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Introduction and Summary

Introduction

This thesis is concerned mainly with the investigation of two
types of quadrature formulae, These are Sard's best second order
formula [)2] and the third order optimum quadrature which was
introduced by Schoenberg {/5]. The formulae are closely related
to certain types of natural spline, consequently w; shall examing
the convergence ﬁropercies of these in order to obtain results on
the convergence of the quadratgte formulae.

The. quadrature formulae arise out of the following
considerations (c.f., Handscomb [451).

It is well known that the error in Simpson's rule,

1 1

[ x@rae = § 1x@) + axc) « x01,

0 .
can be written -x(a)(t°)/2880 when x € (4{0,11. The number t',
which satisfies 0 < t' < 1, is usually indeterminaﬁe and the error
has to be estimated from |[x(4)||/2880 (the uniform norm on [0,1]).
However if x does not possess a Bounded fourth derivative on the
interval then this estimate will be useless even when the error
is in fact bounded. An alternative apﬁroach to the problem of
finding a realistic estimate is to construct an expression for the
error when x has only a bounded 4grivative_of lower order. This
can be dpné with the aid of Peano's method, and sinceAwe shall

make frequent use of it in this thesis we present it here in a



(ii)

. general framework (see [3])

Peano's method for remainders

Let L be a linear functional on Cn[aeb]D and let L be
an approximation to L in the sense that (L=Ln)sr = 0, r=0,1,.00,n"1,

If x € Cn[agﬂ we have the expansion

n=l RS ¢ b

x) = 1 L D@ 4 | K emox® @
r=o a
(s=0)™ !

+ . o
where Kn_l(swt) = for s » t and zero otherwise.

anl)g

Since L-Ln is linear
b . (n)
(L-L)x(s) = (L“Ln)J K' (s=t)x " (£)dt
a
b
= { ™ )k (e)dt

a

where k(t) = (L=Ln)K;=1(s=t)0 The function k is known as the

Peano kernel of L=LnD and it follows that if x € Cn{a,b] we may write
LN CS)
Lx = L x + J k(t)x' 7’ (t)de, 0,.1)
a

For example with Simpson's rule and x € C2{0,1) the remainder will

be given by

1 ey 2
I %) ()k(t)dt where k(t) = éiiilx - (4K (4-6)+(1=£)1/6, O ¢ t.5 1, (0.2)
0 .

and the error can be estimated from this,

Sard‘'s best quadrature and optimum quadrature

It will be noticed that although Simpson's rule is exact
for cubics we used only the property that it is exact for linear

functions in the determination of the remainder in (0.2)., Thus
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in a sense we had a spare parameter which in this case was chosen

to produce Simpson's rule, This suggests the possibility of

choosing this parameter to minimize the error in some way. These
rather vague statements will now be made more precise; let
to,tlpeoo.tN be given numbers which satisfy O = ty < By < oo < tN" 1,
and let

1

N
R(x) = J w(t)x(t)dt - 2 Hix(ti) (0.3)

0 i=o
where w is some integrable weight function. We shall call the

equation (0.3) a quadrature formula with remainder R, and suppose

that R vanishes identically if x(s) = lpsgooo,sn-lo, A more

convenient expression can be found for R by means of Peano's

method, namely that

1
if x € C"[0,1] then R(x) = J *™ (k(t)at (0.4)
0
1, N,
0w(s)Kn_l(s-t)ds - iZoHiKn_

(t.~t). (0.5)

where kRK(t) = J 1 (85

Clearly if n = N+1 the quadrature weights can be calculated by the
use of Lagrange's interpolation formula, however for n g N they are
not uniquely defined. The suggestion made by Sard in [j2] was
that they should be calculated so as to minimize Jl[k(t)lz.dt9 and
since the formula is to be exact for all polynomiags of degree
n-1 the minimization is to be performed subject to the following
conditioﬁs being true.
1 N .
fow(t)trdt = izouiti, r=0,1,.00,n"1, (0.6)

Sard calls the resulting quadrature formula a best quadrature
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formula of order n. It is not difficult to show that there is a

unique formula of order n when the quadrature points are given,
There are obviously many other criteria which could be chosen,
however Sard’s leadg to an attractive theory and it is the one
which will be considered here.

One need not be satisfied with this minimum and the further
problem can be posed of finding the quadrature points as well

i1

as weights so as to decrease j [k(t)]2dt still further. This type
0 .

of formula is called an optimum or optimal quadrature formula of

order n and seems to have been suggested first by Schoenberg [|§].

ECpErETTTaCTT s

The analogy between this and the usual Gaussian quadrature is clearr
The main aim of this thesis is to present some results

on the simplest non trivial examples of the formulae, the best of

second order and the third order optimum. We shall investigate

their convergence and show for the optimum formula that it has

properties similar to that of a Gaussian quadrature formula with

positive weight function,

Natural Splines

Invaluable tools in these investigations have been certain

natural splines which are intimately connected with the quadrature

formulae. Splines were introduced in 1946 by Schoenberg
in [i13 1, however it was not until 1964 that Schoenberg
showed in [/4] how they are related td-Sarst formulae, We present
here a derivation of his result in the case of dptimum formulae,
and since for this formula we do not know beforehand where the

max

quadrature points will lie we shall set a = min [O,tO]D b =L[1,tN]

and let x € Cp[a,b]o The Peano kernel is as before but we npw
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require to’t1°°°°’tN° HODHI,OOQDHN to satisfy (0.6) and to minimize

b
I (k(t)}2dt. This problem can be reformulated by Lagrange's

a
method of undetermined multipliers as that of finding a minimum

of

N r

} H.t. S,
o 11
1=0

b n-1 1
4 J [k(£)J%de + } A gJ w(t)ttdt -
0

a r=o

this leads easily to the following sets of equatioms,

b . n-1 .
k(t)Knal(ti-t)dt + ): Arti b 09 i=09190009N9
rso
X ) (0.7)
f ns -
4 k(t)K;,Z(ti°t)dt + ) rArti 1u09 1=0,1;000 4N
a : r=1

(We shall assume that none of the weights vanish and so we have
removed the non zero multipliers in the second set of equations.)

Let C,9Cq0oecsCyo do,dlg,o“gdN be scalars which satisfy

N N _
1=0 1=0

then we see from (0.7) that if y € Cn(—m,w))where

N
y@ ey = ] ekt (gm0 + 4kt (50 0.9)
1=0

b
it will follow that I k(t)y(n)(t)dt = 0, Consequently this
a .

function is integrated exactly by the optimum formula (if it

(n)

exists). Clearly y n is identically zero for t 3 tye and because

(n)

of (0.8) it is easily seen that y is identically zero for t g t,.

We shall call such a function a natural quintic Hermitian spline

of degree 2nf1 with the knots tootlgooagtNo Ihe integration of

(0.9) leads to the representation of y in (-»,») as
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N
_qy0 + _ +
pn-l(t) + D iZo{ciKZn-l(ti t)ﬂ'liKZ'n

_z(ti't) }p (Oo 10)
where P is an arbitrary polynomial of degree n-1.
The result which corresponds to this for best quadrature (see

Schoenberg [/44]) is that the best quadrature formula of order n

integrates exactly any natural spline of degree 2n-1 with the

knots t:o,tl,o“,tNo This spline has the representation

N
( ~1)" xF - )
P8t 1T ) oKy (e -t) (0.11)
1=0 !
v oox
where .Z c;t; =0, r=0,l,000yn"1. (0.12)
1=0

It is easily seen that these definitions can be replaced by

the following.

Definition 0.1

A natural spline of degree 2n-1 with the knots to,tl...p,tN

is in Czn-z(—w,w), is a polynomial of degree at most 2n—l1 in each

interval [ti’ti+1]' i=0,1,.00,N=1 and for t < to_and t > tN is a

polynomial of degree at most n-l,

Definition 0,2

A natural Hermitian spline of degree 2n-1 with the knots

Zn.-3(“‘”,,""), is a polynomial of degree at most

to’t1'°°°’tN is in C
2n~1 in each interval [ti°ti+1]’ i=0,1,...,N-1 and for t < tos
t >ty is a polynomial of degree at most n-1.

These splines can be used for interpolation purposes, the
first in a manner analogous to Lagrangian interpolation and the
second analogous to Hermitian interpolation. The convergence of

these interpolation processes will clearly induce results on the

convérgence of the respective quadrature formulae. Consequently
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we shall devote some space to investigations of this convergence.
Finally, we state the next results. We do not make use of
them in the sequel, however they are interesting and not difficult

to prove.

Theorem A
m'-

If y is a natural spline of degree 2n~l with the knots
togtlpoqo.tN then
t t

N N
J iy ™ (e)124e ¢ J
t t

o o

[ z(n) (t)]2dt

for any z € C“[co.tNl which satisfies y(t;) = z(t;), 1=0,1,...,N.

Furthermore equality holds if and only if y = z,

Theorem B

I1f y is a natural Hermitian spline of degree 2n~1 with the

knots to,tl,oo..tN

t
N N

J [y(n)(c)lzdt $ J [z(n)(t)]zdt
t

o t:O

for any z € Cn[to.tN] which satisfies y(ci) = z(;i), y(l)(ti) =
z(l)(ti). i=0,1,...,N, Furthermore equality holds if and only if

y = 2.
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Summarz

Chaptér two contains results on the convergence of natural
cubic spline interpolation when the function with which the spline
agrees at the knots is continuous. An analogue of Weierstrass’
theorem on uniform approximation by polynomials is proved for
a#proximation by natural cubic splines. However this does not
imply the convergence of the interpolation process and we present
two theorems which show tﬁat with certain restrictions on the
spacing of the knots con?ergence is assured. Since the.norm of the
natural spline operator is of interest we find upper bounds on it
with these same restrictions on the spacing. On the otﬁer'hand
a distribution of knots is found for which the norm is unbounded.
The chapter ends with two theorems on the convergence of the natural
spline interpolation process when the function which is being
interpolated is in C*., The proof of one of these theorems appeared
in S.I.A.M, Journal of Numerical Analysis, and a copy of the paper
will be féund at the end of the thesis.

The work which comes closest to that of this chapter is that
of Cheney and Schurer [2 ], Nord [/} ] and Meir and Sharma [i0].
These authors discuss similar problems for the periodic cubic
spline,

Chapter three is devoted to Sard's second order best
quadrature, this is the simpleét non trivial formula of its type.
Sard has tabulated weights for this when the intervals are equal
and for constant weight function. We present here explicit
formulae for both the weights and the L2 norm of the Peano kernel.

The convergence theorems of chapter 2 are used to prove convergence
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theorems for the quadrature formula., The contents of this chapter
have been accepted by I. J. Schoenberg for publication in the
Journal of Approximation Theory.

The results of chapter four are preliminary to the investigatiqns
in the later chapters and are probably not of great interest in
themselves, The natural quintic spline and Sard’s third order
best quadrature formula are definéd here, and a theorem on the
convergence of interpolation by this spline is proved., This is
required for the subsequent estimation of the Peano kernel for
the best quadrature formula, The chapter closes with a theofem
which is perhaps of more intrinsic interest than the others.

This states roughly that the additioq of an extra point in a
quadrature formula gives rise to a best gquadrature formula with a
smaller Peano kernel (measured in the Lzmnorm)n The result is

not surprising but it does not seem to have been stated explicitly
beforeg however a special case of it, when the weight function is
constant, is implicit in Karlin [ 6]. An examination of the

natural quintic Hermitian spline occupies chapter five and a proof of its
convergence to the function it interpolates is given. The Bulk of the
chapter consists of an investigation of the qualitative properties

of the fundamental Hermitian splines. These are of some interesg

in themselves since it will be seen that they have the same
qualitative behaviour as the fundamental polynomials in Hermite's
interpolation formula, Their main use however is in the final
chapter where they are used to deduce properties of third order
optimum quadrature formulae. Karlin [¢ ] (see also Schoenberg

[151) has shown that such optimum formulae exist for the
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1

optimum quadrature of I w(t)x(t)dt when w=1, The proof was given in
outline only and it is got clear if it is applicable when w is not
constant., We present here an existence proof in the more general
situation, It is shown that if the weight function is positive then
the quadrature weights are also positive. The chapter ends with a
result on the distribution of quadrature points when w=1 and two
theorems on the convergence of the formula.

We conclude the thesis with an appendix in which two types of
interpolatory cubic spline are investigated, These are shown to have
more favourable convergence properties than the interpolatory natural

cubic spline even though they use only the same information for their

construction,
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CHAPTER 1

Notation and Preliminary Results

The numbers to,tlgooo,tN which satisfy a < by S By € eeo <ty & b

N

will be called knots or quadrature points,

hi = ti+1°’tig i309190009N’19

h = max hio k = min hi”
i i

a; = h /(hy_ +h)),  i=1,2,.00,81,

y will invariably denote a natural interpolating spline, that is

to say it will be a natural spline (cubic, quintic or Hermitian
quintic) which takes preassigned values (in the Hermitian spline
the first derivative also takes preassigned values) at the knots
Eootyneoe sty

s will denote a natural spline of whichever typebis being

considered. An element of Cn[an] will be denoted by x or z, the
value of n to be taken appropriate to the context. (x will
usually be the function with which y agrees at the knots.)

The function norm will be the uniform normg
|| = max |x(e)|, e & € 5 tg.

The vector norm will be the uniform one; 1if z = [219229000.zN]T

then ||g|| = max |z ].
i

°

. n
This induces the matrix norm, ||A|| = max } Iaij

i j=1

We shall make frequent use of the following result,

If A is strictly diagonally dominant, i.e. [a;;| > ) |a;:]s



N bd 1
i=1,2,000,n then A is invertible and ||A IHS max T3 T= =T .
i 184117 4 13451

The following results for certain tridiagonal matrices cal‘* e

easily deduced from [J ] and [ § 1o

(1) IfAsls—Z 1 0 . oo 0 0 7] , ann x n matrix (1.1)

then a.. = =T ./ (3U

ij i= lTn=J n*Z) o 1

A

i <3 & n, where ’1‘r and Ur are
the r~th Chebyshev polynomials of the first and second kinds

respectively on [=1,1] each with argument =2,

(ii) If Bml = i Al al o o o o 0 ]
1=a, 3.1 Gy o 0 o 0
0 0 0 o o o A

- n -

where 0 < o.j < 1y 3=1,2,00040, )\j}“j# > 1y 3J=1;2,000,0=1,

1
then
Ab.. > 1, (DY 50, i,j=1,2 n (1.2)
i%ii ? ij 9 9 sépooe gl °
(Gii) £ B Y= 2 o 0 v oo 0]
l:'az 2 0'2. o o o 0
o ° o o o ¢ o
Lo 0 0 2 |

and 9820, 0 <a; <1, j=1,2,000,n, then



IS RN o jois+l
802 < 3( l) [abi.j*sbi".’lj] < 0&02 9

l < l‘ab (103)

1 g3 g 1i=1,

3a=28 < 6] abii+8bi+li

38-2a < 6[abii+1+8bi+1i+13 < 48,

i=j42 i=9 i=3+1 . .
-8.27 777 < 3(-1)" by +pby, ) <02V, k2 6 gn.
(iv) 1£cta [ -3 1=a, 0 . .. 0]
az =3 l=’a2 6 o o 0 (1.4)
o 0 6 .. 0 |

where 0 < aj < 1, §321,2,0004n, then

P 3 1=
le | < 9.27778, e | < 9,2 "8, iw1,2, 000,00

(v) IfD‘1=F£ 1 0 . .,., O O s XNy n 34
l 4 lOOOO 0

° o ° o o o o ¢ (105)

then d.. = ':'cl;'l’
1]

5 TimgTpej=1/V

nmaélsisjéng

where the argument of the Chebyshev §olynomials is =2,
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Chapter 2
Convergence Properties of the Natural Cubic Spline

We shall consider in this chapter the problem of estimating
l|y—x|| when y is the natural cubic spline which interpolates to
X a;vthe knots which satisfy O = t0<t1<...<tN =1, In addition
we shéii find conditions on the spacing of the knots which will
ensure convergence as the maximum interval decreases to zero.

It is of interest to determine if there are situations under
which there may be divergence and it is shown that for a certain
knot spagipg the natural cubic spline operator is unbounded;

Results similar to these have been found in the simpler
situation when the spline is assumed to be periodic. In
particular Nord in {1l1] has exhibited a periodic cubic spline
which diverges. :

For the purposes of this chapter it will be sufficient to

gtgt, = 1, and we take

consider the spline om the interval 0 = t N

0

the following as the definition of the spline.

Definition

A natural cubic spline with the knots to,tl,...,tN is in

C2[0,1] and is such that
(a) it is a polynomial of degree at most three
in each interval
(2) _ @) _
(b) YO yN = 0.

An important property of the natural cubic spline is that

it is determined uniquely by its values Ygo¥pseees¥y This is
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well known, but in order to introduce some relations which will

be required later a proof will be outlined here.

Existence and Uniqueness

Since y(z) is linear in each interval and is in C{0,1] we
can set ySZ) Kj’ j=0,1,...,N and write
t.. .-t) (t-t.)
(2) = _(.__J_.'i—— ___.J_ 1= -
y (t) hj gj + hj xj+1, tjststj+1, j=0,1,...,N-1.

Integrate this twice and impose the interpolation conditions

(yj=xj, j=0,1,...,N)3 then

y(t) = g%‘ {[(t -t)3-h§(tj+1-t)]Kj + [(t—tj)3-h§(t—tj)]Kj+l} +

+ E?—{(c —t)x + (t-t, )xJ+1} (2.1)

for tjst$t =0,1l,...,N~1,

jo1

(1)

The imposition of the condition of continuity of y at the

interior knots, t leads to well known relations which

l,tz,eeo,tN_l
will be written, (see [ 1]p.11)

(l-aj)xj_1 + 2Kj+aj Kj Ht., - Ix, j=1,2,...,N-1, (2.2)

where a. = h./(h, .+h, h, = t,

j J/( A A B Y

second divided difference operator at the points cj-l’t"tj+1°
(2)__(2)

Now « o Vo Ty =Ky =0, and so (2.2) is a set of N-1 linear

tJ, and [t 1,t ot i+ l is the

algebraic equations in the unknowns K sKpsooosK The matrix

N-1°
of this set of equations, B—l, is strictly diagonally dominant
(since 0<aj<1) and so there is a unique solution. Consequently

the spline is unique and can be constructed in each interval with
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the aid of (2.1). Further ||B|| s 1 and so we have the following

inequalities,

max lxj] < 6 max|{t.

2 .
J scrtyetiegdx| € 3l x L tegen-1 (2.3)

Another set of equations can be found in terms of Ao,xl,..,,xN,
where Aj = ygl), by the use of Hermite's two point interpolation
formula instead of (2.1). These can also be found in (1) and

are, with the same notation as above,

2y, + A

0

1 - 3[co,tllx

ajkj_1+2xj+(1-aj)}j+l = 3aj[tj_l,tj]x+3(1-mj)[cj,tj+11x, J°1,2,...,N’1,(204)

Iy-1¥2Ay = 3leg o tylx.

Convergence theorems

In the following it will be assumed that YT i=0,1,000.,N.

Theorem 2.1

If x € €2{0,11 then ||y-x|| ﬁhzllx(z)ll

Proof

Since yj-xj =0, j =0,l,...,N, we have, from Lagrange's

linear interpolation formula with remainder,
y(t)=-x(t) = $(t-t.)(t-t. )[y(z)(t’)—x(z)(t')l t.stst t.<t'<t (2.5)
j i+l PTITTT I j*1’ B

and so, for tjststj+1;



(2)

max [y (t)-x(t) | (t)‘x(z)(t)l

7,

2
h,
3 |max y

h2( | lx(z) ! |+max(|n<j|, IKj+1l)]

A

A
ool—= o] oo

hzléllx(2)||l (from (2.3)).

The right hand side of this inequality is independent of j and so
the result follows. This theorem allows us to prove a result
for natural cubic spline approximation which is analogous to
Weierstrass' theorem for polynomial approximation.

Let ZN(h) denote the space of natural cubic splines with
N+1 knoté*whefe t0=0, tN=l, and maximum interval length h ZN(h)

is clearly a subspace of C[0,1].

Theorem 2.2.

Given ¢>0, x € C[0,1] then there exists, for sufficiently

small h, an element s € EN(h) such that ||x-s|]|<e.

Proof

From Weierstrass' theorem we can find a polynomial p such
that ||x-p]|]|<ie.

(2)||

Let 7w = |]|p s and choose a set of knots so that
h2<e/w. Then 1if sjﬂpj, j=0,1,...,N, it follows from theorem 2.1
that ||s-p||sh2n/2<e/2. Since ||x-s||s||x~p||+||p-s|]| the
theorem is proved.

Clearly wé cannot conclude from this that the natural cubic
spline always converges to any continuous function with which it

agrees at the knots. However the next theorem leads to a

simple criterion for such convergence. It is convenient to

X Mg knobs am &)ty .., 6,, .
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define here the interpolatory spline operator SN’ this is the

projection operator from C[0,1] to EN(h) such that if y = SNx
then y.=x., i=0,1,...,N.  (c.f. {21 where a similar operator

is defined for periodic cubic splines.)
Theorem 2.3
[sgx—=xl] < (1+0.75h2/k?)w(x;h)

where k = min h., and w denotes the modulus of continuity of x

with interval length h = max hja
j

Proof

Let y = S x, then for tiststi+1 we may write

N

« n3ly 2 » _ 2,
GhiEy(t)-x(t)l = E(ti+1 £)3 b oy mE) Ik, + [(t ci)3 h,“(e-t ) e, )

{ \ l (2.6)
f 6&(ci%l—£)(xi-x(t’)+(t—ti)(xi+1_x(t)))'
Hence, for tiscgti+1, after some simple manipulation and
estimation, it will follow that
i el p 20 Lo |
maxly(t) x(t)| s wlx;h)+sy b, max{[ZKi+Ki+1],Ini+2Ki+1|}. (2.7)

x|

But, from (2.3), maxIKi| £ 6 max|[t

IS A
i PR R RN R A2

< 6w(x;h)max - £ 6w(x;h)/k?,
. h., h,
J 371l
and so hizmaxlxi|§ 6w(x;h)h2/k2,
which, when used in (2.7), will give the result.

The following is immediate.

Corollary
IISNx—xll*O as h+0 if max hj/min hj is bounded.



Another criterion for convergence will be found in terms of

A= m?x hj+l

/h., and u = min h,
b J i

J+1/h5°
Theorem 2.4

If 4§ < p2, A2 < 2 then

[lSNx—xl[ < [1+ % max (2P+Q,P+2Q) Jw(x;h)
where

P = 2)/(2-32), Q = u/(2u2-1).

Proof

It is clear from-egn. (2.7) that bounds are required for

each of |2k, +x |k, +2k,
i i

1-+1 l °

Now, with the notation that the matrix of the equations (2.2)

i1l

is B 1 we have

N-1 N-1
kg =6 bij[tj-l’tj’t’j+1]x"<i+1=6,§ bi«s-lj[tj—l’tj’tjﬂlx;
j=1 i=1
. wx;h) .
and since Ittj—l’tj’tj+1lxl £ g~ » it follows that
bt
2,4k, | N-1
1 l 1 i+l z I 1
= —— 2b.. + b, e ——— (2.8)
6 w(x;h) j=1 ij 1+1j hj-lhj
There is a similar expression for 1 IKi+2Ki+1I
w(x;h) 7

The use of the inequalities (1.3) will lead to the following

inequality,
. 2 _ 2
o2 |2 4k, | Ll 1, b ) hy h, N-1 hy
1 4w(x;h) =1 2273 h, n T ! 2 2374 Ly p |
J =1 By je1 37T j~1"j
h?  n2n? h..? ..
NOW, = Z'a T ® 00809 ¢ JZ’ ° ‘l s (AZ)I'J&A, lsjsi—l,
h, .h, h, ?'h, h. h.
i-17; i-1 "i-2 i j-1

with a similar result when i+2 g j < N-1.
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it follows that

|2xu+x. l i-1 2y1-3 N-1 j-i-1

2 i i+l X 1 1

h. ———— < 2211+ z [._ ] + —|1+ Z [.__.2.) R
i 4w(x;h) jo1 2 joie2 2u

If 4<p?, A2<2 each of these geometric series can be bounded

by its sum to infinity and the result will be that

PRI ECLTALTIOY 2u

By TFetun) S 2A% Y g T

2(2P+Q) .

Similarly it can be proved that if bad, A2<2,

+1! < 2A by

lei+2xi
i hw(x;h) =22 ¥ -1

h

= 2(P+2Q).

The result of the theorem follows when these results are used in

2.7).

Corollary
||SNx-x|[¢0 as h~0 if j+ec<p?, 22<i-n, where e,n>0.

The proof is immediate.

Bounds for ||SN||

Upper bounds for || || can easily be calculated from the
results of the last two theorems with the use of the inequality
w(x;h) s 2||x||]. However IISNII has practical implications

and more precise bounds than these will be established.

Definition

The fundamental natural splines L _,L ,....,LN are natural

0"1
cubic splines which satisfy Lj(ti) = Gij,'Osi,'jsN.
' N
With this definition we can write SNx = Z x.L., consequently
j=0 4 4
N
gl = max ] (o).

(2.9)
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Theorem 2.5

L; changes sign in {0,1] only when t=tj, j=0,1,...,N, j¢i.

Proof

The proof is in two parts. First it will be shown that

L; vanishes in [0,1] only at the knots Eysbyseoosty 15b i 1recostys
(D)

The proof will be completed by showing that Li is not zero at

any of the knots except perhaps ti,

<t <t Then Li has at least N+1

(1)

i

Let Li(t‘)wo, cf#cj,-t N°

distinct zeros in [0,1]. By Rolle's theorem L

0
vanishes at

(2)

least N times in (0,1), and, again by Rolle's theorem, Li
vanishes at least N-1 times in (0,1). Consequently as

L£2)(t0) = Lﬁz)(tN) = 0 it follows that L§2) vanishes at not

less than N+l points in {0,1]. But Liz)

(2) |

i = 0 in at least one of them. Let

(2) - 1 €2)
i (tk) Li (t

is linear in each of
the N intervals and so L

this interval be [t 1, then, as L ) =0,

Kk’ Skl K+l

Li decomposes into two natural cubic splines, one with the knots

to,tl,ooo,tk, the other with the knots t From the

k+1,oao,tNo

uniqueness property one of these splines is identically zero.
There are three cases to consider.

i = 0,N,

Consider Lo. Then for tack+

for otherwise Lo would be a non zero linear polynomial in [;o,tll

T Lo(t) = 0, Further k40,

and identically zero in [tl,tzl° This would contradict the

continuity of Lél) at t=t_. Therefore Lér)(tk)=0, r=0,1,2, and

1

if kfl L, will be identically zero in [t This argument

k_l,tkl.A

can be repeated until we are lead to the conclusion that Lo(t)=0
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for tt,. But this means that Lo(t) = (tl-t)3/ho3 for

1
tostStl which will contradict the constraint Léz)

A similar argument can be used to prove a contradiction when i=N,

(to) = 0.

i=1, N-1.

Take L, ; then k$l, for otherwise L{l) would be discontinuous
at t:l° If k=0 then L1 is linear in [to,tll and so can vanish

(2)

only at the knot t 1

Therefore t'>t1, and because L (t1)=0

Oo

the argument above for L. can now be used to prove a

0]

contradiction as L1 can be regarded as a fundamental natural

cubic spline with the knots tl’t2’°°°’t

(r)
1

for t2t,. That is to say L1

satisfies Ly (t;) = L](.Z)(to) = 0; L () = 1; L{’)ctz) -0,
(tz-t)3

h1 3
[t,,c.]l, and the first ones that L. (t) = a (t—to) +b (t'to) in [totJ
1°%2 1 - 3 !

: 0 0
where a+b=1l, When the continuity conditions are imposed at t

N and such that Ll(t1)=l°

When k22 we have L (tk)=0, r = 0,1,2; therefore Ll(t)=0

is a natural cubic spline which

r = 0,1,2. These last conditions show that Ll(t) = in

1

it will be found that ho,h have to satisfy (h0+h°)(2ho*h1) = 0,

1

which is impossible

25igN-2
Now ifk,k+l, For instance if i=k then L, would be linear

ln.[ti’ti+1] and zero in [ti+1’ti+2] which would contradict

il) at t. .. Similarly i#k+l.

the continuity of L i+l

To be definite let igk-1l, then Li(t)=0 for tati+1.

Therefore Li is a natural cubic spline with the knots tO’tl"’°’ti+1

and such that Li(ti)=1, Lﬁl)(ti )=0. A count of the zeros

+1
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of L(z) by the repeated use of Rolle's theorem will show that

i
ng) vanishes identically in an interval in [to’ti+1]° This
o . (D) .
cannot be [ti’ti+1l because of the continuity of Li at t. .5

nor can it be [ti_l,til,for then the spline would vanish

L)

identically for tst: 4 and the continuity of L% at £, would

be contradicted. Therefore it is an interval which lie below
t, 15 but this means that L. will be a natural cubic spline

. e s (x) - 7(r) - - .
which satisfies Li (ti_l) Li (ti+1) 0, r=0,1,2;

Li(ti) = 1., It will be found that it is not possible to

construct Li with these properties. (In fact in [ti_ ,til

1
= - 3 3 3 - 3 3 .
we have Li(t) (¢ ti-l) /hi—l.and in [ti’ti+ll Li(t)F(ci+1 t) /hi .

), e (1) —
Consequently L. (ti 0) 3/hi-1 and L/ (ti+0)— 3/hi.)
So we have proved that Li vanishes only at the knots at
which it was prescribed to vanish. If it does not change sign

at the knot tj, j$i then Lgl)(tj)=0o Since L. vanishes at N
(L

points it follows that L; vanishes at not less than N-1

points which are not knots {one of these may be ts but this

(1)

is not important). Hence Li vanishes at least N times in

(2)

[to,tNl and so L;” vanishes at least N+l times in [to,tNl;

(2)

this implies that Li 2 0 in at least one interval. The

arguments of the first part of the proof can now be adapted
to show that Lil)(tj) 4 0, j$i. Hence the spline changes sign

only at the knots at which it was constrained to vanish.

(It can be shown that L, does not vanish outside [t _,t ],

0"°N

"however we do not need this result.)

Corollarz

N
Let L(t) = ) |L.(t)]
j=0
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.$tgt.
then for t1 t i+l

i . . N . .
Le) = DL+ 7 It (o). (2.10)
j=0 ] j=i+l J |
Proof.

In [ti’ti+1] L; and L, , are each positive,
and L, and L. are each negative etc. The result
i-1 i+2 O P

follows.

If the values x,,X ,...,X, are each subject to an error

N
of *e then, from (2.9), the maximum error in the natural cubic
spline which uses these values instead of the correct ones will

not exceed elISN||. We shall now find upéer bounds for IISNII.

1 o . N A
Let A, = ] G+ T DI, then A, (£)50 for £ st .
*j=0 j=i+l J 4 -1
Hence ||S_ || = max |L(t)| = max  max |L(t)| = max max  A.(t).
N oto,11 i le.,t C e, tiend ?
o i’ i+l ool
It follows from the corollary that Ai{tj) = (-1)1 J,
Ogjsi, Ae,) = -1, i+lgjaN. (2.11)
The second divided differences of Aiare easily calculated
and are given by
2T M, n) 1esinl
1" /< 5105 jsa
[tj_l,tj,tj+lhi = —2/[hi_1(hi_1+hi)], j=i (2.12)
_2/[hi+1(hi+hi+1)l’ j=isl
-1yJ-i {+2<i<N-
2(-1) /(hj_lhj), i+2gjsN-1.
(2) - (2) =
Let Ai (ti) p,Ai (ti+1) q, then
h,? '
max [A(t)]| € 1 + i max(|2p+q],|p+2q]). (2.13)
[ti’ti+1] ' 24

Theorem 2.6

Is. 1] s 1 + 322,
N 2
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Proof
Since Aiis a natural cubic spline it follows from (2.3)

that

2
lpl, Iql <6 m?x I[t 1,: ,tJ+llAﬂ < 12/k%.

The result follows from this and (2.13).
Theorem 2.7

If § < p2, 22 < 2 then

||S [ 1+ —-max{2A+B A+2B}

_ 2\ _ u - 2u 1
where A =77 - Tom o BRI T Ten o

Proof

N-1
Consider 2p+q = 6 ) [2b,
i=1 i

At

1"'1J t ]Ai

1557 0

where again the matrix of the equations is BF]'°

Then, with the use of (2.12),

i-1 i-j
2prd oy DT g ap, ) - 1 [2b,.+b, .1
12 j=1 hj-lhj ij Ti+lj hi_l(hi_1+hi) il Ti+li
N-1 j-i
1 (1)
- [2b,., +b, .. 1+ } —=—={— [2b,.+b, ..]}.
hi+1(hi+hi+1) ii+1l i+l i+l j=i+2 hj-lhj ij i+lj

The inequalities (1.3) will lead, after some manipulation,

(c.f. the proof of theorem 2.4) to the result that

-]T% IZP*QI < - {2 ZTZ l*l:l [ - 1+X:]} = 2(2A+B)/3.
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A similar consideration of p+2q leads to

h 2
— Ip+2q| < = ;_——2' 1""}1] L - 1+)\‘l} = 2(A+2B)/3
The proof of the theorem is completed by the insertion of these results into (2.]

An Unbounded Spline Operator

We prove now a result for natural cubic splines which is

- similar to the one proved by Nord [11] for periodic cubic

splines.
i-j N J-i-1 '
Let  A.(t) = Z (-1)7 L (e) 1 (1) L, (©),
j=0 j=i+l
then, from (2.9) and (2.10),
|I1syl] = max  max A, (£).
1 tiststi+1
However max Ai(t) 2 Ai(ti+ihi) for t,sest, o
and so IISN|| 2 m?x Ai(ti+£hi)°

With the aid of (2.1) we obtain easily
-h.2[7(2) (2)
syl max {102 NP e 2P ey ]},

In order to simplify the presentation of the results we shall consider
only values of i in the range 2gigN-3. There will be a sllght
loss of generality in the results but this will not affect the

conclusions

Lemma 2.8

If 2h0<h2’ hj-]-Shj"'l’ J

and hi+25hi+hi+1’ hj+ishj-l’ J =1+2,...,N-3, 2hN_1$hN_3

= 2,3,...,i"2, h_,sh.  +h,,
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then

2 2
Ai(ci+§hi)z1+o.75hi [(hi+hi+1)/hi_1+(hi_1+hi)/hi+1l/[3hi +2hi(hi_1+hi*1)
hyahial

Proof

2 .
Let Aé )(tj) = Kj, 3=0,1,...,N,

Then the equations (2.2) can be rewritten as

[2+(2—a1)(1-u2)l(n )+(2 a )a (K 3) 6id1+(2-q1)d2],

Y+a. | (k K. 2) 6[d +d 1],j=2,3,...,N-3,

(1-aj)(njh +K Y+ (2+a.~a. +1)( .

3 T i T RS

(1-ay_ 2)(1+“ 1) (Ky-g*ey-g)* [ 2+ay_ (1*“N l)l(KN 2t en-) =60 (vay 1 )dy o+dy ),

where we have defined dj = [tj-l’tj’tj+1]Ai’ j=1,2,...,N-1.

These can be rewritten in a form which is suitable for the application
of ( 1.2), namely as
Al(K1+K2)+B (x +x3) 6[d1/(2—a1)+d2],

(2.14)
(I_Bj)(Kj_1+Kj)+Aj (Kj+Kj+l)+Bj (Kj+1+Kj+2)=6(dj+dj+1)/(l-aj*aj"'l) 935293" .o ’N-3’

(I-BN_Z)(KN_3+KN_2)+AN_2(KN_2+KN_1)=6[dN —ptdy 1l/(1+a 1)
where 11 = (1—a2)+2/(2-01)v AN—Z =% s +2/(1*’“N 1)

By = 2’ Pn-2 T On-2
Aj = (2+a3;a )/ (l-a.+a, ), B /(1 a +a...), j=2,3,...,N-3.

j i+l i~ % j+l
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It is easily verified that ijj+1>1’ j=1,2,...,N-1 and so the
result ( 1.2) can be used to bound the.elements in the inverse
of the matrix of the equations (2.14).
If {bij}are the elements in this inverse ‘then
N-2 . ..
e 7L Pyt LIOD TR en (2.1
where rj denotes the right hand side of the j-th equation of-
(2.14}  Now (—l)i—jbij>0 and we shall find conditions on the
spacing of the knots to ensure that —(—l)i’jrjzo. |
Consider for example -(- 1)l 1 1 = 12[h2/(2—a1)-hol/(hoh1h2);
we see that if h222h then ~(- 1) >0. Each of the different
forms of rj are considered in the same fashion and it will be
found after some manipulation that for the distribution-of
of intervals which is given in the statement of the lemma
(x +K,

' 2
A
1202 ((h sh, 3/hy o+ Ch_ +b,) /b, Yi3hZ42h (b, +ho ek o)

14172 i+l? Tiel el

o o — 2 - =
~ When this is used to replace hi (Ki+x.+ ) in Ai(ti+ihi)

= 1-h, 2(K e, )/16 the result follows,

Theorem 2.9 .

There exists a set of knots for which ||SN||+°° as h»0.

Proof

Let N = 2M+1, 2h05h2, j- 15h5+1’ j® 2,3,...,M2,

= 2 = 1 =
By = B = Bygs Bygsho s § o= ME2,2H02, Zhyshy, o,
Then I|82M+1|[aAM(tM+§hM)21+1.5(1+1/hM)/[3+4hM+hMl which increases

without limit as hM+O.

If N=2M we consider in a similar fashion the interval

[tM’tM+1!°
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Convergence for x€C“[0,1]

The convergence theorems of the earlier part of this
chapter were derived under general conditions on the function
which was interpolated. We end the chapter by giving two
theorems on the approximation by interpolating cubic splines
which when x is restricted to being in C“[0,1] are best
possible. A proof of the first theorem can be found in [9 I;

the second theorem will be proved here.

Theorem 2.10

Let y be a natural cubic spline and x€C*[0,1), and let
Y= i=0,1,...,N. Then for sufficiently large N there exist
"knots tp,tq, where 0<tp<tq<1 and a constant K such that for

t_stst
P g’

maxlx(t)-y(t)l < Kn*
mBXIx(l)(t)-y(l)(t)] £ 4Kh3

maxlx(z)(t)-y(z)(t)l $ 8Kh2,

Further, cp, l—tq are O(h log h) as h+0.

Theorem 2,11
Let x,y be as in theorem 2.10 and in addition let

x(z)(O) =fx(2)(1) = 0, then

[x=y| 1« Z 0110 Py @) ¢ 2nz 119,

Proof
We have from (2.5),

max |y (t)-x(t) | s-% h;imaxly(2)(t)-x(2)(c)|,for t3ststj+1, j=0,1,...,N=1, (2.16)
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Therefore;dsince y(z) is linear in [tJ,t +1], we obtain from

Lagrange's linear interpolation formula,

y? )= ol ce Dogns k@ )
)

R T e M R

. (. - '
for thtStj+1,J 0,1,N-1, and where tj<t <tj+1'

It follows that for t.stst,. .,
h] j+l
2 (2 2 2 4 '
max |y ® (£)-x?) (¢) |s,m,<|.<j-x§ X, I« 501" J(+i|) . 3 HIE @, (2.17)

(2)|

consequently we have to estimate maxIKJ-x In order to do

this rewrite the equations of (2.2) as

- = (11— (2) (2) (2)
(1 aj)ej-1+2ej+“jej+1 6lt l’tJ’t Ix-[ (1 oy )x 2 ALY J+1l : (2.18)
j=1,2,.,.,N"1,
where ej = Kj - xgz), j =0,1,...,N.

With the use of Peano's method the right hand side of (2.18) can

. l 1o 2 2 4) ., '
be written 4[§1 aj)hj_1+ajh;] x' 7 (t'), where tj_lst stj+1°

Now y is a natural. spline and so with the assumption made in the
statement of the theorem it follows that eo = eN = 0, Hence,

with the uniform matrix norm,

lell <

4V

&)

max| (1-a,)n%_ +a b, 2||lxmu< + 02| [,
j

When this ‘is inserted in (2.17) the result is that

2 (2 3 4
max |y (£)-x Yy | < 5 02| [x¢ )H- TR - (2.19)
"and when this is used in (2.16) we obtain
max |y(t)-x(t) | < ——-h“llx(4)|| £ stst, (2.20)
y S 54 ’ j+l ° .

Since the right hand sides of each inequality is independent of j

the theorem is proved.
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Chapter 3.

Sard's Best Quadrature Formulae of Second Order

We prove here results on the convergence of Sard's
quadrature formula by estimating the size of the Peano kernel.
When the knots are equally spaced and the integral which is
being approximated is Jl x(t)dt we find explicit equations
for the quadrature weiggts.

We begin by recalling the definition of a quadrature

formula and state Schoenberg's theorem on the connection

between Sard's second order formula and natural cubic splines.

Note that in this chapter toaO, tN=’=1°
Definition
An expression of the form
1 N
j w(s)x(s)ds = z H.x(t,) + R(x) 3.1)
0 jo 43

is called a quadrature formula with remainder R. If R vanishes
when x is any polynomial of degree n-1 then the quadrature
formula is said to be of order n.

We shall be concerned in this chapter solely with the
case n=2, and in order that the problem of finding the quadrature
welghts HO’H1’°°"HN should not be trivial we shall assume that
N22. Then for x € C2[0,1], by Peano's method,

1
R(x) = J k(£)x? (t)de (3.2)

o

where k, the Peano kernel of the second order formula, is given

by

1 N
w(s)K, " (s-t)de - J H, K1+(tj-c) (3.3)

k(t) = J
0 j=0
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The problem which gives rise to Sard's best quadrature of order

two is that of finding HO,Hl,eco,HN to minimize

1
j [k(t)i2de
0

subject to the constraints
1 r N r
f w(s)s ds = z H.t.”, © =0,1.
) j=o0 3

We note here that, because of (3.5), k(to) = k(tN) = 0.

Theorem 3.1 (Schoenberg)

"If y is a natural cubic spline with the knots t ot

O,tl,too

and if (3.1) is a best quadrature formula of order two then

N

R(y) = 0.
The following is an immediate consequence of this theorem

and of the definition of the fundamental natural cubic splines.

Corollary 1

The quadrature weights in Sard's second order best quadrature
formula are given by
1
H., = I w(t) L.(t)dt, j = 0,1,N.
0 J
A less obvious result which will be needed in the discussion of

convergence is the next corollary.

Corollary 2

If k is the Peano kernel of Sard's best quadrature formula

of order two then

rl 1
J [k(t)}2dt = j w(t) m(t)-y(t)lde,
0 -Jo

(3.4)

(3.5)
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where

1 1 1 '
m(t) = I w(s)K.' (s-t)as-k' (-t)J (1-s)w(s)ds - K'*(l—c){ sw(s)ds, (3.6)
o 3 3 o 3 Jo

and y is the natural cubic spline which agrees with m at the
knots.
Proof

Let u(z)(t)=k(t) Ostgl,

1
=I w(s)K (s-t)ds- f H.K (c -t),

) j=0 i1
Then
1 1 (2)
j [k(t)i2de = J k(t)u'“/(t)dt = R(u).
0 0
Now write
(2) 1 + (2) N ooe @
u ()= J w(s)K, (s=t)~£ 7 (e) [-]| } H.K (t,~t)~f"“ (¢)
0 1 im0 3 1*73

where £ € C2{0,1] is to be found so that the second square bracket
is the second derivative of a natural cubic spline with the knots

t tl,.qo,c For this to be true we must have

N’

Z H.K, (c ~-t)- f(z)(c) = Z b (e,-t)
J=0 J J:O J

where Z b, c =0, r =0,1.
. J|=O

Hence
£ Dy - T @eob. PE e 0.
j=0 :

1
Since Z (H.-b. )t = j w(s)srds, r = 0,1,
je0 3 )

are the only restrictions which have to be imposed we can choose
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Hj-bj =0, j =1,2,...,N-1 which will leave a pair of equations
to be solved for Ho-bo, HN-bN. These give
1 , 1
Ho—bo = Jo(l-s)w(s)ds, HN--bN = Iosw(s)ds°

Consequently if

1 71
f(z)(t) = Ki’(to—t)I (l-s)w(s)ds+Ki+(tN-t)J sw(s)ds

0 0]

then
R(u) = R(m)
where
(2) 1 ¥ (2)
m (L) = J w(s)Kl(s-t)ds - £ (t)
0

We note finally that
1

N
w(s)m(s)ds - Z H.m(t.),
0 j=o * J

R(m) = I
and so, if y is the natural cubic spline such that yj = mj,
j = 0,1,...,N,

1
R(m) = R(m~y) = I w(s)Im(s)~y(s)lds.
0

Notes

1. The function m~y is the Rodrigues function for the
quadrature formula. This term was introduced by
Schoenberg in [I51}

2, It is not difficult to verify that

(2) _ (2) =
m (to) m (tN) =0

and that m(é)(t) = w(t) Ost<l,
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Convergence

Theorem 3.2

1
1f x € c2{0,1] then |R(x)| g &hzlix(z)lij lw(e) |dt
0

Proof

Let y be the matural cubic spline such that Y=o
i = O{1)N. Then from theorem (2.1), l]x*yilsihzllx(z)]lo

Since R(y) = O it follows that
1 1 ) 2) 2
IR (x) l=lR<x-y>l=lj w(e) [x(e)-y(e)ldelsin?f{x ™ H[ [w(t) |de,
¢ 70

which was to be proved.

The results of theorems 2.3 and 2.4 can be used to
furnish proofs of the convergence of Sard's best quadrature
for particular spacings of the quadrature points. As these
proofs of convergence are similar in principle to that of

theorem 3.2 only the statements will be given.

Theorem 3.3

If x € clo,1i, h = max hj, k = min hj’ then

1
IR(x)| s [1 + % h?-/kZJw(x;h)J lw(t) |de.
0

Theorem 3.4

1f x € clo,1}, §<p?, A2<2, where p = min hj+ , A = max hj+1
h. h,

J J
then

1
|R(x)|§[E+%max(2P+Q,P+2Qi]w(x;h)J lw(t) |dt.
' 70
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If the conditions on x are strengthened the next theorem

follows immediately from theorem 2.11,

Theorem 3.5

If x € 0,13, x20) = x? (1) = 0 then
RG] € 2 mnx“)uj v (o) [dt.

The last problem which will be considered in this section
is that of finding the order of convergence if we assume that
x € C*{0,1]. The result is stated in theorem 3.7, however a

preliminary result will be required.
Lemma 3.6

1
I fk(t)i2dt = O(h") as h+0 if w € clo,1}.
(¢

Proof

From corcllary 2 of theorem 3.1 we have, with the notation

uéed there,
1 | 1
f [k(t)12dt ||m-y||f wee) [de.
0 0

Since m(z)(o) = m(z)(l) = 0 (as pointed out in the second

note to the same corollary) it follows from theorem 211 that
3 (4 3
Haeyll & g5 04 [a® )] = 2 w4,
~and hence

1
j k()12 £ 2 b*]Jw] . j e e,
(0]

which is the required result.
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Theorem 3.7

1f x € ¢*[0,1} and w € C[0,1] then
5/2
IRGx) | = o(n>/?y.
Proof

Let p(t) = —-[}1 t)3 (2)+t3x§2{J

then x-p € ¢*{0,1§, and x(z)-p(z) vanishes at t = 0,1,

It follows from theorem 3.5 that
Roep | < 5 w19 oo lae.

Since |R(x)| ¢ |R(x-p)| + |R(p)| we shall now bound IR(p) |-
Let z be the matural cubic spline which agrees with p at the

1
knots . The integration by parts twice of [ [p(z)(t)-z(z)(t)lzdt
~lo

leads to

1 12

[ 0@ 6« 2 B2 0]
Let 2(1) j’ § ) . nJ, j = O(1)N, then the equations (2.4)

can be written with this notation as

200y~ )+ (A -1y ) = &ho éz)

a. (A )+2(A r )+(1-a YA, ) =0, j = 1(1)N-1

N

(AN-I-"N Pr2Oygmy) = = h by, oxy

J+1 J+1
(2)

From the inequalities (1.3 ) we deduce that

27| <lE, |x(2)|+hN 1|x§2)|°z‘ﬂ
gyl < [ux

(3.7)

(3.8)
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Consequently, when these are inserted into (3.8),

f@,, @, 72, 1 (@2 (2),2 ) @), N

IOE (t)-z (ch dt<§E10|xO [+h.N_l|xN [+(h0+hN_1)lxo x ]2 :l (3.9)
1 1 2 '

Now IR(p)I2 = [R(p-2)|* ¢ I ﬁc(t)]zdt j E(Z)(t)-z(z)(t)] dt,
0 0

and so with the result of lemma 3.7 and inequality (3.9) we see

that
5/2
R() [ = 0>/,
The combination of this with (3.7) gives the result.

Equal interval formulae

Note In this section it will be assumed that w(t)=1, Ostgl, and
that cj = jh, j = O{1)N where h = 1/N. (3.10

The weights for Sard's quadrature formula of order two have
.
been tabulated in {12], however they can be expressed in terms
of Tr and Ur the Chebyshev polynomials of the first and second

kinds respectively, each with argument -2.

Theorem 3.8

(1) By =B = 5 h(3+A-T) /0 ]

- 1 - -
(ii) H; =S hl2-(u,_,+0, . /U .1, i=1{1}N-1

1 1 1

(iii) J [k(e)1%de = TI% h‘*[g + % h(1—TN)/uN_1],,

0
Proof

If y is a natural cubic spline with the knots defined

* See also 'Linear Approximation' by A. Sard. A.M.S. Colloquium Pub. 1963.
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in (3.10) then, from the Euler-Maclaurin sum formula

yj+£yN:| "Ilz h? yél)-yél)]o

(i) Therefore, with y=Lg» it follows that

1

1 — N-
I y(t)dt = h[§y0+ )
0 J

-1 (1) 1y (1)
Hy = ih Titho (1-L, (o)}

Let Aj = Lél)(tj), j = O(1)N, then from (2.4) with a; = 5,

j = 1{1)n-1,

2A0+A = =3/h,

1

Ao+4x1+12 = =3/h

Aty = 0, i = 2(1)N-)

j+l

Ag1*2hy = 0.

These can be solved explicitly for X . and AN by the use

(0]
of the result (1,1 ) to give

hidg = (T#Ty ) /Up s hag = (T+T) /0y ..

When these are substituted into (3.11) the stated expression

for HO will be found after some manipulation. By symmetry
HN = Hoo
(ii) The calculation of Hy,Hys0005Hy ; proceeds in the

same fashion and will not be given.

(iii) From corollary 2 of theorem 3.1 it is clearly necessary

to calculate

1
J (m(t)-y(t)lide
0

(3011)

(3.12)



where m(t) = 5 (£%-2¢3+2¢-1) (3.13)
and y is the natural cubic spline which agrees with m at
the quadrature points as knots.

The Euler-Maclaurin sum formula gives

1
Iolm(t)-y(t)]dt - - f% hZE%(l)(c)—y(l)(:i]; + 7%5 h*. (3.14)

2(gg=ry) + (gy=A)) = h3/24

(‘5-1"*5-1)*“(ﬁj‘xj)*(@j+1"lj¢1) =0, ] =1,2,00.,N-1,

" - = —h3
(;N-l AN_1)+2(cN AN) h3/24.

The use of ( 1.1) leads to the result that

“x = =(r =3 ) = <L n3(1-
and when these are substituted into (3.14) the formula stated

in the theorem will be found.

Corollary

(1) H20, § = 0,1,2,c00,8

(11) Hj—1+4ﬂj+ﬁj+1 = 6h, j = 2,3,...,N-2,

The proofs of these results are straightforward and will be
omitted. The second part of the corollary provides an
alternative method for the calculation of Hl’HZ"°°’HN-1’

since it is easy to see that we also have
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4H +H, = 5.5h = Hy_ +4H .

When Hl,Hz,o LY

be found from

HN-I have been calculated HO’H'N can

1 =
Ho 13 [7h—2H1] = HNo
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Chapter 4.

The Natural Quintic Spline and Sard's Third Order Best Quadrature

This chapter will be devoted to an examination of the
convergence of Sard's third order formula when the knots are
equally spaced in {0,1]. This will entail, as a result of
Schoenberg's theorem, finding the order of approximation of
the natural quintic spline. The chaﬁter concludes with a
useful theorem which states that in general the addition of
an extra knot in a best quadrature formula will decrease the
Peano kernel. (This is proved for the third order formula
only, however the préof is easily adapted for higher ordef

formulae.)

Note In this chapter except where otherwise stated the knots
are given by ti = ijh = i/N, 1 = 0,1,...,N, however the
definitions which are made here remain valid for a general

distribution.

Definition 4.1

A quintic spline with the knots to,tl,oo.,tN is in

c“[0,1]1 and in each interval [tj’tj+11 is a polynomial of
degree at most five. Such a spline has the general form
N

+
L4 K (emn)
1=0

Definition 4.2

A natural quintic spline with the knots to,tl,ooo,tN is
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a quintic spline with these knots such that y33)= é )=y;3) §4)=0,
This spline has general form
p,y(t) + Z d, K (t, )
1=0
N
where Z d t =0, r =20,1,2 and P, is an arbitrary quadratic,
1=0

Lemma 4.1

If y is a quintic spline with the knots ti=ih, i=0,1,c..,N
(2) “_ .. ,
then, with y =Ki, yi -gi, i 0,1,...,N, the following

equations hold,

b - 3y —h3y (3
h [59go+93g1+27g2+g3l 120{a Yo hy, 7]
h“[gi,2+26gi_1+66gi+26gi+1+gi+23 = 1208%y,, i =2,3,...,N-2,

h'(gy_4*278,_,*93g,_,+59g.] = 120[h%y (3) viyl.

h2{ky k1 = ~n*(2g+g,1/6 - hiy (3)
hzlx Loy J = h“[7g *168,+7g, 3/60+652yi, i=1,2,0..,N-1

h2[-wy_

= —pY £3,(3)
1+KN] h [gN_1+2gNl/6 + B3y

Proof

The second relations in (4.1) are well known, see for
examplel 1 §p.127.The remaining ones can be found by the method
of undetermined coefficients. For example to establish the

first of (4&¢l1) we require scalars 33281500538 80 that

—h3 (3) a. o,
h*layggta, 8 *a 8, a8, ~[a,y *tasy  +agy +a y 1-hdagy ™), 351‘ d =+
vanishes identically when y is a quintic spline. Therefore it

must vanish when y(t)=(t-t0)r, r =0,1,...,5 and when

y(t) = K5+(t-ti), i=1,2. The solution of the equations

(4.1)

(4.2)
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which arise from those conditions will lead to the desired

result. The others can be verified similarly.

3 4 3 4 .
If yo,yl,«oo.yN,yé ),yé ),yé ),yé ) are prescribed we

see that (4.1) form a set of N-1 linear algebraic equations
which can be solved for B s8pscccsBy g° Furthermore the

equations of (4.2) can then be solved for « when

O,Kl,oou,KN
these are known. Consequently the quintic spline can be
constructed in the interval [ti’ti#ll from

A}
© = % 227t | e W e TR 75 Ul e 5
y L, ey 2ce1| 2R, JUi 2ee1 (T 2h J Viel |

where Bs is the s—th Bernoulli polynomial on Ogtgl.
We note that a natural quintic spline is uniquely determined

by its knot values since for this spline we have

(3)_ (&)__3)_ (&) _,
Yo =Yg S¥y =¥y =0
Theorem 4.2
N +
Let z(t) = ) d, K. (t.-t) + x(t), Ostgl,

vhere x € c6[0,11 and 23 () = 2 (e = 2P (e = W e p=0.
Let y be the natural quintic spline such that y(ti) = z(ti),

i=0,1,...,N. Then
|ly-z|] = n8]|x®|]ss.

Proof

Let e, = yéé)_z£4)’ i=0,1,...,N. Then (4.1) can be

rewritten

4.3)
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4 : =
h [93e1+27e1+e3] rl(z)

"’ y = 1 = -
h [ei_2+26ei_1+66ei+26ei+1+ei+2l ri(z), i=2,3,...,N-2 (4.4)

b r=
h [eN-3+27eN-2+93eN-LJ‘ ry-1(2),

where

r, (2)=12002% -0’z P~ h“[s9z(4)+93z§4)+27z(4) (4)1’

r.=1206“z=-h“[z.(4)+26z¢(4)+66z§4)+26 (4), (4)1 i=2,3,...,N-2
i i i-2 i-1 i i+2 °? ’

1+1
rN_1=120[h3z§3) Sz 1-h*lz (4)+27z (4)+93 N(i)+59z(“)l
(3) (4)

We have purposely left the components Zy CreecsZy in these
equations even though they have been assumed to be zero. For
consider

N +

r,(2) = .Z dir) Ky (£5-€)) + 1,(x)3
j=0
r, vas constructed to vanish for any

quintic spline, consequently rl(K5+(tj-t))=0, j=0,1,...,N.
Similarly ri(K;'(cj;c))=o, j=0,1,...,N. It follows that
ri(z) = ri(x), i=1,2,...,N~1. We can now use Peano's
method for finding a form of ri(x) which is valid when

x € c®(o,11. Some rather tedious manipulation leads to the

results that

r, (z)=-15h x(6)(t ),z (2)=-10h 6(6) (! {)5i%2,3,... 82,5 (2)=-15h 6(6) (e vy,

N 1

Consequently we see that since the matrix of the equations is

RER IR IS 7S

strictly diagonally dominant, maxlz
i
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We can deal with (4.2) in a similar fashion to prove that
max|z{ 2=y (P | & 3n*| =8| |/a.
i
It remains to insert these inequalities in the following
inequality which is not difficult to prove,

||z(t)-y(t)|Ishzméxlzgz)-yiz)|/8+5h“m§x|z§4)-y§4)|/384
i i

+ 6106 [x(®) || /4608,

to give the result. (Note that we have simplified a
multiplier from 71/576 to 1/8.)
We see that if we set do=d1=ooe=dN=O we obtain the

following result.

Corollary

1f xé3)=xé4)=x§3)=x§4)=o and y is the natural quintic

spline which agrees with x at the knots then
[y 1| € 081 1= | |/8.

Sard's best quadrature of third order.

This formula arises in the same way as the second order
formula except that in this case the remainder is required to
vanish for all quadratic polynomials. The Peano kernel 2 of
the quadrature formula is given by
1

*(s-t)ds - x +
w(s)K2 (s-t)ds ) HiKz(ti t).

(L) = J
0] i=0

The proof of the next result is similar to that of

theorem 2.2 corollary 2 and so will not be given.
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Lemma 4.3

If m € ¢3[0,1] and is such that

1 N
m(3)(t) = J w(s)K;(s-t)ds + ) diK2+(ci-t)
0] i=0
el N r
where w(s)srds + z d.t.” =0, r© =0,1,2
‘o i=0 *?* ‘
then 1 1
[2(e)12de = j w(t) m(t)~y(t)ldt
40 (0]

where y is any natural quintic spline such that m(ti)=y(ti),

i=20,1,...,N. (The function m~y is the Rodrigue function.)
Theorem 4.4

1 1
J fa(t)]2de < hﬁlleJ w(t) |de/8.
0] 0

Proof

From lemma 4.3 we have, with the same notation,

1 1
j [2(e)]2de = j w(t) [m(t)-y(t)lde,
0] 0

and so
1 1
j [2(£)12dt < ||m-y]]| j [w(t) |de.
(0] 0

It remains to note that m(3)(to) = m(a)(to) ] m(3)(tN) = m(a)(tN)=d

and use theorem 4.2 with x replaced by

1 +
-j w(s)K_. (s-t)ds.
0 5

Corollarz

If R is the remainder in Sard's best quadrature formula of

order three with quadrature points given by ti=ih=i/N, i=0,1,...,N,
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then

1 (3)
R(x)| € ||w|]|.h X (t)ledt/(2v2).
Ro0 | < [lwl]03/] P co12aes v
0

Proof

1

Since R(x) = J z(c)x(3)(t)dt we have by Schwartz's inequality

0

1 1 (3)

R(x) < L(t)l=de X (t))4de

| |2 J ( 12 J ( 12
0 0

1
s |lw]2 ns j (x$3 (£)12ae/8
0

which gives the required result.

The next result is also easily proved.
Theorem 4.5
6 3) _ &) _ () _ () _
If x € c®[o0,1], X EN Xy Xy 0

then

@ *

IRG) | € 06| [x$8 ] J [w(t) |at/s.
0

We conclude this chapter with the proof of a theorem which
shows that in general the addition of an extra point in a
best quadrature formula gives rise to a better quadrature
formula in the sense that the Peano kernel is reduced. In
the theoréﬁ &;‘;s;ume that t0=0, tN=1 Qi;ﬁoﬁt-;ny further

restrictions on the knot spacing.

Theorem 4.6

If

1
x(3)(t)21(t)dt, N2

1 N
J wit)x(t)dt = } Hix(ti)+J
0

4] i=0
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and

1 N 1 (3)
j w(t)x(t)dt = z J.x(t.)+Jx(t')*J X (t)EZ(t)dt
0 i=o * * 0

are two best quadrature formulae of order three then in

general
1 1
I [zz(t)lzdc < j [21(t)12dt.
0 0]

Proof

We shall show that if tO’t1’°°°’t are given then we can

N
choose t' so that the weight J associated with t' is nonvzero,
Suppose otherwise, then for any t' in Ostsl, where t'+ti,
i=o0,1,...,N wewould have J=0. Consequently the two
quadrature formulae would be identical and moreover would

integrate any natural quintic spline with the knots

to,tl,o.a,tN,t' exactly.

2 + +
Let y(t) = - ] c.K. (t.~t)+K_ (t'-t)
. i5 '3 5
. i=0
: r r
where Z c. t.  =¢t'"", 1 =0,1,2.
j=0 J ]

Then y is a natural quintic spline with the knots to’tl’°°’tN’t=
and so for this spline

1 N
J w(t)y(e)dt = J Hy(t,).
0 i=0

Now the weights HO’H1’°°"HN

this last equation can be rearranged as

are independent of t'. Moreover

1 + N 2 1 +
J w(t)K5 (t'-t)dt = J Hiy(ti)+ ) cjj w(t)K5 (tj-t)dt.

0 i=0 j=o0 JJo

(4.5)

(4.6)
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We notice that (4.5) can be solved for 92122 and it is
clear that each will be quadratic in t'. It follows that
the right hand side of (4.6) is a polynomial of degree five
in t'. However the left hand side can never be such a
polynomial, consequently the relation (4.6) cannot hold
for a continuum of t'., (However there may be values of
t' for which (4.6) can hold, but they will not form an
interval.)

Thus we have shown that we can choose t' so that J40.
The pfoof of the theorem is completed as féllows°

1 1 1

j [2, ()12t = j (2, (€)1 %de + I [zl(t)-zz(t)lzdt

0] 0 0

1
+ zjozz(t)(zz(c)-zl(t)ldt,

Now

N
+ + .
lz(t)-ll (c)=i§o (Hi—Ji)KZ (ti-t)-JK?_ (£'-t),

which is easily seen to be the third derivative of a natural

quintic spline with the knots tO’t1’°°°’t ,t'. However

N

such a spline is integrated exactly by the quadrature
formula with Peano kernel 22 and so the remainder vanishes
for it. Hence

1 1
[lz(t)lzdt + I [9.1(1;)-9.2(t)]2dt°

1
I [zl(t)lzdt = J
Tc 0

0 (0]

It follows that
1 1
[2,(t)}2de < | [2, (t)123dt
T2 1
0 0
with equality if and only if»gl = 22, that is to say if and

only if J=0.
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It remains only to remark that since there exist best quadrature

with J$0 it follows that for these quadrature formulae

1 1
J [zz(t)lzdt < f lzl(t)lzdt°
0 0

In the proof of theorem 4.6 the restriction N22 was necessary
for the construction of the spline. However with the same

method of proof we can establish the following theorem.

Theorem 4.7

1 1 1 (3)
Let J w(t) x(t)dt = ] Hix(ti) + J X (t)zl(t)dt,
0 i=0 0

and let
1 1 1 (3)
J w(t)x(t)dt = J J.x(t.)+J'x(c')+J"x(t")+J x"7(t) e, (t)dt
. i1 2
0 i=0 o
be a best quadrature formula of order three. Then in general
1

1
I [zz(t)lzdt < J [ml(t)i2dt.
0 0

Proof

Clearly as in the proof of theorem 4.6 we have oﬁly to show
_that we can choose t' and t" so that |J'|+|J"|4 0. To do this
we take a fixed point t' in [0,1] such that t' % tyaty - (This
point t' takes the place of t2 in the proof of theorem 4.6 when
N=2). Then we can show exactly as before that the hypothesis
that J" = O for all choices of t" in an interval would lead to
~a contradiction. Consequently there will‘exist quadrature

formulae for which J" + 0. The result follows as before.
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CHAPTER 5

Natural Quintic Hermitian Splines

We examine the type of natural spline which is associated with
the optimum quadrature'formula to be discussed in the next chapter.
This spliﬁe is uniquely determined when it and its first derivative
hre given at the knots; by analogy with Hermite's polynomial
interpolation formula GQ:y-;;e called??ermitian spline‘q°

An analysis of the convergence of other types of Hermitian
spliné have been given, see for example Hall [ ]

howeve: for later purposes we need to discuss the
convergence of the natural interpolating quintic Hermitian spline,
For brevity we shall call it an H-splipe, and denote it by y. The

chapter closes with an examination of the qualitative properties

of the two fundamental H~splines.

Existence and construction

We assume that IR T yil) - xil) = 0, i=0,1,..,.,N and

for simplicity we shall write

y® e, s

i i bi. iBODlpooo.No '

Since the spline is natural we have immediately that b° = bN = 0,

Lemma 5.1

If y is an H-spline such that Yi = X yél) = xil)

i ’ i=0,1.¢oo.N

then
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- = 29 - -5 1y ., ()
3a° a, == (xl xo) "% (3xo +2x1

h
o
. h, ,h. | Xx. ,-x. X.7X,
- -(1- B T S0 ) O 2 S N T
ajaj +3qi (1 o. )aj 1 =20 R, [_Aa§ 3
j=1] h? h?
J J-1
(l) (1)
j=1 1 1 1) .,
+ 8 =-=J=-—-_J= _Jg-:: .,%a (Tl“ - i"’) X§ )p J=10239009N-19 (501)
J-l h. j-1 j
i-1 .
- = _.,.,_ - et (L) (1)
ay-y*3ay 2 ("N’ﬁv-)" (2xN1 3y
N-1
1 X. -X. x.-X-_
-%ka)b +% ab +1 Fmiﬁf{w ”;AJ+ JiLi -
-3 =177 h* h*
: J i-1
3 (1) 1 (L) 3 (1)
- + 7(==,+ IR+ e, (5.2)
. +1 . h, . -
[hJ e T
371,32, 000 ,N-1
where bo = bN = 0, and qj = hj /(hj_1+hj).
Proof

These relations can be proved by the method of undetermined

coefficients. Alternatively we have for any z € CG[tj,tj+1],

2(t)=A(s)z +A(1=8)z,, + B(s)h z{ D)~ B(1=s)h, z( )+C(s)h3z(3)-c(1-s)hi ffi

h6

355 82(s-1)2 (sz-s-i)z(6)(t Yoty <t <t (5.3)

72 i+l®

where s = (t-ti)/hi and
A(s) = 5 (1-8)2(2+4s+82-28),
B(s) =  (1-8)2s (4vs-262),

C(8) = 5 (1-8)262(26-3).
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If z = y, an H-spline, then the remainder term vanishes. This

gives therefore a representation of y in [tiati+1] in terms of

(1 Q) (3) _(3)

Yio¥ 41091 oYis10Yy oYi41c It remains only to impose the

(2)

conditions of the continuity of y at the knots to give the

relations of (5.2), Those of (5.1) can be proved in a similar

fashion, for this the representation of y in terms of yi,yi+1,yi(1)o
y(l) a.,a,. . is required
i+l? “1°%7i+1 °

The existence and uniqueness of the interpolating spline
can be deduced either from (5.1) or (5.2) since the matrix of
each set of equations is strictly diagonally dominant, We note
that the uniform norm of the inverse of the matrix of either of

the equations is bounded above by 1/2,

Convergence

We shall outline the propf of a theorem on the convergence
of the interpolating H==spli_.ne° This is similar in principle to
that of the corresponding result for natural cubic spline
interpolation, the algebra is however more complicated and so will
be omitted.

First we prove a result which will be found useful in the

next chapter,

Lemma 5.2

2 2 1
lag=x3 2 1o layx(? | < 5 maxn [x$ | ,n_ %8 15en%] x| /720
where h = max h]._°
1

Proof

We sketch this proof,
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(2)

In the equations (5.1) we write e; = a;~x,’, i=0,1,...,N and
rearrange them to produce a set of N+1 algebraic equations in
e 0@ 000080 The right hand sides of these equations are functions
of x alone and with the aid of Peanc's method can be written as

3 3
S VRO TR 3 B s LA O

* 360 ® 7360 . - +h,
hJ=1 j

1 ( .
‘:’i*h X 9 J=‘19290009N=’19

Ly o3 1 (6)
"3 byt % 30 PNer® o

I 9

6)

where we have omitted the arguments of x
Since the norm of the inverse of the matrix of the equations

in e n€poeoo sy is bounded above by 1/2 we obtain the result

stated,

Lemma 5.3

If x € Cs[togtN] and y is the H=spline such that

1 1 .
Yo% = yé ) . xE ) = 0, 1=20,1,.00,N

3 -2 2 ha
1< § T TN e B 119

Ib.“x
i
where b, = Y§3)o
Proof
L _ _ .33 . . .
et fi = bi X7 1=1,2,500,N=1, Then (5.2) can be written
- - - 2.(3) (3
3£1‘a1f2 ry 3x1 +oy® 2
(1w - - - 3)_,, 3, G . -
(1 uj)fj=’1+3fj‘%fj+l rJ.h(l Q. )J{J }\J- #uj J+19 J 2 390009N 2,
(]~ = - (3) (3)
(1 aN=1)fN=2+3fN=l rN=1+(1 L 1)x 3me1
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where rj denotes the right hand side of the j=th equation in (5.2).

Peano's method now leads to the result that

3f1=a1f2 = =(l=a9x§3)+sl
=] £ o - ) = £ s -
(1 “j)fj=1+3l.j uj fj“ﬁ'l 5j9 J 29390009N 29
e - - (3)
(=g My * 36y “N-1¥5  *En-1
where
.
L i emanl Oy
Sj - 30 : hl+h — 1 5 3=1,25000,N=1
i1

. "¢ £, g tY FE S
and t3=1 £ tJ g CJ € tj+l tj*l
Denote the elements in the inverse of the matrix of the

equations (5.4) by C, then, since !!Cglll § § it follows that

3, 3.1 g1.06)

€51 « Icﬂaﬁﬁfxé )I*!cim=1 “N=-1 “é I+ iﬁ’h’llx( o,
i=19290 oo 9N=10

Finally, from (L.4), leg| < 9.37%/8, Jejy | < 9,378,

which, when used in (5.6) will give the result,

Corollary 1

: 3
max|by=x (P | < 4PN+ 25

Corollary 2

For sufficiently large N there exist knots tp9 tq9 where

t <
to S P tq € tN such that

|b; = x§3)| =0(h3) peicgaq

O[], i=1,2,000 81,

(5.4)

(5.5)

(5.6)
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Moreover tp=t°9 tNatq are O(h log h) as h =+ 0, where mix hi;:h

(We assume tos ty fixed.)

Proof

This is similar to the proof of the corresponding reésult

for natural cubic splines, [T ).

Theorem 5,4

1f x € Cslcogtujg and y is the H=spline such that

YiTR; < y§1)=x§1) = 0, 1=0,1,00.,N, then for £, < t gt

N
h3 (3), 1.3, . m¥x0]
max|x(t)=y(t)] = 357 max(ix !9' ) + 46080

where h = max hio
1

Proof

In(5°3)set z = y=x, then for t; Sttt

i+l
y(t)=x(t)=C(s) (bimx?))%(l 8) (by 417X fii)
h®
- 57“'2”3’ s2(1-8)2(s2~s-1)x 8 (¢"), by <t < Fiel®

where 8§ = (t=ti)/hi and C(s) = (1=s)2s52(2s-3) /48,

It is easy to show that for t, s ts b, the following inequality
is true,

h3

ly(e)=x(t)| < 5355 > max(|b, ==x(3)|9|bl+1 ffi|)+hsllx(6)||/1536oo

Corollary 1 of the previous theorem shows that in t,stst
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. . 3
lyerxe] s gz maxClag® Lol Lod(lxg? 11D g5l 19 1))
15360 °

The result now follows after some sgimplification,

Note

Corollary 2 of theorem 5.3 can be used to provide a proof of
the existence of knots tp and tq such that max!x(t)=y(t)f = O(hb)

for t tgt where £ =t tg.=t are O(h loeg h) as h + O
o p§ qp pOD q ( g bh) D)

N
c.fo [ 9]
The following theorem is easily proved, in it we assume

to and cN fixed,

Theoxem 5.5
Given ¢ > 0, for any x € C[toDCN] there exists for sufficiently
small h a natural quintic Hermitian spline s such that

[lx=sl] <.
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Oscillation Properties of the FundamentdH splines

We end this chapter with a discussion of the qualitative
properties of the two basic types of H=splines, namely the

fundamental H-splines, The results are of interest in themselves

and will be invaluable when we discuss the qualitative properties

of optimum quadrature,

Definition ..

(a) P; is a fundamental H-=spline of the first kind if

= (l) 2= j=
Pi(tj) Gijo Pi (tj) 09 J 00190009N°

(b) Qi is a fundamental H-spline of the second kind if

1 ‘ .
Qs (e =0, Qi (£ )=6 5 §=0,1,000 N,

An immediate consequence of these definitioms is that any H=-spline

can be written as

N
1
izo(yipi + Yé )Qi)°

Lemma 5,6

(2)

2 .
IPi (to)l + |P§ )(cN)I ¢ 0, 1i=0,1,00.,Ns

Proof

The result is obvious for N=1, since otherwise P° would be a
e e r)
quintic in t s t § t; such that Po(to) = 1, Pé (to)=09 r=1,2,3,

P(r)

o (t1)=09 r=0,1,2,3 which is clearly impossible,

We shall now show that for N 3z 2 thé hypothesis that

p{%) (¢

N 0) = P§2>(tN) = 0 leads to a contradiction., The cases i=0
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or N will be considered first, and to be definite we take i=0,

It follows that Pér)(tN) = 0, r=0,1,2,3 and Pér)(t =0,

N-1’ ;

r=0,1. Consequently P_ is identically zero in [t =~since it

N-1°FN

is a polynomial of degree at most five there. This argument can
be repeated for the interval [tN=2’tNA if N # 2 etc, until the
conclusion is reached that P is identically zero for t 3 o

. . - (r) -
Hence Po must satisfy the following Po(to) 1, Po (to) 0,

r=1,2,3, Pgr)(cl) = 0, r=0,1,2,3, Since these cannot be satisfied

(2)

by any quintic polynomial the hypothesis that Po (to) = Piz)(tN)co

is false.

We now consider a general value of i for 1 £ i ¢ N=1, with

(2) (2)

the hypothesis that P (co) = Pi (tN) = 0 and we will show that

P must vanish identically outside the interval [t1§19t1+1]o

If 1 2 2 the previous reasoning shows that Pi vanishes
identically in [togtl;lD and, if i 3 3 it will also be identically

zero in [t)»ty)]e We repeat this argument in each interval for which i

is not a right hand end point to prove that Pi vanishes for t ¢ ti=1°
In a similar fashion we argue from the knot ty to deduce that Pi

vanishes in any interval so long as ty is not the left hand end

point. Consequently P° is identically zero except in (e, BELTIRE

Thus it satisfieé
(")(c )= P("’)( P =0, r=0,1,2,3, Pi(ti)=laP§1)(ti)=Oo (5.9)

We shall show that these cannot be satisfied by an H~spline. For

(1)

since P vanishes at t; -10t5 9t it follows from Rolle's

+1

vanishes at least twice in (t. _,t.
i=1"1i+1
( )

. vanishes at least four times in [t 1°%;

theorem that P

consequently P

10
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Another use of Rolle's theorem and of the conditions that

(3) _o(3) . . (3)
Pi (ciwl) Pi (ti+1) 0 leads to the conclusion that Pi

. . . . . (3)
vanishes at least five times in [ciglgti+1]o Hence since Pi

(3)

is at most quadratic we see that Pi is identically zero in one

of the intervals [ti=1°ci] or [tigti+1]o Let it be the former, then

p{r)

i (ti=1) = 0 for r=0,1,2 implies that Pi(t) = 0 for L, $tst

o

i
However this contradicts Pi(ti) = 1, and so no H=spline satisfies

(5:9) ¢
(2)

i

(2)

Thus we have shown that the hypothesis that [P i

(goﬂ*ip (°N)|“°

leads to contradictions, and so it is false,

Corollary

(2) 2) @Dy w0 p@ ey
Pl (t) # 0, BTV (e) £ 0, BTk ) # 0, BT () O,

Proof

(2)

(o}

Assume that P (to) = 0, we shall obtain a contradiction,

Now Po vanishes at least N times in (goch]D consequently Pél)

(2)

(o]

vanishes at least 2N times in [cthNJO Hence P vanishes not

(3)

less than 2N times in [tochjg and so Po

vanishes at least 2N+1
times in [co”tNl° However this means that Po is quadratic in one

of the intervals, Clearly this cannot be [to”tll because the

(2)

- p(l) -
o (to) Po (tN) = 0

. - (1) -
conditions Po(to) 1, Po (to) P

cannot be satisfied by a quadratic,

(3

Moreover if the interval in which Po

I

‘ vanishes 1is [tk,,tk+1
k 2 1, then this would imply that Po would be identically zero
in that interval., 1In this case Po would be identically zero for

t st which leads to the conclusion that Péz)(tN) = 0, This

contradicts lemma 4.1,and so P§2)(to) # 0,
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The proofs of the other results follow in a similar fashion,

Theorem 5,7

(1)
(ii)

(iid)

There is a similar set of conclusions when P

(2)

If Pi (tN) = 0 then

Pi(t) = 0 for t > Ci+l”

P.(t) 20, == <t <

t.

Pi(c) = 0 only for t = togtlgooogcim i+1

in == < ¢t ,
.19 5 tl

+1°

(2)

i (to> = 0.

Proof

(i)

From the corollary to lemma 4.1 if sz)(tN) = 0 then i g N=1,

This follows as in the proof of lemma 5.6, We note that i 3 1

(2)

and Pi (co) # 0, and further that Pi is an H-spline with knots

(x) - -
togtlgoooati+1 and Such that Pi (ti+1) == 09 !.'09192930
We shall show first that the only zeros of Pi in [topci+1]

are at the knots togtlgeoogt Assume the contrary,

i=1°%ie1°
then there is another point in (toati+1) at which Pi vanishes,

Consequently Pi has at least i+2 zeros in [t:o,,t:i , and so,

p(D
1

+1]

by Rolle's theorem, must have at least i+l zeros in

(to,,ti+ ). One of these zeros will be at the knot too

however the remaining ones lie between the knots, Hence

Pgl) vanishes at least 2i+2 times in [t _,t., .}, Since
1 07 1+l

P§2)(ti+1) = 0 we can deduce with the aid of Rolle"s.theorem

(2)

that Pi ). Another

vanishes at least 2i+2 times in (t ,t,
o i+l
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application of Rolle’s theorem, together with the use of the
(3)

.. (3) -
conditions Pi (to) Pl

(3)

i vanishes at least 2i+3 times in [t st ) However

(o]
o
1

(tN) = 0 leads to the result that

P

is quadratic in each of the i+l intervals and so must

vanish identically in at least one of them., This interval
t be either . .] or [t.,t, since we m

canno eit [txwl’txl [ 1’t1+1] ce ust have

Pi(ti) = 1, Hence Pi vanishes identically in the same interval

(3)

as Pi o We can now continue the property of vanishing in

an interval down to the end interval [togtllo However this

(2)

would mean that Pi (to) = 0, which contradicts lemma 4,1,

It follows that the only zeros of Pi in [togci*l] are at

toptlpoo o Dti"lgti"‘lo
(2)

We next show that Pi does not vanish at cogtlgooogtim

(2)

i

10

Again we assume the contrary, that is, P vanishes at a knot

which is not ti nor ti+1n Rolle’s theorem can now be used to

(1)

show that since Pi

(2)

i

vanishes at least 2i+l times in [togti+1]

then P will vanish at least 2i times in (togti This will be

+1)°
at points all of which, except perhaps one, are not knots,

(2)

Consequently from this assumption it would follow that Pi

would vanish at least 2i+2 times in [to°ti+1]° But then we would

(3)

have that Pi vanished at least 2i+3 times in [to,t. The

1+1]°

rest of the proof follows on the same line as before.
Thus Pi cannot change sign at the knots, and since Pi(ti) = 1

we conclude that Pi(t) 20, =» < t g ti+ if 1 31,

1

It remains to consider the case §{=0, that is we have to prove

thae if P (t)) = 1, 2P (e ) =0, (e = 2P ey = 2P (e, =

NE)

o (t3) = 0 then P(t) > O for t ¢ tou However it is easy to show
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(t,=t)* (t=t )
that Po(t) = 3?7.:.__: {1 =4 F: ] for to £ tg tlo
[o}

(2) = 2 - -t )2/h2. k<t
Hence Po (to) 140/h0” and so Po(t) 1+ 70(c‘c°) /ho” <k,

which is positive,

Theorem 5.8

1f Piz)(to) #0 ¢ Péz)(tN) then Pi has at most one zero which

is not at a knot, and Pi will change sign only at this zero.

groof

We note first that Pi cannot vanish identic#lly in any interval
in [togtN]° This is obviously true for the intervals [timlpti]
and [ti,tiﬂ]° And if Pi were to vanish identically in any other
interval then we would continue the identically zero conditions down
to one of the end intervals which would contradict the hypothesis
of the theorem,

Let us now assume that Pi vanishes at two distinct points in
(to°tN) neither of which are knots, Then, with the aid of Rolle's
theorem, we caﬁ deduce that P£3) must be identically zero in an
interval. If this interval does not have t; as an end point
this would imply that Pi would vanish identically in this interval,
This however is not possible by the above, Consequently if Pi
vanishes at two distinct non knot points then P§3) must vanish in
one or both of the intervals which have t. as an end point, Let

the interval be [ti,t. l. Then since

1+l

(1) _ 5(3)
Pi(ti+1) = Pi (tijq) =F

i (ti+1) =0

it follows from the uniqueness of the interpolatory natural quintic

£t £t .. But since

spline that P, vanishes identically for ., N

1
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) . . c e e (2) ,
Pi is continuous this implies that Pi (ti+1) = 0, Consequently

) .. (r) -
Pi 18 a quadratic in [tigti+1] and such that Pi (t ) 0,

i+l
r=0,1,2, But this implies that Pi(ti) = 0, which is a contradiction,
In a similar fashion if P£3) vanishes identically in [ti=1”ti]
we reach the same contradiction. Therefore we conclude that Pi
can vanish at no more than one point in (to”tN) in addition to the
knots at which it is constrained to vanish,
If 1 £1 ¢ N-1 then Pi cannot vanish outside [togtNJ since,
for t g t, Pi is proportional to (t=tq)2° When i=O,P° may vanish
outside [to°tN1’ however it cannot vanish in [toatN] except at the

knots tiotyvoooptye This follows from the observation that
(L)

[0}

in the count of the zeros of P we do not need to allow for the

possibility that the knot ty is counted twice, Since Po(to) =1,
Pcl)(t ) =0 it follows that P (t) = 1 + (t-t )ZP(Z)(t Y/2 for

o o o o’ "o o

t st . Clearly this can have at most one zero in (=°°9to)° Similarly
PN has at most one zero which is not a knot and this zero lies

ve t_ ..
abo N

We complete the proof of the theorem by showing that Pi

does not change sign at the knots at which it vanishes. For this

(2)

to be true we have to prove that Pi does not vanish at any knot

except perhaps at tio The cases i=0, N need to be treated separately

from the general case. Let i=0, then Po has N zeros. Consequently

Pél) has at least N=1 zeros in (to,,tN)D and these are at points

1)

o has at least 2N zeros in

which are not knots, Therefore P

[togtN]o It follows that Piz) has at least 2N-1 zeros which lie
(2)

between the knots, and so has at least 2N zeros in (tthN] if Po

vanishes at a knot. We now deduce that Pi3) has at least 2N+l



zeros in [tthN]o But, as before, this implies that Po is
quadratic in at least one interval., It is easily shown that this
will contradict the hypothesis that Po(to) = 1, The proof for
i=N is similar.

When 1 £ i £ N=1 we begin the count of zeros with the fact

that Pi vanishes N+1 times in [t }. The rest of the proof

o’ N
by contradiction follows familiar lines.,

Since Pi can change sign only where it vanishes and since
Pﬁz) is non zero at each of the knots where it vanishes we conclude
that it can change sign only at the zerxo which is not at a knot,
Indeed it is easily proved by the same method that if Pi has a zero
at a point which is not a knot then it will certainly change sign
there. This concludes the proof,

The theorem shows that Pi has the same qualitative behaviour
as the first fundamental polynomial in the usual Hermite's
interpolation formula. We next investigate Qi and we shall see

that its behaviour is similar to the second fundamental polynomial

in Hermite's interpolation formula.

Lemma 5.9

Qés) cannot be identically zero in any interval in [t otylo

gxoof

The case N=1 will be taken first., Now Q§3)(c) = 0, t, § t < tyo
would imply that Qi is at most quadratic in this interval. But

(1)

this, taken together‘with Qo(to) = Qo(tl) = Qo

(tl) = 0, would

give the result that Qo(t) = 0, to gttt Hence since

10
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(L =1 3 (3) . . . .
Qo (to) =1 it follows that Q° cannot vanish identically in
[togtllo A similar argument holds for Q-

When N 2 2 we must distinguish between i=O/N and 1 ¢ i g N=1,.

First let 1 £ i € N=1, and assume that Q§3)(t) =0 fort, £t gt

K < k+lo
We note immediately that i # k,k+ly if i=k for example then Q,
- = o)
would be quadratic in [t gt, 1] and Q (t ) Q. (t1+ﬂ Q (t 1+l) =0

which would imply that Qi(t) =0, t; st gt 158 contradiction,
s ee 0P (e ) = o

In addition we also notice that since Qi (tk) Qi (tk+l)g O the

spline Qi can be regarded as the union of two splines, one with

knots toaglocoogckg the other with knots t One of

k*lgooogth
these splines is identically zero(since a spline is uniquely
determined by its interpolation conditions), Let this be the spline
with the knots bt i o0 ENe that is,i < k. Now if i # k-1 we see
that Qi(t) = 0 for ey § € & £ This follows from the requirements
that Qi should be a polynomial of degree at most five in [t

(1),

kmlgtkl

together with Qi(tk=1) = Q o, Qér)(tk) =0, v=0,1,2,3,

k=l)

Clearly this argument can be repeated until we reach the conclusion

that Qi(t) = 0 for t

W

ti+1°

Now Q vanishes at i+2 knots, t 0ot19° 009t ys and so by

(1)

Rolle & theorem Q
(1)

Hence Qi

vanishes at least i+l times between knots.

vanishes at least 2i+l times in [togc

(2)
1

11 Hence,

vanishes at not less than 2i+2

@ (¢

again by Rolle's theorem, Q

points in [togt ] (we have used Q ) = 0). Finally,

i+l

Rolle'’s theorem together with the constraints Q(3)(t ) = Q(3)(t1+1 =0
gives the result that QE ) has not less than 2i+3 zeros in [t 9t1+1]o

(3)

However Q is quadratic in each of the i+l intervals and so can

vanish at no more than 2i+2 points unless it vanishes identically

(3)

in one of the intervals. Consequently Q = 0 in at least one of
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the intervals in [topti+1]o

Clearly we can now use the previous argument to conclude that

Q vanishes identically except for t,, §tst, . However ve

have the following conditione to be satisfied,

(r) NS L N
i (ti.‘l) = Qi (ti+1) 0, r=0,1,2,3, Qi(ti) 0, Qi (ti) 1,

Q

Rolle’s theorem can be used again to show that these conditions

cannot hold simultanecusly. Indeed Qi vanishes at t = t

9]

i

i=1°%10%541
implies that Q
(2)

i

vanishes at least four times in [t. . 0
: [ 1=19t1+1]

Consequently Q
(3)

i

vanishes at least five times in the same range
and Q vanishes at least six times also in this range. We
conclude that Qi is quadratic in one of the intervals [tiblﬂti]

. (1) -
or [ti9ti+ll° Clearly this precludes Qi (ti) 1. Hence the
(3)

i vanishes identically in an interval leads to

hypotehsis_that Q
a contradiction,
It remains to prove the result for i=0,N., However it is
easily seen that Q09 for example, would be identically zero
except in [toptllo_ This case is completed by noticing that this

situation is identical with the one treated in the first paragraph,(when

N=1),

Theorem 5,10

(@ QP (e) #0, 541, 05i,5en,
® QP #04Py,

(c) (t“ti)Qi(t) 20, =0 < t <

Proof

We shall show first that Qi vanishes in [to”tN] only at the

knots, Suppose the contrary, that is, Qi vanishes in (to°tN) at
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some point which is not a knot. Then this would mean that Qi
would vanish at least N+2 times in [togtN]o Three applications
of Rolle’s theorem will lead to the conclusion that Q§3) would
have to vanish identically in an interval, This is not possible by
lemma 5.9, and so the supposition is false°

We show next that Qéz)(tj) #0, j#1i, Two applications of

2 . . .
é ) vanishes at least 2N times in

Rolle’s theorem will show that Q
[gogtN] at points all of which except one (which may be t=ti)
lie between knots. Suppose now Q§2)(tj) = 0 for some knot th

where 1 # j. Then Qiz) would vanish at not less than 2N+l points

. v s (3) = n(3) -
in [togtN]o Rolle’'s theorem and the conditions Qi (to) Qi (cN) 0

3 .o
1

lead to the conclusion that in this case we would have Q n
an interval. This contradicts lemma 6.1 and so the hypothesis
that Qﬁz)(tj) = OIfor some tj # ti is false,

If i = O,N we can obtain the stronger results stated in (b).
The proof follows the same path as in the previous paragraph,
however the reservation that the 2N points at which Qéz) can be
shown to vanish might include the knot t, need no longer be made,
Consequently the hypothesis that Qéz)(to) = 0 will lead to a
contradiction,

If i satisfies 1 £ i ¢ N=1 the proof of (c) is now straightforward)

for Qi vanishes only at the knots togtlaooogt s and so, since

(2)

Q;"" does not vanish at the knots togtlgooo‘,tv_lgtiﬂ,,”ogtND it

N

i
follows that Qi changes sign in [to°tNJ only when t = t.o When
5~(2) .
= = £
t £t we have Qi(t) (t to) Qi (co)/Z9 and so Qi does not vanish
for t < £y Similarly for t > tye
We shall complete the proof by showing that Qo does not

vanish for t < t,s since Qo(t) = (t=t°) + (twto)ZQéz)(to)/Z
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this can be accomplished by proving that Q§2)(to) < 0, Suppose
the contrary is true, that is that Qéz)(to) > 0 (we have seen
that ng)(to) # 0). We use Rolle’s theorem to show that this

would imply that there would be a poxnt t?, where t < t! < tl9 at

(1) @
which Q (t’) = 0, Consequently Qo (t)dt + 1 = 0, and since
o
Q(z)(c ) >0 it follows that Q( ) would vanish at some point in

(2)

(togtn)o We can use the existence of this zero of Q to lead,

again by Rolle’s theorem, to the contradictory conclusion that

Q§3) would vanish in some interval. Hence Qéz)(to) < 0 and Qo
cannot vanish in (==°°,,t°)°

This completes the proof of the theorem.

zpeorem 5.11

For each i, O £ 1 £ N, there exists a constant @ such that

Pi(t) + aiQi(t) z 0, =0 < £ < o,

Proof

(2)

. .+ a.Q. . . i .
Let R1 = P1 alle we choose @ so that R1 (t) vanishes at

one of the end knots, If Pﬁz) vanishes at one of the end knots

s
then we take a, = 0, and theorem 6+2 gives the required result,

in the general case when Péz)(to) ¢ 0 # sz)

(tN) choose a.

(2) > ~ .
so that Ri (tN) = 0, The proof that Ri(t) 2 0 for =» < t < ®» is
accomplished in two steps, First it is clear that Ri is
identically zero for t » ti+l (if i = N then this is not relevant),

the hypothesis that Ri vanishes in [togti+1] at points which are

not knots is easily shown to be false by the use of Rolle’s theorem,

12) 2 ’
¥ This is possible sica @, [b,)#0+ Q'Dfé,,), Reorems 510,
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(2)

Rolle's theorem can be used again to prove that Ri does not

vanish at any of the knots toatlaaOOQti= The proof is completed

10
by showing, by calculation, that R, cannot vanish for t < t,e

Then, since Ri(ti) = 1, it will follow that Ri(t) 2 0 in (=w,®),
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CHAPTER 6

Third Order Optimum Quadrature

We turn now to the investigation of optimum quadrature of order
three. The quadrature formula with remainder will be written
1 N b (3)
f w(t)x(t)dt = J Hyx(t,) + J k(t)x 7’dt
0 i=0 a
where a = min(Ogto)g b = max(lgtN) and

el

N
+ +
k(t) = J w(s)K, (s=t)ds = [ H,K (t,~t);, a5t &b,

o) 1=0
It will be recalled that we wish to find quadrature points

tyoCyooocsty and weights HODHIDOODQHN so as to minimize
b
f [k(t)]2dt
a

1 N '
subject to j w(t)trdt = 2 Hitib r=0,1,2,
0 i=o :
We shall say that an optimum formula with N+l points exists
if there is a set of distinct quadrature points to,tlpoaO”tN and
. b
nonzero quadrature weights Hogﬂl,ooogHN which minimize | [k(t)}%dt.
: a
It has been shown by Karlin [ 4 ] that an optimum quadrature formula
exists for N » 2 when w=1 (see also Schoenberg [i/5])). However
it is not clear from his proof (which is sketched) that it can be

adapted for the case when w is not constant., We present here

a proof in this case,

Theorem 6,1

If, for N 2 1, an optimum formula with N+l points exists and
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if w(t) 20, 0 g t £ 1, then

(1) O < ti <1, i=0,1,.004N,
(ii) Hi >0, i=20,1,,.0,N,
Proof
If Pi and Qig i=0,1,.00,N are the fundamental H-splines

and if y is any H-spline then

P, + yél)Qio (6.1)

<
i}
1
o
2

(1) Since the optimum formula integrates exactly any H=spline with
1
the knots t_,t. 000,t, it follows that ( w(t)Q.(t)dt = O,
o®"1 N Jo i
i=0,1,0..,N. Consequently Q; must change sign in (0,1) since w
is of constant sign there, But, from theorem 5.10(¢), Qi changes

sign only at the knot t:;. Hence t. must satisfy 0 < t; < 1L,
(ii) The quadrature weights H°9H130009HN are given by

1 1
H, = IOW(F)Pi‘F?dthOW(t)[Pi(t)+“iQi(t)]dt? i=o‘,1?ooo‘,N°

From theorem 5.11 we can choose ai so that Pi+aiQi 2 0 in (==,=),

Hence, as w(t) 3> O, the result follows,

Corollary
If an optimum formula exists with N+l points then it
1
minimizes I [k(t)12dt, (i.e. a=0,b=1), subject to the constraints,
0

Lemma 6.2

If, for N 2 2, an optimum formula with N+l points exists

then an optimum formula with N+2 points will exist.
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From the previous corollary it is clear that we need consider only
q@adratﬁte points in (0,1),

Let k be the Peano kernmel of the N+l point formula, if there
is more than one such fofmula we choose the one which gives the
smallest‘value of Illk(t)lzdto Let k1 be the Peano kernel of any
N+2 point quadraturg formula (for the same integral) which is
exéﬁt for quadratics and whose quadrature points lie in [0,1),

Suppose that an N+2 point optimum formula does not exist,
Then the problem of minimizing f;[kl(t)]zdt subject to the
constraints would not have a solution for which there would be
N+2 distinct quadfaﬁure points, However by supposition an N+l
point formula exists and so the N+2 point minimization problem
would have the N+1 point formula as its solution. Hence, for all
c?oices of N+2 quadrature points we would have fl[kl(t)JZdt 2
f (k(t)]%dt. But we have seen, theorem 4.6, thag there exist
Ngz point formulae such that I:[kl(t)lzdt < I; [k(t)])%dt. It
follows that an N+2 point formula will exist., The restriction

N > 2 is necessary in this proof; however we have the following

result when N=1,

Lemma 6.3

If an optimum formula with two points exists then there

will exist an optimum formula with four points.

Proof

The proof of this uses the same arguments as were used in
the proof of lemma 6.2 except fhat we appeal to theorem 4.7

instead of theorem 4.6,
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Theorem 6.4

If w(t) 30, C s t £ 1, then optimum quadrature formulae

exist with 2, 4, 5, 6, ... points,

Proof

We show first that a two point formula exists, that is to
say, the quadrature points are distinct and the weights are non zero.
The quadrature formula is exact for quadratics and so

1
r - r ¥ -
Iow(t)t dt Hoto + Hltlg r=0,1,2,

Clearly neither weight is zero, otherwise these equations would
ngt be satisfied, Moreover the elimination of ﬁo and H, gives
IOW(t){cmto)@mgl)dt = 0, and sc if w 3 O the quadrature points
cannot coalesce. Hence a two point formula exists.

If a three point formula exists then we can use lemma 6.2
to prove the existence of a four point formula etc, On the
other hand if a three point formula does not exist we can now use
lemma 6.3 to prove the existence of a four point formula. Hence
optimum formulae with 4, 5, ... points exist, This concludes

-

the proof.

It is unfortunate that we are unable to prove the existence
of a three point formula for the optimum quadrature of
f w(t)x(t)dt. Fortunately Karlin’s result will £fill this gap
wgen w=1l, moreover a calculation in this case shows that the
optimum points are given by },3(1 + t) where t is that zero of

2¢3 = 9¢2 + 15¢ - 7 which lies in [0,1]., In fact

1 1
2¢ = 3 % [(l7£m4f = (l7£+4)3!9 and the quadrature points are
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0,128 186, 0.5, 0,871 814 and the quadrature weights

H =H

o 2 = 0,301 396, Hy = 0,397 208,

Convergence of optimum quadrature

If k is the Peano kernel for the optimum formula with N+l
points it follows that for any other quadratute-formula with N+l
points in {0,1] we must have

pl 1
J [k(t)1%dt < ( [2(t))2dt
o 40

where £ is the Peano kernel for the other quadrature formula, We
can use theorem 4.4to give the following result immediately, (This

theorem was suggested by S, Michaelson,)

Theorem 6.5

If H = 1/N and if k is the Peano kernel for the optimum formula

then

1 1
! [k(t))2dt < HO||w]| f lw{t)|dt/8.
0] o

The order of the convergence of the optimum formula will
clearly depend on the distribution of quadrature points, in
particular the size of t, and of 1=t will be crucial, The

next lemma goes some way to providing this information but it is

clearly unsatisfactory.

Lemma 6.6

If togtlgooogtN are the quadrature points in the N+l point

optimum formula with w(t) = 1, O s t £ 1 then
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6/7 -
too (1 tN) < 1,75H s tia17t < 4,25H

6/79 i“o,lgooc gN-l

where H = 1/N.

Proof

SNSRI

The Peano kernel k of the quadrature formula is given by

-4y 3 N
k(t) = iigilz = z HiK;(t;iﬂ:),J Ogtsl,
i=o0
(1=t)?3
It follows that k(t) = =g for ty st ¢ 1,
However
Fl !“1 .
| [k()12de < | T(e)12de < HO/8
I 0
N

from theorem 6.3. A simple calculation leads to the result that
(1==tN)7 < 63H$/2 which gives the required upper bound. It is
=3 :
easily seen that k(t) = -t for O € t ¢ tog‘and the required
inequality will follow from an argument similar to the previous
oneo,
In order to find an upper bound for(pi+l - ti)set
ey 3FQ 3+a
x(t) = (ti+1 t) (t ti) for t; s t tiggn @ >0
and zero otherwise. Then x € CS[O,ll and the quadrature

formula gives

t. t.
f vl (t)de = I 1 x @ (vyae.

£ t;
Hence
2
tie1 (il 3 1
f x(t)dt| g | [x (t)]zdtf [k(t))2%dt.
It It 0

1 1
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A simple calculation leads to the result stated.

gpgorggv6o7

If x € C® 0,1] and if R denotes the remainder in the
optimum quadrature formula with N+l points and with unit

weight function then

[RG) | = om?*/7y,

where H = 1/N,

‘Proof

B ]

Since R vanishes for any H-spline with the knots
togtlgoooacN 1t follows that

il

RGO = Ry = | k() 1% (£)=-y 3 ()14t

0
where y is the H-spline which agrees with x at the knots.

Schwartz's inequality gives

1 |
[k(t)]2dt J_[x(”(c)wy(”(c)lzdcc (6.2)

1
IR(x) |2 sf
0

0

But y(3)(t) = 0 for t g t» t 2 tN9 and so with the result of theorem

6.5 we deduce that
6( (o0 N s
R |2 < § UO (xP (e))12ae + I (2 (0)-y P (02120
(¢}
. Jr: [x(B)(t)]zdt} (6.3)
N

where H = 1/N,

Three integrations by parts leads to the result that



t
f N
J [x(3) (t)=y(3) (£)12%dt = xlg:})[ x§2)=ylg2).]=xé3).[x§2)._,y§2)]
t
(¢} :N
= { Xcﬁ)(t)[x(t)wy(t)]dt
Jto .

<|x (3)| I (2)_ é2)|+|x£3)lo|x§2)=yéz)l+|Ix(G)!io max |x(t)=y(t)|. (6.4)

t stétN
From lemma 5.2
2 2 2 2 1 3 (3 6
2351 Py 1 < §max (1 Ly 18 D 5B 119
and from theorem 5.3
h3 (3); .(3) <(©)
max |x(£)=y(t)] < g5 (max(|x{P [, ]x{P ) zm—oll Hi1e
£t _gtgt :
N
The use of these in (6.4) leads to
t
f 3 (6)=y 3 £y 24t < K h+K h3+K hU+K he,
t
0

where K190009K4 are constants, Consequently, with the aid of

lemma 6.6 we obtain the result,
In the case of a general weight function when we do not

have any information about the spacing of the quadrature points

we have the next result,
Theorem 6.8

If x € C%10,1], and if R denotes the remainder in the optimum
quadrature formula with N+1 points then, if the weight

function is continuous, W >0,

IR(x)| = o(u3)
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where H = 1/N,

This is the same as that of the previous theorem except that

in this case we can suppose

1
'J (x3 (£)-y P (e)12ae
0

1

is merely bounded. The estimate for f [k(t)]%dt is taken from
0

theorem 6.5,
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Appendix

Two Cubic Splines and Related Best Quadrature Formulae

We shall consider finally two types of cubic spline which
have more favourable convergence properties than the natural

cubic spline when they are used to interpolate x € C*(0,1].

Definition

A cubic spline with the knots t 0B receaty is in C2(0,1]}

and is a polynomial of degree at most three in [t ot +1]

j = o,l,oco,N_ls (toﬁ'o, tNgl)o

Denote a cubic spline by y and let yj = xj, j = 0,1,...,N,

( ) An
J
show from Hermite's interpolation formula that with the

where x € C*{0,11. Then if y s  =0,1,...,N we can

uniform norm on {0, ll

||x—yl|<~h max]xcl) 1*353 h“llx(&)||, where OgjgN. (A.1)
i
It is clear from this that in general the best order of
approximation of the spline y to x which can be expected is
0(h") and that the precise order depends on maxlx(l) J!o
i
For the moment let y be a natural cubic spline, and rewrite
the equations of (2.4) as
20 -x(l))+(x (1)) =3[t .t lx-Zx(l) (1)
(1) _.) _ (1) ' -
aj(AJ -1 J 1)+2(A x )+(1 a )() ) 3mj[tjﬂ1’thX+3(l'aj)[tj’tj+1]x
(A.2)
(1) (1) (1)
™ J“1 - “J) iy
j= 1,2,...,N1,
LD e8) . L, (1)
(AN -1 Xy 1)+2(A —Xy ) 3[tN 1°%N 1x Xy-1 2x ;

where a, = h,/(h. ,+h.).
o5 = By/(hy_j+hy)
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The right hand sides of the first and last of these equations
are easily shown to be 0(h) (the precise values are not
important herel, However, with the use of Peano's method,

we obtain for the remaining equations,

h. .h,
(1) -1 )[h.,

(1) MeY)
“j(kj xj_1)¢2(lj )+(l-a, )(AJ+1 J+1) 24(h 1By

= 0(h3).

A rough estimation of m?xlkj-xgl)l 1ea45.to the conclusion
that it is 0(h), whigh,then inserted in (A.l) gives the
convergence for the natural cubic spline as 0(h?). Clearly
this is due solely to the effect of the O(h) of the first

and last equations. The aim is to produce equations to

replace these which will give better convergence for the spline.

Third order cubic spline N22

Let AO,Al,yO,yl be connected by a relation of the form

Ao+axl = byo#cyl,

then, with Yo = Xgs¥y = Xp» we have

(Ao (1))+a(A -x( )) = bx +cx1 xél)—axgl)a

Choose now a,b,c so that the order of the right hand side is
as high as possible. Some simple analysis shows that if

a=1, b=-c=—2/ho then we have

g <1>)+(,\1 xm) S12 Oy,

2 042

(A.3)

(A.4a)
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A similar argument for AN*I’AN’yN-l’yN leads to

Gyopmigin) + Oyxiy = = 2 2 ey (A.4b)

Consequently we are lead to a cubic spline for which

A ZItO,tlly

oM
ajAj_1¢2Aj+(1-aj)Aj#1#3aj[tj_l,tjly¢3(1—aj)[tj,tj+lly, 3=15,2,0..,N~1, (A.5)

AN_1+AN = zttN_l,tle°

The qualitative meaning of the first equation in (A.5) becomes
clgar after an examination of Hermite's interpolation formula
with the interpolation points tyot;e For it is easily seen
that it is simply the condition that y should be quadratic in
[to,tllo Similarly the last equation implies that y is

quadratic in [cN_l,tNl, This leads to the following definition.

Definition

A third order cubic spline with the knots to,tl,ooo,tN

N>2 is in C2{0,1] and such that

(a) it is a polynomial of degree at most three in

Theorem A.l

A third order cubic spline y is determined uniquely by its

values at the knots for N:22.
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Proof

The unigueness of the spline depends on the solvability
of the equations of (A.S5). For N22 we can eliminate AO’AN

from these equations to give

(Z—aI)AI#(1~a1)k2=a1[t0,tliy+3(1-a1)[tl,tziy

oo o (R .,‘f\ o = LT, & o Q. . . w ’ La, s9000 - ( c 9O,
aJ)J_L#ZAJ (r mJ/AIﬂ 3%{:3_1 tJ!ywu aJ)(:J,x,Jﬂly j=2,3 ,N=2, (A.6)
R L N AL PTL VY AL G NP CVIRL R

Since O<aj<1 these equations have a strictly diagonally
dominant matrix and so there is a unique solution
xl,Az,e.o,AN_lo The values of AO’AN can then be found

from (A.5). Hence the spline is determined uniquely by

its knot values.

Theorem A.2

If y is a third order cubic spline such that Yi=%:,

i=0,1,...,N where x € C*[0,1] then ||y-x|| = 0(n3).

Proof

o 1 1
Eliminate Ao—xé ) and AN-xé ) from (A.3), (A.4a), (A.4b).

This will give a set of linear algebraic equations to be
solved for Aj—x§1), j=1,1,N-1 which has the same matrix as
that of (A.6). Clearly thé right hand sides of these
equations are at least 0(h2), and as the uniform norm of

the matrix is bounded by unity it follows that IAj-x§1)|=0(h2)

for j = 1’2’OO°,N-10
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From (A.4a) we see that lxo-xél)[ = 0(h?), similarly
IXN— (1)] = 0(h2). Consequently [Aj—x§1)| = 0(h?), j =0,1,...,N,

It remains to insert these in (A.l) to give the result.
The next two theorems will be stated only since the proofs

follow familiar lines.
Theorem A.3

The unique z € C4{0,1} such that

(a) zZ, = xj, j=1,2,00.,N-1, N22

b0, m
* °N

a-iO/'\ L

(c) [ {z (2)(t)12dt is a minimum
J0

is a third order cubic spline with the knots t ,tl,on,tN°

Theorem A.4

If

1
w(t)x(t)de = J x(1)+ ) H. %5 +J (l) f k(t)x(z)(t)dt
070 . J

0 i=1 o
is a best quadrature formula with remainder - in the sense
. rl
that JO’H1’°°°’HN-1’JN are chosen so that Jolk(t)]‘ de is a
minimum - then the remainder vanishes for any third order

cubic spline with the knots to,tl,ooo,tN, N22.

Uniform cubic spline N23.

Let Ao,xl,yo,yl,yz be connected by a relation of the

form

ahythy = b[to,tlly+c[t1,t21y,
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then if yj = xj, j = 0,1,2, we can rewrite this as
(1) _(1) . () (1)
a(ko )4(1 ) ) = bﬁto,tlix#citl,tzlx ax “exy

a, b, ¢ are given values so that the right hand side is

0(h3). Thiz leads to

al(Ao (1))&(‘ —x(l))ﬂ(3m -a 2)lto,t13x*(1—a1)2[: €, ix-alxél)-xfl) (aA.7a)

I S (4)
2% ho hl X °

Similarly the appropriate equation at the other end is
(1) NN 0 9 NP - 2 2
(Ag-1 xN )+ (1=oy_y) =% " )y =(2=a_, QN_I)[tN_l,tNix+aN_1[tN_2,tN_1]x

( )_ — (1)
(1 l)xN (A.7b)

1.2 (4)
2% Pn-1 Py-2 ¥ -

Consequently we arrive at a spline for which the fellowing

relations held,

- —_ - )2
oy A #A a1(3 al)[to,clly+(1 al) [tl,tzly

10 "1 )

ujkj_1+211+(1-aj)k 3a [t ,t iy+3(1-a )[t st +lly, j=1¢1)N~1 J (A.8)

. PV
Agap oy DAy =(=ay ) (v ) ley ot deae - ley oot L1y,

It can be shown without much difficulty that the first two

of these equations imply that this cubic spline is such that

y(3)

is continuous at t=t Similarly the last two equations

(3)

le

imply that y is continuous at t=t In other words the

N-1°

cubic spline is a single cubic in [t ,tzl and a single cubic

0
in (e ,,t.1.
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Definition

A uniform cubic spline with the knots to,tl,oea,cN,

N33 is in C2{0,1} and such that

(a) it is a polynomial of degree at most three

in (tj,tj#li, j = 0,1,000,N-1

(3) .o .
(b) ¥y is continucus at cl, tN_lo
Theorem A.5

A uniform cubic spline is determined uniquely by its

values at the knots for N:3.

Proof

The uniqueness depends on the solvability of the equations
(A.8). For N23 eliminate AO’AN from these equations. This

leads to
‘ 2 _
A1+(1 ml)kz oy ﬁto,tliy+(1 al)(Z#ul)ﬁtlstzly
mjAj_l*ij#(l~mj)Aj#1ﬁ3mj[tj_l,tjiy#3(l-aj)[tj,tj+1]y 3=2,3,.00,N-2,
. _ , _ ) )
Oye1 Mgz A 0y-1 oy 2 L gty d e g 2e sl

Since O<oz19 uN_1<1 these equations have a strictly diagonally

1

can be calculated from (A.8). Hence the

dominant matrix and so ? ,Az,,oo,AN_l can be found if Yor¥12°c Yy

are known. AO’AN

zpline is uniquely determined.

zhgotem A6

If y is a uniform cubic spline such that Pt TR 1i=0,1,0..,N
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where x € C*{0,1} then, for N4,

2
[x(e)-y(£)| = O(n*) + 5%-0(h3), tostst,)
- = 4
[x(t)-y(t) | = 0(h™), £ seste
Z
[%(e)-y(e) | = om") + EN‘% O(h?), by jsesty.

Proof

(1)

Let e, = ki-xi , L = 0,1,N, and eliminate €)0€ 2€y 1@y
from equations (A.3) and (A.7a), (A.7b). This will lead to the

following eguations

ﬁZ-aZ(l-al)]ez + (l"az)e3 = 0(h?)

) o = 3 $ om -
mj ej_1*23j+(1 aj>ej+1 0o(h?), i 2,3,000,N"2
. - . = 3
On-28y-3 * [27ay g oy p)ley , = 0(h%).

The matrix of these equations has the strict diagonal dominance
property and the uniform norm of its inverse is bounded by unity.

Hence we have
maxlejl = 0(h3), § = 2,3,...,N-2.

Further, since elﬁ(l—al)ez = 0(h%), it follows that Iell = 0(hd),

with a similar result for |e However the bound for Ieol is

n-1°
to be found from (A.7a). That is

1, 2
o) legl & leg| * 57 by My,

consequently

1 | . by 3
r B e 3 = —
Ieol <= 0(h3) 1+ 0(hd).

1 1
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By )

0(h3).
_2.

Similarly ]eN[ = [1 +

Now, from (A.7a), in {to,tlf we have

|2 (t)-y(e) | 5%-h0 max([eol,lell) + 0(h")

%)
4 0 4
= O(h*) + |1 + ~—~1 o(ht).
By

There is a similar result for the interval {t

bounds in the remaining intervals depend

N_l,cN]o The

on |e1],=°o,IeN_1]

which are simply O(h3). The result follows easily.

The uniform cubic spline arises also as the solution of an

interpclation problem different from the
it, moreover it is connected with a type

formula. The next two theorems will be

Theorem A.7
The unique z € C2[0,1} such that

(a) 25X, j = 0,1,..0,N, 3§ F 1,N-1,

J
)_ ) )
N )

(b) NI TN zél)sx

L@
(c) J [z /(t)1%dt is a minimum)
0

is a uniform cubic spline with the knots

Theorem A.8

If
1 N
- (1) (L)
Jom(t)x(t)dt Jo¥s * igo Hox +J %

i1 N-1

one which introduced
of best quadrature

stated only.

Eyrbysec ety

1
+j k(t)x? (t)de

0
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is a best quadrature formula with remainder (c.f. theorem A.8),
then the remainder vanishes when x is any uniform cubic spline

with the knots to,tl,ooo,tmc

Uniform cubic spline quadrature

Since the uniform cubic spline can be used for interpolation
it will create a quadrature formula with the knots as quadrature
points. When the knots areegui-spaced the quadrature weights
can be calculated explicitly. 1f there are four knots the
formula will be the three eights rule, and wich five knots it
will be once repeated Simpson's rule. The general results are
contained in the next theorem. The proof of this is very
similar to that of theorem 3.8 and so only a sketch will be

given.

Theorem A.9

If
1
J y(t)dt = h z H y(ijh), h = 1/N, Nz4,
o j= =0 J
is true for any uniform cubic spline with the knots O,h,2h,...,Nh

then the quadrature weights are as follows.

= = ‘i]]; = 152 = _..._107
N=5, Hy=Hg =55 »H =H, =120 H " H; " 15 -
=1, 1

N6, My =l =gty (23T oem 1/U

H, = =1+ <2lT, -3 -41/u

1= iy 18' IN-1TN N-3

} 1
Hy = Hy_, = 1+ 53IT, ,+720,  +74)/u_,

i N-i—2+Ui-21/UN_3’ 1T = 3,4,000,N-39
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where the argument of the Chebyshev polynomials is -2,

Proof

From (3.10) and (A.8), with aj =4, §j =0,1,N-1, we see

that it is necessary to calculate AN-AO from the equations
hﬁiko+kll = (—5y0+4y1+y2)/4
h[kj_1+4kj#kj+1§ = 3(yi#1-yj_L), J = 1,2,0.0,N-1,
h[AN_lﬁgANﬁ = (54T In-2) 4

The inverse of this set of equations can be calculated from (.5 )
and with its belp it will be found that

N-1

g [TN-j-L—Tj—ll (yj+1-yj_1)

- )= - Sy, t4y, ty
3hUN_3(AN xo), '1’_1 (TN__1 T-l)( 0 71 72)+3 .

4 j

(T ~T. YCINn-1Y-2)] .
-1 "N-1 7

When this is inserted in (3.10) the result will be found after

some rearrangement and simplification.

The proof of the final theorem follows easily from
theorem A.6
Theorem A.10

1f x € c*{o,11, and H_,H.,...,H_  are chosen so that
0’1 .

1 N
I m(t)y(t)de = Z H.y.
0 j=o 33

is exact for any uniform cubic spline with the knots to,tl,ooo,tN,

"N23, then

W

5

1 N h
|J m(t)x(t)de - ) Hjxji = O0(h%) +IEQ + hN'I] 0(h3).
0 j=0 -2
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The Orders of Approximation of the First Derivative
of Cubic Splines at the Knots

By D. Kershaw

Abstract. The order of approximation of the first derivative of four types of interpolating
cubic splines are found. The splines are defined by a variety of endpoint conditions and
include the natural cubic spline and the periodic cubic spline. It is found that for two types
there is an increase in the order of approximation when equal intervals are used, and that
for a special distribution of knots the same order can be realized for the natural spline.

1. Introduction. The cubic spline is now a well established tool for smooth
interpolation in a table of a function defined at a discrete set of points. A useful
account of the basic properties of this spline and an algorithm for constructing it
can be found in [1], and an analysis of the convergence of the spline to the function
it interpolates is given in [4].

The present paper is devoted to an investigation of the problem of finding how
well the first derivative, taken at the knots, of the spline approximates the first deriva-
tive of the interpolated function there. It was shown in [4] that there is O(A®) ap-
proximation uniformly over the range of the knots, as the maximum interval tends
to zero, but as it is often the case that the derivative is taken at the knots, it is felt
that the results may be of some value.

2. Notation. The set of real numbers, t,, #,, - -« , #y, Will be called knots and will
satisfy

_m<to<t1<"’<t1v_1<t1v<m, N§2.

maximum interval length will be h, that is,

The interval t; < t = t;,, will have length h, = t,,, — t;,, i = O(1)N — 1, and the

h = max b,
0s5isN—-1

y will denote a cubic spline with the above knots. As stated in Section 1, more than
one kind of spline will be considered but they will have the common property that
each is a member of C°(— =, «) and that in each interval they are polynomials of
degree at most three.

x will be a member of C°[#, #y] and will be the function with which the spline
agrees at the knots. For brevity, define

xf') = (%) x(), for t=t;,i= 0N, r = 0(1)5.

Received September 22, 1970.
AMS 1970 subject classifications. Primary 65D25; Secondary 41A15,
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192 D. KERSHAW

Then
Y = X;, i= 0(1)N.

The norms which will be used are the uniform norms for functions, vectors and
matrices, namely,

[l = max [x®|,  |lx|| = max |x.,  [|4]] = max 3 [as].
toStstN i H i

The domain of the suffixes in the vector and matrix norms will be clear from the
context.
It is convenient to define here

M, =[x, M= []x]].
The first and last columns of the (n + 1) X (# + 1) unit matrix will be written re-

spectively as e,, e,; the jth element of the vector x will be denoted by [x];.

3. The Cubic Splines. Four types of cubic splines will be described in this
section. Cubic splines are usually characterized by the value of their second deriva-
tive at each of the knots (see for example [1]), but for the purpose of this note, an
alternative method will be used.

Let

A=, i = O0(1)N,

then, if y(¢) takes the same value as x(?) at each of the knots, it follows from Hermite’s
two point interpolation formula that, for ¢, < ¢ £ #;4,,

tiv — tY tivg — LY t — .\ t —\
y = [3( I, ) - 2( I, )]x‘ + [3( 7, ) - 2( 7, ):Ix"“
to = 1Y _ (tia — V], _ (t - t;)2 _ (t ~ ,{)3]
+ he[( 7 ) ( A ):l)\.- ha[ 7 7 Nit1s

i=O0()N — 1.

1)

A simple calculation shows that
hfyf-z) = 6(xis1 — X3) — hi(4\; + 2N\;00),
Ry = —6(xiis — x:) + k(2N 4+ 4\iiy).

Now, as y € C*(— », «), the two expressions for y¥ from the equations which
arise from the intervals (#_,, %), (4, t:.,) must be equal. The identification gives
the equations:

@

Aoy + 2N +

+ X; & Xia
]
hi_, h;

2
i h:‘—l

3) 22+ N - 3[xi+1h"' X

] , i=1(1)N — 1.
It is convenient to define

a; = hi—l/(h:'—l + h)),

then the equations become
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(1 — adhicy + 20 + adias = 3[0:.- G =2 4 (1 — &) %] :

i= I(1)N — 1,

which can be written as

(23]

(1 — a)}i, — xﬁl-’:) + 20\ — xﬁ”) + aiAiir — X0

=~ —ax® — 2N — x4 3[a.~ Coan 22 | (1 — o) B Fem) "“‘)] :
Y i—=1

i= 1(1)N — 1.

Finally, the use of Peano’s method for finding remainders gives the result that
(1)

1 — a)Nio — x?—)l) + 20\ — x-('”) + ;i — xis

4 1 1
“) = 2_4 hioyhi(hioy — h-‘)xfn - @ hi-lhi(h?-l + h? - hi—lhi)x(5)(7i)a

where t;_; £ 7, £ tiy, i = ()N — 1.

The sets of Egs. (3), (4) are satisfied by A,, A;, - -+, Ay for each of the splines to
be considered. Clearly, two further relations are needed in order that a unique in-
terpolating spline may be found. The equations (3) are the useful ones for the actual
calculation of the splines and, for completeness, the two relations to be adjoined to
(3) will be given for the different types of splines to be described. For this note,
however, (4) are the useful equations and these relations will have to be written in a
form similar to (4).

(A) Natural Cubic Spline. The relations which help to define this spline are [1]

yé2) — yI(v2) —_ 0’

whence, from (2), the equations additional to (3) are

3
2)0 + A] = 'h_' (xl - xO)s
(5a) °

- 3
>\N—l + 2AN = (XN - xN_l).

hy1

With the aid of Peano’s method these can be written

1 1 1
200 — XY + O — X)) = Zhoxs? — 2= Baxs? — — hex*¥ (7o),
2 24 60

to = 70 = ¢, and

(5b)
1 1 1

Owor = xw2) + 20w — x37) = —Shwaxy” + o7 hvax” + o5 Bvoax (),

tyv_y = T8 S 1y,

These equations together with (4) are, in matrix form,
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2 1 0 0
1 — g 2 ay 0
(5¢) . R (A S
0 o 0 --- ZJ
_1 A [x(z) _ _l_he ("):Ie _ 1 P [x(z) 1 ., ) xm]e + x4 x®
2 o| Xo 12 oXo 0 2 N—1 N 12 N—1 N
where
A —xV =D — xP A — &P e Ay — x0T,
1
(5d) x© = S0 10 hoh(he — B - e+ hyshy_i(hy-y = hy-a)xi2y 0],
1
(5e¢) ¥ = — 5 10X (70) hohu(hs + Y — hoh)x P (1) -+ —hyoix P (ri)]”.

(B) Cubic Spline D1. Here, y{* and y§’ are fitted exactly, and so
(62) o =x5", Ay =x

are the equations to be put with (3) for the calculation of this spline. Further, (4)
can now be written as

2 o, 0 .- 0 0
(6b) l1—a; 2 a --- 0 0l — x) = x* 4 x®

0 0 0 A 1 — [2 4 287 2
where

A —xP = — P e Ay — 2P
@ — L e — Bx® - Bk h h
(6¢) X = 24[ ol (ho X1 N—2h_y_1(hy_y — N—l)xN 1l
1

¥ = —6—0 [hohl(ho2+ h12 e hOhl)x(s)(Tl)

(6d)

. 'hN—2hN—1(h12V~2 + h12v—1 - hN—2hN—l)x(5)(TN—l)]T'
(C) Cubic Spline D2. If

2 _ (2 2) _ ()
Jo = Xo ', IN = XN,

then, from (2), the equations additional to (3) are

3
20 + A = ;‘ (x; — x0) — hoxé”.
Q)] 0
3

Avor + 20y = T Gy = ) + By xiP .

Peano’s theorem gives the results
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1 1
200 — x3") + O — x{) = —>4 hoxg? — & hox® (7o),
1 1
Aw-r — x52) + 200 — x37) = 22 Byoaxs? — % By-1x% (rx).

On comparison with the corresponding ones for the cubic spline, namely (5b), it is
seen that the matrix equation for this spline is identical with (5¢) except that the
terms x§¥ and x{? are replaced by zero.

(D) Periodic Cubic Spline. When x has period ty — t,and x{” = x{?,r=0,1, ---,
then the spline can be taken to be periodic in the sense that

(8a) »w =y, r=012.
The Egs. (3) remain valid but in the first A, x, can be replaced by Ay, xu, respectively.
An additional equation arises from the observation that y$® = p{® and is, after
simplification,
@)  BM + (1 — Byoy + 2y = 3[6(u) +a - B)("—”:ﬂ;‘)]-
ho kN-l
In the required form, this is
B — xV) + (I — B)Qw-1 — x321) + 20w — x4)
8 1 1
( C) = — hy_1ho(hy_1 — ho)x‘g&) - Zn hN—lhO(hgl—l + hg - hN-lhO)x(s)(ﬂ')
24 60
where 8 = hy_/(ho + hy_1),and t, — by £ 7 £ ¢
Thus, the matrix equation is
2 a 0 --- 0 1 — o
(8d) l—a 2 a -+ 0 0 & — x") =x"* 4+ 3,
B8 o 0 .--- 1-—28 2
where
e S 1 R R W 228
@e) X0 = = Ui — k)X - hyiolinny — hoxs?17,
X9 = s Uy O + K — hol)x®(r)
(8f)

“ e hyorho(hy—1 + Ko — hy_1he)x P @))".

4. Error in the First Derivatives of the Splines at the Knots. It will be no-
ticed that the matrices which -occurred in Section 3 for each of the splines are strictly
diagonally dominant, and so the equations can be solved. Further, if 4 represents
any of them then, with the uniform norm |{|4™*|| < 1. This follows from the observa-
tion that if ||4x|| = 1 for ||x|| = 1, then ||[47}]| = 1. Now, 4 = 2I + B,
where ||B|| < 1 and so ||4x{| = 2||z|| — || Bx|| and, as ||Bx|| < ||B|| < 1, the result
is proved.



196 D. KERSHAW
THEOREM 1. If y is either a cubic spline D1 or a periodic cubic spline, then

1 1
) Ia — x| §§—4h2 max [hizs —h.-I-M4+%hM5
Proof. In (6b) and (8d), multiply by the inverse of the respective matrices, and
take the uniform norm of each side. Then,

= P = 1Ix® 1+ =],

where x*, x*® are defined by (6¢c), (6d) for the D1 spline and by (8e), (8f) for the
periodic spline.
The results now follow on taking the uniform norms of x*’, x
COROLLARY. If b, = h, i = O(1)N — 1, then, if y is either a cubic spline D1 or a
periodic cubic spline, then

(8)

1
oD < 8
(10) [ — x| = g5 7 Ms.

The remaining types of splines will be taken together as the analysis is common
to them both. The equations for the natural cubic spline are given by (5¢). Denote
by A the matrix. Then, after multiplying (5c) by 47" it will easily be seen that

M — x| £ hIC, + k3 D] |[ A" e0);| + Av—i[Co + k-1 D3] [[4 " enl;il

(1) 1 1 ., .
+ = 24 h* max |hicy — hi|-Ms + 60 h M, j = 0(1)N,
where
1 1 1 1
C, = E |x(()2)|, C, = 5 Ixz(vz)l, D, = '2_2 |xt()4)|; D, = 24 |x(4)

The corresponding inequalities for the cubic spline D2 are found by putting C, =
C. = 0in (11) and are

N — x| £ By Dy [[4 el
1

+ hy_1 Dy |[ 4 "ey];] + h max [hiy — hs| My + %0 WM.

(12)

Clearly, the nonvanishing of the multipliers of [4™"e,);, [4™ 'ey]; have an adverse
effect on the approximations in (12) when the intervals are equal, and for the natural
spline this is apparently disastrous, even when the intervals are equal. But, on ex-
amination, it is seen that to increase the order of approximation in both cases it is
necessary only to make the first and last intervals small enough. The situations can
be saved a little in the general case of unequal intervals as shown in the following
theorems.

' THEOREM 2. If y is a natural cubic spline, h < 1 and if N =z 2 — 2r log h/log a,
there exist integersp, 4,0 = p < q £ N, such that, forp < j = q,

A — %P £ 2hH7[Cy + kg Di] + %Ay B [Csy + hiv-y Dsl

1

~ 4
60 h MS’

1
+ EZ" max |hir — hi|- M, +
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where the real number a is

2+ V3ifh =h,

(ii) 2 when the intervals are unequal.
Also

t, — to < h[1 — r log h/log al, ty — t, < h[1 — rlog h/log al.

Proof. This depends on results from [2], where it is shown that for equal intervals

{47 eo);| = Un-i(2)/ Uns1(2), {47 en]s] = Ui(2)/ Un+1(2), Jj = 0N,
and from [3], where it is shown that when the intervals are not equal
l[477eli| = 3277, |[47en]i| < §-27"
Now,

. (2 + v3)i+1 - (2 — \/3)i+1 e
Ug(zé) =2t VT — @ e SGF VT = 0N,

and similarly,

Uy-i(2)/ Uya(2) < 2 + /377, j = 0()N.
Hence, (11) can be replaced by
N — x| < hBoICy + £ Dyl + hy_s[Ca + Hyoy Dole’™!

1 1
+ ﬁ I m?X lhi—l - h.’l'M4 + 6—6 hsMs, j = 0()N,

13)

where @ = 2 + +/3 if h; = hand o = 2 otherwise.

(For simplicity of presentation, the factor 4 which should occur in these inequali-
ties when a = 2 and the factor 2 — +/3 when « = 2 + +/3 have been replaced by
unity.)

As o > 1, it follows that a~’ decreases with increasing j, and so &’ < 4" for all
j = p where the integer p satisfies o> < A" < a ”’, that is

—rlog h/loga = p < 1 — rlog h/log a.
Similarly, o'~ < A" for all j < g where the integer g satisfies
N—14rlogh/loga < q=< N+ rlogh/loga.
In order that p < g, it is sufficient that
N—1—rloghf/loga—1 — rlogh/loga =0
which is equivalent to
N = 2 — 2rlog h/log a.

It remains to note that

1A

t, — to = ph < K[l — rlog h/log ],

ty — t, = (N — @h < k[1 — rlog h/log al.
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(The inequality N = 2 — 2r log h/log « will be satisfied for sufficiently large NV as
Nh = ty — t,.)

COROLLARY. If y is a cubic spline (D2), h < 1and if N =2 2 — 2rlog h/log o then
there exist integers p, q,0 < p < g = N such that, forp £ j < g,

2 5, 2 , 1, 1

N — x| = 3 k™ D, + 3 hy_ k" D, + 2 K max |y — hol|- My + % KM,
where a is

D24+ +3ifh; =h,

(ii) 2 when the intervals are unequal.
Also

t, — to < k[l — rlog #/log «], ty — t, < hfl — r log h/log a].
Proof. This follows from Theorem 2 on setting C, = C, = 0

Conclusions. The approximation of the first derivative at the knots is best when
equal intervals are used both for the cubic spline D1 and the periodic cubic spline.
In each case, the approximation is O(h*). When unequal intervals are used, it drops
to O(h®). For the cubic spline D2, the order is generally O(h®) whether the intervals
are equal or not, but with equal intervals and for a large enough number of points,
the order is O(k*) at a number of internal knots.

The first derivative of the natural cubic spline is only an O(#) approximation to
the first derivative of the interpolated function at the knots, although for a suffi-
ciently large number of knots the order can be made O(A®) or O(k*) at a range of
internal points if the intervals are respectively unequal or equal.

Similar theorems can be proved for other types of cubic splines with mixed end
conditions. It is worth remarking that if one end only is ‘natural’, for example y{?> = 0,
then the effect of this on the approximation will decrease rapidly as this point is left
(by a factor of 2 — 4/3 for equal intervals and 0.5 for unequal intervals).
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The Explicit Inverses
of Two Commonly Occurring Matrices

By D. Kershaw

Abstract. Explicit formulae are given for the inverses of certain tridiagonal
scalar and block matrices.

During an investigation into the convergence properties of natural splines it was
found convenient to have the explicit forms for the inverses of certain tridiagonal
matrices. Special forms of these matrices arise in other branches of numerical
analysis and so it may be useful to record them.

The derivation is elementary but complicated and will only be indicated. i}

Notes.

(i) The matrices will be of order n X n.

(i) T,, U, will denote the Chebyshev polynomials of the first and second kinds
respectively, both with argument .

(iii) The elements of A4, A~* will be denoted by a., a;} respectively. Similarly
for B, B!,

(iV) U, = 0, U_; = —VU,.

Matrix A,n = 2

e = —a r=s=1,n,
==2\ r=5s=2(mn—1,
=1 Ir—sl=1,
=0 otherwise ,
_ -1 .
arsl [aUr-2 - Ur—3][aU —3=1 = Un-—a—2] 3

T QU — 2aUn_s + Uns
12rs

= )

-1 -1
Qsr = Qrs .
Matrix B, n = 3.

brs = Qrs, except that bln = bﬂl =1 ’

b_] -1 {[aUr—Z - Ur—ﬁ][aUn—a—l - n—s—? }
T a2U,,_2 —_ 2aU,,_3 -_ 2(1 + T,,_z) + Un—r-l U,-_zU —5—1

1Sr<s< n,

b—l — b—l
Special Forms of A.

Received May 17, 1968.
189
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-2 1 0---0 o]
1 —=2» 1---0 0

0 0 0---1 —2x

are = — 'Ul—n’Ur-lUn-a, 1=r<s=<nay;=a,
a=\,
- 1 0--- 0 0
1 =22 1 -.-- 0 0
A=) ... .. R I
0 0 0--—22 1
0 0 0-- 1 —\
@y = 1 TaTae, 1Sr=s=n,d) =dn

(1 — A)Un-z

Special Forms of B.

a =2\, _
—2) 1 0- 0 1
1 —2xn 1- 0 0
B=| -« +« ... . ,
0 0 0---—2x 1
1 0 0-- 1 =2\
I W S <r<gs< -1 — pt
by = oM — Th] [Un—str—1 + Uirhl, 1ZEr=s=n,b; =ben,
a =X\,
—A 1 0- 0 1
1 =2\ 1-- 0 0
B = e e e e -,
0 0 0--- —2\ 1
1 0 0-- 1 —=A
b:sl = 1 [Tr—lTn—: - Ur—2Un-a—1 + U:—r—l] ]

24 (2 = N)Uns
1<r<s=<nb; =0bn.
Qutlines of Proof for A. The columns of A~! are the solutions of
Ax=¢e,, s=1,2,---,n,
where e, is the sth unit vector. In recurrence form this matrix equation becomes
—ar + To = 0 ’
(1) Ty — 2NZy F+ g1 = 8, r=1,2,---,0n—1,

Tn1— ATy = 0.
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Note now that all except the first, last and sth equations are satisfied by either
Chebyshev polynomial with argument A. If one assumes, for example, that

2, =AT. +BU,,, r=1,2,---,8 — 1,

2, =CT,+DU,,, r=s+1,---,n,
then each equation in (1) will be identically satisfied except for

@

—ax1+ 22 =0,
ZTs—g — 2NLoe1 + 2, = 0,
Toy — 2NTs + Zop1 = 1,
Ty = 2NCop1 + Ty = 0,
Tno1— axy = 0.

These give sufficient equations to solve for the unknowns A, B, C, D, z,. A similar
technique holds for B.

Generalization to Partitioned Matrices. If, in the matrices A and B, the scalars
@, A, 1 are replaced by the m X m matrices T, A, I, (I being the unit matrix), re-
spectively, then the results given above will still be valid if TA = AT, and the re-
ciprocals which occur are replaced by the inverses of the corresponding matrices.
For example, the inverse of 4, in block form, will be

- [P2U5—2 - 211015—3 + Un—4]_1[PUr—2 - ‘Ur—3][FUn—e—1 - n-s—2]
where the argument of the Chebyshev polynomials is now A.

Department of Computer Science
University of Edinburgh
Edinburgh 8, Scotland
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Inequalities on the Elements of the Inverse
of a Certain Tridiagonal Matrix

By D. Kershaw

Abstract. Inequalities are obtained for the elements in the inverse of a tridiagonal matrix
with positive off-diagonal elements.

During an investigation into the convergence properties of natural splines it
was found useful to have bounds on the inverse of a tridiagonal matrix with positive
off-diagonal elements. Matrices of this type arise in other branches of numerical
analysis, in particular in the discrete analogue of certain second-order differential
operators, and so it may be useful to record these results. The matrix is

A 1 — o 0 0 0

(s7) >\2 1—622 O 0
a=|0 e M 00

0 0 0 cvr M1 1 — apy

0 0 0 Qn A i

where 0 < a, < 1,7 = 1(1), and A Ay > 1, r = 1(1)n — 1.
. If the elements of A~! are denoted by

@, r,s = 1(1)n

then the following inequalities hold:

1 <as_sl)\s <I~/-s/(l~‘s_ 1); s = l(l)n

t?
0<(=Dan JIN< =27, ns=1n, r#s,
=t 8

where {; = min (r, 8), {» = max (r, s), and
gs = min (\eeihs, AAey), s=2()m —1,

with M1 = Al}\z, Mn = )\n—~1>\n-
The proof is elementary and will be indicated only. The last column of A~ is
given by the solution of the equations:

)\1131 + (1 - al)x2 =0 y
4} a1+ A+ A — o)z =0, =2(1)n—1,
Qpln—1 + )\nxn =1 s

Received January 20, 1969, revised March 9, 1969.
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(where {a_'} has been replaced by {z.} for simplicity). Now 2. cannot vanish,
otherwise recursively from the first n — 1 equations it would follow that -

z,=0, r=1(1)n,
contradicting the final equation. Hence the first equation can be written

X
—MnZ=1—a
T2

giving
0<—nZ2<1.
T2
It will now be shown by induction that

<1, r=21)n—1.

T,

2 AT
(2) 0< )‘x,+1

Assume that these inequalities hold for r = 2(1)p — 1, so that in particular
0 < —?\p_lx,,_l/xp <1.
Now

optp-1 + MTp + (1 — ap)Tpir = 0
and, as x, # 0, this can be written, after multiplication by A,_,

—)\p._])\p = apxp—lxp—l/xp + (1 - ap)kp—lxﬁl/xp ’

from which it follows that
(3, min Qp—lxp—l/xp’ Ao 1Tpy1/Tp) < —Np1dp < Max Ap1Zp-1/p, >‘p—11fp+l/xp) .
Consideration of the inequalities

—Ap—1dp < —1, Ap~1Tp—1/2p > =1
shows that (3) can be more precisely written as

)\p_lx,,+1/x,, < —Mpmidp < )\p.lx,,_l/xp .
The lower inequality is easily seen to be equivalent to

0 < —Ap/ap1 <1,

thus ecompleting the proof of (2).
Next consider the last equation of (1) which can be written

an)\n_lx,,_l/xn = —Ap—1An + >\n—l/xn ’
but as
0< —-a,,)\,.-lx,,_l/xn <a, < 1
it follows that
0 < )\n—l)\n - )\,,_l/xn < 1

which can be rewritten, replacing A,—1\, by u,, as
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(4) 1 < Anzn < Hay (Pn - 1) .
It is now a simple matter to prove by induction using (2) and (4) that

0 < (=" "2 AMNrgt -+ A < pn/(ua — 1), r=n—1(—=1)1.
For, if this is true when r = p, then

0 < (—=1)"Pxhp -+ M <t/ (a — 1),
but from (2) ‘

0 < (o DD
(=1)"P\, -+ N2y

and so
0< (—l)n_p*l)\p_ﬂ\p ce )\,,.’L‘p_l < (_1)”_“1) e >\111'p < #n/(#n - 1) 3

completing the induction. In an identical fashion it can be shown that the elements
in the first column of A~ satisfy

1 <an'h < ur/(u — 1), whereus = Mg,
and
0< (=) amhhe oo A < i/ (uy — 1), =2()n.

To prove the inequalities in the general case the following equations for the elements
of the sth column of A—! must be considered:

M+ (1 — a)ze =0, _
(5) ApTr1 + err + (1 - ar)xrﬁ-l = 6”: y r = 2(1)72 - 1 y
Aplp—1 + )\nﬁ:n ={0.

In order to use the previous line of argument it must be shown that neither x, nor
X1 vanish. Now if X,_; = 0, then using the last n — s 4+ 1 equations of (5) it
would follow that

(6) Ty = Bpe1 = ++° = Bgp1 = 2, =0, aZ,1 = 1.
If 2, = 0 the first s + 1 equations would give the contradictory conclusion
Ty == - =By1=2,=0, (1 — ag)xepr = 1.

Alternatively, if z, £ 0, then the argument used to derive (2) could be used again
to prove that '

) 0 < =N /2,1 <1, r=1(1)s — 1,

and the last of these inequalities contradicts (6).
Similarly, the assumption that 2, = 0 will lead to contradictions, and so s -2._;
# 0. It follows that (7) holds, and also, coming back from the nth equation of (5),

(8) 0 < —ApiZrpyz, < 1, r=s(l)n.
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In particular, from (7) and (8)
0< —)\,_1.'123_1/37. <1 , 0 < ——)\s+1x.+1/a:, <1 3
which, as A,-1hs > 1, AAep1 > 1, are equivalent to

(9) 0 < —x,_1/>\,x, < 1/%3_..1%3, 0< —‘$3+1/>\3$3 < 1/)\,)\3+1 .
Now the sth equation of (5) can be rewritten as

1 Ls—1

_ —- (1 — Tat1
A5 % NTs 1 —a)

AN:Ts

1

and so
min (—2e1/Aels, —Top1/ANsTs) < 1 —1/N2, < max (—Zs_1/NeXs, Tot1/NeTs) 5
and, using (9), this implies that
(10) 0 <1 —1/A2. <max (1/A—1rs; 1/ANe41) -
If now
ge = min (\s—1Ns, AAsp1)
then (10) becomes
0<1—1/A\zs < 1/pte,
from which it follows that

(11) 1 <Az < /J-s/(#s - 1) .

It remains to use (11) to translate the inequalities (7), (8) into inequalities on the
elements themselves. This can be done by induction as was indicated in the case
when the last column of A—! was considered and need not be described.

(Note Added in Proof. The conditions on a;, o can be relaxed to 0 < a; < 1,
0 < a, < 1,in which case 1 < a7\, < p/(, — 1) fors = 1, n.)

University of Edinburgh
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A NOTE ON THE CONVERGENCE OF INTERPOLATORY
CUBIC SPLINES*

D. KERSHAWY

Abstract. It is shown that if x € C*[a, b] is approximated by a natural cubic spline, then the error
is O(h*) in a closed interval which is asymptotic to [a, b] as h, the maximum interval length, decreases
to zero. A by-product of the technique used is that if exact end conditions are imposed, then the error
is O(h*) in [a, b).

1. Introduction. The genesis and characterization of cubic splines are
described in detail in [1]. For the purposes of this note it will be sufficient to state
that a cubic spline with knots

Lostys s Ins

where a =ty <t; < --- <ty=b, N2 1, is a member of C*(— o0, 00) and is
a cubic polynomial in each interval (¢;,¢;4,), i=0,1,---, N — 1. If the cubic
spline is to be uniquely determined by its values at the knots, and so be useful
for interpolatory purposes, then two further conditions need to be imposed.
The conditions which give rise to the natural cubic spline are that it should be
linear in (— 00, a), (b, o0). These are not the only conditions which will make the
spline unique, and in this note three other types will be considered. These are the
ones which arise when the spline is constrained to have its first or second derivatives
at the endpoints ¢ = a, b, the same as the respective ones of the function to be
interpolated. In addition, the periodic cubic spline will be defined.

The purpose of the note is to find the orders of approximation of these
different types of cubic splines to the functions with which they agree at the knots,
each when max (t;, , — t;) tends to zero. This has been done for the natural spline
by Atkinson [2] when the knot spacing is fixed. Although the results for the other
types of splines are probably known, they will be dealt with here for completeness.

In the following, y will denote a cubic spline with the knots defined above, and
x will be a function with which y agrees at these knots. It will be assumed that
x € C*[a, b] and that

x| 2 max |x¥() = M.
ast<h .
In addition,

h2¢t,,—t, i=01---,N—-1; h#£ max h.

1

The main result of this note can be summarized as the following theorem.
THEOREM . If y is a natural cubic spline, x € C*[a, b), and

y(ti)=x(ti)a i=0,1a"'7N7
* Received by the editors June 3, 1969, and in revised form April 15, 1970.
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then there exist knots t,, t, for sufficiently large N, where
a<t,<t,<b,
and a constant K such that fort, < t < t,,
max |x(t) — y(t)] £ Kh?,
max |xV() - y(o) < 4Kh3,

max |x®(t) — y'3(1) < 8Kh?.
Further,

t,—a= O(hlogh), b—t,=0(hlogh) ash—0.

For the other types of splines it will be shown that the same orders of approx-
imation hold in the full range a < t £ b. These results are contained in Theorem
2 below.

2. Interpolating cubic splines. A derivation of the defining equations for the
cubic spline can be found in [3], but for completeness and to set the terminology
it will be outlined here.

As the spline y is cubic in (t;, t;, ,), it follows that for ¢, <t < ¢, ,,

(1) Y20 = (64 — OYP) + (0 — yPtisy),  i=0,1,--- N —1.
Let y)(t;) = k; in (1); integrate twice and impose the interpolation conditions
W(t) = x(t) £ x,, i=0,1,---,N,
to give
hy(t) = §[(tiv s — O’ + (¢ — tF 10 1] + (G — O[x; — $hiK]
+(t = t)xir s — $hiKi ]

for t; £t <t;4,,i=0,1,---,N — 1. Now use the condition that y'")¢) is
continuous at the knots ¢,,¢,, -- -, ty_, to give the well-known result that
it1 T X X Xy

%[hi—lki—l + 2(hi—y + h)K; + hikiyy] = x - >
h T

i=12---,N— 1 Nowif

o 4 hi—f(hi—y + h),
then these can be written in the form
(2) diKi_l+2K,~+(1—(X,-)K,-.,_l=6[Ii_l,ti,ti+1]x, i=1,2,"',N—1.

(Here [t;_,,t;, t;+ 1 Jx denotes, in Ostrowski’s notation, the second divided differ-
ence of x at the points ¢;_, t;, t;,. , .) Clearly, as there are two more unknowns than
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equations in (2), restrictions must be imposed to determine a unique cubic spline.
Only the following will be considered here.
(@) Natural cubic spline. If y is to be linear in (— o0, a, [b, 0), then

YAto) = y'Hty) = O,
whence, in (2),
Ko = KN = 0.

The equations for this in matrix form are then

—2 1 - “1 0 e 0q FKI T —[to,tl,tz]x

az 2 1 - az tet 0 Kz [tl,tz,t3]x

3 |o o5 2 e 0 | ks | =6 | [ty ts,t4)x
L0 0 0 o 24 LKy L[tN—Z’tN—I’tN]X—‘

(b) D1 spline. In this case the first derivatives are fitted at ¢, ty ; that is,
W= =
It is easily shown that these give rise to two equations in addition to (2), namely,

2Kg + Ky = 6[x; — xq — ho"gl)]/h(z),

S
Ky—1 + 2Ky = —6[xy — xy_; — hy_  x8Uh3- 4.
The resulting equation can be written
2 1 0 o0 07 [wo [xi = Xo — hox{"1/hG
o0, 2 1—a, -+ 00 K, [to, 2y, t5]x,
O T
0 0 0 TR ) Kn =[xy = xy—1 = Ay XRUHR -,
(c) D2 spline. If the second derivatives are fitted at t = t,, ty then in (2),
Ko = sz)’ Ky = stz)a
whence for this spline,
2 1—a 0 - 0 K,y
az 2 1 - az M 0 Kz
0 0 0 et 2 KN- 1
(6)

(to, 1y, t50x — o, xE

[tl ’ tl ’ t3]x

[tn—2,th— s tadx — (1 — ay_ )x@
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(d) Periodic spline. The function x is now assumed to have period b — a,
that is,
x(t + b — a) = x(t).

Thus the periodic cubic spline will be made to satisfy
Y@ =)y"b), r=0,1,2.

It is clear that the equations (2) still hold for i =1,2,---, N — 1, but in the
first equation i, can be replaced by ky. In addition, the condition that y') is
continuous at ¢t = ty has to be imposed. This gives, after some simplification,

Bry + (1 — Plxy—y + 2Ky = 6[ty_ 1, ty, Iy + holx,
where
B £ ho/(hy + hy_ ).

The equations now have the form

2 1—0a, O 0 o Ky (to,ty,ta]x
o | e SO I R B R
B 0 0 1—p 2 K [tn_ 1ttty + holx

It will be noticed that each of these square matrices is strictly diagonally dominant,
and so each type of spline is determined uniquely by its knot values. Further,
they share the property that if 4 denotes any one of them, then with the uniform
matrix norm,

14~ < 1.
This is easily proved from the observation:
ifllAx| =2 m, m>0, |x| =1, then [A7'] < 1/m.

Now each matrix can be written as 2/ + B, where ||B|| < 1; and so as || Bx||
< |IB|l - lIx]| £ 1, it follows that

IAx[l = (2x + Bx|| 2 2||x|| — |IBx|| = 1,
which gives the result.

3. Errors in interpolation.
LemMma 1. Ifze C*[t,t"], z(t)) = z(t") = O, then,fort <t < t",

(1) max|z(t) < §(¢” — ¢')* max|z2?(t)],
(i1) max|z V()| £ 1 (" — t') max|zP(r)].

Proof. (i) This follows immediately from Lagrange’s interpolation formula.
(i) It is easily verified that

(" — 1)V = Jﬂ (s — t)2¥(s)ds — Jﬂﬂ (t" — 5)z3(s) ds,
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andsofort' <t <¢t”,

(t" — ¢y max|zM(t)] £ max|z®(r)] max {Jq (s — t)ds + J : " —s) ds}

= 3(t" — t')* max|z'?().

COROLLARY. If y is any of the cubic sblines, then, for t;, <t <t;,,i=0,1,---,
N -1,
max|x(t) — W)l < §hiL;,
max|x‘(t) — y" ()| < § hiL;,
max|x®(t) — y¥(e) < L,,

where L; = § h2M + max{|x? — x/,|x?, — Kk;11l}-
Proof. From the lemma it is sufficient to prove only the last inequality.
AsyPislinearint; < t < t;, , then from Lagrange’s linear interpolation formula,

hy2(t) — xP(O)] = (84, — Ok — xP) + (£ — t) (ki y — x32))
+ 3h(t — )t ~ 1,4 )x9(D), ‘
where t; < 1 < t;, ;. Hence

h; max|yP(t) — xP(1)| < b max{|x{® — x|, |x{¥; — ki44l}

+ %hi'M ~max|(t — )t — t;y,)l

fort; <t <t;,,, from which the result follows.
The inequalities in the corollary are valid for each type of spline, and so it
remains only to estimate L, for each type. To do this (2) will be rewritten as

o[x?) — ko ]+ 2xP — k] + (1 — a) (X3 — K4 1)

= a;x{ + 2x3B + (1 — a)x®, — 6[t;_y, ts, i 11X, i=1,2,---,N—1.
A routine use of Peano’s method for finding remainders shows that

0[xP — o]+ 2[xP — k] + (1 — ) (X2 — Kivq]
@ = okl + (1 - a)hi1x* o)) £,
where t;_, 206, = t;,,, i=1,2,---,N— 1. For the D1 spline a similar

rewriting and finding of remainders is required for (4). The results are easily
shown to be

2xG) — ko] + [xP — &1] = 2x + xP — 6[x; — xo — hox§")/h3

S 132 (4
9 = $h5x¥o,) = To, to S 09 =1y,

[xg\IZ)-l — Ky-1] + 2["5\12) — Kyl = xI(VZ)—l + 2x}vz) + 6[xy — Xy_y — hN—lx&'”]/h)zV—l

15,2 4
= zhy- 1 xPoy) =y, In-1 S oy Sty
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4. Orders of convergence. In order to use these last results, the matrix
equations (3), (5), (6), (7) will be rewritten so that the vector of unknowns is formed
from x{*) — k;. That is, if A4 is a typical matrix, then Ax'? is subtracted from each
side, where x‘® is a vector of appropriate second derivatives of x at the knots.
From the results (8), (9) it is clear that for (5), (6), (7) the modulus of each element
in the resulting right-hand side vectors will be bounded by 1h*M.

It follows, after multiplying by the respective inverses and taking the uniform
norm, that

max|x{? — x| £ th’M

for the respective ranges of the suffix. This gives, with the corollary, Theorem 2.
THEOREM 2. Ify is a D1, D2 or a periodic spline which agrees with x € C*[a, b]
at the knots, then for a £t < b,

max|x(t) — y(t) < & Mh*,
max|x‘(t) — yO(@) < 15 Mh?,
max|x®(t) — yA(t) £ 3 Mh?.

The result stated in the introduction will now be proved.

Proof of Theorem 1. In the procedure of rewriting (3) so that the vector of the
unknowns is formed from x{¥ — k;,i=1,2,---, N — 1, the resulting matrix
equation has the form '

2 2 2
AX® — ) =1 — a;xPe; — (1 — ay_)xPey_,
where
2 2 2 2 T — T
x? —k=[xP —x; P~y XLy —wyo ] r=[ry,ry 0, ry-1l

and e,,ey_, are the first and last columns of the N — 1 x N — 1 unit matrix.
It follows that

x® — k= A7 — o, xPLA7e,] — (1 — oy JXPLA ey ],
and so, fori=1,2,---, N — 1, with the uniform matrix norm,
(10) Ix{? — k] S A7) + | xP)I[A7 ey Jd + (1 — ay— IxP]- 1[4 ey 1l

where [ - ]; denotes the ith element of the vector inside the brackets. If x{?, x{ do
not vanish (otherwise the natural spline would also be a D2 spline), then estimates
of [[A™ 'e,)il, |[A™ 'ey_,]i are required. These can be found from [5], whence it is
easily deduced that

(11) A7 e, )l =%-27% J[A7 ey £%-2°77, i=1,2, -+, N — 1.
Thus (10) becomes, after using the result that |4~ !r| < |ir|| £ 1 Mh?,

(12) X =kl S §MA+ §lonxP]- 270+ (1 — ay_g)IxfP)-2¥77,
i=1,2,---, N — 1. For convenience,

y A
c= %“ﬂx%)z)l, D= %(1 - aN—l)|x§\12)| 5
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then, from the corollary to the lemma, for t; <t <t;,,,i=12,---,N =2,
max|x(e) — y(0)] < §Mh?
+ max{[C-27¢ + D27, [C-27i"1 4 D.27 NN},

Now C-27' + D-2'"¥ is convex towards the t-axis and so for t, <t <1,
lsp<gsN-1,

max|x®() — y?o)| < § Mh?
+ max{[C-27P + D-2°"N],[C-279+ D297 "]},
which, as p < g, can be replaced by
(13)  max|x®(@) — yP@)| £ IMh* + C-27P + D-297% (<t <t,.

It remains to be shown that for large enough N, the integers p, ¢ can be chosen so
that

C-27P<h® D227V <h.
For theée equalities to hold,
p 2 (log Ch™?)/log2, g < N — (log Dh™?)/log 2,
and so p, g can be defined by
(14) p = 1 + max{0, (log Ch~?)/log2}, ¢ = min{N — 1, N — (log Dh™?)/log 2},

where [z] here denotes the integral part of z.
Finally in order that p < g, it is sufficient that

N — 2 = [log(Ch™ %) + log(Dh~?)]/log 2;
that is,
(15) 2¥7% 2 CDh™*,

which, as h = (b — a)/N, will be satisfied for large enough N. Hence if (15) holds,
an interval (¢,, t,) can be chosen so that in it

max|x?(t) — yP(1) £ IMh® + 2h* £ 8Kh?,

which, with the corollary to the lemma, gives the inequahtles in the statement of
Theorem 1.

Further, from (14) (the trivial case where p=1,9= N — 1 will not be
considered),

(logCh~?)flog2 < p £ 1 + (log Ch~?)/log 2,

N — 1 — (log Dh™?)/log2 < g < N — (log Dh™?)/log 2,
and so

t,—a=t, —ty < ph < h[1 + (log Ch~?)/log 2] = O(hlog h)



74 D. KERSHAW

and
b—tq=1ty—t,<(N — qhZ h[l+ (log Dh~?)/log 2] = O(hlog h).
This completes the proof of Theorem 1.

5. Conclusions. The results show that aithough the convergence of the inter-
polating cubic spline is not uniformly O(h*) as is the case when exact endpoint
conditions are fitted, for a sufficiently large number of points it is O(h*) except
in two end intervals, which tend to zero as the maximum interval tends to zero.

A result worth noting comes from (12), where it is clear that if ag and 1 — oy _
are each O(h?), then the order of approximation is immediately O(h*). This implies
that only the first and last intervals need to be small compared with the maximum
interval length.

It is also worth remarking that if equal intervals were used, then the estimates
(11) could be replaced by (see [5]) '

[A™ e, ) = 2Uy i 1(/Ux—1(2) < 22 = /3),
(A7 "ey_ 2l = 2U;_ ((2)/Uy-1(2) < 2(2 - \/g)N_i’

where U, is the ith Chebyshev polynomial of the second kind.

Finally, it will be noticed that the above approach can be used to investigate
the convergence of splines with a mixture of end conditions. For example, if
P2 = x2 and yI’ = x{’, it is obvious that the approximation would be O(h*).
If one end is natural and the other with a fitted derivative, the situation is easily
dealt with by using (11).

REFERENCES

(1] J. H. AHLBERG, E. N. NILsON AND J. L. WaLsH, The Theory of Splines and their Applications,
Academic Press, New York, 1967.

[2] K. ATKINSON, On the order of convergence of natural cubic spline interpolation, this Journal, 5
(1968), pp. 89-101.

[3] T. N. E. GRrREVILLE, Spline functions, Mathematical Methods for Digital Computers, vol. 2,
A. Ralston and H. S. Wilf, eds., John Wiley, New York, 1967, Chap. 8.

[4] D. KeErsHAW, The explicit inverse of two commonly occurring matrices, Math. Comp., 23 (1969),
pp- 189-191.

, Inequalities on the elements of the inverse of a certain tridiagonal matrix, Ibid., 24 (1970),

pp- 155-158.

(3]



