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Abstract

Within every human cell, approximately two meters of DNA must be compacted

into a nucleus with a diameter of around ten micrometers. Alongside this daunt-

ing storage problem, the 3D organisation of the genome also helps determine

which genes are up- or down-regulated, which in turn effects the functionality of

the cell itself. While the organisational structure of the genome can be revealed

using experimental techniques such as chromosome conformation capture and its

high-throughput variant Hi-C, the mechanisms driving this organisation are still

unclear.

The first two results chapters of this thesis use molecular dynamics simulations to

investigate the effect of a potential organisational mechanisms for DNA known as

the “bridging-induced attraction”. This mechanism involves multivalent DNA-

binding proteins bridging genomically distant regions of DNA, which in turn

promotes further binding of proteins and compaction of the DNA.

In chapter 2 (the first results chapter) we look at a model where proteins can bind

non-specifically to DNA, leading to cluster formation for suitable protein-DNA

interaction strengths. We also show the effects of protein concentration on the

DNA, with a collapse from a swollen to a globular phase observed for suitably

high protein concentrations.

Chapter 3 develops this model further, using genomic data from the ENCODE

project to simulate the “specific binding” of proteins to either active (euchro-

matin) or inactive (heterochromatin) regions. We were then able to compare con-

tact maps for specific simulated chromosomes with the experimental Hi-C data,

with our model reproducing well the topologically associated domains (TADs)

seen in Hi-C contact maps.
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In chapter 4 of the thesis we use numerical methods to study a model for the

coupling between DNA topology (in particular, supercoiling in DNA and chro-

matin) and transcription in a genome. We present details of this model, where

supercoiling flux is induced by gene transcription, and can diffuse along the DNA.

The probability of transcription is also related to supercoiling, as regions of DNA

which are negatively supercoiled have a greater likelihood of being transcribed.

By changing the magnitude of supercoiling flux, we see a transition between a

regime where transcription is random and a regime where transcription is highly

correlated. We also find that divergent gene pairs show increased transcriptional

activity, along with transcriptional waves and bursts in the highly correlated

regime – all these features are associated with genomes of living organisms.
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Lay Summary

This thesis studies the properties of DNA in human and bacterial cells. In ev-

ery cell nucleus there will be 46 chromosomes and therefore 46 different DNA

molecules, as each chromosome consists of just 1 long DNA molecule. Along with

DNA, a cell contains lots of different proteins that all behave in different ways

- for example some might read DNA and others could act to connect different

parts of a DNA molecule. Both the proteins and DNA are free to move around

in the cell nucleus, allowing all these different types of interaction to take place.

The first two results chapters study what happens when DNA interacts with

certain proteins which are also found in the cellular environment. By running

computer simulations which model the behaviour of both the DNA and proteins,

we were able to observe the 3D structures created by this DNA/protein interac-

tion.

For our most simple model of DNA/protein interaction, proteins could bind to

any part of a DNA molecule, which leads to the formation of protein clusters.

This is due to something called “bridging-induced attraction”, where a protein

will bind to two distant parts of the same DNA molecule - forming a “bridge”

between them. This in turn causes further protein bridges to bind nearby.

Our model was then made more realistic by the addition of genetic data, which

allowed simulations where specific proteins bind to their target sites on the DNA.

These simulation results compared well with experimental data for the 3D struc-

tures formed by DNA, suggesting this simple protein binding model could be

enough to explain experimental results.

In the final results chapter we look at how supercoiling (a property of twisted
DNA) can effect proteins which read genes and vice versa. This also reveals a
relationship between the direction gene pairs are read and the frequency at which
this reading process occurs.
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Introduction

DNA research will always interest people for it’s own sake; when there exists one
molecule which plays such a key role across all known life it is only natural to want
to find out more about it! Advances in practical techniques such as gene editing
with tools like CRISPR, genetic screening for diseases, and researchers using
DNA as a method of digital storage show that there can be clear, direct benefits
which arise from DNA research. However these exciting applications, as well
as potential future ones, could not come about without an understanding of how
DNA functions at a basic level. Similarly, an understanding of how DNA functions
in the cellular environment and interacts with its surroundings is required before
attempting to manipulate or alter the processes taking place in the cell. Although
the work here does not necessarily have a direct application to practical methods,
hopefully it can provide some understanding of the mechanics behind genome
organisation and how this further relates to important cellular processes such as
transcription.

As the fundamental molecule of living things DNA will always interest researchers
across a wide range of different fields, each bringing their own different insights
and methods to approach the many different unanswered questions relating to
DNA. The main contribution to this effort will always be grounded in experi-
mental work, as there is no substitute for performing experiments and seeing the
behaviour in real life. However, methods from physics can provide a different
perspective towards research, bringing a focus on universal or generic behaviours
and minimal, first-principles models. While it is rare for a biophysical system to
behave predictably enough that it can be fully captured in a simple mathematical
model, often general underlying characteristics of the system can be uncovered.
This type of approach can provide an extremely strong starting point when deal-
ing with complex systems, with characteristics from a simplified model often still
remaining applicable to the more complex “real” system.

A physics-based approach can also help to overcome some of the limitations which
may accompany experimental methods. Sometimes, these limitations are a case
of prioritising resources when experiments may take a long time or be expensive.
In this case simulations can indicate whether a particular direction of research
is worth investigating. At other times, experiments may simply be “difficult” in
terms of complexity or experimental design. A simulation or numerical model
may be simpler to set up, and it is often easier to make modifications to an ex-
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perimental design in a mathematical model or simulation. For example, changing
the binding energy of a protein in an experiment may require a significant exper-
imental redesign, whereas in a simulation this could amount to just changing one
number in an input file!

One of the other challenges when working in biophysics is making sure research
is accessible to people who do not have much experience of either physics or biol-
ogy. This thesis is a little more weighted towards the physics side, but hopefully
should be comprehensible to non-physicists as well! Each chapter also has an
introduction detailing the biological background material required.

This thesis focusses on the 3D structure of DNA and how this both affects and
is affected by its interactions with various proteins. DNA is also an ideal subject
for study using physics based methods, as it is well described by polymer physics
models for the length scales we investigate. The first chapter contains detailed
descriptions of these polymer models and how they are implemented in the molec-
ular dynamics simulation program LAMMPS. There is also a brief introduction
to the topological phenomenon known as supercoiling, which is re-visited in more
detail in chapter 4.

Chapters 2 and 3 introduce a process we call “bridging-induced attraction”, where
protein bridges between different DNA regions promote further binding of pro-
teins in the same region. This is simulated for protein/DNA models of increasing
complexity, beginning in chapter 2 with a model where generic proteins bind non-
specifically to DNA. In chapter 3 we then move on to a model where different
types of protein bind to specific regions of the DNA, determined by genetic data
from the ENCODE project. We found that by simulating this bridging-induced
attraction mechanism we were able to reproduce results from Hi-C experiments,
such as the location of topological domains in DNA. These chapters used molec-
ular dynamics methods to study the protein-DNA system’s evolution over time.

In chapter 4 we develop a numerical model which links supercoiling to gene tran-
scription. These two factors are linked as negative supercoiling is known to pro-
mote transcription, while positive supercoiling reduces it. Meanwhile, transcrip-
tion causes a flux of supercoiling by pushing positive supercoiling in the direction
of transcription. Our numerical model found two distinct regimes, one at high
flux where supercoiling regulates transcription and one at low flux - known as the
relaxed regime. We also observed transcriptional bursts and waves, along with
higher transcription rates at divergent gene pairs.

The code for all the simulations performed has been made available at http://

www2.ph.ed.ac.uk/~s0841882/downloads.html and http://www.jjthesis.co.

uk/downloads.html, in a form where (hopefully!) the simulation paramaters and
behaviour can be easily modified. I’ve attempted to present the simulation pro-
grams in a way which makes them straightforward to use, so ideally people who
don’t normally do much computational work will be able to use them without
feeling like they have to make a huge investment of their time! The programs
provided give a way to independently verify the results in this thesis, as well as

xi
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allowing the user to perform a wider range of investigations than the ones detailed
here. Ideally this will provide extra clarity when interpreting simulation results,
as well providing an extra level of reproducibility for non-analytical results.
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Chapter 1

Modelling DNA

1.1 DNA, Chromatin & Cells

Figure 1.1: Image from [102]. A DNA
double helix with labelled base pairs.

DNA is the substance at the core of

all known life on Earth. From single-

celled bacteria to humans, every living

thing relies on DNA to store the ge-

nomic data which, in a sense, makes

them what they are. It is an ex-

tremely versatile material, which must

allow genetic information to be acces-

sible to the cellular machinery, whilst

also being able to create almost error-

free copies of itself during cell replica-

tion. This is not a simple task when a

single DNA strand can contain up to

200 million individual pieces of genetic

information, known as bases.

The DNA molecule itself has been a

subject of continual study since its

discovery in 1869, with its molecu-

lar structure identified as the iconic

double-helix in 1953 by Crick, Watson
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and Franklin. As shown in figure 1.1, DNA consists of base pairs which connect

the twin helical backbones. There are four possible bases in DNA: these are ade-

nine (A), cytosine (C), guanine (G) and thymine (T); A always pairs to T and C

to G, so base pairs are denoted either AT or CG.

The main function of DNA is to contain the genes which code for specific proteins.

The effect of these proteins is incredibly wide-ranging, from superficial things like

hair and eye colour (the M1CR gene) to complex developmental processes (the

SHH gene). However genes only make up 3% of the DNA in a cell, with the

remaining 97% sometimes referred to as ‘junk’ DNA [15]. Although the remaining

97% does not have a direct effect on protein expression, it does play an important

role in the way DNA is organised in the cell. In turn, DNA organisation influences

which genes are expressed, and with what frequency.

Before going into futher detail on how DNA functions within the cell, it is worth

taking a step back and explaining how a cell is structured and what its life-cycle

looks like. An animal cell (figure 1.2) appears fairly disorganised at first glance,

lacking the rigidity of their plant counterparts.

Within the cell itself the main component of interest for this thesis is the nucleus

(see figure 1.3), which contains the cell’s DNA and is where messenger RNA

(mRNA) is transcribed. The nucleus is separated from the rest of the cell by a

membrane which prevents unwanted molecules from interfering with the DNA,

but also has pores so molecules which need to move in and out of the nucleus

can pass across it. Outside of the nucleus there are various organelles such as

mitochondria, which produces ATP for the cell and the endoplasmic reticulum,

which acts as a transport network. Alongside these organelles, smaller molecules

Figure 1.2: A diagram showing significant features in a typical animal cell.
From [1].
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such as RNA and proteins are also present in large numbers. However, for the

simulations in this thesis we focus on DNA and so conditions outside the nucleus

are not immediately relevant.

Figure 1.3: A diagram showing a cell nucleus. From [61].

The internal environment of a cell is also dependent on which stage of the cell

cycle it currently occupies. The cell cycle (figure 1.4) describes how the cell grows,

as well as how DNA configurations in the nucleus change between cell division

events, which occur approximately once every 24 hours. The conformation of

the cell’s DNA changes quite significantly during this process, going from densely

packed, X-shaped chromosomes in the mitotic phase to looser, less structured

forms during interphase. The simulations in the thesis all take place while the

cell is in interphase.

Figure 1.4: A diagram of the cell cycle, from [61].
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Figure 1.5: Image from [1]. Cartoon
showing a the “beads on a string” model
for the 10nm chromatin fibre.

Figure 1.6: Image from [60]. A nu-
cleosome with different histone proteins
labelled. The numerals alongside the
DNA indicate the number of double-
helix turns, with a 72 bp length of DNA
shown here.

Every cell in the human body con-

tains a complete copy of our entire ge-

netic code, which contains the genes

they need to function correctly. This

requirement alone creates a daunting

storage problem, as up to 2m of DNA

must be compacted into cells with a

diameter of order 10−5m [14].

While 2m of DNA could fit into a cell

by rolling it up into a solid ball, this

would render any genes contained near

the centre inaccessible to the proteins

which transcribe DNA. Instead, DNA

molecules are compacted by forming

a complex with multiple histone pro-

teins which is known as chromatin.

At the smallest length scale chromatin

consists of repeating units of DNA

wrapped around a nucleosome, form-

ing a 10 nm fibre (Figure 1.5).

Each repeating unit contains ∼200bp,

of which 147bp is wrapped around

the nucleosome proteins while the rest

links neighbouring nucleosomes. The

nucleosomes themselves are made up

of eight histone proteins, two molecules each of the four core histone proteins

(H2A,H2B,H3 and H4). The structure, determined by X-ray crystallography [60]

is shown in figure 1.6.

At physiological salt concentrations (∼ 100 mM of a buffer containing a monova-

lent salt such as NaCl), the 10 nm fibre is compacted further into a 30 nm fibre.

The exact structure of this 30 nm fibre is still not completely clear, with a few

competing models describing potential structures [91, 93].

While in vitro experimental data from x-ray crystallography of nucleosomes sug-

gests a conformation like the zig-zag model in figure 1.7, cryo-electron microscopy

(cryo-EM) of longer strings of nucleosomes supports the solenoidal model. Also,
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while the 30 nm fibre has been observed in vitro, as well as in vivo for certain

cell types, it is not necessarily true that it exists for all eukaryotes.

Figure 1.7: Images from [1]. Nu-
cleosomes are represented by yel-
low/blue ellipsoids and DNA by
the light blue string. Top: The
solenoidal model for the 30 nm chro-
matin fibre. Bottom: The zig-zag
model for the 30 nm chromatin fibre.

In fact, cryo-EM experiments which sought

to characterise the structure of the chro-

matin fibre in vivo found no evidence of

regular 30nm structures [78]. In the ab-

sence of 30nm structures, an alternative

hypothesis is that the 10 nm fibre could

be compacted into a irregularly structured

fibre [62]. Recent work has also provided

support for human chromatin being less

regularly structured than assumed in the

“textbook” hierarchical model, where 10

nm chromatin fibres fold into 30 nm, 120

nm and 300-700 nm fibres (Figure 1.8).

Using a technique known as ChromEMT

(Chromatin EM Tomography) fibres be-

tween 5 and 24 nm diameter were found,

but regularly structured chains of greater

diameter were not present [79].

Although the exact nature of the chro-

matin fibre is an important area of study,

the results here should not have too signif-

icant an impact on the design of our com-

putational model for DNA. The two pa-

rameters in our model most likely to be

affected by the structure of the fibre are

persistence length and DNA packing den-

sity (the amount of DNA contained in a

given length of chromatin). The persis-

tence length (lp) is a measure of how flexible a polymer is, with a short per-

sistence length meaning a more flexible polymer. It can be calculated using

exp(− s
lp

) = 〈u(s′)u(s+ s′)〉, where u(s′) is the tangent vector to the polymer at

a point s′.

The value used for chromatin’s persistence length in simulations (90 nm) is based

on experimental measurements which put it between 30 - 200 nm. Experiments
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performing scanning force microscopy analysis of the end-to-end distances of chro-

matin fibres on mica give values for the persistence length of 30-50 nm. As noted

in Langowski et al [2], the details of the fibre/mica interaction can influence the

measured persistence length. Similar results were derived from studies of recombi-

nation frequencies in human cells [87] and formaldehyde cross-linking probabilities

in yeast [26].

Figure 1.8: Image from [90]. A hierarchical model for chromatin structure, where
the higher-order (≥ 3000 Å) chromatin structures are thought to rely on an ex-
ternal protein scaffold rather than self-organisation alone. While putative com-
ponent proteins for this scaffold have been identified, the scaffold itself has only
been observed in vitro [81].

Further experiments based on measuring the distances between genetic markers

in human fibroblast nuclei using Fluorescence in Situ Hybridisation (FiSH) gives

persistence lengths between 100-200 nm [83]. In our simulations the chromatin

fibre beads have a 30 nm diameter, meaning the persistence length is set at 3

beads.

An irregular chromatin fibre would mean that the persistence length varies be-

tween different parts of the fibre, although on average the persistence length

should still be within the range of experimentally measured values. It is unlikely

that replacing the constant value used in simulations with a distribution of possi-

ble values would make much difference to the simulations as the range of possible

values is not likely to be particularly large. Similarly, while the packing density

could vary for different sections of an irregular fibre, the average packing density

would be similar to that of the regular fibre. As there is currently no data indi-

cating the exact form of the packing density for an irregular fibre, we continue

6



Figure 1.9: Image from [1]. A: An electron micrograph showing chromatin in the
interphase state, escaping from a lysed nucleus (a nucleus where the membrane
has broken down). B: A scanning electron micrograph of a mitotic chromosome.

under this assumption for the simulations in this thesis.

Chromatin displays further levels of structure beyond the nm scale (Figure 1.10),

eventually leading to the familiar X-shaped chromosomes seen in figure 1.9. It

is important to note that this X-shape structure is only present during phases of

the cell cycle where the cell is close to replication (i.e. during mitosis). For the

majority of the time chromatin remains in the non-dividing “interphase” state,

which is also pictured in figure 1.9.
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Figure 1.10: Image from [57]. In the top panel, different colours represent separate
chromosomes which tend to remain in specific territories inside the nucleus [71].
The scales we work at in this thesis are most similar to the middle panel.
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1.2 Polymer Models for DNA

While DNA is a polymer which has been studied in incredible detail, this does

not mean that our mathematical models are required to incorporate every single

feature of this molecule. Instead, the choice of model will depend on the charac-

teristics we are seeking to study. Models do exist which move toward providing

a base-pair [33] or atomistic [54] level of detail and would represent an “ideal”

implementation of DNA in a computer simulation. However, the computational

cost of this level of detail means that simulations necessarily represent a smaller

time period (picoseconds/timestep) and generally model smaller sections of DNA.

This type of model can be used to study finer details of the mechanical properties

of DNA, with one example being the response under a stretching force. Through

computer simulation of short DNA strands, two studies [50, 56] were able to

replicate experimentally derived force-extension curves. These curves showed

that DNA would initially stretch elastically before transitioning to a regime where

it stretched plastically (at constant force). At even higher extensions it would

transition back to the elastic regime before breaking. The simulations were able

to characterise the transition from elastic to plastic as a conformational change

affecting the base stacking interactions in DNA, which were intra-strand in the

elastic regime, but inter-strand in the plastic regime.

As we aim to study large sections of both chromatin and DNA, we require a

model which is simpler but still representative of DNA. This necessitates some

coarse-graining, and in the model a DNA molecule is represented as a polymer

made up of monomer units with a semi-flexible connector between them. The

extent to which the connector is flexible defines the persistence length Lp for the

DNA molecule, with less flexible connectors giving longer persistence lengths.

For histone-free, or “naked” DNA, this persistence length has been measured

experimentally at 50 nm [44]. As noted in [44], this can be done a few different

ways - including electron microscopy. More recently, DNA persistence lengths

have been calculated by tethering a nanoparticle to a substrate with DNA and

tracking the motion of the nanoparticle [13]. The sequencing of the DNA being

measured can also have an effect on persistence lengths, with regions containing

more GC bases being less flexible.

In our model, each monomer can be thought of as being a set length of DNA and

having the average properties of that length of DNA. As an example, in the simu-

9



lations in section 2.4 a DNA monomer has a size of 2.5 nm (∼7 bp). This averag-

ing means that interactions between base pairs are not considered, so simulations

where DNA is denatured (unzipped) would not be possible. The characteristic

double helix motif can also still be represented by a string of monomers, as we

can model its effects by setting appropriate interactions between the monomers.

Within this basic polymer model, there are two possible versions depending on

the characteristics of the individual monomers. In the random walk (RW) model

all individual monomers are assumed to have no volume and are able to occupy

the same spatial position. Instead, in the self-avoiding walk (SAW) model, as the

name suggests, this is not possible. This leads to an extra “excluded volume”

interaction which increases the mean square end-to-end distance < R2 > of the

chain due to the reduced number of possible chain conformations. The relation-

ship between the number of monomers N and < R2 > for both model types is

given in (1.1) and (1.2), where the scaling exponent v is 0.5 (RW) and 0.588

(SAW). Experimental measurements of v for DNA give values in good agreement

with the SAW model, with a measurement of v = 0.571± 0.014 for a linear dna

strand [95].

〈R2〉 = L2
pN

2v (RW) (1.1)

〈R2〉 = f(Lp)N
2v (SAW) (1.2)

The simplicity of the random walk model makes for more straightforward analyt-

ical calculations, but clearly is not so representative of a “real” DNA molecule.

The computational cost of calculating steric interactions between monomers as

in the SAW is also not particularly large, so it makes sense to design simulations

which more closely resemble a SAW.

This base model can also be applied to simulations of chromatin or other polymer-

like materials, with the same caveat that details below the chosen monomer size

will not be present.

This model does not consider electrostatic effects between monomers. As DNA

is negatively charged, there will be a repulsive force in effect between DNA sec-

tions. However at physiological salt concentrations (≈ 100 mM of monovalent

salt buffer) DNA has a Debye length of 1 nm [52], so as long as the monomer size

is not smaller than this electrostatic effects will not have a significant effect on the

simulation behaviour. For lower salt concentrations, or more detailed models at
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physiological concentration, this electrostatic effect can be significant. For exam-

ple, a DNA molecule has an effective thickness of 12 nm at 10 mM concentration

and ≈ 50 nm at 0.1 mM [66].

1.3 Langevin Dynamics

As the intention is to simulate a DNA molecule in a cell, the DNA model used

must also have some way of representing the internal cellular environment, which

is composed primarily of water (70%), proteins (15%) and RNA (6%) [102]. As

larger molecules such as proteins and DNA will be modelled explicitly, the cellular

environment can be modelled by implementing the effect of an aqueous solvent on

the molecules being simulated. This does neglect molecular crowding effects from

the molecules not explicitly in the simulation. While this is done for computa-

tional efficiency reasons, the effect can be approximated by adding an attractive

potential between DNA monomers. A trial run can then be performed to test the

effects of neglecting this interaction.

The Langevin equation (equation 1.3) provides a mathematical description of this

phenomenon. In addition to the non-solvent forces on a molecule, there is a noise

term η which represents the effect of random collisions with solvent molecules and

a drag term which is dependent on the viscosity of the solvent γ and the velocity

of the molecule.

Fi = −γvi +
√

2kBTγηi(t) + Fothers (1.3)

In the above equation, ηi(t) is random uncorrelated noise, meaning it has the

properties 〈ηi(t)〉 = 0 and 〈ηi(t)ηj(t′)〉 = δijδ(t− t′).

The motion of a larger particle due to collisions with the constituent particles

of a fluid is known as Brownian motion. For particles with low mass we can

neglect inertia and set Fi to zero, recovering an equation for Brownian dynamics

(equation 1.4).

γvi =
√

2kBTγηi(t) + Fothers (1.4)

The dependence on γ for both the drag and noise terms is obtained by writing
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a Fokker-Planck equation for our system and imposing the condition that the

equilibrium probability distribution coincides with the Maxwell distribution. A

fluctuation-dissipation relation can then be used to link the drag and noise terms.

A derivation for this in the Brownian motion case can be found in [51].

1.3.1 Further Hydrodynamics

Our model does not take into account hydrodynamic interactions between DNA

segments, mainly for reasons of computational efficiency. The consequences of this

can be seen by comparing two similar models for polymer dynamics, the Rouse

and Zimm models. The Rouse model neglects hydrodynamic interaction and is

used for systems with a high polymer concentration, where any hydrodynamic

effects are screened out. In contrast, the Zimm model does include hydrodynamic

effects and is appropriate for dilute polymers.

The different scaling behaviour for relaxation time and diffusion coefficient is

shown below.

(Rouse) τR ∝ N1+2ν , D ∝ 1

N
(Zimm) τR ∝ N3ν , D ∝ 1

Nν
(1.5)

As ν ≈ 3
5

for a good solvent, this means the Rouse model will have a longer

relaxation time and smaller diffusion coefficient [30]. As our computational model

is similar to the more simplified Rouse model, simulations will unfold a little

more slowly than is realistic. However, this is a trade off worth making for

efficiency reasons as implementing hydrodynamics can be very computationally

costly. While hydrodynamic forces do have an effect in the cellular enivronment,

they are less significant at the length scales of the simulation.
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1.4 Implementation Using LAMMPS

LAMMPS is a classical molecular dynamics software package and was used for

all of the molecular dynamics (MD) simulations in this thesis. While there are

other MD packages available such as openMM, NAMD and AMBER, we chose

LAMMPS because of its good parallel performance, open-source nature and al-

ready having some familiarity with the existing LAMMPS codebase.

All of the aforementioned software packages, including LAMMPS, function in

more or less the same manner. All particles in the simulation have predefined

force fields and the force on each particle is calculated at each timestep, which

then allows the spatial position for each particle to be updated.

Since LAMMPS was not specifically designed for one particular style of simula-

tion there are few restrictions on the form a force field can take, similarly particles

can be representative of a wide variety of objects. In our coarse-grained simula-

tions a particle will generally represent an amount of DNA, but in smaller scale

simulations a particle could represent an actual atom.

In general, a molecular dynamics simulation consists of a number of particles

which move around a simulation area and interact with each other. Usually there

will be different ‘types’ of particle, with each type representing a different object

- an example could be for particles of one type to be positively charged, and

another type representing negatively charged particles. This representation then

informs the interaction between the particles. In this case it would be a coulomb

force, along with a repulsive force preventing particles from occupying the same

region of space.

The implementation of the SAW model for DNA/chromatin consists of four force

fields, which act on particles representing an amount of DNA/chromatin.
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These forces can be described as follows:

� A steric interaction between particles using a Lennard-Jones or Weeks-

Chandler-Anderson potential. The two are equivalent for the cutoff distance

used below, which is 2
1
6σ. This potential is defined below,E = 4ε
((

σ
r

)12 −
(
σ
r

)6
)

if r < 2
1
6σ

0 otherwise.
(1.6)

Figure 1.11: The force and energy contribution from a Lennard-Jones potential

The resulting inter-particle force between particles i and j, Fij, is

Fij = −24ε

σ2

(
2
(σ
r

)14

−
(σ
r

)8)
rij (1.7)

In these formulas, σ is the size of the particle and ε the interaction strength.

The interaction cuts off at 2
1
6σ (∼ 1.12σ), the minimum of the Lennard-

Jones potential. Fij is the force on the ith particle from the jth particle

and rij a vector directed from the ith particle to the jth.

� A permanent bond between adjacent particles, known as a Finite Extensible

Non-linear Elastic (FENE) bond. The energy of a FENE bond is,

E = −1

2
KR2

0 log
[
1−

( r

R0

)2]
+ ε, (1.8)
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Figure 1.12: The energetic contribution of the FENE and Lennard-Jones Poten-
tials

While the force is given by,

Fij = −K r

1− ( r
R0

)2
rij, (1.9)

where R0 is the maximum bond length and K is a factor determining bond

strength with units energy/distance2. For values of r > R0, the bond

length is large enough to consider the bond “broken” and the simulation

is halted. Fij and rij are defined as above. In LAMMPS, the FENE bond

consists of this force along with the steric Lennard-Jones interaction above.

For bonded particles, this interaction replaces the existing pair potential

between the particles.

� A bending energy for the monomer chain, which is given by a cosine angle

potential. This potential is defined by the formula,

E = K[1 + cos(θ)] (1.10)

where θ is the angle between three consecutive beads (Figure 1.14). The

coefficient K sets the persistence length for a DNA chain, with Lp = Kσ.

For example, in the case of DNA we have σ = 2.5nm and K = 20 in order

15



to get a persistence length matching the experimental value for DNA of

Lp = 50 nm. The forces generated by this potential act on three particles

(i, j, k) rather than pairwise, so deriving them is a little more convoluted.

We require Fi+Fj+Fk = 0 for there to be no net force on the system, along

with there being no net torque on particle j. If this were not the case the

angular potential would induce a drift and rotation to the system. Finding

the force can be a little more tricky than previously, due to the reliance of

both the potential energy and relative positions of i and k on θ.

The forces on the particles end up being:

Fi =
Kcos(θ)

|rji|2
rji −

K

rji · rjk
rjk

Fj =
K

rji · rjk
rji −

Kcos(θ)

|rjk|2
rjk +

K

rji · rjk
rjk −

Kcos(θ)

|rji|2
rji

Fk =
Kcos(θ)

|rjk|2
rjk −

K

rji · rjk
rji

Which is the result also found in the LAMMPS files for the potential. A

derivation of this result is shown in A.1.

Figure 1.13: The energy contribution of a cosine angle potential, with θ given in
radians.
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� A force implementing Brownian dynamics for the ith bead in the simulation,

as discussed in section 1.3.

Fi = −γvi +
√

2kBTγηi(t) (1.3)

Figure 1.14: A cartoon showing the way the LAMMPS force fields act on particles
in a chain of monomers representing DNA. The forcefields in this model are (a)
A Lennard-Jones pair potential, (b) A FENE bond, (c) A cosine angle potential,
(d) A Langevin thermostat.

1.5 Timescales and Units

When running computer simulations it is often useful to use reduced (dimension-

less) units for measured quantities, rather than SI units. This is usually done so

that simulation results are not given by numbers with very large or very small

orders of magnitude. Since simulations of DNA involve distances of nm length,

it makes sense to use reduced units here. In LAMMPS, this is done by initially

setting the fundamental (and also dimensionless!) quantities mass, σ, ε, and the

Boltzmann constant equal to 1.

Table 1.1 shows how to convert reduced units to real units; LAMMPS uses the

quantities σ for distance and ε for energy.

It is also useful to compare natural timescales of the system to simulation timesteps.

The simulation time units are defined in terms of the friction γ from equation 1.3,

with γ having units of s−1. In turn γ is related to the diffusion constant of a

monomer of size σ by the Einstein-Smoluchowski relation D = kBT
mγ

. For simula-

tions of DNA in the cellular environment, we generally have kBT = 1 and γ = 1
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Quantity Reduced (*) and Real Units

Mass m*

Distance r* = r
σ

Energy E* = E
ε

Temperature T* = kBT
ε

Time t* = t
(
εσ2

m

) 1
2

Force F* = fσ
ε

Table 1.1: Reduced units used in LAMMPS

with the value of γ being similar for both water and cytosol, the fluid within a

cell.

For both DNA and chromatin simulations we can look at the brownian time

τB = σ2

D
, which is the order of magnitude of the time taken for a monomer to

diffuse across a distance equal to its own size. As we use different values of sigma

for simulations of chromatin (σ = 30 nm) and DNA (σ = 2.5 nm), one brownian

time in simulation units corresponds to different timescales, with τB ≈ 0.6 ms

and ≈ 36 ns respectively. This allows us to run simulations of total length ≈ 200

seconds for chromatin.

We also make the assumption that the DNA or chromatin is in an equilibrium

configuration at the beginning of the simulation run. In real cells, chromosomes

would take a prohibitively long time (≈ 500 years!) to disentangle [88] if they

were to behave as an equilibrated polymer solution. However, clearly cells do not

live for hundreds of years and equally, chromosomes are not found to be tangled

within the cell. The resolution to this given in [88] is that chromosomes never

equilibrate and behave like unentangled ring polymers in a semi-dilute regime,

which are known to be topologically segregated. This means our molecular dy-

namics simulations, which take place in a dilute, equilibrated polymer solution

may take longer than is realistic to run. Since the chromosomes are segregated

we do not have any issues arising from simulating a chromosome in isolation, but

the chromsome will be more spread out than it should be within the cell. This

will mean that the mechanisms we want to study may appear to take longer.
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1.6 Supercoiling

Figure 1.15: Supercoiling through the
ages. Like DNA phone cord has an
in-built curvature which leads to the
crossed-over supercoils in the diagram.
As for the games controller, I must have
somehow managed to twist it round over
the years - it probably shouldn’t look like
this!

Figure 1.16: Image from [14]. A DNA
molecule with a Linking Number (Lk)
of 0 and four topologically equivalent
molecules with Lk = 3.

Since we have discussed the effects of

persistence length and bending energy

on DNA, it makes sense that we also

consider the effects of torsional stresses

on DNA. These arise due to the he-

lical nature of DNA, which can vary

between DNA forms - some may be

more tightly wound than others and

while most helices are right-handed,

left-handed helices do exist. Three of

the most common forms (A,B and Z-

DNA) are shown in figure 1.17 along

with an explanation of their differ-

ences.

The reason DNA has a helical struc-

ture at all is due to the molecular con-

figuration of the A,T,C and G bases.

While an untwisted ‘ladder’ of base

pairs would seem the simplest possi-

ble structure for DNA, the length of

the bonds between adjacent base pairs

would leave significant gaps between

them. By twisting the bases into a

helical structure, this bond also has

a horizontal component - meaning the

base pairs are moved closer together.

In cells, DNA is always found to be

underwound, with one missing turn of

twist for every 17 turns of stable, right-handed double helix [14]. This happens as

DNA will always coil around proteins in the cell nucleus in a left-handed toroidal

spiral, which gives a negative Lk. These torsional stresses, combined with the

interchangablity of twist and writhe lead to the phenomenon known as supercoil-

ing.

The effects of torsional stress are similar even at very different length scales,
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Figure 1.17: From left to right: A, B and Z-DNA. A and B-DNA are both
right handed but B is slightly more twisted, with 10 phosphates per helical turn
compared to 11 for A. Z-DNA is left handed with 12 phosphates per helical turn.

so we can look at more familiar objects to get an idea of what supercoiling is.

Figure 1.15 shows the effects of supercoiling in two cables, with crossovers in the

cable forming due to the system being torsionally stressed. As an aside, in DNA

a supercoil with a shared loop base and interwound coils extending from it is

known as a plectoneme.

Increasing the number of twists in a chain or loop leads to the formation of su-

percoils, since there is a point where conformational changes are more favourable

than the torsional energy cost. Whether the system creates a supercoil in order

to reduce twisting is determined by three factors - the entropic cost of stabilis-

ing a loop at the base of the plectoneme, the energetic cost of bending and the

energetic cost of twisting the DNA. The fact that this is an option at all is due

to the topological equivalence of the quantities twist (Tw) and writhe (Wr). To

a first approximation, twist represents how many 360o turns a cable would make

when forced to lie in a planar, circular configuration, while writhe represents the

number of self-crossings a cable makes over itself. This is most easily seen in

figure 1.16. We also refer to the sum of twist and writhe as the Linking Number

(Lk = Tw + Wr) as this quantity is conserved in loops or linear chains with

fixed ends. Linking number, twist and writhe can all be positive or negative

depending on the direction (right or left handed) of the twist. Right handed

(clockwise) twists are taken to be positive, though this is a completely arbitrary

choice. Twist and writhe do not have to be integer values either and while it

is obvious that a chain can have a half twist, it is less clear what a non-integer

writhe looks like. While we know a loop with Wr = 2.5 would look like a hybrid

of (d) and (e) in figure 1.16, unfortunately it is also a difficult concept to represent

diagrammatically!
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In nature DNA supercoils are generally underwound, meaning they have a neg-

ative linking number (figure 1.19 shows increasing levels of underwinding). This

can be fairly large even for short DNA loops, a 7000 bp loop (≈ 2.4µm) has a

linking number of −40. While figure 1.19 shows negatively supercoiled DNA,

the equivalent amount of positive supercoiling would look exactly the same. As

mentioned previously, overwound DNA supercoils tend not to be found in nature.

Figure 1.18: A cartoon showing a chro-
matin fibre folded into TADs. Inset: A
possible contact map for this system.

Supercoiling can also be confined to

regions within a DNA strand, which

makes sense as linear DNA strands ex-

hibit supercoiling, despite being free to

rotate at their ends. Regions of super-

coiling have been observed experimen-

tally, however the exact mechanism be-

hind their formation is not completely

understood. The boundaries of these

supercoiled regions also often coincide

with topologically associated domain

(TAD) boundaries, where a TAD rep-

resents sections of DNA which are spa-

tially close (see figure 1.18). These su-

percoiling boundaries often have an in-

creased amount of binding sites for the

protein CTCF (CCCTC-binding factor), suggesting CTCF could act as a barrier

to supercoiling [40].

Implementing supercoiling in LAMMPS can also be a difficult task, as the base

particles in a molecular dynamics simulation are usually isotropic spheres which

do not have an orientation, in order to make calulations as simplified as they

can possibly be. Adding orientation to the particles usually requires modifying

or building the program with specific extra packages (in LAMMPS this is the

ASPHERE package). A suitable interaction representing a twisting potential

between neighbouring particles must also be implemented, as well as a separate

potential for particles which are barriers to supercoiling. While in this thesis we

consider numerical simulations of a 1-D model for supercoiling rather than MD,

the 3-D implementation may be of interest to some readers. A potential which

can be used in LAMMPS is availible from the paper by Brackley et al in the

Journal of Chemical Physics [10].
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Figure 1.19: An electron micrograph of DNA loops with successively greater levels
of supercoiling. Despite this image being widely used I could not find the source
paper, but it is very similar to the images from Vinograd et al (1965)[97]

1.7 Running a DNA only simulation

If you are interested in running a simulation, example code and an installer

for all required software is available at http://www2.ph.ed.ac.uk/~s0841882/

downloads.html or http://www.jjthesis.co.uk/downloads.html. There are

also videos and graphs from an example run of the DNA only model available

at http://www2.ph.ed.ac.uk/~s0841882/simulations.html or http://www.

jjthesis.co.uk/simulations.html.

You can run simulations of supercoiled and non-supercoiled DNA (or a mixture!),

along with other simulations detailed in the other chapters.
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Chapter 2

Bridging Induced Attraction

The following chapter is based around the J. Phys Condensed Matter paper

“A simple model for DNA bridging proteins and bacterial or human genomes:

bridging-induced attraction and genome compaction” [47].

2.1 DNA-Binding Proteins

Within both bacterial or eukaryotic cells, DNA does not exist in isolation. Pro-

teins make up approximately half the dry weight of a cell in the E-Coli bacterium,

corresponding to around 106 proteins per cell [68, 76].

Of these, many proteins will directly interact with DNA and are involved in

processes such as gene-regulation, transcription and genome organisation. There

are ≈ 3× 104 DNA-binding proteins in an E-Coli cell. Since the E-Coli genome

is ≈ 4.6 Mbp this means we have one binding protein every ≈ 150 bp.

Binding between proteins and DNA takes place when amino acids in the protein

come into contact with base pairs in a DNA molecule. Individual amino acids

within the protein will bind to a particular base (Figure 2.1) and with a large

enough binding energy the protein will remain in place. A typical binding protein

in both eukaryotic and prokaryotic cells can have 10-20 contacts, meaning that

they will only be able to bind to certain matching DNA sequences. DNA-binding

proteins tend to be structured so that they have positively charged amino acids

facing the negatively charged phosphate backbone of the DNA [1].
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Figure 2.1: Both images from [1].
Upper: The amino acid asparagine
within a hypothetical protein binding to
an adenosine (A) base within DNA.
Lower: Cartoon showing a H-NS dimer
bridging two regions of a DNA molecule.
Image from [31].

An example of such a protein in bac-

teria is the “histone-like” H-NS pro-

tein, which forms dimers that bind to

AT-rich DNA. This type of interaction

is known as non-specific binding, since

the protein does not target any par-

ticular gene, promoter or other identi-

fiable marker. There are many other

proteins which display this type of be-

haviour, a further example being the

polycomb repressive complex (PRC1)

protein in Drosophila. This complex

binds to chromatin at many locations,

while also having a sub unit which self-

polymerises and thus allows PRC1 to

bridge different regions of the chro-

matin fibre.

Similarly, since both parts of the H-NS

dimer can bind to DNA simultaneously

(Figure 2.1), H-NS binding can bridge

genomically distant regions of the bac-

terial chromosome, though there will

also be bridging between regions which

are already reasonably close.

Proteins which bind non-specifically tend to make fewer contacts with the DNA,

greatly increasing the likelihood of finding matching bases in a given region. For

example, the “Zif finger 2” protein will bind to two consecutive Guanine (G)

bases in DNA, a pattern which is likely to occur extremely regularly.

In a eukaryotic cell, DNA binds with histones to form chromatin as discussed in

section 1.1. As with H-NS in bacteria, this binding is non-specific. Alongside his-

tones there are also many other DNA-binding proteins, each with differing effects

on gene regulation. For example, the protein HP1 compacts the chromatin fi-

bre into denser, transcriptionally-inactive heterochromatin, while CTCF proteins

bind to specific genetic sequences known as promoters. Binding to a specific ge-

netic sequence is possible as proteins are effectively able to “read” which bases

are present from the outside of the DNA double helix.
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CTCF will bind to specific locations on the genome while also being capable of

binding to two DNA sections simultaneously. This has the effect of bridging two

promoter-containing regions and providing easier access for polymerases, which

results in increased transcription of the gene associated to that promoter. CTCF

is part of a group of proteins called transcription factors; a eukaryotic cell will

contain O(104) of this type of protein.

2.2 The Effects of Non Specific Binding

Figure 2.2: Image from [12]. Potential
mechanisms by which bridging proteins
can facilitate clustering.

While specific binding is clearly impor-

tant to cell functionality, we initially

studied the effects of non-specific bind-

ing proteins on both DNA and chro-

matin. Due to their abundance in both

bacterial and eukaryotic cells, it is im-

portant to understand the collective

behaviour of these proteins and how

it influences their interactions with

DNA.

Previous work from our group [12]

showed via simulation the existence

of an effect known as “Bridging In-

duced Attraction”. This refers to the

way bridging proteins will tend to pro-

mote further protein binding at loca-

tions where there is already a higher

concentration of proteins. This hap-

pens despite there being no interaction

(other than steric effects) between the

proteins themselves. A protein binding

does not directly change the way addi-

tional proteins interact with the DNA

either, the interaction strength remains the same.

Instead it is the effect the bridging protein has on the 3D organisation of the

DNA which causes these clusters of proteins. Bridging distorts the DNA locally
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in a number of ways, either by bringing distant DNA sections together, creating

loops, or by bending or straightening DNA. As shown in figure 2.2 there a few

different effects arising from the bridging proteins, which can be discussed in a

little more detail.

Parts A and B in the figure can be taken as two parts of the same process.

While having a protein bind to the DNA is clearly energetically favourable, it

restricts the number of available conformations of the DNA as the binding requires

two sections of DNA which are distant genomically to be close spatially. As

we add more binding proteins to one DNA molecule the number of available

conformations is lowered even further, however this can be addressed via the

mechanism shown in part B. By moving the proteins close together the system

retains the energetic favourability from binding, but the number of possible DNA

conformations is not reduced by as much as before.

Part C shows how the binding of one protein means local DNA beads are left

at a suitable distance apart for further protein binding, while parts D and E

address the effect of higher local DNA concentration. These can either increase

the likelihood of a new protein binding to a region with high DNA concentration

as in part D, or provide a pathway for two proteins to move closer together as in

part E.

2.3 Experimental Studies of Protein Clustering

While the work in [12] looked at systems in silico, protein clustering has been

observed in several different biological contexts. In the fly genome, transcription

factor proteins form clusters at specific points along the genome, while molecules

of RNA polymerase are known to cluster around transcription factories [6, 80].

Experiments in vitro using synthetic gold nanoparticles designed to be represen-

tative of histones also show clustering behaviour [105, 106], as do experiments

in vivo on the H-NS protein in bacteria which found the formation of row-like

clusters [24, 100]. As mentioned in section 2.1, the PRC1 protein has also been

observed to cause clustering behaviour in Drosophila cells [101].
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2.4 Model and LAMMPS Implementation

Figure 2.3: Image from [47]. A
schematic of the protein-DNA
model which shows how protein
binding can affect the DNA con-
formation.

We extend the DNA/Chromatin polymer

model from section 1.2 by adding particles rep-

resenting the proteins discussed above. The

protein particles are spheres which can si-

multaneously interact with two or more DNA

monomers. These particles should be thought

of as representing a generic, non-specifically

binding protein (Figure 2.3).

The LAMMPS implementation of the attrac-

tive interaction between proteins and DNA

uses the Lennard-Jones pair potential again,

but with the cutoff distance rcut = 1.8σ > 2
1
6σ

meaning there is an attractive potential whenever the protein-DNA separation r

is 2
1
6σ < r < rcut.

The interaction strength εl can also be set, and was varied in order to view the

effect on protein clustering and polymer compaction. The results in this section

have εl in the range 0.5 kbT < εl < 5.0 kbT as setting εl to values much less

than 0.5 kbT or much greater than 5.0 kbT makes no qualitative change to the

simulation outcomes. To give some context to these numbers, the adsorption

energy for DNA-histone binding is estimated to be approximately 6 kbT , so we

are considering values in line with reasonable binding energies [90].

One technical note is that the L-J potential in LAMMPS is shifted by adding

a positive constant εshift, which is chosen so the potential is zero at the cutoff

of the potential. This means the value supplied in lammps scripts εl is slightly

greater than the true value ε.

Another important parameter in the simulations is the concentration of proteins

cp and DNA cd. This is varied between simulations, although rather than changing

cp and cd independently, cd is fixed and x = cp/cd is varied.

A fixed value for cd also means that the simulation box size L is fixed. In sim-

ulations L = 200σ meaning the DNA is in the dilute (Rg � L) or semi-dilute

(Rg ≈ L) regimes, depending how strongly the polymer is compacted. For sim-

plicity, the size of the proteins was set at σ, the same as DNA monomers. Consid-
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ering different sized proteins would be more representative of real DNA-binding

proteins, but would again make no qualitative change to the simulation outcomes.

In the DNA simulations our protein size (considering H-NS) is 15.6kDa, which

correspons to a radius of gyration of about 2nm [73] making them approximately

the same size as the DNA monomers (2.5nm). For comparison, an “average” pro-

tein size is approximately 27kDa for E-Coli and 43kDa for humans [69] meaning

the size for both is of the order of nanometers (this conversion assumes 1 amino

acid = 100Da). However when we consider the chromatin simulations and their

larger monomer size of 30nm, the protein size does not match up quite so well -

in simulation our proteins will be larger than is realistic. Despite this, it is stil

reasonable to model the proteins as being of size σ since all the protein-DNA

interactions specified in figure 2.2 will still apply, just with a larger separation

between DNA monomers then would be expected with realistic proteins. The

important feature of the model is that the protein causes the two bound DNA

monomers to be spatially close and this still occurs with over-sized proteins.

If the reverse situation was true and the proteins were in fact much larger than

how they were represented in simulation this would cause a problem, as the

larger proteins would cause changes to the DNA conformation (e.g. wrapping

the protein or bridging a large distance between DNA) which would not be seen

in simulation without modelling the proteins as their true size.

2.5 Results - Chromatin

Figure 2.4 shows a typical simulation run for a 15 Mbp (5000 monomers) chro-

matin fibre and 1000 proteins. The fibre has a persistence length of 3 monomers

(≈ 90 nm). For the value of εl used here bridges stick almost irreversibly to the

chromatin and form many small clusters. These clusters then combine until only

a single cluster remains. This occurs by fusion of clusters which meet stochas-

tically (coalescence), rather than one cluster growing at the expense of another

(Ostwald ripening). This process also leads to the compaction of the chromatin

fibre, which can be seen by measuring the radius of gyration (Rg) of the DNA.

Rg is useful as a measure of polymer size, as well as being a quantity which is

accesible experimentally. Chromatin compaction is also strongly dependent on

the protein concentration of the system, as shown in figure 2.5.

The fraction of proteins located in a cluster is ' 1 for all concentrations, meaning
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Figure 2.4: Image from [47]. (a)-(c): Snapshots at increasing times from a simu-
lation with a 5000 monomer chromatin fibre and 1000 proteins. (d): The relation-
ship between Rg, number of clusters and time. The simulation has parameters
εl = 3 kbT (ε = 2.83 kbT ) and rcut = 60.6 nm (2.02σ). The number of clusters in
(d) is a local time-average.

there are very few isolated bridging proteins. This is most likely due to the

mechanisms illustrated in figure 2.2. For all values of x in the range 0.1 ≤ x ≤ 0.5

we expect to see coarsening until a single cluster remains, as we expect any pair

of clusters will at some point be spatially close for large enough values of t.

However for intermediate values of x the simulation time (106 Brownian Times)

is not sufficient to complete the process.

This is because the kinetics of coarsening become much slower as the initial

clusters increase in size. While clusters fusing is still a stochastic process, the

probability of two large, distant clusters moving close and fusing in a given time

period becomes small. For small values of x the initial clusters are small enough
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Figure 2.5: Image from [47]. The radius of gyration (Rg) and fraction of proteins
in clusters for the chromatin fibre at simulation run end (t > 200s) for different
values of x = cp/cd. The value plotted is an average taken over the final 60 ms of
the run. The parameters ε and rcut are as in figure 2.4. Inset: log-log scale plot
of the same graph.

that they can still diffuse quickly and form a single aggregate in the given time.

Whereas for large values of x binding will occur all over the chromatin fibre

and the distance between initial clusters will be relatively small, speeding up

the coarsening process. While it seems more likely that the clusters would all

eventually combine for intermediate values of x, it is also possible that clusters at

intermediate values could be dynamically stabilised - following trajectories where

they do not interact, even across long timescales.

Increasing the value of x leads to a transition from an open phase with large Rg

to a more compact structure with small Rg. For the parameters from figure 2.5,

the equilibrium state consists of a co-existing open region and a denser globular

region formed by the bridging induced attraction of the proteins. The volume

of this globule scales linearly with x, at least until x is so large that the globule

encompasses the entire chromatin fibre. This type of bridging induced attraction

leading to chromatin compaction has been observed in simulation-based studies

by Nicodemi et al [77] and Barbieri et al [3].

Both the aforementioned papers and our simulations show a similar ’switch-like’
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Figure 2.6: Image from [47]. Fraction of proteins in a cluster at simulation run
end. For all of the simulations runs used, x = 0.08 (5000 DNA monomers and
400 proteins). The graph shows a fairly sharp transition between a regime where
few proteins are bound and a regime where almost all proteins are bound.

transition from swollen to globular when increasing protein concentration or bind-

ing energy. The main difference between these works and the simulations carried

out in this thesis is the simulation scale, with our simulations using polymers

of ≈ 10 times greater length. There are also some technical differences, as the

model in Nicodemi et al and Barbieri et al is lattice-based and performs Monte

Carlo simulations using the Metropolis algorithm, where our simulations use a

Molecular Dynamics model.

The reorganisation of the polymer which occurs as a result of the bridging-induced

attraction can be compared with experimental observations of chromatin. It

is known that chromatin fibres are disordered, with compact heterochromatic

regions interspersed amongst open euchromatic ones [78]. The coexistence of a

cluster or globule state with a more open region reported here provides a generic

pathway to drive segregation of different chromatin states.

Protein binding, and consequently chromatin compaction also has a dependence

on ε and rthr which is shown in figure 2.6.

Both values of rthr show almost no binding for low values of ε, up until a point εc

where there is a sharp increase in binding probability. For rthr = 1.8σ (54 nm),
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εc ≈ 2.2 kBT ; while for rthr = 1.3σ (39 nm), εc ≈ 3.1 kBT . Since the values for ε

are low enough that individual beads can dissociate after binding to the polymer,

increasing ε leads to an increase in the average time a protein stays bound to a

region of DNA. This increases the rate at which the stochastic bridging-induced

attraction process occurs. If this is too low this process may never get started and

leave just a minimal number of proteins bound. As this is not a phase transition,

there are values of ε where bridging induced attraction occurs but is partially

balanced out by proteins detaching from the DNA. The value of εc will also have

some dependence on cp and cd, again with an increased cp giving a higher binding

probability.
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2.6 Results - DNA

Figure 2.7: A cartoon showing a po-
tential configuration of the system
when bending energy is (a): less
than protein binding energy, or (b):
greater than protein binding energy.
DNA is represented by the blue line
and proteins by the red circles.

The simulations shown above were also run

for the case of a semi-flexible fibre, rep-

resenting naked DNA rather than chro-

matin. As noted in section 1.2, the model

for DNA used has σ = 2.5 nm and a per-

sistence length of 20 monomers (50 nm).

These altered parameters mean that while

the simulations in both sections have 5000

monomers and run for the same number of

timesteps, we are actually considering dif-

ferent length- and time-scales. A chain of

5000 monomers corresponds to 36.8kbp in

the semi-flexible (DNA) case as opposed to

15Mbp for chromatin. Similarly, a simula-

tion running for 106 Brownian times cor-

responds to around 10 ms for DNA but

around 200 s for chromatin.

The clusters formed by bridging-induced

attraction of proteins are now cylindrical,

due to an apparent increased stiffness of the fibre. However, this is really due

to the fact that we are considering a very different length scale than before -

nearly 1000 times smaller. The entirety of this 5000 monomer DNA simulation

contains the same amount of DNA as ≈ 12 monomers in the chromatin simula-

tions. Bridging between genomically local DNA monomers now carries a greater

energy cost as the DNA is likely to have to bend substantially to accommodate

this, whereas if bridging occurs between more distant DNA monomers the DNA

may not have to bend as sharply. In addition to this, if proteins end up ar-

ranged in rows many bridges between two DNA segments may be formed for the

“cost” of only one bend in the DNA (Figure 2.7). The clusters seen here are also

qualitatively similar to those seen experimentally in [24, 100].

While the system quickly settles into a configuration where there are only a small

number of large clusters, it coarsens much more slowly than in the chromatin

case (Figure 2.8). This could be because the increased bending energy makes it

more difficult for distant clusters to move close together and combine.
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As with the chromatin model, increasing x leads to increased compaction of the

chain. This happens much more gradually (Figure 2.9) when compared to the

sharp fall at x ≈ 0.15 seen in figure 2.5. This is most likely since proteins now

induce longer range contacts between DNA monomers, which can more efficiently

compact the fibre than the local contacts seen in the more flexible chromatin fibre.

Changing the protein-DNA interaction energy (Figure 2.10) gives an effect similar

to the one seen in figure 2.6, with the critical threshold beyond which clustering

sets in slightly higher at εc = 3.4 kBT for rth = 3.25nm (1.3σ). The ’switch’

type behaviour is for the same reasons as in chromatin, while the higher energy

requirement is due to the lower flexibility of the polymer.

Figure 2.8: As Figure 2.4, but for naked DNA. (a)-(c): Snapshots at increasing
times from a simulation with a 5000 atom DNA fibre and 1000 proteins. (d):
Relationship between Rg, number of clusters and time. The simulation has pa-
rameters εl = 3 kbT (ε = 2.83 kbT ) and rcut = 5.05nm (2.02σ). The number of
clusters in (d) is a local time-average.
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Figure 2.9: Radius of Gyration (Rg) at simulation run end (t > 18ms) for different
values of x = cp/cd. The value plotted is an average taken over the final 3 ms of
the run. The parameters ε and rcut are as in figure 2.8. Insets: A - At end of run
with x = 0.04, B - At end of run with x = 0.4

Figure 2.10: As figure 2.6, but with naked DNA. The interaction range rcut is set
at 3.25 nm (1.3σ). Similar to the results in figure 2.6, there is a sharp transition
between the regime where proteins bind to the DNA and a regime where they
fail to do so.
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2.7 Running the Simulations and Videos

A copy of all required software and the python script to run or modify the

simulations can be found at my university webpage http://www2.ph.ed.ac.

uk/~s0841882/ or at http://www.jjthesis.co.uk/, along with a standalone

lammps input script if you already have LAMMPS available on your computer.

Videos showing both a flexible and semi-flexible simulation run are online at

http://www2.ph.ed.ac.uk/~s0841882/chapter1.html or http://www.jjthesis.

co.uk/chapter1.html.

2.8 Summary

The simple protein-DNA bridging model studied here provides a generic mecha-

nism for cluster formation among bacterial DNA and chromatin. Even when the

interaction is completely non-specific, there is a qualitative similarity between the

results of the simulations here and the observations of experimental studies. For

example, we see the same clustering behaviour as seen in experiments with DNA

and nanoparticles but using different levels of particle concentrations and particle

sizes. We can see a clear link between protein and polymer concentration x and

the degree the polymer is compacted, with low protein concentrations causing

only local DNA compaction and leaving co-existing globular and swollen regions.

As the protein concentration increases, this swollen region shrinks and the poly-

mer size drops sharply. This observation connects the results of the precursor

to this study [12], which studied clustering for relatively low values of x and [3],

where x was typically larger than 1. In the Barbieri et al paper, the system was

observed to switch between an open and bridging-induced compacted phase on

varying either protein affinity or concentration.

As an extension to this work, it would be interesting to quantify the exponents

determining the growth laws of clusters in both the flexible and semi-flexible

cases. The simulations could also be performed at a larger scale, although this

would be difficult considering our computational resources.

Since the interactions in our model are non-specific, the logical next step is to

extend the model to include the sequence specific protein-DNA interactions found

in vivo. We develop this extended model in chapter 3.
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Chapter 3

Transcription Factor Binding Model

The following section is based on the Nucleic Acids Research paper “Simulated

binding of transcription factors to active and inactive regions folds human chro-

mosomes into loops, rosettes and topological domain” [11] and the Nucleus pa-

per“Simulating topological domains in human chromosomes with a fitting-free

mode” [9]

3.1 Outline

The aim of the work in this chapter was to design and simulate a model where

transcription factors and other proteins would bind to specific sites along a section

of chromatin. This idea was a continuation of a previous model [12] (Chapter 2)

where transcription factors would act as bridges, linking regions of chromatin

which were distant genomically, but were close spatially.

To do this we used data from the ENCODE (Encyclopedia of DNA Elements)

project, an online resource for genomic data [49, 82]. This allowed us to iden-

tify the regions of DNA where specific proteins would bind. After simulating this

bridging process we were able to create contact maps, which show regions of chro-

matin that are spatially close and also allow us to identify TADs (Topologically

Associated Domains). The results of this process were then compared to exist-

ing Hi-C contact maps [84], which highlight regions of DNA which are spatially

close. This was done in order to see how successfully the model predicted TAD

boundaries and other characteristic features of the experimental contact map.
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3.2 Topological Domains and Contact Maps

Figure 3.1: A cartoon showing a chro-
matin fibre folded into TADs. Inset: A
possible contact map for this system.

The 3D conformation of human chro-

mosomes is an important area of re-

search in genome biology, as this

organisation influences gene activity,

which in turn has consequences relat-

ing to health and general cellular func-

tion [16]. A useful representation of a

particular chromosome’s 3D structure

is given by the chromosome’s contact

map, which involves binning the chro-

mosome up into equally sized sections

and then determining which sections

are in close spatial contact. This would

usually be done at a sufficiently high

resolution (Usually on the order of 20+

kbp), so that the output contact map

is not too sparse. In the example contact maps in figure 3.2 we can see the

brighter square regions along the diagonal which represent TADs - contiguous

regions of chromatin where there are a lot of contacts between different parts of

the chromatin fibre. There are also a few other typical features visible, such as

the high degree of contacts along the diagonal and the sharp boundaries between

domains.

The link between 3D conformation and gene activity also comes from the fact that

chromatin folds into local domains (Figure 3.1). For example, genes embedded in

a dense and globular domain in “heterochromatin” (inactive chromatin) are likely

to have a reduced probability of transcription, while genes in more open regions

will have an increased probability of transcription. Transcription factors and

polymerases are also known to be localised at domain boundaries, suggesting that

in some cases an active gene may act as a boundary [29]. Chromatin domains tend

to make few inter-domain contacts, while having many intra-domain contacts.

While this is expected from the definition of a domain, it is worth noting the

extent of the intra-domain contacts. Even chromatin at the ‘edge’ of a domain

will have a lot of contacts with all other parts of the domain, rather than just

having local contacts. These topological domains can also separate active and
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inactive regions of the genome [20].

A typical size for a TAD in humans is between 0.1-2 Mbp, though the char-

acteristics of TADs are also dependant on factors like cell type. One measur-

able characteristic is the probability of two chromatin regions separated by a

genomic distance r being in contact Pc, which scales with Pc ∝ rα. For HeLa

cells α = −0.5 [75], corresponding to larger domains on average than for stem

cells where α = −1.6 [3].

3.3 Fractal and Equilibrium Globule Models

Figure 3.3: Image from [70]. A simulated
fractal globule and its domain structure.

The fractal globule model has been

proposed as a general organisational

principle for chromatin. The model

does not take into account local de-

tails of the chromatin and every part

of the chromatin fibre is treated in the

same manner. In vivo this will not be

true as some regions will be more ac-

tive and have a more open conforma-

tion, while other inactive regions form

denser structures. This model instead

seeks to reproduce the average properties of TADs and make more general state-

ments about chromosome architecture. The fractal globule structure consists

of a polymer which collapses in a hierarchy of folds: some large scale domains

resulting from this folding are highlighted in colour in figure 3.3.

These folds can be produced in silico by setting a short-ranged, attractive interac-

tion between monomers, and performing a rapid simulations where the polymer is

quenched from the swollen phase, without allowing the chain to equilibrate: this

typically also results in knot-free structures. As the fractal globule is space-filling,

its radius R scales with the number of monomers N with R ∝ N
1
3 . The attrac-

tive interaction between monomers is an effort to represent molecular cross-links

within chromatin. Hierarchical folding may occur thanks to the short simulation

run times, which result in mainly local interactions within the chromatin fibre as

there is not enough time to ‘search’ for longer range contacts.
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Figure 3.2: (Top) An example contact map, taken from [84], detailing contacts
between regions of chromosome 9. The contact-free area near the middle is the
centromere of the chromosome (this is the region where duplicated chromosomes
are kept together prior to mitosis). (Bottom) A zoomed in view of a contact
map for chromosome 3, highlighting a TAD. In both images, brighter red regions
indicate more contacts between chromation.
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On account of the hierarchical folding, the size of any subsection of the full

polymer also has the same scaling behaviour. The “fractal globule” theoretical

model for chromatin architecture has α = −1 [70] in the scaling relationship

mentioned above, which compares favourably with experimental Hi-C data, at

least when analysing average contact probability curves, where data from all

chromosomes are used at the same time.

Figure 3.4: Image from [70]. An equilib-
rium globule and its domain structure.

As a contrast, we can look at the

equilibrium globule (Figure 3.4). This

is the equilibrium structure formed

when the attractive interaction be-

tween monomers is allowed to domi-

nate the repulsive interaction due to

the excluded volume of the chain.

To acheive this in simulations gen-

erally requires neglecting topological

constraints as in Mirny et al [70]. In

this model an individual monomer is

considerably more likely to come into

contact with a monomer which is a large genomic distance away. In simulations

this is reflected in the scaling of Pc for this model, with α = −3
2

for short/mid-

range interactions (r ≤ N
2
3 ) and constant for longer range interactions [70].

While the scaling in this model compares well enough with some cell types, it

also has a high degree of knotting, which makes it a poor choice for modelling

chromatin.

It is important to note that different cell types have different values for α, sug-

gesting the fractal globule model may be a good fit for some cell types, but is not

universally reflective of real chromatin. Also, this model does not include local

details of the genome (promoters, enhancers etc.), instead looking to reproduce

the underlying general details of chromosome architecture.

3.4 Experimental Techniques: 3C, Hi-C and others

Experimental data on chromatin contacts were initially provided by a process

known as 3C (Chromosome Conformation Capture) and later by methods like

4C, 5C and Hi-C, all of which expand on the original 3C method. All of the
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Figure 3.5: Figure from [4]. The methods have similar preparatory stages, but
differ greatly in the scope and depth of their analysis.

techniques listed attempt to identify regions of the genome which are spatially

proximate in 3D, however they differ in the scope of their analysis. 3C is used

to identify interactions only between pairs of specific, pre-determined fragments

of the genome, while Hi-C can do this for interaction between all parts of the

genome.

All of the methods have the same sample preparation technique, which involves

first cross-linking the DNA sample using formaldehyde [67]. This joins spatially

close DNA, effectively taking a “snapshot” of the system at the time.

Next, the DNA which is not cross-linked is digested by a restriction enzyme,

leaving only the pairs of DNA fragments which were in close spatial proximity.

The ends of each pair are then joined (ligated) and the cross links removed,

leaving the DNA fragments ready to be analysed [4].

The analysis stage is where the techniques mentioned above diverge. The origi-

nal 3C method requires specific fragments of interest to be identified before any

analysis takes place, as PCR (Polymerase Chain Reaction) methods are used

to identify DNA fragments. In PCR, a “DNA primer” which corresponds to a

specific sequence is used; if the DNA fragments being tested match up with the

DNA primer we get a chain reaction which rapidly increases the number of DNA

fragments in the sample. If this happens, then the DNA in our test fragment has

been identified!

However, the limitations of this method can be significant. The DNA primer
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requirement means that this method is only suitable for regions of the genome

where some details are already known, which means 3C experiments are more

about testing a particular hypothesis then generating a large dataset which could

then be analysed in greater detail. Also, ligated DNA fragments have to be

analysed one-by-one, so 3C tends to focus on smaller regions of the genome.

Again, this increases the focus on hypothesis testing over data generation.

As an aside, this is not necessarily a bad thing for cases where detailed information

on a genomic locus is required. However, for researchers wanting to study entire

chromosomes or look for previously unconsidered mechanisms/relationships, 3C

may not be the most suitable tool.

4C (Chromosome Conformation Capture on ChIP) was designed to allow study

of larger regions of the genome, as chromosomes are known to have both intra-

chromosome and long-range inter-chromosome interactions. 4C provides data on

how a pre-selected DNA fragment interacts with all other regions of the genome.

After the DNA fragments are ligated, only the ones containing the pre-selected

fragment are analysed, either by microarray or deep sequencing analysis [103].

5C (Chromosome Conformation Capture Carbon Copy) can be thought of as more

like a straightforward upgrade to 3C than 4C is. Like 3C, data can still only be

collected for small genomic regions and misses out long range interactions. Where

it substantially improves on 3C is the number of different fragments which can be

identified, building on 3C “libraries” and using a technique known as LMA (Liga-

tion Mediated Amplification) to simultaneously amplify large numbers of ligated

DNA fragments. These can then be analysed via PCR or microarrays, providing

a great amount of detail over a small genomic region. Further information on the

exact details of the methodology are available in Dostie et al [32].

The last of the “C” techniques mentioned above is Hi-C [5], which allows study

of both long and shorter range chromosome interactions. The methodology is

similar to the previous techniques except sequencing can be done simultaneously

for all regions of the chromosome, leading to contact maps of the type we see in

Rao et al. As it provides data for genome-wide interactions, Hi-C is also a more

useful tool than 3/4/5C when there is little pre-existing information about the

region being studied.

While Hi-C is an extremely effective tool, it does not completely replace the other

methods. 4C and variants such as Capture-C [41] can still be higher resolution

than Hi-C, and the extended range of Hi-C brings with it a corresponding in-
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crease in sequencing depth which may be avoidable depending on the goals of the

experiment. Note: While Capture-C and 4C give similar output (one vs many),

the actual experimental methods underpinning the two techniques are distinct

from each other. For our purposes, we shall be content with mentioning that

Capture-C may be just viewed as a refined version of 4C.

Techniques also exist which allow the characterisation of protein interactions

with DNA. These include ChIP-seq (Chromatin Immunoprecipitation Sequenc-

ing), which involves enriching the DNA-protein complexes in a system via the

use of protein specific antibodies. Later on, the DNA in the complex can be

sequenced and its position in the genome identified.

There also futher related experimental techniques available, such as 6C (Com-

bined 3C ChIP Cloning) [94] and ChIA-PET (Chromatin Interaction Analysis by

Paired-End Tag Sequencing) which are also more geared towards gathering data

on the protein interactions between DNA, rather than the DNA itself. We do not

discuss them further here, as these experiments will not be used for the direct

comparison with simulations we discuss in this chapter.

3.5 More Simulations With Non-Specific Binding

3.5.1 Single Protein Model

Before attempting simulations which incorporate genetic data, we looked at a few

more simple models of non-specific binding. Firstly, we looked at a model almost

identical to the one used for chromatin in section 2.4, but with the change that

stronger binding sites were placed at regular intervals on the fibre (model type

A in figure 3.9). Although too simplistic to model real chromatin, this can be

thought of as emulating the tight binding of transcription factors to their specific

target sites and non-specific binding elsewhere. This initial set-up leads to the

clustering seen in section 2.4, along with the formation of chromatin “rosettes”

where the strong binding sites are bound tightly to the protein cluster. The

chromatin in between the strong binding sites then forms a loop with its base at

the protein cluster (Figure 3.6).

The interaction between proteins and the chromatin fibre is also implemented in

a similar way to section 2.4, with ε = 3.5kBT (weak binding) or ε = 7.1kBT
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Figure 3.6: A possible configuration of a chromatin “rosette”. The strongly
interacting sites are likely to make up the base of a loop.

(strong binding) and rcut = 1.8σ. These choices for ε correspond to values of 4

and 8 in a LAMMPS input script, as similar to Chapter 2 we use a potential

which is shifted so to energy is zero at rcut.E = 4ε
((

σ
r

)12 −
(
σ
r

)6
)

if r < rcutσ

0 otherwise
(3.1)

These values for ε allow for transient binding of proteins, which may only bind

briefly to a weak binding site before detaching and re-binding at a nearby location.

If this happens to be a strong binding site, it may remain bound for long enough

to stabilise a loop between two chromatin beads. When this happens, proteins

have an increased probability of binding to the same site due to the “Bridging

Induced Attraction” mechanism described in chapter 1.

This loop stabilisation could also occur at a weak binding site, but as the protein

is more likely to dissociate this happens infrequently. As in the other non-specific

binding simulations (section 2.4) there is no attraction between proteins, or be-

tween the beads in the fibre - aside from the bonds between adjacent beads.

As figure 3.8 shows, clusters form quickly with their properties having reached

steady-state values within ∼ 5 × 104 simulation time units. Converting to real

units follows the same procedure as in section 1.5 (1 simulation time unit is 0.6

ms), implying the simulation is “finished” after O(101) seconds.

The average cluster grows to contain ∼12 proteins and ∼6 strong binding sites.

Further growth is inhibited for entropic reasons [35], as the entropic cost of bring-

ing together loops (i.e. adding more binding sites to a cluster) scales non-linearly
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(≈ n2) with the number of loops, while the binding energy scales linearly [64].

As the number of proteins per chromatin bead was relatively low, almost all the

proteins end up in a cluster by the end of the simulation run. This puts a partial

constraint on cluster size, though larger clusters could still form by the merger of

two or more smaller ones. However, this tends not to happen in the simulations

as merging two clusters of loops is prevented by the free-energy barrier from loop-

loop interactions between clusters. As in figure 3.6, both clusters are likely to

have a ‘screen’ of DNA loops around the proteins. The fact that the DNA is

looped rather than linear means it is less likely for the strands to interpenetrate.

The amount of chromatin reorganisation and protein dissociation required for

cluster merging means it is unfeasable, even during extended time simulation

runs. Though a very slow transition cannot ever conclusively be ruled out, it was

not observed in the simulations we performed.

Figure 3.7: An example of a rosettogram where the binding beads are ordered (ii)
and slightly disordered (iii). While (i) shows the protein binding sites as being
regularly spaced, this is not a requirement - as long as we can order the binding
beads (e.g. by genomic distance) we can create a rosettogram.

The rosettogram plot in figure 3.8 shows how the local conformations around a

cluster differ. The second cluster forms a perfect rosette - one where successive

strongly interacting sites are all located in the cluster. In contrast the first cluster

contains a few strong interaction sites, but the fibre then leads away to another
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cluster before returning. In fact this happens multiple times for the first cluster!

The contact map for these simulations also show that domains do form in any

given simulation run. Since in our model protein clusters are unlikely to merge

or grow past 12 proteins, the corresponding chromatin domains also tend to be

small. There is no consistency to where domains will form, hence the average (20

run) contact map shows little evidence of any domains.

Other simulations were performed where the location of strong interaction sites

was randomised, while keeping the total number of such sites constant. This led to

a more ordered chromatin chain with a disorganised fraction, fd = 0.06, meaning

only around 1 in 20 strong interaction sites is ‘out of order’ - as in figure 3.7 (iii).

This is perhaps because the randomisation allows for the occasional large gap

between interaction sites. This gap could act as a more natural domain boundary

between rosettes, as the entropic cost of forming loops increases (logarithmically)

with loop size, thereby favouring local loops (hence rosettes) over more non-local

structures.

A further alteration to the model can be seen in figure 3.9, where runs of non-

binding beads separate sections with strong binding sites placed at regular inter-

vals (type B in figure 3.9). This has a parallel with real chromatin, where active

regions alternate with inactive regions.

There is clear evidence of domain formation, with distinct boundaries (the non-

interacting regions) between each “pyramid” in the contact map. This result is

reflective, at least qualitatively, of observations from simulations of the Caulobac-

ter Crescentus chromosome [55]; the pyramids are also reminiscent of the TADs

in the experimental contact maps (Figure 3.2). We can also see evidence of oc-

casional inter-domain contacts.

47



Figure 3.8: Set-up, simulation snapshots and results for the one protein model.
i) Interaction strengths between proteins and chromatin. As shown, there are
5000 chromatin beads, which at 3 kbp/30 nm per bead gives 15 Mbp total. As
the simulation environment is a cube with side length 3 µm this corresponds
to a volume fraction of Θc = 0.26%, meaning the chromatin is in the dilute
regime (Θ � 1). The persistence length of the chromatin fibre is 90 nm. There
are 250 proteins, also sized 30 nm - giving a volume fraction of Θp = 0.01 and
x = cp

cd
= 0.05 %. For comparison, this is at the low end of the concentrations

used in chapter 2.
ii) Initial conditions for the simulation
iii) Simulation after 5×104 timesteps - protein clustering has begun to take place.
iv) A contact map for a single run of the simulation. Two beads are considered
in contact if they are within 150 nm (5σ) of each other.
v) Properties of the strongly binding chromatin beads and the proteins them-
selves.
vi) A rosettogram. This plot shows the strongly interacting (high-affinity) beads
and which cluster they end up binding to. For example, a horizontal red line
means consecutive strongly interacting beads have bound to the same cluster,
forming a rosette structure similar to the one in figure 3.6 but where all purple
beads are bound to the cluster. fd is the “disorganised fraction”, a measure of
how many clusters/rosettes are formed by non-consecutive chromatin beads.

48



Figure 3.9: Diagonal from contact map for the one protein model with regular
binding site spacing (A) and regular spacing with non-interacting regions (B).
The difference between a single run and the system average is also illustrated.
Simulation type (A) shows domain formation in individual runs but not consis-
tently, while (B) forms domains which are consistent over several simulation runs,
along with weak inter-domain contacts. The triangular domains correspond to
the regions with strongly binding beads.
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3.5.2 Two Protein Model

Next, we studied a model where a chromatin fibre interacts with two different

types of protein. In this model, the proteins are either red or green with red

proteins binding to red sites on the chain and green binding to green. The fi-

bre itself is made up of alternating red/green sections of equal length. This is

representative of active and inactive regions of the genome, which have different

binding proteins and form separate domains.

Figure 3.10: Image from [9]. A possible configuration for the two protein model,
where dark red/green beads are proteins and light red/green beads are chromatin.
This illustrates some of the features seen in simulation such as cluster linking,
where the chromatin fibre revisits a cluster it previously interacted with.

As seen in figure 3.11 the protein clusters contain proteins of only one type and

mixed clusters have not formed at the end of the simulation. This is not too

Figure 3.11: Illustration of two protein model and image of diagonal from contact
map. Intra-domain contacts are seen in individual runs, but not as consistently
as inter-domain contacts. There also appears to be a small effect where inter
cluster contacts are more likely towards the end of the chain.
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surprising, as the alternating sections of the chromatin fibre mean there is a high

entropic cost when forming mixed clusters.

This result is of interest if, as mentioned previously, we consider the different pro-

teins to be analogous to the transcription factors and other proteins associated to

different chromatin regions. Experimental Hi-C studies show that many domain

boundaries are also boundaries between active and inactive regions, which would

also separate their associated transcription factors.

3.5.3 Loops and Supercoiling

Chromatin looping and supercoiling are also known to affect domain formation.

As mentioned in section 1.6, supercoiled domains are known to share boundaries

with TADs [40] so it is of interest to see exactly what influence supercoiling and

looping has on domains. It should be noted that this boundary sharing is not

one-to-one, as there are many more supercoiling boundaries than TADs. In the

case of supercoiling, there is also a strong link to transcriptional activity which

is studied in Chapter 4.

The simulation set-up for type D & E in figure 3.12 has linear stretches of beads

connecting permanent loops, which are supercoiled in E but not in D. This type

of looping can occur in vivo, possibly due to CTCF binding to sites around the

loop base and stabilising loops [40]. This CTCF stabilisation may also act as a

barrier to supercoiling; this idea is implemented in simulation E where supercoil-

ing is conserved within the supercoiled regions, with each region having a linking

number of +32. The simulations were also run with a linking number of -32

and as the results were similar. Only the positive supercoiling data is shown in

figure 3.12. As in simulations A & B, we have a single type of binding protein -

although this time the protein binds to all beads with equal strength.

The results from the averaged contact maps show that domain formation occurs in

both models, with more distinct boundaries seen in the supercoiled case. Though

it may not necessarily come across from the cartoon in figure 3.12, supercoiled

loops have a much higher local density of chromatin even before adding binding

proteins. This may explain why the domains are clearer in type E than in type

D - the supercoiled regions already have a greater probability of recruiting and

stabilising a binding protein in the first place.
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Figure 3.12: Diagonals of a averaged contact map for loop (D) and supercoiled
loop (E) simulations. The protein-chromatin interaction rules are also shown.
There are slightly more beads than in the previous simulations, 5616 here com-
pared with 5000 previously. This corresponds to a 16.8 Mbp region. We can see
considerably clearer domains in the supercoiled case.

Collectively, these models display a few of the potential mechanisms by which

topological domains can form - we expect that each of these mechanisms will be

active during domain formation in vivo.

3.6 Domain Properties and Boundary

Identification

As mentioned in section 3.3, the probability that two regions of a genome are

in contact is related to their genomic distance. Unsurprisingly, greater genomic

distances mean a contact is less likely to be made. As previously discussed, this

relationship follows a power law where the exponent α is dependent on cell type,

ranging from −0.5 for HeLa to −1.6 for embryonic stem cells. For comparison,

recall that the fractal globule model from section 3.3 has α equal to −1.

When calculating the power law exponent for the simulations above two regimes

are found, representing inter- and intra-domain contacts (Figure 3.13). The intra-

domain α values range from −0.65 to −1.05, falling within the experimentally
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observed range. For inter-domain contacts α ranges from −1.4 to −2.06 though

these values should be taken with caution due to the smaller sample size for

these longer range contact. These values may also be influenced by the increased

likelihood of forming an inter-domain contact for domains near the ends of the

chromatin fibre (Figure 3.14). While the number of ‘end’ domains will always be

2, there are only ≈ 10 domains in total so these end effects may be significant.

For a larger region of chromatin with hundreds or thousands of domains, these

effects would not be so noticeable.

Figure 3.13: α for simulation types B to E. As with experimental measurements
of α, we see different values characterising short and long range interactions.

Identifying the position of boundaries is not difficult for the simulations presented

so far, as the smaller scale and regular structure of the models tend to create

distinct, regularly spaced boundaries. However this will not always be the case,

as figure 3.2 shows that contact maps may have irregular, ambiguous boundaries.

Because of this it is necessary to have some metric by which boundaries can be

identified, along with some degree of automation for larger data sets. Unfortu-

nately, it is not an easy task to programmatically identify every domain boundary

with 100% accuracy, so some degree of manual checking is required for the more

“borderline” domains.

The base of the domain finding approach we use is the Janus plot (Figure 3.15),
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Figure 3.14: Full contact maps for all simulation types. We can also see the
difference between a single run and the average, even for just 10 runs. In Hi-C
experiments, the contact maps may be an average of thousands of individual cells.
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which in its simplest form involves selecting the ith bead and measuring the num-

ber of contacts it makes to the left (Bi) or to the right (Fi) in 1D genomic space.

For the 2D contact maps this would mean contacts up or down the diagonal.

Domain boundaries coincide with the points where there is an abrupt change in

the plot i.e. a jump from most contacts being on the left to most contacts being

on the right.

This can also be seen in a difference plot (∆i = Fi − Bi), for this type of plot

boundaries are wherever the signal goes from negative to positive y values. This

method is similar to the one used in [29]. One issue with these types of plot

is that we can potentially have multiple nearby boundaries due to noise in the

signal. This can be avoided by adding the requirement that the signal continues

increasing in the positive y direction for a number of beads, though the number

chosen will always be to some extent arbitrary.

As long as the number of beads is considerably less than the average domain size,

the arbitrariness of the choice should not matter too much. A refinement to this

method involves looking at the “insulator signal”, which is the derivative of the

difference plot. Boundaries should coincide with peaks in this plot. The benefit

of this over the standard difference plot is that contacts away from the diagonal

may affect where the difference plot crosses the x-axis. This should be avoided

by the insulator plot, provided that the number of long-range contacts also does

not vary too quickly.

As mentioned above, it is also necessary to have a degree of manual boundary

verification. This is required in part due to the difference between Hi-C and sim-

ulation data, with simulation data being noisier and with less evenly distributed

long-range contacts (Figure 3.18 shows the two contact map types side-by-side).

Numerical values which are not significant for Hi-C may be large enough in sim-

ulation datasets to give spurious boundaries, so it is important to at least check

this has not occurred.

Another potential way of characterising simulation results is the clustering method

used by di Stefano et al in their steered molecular dynamics simulations of chro-

mosome 19 [28]. This involves looking at the clusters formed by co-localised genes

and identifying which subsets of genes cluster together as well as the layout of

these clusters. The clusters themselves were found using a k-means clustering

algorithm, which allows the number of total clusters to be set in advance. Run-

ning with different numbers of clusters generally shows a clear ‘best’ choice for
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the tradeoff between minimising a cost function and having a very high number

of clusters.

This method also leads to genes which are in contact even over mid-to-long ge-

nomic distances. This clustering is also used to provide a way to divide up a

contact map into larger macro-domains (10 are selected for chr 19).

The goals of the simulation when it comes to boundaries and boundary finding are

also different for Hi-C and simulation datasets. While Hi-C experiments seek to

return quantitative information about boundaries (and many other things!) the

simulations are attempting to test how well results from our underlying models

fit the Hi-C data, rather than generating new information based on that data.

When performing data analysis on Hi-C data it can be difficult to choose between

equally plausible explanations for a feature seen in the data, as there may be no

reason to favour one over the other. With our simulation data we can test each

potential explanation and see how well they reproduce the data. Of course, the

simulations could then show that both models reproduce the data well - though

this would still tell you something about how (un)important a particular feature

of the model is more generally.
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Figure 3.15: Three different methods of boundary identification. (A) Janus Plot
showing contacts to right and left of each bead. Peaks in the signal correspond to
boundaries. (B) Difference plot for the same data, here boundaries are wherever
the signal goes from negative to positive y values. (C) The insulator signal plot,
which is the derivative of the difference plot. In this plot type, boundaries can
now be found at peaks in the signal.
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3.7 Adding Genomic Data to the Model

A previous approach to simulating chromatin had involved using experimental

Hi-C data as a way to set interaction strengths, which leads to good agreement

between simulation and experimental results[89], but may not elucidate the actual

mechanisms driving the chromosome organisation. Instead, we opted for a fitting-

free model which uses genomic data to determine how different regions of DNA

interact with transcription factors. This model uses the set-up for chromatin in

section 3.5.1 as a basis, so the beads in the chromatin fibre are representative of

3 kbp of chromatin, have a size of 30 nm and have Lp = 90 nm .

In our model we have two protein types, one representative of either transcrip-

tion factors such as CTCF or polymerases and the other representative of pro-

teins which bind to heterochromatin regions, such as the HP1α protein. These

bind to regions of the genome corresponding to euchromatin (active regions) and

heterochromatin (inactive regions) respectively. As in the two protein model in

section 3.5.2 and the non-specific binding model in chapter 2, these binders are

multivalent, meaning they can bind simultaneously to more than one region of

DNA and create molecular bridges between distant DNA regions [21].

3.8 The Human Genome Project and the Genome

Browser

The source of all the genomic data used to set up our simulations is the UCSC

Genome Browser [49], an open-access resource providing data for the entire

genomes of human and other model organisms. The genome browser is an off-

shoot of the Human Genome Project and has made data available ever since the

first draft of the genome was published in 2000, nearly 10 years after the project

began. The project was officially completed in 2003, though there have been

several “updated” genomes published since then.

The genome browser website makes a wide range of information available for

download [48], with examples including gene locations and expression levels for

different cell types.
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3.9 Using Histone Modifications to Characterise

Chromatin States

Any implementation of the model outlined in section 3.7 requires a way of identify-

ing which sections of the genome are “active” or “inactive”. This was done by us-

ing the Broad ChromHMM dataset from the UCSC genome browser, which char-

acterises sections of the genome based on the properties of individual histones[36,

37]. Histone proteins can be modified after transcription, most commonly leav-

ing specific amino acids either methylated, acetylated or phosphorylated. Then,

ChIP-seq methods can be used to identify which modifications are present at each

histone.

Promoters, enhancers, transcribed and silenced regions are all associated with

specific histone modifications, so these can be inferred from the ChIP-seq data.

In [36] a hidden markov model (HMM) is used to make these inferences.

In total the Broad ChromHMM study labels histones as being in one of 15 states.

The states we chose to represent in our simulation are in table 3.1. Strong binding

refers to a binding energy of 7.1 kbT , weak binding is with a binding energy of

3.5 kbT . Protein type 1 binds to inactive regions (HP1α), while protein type 2

binds to active regions (transcription factors or polymerases).

State In Simulation Interaction Style

1 - Active Promoter Yes Strong - Protein Type 2
2 - Weak Promoter No None

3 - Inactive Promoter No None
4/5 - Strong Enhancer Yes Strong - Protein Type 2
6/7 - Weak Enhancer No None

8 - Insulator No None
9 - Transcriptional Transition Yes Weak - Protein Type 2

10 - Transcriptional Elongation Yes Weak - Protein Type 2
11 - Weak Transcribed No None

12 - Repressed No None
13 - Heterochromatin Yes Weak - Protein Type 1

14/15 - Repetitive No None

Table 3.1: Possible states from the Broad ChromHMM data, whether they are
included in the simulation and their interaction style if they are.

Since the chromatin fibre beads in the simulation represent 3 kbp, or around

15 separate histones, it is possible for a bead to bind both types of protein.
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As an example, this could occur when the first histone in a bead is at end of

a heterochromatin region, while a enhancer region begins at the final histone

in the same bead. The general idea is for a bead to be representative of the

features found in that 3 kbp region, rather than indicating that there is 3 kbp of

a particular thing at that point.

Figure 3.16: Chromosome beads and the strength of their protein interactions.

While transcription factors and polymerases share a bead type, this is not meant

to suggest that transcription factors and polymerases are interchangeable in any

sense! It would not make sense for a transcription factor to bind at a transcription

start site, or a polymerase at a promoter or enhancer site. In both cases they

would just be getting in the way of the proteins which were in the “correct”

place. However, since our model has separate binding energies for the two sites

we can get the different styles of interaction we want with just a single protein

type. Since we are only concerned with the overall density of proteins rather

than their individual behaviour this model is biophysically appropriate. In the

example where a type 2 protein binds to a transcription site, then dissociates and

binds to a promoter it should perhaps be thought of as a polymerase coming from

the “pool” of proteins, then returning and a transcription factor coming from the

pool to replace it.

3.10 An Alternative Method to Characterise

Heterochromatin

Since the Broad ChromHMM study relies on post-transcriptional histone modi-

fications to characterise histones, it may not work so effectively when identifying

heterochromatin. Here, ‘post-transcriptional’ means ‘at a time after significant

transcriptional activity’, not all histone modifications arise from transcription
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alone. Regions of heterochromatin will not have these modifications as these

inactive regions are not likely to have been transcribed or gained histone modifi-

cations in the first place (Though the modification H3K27me3 can be associated

with some types of heterochromatin). Accordingly, any histones with a “low

signal” (i.e. no/few modifications) are labelled as heterochromatin.

However, relying on a lack of evidence to characterise something can lead to

some issues. For example, single histones could be labelled as heterochromatin

even if they are isolated from other heterochromatin regions. Considering the

definition of heterochromatin, it does not really make sense to have regions which

are labelled heterochromatin but only consist of one or a few histones. More

generally, regions could be mischaracterised as heterochromatin simply because

the process looks for a lack of distinguishing features, as opposed to their presence.

The alternative method used to characterise heterochromatin is based on the GC

content of the chromatin. Regions with a high GC content are associated with

more open 3D conformations, while those with low GC content are more likely

to be compact and heterochromatic [25]. This allows us to set a threshold for

GC content percentage and label all regions below this as heterochromatin. Since

the threshold value can be set we also have more flexibility in our model as in

principle any region could be labelled as heterochromatin, so we can see to what

extent changing this alters our simulations.

This method does also have some downsides, namely the sharpness of the bound-

ary between heterochromatin/non-heterochromatin and potential arbitrariness

of threshold value. Picking a threshold value was done on the assumption that

the Broad ChromHMM data gave a accurate picture of the amount of hete-

rochromatin globally, even if there were some local inconsistencies. If the Broad

ChromHMM data indicated that there were Nhtr bp of heterochromatin present,

the GC content threshold would be set so that our simulations also had Nhtr bp

of heterochromatin. The difference in outcome between the two methods is that

using GC content would tend to produce fewer isolated heterochromatin beads.

Fortunately, due to the fact that the threshold can be modified we were able

to test the robustness of our GC content value by re-running simulations with

the threshold increased or decreased. The results from the simulation remained

stable for a large range of threshold values, suggesting this method of assigning

heterochromatin regions captures the general picture well.
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3.11 Generating Contact Maps

Contact maps are generated in a fairly straightforward way, the distances between

each pair of simulation beads is calculated and if it is below a selected distance

the pairs are considered in contact. Unfortunately, the length of experimental

cross-links using formaldehyde is not exactly known [104] but it clearly should be

short range. For our simulations, beads were considered in contact if they were

within 3 bead lengths of each other (qualitatively similar results were found with

larger threshold, up to ∼ 10 bead lengths). The bin size used in contact maps

is also important when seeking to make comparisons with Hi-C data. While the

simulation bin size can be as low as the bead size (3 kbp), Hi-C data tends to be

binned at a lower resolution than this. For example, the data from Rao et al is

binned at 20 kbp. This meant our contact maps were binned at 21 kbp as this is

the closest multiple of 3 kbp to 20 kbp.
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3.12 Results - Chromosome 12

The first simulation using genetic data was a 15Mbp region of chromosome 12,

ranging from 85 Mbp to 100 Mbp (Figure 3.17). We used data taken from the

GM12878 cell line, which is a lymphoblastoid cell type widely used in sequencing

projects and is one of the Tier 1 group of cells [96]. The H1 human embryonic

stem cell and K562 cell types make up the rest of the Tier 1 cells, which are

chosen based on cell availabilty and ease of use.

For this simulation the threshold for GC content was set at 41.8%, there were

3000 Type 1 proteins and 300 Type 2 proteins. Since the proteins in simulation

are only representative of real proteins the chosen values for protein number are

set the correct order of magnitude, but it if we wanted to set a specific level of

protein concentration there would not be a clear ‘best’ target value. Setting the

protein numbers to the values used in simulation means almost all proteins end

up binding to the DNA at some point in the run.

We found that separate clusters of Type 1 and Type 2 proteins formed, as in

section 3.5.2. These clusters had average sizes of ∼14 and ∼190 proteins respec-

tively, with the “active” protein clusters showing a good deal of similarity to

the rosettes found in previous models. The larger clusters of “inactive” proteins

tended to be seen where there were longer runs of heterochromatin or mostly

heterochromatin beads, which explains their larger size.

Comparing boundaries with Hi-C experiments we can see the simulation contact

map is a decent fit, with 75% of simulation boundaries matching H-C to within

100 kbp. The rosettograms produced for clusters in active regions are also ex-

tremely well ordered, with the disorganised fraction fd equal to 0.02. For the

non-specific binding models where fd was calculated, it was equal to 0.06 and

0.11. Unfortunately we cannot directly compare with an experimental value for

fd, but this improvement suggests that the conformation of real genomes might

have evolved to minimise tangling and favours the production of the more-ordered

rosette structures seen in section 3.5.1.
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Figure 3.17: (A) The region of chromosome 12 simulated along with bead colour-
ings used in the simulation. These are coloured as follows: Pink - Promoter or
Enhancer, Green - Transcription Site, Gray - Heterochromatin, Blue - Inactive
Euchromatin, Red - Type 1 Protein, Black - Type 2 Protein. The pink beads
here are likely the promoter for the MRPL42 gene pictured.
(B) Protein only screenshots from the simulations themselves. This shows the
tendency for similar protein types to cluster together, as also seen in section 3.5.2.
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Figure 3.18: A comparison of boundaries found through simulation and Hi-C
experiments. Left: Contact Map from simulation, with bin size 7 kbp. Right:
Contact map from Hi-C with bin size 10 kbp [84]. The HMM and GC content
data are also shown for comparison with domain locations.

Figure 3.19: A rosettogram for a region of chromosome 12, with disorganised
fraction equal to 0.02. The rosettogram is for the active regions of DNA which
bind to the red proteins in simulation. The low value for fd suggests highly
ordered, rosette-like structures.
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3.12.1 Testing Different GC Thresholds

To examine the effect of GC content threshold on contact maps, further simula-

tions were run with the threshold set to 42%, 45% and 48%. The resulting contact

maps, shown in figure 3.20, are extremely similar for the first two thresholds -

but differ when the threshold is set to 48%. However, this region of the genome

is reasonably active and so has a high GC content generally. Because of this,

setting the GC threshold high enough means labelling a very large proportion of

the beads as heterochromatin, so it is not surprising that this eventually has a

visible effect on the contact maps.

Figure 3.20: Contact maps obtained for the same region of chromosome 12 anal-
ysed in figure 3.18, but for different values of the GC threshold before beads are
labelled as heterochromatin.

3.13 Results - Chromosomes 6 and 14

Further simulations of chromosome sections were performed, this time for 15

Mbp sections of chromosomes 6 and 14. Both regions were selected as they

had a mixture of active and inactive binding sites, though as there are lots of

regions with this property the choice will always be arbitrary to some extent. The

chromatin 6 simulations used data taken from the H1-hESC (Human Embryonic

Stem Cell) cell line. While the results and conclusions to be drawn are similar

to those of chromosome 12, they help further illustrate both the successes and

limitations of the model. The results for chromosome 6 can also be used to justify

the choice of using the GC content data to determine heterochromatin regions,

rather than the Broad ChromHMM data (Figure 3.21)
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Figure 3.21: Contact maps for (A) Simulations using Broad ChromHMM data,
(B) Hi-C for chromosome 6 and (C) GC Content data. (D) A graph showing that
fraction of boundaries identified correctly is much greater when heterochromatin
beads are identified using GC content data (ii) as opposed to the histone modifi-
cation data (HMM states) used to identify other regions (i). The threshold here
refers to how far a simulation boundary can be from a Hi-C boundary and still
be considered correct.
While both methods for determining heterochromatin give better results than
setting boundaries randomly, there is a clear improvement when using the GC
based method for identifying heterochromatin.
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Figure 3.22: Left: Average contact map for simulations of chromosome 14. Right:
A snapshot of a simulation run for chromosome 14, with (a) taken towards the
beginning of the run and (b) towards the end.
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3.14 Results - Full Chromosome Simulation

After successfully modelling chromosome sections we attempted to simulate the

entirety of chromosome 19, using the same model as previously. Chromosome 19

was chosen for computational reasons, as it is one of the shortest chromosomes.

Larger chromosomes should give similar results, but would take considerably

longer to simulate - chromosome 1 is almost 5 times as long and simulation times

scale as ∼(chromosome length)2. This simulation had an even higher degree of

success when comparing boundaries with Hi-C, getting around 85% correct to

within 100 kbp.

For this chromosome, we also characterised the beads which were found at bound-

aries. Boundary elements should in theory be more accessible to polymerases and

other transcriptional machinery as they are by definition on the periphery of a

domain. Because of this, we would expect to find more active and less inactive

beads at the boundary compared to any other region of the domain, with this

placement driven by protein binding mechanisms. This was verified to some ex-

tent (Figure 3.24), and boundaries were found to contain a greater then average

number of active or non-interacting beads.
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Figure 3.23: Contact maps for chromosome 19 from both simulation (left) and
experiment (right). From the zoomed region, we can see the simulations re-
produce the Hi-C results with good accuracy. The simulated contact maps also
have fewer long-range, non-domain contacts - something which was true in general
when comparing simulation and experimental results. This may be a consequence
of the simulation contact maps being made up of considerably fewer samples than
the experimental Hi-C maps. Some of the longer range, weaker intensity contacts
seen in Hi-C may not occur regularly enough in simulation to be detected with
a sample size of 10. This could also come about since the polymer is more dilute
in simulation than in the cell.
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Figure 3.24: The proportion of beads found at or near to boundaries. Red “ac-
tive” beads are promoters, enhancers or transcriptionally active areas, blue beads
are non-interacting and grey “inactive” beads are heterochromatin. There is a
clear reduction in inactive beads at boundaries, and a corresponding increase in
active and non-interacting beads. P-values for the distributions were calculated
assuming a Poisson distribution.
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3.15 Summary

In the above simulations, we see bridging-induced attraction cause transcription

factor proteins to cluster together, even when the only attractive interaction in

the system is between proteins and binding sites on the chromatin fibre. When

this interaction is expanded to encompass multiple protein and binding site types,

we observe the proteins forming clusters which are segregated by type - as long

as their binding sites are separated genomically.

This clustering was also found to create chromatin loops, which are organised

into topological domains and are observed for simple test models, chromosome

fragments and even entire chromosomes.

Even though the full chromosome model only contains two proteins types and

three interactions, it still replicates boundaries from Hi-C with 85% accuracy,

while also placing appropriate (active) sequences at the boundaries themselves.

This level of agreement, towards the favourable visual comparison between sim-

ulated and experimental contact maps (e.g, Figures 3.18 and 3.23) is quite re-

markable given the relative simplicity of the model.

We also find that active regions favour folding into more ordered rosette-like

structures with mainly local loops, as opposed to the more compact, globular

structures seen in inactive regions. This occurs due to entropic limitations on the

number of loops in a rosette, along with the fact that active binding sites are more

sparsely distributed than inactive sites, which tend to be in longer consecutive

runs which favour localised binding.

3.16 Running Further Simulations

As with the other chapters, you can view videos of selected simulations at http://

www2.ph.ed.ac.uk/~s0841882/chapter2.html or http://www.jjthesis.co.uk/

chapter2.html and download a software package to run the above simulations,

or variants of them. This allows for simulations to be run using a model which

includes supercoiling, for different chromosomes & chromosome fragments or just

generally using different parameters (protein no., interaction strength etc.). Some

data analysis tools are also provided to help make contact maps and look at other

variables of interest.
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3.17 Future Work

Another popular model for genome organisation which involves bridging CTCF

binding sites by loop extrusion, with these loops then forming the TADs seen in

contact maps [38]. This model also helps account for the observation that CTCF

bridging depends on the directionality of the CTCF binding sites [43]. There

are still some issues with using just this CTCF model to determine TADs, as it

requires a high processivity motor protein to extrude the loops - which protein

this would be is undetermined at present. Experiments with CTCF knockouts

also do not show major effects on domain formation, so it would be surprising if

this extrusion behaviour were the only factor. However, combining this extrusion

model with the bridging-induced attraction model here could potentially improve

on the results we obtain here.
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Chapter 4

Supercoiling-Dependent

Transcription

This chapter is based on the Physical Review Letters paper “Stochastic Model of

Supercoiling-Dependent Transcription” [8].

4.1 Outline

The project detailed in this chapter is an investigation of the link between tran-

scription and supercoiling. In both eukaryotes and prokaryotes, transcription is

known to affect the local supercoiling density by causing positive supercoiling

to build up ahead of the transcribing polymerase, while an equivalent amount of

negative supercoiling is built up behind. Alongside this, local supercoiling density

also influences transcription probability as negatively supercoiled areas are more

unwound and this allows easier access for polymerases. In this chapter we describe

a numerical model which incorporates these ideas, and allows us to characterise

how the different regimes of the model depend on the model’s parameters.

As we shall see, by changing the amount of transcriptionally induced supercoil-

ing flux we can drive a sharp transition from a regime where gene transcription

occurs randomly (low flux), to one where transcription is strongly correlated and

regulated by supercoiling (high flux). In this regime we also observe transcrip-

tional bursts, supercoiling waves and upregulation of divergent gene pairs – all

these have counterparts in experimental observations.
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4.2 Supercoiling and DNA

Figure 4.1: A structure known as
the whitehead link, with crossings
and handedness shown. The linking
number is 0 as all the right-handed
crossing have a left-handed partner.
It’s also worth noting that the cross-
ing in the middle is counted twice
(once as +, once as -) as we move
around the red curve, so does not
contribute to the linking number.

Figure 4.2: Image from [1]. While
the number of crossings and linking
number remains the same, we have
decreased the twist of the molecule
and increased writhe.

While supercoiling was briefly mentioned

in 1.6, it is useful here to discuss it in more

detail, alongside its relation to DNA. Since

double stranded DNA consists of two inter-

twined chains, a good starting point is the

quantity known as the linking number (Lk)

and how it applies to pairs of closed curves.

We can calculate the linking number for

an untwisted pair of curves by looking at

the points where the two curves cross over

each other. We can then see which of these

crossings are right-handed (+1) and which

are left-handed (-1) (Figure 4.1), the link-

ing number is equal to half the sum of these

values.

In most cases only the absolute value |Lk|
is considered, as Lk is dependent on the

orientation of the curves. This does not

matter for abstract curves where the orien-

tation is arbitrary, but if we want to relate

the curves to something which does have

a specific orientation (like DNA!) it is use-

ful to consider Lk as a value which can be

negative as well as positive.

To apply these ideas to a DNA molecule

we can think of the two curves as being

the phosphate backbones of the DNA. It is

also useful to introduce the quantities twist

(Tw) and writhe (Wr). Twist consists of

all the internal crossings made by the DNA

duplex (i.e., the number of times the ma-

genta curve crosses over the cyan curve in

figure 4.2), while writhe counts the number
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Figure 4.3: Some more examples, this time with a non-zero linking number. For
(b), if we “travel” along both curves in a clockwise direction we can see that the
lower curve in any crossing is always going from right to left when seen from the
upper curve’s perspective.

of the self-crossings of the centreline (i.e., the backbone of the double-stranded

DNA) in 3D. This is illustrated in figure 4.2 where a DNA strand goes from a

twist of −10 and zero writhe, to a twist of −9 and writhe of −1. Twist and writhe

sum up to give the linking number, Lk ≡ Wr + Tw.

Although that the proof that the linking number is the twist plus the writhe

requires some sophisticated maths, it is reasonably intuitive that Lk is conserved

for DNA molecules which are looped or have “fixed” ends. This means that we

can consider two DNA conformations with the same linking number but different

twist and writhe as topologically equivalent, so a DNA molecule could transition

between these states. An example of this is shown in figure 4.4.

Twist, writhe and linking number do not have to be integer values either and

while it is obvious that a chain can have a half twist, it is less clear what a non-

integer writhe looks like. While we know a loop with Wr = 2.5 would look like
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Figure 4.4: Image from [14]. The topological equivalence of twist and writhe is
shown by loops (b-e).

a hybrid of (d) and (e) in figure 4.4, this is quite a difficult concept to represent

diagrammatically!

Since DNA is naturally coiled it helps to use more relevant values for twist, setting

Tw = 0 to mean a perfectly straight “ladder” of base pairs would mean any DNA

conformations we are actually likely to find will have extremely large values for

twist. Instead, we can say DNA has a twist of zero in its relaxed state and

measure twist from this new baseline.

DNA within prokaryote and eukaryote genomes is actually a little underwound

compared to relaxed DNA, with a around 1 helical turn “missing” for every

20 [63]. This has been shown experimentally[7], with a 7000 bp DNA loop having

a linking number of −40 – a significant amount even for as small a loop as this!

We can see in figure 4.5 that most of the contribution to the linking number

is due to writhe (Wr = −36 ; Tw = −4). While the assignment of twist and

writhe values is arbitrary in terms of topology, energetic considerations have a

significant effect. The twist/writhe distribution will attempt to minimise the free

energy from twisting (Tw) and bending (Wr) the DNA, which explains why we

see certain configurations more than others. While a DNA loop with a twist of

−30 and writhe of −10 would be topologically equivalent to the observed DNA

loop, the energy cost of untwisting the DNA to such an extent is high enough

that this does not happen.
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Figure 4.5: Image from [7]. (a) Electron micrographs of negatively supercoiled
DNA from E-Coli bacteria. (b) Cartoon schematic of the DNA from (a).

4.2.1 Supercoiling and Transcription

Figure 4.6: Image from [23]. An RNA
Polymerase transcribing a gene, leading
to a positively supercoiled region ahead
of the transcription direction and a neg-
atively supercoiled region behind.

Transcription has a significant effect

on supercoiling, and vice versa. In

the transcription process, a protein

known as polymerase moves along the

DNA and “reads” it, in order to pro-

duce a copy in the form of messenger

RNA. This messenger RNA will later

be translated into a specific protein,

depending on which gene was tran-

scribed.

While the polymerase transcribes

DNA, the DNA is split into two regions

- ahead and behind the direction of transcription (Figure 4.6). In the crowded cel-
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Figure 4.7: Image from [1]. An illustration showing the twin supercoiled domain
model.

lular environment the polymerase is thought to be unable to rotate freely during

transcription. This leads to a build up of helical turns ahead of transcription and

a deficit of helical turns behind. This happens rapidly, with the linking number

decreased behind the polymerase and increased ahead of it by 1 for every 10 bp

transcribed in B-DNA. A and Z-DNA have slightly looser windings, with 11 and

12 base pairs per helical turn respectively.

Though linking number is still conserved for the whole DNA section or loop, the

two sections will be significantly over- or under-wound. After transcription is

finished this difference will eventually disappear, but not instantaneously. For

this reason it is useful to define a quantity σ, representing the degree of local

supercoiling compared to the equilibrium state. In 4.1 Lk0 is the level of super-

coiling in an equilibrated system (σ = 0 everywhere) and Lk is a local measure

of linking number. Values for Lk can be positive or negative and Lk is conserved

for the system as a whole.

σ =
Lk − Lk0

Lk0

(4.1)

The effect of transcription on supercoiling is based on some experimental obser-

vations [58] and is known as the “twin supercoiled domain model”. This refers

to the twin domains formed by the polymerase which have supercoiling of equal

magnitude but opposite sign. An illustration of this model is seen in figures 4.6

and 4.7.

Negatively supercoiled regions facilitate helix opening, while positively super-

coiled regions hinder it. The more open a region of DNA is, the more accessible

it is to polymerases and other proteins. This may increase the likelihood of tran-
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scription, or even make it possible at all by allowing the appropriate transcription

factors to bind [45, 72].

The ubiquitous presence of supercoiling in transcription and overall cell function

requires the cell to employ some topological enzymes to control and/or relax it.

Topological enzymes are present in both prokaryotes and eukaryotes, and there

are many copies and types of these in a single cell. All of these enzymes act in

different ways but have the same general function - to add or remove supercoiling

from regions of the DNA. These can generally be classified as either type I A/B/C

or type II A/B, which change the linking number by ±1 and ±2 respectively. In

bacteria, supercoiling is regulated in part by an enzyme known as gyrase. The

sole function of gyrase is to make a break in the DNA and pass another strand

through this break before resealing it, effectively reducing the linking number by

2 (Figure 4.9). Without this enzyme bacteria will eventually die, suggesting a

level of structural openness is required for the cell to perform basic functions. Due

to this, several anti-bacterial drugs (such as quinolones) work to inhibit gyrase in

order to destroy bacteria. Since gyrase is not found in human cells, this should

specifically target bacterial cells.

It could also be implied from the above and other studies [39] that positively

supercoiled regions block transcription, which could be useful in some contexts.

However in bacteria a large amount of the genome is functional, so anything

which blocks transcription is likely to be unhelpful.

Type 1A topoisomerases have a significantly different mechanism of action to

their type II counterparts, making only a single strand break in the DNA as

opposed to the double strand break in type II. They then rotate the free strand

360◦, modifying the linking number by ±1 (see figure4.8).
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Figure 4.8: Image from [27]. The mechanism of action for some type I enzymes,
where a single strand is cut, rotated and rejoined in order to change the linking
number by 1.

Figure 4.9: Image from [85]. The proposed strand-passing mechanism which
allows gyrase and similar type II enzymes to reduce a DNA molecule’s linking
number by 2.
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4.3 A Numerical Model For Supercoiling

In this section we move from molecular dynamics to a lattice-based modelling

approach. Our DNA is modelled as a 1D lattice and position on the DNA specified

as x, with each lattice site having a length (l) of 15 bp. We assume that the DNA

lattice contains an arbitrary number (n) of genes, with each gene having a length

equal to λ. For the simulations in this section λ was constant, meaning all the

genes were the same length - but this is not required by the model and could be

changed for future simulations. Each gene has a promoter at a particular position

on the DNA (yi for i = 1 .. n). There are also an arbitrary number of polymerases

(N), which are able to transcribe the genes.

Gene transcription is modelled as a stochastic process; at each timestep, each of

the free polymerases in the system has a probability (kon) to bind to a promoter

and begin transcription. When a polymerase binds to a promoter it moves along

the gene with a velocity v, until it reaches the end of the gene and is re-added

to the pool of free polymerases. As an example, the position along the DNA of

a polymerase transcribing the ith gene is xj = yi + vtj where ti is the time since

the polymerase bound to gene i.

Each point of the lattice has an associated value of σ, representing a measure

of local supercoiling (see equation 4.1). Our model uses the following diffusive

dynamics for σ:
∂σ(x, t)

∂t
=

∂

∂x

[
D
∂σ(x, t)

∂x
− Jtr(x, t)

]
(4.2)

The ∂Jtr(x,t)
∂x

part of the equation represents the flux of supercoiling across the

polymerase, while the other term is diffusive.

Jtr(x, t) =
N∑
i=1

Ji(ti)δ(x− xi(ti))ξi(t)

|Ji(ti)| = J0

(
1 +

vti
l

) (4.3)

Equation 4.2 represents the change in local supercoiling through the DNA. Setting

Jtr = 0 would allow the system to eventually relax to a state where supercoiling

is evenly distributed throughout the DNA. The diffusion constant (D) sets the

timescale for this process, and within naked DNA experiments have measured a

value of D ∼ 0.1kbp2/s or less [59].
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Equation 4.3 is perhaps not so nice mathematically, but can be related to the

transcription process fairly straightforwardly. Overall, Jtr is the supercoiling

flux generated by a transcribing polymerase and has its sign dependant on the

direction of transcription. The function ξi(t) is used as a filter for whether a gene

is currently transcribing, being equal to 1 if it is and 0 if not. Similarly, δ(x−xi(ti))
is a filter which tracks the current location of an active polymerase. Finally, Ji(ti)

is the magnitude of the transcriptional flux, where J0 is a constant which sets the

flux generated per bp. transcribed and the vti
l

term reflects supercoiling being

“pushed forward” by the polymerase.

We also used a simpler version of this equation which uses static polymerases,

which attach to the gene promoters and generate supercoiling at that location.

This was done as a first attempt at characterising this system, as well as to provide

a more solid foundation for analytical work. Some exact results for this model,

as well as mean field and scaling results for the travelling polymerase model are

detailed in appendix B.

One illustrative result is the steady state solution of our static polymerase equa-

tion for one (switched-on!) gene located at x = 0:

∂σ(x, t)

∂t
=

∂

∂x

[
D
∂σ(x, t)

∂x
− J0δ(x)

]
(4.4)

We use the boundary condition σ(0, t) = 0 , along with the condition that there

is no flux of supercoiling out of the system, so the overall level of supercoiling

is fixed. If we attempt to solve our equation on an infinite domain, this implies
∂σ
∂x

= 0 for x→ ±∞ (Setting this condition fixes the overall level of supercoiling).

The fact we are considering a steady state also means we have ∂σ(x,t)
∂t

= 0.

This gives us:

∂2

∂x2
Dσ − ∂

∂x
J0δ(x) = 0 (4.5)

∂

∂x

[ ∂
∂x
Dσ − J0δ(x)

]
= 0 (4.6)

D
∂σ

∂x
− J0δ(x) = c (4.7)

Since
∂σ

∂x
= 0 for x→ ±∞ =⇒ c = 0 (4.8)
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Integrating again gives Dσ − J0H(x) = c′

Where H(x) is a Heaviside function with


H(x) = 1 for x > 0

H(x) = 1
2

for x = 0

H(x) = 0 for x < 0

Substituting in the boundary condition σ(x = 0, t) = 0 and H(0) =
1

2
gives c′ = −J0

2

And finally, σ =
J0

D

(
H(x)− 1

2

)
=

J0

2D
sgn(x) (4.9)

where sgn(x) = 2H(x)− 1, i.e.


sgn(x) = 1 for x > 0

sgn(x) = 0 for x = 0

sgn(x) = −1 for x < 0

While this result does not tell us anything too surprising, it is nice to see the

basic idea of creating positive supercoiling ahead of transcription and negative

supercoiling behind coming out of the initial equations. The result also shows

positive and negatively supercoiled regions separated by the gene, though in a

system with periodic boundary conditions these regions would meet and cancel

out.

4.3.1 Technical Details and Limitations of the Model

It is worth justifying some of the ideas behind the above model, as well as the lim-

itations when moving from a continuous equation to a lattice representation. We

start from an approximation of a free-energy density for DNA with supercoiling

σ, shown below.

f =
Aσ2

2
(4.10)

Here, A is a positive constant which sets the scaling between f and σ2 and has the

same form found in Marko et al [65] ([A] = [kBT ∗L∗C] = kgm4s−2). In Marko et

al, the constant A is a determined by the polymers persistence length for bending

(please note, in Marko et al this is also denoted by A) and twisting (C) as well as a

constant α determined by how a change in linking number is partitioned between

twist and writhe (α is calculated via simulation). The length of the polymer

is given as L. A free energy has also been determined experimentally as f ≈
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10.0kBTNσ
2, where N is the number of base pairs [98]. Since our model considers

DNA loops and linear DNA with fixed ends, the overall level of supercoiling is

fixed and this means we can use “Model B” [17, 46] dynamics for the system.

In the equation below x is the position along the DNA, M is the mobility asso-

ciated to supercoiling density and t is time. This gives us an effective diffusion

coefficient D = MA.

∂σ(x, t)

∂t
= M∇2∂f

∂σ
= MA∇2σ(x, t) ≡ D∇2σ(x, t) (4.11)

However, this free energy is only appropriate for small values of σ [65]. While there

are improvements that could be made to the functional, there are also other issues

which arise at large |σ| values. One issue is to do with transcription probability,

as repeated underwinding of a local DNA region will not cause the transcription

probability to increase indefinitely. In fact, the opposite happens for large enough

values of negative supercoiling. We also would not expect supercoiling to be

created if transcription occurs in an area with linking number ≈ 0 (σ ≈ −1), as

the polymerase does not have to unwind anything.

Because these extra issues would not be resolved for other free energy functionals,

it is more sensible to stick with our harmonic approximation but remaining aware

of its issues for large |σ|. In simulations, these issues are manifest more as local

inaccuracies in regions with σ > 1. While the analytical results may not be valid

for these regions, the general principles behind the model and thus the simulation

should still apply.

While a continuous representation of our model uses δ(x − xi) to implement

supercoiling flux only at appropriate positions, it needs to be altered to take into

account the fact that polymerases have a finite size ∼ ∆x = 15 bp . Because of

this we use a regularised form for analytical calculations, with δ = exp(−x2/(4l2))
2l
√
π

.

Here the support of the function (l) is set as the size of a lattice site, ∆x. In some

of the earlier simulation runs the delta function was replaced with a kroenecker

delta δx,0, meaning regularisation occurs with l ≈ ∆x.

A final detail to be aware of is the fact that a polymerase can bind as soon as the

promoter is free, even if the previous polymerase is only a single lattice site away.

While this is not impossible, it would be more difficult for a second polymerase

to bind with the first one in close proximity. However there is no simple way to
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characterise this, outside of imposing arbitrary restrictions or alterations to kon.

One possible method to get around this issue would be to couple the 1D simu-

lations to a 3D molecular dynamics code, however doing this in an efficient way

so as to be able to follow the supercoiling dynamics for a comparable amount of

time as in the 1D model would be extremely challenging in practice.

Figure 4.10: An example (with-
out diffusion!) of the polymerase
building up supercoiling as it
moves along a gene.

While equation 4.3 has perhaps more terms

than would be expected, the actual process be-

ing modelled is not so complicated. We can

think of the polymerase as adding twist to the

lattice site in front of its position while de-

creasing it at the lattice site behind. It also

“pushes” the supercoiling forward as it moves

along the DNA as shown in figure 4.10.

The term ξi(t) is set to zero or 1 depending if

the polymerase is active or inactive and in the

“pool” of polymerases. This pairs with the function δ(x − xi(ti)) which means

that flux is only applied at the current location of the polymerase, xi(ti). The

final term Ji(ti) determines both the flux applied per timestep and causes the

supercoiling to rack up in front of the polymerase. The flux applied at a single

timestep increases at each timstep by J0v∆t
l

, i.e. the flux at ti is J0(1 + vti
l

). This

gives the effect seen in figure 4.10.

Based on the finding that negative supercoiling facilitates polymerase and tran-

scription factor binding we assume that the probability for a polymerase to bind

to a particular gene depends on the value of σ at that gene’s promoter σp. Since

the form of the polymerase binding probability distribution is unknown and there

is no obviously superior choice, a linear coupling to supercoiling was used with

kon = k0max(1 − ασp, 0). The max function is simply because it does not make

physical sense for the binding rate to be less than 0. Additionally, k0 is the

polymerase binding rate for J0 = 0, while α is the sensitivity to σp.

The linear coupling used here still leads to highly non-linear dynamics, as su-

percoiling created by transcription favours the transcription of upstream genes

(against the direction of transcription), while hindering the transcription of down-

stream genes (with the direction of transcription).

We can also create dimensionless parameters out of combinations of the ones used
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in the model. There are three main parameters which are of interest:

Φ =
(konN

n

)
τ

Θ =
(konN

n

)λ2

D
J̄

D
= J0

[
1 +

λ

2l

] (4.12)

Φ is the product of transcription initiation rate and transcription time and gives

a measure of how often an average gene is being actively transcribed. Clearly,

boosting kon, the number of polymerasesN or transcription time τ should increase

this value. Since the polymerases follow a uniform probability distribution when

selecting which gene to attempt to bind to, increasing the number of genes makes

any specific gene less likely to be selected.

Θ is a measure of how quickly supercoiling diffuses away between transcription

events. Since supercoiling flux is generated at a constant rate, the length of the

gene λ sets the magnitude of the flux, and D controls its diffusivity.

Finally, J̄
D

is a measure of the supercoiling generated at the promoter site while

the gene is active, with J̄ being the average supercoiling flux during transcription.

The value λ
2l

measures how many lattice sites away the midpoint of the gene is.

Since flux increases linearly, the flux at this midway point is equal to the average

value for the whole gene. From dimensional analysis we would also expect that

J̄ ≈ vλ .

4.3.2 Relating Simulations and Theory to Measured

Quantities

The parameters defined above can be related to observable quantities in both

prokaryotes and eukaryote. We can derive an estimate for average supercoiling

(σ̄p) at a promoter (the full derivation can be found in appendix B) as

σ̄p ≈ −
[ Φ

Φ + 1

] J̄
D
. (4.13)

This result allows us to relate supercoiling density and parameters in the simula-

tion with expermentally observed values. In bacteria the baseline value of super-
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coiling is σp ≈ −0.05, with experiments suggesting that σp ≈ −0.01 is enough to

affect polymerase binding [86]. Transcription rates in bacteria are of order ∼10

RNA molecules per minute (kon ∼ 0.16), with a typical gene size (λ) of around 1

kbp and polymerase transcription velocity v ∼ 100 bp/s. For E. coli specifically,

there are approximately 3000 polymerases per cell [53] and approximately 5000

genes so we can get a rough estimate for Φ ≈ 0.42. As mentioned previously

D ≈ 0.1kbp2/s. Plugging these numbers into equation 4.13 gives σp ≈ −0.3.

This difference from the baseline suggests that supercoiling can be relevant to

transcription in prokaryotes.

Depending on the parameters of the simulation, the value of σp can be significantly

affected. For example setting Φ = 10 and J̄
D

= 1.0 gives σp ≈ −1.0 at the

promoter, again suggesting the behaviour here will differ from an “average” region

of the DNA. By using genes which remain a constant size and polymerases which

transcribe at a constant rate (i.e. for Φ fixed), we can see how varying the values

of J̄
D

affects the simulation results (see section 4.5).

We can repeat the above calculation for eukaryotes, though the results should be

seen as more of an order of magnitude estimate as some parameters are not yet

known for chromatin – for example the supercoiling diffusion rate D.

Transcription in eukaryotes is considerably slower in terms of polymerase tran-

scription velocity (v ≈ 25 bp/s), and genes are longer (λ = 1.6 kbp in yeast; 10

kbp in humans). The number of transcripts produced (around 1 per hour in hu-

mans; 10 per hour in yeast) is lowered further by the need for several transcription

factors to co-localise at a promoter before transcription can be initiated.

Using the above numbers gives σp = −0.03 for yeast and σp = −0.13 for humans.

This suggests supercoiling could potentially be relevant to transcription in eu-

karyotes also, though it’s important to take into account the caveats mentioned

previously!

4.4 Mutual Information and Conditional Entropy

In the results section we require a way to characterise the correlations between

genes, namely to what extent the transcription of one gene affects the transcrip-

tion of another in the same system. To do this we use quantities from information

theory known as mutual information and conditional entropy [22]. Since these

88



are not widely used in physics, they are defined here.

Both quantities are defined in terms of a time series, in our case this will be the

index of the gene transcribed across the time period of our simulation. We can

refer to this series as iq, where i1 is the index of the gene transcribed in the first

transcription event, i2 the second, etc.

4.4.1 Conditional Entropy

The conditional entropy S of a time series iq is defined as

S({iq}) = −
∑
i,j

p(i, j) log [p(i|j)] , (4.14)

Figure 4.11: Two genes i1 and
i2. Blue arrows indicate tran-
scription direction, black arrows
indicate supercoiling flux.

where p(i, j) is the probability of observing the

transcription of gene i followed by j. Note that

the time series format does not put any con-

straint on how long after transcription of i this

occurs, it just requires it to be the next tran-

scription event. p(i|j) is the conditional prob-

ability of gene i being transcribed next, given

that gene j was the last one transcribed. In

general P (i, j) 6= P (j, i); in a system with two

genes (Figure 4.11) we expect transcribing gene i1 to direct positive supercoiling

to i2, reducing the probability of transcription. However transcribing i2 will have

the reverse effect on i1 with the negative supercoiling increasing the probability

of transcription.

The conditional entropy is maximised at log(n) if transcription events are un-

correlated (J̄ = 0) and minimised at 0 for a maximally correlated process, for

example when a single gene is repeatedly transcribed.

4.4.2 Mutual Information

The mutual Information I is defined as

I({iq}) =
∑
i,j

p(i, j) log

[
p(i, j)

(p(i) p(j)

]
(4.15)
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where p(i) is the overall probability that gene i is activated. The mutual informa-

tion is equal to 0 if p(i, j) = p(i) p(j), in our system this would correspond to gene

transcription being random (J̄ = 0). Its value therefore measures the divergence

of the joint probability distribution for successive transcription events from that

of a random process. In statistical mechanics systems it is often found that the

mutual information peaks at or close to phase transitions, where correlations are

maximal.
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4.5 Results - Randomly Positioned Uni-Directional

Genes

The simulations here use parameters relevant to bacterial DNA, as well as peroidic

boundary conditions in the 1D model to simulate a DNA loop. While we also

consider this model for parameters relevant to eukaryotes, it is not clear if the

periodic boundary condition would still apply when loops are held together by

architectural proteins. The first set of simulations use genes which are randomly

placed along the DNA, though a initial choice for a placement would be rejected

if a part of the new gene is within 1 kbp of an existing gene. All the genes in this

simulation transcribe in the same direction (left to right in figures).

To obtain the results shown in this section, multiple runs were performed with J̄
D

varied from 0 to 3.5.

Figure 4.12: A snapshot of a simulation with J̄
D

= 1.7, showing supercoiling
density close to a gene which is being transcribed. The graph shows the build up
of positive supercoiling just ahead of the polymerase and a negative supercoiling
“wake” behind it.
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We see two behavioural regimes as the value of J̄
D

is modified. The first is the

“relaxed” regime, which occurs for small values of J̄
D

. In this regime the levels

of supercoiling generated by transcription are low enough that they do not sig-

nificantly affect the transcription probability of neighbouring genes. In this case

gene transcription can be modelled as a Poisson process, with every gene being

read on average the same number of times.

As J̄
D

increases, we reach a point where supercoiling does have an effect on tran-

scriptional dynamics, which we call the supercoiling-regulated regime. In this

regime we observe transcriptional bursts, which are when a gene is repeatedly

transcribed. This occurs due to the negative supercoiling “wake” close to the

promoter being large enough to increase transcription probability, leading to a

positive feedback loop between transcriptional activity and probability.

We also observe transcription waves (Figure 4.13 (b)), where the positive super-

coiling generated by transcription silences a downstream and promotes transcrip-

tion of an upstream gene. Transcription of this upstream gene will also produce

positive supercoiling affecting the initially transcribed gene, leading to the tran-

scriptional waves observed.

The characteristics of the supercoiling-regulated regime are seen whether genes

are randomly positioned or positioned a fixed distance apart. However there

is an extra characteristic observed for randomly positioned genes, where average

transcription probability is dependent on the distance from upstream neighbours.

If this distance is large, the diffusion of the positive supercoiling generated from

transcription will result in less of an effect on transcription probability for the

downstream gene (Figure 4.13 (c)).

The transition between the two regimes can be seen in figure 4.13 (d) and fig-

ure 4.14 (a), which both indicate that the transition is gradual as J̄
D

is increased.

Decreasing the order of magnitude of k0 results in a sharper peak in the mutual

information, as well as the peak (or maximum value) occurring at lower J̄ . How-

ever the general behaviour of the system is more or less the same. Transcription

rate is also mainly dependant on J̄
D

, rather than k0 – though k0 does have an

effect at small J̄
D

.
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Figure 4.13: Simulations for a 15 kbp DNA loop, red arrows indicate genes and
transcription direction.
(A): A snapshot of two separate simulations with J̄

D
= 0.34 (relaxed) and J̄

D
= 2.55

(supercoiling-regulated).
(B) Part of the time series showing the order of transcribed genes; transcription
waves can also be seen.
(C) Average transcription probability for J̄

D
= 0 (relaxed) and J̄

D
= 2.55

(supercoiling-regulated).
(D) Conditional entropy and transcription rate for varying J̄

D
. The blue line

indicates the transcription rate derived from the analytical theory in appendix B.
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Figure 4.14: Simulation results for the system in figure 4.13.
(A) Mutual information for varying J̄

D
.

(B) Overall transcription rate for the system in figure 4.13 and a single-gene
model. The overall transcription rate is normalised with the expected value at
J̄
D

= 0 for both cases.
(C & D) Transcription rates and mutual information for different values of k0.
The x-axis values are plotted in terms of J̄αk0τ/D for comparison with the results
for the mean field model in appendix B. All data points for C & D are an average
of 7 simulation runs.
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4.6 Results - Bidirectional Genes

As genes can be encoded in either the forward or reverse strand of the DNA

double helix, the model in section 4.5 was modified to give each gene a tran-

scription direction. As with the unidirectional genes there exist both a relaxed

and supercoiling-regulated regime, however the characteristics of the supercoiling-

regulated regime now depend on both gene position and direction. Transcription

was observed to be boosted for pairs of genes which point in opposite directions

but away from each other (divergent). Conversely, transcription is decreased

for genes which are facing each other (convergent). Similar mechanics apply for

parallel genes as in section 4.5.

In the supercoiling regulated regime we often find that a divergent pair dominates

in terms of transcription frequency, with only this pair being transcribed at the

simulation end. This causes the build up of a large amount of negative supercoil-

ing around the gene pair, while positive supercoiling is distributed evenly across

the other genes (see figure 4.15 (a)). This forms a positive feedback loop, as a

pair being transcribed means they are more likely to be transcribed again.

For systems with multiple divergent pairs, other factors must also be considered.

For example, a pair with a short distance between genes is more likely to dominate

at the simulation end, as would a pair which comes at the end of a run of parallel

genes. Fluctuations are also significant enough that even when a pair possesses

both of these properties it does not guarantee that the pair will dominate.
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Figure 4.15: (A) A snapshot from the end of a simulation with J̄
D

= 1.36 where
only two genes are being transcribed. Since supercoiling is conserved, the positive
supercoiling is distributed across the other genes and prevents their transcription.
(B) Average transcription probabilities across multiple simulation runs for J̄

D
= 0

(Red) and J̄
D

= 1.36 (Blue). The divergent pair of genes 6 & 7 is transcribed more
regularly due to the closeness of the genes, as well as the negative supercoiling
generated by the parallel genes 3,4 and 5.
(C) Conditional entropy & mutual information, scaled by log(n).
(D) Transcription rate for different gene configurations, scaled by k0N . Parallel
genes corresponds to the set-up in figure 4.13, while divergent genes is an arrange-
ment where the first 5 genes transcribe upstream and the final 5 downstream, as
seen in figure 4.16 (B). This creates a divergent pair at genes 5 & 6.
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Figure 4.16: (a) Transcription rate for individual simulation runs, for the simula-
tion set up in figure 4.15. (b) A snapshot of a simulation with a single divergent
gene pair.
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4.7 Results - Topoisomerases

If the positive feedback loop for divergent pairs described above were to exist in

isolation, there would be serious negative consequences for the cell as a whole.

Clearly, transcribing only a limited set of genes to the exclusion of everything else

would not be a good thing, especially in bacteria where a large proportion of the

genome is functional.

The way a cell can break up this feedback loop is through topoisomerases (see

section 4.2, which can add or remove supercoiling in various ways. This occurs

at a rate of 0.1-1 supercoil/s in cells [92], with the rate depending on whether

the topoisomerase is type I or type II, along with local cellular conditions. This

now means σ is no longer conserved, as a topoisomerase modifying supercoiling

in a local region does not automatically imply that the reverse process will be

occuring elsewhere.

Incorporating this effect in the model involved adding a non-conserved reaction

term to equation 4.2, giving:

∂σ(x, t)

∂t
=

∂

∂x

[
D
∂σ(x, t)

∂x
− Jtr(x, t)

]
− ktopoσ (4.16)

ktopo is a relaxation rate, which can be associated with a length scale ltopo
√
D/ktopo.

This is the distance around the topoisomerase for which supercoiling-mediated

interaction will be screened.

We can see the effect of this in figure 4.17, with a significant down regulation of

transcription for larger values of ktopo, along with a rise in conditional entropy -

showing the loss of correlations in the transcription process.
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Figure 4.17: Simulations with J̄
D

= 2.55, meaning the system is in the
supercoiling-regulated regime for ktopo = 0. (A) The transcription probability
for different ktopo. The increase in transcription from being in a divergent pair
is almost completely lost for ktopo/k0 = 10. (B) Conditional Entropy and Tran-
scription Rate.

It is important to note that our model only includes topoisomerases which act

to decrease supercoiling towards the equilibrium value (i.e. σ = 0). There are

also other enzymes which can act to increase negative supercoiling, for example

gyrases in bacterial cells.

4.8 Videos & Downloads

Videos of the simulations and downloads of the code used to run them are avail-

able at http://www2.ph.ed.ac.uk/~s0841882/chapter3.html or http://www.

jjthesis.co.uk/chapter3.html.

4.9 Summary

This section details a model which combines a continuum description for the

evolution of supercoiling with stochastic transcriptional dynamics, showing how

the two processes affect one another. We see two regimes, a low-flux relaxed

and high-flux supercoiling-regulated regime, along with the crossover region be-

tween them. In the simulations with parallel genes, we also observe features

seen experimentally in both prokaryotes and eukaryotes, such as transcriptional

bursts[18, 19, 42]. We also found that that genes were regulated depending on

their separation from upstream neighbours.

When gene directionality was included we found divergent gene pairs to be highly

transcribed, corresponding with the observation that divergent genes are often as-

99

http://www2.ph.ed.ac.uk/~s0841882/chapter3.html
http://www.jjthesis.co.uk/chapter3.html
http://www.jjthesis.co.uk/chapter3.html


sociated with essential genes which tend to be highly expressed [99]. Bidirectional

promoters are also found in mammalian genomes at a higher rate than expected,

so this result could be of interest here also!

Our model also shows topoisomerases can act to downregulate transcription,

something which is observed experimentally [34, 74].

A new prediction of the current model is that of transcription waves. Whilst they

have not yet been observed experimentally, it is conceivable that they could be

recreated in the lab by using DNA plasmids and DNA editing techniques, which

allow in principle to position genes on such plasmids in a controlled way.

Further work based around this model could involve adapting it to include the

effects of further topological enzymes, or designing a version more specific to

eukaryote genomes. This would involve incorporating the effect of nucleosomes on

the supercoiling density of the system, as these can act as barriers to supercoiling.

An additional avenue which would be very interesting to explore is to model

polymerase movement in 3 dimensions: this would be important as it would

allow discrimination between twist and writhe, which is impossible to achieve

within our diffusive 1D model.
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Chapter 5

Conclusions

In this thesis we discussed a number of problems in biophysics relating to DNA

and chromosomes. This is a vast area of research and this thesis of course provides

only a small selection of topics. For the majority of the thesis, we have discussed

numerical results obtained from molecular dynamics simulations of biopolymers,

although the last results chapter contains both analytical results and simulations

performed with a simple stochastic 1D model. The overall main message of the

thesis is that such physically inspired models can help us understand some aspects

of the behaviour of DNA and chromosomes, in a way which is complementary

to what is done with experiments – which is normally the method of choice to

analyse these systems.

In chapter 2, we studied a simple coarse grained model for protein-DNA bridg-

ing, which uncovered a generic mechanism for cluster formation which we call

“bridging-induced attraction”. For this mechanism to arise requires proteins to

be able to bridge the chromatin via multivalent interactions, something which is

observed experimentally in the HP1α protein in humans. This mechanism should

be at work in both bacterial DNA and eukaryotic chromatin, even in the absence

of specific interactions between the genome and its associating proteins.

The bridging-induced attraction is a simple thermodynamic feedback loop. When

proteins bind, they may bridge distant sites along the DNA, which increase the

genomic concentration locally. This increase in concentration will stimulate the

binding of other proteins, as binding is more likely wherever there is more DNA.

In turn this increases concentration further, leading to a positive feedback loop

which yields clustering.
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The simple protein-DNA bridging model studied here provides a generic mecha-

nism for cluster formation among bacterial DNA and chromatin. Even when the

interaction is completely non-specific, there is a qualitative similarity between

the results of the simulations here and the observations of experimental studies.

Our simulations show a clear link between protein and polymer clustering. They

also show that depending on the concentration of proteins, we either get cluster-

ing, or, for sufficiently large concentration, full collapse of the polymer. Addition-

ally, we find that flexibility plays a significantly qualitative role, as the clusters

formed with semi-flexible DNA are rod-like, whereas those formed with flexible

chromatin are quasi-spherical.

As an extension to the work in chapter 2, it would be interesting to quantify

the exponents determining the growth laws of clusters in both the flexible and

semi-flexible cases. The simulations could also be performed at a larger scale,

although this would be difficult considering our computational capabilities.

In chapter 3, we built on this model and attempted to apply it to a eukaryotic

chromosome. As a first step, we included specific binding, and multiple transcrip-

tion factors. This was motivated by the observation that in human chromosomes

different types of proteins bind to active and inactive region of the genome. The

specific binding leads to clustering via the bridging-induced attraction mecha-

nism, but now clusters grow only up to a certain size due to the steric interac-

tions between loops which join the sites where specific binding takes place. The

clusters formed were also observed to be mostly of only one protein type, either

proteins which bind to active regions or those which bind to inactive regions.

This suggests a possible pathway for the separation of active and inactive regions

of chromatin.

By using bioinformatic data to assign the sites of interactions between active and

inactive proteins and regions of human chromosomes, we were able to create con-

tact maps, which determine which genomic regions are likely to be in contact with

each other. The simulation results compare favourably, although qualitatively,

with experimental contact maps.

Another popular model for genome organisation, which we did not consider in

Chapter 3, is that of loop extrusion. This model is appealing because it helps

accont for the observation that bridging by the CTCF regulatory proteins depends

on the directionality of the CTCF binding sites, which is not captured by our

simple model. It would therefore be of interest, as an extension of the work in
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chapter 3, to combine this extrusion model with the bridging-induced attraction

model which we have presented in this thesis.

Finally, in chapter 4 we presented a simple numerical model which links transcrip-

tional activity to the local supercoiling of DNA. This model combines a continuum

description of supercoiling with a stochastic description of transcription, where

supercoiling is able to diffuse across the DNA and polymerases bind to genes

with a probability based on the level of local supercoiling at a gene promoter. A

polymerase binding to a promoter and beginning transcription then causes a flux

of supercoiling across the polymerase – representing positive supercoiling being

pushed in the direction of transcription, and a negative supercoiling wake being

left behind.

In general, we were able to characterise two regimes present in our simulations.

One of these is the “relaxed” regime where flux generated by transcription is low

and genes transcribe randomly. The other is the “supercoiling-regulated” regime,

where supercoiling flux is high and gene transcription is dependent on the gene’s

positioning and the transcription history of the system. When this model is

applied to a genome where all genes are transcribed in the same direction, we

observe features also seen experimentally in both prokaryotes and eukaryotes,

such as transcriptional bursts. We also found that a gene’s separation from its

upstream neighbours can either promote or suppress transcription, depending on

whether the neighbour is distant or close by.

When considering a system where genes can transcribe in opposite directions, we

found a significant increase in transcriptional activity for bi-directional gene pairs

– something which is also seen experimentally in yeast genomes. Bidirectional

promoters are also found in mammalian genomes at a higher rate than expected,

so this result could be of interest here also. We also extended the model to incude

the effects of topological enzymes, which led to the expected down-regulation of

transcription.

A possible extension to the work in this chapter could be to include the effects of

futher topological enzymes, or redesigning the model to incorporate more details

of eukaryote genomes. This would involve including the effect of nucleosomes on

the supercoiling density of the system, as these can act as barriers to supercoiling.

An additional avenue which would be very interesting to explore is to model

polymerase movement in 3 dimensions: this would be important as it would

allow discrimination between twist and writhe, which is impossible to achieve
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within our diffusive 1D model.

As a whole, the work in this thesis demonstrates the power of simple to under-

stand, large-scale models. While the interaction rules of the simulations presented

here are often not hugely complex, the results they lead to display considerably

more complex behaviours. The fact that these models also compare favourably

to experimental results shows the power of physics based methods. This is also

despite the levels of coarse-graining applied to the system in order to make it com-

putationally tractable, suggesting general physical principles may have as much

influence as more detailed ‘biological’ interactions in these systems. The projects

I have worked on also sought to create models which go beyond being ‘toy model’

descriptions of a system. While these are often very interesting in their own right,

more and more biophysics publications are making efforts to match up with real

data and provide results which are more directly applicable to real world prob-

lems. It is my hope that the work here can also be said to have carried on this

trend!
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Appendix A

Additional Derivations

A.1 Angular Potentials

In the following θijk is the angle between the three points i,j and k; rij is a vector

from point i to point j and rij is the scalar length of vector rij. Operations using

a vector are implicitly over the x,y and z component, i.e ∂
∂r

=
∑

a=x,y,z
∂
∂ra

.

The cosine potential for the angle interaction in LAMMPS is:

E = K[1 + cos(θijk)] (A.1)

with

θijk = cos−1
(rji · rjk
rjirjk

)
(A.2)

For α = i, j, k the force Fα is,

Fα = −∂E(θijk)

∂rα
(A.3)

−∂E(θijk)

∂rα
= −∂E(θijk)

∂θijk

∂θijk
∂cos(θijk)

∂cos(θijk)

∂rα
(A.4)

−∂E(θijk)

∂rα
= Ksin(θijk) ·

1

sinθijk

∂cos(θijk)

∂rα
(A.5)
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∂cos(θijk)

∂rα
=

∂

∂rα

(rji · rjk
rjirjk

)
= (δαj − δαi)

rjk
rijrjk

+ (δαj − δαk)
rji
rijrjk

− cos(θijk)
(

(δαj − δαi)
rji
r2
ij

+ (δαj − δαk)
rjk
r2
jk

) (A.6)

Where equation A.6 uses the results

∂

∂rα
rji =

∂

∂rα
(rj − ri) = δαj − δαi (A.7)

∂

∂rα

1

rij
=

rij
r3
ij

(A.8)

Writing out the results for α = i, j, k in equation A.5 gives:

Fi =
Kcos(θ)

r2
ij

rji −
K

rij · rkj
rjk

Fj =
K

rji · rjk
rji −

Kcos(θ)

|rjk|2
rjk +

K

rji · rjk
rjk −

Kcos(θ)

|rji|2
rji

Fk =
Kcos(θ)

r2
jk

rjk −
K

rij · rjk
rji

(A.9)

Which are the forces used in the LAMMPS source code and given in section 1.4.
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Appendix B

Analytical Results For Static

Polymerase Model

The work in this appendix comes from the supplementary information submitted

with the paper “A stochastic model of supercoiling-dependent transcription” [8].

The material in this appendix was written by Davide Marenduzzo, but is included

as the main text references some of the results derived here.

B.1 Static polymerase models: exact results

In this section we obtain some exact results and scaling relations; we will work

within the static polymerase model, but in the next section we will also apply

them to the travelling polymerase model.

We begin by considering the static polymerase model, where there is a single

gene. We start from the equation for σ(x, t), and imagine that the gene is on:

∂σ(x, t)

∂t
=

∂

∂x

[
D
∂σ(x, t)

∂x
− J0δ(x)

]
, (B.1)

where we use the boundary condition that σ(0, t) = 0, and consider no flux

boundaries (so that the overall supercoiling is fixed; we solve the equations on an

infinite domain, so this implies ∂σ
∂x

= 0 at x→ ±∞). In steady state (∂σ(x,t)
∂t

= 0),
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the solution of Eq. (B.1) is given by

σ(x) =
J0

2D
sgn(x), (B.2)

where sgn(x) is the sign function, so σ = J0
2D

for positive x, and σ = − J0
2D

for

negative x. This solution shows that the typical value of the supercoiling density

is |σ| ∼ J0/D (however it is only accurate for a gene which is always on).

It is also of interest to examine how the solution evolves in time to yield Eq. (B.2)

at steady state. To address this, we consider an initial condition with σ ≡ 0, and

we imagine that the gene is switched on at time t = 0. Then, while the gene is

switched on, the Laplace transform of σ(x, t), which we shall call σ̂(x, s), with

σ̂(x, s) ≡
∫ ∞

0

dt exp(−st)σ(x, t), (B.3)

satisfies the following equation

D
∂2σ̂

∂x2
− sσ̂ = −J0

δ′(x)

s
, (B.4)

where δ′(x) represents the derivative of the Dirac delta function.

One way to solve Eq. (B.4) is to observe that the Green’s function, i.e. the

solution of

D
∂2g(x, x′)

∂x2
− sg(x, x′) = δ(x− x′), (B.5)

which decays to 0 at |x− x′| → ∞, is given by

g(x, x′) =
exp

(
−
√

s
D
|x− x′|

)
2
√
Ds

. (B.6)

Then, the solution of Eq. (B.4) is

σ̂(x, s) =

∫ +∞

−∞
dx′ g(x, x′)

[
−J0

δ′(x′)

s

]
(B.7)

=
J0

2Ds
exp

(
−
√

s

D
|x|
)

sgn(x).

In real space, the solution is found by inverse Laplace transform; at time t = τ ,

when transcription stops in our model, it is given by

σ(x, τ) =
J0

2D
erfc

(
|x|

2
√
Dτ

)
sgn(x), (B.8)
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where erfc is the complement of the error function. This solution tends to

Eq. (B.2) when τ →∞; it also shows that, while the gene is on, again the typical

value of supercoiling density in the neighbourhood of the promoter is ∼ J0/D.

After the gene is switched off the supercoiling density satisfies the diffusion equa-

tion,
∂σ(x, t)

∂t
= D

∂2

∂x2
σ(x, t), (B.9)

with the initial condition that σ(x, τ) is as given by Eq. (B.8). The solution can

be written as

σ(x, t) =

∫ ∞
−∞

dx′
exp

[
− (x−x′)2

4Dt

]
√

4πDt

J0

2D
erfc

(
|x′|

2
√
Dτ

)
sgn(x′), (B.10)

where for simplicity we have shifted time so that the gene switches off at time

t = 0 and the solution holds for t ≥ 0. Eq. (B.10) can be used to infer that

σ(0, t) ≡ 0 (for the static polymerase model), and σ(x, t) ∼ t−3/2 for large t and

for x 6= 0.

B.2 Static and travelling polymerase models:

mean field theory, and scaling

We now use the results obtained from the last section to build a simple mean

field theory for our model.

We start from the observation that, within the static polymerase model, the on

rate for RNA polymerase, kon, depends on the extent of negative supercoiling

upstream of the promoter (at x0 < 0), according to the formula (see main text),

kon = k0 [1− ασ(x0, t)] , (B.11)

where, since this is always positive, we do not need the max function as in the

main text.

We propose a simple mean field theory, where the value of σ(x0, t) is replaced with

the average supercoiling profile over the whole simulation, σ̄(x0). An equation

for σ̄ can be written down by finding the steady state solution of Eq. (B.1) when

the flux is replaced by its average J0δ(x) konτ
konτ+1

, where konτ
konτ+1

is the fraction of
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time that the gene is on (this last formula can be obtained by realising that the

polymerase has an on rate equal to kon and an effective off rate equal to 1/τ). If

we do this, we find that

σ̄(x0) = − konτ

konτ + 1

J0

2D
. (B.12)

We should note that this solution, as the previous ones, works for open, no flux,

boundary conditions (our simulations instead have periodic boundary conditions,

but the scaling of σ̄ does not change).

We can now plug in this expression for σ̄ in Eq. (B.11), to get a self-consistent

equation, similar in spirit to a mean field theory,

kon = k0 [1− ασ̄(kon)] ∼ k0

[
1 + α

konτ

konτ + 1

J0

2D

]
. (B.13)

Eq. (B.13) has a solution which depends smoothly on J0
D

: in other words, there

should be no discontinuity in the transcription rate (proportional to kon, see

below) as a function of J0. Another way to understand this is to realise that

Eq. (B.13) is essentially equivalent to the mean field equation for the magnetisa-

tion versus temperature in the Ising model in the presence of a non-zero magnetic

field (the k0 term): it is well known that this equation in this case describes a

smooth crossover and no thermodynamic phase transition.

While we have derived our mean field equation, Eqs.(B.12) and (B.13) for the

static polymerase model, numerically we found that Eq. (B.12) also applies well

for the travelling polymerase model, with J0 replaced by J̄ , the average supercoil-

ing flux during transcription. Specifically, for the travelling polymerase model,

the average supercoiling density at the promoter, which we call σ̄p, is given by

σ̄p = − konτ

konτ + 1

J̄

2D
= − Φ

Φ + 1

J̄

2D
, (B.14)

where Φ = konτ is one of the dimensionless numbers introduced in the main text,

for N = n = 1. Eq. (B.14) is used in the main text to estimate the supercoiling

densities at promoters in bacteria, yeast and human cells.

By plugging Eq. (B.14) into Eq. (B.11), we can find an explicit expression for kon
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in our mean field theory, which is given by

konτ =
h+
√
h2 + 4k0τ

2
(B.15)

h = k0τ

(
1 +

αJ̄

2D

)
− 1.

The overall transcription rate kt (of the single gene considered up to now in the

simplified theory) can be estimated as follows,

kt =
kon

1 + konτ
(B.16)

where the correction 1
1+konτ

takes into account the fact that the maximum tran-

scription yield per gene is equal to 1/τ , when the polymerase is transcribing the

gene at all times. Figure B.1 shows some examples of the overall transcription

rate kt, for different values of k0τ . As anticipated when analysing the static

polymerase model, for any k0 6= 0, there is no discontinuity in the transcription

rate, so that the switch between uniform and supercoiling-regulated regime is

a crossover. The only limit in which this would become a true nonequilibrium

transition is if k0 → 0, while keeping the product J̄αk0τ/D constant. Eqs. (B.15)

and (B.16) also highlight a useful criterion to determine when supercoiling starts

to significantly affect transcriptional rate (hence transcription): this occurs when

J̄αk0τ

2D
∼ 1. (B.17)

In other words, the value of J̄/D (which is the parameter varied in the main text)

at which we should expect the crossover between the uniform and the supercoiling-

dominated regime is equal to 2/(αk0τ).

Note that, as is the case in general for mean field approximations, the assumption

that kon depends on the average supercoiling profile, σ̄, is only appropriate when

the supercoiling profile does not vary too much in time, so that the instantaneous

profile for σ is close to the average one. This is the case when there is not

enough time for the supercoiling to diffuse away in between transcription events.

The physical dimensionless parameter determining when this is the case, in the

travelling polymerase model, is Θ = konλ2

D
. If Θ is small, then diffusion is fast and

while the gene is off the supercoiling is much smaller than the average value, and

our mean field theory is not valid.

Fortunately, even when Θ is relatively small (Figure B.1, where the minimum
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value of Θ is ∼0.44) our numerical results suggest that the value of σ at the

promoter, σp, at the moment when the gene is switched on (which is the relevant

value to use in Eq. (B.11)), depends on kon linearly for small kon, so that the same

qualitative considerations apply as in our simplified mean field theory (i.e., the

system displays a crossover rather than a phase transition as J̄/D is increased).

We can further perform a simulation to find the value of σp as a function of kon

(kept constant for each simulation, see figure B.1 and its caption). We can then

fit the resulting data with the following functional form,

|σp| =
akon

bkon + 1
(B.18)

where a and b are positive constants determined via fitting (Figure B.1). At

this point, we can follow the procedure described above, where Eq. (B.18) is

plugged into Eq. (B.11) to yield a semianalytical estimate for kon: this is an

improvement with respect to the mean field estimate, Eq. (B.15). In a system

with one polymerase and one gene, the rate kon determined self-consistently via

Eq. (B.11) gives the overall transcription rate kt by using Eq. (B.16). For a

system with N polymerases and n genes, substituting kon with konN/n we obtain

the predicted transcription rate per gene. This rate is a good approximation

of the transcription rate per gene in the case of genes oriented along the same

direction.

Figure B.1: Left: Plot of the transcription rate, found by using Eq. (B.15) and
Eq. (B.16), for α = 100 (as in the main text), and different values of konτ (see
legend).
Right: (A) Plot of the local supercoiling density (absolute value) at the promoter
as a function of kon for a single gene, on a lattice of size 1000 ∆x (with periodic
boundary condition). To make this plot we run our simulations with α = 0 so that
kon can be fixed as an input. The fit is to Eq. (B.18), and the resulting parameters
are a ∼ 11.18 ± 0.02 and b = 9.85 ± 0.02. This simulation was performed with
J̄/D = 2.55; in order to get the transcription rate as a function of J̄ we further
assumed a linear dependence of σp on J̄ overall (as in Eq. B.12).
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