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Abstract 

In the fast growing field of high-level synthesis, very little attention has been paid to 

the areas where core synthesis tools must interact with their immediate environment. 

Library modelling, netlist generation and design visualisation are the three interfaces 

that have been neglected at the expense of advances in core synthesis tools. This 

thesis addresses this problem by looking at these primary interfaces and developing 

the ideas and tools that are needed to provide significant improvements over and 

above interfaces used by existing systems. 

Most of the results of this work has been embodied in the development of the SAGE 

high-level synthesis system, whose most significant difference between existing high-

level synthesis systems is that the electronic design engineer is able to direct the 

process of synthesis to a very fine degree of granularity. The main vehicle that has 

helped achieve this is the visibility of design information through graphical 

representations with which a designer is able to directly interact. This is in stark 

contrast to the purely automatic approaches of many synthesis systems, whose only 

support in heading towards the desired solution tends to be in the form of restarting a 

synthesis session from scratch. 

As well as the interfaces themselves, support tools in the form of sound software 

building blocks combined with software frameworks around which solid interfaces 

can be built are equally important. Without them, the interfaces would be concepts 

without proof in reality. Consequently, an equally important problem that this thesis 

addresses is the development of the necessary tools that can ensure this can happen. 
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LETTERS TO TilE EDITOR (The Times of London) 

Dear Sir, 

lam firmly opposed to the spread of microchips either to the home or to the office. We 
have more than enough of them foisted upon us in public places. They are a 

disgusthug Americanism, and can only result in the farmers being forced to grow 
smaller potatoes, which in turn will cause massive unemployment in the already 
severely depressed agricultural industry. 

Yours faithfully, 

Capt. Quinton D'Arcy, I. R 

Sevenoaks 

• Introduction 
The later half of the twentieth century has seen explosive technological achievements 

in many areas of human endeavour. None so much as in the areas that have arisen 

from being associated with semiconductor technology. With a symbiotic relationship 

with software, there has developed a fierce self-feeding loop between hardware and 

software resulting in continuous improvement - which itself is accelerating. Just as 

important, if not more so, are the spectacular spin-off benefits which have touched 

nearly every aspect of mankind. Many examples of such benefits abound, from 

imaging systems available to physicians, to world wide communication networks that 

let men and machines communicate with ease and simplicity making the world a 

smaller place. The systems are as rich in their diversity as they are in their application. 

The material presented in this thesis has aimed at being part of this self-feeding loop - 

focusing on the needs of digital electronic design engineers by exploring the tools and 

- ideas that are needed to accelerate and improve the development of new hardware. 

The problem is simple, namely one of helping designers become more productive. 

The solution is complex and has started to appear in recent years as a kaleidoscope of 

many tools and ideas from a variety of university and industrial organisations. What 

all these developments have in common is the concept of high-level synthesis. In 

essence, this is the automation of converting concepts into silicon. 

The main theme of this thesis is that of the major interfaces that a synthesis tool must 

have with its environment, and the foundations and framework on which such 

interfaces must exist in order to operate efficiently and effectively. Section 1.1 looks 

1 



at the problem domain addressed by this thesis and places these requirements in a 

much fuller context. 

Most of the work presented in this thesis has arisen from work carried out on a three 

year collaborative research project hosted by Edinburgh University called SARI - 

Silicon Architectures Research Initiative. The project had several 

far-reaching aims, which included the development of tools and ideas in the area of 

high-level synthesis. The key feature that has differentiated the work of this program 

from the many previous efforts in the area of high-level synthesis, has been the direct 

inclusion of the human designer at every possible stage of the synthesis design route. 

This approach meant that all the creativity and ingenuity a designer possesses is 

married together efficiently and effectively with a spectrum of brute-force to clever 

synthesis algorithms. The main vehicle used to achieve this has been the use of 

graphical representations of a design as it passes from idea to implementation, guided 

by the human designer. 

All the ideas developed have been embodied in one toolset, called SAGE [15]. SAGE 

stands for Sari Architecture GEne rat or and as a tool, represents well over 

thirty man years of effort equating to over a quarter of a million lines of high level 

code. The toolset has been through a number of generations, the latest being SAGE 4. 

In its present from, the toolset represents an early snapshot of many ideas that are only 

now beginning to appear in more mature and stable environments in the form of 

commercially viable systems. The screen dump given in figure 1-1 shows a snapshot 

of a typical session with the SAGE system, illustrating some of the panels and graphs 

that a SAGE user sees and interacts with. 
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The material presented in this thesis assumes a core understanding of several current 

systems. In particular, the ELLA hardware description language [34], the X Window 

System with its programming environment [57, 55] and the ADA programming 

language [3, 4, 51. The following section starts by explaining in greater detail the 

problem domain that has been addressed by this thesis, and is then followed by 

section 1.2 which gives an overview of the material presented, and how it has been 

structured. 

1.1 Problem Domain 

High level synthesis compared with the problem of logic synthesis, usually involves 

starting with a high-level system description expressed in terms of data flow and 

control flow structures which precisely defines the system to be implemented. Such 

structures are similar to those found in most software languages, and have in recent 

years been incorporated into hardware description languages like VHDL [31, 32] and 

ELLA. Such descriptions involve time or temporal dependence, unlike the case with 

logic synthesis, where the focus is generally on purely combinatorial functions. 

Figure 1-2 shows the high-level information flow of a highly stylised synthesis 

system. The structure of this diagram is representative of most synthesis systems. In 

simple terms, the overall order of operations starts with the input of source code and 

the target library information. Then, with the guidance of a user and the application of 

automatic core synthesis tools the aim is to produce a technology specific netlist as 

output. This thesis focuses on three of these four interfaces, namely library modelling, 

netlist generation and user interaction mostly aided by design visualization. Although 

a very important area, the problem of source code compilation has been largely 

obviated by the use of a commercial compilation system called VTIP [45]. In fact, 

this general approach of using existing tools to build upon, has been used wherever 

the existing tools have strongly satisfied the conditions of being either excellent or 

compliant with an existing or emerging industry standard. 
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Figure 1-2. Major Interfaces to Synthesis Tools 

Design automation tools to date have concentrated on empowering the user by 

providing highly focused or point tools that handle one or two concepts very well. 

Though this approach does provide solutions for designers, the tools tend to be too 

focused in their application. Additionally, this emphasis on the point tools has been at 

the expense of developments in the interfaces. In other words, this focus hides the 

richness of opportunity in carefully considered interfaces. By an examination of many 

existing interfaces, it becomes clear that a great deal more can be done to improve the 

integration of design automation tools within existing design flows, as well as 

meshing in closer with the natural requirements of a designer. The improvement of 

these interfaces is a large part of the problem area addressed by this thesis. 

As well as the interfaces themselves, support tools in the form of sound software 

building blocks combined with software frameworks around which solid interfaces 

can be built are equally important. Without them, the interfaces would be concepts 

without proof in reality. Consequently, an equally important problem that has been 
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addressed by this thesis is the development of the necessary tools that can ensure this 

can happen. The aim has been towards general and complete solutions that could be 

used without loss of generality in many other novel tool development problems. 

1.2 Thesis Outline 

This thesis consists of eight chapters. After this introduction, chapter 2 begins with a 

detailed look at a large number of university developed high-level synthesis systems, 

and how they compare with the SAGE system, particularly with regards to the material 

presented in this thesis. The background also looks at the current state of play of 

commercial synthesis systems. With the multi-million pound research budgets that 

many commercially driven companies have had in recent years at their disposal, many 

of the technological developments are coming in larger and larger parts from within 

industry itself and therefore commercial systems are becoming much more 

representative of technological leaders in the field. The final part of the background 

chapter gives a historical perspective of the SAGE synthesis system, which helps place 

in context the ideas supported by the SAGE system as presented in this thesis. 

Chapters 3 to 6 contain the core material presented in this thesis. The organisation and 

the inter-relationship of this material is illustrated pictorially in figure 1-3 by analogy 

with the core constituents of a building. Chapters 3 and 4, address the areas of design 

interfaces, showing several key new ideas that are in advance in many ways over 

existing approaches. Chapters 5 and 6, concentrate on what could be described as 

software structural foundations and frameworks respectively, without which many of 

the ideas in chapters 3 and 4 would not have been possible to explore or develop. With 

a practical basic approach, the broad contribution made by the material in chapters 5 

and 6 has been that of an attention to thoroughness, completeness and accuracy in the 

development of enabling facilities and software. As with real buildings, the 

framework and foundations are very important and must be sound, since they form the 

support on which things must bind securely to be successful. 
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Framework 
Chapter  

Library 	Design 	Netlist 
Modelling Visualis- Generation 

Chap. 3 	ation 	Chap. 3 
Chap. 4 

Foundations, Chapter 6 

Figure 1-3. Thesis Structure/Breakdown - Main Chapters 

Chapter 7, on the results takes a step back from the specific ideas presented and after 

describing a small design example using SAGE, goes critically onto examine the ideas 

that the SAGE system has tried to support. From this analysis is also presented the 

many additional ideas that could be further explored and developed. Although the 

thesis develops many ideas needed by electronic design engineers in the synthesis of 

complex systems, just as many important issues have been avoided. From testability 

issues to the special requirements of recently emerging sub-micron and very high 

speed logic systems, these holes are explored. In many ways, this chapter highlights 

the never ending room for improvement that always seems to be available in CAD tool 

development, and, more importantly, is on many occasions demanded by electronic 

design engineers. The final chapter, chapter 8, provides a summary of the material 

presented in this thesis. 

The final few paragraphs in this introduction take a more detailed look at the material 

presented in chapters 3 to 6, with a view to highlighting the key contributions to the 

field of work that this thesis has made. 

Chapter 3 addresses the problems of library modelling and netlist generation by 

showing the development of behavioural and structural modelling techniques based 
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on a formal language called LML. This language supports combinatorial, clocked and 

pipelined digital devices supporting two levels of timing representation. The structure 

aspects described in this chapter highlight the concept of creation supported by the 

technique of attributing netlists to help simplify the process of netlist generation. With 

these two concepts in place, the section on structure provides a comprehensive 

solution to the name space problem which is then used as the basis on which netlist 

generation of ELLA and schematics can happen. Chapter 3 finishes by looking at the 

services required by core synthesis tools when interfacing with a library of parts, 

namely matchmaking and unification. 

Chapter 4 begins by placing in context the requirements of visualization and then 

exploring the taxonomy of graphical representations in the form of visuals which can 

help a designer. From an idealised treatment which views graphs and their properties, 

the subsequent sections look at how graphs can be effectively drawn. The chapter then 

explores inter-visual relationships and dynamic visualisation techniques. Following 

these sections that treat the subject of visualization in a general manner, the chapter 

looks at the specific development of visuals as used in the SAGE system. The chapter 

finishes by looking at how a designer is able to interact with these visuals. 

Chapter 5 addresses five key areas that are found to be needed to support high-level 

synthesis in the context of high-performance graphics when the X Window 

System, ADA and Motif form the key building blocks that have to be used for 

sound reasons of tool portability and maintainability [97, 98].  These are the process 

model, language bindings, a rendering model, picture attribute management and user 

interface management services. 

Chapter 6, is primarily a study of object centred software tools that have 

completeness, accuracy and ease of use as their primary objectives. 
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An architect's first work is ape to be spare and clean. He knows he doesn't know what 

he's doing, so he does it carefully and with great restraint. 

As he designs the first workfriU after frill and embelishmens after embelishment 

occur to him. These get stored away to be used "next Lime". Sooner or later the first system is 

finished, and the architect, with firm confidence and a demonstrated mastery a/that class of 

systems, is ready to build a second system. 

This second lithe most dangerous system a man ever designs. When he does his third 

and later ones, his prior experiences will confirm each other as to the general characteristics of 
such systems, and their differences will identify those parts 0/his experience that are particular 

and not generalizable. 

2 	
The general tendency is to over-design the second system, v.5mg all the ideas and 

frills that were cautiously sidetracked on the first one. The result, as Ovid says, is a "big pile" 

-. Frederick Brooks, "The Mythical Man Month" 

• Background 
This chapter provides an overview of previous work in the area of high-level 

synthesis. Of particular interest are the interfaces of such systems, and therefore these 

are examined closely, to help place in context the material presented in this thesis. The 

background material is in four sections. The first examines the key terminology used 

in the field. The second is a look at over twenty high-level synthesis systems primarily 

from universities. The third section examines the current state of the art in commercial 

synthesis systems. The final section is a historical perspective on the development of 

SAGE 

Although high-level synthesis can be traced back to the 1960's [60, 61, 62], only in 

recent years have the ideas of high-level synthesis started to take hold as the promised 

productivity gains of such tools bear fruit. Not only are design times reduced to the 

order of days for complex systems, but also verification requirements are less due to 

correctness by construction and a designer is able to work closer to the problem and 

therefore concentrate on algorithmic problems rather than implementation problems. 

During this period, the terminology of high-level synthesis has also begun to settle. 

2.1 Terminology 

High-level synthesis, also known as behavioural synthesis, can be defined as 

translating a behavioural description into a controller description and a network of 

functional building blocks with their interconnections. The behavioural description is 

usually specified in terms of high-level operations. These operations are similar to the 
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data-flow and control-flow constructs found in software programming languages as 

well as in the behavioural parts of hardware description languages. Examples include 

assignment and arithmetic functions as data-flow operations, and 'for-loops', 'if-then-

else' and sequencing as control-flow operations. Three broad stages are involved as 

part of the high-level synthesis process. Finding the functional building blocks to be 

used is called allocating. Assigning operations to functional building blocks is called 

binding. Assigning timeslots to each operation is called scheduling. In allocating, 

scheduling and binding, the target is to minimize one or more cost functions. Such 

cost functions are usually the area of the functional building blocks or the number of 

timeslots used. In the literature, the term scheduling is commonly used as the activity 

of applying all three of these stages optimally. The actual target hardware can range 

from general purpose functional units to specific hardwired datapaths that require a 

controller in the form of microinstructions. 

Another commonly used term in the literature, is silicon compiler [84]. The broad 

definition of this term, fully encloses high-level synthesis, by being defined as a 

program, or set of programs that translates a behavioural description of a system into a 

chip layout. High-level synthesis, together with logic synthesis and layout form the 

three main stages of a silicon compiler. The dividing line between high-level synthesis 

and logic synthesis is not hard and fast. Nevertheless logic synthesis is generally 

understood to mean the synthesis of combinatorial multi-level or 2-level logic 

equations. 

2.2 Research High-Level Synthesis Systems 

The broad thrust of work presented in the literature has been that of heuristic solutions 

to the scheduling problem with relatively little attention to the interfaces that such a 

tool must provide. The library interface problem has been avoided by synthesis 

systems allocating complex objects directly. The most common example of this is the 

presence of the non-deterministic division operation as if it had the characteristics of a 

deterministic adder. Since most of the synthesis systems are targeted at specific 

internal logic synthesis and layout systems, the problem of general netlist generation 

is avoided and therefore this area, and particularly that of name space mapping in 
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netlist generation, has not been addressed in the literature. In the area of user 

interaction and visualisation, some recent work has started at trying to involve the 

user, but generally most systems are iterative rather than interactive in nature. The 

main exception is work done at Carnegie-Mellon University, which, while still no 

where near as flexible as SAGE, has focused on user directed behavioural 

transformations similar to those found in software compiler technology. 

2.2.1 General 

There are now well over thirty major high-level synthesis systems that have been 

developed at universities or research centres. Figure 2-1 contains a list of most of 

these synthesis systems with an indication of their origin and main developer. These 

systems form the basis of the following discussion. The systems which have not been 
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discussed are generally older systems like MACP ITT S, whose functionality is more 

than addressed by the later systems. 

System Origin Developer 

ACE Waterloo University, Canada Buset 

ADAM University of Southern California, USA Knapp 

CATHEDRAL II Inter University Micro Electronics Center, Belgium De Man 

CHIPPE University of Illinois, USA Pangrle 

CMU—DA Carnegie-Mellon University, USA Thomas 

DAA Carnegie-Mellon University, USA Kowalski 

DSL Karlshrue University, Germany Camposano 

DSS University-of Cincinnati, USA Roy 

DTAS California University, USA Dutt 

FLAMEL Stanford University, USA Trickey 

HAL Carleton University, Canada Paulin 

HYPER University of California at Berkeley (UCB), USA Chu 

LAGER National Chiao Tung University, China & UCB, USA Shung 

LAMBDA Brunel University, UK Fourman 

RLEXT University of Illinois, USA Knapp 

MOVIE Lund University, Sweden Andersson 

OCCAM TO 
SILICON 

Meiko, UK May 

OLYMPUS Stanford University, USA DeMicheli 

SEHWA University of Southern California, USA Park 

SCHOLAR University of Southampton, UK Bergamaschi 

SYSTEM 
ARCHITECT'S 
WORKBENCH 

Carnegie-Mellon University, USA Thomas 

UCB'S SYSTEM UCB, USA Devadas 

ULYSSES Rutgers and Carnegie-Mellon Universities, USA Bushnell 

VS S University of California at Irvine, USA Lis 

YSC IBM TJ.Watson Research Centre, USA Brayton 

Figure 2-1. Major High-Level Synthesis Systems 

The core synthesis activity of scheduling has a number of recognised approaches. 

ASAP (as soon as possible), ALAP (as late as possible), AFAP (as fast as possible), 

AEAP (as early as possible) are just some of the scheduling algorithms that can be 
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found at the heart of high-level synthesis. More advanced algorithms include list-

scheduling, force-directed scheduling and simulated annealing. The force directed 

algorithm used by HAL [71], is one of the more interesting of these algorithms. It 

reduces the number of functional units, storage units and buses required by balancing 

the concurrency of operations assigned to them. The SAGE system has implemented 

variants of the ASAP and list scheduling algorithms. The UCB's synthesis system 

[88], is an example of a simulated annealing based design system. In this system, all 

the allocation sub problems, namely operator, memory and communication allocation, 

are tackled simultaneously. In SAGE, these stages are distinct and separate. FLANEL 

[66] has shown how global optimisation at the control-flow graph level, can provide 

more benefit than simple local optimisation. The system does not support hierarchy 

and constrains multiplication and divide operations to powers of 2. The Yorktown 

Silicon Compiler - Ysc [82], is a comprehensive design system that spans the full 

design process. It uses an APL-like language to describe the behaviour of systems. 

The Karlshrue DSL Synthesis System [69],  has a purpose-built input language that 

supports applicative and imperative description styles. The synthesis algorithms use 

both global and local automatic optimisation before mapping to real hardware 

components using parametric based module generators. Most of these systems 

represent general approaches to the high-level synthesis problem. 

A number of synthesis systems have focused on just one part of the high-level 

synthesis problem. SHEWA - a Korean name meaning 'flower of the world' [68],  is 

targeted explicitly at pipeline synthesis. Using brute-force methods, an exhaustive 

design exploration algorithm ensures that the minimum cost, highest performance 

design can always be found. In comparison, SAGE has been designed so that it can be 

guided directly by a user to the right solution. 

Most high-level synthesis tools explore the design space and present the user with a 

range of results or the best result according to the constraints imposed by the user on 

the synthesis process. The D S S - Distributed Synthesis System [89],  has exploited this 

feature by being targeted at MIMD computer architectures. In many ways, SAGE has 

the correct process model to support the same concepts ( as discussed in section 5.2 
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on page 121), but currently has not been developed to the same extent as DSS. D S S 

also supports VHDL [31] as its specification language. 

2.2.2 Library Modelling Aspects 

Rather like SAGE'S matchmaking facilities, the DTAS tool [90],  is able to map 

technology independent libraries to register transfer level libraries. This is in 

comparison with most other synthesis tools, where functional units are passed onto 

combinatorial synthesis tools like ESPRESSO. The libraries are specified in a 

language called LEGEND which includes semantics for clocking, asynchronous 

behaviour, bidirectionals and generic components. The description is then mapped 

into GENUS, which generates the generics, and forms the library database that DTAS 

uses. Unlike SAGE, the approach is rule based and does not support general cost 

attributes and low level timing information. 

The SCHOLAR [80] system is another example of a general high-level synthesis tool, 

but with an interesting library mapping backend. It uses a logic synthesis program 

called SKOL [79], which has a fast technology mapping algorithm to map functional 

units to a target library. The approach is based on the use of a numerical string for 

representing the boolean expressions and library cells, which contributes to the fast 

selection process. Another performance enhancing feature is that the boolean 

expressions do not need to be decomposed to primitive gates before the mapping 

process. 

LAGER [77], is typical of a number of systems that achieve technology mapping by 

having a well defined target architecture. The target architecture is a parameterised 

structure, and the result of mapping is to produce microcode and parameter values. If, 

after synthesis the user is unhappy with the result, the user can select another target 

architecture and restart the synthesis. LAGER uses S I LAGE as well as a C-like [8] 

input language. A similar approach has been taken in [91], where OCCAM is mapped 

onto multiple abstract micro-machines. 
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2.2.3 Design Visualisation Aspects 

The OLYMPUS [92] system allows limited interaction, to the extent of in-lining 

procedures calls or explicitly specifying which library modules to use for specific 

components. Automatic behavioural transforms include constant and variable folding, 

common subexpression elimination, dead code removal, reduction of constant 

conditionals and loop unrolling. 

VSS (VHDL Synthesis System) [93],  is one of the few systems that support synthesis 

from VHDL and allows limited visualisation facilities in the form of viewing internal 

flow graphs after the compilation process. The system also includes automatic 

behavioural transformations that support loop pipelining as opposed to loop unrolling 

which it is also able to support. 

Using 'knobs' and 'gauges' as graphical metaphors, the CHIPPE [74, 67] system 

provides a user with an organised way to control the high-level synthesis process. The 

design process involves setting the user constraints (knobs) and analysing the results 

(gauges) and then iterating around this loop. The gauges of quality include measures 

for area, power and time, as well as overlap ( the number of states for which two units 

are active in parallel), dead time ( how much the system clock is not used) and bus 

usage. Although a designer has greater visibility of the synthesised designs quality, 

the process is still iterative rather than interactive. 

The IBA system [86] provides a designer with interactive design transformations on a 

synthesised design. The system has two major problems. Firstly, it is textually based 

and therefore a user has no immediate insight as to the effect of the transforms. 

Secondly, the designer is unconstrained as to which transforms to apply. This allows 

/ the normal paradigm of correct by construction to be violated. This arises because the 

cleverness of the IBA system is in the RLEXT program which can 'fix' a design once 

a user has modified it. The range of transformations include addition and removal of 

functional units, as well as control step schedule modifications by shifting operations, 

inserting or deleting control steps and compressing sequences of control steps. 
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Through the use of formal proofs, the LAMDA (Logic And Mathematics Behind 

Design Automation) [63], system is able to be guided by the user to an 

implementation. Since formal textual equations drive the synthesis process, the 

process is initially non-intuitive for engineers and lacks the graphical expressivity 

found in SAGE visuals. 

Some systems appear from a first glance to provide user interaction and design 

visualisation facilities similar to SAGE, but in fact do not. One example is HYPER 

[85]. Unfortunately, the term interactive is confused with the more usual iterative 

facilities provided by existing high-level synthesis systems. Thus a user can specify 

hardware, memory, connectivity and timing requirements which direct the actions of 

the automatic transformation and optimisation tools. An interesting point about the 

HYP ER tool, is the extensions to the S I LAGE input language. S  LAGE is usually a 

DSP style applicative language, but the extensions add 'while' loop, 'if-then-else' and 

interprocessor communication constructs. Another system that claims to provide 

interactive facilities is MOVIE [72]. This is a full silicon compiler, which does provide 

significant interactive and high performance graphics at the layout stage (achieved by 

using dedicated graphics hardware), but only the necessary hooks for future high-level 

synthesis tools that might support the concept of interaction and visualisation. 

ULYSSES (Unified LaYout Specification and Simulation Environment for Silicon) 

[70], claims to let the designer interrupt the design process at any stage and take over 

control, but the granularity of that interruption is a function of the tools it is interfaced 

to. In addition the tools that have been integrated with ULYSSES, are again generally 

layout tools, where the granularity of the interaction is much more clearly defined. 

While the ACE [94] system methodology clearly recognises the difference between 

interactive as opposed to iterative synthesis, the current tool only lets a designer 

screen suggested transformations. The main innovation of interaction is in the 

graphical interactive specification process as opposed to a textual based language. The 

other main difference from SAGE is that the tool only supports data flow. 

The CATHEDRAL 	I I system [83] (like LAGER), is targeted explicitly at 

multiprocessor DSP systems. The target architecture is a set of concurrent dedicated 

bit-parallel processors on a single chip. The system uses S I LAGE and through the use 
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of pragmas, is able to provide a limited degree of user control on the synthesis route. 

This was a formal design decision in that user 'interference' was to be limited as 

much as possible. 

The USC Advanced Design AutoMation (ADAM) [78] system is designed to unify a 

number of design automation programs into a single framework including a 

knowledge based synthesis system. The system is in two parts, a planning engine 

(called DPE), and an estimation engine that evaluates a plan. The overall approach is 

modelled on how real designers do digital system design. Thus, if the 'execution' of 

the plan fails then control is passed back to the planning engine. The knowledge base 

of the planner is populated with register-transfer level concepts for system level 

digital design; it can also be populated with other knowledge sets. 

Several systems have been developed at Carnegie-Mellon University. This includes 

the DAA - Design Automation Assistant [81], a rule based system. The work done at 

Carnegie-Mellon University now represents some of the most mature high-level 

synthesis systems developed to date. The current system, the SYSTEM 

ARCHITECTS WORKBENCH [87], forms a framework on which the high-level 

synthesis components such as CMU-DA [65, 73] have been built. Using ISPS 

(Instruction Set Processor Specification) as the input language, the system maps this 

to internal value-trace graphs which bridge the behavioural and structural domains. In 

a similar manner to SAGE, the three domains of input language, internal data+control 

flow and output structure are all linked graphically so that a designer can view the 

interrelationship of selected objects across all three domains. Of all the systems 

reviewed, this system provides the closest functionality to SAGE, in that it supports 

user directed transformations that allows the exploration of different architectures. 

Unlike SAGE, since the transformations are applied to the value-trace graphs, the 

effect of each transformation on the resulting data-path and controller can be difficult 

to judge. 

2.2.4 Netlist Generation Aspects 

While this survey of high-level synthesis systems has seen several different 

approaches to design visualisation as well as library modelling this has not been the 
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case with netlist generation. No particularly special approach has been adopted in any 

of these systems. Most are targeted at their internal netlist language and consequently 

have not had to handle the requirements of general and third-party nethst generation 

problem. Another reason for the lack of development of this interface is the 

infrequency of usage because of the general life cycle of research synthesis systems. 

That life cycle means that problems are remedied using simple workarounds rather 

than anything more elaborate. 

2.3 Commercial Synthesis Systems 

Companies involved exclusively in the development of CAD systems have grown at an 

explosive rate over the last ten years. Two of the largest companies are Mentor 

Graphics and Cadence, which both provide a comprehensive array of CAD tools that 

can help designers in a wide range of areas from system specification to polygon 

pushing. Only in the last few years have they started to address the areas of high-level 

synthesis. In many ways, the large part of their development effort has been expended 

on framework developments, providing the right system backbone for the current and 

future tools to coexist and work effectively together. It is interesting to note that 

Mentor Graphics spent over 100 million dollars over a three year period to migrate all 

their tools into their falcon framework, producing a system with well over 11 million 

lines of source code. Work by the CAD Framework Initiative (CF I) [64], has been 

directed at making different CAD systems work together. Current demonstrations have 

shown the transparent passing of netlists between several different systems' schematic 

capture packages. Future work will enhance the specification even further so that 

customers can pick and choose the best tools according to their needs from all the 

CAD tool vendors, and be able to integrate them seamlessley together as if they were 

purchased from only one vendor. The VT I P [45] is an example of an existing 

commercial package whose sole purpose is to act as a framework or platform on 

which to build VHDL applications, and is the main reason why it is used by SAGE. It 

achieves its function through the use of a the SP I (software procedural interface) 

[46], applied to design units organised by the DLS (Design Library System) [47]. 

What makes it even more interesting, is the 'views' that application developers using 

these tools can have of the VHDL database. These include 'compiler views', and 
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recently a 'synthesis view'. Use of such a synthesis view and general framework 

could have considerably helped the development of SAGE by supporting the tool 

design problem from a higher starting level of abstraction. 

The development of the commercial synthesis tools has drawn heavily on the systems 

developed by universities. Formally, they are currently closer to logic synthesis than 

high-level synthesis in functionality. The Mentor Graphics AUTOLOGIC [40] toolset 

has parts of the CATHEDRAL work. The Cadence system makes use of MIS, BOLD, 

S  S and CAD OPT [38], the latter being from an internal company development. The 

systems use VHDL and VERILOG [36] respectively as their primary input languages, 

but can also rework existing designs presented as EDIF [33] netlists or schematics. 

Whereas the Mentor Graphics system produces a straightforward synthesis run, the 

Cadence system provides a two stage synthesis process, the first of which gives 

sampled space-time graphs, from which the designer can select a particular 

implementation to run to completion. These tools are being continually developed, 

and many of the ideas of CASE tools are now being propagated into the hands of 

digital system designers. One of the latest offerings from Mentor Graphics is the 

System Design Station [44]. This helps in systems requirements capture with a direct 

path available to the AUTOLOGIC synthesis tools. Another emerging system is 

ExpressVHDL [43],  which lets designers capture system requirements graphically 

using an extended form of state transition diagrams. From this, behavioural level 

VHDL can be produced which can be passed directly onto a synthesis system. 

The SYNOPSIS [41] synthesis system has become the market leader by having 

exploited the current demand in industry for synthesis tools. Supporting synthesis 

from both VERILOG and VHDL, the toolset has developed a solid reputation through 

reliability and the addressing of additional synthesis problems including test 

synthesis. LOCAM [39] can use ELLA [34] or VHDL as its input language. While fast 

and efficient, the recent addition of optimisation across register boundaries by using 

the technique of register propagation distinguishes this tool from the others. Probably 

the closest in similarity to SAGE, is the Silicon 1076 [42] environment from LSI 

Logic. The system is able to produce control and data flow graphs that depict the 
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degree of parallelism in a design, but only in an iterative manner. The tool supports 

similar design exploration facilities to the Cadence synthesis system. 

2.4 Development History of SAGE 

To help place in context some of the developments outlined in this thesis, this section 

provides a brief historical overview of the development of SAGE. As mentioned in the 

introduction, the SAGE system was developed as part of the SARI - Silicon 

Architectures Research Initiative. This was one of a number of Department of Trade 

and Industry sponsored initiatives under the common title of NERI - National 

Electronic Research Initiative. The overall aim of these programs, including SARI, 

was to do pre-competitive research in newly emerging technologies. Other NERI5 

were associated with pattern recognition (RIPR - Research Into Pattern Recognition) 

and hybrid development (RI SH - Research Into Silicon Hybrids). 

Three broad phases were involved in the development of SAGE. Firstly, the 

philosophy development which identified the need to focus on flexibility, interaction 

and correctness as the three main features of SAGE [13, 14]. Secondly, the 

development of the SAGE 2 toolset [16, 17, 12].  It is with this toolset that the library 

modelling and netlist generation facilities discussed in this thesis were primarily 

associated [21, 18, 19, 20].  The third phase involved the development of SAGE 3 [ 1 5], 

which with a few minor additions is now called SAGE 4. The primary improvements 

over SAGE 2 included a more comprehensive data model that could support control-

flow and hierarchy. The work relating to design visualisation and user interaction 

described in this thesis is related to this version of SAGE [22, 23, 24]. 



THE LESSER-KNOWN PROGRAMMING LANGUAGES #8: L4IDBACI( 

This language was developed at the Mari, County Center for rw Ch4 Mellowness mid Computer 
Programming (now defunct), as an alternative to the more intense atmosphere in nearby Silicon 
Valley 

The center was ideal/or programmers who liked to soak in hot tubs while they worked. 
Unfortunatelyfewprogrommm could survive there because the center outlawed Pizza and Coca-

Cola in favor of Tofu a" Perrier. 

Many mourn the demise ofIAJDBA CX because 0/its reputation as a gentle and non-threatening 

language since all en-or messages are in lower case. For example, LAIDBACK responded to 

3 	
syntax errors with the message: 

"1 hate to bother you, but i just can't relate to that, can you find the time to t, it again?" 

• Library Modelling 
and Netlist Generation 

This chapter investigates the problem of modelling behaviour and structure in a form 

that is suitable for high-level synthesis. Having defined structural objects, the 

problems associated with generating netlists are examined in section 3.2. The chapter 

finishes by looking at how a database of behavioural and structural objects can be 

used for the purposes of matchmaking and unification. 

The distinction between behaviour and structure is not arbitrary. Strictly, the 

definition of behavioural models does include the case of structural models, but 

because of the dominating influence of hierarchy when considering structural 

components, their separate treatment from behavioural components can be considered 

valid. 

Similarly, there is a subtle distinction between matchmaking and unification that tends 

to mirror the behaviour/structural divide. Matchmaking is the process of finding a 

suitable implementation for a given behaviour object, while unification looks at the 

problem of confirming the equivalence of two structural objects. It should be noted 

that this distinction is used within this thesis but, within the common literature, no 

such clear distinction currently exists. 
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3.1 Behavioural Modelling 

As we have seen in the literature review, there are many different ways to capture the 

behaviour of devices. In addition to many methods to specify the same level of 

abstraction, there are many different levels of abstraction that can be specified. These 

different levels of abstraction start with highly focused tools that try to model reality 

in the greatest possible detail like SPICE [35]. At the other end of this range of levels 

are general all encompassing tools like BLM [37] (Behavioural Language Modelling 

in C/PASCAL), which provide modelling support for what is required in high-level 

specification terms, as opposed to the final implementation. 

As examples to illustrate the variety of modelling approaches currently in use, we can 

see at one extreme for simulation purposes the advanced quickpart technology [48] in 

use by Mentor Graphics Corporation. At the other extreme is the technology used by 

synthesis systems like LOCAM [39] which allow a designer to describe the essential 

logic behaviour of behavioural primitives such as boolean equations. 

To support this wide variety of descriptions, a behavioural description can be analysed 

in two basic parts. There is the temporal view point concerned with when and where a 

signal and operation must happen. The other strand is related to the actual behaviour 

without concern to time. The rationale that helps justify this distinction is simple. 

Timeless behaviour is generally associated with procedural steps that encapsulate the 

operation being executed as a series of data dependent relationships. 

3.1.1 Temporal Issues 

There are two general styles of describing the temporal behaviour of a system. These 

two styles are commonly termed asynchronous and synchronous. The main difference 

between the two styles, is the way that transfer of state information is governed by an 

explicit clock signal for synchronous logic. Normal design techniques usually allow 

asynchronous logic to be designed by identifying the feedback loops and then 

inserting fictitious registers or delay elements to allow the design to proceed. There 

are several additional checks that must be made for asynchronous logic, most notably 

checking for delay hazards. Because of these additional complications this thesis only 
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addresses the problem of designing with synchronous logic. Asynchronous logic can 

be treated in a similar fashion to synchronous logic, by the treatment of the inserted 

delay elements as clocked registers. This would mean that the problem of the 

asynchronous timing would become one of deciding on a suitable time resolution. 

Many levels of temporal abstraction can be identified for logic based systems. The 

reflection of state is the most important. For stateless systems, the timing can be 

expressed as being zero time, or looked at as the relevant pin to pin timing. This 

modelling can then be broken down one further stage, to reflect the rise and fall delays 

as well as the value dependent timing paths. The most dominating value is the 

propagation delay, and therefore, most designs can be expressed by providing the 

maximum value of all the pin to pin delays. Adopting this option, is not to ignore the 

importance of the shortest delay path, which can cause problems in validating 

complex timing relationships. A classic example of where this is important is that of 

ensuring a minimum delay value between registers to prevent clock skew problems 

affecting design intention. 

For architectural synthesis, a careful examination of the requirements can be used to 

identify the key first order effects that must be supported. What could be termed 

second order effects or higher can be fairly passed on to the point tools that can handle 

such detail. From the specification, the requirements are mapped to sequenced 

operations. Many operations are high level processes like multiply and divide, which 

will usually require a complex FSM to operate. There are also many lower level 

operations like add and subtract which can be mapped directly to a library of parts, 

whether in an ASIC library or T T L data book. The importance of the right first order 

effects being supported can be highlighted by exploring what would if happen if the 

wrong choices are made. In this case, after architectural synthesis, the next tool set 

needs to operate with minimal need to restart the synthesis process. A good example 

is if combinatorial components are treated as point (or zero time) operations, in which 

case no control of clock period duration can be made, and therefore, even though the 

resulting architecture will be logically correct, the performance in MHz will be 

unpredictable, since all operation elements were treated with the same point time 

behaviour. 
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The process of choosing which time parameters dominate and therefore are a 

necessary part in the modelled library components can be easily explained. With a 

single clock synchronous implementation methodology, the modelling of sequenced 

events is very important. This implies the use of a synchronising signal (i.e. a clock) 

and data-flow. For combinatorial objects, there are many levels of abstractions to 

choose from. At the highest level, as explained earlier, there is the treatment as point 

operations, effectively taking no time. Next we have the general propagation delay 

model, that is summary values for all pin to pin delays. The next level is to supply 

explicit pin to pin delays as well as to provide rise and fall figures. At this stage, the 

effect of capacitance and track loading can become important. Given these choices, in 

the category of first order effects is the general propagation figure since it has a direct 

bearing on the performance of a system. 

With this decision, there is a direct need to look at the similar dominating delay 

figures associated with memory elements. The key points here are the need to ensure 

that the input is valid when a clock edge appears, and how long it takes for an output 

to settle once a clock event arrives. This abstraction is achieved through the use of 

delays that are commonly referred to as the setup, hold and propagation figures. 

In a similar way to combinatorial elements, arguments for propagation, setup and hold 

values as providing sufficiently descriptive timing attributes for architectural level 

design can be made. The main argument is one of maintaining simplicity, such that 

more detailed representations as found in data books could be added at a later date if 

required. Consequently the main memory element is that of a DTYPE register 

element, defined as an edge sensitive device that can be stretched as appropriate to the 

required number of bits. For these same reasons, latches or level sensitive devices are 

not considered, because of the way they violate the synchronous design approach. 

Even with this simplified memory model, the differences between the ideal memory 

element and those found in data sheets is worth noting, to ensure that it is an adequate 

and practical abstraction. As with so many issues related to synthesis, it is not the 

major mode of operation that is of concern, but details relating to the memory 

initialisation. Thus, even when memory elements come with synchronous and 
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asynchronous reset, it is generally easier to state that the algorithm is responsible for 

initialisation of the register in a synchronous fashion. This approach means that for 

non-trivial memory declarations that have to map to real hardware, the corresponding 

non-trivial initialisation algorithm can be incorporated in the algorithm. This is even 

more important when one considers issues relating to test, where specialist algorithms 

need to be developed. 

When treated together, the temporal models for combinatorial and memory elements 

provide an adequate framework on which the three general styles of synchronous 

models of chaining, multicycling and pipelining can be supported. Note, even though 

such features are possible, their usage depends on the form of the synthesis tools that 

make use of these concepts. For example, no support for multicycling is made by the 

current generation of SAGE scheduling tools. 

The main point about separating timing from behaviour for library models, is that of 

being able to support matchmaking in an efficient manner. The language that has been 

developed for SAGE to support this activity is described in the following section. Note 

though, in the historical development of SAGE, this language applied only to SAGE 2. 

3.1.2 Library Modelling Language 

The process of describing leaf level objects that can accurately encapsulate the 

requirements as described in the earlier sections, can be achieved through the 

definition of a library modelling language, henceforth referred to as LML. The 

approach requires that given any hardware object, a systematic list of that object's 

capabilities are made. A simple example is that of an ALU, where distinct capabilities 

are identified as ADD, SUBTRACT, MULTIPLY etc. - usually identified in data sheets 

with the exact state of control lines that are required to achieve the required function. 

A more involved example would be that of a DTYPE, where the usual capability of 

latching data, would be supplemented with the relatively more complex requirements 

of being able to reset or set the DTYPE, synchronously or asynchronously - depending 

on what the real life device supported. 
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The function itself might be decomposable into much smaller building blocks, for 

example an adder being composed of 'half' and 'full adders' to achieve the required 

function. The key point, is that though this may happen, the function is identified as 

distinct from its temporal behaviour. This means that the separate capabilities are 

identified by distinct timing views. 

The level of detail in the function and timing views can be considerable. For the 

function, the major effects are signal structure, state dependence and operational 

semantics. With signal structure, many features such as signed/unsigned number 

representation, bit width and most significant bit designation are the key 

characteristics. State dependence can be supported to a limited extent, in as much as 

local state information can be represented in the timing view, illustrating a duality 

between the two forms of state representation. Clearly eliminating state dependence 

from a function simplifies it considerably. The final feature of operational semantics, 

which could be fairly argued as encompassing the previous features and effects, is the 

procedural statement of how a particular action happens. 

The classic DTYPE is again a good example of this distinction. Here the signal 

structure can be anything. In fact modem languages now support polymorphic types 

that allow such expressive expression of inputs - as in languages like ELLA. Thus the 

signal structure can be anything, but with the state dependence furnished by a timing 

view, the operational semantics are as simple as Q = D. 

The next few sections explore, by way of simple examples, how LML can be used 

successfully to describe a range of devices, in a form that captures the key details as 

required by the matchmaking process. 

A few general comments about LML are required. LML is based on ADA [3], reflecting 

the verbose but expressive nature of that language. The language is case-insensitive 

and free format and the grammar is structured to organise related information in a 

user-friendly a way as possible. The final point concerns the minimization of 

ambiguity within the language, which is a necessary perquisite to help automatic tools 

that might be developed at a later date to produce automatically LML code. 
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3.1.2.1 Combinatorial Objects 

The following example shown in figure 3-1, is that for a combinatorial device that has 

a propagation delay of 35ns. The timing diagram indicates the behaviour that is being 

modelled. 

a_port 

b_port 

c_port 

component addffast is 

sim_def in 

ELLA : "ADD XXX{8}" ; 
VHDL : "ADD—X" 

Is (a_port : in integer, b_port : in integer, c_port out integer) 12 
end siin_def; 

begin 

time_def add is 
3 	"$Dt" (a_val in integer, bval : in integer, c_val : out integer) 

a_port = a_val ; 
b_port = b_val ; 
C_port = cval+ 

end add; 	- 

attributes_def is 
propagation := 35.0; 	6 

end attributes_def; 

end addffast; 

Figure 3-1. Example of Modelling a Combinatorial Device 

With the wide variety of different hardware description languages that are now 

available, it is clearly important that a mechanism to support mapping between a LML 

name to a target library name is provided. LML achieves this by understanding the 

existence of ELLA, VHDL and ED IF [33] languages, while any unsupported language 
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can still be indicated by supplying the language within quotation marks. By providing 

hard coded language names, the compilation software provides two facilities. Firstly it 

is able to check errors within the name syntax at the earliest possible stage, and 

secondly many of the difficulties of managing name spaces can be eliminated at this 

stage. (How these name space problems are managed is discussed in section 3.2.3.1). 

This information is contained within the simulation definition part, marked as '1' in 

the figure. It is included in what would be the declarative part of the equivalent ADA, 

since it is just that - a declaration. As a fallback option, the semantics imply that a 

target HDL that does not exist results in the default name being that which follows the 

'component' keyword. 

Part '2', which is common to all the different names that the unit can take on, is the 

formal parameter list. This list is the perspective used by the netlist generation phase, 

.since it will contain all the physical signals associated with the component. As will be 

seen for some of the more complex clocked examples described later, it is possible to 

have a different set of signals describe the timing views. An analysis of all the signal 

types that appear in real systems, indicates that the three typical directions of inputs, 

outputs and bidirectional ports form a complete enough set useful for real designs. 

This example consists of only one timing view as shown in '3'. It is formed from 

basically two parts, the first being the software function of the object and the second 

being a timing matrix that maps software values onto real ports. In this example it is 

an addition operation. The data flow of the object is to receive two values and produce 

a single result. The software operation, for matchmaking purposes, must be a known 

class of operation. This implies that all the classes of arithmetic operations found in a 

normal programming language are candidates to be declared as software operations. 

The situation is not as simple as this, and is explored more fully in section 3.3 where 

matchmaking is discussed. 

In order to map software values to real ports, the concept of a timing matrix is used. 

The key feature of this concept is the mapping of events on software objects to values 

on ports. Part '4' of figure 3-1 shows how the mapping of these software values 

happens through the associated timing matrix. Each line should be read as the 
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mappings associated with a particular port. Thus the first line represents the value 

a_va 1 on a_port, while the third line represents the generation of the c_va 1 from 

the port c_port. The construction of these software events into columns is very 

important, since the event-action sequence is carried within this abstraction. As shown 

in part '5', any activity on ports that is an output activity is represented by the '+' 

symbol. In essence it is saying that on any events within this column (i.e. the arrival of 

a_va 1 and/or b_va 1), then generate c_va 1 after any delay requirements have been 

satisfied. 

The final section, part '6', is the container for all the attributes associated with this 

component. In principle, this section can contain name-value pairs for anything. Thus, 

attributes for power, area, etc. costing information could be included. In this case, one 

of the several 'internal' keywords has been used, namely propagation delay, which has 

a well defined meaning as highlighted by the waveforms. 

3.1.2.2 Clocked Objects 

For clocked devices, a very similar style of description is used. The main identifiable 

differences include the introduction of clock events and identifiable state within a 

timing view. In addition, a more comprehensive set of timing attributes are used. 

Thus, as well as the device propagation attribute, other attributes including the 

required setup, hold and pipeline attributes must also be expressed. The timing matrix, 

as with combinatorial devices, expresses the when and where of software signals 

mapping onto hardware ports. 

The following diagram, figure 3-2, illustrates the basic understanding of setup and 

hold low level timing figures in relation to the propagation figure. No semantic 

requirement prevents the values being assigned zero or negative values, or even model 

devices with propagation values being less than hold. This is particularly useful since 

real life devices do exhibit these forms of behaviour. 

FM 



clock 

inputs 

outputs 

F-  - 	 - 

Figure 3-2. Setup, Hold and Propagation Model 

The pipeline figure represents the reusability of a particular device, after the last stage 

of computation has occurred. The value is an offset figure and represents how many 

clock cycles after the last output appears, the device can be reused. Thus, in the 

example shown below, figure 3-3, a particular computation takes three clock cycles 

(from start to finish), but the device can be reused every clock cycle. The need for a 

pipeline figure is a direct consequence of the level of abstraction that LML has been 

designed for. Since the inner workings of a component are not represented by LML, it 

is not possible even to infer what the pipeline capability of a component is. This 

means that two extreme interpretations could be made. That of not being pipelined, 

and that of being fully pipelined. Rather than make any such assumption, an explicit 

figure is therefore required to represent this information. The two interpretations 

provide a choice of two datum-times from which the pipeline figure is able to apply. 

From a conceptual point of view, it is easier to start with non pipelined objects and 

therefore the non-pipelined datum is used to measure how soon a component can be 

reused. 
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Figure 3-3. Pipeline Model 

An example of a clocked LML model is shown in Figure 3-4. The graphical timing 

chart shows how the three software values map onto the hardware ports. The timing 

views are essentially a textual capture of this information. 

control 

clk 

aport 

bport 

c_port 

start 

Figure 3-4. Example of Modelling a Clocked Device 

Figure 3-5 shows the corresponding LML description for this timing diagram. As with 

the combinatorial example, this description can be used to illustrate new concepts that 

can be captured using LML. In part '1', the real world perspective can be seen to 

contain additional ports, not directly associated with any software signals within the 
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timing views. In this case, the additional ports are control and cik, which, as their 

names imply, are control signals. This model has two timing descriptions, ('2'), one 

for the mapping of the addition operation, and the other a subtraction operation. As 

can be seen in '3', each view encapsulates all the conditions that are required to 

execute that operation. Clock events are identified with the respective rising or falling 

edges, i.e., in symbolic form 'I' or '\'. For every column, three sorts of element are 

included. First are constants, such as those on the control lines. Secondly there are 

variables. The clock event implies that the variables and constants must be at the 

required values within the constraints specified by the setup and hold attributes. The 

third sort of element contained within a column are generated variables, in a similar 

manner to combinatorial component, they are identified with the trigger '+' sign. The 

'.' symbolizes a wild card object, whose value is not needed to achieve the required 

computation. The attributes section, '4', shows three of the four timing values. The 

implied semantics for a required attribute, that is not given, is to default to 0. 
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component alu is 
sim_def in 

ELLA : "ALUXXX{8}" ; 
Is 

(clk : in bit, control : in bit, 
a_port : in integer, b_port : in integer, cport : out integer) 

end sim_def; 
begin 

time_def add is 
"$ADD"(a_val : in integer, bval : in integer, c_val : out integer) 

2 	control= 0, 
clk  
a_port = a_val,  
b_port = b_val, •, 	 . 	 ; 

c_port = ., 	•, 	c_val+ 
end add; 	3 

time def sub is 
"$SUB"(a_val in integer, b_val : in integer, c_val : out integer) 
control= 1, 
cik 	=1, 	I, 
a_port = a_val, 
b_port = b_val, 
c_port = ., •, c_val+ 

end sub; 

attributes_def is 
setup : 5.0; 
hold := 2.0; 	 4 
propagation := 4.0; 

end attributes_deE; 
end alu; 

Figure 3-5. LML Example of a Clocked Device 

3.1.2.3 Pipelined Objects 

To illustrate more clearly pipelined objects, the behaviour of the previous example is 

used as the basis on which increasing pipeline capability is demonstrated as shown 

illustrated by the resource-time graphs in figure 3-7. Figure 3-6 shows the starting 

state of the design, and how it consists of two sets of two addition operations. The first 

two additions, #1 and #2 are related by an expression of the form (a+b)+c. The second 

two, #3 and #4, compute independent sums, of the form a+b and b-i-c. The screen 

snapshot shown in figure 3-6 is the result of some minor reassignment, (identified by 

the arrows), with resource #R1 being responsible for the additions #1 and #2, while 

resource #R3 handles the additions #3 and #4. 
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The first snapshot (a), in figure 3-7, shows resources #R1 and #R3 matched to the 

clocked device description as given in figure 3-5 (see section 3.3 for an explanation of 

how this matchmaking happens). The next two snapshots, (b) and (c) represent the 

same device, but with pipeline attributes of -1 and -2 respectively. 

(i) (a+b)+c calculation 	(ii) (a+b) and (b+c) calculcations 

*# 3 44 

Zoom X: •i Zoom Y: L 	I I'PI Postspt 	IDoxie1 

P VA 
- 

- 

Figure 3-6. Starting State for Pipeline Example 

The snapshots illustrate how the first two additions operating on resource #R1 cannot 

happen any faster because of the dependency in the calculation, while the second two 

additions operating on resource #R3 are able to overlap as the pipeline figure is 

modified because in this case the addition calculations are independent. 
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Figure 3-7. Pipeline Figure Combinations 
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From a graphical point of view, we can see that this information is not cleanly 

provided, in that the overlap causes information to be lost. As will be seen in the later 

sections on design visualisation, this same information can be restated graphically 

using parallelograms such that this information is not lost. 

3.2 Structure Modelling 

There are many special requirements associated with the problem of modelling 

structural objects, and as stated in this chapters introduction, the dominating influence 

of hierarchy on any design necessitates special discussion on structural modelling. 

This treatment is broken down into several sections, the two most important of which 

being the process of creating and then generating a netlist. Important secondary issues 

relating to how tristates, name spaces and netlist attributes are also addressed. 

What makes this discussion different is the programmatic requirements of high-level 

synthesis. By analysing the key features that popular HDLs provide to a user, and then 

analysing what a synthesis tool requires, results in a natural division of generating a 

netlist in two stages. Firstly, there is the process of creation and secondly the process 

of generating a netlist from the database created by the process of creation. The 

modelling process itself, through the activity of creation is relatively straightforward, 

but the equally important issues related to netlist generation are more involved than 

may appear at a first analysis. 

Figure 3-8, illustrates in more detail how the creation and netlist generation activities 

are related, as well as the overall context within which they are used. The creation 

process produces a network database, from which the generation process can produce 

netlists in the form of schematics or the ELLA language. As well as the programming 

interface to drive the creation activity, other layers such as the interactive facility 

provide additional functionality, which is particularly useful for debugging activities. 

Whereas generated ELLA netlists are simply textual in nature, the figure illustrates the 

multitude of presentation platforms that the generated schematic could be represented 

in. 
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procedural interface 

Shell 	 Interactive
CREATION 

Network 
Database 

VHDL 
L/ EWIF ....... ..... 

CHEMATI 

--> P 

Not Implemented 

PostScript 	I 	X 
	

HPGL 
	

I 	I Implemented 

Figure 3-8. Overall Context for Creation and Netlist Generation Activities 

3.2.1 Creation 

All hardware description languages have a mechanism for describing structure. This 

usually takes the form of a textual description which must be compiled before 

anything useful such as simulation can be carried out with the description. These 

languages are targeted at human users and usually exhibit three common features. 

Firstly, they require that objects must be declared before their use, both in terms of 

general scope and visibility as well as local to the internals of a structure. Secondly a 

strict BNF [2] grammar must be followed, usually specified as a LALR(l) grammar. 

This provides a useful syntactic and semantic framework which helps for easier error 

detection and correction both for the compiler and the human that has to analyse the 

compiler output to determine where the mistakes are, and how to take corrective 

action. Thirdly, the names of the actual objects, such as wires and instances need 

careful selection to follow usually rigid name space requirements, such as ensuring no 

such objects take on the name of keywords. Although points one and three could be 
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considered to be just BNF grammar issues, note again, that these points concern the 

way a user has to relate to such HDLs with normal usage. 

By looking at the requirements demanded by an automatic netlist generation tool, the 

reason for an explicit creation activity will become clearer. Such an interface has two 

primary facets. Firstly, it is procedural in a programming sense, having no need for 

parsing requirements. Secondly, and more importantly, the interface is directly 

concerned with relating created objects with each other. For example instances can be 

directly related with what they are an instance of, or ports can be directly related to 

the instance type that they are attached to. This process of creation also leads to the 

added benefit of being incremental in nature. This benefit cannot be understated, in 

that the smaller the design steps and more tightly coupled various stages in a tool 

pipeline, the quicker a designer can gain feedback from his actions. 

A related but important point, is that unlike humans, automatic tools will tend to 

operate on a correct-by-construction basis. This means that strictly, the creation 

process has no need for checking of errors, since the tool driving the process of 

creation has a full understanding of the rules that need to be followed. Of course, 

since the tools are written by humans, there is no harm in having simple checks that 

will help debug such synthesis tools. 

For the purposes of SAGE, the creation process was defined in terms of what were 

minimal requirements. An analysis of typical netlists shows that there are five types of 

object that need to be created. All of these are straightforward, except for the way that 

they must interact. The first type of object is an instance type or node, which is simply 

a container for the other four objects, namely instances, wires, ports and joins. Note, 

although SAGE did not explicitly support the notion of buses, the extension to bus 

objects as special instances, with wires supporting types other than simple types such 

as booleans or integers is in principle straightforward. The problem, with this 

approach is that the abstraction of a bus requires a new object being defined and an 

extension to the simplistic concept of wire. The following bulleted paragraphs look 

more closely at these five objects. 
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• Instance Types and Instances 

What is special about instance types, is when instances local to this object need to be 

wired to the ports of this instance type. Three approaches could be adopted here. 

Special calls could handle wiring between instances and the ports on the instance type 

that they constitute. Secondly, all ports for all objects, including the instance type 

could be explicitly created, such that making any connection no longer requires 

special knowledge of an instance type. These first two options are unsatisfactory in 

creating too much information to handle. The third option is to have ports associated 

with an instance type, and when any connections need to be made to the instance type, 

it is always available as a special instance, but with a predefined name. Within SAGE, 

this name was called 'dot', in a similar manner to UNIX terminology, where the 

container directory always has an entry 'dot' to refer to the contents of the current 

directory. Thus, like UNIX, the driving tool must not only have an understanding of 

this name, it must not try to create an instance or instance type of this name. One of 

the classic problems that this approach overcomes, is that of specifying direct joins 

between input and output ports on the instance type. How this can arise is not self-

evident, in that by trying to treat the ports on an instance type specially, the visibility 

of these ports becomes a function of how it might reasonably be used, rather than all 

the cases that govern how it is used. The issue of leaf level instance types is addressed 

later. 

• Wires 

As has been stated already, wires are constrained to predefined types, though in 

principle the set of predefined types is not limited. What is important is where 

information about constant signals is held. Here again, there are three choices, another 

special object, an instance object, or augmenting the concept of a wire with the notion 

of a constant value. This last choice is different from the first in that no special 

treatment is needed when making joins between such objects and ports. The second 

choice introduces an extra level of hierarchy. Thus, the last choice provides the 

information where needed and imposes no special treatment requirements when it 

comes to making connections. 
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• Ports 

Port objects are only associated with instance types. Since leaf objects (instance types 

without internals) need to provide port information, the process of creating a port 

means a type and direction also need to be specified, Within the SAGE model, the 

types 'input', 'output' and 'io' have been selected as the most useful subset of all 

possible port directions. Languages like VHDL have a richer set of port directions, but 

a careful study of these shows that as well as being overly esoteric, most of the 

unusual ones are more related to issues of implementing a VHDL simulation system 

rather than being of practical use. For example, 'linkage' and 'buffer' types in the 

VHDL language fall into this category. 

• Joins 

The fifth object that can be made is a join. As its name implies, it is the relationship 

between a port on a given instance and a wire, in a way that models a real world 

electrical connection. The only difficult issue relates to the domain of joins. It would 

be fair to require all joins to a given wire to only connect to ports which are not 

connected to any other wires. Note, this definition, strange as it may seem initially, 

does allow multiple joins between the same (port, wire) tuple. This relates to the way 

data-flow can map onto structure during a synthesis tool run. For example data-flow 

between a parameter, say a, onto an operation op, can happen several times during an 

execution involving the operation op. If one resource, or hardware structure, res is 

allocated to execute all the invocations of op, then a synthesis tool can be seen to 

request a hardware path between the source of a, and the consumer op for as many 

times that there are invocations of op. Though simplistic, this example illustrates how 

multiple identical joins can legitimately occur. 

If the restriction on the domain of joins is dropped, the gain in indirectly supporting 

the concept of wire aliases outweighs the security that a restricted domain provides. 

Again, an example from a synthesis tool driving such an interface highlights its 

usefulness. Taking the same example as before, but this time the second invocation of 

op has a different parameter, say b. Thus the suppliers of a and b will both have 

associated wires that will become aliases, when a connection is made to the associated 

input on the resource res. 
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There are several additional subtleties that need to be explored before this 

methodology towards a creation interface can be considered to be complete. The first 

concerns scope. This model supports only two levels of name space - global instance 

types and the names used within each instance. This is no way near as flexible as 

scope rules provided by languages such as ELLA and VHDL, but for an automatic 

interface it provides an adequate degree of flexibility. Within this global name space 

exist leaf level libraries. An empty instance type does not automatically mean it is a 

library object, since the incremental framework can allow that instance type to be 

revisited to define its contents. The method used to tag instance types as library cells 

happens during the instance type creation process. In languages like VERILOG [36], 

it is possible to navigate around an instance hierarchy within the declaration region of 

what is the equivalent of an instance type. Dubious as the benefit of such a facility, 

such probing facilities are not supported, instead the equivalent effect is achieved by 

passing the wires that need to be monitored through the instance hierarchy via ports. 

The final point that can be made concerns the error processing that incremental 

creation can require. Since the types and direction of ports are specified, checks that 

are simple to state such as multiple drivers on a wire could be carried out. 

Unfortunately even this check can become computationally expensive in that a full 

elaboration of a circuit must be made in order to correctly determine the number of 

drivers on a given wire. Thus any checks that are not 0(1), are considered too 

computationally expensive. 

More for information than further discussion, figure 3-9 shows the actual creation 

procedural interface. It shows the several commands that are needed to create the 

network database by manipulating the five objects defined earlier. 
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with TEXT 10, NETWORK; use TEXT 10, NETWORK; 
package CREATION is 

DEBUG—CREATION : BOOLEAN := FALSE; 

-- in all routines that take STRINGS, the following must be true, they must: 
-- (1) have no leading, trailing or internal space characters 
-- (2) have STRING'FIRST = 1 

procedure START_CREATION(NAME : STRING; LEAF : BOOLEAN := FALSE); 
-- if building an object that needs to be identified as leaf, then 
-- LEAF should be set to TRUE. Only MAKE PORT makes sense for a leaf object. 
procedure END _CREATION; 
-- these two are repeatedly called, to build objects 
-- 

 
START—CREATION can be called again without having to call END —CREATION 

-- if there is no valid creation activity, the following 'active' commands will not work 
bi 

procedure MAKE_WIRE(WNAME, WTYPE : STRING); 
-- WTYPE can be: 
-- (1) "bit", "int" or "flt" or 
-- (2) as above followed by & ";" & constant, eg. bit;1 or flt;0.7 
-- (3) null, in which case it defaults to "bit" 

procedure MAKE _INSTANCE(INANE, ITYPE : STRING); 
-- (1) /XXX/YYY/ZZZ => it is comp out of the library, which is instanced. 
-- 	 (this is as the name in the "LIBRARY COMPONENT FIELD" of babble) 
-- (2) XXX 	 => then it is a local comp type which is instanced. 
-- 	 (exceptions will probably be made for MUXES, TRIS etc.) 



procedure MAKE_PORT(PNAME, PDIR, PTYPE : STRING); 
-- this defines the ports for the io block name of the current 'START —CREATION' node 
-- this is called successively to name all the ports 
-- PDIR is "in", "out" or "io"; if " then it is assumed to be "io" 
-- PTYPE is "bit", "int" or "fit"; if " or ANYTHING else then it is assumed to be "bit" 

procedure MAKE_JOIN(WNAME, INAME : STRING; PORT : POSITIVE); 
procedure MAKEJOIN(WNANE, INANE : STRING; PORT : STRING); 
procedure MAKE__JOIN(WNANE_1, WNAME_2 : STRING); 
-- note: 
-- (1) the types of the WNAME and port on INAME must be the same 
-- (2) if the INAME is '.', then it is referring to the iomake (as defined by MAKE PORT) 
-- (3) making a join to a port that is already joined, or making a join between two 
-- 	wires, is effectively equivilant to creating an alias 

-- this is a private dump facility for checking purposes 
procedure LIST DESIGN(NAME : STRING; FILE : in FILE TYPE := STANDARD OUTPUT); 
procedure LIST DESIGN(FILE : in FILE —TYPE := STANDARD—OUTPUT); 

end CRZATION; 

Figure 3-9. Creation Procedural Interface 



3.2.2 Attributing for Netlist Generation 

As shown earlier in figure 3-8 on page 37, the creation process has a second and 

equally important interface, that of actually generating a netlist. As with the 

requirements that drive the creation process, the requirements here are also very 

focused. With an object centred model of a structure, there are requirements to 

traverse the structure and annotate the database of objects. Whereas the former is a 

common and expected requirement, the second, is conceptually unusual, in that the 

normal behaviour is to replicate the entire database with this additional information. 

By looking at the disadvantages of not having this approach, the significant extra 

benefits of having an annotateable database can be seen. 

To help this discussion, a simplistic netlist generation algorithm needs to be 

developed, that requires new names conforming to the rules defined by the target 

language to be generated for all objects. How these names are created is not 

important, (though issues concerning name spaces are discussed in greater detail later 

in section 3.2.3.1). 

The netlist generation algorithm can be viewed as two passes. The first pass of the 

algorithm must generate new names for all the nodes. The second pass involves 

analysing the instances. From the point of view of the instance, two node types are of 

interest - that which it is contained within, and the type of the instance. For the 

purposes of this algorithm, only the latter is of interest. The instances node name 

again needs to be referred to but, depending on where the new node name information 

was stored, can cause the traversing algorithm to exhibit 0(1) to 0(n) behaviour - 

where n is the number of nodes. In normal netlisters, this would be 0(n), where an 

encountered instance would require a full traversal of the database representing the 

information associated with nodes - in this example, the information being the new 

node names. If, on the first traversal, information could be directly attributed to the 

node objects, then when traversing the instances, the information will be available in 

0(1) time. This example has only focused on node names, but the same arguments 

follow for the interrelationships between the remaining objects of instances, ports, 

wires and joins. 
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This attributing facility relies on two general methods. Firstly, full viewing facilities 

and secondly indirection routines. The viewing routines provide a statement of the 

connectivity and information associated with the network database. The commands 

fall into two general categories, those that extract information and those that 

summarise information. Examples of the former include getting the name of an 

object, while for the latter a query of the form 'is there any instance or instances 

inside this node' is a typical example. 

The real cornerstone to the attributing method is provided by indirection routines. 

This mechanism lets netlist extraction software fully integrate with the creation 

database by providing data hooks on which netlist extraction software can on the fly 

create and maintain local state information. Figure 3-10 (a), outlines how 

conventional extraction packages operate - basically on a view only basis. With 

indirection fields available, as indicated in (b), the reverse arrows (flowing left to 

right), illustrate information attached to the creation database, and how it relates back 

to the netlister specified data structures, if any. 

Internal 
Data-Structures 

User Data-Structures 

(a) no-indirection 

- 	Internal 
Data-Structures User Data-Structures 

(b) indirection 

Figure 3-10. Indirection and No-Indirection Comparison 

In practical terms, in order to make use of these hooks, it is necessary to supply all the 

netlister specified data structures as well as reference objects to them. The following 
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code illustrates the from of the ADA generic that can be used to achieve this 

indirection. 

generic 

type USER_NODE_T is limited private; 
type USER_NODE_PTR_T is access USER—NODE—T; 

package HOOKS is 

procedure PUT( 
THIS : USERNODEPTRT; 
IN THIS NETWORK.NODEPTRT 

function GET( 
FROM THIS : NETWORK.NODEPTRT 
return USERNODEPTRT; 

end HOOKS; 

Figure 3-11. Generic Outline for Indirection Support 

Note, that two routines per object are supplied as a result of any instance of this 

generic, the total being ten, since there are five basic objects. The key point here, is 

that since the creation database has no prior understanding of the netlister data-

structures, it is necessary to use normally unsafe programming constructs such as 

unchecked conversion, but by wrapping an extra level of procedural functionality the 

requirements of being strongly typed and therefore safe are reacquired. On a smaller, 

but equally important point, without a scheme of this form, the addition of third party 

netlister software would require recompilation of a large part of the creation software 

and relinking of the top level object binary. A more detailed exploration of how 

indirection is used, is described in section 6.5 on page 171, since the generality of the 

approach has also been used in managing the graphics databases used to achieve 

design visualisation. 

3.2.3 Generation 

Given an internal database, an analysis of the target languages drives the algorithms 

that must traverse this database in order to produce correct translated code. In order to 
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ensure a broad discussion that relates to real world languages, three of the most 

popular HDLs have been considered, namely VHDL, ELLA and ED IF. The broad 

scope of these languages helps highlight all the key translation requirements. Note 

though, since schematic generation is generally unconstrained being an end in its own 

right, it does not impose the same requirements for accuracy as generated netlists 

which must work with minimal interference in the target simulation environment to be 

useful. 

ELLA, being functional in nature, has several styles of netlist description. If there is 

no feedback within a group of instances, it is possible to state the structure much like 

an equation. This form means that the names of the instances are no longer required. 

The more practical style is the process of declaring all the objects such as instances 

and wires before they are used in join constructs. Since ELLA is functional, the 

process of making wires can be difficult, since they must correspond to input ports or 

outputs of already declared instances. That is, no notion of a placeholder to be 

expanded later on in a description. This same functional style also means 

bidirectionals rely on being a mathematically pure, but practically cumbersome notion 

of functions sets and function types. Another point to note about ELLA, is its 

restrictions on identifiers. Instances must start with an uppercase letter, while wires 

must start with a lowercase letter. By convention the whole of the identifiers follow 

the case of the first letter. Within a given scope, identifiers must be no longer than 255 

characters, but be unique within the first 20. Even manually handling such 

requirements can tend to be a very error prone activity. 

The next language to be considered, VHDL is much more flexible in the restrictions 

placed on the identifiers. As well as being case insensitive, no restriction on size is 

placed, though actual implementations do usually place such a limit around the 256 

character mark. Unlike ELLA, VHDL does support the concept of an explicit signal, 

which means creating a basic netlist is far easier since no sorting between inputs and 

outputs is needed as in ELLA. With the much neater concept of a resolution function, 

bidirectionals need no special treatment. Where VHDL is distinctly different from 

ELLA, is the requirement for configuration statements, which defines a path through 

the instantiation hierarchy. This is more useful for a human designer developing 
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separate architectures for a given entity, for selecting say a behavioural level 

architecture on one occasion, and a second register transfer level architecture on 

another occasion. 

ED IF having been designed with interchange in mind, is the most flexible of the three 

languages being examined. Storing its information in views, it has an explicit netlist 

view which, like the creation network database, stores all the information in a fully 

cross-correlated form, albeit textually. This cross-correlation happens in that signals 

have information about which instances they are attached to, rather than this 

information being only implied by the description. As far as the language construction 

goes, identifiers can be of any length, but only the first 255 characters are significant. 

If the first character of an identifier is not a letter, it must be preceded by W. Since 

E D I F is LISP [10] in style, normal implementations are not prone to the maximum 

line limit restrictions that ELLA and VHDL implementations generally have. This is a 

practical point and relates to how, the various languages lend themselves to being 

compiled. ELLA and VHDL, with real users in mind, are structured so that lines have 

to be a sensible length for a user to be able to sensibly read, edit, print etc. such files, 

and this usually leads to the compiler writers placing a hard limit as to how many 

characters a line may contain. It should be noted that this limit is wholly arbitrary, 

since languages like ELLA and VHDL have grammars defined that strictly place no 

limit on line length. Where the LISP style helps significantly over ELLA and VHDL, 

is that there are no reserved words, (except within a 'keyword name def' construct). 

Probably the best example illustrating the power of the creation abstraction, is how it 

can be used for supporting not only language based netlist generation, but also 

schematic generation. The problem at a simple level, is association of shape and 

location to instances, location to ports and a path defined as a series of connected 

segments to a wire. Creating a picture database is only half the story. The second half 

concerns when this picture database is interrogated. Unlike the behaviour of the 

netlisters for HDLs, this action is incremental in nature and requires on the fly probing 

of the creation database. This also works two ways, in that an object within the 

creation database could be modified, and that change needs to be passed to the picture 

database structures. 
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One of the common themes highlighted by looking at the three languages, is the 

specialist requirements on name space handling. The first of the next three sections 

looks at all the issues of mapping names in detail, and shows the development of a 

general approach to mapping names that can apply beyond just the netlist generation 

problem domain, but to many other languages. The next section looks at the specific 

issues involved in translating from this creation database to ELLA, since it represents 

the hardest of the three cases. Following this is a closer look at how schematic 

generation happens within this creation framework. 

3.2.3.1 Name .Space Problems 

Languages like VERILOG actually support an explicit escape mechanism for 

identifiers in foreign languages. The reason why this is not normally done can be seen 

from the way the compilation technology works. Normal compilers have two basic 

parts, a token digester and a set of grammar rules. It is at the token digesting stage 

where an attempt is made to minimize the number of context sensitive dependencies, 

and this usually equates to just strings, comments and two character tokens such as 

'!=' (not equal). The common feature of these context sensitive fields is the need for 

special mark characters that start and finish the token and that differentiate it from 

other context sensitive tokens. For example, in VERI LOG, the start character is '\' and 

the terminating character is any whitespace character. The decision not to have this 

feature in all languages can therefore be seen to be a simple pragmatic decision, 

because its an irritating thing for a user to have to do for every single identifier! 

Without such a mechanism in the target language, some form of name mapping is 

required. If one considers two domains, a source domain and target domain, then rules 

need to be specified about each domain, that governs how names from the source 

domain are mapped to the target domain. Clearly, a simplistic approach of having a 

target domain that simply maps all source names to the lowest common denominator, 

such as a letter followed by a sequenced number would solve the problem. In fact 

many translators adopt this approach, but it is usually based on the premise that 

human users will have no interaction with the resulting netlist. As a premise, it is 

wholly inadequate, since the premise fails to note that when there are problems, the 
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mangled names in machine generated output will have to be examined to determine 

the cause of the problem, and - the cost in time and resources can become very 

significant. This same cost can effectively frighten potential users away from using 

advanced CAD tools. This is because the time and effort lost when encountering a 

problem would appear to be out of all proportion to the benefit of the tool - whether 

the problem is a fault of the user or the software being run. It is from this observation, 

that the requirement that as much information as practically possible should be 

maintained arises. 

To solve this mapping problem, the several common elements illustrated in the range 

of languages for which output is desired, were identified and captured in a general 

purpose ADA abstraction. Several parameters are provided, which specify the nature 

of the target language as well as certain aspects of the source language. Once 

instantiated, the naming software provides several routines which effect the mapping 

and allow interrogation of the database of old and new names. Figure 3-12 shows an 

example of an instantiation used by the ELLA mapping software. 

package NAMES is new NAMING( 
ALPHABET SETT => ALPHABET T I  
FIRST LETTER => 

"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefgh1 jklmnopqrstuvwxyz", 
REMAINING LETTERS => 

"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzOl23456789", 
SEPARATER LETTERS => "_ 11, 

UNIQUE MAKING => 11 0123456789" 1  
LENGTH—LIMIT => 255, 
UNIQUE LIMIT => 20, 
SOURCE—CASE—SENSITIVITY => FALSE, 
TARGET—CASE—SENSITIVITY => TRUE 

Figure 3-12. ELLA names package 

A number of points can be noted from this generic package instantiation. Names are 

considered to be of the lexical form: 

first—letter { [separater letter) remaining_letter ) 

In a generated name, a separator is never repeated adjacent to itself. This occurs even 

if the target language is able to support repeated separator characters. 
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Unique making letters are used if a conflict occurs, and are usually placed at the end 

of a name, and preceded with a unique making character. These unique making letters 

follow a counting scheme, of which two styles can be identified. There is number 

counting, as the example would produce, with postfixes that would be of the form: 

1, _2 . . •, 	9, 	10, 

The second style, is that of letter counting, where there is no 'zero' element 

equivalent. To have this style of counting, the first element of 

UNIQUE-MAKING-LETTERS should be repeated. For example having 

UNIQUE—MAKING—LETTERS => "aabcdef", would generate postfixes of the 

form: 

_a, _b, ..., 	 f, _aa, _ab, 

As well as being able to define source and target case sensitivity, the mapping process 

can be directed to do useful things with the original case. Four case directives are 

available: MIXED, UNMIXED, UPPER and LOWER. UNMIXED uses the case of the 

first letter encountered to determine the case preferred. The application of these 

options, can become complex, and in practice is an iterative activity. Figure 3-13 

illustrates the mapping of two names, which each require unique mappings in the 

presence of given values for the target case sensitivity and case directive facilities. 

The reason why source case sensitivity does not apply at this stage is because when a 

name is being mapped, it is blindly assumed that it is already unique compared with 

previous source names encountered. Clearly, this would not be the situation in this 

example if source case sensitivity were false. One of the reasons for this behaviour is 

so that unnamed objects, like wires in a netlist, can all be given the same name, say 

wire, and for each such object, a mapping is requested. This would produce a series 

of new names like wire, wirel, wire-2, wire-3, and so on. 
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Target Case Sensitivity: False True 

Mixed Unmixed Mixed Unmixed 

Words that have been mapped SaGe SAGE SaGe SAGE 
SaGe sAgE 1 sage 1 sAgE sage 
sAgE  

Upper Lower Upper Lower 

SAGE sage SAGE sage 

SAGE 1 sage 1 SAGE 1 sage_i 

Figure 3-13. Name Mapping Example, Using Target Case Sensitivity and Case Directives 

The database used to create unique names, is in fact the second of three conceptual 

databases, and is called 'naming'. Figure 3-14, illustrates the three databases, and how 

they are related. There is a domain containing all the 'old' names that require 

mapping, and there is a destination 'new' database which contains the results of a 

mapping. 'Naming' represents the various stages an old name might go through, 

before a unique name is found and passed to the 'new' database. The source case 

sensitivity directive is used by a 'map old to new' request, by checking to see if it 

already exists in the 'old' database and returning the mapping if found, else 

generating a new unique name. In the example shown in figure 3-13, if source case 

sensitivity was false, and both identifiers had a 'map new to old' process applied, then 

the second identifier ('sAgE'), would in all cases map to the same identifier as that 

produced for 'SaGe'. The implication is that when source case sensitivity is false, a 

case folded version of the identifier is stored in the 'old' database, (but not in the 

'naming' database). 

Old Names 	Naming 	New Names 

Figure 3-14. The 3 Databases Used in Unique Name Generation 
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Returning to figure 3-12 of the generic instantiation, there is a clear distinction 

between how many letters the target system will accept, and of those, how many are 

considered unique. If the UNIQUE—LIMIT is not specified, then it defaults to the 

LENGTH LIMIT, as one would expect. 

Several procedures and functions are made available to the user of the generic. The 

following is a list of these routines, with the name of the function or procedure giving 

some idea of what is achieved. 

function GET UNIQUE NAME 
START : STRING T; 
CASE—IS CASE_T := DEFAULT—CASE; 

return STRING; 

function MAP NEW TO OLD(NAME : STRING—T; ...) return STRING; 
function MAP OLD—TO—NEW(  

NAME : STRING T; 
CASE _IS : CASE_T := DEFAULT—CASE; 

return STRING; 

function EXISTS OLD(NAME : STRING—T; ...) return BOOLEAN; 
function EXISTS NEW(NAME : STRING—T; ... return BOOLEAN; 

procedure REMOVE OLD(NAME : STRING—T; ...); 

procedure REMOVE_NEW(NAME : STRING—T; ...); 

Figure 3-15. Functions and Procedures present in Names Generic 

In order to give a clearer idea of how and what the mapping can achieve, the following 

is some example output for the given package NAMES, as shown in figure 3-16, but 

with two changes. The changes set LENGTH LIMIT to 10 and UNIQUE—LIMIT to 

5. This helps highlight the handling of the extreme or edge effect cases much better. 

Some of the examples, also show the mapping happening with case directives present. 
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# 'ALONG' -> 'ALONG' 	# 
4t 	'apple' -> 'APPLE' 	# 
# 'ap__ple' -> 'AP_PLE' # 

# 	'' -> 'A_i' 	# 
# 	'II' -> 'A_2' 	# 

# 'hello' -> 'HELLO' 	# 
# 'hello' -> 'HELiLO' 	# 

# 'OrAnGe' -> 'ORANGE' # 
# 'OrAnGe' -> 'ORAiNGE' 	# 
# 'OrAnGe' -> 'OrAnGe' 	# 

# '_pear_' -> 'PEAR' 	# 
# 'alongwirenameagain' -> 'alo_ingwir' 

# 'along' -> 'alo_2ng' 	# 
# 'alo2' -> 'alo_32' 	# 
# 'ALONG' -> 'alo_4ng' 	# 

# 'alongwirename' -> 'alongwiren' 
# 'OrAnGe' -> 'orange' 	# 

Figure 3-16. Examples of Unique Name Generation 

For a given target netlist, the general algorithm is to have a names database (i.e. all 3 

core databases) for each level of scope. For a given node, the starting state of the 

'naming' database will consist of all language keywords - (b) in Figure 3-17. Not 

taking such keywords into account is probably one of the most common cause of 

problems with tools that translate from one HDL to another. ELLA has over 40 such 

keywords, and these with the 41 'local' definitions for such things as leaf cell 

primitives and types are effectively marked as being reserved. Note, this means that 

the 'old' and 'new' databases are therefore empty. The next stage is to map all the 

node names, to ensure that there are no name clashes across the hierarchy of a design, 

to a copy of this keywords names database, producing result (c). Although it may 

appear this step is superfluous, without it, no integrity of instance type names across a 

generated netlist would be possible. The resulting two databases, (b) and (c), are 

combined creating a new keywords database and copying in the contents of the 'new' 

node names database. The resulting database, (d), is used for mapping the names of 

wires and components for each node in a network database. As seen earlier, names 

which are template in nature - i.e. those objects that have no assigned name, are added 

directly to the naming database, resulting in the generation of the next name in 

sequence. 
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QQQ (a)  

00 
keywords 

	

(c) 	 (d) 	
pnode 

	

old node 	 new node 	 > 'names' 

	

names 	 names 	 0 "*.,,,, 	database 

keywords 	 keywords 
and node names 	 and node names 

Figure 3-17. Names Database Management 

3.2.3.2 Generating ELLA 

In order to generate correct ELLA from a given creation database, there are several 

technical problems that have to be addressed. The emphasis on generating correct 

code, is very important, since it is straight forward to produce something that looks 

like ELLA, but would cause a compiler to produce many errors. In fact, compared 

with VHDL and EDIF, ELLA causes more problems in translating from the creation 

abstraction because of its slightly more rigid and formal structure. 

The following bulleted points look at these problems, and assume an understanding of 

ELLA. These problems are: 

• ELLA being functional in style, requires inputs to be sorted from outputs. Although 

it appears straightforward, this means creation objects with no inputs and/or outputs 

need to be handled carefully, since all ELLA code must have some input and output 

always. 

• ELLA has no pre-defined types or library parts. Therefore representative objects 

have to be created. 

• The concept of bidirectionals and tristates is not the normal one used by designers in 

real life. Of all the problems to resolve, this is the most difficult, because the 

constructions in ELLA are not user friendly, and have an impact in nearly every stage 

of the resulting ELLA. 
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• ELLA is fussy about unconnected inputs - which usually arises from the netlist being 

generated before all the synthesis stages have occurred. (This problem also arises if 

there are problems with the synthesis routines, and not all inputs are connected). 

Consequently, although it would be fair to expect all inputs should be wired up, 

because of the process of synthesis, unconnected inputs can be expected. In a similar 

way, outputs that have a fanout of 0 can be assumed to arise for similar reasons. Thus, 

some means of sweeping up unused inputs and outputs and categorising them as 

unused (as say) controller ports is needed. For any given node being mapped, the 

number of such ports will be unknown and thus a generic ELLA block is needed to 

sweep these signals up. (Particularly in the case of unused outputs, without any such 

facility to sweep up these signals, there would be no way to do a first level check by 

compiling the resulting ELLA). 

• There is the philosophical issue of whether the generated output should be human 

readable. That is, well organised to the extent that its meaning is clear - a feature 

which is very useful for debugging the output. This implies care and attention to 

details like spacing, addition of signpost comments and how the ELLA comma 

separator and full stop terminator characters are used. This last point refers to the two 

general styles of marking declarations as being distinct - namely a token that acts 

purely as a separator, as in 'a; b', or that acts as a terminator, as in 'a; b;'. ELLA, 

unlike VHDL, uses the former extensively, but as can be seen, the decision as to when 

and where to place a separator requires foresight of the fact that there is another item 

to display. 

• Regardless of whether the netlist output is neat or not, the order of the constructs 

used must be carefully defined since ELLA requires all objects to be defined before 

they can be used. This requirement would appear to be reasonable, but ELLA provides 

no way to declare wire objects. Instead wires are implemented as a node aliasing 

concept (using LET), and the names given to instances are also treated as node aliases. 

The solution turns out to be in broad outline straightforward, but at the expense of 

having to choose the lowest common denominator style of ELLA coding namely a 

MAKE/LET/JO IN style. 
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All the above problems have been addressed in the resulting ELLA generator, as well 

as the usual name space problems. 

The ELLA types defined are shown in figure 3-18. The type 'dummy' handles 

functions that have no inputs and/or outputs. The remaining three categories shown, 

map one for one with the three core types used within SAGE. The important aspect to 

each of these three, is the development of a function type (FN TYPE), based on a bus 

object that can take on one of three states. As with all bus objects which will in 

general have multiple drivers feeding it (i.e. fanin > 1), at least three states can be 

defined. The bus can be undriven, or, if there is only one driver active on the bus, then 

the bus can be said to be driven with an associated valid bus value( the '&' symbol in 

ELLA indicates this association). The third state a bus can be in is that of an unknown 

value, where there are two or more drivers trying to determine the state of the bus. 

Note, although this bus concept could be developed further to reflect reality more 

closely, this would be counterproductive since it provides a framework within which 

errors in the results of synthesis can easily be found in a simulation. A good example 

is that reality could support two drivers on a bus with the same value, but the results of 

synthesis are generally designed to ensure that there is only one active driver on a bus 

at all times. The function type object is described later. 

TYPE 
dummy = NEW (void). 

TYPE 

bit = NEW (f I t), 
bit _bus = NEW (bit undriven I  bit—driven & bit I  bit—unknown), 
bit_conn = bit—bus -> bit—bus. 

TYPE 

mt = NEW i/(-32768..32767), 
mt_bus = NEW (intundriven I mt driven & mt I it—unknown), 
int_conn = it—bus -> it—bus. 

TYPE 

f_man = NEW f m/(01000000..10000000), 
f_exp = NEW f_e/ (-128. .127), 
f_sign = bit, 
fit = (fsign,fman,f sign), 
fit _bus = NEW (fit undriven I fit—driven & fit I fit—unknown), 
fit_conn = fit—bus -> fit—bus. 

Figure 3-18. ELLA Types 
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There are three predefined types of object that synthesis generally requires. These are 

tristate buffers, 2:1 multiplexers and memory. Figure 3-19 shows the form of the 

ELLA code for what these primitives look like for signals of type bit. 

FN BIT BUFFER = (bit: in, bit: control, bit conn: out) -> dummy: 
BEGIN 

JOIN 
CASE control OF 

t : bit driven&in, 
f : bit undriven 

ESAC -> out. 
OUTPUT (void) 

END 

FN BIT MUX = (bit: a, bit: b, bit: control) -> bit: 
CASE control OF 

t: a, 
f: b 

E SAC 

FN BIT RAM = (bit: in, bit: load) -> bit: 
BEGIN 
FN REGISTER = (bit) -> bit: DELAY(?bit,l) 
MAKE REGISTER: register. 
JOIN 
CASE load OF 

t : in, 
f : register 

ESAC -> register. 
OUTPUT register 

END 

Figure 3-19. Netlist Generation Primitives: Buffer, Mux and Ram 

Looking at the model for the B I T BUFFER, apart from the odd looking construction 

of a dummy output, note how the tristate output port is viewed from the function type 

perspective, rather than the equally valid bus associated type. In short, this choice 

allows bidirectionals to be treated in a systematic fashion. Figure 3-20 shows the two 

possibilities, the second of which is the one used. 
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bit—bus 	 bit Conn 

Figure 3-20. Different ELLA Views of Tn -state Buffers 

Buses are defined as objects to which multiple drivers may be attached. In ELLA 

terms, buses are function types which could appear in the input or output area of a 

function definition. The choice is arbitrary (reflecting the clumsiness of the concept). 

The ELLA netlister uses the inputs field. Given a bus, there is the usual need for a bus 

resolution algorithm. The ELLA text in figure 3-21 encapsulates the core of the bus 

resolution algorithm, namely how 2 drivers are handled on a bit—bus. 

FN BIT RESOLVE = ([21bit bus: in) -> bit—bus: 
CASE in OF 

(bit undriven, bit driven&bit) : in[2], 
(bit driven&bit, bit undriven) : in[1], 
(bit undriven, bit undriven) : bit_undriven 

ELSE 
bit—unknown 

ESAC 

Figure 3-21. ELLA Bit Resolution Algorithm 

In order to use this resolution unit on a bus with n connections, a MACRO, as shown in 

figure 3-22 is required to define a function set (FNSET), which can replicate and wire 

up the required number of resolve blocks. Note, how this method ensures proper 

resolution of buses that can traverse a complex hierarchy. 
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MAC BIT BUS{INT n} = FNSET [n] ((bit bus: in) -> bit—bus): 
IFn=l 
THEN 

in 
ELSE 
BEGIN 
MAKE [n-l]BIT RESOLVE: block. 
JOIN (in[l],in[2]) ->block[1]. 
FOR INT i=2. .n-1 

JOIN (block[i - 1],in[i+1)) -> block[i]. 
OUTPUT (n] (block[n-l]) 

END 
Fl 

Figure 3-22. The FNSET biLbus Macro 

In total, twelve distinct ways to wire up an ELLA description can be identified. These 

are illustrated in figure 3-23, separated into two categories: connections to inputs, 

including bidirectional points, and connections to outputs. 'u.c' represents an 

unconnected port, while 'const' represents a constant value. The ELLA 'II' and '10' 

terminology might appear confusing because they are infrequently used. 'II' 

represents the extraction of the value part from an associated type. 'JO' represents the 

notation needed to say pass the argument object as a bidirectional, rather than the 

default behaviour, of only the output part of a bidirectional. The two marked as 'not 

really possible', are a reflection of the fact if they are present, the bus has a well 

defmed value and by implication must have no other drivers. 

Connections To Inputs and lOs ELLA Representation 

 110 I II ripper 

 10 10 Iobus[J 

 I I name 

() I JO driven&... 	(not 	(really) 	possible) 

 u.c I controller line name 

 u.c 10 10 XXX IJNDRIVEN block 

 const I (...value...) 

() const 10 driven&( ... value. ..) 	 (not 	(really) 	possible) 
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Connections To Outputs  ELLA Representation 

 10 0 II ripper 

 I : 0 name 

 u.c. : 0 controller line name 

 const = 0 (...value...) 

Figure 3-23. Connection Types 

There is no need to make a distinction between ports on instances and those on the 

defining node, except in the case of JO to JO. Figure 3-24 illustrates the difference. 

The main point is that a different style of ELLA code is required, compared with that 

for an JO connection associated with an instance. 

The bus object represented in these pictures also highlights the way all connected 

signals that are associated with a bidirectional, are automatically collapsed onto the 

same bus object. This is because the bus function set is responsible for determining 

the final state of the bus, and so it must be able to 'see' all connections, particularly 

through the instantiation hierarchy. It is for this point that the style of ELLA is 

different, since 10 connections on a node must be made so that the ELLA simulator is 

able to traverse through the instantiation hierarchy and accurately determine the final 

value of a bus. 

node 

(a) 	 bus 
instance 

E+Poo r--  t 
	 (. . . , 10 bus[rn], .. .) —> 

. ' 4 

bus[n] —> port 
port —> bus[n] 

Figure 3-24. JO -> JO Connections at Node and instance Levels 

top 
level 
io 
port I 
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For all unused inputs and outputs, a block of the form shown in figure 3-25, will be 

produced in the generated ELLA code. 

#** controller hook **# 
MAKE 
CONTROLLER 

dummy, 0, dummy, 0, fit, 2, 
dummy, 0, dummy, 0, fit, 1 
controller. 

Figure 3-25. Unused Inputs, Outputs and lOs Consumer 

This represents dummy code, for which manually written code has to be generated to 

complete the full functionality of the node that it forms part of. As mentioned earlier, 

for the ability to be able to at least compile the generated ELLA, a generic block needs 

to be defined. The code for this block is shown in figure 3-26, and illustrates the fact 

that if the unused inputs and outputs are intentional, the block faithfully reproduces 

this behaviour by feeding out ELLA anonymous values. 

MAC CONTROLLER 

TYPE til, INT iii, TYPE ti2, INT ii2, TYPE ti3, INT ii3, 
TYPE tol, INT ±ol, TYPE to2, INT io2, TYPE to3, INT ±o3 

[IF ±11 = 0 THEN 1 
[IF ±12 = 0 THEN 1 
[IF 113 = 0 THEN 1 
-> 

[IF iol = 0 THEN 
[IF io2 = 0 THEN 
[IF io3 = 0 THEN 

ELSE iii FI]til: ii, 
ELSE ±i2 FI]t±2: i2, 
ELSE ±13 FI]ti3: 13 

1 ELSE iol FI]tol, 
1 ELSE io2 FI]to2, 
1 ELSE 1o3 FI)to3 

IF iol=0 THEN [1)?toi ELSE [iol]?tol Fl, 
IF io2=0 THEN [1]?to2 ELSE [io2]?to2 Fl, 
IF io3=0 THEN [1]?to3 ELSE [±o3]?to3 Fl 

Figure 3-26. ELLA Controller MA CR0 

The generic form of an ELLA netlist is shown below. It represents all the components 

that can be present in non-leaf generated ELLA. Obviously, depending on the nature 

of the network database, certain sections will not be present in the final output. 
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GENFN HEADER; 
GENINTERNALMAPPINGS; 
GEN CONTROL LER; 
GEN BUS S ES 
GEN INSTANCES; 
GENCONTROLLEROUTPUTS; 
GEN BUS DRI VER VALUE S ; 
GENSINGLEDRIVERLETS; 
GENCONTROLLER INPUTS; 
GEN BUS TO 10 BLOCK JOINS; 
GEN HARD BUS DRI VER JOINS; 
GENINSTANCE JOINS; 
GEN OUTPUT STATEMENT; 

Figure 3-27; Generated ELLA Netlist Structure 

FN LATCH = (bit: sbar, bit: rbar) -> 
BEGIN 

identifier mappings 
COM 

fn name was: 'latch' 
-> 'a' 
-> 'b' 
-> 'q' 

Iql -> 
'qbar' -> 'qbar' 
'qbar' -> 'qbar_l' 
'r' -> 
'rbar' -> 'rbar' 
'5' -> '5' 

'sbar' -> 'sbar' 
MOC 
no controller hook needed **# 
no buses **# 
user instances r# 

MAKE 
NAND: a b. 

#** single driver lets **# 
LET 

s = sbar, 
r = rbar, 
ql = a, 
qbar_l = b. 

# component wiring 
JOIN 

(s, qbar_1) -> a, 
(q1, r) -> b. 

# ELLA block output statement 	# 
OUTPUT 

(q_1, qbarl) 
END. 

(bit, bit) 

sbar 

out 

rbar 
qbar 

Figure 3-28. Untouched Automatically Generated ELLA Example 
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To help illustrate some of the layout style, as well as the connectivity methods, figure 

3-28 has the full untouched ELLA code generated for a small example, consisting 

simply of a latch. The example was generated using the interactive interface using 

textual commands like 'mp' for make port, as shown in the flow diagram in figure 3-8 

on page 37. 

All objects that have been matched, or that are know internally to SAGE, have ELLA 

comment lines generated. Figure 3-29 shows an example of such output that is 

generated, and effectively corresponds to the output generated for leaf level objects. 

* /user/sage/iibrary/modeis/aiuf.iib, used in makes as ALUF_XXX_8 # 
# 	io spec: (bit: cik, bit: control, fit: left, fit: right) -> fit: # 

# * $BUF, used in makes as BUF # 
# 	±0 spec: (int: a, bit: ctrl, int_conn: q) -> dummy: # 

# * $MUX, used in makes as MUX # 
# 	io spec: (int: a, int: b, bit: ctrl) -> int: # 

* $RAM, used in makes as RAM  # 
# 	±o spec: (int: right, bit: load) -> int: # 

Figure 3-29. Example of Leaf Level Mappings in Generated ELLA 

As a consequence, it is necessary to set up suitable ELLA 'import' and 'export' 

directives to map the relevant commented line to the required primitive. 

3.2.3.3 Mapping Schematics 

The issues involved in mapping schematics from the network database are much 

easier. This is because both network and schematic databases have the same style of 

representation. There are two places where there is slight difficulty. Firstly, in the case 

of wires, where there is usually not a one to one mapping, because a wire in the 

schematic is composed of multiple horizontal and vertical segments. Secondly, as 

with ELLA, the ports need to be sorted so that all inputs appear on the left, outputs on 

the right and bidirectionals on the bottom edge of a component. (The situation is 

flipped left-right for the defining node). Further issues related to generating 
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schematics are discussed next chapter, in section 4.8.4 on page 114, in much greater 

detail. 

3.3 Matchmaking and Unification 

During the various stages of synthesis, there comes a point where the leaf level 

objects need to be replaced by real hardware. This process is termed matchmaking. 

When the library elements are structural in nature, then a more complex form of 

matching termed unification can occur. 

3.3.1 Match Searching 

In simple terms, a given function is searched for in a given set of libraries. The 

location for the libraries are determined by an external UNIX environmental variable 

called, SAGE—LIB—PATH that is simply a list of the directories containing library 

components. For a given call, if a function is found, then the correct number and type 

of ports are also checked. The mechanism for checking if the behaviours are the same, 

is a simple case-insensitive check of the two names. The corresponding component of 

the behaviour is returned for every match found. This resulting list, if any, is presented 

to a user in a panel. With very rich libraries, it can be imagined how this list is ordered 

by analysis of the attributes associated with each of the behaviours in the returned list. 

An example of the list returned by matchmaking is shown in figure 3-30. It represents 

the sort of panel that might be produced when requesting a match for one of the 

adders selected in the pipeline example shown earlier in figure 3-7 on page 35. 
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Figure 3-30. Matchmaking Selection Panel 

Note the entries in this panel. Objects 1, 2, and 4 represent LML objects, which have 

placed after the vertical bar, the name of the associated timing view - in this case 

being ADD. Clearly, 2 and 4 are adders, but 1 is a multi-function unit. Entry number 3 

represents a network object. Since the object being matched to in this example is leaf 

in nature, the unification approach is not needed to determine equivalence. 

This matchmaking approach can be compared with that found in modem synthesis 

tools as examined in Chapter 2, where there is a complex matching against 

combinatorial expressions. This arises because these synthesis tools usually restate all 

but the memory elements of a system in terms of boolean equations. The SAGE 

approach is different primarily because of the much higher level objects that it has 

been designed to handle. Nevertheless, there is huge difference in the fidelity of these 

two styles of matchmaking, which suggests that the method used in SAGE is 

inadequate. 

3.3.2 Unification 

The behavioural hierarchy will not generally match the structural hierarchy that is 

finally produced. Therefore, in a general sense, parts of the hierarchy are removed and 



then reconstructed in a different way. One of the ways to rebuild hierarchy is to use 

unification on structure. This method is also useful for matchmaking based on some 

common element in a behaviour, such as a butterfly operation in an FFT design. 

To give a flavour of the problems involved in this style of matching, the task of 

matching two similar designs was examined. The only difference being the names 

associated with the nodes and wires, and their order. The process of unification is then 

one of finding the corresponding names between the two designs for the wire and 

instance names. With PROLOG [1], the problem can be remarkably succinctly 

captured as illustrated in figure 3-31. 

weak islist ([3) 
weak islist ( [ I]) 

append([],L,L) 
append([XIL1] , L2, [XIL3J) :- append(L1, L2, L3). 
permute([] , [ 3) 
permute (L,[HIT)) 

apperid(V, [HIU] , L), 
append (V 1  U, W) 
permute (W,T) 

unifyi(A,B,P) :- 
unifyi (A, P), 
permute (B, P) 

unifyi (inst (_, F,_,_) ,inst (_, F,_,_)) 
unifyi ( 1] , []) 
unifyi([AIB], [CID]) 

unifyi (A, C), 
unifyi (B, D), 
not (weak islist (A)), 
not (weak islist (C)) 

unifyw(, [3,, []) 
unifyw(A, [BIC],D, [ElF]) :- 

((AB,DE); (A\=B, D\=E)), 
unifyw (A, C, D, F) 

unifywa([),, [3,) 
unifywa([AIB],C,[DIE],F) :- 

unifyw (A, C, D, F) 
unifywa (B, C, E, F) 

convolve(, [],, []) 
convolve(A, [BIC],D, [ElF]) :- 

unifywa(A,B,D,E), 
convolve (A, C, D, F). 

convolve—wires([],[]).  
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convolve wires([AIB], [CID]) :-
convolve(A, [AIB],C, [CD)), 
convolve_wires (B, D) 

get—wires([],[]). 
get_wires([inst(,,wl,w2) IT],COMBINE) :- 

get_wires (T, TAIL), append([W1,W2] ,TAIL, COMBINE). 

unifyf(A, B, INS1, NEWINS2) :-
device (A, 11, 01, INS1), 
device (B, 12,02, INS2), 
unifyi(INS1, INS2,NEWINS2), 
get_wires (INS1,Wl), 
get_wires (NEWINS2,w2), 
append(Wl, [11,01] ,WIRES1), 
append(W2, [12,02] ,WIRES2), 
convolve—wires (WIRES1,WIRES2) 

Figure 3-31. Unification Program 

The top level rule, uni fyf, takes two arguments A and B that represent two aribitrary 

netlists and then tries to confirm if the two netlists are equivalent by producing the 

corresponding netlist elements in the INS1 and NEWINS2 variables. The rule first 

tries to find corresponding instances of the same type using uni fi, and then for this 

given combination of instances confirms if both instance lists, INS 1 and NEWINS2, 

have the same point to point wiring by using the rule convolve—wires. 

The representation of the two netlists are simple PROLOG rules. This is illustrated in 

figure 3-32 with the code for two DTYPE's, dtypel and dtype2. By comparing 

dtypel with the schematic, the format of the example can be easily seen. The 

second dtype, dtype2, has different instance and wire names, as well as the order of 

the instances placed in a 'random' order to better illustrate the way the unification 

process must happen. 
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device 
dtypel, 
(pre,clr,clk,d), 
[q,qb] 

inst(instl,nand3, [pre, pathi, path2], [path3]), 
inst(inst2,nand3, [path3, clr, clk], [path2]), 
inst(inst3,nand3, ( path2, cik, pathi], [path4]), 
inst(inst4,nand3, [path4, clr, d), [pathi]), 

inst(inst5,nand3, [pre, path2, nqprebuf], [qprebuf]), 
inst(inst6,nand3, [qprebuf, dr 1  path4], [nqprebuf]), 

inst(inst7,not, [ qprebuf), [q)), 
inst(inst8,not, [nqprebuf], [qb]) 

N. 

device 
dtype2, 
[preset, clear, clock, d], 
[q,qb], 

inst(obj5,nand3, [preset, wire2, nqunbuf], [qunbuf]), 
inst(obj2,nand3, [wire3, clear, clock], [wire2]), 
inst(obj8,not, [riqunbuf], [qb]), 
inst(obj4,nand3, [wire4, clear, d] , [wirel] ) 
inst(obj7,not, [qunbuf], (q]), 
inst(obj6,nand3, [qunbuf, clear, wire4], [nqunbuf]), 
inst(obj3,nand3, [wire2, clock, wirel), [wire4)), 
inst(objl,nand3, [preset, wirel, wire2], [wire3)) 

1). 

Figure 3-32. Unification Example 



In this example there can be only one match as illustrated by the PROLOG run session 

shown in figure 3-33. Although the instance names were different between the two 

dtype rules, the postfix numbers assigned were the same, a fact which is reflected in 

the run session by the one to one matching of the instance sequence numbers. 

SB-Prolog Version 3.1 
?- ['source.p']. 

I ?- unifyf(dtypel, dtype2, A, B). 

A = 
inst(instl,nand3, [pre,pathl,path2], [path3]),\ 
inst(inst2,nand3, [path3,clr,clk], [path2]),\ 
inst(irist3,nand3, [path2,clk,pathl], [path4]),\ 
inst(inst4,nand3, [path4,clr,d], [pathl]),\ 
inst(inst5,riand3, [pre,path2,nqprebuf], [qprebuf]) , \ 
inst(inst6,narid3, [qprebuf,clr,path4), [rzqprebuf]),\ 
inst(inst7,not, [qprebuf], [q)),\ 
inst(inst8,not, [nqprebuf], [qb]fl\ 
B = 
inst(objl,nand3, [preset,wirel,wire2], [wire3]),\ 
inst(obj2,nand3, [wire3,clear,clock], [wire2]),\ 
inst(obj3,nand3, [wire2,clock,wirel3, [wire4]),\ 
inst(obj4,nand3, [wire4,clear,d], [wirel]),\ 
inst(obj5,nand3, [preset,wire2,nquribuf], [qunbuf] ) , \ 
inst(obj6,nand3, [qunbuf,clear,wire4], [nqunbuffl,\ 
inst(obj7,not, [qunbuf], [q]),\ 
inst(obj8,not, Enqunbuf], [qb])); 
no 
I ?- 

Figure 3-33. Run of Unification Example 
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Ken Thompson has an automobile which he helped design. Unlike most automobiles, it 

has neither speedometer, nor gas gage, nor any of the numerous idiot fights which 

plague the modern driver. Rather, if the driver makes any mistake, a giant "?" lighLc up 

in the center 0/the dashboard. "The experienced driver ", he says, "wilt usually know 

4 	
what's wrong." 

• Design Visualisation 
The third major interface aspect of high-level synthesis, next to library modelling and 

neflist generation, is that of design visualisation. In its broadest description it is the 

mechanism of distilling or condensing design information into a form that a designer 

can find useful. A very important part of this is interaction, where a user can walk 

around a very tight feedback-modify loop. 

In recent years a huge amount of visualisation work in many disciplines other than 

just the field of synthesis has been carried out. Rather like many other concepts of 

recent years, visualisation has many of the connotations of a buzzword in vogue rather 

than being strictly a new discipline. In a similar manner to so called new technologies 

like client-server, object orientated design and virtual reality, visualisation has been 

present in many disciplines for many years. But only recently, with the general 

availability of more powerful computers has this discipline been identified by its 

presence in many areas of technological development. From the basic adage that a 

picture saves a thousand words, disciplines as far apart as radiography, climatology to 

zoological animal tracking now employ common visualisation techniques for 

presenting information in an easily assimilated form. In the field of high level 

synthesis, the use of visualisation has been driven by the increasing complexity of 

designs. Large amounts of information need to be presented and managed in a way 

that achieves design objectives. 

This chapter has been broken down into several parts. The first section deals with the 

broad concepts related to visualisation from a historical perspective. Section 4.2 

focuses on what visualisation must provide to a user. Section 4.3 looks at the SAGE 

data model to give an idea of what some of the visuals presented in later sections are 

representing. Section 4.4 looks at visual representation from a generic point of view. 
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Since one of the most complex aspects is actually drawing graphs, section 4.5 looks at 

this, problem. Issues of inter visual interaction and dynamic visualisation are 

addressed by the following two sections. Section 4.8 then focuses on details of the 

visuals as addressed in the SAGE system. The last section of this chapter, section 4.9, 

addresses the issues of how a user interacts with the information presented in the 

visuals. 

4.1 Development of Visualisation 

As has been mentioned in chapter 2, a vast amount of work in the areas of chip layout 

and schematic capture have become the traditional visualisation methods in the field 

of electronic system design. More recently, there has been a swing back to textual 

entry, but supported by language sensitive editors. This move reflects the power of 

languages, but also the lack of technology in visualising the complexity of the 

concepts provided by such new languages. This lack of technology manifests itself in 

two ways. Firstly, the mapping of language constructs to suitable graphical objects, 

and secondly, the software technology needed to support the actual mapping in an 

efficient and effective manner. The point about efficiency is important, since simply 

manually drawing out a graphical interpretation can be considered visualising, but 

with a turn-around measured in hours, such visualisation then becomes only useful for 

demonstrating concepts in places like theses 

It is from the many disciplines that make use of visualisation concepts, that the 

commonality in many of the presentation ideas and concepts has fostered what is 

currently perceived as a new discipline. In fact, considerable progress has been made 

by the support of numerous general purpose tools. From tools that Support graphical 

pipelines with a rich set of image operations like AVS, to more general purpose tools 

such as spreadsheets with a rich assortment of bar, line and pie charting techniques, a 

rich assortment of visualisation tools have been developed. But, being embryonic in 

nature, such tools fail to support easily the wide demands of visualisation for high-

level synthesis, principally because such tools have been focused on requirements that 

are application domain specific. Thus what the following sections will address is the 

development of the design concepts that need to be presented and why specifically for 
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high-level synthesis requirements. Chapter 5 and 6 will partly focus on the 

mechanism needed to support such graphical concepts 

There are many factors that control the scope of visualisation techniques. The most 

dominating influence is that of hardware. Only in recent years has the de-facto 

engineering workstation been identified as a high-resolution bit mapped screen, with 

mouse and keyboard support. Prior to this, the normal interface was that of a character 

based screen or terminal with keyboard. The natural extrapolation from this is towards 

stereoscopic interfaces with even larger display surfaces with extensive use of sound 

and spatial awareness. Of the several human interfaces, silly as it may currently seem, 

this still leaves scope for using smell, taste, position and voice for even more esoteric 

interfaces. In step with the actual interfaces, has been an explosion in computing 

performance. 

Even during the development of the work in this thesis, mid-range computing power 

for S II1D machines has grown by about a factor of a 100. The benefits of this 

computing power is two-fold. Not only is interactive performance increased, but 

activities that were considered as batch can now be migrated into the design flow, 

such that the stages it forms a link between can now be seamlessley integrated. This 

second advantage is subtle, in that it is not simply a case of the software working 

faster, but a recognition that a certain stage in the software now works so fast, that 

slight modifications to the software will lead to greater throughput. The tools that rely 

on 'what if' analysis, are the best examples of where this extra benefit arises. 

Next to computer hardware development, the second most dominating influence on 

general visualisation performance, is that of software. Careful use and application of 

algorithms can easily beat even the mammoth increases in computing performance. 

The now classic example of this, can be seen by comparing UNIX with Microsoft 

Windows, which on a like for like hardware basis seems to go 10 to 100 times 

slower. In the same realm, compilers in the PC world that do not even have the luxury 

of virtual address spaces always significantly outpace their UNIX conterparts, in not 

only being faster to compile but producing higher quality machine code that is 

generally smaller and faster than those from UNIX machines. Thus, careful 
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development of algorithms is essential and has therefore become a backbone to the 

work presented in this thesis. 

There are many psychological factors that drive the form of an interface. In terms of 

straight information assimilation, the quicker the step from understanding information 

to an action will result in a corresponding greater gain in productivity, because the 

decay time of information held in the brain has less and less effect. For example, a 

10% improvement in speed, will give a greater than 10% improvement in 

productivity. Other psychological factors relating more to the form and function of the 

interface tools are aspects that can only be measured over time, and, as was the case 

with SAGE, has an impact by feedback on the tool implementation. 

Given these two major constraints, namely hardware performance and software 

quality, (with the second generally governed by time and effort that is needed), this 

chapter focuses on realisable visualisation techniques for high-level synthesis. Figure 

4-1 illustrates the perceived productivity benefit to a designer. Whereas lower 

specification hardware will fail to provide a productive environment, simply because 

of lack of performance, higher performance machines fail because of their novelty 

and hence lack of software support. With the passage of time and improved software, 

the peak of productivity moves higher and migrates to higher performance hardware. 

It is interesting to note how lower performance hardware can become even less 

productive because some of the improvements will rely on having high-performance 

hardware. This region between the two dotted lines, represents realisable visualisation 

techniques explored in this chapter. Another interesting point that this figure 

highlights, is the reason for the reluctance of designers to adopt new design 

approaches. By not changing tools, a designer still gains productivity through 

improvement by better software quality and improved hardware, and therefore unless 

a new tool gives significant extra advantage there is little reason to adopt a new tool. 
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i'navino peak of 
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(In some ways this is the story of SAGE: it's clever, but the extra benefit is just not 

enough). 

zi 

611 

hardware per formance/fadllitf's 

Figure 4-1. Productivity vs Software vs Hardware 

One of the added bonuses during the duration of this thesis, has been the adoption of 

software standards by hardware manufactures. In particular, the X Window 

System [55] and UNIX (in the form of POSIX) are now industry standards. 

Nevertheless the development of the concepts have been directed by the performance 

and facilities provided by mid-range workstations. Thus the extra benefit that a CRAY 

supercomputer, for example, could provide has not been explored. In short the work 

presented is for designers in the main, rather than the currently rarer designer who has 

access to supercomputers. 

4.2 Visuals Overview 

Of the whole user interface, two broad divisions can be made, as illustrated in Figure 

4-2. There is that which focuses on what a designer observes, through design 

visualisation, referred to as visuals, and then the process of taking a designers input 

through the UIMS (User Interface Management Services). The two categories are not 

completely disjoint, but have significantly different behaviours to justify separate 
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treatment. Additionally, the field of UIMS has generally matured to the extent that it 

does not pose significant technical problems, especially through the use of off the 

shelf toolkits like Motif [57] and OpenLook [51]. Chapter 5 looks at some of the 

remaining problem issues with the UIMS more closely. 

Visualisation
Interface!  
Interaction 

more to do with output 	more to do with user input 

>x 
Figure 4-2. Design Loop 

The main vehicle through which design visualisation happens is that of a visual. In 

crude terms it corresponds to a 2 dimensional area capable of conveying design 

information. In more precise terms, there are five key features of visuals, most of them 

obvious, but nevertheless worthwhile enumerating. 

• Firstly, a visual shows the current state of a design. This does not preclude historical 

information since it contributes to the current state, and might well be required when 

backtracking through design steps. 

• Secondly, it carries information in a human understandable form. The emphasis here 

is how easily it is possible for this information to be comprehended by a designer. 

• Thirdly it is amenable to interaction at various levels. This interaction refers to 

incremental synthesis actions that directly impact the design database. 

• Fourthly, aspects of the visual can be modified to highlight different aspects. The 

key point here is that the substantive part of the design is not modified. 
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The final feature of a visual is that it is a springboard from which design decisions 

can be made. 

Of all these uses, the last is the most important, since there is minimal point in 

providing visual information that does not help in taking the next design step. 

Unfortunately, this is the most subjective, and it is only after extensive usage that the 

full usefulness of a visual can be ascertained. A good comparison here is with 

computer languages, where only when one is experienced with a language, can a fair 

statement about its effectiveness be made. Thus many C [8] programmers never have a 

kind word to say about ADA [3], even though they have never used the language. 

What the following sections present are the key visuals that were identified for the 

SAGE model. In particular, the visuals have been identified to be particular cases of 

superciasses that capture general concepts, and a full exploration of these general 

ideas is presented. As well as what the visuals are and their theoretical basis in terms 

of their superciasses, the following sections also focus on the intra and inter-visual 

issues that arise. On the intra-visual issues, this involves the information that can be 

displayed and how it is modified and explored. The inter issues concern how the 

visuals can be related with each other. 

4.3 SAGE Data Model 

In order to place correctly in context the developed visuals, a clear understanding of 

the key SAGE concepts is needed. This section briefly explains several of the key 

SAGE concepts. 

The SAGE model is dominated by the need to show a designer the 'where and when' 

of operation (or more formally, call) activity. With these quantities, a designer has key 

information from which to make improvements to the space consumption and also the 

time consumption by respecifying another place and/or time for an operation to 

happen. This activity happens in a resource-time-like framework. Clearly, such a re-

specification can only happen if no resource clashes happen, or any data-flow clashes. 
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The SAGE model has several key concepts and entities, at the heart of which is the 

notion of a 'design' unit. A design unit is a container object that has two basic parts. 

Firstly it can capture the control flow and data flow intentions of a designer in one or 

more behaviour units. Secondly it is a container for how it is implemented in a 

structural unit - i.e. the resource requirements. The behavioural side separates the data 

flow from the control flow, by containing the data flow in blocks. More precisely, 

these blocks correspond to basic blocks as defined formally in compiler technology 

terms [2]. Like an ALU design can have multiple behaviours (add, subtract etc.), there 

can be multiple behaviours associated with each design (i.e. in a similar manner to 

different behaviours in LML). Each basic block contains a data flow graph of function 

calls connected by data arcs. The structural side contains a netlist of components 

connected by connections. 

Function calls are calls to behaviours in other designs, which is the mechanism used 

to support hierarchy in designs. In tandem with this hierarchy, is that of structural 

hierarchy since components are instantiations of structural objects. Thus, in the same 

way as a component has a definition as represented by its structure, a call has a 

definition as represented by its behaviour. Many function calls can be instantiations of 

the same behaviour, and many components can be instantiations of the same structure. 

The process of design is that of exploring the possible mappings between the given 

behaviour of a design, to its structural implementation and then selecting one of these 

choices. In broad terms, this is achieved by automatic or user directed creation of 

components and connections that achieve the requirements of the function calls. This 

process means that at the end of the design stage, all calls are bound to particular 

components. Figure 4-3 illustrates these primary SAGE data model objects and their 
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interrelationships. Using the approach of correctness by construction, all 

modifications to a design unit must be fully self-consistent before they are allowed. 

DESIGN 

BEHAVIOUR 	 - 

BLOCK 	 STRUCTURE 

COMPONENT 

	

CALL 	F-4 

Z 

	

CONN 

DATA 	- 	

cTION 
CONTROL ARC 

BLOCK 

ARC 

Figure 4-3. Basic SAGE Data Model Objects and their Interrelationships 

The time methodology that is used in SAGE is one of being single-clock synchronous, 

but also supporting nano-second time. Thus events can be expressed as a clock period 

and the delta of nanoseconds into that period. Pairs of these values can define the 

production and consumption regions associated with parameters of a behaviour. Thus, 

with negative delta's, it is possible to model inputs with a setup window requirement. 

This section has provided only an overview of the basic data model objects and the 

time model. In fact, there are several additional concepts that are basically 

embellishments on what has already been outlined. In particular the concepts of 

zones, parameters, ports and mapping need further explanation. Zones are a 

subdivision of blocks, identified by calls of indeterminate length. Parameters are the 

value carriers that provide input and output of signals to calls and behaviours. 

79 



Mapping is a technique of sharing expensive structures across behaviours. Mapping is 

a complicated concept, and is addressed in further detail in section 4.8.2.3 on 

page 112. 

4.4 Visuals 

Of the objects in the SAGE database, nearly all can be identified as mathematical 

graph type objects, and as such it is this commonality that drives a more general 

approach to visual construction than would otherwise be possible. The primary 

exception to this, is the visual for source code, where the concepts are so different that 

a specific approach is required. Again, even for source code presentation many 

general observations can be made that leads to more flexible applicability. 

4.4.1 Graphs 

The main elements of SAGE graphs, are nodes and arcs. Mathematically, this would 

be represented as G = (V 1  E) , where V is for vertices or arcs, while E is for edges 

or nodes. Many textbooks and papers on the properties of these form of graphs have 

been written, but very little about how they can be formally mapped and manipulated 

for display purposes. As a simple example, consider the way arcs arrive and leave a 

node. Mathematically, no notion of the order that the arcs arrive is included within this 

graph definition. In short, many constraints and useful manipulations can be 

systematically defined that directly address the problem of providing a graphic or 

drawable form of the graph for display purposes. 

Although intellectually interesting, the mathematical manipulations play only a part 

in graph visualisation, mainly because the manipulations are focused on the 

interrelations without reference to the spatial arrangement of the graph objects. The 

main problem with the broad thrust of mathematical treatment of graphs, is that the 

basic objects, namely arcs and nodes are never typed, and there is no notion of the 

construction of graphs. On this latter point, graph theory has not been designed to 

cope with the transitory state of a graph since it might be mathematically inconsistent. 

From the point of view of interactive synthesis there are many occasions where an 

intermediate stage leads to effectively an illegal graph. Such an example is having an 
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arc created, but no corresponding start and finish nodes that the arc will eventually 

start and finish from. 

With the chosen workstation technology, there are several key factors that control 

graph visualisation. Firstly, one and two dimensional graphs are the most natural form 

of representation. A third dimension is not generally practical because of a lack of 

computing performance. The main reason for this is reflected in the facilities provided 

by the X Window System, which only has two dimensional drawing facilities 

(though recently, through PHIGS extensions, higher performance workstations 

recently available now support full three dimensional drawing capabilities). 

Nevertheless, by defining a visualisation model based on layers of drawable objects, it 

is possible to add an additional half a dimension. Note, this is not as straightforward 

as simply overlaying graphics or using graphic bit-planes, which is the simplistic 

approach. In many cases the two will be indistinguishable, but by having this concept, 

a richer set of manipulations can be supported on an unlimited number of layers. A 

simple example is that of removing a layer from the display, which would not be 

easily possible with the simple approach of a display list. This same layers concept 

can be augmented on the fly to represent state changes such as highlights. Using 

simple isometric projection, at the loss of information due to overlap, additional 

information by projection of values is possible. The second key factor concerning 

workstations is that of colour. With workstations supporting a wide range of colour 

options, from black and white to true colour imaging models, there is need for more 

complex colouring techniques than simply adopting a simple single colour. This leads 

to consideration about shape, defining an inside and border to a drawable object, such 

that the abstraction is rich enough to cope with a wide variety of graphs in a self-

consistent fashion. 

4.4.1.1 Graph Categories 

Within this framework, combined with what is represented in the SAGE data model, 

general properties of arcs, nodes, and the constraints and manipulations that can be 

applied can be made. At the most general level, by looking at the first level 

decomposition of graphs, four classes of graphs can be used to categorise SAGE data 
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model objects. These arise from the simple observation that graphs can be directed or 

undirected, and in both cases, they could have the property of being acyclic or cyclic. 

In SAGE, blocks and their zones are basically acyclic directed graphs since they 

represent data-flow. Behaviour objects are again directed, but can also be cyclic. 

Structure objects are unusual in the sense that three options of categorisation are 

available, each with flaws. 

The problem arises because the SAGE model recognises tristateable nodes and 

therefore the obvious possibility of bidirectional interconnections (as seen illustrated 

earlier in figure 3-20 on page 59, with an ELLA representation). Thus a structure has 

arcs, which for bidirectional connections are undirected, while for driver and driven 

port connections, the arc is clearly directed. By forcing the structure object into either 

the directed or undirected cyclic class, means that arcs have to have additional 

information associated with themselves at a lower level of abstraction. The third 

option is to create a graph class that understands about both directed and undirected 

arcs, which complicates the four graph abstraction. The engineering compromise is to 

select the second choice, by marking bidirectional arcs as special and consequently 

representing structure objects as undirected cyclic graphs. 

With these four basic graph classes, the manipulations and constraints can be defined 

and applied in a general manner such that a rich set of operations can be developed 

and that not only perceived requirements are met, but, with such a general framework, 

new benefits can be gained. The argument is one that alms to leave as many choices to 

a designers creativity rather than simply limit the choices by focusing directly on the 

requirements as defined implicitly in the SAGE data model objects. A good example 

of the results of this approach is with resource-time graphs. Here there is a simple row 

of components along the top row, which have corresponding calls which operate on 

them. By recognising that the calls form one graph, and the components form another, 

then a more general approach to building a resource-time graph is to define two 

visuals rather than just one. One visual represents just the components, while the other 

a horizontal axis that is cross-correlated with the components visual. Thus, rather than 

being an end in itself, this approach immediately leads to new richer manipulations 
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such as for example, modifying the visual representing the components to reflect 

some cost attribute such as area. 
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Figure 4-4. Graph Categories 

As well as the obvious three graphs within SAGE of blocks, behaviours and structures, 

a fourth general class representing only relationships in the form of mapping 

functions can also be defined. Maps are effectively a special case of directed acyclic 

graphs, where there are no reconvergent paths. In such graphs, 'many to one' and 'one 

to many' representations can be made. A good example is being able to map the 

instance names of components in a resource-time graph, to that of its type name. 

4.4.1.2 Invisibility 

As the stages of synthesis progress, more and more components and calls are created 

to reflect the results of synthesis. In the case of resource-time graphs, memory objects 
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appear as lifetimes. From the original resource-time graph that a user was presented 

with, the resource-time graph with memory components will look very unfamiliar. By 

making the lifetimes invisible, it is possible for a user to see the underlying function 

that is required to be implemented, but with the added benefit of also viewing the 

detailed timing. If structure graphs are also examined, the addition of memory and 

communication objects can easily render a schematic dominated by such elements 

unusable. The observation of these and other similar examples leads to the idea of 

invisibility. 

The main benefit is that of controlling complexity, by allowing a user to selectively 

make nodes and arcs invisible, that are not of interest to a user during a particular 

stage in the synthesis. But, instead of simply removing objects, a richer set of 

operations that tries to preserve existing information can be made. These ideas are 

shown illustrated in figure 4-5. 
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000 
Figure 4-5. Examples Demonstrating invisibility 

The first two represent the result for directed acyclic and cyclic graphs, while the third 

is for undirected cyclic graphs. For directed graphs, the decision to permute the data-

flows through the removed nodes is a reflection of preserving as much information 

about the implied information flow as possible, and more importantly the actual 

dependencies. In the case of the undirected graph example, at a superficial level there 

is insufficient information as to the exact flow of data, and therefore the normal 

behaviour would be simply not to bother with cross-correlating the source and 

destinations of all the arcs. In general, the process of making an object invisible can 

also determine the invisibility of attached objects. In actual operation, objects have an 
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action procedure associated with themselves, that determines one of two actions to 

take, namely cross-correlate or become invisible. This simple approach, can make 

control lines invisible, but leave major data flows visible in schematics. 

4.4.1.3 Nodes 

With a two-dimensional point viewing plane, nodes can be treated not only as simple 

shapes that can resemble common objects encountered in the SAGE data model, such 

as multiplexers and memory elements, but also in a more general fashion that means 

each ordinate can be used to represent different information. In the case of resource-

time graphs, it is clear that the vertical ordinate can be used to represent the duration 

of calls, which means that the x-coordinate can be used to represent another aspect, 

such as cost about the call, or a certain width to represent the type of call it is. This 

same general approach means these ideas can also be applied to other graphs, rather 

than having to generate special cases. For example, in structure graphs, the x and y 

ordinates can represent area costs, such that it becomes very obvious at a glance 

which component in a schematic is expensive in terms of area. In this particular 

example, it is clear that the ordinates must represent the square root of the area cost in 

order to be representative. 

Objects, whether static or dynamic need a consistent approach to defining their origin, 

in not only a single dimension, but both. In addition, it is not sufficient to treat objects 

as having only one origin, since objects like function calls need to be placed at, say, 

absolute time locations, whereas components can be placed with respect to an origin 

that is simply at the centre of the object. Figure 4-6 identifies an approach based on a 

three by three grid, which provides a rich set of objects, but in a general fashion. All 

these shapes have a defined bounding box represented by the three by three grid. The 

emboldened points on the grid represent the anchor points. Rather than having nine 

defined origins, all that is needed is a tuple, with each element consisting of one of 

three values to specify the origin. This is very similar to the ideas used for text 

representation (as shown in figure 5-14 on page 143), but in that case, the issue of 

rotation is also important, and has therefore been considered. 
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Figure 4-6. Shapes and their Anchor Points 

With static objects, the specified anchor point defines where any connected arcs will 

generally arrive. From a visual point of view, an arc visibly terminates at the boundary 

of a shape, but the natural extrapolation of the line is towards the anchor point. Where 

this treatment changes, is when the arcs are routed using Manhattan lines. 
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Dynamic objects, which have some ordinate specified as some operational 

characteristic of the design, need special treatment only in the case of objects used in 

resource-time graphs. Nevertheless, even for resource-time graphs, adopting the 

general approach can lead to fairly faithful reproductions of resource-time graphs. 

There are several reasons why it is still inadequate to support properly resource-time 

objects. The two most dominant reasons are the presence of indeterminate length 

calls, and the fact that calls can be pipelined and therefore a simple rectangle 

representation is no longer possible. 

The general problem of representing resource-time graph can objects is solved by 

using a parallelogram. This can be compared with earlier solutions such as used in 

SAGE 2, where pipelined objects were represented as upside-down flower pots. The 

main problem with this approach was that overlapping of objects would soon appear 

confusing, especially if multiple pipeline executions were in progress. Figure 4-7 

highlights the difference. As well as being clearer to see pipelined objects, such 

operations now naturally degenerated to rectangular boxes when the call is not 

pipelined. Additionally, since both vertical sides are now genuinely vertical, they can 

be marked along their length to represent indeterminate length operations as well a 

provide consistent locations for arcs to arrive and leave. The important point is that 

this happens without having to make a special case of pipelined calls. The detailed 

issues of representation of resource-time graphs are explored late in section 4.8.2. 

resources 	 resources 

SAGE SAGE 
eI 

El 	 E .I 	 . 

Figure 4-7. Pipelining Representation in SAGE 4, compared to in SAGE 2 
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4.4.1.4 Arcs 

Three issues relate to the general representation of arcs. Namely, how they actually 

enter and leave a visual, how they enter and leave a node and thirdly, how they are 

visually represented. 

For a directed graph, normal signal flow conventions are to present a user with up/ 

down, left/right signal flow. In the case of the graphs used within SAGE, all arcs start 

and finish on what can be termed terminator nodes. As a result, not only is the 

terminator node usually represented differently, but in the general case, arcs that have 

no terminator can simply be sorted to start at the top/left of a graph if it is an input, 

and bottom/right if it is an output. For undirected graphs, the decision is based on 

what the type of port is being driven. For example, in the case of schematics, it is 

natural to direct bidirectionals to the bottom edge, such that they are filtered out 

naturally from the other explicit inputs and outputs. The issues concerning entering 

and leaving a node have been treated earlier in the section on nodes. 

As concerns the actual method to display arcs, of three options, namely, straight lines, 

manhattan lines and splines, only the former two are reasonable, since they are fully 

consistent with the graphics capability of the X Window System. (Although bezier 

routines are available, the extra computational expense compared with the neater 

graphs that would result meant it was deemed a non-essential feature.) 

4.4.1.5 Constraints 

Where as the positioning of arcs is predominately by where the nodes are placed, this 

is obviously not the case with nodes themselves. Again, rather than taking a specific 

approach to just saying objects can be ordered as they are scanned, a more general 

look at the problem leads to a richer set of options in representation. Clearly, each axis 

represents some feature of the design. It could be simply, time, it could be 

alphabetical sorted objects, it could be all objects of a certain type or some other 

function related to the graph being displayed. These observations lead to the idea of 

an ordered axis with its opposite of an unordered axis. 
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Of the latter, which is the less complex of the two, if a graph axis is unordered, then, 

the elements can be arranged in manner of most convenience to the graph generation 

algorithms. One special concept that applies to an unordered axis is that of being able 

to collapse all the nodes, such that they coexist in the same column (or row). As will 

be seen, this is effectively the same as an ordered axis with the directive of placing all 

nodes in the same column (or row). Clearly, such ideas can be abused, as in having 

both axis unordered and directed as collapsable. But, from this general approach, the 

problem of displaying critical paths in a succinct form becomes much simpler, since 

single thread critical paths can simply be highlighted and the highlight collapsed since 

there will be no significant overlap. For simple graphs, this is not so important, but 

when chasing a critical path up and down hierarchies, it becomes more important to 

be able to extract that information and present it in this fashion. 

Constraints involving time are more complex. Along an ordered axis (say in the x-

axis), there are implied columns of information. How the columns are spaced is one 

issue, and how information is assigned to the column in relation to time, is the second 

issue. This approach handles coarse clock tick level time automatically, but also 

means more general protocol defined transactions can also be handled automatically. 

The classic example of this is viewing a resource-time graph in timesteps rather than 

in actual clock periods. In this case, the abstraction means that complex problems 

raised by the introduction of indeterminate calls can be easily bypassed, since all 

calls, whether indeterminate or not, are assigned a unit height, rather than the normal 

behaviour of a resource-time graph of assigning a height in relation to the actual 

duration of a call. 

4.4.2 Text 

Text graphs provide valuable cross-correlation facilities with design objects 

represented in the SAGE data model. Since a designer's main point of input is in text, 

whether VHDL [31] or ELLA [34], being able to relate objects back to the source code 

helps a designer navigate and therefore direct the synthesis process in a way that 

should achieve design objectives much easier. But since input source text is not the 

only text that a designer encounters, a more general approach leads to a framework 
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with wider applicability. In particular, the three other main usages of text are 

transcript output, generated nethsts and the help facilities. While they appear to be 

just simple interfaces, and many tools provide only the simplest of text interfaces 

comparable with editors like 'vi', a closer look reveals much more opportunity to 

define concepts that empowers a user to a much greater degree. A fifth text area could 

also have been considered, namely that of command line input, and this would lead to 

the natural, but very powerful concept of a universal editor, of which the most 

significant example is that of the APOLLO Display Manager editor. 

All the text regions have two significant facets. Firstly, they have, as with many other 

languages, well defined grammar and secondly well defined lexical semantics. In the 

case of the transcript output and help facilities, the grammar can be considered to be 

virtually non-existent, while for languages like ELLA and EDIF [33], complex (in 

compiler language talk) non-terminal objects can be identified. 

Decomposing text based on grammar, results in page/row/column tuples to identify 

regions of text. Note, how these figures are produced is not important, but the fact that 

no 'on-the-fly' parsing is needed to identify these elements helps efficiency. Clearly, 

this is a sensible division since the complexity of an on-the-fly compiler would 

outweigh any benefit that it would provide in identifying text regions. In the case of 

the text input into the SAGE system, this process of identification is done by VTIP 

[45]. (The only flaw with VT I P is that the tuples have no notion of column number, 

i.e. only a line by line basis is supported). In a similar fashion, the netlist generation 

routines can produce additional information that correlates non-terminal objects in the 

output with SAGE objects. The point to note about these examples is that the stage 

where the tuples are generated are not related to the parsing process of the language, 

but more to when data-structures representing the language are being traversed in 

order to produce output. 

With 'help' text areas, tuple pairs will tend to point to identifiers. Rather than the tuple 

pair referencing a SAGE data model object, it would be normal to expect it to 

reference further help. This facility of cross-correlating information in this manner is 

usually termed hypertext - a sort of read-point-click cycle. 
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Examining the lexical tokens that can be encountered, five useful categories can be 

identified that can help a designer analyse the structure of any text viewed with 

greater ease. These are keywords, quoted strings, comments, numbers and the 

remainder not including whitespace. Unlike the tuple pairs for text regions, these five 

represent a disjoint set. An examination of languages like VHDL, ELLA, EDIF and 

ADA, shows how fairly straightforward it is to identify these items. A more complete 

breakdown is possible, but this set provides a useful set. In fact, considering some of 

the commonest problems of losing valid code as a result of not terminating strings or 

comments in languages like C, it is surprising that no editors support simple 

highlighting like this as a natural part of the text editor interface. Figure 4-8 gives an 

outline specification of a lexical analyser that would recognise and highlight the 

elements in the ADA language The format is in lex format [6].  Note, it has been 

written in a form so it should be clear how it works and therefore is not a complete or 

efficient representation of what is required. 

/* all the ADA language keywords */ 
{begin} 	I 
{end} 
{return} start highlight keywordi; 

start highlight string (.) 
start highlight comment 0; 

[0-93+ start highlight number 0; 
(" 	\t\f\n") 
• start highlight rernainder() 

Figure 4-8. Highlighting Text Items 

ECHO; end highlight keyword 0; 
ECHO; end_highlight string 0; 
ECHO; end highlight comment ; 
ECHO; end highlight number(); 
ECHO; 
ECHO; endhighlightremnainder; 

4.5 Drawing Directed and Undirected Graphs 

Approaching the problem of laying out a general graph, various observations about 

the difficulties involved can be made. The most important aspect to this, is that of 

aesthetic appeal, which is, by its very nature, subjective. Graph theory has provided 

many rules for planarity checks and as mentioned earlier, many mathematical 

properties, but very little about how graphs actually should look. The most significant 

contribution to this area can be found in [59], where many attributes of graphs are 

defined, as the goal of layout becomes the task of optimising each value depending on 

a formula. Clearly this results in various heuristic algorithms that are generally 

iteratively applied after evaluation of the cost attributes. In many ways it is a 
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microcosm of what the general approach about interactive synthesis achieves, but in 

this case, all the steps are automatic. 

What is presented next are the heuristic algorithms developed that focus on the 

primary problem of taking a general graph, G= (V 1  E) , and simply aiming to provide 

top down signal flow (which could just as well be left/right signal flow), and 

following the cost measurement of arc cross-overs as being the primary measure to 

minimize. The most complex aspects are related to identifying the loops in the graph, 

and handling what appear as simple details like drawing the arrow heads on the ends 

of the arcs when they meet the nodes. 

4.5.1 String Method for Breaking Loops 

In order to obtain top-down signal flow, the nodes need to be placed one after another, 

following the signal flow as closely as possible. If there are no backward flowing arcs, 

then there is no problem. In fact, if all nodes are assigned a unit height, then the 

process with acyclic directed graph is very similar to one of as soon as possible (or 

ASAP) scheduling. The difficulty is with cyclic directed graphs, which interfere with 

the general top/down signal flow. 

The methodology adopted to solve this problem is comparable to walking around a 

graph with a piece of string, tying it to each node that is visited, and as soon as a node 

is visited that has already been visited previously, then one of the arcs that flows 

between where the string leaves the re-visited node, to where it re-enters needs to be 

marked as having been effectively reversed. The tricky bit is to recognise how far to 

backtrack to ensure that the algorithm remains efficient. In brief, if the last arc is 

effectively marked as being reversed, then the algorithm can simply backtrack one 

node and continue searching the graph, using the same heuristic. The neatness of this 

algorithm ensures that even loops within loops can be simply handled. The second 

necessity for ensuring maximum efficiency, is marking the nodes that have been 

visited only when the string is finally removed from it. This means that nodes that 

have been backtracked from because they form a loop, must not be marked, since the 

string still passes through them. Because of the way the algorithm works, if these 
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2, 

nodes are not marked during the backtrack stage, the algorithm will still work, since 

the decision to backtrack is based on encountering effective dead ends. 

r1 

(a) 

(b) string traversal 

Figure 4-9. Example to Illustrate the String Method 

In figure 4-9, there is an illustrative example of this algorithm in operation. Part one in 

the figure shows how the string has followed the forward arcs to node E, where it had 

a choice of two outward arcs to follow, and for this example, the arc referring to D is 

followed. This means the string has come back on itself, and therefore the last arc 

encountered is effectively flipped around. The string then backtracks to node E, as 

shown in part two, and makes its way forward to node B, where again the same action 
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is taken, as shown in part three. When the string is at F, the process of marking nodes 

that have been fully visited starts, in that, F, E, D, and C get marked as being fully 

visited, as shown by the shading in part four. With the string back at B, the second 

remaining outward is followed, and it will soon encounter the marked node D, and 

therefore begin backtracking all the way out of this graph. 

Because of the way it works, the algorithm also handles graphs that are already full 

loops - in the sense there is no clear starting node to where the algorithm should be 

applied. As a result of this property, the algorithm can be applied to all nodes in a 

given graph, provided the node has not already been marked. An additional benefit of 

this is that graphs which consist of disconnected graphs are handled automatically 

without having to select them as special cases. Another case of not needing a special 

treatment, is that of self-referencing nodes, which automatically have such arcs 

flipped around. For cyclic undirected graphs, this same algorithm can be used to 

remove loops, by assuming that all arcs that have been visited for the first time are 

outbound arcs. In the case of structure diagram, this property can be improved by 

applying this behaviour only to bidirectional lines. 

The final piece of information that needs to be attributed to nodes, is their position. At 

a simple level, it would seem sensible to make it simply the length of the string up to 

that node position, but as with ASAP scheduling, the node must move to a position 

that ensures all input arcs into that node flow top to bottom. This requires that on the 

forward pass, the current string position is placed in any unmarked node. But, for 

marked nodes, the maximum of the last string length and current string length is 

placed in the node. This means that as a marked node is successively visited it, it will 

either stay where it was placed, or be gradually floated downwards. 

The neatness of the algorithm is highlighted by how no matter what the nature of the 

graph, that is if it consists of disconnected subgraphs and/or complex loops the 

locations are determined in just one pass with no special cases. The only 

simplification has been to have no heuristic to decide on which arc to actually flip. 

This weighed against the objects in SAGE that do generally exhibit top down 

information flow and the fact that they do have well defined entry nodes to the graph 
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to which the algorithms can be initially applied, means that in the most part, this 

choice of arc to flip will produce sensible graphs. 

4.5.2 Barycenter Application 

Having identified where the nodes have been placed vertically, it is next necessary to 

place the arcs. Simple point to point drawing is highly undesirable, because of the 

overlap that can easily result. As a result, for an arc that starts from row n, and 

finishes at row n+m, then space needs to be allocated for the passage of the arc at 

rows n+1 to ni-rn-i, provided this represents an ascending sequence. The only 

exception is when rn = 0, in which case space needs to be allocated for what is 

effectively a local loop. This space allocation is illustrated in figure 4-10. In principle, 

the width allocated to a passing arc can be anything, but a width equivalent to the 

effective widths allocated to nodes has been used. When comparing this approach 

with other routing algorithms, its relative simplicity can be seen as a consequence of 

(a) before allocation 	 (b) after allocation 

Figure 4-10. Space Allocation for Arcs 

The routing of these arcs does not need to be clever, since the next stage is iteratively 

to move these arcs and nodes in each row, such that a more aesthetically pleasing 
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graph is produced. The approach taken, is that termed the barycenter approach, as 

identified in [59]. 

In that paper, it is described how Carpano proposed an iterative method for the 

reduction of crossings in a two-layer graph, called the 'relative degree algorithm'. 

This meant that given a placement of the vertices on level 1, the abscissa of each 

vertex on level 2 is computed as the average of abscissas of its neighbours on level n 

called the up-barycenter. Then, a symmetric step is performed by computing the 

down-baiycenter for the vertices on level 2. The extension to the n-level graph 

follows naturally, but with the additional requirements that edge conditions on the first 

and last layers are handled carefully and the possibility of computing the weights 

across more than just the preceding and succeeding layers arises. 

The algorithm effectively splits the difference between the current node location and 

that suggested by the arcs above or below, that are actually pulling on the node. As a 

result, the algorithm moves the nodes to a location that eventually minimizes the 

energy represented in the graph. Because of the granularity of the placement allowed, 

and the fact that the algorithm only examines a layer at a time, the total energy cannot 

not be certain to minimal, and in fact, complex oscillations in the node positions can 

result when coming towards the end of a number of oscillations. As a result, although 

a rough number of forward and backward iterations can be estimated as having to be 

at least 2 * 1092 (width) to allow for the worst-case migration of anode, because of 

the oscillations, the exact value used is not important. 

4.5.3 Arrow Heads 

One minor issue related to drawing of graphs is that of drawing arrow heads on arcs. 

Most drawing packages avoid this problem or use a bitmap to represent the end of an 

arc, and that based on a simple approximation of the final angle of the line. The two 

aspects discussed here are the transformations needed to draw an arc abutted neatly to 
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a circle, and then of finding the angle and point of intersection between a circle and an 

ellipse for the special case of local loops associated with nodes. 
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Figure 4-11. Transformations for Arrow Heads 

In figure 4-11, the various stages that have to be followed are illustrated. Given a 

vector (xS, yS) to (xe, Y f ) , and a radius representing the circle of intersection, 
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intersection 
points 
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three points need to be computed, namely the starts of the two whiskers and the finish 

point. Given that the line makes an angle of a between the horizontal, then the four 

steps needed to identify the finish point are shown in part (a) of the figure. In a similar 

manner, the two whisker start locations are computed by a rotation, scaling and 

translation step as shown in part (b). The actual whiskers are drawn by simply joining 

the computed points. 

The issue of local loops, when solved by using the path of an ellipse, slightly 

complicates the problem by requiring the point and angle of intersection to be 

computed. The angle is obtained from the derivative of the ellipse at the point of 

intersection, while the actual points of intersection are found by solving two 

simultaneous equations. 

Figure 4-12. Local Loops 

Figure 4-12 illustrates the problem. The equation for the first ellipse, which is always 

a circle of radius r1 , is simply: x2  + y2  = r. The equation for the second ellipse is: 

(x -  r2 ) 2  + = r, where the vertical radius is related to the first circle, by the 

r1  
relation: (r1  = r2b) => b = -. Differentiating the equation for the second ellipse, 

r2  

2 
dy 	b (r2 —x) 

and rearranging produces: - = 	 , which can be used to determine the 
dx 	y 



angle of intercept. The two ellipse equations are effectively two simultaneous 

equations, which can be subtracted form each other and rearranged as a quadratic in 

2 	2 	2 	2 x: (b - l)x + (-2b r2)x+r1  = 0. Using the normal quadratic equation 

solutions: x = 
—b± 1b2_4ac 

2a 
such that a = (b2 — 1), b = —2b2r2  = —2br1  

and c = r, will give the possible solutions as: x = 
r1  (b± 1) 

(b+1) (b — l) 

r1  r2  
= 	.For 

r1  ±r 2 

the example figure given, only the case for r2 > r1  applies. For this case, substituting 

back into the circle or ellipse equation, provides the remaining y intersection points 

Jr (r1  + 2r2) 
as: y=±I 	2 Al (r1 +r2 ) 

4.6 Inter-Visual Interaction 

As well as information within a graph visual, and information available by cross-

correlation highlighting, there is additional inter visual association that can be made. 

What appears a simple concept, is in fact very powerful and solves numerous practical 

display problems as well. The idea is that for a given axis, the selection method 

chosen also drives the selection of the objects on the corresponding axis of the new 

attached graph. 

By way of example, consider the use of a resource-time graph where the x-axis 

represents the structural components, and the corresponding calls that are active on 

the structural components, if any. This defines an order and a set of objects, that can 

form the basis for another graph. The x-axis of this other graph is effectively tied with 

the way the x-axis on the resource-time graph behaves. In this second graph, the 

flexibility arises in the second axis (y-axis), where there is now a choice to be able to 

represent a quantity other than time. 

If the two visuals are physically placed next to each other, then the two axes can be 

considered to be hard-tied, and there is an implication that any panning operation in 
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one of the graphs must be reflected in the other graph to ensure that the alignment is 

not lost. The other form of tying is that of being soft, where not only is panning not 

preserved across the graphs, but neither is there need to keep the new axis in the same 

vertical or horizontal orientation as the one it is tied with. For example, in figure 4-13, 

the x-axis is soft tied to a y-axis, which is used to represent a set of three visuals that 

are hard tied in the y-axis. 

IIIiIIIiIIiIII  
Hard 	 Power Graph I 
Tied.' 
x-axis 	I 	 L.Resource Names 	Tied 

y-  ax is 

RT-Graph 
Soft 
Tied 	- 
x- ax is 

/ 
Map 

Bindings 

Figure 4-13. Example Illustrating Hard and Soft Combined Axis 

In this figure the x-axis of the resource-time graph is used to drive three other graphs. 

In the first case, we have identified the resource names and a bar chart representing 

their current area cost. The mapping shows how the resource-names map onto the 

actual type names of the resources. 

As well as empowering a user to associate different facets of information represented 

in the data model, the user also gains in ease of use by having distinct pannable screen 

regions. A good example is with the resource name to type name mapping, where a 

user could find a string clipped by the window, and is happy to pan, provided the 

panning does not lose important information. If all the three graphs were present in 

the same visual, then a pan operation for a string in the type column, could lose the 
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resource names from the users field of view. Especially with the problem of strings of 

indeterminate length, this approach also means it is no longer necessary to truncate 

arbitrarily the strings to prevent obliteration of possibly important design information, 

since they can simply be panned into view as necessary. This is only a partial solution, 

since text names associated with objects within a resource-time graph, need to be still 

treated in a manner that ensures the graph does not become overly drowned by a sea 

of text. The simple solution of just controlling the text layer visibility and other 

related issues are examined later. 

4.7 Dynamic Visualisation 

A user examining a graph is presented with what is essentially static information. In a 

complex graph, there are many interrelations, of which a designer will be focusing on 

only a few. A good analogy is with chess, where a chess player focuses on a small 

region of the board, and sees how the pieces directly in view, can now and then relate 

to other pieces at the far corners of the board, by animating in the players mind 

various moves. In this same localised way, a designer would analyse graphs to 

determine the next synthesis action. 

In these cases, it is simple to recognise simple rules that can visually distinguish key 

aspects of graphs that are of interest to a designer. The important point is that to be in 

keeping with the spirit of a designers thought processes, the results of this highlight 

have to be fast enough to allow a designer to move rapidly to another region of a graph 

to follow a hunch about what actions the designer might take next. This process is 

called dynamic visualisation, and is defined as some graph highlight action that is a 

function of where the pointer of a mouse currently resides. In the example shown in 

figure 4-14, the action is defined as one of highlighting a node and any of its related 

arcs, when a particular node is pointed at. The complexity of the action then becomes 

a function of the performance of the hardware and the average delay between 

successive highlights that a designer will be happy to tolerate. Issues like this are also 

affected considerably by the algorithms used, and therefore care has to be taken in the 

development of these algorithms. This algorithm performance issue, and many others 

are explored in detail in chapters 5 and 6. 
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Figure 4-14. Dynamic Visualisation in Action 

4.8 Visuals in Action 

The following sections enumerate in detail, all the visuals that have loosely followed 

the concepts that underlay graph presentation. The four major interfaces are the 

display facilities for source code, resource-time graphs, control-flow graphs and 

structure. Since each graph also has many objects that relate to other graphs, their are 

significant issues relating to cross-visual highlighting that are addressed in the section 

on interaction. Also in the section on interaction is the issue of interactive synthesis 

actions that can apply to certain data model objects. 
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This sections focuses on the key display characteristics, and SAGE data model 

concepts that are captured rather than every detail that is associated with the visuals. 

A large number of the general display issues have already been covered in section 4.4. 

4.8.1 Source Code 

The main feature of the source code visual, is the way it is limited by restrictions 

imposed by the VT I P model. This means that objects of interest are only specified by 

line numbers, and therefore references to multiple objects on the same line can cause 

confusion to a user, since there is no way to distinguish them. The approach taken is to 

provide three vertical regions that can represent the three types of object that can be 

identified in the source-code and correlated back to the relevant objects in the SAGE 

data model. These objects are 'calls', 'blocks' and 'behaviours'. Within each region 

are vertical lines .that represent the tuple over which the highlight happens. Clearly, 

because of the granularity of the tuple, many call arcs can reference the same region, 

but it would be unusual for this to happen with behaviours and blocks. Another 

observation, is the way that text regions for blocks and behaviours might form disjoint 

sets, particularly since the source code compilation process might do some clever 

decomposition/optimization and find itself merging disparately related basic blocks. 

	

III 	I 

behaviours 4 	
1 I 	 I 

	

Iii 	I 

blocks  

calls 

source code 

Figure 4-15. General Layout of the Source Code 

The figure above is the general form of the source code visual. The first three columns 

represent highlight marker regions for behaviours, blocks and calls. The region on the 

right is the container for the actual source code. 
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4.8.2 Resource-Time Graphs 

Of all the visuals, the resource-time graph object is the most complex. In some ways 

this reflects the primary position it has as an interface with which a user is able to 

make design modification decisions, compared with the other visuals. Note, this does 

not mean that the other visuals provide anything less in terms of general interaction 

capabilities, but more that there is less scope for interaction with these other graphs 

because of the nature of the information that is presented. Why the resource-time 

graph holds this position is because it captures, in its raw form, two of the most 

important attributes that a design exhibits, namely resource and time. 

Resource-time graphs in conjunction with control-flow graphs capture the main 

operational characteristics of a design. With control-flow graphs, the designer can see 

the passing of the thread of control in a top-down manner, with any looping or 

branching illustrated by arcs that generally flow backwards. Resource-time graphs, 

being acyclic, only have arcs flowing forward, representing the passage of data-items 

from one function call to the next. As will be seen discussed in the results chapter 7, 

manipulations at the control-flow graph level can provide the most significant 

synthesis actions. 

4.8.2.1 Zones 

Although all the calls local to a behaviour form part of the resource-time graph, they 

themselves can be further categorised into zones. This concept is necessary both for 

scheduling purposes and display purposes, because of the difficulty of handling 

indeterminate length calls. By definition, a zone is defined as a group of function calls 

within a basic block that can include indeterminate function calls only at the output. 

There are three situations in which such indeterminate calls can arise. These are 

library components of indefinite length, loops with indeterminate iteration counts and 

branching statements whose branches have different (i.e. not necessarily 

indeterminate) length. 
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(a) before zone identification 	 (a) after zone identification 

(~) indeterminate calls 

0  determinate calls 

Figure 4-16. Zone identification Example 

For a given behaviour, there are generally many ways to identify the zones. Figure 4-

16 illustrates how zones are identified for a given data-flow graph. With the 

indeterminate functions defining definite zone boundaries, the remaining zone 

identification process aims to place as many calls in each zone. Thus zone A could 

have been identified as two zones, but has instead been collapsed into a single zone. 

In principle, zones could operate in parallel, but for simplifying reasons, they are 

forced to operate in series. One of the main benefits of this simplification is the 

controller, which needs only to produce control marks to initiate the next zone, when 

the previous zone has indicated that all its indeterminate operations have completed. 

Whereas it might appear that this simplification can help the visualisation software, 

this is not the case since the controller software should add in calls that start relative to 

another call, as opposed to starting relative to a zone. Early SAGE versions did not 

need to consider the issue of indeterminate length operations, since all operations 

were defined as being of a known duration. The next generation of resource-time 
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Zone D 

graphs provided only one zone in one graph. The latest generation now display all the 

zones, which has the added benefit of showing the inter-zone data flow, which is of 

the same importance to a designer as the intra-zone data flow. For the example given 

in figure 4-16, the following figure 4-17 shows the form of the resulting resource-time 

graph. 

Figure 4-17. Zones in a Resource-Time Graph 

4.8.2.2 Call Shape 

Since calls are effectively instantiations of behaviours, their temporal complexity is 

directly related to the complexity of their behaviour. This shape is governed directly 

by the class of component, which is usually reflected in the parameter behaviour. 

Calls can be clocked or unclocked, and those that are clocked can be of indeterminate 
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length. This is illustrated in figure 4-18 with the ticks (/) representing the supported 

combinations. 

determinate 	I 	indeterminate 

clocked 

Figure 4-18. Supported Call Classes 

As illustrated in figure 4-19, if hierarchy is considered, there are implied restrictions 

on the calls, if any, of such a call. This information is needed when analysing the 

shape of a call, if it is hierarchical. For example, the calls of a clocked/determinate 

call can consist of only clocked/determinate or combinatorial/determinate calls. 

determinate 	indeterminate 

- 

clocked 

combinatorial • _ 	__ 

Figure 4-19. Call Classes and their Children 

Both clocked/indeterminate and clocked/determinate can have two groups of 

parameters in common, both, of which are associated with definite clock tick marks. 
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These two groups are simply the input and output parameters. In the case of 

indeterminate function calls, there are again two groups of parameters, but this time, 

they cannot be formally associated with any time-mark. For display purposes, they are 

placed at the end of a call, separated by a clock tick, with the existence of these 

indeterminate input and output parameters clearly marked by a small rectangle placed 

at the bottom of the call. The structuring of an actual call, is shown in figure 4-20. All 

inputs appear on the left, and outputs on the right. When there are multiple inputs and 

outputs happening at the same time, they can be separated visually. If the parameter 

spacing is set to zero, then the parameters themselves are not displayed. This means if 

parameter offset is also set to zero, then the calls will look very much like earlier 

versions of the resource-time graph. Notice how the flange concept goes one stage 

beyond this, in actually sorting the signals by the zones that they go to or come from. 
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Figure 4-20. How a Call Looks Close Up 

Having a well defined call shape, a definite parameter location, the next problem is 

related to how arcs passing from call class to the next call class, should actually be 

represented. The main problem arises because the definition of parameter is different 

if the call is combinatorial or clocked. Figure 4-21 illustrates the four cases of 

generation and consumption. The interesting point is that in all cases, the output is 

aligned with the start of a parameter, never with a clock tick. Whereas for clocked 

inputs, the alignment is with the clock tick. 
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Figure 4-21. Arc Alignment, Depending on the Nature of the Call. 

Data flow arcs are not the only form of arc that appear in resource-time graphs. By 

supporting the idea of making calls invisible, and if the associated arcs have not also 

been made invisible, they also need to be displayed. For such cases, the alignment is 

with the left or right side of the column within which the visible call that is effected 

exists. For arcs that have source and destination marked as invisible, then no arc is 

actually displayed. The other special case of arcs are constraints, which specify how 

one call must be placed in relation with another. 

Calls are organised in columns, reflecting the shared resource or component that they 

actually operate. This is reflected by the presence of a column, at the head of which 

there is a component representation provided there is a resource allocated. With this 

interface, there are a number of design actions that can be identified, and these are 

explored as part of the design example shown in section 7.1 on page 176. 
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4.8.2.3 Mapping 

One of the most novel concepts embodied in the SAGE data model, is that of mapping. 

In general, all calls associated with a given behaviour must work on the set of 

components associated with that same behaviour. On many occasions, an expensive 

component, (maybe in terms of area), might be present in the component list of 

another behaviour. From a user's point of view, rather than create another instance of 

that expensive component's structure, the better decision is to make use of this already 

existing component. The process of mapping provides a way to achieve this. 

The process of mapping is complex, in that the already existing component is marked 

as having been mapped in the behaviour associated with the structure containing the 

said component. It is the using call of the behaviour associated with the structure 

containing the said component, which must instantiate the actual component and 

relate it back to the mapped (or formal) component. Since there can be multiple uses 

of the mapped component, the mapped component is treated as being utilised for the 

duration of the behaviour containing the mapped component. This simplifying 

approach meets the causal requirement that conflicting uses of the component are not 

allowed. 

From a display point of view, the duration for one execution of the mapped 

component, and one execution of the behaviour of the structure that the component is 

in might be different. As a result, as well as the actual call to the behaviour containing 

the mapped component being represented, overlaid on top of this is a mapped call 

marker, in the form of an arrow depicting that the use of that component is made 

somewhere in it. The actual mapped component associated with a call, as opposed to 

the behaviour containing that component, is marked by a simple cross. These ideas are 

illustrated in figure 4-22 
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Figure 4-22. Mapping Example 

4.8.3 Control Flow Graphs 

The basic control flow in a behaviour is represented by a directed cyclic graph. The 

key features are related to disambiguating the node types. There are four basic types 

of node, reflecting the control structures that are extracted from the source code. 

There are fork nodes for branching, merge nodes for collecting control threads and 

fork+merge nodes for blocks that can exhibit both such activities. The fourth block 

class is that of straight line code, that does not have to be a collector or generator of 

multiple control signals. These different representations are illustrated in figure 4-23, 
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with the use of the flat edge on the icon to represent the collection or generation of 

control arcs. 

fork-merge wait 

OEIE3E 
fork 	 merge 	fork-merge 

merge wait 

Figure 4-23. Control Node Categories 

4.8.4 Structure Graphs 

The structure graphs in SAGE, effectively have two forms of outlet, namely text 

display and schematics. From a designer's viewpoint, the schematic in general 

provides a much more useful medium with which to analyse a design. Much work has 

been done in recent years in trying to place and route schematic diagrams for 

maximum aesthetic appeal [59, 76]. Rather than adopt these same objectives, the 

requirements of having an orthogonally routed schematic displaying all relevant 

information in a timely manner was the driving consideration. As with all objectives 

of this nature, the problem was divided into a number of stages, of which the most 

important was routing and rendering. The process of producing the schematic, was 

greatly aided through the use of the creation approach described in section 3.2.1 on 

page 37. 

With simplicity being the primary objective, this has led to the concept of the multi-

grid network approach. The first stage involves finding one size for all components. 

With inputs arriving at the left of a component, and leaving from the right, the 

maximum height for a component can be determined from the component that 

receives the maximum number of inputs or outputs. Similarly, the maximum width of 

a component is determined by the number of bidirectionals present. Clearly, if there 

are no such pins, a minimum value is assigned. The grid that results, which is fixed for 

every component, is used to align pins. This same grid is used for wires that are 
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associated with the containing structure, through the assignment of virtual 

components that soak up the all the top-level pins. The next grid is that which contains 

the components. This is simply a n by m grid, where n and m are in general equal 

because of the simple row after row placement algorithm. 

The routing channels are defined by this component grid, and unlike the first two 

grids, this implies a dynamic grid. In fact, the combination of all the components port 

grids, provides the routing grid. Whenever a pin needs to appear on a channel, then an 

exclusive route orthogonal to the pins direction is added to the grid. Thus the process 

of creating the rectilinear Steiner tree [11] has been reduced to one of joining the 

connected parameters vertically, by creating a single vertical grid line, and then 

connecting the resulting wires horizontally on a nearest neighbour basis. This scheme 

lends itself to simple placement optimization and simple compacting of networks, the 

later achieved by simply folding nets in a channel onto each other when there is no 

implied electrical overlap. Figure 4-24 shows these three grids. 
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Figure 4-24. The Three Grids for Schematic Routing (Pins, Components and Routing) 
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As with the other graph classes, there are many aspects that can be displayed about a 

structure, the most significant being the nature of the component. In SAGE, 

components can represent one of six classes, namely: data processing, control, 

memory, address generation, constant generation or communications. Other issues 

relates to wires that connect to nothing, or that connect to only one pin. The former 

are not displayed, while the later are represented as blobs on a components pin. This 

disambiguates them from unconnected pins, which, following Mentor Graphics 

style, is represented with a diamond shape. 

4.9 Interaction 

There are several aspects that are reflected across all the previous visuals. The first 

relates to navigating around the design hierarchy. The second concerns interaction, 

both in a query sense and being able to modify a design to reflect a designer's 

requirements. 

All the visuals are related in that objects highlighted in one graph, will automatically 

be highlighted in other graphs that might have the same object present. This happens 

in particular to all the key SAGE data model objects, namely, behaviours, structures, 

components, blocks and calls. 

A typical design can represent complex hierarchies and interrelationships. To help a 

designer identify where they are in this hierarchy, it is useful to have a navigation aid 

that shows the path that has been followed. Figure 4-25 illustrates the navigation 

panels used in SAGE, and how they relate back to the SAGE data model objects. 

Whereas most navigation aids represent only one path, these panels have to illustrate 
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two paths, one for the functional aspects of the design unit, and the other for the 

structural. 

behaviours 	blocks 	calls 

designs 

structures 

components 

Figure 4-25. Navigation Panels 

There are three key design actions that a user is interested in. There is the need to 

identify which structural objects can achieve the requirements of particular calls. Next 

there is the process of binding a given call to work on a particular component, whether 

or not that component already exists or is one of the structural objects returned by the 

match action. From a designer's viewpoint, this action saves on hardware and/or can 

associate real hardware with calls. If the target component is in another component 

and is mapped, then a structural mapping is implied, provided, of course, the 

component is capable of supporting the required calls function. The third action 

available to a designer is that of adding and removing constraints, so a particular 

schedule or execution pattern can be obtained. 
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As a set of operations, these are not usable without support in the form of simple copy 

and delete facilities, that handle general housekeeping functions. Another issue 

related to usability, is group selection. Without this form of feature, a user would be 

required to painstakingly iterate on a call by call basis for even a simple bind action. 

119 



To those accustomed to the precise, structured methods of conventional system 

development, exploratory development techniques may seem messy, maekgant, and 

unsatisfying. But it's a question of congruence: precision and Jirxibility may be just as 

disfunctionalin novel, uncertain situations as sloppiness and vacillation are is 

familiar, well-defined ones. Those who admire the massive, rigid bone structures of 

54D 	

dinosaurs shouldremember thatjellyfish still enjoy their very secure ecological niche. 

-. Beau Sheil, "Power Tools for Programmers" 

 Framework 
With the complexity of problems that synthesis is aimed at - of the order of several 

hundred to tens of thousands of gate equivalent complexity, one of the most important 

technical problems is that of ensuring adequate software performance. This is even 

more so when interactive performance is required. Rather than adopt the philosophy 

of the software developed being simply experimental in nature and therefore the goal 

of performance need not apply, the opposite view was taken, which required many 

technical problems to be analysed and then suitably eliminated [98]. 

These problems appear at several levels, from subtle behind the scenes behaviour 

whose benefit would only be apparent when handling real world size problems, to 

directly impacting the way a user interacts with a system, This is not a hard and fast 

dividing line, but is an adequate categorisation for the flow of discussion to explore 

and describe the issues involved in the following sections. To begin with, the next 

section looks at the background decisions that directed the overall form of the 

framework elements. 

5.1 Background Decisions 

As with all projects, decisions are taken that can be considered immutable for simple 

reasons such as availability, cost and time, as well as the effect of inertia once such a 

decision has had significant impact on the development life cycle of a project. In the 

case of SAGE, several reasoned decisions were made, which formed a platform on 

which the SAGE development was able to happen. 

In the case of the user interface, the X Window System [55, 56] was chosen to 

satisfy the design requirements of portability. Since the X Window System 
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provides only a raw low level graphics interface, OSF/Mot if [57] was selected as the 

high-level interface to provide an industry standard look and feel. As there is a 

considerable standardisation effort within the IEEE on operating systems, POS IX 

was the selected target operating system. Since this is still being developed, UNIX 

BSD4 3 as supported on HP/APOLLO and SUN workstations formed the 

development environments actually used. The decision to use ADA [3] as the main 

programming language, is always controversial. Nevertheless, after careful 

consideration, it was quite clear that ADA has many excellent language features that 

are essential for large, multi-purpose projects, and has a style that lends itself to good 

software engineering and easy documentation. The choice of ADA raised the problem 

of interfacing to Motif and X. As a vehicle to achieve this interfacing, it was 

necessary to use the native language of the operating system environment, namely C 

[8]. 

Within these boundary conditions, it was necessary to develop concepts that could 

solve the problems of combining X, Mot i f and ADA in a way that would satisfy the 

objective of providing high-performance interactive portable window facilities. 

5.2 Process Model 

A careful look at the small print in the X Window System, highlights one 

interesting fact. Once an application has a handle on a server object, regardless 

whether or not that application created it, the application has full rights to that object, 

such that it can treat the object as if itself did create it. Most applications assume that 

they have complete control over their output device, with x they don't, (and in fact 

this is a very serious security loophole). Nevertheless, without this feature, the 

following described SAGE process model would not be possible [25]. 

Figure 5-1 shows the overall SAGE process model in a highly stylised form. There are 

shown three major software modules with interconnecting lines depicting the 

information flow required. Each module has an icon depicting the broad class of 

activity that the module provides. The ADA module, forming the bulk of the SAGE 

system, handles all the synthesis activity. The X module is responsible for all drawing 
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(it is effectively the server), while the Mot i f module provides the user interface 

facilities. From the ADA modules perspective, it receives requests from the motif 

module, each of which it obeys as a series of actions. One of the actions could be the 

requirement to render a graph, which it does by communicating the graph to the X 

module. Once it has completed such a request, it communicates back to the Motif 

module, that the design request is complete. At any time during a request, the ADA 

module can communicate informational messages to the Mot if module. Because of 

the nature of information carried, the bandwidth requirements of the Motif -ADA 

modules link are generally much less, by orders of magnitude, than that between the 

ADA and x modules. Consequently, the gain in defining a human readable protocol 

between Mot ± f and ADA modules, as opposed to a compact binary representation, far 

outweighs the slight loss in performance. 

ADA 

X 	 MO 

Figure 5-1. Stylised SAGE Process Model 

Each of the modules exists within its own process space. The X module and Mot if 

modules are both event driven, while the ADA module has only a single thread of 

control. In relative terms, it is important to restate that the communication between X 

and ADA is required to handle a much higher capacity than the link between Mot if 

and ADA, and therefore does use a compact binary level representation. 

Although this process model has been presented as afait accompli, it is nevertheless 

interesting to examine the rationale behind the resulting process model. Since the 

majority of data-structures are held within the ADA language environment, it was 

122 



necessary to generate draw commands directly from this database in order to 

maximise performance. This led to the requirement for an ADA language binding to X, 

that needed to cover only the basic drawing commands. Mot if on the other hand, is 

based extensively on the X Toolkit and so makes extensive use of callbacks. Since 

ADA provides no formal means of letting foreign languages call its subprograms and 

hence has no callback facility, the natural solution was for Mot i f to exist in its own 

process and communicate with the ADA module through the use of UNIX pipes. 

Trying to force the Motif and ADA modules into the same process address space 

would achieve little, since the event driven nature of the Motif module, would 

require that it exist within its own ADA task. 

This division of drawing responsibility between motif and ADA is illustrated in 

figure 5-2, where the exact destination of the arrows on the display surface illustrates 

how ADA handles what happens within a window, while Motif handles the general 

issues involved in managing that window. Other important features of the process 

model are also illustrated by this model. 

display (s) 

stdout 

I  
stdin 	unused 
stderr  

pipes, 
(low b/w comrns) 

Figure 5-2. Process Model - Normal Operation 

Note how the ADA process does not use the three standard UNIX pipes, commonly 

referred to as stdout, stdin and stderr, but instead has its own pipes. (At job creation 
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time, the Mot if process informs the ADA process through command line arguments 

as to the location of these pipes in the file descriptor table). Two major benefits arise 

through this approach. 

Firstly, subprograms in the ADA process can use stdin and srdout during the debug 

cycle. Early versions of SAGE, which used these channels for communication, were 

very difficult to debug because any information had to therefore be directed to a file, 

and this file could not be viewed until the end of a SAGE session. Even if another 

version of ADA existed which supported 'many readers/one writer' on this file, 

because no input is allowed, the only way to affect the flow of control is to use a 

debugger. When a debugger does need to be used, it generally has to be applied 

directly to the ADA process. Similarly, when testing, only the ADA process is required 

to be invoked. The ADA process can support this simple requirement by folding its 

main communication channels onto stdin and stdout by recognising whenever it is 

invoked without command line arguments. Note, this arrangement still means that 

such an independently invoked ADA process can still draw graphics, since all it 

requires is a named window on a given screen. This is illustrated in figure 5-3. 

Clearly, the disadvantage is that when doing graphics debugging, the programmer has 

to set up and manage 'dummy' windows, so that the ADA process can drive a named 

window. In practice this is straightforward, since the X Window System 

'xwininfo' command can be used to return a handle on any window that can be 

pointed at, and this can be manually passed to the ADA process. 
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Figure 5-3. Process Model - Debug/Test Operation 

The second benefit relates to the way the Mot if -ADA  communication pipes can be 

actually used. As stated earlier, for simplifying reasons a human readable protocol has 

been used, but it can easily be imagined how this could be tokenised for a first level 

gain in efficiency. The next area concerning improved efficiency then relates to how 

UNIX pipes are utilised. By having the creation and control of the main 

communication pipes directly within the scope of the ADA and Mot ± f modules, then 

there is no need for a line buffering shell which is wrapped around stdin and stdout in 

a normal ADA process. In fact, this approach is mandatory if no line break characters 

are required as part of the protocol - as is the case. Instead, as would be natural, the 

protocol itself implies when a message completes. With the LISP [10] style protocol, 

this simply means a matching closing bracket - ')', to the starting bracket - '('. 

Another aspect of managing these pipes relates to the event driven nature of the 

Motif process. This means that when the Mot ± f process is sending data it must not 

lose its thread of control to the ADA process by blocking on the pipe if the ADA 

process is too busy to actually receive the data. Similarly, only when the ADA process 

has data to send can the Motif process read its input pipe. 

On the minus side, there are two problems that arise. Since there are two processes 

that need graphics support in the form of X Lib support, it may appear that the 

memory space occupied by the Motif and ADA processes might be twice what it 
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need be. In fact, because of the recent support of shared library facilities in UNIX, the 

memory penalty is incurred for only duplicating state variables -which is in general of 

the order of tens of kilobytes at the most. The second problem relates to race 

conditions that can arise when there are significant delays associated with the three 

stages. 

Although this process model as described is used for SAGE, it has been designed to 

handle five other requirements. 

• Firstly, the need for undoing and redoing design actions. Rather than being myopic 

and expecting the application itself to handle this function, by taking a step back and 

recognising how easy it is to replicate UNIX processes in a time and space efficient 

manner (relying on virtual memory management systems that use copy-on-write), 

then this is just a step away from fast, efficient and reliable multi-level undo/redo 

facilities. The change to the process model is one additional pair of communication 

channels for each additional copy of the ADA process. For a single level undo/redo, 

two ADA processes are always present. One of the ADA processes is managed as the 

primary process, while the other process represents the design state before the last 

design action. An undo/redo activity would simply toggle between the processes, 

while a new design action that modifies the design state would require the older ADA 

process to be replaced by the current ADA process, while a copy of the current ADA 
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process has the design action applied to it. This is illustrated graphically for a single 

level undo/redo facility in Figure 5-4. 

display (s) 

2 stdout 
2 stdin .  unused 
:i stderr  J 

undo/redo 

Figure 5-4. Process Model - Dual Process Operation 

• The second requirement is that of error resistant behaviour of the SAGE system. 

With complex prototype software, system crashes are the norm rather than the 

exception. Using the same technique as for single level undo/redo, any system crashes 

can be captured and presented to the user with the option of regressing back to the 

stage before the last design action. Because of the smallness and reliability of the X 

and Motif processes, they are assumed to be (and are in practice), much more robust 

than the ADA processes, and therefore any crashes in those parts would generally be 

unrecoverable. 

• The third requirement can be simply stated as the ability to interrupt a design action 

and ensure that design state is returned to a consistent state. Although simply stated, 

the complexity of implementation needed for a single process model, generally means 

this feature is not supported or if it is, it is implemented in a fashion that merely 

terminates the interrupted process in an orderly manner. With the dual ADA process 

model, this problem is easily solved. The effectiveness of this approach cannot be 

understated, especially considering the opaque nature of many synthesis algorithms 
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which can claim the thread of control in an ADA processes for many minutes if not 

hours. It is possible to envisage that such algorithms could be modified to provide 

suitable interrupt points, but with prototype software the effort is directed at the 

development of the synthesis algorithms rather than supporting how a user might want 

to interrupt such an algorithm. For algorithms that do take hours (such as routing), 

having suitable interrupt points is essential. 

• As mentioned, synthesis algorithms can take significant time to complete, and in 

general this would normally be the time that a designer would go off and make a cup 

of tea since the tool is in a busy state. The fourth requirement is to provide some 

subset of commands that will let a designer still continue to explore a design. In the 

dual process model, this would mean that while the latest process is actioning the 

design action, the last process is available for providing information about the design, 

whether that involves updating existing visuals or providing information in other 

forms. A more elaborate approach, which this process framework can support, is 

allowing the full set of commands. Although much more complex issues arise as to 

how the ADA processes manage their allocated windows, it is a sound mechanism to 

explore several design avenues in parallel. 

• Fifthly, with processing power becoming cheaper, it becomes natural to divide 

systems into processes that can be farmed of onto separate actual processing units. As 

is the case with the SAGE process model, there are three processes with which the 

simple conversion of the Mot ± f-ADA communications channels from pipes to UNIX 

IPC links can easily be managed on three separate machines. An early mock-up 

version of SAGE demonstrated this in action [25]. Note, although the multiple ADA 

processes have to reside on the same hardware because of the way UNIX works, they 

can still gain from parallelism by being executed on multi-processor UNIX machines. 

Since the support for parallelism might require IPC links, this also partly drives and 

justifies the need for communication channels separate from stdin, srdout and srderr. 

The reason is that 1PC links are prone to several problems, not least of which is that 

there can be no guarantee that the number of bytes requested to be read or written 

from/to a channel are the actual number of bytes read or written. 
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Most of these five requirements are incremental on the basic process model that has 

been used for SAGE. The other key aspect is the transparency of these concepts in 

practice. This applies both to a user of such a system, and the programmer developing 

the algorithms used in the ADA module. 

The final comment about this process model is that though it has been developed to 

solve the primary problem of interfacing X, motif and ADA, it is in fact general 

purpose and could be used in many other application areas where it is desired that the 

user has to be maximally empowered, while minimising the programming task that is 

needed to achieve this. 

5.3 Language Bindings 

Formally, the X Window System is just a line protocol [54], comparable in style to 

the opcode/operand structures found in assembly code. In practice, this is only the 

first stage between several layers of abstraction that separates it from application code 

as illustrated in figure 5-5. Since all these interfaces were developed in the C world, 

they are immediately available to C and C++ [9] workers. With a language other than 

these two, there is a natural barrier that has to be circumvented by the development of 

a suitable language binding. Note, as far as and including the X Toolkit 

Intrinsics, these are internationally accepted standards, while the remaining 

layers represent different approaches of handling the look and feel issues. 

Application 

Motif I XView 

X Toolkit Intrinsics 

I 	XLib 

X Protocol 

X Server 

FigureS-S. X Window System Conceptual Layers 
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A significant amount of work in the US has been invested in developing ADA bindings 

to the X Window System. Most notable, is work done by SAIC (Science 

Applications International Corp.), which has developed complete bindings to X  1R2. 

This consists of over 25,000 lines of ADA code, plus some 16,000 lines of HP X-RAY 

toolkit bindings. Work now undergoing at SAIC, includes updating these ADA 

bindings to support Xl 1R3/4, and work on ADA bindings to the X Toolkit 

Intrinsics as well as the Athena widget set. Rational has also developed a 

binding, but which works at the X Protocol level, rather than the X Lib level as 

in the case of the SAIC work. Like SAIC, if they have not done so already, they intend 

to make their work publicly available. 

SAGE, in sharp contrast, has an ADA binding to X Lib that focuses only on 

commands related to drawing activities, the most involved aspects of which concern 

the handling of graphic contexts. This binding is less than 1000 lines long and works 

with X11R4. SAGE also has bindings to parts of the X Toolkit Intrinsics, 

the reasons for which are described in section 5.5 on page 139 on picture attribute 

management. 

The mechanism that ADA provides for such language bindings, is a well defined part 

of the language, rather than a vendor specific construct. ADA supports foreign 

languages through the use of the 'pragma INTERFACE' construct. In relative 

terms, the solution to the name binding is simple compared with that of mapping 

types between different languages. Provided assumptions are made about the bit 

pattern layout of C types, ADA supports representation clauses to match to the 

externally imposed storage layout (this is the same concept as C's support for bit fields 

in structures). Figure 5-6 illustrates an example of such a binding. It also shows the 

use of representation clauses. 

type XColorRec_t is record 
pixel : U_ _LONG; 
red, green, blue : U_SHORT; 
flags : CHAR; 
pad CHAR; 

end record; 

type XColor_t is access XColor_Rec_t; 
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for XColor Rec t use record 
pixel at 0 range 0 	.. 31; 
red at 1 	* 	4 range 0 	.. 15; 
green at 1 	* 	4 range 16 	.. 31; 
blue at 2 * 4 range 0 	.. 15; 
flags at 2 * 4 range 16 	.. 23; 
pad at 2 * 4 range 24 	.. 31; 

end record; 

function XAllocNamedColor 
display : Display_ptr_t; 
cmap : Colormapt; 
colorname : STRING PTR; 
colorcelldef : XColort; 
rgb_defdef : XColor_t 
return Status—t; 

pragina INTERFACE (C, XAllocNamedColor); 
pragina INTERFACE NAME 

(XAllocNamedC(:lor, "XAllocNamedColor"); 

Figure 5-6. PRAGMA and REPRESENTATION Clause Example 

The publicly available SAIC X-ADA bindings were not used for reasons of poor 

support, reliability, quality and most important lack of maintainability. Its major 

failing is the inclusion of an additional calling layer, between a users draw request, 

and the final call to the interfaced language. In principle this can be inlined out of 

existence, but in practice, the extra call level includes additional computation such 

that the process of miming can be computationally very expensive. Other problems 

range from simple bugs with basic commands like circle drawing, to the omission of 

bindings to the x Macros (which are provided in function form within x Lib). 
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Figure 5-7. X-ADA Binding Scenarios 

Figure 5-7 shows the various levels of language bindings that are possible, and where 

SAGE, SAIC and Rational bindings are placed. The first diagram is the form that was 

adopted in an early version of SAGE (version 2). The ADA process would construct 

each draw request into a textual equivalent and transfer it across a UNIX pipe to some 

C code that would parse the request and pass the request onto X Lib. The second 

diagram shows the structure imposed by the SAIC binding, with the stippling 

indicating the presence of an extra procedural level. The third diagram is the language 

binding adopted by the latest version of SAGE (version 4). It is interesting to note, that 

if we replace the word ADA, by C, we would have the exact form of client structure 

found in standard X Window System applications like xclock and xterm. The 

fourth diagram, illustrates the form of the Rational binding. Here, the binding is direct 

to UNIX IPC channels and as a consequence appears to be relatively small. This in 
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some ways is the ideal binding, since the ADA programmer is now provided with a 

completely rationalised interface to x, free of C code. Nevertheless, there is the need 

to replace X Lib. This is the failing of this approach, since not only is there the 

problem of ensuring faithful replication of the X Lib behaviour - not easy for an 

interface measured in tens of thousands of lines of code, but there is also the problem 

of tracking the improvements in efficiency and scope associated with the definitive X 

Lib definition in C. Rather than indulge in the polemics involved in the ADA and C 

debate, the pragmatic observation is one that recognises that there will always be 

many more C programmers using the X Window System than ADA programmers, 

consequently, the third option is the optimal. 

5.4 Drawing Model 

There any many systems that can provide object level display capabilities and many 

issues in this area of computer graphics have in general been resolved. The common 

presence of such software in action from the simplest drawing package to the latest 

CAD packages hides the fact that there are many ways to achieve what appears to be 

superficially the same end result. With this variety comes a lack of direction in which 

display problems are actually being solved, and as a consequence there are many 

defects present in the rendering models used in many current graphics packages. 

These problems are reflected in simple details like, for example, not supporting 

incremental update, or if it is supported, missing out details like updating what was 

behind any deleted object. What appear to be simple problems hide the complexities 

of the implementation needed to solve the problems. 

To illustrate the nature of some of the problems that are present, consider the 

phenomenon of 'screen droppings'. This is a good example of where it could be 

argued to be a system feature, or in fact a minor bug. The solution could be simple - 

simply update the entire screen after each action that might leave screen droppings. 

But this is irritating to the user because of the flashing behaviour it can result in. 

Another solution might be to draw an off-screen picture and copy it back to the 

display. This is expensive primarily in memory resource. Yet another solution might 

be to only support two colours, a and b, and use the technique of exclusive-or'ing, of 
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only ever drawing in (a e ) or its inverse. But this again has a problem, namely of 

having a graphical interface that supports only two colours. Problems of this nature 

and the difficulty or cost of the solution, mean that many rendering methodologies are 

usually a selection of the easiest solution - and for this example it means the user has 

to just put up with the screen droppings. Where the rendering model for SAGE is 

different, is that no such compromises have been allowed in its design and 

development. 

The need for providing an optimal rendering model is doubly important in the 

presence of the X Window System. As a concept, the X Window System 

supports the ideas of client/server processing excellently, but at the cost of increased 

processing compared with what native graphics drivers can provide. Thus, even with a 

language level binding that maximises performance by binding direct to X Lib 

language calls, care therefore has to be taken when actually drawing. 

In particular, the SAGE rendering model addresses the needs of accurately drawing 

layered 2 dimensional graphs with: 

• fast and efficient region query, 

• fast and efficient point query, 

• fast and efficient region repair, 

• multiple viewports, 

• detail culling, 

• size invariant object handling (such as text) and 

• composite objects. 

Additionally the model batches drawing actions in order to minimise server 

communications and so improve overall throughput. Although not discussed, but 

shown in figure 3-8 on page 37, the model can easily be directed to produce output for 

other display technologies such as PostScript and HPGL. Figure 5-8, shows the 

broad outline of the rendering model used in SAGE. 
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Figure 5-8. Rendering Model Overview 

The range of basic objects that can be drawn include lines, rectangles, polygons, arcs, 

marker shapes, text and objects hierarchically composed of these objects, (or, as 

referred to earlier: composite objects). All these objects are represented by their basic 

bounding rectangle in a quad-tree based data-structure as described in section 6.3 on 

page 162, that supports the fast and efficient region query, point query and region 

repair requirements. 

Objects placed on one of the layers, pass through a matrix operation called G (for 

generation) when the spatial data-structure is built, as well as through the matrix V 

(for viewing), when the object is viewed. Clearly, for performance reasons, the matrix 

transformation is in practice applied only once at the point of use, as in V*G. This 

same approach to leaving the matrix operations to as late as possible, also applies in 

the case of composite objects as illustrated in figure 5-9. When instantiating a 

composite object, there is a second matrix called G2 (for generation again) which 

provides an opportunity to scale the composite object, and a matrix T (for translation), 

which effectively contains the (x, y) coordinates of where the origin of the 

composite object should be placed. Thus when the object database as shown at the 

second level in the figure, (b), is viewed, the viewing matrix for a line in that picture 

would be G*G2*T*G*v (where the two G matrixes need not necessarily be the 

same). As shown by the third level, in the figure, (c), the extension to further hierarchy 

in composite objects is straightforward. 
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Figure 5-9. Composite Objects Through Hierarchical Construction 

Now, consider the problem of a query or repair operation. The region to be handled 

could be specified in device (or viewing) space coordinates or in object database 

coordinates. For the former, a reverse application of V is required, namely V 1 . The 

only thing to watch out for, is that in the reverse transform, a rectangle region might 

be transformed into a non-rectangular shape in the object space, in which case this 

skewed rectangle must be orthogonalised, in order to ensure that we are searching as 

much of the object space as is needed by the target device space because only 

rectangular shaped queries are supported by the quad-tree data structures used in the 
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layers. When the region is specified in object space, a similar activity has to happen, 

but twice over. Clip regions in the X Window System are rectangular, and as a 

result, if the mapping from the object space produces a skewed rectangle in device 

space, it has to be orthogonalised and then mapped back to object space and 

orthogonalised again to provide the final region to actually traverse. This ensures that 

the device space region that is affected is fully covered, which is especially important 

for region repair requests. (Obviously the fact that the matrix G has not been applied 

causes the method to be slightly more complex in practice than as actually described, 

but the principle is the same). Figure 5-10 illustrates graphically this mapping 

process. Note, the process of orthogonalisation is defined simply as the maximum 

enclosing rectangle aligned to the axis of the device or object space axis. 

object space 	 viewing/device space 

V 

-1 

orthogonalise 	 orthogonalise 

r-=  
always finish here 
after orthogonalisarion 

I 	I 	query/repair region 

I\>

shape after transforming region 
or orthogonalisation 

Figure 5-10. Region Mapping in Device and Object Spaces,for Non Orthogonal Mappings 

By having layers, two display problems are overcome. First concerns the stacking 

order of any objects to be drawn. The layer abstraction means that the components of 

a picture can be managed much more easily, even to the extent that visibility of 
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objects can be controlled by simply swapping layers. Secondly, overlap within a layer 

can be left as an issue for the user of the abstraction, for example, a layer containing 

lines crossing will generally cause no problems. An additional benefit is that of 

helping incremental update. For example, if a new object is added to the top layer, 

than only the region specified by its bounding box in the top layer needs to be 

traversed - which provides for fast and efficient highlight activities. 

Most rendering models do not take into account the real thickness of objects drawn, 

compared with their mathematically thin representation in the object database, nor the 

fact that sometimes the objects size are scale invariant (such as text or marker shapes). 

The subtle screen errors that could result if these problems were not addressed are 

avoided in the SAGE rendering model. This happens by always ensuring that a given 

region is first extended to reflect how in reality the objects might extend beyond their 

bounding boxes. This region forms the target clip space. This region again has to be 

extended for objects that might straddle it, but from the outside; but this time, the 

region specifies the search space. Figure 5-11 illustrates these three regions and how 

they lead to reliable drawing of thick lines. 

O 	
problem areas, 
the requirement 
clip and search 

which drive 
for new 
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Figure 5-11. Clip and Search Regions 
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This rendering model handles the two most common problems with point queries, 

namely not being able to get close enough to the object to select it, or always selecting 

the wrong object. This is achieved by the point query in fact being a region query 

sized in device space of a few pixels square, so as to provide a greater chance of 

selecting the object pointed at by a user. As with the region query, in fact a list of all 

the objects encountered on selected layers is returned, ordered by a distance measure 

between each object and the query point. (This can still lead to problems if the fidelity 

of the distance measure is not accurate). This approach also ensures that if there are 

multiple objects at exactly the same point, no arbitrary decision is taken to return one 

of them. Minor issues like only measuring the distance from the perpendiculars of the 

border of an empty rectangle are also handled. A final point relating to the query 

operation, is that, like with schematics, data can be associated with database objects. 

Consequently there may be many objects with no data, or with the same data and 

therefore these redundant objects can be automatically filtered during the query 

operation to significantly improve performance. 

When viewing part of a graph, as much batching of draw requests is made as possible, 

since this provides dramatic improvements in x server behaviour. Draw requests are 

binned according to the sort of atomic draw request required, and what attributes 

(discussed in the next section) are being used. It is interesting to note that this makes 

multi-draw commands like XDrawLines and small bitbit pixmap operations very 

inefficient compared to the use of XDrawSegments and XDrawPoints. As 

mentioned already, significant extra performance is obtained by the fact that the 

model also supports culling in region repair, but since this is a result of the quad-tree 

data structures used it is discussed in section 6.3 on page 162. 

5.5 Attribute Management 

The six basic atomic objects that can be drawn (lines, rectangles, polygons, arcs, 

marker shapes and text), have, as can be imagined various attributes that can help 

distinguish elements within the same atomic object class, as well as against each other 

object class. There are in fact, a total of eleven possible attributes, which, for 

efficiency reasons, correspond very closely to the X Graphic Context attributes. 
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As well as straight forward foreground/background colouring attributes, there are 

dashing attributes and various fill attributes based on tiles and stipples. The variety of 

these attributes reflects the need to differentiate objects displayed on workstations that 

provide monochrome, grey scale or full colour displays (i.e. eight planes or better). 

As a general point of philosophy, the X Window System encourages application 

developers to make their systems as customisable as possible by the end user. With the 

variety of objects that are displayed through visualisation in the SAGE system, it was 

clear that the application of this philosophy was essential rather than just desirable. 

Rather than re-invent the x Resource Manager within the ADA environment, a 

handful of ADA bindings were made to the relevant resource manager facilities within 

X Lib and the X Toolkit Intr ins ics. (Note, the use of this facility is distinct 

from the use made by Motif of these same  Resource Manager facilities). 

Whereas the normal resource manager specifications tend to follow a widget 

hierarchy as imposed by the X Toolkit, no such constraints were present in 

developing a suitable class name for use within the ADA hierarchy. This added 

freedom has allowed the provision of three very useful facilities when specifying 

attributes for the ADA system. 

Firstly a user can positively discriminate between attributes for colour workstations, 

and those for black and white workstations. Despite the wide variety of visualt  classes 

that the x Window System supports, the broad distinction between colour and 

mono, especially for most standard workstations that SAGE has been targeted at, is a 

sound division. 

• The second facility, is an ability to discriminate between different workstations, by 

having in-built in the class name a machine Iserver/screen tuple. By selectively 

choosing attribute values for different workstations, the same graph can be viewed on 

two separate workstations, highlighting different aspects of the same graph. 

t. 'Visual' in the sense used in X documentation. 
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• Thirdly, the actual attribute can be hierarchical. This allows the full power of the 

resource managers wild carding facility easily to specify values for the majority of 

cases, while being able to particularise specific instants. In figure 5-12 is an example 

of the full class name that can be matched to, as well as an example of how an 

attribute is specified in ADA with its corresponding usage within an X defaults file. 

• example name: 

sage .monroe. 0 .0. colour. attl . att2. foreground 

• corresponding class: 

Sage.Hostname. Server. Screen.Colour.Attribute. SubAttribute.Foreground 

• general class structure: 

<s/w>.<display tuple>.<colour>.<hierarchy of attributes>.<type of value> 

• ADA attribute definition: 

NG COMP DATAPROCES S ING INTERNAL => 
GET_ATT 

ATTRIBUTE => "ng.comp.dataprocessing. internal", 
DEPTH => 4, 
CLASSES => 

Foregroundc I  Tile_c I FillStylec => TRUE, 
others => FALSE 

• corresponding X defaults  entry: 

Sage. * .colour.ng.comp. * . internal, foreground: lightblue 

Figure 5-12. Picture Attributes Example 

The actual attribute value (the last part of the class name), takes on the usual values 

associated with a graphics context - features such as linewidths, background pixmap 

etc. One exception is the use of an attribute called 'CleanText'. This attribute is not 

available as part of ax Graphics Context. In use, it determines if text calls can 

clear their background before display of the text, with the trade-off being between 

improved legibility or fully visible graph information. 

These features mean that only one application defaults file needs to be maintained for 

SAGE to work on a wide variety of X based workstations. In particular for hosts 

making use of default attributes, dynamic selection of colour or monochrome 

attributes can be made by SAGE. A naive implementation would simply allocate all 

the resources needed for all the attributes encountered on a per machine/server/screen 
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basis. This is inadequate, since not only is there overhead in allocating resources that 

may never be used, but duplicate resources could be easily allocated. 
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Figure 5-13. Two Level Hashing Attribute Management 

Figure 5-13 shows, through a two level hashing structure, how both of these two 

problems are resolved. When an attribute needs to be used, it is 'locked', and when its 

use has been completed, (usually at the end of an application run), it is simply 

'unlocked'. The algorithm is one of seeing if there is a local graphic context available 

and using it. If it is not present, a search is made to see if there is an identical local 

graphic context. If one is not found, then a new local graphic context has to be built. 

During this building process, existing identical colour, bitmap and pixmaps are used 
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to make the final local graphic context. Once a local graphic context is built, 

corresponding x server resources are also requested. 

The discussion of text alignment is probably more appropriate in a separate section, 

but since it is a visual attribute, it is briefly discussed here. With any system that draws 

text automatically, there is difficulty in correct placement. The basic options provided 

by x, of simply drawing text horizontally left to right were considered not very 

flexible. Rather than a solution on an ad hoc basis, a number of requirements were 

formulated, the application of which are illustrated in figure 5-14. Firstly, text could 

be rotated in 45 degree steps, secondly left, middle and right justification could 

happen on both edges of a text strings bounding box, and finally, regardless of the 

transformations text objects pass through, the result must be readable in normal top-

down, left-right flow. 
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Figure 5-14.36 Ways to Draw Text 
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Since the current text draw facilities are based on using bitmaps, the effect of rotate is 

illustrated in figure 5-15. This example reflects the bottom left batch of four in figure 

5-14, illustrating the pivot point as the bottom left hand corner of a normal left to right 

text flow. The rectangular shapes reflect the shape of the character frames used in X. 
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Figure 5-15. Rotated Bitmap Text 

5.6 User Interface Management Services 

At the time of development of SAGE, two user interface standards were beginning to 

emerge, namely OpenLook [51] and Motif. Each were designed to bridge the gap 

between application and user, by providing the programmer with concepts and tools to 

develop graphical user interfaces. For the development of SAGE, the choice has been 

immaterial since both provide standard user interface components like buttons, 

menus, scroll bars etc., to a reasonably equal level of functionality. In fact, (as also 

mentioned earlier in section 5.2), a mock-up version of SAGE was based on the 

XView Toolkit from SUN Microsystems. 

There are a number of tools now emerging that help in the process of developing a 

user interface, Serpent [49] and Picasso [50] being two typical offerings. 

Serpent, in particular, provides a language independent layer in which the user 

interface is described. This scheme allows applications to be separated from the 
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display technology so that Serpent is able to provide C and ADA application 

interfaces. Unfortunately, this technology became available late in the development of 

SAGE. Consequently, the presence of the prototyping language UIL with Motif, 

gave it the edge over OpenLook. Nevertheless, the division between the Motif 

module and ADA module, is such that no Motif dependent features are present 

within the ADA module. As a result, it is possible to envisage being able completely to 

replace the Motif module with say an XView module, and require no changes to the 

ADA module. 

This distinction has been achieved by following the same ideas now present in tools 

like Serpent, namely separating form from function. As mentioned earlier this 

chapter, the Motif and ADA modules communicate through a LISP like human 

readable syntax. As we have seen, by arranging for it to be human readable, the ADA 

module can be invoked as an independent application which allows for much easier 

testing and debugging. The fact that a parsing penalty must be paid, is mostly negated 

since the traffic between the two modules tends to be simple command/handshake 

sequences instigated by a user. By supporting a LISP style, arbitrarily complex data 

can be transferred. A good example of this, is the main menu bar popup, which is 

transferred to the Motif module at application start-up. Figure 5-16 illustrates part of 

the LISP syntax, with the resulting form of the main menu popups. Again, we note 

that the time consumed by this transaction is negligible, especially compared with the 

time consumed by the widget building activity that Mot if in conjunction with the X 

Toolkit Intrinsics must undertake. 
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• MOTIF-ADA dialog extract: 

cascade "Comms" 

cascade "Synthesise" 

("Simple" (comms synthesise simple)) 
("SimpleOpt" 

(UNIMPLEMENTED comms synthesise simple_opt)) 
("Opt" (UNIMPLEMENTED comms synthesise opt)) 

("Check" (comms check)) 

Resulting main menu bar definition: 

Figure 5-16. User Interface Component Construction Example 

5.6.1 Programmers UI Interface 

As odd a sub-section heading as it may sound when 'UP is replaced with 'User 

Interface', the complexities of building software require general management 

functions which can act as an interface for programmers [26].  As with all 

management functions, they appear as red-tape, but are in fact necessary for the 

benefit they bring in the longer term. In the development of SAGE, there were 

upwards of fifteen active programmers, each developing their own solution to 

communicate textual information to a user. Rather than let this ad-hoc approach 
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become the normal behaviour, all the key requirements for a consistent and uniform 

means of communicating with a SAGE user were identified. A second reason for 

having this interface, was allowing its output destination to be controlled, without any 

changes being required in the modules that made use of the interface. For example, a 

user could turn all warning messages off, as well as the output sink could be made to 

recognise repetitive errors and only display a total count plus one copy of the 

repeating error message. Another example is that a message could have its output 

destination redirected to appear in a panel, depending on its importance. 

Since the choice a programmer has is with a 'red-tape' interface on one hand, and a 

simple ADA'PUT LINE' on the other, and no project requirement that such an 

interface is used, it is necessary to minimise completely the complexity of the 

interface to try and increase its appeal, while still achieving consistency and 

uniformity for a user. (It is sad that despite this interface being present before any 

significant programming effort had happened, no other programmer made use of this 

interface, even though all the correct design decisions, as described below, can be 

argued to have been made). 

In total, six facilities are provided. At the heart of these facilities, is a general 

parameterisable message structure. This is composed of two parts, one being the static 

parts of the message, and the second being overlay arguments to that message. This is 

illustrated in figure 5-17. If one or the other is imagined to be null, then the full range 

from a fully static message to a fully dynamic message can be constructed. Having 

more lines and/or more parameters than actually present simply means that the 

remainder are appended to the end. If too few arguments are supplied, then the 

remaining even strings (counting from 1), are passed to the output. During this 

overlay process, the static and dynamic messages are forced to have the same number 

of lines by the implied addition of null lines. The facility to declare a message is 

called 'registering a message', while the facility to produce a message is called 

'raising a message'. 
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Figure 5-17. Stylised Message Construction Example 

One immediate benefit of this approach is that of saving memory by defining static 

strings only once. There are a number or more subtle benefits. The static message acts 

as software documentation, since the arguments that would normally be overlaid can 

be actual meaningful strings, and this naturally leads to a dump facility. This can be 

compared with the way that a programmer doing the equivalent action in source code 

would have this information hidden, unless the nature of the arguments is obvious, or 

the programmer has had the patience and presence of mind to add a comment in the 

source code describing the nature of the arguments. Another benefit is that long 'list' 

style overlays can also be supported. 

For all software systems, messages can usually be assigned a certain importance. 

Orthogonal to this categorisation is that of identifying messages for a programmers 

benefit as opposed to those for the users benefit. Rather than leave the programmer to 

add this information to their message, the requirements have been formalised. The 
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former can be specified from the enumeration: 

(UNDEFINED, NONE, INFORMATION, WARNING, ERROR, FATAL), 

while the later can be simply selected from the enumeration: 

(USER, INTERNAL). 

If internal messages are raised, a programmer usually requires to know if the problem 

is in their code, and if it is, where in their code it happened. Again, being such a 

common requirement, it can be formalised by having a facility to register software. 

Figure 5-18 illustrates such an example. 

USER—INTERFACE—WHO—ID : WHO—ID—T; 

USER INTERFACE WHO ID := 
REGISTER SOFTWARE(  

SOFTWARE NAME => "user interface/errors", 
MAJOR VERSION => 1, 
MINOR—VERSION => 1 

Figure 5-18. Registering Software 

Although not programmatically enforced, the software name follows a hierarchical 

naming style. The version numbers are to help track code issues. The elegance of this 

approach used, is such that all three arguments could be furnished automatically by a 

tool like RCS or sccs from UNIX. The handle returned is used in the process of 

registering messages. 

When programmers raise a message in the FATAL class, the implication is that the 

algorithm can no longer continue. With this in mind, the facilities for registering and 

raising messages are in fact complemented by registering and raising exceptions. 

Raising an exception is identical to that of raising a message, except the thread of 

control is taken over by the catcher of the exception (usually the top level user 

interface software). 

Message construction is illustrated to highlight how simple the job of creating a 

message actually is. As has have seen, messages are made up of lines, which are made 

up of words. Line and (multi) word constructor functions are available as: 1 () and 

w () . The later takes ADA strings, while the former takes the output of w () . Using the 

ADA concatenation operator, it is possible to form many line/word messages, e.g.: 
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l(w("bad element:") &w("<name of bad element>"))& 

1(w("this element has no input or output arcs")) 

The parameter arguments are by convention delimited by angle brackets. Raising a 

message, for this example which has only one parameter, simply requires this 

parameter to be supplied, e.g.: 

1 (w(OBJECT.BB.NAME.all)) 

The two remaining facilities provided, include a mechanism to get a simple okay/ 

cancel response from a user (called 'waiting'), as well as a way to report how long a 

particular action is estimated to take (called 'reporting'). The former is in fact not a 

desirable facility, since it introduces state information that really should belong only 

in the user interface code. Nevertheless, being a consistent and small abstraction, its 

provision is made in recognition that at times it can provide a quick solution to getting 

information from a user without having to wait for such requirements to become 

available directly through the user interface. Note, only raised messages can make use 

of this facility, by declaring the fact that it expects a reply. By having an explicit 

facility to report the estimated time of completion, is a simple way to display a bar on 

a users screen, and then change its size to reflect how much longer it is expected to 

take, (or, just as importantly, how much longer it is taking than was estimated). 

Figure 5-19 shows some typical output. Note, because of the way these facilities 

work, it is quite straightforward to change the presentation style. 
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Single line message 

# (user/ information) "schedule/check graph" will take approximately 20 seconds 
(from user interface/errors[].:1]) 

• Multiple line message 

# (internal/error), (from schedule/check graph[l :2]) 
# 	bad element: "BB245" 
# 	this element has no input or output arcs 

Message requiring user response 

# (user/information) this is an irreversible action (from general/confirmer[2:1]) 
# input required for "OKAY CANCEL" request, type TRUE or FALSE 
true 

10 Message requiring user response, but given a 'bad' reply 

# (user/ information) this is an irreversible action (from general/confirmer[2:11) 
# input required for "OKAY CANCEL" request, type TRUE or FALSE 
rubbish 
# (user/warning) bad input, try again (from user interface/errors[l:l]) 
false 

• A dump of the messages and exceptions associated with each software item 

general/confirmer[2:1] 
N message class : USER, importance : INFORMATION - 

I <null message> 
schedule/check graph[1:2] 

M message class : INTERNAL, importance : ERROR - 
I bad element: <name of bad element> 
I this element has no input or output arcs 
user _interface/errors [1:1] 

M message class : USER, importance : INFORMATION - 
I <software> will take approximately <length of time> seconds 

M message class : USER, importance : WARNING - 
I bad input, try again 

The dump process marks messages with 'N' and exceptions with 'E', 
but this example has no exceptions. 

Figure 5-19. Typical Output 

As a minor technical point, the process of registering is an initialization activity, 

which means it should ideally happen during the elaboration stage of an ADA 

executable. In contrast, the processes of raising, waiting and reporting should occur 

during the main work phase of an invoked subprogram. 
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5.6.2 Rubberbanding 

From window managers that can show the bounding box of a window being resized or 

moved, to object moving found in drawing packages, nearly every complex software 

tool has a requirement for rubberbanding. Rather than yet another ad-hoc approach 

seen in most of these tools, a much more general and systematic approach to 

rubberbanding can be defined. With such a framework, not only can simple cross hairs 

and rectangular region shadows be handled, but also more complex objects like parts 

of a schematic, where some ends of the shape being dragged can represent anchored 

net ends. 

From an abstraction point of view, we have a window of width x height, a 

starting point relative to the origin of this window, (x, y), and a starting shadow 

shape. As the cursor is moved, various deltas, (dx, dy) , may have a direct impact 

on the shape of the shadow. The shadow is made up of simple segments, defined as 

(x, y) pairs. The important observation, is that each end of a segment has a certain 

location at the start of the rubberbanding, and a certain behaviour with new delta 

values, once the pointer is being tracked. In fact, seven possible behaviours can apply 

in each axis direction, for the starting location. For a given x value say X, the first 

three are destructively to replace this value with either the starting cursor x position, 

or the leftedge location of the window (i.e. 0), or the rightedge location of the window 

(i.e. width). The next three are the same as these, but the given X value is also added 

in. The seventh behaviour is to simply leave the given X value as is. When the cursor 

is moved, a boolean associated with the updated x value determines if dx is added in 

or not. Obviously a similar scheme applies to a given y value. 

As described, the scheme places no limits on the values involved - in fact, it is even 

possible for the starting cursor point to have negative values (from a X Window 

System point of view, this can only happen through use of something like 

XSendEvent). As a result, this is only half the picture. For every point in the 

shadow, there are four values, a pair for each ordinate, that can determine the limits on 

how far the given point can travel in a given ordinate. The seven behaviours for the 

shadow points, also determine the starting values for the limits. The limit values are 
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static and therefore do not track dx and dy changes, and are only paid attention if the 

corresponding boolean, saying that the limits should be tracked, is set. This is 

illustrated in Figure 5-20. 

starting 

points track points ? 
(true or false) 

track limits ? 
(true or false) 

Figure 5-20. Tracking, Inheritance and Limits for the x Ordinate 

From this basic behaviour, all the rubberbanding styles described earlier can be 

handled, plus much more. The classic problem with cross-hairs is that the object being 

selected can be partly hidden by the cross-hairs themselves. Now, by the simple 

replacement of the two cross-hair segments by four, and having a behaviour of 

current+as is for their endpoints, and selecting the associated starting point values as a 

five or so pixels, the problem is solved. Figure 5-21 (a) illustrates this, as well as 

showing how the properties relate to the segment endpoints. In this example it makes 

sense to place limits on the segments. A good example where no limits need be used, 

is that for a rubberbanded box shape defining a zoom area. Most graphical tools 

making use of this technique only use it for zooming in, but by supporting the 

rubberband image beyond the boundaries of the window, it can in fact also be used for 

zooming out, as is the case with SAGE. Figure 5-21 (b) illustrates. the behaviours 
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associated with a rubberbanded box. For simplicity, both diagrams in the figure do not 

show the state of the limits - which would only apply to (a) in this example. 
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Figure 5-21. Rubberbanding Cross-Hairs and Box Examples - Points Only 

For completeness, a number of minor practical details need to be enunciated. Since 

rubberbanding is an interaction issue, the Mot i f module is responsible for the job. 

Because of the possible complexity of a shadow, it is necessary to choose carefully the 

algorithm that tracks the cursor. With the X Window System, there are three broad 

ways to track a cursor, and the method chosen by SAGE is to make it the responsibility 

of the Motif module to query the location of the cursor. This has a round-trip 

communication cost, but ensures no shadow catch up effects that many other systems 

suffer from. The final comment is that the actual drawing and update of shadow 

happens when the server is grabbed, and by using the exclusive-or technique. 
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Your home electrical system is basically a bunch of wires that bring 

electricity into your home and take i/back out before it has a chance to kill you. This 

is coiled a "circuit". The most common home electrical problem is when the circuit is 

broken by a "circuit breaker"; this causes the electricity to back up in one of the wires 

until it bunts Out of an owlet in the form 0/sparks, which can damage your caipet. 

The best way to avoid broken circuits is to change your/uses regularly. 

Another common problem is that the lights flicker. This sometimes means 

that your electrical system is inadequate, but more often it means that your home is 

possessed by demons, in which case you'll need to get a caulking gun and some 

caulking. Ifyou're not sure whether your house is possesze4 see 'The Amity ii lie 

Horror", afine documentary film based on an actual book. Or call in a licensed 

electrician, who is trained to spot the signs 0/demonic possession, such as blood 

coming dawn the stairs, enormous cats on the dinette 

6 	
table, etc. 

— Dave Busy, "The Taming 0/the Screw" 

• Foundations 
The development of any successful system, whether in the abstract, like software, or 

physical, like house building, requires the right tools, techniques and concepts to 

ensure both the construction phase and the operational phase meet the desired 

objectives. If the techniques and concepts form the substance of a design, then the 

tools can be said to form the foundations. Although many aspects contribute to the 

success of a design, having the correct foundations is one of the more important 

aspects, since poor foundations can easily limit what techniques and concepts can be 

consequently developed. There are many examples from the physical world where the 

wrong tool is used. From the absurd, like using garden shears to cut a persons hair, to 

a surgeon using a kitchen knife for delicate eye surgery, to more subtle examples like 

using the back end of a screwdriver to bang home a nail. The point being, that in real 

life the disparity between a tool and its application is generally obvious, but this is not 

the case with software. The net result is, the range of software solutions can range 

from practically useless, to nearly perfect, all as a result of the form of the 

foundations. 

The consequence of applying tools, techniques and concepts, can in a general sense 

lead to new tools. In many ways this is the life cycle of SAGE. But, rather than a 

simple combination of ADA [3] as the tool plus ideas to produce SAGE, levels of 

abstraction can be identified which build higher level tools, which form the steps that 

lead to the application SAGE. This chapter concentrates primarily on the requirements 
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of the first level. This first level, being the next step after the language itself, is in fact 

the most general. It is also very important, in that mistakes, anomalies or limitations 

not only impact the remainder of the levels, but can also require a monumental effort 

to correct. The overall quality of the first few levels has a gearing effect. If it is 

slightly bad, then things could become very confusing at higher levels, while if its 

good, it will help accelerate the development and/or the performance of higher levels. 

The X Window System [57] is a good illustration of such successive steps from 

protocol to application interface as shown in figure 5-5 on page 129. This figure also 

illustrates one of many flaws in the X Window System, namely what could be 

termed 'abstraction leakage'. Rather than each step being a complete abstraction, 

there is a requirement on a user to understand all the proceeding steps. This is rather 

like a car driver being required to understand the workings of an internal combustion 

engine, since occasionally it becomes the drivers responsibility to sequence the firing 

of the spark plugs. 

As Stroustroup [9] has indicated, over many years, the emphasis in developing 

software has shifted from the design of algorithms to that of how to partition a 

problem. This directly addresses the limitations of the intellectual capability of 

humans as discussed by Booch [7]. Booch, in recent years, has probably been the 

most prominent proponent of identifying general abstractions and then developing 

and formalising them. Interesting as his treatment is, there are a many flaws in his 

handling of the subject matter as described in "Software Components with ADA: 

Structures, Tools, and Subsystems". The most significant flaw is that while 

acknowledging the emphasis is on developing well engineered interfaces, he 

contradicts his own advice, in developing interfaces that are not proper encapsulations 

of an abstraction. Rather, they are like the X Window System, suffering from 

abstraction leakage. With his taxonomy of objects, he identifies an explosion of 501 

separate interfaces, which forms an immediate barrier to a programmer trying to 

choose a suitable interface. Being a recognised authority on OOD, or object orientated 

design, it is interesting how some encapsulations fail in this regards. A good simple 

example is adding an element to a Booch list. If we have two variables, a and b, that 

refer to the same list, then adding an element to either list should mean that both still 
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represent the same object. Instead, if an item is added to the head of a, then a and b 

will no longer refer to the same object. These, plus several other problems with the 

Booch interfaces, have caused significant problems in the development of SAGE. 

Another flaw with his approach, is that his interfaces do not address the equally 

important issue of ensuring that the algorithms behind interfaces are also optimal. 

This chapter does cover similar ground to Booch, but with much closer attention to 

the development of a well engineered interfaces supported by an implementation that 

is also near optimal. Unlike the taxonomy of components identified by Booch, the 

driving influence in the development of components described in this chapter, has of 

course been the requirements of SAGE, but with a view to the development of general 

foundations with much wider applicability. Only where an improvement or new 

approach to the design of an algorithm over published information is made, is it 

discussed. 

In summary, the components have been designed to represent good examples of 

flexibility, useability, simplicity, elegance and performance. 

6.1 Lists 

The biggest problem with many current implementations of the list object, is that they 

are historically engulfed in a quagmire caused by the concept of lists used in LISP 

[10]. This really has been the root of all problems to many so called abstractions, 

since they immediately require a programmer to understand the internal structure of a 

list to be able to do useful things with it. The main features of LISP that pervade the 

abstractions are the head (CAR), and tail (CDR) operations. A closer analysis reveals 

in the days when memory was measured in bytes (as opposed to Kbytes, MBytes 

etc.), the singly linked list implementation apparently was the most space saving. 

This also meant, the very common requirement of adding items to the end of a list, 

became an 0 (n) operation. Consequently, the language constructs had an implied 

way of saying that this was inefficient - for example, the notation to get to the fifth 

element of a list would look like this ridiculous construction: 

CDR(CDR(CDR(CDR(CAR(1j5t))))). 
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The surprising fact is, with a simple modification, the same memory requirements can 

lead to 0 (1) behaviour to add items to the head and end of a given list. The 

mechanism is simply to convert the list into a circular list. There is nothing new in 

having circular lists, but this time, the reference into the list is the last element in the 

list. Compare this with the normal approach of having to create an additional 

reference to the last element. Not only is adding to the end of a list now 0 (1) , but the 

same symmetrical algorithm can be used to combine two arbitrary lists in 0 (1) time. 

This algorithm is illustrated graphically in figure 6-1. (This same algorithm is used in 

the generic list package for C. A doubly-linked version is used for the generic ADA 

package. Both are discussed later in this section.) Also in the first part of this figure, 

are the three styles of list construction discussed, of which the third is used. 
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Figure 6-1. List Forms and 0(1) Symmetric List Combine 

Although performance is important, what is more important is the abstraction 

describing list behaviour. Thus, only if an implementation is radically inefficient 

should it direct the form of the abstraction. The direct implication of these statements 
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is that an implementation can be upgraded to provide better performance at a future 

date with next to no impact on the abstraction that a user sees. It is this emphasis on 

what makes life easier for a user, that has directed the development of the SAGE lists 

(and other) generic packages. 

List objects can be 'created' and 'destroyed'. (These activities are distinct from 

creating and destroying the elements of a list.) In the implementation these two 

activities might be 'null' actions, but for orthogonality with more complex objects 

that can be created and destroyed, they are necessary. In SAGE, a list object is 

implemented as a reference to a record that contains information about the list and its 

elements. This gives the list the important property of multiple view consistency. So, 

several variables that reference the same object, all see the changes if the object is 

modified in any way. This is illustrated pictorially in figure 6-2. Other implementation 

details are that accesses to successive elements, backwards or forwards in a list, are 

0(1), and, since the last location visited is preserved, on average, random accesses to 

the elements of the list will approach being nearly 4 times faster than a simple singly 

linked list. 

ADD/ 
DELETE 

Figure 6-2. Multi View Stability 

Again, from a user's point of view, visiting the nth element of a list, for viewing, 

addition or deletion appears reasonable. It is instructive, therefore to compare how the 

implementation of SAGES iteration over a list, compares with that of Booch. 

This is shown in figure 6-3. There are three points that can be made. Firstly, the 

Booch iteration exhibits poor locality of code. Not only can the 'TAIL OF' 

assignment be missed, but it can easily be followed, inadvertently by more code. 
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Secondly, the Booch approach is not easily amenable to algorithms that need to 

reference list items like i—i and ± + 1. The third point, is the most damning, in that 

making the reverse traversal from the final element to the first, is non-trivial both to 

express in ADA, and efficiency. With the SAGE lists, all it requires is the addition of 

the little word 'reverse' after the keyword 'in'. This last observation, combined 

with the fact it is easier to construct lists by adding items to the head of a Booch list, 

is the reason why so much software seems to produce output in the wrong (i.e. 

reverse) order. 

for I in 1. .SIZE (list) 
loop 
<some function of GET(list, i> 	 } SAGE 

end loop; 

while not IS—NULL(list) 
loop 

<some function of HEAD OF(list)> 	 } Booch 
list := TAIL—OF (list); 

end loop; 

Figure 6-3. SAGE vs BOO ch iteration 

Supplementing these basic list operations, are numerous templates. These take as 

arguments functions or procedures that either return a logical value or do something 

as a result of the data element being examined. A good example is that of the 

DESTROY—TEMP LATE, which recognises the fact that data stored in a list can be 

complex, and therefore a procedure to destroy a list should also be able to destroy the 

data elements that form that list. Another example is I S MEMBER TEMP LATE, 

which traverses the list to see if a given data item is present in the list. Figure A-1 on 

page 207 is the specification of the ADA list generic, and illustrates the other 

subprograms that complete the abstraction. 

One of the reasons why such abstractions are so much easier in ADA than in C, is 

because of the 'generic' construct. Nevertheless, it is possible to emulate similar 

behaviour in C, by use of the macro preprocessor. The main complication, is the need 

to identify the form needed for the list specification that can exist in a user. h file, 

and the body part that will exist in the user • c file. Figure 6-4 illustrates how this is 

achieved in practice, by showing only a simplified ListAdd operation. Note, the 
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algorithm shown in the list . h file, is the same operation shown graphically earlier, 

in figure 6-1 on page 158. 

list.h: 

define LIST 

7* --------------------------------------------------- *7 
define LiatAddSpec(Ljatkdd)\ 
extern void ListAdd(/* ToThis, This */);\ J spec 
1* --------------------------------------------------- *1 
define ListAddBody(ListAdd, Data)\ 

void ListAdd(ToThis, This)\ 	 J 	-''-Y 
Data **ToThi s ; / pointer to the list */\ 
Data This;\ 

/ (1) allocate the new list element and mit */\ 
Data *NewListPtr = (Data *)malloc(sizeof(Data));\ 

7* (2) add it to the end of the list */\ 
if (*ToThis == (Data *)Q) ( / simply add in the item / 

*ToThis = NewListptr;\ 
else { / we add it to the end of the list */\ 
Data *ToThis = *ToThi s ;\ 
Data *This = NewListPtr;\ 

Data *ToThisNext = ToThis->next;\ 
Data *ThisNext = This ->next;\ 

Tolhis->next = ThisNext ;\ 
This ->next = ToThisNext; \ 

*ToThis = This-;\ 
}\ 

#endif 1* LIST *7 

user. h: 
n 

struct speedH 
struct speedH *nex t ;  
Ella vtList vtlist; 
struct speedH *speedHli st; 

:ypedef struct speedH SpeedH; 
:ypedef struct speedH *SpeedHLi s t; 
.istAddspec (SpeedELi stAdd) 

user. c: 
#jnC 

(SpeedHLj etAdd, SpeedH) 

la-waveform-process() 

if (currentVspeed == (SpeedVList)NULL) 
Speedy speedy; 

speedV.count = 1; 
speedV. speedHi i st = (SpeedHLi St) NJJLL; 

SpeedHListAdd(&cn->speedHljst, speedH) 
break; /* out of the while loop *1 

Figure 6-4. Generics in C 

6.2 Trees 

As Sedgewick has remarked [11], the property of a searching algorithm to exhibit 

guaranteed logarithmic behaviour for all searches and insertions is present in red-

black trees, and its use can be justified whenever bad worst-case performance simply 

cannot be tolerated. The underlying implementation of the SAGE red-black trees is 

very similar to that as given in [11], but with the addition of a logarithmic 

performance delete operation as well. 

As with the lists object, the basic red-black tree can have objects created and 

destroyed. For a created object, there is again viewing, addition or deletion facilities. 

This time, the requirement to traverse the list can be more elaborate, since the start 
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and finish points can be keys. In fact, ten different ways to do an in-order traversal of 

the tree are provided. This, and the other subprograms used are shown in figure A-2 

on page 211. 

Red black trees are fundamentally a form of binary tree. Binary trees also have useful 

properties, in particular their ability to support all the three main graph traversals, 

namely pre-order, in-order and post-order. This is illustrated in the binary tree ADA 

specification shown in figure A-3 on page 213. In particular, note the way the traversal 

can be started with an arbitrary key value. 

This same approach can be extended to general tree structures. In this case though, the 

requirements for traversal are restated as breadth and depth walks instead. This is 

shown in figure A-4 on page 215. The binary and n-ary tree routines form the heart of 

the naming software described in section 3.2.3.1 on page 49, to support arbitrary 

length strings with O(log n) string match behaviour. 

In a more historical perspective, the red-black tree generic was developed after those 

for the binary and nary tree, and this is reflected in the richer set of operations 

provided, particularly with the presence of iterators. 

6.3 Rectangle Management 

The ability to manage efficiently rectangular objects is essential for many of the graph 

applications discussed in this thesis. The primary aim is to provide efficient stored 

state devices that have good behaviour for point and region queries, as well as 

efficient manipulation facilities such as add and delete. For spatial data there are two 

classes of algorithms that can be used, namely quad trees and 4-d trees [53].  As shown 

in [58],  a variation on quad trees that no longer maintains bisector elements in a list, 

but instead assigns it to a quadrant depending on the coordinates of one of its corners 

can satisfy all these requirements provided a limit is placed on the number of objects 

stored in a quadrant. Thus the only pathological case that can cause the data-structure 

to depart from O(log n) behaviour is when there are many rectangles that are 

coincident, since they must all be stored in a list in the same quadrant. 
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It should be appreciated that the use of rectangles is really an approximation for 

different sorts of objects that might be presented to a user in a visual. In particular, 

encapsulating objects like lines by their enclosing rectangles can imply a region far 

greater in size than actually crossed by the lines, particularly if the lines are not 

orthogonal to any axis. Thus the list of rectangles returned by a point query would 

have to be rescanned using a slightly higher fidelity algorithm as defined by the actual 

object represented by the rectangle. Thus, in the case of lines, this is either the 

distance of the perpendicular to the line or to the nearest line end point if the given 

line has to be extended to form the perpendicular. 

The whole approach of quad trees is based around the successive dividing of an area 

into four quadrants as soon as the number of objects stored in the given area exceeds a 

certain threshold. As mentioned earlier, the problem is how rectangles that do not fit 

into the quad tree hierarchy are managed - i.e. the bisector elements. Figure 6-5, 

illustrates how this is achieved. The first two parts, (a) and (b), represent the simple 

approach of simply storing the bisector elements at the largest enclosing quadrant. 

The next two parts, (c) and (d), show where the bisector elements are placed based on 

their bottom-left hand coordinates. The important point to note is that the area 

represented by the rectangular bounding box of all the objects in each quadrant, can 

be much greater than the area actually delineated by the given quadrant. 
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Figure 6-5. Quad Tree Storage - Bisector Element Management 

Whereas the main advance on [53] is the specification of a generic that can provide 

rectangle management in its most general form, there are a number of equally 

important improvements and extensions to the original algorithms. The generic has 

been designed to handle regions not only defined by integer space, but also floating 

point numbers. The maximum quadrant size is therefore implied by the numeric 

types, while the smallest quadrant size can also be specified as an argument to the 

generic. As with the other generics, a data element is added or deleted from a 
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rectangles database, and therefore the function that determines the extent of the object 

can be passed as a parameter to the generic. As well as the basic object addition, 

deletion and housekeeping facilities, the generic provides iteration facilities that form 

the basis of the region/point query facilities. Figure A-5 on page 219 contains the 

actual rectangle manager ADA specification. 

The main advances in the algorithms relate to reverse or backward quadrant creation, 

region bounds update during delete operations and detail culling. If the first quadrant 

is very big relative to the picture elements being drawn, then as items are added, a 

well trodden daisy chain of quadrants will be created, and always traversed. To 

remove this inefficiency, a 'best guess' can be made as to the size of the picture 

elements being drawn, but this leads to a greater chance of a picture element being 

bigger than the top-level quadrant. Consequently, reverse quadrant creation happens. 

Even this is not sufficient since numeric edge effects can lead to reverse quadrant 

creation failing. As a result, at this stage, such objects are placed automatically in the 

'too big' class and treated specially during rectangle database queries. 

During addition of objects into the rectangle database, the maintenance of the bounds 

at each quad tree node is straight forward. When deletion happens, the process is more 

complex, since it is not sufficient simply to subtract the area being removed since 

other regions may overlap the given area. Note, this problem does not arise if bounds 

had to be within the actual quadrant size. The algorithm to update these bounds during 

deletion is to backtrack at each quad tree node with a newly computed sub-quadrant 

bound and recompute that node's bounds by using this new value and the bounds 

associated with the remaining three sub-quadrants. Note, this process happens in step 

with the normal requirement to replace quadrants whose sub-quadrants are basically 

terminal, by terminator quadrants themselves. This process of replacement is itself 

complicated by ADA, since it prevents the declaration of unconstrained variant types, 

requiring that the parent of the quad tree being replaced having to be visited in order 

to delete the non-terminal quadrant and then create the replacement terminal 

quadrant. 
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With the vast amount of information that can be stored in a rectangles database, it is 

apparent that a general draw action can lead to the typical problem exhibited by many 

drawing systems of spending minutes if not hours to update a display. The heart of 

this problem is time spent drawing detail that is beyond the resolution of the display 

surface - whether it is a monitor (72dpi) or laser printer (300dpi). The technique of 

defining a cull region is specified in the rectangle manager iterator generic called 

'ITERATE LIMIT'. Rather than simply discarding what is beyond the cull limit, a 

parameter function called 'INVISIBLE' is called for each region which contains 

detail beyond the cull limit. As an argument to this function, is the actual coordinates 

of the region that contains the hidden detail. This means that an application can 

indicate on the display surface, by use of another colour for example, those parts that 

are too detailed to display. An application that makes use of this feature is illustrated 

in figure 6-6. 
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13,000 events, 20 seconds 
to display without culling, 
(near instantaneous with culling) 

5 seconds to display 
without culling 

no culling needed 

Figure 6-6. Waveform Culling Using The Rectangle Manager 

This example represents a solution to one of the most serious flaws with existing 

waveform display systems. In fact, it also solves a second, related problem with many 

waveform display systems. Firstly, when zoomed out on a complex waveform, a 

designer can instantly see where there is hidden detail because a different colour is 

used in the regions returned by the function INVISIBLE. Secondly, for a typical 

workstation .display surface, regardless of the complexity of the waveforms, the 

update will always be in seconds rather than hours. Despite this significant 

improvement over existing approaches, the example really requires only one 

dimension of the rectangle manager, and does not make use of the fact that during the 

database creation stage, the events will always be ordered. Another common feature 

of waveforms is the very common presence of repeated patterns - especially as shown 
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by (possibly gated) clocks. By noting these additional features, algorithms have been 

developed that provide orders of magnitude of improvement in waveform database 

creation and display, compared to commercial systems. Application of these ideas, as 

shown in [27],  has in comparison with ELLAVIEW [34], produced an estimated x1600 

increase in performance for database creation. Since waveform display facilities were 

not directly required by SAGE, the techniques adopted to achieve this performance 

gain are not described in this thesis. 

SAGE only made use of the rectangle manager generic for storing visual information. 

As can be seen, its actual application area is far greater. Two additional examples will 

be given to illustrate this point. Firstly, the database can be used for routing 

algorithms, by providing very optimised route collision detection - a useful way to 

extend the schematic generation software. Secondly, complex map information can be 

captured in a single database. Through the use of the culling operation, it is possible to 

construct an approximation to the path delineated by the maps in the database, 

regardless of the magnification factor in operation. 

It is noted in passing, that if there was a requirement within SAGE to store complex 

bitmapped images - that is images whose detail is generally well beyond that 

displayable on a normal workstation display surface, then a similar quad tree data 

structure based on average pixel values within each quad tree node could be used to 

provide efficient culling and a close approximation to the image to be displayed. The 

extra memory consumed by the quad tree data structure would, on average, be well 

offset by the gain in space efficiency resulting from storing relatively large 

unchanging screen areas in terminal quad tree nodes. 

6.4 Sparse Sets 

The simple action of a user selecting all the objects in an area can return a large 

number of selections. With many visuals, the ability to support multiple selection sets 

associated with each active visual can give a designer greater control but leads directly 

to an information management problem. With these sets of information, simple 

filtering actions and operations can easily lead to a rich set of activities that can 
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empower a user. For example, a group selection in a resource-time graph can be 

filtered to leave only function calls. Another example would be taking multiple 

selections sets from various schematics and combining them to produce a single set 

representing the components selected, ready for an action like displaying information 

about each component. 

At the heart of all these requirements is a need to associate a unique number with 

every data model object and then apply set operations to achieve the user 

requirements. (Incidentally, the SAGE data model did have such a unique number 

associated with every data model object, but since every object was generally viewed 

through a reference object, the reference itself could have been used as the unique 

number. This would work since all the reference numbers are held in a single address 

space, and can be cast using unchecked conversion to an equivalent number 

representation - usually 4 bytes to 32 bits signed). The generic that achieves these 

simple set activities is shown in figure A-6 on page 221. As can be seen, not only are 

the basic set operations such as union, intersection and inverse set operations 

provided, but also operations that can add and remove elements or ranges from a set. 

To complete the operations, some set iterators are also provided. 

The first point to note is that the set package understands about the 'world' set, which 

can be defined to be some subset of the entire world as defined by the number range 

SET VALUE T' RANGE. Secondly, the package can handle enumeration types as 

easily as actual integer types. Thirdly, and most importantly, the generic has been 

designed to be fast and efficient. This last point is in sharp contrast to Booch sets, 

where the simple requirement of inverting a set is not provided, simply because it 

would be computationally very expensive. 

This generic achieves its performance by storing contiguous elements in a set as pairs 

of values, namely the first and last in each contiguous set. This significantly 

complicates the process of combining sets - in particular, the union and intersection 

operations. These two operations, combined with the inverse operation, form the basis 

for all the other set operations. An additional complication is having to handle the 

edge conditions carefully. This implies that a set composed of pairs of values that can 
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be combined (e.g. ( [ b . . C], [d. . g J) transformed to 	([a. . g] ) ),  cannot 

directly rely on the use of the successor and predecessor functions available in ADA 

since actions like SET VALUE T' SUCC (SET VALUE T' LAST) which might 

happen, are erroneous. 

To illustrate the algorithm developed, the union operation will be looked at in detail. 

The intersection algorithm is very similar in style, and therefore will not be analysed. 

As implied earlier, the set object is stored as an ordered list, with each element in the 

ordered list being a pair of numbers defining a range. Whereas it would be an easy 

option to allow overlapping ranges (e.g. ([g. . k ], [1. . z fl , as well as 

consecutive ranges that could be merged but are left unmerged (e.g. ([a. . d], 

[d. . el), the algorithm ensures neither case happens. Since the algorithm ensures 

that this cannot happen, its correct operation also relies on these conditions. Given 

two sets, the algorithm intertwines the two sets, by combining one with the other, and 

then the other way around when certain conditions have been met. The algorithm 

works by continually repeating two stages, firstly deciding which of the two lists is 

the pivot list, and then changing the pivot as needed to produce the largest contiguous 

range to add to the union list. Each of these two stages corresponds to a loop. Figure 

A-7 on page 224 contains the fully commented algorithm. Note, the list element is 

termed a slice. Also note, the three cases which need to be considered in order to 

decide if the pivot list needs to be swapped over in the second stage of the algorithm, 

as indicated as comments in the algorithm. The slice called 'THE MERGE' contains 

the element that is continually extended by the inner loop, until the two lists no longer 

can be merged. 

Although designed with selection management in mind, again, as with the earlier 

described generics, the set abstraction is very general. There are many application 

areas where objects need to be treated as sets, and this abstraction could improve the 

performance considerably. Note though, the worst case performance of these 

algorithms tends towards that usually found in list based set implementations, since 

each slice will become a container for only one value. 
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6.5 Conversion Manager 

As discussed in section 3.2.2 on page 44 and section 5.4 on page 133 concerning 

attributing for library creation and the rendering model respectively, there are many 

occasions where an object needs to have associated with itself, some third party 

information. This happens through the use of hooks. Where as the requirement has 

already been discussed in section 3.2.2, the implementation actually has a few 

subtleties that are worth discussing. At the heart of handling hooks is the need for 

unchecked conversion. This is a dangerous operation and therefore any use needs 

special containment. This does not remove the danger, but, as with any strongly typed 

language aims to do, it limits the potential scope for errors. 

There are in fact two general ways that this indirection can be encapsulated. The first 

does not in fact need the use of unchecked conversion. Instead it relies on the data 

structures to which general hooks are to be associated to be converted to a generic that 

takes as arguments the hook data structures. There are a couple of flaws that make this 

apparently correct approach not acceptable. The most significant deficiency is that 

changes in the data structures associated with the hooks also require a recompilation 

of the generic taking the hook arguments. The other problem is that only a single 

instantiation of the generic can be easily supported, making multiple outlets such as 

needed when netlist generation (section 3.2) and schematic generation (section 4.8.4) 

are implemented within a single application much more difficult to achieve. 

The abstraction used, although more complex, overcomes these problems. Figure 6-7 

graphically shows the structure and interrelations between the data structures, the 

hook converters, and the user fields that form the hooks. 

HOOKS 

DATA 	 USER 
STRUCTURES 	 FIELDS 

Figure 6-7. Complex Conversion Management of Data References 
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Both 'HOOKS' and 'CONVERT' are generics. By having these two levels, a more 

rigorous encapsulation is achieved. The contents of the former has already been 

discussed fully in netlist generation, with figure 3-11 on page 46 showing what the 

hooks generic looks like. The specification of the second generic is shown in figure 6-

8, and demonstrates the three core functions that are required to map between the data 

structures and the user fields: PUT, GET and a destroy template. Through the careful 

defmition of the arguments, only reference types can be converted. This ensures no 

inadvertent mapping between inconsistent types, which some ADA languages will 

support even though the conversion is apparently non-sensical, (e.g. converting a 

reference object to a record object). 

with UNCHECKED_CONVERSION; 
generic 

type USERRECT is limited private; 
type USER_PTRT is access USERRECT; 
type HIDDEN —USER — REC T is limited private; 
type HIDDEN USERPTR T is access HIDDEN USERRECT; 

--g------------------------------------------------------------------------------- g--
package CONVERT is 

------------------------------------------------------------------------ g-- 

function CONVERT is new UNCHECKED CONVERSION(USERPTRT, HIDDEN USER PTRT); 
function CONVERT is new UNCHECKEDCONVERSION(HIDDENUSERpTRT, USERPTRT); 

procedure PUT(THIS 	USER PTRT; IN THIS : in out HIDDENUSERPTRT); 
function GET(FROM THIS : HIDDEN USERPTRT) return USERPTRT; 

generic 
with procedure DESTROY(THIS : in out USER _PTR_T); 

procedure DESTROY TEMPLATE(THI5 : in out HIDDENUSERPTRT); 

end CONVERT; 

Figure 6-8. Convert Generic 

Despite how enclosed the abstraction is, in many ways, the limitations of the ADA 

language direct this form of construction. A language such as C++, with proper object 

inheritance would support these indirection routines much more easily. 

6.6 Line Clipping 

Drawing line objects within an X Window System environment is actually 

complicated by the limitations of the line clipping algorithms used. The problem 

manifests itself by saturation effects that arise because the maximum values that the X 

Window System supports is only 16 bits. With zooming facilities, it becomes very 

common to see lines do strange things within visuals. This combined with the fact that 
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filtering actions should be taken as early as possible in a graphics pipeline for 

increased performance, raised the requirement for a line clipping algorithm. 

The classic line clipping algorithm, is that by Cohen-Sutherland [52], which relies on 

the assignment of what are termed outcodes in order to eliminate lines that fall outside 

a given region or completely inside the given region. This ensures that only lines that 

might need clipping are actually checked for intersection. Unfortunately, this 

algorithm sometimes performs needless clipping. The optimal algorithm developed to 

date has been the Nicholl-Lee-Nicholl algorithm. This algorithm minimises the 

number of intersection calculations. The net result is an algorithm that has three 

general cases defined by where a line segment starts relative to a region - in the centre, 

in a corner, or in an edge region as shown in figure 6-9.. 

Figure 6-9. NCN Line Starting Points - Shown by Shading 

The line clipping algorithm used in SAGE also minimises the number of intersection 

calculations, but instead defines six starting cases based on the start and end points of 

a line segment. The symmetries involved result in 81 (9x9) actual cases that have to be 

considered, of which 33 are the normal cases rejected by the equivalent of the Cohen-

Sutherland outcode checks. By implementing the 81 choices as a case statement, a 

performance gain is attained. Figure 6-10 illustrates the six cases, and the names they 

173 



have been assigned, as well as the number of cases of the 81 possibilities that they 

map to. 

I 

31415 

LSTYLE, 16 	 SLASH STYLE, 8 	 DIAGONAL STYLE, 4 

SPOKE45 STYLE, 8 	 SPDXE90 STYLE, 8 	 FLAT STYLE, 4 

Figure 6-10. SAGE Start and End Line Points 

Rather than reproduce the entire case statement, which consists of several hundred 

lines, a representative example of the flat style code is shown in figure 6-11. Note the 

use of the 'T' value, which is equal to 9, to help demonstrate how the case value is 

computed. 
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__* -*--
procedure CLIP—LINE( ... ) is __* ------------------------------------------------------------------------------- 

begin 

case PLACE is 

-- the FLAT STYLE - 4 

-: 	 I 	I 	IfI 	IsI 	61718 

--: 
	

SI 	If 	fl 	Is 	I 	I 	I 	I 	31415 

-- 	I 	I 	I 	I 	IsI 	IfI 	01112 

when 	3 + T5 => -- *frwd* normal 
FLAT STYLE(X 1, Y 1, X 2, Y 2, U X, U Y, LX, L Y); 

when T*3 + 5 => -- 	 - 	- 	- 	- 
FLAT STYLE(X 2, Y2, Xl, Y_l, UX, UY, LX, LY); 

when 	1 + T*7 => -- *frwd*, swap the axis 
FLAT STYLE (Y 1, X 1, Y 2, X 2, U Y, U X, L Y, LX); 

when T*1 + 7—=> - * rvrs* 	- 	- 	- 	- 
FLAT STYLE(Y 2, X_2, Yl, Xl, UY, UX, LY, LX); 

end case; 

end CLIP LINE; 
--1 -------------------------------------------------------------------------------1-- 

Figure 6-11. FLAT—STYLE Code Snippet For Line Clipping 

Since the vast majority of the line rejection is automatically handled by the rectangle 

manager, in many ways having an optimised line clipping algorithm is not as 

necessary as it may first appear. Nevertheless, since the requirement had to be 

satisfied, the development of the novel approach described above has been 

worthwhile. 
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'Twos the Night before Crisis 

'Twos the night before elsie1 and all through the house, 

Not a program was working not even a browse. 
The programmers were wrung out too mindless to care, 

Knowing chances 0/cutover hadn't a prayer. 

The users were nestled all snug in their bed,, 

While visions 0/inquiries danced in their heads. 
When out in the lobby there arose such a clatter, 

I sprang/ram my tube to see what was the mutter. 

And what to my wandering eyes should appear, 

But  Super Programmer, oblivious to/ear. 

More rapid than eagles, his programs they came, 

And he whistled wsdsho uSed and called them by name; 
On Update! On Add! On Inquiry! On Delete! 

On Batch Jobs! On Closing! On Functions Complete! 
His eyes were glazed over, his fingers were lean, 

From Weekends and nights in front of a screen. 

7 	
A wink of his eye, and a twist of his hea4 

Soon gave me to know I had nothing to dread... 

• Results 
The material in the preceding chapters has formed part of a real synthesis system that 

has been in used on numerous demonstrator designs. Although no silicon has actually 

been produced to date, the broad direction of the SAGE synthesis system, of making 

the designer an important part of the design loop has seen to be the correct approach. 

This chapter takes a step back from the SAGE system, and using material from 

numerous critical reviews [28, 29, 30], looks at what is good and bad about the SAGE 

synthesis system, particularly the aspects relating to the material explored in this 

thesis. To help place some of this analysis in context, the first section in this chapter 

begins by going through the design steps involved in a simple SAGE synthesis 

example with an aim to show how an electronic design engineer actually uses many of 

the tools that have been developed as part of the SAGE design methodology. This 

chapter completes by looking at the future work that could be carried out using the 

material presented in this thesis as a platform on which to build. 

7.1 Design Example 

The example that follows is the design of circuitry that can add three arbitrary 

numbers. The starting stage is the description of the problem in VHDL [31]. This is in 

two parts. Firstly the algorithmic specification of the problem, using the VHDL 
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package construct as shown in figure 7-1, and secondly the physical input and output 

behaviour specified by a process statement shown in figure 7-2. Whereas a more 

complex design can be composed of many arbitrary packages and procedural 

hierarchy, only one process statement with the instantiation of one of the procedures 

in the packages can be used. 

package ADD—DEMO is 

type WORD is range _(2**15)  to (2**15_1); 

procedure TWOADD( 
Dl, D2, D3 : in WORD, 
SUM : out WORD 

end ADD—DEMO 

package body ADD—DEMO is 

procedure TWOADD( 
Dl, D2, D3 : in WORD, 
SUM : out WORD 
is 

begin 
SUM := Dl+D2+D3; 

end TWOADD; 

end ADD—DEMO; 

Figure 7-1. VHDL Package Code 

The main part of the package consists of the type of arguments used and the actual 

computation contained within a subprogram. Note, since this procedure is used in the 

enclosing process statement, no use of a return statement is made, instead the result of 

the computation is passed back through last argument of the procedure called SUM. 
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use WORK.ADD DEMO. all; 

entity ADDER is 
port 
INPUT : in WORD; 
OUTPUT: out WORD; 
CLOCK: in bit 

end ADDER 

architecture CHIP of ADDER is 
begin 
process 
variable Dl, D2, D3 : WORD : 0; 
variable SUM : WORD : 0; 

begin 
Dl := INPUT; 
wait until CLOCK = 1 1 1 ; 
D2 := INPUT; 
wait until CLOCK = 1 1 1 ; 
D3 := INPUT; 
ADDER(D1, D2, D3, SUM); 
wait until CLOCK = 1 1 1 ; 
wait until CLOCK = 1 1 1 ; 
wait until CLOCK = 1 1 1 ; 
wait until CLOCK = '1 1 ; 
OUTPUT <= SUM; 
wait until CLOCK = 1 1'; 

end process; 
end CHIP; 

Figure 7-2. VHDL Process Code 

The enclosing process statement is used to instantiate the algorithm to be synthesised, 

as well as define the required interface timing. Thus, in this example, all three input 

arguments arrive separated in time on one bus, while the output is produced on 

another bus. The timing is a specification of what a user desires, and may not actually 

be achieved by the synthesis process. 

After a user has verified the operation of this code using normal simulation, this VHDL 

code is compiled using the VTIP [45] software and then translated into the SAGE 
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internal database format, namely BABBLE. At this stage, the SAGE synthesis tools 

can now be applied. 

Figure 7-3. Control Flow for TWOADD Example 

Once within the SAGE tool environment, a user is able to navigate around the key 

elements of the design. Since this example has no procedural hierarchy, there is only 

one design unit corresponding to the TWOADD subprogram. The control flow graph 

corresponding to the behaviour of this design unit is shown in figure 7-3. Its 

simplicity is a direct result of no control constructs such as 'for' loops being used in 

the TWOADD subprogram. The three input arcs represent the three numbers to be 

added, while the outbound arc is the result. 

The figure represents a single basic block, whose internals corresponds to a single 

resource-time graph. The starting state of such a graph is illustrated in figure 7-4 (a). 

Here, the blocks along the top horizontal axis represent the allocation of resources, 

while the diagonal data flow represents the results of the initial 'as soon as possible' 

scheduling. The diagram has three parameter resources for supplying the three data 

values to be added and a single parameter resource to read the result. The 

corresponding structure graph consists of the two adder resources as shown in figure 
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Figure 7-4. Resource-Time Graphs of TWOADD Example During Manipulation 

The second resource-time graph (b), shows how the designer has selected a slower 

adder from the library for the second of the two add operations. In (c), the designer is 

ready to do a bind operation. The designer has selected the source call and the target 

resource, as shown by the highlighting. The result of this activity is shown in (d), 

where both additions now happen on the same resource. From a hardware point of 

view, this has impact on the routing of different information to the same ports on the 

adders. This is satisfied by the memory synthesis and communication synthesis steps 

182 



as highlighted by resource-time graphs (e) and (f) respectively. The newly created 

second resource on (e) shows how the first parameter is stored until required to be 

consumed. Although (f) is relatively complex, the main point to observe is the 

introduction of multiplexers to route the appropriate values to the input of the adders. 

In step with the resource-time graphs, the structure graphs are also updated. In figure 

7-5 (b), one of the adders ± add2 has been replaced with the slower adder i_addl. 

By (c), the rebinding has happened, and the unused adder has been removed. The 

addition of extra hardware as shown in (d) and then (e), corresponds to the memory 

synthesis and communication synthesis steps respectively. The remaining 

unconnected pins on the adder and register corresponds to clock requirements, while 

the unconnected pins on the synthesised communications correspond to control 

requirements. 

Formally, the next actions would be control synthesis, followed by netlist generation. 

If ram devices were used - i.e. greater than 1 register, then there is an additional 

requirement for address generation. Although interaction is allowed even after any 

synthesis stages, the tools will regress full design stages if design actions happen that 

upset the logical correctness of the database. Thus once a designer starts memory 

synthesis, all steps beyond this stage will generally clear out any created resources 

and implied data-flows if a user interacts with the resource-time graph. An example 

where this will not happen, is if a user only modifies register sharing. 
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(d) 

(wire/7) sED_cls. 	(i_acidlJ83) 

wire TSYNTHESIS:E])-c6__J 	1_addi 
;: 

(t-register /68> (SYNTI€SI9ED_C)p4. 

u_register,  T}€SISED_ 

Figure 7-5. Structure Graphs of TWOADD Example During Manipulation 

(e) 
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7.2 Critique 

The acid test for the success of developed software, is the track record of usage after 

completion. In this regards, an objective observation would be that the SAGE toolset 

has been unsuccessful. More accurately, the project could be described as a 'success-

disaster', in that there are many ideas that have been developed which have fulfilled 

the primary aims of the project even though as a whole, the software has not been 

applied in anger. As with many software based projects, when the target is clearer, a 

new software iteration will generally be faster to develop then continuing with the 

existing framework. In many ways this approach reflects the migration path from the 

early SAGE 2 software to SAGE 4, with the software being thrown away and the ideas 

carried across into the new tool generation. In many ways, this is the same path that 

the next generation of tools beyond SAGE 4 should follow. 

At the heart of SAGE has been the need to support visibility of the inner workings of a 

digital system to help a designer guide the design process to a fine degree of 

granularity. In many respects and certainly at a superficial level, this has been 

successful. With the use of visuals, and particularly the resource-time graphs, a 

designer can see the two most important quantities, namely space and time, that will 

govern the performance of a system being implemented. Where these visuals start to 

become problematic is with large designs. There are two aspects. Firstly, within 

visuals, the information can become overwhelming even with the use of invisibility 

techniques to help manage information. Secondly, with large hierarchies, it becomes 

clear that the granularity at which design decisions can be made in a resource-time 

graph, can become irrelevant compared with the savings possible by manipulation at a 

higher level. 

There are a multitude of inefficiencies that are covered by this second point. The most 

obvious example of this is highlighted by the process of mapping. If a mapped 

resource is used for a short period relative to the duration of the caller, it is made 

unavailable for the full length of the caller. Another relates to the way SAGE tools 

draw a clear and hard line between data path and control operations. In real designs, 

this is actually grey. Thus, with SAGE, a designer has no opportunity to manipulate 
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the control flow of a design except by rewriting the input VHDL. With the whole 

emphasis on trying to divorce specification from implementation, a large number of 

design activities could be defined as manipulating control flow structures and 

migrating data-flow between control structures as well as into and out of control 

structures. In many ways, the powerful ideas of retiming by the propagation of 

register elements could also apply. The third major impediment with the hierarchy 

model adopted in SAGE, is that of being rigid or inflexible. Although mapping in 

some ways diminishes the problem, it fails to recognise that specification hierarchy 

generally bears little relationship to the implementation hierarchy, and therefore the 

ability to dissolve given hierarchy and then, just as importantly if not more so, be able 

to recreate hierarchy, are both necessary to migrate a design conceptually and cleanly 

towards an efficient implementation. SAGE has the ability to dissolve hierarchy, but 

never to recreate it. In many ways, this last point is philosophical on the issue of 

whether the model represents behaviour with links to structure, or is a single model 

that can comfortably encompass both representations and therefore act as a medium 

through which the transformation form specification to implementation is able to 

happen. A fourth inefficiency relating to hierarchy is subtle, and relates to the way 

resource-time graphs are hierarchically composed of zones. For a given resource-time 

graph, only one zone can be computing at any one time, even if some zones are 

mutually exclusive in their operation. The core problem is that zones share the same 

hardware and therefore to prevent possible hardware resource clashes, it is an 

unfortunate but a necessary decision to say that only one zone per resource-time graph 

is active. 

The resource-time graph is clearly very successful in the manipulation of data-flow 

activities to a very fine degree of granularity. Where its usefulness starts to breakdown 

is with operations that have indeterminate length, since it is no longer possible to use 

the space-time framework to mesh accurately together operations in a way that 

optimises a design. Another problem relates to the nature of the data flow operations 

themselves which have been collapsed into the same clock cycle. Such data flow 

corresponds to combinatorial logic and could in principle be decomposed using low-

level logic synthesis algorithms. But, since this is a stage that has been designed to 
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happen at the next tool level that takes the netlist level output of SAGE, misleading 

results, in the form of being pessimistic could be obtained from the resource-time 

graphs. The classic example is that of unbalanced expressions, whose longest path 

will dictate the length of the computation, where an equivalent balanced expression 

through the application of simple algebraic rules could produce a significant temporal 

saving. This same form of manipulation applies at the clock step level, but issues 

concerning numerical accuracy can become the dominating effect as expression 

manipulation is made. The whole concept of using the resource-time graph breaks 

down further when trying to design complex functions that use mathematical 

operations like multiplication and division. The main problem is that the richness of 

choices in implementing such functions is not supported by the SAGE system. 

Although available devices can be encoded as a library device and made available 

through the matchmaking facilities, a designer has not the visibility of numerical 

accuracy issues or architectural issues as to choose a multiplier implementation from 

architectural choices that might range from simple add and shift operations, through 

to look up tables or beyond to full IEEE standards compliant floating point devices. 

From a purely concept point of view, the resource-time graph can suggest to a novice 

designer that the aim of good design is to simply minimise resources and the length of 

time from input to output. Unfortunately, this hides one of the more powerful aspects 

of the resource-time graph, namely being able to control calculation throughput. The 

solution to this problem, would be an updated tessellation of a particular resource-

time graph while a designer interacts with it, to show clearly how time is really 

composed of the two important quantities of throughput and latency. 

Although providing a designer more information rather than less is a noble aim, there 

is a risk that unreasonable importance could be attached to the information made 

available. The major example here relates to the low level nano-second timing that a 

user has presented in a resource-time graph. With many of the current leading edge 

silicon technologies working at higher and higher clock speeds, the dominating 

influence is no longer just the computation time, but the communication time. Here, 

although the SAGE model in principle could be used in a back-annotation of layout 

delays mode, what would be more useful for a designer would be a forward estimation 
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model based on a characterisation of the target technology. If low-level nano-second 

timing is provided, it is fair to say that the normal asymmetric performance of silicon 

technologies should, with respect to rising and falling edge delays be reflected back in 

the resource-time graphs as an additional layer of information that could be available 

to a user. 

Although SAGE supports fairly complex match making and unification facilities, in 

many ways they still fall far short of the way a designer would select key complex 

components. Whereas simple function blocks can be described, the heart of the 

matchmaking process relies on a simple name comparison. The remedy is the 

development of specialist matchers that focus on key technology areas, but the 

disadvantage is the specialism is difficult to capture and maintain. Another approach, 

is to let designers use their own ingenuity and break the correct by construction 

formality by allowing them to force selection of key components. Clearly, the vast 

majority of matchmaking and unification requirements can be simply be met by the 

existing facilities. The other main library modelling problem relates to the lack of 

parameterisation in the library cells. 

Probably the biggest deficiency in the SAGE system, is that of completeness. In 

particular, the main missing stage to complete the path to implementation for any 

given design, is that of control generation. Since the manual generation of controllers 

is probably one of the harder synthesis steps, without any controllers being generated 

it would make practical application of SAGE on real designs next to impossible. The 

approach of having a controller for each element in the SAGE design hierarchy can 

also negate any performance gained by resource-time graph manipulation, because of 

the area and performance penalties that such controllers may impose. Another equally 

important element missing from SAGE is the need for fully characterised library 

elements, both for matchmaking within the SAGE system and post synthesis 

simulation to help confirm the validity of the implementation. 

One of the main penalties imposed by the user interface is that of slow graph build 

times, which is compounded by the fact that such graphs need to be rebuilt after every 

successful interactive command. The other problem relates to the management of 
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windows during operation of the SAGE system. Since a large number of windows can 

be generated, facilities similar to those found in systems like Microsoft 

Windows 3. 1, like automatic tiling and panelling are needed to help a users 

organise their workspace. 

The general overall performance of the SAGE tools shows there is still a number of 

significant bottlenecks that should be eliminated to help man-machine interaction. In 

its present form, as well as the lack of maturity of the SAGE code, the lack of maturity 

of the tools on which SAGE is based on, also show through. As a medium level 

complexity example of a CORD IC algorithm consisting of 160 lines of C code shows, 

system resources on a typical SAGE session on a medium performance computer 

(circa 10 MIPS) takes over 25 MBytes of process space. This is in addition to 7 

MBytes required by the X Window System. This same example taken from 

starting a SAGE session to completion using only the standard synthesis steps, takes 

over. 20 minutes and produces output consisting of over 65000 lines of BABBLE code 

in 253 files occupying about 2.1 MBytes of disc space. Nearly two-thirds of this time 

is spent equally between the dummy controller insertion synthesis step and the save 

step. 

With any complex tool, the problem of repeatability is very important, and is usually 

obtained by relying on a hosts computing resources. With the SAGE system, the 

problem is compounded by the fact that repeatability in the context of changes to the 

input VHDL source is required. Of the various evaluations of the SAGE system carried 

out, one of the main observations was the need to regularly change the input VHDL 

code to reflect the required architecture. Even if this was not the case, the issue of 

managing designer's mistakes in the specification would need to be handled. This is a 

difficult area, since in CAD tool development terms incremental change management 

is very difficult to implement. As has been seen, even the reverse incremental changes 

can be difficult to implement but is a necessity to support exploration of the design 

space. 

190 



7.3 Future Work 

As the complexity of system requirements increase, as well as the CAD tools that are 

able to support their design, then the many levels of abstractions that exist between 

specification to implementation need to be brought closer together. The key point is 

the need to let a system designer work within one CAD environment and reach through 

all conceptual design levels as easily and swiftly as if the designer was working at one 

level. As an example, a designer could be specifying the general handshake 

requirements between two blocks in a petri-net transaction style of notation, but also 

be able to focus on the signals to specify required drive and low-level timing 

behaviour. Such an environment would have the necessary hooks to bring in important 

software development concepts that would allow complete system descriptions. In 

this way, a top-down design approach would allow the partitioning of a design at the 

hardware/software boundary, letting the time-critical aspects of a system be migrated 

towards a hardware implementation, while the software aspects migrate towards a 

suitable language with supporting microcontroller or microprocessor as appropriate. 

The work on CAD frameworks [64] which provide a common backbone to CAD tools 

is a suitable enabling technology on which such techniques can be developed from. 

Using the metaphor of the survival of the fittest, only the tools that provide the 

productivity benefits are kept, while tools that are below par can be evolved or 

replaced without having to start the development of the high-level synthesis system 

completely from scratch. 

Although such a tighter integration of tools would place a requirement on designers to 

encompass a wider range of technologies, the extra understanding would be offset by 

the understanding embodied by the tools themselves. This is simply an extension of 

the idea that a designers ingenuity should be married efficiently and effectively with a 

range of computer based tools, with the demarcation and its purpose being clearly 

understood. 

Although the SAGE graphics support have been designed to be optimal, there are a 

number of significant improvements that can be made. The main issue relates to 

incremental change of graphs. In the SAGE system, updated graphs were rebuilt for all 
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but the simplest of cases of highlighting actions. One of the main problems in 

rebuilding graphs, particularly relating to resource-time graphs, is that of moving 

large amounts of area from one part of a visual relative to another. The standard 

example is that of removing a column occupied by an unused resource, where all the 

columns to the right need to be moved leftwards. This could be overcome by an 

overlay mapping, that correlates different actual regions to where they are in the 

visual. This causes problems with objects that straddle the boundary. This concept 

could work hierarchically, as a picture gets more and more modifications done to it. 

Thus at some stage a decision must be made as to having to rebuild part or all of the 

graph that is being manipulated for efficiency reasons. 

It is interesting to note that though resource-time graphs forms the main interface of 

SAGE, it is the broader manipulation of control flow graphs that can provide more 

significant gains in design optimisation. This is a pointer towards a new graphically 

based design approach. At the heart of this approach is the recognition that the 

simulation environment of current CAD systems as well as being the main proving 

ground for correctness of timing and functionality, could also be used as a digital 

system specification design tool, which in a generalised form could support synthesis 

through the use of behavioural transformations. 

Such a tool would attack the problems of complex sequencing and attention to low-

level timing details in one consistent environment. With time and signal space being 

the two most important quantities of concern to a designer, such a notation would let 

designers approach the problem from a blank sheet and in a top down or bottom 

fashion. With support of the three basic forms of control construct, namely 

sequencing, branching and looping, combined with hierarchy in time and signal 

space, such a tool would comfortably be able to bridge and manage the three major 

levels of digital level design, namely behaviour, register transfer and low-level timing. 

The use of medium performance computers, selection of various programming 

standards and platforms, has in many ways affected the development of the SAGE 

system. With the continuing explosion in computing performance, and the tools that 

exploit such performance, the choices for tool designers become much richer. In 
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particular, with the aim being to provide as much information as possible to a designer 

to help them make an informed decision has to how to guide the design process, the 

technology of virtual reality will probably have the biggest impact on CAD design 

tools. At a more short term level, the use of more object orientated programming 

languages such as C++ and ADA9x will help the development time of high-level 

synthesis tools by helping CAD tool developers build more efficiently on existing 

software. Although the multi-process model has proved very successful for SAGE, the 

newer lightweight process models based on threads will help improve overall CAD 

tool performance. 

The insight that graphics have provided to the SAGE system, has shown that their 

general application is a desirable goal. In this respect, the replacement of the front-end 

VHDL compilation engine with a graphical equivalent would improve the overall 

design flow. In many ways this move would mirror the path adopted in software 

development, where techniques over the years have migrated between textual and 

graphical based techniques as more powerful development tools have been developed 

[43]. For example, in the software realm, specification has been formalised into 

graphical techniques embodied in methodologies such as Yourdon. Similar 

approaches could be envisaged with hardware design specification, with the long term 

aim being that the starting stages for software and hardware specification will merge. 

In many ways, retrospective application of the ideas presented in the foundations and 

framework chapters to the core synthesis tools which are supported by the SAGE 

system would produce significant improvements in efficiency. Additionally, these 

same foundations are sound enough to act as the basis on which to build a new 

generation of SAGE as well as tools for other parts of CAD requirements. Probably the 

most significant application outside the high-level synthesis requirements that could 

be made, is that of using the rectangle manager as a basis on which to develop an 

efficient high-performance routing engine. 

The fascination with the bad points in a system, should not hide the fact that higher 

level tools can bring very many benefits if used in the correct fashion. Just as 

importantly, they can be the beacon pointing towards greater developments. 
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William Safre's Rules for Writers: 

Remember to never split an infinitive. The passive voice should never be used. Do not put statements in 

the negative form. Verbs have to agree with their subjects. Proofread carefully to see i/you words out. If 
you reread your work you can find on rereading a great deal of repetition can be avoided by rereading 

and editing. A inter must not shift your point of view. And don't start a sentence with a conjunction. 

(Remember, too, a preposition is a terrible word to end  sentence with.) Don't overuse exclamation 

mark// Place pronouns as close as possible, especially in long sentences, as of 10 or more words, to their 

antecedents. Writing care/idly, dangling participle, must be avoided. I/any wo rd is improper at the end of 
a sentence, a linking verb 1,. Take the bail by the hand and avoid mixing metaphors. Avoid trendy 

locutions that soundJ7ak Everyone should be careful to use a singular pronoun with singular nouns in 
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their inning. Always pick on the correct idiom. The adverb always follows the verb. Lust but not least, 

avoid cliches like the plague; seek viable alternatives. 

• Conclusion 
In the fast growing field of high-level synthesis, very little attention has been paid to 

the areas where core synthesis tools must interact with their immediate environment. 

Library modelling, netlist generation and design visualisation are the three interfaces 

that have been neglected at the expense of advances in core synthesis tools. This thesis 

has addressed this problem by looking at these primary interfaces and developing the 

ideas and tools that are needed to provide significant improvements over and above 

interfaces used by existing systems. The primary reason for this work, has been the 

need to help electronic design engineers become more productive by enabling them to 

handle the complexities of emerging design requirements. 

Most of the results of this work have been embodied in the development of the SAGE 

high-level synthesis system, whose most significant difference between existing high-

level synthesis systems is that the electronic design engineer is able to direct the 

process of synthesis to a very fine degree of granularity. The main vehicle that has 

helped achieve this is the visibility of design information through graphical 

representations with which a designer is able directly to interact. This is in stark 

contrast to the purely automatic approaches of many synthesis systems, whose only 

support in heading towards the desired solution tends to be in the form of restarting a 

synthesis session from scratch. 

From the background review, the great variety and significant progress in the area of 

high-level synthesis systems can be seen. With the commercially driven CAD 

companies, even more significant progress has been made, in the form of tools that are 
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available in a fully supported form for electronic designer engineers to use in anger. 

With the research budgets of such organisations, the further improvement of these 

tools with enhancements that support many of the ideas attempted by the SAGE 

system, will ensure that electronic designers will have the tools to manage the 

complexities of system design problems of the near future. 

Several new ideas and developments have been put forward in this thesis. This 

includes the development of library modelling language that can concisely capture the 

temporal behaviour of a wide variety of digital elements, and have the necessary 

selection functions to allow intelligent choice during the matchmaking and unification 

processes. On the purely structural side, a full exploration of all the problems in 

generating netlists with the development of the necessary concepts of creation, netlist 

attributing and name space handling for efficient and effective netlist generation has 

been presented. As well as a basic taxonomy of graphical representations for most 

aspects of digital system design representation, the key ideas of letting a designer 

graphically see the inner workings of a design and be able to guide the design process 

through the use of direct interaction has, as explained earlier, been one of the major 

areas explored by this thesis. 

Many ideas and tools have been shown to be necessary to support the development of 

the interfaces. The framework concepts have been developed to marry efficiently the 

needs of the given systems building blocks with the needs of each of the high-level 

synthesis interfaces. The five key components are the multiple UNIX process models, 

the streamlined ADA to X language binding, development of the X Resources to 

support specific picture attributes across machine/screen/window tuples, a 

comprehensive rendering model and various concepts in user interface management 

services to help enhance man-machine interaction. The chapter on foundations has 

explored a range of packages. Though none are particularly special in their own right, 

as a collection they have in common flexibility, useability, simplicity, elegance and 

performance as their main contribution to the field. 

For as many problems that have been addressed, there is an equal number of problems 

that have been deliberately avoided for pragmatic reasons. The most important of 
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these are issues relating to simulation, testability and design capture. Although these 

form rich areas for further exploration and extension of the SAGE system, there are a 

number of new avenues of exploration which have also been highlighted by the work 

in this thesis. The most interesting of these is the development of a design approach 

based on waveforms as commonly found in simulation engines. With the supporting 

concepts of abstraction in time and through the use of hierarchy, the vertical 

integration of the behaviour, register transfer and low level timing descriptions, a 

designer will be able to focus on the space-time behaviour of a design in a single 

consistent environment. 

Whatever new tools are developed, the thirst for better, more capable and integrated 

tools will continue for the foreseeable future. In a handful of years, state of the art 

design systems will bear little relationship to current methodologies, not least of 

which the reasons will be the considerable advances in relatively inexpensive 

computing resources that the CAD tool developers will be able to exploit. But the 

getting there will be just as interesting as the journey. And in the case of the work 

presented in this thesis, has been. 
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--$ 
- $-- --$ 	Features : 	o(1) 	for ADD, DEL to the end or start of the list $-- 

0(1) for GETs in a sequential order - either forward or backward 
o(1) operation for SIZE and REVERSE operations 
o(n/2) to find items with random seeks $-- 

--$ Full consistency is maintained with multiple uses of the same list object (eg. if 	$-- --$ if A and B point to the same list, and we add a new element to the front of B, $-- 
 then A will also see the new element - note, Booch lists don't handle this case) 	$-- 

$-- 
--$ 	Problems ALSYS ADA does not like any local generic templates to be locally stamped out. $-- --$ Thus, a couple of these generics have been wrapped up with a procedural shell. $-- --$---------------------------------------------------------------------------------------------------- 

with MISC; -- only FREE TEMPLATE is used from in here 
generic 

type ITEM_P is private; 

-- Since the compiler can be used to control type checking, we can specifiy the type of INTEGERS used. 
-- In some cases, strong type checking is a nuisance, whence INTEGER 	can be tied to say LONG INTEGER. 
-- In other 

U' cases, it is a useful mechanism to ensure strong type checking/consistency. Ensure that the 
-- used type extends from at least -1 to a largish positive value as a minimum range. 
type INTEGER_P is range <>; 

-- just in case the check for equality is a bit complicated 
with function EQtJAL(A, 	B : 	ITEM—T) return BOOLEAN is "="; 

--g---------------------------------------------------------------------------------------------- ------g--
package DLISTS is 

--------------------------------------------------------------------------------------- 

-- All lists are objects. Once created, their constitient elements are counted from 1. 
-- Since lists are objects, they *need* explicit destruction, thru' use of one of the DESTROY procedures 

-- exception raised (usually) when 'not INDEX in !..SIZE' 
DLISTS CONSTRAINT ERROR : exception; 

type LIST_T is private; 

function INIT return LIST T; 
function VALID(LIST 	in LISTT) return BOOLEAN; -- tells if the LIST is initialised 



procedure DUMMY—FREE is new MISC.FREETEMPLATE(ITEMT); -- used as default in some generics 

generic 
with procedure DESTROY(ITEM : in out ITEM T); 

procedure DESTROY_TEMPLATE(THIS : in out LIST—T); 

-- 'procedure DESTROY is new DESTROY TEMPLATE(DUMMY FREE);', prevented because of an ALSYS bug 
procedure DESTROY(THIS : in out LIST T); 

function SIZE(LIST : in LIST—T) return INTEGER—T; 

-- the following 'ADD' elements according to the 'WHERE' value 
-- 0 - make it 1st, 1 - make it 2nd etc., -1 - add it to the end, other - raise an exception 
procedure ADD (TO _THIS : in LIST—T; THIS : in ITEM—T; WHERE : in INTEGER_T 	-1); 
-- addition of one list to another, destroying the list being added 
procedure ADD (TO—THIS : in LIST—T; THIS : in out LIST—T; WHERE : in INTEGERT := -1); 

function GET(LIST 	in LIST—T; NO in INTEGER—T) return ITEM—T; 

generic 
with procedure DESTROY(ITEM : in out ITEM T); 

procedure DEL TEMPLATE(FROM THIS : in LIST Y; THIS : INTEGER T); 

-- 'procedure DEL is new DEL TEMPLATE(DUMMY FREE);', prevented because of an ALSYS bug 
procedure DEL(FROM THIS : in LIST—T; THIS :—INTEGER—T); 

procedure REPLACE(IN LIST : in LIST—T; WITH—THIS : in ITEM—T; WHERE : in INTEGER—T); 

generic 
with function COPY(THIS : ITEM T) return ITEM T; 

function COPY TEMPLATE(THIS : LISTT) return LISTT; 

-- 'function COPY is new COPY TEMPLATE(DtJMMY COPY)', prevented because of an ALSYS bug 
function COPY(THIS : LIST T) return LIST T; 

procedure REVRSE(LIST : LIST—T); 



-- ! 	
! -- 

-- (1) DEL DUPL 0: remove all items of a given type, when more than one is encountered, and 
-- (2) DEL DUPL 1: to remove the duplicates (ie. if n identical items are encountered, 1 is always left). 

generic 
with function MATCH(A, B : ITEM T) return BOOLEAN is EQUAL; 
with procedure DESTROY(ITEM : in out ITEM T) is DUMMY—FREE; 

procedure DEL DUPLOTEMPLATE(IN THIS : in LISTT); 

-- (2) 
generic 

with function MATCH(A, B : ITEM T) return BOOLEAN is EQUAL; 
with procedure DESTROY(ITEM : in out ITEM T) is DUMMY—FREE; 

procedure DEL DUPL1TEMPLATE(IN THIS : in LISTT); 

generic 
with function MATCH(A, B : ITEM T) return BOOLEAN is EQUAL; 

function FIND TEMPLATE(LIST : LIST—T; THIS : ITEM—T) return INTEGER—T; 

generic 
with function MATCH(A, B : ITEM T) return BOOLEAN is EQUAL; 

function IS MEMBER TEMPLATE(LIST : LIST—T; THIS : ITEM—T) return BOOLEAN; 

-- The above routines can be stamped out as shown below - but ALSYS ada has problems 

-- procedure DEL DUPL is new DEL DUPL TEMPLATE; 
-- function FIND is new FIND TEM—PLATE; 
-- function IS—MEMBER is new IS—MEMBER—TEMPLATE; 

private 

type LIST_REC_T; 
type LIST_T is access LIST_REC_T; 

end DLISTS; 

Figure A-i. The Lists Generic 



with DLISTS, TEXT 10, MISC; 
generic 

type KEY_T is private; 
type DATA_T is private; 

with function "<"(X, Y : KEY T) return BOOLEAN is <>; 
with function ">"(X, Y : KEY —T) return BOOLEAN is <>; 

--g------------------------------------------------------------------------------- ---------------------g--
package RED_BLACK_TREES is 
--g----------------------------------------------------------------------------- -----------------------g--  

-- general RED-BLACK tree implementation for log(n) search and add. 
-- see SEDGWICK, Chapter 15, Algorithms, 2nd Edition, Addison-Wesley. 

-- *warning*, this package provides generics, such that constructors and 
-- destructors (ADD/DEL) must not be used with the passed subprograms 
-- the ADD/DEL routines do *not* check that they are in a valid context 
-- to make ammends, on of the generic allows elements to be deleted 

-- only the 'fn GET(TREE,KEY) return DATAT' and 'proc DEL(TREE,KEY)' raise this exception 
RED—BLACK—KEY—NOT—FOUND : exception; 

type TREE —T is private; 

-- rather than require the user to provide 'sentinal' edge values, we use this: 
type SEARCH KEY T(IS KEY : BOOLEAN := TRUE) is record 

case IS KEY is 
when TRUE => KEY : KEY T; 
when FALSE => null; -- means an edge value 

end case; 
end record; 

type DIRECTIONT is (LEFT—RIGHT, RIGHT LEFT); 

EDGE : SEARCH KEY T(IS KEY => FALSE); -- this is a constant 



the following is the list of options for the searches and deletes possible 
-- note, the iteration is inclusive. (the squiggles below are the search 'edges') 

-- 

 

LEFT—RIGHT 	 RIGHT LEFT 

-- 	/ ---------> V 	 / < --------- v 

	

\ 	 \ 
-- 	V ---------> / 	 V <---------/ 

-- 	/ ---------> / 	 / <---------/ 

-- 	S 	f 	 5 	f 
-- 	V------>V 	 V<------V 	START.KEY <= FINISH.KEY 

-- 	f 	\ 	 f 	\ 
-- 	/--->V V--->/ 	 /<---v V<---/ 	START.KEY > FINISH.KEY 

package DATA LST PAC is new DLISTS(DATAT, LONG INTEGER); 
subtype DATA_LST_T is DATA_LST_PAC.LIST_T; 
use DATA LST PAC; 

function INIT return TREE—T; 

function VALID(TREE TREE—T) return BOOLEAN; 



procedure ADD(TO THIS : TREE—T; KEY : KEYT; THIS—DATA : DATA—T); 

-- normal get, will return 
function GET(TREE : TREE_T; 
-- with repeated keys, this 
function GET(TREE : TREE_T; 
-- get all the items within 
function GET(TREE : TREET; 
return DATALSTT; 

single data item, even if there are repeated keys otherwise an exception 
KEY KEYT) return DATA T; 
GET might can return zero or more data items 
KEY : KEY—T) return DATALSTT; 
a 'range' over the given keys, again returning zero or more data items 
KEY_START, KEY_FINISH : SEARCH KEY T; DIRECTION : DIRECTIONT := LEFT—RIGHT) 

-- note, in the last two 'GET' fns above, explicit storage reclaming is necessary for DATA LSTT 

-- ! ------------------------------------------------------------------------------------------------------ 

function SIZE(TREE : TREE—T) return LONG—INTEGER; 

function EXISTS(TREE : TREET; KEY KEYT) return BOOLEAN; 

- 	 - 	

-- 

-- 	 - 	 - 	 -- 

0 	 generic 
with function COPY(DATA : DATA T) return DATA T; 

function COPY TEMPLATE(TREE TREE—T) return TREE—T; 

function COPY(TREE : TREET) return TREE—T; 

-- ! --------------------------------------------------------------------------------------------------! -- 

-- destroy the tree object, including any contents 
generic 

with procedure DESTROY(DATA : in out DATA T); 
procedure DESTROY TEMPLATE(TREE : in out TREE—T); 

procedure DESTROY(TREE : in out TREE—T); 

-- delete one item, with the given key value, raise an exception if key is not found 
generic 
with procedure DESTROY(DATA : in out DATA T); 

procedure DEL TEMPLATE(TREE : in TREE T; KE : 	KEY—T); 
procedure DEL(TREE : in TREE—T; KEY KEY_T); 



-- general purpose iterators (as opposed to the dedicated GET routines) 
generic 
with function REGISTER(DATA : DATA T) return BOOLEAN; -- if result false, we stop iterating 

procedure ITERATE(TREE : TREE—T; START, FINISH : SEARCH—KEY—T; DIRECTION : DIRECTION—T); 

-- this generic provides 'all purpose' functionality - some of which *can* be abused. facilities are: 
-- 	(1) DATA and KEY can be directly modified. 
-- 	(2) The DATA/KEY pairs can be deleted during the iteration 
-- KEY changes should be done very carefully, ensuring that the resulting TREE will have 
-- an unchanged iteration order. 
generic 
with procedure REGISTER( 

DATA : in out DATA—T; KEY : in out KEY—T; DEL : out BOOLEAN; CONTINE : out BOOLEAN 

-- if DEL is true, the referenced item is destroyed 
-- (and then) if CONTINUE is false, we stop iterating 

procedure ITERATE MODIFY(TREE : TREE—T; START, FINISH : SEARCH—KEY—T; DIRECTION DIRECTION—T); 
t.J 
- 	 -- . 

-- this is for testing purposes - a full explanation is in the body 
-- part associated with this spec - needless to says, its wild 
generic 

with function DISPLAY(DATA : DATA T) return STRING; 
with function DISPLAY(KEY : KEY T—) return STRING; 

procedure DUMP(TREE : TREE—T; SPLIT : INTEGER; CHANNEL : TEXT_IO.FILE TYPE := TEXT_IO.STANDARD OUTPUT); 

private 

type TREE_REC_T; 
type TREE_T is access TREE_REC_T; 

end RED—BLACK—TREES; 

Figure A.2. Red-Black Trees Generic 



generic 

type KEY _T is private; 
type DATA_T is private; 

with function "<"(X, Y : KEYT) return BOOLEAN; 
with function ">"(X, Y : KEY_T) return BOOLEAN; 

--g------------------------------------------------------------------------------------------------ -- --g--
package BTREES is 
--g ---------------------------------------------------------------------------------------------------- 

BTREES_KEY ALREADY EXISTS, 
BTREES KEY NOT FOUND, 
BTREES NEXT KEY NOT FOUND : exception; 

type BINARYT is private; 
type SEARCH STATE T is limited private; -- used for searches 

procedure PUT DATA(BINARY : in out BINARY T; KEY : KEY_T; DATA : DATA —T); 
function GET DATA(BINARY : BINARY T; KEY : KEY T) return DATA T; 

function EXISTS(BINARY : BINARY-T; KEY : KEYT) return BOOLEAN; 

function COPY(BINARY : BINARYT) return BINARYT; 

procedure DELETE(BINARY : in out BINARY_T); 
procedure DELETE(BINARY : in out BINARYT; KEY : KEY -T); 

procedure PRE ORDER START(BINARY : BINARYT; SEARCH —STATE : out SEARCH STATE T); 
procedure IN ORDER START(BINARY : BINARY T; SEARCH STATE : out SEARCH_STATE_T); 
procedure POST ORDER START(BINARY : BINARY —T; SEARCH—STATE out SEARCH—STATE—T); 

procedure PRE ORDER NEXT(SEARCH STATE in out SEARCH_STATE_T; KEY : out KEY_T; DATA : out DATA-T); 
procedure IN ORDER NEXT(SEARCH STATE : in out SEARCH -STATE-T; KEY : out KEY T; DATA out DATA TO 
procedure POST ORDER NEXT(SEARCH STATE : in out SEARCH —STATE—T; KEY : out KEY_T; DATA : out DATA-T); 

procedure START(BINARY : BINARY-T; KEY : KEY_T; SEARCH—STATE in out SEARCH—STATE-T); 

procedure LAST(SEARCH STATE : SEARCH—STATE-T; LAST : out BOOLEAN); 



private 

type SEARCH STATE T is 
record 	 -- limited, 'cause its internal to the trees 

STATE : BINARY—T; -- in a record, 'cause ADA will not have it any other way 
end record; 	 -- ('subtype ...', '... is BINARY—T I  and renames do not work) 

type BINARY _RECT; 
type BINARY —T is access BINARY_REC_T; 
type BINARY RECT is 

record 
UP : BINARY—T; 
LEFT, RIGHT : BINARY T; 
KEY: KEY T; 
DATA : DATA T; 

end record; 

end BTREES; 

Figure A-3. Binary Trees Generic 



with LOOKUP; 
generic 

type KEY_ELEMENT T is private; 
type KEY_T is array (POSITIVE range <>) of KEY _ELEMENT T; 
type KEY_PTR_T is access KEY—T; -- used by search routines, since they can't be fns 

--  
type DATA_T is private; 	

they are unable to return a variable array 

with function "<"(X, Y : KEY ELEMENT T) return BOOLEAN; 
with function ">"(X, Y : KEY ELEMENTT) return BOOLEAN; 

--g---------------------------------------------------------------------------------- ------------------g--
package TREES is 
--g------------------------------------------------------------------------------- ---------------------g--  

TREES _ KEY _ALREADY_EXISTS, 
TREES KEY NOT FOUND, 
TREES INDEX NOT FOUND, 
TREES NEXT KEY NOT FOUND : exception; 

type TREE T is private; 
type SEARCH_STATE_T is limited private; 

procedure PUT DATA(TREE : in out TREE T; KEY KEY T; DATA : DATA-T); function GET DATA(TREE : TREE T; KEY : KEY T) return DATA T; 
function GET_TREE(TREE TREE-T; KEY : KEY—T) return TREE—T; 

function EXISTS(TREE : TREE—T; KEY KEY-T) return BOOLEAN; 

function COPY(TREE : TREE—T) return TREE-T; 

procedure DELETE(TREE : in out TREE T); 
procedure DELETE(TREE : in out TREE-T; KEY : KEY—T); 

procedure START BY LEVEL(TREE : TREE T; SEARCH STATE : in out SEARCH STATE T); 
procedure START_BY DEPTH(TREE TREE—T; SEARCH—STATE : in out SEARCH—STATE—T);    

procedure NEXT BY LEVEL 
); SEARCH STATE : in out SEARCH—STATE—T; KEY PTR : out KEY PTR T; DATA out DATAT 



procedure NEXT _BY_DEPTH(  
); SEARCH—STATE : in out SEARCH—STATE—T; KEY PTR : out KEY PTRT; DATA : out DATAT 

function LAST(SEARCH STATE SEARCH—STATE—T) return BOOLEAN; 

function COUNT(TREE : TREE T) return NATURAL; 
function GET DATA(TREE : TREE_T; INDEX : NATURAL) return DATA T; 
function GET INDEX(TREE : TREE—T; KEY—ELEMENT : KEY—ELEMENT—TT    return NATURAL; 

private 

type TREE REC T(IS ROOT : BOOLEAN := FALSE); 
type TREE_T is access TREE_REC_T; 

type DATA RECORD —T is 
record 

DATA : DATA _T; -- necessary, cause no equiv of 'Cl & op 
end record; 

end TREES; 

Figure A-il. nary Trees Generic 



generic 

-- ! 	 -- 

type DATA_T is private; 

type COORD T is private; 	 -- can be FLOAT, INTEGER, LONG—INTEGER etc. type COORD INDEX P is range <>; 	 -- will be 1. .4 only 
type COORDARRT is array(COORDINDEXT) of COORDT; -- read as, (x,y,X,Y) 

with function SIZE(DATA : DATA—T) return COORDARRT; 

MINIMUM : COORD T; 
ZERO : COORD T; 
MINUS ONE : COORD T; 

tj 	
TWO : COORDT; 
DEFAULT BOUNDS : COORD ARR T; 

ON 	 — 

examples, with COORD P being FLOAT: 

-- COORD T'SAFE SMALL*100.0 
-- 0.0 
-- -1.0 
-- 2.0 
-- (-10.0, -10.0, 10.0, 10.0) 

-- for internal bound expansion, and to prevent NUMERIC ERRORs, we need to convert 
-- between COORDs and LONG FLOATs. (this is not possible internally, because COORD T is private) 
with function COORD2LONGFLOAT(COORD : COORDT) return LONG—FLOAT; 

-- * 

-- all the following can be LEFT OUT during instantiation, 'cause they have defaults 
-- * 

-- when building the quad tree, this figure determines when a region is divided. 
-- it can be overidden in the initialisation routine called 'INIT'. 
ADD—QUAD—TREE—THRESHOLD—DIVIDE—FIGURE : LONG—INTEGER := 3; 

-- in order to check the validity of rectangles during deletion, the following is used. 
with function EQUAL(A, B : DATA—T) return BOOLEAN is ""; 



-- the numerical COORD T must have the following operations avialable 
with function ">"(A, B—: COORDT) return BOOLEAN is <>; 
with function "<"(A, B : COORDT) return BOOLEAN is <>; 
with function ">=" (A, B : COORDT) return BOOLEAN is <>; 
with function "<="(A, B : COORDT) return BOOLEAN is <>; 

with function "+"(A, B 	: COORDT) return COORD T is <>; 
with function "-"(A, B 	: COORDT) return COORD T is <>; 
with function "*"(A, B 	: COORDT) return COORD T is <>; 
with function "/"(A, B 	: COOP.DT) return COORD T is <>; 

--g------------------------------------------------------------------------------------- ---------------g--
package RECTANGLE is 
--g----------------------------------------------------------------------------------- -----------------g-- 

-- the coordinate frame is that of: 	and RECTs are sorted/stored as: 

-- 	 y 
I 	 .CORNER B 

-- 	 x 	 CORNER A._____ 

-- (note, X WINDOWS, for some reason has y running downwards, so some transforming should. take place, 
-- when using X WINDOWS as the target drawing environment) 

-- this exception is raised when DEL fails, or if SIZE of an empty object is requested 
RECTANGLE—CONSTRAINT—ERROR : exception; 

-- some standard graphics objects 
type POINT _T is record 

X, Y : COORDT; 
end record; 

type RECT T is record 
CORNER A, CORNER_B : POINT—T; 

end record; 

type RECTS_T is private; 



function INIT( 
BOUNDS : COORD ARR_T := DEFAULT BOUNDS; 
THRESHOLD : LONG INTEGER := ADD—QUAD—TREE—THRESHOLD—DIVIDE—FIGURE       
return RECTST; 

procedure DESTROY(THIS : in Out RECTS_T); 

function VALID(RECTS : RECTS_T) return BOOLEAN; 

-- for proper efficient (relatively speaking) destruction 
generic 
with procedure DESTROY(THIS : in out DATA T); 

procedure DESTROY TEMPLATE(THIS : in out RECTS_T); 

procedure ADD(THIS DATA : DATA T; TO THIS : RECTST); 
procedure DEL(THIS DATA DATA—T; FROM_THIS : RECTS_T); 

generic 
with procedure DESTROY(THIS : in out DATA T); 

procedure DEL TEMPLATE (THIS DATA DATA—T; FROM THIS RECTST); 

-- the extents of a RECTS_T are returned - useful for centering purposes 
function EXTENT(THIS : RECTS_T) return RECTT; 
-- in a layered setup, the full extents will be the union of extents for each layer 
function UNION(R1, R2 : RECT_T) return RECT_T; 

function COORD2RECT(COORD COORDARRT) return RECTT; 
function RECT2COORD(RECT : RECTT) return COORDARRT; 

-- note, the two generic iteraters below require a RECT_T over which the search will happen 

generic 
-- these fns should return TRUE, iff the iteration is to stop. 
-- INVERSE - changes the sense of the search to objects outside the given region 
-- the rectangle passed, must be sorted 



-- CUT - called when a rectangle intersects with the given region 
-- 

 
NOT—CUT - called when rectangle is wholly enclosed/outside the region 

with function CUT(DATA : DATA T) return BOOLEAN; 
with function NOT CUT(DATA BATA T) return BOOLEAN; 

procedure ITERATE(DOMAIN : RECTS_T; REGION RECT_T; INVERSE BOOLEAN := FALSE); 

-- this generic is similar to above, but, if some items are 'too' small, they don't get passed back 
generic 

-- INVISIBLE - the actual rectangle which has objects inside it, but (are within DELTA_X and DELTA_Y 
with function INVISIBLE(RECT: RECTT) return BOOLEAN; 

with function CUT(DATA : DATA T) return BOOLEAN; 
with function NOT CUT(DATA : DATA_T) return BOOLEAN; 

procedure ITERATE LIMIT( 
DOMAIN RECTS T; 
REGION : RECT T; 
DELTAX, DELTA Y : COORD T; -- the mm size of objects that are acceptable 
INVERSE : BOOLEAN 	FALSE 

I, 

-- this is for test purposes 
generic 
with function IMAGE(COORD COORDT) return STRING; 
with function INFO(DATA DATA fl —return STRING; 

procedure DUMP(RECTS : RECTS_T); 

private 

type RECTS_RECT; 
type RECTS T is access RECTS_REC_T; 

end RECTANGLE; 

Figure A-S. Rectangle Manager Generic 



generic 

type SET_VALUET is (<>); -- I can handle integers or enumeration entities as the set value 

--g---------------------------------------------------------------------------------------------------- g--
package SPARSE SET is 

---------------------------- 

-- This package supports fast and efficient *big* set handling. 
-- Thus, sets of millions of elements will be handled without a blink 
-- (The package works well when there are large contiguous ranges of values, 
-- since it only holds the start and finish) 

type SET—T is private; 

function INIT return SET T; 
function VALID(SET : SET—T) return BOOLEAN; 

------------------------------- 

-- these form the 'basic' set operations 
function UNION(A, B 	SET T) return SET T; 
function INTERSECTION(A, B : SETT) return SET—T; 
function SUBTRACT(A, B : SETT) return SET T, 
-- WORLD must fully contain set A (ie., this is not checked for) 
function INVERSE(A, WORLD : SETT) return SET—T; 

function EXISTS(IN THIS : SET—T; THIS : SET—VALUE—T) return BOOLEAN; 

procedure ADD(TO THIS 	SET T; START, FINISH : SET VALUE T); 
procedure ADD(TO THIS SETT; VALUE : SET_VALUET); 

procedure DEL(FROM THIS : SET T; VALUE : SET _VALUE _T); 
procedure DEL(FROM THIS : SET—T; START, FINISH : SET VALUE T); 

procedure DESTROY(THIS : in out SET—T); 



function COPY(THIS : SETT) return SET—T; 

-- this count routine could cause NUMBERIC ERROR if the number of items is greater than LONG INTEGER' LAST 
-- (which could happen if the set spans best part of LONG_INTEGER'RANGE rebased to start from 1) 
function SIZE(THIS : SET—T) return LONG—INTEGER; 

type DIRECTIONT is (LEFT RIGHT, RIGHT—LEFT); 

-- the following two generics, when stamped, contine while REGISTER returns 'TRUE' 
generic 
with function REGISTER(VALTJE 	SET VALUE T) return BOOLEAN; 

procedure ITERATE(SET : SET—T; DIRECTION : DIRECTIONT := LEFT—RIGHT); 

-- this is provided as a concession to the internal implementation of the list 
-- since it removes, on average, a large number of additional function calls, 
-- and can be used for say displaying the elements of a set in a compressed form 
generic 
with function REGISTER(START, FINISH : SET VALUE T) return BOOLEAN; 

procedure COMPRESSED ITERATE(SET SET—T; DIRECTION : DIRECTIONT := LEFT RIGHT); 

private 

type SET RECT; 
type SETT is access SET_RECT; 

end SPARSE—SET; 

Figure A-6. Sets Generic 



__* 	 - 
function UNION(A, B : SET T) return SET P is --------------------------------------------------------------------------------------*--- 

-- some types to aid in readability of which set is at the 'pivot' point 
type PIVOT T is (A—set, B_set); 
PIVOT : PIVOT T; 
NEW SET : SET  := INIT; 
APOS, BPOS T LONG INTEGER := 1; -- these are elements we intend to read, not 'have' read 
A_END 	LONG_INTEGER := SIZE(A.SLICES); B_END : LONG —INTEGER := SIZE(B.SLICES); 
ALOOKAHEAD, INTEGER  : SLICE T; -- used during the merging 
THE MERGE : SLICE - T; -- this contains the 'final' slice to be added to NEW SET 

-- [------------------------------------------------------------------------ --------------------------- 1 -- 
begin 

-- we know that both lists are ordered, so we start one side and flip between both 
loop 

-- these are our exit conditions 
exit when APOS > A_END and BPOS > B —END; 

-- if either one of the lists is 'ended', then we have a simple tack on job 
if APOS > A_END then -- add B onto NEW—SET 
for i in BPOS. .BEND loop 
ADD(NEWSET.SLICES, THIS => GET(B.SLICES,i)); 

end loop; 
-- now move on the value of BPOS, so the outer loop will terminate 
BPOS := B_END + 1; 

elsif BPOS > B—END then -- add A onto NEW—SET 
for i in APOS. .A_END loop 
ADD(NEWSET.SLICES, THIS => GET(A.SLICES,i)); 

end loop; 
-- now move on the value of BPOS, so the outer loop will terminate 
APOS := A_END + 1; 

else -- something must be present in A and B sets 
-- first set up what we are trying to 'union' togethor 
A LOOKAHEAD := GET(A.SLICES,A POS); 
BLOOKAHEAD := GET (B.SLICE5,BPOS); 
-- now we decide which one will 'dominate' 
if A LOOKAHEAD.START < B LOOKAHEAD.START then -- A comes first, so merge with B set 
PIVOT := B_set; APOS := APOS + 1; THE —MERGE := ALOOKAHEAD; 

else -- catches the 'equal' case -- B comes first, so merge with A set 
PIVOT 	A set; B_POS := B POS + 1; THE—MERGE 	BLOOKAHEAD; 

end if; 



-- when we get to this point, one of the LOOKAHEADs is out of date, thus 
-- the following code has to watch out that on the 'flip' that there is info 
-- ready to merge, otherwise, we call it a day since we're at the end of a SET 

-- now we run along both sides merging what we can, on completion, we add THE—MERGE to NEW—SET. 
-- there are three cases of merging possible, that need to be considered: 

fully enclosed, which means carry on merging with second row 

-- (2) I 	 partially overlapped, this means flip the merge to elements on rowl 

I 	this case is also valid, eg. [1-4],[5-6] is the same as [1-6] 

-- (3) I ----- I 	forget it, neither rowl or row2 has anything going 

loop 
case PIVOT is -- the set that we are taking 'elements' out of to try and merge 
when A_set > 

-- the following if statement is complicated, 'cause we don't want to hit the 
-- SET _VALUE T'LAST limit when checking out the second case shown in (2) above 
if A LOOKAHEAD.START <= THE MEP.GE.FINISH 

or else A LOOKAHEAD.START = SET VALUE T'SUCC(THE MERGE.FINI5H) then 
-- yes, it's a merge - but a 'full' one ? 
APOS := APOS + 1; -- this is saying, we 'accept' this element 
if ALOOKAHEAD.FINISH > THE MERGE.FINISH then -- is an overlap merge 	... (2) 

-- this dominates, so we need to *flip*  PIVOT 
THE MERGE. FINISH := ALOOKAHEAD . FINISH; 
-- check if there are B elements to merge, if so, setup LOOKAHEAD 
if BPOS > B_END then exit; end if; 
BLOOKAHEAD := GET (B.SLICES,BPOS); 
PIVOT := B_set; -- indicate the flip 

else -- A_LOOKHEAD is fully enclosed - no need to flip PIVOT, 
-- so lookahead on B again for more merges  

-- check if there are A elements to merge, if so, setup LOOKAHEAD 
if APOS > A END then exit; end if; 
ALOOKAHEAD 	GET (A. SLICES, A P05); 

end if; 



else -- that's it, 	there is 	'too' big a gap to the next A element, 	so exit ... (3) 
exit; 

end if; 
when B_set 	> 

-- the following if statement is complicated, 	'cause we don't want to hit the 
-- 

 
SET _VALUE _T'LAST limit when checking out the second case shown in (2) above 

if B LOOKAHEAD.START <= THE MERGE.FINISH 
or else B LOOKAHEAD.START = SET VALUE T'SUCC(THE MERGE.FINISH) then 

-- yes, 	it's a merge - but a 	'full' 	one ? 
BPOS := BPOS + 1; -- this is saying, we 'accept' this element 
if B_LOOKAHEAD.FINISH > THE _MERGE.FINISH then -- is an overlap merge 	...  

-- this dominates, so we need to *flip*  PIVOT 
THE _MERGE. FINISH := B LOOKAHEAD . FINISH; 
-- check if there are A elements to merge, if so, setup LOOKAHEAD 
if A POS > A END then exit; end if; 
ALOOKAHEAD T= GET (A. SLICES,APOS); 
PIVOT := A_set; -- indicate the flip 

else -- B_LOOKHEAD is fully enclosed - no need to flip PIVOT, 
-- so lookahead on B again for more merges 	 ... (1) 

-- check if there are B elements to merge, if so, setup LOOKAHEAD 
if B POS > B_END then exit; end if; 
BLOOKAHEAD := GET (B. SLICES, B_POS); 

end if; 
else -- that's it, there is 	'too' big a gap to the next B element, 	so exit ...  

exit; 
end if; 

end case; 
end loop; 

we get here, we've 'sucked' in as much as possible, so we now add the element to NEW—SET 
UU(NWS 	J. .SLLS, THIS => THE MERGE); 
-- now we carry on round the loop for the next load that we can try and merge 

end if; 
end loop; 
-- once we get here, the UNION should be completed, so 
return NEW—SET; 

end UNION; 
--J ---------------------------------------------------------------------------------------------------- 

] -- 

Figure A-7. Union Algorithm 


