

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Sparse Inverse Covariance Estimation in

Gaussian Graphical Models

Peter Raymond Orchard
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute for Adaptive and Neural Computation

School of Informatics

University of Edinburgh

2014

Abstract

One of the fundamental tasks in science is to find explainable relationships between

observed phenomena. Recent work has addressed this problem by attempting to learn

the structure of graphical models - especially Gaussian models - by the imposition of

sparsity constraints.

The graphical lasso is a popular method for learning the structure of a Gaussian

model. It uses regularisation to impose sparsity. In real-world problems, there may be

latent variables that confound the relationships between the observed variables. Ignor-

ing these latents, and imposing sparsity in the space of the visibles, may lead to the

pruning of important structural relationships. We address this problem by introduc-

ing an expectation maximisation (EM) method for learning a Gaussian model that is

sparse in the joint space of visible and latent variables. By extending this to a condi-

tional mixture, we introduce multiple structures, and allow side information to be used

to predict which structure is most appropriate for each data point. Finally, we handle

non-Gaussian data by extending each sparse latent Gaussian to a Gaussian copula. We

train these models on a financial data set; we find the structures to be interpretable, and

the new models to perform better than their existing competitors.

A potential problem with the mixture model is that it does not require the structure

to persist in time, whereas this may be expected in practice. So we construct an input-

output HMM with sparse Gaussian emissions. But the main result is that, provided the

side information is rich enough, the temporal component of the model provides little

benefit, and reduces efficiency considerably.

The GWishart distribution may be used as the basis for a Bayesian approach to

learning a sparse Gaussian. However, sampling from this distribution often limits the

efficiency of inference in these models. We make a small change to the state-of-the-

art block Gibbs sampler to improve its efficiency. We then introduce a Hamiltonian

Monte Carlo sampler that is much more efficient than block Gibbs, especially in high

dimensions. We use these samplers to compare a Bayesian approach to learning a

sparse Gaussian with the (non-Bayesian) graphical lasso. We find that, even when

limited to the same time budget, the Bayesian method can perform better.

In summary, this thesis introduces practically useful advances in structure learning

for Gaussian graphical models and their extensions. The contributions include the ad-

dition of latent variables, a non-Gaussian extension, (temporal) conditional mixtures,

and methods for efficient inference in a Bayesian formulation.

i

Lay Summary

One of the fundamental tasks in science is to find and explain relationships be-

tween observed phenomena. For example, consider a set of stocks whose prices are

recorded daily. One might expect that the prices of companies in the same market sec-

tor, or companies that have business relationships, would move together. The task is to

uncover such dependencies from the price data alone.

This type of problem has received considerable attention in recent years. However,

most methods do not take account of possible unobserved factors that may influence

the observations; if these were known, the dependencies may be more easily explained.

Continuing the financial example, a set of stock prices may appear to be interrelated

in a complex manner, but if it were known that they are all from the same market

sector, that would explain much about their relationships. We introduce a method to

take unobserved factors into account.

We extend this method in various ways to make it more useful in practical sit-

uations. One way is to incorporate “side information”. This is additional observed

data that help us to predict the phenomena of interest. In the financial example, side

information may consist of market indices or measures of market volatility.

We then study the question of whether it is useful to add a temporal component to

these methods. For example, we might try to learn how strongly a bull or bear market

persists in time. We find that the temporal component is indeed beneficial, unless the

available side information is strongly predictive of the market state.

Finally, we study a “Bayesian” approach to the problem of learning relationships

between observed phenomena. The Bayesian approach is more principled – more “cor-

rect” in some sense – but is often thought to run more slowly. We introduce a procedure

that is more efficient than existing methods. We then compare the Bayesian approach

with a popular alternative technique, and demonstrate that the Bayesian method can

perform better, even when both methods are allowed to run for the same time.

ii

Acknowledgements
I have been tremendously fortunate in the extent and quality of the supervision afforded

to me during this work. My primary supervisor, Amos Storkey, guided me expertly

through the PhD, giving me the freedom to pursue my own ideas, but challenging me

and steering me in the right direction when necessary. His friendly, approachable na-

ture make for a pleasant work environment, while his incredible knowledge and insight

never cease to amaze me. My second supervisor, Felix Agakov, spent an incredible

amount of time with me, discussing and developing the ideas in this thesis. His pa-

tience and work ethic are inspirational. I especially covet his astonishing ability to see

immediately the practical applications of novel research. Without Amos and Felix, this

PhD would not have been possible.

I also wish to thank the following people for their assistance in the course of this

work: Subramanian Ramamoorthy, the third member of my PhD advisory panel, for

reviewing my work and offering many helpful suggestions; Yichuan Zhang for many

discussions concerning Hamiltonian Monte Carlo sampling, and for sharing his code;

Iain Murray for some helpful discussions; and Hao Wang for sharing his code.

The Edinburgh machine learning department is a fantastic place to work: you are

surrounded by smart, intelligent, motivated people. The research environment is both

friendly and intellectually stimulating. I have learned so much during our reading

groups and discussion sessions. I am grateful to the department for the PhD studentship

allocated to me, and to the Engineering and Physical Sciences Research Council (EP-

SRC) for supplying that source of funding. Additionally, I thank the department for

providing me funding to attend some excellent conferences.

I have made some amazing friends during my time in Edinburgh. I am grateful

to Athina Spiliopoulou for her technical input, support and encouragement, and all

the coffee breaks in the park; to Benjamin Rosman for his technical suggestions, and

the many and varied lunch-time discussions; and all the many people both within and

outside the Informatics Forum who made my time on the PhD course so interesting

and enjoyable.

Most endeavours in life begin with the support of family. I would never have been

in a position to begin this PhD without the incredible people that brought me up, pro-

vided for me, educated, and inspired me throughout my life. My deepest gratitude goes

to my parents, Joan and Peter Orchard, and my sister Dionne Paull, for the loving, sta-

ble, close-knit family on which I can always depend. I am thankful to my grandparents,

Marie and Frederick Bailey, and Joan and Archibald Orchard, whose love and sense

iii

of fun had a profound impact during my formative years. Finally, I am grateful to my

young nieces, Darcey and Mari Paull, whose presence always brings a smile to my

face.

iv

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Peter Raymond Orchard)

v

Table of Contents

Notation ix

1 Introduction 1

2 L1-Penalised Latent Gaussian Models 9
2.1 Background . 10

2.1.1 Shrinkage Methods . 10

2.1.2 Graphical Lasso . 14

2.1.3 Structure Learning in a Latent Gaussian Model 16

2.1.4 Copulas . 18

2.1.5 The Nonparanormal Distribution 19

2.2 Sparse Precision Estimation in a Latent Gaussian Model 20

2.2.1 A Sparse, Latent, Inverse Covariance Estimator 21

2.2.2 An EM Algorithm for SLICE 25

2.3 A Conditional Mixture of Sparse Latent Gaussians 28

2.3.1 A Conditional Mixture of SLICE Models 29

2.3.2 An EM Algorithm for MSLICE 31

2.4 Sparse Non-Gaussian Models . 35

2.4.1 Sparse Gaussian Copulas . 36

2.4.2 Non-Gaussian Extension of MSLICE 38

2.5 Evaluation . 42

2.5.1 The Data . 42

2.5.2 Comparison of Single-Component Methods 42

2.5.3 Evaluation of Multi-Component Methods 45

2.5.4 Comparison on High-Dimensional Data 49

2.5.5 Evaluation of Computational Costs 50

2.6 Conclusions and Future Work . 56

vi

2.6.1 Context-Dependent Precisions 58

3 Temporal Sparse Gaussian Models 62
3.1 Background: The Input-Output HMM 63

3.2 A Sparse Input-Output HMM . 65

3.2.1 An EM Algorithm for CopTGLASSO 67

3.3 Experiments . 69

3.3.1 The Data . 69

3.3.2 Single-Window Experiment 70

3.3.3 Multi-Window Experiment 74

3.3.4 Computational Costs . 77

3.4 Conclusions and Future Work . 79

4 Sparse Bayesian Gaussian Graphical Models 81
4.1 Background . 83

4.1.1 The Wishart Distribution . 83

4.1.2 The GWishart Distribution 83

4.1.3 A Spike-and-Slab Gaussian Graphical Model 86

4.1.4 Hamiltonian Monte Carlo 89

4.2 Improved Sampling in the GWishart 91

4.2.1 Choosing the Covering Set in Block Gibbs 93

4.2.2 Sampling the GWishart with HMC 93

4.3 Evaluation . 96

4.3.1 Verification of Correctness 96

4.3.2 Comparing the HMC and Block Gibbs Samplers 98

4.3.3 Comparing Methods for Computing the Mass Matrix 102

4.3.4 Comparing the Bayesian GGM and the Graphical Lasso . . . 103

4.4 Conclusions and Future Work . 110

4.4.1 Comparing the WL and BDMCMC Samplers 111

4.4.2 Sampling the GWishart Hyperparameters 111

5 Conclusions 113
5.1 Contributions . 113

5.2 Future Directions . 115

5.2.1 Latent-Variable Extensions of the Bayesian GGM 115

5.2.2 Conditional Mixtures and Copulas 117

vii

5.3 Concluding Remarks . 118

Appendices 123

A CopMSLICE EM Derivation 124
A.1 The Mixing Model Parameters . 125

A.2 The Precision Matrix . 127

A.3 The Gaussianising Functions . 129

B The FTSE Data Set 131

C The S&P 500 Data Set 134
C.1 Assets . 134

C.2 Technical Indicators . 136

D HMC for the GWishart – Derivations 137
D.1 The Standard Representation . 137

D.2 The Cholesky Representation . 138

Bibliography 140

viii

Notation

Vectors and Matrices

a Scalars are written in plain typeface.

aaa Vectors are lowercase letters written in bold.

AAA Matrices are uppercase letters written in bold.

ai Element i of vector aaa.

Ai j Element (i, j) of matrix AAA.

AAAi: Row i of matrix AAA.

AAA: j Column j of matrix AAA.

AAAI ,J The matrix consisting of the rows I and the columns J of matrix AAA (where

I and J are sets of indices).

aaai The ith in a sequence of vectors.

a, aaa, AAA Random variables, vectors, and matrices are underlined to distinguish

them from their realisations.

‖aaa‖2 Euclidean norm (2-norm) of vector aaa.

diag(AAA) The diagonal of matrix AAA as a column vector.

vec(AAA) Vector consisting of the stacked columns of matrix AAA, leftmost column

first.

• If it is clear from context that a symbol is a random variable, the underline is

usually omitted.

ix

Mathematical Symbols

R The real numbers.

R+ The non-negative real numbers.

S+ The positive-semidefinite cone.

S++ The positive-definite cone.

AAA� 0 AAA is positive-definite.

AAA� 0 AAA is positive-semidefinite.

� Hadamard product.

⊗ Kronecker product.

◦ Function composition.

E [a] Expectation of a.

Eθθθ [a] Expectation of a over a distribution parameterised by θθθ.

Distributions

N (µµµ,ΣΣΣ) The Gaussian distribution with mean µµµ and covariance ΣΣΣ.

Φ(y) The standard Gaussian cumulative distribution function.

W (d,DDD) The Wishart distribution with d degrees of freedom and scale matrix DDD.

WG(b,DDD) The GWishart distribution over graph G, with degrees of freedom pa-

rameter b, and scale matrix DDD.

χ2(k) The chi-squared distribution with k degrees of freedom.

x

Conventions

xxx or x̃xx Vector of covariates (side information).

yyy or ỹyy Vector of visible (observed) variables.

zzz Vector of hidden (latent) variables.

ΣΣΣ Covariance matrix of a Gaussian model.

ΛΛΛ Precision matrix of a Gaussian model.

C Dimensionality of the covariate vector.

V Dimensionality of the visible vector.

H Dimensionality of the hidden vector.

N Number of data points.

M Number of mixture components.

θθθ
(t) Parenthesised superscript t is the iteration index.

G A graph.

GGG The matrix representation of graph G.

• We use x̃xx to denote the augmentation of xxx with a unit element.

• Vectors yyy and ỹyy are usually related by an invertible transformation.

• Lower-case versions of the dimensionality constants are typically used to index

sums and products over the respective vectors, e.g. n is used to index a sum over

N data points.

• Data sets are stored in matrices where each row is a single data point: XXX for the

covariates, YYY for the observed variables, and so on.

Table of Models

Chapters 2 and 3 discuss many related models. For reference purposes, the following

table lists all the models mentioned in those chapters, where a checkmark indicates

that a model possesses one of the following features.

• Latents – The model possesses Gaussian latent variables.

• Side – The model incorporates side information (conditioned covariates).

• Multi-State – The model has a discrete latent state. This includes mixtures,

mixtures of experts, HMMs, and input-output HMMs.

xi

• Copulas – The observed variables are non-Gaussian; this is achieved through

Gaussian copulas.

• Temporal – All the temporal models here have a discrete latent state. The state

depends on its value at the previous time step.

Model Latents Side Multi-State Copulas Temporal

GLASSO

MRCE X

SLR Implicit

SLICE X

SLICE+Side X X

MGLASSO X X

MSLICE X X X

MSLICE-NoSide X X

CopGLASSO X

CopMRCE X X

CopSLICE X X

CopMGLASSO X X X

CopMSLICE X X X X

TFAC X X X

TGLASSO X X X

TSLICE X X X X

CopTGLASSO X X X X

CopTSLICE X X X X X

Note the following.

1. TFAC and TGLASSO share the same features in this table. In fact, TFAC is

a special case of TGLASSO in which the transition and mean parameters are

unpenalised while the penalty on the precision elements approaches infinity (en-

forcing diagonal precisions).

2. We have not implemented TSLICE and CopTSLICE. They are straightforward

extensions of other models, but we expect they would be slow to train.

xii

Abbreviation Reference

The following table contains each abbreviation used in this thesis, along with a page

number of either the first use, or on which more information can be found.

Abbreviation Page Meaning

AST 117 Adaptive Simulated Tempering

BDMCMC 87 Birth-Death Markov Chain Monte Carlo

BG-HCC 98 Block Gibbs with Heuristic Clique Cover

BG-MC 98 Block Gibbs with Maximal Cliques

CBF 87 Conditional Bayes Factor

CopGLASSO 36 Copula GLASSO

CopMGLASSO 38 Copula MGLASSO

CopMRCE 69 Copula MRCE

CopMSLICE 38 Copula MSLICE

CopSLICE 36 Copula SLICE

CopTGLASSO 66 Copula TGLASSO

CopTSLICE 80 Copula TSLICE

CRF 6 Conditional Random Field

DLR 98 Dobra-Lenkoski-Rodriguez sampler

ECME 24 Expectation/Conditional Maximisation Either

EM 10 Expectation Maximisation

ESS 100 Effective Sample Size

FA 22 Factor Analysis

GARCH 6 Generalised Autoregressive Conditional

Heteroskedasticity

GARCH-X 6 GARCH model incorporating covariates

GGM 81 Gaussian Graphical Model

GLASSO 14 Graphical LASSO

Go-CART 59 Graph-optimised Classification And Regression Trees

GPD 36 Generalised Pareto Distribution

HMC 89 Hamiltonian Monte Carlo

IO-HMM 63 Input-Output Hidden Markov Model

KDE 37 Kernel Density Estimator

KP 57 Kronecker Product

KS 57 Kronecker Sum

xiii

Abbreviation Page Meaning

LARS 13 Least Angle Regression method for LASSO

LASSO 11 Least Absolute Shrinkage and Selection Operator

MAP 14 Maximum A Posteriori

MCMC 85 Markov Chain Monte Carlo

MFA 33 Mixture of Factor Analysers

MGARCH 6 Multivariate GARCH

MGLASSO 38 Conditional Mixture of GLASSO

MH 85 Metropolis-Hastings

MRCE 69 Multivariate Regression with Covariance Estimation

MRF 2 Markov Random Field

MSLICE 29 Conditional Mixture of SLICE

MSLICE-NoSide 45 (Unconditional) Mixture of SLICE

OSA 71 One Step Ahead

(P)PCA 24 (Probabilistic) Principal Component Analysis

QUIC 16 Quadratic Inverse Covariance method for GLASSO

RCA 25 Residual Component Analysis

RMHMC 111 Riemann Manifold HMC

SCAD 14 Smoothly Clipped Absolute Deviation penalty

SLICE 21 Sparse Latent Inverse Covariance Estimator

SLICE+Side 45 Conditional SLICE model

SLR 17 Sparse/Low-Rank decomposition method

TFAC 69 IO-HMM model with factorised Gaussian emissions

TGLASSO 66 Temporal GLASSO model

TSLICE 80 Temporal SLICE model

WL 86 Wang-Li sampler

xiv

Chapter 1

Introduction

Learning and exploiting structure in data is a fundamental machine learning problem.

Incorporating prior structural knowledge into a model, and learning the model structure

from data, are important across many application domains and tasks. For example, in

systems biology, one is often interested in learning structure for the purpose of knowl-

edge discovery; in finance, the goal is often prediction of some measure of wealth.

The word “structure” is somewhat vague, and so requires some qualification. In

one usage, to say that data is “structured” implies the existence of a sparsely connected

graphical model that gives rise to the observations. Conversely, “unstructured” data

may be too complex to be accurately represented by a sparse graphical model. This

is primarily what we mean by structure in this thesis. Sometimes “structure” refers

to the causal relationships between a set of variables; this thesis does not address the

problem of learning causal relationships.

In real-world problems, data are often structured; that is, we have reason to believe

that there exists an underlying sparse graphical model that accurately represents the

relationships between the variables. We focus on this type of problem in this thesis.

Using a sparse model may provide efficiency advantages: inference may be faster in a

sparse model, and fewer data may be required to learn the model parameters. Sparse

models are common in machine learning, and include trees, Markov chains, restricted

Boltzmann machines, and so on. But if the relationships between the variables are un-

known or uncertain, fixing the graph structure prior to learning may result in a trained

model that does not accurately represent the data. In such cases, learning a sparse

graph structure from data may uncover interesting relationships between the variables,

and result in a more efficient model. Therefore, we view structure learning as a prob-

abilistic inference problem in which the underlying graphical model is constrained to

1

Chapter 1. Introduction 2

be sparse.

Graph-learning methods may be divided into two classes: those that learn only a

graph structure, and those that learn a full probabilistic model. The former may be

sufficient if the goal is knowledge discovery, but prediction usually requires a fully

specified model. In either case, the key problem is that the number of possible graphs

increases exponentially with the number of nodes. So the naive approach of iterating

over all possible graphs is feasible only for low-dimensional problems. Nevertheless,

standard methods for learning graph structure are based on combinatorial search, of-

ten involving heuristics for traversing the space of structures. The goal is typically

to find graphs that score highly according to some measure, or satisfy certain condi-

tional independence constraints. See, for example, (Chow and Liu, 1968; Heckerman

et al., 1999; Friedman et al., 1999; Silva et al., 2006; Elidan et al., 2007; Maathius and

Kalisch, 2009). The majority of such approaches cannot be easily extended to handle

latent variables, or may only be used for limited classes of models. Kemp and Tenen-

baum (2008) described an extension that selects the best fitting model from several

candidate structural forms. Other methods may only be used to learn structures of spe-

cific predefined forms, with hard constraints on the number of node parents and their

cardinality in a directed network (Zhang, 2004; Harmeling and Williams, 2011). While

these approaches are justified when it is known a priori that the structure belongs to

a standard class of models, they may not be appropriate in a more general real-world

setting with richer underlying models. For example, constraining the graph to have low

tree width (Bradley and Guestrin, 2010) is not easily justified in finance, where share

prices may establish rich dependencies, both within and across market sector bound-

aries. In some cases an explicit constraint on the structural form of a model can make

the inference problem more complex than necessary, and so less scalable to higher

dimensions.

However, restricting the model to a multivariate Gaussian makes inference con-

siderably easier, and so this case has been well-studied in the recent literature. The

inverse covariance matrix – called the precision matrix – is straightforwardly related

to the model’s Markov random field (MRF): zeros in the precision matrix correspond

to missing edges in the MRF. Thus, in the case of a multivariate Gaussian, structure

learning can be seen as the problem of learning a sparse precision matrix. This prob-

lem is a central feature of this thesis. There are many potential applications of sparse

Gaussian modelling across a variety of domains. To give one example, Krumsiek et al.

(2011) address the problem of reconstructing a metabolic reaction network by fitting

Chapter 1. Introduction 3

a sparse Gaussian model to a data set consisting of reactant concentrations measured

intermittently over a period of time. They show that many of the strongest edges in the

learned model correspond to known pathway interactions.

In this thesis, we shall focus primarily on problems from the financial domain.

Since financial problems often involve prediction, we shall be interested in learning

full predictive models, as opposed to the graphical model structure only. Covariance

is often used as a measure of risk in finance, so obtaining an accurate estimate of a

covariance matrix is important in many financial scenarios. For example, the portfo-

lio selection problem entails that wealth be distributed among a set of assets such as

to optimise investor utility – which often means keeping risk low while maximising

returns. In financial risk management, a company may wish to know how changes in

market conditions – and extreme changes in particular – might affect its investments.

In this case, it is desirable to know how the covariance, and therefore the risk, responds

to changes in the market.

In situations where data are scarce relative to the number of parameters in a chosen

model, the data alone may be insufficient to accurately learn the parameters. Regular-

isation – the imposition of prior knowledge – may be necessary to learn an adequate

model. Shrinkage is a form of regularisation in which a statistical estimator is com-

bined with a component that encourages the estimate towards a supplied value. For

example, Ledoit and Wolf (2003) estimate the covariance of the returns of a set of

stocks by shrinking the empirical covariance towards an estimate produced by a sim-

ple one-factor model.

Sparsity may be imposed during optimisation of model parameters by introducing a

term to shrink the parameters towards zero. Treating structure learning as an optimisa-

tion problem rather than a combinatorial search can reduce computation time. Various

types of shrinkage penalty with different properties have been studied. For example,

in bridge regression (Frank and Friedman, 1993), the objective function consists of the

likelihood and a regularisation term of the form γ∑
C
c=1 |βc|α, where {βc} are the re-

gression parameters, γ is the strength of the shrinkage, and α determines the properties

of the regulariser. If α ≥ 1, the optimisation problem is convex; the particular case of

α = 2 corresponds to ridge regression (Hoerl and Kennard, 1970). If α≤ 1, the learned

parameter vector βββ may be sparse. The case α = 1 corresponds to LASSO regression

(Tibshirani, 1996), and has both properties: the optimisation problem is convex, and

the solutions may be sparse. Regularisation terms of this form – called L1 penalties –

feature strongly in Chapters 2 and 3 of this thesis.

Chapter 1. Introduction 4

There has been much recent much work on learning sparse structures of Gaussian

models. See, for example, (Meinshausen and Bühlmann, 2006; Levina et al., 2008;

Lake and Tenenbaum, 2010). One particularly popular approach has been to maximise

the likelihood of a data set while imposing L1 penalties on the parameters. (Since the

L1 penalties can be viewed as coming from a Laplace prior, the result is the maximum

a posteriori (MAP) solution). This problem is often known as the graphical lasso.

Algorithms for solving it have become progressively faster in recent years; see, for

example (Banerjee et al., 2008; Friedman et al., 2008; Duchi et al., 2008; d’Aspremont

et al., 2008; Scheinberg et al., 2010; Hsieh et al., 2011; Rolfs et al., 2012; Hsieh et al.,

2013).

Our work (Agakov et al., 2012), presented primarily in Chapter 2, is motivated by a

number of observations. First, use of the graphical lasso model makes the assumption

that the data is complete – that is, there are no missing observations or latent factors

influencing the relations between the modelled variables. However, hidden or miss-

ing variables are common in real-world applications. We observe that the underlying

structure in a data set may only become apparent in an augmented space of observed

and latent variables. That is, an accurate model of the data may need to be dense if

only the observed variables are included in the model; applying sparsity constraints

may prune important relationships and result in misleading representations of under-

lying structure. But incorporating latent variables into the model may allow a sparser,

more parsimonious model, while retaining accuracy. Note that sparseness of the joint

structure is a standard feature of many commonly used latent variable models – for

example latent trees, hidden Markov models, and restricted Boltzmann machines – all

of which may give rise to dense marginal structures.

The second observation is that in many real-life applications, structural dependen-

cies between variables are rarely homogeneous for all data points and may often de-

pend on poorly understood latent states. In finance, for example, dependencies be-

tween asset returns may vary strongly according to market conditions. A model with a

single, fixed graph structure may be inadequate to capture such variation.

The third observation is that, in practice, we may have access to a vector of side in-

formation (covariates): a set of observed variables whose distribution is of no interest,

but which may be predictive of changes to the model. Such a vector may consist of fea-

tures constructed by a domain expert, and may be very high-dimensional. If the model

is being used for decision support, it may be desirable to understand which features

of this covariate vector are most predictive of changes in the model. In finance, for

Chapter 1. Introduction 5

example, a transition to a new market regime may be influenced by a complex mixture

of investor sentiment, rumour, news announcements, econometric technical indicators,

and macro-economic factors – and a fund manager may wish to know which of these

are most predictive of the transitions. Liu et al. (2010) incorporate side information

into the graphical lasso: they learn a partition of the covariate space, and train a dif-

ferent graphical lasso model in each region. Rothman et al. (2010) utilise covariates

in their linear regression model with sparse Gaussian noise; they learn the regression

parameters jointly with the Gaussian precision, the latter trained by graphical lasso.

Our fourth observation is simply that a Gaussian will often be a poor model of real-

world data. It has long been known that financial returns data are non-Gaussian; see,

for example (Fama, 1965). One way to handle this is to decouple the marginal distri-

butions of the observed variables from the dependency structure. A simple distribution

is used for the dependence structure, while more flexible distributions are used for the

marginals. Since one-dimensional distributions are relatively straightforward to work

with, the more complex, flexible distributions may still be fitted quickly and accurately.

Copulas are the mechanism that allow this decoupling of the marginals and the depen-

dence structure. We describe copulas in more detail in Section 2.1.4. If a multivariate

Gaussian is used for the dependence model, then the copula is known as a Gaussian

copula. Copula methods, and the Gaussian copula in particular, have recently found

wide use in the financial domain. Genest et al. (2009) conducted a bibliometric survey,

and found a rapid increase in the publication rate of literature on copulas in finance

from 1999. They found that copula applications in finance were spread roughly evenly

across four categories: risk management, portfolio management, derivatives pricing,

and risk measurement. For more detail on the use of copulas in finance, especially

regarding credit risk and derivatives pricing, see the book by Cherubini et al. (2004).

Patton (2009) gives a brief but broad review of copula methods for financial time series.

Active research continues in the four categories discussed by Genest et al. (2009); vine

copulas – in which a multivariate copula is constructed from a set of bivariate copulas

– are currently a popular topic; and the use of copulas to study the dependence and co-

movements of financial variables is now common; see, for example, (Reboredo, 2011;

Brechmann et al., 2012; Czado et al., 2013; Low et al., 2013; Boubaker and Sghaier,

2013; Wang et al., 2013; Aloui et al., 2013).

Common methods for high-dimensional sparse structure learning either ignore the

four observations discussed above – as is the case for fully observed sparse Gaussian

MRFs – or address only one of them in a manner that is not easily extensible; see, for

Chapter 1. Introduction 6

example, (Liu et al., 2009; Chandrasekaran et al., 2010). Motivated by real-world prob-

lems, in Chapter 2 we extend existing approaches to describe a sparse discriminative

mixture of sparse latent Gaussian copulas. The model can be used to learn multiple in-

terpretable latent variable structures with non-Gaussian marginals, each corresponding

to a unique unknown state, and to identify explanatory features useful for predicting

structural changes.

The work described in Chapter 3 is motivated by some additional observations.

In many real-world problems – in particular in the financial domain which motivates

much of our work – the relationships between the variables may be expected to persist

in time. Furthermore, covariates may provide information about changes to the model

structure. We therefore extend the stationary models developed in Chapter 2 to input-

output hidden Markov models (IO-HMMs) (Bengio and Frasconi, 1995).

Alternatively, the Chapter 3 work can be motivated by viewing it as a standalone

work on temporal modelling. IO-HMMs, along with dynamic extensions (Sutton et al.,

2007) of conditional random fields (CRFs) (Lafferty et al., 2001), are two popular con-

ditional methods for time series. In practice, however, these models either ignore con-

straints on the structural sparsity (which gives rise to uninterpretable inferences), or

much more commonly over-constrain the models to have relatively trivial dependence

structures (in which case there is little interesting structure to discover). For exam-

ple, the common applications of dynamic CRFs make factorial assumptions about the

distributions of the outcomes (Sutton et al., 2007; Sokolovska et al., 2010), while IO-

HMMs commonly exploit uncorrelated Gaussians as emission distributions (Bengio

et al., 2001; Ernst et al., 2007). We extend the latter approaches to incorporate flexible,

interpretable emission structures that are learned from data.

In finance, a popular thread of research has focussed on extending autoregressive

and moving-average models for the means of the observations to their variances (En-

gle, 1982). This gave rise to a broad family of generalised autoregressive conditional

heteroskedasticity (GARCH) methods (Bollerslev, 1986; Bollerslev et al., 1994) for

tracking variance changes in returns of financial assets. Most of the applications of

such methods have focused on modelling univariate observations, though multivariate

extensions (MGARCH) have been proposed and are increasingly used in quantitative

finance (Bauwens et al., 2006). Some GARCH methods – often named GARCH-X

– make use of side information; see, for example, (Fleming et al., 2008; Han, 2010)

and references therein. Often, the covariate vector is low-dimensional, but modern

methods may incorporate high-dimensional covariates and feature selection; see (Su-

Chapter 1. Introduction 7

carrat et al., 2013), for example. Our IO-HMM model described in Chapter 3 permits

high-dimensional side information to influence the changes in structure over time.

In Chapters 2 and 3, our methods compute a MAP solution to estimate model

parameters. Bayesian methods may offer a more principled approach, but they are

often considered to be much slower than optimisation methods. However, Mohamed

et al. (2012) recently compared the L1 approach with Bayesian methods based on

the “spike-and-slab” prior, focussing on unsupervised linear latent variable models.

They found that the Bayesian methods could outperform L1, even when both were

constrained by the same time budget. In Chapter 4, we use a Bayesian model based on

the GWishart distribution to address the question of whether a Bayesian method can

outperform the L1 optimisation approach to infer sparse precision matrices.

The GWishart distribution generalises the Wishart such that draws from the distri-

bution respect a given graph structure; see section 4.1.2. A class of sparse Bayesian

Gaussian graphical models based on the GWishart has been under development in par-

allel with the graphical lasso. See, for example, (Roverato, 2002; Atay-Kayis and

Massam, 2005; Carvalho and West, 2007; Wang and Carvalho, 2010; Dobra et al.,

2010; Mitsakakis et al., 2011; Lenkoski and Dobra, 2011; Dobra et al., 2011; Wang

and Li, 2012). Inference in these models is often limited by the efficiency with which

the GWishart can be sampled. Wang and Li (2012) demonstrate that the block Gibbs

sampler is currently state-of-the-art for this task. A more efficient sampler would make

inference in GWishart-based models faster, and could make practical the use of more

complex, higher-dimensional models. Hamiltonian Monte Carlo (HMC) samplers –

described in section 4.1.4 – can facilitate fast mixing in distributions where the random

variables are strongly coupled. Furthermore, they naturally take advantage of sparsity:

the bottleneck in HMC is often the computation of the energy gradient with respect to

the distribution parameters. Fewer parameters means fewer gradients to evaluate. In

Chapter 4, we develop an HMC approach to sample from the GWishart distribution.

The thesis is structured as follows. Each chapter begins with a review of the rel-

evant background literature. In Chapter 2, we make a number of extensions to the

graphical lasso model, culminating in a mixture of Gaussian copula experts. We apply

the new models to real-world financial returns data, and compare test log likelihoods

with competing models. We also investigate the interpretability of the learned struc-

tures. In Chapter 3, we develop IO-HMM extensions of our models, and investigate

the degree to which they improve performance on financial returns data. We also study

the importance of the side information in this chapter. In Chapter 4, we introduce an

Chapter 1. Introduction 8

HMC approach for sampling the GWishart distribution, and compare its efficiency with

the block Gibbs sampler. We use the new sampler within a sparse Bayesian model in

which joint samples of the graph structure and precision matrix are required, and com-

pare the Bayesian approach with the graphical lasso when both models have the same

time budget. We summarise the thesis contributions and conclude in Chapter 5.

Chapter 2

L1-Penalised Latent Gaussian Models

In Section 1, we discussed the close relationship between sparsity and structure. In

the particular case of a multivariate Gaussian model, the structure can be read directly

from the inverse covariance (precision) matrix: edges in the model’s Markov Random

Field (MRF) are present if and only if the corresponding entry in the precision matrix

is non-zero. So a sparse estimator of the precision matrix is also an estimator of the

MRF.

Shrinkage estimators are a class of estimators characterised by the combination

of any estimator with a component that encourages the parameter estimate towards a

supplied value. Sparse estimators may be designed by shrinking parameters towards

zero. In this chapter, we study the application of such estimators to learning sparse

precision matrices in Gaussian models.

Existing methods focus on models in which all variables are observed. In practice,

latent variables may be present that confound the relationships between the observed

variables. In some scenarios, the structure in the joint space of the observed and latent

variables may be simpler than in the visible space alone. In this chapter, we introduce

a method, which we call SLICE, for learning a sparse precision matrix of a Gaussian

model with latent variables.

With practical applications in mind, especially to the financial domain, we extend

the basic SLICE method in various ways. The structure of the asset returns in a finan-

cial market is known not to be fixed; in particular, this structure depends on market

volatility. We extend SLICE to a mixture model to capture variation of structure, and

we utilise side information – the market volatility in this example – to provide infor-

mation on which structure is in use for each data point. Thus SLICE is extended to

a conditional mixture of sparse latent Gaussians, which we call MSLICE. Finally, be-

9

Chapter 2. L1-Penalised Latent Gaussian Models 10

cause real-world data such as asset returns are often poorly modelled by a Gaussian,

we extend SLICE and MSLICE to handle this case. We learn the marginals of the

observed variables from data, and use these to transform each variable into a new vari-

able with Gaussian marginal, and then apply the existing sparse Gaussian methods.

For SLICE, the marginals can be learned in a preprocessing step, but for MSLICE, the

marginals must be trained simultaneously with the rest of the model.

The chapter is organised as follows. Section 2.1 presents the background material.

This begins with the L1-penalisation approach to shrinkage, and in particular the prob-

lem of sparse precision estimation in a Gaussian model. In Section 2.1.3, we explain

why it may be necessary to take latent variables into account when learning structure,

and then describe an existing method that does so, albeit with an implicit representa-

tion of the latent variables. Background material on copulas and their application to

sparse structure learning is presented in Sections 2.1.4 and 2.1.5.

Section 2.2 is devoted to the SLICE method. We discuss our motivations, then

present the estimator itself, and the expectation maximisation (EM) algorithm for com-

puting it. In Section 2.3.1, we present the mixture of experts extension, MSLICE, fol-

lowed by its EM algorithm. We describe non-Gaussian extensions of these models,

utilising copulas, in Section 2.4.

Section 2.5 contains an evaluation of the new methods, and a comparison with ex-

isting methods. In Section 2.5.2, we compare single-component (non-mixture) meth-

ods, demonstrating that the inclusion of latent variables can lead to a more parsimo-

nious model, and that the non-Gaussian methods perform better than the methods they

extend. Section 2.5.3 evaluates the mixture models. We show that the mixtures perform

better than non-mixtures (as expected), and that the model learns to use the side infor-

mation to select the most appropriate structure for each data point. We illustrate that

the mixture components may be interpreted in terms of the side, and that the learned

structures may be explainable with some domain knowledge.

We draw conclusions and discuss future work in Section 2.6.

2.1 Background

2.1.1 Shrinkage Methods

Our interest in shrinkage methods is primarily in their application to learning sparse

precision matrices. But these methods were applied to regression problems before the

Chapter 2. L1-Penalised Latent Gaussian Models 11

recent surge in popularity of sparse precision estimation. The maximum likelihood

estimator for the parameters in a regression problem may have undesirable properties,

especially if the data set is small. In particular, with C predictor variables and a data set

of size N < C, the linear regression problem is under-defined, and there are infinitely

many likelihood-equivalent solutions. Regularisation may be introduced to address

this problem; one form of regularisation is to augment the objective with a penalty

term which depends on the parameter settings.

Hoerl and Kennard (1970) introduced ridge regression, in which an L2 penalty

augments the maximum likelihood objective for the linear regression model with inde-

pendent and identically distributed (iid) Gaussian noise. Frank and Friedman (1993)

introduced a generalisation known as bridge regression. Given a matrix of predictors

XXX ∈ RN×C and a vector of targets yyy ∈ RN , the bridge regression estimator of the coef-

ficients βββ ∈ RC is

β̂ββ = argmin
βββ

[
‖yyy−XXXβββ‖2

2 + γ

C

∑
c=1
|βc|α

]
, (2.1)

where γ ∈ R+ is the magnitude of the penalty, and α ∈ R+ determines the properties

of the penalty. Clearly, the penalty term favours parameters βββc that are closer to zero.

Three particular cases for α are worthy of note.

1. α→ 0. In this limit, non-zero parameters are penalised, but the magnitude of

the penalty is otherwise independent of the parameter value. This case is called

subset selection. The size of the selected subset depends on γ.

2. α = 1. The L1 norm of βββ is penalised. This case is the Least Absolute Shrinkage

and Selection Operator (LASSO) of Tibshirani (1996).

3. α = 2. The L2 norm of βββ is penalised. This case corresponds to ridge regression.

To understand the differences between these cases, it is useful to rewrite the optimisa-

tion problem (2.1) in the following equivalent form:

β̂ββ = argmin
βββ

‖yyy−XXXβββ‖2
2, (2.2)

subject to the constraint
C

∑
c=1
|βc|α ≤ t, (2.3)

where t ∈R+ is a function of γ. Figure 2.1 illustrates the shape of the constraint set for

different values of α. The constraint set is convex for α ≥ 1. Convexity is a desirable

Chapter 2. L1-Penalised Latent Gaussian Models 12

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

α = 3

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

α = 2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

α = 1.5

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

α = 1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

α = 0.8

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

α = 0.4

Figure 2.1: Constraint set boundaries in bridge regression for different values of α. The

sets for which α ≤ 1 produce sparse solutions, but a constraint set is only convex if

α≥ 1.

Chapter 2. L1-Penalised Latent Gaussian Models 13

(a) Lasso: α = 1. (b) Ridge: α = 2.

Figure 2.2: Visualisation of lasso and ridge regression. Blue regions are the constraint

sets; red ellipses are contours of the maximum likelihood objective. The solution is

where the contour touches the constraint set. For the lasso, this is on an axis, so one of

the parameters is zero. This is possible because the constraint boundary is not smooth.

For the ridge, that parameter is small, but it is not exactly zero. This diagram is adapted

from Figure 3.11 (Hastie et al., 2009).

property because it means that the optimisation problem has a global maximum.

As discussed in Section 1, sparsity may also be a desirable property of the solution.

In bridge regression, setting α≤ 1 can potentially lead to a solution with many zeros;

but with α > 1, zeros in the solution are rare. This is because the constraint boundary

is smooth where it intersects the axis when α > 1, but non-smooth when α≤ 1. Figure

2.2 illustrates why non-smoothness can lead to sparse solutions by comparing lasso

and ridge.

The lasso is particularly interesting because it is the only estimator in the bridge

family that has both properties: it is convex and results in sparse solutions. It can

be computed by least angle regression (LARS) (Efron et al., 2004), or by coordinate

descent methods such as that implemented by the glmnet software (Friedman et al.,

2010b). However, depending on the application, properties of a shrinkage penalty

beyond those of L1 may be desirable, and so various lasso extensions and modifications

have been studied in the literature. For example, the elastic net (Zou and Hastie, 2005)

was designed to address the following shortcomings of the lasso.

1. When C > N, the lasso selects at most N predictors.

Chapter 2. L1-Penalised Latent Gaussian Models 14

2. If there is a group of highly correlated predictors, the lasso tends to select only

one of them, and does not care which.

3. When N > C and there are high correlations between predictors, Tibshirani

(1996) observes that ridge outperforms lasso.

The elastic net addresses these issues by generalising the lasso to include an additional

ridge penalty, plus a rescaling after optimisation to remove some of the shrinkage. The

empirical results of Zou and Hastie (2005) indicate that the elastic net improves the

prediction performance of the lasso. In the group lasso (Yuan and Lin, 2006), predic-

tors are partitioned into groups, and penalties applied which generalise both the lasso

and ridge penalties. These penalties encourage sparsity at the group level, but not

within groups; that is, entire groups of variables are pruned or retained simultaneously.

Fan and Li (2001) introduce the smoothly clipped absolute deviation (SCAD) penalty,

which behaves similarly to L1 on small parameters, but applies less shrinkage to pa-

rameters with greater magnitude. The resulting estimator has reduced bias compared

to the lasso, but the optimisation problem is non-convex.

The use of L1 penalties to learn sparse solutions is not limited to regression: the

concepts in this section extend naturally to other problems. In particular, our interest

is to use them to learn sparse precision matrices of Gaussian models. We discuss this

problem in the next section.

The optimisation problem (2.1) is equivalent to finding the maximum a posteriori

(MAP) solution of a Gaussian model with a prior of the form

p(βββ) ∝ exp

(
−γ

C

∑
c=1
|βc|α

)
, (2.4)

for γ,α ∈ R++. (Recall that C is the number of predictors). So lasso regression is

the MAP solution with independent Laplace priors on the elements of βββ. (The ridge

uses a Gaussian prior). Note that the Laplace prior itself does not lead to sparsity in

the posterior; it is only in combination with MAP estimation that this prior results in

sparse solutions. In Chapter 4, we look at fully Bayesian methods for modelling and

inferring sparse precisions.

2.1.2 Graphical Lasso

The precision matrix of a Gaussian model determines its Markov random field (MRF):

zeros in the precision correspond to missing edges in the MRF. This can easily be seen

Chapter 2. L1-Penalised Latent Gaussian Models 15

by writing the Gaussian density as a product over nodes and edges. If random vector

yyy∼N
(

µµµ,ΛΛΛ−1
)

, the density

p(yyy) ∝ exp
(
−1

2
(yyy−µµµ)T

ΛΛΛ(yyy−µµµ)
)

(2.5)

=

[
∏

i
exp
(
−1

2
Λii(yi−µi)

2
)][

∏
i 6= j

exp
(
−1

2
Λi j(yi−µi)(y j−µ j)

)]
. (2.6)

Since p
(
yi,y j|yyy\{yi,y j}

)
∝ p(yyy), then clearly yi and y j are conditionally independent

given all the other variables if and only if Λi j = 0. Thus we can learn the MRF by

learning a sparse precision matrix.

One approach to learning a sparse precision is to use a shrinkage estimator. Assume

the mean µµµ is known, or has already been estimated. Now consider the following

estimator for the precision:

Λ̂ΛΛ = argmax
ΛΛΛ

[
logdetΛΛΛ− tr(SSSΛΛΛ)−∑

i, j
Γi j|Λi j|

]
, (2.7)

where SSS is the sample covariance and Γi j ∈ R+. The first two terms comprise the log

likelihood, while the final term specifies the L1 penalties. The log determinant is a

concave function, so the log likelihood is concave. In a similar manner to Equations

(2.2, 2.3), this optimisation can be written as the maximisation of a concave function

(or the minimisation of a convex function) over a convex set; so the optimisation prob-

lem is convex. The penalty matrix ΓΓΓ may be set using prior knowledge. In practice,

the entries of ΓΓΓ are typically assumed to be equal, leaving a single parameter that is

chosen by cross-validation over some plausible range.

Meinshausen and Bühlmann (2006) introduce a method for learning only the edge

set; that is, they learn which elements of ΛΛΛ are non-zero, but not the values of those

elements. They do this by solving an approximate version of problem (2.7): they

perform a lasso regression of each variable on all the rest. Edge (i, j) is included in

the final graphical model if the lasso regressions find a dependence of yi on y j or y j

on yi. (A variant requires the dependence to be present in both directions). Friedman

et al. (2010a) introduce two symmetrised versions of this method to learn ΛΛΛ (not just

the edge set). The first is called the symmetric lasso; it solves problem (2.7) with

the likelihood replaced by a pseudo-likelihood. The second is called the paired group

lasso; it regresses each variable on the rest, but applies a group lasso penalty to pairs

consisting of the regression coefficient of yi on y j and of y j on yi.

Chapter 2. L1-Penalised Latent Gaussian Models 16

Banerjee et al. (2008) derive the dual of problem (2.7), and introduce a block-wise

interior-point method for solving it. Provided ΛΛΛ is initialised to a positive-definite

matrix, it is guaranteed to remain positive-definite, and the algorithm converges to a

globally optimal solution. Banerjee et al. (2008) show that their optimisation method

is equivalent to an iterative application of lasso regression, but they do not perform

the optimisation this way. Friedman et al. (2008) do take this approach, and gain a

substantial increase in efficiency. Friedman et al. (2008) call their method the graphical

lasso, which we often abbreviate to GLASSO. The problem (2.7) is now sometimes

referred to by the same name, and we adhere to this convention.

Considerable research has since been devoted to the graphical lasso, mostly in

an effort to obtain the solution more efficiently. Duchi et al. (2008) use a projected

gradient method for solving the dual problem, while Schmidt et al. (2009) improve on

this method by using a projected quasi-Newton technique. Scheinberg et al. (2010) use

an alternating linearisation method. At present, the fastest reported method appears to

be that of Hsieh et al. (2011) whose quadratic inverse covariance (QUIC) algorithm is

based on Newton’s method.

2.1.3 Structure Learning in a Latent Gaussian Model

In a broad range of real-world applications – in finance or systems biology, for example

– it is common for some variables to be hidden or missing. Consider a Gaussian model

in which some of the variables are unobserved:

uuu∼N (µµµ,ΣΣΣ) , (2.8)

where uuu =
(
yyyT ,zzzT)T ; yyy is observed; and zzz is latent. Label the blocks of the precision

and covariance according to the partition of uuu:

ΛΛΛ =

(
ΛΛΛyy ΛΛΛyz

ΛΛΛzy ΛΛΛzz

)
; ΣΣΣ =

(
ΣΣΣyy ΣΣΣyz

ΣΣΣzy ΣΣΣzz

)
. (2.9)

The notion of structuredness of data is tightly linked to the sparsity of the underlying

data representations in the joint space of uuu, rather than sparsity in the data space of yyy

alone. Setting sparsity constraints only on the marginal precision ΣΣΣ
−1
yy may lead to the

pruning of important regularities, and result in a potentially misleading representation

of the underlying structure. This is illustrated in Figure 2.3. In Section 2.2.1, we

introduce a method for learning a sparse ΛΛΛ. That is, we apply sparsity in the joint

space of the visible and latent variables.

Chapter 2. L1-Penalised Latent Gaussian Models 17

yyy

(a) Dense marginal.

yyy

(b) Sparse marginal.

yyy

zzz

(c) Sparse joint.

Figure 2.3: (a) Fully observed model p(yyy) with a dense structure. Thick lines indicate

stronger pairwise potentials. (b) The learned structure of a fully observed model with

a sparsity constraint. Important links have been pruned, resulting in extraneous condi-

tional independences. (c) The learned structure of a sparse latent model p(yyy,zzz) with

sparsity applied in the joint space. The joint p(yyy,zzz) is sparse, but the marginal p(yyy) may

still be dense because the latent variable couples the visible variables. But note that, in

contrast to latent factor models, the conditional p(yyy|zzz) may contain residual couplings.

2.1.3.1 Sparse/Low-Rank Decomposition of a Latent Gaussian Model

In the approach of Chandrasekaran et al. (2010), the latent variables are implicit. They

note that the precision of the marginal model can be written in terms of the joint preci-

sion as follows:

ΣΣΣ
−1
yy = ΛΛΛyy−ΛΛΛyzΛΛΛ

−1
zz ΛΛΛzy. (2.10)

They impose sparsity on ΛΛΛyy. The product ΛΛΛyzΛΛΛ
−1
zz ΛΛΛzy is not required to be sparse.

However, if there are fewer hidden variables than visible, this product will have low

rank. Hence, the marginal precision is decomposed into the sum of a sparse matrix and

a low-rank matrix.

Chandrasekaran et al. (2010) propose the following estimator for the sparse matrix

MMM = ΛΛΛyy and low-rank matrix LLL = ΛΛΛyzΛΛΛ
−1
zz ΛΛΛzy:

(
M̂MM, L̂LL

)
= argmin

(MMM,LLL)

[
−L(MMM−LLL;SSS)+λ

(
γ∑

i, j

∣∣Mi j
∣∣+ tr(LLL)

)]
(2.11)

such that MMM−LLL� 0, LLL� 0, (2.12)

where L(KKK;SSS) = logdetKKK− tr(SSSKKK), and SSS is the sample covariance. L1 penalties are

used to sparsify MMM, while the nuclear norm is used to encourage LLL to have low rank. If

it is necessary to find ΛΛΛyz and ΛΛΛzz, an additional factorisation method would need to be

applied to L̂LL.

Chapter 2. L1-Penalised Latent Gaussian Models 18

Chandrasekaran et al. (2010) use two off-the-shelf solvers to find solutions to prob-

lem (2.11). They use SDPT3 (Toh et al., 1999) when the dimensionality of yyy is small,

but find LogdetPPA (Wang et al., 2010) more efficient when the dimensionality is

higher. SDPT3 is a general-purpose semidefinite programming solver; LogdetPPA is a

more specialised software package. Our SLICE estimator, described in Section 2.2.1,

also utilises these packages, and we discuss them further in that section.

In the rest of this chapter, we refer to the approach of Chandrasekaran et al. (2010)

as the sparse/low-rank decomposition (SLR).

2.1.4 Copulas

A copula is the joint cumulative distribution function (cdf) of a set of random variables

whose marginals are uniform on the interval [0,1]. Specifically, let uv∼Unif(0,1),1≤
v≤V , and define C (u1, . . . ,uV)≡ P(u1 ≤ u1, . . . ,uV ≤ uV). Then, C is called a copula

function.

Now consider a V -dimensional random vector ỹyy. Write ỹv for element v of ỹyy. Let

Fv denote the marginal cdf of ỹv. It is well-known that Fv

(
ỹv

)
∼ Unif(0,1). Sklar’s

theorem states that there exists a copula C such that

Pỹ (ỹ1, . . . , ỹV) =C (F1 (ỹ1) , . . . ,FV (ỹV)) , (2.13)

where Pỹ is the joint cdf of ỹyy. Sklar’s theorem also states that the reverse is true: given

any marginals {Fv}Vv=1 and any copula function C : [0,1]V → [0,1], the function Pỹ

defined by Equation (2.13) is a valid cdf that has {Fv} as marginals.

A useful feature of the copula construction is that it allows the marginals of a set

of random variables to be decoupled from their dependence structure. This means that

dependence can be studied independently of the marginals. But it also makes for flexi-

ble modelling: we can choose any model for the marginals (including different models

for each random variable), and combine these with any copula to form a multivariate

model. In particular, we may combine a simple copula with more complex marginal

models – because learning a univariate model is typically easier than learning a high-

dimensional model. For example, a kernel density estimator (KDE) may be sufficient

for the marginals, but a KDE may be inappropriate for the joint model because KDEs

require lots more data in high dimensions.

The Gaussian copula is one of the most popular and well-studied copulas. It is

widely used in finance, for example. Let CΛ denote the Gaussian copula function with

Chapter 2. L1-Penalised Latent Gaussian Models 19

precision matrix ΛΛΛ. It is defined as follows:

CΛ (u1, . . . ,uV)≡ΦΛ

(
Φ
−1 (u1) , . . . ,Φ

−1 (uV)
)
, (2.14)

where Φ is the univariate Gaussian cdf with zero mean and unit covariance, and ΦΛ is

the multivariate Gaussian cdf with precision ΛΛΛ. So the Gaussian copula can be used to

model the dependence structure of ỹyy by combining it with any set of marginal models

{Fv}Vv=1, as follows:

Pỹ (ỹ1, . . . , ỹV) = ΦΛ

(
Φ
−1 (F1 (ỹ1)) , . . . ,Φ

−1 (FV (ỹV))
)
. (2.15)

For additional theory and applications of copulas, there are many sources. One

such is the book by Nelsen (2006).

Copulas are increasingly popular in the machine learning literature. Snelson et al.

(2004) introduce the warped Gaussian process in which a Gaussian process is aug-

mented with non-linear warping functions on the outputs. Wilson and Ghahramani

(2010) define copula processes, and then study a particular example – the Gaussian

copula process – which is a type of warped Gaussian process. Elidan uses copu-

las to parameterise the conditional distributions in Bayesian networks (Elidan, 2010,

2012a,b). In the next section, we describe another recent use of copulas in which they

are combined with the graphical lasso.

2.1.5 The Nonparanormal Distribution

Define f (ỹyy) ≡ (f1 (ỹ1) , . . . , fV (ỹV)). If there exists an f such that f
(
ỹyy
)
∼ N (µµµ,ΣΣΣ),

then ỹyy is said to have a nonparanormal distribution (Liu et al., 2009). If the fv are

required to be monotone and differentiable, then they can be written

fv (ỹv) = µv +σvΦ
−1 (Fv (ỹv)) , (2.16)

and the associated density is

p(ỹyy) =
1

(2π)
V
2 |ΣΣΣ| 12

exp
{
−1

2
(f (ỹyy)−µµµ)T

ΣΣΣ
−1 (f (ỹyy)−µµµ)

} V

∏
v=1

∣∣ f ′v (ỹv)
∣∣ . (2.17)

The parameters µv and σv are not identifiable. One may choose them, for example,

such that ỹv and fv (ỹv) have the same moments. If we set µv = 0 and σv = 1, then by

comparison with Equation (2.14), we see that F
(
ỹyy
)

is distributed as a Gaussian copula.

The nonparanormal parameters are estimated in two stages. First, the marginal

estimator F̂v is set to the empirical distribution of ỹv, truncated at both tails. Then, a

sparse precision is estimated for the Gaussian copula by applying the graphical lasso

to the transformed data set { f (ỹyyn)}
N
n=1.

Chapter 2. L1-Penalised Latent Gaussian Models 20

2.2 Sparse Precision Estimation in a Latent Gaussian

Model

In this section, we extend the graphical lasso to learn a sparse precision of the latent

Gaussian model (2.8). Our method is motivated by the following concerns.

• As explained in Section 2.1.3, learning a sparse structure for the joint model p(uuu)

may allow us to learn a parsimonious representation without sacrificing impor-

tant structure in the marginal model p(yyy). Therefore, when data are scarce, such

a method might enable a more parsimonious model to be learned, and achieve

better performance when predicting future data.

• Learning structure in the joint space may enable knowledge discovery: it may

be possible to identify a latent factor by examination of the structure; or the

residual structure in the observed space may uncover an important coupling that

is not accounted for by the latent factors. For example, consider a group of

financial assets from the same market sector. A latent variable may account for

much of the intra-sector dependence – but a residual coupling may indicate that

two assets are more tightly coupled than can be accounted for by market sector

alone.

• Explicitly representing the latent variables means that the model is easily exten-

sible. Indeed, we do extend it to a conditional mixture of Gaussians in Section

2.3.1, and further to a conditional mixture of Gaussian copulas in Section 2.4.2.

In contrast, it is not immediately obvious how to extend a model such as SLR

(see Section 2.1.3.1) in a similar manner.

• Handling missing data is easy when latent variables are explicit: the variables

for which data is missing can simply be treated as latent. Again, compare with

SLR for which this is not straightforward.

Note that sparsity in the joint space is a standard assumption of many commonly

used latent variable models, including latent trees, hidden Markov models, restricted

Boltzmann machines, and so on. All of these may potentially give rise to dense

marginals. However, it is commonly assumed that a sparse latent structure is heuristi-

cally fixed a priori, whereas our method infers it from data.

Chapter 2. L1-Penalised Latent Gaussian Models 21

2.2.1 A Sparse, Latent, Inverse Covariance Estimator

In (Agakov et al., 2012), we generalise the graphical lasso estimator (2.7) to the latent-

variable situation. We continue to partition the precision and covariance as in (2.9),

which we restate here for convenience:

ΛΛΛ =

(
ΛΛΛyy ΛΛΛyz

ΛΛΛzy ΛΛΛzz

)
; ΣΣΣ =

(
ΣΣΣyy ΣΣΣyz

ΣΣΣzy ΣΣΣzz

)
.

Consider the following optimisation:

Λ̂ΛΛ = argmax
ΛΛΛ�0

[
logdetΣΣΣ

−1
yy − tr

(
SSSyyΣΣΣ

−1
yy
)
−∑

i, j
Γi j|Λi j|

]
, (2.18)

where ΣΣΣ = ΛΛΛ
−1. The first two terms are the same as in the graphical lasso, and repre-

sent the log likelihood of the observed data. But now the L1 penalties are applied to

the elements of the full precision matrix ΛΛΛ. Unlike graphical lasso, this optimisation

problem is not convex.

It is necessary to introduce constraints on ΛΛΛ in (2.18). To see this, note that the log

likelihood depends on ΛΛΛ only through the marginal precision ΣΣΣ
−1
yy = ΛΛΛyy−ΛΛΛyzΛΛΛ

−1
zz ΛΛΛzy.

If there are H hidden variables, and RRR ∈ RH×H is an invertible matrix,

ΛΛΛyzΛΛΛ
−1
zz ΛΛΛzy = ΛΛΛyzRRRRRR−1

ΛΛΛ
−1
zz
(
RRRT)−1

RRRT
ΛΛΛ

T
yz = (ΛΛΛyzRRR)

(
RRRT

ΛΛΛzzRRR
)−1

(ΛΛΛyzRRR)
T . (2.19)

If we set

ΛΛΛ
′
yy = ΛΛΛyy, (2.20)

ΛΛΛ
′
yz = ΛΛΛyzRRR, (2.21)

ΛΛΛ
′
zz = RRRT

ΛΛΛzzRRR, (2.22)

then ΛΛΛ
′ remains symmetric positive definite, and has the same marginal precision as

ΛΛΛ. But RRR may be chosen such that ΛΛΛ
′ incurs a smaller penalty than ΛΛΛ; for example, let

RRR be diagonal with 0 < Rhh < 1, h = 1 . . .H. The L1 penalties prefer a solution with

arbitrarily small, but non-zero, values for the elements of ΛΛΛyz and ΛΛΛzz.

To avoid this, we require constraints analogous to fixing the variances of the la-

tent factors in factor analysis or latent factor models. A natural choice would be to

impose unit variance on the latent variables: diag(ΣΣΣzz) = 1. However, this makes the

optimisation (2.18) difficult. Instead, we typically impose unit partial variance on the

latent variables: diag(ΛΛΛzz) = 1. Other constraints are possible, of course; we favour

Chapter 2. L1-Penalised Latent Gaussian Models 22

this one because it is straightforwardly interpretable, and does not overly complicate

the optimisation problem. With these constraints, the estimator becomes

Λ̂ΛΛ = argmax
ΛΛΛ�0 : diag(ΛΛΛzz)=1

[
logdetΣΣΣ

−1
yy − tr

(
SSSyyΣΣΣ

−1
yy
)
−∑

i, j
Γi j|Λi j|

]
. (2.23)

We refer to this sparse, latent, inverse covariance estimator as SLICE. We also use

SLICE to refer to the estimator with different constraints, and to the EM algorithm for

computing the estimator, which we introduce in Section 2.2.2.

2.2.1.1 Hierarchical Models

If we let some penalty Γi j → ∞, then Λi j will be forced to zero and edge (i, j) will

be missing from the learned model. This allows us to use prior knowledge to limit

the range of structures that might be learned. For example, we might enforce a multi-

layered structure by grouping the nodes into layers, and putting large penalties on

edges between nodes that are not in the same or adjacent layers.

2.2.1.2 Relationship between SLICE and Factor Analysis

The factor analysis (FA) model (Everitt, 1984) consists of observed variables yyy and

latent variables zzz generated from the following distributions:

zzz∼N (000, III) (2.24)

yyy|zzz∼N
(
WWWzzz+µµµy,ΨΨΨ

)
, (2.25)

where ΨΨΨ is a diagonal matrix. The joint distribution is

p(yyy,zzz) = p(zzz)p(yyy|zzz) (2.26)

∝exp
[
−1

2
(
yyy−WWWzzz−µµµy

)T
ΨΨΨ
−1 (yyy−WWWzzz−µµµy

)]
exp
[
−1

2
zzzT zzz
]

(2.27)

∝exp
[
−1

2

{
ỹyyT

ΨΨΨ
−1ỹyy−2ỹyyT

ΨΨΨ
−1WWWzzz+ zzzT

(
WWW T

ΨΨΨ
−1WWW + III

)
zzz
}]

, (2.28)

where ỹyy = yyy− µµµy. Let uuu =
(
yyyT ,zzzT)T and µµµ =

(
µµµT

y ,µµµ
T
z
)T , where µµµz = 000. The joint

distribution is Gaussian: p(uuu) = N
(

uuu
∣∣∣µµµ,ΛΛΛ−1

)
, where

ΛΛΛ =

(
ΨΨΨ
−1 −ΨΨΨ

−1WWW

−WWW T
ΨΨΨ
−1 WWW T

ΨΨΨ
−1WWW + III

)
. (2.29)

We can now see how to set the SLICE penalties and constraints to recover the factor

analysis solution:

Chapter 2. L1-Penalised Latent Gaussian Models 23

1. Set (Γyy)i j → ∞, i 6= j (to force ΛΛΛyy to be diagonal) and all other elements of ΓΓΓ

to zero;

2. Impose the constraint ΛΛΛzz =WWW T
ΨΨΨ
−1WWW + III, or equivalently ΣΣΣzz = III.

Note that, while useful for theoretical insight, this relationship between SLICE and FA

does not appear to be useful for solving factor analysis efficiently.

For SLICE in general, and in contrast to factor analysis, ΛΛΛyy is not necessarily diag-

onal: the conditional p(yyy|zzz) does not generally factorise as ∏
V
v=1 p(yv|zzz). Furthermore,

SLICE generally has no rotation invariance in the latent space because the L1 penalties

break this symmetry.

2.2.1.3 Relationship between SLICE and SLR

The SLICE model is a Gaussian on the joint distribution of the observed and latent

variables. So the marginal distribution of the observed variables is also a Gaussian,

and its precision is given by Equation (2.10), which we restate here:

ΣΣΣ
−1
yy = ΛΛΛyy−ΛΛΛyzΛΛΛ

−1
zz ΛΛΛzy.

SLR learns the two terms in this equation, but does not decompose the second term.

Thus, SLR incorporates latent variables implicitly. This results in a convex optimi-

sation problem for SLR, with the advantages that there are no local minima, and the

optimisation is faster than SLICE’s EM algorithm.

However, there are advantages to retaining the latent variables explicitly. Hav-

ing learned the full precision matrix, the latent variables may be interpretable, aiding

knowledge discovery. This may also be possible in SLR, but it requires an additional

decomposition of the low-rank matrix. SLICE could handle missing data by treating

the missing values as latent variables, and incorporating them into the EM algorithm.

Also note that the SLICE model is a probabilistic graphical model. First, this makes it

extensible – and we do extend it to a mixture of sparse, latent, non-Gaussian experts

in Sections 2.3.1 and 2.4.2. Second, it means that it is more flexible for encoding prior

knowledge than SLR. For example, in our experiments in Section 2.5, we have a fi-

nancial data set with known market sectors. One could make a soft assignment of a

latent variable to a market sector by choosing different penalties on connections from

the latent variable to observed variables within the sector than without.

Chapter 2. L1-Penalised Latent Gaussian Models 24

2.2.1.4 Relationships between SLICE and Other Models

The probabilistic PCA (PPCA) model (Tipping and Bishop, 1999) is similar to factor

analysis (2.24–2.25), but with a more restrictive noise model: in FA, ΨΨΨ is diagonal,

while in PPCA, ΨΨΨ = σ2III. SLICE is therefore related to PPCA in a similar manner as

to FA; see Section 2.2.1.2.

In the classical formulations of FA and PPCA, the rows of the data matrix YYY are

independently generated data points, while the variables associated with the columns

of YYY are coupled. We introduced SLICE in this way. Of course, if we treat YYY T as the

data matrix, then FA, PPCA, and SLICE become models in which the variables are

independent but the data points are correlated. In the case of PPCA, Lawrence (2005)

showed that maximum likelihood estimation for each variant requires the solution of

an equivalent eigenvalue problem.

Engelhardt and Stephens (2010) introduce sparse factor analysis to model correla-

tions between the data points (but it could, of course, be used to capture correlations

between the observed variables, as above). Their model extends standard factor analy-

sis – see Equations (2.24 – 2.25) – with an automatic relevance determination (ARD)

prior to induce sparsity in the factor loadings. The model is:

Wnh ∼N
(
0,Ω2

nh
)
, (2.30)

Ψnn ∼ Inv–Gamma(α,β), (2.31)

Ynv|WWW ∼N (µv +(WWWZZZ)nv,Ψnn) . (2.32)

They set {α,β} by hand, marginalise the factor loadings WWW , and learn {µµµ,ZZZ,ΩΩΩ,ΨΨΨ} by

maximum likelihood using an ECME (Liu and Rubin, 1994) algorithm. Notice that

SLICE and sparse FA differ in what is sparsified. In SLICE, we marginalise the latent

variables and learn a sparse precision that maximises the (L1-penalised) likelihood.

In sparse FA, the learned parameters may be dense, while sparsity is imposed on the

variables that are marginalised during optimisation.

Kalaitzis and Lawrence (2012) study the following model:

zzz1 ∼N (000, III) , (2.33)

zzz2 ∼N
(

000,ΛΛΛ−1
2

)
, (2.34)

yyy|zzz1,zzz2 ∼N
(
WWWzzz1 + zzz2,σ

2III
)
. (2.35)

Without zzz2, this reduces to PPCA. Kalaitzis and Lawrence (2012) estimate the param-

eters of this model by integrating over zzz1 and maximising the likelihood with respect

Chapter 2. L1-Penalised Latent Gaussian Models 25

to ΛΛΛ2 and WWW , with L1 penalties on the elements of ΛΛΛ2. They do this by alternating

between an EM step and a step of their residual component analysis (RCA) algorithm;

the resulting algorithm is named EM/RCA. During the E step of EM, expectations of

zzz2 are computed; during the M step, graphical lasso is run to update ΛΛΛ2. The RCA step

solves a generalised eigenvalue problem to update WWW given ΛΛΛ2. The marginal covari-

ance of the trained model is the sum of a low-rank matrix and the inverse of a sparse

precision: ΣΣΣyy =WWWWWW T +ΛΛΛ
−1
2 . To see the relationship to SLICE, notice that the visible

variables yyy and the latent variables zzz≡
(
zzzT

1 ,zzz
T
2
)T are jointly distributed as a zero-mean

Gaussian. The joint precision is a 3× 3 block matrix (with blocks corresponding to

yyy, zzz1, and zzz2), with different constraints on each block. SLICE has none of the same

constraints as EM/RCA, but has the additional constraint that diag(ΛΛΛzz) = 1.

Städler and Bühlmann (2012) use an EM method to train the graphical lasso model

when there are missing observations in the data – in contrast to the latent variables

in the SLICE model. Städler and Bühlmann (2012) extend their method to a sparse

regression, whereas we extend SLICE to a discriminative mixture of sparse Gaussian

copulas; see Sections 2.3.1 and 2.4.2.

2.2.2 An EM Algorithm for SLICE

To compute the optimisation (2.23), we use a structural EM approach (Friedman,

1997). We assume that the data has been centred, and we fix the mean of each la-

tent variable to zero. So the mean of uuu ≡
(
yyyT ,zzzT)T is µµµ = 000. Let YYY = (yyy1, ...,yyyN)

T

be the matrix of observed data. The objective function is the expected full-data log

likelihood, which can be written

Q
(

ΛΛΛ;ΛΛΛ
(t−1)

)
≡ logdetΛΛΛ− tr(SSSΛΛΛ)−∑

i, j
Γi j|Λi j|, (2.36)

where SSS is an estimate of the full covariance conditioned on the previous precision:

SSSyy =
1
N

YYY TYYY , (2.37)

SSST
zy = SSSyz =

1
N

YYY T ZZZ, (2.38)

SSSzz =
(

ΛΛΛ
(t−1)
zz

)−1
+

1
N

ZZZT ZZZ. (2.39)

ZZZ = (zzz1, ...,zzzN)
T contains the expectations of the latent variables, where each

zzzn ≡ E
[
zzzn|yyyn;ΛΛΛ

(t−1)
]
=−

(
ΛΛΛ
(t−1)
zz

)−1
ΛΛΛ
(t−1)
zy yyyn (2.40)

Chapter 2. L1-Penalised Latent Gaussian Models 26

is the mean of a conditional Gaussian. See Appendix A for a derivation of these equa-

tions1.

The expectations ZZZ and SSS are computed in the E step. Essentially, this is an es-

timation of the first and second moments of the joint Gaussian distribution using the

parameters from the previous iteration. In the M step, Q
(

ΛΛΛ;ΛΛΛ
(t−1)

)
is maximised

with respect to ΛΛΛ, subject to the constraints that ΛΛΛ must be positive semi-definite, and

that diag(ΛΛΛzz) = 1. Note that this is the same optimisation problem as the graphical

lasso (2.7), but with an additional constraint. A summary of the procedure is shown in

Algorithm 1.

Algorithm 1 EM for Sparse Latent Inverse Covariance Estimation (SLICE)

Initialise ΛΛΛ
(0) such that ΛΛΛ

(0) � 0

for t← 1 : T do
E Step

ZZZ←−YYY ΛΛΛ
(t−1)
yz

(
ΛΛΛ
(t−1)
zz

)−1

end E Step
M Step

SSS← 1
N

 YYY TYYY YYY T ZZZ

ZZZTYYY N
(

ΛΛΛ
(t−1)
zz

)−1
+ZZZT ZZZ


ΛΛΛ
(t)← argmax

ΛΛΛ : ΛΛΛ�0, diag(ΛΛΛzz)=1

[
logdetΛΛΛ− tr(SSSΛΛΛ)−∑i, j Γi j|Λi j|

]
end M Step

end for

The loop may be run until some maximum number of iterations, as shown in Al-

gorithm 1, but other stopping criteria may also be appropriate. We often computed the

increase in the objective function at each iteration, and terminated the algorithm when

this value fell below a threshold.

2.2.2.1 Solving the M-Step Optimisation Problem

Various software packages are capable of solving the M-step optimisation problem.

We made use of the following.

1. SDPT3 (Toh et al., 1999) solves a large class of linear, quadratic, and semidefi-

nite programming problems.

1 Appendix A actually contains a derivation for the more general CopMSLICE model, which we
introduce in Section 2.4.2.

Chapter 2. L1-Penalised Latent Gaussian Models 27

2. LogdetPPA (Wang et al., 2010) solves log-determinant problems of the following

kind:

min
ΛΛΛ

[tr(CCCΛΛΛ)−µ logdetΛΛΛ : A(ΛΛΛ) = bbb, ΛΛΛ� 0] , (2.41)

where A is a linear map, and µ, bbb, and CCC are constant.

3. L1General (Schmidt et al., 2007) is a collection of algorithms for solving L1-

penalised optimisation problems. We found the L1General2_PSSgb algorithm

to perform well.

Chandrasekaran et al. (2010) used SDPT3 for their SLR method when dimensionality

of the observed variables was low, and LogdetPPA in higher dimensions. For SLICE,

we also found SDPT3 to be faster than LogdetPPA for low-dimensional problems, by

which we mean up to around 40 dimensions or so. But we found L1General to be much

faster than SDPT3 in this range. LogdetPPA is faster than both SDPT3 and L1General

for higher dimensional problems. But none of the methods is completely reliable: each

one was observed to fail to correctly optimise the objective on rare occasions. This was

seen either by inspection, or by comparing the output of each package. So none of the

methods is redundant. Finding more reliable optimisers, or characterising the problems

on which they fail, is left for future work.

2.2.2.2 Initialisation

The SLICE optimisation (2.23) is non-convex, so local optima may be present. If so,

the choice of initial precision will determine the local optimum found (unlike for the

graphical lasso). The best optimum depends on what one desires from the solution.

Typically, it is a good idea to use an initialisation that is close to a desired solution,

roughly speaking. Some initialisations for ΛΛΛ that we have utilised are as follows.

• Set ΛΛΛyy = SSS−1
yy , ΛΛΛyz = 000, and ΛΛΛzz = III. That is, the latent variables have unit

variance and are initially unconnected to the visibles or to each other, while the

covariance of the visibles is set to the empirical covariance SSSyy.

• Set ΛΛΛ to the factor analysis or PPCA solution. SLICE is constrained such that

diag(ΛΛΛzz) = 111, so rescale the rows and columns of the FA/PPCA solution to

satisfy this constraint before running the SLICE algorithm.

• Use the rescaled FA/PPCA solution, but additionally modify the residuals ΛΛΛyy

such that ΣΣΣyy = SSSyy.

Chapter 2. L1-Penalised Latent Gaussian Models 28

In practice, we found that modifying the residuals had little effect, and we most often

used the rescaled factor analysis initialisation.

2.3 A Conditional Mixture of Sparse Latent Gaussians

The SLICE model, and the graphical lasso that SLICE generalises, assumes that there

is a single Gaussian model – with a single structure – that describes the entire data

set. In a real-life application, this may not be the case. Instead, it may be that the data

points lie in groups, where each group has a different structure. For example, the struc-

ture of an individual’s metabolic pathway network is thought to vary between males

and females. Another example from biology is the hypothesis that cancer patients may

be grouped according to their response to chemotherapy: some patients may respond

better than others, the underlying cause for which is a difference in the structure of

their proteomic networks. In the financial domain, which provides much of the moti-

vation for our work, there is evidence to show that assets tend to become more strongly

correlated under extreme market conditions; see, for example, (Preis et al., 2012). In

such circumstances, a single Gaussian model may not be appropriate. We therefore ex-

tend SLICE to a mixture in which each mixture component is a sparse latent Gaussian

model, and each component may have a different structure.

We also observe that in a real-world application, we may have access to additional

covariates whose distribution and structure are of no interest, but that help to infer the

mixture component to which a data point belongs. We often refer to these covariates as

side information. In finance, for example, macroeconomic indicators (such as interest

rates), market indices (such as the FTSE 100 index), technical indicators2, and news

stories may inform on the current market structure. More generally, a domain expert is

often able to construct a high-dimensional feature vector that is predictive of structural

changes. We condition our mixture on the side information: since we do not need to

model the covariates, training a conditional model is more efficient. The mixture model

therefore becomes a conditional mixture, otherwise known as a mixture of experts

(Jacobs et al., 1991).

It is important for knowledge discovery and decision support applications that we

can identify which features of the side information are most strongly predictive of

structural changes. For example, in financial risk management, it is important to iden-

2 A technical indicator is a feature, typically computed from recent market data, that is used by a
technical analyst to forecast future price changes.

Chapter 2. L1-Penalised Latent Gaussian Models 29

xxx

ΞΞΞ www

ΛΛΛ zzz ỹyy ΨΨΨ

Figure 2.4: MSLICE, a conditional mixture of sparse latent Gaussians. The side in-

formation xxx affects the choice of mixture component www and the mean of the visible

variables ỹyy. The latent variables zzz and the visibles are jointly Gaussian; the structure of

this Gaussian may be different for each mixture component.

tify how particular changes in market conditions could affect portfolio returns. In a

similar manner to lasso regression, we impose L1 penalties to sparsify the weights on

the covariates and select the most important features. Thus, even though the side in-

formation may be high-dimensional, we can potentially discover a small, interpretable

set of the most predictive features.

In the next section, the model is presented in more detail.

2.3.1 A Conditional Mixture of SLICE Models

We typically use M to refer to the number of mixture components (experts), and so

we name this model MSLICE. It is illustrated in Figure 2.4. Let ỹyy ∈ RV represent the

visible variables. (We reserve yyy for the visibles after subtracting the mean, as explained

shortly). Let xxx ∈ RC denote a vector of covariates, and zzz ∈ RH denote the hidden

variables. Let www ∈ {0,1}M indicate which of the experts is responsible for generating

ỹyy; that is, wm = 1 for some m, and wi = 0 for all i 6= m. The distribution of www is

parameterised by ΞΞΞ, while the expert distributions are parameterised by ΨΨΨ≡{ΨΨΨm}M
m=1

and ΛΛΛ≡ {ΛΛΛm}M
m=1.

In the single-component SLICE model, the data can be centred in a preprocessing

step, and so it is sufficient for the Gaussian in the SLICE model to have zero mean.

But with multiple components, it is not known a priori which experts generated which

data points. We must therefore parameterise the mean of each component, and learn

it. (We still set the means of the hidden variables to zero). The side information may

Chapter 2. L1-Penalised Latent Gaussian Models 30

also be predictive of the means. In finance, for example, one expert may correspond

to a falling market (with some learned structure), and the side may indicate the degree

to which the market is falling. So we allow the expert means to depend on the side

information. Many parameterisations are possible. In this work, we choose a linear

relationship: we define the mean of the visible variables for expert m to be µ̃µµm ≡ΨΨΨ
T
mx̃xx,

where x̃xx =
(
1,xxxT)T is the side information augmented with a unit element, and ΨΨΨm ∈

R(C+1)×V . We then define yyym = ỹyy− µ̃µµm to be the offset of ỹyy from the mean of expert m.

We also impose L1 penalties on the elements of the matrices ΨΨΨm so that we learn

which features of the side information are most predictive of the expert means. The

first row of ΨΨΨm multiplies the unit element of x̃xx, and so represents an intercept: it is the

mean of expert m when xxx = 000. There is often no reason to expect an expert to have a

zero intercept, so the first row of ΨΨΨm is usually unpenalised.

Note that with the above choices, each expert is now a sparse linear regression with

SLICE as the noise model.

For the distribution p(www|xxx;ΞΞΞ), there are various possible options. We worked with

a multinomial logit (softmax) model, setting

p(wm = 1|xxx;ΞΞΞ) =
exp
(

ξξξ
T
mx̃xx
)

∑
M
i=1 exp

(
ξξξ

T
i x̃xx
) , (2.42)

where ξξξm ≡ ΞΞΞ:m is the mth column of matrix ΞΞΞ ∈ R(C+1)×M. As with ΨΨΨm, we also

impose L1 penalties on the elements of ξξξm – except, typically, the first element (which

corresponds to an intercept) – so that we can select which features of the side are

most predictive of the mixture component. These penalties also serve to remove a

multiplicity of equivalent maximum likelihood solutions. Notice that adding a constant

to some row ΞΞΞc: does not change the probabilities (2.42); so if ΞΞΞc: is unpenalised, these

parameters could grow without bound during optimisation. Provided at least one of

them has non-zero penalty, this situation is prevented. If an entire row is unpenalised,

we impose the additional constraint that the row have zero mean.

The generative model is as follows.

www|xxx∼ softmax
(

ξξξ
T
1 x̃xx, . . . ,ξξξT

M x̃xx
)
, (2.43)

uuu|wm = 1,xxx∼N (000,ΛΛΛm) (2.44)

where the softmax function is defined such that wm = 1 with the probability stated in

Equation (2.42); uuu≡
(
yyyT ,zzzT)T ; and the observed variables are translated according to

Chapter 2. L1-Penalised Latent Gaussian Models 31

the generating expert: ỹyy = yyy+ µ̃µµm. When learning the model, the precision of each ex-

pert must still be constrained in the same way as the single-component SLICE model.

Let θθθ = (ΞΞΞ,ΨΨΨ,ΛΛΛ) contain all the parameters to be learned. The optimisation problem

for MSLICE is

θ̂θθ = argmax
θθθ : ΛΛΛm�0, diag((ΛΛΛm)zz)=1

[
∑
n

log

{
∑
wwwn

∫
p(uuun,wwwn|xxxn;θθθ)dzzzn

}
− γ(θθθ)

]
, (2.45)

where γ(θθθ) contains all the L1 penalties:

γ(θθθ)≡ γΞ(ΞΞΞ)+ γΨ(ΨΨΨ)+ γΛ(ΛΛΛ) (2.46)

γΞ(ΞΞΞ)≡
M

∑
m=1

C

∑
c=1

(ΓΞ)cm

∣∣Ξ(c+1)m
∣∣ (2.47)

γΨ(ΨΨΨ)≡
M

∑
m=1

C

∑
c=1

V

∑
v=1

(ΓΨm)cv

∣∣∣(Ψm)(c+1)v

∣∣∣ (2.48)

γΛ(ΛΛΛ)≡
M

∑
m=1

V+H

∑
i=1

V+H

∑
j=1

(ΓΛm)i j

∣∣∣(Λm)i j

∣∣∣ . (2.49)

Elements of the matrices ΓΞ, ΓΨm , and ΓΛm are all non-negative. As for SLICE, we

use an EM algorithm to solve the optimisation problem.

2.3.2 An EM Algorithm for MSLICE

The EM objective function is the full data expected log likelihood, conditioned on the

data and the previous values of the parameters:

Q
(

θθθ;θθθ
(t−1)

)
= E

θθθ
(t−1) [L (XXX ,YYY ;θθθ)]− γ(θθθ) , (2.50)

where L (XXX ,YYY ;θθθ) is the log likelihood,

L (XXX ,YYY ;θθθ) =
N

∑
n=1

M

∑
m=1

wnm [log p(wnm = 1|xxxn;ΞΞΞ)+ log p(uuun|wnm = 1;ΨΨΨm,ΛΛΛm)] .

(2.51)

See Appendix A for a full derivation. We now describe the optimisation of each of the

parameters ΞΞΞ, ΨΨΨ and ΛΛΛ separately.

Chapter 2. L1-Penalised Latent Gaussian Models 32

2.3.2.1 The Mixing Model

ΞΞΞ appears in a different term to ΨΨΨ and ΛΛΛ, and so can be optimised separately. The

objective for ΞΞΞ can be written

QΞ

(
ΞΞΞ;θθθ

(t−1)
)
≡ E

θθθ
(t−1)

[
∑
n,m

wnm log p(wnm = 1|xxxn;ΞΞΞ)

]
− γΞ (ΞΞΞ) (2.52)

= ∑
n,m

wnm

{
ξξξ

T
mx̃xxn− log

M

∑
i=1

exp
(

ξξξ
T
i x̃xxn

)}
− γΞ (ΞΞΞ) . (2.53)

The expectation wnm of each component indicator is known as the responsibility of

component m for data point n. These expectations are evaluated during the E step

according to the following equation:

wnm =
p
(

ỹyyn|wnm = 1,xxxn;ΨΨΨ
(t−1)
m ,ΛΛΛ(t−1)

m

)
p
(

wnm = 1|xxxn;ΞΞΞ
(t−1)

)
∑

M
i=1 p

(
ỹyyn|wni = 1,xxxn;ΨΨΨ

(t−1)
i ,ΛΛΛ

(t−1)
i

)
p
(

wni = 1|xxxn;ΞΞΞ
(t−1)

) . (2.54)

The first probability in the numerator is a Gaussian, the second a multinomial logit, so

these are easily computed.

Maximising (2.53) with respect to ΞΞΞ is a sparse multinomial logit problem, and is

solved by existing methods, such as the glmnet software (Friedman et al., 2010b). As

for SLICE, we also use L1General (Schmidt et al., 2007) to solve this problem.

2.3.2.2 The Component Means

The parameters of each expert, ΨΨΨm and ΛΛΛm, are coupled in the objective (2.50). In

standard EM fashion, we therefore condition on each while we optimise with respect

to the other. We note that our M-step update of the pair (ΨΨΨm,ΛΛΛm) is similar to running

a single iteration of the MRCE sparse regression algorithm of Rothman et al. (2010).

The objective function for ΨΨΨm is

QΨm

(
ΨΨΨm|ΛΛΛm;θθθ

(t−1)
)
≡

tr
[

ΨΨΨ
T
mX̃XX

T
WWW m

{
ZZZm (ΛΛΛm)zy +

(
ỸYY − 1

2
X̃XXΨΨΨm

)
(ΛΛΛm)yy

}]
− γΨm(ΨΨΨm),

(2.55)

where

zzznm ≡ E
[
zzzn|ỹyyn;ΨΨΨ

(t−1)
m ,ΛΛΛ(t−1)

m

]
(2.56)

=−
(

ΛΛΛ
(t−1)
m

)−1

zz

(
ΛΛΛ
(t−1)
m

)
zy

(
ỹyyn−

(
ΨΨΨ

(t−1)
m

)T
x̃xxn

)
(2.57)

Chapter 2. L1-Penalised Latent Gaussian Models 33

is computed during the E step, ZZZm ≡ (zzz1m, . . . ,zzzNm)
T , and WWW m ≡ diag(www:m). If ΨΨΨm is

unpenalised – that is, if γΨm(ΨΨΨm) = 0 – we can maximise QΨm in closed form, because

(2.55) is then quadratic in ΨΨΨm. In the general case, the maximum must be found using

an appropriate optimiser. We again chose to use the L1General package (Schmidt et al.,

2007).

2.3.2.3 The Component Precisions

The objective function for ΛΛΛm is

QΛm

(
ΛΛΛm|ΨΨΨm;θθθ

(t−1)
)
≡ Nm

2
[logdetΛΛΛm− tr(SSSmΛΛΛm)]− γΛm(ΛΛΛm), (2.58)

where

(SSSm)yy =
1

Nm

(
ỸYY − X̃XXΨΨΨm

)T
WWW m

(
ỸYY − X̃XXΨΨΨm

)
, (2.59)

(SSSm)yz =
1

Nm

(
ỸYY − X̃XXΨΨΨm

)T
WWW mZZZm, (2.60)

(SSSm)zz = (ΛΛΛm)
−1
zz +

1
Nm

ZZZT
mWWW mZZZm, (2.61)

and Nm = ∑n wnm is the expected number of data points for which component m is

responsible. The constraints on ΛΛΛm are the same as those for the single-component

SLICE, namely that ΛΛΛm must be positive definite and that (ΛΛΛm)zz must have a unit

diagonal. So the optimisation problem is the same constrained graphical lasso as in the

M step of SLICE; see Section 2.2.2.

The EM algorithm for MSLICE is summarised in Algorithm 2.

2.3.2.4 Initialisation

The MSLICE optimisation problem (2.45) is non-convex, so the choice of initialisation

in the EM algorithm affects the solution. Therefore, one should initialise the algorithm

according to the application and the kind of solution desired. Roughly speaking, it may

be beneficial to find an initialisation that is close to the desired optimum. Two generic

initialisers that we have used are based on K-Means and a mixture of factor analysers

(MFA) (Ghahramani and Hinton, 1996).

For our K-Means initialiser, we run the K-Means algorithm to partition the N data

points into M clusters. We initialise K-Means itself by setting each of the cluster

centres to a data point drawn at random. Let Nm denote the number of data points

assigned to cluster m by K-Means. We set all of ΞΞΞ except the first row to zero, so that

Chapter 2. L1-Penalised Latent Gaussian Models 34

Algorithm 2 EM for MSLICE

Initialise ΞΞΞ
(0)

for m← 1 : M do
Initialise ΨΨΨ

(0)
m

Initialise ΛΛΛ
(0)
m such that ΛΛΛ

(0)
m � 0 and diag

((
ΛΛΛ
(0)
m

)
zz

)
= 1

end for
for t← 1 : T do

E Step
for m← 1 : M do

for n← 1 : N do
wnm← Responsibility of expert m for data point n

. See Equation (2.54)

end for
ZZZm←−

(
ỸYY − X̃XXΨΨΨ

(t−1)
m

)(
ΛΛΛ
(t−1)
m

)
yz

(
ΛΛΛ
(t−1)
m

)−1

zz
end for

end E Step
M Step

ΞΞΞ
(t)← argmaxΞΞΞ QΞ

(
ΞΞΞ;θθθ

(t−1)
)

. See Equation (2.53)

for m← 1 : M do
ΨΨΨ

(t)
m ←ΨΨΨ

(t−1)
m

ΛΛΛ
(t)
m ← ΛΛΛ

(t−1)
m

ΨΨΨ
(t)
m ← argmaxΨΨΨm

QΨm

(
ΨΨΨm|ΛΛΛ(t)

m ;θθθ
(t−1)

)
. See Equation (2.55)

Nm← ∑
N
n=1 wnm

WWW m← diag(www:m)

YYY m← ỸYY − X̃XXΨΨΨ
(t)
m

SSSm← 1
Nm

 YYY T
mWWW mYYY m YYY T

mWWW mZZZm

ZZZT
mWWW mYYY m Nm

(
ΛΛΛ
(t−1)
m

)−1

zz
+ZZZT

mWWW mZZZm


ΛΛΛ
(t)
m ← argmax

ΛΛΛm : ΛΛΛm�0, diag((ΛΛΛm)zz)=1
QΛm

(
ΛΛΛm|ΨΨΨ(t)

m ;θθθ
(t−1)

)
. See Equation (2.58)

end for
end M Step

end for

Chapter 2. L1-Penalised Latent Gaussian Models 35

initially, the side information has no effect on the component prior. We set the first row

of ΞΞΞ such that p(wm = 1|xxx;ΞΞΞ) = Nm
N . Similarly, we initialise ΨΨΨm to zero, except for

the first row which is set such that the initial mean is equal to the empirical mean of

cluster m. For the precision ΛΛΛm, we set (ΛΛΛm)yz = 000, (ΛΛΛm)zz = III, and (ΛΛΛm)yy equal to

the inverse of the empirical covariance of cluster m. Note that this can fail if K-Means

produces clusters whose empirical covariance has low rank.

For our MFA initialiser, we begin by training a mixture of factor analysers. We

use the code provided by Ghahramani and Hinton (1996), which initialises each factor

loading matrix by drawing each element independently from a zero-mean Gaussian

distribution, and sets each element of the initial noise variance equal to the empirical

variance of the associated variable. MFA gives us cluster priors, so we set the first row

ΞΞΞ to reproduce those, and the rest of ΞΞΞ to zero. Similarly, MFA outputs the component

means, so we set the first row of each ΨΨΨm to the mean of one of the components, and

the other elements of ΨΨΨm to zero. We form the precision ΛΛΛm of each expert according

to Equation (2.29) from the factor loadings and noise vectors of each component. As

for SLICE, if we are employing the constraint diag
(
(ΛΛΛm)zz

)
= 111, we scale the rows

and columns of ΛΛΛm to satisfy it.

2.4 Sparse Non-Gaussian Models

The graphical lasso and SLICE are both Gaussian models, and MSLICE is a mixture

of Gaussian experts. But in practice, it is often necessary to work with non-Gaussian

data. In finance, for example, stock price returns are well-known to be non-Gaussian.

See, for example, (Fama, 1965). To further illustrate the point, the kurtosis of each

stock’s returns in the FTSE data described in Section 2.5.1 varies between 5.12 and

152; so the distribution of returns for each of those stocks is heavy-tailed.

Learning a general, high-dimensional, multivariate distribution is often difficult,

but learning one-dimensional distributions is considerably easier. So one approach to

the problem is to decompose the task: learn a flexible model of the one-dimensional

marginals, and then use a simple, tractable model for the dependency structure. In

the following sections, we study models with a Gaussian dependency structure, and a

number of different marginals. These models extend the graphical lasso, SLICE, and

MSLICE to non-Gaussian distributions.

Chapter 2. L1-Penalised Latent Gaussian Models 36

2.4.1 Sparse Gaussian Copulas

The nonparanormal distribution (Liu et al., 2009) (see Section 2.1.5) extends the graph-

ical lasso to a sparse Gaussian copula. Liu et al. (2009) use truncated empirical distri-

butions for the marginals, which is fine for learning the dependency structure. But we

are also interested in using the model to evaluate the likelihood of test data, and to gen-

erate from the model. The empirical marginal is insufficient for this purpose because

it places all the probability mass at the training data points. The likelihood of a set of

test data would be zero (provided at least one point in the test set is not in the training

set), and if we were to generate from the model, only points in the training set would

be produced. We therefore choose smooth marginal models. To distinguish this model

from the nonparanormal, and for consistency with nomenclature introduced later, we

refer to this copula version of graphical lasso as CopGLASSO.

SLICE can be extended in much the same way. Recall that we use Fv to denote

the marginal cdf of visible variable v, and Φ to denote the standard Gaussian cdf. We

introduce the CopSLICE model, in which we learn the marginals {Fv (ỹv)}Vv=1, then

use the EM learning algorithm for SLICE on the transformed data {yyyn}N
n=1, where

ynv = Φ−1 (Fv (ỹnv)). CopSLICE therefore uses a sparse latent Gaussian to capture the

dependency structure.

2.4.1.1 Marginal Models

When learning the marginals, care must be taken regarding the tails because there will

often be few data points in these regions. Our choice of marginal model is motivated

by the Pickands-Balkema-de Haan theorem (Pickands, 1975; Balkema and De Haan,

1974) in extreme value theory, which states that for a large class of distributions, the

conditional excess tends to a generalised Pareto distribution (GPD). Specifically, given

a random variable A with distribution F , the conditional excess distribution is

Ft(a)≡ P(A− t ≥ a|A > t) =
F(t +a)−F(t)

1−F(t)
, (2.62)

and Ft(a)→ Gξ,σ(a) as t→ ∞, where

Gξ,σ(a) =

1−
(

1+ ξa
σ

)−1/ξ

for ξ 6= 0

1− exp
(
− a

σ

)
for ξ = 0

(2.63)

is the GPD. So we model the marginals with a piecewise distribution composed of

three parts: a lower tail, an upper tail, and a “body” in the central section. We write the

Chapter 2. L1-Penalised Latent Gaussian Models 37

marginal for visible variable v as follows:

Fv (ỹv) =


Bv (tv−)(1−Lv (tv−− ỹv)) for ỹv < tv−

Bv (ỹv) for tv− ≤ ỹv ≤ tv+

Bv (tv+)+(1−Bv (tv+))Uv (ỹv− tv+) for ỹv > tv+,

(2.64)

where Bv is the body distribution, Lv the lower tail, and Uv the upper tail. Both Lv and

Uv are GPDs.

For the body, we initially chose a kernel density estimator (KDE):

p(ỹv) =
1

Nhv

N

∑
n=1

K
(

ỹv− ỹnv

hv

)
, (2.65)

where hv is the bandwidth parameter. For the kernel function K, we used a Gaussian.

This worked well for CopGLASSO and CopSLICE, but the CopMSLICE method de-

scribed in Section 2.4.2 ran much faster when we used a Gaussian distribution for the

body; see the experiment in Section 2.5.5.2. So we used that for CopGLASSO and

CopSLICE too, for purposes of comparison.

For each marginal separately, we set each of its parameters tv− and tv+ to the loca-

tion of a data point in the training set; we determine which points by cross-validation

(using training data only, not the test data used for evaluating the model). We estimate

the parameters of Lv using only the training data points below tv−, and Uv using only

those above tv+. We maximise the likelihood, given these data sets, of the parameters

ξ and σ in Equation (2.63) for the respective GPD models. We do this using Mat-

lab’s fminunc function, initialising the parameters such that a GPD’s first and second

moments match their empirical values. Since σ is a scale parameter, it must remain

positive. We impose the additional constraint that ξ also remain positive. If ξ < 0, then

the GPD Gξ,σ(a) assigns zero probability to all a > −σ/ξ. But in some scenarios –

such as the financial application in Section 2.5 – this is undesirable: extreme values

are rare, so just because the training data fall within some range, it does not mean that

more extreme values will not be observed in future. To maintain positivity of ξ and σ,

we optimise the logarithms of these values.

For the body Bv, if it is a KDE, the only parameter is the bandwidth; we set it us-

ing Matlab’s ksdensity function, which employs a heuristic function of the standard

deviation of the training data. If using a Gaussian for the body, we fit the parameters

by minimising the sum of squared errors between the Gaussian cdf and the empiri-

cal distribution at each data point between tv− and tv+. We do this using Matlab’s

fminsearch function, initialising the Gaussian parameters to their empirical values.

Chapter 2. L1-Penalised Latent Gaussian Models 38

ΛΛΛ ΞΞΞ xxx

zzz yyy www

θθθ
f ỹyy

Figure 2.5: CopMSLICE, a conditional mixture of sparse latent Gaussian copulas. The

model is similar to MSLICE; the main addition is the deterministic map – indicated by

the dot-dashed arrow – from yyy to ỹyy. Side information xxx influences the choice of mixture

component www; variables yyy and zzz are drawn from a joint Gaussian (with a structure that

depends on the mixture component); and then yyy is transformed deterministically to ỹyy.

The side information influences the mean of the resulting distribution of ỹyy.

2.4.2 Non-Gaussian Extension of MSLICE

In a similar manner to CopGLASSO and CopSLICE, we extend MSLICE to CopM-

SLICE by making each component in the mixture a Gaussian copula. The model is

illustrated in Figure 2.5. The generative model is the same as that for MSLICE –

see Equations (2.43) and (2.44) – except that the transformation of yyy to ỹyy is gener-

alised: given wm = 1, we now set ỹv = f−1
mv (yv)+ µ̃mv, where fmv ≡ Φ−1 ◦Fmv, and

µ̃mv =
(
ΨΨΨ

T
m
)

v: x̃xx. Let ζζζmv parameterise Fmv; let θθθ
f
m ≡ {ΨΨΨm,ζζζm} contain all the parame-

ters of fm; and let θθθ
f ≡
{

θθθ
f
m

}
.

If the Gaussian experts have no latent variables, then we refer to this particular

case of CopMSLICE as CopMGLASSO. (We likewise refer to the non-latent version

of MSLICE as MGLASSO).

Training CopMSLICE is more difficult than training CopGLASSO or CopSLICE.

We do not know which data points were generated by which experts, so we cannot

learn the marginals Fmv independently of the rest of the model. Instead, we learn them

during the EM algorithm, using the responsibilities inferred during the E step to weight

the data points. Specifically, the EM objective is

Q
(

θθθ;θθθ
(t−1)

)
= E

θθθ
(t−1) [L (XXX ,YYY ;θθθ)]− γ(θθθ) , (2.66)

Chapter 2. L1-Penalised Latent Gaussian Models 39

where L (XXX ,YYY ;θθθ) is the log likelihood,

L (XXX ,YYY ;θθθ) =
N

∑
n=1

M

∑
m=1

wnm

[
log p(wnm = 1|xxxn;ΞΞΞ)

+ log p
(

uuun|wnm = 1;θθθ
f
m,ΛΛΛm

)
+ ∑

v
log f ′mv (ỹnv−µnmv)

]
.

(2.67)

See Appendix A for a full derivation. Apart from the computation of yyym = fm (ỹyy−µµµm),

the E step is much the same for CopMSLICE as for MSLICE: wnm is evaluated accord-

ing to Equation (2.54), while

zzznm =−
(

ΛΛΛ
(t−1)
m

)−1

zz

(
ΛΛΛ
(t−1)
m

)
zy

fm

(
ỹyyn−

(
ΨΨΨ

(t−1)
m

)T
x̃xxn;ζζζ

(t−1)
m

)
. (2.68)

Compare this with Equation (2.57) for MSLICE.

The optimisation of ΞΞΞ in the M step can be done separately from the other param-

eters, and in precisely the same way as for MSLICE. The rest of the parameters are

coupled in the objective (2.66). We condition on ΛΛΛ while we optimise the objective

with respect to θθθ
f , and vice versa.

2.4.2.1 The Component Precisions

Let YYY m = fm

(
ỸYY − X̃XXΨΨΨm

)
, where fm is defined to operate on the rows of a matrix

argument. Define SSSm such that

(SSSm)yy =
1

Nm
YYY T

mWWW mYYY m, (2.69)

(SSSm)yz =
1

Nm
YYY T

mWWW mZZZm, (2.70)

(SSSm)zz = (ΛΛΛm)
−1
zz +

1
Nm

ZZZT
mWWW mZZZm. (2.71)

Then the objective for ΛΛΛm can be written

QΛm

(
ΛΛΛm|ΨΨΨm,ζζζm;θθθ

(t−1)
)
≡ Nm

2
[logdetΛΛΛm− tr(SSSmΛΛΛm)]− γΛm(ΛΛΛm). (2.72)

The constraints on ΛΛΛm are the same as in MSLICE, so the optimisation problem is the

same constrained graphical lasso.

Chapter 2. L1-Penalised Latent Gaussian Models 40

2.4.2.2 The Gaussianising Functions

The objective for θθθ
f
m is

Q
θ

f
m

(
ΨΨΨm,ζζζm|ΛΛΛm;θθθ

(t−1)
)
≡ − Nm

2

{
tr
(
(SSSm)yy (ΛΛΛm)yy

)
+2tr

(
(SSSm)zy (ΛΛΛm)yz

)}
+∑

n
wnm ∑

v
log f ′mv (ỹnv−µnmv)

− γΨm (ΨΨΨm)− γζm (ζζζm) .

(2.73)

Note that SSSm depends on θθθ
f
m through YYY m. If the marginal models Fmv are chosen to be

simple, the gradients of Q
θ

f
m

with respect to the components of θθθ
f
m may be available,

but in general this is not the case. We take a very simple approach to increasing the

objective during the M step. We consider each parameter separately (conditioned on

all others), and look at three values: the current value, and two values a fixed distance

either side of it. The value that achieves the highest Q
θ

f
m

is the new value of the param-

eter. There will, of course, be more principled, more efficient, ways to set θθθ
f , but this

simple method is sufficient to demonstrate and evaluate CopMSLICE.

2.4.2.3 The Marginal Models

For the marginals, we use a piecewise distribution composed of a body and two tail

distributions as presented in Section 2.4.1.1. For the body, our initial idea was to use the

kernel density estimator (2.65) as we did with the single-component models. But there

are two problems with this. The first is that each KDE is modelling a marginal within

a mixture component, so it should use the data generated by that mixture component

only – but we do not know which components generated which data points. So in the M

step, we weight each data point within a component according to the responsibilities

computed in the E step. This means that we only approximate the maximisation of

(2.73), and we note that this may decrease the EM objective. The second problem with

the KDE is that it is very slow – see the experiment in Section 2.5.5.2 – because YYY m

must be re-evaluated whenever θθθ
f
m changes, and the KDE evaluation is expensive. So

we replaced the KDE in the body with a simpler model: a Gaussian. Although much

faster, evaluation of the Gaussian cdf is still a bottleneck. A logistic distribution may

be better because, while similar to the Gaussian, its cdf is faster to evaluate. But that is

left for future work.

The EM algorithm for CopMSLICE is summarised in Algorithm 3. We initialised

Chapter 2. L1-Penalised Latent Gaussian Models 41

Algorithm 3 EM for CopMSLICE

Initialise ΞΞΞ
(0)

for m← 1 : M do
Initialise ΛΛΛ

(0)
m such that ΛΛΛ

(0)
m � 0 and diag

((
ΛΛΛ
(0)
m

)
zz

)
= 1

Initialise ΨΨΨ
(0)
m and ζζζ

(0)
m

YYY m← fm

(
ỸYY − X̃XXΨΨΨ

(0)
m ;ζζζ

(0)
m

)
end for
for t← 1 : T do

E Step
for m← 1 : M do

for n← 1 : N do
wnm← Responsibility of expert m for data point n

. See Equation (2.54)

end for
ZZZm←−YYY m

(
ΛΛΛ
(t−1)
m

)
yz

(
ΛΛΛ
(t−1)
m

)−1

zz
end for

end E Step
M Step

ΞΞΞ
(t)← argmaxΞΞΞ QΞ

(
ΞΞΞ;θθθ

(t−1)
)

. See Equation (2.53)

for m← 1 : M do
ΨΨΨ

(t)
m ←ΨΨΨ

(t−1)
m ; ζζζ

(t)
m ← ζζζ

(t−1)
m ; ΛΛΛ

(t)
m ← ΛΛΛ

(t−1)
m(

ΨΨΨ
(t)
m ,ζζζ

(t)
m

)
← argmax(ΨΨΨm,ζζζm)

Q
θ

f
m

(
ΨΨΨm,ζζζm|ΛΛΛ

(t)
m ;θθθ

(t−1)
)

. See Equation (2.73)

Nm← ∑
N
n=1 wnm

WWW m← diag(www:m)

YYY m← fm

(
ỸYY − X̃XXΨΨΨ

(t)
m ;ζζζ

(t)
m

)
SSSm← 1

Nm

 YYY T
mWWW mYYY m YYY T

mWWW mZZZm

ZZZT
mWWW mYYY m Nm

(
ΛΛΛ
(t−1)
m

)−1

zz
+ZZZT

mWWW mZZZm


ΛΛΛ
(t)
m ← argmax

ΛΛΛm : ΛΛΛm�0, diag((ΛΛΛm)zz)=1
QΛm

(
ΛΛΛm|ΨΨΨ(t)

m ,ζζζ
(t)
m ;θθθ

(t−1)
)

. See Equation (2.72)

end for
end M Step

end for

Chapter 2. L1-Penalised Latent Gaussian Models 42

the parameters in the same way as for MSLICE. For the marginals, we set the initial

variance to one.

2.5 Evaluation

2.5.1 The Data

From Yahoo Finance, we obtained the closing price data for all composites of the

FTSE 100 index over the period April 2005 to October 2011. We note that this period

includes the market crash of late 2008. The 100 companies that compose the index

changes over time, so the price data for some assets did not cover the whole of this

time period. We removed any such assets, and we removed any dates on which at

least one company’s price was missing. We converted the prices to returns by dividing

each asset’s price by its value on the previous day. Stock splits and rights issues were

supposedly built in to the downloaded prices, but these had sometimes been missed,

resulting in obviously erroneous returns. We fixed these manually, along with some

other clear errors in the data. The final returns data set consisted of 81 assets across

1633 days. The company name and market sector of each company in this data set is

listed in Appendix B.

We also downloaded the VIX volatility index for the days immediately prior to

each day in the returns data, to use as side information. The VIX is based on the S&P

500 index option prices, and is one measure of expected near-term market volatility.

Higher values indicate that the market is more volatile.

We formed a reduced version of the data set in which we selected FTSE composites

from three industries: banking, mining, and consumer goods. A data set with fewer di-

mensions is useful because the experiments can be run more quickly, and the resulting

structures are easier to visualise. There were 19 companies in the reduced set.

2.5.2 Comparison of Single-Component Methods

Our first experiment involves only the five single-component (non-mixture) methods

SLICE, CopSLICE, GLASSO, CopGLASSO, and SLR. We compare these methods at

different levels of sparsity to investigate whether the SLICE model’s explicit inclusion

of latent variables is useful, and to find out if the copula models perform better than

the Gaussian versions.

Chapter 2. L1-Penalised Latent Gaussian Models 43

When training, we did not penalise diagonal elements of the precision in any of

the models, so Γii = 0. For (Cop)GLASSO, we penalised all off-diagonal elements

equally: Γi j = γ. For (Cop)SLICE, we penalised the elements of ΛΛΛyy differently from

the rest: Γi j = γ1 for i, j ≤ V , and Γi j = γ2 otherwise. We did this because we found

from experience that weaker penalties are required on the connections from the latent

variables: with a single uniform penalty, all elements of ΛΛΛyz often go to zero in training,

effectively pruning the latents. To illustrate this effect, consider the following two

precision matrices where V = 3 and H = 1:

ΛΛΛ
(1) =

(
III α111

α111T 1

)
; ΛΛΛ

(2) =

(
III−α2111111T 000

000T 1

)
. (2.74)

These precisions are equivalent in terms of training data likelihood. But they will incur

different L1 penalties. If |α| < 1, then |α2| < |α|. If the penalties are uniform across

the precision matrix, ΛΛΛ
(2) will incur smaller total penalty than ΛΛΛ

(1), so the objective

(2.23) will be greater for ΛΛΛ
(2).

As a measure of sparsity, we count the number of non-zero elements in the up-

per triangle of the precision matrix (excluding the diagonal) of the (Cop)SLICE and

(Cop)GLASSO models. But SLR does not explicitly represent the latent variables, so

we first form a joint precision ΛΛΛ
SLR as follows. We set ΛΛΛ

SLR
yy = MMM, where MMM is the

sparse matrix in the SLR method; see Section 2.1.3.1. SLR’s low rank matrix can

be written LLL = ΛΛΛ
SLR
yz

(
ΛΛΛ

SLR
zz

)−1
ΛΛΛ

SLR
zy . We perform a singular value decomposition on

LLL which results in LLL = UUUDDDUUUT , where DDD is a diagonal matrix with non-negative ele-

ments. Define I ≡ {i : Dii ≥ t}, where t is a small threshold; we used t = 0.001. We

approximate the rank of LLL as |I|, and set ΛΛΛ
SLR
zz = DDD−1

II , ΛΛΛ
SLR
yz =UUU :I .

We use the reduced data set of 19 assets, and split the data into a training set con-

sisting of the first 1116 consecutive days3, and a testing set consisting of the remaining

517 days. We preprocessed the data by subtracting the mean of the training set from

all data points, and scaling such that the empirical precision of the training data had

ones along the main diagonal.

For each model, we train multiple times with different limits on the sparsity of the

trained model. To do this, we choose small initial L1 penalties and train the model; if

this results in a model that is below the sparsity limit, we increase the penalties by 5%

and retrain. The limits used were (25,35,50,75,100,125).

3 The training set covers a period from April 2005 to September 2009, and so includes the market
crash of late 2008.

Chapter 2. L1-Penalised Latent Gaussian Models 44

25 35 50 75 100 125
1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6
x 10

4

Maximum non−zero connections permitted.

N
e

g
a

ti
v
e

 t
e

s
t

lo
g

 l
ik

e
li
h

o
o

d
.

SLICE

CopSLICE

SLR

GLASSO

CopGLASSO

Figure 2.6: Comparison of the five single-component methods at different levels of spar-

sity. The metric is negative log likelihood on the test data set (so lower is better). The

bars represent standard errors. The copula methods outperform their non-copula coun-

terparts. The performance of the methods without latent variables degrades quickly

as sparsity increases (to the left of the figure); the performance of the latent-variable

methods degrades more slowly.

We set the parameters of each method by six-fold cross-validation (using the train-

ing data only) over a grid covering a reasonable range for each parameter. For each

parameter combination, we train to each sparsity limit, and compute the mean log like-

lihood of the held-out fold over all sparsity limits. We choose the combination with

the highest mean log likelihood. We then train on the full training set at each sparsity

limit, and compute the log likelihood of the test set under the resulting distributions.

The results are shown in Figure 2.6. It is clear that the copula versions of SLICE

and GLASSO perform better than the standard versions at all sparsity limits. Cop-

SLICE is the best performer overall. When the precision is allowed to be dense, the

two copula methods perform similarly, as do the three non-copula methods. But as

the sparsity limit is lowered, the performance of GLASSO and CopGLASSO degrades

more quickly than the models that incorporate latent variables. This suggests that

the inclusion of latent variables facilitates more parsimonious representations. At the

lower sparsity limits, SLICE outperforms SLR, although this may be due to our use

of the SVD to form the joint precision for SLR: it may be possible to find a sparser

decomposition of SLR’s low-rank matrix.

Chapter 2. L1-Penalised Latent Gaussian Models 45

2.5.3 Evaluation of Multi-Component Methods

The next experiment is designed to evaluate the mixture of expert models. The goals

are to investigate whether the inclusion of side information and multiple components

leads to better performance, and to find out if the learned structures may be inter-

pretable. To these ends, we include the following models in the comparison: GLASSO,

SLR, SLICE, MSLICE, CopMSLICE, SLICE with side information (which we denote

SLICE+Side), and MSLICE without side information (denoted MSLICE-NoSide).

Note that the model SLICE+Side is equivalent to MSLICE with a single component,

and that MSLICE-NoSide is a mixture model (as opposed to a mixture of experts).

We preprocess the returns data as in Section 2.5.2. Here, we also preprocess the

side information to make it zero mean and unit variance. We penalise the precision

matrices as described in Section 2.5.2, but we do not penalise the MSLICE parameters

ΞΞΞ or ΨΨΨ. Feature selection in the side information is investigated in the next chapter;

see Section 3.3.3.2. Again, we use the reduced financial data set described in Section

2.5.1, with the same split into training and testing sets used in the single-component

evaluation experiment. We train all the models over a range of precision penalties.

Any additional parameters are set as follows. We run 6-fold cross-validation over a

grid of plausible values, and for each combination compute the log likelihood of the

held-out fold. We do this for each precision penalty value, and average over both folds

and penalties.

Figure 2.7 shows the negative log likelihood of the test data plotted against the

range of penalties. The meaning of the penalty parameter on the x-axis is different in

each model, so one should compare entire curves on this figure (as opposed to consid-

ering any particular vertical cross-section). However, we tried to give this parameter

an analogous interpretation in each model. In GLASSO, the meaning is clear because

we use a single penalty value on all off-diagonal elements. For SLICE, MSLICE, and

CopMSLICE, the x-axis parameter is the penalty applied to ΛΛΛyy in each component.

For SLR, it is the penalty applied to the sparse matrix.

The dot-dashed black line in the figure is the negative log likelihood of the test data

under a Gaussian model trained by maximum likelihood; the dashed black lines either

side of it are the error bars. For visual clarity, SLICE+Side and SLR are not shown on

the figure. The curve for SLICE+Side sits almost exactly on top of the SLICE curve.

Using the cross-validated value for SLR’s γ parameter, the SLR curve is almost exactly

the same as GLASSO’s. That is, SLR learns to use the sparse matrix in preference to

Chapter 2. L1-Penalised Latent Gaussian Models 46

−7 −6 −5 −4 −3 −2
1.22

1.24

1.26

1.28

1.3

1.32

1.34

1.36

1.38

1.4

1.42
x 10

4

Log penalty on connections between observed variables.

N
e

g
a

ti
v
e

 t
e

s
t

lo
g

 l
ik

e
li
h

o
o

d
.

CopMSLICE

MSLICE

MSLICE−NoSide

SLICE

GLASSO

Figure 2.7: Comparison of five methods by negative log likelihood (lower is better)

of test data over a range of penalties. The bars represent standard errors. SLICE

and GLASSO perform similarly; the mixture models outperform the single-component

methods; side information improves the performance of MSLICE; and CopMSLICE is

best performer overall.

the low-rank matrix. If the value of γ for which SLR performs best on the test data is

used, the SLR curve sits slightly above the SLICE curve.

On this data set, GLASSO and SLICE perform no better than the non-sparse maxi-

mum likelihood model. (But note that their sparsity could be advantageous in some ap-

plications if it makes them more interpretable). The fact that SLICE and SLICE+Side

perform similarly tells us that the side information (the VIX in this case) is of little use

in predicting the Gaussian mean. The mixture models all perform much better than

the single component models. MSLICE outperforms MSLICE-NoSide, which shows

that the VIX is useful for selecting a mixture component. CopMSLICE is the best

performer: the copula addition improves on MSLICE, similarly to how CopSLICE

improved over SLICE in the single component experiment of Section 2.5.2.

We now examine the MSLICE model that performed best on the test set to see

if we can interpret the learned structures. Cross-validation resulted in a model with

three experts; Figure 2.8 shows the responsibility of each expert for each data point

in the whole data set (both training and testing data), plotted alongside the VIX. We

see that the model has learned to associate each structure with a different level of mar-

ket volatility. The first expert (second panel in the figure) is responsible for most of

Chapter 2. L1-Penalised Latent Gaussian Models 47

0

25

50

75

V
IX

0

1

0

1

R
e
sp

o
n
si
b
ili
ti
e
s

2
0
0
5
-0
8
-0
2

2
0
0
6
-0
7
-1
8

2
0
0
7
-0
7
-2
0

2
0
0
8
-0
7
-2
4

2
0
0
9
-0
7
-2
1

2
0
1
0
-0
7
-1
6

2
0
1
1
-0
7
-1
80

1

Figure 2.8: Panels 2-4 show the responsibility of experts 1-3 for each data point. Plotted

alongside the VIX (top panel), it is clear that the experts 1, 2, and 3 tend to assume

responsibility when the VIX is low, medium, and high-valued respectively.

the low-volatility regions, the second expert (third panel) is responsible for the mid-

volatility regions, and the third expert (bottom panel) takes responsibility when volatil-

ity is highest.

The precision matrices ΛΛΛ1, ΛΛΛ2, and ΛΛΛ3 are illustrated in the Hinton diagrams in Fig-

ures 2.9, 2.10, and 2.11 respectively. The companies are arranged by industry: the first

5 are banks, the following 8 are mining companies, and the final 6 produce consumer

goods. Blue lines separate the industries. Green boxes represent positive values, while

red boxes are negative values. In expert 1, most of the high magnitude entries are in

(ΛΛΛ1)yz, with a few smaller entries in the residual (ΛΛΛ1)yy. So most of the low-volatility

data can be explained by the latent variables. We see some correspondence between

the entries of (ΛΛΛ1)yz and the industries: the first and third latent variables are coupling

most of the banks and mining companies, while the second variable is serving mostly

to couple the consumer goods companies. Looking at the residuals (ΛΛΛ1)yy, the two

largest entries are BATS-IMT, and BARC-RRS. The first is easily interpretable: BATS

and IMT are two large tobacco companies, so their fortunes are obviously intertwined.

The second might be explained by a relatively large shareholding of the Barclays group

Chapter 2. L1-Penalised Latent Gaussian Models 48

BARC

HSBA

LLOY

RBS

STAN

AAL

ANTO

BLT

LMI

RIO

RRS

VED

XTA

ABF

BATS

DGE

IMT

SAB

ULVR

B
A

R
C

H
S

B
A

L
L
O

Y

R
B

S

S
T

A
N

A
A

L

A
N

T
O

B
L
T

L
M

I

R
IO

R
R

S

V
E

D

X
T

A

A
B

F

B
A

T
S

D
G

E

IM
T

S
A

B

U
L
V

R

Figure 2.9: Precision matrix ΛΛΛ1 of expert 1.

BARC

HSBA

LLOY

RBS

STAN

AAL

ANTO

BLT

LMI

RIO

RRS

VED

XTA

ABF

BATS

DGE

IMT

SAB

ULVR

B
A

R
C

H
S

B
A

L
L
O

Y

R
B

S

S
T

A
N

A
A

L

A
N

T
O

B
L
T

L
M

I

R
IO

R
R

S

V
E

D

X
T

A

A
B

F

B
A

T
S

D
G

E

IM
T

S
A

B

U
L
V

R

Figure 2.10: Precision matrix ΛΛΛ2 of expert 2.

Chapter 2. L1-Penalised Latent Gaussian Models 49

BARC

HSBA

LLOY

RBS

STAN

AAL

ANTO

BLT

LMI

RIO

RRS

VED

XTA

ABF

BATS

DGE

IMT

SAB

ULVR

B
A

R
C

H
S

B
A

L
L
O

Y

R
B

S

S
T

A
N

A
A

L

A
N

T
O

B
L
T

L
M

I

R
IO

R
R

S

V
E

D

X
T

A

A
B

F

B
A

T
S

D
G

E

IM
T

S
A

B

U
L
V

R

Figure 2.11: Precision matrix ΛΛΛ3 of expert 3.

in Rangold Resources4.

Looking at the precision ΛΛΛ2 of the mid-volatility expert, the first latent variable

is mostly used to couple the consumer goods companies. But otherwise, there is less

clear structure here than in ΛΛΛ1. There are more non-zero entries in the residual of

this component than in the low-volatility residual. In the high-volatility expert, the

precision ΛΛΛ3 shows a similar pattern, but even more pronounced: there is very little

structure in (ΛΛΛ3)yz, and there are many non-zero entries in the residual – in particular,

many connections in the residual cross the industry boundaries. In summary, it appears

that the market is more structured when volatility is lower; as volatility increases, this

structure breaks down, and many assets become correlated.

2.5.4 Comparison on High-Dimensional Data

We now run the GLASSO, SLICE, and MSLICE on the full FTSE 100 data set consist-

ing of 81 assets. We compare the results to the low-dimensional case, and look at the

cost in computation time of the more complex models (although we study efficiency in

more detail in Section 2.5.5).
4 At time of writing, the analysis of shareholding report for RRS in 2010 can be found here:

http://www.randgoldresources.com/randgold/content/en/analysis-of-shareholding

Chapter 2. L1-Penalised Latent Gaussian Models 50

Table 2.1

Method Training Time (s) Negative Test Log Likelihood

GLASSO 4.10 111.88 (0.90)

SLICE 92.5 110.15 (0.99)

MSLICE 2310 105.58 (0.96)

We split the data into a training and testing set in the same way as the previous

experiments, so these sets contained 1116 and 517 points respectively. For GLASSO,

we ran 6-fold cross-validation to set γ, the penalty on the off-diagonal elements of the

precision. For SLICE and MSLICE, we did no cross-validation: we simply set γ1 = γ,

and γ1
γ2

to the value used in Section 2.5.3 (where γ1 and γ2 are, respectively, the penalties

on ΛΛΛyy and the rest of ΛΛΛ – see Section 2.5.2). We used 8 latent variables, because the

stocks come from 8 market sectors; and we ran 200 iterations of EM. For MSLICE,

we used 3 experts – again, the same as in Section 2.5.3.

The results are shown in table 2.1. Similarly to the lower-dimensional experiment

of Section 2.5.3, MSLICE outperforms the single-component models in terms of test

log likelihood. It also learns to associate each of its experts with a different level of

market volatility: see Figure 2.12. SLICE only performs slightly better than GLASSO

– again similarly to the low-dimensional experiment – which is expected since both

are marginally Gaussian. However, SLICE has learned a much sparser representation,

as is seen by comparing the precision matrices of the two models in Figure 2.13. The

blue lines separate the 8 market sectors. Most of the dependencies in the SLICE model

are accounted for by the latent variables: there is little residual structure.

2.5.5 Evaluation of Computational Costs

In this section, we study the computational costs of SLICE and its extensions. We

begin with some theoretical statements about the training time of each method. Then,

in the following subsections, we describe some empirical results.

Let TΛ denote the cost of optimising the constrained graphical lasso objective

(2.23). In our practical experience, this is the dominant cost. Since it depends strongly

on the choice of optimiser, a thorough analysis of the additional costs is of limited

value – but we make some observations below. Notice that TΛ is independent of the

Chapter 2. L1-Penalised Latent Gaussian Models 51

0

25

50

75

V
IX

0

1

0

1

R
e
sp

o
n
si
b
ili
ti
e
s

2
0
0
5
-0
8
-0
2

2
0
0
6
-0
7
-1
8

2
0
0
7
-0
7
-2
0

2
0
0
8
-0
7
-2
4

2
0
0
9
-0
7
-2
1

2
0
1
0
-0
7
-1
6

2
0
1
1
-0
7
-1
80

1

Figure 2.12: Much as in the lower-dimensional experiment, experts 1-3 (panels 2-4)

assume responsibility when the VIX (top panel) is low, medium, and high-valued re-

spectively. Compare with Figure 2.8.

number of data points N. Some optimisers may make use of sparsity to improve ef-

ficiency, and so TΛ may depend on the penalties ΓΓΓΛ and on the data itself. Of the

optimisation algorithms we considered, LogdetPPA scaled best with dimension; we

refer the interested reader to (Wang et al., 2010) for theoretical and empirical results

on the convergence properties of this algorithm.

Recall that CopSLICE runs a preprocessing step in addition to SLICE. This step

scales linearly with V (the number of visible variables) since the marginals are learned

independently. The scaling of SLICE is clearly worse than O(V), so CopSLICE and

SLICE scale equivalently with dimension.

The E step of the SLICE algorithm involves computing ZZZ – see Equation (2.40)

– which requires a matrix inversion5 and matrix multiplications5. The computational

5 Inversion of an a×a matrix can be computed in time O(a3). Multiplication of an a×b matrix with a
b×c matrix is O(abc). Algorithms with lower complexity exist for both inversion and multiplication, but
they may be unstable or only useful in very high dimensions. Paolo Bientinesi (personal communication,
25th November 2013) says of matrix inverse algorithms: “... basically none of those techniques are
actually used in practice. On the one hand, the constants hidden in the O() notation make these results
valid only asymptotically. On the other hand, the numerical stability of these algorithms is known to be
an issue. The only algorithm that sometimes is used is Strassen’s: O(n2.8). In this case, the advantages
due to a lower complexity are noticeable even for relatively small matrices, but in practice it is not
commonly used because of its numerical stability (although in most cases it would be perfectly fine).”

Chapter 2. L1-Penalised Latent Gaussian Models 52

AAL
ABF
ADM
AGK

AMEC
ANTO
ARM

AU
AV

AZN
BA

BARC
BATS

BG
BLND

BLT
BP

BRBY
BSY

BT−A
CCL
CNA
CNE
CPG
CPI

DGE
GFS
GKN
GSK

HMSO
HSBA

IAG
IAP

III
IMI

IMT
INVP

IPR
ISYS
ITRK

ITV
JMAT
KGF

LAND
LGEN
LLOY

LMI
MKS

MRW
NXT
OML
PRU

PSON
RBS
REL
REX
RIO
RR

RRS
RSA
SAB

SBRY
SDR
SGE
SHP

SMIN
SN

SRP
SSE

STAN
SVT
TLW

TSCO
TT

ULVR
VED
VOD

WEIR
WOS
WPP
XTA

A
A

L

A
B

F

A
D

M

A
G

K

A
M

E
C

A
N

T
O

A
R

M

A
U

A
V

A
Z

N

B
A

B
A

R
C

B
A

T
S

B
G

B
L
N

D

B
L
T

B
P

B
R

B
Y

B
S

Y

B
T

−
A

C
C

L

C
N

A

C
N

E

C
P

G

C
P

I

D
G

E

G
F

S

G
K

N

G
S

K

H
M

S
O

H
S

B
A

IA
G

IA
P II
I

IM
I

IM
T

IN
V

P

IP
R

IS
Y

S

IT
R

K

IT
V

J
M

A
T

K
G

F

L
A

N
D

L
G

E
N

L
L
O

Y

L
M

I

M
K

S

M
R

W

N
X

T

O
M

L

P
R

U

P
S

O
N

R
B

S

R
E

L

R
E

X

R
IO

R
R

R
R

S

R
S

A

S
A

B

S
B

R
Y

S
D

R

S
G

E

S
H

P

S
M

IN

S
N

S
R

P

S
S

E

S
T

A
N

S
V

T

T
L
W

T
S

C
O

T
T

U
L
V

R

V
E

D

V
O

D

W
E

IR

W
O

S

W
P

P

X
T

A

AAL
ABF
ADM
AGK

AMEC
ANTO
ARM

AU
AV

AZN
BA

BARC
BATS

BG
BLND

BLT
BP

BRBY
BSY

BT−A
CCL
CNA
CNE
CPG
CPI

DGE
GFS
GKN
GSK

HMSO
HSBA

IAG
IAP

III
IMI

IMT
INVP

IPR
ISYS
ITRK

ITV
JMAT
KGF

LAND
LGEN
LLOY

LMI
MKS

MRW
NXT
OML
PRU

PSON
RBS
REL
REX
RIO
RR

RRS
RSA
SAB

SBRY
SDR
SGE
SHP

SMIN
SN

SRP
SSE

STAN
SVT
TLW

TSCO
TT

ULVR
VED
VOD

WEIR
WOS
WPP
XTA

A
A

L

A
B

F

A
D

M
A

G
K

A
M

E
C

A
N

T
O

A
R

M

A
U

A
V

A
Z

N
B

A

B
A

R
C

B
A

T
S

B
G

B
L

N
D

B
L

T
B

P

B
R

B
Y

B
S

Y
B

T
−

A

C
C

L

C
N

A
C

N
E

C
P

G

C
P

I
D

G
E

G
F

S

G
K

N

G
S

K
H

M
S

O

H
S

B
A

IA
G

IA
P II
I

IM
I

IM
T

IN
V

P

IP
R

IS
Y

S

IT
R

K

IT
V

J
M

A
T

K
G

F

L
A

N
D

L
G

E
N

L
L

O
Y

L
M

I

M
K

S
M

R
W

N
X

T

O
M

L
P

R
U

P
S

O
N

R
B

S
R

E
L

R
E

X

R
IO

R
R

R
R

S

R
S

A
S

A
B

S
B

R
Y

S
D

R

S
G

E
S

H
P

S
M

IN

S
N

S
R

P

S
S

E

S
T

A
N

S
V

T

T
L

W

T
S

C
O

T
T

U
L

V
R

V
E

D
V

O
D

W
E

IR

W
O

S
W

P
P

X
T

A

Figure 2.13: Precision matrices learned by GLASSO (top) and SLICE (bottom). SLICE

is much sparser: the latent variables account for most of the dependencies.

Chapter 2. L1-Penalised Latent Gaussian Models 53

cost is O
(
H
(
H2 +V N +H min(V,N)

))
, where H is the number of hidden variables.

In the M step, computing the expected empirical covariance SSS costs O
(
D2N

)
, where

D ≡ V +H is the dimensionality of the joint Gaussian. So the SLICE computation

time is linear in N. We note the quadratic term in V and the cubic term in H (either of

which may be slightly improved by efficient matrix algorithms5, or worsened in the TΛ

term).

For MSLICE, C (the dimensionality of the side information) and M (the number of

mixture components) affect the computation time. We observe the following.

• Computing ZZZm is similar to computing ZZZ in SLICE, except that side information

is now used. The side contributes terms linear in C to the time complexity: see

Equation (2.57).

• The responsibilities require that the likelihood of each data point be computed

(under each component) – see Equation (2.54) – which is linear in N.

• Updating ΞΞΞ in the M step by maximising (2.53) is the sparse multinomial logit

problem, whose cost is O(NCM) (Krishnapuram et al., 2005).

• To update {ΨΨΨm}, the objective (2.55) is maximised. Computing the matrix prod-

ucts prior to optimisation is linear in N. The optimisation itself depends on the

choice of optimiser, so we write the cost as TΨ. Evaluating the objective each

time ΨΨΨm changes is quadratic in C.

• Optimisation of each ΛΛΛm is similar to the single-component case, so there is a

term TΛ for each component.

• The dependence on M is clearly linear: all computations are repeated for each

component (except for the update of ΞΞΞ, which is also linear in M – see above).

In summary, the total cost is linear in M and N. As for SLICE, the optimisations

dominate in our practical experience: usually TΛ is dominant, but since it does not

depend on C while TΨ does, the ΨΨΨm optimisations could become dominant when C is

large.

For CopMSLICE, the run time will continue to scale linearly with M. Beyond

that, the cost depends strongly on the choice of marginal models. Unlike SLICE and

MSLICE, the optimisation costs may depend on N. It is difficult to make further use-

ful statements about CopMSLICE. Instead, we make some empirical studies in the

following sections.

Chapter 2. L1-Penalised Latent Gaussian Models 54

2.5.5.1 Rate of Convergence

We investigate empirically the rate of convergence of SLICE, MSLICE, and CopM-

SLICE. Using the same data and the same parameters as in Section 2.5.3, we recorded

three metrics during training: log likelihood on the training data, log likelihood on the

testing data, and sparsity of the precision matrices. We define the sparsity of a pre-

cision as the fraction of its off-diagonal elements that are non-zero (so a lower value

is more sparse). For the mixture models, we record the mean sparsity of the mixture

components. We trained each model over a range of penalty values – the same values

as in Section 2.5.3. We found the results to be broadly similar across penalties, so in

Figure 2.14 we show the results with just a single penalty. The figure illustrates the

trade-off between the better performance of the more complex models, and the time

required to train them. In each subfigure, we show the performance of GLASSO – in-

dicated by a red line – for comparison. We record only the final result from GLASSO,

hence the red lines are flat. GLASSO completed in 0.064 seconds. For each model, we

use the same optimiser (L1General2_PSSgb) with its default settings.

The training log likelihoods converge quickly; test log likelihoods change rapidly

at first, quickly outperforming GLASSO (although SLICE and GLASSO are within a

standard error of each other), then continue to change more slowly; the models also

continue slowly to become more sparse. We note that there is some overfitting here:

each method continues to decrease the negative training likelihood despite the nega-

tive test likelihood having begun to move upward. Notice also that each of the three

methods improves on its initialisation in terms of test log likelihood.

2.5.5.2 Marginal Models for CopMSLICE

For CopGLASSO and CopSLICE, the marginals are learned in a preprocessing step.

For these models, learning the marginals does not greatly increase the training time.

For CopMSLICE, the marginals are updated during EM, so CopMSLICE typically

runs much slower than MSLICE, as illustrated in Figure 2.14. Here, we investigate

empirically the training time of CopMSLICE with our two choices of marginal model,

and we also look at how the training time scales with the size of the training set.

Using the same parameters as in Section 2.5.5.1, including the same penalty used

to generate Figure 2.14, we ran CopMSLICE with both a Gaussian and a KDE as the

model for the body of the marginals. In each case, we varied the size of the training set,

and recorded the time taken to run 10 iterations of EM. The mean times per iteration,

Chapter 2. L1-Penalised Latent Gaussian Models 55

0 2 4 6
3.26

3.265

3.27

3.275

3.28

3.285

3.29
x 10

4

Run time (s).

N
e
g
a
ti
v
e
 t
ra

in
in

g
 l
o
g
 l
ik

e
lih

o
o
d
.

0 2 4 6
1.354

1.356

1.358

1.36

1.362
x 10

4

Run time (s).

N
e
g
a
ti
v
e
 t
e
s
ti
n
g
 l
o
g
 l
ik

e
lih

o
o
d
.

0 2 4 6
0.2

0.3

0.4

0.5

0.6

0.7

Run time (s).

S
p
a
rs

it
y
.

0 10 20 30 40 50 60
2.6

2.7

2.8

2.9

3

3.1

3.2

3.3
x 10

4

Run time (s).

N
e
g
a
ti
v
e
 t
ra

in
in

g
 l
o
g
 l
ik

e
lih

o
o
d
.

0 10 20 30 40 50 60
1.26

1.28

1.3

1.32

1.34

1.36

x 10
4

Run time (s).

N
e
g
a
ti
v
e
 t
e
s
ti
n
g
 l
o
g
 l
ik

e
lih

o
o
d
.

0 10 20 30 40 50 60
0.2

0.3

0.4

0.5

0.6

0.7

Run time (s).

S
p
a
rs

it
y
.

0 100 200 300
2.6

2.7

2.8

2.9

3

3.1

3.2

3.3
x 10

4

Run time (s).

N
e
g
a
ti
v
e
 t
ra

in
in

g
 l
o
g
 l
ik

e
lih

o
o
d
.

0 100 200 300
1.24

1.26

1.28

1.3

1.32

1.34

1.36

1.38
x 10

4

Run time (s).

N
e
g
a
ti
v
e
 t
e
s
ti
n
g
 l
o
g
 l
ik

e
lih

o
o
d
.

0 100 200 300
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Run time (s).

S
p
a
rs

it
y
.

Figure 2.14: Graphs for SLICE (top row), MSLICE (middle row), and CopMSLICE (bot-

tom row) showing the evolution, during training, of the negative log likelihood of training

data (left column), negative log likelihood of testing data (middle column), and sparsity

(right column). The sparsity metric is the fraction of a model’s precision matrix elements

that are non-zero (so lower is more sparse). The flat red line in each graph shows the

performance of GLASSO, for comparison. Each of the three models improves the log

likelihood of its initialisation, and quickly outperforms GLASSO on test log likelihood.

Smaller changes in test log likelihood and sparsity continue over a longer period.

Chapter 2. L1-Penalised Latent Gaussian Models 56

0 200 400 600 800 1000 1200
3.5

4

4.5

5

5.5

6

6.5

Number of data points.

T
im

e
 p

e
r

it
e

ra
ti
o

n
 (

s
).

0 200 400 600 800 1000 1200
0

20

40

60

80

100

120

140

160

180

200

Number of data points.

T
im

e
 p

e
r

it
e

ra
ti
o

n
 (

s
).

Figure 2.15: Training times per iteration of EM versus number of data points in the

training set, when using a Gaussian (left) or a kernel density estimator (right) for the

body of the marginal models. Training times are much lower for the Gaussian. Scaling

appears approximately linear for the Gaussian, but superlinear for the KDE.

plotted against the number of data points in the training set, are shown in Figure 2.15.

Clearly, training of CopMSLICE takes longer with more data. The scaling appears

approximately linear with a Gaussian in the marginal body, which may be expected:

the dominant computational cost is the evaluation of the marginal cdfs, and these func-

tions must be evaluated on each data point. We used Matlab’s ksdensity function

to evaluate the KDE; its implementation affects the scaling of CopMSLICE’s training

time, which appears superlinear in the figure. Comparing the two subfigures, it is clear

that training times are much lower with the Gaussian instead of the KDE.

2.6 Conclusions and Future Work

In this chapter we introduced SLICE, an EM algorithm for learning a sparse precision

matrix of a Gaussian model with latent variables. We demonstrated that, as greater

sparsity was enforced, SLICE performed better than the fully visible graphical lasso

method in terms of test log likelihood: SLICE was able to find a more parsimonious

representation of the data than GLASSO.

We showed how to extend the SLICE EM algorithm to learn a conditional mix-

ture of latent Gaussians. As expected, MSLICE outperformed the single component

method. We showed that the mixture components could be interpreted in terms of the

side information: in our experiment with financial data, the model learned to use the

mixture components to handle different levels of market volatility. The sparse preci-

Chapter 2. L1-Penalised Latent Gaussian Models 57

sion matrices resulting from MSLICE were also interpretable to some extent: the la-

tent variables in the low-volatility expert roughly corresponded to industries, and some

residual connections could be interpreted with additional knowledge of the companies

involved. This suggests that MSLICE might be used to aid knowledge discovery.

Finally, we augmented SLICE and MSLICE with Gaussianising functions, turning

them into a Gaussian copula, CopSLICE, and a mixture of Gaussian copulas, CopM-

SLICE. We showed that the copula versions performed better than their respective

Gaussian versions. For SLICE, we trained the Gaussianising functions in a prepro-

cessing step for SLICE. But for MSLICE, the functions must be learned simultane-

ously with the rest of the model, so we integrated their training into the MSLICE EM

algorithm.

Regarding future work, a simple extension could be to change the distribution of

the mixing variable www. In this thesis we used a multinomial logit, but this may not be

appropriate for certain tasks. It should be straightforward to change this distribution.

Alternatively, recall that at present, the number of components in the conditional mix-

ture, and the number of latent variables in each component, are set by cross-validation.

Future work could involve an extension in which these parameters are built into the

model and learned in a more principled way. For example, the Dirichlet process is

used in the construction of an infinite mixture (Antoniak, 1974), from which the num-

ber of components responsible for the data can be inferred. MSLICE may benefit from

a similar extension.

Another direction in which we could extend our work is to build on sparse matrix-

variate normal methods. The matrix-variate normal distribution can model correlations

between both the visible variables and the data points at the same time. If YYY has a

matrix-variate normal distribution, we write YYY ∼M N
(

MMM,ΨΨΨ−1,ΘΘΘ−1
)

, where MMM is the

mean matrix, and ΨΨΨ and ΘΘΘ are precision matrices associated with the rows and columns

respectively. The definition is such that vec(YYY)∼N
(

vec(MMM),ΨΨΨ−1⊗ΘΘΘ
−1
)

, where ⊗
denotes the Kronecker product (KP). Zhang and Schneider (2010) apply L1 penalties

to both ΨΨΨ and ΘΘΘ, and learn them iteratively by fixing one and running graphical lasso

to optimise the other. Kalaitzis et al. (2013) note that the KP corresponds to the graph

tensor product. They point out that this may result in dense dependencies between the

rows and columns of YYY , and that the graph Cartesian product – which corresponds to

the Kronecker sum (KS) – is sometimes a more natural choice of model. So Kalaitzis

et al. (2013) propose to replace the KP with the KS in the matrix-variate normal, and

they train this model with L1 penalties on the elements of ΨΨΨ and ΘΘΘ. They name their

Chapter 2. L1-Penalised Latent Gaussian Models 58

method the bigraphical lasso.

It may be useful to extend the sparse matrix-variate methods in a similar manner

to how MSLICE extends GLASSO. The motivation would be to retain the advantages

of MSLICE over GLASSO, but with the additional capability of capturing correlations

between the data points. If some entries of the data matrix were unobserved (including

entire rows or columns), we might use EM, inferring the latent variables in the E step

and applying a method such as the bigraphical lasso in the M step. We could then

incorporate multiple components and side information in a similar way to MSLICE.

We intend to study the application of the new methods to additional domains and

tasks. (Cop)MSLICE may be useful in financial risk management. The task there is to

simulate what would happen under extreme market conditions such as a doubling of

the price of oil, or a collapse of the housing market. This is problematic because there

are likely to be few data points for such scenarios, and there are probably no data points

for combinations of extreme events. (Cop)MSLICE may be helpful because it learns a

relationship between side information (which could include oil price or a house price

index, for example) and the observed variables (such as asset returns). So we could set

the side information to some extreme values and sample from the model to predict the

outcome. In (Agakov et al., 2012), we published preliminary results suggesting that

MSLICE may be used in this way, but much more work needs to be done to determine

if it is indeed viable.

2.6.1 Context-Dependent Precisions

In (Cop)MSLICE, the component means and priors depend on the side information.

But the side does not directly influence each component’s precision matrix: the pre-

cisions remain fixed after training, and the covariate values affect only which of the

fixed components is responsible for each data point. But in our financial experiment,

performance might improve if the structure and the values of the precision elements

varied gradually with volatility. We may also wish to incorporate prior knowledge

about structural changes. For example, if we know that one company made an offer

to buy another during the period of the training data, we may expect those companies’

returns to become coupled after the offer – but the dependence structure between the

other companies should not change. MSLICE cannot capture these kinds of changes.

We have not yet developed a model suitable for these problems. In this section, we

briefly review some relevant work from the literature, and describe our preliminary

Chapter 2. L1-Penalised Latent Gaussian Models 59

attempts at solving this problem and the difficulties we encountered.

It should be straightforward to develop simple extensions of MSLICE and CopM-

SLICE in which the variances of the visible variables depend on the side information,

but the correlations remain fixed. In MSLICE, for example, parameterise the precision

of expert m given the vector of side information xxxn as

ΛΛΛ
′
m (xxxn)≡ DDDm (xxxn)ΛΛΛmDDDm (xxxn) , (2.75)

where DDDm (xxxn) is a diagonal matrix and ΛΛΛm is independent of xxx. Since

logdetΛΛΛ
′
m (xxxn) = 2logdetDDDm (xxxn)+ logdetΛΛΛm, (2.76)

then, with DDDm held constant, the objective (2.58) for ΛΛΛm in the M step of MSLICE

is changed only by an additive constant, and can still be learned by graphical lasso.

With the other MSLICE parameters fixed, the parameters of DDDm (xxxn) could then be

optimised. For CopMSLICE, a similar extension might involve making the marginal

models a function of the side. The new parameters might be learned in a similar manner

to that described in Section 2.4.2.2.

Allowing the partial correlations – and the structure itself – to depend on the side

information is more challenging. The graph-optimised classification and regression

trees (Go-CART) method (Liu et al., 2010) addresses the problem by constructing a

tree on the covariate space. For each leaf of the tree, the training data points whose

covariates fall into the corresponding region are used to train a graphical lasso model.

The final model is therefore a set of sparse Gaussians. When a prediction is required,

the region into which the covariate vector falls determines which Gaussian is used.

The tree is composed of hyper-rectangles, which Liu et al. (2010) iteratively split to

minimise risk on a held-out data set. This model has similar limitations to MSLICE:

the sparse Gaussians are fixed after training, the covariates serving only to select which

of them is responsible for each data point. It has the following further limitations

caused by the covariate space partitioning.

1. The structure may change abruptly at the hyper-rectangle boundaries.

2. Use of the data may be inefficient. For example, a data point may provide infor-

mation on the structure for multiple regions of the covariate space, but is only

used within one region.

Liu et al. (2010) also discuss briefly the use of kernel smoothing to estimate a graph

Chapter 2. L1-Penalised Latent Gaussian Models 60

that depends on a covariate vector. Let

µµµ(xxx) =
∑n K (||xxx− xxxn||)yyyn

∑n K (||xxx− xxxn||)
, (2.77)

SSS (xxx) =
∑n K (||xxx− xxxn||)(yyyn−µµµ(xxx))(yyyn−µµµ(xxx))T

∑n K (||xxx− xxxn||)
, (2.78)

where K is a kernel function. Then use SSS(xxx) as input to the graphical lasso to estimate

a sparse Gaussian. Thus, the Gaussian’s precision – both its values and its graph struc-

ture – may be different at each test data point. However, there are drawbacks to this

method. Liu et al. (2010) point out that it requires global smoothness of the mean and

covariance functions, and that it is challenging to reconstruct the partition of the co-

variate space corresponding to different graph structures. For our purposes, the method

does not easily incorporate certain types of prior information – such as our example

above of a company making a bid for another. Finally, kernel smoothing may not scale

well to high dimensions: as the volume of the covariate space expands, the amount of

data required may become prohibitive.

Cheng et al. (2012) consider a conditional Ising model. Given a covariate vector

xxx ∈ RC, a vector of binary variables yyy ∈ {0,1}V is assumed to be distributed as

P(yyy|xxx) = 1
Z (θθθ(xxx))

exp

(
V

∑
v=1

θvv(xxx)yv + ∑
(u,v):1≤u<v≤V

θuv(xxx)yuyv

)
, (2.79)

where the parameters θθθ(xxx) ≡ (θ11(xxx),θ12(xxx), · · · ,θV−1,V (xxx),θVV (xxx)) are functions of

the side information xxx, and Z (θθθ(xxx)) is the partition function. They choose a linear

model for the parameters: θuv(xxx) = θuv0 + θθθ
T
uvxxx, and use L1 penalties to sparsify the

vector θθθuv (but not the intercept θuv0). Maximising the joint conditional log likelihood

∑
N
n=1 logP(yyyn|xxxn) is intractable, so instead they maximise ∑

N
n=1 logP

(
ynv|xxxn,yyyn\v

)
for

each variable v separately (plus penalties). This turns out to be a set of penalised logis-

tic regression problems. Consider a similar extension of MSLICE: let Λi j (xxx) = αααT
i jx̃xx

(where we temporarily omit the component index m for clarity). The term N
2 logdetΛΛΛ

in the objective (2.58) now becomes 1
2 ∑n logdetΛΛΛ(xxxn). If a determinant must be eval-

uated for every point in the data set, that could be computationally expensive. Perhaps

a pseudolikelihood approach akin to that of Cheng et al. (2012) would solve this prob-

lem. However, we must ensure that ΛΛΛ(xxx) is positive definite – not just during training,

but for any value of xxx – and this model does not guarantee that. Furthermore, we want

ΛΛΛ(xxx) to be sparse – and not just for the covariates {xxxn}N
n=1 in the training data, but for

any xxx that may be encountered at test time. This model does not impose such sparsity.

Chapter 2. L1-Penalised Latent Gaussian Models 61

Working with the Cholesky decomposition of the precision addresses two of these

issues. Let ΛΛΛ = LLLLLLT where LLL is a lower-triangular matrix, and parameterise LLL such

that Li j (xxx) = αααT
i jx̃xx, for i ≥ j. In this representation, ΛΛΛ(xxx) is positive definite for all

xxx. Furthermore, logdetΛΛΛ(xxx) = 2logdetLLL(xxx), and since LLL is triangular, its determinant

is the product of its diagonal entries. So the determinants could be evaluated more

quickly in this representation. However, the problem of sparsifying ΛΛΛ(xxx) remains.

Another potential problem is that the entries of LLL are not as easily interpreted as those

of ΛΛΛ, so it is not clear how to parameterise Li j, or how to interpret the structure of the

learned model.

Another approach we looked at borrows ideas from sparse coding. Encoding a

signal as a sparse combination of the elements of a dictionary set has been effec-

tive in signal processing – see (Chen et al., 1998) and (Mallat, 2008), for example.

We considered representing an MSLICE precision matrix as a sparse linear combina-

tion with side-dependent coefficients: let D ≡ {ΛΛΛd}D
d=1 denote a set of sparse preci-

sion matrices (the dictionary), and let ΛΛΛ(xxx) = ∑
D
d=1 αd(xxx)ΛΛΛd , where αd(xxx) ≥ 0, and

ααα(xxx) ≡ (α1(xxx), · · · ,αD(xxx))
T is a sparse vector. The set D would be learned, with L1

penalties imposed to sparsify each ΛΛΛd . The precision ΛΛΛ(xxx) is guaranteed to be pos-

itive definite – but compared to the Cholesky representation, the dictionary elements

and their combination given some covariate vector xxx may be more interpretable. An-

other potential advantage is that a combination of sparse matrices may also be sparse.

However, two problems that we encountered above are still present in this model.

1. The log likelihood contains a term 1
2 ∑n logdet [∑d αd (xxxn)ΛΛΛd], so it may still be

necessary to evaluate a determinant for every training data point at each iteration

of the learning algorithm.

2. Imposing sparsity on ααα(xxx) (for any xxx, not just the covariate vectors in the training

set) is not straightforward.

Addressing these problems is left for future work.

Chapter 3

Temporal Sparse Gaussian Models

In Chapter 2, we developed the CopMSLICE model – a conditional mixture of sparse,

latent-variable, Gaussian copulas – and we showed how to learn the model by EM. We

focussed on the implications of the latent variables, and examined different choices

of marginal model. We have so far considered each data point to be independent and

identically distributed (iid).

In this chapter, we examine the state variables www more closely. In Section 2.3.2.1,

we chose a multinomial logit model for www given a vector of side information xxx. In

practice, we may have prior knowledge concerning the latent state. For example, in the

experiments of Section 2.5, we modelled stock market returns with the CopMSLICE

family of models, and we saw the mixture components each became responsible for

a different degree of market volatility. If we think of the latent state more generally

as a market regime, then we might expect the state to persist in time: financial market

performance often responds to political changes, or changes in various macroeconomic

factors, which tend to persist over longer periods than a single day. Therefore, it may

be useful to build this notion of state persistence into the model, instead of modelling

the data points as iid. So in this chapter, we extend MGLASSO and CopMGLASSO1

to temporal models. The Gaussian components of the models in this chapter have no

latent variables. Incorporating latent variables should be straightforward, but would

result in significantly slower training – and the temporal extensions that we introduce

already slow down the models’ training compared to their static counterparts, as we

shall see in Section 3.3.4.

The experiments of Section 2.5 were limited to a single dimension of side infor-

1 Recall that we name the particular case of MSLICE with no latent variables (H = 0) in the con-
stituent Gaussians MGLASSO. Similarly, CopMGLASSO is CopMSLICE with no such latent variables.

62

Chapter 3. Temporal Sparse Gaussian Models 63

mation (the VIX volatility index in that case). In this chapter, we perform experiments

with a richer side information with a larger number of features, and examine the extent

to which the set of features selected by the sparse learning algorithm are interpretable.

We study the interaction between the high-dimensional side information and the new

temporal model of latent state evolution.

The models that we develop here are input-output hidden Markov models (IO-

HMMs), so we begin with some background material on the IO-HMM. We then de-

scribe our new IO-HMM models in Section 3.2, explain how they relate to the models

of the previous chapter, and show how their parameters may be learned by EM. Sec-

tion 3.3 contains the results of experiments that compare the new models with those of

Chapter 2; investigate how useful are the temporal aspects of the models; and examine

the interpretability of the inputs selected by the learning algorithm. We look at the

computational costs of training the models in Section 3.3.4. Finally, we conclude the

chapter and discuss future work.

3.1 Background: The Input-Output HMM

Let xxxn ∈ RC denote a vector of covariates (the inputs) and ỹyyn ∈ RV denote a vector

of visible variables (the outputs) at time n. Let wwwn ∈ {0,1}M indicate which of M

components is responsible for generating ỹyyn; that is, wnm = 1 for some m, and wnl = 0

for all l 6= m. Vectors xxxn, ỹyyn, and wwwn exist for 1 ≤ n ≤ N, while for mathematical

convenience we introduce an initial state www0. A graphical model for the input-output

hidden Markov model (IO-HMM) (Bengio and Frasconi, 1995) is shown in Figure 3.1.

To define a concrete instance of the IO-HMM model, one must make choices for:

1. The initial state model p(www0;πππ);

2. The transition model p(wwwn|wwwn−1,xxxn;ΞΞΞ); and

3. The emission model p(ỹyyn|wwwn,xxxn;ϒϒϒ).

The transition and emission models do not change with time n. Note that if we choose

p(wwwn|wwwn−1,xxxn;ΞΞΞ) = p(wwwn|xxxn;ΞΞΞ), all the observations become independent and the

IO-HMM reduces to a mixture of experts.

The parameters of the IO-HMM may be learned by EM. The E step involves infer-

ring expectations of the latent states, and can be performed efficiently by the forward-

backward algorithm, which makes use of the chain structure of the graphical model.

Chapter 3. Temporal Sparse Gaussian Models 64

xxx1 xxx2 xxx3 xxx4

www0 www1 www2 www3 www4 . . .

ỹyy1 ỹyy2 ỹyy3 ỹyy4

πππ ΞΞΞ

ϒϒϒ

Figure 3.1: Graphical model of an input-output HMM, where xxxn is the input, wwwn the

discrete latent state, and ỹyyn the output at time n. Here, πππ parameterises the initial state

distribution, ΞΞΞ parameterises the transition model, and ϒϒϒ parameterises the emission

model.

For an explanation of the forward-backward algorithm in the HMM, see, for example,

(Bishop, 2006). The extension to the IO-HMM is straightforward. Here, we simply

state the key steps of the algorithm.

The following two expectations are required for use in the M step:

ρ(n,m)≡ E
[
wnm|XXX ,ỸYY ,θθθ(t−1)

]
, (3.1)

ω(n, l,m)≡ E
[
wn−1,lwnm|XXX ,ỸYY ,θθθ(t−1)

]
, (3.2)

where t is the EM iteration index. Since these are expectations of binary variables,

ρ(n,m) = p
(

wnm = 1|XXX ,ỸYY ,θθθ(t−1)
)
, (3.3)

ω(n, l,m) = p
(

wn−1,l = 1,wnm = 1|XXX ,ỸYY ,θθθ(t−1)
)
. (3.4)

In the following, everything is conditioned on XXX and θθθ
(t−1), so we now omit these for

clarity. To compute ρ and ω, first define the functions α and β as follows:2

α(n,m) =
p(ỹyy1, · · · , ỹyyn,wnm = 1)

p(ỹyy1, · · · , ỹyyn)
, (3.5)

β(n,m) =
p(ỹyyn+1, · · · , ỹyyN |wnm = 1)

p(ỹyyn+1, · · · , ỹyyN |ỹyy1, · · · , ỹyyn)
. (3.6)

For each n, we can compute α(n,m) using the following recursive relationship:

α(n,m) =
p(ỹyyn|wnm = 1)∑l α(n−1, l)p

(
wnm = 1|wn−1,l = 1

)
p
(
ỹyyn|ỹyy1, · · · , ỹyyn−1

) , (3.7)

2 The functions α and β may be defined without the denominators in Equations (3.5) and (3.6). The
denominators are for scaling purposes, to avoid problems caused by finite machine precision.

Chapter 3. Temporal Sparse Gaussian Models 65

beginning with α(0,m) = p(w0m = 1). The two probabilities in the numerator are

defined by the transition and emission models. The denominator can be found by

normalisation, because ∑m α(n,m) = 1. Similarly, β(n,m) can be computed via this

recursive relationship:

β(n,m) =
∑l β(n+1, l)p

(
ỹyyn+1|wn+1,l = 1

)
p
(
wn+1,l = 1|wnm = 1

)
p(ỹyyn+1|ỹyy1, · · · , ỹyyn)

. (3.8)

The values of β(n,m) are computed in reverse order (decreasing n) beginning with

β(N,m) = 1 for each m. The probabilities (3.1) and (3.2) can be computed in terms of

α and β as follows:

ρ(n,m) = α(n,m)β(n,m), (3.9)

ω(n, l,m) =
α(n−1, l)p(ỹyyn|wnm = 1) p

(
wnm = 1|wn−1,l = 1

)
β(n,m)

p
(
ỹyyn|ỹyy1, · · · , ỹyyn−1

) . (3.10)

The M step of the EM algorithm is a sequence of optimisation problems for the

model parameters, the form of which depends on the choice of transmission and emis-

sion models.

3.2 A Sparse Input-Output HMM

If a flexible representation is chosen for the emission model such that the number of

parameters in ϒϒϒ is large compared to the number of data points N, there is a danger

of overfitting. For the commonly chosen Gaussian emission model, a standard way to

deal with this is to use factorised emissions. That is, if the emission model for state

m is N
(

ỹyy|µµµm (xxx) ,ΛΛΛ−1
m

)
, then ΛΛΛm is constrained to be diagonal. See, for example,

(Bengio et al., 2001; Ernst et al., 2007). Unfortunately, this choice can result in over-

restrictive representations of the emissions. It would be more attractive to constrain

them to have more flexible, but explainable dependency structures: finding the right

balance between parsimony and flexibility of dependencies is particularly important in

finance, where it is recognized as one of the crucial problems (Bauwens et al., 2006).

In this Section, we develop a sparse IO-HMM, which may be viewed as arising

from either of the following perspectives:

1. The desire to put prior information about state persistence into the CopMSLICE

model family; or

2. The need for more flexible and parsimonious emissions than in the standard

application of IO-HMMs.

Chapter 3. Temporal Sparse Gaussian Models 66

Our emission model will be either a multivariate Gaussian or, more generally, a Gaus-

sian copula. For the latter, given wnm = 1, the model is:

yyyn ∼N
(

000,ΛΛΛ−1
m

)
, (3.11)

ỹnv = f−1
mv (ynv)+

(
ΨΨΨ

T
m
)

v: x̃xxn. (3.12)

The notation is the same as used in Chapter 2. That is, fmv ≡ Φ−1 ◦Fmv; Φ is the

univariate Gaussian cdf; x̃xxn augments xxxn with a unit element; and ΨΨΨm parameterises

the conditional mean. If each fmv is the identity map, the emissions are multivariate

Gaussian, and we refer to this IO-HMM as TGLASSO. For the more general non-

Gaussian emissions, we refer to the IO-HMM as CopTGLASSO. As for the Chapter

2 models, we apply L1 penalties to sparsify the precision matrices ΛΛΛm and the mean

parameters ΨΨΨm.

Many choices of transition model are possible. In this work, we use a set of multi-

nomial logit models, one for each possible previous state:

p
(
wnm = 1|wn−1,l = 1,xxxn;ΞΞΞ

)
∝ exp

(
−
(
ΞΞΞ

T
l
)

m: x̃xxn
)
, (3.13)

where (ΞΞΞl) parameterises the multinomial logit given that state l was the previous state.

If the dimensionality of input xxxn is large, overfitting may be a potential problem. Also,

different features of the input may be predictive of different state transitions, and we

may wish to learn this. We therefore apply L1 penalties to the parameters ΞΞΞ≡{ΞΞΞl}M
l=1.

Notice that, if the transitions are independent of the previous state so that

p
(
wnm = 1|wn−1,l = 1,xxxn;ΞΞΞ

)
= p(wnm = 1|xxxn;ΞΞΞ) ∝ exp

(
−ΞΞΞ

T
:mx̃xxn

)
, (3.14)

then CopTGLASSO reduces to CopMGLASSO (CopMSLICE without latent variables

in the Gaussian components).

For the initial state model, we use a categorical distribution. The parameter πππ is an

M×1 vector of state probabilities.

We do not include latent variables in the emission Gaussians. Including them

presents no technical difficulty. However, we saw in Section 2.5.5 that SLICE runs

much more slowly than GLASSO. As we shall see in Section 3.3.4, the IO-HMMs run

more slowly than their non-temporal counterparts, so we choose not to further increase

run times by including latent variables here.

Chapter 3. Temporal Sparse Gaussian Models 67

3.2.1 An EM Algorithm for CopTGLASSO

Again, we use EM to learn the parameters of CopTGLASSO. Training proceeds in

much the same way as CopMGLASSO. The E step consists of running the forward-

backward algorithm to compute ρ and ω – see Equations (3.1) and (3.2). For the M

step, the full objective function is

Q
(

θθθ;θθθ
(t−1)

)
≡∑

m
ρ(0,m) log p(w0m = 1;πππ)

+
N

∑
n=1

∑
m

ρ(n,m) log p(ỹyyn|wnm = 1,xxxn;ϒϒϒ)

+
N

∑
n=1

∑
l,m

ω(n, l,m) log p
(
wnm = 1|wn−1,l = 1,xxxn;ΞΞΞ

)
− γ(θθθ) .

(3.15)

The optimisations for πππ, ϒϒϒ, and ΞΞΞ are independent. With our choice of the categorical

distribution for the initial state, πππ is optimised simply by setting πm = ρ(0,m). Optimi-

sation of the emission model parameters ϒϒϒ =
(

ΛΛΛ,θθθ f
)

– the second term in Equation

(3.15) – is the same as for CopMGLASSO: see Sections 2.4.2.1 and 2.4.2.2. For the

transition parameters ΞΞΞ, it is straightforward to show that the third term in Equation

(3.15) results in the following objective function:

QΞ

(
ΞΞΞ;θθθ

(t−1)
)
≡∑

l

N

∑
n=1

ρ(n−1, l)∑
m

η(n, l,m) log p
(
wnm = 1|wn−1,l = 1,xxxn;ΞΞΞ

)
− γΞ (ΞΞΞ) (3.16)

where

η(n, l,m)≡
p(ỹyyn|wnm = 1) p

(
wnm = 1|wn−1,l = 1

)
β(n,m)

p
(
ỹyyn|ỹyy1, · · · , ỹyyn−1

)
β(n−1, l)

, (3.17)

and γΞ (ΞΞΞ) contains the L1 penalties. With our choice of transition model, each term

in the sum over l in (3.16) – together with the corresponding penalties from the γΞ (ΞΞΞ)

term – is the objective of an independent sparse multinomial logit problem with data

point n weighted by ρ(n−1, l). We define QΞl such that

QΞ

(
ΞΞΞ;θθθ

(t−1)
)
≡∑

l
QΞl

(
ΞΞΞl;θθθ

(t−1)
)
. (3.18)

We again use the L1General package to solve these optimisation problems.

The EM procedure for CopTGLASSO is summarised in Algorithm 4.

Chapter 3. Temporal Sparse Gaussian Models 68

Algorithm 4 EM for CopTGLASSO

Initialise πππ(0)

for m← 1 : M do
Initialise ΛΛΛ

(0)
m such that ΛΛΛ

(0)
m � 0 and diag

((
ΛΛΛ
(0)
m

)
zz

)
= 1

Initialise ΞΞΞ
(0)
m , ΨΨΨ

(0)
m and ζζζ

(0)
m

end for
for t← 1 : T do

E Step
for m← 1 : M do

α(0,m)← π
(t−1)
m

β(N,m)← 1

end for
for n← 1 : N do

Compute α(n, :) via recursion (3.7)

end for
for n← N−1 : 0 do

Compute β(n, :) via recursion (3.8)

end for
end E Step
M Step

for m← 1 : M do
π
(t)
m ← ρ(0,m)

ΞΞΞ
(t)
m ← argmaxΞΞΞm

QΞm

(
ΞΞΞm;θθθ

(t−1)
)

. See Equations (3.16 - 3.18)

ΨΨΨ
(t)
m ←ΨΨΨ

(t−1)
m ; ζζζ

(t)
m ← ζζζ

(t−1)
m ; ΛΛΛ

(t)
m ← ΛΛΛ

(t−1)
m(

ΨΨΨ
(t)
m ,ζζζ

(t)
m

)
← argmax(ΨΨΨm,ζζζm)

Q
θ

f
m

(
ΨΨΨm,ζζζm|ΛΛΛ

(t)
m ;θθθ

(t−1)
)

. See Equation (2.73)†

ΛΛΛ
(t)
m ← argmax

ΛΛΛm : ΛΛΛm�0, diag((ΛΛΛm)zz)=1
QΛm

(
ΛΛΛm|ΨΨΨ(t)

m ,ζζζ
(t)
m ;θθθ

(t−1)
)

. See Equation (2.72)†

end for
end M Step

end for
† In the notation of this chapter, wnm in Equations (2.72) and (2.73) becomes ρ(n,m).

Chapter 3. Temporal Sparse Gaussian Models 69

3.3 Experiments

In this section, we compare the temporal models TGLASSO and CopTGLASSO with

the stationary model MGLASSO and two existing models. The first is an IO-HMM

with factorised Gaussian emissions, which we refer to as TFAC. This is a special case

of TGLASSO in which the transition and mean parameters are unpenalised, and the

penalties on the off-diagonal elements of the precision matrices approach infinity (en-

forcing diagonal precisions). The other model we compare with is that trained by

the MRCE method of Rothman et al. (2010), which is a sparse linear regression with

sparse Gaussian noise. The MRCE model is a special case of MGLASSO with a sin-

gle component (M = 1). We also compare with a copula version of MRCE, which

we term CopMRCE. As the name suggests, the CopMRCE model is the same as Cop-

MGLASSO with M = 1. For each copula model, we use the piecewise distribution

described in Section 2.4.1.1 for the marginals, with a Gaussian for the body and GPDs

for the tails.

We examine the predictive accuracy of the learned models, and interpretation of

their precision structures – in the same way we did in Chapter 2. Additionally, our

data here comprise a high-dimensional vector of side information, and we examine the

selected features to see if we can interpret them. We study the effects of the temporal

connections in the model, and their relationship to the side information.

3.3.1 The Data

The data set used here is of a similar kind to the FTSE returns data described in Section

2.5.1. We collected price data from Yahoo Finance for 42 of the largest constituents

of the S&P 500 index by market capitalisation, from 1999 to 2011. For the input

features, we use the S&P 500, Dow Jones, FTSE 100, and Nikkei 225 market indices,

the VIX volatility index, and a range of econometric technical indicators from the

TTR package3 computed on the S&P 500 index. A full list of the assets and technical

indicators in this data set is given in Appendix C. The input features for each day are

computed using market index values from the previous day – that is, using the most

recently available values on each day.

We discarded any dates on which data were missing, and converted the price data

and index data to asset returns by dividing each day’s price by its value on the previous

3 The TTR package can be found at
http://cran.r-project.org/web/packages/TTR/index.html.

Chapter 3. Temporal Sparse Gaussian Models 70

day. We aggregated the returns (but not the input features) into weekly returns, com-

puted daily. That is, on each date in our data set, the output data are the returns over

the preceding seven-day period. No information is lost in moving from daily to weekly

returns. However, a change in data representation may affect model performance. Ag-

gregating multiple days’ returns smooths over the effects of daily fluctuations in price,

reducing the severity of outliers. Since Gaussian-based models can be sensitive to out-

liers, this preprocessing step may improve the performance of the models considered

in this chapter.

In the next section, we consider a single-window experiment in which we train a

single model. We shall see that the results motivate the experiment in the following

section – a multi-window experiment in which we train multiple models on overlapping

subsequences of the data set.

3.3.2 Single-Window Experiment

We split the data into a training and a testing sequence. The end of the training se-

quence (and start of the test sequence) was on 26th January 2009. The training se-

quence comprises 2500 time steps, and the test sequence has 667 time steps. We

further preprocess the aggregated returns by making the training sequence zero-mean,

and scaling such that the diagonal of the precision contains all ones.

For the three non-temporal models (MRCE, CopMRCE, and MGLASSO), we sim-

ply consider the training sequence to be a set of iid data points. We initialise the

three temporal models (TFAC, TGLASSO, and CopTGLASSO) by first training a

discriminative mixture (with factored emissions for the TFAC model); in particular,

MGLASSO is used to initialise TGLASSO and CopTGLASSO. We initialise the dis-

criminative mixtures by k-means, with the component precisions initialised to the iden-

tity. For CopTGLASSO, the marginals Fmv are initialised by fitting to the training data

for variable v, with each data point weighted according to the responsibility of com-

ponent m in the initialising mixture. All parameter choices – such as the L1 penalties

and number of latent states – are made by cross-validation. Note that, in contrast to the

previous chapter, we do penalise the parameters of the transition model (ΞΞΞ) and the

emission component means (ΨΨΨ).

Chapter 3. Temporal Sparse Gaussian Models 71

62

64

66

68

70

72

74

T
F

A
C

M
R

C
E

C
o
p
M

R
C

E

M
G

L
A

S
S

O

T
G

L
A

S
S

O

C
o
p
T

G
L
A

S
S

O

N
e
g
a
ti
v
e
 O

S
A

 t
e
s
t
lo

g
 l
ik

e
lih

o
o
d
.

62

64

66

68

70

72

74

T
F

A
C

M
R

C
E

C
o
p
M

R
C

E

M
G

L
A

S
S

O

T
G

L
A

S
S

O

C
o
p
T

G
L
A

S
S

O

N
e
g
a
ti
v
e
 O

S
A

 t
e
s
t
lo

g
 l
ik

e
lih

o
o
d
.

55

60

65

70

T
F

A
C

M
R

C
E

C
o
p
M

R
C

E

M
G

L
A

S
S

O

T
G

L
A

S
S

O

C
o
p
T

G
L
A

S
S

O

N
e
g
a
ti
v
e
 O

S
A

 t
e
s
t
lo

g
 l
ik

e
lih

o
o
d
.

Figure 3.2: Mean OSA negative log likelihoods (lower is better) on test data for (Left)

the single window experiment; (Middle) the multi-window experiment; and (Right) the

multi-window experiment with no inputs. (Note that the data in the single and multiple

window experiments are different, so the likelihood values are not comparable, only the

relative performance of the models). The vertical bars depict standard errors across

time steps. We note the following. (1) TFAC and MRCE perform poorly compared

to the newer models. (2) CopTGLASSO is the best performer. (3) MGLASSO and

TGLASSO perform similarly, but (4) the MGLASSO performance drops a little when

inputs are removed, but the TGLASSO performance does not.

3.3.2.1 Predictive Accuracy

We evaluated the models by computing the mean of the one-step-ahead (OSA) log like-

lihoods at each point in the test sequence. That is, at each data point we condition on

the data prior to that, and compute the log likelihood of the next point in the sequence.

Figure 3.2 (Left) plots the results. A considerable performance gain is obtained over

the sparse regression model (MRCE) by including non-Gaussian noise (CopMRCE)

or multiple mixture components (MGLASSO). TGLASSO and CopTGLASSO each

perform much better than the factorised input-output HMM (TFAC), so the more flex-

ible sparse emission models are beneficial in the IO-HMMs. However, perhaps the

most interesting result is the small difference in performance between MGLASSO and

TGLASSO: the error bars in their OSA log likelihoods have considerable overlap, so it

appears that the introduction of temporal connections provides minimal improvement

in predictive accuracy in this experiment. The reason for this may be that the inputs

provide enough information about the latent state to make the temporal connections

Chapter 3. Temporal Sparse Gaussian Models 72

1 2 3 4 5 6

0

0.5

1

1.5

Test window.

M
e

a
n

 d
if
fe

re
n

c
e

 i
n

 O
S

A
 l
o

g
 l
ik

e
lih

o
o

d
.

Figure 3.3: For TGLASSO and MGLASSO, we computed the one-step-ahead log like-

lihoods on the test set. That is, for each data point in the test set, we computed its

log likelihood conditioned on all prior data. We then divided the test set into six con-

secutive windows, and for each model, took the mean of the OSA log likelihoods within

each window. This figure plots the difference between the mean OSA log likelihoods for

TGLASSO and MGLASSO. TGLASSO significantly outperforms MGLASSO over the

first two windows. After that, the models perform similarly.

redundant. We investigate further in Section 3.3.3.1.

We noticed by inspecting the OSA log likelihoods that the temporal models tend

to perform better than MGLASSO on the test data immediately following the train-

ing set. To illustrate this, we divide the test set into six consecutive, equally-sized,

windows. For TGLASSO, we take the OSA log likelihoods computed above, and

record the mean value in each window. We do the same for MGLASSO. In Figure 3.3,

we plot the difference between the TGLASSO and MGLASSO means in each of the

six windows. The plot shows that TGLASSO outperforms MGLASSO in the block

immediately following the training data, but this superiority is lost over time. This

observation motivates our second experiment, in which we train multiple models on

temporal windows of data. A further motivation is that the multi-window scenario is

more realistic: in practice, a financial model is likely to be used to predict a few time

steps ahead, before retraining as new data are acquired.

Chapter 3. Temporal Sparse Gaussian Models 73

Table 3.1: Bias weights learned for the TGLASSO transition model. For each previous

state, the next state is modelled as a multinomial logit. The values shown here are the

intercept parameters. The diagonal is positive and other values are negative, indicating

that the latent state tends to persist in time – unless the side information is strong

enough to overcomes the bias.

Next State

Previous State 1 2 3

1 2.1913 -1.1407 -1.0506

2 -2.9042 3.2156 -0.3114

3 -2.1607 -0.4496 2.6103

3.3.2.2 Interpretation of Latent States

Inspection of the bias parameters of the transition models for TGLASSO and CopT-

GLASSO indicate a strong tendency for the latent state to persist between adjacent

time steps. The biases learned for TGLASSO are shown in Table 3.1 (for a typical

training run). To compare state persistence between MGLASSO and TGLASSO, we

compute for each model the responsibility of each state at each time step, and compute

the difference in these responsibilities between adjacent time steps. The sum of the ab-

solute differences for MGLASSO is 407, and for TGLASSO it is 266. So, as expected,

the latent state changes less frequently for TGLASSO in this experiment.

The latent states can be interpreted by examining the responsibilities. Figure 3.4

(Left) shows that state 1 of TGLASSO is used to model the period around the market

crash of late 2008, while states 2 and 3 correspond approximately to periods of rising

trend and falling trend respectively. Notice that the bias weights in Table 3.1 indicate

that transitions to state 1 are less common than transitions to the other states – as

expected if state 1 is interpreted as an extreme scenario. Figure 3.4 (Right) illustrates

the precision matrices ΛΛΛm learned for states 2 and 3, with the stocks sorted according

to market sectors. The lower triangle corresponds to state 2 (rising market) and the

upper triangle to state 3 (falling market). The structures are similar to those seen in

Section 2.5.3: stocks within the same market sector tend to be more strongly coupled,

and dependencies are stronger when the market is falling.

Similar patterns of responsibilities and structures were observed for MGLASSO

Chapter 3. Temporal Sparse Gaussian Models 74

600
900
1200
1500

0

1

0

1

1
9
-J
a
n
-2
0
0
0

2
5
-J
a
n
-2
0
0
1

3
1
-J
a
n
-2
0
0
2

0
5
-F
e
b
-2
0
0
3

0
4
-F
e
b
-2
0
0
4

0
1
-F
e
b
-2
0
0
5

0
1
-F
e
b
-2
0
0
6

3
1
-J
a
n
-2
0
0
7

2
9
-J
a
n
-2
0
0
8

2
6
-J
a
n
-2
0
0
9

2
2
-J
a
n
-2
0
1
0

1
9
-J
a
n
-2
0
1
10

1

G
E

B
A

U
T

X
T

Y
C C

B
A

C
A

IG
J
P

M
W

F
C

M
S

A
X

P
U

S
B

J
N

J
P

F
E

M
R

K
A

M
G

N
A

B
T

U
N

H
M

D
T

C
M

C
S

A
T

W
X

H
D

D
IS

M
S

F
T

C
S

C
O

IB
M

IN
T

C
H

P
Q

O
R

C
L

A
A

P
L

Q
C

O
M

P
G

W
M

T
M

O
K

O
P

E
P T

V
Z

X
O

M
C

V
X

C
O

P
S

L
B

GE
BA

UTX
TYC

C
BAC
AIG

JPM
WFC

MS
AXP
USB
JNJ
PFE

MRK
AMGN

ABT
UNH
MDT

CMCSA
TWX

HD
DIS

MSFT
CSCO

IBM
INTC
HPQ

ORCL
AAPL

QCOM
PG

WMT
MO
KO

PEP
T

VZ
XOM
CVX
COP
SLB

Figure 3.4: (Left) Top row : Value of the S&P 500 index. Rows 2,3,4: Posterior probabil-

ity in the TGLASSO model of hidden states 1,2, and 3 respectively, given the observed

data. (Right) Visualisation of learned precision matrices in TGLASSO. The lower left

and upper right triangles correspond to the rising and falling states respectively. Ab-

solute values are plotted, and the dynamic range is chosen to highlight differences

between the two states. Note the greater degree of coupling in the upper right (when

the market is falling). Lines group stocks by market sector; it is clear that assets in the

same sector tend to be coupled more strongly.

and CopTGLASSO.

3.3.3 Multi-Window Experiment

Motivated by practical problems (in finance, for example) and the result illustrated

in Figure 3.3, we repeat the previous experiment but on multiple windows: for each

model, we retrain on a series of windows over the data set. Each training window

consists of a four-year sequence, with the immediately following three months used

as the test sequence. Subsequent windows begin three months after the start of the

previous window (and so the windows overlap). We compute OSA log likelihoods at

each time step in each test window. The models are compared in Figure 3.2 (Middle).

The results are broadly similar to the single-window case – Figure 3.2 (Left) – but

CopTGLASSO is now the best performer by a significant margin.

3.3.3.1 The Effects of the Input Features

TGLASSO and MGLASSO perform similarly both here and in the single-window test.

Examining the ΨΨΨ parameters, we find that for our choice of input features, most entries

Chapter 3. Temporal Sparse Gaussian Models 75

of these matrices were set to zero during training for both MGLASSO and TGLASSO.

So the inputs appear not to be predictive of the component means. Examining the pa-

rameters ΞΞΞ, we notice that MGLASSO uses more of the input features than TGLASSO.

So we remove the inputs and repeat the experiment to see how that affects each model.

(Removing the inputs means that TGLASSO becomes a sparse HMM – as opposed

to IO-HMM – and MGLASSO becomes a sparse mixture model.) Figure 3.2 (Right)

shows the results. TGLASSO and CopTGLASSO perform much the same as when

the inputs are present, but MGLASSO’s performance is worse because it is unable to

model the non-stationarity. The results suggest that MGLASSO is more sensitive to

the presence of good input features: as the inputs become sufficiently predictive of

the hidden state, MGLASSO’s performance improves. But since (Cop)TGLASSO can

model the temporal dependence between states, its performance is less sensitive to the

choice of inputs.

TFAC actually performs better when there are no inputs, which we expect is due

to overfitting in this unregularised model. The performance of MRCE and CopMRCE

is unchanged when the inputs are removed: other models can use the inputs to predict

the hidden state, but (Cop)MRCE is a single-state model.

3.3.3.2 Interpretation of the Selected Features

We now inspect the input features selected by MGLASSO to see if we can interpret

them. Each ΞΞΞm is a matrix in which the rows correspond to input features. For each fea-

ture, we sum the magnitudes of the values in each row of each ΞΞΞm as a measure of the

predictive strength of the input features. Table 3.2 lists the results, with features ranked

by this measure of predictive strength. Among the most relevant features, we find the

average true range (ATR), a volatility indicator (Vol), Chaikin volatility (ChaikinVol),

Bollinger band bounds (BBlo and BBhi), and the implied volatility (VIX). These are all

measures of market volatility. It makes sense that these would score high: as volatility

is the standard criterion for measuring risk, it is natural to expect that volatility-related

features will be predictive of the market state (Cuthbertson, 1996). Another group of

technical indicators that rank high on the list contains measures of market momentum:

that is, to what extent the market is rising or falling – the so-called “bull” and “bear”

markets. This group includes the Chaikin accumulation / distribution line (Chaiki-

nAD), the detrended price oscillator (DPO), the Williams AD line (WilliamsAD), and

the triple smoothed exponential oscillator (TRIX).

Features that are less useful in predicting the hidden state include indicators that

Chapter 3. Temporal Sparse Gaussian Models 76

Table 3.2: Input features ranked according to predictive strength, measured by the sum

of magnitudes of the associated transition-model parameters. Technical indicators mea-

suring market volatility or momentum are strongly predictive of the market state. Less

useful in this experiment are indicators that average over very long or short periods,

and those that attempt to predict the onset of a trend.

Rank Technical Indicator Predictive Strength

1 ATR 38.7404
2 ChaikinAD 26.3262
3 BBlo 18.9525
4 DPO 11.9678
5 Vol 11.0775
6 WilliamsAD 10.2598
7 TRIX 9.6246
8 ChaikinVol 9.2545
9 BBhi 8.0977

10 VIX 6.1606
11 AroonDn 4.9219
12 DX 4.4171
13 AroonUp 3.6304
14 KST 3.4232
15 MFI 3.3311
16 VHF 3.2905
17 DVI 3.2771
18 OBV 3.1303
19 ChaikinMF 2.9679
20 ADX 2.3636
21 TDI 2.0067
22 MACD 1.4260
23 CCI 0.8702
24 NIKKEI 0.4893
25 EMV 0.2866
26 DOW 0.2537
27 BBpct 0.1451
28 SP500 0.0945
29 FTSE 0.0635
30 CLV 0.0198

Chapter 3. Temporal Sparse Gaussian Models 77

average over a very long period – such as the DV intermediate oscillator (DVI) – or

consider too short a period – such as the close location value (CLV). Indicators that try

to predict the start and end of trends are also less useful, such as the commodity channel

index (CCI), trend detection index (TDI), and the vertical horizontal filter (VHF). This

is intuitive, as we would not expect very long or very short-term indicators to be useful

for predicting weekly returns.

3.3.4 Computational Costs

The time complexity of an IO-HMM is linear in N (the length of the training se-

quence4), and quadratic in M (Bengio and Frasconi, 1996). Thus, MGLASSO and

TGLASSO both have computational cost linear in N, but MGLASSO is linear in M

while TGLASSO is quadratic in M. With our choice of mixing model for MGLASSO

and transition model for TGLASSO, both have an E step that is linear in C. The M

steps of these models are the same; computational costs of MGLASSO and related

non-temporal models are discussed in Section 2.5.5.

We compare empirically the convergence of MGLASSO and TGLASSO, using a

similar methodology to Section 2.5.5.1. We run each model on the single-window data

set used in Section 3.3.2, and record the one-step-ahead log likelihood of the training

and testing data after each iteration of training. We also measure the sparsity5 of each

component’s precision matrix in the emission model, and record the mean at each

iteration. Figure 3.5(a-c) shows the results. Initially, the negative log likelihoods fall

at the same rate for both models. However, log likelihoods for MGLASSO stabilise

more quickly than for TGLASSO. The former appears to have converged after about

20 seconds (or 20 iterations), while TGLASSO appears to take around 50 seconds (or

30 iterations). The mean sparsity of each model’s emissions drops quickly in the first

few seconds, then changes little after that.

Given our observations in Section 3.3.3.1 on the sensitivity of MGLASSO and

TGLASSO to the inputs, it is important to examine how training times vary with the

dimension of the input vector xxx. We randomise the order of the input features, then train

each model on the full data set using only the first C input dimensions, where C varies

from 5 to 30. Figure 3.5(d) shows the results. In this experiment, run times for both

4 Recall that, for ease of exposition, we consider the training data to consist of a single sequence.
With multiple sequences, the time complexity is linear in the sum of lengths of all training sequences.

5 Recall that we define sparsity as the fraction of off-diagonal elements that are non-zero (so a lower
value is more sparse).

Chapter 3. Temporal Sparse Gaussian Models 78

0 10 20 30 40 50 60 70
57.5

58

58.5

59

59.5

60

60.5

61

61.5

Run time (s).

N
e
g
a
ti
v
e
 O

S
A

 t
ra

in
in

g
 l
o
g
 l
ik

e
lih

o
o
d
.

(a) Negative training log likelihood.

0 10 20 30 40 50 60 70
56

58

60

62

64

66

Run time (s).

N
e
g
a
ti
v
e
 O

S
A

 t
e
s
ti
n
g
 l
o
g
 l
ik

e
lih

o
o
d
.

(b) Negative testing log likelihood.

0 10 20 30 40 50 60 70

0.4

0.5

0.6

0.7

0.8

0.9

1

Run time (s).

S
p
a
rs

it
y
.

(c) Sparsity.

5 10 15 20 25 30
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

Input dimension.

T
im

e
 p

e
r

it
e
ra

ti
o
n
 (

s
).

MGLASSO

TGLASSO

(d) Run time vs input dimension.

Figure 3.5: Subfigures (a–c) show the evolution of the negative training log likelihood,

negative testing log likelihood, and mean sparsity of the emission components as the

models MGLASSO (blue line) and TGLASSO (red line) are trained. MGLASSO ap-

pears to have converged after about 20 seconds, TGLASSO after about 50 seconds.

Subfigure (d) shows the average time per iteration as the dimensionality of the input

is varied. MGLASSO with all 30 input dimensions is faster than any of the TGLASSO

models.

Chapter 3. Temporal Sparse Gaussian Models 79

models appear to scale approximately linearly with input dimension. MGLASSO with

all 30 inputs runs more quickly than TGLASSO with only 5 inputs. Since MGLASSO

and TGLASSO exhibit similar predictive performance provided that MGLASSO may

utilise the inputs – see Figure 3.2 – the temporal connections in the TGLASSO model

appear to bring little benefit for a substantial increase in training time in this experi-

ment.

Recall that there are only 3 latent states (M = 3) in this experiment. Due to the lin-

ear versus quadratic scaling in M, the difference in training times between MGLASSO

and TGLASSO may grow as more states are added. However, when applied to other

problems, it may be that the temporal connections produce better performance for

TGLASSO than MGLASSO – for example, if the inputs provide little information

about the latent state. So it is possible that the performance penalty incurred by

TGLASSO is acceptable in some cases.

In Section 2.5.5, we studied the computational costs of the CopMSLICE family of

models. In particular, we examined the difference in training time between MSLICE

and CopMSLICE (of which MGLASSO and CopMGLASSO are special cases). We

expect the difference in training time between TGLASSO and CopTGLASSO to be-

have similarly, because evaluation and updating of the marginal functions is indepen-

dent of the presence or absence of latent-state connections. We therefore omit CopT-

GLASSO from the experiments in this section.

3.4 Conclusions and Future Work

In this chapter, we introduced the IO-HMMs TGLASSO and CopTGLASSO – ex-

tensions of the MGLASSO and CopMGLASSO models introduced in Chapter 2, in

which the discrete latent state depends on the state at the previous time step. We

demonstrated that these models outperformed an existing baseline: an IO-HMM with

factored emissions. In our experiments, MGLASSO and TGLASSO initially showed

similar predictive performance, but when the input features were removed, the per-

formance of MGLASSO degraded by more than that of TGLASSO. So we conclude

that the market indices and technical indicators used as covariates in our experiment

were sufficiently predictive of the latent state as to make the temporal connections un-

necessary. This illustrates that with well-designed input features, the simpler, faster,

MGLASSO model may be used in preference to TGLASSO, which is more expen-

sive to train. However, we also conclude that the temporal connections may improve

Chapter 3. Temporal Sparse Gaussian Models 80

performance when the side information is absent or weak.

The experiments of this chapter included a higher-dimensional input vector than

the experiments of Section 2.5. We examined the inputs used by a trained MGLASSO

model, and found them to be explainable. This suggests that the family of models in-

troduced in this and the previous chapter may be useful for feature selection in decision

support applications where interpretation of the learned models is necessary.

The future work discussed for CopMSLICE in Section 2.6 applies to TGLASSO

and CopTGLASSO too. Adding latent variables to these models – to get TSLICE and

CopTSLICE respectively – ought to be technically straightforward. But we suspect the

resulting learning algorithms will be slow, perhaps to the extent of being impractical

for some applications.

We would like to extend TGLASSO and CopTGLASSO by allowing the precision

matrices to depend on their values at the previous time step. This might be useful in

finance, for example, where we would expect dependence structures to change gradu-

ally over time: if the prices of two stocks are coupled, they are likely to remain coupled

for multiple consecutive days. The prices may become decoupled by a business event,

such as the two companies severing a business relationship, whence the absence of

any mutual price dependence would be expected to persist for some time after. Such a

process may be better modelled by allowing the precision matrices to depend on their

previous values. However, we expect that introducing these temporal connections will

not be straightforward: we may encounter similar problems as when we tried to intro-

duce direct dependence of the precision matrices on the side information, as discussed

in Section 2.6.

Chapter 4

Sparse Bayesian Gaussian Graphical

Models

In Chapters 2 and 3, we investigated various sparse Gaussian models, using optimi-

sation methods to estimate parameters. The methods in those chapters were typically

based on the combination of L1 penalties and the maximum a posteriori (MAP) es-

timator to induce sparsity in the parameters. However, a Bayesian approach may be

more principled, and preferable in some scenarios. Bayesian methods typically make

use of the full posterior distribution – as opposed to a point estimate – which can

make prediction more accurate. The posterior may also be more interpretable than a

point estimate, since the latter does not indicate the degree of confidence in that value.

Bayesian methods can make it easy to incorporate prior knowledge into a model, since

the prior distribution is often represented explicitly.

A perceived drawback of the Bayesian approach is that it is often considered to

be much slower than optimisation methods. However, Mohamed et al. (2012) recently

compared the L1 approach with Bayesian methods based on the “spike-and-slab” prior,

focussing on unsupervised linear latent variable models. They found that the Bayesian

methods could outperform L1, even when both were constrained by the same time

budget. Here, we address the question of whether a Bayesian method can outperform

the L1 optimisation approach to infer sparse precision matrices.

The GWishart distribution is a generalisation of the Wishart that requires the matrix

random variable to respect the structure of a given graph – see Section 4.1.2. A class

of sparse Bayesian Gaussian graphical models (GGMs) based on the GWishart has

been under development in parallel with the graphical lasso. These models have wide

practical application. For example, Dobra et al. (2010) use them in a variable selection

81

Chapter 4. Sparse Bayesian Gaussian Graphical Models 82

problem, studying the determinants of macroeconomic growth; Lenkoski and Dobra

(2011) use them in a regression setting to predict the volume of calls in a call centre;

Dobra et al. (2011) apply sparse GGMs to model cancer mortality rates in the United

States; Wang and Li (2012) use them to evaluate mutual fund performance; and Cheng

and Lenkoski (2012) embed a GGM within a hierarchical Bayesian model to develop

a stochastic volatility model for multivariate heteroskedastic financial data.

Inference in models based on sparse Bayesian GGMs is often limited by the ef-

ficiency with which the GWishart distribution can be sampled. Wang and Li (2012)

demonstrate that the block Gibbs sampler is the current state of the art for this task.

A more efficient sampler would make inference in GWishart-based models faster, and

could make practical the use of more complex, higher-dimensional models. Hamil-

tonian Monte Carlo (HMC) samplers (see section 4.1.4) can facilitate fast mixing in

distributions where the random variables are strongly coupled. Furthermore, they nat-

urally take advantage of sparsity: the bottleneck in HMC is often the computation of

the energy gradient with respect to the distribution parameters, and fewer parameters

means fewer gradients to evaluate. We develop an HMC approach to sample from the

GWishart distribution; in our experiments, it significantly outperforms the block Gibbs

sampler in most cases.

This chapter expands on our work in (Orchard et al., 2013). The chapter is organ-

ised as follows. In the background material of Section 4.1, we describe the GWishart

distribution and review current methods for drawing samples from it. We describe a

spike-and-slab Gaussian model incorporating the GWishart, and discuss recent meth-

ods for performing inference in that model. We then review Hamiltonian Monte

Carlo. In Section 4.2, we describe our contributions to improving sampling from the

GWishart, beginning with a method for choosing the covering set of cliques in block

Gibbs. We then describe our HMC approach, and in particular our choice of step size,

trajectory length, and mass matrix – which are key to good performance. In the ex-

periments in Section 4.3, we compare our new samplers to the existing block Gibbs

approach across a range of dimensions, data sizes, and graphs of varying sparsity,

demonstrating greatly improved efficiency in most cases. We then utilise the HMC

sampler within a particular sparse GGM, and compare this model with the graphical

lasso. We show that, on a real-world data set, the GGM can outperform graphical lasso,

even when the methods are restricted to the same time budget. Conclusions and future

work in Section 4.4 wrap up the chapter.

Chapter 4. Sparse Bayesian Gaussian Graphical Models 83

4.1 Background

4.1.1 The Wishart Distribution

Before discussing the GWishart, we briefly review the Wishart. Throughout this chap-

ter, we use p to denote the dimensionality of the observed variables. (There are no

latent variables or covariates in the models of this chapter, except in the discussion

of future work). The Wishart W (d,DDD) is a distribution over symmetric, non-negative

definite matrices, with density1

p(ΛΛΛ) =
1

2
d p
2 (detDDD)−

d
2 Γ
(d

2

) (detΛΛΛ)
d−p−1

2 exp
[
−1

2
tr(DDDΛΛΛ)

]
, (4.1)

where d > p−1 is the degrees of freedom, DDD is a p× p positive-definite scale matrix,

and Γ is the multivariate gamma function.

The Wishart distribution is the conjugate prior for the precision matrix of a multi-

variate Gaussian, and so finds common use in Bayesian statistics. Let yyy∼N
(

000,ΛΛΛ−1
)

,

and let the prior on ΛΛΛ be W (d,DDD). If N data points are observed, contained in the ma-

trix YYY ∈ RN×p, then the posterior distribution of ΛΛΛ is W (d +N,DDD+YYY TYYY).

Sampling from the Wishart distribution is straightforward. Let TTT and ΦΦΦ denote the

Cholesky decompositions of DDD−1 and ΛΛΛ respectively, and define ΨΨΨ as follows:

DDD−1 = TTT T TTT ; ΛΛΛ = ΦΦΦ
T

ΦΦΦ; ΨΨΨ = ΦΦΦTTT−1. (4.2)

Then, samples of ΛΛΛ can be generated by drawing samples of the upper triangular matrix

ΨΨΨ, which is easy because the elements of ΨΨΨ are independently distributed:

Ψii ∼ χ
2 (d− i+1) ; (4.3)

Ψi j ∼N (0,1), i < j; (4.4)

where χ2(k) is the chi-squared distribution with k degrees of freedom.

4.1.2 The GWishart Distribution

The GWishart distribution WG(b,DDD) generalises the Wishart by introducing a graph

G = (V,E), and requiring that any draw ΛΛΛ respect the graph structure. That is, if an

1 The Wishart distribution is usually defined in terms of a scale matrix VVV ≡ DDD−1. We use DDD for
consistency with the GWishart definition in Section 4.1.2.

Chapter 4. Sparse Bayesian Gaussian Graphical Models 84

edge is missing in the graph, the associated element of ΛΛΛ must be zero. Precisely, the

density is:

p(ΛΛΛ|GGG) =
1

IG(b,DDD)
(detΛΛΛ)

b−2
2 exp

[
−1

2
tr(DDDΛΛΛ)

]
1[ΛΛΛ∈M+(G)] , (4.5)

where b is the degrees of freedom parameter, DDD is the scale matrix, 1[] is the indicator

function, M+(G) = {ΛΛΛ ∈ S++ such that Λi j = 0 if (i, j) /∈ E, i 6= j}, S++ is the cone of

positive-definite matrices, and IG(b,DDD) is the normalisation constant.

Like the Wishart, the GWishart is the conjugate prior for the precision of a mul-

tivariate Gaussian. Let yyy ∼ N
(

000,ΛΛΛ−1
)

, and let YYY ∈ RN×p be a data matrix. The

posterior distribution of ΛΛΛ is easily shown to be WG(b+N,DDD+YYY TYYY).

We introduce some notation for later use. Following Atay-Kayis and Massam

(2005), we define

V = {(i, j), i≤ j such that either i = j, i ∈V or (i, j) ∈ E}, (4.6)

W = {(i, j), i, j ∈V, i≤ j}, (4.7)

V = W \V . (4.8)

Define ΛΛΛ
V = {Λi j : (i, j) ∈ V }, and let ΛΛΛV denote a column vector containing the

elements of ΛΛΛ
V in the columnwise order in which they appear in ΛΛΛ.

4.1.2.1 Inference in the GWishart

Unlike for the Wishart, computing the normalisation constant IG(b,DDD) of the GWishart

distribution is not straightforward. Lenkoski and Dobra (2011) showed empirically that

a Gaussian approximation to the GWishart becomes more accurate as the dimensional-

ity p increases. Therefore, in higher dimensions, a Laplace approximation to IG(b,DDD)

may be justified. Atay-Kayis and Massam (2005) developed an approximate method

in which they use the decomposition (4.2) and write the normalisation constant as the

expectation of a function of the random matrix ΨΨΨ. They approximate this expecta-

tion by drawing samples of the free elements ΨΨΨ
V . Elements of ΨΨΨ

V are independently

distributed – according to a chi-squared distribution for the diagonal elements, and a

Gaussian for the off-diagonal elements. The elements of ΨΨΨ
V are not free: each one

is a function of the elements of ΨΨΨ preceeding it in row-wise order. Thus, completing

the matrix ΨΨΨ is an iterative operation, and this step is the bottleneck in computing the

approximation of IG(b,DDD).

Since an exact IG(b,DDD) is not available, approximate inference is necessary. Vari-

ous sampling procedures have been invented. The method of Atay-Kayis and Massam

Chapter 4. Sparse Bayesian Gaussian Graphical Models 85

(2005) for approximating IG(b,DDD) is straightforwardly adapted to drawing samples

of ΛΛΛ: draw each ΨΨΨ as above, then compute ΛΛΛ using (4.2). Each such ΛΛΛ is an exact

sample from WG(b,DDD). As in the normalisation constant approximation, the efficiency

of this sampler is limited by the matrix completion operation. Exact samplers were

also invented by Wang and Carvalho (2010), who developed a rejection sampler, and

Mitsakakis et al. (2011), who developed a Metropolis-Hastings (MH) method. Dobra

et al. (2011) demonstrated efficiency gains over these approaches using a random-walk

Markov Chain Monte Carlo (MCMC) scheme in which each element of ΛΛΛ
V is updated

conditionally on the other elements.

However, Wang and Li (2012) demonstrated that a block Gibbs sampler (Piccioni,

2000) convincingly outperformed all other existing methods. We describe it in the next

section.

4.1.2.2 Sampling the GWishart with Block Gibbs

The GWishart block Gibbs sampler (Piccioni, 2000; Wang and Li, 2012) is based on

the fact that a block of ΛΛΛ corresponding to a clique in G can be sampled conditional on

the rest of ΛΛΛ by sampling from a Wishart. Thus, given a set of cliques that cover ΛΛΛ
V ,

a sampler for the GWishart can be constructed by iterating over the covering set and

conditionally sampling each block of ΛΛΛ.

More precisely, the block Gibbs algorithm is as follows. First, construct a set

I = {Ik : 1≤ k ≤ K} where Ik ⊂V such that all Ik are cliques, and ∪Ik∈I ΛΛΛIk,Ik = ΛΛΛ
V .

Initialise the Markov chain at some ΛΛΛ. Then, generate the next sample in the chain as

follows: iterate over k, and at each step draw AAA∼W (b,DDDIk,Ik), and set

ΛΛΛIk,Ik = AAA+ΛΛΛIk,V\Ik

(
ΛΛΛV\Ik,V\Ik

)−1
ΛΛΛV\Ik,Ik . (4.9)

The choice of covering set I can have a significant effect on the performance of

the sampler, and the optimal selection method probably depends on G. Wang and

Li (2012) considered two choices for I : (1) The maximal cliques; (2) All pairs of

nodes connected by an edge, plus all isolated nodes. It was found that maximal cliques

gave better performance than the edgewise covering set in all the models considered.

However, it seems likely that the set of all maximal cliques will be a suboptimal choice

in many models. First, finding the maximal cliques is NP-hard, so this method may

scale poorly. Second, the number of maximal cliques may be much greater than that

required to cover ΛΛΛ
V ; a smaller covering set may trade off a little mixing quality for a

Chapter 4. Sparse Bayesian Gaussian Graphical Models 86

significant speed up. In Section 4.2.1, we describe a heuristic for choosing a smaller

set of maximal cliques that still cover ΛΛΛ
V .

A sampler for the GWishart was recently proposed by Lenkoski (2013) that is

closely related to block Gibbs. Unlike block Gibbs, however, each sample is drawn

independently. In this algorithm, T samples are drawn from WG(b,DDD) by repeating the

following process T times. First, sample ΛΛΛ
∗ from the Wishart W (b,DDD), and compute

the inverse ΣΣΣ = (ΛΛΛ∗)−1. Then, set ΛΛΛ
(0) = III, and construct a sequence

(
ΛΛΛ
(1),ΛΛΛ(2), ...

)
,

where ΛΛΛ
(t) is computed from ΛΛΛ

(t−1) by iterating over a covering set of cliques I, and

applying Equation (4.9) for each clique Ik with AAA = ΣΣΣ
−1
Ik,Ik

. These deterministic updates

cause ΛΛΛ
(t) to converge to a matrix ΛΛΛ (where ΛΛΛ depends on ΣΣΣ). Lenkoski (2013) shows

that ΛΛΛ is a valid sample from WG(b,DDD). In practice, the chain must be terminated after

a finite number of iterations. But if run for long enough such that ΛΛΛ
(t) has converged

to ΛΛΛ to machine precision, then the sampler is exact.

4.1.3 A Spike-and-Slab Gaussian Graphical Model

The following spike-and-slab Gaussian graphical model (GGM) utilises the GWishart

in a prior over sparse precisions of a Gaussian distribution:

GGG∼ P(GGG), (4.10)

ΛΛΛ∼WG(b,DDD), (4.11)

yyy∼N
(

000,ΛΛΛ−1
)
. (4.12)

P(GGG) is an arbitrary distribution on graphs; we describe some of the choices appearing

in the literature in Section 4.1.3.2. This model has received considerable attention in

recent years; see, for example (Dobra et al., 2011; Rodriguez et al., 2011; Dobra and

Lenkoski, 2011; Wang and Li, 2012).

4.1.3.1 Inference

Bayesian inference in this model typically involves sampling. One of the most efficient

existing methods (Wang and Li, 2012), which we refer to as WL, iterates two steps.

The first is to draw a sample of ΛΛΛ given GGG and YYY , which of course is a sample from the

GWishart distribution WG
(
b+N,DDD+YYY TYYY

)
. The second step is to resample the graph

GGG given the new ΛΛΛ. WL does this via a reversible-jump algorithm: they propose to flip

a single edge Gi j, which requires that Λi j and Λ j j be resampled from their conditional

distributions. This move is then accepted or rejected according to Metropolis-Hastings.

Chapter 4. Sparse Bayesian Gaussian Graphical Models 87

However, the basic form of this algorithm involves computing a ratio of GWishart nor-

malisation constants, which is computationally intensive. To avoid this, WL uses the

double-Metropolis-Hastings method (Liang, 2010), which is an approximate version

of the exchange algorithm (Murray et al., 2006). The exchange algorithm is designed

to sample from distributions with problematic normalisation constants, and involves

drawing exact samples of an auxiliary variable. In the double-MH algorithm, the aux-

iliary variable is updated using a sequence of Metropolis-Hastings kernels, which may

reduce computation time. Note, however, that the double-MH algorithm does not re-

sult in a valid sampler, but an approximation, and so the WL algorithm for sampling

the GGM is also an approximation.

The WL procedure – with the GWishart sampled using our HMC method to be

described in Section 4.2.2 – is summarised in Algorithm 6. The functions that we

name ProposalRate, AcceptanceRate, and ResampleEdge contain many of the details

for the sampling of GGG|ΛΛΛ. We do not describe these details here, but refer the reader to

Wang and Li (2012).

Cheng and Lenkoski (2012) propose a modification to the WL algorithm to re-

duce the time required to compute a conditional Bayes factor (CBF) required by WL.

They do this by working with the Cholesky decomposition of the precision matrix, and

permuting its rows and columns to make the CBF computation faster.

Lenkoski (2013) addresses the issue that the use of double-MH within WL makes

the WL sampler approximate. Lenkoski (2013) uses his exact sampler for the GWishart

(see Section 4.1.2.2) to propose an exact, double-reversible-jump, sampler for the

sparse GGM that is based on the exchange algorithm. Lenkoski (2013) does not

make experimental comparisons of this sampler with WL, but it seems likely that the

price of exactness is a greater computational cost: each sample drawn by the exact

GWishart sampler requires the convergence of the sequence ΛΛΛ
(t) to ΛΛΛ (see Section

4.1.2.2), whereas the MCMC sampler used within WL need only make a single up-

date.

Another recent approach to sampling in this sparse GGM model is due to Moham-

madi and Wit (2012) who use birth-death MCMC (BDMCMC) (Stephens, 2000) to

make changes to the graph. As in WL, the issue of computing a ratio of normalisation

constants appears – here, when computing the death rate. In low dimensions, Moham-

madi and Wit (2012) approximate the normalisation constants using the Monte Carlo

method of Atay-Kayis and Massam (2005). For the high-dimensional case, they ap-

proximate the ratio by setting it equal to one, and support this choice by performing an

Chapter 4. Sparse Bayesian Gaussian Graphical Models 88

experiment in which the ratio appears to converge to one as dimensionality increases.

To sample the GWishart, they use block Gibbs.

The efficiency of WL depends strongly on the efficiency of the GWishart sampler.

We expect this is the case for BDMCMC too. Having introduced more efficient meth-

ods for sampling the GWishart in Sections 4.2.1 and 4.2.2, we use them within the

WL algorithm to do inference in the GGM described by Equations (4.10 – 4.12). We

compare this Bayesian model with the optimisation-based graphical lasso in Section

4.3.4.

4.1.3.2 Graph Priors

Various choices of the graph prior in (4.10) have been studied in the literature; we men-

tion a few of them here. The uniform prior is often used – (Roverato, 2002), (Dobra

and Lenkoski, 2011), (Wang and Li, 2012), for example – which keeps computation

simple. Wong et al. (2003) use a prior that gives more weight to graphs whose po-

tential precision matrices fill a large volume of the positive-definite cone. Jones et al.

(2005) encourage sparsity using a Bernoulli prior on each edge of the graph; this is the

approach we take in our experiments in Section 4.3. Mohammadi and Wit (2012) use

a truncated Poisson distribution on the edge degree.

The fact that the graph prior is explicit in the GGM model makes it more flexible

for including prior information than the graphical lasso described in Section 2.1.2.

For example, in the GGM, we can make the prior probability of including an edge

dependent on whether or not another set of edges is included. This cannot be done in

the graphical lasso. There, the probability that Λi j = 0 depends on Γi j (the strength

of the applied L1 penalty), but Γi j is constant: it cannot depend on the other elements

of ΛΛΛ. An extension of the graphical lasso – perhaps including group lasso penalties

(Yuan and Lin, 2006) – may improve its flexibility, but in the Bayesian GGM, any prior

knowledge about the graph is easily incorporated. We note, however, one restriction

imposed by the WL and BDMCMC samplers, or indeed any sampler that switches a

single edge at a time: we cannot use a graph prior that requires a set of edges be all

included or all omitted. With such a prior, the samplers would never be able to switch

between the two states. This is not a problem with the model, of course, and samplers

developed in the future may lift this restriction.

Chapter 4. Sparse Bayesian Gaussian Graphical Models 89

4.1.4 Hamiltonian Monte Carlo

Simple MCMC samplers that exhibit random walk behaviour – such as a Gibbs sam-

pler, or random-walk Metropolis-Hastings – may mix poorly, especially when some of

the random variables are strongly correlated. Hamiltonian Monte Carlo (HMC) (see,

for example, (Neal, 1993, 2010)), otherwise known as hybrid Monte Carlo, is designed

to mix more rapidly by exploiting an analogy between the negative log density to be

sampled and the potential energy of a physical system. Let yyy be a random vector with

density

p(yyy) = Z−1 exp(−E(yyy)), (4.13)

where Z is a normalisation constant. The intuition is that if E(yyy) is identified as a

potential energy function, a particle moving in that potential according to physical

laws would be accelerated towards regions of lower energy (higher density), and the

particle’s momentum would introduce some persistence to the direction of motion, thus

avoiding random walk behaviour.

HMC introduces an auxiliary random vector ppp ∼ N (000,MMM). Since yyy and ppp are

independent, their joint density is

p(yyy, ppp) = Z′−1 exp(−E(yyy))exp
(
−1

2
pppT MMM−1 ppp

)
, (4.14)

where Z′ combines Z and the Gaussian normalisation constant. Define

H(yyy, ppp) = E(yyy)+
1
2

pppT MMM−1 ppp, (4.15)

so that (4.14) may be written in a similar form to (4.13). Notice that if we can draw

samples from the joint (yyy, ppp), we can sample from the marginal of yyy simply by discard-

ing the values of ppp.

In HMC, we interpret yyy as a position vector, and ppp as a corresponding momentum

vector. Classical mechanics may be formulated in terms of a Hamiltonian H(yyy, ppp) and

Hamilton’s equations:

dyi

dt
=

∂H
∂pi

, (4.16)

d pi

dt
=−∂H

∂yi
. (4.17)

The Hamiltonian represents the total energy of the system, and in HMC it is defined

according to (4.15). The two terms on the right hand side of (4.15) are now interpreted

Chapter 4. Sparse Bayesian Gaussian Graphical Models 90

as potential and kinetic energy respectively, and MMM is interpreted as the mass matrix.

With this Hamiltonian, (4.16 – 4.17) become

ẏyy = MMM−1 ppp, (4.18)

ṗpp =−∇E(yyy). (4.19)

It can be shown that if the dynamics defined by these equations can be simulated

exactly, then alternating the following two steps constitutes a valid MCMC sampler:

1. Draw ppp from N (000,MMM);

2. Simulate the dynamics for some fixed time, and record the final value of (yyy, ppp).

If the dynamics are simulated for some time t, this defines a transformation Dt from

the phase space (yyy, ppp) to itself. The proof that the above is a valid sampler rests on the

following properties of this map.

• Reversibility. Dt has an inverse D−t obtained by running time backwards (negat-

ing the right hand sides of (4.18 – 4.19)).

• Conservation of energy. The Hamiltonian is invariant under Dt .

• Symplecticness. The Jacobian of Dt is a symplectic matrix. This implies volume

preservation: volumes in phase space are mapped to equal-sized volumes by Dt .

But Hamiltonian dynamics cannot be simulated exactly, and a method is required to

approximately integrate (4.18 – 4.19). The leapfrog integrator is typically used. Given

a step size ε and current state (yyy0, ppp0) = (yyy(t), ppp(t)), the leapfrog algorithm generates

(yyy1, ppp1) = (yyy(t +Lε), ppp(t +Lε)) by iterating the following updates for L steps:

ppp
(

τ+
ε

2

)
= ppp(τ)− ε

2
∇E (yyy(τ)) , (4.20)

yyy(τ+ ε) = yyy(τ)+ εMMM−1 ppp
(

τ+
ε

2

)
, (4.21)

ppp(τ+ ε) = ppp
(

τ+
ε

2

)
− ε

2
∇E (yyy(τ+ ε)) . (4.22)

This integrator is reversible and symplectic, but it does not conserve the Hamiltonian.

To correct for this, and maintain a valid sampler, a Metropolis-Hastings step is intro-

duced. The proposed value (yyy1, ppp1) is accepted with probability

min{1,exp[H(yyy0, ppp0)−H(yyy1, ppp1)]}, (4.23)

and otherwise rejected.

Chapter 4. Sparse Bayesian Gaussian Graphical Models 91

The parameters ε, L, and MMM must be chosen manually by the user. Poor choices

can have a dramatic effect on the performance of the sampler. The typical practice is

to perform preliminary runs with different choices of parameters, and examine metrics

such as the acceptance rate and autocorrelation. See Neal (2010) for details on using

HMC in practice. Here, we make some observations relevant to our particular use of

HMC in Section 4.2.2. First, it is legal to draw (ε,L) from some joint distribution

at each time step. Using a distribution can be helpful because different values may

perform better in different regions of phase space (but the distribution itself must not

depend on the current state).

The mass matrix MMM is the covariance of momentum vector ppp, and must therefore be

positive semi-definite. With the kinetic energy defined as pppT MMM−1 ppp, the mass may also

be identified as the inertia of the hypothetical particle. That is, it describes the particle’s

resistance to acceleration in each direction. It is preferable to move slowly in directions

in which the energy gradient changes rapidly because the leapfrog approximation can

then lead to a high probability of the proposal being rejected. Of course, moving too

slowly means a low mixing rate. So, intuitively, we want the mass matrix to be adapted

to the shape of the local energy surface. In standard HMC, MMM cannot depend on the

current state, so a mass must be chosen that will work reasonably well in all regions

of the state space. Neal (2010) suggests setting MMM =WWW−1, where WWW is an estimate of

the covariance of yyy. Alternatively, one could use a method such as Riemann manifold

HMC (Girolami and Calderhead, 2011) which does allow the mass matrix to depend

on the current state – but at a considerable cost in computation time.

The choice of initial value for the Markov chain depends on the distribution p(yyy) to

be sampled. Considerations are the same as those for any MCMC method. Typically,

one would use some reasonable value such as the mode of p(yyy) (if known), and then

run the chain for a “burn-in” period to achieve adequate mixing before samples are

recorded.

The HMC procedure is summarised in algorithm 5.

4.2 Improved Sampling in the GWishart

In this section, we describe our contributions to sampling from the GWishart distribu-

tion with greater efficiency.

Chapter 4. Sparse Bayesian Gaussian Graphical Models 92

Algorithm 5 The HMC Sampler
yyy: Initial state

E: Energy function

MMM: Mass matrix

PεL: Joint distribution of step size ε and number of steps L

T : Number of samples required

function HMC(yyy,E,MMM,PεL,T)

for t← 1 : T do
Draw ppp∼N (000,MMM)

Draw (ε,L)∼ PεL

yyy∗, ppp∗← yyy, ppp

for l← 1 : L do
yyy∗, ppp∗← LEAPFROG(yyy∗, ppp∗,E,MMM,ε)

end for
if RANDOM(0,1) < exp[H(yyy, ppp)−H(yyy∗, ppp∗)] then

yyy, ppp← yyy∗, ppp∗

end if
end for

end function
function LEAPFROG(yyy, ppp,E,MMM,ε)

ppp← ppp− ε

2∇E(yyy)

yyy← yyy+ εMMM−1 ppp

ppp← ppp− ε

2∇E(yyy)

return yyy, ppp

end function

Chapter 4. Sparse Bayesian Gaussian Graphical Models 93

4.2.1 Choosing the Covering Set in Block Gibbs

As discussed in Section 4.1.2.2, the choice of covering set I affects both the run time

and the quality of mixing. We investigate the use of a simple heuristic to build the set

I . Our goals are to build large cliques to facilitate mixing, but to reduce run time by

building the set quickly and keeping the number of cliques small. Note the contrast

to the two methods investigated by Wang and Li (2012): generating the full set of

maximal cliques may be slow because it is an NP-hard problem, and may result in a

large set; the set of edges and unconnected nodes may also be a large set, and the lack

of larger cliques may hinder mixing.

Our procedure is as follows.

1. Generate a permutation π of the integers (1, ..., p).

2. Permute the rows and columns of GGG according to π.

3. Iterate over the entries of GGG. For each Gi j not yet included in a clique:

(a) Create a new clique C = {i, j};

(b) Grow C by considering nodes in the order π, and adding them greedily.

We permute the nodes to avoid creating a bias due to labelling. Rather than finding all

maximal cliques, this algorithm quickly finds a small covering set of maximal cliques,

which should improve the efficiency of the block Gibbs sampler in high dimensional

models. We investigate this experimentally in Section 4.3.2.

4.2.2 Sampling the GWishart with HMC

Here we develop an HMC method to sample from the GWishart distribution. The first

issue to deal with is that the GWishart WG(b,DDD) is defined over positive-definite ma-

trices ΛΛΛ ∈M+(G), so when running HMC, we must ensure that ΛΛΛ remains within the

positive-definite cone S++. Our first approach was to use the Cholesky decomposition

in Equation (4.2), and apply HMC to the free variables ΨΨΨ
V . (See Section 4.1.2 for the

definition of ΨΨΨ
V). The energy function becomes

E
(

ΨΨΨ
V
)
=−

p

∑
i=1

(b+νi−1) logΨii +
1
2 ∑

1≤i≤ j≤p
Ψ

2
i j, (4.24)

where νi ≡ |{ j : j > i,Gi j = 1}|. There are no constraints on ΨΨΨ: any ΨΨΨ produces a

positive-definite ΛΛΛ. The problem with this representation is that the non-free elements

Chapter 4. Sparse Bayesian Gaussian Graphical Models 94

ΨΨΨ
V may depend on all elements of ΨΨΨ that precede them in a row-wise order. This

means that, given ΨΨΨ
V , the matrix ΨΨΨ must be completed iteratively. For HMC, the

energy gradients – derived in Appendix D – depend on the gradients ∂Ψrs
∂Ψi j

. For each

Ψi j, these must also be evaluated in row-wise order, which makes HMC very slow in

this representation, as we show empirically in Section 4.3.2.

Applying HMC in the space of ΛΛΛ, the energy function is

E (ΛΛΛ) =
1
2
[tr(DDDΛΛΛ)− (b−2) logdetΛΛΛ] , (4.25)

and its gradient is

∂E
∂ΛΛΛ

=
1
2
[2DDD−DDD� III− (b−2)(2ΣΣΣ−ΣΣΣ� III)] , (4.26)

where � is the Hadamard product operator; see Appendix D. A naive approach to

maintaining positive-definiteness is simply to set the energy to infinity outside S++.

However, this may lead to a high rejection rate if the approximate dynamics often

lead to proposals outside the cone. When b > 2, the energy approaches infinity at

the boundary, so the chain would remain in S++ if the dynamics could be simulated

exactly. But in practice, the leapfrog method can overshoot the boundary. For b ≤ 2,

the situation is worse as even the exact dynamics lead the chain outside S++.

Another idea is to reflect the simulated path off the constraint boundary. If the

constraints were independent bounds on each variable, this would be straightforward.

But for the positive-definite constraint, it is non-trivial to find where the path crosses

the boundary, or to find the tangent plane at that point.

Fortunately, we find that judicious choices of the step size and trajectory length

are sufficient to achieve good performance. We want the chain to be able to escape the

regions near the S++ boundary – where accurate simulation of the dynamics is required

– but we also want fast mixing. Intuitively, it seems that a distribution is required that

concentrates much of its mass near the mean, but results in the occasional draw of a

small value.

We choose a fixed target trajectory length L = max(1,bβ/εe), where β is a user-

defined parameter, so that when a small ε is chosen, the chain still moves a long dis-

tance. With this fixed trajectory length, the distribution of ε cannot have too much mass

near zero, or the sampler will be slow. This rules out the exponential distribution, for

example. We find empirically that a Γ(2,α) distribution works well, provided that the

mass matrix is well-chosen (see Section 4.2.2.1) and the degrees of freedom parameter

b is greater than 10 or so. This is almost always the case for a posterior GWishart

Chapter 4. Sparse Bayesian Gaussian Graphical Models 95

because b increases with the number of data points. But this HMC approach may not

be the best choice for GWishart priors with small b.

The parameters (α,β) may be chosen by performing preliminary runs (as is typical

with HMC). The time to generate each sample is reduced with a larger α (greater step

size). However, the acceptance rate usually drops as α is increased. We follow the

advice of Neal (2010) and aim for an acceptance rate of around 65%. Our practical

experience suggests that as b (the GWishart degrees of freedom parameter) becomes

smaller, α must be reduced to maintain this acceptance rate. The acceptance rate seems

particularly sensitive to α when b is very small – less than 10, say. We speculate that

this is because more of the distribution’s mass becomes concentrated near the boundary

of the positive-definite cone when b is reduced, raising the chance that a trajectory will

leave the cone and get rejected. A smaller α is required to compensate. For β, a

smaller value (shorter trajectory) means that each sample is generated more quickly,

but a larger value may reduce autocorrelations in the sequence of samples. One way

to balance these effects is to aim for a high effective sample size (ESS, defined in

Equation 4.27) per second, while varying β during preliminary runs. The acceptance

rate must also be maintained, because β affects that too.

4.2.2.1 The Mass Matrix

To run HMC (see Algorithm 5) on the GWishart, we arrange elements in the upper

triangle of ΛΛΛ into a vector ΛΛΛV , in the column-wise order they appear in ΛΛΛ. There may

be strong correlations between the elements of ΛΛΛV , so we find that the mass matrix

strongly influences the performance of HMC. We take the approach of estimating the

covariance WWW of this random vector and set MMM =WWW−1.

In estimating the covariance, we need to consider both speed and accuracy. If we

wish to take many samples from the same GWishart, it may be reasonable to spend

more time estimating WWW . But the GWishart is often a component of a larger model

such as the GGM described in Section 4.1.3. In that case, the GWishart parameters

(b,DDD,GGG), and therefore WWW may have changed each time HMC is required to generate

a new sample. If it needs to be computed at each iteration, estimation of WWW will need

to run quickly.

We considered the following methods for estimating WWW , which we compare exper-

imentally in Section 4.3.3.

1. Set WWW to the identity matrix.

Chapter 4. Sparse Bayesian Gaussian Graphical Models 96

2. Perform a short block Gibbs run and set WWW to the empirical covariance.

3. Compute a Laplace approximation to the distribution of ΛΛΛV , and set WWW to its

covariance.

4. Assume ΛΛΛ ∼W (b,DDD), draw samples from the Wishart, and compute the em-

pirical precision KKK of the vector ΛΛΛW . Now make the approximation that ΛΛΛW

is Gaussian-distributed: the conditional precision given that ΛΛΛV = 000 is simply

KKKV ,V . We set WWW = KKK−1
V ,V (so that MMM = KKKV ,V). Notice that (provided b and DDD

remain constant) MMM can be recomputed when the graph changes without drawing

any further samples.

Both 3 and 4 utilise Gaussian approximations. Lenkoski and Dobra (2011) showed

empirically that this approximation becomes more accurate as b increases.

Algorithm 6 shows how to use the HMC sampler for the GWishart with method

4 for computing the mass matrix, within the WL sampler for the GGM described in

Section 4.1.3. The WL algorithm requires samples from both the prior and posterior,

so we precompute precision matrices KKK0 and KKKN for each case by sampling the asso-

ciated Wishart distributions. Notice that whenever the graph changes, computing the

mass is as straightforward as taking a subset of the rows and columns of KKK0 or KKKN .

In Algorithm 6, the same distribution PεL for the HMC step size and step number is

used for both the prior and posterior. Typically, these would be different distributions,

chosen via preliminary runs.

4.3 Evaluation

4.3.1 Verification of Correctness

First, we verify the correctness of our implementations of the GWishart samplers. We

do this by a drawing a large set of samples from the same GWishart distribution with

each sampler, and comparing their summary statistics. We would expect that, as the

number of samples increases, each sampler’s statistics should tend towards the same

values.

We generate a random sparse graph GGG with 10 vertices; draw a random preci-

sion matrix ΛΛΛ from a GWishart distribution conditioned on GGG; and then draw 50 data

points from a Gaussian with precision ΛΛΛ. We draw 100000 samples from the posterior

GWishart using the following samplers.

Chapter 4. Sparse Bayesian Gaussian Graphical Models 97

Algorithm 6 The WL Algorithm, Incorporating the HMC GWishart Sampler
Given

b0,DDD0 . GWishart prior parameters

YYY . N× p data matrix

GGG,ΛΛΛ . Initial state of the Markov chain

PεL . Joint distribution of HMC step size and number of steps

T . Number of samples required

end Given
bN ← b0 +N; DDDN ← DDD0 +YYY TYYY . GWishart posterior parameters

KKK0← ESTIMATEWISHARTPRECISION(b0,DDD0)

KKKN ← ESTIMATEWISHARTPRECISION(bN ,DDDN)

MMMN ← (KKKN)V ,V

for t← 1 : T do
PG← SAMPLEHYPER(GGG) . Sample hyperparameters of the graph prior

for each possible edge (i, j) do
GGG′← GGG

Flip edge (i, j) of the proposal GGG′

R← PROPOSALRATE(PG,GGG,GGG′,ΛΛΛ,bN ,DDDN)

if RANDOM(0,1) < R then
ΛΛΛ
′← RESAMPLEEDGE(i, j,ΛΛΛ,b0,DDD0)

MMM0← (KKK0)V ′,V ′

E← GWENERGY(GGG′,b0,DDD0) . Energy function for the prior

ΛΛΛ
′
V ′ ← HMC(ΛΛΛ′V ′,E,MMM0,PεL,1) . See Algorithm 5

R← ACCEPTANCERATE(i, j,ΛΛΛ′,b0,DDD0)

if RANDOM(0,1) < R then
GGG← GGG′

MMMN ← (KKKN)V ,V

ΛΛΛ← RESAMPLEEDGE(i, j,ΛΛΛ,bN ,DDDN)

end if
end if
E← GWENERGY(GGG,bN ,DDDN) . Energy function for the posterior

ΛΛΛV ← HMC(ΛΛΛV ,E,MMMN ,PεL,1) . See Algorithm 5

end for
end for

Chapter 4. Sparse Bayesian Gaussian Graphical Models 98

1. HMC: Our Hamiltonian Monte Carlo GWishart sampler. The step size and tra-

jectory length are chosen as described in Section 4.2.2. The mass matrix is

computed by taking preliminary samples from a Wishart – method 4 in Section

4.2.2.1.

2. BG-HCC: Block Gibbs in which the covering set is generated using our heuristic

clique cover algorithm; see Section 4.2.1.

3. BG-MC: Block Gibbs in which the covering set consists of all maximal cliques.

4. DLR: The random-walk Metropolis-Hastings sampler of Dobra et al. (2011).

The covering sets for BG-MC and BG-HCC are different on the graph used in this

experiment.

Table 4.1 shows the mean computed with the set of samples drawn by each of the

four samplers. The means of the samples drawn by HMC, BG-HCC, and BG-MC are

all very similar. The DLR mean is a little further away, but this is expected because

DLR mixes more slowly than BG-MC (Wang and Li, 2012). The results are consistent

with correct implementations of the samplers.

We also computed the variance using each set of samples. We do not show them,

but the values for each sampler were close, in a similar way to the means. We repeated

the experiment on different randomly drawn graphs, and for different numbers of di-

mensions. The similarity of the summary statistics in each case lead us to believe that

the samplers are correctly implemented.

4.3.2 Comparing the HMC and Block Gibbs Samplers

We compare HMC and block Gibbs on synthetically generated data, testing the effects

of dimensionality, data size, and sparsity on the efficiency of these samplers. Each test

case corresponds to a setting of the model dimensionality p; a sparsity parameter s

where 0≤ s≤ 1; and the ratio N/q, where N is the number of data points and q = q(s)

is the expected number of free variables.

Each test case is composed of 10 runs. In each run, a graph G is drawn by sampling

each edge from Bern(s), and a precision matrix ΛΛΛ is drawn from WG (1, pIIIp) by taking

the 1000th sample from a block Gibbs run. The N data points are then drawn from

N
(

000,ΛΛΛ−1
)

.

Chapter 4. Sparse Bayesian Gaussian Graphical Models 99

Table 4.1: Mean precision matrices computed by averaging the 100000 samples drawn

by 4 different GWishart samplers. (Only the upper triangles are shown because the

precision is symmetric). The means computed by HMC, BG-HCC, and BG-MC are very

similar; DLR is a little further away, but we expect DLR to converge more slowly than

the other samplers. The results suggest that the samplers are correctly implemented.

Sampler Mean Precision

HMC



0.7604 0.1367 0 0 0.3997 0.1743 0 0 0.1838 0.0816

0.6280 −0.0486 −0.1865 −0.0046 0 −0.1822 0.0361 0 0.2077

0.1018 0.1342 0 0 0 0 0 0

1.1180 0 0.0218 0 −0.3076 0 0

0.2670 0.0760 0 0 0 0

0.3982 0 −0.3099 0.0746 0.3490

0.6691 −0.1667 0 0

0.6351 0 −0.1011

0.5071 0.0479

0.6348



BG-HCC



0.7607 0.1368 0 0 0.3999 0.1743 0 0 0.1838 0.0814

0.6278 −0.0486 −0.1868 −0.0044 0 −0.1822 0.0361 0 0.2075

0.1016 0.1342 0 0 0 0 0 0

1.1170 0 0.0218 0 −0.3070 0 0

0.2671 0.0759 0 0 0 0

0.3978 0 −0.3094 0.0747 0.3489

0.6690 −0.1666 0 0

0.6340 0 −0.1011

0.5069 0.0480

0.6346



BG-MC



0.7606 0.1365 0 0 0.3999 0.1744 0 0 0.1837 0.0816

0.6280 −0.0486 −0.1869 −0.0048 0 −0.1821 0.0363 0 0.2079

0.1018 0.1342 0 0 0 0 0 0

1.1180 0 0.0222 0 −0.3083 0 0

0.2671 0.0761 0 0 0 0

0.3981 0 −0.3100 0.0745 0.3488

0.6685 −0.1666 0 0

0.6353 0 −0.1012

0.507 0.0478

0.6345



DLR



0.7641 0.1389 0 0 0.4006 0.1751 0 0 0.1848 0.0818

0.6325 −0.0487 −0.1885 −0.0038 0 −0.1824 0.0356 0 0.2082

0.1016 0.1343 0 0 0 0 0 0

1.116 0 0.0229 0 −0.3074 0 0

0.2668 0.0763 0 0 0 0

0.3980 0 −0.3097 0.0743 0.3488

0.6686 −0.1664 0 0

0.6344 0 −0.1017

0.5101 0.0469

0.6337



Chapter 4. Sparse Bayesian Gaussian Graphical Models 100

We sample from the posterior of each test run using HMC in which the mass matrix

is computed by sampling from a (fully connected) Wishart distribution and then con-

ditioning on the missing edges as described in Section 4.2.2.1. (We experiment with

other methods of generating the mass in Section 4.3.3). We compare this to BG-MC

and BG-HCC (the two variants of block Gibbs defined in Section 4.3.1). For all sam-

plers, ΛΛΛ is initialised to the identity matrix. We ran 100 iterations of burn-in, and then

gathered the following 10000 samples.

We compare the samplers by effective sample size (ESS) which is defined as:

ESS = T

(
1+2

∞

∑
t=1

ρ(t)

)−1

, (4.27)

where T is the number of samples drawn and ρ(t) is the autocorrelation at lag t. We

used the initial monotone sequence estimator (Geyer, 1992) to estimate the autocorre-

lations. Table 4.2 shows the results. Times do not include the time taken to compute

the index sets in block Gibbs, or to compute the mass matrix in HMC. When GGG is fixed

as in this experiment, these times are negligible. (But if the sampler is to be part of a

joint sampler for (GGG,ΛΛΛ), then they are significant, as discussed in Sections 4.3.3 and

4.3.4).

We do not have results for the HMC sampler in the Cholesky representation be-

cause it was extremely slow. We ran it on the first test case in Table 4.2, where p = 10,
N
q = 5, and s = 0.5. It took 53 minutes to generate 10000 samples, resulting in an

ESS/sec of 3.13. For comparison, HMC in the original space took around 20 seconds

to generate 10000 samples from the same distribution.

There are missing entries for BG-MC at dimensionalities 75 and 100: we aban-

doned those tests because they were taking an extremely long time. We consider BG-

MC to be impractical for high-dimensional problems. BG-HCC is more efficient than

BG-MC in this scenario, and also when the sparsity is such that BG-MC has to work

with a large number of maximal cliques.

Table 4.2 shows that BG-MC is best for low dimensional models, but when p≥ 25,

HMC is significantly more efficient. The effect of the data size is different for block

Gibbs and HMC. Block Gibbs tends to improve as data size decreases; HMC tends to

improve with more data, we expect because the Gaussian approximation used when

computing the mass matrix becomes more accurate. As the graph becomes sparser (s

decreases), HMC improves because there are fewer variables to simulate. The block

Gibbs methods tend to prefer either very sparse or very dense graphs, which is ex-

Chapter 4. Sparse Bayesian Gaussian Graphical Models 101

Table 4.2: Comparison by ESS/sec on synthetic data of HMC and two block Gibbs

methods: BG-MC, where the covering set consists of all maximal cliques; and BG-HCC,

our heuristic clique cover algorithm. Block Gibbs is best only for very low-dimensional

models. HMC is orders of magnitude faster in higher dimensions. Numbers in brackets

are standard errors computed over 10 runs.

Test BG-MC BG-HCC HMC

Dimension p ESS ESS/sec ESS ESS/sec ESS ESS/sec

10 7697 (1161) 878 (136) 7086 (1173) 529 (100) 10000 (0) 514 (10)

N/q = 5 25 4087 (1051) 39.9 (12.3) 1525 (625) 20.0 (8.2) 10000 (0) 244 (4)
s = 0.5 50 3037 (693) 1.59 (0.5) 521 (240) 1.26 (0.58) 9977 (74) 61.8 (3.6)

75 – – 188 (81) 0.151 (0.068) 9999 (1) 16.6 (0.6)
100 – – 150 (76) 0.0624 (0.0360) 8836 (317) 3.62 (0.18)

Data size N/q ESS ESS/sec ESS ESS/sec ESS ESS/sec

0.2 4435 (439) 26.3 (4.1) 1910 (425) 24.8 (5.3) 7704 (431) 83.9 (5.5)
p = 25 1 4060 (1158) 24.6 (8.4) 1905 (877) 26.2 (14.8) 9990 (16) 235 (34)
s = 0.5 5 3809 (1084) 23.1 (7.2) 1681 (640) 23.2 (9.9) 10000 (0) 295 (4)

25 3534 (733) 20.8 (4.6) 1254 (453) 16.8 (6.2) 9929 (212) 324 (10)
100 3020 (898) 18.8 (5.9) 1185 (601) 15.7 (8.4) 9554 (1128) 314 (38)

Sparsity s ESS ESS/sec ESS ESS/sec ESS ESS/sec

0.1 8221 (1376) 147 (34) 8221 (1431) 146 (35) 10000 (0) 316 (19)
p = 25 0.25 3177 (767) 33.7 (8.7) 2700 (763) 32.2 (9.5) 10000 (0) 254 (6)
N/q = 5 0.5 3089 (1423) 14.4 (6.8) 1108 (842) 12.6 (10.2) 9995 (13) 239 (7)

0.75 7439 (776) 14.2 (1.7) 1933 (450) 27.1 (5.2) 10000 (0) 214 (6)
0.9 9426 (179) 21.1 (12.7) 4995 (1221) 96.3 (34.4) 10000 (0) 205 (21)

Chapter 4. Sparse Bayesian Gaussian Graphical Models 102

Table 4.3: Comparison of methods for computing the HMC mass matrix. The prelimi-

nary sampling methods result in the best ESS/sec. In addition, the preliminary Wishart

method computes the mass more rapidly than the preliminary GWishart, which may be

important if the mass needs to be updated often. Numbers in brackets are standard

errors computed over 10 runs.

Identity Preliminary
GWishart

Laplace Preliminary
Wishart

Time to compute M (sec) 0 (0) 91.6 (13.3) 27.1 (23.1) 2.15 (0.04)

Sampling time (sec) 5560 (316) 21.7 (0.2) 18.3 (0.8) 21.8 (0.3)

ESS 2348 (726) 10000 (0) 669 (470) 10000 (0)

ESS/sec 0.425 (0.138) 461 (3) 37.0 (25.9) 460 (7)

pected because these cases will usually produce fewer cliques than a moderate level of

sparsity.

In summary, we note the following key points from our tests.

1. For block Gibbs, using BG-HCC is preferable to BG-MC in high dimensions, or

when the level of sparsity is unfavourable to BG-MC.

2. Except for low-dimensional problems, HMC performs significantly better than

both block Gibbs methods.

4.3.3 Comparing Methods for Computing the Mass Matrix

We compared the methods of computing the mass matrix described in Section 4.2.2.1.

We generated 10 runs of a single test case as in Section 4.3.2. The parameters were:

p = 25, N
q = 5,s = 0.5. We sampled the distributions using HMC with each of the mass

matrix methods. For the two methods requiring preliminary samples, we drew 20000

points. For the Laplace approximation, we found the mode numerically by gradient

ascent. The results are shown in Table 4.3.

The identity matrix mass makes HMC highly inefficient. The long sampling time

with the identity matrix mass is the result of small step sizes and a comparatively large

trajectory length. As in Section 4.3.2, these parameters were chosen manually using

preliminary runs, attempting to maximise ESS/sec. We found that small step sizes were

Chapter 4. Sparse Bayesian Gaussian Graphical Models 103

necessary to avoid a high rejection rate – but the trajectory length cannot be reduced

too much or the chain will not move far and the ESS will be reduced.

The Laplace approximation also performed quite poorly. In terms of ESS/sec, a

preliminary sampling run from the GWishart, and from the Wishart (followed by con-

ditioning on missing edges), gave similar results. However, the preliminary run is

considerably more expensive with the GWishart. If the HMC sampler is to be embed-

ded in a joint sampler for (GGG,ΛΛΛ), the preliminary GWishart run needs to be repeated

each time the graph changes, which is clearly impractical. But the precision KKK com-

puted from the Wishart samples remains valid as the graph changes: the new mass can

be obtained simply by removing those rows and columns from KKK that correspond to

missing edges.

4.3.4 Comparing the Bayesian GGM and the Graphical Lasso

Having demonstrated the advantages of using an HMC sampler over block Gibbs for

the GWishart, we now employ this method to sample from the sparse Bayesian GGM

described in Section 4.1.3. We embed our HMC sampler within the WL sampler – see

Algorithm 6. We compare this Bayesian model with the optimisation-based graphical

lasso (GLASSO) described in Section 2.1.2.

4.3.4.1 Time-Constrained Performance Comparison

We begin with an experiment designed to compare the performance of the sparse GGM

against GLASSO when both methods are constrained to the same time budget. We use

the financial data set described in Section 2.5.1, but here we select 35 stocks and 1000

days covering the period April 2005 to March 2009. We use the first 500 days as the

training data, and the remaining 500 as the test set. We preprocess the data set by

subtracting the mean of the training data, and scale such that the empirical precision of

the training set has all ones along the main diagonal.

We apply the Bayesian GGM and the graphical lasso to this data. To set the penalty

parameter γ for GLASSO, we do 5-fold cross-validation over 100 equally spaced val-

ues. We train a model with the best-performing γ and compute the log likelihood of

the test data.

For the Bayesian GGM, we use the WL method (with embedded HMC) to sam-

ple (GGG,ΛΛΛ) jointly. We choose the graph prior such that each edge is independently

Chapter 4. Sparse Bayesian Gaussian Graphical Models 104

Bernoulli-distributed:

p(GGG|s) = ∏
i< j

sGi j(1− s)(1−Gi j). (4.28)

The parameter s controls the sparsity of the graph, and so is analogous to the L1 penalty

in GLASSO. But in the Bayesian model, there is no need to cross-validate s: we choose

a Beta(1,1) distribution as the prior for s (since it is conjugate to the Bernoulli distri-

bution), and introduce a sampling step to resample s given the current GGG. In this ex-

periment, we set the parameters (b,DDD) for the GWishart prior manually, but we found

that varying these parameters had little effect on the generalisation performance of

the model. We report results for the prior WG(b,dIIIp), where the degrees of freedom

d ≡ b+ p− 1 = p+ 10. To initialise the chain, we set ΛΛΛ to the empirical precision

computed on the training data.

The WL sampler requires samples from both the GWishart prior and posterior,

and its performance depends strongly on the efficiency of this component. We tested

both BG-HCC and HMC for this task. BG-MC is far too slow to use within the WL

sampler: when we tried it, WL could not complete a single iteration in the time it

took to complete cross-validation on the graphical lasso. Most of the time is spent

recomputing the maximal cliques each time the graph changes; but there are many

maximal cliques, so lots of time is spent sampling too. For HMC, our results do not

include the time taken to find good settings of the step parameters (α,β). We set these

values by adjusting them such that the acceptance rate on preliminary runs is around

65% – as suggested by Neal (2010) – and such that the ESS is high. In practice,

little adjustment is needed because our choice of mass matrix means that similar step

parameters can be used for a wide variety of GWishart distributions.

To make a comparison with graphical lasso, we approximate the expected test log

likelihood

E
[
log p

(
YYY (test)|ΛΛΛ

)
|YYY (train)

]
≈ 1

T

T

∑
t=1

log p
(

YYY (test)|ΛΛΛ(t)
)
, (4.29)

using the samples
{

ΛΛΛ
(t)
}T

t=1
drawn from the posterior p

(
ΛΛΛ|YYY (train)

)
. We compute this

expectation after including each additional sample; Figure 4.1 shows how the value

evolves over time for both the HMC and BG-HCC versions of the joint sampler for a

typical run. The samplers do not quite agree because neither has yet converged. But

right from the start, they perform significantly better than graphical lasso, which takes

a few minutes to register its result (including the time required for cross-validation).

At the time GLASSO finishes, the test log likelihood scores are:

Chapter 4. Sparse Bayesian Gaussian Graphical Models 105

0 200 400 600 800
−6.4

−6.2

−6

−5.8

−5.6

−5.4

−5.2

−5
x 10

4

Time (s)

T
e
s
t
lo

g
 l
ik

e
li
h
o
o
d

BG−HCC

HMC

GLASSO

Figure 4.1: Estimated test log likelihoods over time. The Bayesian methods result in

significantly higher test log likelihoods – good estimates of which are obtained after only

a few samples.

Chapter 4. Sparse Bayesian Gaussian Graphical Models 106

0 100 200 300 400 500

0

50

100

150

200

250

300

350

Test data point

L
o
g
 l
ik

e
li
h
o
o
d
 d

if
fe

re
n
c
e

HMC − GLASSO

VIX

Figure 4.2: For each point in the test data set, the difference in log likelihood between

the Bayesian GGM and graphical lasso is plotted in blue. The VIX volatility index, ar-

bitrarily scaled to fit, is in green. The Bayesian method performs better over the whole

test set, but tends to strongly outperform graphical lasso when market volatility is high.

• HMC = (−5.19±0.33)×104;

• BG-HCC = (−5.38±0.35)×104;

• GLASSO = (−6.28±0.51)×104.

For comparison, the test log likelihood under a Gaussian model with the empirical

precision of the training data is (−7.20±0.70)×104.

Figure 4.2 offers an explanation for the better performance of the Bayesian model.

It plots the difference in log likelihood between the HMC and GLASSO methods for

each point in the test set. The VIX index – which is a measure of market volatility –

is overlaid. The graph shows that the Bayesian GGM fares particularly well against

the graphical lasso when the market is more volatile. This seems likely to be a result

of the Bayesian methods making use of the full posterior, rather than just using the

MAP solution. If the graph were fully-connected, the prior on ΛΛΛ would be Wishart,

and so the marginal distribution of yyy would be a multivariate Student’s t. We would

Chapter 4. Sparse Bayesian Gaussian Graphical Models 107

therefore expect the Bayesian GGM model to be more robust to extreme values than the

Gaussian model trained by GLASSO – and such values are more likely with increased

market volatility.

4.3.4.2 Computational Cost Comparison

In Section 4.3.4.1, we saw that the sparse GGM model can perform better than the

graphical lasso, even when both are constrained to the same time budget. But this

result was observed on a single data set, with a fixed number of dimensions. It is

natural to question how this result scales with the dimensionality of the data. We study

this issue in the current section. For the GGM, we sample the GWishart with HMC

and compute the mass matrix using a preliminary sampling run from the associated

Wishart distribution; see Section 4.2.2.1.

We begin with some theoretical observations. For the graphical lasso, there are

many algorithms in the literature, and these may scale differently. As a representative

example, Friedman et al. (2008) state that for their algorithm, the “computation time

is O
(

p3) for dense problems, and considerably less than that for sparse problems”.

For the GGM, we observe empirically that the bottleneck in high dimensions is the

inversion of the mass matrix, which has cost O
(

p6). During each iteration of the GGM

sampler, the WL method proposes to flip each of the O
(

p2) edges while holding the

others fixed. In our implementation, we select and invert a new mass matrix for HMC

each time the graph changes, so the worst case cost for the sparse GGM sampler is

O
(

p8). In practice, some edges remain unmodified, and a sparse graph means that the

mass matrix to be inverted typically has dimension much less than p.

Since the the graphical lasso computation time scales better than the GGM in the-

ory, we would expect to see the result of Section 4.3.4.1 – that the GGM outperformed

GLASSO for the same time budget – reversed on a higher-dimensional problem. We

now perform an experiment to verify this, and to find out which method is preferred

for different problem sizes.

We again use the 1000 points of FTSE data as in Section 4.3.4.1. From this, we

create eight data sets of dimension 10,20, ...,80: we randomly permute the dimensions,

and take the first 10 for the first data set, the first 20 for the second, and so on. We use

the same 500 points of test data as in the previous experiment. For the training data,

we increase the number of data points linearly with the dimensionality p: of the 500

data points used in Section 4.3.4.1, we use the fraction p
80 immediately prior to the test

data in temporal order. The data are preprocessed as before.

Chapter 4. Sparse Bayesian Gaussian Graphical Models 108

For GLASSO, we cross-validate as in the previous section. For the GGM, we use

independent Bernoulli priors with s = 0.5 on the graph edges; see Equation (4.28). We

choose the GWishart prior WG
(
b, 7

4dIII
)
, where b = 10 and d = b+ p−1 is the degrees

of freedom. The number 7
4 is chosen to make the test log likelihoods of GLASSO

and the GGM similar for illustrative purposes. As we saw in the previous section, the

GGM has an advantage over GLASSO where the test data are distributed differently

than the training data, so by decreasing (increasing) the mean of the prior precision, we

can make the GGM perform better (worse) relative to GLASSO. But in this section,

we are interested primarily in comparing the computation time of the two methods.

The GGM sampler runs faster as the graph sparsity increases. If we were to ini-

tialise the chain with a dense graph, the early iterations would run slowly. Since our

Bernoulli prior on the edges has s = 0.5, for a fair comparison with GLASSO we

choose an initial precision in which half of the off-diagonal elements are zero. To con-

struct this initial value, we take the empirical precision of the training data, then set the

half of the off-diagonal elements with smallest absolute value to zero (and verify that

the resulting matrix remains positive-definite).

For the HMC step size and trajectory length parameters α and β (see Section 4.2.2),

we do no preliminary runs to adapt these parameters to each data set: we use the values

(α = 0.02,β = 0.5) when sampling the prior, and (α = 0.2,β = 0.5) when sampling

the posterior, for all eight data sets. These produce reasonable acceptance rates (at

least 70%) in all cases.

As in the previous experiment, we estimate the test log likelihood from the GGM

samples using Equation (4.29), and compute this after each additional sample. Figure

4.3 shows how this value evolves over time for each of the eight data sets, and facilitates

a comparison with GLASSO. We reiterate that the test log likelihood scores are of less

interest here than the time taken to arrive at these results. The figure shows that when

the number of dimensions is less than or equal to 30 (the first three graphs), the GGM

estimate of test log likelihood has stabilised long before GLASSO returns a result. For

dimensions 40 to 60, the GGM estimate appears to be approaching stability around the

time GLASSO returns a result. With 70 and 80 dimensions, the GGM sampler has

only generated a few samples when GLASSO has finished.

In conclusion, focussing on speed alone, the GGM appears to be the better choice

when the number of dimensions is 30 or less. Up to 60 dimensions, either method is

a reasonable choice. If there are more dimensions than 60, GLASSO seems the best

option. This should be seen as a rough guide: we note that with different choices of

Chapter 4. Sparse Bayesian Gaussian Graphical Models 109

0 100 200 300
−2.1

−2.05

−2

−1.95

−1.9
x 10

4

Time (s).

T
e
s
t
lo

g
 l
ik

e
lih

o
o
d
.

Sparse GGM

GLASSO

0 100 200 300

−5.1

−5

−4.9

x 10
4

Time (s).

T
e
s
t
lo

g
 l
ik

e
lih

o
o
d
.

0 100 200 300 400

−6.5

−6.4

−6.3

−6.2

x 10
4

Time (s).

T
e
s
t
lo

g
 l
ik

e
lih

o
o
d
.

0 100 200 300

−8.9

−8.8

−8.7

x 10
4

Time (s).

T
e
s
t
lo

g
 l
ik

e
lih

o
o
d
.

0 100 200 300 400

−1.03

−1.02

−1.01

−1

x 10
5

Time (s).

T
e
s
t
lo

g
 l
ik

e
lih

o
o
d
.

0 200 400 600

−1.22

−1.2

−1.18

−1.16

−1.14
x 10

5

Time (s).

T
e
s
t
lo

g
 l
ik

e
lih

o
o
d
.

0 200 400 600 800

−1.32

−1.3

−1.28

x 10
5

Time (s).

T
e
s
t
lo

g
 l
ik

e
lih

o
o
d
.

0 500 1000

−1.52

−1.5

−1.48

−1.46

x 10
5

Time (s).

T
e
s
t
lo

g
 l
ik

e
lih

o
o
d
.

Figure 4.3: Comparison of test log likelihoods over time between the sparse Bayesian

GGM and the graphical lasso. Left to right, top to bottom, the graphs compare these

methods on data sets of dimension 10,20, ...,80. The test log likelihood from the GGM

has stabilised before GLASSO produces a result in the cases of 10 to 30 dimensions.

For 40 to 60 dimensions, the GGM estimate is nearing convergence, and may still be

useful in preference to GLASSO in a practical situation. In 70 dimensions and above,

the GGM sampler has only managed a few iterations before GLASSO returns its result,

and so GLASSO is likely preferable to the GGM here.

Chapter 4. Sparse Bayesian Gaussian Graphical Models 110

parameters, a different data set, or different implementations of the two methods, the

relative performance may be different. Additionally, there are many factors to consider

other than computational performance when choosing a data analysis method.

4.4 Conclusions and Future Work

In this chapter, we developed a Hamiltonian Monte Carlo sampler for the GWishart

distribution and demonstrated its increased efficiency over the block Gibbs sampler.

Our HMC method, together with our computation of the mass matrix from prelimi-

nary Wishart samples, is suitable for embedding into a joint sampler of the graph and

precision in a sparse Gaussian model. We also described a way to choose the covering

set in the block Gibbs sampler that reduced run time and made it more practical to use

block Gibbs within a joint sampler.

We then compared a sparse Bayesian GGM model based on the GWishart distri-

bution with the graphical lasso estimator on a real-world data set. We found that the

Bayesian model performed better in terms of test log likelihood, even when the mod-

els were constrained to the same time budget. The better performance of the Bayesian

model appeared due to its use of the full posterior – as opposed to the graphical lasso’s

MAP solution. We went on to compare the efficiency of the two methods over a range

of data dimensions. We found that the GGM outperformed GLASSO up to 30 dimen-

sions, and remained viable up to about 60 dimensions on our data set. Beyond that,

GLASSO was the more efficient method. We interpret this result as a rough guide to

making a choice between the two methods: we expect the relative efficiency to depend

on various factors incuding the data set, the chosen parameters of each method, and

their implementations. Furthermore, there are factors other than efficiency to consider.

If inference in the sparse Bayesian GGM can be performed adequately quickly,

then it may be a better choice of model in some situations than the graphical lasso. We

discussed in Section 4.1.3.2 that the explicit graph prior in the Bayesian model allows

certain types of prior information to be encoded more precisely than in the graphical

lasso. And of course, GLASSO provides only the MAP solution, whereas the Bayesian

model provides a full posterior. This may be important for some applications; for

example, when attempting to reconstruct a metabolic reaction network, as in the work

by Krumsiek et al. (2011), one may wish to obtain a measure of confidence in the

existence of an edge in the graph. Sampling the GGM, we can count the samples in

which the edge is present; GLASSO gives only a binary answer.

Chapter 4. Sparse Bayesian Gaussian Graphical Models 111

Future work could involve an investigation of better ways to select the step size

and trajectory length distributions. This may involve an attempt to understand how the

optimal choices are affected by the parameters of the GWishart distribution. We could

also investigate how to select a mass matrix that is more effective or more efficient to

compute. We discuss additional future work in the following subsections.

4.4.1 Comparing the WL and BDMCMC Samplers

It would be interesting to compare the WL sampler (based on reversible jump MCMC)

with the BDMCMC sampler (based on birth-death MCMC) – see Section 4.1.3. In

their BDMCMC work, Mohammadi and Wit (2012) approximate a ratio of GWishart

normalisation constants by one. Wang and Li (2012) use a double Metropolis-Hastings

method to compute this ratio. It would interesting to see how the approximation af-

fects the trade-off between efficiency and accuracy – both in WL and BDMCMC. We

note also that it is the use of double MH in the WL sampler that necessitates drawing

samples from the GWishart prior. Our HMC sampler for the GWishart is at its least

efficient when sampling from the prior (see Section 4.3.2), so removing the need to

sample the prior should further improve efficiency of inference in the GGM.

4.4.2 Sampling the GWishart Hyperparameters

In Section 4.3.4, we set the GWishart prior parameters b and DDD manually. It would

be preferable to put a prior on these parameters and sample them conditioned on ΛΛΛ

(in a similar way to our treatment of the graph-sparsity hyperparameter s). However,

the prior and posterior GWishart distributions that we sample from in Algorithm 6

depend on these hyperparameters, and the mass matrix should change accordingly. But

computing the mass matrix is expensive: if we compute the mass by taking preliminary

samples from W (b,DDD) (see Section 4.2.2.1), then we would need to draw new samples

each time b or DDD changes.

If the changes to the hyperparameters between each iteration are small, perhaps it

will suffice to update the mass infrequently, or even to keep it fixed. Alternatively, an

adaptive sampling scheme such as Riemann manifold HMC (RMHMC) (Girolami and

Calderhead, 2011) would not require the mass to be manually selected. In RMHMC,

the mass matrix is replaced by a metric tensor that is a function of the HMC position

variable – ΛΛΛ in our case. This allows the HMC sampler to adapt to the local geometry.

For the Bayesian GGM model, the metric tensor would depend on the hyperparameters.

Chapter 4. Sparse Bayesian Gaussian Graphical Models 112

The metric tensor must be computed at each iteration of RMHMC, so making it a

function of the hyperparameters should not incur additional cost. But RMHMC is

already costly: the inverse of the metric tensor must be evaluated at each iteration,

which grows with the cube of the number of parameters. In the GGM, the number of

parameters is O(p2), and so each iteration of RMHMC would be O(p6) – which will

quickly become prohibitive as p grows2.

2 We already invert the mass matrix each time the graph changes in our use of HMC within the
WL algorithm, which is also O(p6). But RMHMC inverts the metric tensor at each integration step of
each HMC proposal. Since we require multiple HMC runs for each potential change to the graph, using
RMHMC would be more expensive.

Chapter 5

Conclusions

Here, we summarise our contributions, and make some concluding remarks.

5.1 Contributions

The key contributions, summarised here by chapter, are as follows.

Chapter 2

• We introduced the sparse latent inverse covariance estimator (SLICE) – an ex-

tension of the graphical lasso to incorporate latent variables – and described an

EM method to compute it.

• On a real-world financial data set, we demonstrated that SLICE learned a more

parsimonious representation of the data than graphical lasso.

• We extended the SLICE model to a mixture of experts named MSLICE, and

extended the EM algorithm to learn its parameters.

• We demonstrated that the learned MSLICE mixture components could be inter-

preted in terms of the side information, and that the learned precision matrices

were also somewhat interpretable. Thus, the method may be useful for knowl-

edge discovery.

• To handle non-Gaussian data, we augmented SLICE and MSLICE with Gaus-

sianising functions, resulting in the Gaussian copula model CopSLICE and the

mixture of Gaussian copula experts CopMSLICE. We showed how to learn the

parameters of these models.

113

Chapter 5. Conclusions 114

• We demonstrated on financial data that the copula models improved on the Gaus-

sian models in terms of log likelihoods on test data.

Chapter 3

• We introduced the IO-HMM models TGLASSO and CopTGLASSO – exten-

sions of the MGLASSO and CopMGLASSO models of the previous chapter.

• We demonstrated that these models outperformed existing baselines, including

an IO-HMM with factored emissions.

• The latent states and Gaussian structures learned by these models were inter-

pretable, backing up our conclusion from Chapter 2 that our models may be

useful in knowledge discovery.

• In our experiments, the temporal models brought little benefit over their non-

temporal counterparts, especially in the presence of side information. It appears

that when the side information is strongly predictive of the latent state, the tem-

poral connections are unnecessary, and only increase the computation time.

Chapter 4

• We developed an HMC sampler for the GWishart distribution, and demonstrated

its increased efficiency over the state-of-the-art block Gibbs sampler in most

scenarios.

• We demonstrated that the HMC sampler is suitable for embedding into a joint

Gaussian graphical model (GGM) in which the graph and precision matrix are

to be sampled jointly.

• We described a way to choose the covering set in the block Gibbs sampler to

reduce run time and make block Gibbs more practical when used within a GGM

joint sampler.

• We compared a sparse Bayesian GGM with the (non-Bayesian) graphical lasso

on a real-world data set, and found that the Bayesian model outperformed the

graphical lasso even when both methods were constrained to the same time bud-

get.

Chapter 5. Conclusions 115

5.2 Future Directions

Here, we discuss some preliminary investigations and potential future research direc-

tions aimed at unifying some of the methods and ideas from Chapters 2, 3, and 4.

5.2.1 Latent-Variable Extensions of the Bayesian GGM

We would like to extend the sparse Bayesian GGM described in Section 4.1.3 by in-

corporating latent variables, similarly to how we extended graphical lasso to SLICE –

see Section 2.2.1. Consider the following model:

GGG∼ P(GGG) (5.1)

ΛΛΛ∼WG(b,DDD) (5.2)

uuu∼N
(

000,ΛΛΛ−1
)
, (5.3)

where uuu =
(
yyyT ,zzzT)T , and zzz is a vector of latent variables. Given data matrix YYY , how

can we sample from the posterior P(GGG,ΛΛΛ,ZZZ|YYY)? Here, we discuss our investigation of

this problem to date; but it remains an open issue.

The naive approach would be to extend the WL algorithm with a sampling step

for P(ZZZ|ΛΛΛ,YYY), and sample GGG and ΛΛΛ as before. The problem with this is that ZZZ and

ΛΛΛ are tightly coupled: see the discussion in Murray and Adams (2010), for exam-

ple. Progress of the Markov chain through the joint space of (ΛΛΛ,ZZZ) may be slow if

P(ZZZ|ΛΛΛ,YYY) and P(ΛΛΛ|GGG,ZZZ,YYY) are sampled alternately.

If samples of ZZZ are not required, we may instead integrate out the latent variables,

and run HMC to sample the joint precision ΛΛΛ from P(ΛΛΛ|GGG,YYY). We implemented this

sampler, but we found that mixing was very slow. This seems to be because the latent

variables couple the elements of ΛΛΛ such that the local geometry varies considerably

over the space of ΛΛΛ, making it difficult to find a suitable mass matrix. We illustrate

this by running the following experiment. We generated a random graph on 25 nodes

by drawing from the distribution (4.28) with s = 0.5; drew a ground truth precision

by sampling the GWishart prior; then drew 1000 samples from the Gaussian with this

precision. We retained only the first 20 dimensions from these samples, considering the

remaining 5 dimensions to be latent variables. These samples constituted the 1000×
20 data matrix YYY . We then ran the naive sampler to draw 200000 samples from the

posterior p(ΛΛΛ|GGG,YYY). In Figure 5.1, we plot the sampled values for 3 pairs of elements

of ΛΛΛ, chosen manually for illustrative purposes. In each subfigure, we can see long,

Chapter 5. Conclusions 116

−0.3 −0.2 −0.1 0 0.1 0.2
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

−1 −0.5 0 0.5 1
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 5.1: Illustration of variation in the local geometry in ΛΛΛ-space in the presence of

latent variables. Each subfigure plots sampled values of a pair of elements of ΛΛΛ. In

each plot, we see variations in local geometry that may be problematic for HMC. For

example, a mass matrix that performs well in one of the large central regions may not

perform well in one of the long thin regions.

narrow regions in the distribution. The optimal mass matrix for an HMC sampler may

be very different in these regions than in the larger central regions.

RMHMC would allow the mass to vary over the space of ΛΛΛ, which may allow the

Markov chain to explore more rapidly. But, as discussed in Section 4.4.2, RMHMC is

O(p6), where p here is the sum of the observed and latent dimensions.

Whichever method is used to sample from p(ΛΛΛ|GGG,YYY), there is an additional prob-

lem: the distribution P(GGG,ΛΛΛ|YYY) is, in general, multimodal. We investigated tempered

transitions (Neal, 1996) as a way of solving this problem. The tempered transitions

method requires that we specify a sequence of distributions interpolating between the

distribution from which we wish to sample, and some distribution in which sampling

is easier. The Markov chain moves through the sequence until the simpler distribution

is reached, and then moves back to the original distribution. The idea is that large

moves can be made in the simpler distribution, making the Markov chain more likely

to move between modes. For the GGM, we observed that, when the graph is fully con-

nected, a Metropolis-Hastings sampler can rapidly explore the distribution of ΛΛΛ given

ΣΣΣyy – because with fixed ΣΣΣyy, the likelihood of any two values of ΛΛΛ is the same. Our

idea was to exploit this by using tempered transitions with J interpolating distributions

for the graph prior defined in Equation (4.28). We defined a sequence of J interpo-

lating distributions by changing the sparsity parameter s according to the sequence

S = (s0,s1, ...,sJ) where si < sk if i < k, s0 is the sparsity of the original graph prior,

and sJ = 1. This sequence was defined to make the graph progressively more dense.

When the graph was fully dense, we sampled ΛΛΛ|ΣΣΣyy using Metropolis-Hastings.

However, we were not able to make this method work well. We found the following

Chapter 5. Conclusions 117

problems.

1. The number of interpolating distributions J had to be large to avoid a high rejec-

tion rate. For example, with p = 15, we needed J to be around 500. This made

the tempered transition steps slow.

2. Given J, we found it difficult to find a sequence S that kept the rejection rate low.

3. The method scales poorly with dimension: as p increases, the number of possible

edges increases as p2, and it is more likely that at least one will be missing when

sJ is reached, which results in a rejection of the tempered transition.

We also tried the Wang-Landau adaptive simulated tempering algorithm (AST) (Wang

and Landau, 2001) and a coupled AST algorithm (Salakhutdinov, 2010), but we still

found speed and scaling to be problematic in each case.

It may be that with a different application of these methods – such as a different

choice of sequence S – they may help with the multimodality problem. Also, as ex-

plained above, we do not yet have a good sampler for P(ΛΛΛ|GGG,YYY) when latent variables

are present. This sampler is used within the tempering methods, so perhaps they would

perform better if we had such a sampler. The sampler may also make tempered tran-

sitions useful with sJ < 1. At present, our MH sampler for ΛΛΛ|ΣΣΣyy relies on the graph

being fully connected; if it is not, defining a proposal that keeps ΣΣΣyy constant (or nearly

constant) is more difficult.

5.2.2 Conditional Mixtures and Copulas

Another possible direction is to extend the Bayesian GGM model in a similar way to

our extensions of SLICE in Chapters 2 and 3; that is, by introducing side information,

multiple mixture components, non-Gaussian marginals, and temporal dependencies.

Some of these extensions already exist in the literature, and we briefly review them

now. Future work may combine these approaches – with some modifications – into a

Bayesian model somewhat akin to CopMSLICE without the latent variables.

Rodriguez et al. (2011) study a Dirichlet process mixture of GGMs, a more general

species sampling model, and an infinite hidden Markov GGM. They limit the models

to decomposable graphs, which simplifies inference because the GWishart normali-

sation constant can be computed in closed form (Roverato, 2002). The limitation to

decomposable graphs could probably be dropped at a cost of increased computation

time. The normalisation constants would no longer be computable in closed form –

Chapter 5. Conclusions 118

but we could probably use the WL sampler with HMC for the GWishart to sample

within each component of the mixture.

To extend the mixture to a mixture of experts, we might incorporate a technique

from Rasmussen and Ghahramani (2001). They modify the Dirichlet process to make

it input-dependent by using a kernel-based local estimate of the occupation number of

each component. In their approach, the experts are Gaussian processes, but it should

be possible to make them sparse GGMs.

Dobra and Lenkoski (2011) introduce a copula extension of the Bayesian GGM.

Their model has a graph GGG and precision ΛΛΛ drawn from (4.10) and (4.11) respectively.

The rest of the model is:

yyy∼N
(

000,ΛΛΛ−1
)
, (5.4)

y′v = yv

(
ΛΛΛ
−1
)− 1

2

vv
, (5.5)

ỹv = F−1
v
(
Φ
(
y′v
))

, (5.6)

where Fv is the marginal cdf of ỹv, and Φ is the standard Gaussian cdf. They make

no assumptions about the form of Fv. Instead, they follow Hoff (2007), treating the Fv

as nuisance parameters. Inference is performed by mapping a data matrix ỸYY into the

set of YYY ′ consistent with the non-decreasing property of every Fv. Resampling each Y ′nv

conditioned on all other variables becomes a draw from a truncated Gaussian. They re-

sample GGG using reversible jump MCMC, and resample ΛΛΛ by sequentially updating the

elements of its Cholesky decomposition by Metropolis-Hastings. Samplers developed

since – such as the WL algorithm with our HMC sampler for the GWishart – would

probably improve the efficiency of this step.

5.3 Concluding Remarks

Structure learning is an important problem that spans multiple tasks across multiple

domains. Discovering relationships between variables may be posed as a structure-

learning problem. If predictions are required, the choice of model structure may have

a strong influence on the accuracy of those predictions, and on the ability of the model

to use the available data efficiently. But sufficient prior knowledge may not be available

to make clear the optimal choice of structure. In such cases, it would be useful to learn

a model structure from data.

Chapter 5. Conclusions 119

There has been much recent progress on learning the structure of Gaussian mod-

els. One thread of this research is focussed on optimisation-based methods, such as

the graphical lasso; see Section 2.1.2. Another thread has focussed on Bayesian mod-

els built around the GWishart distribution; see Section 4.1.2. In this thesis, we have

contributed to the field of Gaussian structure learning, addressing problems in each of

these threads of research.

We began with the observation that, in many practical problems, latent variables

confound the relationships between the observed variables, which may lead to a dense

marginal structure among those observed variables. However, the relationships in the

joint space of observed and latent variables may be more sparse. This motivated our

introduction of latent variables into a Gaussian model, imposing sparsity in the joint

space to learn the structure, resulting in our SLICE method; see Section 2.2.1. As we

postulated, our experiments indicate that SLICE can learn more parsimonious models

than the graphical lasso. This could be useful for knowledge discovery or decision

support. For example, if SLICE is trained on financial returns data as in Section 2.5,

the latent variables may capture intra-sector or market-wide effects; it may then be

easier to spot residual couplings that are not explained by the latent factors. However,

multimodality could present a problem: the EM algorithm for SLICE can result in very

different structures depending on the initial conditions. If SLICE is used for knowl-

edge discovery, some prior knowledge of the desired structure or the latent variables

present may be required: the prior knowledge may be encoded into the L1 penalties

to lessen the problem of multiple modes. Without sufficient prior knowledge, SLICE

may result in an undesirable structure. Future work may attempt to address this prob-

lem. Alternatively, the sparse Bayesian models discussed in Chapter 4 result in a full

posterior distribution, and so, in principle, each mode could be explored by sampling.

However, as discussed in Section 5.2.1, we do not yet have a sampler for a sparse latent

Gaussian model that mixes sufficiently quickly for practical use.

We noted that, in some scenarios, the structure underlying the data may vary be-

tween groups of data points. For example, financial assets’ prices may become more

strongly correlated under extreme market conditions (Preis et al., 2012). This moti-

vated the MSLICE model, our generalisation of SLICE with multiple components and

side information. In our experiments with financial data, we showed that the compo-

nents could be interpreted in terms of the side information – a volatility index in that

case. In some applications – including the modelling of financial returns – the number

of components will not be known a priori. We set this parameter by cross-validation

Chapter 5. Conclusions 120

in MSLICE, but it would be preferable to learn it simultaneously with the component

structures. Although we studied a Bayesian model with just a single-component, the

extension to a mixture of experts with a variable number of components may be easier

in that case, given the existing work on Dirichlet process mixtures; see the discussion

in Section 5.2.2.

Incorporating side information was particularly important in our experiments: it

led to greater predictive accuracy, and the selected features could be understood intu-

itively. Furthermore, our results suggest that in cases where rich side information is

available, an input-output HMM may not perform any better than a mixture of experts.

This is good news because it means that practitioners may get good results while work-

ing with a simple model that is fast to train. However, in cases where side information

is limited or unavailable, a temporal model may still be the better choice. Extend-

ing MSLICE to a matrix-variate model akin to those of Zhang and Schneider (2010)

or Kalaitzis et al. (2013) may find a fruitful middle ground: a matrix-variate model

would capture correlations between the variables at a fixed time, and also correlations

between different time points. Such an extension may require less computation time

than our IO-HMM models, and would naturally accommodate a higher-order Markov

chain.

We consider the modification of our models to allow a precision matrix to depend

directly on the side information to be an important topic of future work. A mixture

of experts like MSLICE assumes that the data points fall into groups, with each group

possessing a different underlying structure. But in practice, there may be small dif-

ferences within each group. For example, we saw in our experiment in Section 2.5.3

that MSLICE learned to assign one component to each of the low, medium, and high-

volatility market states. But within, say, a low-volatility period, two companies may

begin a business arrangement that changes their share price correlation. If the pre-

cision matrices were to depend on the covariates (and the new business arrangement

were included in the covariate vector), this change in the low-volatility structure might

be captured. The key barriers to introducing dependence of the precision matrices on

the covariates – as discussed in Section 2.6.1 – are ensuring that the precision matrices

are both sparse and positive-definite for any value of the covariate vector, and avoiding

the computation of a determinant for every point in the data set.

Since many real-world data – including financial data – are non-Gaussian, we aug-

mented the components of MSLICE with Gaussianising functions, resulting in a mix-

ture of Gaussian copulas that we named CopMSLICE. As expected, this improved per-

Chapter 5. Conclusions 121

formance in our experiments with financial data, albeit with a trade-off in computation

time. Non-Gaussianity in the marginals broadens the applicability of the model, but

CopMSLICE still assumes that the dependence structures can be accurately modelled

by multivariate Gaussians. Learning non-Gaussian dependence structures is beyond

the scope of the methods discussed in this thesis, all of which rest on the assumption

that edges in the Markov random field of a model (or component) correspond to non-

zero entries in its precision matrix – which is true for the Gaussian, but not true in

general.

For sparse Gaussian models based on the GWishart distribution, sampling from

the GWishart is often the bottleneck. We addressed this problem first by modifying

the state-of-the-art block Gibbs sampler, and then by developing a Hamiltonian Monte

Carlo (HMC) sampler for this distribution. We demonstrated that the HMC sampler

is much more efficient than block Gibbs under most conditions. This increase in the

efficiency of inference could allow GWishart-based models to be applied to higher-

dimensional problems. It may also help to make practical more complex models based

on the GWishart distribution: we have already seen with CopMSLICE how the addi-

tion of latent variables, multiple components, side information, and copulas improved

performance – no doubt the Bayesian models would benefit from similar extensions.

(As noted above, however, we are not yet able to extend the HMC sampler to the

latent-variable case.)

In our experiments, the sparse Bayesian GGM model outperformed the graphical

lasso when both were constrained to the same time budget. Yet the graphical lasso

has received far more study in the machine learning literature than sparse Bayesian

GGMs. The Bayesian approach has some advantages. First, it results in a full posterior

distribution, in contrast to MAP methods such as the graphical lasso which result in

a single structure. This may be important if, for example, a measure of uncertainty is

required in the presence or absence of an edge, or if it is useful to explore a range of

the most likely structures. Further, the graph prior is explicit in the Bayesian GGM

described in Section 4.1.3; in the optimisation methods, the prior is implicit in the

choice of L1 penalties. An explicit prior is more flexible – allowing the practitioner to

express correlations between edges, for example – and it may allow prior knowledge

to be encoded more easily. For these reasons, we believe that the Bayesian approach to

sparse Gaussian modelling is worthy of greater attention. Perhaps one reason it is less

popular than the optimisation approach is that the Bayesian method is harder to use for

the practitioner. Graphical lasso results in a single structure, while the Bayesian GGM

Chapter 5. Conclusions 122

results in a set of samples from the posterior distribution. The Bayesian model would

have to be appropriately packaged for greater ease of use by practitioners outside the

machine learning field.

Appendices

123

Appendix A

CopMSLICE EM Derivation

Here, we derive the EM learning algorithm for the CopMSLICE model (of which

SLICE and MSLICE are special cases). Let xxx denote a vector of covariates (or side

information); x̃xx =
(
1,xxxT)T the covariate vector augmented with a unit element; ỹyy a

vector of observed variables; yyy a deterministic transformation of ỹyy; and zzz a vector

of latent variables. The model is a conditional mixture with M components. Let www

indicate which component of the mixture is responsible for generating ỹyy; that is, wm = 1

for some m, and wk = 0 for all k 6= m. We use n = 1, . . . ,N to index data points,

c = 1, . . . ,C to index dimensions of xxx, v = 1, . . . ,V to index dimensions of yyy or ỹyy, h =

1, . . . ,H to index dimensions of zzz, and m = 1, . . . ,M to index mixture components. To

keep the notation as simple as possible, we assume that the latent vector zzz has the same

dimensionality irrespective of the component that generates it. Extending the model to

have a different number of latent factors in each component is straightforward. Define

uuu =
(
yyyT ,zzzT)T . The generative model is as follows:

www∼ P(www|xxx;ΞΞΞ), (A.1)

(uuu|wm = 1)∼N
(

000,ΛΛΛ−1
m

)
, (A.2)

(ỹv|wm = 1) = f−1
mv (yv)+

(
ΨΨΨ

T
m
)

v: x̃xx. (A.3)

See Figure 2.5. ΞΞΞ parameterises the distribution of the mixing variable www. Matrix ΨΨΨm

parameterises the conditional mean of component m. The functions fmv can be thought

of as Gaussianising functions: we define fmv(·) ≡ Φ−1 (Fmv (· ;ζζζmv)), where Φ is the

Gaussian cdf, and Fmv is a univariate cdf parameterised by ζζζmv. It is required that Fmv

– and therefore fmv – is monotonically increasing and differentiable. We also define

θθθ
f
m = (ΨΨΨm,ζζζm); that is, θθθ

f
m parameterises the mapping ỹyy 7→ yyy when component m is

active.

124

Appendix A. CopMSLICE EM Derivation 125

From Equations (A.2) and (A.3), it is clear that each mixture component has a

nonparanormal distribution (see Section 2.1.5) when the latent variables zzz are either

conditioned on or marginalised. We can write

p(ỹyy|xxx,wm = 1,zzz) = p(yyy|wm = 1,zzz)
V

∏
v=1

f ′mv
(
ỹv−

(
ΨΨΨ

T
m
)

v: x̃xx
)
. (A.4)

Define ỸYY to be the data matrix such that each row is a data point; that is, ỸYY n: =

ỹyyT
n . Define XXX , X̃XX , WWW , YYY , ZZZ, and UUU similarly. Let θθθ = (ΞΞΞ,ΛΛΛ,ΨΨΨ,ζζζ) denote the set

of all parameters. We wish to learn θθθ by maximising the (penalised) log likelihood

log p(ỸYY |XXX). We do this via EM, so we first write down the joint density:

p(ỸYY ,ZZZ,WWW |XXX)

=
N

∏
n=1

M

∏
m=1

[p(wnm = 1|xxxn) p(zzzn|wnm = 1) p(ỹyyn|xxxn,wnm = 1,zzzn)]
wnm (A.5)

=
N

∏
n=1

M

∏
m=1

[
p(wnm = 1|xxxn) p(uuun|wnm = 1)

V

∏
v=1

f ′mv
(
ỹnv−

(
ΨΨΨ

T
m
)

v: x̃xxn
)]wnm

. (A.6)

We iteratively maximise the objective

Q
(

θθθ
(t)
)
= E

[
L
(

θθθ
(t)
)
|XXX ,ỸYY ,θθθ(t−1)

]
− γ

(
θθθ
(t)
)
, (A.7)

where L (θθθ) is the log likelihood,

L (θθθ) = ∑
n,m

wnm

[
log p(wnm = 1|xxxn)

+ log p(uuun|wnm = 1)

+ ∑
v

log f ′mv (ỹnv−µnmv)

]
,

(A.8)

µµµnm ≡ΨΨΨ
T
mx̃xxn, and γ(θθθ) is a sum of the L1 penalties that we apply to the parameters θθθ.

In each M step of EM, we do not fully maximise Q(θθθ). Instead, we partially max-

imise by performing one maximisation for each of ΞΞΞ, ΛΛΛ, ΨΨΨ, and ζζζ conditioned on the

other parameters. In the following sections, we describe how to find the expectations,

and how to maximise, for each of the parameter groups.

A.1 The Mixing Model Parameters

Here, we wish to maximise Q(θθθ) with respect to ΞΞΞ, while fixing the current values of

(ΛΛΛ,ΨΨΨ,ζζζ). Only the first term in Equation (A.8) involves ΞΞΞ, so the objective here is

QΞ

(
ΞΞΞ
(t)
)
≡ E

[
∑
n,m

wnm log p
(

wnm = 1|xxxn;ΞΞΞ
(t)
)
|XXX ,ỸYY ,θθθ(t−1)

]
− γΞ

(
ΞΞΞ
(t)
)
, (A.9)

Appendix A. CopMSLICE EM Derivation 126

where the expectation is over wnm. Define

wnm ≡ E
[
wnm|XXX ,ỸYY ,θθθ(t−1)

]
(A.10)

= E
[
wnm|xxxn, ỹyyn,θθθ

(t−1)
]

(A.11)

= p
(

wnm = 1|xxxn, ỹyyn;θθθ
(t−1)

)
(A.12)

=
p
(

ỹyyn|wnm = 1,xxxn;θθθ
(t−1)

)
p
(

wnm = 1|xxxn;ΞΞΞ
(t−1)

)
p
(

ỹyyn|xxxn;θθθ
(t−1)

) , (A.13)

where p
(

ỹyyn|xxxn;θθθ
(t−1)

)
= ∑

M
j=1 p

(
ỹyyn|wn j = 1,xxxn;θθθ

(t−1)
)

p
(

wn j = 1|xxxn;ΞΞΞ
(t−1)

)
. The

likelihood p
(

ỹyyn|wn j = 1,xxxn;θθθ
(t−1)

)
=

∫
p
(

ỹyyn,zzzn|wn j = 1,xxxn;θθθ
(t−1)

)
dzzzn is a non-

paranormal density. Equation (A.13) is used to compute wnm in the E step. The M-step

objective then becomes

QΞ

(
ΞΞΞ
(t)
)
= ∑

n,m
wnm log p

(
wnm = 1|xxxn;ΞΞΞ

(t)
)
− γΞ

(
ΞΞΞ
(t)
)
. (A.14)

At this point, we must choose a form for the distribution of www given xxx. We worked

with a multinomial logit model:

p(wnm = 1|xxxn;ΞΞΞ) =
exp
(

ξξξ
T
mx̃xxn

)
∑

M
j=1 exp

(
ξξξ

T
j x̃xxn

) , (A.15)

where ξξξm = (ΞΞΞm:)
T . The values in the first column of ΞΞΞ – which multiply the unit

element of x̃xx – can be thought of as a bias. When training this model, we apply L1

penalties to the elements of ΞΞΞ, except for the bias:

γΞ

(
ΞΞΞ
(t)
)
=

M

∑
m=1

C

∑
c=1

(ΓΞ)mc

∣∣∣Ξ(t)
m(c+1)

∣∣∣ , (A.16)

where ΓΓΓΞ ∈ RM×C
+ is a penalty matrix.

The objective function is now

QΞ

(
ΞΞΞ
(t)
)
= ∑

n,m
wnm

[
ξξξ
(t)T
m x̃xxn− log

{
M

∑
j=1

exp
(

ξξξ
(t)T
j x̃xxn

)}]
−∑

m,c
(ΓΞ)mc

∣∣∣Ξ(t)
m(c+1)

∣∣∣ .
(A.17)

The are various ways to maximise this function. We used the L1General package for

Matlab (Schmidt et al., 2007).

Appendix A. CopMSLICE EM Derivation 127

A.2 The Precision Matrix

Now, consider maximising Q(θθθ) with respect to ΛΛΛ, while holding (ΞΞΞ,ΨΨΨ,ζζζ) fixed. Only

the second term in Equation (A.8) involves ΛΛΛ, so the objective is

QΛ

(
ΛΛΛ
(t)
)
≡ E

[
∑
n,m

wnm log p
(

uuun|wnm = 1;ΛΛΛ
(t)
m

)
|XXX ,ỸYY ,θθθ(t−1)

]
− γΛ

(
ΛΛΛ
(t)
)
, (A.18)

where the final term contains an L1 penalty for each element of each precision matrix:

γΛ

(
ΛΛΛ
(t)
)
=

M

∑
m=1

D

∑
i=1

D

∑
j=1

(ΓΛm)i j

∣∣∣∣(Λ
(t)
m

)
i j

∣∣∣∣ ; (A.19)

(ΓΓΓΛm) ∈ RD×D
+ is the matrix of penalties for component m; and D ≡ V + H is the

cardinality of vector uuu.

Notice that Equation (A.18) can be written as a sum over mixture components m,

each term involving a single precision matrix ΛΛΛm. It will therefore suffice to consider

the E and M steps for each component independently. Let QΛ ≡ ∑m QΛm , where

QΛm

(
ΛΛΛ
(t)
)
≡∑

n
E
[
wnm log p

(
uuun|wnm = 1;ΛΛΛ

(t)
m

)
|XXX ,ỸYY ,θθθ(t−1)

]
−∑

i, j
(ΓΛm)i j

∣∣∣∣(Λ
(t)
m

)
i j

∣∣∣∣ . (A.20)

Since we focus on a single component, we drop the m index for clarity.

We examine the E step first – that is, how to compute the expectation in Equation

(A.20). This involves a single data point, so we temporarily drop the n index. The

vector uuu is Gaussian-distributed, so the expectation becomes

E
[
w log p(uuu|w = 1;ΛΛΛ) |XXX ,ỸYY ,θθθ(t−1)

]
=wE

[
log p(uuu|w = 1;ΛΛΛ) |xxx, ỹyy,θθθ(t−1)

]
(A.21)

=
w
2
E
[
logdetΛΛΛ−uuuT

ΛΛΛuuu−D log2π
]

(A.22)

=
w
2
{

logdetΛΛΛ−E
[
tr
(
uuuuuuT

ΛΛΛ
)]
−D log2π

}
. (A.23)

The product uuuuuuT may be partitioned according to the partition of uuu into yyy and zzz, so that

the trace term may be written

E
[
tr
(
uuuuuuT

ΛΛΛ
)]

= tr

{(
E
[
yyyyyyT] E

[
yyyzzzT]

E
[
zzzyyyT] E

[
zzzzzzT]

)
ΛΛΛ

}
. (A.24)

Appendix A. CopMSLICE EM Derivation 128

We consider each of the expectations in turn. The first is straightforward: because

yyy = f
(

ỹyy−
(

ΨΨΨ
(t)
)T

x̃xx;ζζζ
(t)
)

is not a random variable, E
[
yyyyyyT] = yyyyyyT . The lower left

block is the transpose of the upper right:

E
[
zzzyyyT]T = E

[
yyyzzzT]= yyyE

[
zzz|w = 1,yyy,ΛΛΛ(t−1)

]T
= yyyzzzT , (A.25)

where zzz≡ E
[
zzz|w = 1,yyy,ΛΛΛ(t−1)

]
=−

(
ΛΛΛ
(t−1)
zz

)−1
ΛΛΛ
(t−1)
zy yyy is the mean of a conditional

Gaussian. The expectation of the lower-right block may be written

E
[
zzzzzzT]= E

[
zzzzzzT |w = 1,yyy,ΛΛΛ(t−1)

]
(A.26)

= Cov
(

zzz|w = 1,yyy,ΛΛΛ(t−1)
)
+ z̄zzz̄zzT (A.27)

=
(

ΛΛΛ
(t−1)
zz

)−1
+ z̄zzz̄zzT . (A.28)

Finally, we substitute Equations (A.25, A.28) into (A.24), replace the n indices,

and form the weighted sum over n:

∑
n

wnE
[
tr
(
uuunuuuT

n ΛΛΛ
)]

= ∑
n

tr


 wnyyynyyyT

n wnyyynzzzT
n

wnzzznyyyT
n wn

[(
ΛΛΛ
(t−1)
zz

)−1
+ zzznzzzT

n

] ΛΛΛ

 (A.29)

=

(
∑
n

wn

)
tr{SSSΛΛΛ} , (A.30)

where we define SSS such that

SSSyy =

(
∑
n

wn

)−1

YYY TWWWYYY , (A.31)

SSST
zy = SSSyz =

(
∑
n

wn

)−1

YYY TWWW ZZZ, (A.32)

SSSzz =
(

ΛΛΛ
(t−1)
zz

)−1
+

(
∑
n

wn

)−1

ZZZTWWW ZZZ, (A.33)

and WWW is a diagonal matrix such that diag
(
WWW
)
= (w1, . . . ,wN)

T . The primary task of

the E step is to compute the matrix SSS.

We turn now to the M step. The task is to find a ΛΛΛm that maximises QΛm . Constants

in QΛm do not affect the result, so we drop the final term in Equation (A.23) before

substituting into (A.20), and define the new objective

Q′Λm
(ΛΛΛm)≡

Nm

2
{logdetΛΛΛm− tr(SSSmΛΛΛm)}−∑

i, j
(ΓΛm)i j

∣∣∣(Λm)i j

∣∣∣ , (A.34)

where Nm = ∑n wnm is the expected number of data points for which component m is

responsible. This is the graphical lasso objective; see Section 2.1.2. But, as discussed

Appendix A. CopMSLICE EM Derivation 129

in Section 2.2.1, it is necessary to constrain ΛΛΛm. We fix the diagonal of (ΛΛΛm)zz to unity.

So we estimate ΛΛΛm as follows:

Λ̂ΛΛm = argmax
ΛΛΛm�0 : diag((ΛΛΛm)zz)=1

Q′Λm
(ΛΛΛm) . (A.35)

We use one of the packages SDPT3 (Toh et al., 1999); LogdetPPA (Wang et al., 2010);

or L1General (Schmidt et al., 2007) to solve this optimisation problem; see Section

2.2.2.

A.3 The Gaussianising Functions

Here, we consider maximising Q(θθθ) with respect to θθθ
f = (ΨΨΨ,ζζζ), while holding (ΞΞΞ,ΛΛΛ)

fixed. The second and third terms in Equation (A.8) involve θθθ
f , so the objective is

Qθ f

(
ΨΨΨ

(t),ζζζ
(t)
)
≡ E

[
∑
n,m

wnm log p(uuun|wnm = 1) |XXX ,ỸYY ,θθθ(t−1)

]

+ E

[
∑
n,m

wnm ∑
v

log f ′mv (ỹnv−µnmv) |XXX ,ỸYY ,θθθ(t−1)

]
− γΨ

(
ΨΨΨ

(t)
)
− γζ

(
ζζζ
(t)
)
,

(A.36)

where γΨ consists of an L1 penalty on all parameters ΨΨΨ
(t) except for the biases:

γΨ

(
ΨΨΨ

(t)
)
=

M

∑
m=1

V

∑
v=1

C

∑
c=1

(ΓΨm)cv

∣∣∣∣(Ψ
(t)
m

)
(c+1)v

∣∣∣∣ , (A.37)

where (ΓΓΓΨm) ∈ RC×V
+ is the matrix of penalties for ΨΨΨm. Similarly to Section A.2, we

can write the objective Qθ f = ∑m Q
θ

f
m

, such that each term in the sum involves only the

parameters θθθ
f
m:

Q
θ

f
m

(
ΨΨΨ

(t)
m ,ζζζ

(t)
m

)
≡ E

[
∑
n

wnm log p(uuun|wnm = 1) |XXX ,ỸYY ,θθθ(t−1)
]

+ E
[
∑
n

wnm ∑
v

log f ′mv (ỹnv−µnmv) |XXX ,ỸYY ,θθθ(t−1)
]

−
V

∑
v=1

C

∑
c=1

(ΓΨm)cv

∣∣∣∣(Ψ
(t)
m

)
(c+1)v

∣∣∣∣− γζm

(
ζζζ
(t)
m

)
.

(A.38)

The E step involves computing the two expectations. The first was examined in

Section A.2. The second is straightforward:

E
[
∑
n

wnm ∑
v

log f ′mv (ỹnv−µnmv)

]
= ∑

n
wnm ∑

v
log f ′mv (ỹnv−µnmv) . (A.39)

Appendix A. CopMSLICE EM Derivation 130

Now consider the M step. Using Equations (A.23, A.30), and dropping the terms

not involving θθθ
f , we define a new objective

Q′
θ

f
m

(
ΨΨΨ

(t)
m ,ζζζ

(t)
m

)
≡ − Nm

2

{
tr
(
(SSSm)yy (ΛΛΛm)yy

)
+2tr

(
(SSSm)zy (ΛΛΛm)yz

)}
+∑

n
wnm ∑

v
log f ′mv (ỹnv−µnmv)

− γΨm

(
ΨΨΨ

(t)
m

)
− γζm

(
ζζζ
(t)
m

)
.

(A.40)

First, consider the special case in which each component is Gaussian; that is, fmv is the

identity map. This simplifies the objective; in particular, there are no parameters ζζζm.

We can define the following objective for ΨΨΨm:

QΨm

(
ΨΨΨ

(t)
m

)
≡− Nm

2

{
tr
(
(SSSm)yy (ΛΛΛm)yy

)
+2tr

(
(SSSm)yz (ΛΛΛm)zy

)}
− γΨm

(
ΨΨΨ

(t)
m

)
,

(A.41)

where

(SSSm)yy =
1

Nm
YYY T

mWWW mYYY m, (A.42)

(SSSm)yz =
1

Nm
YYY T

mWWW mZZZm, (A.43)

and YYY m = ỸYY − X̃XXΨΨΨ
(t)
m . Dropping further terms that do not involve ΨΨΨ

(t)
m , and dropping

the (t) superscript for clarity, the objective becomes

Q′Ψm
(ΨΨΨm)≡

1
2

tr
{(

2ΨΨΨ
T
mX̃XX

T
WWW mỸYY −ΨΨΨ

T
mX̃XX

T
WWW mX̃XXΨΨΨm

)
(ΛΛΛm)yy

}
+ tr

{
ΨΨΨ

T
mX̃XX

T
WWW mZZZm (ΛΛΛm)zy

}
− γΨm (ΨΨΨm)

(A.44)

= tr
{

ΨΨΨ
T
mX̃XX

T
WWW m

[
ZZZm (ΛΛΛm)zy +

(
ỸYY − 1

2
X̃XXΨΨΨm

)
(ΛΛΛm)yy

]}
− γΨm (ΨΨΨm) .

(A.45)

In the absence of penalties, this is a quadratic in ΨΨΨm, so the maximum can be found

analytically. With penalties, we use the L1General package (Schmidt et al., 2007) to

optimise.

If fmv is not the identity map (so the experts are non-Gaussian), optimising θθθ
f

is more difficult. If the marginals Fmv are simple enough, the gradients of (A.40) with

respect to ΨΨΨ
(t)
m and ζζζ

(t)
m could be derived, although they would be messy. But in general,

the gradients are not available; our optimisation method is described in Section 2.4.2.

Appendix B

The FTSE Data Set

Here we list all the assets comprising the data set described in Section 2.5.1, along with

their corresponding market sectors. An asterisk indicates that the asset is included in

the reduced data set of 19 companies that was used for many of the experiments.

Symbol Company Name Market Sector

AAL∗ Anglo American Basic Materials

ABF∗ Associated British Foods Consumer Goods

ADM Admiral Group Financial

AGK Aggreko Services

AMEC AMEC Basic Materials

ANTO∗ Antofagasta Basic Materials

ARM ARM Holdings Technology

AU Autonomy Technology

AV Aviva Financial

AZN AstraZeneca Healthcare

BA BAE Systems Industrial Goods

BARC∗ Barclays Financial

BATS∗ British American Tobacco Consumer Goods

BG BG Group Basic Materials

BLND British Land Co Financial

BLT∗ BHP Billiton Basic Materials

BP BP Basic Materials

BRBY Burberry Group Services

BSY British Sky Broadcasting Group Services

131

Appendix B. The FTSE Data Set 132

Symbol Company Name Market Sector

BT-A BT Group Technology

CCL Carnival Consumer Goods

CNA Centrica Utilities

CNE Cairn Energy Basic Materials

CPG Compass Group Services

CPI Capita Services

DGE∗ Diageo Consumer Goods

GFS G4S Services

GKN GKN Consumer Goods

GSK GlaxoSmithKline Healthcare

HMSO Hammerson Financial

HSBA∗ HSBC Holdings Financial

IAG International Consolidated Airlines Group Industrial Goods

IAP ICAP Financial

III 3i Group Financial

IMI IMI Industrial Goods

IMT∗ Imperial Tobacco Group Consumer Goods

INVP Investec Financial

IPR International Power Utilities

ISYS Invensys Industrial Goods

ITRK Intertek Group Services

ITV ITV Services

JMAT Johnson Matthey Basic Materials

KGF Kingfisher Services

LAND Land Securities Group Financial

LGEN Legal and General Group Financial

LLOY∗ Lloyds Banking Group Financial

LMI∗ Lonmin Basic Materials

MKS Marks and Spencer Group Services

MRW WM Morrison Supermarkets Services

NXT Next Services

OML Old Mutual Financial

PRU Prudential Financial

PSON Pearson Services

Appendix B. The FTSE Data Set 133

Symbol Company Name Market Sector

RBS∗ Royal Bank of Scotland Group Financial

REL Reed Elsevier Services

REX REXAM Consumer Goods

RIO∗ Rio Tinto Basic Materials

RR Rolls-Royce Group Industrial Goods

RRS∗ Randgold Resources Basic Materials

RSA RSA Insurance Group Financial

SAB∗ SABMiller Consumer Goods

SBRY Sainsbury Services

SDR Schroders Financial

SGE Sage Group Technology

SHP Shire Healthcare

SMIN Smiths Group Industrial Goods

SN Smith and Nephew Healthcare

SRP Serco Group Services

SSE SSE Utilities

STAN∗ Standard Chartered Financial

SVT Severn Trent Utilities

TLW Tullow Oil Basic Materials

TSCO Tesco Services

TT TUI Travel Consumer Goods

ULVR∗ Unilever Consumer Goods

VED∗ Vedanta Resources Basic Materials

VOD Vodafone Group Technology

WEIR Weir Group Industrial Goods

WOS Wolseley Industrial Goods

WPP WPP Services

XTA∗ Xstrata Basic Materials

Appendix C

The S&P 500 Data Set

Here we list all the assets – along with their corresponding market sectors – and tech-

nical indicators comprising the data set described in Section 3.3.1.

C.1 Assets

Symbol Company Name Market Sector

AAPL Apple Information Technology

ABT Abbott Laboratories Health Care

AIG American International Group Financials

AMGN Amgen Health Care

AXP American Express Financials

BA Boeing Company Industrials

BAC Bank of America Financials

C Citigroup Financials

CMCSA Comcast Consumer Discretionary

COP ConocoPhillips Energy

CSCO Cisco Systems Information Technology

CVX Chevron Energy

DIS The Walt Disney Company Consumer Discretionary

GE General Electric Industrials

HD Home Depot Consumer Discretionary

HPQ Hewlett-Packard Information Technology

IBM International Business Machines Information Technology

INTC Intel Information Technology

134

Appendix C. The S&P 500 Data Set 135

Symbol Company Name Market Sector

JNJ Johnson & Johnson Health Care

JPM JP Morgan Chase Financials

KO The Coca Cola Company Consumer Staples

MDT Medtronic Health Care

MO Altria Group Consumer Staples

MRK Merck Health Care

MS Morgan Stanley Financials

MSFT Microsoft Information Technology

ORCL Oracle Information Technology

PEP PepsiCo Consumer Staples

PFE Pfizer Health Care

PG Procter & Gamble Consumer Staples

QCOM Qualcomm Information Technology

SLB Schlumberger Energy

T AT & T Telecommunications Services

TWX Time Warner Consumer Discretionary

TYC Tyco International Industrials

UNH United Health Group Health Care

USB US Bancorp Financials

UTX United Technologies Industrials

VZ Verizon Communications Telecommunications Services

WFC Wells Fargo Financials

WMT Wal-Mart Stores Consumer Staples

XOM Exxon Mobil Energy

Appendix C. The S&P 500 Data Set 136

C.2 Technical Indicators

Abbreviation Description

DX Welles Wilder’s direction index

ADX Welles Wilder’s average direction index

AroonUp Aroon up indicator

AroonDn Aroon down indicator

ATR Average true range

BBlo Bollinger bands low line

BBhi Bollinger bands high line

BBpct Bollinger bands percent bandwidth

CCI Commodity channel index

ChaikinAD Chaikin accumulation/distribution line

ChaikinVol Chaikin volatility

CLV Close location value

ChaikinMF Chaikin money flow

DPO Detrended price oscillator

DVI David Varadi’s intermediate oscillator

EMV Arms’ ease of movement value

KST Know sure thing indicator

MACD Moving average convergence/divergence oscillator

MFI Money flow index

OBV On balance volume

TDI Trend detection index

TRIX Triple smoothed exponential oscillator

VHF Vertical horizontal filter

Vol Close-to-close volatility

WilliamsAD Williams accumulation/distribution line

Appendix D

HMC for the GWishart – Derivations

Here we derive the energy function and its derivatives, as required by HMC, for the

GWishart distribution. In Section D.1, we consider the standard representation of the

GWishart. In Section D.2, we look at the Cholesky representation as discussed in

Section 4.2.2.

D.1 The Standard Representation

Recall the GWishart density WG(b,DDD):

p(ΛΛΛ) =
1

IG(b,DDD)
(detΛΛΛ)

b−2
2 exp

[
−1

2
tr(DDDΛΛΛ)

]
. (D.1)

The energy associated with this density is defined such that

p(ΛΛΛ) =
1

IG(b,DDD)
exp{−E (ΛΛΛ)} , (D.2)

so we have

E (ΛΛΛ) =
1
2
[tr(DDDΛΛΛ)− (b−2) logdetΛΛΛ] . (D.3)

The following are standard formulae of matrix calculus. See, for example, (Petersen

and Pedersen, 2006). If XXX is a symmetric matrix, and AAA is a constant square matrix,

then

∂

∂XXX
tr(AAAXXX) = AAA+AAAT −AAA� III, (D.4)

∂

∂XXX
logdetXXX = 2XXX−1−XXX−1� III. (D.5)

The derivative of the energy is therefore

∂E
∂ΛΛΛ

=
1
2
[2DDD−DDD� III− (b−2)(2ΣΣΣ−ΣΣΣ� III)] . (D.6)

137

Appendix D. HMC for the GWishart – Derivations 138

D.2 The Cholesky Representation

Let ΛΛΛ denote a GWishart-distributed matrix: ΛΛΛ ∼WG(b,DDD). Let ΨΨΨ denote the upper-

triangular matrix formed from the Cholesky decompositions of DDD−1 and ΛΛΛ as follows:

DDD−1 = TTT T TTT ; (D.7)

ΛΛΛ = ΦΦΦ
T

ΦΦΦ; (D.8)

ΨΨΨ = ΦΦΦTTT−1. (D.9)

From Atay-Kayis and Massam (2005), we know that:

• ΨΨΨ
V are free variables, while ΨΨΨ

V are not free.

• If Ψrs ∈ΨΨΨ
V , it can be written as a function of the free elements as follows:

Ψrs =
s−1

∑
n=r

(
−ΨrnT<ns]

)
−

r−1

∑
m=1

(
Ψmr +∑

r−1
n=m ΨmnT<nr]

Ψrr

)(
Ψms +

s−1

∑
n=m

ΨmnT<ns]

)
,

(D.10)

where T<mn] ≡ Tmn
Tnn

. Define the row-wise order relation <r as follows: (m,n)<r

(r,s) if m < r, or if m = r and n < s. Notice that Ψrs ∈ ΨΨΨ
V depends only on

Ψmn <r Ψrs. The non-free elements must therefore be evaluated iteratively in

row-wise order.

• The free elements have density

p
(

ΨΨΨ
V
)

∝

p

∏
i=1

Ψ
b+νi−1
ii exp

(
−1

2 ∑
1≤i≤ j≤p

Ψ
2
i j

)
, (D.11)

where νi ≡ |{ j : j > i,Gi j = 1}|.

The density in Equation (D.11) may be written in terms of an energy E
(

ΨΨΨ
V
)

as

follows:

p
(

ΨΨΨ
V
)
=

1
IG(b,DDD)

exp
{
−E
(

ΨΨΨ
V
)}

. (D.12)

For HMC, additive constants in the energy do not change the algorithm, so we drop

them and redefine the energy:

E
(

ΨΨΨ
V
)
=−

p

∑
i=1

(b+νi−1) logΨii +
1
2 ∑

1≤i≤ j≤p
Ψ

2
i j. (D.13)

Appendix D. HMC for the GWishart – Derivations 139

The energy gradients required for HMC are

∂E
∂Ψii

= ∑
(r,s)∈V

Ψrs
∂Ψrs

∂Ψii
− b+νi−1

Ψii
, (D.14)

∂E
∂Ψi j

= ∑
(r,s)∈V

Ψrs
∂Ψrs

∂Ψi j
+Ψi j, for i < j. (D.15)

We therefore require the derivatives ∂Ψrs
∂Ψi j

of the non-free elements of ΨΨΨ with respect

to the free elements. If (r,s) <r (i, j), this derivative is zero. For (i, j) <r (r,s), we

differentiate (D.10) to find

∂Ψrs

∂Ψi j
=−

s−1

∑
n=r

∂Ψrn

∂Ψi j
T<ns]

−
r−1

∑
m=1

[(
Ψmr +∑

r−1
n=m ΨmnT<nr]

Ψrr

)(
∂Ψms

∂Ψi j
+

s−1

∑
n=m

∂Ψmn

∂Ψi j
T<ns]

)

+

(
Ψms +

s−1

∑
n=m

ΨmnT<ns]

){
1

Ψrr

(
∂Ψmr

∂Ψi j
+

r−1

∑
n=m

∂Ψmn

∂Ψi j
T<nr]

)

−

(
Ψmr +

r−1

∑
n=m

ΨmnT<nr]

)
1

Ψ2
rr

∂Ψrr

∂Ψi j

}]
.

(D.16)

For the partial derivatives ∂Ψab
∂Ψi j

that appear on the right hand side, if (a,b) ∈ V , then

∂Ψab

∂Ψi j
=

1 if (a,b) = (i, j),

0 if (a,b) 6= (i, j).
(D.17)

For (a,b) ∈ V , notice that (a,b) <r (r,s). Therefore, for each (i, j), Equation (D.16)

must be applied iteratively over (r,s) in row-wise order to compute all partial deriva-

tives.

Bibliography

Agakov, F. V., Orchard, P. R., and Storkey, A. (2012). Discriminative Mixtures of

Sparse Latent Fields for Risk Management. In AISTATS.

Aloui, R., Aïssa, M. S. B., and Nguyen, D. K. (2013). Conditional Dependence Struc-

ture between Oil Prices and Exchange Rates: A Copula-GARCH Approach. Journal

of International Money and Finance, 32:719–738.

Antoniak, C. E. (1974). Mixtures of Dirichlet Processes with Applications to Bayesian

Nonparametric Problems. The Annals of Statistics, 2(6):1152–1174.

Atay-Kayis, A. and Massam, H. (2005). A Monte Carlo Method for Computing the

Marginal Likelihood in Nondecomposable Gaussian Graphical Models. Biometrika,

92(2):317–335.

Balkema, A. and De Haan, L. (1974). Residual Life Time at Great Age. The Annals of

Probability, 2(5):792–804.

Banerjee, O., El Ghaoui, L., and d’Aspremont, A. (2008). Model Selection through

Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data.

The Journal of Machine Learning Research, 9:485–516.

Bauwens, L., Laurent, S., and Rombouts, J. V. K. (2006). Multivariate GARCH Mod-

els: A Survey. Journal of Applied Econometrics, 21(1):79–109.

Bengio, Y. and Frasconi, P. (1995). An Input Output HMM Architecture. In Advances

in Neural Information Processing Systems 7, pages 427–434. Morgan Kaufmann.

Bengio, Y. and Frasconi, P. (1996). Input-Output HMMs for Sequence Processing.

IEEE Transactions on Neural Networks, 7(5):1231–1249.

140

Bibliography 141

Bengio, Y., Lauzon, V., and Ducharme, R. (2001). Experiments on the Application

of IOHMMs to Model Financial Returns Series. IEEE Transactions on Neural Net-

works, 12(1):113–123.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Sci-

ence and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity.

Journal of Econometrics, 31(3):307 – 327.

Bollerslev, T., Engle, R. F., and Nelson, D. B. (1994). ARCH Models. Handbook of

Econometrics, 4:2959–3038.

Boubaker, H. and Sghaier, N. (2013). Portfolio Optimization in the Presence of De-

pendent Financial Returns with Long Memory: A Copula Based Approach. Journal

of Banking and Finance, 37(2):361–377.

Bradley, J. K. and Guestrin, C. (2010). Learning Tree Conditional Random Fields. In

Fürnkranz, J. and Joachims, T., editors, Proceedings of the 27th International Con-

ference on Machine Learning (ICML-10), pages 127–134, Haifa, Israel. Omnipress.

Brechmann, E. C., Czado, C., and Aas, K. (2012). Truncated Regular Vines in High

Dimensions with Application to Financial Data. Canadian Journal of Statistics,

40(1):68–85.

Carvalho, C. M. and West, M. (2007). Dynamic Matrix-Variate Graphical Models.

Bayesian Analysis, 2(1):69–97.

Chandrasekaran, V., Parrilo, P. A., and Willsky, A. S. (2010). Latent Variable Graph-

ical Model Selection via Convex Optimization. In Communication, Control, and

Computing (Allerton), 2010 48th Annual Allerton Conference on, pages 1610–1613.

IEEE.

Chen, S., Donoho, D., and Saunders, M. (1998). Atomic Decomposition by Basis

Pursuit. SIAM Journal on Scientific Computing, 20(1):33–61.

Cheng, J., Levina, E., Wang, P., and Zhu, J. (2012). Sparse Ising Models with Covari-

ates. ArXiv e-prints, 1209.6342.

Cheng, Y. and Lenkoski, A. (2012). Hierarchical Gaussian Graphical Models: Beyond

Reversible Jump. Electronic Journal of Statistics, 6:2309–2331.

Bibliography 142

Cherubini, U., Luciano, E., and Vecchiato, W. (2004). Copula Methods in Finance.

Wiley.

Chow, C. and Liu, C. (1968). Approximating Discrete Probability Distributions with

Dependence Trees. IEEE Transactions on Information Theory, 14(3):462–467.

Cuthbertson, K. (1996). Quantitative Financial Economics: Stocks, Bonds, and For-

eign Exchange. Wiley.

Czado, C., Brechmann, E., and Gruber, L. (2013). Selection of Vine Copulas. In

Jaworski, P., Durante, F., and Härdle, W. K., editors, Copulae in Mathematical and

Quantitative Finance, pages 17–37. Springer Berlin Heidelberg.

d’Aspremont, A., Banerjee, O., and El Ghaoui, L. (2008). First-Order Methods for

Sparse Covariance Selection. SIAM Journal on Matrix Analysis and Applications,

30(1):56–66.

Dobra, A., Eicher, T. S., and Lenkoski, A. (2010). Modeling Uncertainty in Macroeco-

nomic Growth Determinants using Gaussian Graphical Models. Statistical Method-

ology, 7(3):292–306.

Dobra, A. and Lenkoski, A. (2011). Copula Gaussian Graphical Models and their Ap-

plication to Modeling Functional Disability Data. The Annals of Applied Statistics,

5(2A):969–993.

Dobra, A., Lenkoski, A., and Rodriguez, A. (2011). Bayesian Inference for General

Gaussian Graphical Models with Application to Multivariate Lattice Data. Journal

of the American Statistical Association, 106(496):1418–1433.

Duchi, J., Gould, S., and Koller, D. (2008). Projected Subgradient Methods for Learn-

ing Sparse Gaussians. In UAI, pages 145–152.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least Angle Regression.

The Annals of Statistics, 32(2):407–451.

Elidan, G. (2010). Copula Bayesian Networks. In Lafferty, J., Williams, C. K. I.,

Shawe-Taylor, J., Zemel, R., and Culotta, A., editors, Advances in Neural Informa-

tion Processing Systems 23, pages 559–567.

Elidan, G. (2012a). Copula Network Classifiers (CNCs). In International Conference

on Artificial Intelligence and Statistics, pages 346–354.

Bibliography 143

Elidan, G. (2012b). Lightning-Speed Structure Learning of Nonlinear Continuous Net-

works. In International Conference on Artificial Intelligence and Statistics, pages

355–363.

Elidan, G., Nachman, I., and Friedman, N. (2007). “Ideal parent" Structure Learn-

ing for Continuous Variable Bayesian Networks. Journal of Machine Learning Re-

search, 8:1799–1833.

Engelhardt, B. E. and Stephens, M. (2010). Analysis of Population Structure: a Uni-

fying Framework and Novel Methods based on Sparse Factor Analysis. PLoS Ge-

netics, 6(9).

Engle, R. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the

Variance of United Kingdom Inflation. Econometrica: Journal of the Econometric

Society, 50(4):987–1007.

Ernst, J., Vainas, O., Harbison, C. T., Simon, I., and Bar-Joseph, Z. (2007). Recon-

structing Dynamic Regulatory Maps. Molecular Systems Biology, 3.

Everitt, B. S. (1984). An Introduction to Latent Variable Models. Chapman and Hall,

London.

Fama, E. (1965). The Behavior of Stock-Market Prices. Journal of Business, 38(1):34–

105.

Fan, J. and Li, R. (2001). Variable Selection via Nonconcave Penalized Likeli-

hood and its Oracle Properties. Journal of the American Statistical Association,

96(456):1348–1360.

Fleming, J., Kirby, C., and Ostdiek, B. (2008). The Specification of GARCH Models

with Stochastic Covariates. Journal of Futures Markets, 28(10):911–934.

Frank, I. E. and Friedman, J. H. (1993). A Statistical View of Some Chemometrics

Regression Tools. Technometrics, 35(2):109–135.

Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse Inverse Covariance Estima-

tion with the Graphical Lasso. Biostatistics, 9(3):432–441.

Friedman, J., Hastie, T., and Tibshirani, R. (2010a). Applications of the Lasso and

Grouped Lasso to the Estimation of Sparse Graphical Models. Technical report,

Stanford University.

Bibliography 144

Friedman, J., Hastie, T., and Tibshirani, R. (2010b). Regularization Paths for Gen-

eralized Linear Models Via Coordinate Descent. Journal of Statistical Software,

33(1):1–22.

Friedman, N. (1997). Learning Belief Networks in the Presence of Missing Values and

Hidden Variables. ICML ’97.

Friedman, N., Nachman, I., and Peer, D. (1999). Learning Bayesian Network Structure

from Massive Datasets: the “Sparse Candidate" Algorithm. In UAI.

Genest, C., Gendron, M., and Bourdeau-Brien, M. (2009). The Advent of Copulas in

Finance. The European Journal of Finance, 15(7–8):609–618.

Geyer, C. J. (1992). Practical Markov Chain Monte Carlo. Statistical Science,

7(4):473–483.

Ghahramani, Z. and Hinton, G. E. (1996). The EM Algorithm for Mixtures of Fac-

tor Analyzers. Technical Report CRG-TR-96-1, Department of Computer Science,

University of Toronto.

Girolami, M. and Calderhead, B. (2011). Riemann Manifold Langevin and Hamil-

tonian Monte Carlo Methods. Journal of the Royal Statistical Society: Series B

(Statistical Methodology), 73(2):123–214.

Han, H. (2010). Asymptotic Properties of GARCH-X Processes. Technical report,

National University of Singapore.

Harmeling, S. and Williams, C. K. I. (2011). Greedy Learning of Binary Latent Trees.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(6):1087–1097.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learn-

ing. Springer, New York.

Heckerman, D., Meek, C., and Cooper, G. F. (1999). A Bayesian Approach to Causal

Discovery. In Glymour, C. and Cooper, G. F., editors, Computation, Causation, and

Discovery. MIT.

Hoerl, A. E. and Kennard, R. W. (1970). Ridge Regression: Biased Estimation for

Nonorthogonal Problems. Technometrics, 12(1):55–67.

Bibliography 145

Hoff, P. D. (2007). Extending the Rank Likelihood for Semiparametric Copula Esti-

mation. The Annals of Applied Statistics, 1(1):265–283.

Hsieh, C.-J., Sustik, M. A., Dhillon, I., Ravikumar, P., and Poldrack, R. (2013). BIG

& QUIC: Sparse Inverse Covariance Estimation for a Million Variables. In Burges,

C., Bottou, L., Welling, M., Ghahramani, Z., and Weinberger, K., editors, Advances

in Neural Information Processing Systems 26, pages 3165–3173.

Hsieh, C.-J., Sustik, M. A., Dhillon, I. S., and Ravikumar, P. (2011). Sparse Inverse

Covariance Matrix Estimation Using Quadratic Approximation. In Shawe-Taylor, J.,

Zemel, R., Bartlett, P., Pereira, F., and Weinberger, K., editors, Advances in Neural

Information Processing Systems 24, pages 2330–2338.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. (1991). Adaptive Mix-

tures of Local Experts. Neural Computation, 3:79–87.

Jones, B., Carvalho, C., Dobra, A., Hans, C., Carter, C., and West, M. (2005). Exper-

iments in Stochastic Computation for High-Dimensional Graphical Models. Statis-

tical Science, 20(4):388–400.

Kalaitzis, A., Lafferty, J., Lawrence, N., and Zhou, S. (2013). The Bigraphical Lasso.

In Dasgupta, S. and McAllester, D., editors, Proceedings of the 30th International

Conference on Machine Learning (ICML-13), volume 28, pages 1229–1237. JMLR

Workshop and Conference Proceedings.

Kalaitzis, A. and Lawrence, N. (2012). Residual Component Analysis: Generalising

PCA for more Flexible Inference in Linear-Gaussian Models. In Langford, J. and

Pineau, J., editors, Proceedings of the 29th International Conference on Machine

Learning (ICML-12), pages 209–216. Omnipress.

Kemp, C. and Tenenbaum, J. B. (2008). The Discovery of Structural Form. Proceed-

ings of the National Academy of Sciences, 105(31):10687–10692.

Krishnapuram, B., Carin, L., Figueiredo, M. A. T., and Hartemink, A. (2005). Sparse

Multinomial Logistic Regression: Fast Algorithms and Generalization Bounds.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(6):957–968.

Krumsiek, J., Suhre, K., Illig, T., Adamski, J., and Theis, F. (2011). Gaussian Graphical

Modeling Reconstructs Pathway Reactions from High-Throughput Metabolomics

Data. BMC systems biology, 5(1):21.

Bibliography 146

Lafferty, J. D., McCallum, A., and Pereira, F. C. N. (2001). Conditional Random

Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In Pro-

ceedings of the Eighteenth International Conference on Machine Learning, pages

282–289. Morgan Kaufmann.

Lake, B. M. and Tenenbaum, J. B. (2010). Discovering Structure by Learning Sparse

Graphs. In Proceedings of the 33rd Annual Cognitive Science Conference.

Lawrence, N. (2005). Probabilistic Non-Linear Principal Component Analysis with

Gaussian Process Latent Variable Models. Journal of Machine Learning Research,

6:1783–1816.

Ledoit, O. and Wolf, M. (2003). Improved Estimation of the Covariance Matrix of

Stock Returns with an Application to Portfolio Selection. Journal of Empirical

Finance, 10(5):603–621.

Lenkoski, A. (2013). A Direct Sampler for G-Wishart Variates. Stat, 2(1):119–128.

Lenkoski, A. and Dobra, A. (2011). Computational Aspects Related to Inference in

Gaussian Graphical Models with the G-Wishart Prior. Journal of Computational

and Graphical Statistics, 20(1):140–157.

Levina, E., Rothman, A., and Zhu, J. (2008). Sparse Estimation of Large Covariance

Matrices via a Nested Lasso Penalty. The Annals of Applied Statistics, 2(1):245–

263.

Liang, F. (2010). A Double Metropolis-Hastings Sampler for Spatial Models with

Intractable Normalizing Constants. Journal of Statistical Computation and Simula-

tion, 80(9):1007–1022.

Liu, C. and Rubin, D. B. (1994). The ECME Algorithm: A Simple Extension of EM

and ECM with Faster Monotone Convergence. Biometrika, 81(4):633–648.

Liu, H., Chen, X., Lafferty, J., and Wasserman, L. (2010). Graph-Valued Regression.

In Lafferty, J., Williams, C. K. I., Shawe-Taylor, J., Zemel, R., and Culotta, A.,

editors, Advances in Neural Information Processing Systems 23, pages 1423–1431.

Liu, H., Lafferty, J., and Wasserman, L. (2009). The Nonparanormal: Semiparametric

Estimation of High Dimensional Undirected Graphs. J. Mach. Learn. Res., 10:2295–

2328.

Bibliography 147

Low, R. K. Y., Alcock, J., Faff, R., and Brailsford, T. (2013). Canonical Vine Copulas

in the Context of Modern Portfolio Management: Are They Worth It? Journal of

Banking and Finance, 37(8):3085–3099.

Maathius, M. and Kalisch, M. Buhlmann, P. (2009). Estimating High-Dimensional

Intervention Effects from Observation Data. The Annals of Statistics, 37:3133–3164.

Mallat, S. (2008). A Wavelet Tour of Signal Processing: The Sparse Way. Academic

Press.

Meinshausen, N. and Bühlmann, P. (2006). High-Dimensional Graphs and Variable

Selection with the Lasso. The Annals of Statistics, 34(3):1436–1462.

Mitsakakis, N., Massam, H., and D Escobar, M. (2011). A Metropolis-Hastings Based

Method for Sampling from the G-Wishart Distribution in Gaussian Graphical Mod-

els. Electronic Journal of Statistics, 5:18–30.

Mohamed, S., Heller, K., and Ghahramani, Z. (2012). Bayesian and L1 Approaches for

Sparse Unsupervised Learning. In Langford, J. and Pineau, J., editors, Proceedings

of the 29th International Conference on Machine Learning, ICML ’12, pages 751–

758, New York, NY, USA. Omnipress.

Mohammadi, A. and Wit, E. (2012). Gaussian Graphical Model Determination based

on Birth-Death MCMC Inference. ArXiv e-prints, 1210.5371.

Murray, I. and Adams, R. (2010). Slice Sampling Covariance Hyperparameters of

Latent Gaussian Models. In Lafferty, J., Williams, C. K. I., Shawe-Taylor, J., Zemel,

R., and Culotta, A., editors, Advances in Neural Information Processing Systems 23,

pages 1732–1740.

Murray, I., Ghahramani, Z., and MacKay, D. (2006). MCMC for Doubly-Intractable

Distributions. In Proceedings of the Twenty-Second Conference Annual Conference

on Uncertainty in Artificial Intelligence (UAI-06), pages 359–366. AUAI Press.

Neal, R. M. (1993). Probabilistic Inference Using Markov Chain Monte Carlo Meth-

ods. Technical Report CRG-TR-93-1, University of Toronto.

Neal, R. M. (1996). Sampling from Multimodal Distributions using Tempered Transi-

tions. Statistics and Computing, 6(4):353–366.

Bibliography 148

Neal, R. M. (2010). MCMC using Hamiltonian Dynamics in S. Brooks, A. Gelman,

G. Jones, and X. Meng (Ed.), Handbook of Markov Chain Monte Carlo, Chapman

& Hall.

Nelsen, R. B. (2006). An Introduction to Copulas. Springer.

Orchard, P. R., Agakov, F. V., and Storkey, A. (2013). Bayesian Inference in Sparse

Gaussian Graphical Models. ArXiv e-prints, 1309.7311.

Patton, A. J. (2009). Copula-Based Models for Financial Time Series. In Mikosch, T.,

Kreiß, J.-P., Davis, R. A., and Andersen, T. G., editors, Handbook of Financial Time

Series, pages 767–785. Springer Berlin Heidelberg.

Petersen, K. B. and Pedersen, M. S. (2006). The Matrix Cookbook.

Piccioni, M. (2000). Independence Structure of Natural Conjugate Densities to Ex-

ponential Families and the Gibbs’ Sampler. Scandinavian Journal of Statistics,

27:111–127.

Pickands, III, J. (1975). Statistical Inference using Extreme Order Statistics. The

Annals of Statistics, 3(1):119–131.

Preis, T., Kenett, D. Y., Stanley, H. E., Helbing, D., and Ben-Jacob, E. (2012). Quan-

tifying the Behavior of Stock Correlations Under Market Stress. Scientific Reports,

2(752).

Rasmussen, C. E. and Ghahramani, Z. (2001). Infinite Mixtures of Gaussian Process

Experts. In Advances in Neural Information Processing Systems 14, pages 881–888.

MIT Press.

Reboredo, J. C. (2011). How Do Crude Oil Prices Co-Move?: A Copula Approach.

Energy Economics, 33(5):948–955.

Rodriguez, A., Lenkoski, A., and Dobra, A. (2011). Sparse Covariance Estimation in

Heterogeneous Samples. Electronic Journal of Statistics, 5:981–1014.

Rolfs, B., Rajaratnam, B., Guillot, D., Wong, I., and Maleki, A. (2012). Iterative

Thresholding Algorithm for Sparse Inverse Covariance Estimation. In Advances in

Neural Information Processing Systems 25, pages 1583–1591.

Bibliography 149

Rothman, A. J., Levina, E., and Zhu, J. (2010). Sparse Multivariate Regression

With Covariance Estimation. Journal of Computational and Graphical Statistics,

19(4):947–962.

Roverato, A. (2002). Hyper Inverse Wishart Distribution for Non-Decomposable

Graphs and its Application to Bayesian Inference for Gaussian Graphical Models.

Scandinavian Journal of Statistics, 29(3):391–411.

Salakhutdinov, R. (2010). Learning Deep Boltzmann Machines using Adaptive

MCMC. In Fürnkranz, J. and Joachims, T., editors, Proceedings of the 27th In-

ternational Conference on Machine Learning (ICML-10), pages 943–950, Haifa,

Israel. Omnipress.

Scheinberg, K., Ma, S., and Goldfarb, D. (2010). Sparse Inverse Covariance Selection

via Alternating Linearization Methods. In Lafferty, J., Williams, C., Shawe-Taylor,

J., Zemel, R., and Culotta, A., editors, Advances in Neural Information Processing

Systems 23, pages 2101–2109.

Schmidt, M., Fung, G., and Rosales, R. (2007). Fast Optimization Methods for L1

Regularization: A Comparative Study and Two New Approaches. In Kok, J., Ko-

ronacki, J., Mantaras, R., Matwin, S., Mladenic, D., and Skowron, A., editors, Ma-

chine Learning: ECML 2007, volume 4701 of Lecture Notes in Computer Science,

pages 286–297. Springer Berlin / Heidelberg.

Schmidt, M., van den Berg, E., Friedlander, M., and Murphy, K. (2009). Optimizing

Costly Functions with Simple Constraints: A Limited-Memory Projected Quasi-

Newton Algorithm. In AISTATS, volume 5, pages 456–463.

Silva, R., Scheines, R., Glymour, C., and Spirtes, P. (2006). Learning the Structure of

Linear Latent Variable Models. JMLR, 7.

Snelson, E., Ghahramani, Z., and Rasmussen, C. E. (2004). Warped Gaussian Pro-

cesses. In Thrun, S., Saul, L., and Schölkopf, B., editors, Advances in Neural Infor-

mation Processing Systems 16, pages 337–344. MIT Press.

Sokolovska, N., Lavergne, T., Cappe, O., and Yvon, F. (2010). Efficient Learning

of Sparse Conditional Random Fields for Supervised Sequence Labeling. IEEE

Journal of Selected Topics in Signal Processing, 4(6):953–964.

Bibliography 150

Städler, N. and Bühlmann, P. (2012). Missing Values: Sparse Inverse Covariance

Estimation and an Extension to Sparse Regression. Statistics and Computing,

22(1):219–235.

Stephens, M. (2000). Bayesian Analysis of Mixture Models with an Unknown Num-

ber of Components – An Alternative to Reversible Jump Methods. The Annals of

Statistics, 28(1):40–74.

Sucarrat, G., Grønneberg, S., and Escribano, Á. (2013). Estimation and Inference in

Univariate and Multivariate Log-GARCH-X Models when the Conditional Density

is Unknown.

Sutton, C., McCallum, A., and Rohanimanesh, K. (2007). Dynamic Conditional Ran-

dom Fields: Factorized Probabilistic Models for Labeling and Segmenting Sequence

Data. Journal of Machine Learning Research, 8:693–723.

Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of

the Royal Statistical Society: Series B (Statistical Methodology), 58(1):267–288.

Tipping, M. E. and Bishop, C. M. (1999). Probabilistic Principal Component Anal-

ysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

61(3):611–622.

Toh, K., Todd, M., and Tütüncü, R. (1999). SDPT3 – A Matlab Software Package for

Semidefinite Programming. Optimization Methods and Software, 11:545–581.

Wang, C., Sun, D., and Toh, K.-C. (2010). Solving Log-Determinant Optimization

Problems by a Newton-CG Primal Proximal Point Algorithm. SIAM Journal on

Optimization, 20:2994–3013.

Wang, F. and Landau, D. P. (2001). Efficient, Multiple-Range Random Walk Algorithm

to Calculate the Density of States. Physical Review Letters, 86:2050–2053.

Wang, H. and Carvalho, C. M. (2010). Simulation of Hyper-Inverse Wishart Distribu-

tions for Non-Decomposable Graphs. Electronic Journal of Statistics, 4:1470–1475.

Wang, H. and Li, S. Z. (2012). Efficient Gaussian Graphical Model Determination

Under G-Wishart Prior Distributions. Electronic Journal of Statistics, 6:168–198.

Bibliography 151

Wang, Y.-C., Wu, J.-L., and Lai, Y.-H. (2013). A Revisit to the Dependence Struc-

ture between the Stock and Foreign Exchange Markets: A Dependence-Switching

Copula Approach. Journal of Banking and Finance, 37(5):1706–1719.

Wilson, A. and Ghahramani, Z. (2010). Copula Processes. In Lafferty, J., Williams,

C. K. I., Shawe-Taylor, J., Zemel, R., and Culotta, A., editors, Advances in Neural

Information Processing Systems 23, pages 2460–2468.

Wong, F., Carter, C. K., and Kohn, R. (2003). Efficient Estimation of Covariance

Selection Models. Biometrika, 90(4):809–830.

Yuan, M. and Lin, Y. (2006). Model Selection and Estimation in Regression with

Grouped Variables. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 68(1):49–67.

Zhang, N. L. (2004). Hierarchical Latent Class Models for Cluster Analysis. Journal

of Machine Learning Research, 5:697–723.

Zhang, Y. and Schneider, J. (2010). Learning Multiple Tasks with a Sparse Matrix-

Normal Penalty. In Lafferty, J., Williams, C. K. I., Shawe-Taylor, J., Zemel, R., and

Culotta, A., editors, Advances in Neural Information Processing Systems 23, pages

2550–2558.

Zou, H. and Hastie, T. (2005). Regularization and Variable Selection via the Elastic

Net. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

67(2):301–320.

	PhD coversheet April 2012
	thesis

