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ABSTRACT 

Models of genetic variation in quantitative traits are investigated. One type of 

analysis - considers the genetic variance maintained with joint effects of 

mutation, selection, linkage and drift. The model of the mutation process 

assumes that there is a large number of sites capable of affecting the value of 

the trait, but there is a distribution of effects of new mutants at these sites. 

The effects of changes in the parameters of this distribution on genetic 

variance maintained under artificial and natural selection are investigated. In 

artificial populations, mutation can contribute substantially to genetic variance 

maintained and to long-term selection responses. In natural populations, which 

are commonly observed to have substantial heritabilities for many quantitative 

traits, a balance between mutation and drift can maintain sufficient variation, 

but the strength and mode of natural selection is a critical parameter on which 

we have little information. The effects of linkage are small in both artificial and 

natural situations especially for species with many chromosomes. 

A second type of model of a quantitative character considers the genetic 

variation of a particular type of quantitative trait, metabolic flux, and the effects 

of enzyme activity variation on it. It is assumed that enzyme activity variants 

segregate in a population, and equations are derived for genetic components of 

flux variation. Both dominance and epistasis are present, but these are small 

components of variation relative to the additive variance unless allelic effects 

are very large. Models of pleiotropic gene action are considered. 

A general discussion of the likely contribution of molecular techniques to 

understanding quantitative genetic variation is given. It is argued that 

molecular techniques involving insertional mutagenesis will lead to a higher 

level of understanding of quantitative variation at the level of gene action. The 

problem of the maintenance of variation in quantitative traits, however, has 

similarities to the problem of the maintenance of molecular polymorphism, for 

which there has been no clear resolution. 
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Chapter 1 

General Introduction 

1.1. Ubiquitous quantitative variation 

The scientific study of the inheritance of Continuous characters originated soon 

after the publication of Darwin's "Origin of Species". The rediscovery of 

Mendel's paper was followed by a debate between 'Mendelians' and 

'Biometricians' on the connection between Mendel's discoveries and the 

inheritance of quantitative traits. The arguments were resolved in a paper by 

Fisher (1918) who published correlations between relatives on the assumption 

of Mendelian inheritance. (Earlier papers on this subject by Weinberg (1909a,b, 

1910) were ignored). Subsequently, the foundations of quantitative genetics 

theory were laid with major contributions from Wright (1921) and Haldane 

(summarized in 1932). Provine (1971) gives a lucid account of the development 

of the theoretical basis of quantitative genetics. 

Variation in quantitative traits is important because selective improvement of 

domestic species depends on it, and because it is generally held to be the 'raw 

material' for evolutionary changes. There is ample evidence for the near 

universality, of genetic variation in quantitative traits. In two recent studies, 

Mousseau and Roff (1987) and Roff and Mousseau (1987) summarized published 

values of narrow sense heritabilities of many characters from natural 

populations of diverse animal species, the latter paper devoted to the 

Drosophila genus. For morphological characters the average heritability was 

46% for animals in general and 32% for Drosophila. Heritabilities of life history 

and physiological traits were generally lower. For traits closely connected with 

fitness there was usually a small but detectable additive genetic component of 

variation. Caution is needed in interpreting such data because various 

environmental factors can cause heritability estimates to be biased upwards 

(Falconer, 1981 Ch. 9). However, such evidence together with the general 

observation of responses to artificial selection (Lewontin, 1974 Ch. 2) leads to 

the inevitable conclusion that substantial additive genetic variation is present in 

most characters in artificial and natural populations. The presence of such 

ubiquitous genetic variation raises two important problems. The first is its 

maintenance. The observation of heritable variation of any character is the 



result of past influences on the population of the major evolutionary forces of 

drift, migration, mutation and selection. There are several important questions 

which relate to the maintenance of genetic variation: How important is finite 

population size relative to the other forces? What is the nature of the selective 

forces and do these maintain or destroy variation? How quickly does mutation 

generate quantitative variation? What are the implications of spatial and 

temporal heterogeneity of the environment? The second problem is that of the 

nature of quantitative variation. One aspect is the identification of the genes 

responsible for the genetic variation in the character and the elucidation of 

their biological functions. A second is understanding the properties of alleles 

contributing to genetic variation in the population, the distributions of allelic 

effects and frequencies and their dominance and epistatic relations. 

This thesis examines aspects of these two problems theoretically. It falls into 

two distinct parts. The first part (Ch. 2-5) concerns the role of mutations in 

contributing to selection responses and to genetic variation in finite 

populations. In the second part (Ch. 6-7), specific models of the action of a 

class of gene products, the enzymes, are investigated in relation to variation in 

quantitative characters. 

1.2. Mutation and quantitative variation 

Mutation is the primary source of genetic variation in quantitative characters. 

Mather and Wigan (1942) performed the first experimental investigation of the 

influence of new mutations on a quantitative trait by measuring the rate of 

change of bristle score from selection of inbred sublines of Drosophila 

melanogaster. Clayton and Robertson (1955) performed similar experiments and 

developed theory on the contribution of mutations to variation in quantitative 

traits. The important parameter of new mutational variance arising per 

generation, VM,  was introduced. VM  is usually expressed as VM/ VE ,  the new 

genetic variance as a proportion of the environmental variance of a (usually) 

inbred line. Clayton and Robertson also gave the important result that for 

additive genes in the absence of selection the expected variance in a finite 

population at equilibrium is 2 Ne  VM, with Ne  the effective population number. 

Their estimate of VM  for Drosophila abdominal bristles was iO VE,  that of 

Mather and Wigan (1942) was 10 VE which was suggested as an 'upper limit'. 

Thus the contribution from mutation per generation to the variation in the 

character is relatively small. Experiments designed to measure VM/VE  are 
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difficult because they require many generations and need to be large in view of 

the rarity of spontaneous mutations. Some estimates for various characters of 

mice come from measurements of the divergence between sublines of inbred 

strains which have been maintained for many generations ostensibly for other 

purposes (Bailey, 1959; Grewal, 1962; Festing, 1973). Lynch (1988) has 

extensively reviewed published estimates of VM/ VE for diverse characters in a 

number of animal and plant species. Where more than one estimate is 

available, there is usually substantial variation among estimates. The 'upper 

limit' figure of suggested by Clayton and Robertson (1955) for Drosophila 

bristle score is, however, probably a reasonable one for the spontaneous rate 

because there is a fair degree of agreement among estimates from various 

methods. The estimates from the divergence rates of mouse inbred sublines 

are generally higher. It would not be surprising to find widely differing rates of 

generation of mutational variation between species because factors such as 

varying generation times and numbers of cell divisions per generation of the 

germ line are likely to influence spontaneous mutation rates (Nei, 1987 Ch.3). 

An additional source of variation may come from variation in the efficiency of 

DNA repair systems. Further, the distribution of effects of new mutant alleles, 

relating the expected number of mutational effects in different size classes, is 

likely to vary widely between characters. In Drosophila, the discovery that 

quantitative variation can be generated by mobilisation of transposable 

elements into new genomic sites (Mackay, 1985) also suggests that the input of 

variation from mutation can differ substantially between populations because 

the induction of transposition depends on specific dysgenic crosses. A similar 

phenomenon also occurs in a mammalian species, the mouse, in which crosses 

of specific inbred lines lead to mutations due to the mobilisation of proviruses 

(Jenkins and Copeland, 1985). 

1.3. Selection, mutation and variation in quantitative characters 

Recently, there has been renewed interest in the contribution of mutation to 

responses in artificial populations stimulated by the observation of long 

continued responses in some experimental populations (e.g. Dudley, 1977; 

Enfield, 1980; Yoo, 1980), and in commercial populations (Smith, 1984). In 

natural populations, the maintenance of variation in quantitative characters has 

received much attention recently because of the conflict between the results of 

theoretical studies on the maintenance of genetic variation by 

mutation-stabilizing selection balance by Lande (1976) and Turelli (1984). 
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Interest has also been stimulated by the discovery of vast quantities of 

variation at the molecular level by molecular techniques starting with starch gel 

electrophoresis of enzyme variants (Harris, 1966; Lewontin and Hubby, 1966) 

and presently by analysis of DNA by various methods. 

1.3.1. Mutation in artificially selected populations 

Hill (1982a,b) considered the contribution of new mutations to artificial 

selection response rates and concluded that mutation can be important within 

the time scales of commercial selection programmes and in long-term 

selection experiments in spite of the relatively small contribution of new 

mutations to the genetic variance each generation. The model involved 

mutations affecting the trait from the whole genome rather than a specific set 

of loci 'controlling' the trait. The relevant parameters of the mutation process 

reduced to the expected number of mutations per haploid genome per 

generation and the shape and scale of the distribution from which it was 

assumed mutational effects are independently sampled. The shape and scale 

of the distribution were shown to have strong influences on the expected 

response from new mutations in the early generations after the 

commencement of selection. Subsequently, Hill and Rasbash (1986) showed 

that the variance of response between lines also strongly depends on the 

shape and scale of the mutational distribution. For the case of additive genes, 

however, the asymptotic response rate from fixation of mutant alleles is 

proportional to the product of strength of selection and the asymptotic 

variance, namely 2 Ne  VM as in the neutral case, with little dependence on the 

scale and shape of the mutational distribution. The quantitative predictions are 

therefore heavily dependent on the magnitude of VM/ VE  as discussed above, 

but an important conclusion was that the asymptotic response is proportional 

to the effective population size. Further analysis by Keightley and Hill (1983) of 

the effects of linkage using a model of a chromosome with an infinite number 

of independently mutable sites led to the conclusion that linkage has little 

influence on asymptotic response rates unless it is very tight. 

1.3.2. Mutation and stabilizing selection in natural populations 

The optimum model of stabilizing selection is a popular model of natural 

selection of quantitative characters because it predicts a stable value of the 

character. The character has a fixed optimum value and deviation in either 
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direction implies a reduction in fitness. Of course, this is only one possible 

model of natural selection, but it has been subject to a great deal of analysis. 

The following is a summary of some of the most important papers in the area. 

Latter (1960) gave the first important analysis of the equilibrium behaviour of 

a mutation-stabilizing selection balance. The 'nor-optimal' model of stabilizing 

selection (Haldane, 1954) was analysed with a model of a locus with up to two 

alleles segregating in an infinite population. A simple formula was derived for 

the genetic variance at equilibrium. Based on arguments concerning per locus 

mutation rates, numbers of loci thought to 'control' quantitative traits and likely 

strength of stabilizing selection in nature, Latter concluded that mechanisms 

other than a balance between mutation and selection were necessary to explain 

observed natural heritabilities. 

Kimura (1965) analysed the equilibrium behaviour of a locus with multiple 

alleles of small step-wise effects segregating in an infinite population. An 

expression was derived for the equilibrium genetic variance under 

mutation-stabilizing selection balance which was quite different from that of 

Latter (1960). Kimura made the important conclusion that the model predicts 

that the equilibrium distribution of allelic effects segregating at the locus is 

normal. Kimura did not explicitly consider whether the model could account for 

natural heritabilities. 

Latter (1970) extended Kimura's (1965) analysis and incorporated finite 

population size. Interestingly, Latter used a fundamentally different model from 

his 1960 paper (described above) which is perhaps evidence for the influence 

of Kimura's (1965) results. 

Bulmer (1972) analysed mutation-stabilizing selection balance for a two allele 

model which allowed for the possibility of large differences in effect between 

the alleles, and by incorporating diffusion theory developed by Kimura (1964), 

obtained formulae for the variance maintained in finite populations. Bulmer 

showed that less variation is maintained in a finite population than predicted 

for the absence of drift, but did not discuss the variation which might be 

maintained with parameters 'appropriate' to natural populations. 

The paper of Lande (1976) was important for arguing that high heritabilities 

can be explained by a mutation-stabilizing selection balance without need of 

other explanations. Lande attempted to fit experimentally determined estimates 
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.of VM and number of 'effective factors' influencing a quantitative trait (Falconer, 

1981), to a model of an infinite population with assumptions based on results 

of Kimura (1965) (see above). Lande concluded that high heritabilities can be 

maintained even for strong stabilizing selection with values of the mutation 

parameters which were perceived to be reasonable. 

6. Turelli (1984) also extensively reviewed experimental estimates of the 

important parameters, but using a different model from Lande (1976), concluded 

that the question of the maintenance of natural heritabilities depends on the 

values of parameters for which there is insufficient data. Turelli showed that 

Kimura's (1965) result that the distribution of allelic effects segregating at the 

loci contributing to the trait is normal depends on high mutation rates per 

locus and small selective values of new mutant alleles. In Turelli's "House of 

Cards" model the effects of new mutant alleles were assumed to be sufficiently 

large to swamp existing variation at the loci, and Turelli argued that such a 

situation is likely in nature given the values of experimentally measured 

parameters such as per locus mutation rates and VM/ VE  for quantitative traits. 

The formula obtained for the equilibrium genetic variance was the same as that 

derived by Latter (1960) and Bulmer (1972). 

These issues are still being discussed in the literature (e.g. Bulmer, 1988), and 

they will be examined in more detail later in this thesis (Ch. 4-5). 

1.3.3. Other models of the maintenance of variation 

The popularity of the single character model of stabilizing selection is in part 

due to its tractability. Models such as frequency-dependent selection (Clarke 

and O'Donald, 1964), and density-dependent selection (Clarke, 1972) can lead to 

the maintenance of variation through marginal overdominance of the 

heterozygote with respect to fitness, as can temporal and spatial variation of 

the environment. Mackay (1981) showed that significantly greater genetic 

variation was maintained in various traits of Drosophila in populations subject 

to environmental heterogeneity. The above mechanisms, however, are beyond 

the scope of this thesis. Other models are considered, however. 

Neutrality. Clayton and Robertson's (1955) result that the equilibrium variance 

for additive genes in a mutation-drift balance is 21\ e  VM  is important because it 

shows that without selection, mutation is an adequate force to explain 
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observed natural heritabilities. So for example, with VM/VE  of 	and an 

effective population size of 10 3, the expected heritability is 2/3. The time taken 

to reach the equilibrium in large populations can be very long (Chakraboty and 

Nei, 1982). 

Lynch and Hill (1986) performed an extensive analysis of mutation-drift balance 

and included dominance and linkage in their models, which were shown to 

have little influence on the expected variance, but to have an important 

influence on the variance of the genetic variance between independent lines. 

The model analysed was step-wise in the sense that the effect of each new 

mutant was assumed to be added on to the value of the allele already present 

at the locus. The genetic variance can therefore increase without bounds with 

increasing Ne  as can the asymptotic response to directional selection (Hill, 

1982a,b). Cockerham and Tachida (1987) analysed similar problems, but 

assumed a model formally the same as the "House of Cards" (cf. Turelli, 1984), 

i.e. the effect of a mutant allele replaces the current allelic state. This gives 

different behaviour from the step-wise model described above because the 

variance with neutral genes is finite in an infinite population and similarly there 

can be a directional selection limit. Clearly, the effects of mutations in natural 

situations vary between the step-wise and House of Cards extremes. 

Pleiotropy. An important extension to the stabilizing selection model is the 

incorporation of the effects of pleiotropy. Two notable studies by Lande (1980) 

and Turelli (1985) extended Kimura's (1965) and Turelli's (1984) analyses 

respectively, and assumed stabilizing selection simultaneously acting on more 

than one character with new mutations simultaneously affecting all characters. 

As with the single trait analysis described above, the two models behave quite 

differently with Turelli's House of Cards assumptions predicting a large impact 

of pleiotropic selection on the variance maintained in the character. 

It is unlikely that pleiotropic effects occur solely through characters with 

intermediate optima, as the effect of pleiotropy is often likely to be through 

characters closely connected with fitness itself. For this reason, the single 

character optimum model has been frequently criticised in the literature (e.g. 

Robertson, 1973; Falconer, 1981 Ch. 20; Gillespie, 1984). Hill and Keightley 

(1988) considered the variance maintained in a trait with directional selection 

where mutations have effects on the trait and correlated plelotropic directional 

effects on fitness. As expected, the presence of such pleiotropy leads to a 
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reduction in the variance maintained in the character, but also has relatively 

more impact on the selection response. The extent depends on genetic 

parameters such as the variance of the distribution of effects of mutant alleles 

and the correlation between the effects of mutants on the trait and fitness. 

Such an analysis would also be appropriate for natural populations. 

Heterozygote Superiority. Intuitively, heterozygote superiority for fitness is an 

attractive candidate for explaining the maintenance of genetic variation in the 

presence of other forces which tend to reduce it. It has been argued, however, 

that heterozygote advantage at the level of the 'primary effect' of the gene is 

unlikely, because the heterozygote is usually intermediate if it is at an enzyme 

activity locus (Kacser and Burns, 1981). Heterozygote advantage for fitness is 

more likely to be due to opposing directional pleiotropic effects on its 'major 

components' (Rose, 1982). This can also lead to apparent intermediate optima 

for the individual characters when regressed on fitness (Hill and Keightley, 

1988). Frequently quoted examples of loci showing heterozygote superiority for 

fitness are usually examples of this phenomenon. For example the advantage 

of the heterozygotes for the thalassaemia alleles is due to negative pleiotropic 

effects on efficiency of oxygen transport of erythrocytes opposed by a positive 

influence on resistance to malaria (Weatherall and Clegg, 1981). Gillespie 

(1984) analysed a model of an infinite population and showed that substantial 

variation can be maintained from alleles of additive effect on the trait if there 

is heterozygote superiority in fitness. There is some doubt, however, whether 

heterozygote superiority (whatever the mechanism) can be a general 

explanation for the maintenance of quantitative variation because such 

superiority can actually accelerate the rate of fixation at a locus in small 

populations if the stable gene frequency is near either of the extremes 

(Robertson, 1962). 

1.4. The effects of linkage 

Quantitative traits are affected by alleles segregating at many loci which may 

or may not be physically linked on the same chromosome. Selection tends to 

generate non-random combinations of alleles at different loci, and 

recombination tends to break them down. Such non-randomness is termed 

disequilibrium. The term disequilibrium rather than linkage disequilibrium is 

generally used here since disequilibrium can be generated in the absence of 

linkage. In quantitative genetics theory linkage is important because of its 
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influence on selection responses and on the expectation and variances of 

genetic variances in natural and artificial populations. 

1.4.1. Linkage and quantitative genetic variation 

Disequilibrium in a population can be measured as a covariance component, a 

function of values and frequencies of alleles and frequencies of haplotypes of 

pairs of loci, which may be either positive or negative. An excess of coupling 

haplotpes generated by directional or stabilizing selection leads to an 

expectation of less additive variance compared to random mating and to the 

presence of a negative disequilibrium covariance component. As a 

consequence, selection responses predicted from the additive genetic variance 

in an unselected population are reduced in second and subsequent generations 

of selection (Bulmer, 1980 Ch. 9). This is a general qualitative prediction for 

which there is evidence from the results of selection experiments (Atkins and 

Thompson, 1986). If drift is the only force tending to change gene frequencies, 

the expected disequilibrium in the population is zero, but the disequilibrium 

varies stochastically about zero due to random changes in gene frequency. 

Linkage has the theoretical consequence of increasing the variance of the 

variance of genotypic values between sublines (Bulmer, 1976; Avery and Hill, 

1977). 

Recombination reduces disequilibrium by randomly generating all genotypes 

irrespective of the initial conditions. With free recombination, the 

disequilibrium in the progeny is reduced on average by a factor of one-half 

each generation compared to the parents. The effect of a finite amount of 

recombination is also to break down disequilibrium, but to a lesser extent than 

free recombination depending on details of the recombination mechanism. For 

example, the presence of crossover interference is similar to the behaviour in 

its absence, but with a reduced chromosome length (Avery and Hill, 1979). 

In the presence of mutation and selection the effects of linkage on equilibrium 

variances and responses depend, in theory, on assumptions of the mutation 

process. Lande (1976) investigated a multi-allele model of a finite number of 

loci and mutations of tiny effect, and concluded that linkage has a small 

influence on the variance maintained with a mutation-stabilizing selection 

balance. Using a different model, with finite effects of mutant alleles occurring 

at an infinite number of possible sites, Keightley and Hill (1983) analysed 



linkage in finite populations with directional selection and showed that one 

crossover or more per chromosome per generation is very similar to free 

recombination. 

Theoretical analysis shows that linkage tends to retard selection responses, but 

an apparent paradox arises because in the case of multiplicative gene action, 

selection does not immediately generate disequilibrium (Felsenstein, 1965). Hill 

and Robertson (1966) used Monte Carlo simulation of a two locus model to 

compare additive and multiplicative models of gene action and showed that 

selection responses are retarded to a similar extent in both situations. The 

result was explained in terms of the effective population size in which gene 

frequency changes take place at each locus, which is reduced by linkage. 

Keightley and Hill (1983) also observed little difference between additive and 

multiplicative models. 

Robertson (1970, 1977) simulated the effects of linkage on responses to 

directional selection using models of discrete loci and infinitesimal effects 

spread evenly along a chromosome respectively. Robertson attempted to 

describe the behaviour of the models in terms of as few parameters as 

possible and concluded that in general linkage needs to be very tight to have 

substantial effects either on response rates or limits. 

1.5. Metabolic models of quantitative characters 

Usually, the biological mode of action of the genes affecting quantitative 

characters is not or cannot be considered. This stems from the present lack of 

understanding of the relationship of most characters to the genetic system. 

One class of genes, those controlling enzyme activities, is substantially better 

understood than other classes (for example, genes controlling development). 

Enzymes operate within the metabolic system which is represented graphically 

as the 'metabolic map'. The map shows the arrangement of the enzyme 

catalysed reactions in complex pathways. The kinetics of the system depend 

on, among other parameters, enzyme activities which are under genetic control. 

Since there is experimental evidence that enzyme activity is polygenically 

determined (Paigen, 1979; Laurie-Ahlberg et aL, 1980), enzyme activity itself can 

therefore be regarded as the lowest level of quantitative character measurable 

in metabolism. At the next level up, concentrations of metabolic intermediates 
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and metabolic fluxes are also quantitative characters. Because of the 

interconnected nature of the system, any flux or metabolite pool is necessarily 

a function of many, perhaps all, enzyme species. 

The extent to which changes in enzyme activity influence fluxes and metabolite 

pools is the subject of studies of the quantitative control of metabolism 

(reviewed by Kacser and Porteous, 1987). The concept of 'rate limiting step' is 

replaced by 'control coefficient' which describes the fractional change in flux 

resulting from a small fractional change in enzyme activity. Most studies show 

that the control of flux and metabolite pool is shared among many enzymes 

and cannot be uniquely assigned to any one (e.g. Flint, Porteous and Kacser, 

1980; Groen et al., 1982; Salter, Knowles and Pogson, 1986; Woodrow, 1986; 

Dykhuizen, Dean and Hartl, 1987). Theory of control coefficients is applicable to 

small changes in enzyme activity, but mutations can cause large changes in 

enzyme activity and the effect on fluxes and pools is not fully described by 

theory developed for infinitesimal changes. 

Kacser and Burns (1981) modelled the effects of finite changes of enzyme 

activity on the dominance relations of the phenotype flux in diploids. Using 

results obtained from a general control analysis of metabolic systems  and 

specific models of simple pathways, the relationship between flux and enzyme 

activity was shown in general to be hyperbolic, and with constraints imposed 

by the distribution of control coefficients, most enzyme activities in any 

pathway lie on the plateau of the curve (Fig.1.1). Thus a null mutant is most 

likely to be recessive for the phenotype flux, while a small change in enzyme 

activity gives a nearly intermediate flux value of the heterozygote. Kacser and 

Burns argued that many characters are closely related to metabolic flux and 

that null mutations in such characters tend therefore to be recessive. Thus, 

dominance is a consequence of the constraints imposed by the metabolic 

system without needing a direct evolutionary explanation of modifiers (Fisher, 

1928). On the other hand, small changes in enzyme activity are likely to be 

nearly additive. 
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Fig.1.1. The response of flux to change in one enzyme activity in a linear 

pathway at steady state of four unsaturated enzymes of unit activity (see 

Kacser and Burns 1973, 1981, and Ch. 6 for details of the model). 
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Non-additive allelic interactions within loci are an inevitable consequence of 

the kinetics of metabolic pathways. Similarly, epistasis or interaction between 

alleles at different loci is also generated in metabolic systems. The following 

simple example illustrates the point. Consider a null mutant in a metabolic 

pathway. The flux in the pathway is zero because the pathway is blocked. The 

presence of another null mutation at a different step is epistatic to the first 

because the flux is also zero with the double mutant. Enzyme activity alleles 

segregating in a diploid population therefore generate both dominance and 

interaction variance in the quantitative characters metabolic flux and metabolite 

concentration. Kinghorn (1987) attempted to analyse the nature of epistatic 

interactions for growth and reproductive traits in guinea pig data accumulated 

by Wright (1922). Although Kinghorn concluded that the data best fitted a 

model of additive-by-additive interactions, the model of epistasis was not 

based on modern ideas on the kinetics of multi-enzyme systems (Kacser and 

Burns, 1973; Heinrich and Rapoport, 1974). A further feature of the effects of 

enzyme variation on fluxes and pools is pleiotropy. This occurs because 

different fluxes are coupled to one another by stoichiometry or by competition 

for common substrates at branch points. It is intuitively obvious that fluxes 

widely separated on the 'metabolic map' are almost independent of one another 

with respect to any enzyme variation and this is why mutants have specific and 

characteristic effects. The directions of pleiotropic coupling and extent to 

which different fluxes are related are not intuitively obvious, however. 

Dykhuizen, Dean and Hart[ (1987) (see also Hartl, Dykhuizen and Dean, 1985) 

have investigated the fitness consequences of mutations at various sites in the 

lac operon of Escherichia coli in lactose limited chemostats. In this 

environment, fitness is linearly related to flux,. and competitive ability of 

mutants against a tester strain gives a good measure of relative flux. The 

relationship between enzyme activity and fitness for mutants at both the 

B-galactosidase and 8-galactoside permease genes is hyperbolic, as predicted 

by metabolic control theory. Further, a model of a 'linear unsaturated pathway' 

with two variable loci (-galactosidase and permease) and a 'constant' portion 

of the pathway fitted the chemostat data very well. 
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1.6. Subject matter of this thesis 

This thesis is a theoretical investigation of two important general problems 

connected with the nature of quantitative genetic variation. The first concerns 

the contribution of mutation to variation in quantitative traits in finite 

populations. The problem of explaining quantitative variation is important 

because many evolutionary changes at the phenotypic level are brought about 

by the action of natural selection on quantitative variation, and because 

selection responses in artificial populations depend on quantitative variation 

which has arisen by mutation in the base populations or since selection has 

started. Although others have analysed this problem, few have considered the 

consequences of assuming a distribution of effects of mutant alleles and the 

consequences of changes in its parameters on the amount and nature of the 

variation maintained. Here, these aspects of the mutation process and the 

interactions of drift, selection and linkage on variance maintained and selection 

responses are investigated (Ch. 2-5). The second general problem concerns 

the nature of variation in quantitative traits related to the biochemical system. 

Most models of quantitative characters do not consider constraints imposed by 

the underlying biochemical system. Such constraints influence the genetic 

variation we measure (additive/non-additive), the couplings between characters 

(pleiotropy) and responses to selection. Here, models of quantitative traits 

based on biochemical assumptions are investigated (Ch. 6-7). 

1.61. Outline 

Chapter 2 describes the genetic model and the analytical and simulation 

methods which are used in the three chapters on the contribution of mutation 

to quantitative variation which follow. 

Chapter 8 is an analysis of the interactions of mutation, linkage and drift with 

responses to directional selection. The results of a Monte Carlo simulation 

model are compared to the results of an analytical model of tiny gene effects 

('infinitesimal model'). The effects of linkage where mutant effects are sampled 

from a skewed distribution, and in particular, the operation of "Muller's ratchet" 

are investigated. 

Chapter 4 is an investigation of models of quantitative variation maintained at a 

mutation-stabilizing selection balance for finite populations. Much of the 

14 



analysis concentrated on the consequences of distributions of effects of new 

mutant alleles. The effects of linkage are investigated by Monte Carlo 

simulation. 

Chapter 5 extends the analysis in Chapter 4. Expressions for the variance of 

the genetic variance between independent lines are derived. Patterns of 

selection response to directional selection from characters previously under 

stabilizing selection are simulated and compared to the results of experiments. 

The magnitude of genetic parameters which underlie selection responses are 

discussed. 

Chapter 6 introduces some simple biochemical models, and uses these to 

derive expectations of non-additive components of variance in metabolic flux 

caused by variation in enzyme activities segregating in a population. 

Implications for the genetics of quantitative variation are discussed. 

Chapter 7 is an investigation of dominance of mutants affecting characters 

pleiotropically coupled by the metabolic system. 

Chapter 8 is the general discussion, but concentrates on the consequences of 

new molecular methods and technology for quantitative genetics. 
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Chapter 2 

Model and Methods 

2.1. Introduction 

In chapters 3-5, interactions between selection, mutation and linkage are 

investigated in a model of a finite population. The purpose of this chapter is 

to describe the assumptions of the biological model, then to describe the 

methods used to analyse it and the ways in which they relate to each other. 

Central to the model is the idea of a distribution of effects of mutant alleles. 

Consider one locus which affects the value of a quantitative character. It is 

assumed that recurrent mutation can change the value contributed by the 

locus, that the effect of a new mutant allele is added to the current value, and 

that the effect is sampled from a distribution. Much of the following three 

chapters is concerned with the effects of changes in the parameters of this 

distribution (i.e. standard deviation, skewness, kurtosis) on genetic variation and 

response to selection. The basic aim is to model the processes of mutation, 

selection, drift and recombination accounting for mutations occurring at all loci 

in the genome which affect the value of the trait. Three main approximations 

are used to investigate the model. (i) Analytical. By using diffusion theory 

(Kimura, 1969), it is possible to derive formulae describing the equilibrium 

behaviour of a single locus with recurrent mutation. (ii) Transition matrix. A 

matrix of change of allele frequency at a locus in a finite population is defined. 

Using this matrix, it is possible to predict the genetic variance contributed by a 

new mutant allele during its lifetime and its fixation probability. The 

equilibrium and dynamic behaviour can be predicted. Only single loci can be 

considered. (iii) Monte Carlo Simulation. This method relies on computer 

programs using random number generators and allows the effects of linkage 

and the simultaneous effects of alleles segregating at more than one locus to 

be assessed. The dynamic and equilibrium behaviour can be measured. In 

contrast to the previous methods, results have sampling errors. 

The following section describes the basic assumptions used in all three 

approximations. Since the assumptions are the same or very similar, results 

from each approximation are comparable to one another, and this is done in 

various places in the results chapters. 
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2.2. Finite population model 

Basic Assumptions. The population is assumed to consist of N monoecious 

diploid individuals with constant population size, random mating, random family 

size and non-overlapping generations. Selection is sufficiently strong or the 

population size sufficiently small that no more than two alleles segregate at 

any time at each locus contributing to variation in the quantitative character. 

In some cases, Monte Carlo simulation runs with multiple alleles were used to 

investigate the consequences of relaxing this restriction. The frequency of the 

higher valued allele at a locus is q, and the difference in value between the 

homozygotes is a. Effects are assumed to be additive within and between loci, 

i.e. there is no dominance or epistasis. 

Mutation. It is assumed that the population size and mutation rate are such 

that a new mutation is unlikely while an existing mutation is segregating, but 

such a mutation can occur later and its effect is a random variable sampled 

from a distribution of effects of new mutant alleles, a parameter of the model. 

The value of the new mutant effect is added to the current value at the locus. 

The mutation model is therefore step-wise. The expected number of mutations 

appearing per haploid genome per generation is X and these occur 

independently. The increment in variance each generation from mutation is 

VM  = XE(a2)/2 	 (2.1) 

(Hill, 1982a). The distribution of mutant effects is time-invariant. For modelling 

purposes the gamma distribution was chosen since it has a wide range of 

properties if suitable values are given to its parameters. The density function 

of mutants having an increasing effect on the trait is given by 

1(a) = aBea aB_h/r(B) 	(0 < a < 	 (2.2) 

where r(.) is the gamma function and the moments are E(a) = B/ct, 
a2) = + 1)/a 2 . Examples of the gamma distribution for a range of shape 

parameter, B are shown in Fig. 2.1. The parameter a defines the scale of the 

distribution and B its shape. In practice, the scale was defined by the 

parameter 
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C = [E(a2)/ VE] 112 	[B(B + 1)/(cc2 VE)] 112, 	 (2.3) 

Where VE  is the environmental variance. With shape parameter B = 1, fla) is an 

exponential distribution; as B -* 0 the distribution approaches the geometric 

distribution and becomes increasingly leptokurtic with a large spike near a = 0 

and a long tail; with B , the distribution approaches the limiting case of all 

mutant effects equal. This model was used to investigate the effect on genetic 

variation and selection responses of different proportions of positive and 

negative values of effects of mutant alleles. In practice, therefore, mutant 

effects were sampled from a gamma distribution of scale parameter c with 

sign randomly allocated, and probability P of being positive. For the resulting 

distribution, referred to as the 'reflected gamma distribution', 

E(a) = 8(2P - 1)/ct, and E(a2 ) and thus c are unchanged. 
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2.2.1. Definition of variance components 

The phenotypic value of the quantitative character is X, the sum of effects of 

alleles on each of the two chromosomes, plus a random normally distributed 

environmental effect of mean zero and variance VE.  The additive genetic 

variance, VA,  of the character is simply the variance of breeding values. The 

genic variance is defined as 

= aq1 (I - q)/2, 	 (2.4) 

where the summation is over all loci affecting the trait. The analytical and 

transition matrix methods consider only single loci, so ignore disequilibrium 

and the effects of selection and drift on it. Only the genic variance and its 

variance are calculated in this case. The Monte Carlo simulation 

simultaneously models the fates of all segregating alleles which exist in the 

population, so the genic and additive variances and therefore the disequilibrium 

component can be estimated. In the absence of selection, the genic variance 

at generation t can be obtained from the recurrence 

V,t+i = Vg(l - 1 / 2 Ne ) + VM , 	 ( 2.5) 

where Ne  is the effective population number. The genic variance decreases by 

a factor 1 - 112 Ne  due to drift and increases by VM  units from mutation each 

generation. For additive genes in the absence of selection at a mutation-drift 

balance, the expected value of the additive variance is the same as that of the 

genic, namely 2 Ne  VM. Selection can cause the appearance of a disequilibrium 

component due to the selective advantage or disadvantage of combinations of 

alleles at different loci which have arisen by chance. Drift generates no net 

disequilibrium, but in a finite population, disequilibrium varies stochastically due 

to chance changes in allele and genotype frequencies. This component is 

given by 
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= 	L 1 /2, 	 (2.6) 
'- 

where D1 = - q1 q ,  and fij  is the frequency of the corresponding gamete. XD 
is the sum of the covariances between the values of pairs of loci in the 

population, and can be either negative or positive. The additive, genic and 

disequilibrium components are related by, 

VA  = V9  + I D. 	 (2.7) 

There is also a covariance component due to deviations from Hardy-Weinberg 

equilibrium (Bulmer, 1976). This is ignored here since it is transient and 

disappears after one generation irrespective of linkage. 

2.2.2. Selection 

This subsection describes some approximations for the process of selection 

used by the analytical and transition matrix methods. Two models of selection 

are investigated. In Ch. 3, the consequences of directional selection in finite 

populations are modelled. In Ch. 4, a mutation-stabilizing selection balance is 

modelled. In Ch. 5, the interactions between the two modes of selection are 

modelled. 

Directional selection. Let s be the selective advantage of the homozygote 

carrying the mutant alleles over the 'wild type' and sf2 be the selective 

advantage of the heterozygote. The change in gene frequency from one 

generation of selection is approximated by, 

Aq = sq(1 - q)/[2(1 + sq)] 
	

(2.8) 

(Falconer, 1981). With truncation selection, a good approximation for s is 
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$ = ia/G, 	 (2.9) 

.where i is the intensity of selection (standardized selection differential) and a 

is the phenotypic standard deviation. Eqn. (2.9) is accurate as long as a is 

small relative a (Falconer, 1981). 

Stabilizing selection. The particular model of stabilizing selection to be analysed 

is the 'nor-optimal' model first used by Haldane (1954) and later by Latter 

(1960), Lande (1976) and Turelli (1984). With the optimum fixed at zero, the 

relative fitness is given by 

W(X) = exp(-X2/2w), 	 (2.10) 

where w is a measure of the strength of stabilizing selection. Increasing w 

implies weaker stabilizing selection. This equation is used directly in the 

Monte Carlo simulation to assign relative fitnesses to individuals. For single 

loci, Robertson's (1956) approximation for the change of gene frequency at one 

locus is used. This assumes that many loci contribute to the variance of the 

character whose mean is near equilibrium and can vary due to gene frequency 

changes at any of the loci contributing to the character. Robertson showed that 

a mutant allele behaves as under-dominant (i.e. the heterozygote is less fit 

than the homozygotes). The change of gene frequency at one locus under such 

stabilizing selection is approximately 

Iq = a2(q - 112)q(1 - q)/[4(w2  + 0
2 )1, 	 (2.11) 

where cr 2  is formally the phenotypic variance less the genetic variance 

contributed by the locus. The term 2 + is often called the strength of 

stabilizing selection and referred to as V. This is equivalent to a model of 

heterozygote inferiority in fitness where s = a2/[8(w2 + 2)] 
is the fitness 

disadvantage of the heterozygote and there is a meta-stable equilibrium at 

q = 1/2. Importantly the strength of selection is proportional to the square of 

the allelic effect. Mutant genes are unconditionally deleterious and their 
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selection is similar to that of genic selection with Aq = s*q(1 - q), where 

= -a/[8(ti# + 02)1. 	 (2.12) 

23. Transition matrix method 

With a suitable expression for the change of gene frequency from selection, Aq, 

it is possible to model selection of a mutant allele in a finite population using a 

transition matrix. This method allows the computation of the expected (and 

variance of) heterozygosity contributed by the mutant each generation in the 

population after it appears, and can also be used to compute the cumulative 

heterozygosity (and variance of heterozygosity) it contributes during its lifetime. 

At the core of the method is a transition matrix, M which defines the transition 

probabilities of gene frequency. The use of such a matrix originates from work 

of Fisher and Wright and the process of change of gene frequency is often 

referred to as the 'Wright-Fisher stochastic process' (see Ewens, 1979, Ch. 3). 

The elements of the square matrix Mare 

= (N)(q + q)k  (1 - q - q)2Nk 	
(0< J, R2N), 	 (2.13) 

where q = j/(2I''). Let fT(t) denote the row vector with elements J(t) which are 

the probabilities of the population having gene frequency j/(21V) (O<j<2!Y) at 

generation t. Thus for a new mutant f(0) = 1 and all other elements are zero. 

The vector IT(t) at generation t (t>'O) is obtained from 

fT(t) = fT(tl)M 	 (2.14) 

Let h denote a column vector whose elements are the expected heterozygosity 

at a locus with gene frequency j/(21V) (O<j<21\), so h = 2(j/(2J))(1 - j/(21V)). 

The expected cumulative heterozygosity, 11(a), contributed by a new mutant 
00 until it is fixed or lost is 11(a) = 	0 1ff(t)b. This can be computed as 
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H(a) = IF* ()( 
	Q)_lh* 	 (2.15) 

where I is the unit matrix, Q is the square submatrix of M of dimension 2N-1 

defined by q1 = m1 . ( 1 K z, j K 2N-1), and 
fT* 

 and h*  are the corresponding 

elements of fT  and h (Kemeny and Snell, 1960). A similar matrix equation can 

be derived for the variance of heterozygosity contributed by a mutant, but this 

was only used to check results of numerical analysis (Ch. 5). 

The above describes one method for determining the equilibrium and dynamic 

behaviour of a mutant whose effect, a, appears in the transition matrix as an 

expression for change of gene frequency, Aq. In order to analyse the fates of 

mutations with effects sampled from a distribution occurring at all possible 

loci, numerical integration was used. 

2.4. Numerical integration 

With the assumption that the fates of each mutant are independent, selection 

responses, cumulative heterozygosity and cumulative variance of heterozygosity 

are all functions of mutant effect, a, integrated over fta). Numerical integration 

was used to compute these quantities using Simpson's rule. Consider the 

evaluation of the cumulative heterozygosity contributed by a mutant allele. The 

cumulative heterozygosity for a range of effects a in one size of population and 

one value of strength of selection was computed. The integration procedure 

was called with the scale of the procedure defined by c and the shape defined 

by B. In order to reduce the amount of computation, the diffusion 

approximation was used to compute results for other population sizes, as the 

heterozygosity maintained is a function of Ns as long as N is not too small. 

Using N= 80, the approximation was found to be accurate, so results for other 

population sizes and a given strength of selection were computed by 

integrating using an appropriate value of E. Convergence of the results of the 

integration procedure was checked by comparing two successive halvings of 

the a interval. The expected genic variance in the population for a distribution 

of mutant effects can be computed from, 
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= 2IVAj'0, ( a2 /4)H(a)f(a)da. 	 (2.16) 

With highly leptokurtic forms (e.g. gamma with 8 = 1/4), problems occur in 

integration because much of the weight in the distribution is in the long tail, 

and the shape of the distribution changes very quickly near a = 0. Integration 

was therefore done over a number of ranges (typically 10) of a in order that a 

check could be made that sufficiently large values of a had been included, and 

most points (typically 257) were in the range nearest a = 0. Selection 

responses and variance of genetic variance were computed in a similar manner 

to (2.16). Details are given in Ch. 5. 

2.5. Monte Carlo simulation 

As the name implies, this type of simulation involves a computer program 

which generates random numbers to control the various processes operating in 

a simulated population. The random numbers are in fact pseudo-random and 

are generated by a special algorithm, a random number generator. This has 

one parameter, a seed integer, and generates a random real variable from a 

uniform distribution and a new seed. Thus, a computer program using this 

algorithm must, as part of its initialisation routine, read a seed. Each seed 

generates exactly the same sequence of random numbers, a useful feature for 

verification and debugging of programs. The number of possible seeds is 

sufficiently large and the characteristics of the random number generator are 

such that the use of different seeds makes runs effectively independent. 

2.5.1. Principal parameters of the simulations 

Before the simulation commenced, the values of a number of parameters were 

read: (1) Parental population size (JV), and possibly progeny population size (7) 

(truncation selection only). (2) The number of pairs of chromosomes per 

individual. Usually, there was only one pair of chromosomes, but in some 

cases a large number of pairs of chromosomes without recombination was 

simulated which correspond to freely recombining loci with no intra-genic 

recombination and multiple alleles. (3) The length (L) of each chromosome in 

morgans. (4) The expected number of mutations per haploid chromosome per 

generation (A). (5) The size of mutant effects expressed as c = 

The environmental variance, VE, was scaled to unity. (6) The shape of the 
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distribution of effects of mutant alleles, defined by B. Most of the simulations 

are for B = 1/2. (7) The proportion of mutants of positive value (F'). (8) The 

selection mode, either directional, stabilizing or neutral (no selection), and, in 

the case of stabilizing selection, the strength of selection (vi). (9) The number 

of generations (t). (10) The number of replicates. 

It will be noted that with the exception of (2) above (which is a rather special 

case results of which appear at only one place in the thesis), the concept of 

numbers of loci affecting the trait does not exist. Effectively, it was assumed 

that there was an infinite number of sites capable of affecting the trait and that 

these were evenly spread along the chromosome. The model is therefore 

similar to that described by Robertson (1970, 1977), except in that case, it was 

assumed the effects of segregating alleles were infinitesimally small, and there 

was no mutation. 

2.5.2. Constitution of the population 

The population consisted of an array of N parents and T progeny. With the 

exception of truncation selection the parental and progeny population sizes 

were the same. The progeny were generated from the parents each generation 

by a mating and recombination algorithm. The number of crossovers used to 

generate a recombinant chromosome was sampled from a Poisson distribution 

with parameter L. Each chromosome had an associated variable containing a 

count of the mutant sites. A chromosome was a two dimensional real array, 

each pair of elements representing a mutant which had two attributes, a 

position and a value. Generations were discrete, and mutations occurred 

before selection of parents to generate the progeny. New mutants had an 

immediate effect on the individual in which they occurred (they can be thought 

of as occurring in the gametes of the parents). 

2.5.3. Generation of mutants 

Each generation, individuals were 'mutated'. For each chromosome, the number 

of new mutants was sampled from a Poisson distribution with parameter X. 

The effects of new mutants were sampled from a gamma distribution with 

shape parameter B and scale parameter E . The sign of the mutation effect was 

assigned with probability P of being positive. The position of each mutant on 

the chromosome was sampled from a uniform distribution. The value and 

position of the mutant are assigned to the next element in the chromosome 
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Array (mutants were not stored in any particular order), and the count of 

mutations was incremented. For practical purposes, each mutant occurred at a 

different site from those already segregating. 

2.5.4. Selection 

Two different selection procedures were used to generate the results 

depending on the selection mode. The results for directional selection either 

came from truncation selection or fertility based selection. For stabilizing 

selection, a fertility selection model was assumed. 

Fertility selection. The parental and progeny population sizes were the same 

(N =  7). With directional selection, the relative fitness of an individual was 

simply M))= X + 1. In this case the simulation of an environmental effect 

was unnecessary and the selection coefficient s was equivalent to the mutant 

effect, a. With stabilizing selection, the value of an individual was the sum of 

genotypic contributions plus a random environmental effect and the relative 

fitness is given by (2.10). Parents were selected for breeding with probability 

w(X)/(E( WIN)). 

Truncation selection. The progeny population size was greater than that of the 

parents. The parents in the next generation were the N progeny of highest 

value and these were mated at random. The value of an individual was the 

sum of gene effects plus a random environmental contribution as above. 

Values and pointers to the array of progeny were sorted by the QUICKSORT 

algorithm (Knuth, 1968). 

2.5.5. Measurement of effective population size 

It is often useful to know the effective population size during the steady state. 

In order to measure Ne  each individual had a number (typically 6) of 

independently segregating pairs of neutral genes which did not contribute to 

the selection. Each generation, a random normal deviate of mean zero and 

variance VM was added to the value of each gene. The steady state variance 

maintained on average at each locus (VN)  is related to the effective population 

size according to VN  = 2 Ne  VM, so Ne  was simply computed as Ne  = VNI(2  VM). 
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2.5.6. Computation of results 

Most of the time, the steady state behaviour of the population was 

investigated. The simulation started from an isogenic state and mutations 

were allowed to accumulate. In theory, by generation 6N the expectation of 

the genetic variance with neutral genes (the worst case) is more than 95% of 

its equilibrium value. At least this number of generations were ignored before 

the population was assumed to be at steady state. Thereafter, the following 

measurements were made at intervals of 10 generations: (1) Additive variances 

among parents and progeny. (2) Genic variance of progeny. (3) 'Neutral 

variance' of progeny to compute Ne  (4) Change of mean in the character to 

give response rate. (5) Skewness and kurtosis of genotypic values of progeny. 

There was strong auto-correlation between successive measurements of 

means and variances, so the the standard error of the mean as computed from 

one run was biased downwards. In an earlier version of the software 

(Keightley and Hill, 1983), the means and standard errors were measured from 

one run only, but in the present version, the means and s.e.'s were estimated 

from independent replicates (i.e. start from isogenic state and ignore >6N 

generations), so the estimate of the s.e.'s of the means were unbiased. In both 

methods, the estimates of the means were unbiased (except by failure to reach 

steady state, but this is negligible for long runs and in the presence of 

selection). 

25.7. Fixation of mutants 

Mutants which became fixed no longer contributed to the variance but used up 

computer time and memory, so to prevent the program slowing down, these 

were eliminated from the population by a 'garbage collection' routine. This was 

executed every eight generations (eight was found to be the optimal time 

between calls for most parameter sets). This routine sorted each chromosome 

in order of mutant values by QUICKSORT, recorded the mutants present on all 

chromosomes, then deleted them and recycled the free memory. Mutants 

which became lost were dealt with automatically by the progeny generation 

algorithm and no special routine was necessary to cope with these. 
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2.5.8. Random number generators 

Uniform distribution. All the subsequently described random numbers rely on a 

good generator of uniform random numbers. In the simulation programs, the 

standard IMP80 generator (Stephens and Munson, 1982) was used which 

generates real random numbers from the uniform distribution in the range 0..1 

((1(0,1)). 

Poisson distribution. Firstly, a table, tab, of the cumulative density function of 

the Poisson distribution with parameter was built with probability function 

f(x) = eE/x! for z = 0, 1, 2, 

A random integer from the Poisson distribution was then generated by 

sampling a uniform, u from U(0,1), then looking up the table and selecting the 

lowest value of j, such that tab(j) > u. 

Normal distribution. The method described by Box and Muller (1958) was used 

to generate normal deviates of mean zero and s.d. ]V(0,x). This directly 

transforms two independent (A0,1) variates, Ui and U2 to a normal deviate, 

N(0, 1): 

N(0,1) = [-21n(U1)J 1 "2 cos(27rU2). 

A second independent normal deviate from the same two uniforms can also be 

generated, but this was not implemented. 

Gamma (112) distribution. This corresponds to a Chi-squared distribution with 1 

d.f. (Kennedy and Gentle, 1980, Ch. 6). Random real numbers from the gamma 

distribution of scale parameter a and shape parameter 1/2 were generated by 

squaring a normal deviate N(0,(1/2ct) 1 "2 ). 

Coin toss. In order to randomly sample one or zero with equal probability, the 

individual bits of a random uniform constitute independent trials and these 

were used for this frequently called routine. This resulted in a worthwhile 

improvement in computation time compared to using one random uniform for 
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each coin toss. 

Computer programs and their verification 

A general practical problem with any computer programming is verification. 

With Monte Carlo simulation, the problem is particularly acute because the 

results are noisy and theoretical results are generally unknown for all 

parameter sets. Three approaches were used to verify the programs. (i) 

Structured development in a test-bed. The key routines were written in library 

modules, so a test-bed program could exercise the routines and verify their 

behaviour. (ii) Three independent programs were written which checked each 

other at the margins. These were for (a) no recombination; (b) variable 

recombination from zero to 20 morgans; and (c) free recombination between 

mutant sites. So, the variable recombination program with parameter L = 0 

agreed with the results of the no recombination program. For large L, the 

results of the variable recombination program approached the results of the 

free recombination program. (iii) Running of limiting cases with known results 

from theory. For example, in the absence of selection all programs gave 

= 2NV. Results could also be compared to those from the transition 

matrix for the case of L ~ 

The software was written in the IMP80 language (Stephens and Munson, 1982), 

a block structured procedural language developed by Edinburgh Regional 

Computing Centre (ERCC). IMP80 is similar to ALGOL and its derivatives and 

has many advantages over FORTRAN such as availability of recursion (used in 

QUICKSORT) and high level data structures. The programs were run on the 

ERCC's Amdahl V8 mainframe computer. Because of their multiple locus 

nature, the programs used very large amounts of computer time especially for 

large populations and high genomic mutation rates. In many cases the 

computing time per generation was proportional to N 2 X, so the computing time 

to reach a steady state was proportional to 10. 
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Chapter 3 

Directional Selection and Variation in Finite Populations 

3.1. Introduction 

In recent years there has been much interest in the production and 

maintenance of variation in populations by mutation, stimulated by the 

presence of abundant variation in natural and artificial populations at the 

protein and DNA levels. Also, the genome is now seen as a fluid entity with 

transposition a particularly potent force in generating molecular variability. 

Variation at the phenotypic level must also originate from mutation, but the 

rate at which such variation is generated has been thought to be slow. This 

belief was derived mainly from observations of experimental populations of 

Drosophila. For example the gain from new mutations in bristle score variation 

is of the order of one thousandth of the environmental variation per generation 

(discussed by Lande, 1976; Hill 1982b; see Ch. 1), and mutagenesis 

experiments have failed to produce large amounts of new variation in such 

quantitative traits (Clayton and Robertson, 1964; Kitagawa, 1967; Hollingdale and 

Barker, 1971). 

Despite the apparent slowness of accumulation of new mutational variance, 

theoretical analyses of the interaction of mutation and natural selection in the 

absence of drift have shown that mutation may be a powerful force in 

maintaining variation in natural populations (Lande, 1976), although the extent 

predicted depends on assumptions in the model (Tureili, 1984). Theoretical 

studies in finite populations have concentrated on the combined effect of 

mutation and directional selection in influencing quantitative variability and 

selection response rates (Hill, 1982a,b). The equilibrium variance of a 

quantitative character is attained more quickly in the presence of selection than 

in its absence, and is highly dependent on population size. Thus in the early 

generations of a selection experiment or breeding programme the response 

from variation generated by new mutations is expected to be small. In later 

generations, however, the contribution to the total variation present and hence 

to the response can be very important, especially in large populations. The 

results of long-term selection experiments can be interpreted in light of these 
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Analyses. The continued response after 120 generations of directional selection 

for increased pupal weight in Tribolium (Enfield, 1980), after at least 75 

generations of selection for increased bristle score in Drosophila (Yoo, 1980), 

and after 76 generations for increased oil content in maize (Dudley, 1977) were 

likely to have been strongly influenced by variation arising while the experiment 

was proceeding. 

Previously (Keightley and Hill, 1983) Monte Carlo simulation was used to 

investigate the effect of linkage on asymptotic selection responses from new 

mutations in small populations and it was concluded that the asymptotic 

response rate is little affected by linkage, especially for species with many 

chromosomes. Moreover, the variance of effects of mutants on the trait was 

not an important parameter of the model for asymptotic selection responses 

were little affected by whether the new mutational variance arose from a few 

genes of large effect or many genes of small effect. The effects of mutant 

alleles on the trait were, however, assumed to be symmetrically distributed 

about zero. 

Here, a theoretical framework is developed to predict the amount of 

quantitative variation maintained and selection responses in finite populations 

from the simultaneous segregation of newly arising linked mutations. The 

analysis is based on the 'infinitesimal model' first used by Fisher (1918), which 

provides a reference point to allow a better understanding of the results of a 

more complex Monte Carlo simulation. 

Cases where the effects of new mutations come from a skewed distribution are 

also investigated, i.e. mutations of increasing or decreasing effect on the 

character are not equally likely. Whilst it may be reasonable to assume that 

the effects of mutant are symmetrically distributed for Drosophila bristle 

number, it is likely that mutations affecting characters closely related to fitness 

are mainly detrimental (Mukai et aL 1972). The implications of the behaviour of 

the model are discussed in relation to theories of evolutionary advantages of 

recombination. In particular, conditions necessary for the operation of "Muller's 

Ratchet" (Muller, 1964), where the population mean can decline due to the 

fixation of recurrent mutations of negative effect are discussed. 
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3.2. Analysis of the infinitesimal model 

3.2.1. Change of variance 

The three quantities of interest are the additive and genic variances, and the 

disequilibrium covariance of the character. The additive variance is simply the 

variance of breeding values. The genic and disequilibrium components are 

given by (2.4) and (2.6) respectively. In an isogenic population, all three 

quantities VA, %' and ED are zero. With constant forces of mutation, selection 

and drift, they approach equilibria when the rate of loss of variation due to 

selection and drift is balanced by the rate of gain from new mutations. In a 

finite population the variances drift stochastically about the equilibrium. A 

prediction of the infinitesimal model is that the genic variance (V) is 

unaffected by selection (see Crow and Kimura, 1970, pp.236-239; Bulmer, 1980, 

Ch. 9) and therefore in an infinite population with recurrent mutation V never 

reaches an equilibrium. The equilibrium value of the additive genetic variance 

is affected by selection, mutation, drift and recombination. As a starting point, 

consider the effects of selection in an infinite population with free 

recombination in the absence of mutation. 

Selection. The effect of selection on genetic variation with an infinitesimal 

model has been discussed by Bulmer (1971, 1980 pp.  153-154), and by Falconer 

(1981 pp.179-189). After one generation of selection of parents and breeding 

of progeny the total genetic variance in the population can be divided into 

fractions between and within full-sib families. With random mating, the 

between family component is one-half of the genetic variance among parents. 

Selection by truncation reduces the variance in the parents by a factor of 

1 - hA, where /h2  is the heritability (h2 = VA/Vp, the squared correlation 

between phenotype and genotype; with selection on an arbitrary index h2  is 

replaced by the squared accuracy of the index), and k is a constant factor for 

the strength of selection. For truncation selection of a normally distributed 

population, k = i(i - z), where x is the standardized deviation of the truncation 

point. Thus after one generation, the between family component of variance is 

(1 - h2 k)V12. 

Selection causes a reduction in the genetic variance between family means, 

which appears as a negative disequilibrium covariance component within 
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families. With free recombination the within family variance component is 

simply given by 1'/2 because recombination completely eliminates 

disequilibrium within families, but only half of the total genetic variance is 

initially present within full-sib families. 

The total additive variance in the population after one generation of selection is 

obtained by adding the between and within family components, 

hk)VAt /2 + 	 (3.1) 

Recurrence relation (3.1) corresponds to equation (9.30) of Bulmer (1980). Its 

validity depends on a normal distribution of genotypic values in the progeny, 

since skew in the distribution can affect the amount of variation removed by 

selection, but the results of Bulmer (1980, Ch. 9) and Zeng (1987) indicate that, 

in many cases, skewness effects are small and can be ignored. Here, 

simulation is used to investigate possible effects of such skewness. 

Finite population size and mutation. With a Poisson distribution of family size 

the expected reduction in the additive genetic variance in the population is by 

a proportion 1 /21Ve  in the absence of selection. With truncation selection, the 

within family variance is independent of the population size, but the expected 

reduction in the between family component is by a proportion I/Ne  due to 

sampling of parents with replacement. As with the genic variance, the additive 

variance increases by VM  units each generation from mutation. Equation (3.1) 

becomes 

= (1 - 1 /Ne )(l - hk)V4A , t /2 + V9 /2 + VM. 	 (3.2) 

Linkage. This does not affect the variance between family means after one 

generation of selection, but affects the within family variance by reducing the 

amount of variation recovered from the disequilibrium covariance component 

due to recombination between loci. If c is the recombination fraction between 

loci i and j, the disequilibrium remaining in the within family component is 

given by 

34 



- 2c.Ii.)a.I a. = 
I 

4j 
(3.3) 

where ED is defined by (2.6) and similarly 2 E(Dc) = EED jj ja1 a.c.. More 

generally (3.2) becomes 

VAt+I= ( 1 - 1/N)(i - hk)VA * / 2 	 (3.4) 

+ 	+ )D1 - 2 (Dc)I/ 2  + VM . 

The recurrence relation for the disequilibrium component is obtained by 

combining equations (2.7) and (3.4) to give 

= 	- D/(21Y) - (Dc) - hk(1 - 1/N)(V - D)/ 2 . 	(3.5) 

3.2.2. Asymptotic variance 

As t + 	for finite N, the variances reach expected equilibrium values about 

which they fluctuate stochastically due to sampling. For free recombination 

(3.2) can be re-expressed (ignoring second order terms) as a quadratic in 
VR 

V(1+k)+VA (VE 2NV)2NVV=0 	 (3.6) 

Thus, VA  is a function of mutation rate and population size as their product 

NVM. 

For complete linkage (c = 0 for all possible pairs of loci) a quadratic in VA  is 

obtained by combining (2.7) and (3.4), 

VNk + VA(VE - 21%VM ) - 2N VM VE  = 0. 	 (3.7) 

Again second order terms are ignored. Here, the relationship of V A  to VM  and 
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Nis not as simple as in (3.6), but is a function of Na  VM and  Ne k 

When recombination is finite, the simultaneous recurrence relations (3.4), (3.5) 

and (2.5) do not appear to have a simple solution. Their properties were 

investigated by iterating until steady state was achieved with initial values of 

V, V and ED set at zero, as would be the case in an isogenic population. 

The effect of a finite chromosome length was modelled by dividing the 

chromosome into a large number of equivalent segments (typically 100) and 

calculating the recombination fraction and hence the disequilibrium contribution 

from each possible pair of segments. This method exactly models the case of 

infinitesimally small effects as the number of segments approaches infinity, but 

increasing the number of segments beyond 100 made almost no difference to 

the results. The total amount of recombination was specified by L, the map 

length of the chromosome, and Haldane's (1919) mapping function was used to 

related recombination fraction to map distance () between pairs of loci: c = 

[1 - exp(-21/2. Previous analyses (Avery and Hill, 1979) indicate that other 

models relating recombination fraction to map length (e.g. with crossover 

interference) make little difference to the behaviour of this type of model. 

3.3. Results 

3.3.1. Comparison of the simulation and the infinitesimal model 

Predictions of the expected value of VA  from the Monte Carlo simulation and 

from the infinitesimal model for varying population size are shown in Fig. 3.1. 

The value of VM  was 10 VE  and in the simulation a range of values of size of 

gene effects, c, was compared with corresponding values A to satisfy (2.1). 

With free recombination, the infinitesimal and simulation models are in good 

agreement. The agreement is clOse even with relatively large selective values 

and few mutants (c = 0.4). The disequilibrium present in the populations 

simulated can be estimated by subtracting the observed VA  from the genic 

variance (approximately 2 NVM in the infinitesimal case). With free 

recombination the amount of disequilibrium is small. 

With complete linkage, the curves for different values differ substantially, larger 

values of € giving higher predictions of VA . The infinitesimal model is a poor 
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predictor for complete linkage especially when effects are large, but it also 

overestimates %' when c - 0. The over-estimation can be explained by the 

presence of negative skew in the distribution of genotypic values of individuals 

(Table 3.1). Negative skew leads to a greater loss of variance each generation 

than predicted by the constant factor Ai - z), and hence a lower expected VA. 

0.30 	 INFINITESIMAL 

8=.2 

0.25- 	 :05 	 /7 
• __ 8—>0 	 /7 

0.20 

• 	 /' 

0.15 

0.10 	 1' 

0.00 
0 	30 	60 	90 	120 	150 	180 

N 

Fig. 3.1 The equilibrium variance is shown for the infinitesimal and simulation 

models for various population sizes and 50% truncation selection. 

VM/VE  = 10. In the simulation model, a range of values of E and 

corresponding A were used, with mutations coming from a symmetrical 

'reflected gamma' distribution (P = 0.5). 
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Table 3.1. 

The equilibrium skewness of genotypic progeny values, computed as 

1 =[E(G-MEAN)3/jVJ/ VA. 

Population size 	(N) 
10 20 40 80 

C Equilibrium skewness (91 ) among progeny 
-0.0794 -0.147 -0.180 -0.184 

0.05 -0.0592 -0.105 -0.149 -0.145 
0.1 -0.0533 -0.0540 -0.0717 -0.0381 
0.2 0.0142 0.0220 0.0465 0.0852 
0.4 0.0289 0.0568 0.138 0.0735 

Results are given for the case of no recombination (L = 0). VM/VE = iO and 

mutants come from a symmetrical reflected gamma distribution. Fifty percent 

truncation selection was simulated. 

The effects of a finite amount of recombination are shown in Fig. 3.2. The 

simulation and infinitesimal models agree at the free recombination limit but 

there is an increasing discrepancy at low recombination fractions. At the 

population sizes simulated, most of the effect of linkage is eliminated by one 

or two crossovers per chromosome per generation. The results are in 

agreement with those of Keightley and Hill (1983) which used a fertility model 

of selection rather than the present viability model. 
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Fig. 	3.2. 	Equilibrium 	variance 	(VA) 	 predicted 	from 	the simulation 	and 

Infinitesimal models for three different values of mutational variance are plotted 

for 	different chromosome 	lengths 	(L) 	with 	50% 	truncation 	selection. 
(A) N = 10; (B) N = 40. 
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3.3.2. Asymmetrical distribution of mutational effects 

Predictions of VA  from simulations of different population sizes using the 

'reflected gamma' distribution are plotted in Fig. 3.3 for free recombination and 

values of P representing cases where mutants are mostly negative (P = 0.1), 

positive (P = 0.9) or symmetrically distributed (P = 0.5). The results show that 

the expectation of VA  is higher than the infinitesimal prediction (also shown in 

the figure) when mutants have predominantly positive effects and lower when 

most are negative. As the expected value of mutational effects approaches 

zero, however, the results approach the infinitesimal prediction. In the limit all 

the effects become infinitely small and the models coincide. With finite effects 

of mutants, there are two reasons for the discrepancy from the infinitesimal 

prediction. Firstly, most mutants of negative effect are lost almost immediately 

and contribute little to the variance maintained (Hill, 1982b), while many 

mutants of positive effect are fixed and contribute substantially to variance 

especially when at intermediate frequencies. The variance maintained is 

proportional to the fraction of the mutational variance contributed by positive 

effects, E(a) (Hill, 1982a). Secondly, the mutation pressure generates skew in 

the distribution of genotypes (negative or positive depending on the sign of the 

mutations) since the density function of mutational effects is itself skewed (see 

Table 3.2). 
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Fig. 3.3. Equilibrium variance () in the simulation and the' infinitesimal 

models for various population sizes and three values of P (proportion of 

mutants positive). Free recombination, otherwise parameters as in Fig. 3.1. 
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Table 3.2. 

The equilibrium skewness of progeny genotypic values computed as in Table 

3.1. 

Proportion of mutants positive (P) 
0.1 0.5 0.9 

C Equilibrium skewness 	(g1 ) among progeny 
0.05 -0.118 0.0312 0.0785 
0.1 -0.285 -0.0121 0.0539 
0.2 -0.699 0.0514 0.134 
0.4 -1.67 0.0773 0.385 

Results are given for a reflected gamma distribution of mutants, VM/ 	= 10 

and free recombination. The population size (tv) = 20 and 50% truncation 

was simulated. 
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3.3.3. Response to selection 

The response is given by R = iVA/cJ: if the distribution of genotypes and 

environmental effects are normal and independent of one another, the 

regression of A on P is linear (e.g. Falconer, 1981). When the mean value of 

mutant effects is non-zero, there is an additional change in mean, A m  = 2XEa), 

due to the mutational pressure. In the gamma distribution reflected about zero 

with shape parameter 8 = 1/2, E(a) = c(2P - 1)//3 so 

A m  = 2Xc(2P - 1)//3. 	 (3.8) 

The responses to selection for various population sizes with both free and zero 

recombination and three values of P are plotted in Fig. 3.4. Since A m  is 

independent of population size but VA  is highly dependent, net responses 

become negative in small populations if most mutations are deleterious 

(P= 0.1). 

Restating (2.1) and (3.8), VM  cc Xe 2  and Am  cc Xc. It is clear that for a given VM, 

as the expected magnitude of effects decreases (c - 0) and hence the number 

of mutations increases, A m  must increase. Thus, if the new mutational variance 

is due to a large number of small negative effects, the mean value of a 

population will decline faster than if the mutational variance is due to a small 

number of large effects. 

Paradoxically, the effects of linkage, i.e. the difference between response rates 

for free recombination and complete linkage, are most severe when most 

mutations are positive (P = 0.9 in the figure). Both positive and negative 

mutants interfere with each other's fixation probabilities (Hill and Robertson, 

1966), but when most mutations are of positive value, there are more 

segregating so linkage effects are more important. 
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Fig. 3.4. Response rates where mutant effects have a reflected gamma (1/2) 

distribution with three values of P (proportion positive) in various population 

sizes. VMIVE  = 10 and 50% truncation selection. (A) c = 0.1; (B) c = 0.4. 
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3.4. Discussion 

With VM/VE of the order of 10, it is clear that with directional selection and 

free recombination, disequilibrium is a minor part of the total variation present, 

and a small number of crossovers is a good approximation of free 

recombination. Using the 'infinitesimal model' an analytical solution has been 

developed for the equilibrium genetic variance under the joint effects of 

mutation, linkage and selection in a finite population. The model agree well 

with the Monte Carlo simulations both where effects are small (c -+ 0), and also 

where mutational effects are relatively large. This behaviour is consistent with 

the results of Hill (1982a) where independent genes give VA of 2 Ne VM 

irrespective of the mutational distribution. The higher fixation probability of 

mutants of large effect and their higher contribution to the variance in the 

character is nearly exactly balanced by their shorter fixation times and fewer 

number when compared to genes of small effect. 

When mutants come from an asymmetrical distribution the behaviour is not as 

simple. As c + 0 for any population size, the equilibrium additive variance is 

essentially the same as predicted by the infinitesimal model. This is true 

irrespective of the selection regime, selection only generating disequilibrium. 

With larger effects, VA  becomes dependent on the proportion of mutants of 

positive effect (F). When the value of most mutational effects exceeds 

VA is approximated by 4 PNe  VM . This is so because the fixation probability of 

such mutants (and therefore the probability that they will reach intermediate 

frequencies and contribute substantially to the population variance) is 

proportional to a and independent of N. The number of mutants appearing in 

the population is, however, proportional to Ne • For small effects or in small 

populations, terms for which Ial < O/Ne i become more important and VA 
approaches the infinitesimal prediction of 21V 6 VM.  Fig. 3.3 shows, however, that 

mutant effects must become very small or Ne  very small before 1' is much 

different from 4PN V 6  M. 

With an asymmetrical mutational distribution, the distribution of genotypic 

values becomes skewed in the same direction as the skew of the mutational 

distribution. The skewness of the genotypic distribution affects the amount of 

variation removed by directional selection, so equilibrium variances are affected 

by such skewness. The simulations show that skewness is more important 
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when mutant effects are large. It is notable that directional selection also 

generates skewness (positive) in the genotypic distribution (Bulmer, 1980 Ch. 9). 

The behaviour of the model with linked genes is also strongly affected by 

skewness in the genotypic distribution. As c -j--  0 in the simulation, the 

infinitesimal model overestimates the equilibrium genetic variance. The likely 

explanation is a negatively skewed mutational distribution generated from the 

loss of all but the best haplotype and the presence of a 'tail' of individuals of 

lower value from mutation. This tendency to generate negative skewness is 

partially opposed by truncation selection generating positive skewness as 

mentioned earlier. The effect of linkage in generating skewness has been 

noted in earlier two locus studies (Hill and Robertson, 1966). Where effects are 

large, and therefore for a given VM  fewer mutations occur per generation, 

genes behave more as if they were independent and therefore higher VA  is 

maintained. 

As a consequence of a negatively skewed mutational distribution, the rate of 

fixation of deleterious genes can exceed the rate for beneficial mutants and the 

population mean can decline; an effect corresponding to "Muller's Ratchet" 

(Muller, 1964). A number of conditions have been identified as necessary for 

the operation of the ratchet: (1) small population size since the fixation of 

deleterious mutants depends on chance; (2) many mutants of small effect (as 

opposed to a few of larger effect) since the 'mutation pressure' on the 

population mean is greater in this case; (3) tight linkage since less standing 

variation is available to oppose the mutation pressure. Linkage is also more 

important with many small effects (cf. Fig. 3.1). 

Somewhat surprisingly the simulations show that linkage has most influence 

where most mutants are of positive value, and linkage effects can all but 

disappear when most are negative (cf. Fig. 3.4). The explanation, however, is 

simple: deleterious genes almost never become fixed, while positive mutants 

become fixed with probability, proportional (if independent) to a. In this latter 

case, however, linked positive mutants present simultaneously in the population 

can form unfavourable repulsion combinations leading to a reduction in fixation 

probabilities. 
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Chapter 4 

Mutation-Stabilizing Selection Balance in Finite Populations 

4.1. Introduction 

Many quantitative characters show considerable heritable variation in natural 

populations. Explaining how such genotypic variation is maintained has been 

one of the most important and controversial problems of population genetics. 

The problem arises because of the widespread belief that stabilizing selection 

in which the fittest individuals have values of the trait near some optimum Is 

ubiquitous in nature, but selection for an intermediate optimum Is expected 

theoretically to deplete genetic variability (Robertson, 1956) and has been 

shown to do so experimentally (Gibson and Bradley, 1974; Kaufman, Enfield and 

Comstock, 1977). There is a certain irresistibility in arguments for the presence 

of intermediate optima: for example the date of egg laying in many Northern 

passerine birds apparently has an optimum dependent on the availability of 

caterpillars for the young which are only present for a brief period in early 

summer (Lack, 1968). Some of the most compelling evidence for selection for 

intermediate optima in natural populations comes from comparisons between 

sibling species of Drosophila where parallel latitudinal dines for various traits 

have been shown to exist (David and Bocquet, 1975; Hyytia et al., 1985). The 

observation of an intermediate optimum at any single trait considered alone Is, 

however, not in itself evidence of stabilizing selection as Robertson (1973) and 

others (Falconer, 1981; Rose, 1982; Hill and Keightley, 1988) have emphasized, 

because negative correlations between characters under directional selection 

can also generate such optima. 

Mutations are the basic source of all heritable variation, but can a balance 

between mutation and selection alone explain the maintenance of observed 

high levels of genetic variation? This is an important question because variation 

in quantitative traits is believed to be the 'raw material' of evolution. Such 

variation also provides the basis for responses to artificial selection, and it is 

Important in understanding the allelic effects and gene frequencies contributing 

to the variation being utilised. 

The work of Clayton and Robertson (1955) suggested that mutation is a weak 
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force In generating quantitative variation. Recent work on directional selection 

and mutation has, however, indicated that long-term selection responses may 

In part be due to mutations occurring after commencement of the experiment 

(Hill, 1982b). Lande (1976) focused on mutation-stabilizing selection balance 

and, by fitting experimentally estimated parameters to a specific model, 

concluded that high levels of genetic variation can be maintained in the 

presence of strong stabilizing selection. The assumptions of Lande's 

"continuum of alleles" model were based on results of Kimura (1965), i.e. new 

mutants have effects that differ only slightly from those pre-existing with the 

result that the distribution of allelic effects segregating at a locus is 

approximately normal. Although Lande included an analysis of the effect of 

linkage, the formulae obtained were essentially the same as those of Kimura 

(1965). 

In a more recent review of the experimental data, Tureui (1984) questioned the 

appropriateness of the Kimura-Lande (KL) model since with experimentally 

measured mutation rates there are unlikely to be more than two alleles 

segregating at the loci affecting the trait. Also, the effects of new mutations 

are likely to be larger than the existing range of variation at the loci with the 

consequence that the distribution of allelic effects segregating at the locus Is 

non-normal, an assumption critical to Lande's model.. With an assumption of 

lower per locus mutation rates, Turelli (1984) obtained a formula for the 

equilibrium variance in the population which contrasts markedly with the KL 

result, I.e. the equilibrium genetic variance is independent of the effects of 

mutants on the trait, but depends only on the total number occurring per 

generation. This result of Turelli with a "House of Cards" approximation 

(Kingman, 1978) was obtained earlier for a two allele model by Latter (1960) 

and Bulmer (1972), and a similar answer has been subsequently obtained for a 

five allele model by Slatkin (1987). Burger (1986, see also Burger, Wagner and 

Stettinger, 1988) has generalized the analysis of the KL continuum of alleles 

model, and shown that Turelli's "House of Cards" result is a very good 

approximation for the KL model over a very wide range of parameters. 

In this chapter, the mutation-stabilizing selection problem Is analysed for finite 

populations. Finite population size Is likely to be important because, although 

population sizes in nature can be very large, they are seldom constant and an 

equilibrium model of the maintenance of genetic variation must consider past 

fluctuations In effective population number. Also, more importantly, the results 
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of Robertson (1956) showed that the strength of stabilizing selection on an 

allele is proportional to the square of its effect on the character. Previously, 

there have been two major analyses of this problem, by Latter (1970) and by 

Bulmer (1972). Latter's analysis was a finite population extension of Kimura's 

(1965) continuum of alleles model and assumed a normal distribution of allelic 

effects segregating at the loci affecting the trait. Bulmer's model assumed up 

to two alleles segregating and equal forward and backward mutation rates at 

each locus, with the effects of substitution the same at each locus. A formula 

was obtained for the equilibrium variance with parameters: effective population 

number, mutant effect on the trait, strength of stabilizing selection and 

mutation rate. 

Here, the influence of the shape of the distribution of the effects of new 

mutant alleles on the variation maintained in the character is investigated. The 

effects of new mutants on quantitative traits vary because they can occur at 

different places within genes (e.g. flanking sequences, introns, intron-exon 

boundaries, 'silent' third positions, promoters, active sites, other coding 

regions), but also because they can occur at genes whose functions vary within 

the biochemical and developmental system. 

Most of the analysis concentrates on a model of two alleles per locus. This Is 

similar to Bulmer's (1972) analysis. The consequences of allowing for the 

possibility of the presence of more than two alleles is investigated using Monte 

Carlo simulation. The effects of linkage on the equilibrium genotypic 

distribution are investigated using Monte Carlo simulation. 

4.2. Results 

4.2.1. Approximate analysis 

Insight Into the behaviour of a new mutant allele can be gained from extending 

Latter's (1960) two allele treatment. The variance contributed by a mutant 

allele Is given by V = a2 q(1 - q)12. Assuming the mutant has a sufficiently 

large deleterious effect (strictly large Ns) that the mutant is eliminated before 

reaching appreciable frequency, the variance contributed is approximated by 

a2  q12. The expected variance after selection is therefore VI  
a2(q + Aq)/2, and substituting Robertson's (1956) expression (2.11) for the 

change in gene frequency, this is approximated by 
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a2q[1 - a2/(8(w2 + o2 ))j/2. 	 (4.1) 

Thus, the expected change in genetic variance from one generation of 

	

stabilizing selection is by a factor 1 - a2/[8(w2  + 02 )1 	The expected 

proportional change in variance from drift is by a factor 1 - 

Considering mutants of equal effect occurring at rate X per haploid genome per 

generation, the expected increment in the variance of the character from 

mutation is, from (2.1) Xa2/2, so a recurrence relation describing the balance 

between selection, drift and mutation may be written down: 

= 	- a2 /(8( w2  + 02))1E1 - 1 / 2Ne J + Xa2 /2. 	 (4.2) 

Ignoring second order terms, this gives a solution at equilibrium (t - o) of 

= XNi2/[1 + Ne a2 /(4( 	+ 	 (4.3) 

The same equation has been obtained independently by Burger, Wagner and 

Stettinger (1988) using a different, heuristic, argument. In terms of the 

proportion of variance, 2 Ne  VM = mte(2 , maintained with no selection, the 

variance is 

V = 2Ne  VM /[t + Na2 /(4(w + 02))]. 	 (4.4) 9  

As N becomes infinite (4.3) reduces to 

4X (w + 02), 	 (4.5) 

the well known result of Latter (1960), Bulmer (1972) and Turelll (1984). Where 

mutant effects on the trait come from a distribution, the equilibrium variance 

can be computed by integrating (4.3) over a density function of mutant effects, 
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Put result (4.5) still holds. Equation (4.3) also shows that the equilibrium 

variance is (to first order) a function of Nea2/(u? + 02 ) 

4.2.2. Two allele model 

Heterozygosity as a function of N.5. The expected cumulative heterozygosity 

contributed by a mutant during its lifetime as a function of Nea2/(wt + 0 2 ) 

Ne S Is Illustrated in Fig. 4.1, computed using the transition matrix (eqn. (2.15)). 

1-1(a) Is bounded by the upper value of two where drift dominates and the lower 

value of zero where selection causes immediate elimination of the new mutant. 

The results in the following sections which give examples of V for different 

types of gamma distributions are all functions of the result in Fig. 4.1 and 

were generated by integrating numerically over this function with weighting 

according to the distribution of mutant effects. In retrospect, these results 

could have been computed by evaluating Bulmer's (1972) formula for the 

genetic variance in a finite population with mutation and stabilizing selection 

(see Ch. 5). The results from the transition matrix, however, were in close 

agreement. 

Fig. 4.1. Heterozygosity maintained during the lifetime of a mutant as a 

function of N0 a2/(w2  + 02), derived using the transition matrix. 
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Variance maintained with genes of equal effect. Fig. 4.2 shows the variance 

maintained as a proportion of that predicted in an infinite population (cf. 

equation (4.5)) as a function of Ne a2/(W2  + a2) The graph compares the results 

from the transition matrix and evaluation of (4.3). With increasing effects of 

drift (Nes -' 0), the variance maintained approaches zero; and as the effects of 

selection become more important (increasing Ne  or a2/(w2  + a2)) the relative 

variance maintained approaches the asymptote of one. Interestingly, the results 

from the transition matrix indicate.- a maximum greater than the infinite 

population variance. if the effects of drift and selection are not too strong, the 

frequency of some mutants can approach the meta-stable point (q = 0.5) where 

the expected change in gene frequency is zero. This possibility is not 

accounted for by equation (4.3) which assumes that the selection coefficient is 

constant and at its maximum. The presence of the maximum in Fig. 4.2 was 

confirmed by Monte Carlo simulation with equal mutant effects in a multi-locus 

model (results not given). 
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Fig. 4.2. Predicted equilibrium genetic variance, V, expressed as a proportion 

of that predicted for an infinite population, 4X(w 2  + 02  

against Nea2/(w2 + 02). The curves compare predictions from the transition 

matrix (exact, -) and from evaluation of eqn. (4.3) (approximate, ----). 
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The influence of the scale of the mutational distribution.. This is illustrated for 

varying population size in Fig. 4.3 for the case of a gamma distribution of 

effects with shape parameter B = 1/2. The curves were generated by 

evaluating cumulative heterozygosities using the transition matrix and 

numerically integrating (2.16). The different curves relate V9  for a fixed value 

of VM  with various mutation rates (X) and with corresponding values of sizes 

of effects (c) to satisfy (2.1). With X - and infinitesimally small mutant 

effects the expected V9  is simply 2 Ne  VM as obtained by Clayton and Robertson 

(1955). This is the upper bound of the maintained variance. The initial trajectory 

of all the other curves is also 21Ve  VM , but each slowly approaches the 

asymptotic value given by (4.5) as Ne  increases. 

N •  

Fig. 4.3. Predicted equilibrium genetic variance maintained plotted against 

population size Ne  The curves were generated from the transition matrix, 

assumed a value of VM/ VE = iO, a gamma distribution of mutant effects, with 

B = 1/2 and compare results for a range of E = (Ea2)/VE]
1/2  and corresponding 

mutation rate X. The strength of stabilizing selection is given by w2= 02= 1 
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The influence of the shape of the mutational distribution. Fig. 4.4 shows the 

variance maintained in a finite population as a proportion of that which would 

be maintained in an infinite population, expressed as a function of 

Ne C 2  VE/(u? + 0). The curves relate different gamma distributions of mutant 

effects ranging from equal (B -' o) to a highly leptokurtic form (B = 0.25). (see 

Fig. 2.1). The result for equal effects is also shown in Fig. 4.2. Clearly, the 

shape of the distribution has a strong influence on V, and with highly 

leptokurtic forms, the approach to the asymptote is exceedingly slow. Curves 

for other values of shape parameter also have maxima. A normal distribution 

of mutant effects would correspond to a gamma distribution reflected about 

zero with shape parameter B = 1.75 (Hill and Rasbash, 1986), so on Fig. 4.4 its 

curve would lie between B = 1 and B = 2. 
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Fig. 4.4. Predicted equilibrium genetic variance, Vg  expressed as a proportion 

of that predicted for an infinite population, 4X(w2 + 2) 
plotted against 

Ne E
2 
 VE/(w + 0). The curves were generated by integrating the gamma 

function for a range of shape parameter, B, from equal effects (B + CO) to an 
extremely leptokurtic distribution (B = 0.25). Results from the transition matrix. 
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Linkage. Using the transition matrix method, it is only feasible to work out the 

expectation of the variance contributed by a single locus. In order to 

Incorporate linkage, Monte Carlo simulation was used. Figure 4.5 compares the 

additive genetic variation maintained from mutations occurring on 

chromosomes of three different lengths in populations of varying sizes. With 

free recombination, the simulation results are in agreement with the predictions 

from the transition matrix obtainable from Fig. 4.4, which confirms that in the 

absence of linkage, mutants can be treated independently to approximate the 

behaviour of the system. Linkage leads to a reduction in maintained additive 

variance which is greatest with many mutants of small effect (c + 0) and its 

effects are virtually absent with the larger values. As in the case of directional 

selection (Ch. 3), a small amount of recombination eliminates most of the 

effects of linkage, but is less effective as N increases. 
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0 	16 	32 	48 	64 	80 	96 
N 

Fig. 4.5. Equilibrium additive variance plotted against population size, N, for a 

gamma distribution of mutant effects with shape parameter B = 1/2 and a 

range of values of c = [ E(a2)/V 
E J 112  and corresponding values of X to give 

VM/VE = 10. The curves are from Monte Carlo simulation and compare three 

lengths of chromosome, L, where L is the number of map units. The strength 

of selection, is given by tV2 =  a2  = 1. The standard errors of the simulation 

points are less than 10% of their mean. 
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4.2.3. Multi-allele model 

The above analysis is a finite population treatment which assumes that only 

two alleles can segregate at any locus. In this respect it is similar to the 

models of Latter (1960) and Bulmer (1972) and to Turelli's (1984) "House of 

Cards" approximation (henceforth referred to as the LBT models), with the 

additional assumption that mutant effects are randomly sampled. The models 

of Kimura (1965) and Lande (1976) (KL Gaussian models) assume that mutant 

effects differ only slightly from those already segregating with the 

consequence that the steady-state distribution of allelic effects at the locus is 

approximately normal. As Turelli (1984) pointed out, there is a fundamental 

discrepancy between the behaviour of the two types of model. Using Kimura's 

analysis, the equilibrium variance in an infinite population at a locus is 

V= 1 2V (w2  + 2)]1/2, 
gL 	I 	 (4.6) ML 

where VML  is the mutational variance input at the locus. This result can be 

derived by a different route. Assume at steady state a large number of alleles 

generates a normal distribution of allelic effects segregating at a locus. The 

variance maintained at the locus in a finite population can be obtained from the 

recurrence 

Lt+1 	"gL,t(1 - 1/21Ve)(1 - 	L, t k/ 20 ) + VM ,., 	 (4.7) 

because the variance at the locus is reduced each generation by the factor 

by drift and (1 - V L W2) by selection, where k depends on the 

strength of selection and is the proportion of the phenotypic variance in the 

unselected individuals (Bulmer, 1980; Falconer, 1981 p.180). With stabilizing 

selection and a normal distribution of phenotypic values, k = w2/(w + 02). For 

an Infinite population, (4.7) reduces to Kimura's (1965) formula (4.6) (Ignoring 

second order terms). Equation (4.7) also gives a solution for a finite population 

which Is a quadratic in 
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V2 LNk + 
2 

V9 L - 2 Ne  VMLcY2  = 0. 	 (4.8) 

This formula is similar to that obtained using the same assumptions by Latter 

(1970) and is similar to equation (3.7) for the equilibrium variance under 

directional selection contributed by a chromosome in the absence of 

recombination. 

Fig. 4.6 compares the equilibrium genetic variance maintained for a range of 

population sizes for three different models using a gamma distribution of 

mutant effects with shape parameter B = 1/2: (1) Gaussian: the variance was 

computed from the solution to (4.8). This corresponds to the KL prediction. (2) 

'Two allele': the variance was computed from the transition matrix and 

numerical integration, for a model of two alleles only per locus. (3) 

'Multi-allele': the variance was computed by simulation of n discrete freely 

recombining loci with no intra-genic recombination, so the number of alleles 

which can segregate at any locus is not limited. Also shown is the variance 

maintained by neutral genes which is simply 2 NVM. The main points to note 

from this Figure are: (a) All three models agree at small population sizes and 

small mutant effects where drift is dominating. (b) The simulation of multiple 

alleles agrees with the KL Gaussian prediction only when mutant effects are 

small (c = 0.1) and the mutation rate per locus is high (i = 2X10 3). (c) 

Otherwise, with decreasing mutation rate, but correspondingly increased 

magnitudes of mutant effects (e.g. E = 1.6 and i = 7.81x10 6), the simulation 

agrees better with the two allele model. The simulation illustrates the 

difference between the KL approximation and Turelli's (1984) "House of Cards" 

approximation. With the number of loci chosen for this example (n = 100), the 

KL prediction hardly differs from neutrality. A larger number of loci would allow 

for a smaller standard deviation of the distribution of mutant effects for 

mutation rates per locus in line with those experimentally measured (Mukal and 

Cockerham, 1977). In this case, all three models would agree more closely at 

the population sizes shown, but as population sizes became much larger, would 

diverge as in Fig. 4.6 as the effect of selection becomes stronger relative to 

drift. 
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Fig. 4.6. Equilibrium additive variance plotted against population size, N, for 

three different models (see text). Also shown is the variance predicted for no 

selection, 2 NVM. The simulation used 100 equally mutable freely recombining 

loci with mutation rates, p, as shown, corresponding values of c so that 

VM = nUc/2 = 10-3 VE  and mutant effects sampled from a gamma distribution 

with 0 = 1/2. The strength of stabilizing selection is given by w2  = 18a 2  = 19. 

The standard errors of the results from the simulation are less than 5% of their 

mean. 
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4.3. Discussion 

Stabilizing selection and drift. Most attention has been given to a model where 

the mutation rate is sufficiently low or the population size sufficiently small 

that two alleles segregate at each locus. The consequences of such a model 

with infinite population size have been investigated previously (Latter, 1960; 

Bulmer, 1972) and an important conclusion was that the equilibrium genetic 

variance, V, is essentially independent of the effects of mutants on the trait, 

but depends only on the number of new mutants per generation. As a 

consequence of its independence on the effects of mutants, in an infinite 

population V is independent of the shape of the mutational distribution. In a 

finite population, V is also proportional to the mutation rate, but in contrast is 

also highly dependent on the magnitudes of the effects of mutants. The 

variance maintained is a function of population size, the effect on the character 

and strength of stabilizing selection according to Nea2/(w + 02) The variance 

contributed by a mutant during its lifetime is at a maximum when the 

combination of parameters Nea2/(W2 + 02) 25, and is about 30% greater than 

that in an infinite population, namely 4(w2 + 0) So, for example, a mutant of 

effect a = 0.1 under stabilizing selection of strength w2 + = 20 would 

contribute during its lifetime about 30% more variance in a population of 5X10 4  

than in an infinite population. This effect occurs because near neutral mutants 

are able to drift to intermediate frequencies where the strength of selection is 

weakest, but mutants of larger effect tend to be eliminated almost immediately 

by selection. The maximum is a consequence of the multi-locus nature of the 

system. If no other genes were segregating when a mutation occurred, its fate 

would depend on the relation of the optimum phenotype to the population 

mean. 

Distribution of mutant effects. In a finite population V is highly dependent on 

the shape of the distribution of mutant effects. Using gamma distributions a 

wide range of possible mutant distributions has been modelled ranging from all 

effects equal to a highly leptokurtic form where most mutants are of tiny 

effect, but most of the mutational variance, VM, is contributed by a few genes 

of large effect. With such a distribution, in contrast to when effects are equal, 

Vg  increases very Slowly with decreasing effect of drift. This slow approach to 

the asymptote is best understood by considering a fixed mutational distribution 

and selection, but increasing population size. The mutants of large effect which 
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contribute most to VM do not contribute substantially to V since they are 

quickly eliminated by selection, but the many mutants of small effect eventually 

contribute substantially to V9  with increasing population size because they 

remain as nearly selectively neutral until Ne  becomes very large. 

An Implicit assumption of the analysis has been a symmetrical distribution of 

mutant effects. If there are few mutants segregating, or mutant effects are 

small, asymmetry does not influence the variance maintained, and this was 

confirmed by simulation (results not shown). The simulations also showed that 

In general, slightly less variance is maintained with a skewed distribution of 

mutant effects, because the population mean is moved away from the optimum 

and selection is thereby stronger against most new mutants. Also, the 

genotypic distribution becomes skewed (Ch. 3) and selection tends to remove 

more variation than it would from a symmetrical distribution. 

Linkage. With stabilizing selection the extreme genotypes are less favoured, so 

there is a tendency for repulsion genotypes to persist and coupling genotypes 

to be eliminated. The result is that the additive variance is less than the genic 

variance because there is a 'hidden' negative disequilibrium component. The 

simulations show that disequilibrium increases with increasing mutation rate 

and with population size because there are more mutants segregating. Also, 

for the same reason, linkage has more influence when most of the mutational 

variance is contributed by many genes of small effect than a few genes of 

large effect. 

The results show that recombination is very efficient at eliminating such 

influence of disequilibrium. In the examples shown, one crossover is sufficient 

to give results almost indistinguishable from free recombination. These 

simulations were, it should be emphasized, extreme cases with relatively strong 

selection and all the mutants appearing on one chromosome. The results from 

the simulation are relevant to the appropriateness of the two allele model (next 

section), because the simulation is an infinite sites model with no distinction 

between alleles and loci. The efficiency of even a small amount of 

recombination in eliminating linkage disequilibrium (cf. Ch. 3) implies that the 

two allele model is a good enough approximation because mutants occurring 

close together on the chromosome can be regarded as being either at the 

same or at different loci. 
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Appropriateness of the ModeL Most of the analysis has been restricted to 

segregation of only two alleles per locus. A model has also been investigated 

which resembles more closely those of Kimura (1965) and Lande (1976) in 

which the effects of new alleles are assumed to be small relative to the 

existing variance at the locus at which many alleles segregate, so the 

asymptotic distribution of allelic effects at a locus is approximately normal. 

Turelli (1984) has questioned the appropriateness of the KL model since the 

mutation rate per locus is unlikely to sustain sufficient standing variation at a 

locus for the assumptions in the model to be valid. Simulation results (Fig. 4.6) 

with finite populations support Turelli's objections. The analytical result of 

Kimura (equal to first order to Lande's) is only in agreement where the 

mutation rate per locus is exceptionally high and mutant effects small. With 

mutation rates per locus closer to experimentally obtained estimates i.e. 
1
0-4_ 10-5 (Mukai and Cockerham, 1977; Turelli, 1984), the two allele model 

provides a good approximation. 

4.3.1. Implications 

The maintenance of genetic variation is a central problem in population biology, 

and the question of whether a mutation-stabilizing selection balance can 

maintain the observed levels of heritable variation has been frequently 

addressed (e.g. Lande, 1976, 1980; Turelli, 1984, 1985). The results show that 

with finite population size, the shape of the mutational distribution has a strong 

influence on the genetic variance maintained under mutation-selection balance. 

There is little information concerning the shape of the distribution of 

mutational effects for any character, but can an informed guess be made from 

insights Into biochemistry and molecular biology? In principle all mutants, no 

matter where they occur in the genome, must have at least some effect on all 

characters, albeit very small. The interactive nature of metabolism, where the 

fluxes and metabolite pool concentrations are systemic properties dependent to 

a greater or lesser extent on all enzymes in the 'metabolic map' (Kacser and 

Burns, 1973, 1981) tells us that there must be hundreds, if not thousands, of 

enzymes, variation in the activities of which will affect any character which is 

in some way controlled by the metabolism of the organism. Evidence for 

functional constraint in the genome (Kimura, 1983 Ch. 7) at such sites as 

introns, silent (non-replacement) sites within coding sequences, and gene 

flanking sequences, suggests that there are many places In the genome 
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capable of producing some small phenotypic effect. Thus, it can be argued a 

priori that the distribution of mutant effects on complex quantitative characters 

is highly leptokurtic: most mutants are either of such trivial effect or so 

'distant' from the character that they have almost no effect at all, but there is a 

smaller class of genes, more directly capable of influencing the trait with 

mutants of relatively large effect. The total number of mutants affecting a 

character is therefore high, much higher than an experiment designed to count 

polygenes would detect, but the effect of most of them is very small (see 

Robertson, 1967). 

The difficulties in estimating the number and effects of mutants influencing a 

quantitative character are highlighted by the following illustrative example. 

Assume by genetic means only mutants showing an effect on the character of 

at least one—half of a standard deviation can be detected and the standard 

deviation of the mutational distribution is 1.6 units. If all effects were equal, 

then the genetic test would detect all the new mutants. If, however, the 

mutational distribution were more extreme, for example gamma with shape 

parameter B = 1/4 (see Fig. 2.1), then only 21% of the new mutants would be 

detected but they would contribute most of the variance (96%). 

With this consideration in mind, estimates of the number of new mutants per 

generation affecting various quantitative traits in maize (Sprague, Russell and 

Penny, 1960; Russell, Sprague and Penny, 1963) seem rather high. These 

experiments gave estimates for detectable mutants per generation of about 

0.06 implying, with, say, a mutation rate per locus of 10, many thousands of 

loci at which mutations give sufficiently large effects to be detected. Such 

experiments, however, might now have to take into consideration the possibility 

of induction of "mutator" genes (McClintock, 1950) in these crosses caused by 

movement of transposable elements known to be capable of affecting 

quantitative traits (Mackay, 1987). The rates of mutation may vary widely 

between populations as results of T.F.C. Mackay (personal communication) 

suggest, due to varying transposition rates. 

Predicting Maintained Heritability - Assigning Values to Parameters. The important 

parameters are the mutational variance input per generation, the shape and 

scale of the mutational distribution, the strength and mode of operation of 

natural selection, and effective population size. As implied earlier, Information 

Is scarce on values of most of these parameters relevant to natural 

62 



Populations. If, however, it is assumed that: VM/ VE = io ;  the character is 

affected by a fairly extreme distribution of effects (i.e. gamma with B = 114); 

most variance is contributed by mutants of fairly large effect (e.g. c = 0.4 and 

therefore the mutation rate per genome X = 0.0125 implying c.400 loci each 

mutating at c.0.3X10 5); and a "typical" value of w2 = 2002 (Turelli, 1984), then 
with Ne = iO, the maintained heritability would be about 21%; with Ne = iOn , 

the maintained heritability would be about 33%, but there would be less than 

half of the genetic variance that would be present in an infinite population. 

Thus, on the face of it, mutation-stabilizing selection balance is an attractive 

candidate for explaining the observed levels of heritable variation over a wide 

range of effective population sizes. Such calculations become less attractive 

when we consider the problems in estimating the strength of natural selection 

and in justifying the single character model of stabilizing selection. Such 

aspects have been discussed in detail by Turelli (1984, 1985). 

Mode of Action of Natural Selection. The effect of pleiotropy is to reduce the 

genetic variation maintained since, for example, the selection coefficient against 

a mutant if stabilizing selection acts independently on each character, , is 

proportional to E[a/(w + o)]. Clearly, the analysis could easily be extended 

to include pleiotropy and Fig. 4.1 still applies with the horizontal axis labelled 

as Ne E[a/(w + c)J reflecting the selection acting on all the other characters. 

If mutant effects on each trait are uncorrelated and there are k traits, then the 

variance maintained for each is reduced in proportion to 11k (Turelli, 1985). - 

Pleiotropic gene action is likely to affect other characters subject to stabilizing 

selection, or to affect characters such as fertility and viability more closely 

connected with fitness per Sc. In the former case, the selection experienced by 

a mutant allele will be proportional to the square of the effect on the 

pleiotropically related character, but in the latter case the pleiotropic selection 

is directional and is proportional to the allelic effect to first order (see Hill and 

Kelghtley, 1988). Thus, especially when allelic effects are small, the selection 

due to the effect on fitness dominates and even small negative correlations 

with fitness-related characters are likely to have a large impact on the 

heritability maintained. 

It seems therefore that in order to fully understand the maintenance of 

variation in a quantitative character the bivariate distribution of mutant effects 

on that character and on fitness is a critical parameter. Since the present 
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Analysis suggests that mutants of small effect are likely to be more important 

in maintaining variation, the more accessible part of the mutational distribution 

may be of less interest. We are some way from a satisfactory understanding 

of the mechanisms of maintenance of variation in polygenic traits. 
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Chapter 5 

Further Analysis of The Stabilizing Selection Model 

5.1. introduction 

Many selection experiments use as their source material samples from caged 

insect populations (often Drosophila) which have been in the cage environment 

for many generations. Samples are taken from the cage and separate selection 

lines started. The response patterns of individual lines and the variation in 

response among lines are obtained. Similarly, selection of artificial populations 

Is often with species which have been under domestication for many. 

generations and there are often independent selection lines. Such experiments 

should provide information on the underlying genetic basis of quantitative 

variation. 

Many characters in natural (and perhaps in artificial) populations are thought to 

have intermediate optima. A popular model of selection with an intermediate 

optimum is stabilizing selection. This has intuitive appeal, there is some 

evidence for its operation in nature and the model is amenable to analysis. 

Previous analyses of the consequences of stabilizing selection in natural 

populations have been concerned with the genetic variance maintained when 

the character is at or near the optimum in which case it is necessary to invoke 

mutation to maintain genetic variation. Two kinds of model have been 

analysed. The first was proposed by Crow and Kimura (1964) and involves loci 

controlling variation in a quantitative trait at which mutations appear, the 

values of which differ only slightly from the previous allelic state. Kimura 

(1965) analysed this model, derived a formula for the equilibrium genetic 

variance of a locus at a mutation-stabilizing selection equilibrium, and showed 

that the equilibrium distribution of allelic effects segregating at the locus is 

normal. The model was further analysed by Lande (1976) who argued that it 

predicts that substantial variation can be maintained even with strong 

stabilizing selection. 

The second type of model differs from the first because the effects of mutant 

alleles can be large. Turelli (1984) analysed a "House of Cards" model, which 

was originally proposed by Kingman (1978). The critical assumption which 

differed from Kimura's (1965) analysis above was that the effect of a mutant 
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allele swamps existing variation at a locus controlling genetic variation in the 

trait. This gives different qualitative predictions of the variance maintained at 

the locus at equilibrium and agrees with two allele analyses of Latter (1960) 

and Bulmer (1972). Turelli argued that a "House of Cards" model of the 

mutation process is appropriate for natural situations. 

With the exception of Bulmer (1972) the analyses described above have been of 

infinite populations. This has an important consequence for the equilibrium 

probability distribution of allele frequencies at a locus influencing the trait. 

With stabilizing selection in populations near equilibrium, mutations are 

unconditionally deleterious (Robertson, 1956). In an infinite population the 

equilibrium probability distribution of allele frequencies is therefore highly 

leptokurtic, i.e. mutant alleles are almost always very rare, and intermediate 

allele frequencies are absent. This affects the consequences of a shift in the 

optimum. Barton and Turelli (1987) analysed the dynamics of the population 

mean and variance after a change of the optimum and showed an accelerating 

rise in the mean, slowing down as it approached the new optimum, and a rise 

in the genetic variance because some previously deleterious mutant alleles 

became advantageous and were selected to intermediate frequencies where 

they contributed more substantially to the genetic variance. In some cases, the 

variance fell again close to its original value (i.e. alleles became fixed) and in 

others a new equilibrium was reached with a higher variance. The existence of 

such multiple equilibria was predicted by Barton (1986). A change of optimum 

is similar to imposing directional selection on a character previously subject to 

stabilizing selection. 

In a finite population, alleles are able to drift in frequency, so the equilibrium 

probability distribution of allele frequencies becomes less leptokurtic than 

described above. Bulmer (1972) derived an expression for the probability 

distribution of allele frequency at a mutation - stabilizing selection-drift balance 

for the case of up to two alleles per locus. Here, expressions are derived for 

the variance of the genetic variance among independent lines at a 

mutation -selection-drift balance. The results of previous investigations of the 

problem using neutral models (Bulmer, 1976; Avery and Hill, 1977; Lynch and 

Hill, 1986) are compared. The consequences of a change from stabilizing 

selection to directional selection on the genetic variance of a character in a 

finite population are investigated. These results together with patterns of 

response to directional selection from Monte Carlo simulation of populations 
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previously under stabilizing selection are compared to response patterns 

obtained from experiments published in the literature. 

5.2.. Definitions 

The finite population with recurrent mutation and the methods used to analyse 

it are describe in Ch. 2. The model is used to investigate the effect on the 

genetic variance of a change from stabilizing selection to directional selection 

There are therefore two phases of selection, a stabilizing selection phase 

followed by a directional selection phase: From diffusion theory, in the first 

phase the steady state probability distribution of allele frequency with recurrent 

mutation is a function of Ns1 , where N1  is the effective population number in 

the first phase and si  is the selective value of the mutant allele. With 

stabilizing selection si  is frequency dependent (Robertson, 1956) and is 

approximated by s. = (q-1/2)a2/[4(w2  + a 2)] or = + 02)] when the 

mutant allele is rare. The steady state distribution of allele frequency with 

recurrent mutation and stabilizing selection is therefore a function of the 

parameter N1 Es) = - N1c2 VE/[8(w + 2)] 
In the second phase of directional 

selection, the pattern of change of gene frequency is the same on a scale of 

(IN2  when the parameter N2 s2  is constant, where N2  is the effective population 
size in this phase and 82 is the selection coefficient of the favourable allele. 

With truncation selection the selection coefficient is approximately s2  = ia/ri, 

where I is the intensity of selection, so the directional selection phase is 

parameteriseci by N2 E(s2) = N2 iE((aJ)/a. 

5.3. Results 

Before analysing the consequences of directional selection on a character 

previously subject to stabilizing selection, consider the variance of the genetic 

variance in a 'base population' which is assumed to be under stabilizing 

selection. 

5.3.1. Single Locus Analysis 

Using diffusion theory (Kimura, 1969), Bulmer (1972) derived the density 

function of gene frequency, q 1, at a locus under stabilizing selection with equal 

forward and backward mutation rates, li, between two possible alleles 
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1(q1 ) 	exp[(-4q1(1 - qj)1[q1(1 - q1)10_1. 	 (5.1) 

Where G = 4 Ne I1 	= Nea2/[8(w2 + 2)] and Ne  is the effective population size. 

It follows that the expected heterozygosity at the locus is 

EIq1(1 - q1)1 = [fexp(-4'q1(1 - q,))(q,(1 - 	 (5.2) 

[.fjexp(-4q1(1 - q 1 ))(q,(i - q1 ))8 'dq. 

This was shown to reduce to 

E[q1(1 - q1 )] = I(40, e+1)/I(4, 0), 	 (5.3) 

where Ax, y) is a function of the complete beta function, BO, and the confluent 

hypergeometric function, Al( )  

I(x,y) = B(y, 1/2)(1/4)Y -1 /2  e- 1/4 x M(1/2, y+1/2, 1/4z). 	 (5.4) 

Assuming 0 is small (i.e. ignoring back-mutation) and integrating over the 

distribution of gene effects, fla), by expanding the confluent hypergeometric 

function as a series, it can be shown that the expected genic variance is 

E( Vg ) = A1Af [(o&/((2i-i-1)i!))/eja 2f(a)da, 	 (5.5) 

(Abramowitz and Stegun, 1965 Ch. 13). Bulmer's (1972) analysis can be 

extended to derive a formula, with similar assumptions, for the variance of the 

genic variance at a locus with recurrent mutation among independent lines. It 

follows from (5.1), (5.2) and (5.3) that 



E[q(1 - q)] = 1(40, 0+2)11(41', 0). 	 (5.6) 

Assuming 0 - 0, by similar analysis the variance of the genic variance among 

lines is 

V( Vg ) 	(NX/12)f[(?'03/(i!(4(i+l)2l)))/ e 1'Jaf(a)da. 	 (5.7) 

Eqns. (5.5) and (5.7) can be evaluated easily by iteration on a computer and 

converge readily. They were checked against results obtained from a transition 

matrix and were found to agree almost exactly. Eqn. (5.7) also agrees with 

results from the Monte Carlo simulation (Table 5.1). 

Table 5.1 

Comparison of predictions of variance of genic variance derived from (5.7) 

(diffusion theory of independent genes) and Monte Carlo simulation. 

Theory Simulation 
N V( V )X10 4  V( t')±ls.e.Xl0 4  
10 114 1.95±0.08 
15 2.92 2.85±0.17 
20 3.89 3.68±0.13 
30 5.83 5.65±0.18 

The parameters of the simulation were X = 0.2, c = 0.1, a reflected gamma 

distribution of mutant effects with shape parameter B =  1/2, and no selection. 

Two limiting cases are of particular interest. 

Neutrality, 1' + 0. From (5.5) the expected genic variance is E%') = Ne XE(a2) = 

2  N VM. The variance of the genic variance from (5.7) is 
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V(V) = NXE(a 4 )/12, g 	e 

in agreement with Lynch and Hill (1986) who used a different derivation. The 

coefficient of variation of V is therefore 

CV( V) =[(E(a4)/E2(a2))1(I2NX)j1/2 9 (5.9) 

	

Strong selection., 	
. From (5.5) the expected genic variance is E ') 4X(w 2  + 02) 

(see Latter, (1960); Bulmer, (1972); Turelli, (1984); Ch. 4). The 

variance of the genic variance among lines from (5.7) is 

V(V I = 4X (u 2  + a 2 )2 /N. 

	

V) 	 e 	 (5.10) 

Both the expectation and the variance of the genic variance with strong 

stabilizing selection (large Ne S) are therefore independent of the magnitude of 

the effects of mutant alleles. The coefficient of variation of V is 

CV(Vg) = (1/4JX) 112 . 

Comparison of (5.9) and (5.11) shows that for new mutant alleles of equal 

effect, the coefficient of variation varies by only a factor of 14 13 between 

cases of weak and strong selection. The shape of the distribution of effects of 

mutant alleles becomes important as selection becomes weak. Fig. 1 shows 

the fraction of coefficient of variation of the genic variance among lines under 

Strong stabilizing selection ( - ) as a function of 
0 = Ne C 2  VE/t8(w2+cj2)]. 

The curves are for a range of values of B. the shape parameter of the gamma 

distribution. All curves converge with increasing cI,  as the CV becomes 
independent of the shape of the distribution but the shape parameter has 

increasing influence as 0 + 0. 

(5.8) 
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Fig. 1. The coefficient of variation of the genic variance among independent 

lines at equilibrium as a proportion of that predicted for very strong stabilizing 

selection, 	namely 	[ 1 /(4 Ne X)] 1"2 	as 	a 	function 	of 	NLs) = 	= 
1% 0 c 2  VE48(u + a)]. The curves were generated by numerical integration of 

(5.5) and (5.7) using gamma distributions of mutant. effects. The shape 

parameter ranges from 8 ± 	to B = 1/4 with intermediate values of 

B = 8, 4, 2, 1, 1/2. 
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5.3.2. Disequilibrium 

The above analysis applies to the genic variance and its variance among 

independent lines. Such quantities cannot easily be measured. The additive 

variance and its variance among lines, which can be estimated, is influenced by 

departures from Hardy-Weinberg and linkage equilibrium at different loci 

affecting the trait. Bulmer (1976) and Avery and Hill (1977) showed that 

variation in disequilibrium can be an important contributor to the variation in 

the additive variation among lines. Here, Monte Carlo simulation is used to 

examine previous results on a neutral model and examine the effects of 

selection. 

Neutrality. Using results obtained by Avery and Hill (1979), Lynch and Hill 

(1986) derived an expression for the coefficient of variation of the additive 

variance among independent lines at an equilibrium between drift and mutation 

in the absence of linkage, 

CV( VA ) = [(E(a4 )/E(a2 ))/(12NX) +2/(3N)11/2. 	 (5.12) 

(note, the additional n term given by Lynch and Hill (1986) is inappropriate). 

The first term is the variance of the genic variance (cf. (5.9)) and the second is 

the variance of disequilibrium (note, although there is no selection and no net 

disequilibrium, the disequilibrium in each line varies stochastically about zero). 

The variance of the additive variance is therefore 

V(VA ) = N XE e (a4 )/12 + 8Ne V/3. (5.13) 

Bulmer (1980, Ch. 12) points out that there is an ambiguity in the interpretation 

of (5.12) and (5.13) because the variance of the additive variance depends on 

the number of individuals measured to estimate the additive variance within 

each line, and this may be different from the effective population size, N. As 
a starting point for resolving this difficulty, let Ne  be the effective number of 

parents in each line (as before) and N' be the number of individuals per line 

used to estimate the additive variance. Assuming a normal distribution of 

observations, the variance in the estimate of the variance among lines due to 
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sampling is approximately 2 V/ (N' - 1) 	8N V/N'. This additional source of 

variation affects VT VA) so (5.13) can be rewritten taking this source into 

account, 

V(VA ) = NXE(a4)/12 + (2 N VM)2 [ 2/( 3 N) + 21N'J. 	 (5.14) 

This 	reduces 	to 	(5.13) 	as 	N becomes large 	in 	which 	case 	the 	additional 
variance 	from 	estimating 	VA becomes small. The 	results 	of 	Monte 	Carlo 
simulation of a neutral model with many alleles segregating are compared to 
evaluation 	of 	(5.14) 	in 	Fig. 	2. Lines 	of various sizes were allowed to reach 
steady 	state 	and 	the 	additive variance and 	its variance 	among 	lines 	were 
computed using various 	numbers of progeny. The agreement between the. 

models is very close. 

12 

1 

N=30 

> 	4-  

- - - 	
N=20  

--N=15 
2 

..... 	
N=10 
N=5 

. 	• 	. 	. 
0 	40 	80 120 160 200 240 

N' 
Fig. 2. The variance of the additive variance among independent lines for 

various parental population sizes (i\) with variation in N', the number of 
individuals used to estimate VA. The curves were generated by (a) Monte Carlo 

simulation (-) in the absence of selection and mutation parameters such that 

many alleles segregate (X = 0.2, £ = 0.1 sampled from a reflected gamma 

distribution with B = 1/2); 
(b) equation (5.14) (----) with E(a4) = (B+2)(0+3) F 4 V/ [8(0+1)] and B = 1/2. 
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There would be an additional source of variation in estimating VI VA) caused by 

error in estimating VA  within lines. The estimation might be done by, for 

example, offspring-parent regression or correlation of sibs. 

For example, if VA  were estimated within lines from the covariance of half-sibs, 

it can be shown (Cf. Robertson, 1959) that the variance of the estimate of VA  is 
approximately 2 V[l + 4/(vh2 )]2/N', where v is the number of progeny per 

half-sib family (assumed constant), h2  is the heritability and N' in this case 

means the number of sires. Taking this additional source of variation into 

account, VIVA) (where the estimation of VA  is done by half-sib covariance) 

becomes, 

V(VA ) = NXE(a4)/12 + (22 Ne  VM)2 [ 2/( 3 N) + (1 + 8/(h2 )) 2 /N' J.(5.15) 

For small numbers of progeny and sires and traits of low heritability at 

equilibrium, the last term in (5.15) can dominate. 

Stabilizing selection. No formulae are available to predict the variance among 

sublines of the disequilibrium component at steady state with stabilizing 

selection, although formulae for the expected disequilibrium with selection and 

an 'infinitesimal model' have been derived in Ch. 3. However, with free 

recombination, disequilibrium in a population has a very short 'memory' with on 

average half the previous disequilibrium lost due to recombination each 

generation. It is likely therefore that the additional term in (5.13) for the neutral 

case is a good predictor of the variation in disequilibrium for the case of 

stabilizing selection. Simulation runs (Table 5.2) show good agreement with 
eqn. (5.7) for '4 ') and (5.13) for VI VA ). 
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Table 5.2 

Comparison of predictions of variances of genic and additive variances among 

lines from Monte Carlo simulation and theory. 

• Theory Simulation Theory Simulation 
N1 Ne V( Vg )X104  V( Vg )±ls.e.X104  V VAx104  V( V)±ls.e.X10 4  
5 4.1 0.75 0.78±0.04 0.86 0.86±0.02 

10 8.5 1.45 1.35±0.06 1.66 1.53±0.03 
20 17.0 2.58 2.81±0.13 2.97 3.03±0.06 
30 26.0 3.54 3.62±0.20 4.09 4.07±0.07 

The mutation parameters of the Monte Carlo simulation were the same as 

Table 5.1 (A = 0.2, c = 0.1, and a gamma distribution of mutant effects with 

shape parameter a =  1/2 reflected about zero). The character was under 

stabilizing selection with w2 + 02 
= 2. The effective population size was 

measured in the simulation by following the fates of independent neutral 

alleles. The effective population size is less than the actual population size 

because of selection. The value of Ne  computed by the computer program was 

used to compute the theoretical values in the Table. The theoretical value of 

11 V9 ) is from (5.7). The theoretical value of t/ VA) is V( Vg ) + 2E Vg ) 2/(3N) i.e. 

includes the disequilibrium component from the neutral model (cf. (5.13)) and 

E( V9 ) was computed from (5.5). 

5.3.3. Effect of change of selection mode on variance 

The results of the previous section show that the tendency for stabilizing 

selection to generate an extremely U-shaped distribution of allele frequencies 

influences the variance of the genetic variance between sublines. This effect 

also Influences the pattern of response and change of variance of a character 

under stabilizing selection subsequently subjected to directional selection. 

For a gamma distribution of mutant effects, the effect of selection on the 

genetic variance of the character is a function of three parameters: (1) N1 E(s), 

the expected selective value in the stabilizing selection phase; (2) N2 E(s2), the 

expected selective value in the directional selection phase; (3) B, the shape 
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parameter of the gamma distribution. Figs. 3-5 show expected genic variances 

(ignoring disequilibrium) in the generations after a change in mode of selection 

for a range of N1 Es) and N2 Es2). 
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Figs. 3-5. The expected genic variance as a proportion of that at t = 0 plotted 

against tIN2  for four strengths of stabilizing selection, N1  Es). Fig. 3. Strength 

of directional selection, N2 Es2 ) = 1. Fig. 4. N2 . 2 ) = 5. Fig. 5. N2 E(. 2) = 10. 

The solid line on each Fig. is the expected variance for any value of N1 FJ(s) for 
no directional selection (N2 E32 ) = 0). Curves for three reflected gamma 

distributions of mutant effects are shown: (a) B = 1/4; (b) B = 1; (c) 8 - 
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Mutants occurred only in the stabilizing selection phase and effects were 

sampled from reflected gamma distributions. Curves for three different values 

of the shape parameter, B. are shown: (1) B = 1/4, a highly leptokurtic 

distribution (see Ch. 2) (2) B = 1, an exponential distribution; (3) 8 -). , all 

mutant effects have equal absolute values. In all cases, the probability of a 

mutant of positive or negative effect was assumed to be the same. An implicit 

assumption of the analysis is that there is no stabilizing selection operating in 

the directional selection phase or, equivalently, that directional selection is 

strong relative to stabilizing selection. Figs. 3-5 show a wide range of values 

of the parameters. The selective values in the stabilizing selection phase range 

from N1  Es) = 0 (neutrality) to N1 E(s) = 40. The latter case would pertain, for 

example, if (Ea2)J 2  =0.1, w2 + = 20 and N1  = 6.4X105 . The range of 

selective values during the directional selection phase is from neutrality 

(N2 Es2) = 0), to N2 Es2 ) = 10 (e.g. EIa)/a = 0. 1, i = 1, and N2  = 100). 

With values of N2 Jis2 ) at the high end of the range shown, the pattern of 

change of variance departs substantially from that observed with neutrality. In 

some cases, there is a marked rise in variance followed by a rapid fall. The 

rise in variance occurs during the fixation of beneficial alleles segregating 

initially at low frequency. Such a pattern is therefore observed when all the 

following conditions pertain: (I) strong directional selection, so such alleles 

have a high probability of fixation; (ii) strong stabilizing selection because the 

probability distribution of allele frequencies becomes increasingly U-shaped 

with increasingly strong stabilizing selection, so the expected initial frequency 

of beneficial mutants of large effect is low; (iii) leptokurtic distribution of 

mutant effects (e.g. B = 114) because as the mutational distribution becomes 

more leptokurtic, a higher proportion of the mutational variance is contributed 

by mutations of large effect. 

The pattern of rapid rise followed by rapid fall in variance depends on the 

presence of beneficial mutants in the directional selection phase, i.e. mutants of 

positive effect. In Figs. 3-5 there were equal probabilities of mutants of 

positive and negative effect, but the pattern of a rapid rise followed by a rapid 

fall in variance becomes more extreme with a higher proportion of mutants of 

positive effect (results not shown). In other cases, the variance falls off more 

quickly than for neutral genes. This occurs with weak stabilizing selection, but 

strong directional selection, in which case alleles initially segregating at 

intermediate frequencies become fixed at a high rate and the genetic variance 
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falls rapidly. 

The curves show the expected genic variance and ignore the consequences of 

disequilibrium. Selection generates a negative disequilibrium component of 

variance which increases with increasingly tight linkage (see Bulmer, 1980 Ch. 

9; Ch. 3). In such circumstances, the additive variance is less than the genic 

variance and the pttern of increase in additive variance would be less extreme 

than shown. 

5.3.4. Variation in response. 

Using similar methods to the above, Hill and Rasbash (1986) analysed the 

variation in response to directional selection. Higher variation in response was 

noted with increasingly leptokurtic distributions of effects of segregating alleles 

and with increasingly U-shaped probability distributions of allele frequency. 

The variation in the genic variance or response can be easily computed with a 

transition matrix. Using Monte Carlo simulation, however, it is possible to 

generate replicates of responses for different N1  E(s) and N2 Es2 ) parameter 

combinations and the general pattern of the response is perhaps easier to 

visualize (and compare to the results of experiments). 

Table 5.3 shows cumulative responses and CV's of cumulative responses to 

generations 10 and 20 among 10 independent replicates sampled from 

independent populations initially at a mutation-stabilizing selection balance 

-with a range of strengths of stabilizing selection and sizes of gene effects 

(examples of responses are plotted in Figs. 6 and 7). 
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Table 5.3 

The mean, coefficient of variation (CV), and range of cumulative response to 

selection to generations t = 10 and t = 20 from 10 independent populations 

initially at a mutation-stabilizing selection-drift equilibrium. 

N1  Es) E,  B t Mean CV Range 

0 0.2 CO 10 2.21 0.19 1.27 - 2.90 
20 3.62 0.17 2.74 - 4.91 

o 0.2 V2 10 2.15 0.36 1.06 - 3.63 
20 3.35 0.34 1.77 - 5.12 

o 0.8 CO 10 1.69 0.44 0.52 - 2.82 
20 2.13 0.41 0.88 - 3.34 o 0.8 V2 10 1.78 0.51 0.39 - 3.38 
20 1.49 0.66 0.39 - 3.45. 

0.2 CO 10 1.36 0.32 0.64 - 2.29 
20 2.46 0.22 1.85 - 3.82 

'A 0.2 /2  10 0.66 0.36 0.42 - 1.18 
20 1.16 0.41 0.58 - 1.95 

8 0.8 CO 10 0.42 1.14 0.06 - 1.50 
20 0.64 1.06 0.02 - 2.26 

8 0.8 V2 10 0.25 1.64 0.02 - 1.31 
20 0.36 1.67 0.02 - 1.94 

Mutations occurred in the stabilizing selection phase only and were sampled 

from a reflected gamma distribution with shape parameter B and scale 

parameter c given in the table. The mutation rate X was such that 

VM/VE = 10. The population size in the stabilizing selection phase was 

N1  = 160 and in the directional selection phase was N2  = 20. 

The Table compares results from a reflected gamma distribution of mutant 

effects with shape parameter B = 1/2 and equal probabilities of positive and 

negative effects (B + ). The population size in the stabilizing selection 

phase was N1  = 160 and in the directional selection phase was N2  = 20, and 

VM was 10. The main points to note from the table are: (i) In theory, the 

average initial response rate is equal to the standing additive variance in the 

stabilizing selection phase. With no stabilizing selection (N1  Es) = 0), the 

theoretical initial rate is therefore 2N 1  VM = 0.32 VE, but the cumulative response 
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to generation 10 was less than ten times this because of the presence of 

disequilibrium generated by directional selection and a loss of genetic variance 

due to changes in gene frequency; the average response with stabilizing 

selection is lower than the average response from initially unselected 

Populations because the expected steady state variance is lowered; (ii) the 

more leptokurtic distribution of mutant effects (8 = 1/2) gives a higher 

coefficient of variation of response than that for equal absolute values of 

mutant effects; (iii) with stronger stabilizing selection (N1  Es) = 8), because 

there is little standing variance, average response c generally small, but 

occasionally an allele of large effect segregating at low frequency gives a rapid 

early response so the range of response is large relative to the mean; (iv) 

many response patterns give similar means, variances and ranges of response 

and in practice would not be distinguishable from one another. Some 

examples of responses, the results of which are summarized in Table 5.3, are 

shown in Figs. 6 and 7. 

I- 
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Figs. 6-7. Examples of selection responses generated by Monte Carlo 

simulation from directional selection of samples of N2  = 20 individuals from 

Independent populations of size N1  = 160 individuals at mutation-stabilizing 

selection-drift equilibrium. Fig. 6. There was no selection in the stabilizing 

phase. The sizes of gene effects were given by c = 0.2 and VM was 10-3  . Fig. 

7. The strength of stabilizing selection was such that N2 Es2) = 8, and the value 

Of c was 0.8 with V  = 10. (a) Reflected gamma distribution with B = 1/2. 

(b) Equal probabilities of positive and negative effects. 
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Figs. 6a and 6b show results for a reflected gamma distribution with shape 

parameters B - and B = 1/2 respectively for the case of no stabilizing 

selection and small gene effects (c = 0.2). These response patterns are similar 

to those commonly observed in selection experiments, although it should be 

emphasized that weak stabilizing selection would not lead to much change in 

pattern. In contrast, Figs. 7a and 7b which again are for cases of reflected 

gamma distributions with shape parameter B = and B = 1/2 respectively 

show much higher variation in response. In these cases, stabilizing selection 

was relatively strong (N1 Es) = 8) and gene effects were large (c = 0.8). Such 

responses are not typical of selection experiments. 

The responses in Figs. 6 and 7 show the change in mean genotype, so there 

would be more variation in mean phenotype than shown because of the 

presence of an environmental component of variation. However, this would 

contribute little to the variation of response of response unless N2  is very 

small or the heritability of the character is low. The simulated selection 

responses were generated from independent populations. In practice, a caged 

population is often used to initiate independent lines, so variation in genes 

segregating initially and hence variation in response would be due to sampling 

from the base population rather than to different genes segregating in 

independent populations. Simulation showed that responses generated from 

sub-populations of single rather than a set of independent populations tend to 

vary less than the responses discussed above because of reduced variance 

between lines in the initial genetic variance and alleles of large effect which 

are not rare are likely to be fixed in all replicate lines. If, however, the 

mutational variance is generated by few mutants of large effects (e.g. c = 0.8, 

cf. Fig. 7), under stabilizing selection, because genes segregate at very low 

frequency at equilibrium, the variation in response is very similar to that 

obtained by sampling from independent populations. 

5.4. Discussion 

5.4.1. Mutation-Stabilizing Selection Balance 

The two allele models of Latter (1960) and Bulmer (1972) and Turelli's (1984) 

"House of Cards" model showed that the expected genic variance in an infinite 

population is independent of the effects of alleles at the loci controlling the 

trait. Similarly, the results show that with strong stabilizing selection the 
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variance of the genic variance among independent lines is also independent of 

the size of gene effects, and is only a function of the effective population size, 

strength of stabilizing selection, and the genomic mutation rate, X. As drift 

becomes more important relative to selection, the coefficient of variation of the 

genic variance becomes increasingly dependent on the shape of the 

distribution of effects of new mutants, but we have little if any information 

about this parameter and can only conjecture that distributions of mutant 

effects are very leptokurtic (Robertson, 1967; Shrimpton and Robertson, 1988; 

Ch. 4). However, for the reflected gamma distribution with shape parameter 

B = 114, from which some mutants are of very large effect indeed, the 

coefficient of variation of Vg  is relatively independent of the strength of 

stabilizing selection and over a wide range of values of the relevant 

parameters. Variation in estimates of genetic variance from different 

populations therefore does not necessarily tell us much about the selective 

forces operating in the population. 

Turelli's (1984) "House of Cards" analysis of mutation-stabilizing selection 

balance is multi-allele, but the formula for the expected genic variance at 

equilibrium is the same as obtained from the two allele analyses of Latter 

(1960) and Bulmer (1972). Why is this so? In these models, the population size 

is assumed to be infinite, or equivalently, selection is assumed to be very 

strong. The probability distribution of allele frequencies is therefore very 

U-shaped with alleles at intermediate frequencies absent. Each new mutant 

allele almost always occurs at a locus previously carrying the 'wild type' allele. 

The fates of new mutant alleles are therefore almost independent of any other 

mutant alleles segregating at the same locus in the population, and a two allele 

analysis with the parameter nil replaced with genomic mutation rate, A, is 

sufficient. Similarly, with weak selection the fates of different alleles at the 

same locus are essentially independent of one another, they can be considered 

as occurring at separate loci, and the two allele treatment also applies. As 

shown in Ch. 4, the model of stabilizing selection is very similar to a model of 

unconditionally deleterious genes with selection coefficient s proportional to a2  

and independent of gene frequency, q. 

The tendency for stabilizing selection to generate an extremely U-shaped 

probability distribution of allele frequencies has important consequences for 

subsequent changes of variance and hence responses with directional 

selection. Under certain circumstances, namely strong directional and strong 
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stabilizing selection, large increases in variance occur in early generations due 

to the fixation of alleles initially at low frequency; in other circumstances, 

namely strong directional selection and weak stabilizing selection, a rapid fall in 

variance (much faster than expected from drift alone) can occur due to the 

rapid fixation of genes initially at intermediate frequencies. Seldom, if ever, are 

such response patterns seen in selection experiments. For example, the 

replicated Drosophila abdominal bristle selection experiments of Clayton, Morris 

and Robertson (1957), Frankham, Jones and Barker (1968) and Yoo (1980), which 

were initiated from cage populations, showed little sign of early accelerated or 

rapidly falling responses. Similar regular patterns were observed in a Tribolium 

egg production selection experiment (i.e. a character closely related to fitness) 

(Ruano, Orozco and Lopez-Fanjul, 1975) initiated from a cage population, and in. 

a selection experiment of cannon-bone length in Scottish blackface sheep 

(Atkins and Thompson, 1986). In the latter case, Atkins and Thompson showed 

that the response closely matched the predicted response of an 'infinitesimal 

model' which incorporated the effect of disequilibrium on the additive variance 

(Bulmer, 1980 Ch. 9). The results of the experiment of Frankham, Jones and 

Barker (1968) are of particular interest because selection on bristle score was 

performed using various population sizes and a range of selection intensities. 

The expected response can be estimated if the 'infinitesimal model' is assumed 

and the initial genetic variance is obtained from: (i) the heritability estimated 

from the base population; or (ii) the realised heritability estimated from the 

selection response in the first one or two generations which in theory is 

almost independent of the magnitude of gene effects. Such analysis shows 

substantially lower predicted responses using the base population genetic 

variance estimate than observed in the experiment. Using the genetic variance 

obtained from the realised heritability in the first two generations, the 

agreement between the experimental results and the infinitesimal model is 

closer. With the strongest selection strength (10%) and the biggest population 

(N = 80), some hint of an accelerating response was observed, but 

unfortunately this line was not replicated. The responses from Yoo's (1980) 

long-term experiment fit closely an infinitesimal model if parameters derived 

from the initial generations are assumed although the response continued 

longer than predicted by the infinitesimal model. The results of Falconer's 

(1973) replicated mouse body weight selection experiment also also give a 

reasonable fit to the infinitesimal model if the genetic variance derived from 

the response in the initial generations is assumed, but this realised heritability 
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is rather higher than Falconer's estimate of the heritability in the base 

population. In this case the lines were derived from crosses of inbred lines 

and presumably some alleles were initially at intermediate frequencies. 

Surprisingly, the experimental selection response patterns do not tell us very 

much about the strength of stabilizing selection which might affect the 

characters in the, base population because the expected variance each 

generation of directional selection becomes the same irrespective of the 

distribution of allele frequencies as N2 s2  - 0. They indicate, however, that 

selective values of directional selection (N2 E(s2 )) cannot in general be very 

high, say greater than one, because either a rapid rise or a rapid fall in variance 

would have been observed in some cases. 

Many of the responses generated by Monte Carlo simulation, using a wide 

range of parameters, are very similar to selection responses obtained 

experimentally. Some types of response patterns in Table 5.3 and Figs. 6-7 are 

not, however, observed experimentally. For example, with c = 0.8 and a gamma 

distribution with shape parameter = 1/2, responses are very variable because 

there are few genes segregating. This pattern becomes more extreme with 

strong stabilizing selection (N1 E(s) = 8, Fig. 7b) with some lines giving a rapid 

early burst of response. Bursts of response have been seen in selection lines, 

generally in long-term experiments (Thoday, Gibson and Spickett, 1964; Yoo, 

1980), and are most likely the result of fixation of mutants appearing since the 

start of the experiment (Hill, 1982b). The alternative hypothesis of segregation 

of rare recessive alleles is also possible, though unlikely if the burst occurs late 

in the experiment as in the cases cited above (Robertson, 1978). Breakdown of 

linkage disequilibrium is also an unlikely explanation (Keightley and Hill, 1983). 

5.4.2. Concluding Remarks 

rcock1 
The validity of the stabilizing selection1of natural selection has been discussed 

extensively elsewhere (Robertson, 1973; Turelli, 1984, 1985; Ch. 4). The most 

Important weakness is that the pure stabilizing selection model ignores 

selection which might be acting at the locus through pleiotropic effects on 

characters directly related to fitness. Other models where the mutant allele is 

at a selective disadvantage (e.g. Hill and Keightley, 1988) have similar 

qualitative effects on the probability distribution of allele frequencies. The 
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essential problem in explaining quantitative genetic variation is not whether 

mutation is an adequate force to explain observed variation, for in the absence 

of selection it is a more than adequate force. The problem is the mode of 

action of natural selection and the selective values of the genes affecting the 

character. 

The analysis here is purely additive and ignoring dominance is a serious 

limitation. As shown by Kacser and Burns (1981), the larger the absolute effect 

of a mutant allele, the more likely it is to behave as nearly recessive. The 

consequences of this could be deduced with specific models of the relationship 

between mutant effect and dominance. It is likely that the tendency to give 

burst or rapid falls in response would be reduced, however, because alleles of 

large additive effect would contribute little to the variance in the stabilizing 

selection phase and would have little chance of fixation from directional 

selection. 

Other models of the mutation process might also be considered. For example, 

Cockerham and Tachida's (1987) model differs from the present step-wise 

model because the effect of a new mutation replaces the current value at the 

locus, not as in this case adding to the value. This additional constraint does 

not affect the equilibrium behaviour with stabilizing selection as the model is 

formally the same as the "House of Cards". It can lead, however, to limits in 

the case of directional selection. The present results, therefore, would only be 

applicable in the short term. 
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Chapter 6 

Models of Quantitative Variation of Flux in Metabolic Pathways 

6.1. Introduction 

The genetic variation of any character must be the result of genetic variation 

affecting basic biochemical processes. To what extent can advances in 

understanding biochemical systems improve our knowledge of the genetics of 

quantitative variation? Enzymology and studies of intermediary metabolism 

have provided insights into the actions of individual enzymes and the coupling 

of reactions in complex pathways represented graphically as the 'metabolic 

map'. A different approach, metabolic control theory (see review by Kacser and 

Porteous, 1987), examines the effects of changes in enzyme activity on 

metabolic fluxes and metabolite concentrations. An analogous, but more 

complex theoretical treatment of control of metabolic systems has been 

developed by Savageau and collaborators (Savageau, 1969). (See Savageau, Voit 

and Irvine (1987) for a discussion of the relationship between the approaches). 

Fluxes and metabolite concentrations are known as variables in the system 

while enzyme activities are under genetic control and are known as parameters. 

In metabolic control theory, the importance of an enzyme in controlling a flux 

is quantified by a 'control coefficient' (Kacser and Burns, 1973), the fractional 

change in flux resulting from a small fractional change in enzyme activity. The 

effects of discrete changes in enzyme activity are important, however, because 

mutants can cause large changes. The problem of the general recessivity of 

'null' mutants at enzyme loci has been investigated by Kacser and Burns (1981) 

who offered a general explanation based on the properties of metabolic 

pathways. 

The effects of enzyme activity variation can be viewed at several levels. At the 

first, there is experimental evidence that enzyme activity itself is polygenically 

determined (e.g. Paigen, 1979; Laurie-ahlberg et al., 1980). At the next level are 

metabolic fluxes and metabolite pool concentrations. These are functions of 

perhaps all the enzymes in the 'metabolic map', but are presumably more 

closely related to those enzymes in the pathway which 'carries' the flux. At the 

third level are characters which are traditionally the subject of quantitative 

genetics, some of which have economic importance (e.g. growth rate, fatness), 

and likely to be influenced by many metabolic fluxes. Here, quantitative 
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variation in metabolic flux is modelled by assuming that the phenotype (flux) is 

affected by enzyme activity variation segregating in a population. The flux is 

assumed to be a function of enzyme activity according to a simple biochemical 

model. The variance in flux is partitioned into additive and non-additive 

components. This approach differs from classical models in quantitative 

genetics where the phenotypic variation usually depends on arbitrary 

assumptions of the effects of alleles. Here, the variation in the phenotype 

resulting from genetic variation depends on biochemical assumptions. It is 

known that because enzymes share common substrates, allelic substitutions at 

one locus modify the allelic effect at another (e.g. Dykhuizen, Dean and Harti, 

1987), so epistatic interactions are automatically built into metabolic systems. 

The conditions necessary for substantial interaction variance in flux as a 

proportion of the total genetic variance are investigated (the terms interaction 

and epistasis are used synonymously here). An attempt is made to relate 

experimentally determined variations in enzyme activities to the predictions of 

the models. Most of the formulations and simulations are restricted to the 

case of haploid populations. The consequences of diploidy and a dominance 

component of variance are discussed, however, in relation to results of 

previous investigations (Kacser and Burns, 1981). 

6.2. Model 

6.2.1. Biochemical model 

Consider the following monomolecular transformation within a pathway of 

substrate Si to product S i  catalysed by enzyme E. 

E. 

The rate, v. of the reaction is given by 

U i = (/M1)(s1 - 	 + S,/M, + 5/M) 	 (6.1) 

(Cleland, 1963), where V is the maximal velocity (VM), M is the Michaelis 



constant (Km ) of E 1  with respect to Si, similarly M is the Michaelis constant for 
E1  with respect to Si, Si  and S. are the concentrations of S i and Si  respectively, 
and K,  is the equilibrium constant for the step. Assume that the enzyme is 

acting in conditions of low saturation, that is, the Michaelis constants for the 

forward and backward reactions are substantially greater than
S and S. 

respectively. An approximate expression for the rate is therefore 

u. =(/M1)(S - 5/K1). 	 (6.2) 

The quantitative variation in the character metabolic flux is investigated in two 

types of pathways containing a number of such enzymes: 

Linear Pathway. Fig. 6.1. The external substances XA (input) and XB (output) are 

assumed to be at constant concentrations determined by the external 

environment. This would be the case, for example, if XA were a nutrient 

supplied to the organism at a constant rate, similarly if XB were a waste or end 

product, changes in whose concentration due to the activity of the pathway 

can be ignored. 

XA 	S 1 	S 2 	... S,,.. 1 	XB 

E 1 	E 2 	E 3 	E 

Fig. 6.1. The linear pathway. A chain of n monomolecular unsaturated 

enzymes catalyses the conversion of externally controlled substrate XA to 
product X 6  via the intermediates S1 to 5n1 



The system will reach a steady state at which all substrate concentrations are 

constant (the steady state concentrations) and the rates of all the steps in the 

pathway are equal to one another and hence to the pathway flux, J, the rate of 

consumption of XA and production of XB. Expressions of type (6.2) may be 

written down for each step in the pathway which are a consistent set of 

simultaneous equations. Elimination of the variable S terms gives an 

expression for the flix in terms of parameters only, 

J = (X - XB/KA.. B) / ( E lM_l/KA. _ l) 	 (6.3) 

(Kacser and Burns, 1973), where X4  and X. are the concentrations of XA and XB 
respectively, KAB  = KAl.Kl z ... K_ lB  is the equilibrium constant between XA and 
X, similarly K4 _ 1  is the equilibrium constant between XA and S,_,, the first 

term in the summation containing K40  = 1, M0  is the Michaelis constant of E 1  
with respect to XA, and n is the number of steps in the pathway. Equation (6.3) 

may be rewritten as 

J - (X - X8/K48) / (E 1  1/Ei). 	 (6.4) 

The E terms are proportional to the enzyme activities which are subject to 

genetic variation, and are also functions of equilibrium constants. 

Branched Pathway. Fig. 6.2. As in the linear pathway, the concentrations of the 

external substances, in this case X 4, XB and X, are assumed to be constant 

and determined by the environment. 
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Figs. 6.2a and 6.2b. The branched system. The system is bounded by the 

external substances XA, X 8  and X. The three symmetrical branches are 

labelled "A", "B" and "C". The point of divergence in the system is at substrate 

S which is catalysed by three enzymes E, E B 
 and E. The superscript on the 

enzyme and substrate symbols refer to the branch, and the subscript refers to 

the position in the branch. Equilibrium constants are similarly named. For 

example, KA1 refers to the equilibrium constant of the reaction XA+ S etc. 

For the unsaturated case, all the enzymes in each branch can be condensed to 

'group enzyme activities', a, 6 and c. 
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There are three branches, and the following terminology is used to describe 

them: (i) The common branch is "A"; (ii) The reference branch is "B"; (iii) The 
competing branch is "C". At steady state, the flux in the common branch is the 

sum of the fluxes in the reference and competing branches, i.e. 

JA = "B + 
	

(6.5) 

The substrate S is catalysed by the first enzyme in both the reference and 

competing branches which therefore compete for S. At steady state the rates 

of each step in the system can be described by equations of type (6.4) which 

equate to a branch flux. Together with relation (6.5), elimination of the variable 

S from these equations yields an expression for the flux in the reference 

branch: 

JB = [c(X - XB/KAB ) + a(Xc/Ksc - XB/Ks B )j / ( ab + ac + bc/KAs)(6 .6) 

where the terms a, 6, and c are 'group enzyme activities', and KAB, KSB ,  
and K ,,5  are equilibrium constants between XA and XB, S and XB, S and X, and 
XA and S respectively. For example, the a group enzyme activity is given by 

G = E 1  1/Er 

where I is the number of enzymes in the "A" (common) branch, and the E 

terms are proportional to enzyme activity and have similar meanings as in (6.4). 

The 6 and c group activities are given by 6 = E1/Eand c = EVEC 

6.2.2. Genetic Model 

Basic Assumptions. It is assumed that genetic variation affects enzyme 

activities in a population of haploid organisms. Each activity is assumed to be 

affected by variation at one locus only and there are up to two alleles at each 

locus. The allele of higher activity at locus j is termed the wild type , E 1 , and 
the lower activity allele is termed the mutan4 E2 . The frequency of the wild 

type allele at the locus is q. Linkage disequilibrium is assumed to be absent. 
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Variance Components of Fluz Let n be the number of loci affecting the flux and 
g be the number of different genotypes, which in a haploid population is 2". 

Let . be the value (i.e. flux) of genotype 4 and fi  be its frequency in the 

population. The total genetic variance is 

V.1. 	m)2j, 	
(6.7) 

where m = EJ. f is the population mean. The additive variance in flux is 

VA  = EJictc(i - 	 ( 6.8) 

where a, is the average effect of a gene substitution (Falconer, 1981 Ch. 7), 

which is the mean change in value resulting from the change of a mutant allele 

to a wild type allele, and can be obtained by differentiating the mean flux with 

respect to gene frequency, q (see Kojima, 1959). The resulting expression for 

a1  is, 

n j  = m/q. 	Z1f(11q1 - (1 - 6)/(i - 	 (6.9) 

where Sij is one if the genotype is wild type with respect to locus j, or zero if 

mutant. Substitution of an expression for flux (e.g. (6.4) or (6.6)) gives an 

equation for the variance in terms of biochemical parameters (e.g. enzyme 

activities). The interaction component is simply 

t=VrVA. 	 (6.10) 

6.3. Results 

6.3.1. Interaction in the Linear Chain 

Two Locus Interactions. Assume that allelic variation in enzyme activity occurs 

at loci j and k With two variable loci there are therefore four haploid 

genotypes. Let the value of these be '11
1  J121 J21 , and J22  where, for example, 



J12  is the value of the flux for the wild type at locus j and the mutant at locus 

k This is 

Jr12 = 
RA - XB/K,B)/(1/El . + 1 /E2k + K), 	 (6.11) 

where K is the sum of reciprocals of enzyme activities other than j and k as in 

(6.4). Similar expressions can, of course, be written down for the other three 

genotypes. An explicit expression for the additive-by-additive interaction 

variance, V,can be obtained using Kojima's (1959) method of differentiating the 

mean genotypic value with respect to the gene frequencies, q and q. This is 

V1  = q(1 - q)q(1 - q)[32m/(9qaq)12 	
(6.12)' 

= q(1 - q)q(1 - 

where c = J11  - 	- 	+ Jr22 , the interaction term for the two locus case. 

Consider the ratio of the additive to interaction variance, VA!  V. From (6.8) and 

(6.12) and after rearrangement, this is 

VAIVI = ( ai/c + q, -  1)2/[q(1 - qk)I + (a2/E + 	- 1)21[(1 - ) J,(6.13) 

where a1  = J11  - 	and similarly a2  = Jr11  - J12. The ratio of variances as a 

function of gene frequencies and enzyme activities can be obtained by 

substituting expressions of type (6.11) for the flux into (6.13). This has the 

following properties. 

VA/ V, is independent of the environmentally controlled parameter 

AA - XB/KAB. 

The values of the terms a1 /e and a2/F- are in the range one to infinity 

because both have the form x/(z - y), 0 < y < z A very large value of either 
or a2/c implies very little interaction variance relative to additive variance 

for all q, and qk. It can easily be shown that this occurs as E2 /E1 . - 1 and/or 
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E2/Elk + 1. The interaction variance is highest relative to the additive 

variance as a 1 /E - 1 and a2/c - 1, i.e. when 
J22 - and J22  - J21  become 

small. This occurs as the activities of the mutant alleles approach zero (null 

alleles). 

With a small interaction term (c 	0), VA!  V is at a maximum as a function 

of gene frequency when q, and qk  are 1/2. 

With null alleles at both loci (which gives maximum epistasis, see (ii) 

above), the interaction variance is highest relative to the additive variance as 

q + 0 and q + 0 (i.e. the mutant alleles are common). 

The activities of the non-variable enzymes in the pathway are represented 
in the constant K 	As K - 	 and if the mutant activities are not null, 	VA!  V 
becomes very large because a1 /c and 	a2/ E 	. 	 This implies that the 
interaction 	variance 	is small 	relative to the additive variance if most of the 
control of flux lies with non-variable loci (see Kacser and Burns, 1973, 	1981). 

Multiple Locus Interactions. Interactions between pairs of loci are of lowest 

order, but multiple locus interactions also contribute to the genetic variance. 

Using Kojima's (1959) method, it is possible to obtain expressions for the 

variance contributed by higher order interactions, but these are very complex 

and the general properties are better illustrated by evaluating particular 

parameter sets on a computer. Fig. 6.3 shows results for a linear chain of ten 

equivalent loci for a range of values of the ratio of mutant to wild type activity, 

E21E1 . Results for three gene frequencies of the wild type are shown (q = 0.1, 

mutant allele common; q = 0.5; q = 0.9, mutant allele rare), and are expressed as 

the proportion of interaction variance, t'/ VT. Each step on the horizontal axis 

represents changing one non-variable locus in the chain to a variable locus of 

given gene frequency in the population. 
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Fig. 6.3. The proportion of interaction variance of flux in a fixed length pathway 

of 10 equivalent loci. Each step on the horizontal axis corresponds to the 

Introduction of one further variable locus into the population. The curves 

relate various values of ratio of mutant to wild type activity, E21E1 . (a) q = 0.1; 
(b) q = 0.5; (c) q = 0.9. 
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As indicated by (6.13), with two variable loci only, the proportion of interaction 

variance is highest for null mutant alleles when the mutant allele is common 

(q = 0.1 in Fig. 6.3). The presence of further variable loci does not necessarily 

lead to an increase in the proportion of interaction variance. Why is this so? 

Although an increase in the number of variable loci leads to an increase in the 

number of interaction terms, increasing the number of mutant alleles 

segregating lowers the average activities of the enzymes in the chain. This 

has the consequence that the average change in flux between mutant and wild 

type becomes more linear, hence the presence of maxima for all cases except 

the special case of null mutant activity in Fig. 6.3a where mutant alleles are at 

high frequency. The linear increase in the proportion of interaction variance in 

Fig. 6.3c is simply a consequence of a linear increase in the ratio of the 

number of two locus interaction terms to number of additive terms; higher 

order interactions contribute little variance because genotypes with more than 

two mutant alleles are very rare. 

6.3.2. Branched Pathway 

Variation in the Reference Branch. For the case of two variable loci in the 

reference branch, it can be shown from (6.6) that the flux in the reference 

branch has the same form as (6.11) except that the term K is replaced with, 

K= b' + 1 1( 1 1aKAS + 11c), 	 (6.14) 

where b' is the sum of reciprocals of enzyme activities in the reference branch 

excluding the activities of the two variable loci as in (6.4). Thus, the properties 

described for the linear chain are the same as described for this case. As K - 

, the control of the reference flux shifts to the enzymes in the non-variable 

segments of the system, and the proportion of interaction variance decreases. 

With more than two varying loci in the reference branch, the interaction 

component changes with increasing number of segregating loci as in Fig. 6.3 

(results not Shown), i.e. V/ VT can have a maximum greater than that obtained 

when all loci are segregating. 

Two Locus Interactions Between Loci in Different Branches. With two segregating 

lad, at least one of which is either in the common or competing branches, the 
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behaviour is rather different from the case of both foci in the reference branch. 

A change in activity of a locus in either the common or competing branches 

can lead in theory to a reversal in the direction of fluxes (see Kacser (1983) for 

an analysis of the behaviour of branched pathways in terms of control 

analysis). The values of a1 /E and in (6.13) are no longer constrained by 

1 < a1 /, a2/E < . The ratio of additive to interaction variances is a much 

more complex function and involves the concentrations of the externally 

controlled substances as well as equilibrium constants which are involved in 

determining the reversibility of the fluxes. This is illustrated in Fig. 6.4 which 

shows (a) the value of a1 /c, and (b) the response of the reference flux as 
AB  is 

modulated. The activities of the wild type alleles at the two foci are equivalent 

and the mutant alleles are both nulls. 
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Fig. 6.4. The effect of asymmetry in the branched system. There are three 

enzymes in the system, one in each branch, and the wild type activity of each 

is one. In the "B" and "C" branches a mutant allele of zero activity segregates 

In the population at frequency 1/2. The value of XA  is 10 and X is 1. Fig. 

6.4a shows the effect on the value of a 1 /c = ( J11  - J21)/(J11 - - + J22 ) 
of modulating XB. Fig. 6.4b shows the effect on the value of the reference flux. 

J1 , is the value of the double wild type flux and J12  is wild type for the "B" 

enzyme and mutant for the "C" enzyme. 
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As the value of the flux for the double wild type, J11 , approaches zero, the 

value of a 1 /E also approaches zero. Near this point, a change in direction of 

the flux occurs, and (6.13) indicates that the proportion of interaction variance 

can be substantial as q. - 1 (mutant allele rare), which contrasts with the result 

for variation in the reference branch only. Kacser (1983) showed that a change 

in direction of the flux can occur for a change in enzyme activity with a high 

control coefficient. . The dependence of the proportion of interaction variance 

on the Xs in the branched system contrasts with its independence in the linear 

pathway of X4  and XB. 

Multiple Locus Interactions in the Branched System. The effect on the interaction 

component of variance of many loci simultaneously segregating in each of the 

three branches is illustrated in Fig. 6.5. In this system, the thermodynamic 

pressures (i.e concentration differences in relation to equilibrium constants) for 

the reactions XA - XB and XA + XC are large relative to the thermodynamic 

pressure between the outputs. The Figure compares the effects of equivalent 

loci in a 'symmetrical' system, 
XB = XC and in two 'asymmetrical' systems 

where X. >> XC  or XC  >> X, and can be compared to the interaction 

variance generated by a linear pathway (Fig. 6.3). The graphs have uneven 

shapes because the segregating loci are introduced into the three branches 

successively. Fig. 6.5 suggests that the effect of asymmetry is rather small 

because the three types of system give similar proportions of interaction 

variance. Most of the interaction in this case occurs between loci in the 

common ("A") branch and the reference ("B") branches because most of the 

increase in interaction occurs with introduction of segregating loci in these 

branches; the introduction of segregating loci in the competing branch does 

not lead to substantial increases in the proportion of interaction variance. 
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Hg. 6.5. The proportion of interaction variance in the reference flux of the 

branched pathway with variation simultaneously in three branches. Each 

branch has four equivalent enzymes. Each step on the horizontal axis 

corresponds to the introduction of one further variable locus into one branch 

and this occurs in the order A, B, C, A, and so on. The graphs relate various 

values of mutant to wild type activity ratio, E21B1 , and three types of system 

with varying degrees of asymmetry with respect to their thermodynamic 

properties. (a) q = 0.1; (b) q = 0.5; (c) q = 0.9. 
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.6.3.3. Dominance Variance 

We have been concerned primarily with the interaction component of 

non-additive variance, but in a diploid population a dominance component is 

present because of interactions between alleles within loci. The analysis of the 

interaction component also becomes more complicated because of the 

presence of additive by dominance and dominance by dominance interactions. 

These are higher order than additive by additive or dominance interactions, 

they are functions of third and higher derivatives of the population mean with 

respect to gene frequency and contain an additional q(1 - q) term for each 

derivative. They are therefore likely to be small. It is worthwhile exploring the 

consequences of dominance in metabolic pathways due to two alleles 

segregating at one locus, and to evaluate the dominance component of 

variance thus extending the treatment of Kacser and Burns (1981). 

Assume that the activity of the enzyme in the heterozygote is the average of 

the two homozygotes, which holds for most cases (Kacser and Burns, 1981). 

Using similar terminology to the haploid case, let the fluxes of the homozygous 

wild type, homozygous mutant, and heterozygote be J1 = C/( 1 1E1  + It), 

= Cx1( 1 1E2 + I, 	and 	J3 = 	 + E2) + It) 	respectively, 	where 

= XA - XB/KAB and K is the sum of reciprocals of the non-variable loci as 

in (6.4). With Hardy-Weinberg equilibrium, the population mean is 

= q2 J1  + 2q(1 - q)J3  + (1 - q)2 J2 . 	 (6.15) 

Expressions for the additive and dominance variances can be obtained by 

Kojima's (1959) method. The ratio of additive to dominance variance is, 

	

VA/VD = 2[q(1 - q)(am/aq)2 ]/q2 (1 - q)2(a2m1q2)2j 	 (6.16) 

= 2[q + (J3  - 	- 2J3  + J2)121[q(1 - q) 1. 

Substituting expressions for the fluxes of the three genotypes for the case of 

the linear chain gives, 
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VA / VD  = 2q - (1 + 1/(E1K))/(i - E21E1)12/[q(1 - q)]. 	 (6.17) 

Thus, the ratio of variances is a function of gene frequency, q, El  and E21E1 , 
and has the following properties. 

As the ratio of mutant to wild type activity approaches unity (E21E1  - 1), the 

variance becomes mainly additive. 

As El  K -,- 0 the variance becomes mainly additive. With the non-variable 

enzymes condensed to a single step, E1 K can be rewritten as El/EG with EG 
the 'group enzyme activity'. As El/EG + 0, most of the control of the flux 

shifts to the variable locus implying a linear change of flux with change of E1 . 

The dominance deviation is therefore small. 

If the heterozygote flux is nearly intermediate, the dominance variance is 

greatest relative to the additive at intermediate gene frequency (q - 1/2). 

As E21E1  + 0, the dominance variance is greatest relative to the additive 

when the mutant allele is rare (q - 1). Note, this is the opposite of the 

condition for maximum additive by additive interaction variance in the haploid 

case. 

These properties are illustrated in Fig. 6.6 which shows the proportion of 

dominance variance of flux, VD/ VT, for three gene frequencies of the wild type 

allele and a range of values of E21E1 . For example, with five equivalent 

enzymes in the pathway (E1 K = 4) and the mutant allele at frequency 0.1 

(q = 0.9), the proportion of dominance variance is almost 26% for a null mutant 

allele, but only 2% for E21E1  = 0.5. 
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Fig. 6.6. The proportion of dominance variance of flux in a linear chain (see Fig. 

6.1). The horizontal axis is the product of wild type activity at the segregating 

locus and the sum of reciprocals of activities of the rest of the loci in the 

chain. Each curve relates the variance component for different values of 

mutant to wild type activity ratio, E21E1 . (a) q = 0.1; (b) q = 0.5; (c) q = 0.9. 
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6.4. Discussion 

6.4.1. Non-additive variance of flux 

Allelic variation of enzyme activity generates both interaction and dominance 

variance of metabolic flux, but these are present in different circumstances. 

When the ratio of mutant to wild type activity is small, the proportion of 

interaction variance is maximal as the mutant alleles become common. The 

proportion of dominance variance in a diploid population is at a maximum as 

the mutant allele becomes rare. With a small difference between mutant and 

wild type, both non-additive components are maximal at intermediate gene 

frequencies. 

There are implications of the above for responses to directional selection of 

metabolic flux. Assume that there is a range of allelic effects segregating at 

different loci controlling the flux in a pathway. Selection to increase the flux in 

the pathway will tend to fix the alleles of largest effect quickest. Their fixation 

leads to a reduction in their control of the flux because there is an inverse 

relationship between control of flux and activity at a locus. The loci at which 

alleles of smaller effect segregate must as a consequence increase their share 

of flux control, so the effect of allelic variation at these loci becomes larger 

(Kacser and Burns, 1981). This is similar to the epistatic effect described by 

Dykhuizen, Dean and Hartl (1987). Thus the epistasis allows new variation to 

be revealed as upward selection progresses, but a reverse attenuation effect 

occurs for selection of flux in the downward direction. In a haploid population, 

an asymmetrical response pattern is therefore expected. For a diploid 

population, directional dominance of alleles controlling flux is present. This 

causes an asymmetry in the opposite direction because the effects of mutant 

alleles are hidden in heterozygotes, so responses therefore show less 

asymmetry. The presence of non-segregating loci also affects dominance and 

additive by additive variances in different ways. As control of flux shifts to 

non-variable loci (K 4  o), the proportion of interaction variance becomes 

small, but the proportion of dominance variance can become large as 

- 0. 

Where null alleles contribute to enzyme activity variation, the interaction 

component increases monotonically with increasing number of varying loci. 
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With mutant alleles of other than null activity, increasing the amount of allelic 

variation can actually decrease the proportion of interaction variance. This 

somewhat surprising result can be understood in terms of the distribution of 

flux control coefficients in the pathway. The introduction of further mutant 

alleles while producing an increase in the number of interactions between loci 

leads on average to a more linear change in flux from allelic substitution at any 

one locus. This linear change is less affected by allelic variation in enzyme 

activity at other loci. 

The behaviour of the linear chain also applies to the branched system for 

alleles affecting enzyme activities within the branch in which the flux is 

measured (reference branch). The interaction component depends on the 

activity differences at the loci contributing to the flux variation, and also on the 

activities of the enzymes elsewhere in the system including the other branches, 

and decreases as their controlling influence on the flux increases. 

The case of enzyme activity variation in different branches is more complex. In 

a branched pathway, changes in enzyme activity can, in theory, cause a change 

in the direction of flow, but since this situation is rather unlikely in nature, 

cases of large thermodynamic pressure from input VA) to outputs (X B  and Xc) 

are most relevant. In the branched pathway, the interaction component 

depends on the "externally determined" equilibrium constants and on the 

source (XA) and sink (XB and X) concentrations. It is therefore'more difficult 

to generalize about epistasis in such a system. However, when the 

thermodynamic pressure from inputs to outputs is high relative to the pressure 

between the outputs, most of the interaction occurs between loci in the 

reference and the common branch. Presumably such loci contribute most 

Substantially to the total variance, the loci in the competing branch being more 

kinetically distant (Kacser, 1983). A possible exception can occur when the 

reference flux is a small 'leak' relative to the competing flux. In this case, 

variation in the common and competing branches is likely to contribute 

substantially to the total genotypic variance in the reference flux and also to 

the Interaction component should allelic activity differences be large. This 

"branch point effect" has been investigated previously by Kacser (1983) and by 

Laporte, Walsh and Koshland (1984). 
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6.4.2. In vitro enzyme activity differences 

In this analysis, the specific activity of an enzyme is assumed to be 

proportional to the product of its turnover number and concentration. As well 

as changes in the structure of the enzyme molecule (which can affect turnover 

number and stability and hence its concentration), there are many classes of 

mutation capable of affecting both parameters. Such mutations include gene 

duplications and deletions, mutations at promoters, those affecting the stability 

and translation rate of mRNA, and mutations affecting the concentration and 

activity of 'effector' molecules. Thus, enzyme activity is itself a polygenic 

character for which there is evidence from studies of enzyme activity variation 

in natural populations of Drosophila (Laurie-Ahlberg et aL, 1980; Laurie-Ahlberg, 

1982; Graf and Ayala, 1986), and in mice (Paigen, 1979). Data on enzyme 

activity variation in natural and artificial populations falls into four main classes. 

(I) In vitro determination of activities of allozymes. (ii) In vitro activity 

differences between Drosophila chromosome substitution lines (e.g. 

Laurie-Ahlberg et aL, 1980; Laurie-Ahlberg, 1982; Graf and Ayala, 1986; 

Miyashita and Laurie-Ahlberg, 1986). (iii) In vitro enzyme activity differences 

between inbred strains of mice. The measured enzyme activities vary widely 

between lines and the differences frequently depend on the tissue in which the 

activity is measured (e.g. Bulfield, Moore and Kacser, 1978; Johnson and Hong, 

1986; Johnson, Hong and Knights, 1986). (iv) In vitro activity differences 

between artificially selected lines. Various enzymes activities thought likely to 

contribute to characters of economic importance in a number of species have 

been measured, including chickens (Bannister et aL, 1984; Whitehead et aL, 1984; 

Asante and Bulfield, 1988), mice (Asante, 1988), and pigs (Standal and Vangen, 

1980). In the above studies, the largest range of enzyme activities has been 

detected between mouse inbred strains. In these and other studies, however, 

small and non-significant differences in activity were most common (i.e. less 

than a factor of four), with an increasingly small proportion of more extreme 

activity differences. The large activity differences measured between inbred 

mouse lines may reflect their polyphyletic origins (Bonhomme et at., 1987). 

It is not possible to relate these observations directly to the biochemical 

models investigated here. These biochemical models are very simple 

approximations of in vivo pathways, a consequence of the need to incorporate 

a genetic model of enzyme activity variation segregating in a population. 
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However, the models show that small changes in enzyme activity (as observed 

in the in vitro studies) generate very little additive by additive interaction and 

dominance variance of flux as a proportion of the total genetic variance. 

Mutant alleles of low activity and at low frequencies contribute mainly 

dominance variance, but little interaction variance. This prediction of lack of 

interaction contrasts with the highly interactive nature of metabolic pathways 

within which enzymes are embedded. Conversely, the observation of 

substantial additivity for variation in a character does not necessarily imply that 

the components contributing to the variation are acting independently. 
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Chapter 7 

Dominance in Metabolic Systems 

7.1. Introduction 

The characters which geneticists measure must depend on physiological and 

metabolic processes which occur within the organism. Genetic variation results 

in variation of the gene products of which many are catalytic proteins, i.e. 

enzymes. The metabolic map shows us how the enzymes are connected to 

one another by the metabolites they share. Other interactions are from 

metabolites that act as effectors, positive or negative, for particular enzymes. 

The map does not, however, give us any information on the rates at which 

substrates are converted from one to another. The measurement of these 

rates - metabolic fluxes - and of metabolite pool concentrations is the proper 

subject of 'quantitative metabolism'. The methodology of quantitative 

metabolism is to study the effects of varying the parameters of the system (e.g. 

enzyme activities) on variables which may be measured (i.e. fluxes and 

metabolite pool levels). Theoretical treatments of quantitative metabolism 

(Kacser and Burns, 1973; Heinrich and Rapoport, 1974; Kacser, 1983; Fell and 

Sauro, 1985; Hofmeyer, Kacser and Van Der Merwe, 1986) have provided 

expectations of the behaviour of living systems (e.g. Flint, Porteous and Kacser, 

1980; Flint et al., 1981; Groen et al., 1982; Middleton and Kacser, 1983; Stuart et 
al., 1986; Woodrow, 1986; Salter, Knowles and Pogson, 1986; Dykhuizen, Dean 

and Hartl, 1987). 

Kacser and Burns (1981) applied the methods of quantitative metabolism to the 

question of the effects of finite changes in enzyme activity generated by allelic 

differences on dominance relationships of flux. It was shown that there is a 

non-linear relationship between flux or metabolite concentration and enzyme 

activity. The general expectation that 'null' mutants at enzyme loci are 

'recessive' was explained in these terms without necessitating an evolutionary 

hypothesis of 'modifiers' first proposed by Fisher (1928) (see e.g. Middleton and 

Kacser, 1983; Dean, Dykhujzen and Hartl, 1986; Cornish-Bowden, 1987; Kacser, 

1987). On the other hand, small differences in the enzyme parameters of 

mutant and wild type were shown to result in an intermediate heterozygote 

phenotype. Here, the Kacser and Burns treatment is extended to the problem of 
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pleiotropic effects of enzyme variation. 

Because of the interconnected structure of the metabolic system, genetic 

variation at one locus in principle affects all the measurable characters and 

there is therefore a general expectation of pleiotropy. It does not, however, 

imply that any genetic variation affects all the characters in the same direction 

or to the same extent. The metabolic map shows that some characters are 

'closer' to one another and others are more 'distant'. The purpose of this 

chapter is to model the effects of finite changes in genetically determined 

enzyme parameters on characters pleiotropically coupled in the metabolic 

system. In particular, expectations for the dominance relations will be derived. 

The results will be related to the observation that, in a vast majority of cases, 

the dominance relations of a pair of alleles are the same for all the 

pleiotropically affected characters which can be measured. 

The dominance relationship of the three phenotypes in a diploid can be 

described by the Dominance Index, D, first defined by Wright (1934). Using 

similar terminology as in Ch. 6, the values of the three diploid phenotypes are 

defined as and J3  for the wild type, mutant and heterozygote 

respectively. D is defined by 

D = (J1  - 	- J2). 	 (7.1) 

Although D can take any value, the following useful conditions apply for 

limiting cases: (1) J1  = J3 , then D = 0, the mutation is fully 'recessive'; (2) 

- = (J1  - J2)/2, then D = 1/2, the mutation gives an exact intermediate 

heterozygote phenotype; (3) J3  = J2 , then D = 1, the mutation is fully 

'dominant'. 

7.2. Biochemical models 

The simple case of a branched pathway is investigated (Fig. 7.1). 
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Fig. 7.1. The branched system. This consists of three linear branches. S is the 

product of the common branch "A" and is the substrate of the reference "B" 

and competing "C" branches. 
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This simple biochemical system shows pleiotropy, as two outputs are affected 

by changes in any enzyme activity. It is described in more detail in Ch. 6 (Fig. 

6.2). Although even an unbranched pathway displays pleiotropy, insofar as 

enzyme variation can affect the intermediate pools differentially, a branched 

system with two outputs is a more general case. The system is assumed to 

be at steady state with the concentrations of input substance XA and outputs 

XB and X constant. At steady state the fluxes (Js) through each pathway are 
constrained by 

"A = B + JC 1 	 (7.2) 

(cf. Ch. 6). Enzyme variation anywhere in the system simultaneously affects all 

the fluxes and metabolite concentrations though not necessarily to the same 

degree. 

7.2.1. Unsaturated system 

Fig. 7.1 represents the general case of a branched pathway. By making the 

simplifying assumption that all the steps are monomolecular, and that 

saturation of the enzymes is absent, it is possible to derive a system of linear 

equations for the fluxes and pools (see Ch. 6). As a further simplification the 

activities of the enzymes in each branch can be combined to give 'group 

enzyme activities' a, b and c. For the unsaturated system, there are therefore 

three linear rate equations for the three fluxes. Since the system is 

symmetrical, the flows in any one branch can go on in either direction as long 

as the mass conservation constraint (7.2) is met. In the following sections, the 

following directions are defined for positive fluxes: XA - S. S - XB, S - X. By 

solving the simultaneous equations, expressions for each of the fluxes can be 

obtained in which the enzyme activities appear as parameters. Consider the 

two allele case: wild type, mutant and heterozygote for which three different 

values of one of the enzyme activities apply. By inserting these three different 

enzyme values in each of the equations for A' B and JC, the phenotypic 

values for the fluxes are obtained. Finally, insertion of these in to the 

expression for the Dominance Index (7.1) allows us to compare how changes at 

one locus affects the dominance relations for the pleiotropically related fluxes. 
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In the Appendix a general proof is given that for a system of unsaturated 

enzymes, of any complexity, the Dominance Index with respect to any one 

locus is exactly the same for all characters (fluxes or metabolite pools) affected 

by the allelic substitutions. Although the Dominance Indices are identical, the 

measured differences in the characters may be very different. If, for example, 

we find 'recessivity' In one character, say a flux, (D -+ 0), then we shall find the 

same in another pleiotropically related character, say a pool. The underlying 

feature which generates these identities is that in a system with linear 

equations for each step, all the fluxes are linearly related to all the pools. This 

is illustrated in Fig. 7.2 which is shown as a 'reflection diagram' (see Burns and 

Kacser, 1977). Such a diagram shows the effects of the independent variable 

(group enzyme activity 1/a in this case) on a dependent variable (S in this case) 

which, in turn, affects further dependent variables (the three fluxes). The 

decomposition into the functional components aids the understanding of the 

system. 
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Fig. 7.2. Flux responses to changes in the enzyme activity of the common 

branch in a system with first order enzymes (all enzymes unsaturated). The 

effects are shown as a 'reflection diagram' which decomposes the effect into 

component functions of the final function. Fig. 7.2a shows how variation in the 

parameter 1/a (common branch group enzyme activity) changes the steady 

state value of the variable S (the concentration of the branch point substrate). 

In Fig. 7.2b, changes in S are now reflected in this panel which shows how 

changes in the variable affect the three fluxes dependent on it. This therefore 

shows how S is allocated from JA  to the two output fluxes JB and  JC. In Fig. 

7.2c, the flux changes are reflected back to 1/a and show the resultant net 

effect of changes in 1/a on the three fluxes. It will be noted that Fig. 7.2b 

shows linear relationships of S on Js. This implies that the Dominance Index 

(resulting from any three values of a) will be identical when measured in any of 

the three fluxes or in S. The relationship of the /s on 1/a in Fig. 7.2c are 

simple hyperbolic functions. Any three values of 1/a will give identical flux 

proportions in all three fluxes. It will also be noted that the fluxes are 

constrained by "A = JB + 
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7.2.2. The branched system with saturation 

Saturation or feedback inhibition are two features of metabolic systems which 

introduce non-linearity of rates of individual steps with respect to their 

substrates. In the 'linear' system, the rate of each step is linear with respect to 

the substrate concentrations, but the fluxes are non-linear functions of the 

enzyme activities. Consider the case of some degree of saturation in one of 

the branches (Fig. 7.3). 

D enzymes 

XB 

Si 

Si 
P enzymes  

S2 	 "B" Branch 

so

EB 

%_ 	

_ S1  

XA 

"A" Branch 

3ranch 

X 

Fig. 7.3. The saturable branched system. As before there are three branches 

labelled "A", "B" and "C". The "A" and "C" branches are identical in structure to 

the branches as specified for Fig. 6.2 and are assumed to be unsaturated. The 

"B" branch consists of three parts. The linear "P" section is proximal to the 

saturable step S i - S catalysed by enzyme E.. Distal to this step is the "D" 

portion of unsaturated enzymes. The nomenclature is the same as described in 

the legend to Fig. 6.2. 
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The "A and "C" branches are identical in structure to the non-saturable 

system. The saturable branch can be divided into three parts. (a) The "P" 

section of non-saturable enzymes proximal to E.  (b) The saturable enzyme E. 

E1  is saturable by either its product S i  or its substrate S i  or both, depending on 

the values of the Michaelis constants, M and M, respectively. (c) The "D" 

section of non-saturable enzymes distal to E.  At steady state, there are four 

equations for the fluxes in the linear segments of the system: 

JA = (XA - S1 K5)/a, 	 (7.3) 

JC  = ( S 
- Xc/Ks c )/c, 	 (7.4) 

"B = (S - S/K)/p, 	 (7.5) 

JB = (5; - XB/KD)/d. 	 (7.6) 

where p = E1/E', and d = E 1/E9 represent the (linear) 'group enzyme activities' 

in the "P" and "D" sections respectively, and K and K0  are the equilibrium 

constants for the reactions S - S i  and Si - XB respectively. The flux for the 

step with saturation containing the relevant Michaelis constants is given by 

(6.1). Elimination of the variable S terms and substitution into (7.2) gives a 

quadratic formula for 

JdIt4ç/A1 - K(p + 11(11(aK ,,5 ) + 1/c))] 	 (77) 

+ JB[d/Ki  + XBM,/(MKD) + K(p + 1/(1/(aK ,,5 ) + i/c)) 
+ M1  + Kp(XA /a + Xc1(cKAc))1( 1 1(aKAS ) + 1/c)) + 

XBV./(K.K D ) - IIKP(XA/a + Xc/(cKAc))/( 1 /(aKAs ) + 1/c) = 0. 

For an asymptotically stable steady state this has only one positive real root. 
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The expression for JC  is obtained by eliminating S from equations (7.2), (7.3) 

and (7.4) to give, 

Jc 	(X4  - Xc/K AAc  - aJB)/(a + c/KA . $), 	 (7.8) 

where KA,.0  is the equilibrium constant for the reaction XA - X. The root of 

equation (7.7) (if known) can then replace J in (7.8) giving an expression for JC  
in terms of parameters only. 

The effects of saturation on the dominance relations of the outputs, .J and JCI 
are examined for cases of 'high' and 'low' saturation. The degree of saturation 

may be described quantitatively by a saturation index, SAT 

SAT = (S1 1M + S/A)/(i + S.,/ 	+ 	). 	 (7.9) 

SAT can take values as follows: (i) S,/M << 1 and 5/M << 1 ('Low' 
saturation, SAT -* 0.) (ii) 5/At! >> 1 and/or 5/Mi >> 1 ('High' saturation, 
SAT -. 1.) Differences in saturation were investigated by modifying a 

parameter, IVA,  which in turn affects the amount of saturation. As XA increases, 

the saturation of E increases. This is illustrated in Fig. 7.4. (An alternative 

method would have been to compare a series of enzymes with decreasing 

values of Michaelis constant, Al). 
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Fig. 7.4. Saturation Response of 	to XA.  The following parameters were used: 

XA varied from 1 to 100; XB= 1; X = ; a = 0.5; p = 0.01; d = 0.01; c = 1; 

= 100; M1  = 5; A4 = 1000. All equilibrium constants were set to unity. These 

values were used to compute the fluxes and the pools, S1  and 5, which were 

then inserted into (7.9). 
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Enzyme Variation in the Common Branch. Fig. 7.5 shows Dominance Indices of 

and J for enzyme variation in the common branch as XA  is modulated and 

hence as the degree of saturation changes. With high levels of saturation, the 

Dominance Indices can be quite different with, in this case, 
JB  more 'recessive' 

(smaller L. At low saturation, as the analysis of the unsaturated case predicts, 

the Indices tend to equality. The differences in dominance which can occur are 

explained in terms of the non-linearity of the fluxes to substrate concentrations 

now present in the system. Since the competing pathway is a chain of 

non-saturable enzymes, J responds linearly to changes in the common 

substrate, S, but "B  responds non-linearly due to the damping effect of the 

saturable enzyme. This is illustrated in Fig. 7.6 which is shown as a 'reflection 

diagram' for one value of XA  giving high saturation. 

Fig. 7.5. Dominance Indices as a function of saturation by varying IVA. The 

Dominance Indices of the two output fluxes with respect to enzyme variation 

occurring in the common ("A") branch. The parameters were identical to those 

used In generating Fig. 7.4, except for 1/a which had values of mutant activity = 

0, heterozygote activity = 1 and the wild type activity = 2. 
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Fig. 7.6. Flux responses to changes in the enzyme activity of the common 

branch. Parameters as in Fig. 7.4 with XA  at 100 (high saturation) and 1/a 

varying from zero to 2. As explained in the legend to Fig. 7.2, the effects are 

shown as a 'reflection diagram'. The competing branch of first-order enzymes 

gives a linear flux response to S. The reference branch, however, gives a 

damped response due to the presence of the saturable enzyme. This damping 

effect leads to the tendency for the reference flux to give a 'more recessive' 

phenotype than the competing flux (see Fig. 7.5) and hence to different 

Dominance Indices. 

121 



Fig. 7.6a shows the effect of varying 1/a on the common substrate S. Unlike 

the response in non-saturated systems, where the relationship was hyperbolic 

(see Fig. 7.2), S shows an early 'accelerating' portion before approaching a 

plateau at high values of 11a. Fig. 7.6b shows the effect of such changes in S 

on its differential allocation to the two outputs. J responds linearly to S (Cf. 

section on non-saturated systems), while j shows the effects of increasing 

saturation. Finally, Fig. 7.6c shows the net effect of changes in 1/a on the 

fluxes. Thus, no matter which three values of S result from the three enzyme 

activities, the j phenotype will appear 'more recessive' than J c. It is notable 

that in this case the flux in the non-saturable branch, J. can give a Dominance 

Index greater than 1/2, i.e. the mutant can therefore tend to be 'dominant' over 

the wild type. This result is due to the increasing slope of the JC  flux at low 

values of 1/a (Fig. 7.6c) in contrast to the monotonically declining change in J. 

Enzyme Variation in the Non-saturable Branch. Fig. 7.7 illustrates the Dominance 

Indices of the two outputs for varying values of XA where enzyme variation 

occurs in the competing branch. Here, the opposite result is observed from the 

effect of variation in the common branch. The flux in the non-saturable 

pathway, J, is in this case a more recessive phenotype than that measured in 

the saturable branch. This is also explainable in terms of the response of the 

fluxes to changes in the common substrate, 5, illustrated in Fig. 7.8. As in the 

case of variation in the common branch, J varies non-linearly with 5, higher 

values being damped due to the effect of saturation (see Fig. 7.6b). The flux in 

the common branch, JA
, 

is, however linear in S. Since JC = - B' JC  varies 

non - linearly with S, changes in which have been induced by enzyme variation 

in this pathway. 
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Fig. 7.7. The Dominance Indices of the two output fluxes with respect to 

enzyme variation occurring in the non-saturable competing branch. Saturation 

is varied in the system by modulating the input XA. The mutant enzyme 

activity is zero and the heterozygote activity is half wild type. The following 

parameters were used to generate the curves: X. = 1; X = 1; a = 1; p = 0.01; 
d = 0.01; c = 0.1 (wild type); V= 50; A4 = 5; M = 1000. All equilibrium 

constants were set to unity. 
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Fig. 7.8. Flux response to changes in enzyme activity in the competing "C" 

branch in the saturable system. This is a 'reflection diagram' (see Fig. 7.2). 

Parameters as in Fig. 7.7 with XA = 100 and 11c varying from zero to 10. The 

common flux gives a linear response to changes in S. and reference flux is 

damped due to the presence of saturation. The net result of these changes is 

the tendency for J to give a more recessive phenotype than J 8 . 
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Enzyme Variation in the Saturable Branch 

In this case the numerical studies indicated, somewhat surprisingly, that the 

Dominance Indices measured in each character were identical although there 

was considerable saturation in the branch. This is so irrespective of whether 

enzyme variation occurs before, after, or at the saturable step. The explanation 

lies in the linearity of the fluxes in the non-saturable branches 
(A and with 

changes in S caused by enzyme variation in the saturable branch. Since the 

fluxes are constrained by j  = - 4 the reference flux must also be linear 

with changes in S caused by enzyme variation in its own pathway (Fig. 7.9). 

(Contrast Figs. 7.6b and 7.8b). 

In the simulations it has been assumed that a mutation of the saturable 

enzyme affects only the VM (, and not the Km 'S This is an unnecessary 

restriction as changes in any enzyme parameter affects the phenotypes through 

changes in S. The behaviour of the indices is therefore the same as discussed 

above. 
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Fig. 7.9. Flux responses to change in enzyme activity in the saturable "B" 

branch. 	Parameters: XA = 100; "B = 1; X, = 1; a = 2; p = 0.01; D = 0.01; 
= 10; M = 1000; c = 1; and 	varied from 0 to 100. All equilibrium 

constants were set to unity. Here the relationships of the fluxes to the branch 

point metabolite, S. are all linear, leading to identical dominance relations. 
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7.2.3. The Effect of Feedback Inhibition 

Feedback inhibition is another mechanism which can cause non-linear 

relationships between pools and fluxes. The effect of a feedback inhibition 

loop (Fig. 7.10) on the dominance relations of the output fluxes has also been 

investigated. 

- 

V 	 X  
V. 	 S .  

'I  
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S Q, 	"R'enzymes 

Si 	Q"enZymeS 

Si 
• 	 "B Branch 

XA 	 S 	
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"' Branch 
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Fig. 7.10. The Branched System With Feedback Inhibition. The structure is 

similar to the previously defined systems (Figs. 7.1 and 7.3). The "A and "C" 

branches are identical in structure to the linear system. The "B" branch 

consists of four parts. The "P" section is a chain of linear enzymes proximal to 

the step S i + Si  catalysed by enzyme E,. This enzyme is inhibited by S q, a 

substrate further up the chain. Proximal to S q  is the "Q" section of linear 

enzymes and distal is the "R" section. The equilibrium constants for the 

reactions S - Si ,  Si _+ S q. and S -' XB are termed K, K 0  and KR respectively. 
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An expression for the reference flux with feedback inhibition in the reference 

branch is derived as follows. At steady state, the set of simultaneous 

equations defining the fluxes is (7.2), (7.3) and (7.4) together with the following 

equations for 

Ja  = (S - 5'/K)/p, 	 (7.10) 

JB  = (5 - Sq /K)/q,  

JB  = (Sq - XB/KR )/r, 	 (7.12) 

where the equilibrium constant (K) terms are as defined in the legend to Fig. 

7.10 and p = E1/E', q = E1/Ef' and r = EVER represent the 'group enzyme 

activities' of the "P", "Q" and "R" sections respectively. A simple expression for 

the rate of the reaction Si - S catalysed by is 

"B = (/M)(S - S/K) / (1 + Sq /K) 	 (7.13) 

(Cleland, 1963), where 5q is the concentration of the metabolite which acts as 

an allosteric inhibitor, and K 1  is the inhibition constant. The solution to the set 

is a quadratic in 

+ 	 (7.14) 

B1' + XB /(Kfl J4 ) + VPKp 1Mj  + 1q/(M,K1 ) + 
Vi  r/(M1 K1 KQ) + Kp 1(Mj (11(a1( 5 ) + 1/c))I + 

XB/(M I KIJ KQ KR ) - 

'Kp(XA/a + X1(cK5))1(M(11(aK,. ,5 ) + 1/c)) = 0. 

The flux through the competing pathway is given, as before, by (7.8). 

The non-linearity introduced by feedback inhibition leads to qualitatively similar 
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behaviour to the system with saturation in one branch (results not shown). As 

feedback inhibition increases (measurable by an index analogous to the 

saturation index), differences in dominance measurable in the outputs can 

occur, of the same direction as with saturation. The arguments to explain 

these phenomena are identical to those used to explain the effects of 

saturation. 

7.3. Discussion 

As a limiting case, dominance in systems of monomolecular transformations 

with no saturation or feedback inhibition has been investigated. This is a 

reasonable approximation to systems when the metabolite concentrations are 

less than their respective Michaelis constants. The conclusions apply to any 

arbitrary network of any structural complexity. An important result is that this 

type of system has identical Dominance Indices for all fluxes and pool levels 

with respect to variation of any of the enzymes. The reason for this behaviour 

is that in such systems, the pools and fluxes are linearly related to one 

another. Real metabolic systems are not of course all monomolecular as many 

reactions involve splitting and combining substrates. For example, a bimolecular 

step in a divergent metabolic system could be the reaction Si -' Si + Sk, where 

S and Sk are the beginnings of two further pathways. This reaction is 

constrained by its stoichiometry and the rates of production of S, and Sk  are 

necessarily identical. If two outputs arise from such stoichiometrically 

constrained fluxes, no competition for a shared metabolite occurs, so no 

difference in dominance relationship will be observed, no matter what the 

saturation state or feedback conditions are. 

For non-linear systems numerical simulations have been used to assess the 

effects on independently variable fluxes. It has been shown that saturation at 

one enzyme can lead to differences in the dominance relations of two outputs. 

The directions of the differences in Dominance Indices for enzyme variation at 

different parts of the system have been defined. Systems with saturation in 

both the competing branches have not been explicitly considered. The 

directions of any differences in dominance will depend on the relative 

saturation in each of the branches. The dominance relations in the presence of 

such non-linear enzymes are dependent on their Michaelis constants as well as 

on the concentrations of external substances which affect the degree of 
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saturation. Dominance and any possible differences are thus a function of the 

'environment' as well as of the genes. 

The effect of saturation on the Dominance Indices is essentially through the 

resulting non-linearity of fluxes to substrate concentration. The presence of a 

feedback inhibition loop in the system can also lead to differences in the 

dominance between the outputs. The mechanism is essentially the same as for 

the case of saturation, with feedback inhibition introducing non-linear 

relationships between fluxes and pools. 

How do the above considerations relate to the dominance relations for 

pleiotropic effects of enzyme variation actually found in vivo? Human inborn 

errors of metabolism are frequently caused by null-mutations at enzyme loci 

(Harris, 1980). In most cases, heterozygotes are detectable if measurement of 

the enzyme activity is possible when it will show an activity which is usually 

the mean of wild type and mutant (Stanbury et aL, 1983). In spite of this, the 

clinical phenotype of the heterozygote is 'recessive' and cannot be 

distinguished from the wild type. The heterozygote phenotype , however, 

invariably shows a small average difference from the wild type (e.g. Knox and 

Messinger, 1958; Bulfield and Kacser, 1974). Detection of heterozygotes 

therefore depends on the ability to measure small differences and on the 

environmental noise in the system. No case in the literature has been found 

where the heterozygote for a clinical phenotype is distinguishable from the 

wild type in the 'main effect' or any other manifestation of autosomal genes. 

In Drosophila many null-mutants at enzyme loci are known. In these cases the 

pattern appears to be the same as that for human inborn errors of metabolism: 

recessive alleles are recessive for all their pleiotropic effects (Lindsley and 

Grell, 1968). 

There are, however, some cases in the literature where mutants show different 

dominance relations for different characters. In mice, for example, homozygotes 

for W alleles at the W locus are extensively depigmented, and there is no 

obvious pattern to the depigmentation (Guenet et a4 1979). Heterozygotes 

resemble the wild type except, however, for the presence of white spots on the 

forehead and belly. In these areas, the mutant allele is therefore 'dominant' for 

hair colour, and in the rest of the animal, it is 'recessive'. The 'internal 

environment' of the gene in the different tissues must be different. 
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A further example of differences in dominance relations occurs in the tialothane 

gene in pigs (reviewed by Webb, 1981). Homozygotes for the mutant allele are 

sensitive to halothane, are stress-susceptible, have improved meat colour and 

have improved performance for a number of economically important traits. 

Heterozygotes are not detectably different from the wild type for sensitivity to 

the anaesthetic, stress susceptibility, or meat colour, but are nearly 

intermediate for the other traits (e.g. growth rate and carcase quality). 

Apparently therefore, the allele is 'recessive' for some of the characters it 

affects, but is 'additive' for others. One less clearly described example of this 

type of phenomenon has been found in Drosophila melanogaster. The allele 

scabrous-like found in an abdominal bristle number selection line (Hollingdale, 

1971) is a recessive semi-lethal, but has a substantial effect on bristles in the 

heterozygote. The biochemical bases of all these effects are of course obscure. 

On the whole, however, it would appear from the literature that most 

mutations, especially where the lesion is at an enzyme locus, have similar 

dominance relations for the characters they affect pleiotropically. 

How relevant are the conclusions from the very simple models to the very 

much more complex in vivo metabolic system and to the 'characters' arising 

from its operation? The results show that four conditions must be 

simultaneously satisfied if substantial differences in dominance of pleiotropically 

related characters are to be observed. 

Non-linearity of metabolites to fluxes. The fact that, in principle, all enzymes 

are non-linear converters and that feedbacks are frequent features of 

metabolism is not in itself a sufficient condition. Saturation must be high or 

the feedback function must be steep for significant deviation from linearity to 

occur. Evidence concerning in vivo saturation is very sparse, but the available 

data (e.g. Flint, Porteous and Kacser, 1980; Hess, 1973) suggest that most 

enzymes operate below or near their substrate Michaelis constants, although 

co-factors, such as NAD, appear to be present in saturating concentrations. 

Strong non-liriearities may therefore be an exception rather than the rule. 

Non-linearity must occur in a branch other than that in which the allelic 

variation occurs. 

The fluxes must not be stoichiometricalIV constrained, as such fluxes do not 

give rise to differences in dominance. 
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iv) Finally, the variation must affect a step which is reasonably sensitive to 

changes in enzyme activity. This means that the heterozygote phenotype has 

to show a clear difference from the wild type (i.e. the mutant must not be 

effectively 'recessive'). If such complete recessivity of the flux through the 

enzyme obtains, it will necessarily imply that the pools (including the pool at 

the branch point) will show no variation in the heterozygote. Since any effect 

on other pleiotropic fluxes is only mediated via a change in the branch pool(s), 

such other fluxes will also show recessivity and no substantial difference in 

dominance can arise. In terms of the concepts of control analysis, the affected 

step should have a reasonably high control coefficient. 

In vivo such steps with high coefficients are relatively rare (Kacser and Burns, 

1973, 1981). In the simulation, the enzymes in the branches were 'condensed' 

to a single step for which a high coefficient could easily be devised. In 

general, however, branches have a number of steps and the 'group' coefficient 

is divided among them alt. Genetic variation affecting any one of these is 

therefore likely to act on a low coefficient step with consequently much 

smaller differences in dominance. 

It therefore appears, from our knowledge of the kinetic structure and from the 

experimental evidence, that the four necessary conditions for differences in 

dominance are rather unlikely to be met and that the rarity of observed cases 

is consistent with the analysis. 
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7.4. Appendix 

Proof of the identity of the Dominance Indices of all the variables with respect 

to variation at one enzyme in an unsaturated system. 

Using the branched system as an example, the steady state properties are fully 

described by the three linear rate equations
jA = (XA - S/KAs)/a, JB = 

(S - XB/KsB)/b, and JC  = ( S - Xci K5 )1 c, and by (7.2). There are four consistent 

equations in four unknown variables 
A' B' JC and S. Explicit solutions for the 

variables can be obtained from the matrix 

raKAS 0 0 1 	1 	K S 1 

Lo 	

—b 0 

iIIP l = 0 	0-c ill! 
1 	-1-1 oj[ 	10 	J 

or 	 Q 	z 	= 	y. 

The solution to the column vector z is obtained from 

Z = Q1y. 	 (7.15) 

Any system of monomolecular non-saturable enzymes can be expressed in 

these terms. Each enzyme activity term is first order and only occurs once in 

the matrix Q Consider the two allele case. E is the wild type, B + M the 
mutant and E+ AM the heterozygote enzyme activity (in any units). The wild 

type phenotypic value is flE), the mutant j(E + M) and the heterozygote 
flE+ AM). In the case of a 'null' mutant, i.e. the mutant allele is a 

'loss-of-function', the value of M would be -B, hence E+ M =  0. The 
phenotypic value, fiB + M) in such a case would not necessarily be equal to 

zero since not all characters are equally dependent on a single enzyme activity. 

The value of A would, in most cases be 1/2 (heterozygote enzyme activity is 

intermediate between wild type and mutant, see e.g. Kacser and Burns, 1981; 

Middleton and Kacser, 1983), though of course, not the heterozygote phenotype. 

If we specify the three enzyme activities, the three phenotypic functions, AE), 
fiE + lvi) and fiE + AM), can be calculated from the kinetic equations or the 
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matrix (7.15). The f function could, for example, be one of the branch fluxes, 

say, B• Similarly, taking another function of the same three enzyme activities 

(the character, say, flux we can obtain g(E), g(E + Al) and g(E + AM). These 

functions now replace the phenotypic values in the Dominance Index definition 

(7.1) giving, 

Df  = [1(E) - f(E + AM)] / [1(E) - AE + M) 1, 	 (7.16) 

D9  = [g(E) - g(E + AM)] / [g(E) - g(E + Al) 1. 	 (7J7) 

Equations (7.16) and (7.17) can be expanded as a Taylor's series: 

Df = [1(E) - (1(E) + XMJ' (E) + x 2 i2p '( E)/2! + ...)J / 	( 7.18) 

[1(E) - (f(E) + Mf (B) + M2f' '(E)/2! + ...)J, 

Dg  =z [g(E) - (g(E) + XMg' (E) + A 2 1142 g '(E)/2! + ...)J / 	( 7.19) 

[g(E) - (g(E) + Mg' (E) + M2 g' ' (E)/2! + ...)J. 

From (7.15), it follows that 

az/aE= (Q 1 /aE)y+ Q 1 ay/3E, 	 (7.20) 

(see e.g. Graham, 1981) where B is an enzyme activity occurring in matrix Q 

Noting that the vector y contains no elements with enzyme activity parameters 

(and therefore its derivative is zero) the derivative of the inverse matrix can be 

re-expressed as 
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-Q1(Q/9E)Q-1 y. 	 (7.21) 

Similarly the second derivative is given by 

2Q 1  P Q/ E)Q 1  (3 Q/ E)Q 1  y. 	 (7.22) 

Since E occurs only once and linearly in Q @ Q/9 E is the product of a scalar 

and an elementary matrix with non-zero element at the position of enzyme 

activity B. Turning now to equation (7.22), the term 

(Q/E)q 1 9 Q/E 

is the same elementary matrix multiplied by a different scalar. Clearly 

therefore, expressions (7.21) and (7.22) are proportional to one another as are 

higher order derivatives. Thus for any complexity of a linear system, 

f(E)/g'(E) = f'(E)/g"(E) = f"(E)/g"(E) = ... = constant. 	(7.23) 

Relation (7.23) together with equations (7.18) and (7.19) imply that, 

Df =D9 . 
	

(7.24) 

Therefore, for a system of any structural complexity having unsaturated 

enzymes, the Dominance Index for any character will be identical to that for 

any other character. 
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Chapter 8 

General Discussion 

In this thesis, two quite different approaches for studying quantitative variation 

are utilised. The basic difference between the two concerns assumptions of 

the mode of gene action. The first approach arbitrarily assumes that the 

effects of alleles are additive within and between loci (i.e. there is no 

dominance or epistasis at the lcveI of the trait), and they affect fitness only 

through the quantitative trait. Although many characters show substantial 

additive genetic variation (Falconer, 1981), new mutant alleles may often have 

large dominance effects. This approach, however, allows a general analysis of 

the equilibrium and dynamic behaviour of models with linkage, mutation and 

selection in finite populations. The second approach assumes that the 

quantitative character is controlled by a particular class of genes, those 

controlling enzyme activities, and attempts to model a metabolic system. How 

might we unify these two approaches? One possible way would be to assume 

a model where recurrent mutation affects loci controlling enzyme activities 

which in turn control a metabolic system. The quantitative characters in the 

system would be the fluxes and substrate concentrations. It could be assumed 

that fitness were a function of one or several of these characters. The model 

of the mutation process could assume that each enzyme activity were 

controlled by one or several loci with the effects of new mutant alleles 

sampled from some distribution. This would model the range of mutational 

changes that can occur at a locus controlling an enzyme activity. For example, 

for a structural locus, some mutations would have large negative effects on 

enzyme activity if they occurred at the active sites; more subtle changes might 

be possible for changes elsewhere in the molecule. Non-additive genetic 

variance of flux would automatically arise. Dominance and epistasis would be 

greatest for alleles of largest effect. Further, models with pleiotropy could 

easily be investigated by assuming a branched pathway and the direction of 

pleiotropic gene action would depend on the enzyme's function in the system. 

It is possible (but difficult in practice) to measure in vivo fluxes or metabolite 

concentrations in higher organisms and to study the effects of enzyme 

variation on them (e.g Flint et at., 1981; Woodrow, 1986; Dykhuizen, Dean and 

Hartl, 1987). It is necessary, however, to contrast fluxes and pools, whose 

relationship to gene action is in principle fairly clear, with more complex 
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characters which have been commonly the subject of quantitative genetics. 

How closely are such complex characters related to metabolic fluxes and 

intermediate concentrations? They are likely to be functions of many fluxes, of 

systems controlling the cell cycle and cellular differentiation, and the timing of 

events in development and embryogenesis. Falconer (1981, Ch. 20 p.314) 

considers "the genes causing quantitative variation" and concludes that "it 

seems unlikely that they (the genes) are there solely to 'control' the character 

through which we recognize them. Their effects on metric characters are 

much more likely to be secondary to some other function... It seems most 

likely, therefore, that all sorts influence metric characters, no matter what the 

function of the gene product is." 

The identification of genes causing variation in quantitative traits and 

elucidating their functions is a fundamental problem of quantitative genetics. 

For the final part of this thesis, recently developed molecular methods which 

enable identification of such genes will be considered. Molecular methods 

provide the opportunity both to induce mutations and to study their effects on 

traits of interest, and thus to bridge some of the gap between molecular and 

quantitative genetics. The technique of insertional mutagenesis which involves 

the induction of mutations by insertion of foreign DNA into the genome is a 

powerful tool for such analysis. Genetic variation induced by insertional 

mutagenesis is also of interest because the fixation of insertional mutations 

can lead to selection responses. Let us also examine some results concerning 

the induction of variation in quantitative traits by insertional mutagenesis and 

the possible use of such technology in animal improvement. In order to 

compare the power of insertional mutagenesis with conventional methods, as a 

starting point consider the induction of genetic variation by X-ray mutagenesis, 

8.1. 'Conventional' artificial mutagenesis 

Artificial 	mutagenesis has 	been 	of 	little 	use in 	generating 	new variation 	in 
commercial traits in animal species and its success in plants has been limited 
(Gottschalk and Wolff, 1983). 	Experimentally, the most extensive quantitative 
genetic 	studies are of X-ray mutagenesis of various 	Drosophila melanogaster 
bristle traits. 

Classically, X-ray mutation rates are measured by a sex-linked lethal test in 
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Drosophila. Early studies showed a linear relationship between the rate of 

sex-linked lethal mutations and X-ray dose (reviewed by Auerbach, 1976, Ch. 5). 

One kR of X-irradiation induces a frequency of about 0.03 sex-linked lethals in 

Drosophila spermatozoa. As the average spontaneous rate to sex-linked lethals 

from a range of natural and laboratory stocks is about 0.0026 (reviewed by 

Crow and Temin, 1964), lkR of X-rays increases the rate of sex-linked 

mutations about ten-fold. To compare these rates with rates of generation of 

variation in Drosophila bristle traits by X-rays, the experiments of Kitagawa 

(1967) and Hollingdale and Barker (1971) are most relevant. They provide data 

on response to selection of abdominal bristles from inbreds subject to X-rays 

each generation. Such data can be used to estimate VMI VE by employing 

theory for predicting selection responses from new mutations (Hill, 1982b). The 

large experiment of Clayton and Robertson (1964) cannot be used for this 

purpose because the X-irradiation was done during the 150 generations prior 

to artificial selection, so most new variation would have been lost because of 

drift and natural selection whose strength is unknown. Hill (1982b) derived an 

approximate expression for the cumulative response (Ce , in units of 

environmental standard deviation) to generation t from new mutations of small 

additive effects on the trait, 

Ct  = 2Ni(VM/VE)[t - 2N(1-exp(-t/2N))j 	 (8.1) 

This can be rearranged to give VM/VE in terms of C, Ne  and selection intensity 

(i). The population parameters, responses and estimates of VM/ 
VE from 

Kitagawa's (1967) and Hollingdale and Barker's (1971) experiments are given in 

Table 8.1. Responses in the non-irradiated controls were small, but give values 

of VMIVE  close to 0.001, a figure frequently quoted in the literature for this 

trait (see Ch. 1). If a value of VM/VE = 0.001 for spontaneous mutations of 

abdominal bristles is assumed, then lkR of X - irradiation increases the rate at 

which new mutational variation is generated by a factor of about 6. It should 

be noted, however, that equation (8.1) assumes an 'infinitesimal' model with 

mutants of small selective value (Ns). The true distribution of effects of new 

mutants is not known, but the presence of large effects will lead (8.1) to 

over-estimate VM/ VE. 
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Table 8.1. 

Selection responses in bristle number of D. melanogaster in inbreds and 

estimates of VM/ VE. 

Reference Ne  i t C 	X-irradiation VM/VE ( VM/VE)/kR 

Kitagawa (1967) 8.4 1.4 17.5 3.36 	1.5kR 0.0100 0.0067 
8.4 1.4 17.5 0.19 	- 0.0006 - 

Hollingdale & 140 0.8 20 1.04 	1.OkR 0.0058 0.0058 
Barker 	(1971) 140 0.8 20 0.16 	- 0.0006 - 

X-ray induced VM/ VE estimated from cumulative response to selection 

averaged over lines using (8.1). Effective population size (Ne ) was assumed to 

be 70% of actual size (Falconer, 1981, p.66). 

In view of the relatively small responses obtained in these experiments and the 

number of generations required, it is perhaps not surprising that there has 

been little success using radiation to induce variation in vertebrates. Small 

improvements were, however, detected in an irradiated mouse line at an 

apparent body weight selection limit (Roberts, 1967). 

8.2. Mutagenesis by transposable elements 

The classical work on maize showed the existence of mutator loci, and similar 

phenomena were subsequently discovered in Drosophila. Elevated mutation 

rates have been shown to be caused by the movement of transposable 

elements, the best characterized system being the P-M system of 

D. melanogaster (see Engels, 1988, for a review). Some strains carry P 

elements, some do not, and in crosses between them a number of unusual 

features collectively termed "hybrid dysgenesis", are noted. In particular, 

mutations occur as a consequence of movement of these elements into and 

out of many sites in the DNA. 

Recently, the movement of P elements following such crosses has been shown 
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to induce large amounts of genetic variation in bristle traits (Mackay, 1985, 

1987) and in fitness (Yukuhiro et al., 1985; Mackay, 1986; Fitzpatrick and Sved, 

1986). Mackay's (1987) estimate of VM/ VE  per generation for abdominal bristle 

score was of the order of 0.1, i.e. approaching twenty times greater than that 

induced by lkR of X-rays (Table 8.2). The rate of production of sex-linked 

lethals by P element transposition in "dysgenic" crosses was estimated to be 

0.03 by Simmons .et at. (1980). As discussed by Engels (1988), this rate may 

include mutations arising from excision as well as insertion. The rate of 

mutation from insertion alone was estimated to be 0.008 (Simmons et al., 

1985). A more recent study (Eanes et al., 1988) gives values consistent with 

this figure. 

Table 8.2. 

Comparison of spontaneous mutation rates with those from X-rays and P 
element transposition in D. melanogaster. 

1 generation of 

	

Spontaneous 	lkR X-rays 	 P element 
transposition 

Recessive lethal rate 	 0.0026 (a) 	0.03 (b) 	 0.03 (c) 
VM/ VE for abdominal bristles 	0.001 (d) 	0.0062 (e) 	 0.11(f) 

(a) Ref. Crow and Temin (1964). (b) Ref. Auerbach (1976). (c) Presumed to 

Include excision and rearrangements (Simmons et at., 1980). (d) Average from 

published data (see Hill, 1982b). (e) Average from Kitagawa's (1967) and 

Hollingdale and Barker's (1971) results. (f) Average figure for reciprocal crosses 

of Mackay (1987). 

Thus, Mackay's results show a greater increase in mutational variance in bristle 

traits than the increased mutation rate to recessive lethals observed by others. 

One kR of X-rays and one generation of P element transposition induced by a 

dysgenic cross both increase the rate of recessive lethals to about ten times 

the spontaneous rate. However, lkR of X-rays leads to a six-fold increase in 

the rate of production of genetic variation of bristle number 
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Whereas one generation of transposition leads to a hundred-fold increase. 

Several hypotheses are possible to explain the apparent discrepancy. 

The frequency distribution of mutant effects on abdominal bristles induced 

by X-rays and P element transposition is extremely leptokurtic and a few 

mutants of very large effect happened to be obtained by chance with P 

elements, but not X-rays. This explanation, however, seems unlikely in view of 

the apparent consistency of the results of independent experiments (Mackay 

1985, 1986, 1987). 

There were "hot spots" of P element activity in Mackay's lines which for 

some reason caused proportionally more variation in abdominal bristles and 

fitness traits than X-linked lethal mutations. This is probably part of the 

explanation for the difference in mutation rates because there is considerable 

variation between loci in rates of P element insertion (Engels, 1988). The same 

or similar allele was probably obtained independently in different abdominal 

bristle lines (Mackay, 1985). Some of these may have been caused by excision 

rather than insertion. Results of Eanes et al (1988) indicate that deletions and 

rearrangements of P elements already in place may be the most important 

source of mutations of large effect seen in dysgenic crosses. Intriguingly, in 

Drosophila ananassac a class of mutations, Om, which produce pleiotropic eye 

morphology defects has been shown to be caused by insertion of torn 

transposable elements at 20 different loci (Shrimpton et al., 1986). 

The types of mutations caused by the insertion/excision of P elements may 

be different from those caused by X-rays, and as such have more effect on 

quantitative traits. There is evidence that P elements insert preferentially in the 

'control' region upstream from amino acid coding sequences (reviewed by 

Engels, 1988). T.F.C. Mackay (personal communication) has argued that such 

Insertions cause changes in the regulation' of genes which gives the necessary 

range of subtle quantitative effects to generate genetic variation in quantitative 

traits. 

8.3. Possibilities in vertebrates 

The finding that large amounts of quantitative variation can be generated by 

insertional mutagenesis is surprising and, as discussed above, the explanation 

is not clear. Presumably, mutagenesis by transposition is powerful because it is 
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highly specific, in contrast to X-irradiation which causes non-specific damage 

so that doses cannot be raised sufficiently to produce much useful variation. 

Although transposable elements of the type found in Drosophila are not known 

In vertebrate species, there are other methods currently available for 

Introducing insertional variation. An important point about such methods, 

which makes them different from conventional mutagenesis, is that a mutated 

gene is 'tagged' by the DNA insert and can subsequently cloned and its 

expression studied. 

DNA micro-injection. This method applies to mammals, and has been 

successful with large farm animals (Hammer et al., 1985). A foreign DNA 

species (the particular sequence used is of little relevance for these purposes) 

is injected in multiple copies into the pronucleus of the fertilised egg, which 

can be re-introduced into a foster mother. DNA inserts apparently randomly, 

usually at a single site as a large tandem repeat (Palmiter and Brinster, 1986). 

In the mouse, the insertion of foreign DNA into the germ line to make 

transgenics by such methods has also been shown to induce mutations. In a 

survey, Palmiter and Brinster (1986) concluded that 9 visible or lethal mutations 

occurred in 110 transgenic mouse strains generated by DNA micro-injection. 

Use of Electric Fields. DNA enters cells subjected to a strong electric field 

which causes temporary holes in the membrane (electroporation), with similar 

results to micro-injection (e.g. Chu, Hayakawa and Berg, 1987). With 

iontophoresis foreign DNA is again introduced into the pronucleus using a 

micro-pipette. Instead of using pressure to expel the contents as with 

micro-injection an electrical potential difference is set up between the pipette 

contents and the cell medium. DNA enters the pronucleus in a manner 

analogous to electrophoresis and inserts into the genome either as tandem 

repeats or as multiple single copies (Lo, 	1983; C.W. Lo, personal 

communication). 

Retroviral Infection. There are several-routes for obtaining proviral inserts 

in the germ line which have been developed in the mouse (reviewed by Gridley 

et al., 1987). The germ line can be infected with retrovirus from the 4-cell stage 

of the embryo to the midgestation embryo stage. Alternatively, embryonic stem 

(ES) cells (Evans and Kaufman, 1981) can be infected and these subsequently 

introduced into blastocysts to make chimaeras (Bradley et at., 1984) ES cells 

can contribute to the germ line. Proviruses insert into the genome apparently 
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independently and at a large number of possible sites, the number of sites of 

Insertion depending on the number of cycles of infection. Recent studies show 

a small degree of non-randomness in sites of insertion of proviruses (Shih, 

Stoye and Coffin, 1988). Apparently there is a subset of preferred sites, and a 

much larger number of less probable sites. Using ES cells, the number of 

inserts can be large, with tens of sites possible per cell (Robertson et at., 1986). 

A similar frequency of mutation as for DNA micro-injection also occurred for 

mutagenesis by insertion of proviruses after retroviral infection of embryos, 

albeit with a smaller sample (Gridley et at., 1987). (Larger samples of proviral 

integration events appear to show a mutation rate to recessive lethals closer to 

1 per 40 insertions (M.J. Evans, personal communication)). The retroviruses 

used in these experiments are usually defective, i.e. depend on externally 

supplied helper functions. Such methods could, in principle, be extended to 

other mammals or birds. 

Nothing is presently known about quantitative variation generated by insertional 

mutagenesis in mammals. The use of proviruses has currently the greatest 

potential because, like some Drosophila transposable elements, they are likely 

to insert near the 5' end of genes (Vijaya, Steffen and Robinson, 1986; 

Rohdewohld et at., 1987), and multiple sites of insertion can be generated. 

8.4. Potential contributions of mutations to response 

The time scale required and possible benefit of increased mutation in a 

quantitative trait can be evaluated by simplifying (8.1) assuming t12N0  is small: 

Ct = 12 i(VM/VE)/ 2 . 	 (8.2) 

The response from mutation increases approximately quadratically with 

generation number. Predicted responses for a range of values of VM/ VE and 

two initial heritabilities assuming the 'infinitesimal' model and ignoring changes 

in genotypic variance from disequilibrium and selected changes in allele 

frequencies are shown in Table 8.3 If large quantities of useful variation could 

be generated, as occurred in Mackay's Drosophila lines, selection responses can 

be substantially increased. It should be noted, however, that this model has 
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several limitations, the most severe of which are: an equal frequency of 

beneficial and deleterious new mutations is assumed, although most mutations 

for traits connected with fitness are likely to be harmful; the infinitesimal model 

is assumed so (8.2) underestimates the possible response (Hill, 1982b). 

Table 8.3. 

Predicted selection- responses from existing and new mutational variation in 

units of P"E 

h2 =o.i 
VM/VE t=5 t=10 t=5 t=10 

0 0.50 1.00 2.50 5.00 
0.001 0.51 1.05 2.51 5.05 
0.01 0.62 1.50 2.62 5.50 
0.1 1.75 6.00 3.75 10.00 

There is assumed to be negligible change in phenotypic variance due to 

selection on existing variation or on variation induced by mutation. An 

infinitesimal model of many mutants of small effect is assumed. 

8.5. Isolation of genes by insertional mutagenesis 

The availability of insertional mutagenesis opens up a further possible use in 

quantitative genetics. Rather than attempting to induce quantitative variation 

with a view to fixing beneficial alleles (as in the previous discussion), 

insertional mutagenesis might also be used to attempt to dissect the 'genetic 

architecture' of a quantitative character. The effects of insertion on traits of 

interest are likely to be large because genes may be disrupted or changed in 

activity or expression. Such mutations could, in principle, be identified by fixing 

mutant alleles in selection lines or associating specific inserts with an effect on 

the trait by statistical means. The particular benefit of the method is that the 

insert acts as a 'tag' for subsequent molecular cloning and it has been used in 

Drosophila to isolate smooth, an allele with major effect on bristle score (A.J. 

Leigh Brown, T.F.C. Mackay and A.E. Shrimpton, in preparation). Such 
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approaches are extendable, in principle, to vertebrate species. A likely problem, 

however, is that many alleles of large effect are recessive (Kacser and Burns, 

1981) and their presence may be difficult to determine in an experimental 

population. Schemes involving subdivision and inbreeding are likely to improve 

the chance of expression and subsequent fixation of beneficial recessive alleles 

(Madalena and Hill, 1972). 

8.6. Concluding comments 

The above discussion illustrates some of the ways which molecular techniques 

involving insertional mutagenesis can tell us about the nature of quantitative 

variation. In Drosophila, where saturation of the genome with transposable 

elements at many sites is possible, questions can be asked concerning the 

distribution of effects of mutants induced by the elements on a trait, and the 

number of genes (or sites) which can give a detectable effect. Having isolated 

and cloned genes of interest, it will be possible to study variation at the 

molecular level contributing to variation in the trait. An important technique is 

the exact replacement of a gene by a cloned copy (gene transpiacement) first 

developed in bacterial species, later in yeasts (reviewed by Smith, 1985), and 

there has been progress in developing this technique in the mouse (Jackson, 

1988). This may be particularly powerful for analysing short regions of the 

genome or genes because these could be transplaced into an inbred 

background and the genetic variation in the trait measured. 

One cannot be so optimistic about the use of molecular technology in 

discriminating between models of the maintenance of genetic variation. The 

ascertainment of effects of alleles causing variation in a trait becomes 

increasingly difficult as the effect of the allele becomes smaller (see Shrimpton 

and Robertson, 1988 for a study illustrating this point using 'conventional' 

methods in Drosophila). As discussed in Ch. 4 and 5, a critical question is the 

mode of operation of natural selection. The selection ist - neutralist controversy 

over the maintenance of molecular polymorphism shows that such problems do 

not lend themselves to simple and general solutions. 
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ABSTRACT 
It is a common observation that most mutants have similar dominance relations for all the characters 

they are known to affect. As a model of pleiotropic effects we investigate a branched pathway where 
the two outputs represent two characters whose variation is affected by changes in any of the 
genetically specified enzymes in the system. We consider the effects on the phenotype (fluxes or 
intermediate metabolites) of substitutions at one locus represented by enzyme activities of the two 
homozygotes (mutant and wild type) and that of the heterozygote. Dominance indices for the 
characters pleiotropically connected by the metabolic system are calculated. We show that if enzymes 
behave 'linearly,' (first order), that is if saturation and feedback inhibition or other nonlinearities are 
absent, all fluxes and pools have identical dominance relations. The presence of such nonlinearity, 
however, leads to differences in dominance between different characters and we define the conditions 
where such differences can be important. 

THE characters which geneticists measure must 
arise from the physiological and metabolic proc- 

esses which occur within the organism. Genetic vari-
ation results in variation of the gene products of which 
many are catalytic proteins, i.e., enzymes. Acting 
through the metabolism, enzymes 'control' the varia-
bles, i.e., fluxes and metabolic pools, in a quantitative 
manner. Metabolism is often represented by the met-
abolic map. This map shows us how the enzymes are 
connected to one another by the metabolites they 
share. The substrate for one reaction is, in general, 
the product of another. Other interactions are from 
metabolites that act as effectors, positive or negative, 
for particular enzymes. The map does not, however, 
define the kinetic structure of the metabolic system, 
that is, give us any information on the rates at which 
substrates are converted from one to another. The 
measurement of these rates—the metabolic fluxes—
and of the metabolite pool concentrations is the 
proper subject of 'quantitative metabolism.' The 
methodology of quantitative metabolism is to study 
the effects of varying the parameters of the system 
(e.g., enzyme activities) on variables which may be 
measured (i.e., fluxes and metabolite pool levels). The-
oretical treatments of quantitative metabolism (KAC-
SER and BURNS 1973; HEINRICH and RAPOPORT 1974; 
KACSER 1983; FELL and SAURO 1985; HOFMEYER, 
KACSER and VAN DER MERWE 1986) have provided 
expectations of the behavior of living systems (e.g., 
FLINT, PORTEOUS and KACSER 1980; FLINT et al. 1981; 
GROEN et al., 1982; MIDDLETON and KACSER 1983; 
.STUART et al. 1986; WO0DROw 1986; SALTER, 
KNOWLES and POGSON 1986; DYKHUIZEN, DEAN and 
HARTL 1987). Because, in principle, all enzymes affect 
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all variables and since enzyme activities are under 
genetic control, fluxes and pool levels are quantitative 
characters or very closely related to them. In living 
systems the values of these characters are determined 
by the alleles which control enzyme activities and by 
the environment which controls the inputs and the 
external effectors to the metabolic system. 

In a previous paper (KACSER and BURNS 1981), the 
methods of quantitative metabolism were applied to 
the question of the effects of finite changes in enzyme 
activity generated by allelic differences and led to a 
general analysis of dominance relationships. It was 
shown that there is a nonlinear relationship between 
flux or metabolite concentration and enzyme activity. 
The general expectation that "null" mutants at en-
zyme loci are 'recessive' is explainable in these terms 
without necessitating an evolutionary hypothesis of 
"modifiers" first proposed by FISHER (1928) (see e.g., 
MIDDLETON and KACSER 1983; DEAN, DYKHUIZEN and 
HARTL 1986; CORNISH-BOWDEN 1987; KACSER 1987). 

On the other hand, small differences in the enzyme 
parameters of mutant and wild type were shown to 
result in an intermediate heterozygote phenotype. 
Here, we extend the KACSER and BURNS (198 1) treat-
ment to the problem of pleiotropic effects of enzyme 
variation. 

Since the metabolic system is highly interactive, 
genetic variation at one locus will in principle affect 
all the characters. This, together with the interactive 
nature of development gives us a general expectation 
of pleiotropy. It does not, however, imply that any 
genetic variation affects all the characters in the same 
way. Intuitively, we would expect some characters to 
be 'close' to one another and others to be more 
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an arbitrary number of first order enzymes in each. 
By solving the simultaneous equations, expressions 

for each of the fluxes JA,JB  andJc can be obtained in 
which the enzyme activities appear as parameters. 
Although a character, such as a flux or a pool, is a 
function of all the enzyme activities in the system, we 
are interested in the effect of variation in one enzyme 
only. This can be anywhere in the system. We consider 
the two-allele case: wild type, mutant and heterozy-
gote for which three different values of one of the 
enzyme activities will apply. By inserting these three 
different enzyme values in each of the equations for 
JA, JB andJc, the phenotypic values for the fluxes are 
obtained. Finally, insertion of these in to the expres-
sion for the dominance index (1) allows us to compare 
how changes at one locus affects the dominance rela-
tions for the pleiotropically related fluxes. 

In Appendix 2 we give a general proof that for a 
system of unsaturated enzymes, of any complexity, 
the dominance index with respect to any one locus is 
exactly the same for all characters (fluxes or metabo-
lite pools) affected by the allelic substitutions. Al-
though the dominance indices are identical, the mea-
sured differences in the characters may be very dif-
ferent. If, e.g., we find' recessivity' in one character, 
say a flux, (D - 0), then we shall find the same in 
another pleiotropically related character, say a pool. 
The underlying feature which generates these identi-
ties is that in a system with linear equations for each 
step, all the fluxes are linearly related to all the pools. 
This is illustrated in Figure 2 which is shown as a 
'reflection diagram.' (See BURNS and KACSER 1977.) 
Such a diagram shows the effects of the independent 
variable (enzyme activity A in this case) on a dependent 
variable (metabolite S in this case) which, in turn, 
affects further dependent variables (the three fluxes). 
The decomposition into the functional components 
aids the understanding of the system. 

The branched system with saturation 

We now consider specifically the case of some de-
gree of saturation in one of the branches. Let this be 
an enzyme E  in the "B" branch. The system is rep-
resented in Figure 3. 

The "A" and "C" branches are identical in structure 
to the nonsaturable system (Figure ib). The saturable 
branch can be divided into three parts: (a) The "P" 
section of nonsaturable enzymes proximal to Ef. (b) 
The saturable enzyme Ef. Ef is saturable by either its 
product S or its substrate S i or both, depending on 
the values of the Michaelis constants, M3  and M, 
respectively (see Eq. 1.1 in Appendix 1). (c) The "D" 
section of nonsaturable enzymes distal to Ef. 

A quadratic expression forJB is obtainable in terms 
of all the internal and external parameters (Appendix 
3). The expression forJ is also a quadratic and is also 
given in Appendix 3. These equations are difficult-to  
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FIGURE 2—Flux responses to changes in the enzyme activity of 
the common branch in a system with first order enzymes (all 
enzymes unsaturated). The effects are shown as a "reflection dia-
gram" which 'decomposes' the effect into component functions of 
the final function. (a) How variation in the parameter A (group 
enzyme activity) changes the steady state value of the variable S 
(the branch point substrate). (see Figure 1). (b) Changes in S are 
now reflected in this panel which shows how changes in the variable 
affect the three fluxes dependent on it. This therefore shows how 
S is allocated from JA to the two output fluxes JB  and Jc.  (c) The 
flux changes are reflected back to A and show the resultant net 
effect of changes in A on the three fluxes. It will be noted that (b) 
shows linear relationships of S on J's. This implies that the Domi-
nance Index (resulting from any three values of A) will be identical 
when measured in any of the three fluxes or in S. The relationships 
of the J's on A in (c) are simple hyperbolic functions. Any three 
values of A will give identical flux proportions in all three fluxes. It 
will also be noted that in (b) and (c) the fluxes are constrained by], 

JB +Jc. 

manipulate algebraically, and, being non-linear, the 
matrix treatment does not apply. Their characteristics 
with respect to enzyme variation are better under-
stood by evaluating specific parameter sets. (See e.g., 
HOFMEYER 1986.) Branched pathways have been in-
vestigated previously [KACSER (1983) in terms of con-
trol analysis; LAPORTE, WALSH and KOSHLAND (1984) 
in terms of allocation of the fluxes; and SAURO, SMALL 

and FELL (1987) in terms of the matrix method giving 
branch distribution control coefficients]. 

Since we are interested in the possible effects of 
saturation on the dominance relations in lB andJc, we 
need to examine cases of 'high' and 'low' saturation. 
The degree of saturation may be described quantita-
tively by a simple saturation index, SAT: 

S/M, + SiA  
SAT = 1 + S I/M, + S1/M1

(3)  

SAT can take values as follows: (a) Si/M, << 1 and 
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FIGURE 6.—Flux responses to changes in the enzyme activity of 

the common ("A") branch. Parameters as in Figure 4 with XA at 100 

(high saturation) and A varying from zero to 2. As explained in the 

legend to Figure 2, the effects are shown as a 'reflection diagram.' 

The "C" branch of first-order enzymes gives a linear flux response 

to S. The "B" branch, however, gives a damped response due to 

the presence of the saturable enzyme. This damping effect leads to 

the tendency for the "B" flux to give a 'more recessive' phenotype 

than the "C" flux (see Figure 5) and hence to different dominance 

indices. 

of increasing saturation. Finally, Figure 6c shows the 
net effect of changes in A on the fluxes. 

Thus, no matter which three values of S result from 
the three enzyme activities, the JB  phenotype will 
appear 'more recessive' thanJe. It is notable (Figures 
5 and 6c) that in this case the flux in the nonsaturable 
branch,J(; , can give a Dominance Index greater than 
0.5, i.e., the mutant can therefore tend to be 'domi-
nant' over the wild type (the heterozygote is nearer 
the mutant phenotype). This result, not previously 
observed, is due to the increasing slope of theJ (;  flux 
at low values of A (Figure 6c) in contrast to the 
monotonically declining change inJB. 

Enzyme variation in the nonsaturable branch: Fig-
ure 7 illustrates the dominance indices measured in 
the two fluxes for varying values of XA where enzyme 
variation occurs in the nonsaturable branch. Here, we 
observe the opposite result from the effect of variation 
in the common branch. The flux measured through 
the nonsaturable pathway, J(:, is in this case a more 
recessive phenotype than that measured in the satur-
able branch. This result is also explainable in terms of 
the reaction of the fluxes to changes in the common 
substrate, S. This is illustrated in Figure 8. As in the 
case of variation in the common branch, JB  varies 
nonlinearly with 5, higher values being damped due 
to the effect of saturation (Figure 6b). The flux in the 

DJB 

oJc 

InpuI ConcenraI-  ion (XA) 

FIGURE 7.—The dominance indices of the two output fluxes 

with respect to enzyme variation occurring in the nonsaturable 

("C") branch. Saturation is varied in the system by modulating the 
input XA. The mutant enzyme activity is zero and the heterozygote 

activity is half wild type. The following parameters were used to 

generate the curves: X8  = 1; X(;  = 1, A = 1; P = 100; C = 10 (wild 
type); Vj  = 50; M i  = 5; M = 1000. All equilibrium constants were 
set to unity. 
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FIGURE 8.—Flux response to changes in enzyme activity in the 

competing "C" branch in the saturable system. This is a 'reflection 

diagram' (see Figure 2). Parameters as in Figure 7 with XA = 100 
and C varying from zero to 10. The "A" flux gives a linear response 
to changes in S, and "B" flux is damped due to the presence of 
saturation. The net result of these changes (c) is the tendency for 

Jc to give a more recessive phenotype than J5. 

common branch, JA,  is, however linear in S. Since Ic 
= JA - JB, Jc varies in this case nonlinearly with 5, 
changes in which have been induced by enzyme vari-
ation in this pathway. 

Enzyme variation in the saturable branch: In this 
case the numerical studies indicated, somewhat sur-
prisingly, that the dominance indices measured in 
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This reaction is constrained by its stoichiometry and 
the rates of production of S and Sk must be identical. 
If two outputs arise from such stoichiometrically con-
strained fluxes, no question of competition for a 
shared metabolite arises. No difference in dominance 
relationship will therefore be observed, no matter 
what the saturation state or feedback conditions are. 

For nonlinear systems we have had to use numerical 
simulations to assess the effects on independently var-
iable fluxes. It has been shown that saturation at one 
enzyme can lead to differences in the dominance 
relations of two outputs. We have defined the direc-
tions of the differences in Dominance Indices for 
enzyme variation at different parts of the system. We 
have not explicitly considered systems with saturation 
in both the competing branches. The directions of 
any differences in dominance will depend on the 
relative saturation in each of the branches. The dom-
inance relations in the presence of such nonlinear 
enzymes are dependent on their Michaelis constants 
as well as on the concentrations of external substances 
which affect the degree of saturation. Dominance and 
any possible differences are thus a function of the 
environment in which organisms are operating as well 
as of their genes. 

The effect of saturation on the Dominance Indices 
is essentially through the resulting nonlinearity of 
some fluxes to substrate concentration. The presence 
of a feedback inhibition loop in the system can also 
lead to differences in the dominance between the 
outputs. The mechanism is essentially the same as for 
the case of saturation, with feedback inhibition intro-
ducing nonlinear relationships between fluxes and 
pools. This qualitative explanation of the behaviour 
of the saturable system and the system with feedback 
inhibition is robust to changes in parameters and 
consistent. 

How do the above considerations relate to the dom-
inance relations for pleiotropic effects of enzyme var-
iation actually found in vivo? An enormous amount of 
work has gone into studies of human inborn errors of 
metabolism. These are frequently caused by near null-
mutations at enzyme loci (HARRIS 1980). In most 
cases, heterozygotes are detectable if measurement of 
the enzyme activity is possible when it will show an 
activity which is usually the mean of wild type and 
mutant (STANBURY et al. 1983). In spite of this, the 
clinical phenotype of the heterozygote is 'recessive.' 
It has been shown that 'recessive' does not mean 
'complete recessive' (e.g., KNOX and MESSINGER 1958; 
BULFIELD and KAcsER 1974; KACSER and BURNS 

1981) as the heterozygote phenotype will invariably 
exhibit a small average difference from the wild type. 
Detection of heterozygotes will therefore depend on 
the ability to measure small differences and on the 
noise in the system. We have not, however, found any 

case in the literature where the heterozygote for a 
clinical phenotype is distinguishable from the wild 
type in the 'main effect' or any other manifestation of 
autosomal genes. 

In Drosophila, a vast number of mutants are now 
known, many of which are null-mutants at enzyme 
loci. In these cases the situation appears to be the 
same as that for human inborn errors of metabolism—
the mutations tend to be recessive for the 'main effect' 
and all the other pleiotropic effects (LINDSLEY and 
GRELL 1968). 

There are, however, some cases in the literature 
where mutants show unequal dominance relations for 
different characters. In mice for example homozy-
gotes for W alleles at the W locus are extensively 
depigmented, and there is no obvious pattern to the 
depigmentation (GUENET et al. 1979). Heterozygotes 
resemble the wild type except, however, for the pres-
ence of white spots on the forehead and belly. In these 
areas, the mutant allele is therefore 'dominant' for 
hair color, and in the rest of the animal, it is 'recessive.' 
The 'internal environment' of the gene in the differ-
ent tissues must clearly be different. The two charac-
ters "pigment on dorsum" and "pigment on belly" can 
be compared to the example discussed in Figures 5 
and 6 where the two branches would represent the 
melanin production in the two tissues. In the model 
XA  and XB  would be the same substance (melanin) in 
the two tissues. The enzymes would be the 'same' in 
the sense that they are specified by the same genes. 
The two tissues could however be different by, e.g., 
sustaining different substrate concentrations and/or 
different activations or inductions of some of the 
enzymes. The effect of genetic substitution at one 
locus (Wi) could therefore have different conse-
quences when the Dominance Index is measured in 
the two tissues. 

A further example of differences in dominance 
relations occurs in the well known gene in pigs for 
halothane sensitivity (reviewed by WEBB 1981). 
Homozygotes for this allele are sensitive to the an-
aesthetic halothane, are stress susceptible, have im-
proved meat colour and have improved performance 
for a number of economically important traits. Het-
erozygotes are not detectably different from the wild 
type for sensitivity to the anaesthetic, stress suscepti-
bility, or meat colour, but are nearly intermediate for 
the other traits (e.g., growth rate and carcass quality). 
The allele is therefore 'recessive' for some of the 
characters it affects, but is 'additive' for others. We 
have found one less clear cut example of this type of 
phenomenon in Drosophila melanogaster. The allele 
scabrous-like found in an abdominal bristle number 
selection line (HOLLINGDALE 197 1) is a recessive sem-
ilethal, but has a substantial effect on bristles in the 
heterozygote. The biochemical bases of all these ef- 
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APPENDIX 1 

Here we derive a set of equations for the fluxes in the 
nonsaturable branched system (Figure ib). Consider the follow-
ing monomolecular step within one branch, catalyzed by a 
Michaelis-Menten enzyme, at steady state. 

E• 

The rate, v3 , of the reaction is given by 

vi 	 (V3/M 1)(S 1  - S/K 1 ,3
) 

= I + S/M1  + S/M1  

(CLELAND 1963), where Vj  is the maximal velocity (V,,,,,,); M 1  and 
M3  are the Michaelis constants (K,,,) for the forward and back-
ward reactions respectively; S i  and S are the concentrations of 
the substrate and product and K, 3  is the equilibrium constant 
for the step which is, of course, independent of enzyme activity. 
When Si  << Mi  and S3  << Mj  (absence of saturation), Eq. 1.1 
reduces to 

V3  = e (Si -  S1K 1 ,3), 	 (1.2) 

where ej  = l//M1 , the genetically determined enzyme activity. 
Since the three branches of the system are symmetrical in 

structure, we can take the "A-pathway" (common branch) as an 
example. The steady state flux is obtained when all the individ-
ual rates in the branch are equal to one another and hence 
equal to the branch flux, i.e., V1 = V1 = vs = •.. JA. All the 
intermediate pools will have time-invariant values. JA  is given 
by the solution of a set of linear simultaneous equations of the 
same form as Eq. 1.2: 

JA = el(XA - S A /K 1 ), 

JA = e(S - S/K 2), 

JA = e(S_ i  - S/K_,). 

Solving these equations gives: 

JA 	
XA - S/KA 

= Ile + K i /e + ... K. 	
(1.3) 

where KA = K 1  .K'2.K5....K7_1 ,, i.e., the equilibrium 
constant, KA.S between XA and S. Similarly the equilibrium 
constant between XA and S1 is KA,!_I, etc. (Figure ib). 

Expression (1.3) can be reexpressed by grouping the sum of 
the reciprocals of enzyme activities and the equilibrium con-
stants in Eq. 1.3 into a 'group enzyme activity,' A: 

JA = A(XA - S/KA), 	 (1.4) 

where 

i/A = E K A .I_i/e 

and the first term contains KAO = 1. 
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saturation containing the relevant Michaelis constants. 

J. - 
V/M.(S - S1/K1,) 	

(3.3)  
- I + SJM1  + S/M 

The variable S terms can be eliminated from the above three 

equations and from (1.4) and (1.6) to yield a quadratic iflJB. 

J[M11(DM) - K (1/P + 1/(AKA + C))] 

+ J8{V/(DK,1) + XBMI/(MJKD) 

• VK(I/P + l/(A/KA + C)) + M 

• Kp(AXA + CX(/Kc)/(A/KA + C)1 

+ XBVJ/K,JKD - VJ Kp(AXA + CXc/KL)/(AKA + C) = 0. 

For an asymptotically stable steady state this has only one 

positive real root. 

The expression forJ :  is obtained by eliminating S from Eqs. 

2, 1.4 and 1.6. We obtain 

XA - X(/KA(; - JR/A 
(3.5) A = 	1/A + l/CKA 

where KAc is the equilibrium constant for the reaction XA . X. 
The root of Eq. 3.4 (if known) can then replace Ia in (3.5) 

giving an expression forJc  in terms of parameters only. 

APPENDIX 4 

We derive equations for the fluxes in the branched system 

with feedback inhibition. At steady state, the set of simultaneous 

equations defining the fluxes in the system, defined in Figure 

10 is given by (2), (1.4) and (1.6) together with four equations 

forJa: - 

Ja = P(S - S/K), 	 - (4.1) 

Ja = Q(S - Sk/KQ), 	 (4.2) 

in = R(Sk - XB/KR), 	 (4.3) 

where the equilibrium constant (K) terms are as defined in the 
legend to Figure 10 and P, Q and R represent the 'group 
enzyme activities' of the "P," "Q" and "R" sections respectively. 
A simple expression for the rate of the reaction S—*Scatalyzed 
by E can be 

- (V/M 1)(S1  - 5,1K1) 
is - 
	1 + Si/K, 	

(4.4) 

(CLELAND 1963), where Skis the concentration of the metabolite 

which acts as an allosteric inhibitor, and K, is the inhibition 

constant. The solution to the set is a quadratic as follows: 

J/(R/K,) + fBI! + X8/(KK,) + VK/(PM 1) 

+ V1/(QM,K 1 ) ± VJ/(RM,K JKQ) 

+ VJKP/(M(A/KA + C))] + VJXB/(MK, JKQKR) 

- VJ Kp(AX A  + CXc/KC)/(M/A/K A  + C)) = 0. 

The flux through the "C" pathway is given, as before, by Eq. 
3.5. 

LI 
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ABSTRACT 
Predictions are made of the equilibrium genetic variances and responses in a metric trait under the 

joint effects of directional selection, mutation and linkage in a finite population. The "infinitesimal 
model" is analyzed as the limiting case of many mutants of very small effect, otherwise Monte Carlo 
simulation is used. If the effects of mutant genes on the trait are symmetrically distributed and they 
are unlinked, the variance of mutant effects is not an important parameter. If the distribution is 
skewed, unless effects or the population size is small, the proportion of mutants that have increasing 
effect is the critical parameter. With linkage the distribution of genotypic values in the population 
becomes skewed downward and the equilibrium genetic variance and response are smaller as 
disequilibrium becomes important. Linkage effects are greater when the mutational variance is 
contributed by many genes of small effect than few of large effect, and are greater when the majority 
of mutants increase rather than decrease the trait because genes that are of large effect or are 
deleterious do not segregate for long. The most likely conditions for "Muller's ratchet" are investi-
gated. 

IN recent years there has been much interest in the 
production and maintenance of variation in pop- 

ulations by mutation, stimulated by the presence of 
abundant variation in natural and artificial popula-
tions at the protein and DNA levels. Also, the genome 
is now seen as a fluid entity with transposition a 
particularly potent force in generating molecular var-
iability. Variation at the phenotypic level must also 
originate from mutation, but the rate at which such 
variation is generated has been thought to be slow. 
This belief was derived mainly from observations of 
experimental populations of Drosophila. For example, 
the gain from new mutations in bristle score variation 
is of the order of one thousandth of the environmental 
variation per generation (discussed by LANDE 1976; 
HILL 1982b), and mutagenesis experiments have 
failed to produce large amounts of new variation in 
such quantitative traits (CLAYTON and ROBERTSON 

1964; KITAGAWA 1967; HOLLINGDALE and BARKER 

1971). 
Despite the apparent slowness of accumulation of 

new mutational variance, theoretical analyses of the 
interaction of mutation and natural selection in the 
absence of drift have shown that mutation may be a 
powerful force in maintaining variation in natural 
populations (LANDE 1976), although the extent pre-
dicted depends on assumptions in the model (TURELLI 

1984). Theoretical studies in finite populations have 
concentrated on the combined effect of mutation and 
directional selection in influencing quantitative vari-
ability and selection response rates (HILL 1982a,b). 
The equilibrium variance of a quantitative character 

Genecs 117: 573-582 (November, 1987) 

is attained more quickly in the presence of selection 
than in its absence, and is highly dependent on popu-
lation size. Thus in the early generations of a selection 
experiment or breeding program the response from 
variation generated by new mutations is expected to 
be small. In later generations, however, the contri-
bution to the total variation present and hence to the 
response can be very important, especially in large 
populations. The results of long-term selection exper-
iments can be interpreted in light of these analyses. 
The continued response after 120 generations of di-
rectional selection for increased pupal weight in Tn-
bolium (ENFIELD 1980), after at least 75 generations 
of selection for increased bristle score of Drosophila 
(Yoo 1980), and after 76 generations for increased 
oil content in maize (DUDLEY 1977) were likely to 
have been strongly influenced by variation arising 
while the experiment was proceeding. 

In a previous paper (KEIGHTLEY and HILL 1983) 
Monte Carlo simulation was used to investigate the 
effect of linkage on asymptotic selection responses in 
small populations with new mutations and it was con-
cluded that the asymptotic response rate is little af-
fected by linkage, especially for species with many 
chromosomes. Moreover, the variance of effects of 
mutants on the trait was not an important parameter 
of the model for asymptotic selection responses were 
little affected by whether the new mutational variance 
arose from a few genes of large effect or many genes 
of small effect. Mutant effects on the trait were, 
however, assumed to be symmetrically distributed 
about zero. 
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Selection leads to a reduction in the genetic variance 
between family means, which appears as a negative 
disequilibrium covariance component within families. 
With free recombination the within family variance 
component is simply given by Vg/2 because recombi-
nation completely eliminates disequilibrium within 
families, but only half of the total genetic variance is 
initially present within full-sib families. 

The total additive variance in the population after 
one generation of selection is obtained by adding the 
between and within family components, 

VA,I,1 = (1 - hk)VA. t/2 + Vg, t/2.(4) 

The recurrence relation (4) corresponds to Equa-
tion 9.30 of BULMER (1980). Its validity depends on a 
normal distribution of genotypic values in the prog-
eny, since skew in the distribution can affect the 
amount of variation removed by selection, but the 
results of BULMER (1980, Ch. 9) and ZENG (1987) 
indicate that, in many cases, skewness effects are small 
and can be ignored. Here, we use simulation to inves-
tigate possible effects of such skewness. 

Mutation: As with the genic variance, the additive 
variance increases by VM units each generation from 
mutation. Equation 4 becomes 

VA.I+I = (1 - Mk)V A ,t/2 + Vg.g12 + VM. 	(5) 

Finite population size: With a poisson distribution 
of family size the expected reduction in the additive 
genetic variance in the population is by a proportion 
112N in the absence of selection. With truncation 
selection, the within family variance is independent of 
the population size, but the expected reduction in the 
between family component is by a proportion 1/N 
due to sampling of parents with replacement. Equa-
tion 5 becomes 

VA,(+I = (1 - 1/N)(1 - Mk)VA,l/2 	(6) 
+ Vg,,/2 + VM. 

Linkage: Linkage does not affect the variance be-
tween family means after one generation of selection, 
but affects the within family variance by reducing the 
amount of variation recovered from the disequilib-
rium covariance component due to recombination 
between loci. If c j  is the recombination fraction be-
tween loci i andj, the disequilibrium remaining in the 
within family component is given by 

2 >. 	(1 - 2c j)aa1  = 	- 2(D1c), 
ioj 

where D, is defined by (1) and similarly 2(D€c) = 
D jaa1c j . More generally (6) becomes 

VA (+1 = (1 - 1/N)(1 - hk) VA /2 	 (7)  

ponent is obtained by combining equations (2) and (7) 
to give 

= ED, - D €1(2N) - (D,c) 	(8) 
- hk(1 - 1/N)(V g , s 	D)12. 

Asymptotic variance 

As t -* for finite N, the variances reach expected 
equilibrium values about which they fluctuate sto-
chastically due to sampling. For free .  recombination 
(6) can be reexpressed as a quadratic 

0(1 + k + 1/N - k/N) + VA(VE - 2NVM) 	
(9) 

(1 + 1/N) - 2VMVE(N + 1) = 0, 

where 1A  is the equilibrium value of VA . Ignoring 
second order terms, (9) is approximated by 

V(1 + k) + VA(VE - 2NVM) - 2NVMVE = 0. (10) 

Thus, VA is a function of mutation rate and population 
size as their product NVM. 

For complete linkage (c = 0 for all possible pairs of 
loci) a quadratic in VA is obtained by combining (2) 
and (7), 

V(Nk + 1 - k) + VA(VE - 2NVM) 	
(11) 

- 2NVMVE = 0. 

Here, the relationship of VA to VM and N is not as 
simple as in (10), but is a function of NVM and Nk. 

When recombination is finite, the simultaneous re-
currence relations (3), (7) and (8) do not appear to 
have a simple solution. Their properties were investi-
gated by iterating until steady state was achieved with 
initial values of Vg, VA and 2D set at zero, as would be 
the case in an isogenic population. The effect of a 
finite chromosome length was modeled by dividing 
the chromosome into a large number of equivalent 
segments (typically 100) and calculating the recombi-
nation fraction and hence the disequilibrium contri-
bution from each possible pair of segments. This 
method exactly models the case of infinitesimally small 
effects as the number of segments approaches infinity, 
but increasing the number of segments beyond 100 
made almost no difference to the results. The total 
amount of recombination was specified by L, the map 
length of the chromosome, and HALDANE'S (1919) 
mapping function was used to related recombination 
fraction to map distance (4) between pairs of loci: c, = 
[1 - exp(-2l j)]/2. Previous analyses (AVERY and HILL 

1979) indicate that other models relating recombina-
tion fraction to map length (e.g. with crossover inter-
ference) make little difference in this type of model. 

THE SIMULATION MODEL 

+ [Vg, t  + 2D, - 2(D € c)]12 + VM 
The model is similar to that described by KEIGHT-

LEY and HILL (1983), except here we have simulated The recurrence relation for the disequilibrium corn- 
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FIGURE 2.-The equilibrium variance is shown for the infinites-
imal and simulation models for various population sizes and 50% 
truncation selection. VM/VE = 10'. In the simulation model, a range 
of values of e and corresponding X were used, with mutations 
coming from a symmetrical 'reflected double gamma' distribution 
(P=0.5). 

generations (200 for the populations simulated) were 
ignored. Thereafter the asymptotic response rate was 
calculated from the difference in mean value every 
other 10 generations and the mean genotypic vari-
ance, skew and kurtosis were computed every 10 
generations. For a given VM the computing time was 
approximately proportional to N 2  and inversely pro-
portional to E2.  So results for small € ( e.g., 0.05) were 
only obtainable for N of 40 or less. 

RESULTS 

Comparison of the simulation and the infinitesi-
mal model: Predictions of VA from both the Monte 
Carlo simulation and from the infinitesimal model for 
varying population size are shown in Figure 2. A value 
of VM of 10 3 VE  was used, but in the simulation a 
range of sizes of effects was compared with corre-
sponding values for the number of mutants per gen-
eration to satisfy (12). 

With free recombination, the infinitesimal and sim-
ulation models are in good agreement. Surprisingly, 
the agreement is close even with relatively large effects 
and few mutants ( = 0.4). The disequilibrium present 
in the populations simulated can be estimated by 
subtracting the observed VA from the genic variance 
(given by 2NVM in the infinitesimal case). As expected, 
with free recombination the amount of disequilibrium 
is small. 

With complete linkage, the curves for different € 
values differ substantially, larger values of e giving 
higher predictions of VA. The infinitesimal model is a 
poor predictor for complete linkage especially when 
effects are large, but it also overestimates VA when 

TABLE 1 

Equilibrium skewness of genotypic progeny values, computed as 
gi  = [(X - )3/N]/VA, given for the case of no recombination 

(L = 0) 

Population size (N) 

10 20 40 80 

Equilibrium skewness (g) among progeny 

-0 -0.0794 -0.147 -0.180 -0.184 
0.05 -0.0592 -0.105 -0.149 -0.145 
0.1 -0.0533 -0.0540 -0.0717 -0.0381 
0.2 0.0142 0.0220 0.0465 0.0852 
0.4 0.0289 0.0568 0.138 0.0735 

VM/VE = lO and mutants come from a symmetrical 'reflected 
double gamma' distribution. Fifty percent truncation selection was 
simulated. 

€ - 0. The overestimation can be explained by the 
presence of negative skew in the distribution of gen-
otypic values of individuals (Table 1). Negative skew 
leads to a greater loss of variance each generation 
than predicted by the constant factor i(i - x), and 
hence a lower VA. 

The effects of a finite amount of recombination are 
shown in Figure 3. The simulation and infinitesimal 
models agree at the free recombination limit but there 
is an increasing discrepancy at low recombination 
fractions. At the population sizes simulated, most of 
the effect of linkage is eliminated by one or two 
crossovers per chromosome per generation. The re-
sults are in agreement with those of KEIGHTLEY and 
HILL (1983) which used a fertility model of selection 
rather than the present viability model. 

Asymmetrical distribution of mutational effects: 
Previous analyses (HILL 1982b; KEIGI-ITLEY and HILL 

1983) have indicated that if the distribution of muta-
tional effects is symmetrical (i.e., the mutational vari-
ance contributed by negative and positive mutations 
is equal), then the shape of the density function of 
effects does not have much influence on selection 
responses and variation maintained. 

Predictions of VA from simulations of different pop-
ulation sizes using the 'reflected double gamma' are 
plotted in Figure 4 for free recombination and values 
of P representing cases where mutants are mostly 
negative (P = 0. 1), positive (P = 0.9) or symmetrically 
distributed (P = 0.5). The results show that VA  is 
higher than the infinitesimal prediction (also shown 
in the figure) when mutants have predominantly pos-
itive effects and lower when most are negative. As the 
expected value of mutational effects approaches zero, 
however, the results approach the infinitesimal pre-
diction. In the limit all the effects become infinitely 
small and the models must coincide. With finite ef-
fects, there are two reasons for the discrepancy from 
the infinitesimal prediction. Firstly, most negative mu-
tations are lost almost immediately and contribute 
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FIGURE 5—Response rates where mutant effects have a reflected double gamma distribution with three values of P (proportion positive) 
in various population sizes. VM/VE = 10 and 50% truncation selection. (A) 4E = 0.1; (B) = 0.4. 

values of P are plotted in Figure 5. Since A. is inde-
pendent of population size but VA is highly dependent, 
net responses become negative in small populations if 
most mutations are deleterious (P = 0.1). 

Restating (12) and (14), VM X 2  and A. cc Xe. It is 
clear that for a given VM, as the expected magnitude 
of effects decreases ( - 0) and hence the number of 
mutations increases, A. must increase. Thus, if the 
new mutational variance is due to a large number of 
small negative effects, the mean value of a population 
will decline faster than if the mutational variance is 
due to a small number of large effects. 

Paradoxically, the effects of linkage, i.e., the differ-
ence between response rates for free recombination 
and complete linkage, are most severe when most 
mutations are positive (P = 0.9). Both positive and 
negative mutants interfere with each other's fixation 
probabilities (HILL and ROBERTSON 1966), but when 
most mutations are of positive value, there are more 
segregating so linkage effects are more important. 

The response to selection from the fixation of freely 
recombining mutants can be approximated analyti-
cally if we assume that disequilibrium effects are small, 
so that the fate of each mutant is independent. In this 
case the response is given by 

R = 2NX 	au(a)J(a)da 	(15) 

where f(a) is the density function of mutant effects 
and u(a) is the fixation probability of mutants of effect 
a (HILL 1982a). For a gamma-distribution of muta-
tional effects an approximation for R can be obtained 
by replacing u(a) by the diffusion approximation of 
KIMURA (1957) for the fixation probability of additive 
genes [see HILL and RASBASH (1986) and Appendix]. 

Predicted response rates from simulation and Equa- 

tion 15 are compared in Table 4. In general, the 
simulation agrees quite closely with the model of 
independent mutants. Comparing the results from the 
'two-gamma' mutational distribution with those from 
the 'reflected double gamma' substantial differences 
in response rates can occur. The differences in re-
sponse are consistent with the differences in variance 
maintained (Table 3). Also the differences are most 
extreme in small populations when the proportion of 
positive mutants (P) is 0.1. In this case, response rates 
are near zero so any difference is magnified. 

DISCUSSION 

Models: The computer simulation model is in itself 
of interest because it has been set up as far as possible 
in terms of known or measurable parameters, parental 
and progeny population sizes, map length of the chro-
mosome, new mutational variance and distribution of 
mutational effects (assumed to be gamma form). The 
number of genes in the model is not fixed as in other 
models (e.g., LANDE 1976; TURELLI 1984), but more 
naturally the number of loci with alleles segregating 
varies while the simulation is running. Furthermore, 
mutations which occur very close together on the 
chromosome can be considered either as alleles at 
separate loci or multiple alleles at the same locus. The 
model therefore connects and concurs simultaneously 
with the infinite locus models of BULMER (1971, 1976) 
and the 'infinite alleles' model of KIMURA (1965), and 
the possibility of intragenic recombination is ac-
counted for. There are also similarities to a 'stepwise 
mutation' model (e.g., TURELLI 1984). Any model of 
the mutational process, however, needs to be justified 
in terms of the effect on series of mutations on a gene 
(for say an enzyme) which in turn affects a quantitative 
character (say a flux), for which models have been 
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selection in a finite population. The model agree well 
with the Monte Carlo simulations both where effects 
are small ( -+ 0), and also where mutational effects 
are relatively large. This behavior is consistent with 
the results of HILL (1982a) where independent genes 
give VA of 2NVM , irrespective of the mutational distri-
bution. The higher fixation probability of mutants of 
large effect and their higher contribution to the vari-
ance in the character is nearly exactly balanced by 
their shorter fixation times and fewer number when 
compared to genes of small effect. 

Asymmetry of mutant effects: When mutants come 
from an asymmetrical distribution the behavior is not 
as simple. As E ---> 0 for any population size, the 
equilibrium additive variance will be essentially the 
same as predicted by the infinitesimal model. This will 
be true irrespective of the selection regime, selection 
only generating disequilibrium. With larger effects, 
VA becomes dependent on the proportion of mutants 
of positive effect (P). When the value of most muta-
tional effects exceeds cr/Nj, VA is approximated by 
4PNV. 1 . This is so because the fixation probability of 
such mutants (and therefore the probability that they 
will reach intermediate frequencies and contribute 
substantially to the population variance) is propor -
tional to a and independent of N. The number of 
mutants appearing in the population is, however, pro-
portional to N. For small effects or in small popula-
tions, terms for which I a I < cr/Ni become more im-
portant and VA will approach the infinitesimal predic-
tion of 2NVM. Figure 4 shows, however, that effects 
must become very small or N very small before VA will 
be much different from 4PNVM . 

With an asymmetrical mutational distribution, the 
distribution of genotypic values becomes skewed in 
the same direction as the mutational skew. A skewed 
distribution will lose more or less variance from direc-
tional selection depending on the sign of the skewness, 
so equilibrium variances are affected by such skew-
ness. The simulations show that skewness is more 
important when mutational effects are large. At this 
point, we should mention that directional selection 
also generates skewness (positive) in the genotypic 
distribution (BULMER 1980, Ch. 9) so predicting the 
asymptotic distribution of genotypes when mutational 
effects are skewed is a difficult task. 

The behavior of the system where genes are linked 
is also strongly affected by skewness in the genotypic 
distribution. When effects are small (e.g., E = 0.05), 
the infinitesimal model overestimates the equilibrium 
genetic variance. The most likely explanation is a 
negatively skewed mutational distribution generated 
due to the loss of all but the best 'haplotype' and the 
presence of a 'tail' of individuals of lower value from 
mutation. This tendency to generate negative skew-
ness is partially opposed by truncation selection gen- 

erating positive skewness as mentioned earlier. The 
effect of linkage in generating skewness has been 
noted in earlier two locus studies (HILL and ROBERT-

SON 1966). Where effects are large, and therefore. 
fewer mutations are occurring per generation, genes 
behave more as if they were independent and there-
fore higher VA is maintained. 

As a consequence of a negatively skewed mutational 
distribution, the rate of fixation of deleterious genes 
can exceed the rate for beneficial mutants and the 
population mean can decline; an effect corresponding 
to "Muller's ratchet" (MULLER 1964). We have iden-
tified a number of conditions necessary for the oper-
ation of the ratchet: (1) small population size since the 
fixation of deleterious mutants depends on chance; 
(2) many mutants of small effect (as opposed to a few 
of larger effect) since the 'mutation pressure' on the 
population mean is greater in this case; and (3) tight 
linkage since less standing variation will be available 
to oppose the mutation pressure. Linkage is also more 
important with small effects (cf. Figure 2). 

Somewhat surprisingly the simulations show that 
linkage has most influence where most mutants are of 
positive value, and linkage effects can all but disappear 
when most are negative (cf. Figure 5). The explana-
tion, however, is simple: deleterious genes almost 
never get fixed, while positive mutants get fixed with 
probability proportional (if independent) to a. In this 
latter case, however, linked positive mutants present 
simultaneously in the population can form unfavora-
ble repulsion combinations leading to a reduction in 
fixation probabilities. 

Directional vs. stabilizing selection: We should 
now point out that the free recombination results 
differ markedly from models of the maintenance of 
heritable variation in quantitative characters under 
mutation-stabilizing selection balance (e.g., LANDE 

1976; TURELLI 1984). In these models, the predicted 
equilibrium genetic variance VA is finite in an infinite 
population. With directional selection, VA will become 
infinite in an infinite population. The underlying 
cause of this discrepancy is the presence of mutants of 
positive effect on the character and hence on repro-
ductive success with directional selection, but mutants 
of both positive and negative effect on the trait are 
deleterious for fitness with stabilizing selection (ROB-

ERTSON 1956). Further consequences of the models 
are discussed elsewhere (HILL and KEIGHTLEY 1987). 

We wish to thank the Agricultural and Food Research Council 
for financial support. 

LITERATURE CITED 

AVERY, P. J. & W. G. HILL, 1979 Variance in quantitative traits 
due to linked dominant genes in finite populations. Genetics 
91:817-844. 

BULMER, M. G., 1971 The effect of selection on genetic variabil-
ity. Am. Nat. 105: 201-211. 



Genet. Res., Camb. (1988), 52, pp.  33-43 With 7 text-figures Printed in Great Britain 
	

33 

Quantitative genetic variability maintained by mutation- 
stabilizing selection balance in finite populations 

PETER D. KEIGHTLEY AND WILLIAM G. HILL 
Department of Genetics, University of Edinburgh, West Mains Road, Edinburgh EH9 3JN 

(Received 25 October 1987 and in revised form 23 December 1987) 

Summary 

Models of variability in quantitative traits maintained by a balance between mutation and 
stabilizing selection are investigated. The effects of mutant alleles are assumed to be additive and 
to be randomly sampled from a stationary distribution. With a two-allele model the equilibrium 
genetic variance in an infinite population is independent of the distribution of mutant effects, and 
dependent only on the total number of mutants appearing per generation. In a finite population, 
however, both the shape and standard deviation of the distribution of mutant effects are 
important. The equilibrium variance is lower when most of the mutational variance is contributed 
by few genes of large effect. Genes of small effect can eventually contribute substantially to the 
variance with increasing population size (N). The equilibrium variance can be higher in a finite 
than an infinite population since near-neutral alleles can drift to intermediate frequencies where 
selection is weakest. Linkage leads to a reduction in the maintained, variance which is small unless 
linkage is very tight and selection is strong, but the reduction becomes greater with increasing N 
since more mutants segregate. A multi-allele model is simulated and it is concluded that the 
two-allele model gives a good approximation of its behaviour. It is argued that the total number of loci 
capable of influencing most quantitative traits is large, and that the distribution of mutant effects 
is highly leptokurtic with the effects of most mutants very small, and such mutants are important 
in contributing to the maintained variance since selection against them is slight. The weakness of 
the simple optimum model is discussed in relation to the likely consequences of pleiotropy. 

1. Introduction 

Many quantitative characters show considerable 
heritable variation in natural populations (Falconer, 
1981; Mousseau & Roff, 1987; Roff & Mousseau, 
1987). Explaining how such genotypic variation is 
maintained has been one of the most important and 
controversial problems of population genetics. The 
problem arises because of the widespread belief that 
stabilizing selection, in which the fittest individuals 
have values of the trait near some optimum, is 
ubiquitous in nature, but selection for an intermediate 
optimum is expected theoretically to deplete genetic 
variability (Robertson, 1956) and has been shown to 
do so experimentally (Gibson & Bradley, 1974; 
Kaufman, Enfield & Comstock, 1977). There is a 
certain irresistibility in arguments for the presence of 
an intermediate optima: for example, the date of egg 
laying in many northern passerine birds apparently 
has an optimum dependent on the availability of 
caterpillars for the young, which are only present for 

a brief period in early summer (Lack, 1968). Some of 
the most compelling evidence for selection for inter-
mediate optima in natural populations comes from 
comparisons between sibling species of Drosophila, 
where parallel latitudinal dines for various traits have 
been shown to exist (David & Bocquet, 1975; Hyytia 
et al. 1985). The observation of an intermediate 
optimum at any single trait considered alone is, 
however, not in itself evidence of stabilizing selection 
as Robertson (1973) and others (Falconer, 1981; 
Rose, 1982; Hill & Keightley, 1988) have emphasized, 
because negative correlations between characters 
under directional selection can also generate such 
optima. 

Genotypic mutations are the basic source of all 
heritable variation, but can a balance between 
mutation and selection alone explain the maintenance 
of observed high levels of genetic variation? This is an 
important question because variation in quantitative 
traits is believed to be the 'raw material' of evolution. 
Such variation also provides the basis for responses to 

GRH 52 



Mutation-stabilizing selection balance 	 35 

these occur independently. The increment in variance 
each generation from mutation is 

VM  = AE(a)12 	 (1) 

(Hill, 1982a). Mutational effects are sampled from a 
time-invariant distribution. For modelling purposes 
the gamma distribution was chosen since it has a wide 
range of properties if suitable values are given to its 
two parameters. The density function of mutants 
having an increasing effect on the trait (illustrated in 
Fig. 1) is given by 

J(a) = ea111F(fi) (0 < a < co), 	 (2) 

where f(.) is the gamma function. The parameter a 
defines the scale of the distribution and 8 its shape. In 
practice, the scale was defined by the parameter 
C = [E(a)/J/}i = [/1(/3+ 1)/a2]i,  where J' is the 
environmental variance. With shape parameter 
/3 = 1, J(a) is an exponential distribution; as ft -->0 the 
distribution becomes increasingly leptokurtic with an 
increasingly large spike near a = 0 and a long tail; 
with /3--> cc, the distribution approaches the limiting 
case of all effects equal. The distribution is discussed 
in more detail by Hill & Rasbash (1986) (also see 
Kimura 1983, ch. 8). Mutants were assumed to have 
equal probability of increasing or decreasing the trait, 
with ft—a) for a < 0 equalling J(a) given by (2), i.e. a 
symmetric distribution over - cc <a < cc. 

(c) Selection. The character is assumed to be under 
'nor-optimal' stabilizing selection with the optimal 
phenotype fixed at zero. The phenotypic value of an 
individual is assumed to be the sum, X, of the 
contributions from each locus plus a random inde-
pendent environmental effect of mean zero and 
variance J' = 1. The relative fitness is given by 

W(X) = exp(_X'2w2), 	 (3) 

where w is a measure of the strength of stabilizing 
selection. Increasing w implies weaker stabilizing 
selection. With a multi-locus model where the popu-
lation mean can vary due to gene frequency changes 
at any of the loci contributing to the character, 
Robertson (1956) showed that mutant alleles behave 
as under-dominant (i.e. the heterozygote is less fit 
than the homozygotes). The change of gene frequency 
at one locus under such stabilizing selection is given 
by 

Lxq = a2(q—)q(l —q)/[4(w 2 +0.2)], 	 (4) 

where 0.2  is the phenotypic variance (formally, the 
phenotypic variance less the genetic variance con-
tributed by the locus). The term w 2  +a-' is often called 
the strength of natural selection and referred to as 
V.. This is equivalent to a model of heterozygote 
inferiority in fitness where s = a2 /[8(w2  + 0.2)] is the 
fitness disadvantage of the heterozygote and there is a 
meta-stable equilibrium at q =. Importantly, the 
strength of selection is proportional to the square of 
the allelic effect. Mutant genes are unconditionally 

08 	16 	24 	32 	4•0 

Fig. 1. Examples of the gamma distribution, j(a) = 
&ea'/F(fi) for three values of the shape parameter 8. 
The parameter a describes scale rather than shape and its 
value is such that E(a2) = 1 for each curve. 

deleterious and their selection is similar to that of 
genic selection with iq = s*q(1 —q), where 

S* = — a2 /[8(w 2 +o2)]. 	 (5) 

3. Methods 

(a) Transition matrix. With Robertson's (1956) 
result (equation 4) for the change of gene frequency it 
is possible to model the effects of continued stabilizing 
selection using a transition matrix. This method 
allows computation of the expected heterozygosity 
contributed by a new mutant during its lifetime in a 
population of N individuals assuming that no further 
mutation occurs at the locus while this mutant is 
segregating. The transition probabilities are defined 
by the square matrix M for the Wright—Fisher 
stochastic process with values 

mlk = (',I (q + Aq)' (I _q_q)2Nk (0 <j, k < 2A, 

where q = j12N and Aq is given by (4). Let f T (t) denote 
the row vector with elements J(z) which are the 
probabilities of a population having gene frequency 
j12N (0 < j < 2iV) at the generation t. Thus for a 
new mutant, f1 (0) = 1 and all other elements are zero. 
The vector fT(t) at generation t (t > 0) is obtained 
from 

f T(t) = f T(t— l)M. 	 (6) 

Let h denote a column vector whose elements are the 
expected heterozygosity at  locus with gene frequency 
j12N (0 <j < 2N); so h, = 2j/(2N)(l —j/(2N)). The 
expected cumulative heterozygosity, H(a), contributed 
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Fig. 2. Heteozygosity maintained during the lifetime of a 
mutant, 2,_ 0 q(1 —q,), as a function of Na 2 1(w2 +0-2), 
derived using the transition matrix. 

integrating (10) over a density function of mutant 
effects, but result (11) still holds. Equation (10) also 
shows that the equilibrium variance is (to first order) 
a function of Na2/(w 2  + 0.2). 

144 
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Fig. 3. Predicted equilibrium genetic variance, V , 

expressed as a proportion of that predicted for an infinite 
population, 4A(w2  + p.2),  plotted against Na2/(w 2  + os). 
The curves compare predictions from the transition 
matrix (exact, 

-) and from evaluation of equation (10) 
(approximate, 

---). 

4. Results 

(i) Two-allele model 

Heterozygosity as a function of Ns. The ex-
pected cumulative heterozygosity contributed by a 
mutant during its lifetime as a function of 
Na2 /(w 2  + 0.2)  x Ns is illustrated in Fig. 2, computed 
using the transition matrix. H(a) is bounded by the 
upper value of 2, where drift dominates, and the lower 
value of zero, where selection causes immediate 
elimination of the new mutant. The results in the 
following sections which give examples of 

' 
for 

different types of gamma distribution are all functions 
of the result in Fig. 2, and were generated by 
integrating numerically over this function with weight-
ing according to the distribution of mutant effects 
(equation 7). 

Variance maintained with genes of equal effect. 
Fig. 3 shows the variance maintained as a proportion 
of that predicted in an infinite population (cf. equation 
(11)) as a function of Na2/(w 2 +o-2). The graph 
compares the results from the transition matrix and 
evaluation of (10). With increasing effects of drift 
(Ns - 0), the variance maintained approaches zero; 
and as the effects of selection become more important 
(increasing N or a2/(w 2  + 0r2)), the relative variance 
maintained approaches the asymptote of 1. Interest-
ingly, the results from the transition matrix 
indicate a maximum greater than the infinite popu-
lation variance. If the effects of drift and selection are 
not too strong, the frequency of some mutants can 
approach the meta-stable point (q = 05) where the 
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Fig. 4. Predicted equilibrium genetic variance maintained 
plotted against population size N. The curves were 
generated from the transition matrix, assumed a value of 
VMIVE = 10- , a gamma distribution of mutant effects, 
with 8 = and compare results for a range of 

= [E(a 2)/ fr]2 and corresponding mutation rate A. The 
strength of stabilizing selection is given by w2  = 0.2 = I. 

expected change in gene frequency is zero. This 
possibility is not accounted for by equation (10), 
which assumes that the selection coefficient is constant 
and at its maximum. The presence of the maximum in 
Fig. 3 was confirmed by Monte Carlo simulation with 
equal mutant effects in a multi-locus model (results 
not given). Although not shown by Bulmer (1972), the 
maximum is also obtained by evaluating (9). 

The influence of the scale of the mutational 
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The models of Kimura (1965) and Lande (1976) 
(KL Gaussian models) assume that mutant effects 
differ only slightly from those already segregating, 
with the consequence that the steady-state distribution 
of allelic effects at the locus is normal. As Turelli 
(1984) pointed out, there is a fundamental discrepancy 
between the behaviour of the two types of model. 
Using Kimura's analysis, the equilibrium variance in 
an infinite population at a locus (Vg ) is 

VgL = [2VML (w 2 +o.2)]i, 	 (12) 

where VML  is the mutational variance input at the 
locus. This result can be derived by a different route. 
Assume at steady state a large number of alleles 
generates a normal distribution of allelic effects 
segregating at a locus. The variance maintained at the 
locus in a finite population can be obtained from the 
recurrence 

,,,(l - 1/2Ne)(l - V Lk12o 2)+ VML 	(13) 

because the variance at the locus is reduced each 
generation by the factor (1 - 112Ng) by drift and 
(1 - V9Lk/20) by selection, where k depends on the 
strength of selection and is the proportion of the 
phenotypic variance in the unselected individuals 
(Bulmer, 1980; Falconer, 1981, p.  180). With 
stabilizing selection and a normal distribution of 
phenotypic values, k = 0.2 /(w 2  + 0.2).  With infinite 
population size, (13) reduces to Kimura's (1965) 
formula (12) (ignoring second-order terms). Equation 
(13) also gives a solution for a finite population which 
is a quadratic in 9L 

VLk(2Ne_1)+20-2VgL_4Ng VML0. 2  = 0. 	(14) 

This formula is similar to that obtained using the 
same assumptions by Latter (1970). 

Fig. 7 compares the equilibrium genetic variance 
maintained for a range of population sizes for three 
different models using a gamma distribution of 
mutant effects with shape parameter fi = 4 : 

Gaussian: the variance was computed from the 
solution to (14). This corresponds to the KL pre-
diction. 

'Two allele': the variance was computed from 
the transition matrix and numerical integration, for a 
model of two alleles only per locus. 

'Multi-allele': the variance was computed by 
simulation of n discrete freely recombining loci with 
no intra-genic recombination, so the number of alleles 
which can segregate at any locus is not limited. 

Also shown is the variance maintained by neutral 
genes which is simply 2NVM. The main points to note 
from this figure are: (a) all three models agree at small 
population sizes and mutant effects where drift is 
dominating; (b) the simulation of multiple alleles 
agrees with the KL Gaussian prediction only when 
mutant effects are small (e = 01) and the mutation 
rate per locus is high (a = 2 x 10 -1); (c) otherwise, 
with decreasing mutation rate, but correspondingly 
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Two-allele 

025 	 .' 	
Multi-allele 
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Fig. 7. Equilibrium additive variance plotted against 
population size, N, for three different models (see text). 
Also shown is the variance predicted for no selection, 
2NVM . The simulation used 100 equally mutable freely 
recombining loci with mutation rates, , as shown, 
correponding values of c so that VM  = nte212 = 10- 'V,,.  
and mutant effects sampled from a gamma distribution 
with /3 = 4. The strength of stabilizing selection is given 
by w 2  = 19 0.2 = 19. The standard errors of the results 
from the simulation are less than 5% of their mean. 

increased magnitudes of mutant effects (e.g. e = 1-6 
and u = 7-81 x 10-6),  the simulation agrees better with 
the two-allele model. The simulation illustrates the 
difference between the KL approximation and 
Turelli's (1984) 'House of Cards' approximation. 
With the number of loci chosen for this example (100), 
the KL prediction hardly differs from neutrality. A 
larger number of loci would allow for a smaller 
standard deviation of the distribution of mutant 
effects for mutation rates per locus in line with those 
experimentally measured (Mukai & Cockerham, 
1977). In this case, all three models would agree more 
closely at the population sizes shown, but as popu-
lation sizes became much larger, would diverge as in 
Fig. 7 as the effect of selection becomes stronger 
relative to drift. 

5. Discussion 

(a) Stabilizing selection and drift. We have con-
centrated on a model where the mutation rate is 
sufficiently low or the population size sufficiently 
small that two alleles segregate at each locus. The 
consequences of such a model with infinite population 
size have been investigated previously (Latter, 1960; 
Bulmer, 1972) and an important conclusion was that 
the equilibrium genetic variance, , is essentially 
independent of the effects of mutants on the trait, but 
depends only on the number of new mutants per 
generation. As a consequence of its independence of 
the effects of mutants, in an infinite population V. is 
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Implications 

The maintenance of genetic variation is a central 
problem in population biology, and the question of 
whether a mutation-stabilizing selection balance can 
maintain the observed levels of heritable variation has 
been frequently addressed (e.g. Lande, 1976, 1980; 
Turelli, 1984, 1985). The results show that, with finite 
population size, the shape of the mutational dis-
tribution has a strong influence on the genetic variance 
maintained under mutation-selection balance. There 
is little information concerning the shape of the 
distribution of mutational effects for any character, 
but can an informed guess be made from insights into 
biochemistry and molecular biology? In principle, all 
mutants, no matter where they occur in the genome, 
must have at least some effect on all characters, albeit 
very small. The interactive nature of metabolism, 
where the fluxes and metabolite pool concentrations, 
are systemic properties dependent to a greater or 
lesser extent on all enzymes in the 'metabolic map' 
(Kacser & Burns, 1973) tells us that there must be 
hundreds, if not thousands, of enzymes, variation in 
the activities of which will affect any character which 
is in some way controlled by the metabolism of the 
organism. Evidence for functional constraint in the 
genome (Kimura, 1983, ch. 7) at such sites as introns, 
silent (non-replacement) sites within coding sequences, 
and gene flanking sequences, suggests that there are 
many places in the genome capable of producing some 
small phenotypic effect. Thus it can be argued a priori 
that the distribution of mutant effects on complex 
quantitative characters is highly leptokurtic: most 
mutants are either of such trivial effect or so 'distant' 
from the character that they have almost no effect at 
all, but there is a smaller class of genes, more directly 
capable of influencing the trait with mutants of 
relatively large effect. The total number of mutants 
affecting a character is therefore high, much higher 
than an experiment designed to count polygenes 
would detect, but the effect of most of them is very 
small (see Robertson, 1967). 

The difficulties in estimating the number and effects 
of mutants influencing a quantitative character are 
highlighted by the following illustrative example. 
Assume by genetic means only mutants showing an 
effect on the character of at least one-half of a standard 
deviation can be detected and the standard deviation 
of the mutational distribution is 1-6 units. If all effects 
were equal, then the genetic test would detect all the 
new mutants. If, however, the mutational distribution 
were more extreme (for example, gamma with shape 
parameter 025 (see Fig. 1)) then only 21 % of the new 
mutants would be detected but they would contribute 
most of the variance (96%). 

With this consideration in mind, estimates of the 
number of new mutants per generation affecting 
various quantitative traits in maize (Sprague, Russell  

& Penny, 1960; Russell, Sprague & Penny, 1963) seem 
rather high. These experiments gave estimates of A for 
detectable mutants of about 006, implying, with, say, 
a mutation rate per locus of 10 - , many thousands of 
loci at which mutations give sufficiently large effects to 
be detected. Such experiments, however, might now 
have to take into consideration the possibility of 
induction of 'mutator' genes (McClintock, 1950) in 
these crosses caused by movement of transposable 
elements known to be capable of affecting quantitative 
traits (Mackay, 1987). The rates of mutation may vary 
widely between populations as results of T. F. C. 
Mackay (personal communication) suggest, due to 
varying transposition rates. 

Predicting maintained heritability - assigning 
values to parameters. The important parameters are 
the mutational variance input per generation, the 
shape and scale of the mutational distribution, the 
strength and mode of operation of natural selection, 
and effective population size. As implied earlier, 
information is scarce on values of most of these 
parameters relevant to natural populations. If, how-
ever, it is assumed that V,1 V, = 10, the character is 
affected by a fairly extreme distribution of effects (i.e. 
gamma with fi = 025); most variance is contributed 
by mutants of fairly large effect (e.g. e = 04 and 
therefore the mutation rate per genome A = 0-0125, 
implying c. 400 loci each mutating at c. 03 x 10-'); 
and a 'typical' value of w 2  = 20 o.2  (Turelli, 1984), then 
with N = 10, the maintained heritability would be 
about 21 %; with N = 10, the maintained heritability 
would be about 33%, but there would be less than half 
of the genetic variance that would be present in an 
infinite population. It is notable that in an infinite 
population the maintained variance is proportional to 
W 1+ 0_2 ,  and is very sensitive in a finite population to 
changes in w 2  + 0.2  over a wide range of parameters 
(flat part of curves in Fig. 5). If many characters are 
simultaneously subject to stabilizing selection, the 
value for w 2 /0- 2  of 20 chosen in the above example 
may be smaller than typical (i.e. selection strength too 
strong) due to the genetic load that such selection 
would impose on the population. Thus, on the face of 
it, mutation-stabilizing selection balance is an attrac-
tive candidate for explaining the observed levels of 
heritable variation in populations that vary over a 
wide range in effective population size. The above 
calculations become less attractive when we consider 
the problems in estimating the strength of natural 
selection and in justifying the single character model 
of stabilizing selection. Such aspects have been 
discussed in detail by Turelli (1984, 1985). 

Mode of action of natural selection. The effect 
of pleiotropy is to reduce the genetic variation 
maintained since, for example, the selection coefficient 
against a mutant if stabilizing selection acts inde-
pendently on each character, i, is proportional to 

[a/(w + o- )]. Clearly, the analysis could easily be 
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