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Introduction and Sunary 

Introduction 

This thesis is concerned mainly with the investigation of two 

types of quadrature formulae. These are Sard's best second order 

formula [iJ and the third order optimum quadrature which was 

introduced by Schoenberg (15)o The formulae are closely related 

to certain types of natural spline, consequently we shall examine 

the convergence properties of these in order to obtain results on 

the convergence of the quadrature formulae. 

The, quadrature formulae arise out of the following 

considerations (c.f. Handscomb [ç]) 

It is well known that the error in Simpson's rule, 

j x(t)dt = 6 [x(0) + 4x() + x(l)], 
0 

can be written -x 4 (t')/288O when x C9,1] The number t', 

which satisfies 0 <t' < 1, is usually indeterminate and the error 

has to be estimated from IIx4I 1/2880 (the uniform norm on (O,l]) 

However if x does not possess a bounded fourth derivative on the 

interval then this estimate will be useless even when the error 

is in fact bounded. An alternative approach to the problem of 

finding a realistic estimate is to construct an expression for the 

error when x has only a bounded derivative of lower order. This 

can be done with the aid of Peano's method, and since we shall 

make frequent use of it in this thesis we present it here in a 
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general framework (see [3:1) 

Peanos method for remainders 

Let L be a linear functional on C[a 1,b], and let L be 

an approximation to L in the sense that (LL)Sr=  O r=O 9 l,000n-10 

If x € C[a9b] we have the expansion 

n'l (s'a)' 
x 
 (r) 	

1b K 
	(st)x(t)dt X(s) ==-'  

r=o 	
(a) 

+ Ja nl r0 

where K1(st) = 	 for s > t and zero otherwise. 

Since L-L is linear n 

(L-L)x(s) = (LL )J K 1 (s-t)x ' (t)dt 
a 

=  f
b x 	

(t)k(tdt 

where k(t) = (LL )K 	(s't) 0  The function k is known as the 
n n'l 

Peano kernel of L'L and it follows that if x € Cn[ab] we may write 

Lx = Lx + j
a 
	 (0,1) 

For example with Simpso&s rule and x € C 2 [04] the remainder will 

be given by 

f x (2)  (t)k(t)dt where k(t) = (1t)2 - [4K(-t)+(l-t))/6, 0 ic, t.s 1, (0.2) 

and the error can be estimated from this. 

Sards best guadrature and o2timum quadrature 

It will be noticed that although Simpsons rule is exact 

for cubics we used only the property that it is exact for linear 

functions in the determination of the remainder in (0.2). Thus 



(iii) 

in a sense we had a spare parameter which in this case was chosen 

to produce Simpson's rule, This suggests the possibility of 

choosing this parameter to minimize the error in some way. These 

rather vague statements will now be made more precise; let 

totl000tN be given numbers which satisfy 0 = t o  < t i  < 000< tN= l 

and let 

N 
R(x) 	fo w(t)x(t)dt - H.x(t.) 	 (0.3)  . 1 

o 

where w is some integrable weight function. We shall call the 

equation (0.3) a quadrature formula with remainder B., and suppose 

n-i 
that B. vanishes identically if x(s) = l,s,.,.,s 	A more 

convenient expression can be found for R by means of Peano's 

method, namely that 

i 
if x E C'[O,1]  then R(x) 	x(t)k(t)4t 	 (0.4) J 0 

	

where klç(t) = fw(s)K+_ 1 (s-t)ds - 	u1K• (t 1- t). 	 (0.5) 

Clearly if n q N+l the quadrature weights can be calculated by the 

use of Lagrange's interpolation formula, however for n < N they are 

not uniquely defined. The suggestion made by Sard in [] was 

that they should be calculated so as to minimize J (k(t)] 2 dt, and 
0 

since the formula is to be exact for all polynon4als of degree 

n-i the minimization is to be performed subject to the following 

conditions being true. 

N 
j w(t)t'dt = 	Ht, 	 (0.6) 
0 	

. 	i. 
1=0 i  

Sard calls the resulting quadrature formula a best quadrature 
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formula of order n0 It is not difficult to show that there is a 

unique formula of order n when the quadrature points are given. 

There are obviously many other criteria which could be chosen 

however Sard 9 s leads to an attractive theory and it is the one 

which will be considered here. 

One need not be satisfied with this minimum and the further 

problem can be posed of finding the quadrature points as well 

as weights so as to decrease[k(t)J 2dt still further. This type j
O, 

of formula is called an optimum or optimal quadrature formula of 

order 	and seems to have been suggested first by Schoenberg [I5]o 

The analogy between this and the usual Gaussian. quadrature is clear 7  

The main aim of this thesis is to present some results 

on the simplest non trivial examples of the formulae the best of 

second order and the third order optimum. We shall investigate 

their convergence and show for the optimum formula that it has 

properties similar to that of a Gaussian quadrature formula with 

positive weight function. 

Natural Splines 

Invaluable tools in these investigations have been certain 

natural splines which are intimately connected with the quadrature 

formulae. Splines were introduced in 1946 by Schoenberg 

in 	[131, however it was not until 1964 that Schoenberg 

showed in 114] how they are related to Sards formulae. We present 

here a derivation of his result in the case of optinum formulae, 

and since for this formula we do not know beforehand where the 
mn - 

quadrature points will lie we shall set a = mm [O 9 t] b =L(1,tw] 

and let x € C 11[ab]0 The Peano kernel is as before but we now 
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require to ti9000ØtN9 }L DHV0009HN to satisfy (06) and to minimize 

f  b [k(t)]dt0 This problem can be reformulated by Lagrange 9 s 

method of undetermined multipliers as that of finding a minimum 

of 

fb 	 n1 	1 	 N 

r [k(t)) 2dt + 	A 51 W()rd 
11. 

	

r=o Lo 	 1=0 

this leads easily to the following sets of equations0 

f
n-i  

k(t)K'  (tt)dt + 	A t = 0 9 	i=0 9 1 9 000 9 N 9  
n-i .- ro 

(07) 

	

fb 	 n-i  
k(t)K+  (t.-t)dt + 	rArt 1 =0 9 1=0 Ø 1 D 000 9 NO 

	

a 	
n-2 r=l 

(We shall assume that none of the weights vanish and so we have 

removed the non zero multipliers in the second set of equations.) 

Let cO 9cl , oao9cN9 d 9dj9.ocodN be scalars which satisfy 

N 	 N 
ct + r 	i d tn = 0 
i i 	

9 	r=0,i 9 000 9n-1 i 
1=0 	 1=0 

then we see from (07) that if y € Cn (-oo,ao))where 

(O8) 

y(t) =I {c 1K 1 (t 1-t) + d.K 2 (t.-t)} 
1=0 

b 
it will follow that fk(t)y 	(t)dt 	00 Consequently this 

function is integrated exactly by the optimum formula (if it 
1..\ 

(09) 

exists). Clearly y" is identically zero for t tN. and because 

of (08) it is easily seen that y 
(n)  is identically zero for t < t i,. 

We shall call such a function a naturalquintic Hermitian spline 

of degree 2n-1 with the knots totl90009tNo The integration of 

(09) leads to the representation of y in (-°o)  as 
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N 
p_1  (t) + (l)' 	{c1 	_1 1  K(t- 	

1 
t) +d 

2n-2  K 	(;1-t)},  
i=o 

where p 	is an arbitrary polynomial of degree n-i0 

The result which corresppnds to this for best quadrature (see 

Schoenberg fSL.]) is that the best quadrature forrnuJa of order n 

integrates exactly any natural spline of degree 2n-i with the 

knots tDlooeItNQ This spline has the representation 

N 

i 	
((,,)n 	c.K 	(t t) n  2n-1 1=0 

where 	 c.t = 0, r0,i,000,n'i. 
i=o 

(0.11) 

(0,12) 

It is easily seen that these definitions can be replaced by 

the following. 

Definition 001 

A natural spline of degree 2n-1 With the knots t o pt ll00PtN 

is in C2n2(_OO,00),  is a polynomial of degree at most 2n-. in each 

interval i=0,1, 00 0,N-1 and for t < t0 and t > t is a 

polynomial of degree at most n-10 

Definition 02 

A natural Hermitian spline of degree 2rr-1 with the kn9ts 

teti000atN 	C23 (-,C), is a polynomial of dgree at most 

2n-1 in each interval [t 1 ,t 1+1 ], i0,l,000,N-1 and for t < t O R 

t > t  is a polynomial of degree at most n-1. 

These splines can be used for interpolation purposes, the 

first in a manner analogous to Lagrangian interpolation and çhe 

second analogous to Hermitian interpolation. The convergence of 

these interpolation processes will clearly induce results on the 

convergence of the respective quadrature formulae. Consequently 
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we shall devote some space to investigations of tJjs convergence. 

Finally, we state the next results. We • o not make use gf 

them in the sequel, however they are interesting and not difficult 

to prove. 

Theorem A 

If y is a natural spliné of degree 2n-1 with the knots 

tItj0!OetN then 

t 	(n) 	
ttN 

[Y 	(t)J2dt 	i t [Z(')(t)12dt 

0 	 0 

or any z 	Cn[tO ,t N] which satisfies y(ti)•- z(t), iQ,l.00 1 N. 

Furthermore equality holds if and only if y Zq 

Theorem B 

If y is a natural Hermitian spline of degree 2n-1 with the 

knots tØtl0 000 PtN 

tN 	 tN 
I 	[Y ('(t)] 2dt 	I 	[z ) ( t)] 2dt 
i t 	 it 

0 	 0 

for any z fC L[t ItNI  which satisfies y(t 1 ) 	z(t1),  y' 1 (t 1 ) 

i0 9 l 9 000,N0 Furthermqre equality holds if and only if 

Y = Z. 



(viii) 

Su=n 

Chapter two contains results on the convergence of natural 

cubic spline interpolation when the function with which the spline 

agrees at the knots is continuous. An analogue of Weierstrass 9  

theorem on uniform approximation by polynomials is proved for 

approximation by natural cubic splines. However this does not 

imply the convergence of the interpolation process and we present 

two theorems which show that with certain restrictions on the 

spacing of the knots convergence is assured. Since the norm of the 

natural spline operator is of interest we find upper bounds on it 

with these same restrictions on the spacing. On the other  hand 

a distribution of knots is found for which the norm is unbounded. 

The chapter ends with two theorems on the convergence of the natural 

spline interpolation process when the function which is being 

interpolated is in C0 The proof of one of these theorems appeared 

in SOIOAOMO Journal of Numerical Analysis and a copy of the paper 

will be found at the end of the thesis. 

The work which comes closest to that  of this chapter i5 that 

of Cheney and Schurer [2- 1, Nord (ii] and Meir and Sharma [lOb 

These authors discuss similar problems for the periodic cubic 

spline. 

Chapter thrçe is devoted to Sards second order best 

quadrature D  this is the simplest non trivial formula of its type. 

Said has tabulated weights for this when the intervals are equal 

and for constant weight function, We present here explicit 

formulae for both the weights and the L 2  norm of the Peano kernel. 

The convergence theorems of chapter 2 are used to prove convergence 
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theorems for the quadrature formula. The contents of this chapter 

have been accepted by I J. Schoenberg for publication in the 

Journal of Approximation Theory. 

The results of chapter four are preliminary to the investigations 

in the later chapters and are probably not of great interest in 

themselves0 The natural quintic spline and Sards third order 

best quadrature formula are defined here, and a theorem on the 

convergence of interpolation by this spine is proved. This is 

required for the subsequent estimation of the Peanp kernel for 

the best quadrature formula. The chapter closes with a theorem 

which is perhaps of more intrinsic interest an the others. 

This states roughly that the addition of an extra point in a 

quadrature formula gives rise to a best quadrature  formula with a 

smaller Peano kernel (measured in the L 2 norm)0 The result is 

not surprising but it does not seem to have been stated explicitly 

before; however a special case of it when the weight function is 

constant is implicit in Karlin [6 1. An examination of the 

natural quintic Hermitian spline ondupies chapter five and a proof of its 

convergence to the function it Interpolates is given0 The bulk of the 

chapter consists of an investigation of the qualitative properties 

of the fundamental Hermitian splines. These are of some interest 

in themselves since it will be seen that they have the same 

qualitative behaviour as the fundamental polynomials in Hermite v s  

interpolation formula. Their main use however is in the final 

chapter where they are used to deduce properties of third order 

optimum quadrature formulae0 Karlin [ 1 (see also Schoenberg 

t151) has shown that such optimum formulae exist for the 
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fo
l  

optimum quadrature of  w(t)x(t)dt when w=10 The proof was given in 

outline only and it is not clear if it is applicable when w is not 

constant. We present here an existence proof in the more general 

situation. It is shown that if the weight function is positive then 

the quadrature weights are also positive. The chapter ends with a 

result on the distribution of quadrature points when w=l and two 

theorems on the convergence of the formula0 

We conclude the thesis with an appendix in which two types of 

interpolatory cubic spline are investigated. These are shown to have 

more favourable convergence properties than the interpolatory natural 

cubic spline even though they use only the same information for their 

construction. 
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CHAPTER 1 

Notation and Preliminary Results 

The numbers t9t10,t N 
 which satisfy a 	a 	1 t < t < 000 < t1, 	b 

will be called knots or quadrature points0 

ht 	t 2. 	1+1: i 

h= max h. 0 k min h.1 , 
1  

i 	 1 

a. 
1 	1 

h. 	i l /(h 	
1 

	

+h.) 	 ]. il 9 200 9N—. 

y will invariably denote a natural interpolating sline, that is 

to say it will be a natural spline (cubic quintic or Hermitian 

quintic) which takes preassigned values (in the Hermitian spline 

the first derivative also takes preassigned values) at the knots 

to9 t lD OOO't
N O 

a will denote a natural spline of whichever type is being 

considered. An element of C'[ab] will be denoted by x or z the 

value of n to be taken appropriate to the context. (x will 

usually be the function with which y agrees at the knots.) 

The function norm will be the uniform norm; 

I lxii = max Ix(t)j, t0 	t 	t0 

The vector norm will be the uniform one; if = 

then iLii = max 
1 	 n 

This induces the matrix norm, hAil = max I Jaij j- 
i 3=1 

We shall make frequent use of the following result. 

If A is strictly diagonally dominant, 10e. Ia. •1 > 	j Y Ia.! •g,•  



j=1 9 2 9 000 9n then A is invertible and IA1II 	max 	 0 

i 	ii 
The following results for certain tridiagonal matrices ca2t e 

easily deduced from ( ] and  [ ] 

If A 1 	2 	1 	0 0 	 0 0 0 	an n x  n matrix 

1 	4 	1000 0 	 0 

0 0 0 0 9 	0 0 0 0 0 0 

0 	0 	0000 4 	 1 

o 	o 	0000 1 	 2J 

then -T 1T./(3U 2 ) 9  I 	i < j 	n 9  where Tr  and  Ur  are 

the rth Chebyshev polynomials of the first and second kinds 

respectively on [ll] each with argument '2 

If B 1 	A1 	
"1 	

0 	0 0 0 	0 

0 0 0 	0 

0 	 0 	 0 	0 0 0 	0 

0 	0 	0 	0 0 0 A 

(1. 1) 

where 0 < aj  < 1 j1 0 2 0 000 9 n 9  AX 	> 1, j=1 9 2 9 000 9nl, 

then 

	

Lb.. > l (l) 3  b. > 0 	i,j = 1,2 9 001 9n 9  
111. 	 13 

If B 1  = r 2 	a 	 0 0 0 0 	0 

1—a 2 	2 	CL 2 ° ° 0 

I 	0 	 . 0 	 0 	0 	0 	9 

-0 	0 	0 	 2] 

(l2) 

and 	a l a >1  o, 0 < ai  < 1 9  j1,2 9 000 9n 9  then 



3 

< 3(1) 	3 [cib 1 	< a02' 9  
ij 	i+lj 1 	< j 

3a''2 	< 6[czb,i 	i+li  
+b 	I 	< 4c _ (13) 

3=2a < 6(ab 	+b+fi 	I < ii+1 	i+1 
40, 

+2 	 ij < 	3(=1) 	(ctb 	+b ij 	i+lj - I 	< i=j+1 
a02 i+2 	j 	n. 

(iv) 	If C 1 	r 	1=ct 1  0 0 	 0 0  1 
0 	0 	0 0 (14) 

	

0 	 0 

	

Lo 	0 

0 

0 

0 	0 	0 

0 	 0 	0 

0 

01 

where 0 < a. 	< 1 	j12 9 000n 9  then 

Ic! 	< 9.2= 
i 
 /8 in 

< 
902k+ 

i 
/8 i12000n0 

(v) 	If D=r 	1 	0 	000 0 
01 	

9nxnn4 

1 	4 	10000 01 

::: 

  (15) 

Lo 	0 	00001 H 

then d1 	o T. 2T 	1 /U 40  1 	1 	j 

where the argument of the Chebyshev polynomials is 
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Chapter 2 

Convergence Properties of the Natural Cubic Spline 

We shall consider in this chapter the problem of estimating 

jj y-xjj when y is the natural cubic spline which interpolates to 

x at the knots which satisfy 0 = tt 1  •..<t 	1. 	In addition 

we shall find conditions on the spacing of the knots which will 

ensure convergence as the maximum interval decreases to zero. 

It is of interest to determine if there are situations under 

which there may be divergence and it is shown that for a certain 

knot spacing the natural cubic spline operator is unbounded. 

Results similar to these have been found in the simpler 

situation when the spline is assumed to be periodic. 	In 

particular Nord in Hil has exhibited a periodic cubic spline 

which diverges. 

For the purposes of this chapter it will be sufficient to 

consider the spline on the interval 0 tOttN = 1, and we take 

the following as the definition of the spline. 

Definition 

A natural cubic spline with the knots 	 is in 

C2 (0,1] and is such that 

it is a polynomial of degree at most three 

in each interval 

 0. 
y (2) = (2) = 

An important property of the natural cubic spline is that 

it is determined uniquely by its values y
O'1' °•°  'N 	This is 



well known, but in order to introduce some relations which will 

be required later a proof will be outlined here. 

Existence and Uniqueness 

Since y (2) is linear in each interval and is in c[O,il we 

can set 	= i, j = O,l,.,,N and write 

(t)(t. 
	

+ 

1-t) 
K 	

(t-t.) 
K = 	 . 	 . 1 ,  h. 

Integrate this twice and impose the interpolation conditions 

j=0 1 1 1 0.,N); then 

y(t) = —i--- I E(t-t)-h(t 	 , —t)IK + [(t-t.)--h(t-t. 	
j

)1K 	
} + 6h, 	.1 	j j 	+l 	 j. 	j 	+i 

+ 
	

-t)x
j 
 + (t-t

j
)x, 

j+l 	 j+lf (2.1) 

for ttt 

	

3 	j+l' • = 

The imposition of the condition of continuity of y(1)  at the 

interior knots, 	 leads to well known relations which 

will be written, (see ( 1 p.11) 

	

(l-a. 
3j1 
)K 	+ 2K 

3  
. 	j+l +a. K 	= 	

3 	
j1,2,.0.,N-1, 	(2.2) 

3  

where a. = h./(h. +h.), h. = t. -t., and ft. ,t.,t. I is the 
3 	3 	j1 3 	3 	j+l j 	j-1 j j+l 

second divided difference operator at the points 

Now KOy2=y2=KN=o,  and so (2.2) is a set of N-i linear 

algebraic equations in the unknowns KiK2,o..,KN_l. 	The matrix 

of this set of equations, B 1, is strictly diagonally dominant 

(since O<a.<l) and so there is a unique solution. 	Consequently 

the spline is unique and can be constructed in each interval with 
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the aid of (2.1). 	Further I IBI  I < 1 and so we have the following 

inequalities, 

	

max I . 	6 max llt. 
- 3J 
1 ,t.,t.

+' 
 Ixi 	3IIx 2 II, 1jN-1. 	(2.3) 

	

j 	
3 	 I 	 I 

Another set of equations can be found in terms of AO9X1,  .... XN, 

where A. 	yc 1 , by the use of Hertuite's two point interpolation 

formula instead of (2.1). 	These can also be found in (1 1 and 

are, with the same notation as above, 

2A0  + A 1 = 3It0 ,tYx 

	

a.A. 	 -Ct 	3aJt. ,t]x+3(l 	)Et 
3 -i 	 +i 	3-i 	- 	j'+l' j1,2,...,N-1 ,(2.4) 

3[ tN_l , tNlx. 

Convergence theorems 

In the following it will be assumed that y=x., i 	O,l,...,N. 

Theorem 2,1 
1 . 

If x € C 2[ 0  11 - then I y-x j < jh2llX(2)11  

Proof 

Since y.-x. = 0, j = O,l,...,N, we have, from Lagrange's 

linear interpolation formula with remainder, 

	

y(t)-x(t) = 	 (2.5) 

and so, for ttt. 
j 	j+1 
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max ly(t)-x(t)I 	Imax y 2 (t)-x 2 (t)I 

.. h2 [IIx '2) II+max(lK.I , IK. l I) 

.. h 2 (4 Ix2)  H' 	(from (2.3)). 

The right hand side of this inequality is independent of j and so 

the result follows. This theorem allows us to prove a result 

for natural cubic spline approximation which is analogous to 

Weierstrass' theorem for polynomial approximation. 

Let )'N (h) denote the space of natural cubic splines with 

Nl knots where t o=o, t=l, and maximum interval length h YN(h) 

is clearly a subspace of cE0,11. 

Theorem 2.2, 

Given c>O, x € C(0,1I then there exists, for sufficiently 

small h, an element s e IN
(h) such that I Ix-sI I<c. 

Proof 

From Weierstrass' theorem we can find a polynomial p such 

that lix-PlIAC.  

Let i 	
(2) 

p 	119 and choose a set of knots so that 

h2 <c/ir. 	Then if s.p., j=0,l,..0,N, it follows from theorem 2.1 

that 11s-pIIh2n/2<c/2. 	Since IIxsiklIxpII+IIpsiI the 

theorem is proved. 

Clearly we cannot conclude from this that the natural cubic 

spline always converges to any continuous function with which it 

agrees at the knots. However the next theorem leads to a 

simple criterion for such convergence. 	It is convenient to 

( 	 a 	
,.., 



define here the interpolatory spline operator SN,  this is the 

projection operator from cEO,ll to N(h)  such that if y = SNX 

then yx1, i=O,1,..0.,N. (c.f. Cal where a similar operator 

is defined for periodic cubic splines.) 

Theorem 2.3 

ISNXxI I < ( 1+0.75h2 /k2 )w(x;h) 

where k = mm. h., and w denotes the modulus of continuity of x 
3 	

3 

with Interval length h max h.. 

	

3 	3 

Proof 

	

Let y SNx,  then for ttt 	we may write 

6h1(y(t)-x(t)l = [(t i+l- t) -h 2 (t. 1 t) iK + (( t-t1)3-h i 2 	 ) 1K 
i+l  

(2.6) 
+ 6{(t 1-t)(x1-x(t))+(tt)(x 1+1-x(0)}. 

Hence, for ttt, after some simple manipulation and 

estimation, it will follow that 

	

maxly(t)-x(t)I(x;h)+ 	 i 
h2maxhI2K+K, 	J,IK.+2K. 	I. 	(2.7) 

	

1 	1 	i+i 	I 	i+lJ 

But, from (2.3), maxkj 	6 

6w(x;h)in4x h h 	6w(x;h)/k2, 
j 	j-1  j 

and so 	h.2  max IKI 6L.(x;h)h2/k2, 

which, when used in (2.7), will give the result. 

The following is immediate, 

Corollary 

I ISNX xJ I-O as h+O if max h./min h. is bounded. 
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Another criterion for convergence will be found in terms of 

A = max h 1/h, and V = min h j+l j /h. 
j 	 j  

Theorem 2,4 

If 	j < 2 A 2  < 2 then 

< (1 + 	max(2P+Q,P+2Q)Jw(x;h) I ISx-xI J  

where 

P = 2A/(2-A 2), Q 

Proof 

It is clear from.e,.,, (2.7) that bounds are required for 

each of I2K 
1  , + ci. l ,+l k . 1+2K  ]+l I.  

Now, with the notation that the matrix of the equations (2 , 2) 

is B- I we have 

N-i 	 N-i 

	

K. = 6 1 b. .Et. ,t,t. 1 1X ,K. 	

3=1 
6 ) b ft 	 Jx; 

j=l 	
. 1 	 13 ji 3 3+ 	1+1 	1+1 

< w(x;h) and since 	
h. h. 	it follows that 
j-1 j 

1 21c , + K. 	 N-i 
1 	1 1+1 	: 12b 	+ b1.Iij 	 h. h 	 (2.8) w(x;h) 	

j=l 

There is a similar expression for . k,1+2 i+l 
w(x;h) 

The use of the inequalities (13) will lead to the following 

inequality, 

hi 2. L(;hr lI  <2 	
213  . ih 	h j  + h.j [:: + j=i+2 	hjih.. 

h, 2 	h, 2  h. 2 	h. 2 	
h. 

Now, 	
h
j 	= h 	. 2  '° 	

j 
. °h'''h 	h 	

(A2)'JA, lji-1, 
l h. 

j 	i1 1-2 	j 	-1 

with a similar result when i+2 < j < N-i, 
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It follows that 

2. 	1 h 	
4j(x;h) 	

< 2A1+ 	- 	+ 	 i I2K+K, 	I 	i-i 	 N-J. 

L ' 	

P[[ =2P 

If 	A2<2 each of these geometric series can be bounded 

by its sum to infinity and the result will be that 

	

h. 	
j( i 2 2K + +1 	4)i 	2j 	2(2P+Q)0 

	

2. 	
I 
4w(x;h) < 2Az + 21j-. 

Similarly it can be proved that if 	2<2, 

	

h2 
	
i+1 1  < 2A 	4P

i 4w(x;h) 	2-A1  + 21 	2(P+2Q). 

The result of the theorem follows when these results are used in 

(27) 

Corollary 

I Sx-xftiO as hO if +c<j 2 , A 2 -r, where ,n>O. 

The proof is immediate.  

Bounds for I 1S1  I 

Upper bounds for I 1S1 I can easily be calculated from the 

results of the last two theorems with the use of the inequality 

u(x;h) < 2IIxII 	However IISNII has practical implications 

and more precise bounds than these will be established. 

c._..; 
The fundameital natural splines LO,Ll,...,LN are n4tural 

cubic splines which satisfy L.(t 1 ) 	6., 0,<i, jN. 

N 
With this definition we can write SNX 	I x.L, consequently 

3 3 
N 

IISN II = max 	
=0

IL.(t)I. 
[0,1] j 

(2.9) 
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Theorem 2.5 

L1  changes sign in (0,11 only when t=tjg  j=O,1,..,N, jfi. 

Proof 

The proof is in two parts. First it will be shown that 

L1  vanishes in [0,11 only at the knots 

The proof will be completed by showing that L 1  is not zero at 

any of the knots except perhaps t. 

Let L(t')0, 	t t<t 	Then L. has at least N+1 
.j 	0. 	N 	2. 

distinct zeros in [o,i]. 	By Ro1les theorem L 1  vanishes at 

least N times in (0,1), and, again by Rolle's theorem, L 2  

vanishes at least N-i times in (0,1). 	Consequently as 

Lc2(0) 	L2(tN) 	0 it follows that L 2  vanishes at not 

less than N+l points in [0,11. 	But L 2  is linear in each of 

the N intervals and so Lc 2 	0 in at least one of them. Let 

this interval be (tk,tk+1l,  then, as L(tk) 	L2(tk+l) 	0, 

L. decomposes into two natural cubic splines, one with the knots 

tO,tl.o.,tk, the other with the knots tk+l,000,tN. 	From the 

uniqueness property one of these splines is identically zero. 

There are three cases to consider. 

- = 0,N. 

Consider L0 . Then for ttk+l  L0(t) = 0. 	Further k+0, 

for otherwise L0  would be a non zero linear polynomial in (t0 ,t 1 1 

and identically zero in [t i lt 2 1. 	This would contradict the 

continuity of L 1  at t=t 1 . 	Therefore L(tk)=0,  r=0,1,2, and 

if k+l  L0  will be identically zero in [tk1,tkl. . This argument 

can be repeated until we are lead to the conclusion that L0 
 (0=0 
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for tt1 . 	But this means that L 0 (t) = (t 1-t)/h0 3  for 

t0 tt1  which will contradict the constraint L 2 (t0) = 0. 

A similar argument can be used to prove a contradiction when i=N. 

i=l, N-i. 

Take L then k+l,  for otherwise L 1  would be discontinuous 

at t 1 . 	If k=0 then L is linear in [t 02 t 1 1 and so can vanish 

only at the knot t, 	Therefore t'>t 1 , and because L 2 (t 1)'O 

the argument above for L0  can now be used to prove a 

contradiction as L can be regarded as a fundamental natural 

cubic spline with the knots tlt2otN  and such that L 1 (t 1)1. 

When k2 we have L'(tk)O,  r = 0,1,2; therefore L 1 (t)0 

for 	That is to say L 1  is a natural cubic spline which 

satisfies L 1 (t0) 	L 2 (t0) 	0; L1 (t 1) = 1; Lt(t2) = 0, 

r = 0,1,2. 	These last conditions show that L 1 (t) = (t 2-t)3in 

Et 1 ,t2 1, and the first ones that L 1 (t) = a (tt0) + b (t0)  in [toitil 

where a+b=l. When the continuity conditions are imposed at 

it will be found that h0 ,h1  have to satisfy (h
0 
 +h 	= 0, 

which is impossible 

2iN-2 

Now i+k,k+l.  For instance if ik then L would be linear 

in (ti lt ,t 	
1 

I and zero in Et. + 1 ,t. +2 1 which would contradict 

the continuity of L 	at Similarly i+k+l. 

To be definite let ik-1, then L.(t)=0 for 

Therefore L. is a natural cubic spline with the knots 

and such that L.(t. 	
1 

)=l, L 1 (t. )0. 	A count of the zeros 
1 1 	1. 	+1 
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of L 2  by the repeated use of Rollets  theorem will show that 

L 2  vanishes identically in an interval in Et ,t 1. 	This 
3. 	 0 i+1 

cannot be (t.,t 1 I because of the continuity of 41) 
 at 

nor can it be (t_ 1 tI,for then the spline would vanish 

identically for tt_ 1  and the continuity of 41)  at t_ 1  would 

be contradicted. Therefore it is an interval which lie below 

t. ; but this means that L.. will be a natural cubic spline 

which satisfies L(t1_1) 	L(t 1) 	, r 	0,1,2; 

L1 (t1 ) = 1. 	It will be found that it is not possible to 

construct L, with these properties. 	(In fact in 

we have L.(t) = (t-t1_1)/h11 and in [tt11  L.(t)(t. 1-t)/h. 3 . 

Consequently 	 and 41) 
 (t1+0)=-3/h..) 

So we have proved that L. vanishes only at the knots at 
1. 

which it was prescribed to vanish. 	If it does not change sign 

at the knot t, ji then L9(t.)=0. 	Since L. vanishes at N 

points it follows that 41) 
vanishes at not less than N-1 

points which are not knots (one of these may be t but this 

is not important). Hence 41) 
 vanishes at least N times in 

Eto,tNl and so L 2  vanishes at least N+i times in (tO,tNl; 

this implies that L 2 E 0 in at least one interval. The 

arguments of the first part of the proof can now be adapted 

to show that L(t,) 4 0, j4i, 	Hence the spline changes sign 

only at the knots at which it was constrained to vanish. 

(It can be shown that L, does not vanish outside 

however we do not need this result,) 

Corollary 

N 
Let L(t) = 

j=O 
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then for 
1 	i+l 

	

i 	.. 	 N 
L(t) = 	(-l) 	L.(t) + 	(_l) 3h1 L.(t). 

j=O 	- 	j=i+l 

Proof 

	

In [tilt 	
1 	i I L. and L 	are each positive 

i 1 +l 	 +1 

and L. 	and L. 	are each negative etc. The result i-i 

follows 

If the values XOXlOOeXN  are each subject to an error 

of ±E then, from (2.9), the maximum error in the natural cubic 

spline which uses these values instead of the correct ones will 

	

not exceed CHSNJI. 	We shall now find upper bounds for f ISN IL. 
I 	.. 	N 

Let A. 	(-l) 3L.+ 	(-l) 
1 
 1L., then A.(t)>O for 

	

3. j=O 	3j=i+i 	 .1 

Hence 11S1 I = max JL(t)J = max 	max JL(t) I = max 	max 	A1 (t). 

	

Eo,iI 	i. 	Et 1 ,t. 1I 	i. 	(t,tj + 1I 

It follows from the corollary that At.)  

OjI, A.(t.) = -(-i)', i+1jN. 

The second divided differences of A 1 are easily calculated 

(2.10) 

(2.11) 

and are given by 

_2(_l)13/ (h_1h) 

It 
j

=  l j 3+ 

-2/(h 2/[h 	(h 	i I 	+l
+h 	)i 

' 

2(-l)31/(h. 1h.), 

id '< i-1 

j 

j=i+l 

i+2jN-l. 

(2.12) 

(2.13) 

Let 	A., 	 (t.)=p,(t. 1 )=q, then 

max 	IA.(t) I 
z. 	

1 + h 	max(2p+q, p+2q). 
Et:,t. 	1 1  

1. 	+l 	 24  

Theorem 2.6 

1 + -- h 2 /k2 . I ISJ  
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Proof 

Since A iis a natural cubic spline it follows from (2.3) 

that 

	

p1. II < 6 max(t j 
	 12/k2. -1 j 

The result follows from this and (2.13). 

Theorem 2.7 

If 	I < 2 ,  X2 < 2 then 

1 + max{2A+B,A+2B} I ISN I I  

	

2A 	ii 	 2vB= where A=-_--y, 	
2-1T' 

Proof 

N-i 
Consider 2p+q = 6 	

[2b ij i+lj 
+b 	

j-1
Ht 	,t

j 
 ,t.11A1 	

V 
 

where again the matrix of the equations is B'. 

Then, with the use of (2.12), 

	

22+q = - i-i (-i)' 	 1 

	

(2b. .+b. 1j 1  - h 	(h. 	(2b. .+b. 	.1 12 	L h. 	h. 	i.j 

	

+h ) 	z.i. 	i+li. 

	

j=i j-1  j 	 i-i 1-i i 

N-i 
E2b. tb. 

	

(2b. .+b. 	.1. - h. (h +h 	) 	LL+1 	1+l 	h. h. 	ij 1+1 1. 1+1 	 j=i+2 j-1 j 

The inequalities (1.3) will lead, after some manipulation, 

(c.f, the proof of theorem 2.4) to the result that 

2 2A 
2 	 [-2
h. 	 __

2(2A+B)/3. 
2  2p+q2  
	 -1 

 
12 
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A similar consideration of p+2q leads to 

h. 
jp+2q <4 	- 	+ 	- thJ} = 2(A+2B)/3 

The proof of the theorem is completed by the insertion of these results into (2.] 

An Unbounded Spline Operator 

We prove now a result for natural cubic splines which is 

similar to the one proved by Nord [it] for periodic cubic 

splines. 

	

I 	 N 

	

Let 	A(t) 	(-l)'L.(t) + 

	

j=O 	 j=i+l 

then, from (2.9) and (2,10), 

	

I SN I 	max 	max 	A. (t). 
i ti tti+l  

However max 1(t) 	A.(t.+h.) for 
1 	 1 1. 	1 	 1 	i+l 

and so 	 IISNII 	max 

With the aid of (2.1) we obtain easily 

	

max Il_h1 	 }2 	2( 	+ A 2) (t. 1 )jJ/l6  1. 	 1
I 1SJ 

1 

In order to simplify the presentation of the results we shall consider 

only values of i in the range 2iN-3 	There will be a slight 

loss of generality in the results but this will not affect the 

conclusions 

Lemma 2.8 

If 2h0 h2 , h. 1 h. +11, j = 2,3,...,i-2,  hh 
i 
 +h.1, 

i-2 -i  

and h.h. 
1 i+l 
+h 	, 	 j = i+2,..,N-3, 
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then 

A1  (t1+h1) 1+O 75h 2  ((h 
i 
 +h  i+I  ) /h1_ 1+ (h1_ 1+h1 ) /h1 1 I / [3h1 2+2h. (h1_ 1+h11 ) 

+h 
i 	1 

h. I. -i +1 

Proof 

Let 4 2 (t.) 	K,, j=0,1,000,N0 

Then the equations (2.2) can be rewritten as 

= 6[d 1+(2-cs 1 )d 2 ], 

(l-cz)(K 	+K.)+(2+j 	)(ltz.+ 	)+°. 	(K. +K. 	)6(d.+d. 	I,j2,3,...,N-3, 

	

3 	j71  3 	3 j+l 	3  j+l 	j+l j+1 j+2 	3 j+1 

	

( 1 aN_2) (l+cz 1 )(K 3+K 	)+12+c 	(l+(I)j (KN_2+KN_l)=6((1+aNl)dNZ+dli, 

where we have defined d. = It 
j,, ,t,t. 1 1A., j = 

	

3 	-1 3 3+ 

These can be rewritten in a form which is suitable for the application 

of ( 1.2), namely as 

A 1 (K 1+K2)+8 1 (K2+K3) = 61d 1 / (2-a1)+d2 1, 

(2.14) 
(l8.)(K._

1j 	j 
+K)+A.(K 	

j 3 	+1 	3 
+K 	)+8.(K. 

	

.j 	,j 	 3+ 

(1_8N_2 )(KN_3N_2)+AN_2 (KN_2+KN_1) =6[ dN_2+dN_1/(l+ N_1 ), 

	

where 	A = 
1 	(12)+2/(2_J) AN-2 = a2 +2/(1+aN1), 

= a2, 8N-2 = aN..2 ,  

A. = (2+ct.-a. )/(l-c&.+a. ), 8. = a. /(l-a.+a. ), j2,3,...,N-3, 3 	3 j+l 	3 j+1 	j 	j+l 	3 j+l 
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It is easily verified that X.A 1>l j1,2,,..,N-1 and so the 

result ( 1.2) can be used to bound the elements in the inverse 

of the matrix of the equations (2.14). 

If {b, . }are the elements in this inverse then 
iJ 

N-2 	N-2 
= 	b.. r. = I [(-1) 3b..I((-l)V 3 r.1  

Jl 

where r. denotes the right hand side of the j-th equation of 

(2.14). Now (1) " 3b..>O and we shall find conditions on the 

spacing of the knots to ensure that -(-1) 

Consider for example -(-1)' 1r 1  = 12Eh2/(2-cL1)-h01/(h0h1h2); 

we see that if h2 2h0  then -(-l)' 1r 1 O. 	Each of the different 

forms of r. are considered in the same fashion and it will be 

found after some manipulation that for the distribution-,of 

of intervals which is given in the statement of the lemma 

When this is used to replace _h 2 (K1+K 1) in A. (t.+h.) = 

1-h. 2 (K. 
i

+K 	)/16 the result follows. 
3. 	3. 	+l 

Theorem 2.9 

There exists a set of knots for which j JSI j.co  as h-O, 

Proof 

Let N = 2M+l, 2h0 h29 	 j 

hMl =   	 -2, 2hhh =hM+l, 	 , 	, 	2M2.  

Then 	 which increases 

without limit as hMO. 

If N=2M we consider in a similar fashion the interval 

(tM,tM+lL 
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Convergence for x€C[0,1] 

The convergence theorems of the earlier part of this 

chapter were derived under general conditions on the function 

which was interpolated. We end the chapter by giving two 

theorems on the approximation by interpolating cubic splines 

which when x is restricted to being in CE0,11 are best 

possible. 	A proof of the first theorem can be found in 11 1; 

the second theorem will be proved here. 

Theorem 210 

Let y be a natural cubic spline and x€C[0,1], and let 

y=x, i=0,l,...,N. 	Then for sufficiently large N there exist 

knots t ,t , where O<t <t <1 and a constant K such that for pq 	 p  

pq' 

max Jx(t)-y(t) 	Kh 

(1) 	(1) 
maxix 	(t) -Y(t)I 	4Kh3  

8 max Ix 	 Khz.  

Further, tp 
	q 

l-t are 0(h log h) as h-*0. 

Theorem 2.11 

Let x,y be as in theorem 2.10 and in addition let 

x 2 (0) 	x 2 (1) = 0, then 

3 Hx(2)_y(2)J 	
. h2 Hx4H. 

Proof 

We have from (2.5), 

tnaxly(t) -x(t)Ihj2  max  jy (2) (t)_x (2) (t)I,for 	 j0,1,..,,N1, (2.16) 
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Thcrefore-,S since y 2) is linear in [t.,t. 1 1, we obtain from 

Lagrange's linear interpolation formula, 

jy12)(t)_x(2)(tA,<~1.j(tj+l_t) 	2 )+(t- t.)(K. _xc 2))I4!h. 2L (4) (tt)I (K. -x. 

	

j 'j 	 j+l 3+11 8ji 
3 

for t 
i I<tl<t 1 ,j=0,1,N-1, and where 

It follows that for 

	

3 	j+l' 

	

2 	(4) 2 (t) -x 2 (t) krrna(l 	
(2) 	 (2) 	+ 	h lix 	II' 	(2.17) max y K X. 

3 3 	
ll+ixj+il.) 	8 j 

( consequently we have to  estimate  maxlK-x.2) J. 	In order to do . 
3 	

*1 

this rewrite the equations of (2.2) as 

(1-a )e. +2e.+a.e. 	6[t. 	,t.,t. Ix-((l-a) (2) 	(2) 	(2) x 	+2x 	+a.x. 1 	(2.18) 

	

- j j-1 	j j j+l 	3-1 j j+l 	j j-1 	j 	j j+l° 

j 

where e. = K. - X (2) .  
3 	3 	3 

With the use of Peano's method the right hand side of (2.18) can 

be written..l-a.)h1+a.hJ ( 4 ) 
(t'), where 

Now y is a natural. spline and so with the assumption made in the 

statement of the theorem it follows that e0= e  = 0. Hence, 

with the uniform matrix norm, 

	

I let I < 	
h 	+a . h .2U(x'1f + h lx '  H. maxt(l-u.) j-1 3 3 

3 

When this 'is inserted in (2.17) the result is that 

	

(2) 	
2(t)l 

< .2 1i2 	(4) 

	

maxjy 	(t) -x lix 	H 	 (2.19) 

and when this is used in (2.16) we obtain 

maxly(t) -x(t) I < . 	 h4  x4
, 	 . 	 (2.2Q) 

Since the right hand sides of each inequality is independent of j 

the theorem is proved. 
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Chapter 3. 

Sard's Best Quadrature Formulae of Second Order 

We prove here results on the convergence of Sard's 

quadrature formula by estimating the size of the Peano kernel. 

When the knots are equally spaced and the integral which is 
(1 

being approximated is J 	(t)dt we find explicit equations 0 
for the quadrature weights. 

We begin by recalling the definition of a quadrature 

formula and state Schoenberg's theorem on the connection 

between Sard's second order formula and natural cubic splines. 

Note that in this chapter t0 O, ti, 

Definition 

An expression of the form 

N 

J w(s)x(s)ds 	H.x(t) + 
0 	 j=O 3  

is called a quadrature formula with remainder R. 	If R vanishes 

when x is any polynomial of degree n-i then the' quadrature 

formula is said to be of order n. 

We shall be concerned in this chapter solely with the 

case n2, and in order that the problem of finding the quadrature 

weights HO,H1900051}IN should not be trivial we shall assume that 

N2. 	Then for x € C2[0,11 ) by Peano's method, 

R(x) = J k(t)x2(t)dt 0 

where k, the Peano kernel of the second order formula, is given 

by 

	

1 	 N 
k 	= 	w(s)K1 	 . (s-t)dt - 	H K 	-t) 

	

JO 	 j=0 	j- 

(3.1) 

(3.2) 

(3.3) 
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The problem which gives rise to Sard's best quadrature of order 

two is that of finding HO,Hl,O..,HN  to minimize 

Cl 
Ek(t)l 2dt 	 (3,4) Jo 

subject to the constraints 

N 

j W ( S ) SrdS  = 	 r = 0,1. (3.5) 
0 

We note here that, because of (3.5), k(t0) = k(tN) = 0. 

Theorem 3.1 (Schoenberg) 

If y is a natural cubic spline with the knots 

and if (3,1) is a best quadrature formula of order two then 

R(y) = 0. 

The following is an immediate consequence of this theorem 

and of the definition of the fundamental natural cubic splines. 

Corollary 1 

The quadrature weights in Sard's second order best qua4rature 

formula are given by 

H. 
= fo 

w(t) L.(t)dt, 	j = 0,1,N. 

A less obvious result which will be needed in the discussion of 

convergence is the next corollary. 

Corollary 2 

If k is the Peano kernel of Sard's best quadrature formula 

of order two then 

J
l I 
[k(t)] 2dt = JWWWO-y(t)ldt, 
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where 

M(t) = j lW(s)K3 (s-t)ds-K; (-t)1 1 (l-s)w(s)ds - K 3  (l-t)i i  sw(s)ds, 
0 	 'O 	JO 

and y is the natural cubic spline which agrees with m at the 

(3.6) 

Proof 

Let u 2 (t)=k(t) , 0t1, 

N 
=1 w(s)K1(s-t)ds- 

	

j'O 	1 	j 

Then 

f [k(t) 2dt = fo 

	

k(t)u 2 (t)dt 	R(u)0 
o  

Now write 

	

(t)= [J0w(s)K1+  (s-t)-f 2  (t)} [ 	
( t)1 

where f € C 2 (0,1I is to be found so that the second square bracket 

is the second derivative of a natural cubic spline with the knots 

For this to be true we must have 

jj
K1(t.-t)-f2 	

0 3
((t)t) 	b.K(t-t) OHj 
	 j= 

N 
where I b.t.

r
= 0, r = 0,1 

j=0 33  

Hence 

N 
Since 

j=O 

f 2 (t) = 
N 

(H.-b)K1 t.-t). 
j=0 - 

=  I 1 
w(s)s rds, r = 0,1, 

J o  

are the only restrictions which have to be imposed we can choose 
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0, j = 1,2,0 9N-1 which will leave a pair of equations 

to be solved for H0-b0, IibN.  These give 

	

J (1-s)w(s)ds, HNbN 	ji sw(s)ds. 

Consequently if 

1 	 4 
f 2 (t) = K(t-t)I (l_s)w(s)ds+Kl(tN_t)  sw(s)ds 1 0  J o 	 jo 

then 

R(u) = R(m) 

where 

J l
m 2 (t) 	w(s)Kfs-t)ds - f 2 (t) 

o  

We note finally that 

	

4 	 N 
R(m) = J w(s)zn(s)ds - 

J 

	

0 	 JO 

and so, if y is the natural cubic spline such that y j  rn, 

j 

fl 
R(m) = R(rn-y) 	J w(s)Ern(s)-y(s)lds0 

0 

Notes 

1. 	The function tn-y is the Rodrigues function for the 

quadrature formula. This term was introduced by 

Schoenberg in [jgj 

2 	It is not difficult to verify that 

(2) 	(2) 
m 	(t0)=m 	(tN)=O 

and that m 4 (t) = w(t) 0<t<1 
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Convergence 

Theorem 3.2 

JOIf x € C 2 O,l then R(x) I 	h2 IIx 2  IlIw(t) Idt 

Proof 

Let y be the natural cubic spline such that y.x 1 , 

I = o1)N. 	Then from theorem (2.1), flx-y ph2 lx (2) i o 

Since R(y) o it follows that 

-•1 

iR(x)IIR(x-Y)IIj W(t)X(t)_yt)Idt!h 2 flXII 	Iw(t)ldt, 
0 

which was to be proved. 

The results of theorems 203 and 2.4 can be used to 

furnish proofs of the convergence of Sard's beet quadrature 

for particular spacings of the quadrature points. As these 

proofs of convergence are similar in principle to that of 

theorem 3.2 only the statements will be given. 

Theorem 3.3 

If x € C(O,1I, h = max hi,  k mm h, then 

JIR(x)I 	]. + 	h2/k2J(x;h)  	Iw(t) Idt. 
o 

Theorem 304 

2 	2 	 h. 	 h. 
If x € C(O,i, ?<i , A <2, where i = min - 3+1,  A = max j+l 

h. 	 h. 
3 	 3 

then 

—I 	l 

IR(x) k 	 JO*4ax(2P+QP+2Q)jw(x;h) Iw(t) Idt. 1 
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If the conditions on x are strengthened the next theorem 

follows immediately from theorem 2,11.  

Theorem 35 

If x € c4E0,11, X(2) (0) 	x 2 (l) = 0 then 

1 
R(x) 	- 	h -11I I Jo jw(r) Idt0 

The last problem which will be considered 	this section 

is that of finding the order of convergence if we assume that 

€ cE0,110 The result is stated in theorem 37, however a 

preliminary result will be required. 

Lemma 36 

f
I 

1, 

fk(t)] 2dt 	O(h) as h-0 if w € C[0,11.
0  

Proof 

From corollary 2 of theorem 31 we have, with the notation 

used there, 

f l [k(t) 1 2dt 6 I Im-yl I 	Iw(t) Idt0 
0 	 0 

Since m' 2 (0) = m 2 (l) = 0 (as pointed out in the second 

note to the same corollary) it follows from theorem 211 that 

(4) 
i 	-- hjJwII, I m-y jj 	h'IIm 	64 

and hence 

1 	 1 I (k(t)i2dt 	-- h J Iwl loJ k(t) Idt, Jo 	64 	0 

which is the required result. 
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Theorem 37 

If x € C4[0,11 and w € C[0,11 then 

R(x)I 	O(h5 ' 2 ) 

Proof 

Let p(t) = . 	1_t) 3x 2 ) +t 3x 2)j 
6 F 	0  

then x-p € C40,11, and x (2)_ p  (2) vanishes at t = 0,1.  

It follows from theorem 3.5 that 

IR(x-p) I < 3  h 41 Ix 	J 	Idt0 

Since IR(x) 	IR(x-p) + JR(p) J we shall now bound R(p) I 
Let z be the natural cubic spline which agrees with p at the 

tl 
knots. 	The integration by parts twice of 	Ep 2  (O-z 2 (t)2dt 

ao 
leads to 

(3.7) 

	

1 2 	(2) E(l) 'Tx (2) r(l) (iT J1c(2)(t)z(2)(t) dt 	 ZN 	 o 	-z 
	

(3,8) 

Let 	
, p 
	ii, j 	ø(i, then the equations (2,4) 

can be written with this notation as 

2(10-1T0 )+(A 1 -1r 1 ) 

11. )+2(A.r)+(l-ct.)(A0 	ir. 	) 	0, 	j = lçlN-1 
j j-1 j-1 	3 3 	3 j+l j+l 

(2) 

	

(XN1N1) +2 (ANnN) 	= - h1 XN 0 

From the inequalities (1.3 ) we deduce that 

i)o1Tol <4[ho Ix2)I+1¼_lI2)Io2_j 

[ho
IAN  uN1 Ixi2+)IJ 
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Consequently, when these are inserted into (3.8), 

f l  [p(2) (t) 
-Z 	(t 2dt<I[h Ix(2) +hNlIx2 2 + (ho+hNl) Ix (2) (2) L2j. (3.9) 

2 
Now JR(p)12 	fR(p-z) 2 	J E(t)J2dt JO 

2) (t)z (2) (t)1 dt, 

and so with the result of lemma 3.7 and inequality (3.9) we see 

that 

IR(p)I = 0(h5" 2 ). 

The combination of this with (3.7) gives the result. 

Equal interval formulae 

Note 	In this section it will be assumed that w(t)=l, Otl, and 

that t. = jh, j = OlN where h = 11N. 

The weights for Sard's quadrature formula of order two have 

been tabulated in [12.1 *,
*
, however they can be expressed in terms 

of Tr  and  Ur  the Chebyshev polynomials of the first and second 

kinds respectively, each with argument -2. 

Theorem 3.8 

(i) 	Ho = H 	1=h(3+(lTN)/UN_lI 

H. 	
i 

= 	h12-(U 	+J 	)/U 	1, i=l(1N-1 2 	-1 N-i-1 N-1  

1 I Ek(t)2dt = 	+ TZ 	L 3O 	 N N-1] 

Proof 

If y is a natural cubic spline with the knots defined 

(3.1 0) 

* See also 'Linear Approximation' by A. Sard, A.M.S. Colloquium Pub. 1963. 
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in (310) then, from the Euler-Maclaurin sum formula 

f 
 I N-i 
y(t)dt h y0 

1 'j'N] - - h
2 [Y _y ]. 

Therefore, with yL0 , it follows that 

H0 	h - 	h2L1)(i)_L)(0)10 12 

Let A 	L(l)(0), j = 0lN, then from (24) with cx. 
j 	0 	j 3 

(3.11) 

2A0+A 1  -3/h, 

A0+4A 1+A2  -3/h 

A j-1 +4A  3 j +A.+1 	
0, 1 = 2(1IN- 1 

= 0. 

These can be solved explicitly for A and AN  by the use 

of the result (ll ) to give 

h 	(TN+TN_l)/UN_l ,  hAN 	 )'UN-l0 

When these are substituted into (311) the stated expression 

for HO  will be found after some manipulation0 By symmetry 

HN HO .  

The calculation of Hl,H2,000,HN_l  proceeds in the 

same fashion and will not be given 

From corollary 2 of theorem 31 It is clearly necessary 

to calculate 

J (m(t)-y(t)dt 
0 

(3.12) 
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where m(t) = - 	(t 4-2t 3+2t-1) 24 (3.13) 

and y is the natural cubic spline which agrees with m at 

the quadrature points as knots. 

The Euler-Maclaurin sum formula gives 

J1 

	

 [m(t)-y(t)ldt 	I  - h2[(t)_Y(')(t)] + 
	h. 	 (3.14) 12 

Let A = y1(t), . 	m(t), I = OlN. 	Then from (2.4 

with a 3 . 	we have 

2( 0-A0) + ( r. 	h 3 /24 

= 0, j = 1,2,.00,N-1. 

-h 3/24, 

The use of ( 11) leads to the result that 

- 	h3 (1 TN)/UNl ,  

and when these are substituted into (3.14) the formula stated 

in the theorem will be found. 

Corollary 

u>o, j = 0,12,000,N 

H, 1+4H.+H. 1 	6h, j = 2,3,...,N-20 

The proofs of these results are straightforward and will be 

omitted. 	The second part of the corollary provides an 

alternative method for the calculation of H1,112,... '11N1' 

since it is easy to see that we also have 
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4H1+H2  = 505h = 

When Hl,112,.c.,HN_l  have been calculated HO,HN  can 

be found from 

HO 12 [7h-2R
1 
 = 
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Chapter 4. 

The Natural Quintic Spline and Sard's Third Order Best Quadrature 

This chapter will be devoted to an examination of the 

convergence of Sard's third order formula when the knots are 

equally spaced in (O,lL This will entail, as a result of 

Schoenberg's theorem, finding the order of approximation of 

the natural quintic spline. The chapter concludes with a 

useful theorem which states that in general the addition of 

an extra knot in a best quadrature formula will decrease the 

Peano kernel. (This is proved for the third order formula 

only, however the proof is easily adapted for higher order 

formulae.) 

Note In this chapter except where otherwise stated the knots 

are given by t. = ih = i/N, i = O,l,...,N, 	however the 

definitions which are made here remain valid for a general 

distribution. 

Definition 4.1 

A q4ntic spline with the knots 	 is in 

C 4 10,11 añdin each interval Et.,t. 1 1 is a polynomial of 

degree at most five. 	Such a spline has the general form 

i=O d K5 (t.-t) 

Definition 4.2 

A natural quintic spline with the knots tOtlotN  is 
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a quintic spline with these knots such that 

This spline has general form 

N 
+ 	d1  K5 (t 1-t) 

1=0 
N 

where 	d.t,T= 0, r 0,1,2 and p2  is an arbitrary quadratic, 
1=0 

Lemma 4.1 

If y is a quintic spline with the knots t 
1  =ih, I = 0,1,0,N 

then, with y. (2)  =, Y° (4) -g, 1 	0,1,000,N, the following 1 	1 	1 	1 

equations hold, 

h(59g0+93g1+27g2+g3j= 120[y0-h 3y 3 ] 

h(g1_2+26g1_ 1+66g1+26g11+g1+2 1 = 1206y,, i = 2,3,.0,N-2, 

120( h 3y 3' _v 3yN 1 . 

h2 EK0- K 1 	-h[2g0+g1 /6 - 

h2[ 	
1 

+4K .+K 
i 

i 	 1 	1 2 	N-i 

	

, 	 ,000, i-i 	+i 	 1. 

	

h2( _KN_1+ KN 	-h[g ..1+2g1/6 + 

Proof 

The second relations in (4,1) are well known, see for 

example[ 1 pol27oThe remaining ones can be found by the method 

of undetermined coefficients. For example to establish the 

first of (4.4)  we require scalars a0 ,a19 000,a8  so that 

9 
h1+Ea0g0+a1g1+a2g2+a3g3J_[a4y0+a5y1+a6y2+a7y3]_38y3) Z2 I c3 #0)  

vanishes identically when y is a quintic spline. Therefore it 

must vanish when Y()__(t_0)r, r = 0,1,,.,5 and when 

y(t) = K5 (t-t1), I = 1,2. 	The solution of the equations 

(4.1) 

(4,2) 
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which arise from those conditions will lead to the desired 

result 	The others can be verified similarly. 

(3) (4) (3)(4) 

	

If O'19"°9N9O 3,y0 	N 	are prescribed we 

see that (4.1) form a set of N-i linear algebraic equations 

which can be solved for 	 Furthermore the 

equations of (4.2) can then be solved for KO , Kl ,  .. . ,KN when 

these are known. Consequently the quintic spline can be 

constructed in the interval (t
1

, i+l t 	I from 

2 	 ____ 	 ________ 
2 	2r+l 	2r[ 	I 	jy ~ 2r)  	1t1+1-tI (2r)] 

Y(t)  = 	(2r+l)! h 	B2r+lt 2h 	i 	+B2r+iJ  2h. J 1*l ' 

	

r=O 	 1 

where B is the s-th Bernoulli polynomial on Otl. 

We note that a natural quintic spline is uniquely determined 

by its knot values since for this spline we have 

(4) .
y 
 = 

0 "O 	
" 

	

N 	N 

Theorem 4.2 

N 
Let z(t) = I d K5  (t - t) + x(t), Otl, 

j=O 

where x € c 6 (0,1I and z 3 (t0 ) = z 4 (t0) = z(tN) = 

Let y be the natural quintic spline such that y(t) = 

i = O,l,..,N. Then 

i (6) 

	

Jy-zI 	h6 jLx 	11/ 8 . 

Proof 

Let e. = y 
(4)_ z.(4)  , i =  0 ,1,.,.,N. 	Then (4.1) can be 

2. 	1. 	2. 

rewritten 



hk[93e 1+27efe3 I = r 1 (z) 
3. 

h[e i-2 	i-i 
+26e +66e 	i 1 	+l +26e 	

i+2 I 	
1 
r.(z), i = 2,3,..,N-2 	 (4.4) 

h [ eN_3+27eN_2+93eN_lLt rN_l(z), 

where 

3 (3) r1 (z)=l2O[ 3 z0-h z0  

1 	1 	r2 	 1+1 i+2 

rN_i 120[h ZN 	V zNIh [ZN 3 +27ZN  2 +93ZN l+59zN I. 

We have purposely left the components z0 (3)  ,...,z  (4)  in these 

equations even though they have been assumed to be zero. For  

consider 

r ( Z) 	I d.r1 (K (t_t)) + 

was constructed to vanish for 

quintic spline, consequently r 1 (K5 (t-t))=O, j=O,l,...,N. 

Similarly r.(K(t;-t))=O, j=O,l,..,N. 	It follows that 

r1(z) = r(x), I = i,2,, ... N-l. 	We can now use Peano's 

method for finding a form of r 1 (x) which Is valid when 

x € c 6 [0,1I. Some rather tedious manipulation leads to the 

results that 

r l (z)=_l5h 6x (6) (t),rj (z)=_lOh 6x (6) (t),j=2,3,,00,N_2,rNl (z)_15h6x(6) (t l ). 

Consequently we see that since the matrix of the equations is 

strictly diagonally dominant, maxIz -y 	I 	5h2 1 ixc6 i I/ 4 • 2. 



- 36 - 

We can deal with (4,2) in a similar fashion to prove that 

(2)_ (2) j 
	

(6) 

	

max1z 	y. 	3hIIx 
	
11/4. 1 	1. 

1 

It remains to insert these inequalities in the following 

inequality which is not difficult to prove, 

( 	(4) 
IIz(t)-y(t)Ikh2rnaxlz1(2) 

(2) 
 I/8+5hmaxIz.

4) 
 -y. 1/384 

i 	 i 	
1 	1 

 

+ 61h 6 11x
(6) 
 11/4608 , 

to give the result. 	(Note that we have simplified a 

multiplier from 71/576 to 1/8.) 

We see that if we set dOdl.=dN=O we obtain the 

following result. 

Corollary 

(3) (4) 	(3) 	(4) If x0  =x0  =x =XN  =0 and y is the natural quintic 

spline which agrees with x at the knots then 

11x-y H < hIx (6) 
 11/8. 

Sard's best quadrature of third order. 

This formula arises in the same way as the second order 

formula except that in this case the remainder is required to 

vanish for all quadratic polynomials. The Peano kernel 2. of 

the quadrature formula is given by 

L(t) = 

 

N J w(s)K2 -  (s t)ds - 	H Kt -t). 
i2 i 

The proof of the next result is similar to that of 

theorem 2.2 corollary 2 and so will not be given. 
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Lemma 43 

If m € c 3 [0,11 and is such that 
N 

m 3 (t)=  
fo  
w(s)K2 (s-t)ds + 	d.K(t-t) 
 i=0 

N 
where fo  W(S)SdS + 	dt 	0, r 0,1,2 

 :L=0 
L i 

then 

J EQ.(t)1dt = o  Jo  
where y is any natural quintic spline such that m(t)=y(t.), 

i = 0,1,00,N, 	(The function m-y is the Rodriue function) 

Theorem 44 

J [9(t)]dt < hr-jjwjj 	w(t)Idt/8, 
0  

Proof 

From lemma 43 we have, with the same notation, 

rl 	fJ
E&(t)Idt = 
	
w(t)Em(t)-y(t)jdt, 

0 	 0 

and so 

l 

j i  0 
[&(t)]dt 	 j I m-y  I 	w(t) Idt. 

0  

It remains to note that m 3 (t0) = m4(t0) 	m3(tN) 

and use theorem 42 with x replaced by 

_Jw(s)K5  (s-t)ds0 

Corollary 

If R is the remainder in Sard's best quadrature formula of 

order three with quadrature points given by t.=ih=i/N, i0,1,..0,N, 
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then 

JO
1  

IR(x)I 	H HW.h31 Ex'3)(t)I2dt/(2J2). 

Proof 

JOSince R(x) 
=

£( t)x' 3 (t)dt we have by Schwartz's inequality 

IR(x) 1 2  <J[&(t)I 2dtJ(x(3) (t)]2dt 

IIwlI h6 J Ex(3'(t)l2dt/8 
0 

which gives the required result. 

The next result is also easily proved. 

Theorem 4.5 

(3) 	(4) 	(3) 	(4) Ifx€C 6 (O,l1,x0 	x0 	XN 	XN =0 

then 

IR(x)I < h 6 Ilx (6) I1 
Jjw(t)jdt/8. 
O 

We conclude this chapter with the proof of a theorem which 

shows that in general the addition of an extra point in a 

best quadrature formula gives rise to a better quadrature 

formula in the sense that the Peano kernel is reduced. In 

the theorem we assume that t0, tNl without any further 

restrictions on the knot spacing. 

Theorem 4.6 

If 
N 	rl 

w(t)x(t)dt = 	H.x(t.)+J x 3 (t)2. 1 (t)dt, 
JO 	i=0 	0 
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and 

f 
1 	 N 	 i 

JO 
w(t)x(t)dt 	Jx(t)+Jx(t')+ x 3 (t)L2 (t)dt 
0 	 i=0  

are two best quadrature formulae of order three then in 

general 

I 
I [R,(t)]dt < 

JO
(t)]2dt.  

A. 

Proof 

We shall show that if tOtlOOtN  are given then we can 

choose t' so that the weight J associated with 	is non zero. 

Suppose otherwise, then for any t' in 0tl, where t'+t, 

i = 0,1,,,N we would  have J0. Consequently the two 

quadrature formulae would be identical and moreover would 

integrate any natural quintic spline with the knots 

to,tlo..,tN,t exactly. 

Let y(t) = - 	c K(t-t)+K5 (t'-t) 
j=0 

2 
where 	c. t, 

r = t , r = 0,1,2. 
j=0 3  

Then y is a natural quintic spline with the knots 

and so for this spline 

rl 	 N 

J w(t)y(t)dt = I Hy(t). 
0 i=0 

(405) 

Now the weights HO,}Il,,O.,HN  are independent of t'. 	Moreover 

this last equation can be rearranged as 

f w(t)K5  (t'-t)dt = H.y(t.)+ c.Jw(t)K (t.-t)dr, 
0 i=0 • j=030 

(4.6) 
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We notice that (4.5) can be solved for c 0 ,c 1 ,c2  and it is 

clear that each will be quadratic in t'. 	It follows that 

the right hand side of (4.6) is a polynomial of degree five 

in t'. However the left hand side can never be such a 

polynomial, consequently the relation (4.6) cannot hold 

for a continuum of t'. 	(However there may be values of 

t' for which (4.6) can hold, but they will not form an 

interval,) 

Thus we have shown that we can choose t' so that J40. 

The proof of the theorem is completed as follows, 

f0
[&1(t)]2dt = I 

o
1L2 (t)I 2dt +I (&1(t)-L 2 (t)i2dt 

+ 2J&2 (t)1L2 (t)_L1 (t)Jdt. 

RMAP 

N 

i=0 i. 

	

(H.-J. 	
i. 

)K 	(t.-t)-JK2 (t'-t), 
1 2  

which is easily seen to be the third derivative of a natural 

quintic spline with the knots 	 However 

such a spline is integrated exactly by the quadrature 

	

formula with Peano kernel 	and so the remainder vanishes 

for it. Hence 

	

J

11 	 1 
[&(t)12dt = f [L2 (t)] 2dt + J EL (t)-z2 (t)I 2dt, o 	 0l 

It follows that 

	

r 	

A. 

l 

0 	 J J (R2(t)I2dt 	I [L 1 (t)l 2dt: 
o   

	

with equality if and only if 	£2, that is to say if and 

only if J=O. 
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It remains only to remark that since there exist best quadrature 

with J'O it follows that for these quadrature formulae 

f
1 

o  I ( '. ( t)Ydt < JO  It (t)I 2dt. 
J  

In the proof of theorem 4.6 the restriction N2 was necessary 

for the construction of the spline. However with the same 

method of proof we can establish the following theorem 

Theorem 4,7 

Let 
 J

1 	 1 
w(t) x(t)dt = 	H1x(t,) + J 'x (' ) (t)Y l (t)dt, 

and let 

j
i. 	 1 	 1 
 w(t)x(t)dt 	

1. 
J. 	

1
x(t.)+J'x(t')+J"x(t")+ x C3) (t)L2 (t)dt 

	

1=0 
	
jO 

be a best quadrature formula of order three. Then in general 

f
1 	 1 

'• 
[z.,(t)l2dt < 

J 
[&1(t)I2dt. 

0 

Proof 

Clearly,as in the proof of theorem 4.6,we have only to show 

that we can choose t' and t" so that IJ'I+IJ"I+ 0. 	To do this 
we take a fixed point t' in [0,11 such that t' + 	 (This 

point t' takes the place of t 2  in the proof of theorem 4.6 when 

N=2),. 	Then we can show exactly as before that the hypothesis 

that J" = 0 for all choices of ttt  in an interval would lead to 

a contradiction. Consequently there will exist quadrature 

formulae for which J" 4 0. The result follows as before. 
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CHAPTER 5 

Natural Quintic Hermitian Splines 

We examine the type of natural spline which is associated with 

the optimum quadrature formula to be discussed in the next chapter. 

This spline is uniquely determined when it and its first derivative 

Are given at the knots; by analogy with Hermite 9 s polynomial 
; 	Is 

interpolation formula they -aEe calledIermitian spline'. 

An analysis of the convergence of other types of Hermitian 

spline have been given see for example Hal. [. ] 

however for later purposes we need to discuss the 

convergence of the natural interpolating quintic Hermitian spline, 

For brevity we shall call it an H-spline, and denote it by Yo The 

chapter closes with an examination of the qualitative properties 

of the two fundamental H-splines. 

Existence and construction 

We assume that y 	x1 	
- 	

O i01 9 000 0N and 

for simplicity we shall write 

(2) 	(3) y. 	a.D y. 	b., 
1 	 1 	1 

Since the spline is natural we have immediately that b0 b  = 0, 

Lemma 5.1 

(1) If y is an fi-spline such that y = x. y(1)  = x. 
3. 

then 
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3a-a1  = 	(x1-x) f h o 

aai+3a5(lc*.)aj + i 2O 
31  

(1) 	(1) 1 h. 	h.[x. 	x _ 	__ 	1 	(1 	i)(1).. + 8 31 	I j1 - ____ + 12 	
- 	h 	Xj 	j1,200,,Nl 	(51) hj_l+hj[h2 	h jh. _1 j-1 	3 

-20 	 4 	(1) 	( 

	

- aNl +3
a N = h_1 

(xNxN_1) + h 	(2x1 + 3N 

+ 13] - 

	

- [T 
x 	

+ 	
+ h. 1j 	h 	

(52) 

j=1,2,. 	N-1 

wherebN 	0, and a. = i. /(h. +h.). 

	

3 	3 	j-1 3 

Proof 

These relations can be proved by the method of undetermined 

coefficients. Alternatively we have for any a € 

z(t)=A(s)z.+A(1-s)z 	+ B(s)h.z- 
i 	

. +1 	1]. 11 

0 
+

8 2 (5_1) 2 (8 2 5_ Z(ótt), t < to < t.., 	 (53) 

where s = (t-t1)/h and 

A(s) = .. (1-s) 2 (2+4s+6 2-2s 3 ), 

B(s) = .1 (l-s) 2s(4+s-2s 2 ) 0  

C(s) = 	(1-s)2s2(26-3, 
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If z = y 9  an H-spline 9  then the remainder term vanishes. This 

gives therefore a representation of y in [t.,t+i]  in terms of 

y9yy(l)yl)y(3)9y(3) It remains only to impose the1+1 

conditions of the continuity of y 	 at the knots to give the 

relations of (52) 	Those of (51) can be proved in a similar 

fashion 9  for this the representation of y in terms of 	 (1)  

(1) 
'j]9 a. 9 a11  is required. 

The existence and uniqueness of the interpolating spline 

can be deduced either from (51) or (52) since the matrix of 

each set of equations is strictly diagonally dominant. We note 

that the uniform norm of the inverse of the matrix of either of 

the equations is bounded above by 1/2 

Convergence 

We shall outline the proof of a theorem on the convergence 

of the interpolating Hspline 0  This is similar in principle to 

that of the corresponding result for natural cubic spline 

interpolation, the algebra is however more complicated and so will 

be omitted. 

First we prove a result which will be found useful in the 

next chapter. 

Lemma 52 

Ja 	(2) 	
(2) 	

comax(hJx(3)Ihlx3)J)+hL+lIx(6)lI/72O 
0 	 IaNXN 

where h = max h., 
1 

1 

Proof 

We sketch this proof, 
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( In the equations (51) we write e 1 	ax. 2) 
 , i0 9 1 90009 N and 

rearrange them to produce a set of N+1 algebraic equations in 

eO9elooa9eNo The right hand sides of these equations are functions 

of x alone and with the aid of Peano 9 s method can be written as 

	

4 (3) 	1 	() 	(0 1  +h 	(6)  h x  
o o + o 	hx 6 	 j=19290009N19360 o 	360 

(3) +.==!=hk 	(6) 
3 	 360 Nl 

where we have omitted the arguments of 

Since the norm of the inverse of the matrix of the equations 

in eO9el90009eN  is bounded above by 1/2 we obtain the result 

stated0 

Lemma 503 

If x € C 6 (t 9tNl and y is the Hspline such that 

(1) 	(1) 
x. 	0 9  i0,l 9 000 9N y x 	y  

3. 

then 9  for 1 < I < N1 9  

	

1 	i 	
9 	'i (3) 	i N (3) 	h3  

	

lb 	
() ' [3 	I3 	'N 	11+ 	lix
6  119 

where b 	.(3)  0 

2. 	1. 

Proof 

	

Let f. = b i 	x9 	i1 9 2 9 000 9Nl0 Then (52) can be written 

	

3f Ca  f 	 (3) 	(3) = r 1 	3x1 	
+ 12 

j=2 9 3 9 000 9N-2 9  

-(l -a N 1 )f 	+3f 	r 	+(l)x3l N''2 	N1 	N'i. 	N l N
(3)  
2 xI

.(3) 
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where r. denotes the right hand side of the jth equation in (52) 

Peano U s  method now leads to the result that 

3f1a1f _ 2 	(11x 
(3) 

(lc)f 1+3f. 	c 	•f. 1 	s 
j 9 
	j2 9 3 9 000 9N'2, 

	

N=lN-2 + 3f N-1 	N=1 3 N=l 

where 

S. 

	

3 	30 	h. 	
3

+h. 
]. 	

9 3 

	

3 	
. 9 000 9N 1 

and t. 1 	t 	t 

Denote the elements in the inverse of the matrix of the 

equations (54) by C. then 9  since Hc'H 4 1 it follows that 

(3) 	£== h 1(6)  
iNl N-1 N 	60 	k 

i l929 000 

Finally, from (104)9 k1I < 9.3-i /8 ICIN1I < 
903iN,8  

which, when used in (56) will give the result. 

Corollary 1 

	

(3) 	(3) 	(3) 	h3  
maxIb x. 	I < [ x 	I+IXN 	Ii + 	I Ix(6)I  l i i 

Corollary 2 

For sufficiently large N there exist knots t1 	where 

to 	p 
t < t 	t  such that q 

	

lb. 	P' 	= 0(h3) 	p 	I 	q0 

	

I 	1 

(54) 

(505) 

(56) 
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Moreover t- t t =t are 0(h log h) as h - 0 where max 
pa Nq 	 1 i 

(We assume t o  t fixed.) 

Proof 

This is similar to the proof of the corresponding result 

for natural cubic splines, [1 10 

Theorem 54 

If x € C 6 Lt tN]9 and y is the H='spline such that 

x y 	1' ) -xl' ) o, i0,l,000,N, then for t 	t  y
11  	 0 

maxlx(t)y(t)I= 	max(x 	
(3) 	7hHx 6 II 

192 	0 	'' N I) += 46080 

where h max h0 

I 

Proof 

In(503)set z = y=x, then for t 1 	t 

2. 	1 

- 	1 s 2 (ls) 2 (s 2 s)x (6) (t 9 ) 	t1  < t' < 

where s = (t-c 1)/h and C(s) 	(l-s) 2s 2 (2s-3)/480 

It is easy to show that for t 	t 	t 1  the following inequality 

is true, 

Jy(t)x(t) I ' T 	max ( Ib .=x c3  , 1b 1+ 	I)+h 	(6) i 	 x 	/l5360 

Corollary 1 of the previous theorem shows that in to  t t  
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h 3  
(3) IvI  (3) h 3  

Iy(t)x(t)I 	max(Ix 
	
IIx 

(6) H)j  

+?=J=LLL 
15360 

The result now follows after some simplification, 

Note 

Corollary 2 of theorem 53 can be used to provide a proof of 

the existence of knots t and t q  such that maxx(t)y(t) 	O(h) 

for t p 6 t 	where t t
0 N q t t are 0(h log h) as h 09  

c.f. [J 

The following theorem is easily proved, in it we assume 

to  and t   fixed0 

Theorem 55 

Given c > 0 9  for any x C[to9tN  I there exists for sufficiently 

small h a natural quintic Hermitian spline s such that 

IIxsH < co 
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Oscillation Properties of the Fundament4ll splines 

We end this chapter with a discussion of the qualitative 

properties of the two basic types of IIsplines namely the 

fundarnentalRs1lines0 The results are of interest in themselves 

and will be invaluable when we discuss the qualitative properties 

of optimum quadrature0 

Definition 

P1  is a fundamental  Hs 	of the first kind if 

P(t) 
1 J 	1 

9  Pc(0)O 
3 1 3 	

9 	j0 9 1 9 000 9 N0 

Q1 is a fundamental Hepline of the second kind if 

	

Q1 (t
i
)O 9  Q 1'(t6. 9 	j01000N. 

An immediate consequence of these definitions is that any Hspline 

can be written as 

N 

i O 
) (yP 1  + 

Lemma 	

=  

506 

IP 2 (t0 )( 	+ IP 2) tN i 	O 	iO 9 l00 09 N 0  
1 

Proof 

The result is obvious for N1 9  since otherwise P would be  

	

quintic in to 4 t 16 t 1  such that P(t) 	1 p(r)()O r192,39 

r=0 9 12 9 3 which is clearly impossible. 

We shall now show that for N 2 the hypothesis that 

P 2 (t0) = P 2) (tN) 	0 leads to a contradiction. The cases iO 
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or N will be considered first, and to be definite we take i0 

It follows that P'(tN) 	0 r0l2 9 3 and P (1 (tNi) = 0 9  

r=0,10 Consequently P 0  is identically zero in [tNl9tN] since it 

is a polynomial of degree at most five there. This argument can 

be repeated for the interval (tN29tN](  if N 0 2 etc0 until the 

conclusion is reached that P 0  is identically zero for t 	t i e 

Hence P0  must satisfy the following P0 (t) 	19 P(t)(t) 	09 

r=1 9 2 9 3 9  P(t1 ) 	0 9  r=0 9 1 9 2 9 30 Since these cannot be satisfied 

by any qüintic polynomial the hypothesis that P 2 (t) 	P 2 (t)O 

is false. 

We now consider a general value of i for 1 < i 6 N1 9  with 

the hypothesis that P 2 (t0) 	pp ) (t) 	0 and we will show that 

p. must vanish identically outside the interval (t 119 t11 10 

If i ) 2 the previous reasoning shows that P. vanishes 

identically in It 9t 1 J 9  and 9  if I 	3 it will also be identically 

zero in [t 19 t2 ]0 We repeat this argument in each interval for which i 

is not a right hand end point to prove that P. vanishes for t 
1 	 i-1 0  

In a similar fashion we argue from the knot t   to deduce that P1 

vanishes in any interval so long as t 1  Is not the left hand end 

point. Consequently P 1  is identically zero except in 

Thus it satisfies 

) 	
1,(r) 	

0 9  r=0 9 l 9 2 9 3 9  P(t)=l 

	

1 	 1 	l 	 1 1 	
i. (t.)00 	(59) 

We shall show that these cannot be satisfied by an Wsp1ine 0  For 

since 	vanishes at tt. 9 t 	it follows from Rolles 
i 

	

1 	 l
9 

1 

theorem that P 2) vanishes at least twice in 

consequently P 	 vanishes at least four times in It 19 t. 2. 
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Another use of Rolle 9 s theorem and of the conditions that 

i 
P 3 (t 	) = Pc 3 (. ) 	0 leads to the conclusion that P3 

i. 	'l 	i 	i+l 	 1 

vanishes at least five times in [t 	9 t 	J° Hence since pç3) il i+l 	 i 

i 	 (s at most quadratic we see that P. 3)  is identically zero in one 

of the intervals [t 19 t] or [t 19 t11 ]0 Let it be the former, then 

0 for r=0,1 9 2 implies that P(t) 	0 for t 1 6 t < t.0 

However this contradicts P 1 (t) 	1 9  and so no Hspline satisfies 

(59) 

Thus we have shown that the hypothesis that IP 2) (to )I+P 2) (tN)I=O 

leads to contradictions, and so it Is false, 

CorollaU  

P' 2 (t) # 0 P 2 (tN) # 0 P 2 '(t) 	09 P2(tN) 	0, 

Proof 

Assume that P 2 (t ) 	O we shall obtain a contradiction. 

Now P vanishes at least N times in (t09CNJ9  consequently 

vanishes at least 2N times in (t9tN]0 hence P 	 vanishes not 

less than 2N times in (t 9 t ] and so (3) vanishes at least 2N+l oN 	 o 

times in [toDtN]o However this means that P is quadratic in one 

of the intervals. Clearly this cannot be ft ' t
1

because the 

conditions P(t) 	1 9  P(t) 	P 2 (t) 	P
(l)

(t) 	0 

cannot be satisfied by a quadratic0 

i 	i 	
(3) Moreover if the interval n which P 	vanishes is [tk9tk+1]9 

k l then this would imply that P0  would be identically zero 

in that interval. In this case P would be identically zero for 

t 	t  which leads to the conclusion that P 2 (t) = 00 This 

contradicts lemma 401 9 and so P 2 (t) 	00 
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The proofs of the other results follow in a similar fashion. 

Theorem 507 

If P 2) (tN ) 	0 then 

(1) P 
1.
(t) = 0 for t 

P(t) 	0, 	< t < 

P. 1  (t) = 0 only for t 	t 9 t1 00 9 t 1 t 1  in 	< t 4 t 41 0 

( 

	

There is a similar set of conclusions when P. 2) 
 (t ) 	00 

1 	0 

Proof 

From the corollary to lemma 41 If P 2) (tN) 	0 then i 

(I) This follows as in the proof of lemma 56 We note that i 	1 

and P 2 (t0 ) 	0 and further that P. is an Hspline with knots 

tt1 00 9 t. 1  and such that P(t. 1 ) 	0 9  r0 9 1 9 2,30 

(ii) We shall show first that the only zeros of P in 

are at the knots t t190009t19t.10 Assume the contrary, 

then there is another point in (t 9 L 1 ) at which P. vanishes. 

Consequently P 1  has at least 1+2 zeros in ft 9t1]9  and so, 

by Rolle 9 s theorem 9  P 1  must have at least 1+1 zeros in 

(t 9 t. ), One of these zeros will be at the knot t 

	

0 1+1 	 1 

however the remaining ones lie between the knots, Hence 

vanishes at least 21+2 times in ftt 	Jo Since 1. 	 0 i+l 

P 2 (t ) = 0 we can deduce with the aid of Rolle 9 s theorem i 1 	+l 

that P 	 vanishes at least 21+2 times in (tt 	)° Another 
i 1 	 0 	+l 



application of Ro1les theorem together with the use of the 

conditions P3(t) 	P3'(tN) 	0 leads to the result that 

(3) 
I1 	vanishes at least 2i+3 -  times in it .t 1 ]0 However 

3) is quadratic in each of the i+l intervals and so must 

vanish identically in at least one of them. This interval 

cannot be either it. 
i'l  ,t 1  .1 or [t 2. i+l 

t 	3 since we must have 

P.(t.) 	10 Hence P. vanishes identically in the same interval 

a: P 3)0 We can now continue the property of vanishing in 
2. 

an interval down to the end interval [t 9 t 1 j0 However this 

would mean that P 2 (t) = 0 which contradicts lemma 41 

It follows that the only zeros of P in [t09 t 1 ] are at 

totVe 00 tjpti1O 

We next show that P 	 does not vanish at t ,t 000t. 

Again we assume the contrary, that is,  p2) vanishes at a knot 

which is not t. nor t. 0 Rolles theorem can now be used to 
1 

show that since P 	vanishes at least 2i+1 times in it ,t 	3 1 	 0 i+l 

then P 	 will vanish at least 2i times in (t ,t. 
), This will be 

1. 	 0 i+1 

at points all of which, except perhaps one s  are not knots. 

Consequently from this assumption it would follow that 

would vanish at least 2i+2 times in [t 1,t. 1 ]0 But then we would 

have that P 
1 	 0 i+l 
'3) vanished at least 2i+3 times in ft ,t 	] 	The 

rest of the proof follows on the same line as before. 

Thus P cannot change sign at the knots, and since P(t 1 ) 	1 

we conclude that P.(t) 	0, 	< t < t 1  if i 	10 

It remains to consider the case t=0 9  that is we have to prove 

that if P(t) = 1, PW(t) 	0 9  P(t 1) = P(t1) =P 2 (t2 ) = 

P 3 (t 3) = 0 then P(t) > 0 for t 	t0 However it is easy to show 



54 

(t 1't) 4 	(tt ) 
that P(t) 	 1 1 	4 	0 J for to 	t 	t1 0 

h 	 0 

Hence P 2 (t) 	l4O/h2 , and so P(t) 	1 + 70(tt) 2 /h2  EE0 , 

which is Positive. 

Theorem 58 

If P 2 (t ) 	0 0 P 2 (t ) then P. has at most one zero which 1 	o 	i 	N 	i 

Is not at a knot and P 1  will change sign only at this zero. 

Proof 

We note first that P 1  cannot vanish Identically in any interval 

in [ttNJQ This is obviously true for the intervals [t1 1 t1J 

and [tt. 1 J0 And if P were to vanish identically in any other 

interval then we would continue the identically zero conditions down 

to one of the end intervals which would contradict the hypothesis 

of the theorem. 

Let us now assume that P. vanishes at two distinct points in 

(ttN) neither of which are knots. Then with the aid of Ro lle v s  

theorem, we can deduce that 	must be identically zero in an 

interval. If this interval does not have t as an end point 

this would imply that P would vanish identically in this interval. 

This however is not possible by the above. Consequently if P, 

3) vanishes at two distinct non knot points then P ( must vanish in 

one or both of the intervals which have t. as an end point. Let 

the interval be [t.,t. 1 ]. Then since 

P. i(t 	) = P(t) = P 	. 3 (t 1 ) 	0 1 	+l 	1 	
.+1 

 

it follows from the uniqueness of the interpolatory natural quintic 

spline that P vanishes identically for t
+1 < t 	But since 
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2.
is continuous this implies that P 2 (t. 1 ) = 00 Consequently 

P is a quadratic in [t19t+i] and such that P(t. 1) = 0, 

r0 9 1 9 20 But this implies that P.(t.) = 0, which is a contradiction. 

In a similar fashion if 	3) vanishes identically in [t119 t.J 

we reach the same contradiction. Therefore we conclude that P. 
1 

can vanish at no more than one point in (to9tN) in addition to the 

knots at which it is constrained to vanish. 

If 1 4 i 	Nl then P. cannot vanish outside [t9tN] since, 

for t 6 to  P. is proportional to (t='t 0 ) 2 0  When i0,P may vanish 

outside [t9tN], however it cannot vanish in (t9tNJ except at the 

knots tlet290009tNo This follows from the observation that 

in the count of the zeros of 	we do not need to allow for the 

possibility that the knot to  is counted twice 0  Since P0 (t) 

P(t)= 0 it follows that P(t) 	1 + (t_t) 2P (2) (t)/2 for 

t 16 t0 0 Clearly this can have at most one zero in (°' 9 t)0 Similarly 

has at most one zero which is not a knot and this zero lies 

above tNo 

We complete the proof of the theorem by showing that 

does not change sign at the knots at which it vanishes. For this 

2) to be true we have to prove that P ( does not vanish at any knot 

except perhaps at to The cases i0 9  N need to be treated separately 

from the general case. Let i=0 9  then P0  has N zeros. Consequently 

has at least Nl zeros in (to9tN)9 and these are at points 

which are not knots 0  Therefore PM has at least 2N zeros in 

[tO9tN]o It follows that '2) has at least 2N1 zeros which lie 

between the knots 9  and so has at least 2N zeros in (tDtNJ 

vanishes at a knot. We now deduce that P 	 has at least 2N+l 
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zeros in [ttN]o  But as before this implies that P is 

quadratic in at least one interval. 	It is easily shown that this 

will contradict the hypothesis that P(t) 	l The proof for 

i=N is similar0 

When 1 < I N=l we begin the count of zeros with the fact 

that P vanishes N+l times in EttNio The rest of the proof 

by contradiction follows familiar lines. 

Since P. can change sign only where it vanishes and since 

is non zero at each of the knots where it vanishes we conclude 

that it can change sign only at the zero which is not at a knot. 

Indeed it is easily proved by the same method that If P. has a zero 

at a point which is not a knot then it will certainly change sign 

there0 This concludes the proof.  

The theorem shows that P 1  has the same qualitative behaviour 

as the first fundamental polynomial in the usual Hermit&s 

interpolation formula. We next investigate Q 1  and we shall see 

that its behaviour is similar to the second fundamental polynomial 

in Hermites interpolation formula. 

Lemma 509 

Q3) cannot be identically zero in any interval in [totN]0 

Proof 

The caseN1 will be taken first. Now Q 3 (t) 	O, t 	t 

would imply that Q is at most quadratic in this interval. But 

this, taken together with Q(t) 	Q0 (t 1 ) 	Q W( t1 ) = 0 9  would 

give the result that Q0 (t) = 0 9  to 	t 	t 
1 

 0 Hence since 
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Q(t0) = 1 it follows that 
Q3) cannot vanish identically in 

[t 9 t 1 10 A similar argument holds for Q 1 0 

When N 2 we must distinguish between i=O,N and 1 < i < Nl.. 

First let 1 6 i 	and assume that Q 3 (t) = 0 for tk 	t 	t  

We note immediately that i 0 k 9 k+l; if i=k for example then Q1 

would be quadratic in [tt, ~ 1 ] and Q.(t0) 	Q(t 1)= Q(t. 1) = 0 

which would imply that Q1 (t) 	0 9  t1  6 t < t 119  a contradiction 0  

In addition we also notice that since Q3) (tk) 	
Q3) 

(tk4l) 0 the 

spline Q. can be regarded as the union of two splines, one with 

knots t 0 
 9tl00009tk9 the other with knots tk+190009tN0  One of 

these splines is identically zero(since a spline is uniquely 

determined by its interpolation conditions). Let this be the spline 

with the knots tk?tkoo9tN9  that is,i < k0 Now if i 0 k=1 we see 

that Q1 (t) 0 for tkl < t 	t0 This follows from the requirements 

that Q. should be a polynomial of degree at most five in [tkL9tl 

together with Qj(tkl) 	Qtk 	
Q.(r)() 	0 9  r=0 9 1 9 2 9 30 

Clearly this argument can be repeated until we reach the conclusion 

that Q(t) 	0 for t 

Now Qi  vanishes at 1+2 knots 9  t 9 t 1  00 9 t. 19  and so by 

Rolle 9 s theorem Q 	vanishes at least i+l times between knots. 

Hence Q]) vanishes at least 2i+1 times in [t09t1+1]o  Hence, 

again by Rolle 9 s theorem, Q2) vanishes at not less than 21+2 
3. 

points in It 't+1  (we have used Q 2 (t. 1) = O) 	Finally 91. 

Rolle 9 s theorem together with the constraints Q 3 (t) = Q 3 (t. 1) = 0 

gives the result that Q(3) has not less than 21+3 zeros in 

However Q3) is quadratic in each of the i+l intervals and so can 

vanish at no more than 2i+2 points unless it vanishes identically 

(3) in one of the  intervals.  Consequently Q,= 0 in at least one of 
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the intervals in [t 9 t 	Jo a i+l 

Clearly we can now use the previous argument to conclude that 

Q. vanishes identically except for t 1 	t t 1 0 However we 

have the following conditions to be satisfied, 

Q(r)(t. 	Q(r)() 	0 9  r0 9 1 9 2 9 3 9  Q(t)0 9  Q(t)=l. 

Rolle ° .s theorem can be used again to show that these conditions 

cannot hold simultaneously. Indeed Q. vanishes at t = t11,tt1 + 1 

implies that Ql)  vanishes at least four times in ft. 19 t 1 J 0  

Consequently Q2) vanishes at least five times in the same range 

and Q3) vanishes at least six times also in this range, We 

conclude that Q i  is quadratic in one of the intervals [t 19 tJ 

or [t 19 t 1 Jo Clearly this precludes Q(t) 	10 Hence the 

hypotehsis that Qç3) vanishes identically in an interval leads to 

a contradiction. 

It remains to prove the result for i=0 9N0 However it is 

easily seen that Q9  for example 9  would be identically zero 

except in [t09 t 1 ]0 This case is completed by noticing that this 

situation is identical with the one treated in the first paragraph 9(when 

N = 

Theorem 510 

Q 2 (t.) 	0 9  j 	i 0 	i 9 j < N, 

Q 2 (t) ' 0 	Q2(tN)9 

(tt1)Q.(t) 	0, 	< t < 

Proof 

We shall show first that Q. vanishes in (t,tN]  only at the 

knots. Suppose the contrary, that is, Q. vanishes in (t,tN)  at 
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some point which is not a knot. Then this would mean that Q 

would vanish at least N+2 times in [to9tN]0 Three applications 

of Rolle 9 s theorem will lead to the conclusion that Q2) would 

have to vanish identically in an interval. This is not possible by 

lemma 50 9 and so the supposition is false. 

We show next that Q 2 (t.) 	O, j 0 i0 Two applications of 
2. 

Rolle 9 s theorem will show that Q2) vanishes at least 2N times in 

[to9tN] at points all of which except one (which may be t=t) 

lie between knots. Suppose now Q 2 (t) 0 for some knot 

where i 0 j0 Then Q2) would vanish at not less than 2N+l points 

in (t9tNlo  Rolle 9 s theorem and the conditions Q3(t) 	Q3(tN)O 

lead to the conclusion that in this case we would have Q3) 	0 in 

an interval 0  This contradicts lemma 61 and so the hypothesis 

that Q 2 (t) 	0 for some t 0 t. is false. 

If i 0 9N we can obtain the stronger results stated in (b)0 

The proof follows the same path as in the previous paragraph, 

however the reservation that the 2N points at which Q2) can be 

shown to vanish might include the knot to  need no longer be made. 

Consequently 	the hypothesis that Q '2 (t0 ) 	0 will lead to a 

contradiction. 

If i satisfies 1 < i 	N'l the proof of (c) is now straightforward, 

for Q 1  vanishes only at the knots t 9t 1 90009t 	and so, since 

Q(2) does not vanish at the knots t 9 t 000 9 t 	t, 190009tN  it 0 1 	il 1+ 

follows that Q. 
1 	 o N 

changes sign in [t 9 t 3 only when t 	t.0 When 
1 

t 6 t we have Q. (t) = (tt) 2Q 2) (t)/2 9  and so Q does not vanish 0 1 

for t < t 
0 

0 Similarly for t 	tN0 

We shall complete the proof by showing that Q 
0 
does not 

vanish for t < t; 	since Q0 (t) = (tt0) + (tt)2Q(2)(t)/2 
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this can be accomplished by proving that Q 2 (t) < 0, Suppose 

the contrary is true, that is that Q 2 (t0) > 0 (we have seen 

that Q '2 (t0 ) 	0) 	We use Rolle 0 s theorem to show that this 

would imply that there would be a point t where 

'1 	

to < t < t 10  at 

' 

which Q 1 (t) 	00 Consequently 	Q'(t)dt + 1 = 0, and since 
ft 

Q 2 (t0) > 0 it follows that Q.0
(2)  would vanish at some point in 

(t t'). We can use the existence of this zero of Q(2) to lead, 

again by Rolle 9 s theorem, to the contradictory conclusion that 

Q3) would vanish in some interval. Hence Q' 2 (t) < 0 and Q 

cannot vanish in (,t)0 

This completes the proof of the theorem. 

Theorem 511 

For each i 0  0 6 I N there exists a constant a. such that 

	

P1 (t) + c 1Q1 (t) 	0, 	< t < 00, 

Proof.  

Let R1  P1  + a.Q we choose a. so that Rc 2 () vanishes at 

one of the end knots. If P 	 vanishes at one of the end knots 
6.7 

then we take a i  = 0 and theorem .6i2 gives the required result. 

	

In the general case when P 2 (t) 	0 P 2 (t) choose a. 

so that R1 (t N) = 0 The proof that R1 (t) 	0 for 	< t < 	is 

accomplished in two steps, First it is clear that R1  is 

identically zero for t 	t. +1  (if I = N then this is not relevant), 

the hypothesis that R vanishes in [t0t.+11  at points which are 

not knots is easily shown to be false by the use of Rolle 0 s theorem. 

(z 	 (2) 

Tis 	
L 	4O * QI  f&.y) )  Lth0QAV 'i/o. 
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Rol1es theorem can be used again to prove that R 2  does not 

vanish at any of the knots t 0 t 1 0oo 9 t 1 0 The proof is completed 

by showing s  by calcu1ation that R cannot vanish for t < t0 

Then since R(t.) 	l v  it will follow that R(t) 	0 in (coo) 
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CHAPTER 6 

Third Order Optimum Quadrature 

We turn now to the investigation of optimum quadrature of order 

three. The quadrature formula with remainder will be written 

f 
I 	 N 	 b 
w(t)x(t)dt 	Hix(t) + I kt)x 3) dt  

where a = min(Ot ), b = max(ltN) and 

ri N 
k(t) 

 

J w(s)4 (s-t)ds 	HK(ti- t) 	a 	t 	b0 

It will be recalled that we wish to find quadrature points 

to9tl9oo0tN and weights H 1190001N  so as to minimize 

J [k(t)]2dt 
a 

l 	 N 
subject to 	W()rd 	I Ht 	r=0120 fo 	i=o 

We shall say that an optimum formula with N+l points exists 

if there is a set of distinct quadrature points toDtl0009tN  and 
b 

nonzero quadrature weights H Hl000HN which minimize 
fa 

 [k(t)]2dt. 

It has been shown by Karlin (é ] that an optimum quadrature formula 

	

exists for N 2 when wl (see also Schoenberg [gg]) 	However 	 - 

it is not clear from his proof (which is sketched) that it can be 

adapted for the case when w is not constant. We present here 

a proof in this case. 

Theorem 6.1 

If. for N l an optimum formula with N+l points exists and 
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if w(t) 	0 0 	t < 1 9  then 

(1) 0 < t. < 1 i0,l 90009 N 9  
1 

(ii) H. 
1 	91 > 0 i0 9 000 9N 0  

Proof 

• If P. and Q 	i0 9 1 9 0 009N are the fundamental H=splines 

and if y is any Hsp1ine then 

y 	 + y1Q10 	 (61) 
IMO 	

L 

(1) Since the optimum formula integrates exactly any }1sp1ine with 

the knots to9tl90009tN it follows that I w(t)Q(t)dt 	0 9  
J o  

i0 9 1 9 000 9N 0  Consequently Q1  must change sign in (0 9 1) since w 

is of constant sign there 0  But 9  from theorem 5.10(c), Q changes 

sign only at the knot t 	Hence t must satisfy 0 < t 1  < 1 

(ii) The quadrature weights H 9H190009HN are given by 

H. 	JlW(t)P i ( t)dt-f 'W(t)(Pi  (t)-'q iQ i (t)Jdt i=0 9 1 0009 N 0  

From theorem 511 we can choose a. so that P+ctQ. 	0 in 

Hence, as w(t) 	0 the result follows 0  

S  Coro lar 

If an optimum formula exists with N+l points then it 

fminimizes 
	

[k(t)] 2dt 9  (i0e0 a0 9 bol) 9  subject to the constraints. 
0 

Lemma 62 

If 9  for N 2 9  an optimum formula with N+l pointq exists 

then an optimum formula with N+2 points will exist. 
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Proof 

From the previous corollary it is clear that we need consider only 

quadrature points in (0 9 1)0 

Let k be the Peano kernel of the N+l point formula, if there 

is more than one such formula we choose the one which gives the 
tl 

smallest value of J [k(t)] 2dt0 Let k1  be the Peano kernel of any 
0 

N+2 point quadrature formula (for the same integral) which is 

exact for quadratics and whose quadrature points lie in [0 9 110 

Suppose that an N+2 point optimum formula does not exist.
rl  

Then the problem of minimizing [k(t)] 2dt subject to the J o  
constraints would not have a solution for which there would be 

N+2 distinct quadrature points. However by supposition an N+l 

point formula exists and so the N+2 point minimization problem 

would have the Ni-i point formula as its solution. Hence, for all 
fl 

choices of N+2 quadrature points we would have 
J [k1(t)]2dt 
o 

folL 1 
[k(t)1 2dt0 But we have seen 9  theorem 406 9  that there exist 

f 	 fl 

N+2 point formulae such that j [k1(t)]2dt < J [k(t)] 2dt0 - It 
0 	 0 

follows that an N+2 point formula will exist. The restriction 

N 2 is necessary in this proof; however we have the following 

result when Nl0 

Lemma 63 

If an optimum formula with two points exists then there 

will exist an optimum formula with four points. 

Proof 

The proof of this uses the same arguments as were used in 

the proof of lemma 62 except that we appeal to theorem 407 

instead of theorem 46 
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Theorem 64 

If w(t) 0 0 s t < 1 then optimum quadrature formulae 

exist with 2 9  4 9  5 9  6 9  000 pOintS0 

Proof 

We show first that a two point formula exists, that is to 

say, the quadrature points are distinct and the weights are non zero, 

The quadrature formula is exact for quadratics and so 

f W(t)rd 	H r + Htr0 9 l 9 20 
o 	 00 	1  

Clearly neither weight is zero, otherwise these equations would 

not be satisfied0 Moreover the elimination of H 0  and H gives 

f I 
w(t)(ttt=t 1)dt 	0 9  and so if w 0 the quadrature points 
0 
cannot coalesce0 Hence a two point formula exists0 

If a three point formula exists then we can use lemma 62 

to prove the existence of a four point formula etc. On the 

other hand if a three point formula does not exist we can now use 

lemma 63 to prove the existence of a four point formula. Hence 

optimum formulae with 4 9  5 9  000 0fltS exist,, This concludes 

the proof. - 

It is unfortunate that we are unable to prove the existence 

of a three point formula for the optimum quadrature of 

j w(t)x(t)dt 0  Fortunately Karlin 9 s result will fill this gap 
0 
when w1 9  moreover a calculation in this case shows that the 

optimum points are given by 1 9 10 ± t) where t is that zero of 

2t 3 	9t2  + 15t 	7 which lies in [0 9 110 In fact 

2t = 3 + ((171-4)3 	(l7+4) 	and the quadrature points are 
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0.128 186 005 9  0.871 814 and the quadrature weights 

112 = 0.301 396 9  H1 M 0.397 208 

Converence of optimum quadrature 

If k is the Peano kernel for the optimum formula with N+1 

points it follows that for any other quadrature formula with N+l 

points in [0 9 1] we must have 

rl 	 1 

J k(tfl 2dt 	I 	(2.(t)] 2dt 
0• 	 J o  

where 2. is the Peano kernel for the other quadrature formula. We 

can use theorem 44to give the following result immediately. (This 

theorem was suggested by S. Michaelson 0 ) 

Theorem 65 

If H 1/N and if k is the Peano kernel for the optimum formula 

then 

J [k(t)] 2dt < a Iwl JoJ !w(t)Idt/80 
0 	 0 

The order of the convergence of the optimum formula will 

clearly depend on the distribution of quadrature points, in 

particular the size of to  and of ltN  will be crucial. The 

next lemma goes some way to providing this information but it is 

clearly unsatisfactory. 

Lemma 66 

If t 9tl90009tN  are the quadrature points in the N+1 point 

optimum formula with w(t) 	1, 0 i6 t s 1 then 
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to  (ltN) < 1075H 6 " 7 9 
 t i+l 1. t. < 4,25FL6'79 i019000,N-1 

where H = 1/N0 

Proof 

The Peano kernel k of the quadrature formula is given by 

k(t) 	 y HK(tt), 0 6 t 4 lo 
LO 

It follows that k(t) = 	for tN 	t 	lo 

However 

4 
I 	(k(t))dt 	I [k(t)14t 	ll 6 /8 
it 	 0 

from theorem 63 A simple calculation Leads to the result that 

(l=tN)7 < 63H /2 which gives the required upper bound. It is 

t 3  easily seen that k(t) 	for 0 4 t 	t0  and the required 

inequality will follow from an argument similar to the previous 

one 0 

	

In order to find an upper bound for(t 11 	t)set 

	

X(t) i+l- for t.1 	t 	 > 0 

and zero otherwise. Then x € C 3 i0,lj and the quadrature 

formula gives 

rt i+l  

J 	x(t)dt 	f 
i+l 

k(t)x3 

1 	 ti 

Hence 

	

2 	t 

ft i+l 
	i+.i 

fox(t)dt 	 [x 3) (t)J 2dt [k(t)) 2dt 0  
. 
1 	 it 

1  
.  
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A simple calculation leads to the result stated. 

Theorem 67 

If x € C 610lJ and if R denotes the remainder in the 

optimum quadrature formula with N+l points and with unit 

weight function then 

fR(x' 	O(H24'7 ) 

where 	1/N0 

Proof 

Since R vanishes for any Hspiine with the knots 

ttpoo09tN it follows that 

R(x) = R(xy) 

where y is the Hspline which agrees with x at the knots. 

Schwartzs inequality gives 

IRx)12 	f [k(t)j 2dt J(x (3) (r)y (3) (t)] 2dt. 	 (62) 

But y ( 3 ) 

(t) 	0 for t < t 	t >1  t 	and so with the result of theorem 

65 we deduce that 

t 	 tN 

IR(x)12 	

° (3) 

	

[x 	(t)J2dt 
~ 	

[x(3)()_y(3)(t)]2dt ~ fo 
0 

(3) +
it [x 
	(t)J 2dt 	 (63) 

N 

where H = 11N0 

Three integrations by parts leads to the result that 



t 	(3) 	y(3)(t)]2d 	(3) 	(2) (2) 	(3) (2) 	(2) 

to  j 	[x 	(t ) -y 	 t 	X 	N 	'N • x 	[x 	y 0 	0 	0 

	

1tN 
X 	(t)Ex(t)y(t)Jdt 

to  

	

<i
(3). 

	

	(2) 	(2)1 	(3)j 	(2) 	(2) 	(6) xN to X 	y 	+ x 	0x 	y 	IsHx 	H0 max lx(t)y(t)I. (64) N 	o 	o 	o 
ttN 0  

From lemma 52 

(2) (2) 	(2) 	(2) 

	

lx 	y 

	

0 	0 LIxN 3'N 	
< 	max 	 Hx6li 

and from theorem 53 

	

h 3 	(3) 	(3) 	7h3  

	

max 	ix(t)y(t)l<[max(lx 0 	19!XN 	 lix 	i1i 
to  

The use of these in (64) leads to 

tN 

	

 
J [x 	(t) —y (3)t12dt < K 1 h+K2h 3+K3h+K4h6 9  
to  

where K19 000 9 K4  are constants 0  Conscquently, with the aid of 

lemma 66 we obtain the result. 

In the case of a general weight function when we do not 

have any information about the spacing of the quadrature points 

we have the next result. 

Theorem 68 

If x € C 6 [0,11, and if R denotes the remainder in the optimum 

quadrature formula with N+l points then if the weight 

function is continuous, V.J > 0, 

R(x)i 	O(&) 
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where H = 11N0 

Proof 

This is the same as that of the previous theorem except that 

in this case we can suppose 

f (3) 	(3)t12dt [x 	(t) y 

f.0is merely bounded 0  The estimate for 
	
[k(t)] 2dt is taken from 

theorem 65 
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Appendix 

Two Cubic Splines and Related Best Quadrature Formulae 

We shall consider finally two types of cubic spline which 

have more favourable convergence properties than the natural 

cubic spline when they are used to interpolate x € C'(O,lL 

Definition 

A cubic spline with the knots tOtl000tN is in C 2 (0,1] 

and is a polynomial of degree at most three in tt,t 41 I, 

j = 0,l,0,N-1 (t0O, tNl)O 

Denote a cubic spline by y and let y = x, j 

where x € Ct0,110 	Then if y 	, j 	O,1,0,N we can 

show from Hermites interpolation formula that with the 

uniform norm on EO,i, 

I!xY1k- -h maxIx -AI+ 	h 	
(4) h Ix 	II, were OjN0 

Li 

It is clear from this that in general the best order of 

approximation of the spline y to x which can be expected is 

O(h) and that the precise order depends on rnaxIxc'-AJ0 

3 	3 

For the moment let y be a natural cubic spline, and rewrite 

the equations of (24) as 

(A 1) 

2(k0-x)+(x 1-4 1) ) 	 =3(t0 ,t1x_2x )_x 1 ) 

ct(A. -x 	)+2(A 
-X 
	)+(1-n.)(L 1-x) =3cx.[t. ,t.1x+3(lcz.)[t,t. lx 3 j-1  3 j-1  3 	3 3 j+l 

(A.2) 
_ .x _2x 1) _(l_a ,) X 1 ) 

3 j-1 	3 	.1 j+l
, 

 

j= 1,2,0,0,N-1 9  

(1) 	(1) 
=3[ tN_1 , tNlxxN_l 2 cN 

where a. 	h/(h1+h.)0 



- 72 - 

The right hand sides of the first and last of these equations 

are easily shown to be 0(h) (the precise values are not 

important here)0 However, with the use of Peano's method, 

we obtain for the remaining equations, 

h. h, 

	

c(A -x)+2(X xU))+(lot  )(A 	 -' 	(h2 i (4) 2 (4) 
3 	 l ) 24(h, +h ) 	

X 	h,x 	I (A03) 
3 j-1 3 

0(h 3 )0 

A rough estimation of maxIA0-xI  leads to the conclusion 
j 	33 

that it is 0(h), which, when inserted in (A01) gives the 

convergence for the natural cubic spline as 0(h 2 )0 Clearly 

this is due solely to the effect of the 0(h) of the first 

and last equatIons0 The aim is to produce equations to 

replace these which will give better convergence for the spline. 

Third order cubic spline N?2 

Let A0 ,A 1 ,y0 ,y 1  be connected by a relation of the form 

A0+aA 1  M  by0+cy1 , 

then, with y0  x0 ,y1 M x11  we have 

) 	(1) - 	A 1  (A0  x)+a( 	(1) 	 (1 

	

-x1  ) 	bx0+cx1-x0  -ax1  0 

Choose now a,b,c so that the order of the right hand  side is 

as high as possible. 	Some simple analysis shows that if 

al, b=-c-2/h0  then we have 

(A0-x)+(A 1-x10 ) = - . i x 3 t'). 
	

(A. 4a) 
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A similar argument for AN 	 leads to 

(AN_lx) + (AXN 	
1 	2 	

O:") 	 (A04b) N 

	

) 	- h_1  x 

Consequently we are lead to a cubic spline for which 

X0+A 1  = 2[t01t1iy 

jl2,,0 9 N-l 9  (A5) 

'N-lN = 2 EtN_l9tNIyo 

The qualitative meaning of the first equation in (A.5) becomes 

clear after an examination of Hermite's interpolation formula 

with the interpolation points t 09 t 1 , 	For it is easily seen 

that it is simply the condition that y should be quadratic in 

(t09 t 1 1, 	Similarly the last equation implies that y is 

quadratic in EtNl,tNL This leads to the following definition, 

Definition 

A third order cubic sine with the knots tOtlo0otN 

N2 is in C 2 E0,II and such that 

it is a polynomial of degree at most twee in 

Et,t 1J,j=O,l,,,,N-1, 

y 3 (t0) 	y 3 (t) 	00 

Theorem A.l 

A third order cubic spline y is determined uniquely by its 

values at the knots for N2, 
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Proof 

The uniqueness of the spline depends on the solvability 

of the equations of (A.5), For N2 we can eliminate 

from these equations to give 

+(1-a j 	j2,3,00,N-2, (A06) 

N_1AN_21N_N_1 3aN_1tN_2 , tN_l 1 N_1tN_1,tNb1  

Since O<c&<l these equations have a strictly diagonally 

dominant matrix and so there is a unique solution 

The values of can then be found 

from (A05)0 Hence the spline is determined uniquely by 

its knot values, 

Theorem A02 

If y is a third order cubic spline such that 

i 	0,1,.0,,N where x € cE0,11 then 11y-x11 	0(h3 ), 

Proof 

Eliminate A0-x 1  and AN-x'  from (A..3), (A,4a), (A,4b). 

This will give a set of linear algebraic equations to be 

solved for 	jl,l,N-1 which has the same matrix as 

that of (A,6). 	Clearly the right hand sides of these 

equations are at least 0(h 2 ), and as the uniform norm of 

the matrix is bounded by unity, it follows that 1A . -x 	1=0(h2 ) 

for j = 
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From (A04a) we see that tA0-x'I 	0(h 2 ), similarly 

IXNxI 	002 )0 	 Consequently 	 0(h2 ), j= 0,1,000,N. 

It remains to insert these in (A01) to give the result. 

The next two theorems will be stated only since the proofs 

follow familiar lines. 

Theorem A03 

The unique z E c2 (0,1 such that 

(a) 	z 	x0 9  j 	1,2,000,N-1, N2 

b 	(1) 	) 
() 	 XO  ,Z 	 LN 

(c) 	f Ez (2) (t)1 2dt is a minimum 
JO 

is a third order cubic spline with the knots tOtl0ootN0 

Theorem A04 

If 

j)+N11+j x(+k(t)X(2) (t)dt 
0  Jo 	 il i NN 

is a best quadrature formula with remainder - in the sense 

that J0,Ii1,000HN 1'N are chosen so that J [k(t)J 2  dt is a 
0 

minimum - then the remainder vanishes for any third order 

cubic spline with the knots tOtl000tN N?20 

Uniform cubic spline N30 

Let A0 ,A 1 ,y0 ,y1 ,y2  be connected by a relation of the 

form 

ax 0l 
	bEt0,t1Iy+'cEt1,t2iy, 
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then if y 	x., j 	0,1,2, we can rewrite this as 

	

a(A0-x 1) )+(A 1_4' ) ) 	bEt0,t1Ix+ct1,t2)x-a (1) -x 
 (1) 

a, b, c are given values so that the right hand side is 

00 3 ). 	ThL. ]€'ads to 

. -j- hh1  

(A0 7a) 

Similarly the appropriate equation at the other end is 

(1) 	 (1) 
- XN_1(lclN_l)XN 

24 N-I. 	
- 

Consequently we arrive at a spline for which the following 

relations hold, 

I-CL  

,  j •j-1 +2X  1  +(1-a j j+l
)A 	3a

J  )
Et. 1 ,t 3 

 lY+3(1()[t,t3 1 Y, Jl(l)N_l )  

AN_l+ aN_l)AN 	(la1) ( 2+ N_1) ( tN_1 , tNil ( tN_2 , tNlJy 

It can be shown without much difficulty that the first two 

of these equations imply that this cubic spline is such that 

is continuous at t=t. 	Similarly the last two equations 

imply that y 	is continuous at ttNl 	In other words the 

cubic spline is a single cubic in 1t0 ,t 2 1 and a single cubic 

(A. 7b) 

(A.8) 

in Et2t10 
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Definition 

A uniform cubic spline with the knots 

N3 is in C 2 E0,11 and such that 

it is a polynomial of degree at most three 

in (t, 9  t J+IJ jO,l,000,N-1 

y 	is continuous at t, tN_r 

Theorem A.5 

A uniform cubic spline is determined uniquely by its 

values at the knots for N30 

Proof 

The uniqueness depends on the solvability of the equations 

(A08). 	For N3 eliminate A09A  from these equations 	This 

leads to 

A 1 +(i-o 1 )Afci 1 't0 ,t 1 y+(1-a 1 )(2+a 1 )Fft 1  t2 iy 

j 2,3,0,N-2, 

N_1AN_2N.laN_1 (3 aN_ltN_29tN_1 I. (,N_1)(tN_l , tN 1 y 

Since O<,, aN-1<' these equations have a strictly diagonally 

dominant matrix and so AVA2,OO,AN_l  can be found if YO 'Y l 000YN  

are known0 	A09A  can be calculated from (A08).. 	Hence the 

spline is uniquely determined. 

Theorem A06 

If y is a uniform cubic spline such that 	i0,1,00,N 
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where x € Cto,i then, for N4, 

ho  2 
Ix(t)-y(t)I 	0(h) + 	0(h 3), t0 tt 1  

x(t)-y(t) 	00), 

lx(t)-y(t) I 	0(h) 	003) tN_lttN0 

Proof 

Let e. 	-x9, I 0,1,N, and eliminate eOel,eN_l9eN 

from equations (A03) and (A07a) 9  (A07b). 	This will lead to the 

following equations 

12-c 2 (1- 1)e2  4 (1-a)e 3 	0(h 3 ) 

0(h 3 ), 

+ [2-ctN_1(1-aN_2)eN2 	0(h3), 

The matrix of these equations has the strict diagonal dominance 

property and the uniform norm of its inverse is bounded by unity. 

Hence we have 

maxIeJ 	0(h 3 ), 	j = 2,3,000,N-2. 

Further, since 	 (1-CE 	0(h 3 ), it follows that 1e 1 1 	0(0), 

with a similar result for leN_ho 	However the bound for 1e01  is 

to be found from (A07a). That is 

011e01 	le1 J + 	- h02 
 h

1  M4 , 

consequently 

IeØ I 	0(h 3

) 
= 1   —hol  ] 

+ 	

0(h3). 
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Similarly leNI 	[1 + hN_21 0(h3)0 

Now, from (A07a), in Et 0 ,t1 I we have 

Ix(t)-y(t)I h max(IeI,IeiI) + 0(h 4 ) 

h 2 ' 

0(h) + 1 +P— 0(h4 ),, 
1 

There is a similar result for the interval EtN_l,tNJo 	The 

bounds in the remaining intervals depend on 

which are simply 0(h 3 )0 	 The result follows easily. 

The uniform cubic spline arises also as the solution of an 

interpolation problem different from the one which introduced 

it, moreover it is connected with a type of best quadrature 

formula. The next two theorems will be stated only. 

Theorem A07 

The unique z € C 2 0,11 such that 

z=x, 	j 	0 9 1 9 000,N, j + 1,N-I ,  

(1) 	(1) 	(1) 	(1) z0  =x0 , Z 	x  ) 
(c) 
 J

(z (2)(t)]2dt is a minimum )  
O 

is a uniform cubic spline with the knots tO9tl900c,tNo 

Theorem A08 

If 

	

J 4 

	 N 
m(t)x(t)dt Jx 1 + 	Hx+J 0 	 (1) J1k(t)  (2) (t)dt 

	

o 	 1=0 	
0 

i. •N 

1+1 ,N-1 



is a best quadrature formula with remainder (c.f. theorem A08), 

then the remainder vanishes when x is any uniform cubic spline 

with the knots 

Uniform cubic splineaiadrature 

Since the uniform cubic spline can be used for interpolation 

it: will create a quadrature formula with the knots as quadrature 

points. When the knots areui-spaced the quadrature weights 

can be calculated explicitly. 	If there are fout knots the 

formula will, be the three eights rule, and with five knots It 

will be once repeated Simpson's rule. The general results are 

contained in the next theorem. The preof of this Is very 

similar to that of theorem 3 and so only a sketch will be 

given. 

Theorem A09 

If 

i 	 N 
y(t)dt 	h 	H.y(jh), h 	1/N, f0 

is true for any uniform cubic spline with the knots 0,h,2h,000,Nh 

then the quadrature weights are as follows. 

41 	 152 	 107 
0 120 

H0 	1'N 	+ 

H 	I + j.ETN_l3TN_341/UN_3 

H2 	1 + .N_l+72UN_4+74 /uN_3 

H0 	1 + Eu 	 N-3 ' N-i-2 i-2 +U 	1/U  	I = 3,4,000,N-3, 
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where the argument of the Chebyshev polynomials is -2 

Proof 

From (310) and (A08), with 	, j 	O,l,N-1, we see 

that it 
1 
 necessary to calculate 	from the equations 

h[A0+A 1 J 	(-5y0+4y1+y2)/4 

j= 1,2,000,N-1, 

hXNl+4) N 

The Inverse of this set of equations can be calculated from (,.-< ) 

and with Its help it will be found that 

3hIJN_3 (AN-A0) T_I{(TN_l_T_l)(O 12)+3(TNjiTjl ] (y +11_1) 

4 (T_1TN_l) ( 5 T) 
4 

When this is inserted in (310) the result will be found after 

some rearrangement and simplification. 

The proof of the final theorem follows easily from 

theorem A06 

Theorem A010 

If x € CttO,l, and HO,HI000,HN  are chosen so that 

f m(t)y(t)dt
N  

 
0 	 j=O 

is exact for any uniform cubic spline with the knots 

N3, then 

1 	 N 	 1h 3 
 K. 3  

iJ m(t)x(t)dt - H  0(h) + + - 0(h3 ) 
0 j=0 33  1 N-2 
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The Orders of Approximation, of the First Derivative 
of Cubic Splines at the Knots 

By B. Kershaw 

Abstract. The order of approximation of the first derivative of four types of interpolating 
cubic splines are found. The splines are defined by a variety of endpoint conditions and 
include the natural cubic spline and the periodic cubic spline. It is found that for two types 
there is an increase in the order of approximation when equal intervals are used, and that 
for a special distribution of knots the same order can be realized for the natural spline. 

Introduction. The cubic spline is now a well established tool for smooth 
interpolation in a table of a function defined at a discrete set of points. A useful 
account of the basic properties of this spline and an algorithm for constructing it 
can be found in [1], and an analysis of the convergence of the spline to the function 
it interpolates is given in [4]. 

The present paper is devoted to an investigation of the problem of finding how 
well the first derivative, taken at the knots, of the spline approximates the first deriva-
tive of the interpolated function there. It was shown in [4] that there is 0(h3) ap-
proximation uniformly over the range of the knots, as the maximum interval tends 
to zero, but as it is often the case that the derivative is taken at the knots, it is felt 
that the results may be of some value. 

Notation. The set of real numbers, t 0, t1 , 	, ti,, will be called knots and will 
satisfy 

<tO<t1<"<tN1<tN<, 	N2. 

The interval t. < t < t., will have length h, = t +1  - t,, i = O(l)N - 1, and the 
maximum interval length will be h, that is, 

h = max h. 
OSiSN-1 

y will denote a cubic spline with the above knots. As stated in Section 1, more than 
one kind of spline will be considered but they will have the common property that 
each is a member of C2(— , co) and that in each interval they are polynomials of 
degree at most three. 

x will be a member of C°[t0 , tN] and will be the function with which the spline 
agrees at the knots. For brevity, define 

x= (_)'x(t), for t = t, i = 0(l)N, r = 0(1)5. 
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Then 

	

Yi = x,, 	I = O(1)N. 

The norms which will be used are the uniform norms for functions, vectors and 
matrices, namely, 

(lxii = max lx(t)j, 	(lxii = max lxl, 	11AM = max 	Ia,,I. 
t3t3tN 	 i 	 • 	j 

The domain of the suffixes in the vector and matrix norms will be clear from the 
context. 

It is convenient to define here 

	

M 4  = 11x (4) 
 Ii 	M5  = lix

(5) 
 it. 

The first and last columns of the (n + 1) X (n + 1) unit matrix will be written re-
spectively as e 0, e; the jth element of the vector x will be denoted by [x],. 

3. The Cubic Splines. Four types of cubic splines will be described in this 
section. Cubic splines are usually characterized by the value of their second deriva-
tive at each of the knots (see for example [1]), but for the purpose of this note, an 
alternative method will be used. 

Let 

	

Xi = A" , 	j = 0(l) N, 

then, if y(t) takes the same value as x(t) at each of the knots, it follows from Hermite's 
two point interpolation formula that, for t• 	I 

'3 
Y(t) = [3(t.+1_ t)2 - 

2( h, - ) 
	

+ [3(t ; t.)2  - 2(t ; ti)3].+1 

 

+ hi 	
- 	- (t + 1 - t) 3] - 	- t) 2  - ( t - t.) 3] 

 h i [('  
h 	I 	\ h. 	 h i 	 h i  

i = O(l)N - 1. 

A simple calculation shows that 

hy 2  = 6(x,+1  - x) - h,(4X, + 2X, +1), 

2 (2) 
h,y, 1  = — 6(x, +1  - x,) + h,(2X,  + 4X +1 ). 

Now, as y 	C2(— , cx'), the two expressions for 2)  from the equations which 
arise from the intervals (t,_, t i), (t1 , till) must be equal. The identification gives 
the equations: 

- 
x ' 

 + x - x_1 X_ 1 +  2X + 2X + X 1  = 3[x h 

	
2 	j 	I = l(l)N - 1. 

It is convenient to define 

a, = h_11(h_ 1  + h e ), 

then the equations become 
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(1 - a 1 )A 1 _ 1  + 2X 4  + a 1 X ;+i  = 3[ai (x
41 — x1) + 
	- a1) 

x 4  —x1_,)] 

i = 1(1)N - 1, 

which can be written as 

(1 - aj(X._, - x 1 ) + 2A, - x') + a,(X+j - x,) 

= —(1 - a1)x - 	- ax + 31ai x
1+1 — 

x) + - a1) (x
1  

h i  

I = l(l)N - 1. 

Finally, the use of Peano's method for finding remainders gives the result that 

(1 - 	- x,) + 2(A, - x 1 ) + a,(X, +j  - x i ) 

(4) 	= 	 - hjx 4  - 	h 1 _ 5 h 1 (h_ 1  + h i  - 24 	 60 

where t,_ 1 	t,. 1 , I = 1(l)N - 1. 
The sets of Eqs. (3), (4) are satisfied by X, A 1 , 	, X v  for each of the splines to 

be considered. Clearly, two further relations are needed in order that a unique in-
terpolating spline may be found. The equations (3) are the useful ones for the actual 
calculation of the splines and, for completeness, the two relations to be adjoined to 
(3) will be given for the different types of splines to be described. For this note, 
however, (4) are the useful equations and these relations will have to be written in a 
form similar to (4). 

(A) Natural Cubic Spline. The relations which help to define this spline are [1] 

(2)(2) 
Yo — YN - 

whence, from (2), the equations additional to (3) are 

2X 0  + A 1  = 
3
-  (x 1  - x0), 
ho 

AN—I ± 24 = j (XN - XN_l). 
hN 

With the aid of Peano's method these can be written 

(1) 	 (1) 	() 	1 	1 
2(A 0 —x0  )+(X—x 1  )—h 0x 0  —-4h 0x 0  —h 0x (To), 

t 1 , and  
(1) 	 (2) 

 •j_ 24 
	

(4) 

	

(AN_I - XN_l
(1) ) + 2(AN - XN ) = — hNlxN 	- hN_IXN + 	hN_lx (TN),

60  

	

tN_I 	TN 	tN. 

These equations together with (4) are, in matrix form, 
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r 	2 	1 	0 	•.. 

1—a 1  2 a 	O 
. 	

0 0 	
.... 

2]

I ( _ x (1)  

0 	
) 

L 	 •..  

(4) r (2) 	1 	2 
 (4)]eo 	h 	(2) 	1 	2 	(4)] = 

	

ho[xo - hoxo 	- - - XN - hN_lxN j eN + x + x
12 2 	12

where 
X M 	 (1) 	1) - 	= [X - x 0  X 1  - x 1(  ... 	 - x T ,  ] 

(4) - 1 	 (4) 	 (4) x - 	[0 h0 h 1 (h0  - 	 - hN_l)xN_l 
0]T

24 

- 	_._ 	4 (5) 

	

5) 	 4 	(5) 	.7' 
[h0x (T0) h0h 1 (h + h - h0 h j)x (r1) - 	—h N _ lx (TN)J - 60 

(B) Cubic Spline D l. Here, y" and y are fitted exactly, and so 
(1) 	 (1) = x0  , 	= XN 

are the equations to be put with (3) for the calculation of this spline. Further, (4) 
can now be written as 

2 	a1 0 	0 	0 

I - a2  2 a2 	0 	0 ( - x') = 	+ 

0 	0 0 	l—aN_ 1  2 

where 
(1) 	 (1) 	 (1) 	T - x = [X 1  - 	•.- 	- xN_1] 

(4) 	
214  [h0h1(h 	 (4) T X = - 	o - h1)x 	 - hN_1)xN_l] , 	 *  

I 
= -- [h0 h5 (h + h - h0h1)x (5)() 

60 
 

hN_2hw_j(h,_2 + h,_1 - hN_2hN_l)x
(5) 

 (TN_i)]
7'  

(C) Cubic Spline D2. If 
- (2) 	(2) 	(2) 	(2) 

	

Yo 	Xo , 	YN 	XN, 

then, from (2), the equations additional to (3) are 

	

2X 0  + X 	-- (x 1  - x0) - h0x 2 , 

(7) 

XN1 + 2XN  = 	 - XN_i) + h_1x. 

Peano's theorem gives the results 
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 24 
1 	- 	 (5) 2(X0  - x") + (X, -  xi") )   = -- hgx4 	

60 
4h0x (r) 

(1) 	 (1) 1 	 1 	(5) (XN_l - XN_1) + 2(XN - XN ) = 	 - 	 h, _ix (TN). 
24 	 60  

On comparison with the corresponding ones for the cubic spline, namely (5b), it is 
seen that the matrix equation for this spline is identical with (5c) except that the 
terms x and x are replaced by zero. 

(D)Periodic Cubic Spline. When x has period t4- - 10 and x = 	r = 0, 1,..., 
then the spline can be taken to be periodic in the sense that 

y 	= 	 r = 0, 1, 2. 

The Eqs. (3) remain valid but in the first X 0, x0  can be replaced by XN, XN, respectively. 
An additional equation arises from the observation that Y.(2) 

= y,(2)  and is, after 
simplification, 

A + (1 - $)XN-1 + 2X, 
= 3[1 - Xo) + 1 - )(XN _XN1)] 

In the required form, this is 

	

Xxi 	 (1) 	 (1) 	 (1) 
- X ) + (1 - $)(XN1 - xN_1) + 2(,\,v -  XN ) 

(4) 	1 = 	
h_ 1 h0(h_, - 	 - 	 h_ 1 h0(h,_ i  + ho 	hN_lhO)x 5 (1r) 24 	 60 

where # = hN_j/(hO + hN_l), and to  - hN_ l  ~ 7r 	t1 . 
Thus, the matrix equation is 

	

2 	a1 0 	0 	I—a1  

1 - a2 2 a, 	 0 	0 	(X - xi ") = x + 

	

$ 	0 0 	l—$ 	2 

where 
(1) ...  X V  -  X  (1) 2' 

	

- 	 = [X 1  - 	 N 

x (4) 
= 	[h0h 5 (h0  - h 1 )x 4 	hN_lho(hN_I - ho )x 4 ] 2'  

24 

I 
X = -- [h0h 1 (h + h - hoh 1 )x (5)  (r 1 ) 

(81) 	 60 

hN_lho(h,_l + h - 

4. Error in the First Derivatives of the Splines at the Knots. It will be no-
ticed that the matrices which occurred in Section 3 for each of the splines are strictly 
diagonally dominant, and so the equations can be solved. Further, if A represents 
any of them then, with the uniform norm I 1A'  I 1. This follows from the observa- 
tion that if IIAxIl I for jjxjj = 1, then ilA'lI 1. Now, A = 21 + B, 
where IIB1I :5 1 and so liAxil 2~; 2x - IlBxiI and, as llBxll < IIBII ;5 1, the result 
is proved. 
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THEOREM 1. If y is either a cubic spline D 1 or a periodic cubic spline, then 

tl. - x' 6 	h2 max lh_ 1  - hiM4 + 	hM5 . 
24 	 60 

Proof. In (6b) and (8d), multiply by the inverse of the respective matrices, and 
take the uniform norm of each side. Then, 

il'. - x'> fl 	lix (4)  II -I- lix'ii, 

where x 	x are defined by (6c), (6d) for the Dl spline and by (8e), (80 for the 
periodic spline. 

The results now follow on taking the uniform norms of x", 
COROLLARY. If h. = h, i = O(l)N - 1, then, if  is either a cubic spline Dl or a 

periodic cubic spline, then 

11 — x
(1) 
 ll_60 

The remaining types of splines will be taken together as the analysis is common 
to them both. The equations for the natural cubic spline are given by (5c). Denote 
by A the matrix. Then, after multiplying (5c) by A' it will easily be seen that 

lx i  - ( 1) I 	h,C+ h D] l[A'eo]11 + hN_lC2 + h_1  D2 1 l[A ' eN]Il  

+ 	h' max lh_, - h,I . M4 + 	h4M,, 	j = 0(1)N,
60  

where 

11 	(2) 	D1 	(4) 	 1 
Ci  = - Ixo , 	C2  = 	ixi , 	- 	ixo , 	D2  = 	I .24 2 

The corresponding inequalities for the cubic spline D2 are found by putting C. = 
C2  = 0 in (11) and are 

1x 1  - 	h 3 D, [A 1 e0 ] 1  I 
+ h,_i  D2  i[A 1 eN]II + 	h2 max lh_1 - hl M4  + 	h4  M5.

24 

Clearly, the nonvanishing of the multipliers of [A 'e 0], [A 'eN] have an adverse 
effect on the approximations in (12) when the intervals are equal, and for the natural 
spline this is apparently disastrous, even when the intervals are equal. But, on ex-
amination, it is seen that to increase the order of approximation in both cases it is 
necessary only to make the first and last intervals small enough. The situations can 
be saved a little in the general case of unequal intervals as shown in the following 
theorems. 

THEOREM 2. If y is a natural cubic spline, h < 1 and if N 2 - 2r log h/log a, 
there exist integers p, q, 0 p < q N, such that, for p j q, 

Ix, - x' 	h0h'[C1  + h D1 ] + ihN_lh[C2 + h,_1  D2 ] 

+ 	h2  max jh, - h . l• M. + 
24 	i 	 60 
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where the real nunber a is 

2 + /3 ifh. = h, 
2 when the intervals are unequal. 

Also 

- t0 < h[1 - r log h/logal, 	tN - t < h[1 - r log h/loga]. 

Proof. This depends on results from [2], where it is shown that for equal intervals 

I[A 1 eo]I = UN_,(2)/UN+l(2), 	I[A 1 eN]j = U.(2)1UN+l(2), 	I = 0(1)N, 

and from [3], where it is shown that when the intervals are not equal 

< 1 .2'-N ,[A'e],I 

Now, 

U,(2) 	(2 + '/3)'' - (2 - 

	

UN+1(2) = (2 + \13)N +2 - (2 - -\/3) V+2 < (
2 + /3)J_N_1, 	j = O(1)N, 

and similarly, 

UN_,(2)1UN+1(2) < (2 + /3)'', 	j = 0(1)N. 

Hence, (11) can be replaced by 

- x 	h, [C,+ hD1 ]a' + h,-,[C2 + h 1  D2 ]a'" 1IV 

(13) 	
+ 	h2  max h_1 - h11•M4 + 	h5M5, 	j = O(l)N, 

24 	i 	 60 

where a = 2 + V'3 if hi  = hand a = 2 otherwise. 
(For simplicity of presentation, the factorwhich should occur in these inequali-

ties when a = 2 and the factor 2 - V'3 when a = 2 + /3 have been replaced by 
unity.) 

As a > 1, it follows that a decreases with increasing j, and so a 1  <= h for all 

j p where the integer p  satisfies a 	h < P+1  that is 

—r log h/log a p < 1 - r log h/log a. 

Similarly, a1 " <= h for all j 	q where the integer q satisfies 

N - 1 + r log h/log a < q N + r log h/log a. 

In order that p < q, it is sufficient that 

N - 1 - r log h/log a - I - r log h/log a 0 

which is equivalent to 

N 2 - 2r log h/log a. 

It remains to note that 

tp 	0 < - t 	ph < h[1 —r log h/loga], = 

	

tN - t 	(N - q)h < h[1 - r log h/log a]. 
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(The inequality N 	2 - 2r log h/log a will be satisfied for sufficiently large N as 
Nh 	t, - to .) 

COROLLARY. If y is a cubic spline (D2), h < 1 and if N 2 - 2r log h/log a then 
there exist integers p, q, 0 p < q N such that, for p < j q, 

IX, - x'  	hhr D1  + h_1 h' D2  + 	h2  max Ih_1 - h2IM4 +24 	i 	 60 3 	3 

where a is 
2 + /3 if h 1  = h, 
2 when the intervals are unequal. 

Also 

t, - to  < h[l - r log h/log a], 	tN - t q  < h[l - r log h/log a]. 

Proof. This follows from Theorem 2 on setting C. = C2  = 0. 

Conclusions. The approximation of the first derivative at the knots is best when 
equal intervals are used both for the cubic spline Dl and the periodic cubic spline. 
In each case, the approximation is 0(h 4). When unequal intervals are used, it drops 
to 0(h3). For the cubic spline D2, the order is generally 0(h3) whether the intervals 
are equal or not, but with equal intervals and for a large enough number of points, 
the order is 0(h4) at a number of internal knots. 

The first derivative of the natural cubic spline is only an 0(h) approximation to 
the first derivative of the interpolated function at the knots, although for a suffi-
ciently large number of knots the order can be made 0(h3) or 0(h4) at a range of 
internal points if the intervals are respectively unequal or equal. 

Similar theorems can be proved for other types of cubic splines with mixed end 
conditions. It is worth remarking that if one end only is 'natural', for example y = 0, 
then the effect of this on the approximation will decrease rapidly as this point is left 
(by a factor of 2 - / 3 for equal intervals and 0.5 for unequal intervals). 
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The Explicit Inverses 
of Two Commonly Occurring Matrices 

By D. Kershaw 

Abstract. Explicit formulae are given for the inverses of certain tridiagonal 
scalar and block matrices. 

During an investigation into the convergence properties of natural splines it was 
found convenient to have the explicit forms for the inverses of certain tridiagonal 
matrices. Special forms of these matrices arise in other branches of numerical 
analysis and so it may be useful to record them. 

The derivation is elementary but complicated and will only be indicated. • 

Notes. 
The matrices will be of order n X n. 
T, Ur will denote the Chebyshev polynomials of the first and second kinds 

respectively, both with argument X. 
The elements of A, A -1  will be denoted by a,.3, a;' respectively. Similarly 

for B, B 1 . 
U_i = o, U-2 	- U0. 

Matrix A, n > 2. 

a r=s=1,n, 

=-2X r=s=2(1)n-1, 

	

=1 	Ir—sI=1, 

	

= 0 	otherwise, 

	

a., 1 = 2 	
—1 	 [aU,._2 - U,._al[aUn_s_i - Un_s_i] 

a U,_2  - 2aU_3 + Un_4  

= a 1 .  

Matrix B, n 3. 

1 r s < n, 

b,. 3  = a,.3  , 	except that b1 = b1 = 1, 

b T-81
= 	 — 1 	 I[aU,._2  - U,._3][aU_3_1 - U_,_21l 

a2U_2  - 2aU0_3  - 2(1 + T_2) 	+ U3_,._1 - U,--2U.-.-I 	1' 
1 	r s < n, 

- 1-1 us,. - 

Special Forms of A. 

Received May 17, 1968. 
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a = 2X, 

r - 2x 	1 0•0  

A 	

0 
I 	1 —2X 1•••0 	0 
1 

L o 	oo ... l-2xJ 

 = - 	 =' a 	 , -1 ,  

a=X, 

—x 1 0 	 .. . 0 0 
1 —2X 1... 0 0 

A= 
0 0 0•••-2X 1 
0 00... 1 —X— 

a7,1
= 	2)UTr_1Tn_8 1 	r S n,a = d ra  

Special Forms of B. 

a = 2X, 

—2X 1 0... 0 1 
1 —2X 1... 0 0 

B= 
0 0 0•••-2X 1 
1 0 O . . . 1 

= 	
[Un_,+r_i + U8__,} , 	1 	r 	s ~ n, &8. 1 = 

2[1 - T] 

a=X, 

—x 1 0 ... 0 1 
1 —2X 1... 0 0 

...... 
0 0 0••• —2X 1 
1 00... 1—X 

b r8' = 
2+ (2 -

)Un_" ETr_iTn_s - Ur_2Un_s_1 + U8_ 7_,] 

1 r < s n b' = , er 	rs 

Outlines of Proof for A. The columns of A -' are the solutions of 

Ax=e 8 , s=1,2,",n, 

where e 8  is the sth unit vector. In recurrence form this matrix equation becomes 

—ax, + x, = 0, 

(1) 	 Xr_i - 2XXr + Xr+j = 	, r = 1, 2, - . •, n - 1 

- ax, = 0. 
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Note now that all except the first, last and sth equations are satisfied by either 
Chebyshev polynomial with argument A. If one assumes, for example, that 

(2) 	
X y  = AT,. + BU,,, r = 1, 2, 	, s - 

x,.= CT, +DU,._1, r=s+1,...,n, 

then each equation in (1) will be identically satisfied except for 

—ax1 + x 2  = 0, 

X3_2 - 2Ax 3_1  + x8  = 0, 

- 2Ax 8  + x 1  = 1, 

- 2Ax 8+i  + X,+2 = 0, 

- ax = 0. 

These give sufficient equations to solve for the unknowns A, B, C, D, x 8 . A similar 
technique holds for B. 

Generalization to Partitioned Matrices. If, in the matrices A and B, the scalars 
a, A, 1 are replaced by the m X m matrices F, A, I, (I being the unit matrix), re-
spectively, then the results given above will still be valid if rA = Ar, and the re-
ciprocals which occur are replaced by the inverses of the corresponding matrices. 

For example, the inverse of A, in block form, will be 

—[r  2Tn 
—2 - 

fl T _3  + Un _41 —ir 
 FU r_2 - T  

_31
U

L Un 1 - Jn —a-2  

where the argument of the Chebyshev polynomials is now A. 

Department of Computer Science 
University of Edinburgh 
Edinburgh 8, Scotland 
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Inequalities on the Elements of the Inverse 
of a Certain Tridiagonal Matrix 

By D. Kershaw 

Abstract. Inequalities are obtained for the elements in the inverse of a tridiagonal matrix 
with positive off-diagonal elements. 

During an investigation into the convergence properties of natural splines it 
was found useful to have bounds on the inverse of a tridiagonal matrix with positive 
off-diagonal elements. Matrices of this type arise in other branches of numerical 
analysis, in particular in the discrete analogue of certain second-order differential 
operators, and so it may be useful to record these results. The matrix is 

X 1  1—aj 	0 	 0 	0 

cr2 	X 2 	l — as ... 	0 	0 

A= 	 . 	 . 	. 

o 	o 	0 	A,,_1  l—a_ 

o 	o 	0 	... 	a,, 	X. 

where 0 < a,. < 1, r = 1(1),, and XrXr+l > 1, r = 1(1)n - 1. 
If the elements of A -1  are denoted by 

a , 	r, s = 1(1)n 

then the following inequalities hold: 

1 < a,,-1X, < ,2,/(,2 - 1), 	s = 1(1)n 
1 2 

0 < (1)r,1 fJ X < 	
/22 , 
	r, s = 1(1)n , r 76  s 

/28 - 1 

where t 1  = mm (r, s), t 2  = max (r, s), and 

/28 = mm (X, 1?.,, X,X,+1 ) , 	s = 2(1)n - 1 

with /Li = X 1 X 2 , z,, = X 1X,,. 
The proof is elementary and will be indicated only. The last column of A -1  is 

given by the solution of the equations: 

A1X1 + (1 - al)x2 = 0, 

	

(1) ax,l  + X,.X,. + (1 - ar)x,.+j = 0, 	r = 2(1)n - 1, 

a,,x,,_ + X,,x,, = 1 

Received January 20, 1969, revised March 9, 1969. 
AMS Subject Classifications. Primary 1515, 1558; Secondary 6550, 6562, 6580. 
Key Words and Phrases. Tridiagonal matrices. 
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(where {aj has been replaced by {x,j for simplicity). Now x 2  cannot vanish, 
otherwise recursively from the first n - 1 equations it would follow that 

	

Xr = 0 , 	r = 1(1)n 

contradicting the final equation. Hence the first equation can be written 
X 1  
X2 

giving 

0< _x1T1 < 1. 
X2 

It will now be shown by induction that 

0<X<1, 	r=2(1)n-1. 
X r+i 

Assume that these inequalities hold for r = 2(1)p - 1, so that in particular 

0 < —X 1x_1/x < 1. 

Now 

ax,,-i + XX  + (1 - ap)x+j = 0 

and, as x, 5~4- 0, this can be written, after multiplication by X,, i, 

Xp_iXp = crpXp_ixi/xp + (1 - a)X ix i/x, 

from which it follows that 

mill (X 1x_1/x, X_1x+1/x) < —X p— ,Xp <max (X 1x,, 1/x, X,,1x+1/x) 

Consideration of the inequalities 

	

Ap-lXp < 1, 	X9_iX_i/x> 1 

shows that (3) can be more precisely written as 

X1x+1/x P < - 	 <X ix j/x. 

The lower inequality is easily seen to be equivalent to 

0 < — Xx/x+i < 1, 

thus completing the proof of (2). 
Next consider the last equation of (1) which can be written 

aX_ix_i/x = Xn_iXn + Xn_i/Xn , 

but as 

0 < — anXn- lXn-l/Xn < an < 1 

it follows that 

0 <XniXn - Xn_i/Xn < 1 

which can be rewritten, replacing 	by j, as 
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1 < X.X.< 	(.n - 1) 

It is now a simple matter to prove by induction using (2) and (4) that 

0 < ( —  	X. < 	- 1), 	r = n -  

For, if this is true when r = p, then 

0 < (-1)"xX 	X. < z/ (L - 1), 

but from (2) 

o < (_ )fl_1 	 X,xpi < 
(-1) 

and so 

0 < (- I )''X_,X 	 < (- 1)"—PA 	< p,/ (p, - 1), 

completing the induction. In an identical fashion it can be shown that the elements 
in the first column of A — ' satisfy 

1 < aTj'X, < 	- 1), where g, = 

and 

0 < (-1) r 'a 'XiA2 ... Xr < 1/(i - 1), 	r = 2(1)n. 

To prove the inequalities in the general case the following equations for the elements 
of the sth column of A' must be considered: 

X 1 x, + (1 - ai)x, = 0, 

+ XrXr + (1 - ar)xr+i = 61. 	r = 2(1)n - 1 

ax_ + X ~Xn = 0 

In order to use the previous line of argument it must be shown that neither X2 nor 
X_, vanish. Now if X,, = 0, then using the last n - s + 1 equations of (5) it 
would follow that 

Xn = 	= . . . = x31  = 	= 0 , 	a,x,_, = 1 

If x, = 0 the first s + 1 equations would give the contradictory conclusion 

= X2 = . . . 	 x, 1  = 	= 0, 	(1 - a)x,+i = 1. 

Alternatively, if x 2  5-!5  0, then the argument used to derive (2) could be used again 
to prove that 

0 < —X,.x/x + , < 1 , 	r = 1 (1)s - 1, 

and the last of these inequalities contradicts (6). 
Similarly, the assumption that X2 = 0 will lead to contradictions, and so X2 Xn_1 

~ 0. It follows that (7) holds, and also, coming back from the nth equation of (5), 

0 < Xr+lXr+l/Xr < 1, 	r = s(1)n 
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In particular, from (7) and (8) 

0 < —X 8_1X 8_i/Xa <1, 	0 < —A 8+ ,x 3+i /x 8  < 1, 

which, as 	> 1, XX 8 , > 1, are equivalent to 

0 < —x 3_i /X 8x 8  < 1/X a_ iX 8 	0 < —x +i/X 8x < 

Now the sth equation of (5) can be rewritten as 

1 	
1—= —a8 —(1—ci) 

and so 

mm (—X,_ i /X,x, —z,+i/X 8x 8 ) < 1 —1/X 8x 8  < max (—X ,_,/X8x8, x3+i/X8x8) 

and, using (9), this implies that 

0 < 1 - 1/X,x < max  

If now 

= mm (X 8 ,X 9, X,A 31 ) 

then (10) becomes 

0< 1 —1/X 8x 8  < 1/!2s, 

from which it follows that 

1 < X 'X 8  < ,.i3/(z - 1) 

It remains to use (1 1) to translate the inequalities (7), (8) into inequalities on the 
elements themselves. This can be done by induction as was indicated in the case 
when the last column of A —' was considered and need not be described. 

(Note Added in Proof. The conditions on a, a, can be relaxed to 0 ~ a < 1, 

0 < cr, 	1, in which case 1 <a;'X < 	- 1) for s = 1, n.) 

University of Edinburgh 
Edinburgh 
Scotland 
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A NOTE ON THE CONVERGENCE OF INTERPOLATORY 
CUBIC SPLINES* 

D. KERSHAWt 

Abstract. It is shown that if x C4[a, b] is approximated by a natural cubic spline, then the error 

is 0(h4 ) in a closed interval which is asymptotic to [a, b] as h, the maximum interval length, decreases 
to zero. A by-product of the technique used is that if exact end conditions are imposed, then the error 
is 0(h4 ) in [a, b]. 

1. Introduction. The genesis and characterization of cubic splines are 
described in detail in [1]. For the purposes of this note it will be sufficient to state 
that a cubic spline with knots 

tO ,t l , 	, tN, 

where a=to <t l <...<tN =b,N1,isa member OfC 2 (—cO,cO) and is 
a cubic polynomial in each interval (t i , t i ,,), i = O,1,••, N - 1. lithe cubic 
spline is to be uniquely determined by its values at the knots, and so be useful 
for interpolatory purposes, then two further conditions need to be imposed. 
The conditions which give rise to the natural cubic spline are that it should be 
linear in (- co, a), (b, cc). These are not the only conditions which will make the 
spline unique, and in this note three other types will be considered. These are the 
ones which arise when the spline is constrained to have its first or second derivatives 
at the endpoints t = a, b, the same as the respective ones of the function to be 
interpolated. In addition, the periodic cubic spline will be defined. 

The purpose of the note is to find the orders of approximation of these 
different types of cubic splines to the functions with which they agree at the knots, 
each when max (t1 , I  - t,) tends to zero. This has been done for the natural spline 
by Atkinson [2] when the knot spacing is fixed. Although the results for the other 
types of splines are probably known, they will be dealt with here for completeness. 

In the following, y will denote a cubic spline with the knots defined above, and 
• will be a function with which y agrees at these knots. It will be assumed that 
• a C4[a, b] and that 

IIxII 	max Ix 4 (t)I = M. 
a t!~ b 

In addition, 

	

ht1+1 —t, i=O,1,...,N-1; 	h' 	max h L . 
O:5i:5N— 1 

The main result of this note can be summarized as the following theorem. 
THEOREM 1. If y is a natural cubic spline, x  C 4[a, b], and 

y(t) = x(t 1), 	I = 0, 1, 	, N, 

* Received by the editors June 3, 1969, and in revised form April 15, 1970. 
t Department of Computer Science, University of Edinburgh, Edinburgh 8, Scotland. 
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then there exist knots ;p  tq for sufficiently large N, where 

a < t,, < t q  < b, 

and a constant K such that for t,, t < t, 

max lx(t) - y(t)I :!~ Kh 4, 

max x"(t)— y(l)(t)  :!5;4Kh3, 

max Ix  ( 2 )(t) -  y(2)(t) 	8Kh2. 

Further, 

	

tP  - a = O(h log h), 	b - t q  = O(h log h) as h - 0. 

For the other types of splines it will be shown that the same orders of approx-
imation hold in the full range a t b. These results are contained in Theorem 
2 below. 

2. Interpolating cubic splines. A derivation of the defining equations for the 
cubic spline can be found in [3], but for completeness and to set the terminology 
it will be outlined here. 

As the spline y is cubic in (ti, t i , 1 ), it follows that for t 1  :!~ 

h 1y 2 (t) =  (ti  + 
- t)y 2 (t1) + (t - t)y 2 (t+ 	I = 0, 1, . . . , N - 1 

Let y 2 (t) = K i  in (1); integrate twice and impose the interpolation conditions 

	

y(t) = x(t) 	x 1 , 	i = 0, 1 , . . , N, 

to give 

h.y(t) = --[(t1 	- t) 3 K + (t - t.)3K 1] + (t 1 	 - t) [x - 

+ (t - tj[xL+l - 

for t 1  < t ::~ 	i = 0, 1, ... , N - 1. Now use the condition that y'(t) is 
continuous at the knots t, t 2 , 	, tN - to give the well-known result that 

	

*[h_iK1_i + 2(h 1 _ 1  + h1)K + h1K1+1] 
= 	- x i  - x - x_1

hi 	h_ 1  

= 1,2,•••, N - 1. Now if 

h_/(h_ + hi), 

then these can be written in the form 

1 + 2 i + (1 - 	 1 = 6[t_ 1' i , t + 1]x, 	I = 1 , 2, . .. , N - 1 

(Here [t_ j,  t, t L  1 ]x denotes, in Ostrowski's notation, the second divided differ- 
ence of x at the points t_ 1 , t, t, .) Clearly, as there are two more unknowns than 
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equations in (2), restrictions must be imposed to determine a unique cubic spline. 
Only the following will be considered here. 

(a) Natural cubic spline. If y is to be linear in (- c, a], [b, co), then 

Y 2 (t0) = y 2 (tN) = 0, 

whence, in (2), 

K0 = KN 

The equations for this in matrix form are then 

2 	1 - a 	0 	... 0 	ic 1 	 [t0 ,t 1 ,t2]x 

2 	2 	- 	0 	K2 	 [t1 , t2 , t 3]x 

(3) 	0 	OC3 2 	0 	K3 	= 6 	[t2 , t 3 , t4]x 

0 	0 	0 	2J LKN-11 	[tN_2,tN_1,tN]x 

(b) Dl spline. In this case the first derivatives are fitted at t0 , tN; that is, 

	

(1) - 	(1) 	(1) - 	(1) 
A —X0, A — XN. 

It is easily shown that these give rise to two equations in addition to (2), namely, 

2K 0  + K1  = 6[x 1  - x 0  - h0x]/h, 

KN_1 + 2KN = —6[xN - XN_1 - hNlx]/h_l. 

The resulting equation can be written 
2 	1 	0 	•.. 0 0 	K0 	[x 1  - xo  - h0x']/h 

2 1 - 	. . . 	0 0 	K1 	[t0 , t 1 , t2 1x 1  
(5) 	 . 	. 	= 6 

	

_KN 	[XN - XN 1 - hN 1 x]/h 1  

(c) D2 spline. If the second derivatives are fitted at t = t0 , tN then in (2), 

	

K0 = X, 	KN = XN, 
whence for this spline, 

2 	1—cc 	0 	0 	K1 

2 	2 	I2 	 K 2  

(6) 	
0 	0 	0 	2 	KN_1 

[t0, t1,  t2 1x - cx 1 x 

= 6 	
[t1,t2,t3]x 

[tN_2, tN_ 1 1 tN]X - ( 1 - N- 
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(d) Periodic spline. The function x is now assumed to have period b - a, 

that is, 
x(t + b - a) = x(t). 

Thus the periodic cubic spline will be made to satisfy 

	

y (r)(a) = y (r)(b) 	r = 0,1,2. 

It is clear that the equations (2) still hold for i = 1, 2, .. . , N - 1, but in the 
first equation ic 0  can be replaced by ICN. In addition, the condition that (l)  is 
continuous at t = tN has to be imposed. This gives, after some simplification, 

uk1 + (1 - 13)KN_ 1  + 2KN = 61tN_ 1' tN, tN + h0]x, 

where 

fi A h 0/(h 0  + hN_ 1) 

The equations now have the form 

	

2 	1 - oc, 	0 	 0 	cc 	Ku 	 [t0,t1,t2Jx 

2 	2 	1 
- 	

0 	0 	K2 	 [t 1  , t 2 , t 3]x 
(7) 	. 	. 	. 	 . 	 =6 

0 	0 	1 
- fi 2 	 [tN_ 1'  tN, tN + h0]x 

It will be noticed that each of these square matrices is strictly diagonally dominant, 
and so each type of spline is determined uniquely by its knot values. Further, 
they share the property that if A denotes any one of them, then with the uniform 
matrix norm, 

11A 1 11 < 1. 

This is easily proved from the observation: 

fliAxii 	m, m > 0, 	j jxjj = 1, then iiAU  :5; 1/m. 

Now each matrix can be written as 21 + B, where IIBII :!~ 1; and so as iiBxii 
< JI BIJ . iixli 	1, it follows that 

ilAxU = 02x + BXU ~: 211xij - ilBxU 

which gives the result. 

3. Errors in interpolation. 
LEMMA 1. tfz e C 2 [t', t"], z(t') = z(t") = 0, then,for t' :5; t :5 t", 

	

(I) 	 maxlz(t)i :5 k (t" - t') 2  maxIz 2 (t)i 

maxIz'(t)I :!~ 4-  (C - t') maxIz 2 (t)I 

Proof. (i) This follows immediately from Lagrange's interpolation formula. 

(ii) It is easily verified that 

(t" - t')z'(t) = 5 (s - t')z 2 (s) ds 
- 5 (t" - s)z 2 (s) ds, 
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and so for t' < t < t", 

(C - t') maxIz' 1(t)l 	maxz(t) max {J" (s - t') ds + 5 (t" - s) ds} 

= (t" - t')2  maxIz 2 (t)I. 

	

COROLLARY. If y is any of the cubic splines, then, for tL  :!~ t 	= 0, 1,..., 
N — i, 

maxjx(t) - y(t)I 	hL 1 , 

maxj x 1(t) - y( ')(t)I -  hL 1 , 

maxIx 2 (t) - y 2 (t) 	L, 

where L, = khM + max{Ix2 - K1I,Ix1 - K +1I1. 
Proof. From the lemma it is sufficient to prove only the last inequality. 

As y(2)  is linear in t 1 	t 	1. then from Lagrange's linear interpolation formula, 

h[y 2 (t) - x 2 (t)] = (t+ 1 - t)(c 1  - x 2 ) + (t - tj(K 1 - x 1 ) 

+h(t - tj(t - t 1 )x 4 (t), 

where t j  < r < 	Hence 

	

h1 rnaxy(2)(t) 
- x 2 (t)I :!~; h, max {x21 

- Ku , Jx 1  - 	 I} 

+ j-h 1  . M . maxl(t - t i) (t - t +  )I 

for t :!~ t :!~ t11 , from which the result follows. 
The inequalities in the corollary are valid for each type of spline, and so it 

remains only to estimate L 1  for each type. To do this (2) will be rewritten as 

- K1] + 2[x2 
- 

,c] + (1 - 	 - 

= cxJ1 + 2x 2  + (1 - 	 - 6[t_ 1' ti, t+  Jx, 	i = 1 , 2, ... , N - 1. 

A routine use of Peano's method for finding remainders shows that 

- j1] + 2[x2 - K] + (1 - 	 - 

=  4 	1 — + (1 - z 1)h]x 4 (ci) 	r, 

where 	:!~ o  	
, 

i = 1, 2, ... , N - 1. For the Dl spline a similar 
rewriting and finding of remainders is required for (4). The results are easily 
shown to be 

2[42) 
- 

ic0] + [x2 
- 	

= 2x 2  + xç2  - 6[x 1  - x 0  - h0x']/h 

= hx(o) = r0 , 	 t0  ~ o ~ t 1 , 

[x1 
- KN1] + 2{x 

- KN] = x 1  + 2x + 6 [xN —  XN1 - hN_l4'1]/h,_l 

- 'h2 	(4) 
4 N1X  (ON) = rN, 	tN_i 	17 	tN. 



I 

72 	 D. KERSHAW 

4. Orders of convergence. In order to use these last results, the matrix 
equations (3), (5), (6), (7) will be rewritten so that the vector of unknowns is formed 
from x 21  - ,c,. That is, if A is a typical matrix, then Ax 2  is subtracted from each 
side, where x 2  is a vector of appropriate second derivatives of x at the knots. 
From the results (8), (9) it is clear that for (5), (6), (7) the modulus of each element 
in the resulting right-hand side vectors will be bounded by h2  M. 

 

It follows, after multiplying by the respective inverses and taking the uniform 
norm, that 

maxIx2 - KI ~ h 2 
 M  

for the respective ranges of the suffix. This gives, with the corollary, Theorem 2. 
THEOREM 2. If y is a Dl, D2 or a periodic spline which agrees with x E C4 [a, b] 

at the knots, then for a :!5; t :!~ b, 

maxlx(t) - y(t)I ~ Mh 4 , 

maxIx"(t) - y 1 (t)I :!5; -L  A'Ih, 

maxIx 2 (t) - y 2 (t)f < Mh2 . 

The result stated in the introduction will now be proved. 
Proof of Theorem 1. In the procedure of rewriting (3) so that the vector of the 

unknowns is formed from - ic e , i = 1, 2, , N - 1, the resulting matrix 
equation has the form 

A(x 2  - K) = r - x 1 xe 1  - (1 - LN. l)xeN_l, 

where 

- K = [x 2  - K 1  x - 	x1 - ICN_1], 	r = [r1 , r2 , . , r_ 1 ] ", 

and e 1 , eN_l are the first and last columns of the N - 1 x N - I unit matrix. 
It follows that 

X ( 2) - K = A 'r - 1 x[A 1 e 1 ] - (1 - cN 1)x[A eN_ 11' 

and so, for i = 1, 2, 	, N - 1, with the uniform matrix norm, 

- 	 11A 1 r11 + cL i Ixo2 H[A 1 e 1 ]J + (1 - N- 1)IxI [A e_ ]I 

where [.] denotes the ith element of the vector inside the brackets. If x 0 , x do 
not vanish (otherwise the natural spline would also be a D2 spline), then estimates 
of [A'e 1 ]I, I[AeN_l]II are required. These can be found from [5], whence it is 
easily deduced that 

I[A'e1]I :!~•2,  I[A'e5_1]11 
<42i-N 	i= 1, 2, •.. ,N —1. 

Thus (10) becomes, after using the result that 11A'rII :!~ 11 ir1l 	Mh 

- KLI :5;*Mh 2 + [1Ix 	2 + (1 - N-1)I4I .2N_i], 

= 

 

1, 2, ... , N - 1. For convenience, 

C 	iIx?1, 	D A 4  (1 - ccN_l)IxYI, 
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then, from the corollary to the lemma, for t. :!~ 	
, 

i = 1, 2, 	, N - 2, 

maxIx2(t) - y(2)(t) :!~; Mh2 

+ max{[C.2 + D.2 1 ], [C•2' + D.2' 4 ]}. 

Now C- 2 - + D- 2' — N  is convex towards the t-axis and so for t,, t 
1 p <q :5 N — i, 

maxIx2(t) 
- 	 Mh 

+ max{[C.2' + D.2P_N],[C.2_  + D.2_]}, 

which, as p < q, can be replaced by 

maxIx2(t) - 	 Mh 2  + C• 2" + D . 21N, 	 ~ t tq . 

It remains to be shown that for large enough N, the integers p, q can be chosen so 
that 

	

C2 ~ h, 	.2q —N < h 2 . 

For these equalities to hold, 

p ~! (log Ch 2)/log 2, 	q N - (log Dh 2)/log 2, 

and so p, q can be defined by 

p = 1 + max{O, (log Ch 2)/log2}, q = min{N - 1,N - (log Dh 2)/log2}, 

where [z] here denotes the integral part of z. 
Finally in order that p < q, it is sufficient that 

N - 2 ~! [log(Ch _2) + log(Dh - 2)]/log 2; 

that is, 

2'2 	CDh4, 

which, as h ~! (b - a)/N, will be satisfied for large enough N. Hence if (15) holds, 
an interval (tn , tq) can be chosen so that in it 

maxIxt2(t) - y(2)(t) :g; Mh 2+ 2h2 	8Kh 2 , 

which, with the corollary to the lemma, gives the inequalities in the statement of 
Theorem 1. 

Further, from (14) (the trivial case where p = 1, q = N - 1 will not be 
considered), 

(log Ch 2)/log 2 < p :!~ 1 + (log Ch 2)/log 2, 

N - 1 - (log Dh 2)/log2 :!~ q < N - (log Dh 2)/log2, 

and so 

tp  - a = tp  - t0  :!~ ph :!!~ h[i + (log Ch 2)/log2] = O(h log h) 
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and 

b - tq = tN - tq  :!~ (N - q)h h[1 + (log Dh 2)/log2] = 0(h log h). 

This completes the proof of Theorem 1. 

5. Conclusions. The results show that although the convergence of the inter-
polating cubic spline is not uniformly 0(h 4) as is the case when exact endpoint 
conditions are fitted, for a sufficiently large number of points it is 0(h4) except 
in two end intervals, which tend to zero as the maximum interval tends to zero. 

A result worth noting comes from (12), where it is clear that if c 0  and 1 
- N— 1 

are each 0(h 2), then the order of approximation is immediately 0(h4). This implies 
that only the first and last intervals need to be small compared with the maximum 
interval length. 

It is also worth remarking that if equal intervals were used, then the estimates 
(11) could be replaced by (see [5]) 

I[Ae1]I = 2UN _ I _ l (2)1UN _ l (2) < 2(2 - 

I[A ' e, _ I ]I = 2U 1 _ 1 (2)/UN _ 1(2) < 2(2 - 

where U 1  is the ith Chebyshev polynomial of the second kind. 
Finally, it will be noticed that the above approach can be used to investigate 

the convergence of splines with a mixture of end conditions. For example, if 

A = x and y = it is obvious that the approximation would be 0(h4). 
If one end is natural and the other with a fitted derivative, the situation is easily 
dealt with by using (11). 
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