when only a few patients
remain. The three step method on the other hand presents an
improvement on the rates of transitions. In the next section we will
use the proportional hazard assumption to study some of the

events mentioned in this section.

7.2/
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7.2 Time scale variability of the covariate process.

In this section we will study the effect of treatments
on patients in terms of secondary response variables. Relevant
questions are,given that an event has taken place and it has been
a progression. of disease. Firstly how is each treatmeat group
behaving and secondly how is each prognostic indicator affecting

the disease process within each group.

The secondary events that we have considered so far under
the framework of the old Edinburgh trial are related to the various
forms of the recurrence of the disease. These results together with
the results of the exploratory approach of the non-parametric
likelihoods indicated a high degree of compatability between time
from randomisation to any secondary event such as local recurrence
or metastatic disease. Now we will analyse the effect of covariate
and treatment from secondary event to a later event. This form of
analysis fits the framework of semimarkov processes. in which rates
of transition from any state may depend on the state the subject

is occupying.

In the section on the construction of the overall likeli-
hood we showed how the probability of a response may be represented
given the previous event and censoring numbers prior to a time t(i}'
Now we will expand and define similar formulation.in terms of more
than ocne event of interest. In any given time period we defined

two types of events of interest. One event was named to be the

responding/
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responding event of interest and the other was named a censoring.
Now the argument may be expanded to allow various forms of
recurrence of the disease to contribute to the partial likelihocod.
This can be achieved by allowing censoring to contain other events
after the event of interest. Therefore for any time interval

t we may have s possible strata in which transitions of

(1) T Faen)
various forms are taking place. With the single risk case a full

likelihood was represented by

ﬁ Pr (individual (i) Immediately last censoring )
i=1 dies and present death
information
k (individual (i) 1is \\~number at risk after )
z Pr censored censorings and death

The former part of the likelihood is by definition the partial
likelihood of Cox (75). Now by grouping the cases intps strata

within which a particular response set. is available we write

k
i ns Pr(individual (i), immediately last censoring )
s)-l i=1 responds \\present death and transition
information
I k +1
sz1

Sn Pr (individual i is number at risk after deaths )
i=1 censored \censorings and transitions

The present development by Gail et al (1980) indicates that the
Cox's method may be used in an analgous manner with a stratified
analysis of the data. The strata are further defined to be a
function of s = S [N(t), Z(t), t }. The Z(t) and t have the usual
interpretations under a Cox's model. However N(t) represents a
counting process by which one can define the base line hazard

function/



348

function to vary for the variocus forms of censoring or events
depending on the time of an event. The initial recording
event of interest is the appearance of the local disease prior
to a metastatic development. Tnder the present study another failure
time of interest is the time to appearance of either local or
metastatic disease, usually termed as the disease free interval.
As a general rule we define a three parameter function to represent
a response variable

R.V. (Entry, Termination, Censoring).
For the disease free interval the function is,

DFI (Randomisation,Local or metastatic disease, Last follow-up)
For the progression of the local disease we may be interested 1in,

(Evidence of Local disease, Metastatic recurrence or death,
last follow-up)
or alternatively (Evidence of local disease, Metastatic recurrence,
last follow-up or death).
As we presented the hazard rates in thke Chapter 2, the initial period
after treatment show converging hazard rates for. the two treatments.
We suspect that a similar pattern may be present for the time to
local and metastatic spread of the disease. We therefore con-
jecture that there may be a time dependency present and the
proportional hazards with a time dependent covariate may be more
suitable. That is we may obtain relative risk factors of the form
of figure (7.2.1) The period following the above critical events
are also of interest. That is we may be interested in time after
local disease to death or the development of the metastatic recurr-
ence. We define stages of the progression in. the present trial
to be R,L, M & D for. randomisation, Local recurrence, Metastatic

spread/
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spread and death. We also define a hazard. rate for each of the

, <i> . )
intervals to be A <;> , where <i> refers to the entry set and <3j>

R . 3 ;
to the departure sat. Thus AL is randomisation to local recurr-

ence with other events as censored and A; is the hazard for
local to metastatic rates. This notation will produce a general

enough terminology. by which various forms of entry time and termin-

ation time may be defined.

Time from local recurrence to death Ag is then give by

( A;, Ag Ag). Time from local recurrence to time of death or
r

x ; ; L ;
metastatic recurrence which ever happens first AM p 1s then a
r

5 L
function of hazards of the strata (xM M Ag). Any case not
f il <i>,
indicated as a member of set <i> in A<j>ls then excluded
from the strata and cases present in <i > set and absent from
indicator set <j> are the censored set of study. In the above
4 . <i> ; ;
notation we define each l<j> in terms of a time wvariable (t).
Each covariate set Z(t) would then be associated only to the set
of <i> present at time of study. A time dependent function of
Z(t) can include information in past history by referring to
information in terms of events prior to <i>. The main emphasis
of study with this appraoch is to determine separately for each
[Tent]
stratg@ the significance of a particular covariate set for a given
response variable. This is different to a stratified analysis

of the type described in earlier chpaters where the emphasis was

on obtaining efficient estimators for a common 8 obtained from

350

pooling information from all strata. The former approach requires

likelihoods of the form

xs(t, Z(t)) = Aos(t} Exp ( Bs Z(t) )
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Where depending on the particular form of the response variable Bs
estimator is different. The latter approach requires =

Ag lEe 2 CE)) = (t) Exp (8 2Z2(t))

AOs
The last two models clearly differ in their functional form of

g and Bg*

An example of the time dependent model in study of the

randomisation to death would then be introducing a time dependent

covariate Z(t) = 0 if time for a single patient is prior to
metastatic disease and Z(t) = 1 if time is after the metastatic
disease. Basically in this approach we are affecting the

proportional hazard rate by introducing different weights to the
time prior to say a critical event and post critical event, for

each fixed covariate set.

Up until this point we have been mainly concerned with
the type of covariate that is either fixed at the time of entry of
patients or it has been part of an external process from time and
the response variable. Strictly the time effect is assumed to be
completely related to the covariate set which is fixed from the
beginning. This form of analysis 1is often the most important
and often sufficient for analysis. However, the covariate set may
have a changing pattern in time. In this situation two different
conditions may be of interest. First is the situation where time
trends are present and they are due to the processes within the
covariate of interest. An example is the situation of age of
patients in a low mortality study. We will observe an aging
effect and if the duration of survival is short it may be of interest

to/
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to know a possible trend in ageing. Secondly, two processes may

be intzsrtwined. An example is study of long term survival in the
presence of ageing, in this situwation time trend may be related to
the time scale itself and we may be interested in detecting depart-
ures of particular type from the model, like non-proportionality of
particular type. The latter type of time dependency forms the basis
of an analysis in whica we will test non-proportionality due to

an intervening event. In these analysis we will study the random-
isation to death time for the Edinburgh trial and consider the
metastatic spread to be the intervening event. In the context of
the present study of the old Edinburgh trial, we identify three
forms of covariates. One known generally is a fixed prognostic
attribute of the case at diagnosis. Clearly these effects are
external to the time scale and are inherently related to each
individual patient. An example 1is the effect of Node status or
site of main lesion. These effects were generally dealt with in
the previous section. Now we introduce the time dependency concept
and look at some of the fixed covariates. An example although not
part of discussion under the present framework is age of the patients
being related to time scale. This time dependency affects the
duration and or magnitude of the age effect. Another similar
covariate is the size of the initial tumour and the duration of

its effect on the survival time. Further we consider a third type,
the stochastic type of internal covariate, in which we introduce
time dependent covariates of a type related to duration of prior
events. This is taken to be the effect of time to local or

general recurrence in determining survival past these events.

Another/
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Another example of the third type is to consider time
dependency, related to the status of patients, where the covariate
is inherently related to the survival process. An example of this
effect would be allocating Zm(t) = 0 and Zm(t) = 1 for times prior

and past metastatic disease.

In Chapter 6 we concluded that age, menopausal status,
T, N, S and size are the important factors affecting the survival
of patients. This pattern is consistent for both arms of the trial.
An interesting form of analysis is then related to the effect of
prognostic indicators in time prior to metastatic disease and the

significance of the effects after this event.

At this stage we attempt to utilise the size and age
information by a time dependent covariate. Further we deal with
an internal stochastic time dependency by considering the level of
progress of disease due to the appearance of local and metastatic
recurrence, (i.e. disease free interval). In terms of the
secondary failure times however we consider the local disease also
to be an event of interest. This is different to the exploratory
approach of the last chapter in which secondary failure times were

defined in combination as end points only.

Initially we introduce a model of the form containing
size effect only since size can have relevant time dependent pro-
perties. Size effect is initially defined to have an external
effect on the time scale. This definition will allow a relative

risk function to be estimated that projects the base line hazard

Ao{t)/



354

Ao(t) on to the corresponding hazard funtion A _ (t, size) only by

0

a linear and constant relation of the relative risk namely Expfssize
r

size). We further introduce the treatment effect by the same
procedure and definition and produce a relative risk function.

size + 8 . treatment)

Exp (8 treatment

size’
These two models together with the treatment only model of last
section will yield the following values for the estimators.

RR = Exp ( B treatment)

treatment”

Btreatment = 0.3677 S.E. = 0.1168 X2 = 9.97 p = 0.001

RR = Exp (Bsize . Size)
B . = 0.2132 S.E. = 0.0562 X2 =22.60 p <0.0001
size
= p . si + .
RR = Ezp ( Bgige ° Size Btreatment® treatment)
Bir s = 0.227 S.E. = 0.0581 X2 = 23.60 p <0.0001
size
2
Btreatment = 0.3289 S.E. = 0.1253 X = 7.92 p = 0.0012

Ctearly the models indicate a better relative survival time for the
radical surgery treatment versus simple surgery with X-ray therapy.
The relative order implies a worst survival of order 1.44 for the

simple surgery group.

The size effect is also playing a consistently increasing
role. For each two centimeters increase in the size of the
initial tumour the relative risk increases by an order of 1.53.
The effect of size and treatment given the present time scale is
additive 1in the relative risk sense and there is no significance
attached to the slight negative estimate of Bsﬁ for the size and

treatment interaction.

RR/
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RR = Ex9 B ., size + treatment + treatment.size
X ( size 8 Bs.t )

treatment”
8 . = 0.2189 S.E. = 0.0597 X2 = 22.61 p < 0.0001
slze
Btreatment = 0.3310 S.E. = 0.1319 X2 = 8.43 p = 0.0010
8., = -0.0521 S.E. = 0.0732 x% = 0.85 N.S.

Now we define the relative effect of each covariate to be
dependent on a transformation of the time scale. That is firstly
introduce a time dependent factor to assess the influence of size
over time and secondly to test for the proportionality of the hazard
rates of the option effects. As we showed in Chapter 4 the most
natural form of a transformation of the time scale is achieved by

a log transformation and thus for the time dependent covariates

we introduce a log transformation followed by a subtraction of
near mean for normalising the variable. Therefore initially &all

time dependencies are scaled to [log(time in months) - 2].

First we introduce a model with the time dependency of the
option effect. By the definitions of the proportional hazards the
effect of time must be consistently related to the relative risk
function regardless of the time of death.

RR = treatment + Bt‘ treatment[log(time)=-2])

= 0.3782 S.E. 0.1174 %2

E -
*P (Bireatment

10 . = 0.001
Btreatment 9.43 P

2

=-0.0921 S.E. = 0.1131 X 7551 N.S.

B
Thus there is no indication that the proportional hazard assumption
is violated with respect to treatment. There is a slight negative
value attached to Bt which indicates that with increasing time the
value treatment effect diminishes and that the largest differences

due to treatment are in the earlier part of the study.

Figure/
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Figure (7.2.2) presents a plot of relative risk functions
over time for treatment. The Figure indicates that the relative
risks with the inclusion of the time dependent variable is con-
sistenatly positive and that there 1is no indication of crossing

survival curves.

The size of the initial tumour was taken to have a
consistent effect within all time periods. Now we proceed with
a model to test this assumption. Basically we use a similar
method as the method for testing the proportional hazards assumption

of treatment effect. The time transformation is again [log(time

in months)-2?] - Thus the relative risk for the size and time effect
is -
RR = Exp ( Bsize size + Bt size. [log(time)-2])
3 Size = 0.2991 S.E. = 0.0619 X2 = 24.80 pr<0.0001
3, = -0.0178 G mi =0 0104 X" = 294 N.S.

Once again there is not a significant improvement in the size
effect interaction if we allow the relative risk to be time

dependent.

In the above model using the time dependency terms we note
a negative § which can indicate a diminishing size influence cover the
time scale. The probability value of X2 does not reach a significant
level at 5% for the time dependency. For the long term survivor
there is no suggestion that the size of tumour is playing a minimal
role. Nevertheless we mwesent thepattern in figure (7.2.3) in which the
values of the relative risks are plotted for a few values of time

and/
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and size separately.

Tables (7.2.1)

and (7.2.2) present inter-

mediate values for obtaining the relative risks.

size*

size*

At time zero, size plays its maximum role in determining
risk of death.

larger values of size compared with the cases at mean size of 2

centimeters.

than 2 centrimeters is 60% of the effect of the size effect for
the cases with mean size of 2.
converge with time.

tumours and 0.671 for smaller tumours at the 180th month.

Now we will consider the same form of time dependency with
a different functional form.

formation is natural in the sense of non-propcrtionality of the

Weiball/

[log(time) -c]

size &2 2.5
-2 -.6694 -0.5509
0 0 0
2 .6694 0.5509

3

-0.4214

0

0.4914

Table (7.2.1) ( B

size

[log (time)=-c]

« Size + B
t

size.Time)

size =2 25 3
-2 .572 .601 .6117
0 1 1 1

2 1.953 1.7348 1.63

Table (7.2.2) Relative risk.

Again initially the size effect for tumours of less

The values of relative risk

The relative risks reach 1.6 for larger

It seems that the previous log trans-

358
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The relative risk is intially twice as great for the
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Weiball family. In the present study we suspect that the effect

of time non-proportionality for each size effect is linear. That

is although we can hold the view that initially the size effect 1is

most significant, the distinction in the present function will

be in thenature of the rate of the decline of the hazard rates.

Table (7.2.4) refers to the new sets of risk function that are estimated
using the new functional form of time dependency. The actual

relative risk is then presented as

RR = Exp ( Bsize . size + Bt size [(time/20)-2]
B = 0.3081 S.E. = 0.0528 x2 = 34.05 p< 0.0001
size
Bt = -0.0154 S.E. = 0.0085 X2 = 3.37 p = 0.064

Compared to the previous logarithmic function of time dependency the
actual magnitude of Ssize remains close to the present estimator.
The wvalues of the estimator of the standard error of St also changes
slightly. We refer to tables (7.2.3) and (7.2.4) and figure (7.2.4)

for a graphical representation of the relative risks

[(time in months/20) -2]

size* size -2 2.5 7
0 -2 -.6778 -0.5392 =0.4006
2 0 0 0 0
4 2 0.6778 0.5392 0.4006
Table (7.2.1) {Bsize' size + St size.time)

[ (time in moaths/20)-2] /



361

*fouspuadep aWT3 JO UOTIOUNT ABDUTT  *I2ZIS I0J 7Topow Iuspuadap dWTF JO ¥STI SATIRTIM (#°7°L) 2Inb1dg

06
awTl omp

i
S9ZTS JI9MOT

s8zT1s Iaybiy

- O‘N

*)STI 9ATIZTSY



362

[(time in months/20) -2]

size* size -2 2.5 7
0 -2 «5077 .5832 .6699
2 G 1 1 1
4 2 1.9695 1.7146 1.4927

Table (7.2.4) Relative risk.

We thus conclude that there is a slight suggestion
that size of tumour for the long term survivors may play a less
important role. At the early part of the time scale size has
the maximum effect in determining risks of death. The relative
risk is highest for the larger tumours and has a ratio of 2 : 1
for larger tumours versus medium sized tumours. This ratio reduces
to 1.5 : 1 for the same sizes after the passage of time in 180th
month. One final remark is that the above conclusions are com-
patible with models with no change over time and models with treatment

effect included.

7.3 Eventtime variability of the time scale.

Up until now all time effects have been dealt with on
the basis of a time scale and the covariate process. That is we
have assumed the change in time scale to be due to an. external process.
Now we deal with covariates in a time scale within which an inter-
nal variability is assumed. That is we may estimate the time effect
difference for time prior to and after a critical event. Generally

it is regarded in breast cancer that the initial treatmeant effect

does/
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does not play a major role after the development of metastatic

disease.

We will initially develop a maximum likelihood function

for a general approach based on a parametric method. The likelihood
function will be used later to show how all the relevant inform=-
ation may be extracted by a particular test of the hazards. For
the present methédology and the development of the likelihood we
consider three separate time events.

(1) Death without the recurrence of disease.

(2) Time to the recurrence of the disease.

(3) Time from recurrence of the disease to death.
The situation is presented in Figure (7.3.1)

. Recurrence

s

Start . . Death time

X,

Figure (7.3.1)

We may thus expect that initially all patient groups are subject to
risks of both recurrence and of death. We can represent the time

of death T as

X ifx1\<x2

X, + X, if X, )X,

We can expand the above definitions so that censorings may also be

included in the formulation. In here any recorded censoring may

refer/
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refer to two censoring paths. One is censoring before the inter=-
vening event and death and the other before death but after the
intervening event. In here we refer to censoring events as c.

Figure (7.3.2) to all the possible outcomes.

(a) t
(b) | t
X
(c) i ’ c
X
(d) 2 c
time

Figure (7.3.2) Types of possible observable events.
(a) refers to an outcome for a case that has a death with no
recurrence of the disease being recorded. The only observable

time is therefore x, = t with the distribution X k6 £ X

1 1 2.

(b) refers to a case with a recurrence at time X5 and a death
at time t, giving Xy = t—xz. In this case we have X2 = x1

(c) refers to a case recurrent at time ¥_ and censoring at time c

2

giving X, >c-X In this case once again we have a distribution

3 2
(d) finally, in this part we refer to individuals who are observed
but do not show a recurrence and are alive at the end of the study.

The distributional restriction of the case is then X1>c and X2 >c

In general for most situations it is justifiable to make
assumptions on the distribution of X%, and Xyr SO that random
variables have an independence. Such an approach is useful in the

estimating/
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estimating part of the likelihood function with parametric
restrictions for each of the three events. In here we consider a
general likelihood function. Later in the discussion of the
covariate we will reconsider the assumptions and show the use of a

convenient test for the independence of the distributions

In the construction of the likelihood we consider a model

in which the two paths to death are independent. That is x1 is
independent of both X2 and x3, but the sections of the failure time
path with recurrence namely X2 and X3 are dependent. The general

likelihood function may then later be completed with the usual dis-

tribution functions like the Weiball or exponential.

We now introduce the following notations for the distribu-
tion of X1, X2 and x3 given X2 has occured. x1 has the density
function f(x1) distribution function F(x1) and the survival function
F (Xi)' X2 has the density function ngz}, distribution function
G(xz} and the survival function E(xz). Finally XB\\XZ has the

density function h(x3\.x2), the conditional distribution function

H(x3\ x2) and the survival function H(xB\ x2).

The maximum likelihood function is then composed of the
contributions of the four types of observable events (a), (b), (c)
and (d), as in figure (7.3.2).

(a) presents the conditional distribution of thedeath times given that

there has been no recurrence of the disease.

F_(x = < <
1(x1\:-<1g xz) Pr [x1\ x1\x1\ le



Prl(x,$ x1)m (X, X))

Pr{x1$ Xz]

1 .

1 ( J .

— i, SR | £(y.) g(v.) dy. a
PrIX.< X,] I g, ol Stg) Wy GF,

X

[ =

R TITREN] MEnt S N
12 0

The differentiation of the distribution function then gives the
density function,
1 e
b 2 —
£, (3, \%, < X,) Pr (X< K] £(x,) G(x))
Thus the contribution to the likelihood from case dying at x
is

f{x,\ x1$x2)‘. Pr [X, §X,] = £(x,) G (x)

(b) Gives the jcint conditional distribution of recurrence and death

after a recurrence.

F23(x2,x3\x2 sk ) = Br (RS xz)ﬁ (x3s x3) \x2< X1

2 Prol (X8 % ) \(X€. %) \ (X< X))

<
Pr[X2 X1]

dy_! dy2 dy3

f{y1}g(y2}h{y3\y )
2

366

3 (2
1 =
T Pr(x. < X, I J F(YZJQ(YZ)h(y3\\y2)dy2dy3
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After differentiating the above distribution functions we will

obtain the joint conditional density function.

- o peat e § (
£3 (%0 H\X < X)) = PLIX,< X, Fix)alx) higg\ x) (7.3.1)

Thus the contribution to the likelihood for an observation with

the intervening event time;x2 and the death time xBafter the

recurrence is

B U x3\X2< X)) . PriX,< X, = Fxy)g(xy) h(xa\ )

(c)The distribution of type (c¢) is similar to (b) distribution with
a difference that the ending point is c¢ rather than Xy Using

(7.3.1) we have

% _ i = -
Jc_x Tt RE SRR, = SERen. T Ulaind Bley

)
2 2

giving a likelihood function represented by

2

(d) Finally the type (d) represent cases with a censoring time c
and no time of recurrence recorded. The contribution to the
likelihood 1is

Pr[x1> c, X.> c]

2

i
S—
aQ

Jc f(k1) g(xz) dx1d32

Now/
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Now we define a total of n patients with nl, n,, n and n4patients

3

representing the number of cases with (a), (b), (c¢) and (d) events.

The final likelihood is then given by

M
L o= 1 £(x;) ‘5(2:1)
i=1
n.l ; nz .
{ _ | )
g T R0 90} BERCR,)

n, +n, +n

1 2 3‘_ _
, & F(%,)90%;) B (%N %)
i=n_, + n_+1
1 2
n — —
° II F (ci) G(Ci)
i= n]+n2+n3+1

Now by a substitution of a particular form of a distribution form

we will be able to estimate the relevant parameters. In here it may
be possible to obtain a reasonable estimation proeedure for a
constant hazard case using an exponential distribution. However

if we adopt a more robust distribution based on the Weiball distribu-

tion the method will become very complex.

If we adopt a distribution with the covariate restrictions

of the proportional hazards assumptions we will have

ACX v Zi} = (X ) Exp (8, Zi)

Hai. MM

As the hazard rate of the ith observation of the xT time. The

survival function is then by the definitions of the introduction

>4
I = — 1 = 0
T (%,42,) Exp [ Jo Ag(t) Exp(g, 2.) dt]

There/
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There is clearly a one to one correspondence between the hazards

and the survival functions.

Based on the assumptions of the proportional hazards we

will have

e
1]
h= 3
rh
el

i'zi) G(x i

n +n2
. & B UEyaky) 9% i8,) RbEgeN Ty wEyd
1=n1+1
n1+n2+n3 3 _
Q | P
I F(Xy502;) 9(%,;,2,) H(e;=% N %))
i=n_+n_+1
1773
n — —
3 I Fle,, 3,) Glc,,2,) (7.3.2)
1=n1+n2+n3+1

The above gives a good representation of the full likelihood for
a process involving an intervening event. = Now temporarily

returning to the discussion of Chapter 4 we have.

D 8Z.(t.) n § 82, (u)
L = il Ao{t.)e I Exp{ -J A.(u) e du} as in
: i : 0
i=1 i=1 0
(4.4.8)
b ti B Zj(u) s
L = 1 ( [Exp{ - J Ao (W) I e dup ag(t)) =z B 3> 4]
; : i~ &
i=1 E. JeR JeR
i-1
Exp ( sti(ri))
z . sz{ti) as in (4.4.11)

jeR

The/
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The expression (7.3.2) has been presented for. a proportional hazard
rates with fixed covariates and the probability density functions,
f, g and the joint density function h. The expression (4.4.11) in
fact can allow time dependent covariates within the time scale (if
we assume non informative censoring and a further generalisation for
the model so that Zi{u} and An(u) are assumed to be independent
within the integration region.) The consequence is to preserve
the proportionality of the hazards while testing the lack of fit

by a time dependent covariate t. We in fact can have the following

hazard rates.

A = A B

10540 3) (%) Bxp (Fy2,)

)L = X B

20 %;02) (%4) BXp (P42, +8, €, z,)
A3(K5025) = A (%;) Exp (B.2; +8 £, Z)

t1and t2 are described below and are not
related to 4.4.8 and 4.4.11.
In so far as a testing of covariate effects is concerned we may be
interested 1in tests of non-proportionality due to either 12 or 13
which are assessed by functional forms of tT or t respectively.

Thus (7.3.2) over generalises the process for a relevant +est. We

then have the following 2 x 2 table.

Contribution of individual to likelihood
for a day of surviwval.

Test of non-proportionality | Before recurrence | After recurrence

For time to recurrence t. =T k=10 t.=0 t2=0

For time after recurrence t,=0 t_. =20 t1=0 t2=1

The/
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The survival distributions can now be expresses as

X
. i 5
- {"11'31) = Exp [ Jo J\O(U) Exp ( B1Zi)du 1
_x2_
-— 1
G (XZifZi) = Expl -JO - AO(U) Exp {B1Zi +BttTZi} du]
L %3\ %4
H (%5,\ %,;:2;) = Expl -JO g (n) EXp(B, 2, FB %) au]

Note that in essence sincexo(u) is a nuisance function an
adjustment of the initial wvalue of Ao(u} at each iteration should

suffice and therefore t:1 and t2 are otherwise essentially independent

from the integration. t1 is then a function of u for its initial

value and independent of the integration by definitions of the partial

likelihood. t2 is conditional on tT and has a similar definition

from partial likelihoods. We thus car allow adjustment of the
time scale before or after the recurrence by introduction of a

time dependent covariate t, or t2’ using the proportional hazards

-

with the Kaplon and Meier base line hazards. As in (7.3.2) the

group 1 to n, and n1+n2+n3+1 to n are the usual contributors in the

absence of recurrence. The relevant part of the distribution cof n1+

1 to n1+n2;and n1+n2+1 to n1+n2+n3 is now represented by either t

or t2 depending on the type of test. From now we will return to the

1

language of the proportional hazards model and express t1and tzas

the Z(t) covariates.

If the assumption of the proportional hazards does not hold

for a period of the time scale,between the two covariate subgroups the

time dependency will be testable.

In/
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In the situation of non-proportiocnal hazards the value
of Z is allowed to change within the time scale. In this context,
rather than assume a covariate effect is acting consistently in a
multiplicative manner on the base line hazard, we can test the value
of B in particular periods of time. A different deviation of
from the base line hazard within the time scale can then be attributed
to a priori important event taking place before the last follow-up.
In order to assess the value of such an effect in application, we
test the impact of the development of metastatic disease. We consider
a time dependency of the above type, with Z(t) = 1 if time is after
metastatic disease and Z(t) = 0 if time is prior to metastatic
disease. Thus we will have a relative risk, initially composed of,

Exp (Bz Z *‘Bt Z xZ(t) )

We know that the treatment plays an important role in determingin
survival. By a rescaling and use of the assumptions of the
proportional hazards we did not have suffiqient evidence to reject
the proportionality assumption for size or treatment. Now we test
the assumption of proportional hazards based on the development of
a secondary event using the above constructs and details.

RR = Exp ( 8 treatment + 8, . treatment . Z(t) )

treatment’ +
- 2 _ B
Bevaatinsne 0.3982 S.E. = 0.1170 X = 11.61 p = 0.0007
By = -0.1239 S.E. = 0.0781 X2 = 3.10 p = 0.0748

Although again we do not reject the proportionality assumpticn
based on the development of metastatic disease, there is some indica-
tion that treatment effect is more substantial prior to metastatic

disease.

The/
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The main relative risk under study so far has been the
survival relative risk based on the various covariate functions.
Earlier in this chapter we explained a method for defining different
response variables more clearly. Now we will study time dependency
with éther response.variabies. This is analgous to the study of

competing risks or multivariate failure time study. Initially we

will concentrate on stratified analysis based on the log-rank test.

The hazard function AE analysis indicates that there is

not a sfinificant difference between the two arms of the trial,

by either the log rank test or the Wilcoxon test. (Chisquared

values 1.21 and 0.82 respectively). On plotting the survival
curves, for both treatment groups we note quite similar rates.
However on plot of the hazard rates there is an indication that the
simple mastectomy group are at a slightly higher risk of developing
local recurrence than the radical group. This effect is not signifi-
cant although produces a relatively larger number of locally
recurrent patients within the first three years. Figures (7.3.3)

and( 7.3.4).

' By considering that the local disease may be an important
intervening effect we will continue with analysis and consider l;,D
and later A;. Time of local recurrence to death and local recurrence
to metastatic disease do not show a significant difference between
the two treatment options. The tests are performed for a stratified
analysis as well as a pooled stratified analysis according to time

to the development of local disease. The three strata are defined

as in figures (7.3.5) to (7.3.8)

The/
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The time from randomisation to metastatic disease indicates
a similar pattern to that seen for the time £from randomisation to
death. The radical surgery group show lower risks with the chi-
squared value of 4.01 and the probability value of .0457. No
difference of statistical value is detected for the actual treatments

past the development of metastatic disease namely for the hazards of

AWM

o5 The tests for hazards of kg is performed in a similar manner

AL
to those of M,D°
One pattern which consistently emerges indicates a higher

hazard rate for the simple surgery group in the initial 3 year period

after treatment, figure (7.3.9) and (7.3.10). The above fiqure
conforms to the findings for the AE hazards. We thus consider the
R
=A
DFI LpM'Du

The disease free interval 1is traditionally an accepted
response variable in survival studies of breast cancer and in here
the hazards indicate a consistent distributional structure for both

local and metastatic periods.

The logrank test indicates a significant difference between
the treatments in terms of the DFI. X2 value based on the lograak

test is 4.08 which has the corresponding probability wvalue of p=0.043.

5 which is the

Finally we study the response .time ofA
time from the development of the metastatic disease Or local recurr-
ence given locals are prior to metastatic disease to the time of

death./
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death. The logrank test for the treatment differences indicates

a value of 4.85 with the significance level of 0.0277.

The period to the appearance of the local or metastatic
disease is further used as a stratifying variable for a comparative
analysis of radical versus simple surgery with XRT in terms of the
response variable with the hazard AE’M L We define three strata,

based on DFI.

2
Total R No.R Dead Total S No.S.Dead. X P

DFI 1  (Rvs) 22 21 28 28 9.39 .0022
1 <DFI{3 (Rvs) 41 38 50 49 1.48 .2240
3(DFI  (Rvs) 69 53 61 47 0.66 .4165

Then for patients recurrent after the 1st year their having had radical
surgery is less likely to benefit the patients. Figures (7.3211) and
(T e3ud2) s However for those recurring early there is benefit in
terms of survival by a radical surgery. We will show later this is

not an indication of interaction.

We will continue the analysis by inclusion of a time
dependent covariate related to the disease free interval, using the
Cox's proportional hazard model. We will use the formulations which
were presented in the early parts of this section on the intervening
events. Now we will use such concepts to detect departures of
specific type from the proportionality of hazards. In particular
we are interested in the group of patients showing an early recurrence
of the disease. We will define a function t* which is the time to the
detection of recurrence. We first analyse the data according to
the relative risk function of time of first recurrence to death, in

presence/
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presence of treatment effects and time dependency due to the DFI.

That is a model of the form,

RR “™ = Exp (8

5 treatment + 8, treatment (log (t*)=2))

treatment

A model of the treatment effect gives

2
Btreatment .1475 S.E. 0.0658 X = 5.20 P = 0.0225

which closely approximates the logrank test where no time dependency

is included in the model. With the inclusion of a time dependent

effect we have

1}
]
1}

.1487 S.E. 0.0698 X = 5.81 P 0.016

Btreatment

-.0720 S.E. 0.0501 X = 2.85 P 0.0871

Be
There is not sufficient evidence to conclude confounding over the
disease free interval. However as a priori one tailed test there

is an indication of narrowing of the two treatments.

Finally in this chapter we will develop a methodolgoy for
a family of functions for the analysis of an intervening event in a
clinical trial using Cox's proportional hazard model. Clearly there
are difficulties attached to the analysis of trial data if in the
course of procgress of disease there are a few routes acting which
differ for various patients. By a fixed covariate approach and
the proportional hazard assumption we may do a useful analysis as
long as there is not a crossover of the hazard rates. The g

estimator provides a good basis for the interpretation of data.

One of the problems in such an analysis is that often
the present methods of treatment may not affect the total survival

time/
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time but rather may lead to differing qualities of survival depending
on the development of the progression of disease. The example of
analysis by the semimarkov procedure gives a representation of the
problems involved. The method we will develop in this section in
continuation of (7.3.2) allows a formal test to be performed for
the intervening event. By testing the rate of change to the event
of interest prior to an intervening event and post intervening event
for a particular treatment or subgroup it is possible to detect
departures from the proportional hazard assumption. Much of the
work in this area is concentrated in the actual estimation of the
parameters. In line with the developments of the last section we
will continue by concentrating on the functional forms of the time
dependency . According to the previous definition we considered

two forms of logarithmic and linear time dependency.

Now we will develop a functional form by which we may
study the pattern of development of risks by adjusting the rate of
severity of the intervening event to be a function of the time scale.
That is we have a relative risk function of the form

E Z + £(2 2

xp 1 B4 ( 1-t ) Bt)

where = = < g < =, The importance of the intervening event may
then depend on the component of time prior to and after the event.
Figures (7.3.13) and (7.3.14) represent the two possibilities. The
figures also present various functions of a There is an area
of close overlap withint® which covers 1n (t) and also Exp(t) for
the wvalue of t. In the example if we consider metastatic disease
to be an intervening event there exist three time dependence
variables, t , t -t and t_. The t_ represents the survival time

m D m D D

within/
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within which all remeasurements are made. The t and ty,- £, are
periods of time that subdivide tD' As an extension we let & represent
a wedght function for the transformation of the periods. Detection
of the metastatic disease implies a progression of the disease for
both treatment groups. In the comparison of the treatments however
we expect the proportionality of the hazards to hold throughout the
time scale. By letting o > 0 we can test the metastatic disease
or other intervening event progress in terms of deviation from
proportionality. This transformation is analogous to the

Exp {tD - tm} type of time dependency, by which the longer the
period of survival after intervention, the more risks increase.
Figure (7.3.13) with ¢ >0 shows a situation where there is a build

up of high risks from intervening events.

Alternatively we consider the time tm and the test of
the period up to the intervening event. A possible transformation
as presented in figure (7.3.14) is then by a= 0, which implies
that non proportionality due to the intervening event may be
assumed at a constant risk previous to the detection of the inter-
vening event. Further the transformation of 0 < ¢ < = 1is a
situation within which cases are initially at high risks of showing
a survival pattern more critical than the proportional hazards
assumption, but with the passage of time the two treatment groups
produce proportional rates. At ¢ = 1 we have a replicate trans-
formation of the actual time scale. What is of importance in all
thes2 transformations is the magnitude of the relative weights at
each period of time, in comparison with the adjoining times. There-
fore for reasons of dimensional symmetry and also a faster convergence

of/
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of the Newton Raphson procedure we use the time scale,

and tD—m - (t. = tm)

We thus recall the relative risk function for the treatment only
model in the full time scale of randomisation to death.
2

Btreatment = 0.3677 S.E. = 0.1168 X = 9.97 P = 0.001

We will now consider a scaling of the time from metastatic disease

to death with eset to a value in the range 1 to 0. Previously we
defined o between - =to +=, Clearly in here value of o = —» will
transform the measure of time dependency to zero, that is £ ™ as

X > oo, Given this situation in fact we will ceturn to the model

with no time dependency included. The initial value of o we consider
is at zero. In the earlier part of this section we derived the value
of time dependency according to Z(t) = 1 for time after metastatic

disease. This is in fact the same as Z(t) = tG. The estimated B

values are,

]

0.3982 S.E.

[}

Btreatment 0.1170 X = 11.61 p = 0.0008

0.0780 X2= 3.096 P = 0.07488

1}
1}

B -0.1239 S.E.

t
Indicating there is no suggestion of lack of proportionality of tne

tvpe with a constant scale after metastatic disease.

Now we consider a linear effect of the metastatic disease.

That/
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That is
Z(t) = linear normalised time after metastasis.

giving, [(t/15) -2], where t is time after metastatic disease. Thus

RR = Exp [Btreatment treatment + St treatment. time]
2
Btreatment = 0.3855 S.E. = 0.1181 X = 10.11 P = 0.002
Bt = -0.1389 S.E. = 0.0847 X2 = 2.69 P = 0.0956

Referring to table (7.3.1), we preseat the transformations of the

time scale for nonproportionality. Use of the various power
transformations of the time scale is a good check on the consistancy
of the results that may be obtained. In the present context the non-
proportionality does not show a significant deviation from the propor-
tional hazard model; however we note that at d = 0.4, the scale of

non pcoportionality is at the most efficient value.

In fact for the present data the different power
transformation do not influence the estimator of treatment a great
deal. As a general conclusion the appearance of the metastatic
disease does not influence the assumptions of the model. The final
conclusion of the present chapter in fact conform with the analysis
of the Chapter 6. A point of interest howeve is that in the analysis
of this chapter we have not considered only.one event variable but
rather two intertwined processes through time and have concluded that
the events through time do not influence. the conclusions of our study.
The implication in medical terms is that the relative risks between
the two treatments according to this data do not provide evidence of
a difference for times prior to and post metastatic recurrence. Since
the occurrence of metastatic recurrence is an intervening random var-

iable/
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variable we use different transformation with cand again there is

no suggestion of a deviation from the above finding.
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Estimated value

.3982
-.1239
.3985
-.1321
.3992
-.1368
.4021

.4034

-.1411

.4029
- 1411
24018
-.1408
.4015
-.1407

;3885

-.1401
.3867

-.1395

.3855

-.1389
.3842
-.1349
.3769

Table (7.3.1)

5.E,

1170

.0780

.1163

.0775

.1158

.0775

1151

.0749

.1148

.0721

.1152

.0734

+1159

.0751

.1163

.0775

.1169

.0809

.1176

.0825

1181

.0847

.1201

.0897

L1211

.0928

11.25

3.02

11.43

3.15

11.75

3.44

11.76

3.89

11.78

3.82

11.45

3.65

11.26

3.45

10.83

10.53

2.94

9.97

2.79

9.83

2435

9.75

.0008

.0749

.0008

.0822

.0007

.0761

.0006

.0639

.0006

.0484

.0006

.0509

.0007

.0559

.0008

.0637

.0010

.0822

.0012

.0861

.0016

.095

.0017

.126

.0018

.138
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CHAPTER 8

PROGNOSIS 1IN BREAST CANCER

The purpose of this chapter is to evaluate the importance of
certain prognostic indicators in a group of breast cancer patients.
In this section however we make a distinction between indicators that
are regularly assessed in the staging of patients and some other
indicators that have not been considered a great deal in the past.
The present data is related to a group of patients diagnosed as
having breast carcinoma and referred to by H.J. Stewart et al (1968).
We will deal later with the data and the procedures for its collection
and the various measurements made on the patients. Before considering
the data however, we will remark on certain important trends in the
study of prognostic indicators and the auxiliary indicators that
are used in the analysis.
In this study we are not so much concerned with substantiating a
major disease indicator but rather to consider if some of the sur-
vival time variability of the patients may be attributed to some
measurements outside of the usually accepted prognostic indicators.
Thus the findings of this study may be of some value in a subsequent
sample of patients. In the discussions of what follows we will
refer to a number of variables. In here we will describe these
variables and later refer to them in their short notation. Through
the course of the discussion more necessary details and references
to some of the variables will be giwven.

Tumour/
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Tumour Contour, types will be discussed in greater detail further in

the next section and figure (8.1.1) refers to the classification of
the tumour.

Inoperability, is also referred to in more detail in the discussion.

Basically inoperable patients are patients who have had a spread of

the disease to the extent that no surgical treatment is performed.

Size, is considered to be the maximal tumour diameter of the initial
tumour.

Node refers to the involvement of the axillary nodes according to
histological findings.

Extent refers to the depth of the initial tumour.

Grade is the histological grade of the initial tumour and is discussed
further.

Presence of complicated change.refers to the type of tumour where there

is evidence of abnormal skin distant from the main tumour. These

include thickening of skin overlying tumour, blurring of tumour outlines

and the dilation of adjacent veins. These effects are observable by
X-Ray.
Tumour foci refers to two possible types of tumour, these being either

single or multiple foci.

Micro calcification is a methocd for detecting areas for histological

examination. In here we define possible areas where tumour calcifica-

tion had been shown.

8.1 Methodology and sources of data.

Two studies in the past have mentioned the value of

tumour/
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tumour contcur types; Ingleby et al (1960) and Lane et al (1961).
Neither of these studies. however were concerned with assessment by

use of a probability measure of difference between the patients.

In the paper by H.J. Stewart two methods are discussed
in the assessment of the tumour contour types of 157 patients. One
is paper section and the other is mamography. Further in the paper
they mention a few other measurements on the actual distributions
of the contour types, auchH as presence of compiicated disease, extent,
tumour change etc. In the present study we will use the same data
for assessing survival distributions for different subgroups of patients.

in a more complete analysis of the data.

The grouping of breast cancer patients by clinical staging
is now a good guide to survival assessment. However in 1958 Harmer
recognised " at least ten systems all basically the same but each
irritatingly different from the next". The present system
is attributed to Union International Centra Cancer and is a resultant
system from various systems that have been used in the past. A
single Manchester system was in uase in Britain up until 1958
when the staging was replaced by the TNM effective mainly in Europe.
As from 1966, a different general system was adopted in the U.S.A.
Finally in 1973 a system was adopted by the UICC and the American
Joint Committee on Cancer staging with the (UICC/AJCC) giving the
present method. This system distinguishes between fpre-treatment
and post surgery findings and is based on Node histology, size
of the tumour and metastatic status. Further for the size categories

distinction/
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distinction is made for tumours with fixation to underlying pectorial
fascia, and further. for Ncde one cases with moveable homolateral
axillary nodes; a distinction is made for a node containing growth
and those with no growth.. Given these developments there is still
an enormous variation within any single stage. This is partly due
to the effectiveness of treatments. If the treatments were more
effective for all patients, there would be less emphasis in
classifying cases more precisely. However part of the problem

in the assessment by classification is that is a crude categorising
procedure of a complex biological process of host tumour in time, and
is far more complex than an assessment made by a single instantaneous
measurement for a single time. A less "subjective" assessment on
patient tumour process and survival prediction would ideally require
repeated measurements in time. This is however, not practicable
in that for clinical reasons it is accepted that any diagnosis of breast

cancer requires immediate treatment.

From a different point of view, other studies, J.E. Devitt
(1967) have indicated that the clinical stage of breast cancer may not be
a measure of degree or extent of growth so much, but a measure of
tumour biological potential and host reaction. With the present study
we concentrate on the survival time of patients as the only response
variable. However we will not only deal with the study of static
prognostic indicators and a "frozen" patient resistance but rather
we distinguish between static indicators and indicators containing
information about changes or progression. The choice of an
indicator as static or one containing growth is difficult in that
almost any indicator can be considered to contain an indication of

growth.
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growth. As an example, a variable that we will not consider as
time-dependent but may contain such an effect is shape of the actual
tumour. The pattern in the growth of the tumour may be related to

the form of body resistance to it. (See shape of tumours figure (8.1.1)

At this point we will present example of a type of study
where measurement over time has been of some use in the study of
breast cancer. It is generally accepted that early treatment
improves prognosis of patients. However there is a lack of consistant
evidence in regard to the value of early diagnosis in the improvement
of survival times. A study was carried out by Bloom (1965) to
test whether a procmpt diagnosis of breast cancer improves survival as
assaessed from the date of first symptoms and whether the delay between
the appearance of the first symptom and diagnosis has become shorter
in the recent years. This study in fact reiterated the commonly
held view that cases with a short delay between the appearance of
the first symptom and diagnosis have a better long term survival rate

than those with long delays.

In this context it may be taken that the delay is in fact
a representation of the growth of the tumour. In the studies of
time dependencies as in other multivariate studies, the order of
incorporating a variable intc the model is of some importance.
Often studies of the patient classification is measured by the
staging of the tumour. If delay is taken to be a prognostic
indicator it is measured after staging category effects have been
removed. Thus in the above example one problem with measuring the
tumour development based on delay time is that it may be confounded

with /
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with certain other factors inherent for each individual patient.
Thus the question may be phrased as that of assessing the value of

delay after staging variables have been statistically removed.

With this introduction on the types of models of interest
we will return to the description of the data as mentioned earlier
in this chapter. Initially we will use cross tabulations to show
the numberical association of the. indicators between themselves and with
the number of cases alive at the end of the study. Later we will
use a Cox model assuming a constant relative.risk throughout follow=-
up. Then we will consider the estimation of the Cox's model,
allowing for time dependent effects of prognostic variables.
Over 2000 mamographs have been studied from 1963 to 1967. Among
the cases with mamograms, 306 cases had a diagnosis of first time
breast cancer. This group has certain patients for whom the data
is inadequate and thus 98 cases have to be removed, so that the
remaining patients are a more defined group of patients. The
98 cases that were excluded are largely defined by the information
collected at the initial X-ray sessions. 53 of the patients had
been previously treated for breast abnormality. 14 of the
patients were initially diagnosed in wrong subgroups in terms of
their form of malignancy.and thus were also excluded. 7 cases
had either an unusual malignancy or had post-operative death.
Finally 24 cases had inadequate clinical information after diagnosis

or mamograph were of inadequate standard.
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Number % of 306
Previously treated 53 17.3
Uncodable diagnostic error 14 4.6
Atypical malignancy 3 1.0
Post-operative death 4 1.3
Inadequate clinical details 13 4.2
Inadequate films 11 3.1
Total excluded 98 32

The 11 inadequate films were also taken at the beginning of the entry
month when the technique was still being perfected. There are

208 remaining cases who had a median follow-up time of 11% years,

with a range from 4 to 18 years. For this group 163 had died at
the time of study. No cause of death was recorded for the cases
but the actual date of death is available. Of the remaining 45 patients

with censored survival data 17 of the patients had attended on

’
annual review to one year prior to the time of study, 21 were dismissed
after 10 years of follow-up and 7 patients were lost to follow-up

with less than 10 years of follow-up. Therefore for the 208 patients
78% have a recorded death time. The follow-up information in this

study was mainly obtained through extraction of relevant follow-up

information from the Cardiff clinical notes in 1981.

Four tumour contours are defined and this definition is
related to the type defined by Ingleby et al (1960). They define
3 types of tumour, irregular, smooth or mixed outline. Further
they represent better survival for smooth or circumscribed tumours.
In the present study an additional subdivision is made. Between
the extremes of smooth and spiculated, two categories are defined,

namely/
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namely mixed tumour with well defined smooth and spiculated parts to
their outline and conglomerate tumours which have a mulberry
appearance macroscopically and have a blurred and irregular but not
definitely spiculated outline on the mamograms. Further 31 or
15% of the 208 maomgrams had evidence of malignancy but no tumours
show. Thus there are 5 groups in all

o &2 & pa

Smooth Conglomorate Mixed Spiculated

Figure (8.1.1) Representation of the contour types.

The mthod of obtaining mamcgraphs was reported in 1968 based on the
Egan techniques. The assessment however considered only the
first 60 patients and used the Gough and Wessthon technique of paper

mounted thin whole breast sections.

Several further radiological features were also recorded
during the initial examination. For all cases size was recorded in
millimetres. Microcalcification was also noted at the special
X-ray review sessions and thus patients were categorised into
calcification present within, on the outset or both within and outset.
Clinical inoperability is a criterion that is not strictly
definable clinically and thus patients with no sign of metastatic
disease and operable tumours were recorded as operable cases and if
metastatic disease is present or the tumour is inoperable they are
classified as inoperable. The point about inoperable and operable
patients is that they do represent very different groups of patients

and in the final analysis we will distinguish between statements

made in this regard.

Axillary/
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Axillary node involvement is another well established
clinical indicator and thus cases are grouped into node negative
and node positive groups. Bloom and Richardson (1957) define three
histological grades for lesions, which we use in this analysis. In
terms of shape of tumour we distinguish between multiple and single

foci.

Picard J.D. (1962) has defined several well recognised
features that can occur in the normal breast tissue around the tumour
shadow on the mamograms of advanced primary lesion. This is termed
as tumour showing complicated change and as thickening and straighten-
ing of the travecular shadows, thickening of the skin overlying
tumour, blurring of the tumour outline and the dilation of adjacent
veins. The above features are present on X-rays when there is
oedema present clinically but they were also noted at mamographic

review sessions of the data.

Apart from complicated change, extent is also studied, by

separation of patients into greater than and less than % inch deep

tumours. Clinical size of the tumour and age of the patient complete
the data.
Variable No. Variable name Description
1 Operability Inoperable or metastatic,operable
2 Microcalcification Within, outset,both.
3 Node Negative, positive
4 Histological grade I, Il; I1]
5 Foci Single, multiple
6 Contour Smooth, spiculated, mixed,
conglomorate.

4
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Variable No. Variable name Description
7- Complicated change Present, absent
8 Extent Less than % inch deep,

greater than % inch deep.
9 Size

10 Age

The result of an interim analysis based on 157 mamograms was

published by Stewart (1968). In conclusion no significant relationship
between contour types and certain prognostic indicators whether consid-
ered separately or together was obtained. However a trend was noted
contrary to findings of Ingleby and Gershon - Cohen (1960) and

Lane et al (1961) suggesting a better prognosis for spiculated

tumour and bad prognosis in smooth and also possibly mixed lesions.

The 1968 analysis however did not deal with any of the other indicators

that we mentioned earlier in terms of survival times.

8.2 Categorical distributions of the prognostic indicators.

Initially we perform a preliminary analysis based on Cross
tabulations of the prognostic indicators. Two well known and
accepted indicators are node histology and the initial size of the
tumour. The extent of the progress of the disease 1is important in
so far as we have to distinguish initially between the inoperable and
operable cases. The main group of interest are in fact the
operable patients. However, we will discuss the distribution of the

inoperables in the early stages of the analysis.

75%/
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75% of the 208 cases were treated by hastectomy but some were
with palliative intent in the presence of clinical inoperability.
5 clinical groups may in fact be defined. 131 cases belong to the
accepted operable. group of interest. 15 further cases had positive
contralateral mamograms and their survival distribution is similar to
the operable group. All 15 had a second mastectomy from 1 to 27 years
after the first. In contrast to these two groups, there are 3 remaining
groups in whom both mean and the median survival times are considerably
less. 20 patients had local but clinically inoperably tumours and a
further 20 have been termed inoperable solely because of the detection
of the involved supraclavicular node at mastectomy. 22 others presented
with systemic disease comprise the final group. In terms of the
progress of disease the patients were separated into operables and
inoperable patients. The main aim is to consider prognostic
indicators for the operable group. Clearly the operable patients
contain a smaller proportion of node positive patients (43%) to
inoperable patients with 55% node positive cases. These results
are clearly in line with expectations that inoperable patients are
more advanced and thus they contain a higher proportion of patients
with axillary node. involvement. In fact operable cases as a group of
less advanced disease patients have a higher proportion of patients
in better prognosis groups. For the grade of the tumour the inoperable
cases have 74% of the patients with grade 3 tumours and operable
cases 52% grade 3 tumours. This is not surprising and only conforms
to what is expected. (Later we will discuss the grade categories in

more detail in more detail in relation to other categories).

For/
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For the extent of the tumour, operable cases present
a 9% proportion with greater than % inch depth as to 32% for the
inoperable patients. Although this result conforms to what is
expected it is also in line with a hypothisis which assesses extent
as a time-dependent indicator of progress. Once again the same
conclusions are obtained when we consider complicated change. 22%
of the operables present evidence of complicated change in the

initial tumour as to 63% of the inoperables.

Multiple foci tumours form a small number of patients
altogether . We obtain 16% multiple foci group among the operables
and a 23% multiple foci group for the inoperables. One indicator
that does show a similar distribution for the operables and the
inoperables is the tumour contour shapes. We will study these
categories further in terms of survival but at this stage there is
no evidence to link tumour contour types with those of the progress of
the disease. Calcification present within or on outset also is
similarly distributed for the operable groups versus the inoperable
group. At the end of follow-up we also note that 36% of operables

are still alive.compared to 1% for the inoperable cases.

Node involvement is a further accepted prognostic indicator
in so far as this study is concerned. We will at first consider node
involvement for the total population and in some important categories
mention the distribution of nocde involvement for the subgroups of

operable and inoperable cases.

Two/
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Two other variables that may indicate progression process
are extent and complicated change. These two do not show statistic-
ally significant associations with the node categories. Greater
depth tumours are present in 6% of node negative and 17% of node
positives. Complicated change amounts to 25% of node negatives
and 31% of node positives. It is difficult in here to conclude
what extent and positive nodes imply, but it is an indication that
in terms of good and bad prognosis value,extent is describing something
slightly different from that of node status. Finally for node and
survival status at the end of follow-up, there are 30% alive patients
with initially no nodes involved and 18% alive with nodes recorded as

initially involved.

For the total of grade categories there are 12%, 16% and
17% of tumour with higher extent depth at 0 g 1, 2 and 3 grade levels
respectively. By separating operable cases again there is not a
major deviation from the above for each subgroup of operable and the
inoperable. However by considering node negative patients against
the node positive the percentage value of the above categories of
the grade change to 18%, 12% and 9% for the node negative and 11%,
12% and 10% for the node positives. Thus in terms of classifying
patients into good to bad prognosis there seems to be again an
indication that node status and extent may be defining different
attributes of tumour progression for each grade category. It must
be pointed out in here that the above percentages are presented purely
to illustrate distributional patterns of subgroups of patients. In
the next section we will present survival distributions and the rele-

vant/
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vant statistical tests.

Grade in terms of percentage of cases showing complicated
change gives values of 18%, 31% and 38% for grades 0 & 1, 2 and 3
respectively. This is a similar pattern for direction as that of
extent. (Although the complicated change values are significant at
] ( 0.001 extent categories are not). By the definitions
of extent and complicated change it is possible that they are
explaining similar effects of the tumour progress. Once again by
subclassifying by the operables and the inoperables we do not obtain
a major deviation. However for the node status the same pattern as
that of extent emerges. That is for node negative patients and the
respective values of grade we obtain 29%, 22% and 20% showing complicated
change. While we obtain 31%, 30% and 30% for node positives showing
complicated change at grades 0 & 1, 2 and 3 respectively. The
conclusion from this pattern is clearly the same as that of extent of
tumour. . However a point must be emphasised that up until now we
have considered relative effects in terms of prognostic distributions

and we have not dealt with the survival times.

In terms of contour types we do not detect any interesting
distributional patterns for the wvarious values of grade. Grade in
relation to multiple foci and calcification distributions give once

again a uniform pattern.

Calcification within and at outset together with single
or multiple foci tumours alsoc show no significant association with any

of /
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of the other recorded variables.

The mean size of tumour is 3.25 centimetres. For the
operables and the inoperables we do not detect a major difference .
Size alsm gives a similar pattern for the node negative and the node
positive patients. However extent and complicated change both show
a slightly different mean value at good and bad prognostic levels of
extent and change. For the extent of the tumour less than % inch
we have the mean size to be 2.51 and for the extent greater than
% inch'4.89 as the mean sizes. (t-test, p (0.00!) With the
complicated change however this pattern is not represented so
significantly. Tumourswith no sign of complicated change have
a mean size of 3.00 centimetres and tumours with complicated change
have a mean size of 3.71 centimetres. (t-test, p ( Q01) . Once
again there is an indication that if complicated change is playing
any role in classifying patients it relates to a different group of
patients than the size category classification. For various other
factors such as contour types and tumour foci calcification a similar

value for the mean size distribution is obtained.

Status of patients, at the end of study indicates that
contour type, tumour foci and calcification do not play a major role
in determining survival of patients. Among the accepted indicator
size, node and operability are the major indicators for determining
survival. With regard to the present data however two other
indicators are also of value; complicated change and the extent of
tumour. We pointed out earlier, these two indicators refer to groups

of/
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of patients that are not identified by their node status, size or
operability. Later in this chapter we will discuss those patients

in more detail by considering survival probabilities.

Finally we will consider the age distribution of the patient
according to various categories. The mean age of patients is 50.2 years.
For the operable patients we have a mean age at 50.1 years and for
the inoperables a mean age at 50.3 years. therefore the age
distributors are very close. Node status categories produce again
very close mean ages with the node negative patients being a little
older than the node positive patients. Mean age for the grade of
the tumour are also very close to the mean value, with higher grade
patients, slightly older than lower grade patients. For lower than
mean size groups we obtain again that age distribution is the same
as the larger tumours. Extent and complicated change also produce
the same lack of age diffierences. In the case of foci, calcification
and contour pattern again we observe that age distributions are very
close to each other in terms of the mean distribution of the

various categories.

In the earlier part of this caapter we mentioned that some
patients were excluded from the study. Altogether they comprise 32%
of the 306 patients. From examination of the features of these
excluded patients, we observe that in general the exclusions are

uniformly distributed between the various categories of the indicators.

8.3 Prognostic indicators according to survival time. /
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8.3 Prognostic indicators according to survival time.

Up until now we have considered groups of patients and the
pattern by which they were formed into distinct groups. At this
stage we deal with survival status at the end of study and the
estimation of the survival functions for each of the distinct groups.
The group of operable patients as my be expected have much better
survival than the inoperable. For completeness we present the

survival rates of the two groups , Figure (8.3.1).

The various categories of the indicators do not suggest
a significant difference between any of the inoperable groups.
However, we note that some of the indicators do not affect the
survival times of the inoperables in the same direction as that of
operable groups. This effect is due to chance rather than adequate
statistical evidence for a real difference. The most striking effect
with respect to inoperables presenting a survival trend in different
direction as that of operables is given in figure (8.3.2). By which
the two categories of contour types with speculated tumours show a
slightly worse survival than smooth contour types for the inoperables,
while in comparison of the operable groups the spiculated group do
better than the operables with smooth contours. Due to the small
numbers of the inoperables we will leave this subgroup and concentrate
on the operable group only. Clinically, the operable group are
of more interest in terms of prognosis since they are composed of

patients with less advanced diseases.

Initially/
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Initially we will deal with the operable patients and the
different categories considered independent of time. Later we will
consider the time dependency of the various indices with their relevant

interpretations.

For the operable group we note that the node negative
patients tend to have a much better survival time than the node positive
patients. The median survival time of the node negative patients is
in fact 8 years and 9 months against 6 years and 4 months for the
node positive patients. Node histology is one of the well-accepted
prognostic indicators of survival time and we thus introduce it at
first step of producing a relative risk function of the survival times

for the operable strata.

The total number of patients is 122. There are 68 node
negative patients and 54 node positive patients. At the end of the
study there are 80 patients with recorded death times and 42 censored
times. By use of the Cox's proportional hazard we estimate the

corresponding relative risk functions, given by the model .

RR = Exp(snode. node)

node negatiwve =0, node positive=1

2
‘%ode = .5319 S.E. = .2144 X7 = 6.30 p = 0.012

Figure (8.3.3) represents the survival times for the two groups of the

node negative and node positive patients in the operable strata.

One/
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One further accepted indicator is that of size of the
initial tumour. Size in the group of operable patients is plaving
a slightly less important role than the node histology. The prognostic
importance of size however reaches a statistically significant level
for the operable group. (Among the inoperable group however we do
not detect a significant level and observe that the direction of
the prognostic value is in the opposite direction to the operables).

Model of the relative risk,

RR = Exp (Bsize.SLze)

.= .4581 S.E. = .2171 x* = 3.78 p = 0.029
SlZe

Figure (8.3.4) refers to survival rates for size when a split for

over and under 3.5 cm. lesions has been made.

The significance of size and node status however remains
when either node or size variability is introduced in the presence

of the other.

RR = Exp (Bsize' size + B node.node)
2
B oge = 4160 S.E. = .2091 X< = 4.31 p = 0.038
8 . = .3891 S.E. = .1765 %% = 4.26 p = 0.037
slze

In terms of the magnitude of the direction of node and size progression

we introduce an interaction term for the relative risk model, giving

= . si + B . + B . size.nod
RR Exp (Bsize size nodi node int,.® Size.no e)
2
= . .E. s . = .20 = .040
Snode 4271 S.E 2087 X 4.2 P
; = .3881 S.E. = .1854 X2 = 4.09 p = .043
size
= .0092 S.E. = .0426 X2 = .0731 N.S.

int.
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The above model allows the effect of size to be different in node
positive and node negative patients. In fact with the introduction
of this interaction effect we do not observe any statistically signifi-

cant improvement to the additive model of size and node.

By a single covariate relative risk model we study the effect
of various indicators. Microcalcification is marginally not significant
at 6.2% probability level and other indicators namely, tumour foci
and contour type are of even less significance. The indicators
grade, extent and change , as we may expect, show statistically
significant levels in terms of time to death of patients. The most

significant contributor is grade given by

RR = Exp (B grade)

grade”

8 = .5902 S.E. .2091 X2 = 8.02 p = 0.005

grade

[}

However grade is related to size and node status. Thus after the

introduction of node and size in fact we reduce the grade effect.

RR = Exp ( Bnode.node + Bgrade' grade)
2
8 ndds .4311 S.E. = .2109 X = 4.16 p = .041
= .4021 S.E. = .2231 2 = 3.95 p= 0.047
grade
= R . + .
RR Exp ( leze size Bgrade grade)
B, = ,4081 S.E. = .2051 X2 = 4,05 p = 0.044
size
2
Bgrade = .4019 S.E. = .2162 X = 3, 84 p =0.050

Next we introduce a model of size, node and grade which
indicates very close estimators to the model of node and size, for the

estimator/



estimator of node and size and an insignificant estimator for the grade.

= . + b es 2 + ‘
RR Exp ( Bnode node 851ze size Bgrade grade)
2
Be e .4408 S.E. = .2010 X = 4.81 p = .028
o e .4135 S.E. = .2081 x2 = 3.92 p = .047
8 = .2850 S.E. = .2567 2° = a93. oN.5.
grade
Both extent and change produce statistically important
relative risk patterns in terms of survival. If inserted singly, we
obtain:
RR = Exp ( Bext .ext) (Extent < % inch deep) = 0
(Extent > % inch deep) = 1
2425 S.E. = .1162 X2 = 4.33 = .037
Bext. - - - - - p -
RR = Exp (Bchange’ change) (complicated change not indicated) = 0
(complicated change indicated) = 1
2
Bchange = .2637 S.E. = .1206 X = 4.81 p = 0.028

Extent is slightly less significant than change. However the two
categories represent almost overlapping subgroups of patients in
terms of their own good (0 level ) and bad (1 level) prognostic

indicators.

First we introduce extent & change in the presence of size
effect. Their significance level shows little change. Once again

extent is less significant than change.

RR = Exp (Bext « Ext. ¥+ B . size)

s size

Bext/
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2
Bext. = .2638 S.E. = .1259 X = 4.39 p = 0.036
8 . = .3934 S.E. = .1785 x° = 4.63 p = 0.031
size
RR = Exp ( Bchange' change + Bsize' size)

2
8change = .2701 S.E. = .1288 X = 4.45 p = .035
B 2

size = .3939 S.E. = .1783 X = 4.61 p = 0.030

Now we will consider the possibility of an interaction effect between

extent and size and further change and size. (node interactions later).

= . + . Si + . .si
RR ExP(Bext. Ext Bsize size SInt. ext.size)
2
Bext. = .2641 S.E. = .1248 X = 4.51 p = .034
B3 = .3942 S.E. = .1785 x2 = 4.79 p = .028
size
8 = .0176 S.E. = .0712 x2 = .059 N.S.
Int.
RR.. = Exp (achange.change + Bsize' size + BInt‘.chanqe.51ze)
2
= iy = = . = .036
Bchange 2694 S5.E 1285 X 4.39 P 3
8., = .3941 S.E. = .1780 x2 = 4.64 p = .031
size
2
= . .E. = .061 X = .184 N.S.
BInt. 0211 S.E 619

Thus effect of extent and change is additive in presence of size

and the interaction effect is not significant.

We can now consider extent and change in the presence of
node histology- In the previous discussions node and size were
clearly major contributurs in defining survival time. First we

deal with the relative risk for node and change status.

RR = Exp(Bnode. node change)

Bchange'

Brisk/
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-4381 S.E. .029

8 .2097 x“ = 4a.m p

node

.2517 S.E. .1183 x° = 4.61 p = .032

]

Bchange

The extent also presents a similar pattern as that of change

RR. = Exp ( Bnode.node + Bext.EXt )
2
Bnode = .4376 S.E. = .2081 X = 4.57 p = .032
2
Bext. = .,2480 S.E. = .1198 X = 4,28 p = .038

The value of change with node is significant and it is interesting

to study the effect of size in this respect. That is we assess the
survival variability which is unexplained in terms of node and change,
by the introduction of size. Before doing so we study the effect of

an interaction between change, node, and extent, node.

. change.node)

= % + +
RR Exp (Bnode node 8 change BIn

change” t.

Boge = -4392 S.E. = .1988 X* & 5.5 p = .023
B change = +2524 S.E. = .1182 X7 & 4,58 p = .032
BInt. = .0896 S.E. = .0489 x?2 & 3.78 p = .052

RR = Exp( Bnode.node + Bext.'EXt' + BInt..ext.node]
B oge = +4366  S.E. = .2114 x% = 4.28 p = .038
Boge, = 2593  B.E. = L1274 x2 = 417 p = .041
8. = +0782  S.E. = .0523 x% = 2.47 N.S.

There is a slight indication of an interaction effect with node and

change indicating both complicated change and node positivity together
add extra risks for survival. However this is not of great importance
since it may be a spurious significance. The size variability however

has/
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has not been included in our model. If we. do introduce the
size effect by the relative risk function, none of the interactions

remain significant.

RR = Exp(snode:node + Bchange'Change + Bsize' size)
2
Bnode = ,4279 S.E. = .2136 X = 4.21 p = 0.040
-~ —-— 2 -— —
Bchange = ,2512 5.B. = 1215 X = 4.41 p = 0.036
B . = .,4181 S.E. = .1976 x2 = 4,51 p = 0.033
size

In terms of extent no interaction effects are significant and if we
introduce a model of size, node and extent,once again a similar pattern

emerges as that of change.

RR = Exp( 3node.node +Sext.' Ext. + Bsize' size)
2
Bnode = .4281 S.E. = .2237 X = 4.40 p = .036
— -~ 2 — —
Bext. = .2484 S.E. = .1268 X = 3.90 p = 0.048
B:.s = ,3927 S.E. = ,2093 X2 = 4.04 p = 0.045
size

The main reason for introducing the change concept has been that of
considering an effect of tumour initial status by which some of the
attributes in terms of external progress of tumour may be explained.
This effect is clearly not sufficiently explained by node and size

classification alone.

We will now introduce the concept of time dependency in
this section for the various prognostic indicators. One reason for
this conceptual change of model is to study effect of node or size
over a time scale and test how each prognostic effect may eventually

diminish/
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diminish or increase ove:r time.

First we consider a relative risk function based on node

histology and a time dependent function of time, given by t* = ln(time)

= - - - *
RR = Exp( Bnode node + B8 node.t¥*)

t
2
Broge = -4284 S.E. = .2071 X° = 4.29 p = .038
By = =.0785 S.E. = .1211 x% = .a20 N.S.

There is not a great improvement over the overall likelihood by the
introduction of the time dependency factor into the model. Thus we
may consider the effect of node histology to be static in terms of
prognostic value. Once a patient is node positive the patient is at
a higher risk and this risk for the individual patient in relative

terms does not decrease or increase over the passage of time.

Size is the second factor we study with respect to time

dependency.

RR = Exp (B . size + Bt . Size.t¥)

size
B8 = ,4201 S.E. = .1964 X2 = 4,32 p = .036
size
2
Bt = -.1291 S.E. = .0623 X = 4.19 p = .040

Size effect clearly diminishes with the passage of time. The larger
tumour patients are at a higher risk in the early part of the diagnosis.
However for the larger tumours that do not correspond with an early
death, the prognostic significance of size will eventually diminish

in terms of relative risk.

Both/
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Both extent and change were two other indicators that
produced some significant contributions in explaining the survival
variability rates. Now we consider extent and change as two time

dependent variables.

RR = Exp ( B . change + By - t* .change)

change
& 5 _ " S -
Schange .2281 S.E. = .1109 X = 4.22 p = .040
Bt = -,0819 S.E. = .0902 X2 = ,72 N.S.
= - - * -
RR Exp( Bext. ext + Bt 117 ext)
= 2319 S.E = ,1132 x2 = 4,24 = ,039
Bext . Bs. = . = » P .
Bt = =,0792 S.E. = .0876 x2 = .96 N.S.

Neither change nor extent contributions are affected significantly by

the time dependent variability. In terms of interpretation we conclude
that change and extent classify patients in the beginning and their
effect is consistantly the same in terms of relative risk of death.

Node histology therefore has a prognostic effect which may be inter-

preted in a similar way to that of extent and change.

One interesting question that may be asked is related to the
effect of tiime on the magnitude of the size effect. Given that size is
a time dependent factor, that is the sizes of tumour do not all conform
to a single fixed relative risk function and some patients are slightly
different type of survivors, is there a prognostic factor measureable
and static at beginning of the study by which we may separate the time
dependency of the size effect. Although the question and the evidence
from the data may simply be represented by a few histograms, in terms

of
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of statistical significance there are a few models all of which accord-
ing to this data can explain the wvariability within the data.
Primarily we presented a model of relative risks based on node histology,
size, complicated change and extent. In the comparison of models

of complicated change and extent, there is littlie to choose between the
two, in so far as our study is concerned. For practical reasons however
the extent of tumour may be an easier variable for measurement. In

the interpretation of the time dependency of the size effect we may
conclude that there exists a subgroup of patients in whom largeness

of size of the tumour is sign of bad prognosis. By the passage of

time in the survival scale however the value of size as a prognostic

variable diminishes.
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CHAPTER 9

FINAL SUMMARY

In this the final chapter, we will summarise the findings
of the thesis. We will separate the findings into the statistical
and medical, and allocate a section to each. In these sections we

will present an overview of ideas which may be useful for future research.

9.1 Overview and conclusions of the statistical results.

Initially we identified various hazard shapes which have
been reported in the literature. Such methods were useful for
presenting in a'descriptive manner the patterns of events in time
scale for the different subgroups of patients. Further we discussed
recent developments in the area of non-parametric methods and the way
in which such methods are able to provide a flexible approach for
classifying different non-parametric tests, which are often used in
survival analysis (such as the logrank and Wilcoxon tests). In the
area of parametric methods we considered various analytical methods
and in comparing the various assumptions of the methods with empirical
data with subgroups, we found the methods theoretically restrictive
but practically in terms of conclusions consistent for our data set.
Primarily we performed the analysis of the old Edinburgh trial data
by the different parametric and non-parametric methods purely for the
purpose of comparing the statistical methods. In terms of conclus-
ions we did not find any inconsistencies between any of the parametric

and/
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and non-parametric methods. However as expected we were able to
attribute the slight differences between the two non-parametric log-
rank and Wilcoxon tests in the weighting attached. to the events within
the time scale of study. We defered the discussion of the difference
between the various methods (in terms of significance levels) to later
chapters where the concept of time dependency is more developed.
Parallel with the above discussions we considered multivariate methods
and how concepts such as multivariate prognostic factors and multivariate
events may be employed in analysis. We considered efficiency and
robustness of an approach to be two factors of extreme importance when
dealing with the above forms of interrelationships between various
events and prognostic factors. A method that we found suitable for
this type of analysis, was the Cox's semi non-parametric proportional

hazard model.

One important aspect of the Cox's method which can provide a
robust framework for the analysis of such data is in the manner in
which the actual survival times are transformed into ranks. Before
proceeding with the development of models using Cox's method, we
presented transition rates between the various states of the old
Edinburgh trial, using an explanatory stochastic method which
was referred to as the non-parametric semi Markov model. Although
the approach was considered to be informative we found the Cox's
method more suitable in the manner by which it could provide a check
on the model  assumptions, using the information. on the intervening
events. Initially we considered the expansion of the models with
fixed relative risks into models. that have covariates with an internal
variability within the time scale. At times we found checks on the

assumption/
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assumption of consistency of a prognostic effect useful in a proper
interpretation of the data. We refered to such models, models with time
dependent prognostic effects. Alternatively an interpretation was poss-

ible by employing the concept of intervening event within the time scale.

We found that by the utilisation of the information on an
important progression event such as metastatic recurrence, we were able
to check on the consistﬁhcy oi the relative treatment effect for the times
prior to and post intervening event. In general such intervening events
are random events and we used a family of transformations of the time of the
intervening event, in order to check on the consistency of the goodness of
fit tests. We found that in practice such a consistency was present and
that the proportional hazard of non-parametric type was considered quite

suitable, (for the covariate subgroups that we dealt with in the data).

We allocated a full chapter to the simulation methods for
a clinical trial study. In this study we presented the small sample
properties of the various statistical methods (in particular Cox's method)
using simulated data. The method of simulation we adopted had a useful
property of being able to generate increasing, decreasing and constant
hazard rates with covariates. In.fact all the generated samples belonged
to the family of proportional hazards of the Weiball type. This property

was found useful when we dealt with a simulation study of time dependencies.

An important property of survival studies as discussed before
has been that of censoring of the survival times. In developing a

simulation/
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simulation method we discussed various approaches of generating
censored survival times and adopted one. which is suitable for a trial
data and can give a constant. proportion of censored cases. Our
initial intention in performing the simulation has been an assessment
of the small sample properties of the Cox's method. However lLater

ir. study of time dependencies with the Cox's method we also considered
Weiball and exponential parametric methods. Within these simulations
we used a range of sample sizes, significance levels, levels of
censoring and a range of treatment and covariate effects. In order

to assess the power properties we constantly refered to the asymptotic

normality and the likelihood ratio tests.

Initially we discussed the power properties of the simple
test of hypothesis for the treatment effect at both treatment effect
and covariate effect set to zero. This value is clearly an
indicator of type one error. We obtained efficiency values close
to the expected values according to the singificance levels. In
repeating the simulations for a range of covariate effects we note that
the efficiency of simple tests of hypothesis for treatment is not in
any way influenced by the value of the covariate effect. Clearly
as we expected the efficiercy of the tests do deviate to some exkent
according to the values of sample size, cansoring and significance level,
however none of these factors affect the lack of influence cf the
covariate effect value. A point of some interest was that the
decline in the power of the simple tests due to censoring which seems

to be affected by the sample size to some extent, indicated a lower

loss due to censorings for higher sample sizes.
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Next we discussed power curves for the composite tests.
These simulations had a change of emphasis in that they were presented
for a more theoretical interest and we showed that the Cox's method
has good, predictable small sample properties. At first we dealt
with the type one error and showed that our results conform with
the levels of the significance limit. This finding was true for both
the asymptotic likelihood and the asmyptotic normality tests. Later
we considered a range of treatment effect and covariate effects. We
concluded as expected sample size, significance level and censoring
levels do influence the power of tests. However the relative
efficiency of the above factor is not influenced significantly by the

treatment effect or covariate effect.

In comparing the asymptotic normality and asymptotic likeli-
hoods we note that the asymptotic normality in general is more conser-
vative, as the treatment effect and covariate effects deviate from
zero. Up until this point we have summarised simulation results
when the generated samples were based on an exponential distribution.
Next we deal with the summary of results from the Weiball distribution.
We reported the simulations for the samples of Weiball in which the
proportionality of hazards had not been violated. We. found very close
resemblance between the efficiency of simulations.on increasing,
decreasing and constant hazards (all other factors e.g. sample size,
censoring being equal). We attributed this close resemblance to the

non-paramtric nature of the Cox's method.

At this stage we deal with results of the Weiball distributed
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samples in which the proportionality of the hazards was violated.

That is, there existed a degree of time dependency for the covariate and
treatment effects. Consistently we noted a reduction in the type one
error less than the actual significance level. In fact we noted

this power decreases with an increase from the proportionality of the
hazards. For the range of treatment and covariate effects (negative
and positive) we noted that for the non-proportionality with divergence
from base line hazard there was a higher loss of power in comparison

with the non-proportionality with a convergence to the base line.

In comparing the asymptotic normality to the likelihood ratio
test we observed that the normality test is more conservative. We
repeated the simulation for a range of sample sizes and censoring
levels and the conclusions were consistently the same. One pattern
which emerged was that due to non-proportionality, the power curves for
the vlarious composite tests did not have the symmetric pattern of the
proportional hazard situation. However, we noticed that with an
increase in the sample size there was a reduction in the lack of

symmetry about the covariate effect axis.

In the final discussion of the simulation results we studied
simple tests of hypothesis in the presence of one covariate effect.
We generated non-proportiocnal hazard data of the Weiball type and in
order to analyse the data we used exponential modé, Weiball meodel,
Cox's proportional hazard, Cox's stratified and Cox's time dependent
models. At the value of treatment effect set to zero we consistently
noted that power efficiency is close to the significance level for all

models./
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models. This pattern was consistently the same for non-proporticnal
hazard samples. In order to study the influence of the covariate
effect we increased the wvalue of the covariate effect and again

there was little change in the type one errors.

Next we considered non-zero values of the treatment effect
for both non-proportional and proportional hazard samples. We
concluded that for the analysis of the non-proportional hazard samples,
both the stratified Cox's model and the time dependent Cox's model
were suitable. This was true for a range of covariate effect values
and we noted that the magnitude of the covariate effect did not

influence power of the tests. The unsuitable models were the Cox's
model with fixed relative risk, tne Weiball model and the exponential
respectively, with the exponential being much worse than. the other two.
For these three unsuitable models we noted that the magnitude of the
covariate effect does influence the power of the tests. In summary
we concluded that specification of the correct model is of some
importance, when dealing with proportional hazard models. The
Weiball and Cox's models (fixed relative risk) are the most suitable
for analysing proportional hazard data and the time dependent Cox's

model and stratified Cox's model are less suitable.

In terms of magnitude of the effieiencies we noted that
at high sample sizes of 100 there was little to choose in general
between the models (except exponential) while at low sample sizes of
25 some of the problems with the specification of the wrong model were

more apparent.
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9.2 Overview and conclusions of the medical results.

On dealing with the applications of the various statistical
methods we presented two data sets. Both of which dealt with the
primary breast cancer. The first data set was refered to as the
South East of Scotland trial data. The major objective of this
trial was an assessment of the survival rates for a group of patients
treated by radical surgery versus the group treated by simple surgery
and radiotherapy. Before commencing the analysis of this data
we discussed the important design aspects of this trial such as
patient eligibility rules, stratification and data administration.
This trial with regard to the magnitude of the data which was collected
and the type of events that were expected to take place within the
survival time of each patient, is suitable for an exploratory analysis
of the various interrelationships such as the multivariate events and

multiple prognostic indicators, as discussed earlier.

As we indicated by the study of the cross-tabulations there
was in most respects a very uniform balance between the two treatment
groups and the wvarious prognostic indicators. Initially we performed
an analysis based on the conventiaonal methods. This analysis
indicated that the radical surgery patients may have an overall higher
survival rate compared with the group treated by simple mastectomy and
radiotherapy. We further indicated that the significance levels of the
treatment differences as expected was not consistently the sane for

the different prognostic subgroups.

At the first stages of the exploratory analysis of the data,

we/
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we are interested in the study of the duration from randomisation

to any single event of importance, namely any of death, metastatic
recurrence, or local recurrence. In this approach we used various
stepwise regression methods with the Cox's proportional hazard model.
A point to note was that in the approach we considered step-up and
step-down procedures, together with a different procedure by which

as a priori rule, we forced the treatment effect into the model at
first step regardless of its relative significance to the other prog-
nostic factors. The above methods consistently yielded the same
model indicating a better survival for the radical surgery group, and
with the significant prognostic contributors to the model being,

menopausal status, size of the tumour and the node status.

In order to make sure the findings of the models were not
dependent upon the model assumptions we used stratified analysis at
each step of introducing a new term into the model. Once again we
noted that the direction of the effects was consistently the same.

In order to assess the multiplicative effect of the various indicators
we performed tests of the interaction effects using the Cox's method

and we did not find any evidence of interactions for the survival times.

In the next stage of the analysis we considered the time
period from randomisation to the development. of the metastatic disease.
We once again used the above stepwise procedures for model reduction with
the same set of prognostic effects. We noted consistently the final
model was the model involving, option, size, node and menopausal status.
However, we also noted slight deviations in the order of the entry of
the various terms. This pattern is not testable at this stage

however,/
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however, this difference in the order of importance of the prognostic
effects for these two response variables is of some importance for the
later discussions when we consider time dependency in the time scale of
study. The analysis based on the randomisation to local recurrence
also presented a consistent model indicating the same set of covariate

main effects.

In the summary of the results so far we have confined the
conclusions to those of analysis of randomisation time to aa important
final event. From this point onwards we will summarise the results
of the South East of Scotland trial with models of multiple risks in

which patients move from one state to another.

In general we attributed the developments within the time
scale to be due to intertwined processes. Such processes were
combinations of epochal events such as metastatic recurrence, local
recurrence or death. Alternatively we may have been interested in

the assessment of cumulative risks over time for a single covariate.

Initially we considered an analysis based on the semi-markov
models . This approach gave an explanatory stochastic description
of the movement of patients from one state to the other. In terms
of presentation of the results we derived general expressions for
the survival rates in order to obtain close approximations to the
transition rates. More important however, are the results by which
we represented the above survival rates in terms of exploratory models
of the proportional hazard type. Using the proportional hazard models

with time dependent covariates, we were able to ask questions such as;

given/
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given that an event has taken place (such as the progression of disease)
how is the relative risk for treatment groups and prognostic effects
performing within the time scale. In the study of the empirical
hazard rates we consistently refered to hazard rates in which the
proportionality of the hazards may have been violated. We were then
in the position of testing any possible departures from the assumptions

of the model.

At first we considered a test of the time dependency of
the treatment effect, by which we concluded that there was no evidence
of the proportional hazard assumptions being wviolated with respect to
the treatment effects. We then studied the survival rates according
to the time dependency of the size effect by which we concluded there
was not sufficient evidence to reject the constant relative risk

assumption.

Next we studied the response time of metastatic recurrence
or local recurrence to death, given that a recurrence had already taken
place. First we stratified the data according to the period of
randomisation to the appeérance of local or metastatic disease, in
order to compare radical versus simple surgery in a model by which
time to the appearance of first recurrence was controlled. The
pattern emerging was that for patients recurrent after the first year,
their having had radical surgery, was less likely to benefit the patient.
However for those recurring early there was banefit in terms of

survvival by a radical surgery.

Finally for this data we considered the analysis of the

data/
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data according to the secondary events that had occurred within the
full patient survival time. Such secondary events were taken to

be based on local or metastatic recurrence of the disease. Initially
we dealt with the relative risk function according to the treatment
effect and tested the goodness of fit in order to detect departures
from the proportional hazard assumptions of type by which the

relative risk after the secondary event may be acting differently

for the two treatment groups. Once again we noted. that the proportional
hazard model is quite appropriate and that all conclusions were
consistently in line. Although the non-proportionality did not
reach significance we noted, however, that the treatment effect was

more substantial prior to the development of metastatic disease.

In the previous chapter of the thesis we considered
survival rates of a group of cancer patients in order to assess the
importance of certain prognostic indicators. Before analysis of
the data we made an initial distinction befween indicators that are
regularly assessed in the staging of patients and some other indicators
that. have not been considered a great deal in the past. In general
the variables we were interested in were; tumour contour type,
operability, size, node, extent, grade, change, tumour foci and
microcalcification. In the analysis of the data we concentrated on
the survival time of the patients as the only response variable.
However we did not only deal with a study of static prognostic
factors but also studied how changes may occur in the wvalue of

the initial prognosis.

At first we noted that the wvarious indicators for the

operables/
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operables and the inoperables did not necessarily indicate prognosis

in the same direction. The prognostic indicators for the inoperables
were not of a significant difference and we consequently confined the
analysis to the operable patients. For the operable patients we noted
that node negative patients had a better survival rate than the node
positivesg. Further, as expected, size of the tumour conformed with
what was expected and patients with smaller tumours showed better
survival rates. In terms of the relative value of size and node

we noticed tha:z the significance of either factor remained in the
presence of the other factor. In terms of direction in the effects

of size and node there 1is no evidence of an interaction. Two further
prognostic factors that are found to have an important influence on the
final survival pattern of the patients were the extent of the tumour
and the presence of complicated change in the tumour. We observed
that extent is slightly less significant than change. However, the
two categories represented almost overlapping subgroups in terms of
good and bad prognosis. The good prognosis being tumour with less
than % inch depth and tumour with no evidence of complicated change.

We performed test of interaction for the different indicators and

found none significant. We further performed tests of time dependency
of the indicators and found time dependency of size indicated that

size is of more importance during early periods of survival.

Throughout the course of this thesis we have presented the
models with an emphasis on interrelationships. A study of such
factors will clearly imply a check on the generalisations and the
assumptions of the models, and may introduce a diversity of inter-
pretations. According to the data sets that are here examined it

has/
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has been possible to show a consistency of results in the final
analysis. It is however important to consider the impact of such
methods in situations where data may be the resultant outcome of
constantly evolving treatments and that the analysis is. performed in

a situation of widely accessible distributed computing procedures.
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APPENDIX (A)

Section A.1

Cross tabulation tables for the prognostic factors referred to in
section 6.4.

Menopausal Status

Prem Meno Post M. Total

Nede NO 107 21 247 275
N1 56 17 112 185

Total 163 38 359 560

Menopausal Status

T stage Prem Meno Post M. Total
T1 22 2 32 56
T2 114 26 257 397
T3 27 10 70 107
Total 163 38 359 560
Side
T stage Right Left Total
T1 22 34 56
T2 205 192 397
T3 57 50 107
Total 284 276 560
Site
T stage Medial Lateral Central Both Whole Total
only only halves Breast
T1 20 30 6 0 0 56

T2/



Site
T Stage Medial Lateral Central Both Whole Total
only only Halves Breast
T1 20 30 6 0 0 56
T2 133 203 48 13 0 397
T3 30 53 13 9 2 107
Total 183 286 67 22 2 560
Site
S Stage Medial Lateral Central Both Whole Total
only only Halves Breast
S 108 161 T 'S 0 307
s2 44 70 21 6 0 141
s3 31 55 15 9 2 112
Total 183 286 67 22 2 560
Site
Node Medial Lateral Central Both Whole  Total
Status only only Halves Breast
Ng 133 191 38 12 1 375
N1 50 95 29 10 1 185
Total 183 286 67 22 2 560
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Section A.2

Skin involvement Pectoral Muscle Disease Status Total
involvement

TO T1 T2 T3 NI T0O T1 T3 NI : None L M L+M
Meno-
pausal
status
Prem 1 5 16 7 134 8 16 8 131 27 34 3 99 163
Meno 1 1 3 7 26 5 9 2 22 11 7 1 19 38
Post M 0 6 51 22 280 1 38 33 287 76 100 12 171 359
Side
Right 1 7 41 15 220 9 33 22 220 56 73 9 146 284
Left 1 5 29 21 220 5 30 21 220 58 68 7 143 276
Site
Med.only 1 6 17 10 149 2 16 15 150 32 48 4 99 183
Lat.only 0 5 37 16 228 7 28 23 228 58 60 10 158 286
Central 1 0 9 7 50 2 11 4 50 18 22 2 25 67
Both 0 1 5 3 13 3 70 12 6 9 0 T 22
Whole
Breast 0 0 2 0 0 0 1 1 0 0 2 0 0
T Stage
T1 1 2 3 0 50 5 1 2 48 3 14 1 38 56
T2 0 1 9 0 381 9 6 1 381 85 90 11 211 397
T3 1 9 58 36 3 0 56 40 11 26 37 4 40 107

Node
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Section A.2 (cont'd)

Skin involvement Pectoral muscle Disease status Total
involvement

TO T1 T2 T3 NI TO T1 T3 NI None L M L+M
Node
No 2 7 38 27 301 7 42 25 301 63 86 7 219 375
N1 0 5 32 9139 7 21t 18 139 51 55 9 70 185
S Stage
S1 "0 1 5 0 301 7 3 0 297 51 63 5 188 307
s2 o1 1 3 0 136 5 4 0 132 36 40 7 58 141
S3 1 10 62 36 3 2 56 43 11 27 38 4 43 112

Total 2 12 70 36 440 14 63 43 440 114 141 16 289 560
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APPENDTIX B

The Fortran maximum likelihocd estimation program with
use of the Newton-Raphson procedure. The version which is listed
performs the necessary calculations for the estimators of proportional

hazards model with fixed exponential relative risks.
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ezl blank.r.rb.idno.besta
common tdeath (1000) Jiatdvr (400 dagel v (40 (baba (40,
A0 uZciny(80)  ad a0,z 40 2k (400,

Fyddno,ns,ireprt,irej,alnll, keh,ndatin,distnc.

model L itime,mehalf.status, stp.ipr.npbase,lik

mwar,maxiter, alnld, tlime, noases, ndsvE, break, curtdm,bimint,
iviime,ivetat.iventr,ividno.is,nvtot.istep,niter,iveznp

dimension bout (4G, 500

data bout/2000%0, 7
efine =11 file outputr and input

cpencS,file=s"phr,.rS7 0
opsEnléa,Files="phr.wé” )
open i, file="phr.rg" )
open (P, file=s="phr,we"
openill,file="phr.wll™}
rewind 2
raewing &
rewirgd &
reawing ¥
rawing 11

o all the data and szpecification for analvesis

read (9,%903) kch.liktyp.ndatin.nvtot,.ivstat,ivtime,iventr,

ividno,is,itime, mchalf,ipr.npbhbase, iveang
it {muhalf.eq.0) mxhalf = E
read (5,908) stp,timint.distnec,chient
id dleztp.eq.0) stp = 001
i+ f(timint.eq.0) timint 1
i4 ddistnc.eqg.D) dietne = 1

|

-

it (chient.eq.0) chient = 1.3232
if flipr.eq.l) read (S,908) zk
ncin = o

ncey = 0
nadin = 0

ndevl = 0
ndsvad = 0
ndevi =
g om0

-t

read (8,%90Z,end=E0) (ddin),.,n=1,ndatin)
ansform any variables if needed

call transf

status = ddiivetalt)

if {status.eq.l) go to 20
nein = ncin + L
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orlfh 2 ool
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gbtain estimate for =

g o 20

ndin = ndin +

if firej.eg.l.and. tkchoeg.i.or.s
i go b Lo

E o= oEpr o+ 1

it istatus.eg. 1) ao o 40

ncey = ncsv o+ 1

oo bo IO

iflire;.eq.0) ndevl = ndesvl + 1

nodswv = ndsvi + 1
if fiviime.ne, O
if (wmr.gbt.l.and.irei.eq.0)
if {likitvyp.eq.O.and. kch.eg.O)
go to 10

nin = ncin + ndin

S !

tdeathindsvi)

-

el

= =

MY
nodsva
nmsy
=5, 207

- 7

nesy
ndead

rnase =
read |
i iswilgs

s Ernd=8007

11<

+
=0 -

if dfiswiss.eq.0) go

OVAarsy = nvar
maxitr

- 4

ma}ityr = -1
read (5, %04)
ey 130 n=1,40
tetdvr (n) 0
1if (n.le.ns)
continue

Maxl sv

isel v

= 1

ightdwr ()

insert MLE orF use previous steps
if (ibref.eq.0) go to 150
cdo 1230 n=1,40

betain)
go to [0
read (S,908)

bout (in,ibref)

beta

if(liktyp.eq.0.or.model . .eq.b)
do 200 n=1,nvar
if{betain.ne.d)
continuz

if (model.gt. 1)
bhetaill =
go o [00
betall)
continue

ao to Z00

+

go to 280

+loat {ncaszse

mdesvid

4
~

istep,nvar,ns, ibredf mani

constant rate

alog(float indead) / (ncase —

2 ¥ ndead!

atus.eq.0.or.liktyp.eg. 1))

dd (ivtime:?
[ o Rt L I

O

tr,ireprt, modesl,

null

go to Z00

nolesnd) B

ndead?

/S incase
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CCC use the MLE sither for this step or

oee

it bt i

e

-t et

-
(=

SO0

&00

700
750

00
O3
G4

P08
958

c

(3

s@ the MLE for forward selection based

)

Chi Sguared (or wse Forced variables)

[ =3}

if diswise.eq.0r go to 700
mvar = ons ]
maxityr = maxiev
ireprt = O
chimax = O
clo S00 nEEnvalr, nvarsw

i (uZacinvinl).lt.chimax) go to SO0
rnma&x = n

chimax = uZcinvin?

continue . J

if {(chimax.ge.chient) go to &00

) e o S L

saviv = ilselvr (nvar)

iselvrinvar) = isslvr (nmays)

izelvr inmasx: = Saviv

call phr

if dnvar.eqg.nvarsv) go to 700

ns = nvar

istdvring! = 1

nyvar = F!;s’:'il"‘ii‘s-’

maxnitr = -1

go to 300

do 730 n=1,40

bout (n,istep) = betain}

ae to 100

write (&,9580

stop

format (1aid)

format (40i2)

format (EF10,0)

format {("normal ending’)

end

subroutine phr

CCC perform the MLE calculaticons

C

bRy

real r,rb,rbb.sr.srb,srbb,idno,betnam,unam,beta,r1
real c,cinv,csave,dl. d2,estims,blank,vmarg,const

real betasv.u,sarat,sratd.shift

common tdeath (1000} ,istdvr (40) ,iselvr (40) ,beta(40) ,

on

iarg

rb(40) ,uZcinv{40) ,dd(40) ,z{40) ,zk (40),

Fyidno,ns,ireprt,irej,alnll, kch,ndatin,distnc,
model ,itime,muhalf,status,stp.ipr.npbase,liktyp,

fe L

—_——il

-
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nvar,max<itr,alnlo,time, ncase, ndead, breal:,cwtim, timint,
ivtime,ivstat,iventr,ividno,is,nvtot,istep,niter,ivznp
dimension w40),c(BE0) , cinv (B20) , caave (B20) ,betasv (407 ,corr (40)
1 =rh (400 ,srbb (820) ,,sarat (40) ,=ratd (40)
dimansion  mev (1000), mrsksy (1000 , sresw (L0 )

LH

dimension ar (40)
ailnlist = —10%%10

nvsqZ = nvarf¥invar+l)/2
niter = Q

neEury = ncase — ndead
alnlo = O
if (liktyp.eg.l) alnld = ndead¥alagi{float (ndead):

|

i + nesurvialog(float (nsurv) )
2 - ncaseXalog{floatincasel)
g
CCCE atter initialiging clear arrays and iterate
i

= kY
niter = niter + 1
almi =
g = 0
da 110 n=1,nvar
seratdiny = O
saratin: = O
110 srbin) = 0
clo 120 nn=1l,.nvsg2
cinmn} = 0
120 @rbb(nn) = O
break = tdeath(l) - timint/=2
if ditime.eg.0.and. iventr.eq.0) breals = O
curtim = tdeath{i)
Y S
iy = 0
tlast = 999999,
if ({ireprt.lt.0) rewind 11
C
CCCE get data on each case together with ties if needed
i
200 rewind B
210 call getr
nphr = nphr + 1
if (r.ghb.0) go to 250
if (niter.eq.l) go to B9S
alml = 0
alrl = O
Aalrd = 0
ier = 2
go to S10
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320
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if (likitvp.eq.) oo to 200
Ignore the next loop if using partizl likelihoods

1l = % 31

alml = alnl - alog(-Ll>

iF dstatus.eqglnl) alnl = alnl + alocgir)

ni o= O

dao 260 n=1.nvar

if {sztatu=s.eq.l) =zratdin) = sratdin) + rbin)/ r
sarat(n) = garatin} 4+ rhin) i

do Z60 nil=i.n

nmn o= nno+ L

cinn! = cinn) + rbin)Xrbinl) /A ir¥rl¥rl)
it (nphr.lit.ncase) go to 210

go ho 500

Begin partial liklihood estimation for survival times
sr = gr + r
rnry o= 0O
do 10 n=1,nvar
sr-bhin) = srihin) + rbhin?
do 10 nl=1,n
nmn = nn + 1
srbbinn) = srbbinn) + rbin)Xrbinll/r
if (status.eq.0) go to 210
if (kch.ne.O.and.time.ne.tdeathi{i+l)) go teo 210
ignore censored times and adjust deaths
i = i+l
m = m+l
if {lireprt.ge.i.and.niter.eq.l)
i write (9,99%9) i,nphr,irei,time,r, (rbnj) ,n=1,mvar?

if death hae missing data ., =kip calculation

if lirej.eq.l) go tc 455

alni = alnl + alogir]

nrn = 0

o 320 n=i,nvar

gratdin) = gratdin! + rbin) / r

loop to

perform calculations for first and second derivative

if {kch.ea.0.or.i.ge.ndead) go to T80
if (tdeath{i).eqg.tdeath(i+l)) go to 210
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200 o nn = O
if direprt.ge.d) go to Zé1
dt = —- tdeath (i)
clast = ftdeath{i}

ms &s”

vilam? = miinphr—-m)/(nphrisrfisr)

450

clo EA0 n=l,nvar
Z&0 arin) = srbin)/er
write (11,%71) tdeathi{i).dt.m,nphr,alamQ,viaml, {ar{n),n=1,nvar)
971 Sformat (2410.3,215.41el15.46)
241 continue
mEv (i) = m
nreksyii) = nphr
sleey (L) o= g
alnl = alnl - m¥alogisr)
i initer.eg. Ll
I alnld = alnl? — mialog{floatinphri?
dog 400 n=i,nvar
sarat(ny = saratin) + m¥serbin/=r
g A0 mis=L,n
nr = nn + 1
400 cinn) = cinn} + m ¥ {(srbbinn)/sr — =srbinli¥srbinl)/{sr¥sr))
it fireprt.ge.i.and.niter.eqg.l)
1 write (9,998) @r, (srbin),.n=1l,nvar)

{
i (dreprt.os.i.and.niter.eqg.l) wite

C
ccee Now for all cases & contribution te liklihood has been made
CEEE if using ordinary partial likelihood the next few lines
CCcce are not needed
C
if {i.ge.ndead) go to 500
if {kech.eg.0) go to 448
curtim = tdeath{i+i)
it (tdeath(i+l).ge.break) go to 210
460 break = break - timint
it (tdeath(i+l).lt.break) go to 440
4&T nphr = O
g1~ o= 0
do 470 n=1l.nvar
470 srbin) = O
do 480 nn=1l.nveql
480 srhbinn) = 0
if {is.eqg.l.and. {istep.ne.l.or.niter.ne. 1)) go teo 210
if (kch.ne.0) go to 200
g0 to 210
£
CCCC I+ likelihood i low encugh take an estimate for this iteration
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call
pslg =

(uZcinvinli,l.,psig,ier)
- peig

if (iselvrin).eq.0) go to &24
it (ipr.eg.l) go to &25
wrrite (£,904) n,iselvrin).istdvrin),

if falnml-alnlst.gt.—-=tp) go to 540

ier o=

alrd = 2 % {alnl - &alnlo)

alrli = 2 % (alnl - almnll)

do EZ0 n=l,nvar

hets(n: = (betain? + bhetasvin)) 7 Z.

shift = ehift/2

i

rw = 0

nshift = nshift + 1

niter = miter - 1

wreite (&,90&8) niter.nshift,igr.shift.alnl. alrdalrlire,rw
wrrite (&,910) (hetain),n=1,nvar)

if initer.oe.maxitr.or.nehift.ge.mehalf) go to 200
oo to 100

nehift = 0

aldif+ = alnl - alnlsi

alnlst = alnl

oo S70 n=1,nvar

uin = sratdin) - saratin}
Output recsulte of Fire iteration.do a test for each variable.
if (niter.gt.l) o to &S0

alnll = alnl

wreite 1&,902)

tlo &30 n=1,nvar

nn o= 0

do 620 mi=l.mnvar

do 620 n2Z=1l.nl

nno o= nn + 1

cmaveinn! = cinnl

if (nl.ne.n.and.istdvrinl).eqg.0) go to &10
it (nZ.ne.n.and.istdvir(in2) .eq.0) go to &10
go to &20

csaveinnl) = 0,

if {nl.eq.nZ) csavelinn) = 1.

continues

invert matrix

call linvlip (csave,nvar,cinv,1l,dl,dZ,ier)
nno= n¥in+l) 2

u2einvin) = uin) ¥ uin) ¥ .cipvinn?

calculate the chi valus
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go to &30
&24 write (6,%04) n,iselvrinl,.istdvrind,
betain}, sratdin!,saratin),unl),cinn?  cinvinn) ,uc
g0 ta &S50
25 write (&,929) n.iselvrinl.zikin) istdvrin),
i betain),sratdin) ,saratin) ,uin),cinm},cinvinn ,u2cinvin,p
&30 continue
G
CCCE get correlations and information matrix ready
o
F lipruea.l) go to &44
wrrite (&, 03]
i fismelwvril).eq.0) go to &34
go to &36
&34 if (nvar.ge.Z) go to &75
o to &5é6
&Z8 continue
&%48 nli = O
niZz = o
do &45 nl=1,nvar
nll = nil + ni
na2z = 0
do &40 nZ=1.nl
22 = nl22 + Nz
nle =l 4+ 1
540 corrinZ) = cinlZ) / sqgrticinil)ic{(niZ))
if fiselvrinll.eq.0) go to &44
write (&6,901) (corrinZ2),nZ=1,n1l)
o to 6450
&44  write (6,701) (corrinZ),.nZ=1i,nl}
4% if tnvar.gt.8) wite (&4,901)
H4é& write (H,9010
wrrite (6,218) alnlo
i
CCC Invert the information matrix and check within range
¢
H20  if (maxitr.lt.0) go to 820
do &70 nn=1,nvegi
&70 c=savel(nn) = cinn)
i+ (ipr.eg.0) go to &90
nn = Q@
do &8 n=1,nvar
do &8 nl=1l,.n
rmr o= nn o+ 1
if uim.ge.C.and.uinl).ge.) go to &85
if fuinr.lt.D,and.betain).le.0) go to &735
if fuini).lt.0O.and.betainl).le.0) go to &7%
oo to 6835
675 if {n.eqg.nl) go to &80

meEi
=
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invind , psig
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695

=

cinm)y =
g ho &8F
clmrm) o=
continue

nsl = ne

do &84& n=1,nvar

if fuin).ge.d.or.betain).gt. ) go to &B&
i) o= (O

nel = nel + 1

continus
do &F0E nn=1,nveqgZ

cgaveinnd = cinnl

invert matrix
call linvlip (c,nvar,cinv,1l.;dl,d2,ier)

§

i fier.eq.0) go to &%1

i = 3
[ TS
Er =R
alrd = 2 % {(alnl - alnld)
alrli = 2 % (alnl - alrll}

niter = maxitr
go ko TFO

ignore the following for survival analvysie w

o= 0

e

shift = 1

nrsy = 4

do &9E n=1l.nvar

betasvin) = bhetalin)

do 700 n=1l,nvar

NSy = nngy <+ n o= 3

nn = nnev — 1

do 4958 mi=1,nvar

nm o= nn + 1

it {(nl.gt.m) Mn = nn + nl - 2
Fros orr o+ uin)¥uinl) ¥cinv (nnm)

revw = rw + betasvinl¥betasvinl)¥csaveinn)
bheta(n) = betai(n) + winl)icinvinn)idistnc
continue

if (ipr.eg.0.or.betain).ge.0) go to 700
i+t (betasvin).gtbt.o)

1
-

ith eingle

shift = aminl{shift,.betasvin)/(betasvin)—-betain)))

if f(hetasvin).eq.0) betalin) = 0
continue

it (niter.eq.l1) rrio = rr

if (shiftt.eg.l) go ta 750

do 720 n=1,nvar
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&0
785
770

a0
0
0
0

b

betain? = betainl¥shift + betasvin)¥{l-shifi?

if hetaind.lt.betasvinl¥stp) betain) = O
=hift = ehiftidistng

if (niter.gt.l) go to 770

wreite (&, F0E)

it tipr.eg. i) go o to 70

if {igelvril).eqg.0) go to 758

go to 7a5

if (nvar.ge.2) ao
go to T&E
continue

go to 76E

write (6,%913) {(zkin!,.n=1l,nvar’
wrrite (&4,901)

alr = 2 ¥ (alnl - alnld)

alrl = 2 % (alnl - alnll)

it

o 7Ee
0 .2a%

wirite (6,9208) niter,nshift,ier,shift,alnl,alrd,alrl,rr.rw

write (4,910) (hetain),n=1,nvar)
wrrite (6,910) (win).n=1l,nvar}
write (&4,201)

stop all loops

i

if imaxitr.eq.Q) go ke 870

it (niter.ge.maxitr) go to 300
if (rr.ge.stp) go to 100
it (aldiftf.gt. (stp * 10.}.and.shiftt.eqg.1)

final estimatore get EE and MLE for relative rick

if {(ipr.eqg.®) go to 810
write (6,927

ro= 90 .

i+ (npbase.ne.?) r = - beta(npbase)

i S )

var = o

if {npbase.ne.0) var = cinvinpbaseX(npbace+1)/2)

expr = axp i)

se@beta = =qgrti{var:’

expse = exp(-aseheta)

chisg = O

if (var.ne.0) chisg = r¥r /var

i} = 0

wrrite (6,928) n,z0,r,sebeta,expr.expse,.chisq

var = 0

do 808 n=1,nvar

o= o o+ betals)

it (betain).eq.0) go to 808
i+ (n.eg.npbase) go Lo GO7

o ko 100
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g0
=H3O7

808

814
815
glé

g20

o=
e

850

B&0

455

Fy
e

VAr = var + cinvin¥{mn+1)/2}
y

gy )
P i S

nnl = n¥in-1

=5 1

nMz = n¥in+l) /2 -
do 8205 nn=nnl,.nni

ni = ni + 1

i+ dbetainl).ne. . and.npbase.ne.nl) var = var + Z¥cinvinn)
s = oagqrt (vard

chisg = 0O

i leg.ne. ) chisg = (rise) XX

@upr = @xp (r)

gxpsmes axplise)

gsebeta = sgriicinviniin+l) /22

wreite (6,928) n,zikin).betain),.sebeta,expr,enpse.chisqg
continues

go to 86Z

in arder fto use the following change the above liner
the following will use estimaetes for removal of a variable

write (&,%07)
if ligselvr(l).eq.0) go to 814
g to 8ié

if (nvar.ge.2) go to 815

go to Blé

cormtinue q

write (&6,%210) (betai(n}),n=1,nvar)

write (6,9185)

do 820 n=1,nvar

cgave (n) = l/cgaveln¥in+l) /23

write (6,910) (csavein).n=1.nwvar)
write (&,%9164)

do 850 n=1,nvar

nril = n¥(n=-1)/2 + 1

nnZ = n¥in+1) /2

i+ digelvrin) . .eq.0) go to 825
write (6,%210) (cinvinn),.nn=nni,nn)
go to 850 '

wrrite (6,%710) (cinvinn).nn=nnl,nnZ)
if (nvar.gt.8) wite (4,%901)

do 860 n=1l,nvar

uwiZcinvin) = beta(n) ¥ beta(n) / cinvin¥{n+l)/2)
write (64,9110

wrrite (6,9175) fuZcinvin).n=1l,nvar)
Fai o= 0
nn = 0

rgl = ing o4
ndf = nvar — ns
g BLHOD n=nasl, mvar



8410
8&2

cC

CC

870

CC

880

881

F s

nnd o= m¥in-1Y/2 + ne

clo 8400 nl=nsl.n

nm o= nn o+ 1

mrlo o= opnl + 1

cinvinn?! = cinvinnd)
invert matriy

call linvip f(cinvendf,c.l.dl,.d2,ier)

nnsy = 1

do 8410 n=Ensl.nvar

nrEy = nngy - no—- ne - 1

nrm = nnev — 1

do 8410 nil=nsi,nvar

nn = nn + 1

if (nl.gt.n) NMn = nn + nl - ns — 2
Wil = w4+ bhetain)ibetainl) $fcinn?

if inzhift.ne.Q.or.niter.ge.maxitr) write (46,914)

alrehi = 2.¥%¥(alnl-alnl)
df = nwvar
i+ {ipr.eq.l) df = df - n=l
calculate the chi-s valus
call mdch (alrchi,df,peig.ier)
psig = 1. - psig
wreite (&, F20)
write (4,%908) alrchi,df,peig
calculate the chi s value
call mdeh (rw,df,psig, ier)
peig = 1. - peig
write (6,924) rw,df,peig
glrchi = Z¥{alnl-alnll)
cfF o= onvar-ns
calculate the chi & value
call mdoh (alrchi,df,psig,ier)
psig = 1. — psig
write (4,921
wrrite (6,908) alrchi.df.peig
cdf = nvar-ns
calculate the chi = value
call mdoh OrO,df,psig,ier)
ps=ig = 1. — peig
write (4,%12) rro,df,psig
calculate the chi & value
call mdeh (FwO,df,psig.ier)
peig = 1. - psig
write (4,924) rwo,df,psig
if (maxitr.ge.?) go to 881
co B8O n=1,nvar
betain! = betasvin)
et
it {(kch.oeg.0) return
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282

88s
820

BYS

Fidn
Q02

L

P04

R0rE

S
o7
Fiog
QL0
214
912
I
214
hra 3
D14
cig

writie (&, @000

mho o= O

chl = 0

glmo = 1

skml = 1

3 = ndead + 1

do 885 i=1,ndesad

4 = g

if {j.eg.ndead) go to 88X

i Chdeath () .eq.tdeath 4410 )

alamd
atami
ribar =
chid =
chl =

Shkml =

shkmi =

shresl =

ehreas]l
wr-ite

contin
rEturn
write
Wi it
stop

format
format

Ry

format
format
format

2

1+ &

-

a

B oud R R e

h
format
format
format
format
format
format
format
format
format
format
format

&

= mevij) / srevij)
= mawvl i)
sr=vii) / nreksvij?
cht 4 alamd
chl + alaml

skmid ¥ (l-alamd)
eskml % {(l-alamil:’
ayup (—chQ)

= exp(—chil)

go to 88

Sotlaat (nrskey (510

tdeath (i) .nrekevij},mevijl,alaml,chl,skml, sbre

rhar, alam, cho, skhmd, shresd

tddill,l=1l,ndatinm

Farrbind , (betadnd,n=1,nnvar]

bheta’,

expected u

o R 0

{6, 931

LLes

(b, RE2) nphr,i,key2,

(&, F23)
(4, BFf15. 57135 ,8F15.5))
{? variable
obeerved
(e id) ) kk—1 chisg
{("correlation matrix’

(1b,i7,b%,i8,6013.5, f9.3,F11.4)

efil) 7,

increment’ .,

1r test

"
1

{("—iteration outputs :°*/° iteration
i a=la elife 1og
est one two' /
number halving codes multiplier
hO:beta=0 hO:beta=beta® hi:beta=mle
Dibeta=0"/)
L5144 6F 5587
CMLE of beta®sd
("LR chi sgquare=" 12,6, F4.1,7df,p=",F9.6)

(4, Beld. &/ (15x, 8l

(" tests to remove’
(Tchi sgquares" F132,
(120, B415. 25

Tno convergance’ )

5. 4))
)
by F4.0, dF, pET , F9.6)

("variances.with Asym normality?®)

CTtemps’ )
(*1lm (L)

null hyvpothesis=",£132.,4)
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Q=7
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929
FE0

231
98
Qo9

1000
QI

L ]

[
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fFormat (P sid

format (fadds®)
T imates of beta produces zero or negative’,

format | nitial est

7o for subiect TLIi8,.7 of risk set (T L18,7 with did o= 7, a8/
2% raw data for subject follows? /10F135.6/10F15, &)

format (‘computed r = 7 ,eld,. 577 rl g =8 o R
s [ befuunh’ﬁéiﬁqﬁx.2e15.¢}3

tormat (Ttest chi sguare L2 &, F4.0,Tdf,p=" ,F2.4)

format ("—Final e=stimate of the relative risk®,

17 function and its asymptotic standard ervor’ /" increment i
e e beta se (betal r ¥ se(r) cum. rw test’)

format (i7,F10.3,2F10.46,3F11.4)
format (i&6,17,60,F8.2,1i8,6el2.8,$9.3,f11.6)
fornat (Tlestimated suwrvival functions at the mle of beta” s

170 survival  num num entire set — unadijusted for covar
Zdates” 10w, "mean” . Bx,.7 null functions - i.e. evaluated at = = O/

& time at dead hazard cumulative survival func
dtione’ 10w, risikk’ ,Bx,  hazard cumulative survival functions?® s

57 rrisk rate hazard Cov

& 2oy Iiihe, ® TLEe,T rate hazard o 200

Fofmat (EBal: 1 Mad D dnp @l 2y T SR e S P LS ds A 2R L 2 W 29 E 1 5)
format (38, F1l0.4,60,60l3.5/(3, 1021Z2,.5))

format (7 f,i4, lw‘hm,i;R{B.E,?x,¥10.4,&x,éelﬂ.

' (T, 10213,.5))

erd

suibroutine getr

real blank,r,rb,idno,bets

commaon tdeath (1000) istdvr (40) iselvr (40) beta(40),

= Fh (40) ,uloiny (40) ,dd (40) 2 (407 ,zlk (40),

2 r,;dno,ns,1reprt,1re;,aln11,kch,ndatin,diatnc,

A model ,itime,mchal f,status, stp,ipr,npbase,liktyp,

1 nvar,maxitr.alnli,time,ncase, ndead, break, curtim,timint,
= ivtime,ivstat,iventr,ividno, is,nvtot,istep,niter,ivzng

if {is.eq.l.and. {iestep.ne.l.or.niter.ne. 1)) go to 180
time = 0

idno = 0

teantiry = 0

read (8,903) (ddin).n=1,ndatin’

format (16&I5)

call transf

status = ddlivstat)

if {irej.eq.l.and. (kch.eqg.l.or.status.eq.0.or.liktyp.eg. 1))
i go to 100

if (iviime.ne.,0) tims = dd{ivitime)

if Cividno.ne. ) idno = ddiividnol

i+ fiventr.ne.,d) tentry = ddiiventr?

if Ctentry.gbt.curtim,and. kch.eqg.l) go to 100

continue

co 200 n=1,nvar



19

200

300

310

410

SO0

D10

&00

&350

T

710

725

7I0
746
8OO
299
G50

Joeq.0)r go to 190

ey o=

continue

if fipr.eq.l) go to 700

go to (300,400, 500,400, 4600, 650) ,model
g o 899

betaz = O

do 310 n=l,nvar
betazr = betaz <+ beta(n? ¥z (n
¥ = expi{betaz)

o F20 ne=l,nvar
rhbin) = rxz(nm

go tao 800

ro=1

dao 410 n=1i,nvar

r = r + betaini¥zin)
rhin) = zin)

go to 8OO

o= ]

do S10 n=1,nvar
ebeta = exp(betain)?
r = r + ebeta¥z{(n}

= () ebetaXz in)
go to 8OO

call comb

go to 8OO0

call mdlsub

H

go to 800
o= O,
kz = 0

ez = kz + 1
if (z(ivznp).lt.zkikz).or.kz.gt.nvar)
ro= r 4+ betalkz)

go to 710

G = 5

kzml = kz — 1

do 728 n=1,kzml

rbin) = r

if {(kz.gt.nvar}) go to 740

do 730 n=kz,nvar

robin) = 0

corti roas

return

continues

continus

stop

end

go to

'?"J'o

4 o
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480
440

S0

i =le

S70

=80

subroutine comb

real blank,r,.ri.idno,bets

common tdeath (10000, daetdyr (400 ,iselwvr (40 ,beta (40)

= e (A0 cuZoimy (0] L dd (A0 gz (4D gzl (40,

b ruoldno,ne,ireprt,irej,alnl i kech, ndatin.distnc,

£ model yitime, mehalf,status,stp,ipr,npbase,1iktyvp,

1 nvar,maitr,alnld, timse, ncase, ndead,break.curtim.timint,
& iwvibime,ivstat,iventr,ividno,is,nvtot,istep,niter,ivanp

dimension rab (40) . rmb {(40)
nml = nvar -— 1

b = betainvar:

if nvar.gbt.ns) go fo 300
nml = ms

ge to (800,800,800, 400,500), model

go o 800

radd = 1

rmelt o= 01

dor 430 n=1,.nml

racd = racdd o+ betadnd bz nd
rabin) = zin}

rmuit o= ormult & {1 4+ betal
do 460 n=1,nml

mnyEzind 2

rmbind = zim)Ermults (I+betalni ¥z (n)?

geo to FOO

nodum = D

do 350 n=1l,nml
rabimn) o= 0

rmbin) = O

if (z2ln).eqg.0) go to S5O0
g o (S50, 3505 . ndum
il = n

noum = 1

go to 350

12 = n

noum = 2

continue

go to (570,580 ,ndum
radd = 1

rault o= 1

go to 700

raced = 1 + hetacil)
rmult = radd

rab (il) = 1

rmb {il) i

go to FOo

radd = 1 + betai{il) + betal(il)
rmult = radd + betafil)ibeta (i)

rab(il} = 1

460



rak (12 =

]
= s

rmb 1) + petaliZ}
rmbp i) = 1 4+ betalil?l
T bmi = 1 - b

r = radd ¥X bml ¥ rFmult k¥ b

R trevar) o= o ¥ (alogirmualt) - alogiradd) )

do 730 n = l,.nml
TED rbhin) = r %X {(bml ¥ rabin}) / radd + b ¥ rmb{(n} / rmult)
200 return

end

subroutine mdlesub
real ryrbhobhets
common 101160) ,beta{d40) ,rb(40), j20100),2(40), i7{40) ,r, i4{(17),

i nvalr, o {17)
raturn
end
(of g o thie the same subroutine as transd with dummy

subroutine drtans

common 113600 ,dd (40, j2(106) ,,ire i, s3(19) ,curtim, j4(10)
ire = 0

return

el

subroutine transf
common 51 {13600 ,dd {400, j20108) jirej, j2(19) ,curtim, 4 (10}
o 100 n=10, 14
100 dd (m)=0
ey = 0
return
e2ndl
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