
Reconstruction of gene regulatory networks

from postgenomic data

Adriano Velasque Werhli

T
H

E

U N I V E R S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute for Adaptive and Neural Computation

School of Informatics

University of Edinburgh

2007





Abstract

An important problem in systems biology is the inference of biochemical pathways

and regulatory networks from postgenomic data. The recent substantial increase

in the availability of such data has stimulated the interest in inferring the net-

works and pathways from the data themselves. The main interests of this thesis

are the application, evaluation and the improvement of machine learning methods

applied to the reverse engineering of biochemical pathways and networks. The

thesis starts with the application of an established method to newly available gene

expression data related to the interferon pathway of the human immune system

in order to identify active subpathways under different experimental conditions.

The thesis continues with the comparative evaluation of various machine learning

methods (Relevance networks, Graphical Gaussian Models, Bayesian networks)

using observational and interventional data from cytometry experiments as well

as simulated data from a gold-standard network. The thesis also extends and im-

proves existing methods to include biological prior knowledge under the Bayesian

approach in order to increase the accuracy of the predicted networks and it quan-

tifies to what extent the reconstruction accuracy can be improved in this way.
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Chapter 1

Introduction

In the past few years we have witnessed the fast development of different tech-

niques for the measurement of high throughput biological data. This has shifted

the attention of the research community from a reductionist view towards a more

complex understanding of molecular biology systems. Following this fast devel-

opment and the amount of postgenomic data produced, what still needs to be

developed are computational and mathematical tools that in turn will provide us

with a better understanding of the biological systems which have generated these

data.

In this thesis we are specifically interested in the accurate reconstruction of

regulatory networks from postgenomic data. In all living organisms biological

components work in an orchestrated way to promote development and sustain-

ability and, therefore, they play a pivotal role in all the processes that occur

in these organisms. The manner in which these components work harmonically

together is through sets of intricate regulatory networks and pathways.

The discovery of biological pathways or regulatory networks opens a wide

range of possible applications. For instance the knowledge of disease related

pathways can unveil how the disease acts and present novel tentative drug tar-

gets. Also, the creation of accurate biological models from discovered regulatory

1



2 Chapter 1. Introduction

networks or pathways can help us to predict the responses to disease/infection and

can be very useful in the development of new drugs and treatments. Moreover,

the discovery of such pathways in plants would also be very beneficial. With new

options to combat plants’ diseases one can imagine for example a smaller need

for the use of pesticides.

The inference of pathways from the data is still in its infancy though. New

types of measurements and the abundance of data produced have brought the

hope that one would be able to discover entire pathways from these data. Unfor-

tunately, there are various challenges to be tackled. These data and the biological

systems that generate the data are often noisy and, furthermore, the biological

processes are frequently not completely understood.

In the next section we present a brief introduction to genetic regulatory net-

works and to two different types of measurement (data) that can be used to their

reconstruction. What follows is a section detailing the general organization of the

thesis.

1.1 Biological aspects of genetic regulatory net-

works

The DNA (Deoxyribonucleic acid) is a long polymer of nucleotides1 that contains

the genetic instructions for the development and the proper functioning of all

living organisms. The final product of these genetic instructions are proteins.

Proteins play a key role in all living organism and therefore, can be seen as

the main functional components within living cells. For instance, many biochem-

ical reactions which are vital to metabolism are catalyzed by enzymes that are

proteins. Moreover, proteins are important in cell signalling, immune response

1The nucleotides that form the DNA are: adenine (A), cytosine (C), guanine (G) and
thymine (T).
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and performing structural functions. Proteins are polymers formed by a linear

chain of monomers called amino acids. There are 20 naturally occurring amino

acids and the sequence of amino acids observed in a protein is defined by a gene.

Genes are segments of the DNA that code for proteins. All cells in an organism

carry the same DNA, but synthesized proteins can be totally different. This is

due to genetic regulation.

The amount of synthesized protein is regulated by control mechanisms at

different stages: transcription, RNA splicing, translation and post-translational

modifications. These aforementioned processes together form the core of the so

called Central dogma of molecular biology (Watson and Crick, 1958; Crick, 1970).

The process of synthesizing proteins from DNA inside a cell can be summarized

in a very simplistic way as:

1. Begin with a DNA strand.

2. Transcription: The process of building an RNA copy of a coding DNA

sequence. This process starts when one or more transcription factors (TF)

bind to a cis-regulatory domain of the gene.

3. Translation: The process of matching amino acids to corresponding sets

of three bases (codons). During translation messenger RNA (mRNA) se-

quences are used to manufacture proteins. Translation occurs at special

structures in the cell called ribosomes. Ribosomes are the “factories” where

RNA is used to manufacture proteins.

4. Post-translational modifications: These are modifications that occur in pro-

teins after they are released from the ribosomes.

5. Finishes with a new protein.

In summary, the information stored in the DNA is processed in the cell ma-

chinery and the resulting product are specific types of proteins.
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A Genetic Regulatory Network (GRN) is a set of genes (segments of the

DNA which code for proteins) that interact with each other in an organism.

In a GRN genes control the expression of other genes. In other words, genes

control by how much other genes in the network are transcribed into mRNA.

Note that not all the genes in network interact with all the other genes. Usually

a gene controls only a subset of genes in the network and is itself controlled

only by a subset of other genes. Self feedback mechanisms are known to exist

in GRNs and hence a gene can regulate itself. The control that a gene performs

in other genes (or itself) is indirectly achieved through the RNA and protein

expressions. Even though genes do not interact directly with each other, their

products (synthesized proteins) in conjunction with other components of the cell

regulate the expression of genes in the network. Therefore, this very complex

network, which involves many components and steps, is simplified to a model

network where the intermediate components are not taken into account, the so

called GRN.

The main goal is to understand the relationships among all these components

within a cell and how they respond to different challenges. This requires all cell

components to be measured at the same time but unfortunately, despite all the

recent innovation in molecular biology measurements, this is not yet achievable.

The most common type of postgenomic data available is gene expression data

(mRNA concentrations) from microarray experiments and, to a lessen extent, pro-

tein activities from flow cytometry experiments. Although these measurements

do not cover the whole set of components within a cell they are still useful for

the discovery of regulatory networks. Using only this type of data the genetic

regulatory network can be seen as a network where the nodes are the genes, the

outputs of the nodes are the mRNA concentrations or the protein activities and

the inputs to the nodes are the TFs (proteins that start transcription of a gene).

The edges in this network represent the set of dependencies and independencies
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among the genes (nodes) in the network. The direction of an edge indicates pu-

tative causality among two genes. For instance if a gene A is linked to a gene B

(A−→B) it means that the protein produced by A has an influence on the amount

of protein that is produced by gene B. Thus we can say that gene A regulates gene

B. As mentioned before the interaction between two genes is in fact mediated by

many other regulatory events and, hence, we say ‘putative causal relationship’

instead of ‘causal relationship’. See Section 3.2.4 for a discussion about causal

networks.

The development of new high throughput molecular biological experiments

has produced large quantities of data and, thus, increased the attempts of the

reconstruction of GRNs from these data. Among these new experiments microar-

ray technology is one of the most important. With microarray experiments it is

possible to measure in parallel the expression profiles of thousands of genes in an

organism. This possibility has brought the hope that it would be feasible to re-

verse engineer GRNs from the data. To-date various methods have been applied

to these data in order to reconstruct the GRNs, yet the results have been very

modest so far.

Brief introductions to microarray and to flow cytometry technologies are pre-

sented in the next section.

1.2 Measuring gene expression and protein activi-

ties

1.2.1 Microarrays

In the last few years there has been a great increase in the availability of molecular

biological data. The measurement of gene expression using microarrays is one of

the more successful techniques among the many methods developed. The seminal
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paper on microarray technology is Schena et al. (1995).

Microarrays are nowadays a widely used method that permits the expression

profiling of thousands of genes at the same time. In general small amounts of

thousands of gene sequences are placed by robotic machines in pre-determined

spots of a microscope slide that are called probes. As we discussed in the previous

section when a certain gene is active inside a living cell it produces mRNA which

in turn is used to produce proteins. If this produced mRNA is complementary to

one of the gene sequences placed on the probes it will bind to the corresponding

spot. In order to measure the expression of genes in a given cell, the mRNA has

first to be collected from the cell and labelled with a fluorescent dye. The labelled

mRNA is then placed onto the slide where it will attach to its complementary

gene sequence. With a special scanner it is possible to measure the fluorescence

of the spots on the slide. Active genes will produce more mRNA, which will

attach to the DNA on the microarray producing brighter areas. Spots that are

not bright indicate that their genes are not active. The brightness of the spots,

measured with the laser scanner, produces measurements which are proportional

to the concentration of mRNA. There are two main types of microarrays. One

is the spotted microarray where two different experimental conditions (each with

its own label) are hybridized to one array. With this fabrication method only

relative gene expression values can be estimated. The other type of microarray

is the oligonucleotide array where each different condition is hybridized to one

array. With this fabrication method it is possible to estimate the absolute values

of gene expression. The raw data produced by microarray experiments should

go through statistical analysis in order to distinguish genuine biological variation

from experimental variation artifacts. The statistical analysis of microarray data

is a very active field of research which deals, among others, with the normalization

and the significance of microarray measurements. The normalization of microar-

rays experiments aims to remove sources of variations other than caused by the
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biological system itself, thus, the different experimental conditions measured can

be fairly compared.

When inferring GRNs from microarray data we need to make one very strong

assumption. Effectively microarray experiments provide a measure of the mRNA

concentration and this is assumed to be proportional to the protein activity.

However, when inferring GRNs we are ultimately interested in protein activities

since these are the variables which are likely to influence the other variables in our

system. This is because proteins (TFs) are the elements which interact to regulate

genes that in turn produce mRNA which is translated to form other proteins.

The assumption that the mRNA concentrations are proportional to the protein

activities may not hold true in various biological systems due to post-translational

modifications that occur after a protein is produced. In order to solve this problem

several authors try to infer the activity level of known regulator proteins (TFs)

from microarray experiments combined with other sources of molecular data, see

for instance Pournara and Wernisch (2007); Sabatti and James (2005).

1.2.2 Flow cytometry

Flow cytometry (Herzenberg et al., 2002; Perez and Nolan, 2002) can measure

different parameters in particles and cells using the principles of light scattering,

light excitation, and emission of fluorochrome molecules. Particles are hydrody-

namically focused on a laser beam and only one particle at a time is presented

to the laser beam. Fluorescent chemicals present in the particle (naturally or

attached as labels) are excited by the laser, emitting light themselves. This light

is measured by detectors and from it, it is possible to gather various types of

information about the particle.

Flow cytometers can measure a variety of parameters and of particular in-

terest for the reverse engineering of GRNs is their ability to measure protein

expression. While microarrays enable the measurement of thousands of gene ex-
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pression profiles simultaneously with usually very few samples, flow cytometry

enables the measurement of very few genes within thousands of samples. Flow

cytometers can measure up to 18 different parameters (colours) at the same time

but the number of measured parameters is not limited and can continue increas-

ing (Bonetta, 2005). In Sachs et al. (2005) flow cytometry was used to measure

protein concentrations of 11 proteins. One of the main advantages of flow cytom-

etry is that the variable measured is protein concentration and therefore, we do

not need to make the assumption that the mRNA levels are proportional to the

protein activities as we make when using microarrays. We still need to assume

that the protein concentrations are proportional to the protein activities though.

1.2.3 Organization of the thesis

This thesis can be roughly divided into two major parts. Firstly different methods

for the reconstruction of regulatory networks are compared. Given the diversity

of proposed reverse engineering methods, it is important for the systems biol-

ogy community to obtain a better understanding of their relative strengths and

weaknesses. The comparison uses both simulated and real data. The use of sim-

ulated data is very important as it makes it possible to evaluate the methods’

performance given that for this case the true result is known. Furthermore, the

use of active interventions is also investigated and the impact of its use in the

algorithms’ performance is quantified.

The second part is related to the integration of different sources of data or, as

we call it, different sources of information with the expression data. Much effort

is being put nowadays into investigating methods that are able to use different

sources of information. The reason is that there is a huge amount of accumu-

lated knowledge about biological systems but this knowledge is often the result of

various different experiments. If it is possible to use all this knowledge together

one would expect that the discovery of regulatory networks would be more re-
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liable and faster. In this thesis we improve and extend an existing method for

integrating other sources of knowledge with expression data. The method en-

ables the integration of more than one source of knowledge at once and each of

these sources is associated with a trade-off parameter. The trade-off parameter is

learned from the data and indicates how much of the extra knowledge should be

used together with gene expression data in order to maximize the regulatory net-

work reconstruction. Using this approach applied to both real and simulated data

we show that the reconstruction of the networks is improved, that the method

can automatically discard sources of information that are not useful, and that

the trade-off parameter learned from the data is close to optimal. Moreover, we

explore a version of the same method that, instead of using previous knowledge

about the network structure, introduces the idea that networks reconstructed

from data of the same biological system obtained under different experimental

conditions are likely to share topological features. The method is then applied to

simulated and real data and shows consistent improvement over the alternative

methods explored.

The thesis is organized as follows:

Chapter 2 reinforces how useful the knowledge of regulatory networks is by

presenting a study where a method for the discovery of active subnetworks is

applied to a manually curated network. Chapter 3 introduces the statistical and

computational methods that are used in this thesis for the learning of genetic

regulatory networks. In Chapter 4 a brief introduction to genetic regulatory

networks and how we simulate data from a given genetic regulatory are presented.

In addition, Chapter 4 also presents the evaluation methods used to quantify

the network’s reconstruction performance. In Chapter 5 the comparison among

different methods for reconstructing genetic regulatory networks is presented.

Chapter 6 presents a study where different sources of biological prior knowledge

are used in conjunction with expression data for the inference of genetic regulatory
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networks. Chapter 7 introduces a method for the integration of data sets obtained

from the same biological system challenged with different experimental conditions.

And finishing, Chapter 8 presents general conclusions about the work presented in

this thesis and discusses some directions for future research in the area of reverse

engineering regulatory networks.



Chapter 2

Discovering differentially expressed

subnetworks

This chapter presents a simple practical application which shows the use of one

known biological pathway and therefore, reinforces how important the automatic

discovery of such pathways from data is. Here the network structure is extracted

from the literature alone and is used in conjunction with gene expression data

from the analysis of macrophage responses to infection. Using gene expression

data measured under three different experimental conditions we apply the method

of Ideker et al. (2002) to discover subnetworks that are differentially expressed

(active) in each of the experimental conditions. The results reveal discrete states

of sub-system activity of the Interferon (IFN) pathway and represent a systematic

methodology for exploiting biological pathways.

2.1 The manually curated network

Interferons (IFNs), first discovered in 1957, constitute a family of cytokines that

play a pivotal role in both the innate and adaptive immune response. While first

discovered on the basis of their antiviral properties, they have subsequently been

recognized as significant regulators of numerous cellular processes including pro-

11
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liferation, differentiation, apoptosis and antigen presentation. The IFNs may be

classified into two types, each signalling through distinct receptors but employing

some common signal transducers (Jak, Stat). There are several members of the

type I or IFN-α/β superfamily but only one member of the type II family, IFNγ.

IFNγ is known as the immune IFN as it is induced by T-cells, neutrophils and

natural killer cells and is principally involved in regulation of the immune system

and the control of infectious disease. Like most physiological processes, the inter-

feron response is regulated by a pathway of signals transmitted from the receptor

to the nucleus. Elucidation of this pathway has engaged a significant proportion

of research effort over the past forty years.

Researchers from the Scottish Centre for Genomics Technology and Informat-

ics (GTI) have undertaken a systematic review of the literature relating to com-

ponents of the IFN pathway using a research synthesis approach. This method-

ology enabled the definition of interactions and cause-effect relationships in four

interconnected functional areas: apoptosis, the interferon regulatory factor (IRF)

network, Jak/Stat signalling and antigen presentation. During this process, an

attempt was made to curate gene or gene-product interactions which were sup-

ported by evidence from at least 3 independent reports and/or laboratories. A

particular emphasis was given by the curators on the dependencies of the interac-

tions. It is worth to mention that the process of manually curating the interactions

among genes is very lengthy. The ideal scenario would be the automatic discov-

ery of such interactions from data. This would enable the discovery of pathways

to be much faster permitting their immediate use by researchers. Unfortunately

the discovery of pathways from data is still in its infancy and, hence, this ideal

scenario remains far from the reality nowadays.

The data available for the curated network is gene expression measured with

microarrays. Therefore, the interest lies specifically in the interactions among

genes. In order to have only the variables of interest we extracted, from the whole
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Figure 2.1: Extracted IFN network. From the consensus IFN pathway built from the literature

we extracted the genetic regulatory network which is presented in this figure. The network is

composed by 56 genes and 100 edges.

consensus pathway built from the literature, the genes and their interactions. The

extracted genetic regulatory network is constituted by 56 genes and a total of 100

edges connecting these genes. The extracted network is presented in Figure 2.1.

2.2 Gene expression data

To gain insight into the active state of the pathway, microarray analyses were

performed on mouse primary Bone Marrow-Derived Macrophages (BMDM) ac-

tivated with IFNγ and/or challenged with Murine CytoMegaloVirus (MCMV).

The three different experimental conditions for which gene expression profiles

were measured with microarrays can be summarized as:

• Infected: BMDM infected with MCMV.

• Infected and treated: BMDM pre-treated with IFNγ and subsequently

infected with the virus.
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• Treated: BMDM activated with physiological levels of IFNγ.

The raw microarray data processing and statistical analysis were performed

by GTI. From here onwards when we refer to data we mean the processed data.

2.3 Methodology

In order to verify which subnetworks of the IFNγ genetic network are active in

response to different experimental conditions we applied the jActiveModules

plug-in (Ideker et al., 2002) which is implemented in Cytoscape (Shannon et al.,

2003). This method identifies subnetworks that are active, i.e. connected re-

gions of the network that show significant changes in expression under different

experimental conditions. The method combines a statistical measure for scoring

subnetworks and a search algorithm to find the high scoring subnetworks. The

scoring method is based on the p-values which represent the significance of the

expression change for each gene. Each pi, p-value for gene i, is converted to a

z-score zi = Φ−1(1− pi) where Φ−1 is the inverse normal cumulative distribution

function. To produce an aggregate z-score ZN for a subnetwork N with k genes,

all the zi in this subnetwork are summed using the following equation:

ZN =
1√
k

k∑

i∈N

zi (2.1)

Subnetworks of all sizes are comparable under this scoring system. If zi are inde-

pendently drawn from a standard normal distribution, ZN will also be distributed

according to a standard normal independent of k. Note that the variance of sum

is the sum of variances for independent random variables.

After calculating the aggregate score it is corrected against random sets of

genes, with the same size of the subnetwork. This is to gauge the score against a

random allocation of differentially expressed genes and to assess the improvement

over what could have been obtained by chance alone. Gene sets of size k are
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randomly sampled and their scores ZN computed. These samples are from the

same expression data but independently of the network structure. The computed

score values ZN are then used to produce estimates for the score mean, µk, and

for the score standard deviation, σk. The corrected subnetwork score is give by:

sN =
(ZN − µk)

σk
(2.2)

where µk and σk are respectively the mean and the standard deviation of each

cluster of size k.

Having a method to score the subnetworks, a simulated annealing procedure

(Kirkpatrick et al., 1983) is applied to find higher scoring subnetworks.

2.3.1 A synthetic example

The purpose of this section is to illustrate the method of Ideker et al. (2002)

on a small toy problem which is analytically tractable. For this toy problem

it is possible to calculate the scores of such networks analytically and hence, we

can examine how the scoring scheme of subnetworks behaves. The small synthetic

network, inspired by the real network, is shown in Figure 2.2. It contains 29 white

nodes and 3 grey nodes. White nodes have fixed p-value=0.5 and correspond to

genes that are not differentially expressed. Grey nodes have fixed p-values=0.01

and correspond to genes that are significantly differentially expressed. In this

manner the z-scores of grey nodes, zG, and white nodes, zW , are:

zG = Φ−1(1− 0.01) = Φ−1(0.99) = 2.323 (2.3)

zW = Φ−1(1− 0.5) = Φ−1(0.5) = 0 (2.4)

It is defined that there are k nodes in a subnetwork N , where k is the sum of

the number of grey nodes (nG) and white nodes (nW ): k = nG + nW . Thus the
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Figure 2.2: Synthetic example network. This is the synthetic network which resembles the

one extracted from the whole GTI curated pathway. According to the definitions white nodes have

p-values of 0.5 and grey nodes have p-values of 0.01.

aggregate score is:

ZN =
nGzG + nW zW√

nG + nW

(2.5)

as zW = 0 according to Equation (2.4), Equation (2.5) reduces to:

ZN =
nGzG√
nG + nW

(2.6)

It is easy to see that adding extra white nodes, nW , will only decrease the

aggregate score ZN .

Given the structure as in Figure 2.2 we can calculate the scores

for different subnetworks Ni. The following subnetworks are de-

fined: N1={ISGF3G}, N2={ISGF3G,IRF7}, N3={ISGF3G,IRF7,CCL5},

N4={ISGF3G,IRF7,CCL5,TAP2} and we continue to add further nodes but

note that they are all white nodes. Since the z-scores of all white nodes are

zW = 0, according to Equation (2.4), the actual identities of the added white

nodes are not relevant.

Considering the subnetwork N1, we will have its score ZN1 :

ZN1 =
zG√

1
= zG (2.7)
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and for the subnetwork N2 the score is:

ZN2 =
zG + zW√

2
=
zG√

2
(2.8)

and for N3:

ZN3 =
2zG + zW√

3
=

2zG√
3

(2.9)

and for N4:

ZN4 =
3zG + zW√

4
=

3zG + zW

2
=

3zG

2
(2.10)

and so on for the subsequent networks with included white nodes, which will only

decrease the aggregate scores.

The aggregate scores should be calibrated against the background distribution

as defined in Equation (2.2). In the synthetic example the mean for a subnetwork

Ni with size k is:

µk =

k∑

nG=0

P (nG, k)Z(nG, k) (2.11)

and the variance is:

σ2
k =

k∑

nG=0

P (nG, k)(Z(nG, k)− µk)
2 (2.12)

where the first term P (nG, k) is the probability of having nG grey nodes in a

subnetwork of size k, which is a binomial distribution:

P (nG, k) =

(
k

nG

)
qnG(1− q)k−nG

=
k!

nG!(k − nG)!
qnG(1− q)k−nG (2.13)

where q is the probability of getting a grey node from the entire population. In

our case we have a total of 32 nodes 3 of which are grey, hence q = 3
32

. The

second term Z(nG, k) is the aggregate score for nG grey nodes in a subnetwork of

size k.

Z(nG, k) =
nGzG√

k
(2.14)
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The mean and variance are then:

µk =
k∑

nG=0

k!

nG!(k − nG)!
qnG(1− q)k−nG

(
nGzG√

k

)
(2.15)

σ2
k =

k∑

nG=0

k!

nG!(k − nG)!
qnG(1− q)k−nG

[(
nGzG√

k

)
− µk

]2

(2.16)

Having these equations we can analytically calculate the scores. Figure 2.3

shows the plot of the scores ZNi
and the corrected scores SNi

. These scores were

calculated for the subnetworks: N1, N2, N3, N4, and then for the following sub-

networks, just adding white nodes. In general an analytical calculation presented

here will not be tractable, and the algorithm therefore uses an MCMC scheme as

described in Ideker et al. (2002).

In the toy problem the grey nodes were chosen in a way that one of the

main features of the method (Ideker et al., 2002) can be highlighted. This main

feature is the ability of the method in adding structurally important nodes to the

subnetworks even if they are not differentially expressed. In our example we can

imagine that the node IRF7 is a transcription factor subject to post-translational

modifications. It is structurally important since it intermediates the interaction of

three highly differentially expressed genes (grey nodes) but it is not amenable to

microarray experiments and therefore, is not differentially expressed. As can be

seen from the results the subnetwork N4 has the highest score. This subnetwork

includes the three highly differentially expressed grey nodes and also the non-

differentially expressed IRF7 node that connects them.

The toy problem exemplifies how the method works and shows a very im-

portant feature of the method in action. We have also applied the software of

Ideker et al. (2002) to the toy problem data set with various different parameters

and initializations and the highest scoring subnetwork found was consistently the

correct one (results not shown).
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Figure 2.3: Scores for different subnetworks. On the horizontal axis are the subnetworks,

N1, N2, N3, N4 and so on. The vertical axis shows the aggregate score ZNi
and the corrected

score SNi
of these subnetworks.

2.4 Application to real data

We applied the method of Ideker et al. (2002) to the microarray data set provided

by GTI. As mentioned before the data was statistically pre-processed at GTI and

we used the expression values and significance values (p-values) as provided by

them. We set the parameters of the simulated annealing scheme as follows: Start

temperature=100; End temperature=0.001; Number of interactions=106.

For each of the three experimental conditions we ran the simulated annealing

from 10 different initializations. Therefore, for a given condition we found 10

subnetworks, one from each different initialization, and these subnetworks were

consistent. As for a particular condition the algorithm finds consistently the same

subnetwork and we present this network as the highest scoring one. The active

subnetworks for each of the conditions are presented graphically in Figure 2.4.

The genes that are active in each of the found subnetworks are presented in

Table 2.1.
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2.5 Results and discussion

In the present study, the consensus diagram was used to experimentally inves-

tigate pathway behaviour by measuring changes in node gene expression as a

consequence of IFNγ and/or viral infection in macrophages. Gene expression

alterations in pathway components were assessed by microarray analyses. Com-

mon amongst the three different treatments were four central hubs which were

included in the subnetworks (Stat1, Irf1, Irf7 and C2ta). However, it is likely

that in the context of the virus vs. IFN stimulated pathways, the activation of

these hubs have arisen from different signalling pathways.

While the majority of nodes appearing in the active subnetwork were active

in any of the three treatments (infected, infected and treated, treated), some

nodes were unique to the presence of virus which were not active in the case of

IFN treatment alone. This probably reflects the ability of MCMV to stimulate

a type I IFN response resulting in the activation of Interferon Stimulation Re-

sponse Element (ISRE)-regulated antiviral genes such as Eif2ak2 and effects on

cell growth and regulation such as Cdkn1a (Sing et al., 2006). It is notable that

the one node unique to the infected and treated condition consisted of the tran-

scription factor Irf8. This protein downregulates the expression of a number of

IFN-inducible genes and may represent a feedback mechanism to downregulate

the activation state of the macrophage following exposure to both type I (as a

result of MCMV infection) and type II IFN signals. On the other hand, Irf8 also

plays an important role in macrophage activation, particularly in the context of

providing protection against intracellular pathogens such as Toxoplasma gondii

and Leishmania donovani (Sing et al., 2006).

IFNγ activates macrophages and exposure to this cytokine results in the

cell adopting a highly efficient antigen presentation phenotype. As a result,

macrophages play a key defensive role in protecting against pathogens such as

MCMV. We have applied the method of Ideker et al. (2002) for analysing the
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Figure 2.4: Inferred subnetworks. Each of these panels presents highlighted the subnetwork

found for the different experimental conditions. The top panel shows the subnetwork found when

considering the infected condition. The middle panel shows the subnetwork found for the infection

and interferonγ treatment and the bottom panel shows the subnetwork found for treatment only.
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IFNg genetic network

Infected Infected+treated treated

B2m B2m B2m

C2ta C2ta C2ta

Casp1 Casp1 Casp1

Ccl5 Ccl5 Ccl5

Cd74 Cd74 Cd74

H2-D1 H2-D1 H2-D1

H2-D1/H2-L H2-D1/H2-L H2-D1/H2-L

H2-Ea H2-Ea H2-Ea

H2-Eb1 H2-Eb1 H2-Eb1

H2-K1 H2-K1 H2-K1

Irf1 Irf1 Irf1

Irf7 Irf7 Irf7

Psmb10 Psmb10 Psmb10

Psmb8 Psmb8 Psmb8

Psmb9 Psmb9 Psmb9

Psme1 Psme1 Psme1

Psme2 Psme2 Psme2

Stat1 Stat1 Stat1

Tap1 Tap1 Tap1

Casp7 Casp7

G1p2 G1p2

Tap2 Tap2

Cdkn1a

Eif2ak2

Irf8

Cybb

Fas

Table 2.1: Resulting subnetworks for INFg genetic network. In this table are shown the

genes that compose the highest scoring subnetwork found by the simulated annealing algorithm to

each experimental condition.
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activity of the IFN pathway upon infection. Notably, these studies showed that

the emergent expression changes due to the various macrophage perturbations

mapped to discrete and specific sub-systems of the IFN pathway. Specifically,

the activity of sub-systems involving some, but not all, components of apoptosis

(Casp7, G1p2) and antigen presentation (Tap2) are altered. Our results provide

evidence for discrete sub-system activity of the IFN pathway and support the no-

tion that the pathway can adopt a number of different states. However, because

not all the pathways are present in our network some of the interactions that

arise due to the activity of these other pathways cannot be distinguished from

the interactions that arise from the given pathway.

The present study represents a step towards a comprehensive picture of the

IFN pathway and serves as a foundation for understanding the molecular circuitry

of a key cell-injury response pathway and its role in health and disease. In the

future with a more comprehensive coverage of the IFN pathway and with the

presence of other pathways it will be easier to identify and clearly separate which

are the different subsystems acting in the presence of different challenges. From

such an exercise, it should be possible to generate a more comprehensive view of

one of the most intensively studied and fundamental biological pathways of the

immune system.





Chapter 3

Statistical Methods for Inferring

Gene Regulatory Networks

3.1 Introduction

In the last few years, several methods to the reconstruction of regulatory networks

and biochemical pathways from data have been proposed. These methods were

reviewed for example in De Jong (2002); D’haeseleer et al. (2000).

Differential equations are the most refined mathematical method to describe

biophysical processes. They can describe, for example, the intra-cellular processes

of transcription factor binding, diffusion, and RNA degradation; see, for instance,

Chen et al. (1999). Such detailed descriptions of the dynamics are essential to

an accurate understanding of regulatory networks but they require substantial

prior knowledge about the system. For instance it is necessary to specify how the

entities of the system relate with each other and all the parameters of the bio-

chemical reactions. Although differential equations are the most accurate way of

representing regulatory networks their use is limited by the necessity of substan-

tial prior knowledge about the system they are representing. At the other extreme

is the coarse grain approach of clustering which has been widely applied to the

25
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analysis of microarray gene expression data D’haeseleer et al. (2000); Eisen et al.

(1998). Clustering is computationally very cheap to extract qualitative informa-

tion about co-expression, but it is not powerful to provide the inference of the

detailed structure of the underlying biochemical signalling pathways.

A promising compromise between these two extremes are machine learning

methods that allow interactions between the nodes in the network to be repre-

sented in an abstract way - without the level of detail of the underlying pathways

described by differential equation models - and to infer these interactions from

data in a systems context, that is, distinguishing direct interactions from indi-

rect interactions that are mediated by other nodes in the domain. This chapter

provides a review of various machine learning methods that have been applied

to the reconstruction of gene regulatory networks. We address the issue of prac-

tical viability of these approaches in Chapter 5, where details of a comparative

evaluation study using benchmark data from a widely-studied model network are

presented.

3.2 Bayesian Networks

Bayesian Networks (BNs) are a combination of probability theory and graph

theory. They are very useful to represent probabilistic relationships between

multiple interacting entities. Their nodes represent random variables and its

arcs represent dependencies between these random variables. Formally a BN is

fully specified by a graphical structure M, a family of conditional probability

distributions F and their parameters q.

The graphical structure M is a directed acyclic graph (DAG). DAGs are

graphics that have only directed edges between nodes and have no directed cy-

cles. They indicate conditional dependence relations between nodes through their

edges. The family of conditional probability distributions F and their parameters
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A

B C
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Figure 3.1: Example of Bayesian Network. This figure presents a Bayesian Net-

work example composed of the set of nodes N= {A, B, C, D, E, F} and edges E=
{(A, B),(A, C),(B, D),(C, D),(D, E),(D, F ),(C, F )}. Applying the independence relation-

ships depicted by the graph we can write the joint probability P (A, B, C, D, E, F ) as

P (A)P (B|A)P (C|A)P (D|B, C)P (E|D)P (F |D, C).

q specify the functional form of the conditional probabilities associated with the

edges, that is, they indicate the nature of the interactions between nodes and the

intensity of these interactions.

3.2.1 Bayesian Networks Structure

Figure 3.1 shows a hypothetical Bayesian network. This network is con-

stituted by the set of nodes N= {A,B,C,D,E, F} where the set of de-

pendencies between them is represented by the set of directed edges E=

{(A,B),(A,C),(B,D),(C,D),(D,E), (D,F ),(C, F )}. If we have a directed edge

from a node A to a node B, then A is called parent of B, and B called the child

or descendant of A.

A BN is characterized by a simple and unique rule for expanding the joint

probability in terms of simpler conditional probabilities. This follows the local

Markov property: A node is conditionally independent of its non descendants
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given its parents. Thus we can write the chain rule or factorization rule:

P (X1, X2, . . . , Xn) =

n∏

i=1

P (Xi|πM(Xi)) (3.1)

Note that we use the same symbols to represent the nodes and the the random

variables that they represent, e.g. (Xi). In the same way the set of parent

nodes and the random variables that they represent also have the same symbol,

e.g. (πM(Xi)). Thus in Equation (3.1) X1, X2, . . . , Xn are random variables

represented by nodes Xi ∈ 1, . . . , n and πM(Xi) is the set of random variables

represented by the set of nodes πM(Xi) which are the parents of node Xi in the

modelM.

If we apply Equation 3.1 to the BN in Figure 3.1, we obtain the factorization

P (A,B,C,D,E, F ) = P (A)P (B|A)P (C|A)P (D|B,C)P (E|D)P (F |D,C) (3.2)

A graph provides a scheme for expanding the joint probability into a product of

lower complexity conditional probabilities like in Equation (3.2). In other words,

following our example in Figure 3.1, we apply the chain rule, Equation (3.1), and

we have the product as specified in Equation (3.2). To specify the complete joint

distribution it is still necessary to determine each of the conditional probabilities

in the product form, Equation (3.2). As pointed out in Friedman et al. (2000)

to represent these families F of conditional distributions it is possible to choose

from different representations for example Gaussian and Multinomial. This choice

will depend on the type of variable we are dealing with, continuous variables or

discrete variables. Let us define that the set of parents of a variable Xi is πM(Xi)

and look at each case:

• Discrete variables: This is the case where each of the Xi and its parents

πM(Xi) takes discrete values from a finite set. In this case the conditional

probabilities P (Xi|πM(Xi)) can be represented as a table that specifies the

probabilities of values for Xi for each joint assignment to πM(Xi). This

representation can describe any discrete conditional distribution.
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• Continuous variables: When the variable Xi and its parents πM(Xi) are

real valued there is no representation that can represent all possible densi-

ties. The natural choice for this case is to use linear Gaussian conditional

densities, so the conditional density of Xi given its parents πM(Xi) is:

P (Xi|πM(Xi)) ∼ N(µ0 +
∑

k∈πM(Xi)

bikXk, σ
2) (3.3)

This means that Xi is normally distributed around a mean that depends

linearly on the weighted values of its parents,
∑

k∈πM(Xi)
bikXk, and on the

unconditional mean µ0. Here the sum index, k ∈ πM(Xi), means that the

sum extends over all the individual k nodes which compose the parent set.

Each of these representations have advantages and drawbacks. In the linear

Gaussian representation there is no need to discretize the data, but it can only

handle dependencies that are close to linear. The multinomial representation can

capture dependencies that are non-linear, but it is necessary to discretize the data

causing some loss of information. These two ways of assigning the conditional

probabilities will be discussed in more detail in Section 3.2.5.

3.2.2 Learning Bayesian Networks

Learning a Bayesian Network means that we want to devise a BN from a given

set of training data D. At the end we want to have a DAG with a set of

parametrized conditional probabilities that better explains the data. In order

to learn a Bayesian Network it is not necessary to use Bayesian learning, but we

will focus on this approach. Learning a BN is a two stage process where first

we learn the structure, the edges that connect our entities. Second we learn the

parameter sets associated with these edges and whether the relationships between

these entities are activating or inhibitory as well as its intensity. Defining that M

is the space of all models, the first goal is to find a model M∗ ∈ M that is most
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supported by the data D:

M∗ = argmaxM {P(M|D)} (3.4)

Having the best structureM∗ and the data D, we can now find the best param-

eters q:

q = argmax
q
{P (q|M∗,D)} (3.5)

If we apply Bayes’ rule to Equation (3.4) we get:

P (M|D) ∝ P (D|M)P (M) (3.6)

where the marginal likelihood implies an integration over the whole parameter

space:

P (D|M) =

∫
P (D|q,M)P (q|M)dq (3.7)

The integral in Equation (3.7) is analytically tractable when the data is com-

plete and the prior P (q|M) and the likelihood P (D|q,M) satisfies certain regu-

larity conditions (Heckerman, 1994, 1995). In Section 3.2.5 following Heckerman

(1994, 1995) we present two ways of solving this integral.

Now we turn our attention to the term P (M) from Equation (3.6). This

term is the prior over structures. The simplest choice of prior is the one which is

uniform over structures. Given the whole space of models M the uniform prior

over structures is defined by:

P (M) =
1

|M| (3.8)

where |M| denotes the number of possible models.

Another option for the prior over structures is to consider it uniform over

parent cardinalities. Deciding that a node Xi has |πM(Xi))| parents there are
(

n−1
|πM(Xi))|

)
possible parent sets, where n is the total number of nodes. If we

propose uniformly from these, the prior is:

P (M) =
1

Z

n∏

i=1

(
n− 1

|πM(Xi))|

)−1

(3.9)
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where Z is a normalizing constant.

One of the important properties of these priors is that they satisfy the struc-

ture modularity. In this way it is possible to decompose the prior in a product

where each term corresponds to one family inM. If we define ρ(Xi, πM(Xi)) to

be the contribution to the prior from the structure formed by node Xi and its

parents πM(Xi), the prior of the whole model can be written as:

P (M) =

n∏

i=1

ρ(Xi, πM(Xi)) (3.10)

Now we examine the term P (D|M) from Equation (3.6). If the regularity con-

ditions discussed in Heckerman (1994, 1995) are satisfied, the marginal likelihood

P (D|M) can be factorised as:

P (D|M) =

n∏

i=1

ψ(Xi, πM(Xi)|D) (3.11)

Here ψ(Xi, πM(Xi)|D) is the score of the structure formed by node Xi and their

parents πM(Xi) given the data D. Furthermore if the prior P (M) satisfies the

modularity property (3.10) we can write:

P (M|D) ∝

P (D|M)P (M) =

n∏

i=1

ρ(Xi, πM(Xi))ψ(Xi, πM(Xi)|D) (3.12)

In order to find the model that is best supported by the data one approach is

to compute P (M|D) for all possible structuresM ∈M and choose the one that

maximizes P (M|D). The first problem with this approach is that the number of

structures increases rapidly with the number of nodes as we can see in Table 3.1

making an exhaustive search impossible. The second problem is that the typical

systems biology data is sparse. Therefore the posterior P (M|D) is usually diffuse

and will not be adequately represented by a single network at the mode; see

Figure 3.2 for an example. To overcome these difficulties we resort to an MCMC

sampling scheme.
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P(M|D) P(M|D)

M MM* M*

Figure 3.2: Inference uncertainty. The vertical axis shows the posterior probability P (M|D)

and the horizontal axis represents the model structure M. The left panel shows the posterior

probability for a large and informative data set where the best structureM∗ is very well defined. In

the right panel the data set is small and less informative and there are many structures with high

scoring posterior probability leading to a large uncertainty about the best structure.

Number of nodes 2 4 6 8 10

Number of topologies 3 543 3.7× 106 7.8× 1011 4.2× 1018

Table 3.1: Number of nodes vs. number of networks. The number of networks grows

super-exponentially with the number of nodes. Taken from Murphy (2001)

3.2.2.1 Sampling Networks with Markov Chain Monte Carlo

When inferring genetic networks from postgenomic data, the data D is generally

sparse and therefore the posterior over the structures P (M|D) is diffuse, meaning

that P (M|D) will not be properly represented by a single structureM∗. In this

case it is more appropriate to sample networks from the posterior probability:

P (M|D) =
P (D|M)P (M)

P (D)
=

P (D|M)P (M)∑
M′ P (D|M′)P (M′)

(3.13)

in this way we can obtain a representative sample of high scoring network struc-

tures. A direct approach to sampling from P (M|D) is impossible though, as

the denominator in Equation (3.13) is a sum over the whole model space and is

intractable. Table 3.1 can give an idea about the size of the sampling space.

A solution to this problem is to create a Markov Chain, as was proposed in

Metropolis et al. (1953); Hastings (1970) and applied to Bayesian Networks by
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Madigan and York (1995). This Markov chain has the following form:

Pn+1(Mnew) =
∑

old

T (Mnew)|Mold)Pn(Mold) (3.14)

The transition from one model Mold into the model Mnew, T (Mnew|Mold), is

represented by the Markov transition matrix T , which is a matrix of transition

probabilities. The important feature of a Markov chain is that under the condition

of ergodicity1 the distribution Pn(Mold) converges to a stationary distribution

P∞(Mold):

Pn(Mold)
n→∞−→ P∞(Mold) (3.15)

The transition matrix T determines completely this stationary distribution, so

we can write:

P∞(Mnew) =
∑

old

T (Mnew)|Mold)P∞(Mold) (3.16)

and what we need is to design the transition matrix T so that we get the poste-

rior probability as the stationary distribution of the Markov chain, P (M|D) =

P∞(M). If the Markov chain of (3.14) converges to the posterior probability of

Equation (3.13) we can write:

Pn(M)
n→∞−→ P (M|D) (3.17)

A sufficient condition for this to be true is the equation of detailed balance:

T (Mnew|Mold)

T (Mold|Mnew)
=
P (Mnew|D)

P (Mold|D)
=
P (D|Mnew)P (Mnew)

P (D|Mold)P (Mold)
(3.18)

The transition from a structure into another, Mold →Mnew, consists of two

parts, first we propose a new structure with a proposal probability Q(Mnew|Mold)

and second we need to accept this new structure with acceptance probability

1 An ergodic Markov chain is aperiodic and irreducible. An irreducible Markov chain is one
in which all states are reachable from all other states. A sufficient test for a aperiodicity is that
each state has a ”self-loop”, meaning that the probability that the next state is the same as
the current state is non-zero. In general it is difficult to prove that a Markov chain is ergodic,
however ergodicity can be assumed to hold in most real-world applications.
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Figure 3.3: Metropolis-Hastings Algorithm.

• Start with a initial structure M0

• Iterate for i = 1 . . . I

1. Obtain a new DAG structure Mi from the proposal distribution

Q(Mi|Mi−1).

2. Accept the new model with probability A(Mi|Mi−1), given by Equa-

tion (3.20), otherwise leave the model unchanged

• Allow the Markov chain to reach stationarity discarding some initial sam-

ples. This is the burn-in period. For example discardM1 . . .MI/2.

• Compute the expectation values from the MCMC sample {M I
2
+1 . . .MI}:

• 〈f〉 =
∑

M f(M)P (M|D) ≈ 2
I

∑I
i=I/2+1 f(Mi)

A(Mnew|Mold). The transition probability is then the product of these two prob-

abilities. Inserting this product into Equation (3.18) we obtain the following

equation for the acceptance probabilities:

A(Mnew|Mold)

A(Mold|Mnew)
=
P (D|Mnew)P (Mnew)Q(Mold|Mnew)

P (D|Mold)P (Mold)Q(Mnew|Mold)
(3.19)

for which a sufficient condition is:

A(Mnew|Mold) = min

{
P (D|Mnew)P (Mnew)Q(Mold|Mnew)

P (D|Mold)P (Mold)Q(Mnew|Mold)
, 1

}
(3.20)

From these previous derivations we can see that accepting a new configura-

tion Mnew with probability given by Equation (3.20) is the condition to satisfy

the Equation of detailed balance (3.18), which guarantees that the Markov chain

will converge to the desired posterior distribution of Equation (3.13). The Equa-

tion (3.20) is known as the Metropolis-Hastings acceptance criterion (Hastings,
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Figure 3.4: Metropolis Algorithm.

• Start with a initial structure M0

• Iterate for i = 1 . . . I

1. Obtain a new structure Mi from the proposal distribution

Q(Mi|Mi−1).

2. If the new model is not a DAG reject it and go back to the previous

step.

3. Accept the new model with probability A(Mi|Mi−1), given by Equa-

tion (3.21), otherwise leave the model unchanged

• Allow the Markov chain to reach stationarity discarding some initial sam-

ples. This is the burn-in period. For example discardM1 . . .MI/2.

• Compute the expectation values from the MCMC sample {M I
2
+1 . . .MI}:

• 〈f〉 =
∑

M f(M)P (M|D) ≈ 2
I

∑I
i=I/2+1 f(Mi)
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1970) which is a generalization of the Metropolis (Metropolis et al., 1953) al-

gorithm for proposal distributions Q which are not symmetric. For symmetric

proposal distributions Q Equation (3.20) can be rewritten as:

A(Mnew|Mold) = min

{
P (D|Mnew)P (Mnew)

P (D|Mold)P (Mold)
, 1

}
(3.21)

The MCMC is exact in the limit of an infinitely long Markov chain, if the

condition of detailed balance is satisfied and if the Markov chain is ergodic. In

practice a bad initialization can slow down the mixing and convergence of the

Markov chain. A simple test to check the convergence is to run MCMC with two

different initializations and plot the posterior probabilities of the edges against

each other. This test, however, is only a necessary condition but not sufficient.

The two simulations can reach the same meta-stable equilibrium which is different

from the true equilibrium. This test of convergence is discussed in more detail in

Section 3.2.2.4.

3.2.2.2 Standard MCMC

The standard MCMC scheme consists in proposing a new structure and accept-

ing the structure according to Equation (3.20). This algorithm is presented in

Figure 3.3. The action of proposing a new structure is to propose, at each in-

teraction, one of the basic operations of adding, removing or reversing an edge.

These operations are presented in Figure 3.5. As exemplified in Figure 3.5 some

of these basic operations can lead to networks that are not allowed due to the

presence of directed cyclic structures and these networks need to be discarded.

When computing the acceptance probability according to Equation (3.20) it is

necessary to properly calculate the Hastings factor, the ratio between the proposal

probabilities, since these are not always symmetric in this case. The asymmetry

is a consequence of the different neighbourhood sizes that each of the structures

associated with the proposal move can have. We define a neighbour structure as
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Figure 3.5: Standard MCMC. Standard MCMC moves. Here we present the three basic

operations that we use to propose a new structure in the standard MCMC. Given the top structure

we can propose the removal, the reversion or the addition of an edge. Left subfigure shows the

removal of an edge. Note that this operation never leads to invalid structures. The middle subfigure

shows the reversal of an edge. This operation can lead to invalid structures. The right subfigure

shows the addition of an edge. In this case the proposed structure is invalid since it is not a proper

DAG.

any valid DAG structure which can be reached from the current DAG structure

with one of the moves presented in Figure 3.5.

Figure 3.6 shows the example of one situation where the proposal probabilities

are not symmetric. If we define the number of graphs that are neighbours of the

actual structure as N (Mold) and the number of graphs that are neighbours of

the proposed graph as N (Mnew), the Hastings factor will be:

Q(Mnew|Mold)

Q(Mold|Mnew)
=

1
N (Mnew)

1
N (Mold)

=
N (Mold)

N (Mnew)
(3.22)

It is clear that for properly computing the Hastings factor it is necessary to

determine the number of all valid DAGs in the neighbourhoods of the two DAGs

involved in the proposal move. In order to avoid the necessity of determining

these neighbourhood sizes it is possible to modify the MCMC algorithm causing

the proposal probabilities to be symmetric. The modified algorithm proposes
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Figure 3.6: Example of non symmetric proposal probabilities. The left part of the
figure shows a BN and all its possible neighbours along with the operations that give rise to such
structures. The right part of the figure shows a proposed BN and its possible neighbours again
with the operations that give rise to these structures. Neighbours that are not proper BNs are
crossed out. The top large arrow shows the probability of proposing the new structure and the arrow
below shows the probability of returning from the proposed structure do the original structure. This
example show that the proposal probabilities using the operations of adding, reversing or removing
an edge are not always symmetric due to the possibility of different neighbourhood sizes.
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p M D

Figure 3.7: Order MCMC independence relationship. This figure shows the independence
relationship between the imposed ordering in the nodes, ≺, the BN,M and the data D. Therefore
the joint probability P (D,M,≺) can be written as P (D|M)P (M| ≺)P (≺).

graphs that are not proper DAGs and then reject these graphs on the basis of the

prior knowledge that they cannot be accepted. By doing this it is possible to use

Equation 3.21, the Metropolis criterion, instead of Equation 3.20, the Metropolis-

Hastings criterion. The MCMC algorithm for this case is presented in Figure 3.4.

Note that in the Metropolis-Hastings algorithm where it is necessary to properly

calculate the Hastings ratio, the invalid structures are not proposed. Conversely,

in the Metropolis algorithm, the one with symmetric proposal probabilities, the

invalid structures are effectively proposed and rejected on the basis of the prior

by the algorithm. This possibility to avoid the finding of all neighbours comes

at a price though. With this approach many more structures will be rejected,

making the acceptance rate decrease and slowing down the convergence of the

algorithm.

3.2.2.3 Order MCMC

The order MCMC algorithm was proposed by Friedman and Koller (2003). The

principal point of this approach is to focus the attention on a search space of node

orders instead of a search space of DAG structures as in the standard MCMC.

A given order, ≺, specifies that if Xi ∈ πM(Xj) then Xi ≺ Xj. This means

that the only nodes that are allowed to be parents of a node Xj are the ones

that precede Xj according to the given order ≺. Therefore, for a given order all

the nodes to the left of a node Xj can be parents of Xj, conversely the nodes

to the right are not permitted to be parents of Xj. With this approach, instead

of sampling networks structures given the data, the attention is turned to the

problem of sampling orders given the data. Given the independence relationship
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presented in Figure 3.7 we can calculate P (D| ≺) as:

P (D| ≺) =
P (D,≺)
P (≺)

(3.23)

=

∑
M∈M

P (D,≺,M)

P (≺)
(3.24)

=

∑
M∈M

P (D|M)P (M| ≺)P (≺)

P (≺)
(3.25)

=
∑

M∈M

P (D|M)P (M| ≺) (3.26)

The final sum over all the possibleM graphs is still exponentially large. The

key point is that by imposing an order on the nodes the choice of the families for

one node does not add constraints to the choice of families for another node. In

other words, because the nodes can only have families that are consistent with a

given order the possibility of directed cyclic networks is eliminated. Each node Xi

has k possible parent sets or families which are consistent with a given order≺ and

we represent such family as πM(Xi)k,≺. Each parent node Xj which is included

in the family πM(Xi)k,≺ follows the imposed ordering such that Xj ≺ Xi. We

can choose a graph M consistent with an order ≺ by choosing independently

a family πM(Xi)k,≺ for each node. Therefore, summing over all possible graphs

is equivalent to summing over all possible valid families. Considering that each

of the k families has a score ψ(Xi, πM(Xi)k,≺|D) and that the prior follows the

modularity property we can rewrite Equation (3.26) (Friedman and Koller, 2003)

as:

P (D| ≺) ∝
∑

M∈M

N∏

i

ρ(Xi, πM(Xi))ψ(Xi, πM(Xi)|D) (3.27)

=

N∏

i

∑

k

ρ(Xi, π(Xi)k,≺)ψ(Xi, π(Xi)k,≺|D) (3.28)

This result asserts that we can sum over all the networks which are consistent

with a given order, ≺, by summing the scores associated with each allowed family

for each node and then multiplying them.
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Figure 3.8: Order MCMC proposal move. The top figure presents the original order ≺old of
N nodes. The bottom figure shows the order obtained by using the flip operation where the nodes
Xj and Xk have their positions exchanged.

Now an MCMC approach is proposed as means to enable BNs consistent

with all n! possible orders over n nodes to be considered. Given an order ≺old

a new order ≺new is proposed from the proposal distribution Q(≺new | ≺old),

which is then accepted according to the Metropolis et al. (1953); Hastings (1970)

algorithm scheme with the following acceptance probability:

A(≺old | ≺new) = min

{
P (≺new |D)Q(≺new | ≺old)

P (≺old |D)Q(≺old | ≺new)
, 1

}
(3.29)

The proposal probability that is used in this thesis is a flip operation

Friedman and Koller (2003). This consists in choosing two nodes in an order

and then exchanging their positions in the order leaving all the other nodes un-

changed. An example of such a proposal is presented in Figure 3.8. In this

example the nodes Xj and Xk are exchanged in the original order, ≺old (top of

figure), giving rise to the new order ≺new (bottom of figure).

Whilst this proposal probability produces small steps on the space of orders

it is very efficient to compute. For instance if we propose a move from ≺old to

≺new where nodes Xj and Xk are flipped those terms in Equation (3.28) which

correspond to nodes that precede Xj or succeed Xk will not change. The only

parent sets that need to have their scores recomputed are the ones that change

according to the proposed order. This will include the parent sets for nodes

between Xj and Xk which have either Xj or Xk in their composition. For such

nodes the associated scores consistent with the actual ordering, ≺old, have to be
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subtracted and then the scores consistent with the new ordering, ≺new, have to

be added.

Order MCMC outputs a sample of node orders ≺1, . . . ,≺m which, if con-

vergence of the Markov chain has been reached, is a sample from the posterior

distribution over node orders P (≺ |D). The idea of is to use this sample of or-

derings to obtain a sample of DAGs. To this end for each sampled ordering ≺i a

DAG Mi is sampled out of the posterior distribution P (M| ≺,D). Thereby, as

conditioned on the ordering, for each network node its parent set can be sampled

independently with respect to its valid parent-sets in the ordering ≺i. One of the

known problems of the order MCMC is that if the prior over the orders P (M| ≺)

is chosen to be uniform then the prior over the structures P (M) will not be

uniform. Graphs that are consistent with more orders are more likely. Several

authors proposed corrections to order MCMC. One very recent and interesting

approach is presented in Eaton and Murphy (2007).

3.2.2.4 Accessing MCMC convergence

One critical point when using MCMC samplers is to know whether or not the

samples used for characterizing the distribution of interest are being sampled from

the correct distribution. There are various tools for determining the convergence

of MCMC samplers, see for example Cowles and Carlin (1996). In order to test

the convergence of the MCMC simulations we resort to a simple heuristic ap-

proach. When sampling networks structures the result of the MCMC simulation

is a matrix of posterior probabilities, P . Each entry pij of this matrix indicates

the marginal posterior probability of the existence of an edge between nodes Xi

and Xj. For accessing the MCMC’s convergence we run the simulation twice

from different initializations, obtaining two resulting posterior probability matri-

ces, P 1 and P 2. We produce then a scatter plot by plotting p1
ij against p2

ij. As

mentioned before this test is only a necessary but not a sufficient condition for
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Figure 3.9: Convergence test for MCMC simulations. We plot the marginal posterior

probabilities of the edges from two different simulation initializations. If the time t is infinite all the

posterior probabilities of the edges for both simulations are going to be the same as exemplified in

panel (a). If the time t is long enough we should expect a graph as in panel (b). If the simulations

have not properly converged yet the graph should appear as in panel (c). Note that even if the

graph looks like in panel (a), we only have information that the two simulations have reached the

same meta-stable pre-equilibrium, which is a necessary condition but not a sufficient condition for

MCMC convergence.

MCMC convergence.

3.2.3 Equivalence Classes of Bayesian Networks

Figure 3.10 shows four small distinct DAGs, which have the same skeleton but

differ in their edge directions. We can expand the joint probability for each of

these DAGs. Beginning from left to right, for the first DAG we have:

P (A,B,C) = P (C)P (A|C)P (B|C) (3.30)

For the 2nd DAG:

P (A,B,C) = P (A)P (C|A)P (B|C) (3.31)

= P (C)P (A|C)P (B|C)
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Figure 3.10: Elementary BNs. The top row shows four elementary BNs with the same skeleton

but different edge directions. If we expand the joint probability to each one of these networks we

can see that the first three, from left to right, are equivalent, being impossible to distinguish among

them on the basis of the data. They are said to be equivalent networks and are represented by the

CPDAG, which is presented in the bottom row.

For the 3th DAG:

P (A,B,C) = P (A|C)P (C|B)P (B) (3.32)

= P (C)P (A|C)P (B|C)

Finally for the 4th DAG:

P (A,B,C) = P (C|A,B)P (A)P (B) (3.33)

The expansion of the joint probability for the first three DAGs shows that they

are the same hence these three networks are said to be equivalent. Although the

first three graphs are different they only represent alternative ways of explaining

the same set of conditional independence relationships. Verma and Pearl (1991)

proves that two DAGs are equivalent if and only if they have the same skeleton

and the same set of v-structures. The skeleton of a DAG is the DAG with all

edge directions removed, in other words, it is a DAG converted to a completely

undirected graph. A v-structure is a configuration where two nodes are parents of
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a third node and these two parents have no connection between them. According

to Chickering (2002) a v-structure can be more precisely defined as:

• Given a set of n nodes.

• Select one triple of nodes (Xi, Xj, Xk) where (i, j, k) ∈ {1, . . . , n}.

• This will be a v-structure if and only if:

1. The DAG contains the directed edges Xi → Xj and Xk → Xj.

2. The DAG does not contain any edge connecting Xi and Xk

An equivalence class can be represented by a Partially Directed Acyclic Graph

(PDAG), which is a graph containing both directed and undirected edges. In a

PDAG every directed edge Xi −→ Xj denotes that all the DAGs in this equiv-

alence class contain the same edge. Conversely, the undirected edge Xi − Xj

means that some DAGs in this equivalence class contain the edge Xi −→ Xj and

some contains the edge in the opposite direction Xi ←− Xj. Equivalent BNs

can not be distinguished on the basis of the data, the consequence is that all the

edge directions that lead to equivalent classes must be discarded from the learned

network. So if we infer one of the first three DAGs in the top row of Figure 3.10

what we really know in light of the data is a Partially Directed Acyclic Graph,

PDAG, as represented in the bottom row of Figure 3.10.

The two scoring metrics that we use for scoring BNs (see Section 3.2.5) are

score-equivalent. This means that they assert the same score for distinct networks

that come from the same equivalence class. Because the result of our search algo-

rithm is a DAG it is necessary to transform this DAG to the so called completed

PDAG (CPDAG). This transformation from DAG to CPDAG is necessary since

all the networks contained in the same equivalence class of the found DAG have

the same score and, hence, they cannot be distinguished on the basis of their

scores. In this thesis we use the algorithm presented by Chickering (2002) and
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implemented by Grzegorczyk (2006) to efficiently obtain the CPDAG representa-

tion of the equivalence class from a given DAG.

3.2.4 Bayesian networks vs. causal networks

Although Bayesian networks are based on directed acyclic graphs (DAGs), it is

important to note that not all directed edges in a Bayesian network can be in-

terpreted causally. Like a Bayesian network, a causal network is mathematically

represented by a DAG. However, the edges in a causal network have a stricter

interpretation: the parents of a variable are its immediate causes. In the presenta-

tion of a causal network it is meaningful to make the causal Markov assumption:

given the values of a variable’s immediate causes, it is independent of its earlier

causes. Under this assumption, a causal network can be interpreted as a Bayesian

network in that it satisfies the corresponding Markov independencies. However,

the reverse does not hold. The DAG on which the Bayesian network model is

based just asserts a set of independence assumptions among the domain vari-

ables. More precisely, for each DAG we have that given a domain variable X and

parent nodes πM(X), X is independent of all its other ancestors. However, the

same set of independence assumptions can often be asserted by different (equiv-

alent) DAGs having the same skeleton but edges with opposite orientations, as

discussed above in Section 3.2.3. Consequently, not every edge can indicate a

causal relationship. The only way to interpret an edge causally is if we have no

hidden variables and if all DAGs that are equivalent to each other (i.e. assert

the same set of independence assumptions) agree on an edge direction, that is

if the respective edge is directed in the corresponding CPDAG representation.

In Section 3.4 we will discuss ways to increase the number of directed edges in

equivalence classes by active interventions; in this way the number of putative

causal interactions can be increased. However, a critical assumption made in this

approach is the absence of any latent or hidden variables. If this assumption is
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violated, the observation that two variables depend on each other probabilisti-

cally can be explained by the existence of an unobserved common cause. Since

we are usually unable to rule out the existence of latent factors, we interpret

the existence of directed edges in CPDAGs as putative causal interactions, which

ultimately require an experimental validation. For a more detailed treatment of

this subject, see Cooper and Glymour (1999); Pearl (2000).

3.2.5 Scoring metrics for Bayesian Networks

In Section 3.2.2 we discussed that the integral in Equation (3.7) is analytically

tractable when the data is complete and the prior P (q|M) and the likelihood

P (D|q,M) satisfy certain regularity conditions as discussed in Heckerman (1994,

1995). In the next two sections we will discuss these scoring metrics.

3.2.5.1 Discrete Multinomial Bayesian scoring metric

The Bayesian Dirichlet likelihood equivalent scoring metric is widely known as

the BDe score. In this score each variable is assumed to be associated with a

multinomial distribution. It can only deal with discretized variables. Although

the discretization can lead to some loss of information the BDe score is very

flexible as it is able to model non-linear relationships. If we assume that the

variable is discretized into r levels2 we can write:

P (Xi = k|πM(Xi) = j) = θijk (3.34)

where θijk is the probability that the domain variable Xi takes on its k-th value

k = 1, . . . , r given the j-th parent configuration of πM(Xi) (j = 1, . . . , ri). Note

that ri is the possible number of parent configurations and it is defined by the

cardinalities of πM(Xi), ri = r|πM(Xi)|. Considering a data set D where Nijk is

2We assume that each node has the same number of discretized values to keep the notation
simple. However, note that it is possible to relax this assumption.
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the number of observations in D in which variable Xi has the value k and the

configuration of πM(Xi) is j we can write the likelihood as:

P (D|θ,M) =
n∏

i=1

ri∏

j=1

r∏

k=1

θ
Nijk

ijk (3.35)

We can rewrite Equation (3.7) as:

P (D|M) =

∫ n∏

i=1

ri∏

j=1

r∏

k=1

θ
Nijk

ijk P (θ|M)dθ (3.36)

The following assumptions are necessary:

• Global parameter independence: The parameters of each variable are

independent of the parameters of the other variables.

P (θ|M) =
n∏

i=1

P (θi|M) (3.37)

• Local parameter independence: The parameters corresponding to each

instance of the parents of a variable are independent of each other.

P (θi|M) =

ri∏

j=1

P (θij|M) (3.38)

• Parameter modularity: If we have two different networks M1 and M2

with positive prior probabilities, and if the node Xi has the same parents

in both networks then for each configuration j of its parents:

P (θij|M1) = P (θij|M2) (3.39)

• Complete data: There are no missing data or hidden variables.

With these assumptions we can rewrite the parameter prior:

P (θ|M) =

n∏

i=1

P (θi|πM(Xi)) =

n∏

i=1

ri∏

j=1

P (θij1, . . . , θijr) (3.40)

Now Equation (3.36) is combined with (3.40) and by using the independence of

terms the integral is rearranged, which yields:

P (D|M) =
n∏

i=1

ri∏

j=1

∫ ( r∏

k=1

θ
Nijk

ijk

)
P (θij1, . . . , θijr)d(θij1, . . . , θijr) (3.41)



3.2. Bayesian Networks 49

The Dirichlet distribution is the conjugate prior to the Multinomial distribution

and Heckerman et al. (1995) show that if we assume the prior distribution over

parameters to be a Dirichlet we can find a closed form solution to Equation (3.41).

The Dirichlet prior is given by:

P (θij1, . . . , θijr) =

r∏

k=1

θ
αijk−1

ijk

(
Γ (
∑r

k=1 αijk)∏r
k=1 Γ (αijk)

)
(3.42)

where the αijk are unknown hyperparameters and Γ(.) is the Gamma function

defined as:

Γ(x) ≡
∫ ∞

0

ux−1e−udu, x > 0. (3.43)

Substituting the Dirichlet prior on Equation (3.41) Cooper and Herskovits

(1992) show that the closed form solution to Equation (3.41) is given by:

P (D|M) =

n∏

i=1

ri∏

j=1

Γ(αij)

Γ(Nij + αij)

r∏

k=1

Γ(Nijk + αijk)

Γ(αijk)
(3.44)

where Nij =
∑r

k=1Nijk and αij =
∑r

k=1 αijk.

Buntine (1991) shows that the following choice of hyperparameters:

αijk =
α

rrj

(3.45)

with α > 0 leads to score equivalence on BDe scoring scheme. As discussed

in Section 3.2.3 equivalent networks are networks that although having different

edges with different orientation cannot be distinguished in light of the data. See

Figure 3.10 for examples of equivalent networks.

In our simulations using the BDe score we followed Buntine (1991) and always

set α = 1 which leads to a vague prior over the parameters since it produces

relatively low hyperparameters αijk. The hyperparameters can be interpreted as

the number of imaginary observations in which Xi = k and πM(Xi) = j.

Following Equation (3.11) we can write the marginal likelihood of Equa-

tion (3.44) as a local score:

ψ(Xi, πM(Xi)|D) =

ri∏

j=1

Γ(αij)

Γ(Nij + αij)

r∏

k=1

Γ(Nijk + αijk)

Γ(αijk)
(3.46)
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where, again, ψ(Xi, πM(Xi)|D) is the score of the structure formed by node Xi

and their parents πM(Xi) given the data D.

In summary, having observed some data D and having a model M we can

calculate the marginal likelihood P (D|M) by integrating out the parameters ac-

cording to Equation (3.44). These scores are referred as BDe scores.

3.2.5.2 Continuous Bayesian Gaussian scoring metric

The continuous Bayesian Gaussian likelihood equivalent scoring metric is known

as the BGe score. Here we present this scoring metric as it is described by

Geiger and Heckerman (1994). In this case each variable is assumed to be asso-

ciated with a Gaussian distribution. Each variable Xi has a mean value E[Xi]

which depends on the values of its parent variables πM(Xi) = (X1, . . . , Xj). The

distribution of Xi is given by:

Xi ∼ N

(
mi +

n∑

j=1

bij(Xj −mj), 1/vi

)
(3.47)

where mi is the unconditional mean of Xi, 1/vi is its conditional variance and

bij coefficients represent the strength of the dependencies between Xi and Xj

variables. Note that if bij = 0 there is no influence from variable Xj upon Xi.

Conversely if bij 6= 0 there is an influence fromXj uponXi. Hence, if bij 6= 0, j < i

we can conclude that the edge Xj → Xi does exist.

The precision matrix W of the joint multivariate Gaussian distribution over

the n domain variables can be computed using the coefficients bij and the con-

ditional variances 1/vi. In order to calculate W a recursive formula is applied.

Assume that W (i) denotes the i × i upper left submatrix of W , ~bi denotes the

column vector (b1,i, . . . , bi−1,i) and ~b′i denotes the transposed vector ~bi.

W (i+ 1) =



W (i) +

~bi+1
~b′i+1

vi+1
−~bi+1

vi+1

−~b′i+1

vi+1

1
vi+1



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for i > 0 and W (1) = 1
v1

.

Using this recursive formula W (n) is the precision matrix for the joint Gaus-

sian distribution of variables X1, . . . , Xn. The inverse of the precision matrix is

the covariance matrix, Σ = W−1. If we have defined the unconditional mean

vector as m = (m1, . . . , mn)′ then the joint Gaussian distribution is given by:

(X1, . . . , Xn) ∼ N(m,Σ). Thus, it is shown above how a multivariate Gaussian

distribution can be interpreted as a Gaussian belief network.

The main steps taken by Geiger and Heckerman (1994) which similarly to the

BDe scores lead to a scoring scheme for Gaussian networks are presented here.

Assumption 1: the database D is a random sample from a multivariate

Gaussian distribution with unknown means ~m and unknown precision matrix W .

Assumption 2: all the databases are complete. There are no missing data

or hidden variables.

Assumption 3: the prior distribution over the unknown parameter ~m is a

Gaussian distribution with mean vector ~µ0 and precision matrix νW with ν > 0.

Furthermore, the matrix W is Whishart distributed with α > n + 1 degrees of

freedom and precision matrix T0, denoted w(α, T0) and defined as:

w(α, T0) = c(n, α)|T0|
α
2 |W |α−n−1

2 e−
1
2
tr(T0W ) (3.48)

where |.| and tr(.) are respectively the determinant and the trace of the matrix.

The factors c(n, α) are given by:

c(n, α) =

(
2

αn
2 π

n(n−1)
4

n∏

i=1

Γ

(
α + 1− i

2

))−1

(3.49)

Given a random sample ~x1, . . . , ~xl it follows that the conditional distribution

of ~m given W is a multivariate Gaussian distribution with mean vector ~µn and

precision matrix (ν + l)W where

~µl =
ν~µ0 + lx̄l

ν + l
x̄l =

1

l

l∑

i=1

~Xi (3.50)
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and the marginal of W is w(α+ l, Tl), where Tl is given by:

Tl = T0 + Sl +
νl

ν + l
(~µ0 − x̄l)(~µ0 − x̄l)

′ (3.51)

Sl =
l∑

i=1

( ~Xi − x̄l)( ~Xi − x̄l)
′ (3.52)

where x̄l is the sample mean and Sl is the sample variance of the database.

Note that ν, ~µ0, α and T0 are unknown hyperparameters that have to be

specified in advance. We will discuss how to set these hyperparameters later.

Afterwards Geiger and Heckerman (1994) show that the assumption of a normal-

Wishart prior is sufficient for deriving the score for a complete Bayesian network

denoted here by MC . By complete Bayesian network the authors designate net-

works with as many edges as possible, that is, bij 6= 0 for all i < j. The score for

such networks is given by:

P (D|MC) = (2π)−nm/2

(
ν

ν +m

)n/2
c(n, α)

c(n, α +m)
|T0|

α
2 |Tm|−

α+m
2 (3.53)

With further two assumptions:

Parameter independence: Unknown parameters of the local probability

distributions (Equation 3.47) are independent.

Parameter modularity: The prior distribution of the parameters of these

local probability distributions depends on the parent variables only.

Geiger and Heckerman (1994) show that it is possible to derive a score for any

DAG:

P (D|M) =
n∏

i=1

P (DXiπM(Xi)|MC)

P (DπM(Xi)|MC)
(3.54)

where DπM(Xi) and DXiπM(Xi) is the data set D restricted to the variables in

πM(Xi) and to the variables in Xi ∪ πM(Xi) respectively. This score is referred

to as the BGe score.

Following Equation (3.11) we can write the marginal likelihood of Equa-

tion (3.54) as a local score:

ψ(Xi, πM(Xi)|D) =
P (DXiπM(Xi)|MC)

P (DπM(Xi)|MC)
(3.55)
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Figure 3.11: Dynamic Bayesian Network. The network to the left is not a proper DAG,
the two genes interact with each other and have feedback loops. Considering delays between these
interactions, it is possible to imagine this network unfolded in time where interactions within any
time slice t are not permitted. The result is a proper DAG as the network represented on the right.

where, again, ψ(Xi, πM(Xi)|D) is the score of the structure formed by node Xi

and their parents πM(Xi) given the data D.

Geiger and Heckerman (1994) discuss a heuristic method for defining T0 and

µ0. The authors suggest that the user should specify a Gaussian network accord-

ing to their knowledge. As an example suppose a Gaussian Bayesian network

without any edge between the nodes and where each variable has a standard

Gaussian distribution, N(0, 1). It is possible to use the parameters that define

such a network (mi, bij, 1/vi) to obtain reasonable prior parameters:

~µ0 = ~m (3.56)

T0 =

(
ν(α− n− 1)

ν + 1

)
Σ (3.57)

The parameter ν > 0 is the equivalent sample size for ~m and the parameter

α > n + 1 is the equivalent sample size for matrix T0. The higher these values

are set, the more prior knowledge is implied through the prior network.

3.3 Dynamic Bayesian Networks

The previously mentioned BNs have some shortcomings. One important short-

coming is that it is impossible to model feedback loops, which are known to be

present in real biological networks. Also when applying standard MCMC meth-

ods it is necessary to check the acyclicity of proposed structures; this checking of
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acyclicity is one of the bottlenecks of MCMC simulations. One way to address

these problems is to consider Dynamic Bayesian Networks (DBNs).

Consider the left structure in Figure 3.11, where two genes interact with each

other via feedback loops. Note that this structure is not a valid Bayesian network

as it violates the acyclicity constraint. When we unfold the network in the left

panel of Figure 3.11 in time, as represented in the right panel of the same figure,

we obtain a proper DAG and hence a valid BN again, the so-called Dynamic

Bayesian Network (DBN). For more details about DBNs, see Friedman et al.

(1998); Murphy and Milan (1999) and Husmeier (2003). We want to restrict the

number of parameters to ensure they can be properly inferred from the data. For

this reason, we model the dynamic process as a homogeneous Markov chain, where

the transition probabilities between adjacent time slices are time-invariant. Intra-

slice edges are not allowed since they would represent instantaneous ‘time-less’

interactions. Note that due to the direction of the arrow of time, the symmetry

of equivalence classes is broken: the reversal of an edge would imply that an

effect is preceding its cause, which is impossible. Summarizing, with DBNs we

solve three shortcomings of static BNs: it is possible to model feedback loops,

the acyclicity of the graph is automatically guaranteed by construction, and the

symmetries within equivalence classes are broken, thereby removing any intrinsic

ambiguities. Note, however, that the intrinsic assumption of DBNs is that the

data have been generated from a homogeneous Markov chain, which may not hold

in practice.

In practice when applying DBNs we only need to modify Equation 3.1 in order

to incorporate the first order Markov assumption, which implies that a node Xi(t)

at time t has parents πM(Xi)(t− 1) at time t− 1:

P (X1, ..., Xn) =

n∏

i=1

P (Xi(t)|XπM(Xi)(t− 1)) (3.58)

where n is the total number of nodes. The application of DBNs with either BDe

or BGe scores is straightforward.
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3.4 Bayesian Networks with external interventions

Nowadays molecular biology has different techniques for producing interventions

in biological systems, for instance, knocking genes down with RNA interference

or transposon mutagenesis. The consequence is that the components of the sys-

tem which are targeted by the interventions are no longer subject to the internal

dynamics of the system under investigation. The components of the biological

system can be either activated (up-regulated) or inhibited (down-regulated) and

under this external intervention their values are no longer stochastic. The inter-

vened components are not subject to the internal dynamics of the system, hence

their values are deterministic. However, the other components which are not in-

tervened are influenced by these deterministic values. Therefore, interventions

are very useful to break the symmetries within the equivalence classes and conse-

quently to the discovery of putative causal relationships. For a discussion about

equivalence classes see Section 3.2.3 and for a discussion about putative causal

relationships see Section 3.2.4.

In order to incorporate the interventions under the BN framework two small

modifications are necessary.

First for observational data the likelihood P (D|M) as defined in Equa-

tion (3.11) is:

P (D|M) =
n∏

i

ψ(Xi, πM(Xi)|D)

and for a mixture of observational and interventional data this equation is mod-

ified to:

P (D|M) =

n∏

i

ψ(Xi, πM(Xi)| D
Xi /∈I

) (3.59)

where I is the set of interventions and D
Xi /∈I

denotes the data set where data

points are removed for the cases where the node Xi is intervened with. Effectively

Equation (3.59) says that the measurements of a node Xi under intervention are

removed from the computation of the score.
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Figure 3.12: Elementary interaction patterns. Left: Direct interaction between two nodes.

Centre left: Regulation of two nodes by a common regulator. Centre right: Signalling chain via an

intermediate regulator. Right: Coregulation of a node by two regulators (v-structure).

The second necessary modification is related to the definition of equivalence

classes. Tian and Pearl (2001) define the Transition Sequence equivalent net-

works (TS-equivalent). Two networksM1 andM2 are TS-equivalent if and only

if they have the same skeleton, the same set of v-structures and the same set of

parents for all manipulated variables. All edges connected with an intervened

node become directed when the concept of TS-equivalence is applied. Therefore,

new v-structures are formed and further edges become directed. In order to ob-

tain the TS-equivalent DAG the procedure presented by Wernisch and Pournara

(2004) is applied. For each intervened node in the network two dummy nodes

are added each with one directed edge pointing from the dummy node to the

intervened node. The new DAG now with the dummy nodes added is converted

to a CPDAG (for a discussion about CPDAGs see Section 3.2.3). Finally the

dummy nodes are removed and we have the DAG TS-equivalent graph.

3.5 Other Methods used to Infer Genetic Regula-

tory Networks

3.5.1 Relevance Networks

The method of relevance networks (RNs), proposed by Butte and Kohane (2000,

2003), is based on pairwise association scores. These scores are computed for all
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pairs of nodes from the signals associated with the nodes. The authors propose the

Mutual Information (MI) and the Pearson correlation as appropriate association

scores.

The Pearson correlation coefficients are computed from continuous data and

they can capture only relationships that are close to linear. If x = (x1, . . . , xk)

and y = (y1, . . . , yk) are the k-dimensional observations of variables x and y the

Pearson correlation coefficient between these variables is given by:

corr(x, y) =
1
k

∑k
i=1(xi − x)(yi − y)(√

1
k

∑k
i=1(xi − x)2

)(√
1
k

∑k
i=1(yi − y)2

) (3.60)

where x and y are the empirical means of x and y respectively.

The MI scores are computed from discretized variables. The need of dis-

cretization can be seen as a disadvantage since it generally leads to some loss of

information. On the other hand the MI scores can handle non-linear dependen-

cies between the variables and this is an advantage over the scores which cannot

handle non-linear dependencies. Considering that we have variables x and y

discretized in r levels the MI between these variables can be defined as:

MI(x, y) =

r∑

i=1

r∑

j=1

P (x = i, y = j) log
P (x = i, y = j)

P (x = i)P (y = j)
(3.61)

After having computed the scores (Pearson correlations or MI) for all possible

pairs of variables in the domain some threshold is defined and the interactions

that are above that threshold are preserved to compose the inferred network.

Note that with either score the inferred network is intrinsically undirected due to

the fact that corr(x, y) =corr(y, x) and MI(x, y) =MI(y, x).

The RN approach either with the Pearson correlation coefficients scores or

with the MI scores is straightforward to implement, and its computational costs

are comparatively low. The main disadvantage of RNs, however, is that the infer-

ence of an interaction between two nodes is not done in the context of the whole

set of variables. Consequently, we do not expect RNs to be particularly powerful
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in distinguishing between direct (Figure 3.12(a)) and indirect (Figure 3.12(b,c))

interactions.

3.5.2 Graphical Gaussian Models

Graphical Gaussian models (GGMs) are undirected probabilistic graphical mod-

els that allow the identification of conditional independence relations among the

nodes under the assumption of a multivariate Gaussian distribution of the data.

The inference of GGMs is based on a (stable) estimation of the covariance matrix

of this distribution. The element Cik of the covariance matrix C is related to

the correlation coefficient between nodes Xi and Xk. A high correlation coeffi-

cient between two nodes may indicate a direct interaction (Figure 3.12(a)), an

indirect interaction (Figure 3.12(c)), or a joint regulation by a common (possi-

bly unknown) factor (Figure 3.12(b)). However, only the direct interactions are

of interest to the construction of a regulatory network. The strengths of these

direct interactions are measured by the partial correlation coefficient ρik, which

describes the correlation between nodes Xi and Xk conditional on all the other

nodes in the network. From the theory of normal distributions it is known that

the matrix ρ of partial correlation coefficients ρik is related to the inverse of the

covariance matrix C, C−1 (with elements C−1
ik ) (Edwards, 2000):

ρik = −


 C−1

ik√
C−1

ii C
−1
kk


 (3.62)

To infer a GGM, one typically employs the following procedure. From the given

data, the empirical covariance matrix is computed, inverted, and the partial cor-

relations ρik are computed from Equation (3.62). The distribution of |ρik| is in-

spected, and edges (i, k) corresponding to significantly small values of |ρik| are re-

moved from the graph. The critical step in the application of this procedure is the

stable estimation of the covariance matrix and its inverse. Schäfer and Strimmer

(2005a) have extensively explored alternative regularization methods based on
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bagging in order to estimate the covariance matrix. In a more recent study

Schäfer and Strimmer (2005b) proposed a novel covariance matrix estimator reg-

ularized by a shrinkage approach which outperforms the previous methods based

on bagging. Hence, we use the shrinkage estimator throughout this thesis.

In Schäfer and Strimmer (2005b) the authors present a novel regularized

shrinkage covariance estimator which is based on the concept of shrinkage and

exploits the Ledoit Wolf lemma (Ledoit and Wolf, 2004) for analytic calculation

of the optimal shrinkage. This novel shrinkage estimator Ĉ for the covariance

matrix C is guaranteed to be non-singular, so that it can be inverted to obtain

a new estimator ρ̂ = (Ĉ)−1 for the matrix ρ. The new shrinkage estimator is

based on the following theoretical idea. It is known that the unconstrained maxi-

mum likelihood estimator ĈML for the covariance matrix C has a high variance if

the number of variables exceeds the number of observations. On the other hand

there are many other possible constrained estimators that have a certain bias

but a lower variance. The shrinkage approach combines the maximum likelihood

estimator with one of these constrained estimators ĈT in a weighted average:

Ĉ = (1− λ) · ĈML + λ · ĈT , (3.63)

where λ ∈ [0, 1] denotes the shrinkage intensity. The authors show that this

regularized estimator outperforms both single estimators ĈML and ĈT in terms

of accuracy and statistical efficiency. Furthermore they show that the Ledoit Wolf

lemma can be used to estimate the optimal shrinkage intensity λ?. The optimal

shrinkage intensity is obtained in a data driven fashion by explicitly minimizing

a risk function. The risk function is the expected loss and the expected loss

in this case is the mean squared error (MSE). The authors present a variety of

possible covariance matrix targets, ĈT . However, they recommend and use in

their experiments the “diagonal, unequal variance” as the constrained estimator

or target. This target is defined in Equation 3.64. One very interesting and useful

property about the chosen target is that when combined with the unconstrained
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maximum likelihood estimator according to Equation (3.63) the resulting shrunk

covariance matrix is automatically positive definite. The elements of this specific

target are given by:

ĈTij
=





ĈMLii
if i = j

0 if i 6= j

(3.64)

and for this target covariance matrix they show that the optimal estimated shrink-

age estimator, λ̂?, is given by:

λ̂? =

∑

i6=j

V̂ar(ĈMLij
)

∑

i6=j

Ĉ2
MLij

(3.65)

where
∑

i6=j V̂ar(ĈMLij
) and ĈMLii

are unbiased estimates obtained from the data.



Chapter 4

Benchmark data and evaluation

criteria

4.1 Introduction

Despite the large amount of postgenomic data generated from new experiments

very little is known about the biological structures which originate these data.

The limited knowledge about the structures from which the data is generated

makes the assessment of the method’s performance very difficult. It is always

a good practice to assess the methods both with real and simulated data. For

the real data it is very difficult to have the knowledge about the true structure

but this type of data is very important because ultimately one is interested in

discovering structures from real data. The simulated data has the advantage that

the true structure is fully known but the main disadvantage is that this data is

often not very similar to the real data and the assessment of the performance

based solely in simulated data may be biased.

In this chapter we present the real data from flow cytometry experiments that

we use in most of our simulations. We also present different ways of generating

both observational and interventional simulated data. This chapter concludes

61
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Figure 4.1: Raf signalling pathway. The graph shows the currently accepted signalling

network, taken from Sachs et al. (2005). Nodes represent proteins, edges represent interactions,

and arrows indicate the direction of signal transduction. In the interventional studies, the following

nodes were targeted. Activations: PKA and PKC. Inhibitions: PIP2, AKT, PKC and MEK.

by presenting methods for assessing the performance of the reverse engineering

methods.

4.2 Cytometry data

The Raf signalling network is depicted in Figure 4.1. Raf is a critical signalling

protein involved in regulating cellular proliferation in human immune system cells.

The deregulation of the Raf pathway can lead to carcinogenesis, and the pathway

has therefore been extensively studied in the literature (e.g. Sachs et al. (2005);

Dougherty et al. (2005)).

Sachs et al. (2005) have applied intracellular multicolour flow cytometry ex-

periments to measure the expression levels of the 11 proteins that compose the

network depicted in Figure 4.1. The proteins that had their expression measured

are: RAF, MEK, PLCg, PIP2, PIP3, ERK, AKT, PKA, PKC, P38 and JNK. Data

were collected after a series of stimulatory cues and inhibitory interventions tar-

geting specific proteins in the Raf pathway. The complete original data set is

composed of 9 subsets, each related to one intervention. Table 4.1 presents the

list of subsets and interventions that were applied to obtain the original data.

Each of the subsets of data is composed of 600 measurements. In total we have



4.2. Cytometry data 63

Data Set Intervention

1 none

2 none

3 AKT inhibited

4 PKC inhibited

5 PIP2 inhibited

6 MEK inhibited

7 AKT activated

8 PKC activated

9 PKA activated

Table 4.1: Original flow cytometry data set. Table showing the interventions that are

present in the original data set from Sachs et al. (2005). Each data set is composed by 600 samples.

In total the original data set has 5400 data points from which 1200 are observational data and 4200

are interventional.

5400 data points from which 1200 are observational and 4200 are interventional.

According to personal correspondence with the authors they have not used the

subset of data where AKT was activated (number 7 in Table 4.1) therefore, in all

our simulations we have also excluded this data set.

Flow cytometry allows the simultaneous measurement of the protein expres-

sion levels in thousands of individual cells. Sachs et al. (2005) have shown that for

such a large data set, it is possible to reverse engineer a network that is very sim-

ilar to the known gold standard Raf signalling network. However, for many other

types of current postgenomic data, including microarray data, such abundance of

data is not available. We therefore sampled the data of Sachs et al. (2005) down

to 100 data points; this is a representative figure for the typical number of differ-

ent experimental conditions in current microarray experiments. We averaged the

results over 5 independent samples. We used the same sample size and the same

number of replications for the synthetic data generation, which will be explained

soon. The 5 observational data sets with 100 samples each were sampled from the

the observational data. The observational data are the subsets of data which were
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Data Points Interventions

1 ∼ 16 No Intervention

17 ∼ 30 AKT inhibited

31 ∼ 44 PKC inhibited

45 ∼ 58 PIP2 inhibited

59 ∼ 72 MEK inhibited

73 ∼ 86 PKC activated

87 ∼ 100 PKA activated

Table 4.2: Interventional data set. Table showing how one interventional data set is built.

not intervened (subsets numbers 1 and 2 according to Table 4.1). Each of the

5 interventional data were obtained by sampling 16 unperturbed measurements

and further 14 measurements for each of the 6 available interventions. Table 4.2

shows how each of the 5 intervened data sets is built.

The real flow cytometry data was preprocessed before being analysed. For

interventions we occasionally observed a clear discrepancy between expected and

observed concentrations for intervened nodes, e.g. some inhibitions hadn’t led to

low concentrations while some activations hadn’t led to high concentrations. The

missing changes in concentrations are not surprising, as most of the experimental

interventions affected the activity of their targets instead of their concentrations.

Correspondingly, for intervened nodes the measured concentrations do not reflect

the strength of the true activity of the corresponding node (Karen Sachs, personal

communication). Therefore, we decided to replace in each real interventional

cytometric data set the values of the activated (inhibited) nodes by the maximal

(minimal) concentration of that node measured under observational conditions.

Afterwards, we used quantile-normalisation to normalise each real interventional

data set. That is for each of the 11 variables (proteins) we replaced the 100

measured values by quantiles of the standard normal distribution N(0, 1). More

precisely, for each of the 11 variables (proteins) the j-th highest measured value

was replaced by the
(

j
100

)
-quantile of the standard normal distribution, whereby
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Figure 4.2: Modified Raf signalling pathway. The graph shows the modified Raf network

where some of the edges were removed in order to increase the number of v-structures present in

the network. From the original Raf network (Figure 4.1) the edges PKC → RAF, PKC → PKA, PKA

→ MEK and PLCg → PIP2 were removed, increasing the number of v-structures in the network.

the ranks of identical measured values were averaged.

4.2.1 The simulated v-structure network

When comparing different reverse engineering methods in Chapter 5 it is useful

to have an idea about changes in the topology of the network. Therefore, we

slightly modified the topology of the original network. With these modifications

we have added v-structures to the network. Four edges were removed from the

original topology and we have then 4 new v-structures in this new network. This

so called v-structure network is presented in Figure 4.2. We generated synthetic

data both from the original network and from the modified network, as discussed

in the next section.

4.3 Simulating data from genetic regulatory net-

works

The main aim of this thesis is to investigate the performance and propose new

algorithms for the learning of GRNs. Learning a GRN is in fact the learning of a

network structure which indicates the dependence and independence relationships

between variables that compose the network. The usual data used for this learn-
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ing process are expression profiles from microarray experiments although other

sources of data like protein expressions from flow cytometry experiments can also

be used. The real biological expression data can come from different experimental

settings. One of the differences is related to how the data is sampled; it can be

either static or time series data. The static data denomination is used to refer to

data in which one sample is collected after the biological system is submitted to

some external challenge. The time series data denomination refers to data where

after the biological system is challenged with some external condition a series of

samples are collected, hence, we have a time ordering of the samples. Another

difference about the nature of the collected data is related to whether the bio-

logical system is intervened or not. Observational data refers to data which are

obtained from systems that are being passively ‘observed’, which means, they are

not being externally modified. On the other hand interventional data are data

in which some of the components of the system being examined are ‘forced’. By

‘forced’ we mean that some of these components are either externally inhibited or

externally activated, using e.g. gene knock-out experiments or over-expressions.

One problem is that in general the true network structure which generates the

data is not known and therefore, it is very difficult to evaluate the performance

of the learning algorithms. In order to be able to evaluate the algorithms’ perfor-

mance we resort to simulated data. The advantage of simulated data is that the

network structure is known, making it possible to assess the learning algorithms’

performance. Often simulated data are drawn from the multivariate Gaussian

distribution while biological data rarely are Gaussian distributed. Another prob-

lem are the intricacies of the regulation by complex cis-regulatory modules, which

makes the data far from being linearly dependent (Pournara, 2005). A model to

simulate GRNs must be simple, possible to parametrize, and yet produce data

that resemble biologically realistic data. With the advantages and shortcomings

of the simulated data in mind we use two different ways of generating simu-
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lated data. We generate data from a multivariate Gaussian distribution and we

generate data using Netbuilder (Yuh et al., 1998, 2001), which is closer to real

biological data. We explain both synthetic ways of generating observational and

intervened data briefly in the next sections.

4.3.1 Gaussian simulated data

A simple synthetic way of generating data from a given structure is to sample

them from a linear-Gaussian distribution. The random variableXi (which denotes

the expression of node Xi) is distributed according to

Xi ∼ N

(∑

k

wikXk, σ
2

)
(4.1)

where N(.) denotes the Normal distribution, the sum extends over all parents of

node Xi, and Xk represents both a node and the random variable associated with

it. The interaction strength between nodes Xi and Xk is wik 6= 0. If wik = 0

then node Xk is not a parent of node Xi. The value of σ2 can be interpreted as

being the dynamic noise. Low values of σ2 indicate a deterministic data set, that

is, the value of the child node is almost completely determined by the value of

its parents. Conversely high values of σ2 indicate a very noisy data set. Given a

network structure, in order to generate data with this method it is necessary to

topologically sort the nodes first. This is necessary to guarantee that the parent

nodes have their values computed before their child nodes.

From the linear Gaussian distribution we created 5 observational data sets and

5 interventional data sets. In Equation (4.1) we set the standard deviation to σ =

0.1, sampled the interaction strength |wik| from the uniform distribution over the

interval [0.5, 2], and randomly varied the sign of wik. The interventional data sets

are built in the same way as the interventional flow cytometry data sets, and Table

4.2 presents their composition. For simulating (noisy) interventions, we replace

the conditional distribution (4.1) by the following unconditional distributions.
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For inhibitions, we sample Xi from a zero-mean Gaussian distribution, N(0, σ2).

For activations, we sample Xi from the tails of the empirical distribution of Xi,

beyond the 2.5 and the 97.5 percentiles.

4.3.2 Netbuilder simulated data

A more realistic simulation of data typical of signals measured in molecular biol-

ogy is the following approach. The expression of a gene is controlled by the inter-

action of various transcription factors, which may have an inhibitory or activating

influence. Ignoring time delays inherent in transcription and translation, these

interactions can be compared to enzyme-substrate reactions in organic chem-

istry. From chemical kinetics it is known that the concentrations of the molecules

involved in these reactions can be described by a system of ordinary differen-

tial equations (ODEs) (Atkins, 1986). Assuming equilibrium and adopting a

steady-state approximation, it is possible to derive a set of closed-form equa-

tions that describe the product concentrations as nonlinear (sigmoidal) functions

of combinations of substrates. However, instead of solving the steady-state ap-

proximation to ODEs explicitly, as pursued in Pournara (2005), we approximate

the solution with a qualitatively equivalent combination of multiplications and

sums of sigmoidal transfer functions. The resulting sigma-pi formalism has been

implemented in the software package Netbuilder (Yuh et al., 1998, 2001).

4.3.2.1 Enzyme substrate approximation

As mentioned above the sigma-pi formalism implemented in Netbuilder is based

in enzyme-substrate reactions from organic chemistry. Here we present the main

ideas of how to go from the enzyme-substrate reactions to the sigma-pi formalism.

To model the dynamics of the processes inside the cell, it is necessary to remember

some concepts from chemical kinetics. As an example, consider the first order
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reaction where a reactant A is converted into a product B. It is represented by:

A
k

� ������� � B

The velocity, or rate of the reaction according with the law of mass action, u is

given by (Atkins, 1986):

u =
d[B]

dt
= −d[A]

dt
= k[A] (4.2)

Applying the law of conservation of mass:

[A]0 = [A] + [B] (4.3)

[A] = [A]0 − [B]

u =
d[B]

dt
= −d[A]

dt
= k[A] = k([A0]− [B]) (4.4)

where [A] and [B] are concentrations at a time t, [A]0 is the initial concentration,

and k is the rate constant. If we have a reversible reaction like,

A
k1

��������������������	�

k−1

B

where k1 is the forward rate constant and k−1 is the backward rate constant, then

the reaction rate is expressed as:

u =
d[B]

dt
= k1[A]− k−1[B] (4.5)

Applying the law of conservation of mass:

[A]0 = [A] + [B] (4.6)

[A] = [A]0 − [B]

d[B]

dt
= k1([A]0 − [B])− k−1[B]

= k1[A]0 − [B](k1 + k−1)

Knowing how to calculate the reaction’s rate to first order reactions, a con-

cept that was developed to describe small substrate-enzyme systems is used to
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model the process of a protein (TF) binding to a TF binding site and starting

transcription. Note that as this concept was developed for small molecules, and

the systems that we are investigating are much larger (TF, TF binding sites and

transcription), the transcriptional and translational time delays are being ignored.

Michaelis and Menten (1913) proposed a way to model how enzymes act as

catalysers speeding up the conversion of a substrate into a product. They showed

that as a concentration of a substrate increases, the rate of the reaction increases

only up to a certain extent. They proposed the following mechanism for an

enzyme substract reaction:

S + E
k1

��������������������	�

k−1

ES
k2

� ��� � E + P

where E is the enzyme, S is the substrate, P is the product and k1 and k2 are the

association rates for the enzyme-substrate complex, ES, and the product respec-

tively, and k−1 is the dissociation rate constant for the enzyme substract complex.

Assuming that a steady-state will be reached, and then the concentration of ES

will be constant, Briggs and Haldane (1925) derived the Michaelis and Mentem

equation as follows:

d[ES]

dt
= k1[E][S]− k−1[ES]− k2[ES] (4.7)

Applying the law of conservation of mass:

[E]0 = [ES] + [E] (4.8)

[E] = [E]0 − [ES]

then, assuming a steady-state is reached:

d[ES]

dt
= k1([E0]− [ES])[S]− k−1[ES]− k2[ES] = 0 (4.9)

and it follows that:

[ES] =
k1[E0][S]

k−1 + k2 + k1[S]
(4.10)
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so, the rate of reaction is given by:

u = k2[ES] =
k2k1[E0][S]

k−1 + k2 + k1[S]
=

k2[E0][S]
k−1+k2

k1
+ [S]

(4.11)

Setting V = k2[E0], where V is the limiting rate constant and KM = k−1+k2

k1
,

where KM is the Michaelis constant, the equation can be rewritten as:

u =
V [S]

KM + [S]
(4.12)

The above derivations are for one enzyme and one substrate. When we use

this concepts to model a TF and a TF binding site we should remember that TFs

can act in various different forms to start transcription. Only as an example let us

consider that there are three TFs: Ta, Tb and Tc. Some hypothetical possibilities

are:

1. Ta alone gives rise to a transcription rate of a certain fraction of the maxi-

mum.

2. Tb alone doesn’t initiate any transcription.

3. Ta and Tb together give rise to transcription at the maximum.

4. Ta and Tb and Tc repress the gene transcription.

In these few examples above we can see that the combined effect of different TFs

is not necessarily the sum of their individual effects. We take an example from

Pournara (2005) where two transcription factors are considered, one activating,

Ta, and the other inhibiting, Ti, controlling the transcription of gene G. The

system is described as:

Ti

k31
� ��������� �� ��������� �

k13

G
k12

� ��������� �� ��������� �

k21

Ta

Then the concentration of the mRNA of gene G is given by:

[G] =
k12[Ta]k31

k21k31 + k12[Ta]k31 + k13[Ti]k21

(4.13)
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Another possibility is the existence of more than one binding site, giving origin

to what is called enzyme cooperativity. In this case the rate of reaction does not

follow the Michaelis Menten Equation (4.12), but instead follows the equation

proposed by Hill (1910), the so-called Hill equation, where a sigmoidal character-

istic is evident:

u =
V [S]h

Kh
0.5 + [S]h

(4.14)

where Kh
0.5 is the Michaelis constant only when h = 1 and h is the Hill coefficient

which gives an upper limit for the number of binding sites.

Summarizing, we started following a simple model of enzyme-substrate inter-

action (ignoring time delays). The use of chemical kinetics leads us to a set of

ODEs describing the biophysical system. Assuming a steady state of this sys-

tem, it is possible to derive a set of equations that describe the concentration

of products as non-linear functions of combination of substrates. The resulting

equations are a combination of multiplications and sums of sigmoidals. Thus in-

stead of solving the steady-state approximation to ODEs explicitly, it is possible

to model the system using the sigma-pi formalism, making the modelling much

simpler with less parameters. This sigma-pi formalism has been implemented in

the software package Netbuilder (Yuh et al., 1998, 2001). In the next section we

explain how we simulate data using the Netbuilder software package.

4.3.2.2 Generating data with Netbuilder

The main idea of Netbuilder is instead of solving the steady-state approximation

to ODEs explicitly we approximate them with a qualitatively equivalent combi-

nation of multiplications and sums of sigmoidal transfer functions. In Netbuilder

pathways are represented as series of linked modules. Each module has specific

input-output characteristics. As long as these characteristics conform to experi-

mental observations, the exact transformations occurring inside the modules can
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be safely neglected. The result is a significant reduction in the number of param-

eters. Thus, Netbuilder aims to provide a way of quantifying intuitively drawn

diagrams, and making experimentalists hypotheses testable.

Netbuilder is a very flexible graphical tool to simulate biological systems. Here

we explain the main components from Netbuilder that we have used in our data

generation process. The principal interacting component in Netbuilder is called

a “gene”. The Netbuilder’s gene has a user specified number of inputs and one

output. The input(s) mimic the cis-regulatory domain where TF(s) can bind to

initiate transcription and the output represents the protein concentration of the

gene. The network topology is constructed by connecting the output of Netbuilder

genes as inputs to other Netbuilder genes in the network. Genes that have no

parents have their values sampled from the Uniform distribution over the interval

[0, 1].

If one gene has more than one parent Netbuilder offers different default con-

tinuous logical gates in order to combine the signal from the parents. In contrast

with the classical logical gates, which are defined only for binary values, the con-

tinuous logical gates implemented in Netbuilder are defined for values on the

interval [0, 1]. That means that the logical operations can assume any value on

this interval. From now on when we refer to logical gates we are referring to the

continuous logical gates implemented in Netbuilder. The default continuous log-

ical gates AND and OR can be combined to produce other logical relationships as

for example, XOR. Note that the gate AND mimics the situation where all the TFs

are necessary to initiate transcription and the gate OR represents the situation

where the presence of any TF is sufficient to the initiation of transcription.

In Netbuilder the value of the output of a gene is a deterministic function

of its parents, but real biological systems are known to be noisy. Therefore,

we add noise to Netbuilder genes in order to make the generated data more

similar to real measured data. We add noise by using the sum function which is
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implemented in Netbuilder and which permits a given value to be added to any

other Netbuilder component. The value to be added is sampled from a normal

distribution: ε ∼ N (0, σ2). In this manner we can control the level of noise by

controlling the variance, σ2.

Here we present some small examples in order to clarify how Netbuilder works

in practice. Suppose we have a gene with only one parent. Let us assume that

the parent value (concentration) is [x] the value of its output, [y], will then be:

[y] =
[x]

[x] + 1
+ ε (4.15)

Now let us consider that the gene has two parents with concentrations [x1]

and [x2], which are combined through an AND gate. The output in this case is:

[y] =

(
[x1]

[x1] + 1

)(
[x2]

[x2] + 1

)
+ ε (4.16)

Considering the same situation as before but now with the gate OR we have

the output as:

[y] =
[x1]

[x1] + 1
+

[(
[x2]

[x2] + 1

)(
1− [x1]

[x1] + 1

)]
+ ε (4.17)

Note that when using Netbuilder it is not necessary to produce the equations

as presented here in the examples. Netbuilder is completely graphical and the

equations are implicitly built through the selected components of the network.

Although we presented situations with at the maximum two parents Netbuilder

allows the user to define more than two. In all our simulations we used OR gates

as the relationship between the parents and we used at maximum three parents.

In order to simulate the Raf network with Netbuilder we linked the 11 genes

with the same structure as we have in the network presented in Sachs et al. (2005),

see Figure 4.1. All the links between genes represent activations and all the

interactions between TFs were set to OR regulation. A gene with an OR port

is highly expressed if any of the TFs present in the input are high. For data
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generation we sampled values from a uniform distribution, Uniform ∼ (0, 1), for

all root nodes. Root nodes are nodes without any parents. These values are then

propagated to the child nodes where they will be processed and then propagated

further down in the network hierarchy until they reach the leaf nodes. Leaf nodes

are nodes without any children. Every node that is not a root node has a sum

function added to its output. This sum represents that the output of a node

is subject to some additive noise. The values to be added as noise are sampled

from a normal distribution N ∼ (0, σ2). Using this method for adding dynamical

noise we then generated data sets with three different noise levels: low, medium

and high; corresponding to the following standard deviations: σ = 0.01, σ = 0.1

and σ = 0.3. Following this procedure we generated 5 observational data sets

(with 100 data points each) for each noise level; these are called the Netbuilder

observational data.

In order to generate interventional data with Netbuilder we proceed as follows.

When an inhibition is simulated, the inhibited gene has its output forced to be

zero independent of its inputs. After being forced to be zero the noise is added,

thus the output of such an inhibited node will be only the added noise. In the

case where we want to activate a gene we set its value to one, again independent

of its input. The output of an activated gene will be 1 plus the noise. The noise

added to the nodes subject to inhibitions or activations was always sampled from

N ∼ (0, σ2) with σ = 0.01.

We generated 5 interventional data sets for each noise level. These are called

the Netbuilder interventional data. Each interventional data set is composed of

a total of 100 data points where some of the genes were intervened; see Table 4.1

for a detailed explanation of how the interventional data set is built. As in the

linear Gaussian data our interventions try to mimic the ones that were used in

Sachs et al. (2005).
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Figure 4.3: Data summary. This figure presents a summary of all the data sets available. The

abbreviations ‘Obs’ and ‘Int’ mean respectively data sets that are purely observational and data sets

that are interventional. Each ‘Obs’ and ‘Int’ is composed by 5 data sets with 100 data points each.

See the main text and the Table 4.1 for an explanation about how the interventional data sets are

built. For the Gaussian data sets we always set σ = 0.1.

4.4 Evaluation metrics

All the methods evaluated in this thesis to reverse engineer networks produce

as a result a matrix of scores associated with edges in the network. If we have

n nodes in a network, the resulting matrix of scores S has dimension n × n

and each entry sij ∈ [0, 1] represents the score which indicates the strength of

the relationship between nodes Xi and Xj. These scores are of different nature:

correlation coefficients for RNs, partial correlation coefficients for GGMs, and

marginal posterior probabilities for BNs.

As a means to assess the algorithms’ performance it is necessary to compare it

with some known network. We call this known network the true network T where

the entries tij ∈ {0, 1} indicate the presence and the absence of the connection

between nodes Xi and Xj. In order to compare our resulting network S with the

true network T , we transform it to an adjacency matrix, A(ε), by imposing a

threshold ε. Each entry of the adjacency matrix is defined by:

aij =





1, sij ≥ ε

0, sij < ε
(4.18)

Having these two matrices, T and A(ε), we can classify each of the edges into

categories. An edge can be classified as: true positive (TP), false positive (FP),



4.4. Evaluation metrics 77

tij aij Category

0 0 TN

0 1 FP

1 0 FN

1 1 TP

Table 4.3: Classification of edges. This table shows how an edge is classified according to

the values in the true matrix (tij) and in the adjacency matrix (aij). An entry that is equal to zero

means that the edge from node Xi to node Xj is absent, conversely an entry that is equal to one

means that the edge is present.

true negative (TN) or false negative (FN). TP is an edge which is present in A(ε)

and in T . FP is an edge which is present in A(ε) but is absent in T . TN is a

non-edge which is present in A(ε) and in T . FN is a non-edge which is present

in A(ε) but is absent in T . Table 4.3 shows a summary of how the edges are

classified into these categories.

The algorithms that we use for inferring the networks can result in graphs

that are directed, undirected or partially directed. In order to assess the per-

formance of these methods we apply two criteria. The first approach, referred

to as the undirected graph evaluation (UGE), discards the information about the

edge directions altogether. To this end, the original and learned networks are

replaced by their skeletons, where the skeleton is defined as the network in which

two nodes are connected by an undirected edge whenever they are connected by

any type of edge. The second approach, referred to as the directed graph evalu-

ation (DGE), compares the predicted network with the original directed graph.

A predicted undirected edge is interpreted as the superposition of two directed

edges, pointing in opposite directions. Figure 4.4 presents an example how the

TPs and FPs are counted according to the UGE criteria and Figure 4.5 shows

the equivalent example for the DGE criteria.

As already discussed the application of the algorithms to learning network
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Figure 4.4: UGE scoring. This schematic example shows how the undirected graph evaluation

UGE scoring criteria works. The top of the figure presents the true edge which according to this

criterion is transformed into the undirected edge presented immediately below. The bottom of the

figure shows the possible inferred directed edges and how they are transformed into undirected edges.

For each of the potentially inferred edges the true positives (TP) and false positive (FP) counts are

presented.

BA
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Figure 4.5: DGE Scoring. This schematic example shows how the directed graph evaluation

DGE scoring criteria works. The top of the figure shows the true edge. The bottom of the figure

shows the potentially inferred edges and their respective true positives (TP) and false positive (FP)

counts.
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structures leads to a matrix of scores S which defines a ranking of the edges. Given

a threshold ε we can obtain an adjacency matrix A(ε) which enable us to count

the number of TPs, FPs, TNs and FNs. The receiver operator characteristics

(ROC) curve is obtained by varying the threshold, ε, and plotting the relative

number of TP edges against the relative number of FP edges for each of the

thresholds.

The relative number of TP edges or sensitivity is defined by:

TP

TP + FN
(4.19)

The relative number of FP edges or 1−specificity is defined by:

FP

FP + TN
(4.20)

where the symbols TP, FP, TN and FN represent respectively the counts of the

number of TPs, FPs, TNs and FNs.

Ideally we would like to evaluate the methods on the basis of the whole ROC

curves. When too many results are being compared, unfortunately, this approach

would not allow us to concisely summarize the findings. Hence, when there are

many methods to compare we use the area under the ROC curve (AUC) in-

stead. The AUC is a measure of the area under the ROC curve and summarizes

the results for all the thresholds. In general bigger area values represent better

predictors. However, this is not always the case. Note that in practice one is

interested in low FP rates and therefore a curve with a rapid increase of the TP

rate at the left part can be more advantageous than one with very low increase

even if the total area of the first is lower than the total are of the second. Fig-

ure 4.6 present some ROC curve examples. Figure 4.6(a) shows the situation of

a random predictor; in this case the AUC has a value around 0.5. Figure 4.6(b)

shows the extreme case where the predictor is perfect; in this case all the TPs

are recovered without any FP prediction, the respective AUC value is 1 in this



80 Chapter 4. Benchmark data and evaluation criteria

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 T

ru
e

% False

 

 

(a)

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 T

ru
e

% False

 

 

(b)

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 T

ru
e

% False

 

 

(c)

Figure 4.6: ROC curve examples. Here we show ROC curves examples. The left panel show

a completely random predictor. The central panel shows the example of a perfect predictor, in this

case all TPs are recovered without any FP and AUC= 1. The right panel shows a realistic example

where some FPs are recovered for a certain number of recovered TPs.

case. The last example in Figure 4.6(c) is more realistic; it shows the case where

a certain numbers of TPs are recovered for a smaller number of FPs.

While the AUC value does not require the commitment to the adoption of any

(arbitrary) decision criterion, it does not lead to a specific network prediction.

It also ignores the fact that, in practice, one is particularly interested in the

performance for low FP rates. To address this shortcoming we define a second

performance criterion based on the selection of a particular threshold on the edge

scores, from which a specific network prediction is obtained. We fix the threshold

such that it leads to FP=5. The evaluation is based on the TP counts we obtain

when having this threshold fixed. This guarantees that we compare the methods

at the same operation point on the ROC curve. Note that for different network

sizes one may want to choose a different value for the fixed FP. As we are always

using the same network size we kept this value at 5.



Chapter 5

Comparative evaluation of reverse

engineering methods

This chapter describes the results of a collaboration study with Marco Grzegorczyk

and Dirk Husmeier, published in Werhli et al. (2006).

Traditional approaches to systems biology are based on a mathematical de-

scription of putative pathways in terms of coupled differential equations with

the objective to obtain a deeper understanding of the exact nature of the reg-

ulatory circuits and their regulation mechanisms. However, the availability

of high-throughput postgenomic data has recently prompted substantial inter-

est in reverse engineering the networks and pathways in an inferential way

from the data themselves. One of the first seminal papers promoting this ap-

proach aimed to learn gene regulatory networks in Saccharomyces cerevisiae

from gene expression profiles with Bayesian networks (Friedman et al., 2000).

Since then, several authors have applied Bayesian networks to infer regulatory

networks from postgenomic data of different nature (for instance, Imoto et al.

(2003a); Nariai et al. (2005)). Various alternative methods, like relevance net-

works (Butte and Kohane, 2003) (see Section 3.5.1) and graphical Gaussian mod-

81
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els (Schäfer and Strimmer, 2005a) (see Section 3.5.2) have been proposed and

applied to the inference of gene regulatory networks from gene expression data.

These methods are of enormous importance in the emerging field of genetical ge-

nomics (Bing and Hoeschele, 2005), where QTL marker analysis is first applied

to identify putative sets of regulatory genes, from which then a more refined

regulatory network is to be reverse engineered.

One of the first major evaluation studies was carried out by Smith et al.

(2002). The authors simulated a complex biological system at different lev-

els of organization, involving behaviour, neural anatomy, and gene expression

of songbirds. They then tried to infer the structure of the known true genetic

network from the simulated gene expression data with Bayesian networks. In a

related study, Husmeier (2003) evaluated the accuracy of reverse engineering gene

regulatory networks with Bayesian networks from data simulated from realistic

molecular biological pathways, where the latter were modelled with a system of

coupled differential equations. This network was also used in an earlier study by

Zak et al. (2001), who investigated the inference accuracy of deterministic linear

and log-linear models. While all three papers shed some light on the accuracy of

reconstructing regulatory networks, they only investigated a particular inference

method and do not include a cross-method comparison.

In order to address this shortcoming, an extensive evaluation study was car-

ried out by Pournara, 2005. The author compared graphical Gaussian models

and Bayesian networks on synthetic data generated from networks with random

structures and different gene regulation mechanisms, where the latter differed

with respect to the cooperative or competitive interactions between transcrip-

tion factors regulating the same gene. The approach we present in this chapter

is motivated by Pournara (2005) and complements this work in four important

respects. First, the learning algorithm for Bayesian networks has been improved.

In order to capture the uncertainty inherent in learning from sparse and noisy
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data, we sample network structures from the posterior distribution with MCMC.

This approach is methodologically more consistent than the optimization scheme

applied in Pournara (2005). For the practical realization, we apply a sampling

strategy based on node orders (Friedman and Koller, 2003) (for details see Sec-

tion 3.2.2.3), which achieves faster mixing and convergence than conventional

sampling in the space of network structures (Madigan and York, 1995). Sec-

ond, we use improved inference methods for graphical Gaussian models. The ap-

proach adopted in Pournara (2005) is based on the PC algorithm of Spirtes et al.

(2001). In the present work, we apply a more recent algorithm proposed by

Schäfer and Strimmer (2005b), which the authors have developed after exten-

sive experimentation with methods for stabilizing covariance matrix estimations

(Schäfer and Strimmer, 2005a). For more details about Graphical Gaussian mod-

els see Section 3.5.2. Third, we include another reverse engineering method in our

comparison: the approach of relevance networks proposed by Butte and Kohane

(2000, 2003), for details see Section 3.5.1. This approach is appealing due to its

low computational costs, and we investigate to what extent the results can be im-

proved with the more complex alternative algorithms mentioned above. Fourth,

rather than evaluating the performance on randomly generated network struc-

tures, we base our comparison on the Raf pathway, a critical protein signalling

network involved in regulating cellular proliferation in human immune system

cells (Sachs et al., 2005). Our evaluation exploits four types of data, distinguish-

ing between passive observations and active interventions, and using data from

both laboratory experiments as well as synthetic simulations.

5.1 Methods

In this study we compare three methods:

• Relevance networks (RNs), for details see Section 3.5.1.
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• Graphical Gaussian models (GGMs), for details see Section 3.5.2.

• Bayesian Networks (BNs), for details see Section 3.2.

5.1.1 Observational versus interventional data

Modern molecular biology possesses an extensive inventory of techniques for tar-

geted interventions, for instance, knocking genes down with RNA interference or

transposon mutagenesis. The consequence is that targeted nodes are no longer

subject to the internal dynamics of the system under investigation, and the respec-

tive terms have to be excluded from the expansion in Equation (3.1) in Section

3.2. This may break the symmetries within the equivalence classes; while equiva-

lent structures have equal posterior probabilities under passive observations, this

may no longer holds when subjecting the system to external interventions. Con-

sequently, edge directions that are ambiguous under passive observations can be

retrieved, and this forms the basis for learning putative causal interactions; see

Section 3.4 for further details.

5.1.2 Comparison between the methods

GGMs and BNs potentially distinguish between direct and indirect interactions

and therefore provide a more powerful modelling approach than RNs. BNs have

the potential to present a more refined picture of interactions among nodes than

GGMs due to the directed nature of the edges. For instance, the graph on Fig-

ure 3.12(d) represents a marginal independence of the parental nodes, A and

B. However, conditional on measurements obtained for the child, node C, the

parental nodes are dependent. The equivalent undirected graph contains an extra

edge between the parents, and this so-called moralization (Heckerman, 1999) de-

teriorates the resolution of the independence relations. In addition, directed edges

present putative indications of causal interactions (Heckerman, 1999) and provide
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a straightforward model for accommodating interventional data. Finally, the in-

ference procedure we adopt for learning BNs is score-based and more complex

than the constraint-based approach adopted for GGMs (see Pournara (2005) for a

comprehensive exposition of the difference between these two learning paradigms).

The latter approach aims to ‘explain away’ an observed correlation between two

nodes by testing whether this correlation is not the effect of a regulation by other

nodes. To this end, the partial correlations are computed, that is, the correla-

tions conditional on all the other nodes in the system. This approach does not

take into account whether network configurations that explain away these corre-

lations are truly present. The score-based approach is in principle more powerful

in that it marginalizes over all possible network configurations. However, the

respective integral is analytically intractable, and the numerical approximation

with MCMC is computationally expensive. In fact, the robust estimation of a

rank-deficient covariance matrix proposed by Schäfer and Strimmer (2005b) turns

constraint-based inference with GGMs into an extremely fast and attractive ap-

proach. Hence, the objective of the present study is to investigate whether the

application of the more complex score-based approach to learning BNs is of any

practical benefit for reverse engineering gene regulatory networks.

5.2 Data

We base the evaluation of the three reverse engineering methods (RNs, GGMs

and BNs) on the Raf signalling network, depicted in Figure 4.1. We use four types

of data for our evaluation. First, we distinguish between passive observations and

active interventions. Second, we use both real laboratory data as well as synthetic

simulations. This combination of data is based on the following rationale. For

simulated data, the true structure of the regulatory network is known; this allows

us, in principle, to faithfully evaluate the prediction results. However, the model
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used for data-generation is a simplification of real molecular-biological processes,

and this might lead to systematic deviations and a biased evaluation. The latter

shortcoming is addressed by using real laboratory data. In this case, however,

we ultimately do not know the true signalling network; the current gold-standard

might be disputed in light of future experimental findings. By combining both

approaches, we are likely to obtain a more reliable picture of the performance

of the competing methods. For a detailed description of all the data sets see

Chapter 4.

5.3 Simulations

As opposed to GGMs, RNs and BNs do not require the assumption of a Gaussian

distribution. However, deviations from the Gaussian incur an information loss as

a consequence of data discretization (mutual information for RNs, BDe score for

BNs). Alternatively, when avoiding the discretization with the heteroscedastic

regression approach of Imoto et al. (2003b), the integral in Equation (3.7) be-

comes intractable and has to be approximated (using, e.g., the Laplace method).

It would obviously be interesting to evaluate the merits and shortcomings of these

nonlinear approaches. However, the main objective of the present study is the

comparison of three modelling paradigms: (1) pairwise association scores indepen-

dent of all other nodes (RNs), (2) undirected graphical models with constraint-

based inference (GGMs), and (3) directed graphical models with score-based in-

ference (BNs). To avoid the perturbing influence of additional decision factors,

e.g. related to data discretization, and to enable a fair comparison with GGMs,

we use the Gaussian assumption throughout.

Applying the Gaussian assumption to BNs, with the normal-Wishart distribu-

tion as a conjugate prior on the parameters, the integral in Equation (3.7) has a

closed-form solution, referred to as the BGe score. For details see Section 3.2.5.2
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and Geiger and Heckerman (1994). The score depends on various hyperparame-

ters, which can be interpreted as pseudocounts from a prior network. To make

the prior probability over parameters – P (q|M) in Equation (3.7) – as uninfor-

mative as possible, we set the prior network to a completely unconnected graph

with an equivalent sample size as small as possible subject to the constraint that

the covariance matrix is non-singular. For the prior over network structures –

P (M) in Equation (3.6) – we followed Friedman and Koller (2003) and chose a

distribution that is uniform over parent cardinalities (see Section 3.2.2) subject

to a fan-in restriction of 3. We carried out MCMC over node orders, as pro-

posed in Friedman and Koller (2003) and presented in Section 3.2.2.3. To test

for convergence, each MCMC run was repeated from two independent initializa-

tions. Consistency in the marginal posterior probabilities of the edges was taken

as indication of sufficient convergence. This method for testing convergence is ex-

plained in more detail in Section 3.2.2.4. We found that a burn-in period of 20,000

steps was usually sufficient, and followed this up with a sampling period of 80,000

steps, keeping samples in intervals of 200 MCMC steps. For RNs, we computed

the pairwise node associations with the Pearson correlation, see Section 3.5.1. We

computed the covariance matrix in GGMs with the shrinkage approach proposed

by Schäfer and Strimmer (2005b), choosing a diagonal matrix as the shrinkage

target; for more details see Section 3.5.2. Note that this target corresponds to the

empty prior network; hence the effect of shrinkage is equivalent to the selected

prior for the computation of the BGe score in BNs. The practical computations

were carried out with the software provided by Schäfer and Strimmer (2005b).

The MCMC simulations were carried out with our own MATLAB c© programs.
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5.4 Evaluation

While the true network is a directed graph, our reconstruction methods may lead

to undirected, directed, or partially directed graphs. To assess the performance

of these methods, we apply two different criteria, namely UGE and DGE evalua-

tion. These two criteria were explained in detail in Section 4.4. Each of the three

reverse engineering methods compared in our study leads to a matrix of scores

associated with the edges in a network. These scores are of different nature:

correlation coefficients for RNs, partial correlation coefficients for GGMs, and

marginal posterior probabilities for BNs. However, all three scores define a rank-

ing of the edges. This ranking defines a receiver operator characteristics (ROC)

curve, where the relative number of true positive (TP) edges is plotted against

the relative number of false positive (FP) edges. The ROC curve is explained in

more detail in Section 4.4.

In order to evaluate our results we use two evaluation metrics: the area under

the ROC curve (AUC) and the number of recovered true positives (TP) for a

fixed number of 5 false positives (FP). These two criteria are also explained in

Section 4.4.

5.5 Results

We present the results visually in terms of scatter plots and bargraphs. A com-

plete set of tables, including p-values, is available in Appendix B.1. Also in

Appendix B.1 it is explained how the p-values are obtained.

Figures 5.1 and 5.2 (scatter and histograms plots respectively) compare the

performance of BNs and GGMs on the synthetic Gaussian data and the protein

concentrations from the cytometry experiment. The two panels on the top of both

figures refer to the Gaussian data. Without interventions, BNs and GGMs achieve

a similar performance in terms of both AUC and TP scores. Interventions lead to
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Figure 5.1: GGMs versus BNs on Gaussian and cytometry data. Scatterplots compar-

ing the performance of GGMs (vertical axis) with BNs (horizontal axis). The diagonal line represents

equal performance. Symbols above that line indicate that GGMs outperform BNs. Conversely, sym-

bols below that line point to a better performance of BNs over GGMs. Each subfigure compares the

results obtained from two different data types, using only passive observations (empty symbols) and

including active interventions (filled symbols). Two different evaluation criteria have been applied,

based on directed graphs (DGE, represented by triangles) and their undirected skeletons (UGE, rep-

resented by circles). The four panels refer to different data and scoring criteria. Top: Gaussian

data, AUC score (left) and TP counts (right). Bottom: Cytometry data, AUC score (left) and TP

counts (right).
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Figure 5.2: GGMs versus BNs on Gaussian and cytometry data histograms. His-

tograms showing the average AUC scores and TP counts for BNs (filled bars) and GGMs (empty

bars). The error bars are the standard deviation measured over the 5 different data sets. The codes

under the histograms indicate the type of evaluation (UGE versus DGE) and whether observational

(Obs) or interventional (Int) data have been used. Top: Gaussian data, AUC score (left) and TP

counts (right). Bottom: Cytometry data, AUC score (left) and TP counts (right).
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Figure 5.3: GGMs versus BNs on data simulated with Netbuilder. This figure

compares the performance of GGMs and BNs on the synthetic data generated with Netbuilder. The

columns refer to different standard deviations of the additive Gaussian noise. Left column: σ = 0.01.

Centre column: σ = 0.1. Right column: σ = 0.3. The two rows refer to different scoring criteria,

discussed in Section 5.4. Top row: AUC score. Bottom row: TP count. The subfigures in the six

panels show scatterplots of GGM scores plotted against BN scores; a detailed explanation of the

symbols is given in the caption of Figure 5.1.
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Figure 5.4: GGMs versus BNs on data simulated with Netbuilder. This figure

compares the performance of GGMs and BNs on the synthetic data generated with Netbuilder. The

columns refer to different standard deviations of the additive Gaussian noise. Left column: σ = 0.01.

Centre column: σ = 0.1. Right column: σ = 0.3. The two rows show histograms with average AUC

scores and TP counts for BNs (filled bars) and GGMs (empty bars); see the caption of Figure 5.2

for further explanations. In each panel, the two rows refer to different scoring criteria, discussed in

Section 5.4. Top row: AUC score. Bottom row: TP count.
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Figure 5.5: GGMs and BNs versus RNs. This figure compares the performance of GGMs and

BNs (vertical axis) with RNs (horizontal axis). The columns refer to different data sets. Left column:

Gaussian data. Centre column: Data generated with Netbuilder, subject to additive Gaussian noise

with σ = 0.1. Right column: Cytometry data. The two rows refer to different scoring criteria,

discussed in Section 5.4. Top row: AUC score. Bottom row: TP count. The symbols of the six

scatterplots are explained in the caption of Figure 5.1. The colours refer to different comparisons.

Red: BNs versus RNs. Blue: GGMs versus RNs.



94 Chapter 5. Comparative evaluation of reverse engineering methods

UGE Obs UGE Int DGE Obs DGE Int
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
U

C

Gaussian Generated Data − AUC

 

 

BN
GGM
RN

(a)

UGE Obs UGE Int DGE Obs DGE Int
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
U

C

Netbuilder Data σ=0.1 − AUC

 

 

BN
GGM
RN

(b)

UGE Obs UGE Int DGE Obs DGE Int
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
U

C

Real Data − AUC

 

 

BN
GGM
RN

(c)

UGE Obs UGE Int DGE Obs DGE Int
0

2

4

6

8

10

12

14

16

18

20

T
P

 C
ou

nt
s,

 F
P

=
5

Gaussian Data − TP

 

 

BN
GGM
RN

(d)

UGE Obs UGE Int DGE Obs DGE Int
0

2

4

6

8

10

12

14

16

18

20

T
P

 C
ou

nt
s,

 F
P

=
5

Netbuilder data σ=0.1 − TP

 

 

BN
GGM
RN

(e)

UGE Obs UGE Int DGE Obs DGE Int
0

2

4

6

8

10

12

14

16

18

20

T
P

 C
ou

nt
s,

 F
P

=
5

Real Data − TP

 

 

BN
GGM
RN

(f)

Figure 5.6: Cross-data comparison between BNs, GGMs and RNs. The histograms

show the average AUC scores and TP counts for BNs (black bars), GGMs (grey bars) and RNs

(white bars). The codes under the histograms indicate the type of evaluation (UGE versus DGE)

and whether observational (Obs) or interventional (Int) data have been used. The columns refer to

different data sets. Left column: Gaussian data. Centre column: Data generated with Netbuilder,

subject to additive Gaussian noise with σ = 0.1. Right column: Cytometry data. The two rows

refer to different scoring criteria, discussed in Section 5.4. Top row: AUC score. Bottom row: TP

count.
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improved predictions with BNs. As a consequence of interventions, the number

of correctly predicted undirected edges increases slightly from 15.8 to 18.5; this is

not significant, though (p = 0.097). However, the number of correctly predicted

directed edges shows a significant increase from 4.9 to 18.4 (p < 10−4). On

the intervened data, BNs outperform GGMs, and this improvement is significant

when the edge directions are taken into account (AUC: p = 0.0002, TP: p =

0.0005).

The two panels on the bottom of Figures 5.1 and 5.2 summarize the results

obtained for the cytometry data. Without interventions, GGMs and BNs show a

similar performance. As a consequence of interventions, the performance of BNs

improves, but less substantially than for the Gaussian data. For instance, the

number of correctly predicted directed edges increases from 3.3 to 6.9, which is

significant (p = 0.013). With interventions, BNs tend to outperform GGMs. This

improvement is only significant for the DGE-TP score, though (p = 0.007); while

the UGE-AUC score for BNs is consistently better than for GGMs, its p-value of

0.055 is above the standard significance threshold.

To obtain a deeper understanding of the models’ performance, we applied

them to the nonlinear simulated data (Netbuilder) with different noise levels.

The results are shown in Figures 5.3 and 5.4 (scatter and histograms plots respec-

tively). When comparing the performance of BNs and GGMs on observational

data, we observe the following trend. For low noise levels, GGMs slightly out-

perform BNs, although this difference is only significant for the DGE-TP score

(p = 0.008); all other p-values are above 0.05. When increasing the noise level, the

situation is reversed. BNs outperform GGMs, and the differences are significant

for all scores except for DGE-TP (UGE-AUC: p = 0.025, DGE-AUC: p = 0.029,

UGE-TP: p = 0.016, DGE-TP: p = 0.067). For large noise levels, GGMs and

BNs show a similar performance, without a significant difference in any score.

Interventions lead to an improvement in the performance of BNs when taking



96 Chapter 5. Comparative evaluation of reverse engineering methods

the edge direction into account. The improvement is significant in both scores,

DGE-TP and DGE-AUC, for all noise levels, with p < 0.002. The improvement

is most pronounced for the medium noise level, where the number of correctly

predicted edges increases from 7.2 to 17.3 (p � 10−4). A comparison between

GGMs and BNs reveals that with interventions, BNs consistently outperform

GGMs when taking the edge direction into account; all differences are significant

with p < 0.005.

Figures 5.5 and 5.6 (scatter and histograms plots respectively) compare the

performance of BNs and GGMs with RNs. On the Gaussian observational data,

both GGMs and BNs consistently outperform RNs. However, there is no signifi-

cant difference in the performance of the methods on the nonlinear simulated data

(Netbuilder) and the cytoflow protein concentrations when no interventions are

used; in fact, the DGE-TP scores for BNs are actually worse than those obtained

with RNs (see next section for a discussion). With interventions, GGMs outper-

form RNs on the cytometry data (UGE: p = 0.001, DGE: p = 0.001), and they

obtain higher TP counts than RNs on the nonlinear simulated data (p < 0.0002

for both UGE and DGE). BNs consistently outperform RNs on all data sets with

respect to all scoring schemes when interventions are used (p < 0.001).

In Figures 5.7, 5.8 and 5.9 we show the results that we obtain when executing

all the simulations using the synthetic Gaussian and Netbuilder data generated

from the v-structure network (Section 4.2.1). Since undirected graphs intrinsically

cannot represent v-structures, as discussed in Section 5.1, we would expect an

increase in the performance of BNs relative to GGMs. The findings were, overall,

similar to the results obtained on the original network. However, the comparison

of BNs versus GGMs on observational data showed, in fact, a slight yet significant

shift in favour of BNs (p < 0.05). This suggests that for networks rich in v-

structures, BNs have a systematic advantage over GGMs, in confirmation of our

hypothesis. On the observational linear-Gaussian data, the comparison of BNs
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Figure 5.7: GGMs vs. BNs on Gaussian V-structure data. Scatter plots comparing the

performance of GGMs (vertical axis) with BNs (horizontal axis). The diagonal line represents equal

performance. Symbols above the line indicate that GGMs outperform BNs. Conversely symbols

below that line point to a better performance of BNs over GGMs. Each subfigure compares the

results obtained from two different data types, using only passive observations (empty symbols) and

including active interventions (filled symbols). Two different evaluation criteria have been applied,

based on directed graphs (DGE, represented by triangles) and their undirected skeletons (UGE,

represented by circles). The two panels refer to two different scoring criteria. Left: AUC scores.

Right: TP counts.
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Figure 5.8: GGMs vs. BNs on Netbuilder V-structure data. This figure compares the

performance of GGMs and BNs on the synthetic data generated with Netbuilder, for the topology

with some edges removed. The columns refer to different standard deviations of the additive Gaussian

noise. Left column σ = 0.01, Centre column σ = 0.1, Right column σ = 0.3. The two rows refer

to different scoring criteria. Top row: AUC score. Bottom row: TP counts. A detailed explanation

of the symbols is given in the caption of figure 5.7
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Figure 5.9: GGMs and BNs vs. RNs. V-structure data. This figure compares the

performance of GGMs and BNs (vertical axis) with RNs (horizontal axis). The columns refer to

different data sets. Left column: Gaussian data. Right column: Netbuilder data with additive

Gaussian noise with σ = 0.1. The two rows refer to different scoring criteria. Top row: AUC score.

Bottom row: TP counts. A detailed explanation of the symbols is given in the caption of figure

5.7. The colours refer to different comparisons. Red: BNs versus RNs. Blue: GGMs versus RNs
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Figure 5.10: Separation Scores. The separation score is defined as S = T/(T + F ), where
T is the average score of a true edge, and F is the average score of a false edge. The perfect
separation score of S = 1 is obtained when assigning a zero score to all false edges. Conversely, a
method that cannot distinguish between true and false edges leads to an average separation score of
S = 0.5. The abbreviations Obs and Int refer to observational and interventional data, respectively.
The numbers are averages over all simulations carried out in the indicated category.

versus GGMs showed a significant shift in favour of BNs, with p < 0.05 for

all performance scores; this confirms our hypothesis. There was no significant

difference between the performance scores of BNs and GGMs on the nonlinear

data generated with Netbuilder, though.
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5.6 Discussion

5.6.1 Dependence on the noise level

When varying the noise level on the nonlinear simulated data (Figures 5.3 and 5.4)

we observe that when increasing the noise level, the performance with BNs first

increases, and then decreases. For instance, the average number of predicted true

undirected edges increases from TP = 11 for σ = 0.01 to TP = 18 for σ = 0.1,

and then decreases again to TP = 15.5 for σ = 0.3. To understand this behaviour,

consider a parent node that regulates several children, where the children do not

have any direct interactions; see Figure 3.12(b). Without noise, the response

of each child is a deterministic function of the parent. However, this implies

a deterministic functional relationship between the children. Consequently, the

true network cannot be distinguished from a network in which all children are

connected by edges, and it is intrinsically impossible to learn the true network.

The deterministic relationship between the children is destroyed by the addition

of noise, which renders, on average, the signal of a child more similar to that of

its parent than that of a sibling. Consequently, some noise is useful and forms

the basis for learning gene regulatory networks from data. However, when the

noise level becomes so large that it hides the regular signal, successful learning

will no longer be feasible. Hence, we would expect the accuracy of reconstructing

regulatory networks to first increase and then decrease with increasing noise level,

and this trend is confirmed in our simulations.

5.6.2 GGMs versus RNs

To better understand the different performance of GGMs and RNs, we computed

the average association scores for true edges and non-edges. The separation score

is defined in the caption of Table 5.10. The results are shown in Table 5.10 and

suggest that GGMs show a clearer separation of the true and false edges than RNs.
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This difference has not translated itself into an improved performance of GGMs

over RNs in terms of AUC and TP scores for the unintervened non-Gaussian

data. The reason is that although the separation between the scores is poorer for

RNs than for GGMs, it has not affected the ranking of the edges. However, this

finding suggests that inference with RNs is less stable than with GGMs. In fact,

for interventions, RNs show a more substantial degradation in their performance

than GGMs; GGMs consistently outperform RNs on the intervened cytoflow data

(p < 0.021), and obtain significantly higher TP counts on the nonlinear simulated

data (p < 10−4).

5.6.3 Interventions for low noise level.

Figures 5.3(d) and 5.4(d) reveal a curious finding: on interventions, the UGE

score for BNs deteriorates. As discussed above, the ability to suppress spurious

associations between unconnected nodes deteriorates for low noise levels. Inter-

ventions reduce the average noise level; so if the noise is already very low, this

further reduction in the noise may lead to the prediction of spurious associations.

The deterioration of the UGE (as opposed to the DGE) score can be explained

by the fact that a spurious undirected edge is equivalent to two spurious directed

edges (since there are twice as many directed as undirected edges in the graph),

and that the UGE score does not benefit from any corrections of edge directions

that result from the interventions.

5.6.4 Learning directed graphs from the cytometry data

Our analysis reveals an interesting observation for the cytoflow data (Fig-

ures 5.1(c,d) and 5.2(c,d)). While interventions lead to an improvement in the

performance of BNs, this improvement is more pronounced for the undirected

skeleton (UGE score) than the directed graph (DGE score). For instance, in

Figure 5.2(c) we observe that BNs outperform GGMs on interventional data
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in terms of the UGE AUC scores, but not the DGE AUC scores. Interest-

ingly, a recent study (Dougherty et al., 2005) carried out after the publication

of Sachs et al. (2005) reports evidence for a negative feedback loop from Erk1/2

back to Raf, which is not included in the assumed gold standard network taken

from Sachs et al. (2005). A negative feedback is known to lead to a stabilization

of the output, which compensates for the effect of an intervention on the output

path (here: Mek1/2). Hence, this intervention may no longer allow us to resolve

the ambiguity about the edge directions. Moreover, the existence of a hidden

feedback loop acting on a putative feedforward path may lead to some system-

atic error in the edge directions, as all methods investigated in the present paper

are intrinsically restricted to the modelling of systems without recurrent loops.

This example points to a fundamental problem inherent to any evaluation based

solely on real biological data, namely, that the underlying true regulatory network

is ultimately unknown, and that published ”gold-standard” networks have to be

taken with caution. For this reason we believe that the analysis carried out for

the present comparison, which combines data from a real laboratory experiments

with various synthetic and simulated data, will lead to a deeper insight and better

understanding than what could be obtained from real laboratory data alone.

5.7 Conclusion

Our main findings can be summarized as follows. BNs and GGMs tend to outper-

form RNs, but the difference is less pronounced for the nonlinear simulated data

(Netbuilder) and the measured protein concentrations (cytometry experiments)

than for Gaussian data. Also, there is insufficient evidence for any significant

difference between BNs and GGMs on observational data. These findings are dif-

ferent from those reported in Pournara (2005), which seems to result from the im-

proved inference algorithm for GGMs (Schäfer and Strimmer, 2005b). However,
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for interventional data, BNs clearly outperform GGMs and RNs when taking the

edge directions (DGE score) rather than just the skeletons of the graphs (UGE

score) into account. This suggests that the higher computational costs of infer-

ence with BNs over GGMs and RNs are not justified for passive observations, but

that active interventions in the form of gene knockouts and over-expressions are

required to exploit the full potential of BNs. As another possibility for exploring

the full potential of BNs one can consider the use of extra sources of information

as prior biological knowledge as discussed in the next chapter.



Chapter 6

Combining prior biological

knowledge with gene expression

This chapter presents results of a published journal paper (Werhli and Husmeier,

2007) and a conference paper (Husmeier and Werhli, 2007).

6.1 Introduction

An important and challenging problem in systems biology is the infer-

ence of gene regulatory networks from high-throughput microarray expres-

sion data. Various machine learning and statistical methods have been ap-

plied to this end, like Bayesian Networks (BNs) (Friedman et al., 2000), Rel-

evance Networks (Butte and Kohane, 2003) and Graphical Gaussian Models

(Schäfer and Strimmer, 2005b). An intrinsic difficulty with these approaches is

that complex interactions involving many genes have to be inferred from sparse

and noisy data. This leads to a poor reconstruction accuracy and suggests that

the inclusion of complementary information is indispensable (Husmeier, 2003). A

promising approach in this direction has been proposed by Imoto et al. (2003a).

The authors formulate the learning scheme in a Bayesian framework. This scheme

allows the systematic integration of gene expression data with biological knowl-

105
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edge from other types of postgenomic data or the literature via a prior distribution

over network structures. The hyperparameters of this distribution are inferred to-

gether with the network structure in a maximum a posteriori sense by maximizing

the joint posterior distribution with a heuristic greedy optimization algorithm. As

prior knowledge, the authors extracted protein-DNA interactions from the Yeast

Proteome Database. The framework has subsequently been applied to a variety

of different sources of biological prior knowledge, where gene regulatory networks

were inferred from a combination of gene expression data with transcription fac-

tor binding motifs in promoter sequences (Tamada et al., 2003), protein-protein

interactions (Nariai et al., 2004), evolutionary information (Tamada et al., 2005),

and pathways from the KEGG database (Imoto et al., 2006). In this chapter this

work is complemented in various respects.

First, we adopt a sampling-based approach to Bayesian inference as opposed

to the optimization schemes applied in the work cited above. The latter aims

to find the network structure and the hyperparameters that maximize the joint

posterior distribution. This approach is appropriate for posterior distributions

that are sharply peaked. However, when gene expression data are sparse and

noisy and the prior knowledge is susceptible to intrinsic uncertainty as well, this

condition is unlikely to be met. In that case, it is more appropriate to follow

Madigan and York (1995), Giudici and Castelo (2003) and Friedman and Koller

(2003) and sample network structures from the posterior distribution with Markov

chain Monte Carlo (MCMC). We pursue the same approach, and additionally

sample the hyperparameters associated with the prior distribution from the joint

posterior distribution with MCMC.

Second, we aim to obtain a deeper understanding of the proposed modelling

and inference scheme. The prior distribution proposed in Imoto et al. (2003a)

takes the form of a Gibbs distribution, in which the prior knowledge is encoded

via an energy function, and an inverse temperature hyperparameter determines
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the weight that is assigned to it. In our study, we have designed a scenario in

which the energy takes on a particular form such that computing the marginal

posterior distribution over the hyperparameter becomes analytically tractable.

This closed-form expression is compared with MCMC simulations on simulated

and real-world data for the more general scenario in which the marginal posterior

distribution is intractable, elucidating various aspects of the modelling approach.

Third, we extend the approach of Imoto et al. (2003a) to include more than

one energy function. This approach allows the simultaneous inclusion of differ-

ent sources of prior knowledge, like promoter motifs and KEGG pathways, each

modelled by a separate energy. Each energy function is associated with its own

hyperparameter. All hyperparameters are sampled from the posterior distribu-

tion with MCMC. In this way, the relative weights related to the different sources

of prior knowledge are consistently inferred within the Bayesian context, auto-

matically trading off their relative influences in light of the data.

Fourth, we provide a set of independent evaluations of the viability of the

Bayesian inference scheme on various synthetic and real-world data, thereby com-

plementing the results of the studies referred to above. In particular, we apply the

proposed method to the integration of two independent sources of transcription

factor binding locations from immunoprecipitation experiments with microarray

gene expression data from the yeast cell cycle, and the integration of KEGG path-

ways with cytometry experiments for determining protein interactions related to

the Raf signalling pathway.

This chapter is organized as follows. In Section 6.2 we refer to the methodology

of Bayesian networks and present the proposed Bayesian approach to integrating

biological prior knowledge into the inference scheme. In Section 6.3 we investigate

the behaviour of the proposed inference scheme on an idealized population of

network structures, for which a closed-form expression of the relevant posterior

distribution can be obtained. Section 6.4 presents the synthetic and real data
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sets that we used for evaluating the performance of the proposed method. The

results from this method are presented in Section 6.5. In Section 6.6 we introduce

a modified version of the method, apply it to the data sets discussed earlier and

present the results obtained with this modified version of the algorithm. Finally,

a concluding discussion is presented in Section 6.7.

6.2 Methodology

The methodology of static Bayesian networks and dynamic Bayesian networks

are presented in Section 3.2 and in Section 3.3 respectively.

6.2.1 Biological prior knowledge

As mentioned in the Introduction section, the objective of the present work is

to study the integration of biological prior knowledge into the inference of gene

regulatory networks. To this end, we need to define a function that measures the

agreement between a given networkM and the biological prior knowledge that we

have at our disposal. We follow the approach proposed by Imoto et al. (2003a)

and call this measure the energy E, borrowing the name from the statistical

physics community.

6.2.1.1 The energy of a network

A network M is represented by a binary adjacency matrix, where each entry

Mij can be either 0 or 1. A zero entry, Mij = 0, indicates the absence of an

edge between nodei and nodej. Conversely if Mij = 1 there is a directed edge

from nodei to nodej. We define the biological prior knowledge matrix B to be a

matrix in which the entries Bij ∈ [0, 1] represent our knowledge about interactions

between nodes as follows:
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• If entry Bij = 0.5, we do not have any prior knowledge about the presence

or absence of the directed edge between nodei and nodej.

• If 0 ≤ Bij < 0.5 we have prior evidence that there is no directed edge

between nodei and nodej. The evidence is stronger as Bij is closer to 0.

• If 0.5 < Bij ≤ 1 we have prior evidence that there is a directed edge pointing

from nodei to nodej. The evidence is stronger as Bij is closer to 1.

Note that despite their restriction to the unit interval, the Bij are not probabilities

in a stochastic sense. To obtain a proper probability distribution over networks,

we have to introduce an explicit normalization procedure, as will be discussed

shortly.

Having defined how to represent a networkM and the biological prior knowl-

edge B, we can now define the ‘energy’ of a network:

E(M) =

N∑

i,j=1

|Bi,j −Mi,j| (6.1)

where N is the total number of nodes in the studied domain. The energy E is zero

for a perfect match between the prior knowledge B and the actual network struc-

tureM, while increasing values of E indicate an increasing mismatch between B

andM.

6.2.1.2 One source of biological prior knowledge

To integrate the prior knowledge expressed by Equation 6.1 into the inference

procedure, we follow Imoto et al. (2003a) and define the prior distribution over

network structuresM to take the form of a Gibbs distribution:

P (M|β) =
e−βE(M)

Z(β)
(6.2)

where the energy E(M) was defined in Equation 6.1, β is a hyperparameter that

corresponds to an inverse temperature in statistical physics, and the denominator
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is a normalizing constant that is usually referred to as the partition function:

Z(β) =
∑

M∈M

e−βE(M) (6.3)

Note that the summation extends over the set of all possible network structures

M. The hyperparameter β can be interpreted as a factor that indicates the

strength of the influence of the biological prior knowledge relative to the data.

For β → 0, the prior distribution defined in Equation 6.2 becomes flat and un-

informative about the network structure. Conversely, for β → ∞, the prior

distribution becomes sharply peaked at the network structure with the lowest

energy.

For DBNs we can exploit the modularity of Bayesian networks and compute

the sum in Equation 6.3 efficiently. Note that E(M) in Equation 6.1 can be

rewritten as follows:

E(M) =

N∑

n=1

E (n, πM(n)) (6.4)

where πM(n) is the set of parents of node n in the graphM, and we have defined:

E (n, πM(n)) =
∑

i∈πM(n)

(1− Bin) +
∑

i/∈πM(n)

Bin (6.5)

Inserting Equation (6.4) into Equation (6.3) we obtain:

Z =
∑

M∈M

e−βE(M)

=
∑

πM(1)

. . .
∑

πM(N)

e−β(E(1,πM(1))+...+E(N,πM(N)))

=
∏

n

∑

πM(n)

e−βE(n,πM(n)) (6.6)

Here, the summation in the last equation extends over all parent configurations

πM(n) of node n, which in the case of a fan-in restriction is subject to constraints

on their cardinality. Note that the essence of Equation (6.6) is a dramatic re-

duction in the computational complexity. Rather than summing over the whole

space of network structures, whose cardinality increases super-exponentially with
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the number of nodes N , we only need to sum over all parent configurations of

each node; the complexity of this operation is
(

N−1
m

)
(where m is the maximum

fan-in), that is, polynomial in N . The reason for this simplification is the fact

that any modification of the parent configuration of a node in a DBN leads to

a new valid DBN by construction. This convenient feature does not apply to

static BNs, though, where modifications of a parent configuration πM(n) may

lead to directed cyclic structures, which are invalid and hence have to be ex-

cluded from the summation in Equation (6.6). The detection of directed cycles

is a global operation. This destroys the modularity inherent in Equation (6.6),

and leads to a considerable explosion of the computational complexity. Note,

however, that Equation (6.6) still provides an upper bound on the true partition

function. When densely connected graphs are ruled out by a fan-in restriction, as

commonly done, the number of cyclic terms that need to be excluded from Equa-

tion (6.6) can be assumed to be relatively small. We can then expect the bound

to be rather tight, as suggested by Imoto et al. (2006), and use it to approximate

the true partition function. In all our simulations we assumed a fan-in restriction

of three, as has widely been applied by different authors; e.g. Friedman et al.

(2000); Friedman and Koller (2003); Husmeier (2003). We tested the viability of

the approximation made for static Bayesian networks in our simulations, to be

discussed in Section 6.5; see especially Figures 6.14 and 6.15.

6.2.1.3 Multiple sources of biological prior knowledge

The method described in the previous section can be generalized to multiple

sources of prior knowledge. To keep the notation transparent, we restrict our dis-

cussion to two sources of prior knowledge; an extension to more than two sources

is straightforward and follows along the same line of argumentation as presented

here. We assume that the biological prior knowledge from each independent

source is represented by a separate prior knowledge matrix Bk, k ∈ {1, 2}, each
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satisfying the requirements laid out in the previous section. This gives us two

energy functions:

E1(M) =
N∑

i,j=1

∣∣B1
i,j −Mi,j

∣∣ (6.7)

E2(M) =

N∑

i,j=1

∣∣B2
i,j −Mi,j

∣∣ (6.8)

where each energy is associated with its own hyperparameter βk. The prior

probability of a network M given the hyperparameters β1 and β2 is now defined

as:

P (M|β1, β2) =
e−{β1E1(M)+β2E2(M)}

Z(β1, β2)
(6.9)

where the partition function in the denominator is given by:

Z(β1, β2) =
∑

M∈M

e−{β1E1(M)+β2E2(M)} (6.10)

For DBNs, the partition function can again be efficiently computed in closed form.

Similarly to the discussion above Equation (6.6), we can rewrite Equations (6.7)

and (6.8) as follows:

E1(M) =
N∑

n=1

(n, πM(n)) (6.11)

E2(M) =
N∑

n=1

(n, πM(n)) (6.12)

where πM(n) is the set of parents of node n in the graphM, and we have defined:

E1 (n, πM(n)) =
∑

i∈πM(n)

(
1− B1

in

)
+

∑

i/∈πM(n)

B1
in (6.13)

E2 (n, πM(n)) =
∑

i∈πM(n)

(
1− B2

in

)
+

∑

i/∈πM(n)

B2
in (6.14)

(6.15)
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β

M

D

β1

M

D

β2

Figure 6.1: Probabilistic graphical models. The two probabilistic graphical models represent

conditional independence relations between the data D, the network structure M, and the hy-

perparameters of the prior on M. The left graph shows the situation of a single source of prior

knowledge, with one hyperparameter β. The graph in the right panel shows the situation of two

independent sources of prior knowledge, associated with two separate hyperparameters β1 and β2.

The conditional independence relations can be obtained from the graphs according to the stan-

dard rules of factorization in Bayesian networks, as discussed, e.g., in Heckerman (1999). This

leads to the following expansions. Left panel: P (D,M, β) = P (D|M)P (M|β)P (β). Right panel:

P (D,M, β1, β2) = P (D|M)P (M|β1, β2)P1(β1)P2(β2).

Inserting Equations (6.11) and (6.12) into Equation (6.10), we obtain:

Z =
∑

M∈M

e−{β1E1(M)+β2E2(M)}

=
∑

πM(1)

. . .
∑

πM(N)

e−{β1[E1(1,πM(1))+...+E1(N,πM(N))]+β2[E2(1,πM(1))+...+E2(N,πM(N))]}

=
∏

n

∑

πM(n)

e−{β1E1(n,πM(n))+β2E2(n,πM(n))} (6.16)

For static BNs, this expression provides an upper bound, which can be expected

to be tight for strict fan-in restrictions; see the discussion below Equation (6.6).

6.2.2 MCMC sampling scheme

Having defined the prior probability distribution over network structures, the next

objective is to extend the MCMC scheme of Equation (3.20) on Section 3.2.2.1 to

sample both the network structure and the hyperparameters from the posterior

distribution.

6.2.2.1 MCMC with one source of biological prior knowledge

Starting from a definition of the prior distribution on the hyperparameter β, P (β),

our aim is to sample the network structure M and the hyperparameter β from
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the posterior distribution P (M, β|D). To this end, we propose a new network

structureMnew from the proposal distributionQ(Mnew|Mold) and, additionally, a

new hyperparameter from the proposal distribution R(βnew|βold). We then accept

this move according to the standard Metropolis-Hastings update rule (Hastings,

1970) with the following acceptance probability:

A = min

{
P (D,Mnew, βnew)Q(Mold|Mnew)R(βold|βnew)

P (D,Mold, βold)Q(Mnew|Mold)R(βnew|βold)
, 1

}
(6.17)

which owing to the conditional independence relations depicted in Figure 6.1 can

be expanded as follows:

A = min

{
P (D|Mnew)P (Mnew|βnew)P (βnew)Q(Mold|Mnew)R(βold|βnew)

P (D|Mold)P (Mold|βold)P (βold)Q(Mnew|Mold)R(βnew|βold)
, 1

}

(6.18)

To increase the acceptance probability and, hence, mixing and convergence of

the Markov chain, it is advisable to break the move up into two submoves.

First, we sample a new network structure Mnew from the proposal distribution

Q(Mnew|Mold) while keeping the hyperparameter β fixed, and accept this move

with the following acceptance probability:

A(Mnew|Mold) = min

{
P (D|Mnew)P (Mnew|β)Q(Mold|Mnew)

P (D|Mold)P (Mold|β)Q(Mnew|Mold)
, 1

}
(6.19)

Next, we sample a new hyperparameter β from the proposal distribution

R(βnew|βold) for a fixed network structure M, and accept this move with the

following acceptance probability:

A(βnew|βold) = min

{
P (M|βnew)P (βnew)R(βold|βnew)

P (M|βold)P (βold)R(βnew|βold)
, 1

}
(6.20)

For a uniform prior distribution P (β) and a symmetric proposal distribution

R(βnew|βold), this expression simplifies:

A(βnew|βold) = min

{
P (M|βnew)

P (M|βold)
, 1

}
(6.21)

The two submoves are iterated until some convergence criterion is satisfied. See

Section 3.2.2.4 on page 42 for a discussion about convergence diagnostics.
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The acceptance probability Equation (6.21) can be rewritten as:

A(βnew|βold) = min

{
e−E(M)(βnew−βold)Z(βold)

Z(βnew)
, 1

}
(6.22)

which clearly indicates the dependency of this acceptance probability on the par-

tition functions Z(βold) and Z(βnew). For a discussion about how the value of the

partition function is obtained and the approximations that have to be made see

the text below Equation 6.6.

6.2.2.2 MCMC with multiple sources of biological prior knowledge

The scheme presented in the previous section can be extended to multiple sources

of prior knowledge. To avoid opacity in the notation, we restrict our discus-

sion to two independent sources of prior knowledge. The generalization to more

than two sources is straightforward and follows the same principles as discussed

in this section. Starting from two prior distributions on the hyperparameters,

P1(β1) and P2(β2), our objective is to sample network structures and hyperpa-

rameters from the posterior distribution P (M, β1, β2|D). Again, we follow the

standard Metropolis-Hastings scheme (Hastings, 1970). We sample a new network

structureMnew from the proposal distribution Q(Mnew|Mold), and new hyperpa-

rameters from the proposal distributions R1(β1new |β1old
) and R2(β2new |β2old

). The

acceptance probability of this move is:

A = min

{
P (D,Mnew, β1new, β2new)Q(Mold|Mnew)R1(β1old

|β1new)R2(β2old
|β2new)

P (D,Mold, β1old
, β2old

)Q(Mnew|Mold)R1(β1new |β1old
)R2(β2new |β2old

)
, 1

}

(6.23)

From the conditional independence relations depicted in Figure 6.1, this expres-

sion can be expanded as follows:

A = min

{
P (D|Mnew)P (Mnew|β1new, β2new)P1(β1new)P2(β2new)

P (D|Mold)P (Mold|β1old
, β2old

)P1(β1old
)P2(β2old

)
×

Q(Mold|Mnew)R1(β1old
|β1new)R2(β2old

|β2new)

Q(Mnew|Mold)R1(β1new |β1old
)R2(β2new |β2old

)
, 1

} (6.24)
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As discussed in the previous section, it is advisable to break this move up into

three submoves:

• Sample a new network structure Mnew from the proposal distribution

Q(Mnew|Mold) for fixed hyperparameters β1 and β2.

• Sample a new hyperparameter β1new from the proposal distribution

R1(β1new |β1old
) for fixed hyperparameter β2 and fixed network structureM.

• Sample a new hyperparameter β2new from the proposal distribution

R2(β2new |β2old
) for fixed hyperparameter β1 and fixed network structureM.

Assuming uniform prior distributions P1(β1) and P2(β2) as well as symmetric

proposal distributions R1(β1new |β1old
) and R2(β2new|β2old

), the corresponding ac-

ceptance probabilities are given by the following expressions:

A(Mnew|Mold) = min

{
P (D|Mnew)P (Mnew|β1, β2)Q(Mold|Mnew)

P (D|Mold)P (Mold|β1, β2)Q(Mnew|Mold)
, 1

}
(6.25)

A(β1new|β1old) = min

{
P (M|β1new, β2)

P (M|β1old, β2)
, 1

}
(6.26)

A(β2new|β2old) = min

{
P (M|β1, β2new)

P (M|β1, β2old)
, 1

}
(6.27)

6.2.2.3 Practical issues

In our simulations, we chose the prior distribution of the hyperparameters P (β) to

be the uniform distribution over the interval [0,MAX]. The proposal probability

for the hyperparameters R(βnew|βold
) was chosen to be a uniform distribution

over a moving interval of length 2l � MAX, centred on the current value of the

hyperparameter. Consider a hyperparameter βnew to be sampled in an MCMC

move given that we have the current value βold. The proposal distribution is

uniform over the interval [βold−l, βold+l] with the constraint that βnew ∈ [0,MAX].

If the sampled value βnew happens to lie outside the allowed interval, the value is
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reflected back into the interval. The respective proposal probabilities can be

shown to be symmetric (see appendix A) and therefore to cancel out in the

acceptance probability ratio. In our simulations, we set the upper limit of the

prior distribution to be MAX = 30, and the length of the sampling interval to

be l = 3. Note that the choice of l only affects the convergence and mixing of

the Markov chain, but has theoretically no influence on the results. While an

adaptation of this parameter during burn-in could be attempted to optimize the

computational efficiency of the scheme, we found that the chosen value of l gave

already a fast convergence of the Markov chain that we did not deem necessary

to further improve.

To test for convergence of the MCMC simulations, various methods have been

developed; see Cowles and Carlin (1996) for a review. In our work, we applied

the simple scheme used in Friedman and Koller (2003): each MCMC run was

repeated from independent initializations, and consistency in the marginal pos-

terior probabilities of the edges was taken as indication of sufficient convergence.

This approach is discussed in more detail in Section 3.2.2.4. For the applications

reported in Section 6.5, this led to the decision to run the MCMC simulations

for a total number of 5× 105 steps, of which the first half were discarded as the

burn-in phase.

6.3 Simulations

The objective of this section is to explore the posterior probability landscape in

the space of hyperparameters. This will help us to better interpret the values

of the hyperparameters sampled with MCMC in real applications, and to assess

whether these values are plausible. We pursue this objective with two different

approaches. In the first approach, we design a hypothetical population of net-

work structures for which we can analytically derive a closed-form expression of
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the partition function and, hence, the marginal posterior probability of the hy-

perparameters. These results will be presented in Subsections 6.3.1 and 6.3.3

for one and multiple sources of prior knowledge, respectively. In the second ap-

proach, we focus on a small network with a limited number of nodes. Although

we cannot derive a closed-form expression for the partition function in this case,

we can compute the partition function numerically via an exhaustive enumeration

of all possible network structures; this again allows us to compute the marginal

posterior probability of the hyperparameters. The resulting posterior probability

landscapes will be presented in Subsections 6.3.2 and 6.3.4, again for one and mul-

tiple sources of prior knowledge, respectively. We compare these results with the

values of hyperparameters sampled from an MCMC simulation; this approximate

numerical procedure is the only approach that is viable in real-world applications

with many interacting nodes.

6.3.1 Idealized derivation for one source of prior knowledge

Consider the partition of a hypothetical space of network structures, depicted

in Figure 6.2. This Venn diagram consists of four mutually exclusive subsets,

which represent networks that are characterized by different compatibilities with

respect to the data and the prior knowledge. We make the idealizing assumption

that the networks either completely succeed or fail in modelling the data. The

networks are also assumed to be either completely consistent or inconsistent with

the assumed prior knowledge. The different sizes of the subsets are related to

the relative proportions of the networks they contain, which are described by the

following quantities:

• TD: Proportion of networks that are in agreement with the data only.

• TD1: Proportion of networks that are in agreement with the data and with

the prior.
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Graph in agreement with: Result

Data Prior P (D|M) E Proportion

no no a 1 F

no yes a 0 T1

yes no A 1 TD

yes yes A 0 TD1

Table 6.1: Idealized scenario for one source of prior. This table summarizes the
definitions for the idealized population of network structures when considering one source of biological
prior knowledge, corresponding to the Venn diagram of Figure 6.2.

• T1: Proportion of networks that are in agreement with the prior only.

• F: Proportion of networks that are neither in agreement with the data nor

with the prior.

We define that networks that are in agreement with the data have marginal

likelihood P (D|M) = A, while those in disagreement with the data have the lower

marginal likelihood P (D|M) = a, with a < A. In our experiments discussed

below, we set A = 10 and a = 1. A network that is in accordance with the

biological prior knowledge has zero energy E = 0; otherwise, the network is

penalized with a higher energy of E = 1. Table 6.1 presents a summary of these

definitions. We want to find the posterior distribution P (β|D):

P (β|D) =
1

P (D)

∑

M

P (D,M, β) (6.28)

The conditional independence relations, represented by the graphical model in

the left panel of Figure 6.1, imply that

P (D,M, β) = P (D|M)P (M|β)P (β) (6.29)

Assuming a uniform prior over β, we thus obtain

P (β|D) ∝
∑

M

P (D|M)P (M|β) (6.30)
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F

T D

T D 1

T 1

Figure 6.2: Venn diagram for an idealized population of network structures and one source

of prior knowledge. The Venn diagram shows a hypothetical population of network structures.

We make the idealizing assumption that the networks either completely succeed or fail in modelling

the data. The networks are also assumed to be either completely consistent or inconsistent with

the assumed prior knowledge. TD is the proportion of graphs that agree with the data. TD1 is

the proportion of graphs that agree with the data and the biological prior knowledge. T1 is the

proportion of graphs that agree with the biological prior knowledge only. F is the proportion of

graphs that are neither in agreement with the data nor with the biological prior knowledge. A

summary of this scenario is provided in Table 6.1.

Inserting the expression for the prior distribution, Equations 6.2-6.3, into this

sum, we get:

∑

M

P (D|M)P (M|β) =

∑
M P (D|M)e−βE(M)

∑
M e−βE(M)

(6.31)

Using the definitions from Table 6.1, we thus obtain the following expression for

the posterior distribution P (β|D):

P (β|D) ∝ a× T1 + A× TD1 + e−β(a× F + A× TD)

TD1 + T1 + e−β(F + TD)
(6.32)

where we refer to the expression on the right as the unnormalized posterior dis-

tribution. A plot of this distribution is shown in the left panel of Figure 6.5.

6.3.2 Simulation results for one source of prior knowledge

The objective of this subsection is to compare the closed form of the posterior dis-

tribution P (β|D) from Equation 6.32 with that obtained from a synthetic study

using real Bayesian networks. To this end, we consider a Bayesian network with
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Figure 6.3: Venn diagrams for a completely correct and a completely wrong source of

biological prior knowledge. The two Venn diagrams show special scenarios of the hypothetical

network population depicted in Figure 6.2. The left panel represents the situation of completely

correct prior knowledge. All networks that are consistent with the data also agree with the prior,

and all networks that are in accordance with the prior also agree with the data. Hence T1 = TD = 0.

The right panel shows the situation of a completely wrong source of prior knowledge. Networks that

are consistent with the data are not supported by the prior, while networks that are in agreement

with the prior contradict the findings in the data. Hence TD1 = 0. (For a definition of the symbols,

see Table 6.1 and the caption of Figure 6.2).

1

32 4

Figure 6.4: HUB network. This figure shows the network structure from which we generated

data for the synthetic inference study.



122 Chapter 6. Combining prior biological knowledge with gene expression

0 5 10 15 20 25 30
2

3

4

5

6

7

8

9

10

β

P
(D

,β
)

(a)

0 5 10 15 20 25 30

0

1

2

3

4

5

x 10
−76

β

P
(D

,β
)

(b)

0 10 20 30 40

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

β

(c)

0 5 10 15 20 25 30
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

β

P
(D

,β
)

(d)

0 5 10 15 20 25 30

0

0.5

1

1.5

2

x 10
−80

β

P
(D

,β
)

(e)

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3

3.5

4

β

(f)

Figure 6.5: Results of the simulation study for a single source of prior knowledge. The top

row shows the results when including the correct prior knowledge. The bottom row shows the results

when the prior knowledge is wrong. The left column shows the unnormalized posterior probability of

the hyperparameter β for the idealized network population depicted in Figure 6.3, computed from

Equation 6.32 and plotted against β. The values of the network population proportions, defined

in Table 6.1 and Figure 6.2, were set as follows. Correct prior (corresponding to the left panel

in Figure 6.3): TD = T1 = 0, TD1 = 0.2. Wrong prior (corresponding to the right panel in

Figure 6.3): TD = T1 = 0.2, TD1 = 0. The centre column shows the unnormalized posterior

probability of β for the synthetic toy problem, plotted against β. For comparison, the right column

shows the marginal posterior probability densities of β, estimated from the MCMC trajectories with

a Parzen estimator, using a Gaussian kernel whose standard deviation was set automatically by the

MATLAB function ksdensity.m. The MCMC scheme was discussed in Section 6.2.2.



6.3. Simulations 123

a small number of nodes such that a complete enumeration of all possible net-

work structures is possible. This allows the partition function in Equation 6.3

and hence the posterior distribution P (β|D) to be computed exactly, the latter

via Equations 6.2 and 6.30. We consider the two extreme scenarios of completely

correct and completely wrong prior knowledge. For the idealized network popula-

tion, the situation of completely correct prior knowledge is depicted in the Venn

diagram on the left of Figure 6.3: all networks that accord with the prior also ac-

cord with the data, while networks not according with the prior also fail to accord

with the data. The Venn diagram on the right of Figure 6.3 depicts the opposite

scenario of completely wrong prior knowledge: networks that accord with the

data never accord with the prior while, conversely, networks that accord with the

prior never accord with the data. For the synthetic toy problem, the completely

correct prior corresponds to a prior knowledge matrix B that is identical to the

true adjacency matrixM of the network (see Section 6.2.1 for a reminder of this

terminology). On the contrary, completely wrong prior knowledge corresponds

to a prior knowledge matrix B that is the complete complement of the network

adjacency matrix M, that is, has entries indicating edges where there are none

in the true network and, conversely, has zero entries for the locations of the true

edges in the network.

The network that we used for the synthetic toy problem is shown in Figure 6.4.

We treated it as a DBN and generated a time series of 100 exemplars from it,

as described in Section 6.4.1. The results are shown in Figure 6.5, where the

top row corresponds to the true prior, and the bottom row to the wrong prior.

The left and centre columns show plots of the (unnormalized) posterior distri-

bution of the hyperparameter β for the idealized network population and the

synthetic toy problem, respectively. The graphs are similar, as expected. In both

cases, when the prior is correct, P (β|D) monotonically increases until it reaches

a plateau. When the prior is wrong, P (β|D) peaks at zero, and monotonically
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decreases for increasing values of β. For comparison, the right column shows the

marginal posterior probability densities of β estimated from the MCMC trajecto-

ries. The MCMC scheme was discussed in Section 6.2.2. All results are consistent

in indicating that for the true prior, high values of β are encouraged, while for

the wrong prior, high values of β are suppressed. Since β represents the weight

that is assigned to the prior, our finding confirms that the proposed methodology

is working as expected. It also lays the foundations for investigating the more

complex scenario of multiple sources of prior knowledge, to be discussed next.

6.3.3 Idealized derivation for two sources of prior knowledge

Next, we generalize the scenario of Subsection 6.3.1 to two independent sources

of prior knowledge. Again, consider a hypothetical space of network structures,

which is assumed to be partitioned into distinct regions, as depicted by the Venn

diagram of Figure 6.6. The symbols in this diagram indicate the proportions of

networks that fall into the respective regions:

• TD is the proportion of graphs that are in agreement with the data only.

• TD1 is the proportion of graphs that are in agreement with the data and

with the first source of prior knowledge.

• T1 is the proportion of graphs that are in agreement with the first source

of prior knowledge only.

• T2 is the proportion of graphs that are in agreement with the second source

of prior knowledge only.

• TD2 is the proportion of graphs that are in agreement with the data and

with the second source of prior knowledge.

• TD12 is the proportion of graphs that are in agreement with the data and

with both sources of prior knowledge.
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Graph in agreement with: Result

Data Prior 1 Prior 2 P (D|M) E1 E2 Proportion

no no no a 1 1 F

no no yes a 1 0 T2

no yes no a 0 1 T1

no yes yes a 0 0 T12

yes no no A 1 1 TD

yes no yes A 1 0 TD2

yes yes no A 0 1 TD1

yes yes yes A 0 0 TD12

Table 6.2: Idealized scenario for two independent sources of prior knowledge. This
table summarizes the definitions for the idealized population of network structures with two sources
of prior knowledge, corresponding to Figure 6.6.

• T12 is the proportion of graphs that are in agreement with both sources of

prior knowledge, but not the data.

• F is the proportion of graphs that are neither in agreement with the data,

nor with any prior.

We define that networks that are in agreement with the data have marginal

likelihood P (D|M) = A, while networks not in agreement with the data have the

lower marginal likelihood P (D|M) = a, with a < A. In our experiments we set

A = 10 and a = 1. Networks that are in accordance with the first source of prior

knowledge have energy E1 = 0, otherwise the energy is E1 = 1. Networks that

are in accordance with the second source of prior knowledge have energy E2 = 0,

otherwise the energy is E2 = 1. Table 6.2 presents a summary of these definitions.

Generalizing the derivation presented in Subsection 6.3.1, we now want to find

the posterior distribution of both hyperparameters P (β1, β2|D):

P (β1, β2|D) =
1

P (D)

∑

M

P (β1, β2,D,M) (6.33)
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From the conditional independence relations depicted by the graphical model in

the right panel of Figure 6.1, we get:

P (D,M, β1, β2) = P (D|M)P (M|β1, β2)P1(β1)P2(β2) (6.34)

Assuming uniform priors over the two hyperparameters β1 and β2, we obtain:

P (β1, β2|D) ∝
∑

M

P (D|M)P (M|β1, β2) (6.35)

Inserting the expression for the prior, Equations 6.9-6.10, into this sum, we get:

∑

M

P (D|M)P (M|β1, β2) =

∑
M P (D|M)e[−β1E1(M)−β2E2(M)]

∑
M e[−β1E1(M)−β2E2(M)]

(6.36)

Using the definitions from Table 6.2, this yields:

P (β1, β2|D) ∝ e−β2(a[T1] + A[TD1]) + e−β1(a[T2] + A[TD2]) + . . .

e−β2(T1 + TD1) + e−β1(T2 + TD2) + . . .

. . .+ e(−β1−β2)(a[F ] + A[TD]) + a[T12] + A[TD12]

. . .+ e(−β1−β2)(TD + F ) + TD12 + T12

(6.37)

where, again, we refer to the expression on the right as the unnormalized posterior

distribution of the hyperparameters. A plot of this distribution is shown in the

top left panel of Figure 6.8.

6.3.4 Simulation results for two sources of prior knowledge

We revisit the simulations discussed in Subsection 6.3.2, where we have consid-

ered two sources of prior knowledge, one being correct and the other being com-

pletely wrong. Rather than studying the effects of these priors in isolation, we

now combine them and integrate them simultaneously into the inference scheme.

For the idealized population of network structures, the situation is illustrated in

Figure 6.7. The posterior probability distribution of the two hyperparameters

is computed from Equation 6.37, using the parameter setting stated in the cap-

tions of Figures 6.7 and 6.8. For the synthetic toy problem, the prior probability
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T D

T D 1 2

T D 2T D 1

T 1 2 T 2T 1

Figure 6.6: Venn diagram for an idealized population of network structures and multiple

sources of prior knowledge. This Venn diagram is a generalization of Figure 6.2 for two indepen-

dent sources of prior knowledge. TD is the proportion of networks that agree with the data. TD1

is the proportion of networks that agree with the data and prior 1. T1 is the proportion of networks

that agree with prior 1 only. TD2 is the proportion of networks that agree with the data and prior

2. T2 is the proportion of networks that agree with prior 2 only. TD12 is the proportion of networks

that agree with the data and with both priors. T12 is the proportion of networks that agree with

both priors but not the data. F is the proportion of networks that are neither in agreement with the

data nor the biological prior knowledge. A summary of this scenario can be found in Table 6.2.

distribution over network structures is computed from Equation 6.9, obtaining

the partition function of Equation 6.10 from a complete enumeration of all pos-

sible network structures. The posterior distribution of the hyperparameters is

then computed from Equation 6.35, again resorting to a complete enumeration of

network structures. For comparison, we also sampled the hyperparameters from

the posterior distribution numerically, using the MCMC scheme described in Sec-

tion 6.2.2.2. The results are shown in Figure 6.8. The bottom left panel shows the

trace plots from the MCMC simulation. The values of β2, the hyperparameter as-

sociated with the wrong prior, are always below those of β1, the hyperparameter

associated with the true prior. This confirms our expectation that the inference

scheme succeeds in distinguishing between the different priors and automatically

associates a higher weight with the correct prior. Somewhat counterintuitively,

though, the value of β2 does not decay to zero, suggesting that the second prior,
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F

T D 1 T 2

Figure 6.7: Venn diagram for a completely correct and a completely wrong source of

biological prior knowledge. This Venn diagram shows a special case of Figure 6.6 where one

source of biological prior knowledge is in complete agreement with the data while the other source

of prior knowledge is completely wrong. All networks that are consistent with the data also accord

with the first prior, and all networks that are in accordance with the first prior also agree with the

data. Hence T1 = TD = 0. Networks that are consistent with the data are not supported by the

second prior, while networks that are in agreement with the second prior contradict the findings in

the data. Hence TD2 = TD12 = 0. The priors are also mutually exclusive: T12 = 0. Note that

the scenario depicted here effectively combines the two scenarios of Figure 6.3. See Table 6.2 and

the caption of Figure 6.6 for a definition of the symbols.

despite the worst-case scenario of it being completely wrong, is never ‘switched

off’ completely. This seemingly strange behaviour was also consistently found in

our MCMC simulations on the real data – see the discussion in Section 6.5.2.2 –

and provided the motivation for the synthetic simulation study discussed in the

present section. An elucidation of this behaviour is obtained from the plots of the

posterior distribution P (β1, β2|D) in the left and right top panels of Figure 6.8.

Both graphs indicate that P (β1, β2|D) contains a ridge parallel to the line β1 = β2,

dropping to zero for β1 < β2, and reaching a plateau for β1 > β2. This plateau ex-

plains the results found in our MCMC simulations. When β1 is sufficiently larger

than β2, corresponding to a configuration on the plateau well over the ridge, there

is no effective force pushing β2 down to zero. The intuitive explanation is that

for β1 sufficiently larger than β2, the effect of the second (wrong) prior is already

negligible, so that it becomes obsolete to completely switch it off.
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Figure 6.8: Results of the simulation study for multiple sources of prior knowledge. This

figure shows the inference results for two independent sources of prior knowledge, associated with

separate hyperparameters β1 and β2. The top left panel shows a plot of the unnormalized posterior

probability distribution of β1 and β2 for the idealized population of network structures depicted in

Figure 6.7. The expression was computed from Equation 6.37 with the following parameter settings:

TD1 = 0.5, T2 = 0.2, F = 0.3, TD = TD2 = TD12 = T1 = T12 = 0 (see the caption of

Figure 6.7 for an explanation of why the parameters were chosen in that way). The top right panel

shows a plot of the unnormalized posterior distribution of β1 and β2 for the synthetic toy problem.

The bottom left panel shows two trace plots obtained when sampling the two hyperparameters from

the posterior distribution with the MCMC scheme discussed in Section 6.2.2.2. The horizontal axis

represents the MCMC step while the vertical axis shows the sampled value of the hyperparameter.

The bottom central panel shows a scatter plot of β1×β2 in order to make it clear that β1 > β2. The

bottom right panel shows the marginal posterior probability densities of β1 and β2, estimated from

the MCMC trajectories with a Parzen estimator, using a Gaussian kernel whose standard deviation

was set automatically by the MATLAB function ksdensity.m. The blue graph corresponds to

β1, the hyperparameter associated with the true prior. The red graph corresponds to β2, the

hyperparameter associated with the wrong prior.
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6.4 Data and priors

6.4.1 Simulated data

The data generated for the synthetic simulations described in Section 6.3 were

obtained from a DBN with a linear Gaussian distribution. See Section 3.3 for a

more detailed discussion about dynamic Bayesian networks.

The random variable Xi(t+1) denoting the expression of node i at time t+1

is distributed according to:

Xi(t + 1) ∼ N
(∑

k
wikxk(t), σ

2
)

(6.38)

where N(.) denotes the Normal distribution, the sum extends over all parents of

node i, and xk(t) represents the value of node k at time t. We set the standard

deviation to σ = 0.1, and the interaction strengths to wik = 1. The structure of

the network from which we generated data is represented in Figure 6.4.

6.4.2 Yeast cell cycle

For the evaluation of the proposed inference method, we were guided by the

study of Bernard and Hartemink (2005). The authors aimed to infer regulatory

networks involving 25 genes of yeast (Saccharomyces cerevisiae), of which 10

genes encode known transcription factors (TFs). The inference was based on

gene expression data, combined with prior knowledge about transcription factor

binding locations. The gene expression data were obtained from Spellman et al.

(1998); this data set contains 73 time points collected over 8 cycles of the yeast

cell cycle using four different synchronization protocols. The prior knowledge

about transcription factor binding locations was obtained from the chromatin

immunoprecipitation (ChIP-on-chip) assays of Lee et al. (2002).

In our study, we followed the approach of Bernard and Hartemink (2005), but

complemented their evaluation by the inclusion of additional gene expression data
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and a separate source of prior knowledge. As further gene expression data we in-

cluded the results of microarray experiments carried out by Tu et al. (2005); this

data set contains 36 time points of gene expression data in yeast, collected over

three consecutive metabolic cycles in intervals of 25 minutes. As additional prior

knowledge, we included the TF binding locations obtained from an independent

chromatin immunoprecipitation assay, reported in Harbison et al. (2004). In or-

der to include these binding locations in the proposed inference scheme, we trans-

formed the p-values obtained from the immunoprecipitation assays into probabil-

ities, using the transformation proposed by Bernard and Hartemink (2005). The

distribution of p-values is assumed to be exponential if the edge is present and to

be uniform if the edge is not present. With these definitions and applying Bayes

rule Bernard and Hartemink (2005) shows that the probability of an edge being

present (Mij = 1) after a p-value is observed (ρi = p) is:

Pλ(Mij = 1|ρi = p) =
λe−λpζ

λe−λpζ + (1− e−λ)(1− ζ) (6.39)

where ζ is the the probability that the edge is present before the p-value is ob-

served. The parameter that controls the scale of the truncated exponential dis-

tribution is λ. Instead of setting one value for λ it is assumed to be uniformily

distributed on the interval [λL, λH ] and it is integrated out to yield:

P (Mij = 1|ρi = p) =
1

λH − λL

∫ λH

λL

λe−λpζ

λe−λpζ + (1− e−λ)(1− ζ)dλ (6.40)

For a detailed discussion about these transformation see Bernard and Hartemink

(2005).

The probabilities obtained with this transformation formed the entries Bij of

our biological prior knowledge matrix. However, only 10 of the 25 studied genes

are known to be TFs. For the remaining genes, no information about binding

locations is available. The respective entries in the prior knowledge matrix were

thus set to Bij = 0.5, corresponding to the absence of prior information (see the

discussion in Section 6.2.1).



132 Chapter 6. Combining prior biological knowledge with gene expression

Summarizing, we evaluated the performance of the proposed inference scheme

on two sets of gene expression data and two sets of TF binding location indica-

tions. An overview is given in Table 6.3.

6.4.3 Raf signalling pathway

The flow cytometry data (Sachs et al., 2005) used in this is study is presented in

Section 4.2. In this set of experiments we use only the observational data leaving

the interventional data out. We use the same 5 data sets with 100 measurements

each that were presented in Section 4.2.

We extracted biological prior knowledge from the Kyoto Encyclope-

dia of Genes and Genomes (KEGG) pathways database (Kanehisa, 1997;

Kanehisa and Goto, 2000; Kanehisa et al., 2006). KEGG pathways represent

current knowledge of the molecular interaction and reaction networks related

to metabolism, other cellular processes, and human diseases. As KEGG con-

tains different pathways for different diseases, molecular interactions and types

of metabolism, it is possible to find the same pair of genes1 in more than one

pathway. We therefore extracted all pathways from KEGG that contained at

least one pair of the 11 proteins/phospholipids included in the Raf pathway. We

found 20 pathways, including metabolic and signalling, that satisfied this condi-

tion. From these pathways, we computed the prior knowledge matrix, introduced

in Section 6.2.1, as follows. Define by Mij the total number of times a pair of

genes i and j appears in a pathway, and by mij the number of times the genes

are connected by a (directed) edge in the KEGG pathway. The elements Bij of

the prior knowledge matrix are then defined by

Bij =
mij

Mij
(6.41)

If a pair of genes is not found in any of the KEGG pathways, we set the respective

1We use the term “gene” generically for all interacting nodes in the network. This may
include proteins encoded by the respective genes.
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Expression Data 1st source of Prior 2nd source of Prior

1 Spellman Lee Harbison

2 Tu Lee Harbison

3 Spellman Lee MCMC Tu

4 Tu Lee MCMC Spellman

Table 6.3: Yeast evaluation settings. This table summarizes the evaluation procedures we

used on the yeast data. The table shows the name of the first author of the data sets that we

used. Gene expression data: Spellman et al. (1998) and Tu et al. (2005). TF binding location

assays: Lee et al. (2002) and Harbison et al. (2004). The entries MCMC Spellman and MCMC Tu

indicate that the prior knowledge matrix was composed of the marginal posterior probabilities of

directed pairwise gene interactions (edges) obtained from running MCMC simulations without prior

knowledge on the respective expression data set.

prior association to Bij = 0.5, implying that we have no information about this

relationship.

6.5 Results

6.5.1 Yeast cell cycle

For evaluating the performance of the proposed Bayesian inference scheme on

the yeast cell cycle data, we followed Bernard and Hartemink (2005) with the

extension described in Section 6.4.2. We associated the edges of the BN with

conditional probabilities of the multinomial distribution family. In this case, the

marginal likelihood P (D|M) of Equation 3.7 on Section 3.2.2 is given by the

so-called BDe score; see Heckerman (1999) and Section 3.2.5.1 for details. The

chosen form of conditional probabilities requires a discretization of the data. Like

Bernard and Hartemink (2005), we discretized the gene expression data into three

levels using the information bottleneck algorithm, proposed by Hartemink (2001).

We represented information about the cell cycle phase with a separate node, which

was forced to be a root node connected to all the nodes in the domain. In all
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Figure 6.9: Inferring hyperparameters associated with TF binding locations from gene

expression data of yeast. The top row (a,b) shows the hyperparameter trajectories for two different

sources of prior knowledge, sampled from the posterior distribution with the MCMC scheme discussed

in Section 6.2.2.2. The bottom row (c,d) shows the corresponding marginal posterior probability

densities, estimated from the MCMC trajectories with a Parzen estimator, using a Gaussian kernel

whose standard deviation was set automatically by the MATLAB function ksdensity.m. The blue

line represents the hyperparameter associated with the TF binding locations of Lee et al. (2002).

The red line shows the hyperparameter associated with the TF binding locations of Harbison et al.

(2004). The two columns are related to different yeast microarray data. Left column: Spellman et al.

(1998). Right column: Tu et al. (2005). The two experiments correspond to the first two rows of

Table 6.3.
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Lee et al 2002

Prior probabilities from p−values

Harbison et al 2004

Figure 6.10: Transcription factor (TF) binding locations. The two Hinton diagrams pro-

vide a qualitative display of the TF binding location assays of Lee et al. (2002) (left panel) and

Harbison et al. (2004) (right panel). The columns of the two matrices represent 10 known TFs.

The rows represent 25 genes that are putatively regulated by the TFs. The size of a white square

represents the probability that a TF binds to the promoter of the respective gene, with a larger

square indicating a value closer to 1. These probabilities were obtained by subjecting the p-values

from the original immunopreciptation experiments of Lee et al. (2002) and Harbison et al. (2004)

to the transformation proposed by Bernard and Hartemink (2005).

our MCMC simulations, we combined gene expression data with two independent

sources of prior knowledge, and sampled networks and hyperparameters from the

conditional probability distribution according to the MCMC scheme described in

Section 6.2.2.2.

Table 6.3 presents a summary of the simulation settings we used. In our first

application, corresponding to the first row of Table 6.3, the gene expression data

were taken from Spellman et al. (1998). In our second application, corresponding

to the second row of Table 6.3, the gene expression data came from Tu et al.

(2005). In both applications, we used the same two independent sources of prior

knowledge in the form of transcription factor (TF) binding locations (Lee et al.,

2002; Harbison et al., 2004), as described in Section 6.4.2.

The MCMC trajectories of the hyperparameters associated with the two

sources of biological prior knowledge are presented in Figure 6.9. The figure
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Figure 6.11: Inferring hyperparameters associated with priors of different nature. The

graphs are similar to those of Figure 6.9, but were obtained for different sources of prior knowledge.

The blue lines show the MCMC trace plots (top row) and estimated marginal posterior probability

distributions (bottom row) of the hyperparameter associated with the TF binding locations from

Lee et al. (2002). The red lines correspond to the hyperparameter associated with prior knowledge

obtained from an independent microarray experiment in the way described in Section 6.5.1. The left

column shows the results obtained from the experiment corresponding to the third row of Table 6.3.

The right column shows the results obtained from the experiment corresponding to the fourth row

of Table 6.3. For an explanation of the graphs, see the caption of Figure 6.9.
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also shows the estimated marginal posterior probability distributions of the two

hyperparameters. These distributions, as well as the MCMC trace plots, do

not appear to be very different, which suggests that the two priors are simi-

lar. A closer inspection of the results from the two TF binding assays, shown

in Figure 6.10, reveals that the indications of putative TF binding locations ob-

tained independently by Lee et al. (2002) and Harbison et al. (2004) are, in fact,

very similar. This finding confirms that the results obtained with the proposed

Bayesian inference scheme are consistent and in accordance with our expectation.

From Figure 6.9 we also note that the sampled values of the hyperparameters are

rather small, and that the estimated marginal posterior distributions – compared

to those presented in the next section – are quite close to zero. This suggests that

the prior information included is not in strong agreement with the data. There

are two possible explanations for this effect. First, the TF activities might be

controlled by post-translational modifications, which implies that the gene ex-

pression data obtained from microarray experiments might not contain sufficient

information for inferring regulatory interactions between TFs and the genes they

regulate. Second, there might be relevant regulatory interactions between genes

that do not belong to the set of a priori known TFs, which are hence inherently

undetectable by the binding assays.

One might therefore assume that prior knowledge obtained on the basis of

a preceding microarray experiment might be more informative about a subse-

quent second microarray experiment than TF binding locations. To test this

conjecture, we took one of the two gene expression data sets, assumed a uni-

form prior on network structures (subject to the usual fan-in restriction), and

sampled networks from the posterior distribution with MCMC. From this sam-

ple, we obtained the marginal posterior probabilities of all edges, and used the

resulting matrix as a source of prior knowledge for the subsequent microarray

experiment. We proceeded with the settings shown in the third and fourth row of
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Table 6.3. First, we combined the results obtained from the gene expression data

of Spellman et al. (1998) with the binding locations from Lee et al. (2002) and

applied these two sources of prior knowledge to the gene expression data from

Tu et al. (2005). Second, we combined the results obtained from the gene expres-

sion data of Tu et al. (2005) with the binding locations from Lee et al. (2002) and

applied these two sources of prior knowledge to the gene expression data from

Spellman et al. (1998). The resulting hyperparameter trajectories are presented

in Figure 6.11 together with their estimated probability densities. Compared with

the previous results of Figure 6.9, there is now a much clearer separation between

the two distributions. The sampled values of the hyperparameter associated with

the second, independent source of microarray data significantly exceed those of

the hyperparameter associated with the binding data. This suggests that prior

knowledge that is more consistent with the data is given a stronger weight by the

Bayesian inference scheme, in confirmation of our conjecture.

The critical question to ask next is: by how much does the accuracy of network

reconstruction improve as a consequence of integrating prior knowledge into the

inference scheme? Unfortunately, this evaluation cannot be done for yeast owing

to our lack of knowledge about the true gene regulatory interactions and the

absence of a proper gold-standard network. To answer this question, we therefore

turn to a second application, for which more biological knowledge about the true

regulatory processes exists.

6.5.2 Raf signalling pathway

6.5.2.1 Motivation

As described in Section 4.2, the Raf pathway has been extensively studied in

the literature. We therefore have a sufficiently reliable gold-standard network for

evaluating the results of our inference procedure, as depicted in Figure 4.1.
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Figure 6.12: Inferring hyperparameters from the cytometry data of the Raf pathway. The

left panel (a) shows the hyperparameter trajectories for two different sources of prior knowledge,

sampled from the posterior distribution with the MCMC scheme discussed in Section 6.2.2.2. The

right panel (b) shows the corresponding posterior probability densities, estimated from the MCMC

trajectories with a Parzen estimator, using a Gaussian kernel whose standard deviation was set

automatically by the MATLAB function ksdensity.m. The blue lines refer to the hyperparameter

associated with the prior knowledge extracted from the KEGG pathways. The red lines refer to

completely random and hence vacuous prior knowledge. The data, on which the inference was

based, consisted of 100 concentrations of the 11 proteins in the Raf pathway, subsampled from the

observational cytometry data of Sachs et al. (2005).
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Figure 6.13: Reconstruction of the Raf signalling pathway with different machine learning

methods. The figure evaluates the accuracy of inferring the Raf signalling pathway from cytometry

data and prior information from KEGG. Two evaluation criteria were used. The left panel shows

the results in terms of the area under the ROC curve (AUC scores), while the right panel shows

the number of predicted true positive (TP) edges for a fixed number of 5 spurious edges. Each

evaluation was carried out twice: with and without taking the edge direction into consideration (UGE:

undirected graph evaluation, DGE: directed graph evaluation). Four machine learning methods were

compared: Bayesian Networks without prior knowledge (BNs), Graphical Gaussian Models without

prior knowledge (GGMs), Bayesian Networks with prior knowledge from KEGG (BN-Prior), and prior

knowledge from KEGG only (Only Prior). In the latter case, the elements of the prior knowledge

matrix (introduced in Section 6.2.1) were computed from Equation 6.41. The histogram bars

represent the mean values obtained by averaging the results over five data sets of 100 protein

concentrations each, independently sampled from the observational cytometry data of Sachs et al.

(2005). The error bars show the respective standard deviations.
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Figure 6.14: Learning the hyperparameter associated with the prior knowledge from KEGG.

The horizontal axis represents the value of β1, the hyperparameter associated with the prior knowl-

edge from KEGG. The vertical axis represents the area under the ROC curve (AUC). The blue line

shows the mean AUC score for fixed values of β1, obtained by sampling network structures from

the posterior distribution with MCMC. The results were averaged over five data sets of 100 protein

concentrations each, independently sampled from the observational cytometry data of Sachs et al.

(2005). The error bars show the respective standard deviations. The vertical red lines show trace

plots of β1 obtained with the MCMC scheme described in Section 6.2.2.2, where networks and

hyperparameters are sampled from the posterior distribution. Each evaluation was carried out twice,

with and without taking the edge direction into consideration. Right panel: undirected graph evalu-

ation (UGE). Left panel: directed graph evaluation (DGE). The bottom row presents a more detailed

version of the graphs presented in the top row.
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As described in Section 6.4.3, the objective of our study is to assess the via-

bility of the proposed Bayesian inference scheme and to estimate by how much

the network reconstruction results improve as a consequence of combining the

(down-sampled) cytometry data with prior knowledge from the KEGG pathway

database. To this end, we compared the results obtained with the methodology

described in Section 6.2 with our earlier results from Werhli et al. (2006) (pre-

sented here in Chapter 5), where we had evaluated the performance of Bayesian

networks (BNs) and Graphical Gaussian models (GGMs) without the inclusion

of prior knowledge. We applied GGMs as described in Schäfer and Strimmer

(2005b). For comparability with Werhli et al. (2006), we used BNs with the fam-

ily of linear Gaussian distributions, for which the marginal likelihood P (D|M)

of Equation 3.7 on Section 3.2.2 is given by the so-called BGe score; see

Geiger and Heckerman (1994) and Section 3.2.5.2 for details. Note that the cy-

tometry data of Sachs et al. (2005) are not taken from a time course; hence, BNs

were treated as static rather than dynamic models.

6.5.2.2 Discriminating between different priors

We wanted to test whether the proposed Bayesian inference method can discrim-

inate between different sources of prior knowledge and automatically assess their

relative merits. To this end, we complemented the prior from the KEGG path-

way database with a second prior, for which the entries in the prior knowledge

matrix B were chosen completely at random. Hence, this second source of prior

knowledge is vacuous and does not include any useful information for reconstruct-

ing the regulatory network. Figure 6.12 presents the MCMC trajectories of the

hyperparameters β1 and β2 together with their respective estimated probability

distributions. The hyperparameter associated with the KEGG prior, β1, takes on

substantially larger values than the hyperparameter associated with the vacuous

prior, β2. The estimated posterior distribution of β1 covers considerably larger
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values than the estimated posterior distribution of β2. This suggests that the pro-

posed method successfully discriminates between the two priors and effectively

suppresses the influence of the vacuous prior. Note that the vacuous prior is

not completely ‘switched off’, though, and that the sampled values of β2 are still

substantially larger than zero. This seemingly counterintuitive behaviour is not a

failure of the method, but rather an intrinsic feature of the posterior probability

landscape; see Figure 6.8 and the discussion in Section 6.3.4.

6.5.2.3 Reconstructing the regulatory network

In order to assess the performance of the algorithm in recovering the network we

apply two criteria: The AUC and the number of TP for fixed FP=5. Further-

more we consider the directed and undirected graphs namely the DGE and UGE

scores respectively. These evaluation criteria are the same that we applied in our

comparison study (see Section 5.4) and they are all explained in more detail on

Section 4.4.

The results are shown in Figure 6.13. The proposed Bayesian inference scheme

clearly outperforms the methods that do not include the prior knowledge from the

KEGG database (BNs and GGMs). It also clearly outperforms the prediction that

is solely based on the KEGG pathways alone without taking account of the cytom-

etry data. The improvement is significant for all four evaluation criteria: AUC

and TP scores for both directed (DGE) and undirected (UGE) graph evaluations.

This suggests that the network reconstruction accuracy can be substantially im-

proved by systematically integrating expression data with prior knowledge about

pathways, as extracted from the literature or databases like KEGG.

6.5.2.4 Learning the hyperparameters

While the study described in Section 6.5.2.2 suggests that the proposed Bayesian

inference scheme succeeds in suppressing irrelevant prior knowledge, we were cu-
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rious to see whether the hyperparameter associated with the relevant prior (from

KEGG) was optimally inferred. To this end, we chose a large set of fixed values

for β1, while keeping the hyperparameter associated with the vacuous prior fixed

at zero: β2 = 0. For each fixed value of β1, we sampled BNs from the posterior

distribution with MCMC, and evaluated the network reconstruction accuracy

using the evaluation criteria described in Section 6.5.2.3. We compared these

results with the proposed Bayesian inference scheme, where both hyperparam-

eters and networks are simultaneously sampled from the posterior distribution

with the MCMC scheme discussed in Section 6.2.2.2. The results are shown in

Figure 6.14. The blue lines show plots of the various prediction criteria obtained

for fixed hyperparameters, plotted against β1. Plotted along the vertical direc-

tion, the red lines show MCMC trace plots for the sampled values of β1. These

results suggest that the inferred values of β1 are close to those that achieve the

best network reconstruction accuracy. However, there is a small yet significant

bias: the sampled values of β1 lie systematically below those that optimize the

reconstruction performance. There are two possible explanations for this effect.

First, recall that for static BNs as considered here, the partition function of Equa-

tion 6.10 is only approximated by Equation 6.16, which could lead to a systematic

bias in the inference scheme. Second, it has to be noted that the gold-standard

Raf pathway reported in the literature is not guaranteed to be the true biological

regulatory network. Recent literature (Dougherty et al., 2005) describes evidence

for a negative feedback loop between RAF and ERK via MEK. Active RAF phos-

phorylates and activates MEK, which, in turn, activates ERK. This corresponds

to the directed regulatory path shown in Figure 4.1. However, through a negative

feedback mechanism involving ERK, RAF is phosphorylated on inhibitory sites,

generating an inactive, desensitized RAF. Details can be found in Dougherty et al.

(2005). This feedback loop is not included in the gold-standard network reported

in Sachs et al. (2005), shown in Figure 4.1. The existence of a hidden feedback
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Figure 6.15: Learning the hyperparameter from synthetic data. The graphs correspond to

those of Figure 6.14, but were obtained from five independently generated synthetic data sets.

These data were generated from the gold-standard Raf signalling pathway reported in Sachs et al.

(2005), as described in Section 6.5.3. The prior knowledge was set to a corrupted version of the

gold-standard network, in which 6 (out of the 20) true edges had been removed and replaced by

wrong edges. For an explanation of the graphs and symbols, see the caption of Figure 6.14.

loop acting on a putative feedforward path may lead to some systematic error in

the edge directions, as static BNs are intrinsically restricted to the modelling of

directed acyclic graphs. To shed further light on this issue, we therefore decided

to carry out an additional synthetic study.

6.5.3 Comparison with simulated data

We simulated synthetic data from the Raf signalling network, depicted in Fig-

ure 4.1 using a linear Gaussian distribution as explained in Section 4.3.1. We set

the standard deviation to σ = 0.1, and the interaction strengths to wik = 1. To

mimic the situation described in the previous section, we generated 5 independent

data sets with 100 samples each. As prior knowledge, we used a corrupted version

of the true network, in which 6 (out of the 20) true edges had been removed and
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replaced by wrong edges. We then proceeded with the inference in the same way

as described in Section 6.5.2. The results are shown in Figure 6.15, which corre-

sponds to Figure 6.14 for the real cytometry data. From a comparison of these

two figures, we note that the small bias in the inference of the hyperparameter

has disappeared, and that values of the hyperparameter are sampled in the range

where the reconstruction accuracy is optimized. This suggests that the small bias

observed in Figure 6.14 might not be caused by the approximation of the parti-

tion function in Equation 6.16, but seems more likely to be a consequence of the

other two effects discussed at the end of Section 6.5.2 (errors in the gold-standard

network and putative feedback loops).

6.6 Modifying the energy function

6.6.1 Introduction

In this section we modify the way a given source of biological prior knowledge is

integrated with expression data. In the aforementioned methods the information

regarding to the presence and to the absence of edges were treated equally. In

this section we use only one source of biological prior knowledge but we split the

information contained in it and associate one hyperparameter with the indications

about the presence of edges and the other hyperparameter with the indications

about the absence of edges.

6.6.2 Methodology

As previously discussed in order to integrate biological prior knowledge into the

inference of gene regulatory networks we define a function that measures the

agreement between a given network M and a given source of biological prior

knowledge.
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Here we use the same ideas that were presented in Section 6.2. We use only one

source of prior biological knowledge but we split the energy E in two components.

One of the components, E0, is associated with the absence of edges. The other

component, E1, is associated with the presence of edges. Considering a network

M and a source of prior biological knowledge represented by the matrix B, we

define the energies associated with the presence and absence of edges as follows:

E0(M) =

n∑

i,j=1
Bi,j<0.5

|Bi,j −Mi,j| (6.42)

E1(M) =

n∑

i,j=1
Bi,j>0.5

|Bi,j −Mi,j| (6.43)

where n is the total number of nodes.

To integrate the prior knowledge expressed by Equations (6.42) and (6.43)

into the inference procedure, once again we follow Imoto et al. (2003a) and define

the prior distribution over network structures M to take the form of a Gibbs

distribution:

P (M|β0, β1) =
e−{β0E0(M)+β1E1(M)}

Z(β0, β1)
(6.44)

where the partition function is defined as:

Z(β0, β1) =
∑

M∈M

e−{β0E0(M)+β1E1(M)} (6.45)

The two previous equations are in fact the same equations (6.9) and (6.10) respec-

tively. The difference here is not in the equations themselves but in what they

represent. While the equations in the previous section represented two different

sources of biological prior knowledge being integrated with the expression data

here they represent just one source of prior biological knowledge being integrated

with the data. The main difference is that in this section one source of prior is

split in two, one that indicates the knowledge about the absence of edges, (β0),

and one that indicated the presence of edges, (β1). The following derivations are

also all closely related with the derivations presented in Section 6.2.1.3 on page

111.
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As discussed before, unfortunately, the number of graphs increases super-

exponentially with the number of nodes, rendering the computation of Z(β0, β1)

not viable for large networks. Following the same procedure as in Section 6.2 we

define:

E0(M) =
∑

n

E0 (n, πM(n)) (6.46)

E1(M) =
∑

n

E1 (n, πM(n)) (6.47)

where πM(n) is the set of parents of node n in the graphM and we have defined:

E0 (n, πM(n)) =
∑

i∈πM(n)
Bin<0.5

(1−Bin) +
∑

i/∈πM(n)
Bin<0.5

Bin (6.48)

E1 (n, πM(n)) =
∑

i∈πM(n)
Bin>0.5

(1−Bin) +
∑

i/∈πM(n)
Bin>0.5

Bin (6.49)

Following the same rationale presented in Equation (6.16) (page 113) the Equa-

tions (6.46) and (6.47) are inserted in Equation (6.45) and thus we obtain:

Z(β0, β1) =
∏

n

∑

πM(n)

e−{β0E0(n,πM(n))+β1E1(n,πM(n))} (6.50)

which is the exact partition function for DBNs and an upper bound for static

BNs; see the discussion below Equation 6.6.

6.6.3 Simulations

Once again we focus our simulations in the reconstruction of the RAF pathway.

The structure of this network is presented in Figure 4.1. Networks and hyper-

parameters are sampled with an MCMC sampler according to the methodology

presented in Section 6.2.2.2.

In this section observational data from the flow cytometry experiments is

combined with a source of prior biological information obtained from the KEGG
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database. The data and the source of prior biological knowledge are discussed in

more detail in Section 6.4.3. Furthermore, data simulated with Netbuilder is also

used in conjunction with the source of prior biological knowledge obtained from

KEGG. For details about the Netbuilder simulated data sets see Section 4.3.2.

6.6.4 Results from the modified energy function

Figure 6.16 shows the ROC curves for four different network reconstruction meth-

ods: using the prior knowledge from KEGG only, according to Equation (6.41);

learning Bayesian networks and graphical Gaussian models from the protein con-

centration data alone; and the proposed Bayesian inference scheme for integrat-

ing prior knowledge and data. The figure also distinguishes between learning

the skeleton of the graph only (UGE: undirected graph evaluation) and consid-

ering the direction of the edges also (DGE: directed graph evaluation). Recall

that larger areas under the ROC curves indicate a better prediction performance

overall, although the slope on the left is also of interest, as we are usually inter-

ested in keeping the number of false positives bounded at low values. The figure

suggests that the systematic integration of prior knowledge with the proposed

Bayesian inference scheme leads, overall, to a systematic improvement in the pre-

diction performance over the three alternative schemes that are based on either

the data or the prior knowledge from KEGG alone. There are various interest-

ing trends to be noted, though. For learning the skeleton of the graph (UGE),

the improvement obtained on the real cytoflow data is more substantial than on

the synthetic data; see the left panel of Figure 6.16. This is a consequence of

the fact that on the synthetic data, Bayesian networks show already a strong

performance on learning the skeleton of the network, leaving not much room for

further improvement. On the cytoflow data, on the other hand, the performance

is much poorer. Consequently, the integration of prior knowledge leads to a more

substantial improvement. When taking the edge directions into consideration
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Figure 6.16: Reconstruction of the Raf signalling pathway. The figure evaluates the accu-

racy of inferring the Raf signalling network from cytometry data (bottom row) and from simulated

Netbuilder data (top row), each combined with prior information from KEGG. This evaluation was

carried out twice: with and without taking the edge direction into account (UGE: undirected graph

evaluation, left column; DGE: directed graph evaluation, right column). Four machine learning

methods were compared: Bayesian Networks without prior knowledge (BNs), Graphical Gaussian

Models without prior knowledge (GGMs), Bayesian Networks with prior knowledge from KEGG (BN-

Prior), and prior knowledge from KEGG only (PriorOnly). In the latter case, the elements of the prior

knowledge matrix (introduced in Section 6.2.1) were computed from equation (6.41). The ROC

curves presented are the mean ROC curves obtained by averaging the results over five different data

sets. The resulting areas under the ROC curves are as follows. Simulated data: DGE: GGM=0.795,

BN=0.852 , BNPrior=0.929, PriorOnly=0.685; UGE: GGM=0.879, BN=0.952, BNPrior=0.948,

PriorOnly=0.679; Flow cytometry data: DGE: GGM=0.645, BN=0.644, BNPrior=0.744, Pri-

orOnly=0.685; UGE: GGM=0.686, BN=0.697, BNPrior=0.791, PriorOnly=0.679;
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Figure 6.17: Learning the hyperparameters associated with the prior knowledge from KEGG

on simulated Netbuilder data and real flow cytometry data. The grey shading of the contour

plots represents the mean area under the ROC curve (AUC value) – averaged over five different data

sets – as a function of the fixed values of the hyperparameters β0 and β1. The black dots show

the values of these hyperparameters that were sampled in the MCMC simulations. The top row

shows the results obtained on the simulated data. The bottom row shows the results obtained on

the real flow cytometry protein concentrations. The left column shows the results for the directed

graph evaluation (DGE), while the column on the right shows the results obtained when ignoring

edge directions and only taking the skeleton of the network into account (UGE: undirected graph

evaluation).
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Figure 6.18: Comparison between methods. Here we compare the two different ways of

incorporating one source of prior biological knowledge with gene expression data. The black bars

show the case where there is only one hyperparameter which accounts for both presence and absence

of edges. The white bars show the case where there are two hyperparameters one associated with

the presence of edges and the other associated with the absence of edges. The results are obtained

applying the methods to the real data. The left panel shows the AUC scores and the right panel

shows the TP counts for both DGE and UGE scoring metrics.

(DGE), the proposed Bayesian integration scheme outperforms all other methods

on the synthetic data; see Figure 6.16, top right. This result is consistent with

what has been discussed in the Introduction section: when learning Bayesian net-

works from non-dynamical non-interventional data (as considered here) without

prior knowledge, there is inherent uncertainty about the direction of edges ow-

ing to intrinsic symmetries within network equivalence classes; see Section 3.2.3.

These symmetries are broken by the inclusion of prior knowledge; hence the im-

provement in the prediction performance. This improvement is also observed on

the real cytoflow data (Figure 6.16, bottom right), but to a lesser extent. Al-

though the area under the ROC curve related to the Bayesian integration scheme

exceeds that of all other ROC curves, the prediction based on prior knowledge

alone shows a steeper slope in the very left region of the false-positive axis. This

implies that for very high values of the threshold on the edge scores, a network

learned from prior knowledge alone is more accurate than a network learned with

any of the three methods that make use of the data. While the resulting network

itself would not be particularly interesting – it would only contain a very small
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number (3 or 4) of the highest scoring edges – this observation is interesting nev-

ertheless, and can be explained as follows. The discrepancy between the UGE

and DGE scores indicates that the Bayesian network learns the skeleton of the

graph more accurately than the direction of the interactions, with some of the

edge directions systematically inverted. A possible explanation are errors in the

gold standard network as discussed in Section 6.5.2.4. Such as yet unaccounted

feedback loops could explain systematic deviations between the predicted and the

gold standard network, not only because the structure of a Bayesian network is

constrained to be acyclic, but also because we ultimately don’t have a reliable

gold standard to assess the quality of the predictions. This example points to a

fundamental problem inherent in any evaluation based solely on real biological

data, and illustrates clearly the advantage of our combined evaluation based on

both laboratory and simulated data.

It is obviously of interest to test how well the inference of the hyperparameters

β0 and β1 works, especially as this inference depends on the partition function

Z(β0, β1) of Equation (6.45), which can only be computed approximately; see

Equation (6.6). To this end, we repeated the MCMC simulations for a large set

of fixed values of β0 and β1, selected from the grid [0, 20] × [0, 20]. For each

pair of fixed values (β0, β1), we sampled BNs from the posterior distribution with

MCMC, and evaluated the network reconstruction accuracy using the evaluation

criteria described in Section 6.5.2.3. We compared these results with the pro-

posed Bayesian inference scheme, where both hyperparameters and networks are

simultaneously sampled from the posterior distribution with the MCMC scheme

discussed in Section 6.2.2. The results are shown in Figure 6.17. The grey shading

of the contour plots indicates the network reconstruction accuracy in terms of the

directed (DGE: left panels) and undirected (UGE: right panels) graph evaluation,

obtained from the synthetic (top panels) and real cytometry data (bottom pan-

els). The black dots show the hyperparameter values sampled with the MCMC
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simulations. While the distribution of β0, the hyperparameter associated with the

non-edges, is fairly peaked, the distribution of β1, the hyperparameter associated

with the edges, is rather diffuse. This diffusion is particularly noticeable on the

synthetic data. However, even on the real cytometry data, the distribution of β1

has a long tail, with values being sampled across the whole permissible spectrum.

An inspection of the prior knowledge matrix B extracted from KEGG according

to Equation (6.41) reveals that the prior knowledge associated with the energy

function E1 – Equation (6.43) – accounts for only 25% of the true edges in the

gold standard network of Figure 4.1, while the prior knowledge associated with

the energy function E0 – Equation (6.42) – accounts for 92% of the non-edges.

Consequently, it appears that E0 captures more relevant information for network

reconstruction than E1, which is reflected by the tighter distribution of the respec-

tive hyperparameter. The location of the sampled values of the hyperparameters

β0 and β1 falls into the region of high network reconstruction scores. This suggests

that the proposed Bayesian sampling scheme succeeds in finding hyperparameter

values that lead to good network reconstructions. A certain deviation from the

optimal reconstruction would be expected owing to the approximation made for

computing the partition function; see Equation (6.50). However, his deviation is

small for both scores (UGE and DGE) on the synthetic data, and for the UGE

score on the cytometry data. A noticeable deviation occurs for the DGE score

on the cytometry data, though; see Figure 6.17, bottom left panel. This devia-

tion indicates a systematic mismatch between the DGE score and the posterior

probability of the hyperparameters, which suggests that the cytometry data do

not support all the edge directions in the gold standard network of Figure 4.1.

Two possible explanations are either wrong edge directions in the gold standard

network, or the existence of as yet unaccounted feedback loops, in confirmation

of what has been discussed above.

Another interesting comparison is between the two different ways of incorpo-
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rating biological prior knowledge with gene expression data. Previously, in Sec-

tion 6.2, we presented the method where each source of biological prior knowledge

has one associated hyperparameter that accounts for both presence and absence

of the edges. In the present section we introduced a modification to the way

the source of prior biological knowledge is incorporated into the inference. Here

each source of prior biological knowledge has two hyperparameters, one associ-

ated with the presence of edges and the other associated with the absence of

edges. Figure 6.18 presents the results of the two methods applied to the data

from flow cytometry experiments. This data set is described in Section 4.2. The

results are all similar apart from the TP counts when considering the edge di-

rections (DGE). The DGE TP-score is smaller for the case where the presence

and absence of edges are considered separately. This difference does not appear

for the UGE score indicating that the skeleton of the network is learnt but some

edges directions are wrong. This difference also does not appear when looking

into the AUC scores indicating that the wrong directed edges are present for very

low values of FPs.

These results suggest that more flexibility in the presentation of the prior

knowledge does not automatically guarantee a performance improvement. One

of the reasons for this lack of improvement is presumably related to the fact

that most of the useful prior information was contained in the absence of edges,

whereas only little information was contained in the presence of interactions (as

suggested by Figure 6.17). The decision of whether an edge is present or absent

depends on the choice of the threshold, though, which was rather arbitrarily set

to a fixed value of 0.5; see equations (6.48) and (6.49). A different choice of the

threshold parameter might have led to a smaller disparity between the two subsets

of edges with respect to the information content, which suggests that sampling

this parameter from the posterior distribution with MCMC might have led to

a clearer performance enhancement. This further suggests, on a more general
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basis, that the flexibility and presentation of the prior knowledge about network

structures, e.g. related to the subdivision of nodes and edges into subgroups,

could be included in the MCMC scheme, which would provide an interesting

avenue for future research.

6.7 Discussion

The work presented here is based on pioneering work by Imoto et al. (2003a)

on learning gene regulatory networks from expression data and biological prior

knowledge, which has recently found a variety of applications (Tamada et al.,

2003; Nariai et al., 2004; Tamada et al., 2005; Imoto et al., 2006). The idea is

to express the available prior knowledge in terms of an energy function, from

which a prior distribution over network structures is obtained in the form of a

Gibbs distribution. The hyperparameter of this distribution, which corresponds

to an inverse temperature in statistical physics, represents the weight associated

with the prior knowledge relative to the data. Our work complements the work

of Imoto et al. (2003a) in various respects. We have extended the framework

to multiple sources of prior knowledge; we have derived and tested an MCMC

scheme for sampling networks and hyperparameters simultaneously from the pos-

terior distribution; we have elucidated intrinsic features of this scheme from an

idealized network population amenable to a closed-form derivation of the pos-

terior distribution; and we have assessed the viability of the proposed Bayesian

inference approach on various synthetic and real-world data.

Our findings can be summarized as follows. When including two sources of

prior knowledge of similar nature, the marginal posterior distributions of the

associated hyperparameters are similar (Figure 6.9). When the two sources of

prior knowledge are different, higher weight is assigned to the prior that is more

consistent with the data (Figure 6.11). When including an irrelevant prior with
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vacuous information, its influence will be automatically suppressed (Figure 6.12)

in that the marginal posterior distribution of the corresponding hyperparame-

ter is shifted towards zero. The irrelevant prior is not completely switched off,

though. This would correspond to a delta distribution sitting at zero, which is

never observed, not even for the worst-case scenario of prior knowledge that is

in complete contradiction to the true network and the data (Figure 6.8c). To

elucidate this unexpected behaviour, we carried out two types of analysis. In

the first case, we considered an idealized population of network structures for

which the prior distribution could be computed in closed form (Equation 6.37).

In the second case, we considered networks composed of a small number of nodes

(Figure 6.4), for which the partition function of Equation 6.10, and hence the

prior distribution over networks structures (Equation 6.9), could be numerically

computed by exhaustive enumeration of all possible structures. Both types of

analysis reveal that the posterior distribution over hyperparameters contains a

flat plateau (Figure 6.8a-b), which accounts for our seemingly counter-intuitive

observations.

We evaluated the accuracy of reconstructing the Raf protein signalling net-

work, which has been extensively studied in the literature. To this end, we com-

bined protein concentrations from cytometry experiments with prior knowledge

from the KEGG pathway database. The findings of our study clearly demon-

strate that the proposed Bayesian inference scheme outperforms various alterna-

tive methods that either take only the cytometry data or only the prior knowledge

from KEGG into account (Figure 6.13). We inspected the values of the sampled

hyperparameters. Encouragingly, we found that their range was close to the op-

timal value that maximizes the network reconstruction accuracy (Figure 6.14).

A small systematic deviation would be expected owing to the approximation we

have made for computing the partition function of the prior (Equations 6.6 and

6.16). Interestingly, a comparison between real and simulated cytometry data –
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Figure 6.14 versus Figure 6.15 – revealed that the small bias only occurred in the

former case. This suggests that other confounding factors, like errors in the gold-

standard network and as yet unaccounted feedback loops, might have a stronger

effect than the approximation made for computing the partition function.

A certain shortcoming of the proposed method is the intrinsic asymmetry

between prior knowledge and data, which manifests itself in the fact that the

hyperparameters of the prior are inferred from the data. Ultimately, the prior

knowledge is obtained from some data also; for instance, prior knowledge about

TF binding sites is obtained from immunoprecipitation data. A challenging topic

for future research, hence, is to treat both prior and data on a more equal footing,

and to develop more systematic methods of postgenomic data integration.
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Integrating data sets

This is joint work with Dirk Husmeier, submitted as part of an invited paper to

be considered for possible publication in a special issue of the Journal of Bioin-

formatics and Computational Biology.

7.1 Introduction

The assumption so far has been that the molecular biological system of interest

can be characterized by a unique regulatory network. What we are actually aim-

ing to infer, though, are the active parts of this network, which may differ under

different experimental conditions. To illustrate this point, consider a transcrip-

tion factor that potentially upregulates a group of genes further downstream in

the regulatory chain. If the experimental conditions are chosen such that the gene

coding for this transcription factor is never expressed itself, then the respective

subnetwork will never be activated, and hence cannot be inferred from the data.

When aiming to infer regulatory networks related to an organism’s immune sys-

tem, we would expect certain pathways to be activated only upon infection, and

remaining invisible when gene expression profiles are only taken in the healthy

state. In fact, the analysis in Chapter 2 related to the challenging of macrophages

with interferon gamma (IFNγ) and viral infection has revealed differences in the

159
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active pathways under the conditions of viral infection, IFNγ treatment, and viral

infection plus IFNγ treatment. This suggests that a regulatory network is not

an immutable entity, but may vary in response to changes in the experimental

and/or environmental conditions.

When aiming to reconstruct a network from gene expression profiles taken un-

der different experimental conditions, there seem to be two principled approaches

we may pursue. The first is to ignore the changes in the experimental conditions

altogether and merge the data into one monolithic set. The problem with this ap-

proach is that it inevitably blurs the differences between the different conditions

and thereby obscures the biological insight we are aiming to gain; for instance,

we would not be able to tell the difference between the state of a network in

infected, healthy, and IFNγ-treated cells. The second approach is to keep the

data obtained under different conditions separate, and to infer separate regula-

tory networks active under these different conditions. While this approach has

the potential to reveal the differences between the regulatory networks in differ-

ent states, e.g. infection versus treatment, it will almost inevitably result in a

considerable reduction in statistical power and reconstruction accuracy. Current

postgenomic data sets are usually sparse, e.g. the number of microarray exper-

iments biologists can afford to carry out is usually limited to the order of a few

dozens. As discussed in Chapter 6, this limitation compromises the extent to

which networks can be reconstructed. Breaking a sparse data set up into smaller

units will inevitably aggravate this situation, and increase the uncertainty about

inferred network structures.

In the present work we aim to pursue a compromise between the two extreme

procedures described above. The motivation is given by the insight gained from

Chapter 2. Although we found differences between the active pathways under the

different conditions of infection and treatment with IFNγ, the networks shared

considerable features they had in common. Our conjecture is that this holds
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in general, and that a cell’s regulatory networks, while potentially transition-

ing between different active states in response to different external cues, share

substantial features owing to a common generic network architecture. Our objec-

tive is to formulate this proposition mathematically so as to integrate it into the

probabilistic modelling process.

As it turns out, this objective can be achieved by a modification of the prob-

abilistic model described in Chapter 6. Recall that the objective of Chapter 6

was the integration of explicit prior knowledge into the inference scheme by softly

constraining the inferred network to be similar to the a-priori known network. In

modification of this scheme we now propose to learn separate regulatory networks

from disjunct gene expression data, but tying these networks together by softly

constraining them to be similar to a shared underlying generic network. This ap-

proach overcomes the rigidity of the first scenario described above, which would

obscure the differences between the network states in different experimental con-

ditions. By sharing information between the different network states, the problem

of the second scenario described above should be averted, that is, the statistical

power and accuracy of the reconstruction should be considerably enhanced.

7.2 Methodology

In order to integrate information from I different data sets (D1 . . .DI) obtained

under different experimental conditions we use the probabilistic graphical model

presented in Figure 7.1. Each data set (D1 . . .DI) is associated with its own

hyperparameter (β1, . . . , βI) and network structure (M1, . . . ,MI). The latent

graph M?, which is not directly associated with the data, leads to a coupling

between the individual network structures (M1, . . . ,MI) and encourages them

to be similar. Note that Figure 7.1 constitutes a hierarchical Bayesian model, in

which the βis and M? correspond to hyperparameters that determine the prior
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Figure 7.1: Probabilistic model for learning active subnetworks under different experimental

conditions. (D1 . . .DI) are data sets obtained under different experimental conditions. Each

of these data sets is associated with its own hyperparameter (β1, . . . , βI) and network structure

(M1, . . . ,MI). The hypernetworkM? leads to a coupling between the individual network structures

(M1, . . . ,MI) and encourages them to be similar.

distribution on the network structures Mis. Further note that M? is not just a

variable, but a complex entity representing a whole network itself. We therefore

refer toM? as the hypernetwork.

The joint probability of the probabilistic graphical model of Figure 7.1 is given

by:

P (M1, . . . ,MI,D1 . . .DI, β1, . . . , βI,M?) =
I∏

i=1

P (Di|Mi)P (Mi|βi,M?)P (βi)P (M?) (7.1)

where the prior distribution over network structures, P (Mi|βi,M?), takes the

form of a Gibbs distribution:

P (Mi|βi,M?) =
e−βi(|Mi−M?|)

Z(βi,M?)
. (7.2)

Recall that the hyperparameter βi corresponds to an inverse temperature in sta-

tistical physics, and the term |Mi −M?| measures the similarity between the
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graphs Mi and M?; see Equation (6.1) in Section 6.2. This introduces a cou-

pling between the individual networks Mi: deviations between Mi and M? are

penalized, which implies an indirect penalty for deviations betweenMi andMk,

i 6= k. The denominator in (7.2) is a normalizing constant, also known as the

partition function:

Z(βi,M?) =
∑

Mi∈M

e−βi(|Mi−M?|) (7.3)

where M is the set of all valid network structures. The summation over all possible

modelsMi can be performed efficiently using Equation (6.6), as discussed in the

text below that equation.

The hyperparameter βi can be interpreted as a factor that indicates the

strength of the influence of the hypernetworkM? relative to the data. For βi → 0,

the prior distribution defined in Equation (7.2) becomes flat and uninformative

about the network structure. Conversely, for βi → ∞, the prior distribution

becomes sharply peaked, forcing the network structure Mi to be similar to the

hypernetwork M?.

7.3 MCMC sampling scheme

Our goal is to sample all network structures Mi, all the hyperparameters

βi and the hypernetwork M? from the posterior distribution. In order to

achieve this objective we propose new structures Minew from the proposal

distribution Qi(Minew|Miold), new hyperparameters from the proposal distri-

bution Ri(βinew|βiold) and a new hypernetwork from the proposal distribu-

tion W (M?
new|M?

old). We then accept these moves according to the standard

Metropolis-Hastings update rule (Hastings, 1970) with the following acceptance
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probability:

A = min

{
I∏

i=1

P (Di,Minew, βinew,M?
new)Qi(Miold|Minew)Ri(βiold|βinew)

P (Di,Miold, βiold,M?
old)Qi(Minew|Miold)Ri(βinew|βiold)

×

W (M?
old|M?

new)P (βinew)P (M?
new)

W (M?
new|M?

old)P (βiold)P (M?
old)

, 1

} (7.4)

For symmetric proposal distributions Ri(βinew|βiold) and W (M?
new|M?

old) this ex-

pression simplifies to:

A =
I∏

i=1

P (Di,Minew, βinew,M?
new)Qi(Miold|Minew)P (βinew)P (M?

new)

P (Di,Miold, βiold,M?
old)Qi(Minew|Miold)P (βiold)P (M?

old)
(7.5)

The prior distribution P (M?) can be chosen in a manner that explicit biological

prior knowledge is included as discussed in Chapter 6. However, for the sake of

simplicity of the notation and in order to focus on the coupling aspects of the

proposed method, we assume that both prior distributions P (βi) and P (M?) are

uniform; this leads to the following simplification of the expression:

A =

I∏

i=1

P (Di|Minew)P (Minew|βinew,M?
new)Qi(Miold|Minew)

P (Di|Miold)P (Miold|βiold,M?
old)Qi(Minew|Miold)

(7.6)

where we have expanded the joint probability according to the conditional inde-

pendence relations shown in Figure 7.1. Note that the Mis, as opposed to M?,

need to be proper DAGs. For this reason, we include the corresponding Hastings

factor – the last term in the equation – as it is not necessarily equal to one. In

our simulations, to be discussed below, we have used edge-based proposal moves:

the creation, deletion and reversal of an edge. When enforcing these moves to be

valid, that is, to lead to proper DAGs, the two proposal probabilities do not neces-

sarily cancel out and have therefore to be explicitly computed; see Section 3.2.2.2

for further details.

In order to increase the acceptance probability and, hence, mixing and con-

vergence of the Markov chain, we break the move up into submoves. First we

propose new structures for each of the networks Mi in turn, while keeping all

the other variables fixed. The new structures are accepted with the following
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acceptance probabilities:

A(Minew|Miold) = min

{
P (Di|Minew)P (Minew|βi,M?)Qi(Miold|Minew)

P (Di|Miold)P (Miold|βi,M?)Qi(Minew|Miold)
, 1

}

= min

{
P (Di|Minew)e−βi(|Minew−M?|)Qi(Miold|Minew)

P (Di|Miold)e
−βi(|Miold

−M?|)Qi(Minew|Miold)
, 1

}
(7.7)

where (7.2) has been used. Next we propose new values for the trade-off hyperpa-

rameters βi. Each of the trade-off hyperparameters is accepted with the following

acceptance probability:

A(βinew |βiold) = min

{
P (Mi|βinew,M?)

P (Mi|βiold,M?)
, 1

}

= min

{
e−βinew (|Mi−M?|)Z(βiold,M?)

e−βiold
(|Mi−M?|)Z(βinew,M?)

, 1

}
. (7.8)

Finally a new hypernetwork is proposed and accepted with acceptance probabil-

ity:

A(M?
new
|M?

old
) = min

{
I∏

i=1

P (Mi|βi,M?
new

)

P (Mi|βi,M?
old

)
, 1

}

= min

{
I∏

i=1

e−βi(|Mi−M?
new |)Z(βi,M?

old
)

e−βi(|Mi−M?
old

|)Z(βi,M?
new

)
, 1

}
. (7.9)

To illustrate the plausibility of this sampling scheme, consider the sampling

of the hyperparameters βi according to equation (7.8). We would assume that

for a network Mi that consistently differs from the hypernetwork M?, the cor-

responding hyperparameter βi should be driven to small values (indicating weak

coupling), while, conversely, βi should be driven to large values (indicating strong

coupling) when a network Mi is consistently similar to M?. This is indeed the

case. In the first scenario, |Mi−M?| tends to be large, and high values of βi are

repressed by the exponential term in (7.8). In the second scenario, |Mi −M?|

becomes small, and the exponential term tends towards a constant, indiscrimi-

native with respect to selecting βi. Note, however, that the partition function

Z(βi,M?) is a monotonically decreasing function in βi, as seen from Figure 7.2.

This monotonicity provides a penalty for small values of βi, driving βi up to high

values, as expected.
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Figure 7.2: Partition function example. The figure shows a plot of the partition function

Z(βi,M?) as a function of the hyperparameter βi for a fixed hypernetworkM?, chosen to be the

gold standard Raf network of Figure 4.1.

7.4 Data

We tested the proposed method on three types of data: linear Gaussian syn-

thetic data, non-linear Netbuilder synthetic data, and real laboratory data from

cytometry experiments. In each case, we coupled five individual data sets, cor-

responding to five experimental conditions. For the synthetic data, three of the

data sets were generated from the gold-standard RAF regulatory network, shown

in Figure 4.1. A fourth data set was generated from a slightly modified version of

this network, in which the following four edges had been deleted: PKC → RAF,

PKC→ PKA, PKA→MEK, and PLCg→ PIP2. An illustration of this network

is shown in Figure 4.2. The deletion of these edges corresponds to changes in the

active subpathways under different external conditions, as described above. As a

fifth data set, we included a purely random data set. This corresponds to either

a drastic change of the external conditions that deactivates the whole pathway,

or to a flawed experiment that has corrupted the data. We want to investigate

whether the proposed method succeeds in identifying this outlying data set and

prevents it from adversely affecting the overall inference. We are also interested
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in whether the proposed method can distinguish between the data from the gold-

standard and the modified RAF regulatory network. The synthetic data sets we

use in this chapter are explained in Chapter 4. Figure 4.3 shows a summary of all

the data sets. Note that in this chapter we used only the observational data sets.

For the cytometry data, we took four subsets of unintervened data, randomly

selected from the data in Sachs et al. (2005) and pre-processed as described in

Chapter 4. To these data we added a fifth data set, consisting of pure noise.

7.5 Results

7.5.1 Inferring the hyperparameters

Figure 7.3 shows various MCMC trace plots obtained on the linear Gaussian data,

where the columns refer to different simulations. The first row shows trace plots of

the log likelihood, while the remaining rows show trace plots of the hyperparame-

ters βi associated with the different data sets. The question of interest is whether

the proposed method can identify the corrupted data set (pure noise), and dis-

tinguish between the data generated from the true network and those generated

from the modified network. The first simulation (column 1) fails in this respect.

In fact, the value of the hyperparameter βrand associated with the corrupted data

consistently exceeds the values of the other hyperparameters. However, the log

likelihood is consistently low, suggesting that the MCMC simulations have not

yet converged. This conjecture is corroborated by the second simulation, which

shows a behaviour similar to the first simulation at the beginning, but then un-

dergoes a sharp phase transition, during which βrand is suddenly suppressed, while

the other hyperparameters shoot up to high values. A concomitant transition in

the log likelihood indicates that the Markov chain is escaping from a metastable

low-probability state in which it was trapped. The two remaining simulations,

corresponding to columns 3 and 4 of Figure 7.3, show a better convergence from
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Figure 7.3: MCMC trace plots for Gaussian data. The columns represent different simulations.

The first row shows trace plots of the log likelihood (computed from Equation (7.1)), while the

remaining rows show trace plots of the hyperparameters βi associated with the five different data

sets used. These data sets are of different nature. Random: Corrupted data consisting of pure

noise. True: Data sets generated from the gold-standard RAF network, shown in Figure 4.1.

Modified: Data generated from the modified RAF network, in which four edges had been deleted;

see Figure 4.2. The horizontal axes represent the number of MCMC interactions and have all the

same scale. The number of MCMC steps for all simulations is 2× 106 from which the first half is

discarded as burn-in phase. The same scale was chosen for the vertical axes of the first row (log

likelihoods). The vertical axes of the remaining rows (βis) also have all the same scale which is the

interval [0, 30].



7.5. Results 169

MCMC step MCMC stepMCMC step

Lo
g 

lik
el

ih
oo

d
R

an
do

m
T

ru
e

T
ru

e
T

ru
e

Netbuilder Data

MCMC step

M
od

ifi
ed

Figure 7.4: MCMC trace plots for Netbuilder data. The graphs correspond to those of

Figure 7.3, but were obtained on the non-linear synthetic data rather than the Gaussian data. See

the caption of Figure 7.3 for further details.
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Figure 7.5: Posterior distributions of the hyperparameters. These figures show the

posterior distributions of the five hyperparameters β1, . . . , β5, estimated with a kernel estimator ap-

plied to the samples obtained from the MCMC simulations with the best convergence characteristics.

Left panel: linear Gaussian data. Right panel: non-linear data generated with Netbuilder.

the outset, with βrand being consistently suppressed, and the hyperparameter

associated with the modified network taking on values below those of the hyper-

parameters associated with the true network. A similar behaviour can be found

in Figure 7.4, which was obtained from four MCMC simulations on the non-linear

synthetic data. Figure 7.5 shows the estimated posterior distributions of the five

hyperparameters for the best-converged MCMC simulations on both the linear

and non-linear synthetic data. These plots suggest that the proposed method

succeeds in identifying the corrupted data, whose associated hyperparameter is

significantly suppressed, as well as the data generated from the modified network.

In the latter case, the distribution of the respective hyperparameter is shifted to

lower values than the distributions of the hyperparameters associated with the

true network. The amount of shift varies between the two data sets, which we

suspect is more related to different degrees of convergence of the Markov chains

than intrinsic differences between the linear and non-linear data. The upshot of
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this study is that the proposed method works successfully, but that convergence

problems of the MCMC simulations can become an issue. One problem in our

first set of simulations was that we initialised all networks as empty graphs. This

gives the hyperparameter associated with the corrupted data a certain ‘head-

start’: high-scoring networks inferred from the corrupted data will only contain

a few edges, as there are no true associations between randomized nodes. This

makes these networks similar to the hypernetwork (which was initialised as an

empty graph), explaining the high value of βrand at the beginning of some of our

simulations. A better strategy is to pre-train the individual networks, e.g. using

a greedy optimization, and to set the hypernetwork to their consensus network.

This strategy was applied in the simulations of Figure 7.4, as opposed to Fig-

ure 7.3, and seems to have led to a modest improvement. There is, however, still

substantial scope for the development of more efficient MCMC sampling schemes,

as discussed below.

7.5.2 Network reconstruction

We are particularly interested in whether the proposed coupling scheme leads to

any improvement in terms of network reconstruction accuracy over the two al-

ternative approaches described above, namely: learning a single network from a

merged, monolithic data set, and learning separate networks from the individual

data sets without coupling. In what follows, we will refer to these methods as

the monolithic and the uncoupled approach. To summarize the results succinctly,

we take the area under the ROC curve as a performance criterion, both for the

DGE and the UGE score, with larger areas indicating a better performance. The

results are shown in Figure 7.6. The results presented for the uncoupled approach

are the average AUC value of the 5 different simulations, one for each data set.

They indicate that the proposed coupling scheme consistently outperforms the

other two approaches. The improvement is most pronounced on the synthetic
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Gaussian Netbuilder Cytometry

DGE UGE DGE UGE DGE UGE

Monolithic 0.43 0.42 0.82 0.88 0.57 0.56

Uncoupled 0.74 0.81 0.78 0.84 0.56 0.61

Coupled 0.86 0.96 0.83 0.89 0.59 0.64

Table 7.1: Network reconstruction accuracy. This table presents the AUC scores corre-
sponding to the histograms in Figure 7.6. See the figure caption for further details.

Gaussian data. For these data, the control strength parameters associated with

the edges in the regulatory network were different for each individual data set,

which implies that even when the network structure itself did not change, the

nature of the associated regulation processes could vary in both strength and

sign (corresponding to an activation versus an inhibition). This explains the poor

performance of the monolithic approach, which intrinsically does not allow for

any such variation. The difference in performance is less pronounced for the non-

linear synthetic data generated with Netbuilder, where only the instantiation of

the noise rather than the parameters associated with the edges differed between

different data sets. It appears that the slight performance improvement obtained

with the proposed method is mainly a consequence of the inclusion of the cor-

rupted data, whose influence gets suppressed as a consequence of the adaptation

of the associated hyperparameter, as discussed above. For the cytometry data,

the amount of performance improvement achieved with the proposed method lies

between the two synthetic data sets, with the improvement being more notice-

able for the reconstruction of the skeleton of the graph (UGE score) than the

reconstruction of the edge directions (DGE score).
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Figure 7.6: Network reconstruction accuracy. The histograms show a comparison of the

network reconstruction accuracy in terms of AUC scores for three different methods: the monolithic

approach (black), the uncoupled approach (light grey), and the proposed Bayesian coupling scheme

(dark grey); see the main text for further details. The three panels correspond to different data

sets: linear Gaussian synthetic data (left panel), non-linear synthetic data generated with Netbuilder

(central panel), and protein concentrations from cytometry experiments (right panel). Each panel

contains two histograms, evaluating only the reconstruction of the skeleton of the graph (UGE score)

and additionally taking the edge direction into account (DGE score).

Network Gaussian Netbuilder Cytometry

M1 54.4 54.4 55.9

M2 13.0 13.7 33.9

M3 13.4 15.3 24.9

M4 15.2 15.2 32.0

M5 12.8 13.5 31.6

Table 7.2: MCMC acceptance ratios for uncoupled learning of network structures.

This table shows the MCMC acceptance ratios (in per cent) for the conventional scheme in which
network structures M1 to M5 are learned independently from separate data sets. The higher
acceptance ratio in the first row results from the fact that M1 was learned from random data,
where the likelihood surface is flat. The higher acceptance ratio in the last column results from the
smaller sample size of the cytometry data (20 rather than 100 exemplars), which again leads to a
flatter likelihood surface.
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Figure 7.7: MCMC convergence indication. Each of the two panels shows a scatter plot

of the marginal posterior probabilities of the edges, obtained from two separate MCMC simulations

applied to a subset of the non-linear synthetic Netbuilder data. The left panel was obtained from

the conventional approach, which aims to learn a separate Bayesian network from each subset of the

data. The right panel was obtained from the proposed method, whereby Bayesian networks learned

from different subsets of the data are coupled. The scatter plot was obtained from one of these

coupled networks, corresponding to one of the Mi’s in Figure 7.1. For the conventional scheme,

shown in the left panel, there is a clear consistency between the results from the two independent

MCMC simulations, that is, there is no indication of any convergence difficulties. For the proposed

coupling scheme, however, the marginal posterior probabilities obtained from the two independent

MCMC simulations differ, which indicates a lack of convergence.

Network Gaussian Netbuilder Cytometry

M1 25.6 18.5 0.4

M2 1.2 2.3 14.2

M3 0.3 2.7 2.7

M4 0.05 2.4 13.3

M5 1.2 4.4 1.8

M? 4.5 11.0 10−3

Table 7.3: MCMC acceptance ratios for the proposed Bayesian coupling scheme.

This table is to be compared with Table 7.2. It shows the MCMC acceptance ratios (in per cent) for
learning five network structuresM1 toM5 from five separate data sets. As opposed to Table 7.2, the
networks are coupled via a hypernetworkM? according to the proposed coupling scheme illustrated
in Figure 7.1. It is seen that as a consequence of this coupling, the MCMC acceptance ratios have
substantially decreased.
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7.5.3 Convergence of the Markov chains

A possible reason for the occasionally only modest performance improvement of

the proposed method over the two alternative approaches is a lack of convergence

of the MCMC simulations. Convergence problems have already been discussed in

Subsection 7.5.1, and become more obvious in Figure 7.7. The panels in this figure

show scatter plots of the marginal posterior probabilities of the edges obtained

from two separate MCMC simulations, started from different initializations. The

panel on the left was obtained from the conventional uncoupled MCMC scheme.

The marginal posterior probabilities obtained from two independent simulations

are very similar, indicating consistency of the predictions irrespective of the ini-

tialization. However, the panel on the right of Figure 7.7 – obtained from the

proposed coupling scheme – shows a noticeable difference between the two inde-

pendent MCMC simulations, which clearly indicates a lack of convergence. This

behaviour was found consistently throughout our simulations. To shed more light

onto the convergence characteristics, we computed the average acceptance ratios

of the MCMC moves during the whole simulation. Table 7.2 shows the accep-

tance ratios for the conventional scheme without coupling. Table 7.3 shows the

acceptance ratios for the proposed coupling scheme. A comparison between these

two tables suggests that as a consequence of coupling, the acceptance ratios have

significantly decreased. This can be understood intuitively in that as a result of

coupling, a local modification of a network structure is not only penalised when

moving into regions of lower posterior probability, but also when increasing the

difference between the network structures. The result is a higher rigidity of the

Markov chain, which shows poorer mixing and convergence than the uncoupled

scheme. A possible approach to deal with this rigidity is to adopt a simulated

annealing scheme. Alternatively, more sophisticated sampling schemes could be

explored, as briefly discussed below.
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7.6 Conclusion

We have proposed a Bayesian coupling scheme for learning gene regulatory net-

works from a combination of related data sets that were obtained under different

experimental conditions and are therefore potentially associated with different

active subpathways. The proposed coupling scheme is a compromise between

two extreme scenarios: (1) learning networks from the different subsets sepa-

rately, whereby no information between the different experiments is shared, and

(2) learning networks from a monolithic fusion of the individual data sets, which

does not provide any mechanism for uncovering differences between the network

structures associated with the different experimental conditions. Our proposed

method combines the flexibility of the first approach with the data merging as-

pect inherent in the second approach. The essential idea is that the networks

associated with the different experimental conditions are softly constrained to be

similar, where the strength of this constraint is defined by a hyperparameter that

is automatically inferred from the data. Inference of these hyperparameters as

well as the network structures is carried out in the Bayesian framework by approx-

imately sampling from the posterior distribution with MCMC. We have tested

the proposed method on three types of data related to the widely studied RAF

signalling pathway: two synthetic data sets, generated from the gold-standard

network either under a linear Gaussian distribution, or under a non-linear distri-

bution using Netbuilder; and real protein concentrations from cytometry exper-

iments. Our results can be summarized as follows. Given sufficient convergence

of the MCMC simulations, a random data set deliberately included with the

proper data is clearly detected. The hyperparameter associated with the random

data is automatically set to very small values; this suggests that the proposed

Bayesian coupling scheme is effective in switching off the influence of corrupted

data. A data set generated from a modified network structure is also automat-

ically detected. The associated hyperparameter is sampled from a distribution
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placed between those associated with the random data and the data from the un-

modified network, successfully distinguishing it from both. In terms of network

reconstruction accuracy, the proposed Bayesian coupling scheme consistently out-

performed the two competing approaches. The performance difference was most

noticeable on those synthetic data where the individual data sets corresponded

to different activation levels of the regulatory subpathways (owing to different

settings of the interaction parameters). The difference was less pronounced when

only adding corrupted data to data from unchanged experimental (cytometry

data) or simulation (Netbuilder) conditions. A problem intrinsic to the proposed

new scheme is a deterioration of the convergence and mixing of the Markov chain.

In fact, some of the results presented here were obtained from MCMC simulations

that had incompletely converged, suggesting that the performance improvement

achieved with coupling could be further improved upon proper convergence. Un-

fortunately, this aspect has to be left to future research; owing to funding and

visa restrictions, this thesis had to be completed within the prescribed period of

studies. As future research, we will explore novel proposal moves, which swap

substructures between the individual networks and the hypernetwork, allowing

the latter to change in a more systematic way at (hopefully) a higher accep-

tance probability. The running of parallel Metropolis-coupled Markov chains, as

described in Geyer (1991); Gilks et al. (1996) and successfully applied in phyloge-

netics Huelsenbeck and Ronquist (2001), will also be attempted, especially as it

will allow the exploitation of modern PC clusters, and might offer ways to more

efficiently design highly accepted proposal moves based on information obtained

from the whole population of Markov chains (Laskey and Myers, 2003).





Chapter 8

Conclusion and future work

Since the DNA structure was unveiled in 1953 (Watson and Crick, 1953) and

the central dogma of molecular biology was enunciated (Watson and Crick, 1958;

Crick, 1970) there has been a rapid development in this field of research. Molec-

ular biology has shifted to be a quantitative science where the understanding

of complex molecular biological systems plays a key role. Among many studied

problems in molecular biology one very attractive is the discovery of genetic reg-

ulatory networks from data. In this particular area the main aim is to discover

how genes work together in an orchestrated way in order to keep living organisms

healthy and alive. The knowledge about these intricate relationships between

genes has the potential to unveil new solutions for various disease problems. The

main focus of this thesis is to evaluate and improve mathematical and statistical

methods that are used in the inference of genetic regulatory networks.

After an introduction in Chapter 1 we have moved to an example in Chapter 2

where the true network is assumed to be known and, thus, it can be used in con-

junction with gene expression data in order to search for subpathways that are

active under different experimental conditions. This example illustrates the use-

fulness of having the knowledge about network structures and how this knowledge

can be used in conjunction with other data to improve our understanding about
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molecular biological systems. In this example the resulting active subnetworks

share many genes in common. One would have expected to see more discrete

active networks for each experimental condition. One possible problem is that

we were using a pathway composed of elements that were manually curated and,

hence, is far from being complete. Thus, the differences in the active subnetworks

are probably occurring in elements which our study does not cover. This empha-

sizes the need for better knowledge about network structures in order to improve

their usefulness and reinforce the need for methods that can automatically learn

network structures from data.

Having got a better idea about how important the discovery of biological

network structures is we have advanced to Chapter 3 where the statistical theory

of the methods that have been used in this thesis have been explored. Namely

the methods we compared are: Relevance Networks, Graphical Gaussian Models

and Bayesian Networks. The list of methods is far from being exhaustive but

it covers popular methods of the machine learning community which are widely

used. Moreover, a practical comparison amongst these methods is very useful

since they were broadly explored theoretically and we can explore their advantages

and drawbacks when used in practice. In Chapter 4 we have presented the data

sets that have been used in the subsequent chapters and the evaluation criteria

we have used to assess the performance of the algorithms.

After exploring the methods’ theory we have moved to their practical compar-

ison in Chapter 5. Theoretically the advantages and drawbacks of each method

are well understood. What was still missing was a proper comparison of their

practical use. One of the constraints when comparing these methods is the data.

While simulated data is relatively easy to obtain, it is often very distinct from

real measured data. There are many real data sets available but unfortunately

most of these data sets have been measured from biological systems for which we

do not have the complete knowledge about the network structure and, moreover,
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they are generally very sparse. Hence, the comparison using real data is very dif-

ficult. A very nice exception to the stated problems with real data sets is the flow

cytometry data generated in the experiment of Sachs et al. (2005). The network

from which this data was measured was widely studied using traditional biolog-

ical molecular methods and, therefore, the underlying accepted network is quite

reliable. Furthermore, this data set has both observational and interventional

measurements, which enriches our comparison. This real data set is also dis-

tinct from other available data sets as it measures protein concentrations whilst

the majority of other available data sets are obtained from microarray experi-

ments where mRNA concentrations are measured. In addition to the real data

we generated simulated Gaussian and Netbuilder data in order to compare the

performances. One shortcoming of this study is the fact that we only have data

from one network structure. The ideal situation would have been to have data

from a collection of networks structures, but real data sets with this quality are

still very rare. In order to minimize this shortcoming we used a second network

with a slightly modified structure for simulating data.

The main conclusion of the comparison study is that interventions are nec-

essary in order to justify the use of BNs. In general if interventions are not

available GGMs, which are much faster, gave similar results to BNs. BNs are su-

perior to GGMs when considering interventions. They are more flexible and allow

the proper inclusion of the information about the interventions. Interventions in

BNs are mainly useful in order to resolve edge directions that cannot be learned

due to the equivalence classes of BNs. Conversely, GGMs cannot make use of

this extra information. Another important point to note is that in fact BNs can

learn directed edges from passive observations without interventions only when

v-structures are present. Therefore we expect that BNs would have a better

performance over GGMs, even using only observational data, if the underlying

structure contains more v-structures.
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Unfortunately data sets with interventions are not available very often. An-

other way of exploring the full potential of BNs would be the use of extra informa-

tion in order to resolve ambiguous edge directions from equivalence classes. This

is the motivation for the study about the inclusion of biological prior knowledge

in the reverse engineering of BNs.

In Chapter 6 we presented a methodology for including extra sources of in-

formation in the inference of genetic regulatory networks. As mentioned before

expression data is often very sparse and noisy and the inclusion of extra knowl-

edge is essential in order to increase the quality of the predicted networks. In our

study we have improved and extended the method of Imoto et al. (2003a). We

have treated data sets other than gene expression as biological prior knowledge

and integrated them into the inference process through a prior distribution over

network structures. The integration of extra knowledge is balanced through a

trade-off hyperparameter that indicates how much of this information should be

used. The trade-off hyperparameter is also learned from the data. In order to

test the method we evaluated it on an idealized population of network structures

for which the closed form expression of the relevant posterior distribution can be

obtained. Moreover we have applied the method to real microarray time series

data and to the flow cytometry data.

The results are very encouraging. The method is able to distinguish relevant

biological prior knowledge from spurious information and we have shown that

the value of the trade-off hyperparameter is close to the value of the optimal hy-

perparameter. We show that in the case where the biological prior knowledge is

completely useless the hyperparameter is effectively switched off and this informa-

tion does not influence the results. Furthermore, the method clearly outperformed

all the other methods that we included in our comparison.

One shortcoming of the method is that it treats all the data other than gene

expression data as biological prior knowledge. Ultimately one would like to in-
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clude and treat all the data sets equally.

In Chapter 7 a method for the integration of data sets generated from the same

biological system under different experimental conditions has been presented. The

assumption is that a given underlying biological network has always the same

topology, however, not all its components act in the same way under different

experimental conditions. Thus, what can be inferred using the data collected

from different experimental conditions are slightly different active subnetworks

owing to the fact that some of their components may not be active or may be

acting in a different way, e.g. activation vs inhibition.

There are two ways of using gene expression profiles generated from different

experimental conditions in order to reconstruct networks. One way is to merge

all the data in a monolithic data set and use it for inference. The other way is to

use each of the data sets separately and infer different networks for each of these

data sets. What we have proposed is a third way of integrating data sets from

different experimental conditions. The rationale is that there is a generic network

that shares various topological features with the different active networks under

different experimental challenges. We have proposed learning separate regulatory

networks from distinct gene expression data tying the learned networks to be

similar to each other through an underlying generic network, which in our model

corresponds to a hyperparameter in a hierarchical Bayesian model and is hence

referred to as the “hypernetwork”.

Although it is clear that the MCMC simulations with this method had not

properly converged it was superior to the other options of using the data in all the

simulations. The most contrasting result is the one from Gaussian generated data.

The different data sets generated with the Gaussian distribution were generated

from the same network topology but with different weights associated with their

edges. The weights have different values (which represent strong vs. weak inter-

actions) and different signs (which represent activations vs. inhibitions). Such a
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contrast was observed to a lesser extent on the Netbuilder generated data and in

the real data. The Netbuilder data was generated with all the weights associated

with edges having the same value. All the real data sets effectively come from the

same experimental condition and, therefore, it is expected that their parameters

should be roughly the same.

While our method achieved a consistent improvement in terms of network re-

construction accuracy, there are certain problems with the MCMC convergence

that need to be solved. One problem is that this method introduces new con-

straints on the networks to be sampled. These new constraints clearly slow down

the mixing and convergence of the MCMC.

The discovery of whole regulatory networks or pathways from measured data

is still in its infancy. Much progress has been made in the last few years but we

are still far from the day where a whole biological network or pathway will be

accurately discovered from data alone. There are many shortcomings that need

to be addressed. The largest available type of gene profile measurements comes

undoubtedly from microarray experiments. Although this technology is still be-

ing improved the data it generates is still generally very noisy and sparse. One

important question is: Is it a reasonable assumption that the mRNA concentra-

tions are proportional to protein activities? I believe that there is not a definitive

answer to this question at the moment. Flow cytometry measurements solve the

problem with the aforementioned assumption but they are very far away from

reaching the coverage of genes that microarrays already have. Nowadays mod-

ern flow cytometers can measure the expression of 18 components at maximum.

There is not a clear technical limit to the number of components that a flow

cytometer can measure though.

On the modelling side we should not forget that a real biological system is

a system for which our knowledge is still very limited. For instance there are

still discussions about the role of the non-coding parts of DNA (Pearson, 2006;
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Claverie, 2005). There is evidence to believe that the fine tuning of gene regulation

is executed by the introns or micro RNAs that until recently were considered as

“junk”DNA (Ying and Lin, 2004). This suggests that using only gene expression

data in order to unveil genetic regulatory networks can be a very difficult task.

Furthermore, even with our limited knowledge we know that the dynamic and

complex real biological systems are far from being similar to the static and quite

simple models that we use to represent them in our simulations. We are driven

to use these somewhat more simple models due to computational restrictions and

due to the fact that more refined models would need substantial improvements

in data quality and quantity in order to become viable.

On the computing side there are many possibilities for future work. In all this

thesis we were working with single processor computers and with relatively small

networks. In order to work with larger networks it is definitely necessary the use of

parallel computer clusters. A parallel computer cluster is a natural choice to deal

with an intrinsically parallel processed system like a cell, where all the processes

of its constituent components, e.g. related to transcription, translation etc., are

inherently parallel. In fact, even with a rather small network, with only 11 nodes,

we faced convergence problems in our simulations of Chapter 7 where the model is

more complex and the need for parallelization of the simulations is evident. With

parallel processors there are many possibilities that can be explored. For example,

we foresee that one could use parallel processors to compute the score for each

node of the network. Or another possibility would be to use parallel processors

to run parallel Metropolis-coupled Markov chains or yet the combination of the

two stated possibilities.

Having in mind all these problems it is clear that there is still much to be

done in this area of reconstructing gene regulatory networks from postgenomic

data.





Appendix A

Reversibility of MCMC moves

A.1 Moving Uniform with boundaries

Consider a parameter x′ to be sampled in a MCMC move given that we have the

actual value x. The proposal distribution is uniform over the interval [x− l, x+ l]

with the constraint that x′ ∈ [0,MAX]. If the sampled value x′ happens to be

outside the allowed interval, the value is reflected back to the interval.

First lets check the case where the proposed x′ could lie below the minimum

value. A new value x∗ is proposed from the interval [x− l, x+ l] and we can have

two possible outcomes:

1. x′ = x∗ if x∗ ≥ 0

2. x′ = −x∗ if x∗ < 0

If x < l we need to consider the possibility of reflection. Note that the

maximum value that can be reflected is x − l which will be reflected as l − x.

This gives us two regions on the interval [x− l, x+ l] with different probabilities.

What separates these two regions is the point l− x. Values above l− x are never

reflected and values below l− x can be reflected and are therefore twice as likely

to occur. This happens because the values of the reflected region can be obtained
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in two different ways: x∗ ∈ [0, l−x[ or x∗ ∈ [x− l, 0]. We have then the following

probabilities for the interval [x− l, x + l] according to the reflection.

• If x′ ≤ l − x⇒ P (x′|x) = 1
2l

+ 1
2l

= 1
l

• If x′ > l − x⇒ P (x′|x) = 1
2l

.

We now need to compute the probabilities for the inverse move, P (x|x′):

• For the first part of the interval we have:

x′ ≤ l − x⇒ P (x′|x) = 1
l

Also:

x′ ≤ l − x⇒ x ≤ l − x′ ⇒ P (x|x′) = 1
l

Hence:

P (x′|x) = P (x|x′)

• For the second part of the interval we have:

x′ > l − x⇒ P (x′|x) = 1
2l

Also:

x′ > l − x⇒ x > l − x′ ⇒ P (x|x′) = 1
2l

Hence:

P (x′|x) = P (x|x′)

With this we show that P (x′|x) = P (x|x′) and hence they cancel out in the

Hastings ratio for the lower limit. Figure A.1 shows two examples, left panel

shows the case where x′ ≤ l − x and the right panel shows the case x′ > l − x.

Now we investigate the case where the proposed x′ can be above the maximum

value, xmax. Again we propose a new value x∗ from the interval [x− l, x+ l] and

we can have two cases:
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Figure A.1: Moving Uniform lower limit. Gray line represents the part of the interval which is

outside the minimum limit. The upper part of both panels shows the original interval and the new

sampled value x′. The bottom part of both panels shows the new interval set by the new value

x′ and where the original value x sits in this new interval. For both intervals the probabilities are

defined and we can see from the graphs that in both cases P (x′|x) = P (x|x′). The left panel shows

the case where x′ ≤ l − x and the right panel shows the case where x′ > l − x.

1. x′ = x∗ if x∗ ≤ xmax.

2. x′ = (2xmax − x∗) if x∗ > xmax.

If x + l > xmax we need to consider the possibility of reflection in the upper

limit. In this case the maximum value that can be reflected is x + l, which will

be reflected as 2xmax − (x + l). This is the point which separates the interval

[x − l, x + l] in two regions with a different probability for each. Values below

2xmax − (x + l) are never reflected. Values above this point can be reflected and

are twice as likely to happen. This happen because the values of the reflected

region can be obtained in two different ways: x∗ ∈]2xmax − (x + l), xmax] or

x∗ ∈ [xmax, x + l]. We have therefore the following probabilities for the interval

[x− l, x + l] according to the reflection:

• If x′ ≤ (2xmax − (x+ l))⇒ P (x′|x) = 1
2l

• If x′ > (2xmax − (x + l))⇒ P (x′|x) = 1
2l

+ 1
2l

= 1
l

We now need to compute the probabilities for the inverse move, P (x|x′):
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• For the first part of the interval we have:

x′ ≤ (2xmax − (x + l))⇒ P (x′|x) = 1
2l

Also:

x′ ≤ (2xmax − (x + l))⇒ x ≤ 2xmax − (x′ + l)⇒ P (x|x′) = 1
2l

Hence:

P (x′|x) = P (x|x′)

• For the second part of the interval we have:

x′ > (2xmax − (x+ l))⇒ P (x′|x) = 1
l

Also:

x′ > (2xmax − (x+ l))⇒ x > (2xmax − (x′ + l))⇒ P (x|x′) = 1
l

Hence:

P (x′|x) = P (x|x′)

With this we show that P (x′|x) = P (x|x′) and hence they cancel out in the

Hastings ratio for the upper limit. Figure A.2 shows two examples, left panel

shows the case where x′ > (2xmax − (x + l)) and the right panel shows the case

where x′ ≤ (2xmax − (x + l)).
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Figure A.2: Moving Uniform upper limit. Gray line represents the part of the interval which is

outside the maximum limit. The upper part of both panels shows the original interval and the new

sampled value x′. The bottom part of both panels shows the new interval set by the new value x′

and where the original value x sits in this new interval. For both intervals the probabilities are defined

and we can see from the graphs that in both cases P (x′|x) = P (x|x′). The left panel shows the

case where x′ > (2xmax− (x + l)) and the right panel shows the case where x′ ≤ (2xmax− (x + l)).





Appendix B

Comparisons’ p-value tables

This appendix presents the results of a collaboration study with Marco Grzegorczyk

and Dirk Husmeier, published as supplementary material in Werhli et al. (2006).

B.1 Cross-Method comparison of AUC scores

This section of the supplementary material provides nine tables, numbered from

B.1 to B.9, which summarise and cross-compare the performances of the three

Machine Learning methods under comparison in terms of the outputed AUC

scores. Thereby for each table multiple rows indicate the four combinations of

figure of merit (UGE and DGE) and data set type (observational and interven-

tional). For each of these four combinations and for each of the three methods

(Bayesian networks (BN), Gaussian graphical models (GGM), and Relevance Net-

works (RN)) the mean µ[AUC] and the the standard deviations σ(AUC) of the

five outputed AUC scores can be found. The last three columns provide one-

sample t-test p-values p(.) for the hypothesis: H0: µ[AUC(Mi)] = µ[AUC(Mj)]

against its two-sided alternative: H1: µ[AUC(Mi)] 6= µ[AUC(Mj)] given the com-

bination indicated in the multiple row above. Mi and Mj represent the methods

mentioned in the row and column. Low p-values p(.) indicate that there may

be a significant difference in the AUC score between these two methods for the

193
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Method µ[AUC] σ(AUC) p(BN) p(GGM) p(RN)
UGE - Observational

BN 0.8848 0.0543 - 0.8815 0.0079
GGM 0.8814 0.0373 0.8815 - 0.0015
RN 0.6809 0.0816 0.0079 0.0015 -

DGE - Observational
BN 0.7817 0.0711 - 0.6704 0.0239
GGM 0.7967 0.0286 0.6704 - 0.0015
RN 0.6407 0.0635 0.0239 0.0015 -

UGE - Interventional
BN 0.9661 0.0391 - 0.0024 0.0018
GGM 0.8203 0.0532 0.0024 - 0.0082
RN 0.7097 0.0541 0.0018 0.0082 -

DGE - Interventional
BN 0.9796 0.0187 - 0.0002 0.0002
GGM 0.7488 0.0409 0.0002 - 0.0081
RN 0.6631 0.0421 0.0002 0.0081 -

Table B.1: AUC score. Cross method comparison Gaussian data sets. Origi-
nal graph topology.

particular combination of figure of merit and data set type. In these cases it

can be seen from the entries in the mean score column µ[AUC] which of the two

methods performed (significantly) better than the other one.
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Method µ[AUC] σ(AUC) p(BN) p(GGM) p(RN)
UGE - Observational

BN 0.9775 0.0345 - 0.0087 0.0013
GGM 0.8933 0.0583 0.0087 - 0.0043
RN 0.6987 0.0981 0.0013 0.0043 -

DGE - Observational
BN 0.9487 0.0440 - 0.0012 0.0004
GGM 0.8257 0.0487 0.0012 - 0.0043
RN 0.6649 0.0814 0.0004 0.0043 -

UGE - Interventional
BN 1.000 0.0000 - 0.0010 0.0014
GGM 0.8878 0.0293 0.0010 - 0.0199
RN 0.7436 0.0730 0.0014 0.0199 -

DGE - Interventional
BN 0.9976 0.0038 - 0.0001 0.0004
GGM 0.8220 0.0001 0.0001 - 0.0196
RN 0.7021 0.0004 0.0004 0.0196 -

Table B.2: AUC score. Cross method comparison Gaussian data sets. V-
structure graph topology.

Method µ[AUC] σ(AUC) p(BN) p(GGM) p(RN)
UGE - Observational

BN 0.6904 0.0376 - 0.8754 0.2957
GGM 0.6854 0.0542 0.8754 - 0.6175
RN 0.6680 0.0546 0.2957 0.6175 -

DGE - Observational
BN 0.6231 0.0564 - 0.5316 0.7276
GGM 0.6443 0.0419 0.5316 - 0.6139
RN 0.6307 0.0425 0.7276 0.6139 -

UGE - Interventional
BN 0.7912 0.0335 - 0.0552 0.0003
GGM 0.7129 0.0559 0.0552 - 0.0010
RN 0.5686 0.0286 0.0003 0.0010 -

DGE - Interventional
BN 0.6969 0.0676 - 0.4802 0.0076
GGM 0.6656 0.0437 0.4802 - 0.0010
RN 0.5533 0.0222 0.0076 0.0010 -

Table B.3: AUC score. Cross method comparison Real cytoflow data sets.
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Method µ[AUC] σ(AUC) p(BN) p(GGM) p(RN)
UGE - Observational

BN 0.7901 0.0336 - 0.0764 0.0444
GGM 0.8143 0.0191 0.0764 - 0.0009
RN 0.7434 0.0081 0.0444 0.0009 -

DGE - Observational
BN 0.6808 0.0703 - 0.0669 0.7977
GGM 0.7446 0.0150 0.0669 - 0.0010
RN 0.6893 0.0063 0.7977 0.0010 -

UGE - Interventional
BN 0.7047 0.0221 - 0.0675 0.0076
GGM 0.7297 0.0183 0.0675 - 0.0410
RN 0.7537 0.0063 0.0076 0.0410 -

DGE - Interventional
BN 0.8280 0.0097 - 0.0001 0.0000
GGM 0.6793 0.0144 0.0001 - 0.0468
RN 0.6973 0.0049 0.0000 0.0468 -

Table B.4: AUC score. Cross method comparison Nebuilder data sets low
noise level(σ = 0.01). Original graph topology.

Method µ[AUC] σ(AUC) p(BN) p(GGM) p(RN)
UGE - Observational

BN 0.9564 0.0273 - 0.0247 0.0469
GGM 0.8803 0.0656 0.0247 - 0.0909
RN 0.9323 0.0188 0.0469 0.0909 -

DGE - Observational
BN 0.8572 0.0100 - 0.0288 0.0116
GGM 0.7957 0.0508 0.0288 - 0.0891
RN 0.8362 0.0146 0.0116 0.0891 -

UGE - Interventional
BN 0.9346 0.0254 - 0.0188 0.0006
GGM 0.8300 0.0438 0.0188 - 0.1466
RN 0.8003 0.0082 0.0006 0.1466 -

DGE - Interventional
BN 0.9678 0.0114 - 0.0004 0.0000
GGM 0.7574 0.0339 0.0004 - 0.1359
RN 0.7336 0.0064 0.0000 0.1359 -

Table B.5: AUC score. Cross method comparison Nebuilder data sets medium
noise level(σ = 0.1). Original graph topology.



B.1. Cross-Method comparison of AUC scores 197

Method µ[AUC] σ(AUC) p(BN) p(GGM) p(RN)
UGE - Observational

BN 0.9049 0.0150 - 0.2776 0.1310
GGM 0.8829 0.0486 0.2776 - 0.0750
RN 0.9163 0.0179 0.1310 0.0750 -

DGE - Observational
BN 0.8208 0.0223 - 0.3024 0.8234
GGM 0.7979 0.0381 0.3024 - 0.0782
RN 0.8238 0.0139 0.8234 0.0782 -

UGE - Interventional
BN 0.9053 0.0367 - 0.0168 0.0329
GGM 0.8571 0.0251 0.0168 - 0.7139
RN 0.8631 0.0273 0.0329 0.7139 -

DGE - Interventional
BN 0.9219 0.0408 - 0.0013 0.0007
GGM 0.7776 0.0230 0.0013 - 0.7051
RN 0.7824 0.0212 0.0007 0.7051 -

Table B.6: AUC score. Cross method comparison Nebuilder data sets high
noise level(σ = 0.3). Original graph topology.

Method µ[AUC] σ(AUC) p(BN) p(GGM) p(RN)
UGE - Observational

BN 0.7845 0.0184 - 0.0055 0.0018
GGM 0.8529 0.0139 0.0055 - 0.0000
RN 0.7170 0.0094 0.0018 0.0000 -

DGE - Observational
BN 0.7354 0.0467 - 0.0748 0.0558
GGM 0.7927 0.0117 0.0748 - 0.0000
RN 0.6801 0.0078 0.0558 0.0000 -

UGE - Interventional
BN 0.7102 0.0156 - 0.0008 0.3208
GGM 0.7900 0.0180 0.0008 - 0.0110
RN 0.7280 0.0279 0.3208 0.0110 -

DGE - Interventional
BN 0.8413 0.0052 - 0.0000 0.0001
GGM 0.7258 0.0143 0.0000 - 0.0115
RN 0.6773 0.0217 0.0001 0.0115 -

Table B.7: AUC score. Cross method comparison Nebuilder data sets low
noise level(σ = 0.01). V-structure graph topology.
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Method µ[AUC] σ(AUC) p(BN) p(GGM) p(RN)
UGE - Observational

BN 0.9887 0.0114 - 0.0259 0.0002
GGM 0.9567 0.0294 0.0259 - 0.0024
RN 0.8513 0.0188 0.0002 0.0024 -

DGE - Observational
BN 0.9674 0.0124 - 0.0002 0.0000
GGM 0.8788 0.0244 0.0002 - 0.0025
RN 0.7915 0.0156 0.0000 0.0025 -

UGE - Interventional
BN 0.9927 0.0085 - 0.0019 0.0000
GGM 0.8277 0.0565 0.0019 - 0.0395
RN 0.7483 0.0257 0.0000 0.0395 -

DGE - Interventional
BN 0.9944 0.0040 - 0.0002 0.0000
GGM 0.7547 0.0436 0.0002 - 0.0390
RN 0.6931 0.0200 0.0000 0.0390 -

Table B.8: AUC score. Cross method comparison Nebuilder data sets medium
noise level(σ = 0.1). V-structure graph topology.

Method µ[AUC] σ(AUC) p(BN) p(GGM) p(RN)
UGE - Observational

BN 0.9332 0.0454 - 0.0437 0.0020
GGM 0.9038 0.0562 0.0437 - 0.2289
RN 0.9154 0.0460 0.0020 0.2289 -

DGE - Observational
BN 0.8745 0.0452 - 0.0888 0.0931
GGM 0.8350 0.0466 0.0888 - 0.2135
RN 0.8447 0.0381 0.0931 0.2135 -

UGE - Interventional
BN 0.9788 0.0090 - 0.0163 0.0018
GGM 0.8677 0.0630 0.0163 - 0.2972
RN 0.8214 0.0474 0.0018 0.2972 -

DGE - Interventional
BN 0.9393 0.0406 - 0.0047 0.0013
GGM 0.7861 0.0489 0.0047 - 0.2943
RN 0.7500 0.0368 0.0013 0.2943 -

Table B.9: AUC score. Cross method comparison Nebuilder data sets high
noise level(σ = 0.3). V-structure graph topology.
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B.2 Cross-Method comparison of True Positive

counts

This section of the supplementary material provides nine tables, numbered from

B.10 to B.18, which summarise and cross-compare the performances of the three

Machine Learning methods under comparison in terms of the true positive counts

TP obtained when accepting 5 false positive counts (FP=5). Thereby in analogy

to the last section for each table multiple rows indicate the four combinations of

figure of merit (UGE and DGE) and data set type (observational and interven-

tional). For each of these four combinations and for each of the three methods

(Bayesian networks (BN), Gaussian graphical models (GGM), and Relevance Net-

works (RN)) the mean µ[TP] and the the standard deviations σ(TP) of the five

true positive counts TP obtained for 5 false positive counts can be found in the

first columns. The last three columns provide one-sample t-test p-values p(.) for

the hypothesis: H0: µ[TP(Mi)] = µ[TP(Mj)] against its two-sided alternative:

H1: µ[TP(Mi)] 6= µ[TP(Mj)] given the combination indicated in the multiple row

above. Mi and Mj represent the methods mentioned in the row and column. Low

p-values p(.) indicate that there may be a significant difference in the TP counts

between these two methods for the particular combination of figure of merit and

data set type. In these cases it can be seen from the entries in the mean score

column µ[TP] which of the two methods performed (significantly) better than the

other one. In contrast to the AUC score cross-method comparison this alterna-

tive true positive count cross-method comparison concentrates on a fixed inverse

specificity point of the ROC curve.
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Method µ[TP] σ(TP) p(BN) p(GGM) p(RN)
UGE - Observational

BN 15.8 2.1 - 0.1662 0.0010
GGM 14.8 2.7 0.1662 - 0.0012
RN 8.1 2.5 0.0010 0.0012 -

DGE - Observational
BN 4.9 1.5 - 0.6885 0.0042
GGM 4.7 1.1 0.6885 - 0.0705
RN 3.8 1.3 0.0042 0.0705 -

UGE - Interventional
BN 18.5 2.4 - 0.0074 0.0028
GGM 13.2 2.0 0.0074 - 0.0011
RN 6.5 2.7 0.0028 0.0011 -

DGE - Interventional
BN 18.4 2.6 - 0.0005 0.0005
GGM 5.2 0.7 0.0005 - 0.0036
RN 1.8 1.3 0.0005 0.0036 -

Table B.10: TP counts score. Cross method comparison Gaussian data sets.
Original graph topology.

Method µ[TP] σ(TP) p(BN) p(GGM) p(RN)
UGE - Observational

BN 15.6 0.5 - 0.0270 0.0000
GGM 11.8 2.7 0.0270 - 0.0024
RN 5.8 1.4 0.0000 0.0024 -

DGE - Observational
BN 11.3 1.2 - 0.0000 0.0001
GGM 3.8 1.0 0.0000 - 0.1951
RN 3.0 0.6 0.0001 0.1951 -

UGE - Interventional
BN 16.0 0.0 - 0.0025 0.0001
GGM 12.9 1.0 0.0025 - 0.0054
RN 7.1 1.3 0.0001 0.0054 -

DGE - Interventional
BN 15.8 0.4 - 0.0000 0.0000
GGM 5.5 0.0 0.0000 - 0.0008
RN 3.7 0.4 0.0000 0.0008 -

Table B.11: TP counts score. Cross method comparison Gaussian data sets.
V-structure graph topology.
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Method µ[TP] σ(TP) p(BN) p(GGM) p(RN)
UGE - Observational

BN 9.5 2.0 - 0.7489 0.7174
GGM 9.6 1.6 0.7489 - 0.3046
RN 9.3 1.6 0.7174 0.3046 -

DGE - Observational
BN 3.3 2.3 - 0.1369 0.1369
GGM 5.1 0.9 0.1369 - NaN
RN 5.1 0.9 0.1369 NaN -

UGE - Interventional
BN 11.1 1.3 - 0.0951 0.0099
GGM 9.6 1.1 0.0951 - 0.0204
RN 7.1 1.1 0.0099 0.0204 -

DGE - Interventional
BN 6.9 1.1 - 0.0065 0.0009
GGM 4.1 1.1 0.0065 - 0.0093
RN 1.7 0.4 0.0009 0.0093 -

Table B.12: TP counts score. Cross method comparison Real cytoflow data
sets.

Method µ[TP] σ(TP) p(BN) p(GGM) p(RN)
UGE - Observational

BN 11.0 2.0 - 0.2577 0.0366
GGM 12.0 1.2 0.2577 - 0.0040
RN 6.9 1.4 0.0366 0.0040 -

DGE - Observational
BN 2.8 1.3 - 0.0077 0.0890
GGM 5.1 0.7 0.0077 - 0.0016
RN 0.8 0.8 0.0890 0.0016 -

UGE - Interventional
BN 7.9 0.7 - 0.0008 0.0000
GGM 5.2 0.3 0.0008 - 0.0000
RN 2.0 0.0 0.0000 0.0000 -

DGE - Interventional
BN 8.4 1.2 - 0.0019 0.0001
GGM 3.7 0.4 0.0019 - 0.0001
RN 0.0 0.0 0.0001 0.0001 -

Table B.13: TP counts score. Cross method comparison. Nebuilder data
sets low noise level(σ = 0.01). Original graph topology.
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Method µ[TP] σ(TP) p(BN) p(GGM) p(RN)
UGE - Observational

BN 18.1 1.1 - 0.0161 0.1216
GGM 16.5 1.1 0.0161 - 0.5291
RN 16.8 1.6 0.1216 0.5291 -

DGE - Observational
BN 7.2 1.5 - 0.0673 0.0673
GGM 5.5 0.0 0.0673 - NaN
RN 5.5 0.0 0.0673 NaN -

UGE - Interventional
BN 17.7 0.7 - 0.0046 0.0003
GGM 13.6 1.5 0.0046 - 0.0002
RN 8.0 1.7 0.0003 0.0002 -

DGE - Interventional
BN 17.3 0.7 - 0.0000 0.0000
GGM 5.4 0.2 0.0000 - 0.0000
RN 1.2 0.7 0.0000 0.0000 -

Table B.14: TP counts score. Cross method comparison. Nebuilder data
sets medium noise level(σ = 0.1). Original graph topology.

Method µ[TP] σ(TP) p(BN) p(GGM) p(RN)
UGE - Observational

BN 15.5 1.7 - 0.4468 0.2756
GGM 14.8 2.9 0.4468 - 0.0213
RN 16.6 2.3 0.2756 0.0213 -

DGE - Observational
BN 4.1 2.0 - 0.5158 0.3844
GGM 4.7 1.1 0.5158 - 0.3739
RN 5.1 0.9 0.3844 0.3739 -

UGE - Interventional
BN 16.0 1.6 - 0.0890 0.0143
GGM 14.5 1.5 0.0890 - 0.3672
RN 13.6 1.5 0.0143 0.3672 -

DGE - Interventional
BN 14.1 4.5 - 0.0052 0.0073
GGM 5.5 0.0 0.0052 - 0.3739
RN 5.0 1.1 0.0073 0.3739 -

Table B.15: TP counts score. Cross method comparison. Nebuilder data
sets high noise level(σ = 0.3). Original graph topology.
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Method µ[TP] σ(TP) p(BN) p(GGM) p(RN)
UGE - Observational

BN 9.8 0.8 - 1.0000 0.0007
GGM 9.8 0.8 1.0000 - 0.0001
RN 5.2 0.3 0.0007 0.0001 -

DGE - Observational
BN 3.9 0.7 - 0.3419 0.0019
GGM 4.5 0.9 0.3419 - 0.0020
RN 1.5 0.0 0.0019 0.0020 -

UGE - Interventional
BN 7.2 0.4 - 0.4263 0.0102
GGM 7.5 0.4 0.4263 - 0.0078
RN 5.1 0.9 0.0102 0.0078 -

DGE - Interventional
BN 6.6 0.4 - 0.0001 0.0000
GGM 3.4 0.2 0.0001 - 0.0002
RN 2.0 0.0 0.0000 0.0002 -

Table B.16: TP counts score. Cross method comparison. Nebuilder data
sets low noise level(σ = 0.01). V-structure graph topology.

Method µ[TP] σ(TP) p(BN) p(GGM) p(RN)
UGE - Observational

BN 15.6 0.4 - 0.0876 0.0000
GGM 14.7 1.0 0.0876 - 0.0001
RN 9.3 0.4 0.0000 0.0001 -

DGE - Observational
BN 12.0 1.5 - 0.0006 0.0007
GGM 5.5 0.0 0.0006 - 0.1079
RN 4.8 0.8 0.0007 0.1079 -

UGE - Interventional
BN 15.7 0.4 - 0.0002 0.0005
GGM 12.5 0.5 0.0002 - 0.0021
RN 8.9 1.0 0.0005 0.0021 -

DGE - Interventional
BN 15.4 0.7 - 0.0000 0.0000
GGM 4.9 0.8 0.0000 - 0.1302
RN 3.8 1.0 0.0000 0.1302 -

Table B.17: TP counts score. Cross method comparison. Nebuilder data
sets medium noise level(σ = 0.1). V-structure graph topology.
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Method µ[TP] σ(TP) p(BN) p(GGM) p(RN)
UGE - Observational

BN 14.2 1.1 - 0.0474 0.1087
GGM 13.2 1.0 0.0474 - 0.3375
RN 13.6 0.8 0.1087 0.3375 -

DGE - Observational
BN 7.7 2.0 - 0.0714 0.0440
GGM 5.5 0.0 0.0714 - 0.2663
RN 5.0 0.9 0.0440 0.2663 -

UGE - Interventional
BN 14.9 0.2 - 0.0093 0.0277
GGM 12.5 1.1 0.0093 - 0.5913
RN 12.8 1.4 0.0277 0.5913 -

DGE - Interventional
BN 12.3 1.7 - 0.0009 0.0009
GGM 5.5 0 0.0009 - NA
RN 5.5 0 0.0009 NA -

Table B.18: TP counts score. Cross method comparison. Nebuilder data
sets high noise level(σ = 0.3). V-structure graph topology.
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Method µ[AUC|OBS] µ[AUC|INT] p(.)
UGE

BN 0.8848 0.9661 0.0264
GGM 0.8814 0.8203 0.0683
RN 0.6809 0.7097 0.5285

DGE
BN 0.7817 0.9796 0.0003
GGM 0.7967 0.7488 0.0643
RN 0.6407 0.6631 0.5285

Table B.19: AUC score. Observational versus Interventional data. Gaus-
sian data sets. Original graph topology.

B.3 Comparison: observational vs. interventional

data - AUC

This section of the supplementary material provides nine tables, numbered from

B.19 to B.27, which compare the performance of each Machine Learning method

on pure observational data with its performance on interventional data sets in

terms of the outputed AUC scores. Thereby for each of the nine tables multiple

rows indicate the two different figures of merit (UGE and DGE). For each figure

of merit and for each of the three methods (Bayesian networks (BN), Gaussian

graphical models (GGM), and Relevance Networks (RN)) the mean of the five

AUC scores on pure observational data µ[AUC|OBS] as well as the mean of the

five AUC scores on interventional data µ[AUC|INT] are given in the first two

columns. Subsequently the hypothesis H0: µ[AUC|OBS] = µ[AUC|INT] was

tested against its two-sided alternative H1: µ[AUC|OBS] 6= µ[AUC|INT] using

two-sample t-tests. The p-values p(.) of these tests can be found in the last

column. Low p-values p(.) indicate that there may be a significant difference in

the mean AUC score obtained for pure observational and interventional data sets

for the method mentioned in the row and the particular figure of merit. In these

cases it can be seen from the entries in the mean score columns µ[AUC|OBS] and

µ[AUC|INT] on which data set type the method performed (significantly) better.
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Method µ[AUC|OBS] µ[AUC|INT] p(.)
UGE

BN 0.9775 1.0000 0.1822
GGM 0.8933 0.8878 0.8565
RN 0.6987 0.7436 0.4355

DGE
BN 0.9487 0.9976 0.0384
GGM 0.8257 0.8220 0.8820
RN 0.6649 0.7021 0.4355

Table B.20: AUC score. Observational versus Interventional data. Gaus-
sian data sets. V-structure graph topology.

Method µ[AUC|OBS] µ[AUC|INT] p(.)
UGE

BN 0.6904 0.7912 0.0021
GGM 0.6854 0.7129 0.4534
RN 0.6680 0.5686 0.0069

DGE
BN 0.6231 0.6969 0.0974
GGM 0.6443 0.6656 0.4532
RN 0.6307 0.5533 0.0069

Table B.21: AUC score. Observational versus Interventional data. Real
cytoflow data sets.

Method µ[AUC|OBS] µ[AUC|INT] p(.)
UGE

BN 0.7901 0.7047 0.0014
GGM 0.8143 0.7297 0.0001
RN 0.7434 0.7537 0.0553

DGE
BN 0.6808 0.8280 0.0017
GGM 0.7446 0.6793 0.0001
RN 0.6893 0.6973 0.0553

Table B.22: AUC score. Observational versus Interventional data. Net-
builder data sets low noise level (σ = 0.01). Original graph topology.
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Method µ[AUC|OBS] µ[AUC|INT] p(.)
UGE

BN 0.9464 0.9346 0.4974
GGM 0.8803 0.8300 0.1918
RN 0.9323 0.8003 0.0000

DGE
BN 0.8572 0.9678 0.0000
GGM 0.7957 0.7574 0.1979
RN 0.8362 0.7336 0.0000

Table B.23: AUC score. Observational versus Interventional data. Net-
builder data sets medium noise level (σ = 0.1). Original graph topology.

Method µ[AUC|OBS] µ[AUC|INT] p(.)
UGE

BN 0.9049 0.9053 0.9813
GGM 0.8829 0.8571 0.3242
RN 0.9163 0.8631 0.0066

DGE
BN 0.8208 0.9219 0.0013
GGM 0.7979 0.7776 0.3228
RN 0.8238 0.7824 0.0066

Table B.24: AUC score. Observational versus Interventional data. Net-
builder data sets high noise level (σ = 0.3). Original graph topology.

Method µ[AUC|OBS] µ[AUC|INT] p(.)
UGE

BN 0.7845 0.7102 0.0001
GGM 0.8529 0.7900 0.0003
RN 0.7170 0.7280 0.4271

DGE
BN 0.7354 0.8413 0.0010
GGM 0.7927 0.7258 0.0000
RN 0.6801 0.6773 0.7986

Table B.25: AUC score. Observational versus Interventional data. Net-
builder data sets low noise level (σ = 0.01). V-structure graph topology.
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Method µ[AUC|OBS] µ[AUC|INT] p(.)
UGE

BN 0.9887 0.9927 0.5464
GGM 0.9567 0.8277 0.0019
RN 0.8513 0.7483 0.0001

DGE
BN 0.9674 0.9944 0.0017
GGM 0.8788 0.7547. 0.0005
RN 0.7915 0.6931 0.0000

Table B.26: AUC score. Observational versus Interventional data. Net-
builder data sets medium noise level (σ = 0.1). V-structure graph topology.

Method µ[AUC|OBS] µ[AUC|INT] p(.)
UGE

BN 0.9332 0.9788 0.0583
GGM 0.9038 0.8677 0.3669
RN 0.9154 0.8214 0.0129

DGE
BN 0.8745 0.9393 0.0443
GGM 0.8350 0.7861 0.1442
RN 0.8447 0.7500 0.0040

Table B.27: AUC score. Observational versus Interventional data. Net-
builder data sets high noise level (σ = 0.3). V-structure graph topology.
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B.4 Comparison: observational vs. interventional

data - TP

This section of the supplementary material provides nine tables, numbered from

B.28 to B.36, which compare the performance of each Machine Learning method

on pure observational data with its performance on interventional data sets in

terms of the obtained true positive counts (TP) when accepting five false negative

counts (FP=5). As in the last section for each of the nine tables multiple rows

indicate the two different figures of merit (UGE and DGE). For each figure of

merit and for each of the three methods (Bayesian networks (BN), Gaussian

graphical models (GGM), and Relevance Networks (RN)) the mean of the five

TP counts on pure observational data µ[TP|OBS] as well as the mean of the five

TP counts on interventional data µ[TP|INT] are given in the first two columns.

Subsequently the hypothesis H0: µ[TP|OBS] = µ[TP|INT] was tested against its

two-sided alternative H1: µ[TP|OBS] 6= µ[TP|INT] using two-sample t-tests. The

p-values p(.) of these tests can be found in the last column. Low p-values p(.)

indicate that there may be a significant difference in the mean TP count outputed

for pure observational and interventional data sets for the method mentioned in

the row and the particular figure of merit. In these cases it can be seen from the

entries in the mean TP count columns µ[TP|OBS] and µ[TP|INT] on which data

set type the method performed (significantly) better.
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Method µ[TP|OBS] µ[TP|INT] p(.)
UGE

BN 15.8 18.5 0.0971
GGM 14.8 13.2 0.3152
RN 8.1 6.5 0.3553

DGE
BN 4.9 18.4 0.0000
GGM 4.7 5.2 0.4094
RN 3.8 1.8 0.0386

Table B.28: TP counts score. Observational versus Interventional data.

Gaussian data sets. Original graph topology.

Method µ[TP|OBS] µ[TP|INT] p(.)
UGE

BN 15.6 16.0 0.1411
GGM 11.8 12.9 0.4167
RN 5.8 7.1 0.1780

DGE
BN 11.3 15.8 0.0001
GGM 3.8 5.5 0.0045
RN 3.0 3.7 0.0729

Table B.29: TP counts score. Observational versus Interventional data.

Gaussian data sets. V-structure graph topology.

Method µ[TP|OBS] µ[TP|INT] p(.)
UGE

BN 9.5 11.1 0.1757
GGM 9.6 9.6 1.0000
RN 9.3 7.1 0.0347

DGE
BN 3.3 6.9 0.0134
GGM 5.1 4.1 0.1502
RN 5.1 1.7 0.0001

Table B.30: TP counts score. Observational versus Interventional data.

Real cytoflow data sets.
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Method µ[TP|OBS] µ[TP|INT] p(.)
UGE

BN 11.0 7.9 0.0102
GGM 12.0 5.2 0.0000
RN 6.9 2.0 0.0000

DGE
BN 2.8 8.4 0.0001
GGM 5.1 3.7 0.0042
RN 0.8 0.0 0.0650

Table B.31: TP counts score. Observational versus Interventional data.

Netbuilder data sets low noise level (σ = 0.01). Original graph topology.

Method µ[TP|OBS] µ[TP|INT] p(.)
UGE

BN 18.1 17.7 0.5180
GGM 16.5 13.6 0.0088
RN 16.8 8.0 0.0000

DGE
BN 7.2 17.3 0.0000
GGM 5.5 5.4 0.3466
RN 5.5 1.2 0.0000

Table B.32: TP counts score. Observational versus Interventional data.

Netbuilder data sets medium noise level (σ = 0.1). Original graph topology.

Method µ[TP|OBS] µ[TP|INT] p(.)
UGE

BN 15.5 16.0 0.6463
GGM 14.8 14.5 0.8408
RN 16.6 13.6 0.0397

DGE
BN 4.1 14.1 0.0005
GGM 4.7 5.5 0.1411
RN 5.1 5.0 0.8798

Table B.33: TP counts score. Observational versus Interventional data.

Netbuilder data sets high noise level (σ = 0.3). Original graph topology.
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Method µ[TP|OBS] µ[TP|INT] p(.)
UGE

BN 9.8 7.2 0.0003
GGM 9.8 7.5 0.0003
RN 5.2 5.1 0.8171

DGE
BN 3.9 5.6 0.0001
GGM 4.5 3.4 0.0338
RN 1.5 2.0 NA

Table B.34: TP counts score. Observational versus Interventional data.

Netbuilder data sets low noise level (σ = 0.01). V-structure graph topology.

Method µ[TP|OBS] µ[TP|INT] p(.)
UGE

BN 15.6 15.7 0.7245
GGM 14.7 12.5 0.0020
RN 9.3 8.9 0.4468

DGE
BN 12.0 15.4 0.0016
GGM 5.5 4.9 0.1411
RN 4.8 3.8 0.1078

Table B.35: TP counts score. Observational versus Interventional data.

Netbuilder data sets medium noise level (σ = 0.1). V-structure graph topology.

Method µ[TP|OBS] µ[TP|INT] p(.)
UGE

BN 14.2 14.9 0.1991
GGM 13.2 12.5 0.3347
RN 13.6 12.8 0.2907

DGE
BN 7.7 12.3 0.0047
GGM 5.5 5.5 NA
RN 5.5 5.5 0.2328

Table B.36: TP counts score. Observational versus Interventional data.

Netbuilder data sets high noise level (σ = 0.3). V-structure graph topology.
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B.5 Comparison: original vs. v-structure - AUC

This section of the supplementary material provides four tables, numbered from

B.37 to B.40, with p-values we have used to compare the performance of Bayesian

networks (BN), Gaussian graphical models (GGM), and Relevance networks (RN)

on the original graph topology GO and the v-structured graph topology GV . We

used this analysis for checking to which differences the inclusion of v-structures for

the different methods leads. More precisely, we have been interested in answering

the question whether the inclusion of v-structures leads to a larger improvement

of the AUC scores for Bayesian networks than for the other two methods. To this

end we have looked for each pair of methods Mi and Mj at the mean AUC score

differences AUC(Mi, GO) - AUC(Mj , GO) and AUC(Mi, GV ) - AUC(Mj , GV ) to

see whether the difference in performance alters between the two graph topolo-

gies. Then we computed the p-value of a two-sided two-sample t-test for the null

hypothesis:

H0: µ[AUC(Mi, GO)-(Mj, GO)] = µ[AUC(Mi, GV )-AUC(Mj, GV )]

against its two-sided alternative. Consequently, low p-values p(.) indicate that

the mean AUC score differences alter on the two different graph topologies.

All four tables in this section have the same structure. After a row indicating

the figure of merit (UGE or DGE) as well as the data set type (pure observa-

tional or interventional), there is one row for each of the three methods under

comparison: Bayesian networks (BN), Gaussian graphical models (GGM), and

Relevance networks (RN). In each of these rows the mean AUC scores for both

directed acyclic graph topologies GO and GV as well as the p-values of the tests

mentioned above can be found. Thereby the signs minus (’-’) and plus (’+’) have

been added to the p-value entries to indicate whether for the method mentioned

in the row the mean difference is higher for the graph topology with v-structures

GV (’+’) or for the original graph GO (’-’). So for example each plus sign (’+’)

indicates that the alteration of the differences introduced by v-structures is for
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Method µ[AUC|GO] µ[AUC|GV ] p(BN) p(GGM) p(RN)
UGE - Observational

BN 0.8848 0.9775 - +0.0187 +0.2018
GGM 0.8814 0.8933 -0.0187 - +0.8900
RN 0.6809 0.6987 -0.2018 -0.8900 -

DGE - Observational
BN 0.7817 0.9487 - +0.0049 +0.0168
GGM 0.7967 0.8257 -0.0049 - +0.8908
RN 0.6407 0.6649 -0.0168 -0.8908 -

UGE - Interventional
BN 0.9661 1.0000 - -0.2143 -0.9997
GGM 0.8203 0.8878 -0.2143 - +0.4727
RN 0.7097 0.7436 -0.9997 +0.4727 -

DGE - Interventional
BN 0.9796 0.9976 - -0.0259 -0.5804
GGM 0.7488 0.8220 +0.0259 - +0.3743
RN 0.6631 0.7021 +0.5804 -0.3743 -

Table B.37: AUC score. Cross method differences between the original

graph topology GO and v-structure topology GV . Gaussian data sets.

the benefit of the method mentioned in the row.
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Method µ[AUC|GO] µ[AUC|GV ] p(BN) p(GGM) p(RN)
UGE - Observational

BN 0.7901 0.7845 - -0.0255 +0.2939
GGM 0.8143 0.8529 +0.0255 - +0.0001
RN 0.7434 0.7170 -0.2939 -0.0001 -

DGE - Observational
BN 0.6808 0.7354 - +0.8580 +0.1256
GGM 0.7446 0.7927 -0.8580 - +0.0000
RN 0.6893 0.6801 -0.1256 -0.0000 -

UGE - Interventional
BN 0.7047 0.7102 - -0.0034 +0.1316
GGM 0.7297 0.7900 +0.0034 - +0.0007
RN 0.7537 0.7280 -0.1316 -0.0007 -

DGE - Interventional
BN 0.8280 0.8413 - -0.0111 +0.0183
GGM 0.6793 0.7258 +0.0111 - +0.0008
RN 0.6973 0.6773 -0.0183 -0.0008 -

Table B.38: AUC score. Cross method differences between the original

graph topology GO and v-structure topology GV . Netbuilder data sets low
noise level (σ = 0.01).

Method µ[AUC|GO] µ[AUC|GV ] p(BN) p(GGM) p(RN)
UGE - Observational

BN 0.9464 0.9887 - -0.1423 +0.0000
GGM 0.8803 0.9567 +0.1423 - +0.0005
RN 0.9323 0.8513 -0.0000 -0.0005 -

DGE - Observational
BN 0.8572 0.9674 - +0.2027 +0.0000
GGM 0.7957 0.8788 -0.2027 - +0.0004
RN 0.8362 0.7915 -0.0000 -0.0004 -

UGE - Interventional
BN 0.9346 0.9927 - +0.1280 +0.0004
GGM 0.8300 0.8277 -0.1280 - +0.1488
RN 0.8003 0.7483 -0.0004 -0.1488 -

DGE - Interventional
BN 0.9678 0.9944 - +0.2979 +0.0005
GGM 0.7574 0.7547 -0.2979 - +0.1553
RN 0.7336 0.6931 -0.0005 -0.1533 -

Table B.39: AUC score. Cross method differences between the original

graph topology GO and v-structure topology GV . Netbuilder data sets
medium noise level (σ = 0.1).
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Method µ[AUC|GO] µ[AUC|GV ] p(BN) p(GGM) p(RN)
UGE - Observational

BN 0.9049 0.9332 - +0.7264 +0.0021
GGM 0.8829 0.9038 -0.7264 - +0.2127
RN 0.9163 0.9154 -0.0021 -0.2127 -

DGE - Observational
BN 0.8208 0.8745 - +0.5437 +0.1121
GGM 0.7979 0.8350 -0.5437 - +0.2403
RN 0.8238 0.8447 -0.1121 -0.2403 -

UGE - Interventional
BN 0.9053 0.9788 - +0.0723 +0.0018
GGM 0.8571 0.8677 -0.0723 - +0.2437
RN 0.8631 0.8214 -0.0018 -0.2437 -

DGE - Interventional
BN 0.9219 0.9393 - +0.7899 +0.1130
GGM 0.7776 0.7861 -0.7899 - +0.2394
RN 0.7824 0.7500 -0.1130 -0.2394 -

Table B.40: AUC score. Cross method differences between the original

graph topology GO and v-structure topology GV . Netbuilder data sets high
noise level (σ = 0.3).
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B.6 Comparison: original vs. v-strucuture network

- TP

This section of the supplementary material provides four tables, numbered from

B.41 to B.44, with p-values we have used to compare the performance of Bayesian

networks (BN), Gaussian graphical models (GGM), and Relevance networks (RN)

on the original graph topology GO and the v-structured graph topology GV . We

used this analysis for checking to which differences the inclusion of v-structures for

the different methods leads. More precisely, we have been interested in answering

the question whether the inclusion of v-structures leads to a larger improvement

of the sensitivity S outputed when accepting five false positive counts for Bayesian

networks than for the other two methods. To this end we have looked for each pair

of methods Mi and Mj at the mean sensitivity differences S(Mi, GO) - S(Mj, GO)

and S(Mi, GV ) - S(Mj, GV ) to see whether the difference in performance alters

between the two graph topologies. Then we computed the p-value of a two-sided

two-sample t-test for the null hypothesis:

H0: µ[S(Mi, GO)-S(Mj, GO)] = µ[S(Mi, GV )-AS(Mj, GV )]

against its two-sided alternative. Consequently, low p-values p(.) indicate that

the mean sensitivities differences alter on the two different graph topologies.

All four tables in this section have the same structure. After a row indicating

the figure of merit (UGE or DGE) as well as the data set type (pure observational

or interventional), there is one row for each of the three methods under compari-

son: Bayesian networks (BN), Gaussian graphical models (GGM), and Relevance

networks (RN). In each of these rows the mean sensitivity, when accepting five

false positive counts, for both directed acyclic graph topologies GO and GV as

well as the p-values p(.) of the tests mentioned above can be found. Thereby the

signs minus (’-’) and plus (’+’) have been added to the p-value entries to indicate

whether for the method mentioned in the row the mean difference is higher for
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Method µ[S|GO] µ[S|GV ] p(BN) p(GGM) p(RN)
UGE - Observational

BN 0.7900 0.9750 - +0.0381 +0.0028
GGM 0.7400 0.7375 -0.0381 - +0.5753
RN 0.4050 0.3625 -0.0028 -0.5753 -

DGE - Observational
BN 0.2450 0.7063 - +0.0000 +0.0000
GGM 0.2350 0.2375 -0.0000 - +0.8960
RN 0.1900 0.1875 -0.0000 -0.8960 -

UGE - Interventional
BN 0.9250 1.0000 - -0.2696 -0.6690
GGM 0.6600 0.8063 +0.2696 - +0.7308
RN 0.3250 0.4437 +0.6690 -0.7308 -

DGE - Interventional
BN 0.9200 0.9875 - -0.8122 -0.3898
GGM 0.2600 0.3438 +0.8122 - -0.0963
RN 0.0900 0.2313 +0.3893 +0.0963 -

Table B.41: TP counts score. Cross method differences between the

original graph topology GO and v-structure topology GV . Gaussian data
sets.

the graph topology with v-structures GV (’+’) or for the original graph GO (’-’).

So for example each plus sign (’+’) indicates that the alteration of the differences

introduced by v-structures is for the benefit of the method mentioned in the row.
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Method µ[S|GO] µ[S|GV ] p(BN) p(GGM) p(RN)
UGE - Observational

BN 0.5500 0.6125 - +0.3647 +0.2907
GGM 0.6000 0.6125 -0.3647 - +0.5051
RN 0.3450 0.3250 -0.2907 -0.5051 -

DGE - Observational
BN 0.1400 0.2437 - +0.1009 +0.3401
GGM 0.2550 0.2813 -0.1009 - -0.4938
RN 0.0400 0.0938 -0.3401 +0.4938 -

UGE - Interventional
BN 0.3950 0.4500 - -0.0004 -0.0009
GGM 0.2600 0.4688 +0.0004 - -0.7546
RN 0.1000 0.3187 +0.0009 +0.7546 -

DGE - Interventional
BN 0.4200 0.4125 - -0.3407 -0.0019
GGM 0.1850 0.2125 +0.3407 - -0.0000
RN 0.0000 0.1250 +0.0019 +0.0000 -

Table B.42: TP counts score. Cross method differences between the

original graph topology GO and v-structure topology GV . Netbuilder data
sets low noise level (σ = 0.01).

Method µ[S|GO] µ[S|GV ] p(BN) p(GGM) p(RN)
UGE - Observational

BN 0.9050 0.9750 - -0.4794 +0.0000
GGM 0.8250 0.9187 +0.4794 - +0.0000
RN 0.8400 0.5813 -0.0000 -0.0000 -

DGE - Observational
BN 0.3600 0.7500 - +0.0003 +0.0002
GGM 0.2750 0.3438 -0.0003 - +0.0729
RN 0.2750 0.3000 -0.0002 -0.0729 -

UGE - Interventional
BN 0.8850 0.9812 - -0.9014 -0.3257
GGM 0.6800 0.7813 +0.9014 - -0.1904
RN 0.4000 0.5563 +0.3257 +0.1904 -

DGE - Interventional
BN 0.8650 0.9625 - +0.0750 -0.0395
GGM 0.2700 0.3063 -0.0750 - -0.0055
RN 0.0600 0.2375 +0.0395 +0.0055 -

Table B.43: TP counts score. Cross method differences between the

original graph topology GO and v-structure topology GV . Netbuilder data
sets medium noise level (σ = 0.1).
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Method µ[S|GO] µ[S|GV ] p(BN) p(GGM) p(RN)
UGE - Observational

BN 0.7750 0.8875 - +0.5750 +0.0859
GGM 0.7400 0.8250 -0.5750 - +0.0889
RN 0.8300 0.8500 -0.0859 -0.0889 -

DGE - Observational
BN 0.2050 0.4813 - +0.0446 +0.0224
GGM 0.2350 0.3438 -0.0446 - +0.1413
RN 0.2550 0.3125 -0.0224 -0.1413 -

UGE - Interventional
BN 0.8000 0.9313 - +0.1437 +0.8220
GGM 0.7250 0.7813 -0.1437 - -0.2778
RN 0.6800 0.8000 -0.8220 +0.2778 -

DGE - Interventional
BN 0.7050 0.7688 - -0.9577 -0.7767
GGM 0.2750 0.3438 +0.9577 - -0.3466
RN 0.2500 0.3438 +0.7767 +0.3466 -

Table B.44: TP counts score. Cross method differences between the

original graph topology GO and v-structure topology GV . Netbuilder data
sets high noise level (σ = 0.3).
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