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Abstract 

Whole-field velocity and vorticity measurements have been obtained in the near 

wake of a model wind turbine using the technique of Particle Image Velocimetry 

(Ply). The experiments were conducted in a water channel with the turbine op-

erating over a range of tip speed ratios, A = 1.6 - 8. These are tip speed ratios 

pertinent to full-scale turbine operation which assured that the ratio of velocities 

at a full-scale machine were reproduced at the model. The corresponding range 

of Reynolds numbers, based on blade chord, was 2,600 - 16,000. Results have 

been presented for both a 2-blade flat-plate rotor and a 3-blade model replica of 

a full-scale wind turbine. 

An analysis of the velocity structure of the wakes produced mean and turbulent 

velocity profiles and made comparisons with results from both full-scale measure-

ments and wind tunnel tests. Scale  effect was isolated as a limiting factor in 

extrapolating velocity deficits from the PIV results to full-scale. An analysis of 

the vorticity structure identified behaviour in the wake which influenced the ge-

ometry and stability of the vortex system. The PIV images confirmed that the 

simple models currently being used by the wind turbine industry for design pur-

poses are fundamentally flawed. Comparisons were made with simulations from 

a sophisticated vortex wake code being developed at the University of Stuttgart. 

Significant discrepancies were identified in wake development. 

The study is viewed as a.first step in determining the detailed physical processes 

governing wind turbine wake behaviour in order that advanced rotor performance 

methods may be developed. 
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'..Etch out a future of our own design 

Well-tailored to our needs 

Then fan the flames and keep the dream alive 

Of a continent... 

There is no enemy! 

Switch off the mind and let the'heart decide 

We're a continent..' 

Windp ower 

Thomas Dolby, 1981. 
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Chapter 1 

INTRODUCTION 

Overview 

This thesis concerns an experimental study of the flow past a model wind turbine 

in a water channel using the technique of Particle Image Velocimetry (Ply). The 

motivation for the PIV experiments is examined in this chapter. Some background 

material in the study of wind turbine wakes is presented with reference to full-

scale measurements, wind tunnel tests and numerical prediction codes. Studies 

examining the wake vortex structure and studies relevant to the mean and tur-

bulence characteristics in the wake are reviewed separately. The objectives of the 

PIV experiments are listed. 

1.1 Motivation for the Study 

The growth of wind energy in recent years has been dramatic to say the least. In 

July 1995, it was estimated that the installed wind turbine capacity worldwide 

was 4000 MW [75]. The rate of growth is also impressive. In the European Union, 

471 MW were installed in 1994 compared with 370 MW the previous year. Accord-

ing to the EWEA', 10% of the European Union's electricity could realistically be 

generated by wind power by the year 2030[91]. To meet this demand would require 

'European Wind Energy Association 
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the installation of about 200,000 500kW turbines. As these expectations become 

more attainable, the technical challenges that face the wind energy industry have 

become more urgent. 

Windfarm planning and design has become a growing concern, and incorporates 

a desire for reliability and efficiency of wind turbines. Numerical models are used 

by workers in the wind turbine industry to assess the aerodynamic performance of 

a wind turbine. This involves predicting the thrust on the blades, the torque on 

the rotor and the power output of the machine. However, despite the advanced 

commercial development of wind turbines, some of the most fundamental assump-

tions of current rotor aerodynamic prediction codes appear to be in error[74]. It 

is widely acknowledged that present prediction codes rely heavily on empirical 

methods, which leads to uncertainty in the design of full-scale machines. With 

wind turbines of rotor diameter 45m now entering serial production, the margin 

for error in design becomes less and the need for accurate aerodynamic loading 

and performance prediction becomes paramount. 

The numerical models remain inaccurate, as many of the features of the wake 

of a wind turbine are not fully understood or simply remain unknown. Wind 

turbine performance is critically dependent on the vortex structure of the rotor 

wake[5]. There is an interdependence between the vorticity in the wake of a 

turbine and the rotor inflow conditions (and hence the forces on the blades). A 

detailed knowledge of the vortex wake structure of a wind turbine is therefore a 

prerequisite for accurate modelling. 

In addition, a detailed knowledge of wind turbine wake characteristics is urgently 

needed for the design of windfarms. It is not only the mean flow characteristics 

but also the turbulence structure of the wake which is of interest. In arrays 

of turbines, turbulence causes high fatigue rates on machines with subsequent 

energy production losses. Wind farm models are used by researchers in the wind 

energy industry to predict mean flow properties and turbulence characteristics 

both in arrays and within individual wind turbine wakes. More detail on the 

turbulence levels involved in the wake of a turbine could lead to greater insight 



into the additional loads and higher rates of fatigue damage that a wind turbine 

experiences in a wind farm by operating in wake flow. This may indicate an 

optimum layout for wind turbine arrays. 

The motivation for this study is the need for detailed experimental measurements 

to gain an understanding of the physical processes involved in the flow behind a 

wind turbine so that current numerical models for prediction of aerodynamic per-

formance may be improved. Additionally, obtaining detailed experimental data 

can lead to the development and validation of wind farm models used in calcula-

tions of wind farm wake interaction and power output. 

1.2 Background to the Study 

Though investigations of wind turbine wakes are comparatively recent, a consid-

erable number of reports on wind turbine wake flow have been produced in several 

countries [81, 72]. This thesis is solely concerned with those studies relating to 

horizontal-axis wind turbines (HAWTs). 

1.2.1 Wind Turbine Wakes 

The operating condition of a wind turbine is dictated by the tip speed ratio, A. 

This is the ratio of the tangential speed of the blade tips to the undisturbed wind 

speed, U0 . Thus, 

A 
PR 
U0  

where Q is the rotational speed and R is the blade radius of the machine. The 

wind turbine extracts kinetic energy from the approaching air flow and converts 

some of it to useful work by placing a torque on the rotor shaft. The air flow 

downwind of the rotor suffers a loss in momentum resulting in a region of reduced 

mean velocity known as the wake. 

(1.1) 
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The wake of a wind turbine can be divided into near, intermediate and far wake 

regions. The extent of each region is dependent on the processes that govern 

the wake during the different stages of its development. The earliest theoreti-

cal models of the wind turbine wake are attributed to Lissaman[67], who used 

equations describing turbulent jet flow (see Section 1.2.3). The model was re-

fined by Vermeulen[100], and later by Ainslie[8], and a general description of the 

development of a wind turbine wake, based on their models, is presented here. 

The flow in the near wake is dictated by the extraction of pressure energy, in a 

step-like manner, from the mean flow at the rotor disk. The width of the wake 

increases and the centreline velocity drops as the air moves downstream of the 

rotor plane. The extent of the near wake region is typically of the order of 2 to 

4 rotor diameters (D) downstream. The minimum centreline velocity is reached 

between 1D and 2D downstream and beyond this, fluid mixing dominates the 

pressure gradient effects allowing the velocity to recover. As the flow proceeds 

downstream, turbulence generated by the wind turbine blades gradually decays 

until only ambient and shear-generated turbulence remain. This signals the onset 

of the intermediate wake region where mean wind speed and turbulence profiles 

are smoother, but continue to change. 

The intermediate wake region is characterised by large scale turbulence, generated 

in the annular shear layer of the wake, spreading into the core of the wake and 

reaching the centreline at around 3D-5D downstream. The wake structure evolves 

as the wake turbulence seeks equilibrium with the turbulence produced by the local 

velocity gradients in the free stream flow. 

The far wake region exists beyond approximately 5 diameters downstream. The 

flow is characterised by a state of self-similarity. The shape of the mean velocity 

profiles and turbulence profiles remain unchanged with increasing downstream 

distance as the ambient turbulence governs the decay of the magnitude of the 

wake disturbances. 

Turbulence in the wake and in the freestream plays an important role in the devel 
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opment of a wind turbine wake. The speed and extent to which the perturbed flow 

recovers to free stream conditions is largely determined by the level of turbulence. 

There are a number of possible sources of turbulence in the wake. These include 

the boundary layers that form on the rotor blades, the flow separating from the 

nacelle and tower, the mean velocity gradient of the wake itself and the natural 

atmospheric turbulence in the free stream. Vortices shed by the blades could also 

be included as a source of turbulence, however, in keeping with the theme of this 

thesis, studies examining the blade tip vortex structure and studies relevant to 

the turbulence characteristics in the wake are reviewed separately. 

1.2.2 Vortex Structure in the Wake 

Wind turbine performance is critically dependent on the vortex structure of the 

rotor wake. The wake geometry determines the rotor inflow conditions and hence 

the forces on the blades. For design purposes it is essential to predict the blade 

loads accurately, to estimate rotor power output and structural stress. Thus, an 

accurate prediction of the underlying coherent structure in the wake is a dominant 

factor for reliable wind turbine aerodynamic prediction codes. An excellent sum-

mary of HAWT aerodynamics and its relation to rotor design has been provided 

by Hansen and Butterfield [53]. To date, a number of investigations of wake vortex 

structure have been attempted. The most important of these are now described. 

(a) Full-scale visualisation 

Full-scale studies aiming to capture the general flow field in the wake and around 

the rotor are not common. They are difficult to perform and it is hard to achieve 

detailed measurements of the coherent structure in the wake. They are also lim-

ited by the problems of expense and non-repeatable conditions. Flow visualisa-

tion, using tufts and high-speed flash photography has enabled flow effects on the 

blades of a full-scale turbine to be investigated [11]. Adopting the methods used 

in helicopter rotor studies[30, 65], visualisation using smoke grenades has been 
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undertaken by some researchers[77, 85] to gain at least a qualitative description 

of the flow field. Attaching the smoke grenades to either upstream masts at hub-

height or the trailing edge of blades, the flow patterns were recorded on CCD 

video and photographic film. These indicated that the the coherent structure in 

the wake of a wind turbine consisted of a helical vortex system. The system com-

prised a weak diffused vortex-sheet core region which was shed from the trailing 

edge of the blades and assumed the form of a screw surface due to the rotation of 

the blades. In the near-wake region, this was dominated by an intense helical tip 

vortex system. 

Savino and Nyland[85] undertook a NASA-sponsored flow visualisation study on a 

100kW Mod-0 turbine. At high tip speed ratios, the air flowed around the rotor as 

if it were a solid disk, forming a mass of stagnant air immediately downstream of 

the rotor. As the wind speed increased, an expanding inboard wake was observed 

although this was less prominent at higher wind speeds. This is important, as 

stream expansion was neglected by many of the vortex wake aerodynamic models 

at that time. Finally, the blade tip vortex was claimed to persist not more than 

2D downstream. 

While the experiment served in revealing many general wake properties, it lacked 

detail concerning the formation and dissipation of the tip and hub vortices. Flow 

visualisation studies at the Test Station for Windmills, Risø[77] were more compre-

hensive, focusing on the formation and downstream progression of the tip vortices. 

The tip vortices behaved as if independent, quickly becoming out of step with the 

wake. This pointed towards the presence of a strong shear layer between the 

outer wake and the retarded wake core. The size of the tip vortices increased 

with windspeed and downstream distance. As they advanced downstream, they 

became unstable and irregular in shape. The presence of root vortices were also 

noted though they quickly dissipated within one blade revolution. This discovery 

questioned the assumption used in some vortex wake models that the tip and root 

vortex are of equal but opposite strength. The tip vortices are seen to persist 

longer at moderate wind conditions (A = 6-8) and travel a distance of 2D-3D 

downstream before dispersion. The researchers made the observation that energy 



was preserved within the tip vortex when there was a high difference between the 

freestream flow outboard of the tip vortex system and the retarded windspeed 

inside the system. Another reason for breakdown of the tip vortex system is due 

to the interference of the tip vortices. From visualisations using smoke grenades 

on two different blade tips, a preceeding vortex was seen to roll up over its neigh-

bour. This 'pairing process' has also been reported by Langrebe[64] in helicopter 

studies. 

(b) Wind tunnel tests 

The mixing and spreading of smoke has caused problems at full scale. For greater 

detail of the vortex structure, the techniques of hot-wire or laser doppler anemom-

etry (LDA) are preferred. The use of these techniques at full-scale has not been 

justified in terms of results versus expense and researchers have thus opted for 

wind-tunnel testing. Experiments in this controlled environment reduce flow com-

plexity and time consumption and allow for the repeatability of experiments. 

Some preliminary flow visualisation studies in a wind tunnel were undertaken by 

Alfredsson[10] who looked at the vortex structure shed by the blade tip subject 

to various ambient turbulence levels. The tip vortex was seen to dissipate earlier 

in the presence of higher turbulence. This observation, along with the 'pairing' 

behaviour of mutually interacting vortices were later confirmed at full-scale at 

Risø. 

A more comprehensive study of tip vortices and vortex sheets was performed by 

Green[52] using LDA on a modified aircraft propeller of 150mm diameter. Tra-

verses of the wake with the LDA equipment highlighted the initial development of 

the wake and results were displayed in the form of velocity deficit profiles and tur-

bulence intensity profiles. The experiments revealed that measurements along the 

axis did not adequately represent the state of the whole flow. Instead, the veloc-

ity deficit was predominantly contained in an annulus remote from the centreline. 

Flow visualisation was used to reveal an intense tip vortex structure. Smoke was 



injected into the wind tunnel and a camera used to take pictures of stroboscop- 

ically illuminated flow. Green also witnessed the 'pairing process' reported by 

• Alfredsson and questioned whether it was a natural consequence of vortex sheet 

roll-up. The strength and persistence of tip vortices was consistent with the RisØ 

findings although Green viewed the tip vortices as a 'roller-bearing mechanism' 

between the retarded wake and the faster external stream. He proposed this roller-

bearing action delays the entrainment and mixing with the outer flow that occurs 

in less structured wakes. 

Wind tunnel investigations of the near wake include Vermeer and van 8ussel[981 

who performed axial and radial traverses with a cross-wire probe on a 1.2 metre, 

two-bladed rotor. Measurements of the instantaneous velocity in the near wake 

were separated into effects due to blade passage (a fast but consistent fluctuation) 

and effects due to the trailing vortex sheets (a region with more stochastic char-

acter). A similar study was conducted on a 1.0 metre, two-bladed model using a 

laser doppler facility[22]. The LDV data produced cyclic time histories with the 

downstream passage of the wake sheet identified as a concentration of turbulence 

after the passing of the blade. This effect was seen most clearly at high A as a 

smaller proportion of the blade is experiencing stall and thus the near wake is less 

turbulent. 

(c) Prediction codes 

A basic requirement for estimating turbine performance is a realistic definition of 

the field of flow. By incorporating an accurate representation of the geometry of 

the rotor wake, numerical models can be developed to predict aerodynamic loading 

and performance. Many of the methods concerned with prediction of HAWT 

performance are based on conventional helicopter and propeller theories[63, 43]. 

A review of these methods is given by DeVries[35]. 

The accuracy of performance estimates depend on the validity of the assump- 

tions used in the models. Even assuming ideal flow (inviscid and incompressible), 



the resulting integral equations contain nonlinearities and singularities. Despite 

advances in computational power, computer codes employing inviscid flow the-

ory remain, in general, complex and computationally intensive. Combined blade-

element/momentum (BEM) theories[37] are of a more simplified theoretical nature 

and form the most common basis for HAWT performance prediction codes. BEM 

theories, such as that incorporated in the PROP code of Wilson and Walker[106], 

are easy to use and require little computing time. However, as indicated in 

Section 1.1, there are problems with the theory. In high winds, where the re-

tor is partially or wholly stalled, the method often underpredicts rotor power. 

The discrepancy has been the subject of experimental and theoretical examina-

tion for some time. Viterna[101] developed an empirical correction for stalled flow 

which remains a widely used stall performance model, even though it has little 

foundation in the basic physical mechanisms of stall. The theory is also deficient 

at very low windspeeds, where high blockage exists. Predicted values of thrust 

fail to agree with measured results and empirical methods are usually employed 

in this region. 

Vortex wake models attempt a more realistic representation of the wake, consistent 

with Glauert's[43] notion of helical vortex filaments shed from the trailing edge of 

the blade and convected downstream at the wake velocity. These trailing vortex 

filaments undergo self-induced distortions as well as being influenced by other 

filaments. The wake deforms into a vortex system comprising an intense tip-

vortex outer region and a weak diffused vortex sheet inner region. The vortex 

system in the wake induces velocities at the rotor plane which affect the flow 

around the blade. 

Classification of the various theories are based on the method in which the induced 

velocity is calculated at a blade section. BEM theory replaces the rotor with an 

actuator disk having an infinite number of blades. The method assumes the 

blades can be analysed as a number of blade elements (strips), which operate 

independently of each other. The induced velocity at a blade element is evaluated 

by performing a momentum balance on an annular streamtube containing the 

blade element. The flow is assumed to be planar or without swirl. The effect of 
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the induced velocity on the geometric angle of attack of the blade element, with 

respect to the local flow velocity, is determined. Finally, the aerodynamic forces on 

the element are calculated using two-dimensional lift and drag coefficients for the 

new angle of attack. Vortex theories are more involved and the induced velocity 

is determined from an analysis of the flow field created by the vortex system in 

the wake. Vortex methods can account for a finite number of blades as well as 

finite blade span and finite blade chord. 

The first vortex wake models were rigid wake models. In these, the rotor wake is 

composed of a number of discrete helical vortex filaments of constant pitch and 

diameter. The velocities induced by this system of trailing filaments at each blade 

segment are found by integration of the Biot-Savart law[12]. Because of the as-

sumption of constant diameter, rigid wake models are restricted to relatively low 

values of ..\ where wake deformation effects are negligible. At these low tip speed 

ratios, the modelling of stalled flow poses further problems. Kocurek[62] empha-

sizes the importance of a stall model and states that blade stall is responsible for 

major uncertainty in any performance or loads analysis. 

Free wake methods (FWM), however, do not require the trailing vortices to lie 

within circular cylinders of fixed radii. They model the self-induced wake distor-

tions, allowing the geometry of the wake to develop under the mutual influence 

of the wake elements[44]. A closed solution cannot be obtained directly due to 

the unknown shape of the wake and its influence on the vortex distribution at the 

blades. An iterative process is employed in which blade vorticity and wake shape 

are alternatively solved until a converged solution is reached. This interdepen-

dence of the rotor and wake flows, combined with the problems of non-linearities 

in the flow field calculations, results in high computational costs for free wake 

analyses. 

A third type of vortex wake model is a prescribed wake model which accounts 

for wake expansion or contraction through prescribed geometry functions[46, 4]. 

With the wake geometry defined, a prescribed wake analysis can be undertaken 

to predict performance. The position of the vortices and wake shape are specified 
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a priori and the Biot-Savart law applied. However, the results are sensitive to the 

assumed geometry and vorticity distribution. 

A full vortex wake analysis is rarely used for performance prediction work, its 

computational expense outweighing the improvement in results. To date, HAWT 

designers have not found a vortex wake code that is preferred to BEM techniques. 

No programs are currently available that can calculate the details of an unsteady, 

three-dimensional free wake in a reasonable time. A balance is required between 

model simplification and computation time. 

A variety of techniques have been employed in order to formulate a less computa-

tionally intensive free wake method[5, 6]. These are largely based on the fast free 

wake method (FFWM) modified from helicopter studies by Miller[73]. Attention 

is paid to separate sections of the wake to produce a more flexible and efficient 

method for each. Most promising are the vortex lattice methods[87, 82] which 

discretise the rotor blade and vortex sheet by a large number of surface elements 

(panels) with a singularity distribution on the surface or inside the blade volume. 

Panel methods have lead to some results which are comparable with experimen-

tal values. In the free wake code ROVLM, Bareiss[19] extends the vortex lattice 

method to simulate the effects of vortex shedding and roll-up in the wake. 

After twenty years of research the theory for wind turbine wakes remains incom-

plete. The main reason is that programs are based on potential flow theory and 

neglect the important influence of viscous effects. In addition, the models do not 

take into account the concentration of the trailing vorticity, leading to inaccu-

racies in modelling the induced velocities at the tips of the blades. Finally, the 

rotor state referred to as the 'turbulent wake state'[38] can still not be accurately 

predicted. 
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1.2.3 Mean and Turbulence properties of the Wake 

An accurate knowledge of the mean flow and turbulent structure in the wake of a 

wind turbine is important for two reasons. Firstly, to further the development of 

numerical models in predicting mean wind velocity distributions in a wind turbine 

wake for application to wind farms. This information will assist the planning of 

wind farm layout by providing reliable estimates of energy production losses due 

to machine interactions. Secondly, to gain insight into the additional loads and 

higher rates of fatigue damage that a wind turbine experiences in a wind farm 

by operating in wake flow. Since the late 1970s, much work has been carried 

out in making measurements and developing numerical methods, to predict flow 

properties and turbulence characteristics, both in arrays and within individual 

wind turbine wakes. Various references have been collected in a literature data 

base by Luken[69]. A review is presented here. 

(a) Full-scale measurements 

Full-scale experiments have the advantage that measurements are made at the 

correct scale. Difficulties arise, however, in interpretation of the data because ex-

ternal conditions cannot be controlled and are not always adequately known. The 

problems associated with full-scale measurements have often limited surveys to the 

near wake. Specifically, wake decay measurements are not common due to either 

complicated terrain or the high costs of tall meteorological masts. In addition, 

only a small number of campaigns have included measurements of turbulence. 

A number of reports in the literature concern a similar type of study: comparing 

results from wake measurements from two different wind turbines on the same site. 

Scott[86] conducted an experimental campaign on the WEG MS-1 and Howden 

300 machines on Burgar Hill, Orkney. Taylor[94] made measurements on the twin 

40m diameter Nibe wind turbines in Denmark. Meteorological masts were used to 

record velocity deficits and turbulence contour plots in the wake of the machines. 

Although accurate, measurement with mast-mounted anemometers can lack flex- 
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ibility due to the need for one particular wind direction. This had led to various 

alternatives being employed including TALA 2  kites, tethered balloon soundings 

and acoustic sounding (sodar) techniques. Tala kites were used by Baker et aL[16], 

in investigating the wake of the 91m diameter MOD-2 turbines at Goodnoe Hills. 

The most comprehensive investigation using a number of these techniques was 

that of H6gstr6m[57] at the Nsudden site in Sweden. Measurements were taken 

in the wake of the 2MW, 75m diameter machine. The sodar turbulence profiles 

show turbulence maxima at a distance away from the centre line which is roughly 

equal to the rotor radius up to x 2D and then decreases to zero at about 4D. 

This is consistent with tip vortex degeneration and shear generation at the edges 

of the wake; the major sources of turbulence in the near wake region. Comparison 

with computer codes found that calculation on the Näsudden turbine generally 

tended to overestimate the velocity deficit although current models can now pro-

vide reasonable estimates of wake decay rates. Together with measurements from 

the Tndpibe wind farm in Denmark[66], the results highlighted that all mod-

els have a tendency to overpredict the power level of turbines deep within the 

wind farm. One of the principal conclusions of the study was that turbulence 

is enhanced in arrays, sufficient to cause measurable increases in fatigue damage 

rates. 

A series of full-scale experimental measurements have been undertaken at a num-

ber of European wind farms as part of recent CEC 3  JOULE programmes[93, 97]. 

The results from the research project indicate that the models predict centre-line 

velocity deficits, centre-line turbulence level and cross-wake profiles reasonably 

well. However, from the model validations, it becomes clear that the near wake 

input data influence the model results considerably and that an improvement in 

the calculation results requires a better description of the near wake. 

'Tethered aerodynamically lifting anemometers 

3Commission of the European Communities 
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(b) Scale models and simulators 

Many experimental studies investigating the aerodynamics of wind turbines have 

involved scale models and simulators. Experiments were designed to increase the 

amount of wake data as well as improve understanding of wake generation and 

decay. Simulators were practical for studying large arrays of turbines and later 

were used in studies of wind turbine wakes[27]. Simulators have been used in 

investigations of wake turbulence by Ross and Ainslie[83] who looked in detail at 

the wake structure of vane-type simulators with a laser doppler anemometer. The 

velocity and turbulence data obtained provided the foundations for empirical wake 

modelling. The results show a build up of turbulence between 2D-3D, beyond 

which the turbulence asymptotically decays to the ambient level. 

The lack of realistic power extraction and uncharacteristic turbulence patterns 

produced by the vane-type simulators, led to the use of more refined models. 

Vermeulen[99] gives a summary of experimental results for models of size 0.2-0.3m 

in diameter. Possibly the most extensive investigation of wake turbulence using a 

scale model rotor was that conducted by Green[52]. The study involved the use 

of laser doppler anemometry on a modified aircraft propeller of diameter 0.15m. 

Analysis of velocity and turbulence profiles indicated that turbulence intensity 

does not vary greatly within the intermediate wake region while outside the wake 

the turbulence intensity rapidly decreases to the ambient level. Talmon[92] re-

ported similar findings from wake traverses behind a 0.36m diameter model. 

Laser anemometry was also used by Anderson et al.[13] to capture the wake flow 

behind a 3m machine. However, problems of poor signal to noise ratio and flow 

seeding were experienced. Condensation of seeding on the sides of the wind tunnel 

meant the workers had to resort to introducing the seeding into the measurement 

volume by a hand-held smoke wand. The results that were gathered pointed to 

rotor thrust coefficient as the principal parameter which characterises the rotor 

wake. Together with findings from Alfredsson[10], the results also indicated that 

turbulence decay is a function of ambient turbulence. As the ambient turbulence 

increases, the wake decays more rapidly. Baker et al.{17} proposed the near wake 
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decay is governed by the turbulence created by the turbine while the decay in the 

far wake is governed by the ambient turbulence level. 

(c) Numerical modelling 

A number of numerical models of varying degrees of complexity have been de-

veloped to predict both mean velocities and turbulence intensities within wind 

turbine wakes. The earliest and simplest are semi-empirical, kinematic models 

based on previous parametric descriptions of co-flowing turbulent jets. The wind 

turbine wake is considered as a jet of lower momentum than the surrounding flow, 

being decayed by outer flow entrainment. The models are developed as far wake 

models and owe their simplicity to the similarity of velocity profiles in the far-

wake region. The two-dimensional Lissaman model[67], provides the basis for all 

jet-analogy models. While the models are useful for estimating the effect of wake 

decay, they do not provide insight into the physical processes involved. 

A more sophisticated approach to the problem is to use the Navier-Stokes equa-

tions to describe the flow. Although the equations cannot be solved directly, a 

combination of simplifying assumptions and existing computational fluid dynam-

ics experience are used to derive approximate numerical solutions. Of the models 

that have been developed in this manner, the two that have found the most ap-

plication are the eddy-viscosity and the k-e turbulence closure techniques. 

Eddy-viscosity based models are able to predict the centreline velocity deficit and 

the cross-wind profiles in the wake reasonably well. In an eddy-viscosity closure 

scheme, the shear stresses in the wake region are related to the local velocity 

gradients via an eddy-viscosity. Further, the local eddy-viscosity is linked to 

other flow properties such as the wake width and velocity deficit. The first model 

of this type was formulated by Ainslie[7]. Good results were presented by Smith 

and Taylor[89]. Their turbulence modelling compared well with experimental 

data and a suitable choice of eddy-viscosity was obtained using detailed shear 

stress measurements. The k-& model for turbulence closure was formulated by 
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Crespo et al. [34] and refered to as the UPM WAKE code. The code includes more 

of the terms involved in the evolution of the wake than that used by Ainslie and 

produces a more detailed description of the wake. In theory it should provide 

more accurate results for mean velocity profiles and wake turbulence than the 

eddy-viscosity models. This is yet to be verified as few comparisons have been 

made with measured results. 

The eddy-viscosity and k-e models are capable, at least in principle, of providing 

detailed information on mean and turbulent flow components in a turbine wake 

for a wide range of atmospheric conditions. However in practice, such approaches 

are subject to a number of limitations. The codes rely on near-wake input data 

which influence the results considerably. In addition, the influence of the rotor 

is neglected and the codes do not take into account the distorted pressure field 

around the rotor. Madsen et al.[70] has made some progess in this area by de-

veloping an integrated rotor and turbulent wake model. Lastly, such models are 

likely to be computationally expensive and are not suitable for direct application 

in array performance codes. At present, they are best suited to calibrating simple 

parametric models or to investigating a specific flow case in detail. One promising 

development is the multi-parametric wake modelling of Voutsinas et al.[103]. It 

takes into account rotor geometry using vortex methods in the near wake while 

preserving the simplicity of kinematic models by using similarity assumptions in 

the far wake. 

The eddy-viscosity model and k-& turbulence scheme continue to be improved 

and extended under CEC JOULE initiatives [33]. As indicated by Zervos[108], a 

number of important phenomena still need to be understood including the tur-

bulence characteristics within wakes and wind farms and the near wake structure 

and development. 
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1.2.4 Particle Image Velocimetry 

The problems of poor signal to noise ratio and condensation of seeding in the wind 

tunnel experienced by LDA workers[13, 83] together with the desire to obtain 

simultaneous multi-point measurements with minimum disturbance to the flow 

caused by instrumentation, suggested the recently developed method of Particle 

Image Velocimetry (PIV) for studying flows behind wind turbine rotors. 

PIV is a non-intrusive velocity measurement technique which allows complete two-

dimensional flow fields to be captured at a single instant[49]. The basis of PIV 

is to stroboscopically illuminate a two-dimensional plane of flow containing small 

neutrally buoyant seeding particles by means of a sheet of pulsed light. A double 

(or multiple) exposure photograph of this plane is taken. The spacing between the 

images of each particle on the film gives the local velocity. This photograph is then 

analysed over a grid of points to determine the local flow velocities across the whole 

field. Further, the velocity information can also be processed to produce vorticity 

maps of the flow. The technique of PIV is addressed in detail in Chapter 2. 

The technique of PIV was introduced to the field of wind turbine aerodynamics by 

Smith et al.[90] who conducted tests on a 0.9m Rutland Marlec wind turbine using 

pulsed lasers. The tests established the applicability and usefulness of the PIV 

technique as a velocimetry tool for wind turbines. However, the high slipstream 

velocities involved in wind tunnel testing meant that seeding particles separating 

at the trailing edge of the blades were dispersed out of the light sheet, causing 

problems of illuminating the wake structure. This limited the study but detailed 

profiles of bound circulation and the tip vortex were obtained by concentrating 

on the immediate vicinity of the blade. A second study included an attempt to 

apply the technique to a full-scale wind turbine in the field[59]. Outdoor seeding 

presented a further challenge due to the need to monitor changes in wind direc-

tion. To ensure reasonable energy density for the laser sheet, a small region of 

flow was captured around the leading edge of a blade section. The researchers 

propose to aquire more detailed data by using a twin-laser configuration in future 

experiments. 
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The Fluid Dynamics Unit of the University of Edinburgh has been using the 

technique of PIV in the study of fluid flows since 1987. The majority of studies 

have concerned the application of PIV to the measurement of velocity distributions 

under water waves in a purpose-built water channel[50]. 

1.3 Objectives of this Study 

The objectives of this study can be stated as follows: 

to use the PIV technique to record the flow behind a model wind turbine 

rotor placed in a water channel 

to compare the PIV data with wake data from other experiments, including 

full-scale and wind tunnel tests, as well as comparing wake geometries with 

predictions from numerical codes 

to gain an improved understanding of wake behaviour in order to evaluate 

some of the assumptions used in theoretical techniques 

to assess the extent to which the results on the model turbine could be 

extrapolated to full-scale. 

1.4 Summary 

This thesis presents the results of an experimental study of the flow past a model 

wind turbine in a water channel using Particle Image Velocimetry (PIV). The the-

sis is solely concerned with the study of horizontal-axis wind turbines (HAWTs). 

The objective of the work was to use the PIV technique to obtain, for the first time, 

whole-field data in the near wake of a turbine and to establish an experimental 

database for wake velocities and structure. 
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The need to study the wake of a wind turbine arises for two reasons. Firstly, 

the wake structure determines the rotor inflow conditions and hence the forces 

on the blades. An accurate prediction of the wake structure is a dominant factor 

for reliable wind turbine aerodynamic prediction codes. Secondly, the turbulent 

downstream flow in wind turbine arrays is a limiting factor in terms of machine 

spacing. Better information on wake structure will provide insight into optimum 

array spacing. 

Efforts to improve numerical models have intensified during recent years. With 

regard to wind turbine performance prediction, free wake vortex methods can be 

used to obtain a wake geometry which models the self-induced wake distortions. 

The computational costs, however, limit their use in rotor design calculations. 

On the other hand, simpler 2D theories such as blade-element/momentum theory 

(BEM) are only effective in a set range of operating conditions. Present perfor-

mance methods need improvement, particularly in modelling the concentration 

of the trailing vorticity, the 'turbulent wake state' and the influence of viscous 

effects. Improvement in performance methods will allow industry to optimise 

rotor geometry and to more accurately assess the forces on the blade under all 

conditions. 

Concerning the prediction of wind turbine wake characteristics in a windfarm, 

eddy-viscosity and turbulence closure schemes have been developed which provide 

detailed information on mean and turbulent flow components in a turbine wake for 

a wide range of atmospheric conditions. To date, the accuracy of the predictions 

has underlined the dependency of the numerical results on available data. The 

codes have particular trouble in modelling the near-wake region. This region 

cannot be treated by simple means. It is the most complex part of the flow with 

problems of wake deformation, blade-wake interactions, boundary layer effects 

and freestream turbulence. The models used remain inaccurate as many of the 

features of the flow are not yet fully understood or simply remain unknown. 

The lack of detailed experimental data in the wake of a turbine, and the difficulty 

of obtaining it, is widely appreciated. Full-scale visualisation experiments are 
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difficult to perform and are limited by the problems of expense and non-repeatable 

conditions. Wind tunnel tests using laser velocimetry techniques have experienced 

problems with particle seeding and signal quality. 

The work reported in this thesis represented an attempt to overcome these prob-

lems, by using the technique of PIV on small-scale models. The potential for 

the method is significant. In particular, it could provide information about those 

regions of flow where theoretical techniques give least satisfactory results. 
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Chapter 2 

EXPERIMENTAL PROCEDURE 

Overview 

In this chapter, the technique of Particle Image Velocimetry is documented, from 

its development as a flow visualisation and measurement tool to its implementa-

tion in the laboratories at Edinburgh University. The facilities used in the PIV 

experiments, both in the acquisition and analysis of PIV results, are detailed. 

Adapting the PIV method to the study of wind turbine wakes is described. 

2.1 The Technique of PIV 

2.1.1 An Introduction to PIV 

With the introduction of the laser to the fields of science and engineering in the 

1960s, a whole number of optical measurement techniques became available to re-

searchers in the area of fluid dynamics. Laser Doppler Anemometry (LDA) became 

a prominent technique, providing precise multi-component velocity measurements 

at a single point in a fluid flow. However, rapid development in theoretical mod-

elling of fluid flow due to the advances in computing capabilities promoted the 

need for multi-point measurements. Previously, essentially qualitative flow visual- 
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ization techniques (e.g. streak photography) had been the only option in providing 

flow information over an extended area. The enhancement of flow visualization 

techniques with new laser and computer technology has addressed the need for 

quantitative, instantaneous whole-field velocity measurements. 

The most promising of the new techniques in terms of accuracy, resolution and 

reliability is that of Particle Image Velocimetry (Ply). The flow region of interest 

is illuminated by an intense, high powered, pulsed or continuous wave (CW) laser. 

The flow is seeded with particles which accurately follow the flow. Light scattered 

from the particles forms mutiple-images on photographic film due to stroboscopic 

illumination of the particles by the laser. The recorded images are subjected to 

a computer/optics based analysis that produces accurate simultaneous velocity 

data for the illuminated flow area. 

Without question, the single most important contribution of PIV is its ability to 

make simultaneous measurements of the velocity vector at multiple points. This 

velocity vector map forms the basis of all subsequent analysis. The accuracy and 

spatial resolution of the map make it possible to compute vorticity and other com-

ponents of the rate-of-strain tensor by direct differentiation of the velocity data. 

If the image data may be processed so that many frames of images are converted 

to vector maps, it is possible to carry out accurate statistical calculations. 

PIV is now firmly established as a valuable tool for the measurement of unsteady 

fluid flow fields. Advances in both theory and technique have progressed PIV to a 

level whereby detailed information, previously inaccessible by other experimental 

methods, can be reliably obtained in complex fluid dynamics experiments. Below 

is an account of the evolution of PIV since its inception more than fifteen years 

ago. Good reviews are given by Adrian[2] and Gray[49]. 
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2.1.2 The Development of PIV 

(a) The origins of PlY 

The PIV technique arose from investigations of applications of Scattered Light 

Speckle Photography (SLSP) to fluid dynamics in the late seventies. A surface was 

generated within the fluid by using an intense sheet of laser light to illuminate a 

heavily seeded flow. The random interference of scattered light produced a speckle 

field which was photographically recorded two or more times in order to generate 

a 'specklegram'[36, 20]. 

Quantitative analysis of a specklegram is possible either by point analysis with a 

narrow probe laser beam[28] or by a full-field spatial filtering technique[29]. The 

point analysis technique involves optical processing of small areas of the film. The 

speckle pattern displacement is assumed to be constant in each region. Passing 

a narrow laser beam through the film produces Young's fringes in the back focal 

plane of a lens. The periodicity and orientation of these fringes can then be related 

back to the recorded speckle displacement. Hence the motion of the object can 

be determined in each region. The full-field technique requires spatial filtering in 

the Fourier plane of the specklegram to reveal contours of equal displacement in 

the second image plane. 

For a classical specklegram, small out-of-plane motion of the scattering parti-

cles between illuminating pulses results in decorrelation of the individual speckle 

patterns and loss of measurement at that point. This problem was solved by 

reducing the seeding density to produce a pattern of resolved particle images. 

These particles would then have to move completely out of the light sheet for 

total decorrelation to occur. In addition, this reduced the risk of altering the 

flow characteristics which was a cause for concern with the large seeding den-

sity required for the speckle patterns. Most fluid dynamic applications adopted 

this particle image mode of operation[78, 1], and the technique became known as 

Particle Image Velocimetry or PIV. 
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(b) Advances in PlY technology 

Many different aspects of PIV are reported in the literature aimed at improving 

the accuracy, resolution and applicability of the technique[3, 611. The continual 

advance of computing and optical technologies has played a large part in the rapid 

development of PIV. This is illustrated in the following. 

(i) Laser systems 

The choice of laser system for PIV is influenced by the need to satisfy certain 

criteria. Sufficient light energy is required to record the particle images onto the 

photographic film. Factors affecting this are the size of flow field and the size and 

type of seeding material. In addition, a short and flexible time interval is desired. 

This ensures there is no acceleration of the flow in the pulse interval as well as 

matching the separation of images to the requirements of the analysis system. 

The method of illumination in PIV defines two types of laser systems. Pulsed 

lasers, such as the Nd:Yag laser, are used in high speed applications such as flow in 

large wind tunnels. The laser beam is introduced to the fluid as a sheet of constant, 

usually sub-millimetre, thickness. The sheet forming optics expand the beam fan-

like into the flow. Pulsing the beam illuminates each particle stroboscopically. 

Small glass spheres or dry inert powders are typical of types of seeding used for 

applications in air. In general, obtaining consistent seeding for experiments in air 

is a difficult process. 

Continuous wave lasers such as the Argon-ion or Helium-Neon lasers are used in 

studying water flows or small areas of low speed airflows. The light sheet is created 

by either of two methods. In the expanding beam method, the beam is collimated 

with a plano-concave lens and expanded into the flow with a cylindrical lens. 

Alternatively, a scanning-beam system[51] may be employed. A scanning-beam 

is produced by light reflecting onto a parabolic mirror from a rotating mirror to 

form a psuedo light sheet. CW systems are more flexible than pulsed lasers with 
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an adjustable illumination interval as well as a multi-exposure option. 

(ii) Analysis systems 

Automatic analysis systems have resulted in major improvements in PIV process-

ing. Manual analyses of fringe patterns (from specklegrams or PIV negatives) 

are limited in terms of accuracy, resolution and speed. An automatic process-

ing of Young's fringes gives a rapid and accurate evaluation of velocity informa-

tion. Velocity measurements of high accuracy and resolution permit calculation 

of derivative quantities such as vorticity, streamfunction and rate of strain. Au-

tomatic analysis systems have been developed that are capable of point by point 

evaluation of a double exposure flow field record over thousands of points. These 

systems process the photographic flow record by a variety of different numerical 

processing techniques. Flow data may be obtained direct from the image plane 

using particle image data as well as using the Young's fringes approach in the 

Fourier plane of the film. 

Yao & Adrian[107] measured particle displacements directly from particle image 

pairs by integrating the digitized image intensity distribution over a small local 

area of the PIV negative. The resulting records are numerically processed by 

correlation and Fourier transform methods to resolve the mean particle displace-

ment components. The technique requires a reasonable amount of information 

per interrogation region and experiences difficulties for PIV negatives where there 

are low contrast images or decorrelation between images. In this case, a full 2-d 

autocorrelation of the local image plane intensity data is required. This is equiv-

alent to a 2-d Fourier analysis of the fringe intensities [58]. The Young's fringe 

intensity pattern, detected in the back focal plane of a lens, is the power spec-

trum of the photographic density distribution of a region of film illuminated by a 

probe laser. The power spectrum and the autocorrelation function form Fourier 

transform pairs by the Weiner-Khintchine theorem [55]. 

With the large amount of information to be processed, computational time be- 
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comes the crucial feature of the PIV technique. Very high speed processing of PIV 

films can be achieved using purely optical techniques. Methods using non-linear 

optical media such as Bismuth Silicon Oxide (BSO) as a photorefractive mate-

rial to realise the 2-d squared autocorrelation have been reported[31]. Optical 

correlation using spatial light modulators as frequency plane filters has proved a 

promising alternative to numerical methods. Research has been based on the use 

of both electrically-addressed[102] and optically-addressed[60] spatial light mod-

ulators. Optical techniques give a method of rapidly analyzing PIV flow records 

with the accuracy and reliability of the numerical autocorrelation approach to film 

analysis. 

(iii) Image shifting 

From the autocorrelation of a PIV image, the magnitude and direction of the flow 

can be determined. However the autocorrelation function contains no information 

on the sense of the flow (i.e. positive or negative direction). Particle tracking[25] 

and fluorescent tracer techniques have the advantage of labelling the sign of the 

flow via coded illumination and tracer tails respectively. In PIV analysis, if the 

resulting vector map can resolve the velocity field sufficiently it is usually possi-

ble to reconstruct the correct directions. However for complex flows this is very 

difficult, if not impossible. 

A solution to the problem was suggested by Ewan[39], whereby a translational 

velocity is imposed on the recorded image. Thus the largest negative velocity 

appears as the smallest positive velocity (or vice versa). As well as eliminating 

directional ambiguity, application of image shifting increases the dynamic range 

of the system. Particle images that could not be previously resolved because low 

flow velocities caused them to overlap, can be shifted into a range of displacements 

that suit the requirements of the analysis system. Image shifting is analagous to 

frequency shifting in Laser Doppler Anemometry where a phase shifter is used to 

superimpose a known positive velocity on all the measured velocities. 



An alternative method to resolving problems of directional ambiguity is suggested 

by Coupland et al.[32]. The technique involves image plane holography to dis-

tinguish the first and second images in the flow. Illumination of the flow record 

with two independent reference beams reconstructs the first and second images 

separately. The two sets of particle image positions are then cross-correlated to 

determine an unambiguous particle displacement. 

(c) Current research on Ply 

Recent advances[105, 1041 in measuring sub-pixel displacements indicate that 

video resolution will improve to compete with photographic film. Direct video 

imaging will eventually replace photographic methods in the conventional PIV 

arrangement. The delay associated with chemical development of photographic 

media provides a bottleneck in the total turnaround time for PIV experiments. In 

addition, the mechanical film advance and shuttering limit the frame rate. Using 

a CCD camera reduces the time taken between recording the flow and obtaining 

results and employs a much higher frame rate. The capturing of 'on-line' PIV is 

referred to as Digital PIV or DPIV. 

PIV research is also making advances in the area of three-dimensional PIV. The 

three-dimensionality that occurs in most flows is the main source of signal loss 

and uncertainty. Out-of plane motion carries particles in and out of the light sheet 

producing signal decorrelation and introducing errors into recorded displacements. 

Efforts have be made to extend 2-d planar light sheet PIV to measuring 3-d vectors 

on planes or in volumes by stereoscopic imaging[42] or holographic techiques[84]. 

Stereo PIV combines two 2-d vector data sets taken from two spatially separated 

positions using much the same arrangement as for conventional PIV. The third 

component is resolved by continuity of flow and simple trigonometry [15]. Holo-

graphic PIV (HPIV) uses a holographic medium to store the 3-d data. To obtain 

the three components, both the amplitude and phase of the scattered light need 

to be measured. Mixing the scattered light with a reference beam produces the 

3-d image on the holographic plate. The particle field can then be reconstructed 
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from the hologram, detected by a CCD camera and analyzed to extract the 3-d 

displacements. 	 - 

In order to perform the analysis of the large number of PIV frames required 

in cinematic PIV and holographic PIV, very fast interrogation rates of recorded 

images are required. It is possible to substantially increase the speed of interroga-

tion by optical means (as mentioned previously) or by fast digital means. Using 

a parallel processor, interrogation rates by digital cross-correlation methods have 

approached 100 vectors per second. This is extremely encouraging for experiments 

involving a statistical analysis of turbulence. With these rates, it is not unrealistic 

to accumulate up to 1000 frames of 35mm film for the purpose of averaging the 

vector fields over each frame. 



2.2 The Experimental Facilities at Edinburgh Uni-

versity 

PIV studies at Edinburgh have been traditionally carried out in water channels, 

as there has been much study of breaking waves. The success of the PIV wave 

experiments at Edinburgh has been in contrast to the difficulties experienced by - 

wind tunnel researchers, as discussed in the previous chapter. Therefore, despite 

the anomalies due to Reynolds number (discussed in Chapter 6), the present wind 

turbine experiments were undertaken in a water channel where advantage could 

be taken of the excellent PIV facilities. 

2.2.1 Laboratory Equipment 

(a) Water channel 

Figure 2.2.1(i) depicts the water channel used for the experiments of this thesis. 

It consists of three bays of large panes of 12mm thick glass in a steel supporting 

frame. It is 9.770m long and 0.400m wide. The channel was designed by David 

Skyner, and features a high degree of dimensional accuracy. One inch diameter 

circular steel rails are mounted on top of the frame, to allow positioning and 

clamping of apparatus. The channel is equipped with both a wavemaker and a 

recirculating current pump. The frame was designed for maximum rigidity to 

minimize problems with vibration from current generation or impacting waves. 

Filling the tank to a depth of 0.75m results in approximately 3 tonnes of water to 

be supported. The glass panes and structural elements of the frame were chosen 

from stiffness criteria and deflection considerations. 

Of the three bays, two are used for measurements. Parallel rails run beneath this 

area to support and permit traversal of the PIV illumination system. Class panes 

form the base of the channel as well as the side walls. This allows optical access 

29 



IPWIM 

- 

WWOW  

?1  

Op 

Figure 2.2.1(i) Photographs of the water channel at 

Edinburgh University. 
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of the pulsed light sheet produced from the illumination system. Finally, a line of 

reference crosses are placed, across the side wall of the middle bay of the tank to 

act as registration points on the PIV negative. 

(b) Centrifugal pump 

Behind the water channel is a centrifugal pump which supplies a recirculating 

current through the channel. A network of pipes connect the pump to the water 

flume and a series of four valves control the direction of the current and the overall 

flow rate. This is shown in the schematic diagram of Figure 2.2.1(u). The pump 

can deliver up to 85 litres per second. Taking into account the impedance of the 

valves, this corresponds to a maximum flow rate of 0.25 m/s. By varying the 

arrangement of inlet/outlet valves, the direction of the current can be chosen. 

valve 3 .__ 	valve  

Channel inlet 

((k7 
valve 	 valve 1 

Centrifugal pump 

Channel inlet 

Drainage valve 

Figure 2.2.1(u) Schematic diagram of pump and valve system supplying 

recirculating current to the water channel 

In the present experiments, the current flowed through the tank towards the wave-

maker (left to right in the photographs of Figure 2.2.1(i)). The current inlet leads 

to a settling chamber where meshes of skeletal foam (10 pores/inch) are used to 

reduce the turbulence and force the flow to become horizontal in the direction 

of the wavemaker. Turbulence manipulators were placed in the bay nearest the 

settling chamber to shape the upstream profile. 
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(c) Turbulence manipulators 

A number of turbulence manipulators were constructed and tested as a parallel 

system of baffles upstream of the rotor. An aluminium honeycomb section was 

used in conjunction with perforated plates and fine mesh screens. This is shown 

in Figure 2.2.1(iii). 

The aluminium honeycomb section was a 0.39m x 0.8m x 0.075m rectangular 

prism composed of cells of diameter 5.5mm. Cut to the width of the channel, it 

was wound in strips of foam to protect the glass. It was placed furthest upstream 

of the rotor to act as a flow straightener, removing any components of swirl from 

the flow. 

An aluminium perforated plate was supported in an aluminium frame of dimen-

sions 0.4m x 0.82m x 0.05m. The plate was placed downstream of the honeycomb 

and held in position by an inflated inner tube, wrapped around the frame, pressing 

against the side walls of the channel. The perforated plate served to impose a par-

ticular profile on the upstream flow[68}. The shape of the profile was determined 

by the pitch and size of the perforations. For the PIV measurements reported 

in this thesis, a perforated plate of 32mm diameter holes with a regular pitch of 

38mm was used. 

Space is left in the tank, upstream of the rotor, to allow the turbulence introduced 

by the prescence of the plate and honeycomb to decay. Dissipation lengths were 

estimated based on the mesh-lengths of the turbulence manipulators, according 

to the laws of decay of turbulence behind grids[45]. Just before the rotor, fi-

nal smoothing is provided by fine.wire mesh screens (18 lines/inch). Aluminium 

frames are used to support the screens. At the section between the two bays, 

strips of metal are inserted into slots to act as keys upon which the frame can be 

slid in place. 

The thickness, 1, mesh length, M and solidity, o (ratio of solid area to the to- 

tal cross-sectional area) of the different turbulence manipulators are shown in 
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Table 2.2.1. The values of Reynolds number based on mesh size, ReM=(U0 M/zJ), 

pressure coefficient, K, and head loss, zh, correspond to U0  = 0.25m/s. 

Manipulator 1(mm) M(mm) a Rem K /h(mm) 

Honeycomb 75 5.5 0.63 1375 0.63 2.02 

P. Plate 1.5 38 0.44 9500 0.43 1.40 

Screens 0.5 1.18 0.31 294 0.62 2.00 

Table 2.2.1 Properties of the turbulence manipulators 

(d) Turbine rigs 

The model turbine rig is depicted in the photograph of Figure 2.2.1(iv). The 

rig consists of a 14W d.c. electric motor/generator mounted on a platform. The 

platform is suspended above the water level by a frame supported on the steel rails 

on the top of the water channel. The nacelle of the turbine rig lies 0.39m below the 

surface of the water. Rotors can be attached to the turbine by means of a shaft 

which is connected to the electric motor by a toothed drive belt. The toothed 

belt is internal to an aluminium tube which acts effectively as an inverted 'tower'. 

The model rig was designed by Cohn Anderson. The rig assembly drawings are 

displayed in Figure 2.2.1(v). The rig is placed across the tank, subjecting the rotor 

to a uniform current. Care is taken to make certain that the tower is perpendicular 

to the oncoming flow to ensure symmetric inflow conditions. 

The speed and position of the rotor are measured by a tachogenerator and position 

encoder respectively, both connected to the electric motor. On the low-speed 

side of the motor gearbox, a HEDS 5540 3-channel encoder is attached to the 

motor shaft. It outputs an index pulse when the blade of the rotor reaches a 

predetermined azimuthal angle. On the high-speed side of the gearbox, output 

from the speed transducer is supplied to a simple analogue speed controller which 

adjusts the drive motor to allow precise values of blade passing frequency to be 

maintained. 
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Figure 2.2.1(iii) Turbulence manipulators in the water channel. 
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2.2.2 Facilities for Recording PIV Images 

(a) PlY illumination system 

The PIV apparatus used for these experiments is basically that implemented by 

Gray[48] for water wave studies at Edinburgh. The illumination system consists 

of a high-powered laser, an arrangement of optical components to transmit the 

laser light toward the water channel and an optical system to produce a pulsed 

laser sheet. 

A 15W continous wave (CW) Argon-ion laser is used to illuminate the flow. It 

is mounted on a trestle which is bolted to the concrete floor. For safety reasons, 

the laser is housed in a separate room adjoining the wave tank laboratory. Laser 

accessories, recirculating water, water conditioner and nitrogen gas supply, are 

stored with the laser. 

The pulsed light sheet is produced by the scanning-beam system of illumination [5 1]. 

The scanning-beam system consists of a number of optical components housed 

within a 1.2m x 0.63m box (see Figure 2.2.2(i)). Steering mirrors are used to 

direct the laser beam into the box. As it enters, the beam is deflected upwards 

and passes through two matched lenses which narrow the beam. The beam is 

then collimated and reflected from an octagonal rotating mirror onto a parabolic 

recollimating dish. This is positioned beneath the centre of the channel and di-

rects the beam vertically upwards through the glass base of the wave tank. As 

the octagonal mirror rotates, the beam scans over the parabolic mirror and the 

laser sweeps over the area of interest. This illuminates a vertical cross-section of 

the flow field. 

Movement of the scanning-beam box along rails underneath the tank allows flex-

ibility of the position of the light sheet within the water channel. An inverted 

channel made of black metal is placed along the top of the water channel, above 

the light sheet, to act as a beam stop and prevent any stray reflections. The scan 

rate of the system is controlled electronically and is continuously variable in the 
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range 0.5-8ms. The illuminated cross-section of the flow, extending from the bed 

of the channel to the surface of the water, is im wide and roughly 2mm thick. 

Laser sheet 

Spinning Mirror 

Laser or 	 beam 

Figure 2.2.2(i) Schematic diagram of the scanning-beam illumination system 

A light sheet produced in this way is susceptible to some variation in intensity. 

Slight perturbations in the parabolic dish lead to problems of eveness of light across 

the sheet. However, the sheet produced from the parabolic mirror used for the 

experiments can be regarded as flat to within 3mm. Chopping the CW beam is an 

inefficient use of laser light. Losses in light intensity due to the rotating octagonal 

mirror, the parabolic mirror and the base of the wave channel are significant with 

transmission coefficients of 80%, 73% and 80% respectively. Errors incurred during 

the PIV experiments are described in detail in Chapter 6. 

(b) Camera 

For PIV experiments, a high quality camera with a flat focus lens is essential in 

order to minimize image plane distortions. Hasseiblad cameras were used for the 

majority of the experiments. The choice of focal length of lens can reduce the 
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effect of out-of-plane motions and improve the imaged region of the flow. The 

lens used for these experiments had a focal length of 80mm. 

The timing aspects of the camera rely on mechanical devices and need to be 

calibrated. The delay time between triggering the camera and its shutter opening 

can be checked by passing a low-powered laser beam through the lens of the camera 

and detecting the signal using a photodiode. The trigger delay was found to be 

30ms if the lens was already cocked and 78ms otherwise. Recording actual shutter 

times is important to predict the number of particle exposures accurately. For the 

80mm lens, the difference between recorded shutter times and nominal times was 

significant in some cases but resulted in only a small change in the number of 

images recorded[881. 

Film 

Using high resolution film is vital in the PIV process. High contrast, black and 

white, negative film is desirable. Kodak TMAX 400 ASA-120 was used for most 

of the experiments. 

Seeding 

The criteria required for seeding in PIV is that it is neutrally bouyant and small 

enough to follow the flow with sufficient accuracy but large enough to scatter 

light effectively. For these experiments, conifer pollen was used as seeding. The 

pollen has an average diameter of 70tm and concentrations were maintained at 

a level to ensure a high density of non-overlapping particles on the resulting film 

record. The accuracy with which the conifer pollen follows the flow is examined 

in Chapter 6. 
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(e) Image-shifting system 

The advantages of image-shifting while recording in PIV have been outlined in 

Section 2.1.2. For these experiments, image-shifting was needed as much to 

resolve small velocities in the flow as to eliminate directional ambiguity. The 

image-shifting was performed by a rotating mirror system[80]. The system was 

designed by Jean-Baptiste Richon (Optical Flow Systems) and Tim Campbell 

(Neat Systems). A schematic diagram of the rotating mirror system is shown 

in Figure 2.2.2(u). The image-shifting system is described below in terms of its 

hardware, software and the sequence of events in the shifting procedure. 

(1) Hardware 

The system is composed of three main items :- 

Rotation stage 

An accurate rotation stage is fitted with position encoder and tachometer 

and powered by a DC motor. 

Control module 

A control module provides closed-loop position control and motion schedul-

ing of the rotation stage. The module also includes a power drive for the 

rotation stage DC motor. 

Computer 

A PC is used to communicate with the control module and supervise the 

shifting sequence. 



Software 

Parameter values are passed to the control module via the PC and are specific to 

the photographic hardware and the experiment being performed. 

Shifting sequence 

The mirror starts from a home position. The camera is in a fixed position with 

respect to the rotating assembly. In the PIV experiments, the camera is aligned 

parallel to the laser sheet and the mirror must reach an angle of 45°, with respect 

to the camera, halfway through the shutter opening time. Before the start of 

the mirror motion, the control module receives an index pulse from an external 

source. The delay between the pulse and the start of the mirror motion can be 

programmed by the user to provide synchronization of the shifting system with the 

external event. In these PIV experiments, the shifting sequence is synchronized 

with an index pulse emitted from the position encoder connected to the turbine 

motor. By programming the correct delay time, the blade azimuthal angle can be 

predetermined when the photo is taken. Thus, a number of PIV exposures can 

be taken with the blade in the same azimuthal position and averaging processes 

employed in analysis. 

Once the delay time has elapsed, the mirror accelerates rapidly to the selected 

angular velocity. The time during which the shift velocity is sustained is deter-

mined by the time it takes for the camera shutter to open in full, expose the film 

and then shut again. The system sends a TTL pulse to the camera to trigger the 

shutter opening at a time computed in advance. After the constant shift velocity 

period, the mirror decelerates and returns to its home position. Figure 2.2.2(iii) 

shows the timing diagram for the rotating mirror system. 
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2.2.3 PIV Analysis System 

The Optical Flow Systems (OFS) analysis system has been developed at Edin-

burgh to extract velocity information from the PIV photographic flow record. This 

automated method was first implemented at Edinburgh by Callum Gray[48]. The 

Fourier method was chosen to deal with flows requiring high-seeding density. 

The analysis procedure consists of scanning a small part of the negative at a time 

with a probe laser to produce an interference pattern from the multiple particle 

images in that area. The beam intensity can be adjusted using a polariser in 

front of the laser. A spatial filter and recollimating lens are used to improve beam 

illumination over the interrogation spot. An aperture is used to crop the beam 

diameter to 1mm, while a 45° mirror steers the laser onto the negative. It is 

assumed that the particle images correspond to a near constant velocity within 

the interrogation area of the probe laser. The interference fringes are imaged onto 

a CCD array camera and digitized rapidly using a video digitiser (frame grabber) 

interfaced to the PC. A fast fourier analysis can then be performed by the PC to 

transform the fringes to the autocorrelation plane where the mean particle image 

displacements are calculated. 

2.3 Conducting PIV Experiments 

One noticeable feature of the technique of Particle Image Velocimetry in practice 

is that it can involve a day's work to set-up the experiment while perhaps only 

minutes to take the film. This contrast makes it frustrating for the experimenter 

if, at the end of the whole process, nothing comes out on the film. It is therefore 

vital, that the experiments have good preparation before the acquisition of PIV 

images. 
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2.3.1 Preparation 

Water channel 

Prior to each test series, the whole tank was drained and cleaned, flushing any 

rust sediment out in the process. A pump attached to the drainage valve was 

used to speed this process. Two taps at each end of the tank supply jets of water 

for filling the tank. Filling the tank with 3 cubic metres of water took about 1.5 

hours. 

Cleaning the glass of the channel is important to ensure no marks are left on the 

glass when the photographs are taken. Household washing-up liquid was used for 

the cleaning and lint-free dust cloths to wipe the area of glass to be included in 

the negative. 

Camera alignment 

The tripod legs were extended and spread out evenly before levelling the tripod 

in the vicinity of the proposed camera position. The baseplate of the rotating 

mirror system was attached, ensuring the mirror was perpendicular to the plate 

and the plate was parallel to the channel. The camera was then mounted and the 

mirror rotated to 45° with respect to the axis of the camera. This was verified by 

checking that the reflection of the camera lens in the mirror was in the centre of 

the camera's viewfinder. 

Choice of parameters 

The PIV negatives must be in a suitable form in order to obtain valid data. 

Particle images on film must be in good focus, of suitable size and in good contrast 

with the background. They must be of sufficient number (at least two) but not 
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excessive. Table 2.3.1(i) summarises the requirements, within each interrogation 

area on the film, for obtaining high quality flow maps[88]. 

Setting 	 Range 

Number of images for each particle 	 3 < N < 6 

Number of separate particles 	 I 	> 10 

Particle image size 	 20pm 

Particle image displacements 	 20pm < 6 < 250pm 

Displacement gradient 	 <3% 

Change of displacements over measured time 	<3% 

Table 2.3.1(i) PIV settings for valid data 

The choice of parameter settings in PIV is a difficult process due to the interde-

pendence of the parameters. Obtaining good PIV images on film can be a case 

of trial and error. A number of test films are usually taken first before iterating 

towards the optimum parameters for the particular flow. One guide, however, 

is to work backwards from the PIV analysis stage. For successful PIV analysis, 

particle displacements must be in a range suited to the requirements of the anal-

ysis system. In terms of resolution, particle images on film must be separated by 

at least one particle diameter and not be further apart than one quarter of the 

diameter of the interrogation beam[48]. For the analysis rig at Edinburgh and the 

seeding used in these experiments, this gives a range of displacements, 

20pm < 6 < 250pm 
	

(2.1) 

Parameters are then chosen to record displacements on the film within this range. 

With a fixed camera position and an estimate of the dynamic range of the flow, 

a choice of illumination interval sets the particle displacement according to the 

relation 

S rnVT 	 (2.2) 

where m is the image/object magnification, V is the flow velocity and T is the 

illumination interval. Given an illumination interval, the shutter speed of the 
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camera can then be chosen to give the desired number of particle images on the 

film. Once a test film is taken, it may be necessary to modify the illumination 

interval or the magnification factor. Changing the scan rate, however, will affect 

the amount of light captured on the film. Hence, other parameters affecting 

exposure have to be varied accordingly. Table 2.3.1(u) shows typical values for 

these parameters and how they affect exposure. 

Parameter Typical Value Exposure dependence 

(exponent of proportionality) 

laser power 15W 1 

illumination interval 2ms 1 

camera distance im -2 

focal length of lens 80mm 0 

aperture (f-number) f4 -2 

film speed(ASA) 100 1 

laser sheet length im -1 

laser sheet thickness 2mm -1 

particle diameter 70tm 3 

Table 2.3.1(u) Exposure dependence of PIV parameters 

2.3.2 Acquisition 

The recirculating pump was switched on and seeding introduced to the flow. Uni-

formity of the seeding is desirable. The conifer pollen was poured via a funnel 

through a vertical plastic pipe weighted at the bottom of the water channel. The 

pipe had evenly spaced holes to disperse the seeding evenly from top to bottom 

of the channel. Periodic mixing of the pollen was required to maintain uniformity 

of the seeding. Once the scanning mirror was activated, the laser was powered 

to produce the light sheet. A signal from the pulsed light sheet was recorded by 

photo-diode. This was then stored on oscilloscope to determine the illumination 

interval. 
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Large variations in the quality of the images arise from slight variations in focus 

setting. A number of options were thus initially recorded in order to determine 

the focus setting. The mirror of the camera was then locked away to allow rapid 

successive exposures and to reduce vibration during the taking of the photographs. 

Spherical aberration effects need to be balanced with point diffraction limits of the 

lens[48J. One f-number below the maximum aperture offered the best compromise 

and made focussing easier. 

The actual photography was performed in darkness and the execution mostly 

automated with the mirror shifting and camera triggering computer controlled. 

There was little manual intervention, apart from altering the focus, shutter speed 

and aperture in between photographs. If the scan rate or apparatus position 

needed to adjusted, the attenuator of the laser was closed and a beam stop placed 

in the beam path. Space was left on the film to record a calibration photograph. 

A calibration grid of known gridsize was placed in the water channel, in the 

measurement plane. It was lit by ordinary fluorescent light and captured on film. 

In this way, the image/object magnification was calculated for each new lens or 

camera position. 

The film was unloaded in subdued light and stored in the refrigerator until it was 

developed. Kodak TMAX developer was used in accordance with the times and 

temperatures recommended. Films can be developed for longer than recommended 

if the exposure is likely to be low and PIV films are often push-processed in this 

way, to heighten contrast of the images with the background. AM FIX fixer was 

used to halt the development process. The magnification factor was calculated 

from the negative of the calibration grid. The darkroom enlarger was used to 

make measurement of grid squares easier. An indication of the success of the 

experiment was quickly obtained by passing a low-powered laser beam through 

the film. The appearance of the fringe patterns produced with the probe laser 

revealed whether high quality images were captured on film. 
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2.3.3 Analysis 

The negative was cut to size and placed in a film frame holder. The OFS software 

OFSANAL was invoked in order to define the grid of points required in analysis 

of the negative. This could be done both in terms of co-ordinates on the film 

and in the reference frame of the tank, providing details were supplied of the 

magnification and scan rate used in the experiments. These were entered in a 

defaults file of parameters along with details of the grid in terms of stepsize and 

range in both horizontal and vertical directions. Conversion between reference 

frames was possible via rotation and translation transformations. Finally, the film 

and film frame number of the negative were recorded in the list of parameters. 

A polarised 2mW He-Ne laser was used to pass a coherent beam of 1mm diameter 

through the photographic negative. The film was moved relative to the probing 

beam by means of a two-component translation stage. The OFSANAL software 

allowed manual interaction to move the film so that the beam rested at a reference 

point; usually a stable feature of the flow such as a piece of apparatus. In the case 

of the turbine on film, the reference point was chosen to be the hub of the rotor. 

This provided an origin for the grid. 

2.3.4 Development of the PlY method for Rotor Measure-

ments 

Experimentation with the techniques and facilities outlined in this chapter pro-

duced a method suited to the study of wind turbine wakes using PIV. In a set 

of preliminary tests, optimal values for the PIV parameters were sought, and the 

influence of the tower and blade type on the flow observed behind the rig was 

considered. 

In initial testing, PIV was used to examine the wake behind a small model aircraft 

propeller. The propeller was a 2-bladed model of 175mm diameter and was run 
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in reverse in order that its twist and chord distributions approximated those of 

a wind turbine rotor. Figure 2.3.4(i) depicts a PIV flow record taken with the 

model propeller. Figure 2.3.4(u) displays the corresponding velocity vector map 

of the propeller operating at a tip speed ratio of A = 4. Low-quality vectors have 

been filtered from the map at the PIV analysis stage. Although the map contains 

some evidence of vortex structure, it is affected by interference in the upper half 

of the wake. This is caused by turbulence shed in the wake by the tower of the 

rig, which acts as a bluff body. A wide range of velocities were observed in the 

tank in these early tests from the undisturbed upstream flow to a region of almost 

stagnant fluid immediately behind the rotor, especially at high tip speed ratios. 

This region contained flow velocities too small to be analysed by the PIV system, 

as is revealed in Figure 2.3.4(u). 

A second set of tests was required in order to address these problems. The pro-

peller was not an ideal turbine model as its aerofoil section operated trailing edge 

first, and it was replaced by flat-plate blades. This was considered the simplest way 

of generating a more realistic wind turbine simulator. Steps were taken to enhance 

the quality of the measurement data. Firstly, the tower of the rig was streamlined 

with a foam plastic shroud in order to limit its wake interfering with the top half 

of the wake structure. Figure 2.2.1(iv) shows the model rig equipped with the 

shroud. Secondly, the rotating mirror image-shifting system was used to impose 

a translational velocity on the recorded image to resolve velocities immediately 

behind the rotor. The effects of these changes are illustrated in Figure 2.3.4(iii) 

in the form of vector maps of flow past the flat-plate blades. The blades are op-

erating at tip speed ratios of A = 2.9 and A = 6.4. The image-shift velocity has 

been subtracted from each flow record. Figure 2.3.4(iii) shows the image-shifting 

to be succesful in improving the amount of high-quality data captured in the PIV 

experiments. 

To extract the vortex structure in the wake from the superposed turbulence, a 

process of averaging of PIV velocity vector maps was employed. Figure 2.3.4(iv) 

shows the result of averaging six PIV vector maps with the flat-plate blades op-

erating at tip speed ratios of A = 2.9 and A = 6.4. The photographs were taken 
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without the aid of a timing device so that the blades were captured at arbitrary 

azimuthal angles. The averaging led to further improvement in the quality of the 

data both at the low and high tip speed ratio. However, averaging flow records of 

different wake phases led to a 'smearing' of the vortex structure. The correspond-

ing vorticity contour maps to the vector maps of Figure 2.3.4(iv) are displayed 

in Figure 2.3.4(v) By synchronizing the flow recording with the image-shifting 

system, photographs could be taken of the blades in the same azimuthal position. 

Preliminary tests with blade synchronization using a speed controller showed that 

an azimuthal position could be repeated with an accuracy of less than 1%, even 

at the highest speeds. Averaging of these PIV maps served to highlight the vortex 

structure as well as enhancing the data quality. This is shown in the velocity 

vector maps and vorticity contour plots of Figures 2.3.4(vi) and 2.3.4(vii). 

The experimental method was completed by compensating for the image-shifting 

distortions incurred during the acquisition of PIV data. In order to separate the 

effects of image-shifting from the flow recording of the wake, a number of PIV 

photographs were taken of still-water in the tank. The seeding was stirred so that 

the particles were well distributed and then the flow was allowed to settle. In order 

to have no correlation of the flow in successive negatives, a reasonable time was 

allowed to elapse between still-water shots. A photograph was then taken before 

the seeding dispersed from the laser sheet. After averaging a number of still-water 

records, the results were then subtracted pointwise from the PIV datafiles of the 

turbine wakes in order to correct for shift velocities. This is shown in the PIV 

vector maps of Figure 2.3.4(viii). 
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Figure 2.2.1(v) Assembly drawings of the model wind turbine rig. 
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Figure 2.3.4(i) PIV photographic flow record of a model propeller 

in the water channel (no image shifting). 
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Chapter 3 

TESTS AND RESULTS 

Overview 

In this chapter, tests on a 2-blade and a 3-blade model rotor are described. The 

major analytic goals of the experiments are outlined. The equipment and test 

parameters are listed in detail. The results of the tests are presented in the form 

of PIV velocity vector maps and the structure of the rotor wakes evident from the 

maps is discussed. 

3.1 Objectives of the Tests 

The objectives of the PIV tests on the model rotors are listed as follows: 

1. Obtain full-field velocity data 

The first objective of the tests with the model rotors was to capture detailed 

velocity data across the full field of the near wake of the models. The result-

ing PIV velocity vectors maps would then form the basis of all subsequent 

analysis. 
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Obtain full-field vorticity data 

Experiments with a two-bladed rotor aimed to capture vorticity recently 

shed from the blade as it passed through the laser sheet. The PIV veloc-

ity maps could then be converted into vorticity contour plots, in order to 

compare results with vortex wake codes. This is detailed in Chapter 5. 

Investigate the turbulent structure of the wake 

Experiments with a three-bladed model rotor aimed to simulate a full scale 

experimental campaign on the Greek Island of Samos in 1991 by researchers 

from the University of Athens. Mean wake velocities and turbulent veloc-

ity values could be then obtained by a process of averaging PIV records 

and contrasted with full-scale measurements. Chapter 4 contains further 

details of the Samos Island campaign of 1991 and the analysis of the data 

for subsequent comparison with the PIV results. 

Investigating the influence of scale 

An important feature of the work was to establish whether tests on a rotor 

at model scale could yield valid data regarding the performance of full-

scale wind turbines. In replicating as accurately as possible the conditions 

pertaining to the full-scale measurements on Samos Island, any discrepan-

cies between the full-scale measurements and those obtained from PIV tests 

could be attributed mainly to scale effects. This is discussed in Chapter 6. 

3.2 General Experimental Procedures 

3.2.1 Set-up of Laboratory Equipment 

(a) Turbine rig position 

In positioning the 2-blade rotor it was intended to capture cross-sections of the 

helical vortex filaments while avoiding interference of the blade in the laser light. 



The nacelle of the rig was thus placed slightly offset from the position of the laser 

sheet in the centre of the water channel. Vortex filaments shed from the trailing 

edge were then captured in the laser sheet. Variation in the component of vorticity 

perpendicular to the light sheet, due to offset from the centreline, was assumed 

negligible. 

The 3-blade rotor was positioned so that the laser sheet intersected the blade at a 

location corresponding to the height of the downstream anemometer unit at full-

scale. This was equivalent to an offset distance of 0.42R from the rotor centreline 

to the laser sheet. Assuming an axially symmetric wake, data were thus recorded 

at an equivalent offset position from the centre of the wake to the readings taken 

at full scale. 

Values for the rig position in each case can be found later in the chapter, in 

Tables 3.3.2 and 3.4.2. 

(b) Turbine rig operation 

The speed of the electric motor of the turbine rig was altered to change the blade 

tip speed in order to achieve the desired tip speed ratio. This also had the effect of 

altering the Reynolds number of the flow over the blade. The Reynolds number is 

proportional to the ratio of inertial to viscous forces on the fluid. In wind turbine 

studies, it is conventional to define a blade Reynolds number based on the relative 

velocity (W) and the chord (c) at a point on the blade. Thus, 

W 
Re 	

c 
 

I,  
(3.1) 

where ii is the kinematic viscosity of the fluid. The influence of Reynolds number 

on the PIV experiments is addressed in Chapter 6. 

Values for the tip speed ratios and blade Reynolds numbers in both the 2-blade 

and 3-blade experiments are shown in Tables 3.3.2 and 3.4.2. 
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Flow rate 

The valves controlling the flowrate from the centrifugal pump were set to allow 

maximum current recirculating through the water channel. The current velocity 

was initially estimated by tracing pollen particles over a section of the wave flume, 

but final current values were derived from the PIV analysis. 

Configuration of turbulence manipulators 

An arrangement of honeycomb section, perforated plate and fine mesh screen were 

used as turbulence manipulators upstream of the rotor. From the Samos experi-

ments, it was concluded that the wind speed and turbulence intensity were fairly 

constant through the rotor disk. At full-scale, the mean upstream turbulent in-

tensity was 6%[56]. Thus, the turbulence manipulators in the water tank were 

arranged to produce a uniform upstream profile with low turbulence[68]. Val-

ues for the spacing of the manipulators for each set of experiments are given in 

Tables 3.3.2 and 3.4.2. 

Camera position 

The rotating mirror shift system was used. The tripod supports camera and 

mirror, mounted on a baseplate. The camera was raised until the nacelle of the 

rig was centred in the viewfinder with respect to the height of the film frame. The 

hub of the blades were situated at one-sixth of the frame length from the left-hand 

edge, with the remainder of the frame to capture the wake image. This camera 

position allowed a global picture of the wake to be captured, focussing on the near 

wake. With the camera in the same position, a series of still-flow recordings were 

taken in order to establish corrections for shift velocities. 
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(f) Synchronization 

The shifting system was synchronized to capture the 2-bladed rotor in a vertical 

position, parallel to the tower of the rig. This captured cross-sections of trailing 

vortex filaments while avoiding interference of the blade in the sheet. Six frames 

were taken of 5 tip speed ratios, each with the flat-plate blade in the vertical 

position. 

For the 3-bladed rotor, a different form of synchronization was required. Since 

the full-scale results were based on time-averaged recordings, while the PIV tech-

nique produced instantaneous wake images, it was necessary to repeat each PIV 

test several times, with the image synchronised to a different rotor position. A 

numerical average was then taken of the resulting vector maps. Six exposures 

were taken of the rotor at each tip speed ratio. The rotor and the image-recording 

system were synchronized to capture the blade in six different azimuthal positions 

at 20 degree intervals. For a 3-bladed rotor, this discretizes one whole revolution. 

Averaging the velocities in the wake recorded in these six phases introduces a 

concept of temporal averaging akin to the full-scale experiments. 

3.2.2 PIV Procedures 

(a) Ply parameters 

The same PIV parameters were used for both the 2-blade and 3-blade experiments 

and are outlined on the next page in Table 3.2.2. 
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A shutter speed of 8ms allows 3 images for each particle to be captured on film. 

The arc swept by the 2-blade rotor during this shutter time is less than 10 degrees 

at the highest tip speed ratio tested. The arc swept by the 3-blades during this 

time is between 2-6 degrees over the range of tip speed ratios tested. 

camera aperture 	 2.8 

exposure time 	8ms 

shutter delay time 	30ms 

laser power 	 14W 

scan time 	2.5ms 

mirror rotation 	 20°/s 

sweep time 	500ms 

Table 3.2.2 Parameters for PIV acquisition. 

(b) Analysis parameters 

The PIV negatives of the 2-blade rotor were analyzed using two separate numerical 

grids. A small He-Ne laser was used to probe areas on the film of 1mm diameter 

at a time. In physical units, this corresponded to examining a total area in the 

water channel of 0.6m x 0.6m. Grid spacings are the same in both cross-wake 

and downstream directions with a stepsize of 12mm. Analysing on a finer grid of 

7.5mm spacings highlighted a lower part of the wake corresponding to an area in 

the channel of 0.5m x 0.26m. 

The PIV negatives for the 3-blade rotor were analysed on a grid of 2550 points. 

Analysis over an area of 0.6m x 0.588m (in physical units) with stepsize 12mm 

produced a 'global' picture of the near wake. 

Similar regions were analysed for the still-water negatives and the resulting datafiles 

were averaged together to form files of correction data for the PIV rotor flow 

records. 
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3.2.3 Post-analysis Processing 

The datafiles from the still-water tests were averaged and subtracted from each 

datafile of the 2-blade and 3-blade rotor results. The resulting datafiles were 

averaged with respect to tip speed ratio. Averaging of instantaneous wake images 

extracts the coherent structure of the trailing vortex filaments from the superposed 

turbulence. In the 2-blade experiments, the synchronisation process captured 

the wake in the same phase whereas in the 3-blade experiments, the wake was 

recorded at discrete phase increments. For clarity, the averaged images from the 

2-blade tests shall be referred to as 'frozen' wakes and the 3-blade images simply 

as 'averaged' wakes. 

Statistical analysis of the averaged files produced values for the mean axial velocity 

upstream of the rotor for each tip speed ratio. These quantities were calculated 

from the first three columns of the averaged files. This avoided possible errors 

associated with taking values only from the first column, due to signal dropout 

at the edge of the film. This procedure was also repeated for each of the raw 

datafiles, to separate the effect of averaging from possible trends in the results. 

Figure 3.2.3(i) shows the mean upstream velocity statistics for both the 2-blade 

and the 3-blade rotor measurements. The datapoints for the 2-blade results are 

seen to be distributed fairly evenly around 0.25m/s, the rated value for the re-

circulating flow. The 3-blade raw data are more scattered and the results appear 

to be strongly affected by blade speed. The value for the mean axial upstream 

velocity can be found from results at lowest blade rotation rate where the effect of 

the rotor is assumed to be negligible. Since the sample size of raw data is small, 

a reasonable an estimate of the upstream velocity from the 3-blade measurements 

is the rated current value, 0.25m/s. 

Information about turbulence parameters was extracted in the averaging process. 

At each grid point, 

s2= 	(

En 2 i2 _2) 	 (3.2) 

was used as an unbiased estimate of the velocity fluctuations, 0.2,  where n is small. 
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Values for the ambient turbulence in terms of longitudinal fluctuations were taken 

from mean variations upstream of the rotor. Figure 3.2.3(u) plots values of the 

upstream turbulence intensity against blade rotation rate for the 2-blade and 

3-blade results. The value for the ambient turbulence can be found from results 

at the lowest rotation rate where the effect of the rotor on the upstream flow can be 

assumed to be negligible. Due to the small sample size, the relationship between 

upstream turbulence and rotation rate is estimated by first approximation. A line 

of regression is plotted through the datapoints for the 2-blade and 3-blade results. 

From Figure 3.2.3(u), a value for the ambient turbulence intensity is selected as 

o/Uo = 4% in both cases. 

3.3 Two-blade Rotor Tests 

3.3.1 Description 'of the Model 

The two-blade model rotor was made using flat-plate blades. The blades were 

chosen for their simplicity of construction and for reasons of comparison with 

theory, since the blades represent a very fundamental case. The blades were cut 

from sheet aluminium to a diameter of 175mm. Figure 3.3.1(i) shows a photograph 

of the flat-plate model. The solidity of the rotor is 9.1%. The blades have a 

thickness of 1.26mm and a hub chord of 15mm, with a linear taper to a tip chord 

of 10mm. Finally, the leading edge was smoothed and the trailing edge sharpened 

in the workshop. Details of the blade dimensions are shown in Figure 3.3.1(u). 

3.3.2 Test Parameters 

The test parameters for the two-blade experiments are summarised in Table 3.3.2. 

The table gives values for the placing of the turbulence manipulators as distances 

upstream of the rotor blades. The rig position is the offset distance of the nacelle 
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from the laser sheet and the camera height is measured from the floor to the 

middle of the lens. The blade Reynolds (Re) number is based on chord length 

measured at 70% blade span. 

rig position 10mm 

turbulence 

manipulators 

honeycomb 2.48m 

perforated plate 2.08m 

mesh screen 1.3m 

camera, height 1.24m 

optical distance 0.88m 

magnification 0.085 

tip speed ratios 3 1 4 3 5, 6,8 

range of Re numbers 6.4 x iO 	- 1.6 x iO 

Table 3.3.2 Test parameters for the 2-blade rotor experiments. 

3.3.3 Results and Comments 

Velocity vector maps in order of increasing tip speed ratio are displayed in Fig-

ures 3.3.3(i)-(iii). At the lowest tip speed ratio, ) = 3, the wake appears as an 

area of reduced velocity behind the turbine model which recovers to the freestream 

velocity with downstream distance. There is evidence of a sinusoidal pattern at 

the boundary of the wake which can be attributed to the presence of vorticity 

shed from the blades. Velocity vector maps of the lower half of the wake highlight 

the sinusoidal pattern of the wake boundary, as shown in Figures 3.3.3(iv)-(vi). 

As the tip speed ratio increases, the wake becomes more evident, growing in 

width and containing greater velocity deficits and a stronger sinusoidal pattern at 

the edge of the wake. At ). = 6, the velocity deficits have increased to such an 

extent that the region of flow immediately behind the nacelle appears to be almost 

stagnant. Together with this stagnant wake core and the outer wake containing 

strong vortex structure, a third region of wake flow becomes clearer from the 
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vector maps at high tip speed ratios. Immediately behind the rotor, an 'inner 

wake' is evident: a region of shear velocities that divides the outer freestream 

from the wake core. 

At the highest tip speed ratio, ) = 8, the wake is still increasing in width and 

the flow in the inner wake is observed to move under the influence of wake expan-

sion. Areas of recirculating flow can be observed within the wake and the wake 

boundary has started to contract at a downstream distance of around 0.4m. This 

is consistent with the flat-plate blades operating in a 'turbulent wake state', as 

defined by Eggleston & Stoddard[38]. The structure of the wake is discussed in 

more depth in Chapters 4 and 5. 

3.4 Three-blade Rotor Tests 

3.4.1 Description of the Model 

The model rotor was a 1/100th scale replica of the 3-bladed Vestas (formerly 

Windmatic) WM-19S. Figure 3.4.1(i) displays a photograph of the model. The 

blades were manufactured' from rigid plastic, using a numerically controlled cut-

ter. Despite the small scale, the model blades were accurately profiled with a 

NACA-632XX section, with twist, chord and thickness distributions based on the 

manufacturers' original drawings (see Figures 3.4.1(ii)-(iv)). The 3-blade model 

rotor has a solidity of 7.8%. 

'courtesy of Angus Modelmakers, Glasgow 
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3.4.2 Test Parameters 

The test parameters for the three-blade experiments are summarised in Table 3.4.2. 

rig position 37mm 

turbulence 

manipulators 

honeycomb 2.5m 

perforated plate 2m 

mesh screen 1.2m 

camera height 1.24m 

optical distance 0.89m 

magnification 0.084 

tip speed ratios 1.6 1  2.7, 3.2, 4.2, 4.8 

range of Re numbers 2.6 x iO 	- 6.0 x iO 

Table 3.4.2 Test parameters for the 3-blade rotor experiments. 

3.4.3 Results and Comments 

Velocity vector maps in order of increasing tip speed ratio are displayed in Fig-

ures 3.4.3(i)-(iii). For the low tip speed ratios of ). = 1.6, 2.7 and 3.2, there is little 

discernible effect behind the rotor. At ..\ = 4.2 the wake becomes more obvious as 

an area of reduced velocity forming behind the rotor, recovering to the freestream 

value with downstream distance. At the highest tip speed ratio tested, ) = 4.8, 

the region directly behind the rotor contains larger wake deficits. In addition, 

there is slight wake expansion and slower recovery with downstream distance. 

3.5 Summary and Discussion 

PIV tests were undertaken on two different model rotors. A 2-blade model was 

constructed of flat-plate blades while a 3-blade model was manufactured by a 



professional modelmaker as a replica of a full-scale machine from the windpark 

on the Greek island of Samos. While both sets of tests aimed to record detailed 

wake velocities, the flat-plate tests were specifically designed to capture vortex 

structure in the wake, in order to compare with vortex wake codes. The 3-blade 

tests were designed for comparison with measurements of mean and turbulence 

properties of the wake of the Samos Island machine. 

The equipment and parameters used in the tests are listed in detail. In addition 

to the experiments with the rotors, PIV experiments were also carried out for still 

water in the channel. Post-analysis processing of PIV data involved subtracting 

the still water results from the model rotor results in order to calibrate for image-

shifting errors. Phase averaging of PIV flow records produced maps of 'frozen 

wakes'. Capturing the blade at different azimuthal positions discretized one rotor 

revolution, and map averaging introduced a concept of 'time-averaged' wakes. 

A statistical analysis of the PIV data produced values for the mean upstream 

axial velocity and ambient turbulence. There was a general trend of increasing 

upstream turbulence with increasing blade rotation. This suggested that the rotor 

exerted an influence over upstream flow at higher rotation speeds. This may be 

attributed to diversion of the flow by the rotor. The upstream flow approaches 

the turbine and at high rotation rates is forced outwards, around the edges of the 

area swept by the rotor. 

The results of the tests are presented in the form of velocity vector maps. A 

brief comment upon the results is given from inspection of the maps. The maps 

show the wake flow to be divided into 3 distinct regions; a wake core with high 

velocity deficits, an inner wake with sheared flow and an outer wake containing 

strong vortex structure. Further analysis of the wake structure is detailed in 

Chapters 4 and 5. 
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Figure 3.3.1(i) Photograph of the 2-blade fiat-plate rotor. 

ALL EDGES TO BE SHARPENED 
(CROSS-SECTION OF BLADE SHOWN) 

MS CLEAR 

L 
Figure 3.3.1(u) Dimensions of the flat-plate blades. 
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Figure 3.4.1(i) Photograph of the 3-blade WM19S Vestas replica. 
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66.50 

Figure 3.4.1.(ii) Dimensions of the Vestas replica blades. 



I 	I 

Figure 3.4.1 (iii) Spanwise twist distributions used in the 

manufacture of the replica. 

I 'u 	4.00 mm 

Figure 3.4.1(iv) Superposition of segments showing the spanwise 

change in pitch and chord for the replica. 
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Chapter 4 

WAKE VELOCITY STRUCTURE 

Overview 

In this chapter the use of PIV velocity vector maps to obtain wake velocity and 

turbulence profiles is described. Data are presented from measurements on both 

a 2-blade and a 3-blade rotor model. The data is reduced to a normalised form 

which allows features of the wake to be readily identified and compared with 

the results of other surveys. These include full-scale measurement campaigns at 

Samos Island, Greece, as well as the Nibe site and The Risø Test Station for 

Windmills in Denmark. Comparisons are made with wind tunnel tests conducted 

at Loughborough University and at the Marchwood Engineering Laboratories. 

4.1 PIV Analytic Procedures 

4.1.1 Extracting Velocity and Turbulence Information 

(a) Mean velocity 

The PIV technique provides a complete velocity map in the wake of the model, giv- 

ing access to cross-wake profiles at any downstream location in the photographic 



plane. Mean axial velocity profiles are computed by analysing a single column of 

vectors in each PIV vector map corresponding to the appropriate distance from 

the rotor. Results are expressed as a function of A with cross-wake distance plot-

ted against mean axial velocity ratio. The velocity ratio is calculated as a ratio 

of the local axial velocity at a point to the freestream velocity 

U I  = 
UO 
	 (4.1) 

(b) Turbulence 

Turbulent velocity profiles are calculated at a particular downstream station with 

cross-wake distance plotted against turbulent velocity ratio for each tip speed ra-

tio. Plots of local turbulence velocity are preferred to local turbulence intensity in 

order to highlight vortex structure within the turbulence profiles. In addition, as 

far as fatigue damage to full-scale machines is concerned, it is the magnitude of the 

turbulent fluctuations which is important. For wind turbine loading and perfor-

mance calculations, information on only the longitudinal component of turbulence 

is required. 

Normalized turbulent velocity is defined as 

Oru 
 - 

(Jo 
	 (4.2) 

where au  is the standard deviation of the wake velocities at a point in the wake 

and U0 is the freestream velocity. 

The increase in turbulence in the wake of the rotor is also considered and is referred 

to as added turbulence. This is defined as 

U 	0,02 

= 	- 	 (4.3) 
U0  

where o is the mean variation of velocity in the freestream. 



(c) Standard error 

Six data values are used to calculate the mean axial velocity at each point in the 

wake. Since the sample size is small, the Student's t-distribution is chosen to 

mathematically model the random variable, Z, describing the mean axial velocity 

at a point. 

The standard error, S(Z), associated with estimating the mean axial velocity using 

a sample of six datapoints is 

S(Z) = 
	

(4.4) 

where P(Z> z) = a. 

4.1.2 Results for 2-blade rotor (frozen wake) 

(a) Mean velocity 

Mean velocity profiles from the 2-blade results are shown in Figures 4.1.2(i)-(iii) as 

a function of A with mean axial velocity ratio plotted against cross-wake distance. 

The cross-wake profiles are calculated at 0.51), 1.OD, 1.5D, 2.01) and 2.51) down-

stream of the rotor for each tip speed ratio. In the presentation of the data, the 

first profile (x/D = 0.5) is correctly positioned on the horizontal axis, while the 

remaining profiles are offset by multiples of 0.25. Although each profile is based 

on a single line of vectors from the PIV vector map, their variation in shape with 

respect to downstream distance can provide information about the development 

of the wake. 

Firstly, it is noted that, in all the figures, there is an asymmetry in the profiles 

about the wake centreline. This is due to the presence of turbulence in the upper 

part of the wake introduced by the tower of the turbine and its streamlined shroud. 

This is most prominent just behind the rotor at 0.5D; the profiles are highlighted 

using dotted lines. 



As A increases, the profiles become smoother with greater velocity deficit and 

wake expansion just behind the rotor. As the wake recovers, the profiles lose their 

depth and develop flat central sections by 2.5D downstream. At the higher tip 

speed ratios the transition to 'square' profiles occurs closer to the rotor. 

Plotting the centreline velocity ratios against downstream distance illustrates the 

wake recovery process more clearly. Figure 4.1.2(iv) shows the slow-up, the veloc-

ity 'jump' across the rotor and the gradual return to freestream values of the flow 

for each tip speed ratio. The speed of recovery is inversely related to the tip speed 

ratio, as expected. The curves A = 3 and A = 8 stand out as the cases with the 

quickest and slowest recovery in centreline velocity, respectively. By 2.51) down-

stream the magnitude of the axial velocity is 65.6% of the freestream for A = 3, 

while only 4.1% for A = 8. There is some scatter immediately behind the rotor 

in the case of A = 3. Separated flow from heavily stalled blades could provide 

the explanation for this. It is more likely, however, that the scatter is the result 

of missing data due to the presence of the tower shroud in the light sheet. For 

the other values of A, Figure 4.1.2(iv) shows the velocity to be constant across 

the rotor disk. This again is likely to be due to missing data values (and the 

limitations of the graphics package). In the A = 8 case, downstream axial velocity 

ratios are less than zero for a considerable part of the wake centreline, indicating 

a large amount of recirculating flow behind the rotor. 

(b) Turbulence 

Turbulent velocity profiles are displayed in Figure 4.1.2(v) for two locations in 

the wake, 0.5D and 2.51) downstream. Turbulent velocity ratio is plotted against 

cross-wake distance for each tip speed ratio. In the presentation of the data, the 

first profile (A = 3) corresponds to the vertical axis, while the remaining profiles 

are offset by multiples of 0.25. 

Comparing the plots, the low-A cases reveal higher turbulence levels at an axial 

distance of 0.51) than further downstream at 2.5D. At higher tip speed ratios, 



the reverse appears to be true. In addition, the turbulence at 2.51) appears less 

scattered than that at 0.51). The A = 6 curves of the figure display a strong double-

peaked structure associated with vortices at the tips of the blades. The curve 

furthest downstream exhibits broader peaks suggesting wake expansion together 

with an increase in turbulence across the wake. The turbulence peaks seen outside 

the rotor circumference (specifically y/R > 1) may be due to the wake of the 

supporting 'tower'. 

Turbulent velocity ratios on the wake centreline at 0.5D, 1.OD, 1.5D, 2.OD and 

2.51) are plotted in Figure 4.1.2(vi). In general, the turbulence at each downstream 

station appears to increase for the range A = 3-5, reach a maximum around 

A = 5 and then decrease with increasing A. The notable exception is at the 2.5D 

downstream station. There, the turbulence steadily increases with increased rotor 

speed and for the highest tip speed ratio case, A = 8, turbulence in the wake 

reaches a level 4.2 times the ambient level at 2.5D downstream. The curves again 

reflect the reversal in trends with respect to turbulence at downstream locations 

as A increases. At low-A, the highest levels of turbulence in the wake exist at the 

station closest to the rotor whilst at higher A, the greatest levels can be found at 

the furthest downstream station. 

4.1.3 Results for 3-blade rotor (averaged wake) 

(a) Mean velocity 

Mean velocity profiles from the 3-blade results are shown in Figures 4.1.3(i)-(iii) 

as a function of A with mean axial velocity ratio plotted against cross-wake dis-

tance. The cross-wake profiles are calculated at 0.51), 1.OD, 1.5D, 2.01) and 2.5D 

downstream of the rotor for each tip speed ratio. In the presentation of the data, 

the first profile (x/D = 0.5) is correctly positioned on the horizontal axis, while 

the remaining profiles are offset by multiples of 0.25. 

As in the 2-blade profiles, there is a certain amount of asymmetry displayed in 
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the results. In addition to disturbance produced by tower interference, there is 

asymmetry in the wake core, which is more pronounced at low tip speed ratios 

(Figure 4.1.3(i)). This could be the influence of a stalled rotor. 

As A increases, the wake profiles become smoother and more closely resemble a 

Gaussian distribution although there is evidence of 'square' profiles, referred to 

in Section 4.1.2, at 2.51) downstream for A = 4.2 and A = 4.8. An increase in 

velocity deficit is associated with the increase in tip speed ratio. Velocity ratios 

from the centre of the off-axis plane, although difficult to compare with the 2-blade 

centreline results, are still of interest. Figure 4.1.3(iv) displays the recovery of the 

wake with each tip speed ratio. At 2.5D, the velocity for the A = 1.6 and the 

A = 4.8 cases have recovered to 91.5% and 49.5% of the freestream, respectively. 

(b) Turbulence 

Turbulent velocity profiles are displayed in Figure 4.1.3(v) for two locations in 

the wake, 0.51) and 2.5D downstream. Turbulent velocity ratio is plotted against 

cross-wake distance for each tip speed ratio. In the presentation of the data, the 

first profile (A = 3) corresponds to the vertical axis, while the remaining profiles 

are offset by multiples of 0.1. 

The plots display a general increase in turbulence levels with tip speed ratio. 

The turbulence is less structured than for the 2-blade data due to the 'time-

averaging' of measurements. Vorticity at the blade tips, an expected source of 

high turbulence, was not captured by the laser light due to the discretisation of 

the rotor's revolution during the measurements. 

Turbulent velocity ratios along the centre of the off-axis plane are plotted at 

downstream stations of 0.5D, 1.OD, 1.51), 2.01) and 2.51) in Figure 4.1.3(vi). The 

figure shows a general increase in turbulence at each station over the tip speed 

ratio range A = 3-5, a pattern observed from the 2-blade results. At lower tip 

speed ratios, high levels of turbulence are noted at 0.51) and 1.OD. At 2.51), the 



highest levels of turbulence in the wake are witnessed, roughly 4 times the ambient 

turbulence, at ) = 4.8. 

4.2 Comparisons with Full-scale Data 

Direct comparison of field data is difficult due to significant differences in operating 

conditions. However, data sets which offer the closest agreement in terms of 

tip speed ratio, measurement plane and ambient turbulence intensity have been 

chosen for comparison. The comparison with data from Samos Island, the result 

of a two-year programme of research with the University of Athens, is covered in 

the most depth and the following section details the preparation of the full-scale 

data prior to comparison. 

4.2.1 Vestas WM19S, Samos Island 

(a) Description of full-scale experiments 

The full-scale tests were carried out on Samos Island, which lies in the eastern 

region of the Aegean Sea. The wind farm on Samos is located 390m above mean 

sea level (MSL) on a saddle confined by the island's two major mountain ranges. 

The wind park is shown in the photographs of Figure 4.2.1(i) and comprises nine 

three-bladed, horizontal axis, Vestas WM19S wind turbines. Each machine has a 

rotor diameter of 19m, a solidity of 7.8%. and a hub-height of 25m. The output 

rating of the WM19S is 100kW. 

The WM19S is stall-regulated, with rated power achieved at a windspeed of 13m/s. 

The cut-in and cut-out wind speeds are 3m/s and 27m/s, respectively. The blades' 

rotational speed is 48 r.p.m., and the maximum power coefficient Cpmax = 0.38 7  

is attained in the windspeed range 8-10m/s. The prevailing conditions during 
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the experiments were quite windy, with wind speeds exceeding 9m/s and reaching 

27m/s. The mean upstream turbulent intensity was 6%. 

Measurements were made on a single wind turbine, using two anemometers, one 

upwind (0.8D) and one downwind (1.1D) of the machine. The data to be compared 

refer to two cup anemometers, mounted at 12m and 29m above ground level, on 

the upwind and downwind masts, respectively. The anemometers were sampled 

at a rate of 1Hz. At the given elevation (29m) the downstream unit was above the 

centreline of the rotor, well clear of the influence of downstream tower shadow. 

The experimental layout is described fully by Helmis et al.[56]. The measurements 

were made over the period 16-24/8/91. 

The wake velocity was expressed as the ratio of downstream to upstream wind-

speed. In doing this, it was necessary to compensate for influences other than 

the wind turbine wake: these were principally windshear, non-uniform inflow con-

ditions due to the local terrain, and downstream tower shadow (as noted above, 

however, the last of these was effectively removed by analysing data at a down-

stream elevation in the upper half of the wake). Measurements were therefore 

taken with the turbine in operation (the wake data set) and stationary (the non-

wake data set). The results in the latter case were used to establish two correction 

curves (for low and high winds) for non-wake effects. 

(b) Analysis of full-scale data 

A preliminary analysis of the non-wake data set was used to establish the back-

ground correction to be applied to operational data. The importance of this 

procedure is seen from previous results described by Helmis et al., who highlight 

the uncertainty introduced by estimating wake velocity deficits by comparing up-

stream and downstream measurements using data recorded only with the turbine 

in operation. 

The background correction is particularly important when dealing with the near 
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wake region. In complex topography this is due to terrain inhomogenities; below 

hub-height the effects of nacelle and tower shadow are also important[93}. 

The non-wake velocity ratio was found to vary significantly with wind direction, 

but to be relatively independent of windspeed (Figure 4.2.1(u)). Data for all 

windspeeds were therefore averaged to yield two correction curves, which gave 

the non-wake velocity ratio as a function of wind direction only. This was then 

used to provide correction factors for the data obtained during operation of the 

turbine: a given velocity ratio obtained with the turbine running was divided by 

the non-wake ratio corresponding to the same incident wind direction. In this way 

the data was treated to compensate for the effects of topography and windshear. 

It should also be said that by expressing the velocity ratio as the ratio of the 

downstream to upstream anemometer readings (suitably corrected), it is implied 

that the upstream values of wind speed and ambient turbulence are considered 

representative of the flow which intersects the rotor. In fact, separate analysis 

verified that the wind speed and turbulence intensity were fairly constant across 

the rotor disk. The observed ranges for wind speed and turbulence intensity were 

9-27m/s and 3-16% respectively, based on 1-minute averages. 

The corrected wake data, ie. with the turbine operational, are shown for a range 

of windspeeds in Figure 4.2.1(iii). The data are plotted against incident wind 

direction: on the assumption that the wind turbine yaw system tracks the wind 

direction accurately over long periods, the data can be re-interpreted as velocity 

profiles obtained by a horizontal traverse behind, and parallel to, the rotor. 

Although full wake profiles are not available, due to a shortage of data, the results 

show a clear dependence on windspeed, with the wake ratio increasing as a function 

of tip speed ratio. Assuming that the wake centreline corresponds with the 3500 

wind direction, for which the wind turbine is directly upwind of the 29m measuring 

anemometer, centreline velocity ratios may be derived directly from the data in 

Figure 4.2.1(iii). 
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The given wake profiles are based on 1-min averages. Based on longitudinal and 

lateral coherence considerations [93] the relatively short averaging time is appro-

priate. Analysis of corresponding 15-minute samples give almost identical results, 

though with a somewhat more 'spiky' appearance: this was attributed to changes 

in rotor orientation during the 15-minute period due to operation of the yaw sys-

tem. The graphs based on 1-minute data are nonetheless fairly smooth. The 

statistical significance of the results may be assumed greatest for the more ex-

tended wake data sets. 

Note that the wake profiles thus obtained are inherently averaged with respect to 

short-term variations of incident wind direction. It is assumed that on average 

the rotor was aligned with the incident upstream wind direction throughout the 

measurements (no turbine yaw information was available); it is to be expected, 

however, that rotor alignment lags behind changes in incident wind direction. The 

measured standard deviation of wind direction was 5-6°, implying a maximum 

cross-wake smoothing over ±5% D. 

(c) Results of comparison 

PIV experiments were carried out using a model replica of the Vestas WM-19S 

machines of Samos Island (see Section 3.4). The cross-wake profile at 1.1D down-

stream of the model rotor was found by averaging the four columns of vectors 

in each PIV velocity vector map corresponding to distances 1-1.21) behind the 

rotor, to account for any uncertainty in downstream position. The results are 

shown in Figure 4.2.1(iv), as velocity ratio plotted against cross-wake distance for 

each tip speed ratio. In calculating the velocity ratio for each location, a single 

averaged value of the upstream velocity was assumed. 

The vertical scales for the wake profiles have been shifted to separate them. The 

profile for the case A = 4.8 is positioned correctly with respect to the graph axes 

while the remaining profiles are offset by multiples of 0.1. The influence of tip 

speed ratio can be clearly seen from Figure 4.2.1(iv), with the downstream velocity 
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ratio increasing with increasing A. Profile asymmetry is detectable, especially at 

low tip speed ratios. This is caused by wake interference by the tower structure as 

mentioned previously. Small increases in the velocity ratio above 1.0 are displayed 

at the inner edge of the wake. 

From the given wake profiles, velocity ratios from the centreline of the off-axis 

measurement plane may be obtained. As noted above, the wake ratios measured at 

full scale (Figure 4.2.1(u)) incorporate directional smoothing, due to the variation 

in incident wind direction during the averaging period. To account for this at 

model scale, the 'centreline' velocity at 1.1D downstream was averaged over a 

cross-wake distance based on the variance of the wind direction in the full scale 

tests. In practice, this involved averaging together the velocity vectors either side 

of the 'centreline' i.e. two adjacent (cross-wake) values at 1.1D downstream. 

The resulting 'centreline' velocity ratios from the model tests are shown as a 

function of tip speed ratio in Figure 4.2.1(v), together with the corresponding data 

from the Samos Island measurements. Error bars are plotted for the PIV data 

using confidence intervals based on the standard error of estimating the centreline 

velocity ratio (see Section 4.1.1). For low tip speed ratios, the comparison is 

promising. However the curves diverge from each other as A increases. At A = 2, 

the data from the curves agree to within 3% while at A = 4, the curves agree to 

within 33%. 

A number of factors may account for the discrepancy. It is hoped that greater 

insight may be found by direct comparison of full-scale and model wake data in the 

form of wake profiles at similar tip speed ratios. Figures 4.2.1(vi) and 4.2.1(vii) 

show that the shapes of the model and full-scale wake are different. The full-

scale wake is wide and has a homogeneous central portion, implying significant 

cross-wake mixing. In addition, the minima of the curves very often does not 

coincide with the machine alignment of 350°, suggesting that wake meandering 

may affect the full-scale results. Figure 4.2.1(iii) shows that at A = 4.4, the 

minimum velocity ratio for the full-scale data is about 0.68 at a cross-wake position 

of 340°. Figure 4.2.1(iv) shows this is very close to the result for the model at a 
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similar tip speed ratio. 

Figure 4.2.1(viii) displays the cross-wake turbulence velocity profiles at 1.1D for 

various tip speed ratios from both the full-scale and the laboratory experiments. 

The turbulent velocity profiles from the PIV tests have been separated for clarity. 

The profile for the case A = 1.6 is correctly positioned on the axes and the other 

profiles are offset by multiples of 0.04. In general, the PIV profiles show an 

increase in turbulent velocity as the tip speed ratio increases, with maximum 

turbulence in the region of the wake centreline. This same behaviour can also be 

observed from study of the standard error involved in the cross-wake averaging 

(Fig. 4.2.1(v)). The size of the standard error bars reflects the level of turbulence 

existing at the location of interest in each case. There is also some evidence that 

the wake turbulence does not increase indefinitely with increasing A, but goes 

through a minimum at an intermediate value close to A = 3. The full-scale results 

also reveal an increase of wake turbulence towards high tip speed ratio, with a 

minimum in between (at A = 3.3). The flat profiles of the Samos Island results for 

the case A = 3 and A = 3.3 probably reflect the wake meandering and cross-wake 

smoothing of full-scale data. 

Centreline turbulent velocity ratios are taken from the PIV profiles and plotted 

together with the corresponding full-scale ratios in Figure 4.2.1(ix). The two 

curves are notable for displaying similar trends in turbulence levels with respect 

to tip speed ratio. This is discussed is Section 5.4. Comparison of turbulence 

intensity profiles at similar tip speed ratios is plotted in Figure 4.2.1(x). The 

results again suggest that the full-scale data may be affected by wake meandering. 

4.2.2 Vestas V20/100, Risø Test Station 

(a) Description of full-scale measurements 

Measurements were undertaken in 1988 at RisØ's National Laboratory, 30km west 

of Copenhagen[76]. The Vestas V20/100 is a 3-bladed machine with 19.93m rotor 
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diameter and a hub-height of 24.25m. The rotor solidity is 5.5%. It is rated at 

100kW, is stall-regulated and operates at a rotor speed of 45.5RPM. A photograph 

of the machine is reproduced in Figure 4.2.2(i). 

Measurements were made using meteorological masts arranged in a line in the 

direction 285° North. PIV data is compared with readings taken from masts 

placed 0.68D upstream and 1.5D downstream. Anemometers were arranged on 

top of the masts at hub-height. 

Data was sampled at a frequency of 211z. Run statistics were calculated using 

10-minute averages. Incident wind speeds and ambient turbulent intensities were 

recorded at a location 2.5D upstream. Windspeeds between 8.25m/s and 8.75m/s 

yield the most suitable tip speed ratios for comparison with the PIV data, corre-

sponding to 5.4 < A < 5.9. Ambient turbulence intensity was on average between 

5-10% over the wind speed range. 

(b) Results of comparison 

The 3-blade model replica of the WM-19S has a geometry that is very similar 

to the V20 machine. A velocity profile from PIV tests on the model rotor for 

the case A = 4.8 is compared to Risø data at 1.5D downstream. The Risø data, 

recorded at hub-height, is adjusted so that comparisons may be made with the 

PIV data, recorded in a plane offset from the wake centreline. Assuming the 

wake is axisymmetric, the Risø data is subjected to spline interpolation, before a 

geometric translation of the data onto an equivalent offset plane. The results are 

displayed in Figure 4.2.2(u) where mean velocity ratio has been plotted against 

wind direction and corresponding cross-wake distance. 

The Risø data and PIV measurements compare reasonably well. The centreline 

velocity deficit (the difference of the velocity ratio from unity) of the Risø data is 

89% of the PIV deficit. The full-scale profile is slightly wider and is notable for 

velocity ratios greater than 1.0 at the extremes of the profile. 
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4.2.3 Nibe 'B' Wind Turbine 

(a) Description of the full-scale measurements 

The two turbines, Nibe 'A' and 'B', are located 200m apart on a flat, coastal 

site in Jutland, Denmark. Both have 3-bladed, 40m diameter rotors of similar 

aerodynamic design mounted at a hub-height of 45m. Each machine is electrically 

rated at 630kW, with rated power achieved at a windspeed of 13m/s. The cut-

in and cut-out wind speeds are 6m/s and 25m/s respectively. The 'A' rotor is 

intended to operate in stall-regulated mode while turbine 'B' is operated with 

full-span pitch control. The rotor speed is approximately 34 RPM. Figure 4.2.3(i) 

shows the twin-turbine site at Nibe. 

Measurements were made in the period June 1982—July 1987. The data examined 

here corresponded to the 'B' turbine operating alone in southerly winds. A well-

instrumented meteorological mast was situated 2.51) downstream of the turbine. 

The non-operating turbine 'A' lies a further 2.51) downstream with additional 

masts placed at 41), 6D and 7.5D downstream of turbine 'B'. The data to be 

compared was collected by a cup anemometer mounted at 56m above ground 

level. This provides the closest equivalent offset position from the centre of the 

wake to readings taken at laboratory scale. 

Long-term statistical data have been collected in the form of 1-minute means 

and standard deviations whenever the incident wind direction was within ±300  of 

the inter-machine axis (magnetic bearing 188 0 ). The sampling rate was 2Hz. No 

direct measurement is available of the incident wind speed nor ambient turbulence 

intensity since all measurement masts lie in the wake of the 'B' turbine. Instead, 

data records have been selected which fall within a specified range of electrical 

power output from Nibe 'B'. The corresponding incident wind speeds at hub-height 

have then been estimated using the measured power curve. 

In this way, data is selected that is most suitable for comparison with the oper- 

ating conditions of the scale model tests. With the Nibe 'B' machine operating 
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in the 550-605kW power range, a range of tip-speed ratios is covered between 

5.3-6. Ambient turbulence intensity is estimated as 10-15% by collecting read-

ings measured at 3m on the downstream mast in the assumption that they are 

not influenced by the rotor. 

(b) Results of comparison 

A velocity profile from PIV tests at A = 4.8 is compared to Nibe data at 2.51) 

downstream. Mean velocity ratio has been plotted against wind direction and 

corresponding cross-wake distance (Figure 4.2.3(u)). The trough of the PIV profile 

is seen to be deeper than the Nibe profile. The centreline velocity deficit of the 

Nibe data is 52% of that of the PIV data. Both sets of measurements have velocity 

ratios greater than 1.0 at the extremes of the profiles. In the case of the PIV data, 

this appears to be due to interference from the turbine 'tower'. 

Turbulent velocity data are compared with measurements from the Nibe experi-

ments at distances corresponding to 2.51) downstream of the model and full-scale 

machine. Turbulent velocity ratio is plotted against cross-wake distance and the 

corresponding wind-direction in the field in Figure 4.2.3(iii). The agreement be-

tween the two sets of data is very good with respect to the level of turbulence in 

the wake, despite the differences in ambient turbulence for the two sets of experi-

ments. Alfredsson[10] proposed that as the ambient turbulence increases the wake 

decays more rapidly. It is possible that the PIV and Nibe data are contrasted at a 

station sufficiently far downstream such that, under the influence of high ambient 

turbulence, the turbulence in the wake of the Nibe 'B' machine has decayed to 

the level present in the PIV experiments. The centreline turbulent velocity ratio 

of the Nibe data is 97% of the PIV ratio. The maximum level of turbulence for 

the two sets of data agree to within 5%. It is noted, however, that both sets of 

turbulence data vary considerably around the centreline and emphasis must not 

be placed on these percentages. 

The high amount of activity displayed by the PIV data at the edges of the wake 
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could be due to large eddies in the wake at 2.51), formed when the rotor enters 

the 'turbulent wake state'. There may be a transfer of energy from the boundary 

of the wake to the inner core. According to Ainslie[8], large scale turbulence is 

generated in the annular shear layer of the intermediate wake, which spreads into 

the core of the wake. Thus, it is possible that the boundary of the near wake and 

the intermediate wake exists around 2.5D. 

4.3 Comparisons with Wind-tunnel Data 

4.3.1 Loughborough University 

(a) Description of wind-tunnel tests 

The data used for these comparisons were the results of experiments carried out in 

the large closed circuit wind tunnel at the Department of Mechanical Engineering 

at Loughborough University of Technology during the period 1983-85. Green 

conducted tests on a small modified aircraft propeller of 150mm diameter[52]. 

Laser doppler anemometry was used to record the flow in the wake of the 2-blade 

model with smoke as a seeding agent. 

The data examined here correspond to the model operating at a tip speed ratio of 

A = 3.98. The mean hub-height velocity of the incident flow was 5.91m/s with a 

mean hub-height turbulence intensity of 4.7%. Measurements were made of axial, 

radial and swirl components of velocity and turbulence both at the rotor and up 

to 7D downstream. The data most suitable for comparison are axial components 

from the horizontal plane at hub-height at 1D and 2D downstream of the rotor. 

The 2-blade PIV results are chosen for comparison since, under the assumption of 

an axisymmetric wake, measurements on the centreline correspond to horizontal 

hub-height readings. 
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(b) Results of comparison 

PIV velocity and turbulence profiles are compared with Green's data at 1D and 2D 

downstream. There is a considerable difference in the shape of the velocity profiles 

at 1D. Figure 4.3.1(i) shows that Green's profile has a wider and flatter trough 

and is asymmetric. The PIV profile is smoother with a narrow deep deficit. The 

centreline velocity deficit for Green's data is 49% of that of the PIV profile. The 

PIV data contains velocity ratios greater than unity at the wake boundary in the 

lower half of the wake whereas Green's data contains no velocity ratios greater 

than unity. At 2D downstream, the velocity profiles compare more favourably. 

From Figure 4.3.1(u), it is seen that the centreline velocity deficit of Green's data 

is now 83% of that of the PIV profile. However, the differences in wake width and 

wake boundary values become more apparent. 

At 11), the turbulent velocity profiles match well at the wake boundary due to 

similarities in ambient turbulence conditions. However, across the wake core, 

Green's turbulence profile dominates, as displayed in Figure 4.3.1(iii). Large peaks 

in turbulence are witnessed at the blade tips and may be attributed to the presence 

of tip vortices. The PIV data does not display such recognizable structure. The 

maximum peak in turbulence of the PIV data is 59% of that of Green's profile 

while the centreline turbulent velocity ratio is 38% of Green's. 

At 2D, the tip vortices are even more prominent in Green's profile. In 

Figure 4.3.1(iv), the PIV data displays signs of some structure with small peaks 

in turbulence appearing at the blade tips. However, the maximum peak in turbu-

lence occurs inboard at around 40% blade span. The maximum turbulence of the 

PIV data has dropped to 39% of that of Green's profile. On the other hand, the 

centreline turbulent velocity has increased to 56% of that of Green's value. 



4.3.2 Marchwood Engineering Laboratories 

(a) Description of the wind-tunnel tests 

Experiments were carried out in the CEG13 1  Marchwood Engineering Laboratories 

(MEL) wind tunnel, reported by Hassan[54]. Three-bladed, rotating wind turbine 

models with rotors of 0.27m diameter and 14% solidity were used. The models 

were operated in a 1:300 scale atmospheric boundary layer simulation. The hub-

height wind speed was 4m/s and the turbulence intensity was 9%. Wake surveys 

were performed using hot-wire anemometers. Data were recorded at hub-height 

at a number of downstream positions over the range 2D-25D for the turbine op-

erating at tip speed ratios of 2.9, 4.0 and 5.1. Mean velocity, turbulence and shear 

stress profiles were obtained in the vertical, transverse and streamwise directions. 

PIV data are compared with MEL wake profiles at 2.51) downstream. Horizontal 

profiles from the wind tunnel measurements were chosen for comparison in pref-

erence to vertical profiles to avoid effects of the simulated boundary layer. The 

2-blade PIV results are preferred for comparison because they were recorded with 

the nacelle in-line with the laser sheet and effectively correspond to 'hub-height' 

measurements. In addition the 2-blade rotor had a solidity that matched that of 

the wind tunnel model more closely than the 3-blade rotor. Similarity of num-

ber of blades is a secondary consideration and the 3-blade results are also used 

for interest. Under the assumption of an axisymmetric distribution of velocities 

in the wake, geometrical arguments are used to translate the 3-blade data onto 

the centreline. The off-axis recording means that there are missing values for 

an inner core of the wake. For the 3-blade measurements there is no data for 

—0.42 < r/R < 0.42. 

'Central Electricity Generating Board 
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(b) Results of comparison 

PIV velocity and turbulence profiles are compared with MEL data at 2.5D down-

stream with the turbines operating at a tip speed ratio of around A = 4. In 

Figure 4.3.2(i), the velocity profiles compare well, particularly the 2-blade results 

in terms of profile shape and width. The centreline velocity deficit of the PIV data 

is 90% of that of the MEL data. There are again discrepancies in wake boundary 

values with ratios from PIV data rising above unity. Mean velocity ratios for the 

MEL data are all below unity. 

Centreline velocity ratios are compared across the tip speed ratio range in 

Figure 4.3.2(u). Cross-wake and streamwise averaging are employed in calcu-

lation of the ratios. Although the data is sparse, the figure seems to indicate a 

favourable comparison as the tip speed ratio increased from low- to mid-A. The 

2-blade PIV data is plotted together with error bars based on the standard error 

of the velocity ratios (see Section 4.1.1). The error bars reflect the amount of 

turbulence in the wake centre at 2.51) downstream. The size of the error bars 

increases dramatically as tip speed ratio increases. 

Turbulent velocity profiles at 2.51) are compared in Figure 4.3.2(iii). The PIV 

data displays lower turbulence values than the MEL data with the PIV centre-

line and maximum values being 48% and 64% of the corresponding MEL values, 

respectively. The MEL data reveals an approximately symmetric double-peak 

structure, consistent with the presence of tip vortices. The PIV data is more 

scattered. There are peaks in turbulence values just outboard of the tip but also 

significant peaks inboard at 44% blade span in the lower wake and 56% blade span 

in the upper wake. 

The 5% difference in ambient turbulence intensities for the two experiments is an 

obvious factor to explain the difference in magnitudes of the turbulence datasets. 

The added turbulence in the wake, as defined in Section 4.1.1, may be a more suit-

able parameter with which to compare the datasets. However, the MEL results 

as reported by Hassan, indicate that the concept of added turbulence is not ap- 
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propriate over the whole wake. As a result, turbulence on the wake centre only is 

considered, where the mean turbulence intensity upstream is used as an estimate 

of hub-height intensity. The resulting plot is shown in Figure 4.3.2(iv). Negative 

values of Lo in the graph indicate that the wake turbulence is lower than the 

freestream value. The two datasets show a more favourable comparison than the 

previous plot. However, the PIV data is considerably more sensitive to tip speed 

ratio. The data look to agree more closely as tip speed ratio is increased from low 

A to medium values of A. 

4.4 Summary and Discussion 

Mean velocity and turbulent velocity profiles from the 2-blade and 3-blade models 

have been evaluated at separate locations in the near wake for a range of tip speed 

ratios. In addition, velocity and turbulence ratios on the wake centreline and along 

the centre of an off-axis plane have been plotted with downstream distance. The 

results were compared to measurements from Samos Island, Risø and Nibe at 1.1D, 

1.51) and 2.51) downstream respectively. Mean and turbulent velocity ratio has 

been plotted against wind direction and corresponding cross-wake distance in each 

case. Comparisons were also made with wind tunnel results from Loughborough 

University (11), 21)) and from the Marchwood Engineering Laboratories (2.51)). 

(a) Mean wake properties 

Asymmetry in the PIV velocity profiles was noticeable for both the 2-blade and 

the 3-blade results. This was due to disturbance of the upper half of the wake 

by the supporting 'tower' of the model. The 2-blade results were especially prone 

to wake interference since the tower was in the plane of the laser sheet during 

the recording of the measurements. Profile asymmetry in the near wake has been 

noted by Green in the wind tunnel tests at Loughborough University but in that 

case a non-uniform upstream profile was imposed and the asymmetry was likely 
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to be the presence of swirl in the wake. 

The shape of the PIV profiles differed in significant areas from the full-scale mea-

surements. In general, the PIV results produced narrow, deep profiles. Although 

the full-scale data is not as dense as the PIV data, it would appear that mea-

surements from the field produced wider profiles. Data from the Samos Island 

experiments yielded profiles with homogeneous central portions. This could imply 

significant cross-wake mixing. Complex terrain may also be a factor in explaining 

the shape of the profiles from the Samos data. Despite attempts at similarity, the 

scales of the turbulence in the atmosphere may have been different from those in 

the water tank and have varied according to stability. Large scale inhomogeneities 

of the terrain impose energetic turbulent motions with characteristic scales of the 

size of the wake (and even larger), leading to a smearing of velocity gradients in 

the centre of the wake. 

In wind tunnel tests, Green commented upon the observation of 'square' profiles 

at the boundary of the near wake region, as the profiles decay to a self-similar 

form. This has also been noted at full-scale from measurements made on the Nibe 

turbines[94]. In the the PIV results, profiles with flat central sections also occured 

at the edge of the near wake region and were especially noticeable at high A. 

The change in velocity profile is similar to flow entering a converging channel. 

This is consistent with wake contraction, characteristic of the turbulent wake state 

experienced by the flow at high tip speed ratios. The description of wake flow by 

Ainslie (see Section 1.2.1), however, suggests that large scale turbulence from the 

shear layer of the wake spreads to the wake core and reaches the centreline at 

around 3-51) downstream. The square profiles at 2.51) could be the first signs of 

this process, where the turbulent mixing process has not yet penetrated the whole 

of the wake cross-section. 

With the exception of the Risø comparison, the PIV wake deficits (given by the 

difference of the centreline velocity ratios from unity) were found to be much 

greater than the corresponding full-scale deficits. This was particularly noticeable 

in the comparison with the Nibe data. In the comparisons with the WM19S on 
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Samos Island, the centreline velocity ratios of the PIV results were more sensi-

tive to changes in A. The largest discrepancies occured at very high A where the 

PIV data yielded negative values of centreline velocity ratio, indicating areas of 

recirculating flow in the wake. The difference in scale is the most likely reason 

for the discrepancies observed, particularly the difference in Reynolds number of 

the flow. It is likely that the boundary layer flow on the model blades will differ 

from that at full-scale, particularly regarding the stall angle and the transition to 

turbulence[41]. Blockage in the water channel could also be a factor in explaining 

the differences in velocity deficits between full-scale and the model tests. How-

ever, it is noted that uncertanties pertaining to the field measurements could be 

significant. Cross-wake smoothing of full-scale data has already been discussed. 

In the results from Samos Island, wake meandering is also suggested as a reason 

for displacement of the full-scale and laboratory profiles. Scale effects are further 

addressed in Chapter 6. 

Comparisons of centreline velocity ratios from the PIV measurements and wind 

tunnel tests were more favourable. The 2-blade results were used for the majority 

of comparisons with wind tunnel measurements. It is noted that, whereas a high 

degree of geometric similarity existed between the 3-blade rotor and the full-scale 

machines of Samos and Risø, the 2-blade rotor differed greatly compared to the 

geometry of the wind tunnel models. This suggests the importance of scale effect in 

the comparison of the PIV work with other measurement campaigns. The results 

indicated that the comparisons in centreline velocity improved with downstream 

distance. This may be attributed to the very high blockage caused by the flat-

plate in contrast to the wind tunnel models, in particularly near the root of the 

blade. This causes an almost stagnant region of flow immediately behind the 

blades which recovers further downstream. 

The full-scale measurements produced velocity ratios greater than unity at the 

extremes of the profile. Taylor[94] queried whether increases in wind speed ratio 

above unity were due to errors in calculating the wind velocity from the turbine 

power output. Far outside the periphery of the wake, the ratios must decrease 

to 1.0 as the velocity returns to that of the freestream value. This suggests a 
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region of accelerated flow between the freestream and the wake. The PIV profile of 

Figure 4.3.2(i) is also consistent with a region of accelerated flow. At experimental 

scale, this tendency may be exaggerated by blockage in the tank, but it is clear 

from Figures 4.2.1(vi), 4.2.2(u) and 4.2.3(u) that it also occurs at full-scale. 

A simple explanation for the region of accelerated flow is that the rotor partially 

obstructs the airflow, as a solid object would. In order to conserve mass flow (at 

constant pressure), the air must speed up around the obstacle. Alternatively, as 

the air in the wake slows down and expands, so the air outside it must speed up 

to flow through a more confined space. The effect is consistent with the idea of a 

helical vortex structure in the wake, which retards the air inside it, but accelerates 

the air outside, with respect to the freestream. 

(b) Turbulence properties in the wake 

A significant increase in turbulence was observed from the PIV turbulent velocity 

profiles as tip speed ratio increased. Maximum values of turbulence occured in 

the region of the wake centreline. Plotting values of the turbulent velocity ratio 

in the centre of the wake versus A yielded more information about the location of 

turbulence in the wake. The 3-blade results suggested that at A = 1.6, the greatest 

turbulence was contained in a region immediately behind the rotor. At around 

A = 3, the turbulence reached a minimum value before levels began to increase 

with increasing A. The 2-blade results suggested that at A = 8, the highest levels 

of turbulence existed further downstream, at around 2.51). 

An explanation for this may be that at low tip speed ratio the rotor is heavily 

stalled, and the turbulence is due to the separated flow behind the individual 

blades of the model rotor; this may be referred to as 'local' turbulence. At high 

tip speed ratio, the blades are likely to be largely unstalled, with smooth (unsep-

arated) flow over their surfaces. However, in this case, the wake itself is highly 

turbulent on a large scale, due to the strong vorticity being transmitted into it 

from the rotor. As the rotor enters the turbulent wake state, large areas of re- 
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circulating flow form downstream of the rotor. At some intermediate value of tip 

speed ratio, the blades may be operating out of stall, but with a relatively weak 

vortex pattern in the wake. Comparison of centreline turbulent velocity ratios 

between the 3-blade PIV results and the full-scale results from Samos Island at 

1.1D revealed similar trends in turbulence levels with tip speed ratio. This re-

sult is very encouraging, given the effect terrain may have on the stability of the 

full-scale flow. 

Care must be taken in comparing the turbulence results from the 2-blade and 

3-blade rotor, due to the difference in the averaging processes employed for each 

set of results. In particular, the 3-blade data was averaged over different wake 

phases and it is not straightforward to separate the effects of turbulence from the 

effects of vortex wake structure. 

The PIV results demonstrate a large growth in turbulent energy in the centre 

of the wake with increasing A. This appears to be due to the strong tip vortex 

structure. The turbulence peaks seen at low .\ outside the rotor circumference 

may be due to the wake of the supporting 'tower'. The phase-averaging involved 

in producing the 'frozen'-wake results is seen to reveal more evidence of tip vortex 

structure. The wind tunnel results, with which the 2-blade data is compared, 

display higher levels of turbulence and stronger tip vortex structure. In the case 

of Green's experiments, the large twist on the modified aircraft propeller may 

explain the high turbulence. When contrasted to a flat-plate blade, the decrease 

in angle of attack at each radial station results in the twisted blade operating at 

the equivalent of a higher local tip speed ratio for a given angle of incidence. This 

may explain the higher levels of wake turbulence of Green's results. For the MEL 

data, the higher ambient turbulence could be an important factor explaining the 

difference in results. 
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4.5 Conclusions 

A wake velocity analysisof the PIV results and a comparison with both full-scale 

and wind-tunnel experiments has been undertaken. The most important findings 

of this chapter may be listed as follows: 

The shape of the PIV velocity profiles differed in significant respects from 

full-scale measurements. In general, the PIV data yielded narrow, deep 

velocity profiles whereas measurements from the field produced wider profiles 

with homogeneous central portions. 

Large discrepancies in centreline velocity deficit between the full-scale and 

PIV data and the full-scale results occurred at high tip speed ratio. Uncer-

tainties in full-scale measurements, however, must be taken into considera-

tion. In the Samos Island experiments, the complex terrain of the wake farm 

may produce large scale inhomogeneities which affect the wake properties. 

The PIV data revealed that the highest levels of turbulence occured at the 

highest A and existed at around 2.51) downstream. The model rotor may 

have been operating in a turbulent wake state, causing large areas of recir-

culating flow, downstream of the rotor. 

The PIV analysis revealed the presence of 'square' profiles at 2.51), especially 

at high A. These occured during the transition from a highly structured to 

a turbulent wake. The shape of the profile may indicate that the turbulent 

mixing process has not yet penetrated the whole of the wake core. 

The PIV results showed favourable comparison with the wind tunnel tests, 

particularly with increasing downstream distance. One explanation for this 

trend could be that, far downstream, the effects of high blockage at the root 

stations of the flat-plate blade become less important. 
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Of the comparisons with full-scale measurements, those taken from full-scale 

machines in flat terrain showed most promise, specifically the comparison 

of velocity profiles with Risø data and the comparison of turbulent velocity 

profiles with the Nibe data. 

Scale effects are the most likely reasons for dissimilarity between the Ply 

results and results from other surveys. 

It would be unwise to draw too many firm conclusions at this stage, especially 

from the turbulence results, since the sample size was very small. The difficulty 

of comparison with other experiments must be taken into account. The choice for 

comparison was dictated by the availability of a reasonable amount of cross-wake 

data from the full-scale set, and the proximity of parameters such as tip speed 

ratio and ambient turbulence in each case. Where possible, measures were taken 

via cross-wake and streamwise averaging, to ensure that results did not rely on a 

single column of vectors or a single vector. 
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Chapter 5 

WAKE VORTICITY STRUCTURE 

Overview 

In this chapter PIV vector maps are used to obtain information about the vorticity 

shed into the wake of the model rotors. Vorticity contour plots are presented from 

measurements on both a 2-blade and a 3-blade model. The study focuses on the 2-

blade data since the phase-averaged wakes and measurements from the centreline 

are more useful in revealing the vortex structure. The shape, transport, dissipation 

and instabilities of the vortex structure are investigated. Comparisons of the PIV 

vorticity measurements are made with simulations from a sophisticated free wake 

vortex code developed at the University of Stuttgart. 

5.1 PIV Analytic Procedures 

5.1.1 Extracting Vorticity Information 

For each point (x,y,u,v) of the PIV velocity vector map, the vorticity at that point 

is calculated according to the equation 

fIu ôv 

'9Y 	ax 
(5.1) 
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using the convention that a clockwise circulation in the flow is a source of positive 

vorticity. A fifth order polynomial is used to approximate the terms 	and 

with a routine that searches for the four nearest neighbours to the point in each 

of the directions, x and y, in order to perform the discretization. The resulting 

PIV vorticity data is then normalised using the relation 

- 	

(5.2) 
0 

where d is the diameter of the search routine area and Uo is the freestream velocity. 

The data is then used as input to a contour plotting package. If the PIV data 

contains missing vectors then the data is input as an irregular grid and the contour 

package uses a spline interpolation scheme to account for the missing values. 

For the 3-blade experiments the nacelle of the model was offset from the mea-

surement plane. In some analyses, a transformation based on simple geometrical 

considerations was used to translate the observed vorticity of each fluid element 

onto the centreline. Thus, 

(5.3) 

where sin 0 = 2  and r and y dictate the radial and cross-wake positions of the fluid 

element, respectively. The wake was assumed to have an axisymmetric distribution 

of vorticity. 

Assuming the wake also has an axisymmetric distribution of axial velocity, the 

quantity = u was integrated over concentric annuli at each downstream location 

to estimate a value for the flux of vorticity in the wake with respect to downstream 

distance. This was given by discretisation of the equation 

= 27r f çbrdr 	 (5.4) 

This is converted to a dimensionless quantity using the relation 

- UR 	
(5.5) 

where U0 is the freestream velocity and R is the radius of the rotor blades. 
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5.1.2 Results for 2-blade rotor (frozen wake) 

Direct conversion of the velocity vector maps of the 2-blade rotor (Figures 3.3.3(i)-

(iii)) for the tip speed ratios of A = 3 1  4, 5 1  6 and 8, produces vorticity data which 

is displayed in the contour plots of Figures 5.1.2(i)-(iii). The vorticity contour 

plots are presented using the same scale for the purposes of comparison. However, 

it is possible to change the contrast of the plots to highlight interesting aspects 

of the flow. Figure 5.1.2(iv) replots the vorticity data for the A = 3 case using a 

different scale. 

(a) Tip vortices 

A number of trends are seen from examination of the figures. At the tip speed 

ratios of A = 3 and A = 4, there is slight wake expansion immediately behind the 

rotor which continues downstream. As the tip speed ratio increases, the initial 

expansion is more obvious and in addition the boundary of the wake is subject to 

contraction some way downstream. This can be seen in the cases A = 5, 6 and 8. 

With increasing tip speed ratio, the point of contraction of the wake boundary 

moves closer to the rotor. 

The upper half of the wake is seen to be clearly affected by the shroud and the 

tower of the support structure. Cosequently, the lower half of the wake is used for 

futher analysis of the 2-blade vorticity data. Plotting the position of maximum 

vorticity for each tip vortex gives an indication of the shape of the wake boundary 

as tip speed ratio is increased (see Figure 5.1.2(v)). The points corresponding 

to A = 5 are correctly positioned on the graph with respect to the vertical axis. 

The other curves are offset by multiples of 0.5. The curve for the case A = 8 is 

particularly noticeable and could suggest large contraction in the wake. Care must 

be taken, however, since the appearance of large wake contraction is based on only 

one datapoint. It can be seen that there are discrepancies in the shape of the wake 

boundary given by the position of tip vortices shed from different blades. This 

can be attributed to slight differences in the geometry of the individual blades 
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of the 2-blade rotor and the blades are labelled as blade 1 and blade 2. Blade 1 

is identified as the blade responsible for shedding the vortex closest to the rotor 

plane in the vorticity plots of Figures 5.1.2(i)-(iii). 

Figure 5.1.2(vi) is a plot of axial distance downstream of the rotor for each tip 

vortex. The spacing of tip vortices from the 2-blade PIV results is not consistent 

with an asymptotic slow-down of the wake, corresponding to the ideas of conser-

vation of mass in both blade element /momentum and induction theory. These 

theories predict a densely-packed helical vortex system in the wake. From the 

Figures 5.1.2(i)-(iii), the packed helical vortex appears as a temporary phenomenon 

immediately behind the rotor. Further downstream, the helix angle appears to 

increase and we observe a more loosely packed vortex spiral. This behaviour has 

been commented upon previously by Montgomerie[74], with reference to smoke 

tests in a wind tunnel by Alfredsson and Dahlberg[9]. In general, the spacing 

between tip vortices immediately formed behind the 2-blade rotor decreases with 

tip speed ratio, as expected. The points plotted for A = 8 clearly do not match 

the trend in the graph. This is discussed further in Section 5.3. 

The vorticity contour plots reveal that the strength and size of the tip vortices 

increase with tip speed ratio. The point of maximum vorticity within the tip vortex 

is plotted as a dimensionless quantity for the 2-blade rotor in Figure 5.1.2(vii). 

The two blades are treated separately since, as noted above, the vortices shed from 

each display differing behaviour. It can be seen from the plot that vortices shed 

from the rotor when operating in the mid-A range persist longer. This has also 

been witnessed at full-scale by Pedersen & Antoniou[77]. At low A, the tip vortex 

of the PIV results is very weak and decays by about 1.OD downstream. At high A, 

the tip vortex is strong but, as seen from the graph, decays very quickly and 

persists up to 1.51) downstream. A number of factors may influence the strength 

and lifetime of the tip vortices and care must be taken when isolating the effect 

of tip speed ratio alone on vortex decay. This is discussed further in Section 5.3. 

The transport of vorticity in the whole of the wake is studied by plotting the 

flux of vorticity, V, versus downstream distance for each tip speed ratio in the 
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separate graphs of Figure 5.1.2(viii). The frequency and amplitude of oscillations 

in vorticity flux correspond to the position and strength of tip vortices in the 

wake. The vorticity transport curves illustrate the more loosely packed tip vortices 

further downstream. The behaviour of flux of vorticity in the wake with tip speed 

ratio is further addressed in Section 5.2.2. 

(b) Inboard vorticity 

The contour plots reveal a second source of vorticity, in addition to the tip vortices, 

inboard of the tip. Figure 5.1.2(iv) replots the vorticity data, for ) = 3, on a scale 

which highlights this 'inboard' vorticity, compared to Figure 5.1.2(i). The region 

of concentrated vorticity has its origins very close behind the blade but not close 

enough to the hub, nor of the correct sign, to be labelled as a root vortex. The 

inboard vorticity moves under the influence of the flow behind the rotor and clearly 

indicates the effects of wake expansion with tip speed ratio. At high tip speed 

ratio, this second source of vorticity moves outward until it merges with the helical 

tip vortex system. For the case ) = 8 (see Figure 5.1.2(iii)), this results in an 

increase in the maximum vorticity within the tip vortex system at that point. The 

source of the inboard vorticity is discussed in Section 5.3. 

5.1.3 Results for 3-blade rotor (averaged wake) 

Data obtained from tests with the 3-blade rotor are presented as vorticity contour 

plots in Figures 5.1.3(i)-(v). The data was captured off-axis and averaged over 

six different rotor positions in order that the measurements were more suitable 

for comparison with the time-averaged recordings of full-scale results from Samos 

Island (see Section 3.2.1). Averaging of data with the helical vortex system in 

different phases results in a loss of all time-dependent vortex structure and the 

plots displayed in Figures 5.1.3(i)-(iv) show less distinct vortex patterns than the 

2-blade contour plots. However, averaged vorticity maps yield a steady-state ax-

isymmetric vortex pattern and as such, can provide vorticity data which is directly 
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comparable with the assumptions of actuator disk models. General observations 

concerning the relative vortex stengths and structure are made for each of the 

operating states A = 1.6, 2.7, 3.2, 4.2 and 4.8. 

At A = 1.6, isolated regions of concentrated vorticity are displayed in the contour 

plot of Figure 5.1.3(i). The wake is divided into regions of positive and negative 

vorticity, lying on either side of the centreline. This is the expected pattern from 

the cross-section of a helical vortex. As A increases, the wake width increases 

as does the strength of the vorticity contained within it. The sinusoidal pattern 

imposed on the boundary of the wake in Figure 5.1.3(iii) is consistent with the 

presence of trailing tip vortices. The figure also shows two sources of concentrated 

vorticity lying very close to, and either side of the centreline. They appear to be 

stronger, though of the same sign as the corresponding tip vortices. As A increases, 

the strength and size of this inboard vorticity increases relative to the vorticity at 

the periphery of the wake. Figure 5.1.3(v)(A = 4.8) is notable for signs of wake 

contraction around 2.5D downstream. 

To compensate for the offset factor in the 3-blade measurements, vorticity 'cor-

rections' are applied to the results. This problem was overcome in the 2-blade 

measurements by conducting experiments with the nacelle of the rig in the plane 

of the laser sheet. Under the assumption of an axisymmetric wake, the 3-blade 

vorticity data is translated onto the centreline plane to yield absolute values of 

vortex position and strength for each tip speed ratio. As an example, the corrected 

vorticity data for A = 3.2 is plotted as a contour plot in Figure 5.1.3(vi). The 

position of the vortices at the boundary of the wake is consistent with vorticity 

shed from the tip of the blades, as expected. The contour plot reveals that the 

vorticity corrections have the disadvantage of an absence of data from the inner 

42% of the blade. The strong inboard vorticity, in comparison with the vorticity 

shed by the tips of the blade, may be a property of the mathematical transla-

tion. However, the strong inboard vorticity appears to emanate from a spanwise 

position of around 0.5R. This coincides with a position on the blade that was 

captured on film intersecting the laser sheet. This suggests the possibility of large 

circulation around the WM19S replica blades at a spanwise station of 0.5R, and 
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this blade-bound circulation is then captured in the laser sheet. Futher discussion 

on the source of the inboard vorticity is presented in Section 5.3. 

5.2 Comparison with a Vortex Wake Model 

This section presents a comparison between the PIV results and a sophisticated 

vortex wake code developed at the Institut für Aerodynamik und Gasdynamik 

(JAG), Universität of Stuttgart. The comparison is based on the 2-blade results 

since flow past the flat-plate blades is a fundamental study and offers simplicity 

in modelling the rotor. In particular, extreme operating states of the blades 

are investigated. These correspond to regions of flow where current theoretical 

techniques give least satisfactory results. 

5.2.1 The ROVLM code 

The ROtor Vortex Lattice Method code[19, 18] is a modular free-wake code for 

the calculation of loads and flow field properties of wind turbines. The ROVLM 

code has been developed at JAG over the past four years and extends a lattice 

method[24] to simulate the effects of vortex shedding and roll-up in the wake. It 

is able to predict the wake geometry and the strength of the vorticity on the rotor 

blades and in the field. The input consists of the blade geometry and the flow 

conditions. No prior assumptions concerning the shape of the wake are necessary. 

In the simulation, the blades start their rotation in the first time step and in every 

subsequent time step a new portion of the wake is shed from the trailing edge of 

the blades. A steady state solution develops after a few revolutions depending on 

the loading of the rotor and the oncoming flow. 
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Theory 

The method is based on the solution of the Laplace equation assuming an inviscid 

and irrotational flow. Solutions take the form of elementary singularities repre-

senting vortices, sources or dipoles. These singularities are used to model the flow 

field. Within the current method, dipoles are placed at the blades and in the 

wake. This corresponds to simulating the lift forces on the rotor. Blade thickness 

is neglected. 

Discretization 

The rotor blades have to be discretized into a set of quadrilateral panels covering 

the camber line of the local blade profiles along the radius. Sensitivity studies 

have shown that the main features of the solutions can be retained by using only 

one panel in chordwise direction, although the code is able to treat more. In 

the radial direction 10 panels are used. Each panel contains a dipole of constant 

strength which is equivalent to vortex filaments defined by the corner points of 

the panel. (See Figure 5.2.1(i)). 

Procedure 

In the centre of each panel, a control point is declared at which the singular-

ity strength is specified. The singularity distribution across the blade panels is 

determined by applying the kinematic boundary condition in external Neumann 

form so that the velocity component normal to each panel vanishes. Vorticity is 

shed into the wake as a row of wake panels, evolving from the trailing edge. The 

amount of shed vorticity is determined by the Kutta condition. The presence of 

the wake panels affects the induced velocities at the blades and the singularity 

distribution has to be re-calculated. Repeating this procedure for each time step 

results in a growing wake. To reduce the computation involved in the free-wake 

calculations, a simplified model is incorporated for far wake transport. 
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Flow field calculations 

A post-processer is used to read in the geometry and the singularity strengths 

of the blades together with their wakes and calculate velocities at desired points 

in the flow field. The wake velocities are determined using the Biot-Savart law. 

The vorticity is assumed to be concentrated within the filaments. Therefore, if a 

field point is very close to an inducing vortex filament an unrealistic high value 

of the velocity will be achieved. In order to overcome this problem a core radius 

has to be assumed for that case. Once the velocities are known, the vorticity 

components normal to the field plane are calculated from the central differences 

of the neighbouring points. 

Simulations 

Blade geometry, operating states of the rotor and size and location of the mea-

surement area in the flume were used as input to the ROVLM code in order to 

simulate the PIV measurements. 

Figure 5.2.1(u) shows a typical result of the ROVLM calculations. Depicted is 

the discretized rotor together with the resulting wake. The flow is in the positive 

z-direction of the diagram. A two-dimensional region is depicted, corresponding 

to the laser sheet in the PIV set-up, from which wake velocities are extracted for 

the purpose of comparison with the PIV data. 

In a typical simulation by the ROVLM code, 140 iterations would be performed, 

corresponding to about 10 hours computational time. 

5.2.2 Results of Comparison with the ROVLM Model 

Wake velocities from the 2-blade PIV experiments and the ROVLM simulations 

are analysed to produce vorticity contour plots for the purpose of comparison of 
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results. Only velocities in the lower half of the wake are used since the upper 

half of the wake of the PIV data is affected by 'tower' shadow. The comparisons 

are displayed in Figures 5.2.2(i)-(v) for tip speed ratios of A = 3,4, 5, 6 and 8. 

The plots highlight important differences and similarities between the two sets of 

results. 

(a) Tip vortices 

Firstly, the results compare reasonably well in terms of the overall shape of the 

wake; the ROVLM simulations model the contraction of the wake at high A with 

some success. Figure 5.2.2(vi) compares the width of the wake for the two cases. 

The shape of the wake boundary is estimated by studying the position of maxi-

mum vorticity within the tip vortices. The maximum and minimum location of 

this point are plotted versus tip speed ratio to consider the extent of wake expan-

sion and wake contraction. Figure 5.2.2(vi) reveals that the shape of the wake 

boundary for the PIV data is more sensitive to A than the ROVLM data. This 

is particularly evident at high A where large initial wake expansion is followed by 

marked contraction. 

The average tip vortex spacing for each tip speed ratio for the 2-blade PIV results 

is calculated from the slope of the points in Figure 5.1.2(vi) and is contrasted 

with the ROVLM results in Figure 5.2.2(vii). The two curves can be seen to 

agree quite closely at low A, but deviate at higher tip speed ratios. As tip speed 

ratio increases, the two curves exhibit a trend of decreasing tip vortex spacing, 

consistent with the shedding of a vortex system of decreasing helix angle. The 

rate of decrease in this vortex angle becomes less at higher A. The highest tip 

speed ratio, A = 8, produces the largest discrepancy between the PIV and the 

ROVLM results. Again, care must be exercised when interpreting this result as 

the observation is based on only one datapoint. 

The strength of tip vortices for the PIV and ROVLM results are compared in 

Figure 5.2.2(viii). The two blades of the flat-plate rotor are treated separately 
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since differences in the vortex shedding properties of the blades were discovered 

(see Section 5.1.2). The graphs of Figure 5.2.2(viii) show the maximum value of 

vorticity in the vortex closest to each blade (see Figures 5.2.2(i)-(v)) as a func-

tion of tip speed ratio. In the PIV aquisition and the ROVLM simulations, this 

corresponds to the vortex most recently shed from the blade. Figure 5.2.2(viii) 

shows that the strength of the vortex for the ROVLM data is relatively constant 

compared to the PIV results. Although the results display some agreement at 

low tip speed ratios, the ROVLM simulations do not match the strength of the 

vortices produced in the PIV experiments at high A. The PIV data from blade 1 

at A = 5 may be spurious but, in general, the PIV data appears to be more 

sensitive to A than the ROVLM data and shows an increase in magnitude of the 

vortex strength as A increases. This is consistent with the notion of more energy 

introduced into the trailing vortices at higher A. There is a slight decrease in the 

magnitude of the vortex strength for the ROVLM curve. Comparing the graphs 

of Figure 5.2.2(viii), there is little difference in the ROVLM results for the two 

separate blades, as expected for a numerical simulation. The PIV results confirm 

that the individual blades of the 2-blade rotor have different properties in terms 

of vortex shedding. This may be attributed to differences in geometry between 

the two blades. 

Analysis of Figure 5.2.2(viii) yields an average vorticity flux which is plotted to-

gether with the corresponding ROVLM values in Figure 5.2.2(ix). Both curves 

display trends which suggest there is a transport of vorticity away from the rotor 

which increases as tip speed ratio increases. Values for this flux of vorticity for 

the PIV results are shown to be larger than for the ROVLM results. 

(b) Inboard vorticity 

The ROVLM results display no signs of the 'inboard' vorticity apparent in the 

PIV contour plots. In the PIV plots of Figures 5.2.2(iii) and 5.2.2(iv) (A = 5 and 

A = 6), it is noted that interaction between successive tip vortices occurs once the 

inboard source of vorticity has merged with the tip vortex spiral. There is some 
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evidence from the plots that the vortices dissociate at 2.5D downstream. The 

PIV plots also show that the inboard vorticity is distinct from the root vorticity. 

Evidence of root vorticity can be seen in the top left hand corner of the PIV contour 

plots. It is not as strong as the vorticity of the tip vortex system and is seen to 

disperse within one blade revolution. In contrast, the root vorticity of the ROVLM 

contour plots is very pronounced. The inviscid assumptions of the ROVLM code 

mean that large angles of attack near the hub in the JAG simulations lead to 

large circulation around the root of the blade instead of separated flow, as would 

occur in experiments, corresponding to blade stall. Thus the root vortices are 

very strong and in addition not subject to viscous dissipation. The JAG contour 

plots reveal a breakdown in the vortex structure downstream of the rotor. This 

appears to be have its origins in interaction of root vortices shed from separate 

blades. This breakdown of vortex structure occurs closer to the rotor at higher 

tip speed ratios. 

5.3 Summary and Discussions 

The vorticity in the near wake of a 2-blade and 3-blade model has been examined 

for a range of tip speed ratios with the aid of contour plots. Vorticity data has 

been analysed to gain information about the geometry, strength and stability 

of the vortex system. Comparisons are made with an advanced free-wake code 

(ROVLM), developed at the University of Stuttgart. The ROVLM code was 

configured to simulate the same conditions, in terms of rotor geometry and tip 

speed ratio, as those obtained in the 2-blade PIV tests. 

The vorticity contour plots for both the 2-blade and 3-blade PIV tests revealed 

structures that were consistent with the expected pattern of a cross-section of a 

helical vortex spiral. At low tip speed ratios, mild wake expansion was observed. 

This pattern concurs with simple wake theory. For both the 2-blade and 3-blade 

results, tip speed ratios of around ) = 5 and higher displayed signs of contraction 

in the wake downstream of the rotor. This has been observed to precede the 
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breakdown of the structured wake into a highly turbulent state. 

The contraction in the wake may be explained as follows. At high tip speed 

ratios the model behaves like a circular disc placed perpendicular to the flow, 

forcing the fluid around it. The resulting large slipstream expansion, turbulence 

and recirculation in the wake are characteristic of a wind turbine rotor operating 

in the turbulent wake state. The areas of recirculation produced downstream of 

the rotor reduce the velocities in the core of the wake. The law of conservation 

of mass flux then explains the contraction of the wake boundary. As tip speed 

ratio is increased the width of the low pressure region of fluid behind the turbine 

increases and the point of contraction of the wake occurs closer to the rotor. In 

the extreme case, areas of recirculating flow are established in the rotor plane. 

This is referred to as the vortex ring state[38]. 

Areas of recirculation within the wake could also encourage re-entrainment of the 

free -stream into the wake and thus would be expected to have an effect on the 

velocities of the tip vortices. The 2-blade PIV results confirmed that the spacing 

of the vortices was not consistent with an asymptotic slow down of the wake, as 

assumed by BEM theory. The same finding was reported by Björn Montgomerie 

at an TEA symposium in 1990. He referred to wind tunnel tests carried out 

by The Aeronautical Research Institute of Sweden (FFA) in 1979, when smoke 

studies on model turbine rotors revealed strong acceleration of the wake spirals, 

following an initial deceleration. This was noted to coincide with strong mixing 

of the freestream and the wake, again in contradiction to basic BEM theory. 

Figure 5.2.2(vii) of the PIV results appears to show a dramatic increase in tip 

vortex spacing at A = 8. It is plausible that there is a wake acceleration due 

to re-entrainment which uncoils the densely packed helical spiral. However, the 

PIV contour maps at high A (Figures 5.2.2(iii) and 5.2.2(iv)) displayed signs of 

vortex pairing in the tip vortex system. For A = 8, Figure 5.2.2(v) showed the 

downstream wake appearing as large well-spaced vortices. Each of these vortices 

may actually be two vortices coalesced into one. This vortex interaction would 

lead to an uncertainty in determining the spacing of the vortices, with the result 

that they may appear to be accelerating. 
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The PIV contour plots revealed a second region of concentrated vorticity in the 

wake of the model, inboard of the tip. The 'inboard' vorticity was not of the 

correct sign to be attributed to root vorticity and although the 3-blade results 

suggested it may be due to blade-bound circulation in the laser sheet, its size and 

strength relative to the tip vorticity and its persistence downstream cast some 

doubt over this theory. 

Close study of the PIV velocity vector maps of Section 4.1.3 may give some insight 

into the source of the inboard vorticity. A PIV velocity vector map of the 2-blade 

rotor at .\ = 8 is reproduced in Figure 5.3. The map identifies three distinct regions 

of flow in the wake. Firstly a wake core, containing very small velocities. At very 

high A, the flow immediately behind the rotor is almost stagnant, while further 

downstream areas of turbulence and recirculating flow establish themselves. The 

second region is the outer wake, comprising the tip vortex structure while the 

third region is an inner wake moving under the influence of rapidly expanding 

flow. The inner wake may well contain sections of vortex filaments shed from 

the blades. This matches Glauerts description of the wake as a vortex system 

comprising an intense tip-vortex outer region and a weakly-diffused vortex sheet 

inner region. The velocity gradients across the inner wake result in a shear layer 

of vorticity. The stretching of smoke traces in tests by Pedersen & Antoniou give 

credit to the existence of this shear layer at full-scale. 

The vortex structure in the shear layer was found to move under the influence 

of rapid expansion. As tip speed ratio increased, this led to an interaction of 

the vorticity in the shear layer and the tip vortices. At A = 5 and A = 6, this 

caused instability to the tip vortex system resulting in the coalition of adjacent 

vortices. This 'pairing process' has been commented upon previously in separate 

studies by Alfredsson[10] and Green[52]. In Figure 5.2.2(iv), the preceeding vortex 

appeared to roll-up over the top of its neighbour to produce a single vortex by 

1.51) downstream. Green estimates the distance for the pairing vortices to become 

indistinguishable as 2.OD downstream. At A = 8, the shear layer merged with the 

tip vortex system to produce an area of concentrated vorticity of thickness of the 

order of the rotor radius. The area of influence of the tip vortex system thus 
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extended to more than twice the swept area of the rotor. At full-scale, Pedersen 

& Antoniou recorded the area of influence to be close to 40% of the swept area. 

The 2-blade PIV results were compared with simulations from ROVLM, a sophis-

ticated vortex wake code. Detailed comparisons with the numerical data are of 

less interest than the overall conclusions, since the code was inviscid. The genera-

tion of vorticity on the physical model is due to the boundary layer on the blades 

and hence the dependence of the PIV results on Reynolds number is inevitable. 

This is discussed further in Chapter 6. 

The PIV and ROVLM simulations compared reasonably well in terms of overall 

wake geometry. The numerical results modelled wake contraction with some suc-

cess although the wake contraction of the 2-blade PIV results was more sensitive 

to tip speed ratio. As tip speed ratio was increased, the PIV results displayed a 

corresponding increase in both the size and strength of the tip vortices. The tur-

bulent wake preserves the energy within the trailing vortex filaments to produce 

a very strong vortex pattern. Although the PIV and ROVLM results show some 

agreement at low A, the tip vortices shed at higher A were much stronger for the 

case of the PIV results. 

The size and strength of tip vortices were more sensitive to changes in A in the case 

of the PIV experiments. Vortices shed from the rotor when it was operating at 

medium A appeared to travel further downstream before dissipation. The tendency 

for tip vortices to persist in moderate wind conditions has also been witnessed at 

full-scale by Pedersen & Antoniou. The PIV results indicate that in the mid-A 

range, the tip vortices do not persist more than two diameters downstream. This 

is in accordance with observations made at full-scale by Savino & Nyland. 

Care must be taken before drawing conclusions on the effect of tip speed ratio alone 

on the properties of the vorticity shed into the wake for the PIV experiments. It 

has been noted above that the PIV results were very sensitive to changes in A, yet 

in the PIV experiments different tip speed ratios were achieved by running the 

rotor at different speeds. Thus the blade Reynolds number would also vary from 
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one test to another. This is addressed further in Chapter 7. 

The root vortices were more pronounced in the results of the ROVLM simulations. 

Due to inviscid assumptions, there is large circulation but no separated flow de-

spite large angles of attack near the hub. Thus the root vortices were very strong 

and not subject to dissipation. In contrast, the PIV data revealed that, due to 

stall near the hub, the root vortices were not as large as those of the ROVLM 

simulations. The root vortices in the experiments were subject to dissipation due 

to the influence of viscosity. The PIV vorticity contour plots revealed that the 

root vortices were dissipated within a blade revolution. This was consistent with 

observations from full-scale by Pedersen & Antoniou. The numerical simulations 

revealed that, with no viscous damping, the strong presence of the root vortices 

resulted in an interaction of vortices from separate blades leading to instability in 

the vortex structure. 

5.4 Conclusions 

A wake vorticity analysis of the PIV results and a comparison with the ROVLM 

code has revealed behaviour in the wake of the models which influences the struc-

ture of the vortex system shed from the blades. The most important findings of 

this chapter may be listed as follows: 

1. The PIV and ROVLM results both predict wake contraction after initial 

expansion, at high tip speed ratios. This is contrary to simple BEM/actuator 

disk models. Areas of recirculation, established in the wake at high .\, may 

be responsible for the wake contraction. 
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The PIV contour plots revealed a second region of concentrated vorticity in 

the wake of the model, attributed to a shear layer between the tip vortex 

system and the retarded inner wake. This inboard vorticity moved under 

the influence of rapid wake expansion to merge with the helical tip vortex 

spiral. In some cases this leads to instability of the tip vortex system. 

The ROVLM simulations did not display evidence of inboard vorticity. The 

inboard vorticity may be due to the tests having been carried out at low 

Reynolds numbers, but this is unproven. The phenomenon may be a funda-

mental property of HAWT near wakes at all scales. The ROVLM needs to 

be modified to incorporate Reynolds number as a variable parameter within 

the code. 

At high A, both the PIV and ROVLM results indicated a breakdown of the 

vortex structure into large-scale turbulence at 2D-3D downstream. For the 

PIV results, this may coincide with the rotor operating in the turbulent 

wake state. In the ROVLM case, this may be due to interaction of strong, 

persistent root vortices. Wake breakdown is, however, absent from most 

rotor codes, of either BEM or vortex-wake type. 

The ROVLM code needs to be capable of modelling the case of stalled flow at 

the blades. This is an important case and an area where current prediction 

codes give the poorest results. At present, the ROVLM modelling of the 

inboard sections (at high incidence) will be significantly in error, and the 

root-vortex strength will be over-predicted. 
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Figure 5.3 PIV velocity vector map of the 2-blade rotor at \ = 8, 

illustrating different regions of the wake. 
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Chapter 6 

SCALE EFFECT, AND SOURCES OF ERROR 

Overview 

In this chapter, an assessment of the PIV experiments is given in order to place 

the results of the PIV tests in perspective with results from other surveys. In 

particular, the similarities between the flow at model scale and flow around a 

full-scale wind turbine are discussed. The concept of scale effect is introduced 

and differentiated from errors in velocity measurement incurred using the PIV 

technique. An indication of the likely effects of scale on the wake flow are given, 

based on the expected changes in blade flow with Reynolds number. 

6.1 Similarity with Full-scale Flow 

The similarities between the flow around the model turbine in the water channel 

and flow at full-scale are classified in terms of geometric, dynamic and kinematic 

similarity. 
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6.1.1 Geometric Similarity 

The model rotor 

A high level of geometrical similarity was sought for the 3-blade model replica of 

the WM19S machine from the Samos Island wind park. Despite the small scale, 

the model was accurately profiled with twist, chord and thickness distributions 

based on the manufacturers' original drawings. The total solidity of the rotor, 

calculated as the ratio of blade area to the swept area, for the 3-blade rotor is 

7.8%. Data from a Vestas V20/100 machine was also used in the comparisons with 

the model replica, as it represented a convenient 3-blade stall-regulated machine. 

However, its somewhat lower solidity of 5.5% makes the comparison imperfect. 

The 2-blade flat-plate blade has a solidity of 9.1%, but was not compared with 

any full-scale results. One aspect of the 2-blade model was its much higher local 

solidity at the inboard stations than the 3-blade model. For the inner 20% of the 

blades, the solidity of the 2-blade model is close to 50% while the 3-blade model 

has a solidity of around 30%. This may be attributed to the fact that the 2-blade 

model had no root cut-out. 

The flume boundaries 

The influence of the side walls of the flume on the flow past the rotor is a potential 

source of error and is therefore investigated. Blockage in the channel results in an 

increment of speed at the edge of the boundary layer of the walls that is greater 

than would exist at the same distance from a turbine in the field. The peak 

effect opposite the model is called solid blockage, e3b,  and the maintained effect 

behind it it called wake blockage, Cwb.  A similar procedure to that of wind tunnel 

blockage corrections can be followed. The method of images is used to simulate the 

effect of solid boundaries in the flow[79]. For a solid body in a closed rectangular 

section, the body may be mathematically represented by a source-sink system. 
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The channel boundaries may be represented by an image system consisting of 

a doubly-infinite system of source-sink combinations. The images are spaced a 

channel-height apart vertically and a channel-width apart horizontally. 

In order to estimate the blockage for the model turbine, the case of a sphere 

with the same radius as the rotor (87.5mm) is considered. Assuming the free 

surface acts as a solid boundary, the body is contained within a test section of 

C= 400mm x 750mm. Assuming irrotational flow, each source doublet simulating 

a sphere in the image system acts at the body with velocity potential 

q5 = 2 r 
(6.1) 

where (r, 0) are the polar co-ordinates of the dipoles in the image system. The 

incremental velocity induced at the sphere is then given by 

AV 	a3  sin 0 
(6.2) 

V. 

where Vu is the uncorrected velocity. Noting the fast convergence of the series, due 

to -  terms, an estimate of 6 ,,b = 3% is provided by using the nearest neighbours 

to the body in the image system. 

The Thom[95] equation for solid blocking for a 3-dimensional body is 

Model volume 
fsb = (6.3) 

In the case of the sphere this gives a value of c 3b = 1.7%. The total blockage 

Ct = Cb + C8b is then of the order of 5% but the model turbine rotor would be less 

of an obstruction to the currentin the water channel and e t  would be expected to 

be smaller. Pope and Harper[79] suggest using 

1 Model frontal area 
Ct = 

4 Test section area 	
(6.4) 

At high tip speed ratios, the rotor can be replaced by a disc of the same radius. 

Then the total blockage correction, taking into account the tower shroud, is 

ft = Cdisc + Eshroud 	 (6.5) 

This is calculated to be 2.5%, and can be regarded as negligible. 
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6.1.2 Dynamic Similarity 

Reynolds number 

The condition of dynamic similarity is achieved by reproducing a number of di-

mensionless quantities that describe the flow. The most important of these, in 

low-speed experiments where the Mach number is much less than unity, is the 

Reynolds number (see Section 3.2.1). 

At a point on the blade located at 70% span, the blade Reynolds numbers of the 

full-scale WM19S machine and the 3-blade model replica may be compared. Over 

the tip speed ratio range A = 1.6-4.8, the Reynolds numbers fall in the range 

Remachine  = 2 x 106 - 2.5 x 106  

Remo de l = 2.6 X 103 - 6 X 103  

Closer agreement in terms of Reynolds number exists between the wind tunnel 

tests of Green[52} and the 2-blade PIV experiments. At A = 4, 

Retunnel = 2.2 X 104  

Remodel = 8.2 x 103  

Scale effect 

The departure from complete similarity due to the variation in the non-dimensional 

coefficients with Reynolds number, is known as scale effect. From above, the 

Reynolds number of the PlY tests is 3 orders of magnitude less than those typi-

cal of full-scale flow. As pointed out by Galbraith et al.[41], care must be taken 

when comparing the performance of a model wind turbine to that of a full-scale 

machine. The boundary-layer flow over wind turbine blades is heavily dependent 

on Reynolds number which dictates the phenomena of transition to turbulence, 

separation and reattachment at the blade. 
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At the low Reynolds number conditions of the PIV tests, extensive areas of laminar 

flow may occur at the model. Under these conditions, it would be expected to 

find laminar separation of the boundary layer occuring close to the leading edge 

of the blade. This may re-attach as a turbulent boundary layer which moves 

towards the trailing edge of the blade, as angle of incidence is increased, until the 

section of blade is stalled. For the typical full-scale machine, no laminar separation 

occurs before the boundary layer becomes turbulent. Separation of the turbulent 

boundary layer then takes places at the trailing edge and, as incidence increases, 

progresses toward the leading edge. The two cases lead to very different behaviour 

in the lift coefficient characteristics along the blade. Since it is the circulatory lift 

distribution, trailed behind the rotor, which forms the wake, it can be inferred 

that the wake geometry will be heavily dependent on Reynolds number. 

The changes in blade boundary layer flow with Reynolds number, proposed in the 

literature[67, 41], may give some indication of the differences in wake structure 

expected between the model and full-scale flow. A turbulent boundary layer and 

delayed separation reduces the width of the separated wake. A laminar boundary 

layer and early separation across the body results in a broader wake[96]. At low 

Reynolds numbers, the viscous effects are relatively large, causing high drags. 

These could be significant factors contributing towards the large wake expansion 

and high velocity deficits found at model scale. 

At large values of Reynolds number, Re, the boundary layer on a body of length L 

has a thickness of order LRe [23]. The ratio of the thickness of the boundary 

layer to the chord length on the model blades is greater than at full-scale by a 

factor of 30. This may be responsible for thicker helical vortex filaments shed 

from the trailing edge of the blade. This could explain the thick shear layers in 

the vorticity contour plots of Chapter 5. The spanwise proportion of the blade 

experiencing separated flow is increased at low Reynolds number. (CL, a) curves 

for a typical airfoil[40] shows that at Re < iO, stall occurs for angles of attack, 

a < 100 , whereas at Re > 106 , blades stall at a 16°. This may explain the 

substantial areas in the wake of the model, close to the blade root, where large 

velocity gradients exist. 
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However, it must be pointed out that comparable data from full-scale wind tur-

bines is extremely scarce and little is known about the relationship between 

Reynolds number and the near wake properties. It is possible that the near wake 

may be less sensitive than blade flow to blade Reynolds number. Green defines a 

Reynolds number based on a location in the wake rather than a point on the blade. 

The inertial force term in this wake Reynolds number involves the difference in 

velocities across the width of the wake. Thus, 

2((J —U)b 
Re = 	 (6.6) 

V 

where U is the velocity on the centreline and b is the width of the wake. Com-

parison of wake Reynolds numbers between the 2-blade PIV results and Green's 

wind tunnel tests at 2 diameters downstream reveals 

= 3.2 x 104  

Remodel = 3.4 x 104  

The two values compare well. Due to its definition, however, differences in wake 

Reynolds number are largely determined by the choice of downstream location. 

It would be unwise to use the numerical value of the wake Reynolds number as 

the basis for a precise extrapolation to full-scale but it is useful in the broader 

context as an indication of the relative importance of inertial and viscous forces 

at a particular location in the wake. 

Gould[47] states that the broader aspects of fluid flow patterns usually show much 

less change than the corresponding lift-coefficients over the same range of Reynolds 

numbers. Low Reynolds number flow visualization tests are often quite suitable 

for showing the flow pattern changes associated with changes in lift-coefficients 

measured at a higher Reynolds number. Analysis of measured wake structures 

from small scale may therefore yield a fundamental understanding of rotor flows, 

in the same way that the principles of flight can be understood on the basis of 

model aircraft experiments. 

172 



Turbulence 

Ambient turbulence is highly influential in wake development and may reduce the 

significance of Reynolds number scale effects. The Reynolds number at which the 

flow becomes turbulent is dependent on the degree of turbulence in the main-

stream. At this critical Re, mixing of the boundary layer on the blade with the 

faster moving fluid outside the boundary layer results in re-energization of the 

layer and delays the point of separation. Thus a large disparity in Reynolds num-

ber may not be such a severe limitation as it may first appear, if the transition 

to turbulence in the boundary layer can be provoked by a high level of ambi-

ent turbulence. In these experiments, turbulence manipulators were employed 

to reproduce the turbulent intensities observed upstream of the WM19S machine. 

Re-adjustment of the manipulators would be required in order to reproduce similar 

turbulent length scales at the blades. 

Compressibility effects 

Density changes in the fluid are strongly affected by the Mach number, 

M = 
Cf 

	 (6.7) 

where V is the velocity in the fluid and cj is the speed of sound in the fluid. The 

Mach number at the tip of a full-scale wind turbine can be written as 

U0-',\2  +1 
Mmachine = 	 ( 6.8) 

Cajr  

Problems are encountered when the Mach number is not small enough for the 

fluid to be treated as incompressible. 

Comparing the WM19S turbine, operating in the range A = 2-4.4, and the 3-blade 

replica, operating in the range A = 1.6-4.8 reveals 

Mmachine = 0.14 - 0.16 

Mmodel = 3.2 X 10 - 8.2 X 10 
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From tables of pitot-tube measurements [711, it is seen that for M < 0.2 compress-

ibility affects the pressure difference across the pitot-tube by less than 1%. Thus 

it is sufficiently accurate to treat the flow, both at full- and model-scale, as incom-

pressible. Compressibility effects are more' significant in high-speed wind-tunnel 

testing. 

(e) Cavitation 

The absolute pressure must nowhere be low enough for the release of dissolved air 

bubbles from the liquid. This effect is known as cavitation[261 

Considering the flow outside the vortex structure in the wake, Bernoulli's equation 

gives 

Po + pUO2 = p + pu2 	 (6.9) 

where P0,  Uo  are conditions far upstream where the flow is unaffected by the 

presence of the rotor and p, u are conditions at a point in the wake. The maximum 

pressure drop in the wake is then given by 

PO — P 	1 U2 	 (6.10) 

For Uo = 0.25m/s, the expected pressure drop is of the order of 30Pa. 

With high rotation rates, cavitation effects are more likely to occur due to low 

pressures in the centre of the vortices shed from the blade tips. Assuming a tip 

vortex of strength 1' and radius a, the local velocity at the vortex is given by 
F 

Ua = 
2ira 
	 (6.11) 

Since the flow is irrotational outside the vortex, Bernoulli's equation can be applied 

and the pressure drop at the vortex is 

Po — P_ - tt a(Uo  + Ua) 	 (6.12) 
P 

From the PIV vorticity contour plots, upper bounds can be placed on the size and 

strength of the shed vortices. For a = 0.02m and F = 0.04m2 s 1 , the expected 

maximum pressure drop is of the order of 120Pa. 
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The hydrostatic pressure in the wake is calculated from 

Ph. = pgh 	 (6.13) 

where h is the depth below the water surface. When the blade reaches the top 

of its rotation, h = 0.3m and the minimum hydrostatic pressure is estimated as 

Ph, = 3kPa. In comparison to the hydrostatic pressure, the pressure drop due to 

the rotor is negligible. The absolute pressure is given by Pabs = Patm + Phs where 

Patm is 101.3k1 at 15'C. Thus, there is no danger of the absolute pressure falling 

to that of the vapour pressure of water, Pvp = 1.7kPa at 15 0 C, and cavitation can 

be dismissed as a source of error in these experiments. This was borne out by 

observation during the experiments. 

6.1.3 Kinematic Similarity 

Kinematic similarity was assured by maintaining the tip-speed ratio, which implies 

that the ratios of velocities at the full-scale machine were reproduced at the model. 
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6.2 Errors in the PIV Technique 

A comprehensive treatment of the errors incurred during both the PIV acquisi-

tion and analysis stages has been reported by Gray[48] and covered further by 

Skyner[88]. Errors can be classified into systematic errors and random errors. 

These are now discussed. 

6.2.1 Systematic Errors 

(a) Seeding particle dynamics 

One potential source of error concerns the ability of the seeding to faithfully follow 

the flow. The densities of the 70tm diameter pollen particles have proved to be 

well matched to the density of water. The pollen remained suspended in still 

water for several hours without any visible signs of drifting or settling. The error 

in the assumption of neutral buoyancy has been estimated at 0.1% by Skyner. The 

agreement in densities between pollen and water particles ensures that the pollen 

seeding would accurately follow the flow under conditions of temporal acceleration 

of the fluid. 

Large spatial velocity gradients in the flow, however, could potentially affect the 

ability of the pollen to follow the flow. The basic premise of PIV, however, is that 

the velocities in the flow are constant within an interrogation area on the film 

(see Section 2.1.2). This rules out the possibility of large velocity gradients across 

a particle diameter, exerting spin on the pollen particle according to Magnus' 

law[71]. In addition, Stokes law[23] can be used to find the drag of the fluid on 

the particle. For these experiments, the slip velocity of the pollen particle (the 

relative velocity between the fluid and the pollen) was calculated using Stokes law 

to be U3  = 1 x 10 3m/s. Thus, the conifer pollen can be treated as respondingly 

accurately to fluid acceleration. 
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Positional/displacement errors 

Geometric distortions are introduced by deviations of the laser sheet from a uni-

formly flat sheet. Imperfection of the camera lens will also lead to geometric 

distortions between the flow and the recorded PIV image. In the set-up for 

these experiments, these errors are reduced by refractive index changes due to 

the air/glass/water interface. However, all positional/displacement errors are ac-

counted for by conducting still water tests and subtracting the results from the 

PIV flow records. The image-shifting system is also calibrated in this way. 

Pulse separation errors 

A systematic error is incurred by determining the pulse illumination interval 

through use of a photo-diode placed in the path of the scanning-beam. Subsequent 

particle illuminations are at different positions in the measurement zone and hence 

at different phases of the scan cycle. This error is estimated at 0.0-0.2%. 

Out-of-plane motion 

Out-of-plane motion of the flow could, in principle, lead to considerable errors in 

the measurement of the two in-plane components of velocity. The major out-of-

plane motion in the flow is due to wake rotation or swirl. To estimate this swirl 

velocity, consider the wake forming behind the rotor to be a cylinder of radius 

R = 87.5mm and length I at time t. The torque impulse on the rotor, Qdt results 

in an equal and opposite angular momentum Idw in the air flow downstream of 

the rotor. A value for the maximum torque on the rotor can be obtained from 

(Co , )) curves for a typical airfoil. For the NACA4415 airfoil 

CQmaa = 
pUhR3 

0.12 	 (6.14) 
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Equating this with the torque on the cylinder, results in a value for the angular 

velocity of the wake of 

Wmax = 0.12U0 /R = 0.343rad/s 	 (6.15) 

The maximum swirl velocity is thus 

Vmax = wR = 0.03m/s 	 (6.16) 

This is 12% of the freestream value. 

Any out-of plane component of the flow in the laser sheet will introduce errors 

in the recording of the velocity vectors in the PIV measurements, due to paral-

lax error. This error will be largest at the extremes of the measurement area. 

Figure 6.2.1 is provided to aid explanation. 

6u 

Measurement plane 	(x,y) o 
LM 

Camera 

Figure 6.2.1 Parallax error in PIV recording due to 

out-of-plane motion in the flow 

Assume the camera is positioned a distance L from the laser sheet, and the true 

axial velocity at a point x, y in the sheet is 5u. The perceived axial velocity, 6u 

is given by 

8u = u + 5u 	 (6.17) 
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where Su is the error due to the out of plane component. This error can be 

estimated from geometrical considerations as 

Su=5wtana 	 (6.18) 

where 5w is the out-of-plane component of velocity and tan a x/L. 

In the PIV experiments, the camera distance was L im, the distance from the 

edge of the measurement zone to the centre was x 0.3m and from the above 

calculation the magnitude of the swirl component is Sw = 0.03m/s. The maximum 

error in velocity measurement is then 

Su p  - Su - 

UO 
—3.6% (6.19) 

However, the most important measurements, in the near wake of the rotor, were 

made in the centre of the image where out-of-plane motion does not affect in-

plane measurements to the same extent and the effects of the distortion become 

negligible. 

(e) Velocity gradient bias 

In the PIV anaylsis, there is a systematic error associated with high velocity gra-

dients in the flow. The larger particle image separations in the interrogation zone 

will have a greater chance of the multiple particle image lying outwith the zone, 

thus biasing the average displacement measurement towards the lower displace-

ments. Theoretical studies[61] have shown that the systematic bias varies linearly 

with displacement gradient. An estimate of maximum displacement gradient can 

be derived from velocity ratios of the 2-blade rotor at high tip speed ratio. From 

Figure 4.1.2(iv) of Chapter 4, an estimate of the maximum drop in velocity across 

the rotor is given by 0.75U0 . Thus the displacement gradients are bounded by 

/tdu/dx = 
2.5 x iO x 0.75 x 0.25 

0.012 
0.04 	 (6.20) 

From comparison with work by Skyner, the systematic error due to velocity bias 

is 2.5%. However, most of the displacement gradients in the vector maps will be 
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much less than 0.04 and a figure close to 1% is more accurate as a value for the 

systematic error. 

6.2.2 Random Errors 

Photographic errors 

Random errors can be introduced due to practical limitations of the recording 

medium. However, the TMAX film used in these experiments was of high sen-

sitivity (400 ASA) and high resolution (125 lines/mm at 1:1000 contrast). In 

addition, constant agitation of the developing tank prevented 'adjacency effects' 

which may, due to uneven development, influence the shape (and hence position) 

of the image centres. 

Estimating the magnification factor from the negative of the calibration grid, using 

the darkroom enlarger, introduced errors that were calculated to be less than 1%. 

Pixelation/discretisation errors 

In the PIV analysis, digitising the power spectrum data introduces quanitisation 

errors. In addition, there are rounding errors in the numerical calculation of the 

autocorrelation function. These errors depend on the type of CCD camera and 

image digitiser used in the analysis system. The components of the PIV analysis 

system at Edinburgh have been chosen to produce an optimal system in terms of 

reducing errors. 

Random correlation noise 

Detection of the displacement peaks in the autocorrelation plane can lead to errors 

if there is strong background random correlation. For the PIV analysis system 
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used in these experiments, this has been investigated by Gray. PIV negatives, 

of varying degrees of correlation noise, were artificially generated and the result 

of the study showed that the errors due to random correlation noise could be 

placed in the range 0.0-0.5%. Calibration of the analysis rig was also achieved by 

analysing 'mock' negatives of known displacements. Skyner produced calibration 

values for the relationship between the correlation peak and the image separation 

to an accuracy of 0.1%. 

(d) Velocity gradient bias 

The motion of the particles in the measurement plane gives rise to a discrete and 

random representation of a continuous flow field. Particle image pairs representing 

the same fluid motion will produce slightly different mean displacements due to 

their different positions within the interrogation area. Thus, random sampling of 

the particles in the interrogation area introduces an uncertainty in the location 

of the centre of the correlation peak. This uncertainty increases as the range 

of particle displacements increases and the correlation peak broadens. Random 

errors associated with velocity gradients for these experiments are in the range 

0.3-0.5%. They are less serious than systematic errors as they manifest themselves 

clearly when the analysed data is inspected and can be dealt with at the editing 

stage. 

6.2.3 Errors in Vorticity Information 

The method of calculating vorticity in the PIV post-processing analysis com-

pounds the errors in the raw velocity values. Discretisation of the calculation of 

vorticity in equation (5.1) reveals that the relative error in vorticity is at least four 

times the smallest relative error in velocity. Averaging of velocity vector maps, 

however, diminishes this effect to some extent by reducing the random errors in 

the PIV technique. In addition, vorticity levels associated with the tip vortex 
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structure were relatively large in magnitude and, in that case, errors associated 

with velocity values would not dominate the calculation of vorticity. 

For a point in the wake, close to the rotor and in the vicinity of the tip vortex 

structure, equation (5.1) in discrete form is 

Lu-1v 2e 

2d 	
(6.21) 

where & is the absolute error in velocity and d is the grid spacing between the four 

nearest neighbours of the point. Averaging of vector maps reduces the random 

error in the velocity at the point by a factor of i//. For the purposes of error 

analysis, out-of plane motion in the fluid is classified as random. Following the 

methods of Barlow[21], the combined random and systematic error in velocity 

gives a value of 6% for relative errors in vorticity, in the region of the tip vortex 

structure. 

6.3 Summary and Discussions 

This chapter has assessed the flow around the model rotor in terms of geometric, 

dynamic and kinematic similarity with full-scale. The 3-blade WM19S model 

replica was accurately modelled with respect to profile and solidity. One feature 

of the 2-blade model was its high solidity at inboard stations compared to the 

3-blade model. A study of the influence of the walls of the flume on the flow past 

the model rotor produced an estimate of correction for blockage of 2.5%. 

Dynamic similarity is influenced by the Reynolds number which, at model scale, is 

3 orders of magnitude lower than that at full-scale. Boundary layer separation, re-

attachment and the transition to turbulence are likely to be very different at model 

scale than on a full-scale blade. Prediction of the differences in blade boundary 

layer flow as a function of Reynolds number allowed some insight into the effect of 

scale on the wake structure. A thicker boundary layer on the model blade than at 

full-scale may be responsible for the thick shear layers evident in the PIV vorticity 
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contour plots of Chapter 5. In addition, early separation of flow and high drag 

could explain the large velocity deficits of the PIV results. 

However, not enough information has been gained in these experiments to accu-

rately predict the behaviour of the blade boundary layer at model scale. Structure 

in the near wake, especially regarding the vorticity concentration, may be less sen-

sitive to Reynolds number than blade flow. Since the concentration of vorticity 

is virtually an unknown quantity in the near wake, tests at low Reynolds number 

can provide complementary data for full-scale experiments. In the same way that 

the principles of flight can be understood from model aircraft, the fundamental 

principles of rotor wakes may be observed from the PIV tests. 

An assessment of the pressures and speeds involved in the flow proved that the 

experiments were not compromised by cavitation or compressibility effects. Kine-

matic similarity was assured by running the model at tip speed ratios relevant to 

a full-scale machine. 

Errors in the PIV aquisition and analysis technique were classified into systematic 

and random errors. By careful design and use of high quality components, errors in 

the PIV technique were minimized. In principle, corrections could be made to data 

by measuring the systematic errors. However, the estimates above revealed that 

for the majority of data in the near wake of the rotor, the combined systematic 

error is less than 3%, and was declared negligible. Random errors in the PIV 

technique were found to be less than 1% and can often be detected by inspection 

of the analysed data. 

The method of calculating vorticity in the PIV post-processing analysis com-

pounds the errors in the raw velocity values. The combined random and system-

atic error in velocity gives a value of 6% for relative errors in vorticity, in the 

region of the tip vortex structure. 
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6.4 Conclusions 

An error analysis of the PIV experiments has been undertaken. The most impor-

tant findings of this chapter are listed as follows: 

This chapter contains an account of a number of sources of experimental 

error from the PIV tests which, when quantified, were shown to be almost 

negligible. Systematic errors from the PIV technique contributed less than 

3% error in velocity measurement and random errors were responsible for 

about 1% error. Errors in velocity measurement were shown to be com-

pounded during vorticity calculations. Vorticity errors were estimated at 

around 6% in the region of the wake, close to the tip vortex structure. 

The most important concern has been identified as that as scale effect; the 

variation of the non-dimensional parameters of the flow with Reynolds num-

ber. Although not enough information has been gained to reveal the be-

haviour of the boundary layer on the model blades, it is likely that there 

would be a difference in the phenomena of separation and re-attachment at 

the blade compared to full-scale, which may be conveyed to the wake struc-

ture. The large velocity deficits and thick shear layers of the PIV results are 

likely to be the effects of scale. 

Although full-scale wake structures may differ from those observed at model 

scale, there is a strong possibility that they will share fundamental simi-

larities. Just as 'the phenomena of circulatory lift and trailing vorticity are 

found on aircraft at all scales, from balsa-wood models to wide-bodied air-

liners, so it is with wind turbines. Analysis of measured wake structures 

from small scale may therefore yield a fundamental understanding of rotor 

flows, in the same way that the principles of flight can be understood on the 

basis of model aircraft experiments. 



Chapter 7 

SUMMARY AND CONCLUSIONS 

Overview 

In this chapter, the main results of the thesis are summarised for the 2-blade and 

3-blade model rotors. The flow visualisation and wake analyses of Chapters 4 and 

5 are used to examine the relationship between velocities and vorticity in the wake 

structure. An assessment of the PIV experiments is given, based on the results of 

Chapter 6. In particular, the extent to which the results may be extrapolated to 

full-scale is discussed. The principal conclusions of the study are stated and some 

ideas for further work in this area are presented. 

7.1 Summary of Main Results 

7.1.1 Results for 2-blade rotor (frozen wake) 

Whole-field velocity maps were obtained for the wake of a 2-blade flat-plate model 

wind turbine rotor, extending from the rotor plane to approximately 3 diameters 

downstream, covering the entire near-wake region. The tests were repeated for 

tip speed ratios of A = 3,4,5,6 and 8. Map-averaging techniques were developed 

to enable a 'frozen' wake analysis, in which the wake structure is captured as an 
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instantaneous picture, enabling blade tip and root vortices to be studied in fine 

detail. Vorticity maps were obtained by post-processing the 'frozen' wake data. 

This was the first time, to the best of the author's knowledge, that a complete 

instantaneous full-field picture of the wake vorticity behind a wind turbine had 

been mapped. For the first time, experimental vorticity maps could be compared 

with theory and the results were compared directly with the output of a free-wake 

numerical code (ROVLM) developed at the University of Stuttgart. The influence 

of tip speed ratio on the vortex wake structure was extensively studied, by testing 

the models over a range of rotor speeds. A number of features emerged which 

were not accounted for in current theoretical models. 

The model exhibited rotor flow states characteristic of a full-scale wind turbine, 

as defined by Eggleston and Stoddard[38]. At low tip speed ratios the rotor 

operated in the windmill state where mild wake expansion is observed. This 

concurs with simple wake theory. At high tip speed ratio, however, the wake was 

seen initially to expand, but at about 2D downstream to contract. This preceded 

the breakdown of the structured wake into a highly turbulent state. Blade element-

momentum (BEM) theory does not predict this phenomenon. Initial comparisons 

between the PIV and ROVLM results were favourable in terms of predicting wake 

contraction at high A. This tended to validate both the code, and the small-scale 

PIV experiments, at least for this case. 

The aircraft propeller used in the development of the PIV method attained the 

vortex ring state at high tip speed ratios. This may be attributed to the twist on 

the blade. For two blade elements at the same spanwise location on a twisted and 

an untwisted blade, the effect of the pitch angle is to lower the angle of attack. 

Given the same angle of incidence for each element, the twisted blade effectively 

operates at a higher local A. Comparison of the flat-plate results with measure-

ments made on Green's modified aircraft propeller[52] supports this argument. 

Vertical traverses from the hub upwards in LDA measurements by Green led to 

the conclusion that the momentum deficit of the flow is predominantly contained 

in an annulus. Close study of the PIV velocity vector maps in Chapter 4 extended 
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this description to classify the wake structure according to three distinct regions 

of flow. 

The first region is a wake core, containing very small velocities. At very high A, the 

flow immediately behind the rotor is almost stagnant, while further downstream 

areas of turbulence and recirculating flow establish themselves. The second region 

is the outer wake, comprising the tip vortex structure, while the third region is 

an inner wake with inboard vorticity moving under the influence of rapidly ex-

panding flow. This matched Glauert's description of the wake as a vortex system 

comprising an intense tip-vortex outer region and a weakly-diffused vortex sheet 

inner region. Tip vortices were revealed to get out of step with the vortex sheets. 

This has been confirmed in other tests. Green describes the tip vortices as 'roller 

bearings', acting between the faster outer flow and the retarded inner wake. Ve-

locity ratios greater than 1.0 at the extremes of the wake profiles supported the 

idea of the outer wake as a region of accelerated flow. 

The inner wake vorticity, emanating from the trailing edge of the blade, corre-

sponds to a shear layer of velocity. The 2-blade PIV vorticity contour plots showed 

that the shear layer moved under the influence of wake expansion to merge with 

the tip vortex system. At A = 8, the tip vortices were embedded in an area of 

concentrated vorticity of thickness roughly equal to the rotor radius. The results 

of Pedersen & Antoniou[77] suggest the area of influence of the tip vortex system 

is much less at full-scale, where a thinner inner wake region produces a wider 

velocity profile with a flatter central section. Although the PIV analysis also re-

vealed the presence of 'square' profiles, especially at high A, these occured during 

the transition from a highly structured to a turbulent wake. This transition effec-

tively marked the boundary of the near and intermediate wake and the shape of 

the profile may indicate that the turbulent mixing process had not yet penetrated 

the whole of the wake core. In wind tunnel tests, Green also commented upon the 

observation of 'square' profiles at the boundary of the near wake region. 

Contrasting the 2-blade PIV data with wind-tunnel work both by Green at Lough- 

borough and by researchers at the Marchwood Engineering Laboratories produced 
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some favourable comparisons. Velocity deficits were shown to display closer agree-

ment with downstream distance. Notwithstanding the difference in scale, this may 

be due to the high solidity at the inboard stations of the fiat plate blades. The 

blades had no cut-out at the root which could be a factor in producing velocity 

profiles of large deficit immediately behind the rotor. The effects of high blockage 

of flow at the blade root would recover with downstream distance. 

The phase-averaging technique employed in 2-blade PIV experiments was suc-

cessful in extracting the vortex wake structure shed from the blades, from the 

superposed turbulence. The 2-blade turbulence results displayed a significant in-

crease in turbulence with A. At high A, the highest levels of turbulence were 

witnessed at around 2.51) downstream. This could be due to large areas of recir-

culating flow, forming downstream of the rotor, as the rotor enters a turbulent 

wake state. 

The wake vorticity analysis of the PIV results revealed behaviour in the wake 

which influenced the geometry and stability of the vortex system. Areas of re-

circulation were suggested as the cause of the marked contraction of the wake at 

around 2 diameters downstream for high tip speed ratios. The areas of recircu-

lation could encourage re-entrainment of the freestream resulting in acceleration 

of the outer wake. The downstream speed-up of the wake has been suggested by 

other workers in the field[74]. This is in contradiction to the basic premises of 

BEM theory, which assumes an asymptotic slow down of the wake. However, in-

teraction of the inner wake vorticity with the tip vortex system was, in some cases, 

seen to result in an instability of the wake structure brought on by the coalition 

of adjacent tip vortices. The coalescing of tip vortices may give the impression 

that the outer wake is accelerating. In either case, the PIV images confirmed that 

the simple wake expansion model on which BEM theory is based is fundamentally 

flawed. 

The size and strength of the tip vortices shed from the blades were more sensitive 

to A in the case of the PIV experiments than in the ROVLM simulations. For 

the PIV results, tip vortices persisted furthest downstream when the rotor was 



operating in the mid-A range. This was consistent with results from full-scale[85]. 

However, it was noted that since different tip speed ratios were achieved in the 

PIV tests by running the rotor at different speeds, the blade Reynolds number 

may vary significantly from one test to another. Thus, effectively two variables (A 

and Re) were changed in producing a new value for A. Hence, it is difficult to be 

conclusive about the effect of tip speed ratio alone on the wake vortex structure. 

Due to inviscid assumptions, the ROVLM calculations do not incorporate the 

effects of dissipation or stall near the hub. Thus the root vortices were very strong 

and persistent.. In contrast, the PIV data showed that the root vortices were very 

quickly dissipated within a blade revolution. This was consistent with full-scale 

observations [77]. At high A, both the PIV and ROVLM results showed breakdown 

of the vortex structure into large scale turbulence at 2D-3D downstream. The 

ROVLM simulations did not display evidence of inboard vorticity in the inner 

wake and breakdown of the vortex system appeared to be due to interaction of 

the strong root vortices rather than mixing of the freestream or dissipation. Wake 

breakdown is absent from most rotor codes, of either BEM or vortex-wake type. 

7.1.2 Results for 3-blade rotor (averaged wake) 

A replica of a 3-blade Vestas WM19S machine was used in laboratory simula-

tions of full-scale conditions encountered by the Vestas turbine on Samos Island, 

Greece in 1991. Whole-field PIV velocity vector maps were captured at an offset 

distance from the wake centre corresponding to the distance above hub-height 

of the full-scale anemometer unit. The tests were repeated for tip speed ratios 

of A = 1.6, 2.7, 3.2, 4.2 and 4.8. Averaging of wake images, recorded in different 

phases, introduced temporal averaging akin to the full-scale experiments. Mean 

velocity and turbulent velocity profiles were extracted from the 'time averaged' 

wake data and compared with wake measurements made on the Samos Island 

machine. Further full-scale comparisons were made with a Vestas V20/100 ma-

chine from the Test Station for Windmills at Risø and with the Nibe 'B' turbine. 

Data chosen for comparison with the full-scale machines came from a select set of 
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data that was suitable due to similarities in the operating conditions of the model 

and the full-scale turbine. Vorticity data for the 3-blade model PIV tests were 

presented in the form of vorticity contour plots. 

The shape of the PIV velocity profiles differed in significant respects from com-

parison with full-scale measurements. In general, the 3-blade PIV data yielded 

narrow, deep velocity profiles whereas measurements from the field produced wider 

profiles with homogeneous central portions. In the comparison with the WM19S 

of Samos Island, the largest discrepancies occurred at high A where the centreline 

velocity ratios were shown to be more sensitive to A than the corresponding full-

scale values. Comparison of velocity profiles with the Vestas V20 machine from 

the fiat terrain of the RisØ site proved more favourable. 

The small sample size of the PIV data restricted the extent to which conclusions 

could be drawn from the 3-blade turbulence results. However, the data suggested 

a trend in the amount of turbulence in the wake with respect to tip speed ratio. 

High levels of turbulence were observed at low and high A. This was attributed to 

separated flow behind the blades and the breakdown of strong vortex structure, 

respectively. Turbulence levels in the wake visited a minimum at an intermediate 

value for the tip speed ratio, around A = 3. This matched the trends in turbulence 

for the 2-blade rotor, although care must be taken in making this comparison due 

to the different process of data averaging in each case. However, a similar trend 

was identified for the Samos Island measurements, although the full-scale results 

revealed higher values of centreline turbulent velocity ratios. It was suggested 

that the complex terrain of the Samos Island site may impose energetic turbulent 

motions which affect the wake. Comparison of turbulent velocity with the fiat 

terrain of the Nibe results proved more favourable. 

The difference in scale was the most obvious reason for the discrepancies between 

laboratory and field measurements. The Reynolds number of the PIV tests was 

lower than full-scale by a factor of 1000. However, it was noted that uncertainties 

involved in the field measurements could be significant. In the Samos Island 

experiments, it was difficult to compensate for the effects of the complex terrain. 
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The complex terrain of the wind farm may produce large scale inhomogeneities, of 

the order of the size of the wake, which affect the wake properties. Thus large areas 

of stable recirculating flow, which were witnessed in the laboratory environment, 

may not be feasible in the field. Cross-wake smoothing and wake meandering were 

also reasons suggested for the displacement of laboratory and full-scale profiles. 

The map averaging technique employed during the PIV recording of the 3-blade 

rotor resulted in vorticity contour plots which, despite losing all time-dependent 

vortex structure, yielded steady-state axisymmetric patterns. This was an impor-

tant development from the PIV study as the plots provide vorticity data which is 

directly comparable with the assumptions of actuator disk models. In some analy-

ses, the 3-blade vorticity contour plots were transposed onto the centreline under 

the assumption of an axisymmetric distribution of vorticity in the wake. This 

resulted in an absence of data from an inner core of the wake of radius 0.42R. 

The contour plots contained evidence of strong inboard vorticity which moved 

downstream under the influence of slight wake expansion. Drawing a parallel 

with the 2-blade results, this can be attributed to a shear layer of velocity in the 

inner wake. Evidence of a shear layer between the outer wake and the retarded 

flow in the wake core, was also reported at full-scale[77]. However, this layer may 

not be as thick as that found at model scale which could explain why, in general, 

measurements from the field produced wider profiles than the 3-blade PIV data, 

often with homogeneous central portions. 
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7.2 Assessment of Results 

7.2.1 Validity of the Technique 

Water as a medium for wind turbine experiments 

Despite the anomalies due to Reynolds number, conducting the experiments in 

water has distinct advantages over wind tunnel testing [47]. For the same Reynolds 

number and a given size of model, the wind speed needs to be 12.6 times that in the 

water tunnel. High speed testing in wind tunnels may introduce compressibility 

effects. In addition, high slipstream velocities cause particles separating at the 

trailing edge of the blades to disperse out of the light sheet. Thus wind tunnel 

researchers have experienced problems of illuminating the wake structure and their 

studies have been restricted to flow close to the blade. This limits the potential for 

wake analysis. The results of this study have shown that water can accomodate 

a sufficient density of seeding to provide a high level of detail in the wake of the 

models. Further, tip speeds in the water tunnel were sufficiently low to ensure 

that there were no problems with either compressibility or cavitation. 

Averaging procedures 

Averaging of the PIV vector maps was used to provide mean and turbulent, 

freestream and wake flow statistics. One result of this is the production of a 

steady-state axisymmetric vortex pattern. In particular this provides vorticity 

data which is directly comparable with the assumptions of actuator disk models. 

In the 3-blade experiments, PIV photographs were taken at discrete intervals dur-

ing the blades revolution. This provides some justification in the comparison of 

the 3-blade measurements with time-dependent values taken by mast anemome-

ters at full-scale. There is more cause for concern over the small sample size 

involved in the PIV averaging. The sample size was ultimately determined by the 
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time required for exposing, developing and analysing each film. Recent advances 

in Digital PIV (see Chapter 2) have rid the PIV technique of this bottleneck in 

the flow-to-vector-map process. Having a larger sample size would allow much 

more confidence in drawing conclusions from the turbulence measurements. This 

is discussed further in Section 7.4.2. 

7.2.2 Extrapolation to Full-scale 

The difference in scale between the model and a full-scale wind turbine is likely to 

be associated with differences in boundary layer flow over the blades which may 

influence the wake structure. An accurate knowledge of the blade boundary flow 

over the model blades was beyond the scope of these experiments. However, in 

Chapter 6, some thought was given to the expected properties of the boundary 

layer at model scale, which may give an insight into the effect of scale on the 

wake geometry. Compared to flow on a full-scale blade, the flow over the blades 

at model scale may separate earlier, with a greater spanwise proportion of the 

model blade experiencing separated flow. It is possible that, at model scale, there 

is a thicker boundary layer on the blades as well as a thicker region of separated 

flow in the wake. This may explain the deep velocity profiles and and thick shear 

layers of the PIV results, compared to full-scale. 

However, although full-scale wake structures may differ from those observed at 

model scale, there is a strong possibility that they will share fundamental similar-

ities. In aircraft studies, the phenomena of circulatory lift and trailing vorticity are 

found at all scales from balsa-wood models to wide-bodied airliners. Analysis of 

measured wake structures from the small-scale wind turbines may therefore yield 

a fundamental understanding of rotor flows, in the same way that the principles 

of flight can be understood on the basis of model aircraft experiments. 

The power of the small-scale PIV approach is exemplified in Figure 7.1.1. A 

vorticity contour plot of a 'frozen' wake behind the 2-blade rotor at A = 8 is 

presented. Overlaid on the contour plot are corresponding wake velocity profiles, 
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taken from Figure 4.1.2(iii), for downstream stations 1-2.51). The combination of 

velocity and vorticity information serves to illustrate the structure of the helical 

vortex system created by the rotor. In particular, the maximum velocity gradient 

in each cross-wake profile is clearly seen to occur across the annular tip vortex 

system in the outer wake. 

This study has presented the first complete instantaneous images of the wake be-

hind a wind turbine rotor, at any scale. The images have confirmed that, under 

certain circumstances, the prediction codes currently used by the wind energy in-

dustry are in error. At this stage, any experimental data which allows wake theory 

to be rigorously tested is welcome, and numerical codes can be adjusted to model 

low Reynolds number flows more easily than wake vorticity can be mapped on a 

full-scale wind turbine. Hence, the most sensible way to proceed is to try to model 

these conditions using an advanced vortex code at low Reynolds number, rather 

than trying to replicate the experiments at full-scale simply for the convenience 

of existing numerical models. 

7.3 Principal Conclusions 

The principal conclusions of this thesis are stated below. 

PIV has been shown to provide detailed full-field data of the near wake of 

a model wind turbine. An experimental database for wake velocities and 

structure has been established. 

The results strongly justified using the PIV technique to study the flow 

behind a model wind turbine rotor. The amount of high quality detailed 

data of the entire flow field obtained by the uncomplicated, quick and flexible 

approach of PIV compared favourably with previous investigations. 
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As far as the author is aware, the experiments were the first in which full-

field velocity and vorticity maps have been captured in the wake of a wind 

turbine at any scale. This made it possible, for the first time, to compare 

the results of other surveys and numerical predictions of wake structures 

with detailed experimental data from a complete instantaneous image of the 

wake behind a rotor. 

PIV wake velocity profiles were compared with full-scale data and shown 

to contain greater velocity deficits. The results showed large discrepancies 

at high A. However, the complex terrain of the Samos Island wind park 

may have affected the wake properties of the WM19S machine and full-scale 

measurements made in flat terrain appeared more promising in terms of 

agreement with the PIV results. Overall, comparisons of the PIV profiles 

with wind tunnel data displayed more agreement than comparisons with 

full-scale measurements. 

5: PiV vorticity contour plots of the model turbine data revealed fundamental 

properties concerning the near wake structure. In particular, a thick shear 

layer of velocity was identified in the inner wake. At high A, the wake was 

seen to undergo a contraction at around 2D downstream. In addition, there 

was interaction between the shear layer and the tip vortices. 

The PIV images confirmed that the simple wake expansion model on which 

blade-element/momentum (BEM) theory is based is fundamentally flawed, 

and for the first time quantitatively illustrated the processes involved in the 

development of the near wake. 

The PIV results were compared with results from a free-wake vortex code 

(ROVLM) from the University of Stuttgart. Both PIV and ROVLM pre-

dicted wake contraction and breakdown, wake properties that are absent 

from BEM theory and most vortex-wake prediction codes. Breakdown of 

vortex structure in the simulations from the ROVLM code may have been 

due to interaction of strong root vortices. 
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Scale effect was identified as the most important concern in terms of dis-

crepancies with results from other surveys. The blade Reynolds number of 

the PIV tests was lower than full-scale by a factor of 1000. The difference 

in scale between the model and a full-scale wind turbine is likely to be as-

sociated with differences in boundary layer flow over the blades which may 

influence the wake structure. The large velocity deficits and thick shear lay-

ers of the PIV data may be as a result of early separation and high drag at 

the model blade combined with a thick boundary layer, compared to full-

scale. In addition, a greater spanwise proportion of the blade at model scale 

may experience separated flow. 

Analysis of measured wake structures from the small-scale wind turbines 

may yield a fundamental understanding of rotor flows, in the same way that 

the principles of flight can be understood on the basis of model aircraft exper-

iments. Although full-scale wake structures may differ from those observed 

at model scale, there is a strong possibility that they will share fundamental 

similarities. 

The comparison with the ROVLM code may be viewed as a first step in 

developing an advanced rotor performance method that will incorporate 

the detailed physical processes governing wake behaviour. This may lead 

to codes that can predict an optimal rotor geometry and more accurately 

assess the forces on the rotor blades under all conditions. Better design will 

lead to improved reliability and efficiency of wind turbines. 
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7.4 Further Work 

By shedding light on the physical processes governing the development and struc-

ture of the wake of a wind turbine, PIV could play an important role in the future 

of aerodynamic prediction codes for wind turbines. A recommendation for future 

experiments and analyses, based on the present work, is outlined below. 

7.4.1 Further Analysis using the Existing PIV Data 

The new detailed knowledge of the wake structure revealed by the PIV tests 

could allow theoretical modellers to assess and develop their numerical codes while 

comparisons with field measurements would place the PIV results in the context 

of wake behaviour from full-scale machines. 

An extension of the comparative work with Stuttgart could involve incorporat 

ing the effects of Reynolds number within the vortex-wake code, ROVLM. An 

important case is modifying the code to include stalling of the blade. 

The CFD codes, PHOENICS and FIDAP, have recently been used in conjuction 

with wake turbulence models for wind turbines[14]. The k-f and the Reynolds-

Stress turbulence models are capable, at least in principle, of providing detailed 

information on mean and turbulent flow components in a turbine wake for a wide 

range of conditions. However, the codes rely on near-wake input data which 

influences the results considerably. Detailed PIV measurements could be used 

to provide a better description of the near-wake in order to improve calculated 

results. 

The study has highlighted the need for more wake data in order to compare and 

assess the PIV results. Measurements taken in flat terrain may be more suitable 

for comparison with the existing data. 
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7.4.2 New Experiments 

Variable current facility 

In the above experiments, different tip speed ratios were achieved by running the 

rotor at different speeds. Thus, the blade Reynolds number varied significantly 

from one test to another. This was a limitation of the tests and makes a strong 

case for further tests in a tank with variable current velocity. Conducting the 

tests with a fixed RPM rotor would then give a near-constant Reynolds number. 

In this way, the effects of tip speed ratio on the vortex structure in the wake could 

be separated from Reynolds number effects. 

New rig design 

The PIV records of the rotor wakes were affected by the wake from the 'tower' 

support of the present rig. A new rig design could incorporate a long thin rod 

or 'sting' which could be used to remove the rig framework from the laser sheet. 

Thus the wake would not be corrupted by interference from tower shadow. This 

is desirable for comparison with simulations from vortex codes. 

There is also a case for designing a new turbine rig which would allow thrust and 

torque measurements to be made on the operational model. This is discussed in 

Section 7.4.3. 

Digital PlY 

Adoption of the recently developed Digital PIV technique would dramatically 

improve the speed of the PIV acquistion process. In the Digital PIV[105] method, 

images are captured by the CCD camera and transferred to a PC equipped with 

• framegrabber board. Software has been developed at Edinburgh University by 

• small company, Optical Flow Systems, to perform analysis of the images and 



produce the velocity vector maps. With the addition of a 400MB hard-disk in 

order to store the images, over 100 images could be captured overnight. This 

would lead to assessing turbulence results with more confidence. 

7.4.3 New Analyses 

The measurement of thrust and torque on the model rotor during PIV recording 

would mean that, for the first time, detailed velocity and vorticity structure in 

the wake could be correlated with net rotor loads. 

In the present study, a preliminary analysis was undertaken concerning the trans-

port of vorticity shed from the rotor. This is a fundamental quantity since the rate 

that vorticity is shed downstream is related to the rate that vorticity is generated 

at the blades. A new analysis could be carried out to correlate the vorticity flux 

to circulation around the blade, and torque on the rotor. 
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