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ABSTRACT

Cisplatin is highly active against epithelial ovarian cancer; unfortunately the

widespread emergence of clinical resistance to this drug has limited its overall

therapeutic benefit. Many mechanisms have been proposed to explain the

development of platinum resistance; these include differential platinum accumulation,

intracellular inactivation of platinum by thiol-containing compounds, qualitative and

quantitative differences in platinum-DNA adduct formation, and differential DNA

repair capacity. The multidrug resistance P- glycoprotein efflux pump has also been

implicated.

The availability of continuous ovarian cancer cell lines with induced platinum

resistance provides a useful model for the study of this phenomenon in vitro. Three

ovarian carcinoma continuous cell lines, A2780, 2780AD and 2780CP, were found to

have a stable, 27-fold, range of cisplatin sensitivity, using a modified MTT

chemosensitivity assay. This experimental model was used to investigate various

theoretical mechanisms of platinum resistance.

The cytotoxic action of cisplatin is believed to be due to the formation of intrastrand

platinum-DNA adducts. Investigation of these lesions is hampered by their extremely

low intracellular levels (10~15 to 1CH8 M). Indirect immunochemical methods, using

polyclonal antibodies, have until recently been the only sufficiently sensitive

technique. Inductively coupled plasma mass spectrometry (ICP-MS), a highly

sensitive technique for platinum analysis, was used to develop a new assay for the

direct measurement of intrastrand platinum-DNA adducts. Highly platinated calf

thymus DNA was disaggregated enzymaticaily; nucleotides and platinum-containing

oligonucleotides were separated by HPLC using an anion exchange column. Purified

adduct standards were used to calibrate the chromatogram; platinum analysis of eluate



14

fractions revealed two peaks coinciding with the eluate positions of the two major

intrastrand adducts.

Electrothermal vaporisation, a modification of ICP-MS, was used to improve

analytical sensitivity prior to the direct investigation of intrastrand adducts in this

cellular model of induced platinum resistance. Therapeutically relevant doses of

cisplatin were used; absolute adduct levels, and the kinetics of their formation and

repair, were measured. Technical problems encountered at the lower limits of

sensitivity reduced results to a semiquantitative level. Further modifications are

possible, however, to achieve greater accuracy.

Accumulation of platinum, both intracellular and DNA-bound, was measured by

ICP-MS; a linear relationship was observed between intracellular platinum levels and

chemosensitivity for all three cell lines. Platinum accumulation was reduced in both

resistant sublines, although to a similar degree in each. Uptake did not appear to be

energy-dependent; nor did the P glycoprotein efflux pump appear to be a significant

factor.

Induced cisplatin resistance was found to be associated with elevated levels of

reduced glutathione (GSH). The inhibitor of glutathione synthesis, buthionione

sulfoxidine (BSO), was used to achieve up to 100% reduction in GSH levels;

however no effect on cisplatin sensitivity was observed under these experimental

conditions.

These experiments, using continuous ceil lines with a high degree of induced cisplatin

resistance, provide further evidence for the multifactorial nature of cisplatin

resistance. Differential platinum accumulation may account for a significant

proportion of observed cisplatin resistance; intracellular platinum inactivation by

GSH did not appear relevant. A promising new assay for the direct measurement of

intrastrand platinum-DNA adducts is described.
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CHAPTER 1

INTRODUCTION

Ovarian cancer is now the commonest gynaecological cancer in both the U.K. and the

U.S.A.; constituting about 25% of all gynaecologic cancers but accounting for 47% of

all deaths from cancer of the genital tract (Barber, 1989). Worldwide, its incidence

shows marked geographical variation, being five times more common in

Scandinavian countries than in the Far East, with the U.K. ranking fairly high.

Information from the West of Scotland Cancer Surveillance Unit show a crude

prevalence for this region of 39.8 / 105 for cases diagnosed since 1985, and a

corresponding incidence value of 20.5 / 105 in 1990. Since 1975 the incidence of this

disease has risen slightly in the West of Scotland. Although ovarian cancer in this

country represents only 4% of malignant disease by incidence, it is responsible for

6% of all female deaths (Sharp et al, 1989) with an overall five year survival of only

28%. This is largely due to its relatively late presentation, with only one third of all

cases presenting whilst the disease is still localised and therefore resectable (Young,

1987). Epithelial ovarian cancer (EOC) comprises 90% of all malignant ovarian

tumours (Fox, 1985) and is often the most refractory to treatment. A better

understanding of the nature of this disease, and the underlying nature of its initial

sensitivity and later resistance to chemotherapy, is essential for any further advances

in its clinical management.

Aetiology

Little is known about the aetiology of ovarian cancer, although a role for 'incessant'

ovulation has been suggested owing to its link with low parity and oral contraceptive

usage. A recent decline of 2% in its incidence in premenopausal women over the past



fifteen years (C. Gillies, West of Scotland Cancer Surveillance Unit, personal

communication) may also be associated with the latter factor. Genetic factors account

for a small (around 5%) proportion of all ovarian cancer cases (Lynch et al, 1990).

There also appears to be a link with breast cancer, which may be mediated through

nulliparity. More recent evidence, however, has implicated the involvement of the

BRCA-1 gene, located on the long arm of chromosome 17 in the familial breast-

ovarian cancer syndrome (Cannistra, 1993). The insidious nature of ovarian

malignancy means that screening for the disease in its early stages (a combination of

clinical assessment, pelvic ultrasonography and serum tumour markers has been used)

is difficult and should be confined to a defined at risk population (Andolf, 1986).

Overall prognosis is associated most strongly with clinical stage at presentation;

histological indices (type, grade, quantitative aspects) provide a more accurate

individual assessment (Baak et al., 1988; Young, 1987). Meticulous surgical staging

is essential in the clinical management of EOC, particularly since five-year survival in

its advanced stages is of the order of only 25 - 30%.

Clinical management

A greater understanding of the disease and its natural history has led to improved

survival figures in recent years. The mainstay of treatment remains surgery, which

allows accurate staging and histopathologic assessment. A vertical incision is

essential for adequate exposure and complete exploration of the abdomen and pelvis.

For adjuvant therapy to be optimally effective, complete extirpation of tumour is

desirable - chemotherapy is more likely to be effective if only micrometastases

remain. In practise, optimal cytoreductive surgery entails a radical oophorectomy

procedure (extended total abdominal hysterectomy with bilateral salpingo-

oophorectomy, omentectomv and resection of any other macroscopic disease),

aiming to leave residual disease no greater than 1.5 cm in diameter (Griffiths, 1975).

Such surgery ideally should oniv be performed by experienced gynaecological



surgeons with adequate allocated operating time, when optimal cytoreduction is

achievable in about 85% of cases with low morbidity (Hacker, 1989). It is likely,

however, in most cases that the ultimate clinical outcome is related mainly to the

inherent biological properties of the tumour. The beneficial effect of optimal

cytoreductive surgery may therefore be due to its intrinsic surgical resectability

(Hacker and van der Burg, 1993). A recent study comparing interventional

cytoreductive surgery with further chemotherapy for patients with residual EOC

greater than 1 cm following primary laparotomy showed clear survival benefits for

the former group (van der Burg et al., 1993), providing further evidence for the

importance of adequate surgical management of this disease.

In early stage EOC, adequate surgery alone may be curative. Most gynaecologic

oncologists would, however, accept the rationale for adjunctive therapy for stage Ic

and beyond. Adjunctive radiotherapy was used prior to the development of active

agents for chemotherapy; nowadays it is recognised as useful only for resistant small

volume residual disease, particularly if confined to the pelvis. Intraperitoneal

radiotherapy, in the form of radioactive colloids such as gold (198Au), phosphorus

(32P), or yttrium (90Y), has recently been used as adjuvant or consolidation therapy in

selected patients.

In advanced EOC, chemotherapy is clearly superior to radiotherapy for adjunctive

treatment; response rate is variable, however, and can only be accurately assessed by

second-look laparotomy. If a histological complete response (CR) is proven, five year

survival is around 70%. compared with a figure of around 35% for non-histologically

proven CR. It seems logical that the most complete response is achieved with the use

of multiple agents in combination regimes. The most active single agent is

cisplatinum (CDDP), which produces an overall clinical response rate of 50%

(Wiltshaw, 1985) and a pathological CR of around 13%. There are as yet no

published studies comparing single-agent CDDP with a combination regime including
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CDDP. although an overview of all relevant studies is currently being conducted

(MRC Gynaecological Working Party, 1990). The second generation platinum

compound, carboplatin, also acts by platinum-DNA adduct formation, although it is

less reactive and therefore larger doses are required for a similar clinical effect. The

different toxicity profile of carboplatin compared with CDDP provides some

therapeutic advantage, but a lack of long-term data has prevented its recommendation

as a routine replacement for CDDP in chemotherapy regimes for the treatment of

EOC (Advanced Ovarian Cancer Trialists Group, 1991; Vermorken et al., 1993).

ais - DDP

FIGURE 1: Molecular structure of CDDP

Cisplatin (CDDP)

CDDP is a neutral, square-planar coordination complex with two labile chloride

groups and two relatively inert ammine ligands in the cis configuration (Figure 1). Its

cytotoxic effect was discovered serendipitously (Rosenberg et al., 1965) in a classic

experiment designed to investigate the effect of electromagnetic fields on bacterial

growth. Bacteria were noted to grow in a filamentous fashion, up to three hundred

times their normal length, when a low voltage was applied between two platinum

electrodes. This effect, specifically inhibiting cell division, was later shown to be due

to the electrolysis products cis-diamminetetrachloroplatinum (IV) and cis-

diammmedichloroplatinum (II) (CDDP). Corresponding trans isomers acted merely

as bacteriocides. with no effect on cell division. Such a specific action of CDDP to

inhibit cell division, whilst allowing cellular growth to continue, implies interference

with DNA replication whilst RNA and protein synthesis continue normally. Other

h3N^
Ft

H3N^
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known DNA-damaging agents (UV- and X-irradiation, anti-tumour alkylating

compounds) act in a similar fashion.

Mode of action of CDDP

Considerable evidence now exists to support the interaction of CDDP with cellular

DNA as critical for its cytotoxicity. In aqueous solution a variety of partially and fully

hydrolysed species are formed (Figure 2); in addition, loss of a proton from the

aquated species, with substitution of chloride by water, allows the formation of

various hydroxy species. The cis configuration is retained throughout these reactions.

In extracellular fluid the concentration of chloride ion is sufficiently high to maintain

CDDP in its neutral (dichloro-) form. However, once inside the cell, the intracellular

chloride level declines sharply, with consequent promotion of hydrolysis of the labile

CDDP chloride ligands. This aquated species reacts subsequently with a variety of

intracellular components, including DNA.

FIGURE 2: Hydrolysis Reactions of CDDP (from Pinto and Lippard 1985)

Further evidence that CDDP is a DNA-damaging agent has been supplied by studies

of prophage induction (Pinto and Lippard, 1985), showing that lysogeny can be

indirectly induced in non-lysogenic Eschericia coli by conjugation with a CDDP-

treated lysogenic strain. Since bacterial conjugation implies transfer of DNA alone, it

follows that this effect is due to platinum adducted to donor prophage DNA. Other

studies have shown that CDDP can inhibit DNA replication even at subtoxic doses

PKNH^CKOH) Pt(NH3)2(OH2XOH)+



and after removal of the drug. It is not yet certain whether the antitumour efficacy of

CDDP is a consequence of impaired DNA replication or transcription (Donahue et al.,

1990). Initially its effect appeared to be due to inactivation of DNA as a template in

replication, rather than to interference with enzymes involved in DNA synthesis, as

CDDP will only inhibit DNA polymerase activity at very high doses (Harder et al..

1986T More recent work (Sorenson and Eastman. 1988a and 1988b), using CDDP-

treated murine leukaemia (L1210) cells, has shown that DNA replication actually

continues for some time after CDDP treatment, even when cell division has halted.

Flow cytometry was used to demonstrate arrest in the G2 stage of cell division, the

duration of which was proportional to the amount of CDDP used. At low CDDP

concentration, G2 arrest was transient, and ceils ultimately survived exposure. At

higher doses of CDDP, G2 arrest was less readily reversible, after which time cellular

disintegration was observed, any recovery of growth originating from a limited

number of surviving cells. Analysis of DNA damage in these cells merely

demonstrated the occurrence of significant numbers of double-strand breaks at high

levels of CDDP, apparently the first sign of cell death. The lack of evidence for

single-strand DNA breaks in G2-arrested cells fails to confirm a role for post-

replication repair in this phase of the cell cycle. Sorenson and Eastman have therefore

suggested that inhibition of transcription is more critical to the toxic action of CDDP

than is inhibition of DNA synthesis. At high levels of CDDP it is possible that repair

processes for recovery of transcription are overwhelmed, thus leading to cell death.

CDDP in ovarian cancer

The activity of CDDP in EOC was first reported in 1976 (Wiltshaw et al., 1976):

since then many studies have confirmed CDDP to be the drug of first choice in

advanced EOC. A major problem, however, has been the emergence of clinical

resistance: primary response rates of 80 - 90% are generally achieved (Sutton et al.,

1989) but the impact of such chemotherapy on long-term survival, particularly in



advanced disease, is unfortunately minimal, owing to the widespread emergence of

CDDP resistance. Improved management of the toxic side-effects of CDDP has

recently allowed dose escalation to overcome some of this resistance, although

neurological side-effects then became dose-limiting (Ozols, 1989). A retrospective

analysis of relative CDDP dose intensity in thirty three randomised trials (Levin and

Hryniuk, 1987; Kaye et al., 1992) also demonstrated the importance of received

CDDP dose intensity to survival. Ultimately, however, ovarian cancer becomes

refractory to further dose escalation, owing to the increasing proportion of resistant

tumour cells.

In an attempt to circumvent this major clinical problem of platinum resistance, a

fuller understanding of the mechanism of action of CDDP is required, particularly at

the level of its interaction with cellular DNA. It is likely that CDDP resistance is

multifactorial in origin: different experimental models have incriminated different

mechanisms for this phenomenon.

Multidrug resistance

Resistance of cultured carcinoma cells to a variety of unrelated antineoplastic drugs

that are natural products (e.g. doxorubicin, daunorubicin, etoposide, vincristine,

vinblastine) has been found in many systems to be due to the overexpression of a

plasma membrane glycoprotein (P-glycoprotein). This appears to act as a drug efflux

pump, maintaining low intracellular levels of cytotoxic drugs in cells which express

the multidrug resistance (mdr) phenotype. P-glycoprotein overexpression is

uncommon in previously untreated disease, but is frequently found in patients who

have been treated with any of the above-mentioned drugs (Lazo and Bahnson, 1989).

The mdr phenotype is not normally considered typical of CDDP resistance. Mdr gene

amplification in ovarian cancer specimens has been assessed in a number of studies;

(Bourhis et ah, 1989 and Bell et al., 1985) and found to be relatively uncommon. In

EOC amplification and overexpression of the mdr gene was oniy found in cell lines



derived from patients with clinical multidrug resistance, including to adriamycin

(Onishi et al.. 1989).

Platinum resistance in ovarian cancer

Reduced accumulation of platinum has. however, been a consistent finding in CDDP-

resistant cell lines of various origins, despite the lack of evidence for the involvement

of P-glycoprotein. The exact mechanism whereby platinum enters cells has not yet

been elucidated, but alterations in transport across the cell membrane, possibly

mediated by cyclic AMP, have been implicated (Mann et al., 1991). Improved

platinum uptake into cancer cells offers clear potential for improving the clinical

responsiveness of the tumour to CDDP.

Once inside the cell, inactivation of intracellular platinum by the electrophilic thiol

compounds glutathione (GSH) and metallothionein (MT) may also contribute to the

emergence of platinum resistance. An association between cellular GSH levels and

CDDP resistance has been found in many cell lines but it is not clear whether this

reflects intracellular inactivation or a general stress response following CDDP

treatment. Little actual evidence exists to support a significant reaction between

intracellular GSH and CDDP; similarly there is little to suggest a causative link

between overexpression of MT and CDDP resistance (Andrews and Howell, 1990).

The availability of compounds such as buthionine-S-R-suifoximine (BSO) to reduce

cellular GSH levels has invoked the possibility of modulating tumour response to

CDDP therapy, both in vitro and in vivo.

It is now widely acknowledged that the critical cytotoxic target for CDDP is cellular

DNA. through the formation of platinum-DNA (Pt-DNA) adducts. Differences in the

rate of adduct formation or the ability of cells to repair CDDP-induced DNA damage

may thus be important determinants of cellular sensitivity to CDDP. Indeed, cell lines

derived from patients with defective DNA repair mechanisms are known to be highly



sensitive to CDDP (Pera et ai., 1987). The development of indirect immunochemical

techniques for the accurate and sensitive quantitation of these intrastrand Pt-DNA

adducts (Fichtinger-Schepman et ah, 1985b and Eastman. 1987) has stimulated much

recent interest in the relationship between such adducts and the cytotoxic action of

CDDP. The competitive enzyme-linked immunosorbent assay (ELISA) of Fichtinger-

Schepman and colleagues, which uses polyclonal antisera to specific synthetic Pt-

DNA adducts, appears to give the most sensitive and consistent results.

Unfortunately, however, these antibodies are scarce and are not commercially

available; in addition, the use of specific antisera against previously recognised

adducts may conceal the presence of other minor, but potentially significant lesions.

Aims of thesis

The aims of this thesis can be summarised as follows;

1 To develop a method for the direct detection of platinum-DNA

adducts.

2 To determine levels of the major piatinum-DNA adducts in a model of

CDDP resistance in ovarian cancer in vitro.

3 To investigate whether a change in platinum accumulation could

account for CDDP resistance.

4 To attempt to sensitise ovarian cancer cells to CDDP by manipulation

of the cellular glutathione status.

Layout of thesis

Chapters 2 - 6 are self-contained, with introduction, materials and methods, results

and discussion sections.

This thesis attempts to investigate further the mechanisms of platinum resistance in

ovarian cancer cells, using a series of three human ovarian cancer continuous cell



lines. The parental cell line was originally derived from a patient with untreated

ovarian cancer; its full characterisation has never been officially published. Platinum

resistance in one subline had been derived by continuous culture in the presence of

CDDP. and in the other had been noted incidentally in a subline with induced

resistance to adriamycin. The two CDDP-resistant sublines were thus believed to

reflect both induced and intrinsic mechanisms for cellular CDDP resistance. In

Chapter 2 these three cell lines, used throughout this work, are further characterised.

A modified MTT chemosensitivity assay for assessing cellular sensitivity to CDDP in

vitro is described, and a broad range of CDDP resistance established for these cell

lines. Immunohistochemistry for P-glycoprotein expression demonstrated the lack of

relevance for the multidrug resistance phenotype in CDDP resistance.

The availability of an innovative and highly sensitive method for platinum analysis,

inductively coupled plasma mass spectrometry (ICP-MS), led to the first major aim of

this work: to develop a new assay for the direct analysis of platinum-DNA adducts.

Such a direct assay would enable the detection of previously unrecognised Pt-DNA

lesions and the corroboration of findings from other studies using the ELISA method

for their analysis. Chapter 3 describes the development of the direct assay for

measuring the two major intrastrand Pt-DNA adducts, Pt-GG and Pt-AG, using

enzymatic disaggregation of highly platinated calf thymus DNA followed by anion-

exchange chromatography for the separation of nucleotides and Pt-oligonucleotides,

and ICP-MS for the detection of platinum peaks in elution fractions. Having

established the elution positions of the two major intrastrand adducts, in Chapter 4

adduct formation and repair is assessed, and related to CDDP-resistance, in the three

ovarian cancer cell lines, following treatment with CDDP. The potential of this assay

for the direct measurement of these adducts in biological systems is evaluated.

Chapter 5 describes the use of ICP-MS as an analytical technique to assess the

relationship between differential platinum uptake and Pt-DNA binding and the degree



of CDDP resistance in the two resistant sublines. A relationship between platinum

accumulation and CDDP resistance was found at both the cellular and the nuclear

level.

Finally, in Chapter 6 the role of intracellular GSH content, and its relationship with

CDDP resistance was examined in the three ovarian cancer cell lines. The capacity of

BSO, in the reduction of cellular GSH levels, and its consequent potential for

therapeutic modulation of the response of ovarian cancer cells to CDDP was

explored, and found to be minimal.

Chapter 7 discusses the general findings of this thesis with respect to the

multifactorial nature of CDDP resistance in ovarian cancer cells. The development of

more active analogues of CDDP. in the light of improved understanding of the

mechanisms of platinum resistance, and the use of resistance modulators to improve

clinical responsiveness are some possible clinical applications of this work.

In summary, the work described in this thesis provides further characterisation of

three ovarian cancer continuous cell lines with a range of CDDP resistance induced in

vitro. A novel and highly sensitive technique for the analysis of platinum (ICP-MS),

potentially capable of the direct evaluation of Pt-DNA interactions, was assessed. A

direct assay for the estimation of the two major intrastrand Pt-DNA adducts in

biological systems was developed and appraised. Other putative mechanisms for

platinum resistance -differential platinum accumulation and intracellular inactivation

by GSH- were investigated in this experimental model.
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CHAPTER 2

GENERAL METHODS AND EXPERIMENTAL METHODS FOR
THE STUDY OF PLATINUM RESISTANCE

INTRODUCTION

CDDP and its analogues are rapidly becoming the most widely used cytotoxic agents

available today for use against solid tumours. The emergence of clinical platinum

resistance, however, is a major obstacle to improved longterm patient survival. An

important aim of this thesis was to characterise further the nature of this platinum

resistance. Theoretical mechanisms of platinum resistance have been deduced from

animal and human tumour models; an appropriate study system is essential for

meaningful conclusions to be drawn.

Experimental models

The phenomenon of acquired drug resistance has been extensively studied in many

tissue culture systems. Extrapolation of such models to the clinical situation has

traditionally been more difficult (Wolf et ah, 1987). Early work with primary culture

of tumour biopsies demonstrated evidence of intrinsic cellular variations in

chemosensitivity: a major potential clinical application being the development of

predictive assays for chemotherapy using individual tumour specimens. Clonogenic

assays,which test the ability of tumour stem cells to reproduce and form a colony of

cells after chemotherapy,have been largely used for this work. Observations of the

mathematical characteristics of cell survival curves (log cell survival versus dose)

yield theoretical information on ceilular sensitivity and resistance (Freshney &

Dandy, 1983). Such assays, using bilayer semisolid agar with enriched media, were



developed (Hamburger & Salmon, 1977; Courtenay et al., 1978) on the basis that

semisolid medium suppresses the growth of most normal cells. Technical problems

with these assays in primary culture include low colony forming efficiencies, poor

predictive value of chemosensitivity in vitro and a lack of good evidence for in vitro /

in vivo correlation in prospective trials. Increasing scepticism has thus been generated

about their value (von Hoff, 1983) particularly as the low plating efficiencies cited

suggest that colony growth in suspension only occurs after some highly selective

process. In addition it is not possible to vary the duration of drug exposure, thus

limiting the experimental value of this system. Some of these problems, however, can

be overcome by the use of various complex tissue culture techniques (Ajani et al.,

1987. Balconi et al., 1988; Stampfer et al., 1980). Such primary cultures of EOC cells

probably provide the model most closely related to the situation in vivo for the study

of chemosensitivity and resistance.

Freshly derived ovarian cancer cell lines combine these advantages with those of

reproducibility and availability. Unfortunately the success rate for the establishment

of such freshly derived ceil lines is only around 1 -10% (Nio et al. 1989; Langdon et

al., 1988). Xenografts, established from primary ovarian tumours in nude mice, can

be used as an experimental model system (Massaza et al., 1989; Balkwill et al., 1990).

These display similarities in histology, immunocytochemistry, hormone

responsiveness, and DNA / chromosome content to the original tumours. Clinical

correlations of chemosensitivity are generally good, but some important differences

exist, such as faster growth rate, lower metabolic potential, inappropriateness of site

and blood supply . In addition, such models are expensive and not amenable to rapid

chemosensitivity screening.

The recent establishment of various continuous ovarian cancer cell lines has greatly

facilitated both the evaluation of cytotoxic drugs and the investigation of drug

resistance. Such cell lines can be easily grown, and are both reproducible and



convenient. However they represent a selected subpopulation of cells and thus may

not accurately reflect the true cellular heterogeneity of the original tumour (Balconi et

al., 1988). Alterations in growth characteristics and pharmacokinetics with increasing

culture duration (Hill, 1983) and contamination by better established continuous lines

may also occur. Cell lines with specific resistance to certain agents have been

produced by their selection in vitro in increasing drug concentrations; such paired

sensitive and resistant cell lines offer an attractive model for the study of drug

resistance, despite obvious disadvantages. Resistance observed between such pairs of

ceil lines is frequently far higher than is clinically relevant. This may, however,

facilitate the demonstration of contributory factors in acquired drug resistance.

Continuous EOC cell lines have been established from the same patient both before

and after chemotherapy (Langdon et al., 1988 and Hamilton et al., 1989), providing

an alternative model for the study of acquired drug resistance. Heterogeneity in the

chemosensitivity of ovarian tumours has also been observed in primary culture

(Balconi et al., 1988 and Rotman et al., 1988), thus demonstrating a probable role for

intrinsic drug resistance.

Ovarian cancer continuous ceil lines

A panel of three related continuous EOC ceil lines was used throughout this work:

A2780 was originally derived from an untreated patient with ovarian cancer (Eva et

al., 1982). Its adriamycin-resistant subline, 2780AD. was produced by the culture of

the parental cell line in increasing concentrations of adriamycin until significant

adriamycin resistance was achieved. This subline was also found to display a

moderate degree of cross-resistance to CDDP; resistance to both agents was stable in

drugfree tissue culture conditions for around six weeks. A CDDP-resistant subline,

2780CP, had been produced in similar fashion by stepwise selection in increasing

concentrations of CDDP.



Chemosensitivity was determined in vitro by a tetrazolium dye based microtitration

assay, developed and characterised within the Department of Medical Oncology

(Plumb et al., 1989). This assay was shown to give identical results to a standard

clonogenic assay and allowed large numbers of simultaneous chemosensitivity assays

to be performed under standardised conditions, whereas these cell lines have poor

plating efficiencies in clonogenic assays (about 15%) and only produce very small

colonies.

This chapter aims to characterise further the cell line A2780, and its resistant sublines

2780AD and 2780CP, and also gives details of general methods used throughout the

thesis.
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MATERIALS AND METHODS

Cell Lines

All three human ovarian carcinoma continuous cell lines (A2780, 2780AD and

2780CP) were obtained from Dr R. F. Ozols (Fox Chase Cancer Centre, Philadelphia,

U.S.A.). 2780AD was known to express high levels of P glycoprotein (Sugawara et

al., 1988).

Cell Culture

All cell lines were grown in Roswell Park Memorial Institute 1640 (RPMI 1640)

medium (Northumbria Biologicals, Cramlington, Northumberland, U.K.) prepared

from 10 x concentrated stock solutions. All medium was supplemented with

glutamine (2 mM) and foetal calf serum (10%), buffered by the addition of sodium

bicarbonate (0.075%) and equilibrated with C02 (2% in air). No antibiotics were used

in routine maintenance.

The cell lines all grew as adherent monolayer cultures, and were maintained in the

exponential phase of growth in 75 cm2-flasks (J. Bibby Science Products Ltd,

Staffordshire, U.K.) or in 25 cm2flasks (Nuncion, Life Technologies Ltd, Paisley,

U.K.). Cells were subcultured once a week. The cell monolayer was exposed to

trypsin (0.25%, Life Technologies Ltd, Paisley, U.K.) in the presence of

ethyienediaminetetraacetic acid (EDTA. mM. BDH, Poole,U.K.) in Ca++ and Mg++

free phosphate buffered saline (Dulbecco's A, PBS) for 30 seconds. This solution was

then removed and the monolayer incubated for 5 minutes, at 37° C. The trypsin was

then inactivated and the cells collected by resuspension in 10 ml of culture medium.

Cell number was determined with an electronic counter (Coulter Model ZBI, Coulter

Electronics Ltd. Luton, Bedfordshire, U.K.), and cells reseeded into new flasks at a

density of 5 x 105/ 25 cm2 flask or 2 x 106/ 75 cm2 flask.. Flasks were then



equilibrated with C02 (2% in air) and sealed prior to incubation. Cultures were fed

with new medium at two or three day intervals.

Resistance was maintained in the adriamycin-resistant subline, 2780AD, by its

continuous maintenance in a low concentration of adriamycin (2 p.M, in standard

culture medium). For the CDDP-resistant subline, 2780CP, resistance was maintained

by its intermittent exposure to low doses of CDDP in standard culture medium.

CDDP resistance was found to be stable for up to six months in drug-free medium.

Both cell lines were cultured in drug-free medium for at least five days prior to

experimentation.

Mycoplasma Testing

All cell lines were examined monthly for mycoplasma contamination by the Hoechst

staining method.

Maintenance of Cell Stocks

Stocks of all cell lines were held in liquid nitrogen.In general, cells were maintained

in culture for three months and then replaced with fresh cells from stock. This aimed

to reduce variability caused by maintenance in continuous culture, and also to

minimise the risk of cross-contamination.

Monolayer cultures were harvested with trypsin, collected into a sterile universal

container (Bibby Steriiin Ltd., Stone. Staffordshire, U.K.) and centrifuged for 5

minutes at 200g. The resulting cell pellet was then resuspended in culture medium

containing dimethyl sulphoxide (10%, Merck, Thornliebank, Glasgow, U.K.) at an

approximate density of 5 x 106/ ml. This suspension was then stored in aliquots in 1

ml cryotubes (Nunclon, Life Technologies Ltd., Paisley, U.K.) and frozen at a rate of

1°C per minute in an insuiate container in a freezer at -70° C. After at least four hours

the cells were transferred into liquid nitrogen.



When required, an ampoule was removed into warm water (37° C). The cell

suspension was then transferred into a 25 cm2 flask and 5 ml culture medium added.

The cells were equilibrated with C02 (2%), sealed and incubated at 37°C for 24

hours. The medium was then changed and the cells allowed to grow. At least two

passages were performed prior to use in experiments.

xMeasurement of cell volume

Cell size was determined when necessary using an electronic particle counter (Model

Industrial D; Coulter Electronics Ltd., Luton, Bedfordshire, U.K.). Calibration for cell

size was performed with standard polystyrene divinyl benzene latex beads

(P.D.V.B.Latex, Coulter Electronics Ltd., Luton, Bedfordshire, U.K.), using a half-

count technique (Section 6.1, Reference Manual for the Coulter Counter Model D.

issue A: 1984). The threshold (t), attenuation (A) and aperture (I) were determined for

a given size of latex beads. The calibration constant (Kd) was calculated from the

following equation:

K - - d
d VtxIxA

where d is the known mean diameter of the P.D.V.B. particles in pm.

Cell size was calculated by the determination of t, A, and I for each cell line. The

mean diameter of a single cell was then derived from the above formula and the

volume of a cell, assuming a spherical shape, calculated.

Determination of doubling time

The doubling time of each cell line was determined from cell counts of cells grown

in optimal culture conditions. Lor this, cells were seeded in 1 ml of culture medium

into 24-well plates (Nunclon. Life Tecnnologies Ltd., Paisley, U.K.) at a density of

104 cells per well and grown at 37°C in a humidified atmosphere of 2% C02 in air.



From day 2 onwards cells in three wells were trypsinised and counted daily as

described. Medium in all other wells was replaced daily. Cell doubling time was

calculated from the shape of the exponential growth phase obtained from a plot of the

logarithm of cell number against time.

Chromosomal analysis

For chromosomal analysis of all three cell lines, cells were grown in 25 cm2 flasks in

Ham's F10 medium (Gibco, Paisley, U.K.), supplemented with foetal calf serum

(10%), newborn calf serum (10%) and penicillin / streptomycin solution (1%).

Subconfluent cells in the exponential phase of growth were incubated for 2.5 hours

with colcemid (Gibco, Paisley, U.K.) at 37° C; the cells were then detached using

trypsin / versene (0.25% trypsin; 0.5 g/1 versene) and centrifuged. After resuspension

in hypotonic solution (0.0375M KC1), the cells were recentrifuged and fixed by the

dropwise addition on methanol: glacial acetic acid (3:1). Microscopic slides were

prepared by spreading several drops of cell suspension in fresh fixative onto grease-

free, wet, ice-cold slides, and allowing them to air-dry after the addition of a few

drops of fixative. When dry, the slides were G-banded by pre-treatment with trypsin

(0.1% Difco trypsin in Sorensen's buffer). Metaphase spreads were counted and

analysed under oil immersion (xlOO) microscopy.

Chemosensitivity assay

Drug sensitivity was determined by a tetrazolium based microtitration assay

(Mosmann, 1983) which was further developed and optimised in the Department

(Plumb et al., 1989). In this assay cells in the exponential phase of growth are

exposed to drug for a fixed time period, and then allowed to grow in drug-free

medium for 2-3 doublings. Final cell number is determined indirectly by the

reduction of tetrazolium dye, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium

bromide (MTT, Sigma Chemical Company, Poole. U.K.), by live, but not dead, cells



to a water-insoluble purple formazan product. Under appropriate conditions the

absorbance of the reduced dye at 570 nm is proportional to the biochemically viable

cell number. This modified MTT assay has been proven to give results comparable to

those obtained in a standard clonogenic assay for both adherent and non-adherent cell

lines (Plumb et al., 1989).

Determination of the optimal concentration of MTT

Since MTT itself can be cytotoxic to ceils, the optimal concentration for maximal

MTT-formazan and minimal toxicity was determined for each cell line.

Cells were plated out into 96-well microtitre plates (12 x 8 wells, Linbro, ICN

Biomedicals Ltd., High Wycombe, Buckinghamshire, U.K.) in 200 pi of medium at a

concentration of 1 x 104 cells per well and grown at 37° C for 2 - 3 days in a

humidified atmosphere of 2% C02 in air. The first and last columns of 8 wells on the

plate acted as controls, containing medium alone. Medium was then removed and

replaced with 200 pi medium containing HEPES buffer (Life Technologies Ltd.,

Paisley, U.K., 10 mM). MTT to a final concentration ranging between 0.1 and 1.0 ng /

ml was then added to the middle ten columns, and the plates incubated in darkness in

otherwise standard conditions for four hours. All wells were then aspirated and the

resulting MTT-formazan crystals dissolved in 200 pi dimethyl sulphoxide, with the

addition of 25 pi of Sorensen's glycine buffer (glycine 0.1M, NaCl 0.1M, pH 10.5).

Absorbance at a wavelength of 570 nm was then measured using an ELISA

microplate reader (Bio-rad Model 3550, Bio-rad Laboratories Ltd., Hemel

Hempstead, Hertfordshire, U.K.). The outer columns of the plate, containing no cells,

were used as blanks for the plate reader.



Estimations of chemosensitivity

CDDP was obtained as a non-sterile powder (Sigma Chemical Company, Poole,

U.K.) and prepared as a stock solution at 1 mg / ml in PBS, filter sterilised (pore size

0.22 pm, Millex-GS, Millipore Ltd., Watford, Hertfordshire. U.K.) and stored at 4° C

in darkness for up to 2 months.

For analysis of the sensitivity of each cell line to CDDP. cells were plated out into 96-

well microtitre plates as described above, at a concentration of 5 x 102 to i x 103 cells

per well and grown for 2 - 3 days under standard conditions. The first and last

columns of the plate again contained medium alone. Cells were then exposed to drug

for either 4 or 24 hours. A serial dilution (usually 1:4) of CDDP was prepared to give

a range of 8 concentrations such that the ID50 of the cell line was in the middle of the

range. 4 or 8 replicate wells were used for each drug exposure, and cells in the 2nd

and 11th columns fed with drug-free medium only. Following CDDP exposure,

medium and drug was removed by needle aspiration and cells fed daily with drug-free

medium for 3 days. All wells were then fed with 200 pi of fresh medium buffered

with HEPES buffer (lOmM), and MTT (at optimal concentration) as described

above,and plates incubated for 4 hours in darkness under otherwise standard

conditions. Medium and MTT was then removed, formazan crystals dissolved in

dimethyl sulphoxide / Sorensen's glycine buffer, and absorbance at 570 nm measured

as described above. The outer 2 columns, containing no cells were used as a blank for

the plate reader. Columns 2 and 11, containing ceils not exposed to CDDP, were used

to obtain the absorbance value for untreated cells. The absorbance values per CDDP

exposure thus obtained were plotted as the percentage of that for untreated cells

against a logarithmic scale of drug concentration. The ID?0 value of CDDP for each

cell line was defined as the concentration of CDDP required to obtain an absorbance

value of 50% of that of untreated cells.



Conditions were optimised such that ceils underwent at least 2 population doublings

during the period between CDDP removal and estimation of viable cell number.

Absorbance was shown to be linear with viable cell number in the range used for

these experiments. To determine the stability of induced resistance to CDDP in vitro,

some experiments were performed over increasing passage number over a period of

six months.

Immunohistochemistry for P glycoprotein

To determine the contribution of the multidrug resistance phenotype (mdr) to CDDP

resistance induced in these cell lines, immunohistochemistry using the C219

monoclonal antibody to P glycoprotein (CIS U.K. Ltd., High Wycombe,

Buckinghamshire) was used at a final concentration of 10 (ig / ml. Cytospin

preparations of each cell line were made by mechanical removal from monolayer

growth on 75 cm2 flasks, centrifugation of the resulting cell suspension at 200g for

five minutes, and resuspension in PBS. Aliquots (0.5 ml) were then pelleted onto

clean glass microscope slides in a cytospin centrifuge (Shandon). The resulting

cytospin preparations were then fixed in acetone at room temperature.

After washing in Tris saline (pH 7.6, 5 minutes), slides were stained using an indirect

immuno-alkaline phosphatase technique, incubating first with specific primary mouse

monoclonal antibody (C219) for 2 hours. This and all subsequent incubations were

performed at room temperature in a humidified container. All antibody dilutions were

carried out in Tris buffer (pH 7.6). After a further wash in Tris saline for 5 minutes,

100 jllI of a second antibody (rabbit anti-mouse immunoglobulin, conjugated to

alkaline phosphatase; Dako, High Wycombe, Buckinghamshire, U.K.) was applied at

a concentration of 1:20 in normal human serum (50%, filtered) for 45 minutes. Slides

were then washed again in Tris saline for 5 minutes and incubated with alkaline

phosphate substrate solution, 100 ul per slide, for 30 minutes to produce a red

reaction in cells which express P glycoprotein. Slides were counterstained with



Haematoxylin (15 seconds) and submerged in Scott's Tap Water Substitute for 20

seconds before mounting.

Cytospin preparations of a continuous small cell carcinoma of lung cell line.

(H69LX10), known to express strongly P glycoprotein (Plumb et al, 1990), were used

as positive controls. An irrelevant monoclonal antibody (Clonab LN-C. Biotest, U.K.)

was substituted for the primary antibody to provide negative controls.
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RESULTS

Morphological characteristics

All three cell lines were found to be morphologically similar at subconfluence, with

A2780 ceils appearing the most heterogeneous, 2780AD cells less so, and 2780CP

cells larger and more like typical epithelial cells (Plate 1) under standard culture

conditions.

Growth characteristics

Typical values for mean cell doubling times, cell volume and ploidy are shown in

Table 1. Each growth experiment was performed at least twice in triplicate.

For chromosomal analysis, typical metaphase spreads for each cell line are shown in

Plates 2, 3 and 4. All three cell lines were found to have a basically diploid

chromosome number, with a variety of deletions, duplications and translocations

being observed in the resistant sublines (Table 2).

Cell Line Mean Doubling
Time (h)

Mean Cell

Volume (|im3)

Chromosome

Number

A2780 26.4 508 Diploid

2780AD 29.4 767 Diploid

2780CP 22.5 612 Diploid

TABLE 1: Growth characteristics of ovarian cancer continuous cell lines under
standard tissue culture conditions.
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Cell Line Ploidy Observed karyotypic abnormalities

A2780 46XX 6q+

2780AD 47XX lp+ 6q+
(1/7) translocation 9q+

12p+
2q~ 14q-
4q* 18"

21q+

2780CP 46XX lq duplication i3p+
6q- 20q-
7q+

TABLE 2: Karyotypic abnormalities displayed by ovarian cancer cell lines,
(p: short arm of chromosome: q: long arm of chromosome; + denotes additional
chromosomal material, ~ denotes deletion of chromosomal material)

Optimal concentration of MTT for use in the chemosensitivity assay

MTT was not found to have significant toxicity in any of the three ovarian cell lines,

to a maximum concentration of 1.0 mg / ml (Figure 1). This concentration of MTT

was therefore used throughout all subsequent chemosensitivity assays.

1 50 -r

0.8 0.9 1
[MTT] (mg/ml)

FIGURE 1: Sensitivity of ovarian cancer cell lines to MTT.
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Cellular sensitivity to CDDP

Chemosensitivity profiles for all three cell lines after 24 hours exposure to CDDP are

shown in Figures 2, 3, & 4, at both early and late passage number. For the latter,

drug-resistant sublines were assayed after at least six months continuous culture in

drug-free medium.

From these curves the mean ID50 value for CDDP against each cell line can be

interpolated, as that concentration of drug which reduces cell survival by 50%. Table

3 summarises these findings. Both resistant sublines displayed a stable and moderate

degree of CDDP resistance compared with A2780, the drug-sensitive parental cell

line. 2780AD was 14.2-fold resistant, and 2780CP 26.8-fold resistant to CDDP using

this assay. All experiments were conducted in triplicate and repeated at least twice.

Cell Line Early Late

A2780 0.19 0.19

2780AD 2.3 3.1

2780CP 5.1 5.1

TABLE 3: ID50 values (|lM) for CDDP in ovarian cancer cell lines at early (< 12)
and late (>12) passage number.



FIGURE 2: Sensitivity of A2780 to CDDP at early (< 12) and late (>12) passage
number.

FIGURE 3: Sensitivity of 2780AD to CDDP at early (<12) and late (>12) passage
number.
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FIGURE 4: Sensitivity of 2780CP to CDDP at early (<12) and late (>12) passage
number.

CDDP sensitivity was also compared for 4-hour and 24-hour exposure in all three cell

lines, within the same experiment (Figures 5, 6, & 7). Table 4 summarises these

findings. For A2780 and 2780CP. 4 hour CDDP exposure reduced chemosensitivity

by approximately 3-fold. For 2780AD, however, the reduction in chemosensitivity

was less, approximately 2.3-fold. This experiment was conducted twice, in triplicate.

Cell Line 4h 24h

A2780 0.43 0.13

2780AD 7.1 3.05

2780CP 14 4.2

TABLE 4: ID50 values for CDDP in ovarian cancer cell lines after 4 and 24 hours
exposure to CDDP.
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FIGURE 5: Sensitivity of A2780 cells to CDDP after 4 hours and 24 hours exposure.

FIGURE 6: Sensitivity of 2780AD cells to CDDP after 4 hours and 24 hours
exposure.
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FIGURE 7: Sensitivity of 2780CP cells to CDDP after 4 hours and 24 hours
exposure.

Immunohistochemistry for P-glycoprotein

Plate 5 shows typical immunostaining patterns for all three cell lines. 2780AD, the

adriamycin-resistant subline,with moderate cross-resistance to CDDP, showed strong

immunostaining, indicating the presence of significant P-glycoprotein. In contrast,

A2780 and 2780CP showed no immunostaining, indicating the absence of P-

glycoprotein in these cell lines. However, 2780AD cells which had been cultured for

six months in drug-free medium appeared to have lost P-glycoprotein expression.
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DISCUSSION

All three cell lines showed growth characteristics typical of epithelial cell lines. A

range of karyotypic abnormalities was observed in the two resistant sublines.

Chemosensitivity to CDDP was found to be stable over a six month period of

continuous culture for all three cell lines,even when the resistant sublines were

maintained in drug-free conditions. Both drug-resistant sublines exhibited a moderate

degree of resistance to CDDP. with resistance ratios of 14.2 (2780AD) and 26.8

(2780CP) for 24 hours exposure. Exposure to CDDP for four hours produced similar

resistance ratios for the lines, 16.5 for 2780AD and 32.6 for 2780CP. P-glycoprotein

immunostaining demonstrated strong expression of this multidrug efflux pump in

2780AD only; this expression was lost after prolonged culture of this subline in

adriamycin-free medium.

Complete characterisation of the ovarian carcinoma cell line A2780, and of its two

established drug-resistant sublines, 2780AD and 2780CP, has not previously been

published. These data provide further confirmation of their epithelial cell nature, as

shown by their growth characteristics. Doubling times in optimal tissue culture

conditions were similar for all three cell lines, with 2780CP growing slightly faster

(doubling time 22.5 cf 26.4h) and 2780AD slightly slower (29.4 cf 26.4h) than the

parental cell line. Karyotypic analysis revealed basic diploidy in A2780 and 2780CP,

whilst 2780AD contained 47 chromosomes. Multiple chromosomal abnormalities

were found, particularly deletions of chromosome 6, deletions of the long arm of

chromosome 1, and multiple translocations. These findings are similar to those

reported in other CDDP-resistant ovarian cancer cell lines (Wolf et al., 1987 and

Briers et al., 1989).

The development of clinical resistance to CDDP is a well established phenomenon

and has undoubtedly limited its therapeutic benefit. Solid tumours are known to be



heterogeneous in cellular content, and resistance could therefore be due to either the

clonal expansion of a subpopulation of cells with inherent resistance (intrinsic) or or

its development de novo in previously sensitive cells (acquired), or to a combination

of these. Resistance mechanisms which may be operational at this level include:

increased activity of a specific efflux pump, as in the multidrug resistance

phenomenon; intracellular activation or deactivation; detoxification changes and

alterations in DNA repair mechanisms.

Chemosensitivity assays of all three cell lines to CDDP, for 24 hours exposure, were

performed over a prolonged period of continuous culture in vitro , and results

compared for early and late passage number (Figures 2, 3, & 4). The modified MTT

assay used throughout this work was found to give reproducible results.

The ID50 value for the parental EOC cell line, A2780. was shown to be unchanged

over six months, at 0.19 pM CDDP. The ID50 value for CDDP against the

adriamycin-resistant subline, 2780AD, was found to be 2.3 pM at early passage

number: this moderate degree of cross-resistance is interesting and has not previously

been reported. Resistance to CDDP was found to be stable over a period of six

months continuous culture in adriamycin-free tissue culture medium (ID50 3.1 pM at

late passage number) For this subline, resistance to adriamycin is normally

maintained in vitro by continuous culture in a low concentration of adriamycin (2

pM); continuous exposure to CDDP is therefore not necessary to maintain cross-

resistance to CDDP. A greater degree of CDDP resistance was found in the CDDP-

resistant subline 2780CP: the ID50 value being 5.1 pM, giving a resistance ratio of

26.8 compared with A2780. and 2.2 compared with 2780AD. Resistance to CDDP is

normally maintained by intermittent exposure of cells to moderate concentrations of

CDDP (1 pM); this work showed that CDDP resistance was stable over at least six

months in drug-free cultuie medium (ID50 5.1 pM also at late passage number.

Table 3).



Chemosensitivity assays were also conducted over a 4-hour exposure period to

CDDP, and compared within the same experiment to standard 24-hour ID50 values

(Figures 5, 6, & 7). This shorter exposure time conferred a similar reduction in CDDP

sensitivity for both A2780 and 2780CP (3.3-fold), perhaps indicating that cellular

toxicity to CDDP is complete by four hours for these two cell lines. In contrast, there

was a smaller reduction in sensitivity for 2780AD (2.3-fold), which may reflect

differential rates of drug uptake in this subline (Table 4). Resistance ratios for the two

resistant sublines after 4 hours exposure to CDDP were similar to those after 24

hours. 16.5 for 2780AD and 32.6 for 2780CP.

The multidrug-resistance efflux pump. P-glycoprotein, is known to be an important

mechanism of cellular resistance for many unrelated anti-cancer drugs, including

anthracyclines, vinca alkaloids and etoposide. Its expression in ovarian cancer

patients has only convincingly been demonstrated following treatment with these

agents: hence.it is not thought to be a major mechanism for primary CDDP resistance

(Goldstein et ah, 1989: Bourhis et al., 1989). 2780AD is known to express the gene

for P glycoprotein, thought to be the main mechanism for its resistance to adriamycin

(Sugawara et al., 1988). Cross-resistance of this cell line to CDDP has not previously

been described. The observation that its sensitivity to adriamycin is not fully restored

by calcium-channel blocking drugs (resistance modulators) implies additional

mechanisms of resistance may exist (Rogan et al., 1984), some of which may also

contribute to CDDP resistance.

Plate 5 shows typical P-glycoprotein immunostaining patterns for ail three cell lines.

A2780 and 2780CP did not show any evidence of P-glycoprotein expression,

providing further evidence for the lack of involvement of this mechanism in CDDP

resistance. Interestingly, whilst 2780AD showed strong expression at early passage

number, this pattern was lost after prolonged culture in drug-free medium. Since

CDDP sensitivity in 2780AD remained stable over this period, it can also be deduced



from this that the P-glycoprotein pump is not an important contributor to its cross-

resistance to CDDP.

No single mechanism has been found to explain the development of CDDP resistance,

which is thought to be a multifactorial phenomenon. Multidrug resistance (mdr) is not

thought to be significant, although 2780CP has been shown to accumulate less CDDP

for equivalent drug exposures, and efflux drug faster than its more sensitive parent

(Parker et al., 1991). Increased DNA repair in the resistant subline, reversed by

aphidicolin (a specific inhibitor of DNA polymerase a), has also been shown

(Masuda et. al., 1990). Recent attention has focussed on the interaction between

cellular DNA and platinum, in an attempt to elucidate the actual cytotoxic lesion and

thus investigate further the mechanisms of platinum resistance.



PLATE la : Morphological characteristics of A2780 at subconfluence.

PLATE lb: Morphological characteristics of 2780AD at subconfluence.



PLATE lc : Morphological characteristics of 2780CP at subconfluence.
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PLATE 5b: P-glycoprotein immunostaining for 2780CP
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PLATE 5c: P-glycoprotein immunostaining for 2780AD, after recent culture in
adriamycin-containing medium.

PLATE 5d: P-glycoprotein immunostaining for 2780AD, after 6 months culture in
drug free medium.
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CHAPTER 3

DEVELOPMENT OF A DIRECT ASSAY FOR THE

MEASUREMENT OF INTRASTRAND PLATINUM-DNA
ADDUCTS

INTRODUCTION

It is now widely accepted that the antitumour activity of CDDP (and analogues) is

due to its interaction with DNA, around 1% of platinum entering cells binding to

genomic DNA (Andrews & Howell, 1990).

The nature of the interaction between CDDP and cellular DNA

Classical monofunctional analogues of CDDP, e.g. cis-[(dien)Pt CP]C1, show no anti-

tumour activity (Pinto & Lippard, 1985). Hence it is believed that the Afunctional

interaction of CDDP with DNA is crucial to its therapeutic activity. CDDP forms a

variety of bidentate adducts between platinum and DNA, including interstrand

adducts, intrastrand adducts, DNA-protein adducts and DNA-glutathione adducts

(Figure 1).

Interstrand platinum-DNA (Pt-DNA) adducts have been widely studied, mainly by

the technique of alkaline elution. and attempts made to correlate interstrand

crosslinking with CDDP cytotoxicity. Since it is estimated that these adducts account

for around only 0.1% of total Pt-DNA adducts (Plooy et al., 1984), any such

correlation is likely to be masked by the massive number of other adducts present.

Studies with CDDP-sensitive and -resistant pairs of LI210 cells have shown that

interstrand adducts alone are not sufficient to account for the differential sensitivity to

CDDP. In this work, three sublines of LI210 cells were used, exhibiting different
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degrees of induced CDDP resistance. At equitoxic doses of CDDP, interstrand adduct

formation varied considerably in the resistant sublines and thus did not correlate with

either cytotoxicity or resistance. (Strandberg et al., 1982).

FIGURE 1: Structures of platinum-DNA adducts

DNA-protein adducts can also be formed with platinum compounds: although

persistent, they account for only a very small fraction (0.15%) of total Pt-DNA

adducts (Plooy et al., 1984).Experiments with both cis and trans platinum

compounds in a variety of continuous cell lines have failed to show any consistent

relationship between platinum-DNA-protein adducts and cytotoxicity (Zwelling et

al.,1979).

Evidence for the importance of intrastrand platinum-DNA adducts to
cytotoxicity of CDDP

The therapeutically inactive trans isomer of CDDP, TDDP, also reacts bifunctionally

with DNA, but only exhibits cytotoxic activity at much higher doses than CDDP

(Pinto & Lippard, 1985). It will, however, block DNA replication at equitoxic doses

MONOFUNCTIONAL INTRASTRAND

INTERSTRAND INTERMOLECULAR



to CDDP (Donohue et al., 1990). TDDP can also form monofunctional, interstrand,

intrastrand and DNA-protein crosslinks but the observation that it cannot form

intrastrand adducts between adjacent nucleotides has led to the suggestion that these

adducts are responsible for the anti-tumour activity of CDDP.

Early biochemical studies (Lippard, 1982) predicted that CDDP binds preferentially

to guanine-rich DNA, especially at the N7 position which allows stabilisation of

platinum by hydrogen bonding. The observed unwinding of the DNA double helix

following platinum binding (Cohen et al., 1979) is probably caused by the consequent

weakening of hydrogen bonding of the guanine-cytidine (G-C) base pair. That

platinum binds preferentially to guanine-rich sites in DNA was further confirmed by

the demonstration that the large increase in buoyant density of CDDP-treated DNA

was directly proportional both to its G-C content and drug-nucleotide ratio (Stone et

al., 1974). Spectrophotometry studies of CDDP binding to the four nucleoside

monophosphates (guanine-, adenine-, cytidine- and thymidine-,) established an order

of preferential reactivity of GMP > AMP > CMP» TMP (Pinto & Lippard, 1985); at

physiological pH values the N7 site was again demonstrated to be the principal

reaction site. It is thought that the high electron density of the N7 atom of guanine

increases its susceptibility to attack by electrophilic metal ions. Its position in the

major groove of the DNA helix also renders it more accessible to attack by reagents.

Further confirmation of the formation of intrastrand adducts between platinum and

two neighbouring guanine bases (Pt-GG) is provided by studies on inhibition of the

restriction endonuclease Bam\\\ (which makes a unique cut between two

neighbouring guanine bases) at increasing drug:nucleotide ratios (Ushay et al., 1981)

and on the inhibition of exonuclease cleavage at sites identified by DNA sequencing

gel electrophoresis to be guanine-rich (Royer-Pakora et al., 1981). The stereochemical

inability of the therapeutically inactive TDDP molecule to chelate to the N7 atoms of



adjacent guanines (Pinto & Lippard, 1985) lends further support to the relevance of

the intrastrand Pt-GG adduct to cytotoxicity.

These intrastrand Pt-GG adducts represent around 65% of all such adducts formed

between CDDP and cellular DNA (Fichtinger-Schepman et al., 1985b); other

intrastrand adducts thus formed include Pt-AG, between adjacent adenine and

guanine (25%), and a third minor adduct between two guanines separated by a single

nucleobase (Pt-GXG).

Techniques for the analysis of intrastrand platinum-DNA adducts

Enzymatic digestion of platinated DNA, followed by chromatographic separation of

the resulting products, has allowed direct characterisation of these intrastrand

crosslinks. Eastman (Eastman, 1983) used a radiolabeled CDDP analogue, [3H]-cis-

dichloro(ethylenediamine) platinum II ([3H]-cis-DEP), known to react with DNA in

an identical fashion to CDDP, followed by digestion and separation of products by

reverse phase chromatography. Fichtinger-Schepman and colleagues (Fichtinger-

Schepman et al., 1985b) used non-radioactive CDDP, followed by enzyme digestion

and separation of resultant products by anion exchange chromatography. Nuclear

magnetic resonance (NMR) spectroscopy was used for further characterisation of the

adducts thus produced. Both groups have confirmed that the major adduct in

platinated DNA is the intrastrand Pt-GG crosslink, with Pt-AG and Pt-GXG occurring

less frequently. The use of ammonium bicarbonate (NH4CO3) to inactivate

monofunctionally bound CDDP (Fichtinger-Schepman et al., 1984), proved such

adducts to be numerically insignificant.

Direct quantitation of intrastrand platinum-DNA adducts is difficult owing to their

extremely low concentration within cellular DNA treated with therapeutically

relevant doses of CDDP. Atomic absorption spectroscopy (AAS) has a detection limit

too high (1 - 10 ng/ml) at realistic CDDP exposure levels (Fichtinger-Schepman et al.,



1985a), whilst radiolabelled platinum compounds are difficult to synthesise and do

not permit human experimentation. A sensitive enzyme-linked immunosorbent assay

(ELISA) method for the detection of CDDP-modified DNA was first developed by

Poirier and colleagues (Poirier et al., 1982), based on a similar method for the

detection of adducts formed between chemical carcinogens and DNA. Antibodies,

specific for a particular three-dimensional adduct structure, are used in immunoassays

(both radioimmunoassay, RIA, and ELISA) to a detection limit of around one adduct

per 107 nucleotides of biological DNA. An alternative approach (Fichtinger-

Schepman et al., 1985a) entailed the synthesis of polyclonal antibodies against

haptens mimicking the platinum-containing digestion products of enzymatically-

treated Pt-DNA. Polyclonal antisera thus produced now allow the sensitive detection

(to femtomolar levels) of intrastrand crosslinks in ceils exposed to biologically

relevant concentrations of CDDP. The accurate quantitation in biological samples of

all three identifiable Pt-DNA adducts (Pt-GG, Pt-AG and G-Pt-G) and the

monofunctional adduct Pt-G is now possible (Fichtinger-Schepman et al., 1987a).

Experiments using these antisera have proved that antigenic determinants found on

DNA modified by CDDP both in vitro and in vivo are stereochemically similar

(Poirier et al., 1982; Fichtinger-Schepman et al., 1987a).

Improvements in elemental analysis of platinum

Over the last decade, great improvements have been made in elemental analysis by

mass spectrometry, such that the direct detection of femtomolar levels of platinum in

biological samples is now within the realms of possibility. A variety of analytical

techniques for the estimation of platinum in biological tissues, following treatment

with CDDP or its analogues, was reviewed recently (Riley, 1988). These mainly

entail non-selective determination of platinum (rather than CDDP) and include: X-ray

fluorescence (XRF). proton-mduced X-ray emission (PIXE), flameless atomic

absorption spectroscopy (FAA), and inductively-coupled plasma atomic emission



spectrometry (ICP-AES). Selective methods for CDDP detection usually involve

normal or reverse-phase high performance liquid chromatography (HPLC) with pre-

column derivatisation using diethyl dithiocarbamate (DDTC).

XRF and PIXE are moderately sensitive techniques for platinum analysis (detection

limits around 200 ng/ml) which require complex procedures for the pre-treatment of

samples. The poor availability of these techniques, in addition, limits their use for

routine analysis. FAA is more widely available and requires relatively little

preparation of biological samples; it is an order of magnitude more sensitive

(detection limits 1-10 ng/ml).

ICP-AES appears to show some promise as a more accurate and sensitive technique

for platinum analysis. Measurement precision, calculated as the relative standard

deviation (RSD) -between two independent series of data, was found to be 0.95 -

2.5% in biological fluids with platinum levels of 0.25 - 5 ng/ml (Dominici et

al., 1986). The much wider linear dynamic concentration range (four orders of

magnitude compared with two for AAS), combined with its higher precision and

accuracy, make ICP-AES a powerful tool in the biomedical investigation of platinum

compounds. Matrix interference, (the suppression of analyte signal by moderate to

high concentrations of other matrix constituents), can affect the analytical sensitivity

of both AAS and ICP-AES, however.

Specific methods for CDDP analysis (e.g. direct UV absorption and reductive

electrochemistry) have been mainly used in pharmacokinetic studies, and generally

are not sufficiently sensitive for the accurate detection of Pt-DNA adducts.

Inductively coupled plasma mass spectrometry (ICP-MS) is a relatively recent

technique with considerably lower detection limits than ICP-AES for elemental

analysis (Houk, 1988).The development of 1CP as a superior excitation source for the

analysis of solutions by AES, together with the demonstration that useful mass



spectra could be obtained from elemental constituents in solution by the application

of a DC plasma, led to the first commercial ICP-MS instrument being developed in

1983.The technique is capable, in general, of analysing elements, including platinum,

to detection limits of 0.01 - 0.05 ng/ml (Houk & Thompson, 1988) in solution. Its

sensitivity is thus far superior to any other technique currently available, introducing

for the first time the possibility of direct analysis of DNA-Pt adducts.

ICP-MS in the direct analysis of platinum-DNA adducts

The scarcity of [3H]-cw-DEP and the lack of commercial availability of polyclonal

antibodies to the identified intrastrand Pt-DNA adducts are major obstacles to the

further study of the role of these adducts in CDDP resistance. The availability of ICP-

MS provided the opportunity to investigate the suitability of this extremely sensitive,

but technically very complex, technique in the analysis of Pt-DNA adducts in an

experimental model for CDDP resistance in ovarian cancer.

This chapter describes the development of a direct assay for the analysis of DNA-

platinum interaction by CDDP, using highly platinated calf thymus DNA. At this high

level of platination, it was possible to compare AAS and ICP-MS as techniques for

platinum analysis.
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MATERIALS AND METHODS

Platination of calf thymus DNA

Calf thymus DNA (Sigma, Poole, England) was first dissolved in lOmM sodium

phosphate buffer (pH 7) to a final concentration of 0.5 mg/ml. A fresh solution of

CDDP (Sigma, Poole, England) dissolved in saline (NaCl, 0.9g/100 ml) to a stock

concentration of 0.25 mg/ml was prepared. Prewarmed 10 ml aliquots of DNA

solution were incubated with CDDP (25 pg/ml) at 50° C for five hours in the dark. 2

ml 0.5M NH4HCO3 was then added to inactivate any monofunctionally DNA-bound

CDDP (Fichtinger-Schepman et al., 1984) and the solution was then dialysed at room

temperature to stop the reaction, first against NH4HCO3 (0.1M) for 18 hours and

then against distilled water for 8 hours.

CDDP-DNA was recovered from aqueous solution by precipitation in two volumes of

a mixture of cold absolute alcohol and sodium acetate (NaAc, 3M) containing EDTA

(ImM) at 9:1 v/v, followed by centrifugation at 600g at 14° C for 30 minutes.

Enzymatic Degradation

The resultant pellet of CDDP-treated calf thymus DNA was redissolved in 5 ml

Buffer A (Tris HC1, lOmM, pH 7.2, containing Na2EDTA, O.lmM, and MgCE

4mM). A portion (350 pi) of this solution was taken, to which was added 7.2 pi

ZnS04, lOmM, 6 ul DNase I (Sigma, Poole, England) and 30 pi Pi Nuclease (Sigma,

Poole, England), to form an enzymatic digestion mixture containing DNA at a final

concentration of 1 mg/ml. This was incubated overnight at 37° C to allow degradation

of DNA to nucleotides and (platinum-containing) oligonucleotides. The resulting

digest was then incubated with Proteinase K (Sigma, Poole, England) at

approximately 1 mg / ml for 2 hours at 37° C followed by heat inactivation of the



enzyme, and clarification by centrifugation (microfuge, 13K for 5 minutes). The final

nucleotide concentration was determined from the absorbance at 260 nm.

High Performance Liquid Chromatography ( HPLC )

Analytical separation of the four major intrastrand Pt-DNA adducts and unmodified

deoxyribonucleotides was performed on an HPLC system (Waters, Millipore, U.K.)

with a Mono-Q anion exchange column (Pharmacia, U.K.). The mobile phase used

was Tris 12.5 mM, pH 8.8. The column was first equilibrated with mobile phase

containing NaCl (5()mM). Following injection of digested CDDP-DNA (200|ig in

200pl), adducts were eluted off the column using a salt gradient, increasing from

50mM to 25mM over 14 minutes. Eluting nucleotides were detected by UV

absorbance at 260 nm and peak spectral data was collected over the range 200 - 320

nm by a photo-diode array detector (Waters, Millipore, U.K.). The identity of the

individual nucleotides and the Pt-DNA adducts was confirmed by co-chromatography

with authentic standards, previously characterised by NMR and kindly donated by Dr

Fichtinger-Schepman (TNO Medical Biological Laboratories, Rijswijk, Netherland).

Eluting fractions were collected at half minute intervals for platinum determination.

Calibration of the Mono-Q HPLC Chromatogram

The correlation between nucleotide formation and DNA content, measured by

spectrophotometry absorbance at 260 nm, was compared for all four nucleotides.

Unplatinated calf thymus DNA (20 |ig) was enzymatically disaggregated, fivefold

dilutions made, and samples separated by HPLC as described. Nucleotide content of

the resulting spectral peaks were calculated by integration, and compared with initial

DNA concentration.
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Platinum Determination by Inductively Coupled Plasma Mass Spectrometry
(ICP-MS)

Figure 2 shows a typical layout for an ICP used in conjunction with a mass

spectrometer. An inductively coupled plasma is formed by the application of high

voltage to argon gas at atmospheric pressure. The solution to be analysed is

introduced, usually by nebulisation, into the axial channel and carried to the normal

analytical zone (A in Figure 2) by the laminar flow of argon. Here the high gas kinetic

temperature (5000 - 7000K) permits efficient elemental ionisation within two

milliseconds. Relatively few doubly charged ions are formed; singly charged analyte

ions are numerically surpassed by neutral argon atoms (about 1018 per cm3) and by

atoms formed by the ionisation of solvent material. Such matrix elements, if ionised,

may contribute to the spectral profile, usually by less than 20%. Nitric acid is the

preferred solvent for ICP-MS because of the simplicity of its background spectrum

when nebulised.

FIGURE 2: ICP apparatus (from Houk, 1986).
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An ion sampling interface for extraction of ions into a vacuum (B in Figure 2) is

interposed between the ICP and the mass spectrometer, as a large negative operating

pressure is required for mass spectrometry. A cooled nickel zone, with a 0.5 - 1 mm

circular orifice is inserted directly into the ICP. Gas from the ICP, containing ions for

analysis, enters this orifice from the axial channel. This relatively large sampling

orifice allows a greater flow of ions into the vacuum system, and provides resistance

to blockage by solids condensed from the injected solution. A second conical

skimmer (C in Figure 3) is positioned behind the sampler, to permit maximal ion

transmission to the mass analyser.

For this work, a VG Plasmaquad PQ1 ICP-MS machine (VG Elemental Ltd,

Winsford, U.K.) was used, incorporating a Fassel-type torch, a Gilson 222 automatic

sampler and an IBM PC-AT data processing system. A sample volume of 3 - 4 ml in

HC1, 0.1%, was used, at a flow rate of 0.7 ml / minute; total analysis time was about

three minutes per sample.A solution of K2PtClfl (kindly supplied by Dr Fichtinger-

Schepman) was used for calibration at a final concentration of 4 qM. Spectral peak

"jumping" on In 115, Pt 194, Pt 195 and Pt 196 was used for maximal analytical

efficiency; three measurements were made of each.

Half-minute elution fractions (0.5 ml) from HPLC separation of enzymatically

digested DNA were analysed for platinum content, diluted to 3 or 4 ml in HC1, 0.1%,

and introduced to the ICP-MS by nebulisation. As internal standard, a solution of

indium (J & M Specpure, U.K.) was made in HNO?, 5%, and 25 ql added to each

sample.

Platinum standards, prepared from a stock solution of platinum, 1 mg/ml, (J & M

Specpure, U.K.) in HC1, 1%, were made up at 100 ng/ml and lOng/ml; 1% HC1 was

used as a blank.Since linearity of dose-response for platinum standards was known to

be excellent, it was possible to perform retrospective regression analysis of results



from the blanks and standards to produce a calibration equation. With simultaneous

correction for indium standards, this equation could be rapidly used for the

calculation of platinum concentration for each sample. To evaluate internal

consistency, a platinum standard (10 ng / ml) was interpolated approximately every

ten samples. Total solute content of HPLC fractions did not exceed 0.2%, therefore

processing of solutions to reduce matrix contamination was not necessary.

Platinum Determination by Atomic Absorption Spectrometry (AAS)

To confirm the accuracy of ICP-MS for platinum analysis in these experiments,

parallel analysis was also performed, on one set of samples only, by AAS by Dr

Fichtinger-Schepman in Rijswijk, Netherland. For this, a Perkin Elmer model 4000

atomic absorption spectrophotometer was used, with a HGA-500 graphite furnace and

an AS-400 autosampling system. K2PtCl6 solution, diluted to 4 pM, was again used

for calibration.

Platinum Binding to DNA

Previous work has demonstrated a linear response between the concentration of

CDDP used in the reaction with DNA, and the number of platinum atoms bound per

nucleotide (rh value) to a maximum of 25 pg CDDP/ml (Fichtinger-Schepman A-M.

J. et al., 1982). For a CDDP concentration of 25 pg / ml, a rb value of around 0.088

would be expected (Figure 3).

oooiZ. i—1
0 10 20 30 cone. OOP (pg/ml)

FIGURE 3: Relationship between the number of platinum atoms bound per
nucleotide (i"b) in CDDP treated DNA and the amount of DNA in the incubation
mixture (from Fichtinger-Schepman at al, 1982).
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RESULTS

Separation of nucleotides

A typical HPLC elution profile (at 260 nm) for unmodified DNA is shown in Figure

4, showing excellent nucleotide separation over a run time of around 14 minutes. Four

major peaks are seen and were identified as follows:

Peak 1 (4.8 min) dCMP

Peak 2 (6.5 min): dAMP

Peak 3 (8.5 min): dTMP

Peak 4 (11.8 min): dGMP

3D spectral analysis (Figure 5) confirmed the identity and purity of each of these

peaks.

Identification and calibration of the HPLC Mono-Q Chromatogram

Elution times for each major intrastrand Pt-DNA adduct were established for this

HPLC system and compared with the reference compounds kindly supplied by Dr

Fichtinger-Schepman (Figure 6 and Table 1). Good agreement was also found

between the HPLC separation method described here and the FPLC system used by

Dr Fichtinger-Schepman.
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FIGURE 4: Separation of unplatinateci calf thymus nucleotides by HPLC.

3 10 12 14 16 13

t (min)

FIGURE 5: Spectral analysis of HPLC chromatogram, confirming the identity and
purity of the peaks.
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t (min)

FIGURE 6: Elution times for purified intrastrand Pt-DNA adducts (donated by Dr
Fichtinger-Schepman).

Pt-AG (min) Pt-GG (min) G-Pt-G (min)

calf thymus
DNA-Pt (HPLC)

2.9 10.1 10.9

reference

compounds1
(HPLC)

3.1 10.4 11

reference
compounds
(FPLC)2

3.5 7.8 9.7

TABLE 1: Elution times for the major intrastrand platinum-DNA adducts using the
Mono-Q HPLC chromatogram for their separation. (0 kindly donated by Dr
Fichtinger-Schepman; 2: Fichtinger-Schepman et al., 1985b)

For calibration of the column, chromatograms were obtained of serial dilutions of a

known amount of nucleotide solution. Excellent correlation (r= 0.99) was obtained

between DNA content and integrated peak area on chromatogram (Figure 7).
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FIGURE 7: Calibration of HPLC Chromatogram.

Separation of platinated DNA

A typical HPLC chromatogram for highly platinated calf thymus DNA, showing

excellent resolution of peaks for both unmodified nucleotides and the three main

Afunctional intrastrand Pt-DNA adducts, is shown in Figure 8. Seven major peaks are

seen and were identified as follows:

Peak 1 (2.9 min) c/.y-Pt(NH3)2d(pApG) - Pt-AG

Peak 2 (4.8 min) dCMP

Peak 3 (6.4 min) dAMP

Peak 4 (8.5 min) dTMP

Peak 5 (10.1 min) c7.v-Pt(NH3)2d(pGpG) - Pt-GG

Peak 6 (10.8 min) 67J-Pt(NH3)2d(GMP)2 - G-Pt-G

Peak 7 (11.8 min) dGMP
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FIGURE 8: Separation of highly platinated calf thymus nucleotides and
oligonucleotides by HPLC.

Platinum analysis of HPLC fractions

When elution samples were analysed for platinum content, by ICP-MS or AAS,

localisation of platinum to the expected elution positions of the two major

(quantitatively) intrastrand Pt-DNA adducts, Pt-GG and Pt-AG, was found (Figure 9).

In addition, a smaller, intermediate peak occurred (elution time 7 min), which did not

correlate with any previously identified Pt-DNA adduct. Excellent agreement was

achieved between the two analytical techniques at this level of platination.
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FIGURE 9: Platinum analysis of cluate fractions by AAS and ICP-MS.
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DISCUSSION

The cytotoxic lesion responsible for the therapeutic effect of CDDP remains to be

clearly established. Much evidence exists to implicate the intrastrand Pt-DNA

adducts, Pt-GG and PT-AG, in this role, although an assay sensitive to femtomolar

levels is necessary for their detection in biological systems when therapeutically

relevant doses of CDDP are used.

Highly sensitive immunochemical (ELISA) techniques are available (Poirier et al„

1982; Fichtinger-Schepman et al., 1985a) but have some disadvantages. In particular,

they are indirect methods, requiring the use of polyclonal antisera to predicted DNA

modifications by CDDP, and therefore would be unable to detect any unanticipated

lesions. Large discrepancies exist between Pt-DNA adduct values obtained with these

two immunochemical methods (Fichtinger-Schepman et al., 1989).The competitive

EFISA devised by Poirier and colleagues uses a polyclonal rabbit antiserum to highly

platinated calf thymus DNA (rb value 0.088), which recognises both Pt-GG and Pt-

AG together. This may cause underestimation of adduct levels. The indirect ELISA

developed by Fichtinger-Schepman and colleagues uses polyclonal antibodies raised

against CDDP-containing nucleotides coupled to haptens. Three different antisera

allow the sensitive detection of the Pt-GG/G-Pt-G, Pt-AG and Pt-GMP adducts

separately. A one to one correlation with AAS values for total Pt-DNA binding has

been demonstrated for this method (Reed et al., 1990). Several recent studies,

however, have confirmed that significant underestimation of Pt-DNA adducts occurs

with the anti-DNA ELISA method developed by Poirier and colleagues (Poirier et al.,

1988; Mustonen et al., 1989; Fichtinger- Schepman et al., 1989).

Until recently, no method for platinum analysis has been sensitive or reliable enough

to consider the direct analysis of intrastrand Pt-DNA adducts. Advances in the field of

elemental analysis by ICP-MS have now engendered this possibility. The work



described in this chapter used calf thymus DNA, reacted with CDDP and

disaggregated enzymatically in a similar way to that used previously with salmon

sperm DNA (Fichtinger-Schepman et al., 1985). Using HPLC rather than fast protein

liquid chromatography (FPLC) excellent separation of deoxyribonucleotides was

obtained. The three major intrastrand Pt-DNA adducts, Pt-GG, Pt-AG and G-Pt-G,

were clearly identified. Retention times matched those of the reference compounds

kindly donated by Dr Fichtinger-Schepman, and were very similar to those obtained

by this group using FPLC (Table I). The linear relationship demonstrated between

disaggregated DNA dose and the integrated peak area of a representative eluted

deoxyribonucleotide on chromatogram, allowed calculation of the total DNA content

of each sample analysed. The wider availability of F1PLC, compared with FPLC, as

an analytical technique necessitated the use of this method for anion exchange

chromatography. Comparable results were obtained, over a similar elution time, with

no obvious loss of sensitivity.

Platinum analysis of individual elution fractions obtained by HPLC separation of a

highly platinated sample of calf thymus DNA was performed by ICP-MS. This

confirmed localisation of platinum to the expected elution positions of the two major

Pt-DNA adducts (Pt-GG and Pt-AG). Comparison of this analytical technique with

the better established method of AAS yielded excellent correlation (Figure 9). An

additional, much smaller intermediate peak was also observed which may represent a

previously unidentified Pt-DNA adduct. The sensitivity of ICP-MS for platinum

analysis (detection limits 0.01 - 0.05 ng/ml) is far superior to any other technique

currently available. At higher atomic numbers, such as platinum (195), practically no

elemental interference is encountered. The simplicity of mass spectra obtained is such

that any overlap interference can be readily predicted, allowing an alternative isotope

to be sought. Sampling time, for the three major platinum isotopes, usually takes

around three minutes per sample, including rinses. Short-term precision and accuracy



are comparable with those found in both ICP-AES and AAS. Intra-experimental error

is usually within 10% (Houk, 1986), but some drift of sensitivity can be observed

with time This effect can be minimised by maintaining low solute levels (less than

0.2%) for nebulised solutions. The use of an internal standard with a distinct spectral

peak, such as indium, corrects any residual sensitivity problems.

Matrix interference, however, remains a problem with ICP-MS. This effect manifests

as suppression of analyte signal by other matrix constituents present at a moderate to

high level, and stems from the inherent efficiency of the ICP as a universal ion source

for virtually every element within a sample (Houk, 1986). In particular, the total

electron density within the ICP is dependent on the sodium concentration within the

sample solution. Intraexperimental variation in sodium concentration will alter the

analyte ion to atom ratio within the ICP, and cause signal suppression. The isocratic

elution process used in this work during anion-exchange chromatography could cause

significant matrix effect with increasing fraction number analysed, owing to the

increasing sodium concentration. However, comparison of Pt-GG peak levels,

obtained by platinum analysis by both ICP-MS and AAS, show no significant

difference (Figure 9). This could be explained by equivalent matrix interference

occurring during AAS analysis. Alternatively, the dilution of each fraction by 6 - 8

fold, to enable sufficient volume for nebulisation, could have minimised this effect.

The use of indium as an internal standard was intended to compensate for mild

ionisation suppression effects.

In this work, existing methods for Pt-DNA adduct identification in highly platinated

DNA have been modified, and a novel technique for platinum analysis of resultant

adducts investigated. In biological systems DNA is much less highly modified and

adducts are found at femtomolar levels. The sensitivity of ICP-MS in platinum

analysis, however, raised the possibility of the direct measurement of DNA

modifications by CDDP in biological systems.
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CHAPTER 4

MEASUREMENT OF INTRASTRAND ADDUCT LEVELS IN
CONTINUOUS OVARIAN CARCINOMA CELL LINES

INTRODUCTION

The relationship between intrastrand Pt-DNA adducts and CDDP resistance

Indirect immunochemical techniques have been widely used in the study of

intrastrand Pt-DNA adducts and their relationship with CDDP resistance in a number

of experimental model systems. The induction and repair of four intrastrand Pt-DNA

adducts in two cell lines derived from germ cell tumours of testis (inherently sensitive

to CDDP) and one cell line derived from a transitional cell carcinoma of bladder

(inherently resistant to CDDP) were compared (Bedford et al., 1988). Proficient repair

of all four adducts was found in the bladder carcinoma cell line. The two testicular

carcinoma cell lines expressed similar CDDP sensitivities, but one was found to be

deficient in adduct repair, of Pt-GG and Pt-AG. It was therefore suggested that

inability to repair platinated DNA might account for the sensitivity of this cell line to

CDDP. Nuclear immunostaining, using a polyclonal antiserum which recognises G-

linked CDDP in DNA, also correlated adduct-specific nuclear staining density with

induced CDDP resistance (Terheggen et al, 1990). These observations could all be

explained by the importance of increased Pt-DNA repair capacity as a resistance

mechanism in CDDP resistance.

In another study, increased Pt-GG and Pt-AG adduct levels were found in a CDDP-

sensitive human small cell lung carcinoma cell line, compared with its resistant

subline. Following incubation in drug-free medium, however, deficient removal of Pt-



GG was noted in the resistant subline (Hospers et al„ 1990). In a comparison of

intrastrand Pt-DNA adduct formation in rats bearing either a CDDP-sensitive or a

CDDP-resistant immunocytoma, no significant difference was found between adduct

levels in normal or tumour tissues (Fichtinger-Schepman et al., 1989). A recent study

comparing the formation and removal of intrastrand Pt-DNA adducts in two human

ovarian cancer cell lines with an intrinsic CDDP resistance ratio of more than 23

noted similar levels of adduct formation but an apparent inability to remove the Pt-

GG and G-Pt-G adducts in the resistant cell line.

ICP-MS-ETV for the direct analysis of platinum-DNA adducts

A direct method for the analysis of Pt-DNA adducts would circumvent most of the

criticisms applied to the indirect immunochemical techniques and provide further,

independent, insight into the nature of these lesions in biological systems. The

previous chapter described the development of a direct assay to measure intrastrand

Pt-DNA adducts in highly platinated calf thymus DNA, using ICP-MS. The natural

extension of this work was to refine this assay to enable the study of these adducts in

whole cells, following treatment with CDDP at therapeutically relevant doses.

In standard usage, however, ICP-MS has a lower limit of sensitivity for platinum of

around 50 picomolar (pM), which is around three orders of magnitude too high for the

direct analysis of intrastrand Pt-DNA adducts at the cellular level. The use of

electrothermal vapourisation (ETV) for sample introduction improves the detection

power of ICP-MS by up to 1000-fold (Hulmston & Hutton, 1991). This is achieved

by the direct volatilisation of the sample into the gas stream using a controlled electric

current to ash the sample (Figure 1). Thus the inefficient nebulisation step is

eliminated, and thermal pre-treatment of the solvent minimises matrix effects. The

small sample volume used (10 - 100 pi) allows further improvements in analytical

sensitivity. A 50% increase in sensitivity for platinum analysis by ICP-MS-ETV was

found when this method of sample introduction was compared with standard
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nebulisation (Gregoire, 1988) for the analysis of platinum group elements. It thus

seemed possible that the increased sensitivity afforded by the use of ICP-MS-ETV

would allow the direct measurement of Pt-DNA adducts in biological systems.

Micropipets

Quartx Sleeve
Witer Cooled
Furnace Blocks

Argon Gas To
Keep Sensor Clean

Pyro-Optlcal
Sensor

To the ETV

I Control Unit

FIGURE 1: Electrothermal vapourisation (ETV) apparatus for ICP-MS.

This chapter describes refinement of the direct assay for adduct measurement to allow

determination of intrastrand Pt-GG and Pt-AG adduct levels in whole cells, and thus

explore the relationship between CDDP sensitivity and the kinetics of adduct

formation and removal . The three ovarian carcinoma cell lines characterised in

Chapter 2 (A2780, 2780AD and 2780CP) were used throughout, and exposed to

CDDP at approximately equitoxic doses (10 times their ID50 value) for 4 hours and

24 hours initially. The kinetics of adduct formation over 24 hours was investigated;

adduct repair was then assessed by measuring levels after a similar time-course of

CDDP exposure, followed by a 24 hour recovery period in drug-free medium.

Equitoxic doses of CDDP were chosen to try and standardise the extent of adduct

formation throughout all experiments.
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MATERIALS AND METHODS

Cell culture

The three ovarian carcinoma continuous cell lines (A2780, 2780AD and 2780CP)

described in Chapter 2, with a stable range of induced CDDP resistance of up to 27-

fold, were used Tissue culture conditions were as described in Chapter 2.

Treatment of cell lines with CDDP

Cells were plated out at an initial density of 104 cells / cm2 in 175 cm2 flasks,

allowed to attach, and then grown for 6 days under optimal tissue culture conditions

until subconfluent. They were then fed with fresh RPMI medium and left for one hour

to equilibrate with 2% CCE at 37° C prior to treatment with CDDP at a final

concentration of about 10 times their ID^o value. Cells were washed and NH4CO3

(final concentration 0.1M) was added to inactivate monofunctionally bound CDDP.

They were harvested either immediately following drug exposure (for the

investigation of adduct formation) or after a further 24 hours incubation in drug-free

medium (for the investigation of adduct recovery). Cell pellets were frozen at -20° C

until DNA was extracted.

Extraction of DNA

Cell pellets, consisting of about 107 -1()8 cells, were washed with PBS and

resuspended in 2.5 ml Tris buffer, K)mM, containing EDTA (ImM), pH 7.8, to which

NH4CO3 (0.1M) had been added just before use. Cell lysis was performed by

overnight incubation at 37° C with SDS (1% w/v); proteinase K, 250 |lg/ml, was also

added to digest proteins and DNA-protein adducts.The following day, an equal

volume of phenol, (previously saturated with Tris buffer, lOmM), pH 7.8, containing

EDTA (ImM) and NaCl, (0.1M) was added and the lysates extracted for 15 minutes

at 37° C. DNA was then precipitated from the aqueous phase by the addition of two



volumes cold absolute ethanol with sodium acetate buffer (0.3 mM), pH 5.5,

containing EDTA (0.ImM). DNA was collected by spooling onto glass rods, rinsed

briefly in 70% ethanol, and redissolved in 1 ml Tris / EDTA buffer. Coprecipitated

RNA was digested by incubating with RNase A (Sigma, Poole, England), 75 (ig/ml,

(heated at 80° C for 5 minutes to destroy any DNase activity) and RNase

T^fBoehringer, Bracknell, England), 75 IU/ml, at 37° C for two hours. A second

DNA extraction was then performed with an equal volume of chloroform / isoamyl

alcohol (24:1) and DNA reprecipitated with absolute ethanol.

Verification of DNA purity

In order to confirm the purity of DNA thus extracted, representative samples of DNA,

dissolved in a small volume of Buffer A, were run in a 1% agarose gel electrophoresis

system, and compared with a lambda bacteriophage DNA standard.

Enzymatic degradation of DNA

DNA was redissolved in 300 pi Buffer A (as described in Chapter 3), with 7.2 pi

ZnS04, 10 mM, 6 pi DNase I (at 1 mg / ml) and 30 pi Pt Nuclease, to form a

digestion mixture of approximately 1 pg DNA / ml. Enzymatic degradation was then

performed as described in Chapter 3.

Identification of Pt-DNA adducts

The various DNA digestion products (nucleotides and platinum-containing

oligonucleotides) obtained after enzymatic degradation were separated by anion

exchange chromatography using a mono-Q column and a HPLC system as described

in Chapter 3. The column was first calibrated with unplatinated digested calf thymus

DNA, to identify the elution positions of the four unmodified nucleotides.

Fractions (0.5 ml) were collected throughout the separation process for analysis of

elemental platinum content by ICP-MS-ETV. For this, 100 pi of concentrated HNO?



and 100 |il of concentrated HC1 were added to each fraction, and heated to dryness at

120° C. On the day prior to platinum analysis this residue was dissolved in 100 (il

HC1, 1%. 50 |il samples were introduced to the ETV furnace and elemental platinum

analysed by single ion monitoring. Platinum solutions of 1 ppb (0.05 ng/ml) were

used as internal standards and checked between every 6 samples to reduce sensitivity

drift with time.

Adduct levels were calculated from the platinum concentration of the sample as

analysed by ICP-MS-ETV, and expressed as a function of the DNA content of the

sample (calculated by integration from the HPLC chromatogram) and the CDDP dose

used (fmol Pt / (ig DNA / pmole CDDP).

Kinetics of adduct formation and recovery

For the investigation of adduct kinetics, cells were treated with CDDP, as described,

for either 4, 8, 12, or 24 hours. Cells were then either trypsinised and stored at -20° C

prior to DNA extraction (adduct formation -F) or incubated for 24 hours in drug-free

medium prior to trypsinisation and DNA extraction (adduct recovery -R).

Enzymatic disaggregation and HPLC separation of extracted DNA was then

performed as before. Fractions eluting over the predicted time for the two major

intrastrand adducts, Pt-AG (retention time around 3.1 minutes) and Pt-GG (retention

time around 10.4 minutes) were pooled to produce samples with a total volume of 2-3

ml. In view of the known high salt content of later fractions, Pt-GG samples were

desalted using solid phase extraction cartridges (Bondelut C18, Varian, Jones

Chromatography, Glamorgan). After the addition of both concentrated HC1 and

concentrated HNO3 (100 (il), samples were evaporated to dryness and analysed for

platinum content by ICP-MS-ETV as described above. Platinum content for each

sample was calculated with a one-point calibration using the integral counts obtained

from the 1 ppb platinum standards.



Correction for dilution by DNA synthesis

A separate experiment was performed to investigate the significance of any dilutional

effect due to DNA synthesis during the 24 hour recovery period in drug-free medium.

Cells from all three cell lines were grown to subconfluence in 24 well plates and

exposed to CDDP at the same concentrations as were used above (see Table 1) for 4,

8, 12, and 24 hours. Control wells were fed with medium alone. After each exposure

time, medium was removed and all cells washed with PBS. Cells were then either

trypsinised and stored at -20° C prior to DNA estimation (adduct formation -F) or

incubated for 24 hours in drug-free medium prior to trypsinisation and DNA

estimation (adduct recovery -R).

DNA content was estimated essentially as described by Labarca & Paigen (1980).

Briefly, 2 ml of sodium phosphate buffer containing NaCl, 2M and EDTA, 0.002M,

pH 7.4, and Hoechst dye 33258 (Hoechst, Hounslow, England), 1 (ig/ml, was added

per well. After brief sonication, emission was measured at 458 nm in a

spectrofluorimeter. Calf thymus DNA was used as standard.

Cell line [CDDP] used (pM) ID5o - CDDP (pM)

A2780 2.0 0.19

2780AD 20 2.3

2780CP 50 5.3

TABLE 1: Concentrations of CDDP used to treat each cell line, approximately ten
times the IDsq value.
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RESULTS

Verification of DNA purity

Figure 2 shows a typical example of an agarose 2D electrophoresis gel. Lanes 1-13

contain aliquots of extracted DNA (approximately 5 pig) from all three cell lines.

The low mobility of DNA in rows 1-13 confirms the high purity of extracted

cellular DNA.

*

FIGURE 2: Electrophoresis gel confirming the purity of DNA extracted from
ovarian carcinoma cell lines. Rows 1 to 13 contain DNA extracted from A2780,
2780AD and 2780CP. Row 14 contains bacteriophage X DNA as standard.

Identification of Pt-DNA adducts for cell lines treated with CDDP in vitro

Initial studies were designed to assess the sensitivity of ICP-MS-ETV for the

determination of Pt-DNA oligonucleotides following HPLC separation. For this,

DNA was extracted from all three cell lines after treatment with approximately

equitoxic doses of CDDP for either 4 hours or 24 hours, and disaggregated



enzymatically as described. Table 1 lists the concentrations of CDDP used for each

cell line.

Typical HPLC chromatograms for digested DNA extracted from unplatinated

(Figure 3) and platinated (Figure 4) 2780CP cells are shown. Although individual

oligonucleotides can be seen clearly, it is not possible to identify the position of Pt-

containing oligonucleotides at this scale. Elution positions of Pt-GG and Pt-AG

adducts are inferred from those of purified standard samples, as described in

Chapter 3.

The platinum content of each fraction was then determined and the profile for each of

the three cell lines is shown for two independent experiments in Figures 5 and 6. Two

major platinum peaks can be identified for all three cell lines, the first occurring early

(3 - 6 minutes), the second late (12 - 14 minutes) in the elution process. In addition,

there appears to be a third, much smaller, peak present between these two.

The first major peak is larger than the second in most of the platinum profiles

displayed in Figures 5 and 6. For the two resistant lines, Pt-DNA content was greater

after 24 hours exposure to CDDP than after 4 hours exposure. DNA platination, after

both CDDP-treatment times, appears greatest for the most sensitive cell line, A2780

and least for the most resistant cell line, 2780CP, with intermediate platinum levels

achieved for 2780AD.

Kinetics of adduct formation and recovery

For this work, a more accurate representation of Pt-DNA adduct levels was attempted

by collecting eluate fractions over the expected elution period of the two major Pt-

DNA adducts. The total platinum content of pooled HPLC fractions was then

analysed by ICP-MS-ETV.
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Figures 7 - 9 show Pt-DNA levels corresponding to the elution position of the

intrastrand adduct Pt-AG in three independent experiments for the cell lines A2780,

2780AD and 2780CP, following exposure to CDDP for periods up to 24 hours.

Platinum levels for DNA extracted from cells immediately following CDDP exposure

(formation -F) and after a 24 hour recovery period in drug-free medium (recovery -R)

are shown.

There is a general trend for increasing platinum content with time, seen in all three

cell lines for both adduct formation and recovery. Platinum levels, in general, seem

highest in the most sensitive cell line, A2780, and for both adduct formation and

recovery are higher than in the two CDDP-resistant sub-lines. Pt-AG adduct

formation, however, appears higher in 2780CP than 2780AD. Platinum levels show a

trend to be marginally higher in A2780 following recovery in drug-free medium,

seem little changed in 2780AD, and (in Experiments 1 and 3) appear lower in

2780CP.

Figures 10 - 12 show Pt-DNA levels corresponding to the elution position of the

intrastrand adduct Pt-GG for A2780, 2780AD and 2780CP in three independent

experiments. Results for later exposure times to CDDP were not always available,

owing to problems encountered either in calculating DNA content from the HPLC

chromatogram or in cell yield.

There is again a general trend for increasing platinum content with time in all three

cell lines, although for adduct formation there may be a peak level after 8 or 12 hours

exposure to CDDP, following which platinum level often falls. Adduct formation

appears highest again in the most sensitive cell line, A2780, although differences are

less marked. Pt-GG adduct formation seems, in general, higher in the most resistant

cell line, 2780CP than in the less resistant subline 2780AD, although this pattern is

not always consistent. For Pt-GG, in contrast to Pt-AG, levels following recovery in



drug-free medium are consistently lower than at formation in A2780. For the two

resistant sublines, levels for this adduct following recovery are either higher or very

similar.

Correction for dilution by DNA synthesis

DNA content of cells from a parallel experiment to assess the impact of potential

adduct dilution (due to fresh DNA synthesis) is shown in Table 2. For all three cell

lines, after exposure to CDDP for up to 24 hours, DNA content following a 24 hour

recovery period in drug-free medium is consistently less (17 - 93%) than immediately

after drug exposure.



A2780 - CDDP

exposure(h)

[DNA] - F (ng/ml) [DNA] - R (fig/ml) [DNA] -R/F
(%)

4 9.29 ±0.8 3.75 ±0.52 40.4

8 7.49 ± 0.64 2.20 ± 0.99 29.4

12 8.44 ± 1.03 3.89 ± 1.55 46.1

24 5.43 ±0.81 2.41 ±0.76 44.4

2780AD - CDDP

exposure(h)

4 17.8 ±0.67 16.6 ±0.52 93.1

8 17.3 ±0.75 13.4 ± 1.37 77.4

12 18.2 ±0.57 13.9 ± 1.88 76.4

24 15.7 ±0.97 9.6 ± 0.63 61.1

2780CP - CDDP

exposure(h)

4 5.7 ±0.61 1.1 ±0.11 20.0

8 4.4 ± 0.77 1.5 ±0.19 33.0

12 4.3 ± 0.46 0.73 ±0.15 17.0

24 1.7 ±0.25 1.4 ±0.20 82.4

TABLE 2: DNA content of cells exposed to CDDP before (F) and after (R) 24 hour
recovery in drug-free medium
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FIGURE 3: Separation of unplatinated digested DNA (2780CP) into nucleotides.

FIGURE 4: Separation of platinated digested DNA (2780CP) into nucleotides and
platinum - oligonucleotides by HPLC. At this level of platination, platinum-DNA
adducts cannot be identified.
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FIGURE 5: Platinum distribution for HPLC chromatogram - Experiment 1
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FIGURE 6: Platinum distribution for HPLC chromatogram - Experiment 2
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FIGURE 7: Pt-AG adduct levels for A2780 -F: formation; -R: recovery
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FIGURE 8: Pt-AG adduct levels for 2780AD; F- formation; R- recovery
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FIGURE 9: Pt-AG adduct levels lor 2780CP - F: formation; R: recovery
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Experiment 1

Experiment 2

Experiment 3

FIGURE 10: Pt-GG adduct levels for A2780-F: formation; R: recovery
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Experiment 1

Experiment 2

Experiment 3

FIGURE 11: Pt-GG adduct levels for 2780AD - F: formation; R: recovery
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Experiment 1

Experiment 2

Experiment 3

FIGURE 12: Pt-GG adduct levels for 2780CP - F:formation; R:recovery
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DISCUSSION

Earlier work described in this thesis (Chapter 3) validated the techniques of anion

exchange chromatography by HPLC and platinum analysis by ICP-MS for direct

detection of the two major intrastrand Pt-DNA adducts, Pt-AG and Pt-GG, in

enzymatic digests of highly platinated calf thymus DNA. These methods have now

been extended to the study of these adducts in the ovarian carcinoma cell lines

A2780, 2780AD and 2780CP. Initial experiments confirmed that, following treatment

with approximately equitoxic (tenfold ID50 value) doses of CDDP in vitro, and HPLC

separation of the resulting DNA digests, platinum peaks were identifiable by ICP-

MS-ETV at elution times corresponding roughly to those expected for Pt-AG and Pt-

GG. The kinetics of adduct formation and recovery was then studied over a time-

course for CDDP exposure of 24 hours, followed by a 24 hour recovery period in

drug-free medium for each time point. Significant interassay variability prevented

detailed analysis of adduct formation and recovery, but some trends were evident.

ICP-MS-ETV analysis of individual eluate fractions for all three cell lines showed

good separation of platinum content, with two major peaks identifiable (Figures 5 &

6) at elution times approximating to those of the two main intrastrand Pt-DNA

adducts. Minor discrepancies in the exact positions of these peaks were probably due

to differences in HPLC separation between the two experiments. Fractions eluting

before 2.5 minutes were not analysed for platinum content since the earliest expected

bifunctional Pt-DNA adduct, Pt-AG, was known under these conditions to have an

elution time of 3.1 minutes.

For A2780, three platinum peaks appeared: the earliest, between 3 and 6 minutes

presumably representing Pt-AG, the latest, between 12 and 14 minutes presumably

representing Pt-GG, and an intermediate peak between 7 and 10 minutes which may

represent an unrecognised Pt-oligonucleotide lesion. Platinum levels, in general, for



this cell line were higher alter 4 hours than after 24 hours exposure to CDDP. This

could be explained either by repair of platinated DNA occurring by 24 hours, or by

cell death occurring during this time period. Whilst the DNA content of cells exposed

to CDDP was reduced after 24 hours recovery in drug-free medium (Table 2), this

effect was similar for the 4 hour treatment period (40.4 %) and 24 hour treatment

period (44.4 %).

For 2780AD and 2780CP. the two major platinum peaks corresponding to the Pt-AG

and Pt-GG adducts were clearly identified. The intermediate peak, however, was

much less obvious, suggesting that the putative new Pt-DNA lesion (present in the

chromatogram of A2780 DNA) was either much less relevant, or more readily

repaired, in the two CDDP-resistant sublines. In contrast to A2780, platinum levels

for both 2780AD and 2780CP were higher after 24 hours than after 4 hours exposure

to CDDP. This may reflect either faster immmediate intracellular and / or intranuclear

accumulation of platinum, or more rapid removal mechanisms for Pt-DNA lesions in

the more sensitive parental cell line. Maximum platinum levels for Pt-GG were higher

than for Pt-AG for both 2780AD and 2780CP, in keeping with other studies using the

indirect ELISA for measurement of Pt-DNA adducts (Bedford et al., 1988 and

Dempke et al., 1991). For A2780, however, this pattern was only found in one of the

experiments. Although this initial work should only be regarded as semiquantitative,

it also appeared that peak platinum levels achieved were directly related to the

sensitivity of the cell line, in that highest levels (up to 3200 fmoles Pt / pg DNA /

pmole CDDP) were achieved for A2780, intermediate levels (up to 1100 fmoles Pt /

pig DNA / pmole CDDP) for 2780AD, and lowest levels (up to 430 fmoles Pt / |ig

DNA / pmole CDDP) for 2780CP. This may also reflect differences in either

platinum accumulation or the rate of repair of Pt-DNA lesions between these cell

lines.



100

The next experiment attempted to achieve more accurate analysis of the kinetics of

formation and recovery (over 24 hours) for the two major adducts, Pt-AG and Pt-GG,

by collecting and pooling HPLC fractions at around their expected elution times, as

calculated from the individual chromatograms. The consequent reduction in samples

for platinum analysis allowed this work to be performed three times in total.

Unfortunately, however, significant interassay variability (of two- to three-fold)

prevented combination of this data. Each experiment was therefore plotted separately

(Figures 7 - 12), and results can only be considered as semiquantitative.

Levels of the Pt-AG adduct increased with time of CDDP exposure for all three cell

lines, and appeared higher for A2780 than for either of the resistant sublines, 2780AD

and 2780CP. For Pt-GG, a similar "dose-response" relationship was less clear. Levels

of this adduct in A2780 DNA increased up to 12 hours CDDP exposure, but then fell

in two out of three experiments. For 2780CP, a similar initial pattern was seen,

followed by a later, slow rise again in platinum levels. For 2780AD, no consistent

pattern emerged. In general, the peak Pt-GG level reached was highest for A2780

than for 2780AD or 2780CP, in keeping with observations for Pt-AG. This general

trend confirmed that seen in the first experiment, and again may reflect faster

platinum accumulation or slower Pt-DNA repair mechanisms for A2780, compared

with 2780AD and 2780CP.

Following a 24 hour recovery period in drug-free medium, Pt-DNA adducts measured

for the three cell lines showed some interesting differences (Figures 7 - 12). For Pt-

AG, levels in A2780 were generally higher than those measured immediately

following CDDP exposure, whereas in 2780AD and 2780CP levels were found to be

lower. For Pt-GG, the converse was found: levels were lower in A2780, but higher in

2780AD and 2780CP following the recovery period. This implies repair of Pt-GG

adducts, but not Pt-AG, for the CDDP-sensitive cell line, A2780. The two CDDP-

resistant sublines appear to have repair mechanisms for Pt-AG, but not for Pt-GG,



when compared with A2780. CDDP resistance in 2780AD and 2780CP, therefore,

appears to correlate with improved repair capacity for the Pt-AG adduct, or tolerance

for the presence of the Pt-GG adduct.

Other studies of Pt-DNA adduct formation in CDDP resistance have used a constant

dose throughout experiments, despite a range of sensitivity to CDDP in the cell lines

used. Thus CDDP has been used from 1.1 to 29 times the ID50 value (Bedford et al.,

1988; Shellard et al., 1991 & Dempke et al., 1991), for analysis of adduct levels by an

indirect ELISA (Fichtinger-Schepman et al., 1985). Since the detection power of this

assay is affected by the degree of platinum modification of cellular DNA analysed, it

would seem more sensible to minimise this variable by standardising CDDP dose. In

this work, ten times the IDso values of CDDP for each cell line were used throughout.

In some experiments, DNA extracted following the recovery period was insufficient

to allow HPLC separation, presumably reflecting the long-lasting cytotoxicity of

CDDP even after its removal from tissue culture medium. This impression was

confirmed by an experiment conducted to assess the (potentially dilutant) contribution

of fresh DNA synthesis to adduct levels in DNA from cells after the recovery period

(Table 2). No such effect occurred in any cell line: in fact significant cytotoxicity of

up to 83% was noted for 2780CP. This reflects the difficulty of achieving true

equitoxic treatments with CDDP for these cell lines with such a wide range of CDDP

resistance. Ideally, adduct formation in all three cell lines should be assessed over a

wide range of concentrations of CDDP, to validate the existence of a dose-response

relationship. Such an experiment would require analysis of large numbers of samples,

which would be difficult given the current limitations of ICP-MS-ETV for this work.

The experiments described here confirm, however, the potential usefulness of ICP-

MS-ETV in platinum analysis for the direct detection of intrastrand Pt-DNA adducts.

However, at present it is necessary to operate at the extreme lowest levels of

sensitivity for this technique, allowing only semiquantitative evaluation of results.



Interassay variability in these experiments was greater than is normally cited for ICP-

MS-ETV (5 - 10%, Gregoire, 1988). This may have been due to a combination of

factors, particularly the high matrix suppression effect noted in the pooled Pt-GG

fractions, despite desalting of these. Other technical problems include its capital

expense, and the very high degree of operator precision and technical understanding

required for this. Sample preparation is time-consuming, and when ETV is used for

sample introduction^ maximum of only 30 samples per day can be processed. At

present, therefore, it is an expensive and cumbersome technique. However, direct

analyis of Pt-DNA adducts has been achieved; technical advances and greater

automation may improve its suitability for their future analysis.



103

CHAPTER 5

PLATINUM UPTAKE IN OVARIAN CARCINOMA CONTINUOUS
CELL LINES

INTRODUCTION

Whilst it is now generally accepted that intrastrand Pt-DNA adducts account for the

cytotoxicity of platinum agents, only a tiny proportion of total cellular platinum

(<1%) actually binds to DNA (Andrews & Howell, 1990). A large intracellular pool

of platinum also exists, around half of which is associated with diffusible small

molecules such as histidine, methionine and glutathione (Sharma & Edwards, 1983).

It is possible, therefore, that cytosolic platinum interactions, and their reversibility,

may influence the cytotoxic action of CDDP. Mechanisms of platinum transport

across both the cell and nuclear membrane may also have significance, particularly in

the development of platinum resistance. The phenomenon of multidrug resistance,

whereby cross-resistance to a number of unrelated but naturally occurring cytotoxic

drugs develops (see Chapter 1), has been shown to be due to increased drug efflux via

the P-glycoprotein membrane pump. This is an important mechanism for the

development of resistance to some drugs, but is not considered relevant for platinum

resistance in ovarian cancer (Bourhis et al., 1989; Goldstein et al., 1989 & van der

Zee et al., 1991).

Mechanisms for intracellular platinum transport

A direct relationship between platinum accumulation and CDDP cytotoxicity in

cancer cells has, however, been observed (Eicholtz-Wirth & Hietel, 1986). The actual

mechanism by which CDDP enters cells remains unclear. Initially it was assumed that

this occurred by passive diffusion, on the basis of a lack of saturation kinetics



observed for CDDP (Hromas et al., 1987) and also for its less potent analogue cis -

PPC-3H (Gale et al., 1973). However, this latter model does not provide good criteria

for categorising uptake, particularly as the pyridine ligands contained within this

CDDP analogue may significantly alter its uptake (Andrews et al., 1988). Further

support for the role of passive diffusion in CDDP uptake is provided by the ability of

some membrane-disrupting agents to enhance cellular platinum accumulation

(Timmer - Bosscha et al., 1989) and by the inability of structural analogues of CDDP

to saturate or to inhibit competitively platinum accumulation (Andrews et al., 1991).

Membrane fluidity studies in paired ovarian carcinoma cell lines (with a 2-fold range

of CDDP resistance) did not reveal any significant differences in bulk membrane lipid

composition or fluidity, despite clear and early differences observed in platinum

accumulation (Mann et al., 1988).

A role for carrier-mediated platinum transport has been suggested in the development

of CDDP resistance. CDDP was found to cause selective inhibition of sodium-

dependent amino acid uptake into L1210 murine leukaemia cells (Scanlon et al.,

1983), suggesting an interaction between CDDP and the cell membrane. Indirect

evidence for the role of amino acid earner proteins in CDDP uptake was suggested by

the discovery that its cytotoxicity can be inhibited in a competitive manner by

coincident exposure to certain amino acids, such as leucine (Byfield & Calabro-Jones,

1982). This phenomenon could contribute to the nephrotoxicity of CDDP. Various

aldehydes have been shown to protect cells from the cytotoxic action of CDDP, and

have been linked, via binding to cell membrane and consequent Schiff base

formation, with its reduced accumulation at sites which may be involved in carrier-

mediated CDDP transport (Dornish et al., 1986). An energy dependent component in

CDDP accumulation has also been proposed (Andrews et al., 1988) on the basis that

(despite lack of saturability of CDDP accumulation) platinum transport was inhibited

by a combination of dinitrophenol (an inhibitor of oxidative phosphorylation) and the



glycolysis inhibitors NaF and iodoacetate. Ouabain, a specific inhibitor of Na+, K+-

ATPase, was also shown to inhibit CDDP accumulation, indicating a possible

transport role for this ionic pump. The stimulation of platinum uptake by reduced

osmolarity (Smith & Brock, 1989), reduced membrane potential and elevation of

cAMP levels (Andrews & Howell, 1990) also tend to support a role for some sort of

carrier system.

Differential platinum accumulation as a mechanism for CDDP resistance

Elucidation of the mechanism of platinum accumulation, and its relationship to the

development of platinum resistance, is clearly important and offers potential for

therapeutic manipulation of CDDP. Continuous cell lines of various origins, with

differing degrees of induced CDDP resistance, have been used to investigate the

relationship between platinum accumulation and cellular platinum sensitivity. In

general, platinum accumulation was found to be reduced in resistant sublines over a

range of time schedules and CDDP doses.

In paired ovarian cancer cell lines with moderate degrees of induced CDDP resistance

(up to 10-fold), cellular platinum levels were measured as a function of CDDP

concentration and exposure time (up to 24 hours). Accumulation was found to be

reduced by 25 - 50% in the resistant sublines (Andrews et al., 1988; Kuppen et al.,

1988). In other (non-ovarian) cell lines with induced CDDP resistance, platinum

accumulation in resistant cells was found to be reduced in some studies (Shionoya et

al., 1986; Foka et al., 1988; Kraker & Moore, 1988) but not in others (Sekiya et al.,

1989).

Short-term platinum iccumulation may, however, best reflect reductions in influx. No

difference in accumulation was found when platinum was measured immediately after

CDDP exposure in paired A2780 cells (Parker et al., 1987) and human bladder cancer



cells (Bedford et al., 1987). In murine leukaemia cells, with a CDDP resistance ratio

of 20, platinum accumulation was unchanged over 12 minutes (Hromas et al., 1987).

Platinum efflux was also measured in some of these paired cell lines: this was

unchanged in one study (Parker et al., 1991), and reduced in resistant sublines, by a

similar degree to accumulation, in others (Andrews et al., 1988; Waud, 1987). The

absence of a consistent association between either platinum accumulation or efflux

and CDDP resistance provides further (indirect) evidence for the lack of importance

of passive transport in platinum accumulation.

All the previous studies described have used either AAS or !95mpt to measure

intracellular platinum. Development of an assay for the direct measurement of Pt-

DNA adducts, described in Chapters 3 & 4, using ICP-MS for platinum analysis,

allowed access to a highly sensitive technique for the investigation of intracellular

platinum accumulation. The three ovarian carcinoma cell lines described in Chapter 2,

with a moderate range of CDDP sensitivity, were used to study the role of differential

platinum accumulation in induced CDDP resistance, as a function of both time and

CDDP concentration.
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MATERIALS AND METHODS

Cell culture

The three ovarian carcinoma continuous cell lines (A2780, 2780AD and 2780CP)

described in Chapter 2, with a stable range of induced CDDP resistance of up to 27-

fold, were used Tissue culture conditions were as described in Chapter 2.

Measurement of intracellular platinum accumulation

For studies of total intracellular platinum accumulation, cells were seeded into 6-well

tissue culture plates at a density of 5 x 1()4 cells per well, and grown to confluence

over 4-6 days. Tissue culture medium was then removed and replaced with medium

containing CDDP at a final concentration of 20 |_tM, previously equilibrated with 2%

CO2 in air. At various times, plates were placed on ice, the medium removed and

cells washed twice with ice-cold PBS. After trypsinisation, the cells were resuspended

in 3 ml ice-cold PBS and pelleted by centrifugation at 200g for 5 minutes at 4° C.

Triplicate wells were harvested for each cell line. Cell pellets were stored at -20°C

until platinum analysis was performed. Total cell numbers in each well were counted

from triplicate wells of a control (untreated) plate for all three cell lines.

In a second experiment to compare platinum accumulation with CDDP concentration,

cells were incubated with CDDP at a range of concentrations from 10"4 M to 1.3 x

1()-9 M for 4 hours. Cell pellets were prepared and stored as described above, prior to

platinum analysis.

Measurement of DNA-bound platinum

For the measurement of platinum bound to DNA, cells were seeded into 75 cm2
Basks at a density of 5 x 1()4 ner ml, and grown to confluence over 6-8 days. They

were then fed with 25 ml of tissue culture medium containing CDDP (20 (iM) as

described in the previous experiments. At various time-points, medium was removed



from triplicate flasks and the cells were washed twice with ice-cold PBS. DNA was

then extracted as follows. Tissue culture medium was removed, 10 ml phenol

equilibrated with NaAc (0.3 mM) was added to each flask and incubated for 10-15

minutes at 37° C in an agitator, then poured into 50 ml polypropylene tubes (Falcon,

Becton Dickinson, London). Equal volumes of lysis buffer (containing NaAc, 0.3M,

SDS, 0.5%, and EDTA, 5 mM) and chloroform (containing isoamyl alcohol in the

proportions 24:1) were then added, and mixed continuously for 15 minutes at room

temperature. The tubes were then centrifuged at 600g for 20 minutes at 14° C, or until

a compact interphase layer had formed. The aqueous phase from each tube was then

drawn off carefully into 25 ml polypropylene tubes (Falcon, London), and 2 volumes

cold absolute ethanol added. Precipitated nucleic acids were later recovered by

centrifugation at 600g, 14° C, for 20 minutes. The resulting pellet was washed with

70% ethanol and centrifugation repeated as before, prior to resuspension in 200 |il

TNM buffer (NaCl, 0.14M, Tris buffer 0.01M , pH 7.4, MgCl2, 1.5 mM) with NaAc,

0.3M. RNA was removed by incubation with 2 pi RNase A (Sigma, Poole, U.K.) at

37° C for 20 minutes. The phenol and chloroform extraction steps described above

were then repeated, and resulting DNA resuspended in TNM buffer, 0.5 ml, prior to

platinum analysis.

Energy dependence of platinum uptake

To investigate the energy dependence of platinum transport, cells were grown in the

absence of glucose and in the presence of sodium azide to inhibit energy production

via oxidative phosphorylation within the cell. For this, A2780, 2780AD and 2780CP

cells were seeded into 75 cm2 tissue culture flasks at a density of 5 x 104 per ml and

grown to confluence as described. Glucose-free medium (Hanks Balanced Salt

Solution, ICN Biomedicals, Rickmansworth, Hertfordshire), equilibrated with

NaHCCU, was used thereafter for tissue culture . The cells were fed with either

glucose-free medium alone, or containing sodium azide, 10 mM, and equilibrated



with 2 % CO2 in air at 37°C for 10 minutes. CDDP at a final concentration of 2 pM

was then added to all flasks and cells incubated under standard conditions.for one

hour. Medium was then removed, the cells washed twice with ice-cold PBS,

trypsinised as described previously and resuspended in 1 ml PBS. A small aliquot,

100 til, of the suspension was used to count cell number in an electronic counter as

described in Chapter 2. Remaining cells were pelleted as described above and stored

at -20°C prior to platinum analysis.

Platinum analysis by ICP-MS

For all samples, the cell pellet was resuspended in concentrated HNO3. 50 pi, and

concentrated HC1, 50 pi. Lysed cells were heated to 120° C until dry and resuspended

in 3 ml 1% HC1 immediately prior to platinum analysis by ICP-MS. Liquid

nebulisation was used for sample introduction; solutions of indium and platinum were

used as internal standards and for calibration as described in Chapter 3.
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RESULTS

Measurement of intracellular platinum accumulation

Cells from all three cell lines were exposed to CDDP, 20 pM, over a six hour time

course, and total cell platinum content measured by ICP-MS (Figure 1). For all three

cell lines, there was an increase in platinum content over time. Platinum accumulation

was more rapid for A2780, and reached a level of 106.5 ± 9.3 pmoles / 106 cells after

six hours exposure. For the two resistant sublines the rates of platinum accumulation

were similar, but were less than for A2780. After six hours 2780AD had accumulated

56.2 ± 14.6 pmoles / 106 cells and 2780CP 49.2 ±21.4 pmoles / 106 cells. Platinum

accumulation compared with A2780 was 49.6 ± 16.2% at 4 hours and 52.7 ± 13.3% at

6 hours for 2780AD, and 50.7 ± 19.6% at 4 hours and 45.5 ± 16.9% at 6 hours for

2780CP.

Figure 2 shows the results of a similar experiment measuring total cell platinum

content as a function of CDDP concentration. Cells were incubated with CDDP for

four hours over the same range of concentrations used in the MTT chemosensitivity

assay (see Chapter 2), in order to allow comparison of platinum accumulation with

cytotoxicity. Platinum accumulation was linear over the range 0.0013 - 100 |lM

CDDP for all three cell lines, and was again greatest for A2780. For the two resistant

sublines, however, 2780CP consistently accumulated more platinum than 2780AD,

despite its greater resistance to CDDP at this exposure time.(resistance ratio 32.6 for

2780CP, 16.5 for 2780AD - see Table 4, Chapter 2). Regression analysis for these

lines gave equations of:

y = 1.36x + 0.55 (r = 0.9995) for A2780

y = 1.09x + 0.78 (r = 0.9896) for 2780CP

y = 0.455x + 0.34 (r = 0.9830) for 2780AD
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where r is the correlation coefficient. Thus, for 2780CP the rate of total cell platinum

accumulation over this range of CDDP concentration, compared with that found in

the CDDP-sensitive parental cell line, A2780, was 80.1%, and for 2780AD 33.5%.

Since it was only possible to perform this experiment once, in duplicate, results given

are the mean of two values.

Table 1 shows the data for platinum content at 20 pM CDDP in this experiment:

mean accumulation : cytotoxicity was 31.2 % for A2780, 15.2 % for 2780AD and

49.6 % for 2780CP.

pmoles Pt / 106 cells"!" % cell kill

24.8 96.4
A2780 35.4

11.6 69.6
2780AD 9.7

23.7 52.6
2780CP 28.5

TABLE 1: Intracellular platinum accumulation and cytotoxicity of CDDP when 20
pM CDDP was used for cell treatment. (7; duplicate values for the same experiment)
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FIGURE 1: Intracellular platinum accumulation as a function of time. Results given
are the mean ± S.E. of three separate experiments.

FIGURE 2: Intracellular platinum accumulation as a function of CDDPconcentration used to treat cells.



113

Measurement of DNA-bound platinum

Estimations of total cellular platinum accumulation and DNA-bound platinum were

performed in parallel, using CDDP at 20 |iM over a six hour time-course. Analytical

constraints again meant only one experiment, in duplicate, could be performed:

results are therefore given as the mean ot two values (Figures 3a & 3b).

Total cell platinum was again found to increase with time; results were similar to

those for the earlier experiment (Figure 1) with platinum accumulating faster, and

reaching a higher peak level, for A2780 than for the two resistant sublines. For these,

rates of accumulation and peak platinum levels were very similar, despite their

twofold difference in resistance ratio to CDDP over four hours (Table 4, Chapter 2).

SuRrEnnpTOtal cellu^'" platinum accumulation after treatment of cells with
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t (hr)

FIGURE 3b: DNA-bound platinum levels after treatment of eells with 20 j_tM
CDDP. Results given for Figures 3a and 3b are the mean of two values obtained for
one experiment performed in parallel.

Similar results were found for DNA-bound platinum over this time-course (Figure

3b). All three cell lines showed an increase in Pt-DNA with time, this being greatest

for A2780; for the two resistant sublines levels of DNA-platination were slightly

higher for 2780CP than for 2780AD. Rate of accumulation was greatest between 2

and 6 hours: regression analysis for these lines between these time points gave

equations of:

y = 0.78x - 0.87 (r = 0.9989) for A2780

y = 0.16x + 0.1 (r = 0.9743) for 2780AD

y = 0.13x - 0.13 (r = 0.9962) for 2780CP

where r is the correlation coefficient. Thus, the rate of DNA-platination between 4

and 6 hours, compared with A2780, was 20 5% for 2780CP and 16.7% for 2780AD.

Table 2 shows the proportion of total cell platinum that was bound to DNA for each

time point in this experiment, for all three cell lines. There is a clear trend for this to

be highest immediately after CDDP exposure, although this may be an artefact owing



to the very low platinum values obtained immediately after addition of CDDP to

cells. For all other time-points proportions were much lower and no significant

differences were found.

t (hr) A2780 (%) 2780AD (%) 2780CP (%)

0 31 400 79

2 4.3 13.9 5.7

4 6.1 7.1 7.0

6 6.9 5.0 6.5

TABLE 2: The proportion of total cellular platinum hound to DNA at each time
point.

Relationship between cellular platinum accumulation and sensitivity to CDDP

Figure 4 shows the cytotoxicity of CDDP after 4 hours exposure as a function of its

intracellular accumulation. For this, the percentage cytotoxicity noted at each

concentration of CDDP (4 hours exposure) was calculated for each cell line from the

MTT chemosensitivity data described in Chapter 2. These values were then compared

with total cellular platinum leveis over the same range of CDDP concentration. The

curve for A2780 is furthest to the left, indicating the increased sensitivity of this cell

line to CDDP compared with its resistant sublines 2780AD and 2780CP, at all levels

of platinum accumulation. The most resistant subline, 2780CP, appeared able to

tolerate higher levels of intracellular platinum: for 50% cell kill, total cell platinum

accumulation was 2 pmoles / 106 cells for A2780, 6 pmoles / 106 cells for 2780AD

and 25 pmoles / 1()6 cells for 2780CP.
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[Pt] pmoles / l()6cells

FIGURE 4: Cytotoxicity of CDDP as a function of concentration of CDDP used.

Energy dependence of platinum uptake

Table 3 shows platinum accumulation when sodium a/.ide was used to inhibit energy

formation within the cell, and thus prevent any actively-mediated platinum transport.

Cells were exposed to CDDP, 2 (iM, for one hour: this low dose-schedule was chosen

to minimise the effect of CDDP cytotoxicity on cell transport mechanisms. No

significant change in total cell platinum accumulation was found for the most

resistant subline, 2780CP, whilst a moderate decrease (23.6%) in platinum

accumulation was noted for 2780AD. Sodium azide at the concentration used, 10

mM. was noted to be significantly cytotoxic to A2780.
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pmoles Pt / 1()6 cells

Cell line - sodium azide + sodium azide

A2780 15.58 63.98t

2780AD 12.46 9.52

2780CP 14.88 14.82

T significant cytotoxicity noted for A2780 only

TABLE 3: Total cellular platinum accumulation (glucose free medium) in the
presence and absence of sodium azide to inhibit intracellular oxidative
phosphorylation.
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DISCUSSION

This work aimed to investigate the relationship between sensitivity to CDDP and

platinum accumulation, intracellular and nuclear, in the three ovarian cancer

continuous cell lines described in Chapter 2. These displayed a range of resistance

after 4 hours exposure to CDDP, with resistance ratios of 16.5-fold for 2780AD and

32.6-fold for 2780CP ( see Chapter 2, Table 4).

For all three cell lines, platinum accumulation, both total and DNA-bound, increased

with time but was greatest for the most sensitive cell line, A2780. Little difference

was found between the two resistant sublines for either parameter. Cytotoxicity was

found to be directly related to intracellular platinum levels, after 4 hours exposure to

CDDP, with A2780 again the most sensitive, 2780CP the most resistant, and 2780AD

intermediate in sensitivity. Inhibition of active transport, with sodium azide, did not

alter platinum accumulation for 2780CP, but caused a moderate decrease for 2780AD

without obvious cytotoxicity being noted.

For A2780, the rate of cellular platinum accumulation increased with time at a greater

rate, and reached a higher level, than for 2780AD or 2780CP (Figure 1). After 4

hours, total cell platinum content when compared with A2780, was 49.6 ± 16.2% for

2780AD (resistance ratio 16.5), and 50.7 ± 19.6% for 2780CP (resistance ratio 32.6).

After 6 hours, 2780AD had reached a total cell platinum level of 52.7 ± 13.3% that of

A2780; for 2780CP accumulation was 45.5 ± 16.9%) that of A2780. Thus the two

resistant sublines displayed very similar reductions in total cell platinum

accumulation compared with A2780, despite a twofold difference in their resistance

ratios under these experimental conditions. This suggests that differential platinum

accumulation, whilst contributing, is not the sole mechanism in CDDP resistance for

these two resistant sublines.
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When cellular platinum content was compared with CDDP concentration in the

incubation medium (after 4 hours exposure), a linear increase was observed for all

three cell lines, again greatest for A2780. However, in this experiment 2780CP was

found to accumulate more platinum for a given CDDP concentration than the more

sensitive subline 2780AD (rate of accumulation compared with A2780: 80.1% for

2780CP and 33.5% for 2780AD). This supports the theory that, particularly for

2780AD, there may be a mechanism operating to reduce intracellular platinum

accumulation which may account for some of the observed CDDP resistance. At a

CDDP concentration of 20 pM, cytotoxicity for 2780AD was 72.2% and for 2780CP

54.6%, compared with that found for A2780 at this concentration. Platinum

accumulation for 2780AD was 35.2% and for 2780CP was 86.7% that found for

A2780 at this concentration of CDDP (Table 1). These figures support the above

theory that, for 2780AD, CDDP resistance may reflect reduced platinum

accumulation. However, for 2780CP, relative platinum accumulation was higher with

increasing concentration of CDDP. despite its greater resistance to CDDP: this may

reflect an increased tolerance to platinum.

For DNA-bound platinum, similar observations were made: for all three cell lines,

DNA-Pt levels increased with time, particularly between 2 and 6 hours (Figure 3b).

Between these times the rate of DNA-platination, compared with that for A2780, was

16.7% for 2780AD and 20.5% for 2780CP. Thus both the rate of platinum-DNA

binding, and the peak level achieved, was again greatest for A2780. In this

experiment, platinum values were similar for the two resistant sublines, but the

relative reductions in platinum-DNA binding were greater than those found for total

cell platinum. This could be explained by a reduction in platinum transport (or

increased efflux) across the nuclear membrane in the resistant sublines, or

alternatively by increased intranuclear platinum transport for A2780 to account for its

increased sensitivity to CDDP. Alternatively, there could be fewer available binding



sites on DNA, or more rapid removal of Pt-DNA adducts in the resistant sublines.

The proportions of DNA-Pt compared with total cell platinum are shown in Table 2.

Values immediately after CDDP exposure are certainly higher than thereafter, but this

could be explained by the very small values observed at this time-point, particularly

for total cell platinum. For most of the other time-points, however, the proportion of

total cell platinum that is DNA-bound is remarkably similar, between 5 and 7%. This

finding does not support increased intranuclear platinum transport as a mechanism for

the increased CDDP sensitivity of this cell line.

When cellular platinum accumulation was related to CDDP sensitivity a direct

relationship was observed, with A2780 displaying the greatest cytotoxicity for a given

platinum level, 2780AD intermediate cytotoxicity and 2780CP the most resistance

(Figure 4). From these results extrapolations of cellular platinum content at 50%

cytotoxicity could be made. For 2780AD, compared with A2780, platinum levels

were increased 3-fold, and for 2780CP were increased 12.5-fold. Thus, again,

2780CP seemed able to tolerate higher levels of CDDP, which may explain some of

its observed resistance.

These results demonstrate that reduction in platinum accumulation, both cellular and

nuclear, contributed to CDDP resistance in the two resistant sublines, 2780AD and

2780CP. However, the degree to which this contributed to the observed resistance

ratio appeared to differ. For 2780AD reduced accumulation appeared to be relevant.

This cell line was known to express strongly the P-glycoprotein efflux pump that is

responsible for the multidrug resistance phenomenon: however expression of this

membrane pump was shown to disappear in 2780AD after prolonged culture in drug-

free medium (Chapter 2, Plate 5), whilst the degree of resistance observed was

unchanged. It was not, therefore, thought likely that this mechanism explained the

reduced accumulation. The effect of energy depletion on platinum accumulation for

this cell line (Table 3) did not suggest a role for an energy-dependent efflux pump.
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The most resistant subline, 2780CP, whilst showing redueed accumulation, seemed

able to tolerate higher levels of platinum, when compared with the two more sensitive

cell lines for cytotoxicity. No difference in platinum accumulation was noted when

energy was depleted with sodium azide. For 2780CP, therefore, increased DNA repair

mechanisms may be relevant to its observed high level of CDDP resistance.

These findings are in agreement with those reported by other workers, using either

AAS or radiolabeled CDDP or its analogues. Reduced platinum accumulation was a

consistent finding in many CDDP-resistant cell lines (Andrews & Howell, 1990). In

pairs of ovarian carcinoma cell lines, platinum accumulation was reduced by 50 -

75% in the resistant subline (Kuppen et al., 1988; Andrews et al., 1989). In other

models no such difference was found between sensitive and resistant cell lines

(Hospers et al., 1988; Sekiya et al., 1989). This discrepancy could, however, be

explained by differences in experimental design: the relative reduction in platinum

accumulation was least (or non-existent) when measured within minutes of exposure

to CDDP (Hromas et al., 1987; Bedford et al., 1987; Shionoya et al., 1986). Over

longer time periods of exposure to CDDP other mechanisms, such as decreased influx

or increased efflux could have contributed to any reduction in platinum accumulation

in resistant cell lines. In this work platinum levels measured immediately after

addition of CDDP were too low (for all three cell lines) for meaningful comparisons

to be made. There was an apparent trend for the proportion of total cell platinum that

was DNA-bound to be highest immediately after CDDP administration (Table 2), but

this may simply be an artefact due to the very low values recorded.

ICP-MS was used throughout these experiments for analysis of platinum levels, using

liquid nebulisation as a method for sample introduction (see Chapter 3). Typical

measurements were between 0 and 150 ng platinum, well within the limits of

sensitivity for this technique. As described in Chapter 3, an internal platinum standard

was measured after every ten samples, to reduce interassay drift in sensitivity.



Interassay variation in platinum analysis was between 5 and 10%. This method for

platinum analysis is, therefore, sufficiently sensitive to be used in the study of

differential cellular and nuclear platinum uptake. However, it is expensive, slow and

time-consuming: thus limiting its usefulness as a technique for routine experimental

platinum analysis. The high degree of technical complexity currently associated with

this method, requiring dedicated, consistent and experienced operators, is also a

drawback.
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CHAPTER 6

INTRACELLULAR INACTIVATION OF PLATINUM BY
GLUTATHIONE

INTRODUCTION

Glutathione (GSH)

Glutathione (GSH), a naturally occurring low molecular weight thiol tripeptide, is a

major constituent of the intracellular non-protein sulphydryl pool. Its chemical

structure was first described in 1935 (Meister, 1981), since which time the

physiological functions of this important molecule, and its oxidised form glutathione

disulphide (GSSG), have gradually been elucidated. It participates directly or

indirectly in many important biological processes, including DNA and protein

synthesis, transport mechanisms, enzymic activity and cellular metabolism. In

addition, it also has an important function in the protection of cells against reactive

oxygen compounds and free radicals (Meister & Anderson, 1983). This latter

detoxification property has stimulated interest in the role of GSH in the protection of

cells, both normal and cancerous, against xenobiotic and cytotoxic compounds such

as alkylating agents. The electrophilic nature of CDDP. particularly towards sulphur-

containing compounds, also predicted a role for the modulation of both its

cytotoxicity and nephrotoxicity by GSH.

The selective manipulation of GSH became possible with the advent of a specific

substrate inhibitor of its synthesis, buthionine-S-R-sulfoxamine (BSO), and of an

intracellular cysteine delivery system, 2-oxothiazolidine-4-carboxylate (OTZ).

Intracellular GSH levels can be reduced by treatment with BSO, and can be increased

by exposure to OTZ.



GSH and resistance to cytotoxic agents

Many studies have since investigated the relationship between GSH levels, their

manipulation, and sensitivity to various cytotoxic agents in a variety of experimental

systems. In human ovarian cancer cell lines a correlation between GSH levels and

melphalan resistance was initially noted; GSH depletion (using BSO) increased

cellular response to melphalan (Green et al., 1984). This observation was further

supported by a study of melphalan, adriamycin and cisplatin sensitivity in paired

drug-sensitive and drug-resistant human ovarian cancer cell lines (Hamilton et al.,

1985). Elevated GSH levels were found in the resistant cell lines, and depletion of

GSH was associated with increased sensitivity to CDDP. A model for human ovarian

cancer in vivo has been developed in which disseminated intra-abdominal

carcinomatosis is produced in athymic mice (Ozols et al., 1987). The administration

of BSO in drinking water significantly lowered GSH levels in tumour cells, and

produced a 72% increase in median survival time following melphalan therapy,

compared with mice given melphalan alone. Elevation of GSH levels with OTZ

produced a small increase in CDDP resistance in normal human lung fibroblasts but

not in a lung adenocarcinoma cell line (Russo et al., 1986) or in Chinese hamster

ovary (CHO) cells (Freeman et al., 1990).

GSH and CDDP resistance

Many authors have since investigated the relationship between GSH level, and its

manipulation, in a number of CDDP-sensitive and -resistant paired cell lines of

various origins. In general, an association between CDDP resistance and elevation of

GSH levels was only noted when the resistant cell line had been selected by

continuous exposure to CDDP. Prolonged depletion of GSH was then required to

produce potentiation of cytotoxicity (Andrews & Howell, 1990).
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Results from experiments performed in vivo are also rather conflicting. A recent

study investigating CDDP biodistribution in tumour-bearing rats found that depletion

of GSH caused elevation of platinum levels in all subcellular tumour fractions, but to

an extent not directly proportional to the GSH depletion (Parti & Wolf, 1991). Human

primary ovarian cancer biopsies, assessed by How cytometry, have shown pronounced

heterogeneity in intratumour GSH content (Lee et al., 1989) Other workers (Britten et

al., 1989) have demonstrated an association between GSH levels in fresh human

primary biopsies and earlier chemotherapy with alkylating agents. Manipulation of

GSH levels in vivo has been hampered by the additional toxic effect of BSO at doses

effective in their reduction (Kclley & Rosencweig, 1989), although this problem has

been successfully circumvented by others (Ozols et al., 1988).

GSH may reduce the cytotoxicity of CDDP towards target tissues in a number of

ways: the exact mechanism has not yet been elucidated (de Graeff et al., 1988).

Suggestions include: alterations in transport of CDDP at the cell membrane level,

cytoplasmic inactivation by the formation of an inactive complex between CDDP and

GSH, decreased CDDP-DNA binding, quenching of CDDP-DNA monoadducts by

GSH (thus preventing their conversion to the more toxic Afunctional form) and

changes in DNA repair mechanisms. Despite a multitude of studies investigating the

association between intracellular GSH levels, CDDP resistance, and their

manipulation via BSO or OTZ, little conclusive evidence exists to prove the

hypothesis that raised intracellular GSH levels are causally linked with CDDP

cytotoxicity..

In this work, the three ovarian carcinoma continuous cell lines originally described in

Chapter 2, with a broad (26-fold) range of CDDP resistance, were used as a model to

investigate further the relationship between intracellular GSH levels, their

manipulation with BSO, and CDDP resistance induced in vitro . The effect of reduced



126

GSH levels on cellular platinum uptake was also measured, using ICP-MS for

platinum analysis.
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MATERIALS AND METHODS

Cell culture

The three ovarian carcinoma continuous cell lines A2780, 2780AD and 2780CP,

described in Chapter 2, with a stable range of induced CDDP resistance of up to 27-

fold were used. Tissue culture conditions were as described in Chapter 2.

Cellular glutathione analysis

Cells were seeded into 6-well tissue culture plates at a density of 5 x 104 per well, and

grown to confluence over 8-10 days. In order to minimise the contribution of tissue

culture medium (RPMI 1640, containing GSH 1 mg / ml), to cellular GSH content,

medium was not replaced during the growth period of these cells.

Total glutathione (GSH + GSSG, TGSH) was measured according to the enzymic

recycling assay of Tietze (Tietze, 1969), with some modifications. This method

utilises the reduction of 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) by glutathione

reductase to form 2-nitro-5-thiobenzoic acid, the rate of formation of which can be

measured spectrophotometrically. The linearity of this reaction was confirmed at the

start of each experiment, when a standard curve was performed using glutathione

(Sigma, Poole, England), made up in 125 mM sodium phosphate buffer containing

EDTA, 6.3 mM, pH 7.5, in a range of concentrations from 0 - 500 ng / ml. 200 (il of

sample was then placed in a cuvette with 700 pxl NADPH, 0.3 mM, and 100 (il

DTNB, 6 mM, and equilibrated to 30°C. 10 (il glutathione reductase, 50 U / ml

(Sigma, Poole, England) was then added immediately prior to monitoring the

absorbance at 412 nm over 3 minutes with a spectrophotometer. For assaying cellular

GSH, cells in the stationary phase of growth were trypsinised and a small aliquot

removed to allow estimation of the total number of cells present in each sample by

Coulter counter analysis, as described in Chapter 2. The remaining cell suspension



was washed three times with PBS. The cell pellet was then resuspended in 1 ml

perchloric acid, 1M, containing EDTA, 2 mM, and spun for 1 minute at 6.5K in an

Eppendorf microfuge. A portion of supernatant was then titrated to pH 7.4 against a

small volume of KOH, 2M, with MOPS, 0.3 M, and centrifuged again for 1 minute at

6.5K in a microfuge. The resulting supernatant was then used, appropriately diluted,

to measure TGSH by the spectrophotometry assay described above. GSSG alone was

also measured, by its initial derivatisation with 2 vinyl pyridine (2VP). 400 (il of

supernatant was incubated at room temperature with 8 (il 2VP for around one hour

prior to analysis as described. Reduced glutathione (GSH alone) could then be

calculated.

Cytotoxicity of BSO

The cytotoxicity of D,L-BSO (Sigma, Poole, England), which was used to inhibit the

synthesis of cellular GSH in later experiments, was investigated in the three ovarian

cancer cell lines using the modified MTT chemosensitivity assay described in Chapter

2. Cells were seeded into 96-well microtitre plates at low density (between 5 x 102
and 1 x 1()3 per well). After 3 days growth in standard conditions, the central 8

columns of cells were fed with tissue culture medium containing D,L-BSO at a final

concentration between 10"3 M and 1.3 x l()~s M; medium alone was added to the

remaining cells, which acted as controls. After 24 or 48 hours exposure, D,L-BSO

was removed and cells were fed daily with medium alone, until day 7, when medium

containing HEPES buffer (10 mM) and MTT (50 |il / well) was used. Plates were

incubated for four hours in darkness and absorbance of the formazan crystals thus

produced, redissolved in DMSO with Sorenson's glycine buffer, was measured in an

ELISA plate reader as described in Chapter 2. The concentration of BSO which

produced 50% absorbance of the control (untreated) cells.at 570 nm, was calculated

and expressed as the IDso value
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Effect of BSO on cellular glutathione content

The ability of D.L-BSO, at concentrations of 25 |iM and 50 pM, to reduce GSH

formation in all three cell lines was assessed over 24 and 48 hours. Cells were grown

to confluence in 6 well plates over 6 - 8 days as previously described. Wells were

then fed with either 25 pM D.L-BSO (in tissue culture medium), 50 pM D,L-BSO (in

tissue culture medium) or medium alone as control. Cells were incubated at 37° C in

2% CO; for 24 hours, at which point either GSH content was assayed, or a further 24

hours of D.L-BSO treatment was performed prior to GSH assay.

Modulation of CDDP toxicity by d-L-BSO

The modulating effect of D.L-BSO on the cytotoxicity of CDDP in ovarian cancer

cell lines was assessed using the modified MTT assay, described in Chapter 2. In

addition to the use of CDDP as cytotoxic agent (in five-fold dilutions from 104M) to

all wells, D.L-BSO in tissue culture medium (at 25 pM or 50 pM, for either 24 or 48

hours) was added to the first four wells of each column. Medium was removed after

24 or 48 hours, and cells fed daily until day 7, when plates were analysed

spectrophotometrically as described earlier.

To investigate the necessity of having already lowered cellular GSH levels at the time

of addition of CDDP. an alternative experimental protocol of 24 hours pre-incubation

with D.L-BSO (25 pM), prior to 4 hours exposure to CDDP, was also used.

The modulating factor (MF) for D.L-BSO was calculated by dividing the ID50 value

of CDDP alone by that obtained in the presence of D.L-BSO.

Effect of D.L-BSO on platinum uptake

To assess the effect of D.L-BSO on platinum accumulation in vitro, by the reduction

of intracellular GSH levels, ovarian carcinoma cells were grown to confluence in 75

cm2 tissue culture flasks over 6 -8 days, as described above. The cells were then fed



with either D,L-BSO, 25 (J.M, in tissue culture medium, or with medium alone. After

24 hours incubation, CDDP was added at a final concentration of 2 (iM in all cell

lines. After incubation with CDDP for either 1 hour or 6 hours, cells were washed

twice with PBS, trypsinised and a small aliquot removed for estimation of total cell

number in each flask by Coulter counter. Cell pellets were then stored at -20° C prior

to analysis of total intracellular platinum content or DNA-bound platinum by ICPMS,

as described in Chapter 3.
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RESULTS

Cellular glutathione analysis

At the start of each assay the rate of formation of DTNB from a range of

concentrations of commercial GSH solution, measured spectrophotometrically at 412

nm, was measured to allow interpolation of cellular GSH and GSSG content. This

relationship was found to be linear (Figure 1).

Total GSH and GSSG levels for all three cell lines in the stationary phase of growth

were calculated; GSSG content was consistently negligible and results for total GSH

therefore reflected those for GSH alone (Table 1).

TGSH content appeared to be directly related to CDDP resistance, being lowest in

A2780, intermediate in 2780AD and highest in 2780CP (r = 0.93, Figure 2).

[TGSH} (ng / 106 cells)

A2780 2780AD 2780CP

63.19 ±21.5 150.8 ± 10.7 304.8 ± 78.9

TABLE 1: Glutathione content of ovarian cancer cell lines in the stationary phase of
growth, calculated from the rate of formation of DTNB. Values given are the mean ±
S.E. for three separate experiments.
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FIGURE 1: Typical standard curve showing the rate of formation of DTNB from
GSH.
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FIGURE 2: Correlation between intracellular GSH content and sensitivity to CDDP
for ovari an cancer cell lines (r = 0.93).
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Cytotoxicity of D,L-BSO

The toxicity of D,L-BSO towards the ovarian cancer cell lines A2780, 2780AD and

2780CP was measured using the modified MTT chemosensitivity described fully in

Chapter 2. ID50 values for D,L-BSO, after 24 and 48 hours exposure, are shown in

Table 2. Over 24 hours, significant cytotoxicity for D,L-BSO was not found for any

of the cell lines. 2780CP was the most resistant to any cytotoxicity of D,L-BSO,

whereas A2780 was the most sensitive. Only after 48 hours exposure, for A2780, and

to a lesser extent for 2780AD, was the intrinsic cellular cytotoxicity of D,L-BSO

itself likely to interfere with the interpretation of results for the later experiments on

platinum uptake and modulation of chemosensitivity to CDDP.

ID50 (nM) for D.L-BSO

Exposure time
(hr)

A2780 2780AD 2780CP

24 643.3+ 277.3 V
1 G-> 2 > lO'3 M

48 46.3 ± 11.6 102.0 ± 29.0 > 10-3 M

TABLE 2: Cytotoxicity of D.L-BSO towards ovarian cancer cell lines. Values given
are the mean ± S.E. for three separate experiments.

Effect of D.L-BSO on cellular glutathione content

Cellular GSH levels, following incubation with D.L-BSO, at concentrations of 25 jiM

and 50 (iM, over 24 and 48 hours, are shown in Table 3. Once again, GSSG levels

were negligible. Table 4 shows the mean percentage reduction in TGSH content

following each incubation period with D.L-BSO, for each cell line.
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Cell line Incubation

time (hr)

[TGSH] (ng / 106 cells): A2780

C (no D,L-

BSO)

+ 25 pM D.L-
BSO

+ 50 pM D.L-
BSO

A2780 24
66.7 ± 25.9 4.1 ±5.2 0

48
33.0 ± 19.5 0 0

2780AD 24
111.4 ± 16.2 5.5 ± 6.5 0

48
40.9 ± 24.4 0 0

2780CP 24
91.7 ± 12.2 3.2 ± 5.2 5.0 ±6.2

48
95.2 ± 60.9 4.6 ± 4.9 7.6 ± 9.0

TABLE 3: Glutathione content of ovarian cancer cell lines following incubation with
D,L-BSO. Values given are the mean ± S.E. for three separate experiments.

A2780 {% ) 2780AD (%) 2780CP (%)

t (hr) 25 pM
D,L-BSO

50 pM
D.L-BSO

25 pM
D.L-BSO

50 pM
D.L-BSO

25 pM
D.L-BSO

50 pM
D,L-BSO

24 95.4 ± 5.9 100 ± 0 94.6 ± 6.4 100 ±0 95.8 ±7.1 94.4 ± 6.6

48 100 ±0 100 ±0 94.7 ±
10.6

100 ±0 92.5 ± 8.9 94.4 ±6.0

TABLE 4: Percentage reduction in cellular glutathione content in ovarian cancer cell
lines following incubation with D.L-BSO. Values given are the mean ± S.E. for three
separate experiments.
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Reductions of over 92% in cellular glutathione content were seen for all three cell

lines under all experimental conditions used. A reduction in TGSH levels in control

cells, after 48 hours incubation without D,L-BS0, was also observed. The most

CDDP-resistant cell line, 2780CP, was the only one to show recordable TGSH values,

albeit much reduced, following all four combinations of D,L-BSO addition to culture

medium. It was thus found possible to achieve near complete reduction in cellular

TGSH using the regime for D,L-BSO administration that was least toxic to the cell

lines (25 pM over 24 hours).

Modulation of CDDP toxicity by D.L-BSO

The potential for D,L-BSO to act as a modulator of the cytotoxicity of CDDP towards

ovarian cancer cells through its reduction in cellular GSH levels, was assessed using

the modified MTT assay described. Cells were exposed to D,L-BSO, either 25 pM or

50 pM, for 24 or 48 hours, followed by treatment with CDDP for 24 hours. To assess

the importance of lowering cellular GSH levels prior to the addition of CDDP, in

another experiment cells were also pre-incubated with d- L-BSO, 25 pM, for 24

hours prior to treatment with CDDP for 4 hours.

Figure 3 shows typical cell survival curves following preincubation with D,L-BSO,

25 pM. No significant difference was found in 4-hour ID50 values for CDDP for this

regime (Table 5), indicating that the cytotoxicity of CDDP was not affected by the

reduction in GSH levels in any of the cell lines studied. Figures 4-7 show similar

results for cell lines incubated with D.L-BSO at both 25 pM and 50 pM for 24 and 48

hours. For A2780, following 48 hour exposure, the cytotoxicity of D,L-BSO was such

that cell survival curves could not be plotted for this cell line. The depletion of

cellular GSH by D.L-BSO. for any of the regimes used, appeared to have only modest

enhancing effect on the cytotoxic effect of CDDP in the three cell lines studied

(Tables 5 and 6).
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Effect of D.L-BSO on platinum uptake

No effect on total cellular platinum uptake (over 6 hours) was observed in any of the

cell lines studied following reduction of intracellular GSH by D,L-BSO (Figure 8).

Platinum uptake into the nucleus, and its binding to DNA, was similarly unaffected,

indicating that there is no obvious redistribution of intracellular platinum across the

range of CDDP sensitivities observed in these cell lines (Figure 9).
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d,l-bso ID50 (cde

(M-

>p) -a2780

M)

ID50 (c
2780a1

:ddp) -
0 (pM)

ID50 (cddp) -
2780cp (pM)

+ bso - bso + bso -bso + bso -bso

25 pM1 -

preincubated
1.4

(0.55-2.8)
2.0

(0.96-3.6)
17

(1.3-36)
15

(3.1-56) (10-90)
46
(7.2-
>100)

25 pM2 -
24 hours

0.1
(0.04-
0.25)

0.15
(0.05-
0.36)

1.2
(0.49-2.3)

1.9
(0.82-3.4)

2.9
(1.5-4.8)

4.2
(2.0-7.6)

25 pM2 -
48 hours

- - 3.9
(2.2-9.1)

6.0
(4.8-7.2)

6.0
(3.6-10)

10.0
(7.2-18)

50 pM2 -
24 hours

0.28
(0.16-0.4)

0.4
(0.32-
0.54)

2.3
(2.0-2.7)

2.7
(2.6-2.8

6.0
(4.6-8.2)

8.0
(7.2-9.0)

50 pM2 -
48 hours

- - 2.2
(1.9-2.6)

5.5
(4.3-6.7)

5.1
(2.5-8.8)

7.2
(4.5-11.0)

table 5: Effect of d-L-BSO on the cytotoxicity of CDDP towards ovarian cancer
cell lines. Values given are the ID50 values for CDDP after either 4 hours I1) or 24
hours (2) exposure, and the range over two or three separate experiments. Where no
value is quoted, significant cytotoxicity of D.L-BSO was noted.

bso regime a2780 2780ad 2780cp

25 pM-
preincubated

0.70 1.13 0.83

25 pM-
24 hours

0.67 0.63 0.69

25 pM-
48 hours

- 0.65 0.60

50 pM-
24 hours

0.70 0.85 0.75

50 pM-
48 hours

- 0.40 0.71

table 6: Modifying factors for d-L-BSO on the cytotoxicity of CDDP towards
ovarian cancer cell lines
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FIGURE 3: Cytotoxicity of ovarian cancer cells to CDDP (4 hours) following pre¬
incubation with d-L-BSO, 25,uM for 24 hours. Values given are the mean ± S.E. for
three separate experiments.
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FIGURE 4: Cytotoxicity of CDDP (24 hours) towards ovarian cancer cells following
incubation with d-L-BSO, 25 |iM for 24 hours (no pre-incubation). Values given are
the mean ± S.E. for three separate experiments.
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2780AD

[CDDP] (|iM)
2780CP

[CDDP] (|iM)

FIGURE 5: Cytotoxicity ol' CDDP (24 hours) towards ovarian cancer cells following
incubation with d-L-BSO, 25 |iM for 48 hours. Values given are the mean ± S.E. for
three separate experiments.
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A2780
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[CDDP] (|iM)

FIGURE 6: Cytotoxicity of CDDP (24 hours) towards ovarian cancer cells following
incubation with d-L-BSO, 50 uM for 24 hours. Values given are the mean ± S.E. for
three separate experiments.
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FIGURE 7: Cytotoxicity of CDDP (24 hours) towards ovarian cancer cells following
incubation with d-L-BSO. 50 LtM for 48 hours. Values given are the mean ± S.E. for
three separate experiments.
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FIGURE 8: Total cellular platinum uptake in ovarian cancer cells treated with CDDP
(2 )iM) following incubation with d-L-BSO, 25 ttM for 24 hours.
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FIGURE 9: Platinum-DNA binding in ovarian cancer cells treated with CDDP (2
uM) following incubation with d-L-BSO, 25 tlM for 24 hours.
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DISCUSSION

These experiments aimed to investigate further the relationship between absolute

eellular GSH levels in ovarian cancer cells, their manipulation with D,L-BSO, and

their relative sensitivities to CDDP in vitro. The two resistant sublines, 2780AD and

2780CP, were believed to represent two differing mechanisms for CDDP resistance.

For 2780CP, resistance to CDDP had been induced in vitro by stepwise increases in

CDDP exposure, whereas for 2780AD, resistance had been induced primarily to

adriamycin: this cell line was shown to display cross-resistance to CDDP (Chapter 2),

which was thought to represent intrinsic CDDP-resistance, since this cell line had

never previously been exposed to CDDP.

Total GSH levels were found to be directly related to CDDP resistance in the three

ovarian cancer cell lines studied (Table 1); profound reductions in GSH levels (> 92

%) were achieved using different regimes for D,L-BSO administration (Tables 3 &

4). The cytotoxicity of D.L-BSO itself was studied; the most CDDP-resistant subline,

2780CP, was found to be resistant to D.L-BSO for any of the regimes used in this

work. Cytotoxicity of this compound to A2780 and (to a lesser extent) 2780AD,

however, after 48 hours incubation, was found to be sufficient to interfere with its use

as a potential modulator for the cytotoxicity of CDDP over this time period (Table 2).

This interesting finding, which may influence the apparent modulating activity of

D.L-BSO has not previously been reported. When the modulating activity of D.L-

BSO towards the cytotoxic action of CDDP was studied, a modest effect was

observed for all cell lines. No advantage for this modulating effect was found by

lowering GSH levels prior to the addition of CDDP (Tables 5 & 6).

Cellular platinum uptake, and DNA-Pt binding, were not significantly affected by

incubation with D.L-BSO, at a dose sufficient to cause significant reduction in total

GSH levels, prior to exposure to CDDP for up to 6 hours (Figures 8 & 9).
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Total GSH levels for these three cell lines were found to be directly related to CDDP

resistance. The most sensitive cell line, A2780, displayed the lowest level (63.19 ±

21.5 ng / 106 cells), the most resistant cell line, 2780CP, the highest level (304.8 ±

78.9 ng / 106 cells) and the cell line with intermediate resistance, 2780AD, an

intermediate level (150.8 ± 10.7 ng / 106 cells) (Figure 2). This significant correlation

(r= 0.93) reflects that found in another recent study using a wide panel of ovarian

cancer cell lines (Mistry et al„ 1991), hut has generally only been noted elsewhere for

resistant sublines selected by continuous exposure to CDDP. In contrast, the two

resistant sublines used in this work, 2780AD and 2780CP, were produced by

continuous exposure to adriamycin (2780AD) and by intermittent exposure to CDDP

(2780CP). This implies a wider role for GSH in intrinsic CDDP resistance, since the

induced resistance in these cell lines was not produced by continuous exposure to

CDDP. GSH with its oxidised form GSSG forms a redox pair; GSSG levels for these

experiments were consistently negligible. The high ratio of GSH to GSSG thus found

reflects the general reductive status of the intracellular milieu (Russo et al., 1986) and

may mean that absolute levels of GSH are not the most relevant measurements for its

detoxification action, and hence its role in promoting drug resistance.

D,L-BSO, the specific inhibitor of GSH synthesis, has been used in animal studies to

reduce tumour GSH levels and thereby promote sensitivity of tumour cells to

cytotoxic agents such as melphalan (Ozols et al., 1987). This has raised the possibility

of its clinical usefulness as a potential modulator for the cytotoxicity of CDDP in

human ovarian cancer.

In this work, D.L-BSO was used, at concentrations of 25 pM and 50 pM, over 24 and

48 hours, to achieve reductions in total GSH levels of between 92 and 100% for all

three cell lines. Prior to assessing a role for D.L-BSO in modulating the cytotoxicity

of CDDP. the intrinsic cytotoxicity of this compound towards ovarian cancer cells

was first investigated. For all three cell lines, after 24 hours exposure to D,L-BSO,



and for 2780CP after 48 hours exposure, no significant toxicity was observed.

However for A2780 and 2780AD, after 48 hours exposure, ID50 values were such

(46.3 ±11.6 (J.M and 102.0 ± 29.0 |iM respectively) that D,L-BSO could cause

additional cytotoxicity when used over this time period in chemosensitivity assays

with CDDP.

All four combinations of D,L-BSO dosage were assessed in a modified MTT

chemosensitivity assay against CDDP, to evaluate any modulating effect caused by a

reduction in total GSH levels on CDDP cytotoxicity. A modest modulation

(modification factors 0.4 - 0.85) was seen for all cell lines, unrelated to their intrinsic

CDDP sensitivity. This finding contrasts with other work (Hamilton et al., 1985;

Ozols et al., 1988) which found an indirect association between modulating effect and

baseline GSH level. Thus, in this work, despite a direct relationship between baseline

cellular GSH levels and CDDP resistance, no association was noted between total

GSH levels, their reduction by D,L-BSO, and CDDP sensitivity. Similar findings

have been reported in human ovarian cancer cell lines (Andrews et al., 1985) and

human squamous cancer cell lines (Teicher et al., 1987).

When intracellular GSH levels were reduced by 95%, prior to CDDP exposure, no

consistent increase in modulating activity was found. It therefore did not seem to

matter, in this experimental model, whether cellular GSH levels had already been

reduced prior to CDDP administration, compared with the addition of CDDP and d-L-

BSO concurrently. The maintenance of GSH depletion after drug treatment may,

however, be more important (Andrews et al., 1988). The possibility that BSO may

actively interfere with the action of CDDP, particularly in resistant cells, is indirectly

supported by the association between increased CDDP-induced nephrotoxicity and

administration of BSO (Mayer et al., 1987).
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The effect of D,L-BSO on platinum uptake, both cellular and nuclear, over 6 hours,

was assessed using ICP-MS as a highly accurate method for platinum analysis. Total

cellular platinum uptake was found to be unaffected by the reduction in total GSH

levels achieved, for all three cell lines (Figure 8). GSH levels, and their manipulation,

do not therefore seem to influence platinum uptake across the cell membrane. For

DNA-Pt binding a similar picture was found at 6 hours (Figure 9); however, at 1 hour,

for 2780AD an increase, and for 2780CP a small decrease was observed. This may

imply a consequent alteration in nuclear platinum uptake, caused by GSH reduction,

for these two resistant sublines, but the effect is not very large and had disappeared by

6 hours exposure to CDDP. No significant effect on platinum transport across the

nuclear membrane was thus found in the reduction of cellular GSH content by D,L-

BSO. Unfortunately, analytical constraints with ICP-MS meant it was only possible to

perform this experiment once, in duplicate. This finding, however, contrasts with a

similar study on human small cell lung cancer cell lines with induced resistance to

CDDP, in which an increase in both total DNA-Pt binding and levels of the major

intrastrand Pt-DNA adduct, Pt-GG, was noted following GSH depletion in the

resistant subline (Meijer et al., 1990).

Despite a clear association between total cellular GSH levels and CDDP resistance,

the findings described here do not appear to support a major role for intracellular

GSH as a mechanism for CDDP resistance in this experimental model. Other models,

particularly animal studies, may, however, produce different results. The analysis of

more dynamic aspects of GSH metabolism, such as the enzymes glutathione

reductase, glutathione peroxidase or the various iso-enzymes of glutathione-S-

transferase, could ultimately be more informative. Recent studies on newly-developed

platinum (IV) drugs, such as iproplatin and tetraplatin, suggest that GSH may be more

relevant in the development of platinum resistance in these compounds than in

platinum (II) agents such as CDDP (Mistry et al., 1991).
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CHAPTER 7

GENERAL DISCUSSION

The work described in this thesis aimed to explore further the nature of platinum

resistance in ovarian cancer. Improved understanding of the cytotoxic action of

CDDP (and analogues), and the mechanisms underlying platinum resistance, may

ultimately help in the circumvention of this major clinical problem. Many different

mechanisms have been suggested to explain the development of platinum resistance,

including differential platinum accumulation, inactivation of CDDP by the

nucleophilic non-protein thiol compound reduced glutathione (GSH), and differences

in the formation and / or repair of Pt-DNA adducts. In this work, Inductively Coupled

Plasma Mass Spectrometry (ICP-MS), a novel and highly sensitive analytical

technique, was used in the measurement of intracellular and DNA-platinum levels in

ovarian cancer cells, an innovative new assay for the direct analysis of Pt-DNA

lesions was developed, and applied to a model for CDDP resistance in ovarian cancer

cells in vitro. The same teclinique for platinum analysis was also used to investigate

the relationship between platinum accumulation, both intracellular and intranuclear,

and CDDP resistance in this experimental model. Finally, the role of intracellular

inactivation of CDDP by GSH was studied using buthionine-S-R-sulfoxamine (D.L-

BSO), a specific inhibitor of GSH synthesis, and a potential clinical modulator for

CDDP resistance in vivo. The results of this work provided further confirmation of

the multifactorial nature of CDDP resistance.

Intrastrand Pt-DNA adducts, the putative cytotoxic lesions after CDDP treatment, are

only formed in biological systems at extremely low levels (10"1 ^ to 10"^ M). Until



now the only techniques sufficiently sensitive for their analysis were indirect ELISA

assays using polyclonal antibodies to stereochemically predicted Pt-DNA adducts.

Such assays have been used to assess the relationship between adduct formation and

repair in a variety of experimental models both in vitro and in vivo. In general,

formation and / or repair capacity of the two major intrastrand adducts, Pt-AG and Pt-

GG, have been found to be related to CDDP resistance in testicular cancer cell lines

(Bedford et al., 1988), ovarian cancer cell lines (Terheggen et al., 1990), and small

cell lung adenocarcinoma cell lines (Hospers et al., 1990). No difference was found in

the induction of these adducts, or the kinetics of their excision in a resistance pair of

human colonic cancer cell lines (Fram et al,. 1990).

The same indirect immunochemical assay has also been used to compare levels of the

major intrastrand adducts formed in peripheral cells of patients receiving CDDP

therapy with clinical responsiveness. A prospective study comparing Pt-GG and Pt-

AG adduct levels with treatment response was performed in 55 ovarian cancer

patients receiving platinum-based chemotherapy (Reed et al., 1987). A significant

correlation was noted, particularly in those patients receiving single-agent platinum

therapy. Polyclonal antisera were also used to study the formation of four intrastrand

Pt-DNA adducts, Pt-GG, Pt-AG, G-Pt-G and Pt-GMP, in digested DNA from

peripheral leucocytes of a small number of cancer patients receiving their first dose of

CDDP (Fichtinger-Schepman et al., 1987a). This confirmed that these same four

adducts are formed in human cells following platinum therapy, and that their relative

proportions were similar to those found in vitro. A clear interindividual variation was

noted for the induction of the major adduct, Pt-GG, thought to be due to differences in

repair capacity for damaged DNA. This hypothesis was investigated further by a

comparison of adduct formation in cultured peripheral blood leucocytes in vitro with

adduct formation in vivo during subsequent CDDP therapy (Fichtinger-Schepman et

al., 1987b). A good correlation (r= 0.91) was found for Pt-GG, providing some



prospect for the development of a predictive assay in vitro for individual clinical

responsiveness to CDDP treatment.

The large discrepancies which have been noted between values obtained for Pt-DNA

adduct levels by the two different quantitative immunochemical techniques used at

present (Fichtinger-Schepman et al., 1989) provided an incentive for developing a

more direct method for adduct analysis, by ICP-MS. This method, with its potential

for use in biological systems, would also allow scrutiny for previously unrecognised

Pt-DNA lesions of potential therapeutic significance. Ultimately, a predictive assay

for CDDP responsiveness in ovarian cancer specimens could be feasible.

No concensus of opinion exists on the significance of differential platinum

accumulation in clinical CDDP resistance. Reduced accumulation has been found in

some CDDP-resistant cell lines (Andrews et al., 1988; Kuppen et al., 1988; Shionoya

et al., 1986; Foka et al., 1988; Kraker and Moore, 1988) but not in others (Sekiya et

al., 1989; Shellard et al., 1991). Increased drug efflux, through the P-glycoprotein

transmembrane pump, has been largely excluded as an important mechanism for

CDDP resistance in ovarian cancer (Goldstein et al., 1989).

Similarly, evidence for a link between intracellular GSH levels and CDDP resistance

in ovarian cancer is conflicting. Whilst, in general, GSH levels are frequently elevated

in CDDP-resistant ceil lines, this may be due to a general stress reaction following

treatment with CDDP. The method of selection for drug resistance also seems

relevant, with continuous exposure to CDDP apparently important. The use of BSO to

deplete intracellular GSH levels in an in vivo model, and thereby improve clinical

response to melphalan (Ozols et al., 1987), introduced the possibility for the

development of this compound as a clinical modulator for CDDP resistance in

humans.
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The work described in this thesis used three related ovarian cancer continuous cell

lines with a wide range of resistance to CDDP in vitro. The two resistant sublines

used displayed theoretically different mechanisms for the development of CDDP

resistance. 2780AD had been initially developed from A2780, a drug-sensitive cell

line, as a model for induced adriamycin resistance. It was subsequently found to be

moderately cross-resistant to CDDP and was thought to represent an example of

intrinsic platinum resistance, since it had never been previously exposed to CDDP.

2780CP had been developed from A2780 primarily as a model for a high degree of

induced CDDP resistance. The further characterisation of these three cell lines is

described in Chapter 2, confirming their typical epithelial cell characteristics.

2780AD was found to be moderately resistant to CDDP, with a resistance ratio of

14.2 after 24 hours treatment compared with A2780. 2780CP was highly resistant to

CDDP, with a resistance ratio of 26.8 after 24 hours CDDP treatment. Resistance

ratios after only 4 hours CDDP treatment were smaller. Immunostaining for P-

glycoprotein, performed on all three cell lines, was only found for 2780AD. This

expression was lost after 6 months culture in drug-free medium, despite maintenance

of CDDP resistance over this time. These findings further support the lack of

involvement of this transmembrane multidrug efflux pump in CDDP resistance.

The availability of ICP-MS, as an extremely sensitive elemental analytical tool,

combined with the lack of commercial availability of the polyclonal antisera to Pt-

DNA adducts used in the indirect immunochemical techniques, led to the

investigation of the potential for this method in the direct detection of Pt-DNA

adducts (Chapter 3). Initially highly platinated commercial DNA was used to verify

the sensitivity of ICP-MS in the detection of the two major intrastrand adducts, Pt-AG

and Pt-GG, at relatively high concentrations. Calibration of the anion-exchange

chromatography column used in their separation was performed with purified samples

of these adducts, kindly donated by Dr Fichtinger-Schepman. Excellent agreement



was obtained between ICP-MS and the more conventional AAS in platinum analysis

of elution fractions, confirming the sensitivity of ICP-MS for adduct detection at |iM

levels.

Extrapolation of this new assay to adduct measurement in biological systems was the

next logical step. The lower level of DNA modification achieved following treatment

of cells with CDDP at therapeutically relevant concentrations required a method for

direct analysis of Pt-DNA adducts to be at least 3 orders of magnitude more sensitive

than standard ICP-MS. In Chapter 4 the incorporation of electrothermal vaporisation

(ETV) as a method for sample introduction is described. Theoretically, the

combination of smaller sample volume and increased ionisation efficiency provided

by this refinement should have provided sufficient sensitivity for the analysis of these

adducts in the experimental model for ovarian cancer described in Chapter 2. In

practice, adduct detection was at the extreme lowest levels of sensitivity for the

apparatus, and results described are thus subject to wide interexperimental variation.

Nevertheless, it was possible to identify Pt-DNA lesions eluting from the separation

column at times corresponding to those for Pt-AG and Pt-GG in all three ovarian

cancer cell lines. Trends in induction of adducts, and the kinetics of their formation

and recovery, were also evident. In addition, a platinum-containing peak, eluting

between Pt-AG and Pt-GG was noted. This peak was most obvious for the sensitive

parental cell line, A2780, and was less evident in the two resistant sublines. It may

constitute an additional, previously unrecognised, Pt-DNA lesion; it was not,

however, possible to isolate and identify this product following ICP-MS-ETV

analysis.

In general, the level of DNA-piatination found for these cell lines was directly related

to CDDP sensitivity, with highest levels found for A2780 and lowest levels for

2780CP. For A2780, following a 24 hour recovery period in drug-free medium, Pt-

AG levels were higher and Pl-GG levels lower than immediately after CDDP



exposure. For 2780AD and 2780CP, the converse was true. These findings could all

be explained by a lack of repair capacity for Pt-AG, but not Pt-GG for A2780, with

the reverse being true for 2780AD and 2780CP. A2780 could thus be regarded as

having increased sensitivity to CDDP as a result of its inability to repair the Pt-AG

adduct. Alternatively, resistance in 2780AD and 2780CP could correlate with ability

to repair Pt-AG, but not Pt-GG. Tolerance, of the Pt-GG adduct in particular, seemed

to confer resistance in the two CDDP-resistant sublines. These findings have recently

been corroborated in another CDDP-resistant human ovarian cancer cell line, using

one of the indirect immunochemical assays for adduct analysis (Shellard et al„ 1991).

These results show some promise for 1CP-MS-ETV as a potentially useful method for

the direct detection and measurement of intrastrand Pt-DNA adducts, despite obvious

initial technical difficulties. Much of the experimental variability can probably be

explained by matrix suppression effects, despite efforts to reduce solute concentration

prior to ICP-MS-ETV analysis. Isotope dilution can be used as a technique to

circumvent this problem: for this, a known amount of a pure, stable isotope of the

element to be analysed is added to part of the sample. A more precise measurement

can thus be obtained by comparing the isotope ratio of treated and untreated samples,

taking into consideration the amount of pure isotope added. For platinum, pure

isotope samples are scarce and very expensive at present; hence it was not possible to

use this modification in this work.

In Chapter 5 ICP-MS was used to investigate the contribution of differential platinum

accumulation in this model for CDDP resistance in ovarian cancer. Both total cellular

platinum uptake and Pt-DNA binding increased in a linear fashion with time, with

accumulation occurring faster in A2780. When compared with A2780, CDDP

accumulation for both resistant sublines was reduced by similar amounts, 49.6 -

50.7% (intracellular) and 16.7 - 20.5%) (DNA-platinum), despite the twofold

difference in CDDP sensitivity between these two sublines. When the rate of



intracellular platinum accumulation was compared with CDDP concentration over a

fixed time period of 4 hours, a wider difference emerged between the two resistant

sublines: 80.1% for 2780CP and 33.5% for 2780AD. Thus it appeared that, for

2780CP in particular, there was an increased tolerance to platinum accumulation.

When cytotoxicity of CDDP, after 4 hours exposure, was compared with intracellular

accumulation over this time period, once again the resistant sublines appeared able to

tolerate higher platinum levels. At 50% cell kill, 2780AD had accumulated 3-fold

more platinum (resistance ratio after 4 hours 16.5), and 2780CP 12.5-fold (resistance

ratio 32.6), indicating perhaps a greater contribution for an increased tolerance to

intracellular platinum for 2780CP. as a resistance mechanism. Energy deprivation

within the cell, using sodium azide, had a mild reducing effect on intracellular

platinum accumulation for 2780AD only, which may indicate the residual

contribution of an energy-requiring transport mechanism for this subline.

The role of GSH in mediating CDDP resistance is at present unclear; it has been

suggested that increased GSH levels are found only in resistant sublines following

their selection by continuous exposure to CDDP. This work allows the comparison of

two different resistant sublines, only one of which (2780CP) was produced in this

way. Chapter 6 gives values for intracellular GSH content for all three ovarian cancer

cell lines. Levels are raised for both resistant sublines: 2.4-fold for 2780AD and 4.8

fold for 2780CP, neatly reflecting the twofold difference in CDDP sensitivity noted

between these two sublines. Thus GSH may still be relevant to CDDP resistance even

when selection has not been by continuous exposure in vitro. However, elevated GSH

levels may merely reflect a general stress response to CDDP treatment, so it was

important to assess the effect of intracellular GSH depletion on CDDP response. D,L-

BSO, the specific inhibitor of GSH synthesis used in these experiments, has recently

entered clinical trials as a potential modulator for CDDP resistance. Using D,L-BSO

it was possible to deplete intracellular GSH levels by over 90% with no significant



cytotoxic effect on the ovarian cancer cells. In this work, depletion of GSH had only

minimal modulating effect on the cytotoxicity of CDDP towards these cells in vitro ;

however, this may still be sufficient to exert some clinical effect on disease response

to CDDP. No effect on intracellular platinum uptake was noted in any of the cell

lines when GSH levels were depleted with D.L-BSO, thus apparently excluding any

role for GSH in platinum transport.

There is some evidence that GSH depletion is associated with inhibition of DNA

repair, either through inhibition of DNA polymerase a or more directly, since it is

essential for the synthesis of DNA precursors (Lai et al., 1989). DNA polymerase a is

an important enzyme in DNA excision repair, and may thus participate in the repair of

platinated cellular DNA following CDDP therapy. This enzyme can be competitively

inhibited by aphidicolin glycinate (APG), an antibiotic compound currently

undergoing early clinical trials as a potential modulator for clinical CDDP resistance.

In theory, therefore, resistant tumour cells which have become proficient in the repair

of platinum-DNA lesions could become more sensitive to CDDP in the presence of

APG. However, a recent study in two repair-proficient ovarian carcinoma cell lines

failed to show any evidence for increased repair of the major identified intrastrand Pt-

DNA adducts. Cytotoxicity of CDDP did not seem altered, either (Dempke W.C.M. et

al., 1991). Further investigation of the activity of this potential modulator in the

experimental model described in this thesis would be interesting.

In summary, this work describes the use of three continuous ovarian cancer cell lines

to provide a model for intrinsic and induced CDDP resistance. The majority of

published work on CDDP resistance has used pairs of CDDP-sensitive and -resistant

cell lines, and is therefore unable to test the consistency of proposed resistance

mechanisms across a panel of related cell lines such as those described herein. A

novel new technique using ICP-MS for the direct analysis of intrastrand Pt-DNA

adducts was devised and extended to the model for CDDP resistance in ovarian



cancer cells described. Despite technical limitations, not insurmountable, a tendency

for higher adduct levels in the sensitive cell line, compared with its resistant sublines

was noted. CDDP resistance, in the two sublines, could be explained either by an

increased capacity for repair of the Pt-AG adduct or by increased tolerance of the Pt-

GG adduct.

The use of ICP-MS for platinum analysis confirmed the association, noted by other

groups, between reduced platinum accumulation and resistance to CDDP, at both

intracellular and intranuclear levels. GSH levels were also found to be directly

associated with phenotypic CDDP resistance, although their depletion with D,L-BSO

had no more than minimal modulating effect on CDDP resistance assayed in vitro.

Platinum analysis in biological samples by ICP-MS represents some improvement

over AAS particularly with respect to its improved sensitivity and wider dynamic

range. Residual technical difficulties, such as its expense and the length of time taken

to analyse and process samples, remain to be overcome if the technique is to gain

wider credibility as a practical method for platinum analysis in biological systems.

Advances in apparatus design, improvements in sample preparation and thereby a

reduction in matrix effect, should help to reduce the interexperimental variability

found in this work.
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