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Lay summary

Flow boiling in microchannels is a promising technology for cooling of small-scale devices
such as electronic chips, power rectifiers, radar arrays, chemical microreactors that require
dissipating heat fluxes of several MW m2 while maintaining constant temperature at the surface.
Although flow boiling in macroscale provides higher performance than single-phase or pool
boiling heat transfer, the advantages in microscale have not been yet completely justified. This
study aims to assist in the better understanding of some outstanding issues regarding flow
instabilities, two-phase heat transfer mechanisms and early dryout that occur in microchannels
while increasing their aspect ratios (a). Fully integrated and instrumented silicon multi-
microchannel heat sinks of width-to-height aspect ratios from 0.3 to 3 and hydraulic diameters
Dy, from 50 to 150 um were developed in order to fully characterise their local heat transfer
performance during flow boiling. Local wall temperature measurements were obtained from
five thin nickel film temperature sensors with simultaneous pressure measurements and flow
visualisation from the top. Uniform heating was achieved with a thin aluminium heater
integrated at the back of the microchannels. The effect of a, mass flux, inlet subcooling
temperature and bubble dynamics on two-phase flow boiling local heat transfer coefficient and
pressure drop were investigated for constant heat fluxes. Severe pressure and temperature
fluctuations in excess of 250 °C were measured at high a microchannels. The heat sinks with
microchannels of a = 1.5 and D, = 120 um, achieved the maximum heat transfer performance.
High spatial and temporal resolution wall temperature maps were obtained with advanced
thermography technique, synchronised with simultaneous high-speed imaging and pressure
measurements from integrated miniature piezoresistive pressure sensors inside a high aspect
ratio (a = 22) transparent Polydimethylsiloxane (PDMS)-based microchannel of D, =192 um.
The aim was to produce accurate two-dimensional (2D) high spatial and temporal resolution
two-phase heat transfer coefficient maps across the full domain of a single microchannel using
FC-72 dielectric liquid. The novel PDMS based microchannel provided measurements in the
vicinity of the wall due to the transparency of PDMS to midwave infrared radiation.
Synchronised flow visualisation images were related with liquid-vapour distribution of the
channel base and were correlated with the two-phase heat transfer coefficient maps in order to
elucidate flow boiling instabilities, film thinning during bubble confinement and wetting /

rewetting phenomena during annular flow pattern.



Résumé

L’¢bullition en micros canaux est une technique de refroidissement trés prometteuse
pour les composants en microélectronique. Ces derneirs, de plus en plus miniaturisés,
nécessitent souvent la dissipation de densités de flux importantes, pouvant atteindre
quelques MW m-2 pour maintenir des températures acceptables. L’objet de cette étude
est de mieux comprendre les instabilités des écoulements, le transfert thermique par
changement de phase tout comme 1’effet des rapports de forme (a) sur ’apparition de
sites de nucléation a la surface de micro canaux. L’analyse des échanges convectifs
locaux lors de 1’ébullition a été réalisée dans le cas de micro canaux de rapport de forme
allant de 0.3 a 3 et de diamétres hydrauliques allant de 50 a 150 um. Le banc d’essai a
été instrumenté de maniére a pourvoir mesurer simultanément les températures de
surface a I’aide capteurs en film mince de nickel, de capteurs de pressions instantanées
et de caméra rapide pour la visualisation du phénomene d’ébullition. Le chauffage du
fluide a été réalisé a 1’aide du dépot en couche mince d’un film résistif en aluminium
directement appliqué a la surface des micro canaux. L’étude expérimentale a permis
d’analyser les phénomeénes de changement de phase par ébullition, du transfert
thermique local ainsi que la chute de pression de I’écoulement. En particulier, le travail
expérimental a permis de mettre en évidence les effets sur le transfert, du rapport de
forma a, de la température de sous refroidissement du fluide a I’entrée des canaux et de
la dynamique de formation et de grossissement des bulles. Des fluctuations importantes
de pression et de températures ont été enregistrées pour des températures de surfaces
avoisinant les 250°C. Les micro canaux avec a= 1.5 et Dh=120mm, correspondent a la
configuration la plus performante. Les mesures par thermographie infrarouge (IR)
combinées a la visualisation par caméra rapide et aux mesures des fluctuations de
pressions par capteurs piézoresitifs, ont été réalisées dans le cas de canaux en
Polydimethylsiloxane (PDMS) de grand rapport de forme (a=22) et de diamétre
hydraulique Dh =192 um. L’objectif ¢était d’identifier des cartographies
bidimensionnelles et instationnaires de coefficients d’échanges convectifs dans le cas
d’un micro canal utilisant un fluide diélectrique le FC72. La double visualisation par
thermographie infrarouge et par caméra CCD rapide a permis de corréler la dynamique
de 1’ébullition, et notamment le grossissement des bulles, 1’asséchement et ou le

mouillage des parois, aux coefficients d’échanges convectifs locaux.
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Abstract

Flow boiling in integrated microchannel systems is a cooling technology that has received
significant attention in recent years as an effective option for high heat flux microelectronic
devices as it provides high heat transfer and small variations in surface temperature. However,
there are still a number of issues to be addressed before this technology is used for commercial
applications. Amongst the issues that require further investigation are the two-phase heat transfer
enhancement mechanisms, the effect of channel geometry on heat transfer characteristics, two-
phase flow instabilities, critical heat flux and interfacial liquid-vapour heat transfer in the vicinity
of the wall. This work is an experimental study on two-phase flow boiling in multi- and single-
rectangular microchannels. Experimental research was performed on the effect of the channel
aspect ratio and hydraulic diameter, particularly for parallel multi-microchannel systems in order
to provide design guidelines. Flow boiling experiments were performed using deionised water in
silicon microchannel heat sinks with width-to-depth aspect ratios (a) from 0.33 to 3 and hydraulic
diameters from 50 um to 150 um. The effect of aspect ratio on two-phase flow boiling local heat
transfer coefficient and two-phase pressure drop was investigated as well as the two-phase heat
transfer coefficients trends with mass flux for the constant heat fluxes of 151 kW m2, 183 kW m-
2,271 KW m2and 363 kW m2 Wall temperature measurements were obtained from five
integrated thin nickel film temperature sensors. An integrated thin aluminium heater enabled
uniform heating with a small thermal resistance between the heater and the channels. The
microfabricated temperature sensors were used with simultaneous high-speed imaging and
pressure measurements in order to obtain a better insight related to temperature and pressure
fluctuations caused by two-phase flow instabilities under uniform heating in parallel
microchannels. The results demonstrated that the aspect ratio of the microchannels affects flow
boiling heat transfer coefficients. However, there is not clear trend of the aspect ratio on the heat
transfer coefficient. Pressure drop was found to increase with increasing aspect ratio. Wide
microchannels but not very shallow, with a = 1.5 and D, = 120 um, have shown good heat transfer
performance, by producing modest two-phase pressure drop of maximum 200 mbar for the
highest heat flux and heat transfer coefficients of 200 kW m2 during two-phase flow boiling
conditions. For the high aspect ratio, values of 2 and 3 two-phase flow boiling heat transfer
coefficients were measured to be lower compared to aspect ratio of 1.5. Microchannels with
aspect ratios higher than 1.5 produced severe wall temperature fluctuations for high heat fluxes
that periodically reached extreme wall temperature values in excess of 250 °C. The consequences
of these severe wall temperature and pressure fluctuations at high aspect ratios of 2 and 3 resulted

in non-uniform flow distribution and temporal dryout. Abrupt increase in two-phase pressure drop



occurred for a > 1.5. The effect of the inlet subcooling was found to be significant on both heat
transfer coefficient and pressure drop. Furthermore, the effects of bubble growth on flow
instabilities and heat transfer coefficients have been investigated. Although the thin film nickel
sensors provide the advantage of much faster response time and smaller thermal resistance
compared to classic thermocouples, they do not allow for full two-dimensional wall temperature
mapping of the heated surface. An advanced experimental method was devised in order to
produce accurate two-dimensional heat transfer coefficient data as a function of time. Infrared
(IR) thermography was synchronised with simultaneous high-speed imaging and pressure
measurements from integrated miniature pressure sensors inside the microchannel, in order to
produce two-dimensional (2D) high spatial and temporal resolution two-phase heat transfer
coefficient maps across the full domain of a polydimethylsiloxane (PDMS) microchannel. The
microchannel was characterised by a high aspect ratio (a = 22) and a hydraulic diameter of 192
pm. The PDMS microchannel was bonded on a transparent indium tin oxide (ITO) thin film
coated glass. The transparent thin film ITO heater allowed the recording of high quality
synchronised high - speed images of the liquid-vapour distribution. This work presents a better
insight into the two-phase heat transfer coefficient spatial variation during flow instabilities with
two-dimensional heat transfer coefficient plots as a function of time during the cycles of liquid-
vapour alternations for different mass flux and heat flux conditions. High spatial and temporal
resolution wall temperature measurements and pressure data were obtained for a range of mass
fluxes from 7.37 to 298 kg m2s? and heat fluxes from 13.64 to 179.2 kW m2using FC-72 as a
dielectric liquid. 3D plots of spatially averaged two-phase heat transfer coefficients at the inlet,
middle and outlet of the microchannel are presented with time. The optical images were
correlated, with simultaneous thermal images. The results demonstrate that bubble growth in
microchannels differs from macroscale channels and the confinement effects influence the local
two-phase heat transfer coefficient distribution. Bubble nucleation and axial growth as well as
wetting and rewetting in the channel were found to significantly affect the local heat transfer
physical mechanisms. Bubble level heat transfer coefficient measurements are important as
previous researchers have experimentally investigated local temperature and high speed
visualisation in bubbles during pool boiling conditions and not flow boiling. The effect of the
confined bubble axial growth to the two-phase heat transfer coefficient distribution at the channel
entrance was investigated at low mass fluxes and low heat fluxes. The 3D plots of the 2D two-
phase heat transfer coefficient with time across the microchannel domain were correlated with
liquid-vapour dynamics and liquid film thinning from the contrast of the optical images, which
caused suspected dryout. The 3D plots of heat transfer coefficients with time provided fine details

of local variations during bubble nucleation, confinement, elongated bubble, slug flow and
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annular flow patterns. The correlation between the synchronised high-resolution thermal and
optical images assisted in a better understanding of the heat transfer mechanisms and critical heat

flux during two-phase flow boiling in microchannels.
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