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Generally it is recognised that scientifically designed clinical trials play an
important part in the development and the evaluation of medical treatments. Such
trials fundamentally contain natural administrative and ethical conflicts.

In the course of this thesis we will look at the developments in the analysis of
failure time data and deal with study of interrelationships within clinical trial data.
The general utilisation of such analytical methods have been made possible by the
distribution of fast computerised processing power.

In the area of survival distributions we will consider various empirical distributions
and perform a comparative study of the non-paramtric and parametric methods and deal
with the recent developments in the area of semi non-parametric methods, using the Cox's
proportional hazard model. We will perform an assessment of power efficiencies of
tests for computer simulated clinical trial data, under varying, sample sizes, censoring
levels, significance limits, asymptotic normality and likelihood tests, time dependency
assumptions, and a range of treatment and prognostic effect values.

We consider interrelationships of relevance in the context of trials to be those of
prognostic effects as well as the event time variabilities under a multivariate failure
time context.

We will deal with two data sets, both of which relate to breast cancer. Initially
we consider a data set from a clinical trial organised in Edinburgh, and study prognostic
and treatment effects for a set of risk factors such as local recurrence, metastatic
recurrence and death. Finally we use a data set on breast cancer patients purely
for the assessment of prognostic effects. In the latter study we consider a set of
accepted prognostic effects as well as a set of measurements dealing with tumour
change and extent. In the discussions of the above we present various models in
order to test time periods to and from intervening events in a multivariate study.
We will also consider time dependency of various effects in order to check on the
persistance of an effect on the time scale.
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CHAPTER 1

INTRODUCTION

Statistical inference has been increasingly regarded as

a necessary tool for the assessment of risks in its various forms.

This necessity to examine and compare risks is becoming an essential

part of the methodology of a large number of subjects that deal with

risk in its varied and distinct forms such as occupational hazards,

industrial developments, environmental risks and patient management

in hospitals. As an abstract formulation we can regard the general

problem as that of choosing between two or more courses of action

knowing that the courses of action have risk values attached to them.

Part of these risks are in terms of costs and benefits to the

individual and partly to the collective society. We can

thus identify a set of general questions by which finding relevant

answers for each particular context is the essential part of the

methodology. How much information is sufficient for discriminating

between the courses of action? What are the acceptable levels of

benefit for introducing a new course of action? What are the

appropriate/
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appropriate measures of risk? What are the conflicting rights

of the individuals and institutions, and finally, how do we collect

the relevant information?

The principal part of the notion of risk and its

appraisal is introduced as soon as one considers social and human

dimensions of a decision. In contrast, within the framework of

most natural experiments the concept of risk does not usually

arise and is substituted with that of deriving optimal rules

for obtaining appropriate measures at minimum cost and time

in collecting the relevant information.

The methodology we are dealing with in this thesis relates to

that of a clinical trial and analysis of failure time data for a

clinical trial. The principal aims are to show that for this

particular application, within the limits of controlled experiments

how concepts such as control of concomitant information, exploratory

approach in analysis and that of study of association between

various risks may be employed to provide a better understanding

of the data.



1.1 HISTORY.

In 1693 E. Haliey the well-known discoverer of the

Halley's Comet produced a life table of the population of Breslau

in Germany. This data was based on the city records and was

published in the philosophical transactions of the Royal Society

of London, with the title of "An estimate of the degree of mortality

of mankind, drawn from the curious tables of the birth and funerals

in the city of Breslau." The data was composed of the age and time

of death and more importantly the cause of Death was specified to

be small pox or other causes.

This final small detail on the cause of death in Halley's

data, later on led Daniel Barnoulli in 1760 to reformulate the

problem. In his paper which was read at the Royal Academy of

Science, Paris, Barnoulli adopts an ingenious and simple argument

to derive for each individual, who died of small pox, his determined

length of life had the risks of death from small pox been eliminated.

However, the method is based on the assumption that

the disease affects the total population in a uniform manner, and

thus the method is not sensitive to the possibility of structural

variability for smaller subgroups such as, a small subgroup of

patients being strong and thus more immune from the disease. One

rather obvious source of structural variability was pointed out by

D'Alembert (1761), the eminent French mathematician of the time.

He noted that the probability of contracting small pox as well as

dying from it may well be dependent on age.



4

At the time when d'Alembert and Bernoulli were constructing

the early life tables, mathematical tools had not been developed for

a more refined analysis. The method is based on a deterministic

analysis of the numbers in a time period while it does not provide

a probabilistic interpretation. Further it seems that although Halley

may have been interested in a functional form of parameters to

investigate the total population and possibly a population distribution

(being and astronomer himself.) Bernoulli adopted a non-

parametric approach at each interval, based on a number of cases,

to determine the expected values. (The distinction between

parametric and non-parametric methods will be discussed more

extensively later).

In actuarial studies a similar problem arises where a population

is measured for the risk of death. At the time of analysis some

members of the population may not have completed their time to

the response of interest (death) and therefore no information is

available on their time of death. By 1825, Probability Theory

had been well developed and Gompertz (1825) had produced a

function to approximate such a population survival distribution

with the above property of some cases not contributing to death

times. This distribution known as Gompertz-Makeham has been the

central theme of many models in actuarial theory. The model

proposed by Gompertz and further by W.M. Makeham (1875) is very

realistic in that, the basis of its philosophy is to allow

separate risks of withdrawals from the population with a response,

such as death due to a particular cause (e.g. cancer), or due to

other causes. In fact by ignoring the possibility of different

rates/



rates of death due to different causes would at times invalidate

the conclusions of the study. However, the above flexible approach

allows a check on the assumptions regarding the relevant causes of

death. The importance of this approach in allowing different risks

was not introduced into medical studies until the mid-1950's with

the contribution of J. Cornfield in application to clinical trials.

Studies carried out as late as 1939 by Bernstein, Binham and Ach

came to an invalid conclusion through overlooking the problems of

choice of relevant response rates as the final events of interest.

Prior to the works of Cornfield, similar developments were taking

place in another branch of applied mathematics. Emergence of complex

mechanical devices and early electronic networks required mathematical

models for a representation of the logical flow of the chance of

failure, and a final assessment of the probability of failure of the

system. These areas were named reliability and life-testing.

At present a major application of these techniques is related to

development of defence systems in U.S.A. and U.S.S.R. There are

many similarities between reliability studies and survival studies

of a population. The conceptual simplicity of the electronic

systems were partly responsible for the emergence of recent trends in

multivariate, failure time analysis. Any device may be composed

of a number of components each with its own risk of development of

a failure. These components may be in series and thus failure of

a single component can result in a system failure or may be in

parallel.. A medical example of the latter would be a study of

kidney failure where damage to one. kidney would not be fatal. The

basis of this approach in medical studies and population studies

has been laid by Fix and Neyman in 1951 and Chiang in 1960.
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As was pointed out a sound methodology had been developed

by the mid-1950's to apply statistical methods to clinical trials.

The Epochal Streptomycin trial conducted under the auspices

of the Medical Research Council first reported in 1948 by MRC

and later by Bradford-Hill (1962) may also be considered as one of

the contributors to present trends. What is important about this

study is its impact on medicine by the introduction of scientific

attitudes to the study of treatments. Further development of

methodology in clinical trials was diversified from those of analytical

methods derived from reliability and life testing to a shift of

emphasis towards the proper scientific practice of considering a good

design as a primary aim.

Within the medical literature Peto et al (1977) proposed

a major set of guide lines for the conduct of trials. Most of the

emphasis in their report is on the construction of a well-designed

trial. For the analysis of data however they adopt a standard

statistical method for use in a clinical trial.

Some of the works of J. Cornfield were responsible for

early application of statistical analysis methods in clinical trials.

He also pointed out some of the problems of statistical interpretation,

for example, in the area of multiple risks. Although the framework

of risks associated with components of a system failure is simple

enough for mechanical applications, in medicine there are more major

difficulties. Some of the developments of the thesis will be related

to these difficulties.

Finally, it seems that a change of emphasis has taken place.

In early studies of the development of risk of a disease, most

applications were on communicable diseases. An epidemic develops

and/
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and initially there is a high risk of failure (death) from

contracting the disease. With the passage of time chance, of

progression of the disease decreases and falls to zero. That is

for survivors within a relatively short period of time there is often

a possibility of return to normality. The present context for chronic

diseases must assume that from the start of the process, failure begins

and so with any secondary event the chances of death increase.

1.2 Some Methodological Concepts in Clinical Trials.

In this section we present some of the special features

of clinical trials. Basically the aim of a clinical trial is the

management of the unknown in a clinical setting, so that some knowledge

or dogma that has been obtained due to historical reasons may be

refuted or substantiated. The information gained is then useful in

practic in the administration of treatments. In this respect a trial

does not differ from an experiment in the natural sciences. However

any form of a scientific enquiry which involves the collection of data

within the human environment is open to various constraints. Some are

related to the impact of the study on the subject under study and some

are related to the actual validity of conclusions drawn from the study.

Although none of the above problems undermine the fact that the final

scientific answer is important, they do make a contribution to the

quality of the data which is gathered and the role data gathering

plays in the administrative and ethical areas. From a medical point

of view the question is not only of legitimacy of the approach in terms

of how scientific the trial is, but also whether the trial can be

administratively and ethically accepted. Difficulties in the management

of the unknown is present in many areas. In other forms of trials that

may/
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may take place outside of medical fields the experimental unit may be

subject to far greater risks. In fact the introduction of any new

policy can be thought of as posing initial high risks. Within the

framework of medicine, the problem of risk is due to the rights of the

individuals and how the uncertain effects and its conclusion may

benefit the society through the works of institutions.

In here a distinction may be made between two types of

risks involved. One form of risk is due to possible progression

of disease or expected status of disease over time if there is no

intervention. The other risk is related to the new method of control

of progression of the disease with expected side effects over time.

Depending on the phase of testing of a new drug clearly a different

level of risk may be present in treatment.

Three stages have been recognised in the development of

a new drug. We will in here mention these three phases but the area

of particular interest for our study is mainly related to one phase

only and deals with controlled trials.

Initial study of a new drug is often referred to as a phase

one trial. There is little emphasis on actual statistical testing

but more on obtaining insight into acceptable dosage and practical

limits in administration.

Next stage is a screening study to assess efectiveness of
i

drug under study and its value in performing further controlled

studies. Finally a phase three trial is the stage where a comparison

of two or more treatment regimes is needed.

The/
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The phase two trials have been at times the subject of

controversy as to their place between phase one and phase three.

Often a balance is made between the level of advance of the disease

and the risk it subjects the patient to with that of accepted value

of the treatment.

The first and foremost motivitation in proceeding with a

trial is to find scientifically valid answers with the minimum number

of patients in the shortest period of time. A well designed trial

has been encouraged from various approaches by many authors.

Peto et al (1977) consider the roles of factorial designs in trials.

Simons (1979) considers the role of stratification in design stages

of a trial and Brown (1980) discusses the role of cross over trials

although it is not relevant to survival studies. We have mentioned

these methods for completeness and consider some of them during

analysis of trials in later chapters. At the centre of these

approaches lies the principle of randomisation of the patients to

the various arms of a trial. Randomisation is seen from a scientific

view to hold a central role. Also it has been received increasingly

by the medical profession as having an important place in all

assessments of comparative patient management.

An alternative to controlled clinical trials is the use

of historical controls which has found favour in certain clinical

circles. The latter approach does not resolve the important problems

of personal bias of the investigator, and the passed on institutional

dogma. At the present time the value of randomised controlled

clinical/



10

clinical trials is recognised by most medical investigators, although

their proper practice in data collection and interpretation have

been the subject of discussion, in different situations. Ethics

and value of scientific refutability form the framework of discussion

in this circumstance.

In the past, two general types of historical controls have

been reported. One group is related to comparison of patient groups

treated by different methods at different times within the same

institution, and a second type which allows the comparisons to take

place across various institutions. Neither of these two methods

provide a satisfactory basis for allowing a like with like comparison

of two groups that have been treated by different methods without

making unjustifiable assumptions. Clearly the problem of final

interpretation is that, it becomes difficult to distinguish effects

due to treatment with those of institutional and/or time variability.

For example, Focock (1974) has reported the unreliability of

historical control results from three cancer chemotherapy co-operative

groups. In this study a comparison is made between similar treatments

which are used consecutively. 19 such instances were identified with

the changes in the death rate ranging from - 46% to +24% and with 4

instances giving a significant difference at the 2% level. The

phase two trials that we mentioned may at times be defined to belong

to this class of historical controls.

If a treatment is found to perform a major significant

improvement on cure, the weight of such evidence may be so overwhelming

that a controlled trial is not necessary and thus confounding of

treatment/
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treatment effect and time effect is judged unimportant. Altnough

it must be emphasized what may seem very overwhelming evidence to

ignore time confounding for some is not necessarily overwhelming

evidence to others at all times.

Problems of historical controls are not only confined

to their philosophical position. In practical terms there are

some further difficulties. Missing information is usually a

probelm in statistical analysis and the time gap between treatment

methods does not provide a uniform setting for the recording of

relevant information. Prognostic indicators are often subject

to various forms of interpretation and again across institutional
*

variability combined with time variability can introduce additional

bias. In terms of analysis the historical control data analysis

require relatively more control of various factors. These effects

will make the analysis firstly more complex and secondly more

dependent on model assumptions and open to differing interpretations.

The above were some of the problems of historical controls given

that patient environment does not introduce its own bias.

Eligibility criterion, wrong patient mix, adjuvant patient care,

observors perception of patients final status are all various factors

that open the ways for introducing bias from medical participants

in a trial.

Although we have put randomisation as the central

argument of a scientific approach to trials, there are a few other

issues involved in. a good statistical design. For reasons of

efficiency and representativeness one can use multi-centre trials

with reasonable levels of stratifications. Further, depending on

the/
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the form of questions, one may proceed with a cross over or factorial

design trial.

For a good scientific conclusion, there is a need to

organise a trial with a sufficiently large number of patients. In

order for a trial to be able to detect differences of clinical

importance between the treatments and be likely to judge this

difference as statistically significant, either the period of accrual

of patients has to be long enough to allow a large number of

homogenous patients to be. allocated to various treatments, or

alternatively a multi-centre approach could be adopted by which

a number of institutions such as hospitals and medical centres

refer the decision making to a central trials office. The last

approach at times can lead to an introduction of more heterogenity

in the total population, due to environmental, varied practice or

institutions or population structure differences of the different

areas. In here a distinction must be made between institutional

variability that is controlled by the randomisation and those of

historical controls. In controlled trials although extra variab¬

ility is introduced by the institution, the within institutional

strata randomisation ensures that no bias is involved in the final

assessment. The long accrual period also has a slight similarity

with historical controls in that it spans through time. However,

the distributional variability of the patients prior to treatment

allocation can be thought of as being more consecutive in controlled

trials.

Once a large number of patients are allocated and randomised

to different treatments, then the patients are followed up for a

long period. Continuously the patients are monitored for develop¬

ment/
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merit of patterns of progression of the disease, with respect to

survival, side effects, disease spread, together with treatment,

stratifying and concomitant variables. Further it is necessary to

perform the analysis of the data at various times with up-dated

follow-up information mainly for ethical and administrative purposes.

It is likely that at the time of analysis some patients may not have

responded for each particular time measurement. This effect is known

as censoring of the survival time for the patients, in that no res¬

ponse is known and survival time is cut off by other events before the

patient has had a sufficiently long period of follow-up for responding.

Censoring is a special effect present in study of failure time data.

A few special problems arise in presence of censoring. The major one

is related to "lost to follow-up" cases. It is possible that in

certain trials a group of patients produce a different distribution

as regards to the number of patients that are lost at time of analysis.

Such effects are mainly due to administration of the trials and are

undesirable. In the next section we will deal with censoring in more

detail.

The randomisation can provide a good setting for control of

administrative bias. However it provides no guarantee that differ¬

ences between the groups towards the end of study are only due to

treatment effects. It is important that together with the formula¬

tion of an a priori hypothesis, a framework is set up so that the

patients in the two groups are in some sense comparable in terms of

their known prognostic indicators and follow-up procedures. This

framework in practice is extended to a protocol that all participants

agree to conform to. In this way the data collection and interpre¬

tation of effects and some of the clinical practices are standardised.
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From a scientific point of view the emphasis on the better

design of a trial will clearly enhance the reliability of a conclusion

that is drawn from a trial. Much of the respectability of hard data

sciences such as physics and chemistry is attributed to the develop¬

ment of good calibration and development of instruments for proper

measurement. The development of better recording facilities and

computer storage and analysis may go in some way to provide more

uniform standards in clinical assessment.

Some of the prognostic indicators later form the basis of

further analysis of survival times. At times such analysis can

suggest a path for formulation of a new hypothesis. In here there

is a need to distinguish between two forms of questions that may

arise. All the above discussions have dealt with the value of a

treatment in terms of the individual survival times. However, other

failure time indicators related to progress of disease, side effects

and changing prognostic indicators at times can be used to provide

information on the biological nature of the treatment and disease.

This latter distinction between the two types of question

is made due to the recognition of the fact that trials are not experi¬

ments in the pure hard data sense of the word. What may be termed

in the 'hard' sciences as data dragging and problems of multiplicity

may justifiably be recognised as locally valued exploratory data

analysis in the clinical trial data context. The problem is that

what is often considered as valuable research is related to the

unknown and it is in the area of the unknown where clinical judgement

may be thought to be at its strongest value. This type of explor¬

atory/
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atory analysis therefore can provide a framework for reduction of

the data and secondary analysis. Part of the benefits of local

exploratory analysis will be in the formulation of new hypothesis and

part of the benefit may be in terms of an improvement in the quality

of the data that is collected. However it must be emphasised that

a proper placing of secondary (exploratory) analysis is achievable

only by a utilisation of diverse and relevant methods of analysis.

1.3 Trends, Philosophy and Ethics.

In the previous section an overview of the main topics

of clinical trials was given. In this section of this chapter

some trends and developments in the light of the present definitions

will be given. Clinical trials play an important role both in

terms of the value of the information they produce and in their impact

on the general public. They introduce problems of ethics in a

situation where there are conflicting interests and risks involved.

Further, to resolve the real problems that exist and to arbitrate

between conflicting risks and advantages we use scientific method¬

ology. This is at a time when the distinction between science in

its pure sense of the work and its applications are diminishing.

In the previous pages, we discussed the setting within which

a trial is performed and we touched on a few topics that determine the

design stages of a trial. We will now continue with the quality and

form of the data that arises and the type of information that is

considered to be essential for providing an answer to the questions

on trials.

The/
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The. minimum data required for the analysis of a trial is

the information on treatment allocation to the individual patients

and the survival distributions at the end of the study. A slightly

more elaborate analysis may also require auxilliary covariate

information on the prognostic indicators. In the course of this

thesis we will mention some of the established methods for an

extensive analysis and concentrate on the proportional hazard method

of Cox (1972), read at the Royal Statistical Society.

The proportional hazards model and some of the recent

extensions constitute a major development in the methods of analysis.

The model allows a comparison of the history of the disease by use

of prognostic indicators that may change through time. For a statis¬

tical method of analysis, the approach can allow an expansion of the

methodology of analysis of event time variability.

In here we will mention a few recent approaches that have

been attempted in various fields. Later in the course of the thesis

we will concentrate on cancer trial data only.

1. Di prete 1981, Considers a study of duration of employment

in which adult members of a labour force pass from various

states of unemployment to employment.

2. Hannan, Tuma and Greenveld 1978, consider effects of income and

other effects on the periods of marriage and divorce.

3. Hannan and Carroll 1981, study of effects of various character¬

istics in society that lead to various forms of government and

the times of remaining in one political status.

4./
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4. Crowley and Hu 1977, study heart transplant data and various

characteristic variables in determining survival times.

5. P.K. Anderson and N.K. Rasmusson (1982) consider times of

admission of a group of women attending psychiatric hospitals.

Although the above studies arise in different settings,

all deal with the progression or development of a process through

time. This parallels the progress of disease in time and possible

events that may occur in this process. The emphasis in here is

not so much that of desirability of the approach in a clinical

setting but more in dealing with practicality in providing a

flexible model for the interpretation of the data.

The need for organised experimentation arose in the

natural science due to a need to replace occasional fragmentary

experience with harder unbiased evidence. In such contexts the

experimental unit is an inanimate object with no morals, collective

memory or values. The need to perform experiments on human

subjects in general arises out of a wish to answer important

questions on the nature and treatment of various diseases with

some degree of scientific and ethical accountability. The final

result is scientific and technical progress for the benefit of

society. In the biomedical fields in particular the institution¬

al demands and individual rights play a major part in the final

outcome of the study. In general two types of experiments are

identified in this context, therapeutic and non-therapeutic. We

will now give a brief description of the two.

Non/
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Non-therapeutic experiments are primarily performed for

the purpose of gaining new knowledge and not so much for reasons of

benefit to the subject. An example is the use of healthy human

volunteers in early phases of drug testing.

More important are the therapeutic experiments. The

primary aim is to benefit the patients by intervening in the progress

of a disease. However similtaneously the intervention is organised

in a controlled manner so that a valid scientific conclusion may

be possible at the end of the study. On the scientific importance

of such trials, M. Baum, R. Kay and H. Scheurlen (1982) have written:

"Over-enthusiastic and uncritical adoption of a conceptual framework
by some clincians has led to therapeutic dogma and consequent
erection of new ethical constraints. Factors outside the control
of the clinicians which are active in hindering progress are an
increasing public awareness of the problem, the clamour for informed
consent, scrutiny by the legal profession, the involvement of nation¬
al government agencies and the escalating costs of treatment. Those
developments also force us to reconsider the scientific fundament¬
als of clinical trials as opposed to other approaches to scientific
questioning".

The key word in statistics is information and evidence

and it has always dealt with 3 practical problems. What are the

assumptions of analysis? What are the assumptions of collection?

and finally, how relevant is the data? The above problems are

particularly relevant in trials in that results may not be know for

a long period. As far as the attitudes of the clinicians involved

in treatment and measurement are concerned, changes may take place.

This may result in premature withdrawal from a trial with the result

that the objectives of the.trial are not fulfilled. Alternately,

their assessment of patients may change over a period of a trial.
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This final remark will be emphasized to some extent in

the course of the thesis on the effect of varying definitions such

as progression of the disease that may arise. These changes of

concept may affect the clinicians from many directions, from those of

personal motivation to be right to those of individual responsibility.

The final effect is that there is potential for conflict between the

scientific objectives of the trial and the subjective decisions of

the clinicians. In here science is dependent to some extent on the

background assumptions. In the physical sciences performing standard

uniform methods of measurement is possible, but in a clinical

setting even with a willingness to conform systematically with

the protocol, the measurement will not necessarily be free from

preconceptions. One further difficulty mentioned in the last

section is human involvement as an experimental subject and the fact

that individual rights are at the forefront of any responsibility.

There are different modes of ethics present. First of all cancer is

a problem and it is ethical for our institution to find the relevant

answers. Also it is ethical to utilize resources efficiently and

be aware of their value and obtain relevant inference. Further,

there are clinical ethics based on the personal judgement of the

physician and finally there are interests of the individual and a

choice preference he or she may want to excercise.

In here a difference exists between the observational

requirements of the natural sciences and the ethical attitudes of the

individual physician, mainly due to the limited form of information

available to them at a time. For example during the progress of a

trial a physician may gain the impression from incomplete data that

one/



one treatment is more successful that another, posing him an

ethical dilemma as to whether to continue with the trial or withdraw.

It is difficult to consider any of the above mentioned problems

in isolation from the role of computer and information networks in

the developments of. future procedures. Science as a common

arbitrator is confronted with many information techniques ranging

from multivariate statistical methods to those of data base manage¬

ment systems. A general and undisciplined use of the above methods

would lead to an increased likelihood of eithical conflict. On the

other hand a utilisation of relevant methods of secondary analysis,

in the correct context and specified fully by a protocol in the

beginning of the study may contribute towards a better participation.

With respect to the role of feedback of information, Prescott (1978)

based on patient entry into Edinburgh trials, indicates that with

a feedback of information it may be possible-to maintain the level

of interest in a multicentra trial.

1.4 Definitions and Mathematical Functions.

In this section we will develop and define some of the

initial concepts in survival or failure time analysis. Before we

commence with various definitions that we need in this thesis it

must be emphasised that the titles survival or failure time analysis

are a little misleading in that basically we are interested in an

analysis of progress of various events in time and this event in time

need not be death or regression but can be discharge from hospital,

or any other event not necessarily representing a failure.

In/
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In the study of survival time three mathematical functions

are often used. These are survival function, hazard rate and the

density function. These functions are in fact different transform¬

ations of one another. For reasons of interpretation however a

particular function is usually used and in the course of the thesis

we will mention certain practical advantages of each.

For all of our cases we have a time t_ available which
1

in the observed period for that case until a particular event of

interest for example death. Clearly t. is always greater than zero.

We define for the density function of T the function f(t) and for

the distribution function F(t) as is the usual practice in the

statistical literature. We can thus define a more useful function

for these applications, namely survival function S(t) giving.

S(t) = 1 - F(t) = Pr {T >t} = Pr (survival for a case exceeds t)

Also

f(t) - if sit)
(and as usual f (t) dt = 1 )

Another useful function is the hazard rate or hazard function.

In epidemiology, this is named as a force of mortality. We have

here the hazard function given by:

X(t) =
Ŝ(t)

X(t) = Pr {t < T <t + dt T > t }

.death m a small mtervaL/^given survival,
= Pr { Ji. / J.-1 4- * U }dt /up until time t

We/



We can now explore the functions in relation to each other.
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X (u) du = ItTTT du = t " log {1 -- F (u) } ]t
0 ^ Vu.» 0

= - log [ 1 - F(t) ] = - log S(t)

which implies the important relationship

X (u) du
S(t)

These concepts have been defined here for a continuous case but can

be extended to discrete form of T.

In practice what distinguishes survival analysis from

most other branches of statistical analysis is that at the end of

the study or at the time of analysis we dc not have a failure time

for some of the cases. That is we know that they have survival up

until the last follow-up and also know that they will fail in the

future. This effect is known as censoring of the failure times

and will be discussed for the rest of this section.

For each case we will have a time y. or c., available,
x 1

indicating resprctively that the observed time was terminated by a

failure or that the case has not had enough follow-up time to produce

a failure. In industrial applications two types of censoring namely

type I and type II are usually used. Both of these types of censor¬

ing imply that all cases are put on trial simultaneously at time zero.

If/
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If a fixed maximum time of failure is considered sufficient before

the end of a trial we will have a type I censoring and if the

stopping criterion is taken to be the ratio of censored to sample

size we will have a type II censoring. An example is the situation

of monitoring a set of light bulbs on time. We will not develop

these concepts any further but continue with a form of censoring

that will be used later in the thesis.

In biomedical applications a different type of censoring

is produced by the data and usually named as random censoring.

Patients are entered into a trial at different times and then are

observed after treatment for a number of years. We therefore have

a time t. for case i and it is,

t. = Min (y. , c.) , that is we observe either censoring
or failure whichever is first.

, t_^ is censored
, t^ is not censored (This notation

will be used in the develop¬

ment of various models)

In practice some further complications arise. What we

have defined to be death or censoring can be in fact a subset of

a final outcome of a more complex process with more end points.

For example at times a patient decides to leave the

geographic area within which a trial is prepared and thus the case

is a lost to follow-up. At times terminations other than one

of/

and
( 0 if y. > c.

a - 1
i { 1 uf y. ^ C.
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of interest occurs; say a death from a second illness or a car

accident and thus the final result can be open to different

interpretations.

Generally we assume that censoring times are independent

of death times. This assumption is quite valid for most trials.

However if dropping out of the treatment is more common for one arm

of trial the effect is at least loss in efficiency and more

seriously h possible introduction of bias. In the thesis we will

also discuss the possibility of analysis of data with more than one

type of failure and in these contexts certain types of dependence

on death times and censoring can be tested.

1.5 Outline of Thesis.

Ethics and certain scientific stands give trials properties

that are slightly different from scientific experimentation in

the natural sciences. The role of large, cheap and accessible

computer information banks and fast end processing is new to this

area and is changing the statistical methodology which can be

applied. The recent developments in the field of failure time

analysis originating mainly from Cox (1972) and his proportional

hazard models are the main subject of our discussion.

We will study the applications of this model to clinical

trial data with various forms of interrelations. The variety of

interrelations will be defined tg be both in terms of covariate

effects and actual events where more than one event is present on

the time scale. Further we will study the flexibility of the

method/



method in dealing with the different forms of interrelationship

that arise in situations where the regression parameters are

not necessarily fixed and their influence can best be described

in terms of a process through time rahter than a cause and effect

situation. The major emphasis of our. discussion will be on the

exploratory use of the analysis and the variety of the models

available in the framework of proportional hazards. At times

when the limitation of the proportional hazard method makes them

inappropriate for example in the study of the actual distribional

shape of the hazard rates, we will discuss altervative methods.

In the context of the proportional hazard models with

intervening events and time dependent covariates, there is a

deviation from the traditional regression approach. Proportional

hazards do not provide the same restrictive assumptions in the

distinction between the exogenous and endogenous variables (in

this framework fixed covariates and final response times). With
le

the use of this extra flexibility a greater number of models are

available for analysis with the proportional hazard assumptions.

The need for this flexibility aims at a different interpretation

of cause and effect, and more on the interpretation of the

structure of change.

Although from a scientific point of view it is

desirable that all measurements are made under uniform conditions

throughout the trial, it may not be possible to isolate totally

clinical judgement which may change with experience, from clinical

measurement. Further the individual behaviour of the patients

and also the long time scale in data collection may also play a

role/
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role in the different pattern of development occuring for

different subgroups of patients. We will not analyse data

according to all of the above possibilities. However time

dependency does provide a good construct for such an analysis.

We will be looking at certain aspects of time dependengy within

the thesis.

In outline the structure of the rest of the thesis is

as follows:- In chapter two we will consider the non parametric

methods and their advantages. Also in this chapter we will study

a general group of tests that have been used in the analysis of

trial data. Chapter three deals with parametric methods and

the various advantages and the disadvantages of the exponential,

Weibull an(3 a few less known but more complex distribution.

In chapter four we deal with the semi-parametric proportional

hazard of Cox (1972). We will consider various regression

forms of the proportional hazard models and consider its position

in relation to different parametric and non-parametric methods.

Chapter five considers a realistic simulation method for the

generation of clinical trial data. These simulations are

carried out for treatments and one covariate parameter in the

presence of proportional hazard assumptions and deviation from

it, using the various approaches of analysis described above.

Chapters six and seven consider and analysis data from a

clinical trial which was organised in Edinburgh. In particular

in chapter seven we will consider multivariate approaches to

survival analysis and the effect of different intervening events

in the patient progress. Chapter eight considers a different

data/



data set for the purpose of study of various prognostic

indicators and the use of time dependency in prognosis.

Finally, in chapter nine we will bring together the findings from

the earlier chapters.



CHAPTER 2

NON- PARAMETRIC METHODS

2.1 Initial Developments of Life Tables.

In this chapter we introduce the non-parametric

methods of analysis of survival data. These methods are closely

related to the life tabel method originally proposed by

Halley (1693) and which was mentioned in the introduction.

Such life tables according to their particular applications

have been refered to as population life tables, clinical life

tables and cohort life tables. We do not intend to discuss

the difference between the applications but to concentrate on

the clinical life tables, because of their relevance to failure

time data. In here however we generalise the area of applications

by rephrasing to length of stay in a particular state* for

example time from entry to a hospital to time of death or

operation.

Some of the developments outside the field of clinical

life tables such as those of competing risks are relevant to

multiple failure time analysis and we refer to these methods in

chapter 6, as multivariate competing risks. There have also been

developments in which some of the methodology and techniques

initially used in the analysis of failure time data have found

use /
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use in life tables outside of clinical studies. An example is

Breslow (1982) on the use of Cox's method for cohort studies. We

will return to this area again later in chapter 4 when we allocate

a chapter to Cox's approach. Although at times we refer to

similar developments in neighbouring fields we concentrate on

applications to clinical trial data methodology. Two other types

of life tables that are used extensively in other applications are

population life tables and cohort tables. The population life

tables require two sources of data. These are (a) census data

on number of individuals alive in a particular age group and

(b) vital statistics on number of deaths in a given year for

each age group. Cohort studies on the other hand concentrate

on describing the actual survival experience of a group born at

about the same time.

In clinical life table data we use data from a group

of patients and the data refers to entry to a particular state

until removal from that state. The. nature of removal from the

state however often has to be conditional either on removal due

to response, e.g. death, progression of disease or it can be

a removal due to withdrawal, censoring, death from other

causes etc. Further we are interested in a comparison of

two or more treatments and thus the analogy with population

studies is not carried further. In population studies one is

oten comparing a survival rate of a group with a rate from

census data or vital statistics, much of.which is historically

based information. In trials however, we refer to two arms of

a trial. The comparison of interest is performed based on a

measure/



measure of difference between rates of failure between the two

treatment arms. There are some trials based on more than two

treatment options but the principle of the analysis is the same.

In terms of structure however the method of clinical life tables

as proposed originally are similar to population life tables

in that the data is grouped into intervals and that the

probability of survival is estimated for each time interval.

Chiang (1966) produced variance estimates of the probability

of survival at any fixed point in time for describing the two

treatment groups. Later it was discovered by Kuzma (1967) that

these estimates can underestimate the variance of survival

probabilities quite significantly if the censoring percentage

is high.

Better estimates of survival rates can be obtained by

use of parametric methods, given that the relatively restictive

assumptions of the parametric distribution of interest are not

violated. This conflict of interest between robustness of an

estimating procedure versus its efficiency is part of the

disussions in chapter 3 and 4.

2.2 Product Limit of Survival Times.

In this section we will describe the product limit

estimate or the Kaplan and Meier estimate and later show that by

the method of Johanson (1978) that the product limit estimator

can be derived.as maximum likelihood estimators. The product

limit estimate of survival for n observed response times and

censoring/
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censoring times was initially proposed as a descriptive method

rather than a method of inference. However recently it has become

the most commonly used method of estimation of life tables in the

context of clinical forms of survival data.

The product limit method is different from the methods

of the previous section in that rather than using a fixed time

interval it is based on forming a rank set of survival times in

such a way that, for equivalent death and censoring times it is

defined that the censoring times should have a rank greater than

its equivalent death time. The product limit estimators are of

special interest in that they form the basis of a large number of

non parametric tests and are closely linked to the proportional

hazard model. We will now proceed with a derivation of the

product limit estimators using the maximum likelihood estimation.

Throughout we will assume a continuous time scale so that there

are no tied events for each rank. All results however may be

generalised to tied data with slight extensions.

First we order the survival data into a rank order.

t(1)< t(2) < < t[n)

Further for each t,., there exists an indicator variable s%.. such(i) U)

that,
( 1 if t , is a response
(
( 0 if t is a censored observation.

\ 1 /

we then define

P. = P [ Surviving at t,., given survival until t...
i y (i) (i)

= P TT>t \ T ^ t 11
(i) \ i-1)



giving

1 - - if 6 = 1

E>. = { i where n. = n-i+1, i = 1 . . . n

1 lf 5(i) = ° (2.2.1)

FrOra definition of chapter 1 we obtain

1 5fi
S (t) = n P. = n (1 - - ) U'

t(f)t 1 fc(if fc "
n n - i 6 (i)

"

t < t n-i+1
(i)

Then the corresponding estimate of standard error is
a 6 . H

s.e. [S (t) ] = S (t) { Z — }
(n - l) (n - l + 1)

(if

We wii1 now express the survival distribution in terms of a

likelihood function based on produc^ limit estimates and show

that(2.2.1) can in fact be considered as the maximum likelihood

estimates of the likelihood function.

Likelihood L = (terms due to cases dead) (terms due to censored

times)
n & . 1-6

L = H pr [T = t ] ( ' Pr [T >t . ] [ '
i=1 (1) (1)

n n 1-6
= n [Pr (T == t ) (i) Z Pr (T = t ) (1,J

i=1 [ ' ■ j > i

We let R^ be probability of an event at T giving

n 6 . 1- 6

L = H R. U,[Z R.]
i=1 1 j Zi 3



we can thus define the hazard rates conveniently as
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n p
= R. [ 2 R.] with E R. = 1

1 l ... x . , 1
3 3=1

we thus have

R. . S. , R.
1 - A - -i = 3_ni±J L_ (2.2.2)

1
. 2. R. . 2. R.
] ^ 3 3 3

and

2 R. = (1 - X.) 2 R. = (1 - X.)(1 - X ) 2 R.
j *i+1 3 1 j-i 3 1 i-1 j-i-1 3

= (1 - X ) (1 - X ) ... (1 - X ) 2 R
j = 2

= (1 - X.)(1 - X._1) ... (1 - X2(1 - X ) 2
j = 1 j

i-1 n

= n (1 - X.) since 2 R. = 1 (2.2.3.)

Also

X

j=1 J j=1 3

R. R.
l l

i 2 R. i-1

j >,i ] n (1 - x )
j= 1 J

i-1

giving R. = X. II (1 - X.) (2.2.4)
1

j = 1 3
Thus expressing the likelihood in terms of the hazard rates

we get
n i-1 5 i-1 1 ~5...

l = n ( x. n {1 - x.} ) u' ( n {i - x.} ) ( ;
i-1 1 j=1 3 j=1 3
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n 6 i-1

i=1 [ ^ 1 ( j=1 {1 * Xj }) ]

<S (x) S(2) 6(s) 6(n)
= X j o X 2 (1 -Xj)o Xj (1— Xl)(1— X 2) • . Xn (1- Xt)

(1 -X Jn-1

Mn)
BQt X = 1 by definition

n

Therefore

5
(1) <5

L = ( Xx Xn (n) )(1 _Xi)n-1oo(1 -\2)n~2 o (1-Xn_1)n"(n"')0
d - xn)n-n

n--1 5...
n X (1) (1 -x.)n " 1

i=1 i 1

Now we take logarithm of the likelihood in order to obtain a

maxima with respect to X.

6 Log L _ 5(i) (n - i)„( -1) _

5 X. ~ X. 1 -X.
li l

(1 - X.)6(i) + (n - i)(-1)X. = 0

X.
l (i) / <6(i) + n - 1)

But/
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But 6,., is either 0 or 1, giving
(l)

6 .

xi = (i)
1 + n - i (2.2.5)

For the product limit estimator by definition & (2.2.5) we get

i 1 A

R. = x. n (1 -x.)
i i . , j

3 = 1

1 + n - i

i-1
n

:=1
(1 -

(i)
n - j + 1

Thus by definition of <5\t) we have

F - 5(1) tt f n ~ 3 ^ (1) f - nRi " 1 + n - i ( n - i + 1} (2.2.6)
3 = 1

Therefore we conclude that the are the required maximum likelihood

estimators of survival times.

2.-3Nonparametric methods for two treatments

First we consider the log rank test, Peto (1972 a), which is also

named mantel, Mantel-Haenzel, Mantel-Peto-Cox, or Savage-Mantel-

Peto-Cox statistics. In this method, which is based on the observed

and expected values of numbers of events in a particular time (under

the Null hypothesis) we derive a form of chi squared test which is

indirectly related to the ranks of survival times. The ranks are

then transformed to a comparative ratio of numbers responding and

numbers at risk. By this method any probability value that we

obtain is used for the main objective of discrimination between

treatments./



treatments. This enables us to infer that the difference between

observed and expected values of the survival rates is either compatible

with the Null hypothesis of no treatment difference, or that it is

due to the effects of the alternative hypothesis that there are

treatment differences. There are certain assumptions necessary for

an analysis based on the log rank test. Later we will compare these

assumptions with those of the Wilcoxon test and present a general

form of test which incorporates both tests as special cases. At this

stage however we only mention that the method can be derived and is

related to Cox's proportional hazard model of Chapter 4.

Initially the same procedure as that of Kaplan and Meiers

is used to transform the survival times. Similarly a vector or

survival times is obtained based on

fc(1) < fc(2) < (r)

Thus at the beginning of each of these time points, say we

form a 2 x 2 table to categorise the total number of patients at

risk, according to treatment grouping and status at end of t^ period.
Observed events

Number in group (deaths) in Alives
at time t,..

(3) group at

Group 1 Nij 0u (N,. - 0,.,

Group 2 °2j <"21 - °23'

Total N .

:
0 .

3
(N. - 0.,



N. . 0 .

Then we have a contingency table giving E. . = —^—— as theN .

3
13

expected number of responses at t_. in group i.

We thus represent the above as a 2 x 2 x r table with the log rank

statistics

LR

[ i£i '°n -Eii' 1

2 V.

j-1 3

= (0 - E)
V

(2.3.1)

Using the hypergeometric distribution and the corresponding

moment generating functions we have the first two moments giving

N 0.
E. . = 3__1 and v. =

13 N 3

N, . N„ . 0 . (N . - 0 . )
1] 2] ] 3 3

N. (N . - 1)
3 3

which can be used in (2.3.1)

2
For a single level X test where r = 1 we can then present a

2
X for a single level of j giving

,2
, "i '°1i <N21 - V - °2i - V

H2j 0 (N - 0 )

Now by referring to the table of the chi square distributions with

one degree of freedom we can accept or reject the null hypothesis of

equality of survival rates for the two treatment groups against the

alternative of different survival rates.

The log rank test is based on the Kaplan and Meier estimates
I

It acts ind^scriminantly in combining expected rates of number of

failures. Like the Kaplan and Meier estimates the expected values

of numbers of events in each category is obtained by a ratio of

numbers/
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numbers of events by the number at risk. However in some

circumstances a more efficient estimation of the survival

differences may be possible if a weighting is attached to the

expected number of events. We will consider those conditions later

in this section when we deal with Gehan's generalisation of the

Wilcoxon test.

The special property of the Wilcoxon test is that contin¬

uously the contribution to the likelihood is weighted by the total

number at risk at This statement is analogous to a special

form of time dependancy in proportional hazards. In terms of

interpretation however the null hypothesis is slightly different

between the two tests in that for the Wilcoxon test the null

hypothesis is based on the equality of the survival rates between

the two groups together with equality of the censoring rates.

In the log rank test this latter assumption is not required.

Thus in the Wilcoxon test early events are weighted

slightly higher than late events. The log rank test may be

expressed in vector form by -

The notations for E, 0 and V are expressed in matrix form

below for a similar expression of the Wilcoxon test; equivalently

the Wilcoxon test can be expressed as -

X
2

(0 - E) ' [V] 1 (0 - E)

[Jl ' (0 - E) ] ' u ' V 2,] 1 [ SL ' (0 - E) ]

where for a comparison of two treatments we let

SL . .1 ) , 0
r

. .0
1r '

E

and/



and

V = [ 1 . ]
0 ' V

Further I. is set to N. numbers at risk at t,.,
3 3 (3)

The above formulation was first used by Tarone (1975) on a

test for departure from trends. Tarone and Ware (1977) show that

the difference between the logrank rest and the Wilcoxon test is

in fact due to the choice of weights as a function of the number

of individuals at risk at the time of each death. Once again with

one degree of freedom we have a chi-square ,

r

"j '°1J - V
xl = ■*— (2.3.2)

TW r

/ I 2
. . w . V.
3=1 3 3

where

V. = N,. N_. 0. (N. -0.) / 2
3 13 2j j j 3 N. (N . - 1)

-» J

and E . = N,.0. . „13 13 3 / N
3

Thus this general result gives the logrank test for W = 1 and

the Wilcoxon test for w. = N.. Taron and Ware suggest a
3 3

different function of weights, namely w_. = /N_. and claim that

it has better efficiency over a range of alternatives.

The above approach is closely related to time dependency

scaling of the proportional hazards. The Wilcoxon test considers

the distribution of censoring times as well as death times. There

is however no reason why w, must be defined as a function of N.
3 3

alone/'



alone. In fact later in chapters on proportional hazards we will

consider time dependencies as a function of metastatic or other

intervening events.

Now we expand the logrank and Wilcoxon test to the

multivariate situation. For this purpose the general Tarone

and Ware statistics generalisation is used. We will continue with

0.. , E.. and V.. presentations.
ID ID ID

In cases where there are a number of subgroups we

present for say a set of different levels of an outcome, the

following formulations.

Level do d1 . . . . dk Total at t...
(D)

Event °oj 01 j °kj 0 .

+ D

at risk N0D N1D NkD N .

+D

We then have a longrank type null hypothesis for the equality

of survival rates 0 to k and a Wilcoxon type null hypothesis for

equality of all survival rates and also all censoring rates.

Once again we have a chi-squared test with ( k- 1)

degrees of freedom,

X2 = (0 - E)' V"1 (0 - E) (2.3.3)

where

N

(0 - E) = I w. (0. . - E. . )
j D ID ID

By the first 3 moments of the hypergeometric distributions we

get - /
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get -

E. .

ID
N. . C) . / N

ID +D +J

V S w. Z V. .

D 3 i 1D
and

Z V. .

i ID

0 . [N . - 0 .]
(_ta ±3 ±21

N
+j " 1

-01(1 -
N

+ j
N .

+D

-N .N» .

. P3
N2.

+D

N .N . N, . N, .

_£3_±2_...JS1 (1 _ _1D_}
„2 N . N .

+j +3 +3 .

Wow referring to (2.2.1) and (2.2.2) it can be seen that (2.2.3) is

a generalisation of the previous tests. Once again = 1 gives

a general form of the logrank tests. w. = N+_. gives the Wilcoxon
test and w. = /N . gives a Tarone and Ware type statistic.

D +D

2.4. Stratification.

In the introduction we mentioned uses of stratification

in conjunction with randomisation, and considered it to be a proper

method of conduction of a trial at times. We did not consider

the necessary analytical techniques in the development of the

methods. We will now consider stratification methods in conjunction

with the non parametric methods of analysis which can describe the

general advantages of stratification.

In many trials apart from the treatment assessment

information an array of different types of exploratory data is

also/
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also collected on patients, often referred to as prognostic

indicators or covariates. A few examples of each data that we will

be referring to are , age, node status, size of tumour etc. This

type of covariate information is a reflection of the underlying

make up of the group of patients to whom the inference is relating.

A proper randomisation in a large sample would imply that the patient

variability between the two groups are suitable. In some trials

however purely leaving the allocation of patients to randomisation

may not provide a satisfactory final outcome of the patient mix.

In practice the type of adjuvant care or therapy can be dependent

on the prognostic conditions of the patient; this condition can

provide a framework by which the two arms of the trial are not

comparable. An example is a situation where the amount of radio¬

therapy given may be influenced by size of the tumour, and thus

the size of the tumour may mainly influence the survival rates

of the two arms of a trial. In other situations where there is

a perfectly standard treatment for all patients, it may be known

from preset that a group of patients that have less advanced

disease, will be generally better in survival regardless of the

type of treatment. Such differences can lead possibly to a

correlated prognostic and treatment effect and furthermore may

bias the inference. The remedy is often a prospective stratif¬

ication. The utilisation of stratification has been subject of

some controversy. Peto et al (1976) considers stratification

often as unnecessary and unjustified administrative inconvenience.

The basis of this view is that for large trials often the gain

in power of tests is nominal where randomisation guarantees

comparable/



43

comparable treatment groups. An alternative view which is in

favour of stratification considers, firstly small trials to be

common in practice and an important part of research, secondly for

large trials an interim analysis can be based on small numbers of

patients which consequently may condition the conclusions on the

type of patient mix.

It should be pointed out that although stratification adds

a form of control on the randomisation procedure it in no way

influences the chances of treatment assignment to a treatment arm.

Apart from stratification at design the relation between stratif¬

ication and analysis is also important and at this point we can

make a few comments which can also apply to the methods that we

will be considering later. In either of the situations where

the sample size is large enough to achieve a balance of treatment

arms in terms of prospective effects, or the situation of

stratified trials and balanced prognostic effects, it is useful

to account for any of the possible survival differences that

as a priori is considered relevant to the trial. There are two

major aims for this type of analysis which may not have been so

clear from the discussion of stratification and design. Firstly,

we may aim to study the whole patient group and so it may be of

some importance to know characteristics of prognosis in different
o.

strat\and account for heterogenity of patient survival rates.

However, care is needed in the interpretation of such assessments

for it is possible that any such inferences are conditioned on

sample size and/or other prognostic effects. Secondly, it is

possible to use prognostic factors to define the treatment

comparisons/
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comparisons, we may thus obtain a test statistic for each stratum

of a prognostic variable, in order to compare treatment effects

within each stratum. In the next section we will present the

results of a trial data by which we obtain tests statistics by

considering a fraction of data belonging to a particular prognostic

category. It is then necessary to obtain an overall observed and

an overall expected (extent of exposure) comparison. The overall

test is important in that even if a treatment difference for a

prognostic group is not significantrthe overall test provides a

test by which if the directions of the influence of the treatments

are in the same direction they can give an overall influence.

This overall test will then remove any consequences of a possible

correlation between prognostic variable and treatment effect.

An important condition where the above consideration is important is

when the tests for the different strata in fact do not point to a .

treatment difference in the same direction. Once again we will

study such effects more carefully in the data analysis section of
this chapter and the subsequent chapters.

2.5 Comparative application of non-parametric tests.

Consider a trial in which a set of treatments have been

allocated and further stratification has been performed on some of

the prognostic variables, either prospectively or retrospectively.

The development of the logrank rank test are then useful in

expressing group differences in a single statistic. The development

of the previous section reinforce the notion that the logrank test

is a useful test for trials and further that it can be set within

a larger theoretical framework.

In/
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In practice we are interested in a comparative study

of the general expressions of (2.3.1), (2.3.2) and (2.3.3) as

applied to a set of clinical trial data from Edinburgh. At this

stage we will consider the relation of the special forms of the

w vector of the last section to the various hazard rates of the

prognostic group. We will not deal with inferences drawn for the

shape of the hazard rates, since chapters 4 and 6 models are more

appropriate for this. The actual data will be discussed in greater

detail in chapter 7, with some history of the topics and problems

related to the treatment of breast cancer.

Basically the data consists of 561 cases treated for

breast cancer either by radical mastectomy or simple mastectomy

plus radiotherapy to the axilla.

In here we record the survival times only and the primary

purpose in the use of this data is to assess the relative merit of

the arms of the trial for the total group of patients and then

according to various prognostic factors. In chapter 7 we deal with

the situation of more than one response variable and consider

intervening events^such as development of local and metastatic

disease.

The Wilcoxon as was explained attaches more weight

to early events and thus gives a slightly different chi-squared

value to the logrank test for most of the groups in our data.

Earlier we presented these tests as 2 x 2 x r contingency tables.

In fact the logrank is the most powerful test given that the

second/
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second order interaction is negligible.

In general there may be more than one set of independent

variables acting and thus we will perform an analysis based on the

various subgroups of patients. Thus our data can be expressed

by various probability values, related through a likelihood

function by the following formulation.

Likelihood (particular subgroup) = n terms due to cases dead

= n terms due to cases censored

= n terms due to time dependencies.

In the above likelihood formulation we have introduced

time dependency. It is difficult to establish a complete meaning

of time dependency without resorting to empirical hazard rates. We

will do so in chapter 3. For the present section it is important

to consider a comparison of the Wilcoxon and the logrank test, using

a trial data. Such a comparison is intended to serve as a

representation of the effects of the two tests",for different hazard

rates. As we will indicate in the discussion of the data the

two tests produce the same interpretation of the data. On the use

of time dependency however we confine their difference to that of
2

having a different Jivector of weights in the overall X test.

The effect of such weights is of importance only if the

variability of the difference of the proportion of rates is

of relevance.

In an extreme situation that is rarely detected in

practice one may encounter crossing survival rates.

However/



However in the comparison of the logrank and the Wilcoxon test

any time dependency if it exists will be reflected by the influence

of late events versus early events. For the purpose of estimation the

logrank and the Wilcoxon test in fact ignore the last term of the

likelihood. In fact practically for most situations one can assume

that the effects due to the last term of the above likelihood are

negligible. The slight difference that we will detect for the

logrank and the Wilcoxon test is due to the structural differences

between the two tests. This structural difference however is

essential for the power of the tests in the presence of the most

relevant alternative hypothesis. In the chapters on proportional

hazards, time dependency effects can in fact be tested directly by more

suitable methods.

In the first steps of the analysis we will obtain the

product limit estimates of the two treatments and the corresponding

hazard rates, Figs. (2.5.1) and (2.5.2). The mthod used for the

plot of the hazard rates is described by Johnson and Johnson (1981).

We use a grouping period of 30 months for all the hazard rate plots.

By the use of the logrank test and then the use of the Wilcoxon test

we obtain the probability values for the difference between the

two survival rates, Table (2.5.1)

No. of No.of

cases Responses

Radical

Surgery

Simple
Surgery
+ XRT

288 135

273 161

Expected
Responses

162.05

133.95

X.
LR

X
w

df
"I.R w

10.04 12.23 1 .0015 .0005

Table 2.5.1
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Later we use the modified version of the logrank and Wilcoxon test, so

that apart from obtaining the difference between actual survival

causes of the total treatment groups, we also obtain an overall

treatment comparison adjusted for prognostic variability. In the

process of obtaining the adjusted comparisons, a comparison for each

level of the prognostic indicators is estimated and the final adjusted

comparison is based on weighted differences of the observed and

expected values of each subgroup.

The primary purpose in the comparison of each logrank

statistic and the Wilcoxon test is to study a difference in their

corresponding chi-squared and probability values. Further we

examine, the shape of the hazard function and the association between

the patterns of differences between the rates of failure and the way

in which the Wilcoxon test puts more emphasis on early events.

Another manner of looking at the effects of time scale

will be done in Chapter 7 by use of the regression like models of the

life tables. In these models we relate the shape of the hazard and

the time dependency indicators.

The prognostic indicators that we use are namely, Age,

Node, Stage, Size and Menopausal status.
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No. of No. of

Cases Deaths

Premenopausal 153 59

Menopausal 38 20

Postmenopausal 359 216

Expected
No. of

Deaths

98.53 )

20.26 )
)

176.21 )

2 2
XTT, xLR w

df PrT, PLR w

25.12 21.97 2 .000 .000

Pre & R

Pre & S

Meno & R

Meno & S

Post & R

Post & S

Node Status

N0

N1

N0R

N0S

N1R

N1S

89

74

21

17

178

181

27

32

11

9

97

119

ADJUSTED (R V S)
for Logrank

375

181

199

179

88

93

184

112

83

101

51

61

35.74 )
)

25.26 )

11.66 )
)

8.34 )

115.21 )
)

100.79 )

210.02 )
)

185.98 )

102.54 )
)

81.46 )

58.19 )
)

53.81 )

3.17

0.09

6.21

9.05

1 .0752

1 .7618

1 .0127

,0021

10.96 10.84 1 .0007 .0009

8.56

1 .90

1 .0034

1 .1683

Tumour size

T1

T2

T3

T1R/

ADJUSTED (R V S)
for Logrank

56

397

107

17

213

65

35.76 )
)

208.1 1 )
)

51.13)

9.94 1 .0016

13.82 10.62 2 .0010 .0047

Table Continued.



Tumour

size (contd)

T1R

T1S

T2R

T2S

T3R

T3S

S1

S 2

S3

SIR

S1S

S2R

S2S

S3R

S3S

Age

-40

40-50

50-60

60+

-40 R

-40 S

40-50/

52

No. Of

Cases

37

19

198

199

53

54

No. of
Deaths

13

4

40

123

32

33

307

141

112

164

143

67

74

57

55

147

79

69

65

82

35

44

35

34

ADJUSTED (R V S)
for Logrank

Expected
No. of

Deaths
LR

X
w

ADJUSTED (R ¥ S)
for Logrank

10.96 )
) 1 .08

6.04 )

df PTT1 PLR w

1 .2981

115.88 )
) 12.76

97.12 )

33.84 )
) 0.04

32.16 )

8.4

1 .0004

1 .8343

1 .0038

171.76)
)

69.91) 9.41 10.97 2 .0090 .0067
)

53.33)

85.15)
)

61.84)
11.41 1 .0007

39.65)
)

39.33)

35.67)
)

33.33)

1.11

0.03

1 .2914

1 .8714

31

168

174

188

20

1 1

14

66

96

120

17.51)
)

96.40)
) 18.65 23.70 3 .0003 .0000

88.75)
)

93.34)

9.23)
)

4.77)
.48 1 .4863

Table continued



Age (contd)

40-50R

40-50S

50-60R

50-60S

60+R

60+S

No. of
Cases

89

79

85

89

94

94

No. of
Deaths

35

31

39

57

53

67

Expected
No. of

Deaths

35.65 )
)

30.35 )

50.64 )
)

45.36 )

67.07 )

52.93

LR

.03

ADJUSTED (R V S)
for Logrank

) 5.70

) 6.78

10.52

X df P
w LR

1 .8721

1 .0170

1 .0092

1 .0012

Table (2.5.2)
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A point to note regarding the tests in the table (2.5.2)

is that we intend to compare the logrank test with the Wilcoxon test.

The most noticeable source of discrepancy if any in terms of

magnitude will be detectable in the study of the actual prognostic

indicators rather than treatment comparisons. For this reason a

comparison of the two tests based on prognostic differences will

suffice. A consideration of the results of table (2.5.2) indicates

that the radical surgery without radiotherapy is producing longer

survival times than the simple surgery with radiotherapy.

The prognostic factors indicate that stage one, two and

three are respectively ordered in terms of their progress of the

disease and the later risks of development of the disease. The

stage one group produce a treatment difference that is much greater

than stage two and three tumours. This is an indication that the

actual value of the stage may be interacting with treatment. It

is not possible now to discuss this point further or substantiate

with a formal test. In Chapter 6 we will do so.

The indication of different values of the treatment effects

appears for some other prognostic indicators. Menopausal status and

age indicate that post menopausal patients and for age over 50"s

group, the treatment differences are at their heighest. This, as

was pointed out earlier, may be due to sample size rather than the

treatment effects on prognostic strata. The number of patients

in the menopausal group are rather low and thus with the present

method we will not study the effect of treatment status further.

The/
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The adjusted rates on logrank statistics for each of the

prognostic indicators carry the same message as the unadjusted rates.

That is we detect a better survival rate for the radical surgery group.

In the case of age, the subgroups contain a reasonable

number of cases in each category and a statement in a descriptive

manner may be made regarding interaction between age and treatment.

The survival rates for the 50-60 group give a significance level for

the treatment difference of 0.0170 and for the 60+ group a level

of 0.0092. The younger patients give probability levels that are

not significant in terms of treatment differences. This effect is

more notable for the 40-50 group. It must be noted however that

this apparent difference is not a statistical indication of a difference

in treatment effectiveness for the different age groups. Such formal

tests will be performed in Chapters 6 and 7.

On considering the hazard rates and the corresponding logrank

tests, there is an indication that the treatment effects are in a

similar direction for all prognostic subgroups. However it must

be pointed out that in terms of extent of the risks on the time

scale they are not always similar. Figures (2.5.5) and (2.5.6)

together with the corresponding logrank tests suggest that older

patients produce a higher failure rate when they are treated with

simple mastectomy and radiotherapy. Further there seems to be an

indication that risks are reduced for the 50+ group 7 years after

treatment, while risks remain the same for the rest. Figures

(2.5.7) and (2.5.8) with the corresponding logrank tests suggest

a similar pattern for the menopausal status, which conforms to the

age/
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age interpretations- Both menopausal and premenopausal groups produce

higher initial hazard rates than the postmenopausal groups but the

rates later converge. In Chapter 6 we will perform tests on such

time dependencies.

For the size of the tumour, there is a slight indication that

hazard rates are of similar pattern for all groups during most of

the time sccle. However, the larger tumours after an initial period

of constant ris.< produce lower levels in later stages of the disease.

The main purpose for putting this emphasis on time dependency of

size and age is to relate the findings to logrank and Wilcoxon tests.

The above points are similarly noted for the differences between the

two tests. Wilcoxon test for the categories of age survival gives

a chi-squared value of 23.7 against logrank value of 18.05. The

reverse is true for the size of the tumour. That is the Wilcoxon

test gives a chi-squared value of 10.62 and the logrank test gives

a higher value of 13.82, indicating that the differences may be due

to later events. The two tests do not differ to an important degree

and other main effect prognostic categories show even lower

differences. In fact the difference between the two tests of size

may be coincidental. Inferences about variables of prognostic

importance from this study will be considered again in Chapters 6

and 7. In these chapters a more detailed model will be used and

indirectly we will explain some of the differences between the

logrank and the Wilcoxon tests.
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CHAPTER

PARAMETRIC METHODS AND HAZARD FUNCTIONS

In the previous chapter we discussed' a set of non-

parametric statistical methods for the analysis of survival data.

In this chapter we will be dealing with the parametric methods.

Within the descriptions of this chapter we will discuss a few

possible hazard functions from empirical data.

3.1 Commonly used parametric methods in survival analysis.

These methods follow the general philosophy of parametric

statistics by which we assume that time to a critical event is a

random variable and based on this postulate we may assign a

frequency distribution to the survival times. Basically the

distribution functions must be able to approximate to the empirical

life-tables which present the cumulative proportion of cases

surviving against the time scale of events. It is often difficult

to visualise differences between classes of survival functions or

identify them purely based on an inspection of the distribution

function, in that the survival distribution is always a decreasing

function. However for purposes of defining and classifying between

distribution functions, their transformation to hazard functions

plays an important role, so that by a visual display of such

functions a pattern of events can be observed. The hazard rates

in fact present the rate of change of the survival curves and thus

the/
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the pattern of the hazard can be useful for the purpose of identif¬

ication between the empirical and frequency distributions. In the

early stages of the chapter we are not interested in the effects of

treatments or prognostic variates, but rather, in the possible

families of distribution functions that may be useful in the

applications of fitting parametric distribution functions to

life-tables.

First we describe 3 rather general methods and the plots of

their hazard functions.

Name of Hazard Rate Death Density Function Survivorship
Distribution Function

Exponential X(t) = X f(t) = Xexp(-Xt) ,X>0> t>0 S(t)=exp(-Xt)

Weiball ^(t) = uutU ^ f(t) = uutU 'exp(-ptU)u>0 S(t)=exp(-utU)
u>0; t>0

Ra^leigh X(t)=X0+2X1t f(t)=(XQ+X^t)exp(-XQt-X1t2) S(t)=exp(-X0t-
x0>o,x1>o,t>o X ^ t2)

The first two of the above distribution are in fact members of

the same set and the final distribution will be referred to as

a special case of Taulbee's approach later in this chapter.

Figures (3.1.1) to (3.1.9) illustrate the various functions for the

three distributions at variable parameter values.

In the previous chapter we presented some of the empirical

hazard rates for the old Edinburgh trial data, in specific subgroups

of patients. It is important to note that at this stage we mention

hazards in general terms for the total population. In practice

hazard rates can show different quantitative failure rates for

different subgroups. Under a parametric context for a comparative

study/
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Figure(3.1.7)HazardratefortheRayleighdistribution
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study of the survival rates we are interested in the magnitude of

a parameter that can best describe the differences between the

various subgroups of patients. Later in this chapter we will

derive the necessary estimates of the above distributions with

covariate effects present. In applying such methods we make certain

assumptions on the actual form of the hazard rates in choosing a

particular model for describing the relevant differences. By a

visual inspection of the hazard rates one can then judge how well the

data conforms to the assumptions of the statistical method.

3.2 Examples of hazard functions and families of distribution for
survival analysis.

The most common parametric distributions used in clinical

trials for the survival of patients are the exponential and the

Weiball distribution. The Weiball offers a wide range of increasing

and decreasing hazard rates, with the exponential function being

a special case for a constant hazard model. As will be shown, these

two distributions belong to a family of proportional hazard models

with covariates. The assumption of proportional hazards requires

that the hazard rates for all subgroups must be a multiple of a base

time hazard rate for the entire set of subgroups. S. Gore (1981)

Figure (3.2.1) shows the example of breast cancer trial data in which

the assumptions of proportional hazards are violated. Without a

visual inspection of the hazard functions, there is a strong

temptation to use one of the robust proportional hazard models, such

as that described in Cox's (1972) paper. An inspection of the

hazard function can also lead to choosing a more efficient analysis

based/
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based on parametric methods, while an approach purely based on tests

of significance using completely non-parametric methods may over-

generalise the pattern of failure.

In the plots of exponential, Weiball and Ragleigh distribu¬

tion some forms of constant increasing and decreasing failure rates

were presented. Later we will discuss some u-shaped and cone-shaped

hazard rates that can arise from a trial data.

Turner et al (1976) consider a general 3 parameter family

of survival distributions. This family is able to generate an

extensive number of distributions that can be used in a survival

analysis. The general survival function is given by

-1/P
S(t) = {1 + TT7 [ % (1 ~ TTT + 6 Jn )pt) ]} " /nin | nl (3.2.1)

For t ^0, 3>0, p >0

and -°°< n <

The probability density function is

£(t) - Bl-S- [ S(t) l'-np)/(1+Pl _ s (Unl/d+p) ,1+p
in |

These functions provide a set of highly flexible distributions with

many differing shapes for the hazard functions, such as increasing,

decreasing, constant and cone shaped hazards. This variability

of the hazard rates can be mimicked by the range of the distributions

of form, Gamma, Weiball, Lognormal, Ragleigh, Single hit and Arheus

distributions. The most important advantage in the use of Turner's

family of distributions is that all these distributions can be

defined/
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defined by only 3 parameters. This offers a formal test for

comparison of shapes of hazards. In a related paper by Bertanou

et al (1978) the Turner's family of distributions with concomitant

variables is used. They use a maximum likelihood estimator for

the parameters using a method of Hazelxig et al (1978), The most

important problem in the general use of this approach in survival

analysis so far has been that of adopting an estimation procedure

capable of dealing with the complications of the censored survival

data.

Bertanou et al (1978) compare life expectancy in two

groups of children treated without surgery in Tetralogy of Fallot.

The data is not based on a randomised trial, but is formed of clinical

information and autopsy data. In this approach the analysis begins

with the study of the possibility of detecting changing risk patterns

among subgroups. Further, a comparison of estimates within each

group can easily be made without making the restrictive assumptions

that the two subgroups have similarly shaped survival distributions.

It may well be expected that this approach by being a parametric one

provides a better approximation to the hazard functions. The result

is an effective procedure for estimating parameters of the distribut¬

ion. In their conclusion Bertanou et al (1978) support the generally

accepted view that "the natural history of person born with

tetralogy of Fallot is determined primarily by the severity of the

pulmonary sterosis, as demonstrated by the tendency of the person

with pulmonary uteria to die at a young age than those without

pulmonary uteria or the group as a whole".

Using/
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Using this parametric approach, the conslusions

regarding the results, both in terms of survival times of treatment

main groups:.and the subgroups are the same as the alternative non-

parametric or single parametric approaches. However, within the

present setting they provide the corresponding hazard functions for

the different groups, Figure (3.2.2).

It is clear that the highest risk period for pulmonary

steriosis is the first two years and unlike pulmonary uterisia, the

risk of death does not decline in the later years, probably due to

relatively high risks in the second decade.

With the parametric estimation of the hazard rates clear

cut functions are produced that are intelligible in reducing the

data on the timescale. An empirical plot would yield the same

patterns and the same information. However the Turner's generic

family of survival curves has the distinct advantage that by

inclusion of extra parameters, there is a possibility of testing the

hazard functions and obtaining a distribution from its hierarchy that

yields the best parsimonious fit. The difficulty with this approach

can be the interpretation of the results if the estimating parameters

of the hazards differ greatly. Since there are 3 parameters it will

be difficult to decide on the meaning of such patterns. An extreme

example is a situation where one group has a higher initial hazard

rate followed by a constant hazard rate and another group having

initially a low hazard rate followed by a high rate. The outcome

can be two survival curves that cross each other somewhere in the

time/
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time scale. In the extension of the Weiball model with covariates

to a proportional hazards model of the next section we will discuss

these points in less extreme situations.

With a non-parametric approach tests can also be

constructed to assess hazards. However if a parametric approach

is justified, there will be a loss in efficiency in adopting a non-

parametric method. It must also be emphasized that in practice the

Turner's generic family may be too generous in providing a range of

distributions, where the main aim is to assess effects of treatments

and covariates.

Barlow et al (1978) adopt a more confined approach in

classification of survival distributions. In their terminology, they

adopt a* failure rate rather than hazard rates. Three classes of

distributions are defined by their terminology, (a) increasing

failure rates, (b) decreasing failure rates, (c) u-shaped failure

rates. The Turner's family also includes a cone shaped hazard which

belongs to the Arhenous distribution, as was mentioned earlier in this

section.

An example of an increasing failure rate would be a healthy

population of over 50 years of age. In such a group one would expect

that the effects of old age will become increasingly dominant and

hence with increasing age the number of deaths will increase. A

possible hazard curve for such a population is the Weiball distribution

with shape parameter p = 1..5 Figures (3.2.3) and (3.2.4) represent

the /
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the hazard rate with the corresponding survival rates.

The time immediately after a major operation is a

critical period for the patients. Often the patient is recovering

from anaesthetics, which add extra risk to the survival of the

patients. However if there is no progression of disease and the

population is young enough not to be affected by old age a possible

survival distribution would have a relatively high rate of death

in the beginning of the time scale. With the passage of time the

normal functions of body can take over and the survival rates could

decrease and conform to a healthy population. A Weiball distribution

with the parameter p = 0.5 can be a possible distribution to approxi¬

mate such a population. Figures (3.2.5) and (3.2.5) represent the

corresponding hazard and survivor function.

Had we not taken the above assumptions, regarding the age

of patients, then the effects of old age become increasingly dominant

in our population. Further assuming that after the operation there

is still some possibility of the progress of disease, as the case may

be in a population of post-menopausal Stage I and II brease cancer

patients treated by mastectomy and operative radiotherapy, then the

hazard rate will be composed of a declining hazard rate followed by

an increasing hazard. In fact the life table of all ages of

population of a country shows such a hazard ra|[e. At birth the

newly born experiences the highest risk of illness and death; with

development and growth of the child the risks decrease until later in

life new risks of death develop due to old age. Figure (3.2.3)

The/
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The u-shaped pattern of failure, Figure (3.2.7) can be

interpretated as suggesting two forms of failure. One due to risks

of early life and birth and the other due to old age. In a

clinical trial situation if such a pattern is apparent, the constant

hazard period in the middle tends to be much shorter. This gives

rise to one of the important methodological problems in clinical

trials; that is defining the relevant causes of death.

In the previous example on breast cancer treatment, three

processes were taking place, each of which can contribute to death.

The first factor is the side effects of the treatment, that is

mastectomy and radiotherapy in the initial period. Secondly there

are risks due to the general progress of the disease either locally

or due to metastatic disease and finally there is death due to old age.

The next example of a hazard function we consider is a

cone shaped hazard. The u-shaped hazard was a combination of a

decreasing hazard rate followed by an increasing hazard rate. The

cone shaped hazard is the reverse of this. It begins with an

increasing failure rate, reaches a peak and then falls. Time to

development of metastatic disease in cancer patients can have a cone

shaped hazard.

In the early stages, the disease is confirned to local areas

and hence there is a low probaoility of development of metastatic

disease, depending on the form of cancer. With the passage of time

the chances of developing metastatic disease increases. For operable

breast/



HazardRate
.01- .008, .006' .004- .000

i
20

Figure(3.2.7)

—I1
6080Yearsofage.



breast cancer patients this peak may be reached within 5 years of the

detection of the disease. In such a group of patients, there will be

some patients with a better prognosis who will not develop metastatic

disease. These patients can be increasingly distinguished from the

rest who have developed metastatic disease by passage of time. If

a patient has not developed metastatic disease in the first five years,

the chances of devloping metastatic disease diminishes in the sub¬

sequent years. For this reason the peak in the 5th year hazard

rate should begin to fall. Figures (3.2.8) and (3.2.9) relate to

the hazard rates and survival functions of the above discussion.

Prout, Slack and Bross (1973) discuss a rather interesting

population of invasive bladder cancer patients. Criterion for entry

into the trial is that, patients must have non-invasive bladder cancer,

out also must pass a test indicating that there is no metastatic

disease present. After 10 years of follow-up the hazard rate is

observed. The hazard curves show two separate peaks for the

population. Proust et al consider the reason for the appearance of

two cones to be due to the population being composed of two very

different prognostic groups. This effect is also later indicated

by biological evidence. One major entry criterion is a negative

result on metastatic disease test. Patients who enter the trial

must have shown a negative result with the test. However a group of

patients who do not show any evidence of metastatic disease and are

test negative are in fact metastatic patients who have not been detected

by the test. The first peak of the hazard is due to these patients.

The second peak is due to the rest of the population, who are non-

metastatic at the time of entry, but develop metastatic disease

later/
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later in the course of the progress of disease. Figures(3 .2.10)

and (3.2.11) present the hazard and survivorship functions for this

population.

Finally in a paper, L.E. Rutquist et al (1982) set out

to answer the question "is breast cancer a curable disease?" They

consider cure to be synonymous with a pattern of survival rates

conforming to survival rates of a normal healthy population. For

reasons of comparison they note that there exists two different

mortality rates, one due to the uncured cases assumed to be constant

over time and the other for the cured patients subject to risks of

a normal healthy population. Therefore they assume a two parameter

model representing sums of two exponential models as appropriate.

Further they consider a log normal distribution giving a low initial

mortality which rapidly increases to a maximum and with a slow

decrease in mortality after the maximum has occured. In their

conclusion it is noted that excess mortality from breast cancer is

noted at least 18 years after treatment.

One point to note in the above study as well as in some

of the previous methods is that for purposes of inference they adopt

2
a X test of goodness of fit for the comparison of the expected and

observed values of the survival distributions. Another commonly used

method for the estimation of relevant parameters is the maximum

likelihood method. We will discuss this approach in more detail

within the discussions of the covariates.

In the above discussions much importance was attached to

the shape of the hazard rates. Examples of empirical data were

discussed/



Hazardper month



Probability ofsurvival
0.0

10

20

30

Months

vo -~4

Figure(3.2.11)



discussed and some parametric distributions were mentioned that

can approximate the distributions. The shape of the hazard may-

give useful information as far as the biological nature of the

progress of disease is concerned. It can also introduce tests of

significance. For example we could test the null hypothesis of a

constant hazard (exponentially distributed density function) against

the alternative with increasing or decreasing hazards (Weiball density

functions). In the next section we will discuss parametric

distributions purely for the purpose of testing the effects of

treatments and other concomitant variables, by the use of covariates.

3.3 Inclusion of Covariates.

Once a decision is made on the shape of the hazards that

may be fitted to the population, an additional function may be

combined with the hazard function to form a hazard function for a

specific sub-population. This additional information is related to

the extra function and is refered to as the concomitant information.

Examples of concomitant, information are indicators for the treatment

effects, age of patient at entry, stage of disease, size of tumour

and other prognostic indicators. These additional sets can be

used either singly or in combination to estimate parameters so that

a distinct survival distribution may be fitted to each subgroup.

The estimated value of such parameters will be used -co assess the

significance of the survival differences between two or more subgroups.

/

In the above discussion we have made a necessary distinction

between the hazard functions and the concomitant variables. The

former provides information on the rate of failure of the patients while

the /
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the latter defines subgroups of patients. The distinction may be

more complex and difficult at times in deciding which parameter is

appropriate for assessment and comparison of the subgroup. Using

the extreme example of crossing survival curves, an interpretation of

the parameter estimates can depend to some extent on the weighting

attached to the various points in time. However it is not a problem

that one often encounters in practice. We proceed now with the

development and representation of parametric statistical methods

which are useful in clinical trials.

For each case entered into the trial, in addition to

failure time or censoring time t.and the indicator variable 6. ,
1 l

(o for censored, 1 for uncensored response), there exists a vector

Z. = ( Z Z ,) of covariate indicators or explanatorv
l 1i n

variable indicators. Then according to the previous definitions

of the hazard rates for each subgroup we can represent the hazard rate

as

(Hazard at time t, for subgroup k) = (General hazard at time t)

(Function of variable indicator

for subgroup k)

In the simple case of the exponential distribution with the general

hazard rate A0 we can write the above as

A(t Z ) = A 0 0 EXP (B' Z )

where EXP (b' Z^) is a mathematically convenient function for
representing multiplicative effects of indicator variables. B is

a vector to be estimated and represents a set of coefficients

associated with the covariates and. is used for the testing of

prognostic/
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prognostic effects indicators. One point to note at this stage is

that our formulations need not be as restrictive as the above

formulation. Later we will discuss a group of models that are

based on the following formulation.

(Hazard at time t, for subgroup k) = (General hazard at time t
for subgroup k)°(Function

of variable indicators for

subgroup k)

The former models are in general named as proportional hazard model

and an example of the latter model is the accelerated failure time

model.

The proportional hazard models are expressed as -

*(t, Z.) = \(t) exp (B Z.)

where ^t) is a function of time referring to a base line hazard

rate. In the case of the exponential it is not dependent on time

and in the case of the Weiball it is expressed as X0(t) = yu tU \
where u and uare scale and shape parameters.

One point in introducing the concept, of covariates is that

it enables us to compare different treatments for a single disease.

Further it is possible to identify auxiliary factors that influence

survival times. The use of concomitant information is an approach

for identifying the factors that are associate with the survival

times in relative terms. This latter emphasis is different to the

discussion of earlier parts of this chapter on parametric methods,

which dealt with parametric estimation of survival times and a

possible interpretation based on the functional form of the

parametric/
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parametric models. The procedure commonly used for the estimation

and testing of .'"the effects of the covariates is termed as the

maximum likelihood estimation and is dealt with by S.D. Silvey (1975).

Basically, to assess the effects of factors influencing the survival

times we require a function that can express the survival experience

of all cases.

Thus

likelihood function = II (likelihood of survival
all experience of a case)

patients

Further we can distinguish censored' cases and responding cases,

and thus we write;

likelihood function = , 'I,, (death density , .n (survivaldeaths .
, alivesfunction) function)

By the definitions of the hazard functions, survival functions and

density functions we can write the above equivalently as,

likelihood function = n (hazard function) H (survival
deaths all function)

Each of the above function in brackets can have a mathematical

formulation, based on insight into the distributional form of the

data. Further each of these formulations may be defined by a set

of parameters. Our intention is to use a procedure to estimate

the best values of parameters that can explain the survival

experience of the population with the least number of parameters

and with an acceptably low difference between estimated, expected and

actual survival times. Later in this chapter we will develop the

above formulation for the exponential, Weiball and Taulbee approach.

Also based on the distributions we will define general families of

functions.

When/
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When parametric methods are used in conjunction with

covariate effects more care is needed for identifying the correct

functions,. What is crucial in survival analysis as in any branch of

applied statistics is obtaining a reasonable fit to the data. A

commonly used indicator of a good model for the data is the pattern

of the residuals, where the residuals are defined to be a function of

the difference between predicted and observed values. Further a plot

of the data can at times indicate whether the theoretical model's range

can fall within the variability of the data.

An example is the situation where it is assumed that there

exists a constant hazard rate for a population. Therefore the best

model to fit is conjectured to be the exponential distribution, which

has a constant hazard rate. Once, the data is fitted and the values

of the residuals are compared, possible short comings of the model may

become apparent. If the conjecture is substantiated by the data,

then the outcome would be a set of residuals that follow a constant

pattern through time. In situations that the hazard rate is

increasing or decreasing a similar pattern will be reflected by the

residuals.

In the formulation of the likelihood with the proportional

hazard assumtion the hazard rate is assumed to be dependent on the

covariates only through the EXP ( BZ) function. It is however possible

that in some situations with the passage of time the effects of co¬

variates may change. One manner in which we can test the time

f
dependency assumtions of covariates in a proportional hazard model

is by formulation of a likelihood such as;



likelihood function = II (hazard H (survival
death function) all function)
cases cases

n (time depencency
all function)

cases
(3.3.1)

In the following sections of this chapter we will study-

in detail different methods of the estimation of covariate effects

for different shapes of hazard rates. Before doing so we will remark

on the various advantages of the approaches that have been discussed

so far.

Earlier we mentioned Turner's family of distributions

as a flexible multi-parametric method by which it is possible to

obtain a close fit to the subgroups of the data as a method for

data reduction. For reasons of comparison between subgroups, there

may be situations where it is sufficient to use a multi-parametric

method for a base line hazard rate together with a simple single

parameter relative risk. Clearly estimation of a large number, of

nuisance parameters is an important consideration in such a study.

Alternatively in other situations a multi-parametric method may be

used with a multi-parameter relative risk for each subgroup. This

approach has the disadvantage that the interpretation of the

inference of the subgroup may not be easy. The likelihood

function (3.3.1) has a major advantage in that the interpretation of

the covariate effects is much simpler than when separate distribut¬

ions are fitted to different subgroups.

In terms of the survival curves the above formulation of the

proportional hazards may be interpreted as follows. Between the range

of all/
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of all possible survival curves for the set of prognostic and

treatment groups, there exists a base hazard rate. All other

survival curves can further be generated after multiplying the

base hazard rate by the corresponding function of EXP (Z &) , which

is a scaler for each subgroup. If the proportional hazard assumption

holds the final terra in (3.3.1) contributes nothing to the covariate

effects. If alternatively the hazards behave as non proportional

rates then a time dependent functional form of Z(t) must be used

instead of Z.

3.4 Polynomial Hazard Rates.

Taulbee (1979) discusses a generalised form of the

Ragleith distribution, in which the hazard has a polynomial pattern.

2 m k
\ (t) = x + x t + x t + . . .x tm I X t

m o 1 2 m (3.4.1,
K — U K

where m refers to the degree of the polynomial.

In the presence of covariate effects Z_. for j = 1,...S

we may then adopt a substitution for X such as X exp( B Z.) givingK K K 1

Xjj (t,Zi) s Xk tk exp (Bk z )

for k = 0, 1 . ... m

Where in the above definitions we have considered to be a parameter

set to be estimated for each of k = 0 to m. Further for each B,k

there exists a representation B = ( 6. . , . . . S, ) and forK K I k s

the vector Z^ ther is a representation Z^ = (2^, . . • *2^s) •

Where/
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Where s is number of covariates and i refers to a particular case.

EXP (E5 Z.) is numerically the most convenient function
K 1

although in general we can express the above as

(t,Z.) = Xk tk h(Z., Bk) (3.4.2)

and let h ( B, , Z.) be for example EXP ( B Z.), (1+B Z.) or
K 1 K 1 K 1

(1+ B z.) 1 . In here we adopt a general definition of B . However
K 1 K

later we will adopt a restricted f orm of B where B = B = B ,
K U I jL

giving a proportional hazard type of the model.

In analogous manner to that of other parametric models such

as the Weiball, it seems necessary that a good prior knowledge is

required for use of any particular hazard shape. Further the functional

form of h(B , z.) is related to the derivation of the functional form
K 1

of the subgroup hazard rates from that of the base line hazard,

^ (t,0). In particular this relation is important for the
K

proportional hazard restriction form of the model. We will discuss

these points later with the use of a particular form of Ragleigh

distribution with increasing hazards, that is XQ> 0 and X^ >0.
By substituting (3.4.2) and expanding (3.4.1) we write the general

hazard function as

X (t, Z . ) = X h (Z . , BJ + X h (Z . , B .) t + . . . + X h(Z , B J t™
mi 0 i 0 1 l 1 mim

m
k

2 Xkh(Zi'Bk)fc
k=0

Using/
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Using the definitions from the introduction we have

S(t) = EXP [ - X(u)du]

giving

S (t,Z.) = EXP[
mi j

- f
t m

0 k=0

Z X h(Z . , 3 ) u du]
K 1 K

m
= EXP f _ £ \ h (Z. B ){

k=0 1
u du} ]

m ^k k+1
= EXP [- { Z 7"TT h(Z . , B, ) t } ]

k=0
k+1 ~k'

Further using usual approaches in the construction of the likelihoods

we have

Likelihood = H (Hazard function) II (Survivor function)
All All

deaths cases

n x (t, z.)
deaths

(i)

, , S (t,Z.)all m l

(i)

m
k m ^k k+1

n 2 X, h(Z.,B-,)t . n EXP{-[ Z —rh(Z.,B.)t ]}
_ i k l k „ , k+1 i kD k=0 A k=0

(i) (i)

Then the likelihood function L, for a 2 degree hazard is given by

(we eliminate subscript i, for the moment for brevity).

L = n[ XQh(Z, Bq) + \^h(Z, B ()t + X2h(Z, B2)t2]
X h(Z, B )t2 X h(Z, B )t3

• IIEXP {-[ XQh(Z , B Q) t + - + ]
A



107

We now reinsert subscript i

giving

I = In L = 2 j. ln(F 1.) + F 2.
li l

All

(i)

where,

F1. = [\Qh (Z., bq) + B1) t + X2h(Z., B2) t2 ]

and
2 3

X h(Z , B )t X h(Z , B )fc
F2. = [- {X0h(Z., B0)t + ^ + }]

Now we do a differentiation of the necessary parameters for maximum

likelihood estimates

3* h(Z., B )

Jx ' 2 5i + ("h {V B0) t)3A0 All F1.
(i)

h (Z , B ) t h(Z. , B )t
— = 2 5. - -— + ( - )
3 X, A1. i F1 . 1 2 'i All l

(i)

« . h (Z . , B_)t h(Z., B»)t
= 2 5 - + ( = - )

8X All i F1 . 3 '
2 (i) 1

at - 2 V "FT ) + (- x t) V
3a All 1 F1i 3Boj o j

Oj (i)

^ - 2 5 ( -L, 3h(Zi1>Bl1) (x t) + ah(2i3fB^}
aBlj A11 1 F1.) 3Blj 1 2 aBlj

(i)
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— - 5. ( — ) - — (X t ) + ( * A ±J-
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3B2j All 1 F1i 3B2j 2 3 3B2j
(<)

Where 6. = 1 for deaths and 6. = 0 for censored cases,
x 1

B ., B . , B_. are covariates for each degree of the polynomial,
o: 10 2J

(In this case a 2 degree polynomial.)

Xo,X1 , X2 refer to the hazards polynomial,

and i is a subscript for each case and j is the number of covariate

effect under test.

In the above formulations we have allowed B^ to vary

depending on the degree of the polynomial that approximates the

hazard rate. This generality is violating the proportional hazards

assumption. A restriction such as B =B for all k, converts the
K

approach to a proportional hazards version. In such a situation the

hazard is,

m
k

X ( t, Z.) = ( Z X t ) ° h( Z. ,B )
k=0 k

giving for a 2 degree hazard

x2(t, ZJ = ( XQ + Xjt + X2t2 ) 0 Exp (B Z.)

Further X^(t, Zusing the above generality is an example of
the Rayleigh distribution hazard rate, with covariates

XI (t, Z.) = (XQ + X1 t) ° Exp ( BZ.)
forXg >0 and X^ >0

We proceed with this approach in an analysis of the Edinburgh trial

data/



data, using maximum likelihood estimation. For our particular use

we adopt a method of maximising the likelihood function using the

P3R programme of the BMDP for estimation of non-linear regression

mpdels by the Newton-Raphson procedures. This programme is a

flexible enough procedure for the estimation of the relevant

parameters of the above named functions.

The programme requests the actual likelihood function,

the derivaatives with respect to the estimating parameters and

a loss function. In the last section we produced the necessary

functions and derivatives for a general Taulbee approach. Initially

we analyse the data for a linear hazard model with the proportional

hazard assumption. In this analysis we use the treatment option

given by Radiotherapy and simple surgery against radical surgery

as the main effect of the study. Later with use of the other

covariates we approach the analysis with the Weiball and the

exponential models. Throughout we use a survival time scale in

months.

First we fit a model with a zero rate hazard. This is

equivalent to an exponential model with the proportional hazard

assumption. With m = 0 we have

X(t, Z) = XQ 0 Exp( SZ)

L = n A Exp( ez) 0 n Exp [- X Exp( BZ) t ]
D A

giving the estimated parameters

X = .0041 S.E. = 0.00309

B = 1 .4821 S.E. = 0.4021

)
) df =

)

559 InL = -1741 .82
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Now we can expand the model by allowing the hazard to have a straight

line passing through the origin. If we set = 0, then hazard is

X(t, Z) = ( X1 t) . Exp(3 Z)

The present model is not suitable for the purpose of analysis in

that we have introduced two types of restriction, one indicating

= 0 and the other assessing the proportionality of hazards.

As a more suitable model we use the next memeber of this calss of

distribution.

We now fit a model of the hazard form that allows the

straight line hazard not to pass through the orign. We therefore

have to estimate both parameter X^ and X^ simultaneously as well as
the ^parameter for the covariates.

We thus obtain the following estimated parameter for the

model given by

X(t, Z) = ( X + X t) . Exp(B Z)

L = IIX Exp (£5 Z) + X Exp ( 3Z)t. n Exp [- X Exp (3 Z) t +
D

2

X^ Exp (3 Z) t

XQ = 0.008762 S.E.

X1 = 0.000438 S.E.
3 = 1.4951 S.E.

= 0.00186 )
)

= 0.00382 ) d.f. = 558,
)In L =1739.85

= 0.4037 )

The value of X^ is close
ment/

to zero. In fact there is little improve-
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ment over the original straight line model with X^ parameter used as
the hazards function only. Now, although the base line is approximated

better and is less restricted, the estimator of the treatment effect

is virtually unchanged. This indicates that the covariate effect

part of the hazard namely E.xp( 0Z) is consistant if we can assume

the proportionality of the hazards.

The next model we consider, relaxes the proportional

hazards assumption. This is a useful model for checking the

proportionalities of linear type. Returning to the original derivat¬

ions of the model we can express the hazard rates of the next model

as,

Mt, Z) = X Q Exp ( BQZ) + X1 Exp ( B1 Z)t

L = n XQ (Exp(0 nZ) + X, Exp( 0,Z)t1
H Exp[- (X Exp( B Z)t +
A

X1 Exp( B Z)t
) ]

giving the estimator

XQ = 0.009674
X = 0.000511

= 1.12

= 1.4848

S.E. = 0.00257

)
S.E. = 0.00376 ) d.f. = 557

)
S.E. = 1 .311 ) In L = -1737.97

)
S.E. = 0.4121 )

The value of & is not significant. A comparison of the log likeli¬

hood of this model with 557 degrees of freedom and the previous model

with 558 degrees of freedom gives the difference of - 21n L = 3.76,

which according to the chisquared distribution is not significant.

We therefore do not reject the proportionality of hazards assumtion.

By/
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By the above models the linear structure of the hazard shapes may not

allow an efficient estimation of the effects. This point is expressed

more vividly when we deal with the Weiball models of the next section.

In the discussions of the exponential model estimator it will be made

clear that the actual value of Xg is arbitrary in so far as the
comparison of g's for different subgroups are concerned.

So far in the study of the application of polynomial hazard rates,

the above linear hazard rate has been the most appropriate. We will

now estimate some of the subgroup covariate effects by this model and

observe their contribution to a proper explanation of patient survival

variation. The prognostic categories that are of particular interest

now and which will be discussed in more detail later are, menopausal

status, initial size of the tumour and node histology status. Later

in chapter 6 we will define the indicators in greater detail. In here

we will only use them for the purpose of illustration.

We fit covariate effect models to the data for each of the

above main effects in presence of the treatment effects. Consistantly
A

we note that there is a reduction in treatment effect of 0 estimator

and a comparison of tne covariate functions does not show any important

difference in the treatment effect estimators. This indicates that

the treatment effect is stable for the different prognostic groups.

Model with treatment and node,

& = 1.4521 S.E. = 0.4072
treatment

3
^ = 1.2182 S.E. = 0.6410node

Model/
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Model with treatment and size,

5 = 1 .4486 S.E. = 0.4513
treatment

! . = 1.1087 S.E. = 0.6834
size

Model with treatment and menopausal status, where we consider

post menopausal and menopausal group as one category and

pre-menopausal as another.

J, . . = 1.2730 S.E. = 0.4481
treatment

3 . = 1.3051 S.E. = 0.5913
menopausal

3.5 Exponential distribution for censored survival data with covariates.

The exponential distribution has been used extensively as a basis

for study of survival distributions. The simplicity of this model has

been the main reason for its common usage. However, at times it has

been used in situations where the assumption of constant hazards has been

violated. The model is simple to estimate and has only one parameter

for defining the failure rate which is not dependent on time. Thus in

this model the risk of death is independent of time.

In an early demonstration of the exponential survival distribution

Boag (1949) applied the distribution to the survival of cancer patients.

David (1952) examined the distribution in relation to the field of

reliability and applied the method to 26 mechanical survival situations.

Several authors, Halperin (1952) and Epstein and Sobel (1953, 1954)

investigated the maximum likelihood estimation of the one parameter case,

X/for censored data. Fiegle and Zclen (1965) investigated the problem

of /
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of estimation of constant linear hazards X with covariates. The

exponential distribution at times has been termed as the "memory less

distribution" since the hazard rate is not a function of time.

The median of the distribution is Ln(2) / X mean is 1/X and

the variance is 1/ X2. Where X is interpreted as the force of

mortality. The larger the value of ^ , the shorter is the mean life.

The estimation for the uncensored case of the distribution is relatively

simple. Using the maximum likelihood estimation there is a closed

bound solution for the mean and variance.

For a situation of random censorship, defined in the introduction

to be the most common censoring in trials, we have the likelihood

l = n f(t.) n s(t.)
Deaths(i) Censored(i)

- Xt. _ -Xt.
II Xe x n ei

Deaths(i) Censored(i)

n e
-Xt. i - Xt. 1 -6.

H (Xe i ) (e i) i

i=1

n 5 • , . .

TT / — X t . )11 X (e i
i=1

* n
X^ Exp (-X 2 t.)

i=1 1

•k

where n = number of uncensored ox deaths

giving
*

In L = n ln(*j - X I t.
i=1 1
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=> the maximum likelihood estimator of Xhas value

X = [ 2 t. * -1
i-i 1 / n 1

The second derivative of the log likelihood with respect to ^ yields

2

3 InL *
= -nTx1 " "n / x2

so that

X -X

/ X 2/n
* is approximately normally distributed as N(0,1)

Using the asymptotic normality results on likelihoods. Further

a transformation by the delta method gives

N

x r** n (x , X2/ ^ )n*

The exponential distribution with only one parameter X is rather simple

to obtain. The next stage of the development of the exponential

distribution is to use covariates. The use of covariates with an

exponential hazard rate may be developed with the maximum likelihood

estimation and the Newton-Raphson procedure. The reason for the use

of the Newton Raphson procedure is that we often do not have a closed

bound solution of the estimator. The interpretation of the results

are also straight forward if the assumption of time independent hazards

holds. In the above we obtain a method for the estimation of the

hazard rate X . In the situation of analysis with covariates and use

of maximum likelihood estimation, X in fact is not needed and it is

possible to derive an inference for the covariates by setting x, the

base hazard rate value to 1. In the section on the Weiball we will

derive/
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derive functions for a maximum likelihood estimation of covariates and

the Weiball shape parameter.

The exponential with covariates is a special case of that

procedure and will be discussed in more detail there.

3.6 the Weiball distribution.

The Weiball distribution was originally used by a Swedish

physicist, Waladdi Weiball, who was interested in measuring the breaking

strength of materials. The main reason for the initial interest on the

Weiball distribution was that unlike the exponential it was able to

fit the data, even when the breaking rate was not constant. Later

A.C. Cohen produced maximum likelihood estimators for estimation of

uncensored and censored cases.

The Weiball distribution is an extension of the exponential

distribution. In the graphical presentation of the first section of

this chapter, it was shown how, with a shape parameter set to one the

Weiball distribution reduces to the exponential. Apart from the

situation with the shape parameter set to one, the hazard function in

the Weiball is time dependent, and thus the rate of failure changes

with the passage of time.

For the distributional definitions of Weiball in section 3.1

1/v
we have; the median of the Weiball is given by (In (2) /u ) ,

the mean is given by

1/1 ,( 1 + v) and the variance is
1/v

u
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n 14- 2/v) -1 n 1+1/»D;
u2/*

In here v is related to the hazard rate. The actual interpretation

of the v for cases greater that one and less than one is the same as

those for applications in which rate of death changes because of the

underlying biological process. The estimation procedure is more complex

than the exponential case. Neither in uncensored nor in censored models

does there exist a closed maximum likelihood estimator. We now proceed

with the derivation of the maximum likelihood estimator for a Weiball

model with covariates.

In the last section concomitant information was introduced into

the likelihood function for the Taubles general model. According to the

hazard functions, the subgroups affect the rate of events in terms of

intensity with a relationship of exp (3 Z). However, the covariate part

of the model does not effect the shape of the base line hazard rates.

The effect of the covariate on the Weiball hazard is repre¬

sented by

V-1 Z8
A(t , Z) = vu(t) . e

The latter part Exp (Z $) refers to covariates and is independent

of time. This is basically a similar assumption as the one used in

the last section to derive some of the results, for concomitant informat¬

ion .

According to the relations in section 3.1 and the above

hazard rates, the density function and survival function for the

Weiball with covariates are
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f(t, Z) = v^(t) V 1 eZ8 .Exp[- ntVeZB ]

S(t, Z) = y Exp [ - ytV eZ8]

All the above expressions of the hazard rate, density function and the

survival function can be considered as a generalisation of the

exponential distribution with concomitant variables , simply by

allowing v to be set to one. These results can serve as a general

purpose model for the different forms of the exponential and Weiball

models, when the emphasis is on the estimation of the covariate effects.

Using the formulations from previous sections, the likelihood function

is -

n
-1 6 Z-

likelihood = H [ uvt V Exp(8Z.) ] 1 Exp[(-tV yc 1) ]
i= 1 1

where as before 6. = 1 for death and
= 0 for censorings

and n is the total sample
and n* is the number of deaths.

n 5. 8i BZ^
= n y 1 [ vtV Exp( B Z.) ] Exp [(-t e )leU

i=1

The value of y is independent of the time t and covariate effect

Exp ( SZ^) . Thus it is a scaling measure and y does not have an effect
on the comparative values of $ and v . In the following expression

for the log likelihood, the terms involving y are omitted.

n B Z
In L = 2 6. In[ v t? Exp(B Z.)] + (-t? e 1)

i=1

n 6Zi
Z 6 . (In v + (v-1) In t. + gZ±) + (-t^ e )

i=1

n ezi
= n* log v + Z <S.[(v-1)ln t. + BZ^] + (~t^ e )

i=1
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n SZ.

In L = n* In v + 2 <5. ( V-.1 t. + 8Z.) + (-tV e X)+6.1n t.
. . X xx x xx
x= 1

The last part 6^ In t^ is not dependent on parameters v and 0 .

Thus in terms of the proportionality of the likelihood we let

*z
R. = t. e and In R. = v log t. + 8Z.

v x

gxvxng

n

In L = n* In v + 2 5.(ln R.) - R.
i-1 1

Now we obtain the derivatives of the logarithms of the likelihood.

These derivatives at values equal to zero give the best estimators

ol. the maximum likelihood function.

g n 8 Z. nIn L v x
= 2 6. Z . . - t. c . Z. . = 2 (6 . - R. ) Z. .

d&i ,=1 x x: x xj i=1 x x ij
= 0

n 6Z. n
31n L n*

„ „ , v x, , n*, _ .. _ .
= — + 2 6. In t. + (-t. c ) . In t. = — + 2 (5.- R.)

3 v v ,,x x x xv.. xxx=1 x=1

In t. = 0
x

In the procedure for estimator of £. and v we also need to know the
J

second derivatives of the logarithms of the likelihood. These values

are used in the maximising procedures of the Newton-Raphson as well

as deriving the information matrix to obtain the variance covariance

esimators.

. 2 n 8Z. n
3 ln L " 1 *

Z. . . Z., = - 2 R. Z..Z.2 - t. e

36j 3 8r i=1 i ij ik ,=1 i ij ik
2 n 8Z. n

2 -tV e 1 . Z.. . ln t. = - 2 R. Z.. ln t.
3 8j 3v . = 1 i ij i i=1 x x] x
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.2 , , n 8Z.9 In L —n* v i

g- = —r + 2 - ( t. e ) . In t. . In t. =,2 2 . , l l l3v v i=1

n
—n* 2

+ 2 - R. (In t.)
v i=1 1 1

The above functions are thus the necessary functions that may be

used in conjunction with a standard Newton-Raphson maximisation.

S.D. Silvey (1975) describes such a procedure.

3.7. Interpretation of the models with use of the old Edinburgh
Trial Data.

In this section we perform an analysis of the old Edinburgh

trial data, with the parametric methods. The general purpose is

to give a comparative illustration of the parametric and non-parametric

methods as discusced in the last section. First we perform an

exponential and then a Weiball model analysis with only one regression

coefficient.

The first covariate we test is the treatment effect, that

is a comparison of survival times for simple surgery and radio¬

therapy against radical surgery. A t shape parameter value fixed

to one we are in fact using an exponential model. Further the

variation of the shape parameter from one indicates a Weiball

model.

Shape parameter set to one R = 1.4821 S.E. = .4021 d.f.= 559
option

Shape parameter estimated = 1.36 « = 1 .6321 S.E.= .4043
°ptl°n d.£. = 558.

(S.E. of the shape parameter = 1.18)

We continue the estimation procedure with inclusion of another

covariate/
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covariate, the menopausal status. Once again we consider post¬

menopausal and menopausal as one category and the pre-menopausal

as a separate category.

3 8
Shape parameter option S.E. meno S.E. d.f.

set to one 1.3819 .4921 1.3722 .3821 558

estimated = 1.53 1.3521 .4185 1.3986 .2581 557

In both of the above models we note that option and menopausal

status play an important role in describing the survival rate of the

patients.. Then we consider the addition of tumour size.

8 B 8
Shape parameter option S.E. meno S.E. size S.E. d.f.

set to one 1.4181 .4931 1.3843 .3840 1.1927 .3192 557

estimated=1.54 1.4961 .4166 1.3506 .2931 1.1159 .2901 556

Now we add a term for node status to the above models -

U 8 3 6
Shape para, option S.E. meno S.E. size S.E. node S.E. d.f.

set to one 1.423 .4930 1.4134 .3872 1.3741 .3793 1.4721 .5128 556

est.= 1.54 1.478 .4381 1.3902 .2881 1.1462 .3121 1.531 .6321 555

The above models show that the survival differences of the patients

can be attributed to the above covariate indicators. So far we have

not considered significance levels of the different estimators for

the parametric methods. In Chapter 6 we put more emphasis on the

analysis and interpretation of the data rather than a comparison of

the analytical methods. In summary the above models indicate that

for the above covariates there is very little to choose from the

exponential and the Weiball. The results of the Taublees family for

the 2nd term, also show very similar results which, because of their

close similarity are not detailed here.

Now/



122

Now we introduce the concept of interaction and its use in the

framework of a parametric model. In the second stage of the last

analysis with the exponential and the Weiball models, the information

from option and menopausal status played the most important role.

One advantage in use of a regression model is that we are able to

do a formal test of interaction effects. These tests assess if the

effect of covariates acting simultaneously is any different from an

addition of the two effects acting independently. Once again we

represent menopausal status in two categories of pre-menopausal

and menopausal + postmenopausal. The effect of the latter two

categories of the menopausal status can be seen from the shape of

the hazards, which are in fact very similar. Further, for the

present purpose such a transformation of the menopausal status suff¬

ices .

We begin with a model which was presented at above and

included menopausal status and the treatment option as the only

two effects. Now we continue with a test of an interaction effect

for treatment and menopausal effects.

Shape ^option S.E. 8 meno s.E. e size s.E. d.f.
parameter
set to one 1.3839 .4938 1.2121 .3109 .2127 .3782 557

estimated=
1.52 1.3210 .4179 1.2382 .2052 .6171 .6312 556

This result indicates that all the necessary information may be

contained within the two main effects. We, therefore conclude

that the radical treatment group perform better in terms of survival

time. The effect of treatment is consistently the same for the

various categories of the prognostic indicators, size, node and

menopausal/
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menopausal status. The behaviour of the various categories of

the indicators is as may be expected. That is, the smaller tumours

younger patients and the node negative tumours are the good prognosis

groups and the older patients, larger tumours and node positive

are the group providing the worst survival times.

None of the main effects of the prognostic values show

an important interaction with treatment effects. That is all sub¬

group variability of the survival times can be described in an

additive manner.

The final model of the Weiball and the exponential

distribution with all three covariates and treatment effect included

shows very similar estimators of the prognostic main effects in com¬

parison to models with treatment and one covariate effect included,

thus once again suggesting that prognostic values are consistently

the same given the present framework of the Weiball model.

3.8. Families of distribution with covariate effects.

The Taulbee or Turner family of distribution can provide

a flexible set of distribution for use in failure time analysis.

When we deal with covariates there is another approach to classify¬

ing distribution according to a combination of hazard rates and

covariate effects. The most commonly used method is to assume

that the population has a single underlying failure rate according

to the inherent nature of disease. Further any difference in

failure rates for the subgroup originates from a separately

identified covariate effect. This class are termed on the proportion¬

al/
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hazards model and the exponential , Weiball and the polynomial

models of the previous section were based on its assumptions.

An alternative useful approach is to consider the failure rate

to have a function dependent on time and the covariate structure.

This group is known as the accelerated failure time model and we will

consider them later in this section.

The group of regression models with the assumptions of

the proportional hazards are generalised as models of the form

X(t, Z) = X0(t) Exp(3 Z) (3.8.1)

Now if we let \0(t) to be independent of time and set X0 (t) = X

we have an exponential distribution with covariates. Alternatively,

if we let X0(t) to be time dependent with a shape parameter p and set

X0(t) = pv tV~1 (3.8.2)

We have a Weiball distribution. In case of che Regleigh family

of distribution or a restricted Taulbee approach we deal with

hazards of the form,

X o(t) = X0+ Xjt (3.8.3)

In terms of the reduction of the data into a useful statistic,

it is clear that estimation of the 8 gives the relevant information

on effects due to membership of a particular subgroup. The assumpt¬

ion that must hold is that, the membership into a particular subgroup

does not effect the sape of the X0(t). That is, there exists a base

line hazard rate for the total population and any effects due to

covariates take the form of a proportional effect introduced as

Exp ( 8 Z).

In the estimation of the maximum likelihood for the

exponential/
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exponential and the Weiball, the actual scale of the hazard

curve plays an arbitary role in the relative effects of the

covariates. What matters is in fact only the shape parameter of

the Weiball. The important assumption that must hold again due to

the proportional hazards, is the fact that regardless of the

subgroup, the total population must have the same shape parameter.

In terms of interpretation we require that the base line hazard rate

can be projected on to the subgroup rates for the entire population.

Up until now we have considered a general proportional

hazard model in which, the entire population has had the same base

line hazard rate. There is an extension with which we can allow more

than one base line hazard ra.te. However the information contributing

to the covariate effects is inherently the same. These models are

useful in situations that a population is composed of different

strata. The information regarding membership of a particular

strata is not testable, but information regarding some other covariate

must be estimated by allowing for the strata effects. The model

has the form.

Xj (t, Z) = X o j(t) Exp (3 Z)
where j refers to a particular strata. This functional form of

*°j(t), can in fact be used for any of the parametric models. The
semi parametric model of Cox (1972) can also be used by the above

definitions and interpretations. As an example we can allow

different hazard rates for the different strata, say young patients

and older patients. This topic in general is also related to the

time dependency of the covariates and it will be studied later in

Chapter 7.



126

Apart from the proportional hazards model there is another

group of regression models with a multiplicative effect on the

regression parameters, namely, accelerated failure time models.

The general formulation of the model is

X(t, Z) = X0( t e"z3) e-Z8

For this model unlike the model discussed previously, the effect of

the covariates under test can have a direct effect on the base line

hazard rate that is estimated. It is important to note that both

the proportional hazards models and the accelerated failure time models

are log-linear models with additive effects of the hazard function,

the covariates and the logarithm of the time.

These models are most useful in terms of a generalised

model for the estimation of the regression parameters. The method

mentioned based as Turner's family of distribution is also useful in

that it provides a useful way of classifying hazard rates. However,

the main advantages of the proportional hazards compared to that

of Turner's family or accelerated failure time is that the inter¬

pretation of events is much simpler.

3.9 Parametric, non-parametrics and Cox's approach.

In the above approaches and derivations an assumption has

consistently been used in order to try to distinguish between the

different survival rates. We kept the postulate that the time to

a critical event is a random variable and that it can be explained

by a continuous function. In the last chapter, however, the methods

initially/
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initially began with the reduction of the data into some form of a

rank order. This reduction ultimately implies a loss of precision,

in distinguishing the survival rates for the subgroup of the data.

The advantage however in use of a non-parametric method based on

ranks is that non-parametric tests are more robust. Extensive

comparative studies of non-parametric and parametric methods have

been done by various authors and we will deal with those in Chapter 5.

The Cox's method which offers a practical compromise between para¬

metric and non-parametric methods is also considered in Chapter 5.

We will perform simulations to assess small sample properties of

the Cox's method for trial data.

The analytical results of Chapter 2 and the present chapter

have been based on the analysis of the old Edinburgh trial. As may

be expected there are no qualitative differences in terms of the

conclusions of the results. However there are slight variations by

which we can reiterate the theoretical results of the earlier part of

this section on hazard rates. The importance of parametric methods

in here is not only that of precision alone, but rather due to an

ease by which parametric methods are able to provide a conceptual

frame for classifying the distributions of survival data into families

of mathematical models. This flexibility to classify distribution

is however compensated by a greater loss in robustness. Although all

the families of distributions mentioned in this section provide flexible

frameworks within which a large number of distributions for survival

analysis are placed, it is difficult to imagine what may be done with an

estimating procedure more complex than the Taulbee approach. In fact

so far as a description of the progress of the disease matters, a plot of

the/



the empirical hazard rates may suffice. If one is prepared to take

the position, that hazard rates are mainly useful indescribing the

biological progress of disease, then any robust general approach must

lie somewhere between the non-parametric and parametric methods. The

basic assumption then is that the actual rates of events are not

important and need not be parameterised, but the difference between

the failure rates in various groups must be estimated as precisely as

possible. The final result will add to the robustness of the

general method.

Cox (1972) presented a proportional hazard model by which the

data is reduced to ranks and thus adopts an estimating procedure for

which the rates of events are not important. The method offers a

robust and flexible approach for the analysis of survival data and

it is discussed in the next chapter.
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CHAPTER 4

Cox's Proportional Hazards Model
k ... ...

For all of this chapter we will be dealing with the study

of the method proposed by Cox (1972) for survival data. In this

chapter we cover topics related to the usefulness of the method as

applied to clinical trials. Some of the derivations from the original

appraoch and the derivation of some of the central results are

covered so that we may deal with the advantages and the disadvantages

of the approach.

There are a few major factors that distinguish the method of

the previous 2 chapters form the proportional hazards approach. The

latter method is more efficient than the non-parametric methods that were

discussed in the last chapter. The method in fact allows comparison of

the covariate effect to be made without making unduly restrictive assum¬

ptions. In relation to the completely non-parametric methods however

it is more suitable for providing a useful conceptual model for consid¬

ering and testing the relationships of the effects efficiently in part¬

icular when several covariates are tested. Further it considers the

relative effects of covariates as the relevant information for analysis

and thus is more robust than the parametric methods where the require¬

ment is closer approximation to the survival rates for the various groups.

There are certain requirements that must be satisfied in use

of/



of the method. One is related to the proportional hazards assumpt¬

ion in a non-parametric setting. The other requirement is on the

type of information that is available on each case i. We must have

a set of covariates Z^(t), so that predictions on the survival times of
the population may be made. The time we consider, from definitions

of the previous chapter can be either time to the terminating event,

e.g. death, or to the follow-up event e.g. censoring. However, the

functional form of Z^(t) refers to development of the covariate process
in the survival time scale.

In the above discussion we mentioned the core of the topics

of this section later we will consider these topics in greater detail.

4.1 Development of survival functions.

We use a similar methodology to that used for the parametric

methods. S(t) is the survival function; f(t) is the density function

and the hazard function is given by x(t). Such that if T is a random

variable representing failure time, then for sufficiently short periods

of time h, the hazard rate at time t is give by

Mt) = lim h Pr (t^ T^t + h\T J, t) (4.1.1)
h—» o+h

What the above basically implies is that the rate of failure is the

conditional probability of an event at time t, given that, the individ¬

ual has survival until a time immediately previous to it. For a contin¬

uous distribution we mentioned a similar definition in the introduction.

However we now have a situation in which time T has a discrete

distribution/
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distribution and observed times have values t, < t?< . . . t-L La

It follows that,

n

f(t) = Pr (T = t)

S(t)
i \tj < t

& X(t) = Pr (T = t \ T > t) (4.1.2)

The above formulation of (4.1.2) is an extension of previous

definition of (4.1.1) with the difference that T is now discrete.

The theoretical distinction between discrete and continuous forms o f

the hazard rate does not prohibit extension of the proportional hazards

to a discrete analogue. For the above distribution with a covariate

set Z a corresponding survival function is

to the above formulation in section 4.4 for the construction of the likeli¬

hood .

In the context of the general proportional hazards model we can

express the hazard rates as,

Where all the relevant information regarding the difference for survival

rates is decomposed by the relative rates of failure in the r(Z, 6 ) fun-

tion. Cox uses an exponential decomposition of the r(Z, 6) giving

S(t,Z) (Z B)

Where S^(t) represents a base line survival rate at Z=0 and has a

corresponding base line hazard rate given by return

X(t, Z) = Xq (t) r (Z,3 ) (4.1.3)

X (t, Z) = X q (t) Exp ( 8 Z) (4.1.4)
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For the base line hazard rate of the proportional hazard model Cox

uses a discrete form of ^(t), based on ranks of times. The aim is
that by use of this form of base line hazard rate robustness may be

introduced into the model, for the estimation of what remains relevant,

i.e. the relative risks. The base line hazard rate is a form of a

nuisance parameter and we will deal with nuisance parameters later.

As to the interpretation of the ^q(0 within the statistical theory, in
chapter 2 we showed a maximum likelihood estimation of the Kaplan

and Meier estimation and they are essentially the same. The values

of the £> estimators are similar in interpretation to the case of the

parametric models.

The derivation of the Kaplan and Meier estimates as maximum

likelihood estimators justifies the use of a discrete distribution and a

parametric decomposition. In this form of the proportional hazards

model, the discrete form of the base line hazard variability is removed

and the data is transformed to a base line of Kaplan and Meier

estimates. Cox (1972) discusses both discrete and continuous failure

time data and shows a unification in the approach by which both the

discrete and the continuous cases can be accommodated in essentially

the same way. The term *s a transformation °f survival times

in to the rank based product limit estimates for the hazard rates.

Thus we have ranks t/1N <....< t,, s(1) (k)

X(t) =
*

i=l r(i) U;
no. of deaths at t,., , . , _.(i) (4.1.5)
no.at risk at t,.N(i)

S (t) = n 1
t(i) < tL

1
n

t(i)< t
1 -

m(i)

r(i)
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The function <5(t - t,^) represents a dirac delta of values 0 or 1.
It is 1 in case of a failure at t,.. and 0 elsewhere. refers to

(i) (i)

number of events at rank (i) and r^ referes to number at risk.
This is a generalisation of the Kaplan and Meier estimates. In order

to avoid problems associated with censoring times tied with failure times

we adopt the convention of letting censoring occur just after the failure.

Now, regarding the relative risk part of the equation (4.1.3),

we intend to categorise our population accoring to a set of measurements

available on the patients. The measurements in this context are refer¬

red to as covariates. The s's are values that must be estimated and

they provide information on the effects of covariates. Once again

similar to the definitions of chapter 3 we refer to g's as the regression

parameter s.

In equation (4.1.3) we separated the effects into r(B,Z) and

a time dependent function Xg(t). Depending on the form of the
covariate effects it is possible that the explanatory variable Z^ , be
also a function of time. That is the contribution of the covariate is

allowed to be a random variable, that changes with time, so a formula¬

tion such as Z^(t), ... Zg (t) may be more appropriate. If our

population consists of n patients and s covariate measurements, then a

s x n matrix set as follows can define all auxilliary information.

(Information apart from death not censorings).

(4.1.6)

zn<t)
zi2(t>

Z21(t)
Z22^

Z„l(t)
Z„2(t)

V"
ns (t)
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Thus a general form of the Cox (1972) proportional hazards model with

regression parameters is given by

X(t, Z(t) ) = \Q(t) Exp ( 3Z(t) ) (4.1.7)

Before proceeding with the discussions of the various assumptions

necessary for the estimation of the regression parameters, 8 , we discuss

the role of Xr.(t) in the framework of the model,
u

4.2 Role of the Nuisance functions and the relative risks.

Meaningful isolation of relevant information is the major

intention in much of statistical work. This intention can be achieved

at times only by estimation of parameters that specify a distribution.

In some complex processes we require a reduction of the data in a more

elaborate manner.

The figures (4.2.1) and (4.2.2) present the survival rates and

the disease free interval for a group of (337) patients who were entered

into a randomised adjuvent chemotherapy trial, in the South East of

Scotland for four years from 1.4.74. Our purpose in presenting these

results is to consider the relevance of the proportional hazards to such

studies. A comparison of the rates of failure by survival A and B is

sufficient in giving relative rates of failure. However a more robust

and thus a less restrictive estimating procedure may be achieved by

realising that the relvant information in terms of the difference between

survival rates of A and B in either figure is in fact contained within

the shaded region C. Thus the information relating to shape of A or

B at times need not play a significant role in the interpretation of the

data,
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Parameters relating to actual shapes of curve A & B are

referred to as nuisance parameters. In model (4.1.3) , Xq(t) is a
function that must be estimated, in relation to effects of covariates Z^
and its estimator is a nuisance parameter. In fact a set of sufficient

statistics for the estimation of parameters generating the shaded region

is composed of the S parameters of the Z covariates. Thus in the case

of a clinical trial we perform a trial L, and obtain a data set (L, Z) f

where for each element of Z a measurement has been made to assess its

value for aparticular patient i.

In the most elementary form of applying the probability

theory, we have 3 general abstractions. A sample space X which is

the set that conclusions refer to, a subset of X which is the total data

set, a reduction of X, given by the model M, and a further abstraction

P, which is a probability measure on model M and represents a form of

variability of the data from the model.

In the context of models of survival time P is in fact composed

of a subset P^ for each particular covariate and a P^ for the hazard
rate. In an ideal situation we would like to have a one to one mapping

of Z-»P^ for each covariate. In the case of a trial with the model
(4.1.3) form, the above restriction would rquire specifying the distribu¬

tion of the survival function and the covariates for each form of risk

that depends on the covariate set. However for reasons of generality

and robustness a reduction is made. If in a trial the actual form

of the hazard rate for each competing risk is not of interest, then the

two subsets of P, namely P^ and P^ can be defined as follows. P^

relates/
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relates to a probability measure in terms of relative risks of covariates

and to probability measures for the hazard rates. The nuisance

function in proportional hazards models is related to Pu.ri

There are certain points that must be considered in relation

to the nuisance parameters. The actual trial and the way it is planned

plays arole for maximising the support we obtain from the data. Since

the relevant information is related to the covariates rather than time,

we can maximise this form of information by the usual procedure of

randomisation and possible stratification of prognostic indicators aril

treatments. The maximisation of support in no way needs to be related

to a time factor. The model achieves its robustness by transforming

the time scale into a rank order, and thus the new scale is sufficient

to measure the amount of support the data gives to various values of g.

The maximum likelihood approach provides a setting for optimising

these values and hence obtain the various required estimates. This

data reduction in Cox's approach as described so far requires the

proportional hazards assumption. That is we expect the hazards

for the subgroups to be multiples of a base line hazard. In the above

paragraphs we discussed the issues related to nuisance parameters

and some of the necessary assumptions that are related to it. The

expansion of the above can include time dependency of hazards,

multiple competing risks, censoring and stratification of the data,

when this type of model is used for analysis. Later in this chapter

and in Chapter 7 we will return to these points.

Continuing for the moment with the proportional hazard

situation,
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situation, the relative risk part of the model provides the necessary-

framework for extraction of relevant information. Here S's must

be estimated and they give a representation of the dependence of the

distribution of survival time T on the subgroups. The covariate set

Z provides the necessary information on treatments, categories of

prognostic indicators or some other measurements that are considered

to be relevant at the beginning of the study. 3 is a 1 x S vector

and it follows that one element of 3 has to be estimated for each Z

(j = 1, . . . S) . The actual functional form of r(Z,3 ) is oftentaken

to be of the type Exp( B Z). Cox adapts the above exponential

decomposition but also allows Z's to be time dependent of the form

Exp ( 3, Z(t) ). By allowing the time dependent form of Z(t) to

operate we are in fact allowing the data to generate a model with

non-proportional hazard assumptions. This inclusion of time dependent

covariates allows us to assess and test if the effect of certain prognostic

indicators diminishes over time. It is difficult to separate topics

such as time dependency, - censoring with dependent effects,and

competing risks when some of the withdrawals are in fact events due

to other causes.

Thomas (1980) concentrates on the functional form of

r(Z, 8) and produces a set of relative risk functions e.g.

1 + (Z x 3), 1 + (Exp( 3 ) x Z) , etc.

Gore (1981) considers an exponential decomposition form of

Exp( 3^"^ Z1 + S2e~P2t
Kalbfleisch and Prentice (1972) suggest time dependent covariates

such as

Exp (SjZj + B, t Z^ )
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Effron (1977) shows that r(Z, g) can in fact be any positive function

and uses a logistic dependence form ratio log(l + exp( g Z) )

4.3 Limitations and assumptions of the model.

In the formulation of likelihood functions we have used 2

functions and considered these to contain relevant information. They

are namely A(t) and r (£,& ). A fuller likelihood may contain an

extra function given by

likelihood = A (t) . r(Z, 8 ) . y( 3,Z, t) (4.3.1)

The form of the hypotheseis of Gore (1981) can also be tested by an

expression of the form

X(t) . Exp(Z1 g ^ + Z2 g2) . Exp(-Z^ g1 P1t - Z2 g2 P2t)

-P.t P.t -P.t
given that e * = 1 - Pd . ... + ( )n

and that powers of greater than or equal to two are of negligible

effects.

A slightly different analysis may use a model of form

Exp (z e + z e2 t* + z e3 t*2)

where t* = (t - t) / ^

It is interesting to note what kind of effect is produced by weighting

the relation between Z and t differently in a family of transformations
(ct ) X / ct

such as y = y and ln(y) where y is a function of t.

For example a substitution for 7 ( & , Z, t) in (4.3.1) may give

ez in(t) or ez (t)

We/



We will now examine the above time dependency concepts for the

family of the Weiball distribution as described in Chapter 3. The

survival rates for a two group sample can be expressed as

= Exp
Y .

a. t 1 6 1 at]=Exp

Y + 1
-a

. t i
l

Y + 1

B

The above is a proportional hazard expansion of Weiball distribution

however for a time dependency effect we will allow c., Y ^ as well as
to depend on group membership.

Y + 1

In ( ?) =

- a. t
l

y.+l

For an expression of the Lehman alternatives we have

In ( S 1)
hTfsJ-

= C
Yi-Y, (2

e
*1

for C =
ai( Y2+ 1)
at2( Yi+ 1)

= C e
(Sj- 3£ (yi — Y^ In (t))

The relative risk expression may thus be expressed as

Exp. (y *t In (t) Z1 + ^ Z^)

where y * and g* are parameters that must be estimated and Z-^is the
indicator of the subgroups. The ln(t) transformation will thus prvide

a natural scaling for the range of the Weiball distribution.

They (g , Z,t) part of (4.3.1) in fact contains no relevant inform¬

ation if we deal with a proportional hazard situation in which cases

are/
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are monitored continuously and censoring is non-informative. More

important however is a situation where there is a need to test the

effect of a covariate according to the time scale. An example is a

test for assessing the persistancce of a prognostic indicator as an

indicator of short survival. In practice measurements on patients

are done in the beginning of the study and thus time dependency of

the covariates may be assessed by the above function. We list some

of the theoretical problems that may give us unwanted assumptions.

The list is not composed of a set of mutually exclusive topics and the

severity of the assumptions is not often significant in trials.

(1) There exists a minimum observation time and depending on this

minimum observation time some information regarding censorings may be

lost. Also in some studies the minimum practical observation time may

not correspond to the minimum observation time at the analysis. For

example, recording of death* may be correct to day of death, but analysis

is performed in weeks of survival.

(2) One further implication of the existence of a minimum observation

time in (1) is that the data is discrete and some ties may be present

in the data.

(3) Time between ranks are assumed to be non informative. (Kalb-

fleisch (1980) considers a Baysian approach with Gamma prior distri¬

butions between ranks.

(4) Censoring times may be informative with respect to certain covar¬

iates. A related situation is where a second cause of the event is

recorded. The problem is that an auxiliary cause of death, if included

among censorings may cause censoring patterns to be informative, in the

sense that by excluding or including a particular cause of death from,

or into the event set, inconsistant conclusions may be possible.

(5)/
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(5) Effect of treatment or covariates may not be consistent in time.

The r(Z, 8 ) relative risk assumes that a single function independent

of time is sufficient. The topics of (4) & (5) refer to trials in which

the time variable interacts with covariate effects. In such cases

although we can assess the effect by the r(Z, g (t)) part of the model,

the conclusions are limited unless we move to a multivariate competing

risk model.

We illustrate the above points by the following example.

The figure (4.3.1) represents possible outcomes that may be recorded

for a case. C refers to censoring, D to an event of interest say

death and 0 to some other event, or auxiliary event.

For a situation that all assumptions hold we require the

concentration of events to have the patterns of (4.3.2a), (4.3.2b),

(4.3.2c) figures for the censoring times, death times and the other

auxiliary event respectively. The shaded regions refer to areas with

higher concentration of events. The censoring and auxiliary event

in (4.3.2a) and (4.3.2c) are uniformly and equally distributed and so

do not provide useful information. If on the other hand the auxiliary

event was somehow related to lost to follow-up because of the effects

of treatments, or the event of interest .is metastatic disease and

auxiliary case is death with no previous metastatic sign, then instead

of (4.3.2c) we may obtain distributions such as (4.3.2d), (4.3.2e)

and (4.3.2f) for the auxiliary events, where the events for treatments

A and B are not uniformly distributed. We will return to this topic

after more development of the mathematics. Further in Chapter 5

we will study the implication of some of the above assumptions in small

samples /
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samples for a realistic simulation of clinical trial data.

4.4 The construction of the likelihood and its properties.

Now we consider the methods for the estimation of the regression

parameter and the construction of the relevant likelihood equations.

Censoring is dealt with in the manner of Chapters 2 & 3. We observe

minimum of either T., the failure time, or C^ the censoring time.
The above statements can be expressed as

(T. < C.) => Failure

(T^ > C^) Censoring time precedes failure time.
According to definition of proportional hazards we have

Sq (t) = Exp f - ^ q (u) du
o

(4.4.1)
• t

and (t) = Exp ( - Exp ( (u) du *
o

giving S7 (t) = [ S (t) ]Exp ^ (4.4.2)

which is an example of a Lehman Alternative, by which a reduction

of relevant information may be made by the ratios of the two survival

distributions. A simple example is to take a single covariate case with

treatment covariate Z, set to 1 for new treatment and Z set to 0 for

controls. Hence

S, (t) = [ S (t)] ExpB (4.4.3)
1 o

Thus the two survival distributions are related in a multiplicative

manner. The relation between a function of the ratios of Sj(t)
&/



146

& SQ(t) is equivalent to a constant transformation of 3 and does not
involve the time factor. In other words SQ(t) can be projected onto

Sj(t) and by a function of 6 . The general aim of the derivations
of this section is to estimate the values of 3's with nonparametric

hazard of the form ^Q(t). Although the method considersxQ(t) and
functions of 3 the method can also be used to generate a transform¬

ation of x (t) to estimate the survival functions,
o

In the original approach Cox, adopts a conditional argument to

construct the likelihood. At any moment in time, there exists a

particular risk set R(t^). Any failure at the unique i'th in time
namely t,^must have arisen from this set. Therefore, probability of
failure at t^ given the risk set R(t^) ( or given survival up until
'(» > is

L. = ExpUZ.) / £ Exp ( 8 Z,) (4.4.4)
i€R(t(i))

For the population of size n we have the likelihood function to be

composed of the following function and allow censorings to occur without

contributing to the likelihood.

t n r t i^i " r Exp( 3 Z.) / ,L = n [L.J = n [ ^ 1 _ ir / 0 7N id.L 1J " 2 ExP( 3 Z) ] |1-1 1-1

(4.4.5)

for d. = 0 censored
1

d. = 1 Death
1

(4.4.5) refers to a situation where no ties are present in the data.

Later/



147

Later we will consider a more general risk set for dealing with more

than one event at a given time.

Now for a general likelihood (4.4.4) & (4.4.5) with the

proportional hazard assumption we generate a population of size 5

and allocate the likelihood factor contributions, as in table (4.4.1)

Rank Survival time Censoring = 0 Z. Contribution to.
Death =1 1 Likelihood [L. ] i

1 1 1 0 J/3 + 2 exp(s)
2 5 1 1 exp(g)/2 + 2exp(8 )
3 10 0 1 [exp( 8)/2+exp(g ) ]
4 20 1 01/2
5 30 1 0 1/1

Table (4.4.1)

On taking logarithms of the Cox's conditional log likelihood function

of survival time we have

)
o

In L = I 8 Z. - 2 log { 2 Exp( 8Z^) } (4.4.6)
Deaths Death Risk set 1

i i at time t,.x(i)

The argument is straight forward with conditionality and a single

factor as in equation (4.4.4) for the case i.

However Peto (1972b) raised some related points regarding treatment

of ties and censorings. Later Kalbfleish and Prentice (1973) chalenged

this terminology since the conditionality for a single case does not carry

over to the full set population. As is clear from Table (4.4.1) , the

3rd survival time is equal to 10 and is a censored time. This implies

that there is no contribution for this case to the likelihood function.

The Cox's conditionality argument makes an extrapolation on the

state of failure of the remaining set. This extrapolation is related to

the/
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the pattern of ties in the presence of possible censoring and assumes

that the distance between the events does not contain relevant

information. The extent of the assumptions can be judged by con¬

sidering the types of events that can occur.

In reducing the time of events into ranks we produce 3 types

of observable events. Within any ranking point say ith to ith + 1,

for the risk set at t^.^ the information on time may contain any of the
following 3 groups.

First class are those present at the beginning

and the end of the time period. The consequence

to the likelihood is that full information is contain¬

ed within the risk set

Next class are those that die within the period.

The consequence to the likelihood is that maximum

information is contained if deaths occur just prior

to i+1. Clearly a death can occur anywhere within

the minimum observable time. In here we have

considered death to be the event of interest.

Finally the group that are not present during

all or part of the period. That is cases with

death at t,.\ and cases with censoring at t,.N(i) 6 (i)

to In this situation the consequence

to the likelihood is made most realistic by ranking

censorings after deaths.

member of R (t.) .
i >

i+l

D
-X

D

C
-X-

i+1

i+1
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Next we will show how the general likelihood is a deviation from

the full likelihood. Later we will mention situations where the two

likelihoods give close estimators. We begin with an explanatory-

definition for (4.4.4)
/

exp ( eZ(i)) y
L. = 7 =-r— ■ = Pr (Individual (i) failsYrisk set at

i 2 exp( g Zj) *
^ ^"(t.) t^.^&/t^^ has at least one death)

= Pr(Death at t^\all previous cen¬
soring and present failure information

at

The last expression is in fact the set of sufficient information necessary

to obtain column 5 of table (4.4.1).

Any for a failure at t,^ is more generally conditional on
"past history", which was expressed as risk set at t^,and the fact
that the event is a failure. Thus sufficient information for "past

history" is, 1 to (i—1), censoring and failure information + the

ith censoring information. In other words the probability regarding

death at t^ is made conditional upon the information regrading the
occurrence of all previous deaths and censorings, and also including

the information regarding censoring at current time. The probability

regarding a censoring at t^ is conditional upon the information
regarding the occurrence of the previous deaths and censorings.

This is expressed as

= Pr (Death at L\lto (i-1) censoring & death & ith censoring)

& = Pr (Censored at t.\ 1 to (i-1) censoring & deaths)

The/
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The full likelihood is a combination of the above and using the

previous definitions, by the general arguments of the survival

analysis we take the full likelihood to be

L =
Deaths <Hazard) • All (Survivals) (4.4.7)

Let D = [ i : L 4 be no. of cases prior to the last death

L = n X0 (t.) e
i = 1

Z.(t.) n (t
1

n exp [ -
i=l

8 Z.(u)

0

1
X,(u)e 1 du]

(4.4.8)

The above is from (4.4.7)and (4.4.1)

In a population of size 3 with the first two cases failing at t^ & t^

and the third case censored at c^ we obtain, on expansion of (4.4.8)
such that for i=l we have

L — X 0(t. ) e
ez{(t)

exp
1 6Z (t)

\i(u) e du]

for i=l, 2 we have

L = X0(tx) e
ezx(t)

X0 (t2) e
Bz~,(t) ft

exp [ -
0

1 , , sZi(t>X0(u)e

du]

t1 g z2(t)
0 exp [ -] x0(u)e du] exp [-

0

X7 &z7(t)
X„ (u)e du]

'1

for i=l ,2,3 we have

8 Z. (t) , . 8Z0(t) , t
L = X0(t1 )e X» 2 2 exp [ - j o: PZ^t)

^o(u) e * du]

exD
g Z (t)

X„ (u>e du]
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H , * Z2(t)
. exp [ - A0(u)e du] exp[- X0(u)e du]

8 Z3(t)

. exp[-

1

U S Z,(t) (c
X0(u)e du] exp[- x£u)e

e z3(t)
du]

1 u2

By rearanging the exponential term for each integral period

we get

t.
i

t.
i-1

D
n exp

i=l

t.

[ ~[ 1 X (u) z e
BZ.(u)

] du] (4.4.9)
t.
i -1

The rest of (4.4.8) are the contributions of the deaths, and is the

first part of the equation, given by

D

i tt i X0(t.) exp [ B Z.. (T.) ] (4.4.10)

Note (4.4.8) is (4.4.9) & (4.4.10)

By combining (4.4.9) & (4.4.10) we obtain

L =

D
r rt-

•J, ( [exp ~ 1 X^u) z eL Vi i$R

^ Z.(u)
du

eZAt )
.<V Eel1]

j«R

exp (b
z B Z• (t.)

j«R 3

(4.4.11)

z sZi(ti)
Note that the above is equivalent to (4.4.8) with the term j-Re

introduced to the equation. The part (2) of the equation is clearly

the/



152

the usual partial likelihood and part (1) gives the extra contributions

for the full likelihood. If X^t) is unknown then part (1) provides

little information about s's. Thus (4.4.11) reduces to the likelihood

(4.4.5).

Now we will return to the generalisation of the closing parts

of section 4 .3, using the above mathematical notations. The parts

(1) and (2) of the full likelihood (4.4.11) have two time quantities,

\0(u) and the other Z(u). We can often assume that part (2) of

the likelihood does not contribute to the information on covariates.

This is a true assumption by an independency of Z(u) from A0(u) in

the integral of t. ^ to t..

The problem of tied observation was treated by Cox (1972) in

the following manner.

Say two observations are tied a & b. Due to the fact that we do not

know the order of these events, the actual probability contributed to

the likelihood is

exp ( 8Z )
a

2 exp(6 Z.)
m ]

exp ( 3 Z ^
2 exp( 3 Z.)

jfR 3Ur

exp( 3Z, ) exp(6 Z )
a

2 exp( 3 Z.) 2 exp( 3Z.)
j*R 3 j*R 3

R

Cox's approximation is

i A.b 2eXP(6Zi) n ( zexp(S Z ))- exp ( 3Z.)
i=a, b J

Peto (1972b) suggested an approximation to the tied ranks distribution

and/
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and later Kalbfleish (1972) referred to this likelihood as marginal

likelihood. He pointed out that this assumption prohibits use of

time dependent covariates. The expression for the above is

H exp ( eZ.) / P
m

i=a,b [m ^ -Z 6XP ^ S ^ r ^
where r is no. at risk at time ties have occurred and m is no. of

events tied.

By use of the approach proposed by Cox in dealing with ties

the calculations become exceedingly cumbersome. The ratio of

calculations in fact multiply as the number of ties increase in the

sample. However in our study this method is used mainly because

the use of the alternative approach implies the prohibition of the use

of time dependent covariates. The partial likelihood of (4.4.11) can

be expressed as a function of the log likelihood of k distinct deaths

as

k
InL = L( f}) = i [ e^. - In ( 2 exp( B Z.) )] (4.4.12)

i =1 1 j*R. J

For use of the maximisation method of Newton-Raphson we first require

two derivatives of the likelihood with respect to 6. Different

derivations of the likelihood may introduce different restrictions on

the form of Z^(t). However the following can be obtained without
loss of generality. 2 eXp ( 3 Z.) . Z.

k i*R J ]P
6 L( 3)

= Z Z. , (4.4.13)
S3 i=l lp £ exp ( 3 Z.)

j*R. ]
1

Thus/
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Thus we want solutions to

(Zs
Z. exp (5 Z.)
•IP J J

i=l *P 2 exp ( 3 Z.)
) = o

The equation can be solved by Newton Raphson procedure and use of

the following 2nd partial derivatives.

L( 3)
_

33
p q

= - 2 (.
i=l

j*R, exp( 3 Z.) Z. Z. exp (3 Z.)
ip jq i

(jA. exp <szj>)2
( 2 Z. exp(3 Z.))( 2 Z. exp ( ^ Z.) )

j€R; IP J ]q

-j«R:
exp (3 Z.)

) (4.4.14)

We can thus estimate the 3 values in (4.4.12) and thereby assess the

effects of the Z concomitant variables. Using the above derivations

we will now proceed with a few commonly used testing procedures.

For testing the global null hypothesis that all coefficients

are identically zero Cox gives the the efficient score statistics of Rao

based on

Q = U* (0) I"1 (0) U (0)

where U is a vector of all first derivatives given by (4.4.13) . I is

the information matrix and is composed of elments given by second

derivatives as in(4.4.14). Q has a chi-squared distribution with r

concomitant variables and v degrees of freedom. In studies where

r /
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r is large like the situation of most clinical trials, Cox suggests

the use of significance tests for subset of parameter estimates.

The two commonly used tests are the asymptotic likelihood and the

asymptotic normality tests.

For the likelihood ratio test with one degree of freedom

we have,

-2 (L ( 02 " L ( ^ )

A A

where 8a and S^are vectors of parameter estimates that are
A

included in the likelihood model. 3 in fact spans a space which
cl

A

is a subset of 3. and the two often have a dimensional difference of
D

one. The test then has a chi-squared distribution with one degree

of freedom under the null hypothesis that the concomitant information
A /S

missing in the likelihood of 3 has an estimator zero in 3, .& a

With the assumption of asymptotic normality for a one-sided

<*% significance level we have

Pr ( 3 / [ I"1 ( 3) ]* > t ) = a
P pa

where ta refers to the percentage point of the t distribution with a

significance level. The above tests are used extensively in the

simulation studies of the Chapter 5.

In the final part of this section we will show that the first and

the second derivatives, namely (4.4.13) and (4.4.14) are in fact tra-
a.

nslation invarient. This result is of interest when we consider

transformation /



transformation of the covariates for the fast convergence of the

iterative methods.

The values of 3 are translation invariants under a

translation of Z. to (Z^ + a) where a is any vector of constants.
At this stage we substitute values of (Z^ + a) with Z. in the
equation (4.4.13) & (4.4.14) and show that the ratios remain the

same. We have

k
Z

i=l
< [ +aJip p

I
(Z. + a ) exp ( 6 [Z. + a] )^

JP P F 1

j £R . exp ( 8 [Z. + a] )
-)

= ka + f - [ Z.
p i=l lp

ka + ? . [ Z.
p i=l lp

exp( 8' a) ( ^ Z exp(8' Z ) + a f exp(S'Z))K P 3&K,
exp(8' a) .2 exp(3' Z.)

1

ikiZiP exp(e' zi'
4 exp (g1 Z )j£R

S

M. (exp'31 z ))
i L_i

jl^exp <„' Z.)

ka + . ZL ( Z
p 1=1

Z. exp(8' Z.)
IP L_

*P
iik,Exp (S' zj

) - ka

k .1 Z. exp ( 61 Z.)
= ,2k ( Z. - ^Ri JP 1 )i=l ip

j£Rexp (8' Zj)

and hence by letting the equations once again to be set to zero,

we will have the same values for the 8 estimators.

For the 2nd derivatives we have -
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5 2L(g)
_

56 56
P q

k
Z

i=1

(.1 exp ( 3' Z . )\ ( . 2 Z. Z. exp(8'Z.))*0€R. ^ j 'J V DP Dq D V
r r r

Qr. exp<8' zj^
Q8E. Zjp exp <B' Zj>) CjeR. Zjq ®xp( B.Zj))

( . Z R exp (6'Z^2
= (*)

again using the same substitution we get

28'a

= - Z

i= 1

e (, Z exp (8'Z.)) . 2 (Z. + a )(Z. + a ) Exp(8'Z.))^e-R. j ' V]fR.1 :p p' 3r± q *1 J v
2S*a

, V / (2. re \ \ 2
e ( 2 exp (8' Z .) )

jeR. 3

-e^3 (.2 (Z. + a )Exp\8'Z.)) f . 2 (Z . + a )Exp(8' Z .))VK- R, DP p D7 ^ 3q q D

;23'a (jt'R.EXp(e'Zj^

a _ Z. exp(8'Z.) + a Z z. exp( 6' Z) +a a ) exp ( 6' Z.)
Pjjk 3q ] gj*R. 3q P qj«S. ] ^

. Z exp ( 8' Z .)
i- i _ D

r jfRi

- (a (z exp ( 6' Z .) X 2 zia Exp ( 8" Z .)) + a (Z Exp ( 6' Z . )^p-i .o d ^ ,D :q d q -jtR
iD^ j *R.

l

. Z
„ Z . Exp (8'Z.))+ aa ( Z „ Exp (8' Z . ))2 )

D t R. DP D P q DfrR, D y

( Z Exp<e'Z.j)2

+ (*)

=(★;
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The above results indicate that the a translation of Z.to Z. + a
1 J

leaves the function of the second derivatives of the log likelihood

with respect to 3 values the same.

As was mentioned the functions of second derivatives are used

in the estimation of the variance of the 3 estimators. It is defined

to be Var ( 3) = (-rr—^ The value of the second partialo p o p
P q

derivatives are also used in the estimator procedure of Newton Raphson

where a function is formed to obtain a convergence of the equation

(4.4.12).

The method is iterative and it spans the likelihood surface until

it finds the required maxima. The rate of convergence to the maxi¬

ma depends on the slope and shape of the likelihood surface.

Primarily the rate of convergence is slow if a number of covariates

have a large scale range and these show a degree of correlation.

The consequence is that the variance covariance matrix at inversion

will have a determinant which is almost zero. The problem of scale

range can be remedied by subtracting the mean value of the covariate

effects from the covariate if they have a large scale range.

In Chapter 6 we will use the above and alternative methods

based on the categorisation of the continuous variables.

4.5 Covariate interaction and time dependency..

In/
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4.5 Covariate Interaction &• Time-Dependency.

In this section we will consider the proportional hazards

model in terms of possible functional forms of the relative risk part

of the model. We will describe the possible functions that may be

useful and efficient in an analysis of clinical trial data. We will

relate these functions to appropriate hazard rate patterns and in

the future chapters some of the topics and models of this section

will be used in analysis and interpretation of the results. In

here we will keep the definition of Xg(t) to be as that of previous
sections of this chapter. The r(Z, B.t) function measures the

relative risk differences in relation to the base line hazard and

the projected subgroup hazard rates. We reiterate the point that

this difference may be due to various forms of time-dependency or

purely due to fixed covariate effects. This distinction is not in

most circumstances very clear especially in an exploratory analysis

or a situation of measurement over time. This effect may be referred

to as time confounding and is related to the influence of the various

covariates on each other within the time scale. An example is a

situation where treatment effect comparisons may show a different

relative risk pattern for younger patients and the older patients.

Such an effect is testable by a complete model of age and treatment.

A different approach may attempt to test the adequacy of the func¬

tional form of r(Z,g ) by inclusion of a treatment and time dependent

covariate based on the time scale itself. Much of this section is

related to various developments of r(Z, g ,t) and the way it can

influence, time dependency, interaction and confounding. In a

situation of stratified analysis of the data with say an exponential

decomposition/
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decomposition of the relative risks we have

*k(t'Z) = ok(t) Zok Exp( Z1 B 1 + Z2 6 2 + ' ' ' }

Where is set to be dummy variable and conditions the analysis

on the strata of interest k.

That is

1 case belongs to strata of interest, k

Zok = 1

0 case does not belong to the r el evart strata k

In effect by repeating the analysis for the various strata it will

result in a different base line hazard being produced for each strata

set. The significance of this point is merely attributed to the

method by which stratified analysis may be incorporated into the

general procedures. The resultant effect on the partial likelihood

argument is the introduction of a conditionality parameter such that,

Pr (subject i failing at t.^ presence until c^ or t. and also
membership of strata) = Z . r(Z, ft)/ 2 „ ,n n \ok ' ' k Zokr(Zl V

z

okr<zi V
-

V r(ZlBl)

where k* is the new risk set and excludes all cases not belonging

to the particular strata. A point that must be noted is that

Zq^ function in the above may be interpreted as a function adjusting
(t) rather than one acting on r(Z,8).

Then/
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Then
m,. x

*(t) = [ 1 | Z ,ok r,.N ok(i)

An example is a situation of separate analysis for the older patients,

such that

if age > d then = 0

and age ^ d then Zq^ = 1 , where d is a constant on the age
scale.

Now we consider a situation where Z^ is related to a categor¬
ised separation of a continuous variable say time or size. Suppose

we set Z-^ = (-1,0,1). We then test the effect of Z^, with above
categorisation assumption, that the relative risk at the lower level

of Z^= -1 is related to the middle level of Z^ = 0 by the same scale
which relates the middle level of Z^to the higher level of Z^= 1.
A more elaborate analysis will allow the 3 levels of Z^to act independ-

2 2
ently by introducing (Z^) such that Exp (Z^ g ^ + (Z^) °^)
In the case of interaction effects being present in the data between

the two covariates we may have expressions of the form

Exp(Zie x + Z2 + ZXZ2 s12).

Under this assumption we are testing the multiplicative effect of

Z^ & Z2 on each other and on Xg(t). i.e. the relative risks.

Exp ( Z ^ 6^ ) 0 Exp( Z2 2 2) . Exp(Z^Z2 ^2)

For an actual trial we can represent the various subgroups for

say/
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say, treatment A and treatment B and node positive and negative

groups such that hazard rates for the two treatment groups are

(
x(t,zt) =

\n(t) For patients of group A treatment
s t

Xg(t) e For patients of group B treatment

The common X^(t) base line hazard is clearly a nuisance parameter.
g t

The relative riks e represents the effect of treatment. The

greater its deviation from 1, the greater is the importance of new

treatment.

For the two prognostic subgroups a similar pattern may be represented

X(t,Z^_,Zn ) =/^q(0 group with treatment A, node negative
\ 3 t
I Xg(t) e group with treatment B, node negative
1 X (t) e group with treatment A, node positive
I 3 t\ Xg(t) e group with treatment B, node negative.

The above structure however is considering 3^_ and ®nto be of
similar effect if they are present singly or both simultaneously.

There is an extension to the model by which one can test the

effect of both treatment and node^while one is testing their effective
simultaneous presence.

X(t, Z , Z ) group with treatment A, node negative
j g

Xg(t) e group with treatment B, node negative
3 n

x (t) e group with treatment A, node positive
\ S-6nSI

X (t) e e e group with treatment B, node negative

Then if 3^ is significantly different from 0 then there is a

suggestion/
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suggestion that the new treatment may be more effective for one

prognostic group than the other. In the above we have dealt with

binary treatment and prognostic categories. In a case of 3 categor¬

ies of a prognostic indicator say size divided into 3 separate classes

small, medium and large tumours, an expansion of the concept of

interaction is possible. Like the example of the node we may have

alinear interaction of the size with treatment. However due to the

fact that there are 3 levels of size present we may have various

quadratic effects acting. That is the larger tumours may be

behaving in a way completely different to those of small and medium.

We may then introduce two different sets of covariates Z = (-1,0,1)
2 2

and Zg = (-1,0,1) so that a test of size effect may be done in such
a way that various main effects and interaction effects of size are

independent.

In a situation where time may effect the influence of certain

covariates, we may represent the time interaction by

Exp(3-^Z^ + g .Z^t*) , for t* a function of time.
A Taylor series expansion of the time dependent effect gives.

(1 +B Zx t*) . Exp(61 Z±) for (8 . Z;[.t*)^0
as 6 -»■ 0 for j^, 2

In the previous model the factors of order j ^ 2 have been

considered insignificant by the Taylor series expansion. Clearly

other possible situations for detecting departures of specific type

from/
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from the proportional hazard assumption can require a model of form

(2 0 t*)^
A(t, Z) = A0(t) [1 + (Z1et t*) + ]. Exp (s z)

When considering time dependencies the functional form of t* is

also of importance for an efficient analysis. It may be necessary

to transofrm t to t
^ . Alternatively if the effect on covariate

is influenced exponentially with time we use (ln(t) - ln(t)).
o-

An analgous approach may use a transformation of the time scale

t* to 0 or 1 scale, so that effects of intervening events such as

metastatic recurrence may be studied.

In here we must make a n important distinction between the

various forms of time dependency which have been considered.

It can be that a measurement over time like age is considered an

independent value which affects the survival time. It may be that

age is considered to have a time scale which is inappropriate under

the proportional hazard assumption and therefore study of departures

of particular types based on the functional form of t* may be of

interest. Finally we may be interested in the study of intervening

events like the metastatic recurrences.

In the analysis of the data presented in the next chapter

we will use a functional form of the r(Z, 6 ) referred to in the

Cox's paper on the exponential decomposition of the relative risk

Exp (6 Z). We will return to this topic of time dependency in

Chapter 7 and 8 where a more detailed study and analysis of

trial data will be performed. As we mentioned in section (4.3)

the/



the ln(t) is a natural transformation for testing time dependency

of Weiball form, in a proportional hazards setting. In Chapter 8

we will relate these topics to concepts of change and random

covariate effects. In Chapter 7 we will consider various functional

forms of the time dependency such as logarithmic or linear time

dependency. Further we will study effects of intervening effects

by transformations of the time scale in to binary 0 or 1 scale.
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CHAPTER

SIMULATION OF PATIENT ACCRUAL TIME TO RESPONSE. In a ciincial

trial with proportional and non proportional hazard rates.

In this chapter we will describe a method for generating

random samples of survival times with a given distributional assump¬

tion. The distributional form of the generated sample will clearly

play a major role in value of an analysis method. Further we will

develop a method of producing different levels of censoring times

as an analogous situtation to that of random arrival of patients into

the trial, and early analysis when some patients are still alive.

It is intended that by such an approach a comparative

study of the generated small samples of survival data may be made

with varying values of covariates, censoring percentages, sample

sizes and the hazard rate of cases.

For reasons of comparison we explain type I and type II

errors in the context of the present study and finally the results

are presented and discussed.

5.1 Generation of survival times.

In Chapter 3 we described some of the possible

distributional forms of the survival times. We also presented some

of/
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of the empirical results to show that different patterns of failure

rates do occur in practice. One major aim for any system of generat¬

ing random samples is that the method should be flexible, so that

we may produce a range of survival times with a good level of control

over the many factors under study.

We will present a manageable method of simulating random

survival distributions with proportional and non-proportional hazards,

relevant to failure time analysis. Further for a realistic simulat¬

ion of trials we will develop an approach for accrual and censoring

times.

We confine the study to the most commonly used distributions,

exponential and the Weiball under covariate constraints. The method

of generation provides a good methodology for producing distributions

both in the framework of covariates and also in terms of time-

dependency. However it does not extend to censoring. Later on in

this section we will describe an algorithm for censorings.

The conditional survival distribution function of Weiball

survival in presence of covariates may be presented by

S(t, Z) = Exp [ - ( yt)V eZ &] (5.1.1)

Where v is the shape parameter in the Weiball distribution. Clearly

at v = 1 we have a special case, of the exponential distribution.

We thus have the survival time T is always greater than or equal to

zero, Z is a vector of explanatory indicators, 3 is the vector of

parameter that eventually has to be estimated and y is a parameter

for/
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for "adjusting" the rate of the hazard functions. The conditional

probability density functions and the conditional hazard function for

T then follow from (5.1.1).

- 3S(t, Z) = f(t, Z) = yv( yt)V 1 eZ8 Exp[-(yt)V eZ&]
3t

(5.1.2)

and

f(t, Z) = X(t, Z) = yv ( yt)V_1 eZS (5.1.3)
S (t,Z)

In making the functions more manageable we use a two stage transform¬

ation. In its present form it is not easy to recognise a probability

distribution function of the above. However after the transformat¬

ions we will relate the distribution to the extreme value distribution.

We let Y have a probability density function fy(y). If h(y) is
either increasing or decreasing in y, then U = h(Y) has the density

function given by

Fy (u) = fy [h~1 (u) ] \^\ (5. ,.4)

A useful method is finding the density function of Y = log T.

Therefore we use function h(t) = log t, giving h 1(y) = Exp(y).

3(h ^ (y) ) _ , , . .
—— = Exp (y) - co < y < co

Now substituting for t = exp (y) in f(t,Z) and multiplying by

|Exp(y)| we get

f(y,Z) = lJV( ye'*') V 1 eZ® Exp[ -(y e^)V eZ^ ] e^

This gives

S(y,Z) = Exp [ - ( yey)V eZ2 ]

which/
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which can be derived from using f(y,Z) = - 3S(y,Z) / 3y

For manageability we use a further transformation of Y,

W = Y v - av+ Z 6

where a = - log (p)

The density function of interest is

v.-1 , » w ^h (w) = — + a
v v

3 (h~1 (w)
= 2

3 (w) v

Then we obtain f(w,Z) by suostituting y = — + a
v v

and multiplying by I we have the probability density function of

w and Z as ,

w Z 8
+ a -

- a , - a v v , v-1 Z8f(w, z) - e vie e
„ ) e w
_ + a _ _ + a -

_ r . - at v v, v 28 . v vi
. Exp. [-( e e ) e ] e . -y

w 2^. w Z8
. V v v Z8 „ r .V v v Z 8. 1v( e ) e Exp[ - (e ) e ] —

, w - Z& Z8 r , w - Z8, Z 8.(e ) e Exp [ - (e ) e ]

(eW) Exp f — (eW) ] = Exp (w - eW) (5.1.5)

The above is an example of the extreme value distributed random

variable for w, with the distribution function.

F (w) = Exp (-e W) - °° < w < » (5.1.6)

Now (5.1.6) is in a convenient form so that the required distributions

may be generated.

In/
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In cases where there are no covariates present the survival

distribution reduces to

S(t) = y Exp[ - ( ytV )]

and it follows that the generator is

w , ,

y = — + a where y = exp (- a)

When v is equal to 1, the Weiball distribution reduces to an

exponential distribution with the survival distribution given by

S(t) = y Exp ( - y t)

and the generating function is y = w + a

In here we will not discuss the actual values for v , a, 6 and y.

However later we will mention the actual values that are used in the

study.

The extreme value distributed random variables can be

easily generated using the operation of two logarithms on a set of

unifromly distributed random variables, between 0 and 1, so that

W = log (-log U), for U, uniformly distributed between

0 andl.

One result that may be of practical importance although we do not

use it further in this thesis is the pattern by which the lognormal

distribution can mimic the standard extreme value distribution. This

will allow a similar expansion of the methods, so that other

distribution may be approximated to produce other shapes of the

hazard functions, using the same procedures.

Standardised Cumulative Distribution Functions

X Extreme Value Lognormal

-2.0 .00063 .0002

-1.5 .02140 .0196
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Standardised Cumulative Distribution Functions (cont'd)

X

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Extreme Value

.1321

.3443

.5704

.7440

.8558

.9224

.9577

.9775

.9881

.9937

.9967

Lognormal

.1324

.3471

.5700

.7423

.8546

.9207

.9579

.9773

.9884

.9939

.9968

The above extreme value distribution is the standardised extreme

value distribution with

S(X) = Exp[ - exp (-1.28254 x - 0.57722)]

The Lognormal then has the distribution

S (X) - ( /2tt )"' [U(x»
_ — CO

with

exp (~h u )du

U(x) = 6.52771 Log (X + 2.74721) - 2.68853.

We will now describe the present extreme value distribution

more specifically. We will use the standard prooabilitv density

function of X as a unimodal exp(w - eW), with skewness -1.14,Kurtosis
2

2.4, variance [ II2/6] = ( 1 .282) and the mean -0.5722, which is the

negative of Eulers constant.

Before we proceed with a discussion of the distributional

properties of the extreme value distribution generations for various

sample



172

sample sizes, we mention a few words on the uniform random number

generator.

The uniform random number generator used in the computer

procedures is based on the standard random number generator of the

Unix operating system version V Library of Programs. The system is

available on the PDP II Computer at the Medical Computing and

Statistics Unit of the Edinburgh University. For all of the

simulations we have used the seventh edition of the Unix operating

system and its various software on the PDP II computer. The

uniform random generator asks for 2 initial seeds to begin the

simulations. We have used values 1 and 2 as the initiators of our

generations. In order to allow the random numbers to reach stability

we proceed with the generation of 500 random numbers and then use

the 501 st generator as the first effective random number for the

survival samples. The returning value of the generator is within

the range of values 0 and 1. We repeat the generations for the

various values of sample size and note that the generations conform

n + 1 n2 1
to a mean value of — and the variance of —

for various sample sizes that are greater than 20 over the range

of values that we examined.

Prior to proceeding with the generation of random

survival samples, the extreme value distributed random variables were

generated, for different sample sizes. The purpose is to assess

the capability of the generator in conforming to the above specificat¬

ions .

10/
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10 Standard extreme value distributed random variables

with the sample size of 50

Sample No. Mean Variance Skewness Kurtosis

1 -.732 1.504 -0.271 9.581

2 -.716 1.249 -0.543 -0.135

3 -.397 1 . 166 -0.133 -0.146

4 -.727 1.241 -0.151 -0.68!

5 -.426- 1 .262 -2.351 -0.683

6 -.495 1.058 0.223 -1.711

7 -.658 1.417 -0.446 5.597

8 -.280 1.005 -3.107 -2.084

9 -.391 1.150 -0.730 -0.331

10 -.456 1.361 -0.606 0.984.

5 Standard extreme value distributed random variables

with the sample size of 100.

Sample No Mean Variance Skewness Kurtosis

1 -0.581 1.517 -3.745 9.480

2 -0.496 1.075 -0.177 -1.505

3 -0.454 1.412 -2.540 9.669

4 -0.637 1.295 -0.775 0.545

5 -0.568 1.354 -0.965 1.821

5 Standard extreme value distributed random variables

with the sample size of 200.

Sample No. Mean Variance Skewness Kurtosis

1 -0.597 1.362 -2.187 9.462
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5 Standard extreme value distributed random variables

with the sample size of 200 (cont'd)

Sample No. Mean Variance Skewness Kurtosis

2 -0.494 1.364 -1.476 3.721

3 -0.458 1.209 -0.362 -0.724

4 -0.462 1.315 -1.005 2.408

5 -0.663 1.270 -1.164 1.421

5 Standard Extreme value distributed random variables

with the sample size of 1000

Sample No. Mean Variance Skewness Kurtosis

1 -0.592 1.260 -1.151 2.656

2 -0.584 1.288 -1.207 2.384

3 -0.575 1.272 -1.118 2.343

4 -0.557 1.271 -1.118 2.670

5 -0.459 1.188 -0.678 2.521

2 Standard extreme value distributed random variables

with the sample size of 30,000

Sample No. Mean Variance Skewness Kurtosis

1 -0.591 1.293 -1.184 2.712

2 -0.588 1.287 -1.125 2.354

3 -0.569 1.285 -1.159 2.674

One important point to note is that the above are random samples

and that there has been no selection.

The sample with n = 30,000 clearly shows that we are generating

the/
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the appropriate distribution and therefore asymptomatically all

moments are stabilised and conform to the theoretical values. In

so far as the small sample properties are concerned the first

moment mean is stabilised at n = 100 , variance at 200, Kurtosis

at n = 1000 and Skewness is the last to stabilise at before n =30,000

over the range of values examined.

For practical purposes we only study small sample

properties of the statistical methods, therefore is is of interest

to know how well mean, and variance conform to the theoretical values.

However for the sake of consistency it is important to know that

given a large enough sample size the distribution conforms fully,

as :far as skewness and Kurtosis are concerned with the generated

population.

5.2 Illustration of the method of generation.

Now for the purpose of illustrating the generation of

survival times in the simulation procedure we define a population with

the following characteristics.

Let the hazard be constant and fixed at, exp(-5.2983) giving

0.005. Allow two parameters ^ and ^ to have values 0.99 and
0.49 respectively. Let the covariate indicator vectors Z and Z_

1 2
be equally and uniformly allocated to values of 0 to 1. Finally it

is assumed that none of the survival times have been censored.

Since we are assuming a constant hazard we use the

generating/
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generating expression as

Y = W + a - Z1S1 - Z2 62
since there are 2 covariates each at 0 or 1 level,, 4 distribut¬

ions are generated by the subroutine:

Namely, S(t,0,0) , S(t,1,0), S(t,0,1) and S(t, 1, 1). These

survival distributions may be obtained by substituting in the

general distribution for
- « <Z1 Y + 22 62>

S(t, Zy Z2 ) = Exp[- e t. e ]

where 3^ = 0.99

and 32 = 0.49

giving

S(t, 0, 0) = Exp [-0.005 t]

S(t, 0, 1) = Exp [-0.005 t. 1.6323]

S(t, 1, 0) = Exp [ -0.005 .t.2.6912]

S(t, 1, 1) = Exp [ -0.005 . t. 4.3928]

With a perfect approximation to the above theoretical distributions

the estimated values of 8 ^ and 32 must correspond to values 0.99
and 0.49 respectively. The 4 distributions are illustrated in the

figure (5.2.1),, & table (5.2.1) give the details of the sample size

of 50 which was generated.
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Table (5.2.1) Actual survival times generated from distributions °f

figure (5.2.1)



Figure(5.2.1)Theoreticaldistributionsforageneratedsample.
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The values for the columns of the table (5.2.1) correspond to

Y = W + a - Z, Sl - Z2 g2

As an example for the first row we have

a = - In (0.005) = 5.2983

Z161 + Z2 B2 = °"49
W = -1.00926

Y = -1.00926 + 5.2983 - 0.49 = 3.79906

Time = Int [Exp (3.79906) ] = 44

We can plot the above data using life table analysis methods to

derive cumulative survivals (as mentioned before). The purpose at

this stage is not to do a detailed comparison of the estimation methods

bur rather a general overview of the survival generator.

The following 4 tables give comparisons of the cumulative

survival estimates using the product limit estimation, as in Figure

(5.2.2) and the theoretical value of the exponential distributions

in Figure (5.2.1)
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Cumulative Survival S.E. Theoretical S(to,o )

.8750 .1169 .9801

.7500 .1531 .8601

.6250 .1712 .6703

.5000 .1768 .5460

.3750 .1712 .3328

.2500 .1531 .2981

.1250 .1169 .2671

.0000 .0000 .1533

Table (5.2.2)

Cumulative Survival S.E. Theoretical S(t,o,1)

.9375 .0605 .9067

.8750 .0827 .8847

.8125 .0978 .8633

.7506 .1083 .8563

.6875 .1159 .8288

.6250 .1210 .7040

.5625 .1240 .6983

.5000 .1250 .6028

.4375 .1240 .5431

.3750 .1210 .5601

.3125 .1159 .5247

.2500 .1083 .4997

.1875 .0976 .3780

.1250 .0827 .1938

.0625 .0605 .1104

.0000 .0000 .0431

Table (5.2.3)



Ti:

0

12

16

16

20

35

48

64

71

74

77

84

131

134

405

Tim

2

2

7

11

11

16

30

65

68

81

242

Cumulative Survival S.E.

.9333 .0644

.8667 .0878

.7333 .1142

.6667 .1217

.6000 .1265

.53.33 .1288

.4667 .1288

.4000 .1265

.3333 .1217

.2667 .1142

.2000 .1033

.1333 .0878

.0667 .0644

.0000 .0000

Table (5.2.4)

Cumulative Survival S.E.

.8182 .1163

.7273 .1343

.5454 .1501

.4545 .1501

.3636 .1450

.2727 .1343

.1818 .1163

.0909 .0867

.0000 .0000

Table (5.2.5)

Theoretical S(t,1,0)

1

.8508

.8063

.7640

.6244

.5241

.4226

.3846

.3694

.3548

.3229

.1310

.1259

.0043

Theoretical S(t,1,1)

.9570

.8574

.7853

.7036

.5174

.2398

.2245

.1687

.0049
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5.3 Generation of Censored Survival Times.

As we described earlier, in the first step we generate

a survival distribution S(t) according to a set of covariates and

the shape of the hazard function. A sorted plot of this sample

will show a survival pattern as in figure (5.3-i). It is assumed

that all patients enter the study at time zero. In this sample

there are no censored cases. In terms of clinical trials it is

assumed that sufficient time has passed since the start of the trial

to allow an observation of full length of survival.

In real data from a clinical trial the situation is slightly

different. Patients do not arrive simultaneously into the study.

Patients are not observed for a full length of survival,either because

they drop out of the study, or analysis is performed at a time that

not all patients have had the chance of producing a complete survival

time.

First we consider the problem of arrival or accrual period.

This kind of follow-up study is composed of two periods, accrual and

follow-up period. The accrual is a period to allow a sufficient

number of patients entre the study so that a reasonable statistical

comparison may be made of the patients. Thus the accrual period

in such a study becomes a function of the required sample size and

the rate of arrival of patients. In effect the accrual period

is prejudged by the value of treatment difference which the study

is designed to detect. In general it may be assumed that all

patients entre the study uniformly, and that there are no trends or

seasonal patterns present in the covariates according to the accrual

period/.
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period, In practice randomisation of the patients provides this

condition for the main treatments. However the conditions may not

hold for the prognostic factors. An example can be a situation

where by chance younger patients are entered in the first year of

a study and older patients in the second year.

Another period we consider is the follow-up time. In

so far as the clinical trial procedure is concerned a good clinical

trial provides conditions and procedures so that all patients may

be followed-up and that at the end of study or time of the interim

analysis, survival status is recorded for all of the patients. Such

a condition guarantees that censoring, if it occurs, is only due to

reasons of treatment, disease and patients and not due to the

procedures of follow-up and withdrawals. In the simulations of this

chapter we assume that the above condition holds. Follow-up period

is in practice often dependent,on many external factors, due to

constraints from management of patient care. Further it is custom¬

ary to do a number of interim analysis of the. data. For an

efficient unambiguous analysis there should be no crossing patterns

present in the survival rates. It is often the case in practice

and any variability in the number of survivors may be attributed to

the survival rates of the subgroups of patients.

There is one complicating factor in practice which

arises in multiple failure studies. If there is more than one

form of failure responsible for the. reduction of the cases, the

usual approach of analysis is then by classifying one set of end

points/
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points as deaths and another set as censored. Such a methodology

requires a different method of generation of censoring allocations.

This method, can also be used in a way to allow a different censoring

rate to be present for each covariate set, so that the problem of

lost to follow-up for different groups can be. assessed. Within

the present simulations we assume that there is only one single cause

of death and that all censorings are by definition due to the fact that

not enough time has passed since the entry of a case for a death to

take place.

In the introduction we mentioned the various forms of

censoring and stated that in trials often we are interested in random

censoring, by which arrival of patients is not fixed but occurs within

an accrual period and thus any censoring at time of the analysis is a

random censoring. This latter procedure, is the method we use for

the generation of the random samples. However as will be described

later rather than fixing the time of the analysis we allow time of

the analysis to vary slightly so that we can have fixed censoring

percentages at time of each analysis. Thus we summarise.

Total length of study = Accrual period + Follow-up
period.

For each individual patient we have a time t^ which is generated
from S(t), and a time from start of the trial to the entry of

patient i. We will let a^ denote this time and is a uniformly
distributed random variable between 0 and A.

Thus the total length of study for the patient i is -

T. a. + t.
1 11

We can now transform the figure (5.3.1) into the figure (5.3.2)

in/
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in which the accrual period is also represented. Now we can produce

the figure (5.3.3) in which the data is sorted accrding to the values

of a. + t..
1 l

As we mentioned before most trials are analysed in one

of the following two situations. Either a final analysis is

performed prior to the minimum sufficient time for producing a

complete survival time, or that the clinical trial results have

been formed and discussed at an interim stage. In both cases we

can generalise to the following: every trial analysis has a fixed

value I which is a point in the time of the study when survival

information prior to it are complete and all possible events after

this time are taken to be censored.

A crucial factor before the start of a trial is a decision

on the likely number of events. Two factors that are in practice

of considerable interest in design of a trial, are the accrual

period and the number of patients in the study. Based on these

assessments a decision is finally made on the appropriate times at

which interim analysis and the main analysis may be performed.

Now it seems proper to summarise some of the generalisations

that have been made in the course of our discussions.

(1) It has been assumed that censoring is synonymous with non-

informative censoring. Therefore there are no situations that

patients leave the study due to side effects or other forms of

failure. Thus patient censoring times are distributed in the same

manner between subgroups. An example of the violation of the above

assumption would be a higher dropout rate from an arm of a trial due

to/
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to a particular prognostic indicator or treatment.

(2) Further if the relative rate of failure is not constant between

subgroups, that is there exists a time dependent relative risk between

their corresponding failure rates, then the level of censoring must

follow a trend in time. That is the presence of time dependency

has a direct effect on number of cases that are dead or are

censored at any given time. As an example if one subgroup has a

higher failure rate at the end of study, a measure of censoring

percentage will give a different relative difference at early and

late stages of time scale. Aternatively no time trends will

imply a constant relative rate of censoring.

The relation between (1) and (2) is an interesting one and

represents the relationship of problems of competing risks and the

time dependency of the hazard rates. Due to the methods of

generation of censoring times we do not proceed with the study of

method (1). However by use of differing failure rates we will study

the effects of time dependency. In a descriptive manner we consider

(1) to be a causal situation within which we have a fixed set for

a cause of death. Using the example given in (1) a good analysis

may indicate a link if it exists between a prognostic variable

and a particular cause of death. In the example (2) however we

are describing the failure rate as a form of a function of time.

This function of time however need not be of a continuous form as

described in the example given in (2). In fact the description

of (1) and (2) and their examples can be exchanged at times in the

language of the other, with (2) being slightly more flexible. We

can describe cause of death in (1) in terms of time dependency of

(2)/
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(2) by letting time dependency be a parametric function of the type

failure. An example is the effect of old age or survival distribu¬

tions. For reasons of consistency of the conclusions one may use

an approach by which deaths suspected of old age are dealth with as

censored, or alternatively define a functional form of the old

age and incorporate this function into the relative risk as a diagno¬

stic check of the relative risk. As we pointed out in this

section we will concentrate on the simulation of time dependent type,

and later in Chapters 7 and 8 we will consider introduction of

types (1) and (2) in appropriate application with various functional

forms of time dependency.

Finally in this section we discuss some of the points

regarding Censoring times. A purpose of this study is to evaluate

the power of different tests according to their level of censoring.

An analytical assessment is impossible, thus we require some criterion.

Such a criterion must be general enough to be relevant to real life

practice and thus easy to draw relevant conclusions from. In the

next section we will discuss such a criterion. However on the point

of censoring the accrual period and follow-up period both can be

thought of as some form of fixed variables and thus we can generate

different levels of censoring according to the relationship between

them.

As an alternative to the above we can fix the level of

censorings. Thus a 10% censoring in a sample of 50 implies that

the interim time is somewhere between (a._ + t._) and (a„_ + t„.)45 45 46 46

see figure (5.3.3). Again since we are only considering a fixed

percentage/
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percentage value for the level of censoring at interim analysis, in

case of ties being present, the exact value of I may be adjusted by

a uniform distribution between 45th and 46th survival times. All

accrual time plus survival times after this point in time are

censored.

The procedure is thus fixed by a set of covariates,the

percentage of censoring, a fixed value, of hazard rate and a fixed

value of accrual period for the sample . It is important to note

that the value of hazards must be fixed so that reasonable survival

times are produced. Similarly the value of accrual period also

has to be adjusted so that a realistic sample is generated. For

the following simulations we fix the base line hazard at a constant

value of Exp(-5) = 0.00674, with an accrual period of 50 units

(which may be considered as months). For each single simulation

level of the above values we repeat the simulations 300 times,

this value of 300 is set to be fixed for all simulations presented

in this study.

5.4 Criteria for the Comparison of the methods of analysis.

A widely held view among statisticians involved with the

design of clinical trials is that, the sample size and power assess¬

ment are the most crucial factors in proceeding with a scientifically

sound trial. This scientific, stand is in practice often confronted

with management constraints, that eventually lead to a form of

compromise in the design of trial.

In/



193

In the introduction we mentioned some of the drawbacks and

difficulties in the analysis of data with small samples in the

presence of a number of covar.iate effects and a process of time

dependency. We termed such effects in general to be interrelations.

Later we will analyse real clinical trial data with an exploratory

emphasis and use of such interrelations. In the later chapters we

we will discuss functional, forms of time dependency. We will now

deal with small sample properties of the Cox's proportional hazard

models. The main aim is to establish a criterion for a comparative

study of small sample sizes, under trial design constraints. The

factors that we have taken into account in the generation of the

survival samples have been chosen with a particular emphasis on

crucial design factors in a realistic clinical trial. These factors

are accrual period, censoring, sample size and interim analysis

time. In the process of the generations we have constantly adopted

a generating procedure that we have considered useful for a range of

applications in the later chapters. However a more detailed theoret¬

ical study based on asymptomatic properties can take a route different

from the one we have taken. Areas which may pose interesting

directions are situations of competing risk generations and stratified

analysis with varying accrual periods. It seems that study of small

sample properties of methods as opposed to. a more theoretical study

of the asymptomatic properties of the method of analysis is a useful

approach in a better understanding of the scientific design constraints.

S.D. Silvey (1975) discusses in detail -small sample properties of

statistical tests with simple hypothesis (only one estimator) and

composite hypothesis (with more than one estimator or nuisance

parameters). Such properties are related to a function of

different
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different errors that take part in any statistical hypothesis,

namely, Type I error and Type II error, represented by Ea (false

positive) and EB (false negative) respectively. ( Although a

and B are often denoted in this context from now we refer to them

as Ea and EB to avoid confusion with B covariates).

In this work we are dealing with survival data, however these

definitions can be generalised to all statistical tests. In fact

in a clinical trial setting another branch of tests are used that

are based on a simple proportion and at times this simple proportion

can provide all the necessary information regarding a new treatment.

The tests based on time to failure are playing an increasing

role. Such tests are based usually on producing some form of approxi¬

mation to the probability distribution of failure times or life tables.

In the chapters 2 and 3 we made the necessary distinction between the

distribution free tests and parametric approaches that are related

to life tables and discussed their properties. In the evaluation of

the sample size however at start of treatment, some form of parametric

assumption must be made. The most common is to assume an exponentially

distributed survival time, with the proportion of survivors approxi¬

mated by
— ^ t

S(t) = e

For N patients with the mean survival time M, and the hazard estimated

-1 2
by M , which is asymptotically L N (X,X / N). These results are

analogous to the results of the Chapter 2 on the discussion of the

exponential distribution. Much of the early works in efficiency

studies were based on the study of the asymptotic properties of the

proportional hazards model and the exponential approximation. Such

comparisons/
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comparisons are useful in practice due to conflicting benefits of the

methods. For example, although the exponential analysis is more

efficient given that the sample is generated from an exponential

distribution, the proportional hazard model has a far better robustness

property, when the data is not exponentially distributed. Various

authors have discussed asymptotic properties of the Cox's approach.

Kalbfleish (1974) discusses the asymptotic efficiency for a single

covariate model. Efron (1977) discusses conditions for full asympt¬

otic efficiency, Kay (1979) provides a comparison of two covariate

models with the exponential and Kalbfleish and Macintosh (1977) expand

the results to time dependent situtation. The results indicated that

for covariates not dependent on timeythe estimations based on ranks

is fully efficient for ® = 0 and has good properties for & 0.

For the case of time-dependent covariates the asymptotic properties

are related to the ratio of the hazard rates. From a different

position properties of the proportional hazard models have been

studied in relation to the logrank test. (Crowley (1974) and

Tarone and Ware (1979).) It is shown that asymptotically the Cox's

method can lead to the logrank test. Lustbar (1980) derives the

Wilcoxon test as a special case of Cox's model with a time dependent

covariate. It is shown that the two fully distribution-free tests

in fact differ only in their choice of weights as functions of the

number of cases at risk. A more detailed discussion of those tests

was given in Chapters 2 & 3.

Although the above studies are useful in allowing some form

of comparison between the methods, they do not allow comparisons for

differing sample sizes, censoring rates and censoring methods. The

point/
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point is made by Oaks (1981), that in small sample studies the

expectations may be different and preculiarities may be present.

In the study of the proportional hazard models and the

parametric models, two tests have been used in general. One is the

maximum likelihood estimation with asymptotic normality assumption and

the other is the likelihood ratio test. These results are given in

more detail for parametric methods in Chapter 3 and for proportional

hazards in Chapter 4.

It seems proper now to follow the study of small sample

properties in the following directions:

(1) Study more thaft 1 covariate with constant hazards.

(2) Study non-constant hazards.

(3) Study non-proportional hazards.

In the first instance we study the different methods on

exponentially generated samples with two covar.iates, firstly, as a

matter of comparing relative power of the small samples and secondly

as an expansion of the 1 covariate study. As we mentioned earlier

two types of error are of interest. Now we develop these definitions

so that they may be used as a criterion for the comparisons. Type I

error represented by Ea is under the control of statistician at the

end of study and type II error, E is dependent on sample size and
3

the value of the covariate. The hypothesis of special interest for

all practical reasons is that of. ^ = 0* The power of this test
is then noted for the varing levels of g ^ and 8^ over the. different
simulations. Another hypothesis we consider is for a composite test

of ( 8^, 8. The main purpose for this test is a theoretical one and
may/
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may be useful in exploratory stepwise regression techniques. The

theoretical basis of this point will be made clear later. The rate

of acceptance of the null hypothesis as the actual ^ & $2 values
differ from zero will give a measure of type II error. Namely it is

a function of the proportion of times that we may wrongly accept the

null hypothesis when it is false. At values of ^2 fixed at zero

however, the same proportion is a function of the type I error which

has the proportion of times we wrongly reject the null hypothesis when

it is true. The last statement in computational terms may be

represented by an equivalent rephrasing in which value of 3^ is fixed
at SQ1 and value of is set to 8Q2 and we test the null hypothesis as
( 32) =( 3q^ ^02^" T^e Power a test i-s a function of the alter¬
native hypothesis and is related to Eg , in the following way. The

sample space of an observation in any test may be divided into two

regions. One region is called the acceptance region and if the estimates

fall into this space we accept the null hypothesis. The rest of the

space is called the critical region.

Thus -

Prob(estimator falls within the critical region^H^) = ^~Eg =
Power.

and Prob(estimator falls within the acceptance region = Eg

similarly for the null hypothesis.

Prob(estimator falls within the critical region\H„) = E\ 0 a

So far we have defined the power and acceptance region in

terms of the null hypothesis and the alternative hypothesis. Going

back to the opening section of this chapter we rephrase by saying that

in general we seek a critical region such that the power is as large

as possible. Then in addition to the control of probability of

Type/
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Type I error at E we shall have minimized the probability of
a

Type II error at E
p .

These definitions in terms of the survival analysis are

always further complicated by the fact that we are only interested in

testing a subset of the estimators that define our parameter space of

the critical region and thus we always deal with a composite: hypothesis,

as opposed to a sinple hypothesis where all the distribution is fully

defined. This point in general is related to the effects of the hazard

functions in the estimation of the relevant covariate estimators.

The above points regarding the composite hypothesis for

small samples is mainly a problem of illustration in here rather than a

theoretical one. Neyman and Pearson (1933) justify a method in

testing a single hypothesis against a simple alternative. That is

if we are choosing between two completely specified distributions

then problems of finding a best critical region is simple and they

provide a solution. Further results of Lehman & Scheffer (1950)

permits us to reduce the above problem of finding a most powerful

region for a composite hypothesis to a familiar problem of finding

a best critical region for a simple hypothesis.

Now we illustrate the problem for a simple case as that

of obtaining an area of overlap of the error distribution of the

estimator and the sample parameter distribution. Figure (5.4.1)

represents the error regions for a one sided test. The null
2

hypothesis relates to the estimator with N(u , 2 ) anc} the alternative
2

is N( Zj ). If we adopt a significance legel of for then,
chances of type I error is E / , that we obtain the wrong conclusion

a

when/
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when Hq is true.

The possibility of obtaining a type II error is E , that
p

is opting for the wrong conclusion when HQ is false. The actual
value of the percentage of the rejections is clearly dependent on

the form of the hypothesis that we adopt, and the actual value of

the coefficients associated with the covariates. These will produce

an indication of type I and type II errors. For a single covariate

situation we have.

hq: = 0 Conclusion
ZD II O ZD O

= 0 => H„ true 1 - E0 a
Type I = E

a

4= 0 -> H false Type II = E 1 - e =

Power

In the above the percentage of rejections are represented by the

number of cases that fall into the second column of the table.

Given that the null hypothesis : 8 = 0 is true, we obtain a

measure of E , the observed significance level. Given that
a

the null hypothesis is false we obtain a measure of the power of

the test, which is a fuction of sample size, censoring percentage

and the magnitude of the coefficients of the covariates.

The final remark on the method of simulations relates to

the allocation of the covariates in each sample generation. As

was remarked earlier the variance covariance matrix of the covariates

plays an important role on the type II error. It is well known that

if different subgroups are numerically divided in an equal manner then

the efficiency is at maximum. Further the covariances between these

values play an important role, in that, depending on the value of

each/
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each covariate a high correlation can reduce the efficiency.

5.5 Description of parameter range for the trial simulations.

In the generation of the (zi» Z^) matrix we use the same
random number generator as before. We randomly allocate -1, and

1 values as a dichstomos function to Z1 and Z^ for each patient. We
obtain these values by dividing the 0 to 1 range of the uniform

random numbers into appropriate segments. Thus there are 4 sets

of patients in the data with the Z^and Z^values set to (-1, -1)/
(-1 , D , (1,-1) and (1,1).

A well designed trial would allocate, equal numbers of patients

to each arm of the trial. Any other covariate set is not usually

controlled. All other uncontrolled effects due to a large sample size

at times do level out in terms of treatment effects and within each

type approximately equal numbers are usually allocated to each arm of

a trial. The importance of equal subgroups is mainly noticed in the

power of the tests. Tests usually are at their maximum efficiency if

they are composed of equal subgroups.

In the generation of the covariate sets we use a uniform random

number generator. The covariate sample generations however are fixed

so that for a given sample size every simulation is composed of exactly

the same covariate sets. Within the sample set however we intend to

balance the treatment effect so that there is a 50:50 likelihood of

allocations to a particular treatment. For the covariate set a diff¬

erent ratio of the two covariate values are used, so that we do not

have a symmetrical relationship between 6 and & . Thus a particular

set/
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set of values of (3^, 8^ = (a»k) does not necessarily correspond
to a power efficiency value for (^, 3= (b,a). The consequence
of this effect is similar to the use of a lower sample size for 31

in comparison with 3^

At this point a few remarks are needed regarding the different

possibilities of the generation of the covariate effects. One method

of generation of the covariate effects would be to allocate a different

set of Z
^ , Z^ variables at each simulation. Such a method implies

that any power assessment is complicated by the sample covariate variab¬

ility. An alternative is to fix the Z ^ , Z^ variable set for any

required proportion within the covariate categories and treatment

groups. The resultant consequence is that the final results are

conditional on the generated proportions within the corresponding

treatment and covariate groups. Bryson and Johnson (1981) discuss

a method for the generation of the earlier approach and point out

some of the theoretical problems with generation of monotone likelihoods

in such generated samples. However, this problem could be avoided

since it is realistic to add a restriction within generated simulations

so that no subgroup should be generated which contains less than say

10% of the total number of sample size. The rest of the procedure

would then be confined to dividing the uniform random distribution

range from 0 to 1 into the relevant segments as required. However,

we are restricting ourselves to a fixed covariate set for all

samples and so the above problem does not arise. The method for the

generation of the 40: 60 ratio prognostic covariate set, Z^, and the
50:50 ratio treatment set , Z^, is to divide the uniform random
number scale to the following categories. We let generations corres¬

ponding/



ponding to uniform random numbers between 0 and 0.4 to be the

low level of and values of random numbers greater than 0.4 and

less than 1.0 to correspond to the high level of Z ^ . Further we
subdivide the two parts of the range of the uniform random number

corresponding to high and low levels of Z^ into two equal parts. So
that within 0 to 0.4 range there is a 50:50 chance of allocation to

high and low levels of Z^ and within 0.4 to 1.0 there is a 50:50
chance of allocation to low and high levels of treatment effect. As

an asymptotic property of the sample the ratios of the margninals of

the treatment and covariate indicators will then approach the required

ratios. As we pointed out earlier the major emphasis is on small

sample properties and although the above approach may be justified under

certain theoretical conditions, in a simulation of a clinical trial

it is sufficient to condition our results on a generated sample that

conforms fully with the required ratios.

Now we summarise the properties of the generated sample and

the value of each parameter.

The random variable W has the standard extreme value distribution.

In terms of the survival times it is related to it by the function.

Where Y is the log of survival times. (In the process of derivation

of the above Weiball generating function we have used v in place of p)

a = 5 giving X = 0.00674 in X = Exp(-a)

values range contains (-1, -.5, -.2, -.1, 0,.1,.2,.5, 1)

32 values are (0, .1, .2, .5, 1)
p is/
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p is varied from Exp (-.3) to Exp(+.3)

For the censoring patterns we distinguish between accrual times

and the survival times. The survival times are generated by the

above function. The accrual times are uniformly distributed between

0 and 50. The levels of censoring are fixed at 0, 5%, 10% and 30%.

The significance levels are set at 0.05, 0.01, 0.005. The sample

sizes vary at 25, 50, 100. We set the null hypothesis to be

Ho : & = 0 anc^ later

Ho : (3 ,02^ =(Q»0) and vary the values of £82
in the region that we mentioned.

The low end of the magnitude of |8^| and [821 where 8 = = ^
The power represents the type I errors. We repeat the simulations

for the one sided alternative hypothesis which is the necessary

condition of some clinical trials. The above range of sample size

and censoring levels form the complete simulated sets. However, if

the results are at times very close to each other we will only comment

on their overlap.

5.6 Discussion of the simulation results.

In the first instance we refer to figures (5.6.1) to

(5.6.6) in which a representation of the power efficiency is given

for the null hypothesis of Ho : = °* Clearly by the figures

we obtain almost parallel lines for the range of the various covariate

values. In fact the main determinant of the efficiency is the value

of the 62 magnitudes. At the 62 values equal to zero we obtain a

representation of the type I error in all cases, and this value is
&

consistent over a range of factors. The most striking feature of the

results/
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results of the above null hypothesis is the consistency of power

values of Cox's test regardless of the value of the 8^ covariates.
Clearly as we may expect the efficiency of the tests do deviate to

seme extent according to the value of sample size,censoring and the

significance level, however, none of these factors seem to effect the

lack of influence of 8^ covariates in the power of treatment effect
tests. This finding is clearly in contrast with a view expressed by

C.L. Chastang (1983) where it is reported that the efficiency of treat¬

ment effect is dependent on the value of prognostic effects, even

when it is not included in the model. We will return to this hypothe¬

sis of treatment effect later in this chapter when we consider

alternative parametric models in the study of proportional and non-

proportional hazard distributed samples. Now we will consider the

results of the tests of the simple treatment effect hypothesis in more

detail.

At the value of 8 = 1 and n = 25, a = 0.05, we have a

separation in censoring levels of almost 7% in power over the range

of 8^ values, (Figure 5.6.1). An increase in the sample size to
50 diminishes the separation of the 0% censoring and 30% censoring

(Figure 5.6.2). At 8^ = 0 we have a difference of 3% for the range
of 8^ values. At 82 = .5 we have a separation of almost consist-
and 5% over the range of 8^ values.

A point to note is that the decline in the value of power

of tests due to censoring seems to be affected by sample size to some

extent. At the higher sample size of 100 the separation between the

0% censoring and 30% censoring at value of 8^ = .5 are almost 4%
(Figure 5.6.3), while the same separation in n = 25 is 7%, Figure (5.6.1)

When/
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When we consider a lower significance level of a = 0.005, the

separation between values of censoring levels declines so that

at n = 100 and 8^ = -5 the 0% censoring and 30% censoring have
a maximum separation of 3%, Figure (5.6.6). The same separation in

power for n = 25, Figure (5.6.4) is 6%. Up until now we have dealt

with simple tests of hypothesis, now we discuss a set of power curves

for the composite test. The following simulations have a slight change

of emphasis. The previous simulations asserted the power of tests for

a practical assessment of the 3^ & 8^ values in a trial. What follows
ia presented for theoretical interest and completeness. Tolley (1978)

discusses a group of non parametric tests in survival analysis where

a composite test of hypothesis may be of interest. Such tests have

certain computational advantages when dealing with a large data set

and a stepwise variable selection is adopted. The results of

Tolley imply that that large sample distribution of a composite test

has a chi-squared distribution with q degrees of freedom. The

value of the test statistics, is then given by:

Qq = Q(r) " Q(r -q)

Where there are (r) concomitant variables in the fuller model and

(r-q) in the simpler model. In a more complex hypothesis with

Ho ; C 8= 0 where C is a (q x r) contrast matrix the value of Q
q

is then:

Q = U' (0) I~1 (0) C' [ C I~1(0) C' ]~1 C I~1(0) U (0)
q

where as in the notations of section 4.4 on Cox's method we consider

U(0) as asymptotically normal with zero mean vector, covariance

matrix 1(0) and the test statistics;

U* (0) [ i"1 (0) ] U (0)

We will next present the results and show that the Cox's method

has /
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has good, predictable small sample properties where 3^ and 8^ are

independent. In the simulation again we use a 50:50 allocation of

values and a 40: 50 allocation of Z
^ values. Where Z^ is taken

to be a prognostic effect. One form of trial that has been used

to some extent recently is based on 2 x 2 factorial trials. Such

designs by randomisation will allocate 50:50 ratio to both and Z^
indicators. Although the ratio of the simulations in our results

are different from the requirements of a 2 x 2 trial the good properties

of the composite test efficiency may be attributed to the suitability

of the Cox' s method when used for simple tests of 2 x 2 trials.

Thus for more conclusive results in this respect, simple tests based

on a symetric 50:50 proportion of binary variables of Z^ and Z^ are
needed.

In the comparisons of the small sample properties of what

follows we will use a few terms :hat need an explanation. The term

maximum deviation is used when two power curves that are compared have

a similar pattern and thus we only report the maximum deviation between

the two graphs, since it is the most suitable descriptor . Relative

efficiency is used when two single simulations are compared and is

the difference between them. Finally we use the term balanced in

situations where changes of censoring or sample size does not effect

relative efficiency by a major degree.

Initially we concentrate on the situation of 3^ > 0 and

3£ > 0 with varying levels of significance of type I error, or, censoring
levels and sample size. Later we will look at the situation of 3^<0
and finally at non-proportional hazards. In the final part we consider

bbth/
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both increasing and decreasing non proportionaity with positive and

negative values of 6^ . When we discuss efficiency or power of
tests it must be noted that in the interesting situtations we are

dealing with tests that have power less than the full efficiency of 1.

In the figures of power representation often a pattern of converging

power curves appear. Up to a particular value of (0^ 0^) set the
tests deviate from the entity they are estimating. However at

higher values of (0^ 0^) or high sample sizes, the variability due
to factors of interest like censoring and significance levels are not

apparent due to the dominance of the covariate effects. Thus the

efficiency values converge towards the maximum full efficiency of 1.00.

We first consider type I error which relates to the number

of times the null hypothesis was rejected when it is true. Figure (5.6.7)

to (5,6.12) contain such information for the proportional hazard

cases. The generated samples conform to the a level probability

limit of the type I error. Asympototic properties of the type I error

are best summarised in the 0 = 0 & 0 = 0. At value of
I ^

0^=0 and 0^ = 0 we have a balanced configuration of the power
curves in that we note by differing the value of censoring and signifi¬

cance level the power variability is small or nill for sample sizes at

25, 50 and 100.

We now consider in this paragraph simulations where 0^ =0.
From the no censoring to a 30% censoring with the sample size of 25 and

the 5% significance level in the range of 0^ values the maximum deviat¬
ion is a 5% loss. These results in fact complement the earlier

results on the simple tests. Once again at a higher sample size or

the
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For the above configuration the likelihood ratio test and

the asymptotic normality give reasonably close efficiency values.

iThe figure (5.6.13) presents these ratios fora = 0.005 at sample size

of 25 at 61 and range of 6^ values,The maximum deviation between the
two tests is 1% and it is at 30% censoring. (This.is the only figure

presented since other sample sizes and a- values do not produce

figures different from the general pattern.)

Up until now we have been considering 6^ = 0 values. We now
consider the changing of values of 6^ to .1, .2, .5 & 1.0 and repeat
for each corresponding value cf B . Clearly for 3* >^*' t^iere a

slightly higher small sample power distributed at ( $*, 3^) against
( 8* i 8?p figure (5.6.7) to (5.6.13). This represents a slight

lack of symmetry for the and Z^ ratios thus resulting in a higher
relative power for 8^ • This imbalance is most noticeable at the
lower sample sizes and decreases with increasing sample sizes at

50 and 100. In the same figures we have also represented the different

censoring values. As may be expected the value of small sample power

decreases with increasing censoring levels. Although again by an

increase in the sample size the effect of censoring is minimised. In

general a decrease in the significance level also produces a reduction

in power. Now with reference to the above figures we consider the

magnitude of relative efficiency for 8^ & &^ values. In general we
note that by an increase in the 8^ values the efficiency increases for
fixed values of 8 . On grounds of relative efficiency for a 25 sample

size/
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size with censoring present we note that by an increase of&^=0

tog^ = •1/ the relative efficiency between no-censoring and 30%
censoring deviates from a 11% loss to a stable 4%. This 4% relative

loss of power for censoring is in fact consistantly the same for

higher values of & figure (5.6.7).

For the sample size of 50 a value of relative loss of 5%

qccuess regularly for most values of 6^ and 8^ fro) 0 to 1, figure
(5.6.8) . The sample size of 100 gives a stable 2% loss of efficiency

with 30% censoring, figure (5.6.9). Thus apart from the 30% censoring

for the sample size of 25 with no covariate effects present, the loss

of efficiency is very reasonable and at worst cases of the sample size

of 25 a 30% censoring produces a relative loss below 10%. This 10% loss

however will be discussed later and is far less for a balanced effect.

A point that may be made here is that if we consider 10%

and 5% censoring we obtain stable losses of efficiency throughout simul¬

ation even at lower sample sizes. At the significance level of 0.005

there is a maximum efficiency loss of 12% at the sample size of 25,

figure(5.6.10). This value does not stabilise and constantly diminishes

reaching a value of 7% for the higher value of 8^. However at the
sample size of 50 and the same significance level the loss in

efficiency due to censoring stabilises at 5% for value of B2 >.1
and at 8% for B^ = 0' figure (5.6.11). For the sample size of 100
the loss in efficiency is a regular 4%. Thus once again reasonable

efficiency losses are produced at 30% censoring, figure (5.6.12).

The 5% and 10% censorings even with a significant level of 0.005 produces

constantly very low efficiency losses. Once again we note that although

the/
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the 10% loss at 30% censoring is not problematic it is pointed out that

some of this value may be attributed to lack of balance for the covariate

effect.

We can thus summarise that in all sample, sizes a reduction

in the values of a reduces the power. In relative terms, the increase

in power of the test due to increase in the sample size however is

greater at low sample sizes, and at low type I error levels. Again

in relative terms the higher censoring effects appear with lower

sample sizes and low value of a. The relative difference due to

significance level and censoring effects are thus minimised for

sample size 100, within the range of our simulations. We also note

that the improvement in the power of the tests from sample size of 25 to

50 is greater than the improvement from the sample size of 50 to 100.

As we pointed out earlier an imbalance has been introduced

into the covariate effects. Thus the power of the tests are slightly

different for ( 3*, 3*) and (3*, 3*) values. In other words a

(s| 62^ value referring to a particular covariate and treatment effect
does not refer to a set within which covariate and treatment effects

have been exchanged. The same condition applies to the varying

censoring levels and sample sizes. In the higher censorings and

low sample sizes the effect of the difference in the comparable magni¬

tudes of 3^ and 3^ appear more substantial. At the sample size
of 50 and 100 the relative effects of censoring diminish substanti¬

ally and the resultant loss of power from 0% to 30% censoring

remains the same for ( 3*, 3^) and ( 3*, 8*). The lack of symmetry
between the covariates has a resultant power difference of 20% for

the/
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the worst case of the sample size 25 at the significance level of

5%. This value diminishes for the sample sizes of 50 to 10% at the

worst case and at 100 to bout 7% for the significance level of 5%.

The relative difference in loss of efficiency for the 30% censoring is

10% for (3^/ = (-5, 0) and 6% for (3^ 3= (0., .5) as the
most extreme case for the loss in efficiency. At. the sample size of

50 for the same significance level, censoring and ( values we

note 5% and 3% relative losses in efficiency.

At the significance level of 0.005 for the worst case at the

25 sample size and 30% censoring, we obtain a 12% loss in efficiency

for the lack of balance in the worst case- Although at the extreme

worst case the relative loss is the same for the two significance levels

of 0.05 and 0.005, at the latter value the results are more regular

and towards a higher range of magnitude. At the 50 sample size the

results of 0.005 significance level is similar to the 0.05 level

both in terms of the magnitude of the worst case and the regularity of

the losses. At the 100 sample size we note a similar pattern as

above in relation to loss in efficiency due to the 5% and 0.5%

signifieance levels.

For the relative loss in efficiency of the above discussion,

the worst case is the relative loss due to the significance level at

0.005 and 30% censoring giving a 11% loss at 25 sample size. This

value is reduced to 5% and 4% losses for the samples of 50 and 100

respectively.

Referring back to the 20% imbalance of the covariate effect
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Z
^ and fully balanced treatment effect Z , in relative terms at the

30% censoring level the loss in efficiency is more serious for the

unbalanced variable than the balanced variable. In fact the 11%

difference at the sample size of 25 diminishes to a reasonable 4%

loss which is a stable loss for values of significance limit at 0.05

and 0.005. Although we have considered the only reason for the power

differences of the above type r.o be those of the lack of balance in

Z under small sample properties, other investigations Kay(1979) have

presented asymptotic results which are compatible, with our findings.

In this study we also consider the effect of type of test

used. That is the efficiency of the asymptotic normality against

the asymptotic likelihood test. The difference between the tests

again diminishes for the higher sample sizes and is most pronounced for
P

the sample size of 25. Almost consistently the asymptotic normality

turns out to be the more conservative test and this is true in particu¬

lar as B and 0^ deviate from zero. Censorings do not produce
a major difference on the relative difference of the asymptotic likeli¬

hood and normality. In magnitude the maximum difference is at 6% for

30% censoring and sample size 25 and significance level of 0.005.

All other relative variability of power between the two tests are less

than this value. We will return to a comparison of the two tests

under conditions that the proportionality of the hazard assumption is

not valid, later in this section.

Up until now we have dealt with the generation of exponential

samples in our simulations. Most of the results so far are in fact

very closely in line with what may be expected of sucn simulations.

Next/
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Next we will consider the generation of Weiball type of distributions.

Initially we generate the samples in such a way so that the assumption

of the proportionality of hazards is not violated. Later we will

generate samples in which there is non-proportionality of the hazard

present. As shown before we will use P to control the shape of hazard

rates and for producing non-constant Weiball type hazard rates. Using

Y a o + 3w - Z B
1 3 - Z2 02 a

The value of 3 = P has been fixed at P = 1 so far. Therefore

all hazard rates have had constant rates for all subgroups. Now we will

vary the value of P and proceed with the generation of samples of varying

sizes that produce proportional hazards of Weiball type with increasing

or decreasing hazard rates. By the definition of the proportional

hazards, such effects should play a nominal role in the estimation of

the B's. This is true mainly due to definition, that 3's are estimated

in terms of relative effects on subgroups. It is however known that

in the estimation of partial likelihood in the treatment of ties and

also the effect of censorings certain assumptions have been introduced.

The results for (P = 1.5) increasing hazard and (P = 0.5) decreasing

hazards are identical when there is no censoring. However with 30%

censoring there was a slight deviation of 1 to 2 samples in 300

generations which is nominal. At P = 0.5, that is decreasing

hazards, with rather high initial failure rate we may notice a

larger number of failure times at zero, therefore the chances of

producing tied observations at the beginning of survival times

is higher and again there is a lower efficiency for these groups.

Altogether all 3sets that were tEied, produced very close efficiency

value of order of 3 in 300 generations in the extreme worst cases.

Due to the close similarity of these results we will not produce

any/
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any graphical presentations. However, we study two sample generators

one at P = 0.5 (decreasing hazard) and one at P = 1.5 (increasing

hazard) .

Fix a at 0.0001, Q = .2, 82 = •1 an^ no censoring n = 25
5 obtain the following estimators

P = 1.5 p = 0.5

ei = .233 6
1 = .232

S2 = .139 8
2 = .138

Var (81) = .043 Var (8 .J) = .043
Var (8 2} = .032 Var (82) = -032

Lik <B1 ,e2) = -16.85 Lik (81 , B2) = -16.92
Lik (v 0) = -18.53 Lik (81 , 0) = -18.59

Lik (0, V = -17.47 Lik ( 0 ,82) = 17.51
The above results clearly indicate very similar estimates for values

of 8 • This close resemblance is mainly due to the non-parametric

nature of the method. An interesting question however is related

to the study of the effects of the covariates when the actual regress¬

ion coefficients are time dependent. This effect can best be

generated by allowing different subgroups of the patients to have

different hazard rates.

\

In the study of the effects of non-proportionality of

the hazards we continue with 2 covariate generating models. The effect

of non proportionality can thus be more complicated in that it effects

both 8^ & 8^ at similar times, simultaneously.We use the same model
as before however the value of P is dependent on value of Z.

Hence (=f 1 if Z or Z„ = +1

P

2

= 1 if z1 S Z2 = -1
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The value of P = 1 for all samples reduces to exponential

decomposition of the hazard rates. The value of P j 1 is

however important in that it indicates a measure of deviation from

proportionality.

We repeat the simulation for similar ranges of 8 ^ & &2
using the same hypothesis with the same sample sizes. This time the

value of asymptotic normality and the asymptotic likelihoods are of

special interest.

In the above we have assumed that time dependency is acting

equally on the high levels of 21 & This need not be the case in
a more restrictive simulation study. One may allow time dependency

to be an effect of one of the covariates. A usual manner of analysis

is to stratify the data into early and late effects, and thus one

produces two base line hazards for the population. In terms of a

population with one time dependent effect the two strata should produce

contours of the type in figure (5.6.14)in presence of the normality

of their B estimates.

St1 and St2 refer to the two strata for early and late

events when both 61 andg^ are greater than zero. Although we have
presented one figure with two different contour sets, it may be

considered as two different figures for each strata when they are

superimposed. For the cases of two time dependent covariates or

a situation where time dependency is latent within the population the

contour generated by our model may be represented as in figure (5.6.15).

We have a continuous time dependent effect influencing covariates in

both/
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both ^ and ® directions.

For reasons of dimensional symmetry we use a transformation

of P to P* = log (P) so that the negative values of P* refer to

decreasing hazards. We therefore use values of P* set to -.3, -.2,

-.1, 0, .1, .2, .3. At first we consider the effect of

P* on & & ^ ^ Figure (5.6.16) to

(5.6.21) .

Consistently we see a reduction in the type I error less than the actual

level of significance level a . In relative terms the power decreases

with increasing deviation from the proportionality of hazards. Using

figure (5.6.16) and (5.6.17) we note that the reduction in type I

error is to the reasonable numerical low level of 4% compared to

the nominal 5% significance level, for the maximum deviation from

proportionality at P* = .3 and P* = -.3. Further it is noted that

at 8^ = 0 and = Of there is not a reduction in the relative loss
of power fin terms of the proportional to the non-proportional hazards)

with an increase of the sample size, Figure (5.6.18) and (5.6.20).

Thus indicating that the loss is due to the systematic effect of

time dependency. For the lower values of increasing and decreasing

non-proportionality at P* = -.2, -.1, .1 and .2, the reduction in

efficiency is also within a range of 4%. In comparison of the relative

loss of power for the corresponding magnitudes of the increasing and

decreasing hazards once again we note a reduction in type I error

of the increasing non-proportionality compared to those of decreasing

non-proportionality rates. This effect is at 2% for the maximum

difference of P* = .3 and P* = -.3.

Once/
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Once again we note the asymptotic likelihood and normality

at (8.^, 8^^ = '■ which indicates a measure of type I errors. The
relative loss of asymptotic normality to asymptotic likelihood is 2%

at the sample size of 25 with the maximum reduction due to non-proportion¬

ality at P* = -.3, Figure (5.6.23). For the sample size of 50,

Figure (5.6.24) this relative deviation of type I error reduces to

just under 1%, which is at a similar level to the relative difference

of type I error for the proportional hazard rates. We thus conclude

that the relative difference in type I error in situations of non-

proportionality of hazards at the sample size of 25 is at a low

value of approximately 2% and the relative loss reduces to those of the

proportional hazard situation as the sample size increases to 50.

We continue with the simulations by letting the 32 value for
treatment effect be at zero and the 3^ covariate effects vary over a

range of values .1, .2, .5 and 1.0. We note that the non-proportion¬

ality of hazards at the sample size of 25 with significance level at

5% produces a maximum loss of power of 25% with decreasing non-propor¬

tionality rate of P* = -.1 . This loss is at a reasonable 5% level

for decreasing rates of P* = -.3. An increase of the sample size

to 50 reduces this relative loss for the maximum decreasing rate to

15%. At the sample size of 100 the relative loss of power at P* = -.3

reduces, to a reasonable value which is less than 6% and this value is

stable for a range of 8^ values at . 1,.2 and .5. We thus state
that decreasing hazards do lead to a loss of power and the magnitude of

this loss at 3^ = 0 is dependent to some extent on the values of 3^.
This effect of dependence of ^ values on the non-proportionality rates
reduces to nominal levels at 50 and 100 sample sizes. For the sample

size/
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of 25 however, with non-proportionality at a decreasing rate of

P* = -.3 and the covariate ®^effect at a high value of 1 the loss in
efficiency is unacceptable.

In terms of increasing hazards again we obtain the same

results of loss of power. However there is less relative loss of

power compared with decreasing deviations from proportionality (negative

value of P*). In considering various sample sizes once again the

same conclusions may be drawn. In fact the magnitude of increasing

hazard rate at P* = .3 produces very stable values of relative loss of

power at less than 6% for the sample size of 50 and lower values for the

sample size of 100. At the sample size of 25, the maximum variability

due to increasing non-proportionality rate is due to P* = .3

and the value of ^ at its maximum 1.0. Such an effect in terms of
decreasing rates was noted to be 25% and judged unacceptable but now it

is reduced to 12%. Although the value of sample size at 50 and 100

gives reasonable values of power loss due to non-proportionality of

decreasing and increasing types, extreme caution is needed for sample

size of 25 in presence of decreasing non-proportionality rates and

higher value of covariate effect 6^.

Up until now we have considered the effect of 3^ values
on power for the different sample sizes, now we continue with a few

words on the relative gain in power by increasing sample sizes.

An increase in sample size of 25 to 50 gives a maximum gain of 14% in

relative efficiency of the proportional hazard rates. Change in sample

size from 50 to 100 gives an increase of less, than 8% in relative power

of proportional hazard rates. Clearly the increase in sample size

plays/
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plays a more significant role for the non-proportional hazard rates.

At the maximum non-proportionality of P* = -.3 an increase of 27% is

obtained at covariate value 8^ set to 1. This improvement is important
in the sense that at higher values of 8^ the loss of power due to
non-proportionality reduces to an acceptable level. For the sample

size of 50 tO 100 for a similar generation of 31 and 8^ values we
obtain a gain of 13% in power. However this is achieved at a point

in which the sample size of 100 with P* = -.3 and 3^ = 1 has the
full maximum efficiency at 1.0.

In the study of non-propor.tional.ity we observe that Exp (-.3)

= P, produces the best representation of the results for 3^ and 3^
values and thus we continue with this sample for values of > 0 arK*

S^< 0, using an analgous one sided alternative hypothesis. Figures
(5.6.22) to (5.6.25) .

First we deal with maximum likelihood estimator with constant

hazard rates. At the constant hazard rate the relative efficiency is

clearly symmetric about 81 =0, Figure (5.6.22). The figure (5.6.23)
presents a decreasing hazard rate and there is clearly a lack of

symmetry about 8^ = 0. As we showed earlier values of P < 1
produced a larger level of variability than P > 1 hazard rares and

now we note that there is a lack of symmetry about 8^ = 0. The
following figure can describe what is happening in terms of converging

or diverging forms of the proportionality of the hazards .



Figure(5.6.22)



Figure(5.6.23)



The above figure presents increasing, decreasing and constant Weiball

hazard rates together with positive and negative 8 values. In the

discussions of figures (5.6.16)to (5.6.21) we presented results in which

for positive values of 8 r the P > 1 simulations were more stable and

efficient than P < 1 values. Using the. above figure we note that

for 8 >0, P > 1 implies diverging hazards, while P < 1 implies

converging hazards. In the describtion of figures (5.6.22) and(5.6.23)

again the above figure can help, in that for P <1 we note that 8< 0

(diverging hazard) compared to 8 > 0 (converging hazard) produces high

efficiency. That is in either case as may be expected divergence from

the base line hazard produces higher efficiencies.

We once again observe that due to the imbalance of 20% for

the covariate effect, corresponding values of power efficiency of {8^,8^
and ( 82' 8^)deviate slightly from each other. For the various values
of treatment effect 82 an<3 covariate 81 > 0 we note that there are

important losses of power with the magnitude as high as 28% for n = 25.

In/
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In the previous discussions of non-proportionality with

^2 = 0 a high efficiency loss in fact presented stable levels of
efficiency, and often stable levels of efficiency for the ranges of

^ & 3£ corresponded with low efficiency levels. In here as we pointed
out in the discussion of non-proportionality at sample size of 25

and 62 = 0 extreme caution is needed if ever used in practice.
However there is a pattern emerging from the sample siz e of 25

simulations which represent the relative efficiency in terms of

variability of ^ and $2 and p*' Figure (5.6.23)

The worst region in terms of relative loss of power between

figures (5.6.22) and (5.6.23), is due to the covariate effect values

of ^ between 0 and .2 for values greater than 0.2, and ®
values between 0 and 1 for values less than .2. The losses for

the earlier group ranges with 15% efficiency loss and the latter group

produces efficiency loss of 28%

For the negative values of & we observe a pattern is

emerging indicating that for values of 8 < -.2, the relative loss in

efficiency in comparison to the proportional hazard samples is dec¬

reasing steadily. In fact between 8 values of -.1 and 0 for

each particular level of $the difference in efficiency is within

24% , while outside of this range of generations of B values the

efficiency is closer to the proportional hazard situation.

Thus we summarise that with the sample size of 25, there

is a loss of symmetry Figure ( 5.6.23). This relative difference for

e1 < 0/
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S 0 and 8 > 0 is restored with an increase in the sample size.

It must be noted that 3^ > 0 , 8^ > 0 with P* >0 is not comparable
with 3.j < 0 and > ^ and P* < 0.

We now proceed with a similar simulation as those of sample

size 25 with the non-proportionality set to P* = -.3. However this

time we increase the sample size to 50 and 100 to study the effect of

deviation from non-proportionality at higher sample.sizes, Figure (5.6.24)

and (5.6.25). The first point we note is that there is less asymmetry

about the 8^ =0 axis when the sample size is increased. In the
range of 3^ and 3^ values we also note that doubling the sample size
from 50 to 100. At values of sample size of 100 and 3^ values greater
than zero we obtain a maximum loss in efficiency of 7% for this

particular level of non-proportionality, if we confine to positive

values of 3 . For the negative values of 3 the loss in efficiency

is even less when proportionality does not hold. At the sample size

of 50 the relative loss due to non-proporticnality is at 10% compared

to 7% for the sample size of 100.

So far in the discussions of non-proportionality we have only

mentioned the asymptotic likelihoods. As we pointed out the results

from asymptotic normality follow a very close pattern when we deal with

a proportional hazard situation. This deviation increases with deviat¬

ion from proportionality, however remains at minimal levels for all

sample sizes of 50 and 100 generations.

Now we continue with the simulations for rhe non-proportional

case/
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case and use graphical representation on ^ > 0, P* = -.3 and repeat
for 8^ > 0, 81 < 0 and sample sizes 25, 50 and 100 and a set to 5%
and no censoring present,in the data figures (5.6.23) to (5.6.25).

There is a slight indication that asymptotic normality behaves in

a more symmetric manner on the two sides of the 8^ axis. The
asymptotic likelihood however is consistently less conservative than

the asymptotic normality test. The relative power difference of

the two tests diminishes with increasing sample size. The actual

magnitude of parameter |8^| are clearly playing a role in the power
of the tests. Generally the increase in value of |8^ j reduces
the relative power difference of the asymptotic likelihood and normality.

This is partly due to the fact that non-proportionality variability is

reduced by the increase in sample size and partly by the actual covari-

ate effect becoming more dominant and thus producing a reduction in

its variability.

Finally we present the tables (5.6.1), (5.6.2) and (5.6.3)

which give the various values of range of 8^ and 8^ values used in the
simulations and the corresponding 8^ and 8^ estimates with their

variance, under the proportional hazard assumptions. Clearly the 8

estimators are very close to the actual 8 values. There is a

negligible bias present over the range of the simulations for the

given covariate sec, which declines with increase in the sample size.
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1

-.9946

-.4961

-.1987

-.0993

.0004

.1012

.2019

.1.051

1 .0073

-.9948

-.4962

-.1978

-.0993

-.0004

.1011

.2017

.5049

1.0070

1'
VAR (gj

.077

.057

.043

.041

.031

.043

.047

.059

.079

.075

.056

.043

.041

.030

.042

.046

.057

.078

®2
.0005

.0006

.006

.0007

.0007

.0007

.0007

.0006

.0005

.1008

, 1008

.1009

.1009

,1009

,1009

,1008

,1008

,1008

VAR (02)
.026

.027

.027

.027

.027

.027

.027

.027

.027

.032

.033

.036

.038

.039

.037

.037

.036

.033

-.9949

-.4965

-.1991

-.0994

-.0004

.1011

.2014

.5049

1 .0069

.071

.054

.041

.039

.030

.041

.046

.055

.074

.2010

.201 1

.2011

,2013

.2013

,2012

.2012

,2009

,2006

.042

.043

.043

.044

.044

.0 44

.042

.041

.041
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-1

-.5

-.2

-.1

0

.1

.2

.5

1

-1

-.5

-.2

-.1

0

.1

.2

.5

1

.5

.5

.5

.5

^5

5

5

5

5

-.9956

-.4971

-.1992

t.0996

.0003

.1010

.2011

.5045

1 .0063

-.9962

-.4978

-.1994

-.0997

-.0002

.1008

.2001

.5043

1 .0059

.064

.051

.040

.037

.029

.037

.043

.052

.069

.054

.047

.038

.033

.029

.035

.041

.050

.057

.5032

.5035

.5038

.5038

.5039

.5037

.5034

.5031

.5027

1 .0060

1.0066

1 .0068

1.0069

1.0070

1 .0069

1.0067

1.0065

1.0059

Table (5.6.1) n = 25, no censoring, P* =

.050

.051

.051

.052

.052

.051

.050

.049

.047

.050

.058

.064

.067

.069

.066

.062

.059

.045

0
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t

-. 9 'J 7 5

-.4981

-.1989

-.0998

-.0003

.1007

.2012

.526

1.0039

1 1'
VAR ( 8 J

.033

.025

.021

.019

.015

.019

.021

.027

.034

v2

.0003

.0003

.0002

.0003

.0003

.0002

.0003

.0002

.0002

VAR (g2)
.015

„ .016

.016

.016

.016

.016

.016

.016

.016

-.9975

-.4982

-.1990

-.0997

-.0003

.1006

.2011

.5025

1.0038

.033

.025

.020

.019

.014

.019

.021

.026

.034

.1006

.1004

.1006

.1003

.1002

.1003

.1004

,1004

.003

.017

.018

.021

.021

.021

.020

.020

.000

.048

-.9979

t.4983

-.1993

-.0999

-.0002

.1005

.2010

.5024

1 .0037

.031

.024

.019

.018

.015

.019

.021

.024

.033

.2008

.2009

.2009

.2009

.2008

,2008

,2007

,2007

,2006

.022

.0 23

.023

.023

.023

.023

,022

,022

,021.



-1 .5 -.9978

-.5 .5 -.4982

-.2 .5 -.1992

-%1 h5 -H0998

0 .5 -.0002

.1 .5 .1005

.2 .5 .2011

.5 .5 .5025

1 .5 1.0037

-1 1 -.9980

-.5 1 -.4983

-.2 1 -.1993

-.1 1 -.0999

0 1 -.0001

.1 1 .1005

.2 1 .2010

.5 1 .5024

1 1 1.0037

Table (5.6.2)

.027 .5019 .027

.023 .5017 .026

.019 .5017 .026

.018 .5015 .026

.014 .5016 .025

.018 .5017 .025

.020 .5017 .026

.024 .5017 .027

.029 .5018 .027

.023 1.0029 .024

.021 1.0029 .027

.018 1.0030 .030

.016 1.0032 .032

.013 1.0032 .033

.017 1.0031 .031

.019 1.0029 .030

.023 1.0028 .028

.025 1.0027 .025

n = 50, no censoring, P*=0



1

-1

.5

.2

. 1

0

.1

.2

.5

1

0

0

0

0

0

0

0

0

0

1

-.9989

-.4990

-.1996

-.1001

.0000

.1005

.2008

.5017

1 .0019

VAR (8 )

.018

.015

.013

.012

.011

.011

.012

.016

.019

*2
.0001

.0001

.0001

.0001

.0000

.0001

.0001

.0001

.0002

VAR (t.

.011

.011

.012

.012

.012

.012

.012

.012

.011

1

.5

.2

. 1

0

. 1

.2

.5

1

-.9989

-.4991

-.1996

-.1001

.0001

.1005

.2008

.5017

1.0020

.018

.015

.012

.012

.01 1

.012

.012

.015

.019

,1004

,1004

,1004

,1005

1005

1004

1004

1004

1004

.012

.013

.015

.015

.014

.014

.014

.013

.013

1

.5

.2

. 1

0

. 1

.2

.5

1

2

2

2

2

2

2

2

2

2

-.9990

-.4991

-.1997

-.1001

.0001

.1005

.2007

.5016

1.0021

.017

.014

.012

.012

.011

.013

.013

,014

.08

.2008

.2008

.2007

.2007

.2007

.2007

,2008

.2008

.2009

.015

.015

.015

.015

.015

.015

.015

.015

.015



1 .5 -.9990

.5 .5 -.4992

.2 .5 -.1998

.1 .5 -.1001

0 .5 .0001

.1 .5 .1004

.2 .5 .2007

.5 .5 .5017

1 .5 1.0023

1 1 -.9991

.5 1 -.4995

.2 1 -.2000

.1 1 -.1001

0 1 .0000

1 1 .1004

2 1 .2007

.5 1 .5015

1 1 1.0023

Table (5.6.3) n

.015 .5015 .018

.013 .5014 .017

.011 .5014 .017

.011 .5013 .016

.010 .5012 .016

.011 .5013 .016

.012 .5014 .017

.015 .5014 .018

.016 .5015 .018

.013 1.0021 .014

.012 1.0020 .016

.011 1.0019 .019

.010 1.0017 .019

.010 1.0016 .019

.011 1.0017 .018

.012 1.0019 .017

.013 1.0020 .017

.015 1.0022 .016

100, no censoring, P*=0
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Earlier we showed that in the study of the Cox's method the exponential

and Weiball generated samples are very similar in terms of testing

significance of covariates and in fact the interesting situation is

that of effect of non-proportionality of the hazards. Now we will

consider the simple tests of the treatment effect for the various

values of the non-proportional hazard generations. The tests once

again correspond to a similar set of 81 and $2 values, both greater
than zero. In the following generations however we will repeat the

simulations and the analysis of the generated sample according to differ¬

ent generalised linear models. As we described in chapter 3 the most

commonly used models in this respect are the Weiball and the exponential

models. We will report the simulations initially for the proportional

hazard generations. In the analysis we will consider (a) the fixed

covariate Cox's method, (b) time dependent Cox's methoo which is more

suitable for the non-proportional situation, (c) stratified Cox's method

(d) Weiball model with the generalised linear model assumption and

finally (e) the exponential model.

The non-proportional generations are all of the Weiball type.

This is an arbitrary choice in s<~> far as deviation of the exponential

decomposition of the relative risk is concerned. For the purpose of

the analysis we deal only with exponential and Weiball parametric

models. These two models are in practice the most relevant for the

decomposition of the relative risks in survival studies. Due to an

introduction of non-proportionality into the generated samples an

alternative approach based on the non linear models of Weiball type

may be possible. However in this respect the interpretation of the

8 estimates/
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3 estimates are not relevant to the aims of the study. In here

a point which must be noticed is the important distinction between the

non-proportionality mentioned in the parametric Weiball models and the

non-proportionality under the semi-parametric constraint of the Cox's

method. In the Weiball model the problem is essentially specification

of the wrong model in the presence of time dependency, which is similar

to that of specifying the Cox's proportional hazard model without time

dependency.

A further point that requires some attention is related to

the results of the previous study of 3^ efficiency in the presence of g ^ .

We assumed there is no correlation between g and 3^ and thus there was
no confounding effects present. It was generally clear that the

value of 3^ does not effect the power of tests for 3^- will now
repeat the same values of 3^ and and analyse the samples with the
above mentioned models. Once again there is a distinction in that

absence of confounding between 3^ and entails a constant relative
power for the estimation of treatment effects. For the time dependent

situation however any loss of power is essentially attributed to the use

of wrong models.

In general we will ignore the exponential model in our discuss¬

ions, it is presented for illustration in the figures and later we will

make a few comments on the inferiority of the exponential model. In

all of what follows we take a significance level of 0.05 and no

censoring situations. Inititally we consider the sample size of 25,

figure(5.6.26). At 3^ set to zero there is clear agreement between all
the models at power levels around 0.05. This value is constant and does

not/
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not change with increasing values of from 0 to 1. Next we consider

values of B^ greater than zero. We note that with the proportional
hazard generations consistantly, the parametric model, Weiball, has more

power than the other models. The worst model (ignoring exponential)

when the samples have proportional hazards is the Cox's non-proportional

hazard model. The other models Cox' proportional hazards and the

stratified Cox's model both have power properties between the Weiball

and the non-proportional Cox and this is true for all values of B1 and

B^ simulations.

The difference between the power of Cox's non-proportional

hazard and the Weiball proportional hazard is about 5%, near 8^=0
and about 9% near B^ =1, when 8^ is equal to 0.2 for both. The
difference increases with increasing values of so that at 8^ = 1
with values near B^ =0, the difference is 12% and at B^ = 1 it is
13%. There is clearly a lack of consistency in the power efficiency of

some of the models, in so far as values of 8
^ are concerned. The more

superior models namely Cox's proportional hazards and the Weiball in

fact consistantly produce the same power value for a given 8 2 regardless
of values of 8^- The difference in power for any given value of B0
in fact for either of Cox's proportional hazard or Weiball does not

vary by more than 3% over the range of 6^ values. For the less
appropriate models, the Cox's non-proportional hazard, we note a

slight declining trend at n = 25,with increasing B ^ values. As an

example at B^ = 5 and B^ = 0 the power is 69% and the value declines to
63% when B1 = 1.

The stratified Cox's model also produced consistantly similar

values/
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values of power for the test of 8^ regardless of 6^ , although there
is a slight loss of power compared to the Cox's unstratified model.

The difference between their power value is almost consistantly 4%

Next we consider the sample size of 25, significance level 0.05,

the increasing non-proportionality at P* =0.3 and the decreasing non-

proportionality at P* = -.3. Generally the power values of the P*>0

are slightly superior to similar values of P*< 0. This is mainly due

to the convergence or the divergence of the hazard rates for the given

range of 8^ and 82 values.

First we deal with P* = +.3, figure (5.6.27). At 8^ = 0 the
power of all tests and all models is once again very close to the value

of the significance level 0.05. In fact there is very little to

separate the power of tests according to type of the model or the range

8 ^ values. For values of ^ > 0 once again there is a slight difference
between the power of tests according to the type of the model. Consis¬

tantly the exponential is the worst model in the analysis of non-propor¬

tionality. The best model for such samples is the Cox's non-propor¬

tional hazard model. The stratified Cox's model also produces relative¬

ly superior power values compared to the Weiball or the Cox's proportion¬

al hazard models. The non-proportional hazard model produces very

consistant power values for 8-> regardless of 8^ values. This point is
in fact also true of the stratified models of Cox. The two less

powerful tests in the analysis of non-proportional samples are the

proportional hazard Cox and the proportional hazard Weiball. At the

value of 82 = .2 we note that the value of 8^ does not effect the power
of any of the tests and the maximum difference for the ranges of 8^
value/
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value is 3%.

There is a lack of consistancy in the power of 3^ tests as the
magnitude of 6 increases. This pattern is not present for the

correctly specified models namely Cox's non-proportional hazard and

the stratified Cox's model, With the proportional hazard model Cox

and Weiball however we note a decline in the efficiency of the tests.

The decline in efficiency for the =.1 over the range of 3^ from
0 to 1 is about 9% if a proportional hazard model is used. Before wo

finish this point however, we must remark that this pattern is present

at this magnitude only at the relatively low sample size of 25. The

value of P* = -.3 figure(5.6.28), produces non-proportionality which

implies generally a higher loss of power compared to P* = .3. At the

value of g = 0, the power is at about 0.05 for all tests and all values

of g . However there is a slightly higher variability over the range

of 81 values for the different models compared to the situation of
P* = +.3.

On increasing values of 82 there is a general increase in the
overall power of tests, which indicates that for all models, values of

82 is the major factor influencing power. The pattern is similar to
P* > 0, indieating that non-proportional hazard Cox's model and the

stratified Cox's method are the superior models. This once again

indicates that the correct specification of model implies a general

constant power for the 82 values regardless of 8^ values. The
worst situation occurs for the Weiball and the Cox's proportional

hazard model in the P* = -.3. There is once again a slight indicat¬

ion that increasing values of 3^ may influence the power, which is to
some/
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some extent due to a low sample size and partly due to lack of

balance due to non-proportionality.

By an increase of sample size to 50, figure (5.6.29) to

(5.6.31) and to 100, figures (5.6.32) to (5.6.34) a similar pattern as

before is repeated. However the differences, between the appropriately

fitted models and the unsuitable models in either of proportional and

non-proportional hazard situations decline. Under the proportionality

of hazards, Weiball, is in fact the most suitable model and produces the

highest power of the tests. (It must be noted however that the gener¬

ation are also of proportional hazard of Weiball type). Cox's

proportional hazard is also suitable in that it is not influenced by

varying values of 3 . The two relatively unsuitable models are

stratified Cox and the time dependent Cox, although their loss of

efficiency is relatively small. In the analysis of the generation of

non-proportional hazard type both Weiball and proportional hazard Cox

decline in power.

As we pointed out earlier, clearly the exponential model is the

least suitable model and we have included the model purely for reference

in the graphs.

In conclusion, the stratified Cox's model and the time dependent

Cox's model are both suitable for the analysis of non-proportional

generations. The value of covariate effect 3^ in this respect does not
vary the power of the test. As may be expected the power of the test

is purely dependent on the magnitude of the treatment, effect. In the

situation of proportional hazards both Weiball and Cox's proportional

hazard/
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hazard have good power properties. Once again the power is dependent

on the magnitude of the treatment effect and is not influenced by the

covariate effects. This is in opposition with the findings of a similar

study in situations of proportional hazards where unreasonable loss of

power is detected due to the magnitude of the covariate. effect (C.L.

chastong 1983). In our study specification of wrong models does imply

a loss of power which/with the small sample size of 25 can become

unreasonably dependent on the magnitude of the covariate effect.

For all practical reasons the semi non parametric methods

provide a robust constr uct for the analysis of the data.
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CHAPTER 6

ANALYSIS OF THE OLD EDINBURGH DATA

In this chapter we proceed with the analysis of data from

a clinical trial. The purpose of this chapter is to illustrate some

of the results of the previous sections, using the proportional hazards

model. Since the analysis of the breast cancer trial data is the main

part of the discussion, we will begin this chapter with a history of the

treatment of the disease. In the later sections a general overview of

the subject will be presented. Then our data is described and the

procedures which were adopted to collect it will be presented. Finally

we analyse the data using the general methods with a single evecitof

interest and multiple coefficient models with tests of interactions.

In the present chapter we only consider time independent

covariates, however in chapter 7 we will deal with time dependency

and multivariate risks.

6.1 Randomised Trials in early breast cancer.

Breast cancer is the most common form of cancer among women

in the Western Hemisphere. Despite this, there is no general agreem-

ment as to the best treatment of an early case. This disagreement is

related/
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related to both types of surgery and the value of radiotherapy.

Recently various forms of post operative drug treatments have also

added a new dimension to the decision making efforts.

Breast cancer is one of the few malignant diseases in which

there are well documented data on long term survivals in untreated

patients in existence. The earliest efforts for the purpose of the

treatment of the disease took place some 80 years ago. However

later, during the 1950's, epidemiologists gathered the first empress-

ive arguments against the use of the established treatment of the

time which was radical surgery. It seemed that treatment did not

cure the patients in terms of their long run survival or proportion of

the development of metastatic disease.

Following the above developments many studies were carried out

to assess a range of different treatments which consisted mainly of loco-

regional treatment by various forms of surgery and radiotherapy. Sub¬

sequently some ovarian ablation by oopherectomy or by irradiation has

also been used. None of these treatments, however, produce a major

improvement in terms of over all survival. Much of this lack of success

in treatment had been ascribed to the fact that patients with the

possibility of developing metastatic disease are not influenced by

the loco-regional treatments and the development of the metastatic

disease has not been attacked by the treatment.

At present there are new trials taking place in which surgery

is followed up by chemotherapy. The value of such drug treatments

occurs/
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occurs by not only considering the benefits in terms of local

progression but in terms of systemic general progression of the

disease. Some of the methods we study in the next chapter are in

fact appropriate for the proper assessment of the effects for this

form of trial.

Often the evaluation of the treatment of breast cancer is

made difficult by the fact that patients differ considerably in their

individual form of the development of the disease. Various prognostic

factors in the past have been assessed in terms of effects of various

treatments. Some of the indicators that have been given an

importance in the past are, the size of the initial tumour, axillary node

involvement and the menstrual status. In chapter 8 we will deal in more

detail with the important prognostic effects. Generally size of the

tumour is invariably related to survival and this is a result that has

been shown to be true consistently. Another strong prognostic

indicator is the extent of axillary node involvement. This can be

measured as a form of index with involved or not involved categories;

or by an index representing extent of the involvement by the number

of nodes examined and the number that were found to be involved.

Age and menstrual status are two factors that are closely related

to each other and a£S of less strength in assessing the chance of

survival of a patients due to the disease in comparison with node or

size.

It has often been shown that with increasing age the chance

of survival increases until the menopause. After the menopause the

survival/
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survival rates decline at a slower rate. The effect of the other prog¬

nostic factors are also present if we do a separate stratified analysis

of the various age categories.

6.2 Description of the data.

The objective of this trial has been to assess the pattern

of survival rates for a group of patients with the invasive carcinoma

of the breast, who were treated in a clinical trial in the South East

of Scotland from 1964 to 1971.

In the protocol, the general criterion for selection was

taken to be, all female patients between the ages 35 - 69 inclusive.

Further it was considered essential that all patients must be suitable

for treatment by either arms of the trial, so that a reasonable level

of homogeneity of patients is established in terms of prior treatment

status.

The two trial options were:

(1) Radical mastectomy: The breast, the pectoral muscles and the

axillary cortices were removed.

(2) Simple mastectomy plus post-operative radiotherapy: The breast

was removed from the fascia overlying pectoralia major via an

elliptical oblique incision. This included the nipple and the areola.

Post operative radiotherapy was given by a 2 Mer vander Graff generator.

The axilla and the supraclaricular fossa were irradicated using parallel

semi-opposed fields to 4250 rad. maximum dose in 10 factions in 4

weeks. The chest wall and the internal mammary nodes were irradiat¬

ed/
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by parallel tangential fields to 4500 rad. in fractions in 4 weeks.

All patients were categorised into stage 1,2 and 3 patients

according to the then currentlnternational Staging Systems based on

TNM, (codes for Tumour size, Nove involvement and Malignancy status

respectively). Cn chapter 8 we consider the development of the

TNM staging in greater detail.

Thus the stage I patients were composed of patients with

tumours of size 5 cm or less in the maximum diameter, Skin fixation

absent or incomplete, nipple may be retracted or pagets disease present,

pectoral muscle fixation absent, chest wall fixation absent, no homo-

ateral axillary nodes palpable and no distant metastases present.

Stage II patients had primary tumours as in Stage I but

also include homolateral axillary nodes palpable, movable and not

fixed to one another.

Further certain members of Stage III were also defined as

elligible to take part in the study. Such cases may have tumour of

any size, skin fixation complete or ulceration not exceeding 3 cm

in diameter, peau d'orange present in tumour area only, pectoral

muscle fixation complete or incomplete. Stage III patients which

were excluded were cases with skin involvement wide of tumour or

ulceration greater than 3 cm, peau d'orange wide of tumour, chest

wall fixation present, homolateral axillary nodes fixed to each other

or to adjacent structures, oedema of the arm, homolateral supra¬

clavicular/
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clavicular or infraclavicular nodes movable or fixed. All Stage

IV patients were excluded. These are in fact patients with distant

metastasis.

Apart from the above, certain other patients were excluded

from the trial:-

(a) Previous treatment for carcinoma of the breast.

(b) Bilateral breast carcinoma

(c) Any other malignancy.

(d) Breast carcinoma having arisen during or presenting in association

with pregnancy or lactation.

(e) Previous bilateral ovariectomy or pelvic irradiation

(f) Peripheral vascular disease of the upper limb.

(g) Certain tumours in axillary tail unsuitable for treatment by radio¬

therapy because of position.

Patients with advanced disease are usually subjected to high

risks under operation. On ethical grounds this entails the exclusion

of all such patients from the arms of the trial. For scientific

reasons a few conditions in this respect are of importance. Advanced

patients have often short survival times due to external factors and thus

their distribution can mask the treatment survival patterns. The

number of such patients is often small and an unbalanced distribution of

these, patients can make the treatment comparisons controversial. There¬

fore in order to obtain more uniform groups of patients for the final

comparisons it is reasonable to exclude the advanced patients.

All/
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All elligible patients were further stratified according to

age and stage of the disease. Such criteria were taken to be the

minimum data necessary for a random allocation of patients into the

trial. Clinical stages form 3 strata (a) stage I, (b) stage II and

(c) stage III. Age is also categorised into three strata, (a) 35-44,

(b) 45-59 and (c) 60 - 69.

A randomisation office was set up and on receipt of name,

age and the stage of the disease at the initial examination from a

peripheral hospital, the units concerned were informed of the treatment

by telephone and by writing.

The benefits of a stratified allocation of treatments can

be maximised by an accurate assessment of the categories. Age seems

not to be a major problem since it is a single measurement in a

continuous scale. However stage is a collection of various infor¬

mations based on T, size and N, node staginq.

The M staging, presence of metastatic disease in this trial

reflects only a group of inelligible patients and it is important that

assessment of presence or absence of metastatic disease is very

accurate. In order to reduce the chances of including cases with

skeletal metastasis, it was stated in the protocol that X-rays of

chest and pelvis should be taken in all the cases included in the

trial. It stated further that if possible this should be done by

the surgical unit and films must be sent with the patients.

The/
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The total group of patients who were randomised by this

procedure included approximately 50% of patients found at the time of

operation to have benign breast disease. These patients were excluded

from the trial for all purposes. As we will point out later, this

procedure resulted in the allocation of unequal numbers of patients for

each comparable strata of the treatment arm. However the final imbal¬

ance in terms of the number of the malignant patients is not of practi¬

cal importance.

6.3 Recording of Information.

A general procedure was adopted so that information on the

patients could be standardised and so processed by a computer. However

it was noted in the last review of the data performed in 1981 that

certain concepts and categories defined by the protocol were not in

accord with more recent practice. Most of these changes did not

create a major problem of interpretation. The major source of

inconsistency among the changing definitions seemed to be concepts

related to the recurrence of the disease. In fact in the original

protocol there was no mention of the definition of recurrence of the

disease, although in the data forms space was allocated to recording

of such information.

Basically there were 4 standard forms available for processing

Form 1 - the Initial Examination form, Figure (6.3.1)

Form 2 - The Primary Treatment form , Figure (6.3.2)

Form 3 ■- The Anniversary Record form, Figure (6.3.3)

Form 4 - The Pathology Report form, Figure (6.3.4)
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INITIAL EXAMINATION

Serial Number

279

SURNAME

GIVEN NAMES

ADDRESS

COUNTY

UNIT _ SURGEON

MARITAL STATE - Enter M or S in box

DATE OF BIRTH - Enter day 01 to 31, month 01 to 12,
and last two digits of year.

Day Month Y ear

(AGE:- )

MENSTRUAL STATE

Premenopausal —

Menopausal —

Post-menopausal —

AGE AT MENOPAUSE (years last birthday)

HISTORY AND CLINICAL FINDINGS

DATE FIRST SYMPTOM OR SIGN NOTICED

Day Month Year

PRIMARY TUMOUR

SIDE - Enter R or L

SITE
Medial half only
Lateral half only
Central
Both halves
Whole breast
Unknown or other

SIZE — greatest diameter in cm.

TMN CATEGORIES

T — enter appropriate number

N — enter appropriate number

ZJ

CLINICAL STAGE - E nter appropriate number
If tumour is STAGE III:

(a) State SKIN INVOLVEMENT (T1, 2 or 3)

(b) State PECTORAL MUSCLE INVOLVEMENT
(T1 or 3)

SELECTED TREATMENT OPTION

Fntor appropriate code — R1, R2, 51 or S2
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FORM 2

PRIMARY TREATMENT

Serial Number

SURNAME

GIVEN NAMES

ADDRESS

PRIMARY TREATMENT

Day Month Ye ar

Date of first treatment

SURGERY (enter 0 if NO and 1 if YES for each item below)

Simple mastectomy

Node or nodes removed

Part of pectoral fascia removed

Part of pectoral muscle removed

W
Radical mastectory

Closure without skin graft

Closure with skin graft

DAYS IN HOSPITAL

RADIOTHERAPY - enter 0 if NO, 1 if YES

SUPPLEMENTARY TREATMENT

Min. Dose (enter rads)

Max. Dose (enter rads)

Time (weeks)

If none — enter 0
If ovariectomy - enter 1
If ovarian radiation — enter 2

If ovarian radiation

Completed — enter )
Incomplete — enter 2

□
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ANNIVERSARY RECORD Serial Number

SURNAME

GIVEN NAMES

ADDRESS

Anniversary year

281

.ATE COMPLICATIONS
Enter 0 if NO,

1 if YES
in each case

( Oedema of arm

( Limitation of shoulder movement
( Other late complications

Specify

LOCAL RECURRENCE

Date of first evidence of local recurrence (if in this anniversary year)

Enter 0 if NO,
1 if YES

for each item

( SITE 01 Chest wall
( 02 Axilla
( 03 Supraclavicular fossa
( 04 Internal mammary node

Enter number (above) of first site of recurrence if it occurred in this anniversary year.
(If more than one site observed simul laneously enter 05.) Otherwise enter 00.

DISTANT METASTASIS

Date of first evidence of distant metastasis (if in this anniversary year)
Enter 0 if NO,

1 if YES
for each item

( SITE 06 Skeleton
( 07 Lung
( 08 Pleural effusion
( 09 Other

Specify
Enter number (above) of first site of recurrence if it occurred in this anniversary year.

(If more than one site observed simultaneously enter 10.) Otherwise enter 00.

SECONDARY TREATMENT (commenced in this anniversary year)

( Surgical excision of metastases
( Radiotherapy
( Hormone therapy (oestrogens, androgens or steroids)
( Endocrine surgery (oophorectomy, adrenalectomy, hypophysectomy)
( Cancer chemotherapy
( Other

Specify

Enter 0 if NO,
1 if YES

for each item

DEATH during this anniversary year (Enter 0 if NO, 1 if YES)

If YES: Date of death
CAUSE OF DEATH

If other cause was:

If carcinoma of breast
If other cause but recurrence of breast

carcinoma present
If other cause but no evidence of recurrence

of breast carcinoma

Complication of primary treatment
Complication of secondary treatment
Other primary neoplasm
Other intercurrent condition

enter 1 )
enter 2 )

)
enter 3 )

)

enter 1
enter 2
enter 3
enter 4

Specify

Month Year

Month Year

I

Month Year

I

(If due primarily to carcinoma of breast enter 0.)
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PATHOLOGY
282

Serial Number

SURNAME

GIVEN NAMES

ADDRESS

.ABORATORY

PRIMARY TUMOUR

Care ;noma — 0

Sarcoma; specify — 1
Non Malignant** — 2

>ize — greatest diameter in cm.
* N.S. - XX

Descriptive

Scirrhous - 0 Paget's - 6
Comedo - 1 Other; specify - 7

Papil lary - 2 More than one - 8

Medullary - 3 * N.S. - X
Mucoid - 4 /N.A. - Y

Squamous - 5

Differentiation

Well Differentiated — 0

Moderately Differentiated — 1
Poorly Differentiated — 2
Anaplastic — 3
N.S. - X
N.A. - Y

Type

Pleomorphic
Large CelI
Small Cell
Spheroidal
Duct Cell
N.S.
N.A.

- 0
- 1
- 2
- 3
- 4
- X
- Y

No intraduct tumour noted - 0
Intraduct tumour present — I
Introduct tumour alone - 2
N.S. - X
N.A. - Y
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Form 1 provides the necessary information used by the

surgeons to make the initial decisions regarding eligibility and the

stratification of the patients. On this form all the information re¬

garding staging is placed. Also site of the disease is recorded.

At the end of this form the treatment that is allocated is recorded.

The treatment categories R1, R2, S1, S2 include a random division of both

the radical mastectomy group and the simple mastectomy plus radiotherapy

group into subgroups. At the time of trial design, many of the

currently available statistical techniques were unknown, and the

initial intention for the design of these subgroups was to allow some

crude estimation of the effect of randomisation. These subgroups are

ignored in this thesis.

Form 2, primary treatment form: This form records the basic

data necessary to categorise patients on the treatments administered and

also allows possibility of checking any violations from the allocated

treatments of the protocol. It is important to stress that although

this trial was initiated at an early time with respect ro randomosed

trials, the concept of standardised treatment is clear and the inform¬

ation that was collected for assessing the diversity in terms of

surgery and radiotherapy indicates good conformity with the protocol.

Form 3, Anniversary Record; all follow-up information was

envisaged to be recorded on this form. Initially the major concern on

the follow-up information in the protocol was that of devising a

procedure by which all patients may be seen at a specific follow-up

clinic, However it was requested that on radiotherapy case records

information/
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information on oedema of the arm, limitations of the shoulder movement

chest pain and dyspnea due to post-irradiation pulmonary fibrosis

and pos.t-irradication skin atrophy should be recorded, for the purpose

of a retrospective assessment of their occurrence. On the actual

diagnosis of recurrence of disease it was requested that information

should be provided for site, date of appearance of metastasis and the

subsequent treatment. Finally on the anniversary form the cause and

time of death is also recorded.

Form 4, pathology report form; this form keeps the

information on size of tumour and the number of nodes found to be

involved.

Initially 1099 patients were randomised according to one

of the two trial options. Of these number 512 were found to have

benign disease and so were withdrawn and so thereafter no data was

collected on them for the purpose of the trial. The remaining 587

who had histological proof of carcinoma, were formed of 273 patients

treated by simple mastectomy and X-ray therapy and 288 patients

treated by radical surgery and 26 ineligibles.

In an initial analysis of the data, 87 cases who had breast

cancer were withdrawn for reasons of violations of the protocol. Such

violations included - case not belonging to proposed protocol population,

case having ineligible form of malignancy and protocol violation due

to inappropriate treatment. Decisions in regard to trial violation

were made by a trial committee and it was decided to exclude all such

cases from the final analysis. However in a review analysis bf this

data/
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data some of the follow-up concepts were altered and the number of

eligible patients for analysis was increased to 273 for simple mastectomy

and radiotherapy and 288 for radical mastectomy. The main reason for

this increase in the numbers of eligible patients for analysis was

the introduction of a policy of comparison of patients according to

the treatment allocated rather than the treatment performed. Table

(6.3.1) gives details of the relevant reasons for the exclusion or

inclusion of the original deviants and other cases.

Another area that at the time of the review of the

follow-up data implied slight changes in the form of concepts adopted

was in dealing with the assessment of response due to the treatment

following the recurrence of the disease and general concepts such as

local and metastatic disease. For this particular trial it is import¬

ant to consider response to the treatment in terms of the delay in

the development of the local disease. Similarly it is of interest to

consider disease free survival and the time to metastatic recurrence.

In terms of times after the recurrence of the diseasa it is generally

expected that the treatment will not effect the survival of the patients

a great deal after the detection of metastatic recurrence.

For the general recurrence categories the position of

contralateral disease classification had been reviewed. In the past all

secondary tumours were considered to be a metastatic recurrence, however

with the new review some had been classed as new malignancies. There¬

fore it seems important that for future collection of any trial data,

allowance must be made for the possibility of changing definitions.

It seems that in general all categorisation relating to time such as

response/
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response or a duration of an interval, will eventually be indexed

in more detail in terras of length of duration, extent and form. It

may well be the case that metastatic disease will eventually be looked

at in terms of extent and duration. This is going to become more

common as multiple failure analysis becomes more common. In the past

success or failure of surgical treatment has been assessed mainly by

survival. With the new drug treatments assessment of response to

disease and the detection of recurrence is playing an increasingly

important role.

In the last section the data was described. In so far as

prognostic information is concerned, the data is held on the initial

examination form. Later in this chapter cross tabulations of different

prognostic factors will be presented. It must be noted for some of

the factors with a continuous scale,it may be desirable to categorise

such variables. Age of the patient is such an example by which it is

possible to split the population into different groups and then study

survival distribution for each category.

For the events after treatment that may contribute to the

understanding of the disease treatment process, there are 4 major events

that we consider as important. These are local recurrence, metastatic

recurrence, death and the last follow-up date. Clearly these events

can produce in combination a large number of measurable periods. Using

These periods it may be useful to study time to a particular stage

of the development of the disease or it may be possible to stratify sub¬

groups of patients according to some prior event. For example, one

can stratify the population according to time to local disease and

observe/
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observe the distribution of time from local disease to death.

Treatments according to option drawn. RMX SMX+XRT Total

Treatment according to protocol 257 243 500

Correct treatment minor option modification* 6 14 20

Randomised therapy deviations.*

Immediate XRT given though not indicated 4 1 5

Surgery only - died before XRT 04 4

Incorrect oophorectomy 7 9 16

Wrong surgery 14 2 16

Entered for this analysis. 288 273 561

Legitimate withdrawals after randomisation

Benign disease 277 235 512

Ineligible but malgnant 13 13 26

Total patients randomised 578 521 1099

* A detailed survival study according to malignant withdrawals and

exclusions will deviate from the general course of study. -In

terms of conclusions they do not effect the overall results.

Table (6.3.1)
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A general discussion on the methods of construction of the

likelihood functions for a stratified analysis of the data is given

in chapter 7. Figure (6.3.5) represents a possible path for a

progression of disease described in the above paragraph

Figure (6.3.5)

In the first instance for the analysis of the data we consider cross

tabulations of various categories. Then we study the failure

distribution of the population in terms of survival times. For the

estimation of the important prognostic factors we use Cox's proportional

hazard model later in this chapter. In chapter 7 we consider time

dependency of various prognostic indicators with different functional

forms of time dependency. Using the same data later in chapter 7 we

consider the effect of multiple events present in the time scale with

the use of sem-markov hazard models.

6.4 Initial analysis with cross tabulation tables.

A good preliminary study of the data can be performed by

a set of cross tabulations. The value of the Pearson chi-square can

indicate a possible association between the distributions of the two

factors. At this stage we are only trying to assess whether the

data is distributed according to expectations of the previous studies.

Appendix A presents important cross tabulations for the prognostic fact¬

ors/
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ors. The data is described by the following factors.

1. Menopausal status; premenopausal, menopausal, post menopausal.

2. Side of the lexion; right, left.

3. Site of the lesion: Medical half only, lateral half only, central

both halves, whole breast.

4. Size stage: T1, T2, T3.

5. Node stage: NO, N1.

6. State stage: SI, S2, S3. (stratifying factor)

7. Skin involvement: not relevant. T1, T2, T3.

8. Pectoral muscle involvement. Not relevant, T1, T3.

9. Treatment option: Radical mastectomy, Simple mastectomy and Radio¬

therapy .

10. Disease status: Local & metastatic recurrence, Metastatic recurrence,

Local recurrence, None.

11. State: alive, dead.

Most of the above factors (1 to 6) are related to prognostic state of

the patient. Skin and pectoral muscle involvement refer to extent and

site of early developments of the disease. Disease status and state

filially refer to indicators of the progression of the disease at time

of last follow-up. The option which defines the treatment allocated is

also looked at for assessing distribution of the prognostic factors.

The first tables we will consider are the set (A.1) within

Appendix A. As may be expected the largest number of patients are post

menopausal (3.95). There are 38 menopausal and 163 pre-menopausal

patients. When we consider the distribution of the 3 categories of

menopausal states against other prognostic factors there are no statis¬

tically significant associations (except for age). The most signifi-

2
cant value is for node status, with X = 3.0, 2 d.f. giving the

probability/
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probability value of 0.22, which is not significant but indicates more

... 2
node palpability with pre menopausal patients. X = 4.9, 4 d.f.and

p = 0.29 is obtained for T stage, indicating smaller tumours for pre

menopausal patients and larger tumours for post menopausal patients.

There are 284 right side main lesions and 276 left side lesions.

Side of the lesion is not an important factor in defining a patient even

when we consider site of the main lesion categories. The most signifi-

2
cant association with side is for T stage with X = 3.3, 2 d.f. and

p = 0.18, which is not significant. Site of the lesion has been

categorised in a way that basically indicates the size of the tumour.

There are 286 patients with their lateral half involved, 183 with medial

half involved and 67, 22 and 2 with central, both or whole breast invol¬

ved by the tumour respectively.

2
The T stage in fact give X =17.7, 8 d.f. and p =0.02

and implies T3 (larger tumours) with central and both halves involved.

Smaller tumours correspond with the medial half or lateral half alone

involved.

2
Node status gives X = 7.6,- 4 d.f., p = 0.10 giving more

node positive patients with central or both halves involved. (or perhaps

basically with larger tumours)

Stage of the disease was defined to be a combination of

the T stage and the Node status and the following tables clearly

indicate this:-
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Node State NO

N1

Total

T. Stage

T1

25

21

56

T2

273

124

392

T3

67

40

107

Total

375

185

560

S Stage

S1 S2 S3 Total

T stage T1 5 17 4 56

T2 272 124 1 397

T3 0 0 107 107

Total 307 141 112 560

S Stage

Node state S1 S2 S3 Total

NO 307 0 68 375

N1 0 141 44 185

Total 307 141 112 560

2
T stage with node state cross tabulation gives a X = 2.0 with 2 d.f.

and p = .37

As presented in tables (a.1), stage is significantly associated with

site. Stage 1 patients (good prognosis) more commonly have medial

tumours or laterals half alone involved, which reflects the previously

mentioned association with size.

Now/
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Now we will consider the distribution of the prognostic

indicators with the two arms of the trial. It must be reiterated

that treatments were allocated before malignancy was diagnosed and

therefore some of the patients were later removed for trial purposes

since they had benign tumours. The total number of radical surgery

patients is 288 and the simple mastectomy and radiotherapy patients

are 272. The treatment options were also stratified according to age

and the stage of the disease, but again the benign disease exclusions

could affect this balance. Table (6.5.1) in fact shows that in most

respects a good balance between the treatment groups resulted from the

randomisation, with only slightly more T1 patients being allocated to

the radical mastectomy group.

The next set of categories which were studied by the cross

tabulations were the disease progress indicators and the spread of the

initial tumour. In here we must emphasise that the disease indicator

such as progression of the disease and final state of the patients will

be studied more extensively in the next chapter. The present method

of considering the cross tabulations does not allow an independent

2
survival and censoring analysis and the X values reported should not

be interpreted as representing value of a treatment at this stage.

These tables are presented within section (A.2) of the Appendix A.

Menopausal status shows a degree of association with the

spread of the initial tumour indicators, in terms of skin and pectoral

muscle involvement. The pre-menopausal patients have a lower level

2
of skin and pectoral muscle involvement, X = 17.5, 8 d.f.p=0.02

at/
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2
at X = 11.1, 6 d.f., p = 0.08 respectively. The status of the

2
patients at the end of the study indicates X = 25.8 with 2 d.f. and

p< 0.0001 giving much better survival for the younger patients.

Surprisingly the disease recurrence does not reach a significance with

the present method, giving = = 0.11 with less local or metastatic

disease among younger patients.

Side of the lesion does not play an important role for the

final or initial disease progress. The highest value for the side is

2
by skin involvement, X = 3.6, 4 d.f., p =.46. Categorisation by site

however plays an important role for the pectoral and skin involvement.

2 2
X = 27.8, 16 d.f., p = 0.03 and X = 24.4, 12 d.f., p = 0.02 respect¬

ively for skin and pectoral muscle involvement. As we mentioned

previously site is a reflection of the size of the tumour and in

general medial or lateral halves involved produce less skin and pectoral

involvement than other sites. The same pattern appears with the disease

progression. More local or metastatic recurrence is noticed with both

2
halves or central area tumours, X = 21.0, 12d.f . p = 0.06. Follow¬

ing the above, lateral and medial half only, produce best number of

2
survivors X = 8.9, 4 d.f., p = 0.06.

T1 patients described earlier are a better prognostic

group. By definition they have less initial skin and pectoral muscle

involvement and finally less local or metastatic recurrence and there¬

fore are better survivors.

T stage of the Tumour
d.f. p

Final disease condition 19.74 6 .0031

Final survival status 14.14 2 .0009
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Node status does not produce any association with skin and

pectoral muscle involvement. However with the node negative patients

2
there is less recurrence of the disease at the end of the study, X =22.7

3 d.f., p<0.0001. Further node negative patients are better survivors

than the node positive patients

S1 cases are taken to be a good prognosis group and Stage 2

and 3 respectively worse. This is true both foh the survival number and

for the number of recurrences. Stage 1 groups give the highest

2
proportion of disease free survivors X =27.6, 6 d.f., p= 0.0001,

2
and a better number of final survivors, X = 7.05, 2 d.f., p = 0.03.

For the pectoral and skin involvement there is a defined relation

between S stage and involvement

In the above discussion prognostic factors that indicate a

significant skin involvement also indicate a pectoral muscle involvement.

The two are very closely related and often coincide. However pectoral

skin involvement does not have a significant association with disease

2 2
recurrence, X = 13.8, 12, d.f., p = .31 and X = 12.1, 9 d.f., p = 0.21

respectively. Nor do skin and pectoral involvement show a significant

2
association with the status at the end of the study, X = 4.29, 4 d.f.,

2
p = 0.36 and X = 5.51, 3 d.f., and p = 0.13 respectively

Disease recurrence and final status of the patients are very

closely related as expected with metastatic recurrence producing a

larger portion of dead cases. Treatment option and disease progress

will be studied in later sections. In so far as the numSerical distrib¬

utions are concerned, treatment option is not associated with the skin

pectoral/



295

pectoral involvement or disease progress. Disease recurrence and option
2

give X = 1.83 with 3 d.f. and p = .60. However final status of the

2
patients seems to be related to option, X = 8.2, 1 d.f., p.= 0.004.

So far the description of the data has been concerned with

sets of categorical variables. The picture emerging is that T stage,

S stage, menopausal status, node involvement and treatment options

are factors producing the major associations with the categories of

final disease status and survival status. Menopausal, T stage and

S stage are related in effect to two important continuous variables

namely age for menopausal status and size for T stage and therefore

S stage. It seems proper to look at the distribution of these

variables. Table (6.4.1) gives the means and the standard deviations

of age and size, for all the 561 cases* menopausal status is one factor

that is of course related to age. The distributions according to

the table clearly indicate this. The size of the tumour is similarly

related to T stage, and this is clearly shown by the table.



Pre menopausal

Menopausal

Post menopausal

Right side

Left side

Site medial

Site lateral

Site central

Site both

T1

T2

T3

N0

N1

S1

S 2

S3

Skin involvement TO

T1

T2

T3

AGE

Mean s.d

44.18 4.28

48.62 3.65

59.91 5.85

54.27 9.19

54.87 8.73

55.05 8.62

54.08 9.23

55.30 8.28

55.41 10.26

51.44 9.17

54.77 8.93

55.45 8.73

55.42 8.93

52.84 8.78

55.22 9.03

52.51 8.76

55.38 8.70

51.72 9.88

50.47 8.30

56.12 8.78

56.21 8.50

296

SIZE

mean s.d. n

3.45 1.48 163

3.87 1.49 38

3.62 1.40 359

3.71 1.44 284

3.49 1.41 276

3.46 1.25 183

3.51 1.39 286

3.11 1.57 67

4.£8 1.86 22

1.64 .70 56

3.51 1.01 397

4.95 1.68 107

3.52 1.38 375

3.75 1.54 186

3.26 1.14 307

3.39 1.080 141

4.79 1.85 112

3.33 .58 2

4.83 2.48 12

4.91 1.89 70

4.028 1.50 36
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AGE SIZE

Mean s.d. Mean s.d. n

Not involved 54.31 9.00 3.32 1.15 440

Pectoral muscle involvement Tfl 57.73 7.70 3.75 1.98 14

T1 54.94 8.01 5.21 1.84 63

T3 55.97 8.91 4.05 1.51 43

Not involved 54.32 9.03 3.32 1.17 440

Radical MX 54.18 0.12 3.59 1.49 288

Simple MX + XRT 54.97 8.77 3.60 1.38 273

L + M Recurrence 54.47 8.74 3.98 1.44 114

M Recurrence 55.40 8.21 3.89 1.45 141

L Recurrence 55.62 7.62 3.81 1.28 16

No Recurrence 54.14 9.43 3.29 1.37 290

Alive 52.59 8.88 3.31 1.39 265

Dead 56.33 8.66 3.85 1.43 296

TABLE (6.4.1)
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At randomisation the patients were stratified according to

age and clinical stage of the disease. The table (6.5.1) indicates

a balanced distribution of patients to the treatment options within

each stratum. A comparison of the number of patients allocated to

each treatment by the year of entry, also gives an almost uniform

pattern of the accrual of the patients. There is a slight deviation

for some years. However the reason is that the treatments were

allocated prior to histology and so some patients were allocacted a

treatment while they were non malignant and so had to be excluded from

the trial.

An unstratified comparison of the survival of radical mastect-

2
omy patients and simple mastectomy patients gives a log rank, X value

of 10.04 with 1 d.f. which is highly signficant (p = 0.0015). Figure

(2.5.1) gives a plot of the Kaplan and Meier survival probabilities of

the two crude survival times.

Further for each strata a separate analysis of the survival

times is performed. Certain of the subgroups indicate a highly

significant difference between the survival probabilities.

Table (2.5.2) refers to a summary of the analysis of the various strata

using the logrank test. Generally speaking the treatment effect is

consistent for the various subgroups with the most significant differ¬

ences being indicated by the subgroups with larger number of patients.

One interesting pattern that emerges, however, from the survival

distributions is indicated in the survival plots of node status,

Age/
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age, T stage and menopausal status with respect to survival time,

Figures (2.5.1) to (2.5.12). The crude hazard rates of treatments

showed proportional rates of failure for the two groups, Figure (2.5.2).

This pattern is not so clear once we look at the subgroups of T stage

age and menstrual status. The survival patterns can be explored

further by a plot of the hazard rates. Clearly the plots indicate

that depending on the time of observations of each subgroup the rate

of failure is slightly different. At this stage it is not possible

to explore this point further and assess the sifnificance of such a

hypothesis, but only to observe it. In later chapters more relevant

questions with more advanced statistical methods may be asked. These

methods will be based on the validation of the proportional hazard

assumption. Meanwhile the methods of the present chapter are

based on the assumption of proportional hazards. One important

point to note is that we have so far only stated slight differences

in the significance levels of the different parametric survival

families and the various non-parametric tests, as fitted to our data.

We have not considered tests of the model assumptions in order to

attach a significance level to the model differences.

The analysis so far, presented in table (2.5.2) indicates a

poorer survival for all patients treated with simple mastectomy and

radiotherapy. A categorisation according to stage indicates a

significant difference in the same direction for the stage 1 patients

and not a major difference between radical mastectomy and simple

mastectomy and radiotherapy, for the stage two and stage three patients.

By the age categorisation indicators, patients less than 50 year old

do not show a significant difference between the two treatments, while

older/



ENTRY R x Mx S Mx + XRT Total

1964 43 41 84

1965 61 48 109

1966 41 60 101
I

1967 36 36 72

1968 38 30 68

1969 33 35 68

1970 28 21 49

1971 82 10

288 273 561

Age 54.2 - 9.2 55 - 8.8 54.6 ^ 9.0

Size 3.6 - 1.5 3.6 - 1.3 3.6 - 1.4

T1 37 19 56

T2 198 199 397

T3 53 54 107

N0 199 179 378

N1 88 93 181

51 164 143 307

52 67 74 141

53 57 55 112

Pre 89 74 163

Meno 21 17 38

Post 178 181 359

TABLE (6.5.1)
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older patients (greater than 50 years old) seem to benefit from a

radical surgery treatment. In so far as menopausal status is concern¬

ed , post menopausal patients benefit from a radical mastectomy treat¬

ment/ Node positive patients with radical mastectomy show an improved

survival while node negative patients treated by radical mastectomy

or simple mastectomy and radiotherapy show similar survival patterns.

6.6 Analysis of the data using the Cox's proportional hazards model.

From the previous section there are certain points that we notice.

One is that for certain covariates the relative hazard rate is dependent

not only on the covariate understudy but also the time at which the

covariate is looked at. That is there seems to be a suggestion that

the effects of some covariates are not uniformly the same for the

subgroups but are time dependent. There is also a slight form of

inconsistency in the manner in which treatments effect patients with

different prognostic status.

The effects described above are basically different forms of

interaction that may be present in our data. The first set describes

a possible interaction between time and a covariate while the latter

describes an interaction between the two covariates. Although we have

intoduced the idea of interaction in here we are not implying that

the interaction is statistically significant and the difference between

the significance levels in various strata may be attributed purely to

the sample sizes of each subgroup. It is a point we will examine

in later parts of this section in more detail.

The/
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The model we are concerned with is of the form

x(t1z) = xQ(t) Exp ( e1 z1 + e2 z2 +e 12f(z1-z2)) <6-6-1)

The above is a 3 parameter model representing a Z^, Z2 covariate
interaction. Alternatively a time dependent covariate model may

be represented by

X(t1Z) = XQ(t) Exp ( S1Z1 + 32f(Z1 , t) + . . . ) (6.6.2)

Depending on the form of the variable under study, the number of

covariates will vary and we may end up with more than 3 and 2 covari-

ates in the above models respectively. For example T stage represents

size of the tumour and is composed of 3 categories. For a represent¬

ation of such a variable we require two variables say Z^ and Z2 giving

Z1 = 0, z2 = 0 For T1

Z1 = 1 ' Z2 = 0 For T2
and Z1 = 0, Z2 = 1 For- T3

Using the above parameterisations we can test the significance of

T stage values as a prognostic indicator without making assumptions

on the order level of the categories. An alternative approach would

be to allow a variable Z with values -1, 0 and 1, to indicate a linear

categorisation of the T stage values.

In general the numerical values attached to the quantit¬

ative covariates should not be a major problem. For the example of

T staging there may be a slight loss of efficiency with the latter

approach if there is a difference in the pattern of the influence of

the size. On the other hand using two covariates for removing the

effects of size in the former description with Z^ and Z2 is less
convenient and time consuming if the effect of size is uniformly the

same/'
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same on survival. For a broad purpose of exploratory analysis

of the data thoughtful parameterisation allows the possibility of

study of a large number of independent variables without introducing

a .large number of covariates.

Initially we are only interested in the main effects of

the described parameters in exploring the variability of the failure

time from randomisation to time of death. However later we will study

other failure times and intervening events. The method we adopt to

explore the data is in some ways similar to what is usually termed as

a stepwise regression method, by which certain levels of introducing

variables is adopted for inserting covsriate estimates into the model.

We set the limits to be probability value of 0.100 for entry and

probability level of 0.150 for removal. At each step we estimate

all relevant parameters and consider the parameters that are significant

and introduce only the most significant into the model. At each stage,

if a parameter estimator that is already in the model becomes non

significant (because of its association with variables added to the

model), we will remove the newly non-significant effects. We will

deviate from the above approach in our exploratory approach by

considering certain strata variabilities separately. Further unlike

the initial stages where we will study the parameters in relation to

main effects of covariate only, in the next stage we will consider models

of the form with main effects and a corresponding prognostic and treat¬

ment interaction term. One point to note is that at any time we mention

size and age covariates in this chapter, we will use a normalised trans¬

formation of the effect by letting,

Z. . * (Z. . - mean (Z .)) / S.D. (Z .)
13 13 3 3

where/
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where Z,. refers to a covariate for a patient, Mean (Z.) and S.D.fZ.)
13 3 3

refer to mean and standard deviation of a particular covariate for

all patients.

In the first stage of the stepwise procedure both age and

menopausal status are highly significant (p < 0.0001), with the

menopausal status being a slightly stronger prognostic factor than

the actual age parameterisation.

We thus continue with a categorised analysis of the relative

risks, due to age. In stead of considering aqe as a continuous variable

we categorise the scale into younger than 50 years of age and older than

50 years. The value of the 3 relative risks are then noted. As we

pointed out the relative risk value is signfiicant at a probability

value p <0.0001,. Now in a comparison of the age effect tested by

the two methods, the age effect as a continuous variable gives a 6

value of 0.3198 and a standard error of 0.0798, while as a categorised

variable almost coinciding with the sectors of menopausal status it

presents a 8 value of 0.3321 and the standard error of 0.0745. We

perform an analysis by stratifying the data into premenopausal and post¬

menopausal groups. The two groups are then analysed by assessing the

age effect on them separately. The analysis indicates that the age

effect reduces to insignificant levels. Later we will consider the

age effect with time dependent parameters so that rather than

categorise the age variability we may obtain a similarly flexible

indication by a parametric function of the age effect.

Following/
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Following the age and menopausal status of the patients the

most direct prognostic factors are the actual size (p <0.0001), T stage

(p = .0004) Node status (p = .0007), treatment option (p = .0016) and

S stage (p = .0024). Clearly treatment is a significant effect and

is of special importance to our study. At this stage we continue

with the stepwise regression as described. Later we will consider

forcing the treatment effect in the first step so that we may check

consistancy of the model in a situation where treatment effect has

a priori precedence. Site of the disease seems to play a marginal

role only due to the lateral half involvement (p = .11)

Before dispensing totally with the various sites of disease

indicators, we consider a stratified analysis for each of the different

sites of the initial tumour, we perform a stratified analysis based on

each single site as defined in the section 6.4, and the set of

covariate effects that have been considered significant up until

now. Without presenting too much detail once again age and

menopausal status play the most important role in defining the

survival rates. The relative risk rates are closely related for

each of the strata and there is an indication that the age and

menstrual status effects are consistently in a similar direction

within the various sites.

The rest of the covariates we have been interested in

at this stage for this particular failure time do not. reach a signifi¬

cant level. The covariates that we will ignore for the rest of the

analysis of this particular event are, side of. the initial lesion,

other/
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other sites of lesion and patient conception of the time from

first noticing the tumour to the time of the operation.

The most direct prognostic indicator is the menopausal status

of the patient. We introduce this variable into the general model

of the Cox's approach.

0 = 0.03558 S.E. = 0.0720
men

with this model the pattern of the significance of the remaining

prognostic factor changes to some extent. Actual size remains the

most important factor in describing the remaining variability in

survival (P< 0.0001). Node status becomes more significant

(P = .0002) than the T categorisation of the size of tumour (P = .0008).

The S stage is still significant at (P = .0018) and finally for this

stage of the stepwise regression, the treatment option produces a

significant contribution with P = 0.0029.

The menopausal variable clearly removes the contributions

of actual age in explaining survival totally, with the significance

value reduced to, P = .42. The premenopausal patients are generally

better survivors than the menopausal patients or post-menopausal patients.

We can also state that larger tumours are an indication of

a worst survival. A stratified analysis based on node status

indicates that this statement is true for both node negative and pos¬

itive patients. In terms of menopausal status a stratified analysis

of menopausal status with covariate analysis of size indicates that

the/
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the larger size of the initial tumour is consistently an indicator

of bad prognosis, for both pre and post menopausal patients, with the

effect of size being more significant among younger patients with

P = 0.004 and P = 0.021 as the significance level of size in premeno¬

pausal and post-menopausal patients respectively. Similarly a covariate

analysis of node indicates that the node positive patients are worst

survivors. The effect is once again more significant among the pre¬

menopausal group, with the significance levels P = 0.0007 and P = 0.0011

for the pre and post menopausal groups. Thus we may summarise that the

size and node are important contributors to the various survival patterns.

However there is a suggestion that their effect is more significant

among the younger patients. It seems that by introducing more factors

into the model apart from the menopausal status we can still define the

survival time more precisely. The most effective prognostic factor

after introducing menopausal status was the actual size. Therefore it

is the next term to be introduced into the model. The previous indic¬

ations by the stratified analysis also are suggesting that size is

having a consistently similar effect in sense of direction for both

pre and post menopausal groups.

6 = 0.3643 S.E. 0.0723
men

6 . = 0.2079 S.E. = 0.0402
size

The above coefficients are positive and therefore indicate that smaller

tumours as may be expected are better survivors. It is rather interest¬

ing to note that among age and menopausal status, the more important

contribution was the menopausal status which is a categorised variable.

However, in the case of the size of the tumour some efficiency is lost

by categorisation of size into different T stage values. After

introducing/



introducing size of the initial tumour, significant value of T stage

reduces to P = 0.60. Also the stage significance reduces to P = 0.25

The only covariates which still show significant levels are node status

and treatment options with P = 0.0004 and P = 0.0017 respectively.

In the next step we introduce the node status covariate

6 = 0.3864 S.E. 0.0729
men

6 . = 0.1981 S.E. = 0.0399
size

8„ = 0.4315 S.E. = 0.1205N

Node negative patients are a better prognostic group than the node

positive patients. After introducing the 3 major prognostic factors

namely, menopausal status, actual size of the tumour and node histology

the only factor remaining that still shows a significant contribution

to survival is the trial option, P = 0.0017. With stratified analysis

we study the two effects that do not show any significance, namely T

stage and the S stage of cases, to make sure that the reason for

this loss of significance is not due to the assumptions of the

proportional hazards. The T stage is only a function of the size and

this is reflected in the stratified analysis of T stage in the way

in which the variability in survival due to the size effect reduces

to insignificant levels. For menopausal status we obtain similar 8

estimators of .34, .38 and .39 on the relative risk factor within

T1, T2 and T3 strata respectively.

By the definition of the S stage, node status has a direct

role in defining the staging systems. We note that the 3 strata of

stage/
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stage give similar directions of association for the menopausal status

and size of the tumour in terms of survival time.

It is also important to note that the significance of different

prognostic factors generally vary with the introduction of different

terms into the model. This is due to their inter-relationship.

However, the significance of the treatment option becore introducing

any term in our model is P = 0.0016 and after introducing 4 terms the

significance is P = 0.0017 which is very close to the original value

reflecting the similarity of the treatment groups with respect to the

distribution of other covariates.

The coefficients of the model after the introduction of the

option indicators are:-

8 = 0.3847 S.E. = 0.0730
men

8 . = 0.2040 S.E. = 0.0401
size

^ = 0.4319 S.E. = 0.1206

t _ = 0.3656 S.E. = 0.1169
Option

The two treatment options are radical mastectomy and simple mastectomy

with radiotherapy, and the model indicates that patients may benefit

from radical mastectomy in terms of their survival.

We finally perform additional analysis in order to be certain

that the general final model is representative for the subgroups and

categories that it represents. The main aim would be to check on the

possibility of the extistence of smaller subgroups showing a pattern of

survival/
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survival rates which is different in direction to the general model.

We perform an analysis based on a stratified analysis of each category

of a covariate with respect to other covariates. At this stage we

ignore treatment option but later do formal tests on them. Altogether

there is a slight deviation based on the sample size of each covariate

set, however it is noted that the stratified analysis does not suggest

that there exists a subgroup with a significantly different suggestion

of prognostic value in the opposite direction to the general model.

Up until now in the study of the relative effects of the

prognostic factors we have introduced the. covariates according to their

level of significance. Study of the treatment option however is

the major objective of a trial. Now in the initial step of the

categorising of the patient population we introduce the treatment

option. Further for each main effect prognostic factor we introduce

a set of first order interaction covariates that act multiplicatively

between option and the other prognostic factors in terms of the model

(6.6.1). It is important to note that if our intention at this stage

was purely a study of the interaction effects, then we would have

continued with inserting interaction effects into the above 4 covariate

models. However as an alternative to the previous stepwise procedure,

we introduce the option effect in the first step to study behaviour

of the different models and also check the consistency of the final

model. We use a generalisation of the model (6.6.1) as,

\(t,z) = xQ (t) Exp ( s z + 62z2 + s12z z + . . .)

where £}
^ 2 is introduced for assessing an interaction between treatment

and/
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and a prognostic effect. The two variables size and age are continuous

and may be time dependent. We will deal with these models in Chapter 7.

In what follows in this section we will consider functional

forms of f(Z ^, Z^) from (6.6.1). In the case of binary categorisat¬
ion of a variable a functional form of Z^ = Z .j . Z2 is sufficient
(as we have used 0, 1 to indicate the two levels.) so long as enough

consideration has been given to ease of interpretation. In fact most

of the variables we will be considering are of the above binary form.

The continuous variables like age and size can also be transformed to

binary categorisations by considering the high and low levels of their
e

scale and independent dummy variables. Later in this chapter we will

consider continuous form of size and age variables. In these conditions

a continuous parametric representation may be useful. We will later

consider a possible functional form of age and size in the presence

of binary treatment effect. Namely models of the form

A(t, Z) - A0 (t) Exp ( 6,3, ♦ S2Z2 + 63Z3 ♦ ®22z2 +S33Z3 1
and

X(t,Z) = X Q (t) Exp (61Z1 + B2Z2 + 83Z3 + 64Z2Z3VZ2 + Z3 )

where Z1 refers to treatment, Z2 to age and Z3 to size.

Initially we consider categorised variables with binary

interaction effects, Z^2 = Z . Z^ for the different subgroups. We
introduce the effect of treatment option into the total sample. The

main effect of option is therefore represented in the relative risk

function by
6
option = 0.3677 S.E. = 0.1168
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Now the overall variance due to other prognostic main effects

increases and so their significance value is reduced. However their

relative significance does not change to the one prior to introducing

treatment option.

Menopausal status (P < 0.0001) and age (P <0.0001) are the

most important factors followed by size (P <0.0001) , T stage (P = 0.0008),

Node status (P = 0.0009), and S stage (P = 0.0044). Sites of the

tumour that have lateral half involvement are again only marginally

significant (P = 0.06). At this stage prior to introducing other

main effects is not possible to try to interpret the value of the

interaction effect parameters. It must be noted that interaction

effects prior to introduction of the main effects do often show a

significance, with a probability value slightly lower than that of

the corresponding main effects.

An explanantion is in order in regard to the value of such

interaction effects. The main reason being due to the fact that the

variability due to the main effect is not removed yet. We further note
<2.

that the significance of probability level of the interaction paramters

are lower than their main effects. The major variability is due to

the main effect of age at (P < 0.0001) and its interaction effect

P = 0.0021. In terms of S estimators of the relative risk function

we also note less significant values for the interaction effect while

the actual magnitude for the direction of the effect is always positive

and at a lower level. This pattern implies that the only type of

interaction effect that we may expect to find will have a positive

multiplicative/
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multiplicative effect.

Once again the major variability is due to age and its

interaction effect with 3 = 0.0042 and 3 = 0.0042 respectively,

closely followed by menstrual status main effect at 3 = 0.3492 and

its interaction effect 3 = 0.3022. It seems reasonable to add further

prognostic factors that show a significant probability value. We thus

introduce the main effects into the model one by one depending on

their relative significance at each stage. First we introduce meno¬

pausal status with option.

^option = 0.3475 S.E. = 0.1168

S
= 0.3492 S.E. = 0.0720

men.

By this covariate all variability due to age is again also explained.

The interaction effect for age option and menopausal option also become

insignificant. Size (P < 0.0001), N (P = 0.0002), T (P = 0.0014)

S(P = 0.0026) are all significatn. Site with lateral half tumours

also increase in significance (P = 0.028). Now we introduce the size

of the tumour.

3 = 0.3650 S.E. = 0.1169
option

3 = 0.3598 S.E. = 0.0723
men

3 . = 0.2045 S.E. = 0.0406
size

The only remaining factor that makes a significant contribution is

node histology. We also note that by introducing main effects of

the prognostic factors the interaction effects are also explained.

Hence finally we obtain the same models with the same prognostic factors

as/
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as the previous approach, since none of the interaction effects have

contributed substantially to the explanation.of the survival rates.

8 = 0.3847 S.E. = 0.0730
men

8 . = 0.2040 S.E. = 0.0401
size

6„ = 0.4319 S.E. = 0.1206
N

8 = 0.3656 S.E. = 0.1169
option

In the above discussions the general conclusion is that menopausal

status, Size of the initial tumour and node histology are the main

prognostic factors that define a survival time for a group of patients.

However, size with the T stage and menstrual status with age also

show a high level of dependence and introducing one factor generally

compensates for the information due to the other factors. The same

may be said for the stage of the disease. Stage is a combination of

the node and size categories. However it seems that a better assess¬

ment may be made by introducing node and size separately. In fact

on considering a model of the form with menstrual status, treatment

option and the effect of S stage represented by two covariate indicators

we obtain

men

8S1

8S 2

0.3921 S.E. = 0.0782

0.3952 S.E. = 0.0281

0.3161 S.E. = 0.9791

0.3721 S.E. = 0.1291
Option

There is not a major difference noted for the new option and meno¬

pausal status estimator. We further introduce 2 interaction effects

of option with 8 and 8 parameters and they do not reach
u I LD Z,

a/



a significant level. In terms of interpretation the previous

model was probably more straight forward than the present approach

since by the latter, one must always refer back to the interpre¬

tation of SI and S2, while the model of size and node give a clearer

interpretation.

Now we use a method which is alternative to the stepup proced

ure and is usually termed as a step down procedure. It is again a

study of the relative significance of eaah factor when other factors

are present. We begin with fitting a model to the data in which

all the prognostic factors have been introduced. In the consequent

steps we remove the effects one by one depending on the level of

significance, that the particular estimator contributes in regard

to defining the variability of the data. As before we will deviate

from the standard procedure however by looking at different strata

at each stage. In the stepdown procedure we will only consider the

main effects, since up until now there has not been a major inconsist

sncy in the direction of the effects. The probability levels we

adopt are again 0.100 for re-encry of a term previously removed and

0.150 for removal of an effect from the model. The main purpose in

using this approach is to check on the consistency of the final model

of the last section in being able to describe the variability in the

survival rates. Further by an extensive comparison of different

covariate effects we describe the improvements in the estimators of t.

treatment parameters and also the ease of interpretation for each

prognostic effect.

Finally the most relevant significant levels in the stepdown

procedure/
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procedure are the significance levels for the removal of effects from

the model (unlike the step-up method). As before the value of the

significance levels for each effect changes at each step.

The first model we consider is the full model containing all

covariate effects that are suspected to play a part in defining the

survival times. The following model is hence obtained.

men

side

site

0.3231 S.E. = .1138

0.0014 S.E. = 1183
t

0.9933 S.E. = .0731

S . = 0.1560 S.E. = .0508
size

8m = 0.3847 S.E. = .2311T

N

option

size

year

0.6381 S.E. = .1772

0.2510 S.E. = .1538

0.3787 S.E. = .1191

0.0077 S.E. = .0110

0.0008 S.E. = .0028

Now by reviewing each of the above terms from the model once again

we can assess the relative importance of each factor with the above

restrictions. Basically there is no inconsistency with the previous

approach and the model considers the same factors as important progno¬

stic indicators. However there are slight differences in the order

of their significance. Node histology is the most significant indicat¬

or (P = 0.0002) followed by option (P = 0.0014), size (P = 0.0016),

menopausal/
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menopausal status (P = 0.0045), T(P = 0.0867) and S(P = 0.0936).

The rest of the covariates are treated as factors contributing

insignificant levels. These factors are respectively, lateral half

involvement, age, symptom and side of the tumour. The value of the

important prognostic factor seems not to change if the insignificant

factors are removed one by one. However, value of the covariates for

each significant prognostic factor is slightly different and generally

the probability values are higher. The model we obtain after the
yvtTVx.

removal of the #hsignificant factor is -

men

size

N

option

0.3788 S.E. = 0.0731

0.1653 S.E. = 0.0505

0.4054 S.E. = 0.2295

0.6521 S.E. = 0.1739

0.2617 S.E. = 0.1529

0.3585 S.E. = 0.1171

i

Giving menopausal status ( p<0.0001) as the most signficant factor,

Node (P = 0.0001) as the second factor, size ( P = 0.0009) and

option (P = 0.0022) as significant, and T(P = 0.0687) and S(P=0.0912)

as marginally significant. At a more conventional 5% significant

level, we can also remove T and S staging. This reduces the model

to the initial 4 covariate model. The slight indication for the

T significance level shows that size may not have a linear effect in

the time scale. This will be looked at more closely later in this

section.

Now we continue with the analysis for the assessment of the

important/
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important prognostic factors for the period of randomisation time

to the metastatic spread of the disease. The study of the time to the

development of metastatic disease is also important in that it defines

the spread of the disease more directly and unlike the time to death

is not affected by factors such as death from old age, or other causes.

Considered singly initially the major prognostic factor is the size

of the initial tumour ( P <0.0001) followed by the closely related

S stage (P <0.0001) N node status (p < 0.0001) and T stage (P=0.0001).

However the menopausal status is only important after the size effect

with (P = 0.0001) and age is now even less significant at (P = 0.0493)

Option is again significant although with a loss in significance.

The site of the tumour being lateral however seems to play a more

important role with (P = 0.014). If we introduce the size effect

into the model then the effects due to T stage (P =0.4) and S stage

(P = 0.03) are reduced. The effect of node status (P = 0.0001)

remains highly important. The relative importance of age (P = 0.11)

and option are both reduced. Site of the tumour being in the lateral

half is significant only marginally (P = 0.05).

ft . = 0.2421 S.E. = 0.0426
size

In the study of time to death menopausal status of the patient played

the most important role. In the study of the variability due to

time to metastatic disease, the most important contributions are made

by the size of the tumour followed by the node histology.

6 = 0.2255 S.E. = 0.0421
size

SN = 0.5025 S.E. = 0.1280

The menopausal status cf the patients is then highly significant

(P=0.0001)/
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(P = 0.0001) only after the above two variables. The menopausal status

is then followed in significance level by age (P = 0.02) , however it

is reasonable to assume that the age effect will be explained by the

menopausal status. Finally treatment option is then followed with

(P = 0.04). After the introduction of size and node histology, the

previously major contributions of T and S reduce to insignificant

levels. This represents once again a slight deviation from the

analysis of time to death, since the stage of the disease with node

and size effects present was showing a marginal significance.

Therefore perhaps it is indicative of a node status or size interaction

within the time scale to death.

Finally we introduce the treatment option.

S.E. = 0.0431

S.E. = 0.1321

S.E. = 0.0751

S.E. = 0.1432

Now, we approach the study of the response variable (time to metastatic

disease), with the actual treatment forced into the model. At the

same time we are interested in the study of the effects of any possible

prognostic factor with the option interactions that may be present.

With only the treatment option present we obtain.

B . = 0.2532 S.E. = 0.1254
option

Once again in consistency with previous study of time to metastatic

disease actual size of the tumour plays the most important role, followed

by node histology, T stage and S stage.

B • ,

size/

®size

3N

^
men

®options

0.2234

0.5043

0.2967

0.2641



3 . = 0.2440 S.E. = 0.0426
size

3 .. = 0.2638 S.E. = 0.1254
option

Following the introduction of the size and option effects we note that

the interaction effects for the two variables gives P =0.9.

Node histology also has a significant effect while size and option

effects have both been introduced into the model. However once again

unlike the time to death response variable menopausal status is

relatively less significant

3 . = 0.2283 S.E. = 0.0422
size

8
= 0.4979 S.E. = 0.1271

N

3 = 0.2560 S.E. = 0.1255
option

Again no interaction effect is noted for the node status and option.

The most significant factor remaining is the menopausal status. With

the entry of this later factor the major factor that influences survival

are once again the major factors that influence time to the metastatic

disease.

3 = 0.2967 S.E. = 0.0751
men

3 . = 0.2234 S.E. = 0.0431
size

8n = 0.5043 S.E. = 0.1321

3. _ = 0.2641 S.E. = 0.1432
Option

Once again we observe the influence of possible interaction effects

with the treatment option and again there seems to be none acting.

The site of the tumour being lateral was a factor that for time to

death was initially marginally significant and with the removal

of other major factors becomes less and less significant. In the

study/
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study of the time to metastatic disease there seems to be a similar

trend present, and at the end lateral half involvement is not signifi¬

cant with a probability value of P = 0.09. The next response

variable that we study in relation to the exploratory value of the

prognostic indicators is the time from randomisation to the local

progression of the disease. Once again we use a stepwise procedure

approach similar to the last section. One by one we introduce import¬

ant prognostic factors and observe their effects. Finally we allow

test of interaction between the treatment main effect and the

prognostic indicators. The final model of the relative risks para¬

meters that we obtain are similar in terms of order of importance of

the prognostic covariates to the parameters obtained for the models of

time to metastatic disease. However the magnitude of the various

estimators are different. The final model is thus composed of para¬

meters

S = 0.2481 S.E. = 0.0621
men

8 . = 0.2013 S.E. = 0.0510
size

8 = 0.5518 S.E. = 0.1511
N

ft . = 0.2421 S.E. = 0.1080
Option

Before we finish with this chapter which has been based on categories

of the various variables we consider functional forms of the two

major prognostic indicators, namely size of the initial tumour and

age of the patient, when they are both considered to be continuous

variables. We will initially consider a model of the form with the

age and size and no interaction in the model with the treatment effect

present. A main effect model of size and age with treatment gives

a relative risk function with the following parameters
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Bm = 0.3511 S.E. = 0.1172Option

SA = 0.0068 S.E. = 0.0171Age

S _. = 0.1990 S.E. = 0.0432
Size

In the earlier discussion in dealing with categorised size variability

and age represented by menstrual status we concluded that there is no

suggestion of an interaction between size of the initial tumour and

age of patients at entry in describing the survival times. However

we noticed a slight improvement in the treatment effect estimators of

the 8 parameters. We will now introduce a model of the relative

risks by which we assess the age and size effect in a continuous man¬

ner. The first model we consider is a relative risk function given

by linear effects of age and size as well as their independent quadra¬

tic effects, giving the hazard rate

X(t, Z) - x0(t> E*P(6,Z, + e2Z2 + B3Z3 + u22z2 + 63323 )

when 1 refers to treatment option, 2 to age and 3 to size, and

giving the following parameter estimates

Option
0.3578 S.E. = 0.1151

6 = 0.0068 S.E. = 0.0171
Age

Size

*22

0.1987 S.E. = 0.0451

0.0003 S.E. = 0.0241

0.0170 S.E. = 0.0642
33

Clearly there is no suggestion of size and age playing a quadratic

role in the explanation of the survival times.

Finally/
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Finally we consider an interaction of the continuous age

and size. In the following model of the relative risk function we

will consider an interaction of the form in which not only a multi¬

plicative effect of the prognostic indicator is present but also

simultaneously there is an additive effect present. We then have

a model of the form

X (t,Z) = X 0 (t) Exp(e |Z1 +62Z2 + 63Z3 + B4Z2Z3^Z2+ Z3 x 10 >

In the above model, 1 refers again to treatment, 2 to age, 3 to size

and 4 to the interaction parameter. Further for the convergence

of the maximum likelihood estimator we will transfer the actual covar-

iate indicators so that they are almost normalised. That is we let

Z^ = (Age - Mean Age) / Standard deviation of Age

Z^ = (Size - Mean size) / Standard deviation of size.

and

/Z^ + Z x 10" = [(Age + 10 x size - mean (age + size x 10) ) /
Standard deviation of (Age + size x 10)]

We thus have

8_ . = 0.3912 S.E. = 0.1018
MQption

8 = 0.0067 S.E. = 0.0168
Age

ft„. = 0.2012 S.E. = 0.0419^Size

84 = 0 .0003 S.E. = 0.0041

Once again there is no suggestion of an additive with multiplicative

relative risks of size and age interaction. It seems useful to

consider various interactions of the prognostic effects when they are

of /

H
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of continuous form. A better approach and to some extent related

approach is adopting time dependencies of the continuous effects.

In Chapters 7 and 8 we will consider such time dependencies. In the

next chapter we will also consider multiple risk approaches. At this

stage we will only mention the relevance of the present approach to

the multiple risk and continue with the analysis in the next chapter

after some further methodological developments. Apart from the res¬

ponse variables looked at so far there are some other response variab¬

les that are of interest, like the time from local disease to death

or the metastatic disease to death. For such variables we will

require an adjustment of the initial time segment for the proper

assessment of the treatment and covariate effects. With the

approach we have followed up until now one can do such an adjusting

by stratifying the response variable according to time from random¬

isation to the present event. We may then have models of the form

\ (t,Z) = X (t) Exp (8,Z)

Where in the above example X_. refers to hazard rate for time from

metastatic disease to death, then j signified categories of the time

to metastatic disease. Clearly this is an example of a situation in

which we have multiple events. An alternative is to use time depend¬

ency as described above rather than stratification of the basic line

hazard X^(t). These two latter considerations make the proportional
hazards model a flexible method for such studies.



CHAPTER 7

MULTIVARIATE RISKS

Once we confine the method of analysis to the approaches

discussed in the previous section we may not be able to assess the

effects of various treatments in the presence of progression metastatic

disease, or other forms of intervening events most efficiently. The

main parts of this chapter deal with situations of a trial with multi

pie events within the time scale of study. Initially we will deal wi

models in which cases move from one state to another. In particular

we refer to those of semimarkov models and the analysis of data in

groups. Such models allow a quick analysis to be performed and are

useful for an exploratory analysis. More importantly for this thesis

they make a good conceptual shift from models of the previous chapter

to a situation of multiple risks. Later we will deal with the

development of the proportional hazards approach with a functional

form of a time dependent factor for the intervening event.

7.1 Initial developments of the methodology.

In 1959, Bartlett in a paper on the impact of the theory

of stochastic processes on statistics, stated, "correct specification

of statistical problems has only become possible in terms of stochastic

process"/



process". Earlier in 1950 Neyman had written a chapter on "com¬

peting risks" in his text book on statistics and probability theory.

These methods were inferred from a relatively simple illness and death

model. His original ideas on this work had arisen from works

similar to those of Daniel Bernoulli which were mentioned in the

introduction. In particular Neyman was interested in the problem of

assessing risks of dying from breast cancer by a comparison of risk

of dying from cancer after treatment with that of dying from other

causes or being lost to follow-up. This method of Neyman often

referred to as Fix-Neyman clearly differs from ordinary survival

analysis in that, in the latter there is only one transient state

(entry) and one obsorbing state (death), while in the present

context one is concerned with different causes of death, progression,

regression and possibly other stages.

When there are several end points present, there is a

general and almost traditional way of analysing the data based on

3 assessments:- crude probability, partial crude and net probabilities

of survival. These concepts have been used by people who have

been studying failure time in occupational health studies or the

epidemiological studies of chronic diseases. However comment made

by Stormer et al (1980) expresses fully the associated problems.

"There is now mounting evidence in the biomedical literature to

suggest that experimental methodologies are deficient when applied

to the investigation of chronic diseases. Chronic disease appears

to be substantially more complex than acute disease in several respects

chronic disease is dynamic. It represents the long term cumulative

effects of interactions between a host biological system and the

surrounding/



surrounding environment. The environmental influences are not static

so chronic disease acquires a time varying characteristic... it is

possible that any combination of the above factors be influencing a

trial to a significant extent". Although our position does not go

along with some of the comments made in the above regarding the

generality of the environmental effects, one aspect of the statement

holds even within randomised trials; the fact that the complexity of

chronic disease requires complex processes by which time varying

characteristics may be incorporated.

Such problems initially were related to an approach that

was named competing risk. J. Cornfield (1957) on competing risks

and clinical trials puts the approach in the following perspective of

the language of cause and effect. He defines a formal effect as if

individuals died from some extraneous cause and had no chance of

dying from cause under study. Further empirical effects relate to

those who died from extraneous causes and might have a probability of

developing the disease of interest, which differs from probability of

those who died from disease of interest. The latter effects are then

suggested to be analgous with withdrawal at time of the analysis.

C.L. Chiang (1964) develops the concept of probability for

competing risks in a formal manner by defining 3 separate functions:

(1) The crude probability of survival.

Q^(t) = (probability that individual alive at t will fail in
t + h from cause i in the presence of all other risks)

(2) The Net probability of survival

H^(t) = (probability that individual alive at t will fail in
t + h if risk i was the only risk acting).

(3)/
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(3) The partial crude probability of survival.

j(t) = (probability that individual alive at t will fail in
t + h, from cause i, if cause j was eliminated as a

cause of death).

In a discrete situation we may divide the time scale into

segments and apply life table approaches. For a continuous case based

on distributional assumptions/parametric methods may be used. C.L.

Chang (1976) has extended the method and as an alternative approach

has used Fix-Neyman model for the two transient states and more than

two absorbing states. Such a model of two transient states is a

realistic model in which different patients with separate prognostic

values can be placed on different transient states. Individuals may

thus move from one transient state to another until in a finite time

they enter one of the absorbing states. An adequate form of explain¬

ing such a phenomenon would then be based on the recorded number of

transitions and the times of the transitions between any two states.

C.L. Chang (1979) developes this method further for the particular

case of chronic conditions. He makes the observation that, the

disease advances with time from mild through intermediate stage to se¬

vere to death. The cases may die in any one of these states. A

few practical situations where the above assumptions can aid in the

analysis are given below. Later in this chapter we will describe

a more natural method for analysis.

(1) Definition of stages in diabetes.

Chemical diabetes Clinical diabetes To diabetes with

complication

2/
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(2) Progression and treatment of leukemia

disease

(3) Breast cancer

What the above examples have in common is that the processes are always

irreversible; this is an observation which is useful in the further

development of the methodology. One further restriction that has

often hindered the general use of such approaches has been that of

robustness. It is often possible to develop a general maximum

likelihood function for the paths of progression, however if one

considers distributions more complicated than the exponential distrib¬

ution, the method of maximum likelihood estimations becomes unreal¬

istic in terms of the quantity of calculations.

It is clear that what may be required for our form of

problem is a model that takes care of the problem of censoring and

uses the assumptions of irreversibility. Such an approach is suggested

by Lagakos, Summer and Zelen (1978) by which a non-parametric method

based on ranks of the sojourn times between the states is used. The

main purpose for the use of this approach is that of analysis of the

data with an exploratory approach and a better description of the

semimarkov models. However later we will extend the methodology

to the proportional hazards models in which similar tests can be

incorporated into the functional forms of time dependency with less

restrictive/
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restrictive assumptions, than the present semimarkov models.

The semimarkov models for the partially censored data

provide a good construct for situations when patients move from

one state to another. We assume that there exists h state

denoted by S3 . . . S . S ome of these states may be
transient states, that is one may assume that the stay in that state

is finite. All other states are restricted to absorbing states that

is patients after entry into this type of state will remain there until

the end of study. Without loss of generality one assumes that the

first states are transient and the rest are absorbing. For any case

history we have.

Where T. refers to the time of transition or sojourn between states
1

to S^. For the assumption of a semi-markov process to be true
we must have two conditions present. One is that the next state

of a patient will only depend on the current state and not on the

previous state, and secondly that the sojourn timesbetween states

are independent from each other. Therefore the length of a sojourn

time will depend only on the adjoining states.

We can thus define the following properties for the

semimarkov processes in a more mathematical setting. The case

history such as (7.1.1) in fact can be represented by the following

terms a(i), a(i,j) and F(t,i,j) where,

a(i) = Pr (Sg = i), probability that the initial state is i.
a/
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a(i,j) = Pr (Sn+1 = j^Sn = i) , probability that the next state is
j given the present state i.

F(t,i,j) = Pr (T^ > t\^Sn_1=i, = j), probability that the sojourn
time between state n-1 and n exceeds t.

Further we let F' (t,i,j) = —3 F(t,i ,3) derivative of F with
3 t

respect to time.

We can thus represent the probability element associated with a

single history as

m

a(S ) 11 [ a (S , S ) F1 (t , S , S J]
u . n-1 n n n—1 n

n=1

In biomedical studies we require to have an absorbing state related

to the censoring times. We can allow such a state to exist and whithout

loss of generality let the last state to be a censoring time represent¬

ed by (h + 1). A case history is then represented by.

m—1

a(S ) n I a(s w S ) F'(t , S , S J
0 . n-1 n n n-1 n

n= 1

X [ a( S , S ) F' (t , S , S ) ]U(h_Sm)
n-i n n n— I n

X [ 2 a(S w j) F(t , S , j)]U(Sm"h_1)
. H m-1 m m-1

3 = 1
(7.1.2)

where h is the last disease state, h+1 is censoring, and u(i) is set

to zero for i< 0 and u(i) = 1 for i ^0.

The distribution of F(t,i,j) can take various forms for the different

states. A simple method would be to consider an exponential distrib¬

ution based on F(t,i,j) = exp (- t) . This distribution however

may be too restrictive. This choice of the distributional form of

the/
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the sojourn time is the major drawback in the proper use of this

type of method.

o
A more robust procedure however may be adopted by use

of the ranks of the sojourn times. We will present the method by

deriving the relevant likelihood functions. Later we will expand

the results of Lagekos, Sommer and Zelen by deriving survival

estimators based on a predictor -corrector method.

In order to express the (7.1.2) likelihood in terms of

non-parametric maximum likelihood estimators a parameterisation is

used by which survivorship function G(t, i, j) is given by

h h

I a(i , j) F(t, i,j) = n G(t,i,j)
j=1 j=1

The full likelihood is then expressed by the above authors as

n li
L

transient states 3 ^1' n. Lij (7.1.3)
(i)

where
M h+1 j-1

log L = 2 { 2 m log G(r ,i,j)f 2 m log G(r ,i,j|
13 k=1 l=j+1 llk k 1=1 llk k_1

+ m^_.^ log (G(rk_1,i,j) - G(rk> i,j) ) (7.1.4)

Where r^< ... <are the distinct sqourn times from the state i
into j. m.is the number of sojourn times from state i to j of

ink

length r^. 1^ is number of subjects starting at state i.
By defining P.jk = G(rk, i,j) / G(rk_r i,j)

so that

G/
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G (rk' 1,j) 1"1 Pijl (7.1.5)

The (7.1.4.) may be rewritten as

M

/=1 1 < "ijk " mijk» log piji + mijk log (,-pi:k'
h+1 h+1 M

where N. = 2 m.lt +2 2 m..3.3k . . ilk . . , , . llr1=3 1=1 r=k+1

It follows that P.has the maximum likelihood estimator.
13k

P. ., = 1 - m. . /13k 13k N.13k

where P. = 1 if N. ,, =0
13k 13k

And also giving
a.. a- j-1 ^ h k 1

a(i,j,rk) - (1-Pljk) ^ P.lk ^ P.lr
The result as presented has an intuitive appeal in that, when

there are only two states the estimator reduces to the analogous

product limit estimator. In the situation of K states the results

yield a competing risk model given by Hoel (1972).

With the situation of multiple risks the above estimators

can in fact be dependent on the assumption inherent in the

reparameterisation of the survival rates as in (7.1.5). This point

regarding the arbitrariness of the conventions in situations of more

than two states is in fact accepted by the authors.

The/



334

The (7.1.4) may be made more general by reparametering

(7.1.5) differently. We will do so with the aim of correcting the

estimators closer to the product limit estimator in the situation of

single risks. The major problem with adopting a maximum likelihood

approach then would be the problems associated with the estimation.

It is quite likely that the P.will not have a closed estimator.
lgk

An alternative method would be to use a prediction corrector method

by using a(i,j,r )( probability of transition from state i into j
K

of duration r^). The P—^ may then be reparameterised according to

G«> (r ,; ,«» 1-a'0''l'j'r«) ;Pn>k'
1-1 131 1-J 1-1 ill

j=1 1

where in the above a'°^ in one step of estimators are used to form

new survival function G^1'. Clearly in the first step a^values
are set to zero. The corrector part in the above model is then the.

ratio of the probability of a case not making sojourn time less than

a particular duration (r^) from state i to j, over the probability of
not making sojourn time less than the same duration from state i to

any state. Such a weighing of the transition probabilities will then

correct the original probabilities by the ratio of the units of time

available for transition at each state for a given time.

We will now continue with the.analysis of the data based on

the described method. We will later plot the semi markov probabil¬

ity plots based on a single step and a three step procedure.

In all of what follows we will be presenting transition rate

schemes for the relevant disease states. We will not estimate

transition/
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transition times to censorings since they do not have the same

interpretation in terms of the disease.

The 561 breast cancer patients are observed under a

semimarkov setting. We assume there are. three transient states.

T-.__
Death

We assume no local recurrence after a general recurrence which is

a justifiable assumption based on clinical definitions. We also

assume that there is a further state for censored cases although there

is no reason for presenting the probability distributions for these

classes of patient.

The data consists of 921 epochs of the 561 patient. All

patients begin from state 1 (not a necessary assumption), then all

patients transfer from one state to the other until the history of
o
Observation for a patient ends in an absorbing state ( Dead, censored).

Case Number Time of Sojourn Arriving state.

1 52 2

0 3

0 4

2 193 5

192 5

In the above sub sample of the data the first patient has "local and

metastatic recurrence in the 52 month, and zero transition time to

death.

Case/
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Case 2 has a survival for 193 months with no recurrence.

Of the 561 patients, 105 have local recurrence,- 166 have general

recurrence and 63 are dead after the first transition from randomisa¬

tion, giving

Pr (Transition 1,1) = 0.29 + 0.025

Pr (transition 1,3) = 0.50 + 0.037

Pr (transition 1,4) = 0.21 + 0.029

For the 105 patients with local recurrence, 89 die with metastatic

recurrence and 7 die with no metastatic recurrence.

Pr (transition 2,3) = 0.93 + 0.038

Pr (transition 2,4) = 0.07 + 0.027

255 patients have metastatic recurrence and 226 of them die. The

rest are censored.

Pr (transition 3,4) = 1.00

The semimarkov appraoch introduces certain assumtpion which are

too restrictive and to some extent unnatural for survival studies.

We will mention these assumption here for the present analysis but

later we will introduce non-proportionality of hazards as a good

basis for study of the scale of survival times. The set of

metastatic patients are in fact composed of two groups. The group

with previous local recurrence and the group with no record of previous

recurrence. A property of semimarkovs is that the transitions at

any stage do not depend on the previous states and hence in this case

we assume t hat the assessment of the progression of the disease from

metastatic disease to death is not affected by presence or absence of

local disease. Further in the semimarkov models time of transition

from previous states do not play any role in the pattern of develo¬

pment of the disease at present state. Hence regardless of the time

that/
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that a patient becomes metastatic , the analysis of a sojourn time

is performed from the moment the patient enters that sojourn time

onwards.

Death

—■
. 50

Randomisation — general ^Death

We will not present the cumulative probability of transitions, that is

conditionaiprobability of transition from one state to the other exceed¬

ing a time t.

P r (transition at t, i, j) =P[T /t \ present state is i,next is j]
n '

The figure (7.1.1) to (7.1.3) show a plot of the probabilities

against months of transition from randomisation, local and general

recurrence. Once there is a local or general recurrence there is

a fast progression to death, figures (7.1.2) and (7.1.3). There is

some similarity between transition from local or general disease to

death although the local to death set is very small. In figure

(7.1.2) the plot of general recurrence probability appears to start

at 0.7, the reason is due to the subgroup showing simultaneous local

and general disease. In such cases time of transition from random¬

isation to local recurrence was recorded as a time from state 1—>2

and a zero transition from 2—>3.

Although we do not emphasise a statistical test of

the various subgroups of the data we will report the calculations

of the transition probabilities for the two transient options of the

trial. A formal test based on the proportionality of the hazards

will be developed later. Figure (7.1.4) to (7.1.7) summarise such

relationships/
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relationships. In terms of the interpretations of the figures

(7.1.1) to (7.1.7) a point must be emphasised that distinguishes

such plots from the earlier Kaplan and Meier estimators. The

present plots are transition probabilities as they occur and therefore

at the end of a time scale there is always a descent of the probability

values to zero.

We will now use the extensions of the method as described

earlier. We will use. probabilities of transition from one state to

another with a given duration for obtaining a corrected value of the

analogous survival times (which is the G function). We repeat the

method for the different transition times and in fact after three

stages of the method the estimated values reach a value such that the

fourth step does not contribute. The three step rates are presented

in the same figures as the one step method, for the transition times

from randomisation. In general we will obtain rates which are closer

to those from the product limit estimator For the times other than

the initial state at randomisation we will obtain values close to

those of the one step methods and therefore are not presented.

In general the method has a drawback in that it assumes that

censorings are unimportant. This effect is most important in

terms of interpretations of figures if we are considering the lowest

levels of survival probability levels when only a few patients

remain. The three step method on the other hand presents an

improvement on the rates of transitions. In the next section we will

use the proportional hazard assumption to study some of the

events mentioned in this section.

7.2/
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In this section we will study the effect of treatments

on patients in terms of secondary response variables. Relevant

questions arexgiven that an event has taken place and it has been

a progression of disease. Firstly how is each treatment group

behaving and secondly how is each prognostic indicator affecting

the disease process within each group.

The secondary events that we have considered so far under

the framework of the old Edinburgh trial are related to the various

forms of the recurrence of the disease. These results together with

the results of the exploratory approach of the non-parametric

likelihoods indicated a high degree of corapatability between time

from randomisation to any secondary event such as local recurrence

or metastatic disease. Now we will analyse the effect of covariate

and treatment from secondary event to a later event. This form of

analysis fits the framework of semimarkov processes, in which rates

of transition from any state may depend on the state the subject

is occupying.

In the section on the construction of the overall likeli¬

hood we showed how the probability of a response may be represented

given the previous event and censoring numbers prior to a time ^.

Now we will expand and define similar formulation.in terms of more

than one event of interest. In any given time period we defined

two types of events of interest. One event was named to be the

responding/
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responding event of interest and the other was named a censoring.

Now the argument may be expanded to allow various forms of

recurrence of the disease to contribute to the partial likelihood.

This can be achieved by allowing censoring to contain other events

after the event of interest. Therefore for any time interval

t,.( - t,, we may have s possible strata in which transitions of
(i) d+1) 7 *

various forms are taking place. With the single risk case a full

likelihood was represented by

n Pr (individual (i)\ Immediately last censoring
i=1 dies \ and present death

information

k •

(individual(i) is \ number at risk after )
~!F p v-

censored n censorings and death
i=1

The former part of the likelihood is by definition the partial

likelihood of Cox (75). Now by grouping the cases into s strata

within which a particular response set. is available we write

k
3

n n Pr(individual (i)\ immediately last censoring )
s^, 1 i = 1 responds \present death and transition

information

11 k +1
c*> i 3' H Pr (individual i is \ number at risk after deaths )

i=1 censored \censorings and transitions

The present development by Gail et al (1980) indicates that the

Cox's method may be used in an analgous manner with a stratified

analysis of the data. The strata are further defined to be a

function of s = S {N(t) , Z(t), t }. The Z(t) and t have the usual

interpretations under a Cox's model. However N(t) represents a

counting process by which one can define the base line hazard

function/



348

function to vary for the various forms of censoring or events

depending on the time of an event. The initial recording

event of interest is the appearance of the local disease prior

to a metastatic development. Under the present study another failure

time of interest is the time to appearance of either local or

metastatic disease, usually termed as the disease free interval.

As a general rule we define a three parameter function to represent

a response variable

R.V. (Entry, Termination, Censoring).

For the disease free interval the function is,

DFI (Randomisation,Local or metastatic disease, Last follow-up)

For the progression of the local disease we may be interested in,

(Evidence of Local disease, Metastatic recurrence or death,

last follow-up)

or alternatively (Evidence of local disease, Metastatic recurrence,

last follow-up or death).

As we presented the hazard rates in the Chapter 2, the initial period

after treatment show converging hazard rates for the two treatments.

We suspect that a similar pattern may be present for the time to

local and metastatic spread of the disease. We therefore con¬

jecture that there may be a time dependency present and the

proportional hazards with a time dependent covariate may be more

suitable. That is we may obtain relative risk factors of the form

of figure (7.2.1) The period following the above critical events

are also of interest. That is we may be interested in time after

local disease to death or the development of the metastatic recurr¬

ence. We define stages of the progression in the present trial

to be R,L, M & D for. randomisation, Local recurrence, Metastatic

spread/
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spread and death. We also define a hazard, rate for each of the

<i> ,

intervals to be X ... , where <i> refers to the entry set and <-j>
<j>

to the departure set. Thus x_ is randomisation to local recurr-
L

ence with other events as censored and x^ is the hazard for
M

local to metastatic rates. This notation will produce a general

enough terminology by which various forms of entry time and termin¬

ation time may be defined.

Time from local recurrence to death X^ is then give by

L L M
( X.., X_ \J) . Time from local recurrence to time of death orM D, D

metastatic recurrence which ever happens first X^ „ is then a
M,D

L L
function of hazards of the strata (XM , XQ). Any case not
indicated as a member of set <i> in x<Z>is then excluded

<3>

from the strata and cases present in <i > set and absent from

indicator set <j> are the censored set of study. In the above

notation we define each i-n terms of a time variable (t) .

Each covariate set Z(t) would then be associated only to the set

of <i> present at time of study. A time dependent function of

Z(t) can include information in past history by referring to

information in terms of events prior to <i>. The main emphasis

of study with this appraoch is to determine separately for each
Vt-r.i

strata the significance of a particular covariate set for a given

response variable. This is different to a stratified analysis

of the type described in earlier chpaters where the emphasis was

on obtaining efficient estimators for a common S obtained from

pooling information from all strata. The former approach requires

likelihoods of the form

Xg(t, Z(t)) = XQs(t) Exp ( Bs Z(t) )



351

Where depending on the particular form of the response variable s
s

estimator is different. The latter approach requires -

X g(t, Z(t)) = x qs (t) Exp ( e Z(t))
The last two models clearly differ in their functional form of

8 and B
s •

An example of the time dependent model in study of the

randomisation to death would then be introducing a time dependent

covariate Z(t) = 0 if time for a single patient is prior to

metastatic disease and Z(t) = 1 if time is after the metastatic

disease. Basically in this approach we are affecting the

proportional hazard rate by introducing different weights to the

time prior to say a critical event and post critical event, for

each fixed covariate set.

Up until this point we have been mainly concerned with

the type of covariate that is either fixed at the time of entry of

patients or it has been part of an external process from time and

the response variable. Strictly the time effect is assumed to be

completely related to the covariate set which is fixed from the

beginning. This form of analysis is often the most important

and often sufficient for analysis. However, the covariate set may

have a changing pattern in time. In this situation two different

conditions may be of interest. First is the situation where time

trends are present and they are due to the processes within the

covariate of interest. An example is the situation of age of

patients in a low mortality study. We will observe an aging

effect and if the duration of survival is short it may be of interest

to/



352

to know a possible trend in ageing. Secondly, two processes may

be intertwined. An example is study of long term survival in the

presence of ageing, in this situation time trend may be related to

the time scale itself and we may be interested in detecting depart¬

ures of particular type from the model, like non-proportionality of

particular type. The latter type of time dependency forms the basis

of an analysis in whica we will test non-proportionality due to

an intervening event. In these analysis we will study the random¬

isation to death time for the Edinburgh trial and consider the

metastatic spread to be the intervening event. In the context of

the present study of the old Edinburgh trial, we identify three

forms of covariates. One known generally is a fixed prognostic

attribute of the case at diagnosis. Clearly these effects are

external to the time scale and are inherently related to each

individual patient. An example is the effect of Node status or

site of main lesion. These effects were generally dealt with in

the previous section. Now we introduce the time dependency concept

and look at some of the fixed covariates. An example although not

part of discussion under the present framework is age of the patients

being related to time scale. This time dependency affects the

duration and or magnitude of the age effect. Another similar

covariate is the size of the initial tumour and the duration of

its effect on the survival time. Further we consider a third type,

the stochastic type of internal covariate, in which we introduce

time dependent covariates of a type related to duration of prior

events. This is taken to be the effect of time to local or

general recurrence in determining survival past" thesB^'events.

Another/



Another example of the third type is to consider time

dependency, related to the status of patients, where the covariate

is inherently related to the survival process. An example of this

effect would be allocating Z (t) =0 and Z (t) =1 for times prior
m m

and past metastatic disease.

In Chapter 6 we concluded that age, menopausal status,

T, N, S and size are the important factors affecting the survival

of patients. This pattern is consistent for both arms of the trial.

An interesting form of analysis is then related to the effect of

prognostic indicators in time prior to metastatic disease and the

significance of the effects after this event.

At this stage we attempt to utilise the size and age

information by a time dependent covariate. Further we deal with

an internal stochastic time dependency by considering the level of

progress of disease due to the appearance of local and metastatic

recurrence, (i.e. disease free interval). In terms of the

secondary failure times however we consider the local disease also

to be an event of interest. This is different to the exploratory

approach of the last chapter in which secondary failure times were

defined in combination as end points only.

Initially we introduce a model of the form containing

size effect only since size can have relevant time dependent pro¬

perties. Size effect is initially defined to have an external

effect on the time scale. This definition will allow a relative

risk function to be estimated that projects the base line hazard

x0(t)/
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Xq(t) on to the corresponding hazard funtion XQ(t, size) only by
a linear and constant relation of the relative risk namely Exp(0 .

size,

size). We further introduce the treatment effect by the same

procedure and definition and produce a relative risk function.

Exp ( B . . size + 0^ ^ ^ . treatment)
size treatment

These two models together with the treatment only model of last

section will yield the following values for the estimators.

RR = Exp ( Btreatment. treatment)
6

treatment = 0.3677 S.E. = 0.1 168 X = 9.97 p = 0.001

RR = Exp (0 . . size)
size

0 . = 0.2132 S.E. = 0.0562 X2 =22.60 p <0.0001
size

RR = Exp ( 0 . . size + Br .• treatment)
size treatment

2
0 . = 0.2271 S.E. = 0.0581 X = 23.60 p <0.0001
size

0 = 0.3289 S.E. = 0.1253 X2= 7.92 p = 0.0012treatment

Clearly the models indicate a better relative survival time for the

radical surgery treatment versus simple surgery with X-ray therapy.

The relative order implies a worst survival of order 1.44 for the

simple surgery group.

The size effect is also playing a consistently increasing

role. For each two centimeters increase in the size of the

initial tumour the relative risk increases by an order of 1.53.

The effect of size and treatment given the present time scale is

additive in the relative risk sense and there is no significance

attached to the slight negative estimate of 0^_ for the size and
treatment interaction.

RR/



RR = Exp ( p . . size + §. treatment + 3 ^ treatment. size)
size treatment s.t

8 . = 0.2189 S.E. = 0.0597 X2 = 22.61 p < 0.0001psize

®treatment = 0.3310 S.E. = 0.1319 X2 = 8.43 p = 0.0010

B = -0.0521 S.E. = 0.0732 X2 = 0.85 N.S.
s.t.

Now we define the relative effect of each covariate to be

dependent on a transformation of the time scale. That is firstly

introduce a time dependent factor to assess the influence of size

over time and secondly to test for the proportionality of the hazard

rates of the option effects. As we showed in Chapter 4 the most

natural form of a transformation of the time scale is achieved by

a log transformation and thus for the time dependent covariates

we introduce a log transformation followed by a subtraction of

near mean for normalising the variable. Therefore initially all

time dependencies are scaled to [log(time in months) - 2].

First we introduce a model with the time dependency of the

option effect. By the definitions of the proportional hazards the

effect of time must be consistently related to the relative risk

function regardless of the time of death.

RR = Exp (3 . treatment + 64.- treatment [ log (time)-2] )t£ GcitimGn ti t

8 = 0.3782 S.E. 0.1174 X2 = 10.43 p = 0.001ptreatment

8 =-0.0921 S.E. = 0.1131 X2 = .7551 N.S.p t

Thus there is no indication that the proportional hazard assumption

is violated with respect to treatment. There is a slight negative

value attached to 3^ which indicates that with increasing time the
value treatment effect diminishes and that the largest differences

due to treatment are in the earlier part of the study.

Figure/
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Figure (7.2.2) presents a plot of relative risk functions

over time for treatment. The Figure indicates that the relative

risks with the inclusion of the time dependent variable is con-

sistenatly positive and that there is no indication of crossing

survival curves.

The size of the initial tumour was taken to have a

consistent effect within all time periods. Now we proceed with

a model to test this assumption. Basically we use a similar

method as the method for testing the proportional hazards assumption

of treatment effect. The time transformation is again [log(time

in months)-?]- Thus the relative risk for the size and time effect

is ■

RR = Exp ( ^s^ze size + 3 size, [log(time)-2])
e

. = 0.2991 S.E. = 0.0619 X2 = 24.80 p'<0.0001
size

8 = -0.0178 S.E. = 0.0104 X2 = 2.94 N.S.

Once again there is not a significant improvement in the size

effect interaction if we allow the relative risk to be time

dependent.

In the above model using the time dependency terms we note

a negative 0 which can indicate a diminishing size influence over the

2
time scale. The probability value of X does not reach a significant

level at 5% for the time dependency. For the long term survivor

there is no suggestion that the size of tumour is playing a minimal

role. Nevertheless" we present the pattern in figure (7.2.3) in which the

values of the relative risks are plotted for a few values of time

and/
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and size separately. Tables (7.2.1) and (7.2.2) present inter¬

mediate values for obtaining the relative risks.

[log(time)-c]

size* size -2 2.5 3

0 -2 -.6694 -0.5509 -0.4914

2 0 0 0 0

4 2 .6694 0.5509 0.4914

Table (7.2.1) ( 8 . . size + 8 . size.Time)
size t

[log (time)-c(I

size* size -2 2.5 3

0 -2 .572 .601 .6117

2 0 1 1 1

4 2 1 .953 1.7348 1 .63

Table (7.2.2) Relative risk.

At time zero, size plays its maximum role in determining
i

risk of death. The relative risk is intially twice as great for the

larger values of size compared with the cases at mean size of 2

centimeters. Again initially the size effect for tumours of less

than 2 centrimeters is 60% of the effect of the size effect for

the cases with mean size of 2. The values of relative risk

converge with time. The relative risks reach 1.6 for larger

tumours and 0.61 for smaller tumours at the 180th month.

Now we will consider the same form of time dependency with

a different functional form. It seems that the previous log trans¬

formation is natural in the sense of non-propcrtionality of the

Weiball/



Figure(7.2.3)Relativeriskoftimedependentmodelforsize,logarithmicfunctionoftimedependency
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Weiball family. In the present study we suspect that the effect

of time non-proportionality for each size effect is linear. That

is although we can hold the view that initially the size effect is

most significant, the distinction in the present function will

be in the nature of the rate of the decline of the hazard rates.

Table (7.2.4) refers to the new sets of risk function that are estimated

using the new functional form of time dependency. The actual

relative risk is then presented as

RR = Exp ( $s^ze • size + 8 size [(time/20)-2]

8 . = 0.3081 S.E. = 0.0528 X2 = 34.05 p< 0.0001
size

8t = -0.0154 S.E. = 0.0085 X2 = 3.37 p = 0.064

Compared to the previous logarithmic function of time dependency the

actual magnitude of 8 . remains close to the present estimator.
size

The values of the estimator of the standard error of 8fc also changes
slightly. We refer to tables (7.2.3) and (7.2.4) and figure (7.2.4)

for a graphical representation of the relative risks
\

[(time in months/20)-2]

size* size -2 2.5 7

0 -2 -.6778 -0.5392 -0.4006

2 0 0 0 0

4 2 0.6778 0.5392 0.4006

Table (7.2.1) (8 . . size + 8 size.time)
size t

[(time in months/20)-2] /
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[(time in months/20)-2]

size* size -2 2.5 7

0 -2 .5077 .5832 .6699

2 0 1 1 1

4 2 1 .9695 1 .7146 1 .4927

Table (7.2.4) Relative risk.

We thus conclude that there is a slight suggestion

that size of tumour for the long term survivors may play a less

important role. At the early part of the time scale size has

the maximum effect in determining risks of death. The relative

risk is highest for the larger tumours and has a ratio of 2 : 1

for larger tumours versus medium sized tumours. This ratio reduces

to 1.5 : 1 for the same sizes after the passage of time in 180th

month. One final remark is that the above conclusions are com¬

patible with models with no change over time and models with treatment

effect included.

7.3 Eventtfcime variability of the time scale.

Up until now all time effects have been dealt with on

the basis of a time scale and the covariate process. That is we

have assumed the change in time scale to be due to an external process.

Now we deal with covariates in a time scale within which an inter¬

nal variability is assumed. That is we may estimate the time effect

difference for time prior to and after a critical event. Generally

it is regarded in breast cancer that the initial treatmeant effect

does/
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does not play a major role after the development of metastatic

disease.

We will initially develop a maximum likelihood function

for a general approach based on a parametric method. The likelihood

function will be used later to show how all the relevant inform¬

ation may be extracted by a particular test of the hazards. For

the present methodology and the development of the likelihood we

consider three separate time events.

(1) Death without the recurrence of disease.

(2) Time to the recurrence of the disease.

(3) Time from recurrence of the disease to death.

The situation is presented in Figure (7.3.1)

Figure (7.3.1)

We may thus expect that initially all patient groups are subject to

risks of both recurrence and of death. We can represent the time

of death T as

/, " *, « x2
x2 + x3 if X, > x2

We can expand the above definitions so that censorings may also be

included in the formulation. In here any recorded censoring may

refer/
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refer to two censoring paths. One is censoring before the inter¬

vening event and death and the other before death but after the

intervening event. In here we refer to censoring events as c.

Figure (7.3.2) to all the possible outcomes.

(a) t

(b) . t

%
(c) ! c

*r~
(d) c

time

Figure (7.3.2) Types of possible observable events.

(a) refers to an outcome for a case that has a death with no

recurrence of the disease being recorded. The only observable

time is therefore x^ = t with the distribution X^ ^ X2

(b) refers to a case with a recurrence at time x„ and a death

at time t, giving x-. = t-x„. In this case we have X < X
J u Z I •

(c) refers to a case recurrent at time x2 and censoring at time c

giving >c-x2- In this case once again we have a distribution
X, < X,.2 1

(d) finally, in this part we refer to individuals who are observed

but do not show a recurrence and are alive at the end of the study.

The distributional restriction of the case is then X^>c and X2 >c

In general for most situations it is justifiable to make

assumptions on the distribution of X^X,, and so that random
variables have an independence. Such an approach is useful in the

estimating/



estimating part of the likelihood function with parametric

restrictions for each of the three events. In here we consider a

general likelihood function. Later in the discussion of the

covariate we will reconsider the assumptions and show the use of a

convenient test for the independence of the distributions

In the construction of the likelihood we consider a model

in which the two paths to death are independent. That is X^ is
independent of both and X^, but the sections of the failure time
path with recurrence namely X^ and X^ are dependent. The general
likelihood function may then later be completed with the usual dis¬

tribution functions like the Weiball or exponential.

We now introduce the following notations for the distribu¬

tion of X^, X^ and X^ given X^ has occured. X^ has the density
function f(x^) distribution function and the survival function
F () . X2 has the density function g(.x^), distribution function

G(x2) and the survival function G(x2). Finally X^\X2 ^as
density function h (x^\ x,,) , the conditional distribution function

H(^2\ x2) and the survival function H(!x3\x2).

The maximum likelihood function is then composed of the

contributions of the four types of observable events (a), (b), (c)

and (d), as in figure (7.3.2).

(a) presents the condi tional distribution of. the death times given that

there has been no recurrence of the disease.

F1 (x^X^ X2) = Pr [X^ xi \X^ X2]
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Pr[ (X,<: x^n (X^ XJ]
Pr[X^ X2J

X 0=

f1
Pr[X^ X2] ; o y

i-:(y.,) g (y2) dy7 dy1

Pr[X < X J J
1 *

f(y^ G (y .J) dy1

The differentiation of the distribution function then gives the

density function,

£1 (Xl\Xl « V • p, ixr< x2i £(V S(V

Thus the contribution to the likelihood from case dying at x

is

f(Xl\x ^.X )'. Pr [X1 ^X2] = ftx^ G (Xl)

(b) Gives the joint conditional distribution of recurrence and death

after a recurrence.

F23(*2'x3\X2 °V = Pr [(X2$ *2) n (x $ x3) \ x2< x^

= Pr [ (X^ x2)p|(X3^. x3) \(X2< X1) ]

Pr [X2< X^

Pr[X2< X^ 0 'y
f (y1)g(y2)h(y3\

dYi dy2 dy3

y,)

Pr[X2< X^

X3 rX2

0 0
F(y2)g(y2)h(^3\^2)dY2dY'



After differentiating the above distribution functions we will

obtain the joint conditional density function.

f23 (X2' X3^X2< X1} = Pr[X2< F(x2)g(x2) b'^XV (7.3.1)
Thus the contribution to the likelihood for an observation with

the intervening event time and the death time x^after the
recurrence is

f23U2' X3^X2<X1) * Pr[X2< X1] = F('x2)g(ui2) hfj^X x^

(c)The distribution of type (c) is similar to (b) distribution with

a difference that the ending point is c rather than x^ • Using
(7.3.1) we have

f23(X2'X3NsX2< X1)dX3 Pr[X < X ] F(x2)g(x2) H<c~x2\ x.)
c-x2 2 1 2

giving a likelihood function represented by

Pr [X2< X^
c-x2

£22{K2' K3\X2<X1)dX3 =F (*2)9{X2} h(C-*2\*2)

(d) Finally the type (d) represent cases with a censoring time c

and no time of recurrence recorded. The contribution to the

likelihood is

Pr[Xc, X2> c] = f("x.) g(x2) dlj<1dx2
c ' c

= F (c) G(c)

Now/
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Now we define a total of n patients with ^n^ and n^patients
representing the number of cases with (a), (b), (c) and (d) events.

The final likelihood is then given by

ni
L = n f(xu) G(*u)

i=1

n1 + n2
_

° i-n"+1 P (V g(X2i' V

+ n2 + "3
_

. "
, F(52i)9rX2i» " (V:X2iX X2i'

i-n, + n2+1

n

n F (c.) G (c. )
i= n1+n2+n3+1

Now by a substitution of a particular form of a distribution form

we will be able to estimate the relevant parameters. In here it may

be possible to obtain a reasonable estimation procedure for a

constant hazard case using an exponential distribution. However

if we adopt a more robust distribution based on the Weiball distribu¬

tion the method will become very complex.

If we adopt a distribution with the covariate restrictions

of the proportional hazards assumptions we will have

Mxn'zi) = uoi (V Exp (01 V

As the hazard rate of the ith observation of the x^ time. The
survival function is then by the definitions of the introduction

F ( x ,Z ) = Exp [ -

x

Q11 - (t) Exp(ei Z.) dt]
There/



There is clearly a one to one correspondence between the hazards

and the survival functions.

i

Based on the assumptions of the proportional hazards we

will have

L - n f ,z ) G(xli,z.)
1=1

V"2
'.H P P^.Z > g(X2i'Zi) h<*3iN *21 'V
l=n +1

"l+n2+n3
n 9<*2i'V *2i>

i=n1+n^+1

n

n F(c., Z.) G(c.,Z.) (7.3.2)

i=n1+n2+n3+1

The above gives a good representation of the full likelihood for

a process involving an intervening event. ' Now temporarily

returning to the discussion of Chapter 4 we have.

D gZ . (t. ) n ,ti gZ.(u)
L= n X(t.)e 11 n Exp{ -

i=1 1 i=1
Xn(u) e 1 du} as in

0

(4.4.8)

D 5 Zj(U> z ft

A0 (u) Z e du} XQ(ti) Z e6 j
ti_1 jeR jeR

L = n ( [Exp{ -

i= 1

Exp ( SZji(Ti))^
*e 8YV

3 eR

as in (4.4.11)

The/
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The expression (7.3.2) has been presented for a proportional hazard

rates with fixed covariates and the probability density functions,

f, g and the joint density function h. The expression (4.4.11) in

fact can allow time dependent covariates within the time scale (if

we assume non informative censoring and a further generalisation for

the model so that Z^(u) and ^q(u) are assumed to be independent
within the integration region.) The consequence is to preserve

the proportionality of the hazards while testing the lack of fit

by a time dependent covariate t. We in fact can have the following

hazard rates.

X1 ( X1 i ' Zi) = X( X1i) Exp (31Zi)

V^i'V - X( v Exp < izi +6t h z.)

MW ■ UX3i» EXP l61Zi +Bt '2 Zi»

t^and t^ are described below and are not
related to 4.4.8 and 4.4.11.

In so far as a testing of covariate effects is concerned we may be

interested in tests of non-proportionality due to either or X3
which are assessed by functional forms of t^ or t respectively.
Thus (7.3.2) over generalises the process for a relevant -test. We

then have the following 2x2 table.

Contribution of individual to likelihood
for a day of survival.

Test of non-proportionality Before recurrence After recurrence

For time to recurrence t, =1 t2= 0 tr° t2=°

For time after recurrence fi¬ ll O ft
ro

II o v° V1
The/
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The survival distributions can now be expresses as
x

'

1 i
-

Cxu,Zi) = Exp [ - -X (u) Exp( B Z )du ]
0 1

G = ExpC "

x
21

- Xg(u) Exp (B 1Zi +3t.t1Zi) du]

H <X3i\ *2i'Zi> " EXP! '( 3 21 -Xq(U) Exp(B1Zi +8t^2^i) du^

Note that in essence sinceXg(u) is a nuisance function an

adjustment of the initial value of Xg(u) at each iteration should
suffice and therefore t^ and t^ are otherwise essentially independent
from the integration. t^ is then a function of u for its initial
value and independent of the integration by definitions of the partial

likelihood. t^ is conditional on t^ and has a similar definition
from partial likelihoods. We thus can allow adjustment of the

time scale before or after the recurrence by introduction of a

time dependent covariate t^ or using the proportional hazards
with the Kaplon and Meier base line hazards. As in (7.3.2) the

group 1 to n1 and n^+n^+n^+1 to n are the usual contributors in the
absence of recurrence. The relevant part of the distribution of n^+

1 to n^+n^/and n-]+n2+^ to ni+n2+n3 "'"S nOW rePresented ky either t1
or t^ depending on the type of test. From now we will return to the
language of the proportional hazards model and express t^and t?as
the Z(t) covariates.

If the assumption of the proportional hazards does not hold

for a period of the time scale,between the two covariate subgroups the

time dependency will be testable.

In/
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In the situation of non-proportional hazards the value

of Z is allowed to change within the time scale. In this context,

rather than assume a covariate effect is acting consistently in a

multiplicative manner on the base line hazard, we can test the value

of 3 in particular periods of time. A different deviation of

from the base line hazard within the time scale can then be attributed

to a priori important event taking place before the last follow-up.

In order to assess the value of such an effect in application, we

test the impact of the development of metastatic disease. We consider

a time dependency of the above type, with Z(t) = 1 if time is after

metastatic disease and Z(t) = 0 if time is prior to metastatic

disease. Thus we will have a relative risk, initially composed of,

Exp (BZZ + BfcZ x Z (t) )
We know that the treatment plays an important role in determingin

survival. By a rescaling and use of the assumptions of the

proportional hazards we did not have sufficient evidence to reject

the proportionality assumption for size or treatment. Now we test

the assumption of proportional hazards based on the development of

a secondary event using the above constructs and details.

RR = Exp ( R , . treatment + r^. treatment . Z(t) )r ptreatment pt

8 = 0.3982 S.E. = 0.1170 X2 = 11.61 p = 0.0007treatment

8 = -0.1239 S.E. = 0.0781 X2 = 3.10 p = 0.0748

Although again we do not reject the proportionality assumption

based on the development of metastatic disease, there is some indica¬

tion that treatment effect is more substantial prior to metastatic

disease.

The/
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The main relative risk under study so far has been the

survival relative risk based on the various covariate functions.

Earlier in this chapter we explained a method for defining different

response variables more clearly. Now we will study time dependency

with other response variables. This is analgous to the study of

competing risks or multivariate failure time study. Initially we

will concentrate on stratified analysis based on the log-rank test.

The hazard function x analysis indicates that there is
Li

not a significant difference between the two arms of the trial,

by either the log rank test or the Wilcoxon test. (Chisquared

values 1.21 and 0.82 respectively). On plotting the survival

curves, for both treatment groups we note quite similar rates.

However on plot of the hazard rates there is an indication that the

simple mastectomy group are at a slightly higher risk of developing

local recurrence than the radical group. This effect is not signifi¬

cant although produces a relatively larger number of locally

recurrent patients within the first three years. Figures (7.3.3)

and ( 7.3.4) .

By considering that the local disease may be an important

intervening effect we will continue with analysis and consider x^ Q

and later X^. Time of local recurrence to death and local recurrence
to metastatic disease do not show a significant difference between

the two treatment options. The tests are performed for a stratified

analysis as well as a pooled stratified analysis according to time

to the development of local disease. The three strata are defined

as in figures (7.3.5) to (7.3.8)

The/
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The time from randomisation to metastatic disease indicates

a similar pattern to that seen for the time from randomisation to

death. The radical surgery group show lower risks with the chi-

squared value of 4.01 and the probability value of .0457. No

difference of statistical value is detected for the actual treatments

past the development of metastatic disease namely for the hazards of

\ M M

aq . The tests for hazards of is performed in a similar manner
\ L

to those of A
M,D

One pattern which consistently emerges indicates a higher

hazard rate for the simple surgery group in the initial 3 year period

after treatment, figure (7.3.9) and (7.3.10). The above figure

conforms to the findings for the \ hazards. We thus consider theL

DFI
„ _L,M,D.

The disease free interval is traditionally an accepted

response variable in survival studies of breast cancer and in here

the hazards indicate a consistent distributional structure for both

local and metastatic periods.

The logrank test indicates a significant difference between

2
the treatments in terms of the DFI. X value based on the logrank

test is 4.08 which has the corresponding probability value of p=0.043.

L M
Finally we study the response time ofX ' which is the

time from the development of the metastatic disease or local recurr¬

ence given locals are prior to metastatic disease to the time of

death./
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death. The logrank test for the treatment differences indicates

a value of 4.85 with the significance level of 0.0277.

The period to the appearance of the local or metastatic

disease is further used as a stratifying variable for a comparative

analysis of radical versus simple surgery with XRT in terms of the

L,M
response variable with the hazard . We define three strata,

based on DFI.

2
Total R No.R Dead Total S No.S.Dead. X P

DFI^ 1 (Rvs) 22 21 28 28 9.39 .0022

1 <DFI<3 (Rvs) 41 38 50 49 1.48 .2240

3 < DFI (Rvs) 69 53 61 47 0.66 .4165

Then for patients recurrent after the 1st year their having had radical

surgery is less likely to benefit the patients. Figures (7.3.11) and

(7.3.12). However for those recurring early there is benefit in

terms of survival by a radical surgery. We will show later this is

not an indication of interaction.

We will continue the analysis by inclusion of a time

dependent covariate related to the disease free interval, using the

Cox's proportional hazard model. We will use the formulations which

were presented in the early parts of this section on the intervening

events. Now we will use such concepts to detect departures of

specific type from the proportionality of hazards. In particular

we are interested in the group of patients showing an early recurrence

of the disease. We will define a function t* which is the time to the

detection of recurrence. We first analyse the data according to

the relative risk function of time of first recurrence to dearh, in

presence/
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presence of treatment effects and time dependency due to the DFI.

That is a model of the form,

L M
RR ' = Exp (0^ ^ ^ treatment + g treatment (log (t*)-2))D r treatment t

A model of the treatment effect gives

8. , . = .1475 S.E. 0.0658 X2 = 5.20 P = 0.0225treatment

which closely approximates the logrank test where no time dependency

is included in the model. With the inclusion of a time dependent

effect we have

8 ^ = .1487 S.E. = 0.0698 X2 = 5.81 P = 0.016treatment

8 = -.0720 S.E. = 0.0501 X2 = 2.85 P = 0.0871

There is not sufficient evidence to conclude confounding over the

disease free interval. However as a priori one tailed test there

is an indication of narrowing of the two treatments.

Finally in this chapter we will develop a methodolgoy for

a family of functions for the analysis of an intervening event in a

clinical trial using Cox's proportional hazard model. Clearly there

are difficulties attached to the analysis of trial data if in the

course of progress of disease there are a few routes acting which

differ for various patients. By a fixed covariate approach and

the proportional hazard assumption we may do a useful analysis as

long as there is not a crossover of the hazard rates. The 8

estimator provides a good basis for the interpretation of data.

One of the problems in such an analysis is that often

the present methods of treatment may not affect the total survival

time/
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time but rather may lead to differing qualities of survival depending

on the development of the progression of disease. The example of

analysis by the semimarkov procedure gives a representation of the

problems involved. The method we will develop in this section in

continuation of (7.3.2) allows a formal test to be performed for

the intervening event. By testing the rate of change to the event

of interest prior to an intervening event and post intervening event

for a particular treatment or subgroup it is possible to detect

departures from the proportional hazard assumption. Much of the

work in this area is concentrated in the actual estimation of the

parameters. In line with the developments of the last section we

will continue by concentrating on the functional forms of the time

dependency. According to the previous definition we considered

two forms of logarithmic and linear time dependency.

Now we will develop a functional form by which we may

study the pattern of development of risks by adjusting the rate of

severity of the intervening event to be a function of the time scale.

That is we have a relative risk function of the form

Exp (Z1 61 + f(Z1.ta)
where - co < a <00. The importance of the intervening event may

then depend on the component of time prior to and after the event.

Figures (7.3.13) and (7.3.14) represent the two possibilities. The

figures also present various functions of ta. There is an area

of close overlap withinta which covers In (t) and also Exp(tl for

the value of t. In the example if we consider metastatic disease

to be an intervening event there exist three time dependence

variables, t , t -t and t„. The t represents the survival time
m D m D D
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within which all remeasurements are made. The t and t - t are
m Dm

periods of time that subdivide t . As an extension we let a represent

a weight function for the transformation of the periods. Detection

of the metastatic disease implies a progression of the disease for

both treatment groups. In the comparison of the treatments however

we expect the proportionality of the hazards to hold throughout the

time scale. By letting a > 0 we can test the metastatic disease

or other intervening event progress in terms of deviation from

proportionality. This transformation is analogous to the

Exp (t - t ) type of time dependency, by which the longer theD m

period of survival after intervention, the more risks increase.

Figure (7.3.13) with a >0 shows a situation where there is a build

up of high risks from intervening events.

Alternatively we consider the time t and the test of

the period up to the intervening event. A possible transformation

as presented in figure (7.3.14) is then by a= 0, which implies

that non proportionality due to the intervening event may be

assumed at a constant risk previous to the detection of the inter¬

vening event. Further the transformation of 0 < a < °° is a

situation within which cases are initially at high risks of showing

a survival pattern more critical than the proportional hazards

assumption, but with the passage of time the two treatment groups

produce proportional rates. At a = 1 we have a replicate trans¬

formation of the actual time scale. What is of importance in all

these transformations is the magnitude of the relative weights at

each period of time, in comparison with the adjoining times. There¬

fore for reasons of dimensional symmetry and also a faster convergence

of/
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of the Newton Raphson procedure we use the time scale,

t +
m fcm Xm

5" a

m

and
D-m :tD " m

/
5-
(tr - t

m

We thus recall the relative risk function for the treatment only

model in the full time scale of randomisation to death.

t ^ = 0.3677 S.E. = 0.1168 X2 = 9.97 P = 0.001treatment

We will now consider a scaling of the time from metastatic disease

to death with aset to a value in the range 1 to 0. Previously we

defined a between - °°to +<*>. Clearly in here value of a = will

"~X
transform the measure of time dependency to zero, that is t as

x <*>. Given this situation in fact we will ceturn to the model

with no time dependency included. The initial value of a we consider

is at zero. In the earlier part of this section we derived the value

of time dependency according to Z(t) = 1 for time after metastatic

disease. This is in fact the same as Z(t) = t°. The estimated 8

values are,

treatment
= 0.3982 S.E. = 0.1170 X = 11.61 p = 0.0008

= -0.1239 S.E. = 0.0780 X = 3.096 P = 0.07488

Indicating there is no suggestion of lack of proportionality of tne

type with a constant scale after metastatic disease.

Now we consider a linear effect of the metastatic disease.

That/
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That is

Z(t) = linear normalised time after metastasis,

giving, [(t/15) -2], where t is time after metastatic disease. Thus

RR = Exp [« ^ , treatment +3^ treatment, time]
treatment t

R
^ = 0.3855 S.E. = 0.1181 X2 = 10.11 P = 0.002treatment

3 = -0.1389 S.E. = 0.0847 X2 = 2.69 P = 0.0956

Referring to table (7.3.1), we present the transformations of the

time scale for nonproportionallty. Use of the various power

transformations of the time scale is a good check on the consistency

of the results that may be obtained. In the present context the non-

proportionality does not show a significant deviation from the propor¬

tional hazard model* however we note that, at a = 0.4, the scale of

non proportionality is at the most efficient value.

In fact for the present data the different power

transformation do not influence the estimator of treatment a great

deal. As a general conclusion the appearance of the metastatic

disease does not influence the assumptions of the model. The final

conclusion of the present chapter in fact conform with the analysis

of the Chapter 6. A point of interest howeve is that in the analysis

of this chapter we have not considered only one event variable but

rather two intertwined processes through time and have concluded that

the events through time do not influence.the conclusions of our study.

The implication in medical terms is that the relative risks between

the two treatments according to this data do not provide evidence of

a difference for times prior to and post metastatic recurrence. Since

the occurrence of metastatic recurrence is an intervening random var¬

iable/
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variable we use different transformation with aand again there is

no suggestion of a deviation from the above finding.
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;= 0

= .1

a —. 2

= .3

=5.4

a
_= .5

a - • 6

= .7

= .8

= .9

= 1 .0
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t

treatment

t

treatment

t

treatment

t

treatment

t

treatment

t

treatment

t

treatment

t

treatment

t

treatment

!

t

'
treatment

a =1.2

= 1 .5

treatment

!t

treatment

Estimated value

.3982

-.1239

: .3985

-.1321

.3992

-.1368

.4021

-.1381

.4034

-.1411

.4029

- 1411

.4018

-.1408

.4015

-.1407

,3885

-.1401

.3867

-.1395

.3855

-.1389

.3842

-.1349

.3769

-.1211

S.E.

1170

0780

1163

0775

1158

0775

1151

0749

1152

0734

1159

0751

1163

0775

1169

0809

1181

0847

1201

0897

1211

0928

X

1 1 .22

3.18

I 1 .25

3.02

II .43

3.15

11 .75

3.44

1148 11.76

0721 3.89

11 .78

3.82

11 .45

3.65

11 .26

3.45

10.83

3.02

1176 10.53

0825 2.94

2.79

9.83

2.35

9.75

2- 19

P

.0008

.0749

.0008

.0822

.0007

.0761

.0006

.0639

.0006

.0484

.0006

.0509

.0007

.0559

.0008

.0637

.0010

.0822

.0012

.0861

9.97 .0016

.095

.0017

.126

.0018

.138

Table (7.3.1)
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CHAPTER 8

PROGNOSIS IN BREAST CANCER

The purpose of this chapter is to evaluate the importance of

certain prognostic indicators in a group of breast cancer patients.

In this section however we make a distinction between indicators that

are regularly assessed in the staging of patients and some other

indicators that have not been considered a great deal in the past.

The present data is related to a group of patients diagnosed as

having breast carcinoma and referred to by H.J. Stewart et al (1968).

We will deal later with the data and the procedures for its collection

and the various measurements made on the patients. Before considering

the data however, we will remark on certain important trends in the

study of prognostic indicators and the auxiliary indicators that

are used in the analysis.

In this study we are not so much concerned with substantiating a

major disease indicator but rather to consider if some of the sur¬

vival time variability of the patients may be attributed to some

measurements outside of the usually accepted prognostic indicators.

Thus the findings of this study may be of some value in a subsequent

sample of patients. In the discussions of what follows we will

refer to a number of variables. In here we will describe these

variables and later refer to them in their short notation. Through

the course of the discussion more necessary details and references

to some of the variables will be given.

Tumour/
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Tumour Contour, types will be discussed in greater detail further in

the next section and figure (8.1.1) refers to the classification of

the tumour.

Inoperability, is also referred to in more detail in the discussion.

Basically inoperable patients are patients who have had a spread of

the disease to the extent that no surgical treatment is performed.

Size, is considered to be the maximal tumour diameter of the initial

tumour.

Node refers to the involvement of the axillary nodes according to

histological findings.

Extent refers to the depth of the initial tumour.

Grade is the histological grade of the initial tumour and is discussed

further.

Presence of complicated change.refers to the type of tumour where there

is evidence of abnormal skin distant from the main tumour. These

include thickening of skin overlying tumour, blurring of tumour outlines

and the dilation of adjacent veins. These effects are observable by

X-Ray.

Tumour foci refers to two possible types of tumour, these being either

single or multiple foci.

Micro calcification is a method for detecting areas for histological

examination. In here we define possible areas where tumour calcifica¬

tion had been shown.

8.1 Methodology and sources of data.

Two studies in the past have mentioned the value of

tumour/
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tumour contour types; Ingleby et al (1960) and Lane et al (1961).

Neither of these studies, however were concerned with assessment by

use of a probability measure of difference between the patients.

In the paper by H.J. Stewart two methods are discussed

in the assessment of the tumour contour types of 157 patients. One

is paper section and the other is mamography. Further in the paper

they mention a few other measurements on the actual distributions

of the contour types, such as presence of complicated disease, extent,

tumour change etc. In the present study we will use the same data

for assessing survival distributions for different subgroups of patients,

in a more complete analysis of the data.

The grouping of breast cancer patients by clinical staging

is now a good guide to survival assessment. However in 1958 Harmer

recognised " at least ten systems all basically the same but each

irritatingly different from the next". The present system

is attributed to Union International Centra Cancer and is a resultant

system from various systems that have been used in the past. A

single Manchester system was in use in Britain up until 1958

when the staging was replaced by the TNM effective mainly in Europe.

As from 1966, a different general system was adopted in the U.S.A.

Finally in 1973 a system was adopted by the UICC and the American

Joint Committee on Cancer staging with the (UICC/AJCC) giving the

present method. This system distinguishes between pre-treatment

and post surgery findings and is based on Node histology, size

of the tumour and metastatic status. Further for the size categories

distinction/
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distinction is made for tumours with fixation to underlying pectorial

fascia, and further for Node one cases with moveable homolateral

axillary nodes; a distinction is made for a node containing growth

and those, with no growth.. Given these developments there is still

an enormous variation within any single stage. This is partly due

to the effectiveness of treatments. If the treatments were more

effective for all patients, there would be less emphasis in

classifying cases more precisely. However part of the problem

in the assessment by classification is that is a crude categorising

procedure of a complex biological process of host tumour in time, and

is far more complex than an assessment made by a single instantaneous

measurement for a single time. A less "subjective" assessment on

patient tumour process and survival prediction would ideally require

repeated measurements in time. This is however, not practicable

in that for clinical reasons it is accepted that any diagnosis of breast

cancer requires immediate treatment.

From a different point of view, other studies, J.E. Devitt

(1967) have indicated that the clinical stage of breast cancer may not be

a measure of degree or extent of growth so much, but a measure of

tumour biological potential and host reaction. With the present study

we concentrate on the survival time of patients as the only response

variabLe. However we will not only deal with the study of static

prognostic indicators and a "frozen" patient resistance but rather

we distinguish between static indicators and indicators containing

information about changes or progression. The choice of an

indicator as static or one containing growth is difficult in that

almost any indicator can be considered to contain an indication of

growth.



399

growth. As an example, a variable that we will not consider as

time-dependent but may contain such an effect is shape of the actual

tumour. The pattern in the growth of the tumour may be related to

the form of body resistance to it. (See shape of tumours figure (8.1.1)

At this point we will present example of a type of study

where measurement over time has been of some use in the study of

breast cancer. It is generally accepted that early treatment

improves prognosis of patients. However there is a lack of consistant

evidence in regard to the value of early diagnosis in the improvement

of survival times. A study was carried out by Bloom (1965) to

test whether a prompt diagnosis of breast cancer improves survival as

assessed from the date of first symptoms and whether the delay between

the appearance of the first symptom and diagnosis has become shorter

in the recent years. This study in fact reiterated the commonly

held view that cases with a short delay between the appearance of

the first symptom and diagnosis have a better long term survival rate

than those with long delays.

In this context it may be taken that the delay is in fact

a representation of the growth of the tumour. In the studies of

time dependencies as in other multivariate studies, the order of

incorporating a variable into the model is of some importance.

Often studies of the patient classification is measured by the

staging of the tumour. If delay is taken to be a prognostic

indicator it is measured after staging category effects have been

removed. Thus in the above example one problem with measuring the

tumour development based on delay time is that it may be confounded

with /
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with certain other factors inherent for each individual patient.

Thus the question may be phrased as that of assessing the value of

delay after staging variables have been statistically removed.

With this introduction on the types of models of interest

we will return to the description of the data as mentioned earlier

in this chapter. Initially we will use cross tabulations to show

the numberical association of the indicators between themselves and with

the number of cases alive at the end of the study. Later we will

use a Cox model assuming a constant relative.risk throughout follow-

up. Then we will consider the estimation of the Cox's model,

allowing for time dependent effects of prognostic variables.

Over 2000 mamographs have been studied from 1963 to 1967. Among

the cases with mamograms, 306 cases had a diagnosis of first time

breast cancer. This group has certain patients for whom the data

is inadequate and thus 98 cases have to be removed, so that the

remaining patients are a more defined group of patients. The

98 cases that were excluded are largely defined by the information

collected at the initial X-ray sessions. 53 of the patients had

been previously treated for breast abnormality. 14 of the

patients were initially diagnosed in wrong subgroups in terms of

their form of malignancy.and thus were also excluded. 7 cases

had either an unusual malignancy or had post-operative death.

Finally 24 cases had inadequate clinical information after diagnosis

or mamograph were of inadequate standard.
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Number % of 306

Previously treated 53 17.3

Uncodable diagnostic error 14 4.6

Atypical malignancy 3 1.0

Post-operative death 4 1.3

Inadequate clinical details 13 4.2

Inadequate films 11 3.1

Total excluded 98 32

The 11 inadequate films were also taken at the beginning of the entry

month when the technique was still being perfected. There are

208 remaining cases who had a median follow-up time of 11^ years,

with a range from 4 to 18 years. For this group 163 had died at

the time of study. No cause of death was recorded for the cases

but the actual date of death is available. Of the remaining 45 patients

with censored survival data
, 17 of the patients had attended on

annual review to one year prior to the time of study, 21 were dismissed

after 10 years of follow-up and 7 patients were lost to follow-up

with less than 10 years of follow-up. Therefore for the 208 patients

78% have a recorded death time. The follow-up information in this

study was mainly obtained through extraction of relevant follow-up

information from the Cardiff clinical notes in 1981.

Four tumour contours are defined and this definition is

related to the type defined by Ingleby et al (1960). They define

3 types of tumour, irregular, smooth or mixed outline. Further

they represent better survival for smooth or circumscribed tumours.

In the present study an additional subdivision is made. Between

the extremes of smooth and spiculated, two categories are defined,

namely/
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namely mixed tumour wi.th well defined smooth and spiculated parts to

their outline and conglomerate tumours which have a mulberry

appearance macroscopically and have a blurred and irregular but not

definitely spiculated outline on the mamograms. Further 31 or

15% of the 208 maomgrams had evidence of malignancy but no tumours

show. Thus there are 5 groups in all

O © C3 #
Smooth Conglomerate Mixed Spiculated

Figure (8.1.1) Representation of the contour types.

The mthoa of obtaining mamographs was reported in 1968 based on the

Egan techniques. The assessment however considered only the

first 60 patients and used the Gough and Wessthon technique of paper

mounted thin whole breast sections.

Several further radiological features were also recorded

during the initial examination. For all cases size was recorded in

millimetres. Microcalcification was also noted at the special

X-ray review sessions and thus patients were categorised into

calcification present within, on the outset or both within and outset.

Clinical inoperability is a criterion that is not strictly

definable clinically and thus patients with no sign of metastatic

disease and operable tumours were recorded as operable cases and if

metastatic disease is present or the tumour is inoperable they are

classified as inoperable. The point about inoperable and operable

patients is that they do represent very different groups of patients

and in the final analysis we will distinguish between statements

made in this regard.

Axillary/
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Axillary node involvement is another well established

clinical indicator and thus cases are grouped into node negative

and node positive groups. Bloom and Richardson (1957) define three

histological grades for lesions, which we use in this analysis. In

terms of shape of tumour we distinguish between multiple and single

foci.

Picard J.D. (1962) has defined several well recognised

features that can occur in the normal breast tissue around the tumour

shadow on the mamograms of advanced primary lesion. This is termed

as tumour showing complicated change and as thickening and straighten¬

ing of the travecular shadows, thickening of the skin overlying

tumour, blurring of the tumour outline and the dilation of adjacent

veins. The above features are present on X-rays when there is

oedema present clinically but they were also noted at mamographic

review sessions of the data.

Apart from complicated change, extent is also studied, by

separation of patients into greater than and less than h inch deep

tumours. Clinical size of the tumour and age of the patient complete

the data.

Variable No.

1

2

3

4

5

6

Variable name

Operability

Microcalcification

Node

Histological grade

Foci

Contour

Description

Inoperable or metastatic,operable

Within, outset,both.

Negative, positive

I, II, III

Single, multiple

Smooth, spiculated, mixed,
conglomerate.

7/
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Variable No. Variable name Description

7- Complicated change Present, absent

8 Extent Less than h inch deep,
greater than % inch deep.

9 Size

10 Age

The result of an interim analysis based on 157 mamograms was

published by Stewart (1968). In conclusion no significant relationship

between contour types and certain prognostic indicators whether consid¬

ered separately or together was obtained. However a trend was noted

contrary to findings of Ingleby and Gershon - Cohen (1960) and

Lane et al (1961) suggesting a better prognosis for spiculated

tumour and bad prognosis in smooth and also possibly mixed lesions.

The 1968 analysis however did not deal with any of the other indicators

that we mentioned earlier in terms of survival times.

8.2 Categorical distributions of the prognostic indicators.

Initially we perform a preliminary analysis based on Cross

tabulations of the prognostic indicators. Two well known and

accepted indicators are node histology and the initial size of the

tumour. The extent of the progress of the disease is important in

so far as we have to distinguish initially between the inoperable and

operable cases. The main group of interest are in fact the

operable patients. However, we will discuss the distribution of the

inoperables in the early stages of the analysis.

75%/
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75% of the 208 cases were treated by mastectomy but some were

with palliative intent in the presence of clinical inoperability•

5 clinical groups may in fact be defined. 131 cases belong to the

accepted operable, group of interest. 15 further cases had positive

contralateral mamograms and their survival distribution is similar to

the operable group. All 15 had a second mastectomy from 1 to 27 years

after the first. In contrast to these two groups, there are 3 remaining

groups in whom both mean and the median survival times are considerably

less. 20 patients had local but clinically inoperably tumours and a

further 20 have been termed inoperable solely because of the detection

of the involved supraclavicular node at mastectomy. 22 others presented

with systemic disease comprise the final group. In terms of the

progress of disease the patients were separated into operables and

inoperable patients. The main aim is to consider prognostic

indicators for the operable group. Clearly the operable patients

contain a smaller proportion of node positive patients (43%) to

inoperable patients with 55% node positive cases. These results

are clearly in line with expectations that inoperable patients are

more advanced and thus they contain a higher proportion of patients

with axillary node involvement. In fact operable cases as a group of

less advanced disease patients have a higher proportion of patients

in better prognosis groups. For the grade of the tumour the inoperable

cases have 74% of the patients with grade 3 tumours and operable

cases 52% grade 3 tumours. This is not surprising and only conforms

to what is expected. (Later we will discuss the grade categories in

more detail in more detail in relation to other categories).

For/



406

For the extent of the tumour, operable cases present

a 9% proportion with greater than h inch depth as to 32% for the

inoperable patients. Although this result conforms to what is

expected it is also in line with a hypothisis which assesses extent

as a time-dependent indicator of progress. Once again the same

conclusions are obtained when we consider complicated change. 22%

of the operables present evidence of complicated change in the

initial tumour as to 63% of the inoperables.

Multiple foci tumours form a small number of patients

altogether . We obtain 16% multiple foci group among the operables

and a 23% multiple foci group for the inoperables. One indicator

that does show a similar distribution for the operables and the

inoperables is the tumour contour shapes. We will study these

categories further in terms of survival but at this stage there is

no evidence to link tumour contour types with those of the progress of

the disease. Calcification present within or on outset also is

similarly distributed for the operable groups versus the inoperable

group. At the end of follow-up we also note that 36% of operables

are still alive.compared to 1% for the inoperable cases.

Node involvement is a further accepted prognostic indicator

in so far as this study is concerned. We will at first consider node

involvement for the total population and in some important categories

mention the distribution of node involvement for the subgroups of

operable and inoperable cases.

Two/



407

Two other variables that may indicate progression process

are extent and complicated change. These two do not show statistic¬

ally significant associations with the node categories. Greater

depth tumours are present in 6% of node negative and 17% of node

positives. Complicated change amounts to 25% of node negatives

and 31% of node positives. It is difficult in here to conclude

what extent and positive nodes imply, but it is an indication that

in terms of good and bad prognosis valueTextent is describing something

slightly different from that of node status. Finally for node and

survival status at the end of follow-up, there are 30% alive patients

with initially no nodes involved and 18% alive with nodes recorded as

initially involved.

For the total of grade categories there are 12%, 16% and

17% of tumour with higher extent depth at 0 & 1,2 and 3 grade levels

respectively. By separating operable cases again there is not a

major deviation from the above for each subgroup of operable and the

inoperable. However by considering node negative patients against

the node positive the percentage value of the above categories of

the grade change to 18%, 12% and 9% for the node negative and 11%,

12% and 10% for the node positives. Thus in terms of classifying

patients into good to bad prognosis there seems to be again an

indication that node status and extent may be defining different

attributes of tumour progression for each grade category. It must

be pointed out in here that the above percentages are presented purely

to illustrate distributional patterns of subgroups of patients. In

the next section we will present survival distributions and the rele¬

vant/
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vant statistical tests.

Grade in terms of percentage of cases showing complicated

change gives values of 18%, 31% and 38% for grades 0 & 1,2 and 3

respectively. This is a similar pattern for direction as that of

extent. (Although the complicated change values are significant at

p ^ 0.001 extent categories are not). By the definitions

of extent and complicated change it is possible that they are

explaining similar effects of. the tumour progress. Once again by

subclassifying by the operables and the inoperables we do not obtain

a major deviation. However for the node status the same pattern as

that of extent emerges. That is for node negative patients and the

respective values of grade we obtain 29%, 22% and 20% showing complicated

change. While we obtain 31%, 30% and 30% for node positives showing

complicated change at grades 0 & 1, 2 and 3 respectively. The

conclusion from this pattern is clearly the same as that of extent of

tumour. However a point must be emphasised that up until now we

have considered relative effects in terms of prognostic distributions

and we have not dealt with the survival times.

In terms of contour types we do not detect any interesting

distributional patterns for the various values of grade. Grade in

relation to multiple foci and calcification distributions give once

again a uniform pattern.

Calcification within and at outset together with single

or multiple foci tumours also show no significant association with any

of /
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of the other recorded variables.

The mean size of tumour is 3.25 centimetres. For the

operables and the inoperables we do not detect a major difference .

Size also gives a similar pattern for the node negative and the node

positive patients. However extent and complicated change both show

a slightly different mean value at good and bad prognostic levels of

extent and change. For the extent of the tumour less than k inch

we have the mean size to be 2.51 and for the extent greater than

h inch^4.89 as the mean sizes. (t-test, p ^O.OOl) With the

complicated change however this pattern is not represented so

significantly. Tumours with no sign of complicated change have

a mean size of 3.00 centimetres and tumours with complicated change

have a mean size of 3.71 centimetres. (t-test, p ^ C$1). Once

again there is an indication that if complicated change is playing

any role in classifying patients it relates to a different group of

patients than the size category classification. For various other

factors such as contour types and tumour foci calcification a similar

value for the mean size distribution is obtained.

Status of patients, at the end of study indicates that

contour type, tumour foci and calcification do not play a major role

in determining survival of patients. Among the accepted indicator

size, node and operability are the major indicators for determining

survival. With regard to the present data however two other

indicators are also of value; complicated change and the extent of

tumour. We pointed out earlier, these two indicators refer to groups

of/
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of patients that are not identified by their node status, size or

operability. Later in this chapter we will discuss those patients

in more detail by considering survival probabilities.

Finally we will consider the age distribution of the patient

according to various categories. The mean age of patients is 50.2 years.

For the operable patients we have a mean age at 50.1 years and for

the inoperables a mean age at 50.3 years. therefore the age

distributors are very close. Node status categories produce again

very close mean ages with the node negative patients being a little

older than the node positive patients. Mean age for the grade of

the tumour are also very close to the mean value, with higher grade

patients, slightly older than lower grade patients. For lower than

mean size groups we obtain again that age distribution is the same

as the larger tumours. Extent and complicated change also produce

the same lack of age diffierences. In the case of foci, calcification

and contour pattern again we observe that age distributions are very

close to each other in terms of the mean distribution of the

various categories.

In the earlier part of this cnapter we mentioned that some

patients were excluded from the study. Altogether they comprise 32%

of the 306 patients. From examination of the features of these

excluded patients, we observe that in general the exclusions are

uniformly distributed between the various categories of the indicators.

8.3 Prognostic indicators according to survival time. /
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8.3 Prognostic indicators according to survival time.

Up until now we have considered groups of patients and the

pattern by which they were formed into distinct groups. At this

stage we deal with survival status at the end of study and the

estimation of the survival functions for each of the distinct groups.

The group of operable patients as my be expected have much better

survival than the inoperable. For completeness we present the

survival rates of the two groups , Figure (8.3.1).

The various categories of the indicators do not suggest

a significant difference between any of the inoperable groups.

However, we note that some of the indicators do not affect the

survival times of the inoperables in the same direction as that of

operable groups. This effect is due to chance rather than adequate

statistical evidence for a real difference. The most striking effect

with respect to inoperables presenting a survival trend in different

direction as that of operables is given in figure (8.3.2). By which

the two categories of contour types with speculated tumours show a

slightly worse survival than smooth contour types for the inoperables,

while in comparison of the operable groups the spiculated group do

better than the operables with smooth contours. Due to the small

numbers of the inoperables we will leave this subgroup and concentrate

on the operable group only. Clinically, the operable group are

of more interest in terms of prognosis since they are composed of

patients with less advanced diseases.

Initially/
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Initially we will deal with the operable, patients and the

different categories considered independent of time. Later we will

consider the time dependency of the various indices with their relevant

interpretations.

For the operable group we note that the node negative

patients tend to have a much better survival time than the node positive

patients. The median survival time of the node negative patients is

in fact 8 years and 9 months against 6 years and 4 moaths for the

node positive patients. Node histology is one of the well-accepted

prognostic indicators of survival time and we thus introduce it at

first step of producing a relative risk function of the survival times

for the operable strata.

The total number of patients is 122. There are 68 node

negative patients and 54 node positive patients. At the end of the

study there are 80 patients with recorded death times and 42 censored

times. By use of the Cox's proportional hazard we estimate the

corresponding relative risk functions, given by the model .

RR = Exp( 8node- node)
node negative =0, node positive=1

8 . = .5319 S.E. = .2144 X2 = 6.30 p = 0.012node

Figure (8.3.3) represents the survival times for the two groups of the

node negative and node positive patients in the operable strata.

One/
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One further accepted indicator is that of size of the

initial tumour. Size in the group of operable patients is playing

a slightly less important role than the node histology. The prognostic

importance of size however reaches a statistically significant level

for the operable group. (Among the inoperable group however we do

not detect a significant level and observe that the direction of

the prognostic value is in the opposite direction to the operables).

Model of the relative risk,

RR = Exp (6 . .size)
size

0 . = .4581 S.E. = .2171 X2 = 4.78 p = 0.029
size

Figure (8.3.4) refers to survival rates for size when a split for

over and under 3.5 cm. lesions has been made.

The significance of size and node status however remains

when either node or size variability is introduced in the presence

of the other.

RR = Exp (8 . . size +8 , .node)
size node

8 .4160 S.E. = .2091 X2 = 4.31 p = 0.038node

8 . = .3891 S.E. = .1765 X2 = 4.26 p = 0.037
size

In terms of the magnitude of the direction of node and size progression

we introduce an interaction term for the relative risk model, giving

RR = Exp (8 . . size + B . node + 3 . . size.node)
size node int.

5 = .4271 S.E. = .2087 X2 = 4.20 p = .040node

5
. = .3881 S.E. = .1854 X2 = 4.09 p = .043

size

I. = .0092 S.E. = .0426 X2 = .0731 N.S.
int.



months

Figure(8.3.4)Probabilityofsurvivalfortheoperablestrataaccordingtosize.
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The above model allows the effect of size to be different in node

positive and node negative patients. In fact with the introduction

of this interaction effect we do not observe any statistically signifi¬

cant improvement to the additive model of size and node.

By a single covariate relative risk model we study the effect

of various indicators. Microcalcification is marginally not significant

at 6.2% probability level and other indicators namely, tumour foci

and contour type are of even less significance. The indicators

grade, extent and change , as we may expect, show statistically

significant levels in terms of time to death of patients. The most

significant contributor is grade given by

RR = Exp (Bgrade- grade)
6 .5902 S.E. = .2091 X2 = 8.02 p = 0.005grade

However grade is related to size and node status. Thus after the

introduction of node and size in fact we reduce the grade effect.

RR = Exp ( 8 , .node +6 . • grade)
node grade

8 .4311 S.E. = .2109 X2 = 4.16 p = .041node r

8 „ = .4021 S.E. = .2231 X2 = 3.95 p = 0.047grade

RR = Exp ( 8 . . size +8 . . grade)
size grade

8 . = .4081 S.E. = .2051 X2 = 4.05 p = 0.044
size

8 , = .4019 S.E. = .2162 X2 = 3. 84 p =0.050grade

Next we introduce a model of size, node and grade which

indicates very close estimators to the model of node and size, for the

estimator/
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estimator of node and size and an insignificant estimator for the grade.

RR = Exp ( b - . node + 3 . . size +8 , • grade)
noae size wgrade

2
B , .4408 S.E. = .2010 X = 4.81 p = .028p node c

2
B . = .4135 S.E. = .2081 X = 3.92 p = .047psize

B = .2850 S.E. = .2567 X* = 1.23 N.S.p grade

Both extent and change produce statistically important

relative risk patterns in terms of survival. If inserted singly, we

obtain:

RR = Exp ( b . •ext) (Extent < \ inch deep) = 0
SX L •

(Extent > h inch deep) = 1

B = .2425 S.E. = .1162 X2 = 4.33 p = .037
SX L •

RR = Exp (8change* change) (complicated change not indicated) = 0
(complicated change indicated) = 1

B , = .2637 S.E. = .1206 X2 = 4.81 p = 0.028^change

Extent is slightly less significant than change. However the two

categories represent almost overlapping subgroups of patients in

terms of their own good (0 level ) and bad (1 level) prognostic

indicators.

First we introduce extent & change in the presence of size

effect. Their significance level shows little change. Once again

extent is less significant than change.

RR = Exp (B • Ext. + B . • size)
ext. size

ext/
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5
^ = .2638 S.E. = .1259 X2 = 4.39 p = 0.036ext.

! . = .3934 S.E. = .1785 X2 = 4.63 p = 0.031
size

RR = Exp ( 6 , • change +
change

I . . size)
size

R = .2701 S.E. = .1288 X2 = 4.45 p = .035
change

Bsize = .3939 S.E. = .1783 X2 = 4.61 p = 0.030

Now we will consider the possibility of an interaction effect between

extent and size and further change and size. (node interactions later)

RR = Exp(e , . Ext + 6 . . size +ST • ext.size)
ext. size Int.

6 . = .2641 S.E. = .1248 X2 = 4.51 p = .034
ext.

6 . = .3942 S.E. = .1785 X2 = 4.79 p = .028
size

2
6 = .0176 S.E. = .0712 X = .059 N.S.
Int.

RR., = Exp (g , .change + 6 . . size + 6_ .change.size)
change size Int.

) = .2694 S.E. = . 1285 X2 = 4.39 p = .036
change

i . = .3941 S.E. = .1780 X2 = 4.64 p = .031
size

ST = .0211 S.E. = .0619 X2 = .184 N.S.Int.

Thus effect of extent and change is additive in presence of size

and the interaction effect is not significant.

We can now consider extent and change in the presence of

node histology- In the previous discussions node and size were

clearly major contributurs in defining survival time. First we

deal with the relative risk for node and change status.

RR = Exp(8 . . node + 8 . . change)node change

^
risk/
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8 . .4381 S.E. = .2097 X2 = 4.71 p = .029node r

8 = .2517 S.E. = .1183 X2 = 4.61 p = .032change

The extent also presents a similar pattern as that of change

RR. = Exp ( a . .node + 8 Ext )r p node ext.

8 „ = .4376 S.E. = .2081 X2 = 4.57 p = .032
nooe

8 = .2480 S.E. = .1198 X2 = 4.28 p = .038pext. e

The value of change with node is significant and it is interesting

to study the effect of size in this respect. That is we assess the

survival variability which is unexplained in terms of node and change,

by the introduction of size. Before doing so we study the effect of

an interaction between change, node, and extent, node.

RR = Exp (8 . • node + 8 , • change + 8_ • change.node)
node change Int.

8 , = .4392 S.E. = .1988 X2 = 5.15 p = .023node

8 , = .2524 S.E. = .1182 X2 = 4.56 p = .032
change

SInt. = .0896 S.E. = .0489 X2 = 3.78 p = .052

RR = Exp( 8 -node + 8 .ext. + S„ .ext.node)node ext. Int.

6 . = .4366 S.E. = .2114 X2 = 4.28 p = .038node

6 ^ .2593 S.E. = .1274 X2 = 4. 17 p = .041ext.

8t . = -0782 S.E. = .0523 X2 = 2.47 N.S.Int.

There is a slight indication of an interaction effect with node and

change indicating both complicated change and node positivity together

add extra risks for survival. However this is not of great importance

since it may be a spurious significance. The size variability however

has/
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has not been included in our model. If we do introduce the

size effect by the relative risk function, none of the interactions

remain significant.

RR = Exp(8 , .node + S , .change + ft . . size)c node. change Msize

3 , .4279 S.E. = .2136 X2 = 4.21 p = 0.040node ^

3 . = .2512 S.E. = .1215 X2 = 4.41 p = 0.036change

g . = .4181 S.E. = .1976 X2 = 4.51 p = 0.033
size

In terms of extent no interaction effects are significant and if we

introduce a model of size, node and extent,once again a similar pattern

emerges as that of change.

RR = Exp( 3 , .node +3 ^ . Ext. + 8 . . size)
node ext. size

3 , .4281 S.E. = .2237 X2 = 4.40 p = .036node *

8 . = .2484 S.E. = .1268 X2 = 3.90 p = 0.048ext.

3 . = .3927 S.E. = .2093 X2 = 4.04 p = 0.045
size

The main reason for introducing the change concept has been that of

considering an effect of tumour initial status by which some of the

attributes in terms of external progress of tumour may be explained.

This effect is clearly not sufficiently explained by node and size

classification alone.

We will now introduce the concept of time dependency in

this section for the various prognostic indicators. One reason for

this conceptual change of model is to study effect of node or size

over a time scale and test how each prognostic effect may eventually

diminish/
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diminish or increase over time.

First we consider a relative risk function based on node

histology and a time dependent function of time, given by t* = In(time)

RR = Exp( B . .node + . node.t*)node t

S . = .4284 S.E. = .2071 X2 = 4.29 p = .038node

B = -.0785 S.E. = .1211 X2 = .420 N.S.

There is not a great improvement over the overall likelihood by the

introduction of the time dependency factor into the model. Thus we

may consider the effect of node histology to be. static in terms of

prognostic value. Once a patient is node positive the patient is at

a higher risk and this risk for the individual patient in relative

terms does not decrease or increase over the passage of time.

Size is the second factor we study with respect to time

dependency.

RR = Exp (B . • size + 8. • size.t*)
size t

B . = .4201 S.E. = .1964 X2 = 4.32 p = .036
size

8 = -.1291 S.E. = .0623 X2 = 4.19 p = .040

Size effect clearly diminishes with the passage of time. The larger

tumour patients are at a higher risk in the early part of the diagnosis.

However for the larger tumours that do not correspond with an early

death, the prognostic significance of size will eventually diminish

in terms of relative risk.

Both/
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Both extent and change were two other indicators that

produced some significant contributions in explaining the survival

variability rates. Now we consider extent and change as two time

dependent variables.

RR = Exp ( 3 , . change + 8^ . t*.change)
change t

8 , = .2281 S.E. = .1109 X2 = 4.22 p = .040
change

8. = -.0819 S.E. = .0902 X2 = .72 N.S.

RR = Exp( 8 . .ext +8. »t* .ext)
6XL • L

: = .2319 S.E. = .1132 X2 = 4.24 p = .039
ext

2
8. = -.0792 S.E. = .0876 X = .96 N.S.

Neither change nor extent contributions are affected significantly by

the time dependent variability. In terms of interpretation we conclude

that change and extent classify patients in the beginning and their

effect is consistantly the same in terms of relative risk of death.

Node histology therefore has a prognostic effect which may be inter¬

preted in a similar way to that of extent and change.

One interesting question that may be asked is related to the

effect of time on the magnitude of the size effect. Given that size is

a time dependent factor, that is the sizes of tumour do not all conform

to a single fixed relative risk function and some patients are slightly

different type of survivors, is there a prognostic factor measureable

and static at beginning of the study by which we may separate the time

dependency of the size effect. Although the question and the evidence

from the data may simply be represented by a few histograms, in terms

of



of statistical significance there are a few models all of which accord¬

ing to this data can explain the variability within the data.

Primarily we presented a model of relative risks based on node histology,

size, complicated change and extent. In the comparison of models

of complicated change and extent, there is little to choose between the

two, in so far as our study is concerned. For practical reasons however

the extent of tumour may be an easier variable for measurement. In

the interpretation of the time dependency of the size effect we may

conclude that there exists a subgroup of patients in whom largeness

of size of the tumour is sign of bad prognosis. By the passage of

time in the survival scale however the value of size as a prognostic

variable diminishes.



426

CHAPTER 9

FINAL SUMMARY

In this the final chapter, we will summarise the findings

of the thesis. We will separate the findings into the statistical

and medical, and allocate a section to each. In these sections we

will present an overview of ideas which may be useful for future research.

9.1 Overview and conclusions of the statistical results.

Initially we identified various hazard shapes which have

been reported in the literature. Such methods were useful for

presenting in a descriptive manner the patterns of events in time

scale for the different subgroups of patients. Further we discussed

recent developments in the area of non-parametric methods and the way

in which such methods are able to provide a flexible approach for

classifying different non-parametric tests, which are often used in

survival analysis (such as the logrank and Wilcoxon .tests) . In the

area of parametric methods we considered various analytical methods

and in comparing the various assumptions of the methods with empirical

data with subgroups, we found the methods theoretically restrictive

but practically in terms of conclusions consistent for our data set.

Primarily we performed the analysis of the old Edinburgh trial data

by the different parametric and non-parametric methods purely for the

purpose of comparing the statistical methods. In terms of conclus¬

ions we did not find any inconsistencies between any of the parametric

and/
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and non-parametric methods. However as expected we were able to

attribute the slight differences between the two non-parametric log-

rank and Wilcoxon tests in the weighting attached, to the events within

the time scale of study. We defered the discussion of the difference

between the various methods (in terms of significance levels) to later

chapters where the concept of time dependency is more developed.

Parallel with the above discussions we considered multivariate methods

and how concepts such as multivariate prognostic factors and multivariate

events may be employed in analysis. We considered efficiency and

robustness of an approach to be two factors of extreme importance when

dealing with the above forms of interrelationships between various

events and prognostic factors. A method that we found suitable for

this type of analysis, was the Cox's semi non-parametric proportional

hazard model.

One important aspect of the Cox's method which can provide a

robust framework for the analysis of such data is in the manner in

which the actual survival times are transformed into ranks. Before

proceeding with the development of models using Cox's method, we

presented transition rates between the various states of the old

Edinburgh trial, using an explanatoiy stochastic method which

was referred to as the non-parametric semi Markov model. Although

the approach was considered to be informative we found the Cox's

method more suitable in the manner by which it could provide a check

on the model assumptions, using the information, on the intervening

events. Initially we considered the expansion of the models with

fixed relative risks into models that have covariates with an internal

variability within the time scale. At times we found checks on the

assumption/
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assumption of consistency of a prognostic effect useful in a proper

interpretation of the data. We refered to such models, models with time

dependent prognostic effects. Alternatively an interpretation was poss¬

ible by employing the concept of intervening event within the time scale.

We found that by the utilisation of the information on an

important progression event such as metastatic recurrence, we were able

to check on the consistency of the relative treatment effect for the times

prior to and post intervening event. In general such intervening events

are random events and we used a family of transformations of the time of the

intervening event, in order to check on the consistency of the goodness of

fit tests. We found that in practice such a consistency was present and

that the proportional hazard of non-parametric type was considered quite

suitable, (for the covariate subgroups that we dealt with in the data).

We allocated a full chapter to the simulation methods for

a clinical trial study. In this study we presented the small sample

properties of the various statistical methods (in particular Cox's method)

using simulated data. The method of simulation we adopted had a useful

property of being able to generate increasing, decreasing and constant

hazard rates with covariates. In fact all the generated samples belonged

to the family of proportional hazards of the Weiball type. This property

was found useful when we dealt with a simulation study of time dependencies.

An important property of survival studies as discussed before

has been that of censoring of the survival times. In developing a

simulation/
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simulation method we discussed various approaches of generating

censored survival times and adopted one which is suitable for a trial

data and can give a constant proportion of censored cases. Our

initial intention in performing the simulation has been an assessment

of the small sample properties of the Cox's method. However later

ir. study of time dependencies with the Cox's method we also considered

Weiball and exponential parametric methods. Within these simulations

we used a range of sample sizes, significance levels, levels of

censoring and a range of treatment and covariate effects. In order

to assess the power properties we constantly refered to the asymptotic

normality and the likelihood ratio tests.

Initially we discussed the power properties of the simple

test of hypothesis for the treatment effect at both treatment effect

and covariate effect set to zero. This value is clearly an

indicator of type one error. We obtained efficiency values close

to the expected values according to the singificance levels. In

repeating the simulations for a range of covariate effects we note that

the efficiency of simple tests of hypothesis for treatment is not in

any way influenced by the value of the covariate effect. Clearly

as we expected the efficiency of the tests do deviate to some extent

according to the values of sample size, cansoring and significance level,

however none of these factors affect the lack of influence of the

covariate effect value. A point of some interest was that the

decline in the power of the simple tests due to censoring which seems

to be affected by the sample size to some extent, indicated a lower

loss due to censorings for higher sample sizes.

Next/
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Next we discussed power curves for the composite tests.

These simulations had a change of emphasis in that they were presented

for a more theoretical interest and we showed that the Cox's method

has good, predictable small sample properties. At first we dealt

with the type one error and showed that our results conform with

the levels of the significance limit. This finding was true for both

the asymptotic likelihood and the asmyptotic normality tests. Later

we considered a range of treatment effect and covariate effects. We

concluded as expected sample size, significance level and censoring

levels do influence the power of tests. However the relative

efficiency of the above factor is not influenced significantly by the

treatment effect or covariate effect.

In comparing the asymptotic normality and asymptotic likeli¬

hoods we note that the asymptotic normality in general is more conser¬

vative, as the treatment effect and covariate effects deviate from

zero. Up until this point we have summarised simulation results

when the generated samples were based on an exponential distribution.

Next we deal with the summary of results from the Weiball distribution.

We reported the simulations for the samples of Weiball in which the

proportionality of hazards had not been violated. We found very close

resemblance between the efficiency of simulations on increasing,

decreasing and constant hazards (all other factors e.g. sample size,

censoring being equal). We attributed this close resemblance to the

non-paramtric nature of the Cox's method.

At this stage we deal with results of the Weiball distributed

samples/
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samples in which the proportionality of the hazards was violated.

That is, there existed a degree of time dependency for the covariate and

treatment effects. Consistently we noted a reduction in the type one

error less than the actual significance level. In fact we noted

this power decreases with an increase from the proportionality of the

hazards. For the range of treatment and covariate effects (negative

and positive) we noted that for the non-proportionality with divergence

from base line hazard there was a higher loss of power in comparison

with the non-proportionality with a convergence to the base line.

In comparing the asymptotic normality to the likelihood ratio

test we observed that the normality test is more conservative. We

repeated the simulation for a range of sample sizes and censoring

levels and the conclusions were consistently the same. One pattern

which emerged was that due to non-proportionality, the power curves for

the various composite tests did not have the symmetric pattern of the

proportional hazard situation. However, we noticed that with an

increase in the sample size there was a reduction in the lack of

symmetry about the covariate effect axis.

In the final discussion of the simulation results we studied

simple tests of hypothesis in the presence of one covariate effect.

We generated non-proportional hazard data of the Weiball type and in

order to analyse the data we used exponential modi, Weiball model,

Cox's proportional hazard, Cox's stratified and Cox's time dependent

models. At the value of treatment effect set to zero we consistently

noted that power efficiency is close to the significance level for all

models./
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models. This pattern was consistently the same, for non-proportional

hazard samples. In order to study the influence of the covariate

effect we increased the value of the covariate effect and again

there was little change in the type one errors.

Next we considered non-zero values of the treatment effect

for both non-proportional and proportional hazard samples. We

concluded that for the analysis of the non-proportional hazard samples,

both the stratified Cox's model and the time dependent Cox's model

were suitable. This was true for a range of covariate effect values

and we noted that the magnitude of the covariate effect did not

influence power of the tests. The unsuitable models were the Cox's

model with fixed relative risk, tne Weiball model and the exponential

respectively, with the exponential being muchvorse than the other two.

For these three unsuitable models we noted that the magnitude of the

covariate effect does influence the power of the tests. In summary

we concluded that specification of the correct model is of some

importance, when dealing with proportional hazard models. The

Weiball and Cox's models (fixed relative risk) are the most suitable

for analysing proportional hazard data and the time dependent Cox's

model and stratified Cox's model are less suitable.

In terms of magnitude of the effieiencies we noted that

at high sample sizes of 100 there was little to choose in general

between the models (except exponential) while at low sample sizes of

25 some of the problems with the specification of the wrong model were

more apparent.

9.2/
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9.2 Overview and conclusions of the medical results.

On dealing with the applications of the various statistical

methods we presented two data sets. Both of which dealt with the

primary breast cancer. The first data set was refered to as the

South East of Scotland trial data. The major objective of this

trial was an assessment of the survival rates for a group of patients

treated by radical surgery versus the group treated by simple surgery

and radiotherapy. Before commencing the analysis of this data

we discussed the important design aspects of this trial such as

patient eligibility rules, stratification and data administration.

This trial with regard to the magnitude of the data which was collected

and the type of events that were expected to take place within the

survival time of each patient, is suitable for an exploratory analysis

of the various interrelationships such as the multivariate events and

multiple prognostic indicators, as discussed earlier.

As we indicated by the study of the cross-tabulations there

was in most respects a very uniform balance between the two treatment

groups and the various prognostic indicators. Initially we performed

an analysis based on the conventiaonal methods. This analysis

indicated that the radical surgery patients may have an overall higher

survival rate compared with the group treated by simple mastectomy and

radiotherapy. We further indicated that the significance levels of the

treatment differences as expected was not consistently the sane for

the different prognostic subgroups.

At the first stages of the exploratory analysis of the data,

we/
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we are interested in the study of the duration from randomisation

to any single event of importance, namely any of death, metastatic

recurrence, or local recurrence. In this approach we used various

stepwise regression methods with the Cox's proportional hazard model.

A point to note was that in the approach we considered step-up .and

step-down procedures, together with a different procedure by which

as a priori rule, we forced the treatment effect into the model at

first step regardless of its relative significance to the other prog¬

nostic factors. The above methods consistently yielded the same

model indicating a better survival for the radical surgery group, and

with the significant prognostic contributors to the model being,

menopausal status, size of the tumour and the node status.

In order to make sure the findings of the models were not

dependent upon the model assumptions we used stratified analysis at

each step of introducing a new term into the model. Once again we

noted that the direction of the effects was consistently the same.

In order to assess the multiplicative effect of the various indicators

we performed tests of the interaction effects using the Cox's method

and we did not find any evidence of interactions for the survival times.

In the next stage of the analysis we considered the time

period from randomisation to the development of the metastatic disease.

We once again used the above stepwise procedures for model reduction with

the same set of prognostic effects. We noted consistently the final

model was the model involving, option, size, node and menopausal status.

However, we also noted slight deviations in the order of the entry of

the various terms. This pattern is not testable at this stage

however,/
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however, this difference in the order of importance of the prognostic

effects for these two response variables is of some importance for the

later discussions when we consider time dependency in the time scale of

study. The analysis based on the randomisation to local recurrence

also presented a consistent model indicating the same set of covariate

main effects.

In the summary of the results so far we have confined the

conclusions to those of analysis of randomisation time to an important

final event. From this point onwards we will summarise the results

of the South East of Scotland trial with models of multiple risks in

which patients move from one state to another.

In general we attributed the developments within the time

scale to be due to intertwined processes. Such processes were

combinations of epochal events such as metastatic recurrence, local

recurrence or death. Alternatively we may have been interested in

the assessment of cumulative risks over time for a single covariate.

Initially we considered an analysis based on the semi-markov

models . This approach gave an explanatory stochastic description

of the movement of patients from one state to the other. In terms

of presentation of the results we derived general expressions for

the survival rates in order to obtain close approximations to the

transition rates. More important however, are the results by which

we represented the above survival rates in terms of exploratory models

of the proportional hazard type. Using the proportional hazard models

with time dependent covariates, we were able to ask questions such as;

given/
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given that an event has taken place (such as the progression of disease)

how is the relative risk for treatment groups and prognostic effects

performing within the time scale. In the study of the empirical

hazard rates we consistently refered to hazard rates in which the

proportionality of the hazards may have been violated. We were then

in the position of testing any possible departures from the assumptions

of the model.

At first we considered a test of the time dependency of

the treatment effect, by which we concluded that there was no evidence

of the proportional hazard assumptions being violated with respect to

the treatment effects. We then studied the survival rates according

to the time dependency of the size effect by which we concluded there

was not sufficient evidence to reject the constant relative risk

assumption.

Next we studied the response time of metastatic recurrence

or local recurrence to death, given that a recurrence had already taken

place. First we stratified the data according to the period of

randomisation to the appearance of local or metastatic disease, in

order to compare radical versus simple surgery in a model by which

time to the appearance of first recurrence was controlled. The

pattern emerging was that for patients recurrent after the first year,

their having had radical surgery, was less likely to benefit the patient.

However for those recurring early there was benefit in terms of

survival by a radical surgery.

Finally for this data we considered the analysis of the

data/
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data according to the secondary events that had occurred within the

full patient survival time. Such secondary events were taken to

be based on local or metastatic recurrence of the disease. Initially

we dealt with the relative risk function according to the treatment

effect and tested the goodness of fit in order to detect departures

from the proportional hazard assumptions of type by which the

relative risk after the secondary event may be acting differently

for the two treatment groups. Once again we noted that the proportional

hazard model is quite appropriate and that all conclusions were

consistently in line. Although the non-proportionality did not

reach significance we noted, however, that the treatment effect was

more substantial prior to the development of metastatic disease.

In the previous chapter of the thesis we considered

survival rates of a group of cancer patients in order to assess the

importance of certain prognostic indicators. Before analysis of

the data we made an initial distinction between indicators that are

regularly assessed in the staging of patients and some other indicators

that, have not been considered a great deal in the past. In general

the variables we were interested in were; tumour contour type,

operability, size, node, extent, grade, change, tumour foci and

microcalcification. In the analysis of the data we concentrated on

the survival time of the patients as the only response variable.

However we did not only deal with a study of static prognostic

factors but also studied how changes may occur in the value of

the initial prognosis.

At first we noted that the various indicators for the

operables/
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operables and the inoperables did not necessarily indicate prognosis

in the same direction. The prognostic indicators for the inoperables

were not of a significant difference and we consequently confined the

analysis to the operable patients. For the operable patients we noted

that node negative patients had a better survival rate than the node

positives. Further, as expected, size of the tumour conformed with

what was expected and patients with smaller tumours showed better

survival rates. In terms of the relative value of size and node

we noticed that. the significance of either factor remained in the

presence of the' other factor. In terms of direction in the effects

of size and node there is no evidence of an interaction. Two further

prognostic factors that are found to have an important influence on the

final survival pattern of the patients were the extent of the tumour

and the presence of complicated change in the tumour. We observed

that extent is slightly less significant than change. However, the

two categories represented almost overlapping subgroups in terms of

good and bad prognosis. The good prognosis being tumour with less

than h inch depth and tumour with no evidence of complicated change.

We performed test of interaction for the different indicators and

found none significant. We further performed tests of time dependency

of the indicators and found time dependency of size indicated that

size is of more importance during early periods of survival.

Throughout the course of this thesis we have presented the

models with an emphasis on interrelationships. A study of such

factors will clearly imply a check on the generalisations and the

assumptions of the models, and may introduce a diversity of inter¬

pretations. According to the data sets that are here examined it

has/
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has been possible to show a consistency of results in the final

analysis. It is however important to consider the impact of such

methods in situations where data may be the resultant outcome of

constantly evolving treatments and that the analysis is performed in

a situation of widely accessible distributed computing procedures.



APPENDIX (A)

Section A.1

440

Cross tabulation tables for the prognostic factors referred to in

section 6.4.

Menopausal Status

Prem Meno Post M. Total

Node NO 107 21 247 375

N1 56 17 112 185

Total 163 38 359 560

T stage

T1

T2

T3

Menopausal Status

Prem Meno Post M.

22 2 32

114 26 257

27 10 70

Total

56

397

107

Total 163 38 359 560

T stage

T1

T2

T3

Side

Right

22

205

57

Left

34

192

50

Total

56

397

107

Total 284 276 560

T stage

T1

T2/

Medial

only

20

Site

Lateral

only

30

Central Both Whole

halves Breast

0 0

Total

56



Total

56

397

107

560

Total

307

141

112

560

Total

375

185

560

Site

Medial Lateral Central Both Whole

only only Halves Breast

20 30 6 0 0

133 203 48 13 0

30 53 13 92

183 286 67 22 2

Site

Medial Lateral Central Both Whole

only only Halves Breast

108 161 31 70

44 70 21 6 0

31 55 15 92

183 286 67 22 2

Site

Medial Lateral Central Both Whole

only only Halves Breast

133 191 38 12 1

50 95 29 10 1

183 286 67 22 2
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Skin involvement Pectoral Muscle
involvement

TO T1 T2 T3 NI TO T1 T3 NI

Meno¬

pausal
status

Prem

Meno

Post M

1 5 16 7 134

1 1 3 7 26

0 6 51 22 280

8 16 8 131

2 22

1 38 33 287

Disease Status Total

None L M L+M

27 34 3 99 163

11 71 19 38

76 100 12 171 359

Side

Right 1 7 41 15 220 9 33 22 220 56 73 9 146 284

Left 1 5 29 21 220 5 30 21 220 58 68 7 143 276

Site

Med.only 1 6

Lat.only 0 5

Central 1 0

Both 0 1

Whole
Breast 0 0

17 10 149 2

37 16 228 7

9 7 50 2

5 3 13 3

2 0 0 0

16 15 150 32

28 23 228 58

11 4 50 18

7 0 12 6

110 0

48 4 99 183

60 10 158 286

22 2 25 67

9 0 7 22

2 0 0

T Stage

T1 1 2 3 0 50 5 1 2 48 3 14 1 38 56

T2 0 1 9 0 381 9 6 1 381 85 90 11 211 397

T3 1 9 58 36 3 0 56 40 1 1 26 37 4 40 107

Node
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Section A.2 (cont'd)

Skin involvement Pectoral muscle Disease status Total
involvement

TO T1 T2 T3 NI TO T1 T3 NI

Node

No

N1

2 7 38 27 301

0 5 32 9 139

7 42 25 301

7 21 18 139

None L M L+M

63 86 7 219 375

51 55 9 70 185

S Stage

S1 0

52

53

1 1

5

3

0 301

0 136

1 10 62 36

3 0 297

4 0 132

2 56 43 11

51 63 5 188 307

36 40 7 58 141

27 38 4 43 112

Total 2 12 70 36 440 14 63 43 440 114 141 16 289 560
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APPENDIX B

The Fortran maximum likelihood estimation program with

use of the Newton-Raphson procedure. The version which is listed

performs the necessary calculations for the estimators of proportional

hazards model with fixed exponential relative risks.



real blank.r,rb,idno,beta
common tdeathC1000),istdvr(40),iselvr(40),beta(40)«

3 rb (40) . u2cinv (40) , dd (40) , z (40) , zk (40) ,

2 r , i dno, ns, i reprt, 1 re j , a 1 n 1 1, kch, ndatin , d:L st.nc: ,

4 model.itime,mxhalf,status,stp,ipr,npbase,1iktyp,
1 n v ar, ma x i t. r , a I n 10, t :L me, n c ase, n d s v3, bre a k, c ur t :l m, t a m:L nt,
5 ivtime, ivstat, iventr, ividno, i.s,nvtot, i step, niter, ivznp

d :L mensi on bout (40» 30 )

d cA "t. 3. D O L.l *tl /' 200 %.•' $ 0 a /

c

CCCC de-fine all file output and input
f~-

open (5, f i 3. e=J phr . r5r )
open C6,f a 1e«"phr.w6' )
op en (E3, f i 1 e= ■ phr. r 8p )
op en (9, f :L 1 e~ 7 ph r. w9' )
open(11,fi1e=7 phr » w117)
rewind 5

rewind 6

rewind 8

rewind 9

rewind 11

i c<

,d all the dat a and speoi f i cat i o;

read (5,903) kch,1iktyp, ndatin.

ividno,i s,ata me,mxhi a 1 f , i p r
if (mxhalf.eq .0) mxhalf

read (5,908) stp,timint, di st.no,
if (stp.eq.0) stp = .001
if Stamint.eq „ 0 ) "f" 2 ft] p*i *h = 1

if (distnc.eq , 0) d i st n c 5= 1

if (chaent.eq .0) ohien t = 1 .32

i f ( i pr. eq . 1) read (5,908) zk

no in = u

ncsv = 0

nd:L n - 0

ndsvl = 0

ndss'2 ~ 0

ndsv3 =: 0

sr = 0

read (8,903,end=50) (dd (n),n = l,ndatin)

2C transform any variables if needed

call transf

st atu s ::: d d C a vs tat)

if (status.eq.1) go to 20
ncin = ncin + 1

445
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4i~i

1 O C

1 1 o

120

n -j •£ q . f) ,

n d i n = n d :L n + 1

if (irej.eq.1.and.(kch.eq.1.or.status.eq.0.or.Iiktyp.eq. 1) )
1 go to 10

if (status.eq.1) gc to 40

go to 10
if (irej. eq. 0) ndsvl = ndsvl + 1
ndsv3 = ndsv3 + 1

if (ivtime.ne.05 tdeath(ndsvl) = dd(ivtime)

if (sr. gt. 1. and . irej . eq. 0) ndsv2 = ndsv2 + 1
i f < 11 ktyp.eq.0.and.kch.eq.0) sr = 0
g a t. o 10
nin = nci n •+- ndi. n

nsv — ricsv + n::!sv2

ndead = ndsv2

ncase ~ nsv

read (5, 903, end=800) j. step , nvar ,ns, i bref , max itr, ireprt, model
1 iswi se¬

lf (i s-w i se. eq . 0) q c t o 110
nvarsv = nvar

maxisv = maxitr

maxitr = -1

read (5«904) ise1vr

do 120 n=1,40

istdvr(n) = 0

if (n.le.ns! istdvr(n) = I

continue

CCCC insert MLE or use previous steps

X "f ( 1 fc} Y~ 6? *f a €5 Q 0 ) C3 C t Q i 50

do 130 n=i,40
130 betaC n) = bout\n,ibref)

go to 300
150 read (5,908) beta

r

CCC obtain estimate for a constant rate null

if(1iktyp.eq.0.or.model.eq.6) go to 300
do 200 n=l,nvar

if(bet a < n).ne.0) goto 300
200 continue

if(model.gt.1) go to 250
beta (15 = alog C-f I oat (ndead ! / (ncase — ndead) )
qo to 300

250 beta(l) = - float(ncase -2 % ndead) / (ncase

300 continue

ndead)
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call p hr

CCC u.00 *ti hj 0 ML.EI 03. L fa 0r~ ~f of" "Lfai 0 01 ed oi*"

CCC use the !ii_E -for -forward selection based on largest
CCC Chi Squared (or use Forced variables)
l.-

it (iswise.eq.0) ao to 700
n y p- rrr }~i <z: -f-

max i tr = max i sv

ireprt — 0
chimax = 0

d a 500 n := n var, n var s; v

if (u2cinv(n).It.chimax) go to 500

chimax = u2cinv(n)

500 continue

if (chimax.ge.chient) go to 600
go to 700

600 saviv = iselvr invar!

iselvr invar) — iselvrCnmax)

i se]. vr <nmax > = savi v

cal1 phr
if invar.eq.nvarsv) go to 700
ns = nvar

istdvr ins) = 1

nvar = nvarsv

maxitr = -1

go to 300
700 do 750 n=l,40
750 boutCn,istep) ~ beta(n)

co to 10O

800 write C 6,958>
stop

903 f or mat. (1615 )

904 format (40i2)

908 format (8-flO.O)

958 format ('normal ending')
end

subroutine phr
C

CCC perform the MLE calculations
C

real r,rb,rbb,sr,srb,srbb,idno,betnam,unam,beta,r1
real c, ci nv, csave, d 1, d2, estims, bl ank , vniarg , const
r eal betasv,u,sarat,sratd,shift
common tdeath C1000),istdvr(40) ,iselvr(40),beta(40),

3 rb (40) , u2ci nv (40) , dd (40) , z (40) , z k (40) ,

2 r, idnD.ns, ireprt, ire.i,alnl 1, kch,ndatin,di stnc ,

4 model , i. ti me, mxhal f , status, stp , i pr , npbase, 1 i ktyp ,
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1. nvar , max i tr , al n 1 0, t i me, ncase, ndead, Break , curt, imt:L mi nt ,

5 ivtime,ivetat,iventr,ividno,is,nvtot,istep,niter,ivznp
dimension u (40) , c (820) , cinv (820) , csave (820) ,betasv (40) ,carr (40)

1 srb(40),srbb(820),sarat(40),sratd(40)
dimension msv (3.000) , nrsksv (1000) , srsv (1Q00 3
d i men s= ion ar (40)

ainlet ~ -10**10

n vsq 2 = n var * (n var +1) / 2
niter ~ 0

nsurv = ncase - ndead

a 1 n I 0 — 0

i f (1 i ktyp» eq. 1) al n 3. 0 = ndead *al og (f 1 oat (ndead ) )
1 + nsurv* a 1 ag (f 1 oat. (nsur v) )
2 - nc ase * a1og(f1 oat(n case)?

C

CCCC after initialising clear arrays and iterate
C

100 m — 0

niter = niter + 1

sr = 0

da 110 n=l,rivar
sratdin) = 0

sarat (n) =: 0

110 srb(n) = 0

da 120 nn=1,nvsq2
c i n n ) = 0

120 srbb(nn) = O

break = tdeath(l) - timint/2

:L f (x t. i m e, eq. 0. a n d. i ven tr . eq. 0) b re a k - 0
curtim = tdeath(l)

nphr " 0
ier = 0

tlast. -■ 999999.

if (ireprt.1t.0) rewind 11
C

CCCC get data on each case together with ties if needed
C

200 rewind 8

210 call getr
nphr = nphr + 1
if (r.gt.0) go to 250
if (niter.eq.1) go to 895
alnl ~ 0

a 1 r 1 = 0

alrO = 0

g o t. a 5 3.0
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if (1 j. ktyp . eq * 0) go to 300

CCCC Ignore the next loop if using partial likelihoods

260

h" 'I h~ -4~ 1

alnl = alnl — alag(rl)
if (stat us.eq«1> alnl = alnl + alcg !r)
n n — 0

da 260 n — 1.nvar

if (status, eq . 1) uratd(n) = sratd(n) ■+• rb !n! /r
sarat (n ! = sarat. (n ) + rb (n! /ri

da 260 n1=1,n
n n = n n ■+■ 1

c(nn) = c inn) + rb(n)#rb(nl)/(r#rl#r1)

i f C n p h r . 11.. n c ase) g a t. a 210
go to 500

CCCC Beain partial liklihood estimation for survival times

500 S Y~ Sl-P"

31 o

r> n I i

da 310 n=1.nvar

srb (n ) =: sv b (n ) h- y k ()

da 310 n1=1,n

n n = n n + 1

srbb(nn) = srbb !nn) + rb(n)Srb(n1)/r

:L f (stat.us , eg . 0) ga to 210
if (kch.ne.0.and.time.ne.tdeath(i+1)) go to 210

CCCC iqnore censored times and ad iust deaths

r

CCCC

i = i +1

m = m-i" 1

if (ireprt.ge.i.and.niter.eq.1)
! wr i te (9 , 999 ) i , nphr , i rej , ti me , r , (rb (n > , n = lnvar )

if death has missing data , skip calculation

if (irej.eq.1) go to 455
alnl = alnl + a log (r i
nn = 0

do 320 n~l.nvar

320 sratd(n) = sratd(n) + rb(n) / r

c

CCC loop to
CCC perform calculations for first and second derivative

if (kch.eq.0.or.i.ge.ndead) go to 350
if (tdeath(i).eg.tdeath (i + 1)) go to 210
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350 nn = 0

i f (i repi"t. ge. 0> go to 361
dt = tlast - tdeath Ci )

t3. ast = tdeath(i)

alamO ~ m/sr

v 1 a rn 0 = m # < n p h r -m) / ( n p h r # sr # sr)
da 360 n~l,nvar

360 ar(n) = srb(n)/sr

write (11,971) tdeath(i),dt,m,nphr,alamO,vlamO,(ar(n),n=l,nvar)
971 -format (2f 10. 3, 2i5, 41el5. 6)
361 continue

msv(:L) := sr.

n i-sksv (i ) = nphr
srsv C:L ) ~ sr

a 1 n 1 - a 1 n 1 - m #a 1 og (sr )
i f (n:L ter . eq , 1)

1 a 1 n 10 = a3. n 10 - m#a 1 og (float <nphr) )
da 400 n-l.nvar

sarat(n) = sarat(n) + m#srb(n>/sr

do 400 nl=l,n
n n =: n n •+■ 1

400 c (nn) = c (nn) + m # (srbb(nn)/sr - srb(n)Isrb(nl)/isrlsr))

i f (i rep rt. g e. 1 . an d. n i t. er . eq . 1)
1 writ e (9.998) sr, (srb(n),n = l,nvar)
if (ireprt.ge.i.and.niter.eq.1) write (9,998)

455 m = 0

C

CCCC Now for all cases a contribution to liklihood has been made

CCCC if using ordinary psirt i a I likelihood the next few lines
CCCC are nest needed

C

if (i.ge.ndead) go to 500
if (koh.eq.0) go to 465
c u.rt i rn = t d eat h (i +1)

i f (t d eath C i +1 ) . g e. b r e k ) g o to 210
460 break = break - timint

if Ctdeath(i+1).1t.break) go to 460
465 nphr = 0

sr ~ 0

do 470 ,n = l,nvar
470 srb(n) =: 0

do 480 nn=l,nvsq2
480 srbb (nn) =: 0

if (is.eq.l.and. (istep.ne.l.or.niter.ne.1)) go to 210
if (kch.ne.03 go to 200
gcd to 210

C

CCCC If likelihood is low enough take an estimate for this iteration
C
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510

520

540

r

CCD
r

i f (a 1 n 1 — a 1 n 1 s t • g t. —st p ) g o t o 540
i er ~ 1

a 3. r 0 = 2 # < a 3. n 1 - a 1 n 1 0)

air 1 = 2 * (alnl - alnll )

do 520 n = 1,nvar

(n ) ~~ (fa0t•::> (n ) "'*■ fa s *fci sv (n) ) /' Til

shift = shift/2

r r =~ 0

r w = 0

n sh i f t = nsh i f t +• 1

n 1 *ti 0 f' ~z n i b. 0!'" — i

writ e (6,906) niter,nshift,ier,shift,alnl,air0,alrl,rr, rw
wr i te C 6, 910) C b et a C n ) , n ~ 1, n va r )
if (ni ter . ge. max i tr. or. nshi f t. ge. mxhal f ) go to £300
go to 100
nshift = 0

a 1 d i f f ~ a 1 n 1 - a 1 n 1 s t

alnlst = alnl

do 570 n=l.nvar

570 u (n ) = sr at d < n ) jar at in;

610

620

2C

ccc

Output results of firs iteration.do a test for each variable,

if (n i. ter , gt. 1) go to 650
a 1 nil = at I n 1

wi t e ■! 6, 902)
do 630 n = 1,nvar
nn = 0

do 620 ni=1,nvar
do 620 n2=l,nl
nn nn + i

csave<nn) = c(nn)

if (nl.ne.n.and.istdvr(nl).eq.O) go to 610
if (n2.ne.n.and.istdvrCn2).eq.0) go to 610
go to 620
osave(nn) 0.,

if (nl.eq.n2) csave(nn) = 1.
cantinus

nvsrt rns."ti y

call linvlp (csave,nvar,cinv,1,dl,d2,ier)
nn ~ n*(n+l)/2

u2cinv(n) = u(n) t u(n) ♦•cinv(nn)

oalculate t.he ohi va 1 ue

call mdch (u2cinvin),1.,psig,ier)
psig = 1. — psig
if (iselvr(n).eq.0) goto 624
if (ipr.eq.l) go to 625
writs (6,904) n,iselvr(n),istdvr!n) ,

1 beta (n ) , sr atd C n ) , sar at (n ) , u (n ) , o C ri n ) , c i n v (n n ) , u2c i nvini , p s a g
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624

L'

rprp
w w w L-•

go to 6
wr i te (6, 904> n , i se 1 vr (n > , i e-tdvr <n) ,

1 beta Cn) , sratd (n ) , sarat Cn) , u (n! , c (nn) , ci nv (nn ) , u2c:L nv (n ) , psi g

d — *ti o 63
write (6,929) n,iselvr(n),zk(n),istdvr(n),

1 beta(n),sratd Cn),sarat(n),uCn5 ,c(nn),cinv(nn),u2cinv(n),psig
continue

get correlations and information matrix ready

CiO

o

640

644

645

646

it ( ipr.eg.1) go to 646
write (6,903)
if <iselvr(1).eq.0) go to 634
go to 636
if (nvar.ge.2) go to 635
go to 636
centinue

n 1 1 =-: O

n 12 = 0

do 645 ni=i,nvar
n11 = nil + n1

n22 « 0

do 640 n2=l,nl
n22 ::: n22 •+• n2

n 12 = n 12 + 1

corr(n2) = c(nl2) / sqrt<c(nl1)#c(n22))
:L f C i sel vr Cn 15 . eq . 0) go to 644
writ e (6,901) (cor r(n2),n2=1,n1)

go to 645
write (6,901) (corr<n2),n2=1,n1)
if C nvan.g t.8) write (6,901)
write (6,901)
wr i t e C 6 , 918) ail n 3.0

CCC Invert the information matrix and check within range

650 if (maxitr.1t«0) go to 890
d a 670 n n = 1, n vsq 2

670 csave(nn) = c(nn)

if (ipr.eq.0) go to 690
nn = 0

do 6E)5 n = l,nvar
do 685 n1=1,0
n n n n + 1

if (u(n).ge.0.and.u(n1).g e.0) goto 685
:L f (li Cn ) . 11. 0. and . beta C n ) .1 e . 0 ) go to 675
if (u(n1).1t.0.and.beta(n1).1e.0) go to 675
go to 685

675 if (n.eq.nl) go to 680
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c ( n n ) = 0

go to 635
630 c (nn) 1

685 continue

d o 6 S 6 n = 1, n var

i f (u (n ) . ge. 0. or . beta (n ) . gt. 0) qo to 636
u < n ) 0

nsi = n s1 + 1

636 continue

690 do 6905 nn=l,nvsq2
/-■, Q {'_) <=j £.\ w pi ( {-*) sz Q ( [-j p )

C C i n ver t mat r i

c ai 3. linvip (c,nvar,cinv, l,di,d2,ier)
if Cier.eq.0) go to 691

rw O

a 1 n 1 0)

a I nl :l. )

r= <j

a 1 r 0 ~ 2 # < a 3. n i -

al!" 3. = 2 * Cain I -

niter - maxitr

qo to 770

CCC ignore the following for survival analysis with single loops

A. :~p y~ y" ~ £>

rw := 0

sh i f t = 1

nnsv ~ 1

do 692 n=l,nvar
692 betasv(n) ~ b eta(n)

do 700 n=l,nvar
nnsv = nnsv + n - 1

nn - nnsv - 1

do 695 n 1= 1,nvar
n n = n n ■+■ 1

if Cnl.gt.n) nn = nn + nl - 2
rr ~ rr + uCn)*uCn1)$cinv (nn)

rw — rw + betasv(n)fbetasvCn1)fcsave(nn)

betaCn) - betaCn) + u Cn 1) *ci nv (nn ) *di strtc

695 continue

if (ipr.eq.0.or.betaCn).ge.0) go to 700
i f C b et asv C n ) . g t. 0)

1 shift = arainl(shift,betasv(n)/(betasv(ni-beta(n!)!
if (betasv(n) .eq.0) betaC n) = 0

700 continue

if Cniter.eq.l) rrO - rr

if (shift.eq.1) go to 750
do 720 n = 1,n var
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beta (n ) = beta (n) #shi -ft + betasv(n)#(1—shift)

720 1 f (beta (n ) .It. bet asv (n ) #stp ) beta (n ) 0
750 shift = shift#distnc

if (niter.gt.I) go to 770
write (6,905)
:L f C i pr . eq . 1) go to 760
if (iseivr(1).eq.0) qo to 758
go to 765

758 if (nvar.ge.2) go to 759
go to 765

759 continue

go to 765
760 write (6,913) (z k (n),n = 1,nvar>
765 write (6,901)
770 a3.r0 = 2 # (alnl - alnlO)

a 1 r 1 ~ 2 * (alnl - alnll )

wr i t e (6, 906) nit er , n sh i f t, i er,shift,alnl,a 1 r 0 ,alrl,rr,rw
wr i t e C 6 , 9 10) (b et a (n ) , n := 1, n v ar >
wr i t e (6, 910) (u (n ) , n=1, n var )
write (6,901)

C

CCCC stop all loops
r

i f (ma;-: i t r . eq . 0) got o 870
i f: C n i tsr . g e. mai tr ) g o to 80 0
if (rr.ge.stp) go to 100
if (alcliff.gt. (stp t 10. ) . and. shi f t. eq . 1) go to 100

r

CCC final estimators get SE and MLE for relative risk
n
1

800 if (ipr.eq.0) go to 810
write (6,927)
r =0

if (npbase.ne.0) r = - beta(npbase)
n = 0

var ~ 0

if (npbase. ne. 0) var = cinv (npbaseHi (npbase+1) /2)
e:-:pr =: e::p(r)
sebeta = sqrt(var)
expse ~ e;<p (—sebe?ta)
chisq = 0
if (var.ne.0) chisq = r^r /var
z 0 ~ <!'

write (6,928) n,z0,r,sebeta,expr,expse,chisq
var = 0

do 80E3 n=l, nvar
f = r + beta (n)

if (beta(n).eq.0) go to 808
if (n . eq . npbase) go to 807'
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var = var + ci nv< n#(n + 1)/2)

p) p> 1_ p| ;i: ( p^ — 1_ ) / ^ -t- 1

n n 2. — n # (n+1) /2—1

da 905 nn=nnl,nn2
p« 1 =: r\ 1 •4- 'l_

805 it (beta <nl >.ne.0.and.npbase.ne.nl) var = var + 2#cinv(nn)
BO7 se = sq rt ( var >

chisq = 0
if (se.ne.O) chisq = (r /se) * $2
expr — e;<p Cr)
E'>;pse= exp (se)
sebeta — sqrt. (ci nv (nf Cn+ 1 ) /2) )
write (6,928) n,:k(n),beta(n),sebeta,expr,expse,chisq

808 continue

go to 362
C

CCC in order to use the following change the above liner
CCC the fallowing will use estimates far removal of a varisible
r

810 writ e (6,907)
if (iselvrC1).eq.0) go to B14
go to Si6

814 if (nvar.ge.2) go to 815
go to 816

B15 continue

816 writ e C 6,910) (beta(n),n = l,nvar)
writ e (6,915)
do 820 n=l,nvar

820 csave(n) = 1/csave(n%(n+1)/2 5

write (6,910) (csave(n),n=l,nvar)
write (6,916)
do 850 n=l,nvar
nnl ~ nf(n-1)/2 + 1

nn2 = n#(n+l)/2

if (i sel vr (n) . eq . 0) cjo to 825
write (6,910) (cinvinn),nn=nnl,nn2)
go to 850

825 write (6,910) (cinv(nn),nn=nni,nn2)
850 if <n var.gt.8) writ e (6,901)

do 860 n=l,nvar
860 u2cinv(n) = beta(n) % beta(n) / cinvfni(n+1)/2)

writ e (6,911)
write (6,913) !u2cinv!n),n=l,nvar)
r~ w 0 — 0

n n = 0

n s 1 - n s + 1

ndf = nvar — ns

do 8600 n:-ns 1, nvar
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nn0 — n $ (n-1) /2 + ns

do 8600 n1=ns1,n
n n ~ n n + i

rinO =: nnO + 1

3600 cinv(nn) = cinv!nn0)

C (I] i n v© *t fn *t'. r* ? • ■'

call 1invlp (c: i n vn d f , c, 1, d 1, d 2, i er)
nnsv =: 1

acd E3610 n=nsl,nvar
nnsv = nnsv •+■ n - ns - 1

nn = nnsv - 1

do 8610 n1=nsi,nvar
nn = nn + 1

i -f (n 1 . g t. n ) n n = n n + n 1 - n s - 2
8610 rwO = rwO + betaCn)*betaCn1)#c(nn)
862 if (nshi f t. ne.'O. or . ni ter . ge. max i tr ) write (6,914)

alrchi = 2.*(alnl~alnl0)
df = nvar

if (ipr.eq.1) df = df - ns1
CC calculate the chi~s value-

call mdch (al rchi,df,psig,ier>
psig « 1. ~ psig
write (6,920)
wi" i te (6,908) a 1 r ch:i , df , p:> si g

CC calculate the chi. s value

cal 1 mdch (rw, df , psi gi er )
psig = 1, - psig
write (6,924) rw, df , psi g
alrchi = 2*(alnl-alnl1)
df := nvar—ns

CC calculate the chi s value

cal1 mdch (alrchi,df,psig,ier)
psig = 1. - psig
write (6,921)
write (6,908) alrchi,df,psig

870 df - nvar-ns

CC calculate the chi s value

c a 11 m dc h (rr0, d f , pi s i g , i er )
psig = 1. - psig
write (6,912) rrO,df,psig

CC calculate the chi s value

call mdch (rwO,df,psig,ier)
psig = 1. - psig
write (6,924) rwO,df,psig
if (maxitr.ge.0) go to BS1
do 880 n = 1,n var

880 beta(n) = betasv(n)

return

381 if (kch.eq.05 return
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write (6,930>
c h 0 = 0

c h 1 := 0

skmO - 1

s- k ml = 1

j = ridead + 1
do £385 1=1 , ndead

881

£385

890

895

901

902

903

904

905

9o6

907'

908

910

91 1

912

913

914

915

916

918

if (j.sq.ndead) go to 882
if (tdeath(j).eq.tdeath(j+1)) go to 885
alamO = msv(j> / srsv(j)
alaml ~ msv(j) / f 1 oat (nrsksv ( j) >
rbar = srsv(j > / nrsksv(j)
chO ~ chO + alamO

chl = ohl + alaml

sk'mO - skmO * (1—alamO)

s k m 1 = s k ml * < 1 -a 1 a m 1)

sbresO exp C—chO)
sb r es 1 = ex p (—chl)
write (6,931) tdeath(j),nrsksvfj),msv<j),alami,chl,skml,sbresl,

1 r ta ar , a 1 a m0, c h 0, s k fii0, sb r es0
continue

r taturn

write (6,922) nphr,i,key2,(dd(1),1=1,ndatin)
wr i t ta (6, 923) r , rb (n) , C to tat at C n ) , n = 1 , n var )
stop

(4>:, 8f 15. 5/ (13>:, 8f 15. 5) )
C' vatriatblta beta' ,

observed expected u e(i)
(e (i ) ) * f — 1 ch :L sq p ' / )
('correl ation matrix')

C i 6,17, Ax ,18, Ata 13. 5, f93, f 11 . & >

f ormat

format

1'

f ormat

format

format ('-iteration outputs
1' error difs log
2" ir test one two'/

2' number h a 1 v i n g c: ad es
3,' hOs beta=0 hO:beta=betaO
4' hO:beta=0'/)

f ormat (3i 11, 6f15,6>
f ormat. C' MLE of b eta' / )

format ('LR chi square=' ,f12.A,f4. 1, '
f ormat (4x,Be 15.6/C13x,Be15.A) )

iteration increment

Ir test

multipiier
hO:beta=mle ',

1ikelihood'

df , p = + 9.6)

f ormat

format

f ormat

format

f ormat

format

(' tests to remove')

(* chi square55' , f 12. 6, f 4. 0,
(13x,8+15.3)

d f, p; + 9.6)

( ' n o c. o n ver g a n c e ' >
('varian c es,wit h Asym normalit y:
('temps')

f or mat ('1n(L) null h yp ot h esis=',f13.4)
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Q (") q }/- fr, zo +• ( ■ <r: n q j~, *j_ -f m f- x.) rj f— ga *h ga *h <r: ? \

9!21 t ormst ( n adds-n )

922 -format <' ?i ni ti al estimates of beta produce zero or negative' ,

1' r for subject ' , :L5, ' of risk set ' , i 5, ' with id — ' , aS/
2 ' r a w d a t a f or s ub j ect f oi1 aws'/10f13.6/10f13»6)

923 format, ('computed r ~ ' ,e16.5/' n rb (n! ' >

1' beta(n)'/< i 5,2m,2el5.5))
924 for m at C' t. es t c 1"! i sq uare—' , -f: 12. 6 , f 4 . 0, ' cl f , p =' , f 9 . 6)
927 format ('—final estimate of the relative risk',

1' function and its asymptotic standard error'/' increment
2' z beta se(beta) r m se(r) cum, rw test'>

928 f or mat (i 7 , f 10. 3, 2-f 3.0. 6 , 3f 11 . 4 >
929 f or mat ( i 6, 17, 6x, f 6. 3, i 8, 6e 13. 5, f 9. 3 f f 11 . 6)
930 format ('lestimated survival functions at the mle of beta'/

I'D survival num num entire set - unadjusted for covar
2i ates' , 10:<, ' mean ' ,, Sx , ' null functions - i.e. evaluated at z := 0'/
3' time at dead hazard cumulative survival func

41 i ons' , 10k, 'risk' ,8k, ' haz ard cumulati ve s;ur vi vs. 1 funct ions' /
5' risk rate hazard cox

6 ' , 10k, ' ' ,8k, ' rate hazard cox: '/)
931 format (f8. 1, i.7, i 5, 4x , 2f 12. 7, 2f 11. 5, f 13. 4, 4x , 2f 12. 7, 2f 11. 5)
998 f ormat (38k,f10.4,6k,6e13.5/(3k,1Oe13.5))
999 format (' ',i4,i5,2x,i3,f8.2,7x,f10.4,6x,6e13.5/

1 (3m.1Oe13.5))

end

s u b r outine get r
r e a 1 b 1 an k , r , r b , i d n o, b et a
common tdeath(1000),istdvr(40),iselvr(40),beta(40),

3 rb(40) ,u2cinv(40) ,dci (40) ,z (405 ,zk(40) ,

2 r , i dno, ns, i reprt, i rej , al.nl 1 , kch , ndati n , di stnc ,

4 model , :L ti me, mxhal f , status, stp , i pr , nphase, 1 :L ktyp,
1 nvar,maxitr,aln10,time,ncase,ndead,break,curtim,timint,
5 ivtime,ivstat,iventr,ividno,is,nvtot,istep,niter,ivznp
if (is.eq.1.and.(istep.ne.1.or.niter.ne.1)) go to 150
time - 0

idno = 0

tentry — 0
100 read (8,903) (dd(n),n=l,ndatin)
903 format (1615)

call transf

s t: a tus — cl d (:L vs t. at)

if (irej.eq.1,and.(kch.eq.1.or.status,eq.0.or.1iktyp.eq.1))
1 go to 100
if (ivtime.ne.0) time = dd(ivtime)

i -f (i v :L d n a. n e. 0) i cl n a - d d (:L v :L d n a)

if (iventr.ne.0) tentry = dd(iventr)
if (tentry.gt.curtim.and.kch.eq.1) go to 100

150 continue

151 do 200 n=l,nvar
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if (iselvr< n) . eq . 0) go to 190
z tn ) = dd(isalvrCn))

go to 200
;L 9fi (;r, ) r:r ;[

200 continue

if <ip r„eq. 1} go to 700
g a t o (300, 400, 500,600, 600,650) , m a ci e I
go to £399

300 betas: = 0

do 310 n=l,nvar
310 betaz == beta:: beta (n) te (n)

r = exp(betaz >
do 320 n~i,nvar

320 rb(n) = riz(n)

go to 800
400 r — 1

do 410 n=l,nvar
r = r -t- betain! i: (n)

410 rb(n) ~ z(n)

go to 800
500 r* :== 1

do 510 n=l,nvar
ebeta = exp(beta(n))
r = r + ebeta*z(n)

510 rbfri! = ebetaJz (n)

go to 800'
600 cal '.I comb

go to 800
650 call?, mdlsub

go to 800
700 r =:: 0.

kz = 0

710 kz = kz -4- 1

if (z(ivznp).1t.zk(kz).or.kz.gt.nvar> go to 720
r = r + beta(kz)

go to 710
720 r ~ exp (r)

kzrnl = kz - 1

da 725 n=l,kzml
725 rb (n) = r

if (kz.gt.nvar) go to 740
da 730 n=kz,nvar

730 rb(n) = 0

740 continue

800 return

899 contil nus

999 continue

stop
end
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subroutine comb

real b 1 ank . r , rb :L dna, beta
common tdeath < 1000) . j. stdvr (40) , i sel vr (40) , beta (40) ,

3 rb(40),u2cinv(40) ,dd (40),z(40),zk(40) ,

2 r,idno,ns,ireprt,irej,alnil,kch,ndatin, distnc ,

4 model , i t:L me, mxhal f , status, stp, i pr, nphase, 1 :L ktyp,
1 nvar , max i. tr , al n 1 0, ti me, ncase, ndead, break, curti m, t imint.
5 i vti me, :L vstat, i ventr , :L v:L dno, is, nvtot, istep, ni ter P i vznp
dimension rab(40),rmb(40)
nml ~ nvar — 1

b = beta(nvar)

if(nvar.gt.ns) go to 300
nml - n s

b ~ 3.

3^ 00 g c t o (800, 800, 800, 400, 500) , model
go to 800

400 radd = 1

rmu11 = 1

do 450 n=l,nml
radd ~ radd ■+• beta (n) *z (n)

r sib < n) = 2 (n )

450 rrnult - rmu.lt M (1 -a beta (n) >Kz (n) )

do 460 n=l,nml
460 rrnb (n ) =: z (n ) *rmul t/ (1+beta (n ) *z ( n) )

go to 700
500 ndum ~ O

do 550 n=l,nml
rab(n) ::: 0

rmb (n) = 0

if (z(n).eq.O) go to 550
go to (530,550),ndum
i i - n

ndum = 1

go to 550
530 i2 = n

ndum := 2

550 continue

go to (570,580) ,ndum
radd = 1

rmult = 1

go to 700
570 radd = 1 + beta(i1)

rmult = radd

rab(il) == 1

r mb(i 1 ) = 1

go to 70)0
580 radd = 1 + beta(il) + beta(i2)

rmult = rsidd + beta (i 1) *beta ( i2)

r sib ( i 1 ) = 1



461

rata (12) ~ 1

r mb ( i 1 ) :=- i *+• bet s. (i. 2)

rnib (i 2} = 1 + beta (11)

700 bml = 1 — b

r = radd * * bml # rmult b

rbCnvar) = r * (alogt rmult) - a lag (radd))
da 750 n = l,nmi

750 rb(n) = r # (bml # rab in) / radd + b # rmb(n) / rmult)

800 return

end

s ubr out i. ne md 3. sub

!" ea 1 r-, r !:>, b et a

common j1(1160),betaC 40) ,rb(40) , j 2 (100),z(40),j 3(40),r,j 4(17),
1 nvar,j5(17)
return

end

cc:c this the same subroutine as transt with dummy
subroutine drtans

common j1(1360),dd(40),j2(106),irej,j3(19),curtim,j4<10)
irsj ~ 0
return

end

s-ubroutine transt

c ommon j 1 (1360> , dd <40) , j2 (106) , i re j , j3 (19) , curt i. m, j4 (105
do 100 n~10,16

100 dd(n)=0

i r e j - 0
return

end
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