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Abstract 
The studies within this thesis have made a valuable contribution to our understanding 

of anthelmintic resistance in Scotland and in particular to the prevalence of 

benzimidazole (BZ) and ivermectin (IVM) resistance, the expression of multiple 

resistance and its management.    Parasitic gastroenteritis (PGE) is a major welfare 

issue not only for Scottish, UK and European farmers but also for livestock 

producers throughout the world.  Parasites such as Haemonchus, Trichostrongylus 

and Teladorsagia are estimated to cost the sheep industry hundreds of millions of 

dollars annually.  To date control has largely been achieved using anthelmintics, but 

over reliance on anthelmintics has led to the development of multi class anthelmintic 

resistance (AR) and the realization that intensive chemoprophylaxis is not a 

sustainable approach for the control of nematodoses.    

The first two papers contributing to this thesis assessed the prevalence of 

benzimidazole (BZ) and ivermectin (IVM) resistance within ovine gastrointestinal 

nematode populations in Scotland.   The prevalence of BZ resistance in selected 

Scottish lowland sheep farms was around 24% in 1991 but this had risen to over 80% 

by 2001.  The first cases of ivermectin resistance in sheep were only detected in 2001 

but a small scale survey in 2004 showed that 35% of the farms (6 from 17) surveyed 

had IVM resistance, with Teladorsagia and Trichostrongylus being identified as the 

resistant genera.  The isolation of a triple class resistant T. circumcincta (MTci5) 

population has enabled research to focus on the important issue of the therapeutic 

and prophylactic management of this emerging problem.    The third and fourth 

papers detail a series of controlled efficacy tests conducted on MTci5 that confirmed, 

in the short term at least, it should be possible to use a milbemycin (moxidectin; 

MOX) or combination treatments, with IVM and one other class of anthelmintic to 

control nematodoses (>90% efficacy) caused by adult and/or immature worms.  

However the study examining larval susceptibility highlighted the important role that 

immature stages can play in the selection and transmission of resistance.  Currently 

there are no tests that can detect the presence of these resistant larval stages.   

The fifth paper outlines parasitological findings from the farm where MTci5 

was isolated following the confirmation of multiple class resistance.  Substantial 
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efforts were made to find solutions to maintain sustainability and profitability of the 

enterprise though ultimately the use of MOX selected for a, predominately 

Teladorsagia, population against which the persistent activity of the compound was 

only negligible with the reappearance of eggs in faeces occurring between 21 and 28 

days post treatment.  

Effective sustainable control of AR populations not only requires an 

understanding of the phenotypic and genotypic mechanisms that underpin resistance 

but also improved means of ensuring that our farmers are made aware of and utilize 

identified best practice approaches.  The written and verbal responses of the farmers 

to questions relating to best practice advice (papers six and seven) would suggest that 

many of the recommendations for delaying the selection and transmission of AR 

(ACME, Moredun Foundation and sustainable control of parasites of sheep 

(SCOPS), DEFRA) are not being followed, recommendations such as the effective 

quarantine treatment of newly purchased animals and dosing animals at the 

manufacturers’ recommended dose rate were followed by only 20% and 56% of 

farmers respectively.   
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1. General Introduction 

1.1 Gastro-intestinal nematodes 

 

In excess of seventy parasite species have been isolated from small ruminants, with 

over thirty nematode species being isolated from the digestive system worldwide 

(Taylor et al., 2007).  Nematodes of the family Trichostrongylidae form a major 

component of the parasites found and are responsible for much of the economic 

losses in ruminants world wide.  The most common ovine nematode genera in the 

UK include Haemonchus contortus, Teladorsagia circumcincta and Trichostrongylus 

species (Boag and Thomas, 1975).                           

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1 Simple direct nematode life-cycle and selected bioassays that are 
used to detect and characterise anthelmintic resistance, more details in Table 
1-5. 

Most gastro intestinal nematodes follow a simple direct lifecycle (Figure 1.1), in 

brief, eggs are passed in the faeces of infected hosts onto pasture, optimal 

embryonation, development and hatching of first stage (L1) larvae occurs if 

temperature and humidity are between 22-26°C and 100% humidity respectively, 
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within 24 hours. First stage larvae feed on bacteria and protozoa within the faeces. 

Once they have fed they will enter lethargus prior to moulting to become a second 

larval stage (L2). Prior to the development into the infective third stage (L3) the 

process of feeding, lethargus and moulting occurs again.  The L3 do not feed, they 

are enclosed by a protective, impermeable sheath (the retained L2 cuticle). 

Ensheathed L3 survive by utilizing nutrient reserves stored in food granules in the 

intestinal cells.  If these nutrient reserves become depleted before the L3 can find a 

suitable host they will die.  Infective larvae do not actively search for a host, but are 

swallowed with herbage.  The larvae are negatively geotrophic and positively 

phototrophic to mild light enabling them to migrate up to the top of the herbage, 

increasing their chances of being ingested.  Once ingested the larvae start the 

parasitic phase of their life-cycle (Soulsby, 1982).   

 

Exsheathment sites of the larvae are species-specific for example T. circumcincta 

larvae exsheath within the rumen whereas Cooperia curticei exsheath within the 

abomasum of the host.  The exsheathment sites are always proximal to the 

predilection site and the process may occur within 30 minutes of arrival at the 

appropriate site.  Following exsheathment the L3 migrate, within 2-5 days, to the 

preferred site in order to develop.  Progression from L4 to L5 and to sexually mature 

adults can occur in as little as 14 days post infection.  The pre-patent period of adult 

female trichostrongylids ranges from 14 – 42 days post infection but is species 

dependent (Soulsby, 1982).   

 

1.2 Epidemiology 
 

In order to assess the elements that affect the occurrence or absence of disease, it is 

essential to understand factors that may influence nematode populations.  As seen in 

 

Figure 1.2 numerous internal and external factors can influence parasite numbers, but 

it is the interactions between these factors which determine the extent of the problem.  

The outbreak of disease has been attributed to three basic reasons, which are 

classified and reviewed by Armour (1980), a) an increase in infecting mass, b) a 
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change in the susceptibility of stock or c) the movement of susceptible stock to an 

infected area. 

Within temperate regions the pattern of nematode infection in sheep, with the 

exception of Nematodirus species which is a lamb to lamb infection, tends to follow 

a very similar pattern; eggs are laid down onto pasture, in the first instance by 

lactating ewes that suffer a temporary relaxation in immunity (Morgan and Sloan, 

1947, cited in Armour, 1980), and develop into infective larvae which again infect 

the hosts, develop to become adults and shed further eggs onto pasture.  Numbers of 

infective larvae build up over the summer to a peak in autumn, after which numbers 

decline.  Lambs become exposed to infection on turn out and are susceptible to 

infection for 6 – 12 months (Waller and Thomas, 1978) therafter they become 

refractory to infection unless under nutritional/reproductive stress or ill health. 
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Figure 1.2    Diagrammatic representations of factors affecting nematode populations, shaded boxes identify areas that have been 
targeted for intervention strategies or identified as factors associated with the selection for anthelmintic resistance. 
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Figure 1.3 Theoretical progression of parasite species affecting sheep throughout the 
seasons adapted from data from Boag and Thomas, 1977 

 

A further compounding factor is that different parasite species have different 

epidemiological patterns and preferred developmental conditions resulting in 

changes in distribution patterns throughout the year (Figure 1.3).  For example 

Nematodirus battus eggs passed in the spring of one year slowly develop to infective 

larvae and overwinter to hatch en masse over a very short period of time the 

following spring causing disease in predominantly young lambs (Crofton and 

Thomas, 1951), whereas T. colubriformis requires a minimum threshold temperature 

of 10ºC in order to develop to an infective larva (Leathwick et al., 1999 cited in 

Vlassoff et al., 2001).  Studies have illustrated a succession of nematode species in 

grazing lambs under UK conditions (Crofton, 1955 and 1957; Boag and Thomas, 

1977). 

 

1.3 Pathogenesis 

Gastro-intestinal parasites are responsible for a range of clinical signs in hosts, 

particularly young or nutritionally stressed animals or animals carrying concurrent 

infections.  The degree of pathogenesis observed in an infected animal depends on 

the infective species and the predilection site (Figure 1.4).  T. circumcincta invade 

the gastric gland in the abomasa, forming noticeable nodular lesions; during 

development the parasite causes damage to the hydrochloric producing parietal cells 

which are replaced with undifferentiated non-acid producing cells (Armour et al., 
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1966).  The increase in pH, plasma protein loss through the damaged abomasum and 

rapid cell division are thought to be partially responsible for the loss of appetite and 

weight loss observed in clinical infection.  With H. contortus infections the 

pathology observed is due to the haematophagic behaviour of the parasites. Estimates 

suggest that each worm can remove 0.05 ml of blood per day, (Clark et al., 1962) 

leading to a fall in packed cell volume and anaemia which, if left untreated, can 

result in death.  Under severe nutritional stress, chronic haemonchosis can become an 

issue where several hundred worms and the associated blood loss cause inappetence 

and weight loss rather than anaemia (Barger and Cox, 1984). 

A hypothesis that has been explored in New Zealand (NZ) is that it is the host’s  own 

immunological response to T. colubriformis and T. circumcincta infections that is 

predominantly responsible for the pathological effects seen in animals, rather than 

mechanical damage by the parasite per se (Greer et al., 2005a and 2005b).  In trials 

where animals were either infected with T. colubriformis and T. circumcincta (INF), 

INF and immunosuppressed with methylprednisolone (ISINF) or left parasite naïve.  

The productivity of the uninfected control and ISINF groups were significantly better 

than the INF group, though the ISINF was carrying a larger worm population.  A 

theory to account for this effect is that sheep evolved with T. colubriformis and T. 

circumcincta as commensals rather than parasites and that immunde responses 

directed against them have arisen due to the need to respond to other more 

pathogenic species such as H. contortus (Love, 2005).  
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Figure 1.4 Schematic of potential causes of pathology in nematode infected 
ruminants 
 

1.4 Immunology 

The development of immunity tends to follow a biphasic pattern, Figure 1.5, firstly 

an acquisition phase, secondly an expression phase.  In ewes around parturition or 

animals carrying concurrent infections there may be a relaxation in immunity, 

sometimes termed as the peri-parturient relaxation of immunity (PPRI) in ewes. The 

sequence of events that leads to the expression of immunity in continuously infected 

animals tends to be, firstly a rejection of incoming larvae (around 4 weeks with 

Trichostrongylus), secondly a depression of fecundity (around 10-12 weeks) and 

finally expulsion of adult worms (after 16 – 20 weeks; Seaton et al 1989a or 1989b; 

reviewed by McClure; 2000).  The development to the expression of immunity, as 

detailed above, is dependent on host and parasite species and can occur in as little as 

seven weeks of continuous infection with H. contortus (Barger et al., 1985) or T. 

colubriformis (Dobson et al., 1990). 
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Figure 1.5 Typical pattern of immunity development in female sheep. 

 
The mechanisms associated with the exclusion and expulsion of nematodes are 

poorly understood, but involve both innate and adaptive immune responses.   

 

Innate immunity is the first line of defence and is mediated by cells and mechanisms 

that are not antigen-specific, do not confer any long lasting protection and may 

account for some of the host differences observed in primary susceptibility to 

infections.  Nematode infections lead to increased goblet cell numbers and mucus 

production (McClure, 2000) as well as changing the composition and viscosity of the 

mucus produced (Douch et al., 1983; Jones et al., 1990; Kimambo and MacRae, 

1988; Meeusens et al., 2005) which are thought to help entrap and prevent larvae 

from establishing.  Host resistance has been associated with an increased leukotriene 

levels in intestinal contents (Jones and Emery, 1991) and mucus (Gray et al., 1992).  

The secretion of galactins (Gal-14; Dunphy et al., 2002 and Gal-15; Gray et al., 

2004) and other inhibitory molecules (Meeusen et al., 2005; Balic et al., 2006) into 

the mucus have also been correlated with nematode killing and rejection.  Physical 

mechanisms such as increased peristalsis (McClure, 2000), epithelial sloughing 

(McClure et al., 1992) and fluid and electrolyte movement into the lumen (Miller, 

1996) have been associated with a hastening of parasites along the gastro-intestinal 

tract and reduced establishment. 
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Adaptive immunity is a highly specific system that is active and allows the host to 

mount a stronger more effective response with repeated exposure to a particular 

pathogen.  Nematode rejection is the result of the culmination of several events, 

antigen recognition, induction of an appropriate immune response and activation of 

effector pathways and cells (Meeusen et al., 2005).  The development of immunity is 

believed to be dose dependent (Dineen, 1963; Smith et al., 1984) and reliant on 

antigenic stimulation.  The steps leading to the development of an effective adaptive 

immune response are poorly defined and the responses to infection that have been 

observed in the past have led researchers to wonder whether they are causal or casual 

(McClure, 2000).  Observations of infections with gastro-intestinal nematodes have 

shown increased local cellular activity (mucosal mast cells, globular leucocytes, 

eosinophils; Huntley et al., 1987 and 1995) and systemic humoral responses (specific 

antibody production, IgA; Smith et al., 1984; IgE; Huntley et al., 1998, IgG; 

McClure et al., 1992) and are believed to be important in worm expulsion and 

exclusion.  The generation of cytokines such as IL-4, IL-5 and IL-13 have also been 

correlated with nematode expulsion.  The response in “older” immune animals can 

be extremely rapid with larvae being expelled between four (Jackson et al., 1988) 

and 24 hours (McClure et al., 1992) post challenge. The interactions between the 

various components of the innate and acquired immune systems are extremely 

complex and have been extensively reviewed for gastrointestinal nematode infections 

of sheep (McClure 2000, Schallig, 2000; Miller and Horohov, 2006) and cattle 

(Claerebout and Vercruysse, 2000).  

1.5 The economic importance of gastro-intestinal helminth 

of ruminants 

Livestock play an important role in the generation of stability and wealth of many 

communities around the developing and developed world.  In the year 2007 there 

were in excess of 1.4 billion cattle, 1.1 billion sheep and 0.85 billion goats 

worldwide, the 27 European Union countries had 6.5%, 9.6% and 1.6% of these 

numbers respectively, (Food and Agriculture Organization of The United Nations, 

http://faostat.fao.org/site/573/DesktopDefault.aspx?PageID=573#ancor last accessed 

10SEP08). Livestock are used not only a protein source but also provide a workforce, 
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raw materials and a source of income.  In the examination of the cost implications of 

parasitism, attention needs to be focussed on the costs incurred in the treatment, such 

as labour, provision of facilities, time to plan and prepare for treatment as well as the 

pathology and production losses.  Figure 1.6 shows the numbers of diagnosable 

samples submitted to the Scottish Veterinary Investigation centres for analysis, 

further details can also be obtained from Veterinary Laboratory Agency (VLA), 

(http://www.defra.gov.uk/vla/reports/docs/rep_vida_sheep99_06.pdf  last accessed 

10SEP08).  The graph shows a steady increase in the numbers of diagnosable cases 

of PGE in sheep.  Possible reasons for these increases are a) easier access to 

diagnostic services,  b) Greater awareness by both producers and veterinarians in 

regards to the problems that gastro-intestinal parasites cause and therefore more 

samples being submitted for diagnosis, c) Changes in climatic conditions leading to 

prolonged parasite and disease seasons, d) Failure of treatments due to an increasing 

prevalence of anthelmintic resistance leading to more diseased animals. 

 

In the year 2007 the global animal health market was worth $17.9 billion, of which 

$5.7 billion was spent in Western Europe. Products for ruminants form a large 

component of the overall worldwide expenditure (31%); $4.8 billion was spent on 

cattle and $830 million on sheep (IFAH annual report, 2007 – 

http://www.ifahsec.org/media_room/IFAH_annual_report_2007_final.pdf last 

accessed 10SEP08).The market includes expenditure on medicinal feed additives, 

biologicals such as vaccines, anti-infectives, parasiticides and other pharmaceuticals. 

Parasiticides accounted for $5.2 billion of the global expenditure.  In Australia the 

cost implication of parasitic disease was estimated to be around A$337 million and is 

thought to account for around 90% of all production losses in sheep (Collins, 1992 

cited by Hennessy, 1997). 
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Figure 1.6  Parasitic gastro-enteritis cases in sheep and cattle expressed as a 

percentage of diagnosable samples received by Scottish veterinary investigation 

centres.  

 

1.6 Chemical control strategies 

The significant financial losses incurred by farmers due to parasitism of livestock, 

has led to research into chemical and non-chemical based methods of control. 

 

Treatment of gastro-intestinal parasites has in past centuries relied on the use of 

medicines comprising metals, such as tin, pewter or iron filings or plant extracts that 

were poisonous to the worms, mechanically irritated the parasites from their 

predilection site or removed the mucous linings of the bowel making it difficult for 

the parasites to develop and maintain stasis (McKellar and Jackson, 2004).  In the 

late 19th century parasitic treatments became chemically based with the use of 

compounds such as arsenic, copper sulphate, nicotine sulphate and carbon 

tetrachloride but these tended to be either ineffective or had a highly toxic effect on 

the host as well as the parasite (McKellar and Jackson,  2004).  It was not until the 

introduction of phenothiazine in the late 1930s that treatments become more 

sophisticated with larger safety margins and few side effects.  By the 1960s the first 

“safe” commonly available broad-spectrum drugs were available for the treatment of 

helminths of ruminants, Figure 1.7. These are detailed further in the following 
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sections.  Athough many treatments are registered for monogastrics and large 

ruminants, namely cattle, the following sections will focus on anthelmintics for use 

in small ruminants. 

 

1.7 Broad-spectrum anthelmintics 

Three discrete classes of broad-spectrum anthelmintic are available for the treatment 

of ruminants.  Class I anthelmintics include both the benzimidazoles (BZ) and the 

pro-benzimidazoles (PRO-BZ), class II include imidazothiazoles and 

tetrahydropyrimidines and class III include avermectins (AVM) and milbemycins 

(MIL), 

Table 1-1. Each of the classes has a different chemical structure (Figure 1.7) and 

differing modes of action, sections 1.7.1 to 1.7.3 

 

Table 1-1 Broad spectrum anthelmintic classes available for use in the UK 
sheep market (NOAH compendium, 2008) 

Benzimidazole/ 
pro-benzimidazoles 

 Imidazothiazoles/ 
tetrahydropyrimidines 

 Macrocyclic lactones 

Albendazole  Levamisole   Doramectin  
Febantel  Morantel citrate  Ivermectin 
Fenbendazole    Moxidectin 
Mebendazole     
Netobamin     
Oxfendazole     
Ricobendazole     
Thiophanate     

 

1.7.1 Benzimidazoles/pro-benzimidazoles (Class I) 

The BZ were the first broad-spectrum anthelmintics to be brought onto the market.  

Thiabendazole (TBZ) was introduced in the early 1960s and brought about a change 

in the treatment of helminths in ruminants, possessing both a wide spectrum of 

activity as well as a high therapeutic index.  The actions of all the BZ/PRO-BZ are 

similar, but the mechanisms for their actions are different.  For example, TBZ is an 

active compound which is metabolised to an inactive compound, netobimin is an 

inactive compound that is broken down into active moieties (albendazole, ABZ) and 



 25

finally ABZ when administered can be further metabolised to become an active 

metabolite, albendazole oxide (McKellar and Scott, 1990).  

The BZ act by binding to the nematode tubulin, inhibiting the formation of 

microtubules within the intestinal cells.  This binding interferes with nutrient 

absorption by the parasite and leads to starvation (Barragry, 1984a and 1984b). 

Binding to the cytoplasmic microtubules, which are involved in the transportation of 

secretory granules and the secretion of enzymes into the cell cytoplasm, can lead to 

prolonged storage of the secretory material resulting in disintegration of the cells 

(McKellar and Scott, 1990). The BZs have also been shown to disrupt metabolic 

processes. Interference of the enzyme fumarate reductase by TBZ inhibits energy 

generation thus leading to starvation of the parasite (Prichard, 1973). The BZ are 

active against both worms and eggs particularly against adult and immature 

nematodes, cestodes (Monezia species) as well as trematodes (Fasciola species) 

although the spectrum of individual drugs varies.   

 
 
 
 
 

 
  

(a) (b) (c) 
 

Figure 1.7 Basic chemical structure of compounds from the three broad 
spectrum anthelmintic families (a) thiabendazole, (b) levamisole hydrochloride 
and (c) ivermectin B1a 
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1.7.2 Imidazothiazoles/tetrahydropyrimidines (Class II) 

The imidazothiazoles namely LEV and tetramisole were introduced onto the market 

for use in ruminants in 1968 (McKellar and Jackson, 2004) and have a safety index 

of 6, i.e. adverse effects are induced at 6 times the manufacturers’ recommended 

dose rate (MRDR) in the most susceptible animals (Anon, 2005).  Tetramisole is a 

racemic mixture of two optical isomers, laevo (L) and dextro (D); the L-isomer is 

called levamisole and is the active component.  Most oral levamisole preparations 

use hydrochloride salt, though injectable solutions use phosphate salt.  The 

tetrahydropyrimidines include the compounds pyrantel and morantel citrate/tartrate 

(MOR).  Both LEV and MOR act by stimulating cholinergic ganglia at the nicotinic 

neuromuscular junctions causing spastic paralysis of the nematodes.  The 

anthelmintics open and then block the acetylcholine receptor-mediated cation 

channels (Robertson and Martin, 1993). The action of the drugs is wholly against the 

roundworm nervous system and shows no ovicidal activity.  

 

1.7.3 Macrocyclic lactones (Class III) 

The macrocyclic lactones (ML, avermectins/milbemycins) are chemical derivatives 

produced through fermentation by the actinomycetes of the soil micro-organism 

Streptomyces avermitilis. The milbemycins and avermectins were first identified in 

1973 and 1975 respectively (Burg et al., 1979; Takiguchi et al., 1980).  Ivermectin, 

doramectin (DOR) and moxidectin (MOX) are all members of the macrocyclic 

lactones that are commercially available for use in sheep in the UK.  The ML have a 

high safety factor, around 20 times the MRDR, even in collies which are known to be 

sensitive to IVM (Shoop et al., 1995), with a low dose rate (0.2 mg/kg) and a high 

potency against endo- and ecto-parasites.  The level of potency and length of 

persistence of activity differ between compounds, i.e. IVM<DOR<MOX.  The 

difference in persistence is believed to relate to the lipophilicity and excretion rates 

of each the anthelmintics.  All ML have a high affinity for lipids within the body 

with depletion half lives of unchanged drug ranging from 4.3 to 15 days for IVM and 

MOX respectively in cattle (McKellar and Benchaoui, 1996).  The ML bind to the 

glutamate-gated chloride channel receptors (Glu-Cl) in nematodes causing them to 
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open, and once open, the channel allows an influx of chloride ions that cause flaccid 

paralysis (Cully et al., 1996; Martin, 1997).  The MLs are also known to enhance the 

effect of the neurotransmitter gamma amino butyric acid (GABA) in the muscles of 

parasitic nematodes (Brownlee et al., 1997; Feng et al., 2002).   

 

1.8 Narrow-spectrum anthelmintics 

1.8.1 Salicylanalides and substituted phenols    

The Salicylanalides (closantel, CLOS or oxyclozanide) and substituted phenols 

(nitroxynil) have limited use in the treatment of nematodes when administered as 

individual compounds and are generally used for the treatment of haematophagus 

parasites such as H. contortus and Fasciola (NOAH compendium, 2008).  The 

anthelmintics have a very strong affinity for plasma protein (Mohamed Ali and 

Bogan, 1987) which may partially explain their activity against blood feeding 

parasites.  The anthelmintic molecules, also known as proton ionophores, possess a 

detachable proton which may be able to shuttle across membranes (particularly 

mitochondrial and tegument membranes). The mode of action of these compounds is 

thought to involve disruptions in the normal biochemical and physiological processes 

of these membranes (Martin, 1997).   

 

In order to increase their spectrum of activity the salicylanalides are often combined 

with a broad spectrum compound such as mebendazole (Mebadown Super®) or 

levamisole (Nilzan Super®). 

 

1.9 New potential products 
 

No new novel broad spectrum anthelmintic compound has been brought to the 

market in over thirty years, but announcements by two of the large pharmaceutical 

companies would suggest that this may change in the near future. 
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1.9.1 Cyclooctadepsipeptides 

The cyclooctadepsipeptides, PF1022A and emodepside, were discovered in 1990 

(Sasaki et al., 1992) and are thought to act on the nematode pre-synaptically by 

stimulating the release of inhibitory neuropeptides which cause muscle relaxation 

and inhibition of acetylcholine mediated muscle contraction (Willson et al., 2001 and 

2003).  The compounds, first registered for use in cats, have been shown to be highly 

effective at reducing both faecal egg counts and worm burdens of BZ, LEV and IVM 

resistant isolates of H. contortus in sheep when administered orally subcutaneously 

or intravenously, as well as Cooperia oncophora in cattle when administered orally 

(von Samson Himmelstjerna et al., 2000 and 2005).   

 

1.9.2 Amino-Acetonitrile Derivatives (AAD) 
The Amino-Acetonitrile Derivatives (AAD) were patented in 2006 and have been 

shown to have a broad spectrum of activity in both sheep and cattle with low 

toxicity.  The compounds, AAD 450 and AAD 1470, are believed to act upon the 

nicotinic acetylcholine receptors and have been shown to be active against a wide 

range of economically important anthelmintic resistant and sensitive nematodes and 

trematodes at 20mg per kg (United States Patent application [7091371], 2006; 

Kaminsky et al., 2008; Prichard and Geary, 2008).  

1.9.3 P-amino-phenethyl-m-trifluoromethylphenyl piperazine  
(PAPP)  

The serotonergic agonist PAPP has been shown to have anti-parasitic activity in a 

gerbil model with >98% efficacy in the treatment of T. circumcincta and H. 

contortus infection at doses of 50-100 mg/kg but low efficacy against the intestinal 

parasite T. colubriformis (83%; White et al., 2007).   

 

1.9.4 Paraherquamide  
Paraherquamide is the oldest of the “new” compounds, and was originally isolated in 

1981 (Yamazaki, 1981).  The compound is a metabolite of Penicillium parherquei 

and has been shown to exhibit good anthelmintic activity at dose rates of >0.5 mg/kg 

against six common ovine parasites (Shoop et al., 1990).   
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1.10 Ill thrift   

Before treatment failure or AR can be identified in a flock it is essential to ascertain 

the origin of the ill thrift/disease in the animals.  Potential causes of ill thrift in small 

ruminants are wide ranging, covering areas such as infectious agents (viral, bacterial 

and non nematode parasites), physical damage to the animals and metabolic 

disorders (Table 1-2). 

 

Table 1-2  Potential causes of ill thrift in sheep 

Nutritional  Infectious agent  Miscellaneous  
Nutrition (insufficient or 
poor quality diet) 

Cobalt/vitamin B12  
deficiency  

Selenium deficiency  

Copper deficiency  

Plant poisoning 

 

 Bacterial disease (e.g. 
pasteurella, Johne’s disease) 

Viral disease (e.g. Border 
disease)  

Parasitic disease  
(Cryptosporidium, Fasciola) 

Fungal infections in rumen 

Chronic infection (e.g. navel 
ill, pneumonia, foot rot) 

 Damage to mouth or throat, 
(faulty teeth, drench gun 
injury) 

Tumours 

Insufficient trough space for 
feeding  

Bullying 

 

 
 

1.11  Treatment failure  

As well as ensuring the correct diagnosis of gastro-intestinal parasitism, there are 

also other complex and compounding factors that influence; the degree of infection 

observed in animals (Figure 1.8), the effectiveness of administered treatments 

(Figure 1.2) and the rate of development of AR.  These three areas are not mutually 

exclusive and many of the interactions between them play an important role in 

determining how effective a treatment will be at controlling GINs.  The important 

factors that have been examined as parts of intervention studies (shaded boxes in 

Figure 1.2) will be discussed further in chapter 1.20. 

 

1.11.1 Chemical 
 

The quality of generic compounds has been shown to vary drastically between 

products and even between batches.  A report by Monteiro et al., (1998) revealed that 
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the quantities of actual active ingredient in nine separate LEV based products ranged 

between 0 and 118% of the amount specified on the label.  The variability between 

batches of the same product was also shown to be extremely high, with between 0 

and 85% of the expected quantities being detected.   Obviously with 0% of the active 

ingredient, the product should be considered fake but with the levels of variability 

observed, confidence in products would be low and effectiveness would be 

inconsistent and unpredictable at best.  

  

Formulation and route of administration has been shown to influence the efficacy of 

MOX against an IVM resistant T. colubriformis population (Gopal et al., 2001) with 

faecal egg count reduction efficacies of 62%, 100% and 0% for oral IVM, oral MOX 

and injectable MOX respectively. The difference in efficacy being attributed to the 

peak plasma concentration of orally administered MOX being 3.4 times greater than 

that achieved with injectable MOX formulation (Alvinerie et al., 1998).   

 

Interactions between compounds administered in combination have been observed in 

a range of hosts.  Such interaction may be synergistic/additive (Anderson et al., 

1988; McKenna, 1990) or antagonistic (McKenna, 1990).  Antagonist interactions 

may be due to target site competition and/or the preferential elimination of a 

compound from the host when administered in combination, as is the case with DOR 

when administered with IVM or MOX (Barber et al., 2003). 

 

1.11.2 Physiological 
 

Pharmacokinetics and pharmacodynamics of anthelmintic treatments can also be 

affected by a range of different host and parasite factors, which can lead to overall 

efficacies lower than would be expected. 

 

Breed differences have been shown to affect both susceptibility to infection and 

response to anthelmintic treatment.  Sheep breeds such as Texels and Red Masai 

have been shown to be much more refractory to parasite infections than breeds such 

as Suffolk (Barger, 1989; Kloosterman et al., 1992; Good et al., 2006).   A difference 
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in susceptibility to nematode infections also leads to a potential disparity in the 

numbers of treatments that a particular breed may need per annum.  

 

In cattle, differences in the rate and degree of absorption and systemic availability of 

pour-on MOX have been observed between Aberdeen Angus and Holstein cattle 

(Sallovitz et al., 2002).  The slower absorption and reduced plasma concentration 

seen in Aberdeen Angus cattle were attributed to smaller fat reserves than the milk 

producing Holsteins and therefore less reserve for the lipophilic compound to bind 

too.  Differences in skin composition or physiology may also have affected the 

absorption of the compound.  In sheep, the story is slightly less clear cut with 

differences in treatment efficacies being observed between different young merino 

and Border Leicester x Merino lambs (Sangster et al., 1979), but not in older sheep 

of the same breeds (Sangster et al., 1980).  Differences within breeds, both in 

susceptibility to infection (Barger 1989) and in response to anthelmintic treatment 

are as variable as between breeds.  An example of this is from the trial detailed in 

chapter 4 where five lambs were artificially infected with the same number of a field 

derived isolate of T. circumcincta.  The individual treatment efficacies based on 

worm burden data ranged from 65% to 95% with an average of 82%. 

 

Host species differences in pharmacokinetics of BZ, LEV, IVM and CLOS, 

particularly between sheep and goats, have been well documented when 

anthelmintics have been administered at the recommended dose rates for sheep 

(Galtier et al., 1981; Gillham and Obendorf, 1985; Bogan et al., 1987; Sangster et al., 

1991; Hennessy et al., 1993a and 1993b).  In a field trial where sheep and goats were 

grazed together on naturally infected pastures, treatment efficacies against T. 

circumcincta and T. colubriformis were around 20% lower in goats than sheep with 

LEV (8mg/kg body weight, BW) and MOR (10mg/kg BW) respectively (McKenna 

and Watson, 1987).  Sangster et al., (1991) observed that differences in OXF 

efficacies between parasitized sheep and goats were due to decreased absorption and 

metabolism of the compound in goats because of increased activation of the 

oesophageal groove and therefore increased rumen bypass. 
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Sex/gender differences have also been shown to affect plasma concentration and 

half-life of IVM.  Elimination was faster in male sheep compared to females (Ndong 

et al., 2007).  Again the observed differences were thought to correlate to level of 

storage of the compound in fat deposits.  

 

Quantity (Warner, 1981; Ali and Hennessy, 1993; 1995a; 1995b and 1996) and 

quality (Warner, 1981; Ali and Chick, 1992) of feed has been shown to influence the 

residence time of the digesta and associated BZ in the gastro-intestinal tract leading 

to a decrease in plasma concentrations. Further work showed that the 

pharmacokinetics of FBZ and IVM is significantly lower in sheep (Taylor et al., 

1992), cattle and buffalo (Sanyal et al., 1995) at pasture or fed green herbage 

compared with animals fed on a hay and/or concentrate diet. Both the grazing sheep 

and cattle were shown to have increased digesta flow, lower anthelmintic absorption 

and possible changes in the rumen flora and physiology.   

 

1.11.3 Parasitological 
 

The absorption, storage, presentation and efficacy of anthelmintics have been shown 

to be much reduced in heavily parasitized animals compared with their parasite naïve 

counterparts.  Parasites such as T. circumcincta and Trichostrongylus species can 

directly and indirectly change the physiology of the host, leading to changes in 

mucosal permeability, increased gut motility and increases in abomasal and intestinal 

pH.  The mechanical damage to the hydrochloric acid-producing parietal cell leads to 

an increase in abomasal pH, which has been shown to affect the absorption and 

pharmacokinetics of orally administered benzimidazoles (Marriner et al., 1984).   

In animals where fat reserves are depleted, either through parasitism or pregnancy 

and lactation, compounds such as the MLs and sulphonamides have been shown to 

be less effective (Van Gogh et al., 1990; Lespine et al., 2004; Perez et al., 2006 and 

2007).  The differences in the case of the MLs have been attributed to faster 

absorption rates and reductions in elimination half-life in parasitised animals which 

tend to have lower level of fat deposition and therefore fewer reserves for the MLs to 

bind to and increased gut motility compared to their non parasitised counterparts.   
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Secondly, differences are believed to be due to increased biotransformation 

(enzymatic breakdown) of the drug within the plasma of parasitised animals.   In a 

separate experiment the loss of moxidectin’s persistent efficacy against T. 

circumcincta infections was noted in animals with lower fat reserves (Rolf et al., 

1995, cited in Perez et al., 2007).  

 

Treatments with compounds that require secondary processing before they become 

pharmacologically active, such as the pro-benzimidazoles which require 

sulphonation by liver oxidases, are susceptible to infections that damage the site of 

enzyme production.  Galtier et al., (1991) demonstrated a significant reduction in 

ABZ activity in lambs eight weeks after they had been infected with 150 F. hepatica 

metacercariae.   

 

For all anthelmintic treatments efficacy can be affected by the parasite population it 

is targeting, irrespective of resistance status.  Parasite sensitivity to anthelmintics can 

be extremely variable. In sheep treated with ABZ the dose limiting species (DLS), 

i.e. the species that requires the greatest concentration of drug in order to effectively 

control it, is T. circumcincta whereas in cattle the DLS for MOX and DOR is 

Nematodirus helvetianus.  
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Figure 1.8  Diagrammatic representations of factors affecting drug efficacy and potentially the development of anthelmintic 
resistance in ruminants (red dashed boxes). 
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1.12   Anthelmintic resistance 
Anthelmintic resistance (AR) has been described as “a heritable reduction in the 

sensitivity of a parasite population to the action of a drug” (Conder and Campbell, 

1995).  Anthelmintic resistance affects the nematodes of many host species, though 

primarily small ruminants, and all three classes of commercially available broad-

spectrum anthelmintics (Chapter 1.7).  Reports of resistance to at least one 

anthelmintic class and one parasite genus, Table 1-3, have been made in no less than 

38 of the 172 sheep producing countries of the world (http://faostat.fao.org last 

accessed 10SEP08).   

 

Table 1-3 Reported cases of anthelmintic resistance in small ruminants 
Worldwide, selected references. 
Country BZ LEV ML Reference  Country BZ LEV ML Reference 
Algeria + - + Bentousi et al., 2007  Mozambique + + - Atanasio et al., 2002 

Argentina + + + Eddi et al., 1996  Netherlands + + + Borgsteede et al 1997 

Australia + + + Overend et al., 1994  New Zealand + + + Waghorn et al., 2006a 

Belgium + - - Vercruysse et al., 1989  Paraguay + + + Maciel et al., 1996 

Brazil + + + Echervarria et al., 1996  Philippines + - - Ancheta et al., 2004 

Cameroon + - - Ndamukong & Sewell, 1992  Slovakia + - + Cernanska et al., 2006 

Denmark + + + Maingi et al., 1996  South Africa + + + Van Wyk et al., 1997 

Ethiopia + + + Sissay et al., 2006  Spain + + + Alvarez-Sanchez et al., 2006 

France + + - Chartier et al., 1998  Sweden + - - Rudby-Martin and Nilson, 1991 

Germany + - - Bauer et al., 1987  Switzerland + - + Artho et al., 2007 

Greece + - - Papadopoulos et al., 2001  Sri Lanka + - - Van Aken et al., 1989 

India + + - Gill, 1996  Tanzania + - - Bjorn et al., 1990 

Ireland + - - O’Brien et al., 1994  Thailand + - - Kochpakadee et al., 1995 

Italy + + + Traversa et al., 2007  Turkey  - + + Kose et al., 2007 

Kenya + + + Waruiru et al., 1998  Uruguay + + + Nari et al., 1996 

Malaysia + + + Chandrawathani et al., 2004  UK + + + Sargison et al., 2001 

Martinique + - - Gruner et al., 1986  USA + + + Terrill et al., 2001 

Mexico + - - Torres Acosta et al., 2003  Zambia + - + Gabriel et al., 2001 

Morroco + - - Berrag,  2007  Zimbabwe + + - Boersema and Pandey, 1997 

 

Initial reports of AR occurred within several years of the initial launch of all three 

broad spectrum anthelmintics, though this generally occurred faster in Southern 

hemisphere countries compared to the temperate Northern hemisphere countries 

(Figure 1.9).  The environmental conditions in the southern hemisphere are either 

conducive for year round parasite development and therefore year round treatment 



 36

(section 1.20.2) or drought conditions commonly lead to increased selection pressure 

on parasite populations due to reduced parasite refugia (section 1.20.5). 

 

Year Benzimidazole Levamisole Avermectin Milbemycin 

1950 

 

1960 

 

1970 

 

1980 

 

1990 

 

2000 

 

    

Figure 1.9 Year of commercial release of broad spectrum anthelmintics (black arrows, 
southern hemisphere; red arrows, United Kingdom) and the first report of resistance (R) in the 
target organisms (adapted from Waller 2006)  

  

Resistance to multiple classes of compounds has been identified in all of the 

economically important nemtatodes of sheep and goats, in particular H. contortus, T. 

circumcincta and Trichostrongylus colubriformis (in depth reviews of AR nematodes 

can be found in Conder and Campbell et al., 1995; Jackson and Coop, 2000; Jabbar 

et al., 2006).  Initial reports are generally restricted to single parasite species but 

incidents of multigeneric resistance are commonplace (Chapter 4). 

 

Anthelmintic resistance is not solely an issue for small ruminant farmers, resistance 

has been observed in horses (Craven et al., 1999; Kaplan et al., 2004), pigs 

(Roepstorff et al., 1987) and cattle (Borgsteede, 1991; Coles et al., 1998; Mason and 

McKay, 2006).  The likelihood of the detection of anthelmintic resistant parasites 

within these hosts is generally ranked goats > sheep > horses >cattle (Mejia et al., 

2003), though economically, treatment failures and production losses in cattle are 

R 
R 

R

R 

R 

R 

R 
R
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likely to have a significantly greater impact on global economies than any of the 

other hosts.  Very few surveys have been conducted to examine the prevalence of AR 

in cattle.  The general consensus was that cattle generally were extensively grazed 

and drenched infrequently due to the low pathogenicity of the predominant bovine 

parasite species, Cooperia.  The expansion in the numbers of intensively farmed 

enterprises composed of monocultures of young stock has led to anthelmintics being 

heavily used in the control of parasitism (Waghorn et al., 2006a).   A survey of 62 

New Zealand beef cattle farms found that 94% of the enterprises had treatment 

efficacies of ≤ 95%  against one class of anthelmintic but 74% had resistance against 

2 classes.  Within Europe no large scale survey has been conducted but the situation 

appears to be less frightening, with the prevalence of ML resistance thought to be 

lower (Demeler and Höglund personal communications), but these results show that 

complacency can and has resulted in AR progressing to almost catastrophic levels 

without being realised.  

 

1.13   Prevalence 
 
The reports listed in Table 1-3 chart the progression of anthelmintic resistance, but 

do not provide a true picture of the prevalence of resistant nematodes in small 

ruminants.  Due to the enormity of the challenge, the true nature of the problem is 

thought to be highly under-estimated (Sangster, 1999).  In some of the large Southern 

hemisphere sheep producing areas of the world, large scale surveys have been 

conducted; Australia (Besier and Love, 2003), New Zealand (Waghorn et al., 2006b), 

South Africa (van Wyk et al., 1999), South America (Waller et al., 1996).  The 

results of the surveys listed above highlight the problems that may face the temperate 

Northern countries including the UK in the future where anthelmintic resistance is 

less developed (Table 1-4). Total failure, or severely reduced efficacy of treatments 

have been reported in some sheep producing areas in South Africa (van Wyk et al., 

1997 and 1999), Northern and Southern America (Terrill et al., 2001; Waller et al., 

1996) and the UK (Sargison et al., 2007) leading to some producers finding it 

economically unviable to continue farming. 
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 Table 1-4 Prevalence of anthelmintic resistance in the UK sheep and goat flocks. 
Prevalence (%) 

Region Sheep (S) / 
Goat (G) Test used* 

Number 
farms 
examined BZ LEV ML 

Reference 

S.E. England S FECRT/EHT 52 13 0 - Cawthorne & Cheong 1984 

S. England S EHT/LDT 209 36 0 - Hong et al., 1992 

S.W. England S EHT 54 15 - - Hong et al., 1996 

N.E. England S EHT 84 44 - - Hong et al., 1996 

England/Wales S LDT 151 - 1 - Hong et al., 1996 
England/Wales G LDT 70 - 7 - Hong et al., 1996 
England/Wales G EHT 63 - 65 - Hong et al., 1996 

Wales S LDT 122 77 36 - Mitchell et al., 2006 

Scotland S EHT 37 24 - - Mitchell et al., 1991 

Scotland G FECRT/EHT 6 83 0 0 Jackson et al., 1992 

Scotland S EHT/ LDT 90 64 0 0 Bartley et al., 2004 

Scotland S FECRT 17 - - 35 Bartley et al., 2006 

* EHT, egg hatch test; FECRT, faecal egg count reduction test; LDT, larval 

development test;  BZ, benzimidazole; LEV, levamisole; ML, macrocyclic lactone. 

 

1.14   Detection 

Methodologies for the examination and detection of anthelmintic 

susceptibility/resistance from the field and in the laboratory are well detailed.  

Standardisation of general parasitological methods used in the detection of AR has 

been reported for sheep and goats (Table 1-5, Coles et al., 1992; Wood et al., 1995; 

Taylor et al., 2002; Coles et al., 2006; von Samson-Himmelstjerna, 2006), whilst 

work is being conducted to standardise methods in cattle (http://www.parasol-

project.org, last accesed 10SEP08).  General parasitological based techniques such as 

controlled efficacy tests (CET, drench and slaughter), faecal egg count reduction 

tests (FECRT), egg hatch test (EHT) and larval development test (LDT) have been 

used in the initial reporting and subsequent surveying of BZ and IVM resistance 

throughout the world in ruminants (small ruminant surveys, Table 1-4)  and 

monogastrics alike, data not shown. 
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1.15  In vivo tests  

In vivo tests are the cornerstone of AR detection in the field.  Two tests are 

commonly cited in the literature, the faecal egg count reduction test (FECRT, section 

1.15.1) and the controlled efficacy test (CET, section 1.15.2).  The first technique is 

most commonly utilised by scientists, veterinarians and sheep advisors alike. 

1.15.1 Faecal egg count reduction test 

The test assesses the reduction in faecal egg counts of treated animals expressed as 

the percentage reduction compared to an untreated control group (Coles et al., 1992).  

Efficacies less than 95% are indicative of potential resistance.  In brief the test 

involves taking rectal faecal samples from all animals to be examined and 

performing faecal egg counts (FEC) on them.  Animals are allocated into groups, of 

at least 15 animals, for each treatment and an untreated control, ensuring minimal 

difference in group mean faecal egg count.  Groups are randomly assigned an 

anthelmintic treatment or left untreated to act as controls.    Each animal is dosed 

with its designated anthelmintic on the basis of bodyweight, ensuring that each 

animal receives its full dose.  The group mean faecal egg counts are calculated for 

the pre-treatment samples.  The optimal time for re-sampling of treated animals is 3-

7 days, 8–10 days and 14–17 days post treatment for the LEV, BZ, and ML 

respectively, to avoid possible false positive/negative results (Coles et al., 2006).  

Levamisole has no label claim against juvenile worms and therefore re-sampling 

needs to be conducted before maturation of surviving immature stages occurs 

(Grimshaw et al., 1996) whereas suppression of egg production may occur for up to 

10 and 14 days post treatment with BZ (Martin et al., 1985) and ML (Jackson 1993; 

Tyrell et al., 2002) respectively.  The mean faecal egg counts of the groups are 

calculated for the post-treatment samples.  The efficacy is estimated using one of a 

range of standard formulae, where C1 and C2 are the FEC of untreated control 

animals pre- and post treatment respectively and T1 and T2 are the FEC of animals 

pre- and post treatment respectively: 

 

(1−[T2/C2]) x 100 using arithmetic means (Coles et al., 1992),  

(1 − [T2/T1][C1/C2]) x 100 using geometric means (Presidente, 1985),  



 40

(1 − [T2/T1][C1/C2]) x 100 using arithmetic means (Dash et al., 1988),  

(1−[T2/T1]) x 100 using arithmetic means (McKenna, 1990; Kohapakdee, 1995), 

(1 − [T2/C2]) x 100 using logarithm back-transformed estimated means within a 

generalised linear model (Mejia et al., 2003). 

1.15.2 Controlled efficacy test 

The test, also known as “drench and slaughter”, assesses treatment efficacy in 

infected animals compared to untreated control animals by estimation of total worm 

burdens at post mortem (Wood et al., 1995; Coles et al., 2006) and can be used with 

field infected or artificially challenged animals (see chapters 4, 5 and 6).  The CET 

can be used to assess all stages of parasitic life cycle, from day one post-artificial 

infection to infections carried by naturally infected animals.  To ensure that findings 

are both biologically and statistically relevant, groups should contain a minimum of 

five animals per drug compound plus a control group.   Rectal faecal samples and 

faecal egg counts need to be conducted on all animals prior to treatment to allow 

allocation of animals into groups with minimal difference in group mean faecal egg 

count if examining adult egg laying populations.  Treatment groups should be 

allocated randomly and animals need to be weighed and treated according to 

bodyweight. Notes should be made of any treatment errors or immediate adverse 

reaction to drug. After the allocated time the animals are euthanased and the gastro-

intestinal tract is removed and processed according to the appropriate protocol.  

Estimated total worm burden estimations allow calculation of the efficacy of the 

treatments using either arithmetic or geometric means in the formulae as detailed 

above (section 1.15.1). The test is generally only used in research laboratories to 

characterise new isolates of parasites or to assess novel treatments, due to the 

prohibitively expensive running costs.   

1.16  In vitro bioassays  

Most in vitro bioassays examine the response of a developmental stage(s) of the 

parasites to xenobiotic/anthelmintic treatment when administered in a dose-

dependant fashion.  From the dose response, it is possible to determine the 

concentration of anthelmintic required to inhibit a known percentage of the 

population from completing their normal development, e.g. ED50 is the concentration 
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of compound required to inhibit 50% of eggs from developing and hatching within 

an egg hatch test.  Table 1-5 lists some of the bioassays that have been examined. 

 

Table 1-5  Bioassays used in the evaluation and/or characterisation of 
anthelmintic compounds against free living and parasitic nematode stages, 
selected references. 

 
 

1.16.1 Egg hatch test (EHT) 

The in vitro EHT (Le Jambre and Whitlock, 1976, Hunt and Taylor, 1989; Coles et 

al., 1992) assesses the ability of eggs to hatch in different concentrations of 

thiabendazole (TBZ).   Approximately 100 strongyle eggs are incubated in final 

concentrations of TBZ of 0.05, 0.1 and 0.3 μg/ml for 48 h at 22 °C in 24 well cluster 

plates. Lugol’s iodine is used to stop the test and prevent further hatching of eggs.  

The numbers of eggs and larvae are counted and the data are used to determine the 

ED50 estimation.  Estimates of greater than 0.1μg/ml are indicative of resistance (Le 

Jambre and Whitlock, 1976). 

Test Spectrum Target Authors 
BZ  Egg Le Jambre and Whitlock 1976 Egg hatch  
BZ Egg Hunt and Taylor 1989 

EH (LP) LEV Egg Dobson et al 1986 
BZ, ML  Egg to L3 Coles and Simpkin 1977 
BZ, LEV   Egg to L3 Taylor 1990 
BZ, LEV, ML   Egg to L3 Hubert and Kerboeuf 1992 

Larval development 

BZ, LEV  Egg to L3 Varady and Corba, 1999 
ML  L1 Jackson and Coop 2000 Feeding (Larval) 
ML, LEV  L1 Alverez-Sanchez et al., 2005 
BZ L3 Sutherland and Lee 1990 
LEV L3 Martin and Le Jambre 1979 

Larval paralysis/ Larval 
migration 

ML   L3  Gill et al 1991 
 ML L3  D’Assonville et al 1996 
Exsheathment - L3 Brunet et al., 2007 
Video tracking  BZ, LEV, ML L3 Glasswell et al., 2003 
Feeding (Adult)  ML Adult Geary et al., 1993 
Motilty ML L4 to adult Kotze et al., 2004 

BZ Adult Roos  et al., 1990 
BZ    - Beech et al 1994 

Conventional PCR 

BZ    - Elard et al 1999 
Real time PCR  BZ All Walsh et al., 2007 
Pyrosequencing BZ - v. Samson Himmelstjerna et al., 

2007a 
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1.16.2 Larval development test (LDT) 

The in vitro LDT (Coles and Simpkin 1977; Taylor, 1990; Hubert and Kerboeuf 

1992; Varady and Corba, 1999) assesses the ability of eggs to hatch, develop and 

moult through two larval stages to become third stage larvae in the presence of 

increasing BZ and LEV concentrations.  Data published in Australia showed that the 

LDT was unreliable at detecting ML resistance with field-derived material, 

particularly with T. circumcincta (Besier 1998; cited in Kotze et al., 2006).   

Several different techniques for conducting the test exist, though the method used in 

the survey outlined in chapter 2 was conducted using the following methodology:  

Strongyle eggs were extracted and incubated overnight at 22 °C. Approximately 100 

eggs/80 μl of water, containing 5 μg amphotericin B/ml, was combined with 20 μl 

nutritive medium (1 g yeast extract/90 ml 0.85% physiological saline) and 20 μl 

lyophilized Escherichia coli (150μg/ml in PBS) according to the method of Hubert 

and Kerboeuf (1992). One microlitre of anthelmintic was combined with 150 μl of 

2% agarose in a 96 well microtitre plate as described by Amarante et al. (1997). Final 

concentrations of TBZ (0.05–0.3 μg/ml), LEV (0.05–2 μg/ml) and IVM (0.0004–

0.13 μg/ml) were investigated. One hundred microlitres of the egg suspension was 

added to the surface of the agarose and the plates were covered and incubated at 22 

°C for 7 days. Eggs, first and second stage larvae counts were combined and third 

stage larvae were counted separately, allowing an estimation of the percentage 

development. 

1.16.3 Larval motility /migration inhibition test (LMI) 

In 1991 Gill et al., detailed a motility test for characterising resistance in infective H. 

contortus larvae (L3). The L3 were incubated in the dark for 24 hours on IVM-

impregnated agar beds and following incubation, the larvae were exposed to light 

and their motility, or lack of, was recorded.  Gill reported that differential dose 

responses were optimal after three rounds of dark and light incubations.  More 

recently the motility test has been used to compare and characterise the effects of the 

emodepsides to other commercially available anthelmintics in trichostrongylids 

(Schurmann et al., 2007). 
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The larval migration test, like the larval motility test, assesses effects on somatic 

musculature but avoids the need for potentially subjective assessment of activity by 

examining the ability of anthelmintic-treated L3 to migrate through mesh filters.  The 

test has been trialled with a range of parasitic nematode species from a range of hosts 

e.g. pigs, (Petersen et al., 2000), sheep (Kotze et al., 2006) and equids (Matthews 

unpublished data). 

1.16.4 Larval feeding inhibition test (LFIT) 

The larval feeding inhibition test is based on a procedure that examines the effect of 

ivermectin on the feeding behaviour in adult H. contortus worms (Geary et al., 

1993).  Modifications were made to allow the examination of feeding behaviour in 

first stage nematode larvae. Briefly, the procedure involves the extraction and 

incubation of eggs to produce first stage larvae, these larvae are incubated in the test 

substance suspensions at 22°C for two hours.  The larvae are then given access to a 

fluorescein isothiocyanate-labelled E. coli suspension and incubated for a further 

18h.  Following incubation, the larvae are immobilised and examined under a 

fluorescence microscope.  If the test substance has been effective at paralysing the 

pharyngeal musculature, then they are unable to feed and no fluorescence can be 

seen.  If the substance has been ineffective then a clearly defined gut can be seen, 

Plate 1-1. 

 
 

Plate 1-1 Picture of fed (F) and unfed (UF) Haemonchus contortus first 
stage larvae 

 
 
 
   

F 

UF 
UF
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1.17  Molecular assays 

Single nucleotide polymorphisms (SNP) are changes in DNA sequence due to 

differences in a single nucleotide within a population.  Polymorphisms can either be 

synonymous (silent mutations) or nonsynonymous (result in changes in the amino 

acid sequence) and can occur in both coding and non-coding regions of the gene.  

Single nucleotide polymorphisms have been associated with the presence of AR, 

particularly with BZ resistance Table 1-6. 

Table 1-6 Examples of important single nucleotide polymorphisms 
associated with anthelmintic resistance in nematodes, selected references. 

Nematode 
species 

Codon Gene of 

interest 

Amino acid change 

From        To 

Reference 

Benzimidazole     

Hc 

Tci 

Co 

Cyath 

167 

Phenylalanine Tyrosine* 

Prichard 2001  

Silvestre and Cabaret, 2002 

Njue and Prichard 2003 

Drogemuller et al., 2004 

Hc 198 Glutamic acid  Alanine Ghisi et al., 2007 

Hc  

Tco 

Tci  

Co 

200 

 

β -tubulin 

 

Phenylalanine Tyrosine 

Kwa et al., 1994 

Grant and Mascord, 1996 

Silvestre and Humbert, 2002 

Njue and Prichard,  2003 

Levamisole/Pyrantel     

Ce 153 UNC-38 Glutamic acid Glycine 

Ce 57 UNC-63 Glutamine Glycine 
Rayes et al., 2004 
Bartos et al., 2006 

Ivermectin      

Co 256 GluClα3 Leucine Phenylalanine Njue et al, 2004 

Hc 300 GluCl Threonine Serine Jagannathan, 1999# 

* A substitution of Phenylalanine to histidine has also been identified.  # SNP associated with changes 

in GluCl channel, though no confirmed involvement with resistance. Ce - C. elegans; Co - C. 
oncophora; Cyath - cyathastome species; Hc - H. contortus; Tci – T. circumcincta; Tco – T. 

colubriformis. 

 

As described in Chapter 1.7.1 the principal effect of BZ on parasitic nematodes is the 

disruption of cellular function, in particular inhibition of microtubule formation, by 

its binding to the β-tubulin monomer (Dawson et al., 1984; Sangster et al., 1985; 

Lacey, 1988).   Several genetic mechanisms have been associated with the presence 
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of BZ resistance in parasitic nematodes of sheep, loss of isotype 2 of the β-tubulin 

gene (Kwa et al., 1993) and single nucleotide point (SNP) mutations within isotype 1 

of the β-tubulin gene.  The point mutations in the β-tubulin gene are responsible for 

an amino acid transversion at each of the sites; phenylalanine to tyrosine at codon 

200 (F200Y), phenylalanine to tyrosine or phenylalanine to histidine at 167 (F167Y) 

and adenine to cytosine at 198 (E198A).  The presence of single nucleotide 

polymorphisms in isotype 1 is not straightforward, and not all of the mutations are 

found in all ovine parasitic nematode species.  Recent work suggests that the 

presence of one SNP is not usually accompanied by a second (Silvestre and 

Humbert, 2002).  Methodologies for identifying the presence/absence of these SNP 

are highlighted in Table 1-7. 

 

Table 1-7 Methodologies for single nucleotide point identification associated 

with BZ resistance (Adapted from von Samson-Himmelstjerna et al., 2007). 

Assay SNP(s) investigated Species Reference 

Allele-specific PCR F200Y H. contortus Kwa et al., 1994 

 F200Y T. circumcincta Elard & Humbert, 1999  

 F167Y Various Silvestre & Cabaret, 2002 

 F200Y C. oncophora Winterrowd et al., 2003 
    

PCR-RFLP A198E &  F200Y H. contortus Ghisi et al., 2007 

 F200Y T. circumcincta Shayan et al., 2007 

 F200Y H. contortus Tiwari et al., 2006 
    

Real time PCR F200Y Various Alvarez-Sanchez et al., 2005a 

 F200Y H. contortus Walsh et al., 2007 
    

Pyrosequencing F167Y , A198E &  F200Y Various Skuce & Donnan unpublished 
    

Sequencing F200Y C. oncophora Njue and Prichard, 2003 

 F167Y Various Silvestre & Cabaret, 2002 

 

1.17.1 Conventional allele specific polymerase chain reaction 

Original work by Kwa et al., (1994) resulted in a polymerase chain reaction (PCR) 

based assay that demonstrated that a SNP, TTC (phenylalanine) to TAC (tyrosine), at 

codon 200 of the β-tubulin isotype 1 gene encodes for BZ resistance in H. contortus 
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and T. colubriformis.  The methodology was streamlined to enable the test to be 

performed as a single multiplex reaction by Elard et al., (1999). The technique 

involves the potential amplification of up to three β-tubulin products of different 

lengths via the use of a set of four primers, a BZ-susceptible specific primer, a BZ-

resistant specific primer and two non specific flanking primers.  The procedure has 

been shown to be effective at determining the genotype of H. contortus, T. 

circumcincta, T. colubriformis and several cyathastomin species (von Samson-

Himmelstjerna et al., 2002).  

 

The technique has been combined with a restriction fragment length polymorphism 

step to provide both genotyping and speciation information on H. contortus, T. 

circumcincta and T. colubriformis isolates (Silvestre and Humbert, 2000). 

1.17.2 Real time polymerase chain reaction 

A real time PCR technique has been developed (Alvarez-Sanchez et al., 2005a) to 

allow the amplification and quantification of the wild type and resistant β-tubulin 

isotype 1 alleles in nematode DNA samples.  Quantification of the amplified DNA is 

achieved by the use of non-specific intercalating dyes such as SYBR® green or 

SYBR® red which fluoresce when bound to double stranded DNA.  Measuring the 

amount of fluorescence generated after each round of amplification by different 

isolates allows comparative quantification of allele frequencies to be conducted.  

Subsequent work has used other detection systems such as TaqMan® (Walsh et al., 

2007) or fluorescent labelled oligonucleotide probes. 

 

1.17.3 Pyrosequencing 

PyrosequencingTM is a high throughput technology that can facilitate sequence 

analysis, genotyping and allele specific SNP quantification.  The technology works 

on the quantitative detection of light generated by an enzymatic cascade following 

the incorporation of deoxynucleotide triphosphates (dNTPs) onto a PCR amplified 

DNA template.  The dNTPs are dispensed individually in a predetermined sequence 

and result in the release of pyrophosphate (PPi) if incorporated onto a PCR amplified 

DNA template.  The quantity of PPi released is equimolar to the amount of dNTPs 
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incorporated.  A cascade of enzymic reactions is set into motion resulting in the 

conversion of luciferin to oxyluciferin leading to the generation of visible light.  The 

emitted light is detected by a charge coupled device camera and the intensity is 

proportional to the number of nucleotides incorportated.  Further enzymic reactions 

degrade unincorporated dNTPs prior to the addition of the subsequent dNTPs to 

ensure accuracy of the sequencing data generated. Further details can be obtained 

from http://www.pyrosequencing.com/, last accessed 10SEP08.  

 

1.17.4 Sequencing - chromatograms 

Comparative SeqDoC analysis of PCR amplified products from pools of parasites, 

particularly phenotypically anthelmintic-sensitive and anthelmintic-resistant isolates, 

has been suggested as a method of rapidly scanning areas of interest for potential 

SNP markers (Blackhall, personal communication).  The example in Figure 1.10 

(Skuce, personal communication) shows the chromatograms of PCR products in the 

region of codon 200 of β tubulin isotype 1 from pools of BZ resistant and BZ 

sensitive T. circumcincta.  Comparative SeqDoc analysis identifies regions where the 

tracers differ from each other, in this case at P200. 

 

 
Figure 1.10 Chromatograms of PCR products in the region of codon 200 of β tubulin 
isotype 1 from two populations of Teladorsagia circumcincta (Skuce, personal communication).   

 

BZ-susceptible 

BZ-resistant  

PP220000 

= 90%S:10%r 

= 40%S:60%r 
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1.17.5 Models/alternative methods of analysing effects of 
parasitism and anthelmintic resistance 

In conjunction with traditional techniques for investigating mechanisms of 

resistance, much work on exploring alternative strategies has been conducted.  Small 

animal models, primarily mice and gerbils, have used both rodent specific parasites 

such as Nippostrongylus braziliensis (Bottjer and Bone, 1985), Heligomosomoides 

polygyrus (Kerboeuf and Jolivet, 1980; Monroy and Enriquez, 1992; Njoroge et al., 

1997, Su and Dobson, 1997; Kristan, 2002a and 2002b; Githiori et al., 2003; Iraqi et 

al., 2003) and Hymenolepis nana (Haugwitz et al., 1979) as well as ruminant specific 

parasites such as T. circumcincta (Court et al., 1988), H. contortus (Ellis et al., 1993; 

Molento and Prichard, 1999; Forrester et al., 2004), T. colubriformis (Ostlind and 

Cifelli, 1981; Lewis et al., 1982; Maclean et al., 1986; Ostlind et al., 1990) and F. 

hepatica (Shoop et al., 1995) to investigate areas such as parasite behaviour, 

chemotherapeutic/phytotherapeutic activity and efficacy, effects of parasitism on 

mammalian physiology and aspects of genetics and immunity to parasites.  

Translation of the results from these experimental models to large animal trials can 

be difficult due to differences in parasite lifecycles in different hosts, physiological 

differences in hosts resulting in retardation of parasite growth and establishment of 

parasites in atypical areas of the gastrointestinal tract (Court et al., 1988) and 

differences in the host immune mechanisms.   

The use of the non parasitic nematode Caenorhabditis elegans (Kwa et al., 1995; 

Dent et al., 2000; Cheeseman et al., 2001; Liu et al., 2004) and specific cell lines 

such as PgP over expressing mammalian cells (Dupuy et al., 2006) have been 

extensively used to investigate and elucidate mechanisms of drug resistance.    

 

1.18  Genetic selection of anthelmintic resistance 

Prior to treatment of a naïve/susceptible population the alleles for resistance (R) are 

rare and the alleles for susceptibility (S) predominate, however, following treatment 

the prevalence of R alleles increases.  Under continued anthelmintic selection 

pressure, and assuming that there are no deleterious effects or fitness costs associated 

with the genes for resistance, they will continue to increase over time in a population 

until they predominate (Prichard, 1990).  The rate of selection for resistance does not 
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occur at a predetermined rate and is affected by a large number of variables e.g. 

starting frequencies of resistance genes, dominance/recessiveness of the genes and 

whether resistance is mono- or polygenic (Figure 1.8, red dashed boxes). There are 

three stages in the progression of anthelmintic resistance.  Firstly establishment, 

during which resistance allele frequency is generally low.  Secondly development, 

which occurs following selection pressure and can be influenced by treatment 

frequency.  Frequent and inappropriate treatments can lead to a rapid selection in the 

alleles for resistance.  The method of selection i.e. via under-dosing or via full 

therapeutic dose rates has been shown to influence the means by which an organism 

deals with anthelmintic exposure (Gill et al., 1998)  The final stage, expression, is the 

point at which allele frequency is high and may be detected as clinical disease in 

animals. 

 

It has been suggested that resistance is a pre-adaptive phenomenon, that is to say that 

a small percentage of the population has the capacity to survive at a concentration of 

the drug that would be expected to remove a sensitive population, even prior to any 

exposure to the compound (Roos et al., 1990).  Consequently the initial frequency of 

resistance alleles present in a population can vary from region to region even before 

a single treatment has been administered in an area.  Coles, (2005) reported that the 

dose rate to treat Schistosoma mansoni infections in Brazil is lower than those 

needed in East Africa. 

 

Both between parasite species and anthelmintic classes differences occur in the ways 

that the genes for resistance are inherited -    

 

Benzimidazole resistance in H. contortus was reported to be semi-dominant (Le 

Jambre et al., 1979) though subsequent work on different isolates has found it to be 

an incompletely recessive autosomal trait (Sanster et al., 1998) reliant on multiple 

genes (Le Jambre et al., 1979; Herlich, et al., 1981).  In T. colubriformis TBZ 

resistance is inherited in a co-dominant fashion (Martin et al., 1988). 

 

Levamisole resistance in H. contortus is inherited as a multigenic and incompletely 



 50

recessive trait (Sangster et al., 1998) whilst in T. colubriformis it is monogenic or 

polygenic on closely related genes, sex linked (Martin & McKenzie, 1990) and 

determined by a dominant gene (Dobson et al., 1987).  The use of TBZ has been 

shown to select against LEV resistance (Dobson et al., 1987).   

 

Ivermectin resistance is reported as being an autosomal, monogenic trait (Le Jambre, 

1993; Dobson et al., 1996; Le Jambre et al., 2000) and a completely dominant trait in 

H. contortus, whilst the story with MOX resistance is more complex.  If populations 

are pre-selected with abamectin (ABA) the resistance appears to be semi-dominant 

but if the parasite is selected with MOX then the trait is semi-recessive (Le Jambre et 

al., 2005).  With T. circumcincta, IVM resistance is dominant whilst MOX resistance 

is thought to be recessive (Sutherland et al., 2002a)  

 

1.19  Mechanisms of resistance 

The mechanisms of expression of resistance are thought to differ between 

anthelmintic classes, nematode species and between various nematode isolates 

(Figure 1.8).  Wolstenholme et al., (2004) characterised the mechanisms in four 

broad categories which will be discussed individually. 

 

1.19.1 Changes in the molecular target rendering the drug 
ineffective  

Benzimidazole 

Initial studies correlated BZ resistance with a loss of high affinity BZ receptor 

binding sites (Lacey, 1988; Lacey and Gill, 1994).  This loss of binding capability 

has been identified in H. contortus, T. colubriformis, C. oncophora and T. 

circumcincta and is associated with SNP at codon’s 167, 198 or 200 in isotype 1 of 

the β -tubulin allele.  Subsequent work has also implicated a similar β-tubulin SNP at 

codons 167 in isotype 1 and codon 200 in isotype-2 with BZ resistance in H. 

contortus (Prichard 2001).  Mutations in H. contortus at either codon 167 or 200 

appear only to occur in isolation i.e. a mutation at codon 167 has not been identified 



 51

in populations with mutations at codon 200 (Silvestre and Cabaret, 2002; Ghisi et al., 

2007).  In combination with the SNP mutations a loss of β-tubulin isotype 2 has also 

been correlated with BZ resistance in H. contortus (Kwa et al., 1993). 

 

Levamisole 

With levamisole resistance, the mechanisms are less well defined.  Work conducted 

by Sangster et al., (1998) demonstrated that membrane preparations from resistant H. 

contortus and T. colubriformis appeared to have decreased LEV affinity at the 

nicotinic acetylcholine receptors.  Further work conducted using C. elegans as a 

model has shown that LEV resistance is associated with a modification (Lewis et al., 

1980) or reduction in the number (Richmond and Jorgenson, 1999; cited in 

Wolstenholme et al., 2004) of nicotinic acetylcholinesterase receptors (nAChR) and   

Fleming et al., (1997) initially identified three nAChR genes that were strongly 

associated with LEV resistance (unc-29, unc-38 and lev-1).  Polymorphisms 

associated with LEV or pyrantel resistance have not been found in parasitic 

nematodes, though they have been found in C. elegans.  Two interesting candidate 

genes are unc-38 and unc-63 at codon 153 and codon 57 respectively (Rayes et al., 

2004; Bartos et al., 2006). 

 

Macrocyclic lactones 

Macrocyclic lactones, as mentioned in chapter 1.7.3, act on ligand gated chloride 

channels (glutamate, GluCl and gamma aminobutyric acid, GABA).  Comparisons 

between the GluCl-α3 subunits of a susceptible and a resistant C. oncophora 

population showed that they differed at three amino acid positions, but only one 

(L256F)  was correlated with decreased sensitivity to IVM (Njue et al, 2004).   

 

Work on C. elegans identified four genes, avr-14, avr-15, glc-1 and glc-3, which 

encode GluCl channels activated by IVM.  Null mutations for each of these genes 

individually do not confer resistance, but when examined in combination led to a 

greater than 4000 fold increase in tolerance of IVM (Dent et al., 2000). 
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As well as the association of ML resistance with the ligand gated chloride channels, a 

correlation has been made between the length and organisation of the anterior 

sensory structures, amphid sensilla and the presence of IVM tolerance/resistance in 

C. elegans (Dent et al., 2000) and H. contortus (Freeman et al., 2003; Guerrero and 

Freeman, 2004).  The amphids have been shown to facilitate the binding and 

transportation of compounds like MLs and may play an important role in their entry 

into the parasite.  Shortening, degeneration and/or loss of detail of these structures in 

nematodes is thought to reduce the efficacy of their ability to transport compounds.   

 

1.19.2 Amplification of target genes to overcome drug action  

Resistance in H. contortus or T. circumcincta to IVM is thought to be partially due to 

an increase in the numbers of low affinity L-glutamate binding sites, though no target 

site mutations have been identified (Hejmadi et al. 2000).  Work by Blackhall et al., 

(1998a) showed that the frequency of alleles to a GluCl α-subunit increased in three 

ML selected H. contortus isolates.   

Comparative single-strand conformation polymorphism (SSCP) analysis between 

drug sensitive and IVM and MOX resistant H. contortus strains showed a selection 

for alleles at a GABA receptor in the resistant nematodes (Blackhall et al., 2003). 

 

1.19.3 Changes in the metabolism that 
inactivate/remove/prevent activation  

The ability of both host (Tynes and Hodgson, 1983) and parasite species to utilise 

enzymatic mechanisms for handling xenobiotics has been acknowledged for many 

years.  Distribution of the various systems between parasitic families is variable, with 

glyoxalase being shown to be important in nematodes (Brophy et al., 1990) whilst 

glutathione transferase is the main system in intestinal cestodes, digeneans and 

Onchocerca gutturosa (Pemberton and Barrett, 1989, Brophy et al., 1989). More 

recently research has focussed on the cytochrome oxidase pathways, particularly 

cytochrome P450 (CYP).  Cytochrome P450’s are haemoproteins, found in a wide 

range of hosts, capable of catalysing enzymatic reactions in both exogenous and 

endogenous compounds.  Commonly, this is a monooxygenase reaction.  
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Anthelmintics, particularly BZ (Chiu and Lu, 1989 cited in Kotze et al., 2006) and 

ML (Gottschall et al., 1990; Alvinerie et al, 2001), are metabolised by CYP.  Kotze, 

(1997) suggested that oxidative pathways are likely to be less important in adult 

worms compared to the free-living larval stage due to the reduced oxygen tensions in 

the intestinal tract, though work by Alvinerie et al., (2001) found that MOX was 

metabolised by adult worm homogenates indicating a role for CYP. 

 

As with many enzymic reactions the CYP can be induced/enhanced or inhibited by 

various compounds and it was the inhibition of CYP by piperonyl butoxide (PBO; 

Benchaoui and McKellar, 1996) that was suggested as a mechanism for increasing 

the efficacy of FBZ in ruminant hosts.  Work by Barrett (unpublished data) showed a 

marked increase in the efficacy of FBZ (5 mg/kg BW) when administered in 

combination with PBO (63mg/kg BW).  More recently, work investigating the co-

administration of triclabendazole and PBO to sheep showed an increased systemic 

availability of the anthelmintic (Virkel et al., 2007), whilst in vitro synergistic 

interactions between rotenone and PBO have been reported (Kotze et al., 2006).  

Decreased cuticular penetration in the house fly Musca domestica has also been 

shown to be important in abamectin resistance (Scott, 1989; 1991) though it is 

uncertain whether such a mechanism occurs in nematodes. 

 

1.19.4 Changes in the distribution of the drug in the 
organism preventing access to site of action   

Modulation of xenobiotics via efflux proteins (Xu et al., 1998) have been examined 

in both free-living and parasitic nematodes.  The P-glycoprotein (Pgp) is an energy-

dependant transporter, also known as an ATP binding cassette (ABC) transporter, 

which is involved in the transport/efflux of noxious compounds.  P-glycoprotein 

molecules contain six trans-membrane domains attached to an ATP-binding site 

(Sangster 1994, Figure 1.11).  P-glycoproteins have been intimated in multidrug 

resistance in tumour cells (Pouliot et al., 1997) as well as resistance to all three broad 

spectrum anthelmintics; the BZ (Beugnet et al., 1997; Kerboeuf et al., 2002), 

imidazothiazoles / tetrahydropyrimidines (Rothwell and Sangster, 1997) and ML (Xu 
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et al., 1998; Molento and Prichard, 2001) and have been described in C. elegans 

(Broeks et al., 1995) and H. contortus (Blackhall et al., 1998b; Le Jambre et al., 

1999).  P-glycoprotein genes are numerous in nematodes, unlike in mammals.  C. 

elegans have 14 genes (Kerboeuf et al., 2003) and H. contortus have at least 7 

(number identified at present, Skuce personal communication) and appear to play an 

important role in the protection of the parasite neurones against anthelmintic 

molecules (Prichard and Roulet, 2007).   

 

 

Figure 1.11 Diagramatic representation of cell membrane structure illustrating the 
permeation of drug and export of the compound via P-glycoprotein (modified from Sangster, 
1994). 

 
Work investigating the association between Pgp and anthelmintic resistance / 

inefficacy has been conducted both in vitro and in vivo.   Partial reversion of 

resistance to BZ (Beugnet et al., 1997; Kerboeuf et al., 2002; Stenhouse, 2007) and 

ML (Bingham et al., 2007; Bartley unpublished) in the free-living stages of 

nematodes has been demonstrated in vitro using verapamil hydrochloride (VER).  In 

the field, the results are mixed, with significantly increased systemic availability of 

ivermectin being reported in sheep treated with VER (Molento et al., 2004a).  In 

parasitized cattle treated with loperamide, a Pgp modulator, in combination with 

either IVM or MOX respectively (Lifschitz et al., 2007), the reductions in faecal egg 

counts were only 27% and 18% respectively.  
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1.20    Factors associated with resistance development 

Figure 1.8 highlights factors that affect both the supra- and infra-populations and that 

may be associated with treatment failure and/or the selection of anthelmintic 

resistance.  Some of the factors have been addressed earlier in section 1.11. 

1.20.1 Dose frequency 

Frequent treatment of stock has been repeatedly cited as a means of selecting rapidly 

for resistance, particularly when intervals between treatments are shorter than the 

pre-patent period of the parasite that is being targeted, meaning that only resistant 

worms are passed onto pasture.  Early research on sheep (Barton, 1980 and 1983; 

Martin et al., 1982 and 1984), goats (Chartier et al., 1998) and horses (Round et al., 

1974; Kelly et al., 1981) identified that treatment frequency strongly correlated with 

the presence of BZ resistance, though it may also correlate with other classes of 

resistance.  It has also been suggested that one of the reasons that AR is more 

prevalent in areas of the world where climatic conditions are suitable for grazing all 

year round may be the frequency of dosing required to maintain parasite control 

(Conder and Campbell, 1995). 

1.20.2 Under-dosing 

Under-dosing is described as occurring when a host is administered “a weight-

dependant dose that is less than that recommended by the manufacturer” (Smith et 

al., 1999).  The practice allows heterozygote resistant individuals to survive 

treatment and contribute genes for resistance to the subsequent populations (Roush 

and McKenzie, 1987). Many reasons exist for the underdosing of animals, and these 

may occur inadvertently, Table 1-8. 
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Table 1-8 Possible reasons for animals being under dosed 

Inadvertent  Intentional 
Estimating weights incorrectly 
 

Faulty equipment 
 

Using sub-standard compounds 
 

Different dose rates required for 
sheep and goats 
 

Dosing at rate insufficiently high to 
kill all types of parasites harboured 
by host e.g. use of spot on 
treatment for ectoparasites not 
killing all endoparasites.  

 Dosed at average weight of stock 
 

 Dosed at rates less than 
recommended to save money 

 

Although under-dosing may lead to an increase in the number of heterozygote 

individuals in a predominantly susceptible population, thereby selecting for 

resistance, the reverse may occur in a predominately resistant population and under-

dosing may result in preservation of treatment efficacy (Silvestre and Humbert 

2002).   

1.20.3 Non-alternation of drug classes 

No long-term practical experiments have been conducted to assess the effect of 

annual rotation of anthelmintic classes.  It has been suggested that in the early stages 

of the selection process for resistance, alternation between anthelmintic classes will 

reduce the selection on a parasite population and therefore prevent or slow the 

development of resistance (Prichard et al., 1980). Simulated mathematical modelling 

by Barnes et al. (1995) suggested that drug rotation, either annually or longer only 

preserved the life expectany of a compound when the resistant gene frequency in a 

population was greater than 2%. 

1.20.4 Dose and Move 

The movement of freshly treated animals to clean pasture was extolled as a method 

for prolonging the usefulness of anthelmintic compound by reducing re-infection 

(Boag and Thomas, 1973) and was identified as a method for improving 

productivity, such as overall wool production (Morley and Donald, 1980) and lamb 

growth by 10-20% prior to weaning (Waller and Thomas, 1978).  The practice has 
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subsequently been shown to select heavily for resistance with survivors of 

anthelmintic treatment rapidly contaminating clean pastures with eggs (Silvestre and 

Humbert, 2000).   

1.20.5 Lack of refugia/farm management 

Maintaining a proportion of a population in refugia, i.e. not exposed to drug 

treatment has long been acknowledged in entomology (Meyer et al., 1990) and 

helminthology (Martin et al., 1981; Michel et al., 1985) as an important system for 

sustaining genes for susceptibility in a population.  The degree of refugia can be 

affected by a range of environmental and managemental factors.   The advice has 

been brought back into vogue by the need to maintain productivity and sustainability 

in the livestock market in the face of ever increasing resistance.  In the past, advice 

has centred on increasing productivity with little to no thought on sustainability. 

Some of the advice provided to farmers in the past has been unfounded and resulted 

in an increase in the selection of resistance, as mentioned in section 1.20.4, for 

example dose and move.  Other advice has included the treatment of ewes pre-

lambing with long-acting products or post-lambing with a short-acting product in 

order to reduce pasture contamination and thereby infection level experienced by the 

lambs.  Unfortunately, the practice has been identified as a factor associated with the 

presence of IVM (Lawrence et al., 2006) and ABZ resistance (Leathwick et al., 

2006) in Teladorsagia and Trichostrongylus populations in New Zealand, although 

the practice is not thought to be selective in treatment directed against 

Trichostrongylus infections, administered to Merino sheep in Australia (Barnes and 

Dobson, 1990). The procedure is thought to heavily select for resistance in New 

Zealand because the rate of re-infection in Romney ewes, in which acquired anti 

parasite immunity may start to return two weeks post partum (Leathwick et al., 

1999), is low and therefore dilution of resistant parasites on pasture i.e. refugia is less 

(Leathwick et al., 2006).   

 

The ‘‘summer drenching program’’, as advocated by the Australian State 

Departments of Agriculture in Western Australia (WA),  has the same effect as dose 

and move, as described in section 1.20.4, and can effectively control parasites but 
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may actually contribute to selection for resistance.  In WA, where the daytime 

temperatures average around 30ºC there are virtually no worm larvae alive on pasture 

and therefore few in refugia (Besier, 2008). 

 

Timings of treatments have also been questioned.  Pre-tupping treatments are 

routinely administered in UK (Chapter 8) and French flocks (Silvestre and Humbert, 

2002) in order to bring rams and ewes into condition but rarely coincide with high 

levels of infection.  

  

1.21    Reversion 

Previous work has shown that reversion to susceptibility will depend on a number of 

factors such as fitness costs associated with possessing particular genes for 

resistance, hybrid vigour, selection pressure and initial gene frequency for resistance 

(Martin et al., 1988; Maingi et al., 1990; Prichard, 1990).  Initial reports of reversion 

towards susceptibility involved the use of LEV treatment against BZ resistant 

populations (Waller et al., 1983; Martin et al., 1988) and vice versa (Waller et al., 

1985), but subsequent work would suggest that once the genes for resistance have 

been forced to a certain level and have re-associated with genes for general fitness, 

reversion will not occur naturally (Prichard, 1990). 

An example of this is on the Moredun Research Institute farm where BZ resistance 

was detected in 1983; using a faecal egg count reduction test (FECRT) or controlled 

efficacy tests, the FBZ (5mg/kg body weight) efficacy was 44%.   Following 

detection of resistance, BZ usage was suspended and an annual rotation of LEV and 

IVM was adopted.  Efficacies in subsequent tests, over a 17 year period, decreased to 

6% (Figure 1.12; Jackson unpublished data).  
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Figure 1.12 Fenbendazole efficacy in lambs grazing pastures at Moredun Research 
Institute farm treated at 5mg per kg body weight (BW;  ) and 10mg/kg BW (  ).  

 

1.22       Targeted selective treatments 

The need to maintain genes for susceptibility to anthelmintic treatments by utilising 

the untreated, and therefore unselected, parasite population in refugia was suggested 

(Prichard et al., 1980; Michel, 1985; Barnes et al., 1995), but it was not until recently 

that this advice has been heeded (van Wyk et al., 2001; Besier, 2001; Hoste et al., 

2002a and 2002b). Targeted selective treatments (TST) have been used primarily to 

maintain refugia in GIN of small ruminants (see 1.22.1; 1.22.2; 1.22.3) but the 

principle has also been trialled against horse (Krecek and Guthrie, 1999) and dairy 

cattle (Höglund, 2006) parasites.   At present three key TST approaches exist for 

identifying infected animals which would benefit from anthelmintic treatment.  

Firstly, strategies for those infected with haematophagous species; secondly, 

lactating animals infected with non-haematophagous species; thirdly non-lactating 

animals infected with non-haematophagous species. 

1.22.1 Haematophagous species - FAMACHA© 

FAMACHA© was devised in South Africa, named after it’s originator Dr. Francois 

Malan (FAffa MAlan CHArt; Bath et al., 1996) The technique involves the 

examination of small ruminant ocular mucous membranes to allow the rapid 
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identification of levels of anaemia.  The chart, Figure 1.13, identifies when animals 

are anaemic and require anthelmintic treatment.  The method uses a scale that ranges 

from one to five, with one representing a healthy animal and five an anaemic animal.  

Anthelmintic treatment is advised for animals with a score of four to five and should 

be considered for scores of three; those with scores less than three are considered 

optimal/acceptable and require no treatment.  The technique allows the selective 

treatment within flocks, reducing the reliance of farmers on chemoprophylaxis and 

slowing down the selection of anthelmintic resistance by increasing the nematode 

population in refugia.  Treatments can be reduced by between 40-50% in sheep and 

goat flocks (Vatta et al., 2001; Kaplan et al., 2004) with a corresponding reduction in 

flock mean faecal egg count of between 35% and 83%, depending on the criterion 

used apply treatment (Kaplan et al., 2004). 

Treatment of animals is generally considered essential when the PCV of an animal is 

less than 15%.  The technique has been shown to give false negatives in goats, i.e. 

scores of between one and three when the PCV is less than 15% in less than one 

percent of cases (Kaplan, 2004). 

 
 
 
 
 
 
 
 
 
 

Figure 1.13  FAMACHA© eye charts for identification of anaemia in 
small ruminants (Livestock Health and Production Group of South African 
Veterinary Association, 2002, reproduced with the kind permission of Gareth 
Bath). 
 

1.22.2 Non-lactating animals infected with non-
haematophagous species   

 

Work on non lactating animals infected with non-haematophagous species is more 

difficult, but a new European Framework 6 STREP project (PARASOL, 
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www.parasol-project.org/project/parasol.php) has been charged with the objective 

of creating low input and sustainable strategies for the control of GIN infections, 

particularly T. circumcincta and T. colubriformis, in small ruminants.  Work in 

France, Great Britain, Greece, Italy, Morocco, Slovakia and South Africa has 

focused on the use of FEC or pathophysiological markers (weight gain, condition 

score, diarrhoea score, dag score and anaemia) as indicators for TST treatment.  

Preliminary work conducted at Moredun Research Institute in Scotland has explored 

the use of a production based decision support system to identify animals that would 

benefit from targeted anthelmintic treatment.  The decision to treat or not is based on 

the difference between actual and expected weight gain as determined by the model.  

The model integrates estimates of the efficiency of energy utilization in growing 

lambs in the face of environmental factors such as herbage availability and quality, 

dam milk production and climate to calculate expected weight gains.  Results from 

replicated field trials conducted in 2006 and 2007 would suggest that in blackface 

sheep under challenge from predominantly T. circumcincta, it is possible to reduce 

overall anthelmintic treatment by 20% and 50% using this decision support system 

compared to animals treated strategically or monthly respectively.  The second, and 

potentially more important, finding from these trials is that treatment efficacy is 

maintained in the TST group whilst within the monthly treated group treatment 

efficacy has fallen drastically, from 98% reduction in FEC at the beginning of the 

trial in 2006 to less than 50% in 2007 (Kenyon et al., 2007; Jackson and Waller, 

2008).  “Strategic” treatments based on short interval weight gains have been trialled 

in Western Australia, where electronic tagging combined with automatic weighing 

and drafting systems have meant that the system can be applied on a large scale.  

Preliminary results suggested that productivity can be maintained whilst maintaining 

refugia on pasture (Besier, 2007a). 

In South Africa, field trials are being conducted to assess a new “5 Point system”, 

Figure 1.14, for assessing internal parasites in sheep (Bath, personal 

communication).  The system is a concept at present and will need refinement before 

it can be released for general use but can be used to gauge the overall picture of an 

individual animal’s well-being by checking for nasal discharge, body condition, 
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bottle jaw, dag score as well as FAMACHA©.  Ultimately, it may become a universal 

system for assessing an individual animal’s need of treatment.   

 

 
Figure 1.14 Five Point system for internal parasites of sheep (reproduced with 
the kind permission of Gareth Bath) 
 

1.22.3 Lactating animals infected with non-haematophagous species   

Targeted selective treatment (TST) strategies aimed at non-haematophagous species 

are more difficult to implement due to problems in identifying suitable indicators.  

Infections with T. circumcincta and T. colubriformis are commonly accompanied by 

diarrhoea and weight loss, but unfortunately these are not specific to these infections 

and can be attributable to other factors, Table 1-2.  A strategy that has been 

employed with success has been targeted at dairy goats; high milk production has 

been positively correlated with susceptibility to parasitism (Chartier and Hoste, 

1997).  Subsequent research found that treatments targeted on the basis of milk 

production or kidding numbers was effective at controlling PGE whilst maintaining 

productivity.  Anthelmintic usage was reduced by around 40% (Hoste et al., 2002a; 

2002b; 2002c). 
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1.23  Non chemical control strategies 

Non-chemotherapy based treatments have centred around reducing parasite host 

contact by judicious use of pasture management, improving host resistance/resilience 

to infection, nutritional manipulation, development of the hosts immune response via 

vaccination or by controlling the parasite directly by the use of biological controls.    

 

1.24  Pasture/farm management   

1.24.1 Rapid pasture rotation 

Rapid grazing systems, where animals are grazed for only several days at a time and 

then moved are very effective at reducing infection or re-infection of animals at 

pasture particularly in the Southern hemisphere and tropics.  The development of 

eggs to infective larvae in the warm humid conditions of the tropics can occur in as 

little as 3-7 days and they can deplete their energy reserves within 4-6 weeks (Barger 

et al., 1994; Niven et al., 2002).  If pastures are separated into small paddocks or 

separate tethered sectors, as illustrated in Figure 1.15, grazed for several days and 

then spelled for a period of around a month, larval contamination on pasture is 

reduced and consequently so is the intake of parasites by grazing animals.  This 

rotational method has been shown to reduce faecal egg counts in goats by half 

compared to set stocked animals in the same area meaning that less anthelmintic was 

required over the course of the year (Barger et al., 1994).  In Australia rotational 

grazing incorporating anthelmintic treatment has been examined in a two year trial 

where paddocks were either set-stocked over a four to five month period (late 

October to February) or intensively grazed for one month then spelled for one to two 

months and re-stocked for a further two months with wethers.  Parasitological and 

productivity parameters were examined.  Both groups received anthelmintic 

treatment at the beginning of the trial and after three months. Tracer lambs were run 

over both pastures for six months (April to October) and those from the “rotated 

paddocks” had significantly lower worm burdens and faecal egg counts and 

improved productivity (body and fleece weights) compared to set-stocked tracers 

(Niven et al., 2002).  Work is less conclusive in cooler temperate regions where 
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larval development and survival occurs over a longer period of time and as such this 

technique has not been readily incorporated into integrated management systems in 

these areas. (Healey and Walkden-Brown, 2005) 

 

 
 
 
 
 
 
 
 
 

Figure 1.15 Illustrations of pastures separated into smaller sectors (numbers 
1-10) for the rapid rotation of (a) tethered animals or (b) roaming animals.  

 

1.24.2 Rotational/co-grazing 

 

The use of “mower” animals to clean pastures has been suggested (Waller, 1993) as a 

viable method of worm control for both sheep and cattle, reducing the need for 

anthelmintic intervention over a grazing season.  These “mowers” could be non-

pregnant adult sheep or cattle and exploit the host specificity of many gastro-

intestinal nematodes such as Ostertagia ostertagi and T. circumcincta which are 

generally less or non-pathogenic to alternative hosts.  These adult animals are usually 

more immune to gastro-intestinal infections and are therefore able to withstand 

infections more readily, removing more parasites from pasture than they shed.  Work 

conducted in Australia on pastures naturally infected with nematode parasites 

showed that paddocks alternately grazed by sheep and cattle resulted in reduced 

parasite populations, compared to pastures grazed solely by sheep (Barger and 

Southcott, 1975; Southcott and Barger, 1975).  More recently, the application of a 

“cut and carry” policy has also been explored in Malaysia (Chandrawathani et al., 

2008).  Trials conducted in the UK have shown that rotational grazing and co-

grazing permanent pastures with cattle and sheep reduced the faecal egg counts and 

improved weight gains of weaned lambs compared to paddocks where sheep have 

grazed solely (Forbes et al., 2005).      

1 2 

6 

1 

5 

2 

6 

4 

3 

7 

8 

3

4 5 

8 6 7 

9 10 
9 

10 (a) (b) 



 65

 

1.25  Improved host nutrition 

The relationship between parasitism and nutrition is well documented.  Improving 

the host plane of nutrition, in particular protein, leads to improved resistance and 

resilience to gastro-intestinal parasites.  Reviews covering the topic are numerous 

(Coop and Holmes, 1996; Coop and Kyriazakis, 1999; Sykes and Coop, 2001; Coop 

and Kyriazakis, 2001; Knox et al, 2003).  Protein availability and/or allocation 

appear to play a critical role in maintaining ewe responsiveness to infection during 

the periparturient period (Donaldson et al., 1998). Competition for available protein 

is greatest around parturition where there are demands from both the developing 

foetus as well as the ewe.  For the ewe, production of colostrum and milk, as well as 

maintenance of the ewes own body condition all reduce the available resources 

needed to mount an effective expression of immunity, Figure 1.16.  

 
 
 
 
 
 
 
 

Figure 1.16    Schematic showing protein allocation in the peri-parturient ewe. 
 

1.25.1 Non rumen degradable protein 

Previous studies have examined the use of improved nutrition, in particular crude 

protein, to combat the loss of immunity in pregnant sheep especially during late 

pregnancy/early lactation.  This weakening of the immune response is known as the 

peri-parturient relaxation of immunity and generally is accompanied by a 

corresponding increase in capability of parasites to develop and become patent 

within the host.  Supplementations with non-rumen degradable proteins, such as; 

fishmeal (Donaldson et al., 1998), cotton-seed meal & urea (Datta et al., 1999) or 

soyabean (Dawson et al., 1999), have shown varying success in improving resistance 
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and resilience to both nematode and protozoan parasitism in small ruminants.  

Increasing concentrate feed prior to lambing has also shown promise (Donaldson et 

al., 1998; Kahn et al., 2000)   Work on dietary supplementation carried out recently 

has been centred on growing kids (Knox and Steel, 1996; Katunguka-Rwakishaya et 

al., 1997) and dairy goats (Etter et al. 2000, Chartier et al., 2000). Hussein & Jordan 

reported in 1991 that fishmeal supplementation proved successful in non-ruminants 

but was less consistent than in ruminants. Galbraith (2000) observed no influence on 

cashmere yields from goats supplemented with white fishmeal.  

 

1.25.2 Feed blocks (urea molasses blocks, UMB) 

Multi-nutrient blocks are supplementary feedblocks that generally contain a mixture 

of agro-industrial by-products, non-protein nitrogen source (e.g. urea), binding agent 

(e.g. cement) and a preserver (e.g. salt). The blocks have the advantage of being 

cheap and simple to produce, easy to transport and allow the farmer to achieve 

improvement of performance and productivity in animals that are grown on poor 

quality pastures-forages.  This is achieved by enhancing appetence and therefore feed 

intake and correcting any deficiencies that may arise, be these vitamins, minerals or 

other nutrients.    Historically farmers in the Middle East have taken advantage of the 

benefits of incorporating left-overs such as cottonseed cake, sugar beet pulp, and 

wheat bran into animal diets.  With help from organisations such as International 

Center for Agricultural Research in the Dry Areas (ICARDA) they have begun to 

incorporate other ingredients in animal feed such as tomato pulp, molasses, burghul 

derivatives, crude olive cake, sesame cake, citrus pulp, sunflower cake, and mulberry 

leaves, with promising results at a fraction of the cost of traditional feed stuffs 

(http://www.icarda.cgiar.org/mmproject/feedblock.htm, last accessed 10SEP08). 

 

Field trials examining the production and parasitological advantages of UMB have 

shown a range of benefits in sheep (Knox and Steel, 1996 and 1999), goats (Waruiru 

et al., 2004; Vatta et al., 2005) and cattle (Waruiru, 2004).  The supplementation of 

poor quality diets with UMB has led to increased body weights, haematocrit values 

and packed cell volumes and reduced nematode burdens and faecal egg output. 
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1.25.3 Phytomedicines /nutraceuticals/ ethnomedicines  
The search for and use of compounds from plant resources for veterinary and 

medicinal purposes is not a new phenomenon.  Estimates suggest that treatments for 

animals have been around for approximately seven thousand years (Riviere, 2007).  

Phytomedicines (plant based medicines), nutraceuticals (extracts of foods claimed to 

have a medicinal effect on health; http://en.wikipedia.org/wiki/Nutraceuticals, last 

accessed 10SEP08) and ethnomedicines (local or indigenous knowledge and methods 

for caring for, healing, and managing human lives and livestock; 

http://www.africanethnomedicines.net/, last accessed 10SEP08) using traditional 

inspirations for treating livestock have grown in acceptance in the western world but 

are still much associated with “quackery” (Githiori et al., 2005).  In order to overturn 

this image, rigorous scientific validation needs to be conducted on potentially 

effective compounds (Hoste et al., 2008).  Studies on a number of African plants and 

plant preparations have so far been unsuccessful at finding any with significant 

anthelmintic properties (Githiori et al., 2002; 2003a; 2003b; 2004). 

 

1.25.4 Bioactive forages 

Over the last 15 years, interest in bioactive forages has gained impetus due to a need 

for effective and accessible treatments for livestock in developing countries and an 

increased public concern regarding food and environmental residues by consumers in 

developed countries.  Bioactive forages are plants that contain secondary compounds 

that are considered for their beneficial effects on health rather than for their direct 

nutritional value for animals (Waller, 2006).  Plants produce a range of plant 

secondary metabolites (PSM), which are not directly involved in normal growth, 

development or reproduction but instead are thought to be waste or stress products or 

defence mechanisms against herbivores and insects (Harborne, 1999; Karban et al. 

1999).  

 

Interest started with temperate legume forages rich in condensed tannins (CT) such 

as chicory (Cichorium intybus), birdsfoot trefoil (Lotus corniculatus) and sulla 

(Hedysarum coronarium; Niezen et al., 1995; 1998; 2002a; 2002b; 2002c; Bernes et 

al., 2000; Athanasiadou et al., 2001; Marley et al., 2003; Hoste et al., 2005; 
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Tzamaloukas et al., 2005 and 2006) but has extended to derivatives from plants in 

tropical regions (Kahiya et al., 2003; Cenci et al., 2007; Minho et al., 2008). The 

most significant findings have related to work on plants containing polyphenols and 

condensed tannins (Waller, 2006) or proteases (Stepek et al., 2004).  In addition a 

European Union funded grant REPLACE (replacing antibiotics in animal feed) is 

analysing a library of over 500 plant extracts for biocidal activity against a range of 

pathogens of livestock (cattle chickens, fish, pigs and sheep).  

 

The PSM are thought to have both direct effects on the viability of larval stages, 

adult worms and/or fecundity of worms as well as indirect immunologically 

mediated effects. Condensed tannins have a high affinity for proteins protecting them 

from the digestive processes in the rumen.  Disassociation of these CT/protein 

complexes occurs, under the correct pH conditions, at the small intestine and leads to 

improve protein availability (Hoste et al., 2006).  Anthelmintic effects have been 

variable throughout the trials but have shown degrees of promise.  Much more work 

is required to address some of the questions regarding intra- and inter-seasonal 

effects, bioavailability of active compounds, selective grazing behaviour, concerns 

about toxicity/anti-nutritional effects as well as concerns of Northern European 

farmers relating to longevity of forage paddocks, climate effects and cost of 

implementation. 
 

 

1.25.5 Copper oxide wire particles (COWP) 

 

The use of copper sulphate (CuSO4) has long been advocated as a means of treating 

copper deficiency in grazing livestock.  Hall and Foster, 1918, demonstrated the first 

evidence of CuSO4 anthelmintic activity with efficacy against gastro-intestinal 

parasites in ewes and lambs.  Work conducted over the following two decades 

confirmed this anthelmintic activity and elucidated some of the mechanisms of action 

of CuSO4.  More recently work on the anthelmintic properties of copper has centered 

on the use of copper oxide wire particle (COWP) boluses.  The efficaciousness of 

COWP has been demonstrated against abomasal nematodes, in particular H. 
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contortus and T. circumcincta, with little or no effect being noticed against intestinal 

parasites.  Work has primarily been conducted under penned conditions, and has 

given efficacies of greater than 90% and 55% against adult H. contortus and T. 

circumcincta respectively (Bang et al., 1990; Knox, 2002; Waller et al., 2004; Burke 

et al., 2004 & 2005).  The results in the field have been more variable.       

1.26  Biological control 

1.26.1 Bacillus thuringiensis 

Work into the use of the crystal (CRY) and cytolytic (CYT) proteins of the soil borne 

bacterium Bacillus thuringiensis has shown great success against a wide range of 

economically important plant-damaging and disease-carrying insects (reviewed by 

Bravo et al., 2007).  The bacteria secrete water soluble proteins, known as pore 

forming toxins, which create large crystalline formations in the infected insect host 

midgut (Bravo et al., 2007).  The effects of CRY and CYT proteins on nematodes 

have been less well investigated.  Preliminary work has been conducted on free-

living nematodes such as C. elegans and Panagrellus redivivus (Wei et al., 2003) and 

parasitic nematodes such as Ancylostoma ceylanicum (Cappello et al., 2006) and N. 

brasiliensis (Wei et al., 2003).  Work on ruminant GINs is also at an early stage with 

in vitro and/or ex vivo assays being conducted on parasitic and free-living stages of 

T. colubriformis, T. circumcincta and H. contortus (Hassanain et al., 1999; Kotze et 

al., 2005). 

 

1.26.2 Nematophagus fungi 

Nematophagus fungi were originally isolated from soil cultures (Cooke and Godfrey, 

1964 cited in Larsen et al., 1994) and patented in 1997 by Wolstrup et al., (Patent 

number 5643568). The two main fungal isolates that have been investigated are 

Duddingtonia flagrans and Arthrobotrys species.  These fungi form sticky nets or 

constricting rings that have been shown to be extremely effective at ensnaring 

nematode larvae in vitro and in situ in faeces.  The fungi grow hyphae that enter the 

body of the trapped nematode larvae and facilitate digestion.  The fungal 

chlamydospores are resistant to gastro-intestinal tract conditions, are able to pass 
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through the host unaffected (Larsen et al., 1992) and have previously been shown to 

be very effective (>80%) in reducing larval development in faeces deposited by 

small ruminants particularly in studies conducted in tropical and subtropical regions 

(Chandrawathani et al., 2004).  However, work in Australia (Knox and Faedo, 2001) 

Denmark (Githigia et al., 1997), Sweden (Waller et al., 1994) and the UK (Jackson et 

al., 2005) has shown more variable results. 

 

1.27  Immunological 

Two approaches have been utilised to improve the host’s immune response to gastro-

intestinal nematodes; vaccines and genetic selection of individuals for greater 

resistance/resilience to infections.   

 

1.27.1 Vaccines 

Research toward developing a vaccine for veterinary helminths of  ruminants has 

been long running with only two notable successes on the commercial front, an 

attenuated Dictylocaulus viviparous vaccine in cattle (Dictol; Peacock and Poynter, 

1980) and a recombinant Taenia vaccine in sheep (Lightowlers et al., 2000).   

Work on ovine nematode vaccines has had a roller coaster ride, with early successes 

at identifying prospective candidates but ultimately frustration at generating 

protective recombinant antigens (Smith and Zarlenga, 2006).  Early work focussed 

on killed vaccines (Clegg and Smith, 1978), attenuated whole parasite vaccines 

(Urquhart et al., 1966; Smith and Angus, 1980) and excretory/secretory (E/S) 

products from T. circumcincta (Rose, 1976 and 1978; Redmond et al., 2006) and H. 

contortus (Vervelde et al., 2002).  These approaches showed limited success.   

 

More recently, research has focused on the “hidden” antigen approach which 

involves immunization of animals with antigens derived from the gut lining of larval 

(Tavernor et al., 1992; Turnbull et al., 1992) and adult H. contortus worms (reviews 

by Smith and Zarlenga, 2006; Vercrysse et al., 2007; Smith, 2008).  The two most 

well defined, protective native antigens are from the intestinal brush border of H. 

contortus, H11 and H-gal-GP.  Both native antigens have shown, individually and in 
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combination, substantial protection (>85% reduction in worm numbers) against 

naturally acquired Haemonchus infection (Munn et al., 1993; Smith and Smith, 1993; 

Smith et al., 2001).  Unfortunately the high degree of protection afforded by the 

native antigens are lost with the recombinant proteins (Newton and Meeusen, 2003; 

Smith et al., 2003).  Potential explanations for this lack of protectiveness of 

recombinant versions have included antigen related issues such as inaccurate 

configuration, incorrect post translational modifications, inefficient administration 

protocols, inhibition of activity due to contamination with other proteins and poor 

product stability (Smith and Zarlenga, 2006).  Further suggestions for lack of activity 

include lack of conservation of antigens associated with protection between and 

within species and isolates (Maizels and Kurniawan-Atmadja, 2002) as well as the 

inherent variability observed between host immunological responsiveness to any 

vaccine (Smith and Zarlenga, 2006). 

   

1.27.2 Selective breeding 

Selective breeding programmes against a range of small ruminant diseases have been 

implemented with varying degrees of success throughout the world.  Some such as 

the national breeding programs selecting for resistance against scrapie were driven 

by concerns regarding consumer health, and led to the initiation of compulsory 

programmes within the European Union member states in 2005 (Roden et al., 2006). 

Others programs, such the selection of resistant/resilient animals against nematode 

infections, aim to enable the maintenance of acceptable animal health and improved 

productivity.  Breeding programs have been successfully implemented in New 

Zealand (NZ; Albers et al., 1987; Baker, 1990; Bisset et al., 1991 and 2001) and 

Australia (Woolaston et al., 1992).  Recent reports have described a flock of 

Rylington merinos in Western Australia that has been successfully bred to be 

resistant to GINs to such a degree that only 5% of the flock require treatment within 

the grazing season (Karlsson, 2008 cited in Van Wyk electronic debate, 2008), but 

this has taken in excess of 15 years to achieve.  
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1.28  Aims  
 

The prevalence of resistance to the three commercially available broad spectrum 

anthelmintics has risen dramatically within many of the major sheep rearing 

countries of the world, particularly South America, South Africa and Australia.  The 

resultant situation has left many farmers with difficult questions relating to strategies 

of worm control in their flocks.  The main aims of this thesis are to gauge the 

prevalence of AR in Scottish sheep flocks, assess tools and strategies for 

investigating the selection and dissemination of AR gastro-intestinal nematodes and 

examine potential managemental factors that may be associated with the 

development of AR. 
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2 A survey of anthelmintic resistant nematode 
parasites in Scottish sheep flocks 

 

David J. Bartley, Elizabeth Jackson, Kelly Johnston, Robert L. Coop, George B. B. 

Mitchell, Jill Sales and Frank Jackson. (2003). Veterinary Parasitology, 117 (1-2): 

61-71 

  

As mentioned in section 1.7 three classes of broad spectrum anthelmintic are 

available for the treatment of GIN of small ruminants in the UK.  Reports of 

resistance to the oldest of these classes, the benzimidazoles (BZ), has been well 

documented in the gasrtrointestinal parasites of a host of livestock (section 1.12) and 

companion animal species (Boersema et al., 1991; Lyons et al., 2007; Cirak et al., 

2004) throughout the world.  The prevalence of resistance is highest in small 

ruminants, particularly sheep and goats. Within the United Kingdom, previous work 

estimated the prevalence of BZ resistance in sheep flocks from England and/or 

Wales to range from between 14 and 47% (Cawthorne and Cheong, 1984; Hong et 

al., 1992).  A survey of 37 Scottish lowland sheep flocks conducted in 1991 

identified BZ resistance in nine (24%) of the flocks using an in vitro egg hatch test 

(EHT; Mitchell et al., 1991).   

 

The aim of this paper was to assess the prevalence of anthelmintic resistance (AR), in 

particular BZ resistance, in a cross section of Scottish sheep flocks.  The non-random 

survey relied on responses from members of the Moredun Foundation, which is a 

charitable organisation with a remit to provide information on issues effecting 

ruminant health and productivity.  One thousand members were mailed with details 

of the survey and invited to take part, 227 farmers responded favourably and 

received kits and instructions for collection and submission of faecal samples.  

Pooled mob faecal samples were sent under anaerobic conditions by 98 of the 227 

respondents from across all geographical regions of Scotland.  As in the previous 

Scottish survey by Mitchell et al., (1991) the EHT was used to examine submitted 

samples for thiabendazole (TBZ) resistance.  Where possible a LDT was also 
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performed on the faecal material seeking evidence of levamisole (LEV) and 

ivermectin (IVM) resistance.  

The EHT and LDT examine the effects of anthelmintics at inhibiting the “normal” 

behaviour of the parasite life stage, the EHT examines the effect of TBZ at inhibiting 

egg development and hatching and has been used to detect BZ resistance in the 

Trichostrongylidae e.g. Ostertagiinae, Haemonchinae, Cooperinae, 

Trichostrongylinae (Hunt and Taylor, 1989; Coles et al., 1992) and Molineidae e.g. 

Nematodirinae (Obendorf et al., 1986) families of nematodes and to detect LEV 

resistance in trichostrongylid nematodes (Dobson et al., 1986).  The LDT assesses 

the inhibitory effects of BZ and LEV on the development of eggs or first stage larvae 

through to third stage larvae (L3).  Resistance is confirmed in the EHT if the ED50 

estimation, i.e. the concentration of TBZ at which 50% of the eggs do not hatch, is 

greater than 0.1 μg/ml (Whitlock et al., 1980; Kelly et al., 1981).  The assessment of 

ED50 estimations were performed using a logit model that makes allowance for 

natural mortality.  The data analysis for the manuscripts was conducted using Genstat 

for Windows, 6th edition. A similar type of analysis was performed for the LDT: 

LD50 estimates i.e. the concentration of anthelmintic at which 50% of the eggs did 

not develop to L3. 

 

Results were evaluated in a variety of ways to examine the impact of regional and 

geographical location i.e. lowland, upland or hill and enterprise type i.e. commercial 

or pedigree on the prevalence of AR.  Overall TBZ resistance was detected on 64% 

of the farms examined, with prevalence’s of resistance of 81%, 61% and 55% on 

lowland, upland and hill flocks respectively with no discernable differences between 

the  prevalence rates of commercial and pedigree flocks, 64% and 60% respectively.  

Further analysis of these data highlighted regional differences of TBZ resistance 

prevalence but no appreciable difference between enterprise types.  Regional and 

geographical difference may be due to a variety of reasons, differences in the initial 

starting frequency of genes for resistance in the initial population, selection pressures 

on the resident populations, the degree of refugia that remains on paddock following 

treatment, the amount of movement within and between farms, difference in the 
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length of grazing time, increased reliance on anthelmintics, stocking rates and/or 

climate (Hong et al., 1996; van Wyk., 2001; Coles 2005).      

Breed differences may also play a part in the selection pressures exerted on a parasite 

population, breeds such as Texels and red Masai have been shown to be much more 

refractory to parasite infections than breeds such as Suffolk’s this disparity in 

susceptibility may influence the requirement for treatments needed per grazing 

season (Barger, 1989; Kloosterman et al., 1992; Good et al., 2006).   In addition to 

breed differences in susceptibility to parasites there are also differences in treatment 

efficacies due to decreased drug absorption, and presentation in sheep (Sangster et 

al., 1979) and cattle (Sallovitz et al., 2002) potentially due to differences in skin 

composition, physiology or fat deposition. 

 

These Scottish BZ prevalence findings are very similar to those seen in more recent 

surveys conducted in temperate regions with prevalence of BZ resistance at 41% and 

77% in New Zealand and Wales respectively (Waghorn et al., 2006a; Mitchell et al., 

2006).   Resistance to imidazothiazoles or avermectins was not detected in any of the 

small number of samples examined using the LDT in the survey.  Data published 

more recently from work conducted in Australia showed that the LDT was unreliable 

at detecting ML resistance with field derived material particularly with T. 

circumcincta (Besier 1998; cited in Kotze et al., 2006).  With the predominant 

species on both TBZ resistant and sensitive farms, in the Scottish sheep survey, being 

identified as T. circumcincta, the LDT results have to be viewed with some caution.  

The finding of mongeneric resistance in the Scottish flocks is encouraging and may 

be in part attributable to the incompletely recessive (Sangster et al., 1998) or semi-

dominant/co-dominant (Martin et al., 1988) nature with which the resistance is 

thought to be inherited. In other drug classes such as the avermectins where the 

gene(s) for resistance are thought to be dominant (Le Jambre et al., 2000), the 

detection of multigeneric resistance is more readily and rapidly observed (Chapter 3) 

leading to fewer options for the control of parasitic gastro-enteritis (Chapter 6). 

 

The survey detailed in the manuscript characterised the parasite populations 

phenotypically and highlighted an increase in ability to tolerate 2-3 times higher 
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concentrations of TBZ compared to those reported by Cawthorne and Cheong 

(1984).  Subsequent work on in vitro bioassays, such as the larval feeding inhibition 

test (LFIT, Alvarez-Sanchez et al., 2005b; Bartley unpublished data) and larval 

migration inhibition tests (Kotze et al., 2006), have provided methodologies for 

investigating alternative phenotypic markers of resistance by examining the 

behaviour of first and third stage larvae respectively.  The LFIT can characterise the 

feeding behaviour of resistant and susceptible nematodes populations to the 

macrocyclic lactone (ML) and levamisole (LEV) classes of anthelmintics and 

facilitates investigations into non-specific mechanisms of resistance such as the P-

glyoproteins (PgP) and the cytochrome P450s (CYP) in vitro (general discussion). 

 

Several problems exist with the EHT, firstly as with many other bioassays, its 

sensitivity is poor when the frequency of genes for resistance are low (Martin, 1989), 

therefore even though the prevalence data suggests an extremely high prevalence 

rate, this is potentially an under estimation of the problem.  Secondly, as the test 

stands, it provides no data on the species composition of the sample, consequently it 

is possible to miss the early signs of resistance in species that do not form the bulk of 

the sample, for example Trichostongylus species are not found in numbers until 

around late summer early autumn.  The survey was also unable to assess/investigate 

the material genotypically and therefore provided no information regarding the 

diversity (Silvestre and Humbert, 2002) or frequency (Stenhouse unpublished data) 

of BZ resistance alleles within the populations or to determine any information on 

the population genetics of the parasites (Gilleard and Beech, 2007).  Since the 

publication of this manuscript other studies have been published detailing reliable, 

accurate, sensitive and repeatable ways of detecting potential markers of BZ 

resistance, Table 1-7.   

 

The future  

In the last decade new or novel acting broadspectrum anthelmintic compounds have 

been described or re-assessed, the cyclooctadepsipeptides, amino-acetonitrile 

derivatives, p-amino-phenethyl-m-trifluoromethylphenyl piperazine and 

paraherquamide (sections 1.9.1 to 1.9.4).  The compounds have all been shown to 
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have a degree of activity against nematodes either in vitro and/or in vivo but still 

have many hurdles to jump before they will reach the market.  Lessons need to be 

learnt from the use and marketing of current anthelmintics to ensure that these new 

compound are used wisely and to prolong their usefulness and reduce the pressure of 

selecting resistance to them. 

 

In conclusion, the work here provide an update into the prevalence of BZ resistance 

on lowland sheep farms and supplied a snap shot of the regional and geographical 

prevalence of resistance in Scotland.  The findings suggest that the genes for BZ 

resistance are well established in Scottish sheep flocks and that the likelihood of 

reversion to susceptibility via the use of alternate drug classes (Waller et al., 1983 

and 1985; Martin et al., 1988) is slight.  

 

The questionnaire data provided an insight into the farming practices and 

management in relation to their anthelmintic resistance status.  The work has been 

presented at both international and national meetings and conferences and has been 

cited in advisory group publications such as “Sustainable Control of Parasites in 

Sheep” and “Scottish Animal Health and Welfare Advisory Group”. These 

guidelines have been extensively distributed amongst the farming and veterinary 

communities in an effort to maintain the sustainability and competitiveness of the 

UK sheep industry.   The published body of work has been instrumental in promoting 

the importance of anthelmintic resistance to the farming community and has also 

provided leverage for obtaining funding for anthelmintic resistance research at 

Moredun Research Institute.   

 

Contribution to the work 

All steps of experimental design from contacting potential participants, providing 

instructions for returning material, designing the questionnaire, processing and 

analysing the samples, assessing and streamlining the LDT, collating, preliminary 

analysis and interpreting the data.  Involved in returning results to participants via 

mail and telephone and presentation of data at national and international conferences 

and meetings.   
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3 A small scale survey of ivermectin resistance in 
sheep nematodes using the faecal egg count 
reduction test on samples collected from Scottish 
sheep 

 
Bartley, D. J., Donnan, A. A., Jackson, E., Sargison, N., Mitchell, G.B.B,. Jackson, F. 
(2006) Veterinary Parasitology 137 112-118. 
 
Detailed surveys investigating BZ resistance in GINs of sheep flocks had been 

conducted in the UK (Chapters 1 and 2), but to date no effort had been directed on 

determining the prevalence of IVM resistance. The aim of this study was to gain an 

understanding of the prevalence of IVM resistance on the selected Scottish farms by 

using a small cohort, predominantly from the Lothian and Borders regions.  The 

criterions for these selections were made on both a scientific and practical basis.  

Farms from the Lothian and Borders regions were easily accessible for provision of 

survey materials and information such as anthelmintic usage and had a very high 

prevalence of TBZ resistance, 80% and 92% respectively (Bartley et al., 2003).  The 

high prevalence of BZ resistance in these areas provided us with background 

information that they may be good areas to assess for the prevalence of IVM 

resistance.  Also recently published research has suggested that resistance to one 

class of anthelmintic may predispose a population to developing resistance to another 

class of anthelmintics (Eng et al., 2006; Hughes et al 2007). 

 

As mentioned in chapter 2, AR surveys have historically relied on in vitro tests, 

namely the EHT and LDT, because of their ease of use, cheap running costs and 

perceived reliability.  In 1996 the Drenchrite® LDT was launched commercially in 

Australia for detection of multiple class resistance, including AVM resistance, in 

mixed species populations of ovine nematodes.  Subsequent work showed it to be 

unreliable at detecting IVM resistance, particularly in field derived material that 

included T. circumcincta (Besier 1998; cited in Kotze et al., 2006).  The company 

have since stopped using the test for avermectin (AVM) resistance detection.  This 

poses problems for surveying IVM resistance in areas of the world where the 

predominant species is T. circumcincta, such as is the case in the UK. 
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Alternative in vitro tests have exploited the paralysing effects of the macrocyclic 

lactones (ML) on the somatic and pharyngeal musculature to characterise (ML) 

resistance but have not been used in AR surveys for assessing prevalence.   One 

reason for this is that the appropriate test may again depend on the species being 

tested.  Differences in sensitivity to IVM observed by Gill and Lacey 1998 for 

example, suggested that effects on motility are important for the expulsion of H. 

contortus and T. colubriformis but effects on the pharyngeal musculature are 

probably more important in T. circumcincta.  In 1991 Gill et al., detailed a motility 

test for characterising AVM resistance in H. contortus L3, a subsequent study has 

used the motility test to compare and characterise the effects of the novel 

anthelmintic compounds, the emodepsides, to commercially available anthelmintics 

in trichostrongylids (Schurmann et al., 2007).  The larval migration test, like the 

larval motility test, assesses effects on somatic musculature but avoids the need for 

potentially subjective assessment of activity by examining the ability of anthelmintic 

treated L3 to migrate through mesh filters.  The test has been trialled with a range of 

parasitic nematode species from a range of hosts e.g. pigs (Petersen et al., 1996), 

sheep (Kotze et al., 2006) and horses (Matthews, 2008).   

 

Tests characterising the feeding responses of adult worms (Geary et al., 1993) and 

first stage larvae (L1; Alvarez et al., 2005b) following exposure to ML have been 

useful at investigating the importance of the pharynx as a site of action for ML 

compounds.  To date none of these in vitro tests are routinely used tests for detection 

and diagnosis of ML resistance, and we are still reliant on in vivo tests. The 

controlled efficacy test (CET) is the gold standard test for detecting AR, it is an 

extremely versatile test that allows the precise determination of anthelmintic activity 

against all stages and ages of parasitic nematodes (Wood et al., 1995, more details in 

chapter 1.15.2) but is prohibitively expensive so the decision was made to use the 

faecal egg count reduction test (FECRT) for the survey.   

 

The FECRT has been used world-wide to characterise and assess anthelmintic 

efficacy and/or survey for the presence/absence of AR in sheep (Hughes et al., 2007), 
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goats (Ram et al., 2007), cattle (Suarez and Cristel, 2007), horses (Kaplan et al., 

2004), pigs (Dangolla et al., 1997), dogs (Kopp et al., 2007) and chickens (Sharma et 

al, 1990).  The official World Association for the Advancement of Veterinary 

Parasitology (WAAVP) has described appropriate FECRT methodology for small 

ruminants to assess the efficacy of anthelmintic treatments.  The test uses reductions 

in the faecal egg count (FEC) of treated animals compared to untreated control 

animals, with samples being collected after a specific period of time depending upon 

the drug class being investigated.  Resistance is inferred if the reduction in FEC is 

less than 95% with lower confidence intervals of less than 90% (Coles et al., 1992, 

chapter 1.15.1).   

 

As with the survey detailed in chapter 2, Moredun Foundation members were 

approached to take part in the survey, as well as farmers registered with the large 

animal practice of Edinburgh (Dick Vet) University. The respondents all received 

IVM oral drench (Oramec®, 0.08%; Merial Animal Health, Holland), 10 and 20 ml 

syringes, Banquet® SupasealTM re-sealable bags for returning individual faecal 

samples, freepost-envelopes and detailed instructions for dosing the stock and taking 

the faecal samples.  Since all previous UK reports of ovine derived IVM resistance 

had involved a single species, T. circumcincta (Sargison et al., 2001, 2004; Yue et 

al., 2003; Bartley et al., 2004), it seemed reasonable to assume that if cases of IVM 

resistance were to be found in numbers it would be in this species.  In order to 

maximize the likelihood of assessing the IVM resistance status of predominately T. 

circumcincta populations, participants were requested to collect 30 pre-treatment 

faecal samples, ideally but not essentially, from peri-parturient ewes.  The relaxation 

of immunity at and around parturition makes the ewe more susceptible to parasite 

infection at pasture, and to infections caused by the emergence of over wintering 

inhibited larvae that the animal may be carrying (Armour et al., 1966; Waller and 

Thomas, 1978).  In the UK hypobiosis of T. circumcincta is variable, but commonly 

observed in ewes (Stear et al., 1995).  The test animals were not to have received 

anthelmintic treatment, in the previous 4 weeks where non-persistent anthelmintics 

were being used or 8 weeks in the case of persistent anthelmintics and should have 

grazed ‘contaminated’ pasture. All of the sampled sheep were administered oral IVM 
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(Oramec®) via a syringe at the manufacturers recommended dose rate (MRDR; 0.2 

mg/kg body weight) or at the dose rate appropriate for the weight of the heaviest 

animal in the group by the farmer.  Drench efficacy was determined using one of two 

formulae, (1−[T2/C2]) x 100 (Coles et al., 1992) or (1−[T2/T1]) x 100 (McKenna, 

1990; Kohapakdee, 1995), where C2 is the arithmetic mean FEC of untreated control 

animals post treatment and T1 and T2 are the arithmetic mean FEC of animals pre- 

and post treatment respectively: 

  

During January and July of 2004, 38 of the 50 farms that were approached to take 

part in the survey returned samples. Of these farms, 17 contained sufficient parasite 

material to be assessed with confidence (i.e. FEC ≥ 150 eggs per gram (EPG) pre 

treatment) and eight samples needed to be viewed with caution due to the low 

numbers of eggs observed in their pre treatment samples (FEC >50<150 EPG). 

Results showed a much higher than expected prevalence of IVM resistance in the 

farms that were examined, with 6 of 17 farms (35%) with confirmed cases of IVM 

resistance and one suspected case.   The efficacies on the resistant farms ranged from 

66% to 92% whilst the efficacies from the sensitive farms were almost wholly 

100%.   

 

Three flocks (flocks 23, 24 and 25) were tested against all three broad spectrum 

anthelmintic classes and the results identified three cases of multiple class resistance, 

two with triple class resistance and one with double class resistance (FBZ and LEV).  

 

As mentioned previously much debate has been made concerning the most 

appropriate way of analyzing the data generated from a FECRT including basic 

questions such as whether to use arithmetic or geometric means (McKenna, 1990), 

individual or pooled counts (Cabaret and Berrag, 2004; Morgan et al., 2005; 

McKenna, 2006a and 2006b; 2007) and what is the appropriate form of analyses e.g. 

Bootstapping (Cabaret and Berrag, 2004), maximum likelihood mathematical 

techniques (Torgerson et al., 2005) or linear mixed model, followed by a Tukey's 

sequential trend test (Kaplan et al., 2007). Plate 3-1 illustrates a screen dump from a 

program devised and kindly supplied by Jacques Cabaret that estimates some of 
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these calculations, as well as providing boot strap re-sampling calculations.  

Bootstrapping is an approach that allows the operator to make statistical inference by 

estimating properties of an estimator such as treatment efficacy, by drawing many 

samples from a population. One standard procedure is the generation of a number of 

resamples, generally greater than 1000, from the observed dataset (and of equal size 

to the observed dataset), each of which is obtained by random sampling with 

replacement from the original dataset (http://en.wikipedia.org/wiki/Bootstrapping, 

last accessed 10SEP08).  Previous reports have used various formulae to determine 

efficacy, some of these are detailed below, where T1 and T2 are the FEC of treated 

animals pre- and post-treatment respectively and C1 and C2 are FEC of the untreated 

control animals at the appropriate pre- and post days. 

 
Method 1     -     1− [T2/C2]) x 100 using arithmetic means (Coles et al., 1992). 

Method 2     -     (1− [T2/T1]) x 100 using arithmetic means (McKenna, 1990). 

Method 3     -     (1 − [T2/T1][C1/C2]) x 100 using arithmetic means (Dash et al., 1988). 

Method 4     -     (1 − [T2/T1][C1/C2]) x 100 using geometric means (GM; Presidente, 1985). 

Method 5     -     (1/n) x Σ  ((1− [T2/T1]) x 100) using individual counts (Cabaret and Berrag, 2004). 

Method 6     -     (1/n) x Σ ((1−[T2/T1][C1/C2]) x 100 using individual counts (Cabaret and Berrag, 

2004). 

 

Table 3-1 illustrates the differences in treatment efficacy estimations for flock 24 

from the survey, derived by using the various formulae detailed above.   
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Table 3-1  Percentage efficacy estimates for sheep flock 24 treated with ivermectin 

(0.2mg/kg body weight) using 6 different calculation methods.  

 
 Faecal egg count (eggs per gram) Individual efficacies  
Sample C1 C2 T1 T2 Method 5             Method 6 
1 135 414 729 18 98 99 
2 1764 1089 297 18 94 90 
3 324 396 15 0 100 100 
4 117 54 171 42 75 47 
5 36 441 378 18 95 100 
6 162 693 306 2 99 100 
7 621 594 90 1 99 99 
8 288 117 441 0 100 100 
9 72 486 504 0 100 100 
10 153 369 180 4 98 99 
11 135 171 54 6 89 91 
12 135 5 9 12 0 0 
13 180 216 261 18 93 94 
14 108 261 117 0 100 100 
15 189 288 126 0 100 100 
16 12 288 459 * - - 
17 783 693 * * - - 
AM 285 412 275 8 91 89 
GM# 134 280 136 4   
 

Method         % Efficacy  
         
 Method % Efficacy  

1 98  4 99 
2 97  5 91 
3 98  6 89 

GM# - Based on egg count (n+1), * No sample 

 

Efficacies for flock 24 ranged from 89%-99% with four of the method classifying the 

parasite populations as being IVM sensitive, and two methods, 5 and 6, suggested the 

worms were resistant (efficacies of 89% and 91% respectively).  As a general rule, 

formulae using only treated animal results provide lower efficacies than those that 

include control animals (Miller et al., 2006) and hence diagnose resistance more 

readily.  Though analysis of 210 previously published FECRTs by Mckenna (2006a) 

which compared four different methods of calculating percentage efficacy showed no 
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difference in the detection of anthelmintic resistance irrespective of whether they 

included untreated control data or not.  The potentially small risk of over estimating 

resistance on farms due to only using treated animal calculations must be balanced 

with the practicalities of sample collection.  In borderline cases where a false positive 

result might occur, further investigation may be required.   Miller et al., (2006) 

expressed the need for a degree of caution when interpreting resistance when FECRT 

efficacies range between 90-95% because of the possibility of reporting either false 

positive or false negative results and McKenna (1990) suggested that a “suspected“ 

resistance category be used for results between this range.  

 

Plate 3-1 Screen dump of the “Bootstreat” program showing treatment efficacy 
estimates and associated bootstrapped re-sampling values for flock 24 following IVM treatment.   

(Program kindly supplied by J. Cabaret from INRA, France). 
 

 
 

The efficacies generated in this survey are from treatments at the MRDR.  Work in 

Australia (Palmer et al., 2000) suggested that the inclusion of an IVM group that was 

treated at half of the MRDR (0.1mg/kg) would provide a significantly more sensitive 

technique for detecting resistance in the earlier stages of selection, particularly for 

species such as T. circumcincta.  The reason for this increased sensitivity is due to 
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the differences between the MRDR i.e. 0.2mg/kg for IVM and the minimal effective 

dose rate for the dose limiting species.  For example adult Cooperia, Nematodirus 

and inhibited Teladorsagia (Reid et al., 1976; Armour, 1980; Armour et al., 1982; 

Grimshaw et al., 1996) are “naturally” more refractory to IVM treatment than species 

such as Haemonchus.  Surveys examining AR in sheep have used  ½ IVM MRDR as 

one of the FECRT treatments in Australia (Rendell et al., 2006) and New Zealand 

(Waghorn et al., 2006a) to great success and may have provided a clearer/truer 

picture of the degree of resistance that was present in the flocks that were examined. 

 

Practical and analytical adaptations have been made to the methodology to make it 

more acceptable to farmers for use in field prevalence surveys and, as mentioned 

earlier, statisticians for data analysis and interpretation.  One practical alteration is 

the use of treated animals only, and using pre and post egg counts for the 

determination of efficacy (McKenna 1990; Kohapakdee et al., 1995).  One area 

where the usefulness of the test can be improved is in determining the species 

composition of samples pre and post treatment (McKenna, 2007).  Traditionally 

speciation has involved the coproculture of pooled faecal material to generate L3 for 

identification using morphological traits.  Recent advances in molecular biology 

techniques have presented new opportunities for development of high through-put 

assays that could potentially provide rapid, sensitive and accurate assays for the 

speciation of material based on specific markers such as internal transcribed spacers 

regions (ITS; Gasser and Hoste, 1995; Silvestre and Humbert, 2000; Wimmer et al., 

2004). 

 

As with previous reports of IVM resistance in the UK (Sargison et al., 2001, 2004; 

Yue et al., 2003; Bartley et al., 2004), the predominant species involved in most of 

the cases identified in the survey were, T. circumcincta, though surprisingly two 

cases of resistant Trichostrongylus were also identified.  This finding of multigeneric 

IVM resistance in sheep was the first in of its kind in Europe, though cases have been 

reported in South Africa (Carmichael et al., 1987), Brazil (Echevarria and Trinidade, 

1989) and New Zealand (Badger and McKenna, 1990).  The finding of multigeneric 

IVM resistance may suggest that the selection process may be well advanced, 
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possibly more advanced than with BZ resistance (Chapter 2), within some UK sheep 

flocks.  Possible reasons for the differences in findings between the BZ and IVM 

resistance surveys are discussed further in the general discussion but may include 

differences due to the; genetics of selection, mechanisms of resistance, selection 

pressures, persistency’s of each drug class and length of time on market.  The 

findings of high prevalence of BZ resistance and multigeneric IVM resistance in 

conjunction with the reports of multiple class resistance (Chapters 4, 5, 6 and 8) has 

serious implications for the sustainability of British sheep farming (General 

discussion).   

 

The Future 

One of the areas of weakness with the FECRT is the inability to detect resistance in 

the early stages of development.  Stage specific differences in susceptibility to 

anthelmintic treatment have been observed in previous studies with H. contortus 

(Echevarria et al., 1992; Taylor et al., 2002) or T. colubriformis (Giordano et al., 

1988; Shoop et al., 1990) and may be attributed to differences in the feeding 

behaviour of various developmental stages, drug bioavailability/presentation, stage 

specific differences in drug receptors/binding specificity and/or metabolic resistance 

mechanisms (Chapter 5; Marriner et al., 1985; Forrester et al., 1999; Paiement et al., 

1999).  The identification of stage specific differences in susceptibility to treatments 

highlights the need for genetic markers or other bio-markers that will enable a rapid 

and early identification of AR sensitivity and permit prompt early intervention.  The 

early detection of AR is essential if producers are to stand any of maintaining a high 

degree of productivity in their stock. 

 

As with the BZ survey the samples were only analysed phenotypically and no 

attempt was made to assess the material at a genetic level.  The mechanisms for 

macrocyclic lactone resistance are not as well defined as with the BZs and are 

thought to possibly involve the glutamate (GluCl; Culley et al., 1994) and/or gamma-

aminobutyric acid (GABA; Holden-Dye and Walker, 1990) gated chloride channels 

or ATP binding cassette (ABC) transporters such as PgP (Kerboeuf et al., 1999).  A 

better understanding of the mechanisms of resistance will hopefully provide useful 
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molecular markers or in vitro tests for resistance detection and characterisation.  

Until such time as there are reliable and affordable in vitro methods for ML 

resistance detection, the FECRT will remain as the mainstay of detection in the field. 

 

The increasing prevalence of both BZ and IVM resistance will make the decision 

making of some farmers more complex when it comes to controlling nematodes on 

their farms.  As mentioned previously in chapter 2 new drugs will help alleviate the 

pressure on farmers with multiple resistances in the short term but are unlikely to 

remain wholly effective if used in the same fashion as the three broad-spectrum 

drugs that are on the market at present.  Where applicable the routine use of pasture 

management and integrated management strategies will play an important role in the 

economic viability of some enterprises.  Strategies such as the use of parasite 

replacement, combination treatments of compounds, including any new active 

compound that may come onto the market, are discussed in the general discussion. 

Loss in productivity, due to decreased carcass weight and wool production, is 

estimated to be around 10% on farms where moderately inefficient treatments are 

administered to stock (Barrett et al., 1998; Besier, 2007a).  As treatment inefficiency 

increases and involves more species, losses will increase markedly.   

     

In conclusion, the survey has provided the first clear evidence that the scale of 

ivermectin resistance in Scotland and possibly the UK is potentially higher than 

originally predicted, though caution must be observed due to the small non random 

cohort used for the survey.  The identification of multigeneric resistance on two 

separate farms adds weight to this argument and further work on determining a 

clearer picture on the true prevalence of IVM resistance needs to be conducted 

urgently. 

 

Again, as with the data generated from the BZ resistance survey, the work has been 

presented at both international and national meetings and conferences and has been 

cited in advisory group publications such as “Sustainable Control of Parasites in 

Sheep” and “Scottish Animal Health and Welfare Advisory Group” to highlight the 

need to administer effective quarantine treatments to newly purchased or in coming 
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animals, adopting best practice with regards to anthelmintic usage and to routinely 

monitor anthelmintic treatment efficacies on individual farms.  Work published by 

Morgan et al., 2005 and McKenna in 2007 showed that treatment efficacies based on 

composite samples could be as accurate as those generated by individual samples.  

These findings could have a profound effect on the cost implications of conducting a 

FECRT and therefore the uptake by the farming community, leading to a better 

understanding of the scale of the problem in UK production animals. 

 

Contribution to the work 

The candidate was involved in all steps of experimental design from contacting 

potential participants, providing instructions for returning material, processing and 

analysing the samples, collating, analysis and interpreting the data.  Involved in 

returning results to participants via mail and presentation of data at national and 

international conferences and meetings.   
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4 Characterisation of two triple resistant field isolates of 
Teladorsagia from Scottish lowland sheep farms 

 
Bartley, D. J., Jackson, F., Jackson, E., Sargison, N. (2004). Veterinary Parasitology 
123 189-199. 
 
In chapters 2 and 3 the prevalence of BZ and IVM resistance in Scottish sheep flocks 

was detailed.  These studies provided an indication of the extent of single drench 

class resistance in Scotland but gave no indication of the relationship between 

different class resistances in multiple resistant populations and more importantly how 

these multiple class resistant parasites could be treated.  In 2001, Sargison et al., 

reported on a naturally infected flock of Suffolk lambs (Farm A) that showed 

continued signs of ill-thrift following treatment with ivermectin at the MRDR.  A 

FECRT was subsequently conducted on the flock to examine the efficacy of 

oxfendazole (OFZ; Systamex®), levamisole (LEV; Levacide®) and ivermectin 

(IVM; Oramec®).  These investigations showed that the flock were still shedding 

large numbers of T. circumcincta eggs following treatment, indicating a total failure 

i.e. 0% efficacy at 12 days post treatment. This finding, though not unique, was the 

first of its kind to be reported in sheep in Europe, multiple resistant T. circumcincta 

had been reported in goats in Scotland almost a decade earlier (Jackson et al., 1992).  

At around the same time, a second case of ill thrift was being investigated by the 

parasitology department at Moredun Research Institute.  This suspected case 

involved a second flock (farm B) that was discrete from the first farm but in the same 

geographical area.  The principal aim of this paper was to examine the efficacy of 

anthelmintic treatment, at the MRDR, against each of the isolates and to confirm the 

findings from the field, under strict laboratory conditions.  The second aim was to 

investigate potential treatment regimes using the farm A isolate that might be 

effective at treating sheep with multiply resistant T. circumcincta and to identify 

possible quarantine treatments for bought in and relocated stock. 

 

Faecal material from lambs from each of the two suspect resistant flocks was brought 

into the laboratory and cultured at 22ºC for 10 days using the techniques as described 

by Coop et al., 1995.  The resultant infective larvae (L3) from each isolate were 
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passaged through parasite naïve sheep to provide sufficient material for further 

examination.  Faecal egg count reduction tests (Coles et al., 1992; farms A & B), 

controlled efficacy tests (CET, Wood et al., 1995; farms A & B) and EHT (Hunt and 

Taylor, 1989; farm B) were conducted on the resultant material. The material from 

farm B was only tested with LEV (Levacide ® 7.5mgs/kg bodyweight (BW)), and 

IVM (Oramec® 0.2mg/kg BW) to fully ascertain their efficacy on adult worm 

populations, the EHT having already confirmed the TBZ resistance status.  The 

material from farm A was subjected to a more extensive range of treatments, 

fenbendazole (FBZ; Panacur®, 5mg/kg BW), LEV (as above), IVM (as above) and 

moxidectin (MOX; Cydectin®, 0.2mg/kg BW) singly or with combinations of 

FBZ+LEV, FBZ+IVM or FBZ+LEV+IVM.  

 

The CET results confirmed that both isolates, A and B, were resistant to all three 

broad spectrum anthelmintic classes i.e. reduction in total worm burdens of less than 

95% compared to untreated controls (Coles et al., 1992 and 2006).  Fenbendazole, 

LEV and IVM treatments were 59%, 88% and 60% respectively against the farm A 

isolate and N/A, 51% and 72% effective respectively against the farm B isolate. The 

efficacy results were, as would be expected, higher under strict laboratory conditions 

than that seen in the field.  Factors such as feed quantity (Warner, 1981; Taylor et al., 

1992; Ali and Hennessy, 1995a, 1995b and 1996) and quality (Warner 1981; Ali and 

Chick, 1992) and body condition of the animals (Van Gogh et al., 1990; Lespine et 

al., 2004; Perez et al., 2006 and 2007) can affect the bioavailability, absorption and 

presentation of the anthelmintic compounds.  Other factors that can affect treatment 

efficacy in the field include developing immunity and concurrent infections within 

the animals.  Even under strict laboratory conditions the CET can be affected by 

those factors identified above but these can be managed more efficiently.  

 

The combination treatments had efficacies of 94%, 93% and 92% for FBZ+IVM, 

FBZ+LEV and FBZ+LEV+IVM respectively and showed improvement over the 

singly administered drenches but were ineffective at removing all of the worms, the 

only treatment with ≥95% efficacy was with MOX.  Moxidectin and IVM are both 

from the ML class of anthelmintics (Chapter 1.7.3) but MOX has been shown to be 
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highly effective at removing IVM resistant parasite in the field (review conducted by 

Kieran, 1994).  The mechanism(s) for resistance (Chapter 1.19) are generally thought 

to be the same for both compounds with the difference in efficacy being attributed to 

the increased potency and/or persistency of MOX (Conder et al., 1993; Shoop et al., 

1993; Sutherland et al., 1999).  Resistance to MOX has been detected in sheep flocks 

from around the world (Sutherland et al., 1999; Love et al., 2003; Le Jambre et al., 

2005; Wilson and Sargison, 2007) and for T. circumcincta and H. contortus it is 

generally preceded by a loss of persistency against the establishment of incoming 

larvae (Sutherland et al., 1997; Sutherland et al., 1999; Barnes et al., 2001; Sargison 

et al., 2005 – see chapter 6; von Samson-Himmelstjerna et al., 2007b).  In the UK the 

label claim of persistence for Cydectin 0.1% oral drench for sheep against re-

infection with H. contortus and T. circumcincta is 35 days 

(www.noahcompendium.co.uk).  Although there may be differences in the 

susceptibility of IVM resistant parasites to MOX it is accepted that an increase in the 

prevalence of IVM resistance in UK sheep flocks (Chapter 3) would, following 

further selection, ultimately lead to a decline in MOX efficacy.  Since the publication 

of this manuscript the first case of MOX resistance has been identified in Europe 

(Wilson and Sargison, 2007). 

 

The results from the FECRT showed a good correlation with those from the CET; 

overall the reductions in faecal egg counts were higher than the reductions in worm 

burdens with the combinations and MOX alone but lower with the other three singly 

administered anthelmintics.  An in-depth analysis by McKenna (2006a and 2006b) of 

61 previously published cases of AR, where CET and FECRT data were available 

showed this positive relationship between the two assays to be common.  The high 

FECRT efficacies observed with the combination and MOX alone treatments 

suggests that the test might be less sensitive at determining multiple class and MOX 

resistance than with resistance to BZ, LEV or IVM alone.  Post-treatment FECRT 

samples were collected when the animals were euthanased 7 days post-treatment for 

the CET.  The optimal time for re-sampling of treated animals is 3-7 days, 8–10 days 

and 14–17 days post treatment for the LEV, BZ, and ML respectively to avoid 

possible false positive/negative results (Coles et al., 2006). Since the time period 
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used in this study was shorter than that recommended by the WAAVP guidelines for 

detection of combination treatment resistance, it is possible that the efficacies may 

have been higher than expected.  The different re-sampling times are related to the 

different modes of action and potencies of the various compounds.  Levamisole has 

been shown to be less effective against the immature stages of some worms and 

therefore re-sampling needs to be conducted before maturation of surviving 

immature stages occurs (Grimshaw et al., 1996).  Suppression of egg production may 

occur for up to 10 and 14 days post treatment with BZ (Martin et al., 1985) and ML 

treatments (Jackson 1993; Tyrell et al., 2002) respectively.   If suppression of egg 

laying were an issue, then under the most extreme circumstances one might expect 

under-diagnosis of resistance. Examination of the egg count data from day seven 

shows little or no evidence of high levels of suppression of egg production following 

IVM and BZ treatments since the efficacies for the two drugs were 56% and 44% 

respectively.  

 

The CET results showed that the use of combination therapy treatments improved the 

efficacy by between 4% and 35% compared to singly administered treatments 

(except MOX), but did not wholly remove the population.  The variation in 

improvements would suggest that the isolate is not a homogeneous population where 

all of the parasites carry the genes for triple class resistance but are individuals that 

are at varying stages along the AR continuum.  The interactions of the FBZ + IVM 

and FBZ + LEV were examined using the formula as described by Anderson et al., 

(1991) and found to be synergistic and additive respectively.  Improvement in 

efficacies in previously reported trials have ranged from 0-99%.  Differences have 

been attributed to the individual isolate and species variation and to the initial 

frequency of resistance alleles.  The use of combinations have been advocated as a 

method of slowing down the selection of resistance (Barnes et al., 1995) where the 

initial frequency of resistance alleles was 0.01%, but where the initial frequency was 

≥ 1% these effects were greatly reduced.  

 

In addition to animal welfare issues there are financial implications to the farmer 

regarding the presence of multi class AR.  There are many ways of assessing the 
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financial implications of AR, firstly there are the purely practical losses incurred with 

the increased costs of buying and administering treatments,  for example one 

treatment of BZ, LEV, IVM or MOX for a 50kg ewe costs around 15p, 14p, 25p and 

43p respectively (prices obtained from www.wessexanimalhealth.co.uk  on 

11NOV07).  If combination treatments are required, the costs increase accordingly.  

Additional, less easily defined, costs include time spent planning alternative 

strategies, investigating and sourcing alternative compounds, purchasing 

anthelmintics, gathering and returning stock, constructing or maintaining handling 

facilities and treating animals.  Secondly there are the indirect financial costs 

incurred with the loss in productivity associated with chronic gastrointestinal 

infections e.g. ill thrift, slower weight gain, decreased carcass quality, decreased 

fleece weight and quality (Brunsdon and Vlassoff, 1982; Sykes et al., 1997).  Again 

additional costs may include veterinary intervention, the purchase and provision of 

addition food stuff to ensure fattening of animals at allotted times, reduced market 

prices and potentially additional time spent dagging affected animals to prevent fly 

strike.  Finally there is the ultimate cost associated with total failure of all available 

treatments, in two reported cases in the UK farms have been totally destocked with 

flocks being culled and the affected fields ploughed up and reseeded, plate 4.1 

(Sargison et al., 2005 – chapter 6; Blake and Coles 2007).   

 

The drastic decision taken in both these cases followed concerted efforts at 

maintaining productivity by lowering stocking rates, providing additional feed for 

lambs and treating of stock with MOX.  The issue of the correlation between ill thrift 

and anthelmintic resistance is poorly defined and further research in this area is 

required urgently. 
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Plate 4-1 Images of farm A pre (2001) and post (2003-2006) identification of 

multiple anthelmintic resistance.  

(Photographs kindly supplied by N. Sargison) 
 

 
 

The results from this trial highlighted the fact that in the short term, the use of MOX 

alone and/or combination may provide a useful tool as a quarantine treatment in 

sheep.  Ultimately the sustainability of sheep farming will rely on the implementation 

and maintenance of good farming practices including alternative control strategies, 

good farm and pasture management as well as responsible anthelmintic usage.   

 

In conclusion, the trial which was conducted under rigorous laboratory conditions 

provided the first confirmed findings of triple class resistant T. circumcincta in sheep 

in Europe. The situation elsewhere in other European countries is unknown due to 

the small numbers of surveys that have been conducted.  Although, subsequent 

reports have identified multiple class and/or genera resistance in; England (Blake and 

Coles, 2007), the Netherlands (Borgsteede et al., 2007), Slovakia (Cernanska et al., 

2006), Spain (Alvarez-Sanchez et al., 2006) and Wales (Mitchell et al., 2006), which 

would suggest that multiple resistance is an increasing phenomenon throughout 

Europe to a greater or lesser degree. 

 

The studies established that the farm A population was comprised of various subsets 

of worms, some that exhibited either solely single drench class resistance and others 

that carried the genes for multiple class resistance. The end result is a population that 

could be treated, though not eradicated, with MOX or combinations of anthelmintics 

2001 2003-2006 
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classes.  The research has provided support for the recommendations currently being 

made for strategies that incorporate quarantine treatments to slow the spread of AR 

through its importation with new or returning stock.   

 

Again, as with the data generated from the previous two chapters the work has been 

presented at both international and national meetings and conferences and has been 

cited in advisory group publications such as Moredun Foundations ACME message, 

“Sustainable Control of Parasites in Sheep; SCOPS” and “Scottish Animal Health 

and Welfare Advisory Group”.    

  

The unique nature of the isolate has led to it being given an isolate designation 

(Moredun T. circumcincta isolate 5 or MTci5) and for further in vivo characterisation 

to be conducted assessing the treatment efficacies directed against larval stages, 

chapter 5. 

 

Contributions to work 

The candidate was involved in all steps of experimental design from submitting 

experimental committee forms, processing and analysing samples, collating, 

analysing and interpreting the data and presentation of data at national and 

international conferences as well as scientific and farming meetings.   
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5 Further characterisation of a triple resistant field 
isolate of Teladorsagia from a Scottish lowland 
sheep farm 

 
Bartley, D. J., Jackson, E., Sargison, N., Jackson, F. (2005). Veterinary Parasitology 
134 261-266. 
 
 
The phenotypic characterisation of anthelmintic treatments directed against MTci5 

using FECRT and CET, as detailed in chapter 4, provided valuable information about 

the treatment of an established, predominately adult, population of a triple class 

resistant isolate of T. circumcincta.   A secondary finding from the trial was that 

survivors of MOX and combination treatments, were mostly immature, accounting 

for 59%, 83% and 100% of the surviving populations for FBZ+LEV, 

FBZ+LEV+IVM and MOX respectively.  Very little work has been conducted into 

the effect of treatments administered to early developmental stages of infections or 

the possibility of differential stage specific selection for AR.   

 

The aim of this experiment was to ascertain if there were stage specific differences in 

the expression of single class and multiple class anthelmintic resistance in the field 

isolate, designated MTci5, using a similar CET experimental protocol as outlined in 

chapter 4.  The protocols differed in the following ways; all of the treatments were 

administered on day eight rather than day 28 P.I. and the lambs were slaughtered on 

day 22 not day 35 P.I. 

 

The CET results confirmed that the immature stages of T. circumcincta expressed 

resistance against single drench families (AVM, BZ and imidazothiazoles) and 

combinations of these drenches.  The only anthelmintic which provided a greater 

than 95% efficacy was MOX.    The variations in efficacies against MTci5 between 

treatments administered on day 28 P.I. and day eight P.I. ranged from between -50% 

to +22% (Table 5.1.)   
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Table 5-1 Percentage efficacies and associated variations of treatments administered 
against the MTci5 isolate of T. circumcincta, 8 and 28 days post infection.  

  Percentage efficacy  

Treatment  Day 8  Day 28  

Percentage difference 

day 8 v day 28 

Fenbendazole (FBZ)  36  59  -23 

Levamisole (LEV)  38  88  -50 

Ivermectin (IVM)  82  60  +22 

Moxidectin  97  98  -1 

FBZ + IVM  86  94  -8 

FBZ + LEV  60  93  -33 

FBZ + LEV + IVM  88  92  -4 

 

The efficacy of treatment against larval and adult stages can vary between different 

parasites and also by the specific anthelmintic being used.   Echervarria et al., (1992) 

reported that IVM administered at the MRDR, was less effective against the fourth-

stage larvae (day 6 P.I.) of an anthelmintic sensitive isolate of H. contortus compared 

to treatments given on day 21 P.I., with efficacies of 96% and 98.9% respectively. 

By way of contrast studies using the pig parasite Oesphagostomum dentatum showed 

an increase in IVM efficacy (0.3mg/kg) when directed against larval stages in 

comparison to adult stages, 91% and 69% effective respectively (Petersen et al., 

1996).  Taylor et al., (2002) proposed that thiabendazole (TBZ) treatment efficacies 

were lower against pressurised populations of a BZ resistant H. contortus when they 

were treated at 21 days P.I. compared to if they were treated at 5 days P.I. The 

parasites were pressurised with TBZ, at the full MRDR, for five generations. 

Surviving larvae, post treatment, from one generation were used to infect another 

animal for the next round of treatments i.e. both the adult and juvenile populations 

were ultimately exposed to five rounds of TBZ treatments.   

 

 The results are unequivocal and confirmed that stage specific variations in 

susceptibility to broad spectrum anthelmintics can occur within T. circumcincta 

populations.  There are a number of potential reasons for these differences; a) 

differences in drug receptors and/or binding specificity (Paiement et al., 1999). b) 

Non specific anthelmintic handling mechanisms such as the ATP binding cassette 

transporters e.g. PgP or the oxidative enzymes e.g. cytochrome P450 (CYP) being 
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upregulated or differentially expressed at different developmental stages - see 

general discussion. c) Reduced drug bioavailability and/or presentation to larval 

stages.  The parasite may be “buffered” from the deleterious effect of anthelmintic 

treatments in the gastric glands. When the concentration of anthelmintic has 

decreased sufficiently, the parasite can recover and resume development. d) Distinct 

feeding behaviour of the various developmental stages leading to different drug 

exposure. e) Physiological effects at mucosal epithelium with larvae developing into 

adults between day 8 and 16 (Scott et al., 1998) affecting anthelmintic availability 

and/or presentation (Marriner et al., 1985). f) Rise in gastric pH due early parasitic 

damage, reducing solubility and absorption of anthelmintics with a faster rate of 

excretion (Prichard 1985). 

 

To conclude, the findings of significantly lower treatment efficacies in the current 

trial potentially have serious implications for the detection and treatment of multiple 

resistant T. circumcincta populations in the field.   Resistance selected within or 

exhibited by larval stages obviously can not be detected via the most widely applied 

resistance test the FECRT.  Since at present we have no means of detecting the 

presence of, or size of, larval populations in the live animal it follows that it is only 

when these immature stages finally mature that we will be able determine their 

sensitivity to anthelmintics.  Given the ability of many endoparasitic nematodes to 

inhibit at an early stage of development for many months, the potential risk posed by 

resistant larval stages is one that needs consideration when designing biosecurity 

measures.  However as the results from this study show, even combination 

treatments may not be wholly effective in eliminating immature resistant stages.  For 

these reasons it is important that when returning post quarantine treated animals to 

pasture it is important to utilise the natural refugia found on contaminated pasture 

rather than using clean grazing.    

 

Future 

Due to the unique nature of the isolate, further in vitro characterisation of the MTci5 

isolate has been conducted in the laboratory.   Real Time PCR and pyrosequencing 

methodologies have been developed for detecting SNPs within the β-tubulin isotype 
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1 gene associated with BZ resistance, F167Y, A198E & F200Y.  Preliminary work 

would suggest that the point mutations at codons 198 and 167 are not present in 

MTci5 and that the mutation at codon 200 does not wholly explain the BZ resistance 

story.  Genotyping based on adult and larval populations pre and post FBZ treatment 

showed that both SS and RS survived treatment/exposure.  Pre-treatment populations 

of L3 and adult worms contained on average 9%, 48% and 43% SS, RS, and RR 

individuals, respectively, whereas post-treatment there were 2%, 21% and 77% SS, 

RS, and RR individuals (Stenhouse, 2007).   

 

In tandem with the molecular work extensive effort has been placed into 

investigating the role of non specific mechanisms of resistance such as the oxidative 

enzymes (cytochrome P450; CYP) and the membrane proteins (P-glycoproteins; 

PgP).  Further work into these areas has been conducted as part of a European Union 

funded projected entitled PARASOL (www.parasol-project.org/) and is detailed 

further in the general discussion.  

 

At present, the treatment of multiple resistant isolates in the field relies heavily on 

the use of milbemycins, though this is likely only to be a short term solution as was 

highlighted in conclusion of chapter 4 and by the recent emergence of MOX 

resistance in the UK (Wilson and Sargison, 2007).  Two areas need to be investigated 

in the light of multiple class resistance, firstly there is an urgent need to investigate 

the specific and non-specific mechanisms that might be involved in single class and 

multiple class resistance and determine if these mechanisms will have a detrimental 

impact on any new compounds that may be brought onto the market. Secondly there 

is a need to assess alternative or integrated management systems that may be useful 

for maintaining productivity and economical viability in the face of a potentially ever 

decreasing arsenal of effective broad spectrum anthelmintics.   

 

Contributions to work 

The candidate was involved in all steps of experimental design from submitting 

experimental committee forms, processing and analysing samples, collating, 
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analysing and interpreting the data and presentation of data at national and 

international conferences as well as scientific and farming meetings.    
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6 Failure of moxidectin to control benzimidazole, 
levamisole and ivermectin resistant Teladorsagia 
circumcincta in a sheep flock 

 
N. D. Sargison, F. Jackson, D. J. Bartley, and A. C. P. Moir. Veterinary Record 156 
(4):105-109, 2005. 

 
The MLs have been used extensively in the treatment of both endo- and ecto-

parasites of ruminants (Shoop et al. 1995) for over 30 years.  Moxidectin, as 

described previously is a second generation ML from the milbemycin family, with a 

greater potency and persistency than the first generation parent compounds (Steel, 

1993).  As with the BZ and LEV classes of anthelmintics the MLs have not been 

immune to the development of anthelmintic resistance within ovine and caprine 

gastro-intestinal nematodes.  The prevalence of avermectin (IVM) resistance in the 

Lothian and Borders region of Scotland, as detailed in chapter 3, has increased at an 

alarming rate.  Fortunately resistance to the milbemycins (MOX) is still uncommon 

world-wide (Sutherland et al., 1999; Love et al., 2003; Le Jambre et al., 2005; 

Wilson and Sargison, 2007).  Results by Ranjan et al., (2002) suggest that ML 

resistance is slower to develop than the other classes of broad-spectrum anthelmintics 

and that the development of resistance to MOX is slower than that seen with IVM.  

The difference in the speed of development to resistance can be attributed to a host of 

factors, chapter 1.12, but include initial resistant gene frequency, 

dominance/recessive nature of inheritance or whether resistance is mono- or 

polygenic.  The loss of persistency, as mentioned previously, is generally thought to 

be a precursor to full blown resistance with MOX (Ridler et al., 2002), although it is 

thought that side resistance occurs between the avermectins and milbemycins (Shoop 

et al., 1993). 

  

The aim of this trial was to investigate the effectiveness of moxidectin (Cydectin®, 

Fort Dodge), which has a higher therapeutic efficacy against T. circumcincta than 

IVM (Sutherland et al., 1999), in controlling nematodes on a farm where resistance 

to BZ, LEV and IVM had been identified and confirmed in the laboratory (Sargison 

et al., 2001; Bartley et al., 2004).  Faecal material from animals grazing on pasture 
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on the farm had been collected, cultured and characterised previously (MTci5; 

chapters 4 & 5).  The farm was set stocked and intensively farmed with a heavy 

reliance on anthelmintic intervention to maintain productivity; the farm had solely 

used IVM for the previous two years prior to this investigation.  Faecal egg counts 

(FEC) were conducted on ewes following MOX treatments around parturition/turn 

out and at housing, and on lambs throughout the grazing season.  The trial ewes and 

lambs were turned out onto the “contaminated” pasture, where MTCi5 had been 

isolated, in April 2002.  In June 2002 the pasture was subdivided into six one hectare 

paddocks and the weaned lambs were separated and set stocked in groups of 21 – 22 

animals.  Each of the lambs from the six trial paddocks received five MOX 

treatments throughout the grazing season.   Parasite naïve tracer lambs were grazed 

on the six trial paddocks at the beginning (April), middle (June) and end (August) of 

the grazing season and euthanased four weeks later to estimate the size and 

composition of worm populations on the pastures. 

 

The initial results shown in figure 6.1 (MOX 2, MOX 3 and MOX 4) confirmed the 

effectiveness of MOX, at the MRDR, in treating a BZ, LEV and IVM resistant 

parasite population under field conditions.  This finding of high MOX efficacy 

against IVM resistant nematodes is in agreement with others such reports from 

around the world (review by Kieran, 1994).   
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Figure 6.1 Arithmetic mean trichostrongyle faecal egg counts of lamb’s pre and post 
moxidectin treatment on trial paddocks. MOX 1 (not shown) was administered in May to 
control Nematodirus. 

 

Overall the reappearance of eggs, as determined by FEC, was quicker to return and 

of a greater magnitude compared to that seen following the initial round of 

treatments (MOX 1, data not shown).  The reappearance of trichostrongyle eggs in 

faeces, table 6.1, occurred on average around 35 post treatment (P.T.) following the 

weaning treatment in June (MOX 2) and around 25 and 28 P.T. in the subsequent 

treatments, July (MOX 3) and September (MOX 4) respectively.  In the UK the label 

claim for persistence with Cydectin® 0.1% oral drench for sheep against reinfection 

with T. circumcincta is 35 days (http://www.noahcompendium.co.uk, last accessed 

10SEP08) meaning that if the population is monogeneric i.e. only one genera, egg 

counts should not be seen for around 50-55 days, much longer than observed here.  

The finding of reduced persistency of oral MOX and IVM and albendazole 

controlled release capsules against resistant populations of T. circumcincta have been 

observed in previous trials (Sutherland et al., 1997, 1999; Vickers et al., 2001).  
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Table 6-1 Time interval before reappearance of trichostrongyle eggs in egg counts of 
lambs grazing six trial paddocks following moxidectin treatments in June (MOX2), July (MOX 
3) and September (MOX 4) 

 Egg reappearance (days post moxidectin treatment) 
Paddock MOX 2 MOX 3 MOX 4 
A 35 21 35 
B 21 21 21 
C 35 21 28 
D 42 28 28 
E  >42 21 28 
F 28 35 28 
Average 32 25 28 
Median 35 21 28 

 

The apparent loss of persistency may be attributable to a number of factors, a) whilst 

high levels of MOX are maintained in the host only highly resistant individuals are 

able to reproduce and in so doing, rapidly amplify numbers of resistant larvae on 

pasture (Herd, 1984). b) Removal of susceptible individuals may improve the 

conditions in the host for resistant survivors and consequently increase the burdens 

and thereby increase pasture contamination (Sutherland et al., 2002b). c) One of the 

primary effects of MLs on IVM resistant female worms at an early stage of selection 

is a suppression of ova production and expulsion, as resistance progresses this effect 

become lesser and egg production occurs earlier and so egg are detected sooner 

(Jackson et al., 1993; Tyrell et al., 2002). 

 

The increased potency and persistency of second generation MLs has rapidly made 

them the anthelmintic of choice for many farmers in the treatment of both ecto- and 

endoparasites. The indiscriminate and often ill timed use of these compounds may 

select heavily for ML resistance in parasite populations.  Treatments administered to 

animals at times where the parasite burden in the host, or on pasture, is low means 

that pastures are reseeded with only resistant parasites (Besier and Love, 2003).  The 

treatment of ewes around parturition is also commonplace (70% of surveyed farmers 

treated either pre or post lambing, unpublished data) with a view to reducing pasture 

contamination and thus reducing the parasite exposure to their offspring.  The 

practices of treating ewes pre-lambing with long acting products or post lambing 

with a short acting product have been identified as risk factors associated with the 

presence of IVM (Lawrence et al., 2006) and albendazole resistance (Leathwick et 
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al., 2006).  Further anaysis of the works suggests that the practice is less selective for 

resistance in Merino ewes, than in Romney ewes, because the rate of re-infection in 

Romney ewes is low due to them re-acquiring their anti parasite immunity rapidly, 

around two weeks post partum (Leathwick et al., 1999).  Therefore dilution of 

resistant parasites on pasture i.e. in refugia is less (Leathwick et al., 2006).  Ewes on 

the farm in this current trial were treated immediately post lambing and this may 

have inadvertently applied a greater selection pressure for ML resistance, though the 

peri-parturient relaxation in immunity in Suffolk ewes is thought to be similar to that 

reported in Merino sheep by Barnes and Dobson (1990).  Larval establishment 

increases from, the normal level, around 1% to 65% in the two week period prior to 

parturition and remains high until the end of lactation (Barger 1997).  

 

The confirmation of T. circumcincta as the predominant species post treatment was 

expected.  Previous work conducted on the farm and in previous Scottish 

anthelmintic resistance surveys has consistently linked this parasite species with 

reports of resistance. 

 

So in conclusion, the results of this trial have highlighted the value of MOX 

treatments in the control of multiple resistant nematodes, in particular T. 

circumcincta and have confirmed its usefulness as a potential quarantine treatment.  

But the results have also highlighted the problems that can be encountered with a 

total reliance on one compound.  The failure to effectively quarantine treat infected 

animals has been identified as one the most important factors in the increased 

prevalence of anthelmintic resistance seen in the UK (Coles, 1997) and has been 

implicated in the intercontinental spread of anthelmintic resistance (Himonas and 

Papadopoulos, 1994; Corba et al., 2002).  In a questionnaire survey conducted in 

2004, over 10% of respondents failed to quarantine treat newly purchased and 

transient stock with any anthelmintic and of those administering quarantine treatment 

75% administered only a BZ or an IVM.  The advice for quarantine treatments at 

present remains as the use of a triple class combination, preferably using a MOX 

containing compound in combination with a BZ and LEV and the grazing of treated 

stock on contaminated pasture after drenching (Dobson et al., 2001).     
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The use of MOX in the treatment of gastro-intestinal nematodes needs to be 

implemented wisely in order to maintain its usefulness in the future.  The 

confirmation of the first UK case of MOX resistant T. circumcincta (Wilson and 

Sargison, 2007) highlights this point, and again raises the question of potential 

strategies for prolonging the usefulness of the compounds we have. 

 

Contributions to work 

The work was initiated by Neil Sargison as part of an ongoing investigation into ill 

thrift in the affected commercial sheep flock.  The candidate was involved in the 

collation, analysis and interpretation of the data and preparation of the manuscript. 

The data has been presented nationally and internationally at scientific conferences 

and incorporated into advice given to farmer and veterinarians.   
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7 Observations on the emergence of multiple 
anthelmintic resistance in sheep flocks in the 
south-east of Scotland 

 
N. D. Sargison, F. Jackson, D. J. Bartley, D. J. Wilson, L. J. Stenhouse and C. D. 
Penny. Veterinary Parasitology 145 (1-2):65-76, 2007. 

 

Efforts to investigate potential risk factors associated with the presence or absence of 

AR, particularly resistance to the ML class, have focussed heavily on statistical 

interpretation of questionnaire data obtained from farm holdings where details of 

treatment efficacies are also available.  Much of this work has been conducted in 

areas where the prevalence of multiple class resistance is high, such as New Zealand 

and Australia (Suter et al., 2004, and 2005; Lawrence et al., 2006 and 2007; Larsen 

et al., 2006; Leathwick et al., 2006; Hughes et al., 2007). 

 

The aim of this paper was to investigate and discuss the possible management risk 

factors that might have lead to the emergence of multiple class resistance in four 

discrete lowland sheep flocks in the south-east of Scotland.   

 

Each of the four farms was either served by the Edinburgh University (Dick) 

Veterinary large animal practice or the Moredun Research Institute.  The presence of 

multiple class resistant T. circumcincta had been confirmed on all four of the farms 

between the years 2001 and 2004, FECRT results shown in figure 7.1.   The sheep 

flocks on each of the four farms differed in size, with holdings of 70, 60, 700 and 

210 breeding ewes on 11, 20, 100 and 28 hectares for farms, 1, 2, 3 and 4 

respectively. The length of ownership for each of the properties ranged from between 

10 and in excess of 30 years.   

 

An overview of the management practices adopted by the owners for each of the 

flocks can be seen in Table 7.1 the results are expressed as the farm either 

implementing ( ) or ignoring ( ) particular recommended practices.   

 



 147

 

0

20

40

60

80

100

1 2 3 4

Flock

P
er

ce
nt

ag
e 

ef
fic

ac
y

BZ
LEV
IVM

95%

 

Figure 7.1 Percentage reduction of Teladorsagia circumcincta faecal egg counts, based on 
larval differentiation, following benzimidazole (BZ; 5 mg/kg body weight (BW)), levamisole 
(LEV; 7.5 mg/kg BW) or ivermectin (IVM; 0.2 mg/kg BW) treatment in flocks from four farms 
in south east Scotland.  

 

The results in Table 7.1 demonstrated that, as with the respondents from the surveys 

in chapter 8, there was a variable uptake on the implementation of recommendations 

for decreasing the selection pressures on parasite populations.  The practice of annual 

rotation of anthelmintic drug classes was universally adopted and rotational grazing 

with cattle was adopted where feasible but the uptake of long standing 

recommendations such as treating animals at the full MRDR, reducing drench 

frequency and quarantine treating imported animals on arrival were not.    

 

A crude assessment of Figure 7.1 and Table 7-1 would suggest that a greater degree 

of resistance was present on the farms where fewer recommendations were 

implemented, though caution must be observed because no account is taken into the 

external non management factors that might influence the selection of resistance such 

as initial starting gene frequency, length of ownership or breed differences (other 

factors are detailed in chapter 8). 
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Table 7-1 Uptakes of recommendations for reducing selection pressures on parasite 
populations by owners of flocks 1, 2, 3 and 4.  Shaded responses are recommended practices. 

 Flock 
Managemental practice 1 2 3 4 
     

Dose & move to “contaminated” pasture     
Annual drench class rotation     
Rotational/co-graze sheep and cattle     
Quarantine drench imported stock -    
Dose animals at full therapeutic dose rate    - 
Drench frequency (>28 day intervals at pasture)     
Weaning <50% of lambs onto “clean“ pasture  - -  
Use of non persistent drugs pre/post lambing    - 
     

Total “non-recommended” practices adopted 4 4 1 2 
 

 

So why are recommendations/advice not being implemented?  The reasons are 

numerous and include the following; a) Recommendations unknown by farmer, 

unlikely within these farms due to their close involvement with academic/teaching 

facilities and a readily available source of information. b) Recommendations 

acknowledged, but farmer unable to implement advice due to practical issues, such 

as not having land or resources to rotationally or co-graze sheep and cattle. c) 

Recommendations ignored because they are not believed to be viable options for the 

farmer, conflicts with actual or perceived notion of acceptable management practices 

for maintaining productivity in the flock.  For example it may suit the farmer to 

move newly treated animals onto clean grazing because they accept that the risk of 

increasing the likelihood of selecting AR is offset by the financial gains achieved by 

getting animals to saleable size quicker and therefore off pastures sooner.  d)  

Recommendations disregarded because of the belief that there is no reason to follow 

advice, why fix what is not broken?  Good productivity is being achieved, so why 

change the practices that have worked on the farm for generations?  For example, the 

administration of a drench to ewes pre-tupping is widely thought to improve the 

condition of ewes and thereby improve fertility, this practice was performed by over 

70% of farmers questioned by Sargison and Scott (2003) and Bartley et al., (Chapter 

8) though the positive benefit has never been scientifically substantiated.  A review 

of work conducted in New Zealand found that on a purely financial level the cost of 

treatment could not be recovered in over 30% of farms examined (Brunsdon et al., 
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1983).  e)  Recommendations disregarded because of conflicting information from 

different parties or because of a change of attitudes, such as the advice provide by 

pharmaceutical companies that suppressive treatment of stock will lead to an 

increased return for the outlay costs, see plate 7.1.  Though increased treatment 

frequency has been shown to heavily select for AR which may eventually result in 

decreased productivity (Barrett et al., 1998). 

Plate 7-1 Promotional material issued by Merck, Sharpe and Dohme in the 1960-1980s to 
highlight the profitability of using Thibenzole® to suppressively treat Merino sheep in Australia  
Published in Waller (2006), reproduced with kind permission of Elsevier Limited. 

 

 

 

 

 

 

 

 

f)  Recommendations overlooked because of lack of facilities or assistance/labour to 

implement strategies.  g)  Recommendations not applied because of a lack of 

understanding due poor communication of information to veterinarians, farmers or 

farm advisors. The implementation of effective quarantine treatment on some farms 

has been hampered by the good uptake of annual drug class rotations advice.  

Farmers may administer the drug that is being used for that years rotation even 

though this may be ineffective as a quarantine treatment.  Another example relating 

to anthelmintic rotation relates to widespread confusion about the classification of 

drug groups (Sangster, 1999).  There are only three main classes of broad-spectrum 

anthelmintics available for use in ruminants but, in 2007 in the UK, there were at 

least 42 products being marketed by nine different pharmaceutical companies for use 

in sheep alone (www.noahcompendium.co.uk/).  h) Recommendations may be 

ignored because it is cheaper, more convenient and simpler to administer an 

anthelmintic drench treatment rather than to use valuable time and resources to 

investigate/research alternative strategies.  There is also a strong belief that problems 

can be rectified when they occur.  Reports from Australia would suggest a changing 
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trend from testing for the presence of anthelmintic resistance in a flock to buying the 

most potent single or combination available (Besier, 2007b). 

 

The influence that each recommendation has, individually or in combination, on the 

selection of resistance is unknown.  Ineffective treatment of stock either due to 

resistance or improper use of anthelmintics can, though not always, result in slower 

growth rates (Barrett et al., 1998), decreased wool and carcass values, decreased 

fertility, increased mortality and ultimately increased costs for administering 

effective remedial action.  Converse to this, research assessing the productivity and 

profitability of six merino flocks in South Eastern Australia over a 8-14 years period 

found that both parameters could be maintained or increased in self replacing flocks 

via the use of integrated parasite management (IPM) programs even in the face of  

BZ and LEV resistance (Larsen et al., 2006).  The ultimate findings from their work 

was that AR was only one part of the whole farm management and needed to be kept 

in perspective and that IPM programs such as monitoring FEC to assess appropriate 

time for drenching, monitoring drench efficacy, genetic selection of animals for 

resistance to worms and the incorporation of pasture management strategies could be 

used to adequately control the selection of AR. 

 

Larsen et al., (2006) also noted that many tactics for worm control were specific to 

particular climates and geographical regions, one example being the use of refugia 

based strategies to provide a pool of unselected parasite populations on pasture to 

dilute out resistant populations.  These strategies are effective in areas with 

Mediterranean type climates (dry hot summers and drought) but were less suited for 

areas with consistent summer rainfall.  Refugia based strategies resulted in lower 

productivity and an increased chance of PGE because sufficient parasites can survive 

on pasture through-out the grazing season with-out the need for leaving animals 

untreated.  

 

The Future 

As mentioned above and in chapter 8 there is a need to adopt strategies on farms that 

allow for the maximum productivity whilst maintaining sustainability and cost 
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efficiency.  Waller (2006) stated that in order for livestock producers to implement 

IPM strategies in favour of the blanket use of chemical approaches, they would need 

to be reassured that reliable economic/management benefits would be achieved by 

the correct use of a particular method.     

 

There is a need to provide good solid empirical data to support recommendations 

made by scientists and pharmaceutical companies to ensure that the information that 

is supplied to farmers, veterinarians and livestock advisors is as accurate, precise and 

trustworthy as possible.  The back lash from misinformation or inappropriate 

information could lead to livestock owners ignoring advice in the future with 

potentially devastating consequences.  

 

Contributions to work 

The work was initiated by Neil Sargison as part of an ongoing interest in the 

relationship between anthelmintic resistance, ill thrift and potential risk factors 

adopted on farms.  The candidate was involved in the collation, analysis and 

interpretation of data and preparation of the manuscript.  
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8 Questionnaire survey on the gastro-intestinal 
parasite control practices used on Scottish sheep 
farms 

 

Bartley, D. J., Jackson, E., Coop, R. L., Sales, J., Mitchell, G. B. B., Jackson, F. 

 

The incidence and severity of disease associated with gastro-intestinal parasites in 

ruminants is governed by an extremely complex set of factors with a number of 

major contributing elements, Figure 1.2; both the infra- and supra-populations of the 

parasites are susceptible to intervention and have been targeted in the past (shaded 

boxes, Figure 1.2). Routine strategies for the controlling PGE fall into two broad 

categories, pasture/host management or chemotherapy based, though in order to 

achieve sustainable parasite control or a combination of both is often desirable.   

Decisions made to adopt particular strategies are rarely considered in isolation from 

other parts of the farm management because they ultimately compete for resources 

such as labour, land, finances and time (Morley and Donald, 1980).  

 

Pasture/host management strategies rely on reducing host parasite interaction by 

utilising; stocking rates, timings of parturition and weaning, availability and use of 

pasture rotation and spelling, appropriate use of reseeded or “clean” pastures, 

availability and feasibility of grazing pastures with non susceptible hosts or alternate 

host species and the incorporation of bioactive forages such as sainfoin and sulla into 

the grazing systems.  Chemotherapy has been the mainstay of parasite control in 

livestock for centuries, but the practice was revolutionised in the 1960s with the 

introduction of thiabendazole (TBZ).  Treatments prior to the 1960s tended to have 

had high dose rates, low safety margins and/or narrow spectrum of specificity but 

TBZ was shown to an extremely safe anthelmintic with efficacy against a range of 

helminths (nematodes and cestodes) at an effective dose rate of less than 100 mg per 

kilogram body weight (BW).  In the following years, anthelmintic efficacy was 

refined to such an extent that it became possible to control parasites with dose rates 

as low as 0.2 mg/kg BW.   
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The heavy reliance on chemical intervention for parasite control has led to farmers, 

veterinarians and livestock advisors being bombarded with information and 

recommendations for the responsible and effective use of anthelmintics and measures 

for slowing the rate of development and transmission of AR.  For many years 

recommendations focussed on either minimising host parasite interaction and/or 

reducing selection pressures for AR in parasite populations, these included a) the 

movement of freshly treated animals to clean pasture (Boag and Thomas, 1973).  

This practice was identified as a method for improving productivity, such as overall 

wool production (Morley and Donald, 1980) and lamb growth by 10-20% prior to 

weaning (Waller and Thomas, 1978) and prolonging the usefulness of anthelmintic 

compounds.  The practice has subsequently been shown to select heavily for 

resistance with survivors of treatment reseeding clean pastures rapidly (Coles, 2001). 

b) Alternate grazing schemes with hosts of the same species (Michel, 1969). This 

practice is generally reliant on the use of older stock of the same species, which are 

less susceptible to establishment and development of ingested infective larvae, 

mopping up parasite contamination on the pasture to allow more naïve animals to 

graze safely. c) The use of cattle in an alternate grazing scheme to reduce pasture 

contamination (Southcott and Barger; 1975). An alternate or co-grazing pasture 

scheme is very dependant on the structure of the resident parasite populations on a 

farm and the degree of cross transmission that can occur. Morley and Donald (1980) 

classified this into three levels, firstly, very little cross infectivity between species 

and no reproduction in parasites e.g. Ostertagia/Teladorsagia, Oesophagostomum, 

Nematodirus and Bunostomum.  Secondly, moderate cross infectivity but with 

reduced fecundity and patency of infection e.g. Cooperia and intestinal 

Trichostrongylus and finally little inhibition of infectivity between species which 

may disappears after a few generations e.g. Trichostrongylus axei and Haemonchus.  

Though generally this classification is still thought to hold true, subsequent work has 

shown that nematodes such as Nematodirus battus and C. oncophora can be 

transmitted well by both young calves and sheep (Coop et al., 1984; 1988; 1991; 

Bairden and Armour, 1987; Bairden et al., 1995). Concern has also been raised that 

the use of cattle may lead to increased selection for resistance due to fewer parasites 

in refugia (Good et al., 2006). d) Optimise stocking rates in order to provide best 
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possible grazing efficiency and therefore nutritional status of flock (Morley and 

Donald, 1980).  Increased numbers of animals on pasture can lead to increased 

pasture contamination and decreased pasture availability, though increased grazing 

can lead to less favourable conditions for parasite development and survival, this is 

particularly relevant for less hardy parasite species such as Haemonchus (Southcott 

et al., 1967) but is less of a problem for Teladorsagia and Nematodirus (Downey, 

1968). e) Annual rotation of anthelmintics classes (Kettle et al., 1982).  Rotation was 

originally proposed as a means of reducing the selection pressure on any single drug 

class and possibly promote reversion to susceptibility (Prichard et al., 1980) thereby 

extending the effectiveness of all of the classes. However simulated mathematical 

models conducted by Barnes et al., (1995) found substantial development of 

resistance with annual, five year and ten year rotations. f) Avoid introducing resistant 

worms with newly purchased stock or sheep which return home from tack grazing on 

other farms or from common grazing (Abbott et al., 2004).  All animals should be 

treated with full-dose combinations (Prichard et al., 1980; Anderson et al., 1988) 

and/or moxidectin (Dobson et al., 2001), yarded for 24 – 48 hours post treatment and 

turned out on to dirty/contaminated  pasture. g) Identifying and using the most 

appropriate drench at the most suitable time (Abbott et al., 2004).  Following this 

recommendation allows the farmer to target specific parasite species and avoid off-

target and potentially ineffective combination products such as combination fluke 

and roundworm treatments or injectable MLs for ecto- and endo-parasite treatments.  

Treating ewe’s pre parturition with MOX or ABA has been shown to select for ML 

resistance under New Zealand conditions (Lawrence et al., 2006; Leathwick et al., 

2006). h) Reduction of drench frequency (Prichard et al., 1980; West & Probert, 

1989) particularly in adult sheep/goats (Kettle et al., 1981, 1982, 1983) is again 

considered to be beneficial at decreasing the rate of selection by reducing the 

selection pressure on populations. i) Restricting feed for 24 hours prior to drenching 

has been shown to increase bioavailability and consequently efficacy of FBZ by 

around 40% compared to conventionally treated animals (Hennessey et al., 1991; 

Hennessey and Ali, 1997; Barrett et al., 1998). j) Follow the manufactures guidelines 

for anthelmintic usage i.e. dose at the MRDR for the heaviest animal in the group, 

ensure good dosing technique i.e. over the tongue not into the mouth and administer 
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correctly stored anthelmintics accurately with well maintained equipment. k) Routine 

testing of anthelmintics for the presence of lack of efficacy (Coles and Roush, 1992). 

The current sustainable control of nematode parasites in sheep (SCOPS) guidelines 

for reducing the selection pressure for anthelmintic resistance in the UK can be found 

at - 

http://www.defra.gov.uk/animalh/diseases/control/wormcontrol_BW.pdf  

(Last accessed 10SEP08; Abbott et al., 2004). 

 

In more recent times emphasis has been place on the maintenance of susceptibility to 

anthelmintic treatments by utilising the untreated, and therefore unselected, parasite 

population in refugia (Prichard et al., 1980; Barnes et al., 1995; van Wyk, 2001). 

Kettle et al., (1982) estimated that autumn treatments in New Zealand would target 

around 5% of the nematode population with around 95% of the population being on 

the pasture as larvae or eggs and therefore unselected.  

 

The aim of this paper was to examine how advice on parasite control had been 

implemented on farms and identify areas where management practices may be being 

poorly adopted by selected Scottish sheep farmers. The questionnaires (Plate 8-1 and 

Plate 8-2) were designed to assess if there was a relationship between the results and 

the presence or absence of anthelmintic resistance.  The paper is a combination of 

two questionnaires that were sent out and completed as parts of the BZ resistance 

survey conducted in the year 2000 (Chapter 2) and the IVM resistance survey 

conducted in 2004 (Chapter 3).  The participants in the survey were mostly members 

of a charity called the Moredun Foundation, one of its roles is the dissemination of 

information regarding infectious diseases of small ruminants especially sheep.  

Members would potentially, over the preceding 10 years, have received three 

newsletters on the control of gastrointestinal nematodes and improving drench 

techniques to minimise the risk of selecting or importing anthelmintic resistance 

(Jackson and Coop 1994; 1999 and 2003) and been given the opportunity to attend 

talks on the subjects.  
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In the 2000 survey one thousand Scottish members of the Moredun Foundation (MF) 

were approached to participate in a survey to examine the prevalence of anthelmintic 

resistance as well as farming practices.  The questionnaire consisted of 29 questions, 

covering; farm demographics and characteristics, pasture management procedures, 

anthelmintic usage and animal health information sources, Plate 8-1.  At the time, as 

supplementary information for the farmers, a list detailing the class of all UK 

registered anthelmintics for use in small ruminants was sent out.  The definitions of 

anthelmintic classes can be found in Chapter 1.7.  In 2004, the questionnaire was an 

abridged version of the 2000 survey containing 14 questions relating to anthelmintic 

usage, farm demographics and characteristics and pasture management procedures, 

Plate 8-2. 

 

The surveys were conducted in the spring of 2000 and 2004.  On receipt of 

completed questionnaires the information was entered in duplicate onto the database 

by two separate operators and then cross referenced against each other to ensure 

accurate input of the data.   

 

The questionnaire responses and resistance status details from the 2000 survey were 

used to investigate potential risk factors that might be the presence of resistance to 

anthelmintics.  An analysis of variance of ED50 estimates were conducted in Genstat 

for Windows 6th edition by fitting a general linear model with the 

AUNBALANCED directive. The standard errors of ED50 were very variable and in 

order to ensure that assumptions about the residuals in the model were satisfactory, 

the estimated ED50’s were ranked in size and the ranked values of ED50 were used as 

the outcome variable in all the fitted models.   There was no strong evidence from 

this survey that any of the management practices examined greatly affected TBZ 

resistance, but increased stocking rates, geographical location and farm type all 

tended to be positively associated with the presence of TBZ resistance.  

 



 169

Plate 8-1 Copy of the anthelmintic resistance questionnaire used in the survey conducted in the year 2000 
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Plate 8-2 Copy of the anthelmintic resistance questionnaire used in the survey conducted 
in the year 2004 
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A total of 97 (43%) completed questionnaires were returned from the initial 227 

farms that noted an interest in participating in the 2000 survey and 33 (66%) of the 

initial 50 respondents from the 2004 survey.  Questionnaires were returned from 

large farms (>1000 animals) and smallholdings (>30< 50 animals) alike and from all 

geographical regions of Scotland in 2000 and predominantly from the Lothian and 

Borders regions in 2004.  Responses were predominantly received from hill or 

upland farmers.  Farms ranged in size from 5 to 2500 hectares with holdings of 

between 30 and 4970 sheep.   

 

Anthelmintic usage was extremely high on participating farms, with around 98% of 

farmers treating both adult sheep and lambs throughout the year.  Annual treatment 

frequencies in ewes and lambs were variable, (Range: 0-7 times per annum for both 

classes of animal) with a median of 2 and 3 treatments per annum (TPA) 

respectively.  Ninety nine percent (93 from 94) of respondents used oral drenches, 

33% (31 from 94) used injectable anthelmintics and 1% (1 from 94) reported the use 

of in feed anthelmintics. 

 

It is apparent from the results that farmers place a great importance on worm control 

and anthelmintic resistance with over two thirds of the respondents seeking advice 

from veterinarians.   Suter et al., (2005) found that farmers in Australia who used 

veterinarians as their primary source of advice were half as likely to have IVM 

resistance develop on their farms compared to farms that relied on other sources of 

information.   

 

Some of the advice and recommendations provided to farmers regarding the 

treatment and control of gastro-intestinal nematodes, as identified in the SCOPS 

guidelines, such as not treating and moving animals to clean pasture are being 

reasonably well adopted (over 60% take up).  However in some areas such as the 

administration of quarantine treatments attitudes did not appear to have changed over 

the five years period with less than around 80% of respondents administering a single 

drench (Table 8-1) but only 20% of respondents administering a dual or triple class 

combination. 
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Table 8-1 Percentage uptakes of recommendations for reducing selection pressures on 
parasite populations by respondents of the 2000 and 2004 surveys.  Shaded responses are 
recommended practices. 

 2000 (%)  2004 (%) 
Recommendation Yes No  Yes No 
Dose & move 46 54  39 61 
Drench rotation 84 16  90 10 
Rotational/co-graze 66 34  56 44 
Quarantine drench 85 15  88 12 
Restrict food 79 21  - - 
Dose at MRDR 51 49  56 44 
 

The results from both the 2000 and 2004 surveys have to be viewed with caution 

because of the biased non random nature of the selection of respondents, with all 

participants either being members of the Moredun Foundation or the large animal 

practice of the Edinburgh University (Dick) Veterinary School, the small size of the 

dataset and the potential for misleading results to be collated with respondents giving 

“expected” rather than “actual” responses.  Results from areas that require a degree 

of long term recall such as drench class used over the last five years may also be 

subject to a degree of error (Maingi et al., 1996).  Overall the results highlighted that 

the uptake and implementation of advice relating to recommendations for slowing 

the selection and spread of anthelmintic resistance was variable.   

 

In light of the ever increased prevalence of anthelmintic resistance in Australia and 

New Zealand, much work has been conducted examining potential risk factors 

associated with the presence of ML resistance (Suter et al., 2004, and 2005; 

Lawrence et al., 2006 and 2007; Larsen et al., 2006; Leathwick et al., 2006; Hughes 

et al., 2007).  Factors that were positively associated with the presence of IVM 

resistance included; using visual signs to assess the worminess of stock, weaning 

greater than 50% of lambs on paddocks not grazed by lambing ewes for three months 

or more, the presence of resistance to either BZ or LEV but not to both, breed of 

sheep and their requirements for treatment, the use of long acting anthelmintic 

formulations in ewes pre-lambing, importing resistant parasites with purchased stock 
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and the failure to ensure accurate administration of drench, by not testing drench gun 

prior to use.  The research also identified one factor that was negatively associated 

with IVM resistance; returning lambs back to the same paddock after drenching.  

 

Over half of the risk factors identified in the Australian and New Zealand studies 

support  the hypothesis, put forward by Prichard et al., (1980) and van Wyk (2001), 

that the most important factor in slowing the development of IVM resistance is 

maintaining a susceptible parasite population in refugia.   In response to the findings 

there has been much debate regarding the suitability, sustainability and 

appropriateness of many of the “best practice” recommendations that have been 

promoted in the past.   

 

The Future 

 

Unfortunately the questions posed in the 2000 and 2004 questionnaires were not 

constructed in a way that would allow exploitation of refugia to be investigated under 

Scottish conditions.  Future questionnaires must incorporate questions regarding 

refugia to ensure that the recommendations given out to our farmers are as pertinent 

and relevant as possible. 

 

In conclusion strategies need to be implemented to slow selection, development and 

spread of AR but in order for any strategy to succeed it must ultimately manage 

parasitism and anthelmintic resistance whilst maintaining acceptable levels of 

productivity.  There are no “blue print” recommendations that can be used for all 

farmers and that it is important that individual farmers, their veterinarians and 

advisors assess the situation at the individual farm level in order to develop and 

implement appropriate treatment strategies.   

 

 Contributions to work 

The candidate was involved in the construction and development of the questionnaire 

as well as the collation, analysis and interpretation of the data for preparation of the 
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manuscript. The data has been presented nationally and internationally at scientific 

conferences and incorporated into advice given to farmer and veterinarians. 
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The prevalence of anthelmintic resistant nematode populations has increased in 

the United Kingdom. Surveys conducted on sheep farms provide prevalence 

data that range from 23 – 64% for benzimidazole (BZ) resistance (Hong and 

others 1996; Bartley and others 2003) and potentially up to 35% for ivermectin 

(IVM) resistance (Bartley and others 2006).  Control of gastro-intestinal 

parasites in the UK is heavily reliant on chemotherapy.  Recognition of the 

crucial role played by chemoprophylaxis and the need to maintain high levels 

of efficacy of the current broad spectrum anthelmintics has led to the farmers 

being bombarded with advice on methods for slowing the rate of development 

of resistance and limiting its transmission through animal movement.  For 

many years recommendations for reducing the selection and dissemination of 

anthelmintic resistance have included an annual rotation of anthelmintics; 

drenching animals at the manufacturers recommended dose rate; the reduction 

of drench frequency in adult sheep; checking for anthelmintic resistance; the 

discontinuation of drug classes which are not effective and the treatment of 

new stock on the farm with full-dose combinations of a macrocyclic lactone 
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and a imidazothiazole (Coles 1997; Dobson and others 2001; Sargison and 

others 2003; Abbott and others 2004).  This short communication outlines the 

results of two separate questionnaires that were designed to enable the 

examination of how this advice had been implemented on selected Scottish 

sheep farms where some information on the anthelmintic resistance status of 

the farm was known.  Participants in the surveys were mostly members of the 

Moredun Foundation, the surveys were collected as part two anthelmintic 

resistance surveys examining the prevalence of BZ resistance throughout 

Scotland using egg hatch assays in 2000 (Bartley and others 2003) and the 

prevalence of IVM resistance in the Lothian and borders region using faecal 

egg count reduction tests in 2004 (Bartley and others 2006). 

A total of 97 completed questionnaires were returned from an initial 227 farms 

in 2000 and 33 from 50 in 2004.  Responses were predominantly received from 

hill or upland farmers.  Farms ranged in size from 5 to 2500 hectares with 

holdings of between 30 and 4970 sheep.  A summary of the results from the 

two surveys are shown in table 1.     

Information regarding anthelmintic usage and the implementation of 

perceived “best farming practices” is readily available to farmers from a 

variety of sources, this questionnaire highlighted the fact that the advice 

published within historical and current guidelines is being adopted at variable 

levels between farms.  Within our cohort, veterinarians were cited by almost 

two thirds of respondents as the commonest source of information regarding 

gastro-intestinal helminths and their treatment.  These figures differed from 

those detailed previously (Coles, 1997) who reported that veterinarians were 

rated as the most influential source of information by only 24% of respondents.  

This indicates either possible national differences in the emphasis that farmers 

place on parasitism and its management within their flocks, or the way that 

these farmers utilise their veterinarians for advice.  

Within the current survey we investigated the possible relationships between 

farming practices and the presence or absence of anthelmintic resistance, 

though no significant associations could be found, possibly due to the small 
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sample size but areas of interest that were identified from the survey are 

discussed further. 

Table 1 Questions and responses from surveys into management practices of 
sheep farmers in 2000 and 2004. 

  Responses (n)  
Questions Variables 2000   2004 

Lowland 19  11 
Hill/upland 75  19 

Type of enterprise? 

Other 2  0 
     

Farm size (median) Hectares 131  180 
     

Ewes 472  646 
Lambs 639  730 

Annual numbers of sheep? (median) 

Tups 15  20 
     

Separately 36  4 
Sheep only N/A  11 
Rotate sheep & cattle 20  8 

Do you co-graze, rotationally graze or 
graze your animals separately?  

Co-graze sheep & cattle 49  11 
     

More effective 19  N/A 
Unaltered 65  N/A 

Do you believe that efficacy of your 
anthelmintic(s) has changed over time? 

Less effective 9  N/A 
     

Estimate weights 33  12 
Average weight 15  3 
Heaviest animal 48  17 

How do you determine amount of drench to 
use? 

Individually 1  2 
     

No 77  N/A Do you ever withhold food before 
drenching? Yes 20  N/A 
     

No 52  19 Do you move your animals to clean pasture 
after treatment? Yes 44  12 
     

None 28  N/A 
Fluke 31  N/A 
Tapeworm 17  N/A 
Scab 16  N/A 

Do you have a problem with any other 
parasites? 

Blowfly 46   N/A 
 N/A - not asked 

 
Anthelmintics were widely used, 98% of farmers used chemotherapy and/or 

chemoprophylaxis in both adult sheep and lambs.  Annual treatment 

frequencies in ewes and lambs were variable, (Range: 0-7 times per annum for 

both classes of animal) with a median of 2 and 3 treatments per annum (TPA) 

respectively in both years of surveying.  Ewe treatments pre-tupping and 

around parturition were commonplace almost three-quarters of the farms 

examined in 2000 (71% and 72% respectively) used these occasions to treat 

animals.  This is probably based on the common perception that the pre-
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tupping treatment promotes better condition in ewes for servicing and increases 

conception rates, though this is an area of debate.  The treatment of the ewes 

pre/post lambing is based on the premise that it will reduce parasite 

contamination laid down on pasture and therefore reduce the infection levels to 

which lambs are exposed. Interestingly there appeared to be no correlation 

between timings of ewe treatment and a reduction in the frequency of lamb 

treatments.  Lambs received treatments predominantly at weaning and at signs 

of disease.   

There appears to be an association between the use of “mowers” to clean up 

pastures, either through rotational grazing or co-grazing between cattle and 

sheep, and a reduction in the use of anthelmintics usage in lambs.  The median 

numbers of TPA for lambs on farms that graze their animals separately or only 

had sheep was 3.5, compared to 2, 3 and 2 TPA on farms where rotational 

grazing, co-grazing or combination of rotational and co-grazing with cattle 

occurred respectively.  These findings differ slightly from those reported 

earlier by Gettinby and others (1987), where farms that alternated grazing 

between sheep and cattle used more anthelmintic annually compared to the 

average respondent in their survey.  The reasons for these differences are not 

clear but might include changes in the meteorological or geographical climate, 

management practices adopted on the farms or attitudes of respondents, 

brought about through an increased awareness of the benefits of co-grazing.  

 In 2000 and 2004, 41% and 33% respectively, of respondents administered 

class I anthelmintics as the sole worm control treatment to their ewes compared 

to 22% and 33% respectively who administered class III anthelmintics solely. 

Considering the high prevalence of TBZ and IVM resistance detected, these 

treatments could be considered to be sub-optimal and lead to an increased risk 

of disease and/or reduced production in the lambs and extended finishing times 

(Barrett and others 1998; Macchi and others 2001). This pattern of high 

reliance of BZ anthelmintics is historical with over 10% of the respondents in 

2000 never using any other drug family for helminth treatment in ewes or 

lambs.  The belief by some of the farmers that tapeworms are a problem on 

their farms (18%) may be one reason for a high reliance on BZ but these 
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figures do not fully explain the treatment patterns.  The pattern of drug class 

rotation over the preceding four years prior to the survey was markedly 

different over the two surveys; in 2000 around 16% of the farmers used a 

single drench class exclusively but this had fallen to 10% by 2004 whilst those 

respondent that continually rotated their anthelmintic classes annually had 

fallen from 32% to 17% respectively.  Silvestre and others reported in 2002 

that the exclusive treatment of lambs with an ineffective treatment increased 

the frequency of BZ resistant worms from 25% to 80% within two years 

compared to an increase to 50% in lambs alternately treated with BZ and LEV.  

As with other reports in the UK (Coles, 1997; Sargison and Scott, 2003) 

approximately fifty percent of respondents determined the quantity of drench 

administered on estimated and average body weights, these practices 

theoretically could result in the sub-optimal dosing of some animals.  For 

example, when farmers are asked to estimate the weight of ewes and/or lambs 

the weights are often under-estimated.  Eighty six percent of estimates, for 

groups of 10-20 sheep, by Australian farmers (n=237) were below the actual 

weight (Besier and others 1988). Similar results were observed in Scotland 

where 71% of farmer’s estimates (n=125) of weights for a ewe and a lamb 

were below the actual weights (Jackson, personal communication).  This is of 

relevance to the selection of resistance because, when the frequency of 

anthelmintic resistant alleles is low, under-dosing positively selects for 

resistance, conversely if resistant allele frequencies are high, selection pressure 

exerted on heterozygote parasites is less and therefore there is the possibility of 

the conservation of susceptible alleles (Silvestre and others 2001).      

Interestingly advice regarding the improvement in drug bioavailability by 

with-holding food prior to administration of anthelmintic has been embraced 

by a relatively large proportion of farmers (Barger, 1993).  The average period 

of starvation stated was approximately 6 hours which may be insufficient to 

facilitate emptying of the rumen (Ali and Hennessey, 1995). 

Treat and move to clean pasture was, in the past, extolled as a effective 

method of parasite control (Boag and others 1973) but has recently been 

condemned as a practice that heavily selects for anthelmintic resistance (van 
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Wyk, 2001).  The practice is still commonly conducted; over a third of the 

respondents in 2004 treated their animals and moved them to clean pasture, 

though this was a drop of 15% in the numbers of farmers conducting this 

practice in 2000. These results suggest that some farmers have not been 

exposed to this advice or feel that the production benefits of grazing treated 

animals on clean grazing outweighs any perceived risk increased selection for 

anthelmintic resistance.   

Quarantine drenching of “new stock” was more commonly adopted in the 

present 2 surveys, figure 1, compared to reports published in a previous UK 

survey, over 85% compared to 17% (Coles, 1997).  In the 2004 study 12% of 

the respondents still failed to administer any treatment to new animals, more 

worryingly is the fact that of those administering quarantine treatment 75% 

administered only a BZ or an IVM.  The importation of resistance alleles with 

new stock is probably a major contributor to the spread of anthelmintic 

resistance (Coles, 1997).  The administration of potentially ineffective 

quarantine treatments may be due to the apparent perceived high efficacy of 

anthelmintic treatments per se, the belief from the majority of the respondents 

in 2000 was that the anthelmintics used are at least as effective as those used in 

the past and this figure was borne out by the number that had had their flocks 

examined for the presence of anthelmintic resistance.  Only two percent of the 

respondents in the 2000 survey were aware of the presence of any anthelmintic 

resistance on their farms.  This level of awareness is lower than in other 

reported in other UK surveys, (Coles, 1997; Sargison and Scott, 2003).  
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Figure 1: Quarantine treatments administered to “bought in” stock by survey farmers in 

the years 2000 (n= 73) and 2004 (n= 31); no treatment , benzimidazole alone , 

imidazothiazole or tetrahydropyrimidine alone , macrocyclic lactone alone , 

combination of 2  or 3  different anthelmintic classes. 

 

The results from the questionnaire survey suggest a clear need to improve the 

awareness of farmers towards aspects of anthelmintic resistance.  More farmers 

need to be encouraged to test for anthelmintic resistance, using mob sampling 

i.e. taking representative faecal samples from a number of animals and pooling 

them together to be examined as a single sample, after treatment is a straight 

forward and cost effective method of identifying anthelmintic inefficacy. 

Assuming that similar sized faecal samples are taken from a number of 

animals, mob samples can also provide a good indication of flock egg counts 

and the extent of contamination being laid down. 

As can be seen, within these surveys, some of the advice and 

recommendations provided to farmers regarding the treatment and control of 

gastro-intestinal nematodes are being adopted but on areas such as 

administration of quarantine treatments, determination of dose rates of 

anthelmintic treatment and annual drug rotation, attitudes have not changed 

over the past five years.  It is evident that we need to improve knowledge 

transfer to farmers, veterinarians and advisors in order to slow the rate of 
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development of resistance and minimise the development of multiple resistance 

which has become commonplace worldwide. 
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9  General Discussion  
 
The research within this thesis has provided much needed baseline data with regard 

to the prevalence of benzimidazole (BZ, chapter 2) and ivermectin (IVM, chapter 3) 

resistance in Scottish sheep flocks. The studies have also provided some insight into 

the potential reasons for the large increases in prevalence that have been observed 

(Chapters 7 and 8) and provided useful advice on controlling multiple resistant 

isolates of gastro-intestinal nematodes (Chapters 4 and 5).  The findings in this thesis 

clearly support the consensus view that anthelmintic resistance (AR), particularly 

multiple AR, poses an additional threat to the producer and thus to the sustainability 

of some modern production systems.  The aim of this discussion is firstly to consider 

the threats that AR pose to the small ruminant livestock industry and secondly, in the 

context of our current understanding of AR, how these threats can be minimised.     

9.1 The need to maintain productivity 

Estimates suggest that the world’s population will increase by anything up to 2.5 

billion people by the year 2020 with an expected increase in demand for meat 

growing by 100% in developing countries (Waller, 2006).  Bearing these figures in 

mind it is evident that we will need to maintain, or more probably, to improve 

productivity within the livestock sector.  In the last 40 years anthelmintics have been 

used extensively to control nematodoses which are arguably the major health 

constraint on ruminant production.  However since any gains in productivity must be 

sustainable it is important that livestock producers and advisors give serious 

consideration to the impact of different chemical control strategies whilst there are 

still opportunities to affect the outcome.   

9.2 Threats to productivity/sustainability 

Parasitic gastroenteritis (PGE) is a major welfare issue for livestock producers 

throughout the world with parasites such as Haemonchus, Trichostrongylus and 

Teladorsagia estimated to cost the sheep industry hundreds of millions of dollars 

annually in lost productivity and treatment.  The ‘costs’ of AR mostly derive from 
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morbid rather than mortal effects.  Field trials in the UK and Australia found that the 

use of “ineffective” anthelmintic treatments could lead to slight production losses (up 

to 10%) compared to programmes where fully effective treatments were 

administered (Barrett et al., 1998; Besier, 2007a).  Within the UK, as with other 

regions of the world, the pattern of disease is changing. Global land temperatures 

have increased by 0.7 °C since the end of the 19th century (www.metoffice.gov.uk/), 

with continued increases it is estimated that the UK growing season could be 

increased by between 30 and 90 days by 2080 (www.nfuonline.com).  In temperate 

regions the potential benefits of longer growing seasons and grazing periods may be 

offset to some extent by changing patterns of endemic and exotic disease.    Changes 

in the prevalence of endemic endoparasitic diseases such as fasciolosis, 

haemonchosis and nematodirosis have been noted from the submissions made to 

veterinary investigation centres throughout the UK (van Dijk and Morgan, 2008; 

Scottish Agricultural College (SAC) Veterinary services, 2008).  With extended 

grazing seasons it seems inevitable that more treatments will be administered to 

stock, thus increasing the selection pressure for the development of resistance 

(Besier, 2008).  The year long grazing available to sheep producers in the southern 

hemisphere has led to more treatments and has contributed to the rapid emergence of 

resistance in South America (Waller et al., 1996) and countries such as Australia and 

South Africa (van Wyk et al., 1997).  In the UK annual data relating to parasitoses, 

treatment failures and meteorological parameters are collected by various individual 

agencies none of which has the prime responsibility for collating this data to provide 

an idea of trends/changes in patterns of disease. 

9.3 The extent of the AR problem       

As previously discussed (Chapter 8) it seems inevitable that chemotherapy and 

chemoprophylaxis will continue as the principal means of alleviating disease caused 

by gastrointestinal parasites not only in production animals but also in man and his 

companion animals. The apparent rapid increase in the prevalence of BZ and IVM 

resistance observed in Scottish sheep flocks is a worrying find that may have a 

serious impact in reducing the effectiveness of parasite control strategies used by UK 

producers.  The pattern of emerging resistance in ovine parasites in the UK mirrors 
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that seen abroad, where an increase in prevalence of single drench family resistance 

usually BZ and IVM resistance has been closely followed by the emergence of triple 

class resistance (Chapters 4 and 5; Sargison et al., 2001; Yue et al., 2003; Wilson and 

Sargison, 2007) and multigenic resistance.  The adaptive capacity of multiple 

resistant populations to deal with potent xenobiotics such as moxidectin is illustrated 

in Chapter 6 where the initial evidence of resistance, a reduction in persistent 

efficacy, was rapidly followed by complete therapeutic failure. Recent findings 

would suggest that resistance to one class of anthelmintic may predispose some 

Haemonchus and Onchocerca volvulus populations to developing resistance to 

another class of anthelmintics (Eng et al., 2006; Hughes et al 2007).  If these findings 

also apply to other worm populations and species, they might not only be a key 

factor in explaining the rapid increase in IVM resistance seen in these studies in 

Scotland but more worryingly may have far reaching implications for the 

sustainability of chemical control strategies.   

9.4 Mechanisms of resistance 

The effective management of AR centres on the ability to conserve the efficacy of 

anthelmintics and requires an understanding of all of the mechanisms that contribute 

to resistance (Wolstenholme et al., 2004). Although modifications to the target sites 

of an anthelmintic are known to contribute to resistance for some compounds it is 

unfortunate that, as a general rule, their mode of action and key target sites are 

usually only identified some time after they first appear on the market.   In an effort 

to identify potential markers of AR, researchers have utilised a range of techniques 

within the disciplines of biochemistry, genetics, genomics, stereo structural 

modelling, proteomics and molecular biology.  Improvements in the accessibility and 

implementation of these techniques have made comparing discrete 

populations/isolates possible. Two main genetic approaches for the identification of 

markers exist; the whole genome approach, where techniques such as haplotyping 

and gene mapping of quantitative trait loci or the more focussed candidate gene 

approach (von Samson Himmelstjerna and Blackhall, 2005).  The first approach is 

being aided by the commitment of the Wellcome Trust Sanger Institute to sequence 

the genomes of at least two of the most economically important veterinary parasites, 
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H. contortus and T. circumcincta (http://www.sanger.ac.uk/Projects/Helminths/).  

The second approach has been used extensively to identify single nucleotide 

polymorphisms (SNP) utilising new technologies such as Real Time PCR and 

pyrosequencing (Alvarez-Sanchez et al., 2005a; Von Samson-Himmelstjerna et al., 

2007a; Walsh et al., 2007).  These techniques are extremely useful and powerful, but 

even though particular mutations have been demonstrated to be involved in 

resistance in to particular compounds in the laboratory these findings can be isolate 

and species specific which causes problems for studies involving field populations.  

For example in the case of BZ resistance, none of the SNPs at codons 167, 198 or 

200 on β-tubulin isotype 1 are fully and solely responsible for the loss of activity of 

the compound (Stenhouse, 2007).   

In conjunction with work on target site mutations (specific mechanisms of 

resistance), efforts are being directed into elucidating the role that non specific 

mechanisms may play in the development of AR.  Mechanisms include 

improved/enhanced expression levels of ATP binding cassette (ABC) transporters 

such as P-glycoproteins (PgP) or metabolic/detoxification enzymes such as 

cytochrome P450 (CYP; Kerboeuf et al., 2003).  The P-glycoproteins transporters 

have been associated with multidrug resistance in tumour cells (Pouliot et al., 1997) 

and as well as resistance to all three broad spectrum anthelmintics;  the 

benzimidazoles (Beugnet et al., 1997 ; Kerboeuf et al., 2002), imidazothiazoles / 

tetrahydropyrimidines (Rothwell and Sangster, 1997) and macrocyclic lactones (ML; 

Xu et al., 1998).  In vitro studies at Moredun, examining the effects of ML’s on the 

feeding behaviour of IVM sensitive and resistant T. circumcincta and H. contortus 

isolates have shown that by using ABC transporter interfering compounds such as 

verapamil hydrochloride (VER) and ketaconazole (KET) it is possible to increase the 

susceptibility to MLs in both IVM sensitive and resistant isolates (Bartley et al., 

2006; Bingham et al., 2007, Lespine et al., 2007).  The in vitro results suggest that, 

for these two parasites species at least, drug efflux by non specific mechanisms may 

play a key role in resistance against IVM.  In vivo work in non-parasitised sheep has 

demonstrated significantly higher plasma ML concentrations can be achieved if the 

drug was co-administered with; loperamide (Lifschitz et al., 2002), quercetin (Dupuy 

et al., 2003), VER (Molento et al., 2004a) or itraconazole (Ballent et al., 2007) 
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compared to individuals where the ML was administered alone.  In parasitized 

animals the story is potentially much more complex for four main reasons.  Firstly, 

because of the possibility that utilisation of non specific mechanisms may be stage 

specific (Kotze, 1997) and secondly, different mechanisms of drug handling may be 

involved at different life cycle stages (Huang and Prichard, 1999; Kotze et al., 2002).  

Thirdly, inheritance and/or expression of genes for these non specific mechanisms, 

particularly PgP, may be sex linked in the parasite  (Van Zeveren, personal 

communication) and finally the effects of ABC transporter interfering agents may be 

confounded by host sex differences (Lifschitz et al., 2004; Bartley, unpublished 

data).  The hope remains that by elucidating the role played by these mechanisms in 

ivermectin resistance we may also gain a better understanding of their importance in 

xenobiotic resistance as a whole and that we can exploit that knowledge to develop 

novel, sensitive tests for resistance.  

9.5 Detection of resistance     

Sensitive tests, that can identify the presence of resistance at an early stage of 

development, are essential for assessing the impact that implementation of particular 

control strategies have on parasite populations (Colditz, 2008).  It is vital that this 

sort of information, when supplied to farmers, is based on sound empirical data to 

ensure that stakeholders are aware of the consequences of particular treatment and 

management regimes.  The extremely high prevalence of BZ resistance worldwide 

and the lack of genetic markers for LEV or ML resistance at present, mean that any 

markers that are identified in the near future are likely to be only useful as tools for 

monitoring the effects of treatment regimes, or as models for other classes of 

resistance, rather than as a useful diagnostic tools upon which to base management 

decisions.  The establishment of a new global consortium interested in looking for 

SNPS associated with AR (Consortium on Anthelmintic Resistance Single 

nucleotide polymorphism markers; CARS) in both veterinary and medical parasites 

will hopefully facilitate the sharing of raw parasite material, knowledge and expertise 

to provide novel markers for detecting and monitoring AR.   
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9.6 Management of resistance      

One long term retrospective study that examined the productivity and profitability of 

six Merino flocks in south eastern Australia, over almost 20 years, found that the 

presence of multiple class AR did not impede progress within an enterprise (Larsen 

et al., 2006).  The study reported the need for at least one effective anthelmintic class 

or combination to allow the integrated management systems (IMS) to work 

efficiently.   The maintenance of at least one effective treatment is essential because 

the loss of efficacies in all broad spectrum anthelmintic classes has been a 

contributing factor in sheep flocks being culled (van Wyk et al., 1997; Sargison et 

al., 2005; Blake and Coles, 2007).  

9.6.1       New compounds 

One question that is frequently asked by livestock producers is whether a new 

anthelmintic will be commercialised in the near future?  Ongoing research since the 

introduction of the ML compounds over 25 years ago has offered a few promising 

candidates but, for various reasons usually relating to cost and safety, none have 

come onto the market (McKellar and Jackson, 2004).  Recently two potentially new, 

novel mode of action compounds, the cyclooctadepsipeptides and the Amino-

Acetonitrile Derivatives (AAD, Kaminsky et al., 2008; Hosking et al., 2008) have 

been described.  In the case of the AAD monepantel, it is already known that 

resistance can be selected at least in the laboratory (Kaminsky et al., 2008).    

9.6.2 Combinations  

One strategy that has been debated is whether any novel actives that are marketed 

should be used individually or in combination with other actives with different 

modes of action (van Wyk, 2008, electronic debate).   The debate centres on the 

degree of selection exerted on a population by the use of multi-class combination 

treatments compared to the use of singly administered treatments either solely until 

they are no longer efficacious or in an annual rotation.  Combinations have 

frequently been shown to be extremely effective at controlling resistant populations 

(Chapters 4 and 5; Anderson et al., 1988 and 1991).  Simulated mathematical models 
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conducted by Barnes et al. (1995) suggest that the use of combinations will slow 

down the selection of resistance where the initial frequency of resistance alleles is ≤ 

0.01% (Barnes et al., 1995), but where the initial frequency was ≥ 1% these effects 

are greatly reduced.  Dogma would suggest that if the genes for resistance are carried 

on two separate loci at low frequencies, then the likelihood of a single individual 

carrying both is small and this is reduced further if three compounds are used 

(Roush, 1993).   The counter argument is that if parasites are exposed to two or more 

compounds simultaneously, then the selection pressures will force them into 

developing solid multiple resistance or face extinction, and history would suggest 

that the latter is unlikely to happen (Van Wyk, 2008, electronic debate).    Another 

argument against the use of combinations, particularly in the face of an existing 

background of high levels of resistance, is that rather than being synergistic, mixtures 

may actually be antagonist for example workers in Brazil have reported treatment 

efficacies of 0%, 61% and 29% with MOX, nitroxynil (NIT) and MOX+NIT 

respectively against a predominantly H. contortus population (Molento, 2008 cited in 

electronic debate).  The use of combinations may also mask the development of 

resistance until it is too late to intervene but, by way of contrast, if annual rotations 

or sequential programmes are adopted the development of resistance can occur over 

an extended period of time thereby giving farmers an early warning of imminent 

problems in sufficient time to alter their management practices (van Wyk, 2008, 

electronic debate).     

9.6.3 Maintaining refugia and reducing treatment frequency  

The requirements of the modern farmer to maintain sustainable productivity in the 

growing face of AR has led producers in some areas to actively considering the use 

of targeted selected treatments (TST).  Although the necessity to maintain genes for 

susceptibility to anthelmintics by utilising the untreated, and therefore unselected, 

parasite population in refugia had been recognized many years ago (Prichard et al., 

1980; Michel, 1985; Barnes et al., 1995), it is only recently that this advice has been 

heeded (van Wyk et al., 2001; Besier, 2001; Hoste et al., 2002a).  Continued advice 

to treat all animals at a time when the numbers of infective larvae on pasture are low 
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is believed to be one of the major factors associated with the rapid and widespread 

rise of AR in Australia (Besier, 2001; Besier and Love, 2003).  

The most widely used TST approach is FAMACHA© (Chapter 1.22.1; Bath et al., 

1996).  The system has been used to great success in South Africa (Van Wyk and 

Bath, 2002), Brazil (Molento et al., 2004b) and North America (Kaplan et al., 2004).  

Unfortunately the system has limited scope for use in the temperate regions of the 

world, such as the UK, where H. contortus is presently a sporadic rather than 

persistent problem.  Identifying suitable indicators for use in TST strategies aimed at 

controlling non haematophagous species is difficult, though work using faecal egg 

counts, production parameters and pathophysiological markers have shown 

promising results (Chapter 1.22.2).  More recently, the original strategies have been 

adapted in order to identify areas where economies in time and resources can be 

made.   For example the examination of small cohorts of animals with FAMACHA© 

is considered acceptable in “Haemonchus seasons” whilst whole flock inspections 

are conducted at times of increased danger or when examining susceptible flocks 

(Besier, 2008).  The use of individual FEC is acceptable for small groups of animals 

or animals with high market value such as pedigree animals, horses (Krecek and 

Guthrie, 1999) or dairy cattle (Höglund, 2006) but in larger flocks/herds it is more 

practical to use pooled FEC as an indicator for treatment (Besier, 2008).  Systems 

that use weight gain as an indicator have been improved by the implementation of 

electronic ear tags and automatic weighing and drafting systems (Besier, 2007a).   

The commonest criticisms aimed at TST strategies are that will be costly in time, 

labour and money and thus be of little benefit to the producer.  Mathematical 

modelling suggests that a five fold increase in refugia would lead to only a two fold 

delay in selection for resistance (Dobson and Besier, 2007).  If these finding are 

correct in the field the question arises as to whether increasing numbers of parasites 

in refugia will be sufficient to save anthelmintic efficacy whilst maintaining 

commercially viable levels of productivity and high levels of animal welfare.  Recent 

studies, as mentioned above, would suggest that under the correct conditions the 

answer is yes, but caution must be observed in some geographical regions where 
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leaving animals untreated might compromise the health of the flock as a whole, such 

as South East Australia (Larsen et al., 2006).    

9.6.4 Integrated Management Systems   

There has been an increased acceptance within the farming community of the need 

for maintained productivity and/or sustainable nematode treatment and a drive for 

“greener” food in the UK.  This change in emphasis has been in part driven by 

increasing consumer concerns regarding potential chemical residues in meat products 

and environmental contamination.  Producers have looked to improve the resistance 

and/or resilience of their animals to better withstand parasitism whilst maintaining 

productivity via the use of Integrated Management Systems (IMS).  Strategies 

include; improved nutrition/bioactive forages (Chapter 1.25), pasture management 

and/or selective breeding (Chapter 1.27.2).  These strategies can play an important 

role in reducing reliance on chemotherapeutics but in the present economic climate 

may have a limited appeal for UK sheep producers due to their demands with regards 

to time, land, resources and environmental restrictions. 

9.6.5 Quarantine treatment and monitoring      

One of the key findings from this research is that, with the increased prevalence of 

AR, it is essential to administer effective quarantine treatments to newly purchased 

and returning animals in order to maintain effective biosecurity.  Only around 20% 

of the respondents to the 2000 and 2004 questionnaires (Chapter 8) followed best 

practice advice which would suggest that resistance may have been spread 

throughout the country through animal movement.  The administration of MOX 

alone or a dual/triple combination of BZ/LEV and/or IVM has been shown to be 

more effective at treating an immature and adult multiple resistant T. circumcincta 

isolate compared to non persistent anthelmintics administered alone (Chapters 4 and 

5).  

Large amounts of data are generated on individual farms on an annual basis for 

example; pasture condition, animal condition, treatment frequencies, dates of 

administration, live weights through out the grazing season, numbers of animal 
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losses and finishing times.  The information generated can, with a small amount of 

additional information such as targeted faecal egg counts (FEC) throughout the 

grazing season, assist producers to evaluate their flock’s treatment requirements and 

tailor their strategies accordingly.  The cost of generating these data is low in 

comparison to the costs of an ineffective drug treatment.  Studies throughout the 

world have confirmed that the data generated from pooled/composite samples, if 

generated accurately, was as precise in determining treatment efficacies as those 

generated from individual samples (Cabaret and Berrag, 2004; Morgan et al., 2005; 

McKenna, 2007).  The use of composite samples is an area where costs can be cut, 

possibly facilitating improved adoption by farmers, whilst maintaining the integrity 

of the test.  Another area where improved monitoring could prove invaluable is with 

post drench efficacy checks (PDEC), only 2% of questionnaire respondent were 

aware of the resistance status on their farms (Chapter 8).  The service is now 

commercially available in the UK (Scottish Agricultural College veterinary 

investigation centres) and could assist in making substantial financial savings.  

Development of high throughput technologies such as pyrosequencing may, in the 

future, provide useful additional information on species composition from pooled 

faecal material (Donnan and Skuce personal communication).  

If we convince producers to embrace this new era of routine monitoring, there needs 

to be clear guidance in regards to the interpretation/significance of those findings.  It 

is clear that slowing the selection, development and spread of AR within livestock is 

a complex and multifaceted problem and sadly, there are no simple blueprint 

solutions.   However it may be possible to simplify the FEC and PDEC systems by 

introducing a three tier system such as the traffic light system (Mirams personal 

communication).  In this system a green classification (low egg counts/high drench 

efficacy) requires no action, an amber classification (moderate egg counts/moderate 

drench efficacy) raises some concerns and a red classification (high egg counts/low 

drench efficacy) requires urgent action.  This type of system is not without its 

problems, primarily in being too broad in its recommendations, but has been shown 

to work well with FAMACHA©.  
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9.7 Summary 

In this ever changing world there is a need for producers, advisors and scientists to 

adapt to new and potentially challenging situations.  New disease patterns and 

multiple class resistance are likely to continue to make the control of gastro-intestinal 

parasites more complicated.  Information regarding the “control of parasites of 

sheep” is readily available; scientific and popular press articles, newsletters and 

websites (1.4 million hits on Google™, 42,400 hits on Google scholar™) help 

distribute information generated by governmental agencies, research centers, 

interested parties such as the Wool growers associations in South Africa and 

Australia.  Though information is readily available, there is little consensus on the 

best practice worm control advice.   Advice such as the “ACME advice” (Jackson 

and Coop, Moredun Foundation Newsletter 2007) regarding the Adoption of an 

effective quarantine strategy to minimise the risk of importing resistance, Checking 

the efficacy of the anthelmintics you are using routinely, approximately every couple 

of years, Monitoring of flocks to decide when to treat and what to treat against and 

Ensuring that best practice advice is followed, remain important.  If farmers are to 

follow advice on best drenching practice and potential IMS strategies there needs to 

be sound empirical research to reassure them of the immediate and long term benefits 

and the nature and scale of the risks involved in implementation. The increasing 

prevalence of multiple class resistance highlights the fact that further research is 

urgently required to elucidate the importance of the various mechanisms involved in  

BZ, LEV and ML resistance and to try to identify useful phenotypic and/or genotypic 

markers.  It is only when these markers become available that we will be able to 

determine how our pre-existing resistance mechanisms will impact upon the 

longevity of new compounds that may be brought to the market.  
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