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Abstract 

Factor H (fH) is a crucial regulator of the alternative pathway of the complement 
system, a part of the innate immune system in mammals. Structural information 
regarding factor H is of great value for investigating the various functions of fH, its 
interactions with the host's molecules and those of pathogens. As part of our ongoing 
efforts to solve a complete structure of factor H, the structure of module 13 (fl-1-13) 
has been solved by NMR spectroscopy. 

To achieve this goal a recombinant fH- 13 protein was produced in Pichia pastoris 
in our laboratory and we have prepared unlabelled, 15N labelled and 15 N, 13 C labelled 
samples of this module. A set of 2D homonuclear, 3D 15N-edited and 13 C-edited 
NOESY spectra have been obtained forming an extensive set of spatial restraints for 
structure calculation. Adequate NMR experiments have been collected to obtain res-
onance assignments. 

As a part of the familiarization with the procedures for the assignment of homonu-
clear NMR spectra of proteins, four short polypeptide sequences from the KefC ion 
channel were analyzed. These corresponded to variations in a loop region participating 
in intermolecular interactions and were therefore hypothesized to form structured ele-
ments. Our analysis did not support the existence of secondary or tertiary structural 
elements in these peptides. 

Among the 88-individual CCP-modules of the regulators of complement activation, 
module sequence-lengths range from 51 to 67 amino acid residues and fH- 13 pos-
sesses the shortest sequence. The solved solution structure of M-13, reflects this 
short primary sequence and is unusual amongst the complement control proteins (CCP 
modules). fH -13 possess the expected disulfide-bonding pattern and consensus tryp-
tophan, but lacks many overall 313-structural features that characterise a "typical" 
CCP-module. fH- 13 possesses only two 3-strands out of a maximum of eight. The 
most similar structure to fl-1-13 is M-15, while the most dissimilar CCP module is 
CR1- 16. One side of the fH- 13 domain reveals a highly localised positively charged 
patch composed of eight residues. 

To recognize host from non-host cell membranes, factor H binds to polyanions such 
as sialic acid or heparan sulphate which are bound on to the surface of host cells. 
There are three putative polyanion binding sites located in modules 7, 13 and 20, 
whose involvement in this process is, to various extend, supported by experimental ev -
idence. The one in module 13 is the most disputed of the three polyanion binding sites. 

Binding studies using gel mobility shift assay were performed using a range of hep-
arin derived oligosaccharides from disaccharide to dodecasaccharide with negative re-
sults. Similarly, NMR titrations using a fully sulphated heparin-derived tetra.saccha-
ride yielded a negative result. This is despite the considerable accumulation of positive 
charge on one side of the fH- 13 molecule. These results point to the importance of 
an adequate distribution of positively charged residues for the binding of polyanions. 
High charge density only is insufficient to initiate binding in this case. 
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Abbreviations and symbols 

AMAC aminoacridone 
Cl - C9 members of complement cascade numbered in order of their activation 
C3a, C4a anaphylatoxin fragments of C3 and C4 
C3b, C4b proteolysis activated fragments of C3 and C4 
C413P C4b binding protein 
CA cofactor activity 
CCP complement control protein 
CE Combinatorial Extension 
CIE Cation Exchange 
CR1 complement receptor type 1 
CR2 complement receptor type 2 
DAA decay accelerating activity 
DAF decay accelerating factor 
DPFGSE double pulsed field gradient spin-echo 
EDTA ethylenedinitrilotetraacetic acid 
f1­1 factor H 
FID free induction decay 
FPLC fast protein liquid chromatography 

IYX gyromagnetic ratio of spin X 
GMSA gel mobility shift assay 
hetNOE steady state heteronuclear NOE 
HSQC heteronuclear single quantum coherence 
I nuclear spin quantum number 
KTN K 	transport, nucleotide binding 
M magnetic quantum number 
M bulk magnetisation 
MAC membrane attack complex 
MASP mannan-binding lectin associated senile protease 
MBP mannan-binding protein 
MCP membrane cofactor protein 
MTF molecular template file 
NMR nuclear magnetic resonance 
NOE nuclear Overhauser enhancement 
NOESY nuclear Overhauser effect spectroscopy 
PAGE polyacrylamide gel electrophoresis 
PDB protein databank 
PMSF phenylmethylsulphonyl fluoride 
ppm parts per milion 
PTM post translational modification 
RCA regulator of complement activation 
RECOORD recalculated co-ordinate database 
RMD restrained molecular dynamics 
RMSD root mean square deviation 
SA simulated annealing 
SCR short consensus repeat 
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SDS sodium dodecyl sulfate 
SCR short consensus repeat 
T 1  longitudinal relaxation time 
T2 transverse relaxation time 
TOCSY total correlation spectroscopy 
VCP Vaccinia complement protein 
YPD yeast peptone dextrose 
w Larmor frequency 
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Names and abbreviations for amino acids 

name abbreviation one letter code 
Alaiiine Ala A 
Arginine Arg R 
Asparagine Asn N 
Aspartic acid Asp D 
Cysteine Cys C 
Glutamic acid Glu E 
Glutamine Gln Q 
Glycine Gly G 
Histidine His H 
Isoleucine Ile I 
Leucine Leu L 
Lysine Lys K 
Methionine Met M 
Phenylalanine Phe F 
Proline Pro P 
Serine Ser S 
Threonine Thr T 
Tryptophan Trp W 
Tyrosine Tyr Y 
Valine Val V 
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Chapter 1 

Introduction 

1.1 The Complement System 

The human immune system consists of two main systems, an adaptive immune system 

and the innate immune system, that work together to destroy invading pathogens. The 

adaptive immune system primarily relies on the production of antibodies to produce 

a targeted response to specific pathogenic antigens. However, in order to produce a 

full antibody response to a pathogenic invader the adaptive immune system has to 

have prior contact with the invader's antigens. As a first line of defense against novel 

pathogens, the adaptive immune system is of limited value. On the other hand, the 

complement system, as part of the innate immune system, is able to respond rapidly 

to destroy any foreign material which does not have suitable protection. Therefore the 

complement system provides a suitable first line of defense against novel pathogens [1]. 

1.1.1 The Roles of the Complement System 

The complement system has three main strategies it uses to help destroy foriegn in-

vaders. 

The Membrane Attack Complex 

All activation pathways of the complement system lead ultimately to the activation 

of the terminal pathway on cell membranes. To do this, one of the C5 convertases 

needs to catalyse the cleavage of complement protein C5 to C5b and C5a. C5b will 
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then associate with the fluid phase complement proteins C6, C7, C8 and also multiple 

copies of the complement protein C9, assembling on the cell membrane. This protein 

assembly, known as the membrane attack complex (MAC) is able to penetrate the 

cell membrane. Once the cell membrane has been penetrated, the MAC works as a 

transmembrane pore allowing cytoplasmic fluid to leak from the cell. Once an invading 

pathogen has triggered the complement system, the proteolytic cascade effect of the 

activation pathways will result in many MACs forming on its lipid membranes, leading 

to lysis of its cells [1]. 

Inflammation 

Activation of the complement system involves the cleavage of proteins C3, C4 and 

C5. As a result, proteins C3a, C4a and C5a are produced, respectively. Although 

these proteins play no more role in the continuing proteolytic cascade, these are all 

anaphylotoxins that promote inflammation. They recruit and activate phagocytes to 

the site of infection, were the phagocytes will destroy the invading pathogen [2]. 

Opsonisation 

C3b is also produced during the activation of the complement system when C3 is 

cleaved into C3a and C3b [3]. C3b contains a thio-ester group which it uses to bind to 

pathogenic cell membranes [4]. Thus, if an invading pathogen activates the complement 

system, its cell membranes rapidly become opsonised with C3b. Here, C3b plays an 

important role in the proteolytic cascade, recruiting other complement activators to 

the cell membrane, finally resulting in the formation of the MAC. However, C3b can 

aid the immune system in another way. C3b can use its thio-ester group to bind to 

antigen-antibody complexes. The C3b attached to the antigen-antibody complex then 

acts as a ligand for erythocyte-borne complement receptor type I (CR1). The opsonised 

pathogen is then carried on the erythocyte to the liver and spleen where phagocytes 

are found. Here, C3b allows phagocytes to recognise the pathogen as foreign, inducing 

the pathogen's destruction via phagocytosis [5]. 
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1.1.2 Activation Pathways of the Complement System 

There are three activation pathways for the complement system; the classical, lectin 

and alternative pathways (Ficure 1.1). Over thirty different proteins are involved in 

the complement system, either found in the blood serum or on the surface of cells 

exposed to the blood serum. The main proteins of the complement system are called 

C1-C9. C5-C9 are involved in the membrane attack complex, as discussed above, while 

C14 are involved in the activation pathways. 

The Classical Pathway 

(C3bBb:C3b) 

T-
C6

"\ Ji (C3b:B 

.4 	 (6 	 \ - 

/ 	4 C5b:6:7) 

( Ig-CI 	- 	+--MBP-MASP) - 
(CSb:6:7:8 ') 

Classical Pathway 

(c3a) \ 

L 
(C3 

Alternative Pathway 

Figure 1.1: A diagram of the complement system, showing the interactions between 
the Classical (black), Alternative (blue) and Terminal (red) pathways. The comple-
ment proteins C1-9 are shown, as are MBP/MASP, factor B (fB and its breakdown 
product Bb) and factor D (fD). Single arrows depict binding interactions, while 
double arrows depict emzymatic reactions. Derived from [1] 

Discovered first (hence the name), the classical pathway actually relies on the presence 

of antibody-antigen complexes for its activation. The complement protein Clq can bind 

to these complexes via the antibody's F domain. Clq in turn recruits the proteins 
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Cir and Cis to form a complex known as Cl or the C4 protease. As indicated by the 

name, the C4 protease cleaves the complement protein C4 into two fragments known 

as C4a and C4b. C4a plays a role in inflammation, as described above. Meanwhile, 

C4b binds to the complement protein C2, and C2 is subsequently cleaved to 2a forming 

the C3 protease (C4b2a). This cleaves C3 into C3a and C3b. Again, C3a plays its 

role in inflammation described above. C3b on the other hand has many roles, but in 

the classical pathway it associates with the already formed C3 protease to form the 

C5 protease (C4b3b2a). This complex cleaves C5 into C5b, initiating the terminal 

pathway and the formation of MAC [6]. 

The Lectin Pathway 

The lectin pathway is activated by foreign carboydrates on pathogenic surfaces, such 

as those found on many types of bacterium, and unlike the classical pathway is inde-

pendent of antibodies. The pathway is activated when a protein called the Mannose 

Binding Protein (MBP) binds to foreign carbohydrates. MBP has a similar structure 

to Clq and it readily forms a complex with MBP-associated serine proteases (MASPs), 

which are similar to Cir and Cis. Once bound to foreign carbohydrates, this protein 

complex will cleave C4 into C4a and C4b, and from this point on the proteolytic 

cascade is the same as that of the classical pathway [7]. 

The Alternative Pathway 

The alternative pathway is also antibody independent, being activated by any surface 

membrane not protected by complement regulators. C3, which also plays a role in 

the other two pathways, is the initiator of the alternative pathway. C3 is present in 

high levels in the blood, where a small proportion of it reacts with water to form a 

molecule with similar properties to C3b. This hydrolysed C3 associates with a protein 

called factor B, and this process initiates the cleavage of Factor B into Factor Bb by 

the enzyme Factor D. The new complex, C3(H20)Bb can then cleave C3 into C3b, in 

a manner analagous to that of the protein complex C4b2a. 

As is clear from the above description, a pathogenic organism is not required to initiate 
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the formation of C3b in the blood, and therefore C3b is constantly produced at low 

levels in blood sera. C3b binds to nucleophilic groups on surfaces where it can associate 

with factor B to form C3bB, which is the alternative pathway's C3 convertase. This 

in turn generates more molecules of C3b. The C3 convertase will also associate with 

further molecules of C3b to form the C5 convertase (C3bBbC3b), which initiates the 

terminal pathway, and the formation of the MAC on the lipid surface. 

Therefore, with low levels of C3(H20) already in the blood, the alternative path-

way can respond rapidly to an invasion by foreign organisms without the need for an 

antibody response. To protect the bodies own surfaces from attack there are various 

membrane bound and plasma-borne regulators which promote the degradation of C3b 

or the decay of the C3 and C5 covertases if they become bound to host surfaces [6]. 

1.1.3 Regulators of Complement Activation (RCA) Proteins 

As the complement system can become activated on any surface, regulators are re-

quired to protect host cells that are in contact with blood sera. These regulators 

inactivate the complement system at key places, preventing the opsonisation of host 

cells and the formation of the MAC. Some regulators are membrane-bound and specific 

to the cell type on which they are found. Other regulators are in the fluid-phase, and 

these protect surfaces not enclosed by a membrane. The fluid-phase regulators are also 

recruited by many different pathogenic organisms to protect these foreign cells from 

complement attack [8]. 

There is a family of protein regulators known as the regulators of complement ac-

tivation (RCA). All the proteins in this family are characterised by having their genes 

in a cluster known at 1q32, which is found on chromosome 1 [9]. The family includes 

membrane bound regulators such as CR1, C112, membrane cofactor protein (MCP) 

and decay acceleration factor (DAF), as well as the fluid-phase regulators C4 binding 

protein (C4BP) and factor H (ff1) (see Figure 1.2). As they are fluid-phase, C413P and 

fIT are often the targets for recruitment by foreign organisms [8]. 
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IN SSSSSSSSSSSSSSSSSSSS 

CR1 •SSSSSSSSSSSSSSSSSSSSSSSSSS••• 

CR2 •SSSSSSS.....SS 

DAF ••S• 	C4BP cj-cliau 

MCP SSSSSS• C4BP i-cliaui •SSS 

Figure 1.2: A schematic representation of several members of the RCA family. The 
pale green circles represent CCP module domains, while the dark green ovals rep-
resent non-CCP domains, mostly transmembrane or intracellular domains. Derived 
from [10] 

The predominant structural motif for these proteins is the complement control protein 

(CCP) module. This protein domain is the main domain type (and in the case of 

factor H, the only domain type) within the RCA proteins. While the different proteins 

in this family regulate different points in the complement system, the extensive use of 

CCP modules in their makeup results in them all having related structure and function 

[11][12]. It is important to note that, while all RCA proteins contain CCP modules, 

not all CCP modules belong to RCA proteins. 

1.1.4 Complement Control Protein (CCP) Modules 

CCP modules consist of approximately 50-70 amino acids folded into a domain where 

the C and N-termini are at opposite ends of the molecule [12] [13]. CCP modules are 

joined together by a series of linker sequences to form structures that resemble beads 

on a string [12] [14]. There are generally two disulphide bridges holding the module to-

gether, made up of conserved cysteine residues joined in a 1-3, 2-4 formation [13]. The 

sequence of a single CCP module is generally quoted as starting from the first cysteine 

and ending at the last. The linker, measured between the last cysteine of the current 

module and the first cysteine of the subsequence module, can vary in length between 

three and eight residues. Also conserved is a tryptophan residue which is found in al-

most all CCP modules. This is found between the third and the last cysteine residue. 

There is also a hydrophobic core where many residues are often conserved or conserva-

tively replaced with other hydrophobic residues. It is here that the hydrophobic ring 
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of the tryptophan is usually found [15] [12] [13]. 

As well as some sequence similarity, there is also much structural similarity between 

CCP modules. The CCP module is elongated, with the approximate dimensions being 

40 A by 15 A by 15 A [121116].  This barrel shape is maintained by up to eight anti-

parallel 0-strands aligned along the long axis of the domain, forming a /3 barrel-like 

structure. While eight strands is the maximum number of strands used to make a CCP 

module (labeled 1-8 from N- to C- terminus [17]), six is the usual number found, with 

strands 1 and 3 often absent. Where the full complement of eight /3-strands occur in 

a CCP module, two small /3-sheets are found at the N- and C-termini, made up of 

strands 1 and 3 (N-terminus) and 5 and 8 (C-terminus). The other four strands make 

up a twisted 0-sheet that covers one side of the molecule and results in the hydrophobic 

core. Within this core lies the two disulphide bridges and other alkyl and aromatic 

residues. Between /3-strands 2 and 3 lies a hypervariable loop. This area shows low 

sequence similarity between CCP modules, and is also of variable length. 

Although CCP modules all share a great deal of structural similarity they vary greatly 

in their functions [6] [12]. This diverse functionality is presumably the result of differ-

ences in their primary sequences. Studying the structures of different CCP modules 

can help in understanding the causes of their different functionality and also help with 

the design of treatments of diseases where the complement system plays a role. The 

structures of many CCP modules from different members of the RCA family have been 

determined [13]. 

The remaining CCP module structures have been modelled based on their primary 

sequence and their homology to experimentally determined structures [18][13]. The 

sequences of 243 CCP modules from 48 proteins were classified using a clustering pro-

cedure. This involved sequence alignment to organize the sequences into 9 clusters 

labeled A-J. The structures of experimentally determined modules were then used as 

templates for generating models, the clustering procedure ensuring that the most ap-

propriate set of templates would be used in each case. 
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After the first run of the modeling procedure had been completed the structures of 

DAF CCP modules 1-4 became available [19]. This allowed for comparison between 

the DAF models generated by the procedure and the experimentally determined struc-

tures. The C RMSDs between the models and the experimental structures were 1.7, 

2.0, 1.2 and 1.9 A respectively for DAF modules 1-4. This indicates a high level of 

structural consistency and therefore supports the modeling strategy employed [18]. 

However, 33 CCP module sequences could not be assigned to a cluster (fH- 13 is one 

such CCP module) and therefore had no experimentally determined template. Also, for 

clusters D, E and I no experimentally determined structures currently exist, accounting 

for a further 50 structures that can not be modeled by this method. In total, 83 of 

the 243 CCP modules examined could not be modeled for lack of a suitable template. 

Increasing the number of experimentally determined structures increases the number 

of available templates for modeling. This allows more CCP modules to be modeled 

and can improve the accuracy of the homology models. 

1.1.5 Known RCA Structures 

Some of the experimentally determined CCP modules are detailed below. For many 

RCA proteins, the molecules themselves are too large or flexible to have the whole of 

their structures determined by X-ray crystallography or NMR. Instead recombinant 

proteins are prepared of between one and four sequential CCP modules from an RCA 

protein. These samples are then rigid or small enough to have their structures deter-

mined by X-ray crystallography or NMR techniques. This is known as the modular 

approach and a list of some of the CCP module structures solved by this method to 

date are detailed below [14][20]. 

The first CCP module to have it's structure solved was module 16 of factor H. This 

was done using proton homonuclear NMR spectroscopy [21]. The first structure of a 

CCP module pair was also part of factor H, that of modules 15-16 [22]. Other sections 

of factor H with published structures are module 5 [23], modules 19-20 [24] and module 
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7 [25]. 

DAF, a membrane bound complement regulator, has had all of it's CCP modules 

structurally determined. The first of these was the module pair 3-4 and this was 

by X-ray crystallography [26]. The structures of modules 2-3 were then solved by 

NMR spectroscopy [27]. Following this, the entire CCP module chain (domains 1-4) 

was structurally determined using X-ray crystalogrpahy [19]. There were, however, 

differences between the X-ray structures and those determined by NMR. The X-ray 

structure of all four modules suggested a rigid, rod-like shape for the CCP modules. 

However, the NMR structure of modules 2-3 implied a flexible junction between the 

two modules. The differences could have resulted from the difference in experimen-

tal conditions. By their nature, X-ray structures require the sample to be in a solid, 

crystalline state. Elements of the sample molecule that are otherwise flexible in solu-

tion could form rigid conformations that are stabilized by crystal packing forces. In 

contrast, NMR experiments for structural determination are carried out on samples in 

solution. This could explain why flexible regions identified by NMR are not present in 

the X-ray structures. 

MCP, another membrane bound complement regulator, has had the structure of it's 

first two N-terminal CCP modules determined by X-ray crystallography [28]. Here a 

rigid, bend structure is suggested for the two modules. 

CR1 modules 15, 16 and 17 have been structurally determined by NMR spectroscopy 

using double module constructs of 15-16 and 16-17 [16][29]. These modules represent 

one of the two copies of site 2 of CR1 (site 1 is found between modules 1-3, while the 

two copies of site 2 are found at modules 8-10 and at modules 15-17). A triple mod-

ule construct of 15-17 was created but the side-chain assignment experiments were of 

poor quality. Once structures existed for the two double module constructs, molecular 

modeling was used to produce a model structure for all three modules. The structure 

of 15-17 was found to have an extended head-to-tail conformation with flexability be-

tween modules 16-17. Also, a large positively charged patch on one 'face' of module 15 

was found. Mutagenesis studies revealled that this patch is required for the binding of 
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C4b and C3b to CR1. 

CR2 has also had the structure of its first two CCP modules determined by X-ray 

crystalography [30]. The module pair was crystallized with its ligand, CM, and the 

crystal strucutre shows how the two interact. In this case a hydrophobic interaction 

between the modules results in their folding up into a V-shape. This results in only 

module 1 being in contact with the ligand. 

The structure of the first two modules of the a-chain of C413P was determined by 

NMR spectroscopy. This revealed an elongated structure for the two modules. These 

two modules were known to be a binding site for the M4 protein of Streptococus pyo-

genes. Thus, chemical shift mapping was used to map the binding site of the M4 

protein on these two modules. This revealed a reorientation of the two modules upon 

binding [31]. 

1.2 Factor H 

The RCA protein factor H (fH) is an important protein for host surfaces that do not 

have their own surface bound complement regulators. The protein was discovered in 

1965 and initially called /3iFH globulin [32]. Synthesized primarily in the liver but also 

locally during inflammation by, for example, fibroblasts, it is secreted into the blood 

in high concentrations (500Mg/ml) [33]. The molecule itself is a 155 kDa glycoprotein 

composed of 20 district CCP modular domains which, if stretched out, would give the 

protein a length of 80 nm. Once in the blood fH can bind to and protect host surfaces 

via polyanions found on their surface [34][35]. 

Factor H is is the largest member of the factor H protein family. Other members of the 

family include factor H-like Protein 1 (ML-1), also known as reconectin. Produced by 

alternative splicing of the RNA transcript of fH, the 49 kDa protein fHL-1 consists of 

the first seven (N-terminal) CCP domains of fH with four addition amino-acids at the 

C-terminal end which are unique to fHL- 1. There is also a groups of proteins known 

as factor H-related proteins (FHRs) which are also members of the factor H protein 
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family. These are composed of between 4 and 5 CCP modules from fH and are not 

produced by alternative splicing but are coded for by separate genes [34]. 

1.2.1 The Functions of Factor H 

Factor H regulates the alternative pathway by preventing the build up of the pathways 

C3 and C5 convertases on host surfaces. To do this it needs to recognise and bind 

to host surfaces as opposed to foreign cell membranes. It does this by binding to 

polyanions such as sialoglycoproteins and glycosaminoglycans (GAGs). Human cell 

surfaces possess a high surface density of sialic acids. Endothial cells have been shown 

to have heparin-like GAGs on their surfaces too, such as heparan sulphate. In contrast, 

most bacteria lack molecules of these types on their surfaces, allowing factor H to 

distinguish host from non-host [35][36][37]. Once bound to host cells factor H can 

inhibit the proteolytic cascade in two ways. These functions of fH are known as its 

decay accelerating activity and it's cofactor activity. 

Decay Accelerating Activity 

Factor H shares its decay accelerating activity with other complement regulators, most 

notibly DAF. However, factor H is the main fluid-phase decay accelerating factor. The 

C3 and C5 convertases of the alternative pathway (C3bBb and C3bBb3b respectively) 

represent important points in the proteolytic cascade, producing increased C3b and 

C5b concentrations on the activated surface and leading to opsonisation of the surface 

and formation of the MAC. Factor H regulates the alternative pathway at these points 

by acceleratiing the decay of both of these convertases. The DAA of factor H is located 

within the first four N-terminal CCP domains of the protein (as discussed in section 

1.2.2). 

Factor B's cleavage product, factor Bb, is present in both of these convertases, and it 

is this that factor H causes to be displaced from C3b to decay the convertases. There 

is also competitive inhibition of factor H with either factor B (during formation of the 



CHAPTER 1. INTRODUCTION 	 12 

convertase) for C3b, with factor H binding to C3b with a 70-fold higher affinity then 

factor B [36]. With factor H bound to C3b in place of factor B (or its breakdown 

product, factor Bb), neither the C3 convertase nor the C5 convertase can form. 

Cofactor Activity 

While the decay accelerating activity can halt the formation of the convertases on host 

surfaces or hasten their decay, the cofactor activity facilitates the breakdown of C3b. 

With its opsonising properties combined with its high serum concentration, it is of ut-

most importance that C3b is not allowed to build up on host cells. An enzyme called 

factor I can breakdown C3b into inactive constituents, C3i and C3f, but it requires 

cofactors to become active. This reaction is irreversible, leading to the inactivation of 

C3b. Along with MCP, factor H acts as such a cofactor for factor I [381. Thus factor 

H protects host cell membranes from opsonisation by C3b. 

Furthermore, factor H also acts as a cofactor for factor I in the blood plasma. Thus 

factor H contributes to the continued turnover of C3b in the blood. 

1.2.2 Structural and Binding Characteristics of Factor H 

As stated above, factor H consists of 20 CCP domains joined by linkers of various 

lengths. The protein is believed to be heavily glycosylated. Single N-glycosylation 

sites are located on domains 4, 9, 12, 14, 17 and 18, and two N glycosylation sites on 

module 15. However, the potential glycosylation site on module 12 is not believed to 

be glycosylated [3] [39]. 

Although when stretched out as an extended chain the protein would have an overall 

length of 80 nm, analysis by synchrotron X-ray scattering and neutron scattering 

(with additional molecular modelling) suggested a shorter length of 38 nm for the 

glycoprotein in solution. This required the protein to be folded back on itself, perhaps 

allowing the various binding sites to be in close proximity [39]. 

The decay accelerating activity of factor H is located within the first four N-terminal 
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CCP domains of the protein [40]. Co-factor activity has also been mapped to these 

first four domains [41][42]. However, the ability to discriminate between host and non-

host cell surfaces requires domains 11-20 [36]. Also, removal of domains 11-15 or 16-20 

results in a loss of 97% of the DAA expressed by domains 1-4 [36]. Although currently 

no structure exists for modules 1-4, work is being done within our group to rectify this. 

There are three recognized C3/C3b binding regions of factor H, each binding to a 

distinct region of the C3b protein. The DAA region (domains 1-4) bind to native C3b 

Thus this is the site of competitive inhibition between factor H and factor B for 

C3b, confirming this region's status as the DAA region of the glycoprotein. The second 

region for C3 binding exists between domains 8-15, and this binds to the C3c fragment 

of C3 [43]. The third region is on domains 19-20, which binds to the CM fragment [43]. 

There also are two confirmed polyanion binding sites identified for factor H. The first 

binding site is in domains 19-20 and this region has been well characterized. The struc- 

ture of the 19-20 module pair has been solved by NMR [24] and X-ray crystalography 

Also, GMSA and chemical shift mapping were carried out on the module pair 

in solution with a fully sulphated heparin-derived tetrasaccharide [24]. The chemical 

shift mapping revealed a region on module 20 that was particularly perturbed by the 

addition of the heparin tetrasaccharide. This region contained, amongst other residues, 

a high density of lysine and arginine residues. Sialic acid is also known to bind fH in 

the region of domains 16-20 [45]. 

The second polyanion binding site was identified on domain 7 [46] [47]. This domain is 

also implicated in age-related macular degeneration [48] (see Section 1.2.3), suggesting 

that domain 7 has an important functional role in factor H. 

There is some evidence for a third heparin binding site in factor H, although there 

is debate over the location of the site. Before the two heparin binding sites on domains 

7 & 20 were identified there was indirect evidence for a site of heparin interation on 

domain 13. A photoaffinity-tagged heparin probe labeled the region between domains 

12 and 15. Then, CNBr cleavage at the amino acid residue Met787 (located between 
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domains 13 and 14) split the photoaffinity tagged region [371• Also, sequence analysis 

based on known heparin binding sites pointed to domain 13. Heparin binding sites 

identified in other proteins suggest a consensus sequence consisting of alternate argi-

nine and lysine residues as a binding sequence for heparin. Factor H contains only 

one such sequence of basic residues, and that is located in the linker region between 

domains 12 and 13 at residues 731-736 (the sequence is KLKKCK). Domain 13 itself 

has more basic residues in its sequence then any other CCP domain (15 out of 57 

residues). This results in two particular runs of basic residues at 746-750 (HLKAKK) 

and at 760-766 (RYRCRGK) [37] [35]. Domain 13 itself has a high theoretical p1 value 

of 8.8. 

However, more recently a study suggested this third heparin binding site is actually 

located on domain 9[49]. An extensive series of fragments of factor H was generated in 

order to more accurately locate this third site of heparin interaction. This library of fIT 

fragments were then passed individually through a heparin-agarose column and their 

elution profiles were recorded. Fragments of the domains 8-9; 9-11; 8-11; 8-13; 8-14; 

and 8-15 bound to the column. After ruling out the possible involvement of domain 8 

in the binding using constructs of domains 1-7 and 1-8, domain 9 was identified as the 

prime suspect for heparin binding. Fragments containing the domains 11-14 and 12-15 

did not bind to the heparin-agarose column, suggesting the domain 13 could not be a 

heparin binding site [49]. However, it is worth noting that module 9 has a theoretical 

p1 value of c4.3 which is low for a heparin binding module. Also, the linker between 

domains 13 and 14 is unusually long, allowing for a high degree of flexibility that could 

lead to binding between the two modules that could interfere with the putative heparin 

binding site. This region of factor H between 12-14 is currently being investigated by 

our group. 

1.2.3 Diseases Associated With Factor H 

There are two main diseases associated with factor H; atypical hemolytic uremic syn- 

drome (aHUS) and age related macular degeneration (AMD). Also, some pathogenic 

organisms recruit factor H onto their membrane surfaces to evade destruction by the 
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alternative pathway of complement. 

Atypical Hemolytic Uremic Syndrome 

Hemolytic uremic syndrome is a disease of the kidneys which ultimately leads to acute 

renal failure [50]. It is caused by platelet thrombi forming in the micro circulation of the 

kidney causing vessel wall thickening and detachment of the endothelial cells from the 

basement membrane. Cases of HUS can be placed in two categories; a diarrhea associ-

ated form (D+HUS) and a non-diarrhea associated form (D—HUS). D+HUS is caused 

by Shiga-toxin producing bacteria such as enterohemorrhagic strains of Escherichia 

coli. However, D—HUS, also known as atypical HUS (aHUS), can occur sporadically 

or is familial [50]. 

Genetic studies with some aHUS patients demonstrated the involvement of point mu-

tations in the factor H gene in aBUS [51] [521. However, only one gene allele was 

affected. As factor H is codominantly expressed this resulted in either significantly 

reduced blood plasma levels of factor H or with expression of variant forms of factor 

H alongside expression of normal factor H [53]. 

Point mutations in factor H that cause aHUS predominantly result in single amino-acid 

substitutions, although a few result in stop codons and the truncation of the expressed 

molecule [54]. The mutations (including 2 of the known stop codons) are mainly found 

around domain 20 [55] [54]. This domain is functionally important as it is part of a 

binding site for both polyanions and C3b [24]. Chemical shift mapping of the heparin 

binding region on the module pair 19-20 revealed that most of the aHUS mutations on 

module 20 coincided with this binding site [24] [43]. Other domains with point muta-

tions are modules 1, 8 (a stop codon), 15 (three mutations known, including one stop 

codon), 16 (again, three mutaions known, 17 (a single stop codon) and 19 [56][54]. 

Mutants that result in aHUS have also been found in the RCA protein MCP and 

factor I. 
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Age-Related Macular Degeneration (AMD) 

Age-related macular degeneration is the leading cause of blindness in the elderly and a 

major public health issue in the developed world [57]. In AMD extracellular deposits 

called drusen (consisting of proteins, lipids and other cellular debris) concentrate in 

and around the macular between the retina and the epithelium [58] [48]. As the disease 

progresses this causes photoreceptor dysfunction in the macular [48] [59]. At present, 

no therapy for this disease has been shown to be broadly effective [59]. 

AMD is caused by a variety of enviromentaJ and genetic risk factors [59]. Enviro-

mental factors include age and smoking. A genome-wide screen of 96 cases and 50 

controls looking for polymorphisms associate with AMD descovered a common variant 

of the factor H gene to be strongly associated with factor H [48]. The risk allele in-

volved a tyrosine to histidine change at amino acid 402 in domain 7 [48] [60] [61]. 

As mentioned above, module 7 is a known heparin binding domain. It is hypotha-

sised that the Y402H mutation causes a weakening of this binding interaction, leading 

to over activation of the compliment system in the eye, resulting in AMD [48]. Work 

in our group is being carried out to characterize the structures of both the disease-

associated and the non-disease associated forms of domain 7 on its own [25] and in the 

context of 6-8 constructs. 

1.3 Project Aims 

Factor H is an important regulator of the alternative pathway, with many factor H 

mutations associated with serious diseases. It is the ultimate aim of our group to solve 

the complete structure of factor H for the benefit of both our understanding of the 

complement system and its associated diseases. To achieve this, constructs of single 

and multiple modules from factor H are being created and then their structures are 

being solved using NMR techniques. Therefore, as part of the larger group project, 

the first aim of this individual project was to purify a construct of the domain 13. 
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Before the start of this project a strain of Pichia pastoris was transformed to pro-

duce a construct of fH- 13-14. Thus this was to be examined to determine a suitable 

purification method. Meanwhile, Claire Egan was working to produce and purify a 

construct containing just fH- 13. Once an NMR sample containing module 13 became 

available (either fH- 13-14 or just fH- 13) a suite of NMR spectra was to be acquired 

on the sample to enable the protein to be assigned. 

In order to familiarize myself with biomolecular NMR techniques, short peptides de-

rived from the KefC potassium efflux system were to be fully assigned first. After 

assignment, the data on these short polypeptides was to be used to investigate for 

evidence of secondary structural elements. 

As the shortest CCP module (50 residues from first cysteine to last cysteine), the 

structure of fH- 13 would be of interest to those who study the structure of CCP 

modules, as it may demonstrate a minimum degree of secondary structural elements 

required to give a CCP module its structure. It may also help answer whether there is 

a specific reason for the module being so small, maybe to do with the overall structure 

of fH. Therefore, assignment of the fH- 13 construct and its structural determination 

was the main aim of this project. 

The protein also required assignment in order to answer whether fH- 13 was indeed 

a third heparin binding site for fH. There is evidence both for and against fH- 13 being 

a third heparin binding site, and it is important for all future studies of Factor H that 

this matter is resolved. Thus, the aim was to use tetrasaccharides derived from heparin 

to titrate the protein with the sugar. By acquiring appropriate NMR spectra at each 

titration point the porturbation of chemical shifts for each residue could be determined 

as a measure of the binding between the two molecules. 
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Background 

2.1 Backgroud to NMR 

2.1.1 Nuclear spin 

Some atomic nuclei possess the property of spin characterized by the spin quantum 

number, I. The values of I start at zero and then are multiples of 1 , and a nucleus 

with an I values greater then zero possesses a magnetic moment, A. If this nucleus is 

placed in an external magnetic field then it will precess due to the interaction between 

the external magnetic field and the nculeus's magnetic moment. The frequency of this 

precession is known as the Larmor frequency, or the magnetic resonance frequency. It 

is this resonance frequency that is measured in NMR spectroscopy. 

The spinning nucleus will align itself with respect to the external field in one of the 

available quantum states each labeled with a magnetic quantum number, m. The num-

ber of available quantum states can be calculated from the magnetic quantum number. 

The magnetic quantum number, m, has 21 + 1 values in integer steps from +1 to —I: 

therefore m = 1,1-1,1-2... —1+ 1,—I+2,—I. A nucleus with 1= 1  can have m 

values of + 1  and - , while a nucleus with a spin quantum number of I = 1 can have 

m values of 1, 0 and -1. Nuclei with spin quantum numbers 1  produce the simplest 

NMR spectra as these nuclei only have two possible spin states. This group includes 

'H, which is found in 99% natural abundence and less abundant nuclei such as 13 C, ' 5 N 

and 3 'P. Therefore NMR is well suited for investigating all organic molecules, including 

biomolecules, because predominant nuclei present are hydrogen, carbon and nitrogen. 

18 
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2.1.2 Magentic Resonance 

When a sample of nuclei with a non-zero spin quantum number is placed in a magnetic 

field the spins will precess at their resonance frequencies. Three factors determine the 

resonance frequency for a particular nucleus: 

Different elements, and different isotopes of each element, that have the prop-

erty of spin will resonate at their own frequencies (all other factors being equal). The 

constant that relates an isotope's resonance frequency directly to the magnetic field 

strength is expressed as the gyromagnetic ratio. 

The precessional frequency of a nucleus is also directly proportional to the ex-

ternal magnetic field. Doubling the magnetic field strength will double the resonance 

frequency measured. 

The local magnetic environment at the nucleus is usually slightly different to the 

external magnetic field. Surrounding electrons and neighbouring atoms contribute to 

the magnetic environment of the nucleus in question, producing the shielding constant. 

The relationship between these factors is expressed in the Larmor equation: 

v==(1—ci) 	 (2.1) 
27r 	27r 

Where v is the resonance frequency of the nucleus; -y  is the gyromagnetic ratio for the 

nucleus; B is the magnetic environment of the nucleus; B0 is the external magnetic 

field and a is the shielding constant. 

The two possible spin-states for a spin 1  nucleus are orientated either with the ex-2 

ternal magnetic field or against it. The former, known as the of-state, has a lower 

energy state compared to the latter, known as the 3-state. This energy difference 

is small. Therefore the population of precessing cr-state nuclei will be only slightly 

larger then the number of /3-state nuclei in accordance with the Boltzman distribution 

equation: 

No 
Na 

= eW 	 (2.2) 
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Where Na  is the number of nuclei in the cr-state, No is the numebr of nuclei in the 

0-state, A - E is the energy difference between the two states, and K is the Boltzman 

constant. 

The nuclei in the sample can be induced to change their spin quantum state by irradiat-

ing the sample with electromagnetic radiation with a frequency equal to the resonance 

frequency of the nuclei. This induced change in the sample leads to a non-equilibrium 

state, and as the sample returns to its equilibrium state energy is released. Some of this 

energy will take the form of electromagnetic radiation. It is the frequency of this radi-

ation which is recorded in NMR spectroscopy as it is the same as the Larmor frequency. 

Because the energy difference between the c- and 0-states is small, the difference 

in the distribution of the two states is also small. NMR spectroscopy is therefore 

relatively insensitive. One way to increase the sensitivity of NMR spectroscopy is to 

increase the external magnetic field strength. This has the effect of increasing the 

energy difference between the cr-state and the /3-state, thus increasing the difference in 

distribution between the two states. As the energy difference between the two states 

is related to the resonance frequency of the precessing nucleus, increasing the external 

field strength also increases the resonance frequency as described below. 

NMR experiments give information on the specific magnetic environment of a resonat-

ing nucleus, with generic chemical groups resonating at characteristic NMR frequencies. 

Spins can also interact with each other either directly or indirectly in a variety of ways 

which can be detected, some of which will be discussed later. 

2.1.3 Fourier Transform NMR 

To measure the resonance frequency of the nuclei in a sample, the sample is placed into 

an external magnetic field (B0 ) which is generally described as being applied along the 

z-axis. The nuclei will start precessing around the z-axis. As slightly more protons 

will precess in the cr-state state a very small magnetic moment is orientated along the 

z-axis in the direction of B0  (Fig 2.1 [Al). This is known as the bulk magnetization 
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vector, M. The spins themselves are randomly distributed along the z-axis so that the 

x-y components of the spins interfere destructively. There is therefore no net magne-

tization in the x-y plane at this point. 

: 	

[C] 
	

B. :' 

Rf 
Puke 

Figure 2.1: Diagram of a simple NMR experiment. The nucleus is placed in a 
magnetic field (130) and begins to precess along the z-axis [A]. An electromagnetic 
pulse moves the magnetization to the y-axis [B]. Once the pulse has ended the 
magnetization relaxes back to the z-axis again in a sinusoidal decay in the xy-plane 
[C]. This decay induces in the receiver coil an oscillating current which is represented 
graphically as a free induction decay (FID) [D]. The FID is converted into an NMR 
spectrum by Fourier transformation [E]. 

A pulse of electromagnetic radiation (rf pulse) is applied to the sample at an angle 

perpendicular to B0, in this instance along the y-axis. The magnetic component of 

this pulse, B1, will causes the bulk magnetization, M. to precess around the y-axis. 

The strength of the rf pulse is in excess of the external magnetic field and so B0 can be 

neglected during this pulse. The rf pulse is switched off once enough time has elapsed 

for the magnetic moment to precess through the required angle. In NMR experiments, 

the bulk magnetization is usually flipped through either 900  (as in Fig 2.1 [B]) or 180° . 

A 180° flip will invert the populations of the two spin states, so now the excess of spins 

is in the 3-state. A 900  flip will equalize the net magnetization with respect to the 

z-axis, while the bulk magnetization is now along the y-axis. 

To represent these motions the vector model is traditionally used. Although the vec- 

tor model is superceeded by product operator formalism when describing the pulse 
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sequences used in NMR experiments, the vector model can adequately describe the 

simple NMR experiment used here. In the vector model a rotating frame of reference 

is used to visualize the movement of the bulk magnetization. Once M has been moved 

onto the y-axis it will begin to precess around the z-axis at the Larmor frequency for 

the nuclei. To simplify the visualization of the model, the viewpoint for the model is 

described as rotating around the z-axis at the Larmor frequency as well, in the same 

direction as the precessing M. This is the rotating frame. Thus in this example, the 

bulk magnetization will appear static on the y-axis until the sample returns to equi-

librium. 

Once the rf pulse has ended, the external magnetic field again becomes the dominant 

field. Therefore the nuclei find themselves in a high energy state and start returning 

to their equilibrium state along the z-axis. To loose the potential energy of this high 

energy state the nuclei must be exposed to a fluctuating magnetic field, allowing the 

dissipation of energy. There are two processes of relaxation by which this can occur: 

spin-lattice relaxation (with time constant Ti) and spin-spin relaxation (with time 

constant T2). In spin-lattice relaxation the rotation of the molecule in solution causes 

the magnetic field of each spin to fluctuate with respect to its neighbour. Spin-lattice 

relaxation is characterized as fluctuations in the magnetic field along the x-y plane, 

causing the bulk magnetization to return to the z-axis. In spin-spin relaxation, the 

fluctuation of the magnetic fields of nearby spins causes a fluctuation in the z-axis 

magnetization experienced by individual spins. This in turn leads to a loss of phase 

coherence of spins in the x-y plane until eventually the spins interfere destructively 

again. Thus spin-spin relaxation can be characterized as the loss of bulk magnetiza-

tion in the x-y plane. 

The trajectory of the relaxation of the bulk magnetization is shown in Fig 2.1 [C]. 

In the xy-plane of the sample is a receiver coil. The rotation of the bulk magnetiza-

tion around this plane will induce in its coil a very small electric current that is then 

amplified. The sinusoidal decay of this rotation in the xy-plane means the oscillating 

current will take the form of a free induction decay (Fig 2.1 [D]). This primary NMR 

signal is converted into an NMR spectrum by Fourier transformation (Fig 2.1 [E]). 
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2.1.4 Chemical Shift 

A bare proton in a 2.35 Tesla magnetic field will resonate at approximately 100 MHz. 

However, the magnetic field experienced by the nucleus (B) of an isolated atom will be 

slightly lower then external magnetic field (B0), and this affects the resonance frequency 

of the nucleus. This is due to the shielding effect of the hydrogen atom's electron. B0 

induces the electron to circulate in its orbital. In turn this motion of a charged body 

produces a magnetic field that is opposed to that of the external magnetic field. This 

opposing field acts to lower the strength of the magnetic field experienced by the nu-

cleus (B) compared to the external field (B0). This effect is known as nuclear shielding 

and the difference in B from B0 can be accounted for using the shielding constant, a. 

In molecules the variation in electron density, as well as the motion of each electron 

induced by the external field can together produce localized magnetic fields that either 

oppose or augment the external field. Thus the electronic structure in the immediate 

environment of a nucleus has a small but measurable effect on the magnetic environ-

ment (and therefore the resonance frequency) of a nucleus. Each separate magnetic 

environment in a molecule produces a separate resonance frequency, and this variation 

is known as chemical shift. 

The shielding constant is an impractical measurement of chemical shift, therefore the 

term 8 is used. This is a dimensionless parameter which is essentially the difference of 

v of the nucleus from the standard reference frequency, Vref. For protons the standard 

is usually the resonance frequency of the protons in tetramethyl silarie (TMS). To cal-

culate 8 the frequency difference, v - Vref, is divided by Vref to make it dimensionless 

but also frequency independent (thus allowing direct comparisons of chemical shifts 

measured at different signal strengths). The chemical shift range for protons in a 100 

MHz spectrometer will be in the order of 1000 Hz. Therefore 8 is scaled up by 106  and 

expressed in parts per million or ppm. ppm can easily be converted into Hertz: 

8VVQ106 	 (2.3) 
V0 

Where, v is the resonance frequency of the nucleus of interest; v0 is the resonance 

frequency of the standard nucleus; and 5 is the chemical shift expressed in parts per 
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million. 

Each proton will produce a peak at its chemical shift. The signal from the stan-

dard will produce a peak at 0 ppm, while all the other resonating protons will give 

rise to peaks relative to this. The area under a peak is directly proportional to the 

number of resonating protons. This can be seen in a typical 1D proton spectrum of 

a protein, as shown in Figure 2.2. While 1D stands for one dimensional, 1D spectra 

actually contain two dimensions: resonance and intensity. In the 1D proton spectrum 

of a protein there are four main regions. 

Aliphatic 

Sidechain Region 

Aromatic Region 
NH Region * 	

Methyl Region 

IT,  Reuion 
I I 	ii 	

I' 

fl 	12 	11 	10 	9 	8 	7 	6 	9 	4 	3 	2 	1 	0 	-1 	-2 	ppm 

Figure 2.2: A 1D protein spectrum of ff1- 13 showing the five main regions of interest 
in protein 11) spectra. 

In large molecules such as proteins, there will be various contributions to the shielding 

of an individual nucleus. The electrons orbiting the nucleus themselves can circulate 

opposing B0 producing diamagnetic shifts, or complementing B0, producing paramag-

netic shifts. The greater the electron density of the atom, the greater the shift, and 

therefore these local contributions are very small for protons. Hydrogen bonds and un-

paired electrons produce strong deshielding effects. Charged or polar groups produce 

local electric fields, thus pH can effect the chemical shift of groups. Neighboring groups 
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can also produce diamagnetic or paramagnetic shifts when subjected to the motion of 

the molecule in solution, produced by the shielding anisotropy of the group. Along 

with through-bond effects, this is particularly important in folded proteins as a cause 

of deviation of chemical shifts from random coil values. 

2.2 Multidimensional NMR Experiments for Proteins 

In large molecules such as proteins, where there are many magnetically distinct proton 

nuclei with similar chemical shifts, a simple 1D NMR spectrum can become crowded. 

Multidimensional NMR experiments are used to resolve the individual nuclei as well 

as to investigate the relationships between them. The first to be discussed here are 

2D NMR experiments. The pulse sequences needed for 1D spectra are is usually com-

posed of 5 generic parts; relaxation, preparation, evolution, mixing and acquisition. 

This same sequence is repeated with different evolution times over the course of mul-

tidimensional experiment. 

During relaxation the nuclei in the sample are either at (as in the very start of the 

experiment), or returning to (as in when the sequence is being repeated with a different 

evolution time), their equilibrium state. The preparation phase generally involves a 

90° pulse so that the bulk magnetization is in the xy-plane. Here it is left to precess 

freely during the evolution period. The length of time, t1, over which this free preces-

sion is allowed to occur determines how much magnetization is used during the mixing 

period. Varying t1 will also label the chemical shift of nuclei 

Then comes the mixing period, where phase coherences are transfered between spins. 

Depending on the experiment, the transfer can be between protons (as in homonuclear 

experiemnts) or from carbon or nitrogen to protons (as in heteronuclear experiments). 

For example, in a 2D COSY experiment the phase coherences are transfered between 

nuclei through scalar interactions. This interaction is mediated through covalent bonds. 

Thus a 2D COSY spectrum can be used to identify nuclei that are J-coupled, as will 

be explained below in more detail. 

After the mixing period comes the acquisition phase, where the signal is recorded 
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in the spectrometer's receiver coils. This also has a variable time parameter, t2. The 

value of t1 is varied during the progression of the experiment. Once all the FIDs have 

been collected a Fourier transformation of data along the t1 and t2 dimensions, results 

in a 2D spectrum. 

There are three main 2D homonuclear spectra: COSY; TOCSY and NOESY. These 

spectra have two 'H resonance axis. They each have a 'diagonal': Across the spec-

trum, from the bottom left corner to the top right corner, will lie a peak for each 

peak to be found in a 1D spectrum at its correct resonance in both resonance dimen-

sions. Homonuclear spectra have crosspeaks on both sides of the diagonal, producing 

symmetry-related peaks. Crosspeaks connect two resonances and represent the inter-

actions between the two nuclei. 

A 2D heteronuclear spectrum will not have a diagonal for obvious reasons. However, 

by adding additional evolution and mixing periods into the pulse sequence, 3D and 

4D NMR experiments can be made. These experiments are very useful for resolving 

resonances in large proteins, and for generating additional distance restraints for struc-

tural determination, as will be discussed later. Meanwhile, the three main 2D NMR 

experiments will be discussed in more detail, starting with the COSY experiment. 

2.2.1 Scalar Coupling and Correlated Spectroscopy 

Nuclei that are connected through covalent bonds can interact through the shared 

electrons of their bonds in a phenomenon known as scalar coupling (or spin-spin cou-

pling). Take, for example, two covalently bonded spin-i nuclei called D and E. In an 

individual molecule the magnetic state of D (a- or 0-state) will affect, in a small way, 

the magnetic field experienced by E, and vica versa. 

Thus, with D precessing in the a-state (D o ), nucleus E experiences extra shielding, 

resulting in a slightly lower resonance frequency for E. With D precessing in the 3-

state the opposite is true. As the populations of the a- and /3-states are approximately 

equal across the whole sample this results in the characteristic splitting of the reso- 



CHAPTER 2. BACKGROUND 	 27 

nance peak for E. The signal peak for E splits into two peaks each half the intensity of 

what the single peak would have been. The difference in the two peaks, referred to as 

the J-coupling, is measured in Hertz and (as it is a scalar value) is field independent. 

Instead the magnitude of the J-coupling is dependent on the number of bonds that 

seperate D from E, and also the dihedral and torsion angles of those bonds. D will 

also exhibit the same phenomenon as a result of E, and the splitting that occurs will 

have the same value of J. 

In a COSY spectrum the crosspeaks represent interactions through covalent bonds 

between scalar coupled nuclei. The couplings decay rapidly with increased separation 

between coupled nuclei. The result of this decay is that usually only 2- and 3-bond 

coupling constants are large enough to be significant. The COSY spectrum therefore 

contain important local structural information. Bonded nuclei in biomolecules form 

isolated spin systems, for example peptide monomers or saccharide monomers. For 

example, the backbone NH proton in an amino-acid residue will show a crosspeak to 

a-protons in the same residue, but not to any 3-protons as they are not within 3 bonds 

of the NH-protons. These networks of scalar coupled spins can be mapped using the 

COSY spectrum allowing the assignment of resonance frequencies to individual nuclei. 

In a TOCSY spectrum, like a COSY spectrum, the crosspeaks represent interactions 

through covalent bonds between the nuclei, again mediated by scalar coupling. Unlike 

in a COSY spectrum, the two interacting nuclei do not have to be within 3 covalent 

bonds of each other to produce a crosspeak. This is because in the mixing phase of the 

experiment there is a special spin lock pulse. This pulse forces the bulk magnetization 

to precess around the axis from which the rf pulse was applied. Thus all the precess-

ing nuclei have equal Larmor frequencies. This allows the transfer of magnetization 

between all the precessing nuclei in the same spin system. In a TOCSY spectrum the 

magnetization can be transfered between nuclei up to six covalent bonds away from 

each other, depending on the efficiency of the transfer and the mixing time. This 

means that, for example, from the resonance frequency of a backbone NH proton it is 

possible to see most of the side-chain proton resonances, if not all, for that residue as 

crosspeaks to the NH resonance. 
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2.2.2 The Nuclear Overhauser Effect and NOE Correlated Spectroscopy: 

While the phenomenon of scalar coupling can be used to investigate nuclei that are 

covalently bonded together, the nuclear Overhauser effect (NOE) can be used to inves-

tigate nuclei which are close in space. The distance information obtained from NOE 

experiments is the main source of structural information used in NMR structural de-

termination. The NOE is the result of dipolar interactions between nuclei and the 

relaxation that results from these interactions. Unlike scalar coupling, the dipolar cou-

pling does not produce signal splitting in isotropic media, but instead affects the peak 

intensity of the interacting nuclei. The NOE is affected by molecular tumbling but can 

be observed in isotropic samples. 

To explain the NOE effect, consider a 1D NOESY experiment on two non-equivalent 

nuclei A and B which are close in space but not necessarily connected through bonds. 

Nuclei A and B both produce their own magnetic fields that (because the two nuclei 

are close in space) are capable of influencing the magnetic enviroment of the other 

nucleus. Because both A and B are part of a rotating molecule, the magnetic field 

produced by A is experienced as a fluctuating magnetic field by B and vice versa, in 

the same manner as occurs in spin-lattice relaxation. 

This interaction allows the transfer of magnetization between spins in a process known 

as cross-relaxation. During the steady-state 1D NOESY experiment, a weak radiofre-

quency pulse is used to saturate nucleus A. The saturation of proton A will cause a 

non-equilibrium state to arise where the c- and 0-states of the proton are no longer 

in a Boltzman distribution. This is a high-energy state and so nucleus A relaxes to 

equilibrium As it does so it will, through cross-relaxation, affect the distribution of the 

a- and 3-spin states of B. The nucleus B signal can thus become weaker or stronger 

depending on the new distribution of these two states. Large molecules which tumble 

slowly tend to produce an increase in the /3-spin state of the population of nucleus. 

For small molecules, which tend to tumble fast, the opposite is true. 

1D NOESY experiments are of little practical use in NMR spectroscopy of large pro- 
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teins. There is the problem of signal overlap, which in a 1D NOE experiment would 

prevent the selective saturation of individual spin resonances. There is also the problem 

of spin-diffusion whereby magnetization is transfered throughout the molecule. While 

this phenomenon can be utilized for the examination of protein-ligand interactions, in 

a NOE experiment it would lead to the undesirable transfer of magnetization between 

remote nuclei. 

Thus 2D NOESY spectroscopy is employed, whereby a non-equilibrium state is created 

for all nuclei at the same time by the mixing pulse. During the following mixing period 

the magnetization is transfered between spins via the NOE. In the resulting spectra 

the crosspeaks therefore represent nuclei that are relatively close in space, with the 

intensity of the crosspeak related to the distance. The intensity of NOE decays rapidly 

as the distance between nuclei increases at the rate of r 6 . Peaks due to NOE will 

only be observed if nuclei A and B are within 5-6 A of each other. NOE crosspeaks 

can therefore be used as short-range distance restraints. 

During assignment, homonuclear COSY and TOCSY spectra can't be used to join 

individual spin systems together within the primary structure of a polypeptide. This 

is because even the closest protons in adjacent peptide residues are always more then 

3 bonds from each other, or are separated by a non-protonated carbon. Therefore 

homonuclear scalar coupling experiments can only be used to identify protons of the 

same spin system. With NOESY spectra it is possible to identify crosspeaks between 

residues that are adjacent in the primary sequence, and so assign each spin system 

to its place in the primary sequence. Crosspeaks will also be seen between proton 

resonances where the protons themselves are not close in the primary sequence but are 

close in the tertiary structure, and these NOE restraints are the basis for structural 

determination by NMR. 

2.3 Heteronuclear Spectra 

A suite of good quality homonuclear proton spectra are suficient to derive the striic 

tures of proteins up to about 8 kDa. For larger proteins many protons will have similar 
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chemical shifts leading to peak overlap, even in 2D spectra. This means that a high 

percentage of the protein's proton nuclei can't be unambiguously assigned chemical 

shifts. Isotopic labeling can be used to overcome problems of overlap or poor quality 

spectra. 

As mentioned above, in proteins, the hydrogen, carbon and nitrogen are the nuclei 

of principle importance. 'H, 15N and 13 C all have spin 1  and thus are suitable for 

protein NMR. However, 15N and ' 3C do not occur in high abundance in nature (0.13 

and 1.1% repectively). To overcome this, special 'labelled' protein can be engineered 

by expressing proteins in host organisms fed on media containing only these isotopes 

(the method for labelling is described in section 3.1). 

Labeling allows the effective use of heteronuclear experiments. Here the magnetization 

is transfered between heteronuclei, allowing the spread of the signals through another 

frequency range (represented through another dimension on the spectra). Protons can 

thus be differentiated not just by their chemical shift, but also by the atom-type they 

are bonded to. Also, the chemical shift of the heteronucleus can be used to help iden-

tify a chemical group or spin system. 

The most common heteronuclear experiment is the HSQC (Heteronuclear Single Quan-

tum Coherence), a 2D experiment where one dimension represents proton resonances 

and the other either ' 5 N or ' 3 C resonances. In this experiment, magnetisation will 

start on 1 11 then be transfered via scalar coupling to 15N or 13 C for chemical shift 

labelling, before being transfered back to the 'H for detection. This way, only protons 

covalently linked to 15N or 13 C will be visible in the spectrum. An example of an 

15 N, 1 H HSQC is shown in Figure 2.3. 

The 15N, 1 H HSQC is a very common heteronuclear experiment and is used as a test of 

quality of isotopically labelled samples. The experiment is very sensitive and so can be 

run quickly using very few scans, or on diluted samples. As it correlates 'H nuclei with 

' 5 N the resulting spectrum will have a peak for each backbone amide group giving a 

simple fingerprint for each protein sample. A poorly folded protein can be easily iden- 
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tified as the crosspeaks tend to cluster in one region of the spectrum. Sidechain amide 

groups are also visible, usually resonating at significantly different nitrogen chemical 

shifts from their backbone counterparts. 

Isotopic labeling is also used to produce '5N- or 13C-edited versions of TOCSY or 

NOESY spectra. Here, the isotopic labeling is used to spread the signals through 

an additional dimension. Thus, a 3D 15N-edited TOCSY spectrum would spread the 

TOCSY peaks through the frequency range of nitrogen-15. 15N and 13 C edited spec-

tra are used to correctly assign nuclei in larger proteins, or small proteins that pro-

duce poor quality spectra. This can help produce additional unambiguous distance 

restraints, and improve the precision or accuracy of the derived structures. A more 

detailed explaination of the types of heteronuclear spectra applicable to proteins, and 

their uses, is given in section 2.6. 

The chemical shift range for 15N and 13C is much greater then for 1 H. When run-

ning 15N- or 13 C- edited experiments it is common not to sample the entire frequency 

range for these heteronclear nuclei. This saves time, and as hundreds of increments 

may be required for each experiment, this can represent a significant saving of time. 

The nuclei lying outside the frequency range or sweep width of the experiment are 

still present in the FID. However, the waveform of these signals will be insufficiently 
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sampled for their correct frequency to be determined. Thus their peaks are still present 

in the resulting spectrum but at incorrect chemical shifts. The peaks are known as 

aliased peaks, and are said to be folded into the spectrum. It is possible to calculate 

the correct frequency of an aliased peak from its phase and its chemical shift in the 

spectrum, provided one knows how many times the peak has been folded. Thus before 

carrying out a heteronucler experiment a sweep width is chosen for the heteronucleus 

that will fold the aliased peaks into empty regions of the spectrum. 

2.4 Residual Dipolar Couplings 

Dipolar coupling (D-coupling) is a direct through-space interaction between NMR-

active nuclei. Like scalar coupling, D-coupling produces splitting of a signal. D-

coupling is a through space interaction which depends on the immediate orientation 

of the vector that connects two nuclei with respect to the external magnetic field and 

not just the distance between them. Unlike J-coupling it is not scalar but vectorial in 

nature, and is decribed only by the dipolar tensor. 

In solid-state NMR where there is very little molecular motion in the sample, any 

dipolar interactions produce large signal splitting. In a sample of micro-crystalline 

solid there are many crystals at different orientations relative to each other and to B0. 

This will lead to dipolar couplings of different magnitudes superimposed to yield a 

broad NMR signal. However, in liquid-state NMR the molecules are constantly tum-

bling rapidly, changing speed and direction due to collisions with other molecules. This 

tumbling is often at a rate that far exceeds the coupling frequency for dipolar interac-

tions and so in isotropic liquids dipolar interactions don't produce signal splitting in 

the NMR spectrum. Molecular tumbling can be restricted using special aligning media 

introduced into the sample. 

The type of alignment media used for ff1- 13 was the liquid crystaline media consisting 

of cetylpyridinium bromide (CPBr)/hexanol/sodium bromide solution. There are other 

types of media. Liquid crystaline media based on phospholipids was first used for align-

ment to measure RDCs [621. Suspensions of charged rod-shaped viruses and phages 
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can also be used [63]. However, these biomolecular alignment media are expensive corn-

pared to the chemical media CPBr/hexanol/NaBr [64]. Because CPBr/hexanol/NaBr 

proved effective in aligning fH- 13 it was chosen. 

The various types of alignment media all restrict the isotropic molecular tumbling 

so that some splitting due to D-coupling can be seen in NMR spectra, albeit a frac-

tion of the magnitude of couplings seen in solid-state. These reduced splitting are 

known as residual dipolar couplings (RDCs). The observed signal is split by the sum 

of J + D couplings. In order to obtain the dipolar coupling constant the J-coupling 

constant must also be measured to high accuracy. Because a dipolar coupling has a 

tensorial character, RDCs can give long range structure information and so are comple-

mentary to NOE restraints and are important tools in protein structure determination. 

2.5 Assignment of NMR Spectra of Unlabeled Protein 
Samples 

The assignment of the unlabeled and 15N-labeled protein samples was carried out using 

the assignment program ANSIG [65]. This method for assigning unlabeled polypep-

tides using COSY, TOCSY and NOESY 2D spectra was adapted from 'Resonance 

Assignment Strategies for Small Proteins' by Christina Redfield [66]. The method was 

used in the assignment of the KefC polypeptides. 

Assignment of polypeptides in unlabeled samples was carried out in three basic steps: 

• Using the COSY and TOCSY spectra, individual spin systems were identified 

and all the peaks were picked. 

• Using a table of average resonances for the amino acids, each spin system was 

labeled with a degenerate marker corresponding to a group of amino acids of 

with the spin system is most probably a member. 

• Using the NOESY spectrum, the position of the spin systems in the primary 

sequence is ascertained. 
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Once the position in the primary sequence of each spin system has been identified, the 

type of amino acid should be known. The amino acid type should fall within the group 

identified in the second step. If not then all three steps need to be repeated for that 

spin system. 

2.5.1 Identifying Spin Systems and Picking Peaks 

Identifying individual spin systems is done mainly through the COSY spectrum. First, 

crosspeaks are picked in the fingerprint region of the spectrum, between about 6.5-10.0 

ppm in the directly detected dimension (the H   proton region) and about 3-6 ppm 

(the HI proton region) in the indirectly detected dimension. Although some of these 

crosspeaks may correspond to interactions with side chain N-H protons, most will be 

J-coupled interactions between backbone H   protons and H  protons. The number of 

resonance peaks in this region should therefore correlate fairly well with the number of 

amino acids in the polypeptide with some exceptions; N-terminal H   resonances may 

not appear in the spectrum due to exchange and this will be pH dependent; Proline 

residues have no backbone H   proton; and Glycine residues may have two distinct 

peaks in the fingerprint region representing the two H  protons. 

To identify all the resonances that belong to a single spin system the TOCSY spec-

trum can be used. The TOCSY spectrum has the potential to show crosspeaks to all 

resonances in a spin system from a single resonance, although this is not the case for 

all amino acids. However, by looking at all the TOCSY crosspeaks from the original 

H  proton, the H,  H, H' etc. proton resonances can often be found, although it is 

not always possible to unambiguously distinguish between them. In order to do this 

the COSY spectrum is again used. Protons attached to adjacent carbon atoms will 

produce COSY crosspeaks, and from this it is possible in most cases to distinguish 

between H,  HO and if)'  protons within a spin system.. 

As stated before, some NH resonances with crosspeaks in the fingerprint region do 

not belong to the backbone but to the sidechain of amino acids. Often these peaks are 

not f-coupled through protons to the rest of their residue, but can be traced to the 
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residue of origin through NOESY crosspeaks (see section 2.5.3). 

2.5.2 Labeling Spin Systems 

Some residue types, namely glycine, alanine and threonine, can be identified easily if 

there is little peak overlap in the regions where their peaks lie: 

Glycine 

Glycine will most likely have two separate COSY crosspeaks from the backbone H   pro-

ton, representing the interaction through bonds with the two HI-protons. As glycine 

is unique in this respect, this is an instant way of identifying it. If the Ha-proton 

resonances are too close together such that two distinct crosspeaks cannot be seen, 

then glycine can be identified as a spin system with no H' protons. 

Alanine and Threonine 

Alanine and threonine residues will produce large single H'-H J-coupled crosspeaks. 

For alanine the H 13  resonances fall in the methyl region of COSY and TOCSY spectra. 

For threonine the H 13  resonances are usually to be found at a slightly higher chemical 

shift then the H  resonances. The threonine H 13  proton will also have a large COSY 

crosspeak to the M methyl protons, producing a large single crosspeak to the methyl 

region of the spectrum. 

Valine, Leucine and Isoleucine 

Valine, leucine and isoleucine all have crosspeaks to methyl groups in COSY and 

TOCSY spectra. The position of these methyl groups in the amino acid, and thus 

the identity of the amino acid, can be easy determined from the COSY and TOCSY 

spectra (see Figure 2.4). In valine, the easiest to identify, crosspeaks from the H 13  

proton to two large peaks in the methyl region of the COSY spectrum can be seen, 

representing W-W interactions. That these peaks belong to the same residue can be 

confirmed through the TOCSY spectrum by looking for H'-H" or H N -H7  crosspeaks. 
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Figure 2.4: Valine, leucine and isoleucine make characteristic patterns in the 
aliphatic and methyl regions in COSY and TOCSY spectra. The gray circles repre-
sent crosspeaks in COSY spectra. In addition, the open circles represent crosspeaks 
in TOCSY spectra. 

The pattern of crosspeaks in leucine is very similar to that of valine. Here a cross-

peak from the if)'  proton to two methyl groups can be seen in the COSY spectrum. 

Again, this can be confirmed through the TOCSY spectrum by looking for HH 5 ,  

H, and even H'-H5  crosspeaks can be seen if there is a high degree of TOCSY transfer. 

Isoleucine residues produce a complex pattern in the methyl region of TOCSY and 

COSY spectra. The following crosspeaks can be found in the COSY spectrum of an 

isoleucine residue (not including HN  crosspeaks): between the H to a single H; be- 
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tween the HO to the H protons in the methyl region; between the HO to two H not 

in the methyl region; and between the two H 7  not in the methyl region to a single H 8  

in the methyl region. 

J Residues 

For the residues not described above identification becomes harder. However, these 

residues can be placed into to broad categories, primarily by whether the residues in 

question have H7  protons or not. Those designated J residues have no if)'  protons. This 

category therefore includes cysteine, serine, asparagine, aspartate, histidine, phenylala-

nine, tyrosine and tryptophan. Aside from the fact that neither COSY nor TOCSY 

crosspeaks can be found to protons beyond the HO protons, these residues can usu-

ally be identified because their HO protons will generally be found at less then 2.5 ppm. 

While cysteine, serine and aspartate can't be reliably distinguished using 2D homonu-

clear NMR spectra, the aromatic residues and asparagine can be individually identified 

using COSY, TOCSY and NOESY spectra if the conditions are favorable. If groups 

beyond the if)'  position produce NOE crosspeaks to the HO protons, or even H or H  

protons, then this is evidence that these protons belong to the same residue, although 

the NOE interaction could be inter-residue and this ambiguity has to be taken into 

account during assignment. 

U Residues 

The final group of amino-acids is designated type U residues and includes the residues 

lysine, arginine, methionine, glutamine and glutamic acid (proline would also be in 

this group but as it has no H   proton it is treated separately). These amino-acids 

are distinguished from the other types by having two if)' protons J-coupled to the H 

protons, with the latter protons usually resonating at more then 2.2 ppm. Because 

of this definition, any unidentified leucine residues are also likely to be placed in this 

group. As there is no methionine in any of the proteins assigned as part of this project, 

it is not discussed. 
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For glutamine and glutamic acid, the H 7  proton resonances are generally found at 

a higher ppm then the HO resonances. Although distinguishing between these two 

amino-acids is hard, sometimes the protons on the 11 5-amide group of glutamine can 

be seen with a faint NOE-coupled crosspeak to the H resonances. 

Arginine, lysine, leucine and proline, on the other hand, generally have H 7  proton 

resonanting at a lower ppm then the H 3  resonances. The protons of the extended 

chains of arginine and lysine are all J-coupled to each other. For arginine, the 11Nf 

proton will produce a crosspeak to the 11 5  protons. For lysine the HN(  protons will 

produce a crosspeak to the H protons. 

Proline 

Proline residues are hard to identify as they have no H   backbone protons. Their H"- 

H13 , H-H and 11-115 , protons are strongly J-coupled though, and are usually quite 

easy to find in spectra with little overlap once most other side chains are assigned. 

If this is not the case, the best chance of assigning a proline residue is through NOE 

interactions with the subsequent residue. NOESY crosspeaks from the proline H  and 

H13  protons to the H   backbone proton of the subsequent residue should be seen. 

2.5.3 Assignment of Aromatic Side Chains 

Although the aromatic amino acids have no H 7  protons to propagate the magnetization 

in COSY and TOCSY spectra, it is still possible to assign their aromatic groups prior to 

sequential assignment. The ring protons of aromatic groups tend to be found between 

6.0-8.0 ppm. NOE crosspeaks in NOESY spectra can often be seen between the H 5  

protons of the aromatic group and the 11 13  protons of its own residue. The specific 

aromatic group can be identified by the pattern it makes in 21) TOCSY and COSY 

spectra as shown in Fig 2.5. 
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Figure 2.5: Aromatic side chains can be identified by the symmetrical patterns 
they make in COSY and TOCSY spectra between 6 ppm and 8 ppm. The gray 
circles represent crosspeaks in COSY spectra. In addition, the open circles represent 
crosspeaks in TOCSY spectra. Diagram adapted from 'NMR of Macromolecules', 
page 85, Figure 6 [66] 

Phenylalanine 

Provided the polypeptide structure allows the phenylalanine ring to spin freely the H 5  

protons will be magnetically equivalent and appear at the same resonance frequency. 

The same will also be true of the H 6  protons. Therefore, along the H', there should be 

three resonances giving rise to four COSY crosspeaks, or six TOCSY crosspeaks. All 

these aromatic protons should be found around 6-7 ppm. 
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Tyrosine 

Like Phenylalanine, Tyrosine's H 5  and H protons form two magnetically equivalent 

pairs, and thus have two resonance frequencies (provided the aromatic ring is free 

to rotate). The H 5  and H resonances are J-coupled together, and so produce two 

symmetrically related crosspeaks in both TOCSY and COSY spectra. The H proton 

is rarely seen. As with phenylalanine, all these aromatic protons should be found 

around 6-7 ppm. 

Histidine 

The H52  (at around 10 ppm) and W 1  (at around 7 ppm) protons are J-coupled and 

so will produce a pair of symentrically related crosspeaks in both TOCSY and COSY 

spectra. The 11 5' and H2  protons are in exchange with water, often broadening their 

resonance frequencies beyond definition. 

Tryptophan 

The H'' proton is often found at a high chemical shift, 10 ppm, making its as-

signment easier. It is usually possible to see a COSY (and therefore also TOCSY) 

crosspeak to the 11 51  proton. Also, there should be a strong NOESY crosspeak to the 

H'' proton. This H' proton is then part of the same spin system as the H" 2 , H' 3  and 

H 3  protons, forming the complex pattern shown in Figure 2.5. 

2.5.4 Identifying Sequential Residues 

Sequential assignment of polypeptides using homonuclear spectra is entirely reliant on 

short range NOE restraints. Once individual spin systems have been identified and 

assigned to degenerate groupings, NOE restraints between adjacent spin systems need 

to be found. The most common connections for spin system (i) to spin system (i-i) 

are summarized in Table 2.1: 

Therefore, in the NOESY H   strip of any given spin system there will be peaks not 

only belonging to that spin system (i) but also belonging to the previous spin system 
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(i) 0 - 1 ) 

HIV H° 
11N H' 
11N H 

Table 2.1: The most common NOE restraint connections between residue (i) to residue 
(i-i). 

(i-i). By overlaying the NOESY and TOCSY/COSY spectrum these peaks can be 

found (see Figure 2.6). 

NOESY 
	

TOCSY 

strip 	 strip 

Overlayed 
Spectra 

Figure 2.6: By overlaying HN  strips of spin system (i) from NOESY and TOCSY 
spectra it is possible to find NOESY peaks belonging to the previous spin system 
(i-i). The peak marked 11*  belongs to a non-sequential residue and can be used as 
a distance restraint for structure calculations (see section 3.5). 

Although it is possible to find sequential residues using this method, it is not always 

straightforward for a number of reasons. Proline residues, not having an H   proton, 

can't be sequentially assigned in this way. Different spin systems may have similar H 

or 1113  resonances so that a specific adjacent spin system can't be found. The larger the 
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polypeptide, the more likely this is to be a problem. Also, the H   strip will not just 

contain NOE crosspeaks to the (i-i) residue but to other residues in close proximity 

to (i). These restraints are the basis of structural determination by NMR but make 

sequential assignment harder. 

However, with the spins systems labeled with degenerate markers, a group of 3 or 

more sequentially assigned spin systems may have a unique place in the primary se-

quence. For example, a group of three amino-acids, U-J-ALA, could well be unique 

within the primary sequence of a small polypeptide. 

The larger the protein the less likely it is that small groups of spin systems with 

degenerate markers will be unique in the primary sequence. With labeled samples, 

other NMR experiments can be used to overcome some of the problems associated 

with the assignment strategy available to unlabeled samples. 

2.6 Assignment of NMR Spectra in 15N and 13 C labeled 
Protein Samples 

The assignment of 15N-labeled protein samples was carried out using the assignment 

program ANSIG [65], while the assignment of ' 5N, ' 3 C-labeled protein samples was 

carried out using the assignment program Analysis [67] [68] With samples labeled with 

15N and 13C nuclei it is possible to carry out experiments looking at more then just 

protons. As mentioned previously, the most basic heteronuclear experiment is the 

HSQC (heteronuclear single quantum coherence) experiment an example of which is 

seen in Figure 2.3. 

As mentioned above, with large proteins there can be a problem with overlapping 

resonances in 2D homonuclear spectra. With labeled samples it becomes possible to 

separate out the proton signals further using three dimensional spectra. So, for exam-

ple, in an 15N edited TOCSY spectrum the F2, F3 plane resembles a normal 1 H, 15 N 

HSQC, with 'H-'H TOCSY transfer in the Fl dimension. Therefore, for each residue 
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the TOCSY transfer from each backbone H   can now be assigned directly to the 15 N 

chemical shifts. Peaks that would normally overlap in the H   region of homonuclear 

21) TOCSY spectra are spread out in the F2 dimension. 2D planes can then be ex-

tracted from the 31) spectrum and analyzed separately (see Fig 2.7). 

F3 '1-1 

Figure 2.7: In this example of a 3D ' 5N edited TOCSY spectrum [C], an 
HSQC [A] shows TOCSY transfer in the Fl dimension [B]. Individual 'H-'H planes 
can then be extracted from the 3D spectrum based on the 15N chemical shifts [D]. 

For an ' 5N labeled sample the assignment method is essentially the same as that for an 

unlabeled sample and also leads to the assignment of NH  nuclei. Each NH  crosspeak 

is assigned by studying its TOCSY and NOESY dimensions in 15N edited TOCSY 

and 15N edited NOESY spectra respectively. This is done in the same manner as 11N 

strips are assigned in homonuclear TOCSY and NOESY spectra, but with the added 

advantage of signal separation due to the 15 N chemical shifts. 
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2.6.1 Assignment of 13 C Labeled Protein Samples 

Backbone Assignment: CBCANH and CBCA(CO)NH Spectra 

In both these spectra, magnetisation is transfered from the C 13  and C nuclei of a 

residue (i - 1) to the N-H group of the subsequent residue (i). By taking an H   strip 

of residue (i) in the '3 C- 1 H plane it is possible to assign the CJ3  and C  nuclei of residue 

(i - 1). 

CBCANH 	 CBCA(CO)NH 

Cp 

• 4 

+ 	4 	0 

Overlayed 
Spectra 

Figure 2.8: The use of CBCANH and CBCA(CO)NH spectra to assign backbone 
carbon nuclei. For any given H   strip in the CBCA(CO)NH spectrum, the C 
and C  nuclei of residue (i -1) can be assigned. By overlaying this strip with the 
complementary strip in the CBCANH spectrum it is possible to assign the C' and 
C nuclei of residue (i) 

However, in CBCANH spectra the magnetisation of the CO and Cc  nuclei of (i) is also 

transfered to it's own N-H group. As a consequence, by overlaying the 13 C-'H planes 

of these spectra it is possible to assign the G O  and C' nuclei of both residue (i) and 

(i -1) for any given plane (Fig 2.8). This process allows sequential walking along the 

protein's backbone and leads to their assignment. 
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Sidechain Assignment: H(C)(CO)NH-TOCSY, (H)C(CO)NH-TOCSY and 
HCCH-TOCSY Spectra 

With the H(C)(CO)NH-TOCSY and the (H)C(CO)NH-TOCSY spectra, magnetisa-

tion moves along a residue's sidechain (i -1) to the N-H group of the subsequent residue 

(i). In the H(C)(CO)NH-TOCSY, the sidechains protons magnetisation is labeled and 

so the Fl dimension is an 1H dimension. With the (H)C(CO)NH-TOCSY spectrum it 

is the sidechain carbons chemical shift that become labeled, and so the Fl dimension 

is a 13 C dimension (see Figure 2.9). 

	

14(C) (CO)N14-TOCSY 	(1-1)C(CO)N}i-TOCSY 	HCCH-TOCSY 

F2 	 0 	 F2 	0 	0 	 F2'C  
15 NO) 

e o o / 	 .0 0  o / 	 o 0 0 I
Z71-1-1  

F3 11.1  (i 	6- 4) 	 1-3 'II (I) 	(i-I) 	 F3 1 1 . 1 (I) 	(1) 

Figure 2.9: Schematic representations of H(C)(CO)NH-TOCSY, (H)C(CO)NH-
TOCSY and HCCH-TOCSY spectra. 

In the HCCH-TOCSY spectrum magnetisation is transfered from protons to their 

attached carbons, then through the carbon chain before being transfered back onto 

the attached protons for acquisition. This spectrum was used to verify 'H and 13C 

sidechain assignments made elsewhere. 

Assignment of Aromatic Resonances 

Four different experiments were acquired for the assignment of aromatic sidechains. 

The first two were 1 H-'3C HSQCs optimized for the aromatic region. These were used 

initially to deduce the carbon assignments of the aromatic groups using assignments 

already made for their attached protons. 

The second two experiments, (HB)CB(CGCD)HD and (HB)CB(CGCDCE)HE could 

be used to directly link C 1  and H13  assignments with those of aromatic side chains. In 
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(HB) CB(CGCDCE) HE 
I-1 
I-I c 

Figure 2.10: 	Schematic 
representations 	of 	the 
transfer of magnetisation 
through phenylalanine in 
(HB)CB(CGCD)HD 	and 
(HB)CB(CCCDCE)HE 
experiments. 

the (HB)CB(CGCD)HD the magnetisation is transfered from the 11 0  protons to their 

attached carbon nuclei. The magnetisation then passes through the carbon chain of 

aromatic residues until it reaches the C 5  carbon. Magnetisation is then transfered to 

the H6  proton for acquisition (see Figure 2.10). The resulting 2D spectrum links C 

resonances on one dimension with H6  resonances on the other. Practically the same 

magnetisation transfer happens in the (HB)CB(CGCDCE)HE spectrum. Here, how-

ever, one more step is added and the magnetisaton is partially transfered to the C 6  and 

acquisition occurs on the 116  proton. In this case the 21) spectrum links 0 3  resonances 

on one dimension with H 6 /111  resonances on the other. 

Once the protein's resonances have been completely, or nearly completely, assigned, 

the NOESY specta can be analysed. This process starts with picking the peaks in all 

the NOESY spectra and assigning them to known resonances when possible. If the 

resonance assignment is not obvious, both the ANSIG [65] and Analysis [67] [68] as-

signment programs can suggest possibilities based upon current assignments. Some of 

these possibilities can be eliminated upon closer inspection. Often there are a number 

of possible assignments for a given dimension of a peak. In this case the dimension is 

left unassigned and the peak assignment is ambiguous. 



Chapter 3 

Materials and Methods 

3.1 Expression and Purification of M-13 Constructs 

Before a clone of module 13 became available Ursula Lodge (University of Edinburgh) 

had already produced a clone of the module pair 13-14. This module pair has an 

unusually long linker region (seven residues, SMAQIQL) and so would have made a 

good sample for structural analysis. Attempts to produce a sample of this protein were 

undone by what appeared to be protein degradation. This is described in more detail 

in Section 5.1 below. 

Collaborator Claire Egan completed the cloning of fH module 13 and expressed and pu-

rified both the unlabeled and the 15N-labeled samples. The construct was expressed in 

the yeast Pichia pastoris using the plasmid KM71 pPICzo. The fermentation method 

described below refers to the expression of the ' 3 C- 15N-labeled sample. An outline of 

the method of purification of fH- 13 as developed by Claire Egan is given in section 

3.1.2. 

3.1.1 Fermentation 

To prepare the inoculant for fermentation, the transformed yeast were streaked onto 

yeast peptone dextrose (YPD)-agar plates with added Zeocin to 100 ug/ml. The plates 

were incubated at 30 ° C for approximately four days. A single large, isolated colony 

was then used to incubate 10 ml of BMG (the recipe for BMG is given in Table 3.1). 

47 
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This was then incubated at 30 °C for approximately two days. The 10 ml of culture 

was then used to inoculate a further 200 ml of BMG. This was incubated for one day. 

It was then centrifuged at 1,500 rpm (390 g) for 10 mm. The supernatant was removed 

and the pellet was then resuspended in 70 ml of 0.1 M potassium phosphate buffer, 

pH 6.0. This was to remove any unlabeled glycerol remaining from the BMG prior to 

fermentation. 

1 M KPO4  Buffer, pH 6.0 50 ml 
lOx Glycerol Solution 50 ml 
Distilled Water 350 ml 
Added after Autoclaving: 
Yeast Nitrogen Base 50 ml 
500x Biotin 1 ml 

Table 3.1: The recipe for BMG 

Calcium Sulphate CaSO4.21120 	0.5625 g 
Magnesium Sulphate MgSO4 .71120 	9 g 
Potassium Sulphate K2SO4 	6 g 
Distilled Water 500 ml 
1 M KPO4 Buffer, pH 5.0 50 ml 

Table 3.2: The recipe for the minimal media for 13 C 15N-labelled growth (550 ml) 

Before inoculating, the fermentation chamber needed to be autoclaved. Prior to au-

toclaving, 550 ml of minimal media was added to the fermentation chamber (BioFlo 

3000) (the recipe for the minimal media is given in Table 3.2). Once autoclaved, PTM 

1 post translational modification trace salts medium (4.35 ml.l'; 2.2 ml in this case, 

see Table 3.3) as well as antifoam (0.5 ml) were added to the chamber. The prepared 

inoculant was then added to the fermentation chamber. Also added were 8 g of 15 N-

labeled ammonium sulphate dissolved in 20 ml of distilled water and 10 g of 13 C-labeled 

glucose dissolved in 25 ml of distilled water. The fermentation run was then started, 

with the p11 regulated to pH 5.0 (the base feed was KOH). The yeast were then fed 

when the agitation was high and the dissolved oxygen was low, the deatails of which 

are given in Table 3.4 
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24.0 mM cupric sulfate (CuSO 4 .5H20) 
0.534 mM sodium iodide (NaT) 
17.8 mM manganese sulfate (MnSO4.51120) 
0.827 mM sodium molybdate (NaMo0 4 .2H20) 
0.323 mM boric acid (1-1 3 1303 ) 

2.1 mM cobalt chloride (CoC12.6H20) 
147.0 mM zinc chloride (ZnC12) 
234.0 mM ferrous sulfate (FeSO4.71120) 
1.64 mM biotin 
188.0 mM sulfuric acid (112SO 4 ) 

Table 3.3: Concentrations of salts in the PTM 1 trace salts medium. 

Time After Inoculation Food Amount 
17h ' 3 C-labeled Glucose 10 g in 	75ml 
21h ' 3 C-labeled Gycerol 1 g 
24h ' 3 C-labeled Methanol 4.0 ml of 78%(v/v) solution 
41h 
48h " 

65h 
72h " 

90h 
97h " 

Table 3.4: The details of feeding for the yeast during fermentation 

After fermentation the chamber was emptied and its contents centrifuged at 1,500 

rpm (390 g) for 10 min at 4 °C, with a slow deceleration time to prevent cells from 

lysing. The supernatant was then poured off and to it was added PMSF (phenylmethyl-

suiphonyl fluoride) and EDTA (ethylenedinitrilotetraacetic acid) to 0.5 mM and 5.0 

mM respectively. In total, 700 ml of supernatant was collected and its 0D 280  reading 

was determined to be 1.897. A sample of the raw supernatant was run on SDS-PAGE 

(sodium dodecyl sulfate polyacrylamide gel electrophoresis), the results of which are 

shown in Figure 3.2. (As the same protein molecular mass ladder was used to reference 

all the gels, the ladder and it's corresponding molecular masses are shown in Figure 

3.1.) 

3.1.2 Purification Protocol for fH-13 

Claire Egan developed the method for the purification of ff1- 13 from the supernatant. 

First the raw supernatant was concentrated to approximately 50 ml through a 1 kDa 



CHAPTER 3. MATERIALS AND METHODS 
	

50 

Figure 3.1: The protein marker New Eng-

175 	 land Biolabs Broad Range Prestained Pro- 

	

830 	 tein Marker P7708S, showing the molecu- 

	

_ 62.0 	 lar masses for the different bands (in kDa). 

	

475 	 The hands have the same masses in the 

	

32.5 	
P7708G mixture. _-  

25.0 

16.5 

634) 

Figure 3.2: SDS-PAGE showing different 
volumes of the raw supernatant. The or-
der of samples on the gel is (l-r) marker; 
2tl of supernatant; 4 a1 of supernatant; 8 
jd of supernatant; 16 fil of supernatant. 

• The protein marker used was the New 
England Biolabs Broad Range Prestained 
Protein Marker P7708S 

165 kW 

6.50 kL) 

cut-off filter. 

The concentrated supernatant was then buffer-exchanged in to a 20 mM potassium 

phosphate buffer before being passed through a gravity flow chromatography SP-

Sepharose column. The protein was eluted from this column using a 20 mM potassium 

phosphate buffer pH 5.0 with 1 M sodium chloride. 

The elutant from this column was then buffer-exchanged into a 20 mM potassium 

phosphate buffer again to remove the salt. The solution was then put through a 1 ml 

porous heparin column (to which the protein bound) using fast protein liquid chro-

matography (FPLC). The protein was then eluted from the column using a gradient 

of 20 mM potassium phosphate buffer pH 5.0 with 1 M sodium chloride. 
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3.2 Aquired Spectra 

3.2.1 Spectra Aquired on the KefC Derived Synthetic Polypeptides 

The four polypeptides were individually dissolved in 10 mM deuterated sodium acetate, 

pH 3.0, with 10% D 2 0 and 0.01% Sodium Azide. Spectra were aquired on an 800 MHz 

NMR spectrometer at 298 K. Proton 1D spectra with water presaturation and proton 

2D COSY, TOCSY and NOESY spectra were aquired for all four polypeptides using 

the parameters given in Table 3.5). 

Spectrum Dims Number of Spectral widths 
complex points (Hz) 

NOESY 2 2048 x 1280 8802.8 x 6999.7 
TOCSY 2 2048 x 1280 8802.8 x 7000.4 
COSY 2 2048 x 1600 8802.8 x 700.4 

Table 3.5: Parameters for the NMR spectra acquired on the four polypeptides. All 
three experiments were acquired on all four polypeptides using these parameters. The 
exception was the Hel polypeptide which had 4096 x 2048 complex points for each 
experiment. 

The 2D spectra were processed in AZARA [69] (see section 3.4) and then imported 

into individual ANSIG [65] projects for the assignment of each polypeptide. 

3.2.2 NMR Experiments on the Unlabelled and ' 5N-labeled fl-1- 13 

Six NMR spectra were acquired at 288 K for the assignment of the 1 H and 15N reso-

nances of fH- 13. These were acquired on a Bruker 600 MHz AVANCE spectrometer 

using a triple-resonance cryoprobe. The sample buffer was 20 mM sodium phosphate 

buffer at pH 6.0 with 10% D20 and 0.01% sodium azide, with the expection of one 

homonuclear 2D NOESY experiment that was taken in 99.9% D20. The latter experi-

ment was useful in uncovering NOESY crosspeaks that had been obscured in the 1120 

sample by the water signal. These could then be used as additional distance restraints. 

Details of the experiments are given in Table 3.6. 

(( 

'\ 	J 
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Spectrum Dims Number of 
complex points 

Spectral widths 
(Hz) 

COSY 2 2048 x 1536 10162.6 x 6800.4 
TOCSY 2 2048 x 1344 10162.6 x 6800.4 
NOESY 2 2048 x 1010 10162.6 x 6800.4 
NOESY in D20 2 2048 x 1024 7183.9 x 6599.6 
15N,'H-HSQC 2 2048 x 256 10162.6 x 1191.6 
15 N TOCSY-HSQC 3 2048 x 64 x 192 10162.6 x 1191.6 x 6898.6 
' 5 N NOESY-HSQC 3 2048 x 72 x 256 10162.6 x 1191.6 x 6898.6 

Table 3.6: Spectra acquired on fl-1- 13 for the assignment of it's 'H and ' 5N resonances. 

3.2.3 NMR Experiments on the 13 C, 15 N-labeled fH- 13 

The homonuclear and 15N-heteronuclear NMR spectra for fl -1-13 were already assigned 

before the ' 3 C, 15N labeled sample became available. It was therefore only necessary 

to acquire the minimum set of 13 C spectra used for assignment. Assignment was made 

using the Analysis program from the CCPN suite [67] [68] The experiments used for 

assignment are described in Section 2.6.1. These were acquired on a Bruker 600 MHz 

AVANCE spectrometer using a triple-resonance cryoprobe. 

Details of the sample preparation is given in section 3.1. Details of the experiments is 

given in Table 3.7. Two 13C_ 1 H HSQC spectra were taken of the aromatic region of 

the spectrum. 

Spectrum Nuclei labeled 
in F3 , F2 , and F 1  

Number of 
complex points 

Spectral widths 
(Hz) 

13 C NOESY-HSQC 'H;' 3 C; 1 H 1024 x 48 x 144 10162.6 x 5838.6 x 7199.4 
HCCH-TOCSY 1 H; 13 C; 1 H 1024 x 52 x 112 10162.6 x 5838.6 x 4559.4 
CBCA(CO)NH 1 H; 15 N; 13 C 2048 x 54 x 128 10162.6 x 1191.4 x 11312.2 
CBCANH 1 H; 15 N; 13 C 1024 x 54 x 112 10162.6 x 1191.6 x 11312.2 
(H)C(CO)NH-TOCSY 1 H; 15 N; 13 C 1024 x 56 x 112 10162.6 x 1191.6 x 11315.4 
H(C)(CO)NH-TOCSY 1 11; 15N; 1 H 1024 x 56 x 144 10162.6 x 1191.6 x 4559.4 
' 3 C-'H HSQC 1 H;'3 C 1024 x 80 7183.9 x 6035.0 
13 C 1 H CT-HSQC 1 H;'3 C 1024 x 184 7183.9 x 6035.0 
(HB)CB(CGCD)HD 1 H; 13 C 1024 x 64 8389.3 x 4071.7 
(HB)CB(CCCDCE)HE 1 H;'3 C 1024 x 64 8389.3 x 4071.7 

Table 3.7: Spectra acquired on a double labeled sample of fH- 13. 
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Often (in particular with larger proteins), the ambiguity of 13 C chemical shifts means 

that the assignments can't be completed based solely on one pair of triple-resonance 

experiments. However, because the complete assignment of the 1 H, 15N HSQC ob-

tained from the analysis of 15N-edited 3D spectra it was not necessary to acquire more 

triple resonance experiments for the backbone assignment. The (H)C(CO)NH-TOCSY 

experiment was used to assign much of the carbon chemical shifts in fF1- 13. The 

H(C)(CO)NH-TOCSY experiment was used to confirm the 'H resonance assignments 

obtained previously from the analysis of the homonuclear and spectra. 

3.3 Relaxation Data 

T1  and T2 rates of relaxation were measured for the backbone '5N nuclei for each 

residue. Also, the heteronuclear NOE cross-relaxation rate was measured for the back-

bone NH for each residue. The relaxation data can give information on the mobility 

of individual residues on a nano-second timescale. 

3.3.1 T1  and T2  Relaxation Experiments 

The T 1  and T2 relaxation time for the 15N nuclei were measured by acquiring 1 H, 15N 

HSQC type spectra. These spectra have varying delays before acquisition, which allows 

relaxation to occur. The relaxation produces a drop in peak intensity as the relaxation 

delay increases, and so the measurement of the peak intensity in the different spectra 

enables the calculation of T 1  and T2 for individual residues. The delays used are shown 

in Table 3.8. These spectra were acquired on a Bruker 600 MHz AVANCE spectrom-

eter using a triple-resonance cryoprobe at 288 K. 

3.3.2 Determination of T 1  and T2  

The method for calculating T 1  and T2 relaxation times from the acquired spectra is 

the same. The intensity of each peak was measured as it is for the generation of NOE 

distance restraints (as described in section 3.5). Overlapping peaks can't be used as 
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Experiment Number Relaxation 
collected Delay (ms) 

T1  8 50 (x 2), 250, 350, 450, 650, 750, 800 
T 2  8 10 (x 2), 20, 50, 70, 90, 100, 110 

Table 3.8: The relaxation delays used in the acquisition ofT 1  and T2 relaxation spectra. 
The spectra with the shortest delay were acquire both before and after acquisition of 
the other spectra 

their intensity can not be measured precisely, and residues whose signals were not 

present in the 'H,' 5N HSQC (such as proline) could also not have their T1 and T2 

values determined. 

The error in peak intensity also needs to be determined for each spectrum. This 

is done by first picking peaks in about twenty empty regions of the spectrum contain 

only noise. These regions were processed using the same integration boxes as were used 

for the regular peaks and their intensities were averaged. This produced an average 

noise intensity for each spectrum which could be used as the associated error for each 

peak in that spectrum. 

To calculate the T1 or T2 values, a file is produced for each residue listing the 1 1-1, 15 N 

HSQC peak intensity for each relevant spectrum together with its associated error, 

together with a sequence file. A program called fitt.gauss (written by Dr Kyrstyna 

Bromek-Burnside from our group) was then used to fit the data from each residue to 

the following exponential decay: 

1(t) = I(0)xe th'T1 	 (3.1) 

Where 1(t) is the crosspeak intensity at the time t and 1(0) is the crosspeak intensity 

at time 0. 

The program produces an output file listing the relaxation time (T i  or T2 depend-

ing on the input data) and an error value. 
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3.3.3 Heteronuclear NOE Relaxation Experiments 

To determine the rate of heteronuclear NOE relaxation (HetNOE) between the back-

bone ' 5 N nuclei and their bonded protons two types of 1 11, 15N HSQC spectra were 

recorded. A saturated spectrum was recorded within which was a 5 s delay. During 

this delay there was 3 s of proton spin saturation, allowing an NOE to develop between 

the proton and its 15N. The other spectrum contained a 5 s delay but no saturation. 

This is the reference spectrum. These spectra were acquired on a Bruker 600 MHz 

AVANCE spectrometer using a triple-resonance cryoprobe at 288 K. 

The peaks in both spectra were then integrated and the HetNOE was calculated using 

the ratio: 

NOE = (3.2) 

Where 1(0) is the reference intensity and I is the saturated intensity. 

The ratio of the saturated intensity to reference intensity was thus calculated for each 

residue where it was possible. As with the determination of T1 and T2, residues with 

overlapping peaks or those that were unassigned could not have their HetNOE deter-

mined. 

3.4 Processing Bruker Spectra 

3.4.1 Scripts used for Processing Bruker Data 

NMR experiments were process using AZARA software [69]. Processing involves 

Fourier transformation of the data and additional modifications to improve the quality 

of the final spectrum. In Table 3.9 is an example of a script used by AZARA to process 

the spectrum, in this case a 15 N-edited 3D NOESY spectrum. The input file for the 

script is a file detailing the basic parameters used in acquiring the spectrum (ser.par) 

and a link to the FID. When run by AZARA the script will output the Fourier trans-

formed spectrum (spc) and a file that again details the basic parameters used (in this 
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case it would be spc.par). 

Commands for processing each dimension of the spectrum are grouped in separate 

sections of the script (script_com 1, script-corn 2, script-corn 3). Their meaning is 

explained in detail in the AZARA manual. 

In brief, in each dimension the data is multiplied by a sine-bell function (to remove 

sinc-wiggles due to truncation of the FID) prior to zerofilling and Fourier transfor-

mation. The spectrum is then phase corrected and only the real points are kept for 

displaying. A baseline correction is often applied to the directly detected dimension to 

'smiling' baselines. Water removal can be done after the phase correction by reverse 

Fourier transformation of the data prior to its removal. This is a more effective method 

then applying the water deconvolution to the unphased data. 

3.4.2 Contouring a Spectrum for ANSIG 

The assignment of the 15 N-labeled sample was undertaken using the ANSIG software 

package [65]. For each 2D plane of a spectrum ANSIG requires a contour file to de-  
- 

scribe the topography of the plane. Therefore, a contour file must be created for each 

2D spectrum. For a 3D spectrum a minimum of 2 contour files are required to fully 

describe the spectrum, one contour file describing a set of planes which are perpen-

dicular to those described by the other contour file. For example, for an 15N edited 

31) NOESY spectrum one contour file would describe all the planes in the indirectly 

detected proton dimension. These planes would have as their axis the directly detected 

proton dimension and the 15 N dimension. Another contour file would describe all the 

planes in the 15N dimension, whose axis were the two proton dimensions, while each 

of these planes would have a specific ' 5 N frequency. See Figure 2.7 for a description 

of a 3D 15N-edited spectrum. 

To create a contour file, an AZARA program called contours is used, and this in 

turn requires a script file. An example of a contour script is shown in Table 3.10. The 

contour script needs; a link to the parameter file (in this case spc.par, see above); the 
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input 	 ser.par 

output 	 spc 

interlace 2 

scriptcom 1 
complex 
avance 12 16 
sinebell2 90 
zerof ill 1 
f ft 
avance_phase 
phase 182.3 0 

end-script 

script-corn 1 
complex 
if ftn 
cony-box 32 
fftn 
f ft 
reduce 
upper 1024 

end-script 

script-corn 2 
rnaskppm 
complex 
sinebell2 90 
zerof ill 1 
fft 
phase 90 —180 
reduce 

end-script 

script-corn 3 
maskpprn 
complex 
sinebell2 90 
zerof ill 1 
fft 
phase 90 —180 
reduce 

end-script 

script-corn 1 
base-poly 8 0 

end-script 

Table 3.9: AZARA processing script for Bruker NMR data. The script was used for 
processing 15N-edited 3D NOESY data. 
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name of the output contour file; and a list of contour levels to be displayed for the plane 

(or for the set of planes if it is a 3D spectrum). The contour levels can be ascertained 

using the AZARA program. Both positive and negative contour levels are required for 

most spectra. 

input ./spc.par 
output ./cnt 
ppm..range 1 5.0 11.3 
dims 1 2 

levels 135085 —135085 
levels 189119 —189119 
levels 264767 —264767 

levels 370674 —370674 
levels 518943 —518943 
levels 726520 —726520 

levels 1017128 —1017128 
levels 1423979 —1423979 
levels 1993570 —1993570 

levels 2790998 —2790998 

Table 3.10: An example of a script used by AZARA to create a contour file for ANSIG. 
This script was used to create a contour file for a 15N,'H-HSQC. 

3.4.3 Residual Dipolar Couplings 

The medium used for the aligned sample was a solution of cetylpyridinium bromide 

(CPBr)/hexanol/sodium bromide solution (70]. 1.5 ml of a 6.5% stock solution of the 

alignment media was prepared by mixing 0.0418 g of CPBr with buffer containing 25 

mM sodium bromide; 20 mM sodium phosphate buffer at pH 6.0 and 4.5% hexanol 

by volume. This was used to test the splitting of the 2H signal due to the alignment 

media prior to the addition of the protein. A 5.0% solution of the alignment media 

produced a 2H signal splitting of 12 Hz. 

Thus a sample of 0.24 mg of 15N labeled fH- 13 was freeze-dried and added to a 5.0% 

solution of the alignment medium. To reach the desired level of splitting, this sample 

was then diluted by added 88 jLl of 20 mM sodium phosphate buffer at pH 6.0 to bring 
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the amount of alignment media to 4.1%. This gave splitting in the 2H signal of 11 Hz 

in a 600 MHz magnet. 

Residual dipolar couplings were then collected for the backbone N-H bonds only. 

To measure these, two IPAP-HSQC (In-Phase Anti-Phase-HSQC) experiments were 

recorded (71], one with the protein sample aligned and one in isotropic medium. 

Spectrum Dims Number of Spectral widths 
complex points (Hz) 

Unaligned IPAP-HSQC 2 2048 x 1024 10162.6 x 1191.6 
Aligned IPAP-HSQC 2 2048 x 328 10162.6 x 1191.6 

Table 3.11: Spectra acquired on fH-13 for the determination of NH RDCs 

3.5 Structure Calculation 

Once the NOESY spectra have been assigned the crosspeak intensities need to be 

converted into distance restraints for structure calculation. The process is different for 

both ANSIG and Analysis data, but the principles are the same. 

Distance Restraint Generation 

Before the distance restraints were generated the NOESY peaks were first integrated. 

Set linewidths for the integration box were specified for each spectrum. These were 

chosen to give not the whole peak but a reasonable relative intensity for each peak. 

If linewidths were chosen to capture the whole peak in every case this would result 

in many peak intensities being larger than is actually the case. This is because many 

peaks overlap sightly (for example, H' 31  and H'32  in the same spin system overlap in 

many cases). A more rigorous method would be an integration box of tailored sizefor 

each peak, but because of the large number of peaks this is impractical. 

Peaks that could not be assigned to a specific nucleus were then used as ambigu- 

ous restraints. Before they were used, these restraints needed to be assigned to all 

the nuclei with the same chemical shift, based on a standard chemical shift list for 
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the protein in question. This list was generated automatically as part of the CCPN 

Analysis suite of programs, but required separate scripts for generation in ANSIG. 

Unambiguous assignments from all spectra (including NOESY spectra) were used to 

generate the average chemical shift table. At this point chemical shift assignments with 

large standard deviations were discovered and checked for errors in their assignment. 

The peaks from each NOESY spectrum were then compared to the chemical shift 

list. For ANSIG data this was done using the AZARA program connect, requiring 

a connect script. Ambiguously assigned peaks were automatically assigned matching 

chemical shifts to their ambiguous dimensions using the chemical shift table. Any 

peaks for whom no match could be found were checked. A resonance not finding a 

match was usually the result of unassigned nuclei. 

The intensity of a NOESY crosspeak is directly proportional to 'r 6 ', where 'r' is 

the distance between the two nuclei that generated the crosspeak. However, in pro-

tein NMR structure calculations the NOE restraints are treated in a more qualitative 

manner. NOE restraints are put into separate distance classes based on their relative 

intensities. The distance classes used are shown in Table 3.12. The bands are quite 

broad in accord with established procedures. This allows more flexibility in structure 

calculation, as a greater number of possible structures would fit a given restraint. This 

is necessary to take into account spin effects and possible spin diffusion which would 

alter the intensity of the NOE peak. Therefore, a large number of these restraints was 

required to get an accurate structure. 

Intensity Distance 

>3.0 <2.7A 
1.5-3.0 <3.3A 
0.3-1.5 <5.OA 
<0.3 <6.OA 

Table 3.12: Distance classes for the NOE distance restraints. 
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3.5.1 Structure Calculation 

Structure calculation was carried out using CNS [72]. As well as the NOE restraint 

files, two other files were required as input for structure calculation; the force field and 

the MTF (molecular template file). 

The force field used was an updated version of the PARALLHDG force field [73]. 

The force field describes the atoms present in each L-amino acid in a number of ways: 

their element; their charge; what other atoms they are bonded to and whether their 

bonds are part of dihedral or improper angles with other bonds. The force field also 

described the typical bond lengths and angles found in proteins; the changes that take 

place during disulphide bridge formation; and the strength of any van der Waals (non-

bonding) interactions. 

The force field in turn was used in conjunction with a sequence file (simply containing 

the primary sequence of fH- 13) to generate the MTF. It is in the MTF that the disul-

phide bridges are defined (as confirmed by NOE data). The MTF file was used as an 

initial template for the structure calculation. 

The structure calculation itself consisted of two main parts which are run in paral-

lel; restrained molecular dynamics (RMD) and simulated annealing (SA). In SA, the 

protein is first heated to 2000 K, giving the atoms kinetic energy. The protein is then 

cooled, where the atoms explore possible conformations and the potential energy is 

measured for each atom. The atoms are then moved and their potential energy is mea-

sured again. A move is accepted if the potential energy is lower. The overall process 

is repeated until the potential energy doesn't drop. 

In RMD, the NOE restraints are applied to a model of the structure. From here a 

potential energy function is calculated for each atom. The atoms are given mass and 

velocity (calculated from the kinetic energy used in SA). A force is then applied to 

each atom, based on its potential energy. After a given time the position of each atom 

is recorded. The process is then repeated iteratively so that a global (as opposed to 
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local) energy minimum is found. 

During the structure calculations, prochiral swapping occurs. Protons which share 

the same carbon can be chirally distinct. However, they can't be differentiated by as-

signment alone. To counter this, their assignments are swapped during the calculation. 

The lower energy state after swapping is selected. 

Three periods of simulated annealing were carried out in series, with each set of struc-

tures generated from one period being used as the templates for the subsequent period. 

After this the structures needed to be analysed and the NOE restraints filtered and 

checked prior to another round of structure calculation. 

3.5.2 Analysing the Calculated Structures 

After a single round of structure calculation the ambiguous NOE restraints were fur-

ther refined to improve the structure. Refinement was done based on the most accurate 

structures from the last round of calculations. To ascertain a structure's accuracy a 

number of energy terms were used to describe the structure. This is based on the 

principle that the higher the potential energy of a structure the less likely it is to be 

correct. The total energy of a structure is calculated as a sum of all the energy terms: 

Etotal = (Ebond + Eangie  + Edihe  + Eimpr + Ev dw  + Enoe ) 	(3.3) 

Where, Ed is the bond energy; Eangie  is the energy of the bond angles; Edh is 

the energy of the dihedral angles; Eimpr  is the energy of the improper angles; Ed 

is the energy of the van der Waals interactions; and Enoe  is the energy of the NOE 

interactions. For refinement with RDC data there is also an Etenso  term for the energy 

of the RDC restraints (see section 3.5.4). 

The NOE energy was calculated by comparing the original distance restraint to the ac- 

tual distance within the structure, with an energy penalty for deviations. The equation 
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for calculating this is: 

I (Lk - Dk) 2  if Dk < L, 

E0 = 	0 	 if Lk <Dk U, 	 (3.4) 
k 	(Dk - Uk) 2  if Uk < Dk 

Where U and L are the upper and lower bounds respectively from the original distance 

restraint; and D is the actual distance between the nuclei in the calculated structure 

that the restraint describes [74] 

If the distance from the original restraint was more then 0.3 A greater than the upper 

distance band then the restraint was said to be violated in that structure. Violations 

from each structure were recorded in a separate file. If a restraint was violating in 

many structures it was examined to see what the problem was. Often the restraint was 

incorrectly assigned, and either changing the assignment or making the peak ambigu-

ous in one or more dimensions would solve the problem. Overlapping of peaks could 

often lead to incorrect intensities and violating restraints. For example, small peaks 

that lay close to the diagonal could give incorrectly high intensities as their integration 

box would overlap with the large diagonal peaks. The restraint would then record 

the distance between the nuclei to be closer than it actually is. These NOE restraints 

would have to be adjusted or removed. 

The ensemble of calculated structures should converge on a low energy for both Etotal 

and E 0  where >99% of the NOE restraints are satisfied for a number of structures. 

On a plot of Etotat or Enoe  for all the calculated structures convergence can be seen as 

a plateau of low energy structures (Figure 6.8). It is these converged structures that 

are used to filter the NOE restraints for the next round of calculations. 

3.5.3 Filtering and Checking the Structures Using ARIA 

Filtering and checking of the NOE restraints was undertaken by the ARIA suite of pro-

grams. An ambiguous NOE restraint can have many matching assignments attached 

to its ambiguous dimension. Not all of these matching assignments may be correct. In 

the filtering step the NOE restraints are examined against the converged structures. 
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The contribution of each matching assignment to the intensity of an NOE peak is cal-

culated. If assignments contributed less then a specified amount, their contribution 

was removed. The initial cutoff for the contribution was set to 0.99 in the filtering 

script, which means that if an assignment contributed less then 1% to the intensity of 

a crosspeak its contribution was removed. 

After filtering, the restraints are checked. Here, any diagonal peaks that were picked in 

the NOE spectrum are removed as they do not represent interactions between nuclei. 

Also, if there are duplicate restraints the duplicates are removed. The highest intensity 

peak is always kept, while the lower intensity multiples are removed. 

The new set of NOE restraints are used in a new round of structure calculations. 

The process of calculation, analysis, filtering and checking is repeated until the cal-

culated structures between one round and the next barely change. The threshold for 

contributing assignments during filtering can be raised, from for example 1% for the 

first two rounds to 2% for the next two roundsd. 

3.5.4 Refinement of the Calculated Structures 

The final calculated structures can be further refined using the RDC restraints and 

also by recalculation in water. 

The RDC restraints are used to refine the final structures in a single structure cal-

culation step using the TENS 0 module for CNS [5]• Here simulated annealing takes 

place, with the introduction of a Tenso force constant for each atom. The Tenso force 

constant is increased geometrically from 0.001 kcal.(mol.Hz 2 ) 1  to 0.6 during the first 

cooling step and fixed throughout subsequent cooling steps. After calculation the struc-

tures were analysed as before, except now there is an Etenso  term for the energy of the 

RDC restraints. 

The final set of structures can be further refined by recalculating the structures in 

explicit solvent. This has been shown to improve the quality of the final structures, 
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helping to orientate the amino acid side chains and improve the statistics (such as the 

Ramachandran statistics) of the final ensemble [76] [77]. A maximum of 50 structures 

with the lowest Etotat  from the RDC refinement could be selected at a time for water 

refinement. This is because water refinement in CNS can only be carried out on a 

maximum of 50 structures. 

3.6 Chemical Shift Mapping of fH-13 with Heparin 

For the titration at pH 6.0 two stock solutions were prepared. The first consisted of 

0.777 ml of a 0.5 M stock solution of the heparin tetrasaccharide in distilled water 

with 0.02 % (w/v) sodium azide (an explaination of the heparin tetrasaccharide used 

is given in section 7.1). The second solution consisted of 1.00 ml of a 20 'UM  of 15N-

labeled fH-13 in 20 mM sodium phosphate buffer at pH 6.0, with 10 % (v/v) D 2 0 and 

0.05 % (w/v)sodium azide. The stock solution of fH- 13 was the source of an initial 

NMR sample that was used to optimize conditions and to obtain NMR data for fH- 13 

in the absence of the tetrasaccharide. 

Ratio of fH- 13 
to Tetrasaccharide 

Concentration of 
fH- 13 (jiM) 

Concentration of 
tetrasaccharide (jiM) 

1:0 20 0 
1:21.7 10 217 
1:10 20 200 
175 " 150 
15 " 100 
14 " 80 
13 " 60 
12 " 40 
Fl " 20 

1:0.65 " 13 

Table 3.13: Samples prepared for the titration between fH- 13 and a heparan sulphate 
derived tetrasaccharide at pH 6.0. 

Subsequently 111, 15N HSQC experiments were acquired for nine different ratios of 

protein to tetrasaccharide (Table 3.13). For the first titration point, 140 jil of the first 

solution was mixed with: 14 jil of a 0.250 mM NMR sample of 15N labeled fH- 13; 160 

IL1  of buffer (40 mM sodium phosphate buffer at pH 6.0, with 10 % (v/v) D20 and 0.1 



CHAPTER 3. MATERIALS AND METHODS 	 66 

% (w/v) sodium azide); and finally 20 jil of D20 to give a ratio of 1:21.7 of fH-13 to 

tetrasaccharide. For the second titration point, 14 jtl of the 0.250 mM sample of fH- 13 

was then added to the 1:21.7 sample to make the 1:10 sample. Subsequent samples 

were made by adding aliquots of the 20 pM stock solution of 15N labeled fH- 13 to the 

previous sample, thus incrementally diluting the tetrasaccharide whilst maintaining 

the concentration of the protein. 

Titrations between other CCP modules and heparin-derived oligosaccharides previ-

ously carried out in our group had shown improved binding at lower pH. The titration 

between fl-l- 13 and the heparin-sulphate derived tetrasaccharide was therefore repeated 

at pH 5.5. Stock solutions of tetrasaccharide and fH- 13 in 20 mM sodium phosphate 

buffer at pH 5.5 were prepared as before. 'H, 15N HSQC spectra were acquired at five 

titration points as shown in Table 3.14. 

Ratio of fH- 13 
to Tetrasaccharide 

Concentration of 
fl-1-13 (MM) 

Concentration of 
tetrasaccharide (tiM) 

1:0 18.8 0 
1:1 18.8 18.8 

1:3.3 16.8 43.5 
1:11 7.67 86.4 
1:22 4.9 108 

Table 3.14: Samples prepared for the titration between ill- 13 and a heparin derived 
tetrasaccharide at pH 5.5. 

3.7 Structure Analysis Method 

This details the method for the structure analysis carried out on the closest to mean 

structure of fl-1-13 that was generated using the 13 C,'5N-labeled sample. This was 

carried out in collaboration with Dinesh Soares. 

3.7.1 Structural Comparisons and Superposition 

Combinatorial Extension (CE) was employed to compare all 34 experimentally-determined 

CCP module structures, (including both GABA conformers [78]) against the closest-

to-mean structure of ff1- 13. CE is a method for the calculation of pairwise structure 
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alignments using characteristics of their local geometry as defined by vectors between 

Ca-positions [79]. 

The individual domain boundaries for each CCP module were considered from one 

residue before the first cysteine untill three residues after the fourth cysteine (both in-

clusive, where available). In cases where structures were solved by both NMR and 

X-ray diffraction, the highest resolution X-ray structure was used for comparison. 

Where both liganded and unliganded structures were available, the highest resolved 

unliganded X-ray structure was used. A few residues were missing in the crystal struc-

ture of C ir- 2. Therefore, in this case the structure with the most determined residues 

was employed i.e. Protein Data Bank (PDB) [80] ID: 1GPZ (for both modules) [81]. 

The two interleukin-2 receptor alpha (IL211a) CCP modules, which exhibit atypical 

"strand-swapped" individual CCP module structures [82] [83] [84], were excluded from 

this analysis. 

Superposition (overlay) of all 35 individual CCP-modules was undertaken using the 

multiple protein structure alignment program server, MAMMOTH-multi [85]. 

Surface Analysis 

The solvent accessible surface area (ASA) for fF1- 13 was calculated using the GETAREA 

version 1.1 server [86] [87] using default settings. Therefore the radius of water probe in 

Angstroms was 1.4 A; the Select output level was equal to only the total area). ASA is 

defined as the surface mapped out by the centre of a probe sphere, of radius 1.4 A, as 

if it were rolled around the van der Waals surface of the protein. The electrostatic sur-

face representations were computed and displayed using GRASP [88]. The lipophilic 

surface renditions were created using MOLCAD [89] under SYBYL version 6.9 (Tripos 

Associates, MO, USA). Electrostatic and lipophilic surface potential scales are shown 

in Figure 6.21. 



Chapter 4 

Structural Assessment of KefC 
Derived Synthetic Polypeptides 

4.1 Project Aims 

Four synthetic polypeptides were supplied to our lab by Prof Ian Booth from the 

University of Aberdeen. The aim of this project was to use NMR spectroscopy to 

determine whether any secondary structural elements could be found within each of 

the four polypeptides. This was achieved by the acquisition of homonuclear 21) COSY, 

TOCSY and NOESY spectra on each of four synthetic polypepides. Proton resonances 

were assigned by working with these spectra. 

4.2 The Four Synthetic Polypeptides 

The four polypeptides that were investigated are all based on a sequence of residues 

found in the KefC potassium efflux protein system. This membrane protein is found in 

Escherichia coli cells where it protects the cell from toxic concentrations of electrophiles 

by removing potassium from the cell. The sequences for the four polypeptides used in 

this project are found in Table 4.1 They are all based around a strongly conserved re-

gion of the protein, residues 252-271, with the sequence LASSEYRHALESDIEPFGL. 

This region is found in the amino-terminal hydrophobic domain between two putative 

transmembrane helices. Thus Ha120 represents the native sequence, while Ha122 was 

supposed to be an elongated version of Ha120, but the sequence was shown to be erro- 

68 
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neous upon NMR assignment. 

Label Amino Acid Sequence 
Ha122 LAASSEYRHALESDIEPFKGLL 
Ha120 LASSEYRHALESDIEPFKGL 
Hel LASSEYRHELETAIDPFKGL 
Dik LASSEYRHALESDIKPFKGL 

Table 4.1: The sequence of the four polypeptides analysed. The names of polypeptides 
were derived from their amino acid sequences, as shown in bold. 

Within this sequence, the region HELEXDIEPFK (where X is either alanine, serine or 

threonine) has been found to be important for the regulatory function of the protein. 

Mutagenesis analysis showed that mutations E262K (found in Dik) and D264A (found 

in Hel) resulted in spontaneous activation of the KefC channel. This resulted in a loss 

of K+  from the bacterial cells. After suspension of the cells in K+  media, the native 

cells were observed to have a K+  concentration of 430 K+g,  while for the D264A 

and E262K mutants these were 310 imol K/g of dry cells and 274 ,amol K/g of dry 

cells respectively [90]. 

Also important for regulation of the KefC ion channel is a carboxy-terminal hydropho-

bic domain. This is a KTN (K transport, nucleotide binding) domain, with a highly 

conserved structure. These are found in a variety of prokaryotic and eukaryotic K+  ion 

channels. In the KefC channel a tetramer of these KTN domains assemble near the 

cytoplasmic vestibule of the ion pore. As with the HELEXDIEPFK loop, a number 

of mutations in the KTN domain result in spontaneous activation of the KefC channel 

(11416S, V427A and R516C). Futhermore, introduction of a R527E mutations alone 

reduces the K effux from the bacterial cells. However, the addition of E262R and 

D264R mutations alongside the R527E mutation restores the protein's activity [91]. 

This suggests a direct interaction between E262 and D264 with R527 which mediates 

the channel's activation. It was thus hypothesised that the HELEXDIEPFK loop and 

the KTN domain interact to regulate the protein through salt bridge connections. An 

X-ray crystalography structure structure of the KTN domain exists already [91]. A 

structure of the HELEXDIEPFK loop could be used to model the binding of these two 

regulatory features. 
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4.3 Resonance Assignment 

11) proton spectra of each polypeptide are shown in Figure 4.1. These revealed im-

purities in each sample which can be more easily seen in Figure 4.2. Although the 

impurities did not affect the assignment, they did impede the search for non-sequential 

NOE crosspeaks, as explained below. The 11) spectra were also very similar. Indeed, 

the chemical shifts for equivalent residues were generally within 0.05 ppm of each other 

between the polypeptides, with the exeption of the proline and the N-terminal residues. 

Assignment was carried out according to the method described in section 2.5. The 

assignment of each polypeptide was carried out to completion, with a few exceptions 

described below. Because the chemical shifts for equivalent residues were so similar 

assignment was relatively easy once one of the polypeptides had been fully assigned. 

An assigned amide region of a 11) spectrum for each polypeptide, showing the positions 

of each backbone H  chemical shift, is shown in Figure 4.2. 

All the serine and tyrosine residues were fully assigned apart from their OH groups 

(the H for serine and the H' 1  for threonine) which are rarely assigned. All the lysine 

residues were missing their H nuclei chemical sifts. For all the arginines the guani-

dinium resonances were unassigned. Finally, the histidines H259 were all missing their 

H 1  and H 2  assignments. 

4.4 Analysis of the NMR Data 

After the four polypeptides had been assigned, the NMR data was analysed in a search 

for evidence of secondary structure elements within them. This was done in three dif-

ferent ways: analysis of the chemical shifts; analysis of JHNHO coupling constants; and 

examination of 2D NOESY spectra. 

The ramdom coil values were taken from a table in 'NMR of Proteins and Nucleic 

Acids', page 17 [92]. These values were recorded using a tetrapeptide GGXA, where X 

was the residue whose shifts were to be measured. The samples of tetrapeptide were 
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Figure 4.1: Comparison of the 800 MHz 1D proton spectra from each of the four 
polypeptides. 
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Figure 4.2: Comparison of the amide region of 1D proton spectra from each of the 
polypeptides, showing the assignments for the backbone HN  resonances. Impurities 
of < 10% of the main signals can be seen in all the samples. (A) Ha122; (B) Ha120; 
(C) Dik; (D) Hel. 
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recorded at pH 7.0, 37 °C. The results of the comparison are shown in Figure 4.4. The 

backbone amide chemical shifts were not used for comparison as these are strongly 

affected by pH differences. 

The 1D spectra collected for each sample were of sufficient quality to see splitting 

of the backbone 11N peaks. This splitting is due to J-coupling with the backbone H 

nuclei. The magnitude of the JHNH coupling is related to the 0 dihedral angle of the 

peptide bond. In c-helices and J3-sheets the dihedral angles adopt certain orientations 

producing characteristic JHNH coupling values, as summarized in Table 4.2. 

Secondary Structure q5/degrees 3 JH,H 

Antiparrallel 0-sheet -139 8.9 
Parrallel 0-sheet -119 9.7 

c-helix -57 3.9 

Table 4.2: Parameters for regular secondary structures of proteins. Adapted from 
NMR of Macromolecules, p.68  [66] 

Therefore the JHNHC coupling constants were measured for those residues which were 

free of overlap. Glycine residues, where the extra H' produces additional splitting, 

were excluded. The results are summaries in Table 4.3. 

The NOESY spectra were also used to search for evidence of secondary or tertiary struc-

ture in the polypeptides (Fig 4.3. If two resonances in non-sequential residues produced 

an NOESY crosspeak this would mean that the residues were within 6 A of each other. 

This would not be the case if the residues were part of an unstructured section of 

the polypeptide. Therefore the NOESY spectrum for each polypeptide was examined 

to check for non-sequential NOE crosspeaks. The impurities present in each sample 

complicated this analysis, but careful examination did not yield any non-sequential 

NOESY crosspeaks. 

The chemical shifts were also compared between the four polypeptides to see if the 

differences between the native and mutant sequences could lead to differences in any 



Residue JHNH 

(Hz) 
Residue JHNHO 

(Hz) 
Residue JHNH 

(Hz) 
Residue JHNHQ 

(Hz) 

Ha122 - Ha120 - Dik - Hel  

252Ala 6.6 - - - - - - - - - 

253Ala 5.1 253Ala 5.1 253Ala 5.1 253Ala 5.3 
254Ser - 254Ser 5.9 254Ser 5.9 254Ser 6.3 
255Ser - 255Ser 5.9 255Ser - 255Ser 6.5 
256Glu 6.2 256Glu 6.2 256Glu - 256Glu 6.5 
257Tyr 7.3 257Tyr 6.2 257Tyr 7.0 257Tyr 6.7 
258Arg 7.0 258Arg 6.2 258Arg 7.0 258Arg 6.2 
25911is - 25911is - 259His - 259His - 

260Ala - 260Ala 6.2 260Ala - 260G1u 6.2 

26lLeu 6.2 26lLeu 6.2 26lLeu - 261Leu 6.2 

262Glu - 262Glu - 262Glu 7.3 262Glu 6.7 
263Ser - 263Ser - 263Ser 6.2 263Ser - 

264Asp - 264Asp - 264Asp - 264Ala 5.9 
26511e 6.6 26511e 8.1 26511e 8.1 26511e - 

266Glu - 266Glu - 266Ala - 266Asp 7.5 
268Phe - 268Phe - 268Phe 6.2 18Phe - 

269Lys - 269Lys 7.0 269Lys 7.7 269Lys 6.7' 
271Leu - 271Leu 7.7 27lLeu 8.1 271Leu 7.5 
272Leu -. - - - - - - 

Table 4.3: JHNHC  for each polypeptide as measured from 1D proton spectra were possible. The first residue for each polypeptide, as well 
as the proline and glycine residues, are not included as their couplings could not be measured. 
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Figure 4.3: NOESY spectra for all four polypeptides. 
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Figure 4.4: Chemical shift comparison between the polypeptides and random coil 
chemical shifts. For each polypeptide, the equivalent random coil chemical shifts 
were subtracted from the Hal polypeptide chemical shifts. (A) Ha122; (B) Ha120; 
(C) Dik; (D) Hel. 
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Figure 4.5: Chemical shift comparison between the four polypeptides. (A) Ha120-
Ha122; (B) Ha120-Hel; (C) Ha120-Dik; (D) Ha122-Hel (E) Ha122-Dik (F) Hel-Dik. 
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secondary structure. Comparison of the chemical shifts between the four polypeptides 

is given in Figure 4.5. 

4.5 Discussion 

With few exceptions, no differences larger then 0.2 ppm could be seen between any of 

the chemical shifts for the polypeptides and the random coil values. The exceptions 

were the proline residues and the N-terminal residues. However, overall there was not 

enough of a difference to suggest any secondary structural elements in the polypep-

tides. The small differences observed were most likely due to the difference in the pH 

of the sample and the reference peptides. 

The measured JHNH  lay in between 5.1 and 8.1 Hz. These values indicate an ab-

scence of a-helices and fl-sheets and are typical for random coil peptides. Along with 

the lack of non-sequential NOESY crosspeaks, this provided further evidence that the 

polypeptides were unstructured. 

Comparisons of the chemical shifts between the different polypeptides yielded chemical 

shift changes only at, or immeadiately next to, the mutated residues. In Figure 4.5, 

Ha120 and Ha122 show no significant chemical shift changes. This is not surprising as 

the two polypeptides have almost exactly the same structure. For comparisons between 

the native Hal sequence and both Hel and Dik, significant differences in chemical shifts 

are restricted to the mutations present in Hel and Dik and their surrounding residues. 

In conclusion, the NMR data provided no evidence that the polypeptides contained any 

secondary or tertiary structural elements. In fact, the lack of non-sequential NOESY 

peaks, the recorded JHNH  and the lack of significant deviation from random coil 

chemical shift values strongly indicated that the polypeptides were unstructured. This 

is not completely unexpected as the sequences where part of the loop in the native 

KefC protein. Without the support of the rest of the protein these did not fold by 

themselves as suggested by molecular modeling [931. 
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The HELEXDIEPFK loop and the KTN domain are hypothesized to interact via salt 

bridges. These salt bridges, if they exist, would be enough to hold the HELEXDIEPFK 

loop in a specific conformation just as hydrogen bonds hold elements of secondary struc-

ture together. To examine this, 15 N or 13 C edited NMR spectra could be acquired on 

' 5 N or 13  labeled polypeptides in the presence of an unlabeled sample of the KTN do-

main. This would allow the HELEXDIEPFK loop to be examined on its own through 

the edited spectra, without the additional resonances of the KTN domain crowding 

the spectra. 



Chapter 5 

Structural Determinaton of 
fH-13: The Unlabelled and 
15N-labeled Samples 

5.1 Attempts at the Purification of fH-13-14 

Prior to the work on the single fl-1- 13 module, the focus of the project was on a Pichia 

pastoris clone overexpressing fH-13-14 (K753-V865), produced by Ursula Lodge (Uni-

versity of Edinburgh). The fH- 13-14 clone was based on the plasmid KM71 pPICzo, 

however ifi- 13-14 had yet to be successfully purified. 

In order to determine the most suitable method of purification, the clone was cul-

tured in a fermenter as described in Section 3.1.1. The protein was not visible on an 

SDS-PAGE gel before incubation at 37 °C for two hours in the presence of the enzyme 

Endo Hf (New England Biolabs, product code P0703L). This enzyme removes all but 

one of the carbohydrate residues from the protein, leaving a GluNac residue. Once this 

had been carried out, samples of the raw supernatant could be run on SDS-PAGE. This 

produced bands of protein that migrated to between the 6.5 and 16.5 kDa markers. 

This was evidence that the fF1- 13-14 protein was N-glycosylated prior to treatment 

with Endo HE However, not one but three protein bands were visible after Comassie-

blue staining, suggesting the fH- 13-14 protein construct was undergoing degradation. 

84 
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5.1.1 Determining the Point of Degradaton of fH-13-14 

In order to assess the stage during production at which this apparent degradation 

occurred an expression study was undertaken. The following procedure was carried 

out on both the transformed strain of Piehia pastoris and on an untransformed con-

trol strain. The yeast were streaked onto YPD-Agar plates with added Zeocin to 100 

ig/ml. The plates were incubated at 30 °C for approximately four days. A single 

large, isolated colony was then used to inoculate 10 ml of BMG (the recipe for BMG 

is given in Table 3.1). This was then incubated at 30 °C for approximately two days. 

The 10 ml of BMG was then used to inoculate a further 90 ml of BMG. This was 

incubated for one day at 30 °C. After incubation, 25 ml of the inoculated BMG was 

added to a further 225 ml of fresh BMG and this was incubated for a further two days 

at 30 °C. The inoculated BMG was then centrifuged at 1,500 rpm (390 g) for 5 mm. 

The supernatant was discarded, and the pellet of cells was resuspended in 200 ml of 

BMM. This media contained methanol instead of glycerol, and since protein produc-

tion is under the control of a methanol-inducible promoter, the resuspension in BMM 

resulted in induction of the cells for protein expression. 

The inoculated BMM was then incubated at 28 °C. Approximately every 24 hours 

after induction a 15 ml sample of supernatant was taken from the inoculated BMM. 

These samples were frozen in liquid nitrogen after extraction and kept at -80 °C until 

they could all be loaded on to a SDS-PAGE gel together. Samples from the untrans-

formed control strain (data not shown) were collected and treated using the same 

method as those from the transformed strain. The control gel served to show the po-

sitions of protein bands arising from the host cell. 

Samples were collected at 23, 49, 71 and 95 hours after induction. The supernatant 

collected at each time-point was split into four samples of 0.5 ml each for individual 

preparation. These are labeled on the gel in Figure 5.1 as samples 1-4 for each time-

point. The supernatant in sample 1 was kept at 4 °C for 2.5 hours. The supernatant 

in sample 2 was incubated at 37 °C for two hours to simulate the effects of Endo Hf 

treatment in the absence of Endo Hf. For sample 3, Endo Hf was added to the super- 
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Figure 5.1: SDS-PAGE showing the results of the experiment to monitor the degra-
dation of the ff1- 13-14 protein. Four samples of supernatant were taken during the 
course of the experiment at 23, 49, 71 and 95 hours after induction. The supernatant 
was filtered and kept at -80 °C prior to preparation for the gel; 0.5 ml of filtered 
supernatant was used per lane. For each time point there are in turn four lanes (1) 
supernatant kept at 4 ° C for 2.5 hours (2) supernatant incubated at 37 ° C for 2 
hours (3) Endo Hf added to supernatant then incubated at 37 °C for two hours (4) 
Endo Hf, PMSF and EDTA added to supernatant then incubated at 37 ° C for two 
hours. There are also two lanes of protein marker, labeled (M). The protein marker 
used was the New England Biolabs Broad Range Prestained Protein Marker P7708S 

natant then incubated at 37 ° C for two hours. An aliquot of this Endo Hf solution 

was used for samples at time points 23-71 h, while 3 pl was used for samples at 95 h 

as considerably more protein was found in this sample. For sample 4, Endo Hf. PMSF 

(to 0.5 mM) and EDTA (to 5.0 mM) were all added to the supernatant then incubated 

at 37 °C for two hours. The inclusion of PMSF and EDTA in sample 4 was designed 

to prevent protein degradation by proteases that could occur due to the raised tem-

perature during Endo Hf treatment. 

Thus a comparison between the different time-points should indicate whether pro-

tein degradation was occurring during protein expression, and if so at what point after 

induction. Furthermore, a comparison amongst samples 3-4 should determine whether 

protein degradation was occurring during Endo Hf incubation instead of or as well as 

during protein expression. 

The results shown in Figure 5.1 demonstrate that Endo Hf treatment is required for 
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the expressed protein to be visible on the gel at the expected point, as no protein can 

be seen in columns 1 and 2. This suggests that the protein is heterogeneously gly-

cosylated, producing a range of glycoproteins of various molecular weights. However, 

three distinct bands can be seen between the 6.5 and 16.5 kDa markers at all points 

after Endo Hf treatment. Therefore it was concluded that the protein was undergoing 

significant degrading during the entire expression phase, and no significant degradation 

was occuring during Endo Hf treatment. 

Various protein purification columns were tried to separate out the three bands, as 

outlined below. As an initial purification step (to clean the sample before FLPC) 

various methods were tried. A hydrophobic interaction column (HIC) under gravity 

flow was tried at binding buffer (NH4)2SO4 concentrations from 1-2 M (Fig 5.2A). 

Also a cation exchange column under gravity flow between pH 4.5-6.0 was also tried 

(Fig 5.3A). However, the protein still appeared on SDS-PAGE as three separate bands. 

After the initial gravity flow purification step, the protein needed to be deglycosy-

lated using Endo Hf before FPLC. A concanavalin A column was used to remove sugar 

residues from the solution. The solution was then tested through a variety of FPLC 

columns. 

For the products of the HIC gravity flow column, cation exchange at pH 5 (Fig 5.213) 

and pH 6 (Fig 5.2C) aswell as reversed phase (Fig 5.2D) were tried but none achieved 

band separation. For the products of the CIE gravity flow column, the following were 

tried (in order of increasing hydrophobicity): ethyl HIC (Fig 5.313); isopropanol HIC 

(Fig 5.3C); and a phenyl HIC(Fig 5.3D) were tried. However, none of these meth-

ods achieved band separation. It was thus decided to focus the project on the newly 

available single module fH-13 sample produced by Claire Egan. 

5.2 Sample Optimization 

Claire Egan performed the cloning, fermentation and purification of both unlabeled 

and 15N-labeled samples of fH- 13, details of which can be found in section 3.1. Claire 
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Figure 5.2: Chromatograms from the attempts to purify fH- 13-14. (A) Results 
from the gravity flow HIC column at binding buffer (NH4)2SO4 concentrations from 
1-2 M. (B) Products from the gravity flow HIC column put through an FPLC CIE 
column at pH 5.0 after deglycosylation. (C) Products from the gravity flow HIC 
column put through an FPLC CIE column at pH 6.0 after deglycosylation. (D) 
Products from the gravity flow HIC column put through an FPLC reversed phase 
column after deglycosylation. 
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(A) 
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Figure 5.3: Chromatograms from the attempts to purify fH- 13-14. (A) Results from 
the gravity flow CIE column at buffer pH 4.5-6.0. (B) Products from the gravity 
flow CIE column put through an FPLC ethyl HIC column after deglycosylation. (C) 
Products from the gravity flow CIE column put through an FPLC isopropanol HIC 
column after deglycosylation. (D) Products from the gravity flow CIE column put 
through an FPLC phenyl HIC column after deglycosylation. 
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Egan also validated the sample was fIT- 13 by mass spectrometry (data not shown). It 

had a sequence of AEAAG KCKSSNLII LEEHLKNKKE FDHNSNIRYR CRGKEG-

WIHT VCINGRWDPE VNCS (determined from the NMR assignment) corresponding 

to residues K752-S804 of fH with a five residue secretion signal peptide at the N-

terminus. The samples were then handed to me for the NMR studies. 

The initial unlabeled fH- 13 NMR sample was used to determine the best conditions 

for running the NMR experiments. The PH,  salt concentration and temperature were 

optimized by recording 1D proton spectra. The recorded spectra were examined to see 

under which conditions the protien was gave the best quality spectra. The efficiency 

of TOCSY transfer was also checked under various sample conditions. A poor transfer 

efficiency would indicate dynamics between folded and unfolded states or the aggrega-

tion of the protein sample. 1D TOCSY spectra were therefore acquired to see which 

conditions gave the best TOCSY transfer. 

To determine how temperature would affect the sample of ff1- 13, 1D proton spec-

tra were recorded at two temperatures; 310 K and 288 K. For these experiments the 

sample conditions were 200 mM salt, pH 5.9 in 20 mM sodium phosphate buffer. The 

results of changing the sample temperature on the unlabeled sample of fH- 13 can be 

seen from Figure 5.4. There was no significant difference in the 1D proton spectra. 1D 

proton TOCSY spectra were also acquired at the two temperatures, with the magneti-

zation transfer starting in the methyl region. Again, there was no significant difference 

in TOCSY transfer between the two different temperatures. 

To determine the optimum pH for fH- 13, 1D proton spectra were recorded between 

pH 4.3 and pH 6.5. The sample conditions were 310 K and 10 mM sodium phosphate 

buffer. Although the lower pH samples were slightly outside the sodium phosphate 

buffer range, the sample pH were measured before acquisition of the spectra. The 

resulting spectra can be seen in Figure 5.5. The peak dispersion is seen to increase 

with increasing pH. This is particularly noticeable in the methyl region (Figure 5.5 

(B)) where CH3 peaks in the 0.4 to 0.6 ppm region moved to a higher ppm at pH 3.5 

indicating protein unfolding. The TOCSY transfer also improved dramatically with 
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Figure 5.4: Effects of changes in temperature on a sample of unlabeled fIT- 13. The 
top spectra were taken at 298 K and the lower spectra were taken at 310 K. (A) 
1D proton NMR spectra with a water suppression using the double pulsed field 
gradient spin-echo (DPFGSE). (B) 1D proton TOCSY spectra with the selective 
TOCSY spin lock pulse for protons in the methyl region (0.5 ppm±1.5 ppm). There 
appeared to be no significant difference between the two temperatures. 

increasing pH (Figure 5.5 (C)): below pH 4.0 very little magnetization reaches the 

backbone NH protons. It was therefore decided to determine the structure of ff1- 13 at 

pH 6.0 and a 15N labeled sample was used for assignment. 

Samples of protein can aggregate and also precipitate in low salt solutions. Increasing 

the salt concentration can help prevent aggregation and improve the quality of the 

NMR spectra. To determine whether increasing the salt concentration would improve 

the quality of the sample, 1D proton spectra were recorded between 0 mM and 200 

mM sodium chloride. The sample buffer used was 20 mM sodium phosphate buffer at 

pH 6.1. The pH changed gradually from pH 6.1 to pH 5.9 with increasing additions 

of sodium chloride, while the experiments were all recorded at 310 K. The recorded 

spectra can been seen in Figure 5.7. Varying the salt concentration made no significant 

difference to the quality of the spectra, and so no additional salt was added to the 15 N 

sample which was used for these studies. This maximizes the sensitivity of the NMR ex- 
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Figure 5.5: Effects of changes in pH on a sample of unlabeled fH- 13. (A) A series of 
1D proton NMR spectra with a DPFGSE used for water suppression. (B) Expansion 
of the methyl region of the spectra. (C) A series of 1D proton TOCSY spectra with 
the selective TOCSY transfer from protons at 0.5 ppm + 1.5 ppm (the methyl region 
of the spectrum) 
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periments as the addition of salt is detremental, particularly with regard to cryoprobes. 

Experiments for 'H and' 5N assignment were recorded at 310 K and assignment was 

carried out at this tcmperaturc initially. However, it became apparent during assign-

ment that certain backbone NH peaks were missing from the ' 5N, 'H HSQC. Therefore 

a series of ' 5N, 1 H HSQCs were taken between 310 K and 288 K. It was at 288 K that 

the most additional peaks were observed (see Fig 5.6). 

	

• 	
110.0 

	

. 	 ... 	 Figure 5.6: Effects of 
changes in temperature 

	

115.0 
• 	 '-"  

on a sample of 15  N la- 

	

f 	
" 	

. 	 beled fl-1-13. Two 15 N, 

. 	4 

 
15N(ppm) 'H HSQCs were taken 

•• of 	e 	 at different tempera- 

	

°' 
: ' 	

120.0 	
tures; 310 K (black) and 

	

• lot 
sI • , 	 288 K (purple). Addi- 

tional peaks (circled in 
0•• 	 125.0 	red) were seen at 288 

-,.. .....
K that were not seen at 
310K. 

9.0 	8.0 	7.0 	'H (ppm) 

As assignments had already been made at 310 K, a series of 15 N, 1 H HSQCs at tempera-

tures between 310 K and 288 K were recorded. These were used to transfer assignments 

from the spectra recorded at 310 K to the new spectra recorded at 288 K. Following the 

assignment of NH resonances at this new temperature, experiments for 'H assignment 

were re-recorded at 288 K. The appearence of new peaks at the lower temperature 

could be attributed to the slowing down of ms timescale dynamic processes in the 

protein. Two backbone NH crosspeaks became visible at the lower temperature (1759 

and H764). 
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Figure 5.7: Effects of changes in salt concentration (NaCl) on a sample of unla-
beled fH- 13. (A) A series of 1D proton NMR spectra with a DPFGSE for water 
suppression. (B) Expansion of the NH region of the spectra shown in A. 
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5.3 Resonance Assignment 

A full list of resonance assignments from the unlabelled and 15 N-laheled fH- 13 samples 

can be found in Appendix B. 

5.3.1 Backbone Assignment 

The backbone assignment was carried out using the method outlined in section 2.5.4. 

Where they existed, high intensity NOESY crosspeaks from H of residue (i—i) to the 

HN of residue (i) were used to link sequential residues. An example of five residues 

linked by this method is shown in Figure 5.8. Using this method the backbone of fH- 13 

was assigned to near completion. 

11789 	 1790 	 V791 

123.2 	 119.1 	 125.4 

8.33 	 8.56 	 8.20 

C792 	 1793 

125.5 	 132.5 N Shift (ppm) 
Amide Prnton 

g.60 	 9.20 
Shift (ppm) 

Figure 5.8: Five strips from the 15 N-cdited 3D TOCSY overlayed with the cor-
responding ' 5N-edited 3D NOESY strips for the residues H789-1793. 15N-edited 
3D TOCSY peaks are coloured green (positive) and blue (negative). 15 N-editcd 
3D NOESY crosspeaks are coloured black (positive) and red (negative). Strong 
NOESY crosspeaks between the H' of residue of residue (i) and the H of residue 
(i-i) suggests these are sequential residues. The N-H' strips of 1793 were aliased in 
the 15 N edited spectra and so its crosspeaks appear negative in these spectra. An 
explanation of aliasing is given in section 5.3.1. 
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Figure 5.9 shows a '5 N, 'H-HSQC with the assigned NH crosspeaks. Peaks with res-

onance frequencies beyond the sampled 15N region are shown as aliased peaks. The 

spectra were aqcuired by setting the first sample point in the ' 5 N dimension to one-half 

of the dwell time. For the folded peaks, each folding changes the phase of the peak 

by 1800.  Therefore, if a peak is folded once, it has a negative shift; if a peak is folded 

twice, it has a positive shift. The true chemical shifts of aliased peaks can been found 

in Appendix A. 
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Figure 5.9: 15 N, 1 H-HSQC of fH-13. This was aquired using a 600 MHz Bruker 
NMR spectrometer with a cryoprobe. Positive peaks are black. Negative peaks are 
red. There is an unexplained peak at r123 ppm by 9.6 ppm in the 15N,'H HSQC. 
This peak produced no TOCSY, COSY or NOESY crosspcaks in any other spectra 
and therefore could not be assigned. 

The first two N-terminal residues of the cloning artifact (believed to be EAEAGA) 

did not yield crosspeaks in the 15 N,'H HSQC spectra. These two residues are part of 

the secretion signal peptide sequence a cloning artifact that ensured that the protein 

was secreted into the supernatant by Pichia pastoris after production in the cell. As 

this sequence was not part of the native fl-1- 13 it was thought these two residues could 

be unstructured and highly flexible. This was later proved not to be the case when 
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the 13 C, 15N labeled fH- 13 sample became available. The real reason why there are 

missing assignments for the signal secretion peptide is explained in section 6.2.1 

The backbone H  of D798 was also missing from the assignment. For this residue, 

no crosspeak for the HN  to HI interaction can be seen in the fingerprint region of any 

spectrum, nor can there be seen J-coupled crosspeaks from the H  of D798 to its H 

protons. The missing crosspeaks to H  to could be hidden under the water signal if 

the H  resonance overlaps with that of water. There is also an unexplained peak at 

123 ppm by n9.6 ppm in the 15N, 1 H HSQC. This peak produced no TOCSY, COSY 

or NOESY crosspeaks in any other spectra and therefore could not be assigned. 

5.3.2 Sidechain Assignment 

Using the method outlined in section 2.5 the assignment of fH- 13 was carried out to 

almost completion. Out of the 59 residues that made up the construct, 40 were fully 

assigned. The residues that had their sidechains fully assigned were E748-A751; C753; 

S755-E763; L765; N767; E770-D772; N774-N776; Y779; C781; G783; E785-G786; 1788; 

T790-G795; P799-S804. This list includes all the serine, threoine and tyrosine residues, 

which were fully assigned apart form their OH groups (the H' for serine and the H' 

for threonine) which are rarely assigned. 

All the lysine and arginine groups had unassigned terminal sidechain NH groups. These 

groups are normally exposed to water and the groups are ionisable so the protons are 

rarely observed. For the lysines (K752; K754; K766; K768; K769; and K784), this 

meant the N and H nuclei were unassigned. For the arginines (R778; R780; R782; 

and R796), the N and W nuclei were assigned in all residues except for in R782. 

However, the guanidinium protons were unassigned for all arginines. 

K769 also had its H6  and W protons were unassigned in the ' 5 N spectra. This was be-

cause its backbone N-H peak in the ' 5N HSQC overlapped with that of K754, E785 and 

R782 (see the boxed region of Figure 5.9). This meant that the sidechain resonances of 

K769 overlapped with those of these residues in both the homonuclear and 15 N-edited 

spectra to some extent. The K769, K754, E785 and R782 resonances were finally as- 
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signed almost completely using a double labeled sample and the H(C)(CO)NH-TOCSY 

spcectra (see sections 2.6.1 for the method and 6.2.2 for the assignment). 

The methyl group H 2  protons in 1777 were unassigned in the 15N spectra. There 

were no crosspeaks that could definitely belong to this group, suggesting their chem-

ical shift overlapped with another resonance. This was confirmed using 13 C-cditcd 

spectra (see section 6.2.2). 

The H,3  nuclei for both W787 and W797 were unassigned. Both H and the H" 

nuclei were also unassigned for W797 in the 15N spectra. These missing assignments 

were found using the 13 C15N-labeled sample of fH- 13 using the carbon spectra. The 

H and the H" assignments were missing as their resonances were incorrectly assigned 

to F771 aromatic resonances, as described in section 6.2.2. 

The histidines H764, H773, and H789 were all missing their H' and H 2  assignments 

in the 15 N spectra. 11764 was also missing its H 1  assignment in the 15N spectra. The 

H764 W' was later found using the 13C- 1 11 HSQCs of the aromatic region. Finally, 

the sidechain of E746 could also not be assigned. 

In total, 92.6% of the 15N and 'H nuclei in ff1- 13 were assigned using the ' 5 N spectra. 

These assignments are given in Appendix B. 

5.4 Non-NOE based Restraints 

5.4.1 Hydrogen Bonds 

To identify residues involved in hydrogen bonds a sample of ill- 13 that had previously 

been dissolved in H 2 0 was freeze dried before being dissolved in 99.9% D 2 0. A series 

of 'H- 15 N HSQCs were then acquired over the course of three hours. 

Thus those residues whose NH backbone protons were exposed to the new solvent 

exchanged their 1 11 with 2 D and disappeared from successive spectra over the range of 

time points taken. On the other hand, those NH groups which were protected from sol- 
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vent exchange by being engaged in hydrogen bonds retained their 'H and their protons 

were be present in the spectrum after the three hours. The assigned 1 11- 15N HSQC 

D20 spectrum acquired after three hours is shown in Figure 5.10. 

110.0 

0 .1793  

F- 115.0 

1777 

1- 

	

R780 	

R778 	F 'N (PPM) 
0 

Y779 o 	T790 	
120.0 

R796 
01760 

D798 
  V791 	 f- 125.0 

788 C792G 
W797 I- 

12.0 	11.0 	10.0 	9.0 	8.0 	70 	6.0 

'H (ppm) 

Figure 5.10: The 'H-' 5N HSQC acquired after 3 hours of 
exposure to D20. The peaks are assigned. 

Once the hydrogen atoms involved in hydrogen bonding had been identified, suitable 

binding partners were found by examining structures of fIT- 13 determined using NOE 

distance restraints alone. It was not always possible to find suitable binding partners, 

or the binding partner was ambiguous (ie. it could have been one of a number of other 

atoms). For those hydrogen atoms to which partners can be assigned the hydrogen 

bond was inputted as two distance restraints into CNS. These restraints are given in 

Table 5.1. 

The following H   atoms could not be matched with suitable hydrogen bonding part 
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HN Partner CO Partner 

1777 T790 
1788 Y779 
T790 1777 
C792 S775 
1793 R796 
R796 1793 
D798 V791 

Table 5.1: The hydrogen bond restraints 

ners, although shown to be protected from deuterium exchange: R778, Y779, R780, 

V791 and W797. 

5.4.2 Residual Dipolar Couplings 

Residual dipolar couplings were collected - for the backbone NH bonds only - by ac-

quiring two IPAP-HSQC experiments, one with the protein sample aligned and one in 

isotropic medium. In the IPAP experiment, two 1 11- 15 N HSQC spectra are acquired 

in an interleaved manner. The difference between the two data sets is that one pro-

duces 'H coupled crosspeaks that are in phase in the ' 5 N dimension while the other 

shows antiphase coupled peaks. Both spectra thus contain twice as many peaks as a 

regular 'H-' 5 N HSQC spectrum. This could lead to excessive peak overlap that would 

make the spectra difficult to analyse unambiguously. By adding or subtracting the two 

IPAP-HSQC spectra the peak numbers are halved, thus restoring the simplicity of the 

spectra to that of a regular 1 11- 15N HSQC spectrum. The 'H-' 5 N splitting can then be 

deduced from a comparison of the resonance frequencies of corresponding crosspeaks in 

the two edited spectra. This can be seen in Figure 5.11, where the difference between 

(A) and (E) represents the J + D coupling, and the difference between (B) and (D) 

represents the J coupling alone. 

After acquiring an IPAP experiment, the two interleaved 1 1-1- 15 N HSQC data sets were 

separated prior to processing in AZARA. The spectra were assigned in CCPN Analysis 

and the extracted J coupling and D coupling for the backbone HN bond are shown in 
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Table 5.2. 

Once the D couplings were calculated the error was estimated for both the J cou-

plings from the unaligned sample and the J + D couplings from the aligned sample by 

dividing the average linewidth at half height by the signal-to-noise ratio for the spec-

trum. For the unaligned IPAP spectrum the value was calculated to be 0.2 Hz, while 

for the aligned sample (which had broader linewidths and a considerably worse signal-

to-noise ratio) it was 2.0. An error of 2.0 Hz was therefore used for the RDC restraints. 

5.5 Structure Calculation and Analysis 

Structures were calculated using the method described in section 3.5. In total, 607 

unambiguous and 478 ambiguous NOE restraints were used in the calculation. It is 

worth noting that some of the ambiguous restraints will be represented more then once 

because there were ambiguous NOE restraints from 3 different spectra (homonuclear 

NOESY; ' 5N-edited 3D NOESY; and a homonuclear NOESY in D20). The unam-

biguous NOE restraints were put into classes based on the distance between the two 
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Residue J + D coupling J coupling D coupling 
C753 -96.4 -93.9 -2.5 
S755 -123.5 -93.3 -30.2 
S756 -92.8 -92.7 -0.1 
L758 -67.7 -93.1 25.4 
1760 -122.3 -92.3 -30.0 
E763 -84.0 -92.1 8.1 
11764 -110.2 -93.9 -16.3 
L765 -86.2 -92.3 6.0 
K766 -82.9 -93.0 10.0 
N767 -94.1 -93.6 -0.5 
K768 -96.1 -94.4 -1.7 
E770 -108.8 -92.4 -16.4 
D772 -97.6 -94.5 -3.1 
N774 -103.1 -92.9 -10.1 
S775 -92.8 -94.3 1.5 
1777 -118.3 -94.1 -24.2 
R778 -125.1 -91.5 -33.6 
Y779 -123.9 -93.9 -30.0 
R780 -123.2 -93.0 -30.2 
C781 -107.3 -93.3 -14.0 
G783 -110.7 -93.8 -16.9 
K784 -93.6 -93.9 0.4 
1788 -115.2 -92.5 -22.7 
T790 -122.5 -94.1 -28.4 
V791 -114.9 -93.6 -21.3 
1793 -85.5 -94.4 8.8 
N794 -94.8 -90.4 -4.3 
G795 -99.5 -93.1 -6.4 
R796 -80.5 -93.7 13.2 
W797 -88.4 -93.9 5.5 
D798 -108.7 -94.1 -14.6 
E800 -116.5 -93.3 -23.2 
V801 -88.7 -92.8 4.1 
C803 -90.6 -93.1 2.5 
S804 -76.5 -93.1 16.6 

Table 5.2: The values of ' 5N splittings for the backbone HN bond. as calculated from 
the acquired IPAP spectra. 
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restrained atoms in the primary sequence. Intra-residue NOE restraints occur be-

tween nuclei in the same residue; sequential NOE restraints between nuclei in adjacent 

residues; short-range NOE restraints between nuclei which are 2-4 residues apart; and 

long-range NOE restraints between nuclei which are more then 4 residues apart. Table 

5.3 shows the distribution of unambiguous NOE restraints within these classes. 

Restraint Type Number 

Total NOE restraints 1085 
Total Unambiguous NOEs 607 
Total Ambiguous NOEs 478 
For Unabiguous NOEs 
Intraresidue 308 
Sequential 195 
Medium Range, 2(i—j)4 54 
Long Range, 5 < (i - j) 113 
Total 607 

Table 5.3: NOE statistics for the 15N labeled sample of f11-13. The numbers for 
unambiguous restraints include only unique restraints. 

Two rounds of structure calculation were carried out in total, with 100 structures cal-

culated per round. Both unambiguous and ambiguous restraints were used from the 

beginning. The NOE restraints were analysed, filtered and checked after each round 

(as described in section 3.5.2). A plot of Enoe  and Etotai for each structure from the 

first round is shown in Figure 5.12. As can be seen from this plot, there was no clear 

sign of the structures having converged yet. The lack of convergence at this stage 

suggests that there may be many conformations of the protein in the lower energy 

structures. Therefore a broad selection of conformations needed to be taken for fil-

tering and checking. As can be seen in Figure 5.12, after the 63' d  structure the Enoe  

and Etøtaj increased at a steeper gradient then before indicating that conformations 

beyond this point were incorrect, and so this was chosen as a cut-off point. Therefore, 

after the first round of calculation, the 62 structures with the lowest Enoe  were used 

for further analysis. 

A plot of Enoe  and Etotai for each structure from the second round is shown in Figure 
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Figure 5.12: Total and 
NOE energy of struc- 
tures of fH-13 after 
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calculation, ordered by 

'I. 	 . their NOE energy. The • 	
'' - structures show little 

sign of convergence. 
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5.13. The first 86 structures appear to have converged, although there in an abrupt 

increase in E and Et,,w after the 70th  structure. Therefore, the 70 lowest energy 

structures by E were used for furtehr analysis. There was no significant improve-

ment in or E 00j after this round. Additional rounds of structure calculation were 

tried. However no improvement was made from these additional rounds of structure 

calculations with NOE restraints and H bonds alone. 
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Figure 5.13: Total and 

1$.  NOE energy of struc-
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two round of structure 
calculation, ordered 
by their NOE energy. 
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______________ 	---• 	- structure. 
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After this, the structures were refined using the RDC restraints before the final water 

refinement was undertaken (see section 3.5.4 for an explanation of these refinement 

steps). A plot of the E7  for each structure after water refinement is shown in Figure 

5.14. The first 20 structures appear to be converged, as after this the Etotaj increases 

at a steeper gradient as can be seen in Figure 5.14. Therefore the 20 structures with 

the lowest overall energy were selected. These are shown in Figure 5.15 
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Figure 5.15: 	Over- 
lay of 20 lowest 
structures of fH- 13. 
Only the backbone 
atom traces are shown, 
fitted to the coordinate 

( - Iemi,nus averaged structure (not 
shown). 	The hyper- 

Sirjnd4 	variable loop is labeled 
HV. 3-strands 4 and 6 
are labeled using the 
CCP module conven-
tion. The structures 
were generated using 
MOLMOL [94][95], 
which was also used to 
identify the secondary 
structure elements. 
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N-Terminus 

Various RMSD values (root mean square deviations) were calculated for this ensemble 

of structures. These are shown in Table 5.4 and Figure 5.16, the latter showing the 

RMSD of each residue for the ensemble. The RMSD values give an indication of how 

similar each structure in the ensemble is to each other. Backbone and all heavy atom 

RMSD values were calculated with and without the hypervariable loop (see section 

1. 1.4 for information on the hypervariable loop). The hypervariable loop was deter -

mined to be between residues 1760-K769 since the residues in this region had higher 

then average RMSD values. 
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Figure 5.16: 	Graph 
showing 	backbone 
RMSD of each residue 
in the ensemble of 
structures. 
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Residues Backbone RMSD Heavy atom RMSD 

K752-S804 
K752-E759, E770-S804 

1.060 
0.562 

1.887 
1.077 

Table 5.4: Bad bone atom and all heavy atom RMSD off-  13. The values are given 
for the entire native sequence and for the native sequence without the hypervariable 
loop. 

'*2 

Residue Number 

The backbone RMSD was low once the hypervariable loop was removed from the calcu-

lation, suggesting good convergence between structures. The Ramachandran statistics 

for these structures also suggest that the backbone structure stereochemistry was rea-

sonable once the hypervaribale loop was removed from the calculation. The results 

of the Ramachandran analysis of the ensemble is given in Table 5.5 (generated using 

PROCHECK [961) and a plot is shown in Figure 5.17 (generated using MOLMOL 

[94][951)- 

A good quality ensemble of structure would be expected to have over 90% of it's residues 

in the most favoured and additionally allowed regions of the plot. These structures 

just fall sort of this, even with the hypervariable loop removed from the calculations. 

The RMSD for the entire ensemble including all heavy atoms (not just the backbone 

atoms) is twice as high. This means that, while the backbone of the molecule shows 

good convergence throughout the ensemble, the residue side-chains do not converge as 

well. Therefore an attempt was made to improve the structure of M-13. A double 

labeled ( 13 C, 15N) sample was made in order to generate more NOE restraints with 



CHAPTER 5. FH-13: THE UNLABELLED AND ' 5N-LABELED SAMPLES 110 

Residue Type 	 }_Number Percentage] 

Without Reisudes 761-769 nor the precursor 
Residues in most favoured regions 428 56.3% 
Residues in additional allowed regions 241 31.7% 
Residues in generously allowed regions 64 8.4% 
Residues in disallowed regions 27 3.6% 
With residues 752-804 
Residues in most favoured regions 490 51.0% 
Residues in additional allowed regions 341 35.5% 
Residues in generously allowed regions 90 9.4% 
Residues in disallowed regions 39 4.1% 

Table 5.5: Ramachandran analysis of the residues in the ensemble of 20 lowest E 
energy structures of fl-1- 13. Calculated using PROCHECK [96]. 

 60 	2 c l8 

Figure 5.17: 	Ra- 
machandran plot of the 
20 lowest E energy 
structures of fH-13. 
Dots indicate a Glycinc 
residue, while crosses 
indicate each other 
residue. The colour 
changes from green, 
yellow, pink and white 
indicate decreasing 
favourability of re-
gions. The diagram was 
made using MOLMOL 
[94] [95]. 
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the hope that these additional restraints would improve both the side chain conver-

gence and the Ramachandran statistics. With the double-labeled sample it would be 

possible to record an 13 C-editcd 3D NOESY spectrum, which can be used to collect 

NOE restraints between sidechain atoms with a greater resolution and less ambiguity 

than is possible with a homonuclear 2D NOESY spectrum. It is not possible to collect 

sidechain to sidechain NOEs with an 15 N-edited spectrum beyond those residue whose 

side chains contain nitrogen. 



Chapter 6 

Structural Determinaton of 
EH-13: The 13 C, 15N-labeled 
fH-13 Sample 

6.1 Purification of The 13C  "N-labeled fH-13 Protein 

While the clone for the 13 C, 15N-labeled fl-I- 13 protein was prepared by Claire Egan, I 

undertook the fermentation and purification of this sample. The method of fermenta-

tion used is explained in section 3.1.1. The method for purification was broadly similar 

to that used for the previous samples, with changes outlined below. 

For the unlabeled and 15N-labeled samples, Claire Egan had first concentrated and 

buffer-exchanged the raw supernatant prior to the first stage of purification; gravity 

flow chromatography through SP-Sepharose at pH 5.0. 

In an attempt to speed up the purification process a new method was tested; that is 

to dilute the raw supernatant in binding buffer in order to lower the salt concentration 

prior to the first stage of purification. Previously, salt was removed from the super-

natant by first concentrating it to less then 100 ml, which is a lengthy process. This is 

a small enough volume to allow the concentrated supernatant to be buffer-exchanged 

into the appropriate binding buffer. By diluting the supernatant, the salt concen-

tration is lowered without the need for concentration or buffer-exchange, although the 

volume of the sample to be loaded onto the SP-Sepharose column is considerably bigger. 

111 
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To test whether diluted supernatant would bind to the SP-Sepharose beads three sam-

pies were prepared and labeled A, B and C. 

• Sample A consisted of 1 ml of raw supernatant; 5 ml of 20 mM potassium phos-

phate buffer, pH 5.0 (the binding buffer for the SP-Sepharose column); and 1 ml 

of washed SP-Sepharose beads. 

Sample B consisted of 1 ml of raw supernatant; 5 ml of 20 mM potassium phos-

phate buffer, pH 5.0, with 1 M sodium chloride (the eluting buffer for the SF-

Sephaorse column); and 1 ml of washed SP-Sepharose beads. 

Sample C consisted of 1 ml of raw supernatant and 5 ml of distilled water, thus 

acting as a control and a reference. 

The samples A, B and C were all run on SDS-PAGE, with samples A and B run both 

with and without SP-Sepharose beads. The results are shown in Figure 6.1. For sample 

A, a protein around 6.5 kDa has stuck to the beads in the presence of binding buffer 

(Figure 6.1 (ii) lane A) while it is virtually absent in the surounding buffer (Figure 6.1 

lane A). For sample B, a protein around 6.5 kDa is present in the eluting buffer 

(Figure 6.1 (i) lane B) but is no longer stuck to the SP-Sepharose beads (Figure 6.1 

lane B). Thus the gels demonstrated that protein of mass 6.5 kDa stuck to the 

SP-Sepharose beads in the presence of the binding buffer, and is eluted in the presence 

of eluting buffer. 

Thus, the 0.5 liters raw supernatant was diluted with 3.5 liters of distilled water. This 

was then passed through (under gravity flow) a column of 3.5 ml of SP-Sepharose 

beads in a 1.13 cm diameter column, with a slow flow rate of 1ml/min. The through-

flow from the column had an average 0D280 reading of 0.332, as very little protein had 

stuck to the column. After passing the diluted supernatant through the column, 10 ml 

of eluting buffer was passed through the column and an 0D280 reading of the eluant 

was determined to be 0.718. Samples of the through-flow and the eluant were both 

run on a SDS-PAGE, the results of which are shown in Figure 6.2. 
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Figure 6.1: SDS-PAGE showing the results of the test of the dilution method for 
the SP-Sepharose gravity flow column. For (i), 300 pl of each sample was TCA 
precipitated for the gel. Samples A and B did not contain SP-Sepharose beads from 
their samples as the beads had been spin-out. Therefore only the surrounding buffer, 
and any protein not stuck to the beads, was loaded onto these lanes. For gel (ii), 15 il 
of SP-Sepharose beads from both samples A and B were washed in their respective 
dilution buffers to ensure only protein that had stuck to the SP-Sepharose beads 
would be present on the gel. Again, 300 kil of Sample C was TCA precipitated for 
this gel. On both gels (i) and (ii), the samples on the gel are marked as follows:(M) 
Marker; (A) sample A; (B) sample B; (C) sample C. The protein molecular weight 
marker used was the New England Biolabs Broad Range Prestained Protein Marker 
P7708C 

Figure 6.2: SDS-PAGE showing the prod- 
1 2 3 ucts of the gravity flow SP-Sepharose col-

umn. The order of samples on the gel are 
found in lanes: (1) imi of column flow 

16.5 kDa 	 through (TCA precipitated); (2) protein 
6.50 kDa 	 marker; (3) 50,al of column clution. The 

protein marker used was the New England 
Biolabs Broad Range Prestained Protein 
Marker P7708S 

As the 0D280 readings demonstrate, only a small amount of protein had hound to 

the column, leaving a lot of protein still in the flow through. This was unfortunate 

but could not have been predicted from the gels in Figure 6.2. SP-Sepharose has a 

binding capacity of 120 mg of BSA per ml of gel (quoted from the Sigma Aldrich 

information booklet for SP-Sepharose), therefore unless there were large amounts of 

yeast protein in the supernatant, the column was unlikely to he overloaded. Diluting 

the flow through further and lowering the pH were both measures that could be taken 

to try and increase binding of the protein to the column. 

Therefore, the 4.2 liters of flow through from the SP-Sepharosc column was further 



CHAPTER 6. FH-13: THE 13 C, 15 N-LABELED FH-13 SAMPLE 	 114 

diluted with 1666 ml of distilled water and 320 ml of 0.2 M potassium phosphate. The 

flow through passed back through the gravity-flow SP-Sepharose column twice more. 

Protein was eluted from the column via 8 ml of eluting buffer after each passing. The 

0D280  readings of each 8m1 batch was 0.404 and 0.355. This enabled enough protein 

to be extracted from the diluted supernatant for an NMR sample. 
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US 

US 
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Figure 6.3: An FPLC trace of the 13 C labeled sample of fH- 13 injected onto a 
porous heparin column. A subsequent salt gradient was used to clute the protein 
from the column, reaching a maximum salt concentration of 1 M. The 0D280 trace is 
shown in blue and the conductivity (directly proportional to the salt concentration) 
is shown in brown. The sample was injected at 0 ml. Three separate species can be 
seen eluting from the column. These fractions were labeled 1, 2 and 3 in the order 
of their elution. The first fraction was confirmed to be LH- 13. 

For the final purification step, the elutions from the gravity-flow SP-sepharose column 

were diluted with 20 mM potassium phosphate buffer pH 5.0, with one part cluant to 

five parts buffer (to dilute the sodium chloride in the eluant). The diluted cluant was 

then put through a 1 ml porous heparin column using FPLC. 4.5 ml of diluted eluant 

was injected onto the column at a time as this was the size of the largest loop available. 

This required 29 injections for all the diluted eluant to pass through the column. The 

protein was then cluted from the column using a gradient of 20 mM potassium phos-

phate buffer pH 5.0 with 0-1 M sodium chloride. Three separate species were observed 
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eluting from the column (see Figure 6.3. These were collected separately and labeled 

fractions 1, 2 and 3 in the order they eluted from the column. The three fractions 

were run on SDS-PAGE, the results of which can be seen in Figure 6.4. From this it 

was determined that fraction 1 was most likely to be fH- 13. In total, the three batchs 

of cluent from the SP Sepharose column (130 ml after dilution) were put through the 

porous heparin column using FPLC, generating 143 ml of faction 1. 

I I - 	3 	4 	
Figure 6.4: SDS-PAGE showing products 

 of the FPLC porous heparin column. The 
samples on the column are found in lanes; 
(M) protein marker; (1) 1 ml of column 
through-flow; (2) 1 ml of fraction 1; (3) 

16.5 kDa 	 1 ml of fraction 2; (4) 1 ml of fraction 

6.50 Wa As 	
3. The protein marker used was the New 
England Biolabs Broad Range Prestained 
Protein Marker P7708S 

For the initial NMR sample, the 143 ml of fraction 1 (with an average 0D280 of 0.020) 

were buffer exchanged into 20 mM sodium phosphate buffer, pH 6.0 with 10% (w/v) 

D20, and concentrated to 350 pl. Sodium Azide was added to 0.01%. The 0D 280 

reading for the final sample was 1.643, and from this the concentration of fF1- 13 was 

determined to be 0.130 mM. The sample was placed in a Shigami tube. The sample 

purity was confirmed by SDS-PAGE (Figure 6.5) and a 1D 'H NMR spectrum (data 

not shown). 

16.5 kDa 

6.50 kDa 

Figure 6.5: SDS-PAGE showing the initial 
NMR sample used, the left lane being the 
protein marker and the right being 10il 
of NMR sample. The protein molecular 
weight marker used was the New England 
Biolabs Broad Range Prestained Protein 
Marker P7708S 

6.2 Assignment 

Ten NMR experiments were acquired in total for the assignment of the 13 C 7 15 N- 

labeled sample of fH- 13. These were: CBCANH and CBCA(CO)NH experiments 
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for backbone assignment; H(C) (CO)NH-TOCSY, (H)C (CO)NH-TOCSY and HCCH-

TOCSY experiments for side-chain assignment; 1 H- 13 C HSQC, 'H- 13 C CT-HSQC, 

(HB)CB(CGCD)HD and (HB)CB(CGCDCE)HE experiments for aromatic residue as-

signment; and an 13 C NOESY-HSQC for assignment assistance and restraint genera-

tion. The uses of these experiments is described in detail in section 2.6.1. 

These spectra were also used to find previously unassigned 'H and 15N resonances 

and identify any assignments which may have been incorrectly assigned using only the 

unlabeled and the ' 5N-labeled samples. The sample conditions used for the double-

labeled sample were the same as those used for the labeled and 15N-labeled samples. 

A full list of resonance assignments from the 13 C, 15N-labeled fH- 13 samples can be 

found in Appendix C. 

6.2.1 Backbone Assignments 

As the H   and  NH  nuclei had already been assigned for most residues, only the back-

bone carbon nuclei needed assignment. This could be achieved by sequential walking 

using only the CBCANH and CBCA(CO)NH spectra, whereas without the previous as-

signments more spectra would have been required. Assignments were further checked 

using the (H)C(CO)NH-TOCSY and HCCH-TOCSY spectra. The number of side 

chain resonances identified in these experiments served to confirm the identity of the 

assigned residues. This method is described in detail in section 2.6.1. Figure 6.6 shows 

the assignment trail of the fH- 13 backbone through the CBCANH and CBCA(CO)NH 

spectra. By this method the C and 0 3  nuclei were assigned for all residues with no 

exceptions. The backbone CO resonances could not be assigned as they have no at-

tached proton. 

As proline has no H   proton there was a break in the sequential walk where the proline 

residue occurred. However, just as it was possible to assign the S804 CI and 03  nuclei 

with no subsequent residue, it was possible to assign D798. The process of sequential 

walking is described in section 2.6.1. 

As the backbone assignment approached the N-terminus discrepancies arose between 
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Figure 6.6: CBCANH and CBCA(CO)NH strips for fR- 13 with sequential walk 

through the backbone for all residues except P799, which has no H' proton and 

so no strip in these spectra. In the CBCA(CO)NH spectrum (blue peaks), the H' 

strip shows the CO and Cc ,  nuclei of residue (i -1). The CBCANH spectrum (purple 

positive peaks; orange negative peaks) shows these peaks and also the CO and 
ca 

nuclei of residue (i). 
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the DNA sequence as supplied by Claire Egan and the NMR data. The sequence of 

residues for the secretion signal peptide is generally EAGA, sometimes preceded by an 

additional EA. Using Lite ' 5N labeled sample, this signal sequence had been assigned 

AEAGA. The NOESY data from both homonuclear and '5N edited spectra did not 

disagree with this assignment. NOE crosspeaks could be see from the H   of residue 

(i,) to the HI of residue ('i-l) for all residues in this sequence. However, the 13 

spectra did disagree with this assignment. Sequential walk using the CBCANH and 

CBCA(CO)NH spectra proved the sequence to be AEAAG. The spin system assigned 

G750 became G751 and the spin system assigned A751 became A750. This explained 

why no assignments could be found for E748, nor for the H   of A749 (as E748 never 

existed and A749 in fact was the N-terminus of the molecule). 

6.2.2 Side-chain Assignments 

The H(C)(CO)NH-TOCSY, (H)C(CO)NH-TOCSY and HCCH-TOCSY spectra were 

used to extend side-chain '3C assignments beyond those obtained from the sequential 

walk. This was done according to the method described in section 2.6.1. Various non-

protonated side-chain carbon nuclei could not be assigned. These nuclei are listed in 

Table 6.1 by their amino acid residue. 

Amino Acid Unassigned Nucleus Residues Affected 

Arginine CC 778 780 782 796 
Asparagine C 757 767 774 776 794 802 
Aspartate C 772 798 
Glutamate C5  748 762 763 770 785 800 
Histidine C 764 773 789 

Phenylalanine C 771 
Tryptophan C, C52  & C 2  787 797 

Tyrosine C & cc 779 

Table 6.1: Carbon nuclei that could not be assigned by the method described in section 
2.6.1. These nuclei have no attached protons and so do not show crosspeaks in the 
acquired spectra. 

There were some other carbon nuclei that could not be assigned. The C chemical shift 
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of K754 was not assigned. No corresponding peak was present in the (H)C(CO)NH-

TOCSY. It is possible that the TOCSY transfer was not sufficiently efficient for the 

magnetization from this nucleus to reach the NH  nucleus of S755. 

The three leucine residues were each missing one carbon assignment, where no dis-

tinct peak could be found in the (H)C(CO)NH-TOCSY spectrum. L759 and L765 

were both missing assignments for their C nuclei. The average chemical shift for this 

nucleus is similar to that of the C °  nuclei. It is possible that the chemical shifts of the 

missing assignments are similar to those of their own Co  nuclei. This would result in 

their peaks becoming overlapped in the (H)C(CO)NH-TOCSY spectrum. In the case 

of L765, the crosspeak for the C ° ' nucleus had an elongated shape, suggesting that 

the C' chemical shift overlapped with the C °' shift. For L759 there was no obvious 

candidate for overlap. The leucine residue L761 was missing its C °2  assignment. In 

this case the corresponding peak in the (H)C(CO)NH-TOCSY spectrum overlapped 

with that of the C nucleus, making accurate assignment impossible. 

In a few cases, various proton assignments were found that had been missing from 

the assignment of the ' 5N sample. The missing histidine assignments, 1101  and 1162  

were not found for either of the two residues. However, the missing 1161  of H764 was 

found. This were identified using the 13 C- 1 H HSQCs of the aromatic region, where 

there was a crosspeak between it and its attached carbon. 

The lysine K769 was missing it's H °  and H6  assignments due to overlap in both homonu-

clear and 15N edited spectra. In the H(C)(CO)NH-TOCSY experiment magnetization 

from these proton resonances is recorded from the NF  of the subsequent residue, E770, 

which is not overlapped in this spectra. The missing assignments for K769 could there-

fore be assigned. 

The tryptophans, W787 and W797, were both missing assignments for their H 3  pro-

tons. For both residues, this proton was identified using the 13 C-'H HSQCs of the 

aromatic region. No crosspeaks were found in the homonuclear or the ' 5 N edited spec-

tra for these protons. 
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The isoleucine 1777 was missing the assignment of it's H' 2  protons. Once the C 2  chem-

ical shift was found using the (H)C(CO)NH-TOCSY spectrum, the HCCH-TOCSY 

spectrum was then used to assign the missing H' 2  protons. The chemical shift of these 

methyl protons was found to be overlapped with that of the H" protons from the 

same residue, preventing assignment in the homonuclear and 15N edited spectra. 

A number of nuclei had been incorrectly assigned in the homonuclear and ' 5N edited 

spectra. It was now possible to make less ambiguous assignments using the 13 C edited 

spectra. Proton chemical shifts could be directly associated with the carbon nuclei they 

are bound to using the HCCH-TOCSY spectrum. This helped to remove ambiguities 

in the proton assignments that originated from the ' 5 N sample. 

This was the case for both 1788 and 1793. For the ' 5N sample, the H" nucleus 

of H788 was assigned to the same chemical shift as that of 11 12  as no separate peak 

could be found. However, in the HCCH-TOCSY spectrum the nucleus was associated 

with a different chemical shift and it was reassigned. This new shift was similar to that 

of the H 2  group of the same residue. This resulted in overlap in the homonuclear and 

' 5 N edited spectra and the incorrect assignment of this nucleus. In 1793 the assign-

ments for H 5  and HV2  groups were the wrong way round and needed to be swapped. 

These assignments were in a heavily overlapped region of the homonuclear spectra and 

so no COSY crosspeak could be seen between the H 5  group and the nuclei. 

Residue W797 was previously missing assignments for its H and the H" nuclei. These 

were found when examining the HSQCs of the aromatic region. The cross-

peaks between the F771 aromatic carbons and their attached protons did not have the 

expected carbon chemical shifts. This pointed to the fact that these peaks had been 

incorrectly assigned. Initially these shifts had been assigned to the aromatic protons 

of F771 because their spin system produced the expected pattern in the homonuclear 

COSY and TOCSY spectra (see Figure 6.7(A) and Figure 6.7(B)). Also, there were 

NOESY crosspeaks from this aromatic spin system to the H a  of F771. How-

ever, there was also a single NOESY crosspeak from the aromatic spin system to the 
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H32  of W797. This spin system was now reassigned to the missing W797 nuclei based 

on its carbon resonances. The F771 resonances Ho.  HI and HC  were now missing 

their assignments. From the 13C 1 11 HSQCs of the aromatic region a candidate peak 

was found corresponding to the expected carbon chemical shift for this group. The 

proton and carbon chemical shifts for the F771 H 6 , If and H were all very similar 

and produced overlapping peaks in the homonuclear and carbon spectra (see Figure 

6.7(C)). There was no recognizable pattern produced in the homonuclear COSY and 

TOCSY spectrum because of the overlap. However, these protons did collectively pro-

duce NOESY crosspeaks to the H 3  protons of F771 (which remain unassigned due to 

overlap with neighboring peaks). In total, 97.9% of the 13 C, 15N and 'H nuclei in 

LU- 13 were assigned. 
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Figure 6.7: W797 was previously missing assignments for its H and the If' nuclei. 
Initially these shifts had been assigned to the aromatic protons of F771 because their 
spin system produced the expected pattern (B) in the homonuclear COSY (green and 
blue peaks) and TOCSY (turquoise) spectra (A). The proton and carbon chemical 
shifts for the F771 H 6 , If and H were all very similar and produced overlapping 
peaks in the 13C- 1 H HSQC (C). 

6.3 Structure Calculation 

6.3.1 Structure Calculation and Validation 

Structures were calculated using the method described in section 3.5, with both am-

biguous and unambiguous restraints included in the first round of structure calcula-

tions, as well as the hydrogen bond restraints (incorporated as distance restraints in 

their own file). In total, 677 unambiguous and 963 ambiguous NOE restraints were used 

for the calculation, comprising of restraints collected from the 13C-edited experiments 



CHAPTER 6. FH-13: THE 13 C, 15N-LABELED FH-13 SAMPLE 	 124 

as well as the restraints collected from the 15N-edited and homonuclear experiments. 

This represents an increase of almost 50% in the number of restraints used compared 

to the '5r labelled sample. Cross peaks in the '3 C-edited 3D NOESY spectrum were 

only assigned in the Fl and F3 dimensions, therefore leading to the large increase in 

ambiguous NOE restraints. This meant that, as with the 15N-labeled sample, many 

NOE restraints in the ambiguous data set were be repeated. The assignments for these 

restraints were refined during the filtering steps which took place after each round of 

calculation, removing these duplicate restraints. As with the ' 5 N-labeled sample, the 

unambiguous NOE restraints could be put into classes based on the distance between 

the two restrained atoms in the primary sequence (see section 5.5). Table 6.2 shows 

the distribution of unambiguous NOE restraints within these classes. 

iRestraint Type Number 

Total NOE restraints 1640 
Total Unambiguous NOEs 677 
Total Ambiguous NOEs 963 
Intraresidue 308 
Sequential 200 
Medium Range, 2 < (i - j) < 4 50 
Long Range, 5<(i—j) 119 
Total 677 

Table 6.2: NOE statistics for the double labelled sample of fl-1-13. The numbers for 
unambiguous restraints include only unique restraints. 

Six rounds of structure calculation were carried out in total with 100 structures cal-

culated per round. A plot of E 0  and Etotat for each structure from the first round is 

shown in Figure 6.8. 

As can be seen from this plot, the structures show convergence in the first 39 structures. 

Therefore, the first 39 structures were chosen for further analysis. During filtering after 

the first round of calculation, assignments that contributed less then 1% to the volume 

of an ambiguously assigned crosspeak were rejected. 

For analysing the structures from the second and third round steps the filtering level 
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Figure 6.8: Total and 
.' NOE energy of struc-

tures of fH-13 after 
one round of structure 
calculation, ordered by 

• •. their total energy. The 
first 39 structures show 

- -- convergence. 

was increased to 2%. Convergence was seen in the plot from round 2 after the first 70 

structures, as can be seen in Figure 6.9. 
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Figure 6.9: Total and 
NOE energy of struc-
tures of fH-13 after 
the second round of 
structure calculation, 
ordered by their NOE 
energy. The first 70 
structures show conver-
gence, while there is a 
jump in between 
the 67th  and the 68th 

structures. 

However there was a significant difference in the 	between the 67th  and the 68th 

structures, and so the first 67 structures with the lowest E,- were chosen for further 

analysis. 

After each subsequent round of calculation the plots of E,1  and Etotaj for each struc-

ture showed signs of convergence, although generally a large number of structures had 

converged (59-65 structures). For the forth and fifth rounds of calculations the value 

for filtering was increase to 5% for filtering. There was little improvement in the 

and 	plots between the fifth and the sixth round of calculations. Therefore after 

the sixth round the structures were refined using the RDC restraints before the final 
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water refinement was undertaken (see section 3.5.4 for an explanation of these refine-

ment steps). As with the water refinement of the ' 5 N-labeled sample structures, the 

maximum of 50 structures with the lowest Et,,w were selected for water refinement. 

The final plot of E, for the water-refined structures is shown in Figure 6.10. 

LS 

W—w — 

03 

• Figure 6.10: NOE en-
ergy of structures of 
fH- 13 after water re-
finement. The first 43 
structures show conver-
gence. 
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The first 43 structures show convergence, but there was a large difference in Etotat 

from the first to the last of these converged structures. Therefore, in a effort to select 

a smaller, more accurate group to represent the ensemble, the 20 structures with the 

lowest NOE energy were selected arbitrarily. These structures are shown in Figure 

6.11 

Various RMSD values for these structures are shown in Table 6.3 and Figure 6.12, 

the latter showing the RMSD of each residue for the ensemble. In this ensemble of 

structures the hypervariable loop appeared to be between E763-K769. As with the 

15 N-labeled sample structures, identification of the hypervarible loop was based on 

the ensemble's backbone RMSD for this section and also by examining the backbone 

structures of the ensemble. 

The shortening of the hypervarible loop between the two ensembles of structures could 

be the result of the increased number of NOE restraints connecting residue L761 to 

other residues for the double labeled sample. 

There is also a significant improvement in the heavy atom and backbone RMSD (in- 
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Hv 

Figure 6.11: Overlay of 
20 lowest E, e  struc-
tures of fH-13 for the 
doubled labeled sam- 

leiminus pie. 	Only the back- 
bone atom traces are 

ud4 shown, fitted to the co-
ordinate averaged struc-
ture (not shown). The 
hypervariable loop is la- 

and6 
beled HV. 3-strands 4 
and 6 are labeled us-
ing the CCP module 
convention. The struc- 

nninu tures were generated us-
ing MOLMOL [94][95], 
which was also used to 
identify the secondary 
structure elements. 

Residues Backbone RMSD Heavy atom RMSD 
K752-S804 0.837 1.512 
K752-E762, E770-S804 0.577 1.140 
K752-E759, E770-S804 0.528 1.061 

Table 6.3: Backbone atom and all heavy atom RMSD of ifi 13. The values are given 
for the entire native sequence; for the native sequence without the hypervariable loop; 
and for the native sequence with out residues 760-769, in order to make a comparison 
with the 15N-labeled sample structures 

cluding the hypervarible loop) between this ensemble and that calculated using the 

15N-labeled sample data (compare Table 6.3with Table 5.4). This suggests that the 

sidechain and backbone atoms are showing improved convergence throughout the whole 

molecule. In order to make a more direct comparison between the RMSD values for this 

ensemble and the previous ensemble (calculated from the unlabelled and ' 5 N-labeled 

sample data), RMSD values were calculated with the residues 1760-K769 excluded. 

These show a decrease in RMSD from those of the 15 N-labeled sample structures, but 

it is only small, suggesting that the improvement in convergence is mainly confined to 

the hypervaribale loop. Procheck statistics for these structures can be seen in Figure 

6.13 (generated using MOLMOL [94][95]) and Table 6.4 (generated using MOLMOL 
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Figure 6.12: 	Graph 
showing RMSD of each 
residue in the ensemble 
of structures. 
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Residue Number 

[94] [95]). They appear worse then for the previous ensemble, with more then 5% of 

residues in the disallowed region. This suggests that while the overall convergence has 

improved slightly, this is at the expense of the backbone stereochemistry. 

[Residue Type Number Percentage 

Without Reisudes 763-769 nor the precursor 
Residues in most favoured regions 471 57.4% 
Residues in additional allowed regions 261 31.8% 
Residues in generously allowed regions 45 5.5% 
Residues in disallowed regions 43 5.2% 
With residues 752-804 
Residues in most favoured regions 538 56.0% 
Residues in additional allowed regions 312 32.5% 
Residues in generously allowed regions 56 5.8% 
Residues in disallowed regions 54 5.6% 

Table 6.4: Ramachandran analysis of the residues in the ensemble of 20 lowest E 
energy structures of fH- 13. Calculated using PROCHECK [96]. 

A program called WHAT IF was also used to assess the quality for various geometric 

structural properties [97]. The ensemble of the 20 lowest energy structures was used 

for input, and WHAT IF produces a series of so-called Z-scores and RMS Z-scores as 

quality indicators. The Z-score relates the value of a parameter (eg. bond length) to 

a normalized Gaussian distribution derived from a database of structures. Z-scores 

smaller then -4 or larger then +4 are considered outliers. This means that the param-

eter value in the input structure is unlikely, not that it is necessarily in error. The 



CHAPTER 6. FH-13: THE 13C, 
 ' 5 N-LABELED FH-13 SAMPLE 	 129 

Figure 	6.13: 	Ha- 
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-I0 

favourability 	of 	re- 
-. gions. The diagram was 

-100 made using MOLMOL 
[94][95]. 

results from the WHAT IF checks are shown in Table 6.5. 

Parameter Value 
Rarnachandran Z-score -6.327 

RMS Z-score for bond lenths 1.015 
RMSD in bond distance 0.020 

RMS Z-score for bond angles 1.013 
RMSD in bond angle 1.813 

Standard deviation for Omega angle restraints 0.974 
RMS Z-score for Improper dihedral distribution 1.260 

Backbone Conformation Z-score -8.453 

Table 6.5: Structure quality results for the ensemble from the WHAT IF program. 

These results show that for many geometric criteria the ensemble has values within 

excepted ranges. However, both the Rainachandran Z-score and the backbone confor-

mation Z-score are very low. This is more evidence that the backbone stereochemistry 

is unusual in the ensemble. 

Figure 6.14 shows the positions of the inferred hydrogen bonds in fH-13. Of the 

protected amide groups for which no binding partners were found (11778, Y779, R780, 

V791 and W797), R778, V791 and W797 have no obvious partners in the final struc-

ture ensemble. For residues Y779 and 1788 there are potential binding partners. Y779 
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may form a hydrogen bond with the 1788 CO group, while R780 may form a hydrogen 

bond with the 1760 CO group. 
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1177 

	

779 	
Figure 6.14: Position 

j ... 	
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V79l CO 	
7 	
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5 CO
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77 	
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0798 MN
792 	
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1793 CO

H773 	MOL [9411951• 

was made using MOL- 
R796 Co 

1793 I-IN 
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6.3.2 Accuracy and Precision of The Final Structures 

The number and magnitude of NOE violations that an ensemble of structures pro-

duces is one way to judge how well the ensemble fit the experimental data. NOE 

violations occur in a structure when the distance between two nuclei dictated by the 

NOE restraint is shorter then the actual distance in the calculated structure. Ideally, 

an ensemble of structures would have no NOE violations, and thus fit with the experi-

mental data. However, in reality violations can occur in accurate ensembles where, for 

example, natural multiple stuctural conformations result in restraints that can't fit all 

structures in the ensemble [761. 

After each round of structure calculations the number of violations occurring above 

a threshold is measured for the converged structures. A threshold of 0.3 A was used 

for violations in the case of fH- 13. Each violating restraint is then re-examined, usu-

ally by reverting back to the original spectrum from which the restraint was taken. 

Restraints may then be altered or removed if there is a rational reason for doing so. 

In the case of fH- 13 there were two main reasons for altering or removing restraints. 

The crosspeaks for violating restraints were often found close to the diagonal in the 
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2D NOESY spectra, or were overlapping with a neighbouring peak in other ways. As 

mentioned in section 3.5.2 if a crosspeak significantly overlaps with another, especially 

a high intensity diagonal peak, this can result in the resulting restraint being placed in 

the wrong NOE class, and potentially producing a violation. Secondly, the protein was 

more fully assigned using the double-labeled sample. Therefore, due to missing assign-

ments in the ' 5 N-labeled sample, some peaks which were unambiguously assigned for 

the 15 N-labeled sample now had ambiguities in their assignment for the double-labeled 

sample. These crosspeaks and other mis-assignments could potentially result in struc-

ture violations. 

Three restraints produced violations in the final ensemble, although no single structure 

in the ensemble had more then one violation. The details of each violating restraint 

are summarized in Table 6.6. 

Violating Restraint Number of Structures Restraint Violating 
(nuclei-nuclei) Violation Occurs In Distance (A) Distance (A) 

E762 H'-(7.77ppm) 1 6.0 0.51 
V801 H'-V801 HO 2 3.3 0.65 

K752 H'-(4.58ppm) 4 3.3 0.58 

Table 6.6: Violations occurring in the final ensemble of 20 structures for ff1- 13. Two 
of the violating restraints were ambiguous in one of their dimensions. In these cases, a 
ppm value is quoted rather than an assigned nucleus. The violating distance is given 
as the RMS. 

For each of these violations there was no rational reason to either remove or alter the 

original NOE crosspeak from which the violation was derived, with no obvious sign of 

crosspeak overlap or mis-assignment. The violations themselves are all above 0.5 A 
above the restraint distance. Also, the RMSDs for the residue corresponding to the 

violating restraint are not above the average. However, the number of violating NOE 

restraints in the final ensemble of structures is low, indicating that the ensemble agrees 

reasonably well with the experiemntal data. Thus the ensemble of structures can be 

assumed to be reasonably accurate. 

The RMSD values indicate that the ensemble is of relatively good precision in corn- 



CHAPTER 6. FH-13: THE 13 C, 15 N-LABELED FH-13 SAMPLE 	 132 

parison with other CCP module structures. 

Attempts were made to calibrate the restraints with the aim of improving the precision 

of the final structures. Usually the restraints are placed into four separate distance 

classes based on their intensities. However, the restraints can also be ordered via their 

intesity into a larger spectrum of distance classes based on the r 6  relationship between 

distance and peak intensity. This can be done through ARIA during the analysis of the 

ensemble after each round. ARIA scales each NOE intensity to one of many maximum 

distances from 2.2, 2.3, 2.4, 2.5 A etc. up to 5.8 A. The CCPN Analysis program 

suite can also be used to place restraints into a broader spectrum of distance classes 

from 2.4, 2.5, 2.6 A etc. up to 5.8 A. Both methods were tried (ARIA calibration for 

the 15 N-labeled sample data and CCPN Analysis for the double labeled sample data). 

However, both methods considerably increased the number of violations occuring per 

structure. 

6.4 Relaxation Data 

6.4.1 T 1  Relaxation Data 

The T 1  relaxation values for fH- 13 are shown in Figure 6.15. The residues that could 

not have their T 1  accurately determined, due to overlap, were 754, 761, 769, 782 and 

802. 

BOO 
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00 

400 

T 1  
(ills) 

OO 

100 

Figure 6.15: T1 
values for fl-1-13. 
Error bars are 
shown for each 
relaxation time. 
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Residue 
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The mean T1  was 547 ms, with a standard deviation of 55 ms. Eight residues fall 

outside this range: 748, 749, 751, 756, 779, 801, 803, and 804. Of these, all but 756 

and 779 are at the N-termius or C-termius of the molecule. 

6.4.2 T2  Relaxation Data 

The T2 relaxation values for fH-13 are shown in Figure 6.16. The residues that could 

not have their T2 accurately determined, due to overlap, were 754, 761, 769, 782 and 

802, the same residues as for the T 1  relaxation data. 
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12 ' 
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00 

Figure 6.16: T2  
values for fH-13. 
Error bars are 
shown for each 
relaxation time. 
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The mean was 89 ms, with a standard deviation of 36 ms. Eight residues fall outside 

this range: 748, 749, 751, 757, 759, 763 and 804. Of these, all but 757, 759 and 763 

are at the N-termius or C-termius of the molecule. 763 is the only residue with a 

particularly low T2 value. This residue is at the start of the hypervariable loop. 

6.4.3 HetNOE Relaxation Data 

The HetNOE relaxation values for fH-13 are shown in Figure 6.16. The residues that 

could not have their T 1  accurately determined, due to overlap, were 761, 769, 782, 785 

and 802. 

The mean was 0.63, with a standard deviation of 0.23. Seven residues fall outside 

this range: 748, 749, 751, 756, 801, 803 and 804. Of these, all but 756 are at the 

N-termius or C-termius of the molecule. Unexpectedly, the residues that form the 
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Figure 6.17: Het-
eronuclear NOE 
values for fH-13. 

hypervariable loop in fH- 13 show no significant variation in HetNOE from the rest of 

the protein. This suggests that the motions of the hypervariable loop are on the As-ms 

timescale. This may explain why there are few NOE restraints defining this region, 

and is consistant with the relaxation data. 

6.5 Structure Analysis 

The analysis of the closest to mean structure of fF1- 13 described in this section, and 

it's comparison to other known CCP module structures, were done in collaboration 

with Dinesh Soares from our group. All Figures in this section (Figures 6.18, 6.19, 

6.20, and 6.21) were also created in collaboration with Dinesh Soares. The method for 

the structure analysis is given in section 3.7. 

6.5.1 Results and Discussion 

Factor H CCP-13: Sequence-Structure Correlation 

CCP modules are characterised by having a compact hydrophobic core containing an 

almost invariant tryptophan residue. The core is enclosed in a framework of five ex-

tended segments that form 0-strands for all or part of their lengths. The extended 

segments are aligned with the long axis of the module and are held together by two 

strictly conserved disulfide bridges. In almost all CCP-modules, a region that is highly 

variable in length, sequence and conformation, is inserted within the second extended 

region, projecting laterally, and is commonly referred to as the hypervariable loop [12]. 

As a representation of a typical CCP module structure, the structure of fl -1~5 is shown 
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180° 
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Figure 6.18: The structure of fl-13 compared to fH-5 (not to scale). (A) A cartoon 
schematic representation of the structure of fl-l- 13, coloured from blue to red (N-
to C-terminus). The secondary structure elements (fl-strands) have been assigned 
by default settings in PyMol [981 and labelled 4 and 6 [ 171. The invariant cysteinc 
and consensus tryptophan residues that characterise the CCP module fold are also 
labeled. (B) A Molscript [99] cartoon representation of fH -5, depicting a typical 
CCP-module structure. Again, the /3-strands are numbered according to Wiles et 
al. [17]. The Figure 6.18B is taken from the Chapter 'Complement Control Protein 
Modules in the Regulators of Complement Activation' by D.C. Soares and P.N. 
Barlow [100]. 
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Compared CCP Module fH-13 
32GPI-1 4.15 (55) 
02GPI-2 4.12 (51) 
02GP1-3 4.38 (48) 
/32GP1-4 3.88 (59) 

Clr-1 3.46 (55) 
Clr-2 5.39 (38) 
Cls-2 4.30 (66) 

C4BPa- 1 3.69 (57) 
C4BPa-2 4.10 (52) 
C111-15 3.13 (47) 
C111-16 5.05 (56) 
CR1-17 3.69 (57) 
C112-1 4.33 (59) 
C112-2 3.66 (49) 
DAF- 1 3.50 (58) 
DAF-2 3.28 (56) 
DAF-3 4.16 (61) 
DAF-4 3.30 (51) 

fH-5 3.47 (47) 
fH- 15 3.09 (56) 
fH-i6 3.69 (52) 
fH-19 3.41 (45) 
fH-20 3.91 (59) 

Cis-GABA-2 4.15 (55) 
Trans-GABA-02 4.00 (55) 

IL1511c-i 3.60 (56) 
MASP2-1 3.57 (53) 
MASP2-2 4.74 (56) 
MCP-1 3.86 (50) 
MCP-2 4.52 (59) 
VCP-i 3.92 (59) 
VCP-2 3.45 (53) 
VCP-3 3.37 (56) 
VCP-4 3.44 (56) 

Table 6.7: Pairwise structural comparison of ff1- 13 versus all other individual CCP 
module structures based upon C RMSD values using the structural alignment program 
CE. All values in Angstroms (A). Figures in brackets indicate the "Alignment length 
(gaps included)". The abbreviations used in the table and text are: 32GP1 = 32- 
glycosylphosphatidylinositol-anchored protein (also called apolipoprotein H); C4131? = 
C4b-binding protein; CR = complement receptor; DAF = decay-accelerating factor; 
fF1 = factor H; GABA = gamma-aminobutyric-acid type B receptor, subunit 1 c; 
IL15110 = interleukin-15 receptor c; MASP = mannan-binding lectin-associated serine 
protease; MCP = membrane cofactor protein; VCP = Vaccinia virus complement 
control protein. The CCP-module numbers follows the abbreviation. Some residues 
were not present (solved) in the electron density map for the Clr-02 module crystal 
structure, and this explains the short structural alignment length. 
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Figure 6.19: Multiple sequence alignment for factor H. The 20 factor H CCP mod-
ules were aligned using ClustaiX [101], and shaded according to conservation using 
BOXSHADE version 3.21 [102]. The sequences have been rearranged according to 
module number. The typically occurring 0-strands are indicated by arrows above 
the sequences, along with hypervariable loop (HV-loop). Consensus residues for each 
position in the alignment are shown below using WebLogo version 2.8.2 [103] [1041, 
with the greater the height of the residue, the greater the conservation. The strongly 
conserved residues compare well with the overall consensus for the entire RCA family 
reported in Soares and Barlow [100]. 

(which can be considered the most 'typical' CCP-module in such a comparison, with 

33 out of 34 modules compared) produces RMSD values < 3 A, with fH- 13 being the 

only structure producing an RMSD value above 3 A. 

Examples of other 'divergent' modules include, 111-20, C4BP- 1 and VCP- 1, which 

have RMSD values> 3 A for each of 30, 20, and 17 other modules, respectively. Only 

three other pairs of modules for which comparisons have been made have RMSD values 

greater than 4 A (f11-20 vs. C4BPa-1; fH-20 vs. CR1-15; and fFI-20 vs. MASP2-2) 

[see: (Soares and Barlow 2005) and the updated table of values in DCS, Ph.D. thesis]. 

The two most dissimilar module structures, to date are 111-13 and CR1- 16 (the only 

module-pair compared with RMSD > 5 A, excluding C1r-2 from the analysis). Given 

these comparison results and the calculated overlay, structurally, 111-13 appears to be 

the most divergent CCP-module solved to date (Figure 6.20, Table 6.7). 
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Figure 6.20: The superposition of all CCP-module structures to data. (A) Two 
views rotated by 180 along the y-axis showing the Ca-trace overlay calculated by 
MAMMOTH-mult [85] for all the solved CCP module structures. fH- 13 is shown 
as a red solid line, while the 34 other CCPs are traced with dashed lines in cyan. 
(B) The most similar (fH-15, green) and dissimilar (CR1-16, blue) CCP-module 
structures are compared to ff1- 13 (red). The images were created using RasMol 
version 2.7.3 [105]. 
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Figure 6.21: Surface representations of flH- 13. (A) Two views rotated by 180 along 
the y-axis of a GRASP [881 electrostatic surface representation of fM- 13. Negatively 
charged surface residues are coloured red and positively charged residues coloured 
blue and labelled; the potential ranges from —10 kT to +10 kT (k = Boltzmann's 
constant; T = temperature in Kelvin). Many basic residues appear to be exposed, 
and this is localised to one side of the protein (encircled region). (B) Two views 
rotated by 180 along the y-axis of a MOLCAD [89] lipophilic surface rendition of 
the molecule. Regions of high lipophilicity (hydrophobicity) are coloured brown and 
labelled and regions of high hydrophilicity are coloured blue. The surface represen-
tations in (A) and (B) are in approximately equivalent orientations to each other, 
and labels can be viewed in conjunction with each other. 
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Factor H CCP-13 has an accessible surface area of 3691.46 A2 . Expectedly, given 

its small sequence-length, its ASA value is at the lower-end among individual CCP 

modules whose values have been calculated, with only module 3 from the NMR struc-

tures of VCP, i.e. PDB ID: 1VVC [17] and PDB ID: 1E5G [106] possessing a lower ASA. 

However, Figure 6.21A shows many exposed charged residues occur on its surface. The 

'front' side of the molecule (left-hand frame) reveals a positively charged patch, which 

include residues K752, K754, K766, K768, K769, R782, K784 and R796. However, the 

'back' side is largely neutral, exposing a few negatively charged residues scattered on 

its surface. The R778 and R780 residues can be considered to be part of the same patch 

that extends onto the back of the molecule. ff1- 13 has previously been implicated in 

a number of protein-ligand interactions; with complement component fragment C3c, 

which also involves the neighbouring modules 12 and 14 [43]; as part of a microfilariae-

binding site of the nematode parasite Onchocerca volvulus, which involve modules 8-20 

[107]; and also heparin-binding localised at module 13 [37]. Heparin-protein interac-

tions require electrostatic interactions between negatively charged heparin sulfate (and 

carboxyl groups), and suitably placed lysine and arginine residues in proteins. Thus 

the basic region on the module (shown in Figure 6.21A) could potentially be involved 

in heparin-binding. 



Chapter 7 

Binding Studies Between 
Heparin and fH-13 

7.1 Introduction 

As is discussed in section 1.2.2, the second putative heparin binding site is believed 

to be located in, or contain, fH- 13. Our collaborator, Dr. Malcolm Lyon from the 

Department of Medical Oncology, Manchester University, had produced a fully sul-

phated haparin tetra.saccharide derived from heparin sulphate. It is advantageous to 

use smaller oligosaccharides such as tetra.saccharides as large, more easily and commer-

cially available oligosaccharides can bind multiple protein molecules leading to precipi-

tation. To make the sample of tetrasaccharide, heparin was enzymatically cleaved and 

then purified so produce a homogeneous sample of sulphated heparin. The structure 

of the tetrasaccharide is given in Figure 7.1. 

W,~Leo  HH_ __ H H 
0 

H ~H d  H 0 	HeH 	H 
H 	 H 	NHS 	H 	 H 	NHSc- 

aUA2S 	GIcNS6S 	IdoA2S 	GkNS8S 

Figure 7.1: The structure of a heparin derived tetrasaccharide. 

Dr. Lyon's group carried out an agarose gel mobility shift assay with fH-13 and the 

tetrasaccharide. The tetrasaccharide was labeled with a fluorescence tag, aminoacridone 
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(AMAC). While tetrasaccharide on its own would migrate through the gel, on addition 

of the recombinant fH- 13, the sugar's progress was inhibited. This suggested that a 

proportion of the tetrasaccharide had bound to the protein and the resulting complex 

was now partially neutralized and it's migration towards the anode was significantly 

compromised. The results of this are shown in Figure 7.2. 

'veil 

ffl-13+dp4 	 - 

dp4 

Figure 7.2: The first agarose GMSA experiment carried out on ff1- 13 by Dr. Lyon's 
group. The tetrasaccharide (dp4) was labeled with a fluorescence tag, AMAC. With 
only the tetrasaccharide loaded onto the well, the sugar is free to migrate through 
the gel (b). However, when the tetrasaccharidc is loaded in conjunction with the 
recombinant M-13 protein into the well, its progress through the gel is inhibited 
and much of the sugar remains in the well (a). 

Along with the fact that fl-l- 13 bound to a immobilized heparin column, we now had 

evidence that our recombinant fH- 13 protein bound to the fully sulphated heparin-

derived tetrasaccharide. The aim was then to map the binding site by titrating the 

protein with the tetrasaccharide and recording a series of NMR experiments (particu-

larly 1 11, ' 5N HSQCs) at each point in the titration. If the protein interacted with the 

tetrasaccharide during the titration, backbone NH crosspeaks might be seen to migrate 

during the course of the titration as a result of interactions between these residues in 

the protein and the sugar. These residues could be mapped onto the surface of the 

protein structure, producing a map of the site of interaction between the protein and 

the sugar. 

7.2 Results 

The titration of fF1- 13 with the heparin derived tetrassacharide was performed at two 

different pH values, pH 6.0 and 5.5. Previous titrations of this type carried out in our 

group showed improved binding at lower pH, which is why the titration was carried 
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out at pH 5.5. The molar ratios of protein to sugar ranged from 1:0.065 to 1: 22, a 

large excess of the tetrasscharide was used for the final point. 

The first NMR sample of M-13 with tetrasaccharide contained 10 ftM ' 5N labeled 

fH- 13 with 214 iM tetra.saccharide in 20 mM sodium phosphate buffer at pH 6.0, with 

10% D20 and 0.05% sodium azide. This was used in conjunction with the fH- 13 sam-

ple mentioned above to optimize the temperature at which the experiments would be 

recorded. 'H, ' 5N HSQC spectra were acquired at 37 °C and 25 °C for each sample. 

The HSQCs of the two samples were compared to see in which spectrum the most 

crosspeak displacement could be seen upon addition of the tetrasaccharide. The spec-

tra at 25 °C seemed to show the most movement in crosspeaks and so this was chosen 

as the temperature at which the titration would be carried out. 

It was also in the acquired HSQCs that it was first noticed that additional peaks 

were present at the lower temperature. At a later date additional 'H, '5N HSQC were 

aquired on a sample of fH- 13 at various temperatures ranging from 37 °C to 15 °C. 

This was discussed in Section 5.2. 

In order to determine which residues in fH- 13 were affected upon addition of the 

tetrasaccharide, the 1H, 15  N HSQCs collected from each titration point are overlayed. 

The overlay of the 'H, 15 N HSQC5 from the titrations at pH 6.0 and pH 5.5 are given 

in Figure 7.3. 

To determine which residues exhibited the most movement upon addition of the tetrasacharide 

graphs of the chemical shift difference between the free protein and the last titration 

point for each residue were produced, shown in Figure 7.4. Shift differences were cal-

culated using the equation: 

ShiftDifference = J(L 1 H)2  + (&5N) 2 	 (7.1) 
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Figure 7.3: The overlay of the 'H, ' 5N HSQCs from the titrations at pH 6.0 and 
pH 5.5 between fH- 13 and a heparin derived tetrasaccharide. The different ratios of 
fH -13 to tetrasaccharide are represented by different colours of crosspeak (negative 
peaks are not included). For pH 6.0 (A): (black) Free fH-13; (turquoise) 1:4 fH-13 
to sugar; (magenta) 1:5 ifi- 13 to sugar; (blue) 1:7.5 fH- 13 to sugar; (red) 1:10 fH- 13 
to sugar; (green) 1:20 fl-13 to sugar. The HSQCs from the 1:1 and 1:0.65 titration 
points are not shown as these two HSQCs showed very little deviation from that of 
111-13 on its own. For pH 5.5 (B): (black) Free ffl-13; (green) 1:1 fH-13 to sugar; 
(red) 1:3.3 fH-13 to sugar; (blue) 1:11 fH-13 to sugar; (magenta) 1:22 f11-13 to 
sugar. 
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Figure 7.4: Graph of the chemical shift difference at pH 6.0 and pH 5.5 between 
the free fl-1-13 and fH- 13 in the presence of excess sugar. (A) The chemical shift 
difference at pH 6.0 between the free ff1- 13 and 1:20 fH- 13 to sugar samples for 
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Where A 1 H is the difference in 1H chemical shift; and A15  is the difference in ' 5N 

shift. 

The chemical shift differences for some residues at pH 6.0 could not be measured; 

These were residues N757, 1759, K769, R782, G783 and P799. K769 and R782 are 

all found clumped together in the 'H, ' 5N HSQC and so their individual chemical 

shifts can't be precisely determined. None of N757, 1759 or G783 are visible at the 

temperature that these spectra were acquired (25 °C). Finally, P799 does not produce 

crosspeaks in 'H, ' 5N HSQC. 

The ' 5 N- 1H HSQCs for the repeat of the titration at pH 5.5 are shown in Figure 

7.3(B). Chemical shift differences for various residues could not be measured; These 

were K754, 1759, K769, R782, E785, R796 and P799. Of these, K754, K769, R782 

and E785 are all found clumped together in the 'H, 15N HSQC and so their individual 

chemical shifts can't be precisely determined. Neither 1759 nor R796 were present in 

all titrations. 

For the titrations at pH 6.0 and 5.5 the chemical shift differences are summarized 

in Figure 7.4. Most peaks move very little, while a few showed considerable move-

ment. It was surprising to observe that the residues that showed the most pronounced 

movement in the overlayed spectra were the glutamic acid residues (E). These are neg-

atively charged and known to be sensitive to pH changes. 

It was therefore decided to also carry out a pH titration on fH- 13. This was to 

determine whether the movement of peaks upon addition of the tetrasaccharide could 

be attributed to binding or more trivially to adventitious small changes in pH. Samples 

of the 20 AM stock solution of 15N labeled fH- 13 at pH 6.0 were used. The sample 

pH was changed using 20 mM dibasic or monobasic sodium phosphate solutions. As 

with the above titration, three NMR spectra were acquired at each titration point; 

a 1D proton spectrum with water presaturation; a 1D proton spectrum with water 

suppression gradients; and an 'H, 15N HSQC. There were four titration points in total; 

pH 6.5; pH 6.0; pH 5.5 and pH 5.3. The results of the titration are shown in Figures 
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7.5. 
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7.3 Discussion 

From Figures 7.3(A) and 7.4(A) it can be sec that the residues whose chemical shifts 

showed the most pronounced perturbation upon titration with dp4 at pH 6.0 were; 

E762; E763; H764, L765; and K766. From Figures 7.3(B) and 7.4(B) it can be seen 

that in the titration pH 5.5 the residues that showed the most pronounced movement 

were E762; H764; L765; R778 and N794. Thus, with the exception of residues 778 and 

794, the residues that show the most pronounced movement upon introduction of the 
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tetrasaccharide belong to the hypervariable loop. 

The results of the pH titration (which can be seen in Figures 7.5 and 7.5) show that 

the peaks that were displaced most were also those of the hypervariable loop. In fact, 

from comparisons of the '5 N- 1 H HSQCs it can be seen that with increased concentra-

tions of sugar compared to protein the susceptible peaks shifted in similar directions 

as when they responded to a lowering of the pH. By placing the suseptible peaks onto 

the structure of fH- 13 (Figure 7.7) it can be seen that it is the same regions of the 

protein affected by both pH and sugar titrations. 

Taken together, this evidence strongly suggested that the movement of the crosspeaks 

was due to a lowering of the pH of the sample as the sugar concentration increased. 

Based on our results, Dr. Lyon repeated the GMSA experiments on fH- 13 using not 

just the tetrasaccharide but also longer lengths of heparin derived oligosaccharides. 

The results of this follow up experiment can be seen in Figure 7.6. 

I)l 	2 	2 	4 	4 	6 	6 	S 	S 	10 	III 	12 	12 
111-13 - 	+ 	- 	+ 	- 	+ 	-f 	- 	+ 	- 	+ 

Figure 7.6: The second agarose GMSA experiment carried out on fH- 13 by Dr. 
Lyon's group. This time the heparin derived oligosaccharides of degrees of poly-
merisation (dp) from 2 to 12 (all labeled with the fluorescence tag, AMAC) were 
used. Each oligosaccharide was run on the gel twice; with (+) the recombinant 
fF1- 13 protein; and without (-) the protein. None of the oligosacharides had their 
progress through the gel inhibited by the prescence of the protein 

This time the results showed no evidence of binding of fH- 13 to any of the oilgosac-

charides ranging from a disaccharide to a dodecasaccharide. This was in contradiction 

to the previous GMSA result. It was Dr Lyon's opinion that the result to give the 
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(A) (C) (B) 

r.i ;:- 
(D) 

Figure 7.7: Surface representations of fH-13 showing residues whose chemical shift 
was most affected during the titrations. Two views rotated by 1800  along the y-axis 
showing residues most affected during heparin titration: (A) at pH 6.0 (red); (B) at 
pH 5.0 (blue); (C) during the pH titration (yellow); (D) Two views rotated by 180° 
along the y-axis showing overlay of the most affected residues, colour coded as for 
(A), (B) and (C) with those residues shown in both (A) and (B) coloured purple; 
those residues shown in both (B) and (C) coloured green and those shown in (A), 
(B) and (C) coloured brown. 
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most credence to is that of the second experiment as it demonstrates reproducibility 

[108]. The first experiment, with the positive result, was done only once and only 

with the tetrassaccharide. The second experiment was carried out with a veriety of 

oligosaccharide sizes, including the larger oligosaccharides which are known to bind 

with higher affinity to heparin binding proteins then the smaller oligosaccharides do. 

Taken together with the NMR titration results, there is now good evidence that ff1- 13 

does not bind to heparin. 

Furthermore, it is Dr Lyon's opinion that the first experiment may truely show an 

interaction between the protein sample and the tetra.saccharide, but that the balance 

of evidence points to the protein sample being affected by handling or by transport 

to Manchester [108]. Perhaps the protein sample was partially denatured or not fully 

folded and this exposed an artifactual non-specific binding site. Or alternatively, the 

protein may have aggregated and so the binding species was not a true monomer. 

7.4 Conclusion 

The general consensus in the literature has long been that the position of the second 

heparin binding site of fH is located on, or includes, module 13. Further evidence for 

this view was also found by our group and our collaborators. Clair Egan's method for 

the purification of the recombinant ff1- 13 depended on the binding of the protein to an 

immobilized heparin column, although this is not evidence of binding to native heparin 

and could be attributed to non-specific binding. Dr. Lyon's Initial studies with GMSA 

also provided evidence that the heparin derived tetrasaccharide also bound to ff1- 13. 

However, there was no evidence of binding of this tetrasaccharide in the chemical shift 

mapping experiments and in the subsequent, more sophisticated GMSA experiments. 

While GMSA is a very useful tool to examine the interactions of proteins and hg-

ands, our results demonstrate that the information should always be treated with 

caution. Clear evidence of binding between the protein and the higand should be ac-

quired, preferably using more then one method eg. ITC, GMSA and NMR to confirm 

binding. Binding to a heparin column is not in itself sufficient proof of a specific 
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interaction. The high theoretical p1 value of fH- 13 does not guarantee binding to neg-

atively charged saccharides. Instead what is required is a complementary distribution 

of opposing charges on both molecules 



Chapter 8 

Conclusion 

Factor H (fH) is a crucial regulator of the alternative pathway of the complement 

system, a part of the innate immune system in mammals. Structural information 

regarding factor H is of great value for investigating the various functions of fH, its 

interactions with the host's molecules and those of pathogens. As part of our ongoing 

efforts to solve a complete structure of factor H, the structure of module 13 (fH- 13) 

has been solved by NMR spectroscopy. 

The recombinant fH- 13 protein produced in Pichia pastoris by Claire Egan was used 

successfully to produce unlabeled, '5N-labeled and 15 N,  13  C-labelled samples of this 

module. However, the method of dilution of the supernatant to avoid the time consum-

ing process of concentration and buffer exchange was not optimal for the purification 

of the recombinant protein. After diluting the supernatant, only a very small fraction 

of the available protein would bind to SP-Sepharose, requiring the diluted supernatant 

to be passed through the column three times in order to extract enough protein for 

an NMR sample. Nevertheless, dilution was suitable to avoid buffer exchange prior to 

injection of the protein onto the immobilized heparin column, thus saving time. 

A set of NMR experiments was performed yielding the near complete assignment of 

'H, '3 C and ' 5 N resonances in the recombinant protein. A set of 2D homonuclear, 3D 

15N-edited and '3 C-edited NOESY spectra were also obtained. From these spectra an 

extensive set of NOE restraints were extacted for structure calculation. Residual dipo-

lar coupling restraints and hydrogen bond restraints were obtained from subsequent 
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experiments. All were used successfully in the structure caluation of ff1- 13. 

As a part of the familiarization with the procedures for the assignment of homonu-

clear NMR spectra of proteins, the four short polypeptide sequences from the KefC 

ion channel were assigned. Our analysis of the NMR data did not support the existence 

of secondary or tertiary structural elements in these peptides. 

The final ensemble of structures of fl -1-13 produced good RMSD statistics, but the 

Ramachandran statistics were less favourable. The structure of ff1- 13 reflects it's 

short primary sequence and is unusual amongst the complement control proteins (CCP 

modules). fl-1-13 possess the expected disulfide-bonding pattern and consensus tryp-

tophan, but lacks many overall 3D-structural features that characterise a "typical" 

CCP-module. ff1- 13 possesses only two 0-strands out of a maximum of eight. The 

most similar structure to fH-13 is fH-15, while the most dissimilar CCP module is 

CR1- 16. One side of the fH- 13 domain reveals a highly localised positively charged 

patch composed of eight residues. 

To distinguish host from non-host cell membranes, factor H binds to polyanions such 

as sialic acid or heparan sulphate which are bound to the surface of host cells. There 

are three putative polyanion binding sites, located in modules 7, 13 and 20, whose 

involvement in this process is, to various extents, supported by experimental evidence. 

The one in module 13 is the most disputed of the three polyanion binding sites. 

The heparin binding studies performed on fH- 13 included gel mobility shift assay and 

NMR titrations with a fully sulphated heparin-derived tetrasaccharide. While initial 

GMSA results were promising, subsequent GMSA experiments involving the binding 

of fH- 13 to a range of heparin derived oligosaccharides from disaccharide to dodecasac-

charide produced negative results. Similarly, NMR titrations using the tetrasaccharide 

also yielded a negative result. This is despite the considerable accumulation of positive 

charge on one side of the fH- 13 molecule. These results point to the importance of 

an appropriate spacial distribution of positively charged residues for the binding of 

polyanions. High charge density alone is insufficient to initiate binding in this case. 
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The recombinant protein of fH- 13 produced in our lab does not include the N -terminal 

linker sequence. This linker contained the consensus sequence consisting of alternate 

arginine and lycine residues that has been identified as a binding sequence for heparin. 

Between domains 12 and 13 at residues 731-736 this has the sequence KLKKCK. This 

should be considered a candidate for the elusive second heparin binding site on f11. 
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Appendix A 

Chemical Shift Tables of KefC 
polypeptides 

Chemical shift tables for the KefC polypeptides are listed below: 

Residue Residue Atom Shift 

Number Type 

Ha120 6 TYR H 8.02 
6 TYR HA 4.512 
6 TYR H133 3.033 

Residue Residue Atom Shift 6 TYR HB2 2.914 
Number Type 6 TYR HE 6.774 

1 LEU HA 4.007 6 TYR HD 7.07 

1 LEU HG 1.674 7 ARC H 8.082 

1 LEU HB3 1.735 7 ARC HE 7.158 

1 LEU HB2 1.697 7 ARC HA 4.179 

1 LEU H132 0.93 1 7 ARC HD3 3.141 

1 LEU HIM 0.931 7 ARC HD2 3.141 

2 ALA H 8.725 7 ARC HG2 1.516 

2 ALA HA 4.414 7 ARC HG3 1.516 

2 ALA HB 1.415 7 ARC HB3 1.752 

3 SER H 8.431 7 ARC HB2 1.682 

3 SER HA 4.399 8 HIS H 8.347 

3 SER HB3 3.947 8 HIS HE  8.592 

3 SER HB2 3.863 8 HIS H02 7.278 

4 SER H 8.377 8 HIS HA 4.586 

4 SER HA 4.393 8 HIS HB3 3.247 

4 SER HB3 3.904 8 HIS HB2 3.159 

4 SER H82 3.832 9 ALA H 8.303 

5 GLU H 8.241 9 ALA HA 4.261 

5 GLU HG2 2.263 9 ALA HB 1.377 

5 GLU HG3 2.311 10 LEU H 8.212 

5 GLU HA 4.253 10 LEU HA 4.298 

5 GLU HB3 1.964 10 LEU HG 1.585 

5 GLU HB2 1.903 10 LEU HB3 1.605 
10 LEU H82 1.605 
10 LEU HD2 0.903 
10 LEU HIM 0.858 
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Residue Residue Atom Shift 

Number Type 
11 GLU H 8.266 
11 GLU HG2 2.448 Residue Residue Atom Shift 

11 GLU HC3 2.448 Number Type 
11 CLV HA 4.341 17 PHE HZ 7.287 
11 CLV H133 2.113 17 PHE H 8.178 
11 CLU H132 1.99 17 PHE HA 4.574 
12 SER H 8.183 17 PIlE H133 3.083 
12 SER HA 4.401 17 PHE HB2 3.083 
12 SER HB3 3.869 17 PHE HE 7.334 
12 SER HB2 3.812 17 PHE HO 7.247 
13 ASP H 8.351 18 LYS H 8.148 
13 ASP HA 4.713 18 LYS HA 4.238 
13 ASP HB3 2.888 18 LYS HD3 1.635 
13 ASP H132 2.824 18 LYS HD2 1.635 
14 ILE H 7.934 18 LYS HE2 2.959 
14 ILE HA 4.166 18 LYS 11E3 2.959 
14 ILE HB 1.848 18 LYS HG2 1.344 
14 ILE HG12 1.148 18 LYS HC3 1.344 
14 ILE HG13 1.413 18 LYS H83 1.784 
14 ILE HG2 0.856 18 LYS H132 1.666 
14 ILE 1101 0.825 18 LYS HZ 7.512 
15 CLV H 8.266 19 GLY H 7.712 
15 CLV HG2 2.437 19 GLY HA2 3.856 
15 CLV HC3 2.437 19 GLY HA3 3.856 
15 GLU HA 4.646 20 LEU H 7.97 
15 CLV 11B3 2.03 20 LEU HA 4.312 
15 CLV H112 1.882 20 LEU HG 1.627 
16 PRO H03 3.731 20 LEU HB3 1.629 
16 PRO H02 3.63 20 LEU H82 1.629 
16 PRO HG2 1.922 20 LEU HD2 0.913 
16 PRO HC3 1.922 20 LEV HD1 0.876 
16 PRO HA 4.354 
16 PRO HB3 2.183 
16 PRO HB2 1.743 
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Ha122 
Residue Residue Atom Shift 

Residue Residue Atom Shift 
Number Type 

Number Type 13 SER H 8.212 
1 LEU HA 3.986 13 SER HA 4.391 
1 LEU HG 1.614 13 SER HB3 3.852 
1 LEU H133 1.701 13 SER HB2 3.795 
1 LEU HB2 1.668 14 ASP H 8.368 
1 LEU H131 0.907 14 ASP HA 4.699 
1 LEU H132 0.907 14 ASP H133 2.868 
2 ALA H 8.614 14 ASP H82 2.8 
2 ALA HA 4.394 15 ILE H 7.954 
2 ALA HB 1.585 15 ILE HA 4.145 
3 ALA H 8.499 15 ILE HB 1.833 
3 ALA HA 4.298 15 ILE HC12 1.135 
3 ALA HB 1.384 15 ILE HG13 1.402 
4 SER H 8.286 15 ILE HD1 0.815 
4 SER HA 4.365 15 ILE HG2 0.842 
4 SER H83 3.933 16 GLU H 8.293 
4 SER H132 3.837 16 GLU HG2 2.432 
5 SER H 8.309 16 GLU HG3 2.432 
5 SER HA 4.387 16 GLU HA 4.644 
5 SER 1183 3.895 16 GLU H133 2.024 
5 SER 11132 3.829 16 GLU H132 1.869 
6 GLU H 8.192 17 PRO HD3 3.733 
6 GLU HG2 2.24 17 PRO H132 3.629 
6 CLU HG3 2.289 17 PRO HG2 1.924 
6 GLU HA 4.234 17 PRO HG3 1.924 
6 GLU HB3 1.944 17 PRO HA 4.343 
6 GLU HB2 1.892 17 PRO H133 2.183 
7 TYR H 8.008 17 PRO HB2 1.743 
7 TYR HA 4.51 18 PHE HZ 7.283 
7 TYR H133 3.02 18 PHE H 8.217 
7 TYR H132 2.905 18 PHE HA 4.558 
7 TYR HO 7.066 18 PHE 11133 3.099 
7 TYR HE 6.764 18 PHE H82 3.056 
8 ARC H 8.065 18 PHE HD 7.243 
8 ARC HE 7.136 18 PHE HE 7.328 
8 ARC HA 4.181 19 LYS H 8.159 
8 ARC HD3 3.131 19 LYS HA 4.215 
8 ARC HD2 3.131 19 LYS HD3 1.622 
8 ARC HC2 1.496 19 LYS HD2 1.622 
8 ARG HC3 1.496 19 LYS HE2 2.94 
8 ARG H133 1.735 19 LYS HE3 2.94 
8 ARC H132 1.663 19 LYS HC2 1.32 
9 HIS H 8.356 19 LYS HC3 1.32 
9 HIS HE1 8.584 19 LYS H133 1.769 
9 HIS H132 7.266 19 LYS H82 1.638 
9 HIS HA 4.578 19 LYS HZ 7.497 
9 HIS 14133 3.228 20 CLY H 7.617 
9 HIS H132 3.139 20 CLY HA2 3.822 
10 ALA H 8.32 20 GLY HA3 3.822 
10 ALA HA 4.255 21 LEU H 8.043 
10 ALA HB 1.358 21 LEU HA 4.359 
11 LEU H 8.239 21 LEU H133 1.604 
11 LEU HA 4.291 21 LEU H82 1.604 
11 LEU H03 1.598 21 LEU HD1 0.88 
11 LEU HB2 1.579 21 LEU HD2 0.88 
11 LEU H131 0.856 22 LEU H 8.154 
11 LEU HD2 0.856 22 LEU HA 4.313 
12 CLU H 8.294 22 LEU 11133 1.62 
12 CLU HC2 2.432 22 LEU H132 1.62 
12 GLU HC3 2.432 22 LEU HD1 0.831 
12 CLU HA 4.339 22 LEU H132 0.831 
12 GLU H83 2.098 
12 CLU HB2 1.973 
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Residue Residue Atom Shift 
Number Type 

1 LEO HA 3.996 
1 LEU HG 1.667 
1 LEU HB3 1.728 Residue Residue Atom Shift 
1 LEO HB2 1.667 Number Type 
1 LEU HD1 0.921 12 THR H 8.013 
1 LEU HD2 0.921 12 THR HO 4.193 
2 ALA H 8.72 12 THR HA 4.258 
2 ALA HA 4.405 12 THR HG2 1.169 
2 ALA HO 1.408 13 ALA H 8.172 
3 SER H 8.445 13 ALA HA 4.315 
3 SER HA 4.398 13 ALA HB 1.356 
3 SER H133 3.853 14 ILE H 8.013 
3 SER HB2 3.939 14 ILE HA 4.079 
4 SER H 8.393 14 ILE HO 1.795 
4 SER HA 4.391 14 ILE HC12 1.148 
4 SER H03 3.824 14 ILE HC13 1.425 
4 SER H132 3.896 14 ILE HD1 0.82 
5 GLU H 8.222 14 ILE HG2 0.837 
5 CLU HG2 2.265 15 ASP H 8.462 
5 CLU HG3 2.313 15 ASP HA 4.943 
5 GLU HA 4.26 15 ASP H03 2.728 
5 GLU H03 1.963 15 ASP HB2 2.912 
5 GLU H02 1.897 16 PRO HD3 3.697 
6 TYR H 8.04 16 PRO HD2 3.734 
6 TYR HA 4.504 16 PRO HG2 1.649 
6 TYR H133 2.92 16 PRO HG3 1.872 
6 TYR H02 3.02 16 PRO HA 4.322 
6 TYR HD 7.072 16 PRO HB3 2.119 
6 TYR HE 6.772 16 PRO HB2 2.119 
7 ARC H 8.087 17 PHE HZ 7.289 
7 ARC HE 7.139 17 PHE H 8.014 
7 ARC HA 4.165 17 PHE HA 4.575 
7 ARC HD3 3.138 17 PHE H83 3.036 
7 ARC HID2 3.138 17 PHE HB2 3.16 
7 ARC HG2 1.495 17 PHE HD 7.27 
7 ARC HC3 1.495 17 PHE HE 7.343 
7 ARC H03 1.751 18 LYS H 7.932 
7 ARC H132 1.684 18 LYS HA 4.23 
8 HIS H 8.405 18 LYS H133 1.653 
8 HIS HE1 8.59 18 LYS H132 1.653 
8 HIS HD2 7.269 18 LYS HE2 2.97 
8 HIS HA 4.585 18 LYS HE3 2.97 
8 HIS HB3 3.159 18 LYS HC2 1.357 
8 HIS HB2 3.251 18 LYS HC3 1.376 
9 CLO H 8.354 18 LYS H03 1.808 
9 CLU HC2 2.415 18 LYS H02 1.696 
9 GLU HC3 2.415 18 LYS HZ 7.51 
9 CLU HA 4.286 19 CLY H 7.89 
9 CLU H03 2.067 19 GLY HA2 3.871 
9 GLU H132 1.969 19 CLY HA3 3.871 
10 LEU H 8.277 20 LEU H 7.998 
10 LEU HA 4.291 20 LEU HA 4.328 
10 LEO HG 1.567 20 LEU HG 1.628 
10 LEU H03 1.618 20 LEO H133 1.64 
10 LEU H02 1.571 20 LEO H82 1.64 
10 LEO HD1 0.837 20 LEO HIll 0.863 
10 LEO H02 0.884 20 LEO H132 0.912 
11 LEO HA 3.996 
11 GLU H 8.317 
11 CLU HG2 2.453 
11 CLU HC3 2.453 
11 CLU HA 4.385 
11 CLU HB3 2.112 
11 GLU HB2 1.991 - 
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Residue Residue Atom Shift 

Residue Residue Atom Shift Number Type 
Number Type 13 ASP H 8.378 

1 LEU HA 4 13 ASP HA 4.705 

1 LEU HG 1.661 13 ASP H133 2.858 
1 LEU HB3 1.718 13 ASP H132 2.786 
1 LEU H132 1.656 14 ILE H 7.942 
1 LEU H131 0.913 14 ILE HA 4.124 
I LEU H132 0.913 14 ILE HB 1.82 
2 ALA H 8.719 14 ILE HG12 1.139 
2 ALA HA 4.413 14 ILE HG13 1.414 
2 ALA HB 1.399 14 ILE HC2 0.829 
3 SER H 8.426 14 ILE HD1 0.804 

3 SER HA 4.399 15 LYS H 8.32 
3 SER H133 3.935 15 LYS HA 4.59 
3 SER H82 3.853 15 LYS H123 1.661 
4 SER H 8.37 15 LYS H122 1.661 
4 SER HA 4.396 15 LYS HE2 2.985 
4 SER H133 3.893 15 LYS HE3 2.985 
4 SER HB2 3.823 15 LYS HG2 1.421 
5 CLV H 8.245 15 LYS HG3 1.421 
5 CLV HG2 2.242 15 LYS H133 1.752 

5 CLV HG3 2.294 15 LYS HB2 1.68 
5 GLU HA 4.253 15 LYS HZ 7.513 
5 GLU H133 1.954 16 PRO H133 3.769 
5 CLV H132 1.882 16 PRO HD2 3.588 
6 TYR H 8.037 16 PRO HG2 1.944 
6 TYR HA 4.518 16 PRO HG3 1.944 
6 TYR HB3 3.024 16 PRO HA 4.364 
6 TYR HB2 2.912 16 PRO HB3 2.199 

7 ARC H 8.088 16 PRO HB2 2.121 
7 ARC HE 7.155 17 PHE HZ 7.339 
7 ARC HA 4.188 17 PHE H 8.263 
7 ARC H133 3.134 17 PHE HA 4.57 
7 ARC HD2 3.134 17 PHE H83 3.106 
7 ARC HC2 1.486 17 PHE H132 3.041 
7 ARC HG3 1.486 17 PHE HE 7.363 
7 ARC H133 1.728 17 PHE HD 7.274 
7 ARC H82 1.651 18 LYS H 8.187 

8 HIS H 8.359 18 LYS HA 4.224 
8 HIS HA 4.592 18 LYS HD3 1.619 
8 HIS HB3 3.238 18 LYS HD2 1.619 
8 HIS HB2 3.148 18 LYS HE2 2.944 
9 ALA H 8.322 18 LYS HE3 2.944 
9 ALA HA 4.268 18 LYS HC2 1.306 
9 ALA HB 1.356 18 LYS HG3 1.306 
10 LEU H 8.249 18 LYS HB3 1.751 
10 LEU HA 4.307 18 LYS H132 1.636 
10 LEU HB3 1.615 18 LYS HZ 7.5 
10 LEU H82 1.576 19 CLY H 7.729 
11 CLU H 8.307 19 CLY HA2 3.854 
11 CLU HC2 2.431 19 CLY HA3 3.854 
11 CLV HC3 2.431 20 LEU H 7.979 
11 CLV HA 4.343 20 LEU HA 4.296 
11 CLV H133 2.097 20 LEU HG 1.581 
11 CLU H132 1.978 20 LEU H83 1.622 
12 SER H 8.225 20 LEU HB2 1.584 
12 SER HA 4.399 20 LEU HD1 0.869 
12 SER H133 3.866 20 LEU H132 0.869 
12 SER H132 3.804 

Dik 



Appendix B 

Chemical Shift Tables for the 
Unlabelled and 15N-labeled 
fH-13 

Chemical shift tables for the unlabelled and ' 5N-labeled fH- 13 are listed below: 

Residue Residue Atom Shift 
Number Type 

754 Lys HA 4.9897 

Residue 
 Ly HB1 1.839 

due Residue Atom Shift 754 Lys  2.109 
Number Type 754 Lys HIM 1.737 

747 Ala HA 4.311 754 Lys HD2 1.737 
747 Ala HB! 1.371 754 Lye HE1 3.014 
748 Glu HA 4.154 754 Lye HE2 3.014 
748 Glu HB1 1.946 754 Lye HG1 1.617 
748 Glu HB2 1.946 .754 Lys HG2 1.617 
748 Glu HG1 2.2432 754 Lys HN 8.6677 
748 Gb HG2 2.2432 754 Lys N 121.945 
748 G u HN 8.5864 755 Se' HA 4.4757 
748 G u N 121.5348 755 Set HB1 3.9845 
749 Ala HA 4.164 755 Ser HB2 3.9845 
749 Ala HB1 1.2535 755 Set HN 8.4305 
749 Ala HN 8.4079 755 Ser N 117.0453 
749 Ala N 126.3222 756 5cr HA 4.7106 
750 Cly HA  3.4988 756 Ser HB1 3.3989 
750 Gly HA2 3.767 756 Ser HB2 3.9635 
750 Gly HN 8.5932 756 Set HN 7.7295 
750 Gly N 109.6893 756 Ser N 114.0442 
751 Ala HA 4.026 757 Aso HA 4.741 
751 Ala HB1 1.1098 757 Aen HB1 2.878 
751 Ala HN 8.2441 757 Asn HB2 2.928 
751 Ala N 123.868 757 Asn HD21 6.927 
752 Lye HA 4.657 757 Asn HD22 7.639 
752 Lye HB1 1.5535 757 Aso HN 8.9194 
752 Lye HB2 1.5535 757 Aso ND2 112.062 
752 Lye HD1 1.482 757 Asn N 122.479 
752 Lye HD2 1.482 758 Leu HA 4.222 
752 Lye HE1 2.936 758 Leu HB1 1.461 
752 Lye HE2 2.936 758 Leo HB2 1.544 
752 Lye HG1 1.418 758 Leo H011 0.752 
752 Lye HG2 1.418 758 Leu HD21 0.828 
752 Lys HN 7.818 758 Leu HG 1.556 
752 Lye N 117.6582 758 Leu HN 8.2049 
753 Cye HA 4.4745 758 Leu N 118.4221 
753 Cys HB1 1.638 759 lIe HA 4.931 
753 Cys H82 1.7075 759 lIe HB 1.7352 
753 Cye HN 8.9801 759 Ile HD11 0.1044 
753 Cye N 118.0891 759 Ile HG!! 1.05 

759 lie HG12 1.05 
759 lIe HG21 0.331 
759 Ile HN 6.8093 
759 Ile N 108.931 
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Residue Residue Atom Shift 
Number Type 

760 Ile HA 4.2557 
760 lIe H13 1.563 
760 Ile HD11 0.73 
760 Ile HG11 1.01 
760 lie HG12 1.345 
760 lie HG21 0.9237 
760 lie HN 9.1927 
760 lie N 123.6314 
761 Leu HA 4.929 
761 Leu H131 1.588 
761 Leu HB2 1.586 
761 Leo HD11 0.911 
761 Leu HD21 0.911 
761 - Leu HG 1.78 
761 Leu HN 8.2832 
761 Leo N 125.9 
762 Giu HA 4.22 
762 Glu HB1 1.7935 
762 Glu HB2 2.356 
762 Glu HG1 1.974 
762 Giu HG2 2.226 
762 Giu HN 8.9973 
762 Giu N 119.2869 
763 Giu HA 3.9423 
763 Giu HB1 2.116 
763 Giu H132 2.214 
763 Glu HG1 2.357 
763 Giu HG2 2.4247 
763 Giu HN 8.8371 
763 Giu N 120.7214 
764 His HA 4.607 
764 His 1-1131 3.0583 
764 His HB2 3.3337 
764 His HD2 7.019 
764 His HN 8.5312 
764 His N 113.83 
765 Leu HA 4.54 
765 Leu H131 1.687 
765 Leu H82 1.841 
765 Leu HD11 0.9485 
765 Leo 11021 1.1037 
765 Leo HG 0.6317 
765 Leo HN 7.6129 
765 Lou N 120.5956 
766 Lys HA 4.003 
766 Lys HB1 1.791 
766 Lys H132 1.958 
766 Lys HO! 1.726 
766 Lys HD2 1.726 
766 Lys HE1 3.02 
766 Lys HE2 3.02 
766 Lys HG1 1.3617 
766 Lys HG2 1.504 
766 Lys HN 7.2649 
766 Lys N 117.8032 
767 Ass HA 4.7662 
767 Ass HB1 2.7465 
767 Ass HB2 2.935 
767 Asn HD2I 7.041 
767 Ass HD22 7.6747 
767 Ass HN 8.5919 
767 Ass ND2 113.813 
767 Ass N 115.838 
768 Lys HA 4.087 
768 Lys HB1 1.412 
768 Lys HB2 1.6188 
768 Lys HD1 1.456 
768 Lys HD2 1.5215 
768 Lys HE1 2.762 
768 Lys HE2 2.8578 
768 Lys HG1 0.9405 
768 Lys HG2 1.2363 
768 Lye HN 7.7303 
768 Lys N 122.4816 
769 Lys HA 4.4377 
769 Lys HB1 1.747 
769 Lys HB2 1.917 
769 Lys HG1 1.409 
769 Lys HG2 1.479 
769 Lys HN 8.6457 
769 Lys N 122.1 

Residue Residue Atom Shift 
Number Type - 

770 Gb HA 5.1246 
770 Giu HB1 1.678 
770 Giu HB2 1.902 
770 Giu HG1 1.991 
770 Giu HG2 1.991 
770 Giu HN 7.3195 
770 Giu N 116.4347 
771 Phe HA 4.629 
771 Phe HB1 2.6193 
771 Phe HB2 3.141 
771 Phe HOl 6.0758 
771 Phe HD2 6.0758 
771 Phe HE! 6.5599 
771 Phe HE2 6.5599 
771 Phe HZ 7.2751 
771 Phe HN 9.0348 
771 Phe N 119.9547 
772 Asp HA 4.5247 
772 Asp H131 2.4623 
772 Asp H52 2.738 
772 Asp HN 8.6405 
772 Asp N 119.7458 
773 His HA 4.1167 
773 His HOl 2.745 
773 His H132 3.1201 
773 His H02 6.8799 
773 His HE! 7.6895 
773 His HN 8.9925 
773 His N 123.3252 
774 Ass HA 4.0929 
774 Asn UB1 2.7568 
774 Asn HB2 2.9317 
774 Asn HD21 6.6058 
774 Ass HD22 7.4787 
774 Ass HN 9.3791 
774 Ass ND2 110.303 
774 Ass N 122.7903 
775 Ser HA 4.5129 
771 Ser 1-1131 4.013 
775 Ser HB2 4.013 
775 Ser HN 8.0281 
775 Ser N 115.667 
776 Ass HA 5.462 
776 Ass H131 2.7582 
776 Asn HB2 2.8267 
776 Ass HD21 7.1375 
776 Asn HD22 7.5292 
776 Asn HN 8.9339 
776 Ass ND2 113.9193 
776 Ass N 122.8619 
777 lie HA 4.7655 
777 lie HB 1.525 
777 lie H011 -0.1086 
777 Ile HG11 0.4019 
777 lie HG12 0.7204 
777 lie HN 8.7551 
777 lie N 116.4374 
778 Arg HA 5.4351 
778 Arg HB1 1.2858 
778 Arg HB2 1.2858 
778 Arg HO! 2.4165 
778 Arg H02 2.728 
778 Arg HG! 1.242 
778 Arg HG2 1.242 
778 Arg HE 6.5637 
778 Arg HN 7.6685 
778 Arg NE 83.458 
778 Arg N 118.3299 
779 Tyr HA 5.6984 
779 Tyr HB1 2.3704 
779 Tyr HB2 2.8436 
779 Tyr HD1 6.3836 
779 Tyr H02 6.3836 
779 Tyr HE1 6.3079 
779 Tyr HE2 6.3079 
779 Tyr HN 9.3129 
779 Tyr N 119.8876 
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Residue Residue Atom Shift 
Residue Residue Atom Shift 

Number Type 
Number Type 

780 Arg HA 4.6209 
780 Arg HB1 0.8933 

792 Cys HA 4.1662 

780 Arg H132 1.0404 
792 Cys H131 2.068 

780 Arg HD1 1.7537 
792 Cys H132 2.6621 

780 Arg HD2 2.381 
792 Cys HN 8.5963 

780 Arg HG1 0.3282 
792 Cys N 125.5213 

780 Arg HG2 0.6192 
793 Ile HA 4.7082 

780 Arg HE 6.0986 
793 Ile HB 2.009 

780 Arg HN 8.7601 
793 Ile HD11 1.5495 

780 Arg NE 84.0125 
793 Ile HG11 0.823 

780 Arg N 116.9741 
793 Ile HG12 1.2544 

781 Cys HA 4.953 
793 Ile HG21 0.957 

781 Cys HB1 2.4462 
793 Ile HN 9.1856 

781 Cys H132 3.3394 
793 Ile N 132 5426 

781 Cys UN 9.057 
794 Asu HA 4.2829 

781 Cys N 120.8743 
794 Aso HB1 2.4604 

782 Arg HA 3.815 
794 Asn HB2 2.9805 

782 Arg H131 1.696 
794 Asn HID21 6.7886 

782 Arg HB2 1.696 
794 Asn HD22 7.6036 

782 Arg HD1 3.169 
794 Aso HN 12.1449 

782 Arg HD2 3.169 
794 Asn NO2 112.2371 

782 Arg HG1 1.5805 
794 Am, N 131.127 

782 Arg HG2 1.5805 
795 G!y HAl 3.3156 

782 Arg UN 8.6252 
795 Gly HA2 4.0383 

782 Arg N 122.3165 
795 G!y UN 6.597 

783 GIY HAl 3.714 
795 Gly N 102.5028 

783 Gly HA2 4.046 
796 Arg HA 4.5688 

783 Gly HN 8.7197 
796 Arg HB1 1.5467 

783 Gl' N 111.9922 
796 Arg HB2 1.792 

784 Lys HA 4.6693 
796 Aeg HIM 3.2118 

784 Lys HB1 1.67 
796 Arg HD2 3.2118 

784 Lys H132 1.755 
796 Arg HG! 1.665 

784 Lys HD1 1.548 
796 Arg HG2 1.665 

784 Lys HD2 1.548 
796 Arg HE 7.251 

784 Lys HE1 2.945 
796 Arg HN 7.7076 

784 Lys HE2 2.945 796 Arg NE 85.042 

784 Lys HG1 1.276 
796 Arg N 122.81 

784 Lys HG2 1.276 797 Trp HA 4.109 

784 Lys HN 7.7567 
797 Trp HB1 2.816 

784 Lys N 119.1926 797 Trp H132 3.491 

785 Glu HA 4.0386 
797 Trp HD1 7.1806 
797 Trp HE1 9.5774 

785 
785 

Glu 
Glu 

HB1 
H132 

1.7905 
1.9485 

797 Trp UN 8.1532 

785 Glu HG1 2.174 
797 Trp NE1 125.0468 

785 Glu HG2 2.2035 
797 Tip N 126.1265 

785 Glu HN 8.6288 798 Asp HA -99 
798 Asp H131 2.3032 

785 Glu N 122.3367 
798 Asp H132 3.0097 

786 
786 

Gly 
Gly 

HAl 
HA2 

3.639 
3.99 

798 Asp UN 9.4237 

786 Gly UN 8.0892 
798 Asp N 124.6167 

786 G!y N 110.3069 
799 Pro HA 4.985 

787 Trp HA 4.6084 
799 Pro HB1 2.14 

787 Trp H131 2.7059 
799 Pro H132 2.5461 

787 Trp HB2 2.9473 799 Pro HIll 3.723 

787 Trp HIll 7.2371 
799 Pro HD2 3.9123 

787 Trp HH2 6.9683 
799 Pro HG1 1.976 

787 Trp HZ2 7.4638 
799 Pro HG2 1.976 

787 Trp HZ3 7.024 800 Glu HA 4.1053 

787 Trp HE1 10.1605 
800 Glu H131 2.021 

787 Trp HN 8.3308 
800 Glu HB2 2.021 

787 Trp NE1 129.1445 
800 Glu HG1 2.417 

787 Trp N 122.8658 800 Glu HG2 2.417 

788 Ile HA 4.0558 800 Glu UN 8.6472 

788 Ile HB 0.3757 
800 G!u N 120.56 

788 Ile HIll 0.638 
801 Val HA 3.6551 

788 Ile HG11 1.155 
801 Val HB 1.649 

788 Ile HG12 1.155 
801 Val HG!! 0.2022 

788 Ile HG21 0.745 
801 Val HG21 0.3272 

788 Ile HN 9.5116 801 Val HN 8.5442 

788 Ile N 126.9983 
801 Val N 124.8533 

789 His HA 5.4233 
802 Aso HA 4.853 

789 His HB1 3.0333 
802 Asu HUh 2.6151 

789 His HB2 3.1067 
802 Asr. H132 2.813 

789 His HD2 7.0801 
802 Aso HD21 6.9285 

789 His HE! 7.57 
802 As,, HD22 7.611 

789 His HN 8.3262 
802 As,, HN 8.2451 

789 His N 123.173 
802 As,, ND2 112.533 

790 Thr HA 4.7481 
802 As,, N 125.8455 
803 Cys HA 5.061 

790 Thr HB 4.2747 
803 Cys HB1 2.4245 790 

790 
Thr 
Thr 

HG21 
HN 

0.561 
8.5576 803 Cys H132 3.4763 

803 Cys HN 8.4651 
790 
791 

Thr 
Val 

N 
HA 

119.0811 
5.2548 803 Cys N 121.6331 

791 Val HB 2.08 
804 Ser HA 4.2625 

791 Val HG11 0.891 
804 Ser H131 3.8623 

791 Val HG21 0.9084 
804 Ser H132 3.8623 

791 Val UN 8.2045 
804 Ser UN 8.1257 

791 Val N 125.3641 
804 Ser N 123.1729 



Appendix C 

Chemical Shift Tables for the 
13C,- 15N-labeled fH-13 

Chemical shift tables for the ' 3 C-labeled fH- 13 are listed below: 

Residue Residue Atom Shift 
Number Type 

752 LYS H 7.818 
Residue Residue Atom Shift 752 LYS CA 56.054 

Number Type 752 LYS CC 25.925 

747 ALA CA 52.604 
752 LYS CD 29.446 

747 ALA CB 19.021 
752 LYS N 117.666 

747 ALA HA 4.298 
752 LYS HA 4.647 

747 ALA HB 1.36 
752 LYS HD3 1.476 

748 CLU H 8.581 
752 LYS HD2 1.476 

748 GLU CA 56.664 
752 LYS HE2 2.93 

748 GLU HG2 2.24 
752 LYS HE3 2.93 

748 GLU HG3 2.24 
752 LYS HG2 1.418 

748 GLU N 121.505 
752 LYS HG3 1.418 

748 GLU CB 30.159 
752 LYS HB3 156 

748 GLU CG 36.147 
752 LYS CB 34.189 

748 GLU HA 4.15 
752 LYS H02 1.56 

748 GLU H83 1.944 
753 CYS H 8.977 

748 GLU H02 1.927 
753 CYS CA 57.026 

749 ALA H 8.403 
753 
753 

CYS 
CYS 

N 
CO 

118.062 
42.381 

749 ALA CA 52.432 
753 CYS HA 4 462 

749 ALA N 126.273 
753 CYS H03 1 706 

749 ALA CD 18.978 
753 CYS HB2 1.614 

749 ALA HA 4.164 
754 LYS H 8.665 

749 ALA HB 1.25 
754 LYS CA 55.863 

750 ALA H 8.242 
754 LYS CC 25.186 

750 ALA CA 51.69 
754 LYS CE 41.952 

750 ALA N 123.865 
754 LYS CD 29.107 

750 ALA CD 18.84 
754 LYS N 121.929 

750 ALA HA 4.025 
754 LYS HA 4.999 

750 ALA HO 1.098 
754 LYS HD3 1.743 

751 GLY H 8.59 
754 LYS HD2 1.743 

751 GLY HA2 3.491 
754 LYS HE2 3.023 

751 GLY HA3 3.765 
754 LYS HE3 3.023 

751 GLY CA 45.846 
754 LYS HC2 1.606 

751 GLY N 109.661 
754 LYS HC3 1.6 13  
754 LYS H03 2.104 
754 LYS CB 34.506 
754 LYS HB2 1.844 
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Residue Residue Atom Shift 
Number Type 

755 SER H 8.43 
755 SER CA 57.36 
755 SER N 117.033 
755 SER CB 63.87 
755 SER HA 4.472 
755 SER H133 3.979 
755 SER H132 3.979 
756 SER H 7.729 
756 SER CA 56.756 
756 SER N 114.033 
756 SER CO 64.688 
756 SER HA 4.708 
756 SER HB3 3.955 
756 SER 11132 3.401 
757 ASH NO2 112.16 
757 ASN HD22 7.641 
757 ASH HD21 6.925 
757 ASH H 8.918 
757 	- ASH CA 54.221 
757 ASH H 122.395 
757 ASH CB 37.678 
757 ASH HA 4.733 
757 ASH H133 2.935 
757 ASH H132 2.873 
758 LEO H 8.203 
758 LEU CA 55.688 
758 LEU H 118.39 
758 LEO CD1 22.511 
758 LEU CD2 25.098 
758 LEU HA 4.206 
758 LEO HG 1.559 
758 LEU CB 42.901 
758 LEU HB3 1.492 
758 LEU HB2 1.471 
758 LEO HD2 0.818 
758 LEO HD1 0.759 
759 ILE H 6.812 
759 ILE CA 59.493 
759 ILE H 108.939 
759 ILE CD1 12.386 
759 ILE CG1 24.209 
759 ILE CG2 18.84 
759 ILE HA 4.935 
759 ILE HB 1.729 
759 ILE HG12 1.047 
759 ILE HG13 1.047 
759 ILE CB 40.498 
759 ILE HG2 0.327 
759 ILE H131 0.096 
760 ILE H 9.192 
760 ILE CA 60.471 
760 ILE N 123.62 
760 ILE CDI 13.196 
760 ILE CG1 27.356 
760 ILE CG2 17.273 
760 ILE HA 4.252 
760 ILE H  1.557 
760 ILE HG12 1.01 
760 ILE HG13 1.341 
760 ILE CB 39.354 
760 ILE HG2 0.92 
760 ILE HDS 0.726 
761 LEO H 8.283 
761 LEU CA 53.404 
761 LEU CG 26.524 
761 LEO N 125.882 
761 LEO CD1 24.151 
761 LEU HA 4.918 
761 LEU CB 44.337 
761 LEO H03 1.778 
761 LEU HB2 1.589 
761 LEU HD2 1.047 
761 LEU HD1 0.818 
762 GLU H 8.989 
762 GLU CA 57.966 
762 GLU HG2 1.972 
762 GLU HG3 2.343 
762 GLU H 119.277 
762 GLU CB 31.495 
762 GLU CG 38.521 
762 GLU HA 4.217 
762 GLU HB3 2.216 
762 GLU H132 1.79 

Residue Residue Atom - 	 Shift 
Number Type 

763 GLU H 8.832 
763 GLU CA 60.127 
763 GLU HG2 2.366 
763 GLU HG3 2.417 
763 CLV H 120.753 
763 CLV CB 30.045 
763 CLV CG 35.742 
763 GLU HA 3.941 
763 GLU H03 2.211 
763 GLU H02 2.111 
764 HIS CE1 139.018 
764 HIS H 8.533 
764 HIS CA 58.183 
764 HIS HE1 7.785 
764 HIS H 113.838 
764 HIS H132 7.032 
764 HIS CO2 118.768 
764 HIS CB 29.107 
764 HIS HA 4.6 
764 HIS HB3 3.33 
764 HIS H132 3.055 
765 LEU H 7.616 
765 LEO CA 54.226 
765 LEO H 120.57 
765 LEU C131 23.364 
765 LEO CD2 26.325 
765 LEU HA 4.536 
765 LEU HG 0.633 
765 LEU CB 43.414 
765 LEU H133 1.839 
765 LEO HB2 1.69 
765 LEU H132 1.109 
765 LEO HDS 0.95 
766 LYS H 7.259 
766 LYS CA 59.231 
766 LYS CG 24.167 
766 LYS CE 42.374 
766 LYS CD 29.669 
766 LYS N 117.829 
766 LYS HA 4.001 
766 LYS HD3 1.717 
766 LYS HD2 1.717 
766 LYS HE2 3.005 
766 LYS HE3 3.005 
766 LYS HG2 1.356 
766 LYS HG3 1.504 
766 LYS H03 1.949 
766 LYS CB 32.519 
766 LYS HB2 1.784 
767 ASH N132 113.81 
767 ASH HD22 7.674 
767 ASH HD21 7.04 
767 ASH H 8.591 
767 ASH CA 53.226 
767 ASH H 115.854 
767 ASH CB 38.439 
767 ASH HA 4.758 
767 ASH H133 2.925 
767 ASH HB2 2.745 
768 LYS H 7.731 
768 LYS CA 57.084 
768 LYS CG 24.62 
768 LYS CE 42.018 
768 LYS CD 29.076 
768 LYS H 122.468 
768 LYS HA 4.076 
768 LYS H133 1.5 
768 LYS HD2 1.466 
768 LYS HE2 2.755 
768 LYS HE3 2.854 
768 LYS HG2 0.93 
768 LYS HG3 1.232 
768 LYS H03 1.616 
768 LYS Cli 32.782 
768 LYS HB2 1.412 
769 LYS H 8.639 
769 LYS CA 56.66 
769 LYS CG 24.874 
769 LYS CE 41.99 
769 LYS CD 28.748 
769 LYS N 122.078 
769 LYS HA 4.432 
769 LYS H133 1.669 
769 LYS HD2 1.65 
769 LYS HE2 2.962 
769 LYS HE3 3.108 
769 LYS HG2 1.433 
769 LYS HG3 1.445 
769 LYS HB3 1.919 
769 LYS CB 33.76 
769 LYS H02 1.746 



APPENDIX C. CHEMICAL SHIFT TABLES FOR THE 13 C,-'5N-LABELED FH-13176 

Residue Residue Atom Shift 
Number Type 

770 CLU H 7.325 
770 CLU CA 54.567 
770 GLU HG2 1.998 
770 GLU HG3 1.998 
770 GLU N 116.472 
770 GLU CB 33.118 
770 GLU CC 35.88 
770 CLU HA 5.125 
770 GLU H133 1.905 
770 GLU H132 1.688 
771 PHE HZ 7.31 
771 PHE H 9.032 
771 PHE CA 56.927 
771 PHE N 119.952 
771 PHE HA 4.627 
771 PHE CZ 131.478 
771 PHE CB 42.755 
771 PHE H133 3.141 
771 PHE H132 2.615 
771 PHE CD 131.478 
771 PHE HE 7.31 
771 PHE HD 7.305 
771 PHE CE 131.478 
772 ASP H 8.642 
772 ASP CA 54.521 
772 ASP N 119.768 
772 ASP CB 41.766 
772 ASP HA 4.526 
772 ASP H133 2.739 
772 ASP H132 2.46 
773 HIS CE1 139.052 
773 HIS H 8.989 
773 HIS CA 59.195 
773 HIS HE1 7.69 
773 HIS N 123.303 
773 HIS HD2 6.877 
773 HIS C132 118.394 
773 HIS CB 31.347 
773 HIS HA 4.109 
773 HIS H133 3.112 
773 HIS H132 2.744 
774 ASN ND2 110.304 
774 ASN HD22 7.479 
774 ASN HD2I 6.604 
774 ASN H 9.378 
774 ASN CA 54.445 
774 ASN N 122.769 
774 ASH CB 36.685 
774 ASN HA 4.09 
774 ASH HB3 2.928 
774 ASH H132 2.755 
775 SER H 8.028 
775 SEE CA 60.806 
775 SER H 115.678 
775 SEE CB 64.042 
775 SER HA 4.509 
775 SER H133 4.007 
775 SER 11132 4.007 
776 ASH ND2 113.925 
776 ASH HD22 7.529 
776 ASH HD21 7.137 
776 ASH H 8.934 
776 ASH CA 52.57 
776 ASH N 122.834 
776 ASH CB 41.084 
776 ASH HA 5.462 
776 ASH H133 2.818 
776 ASH HB2 2.764 

Residue Residue Atom Shift 
Number Type 

777 ILE H 8.754 
777 ILE CA 59.724 
777 ILE H 116.431 
777 ILE C131 12.448 
777 ILE CC1 25.966 
777 ILE CC2 17.704 
777 ILE HA 4.763 
777 ILE HB 1.518 
777 ILE HG12 0.352 
777 ILE HC13 0.713 
777 ILE CB 42.706 
777 ILE HG2 0.395 
777 ILE H131 -0.514 
778 ARC HE 83.464 
778 ARC H 7.665 
778 ARC CA 53.835 
778 ARC CG 26.308 
778 ARC CD 43.683 
778 ARC H 118.33 
778 ARC HE 6.561 
778 ARC HA 5.435 
778 ARC HD3 2.726 
778 ARC HD2 2.416 
778 ARC HG2 1.214 
778 ARC HG3 1.214 
778 ARC CB 33.135 
778 ARC HB3 1.28 
778 ARC H132 1.28 
779 TYR H 9.311 
779 TYR CA 55.669 
779 TYR H 119.891 
779 TYR HH 9.919 
779 TYR HA 5.699 
779 TYR CB 43.13 
779 TYR 14133 2.84 
779 TYR H132 2.366 
779 TYR HD 6.384 
779 TYI4 CE 118.007 
779 TYR HE 6.307 
779 TYR CD 133.255 
780 ARC NE 84.014 
780 ARC H 8.761 
780 ARC CA 53.62 
780 ARC CC 26.187 
780 ARC CD 43.457 
780 ARC H 116.951 
780 ARC HE 6.097 
780 ARC HA 4.62 
780 ARC HD3 2.385 
780 ARC HD2 1.748 
780 ARC HC2 0.316 
780 ARC HC3 0.609 
780 ARC CB 33.482 
780 ARC H133 1.032 
780 ARC H132 0.875 
781 CYS H 9.055 
781 CYS CA 54.312 
781 CYS N 120.918 
781 CYS CB 38.652 
781 CYS HA 4.959 
781 CYS H133 3.331 
781 CYS H132 2.448 



APPENDIX C. CHEMICAL SHIFT TABLES FOR T HE  13 C,-'5 N-LABELED FH-13177 

Residue Residue Atom Shift 
Number Type 

782 ARC H 8.617 
782 ARC CA 18.582 
782 ARC CC 27.026 
782 ARC CD 43.009 
782 ARC N 122.314 
782 ARC HA 3.814 
782 ARC HD3 3.149 
782 ARC HD2 3.149 
782 ARC HG2 1.573 
782 ARC HG3 1.573 
782 ARC CB 29.471 
782 ARC HB3 1.692 
782 ARC HB2 1.692 
783 CLY H 8.724 
783 CLY HA2 3.708 
783 GLY HA3 4.042 
783 GLY CA 45.377 
783 CLY N 112.048 
784 LYS H 7.755 
784 LYS CA 54.371 
784 LYS CC 24.449 
784 LYS CE 42.124 
784 LYS CD 28.967 
784 LYS N 119.184 
784 LYS HA 4.664 
784 LYS HD3 1.54 
784 LYS HD2 1.54 
784 LYS HE2 2.94 
784 LYS HE3 2.94 
784 LYS HG2 1.257 
784 LYS HC3 1.294 
784 LYS H133 1.755 
784 LYS CB 35.068 
784 LYS HB2 1.67 
785 GLU H 8.624 
785 CLU CA 56.652 
785 CLV HC2 2.166 
785 GLU HG3 2.205 
785 CLV N 122.299 
785 CLV CD 30.808 
785 CLV CC 36.114 
785 CLV HA 4.037 
785 CLV H83 1.944 
785 CLV H52 1.805 
786 GLY H 8.09 
786 GLY HA2 3.635 
786 GLY HA3 3.99 
786 GLY CA 44.867 
786 GLY N 110.311 
787 TRP HH2 6.969 
787 TRP CZ2 114.266 
787 TRP CZ3 122.334 
787 TRP CA 56.584 
787 TRP HZ2 7.462 
787 TRP N 122.89 
787 TRP CE3 119.954 
787 TRP HA 4.604 
787 TRP CD1 127.791 
787 TRP HE1 10.16 
787 TRP HD1 7.236 
787 TRP HE3 7.016 
787 TRP CH2 124.189 
787 TRP HB3 2.944 
787 TRP HZ3 7.017 
787 TRP H 8.329 
787 TRP NE1 129.143 
787 TRP CB 31.012 
787 TRP HH2 2.701 

Residue Residue Atom Shift 
Number Type 

788 ILE H 9.512 
788 ILE CA 60.634 
788 ILE N 126.994 
788 ILE CD! 13.459 
788 ILE CG1 27.332 
788 ILE CC2 18.632 
788 ILE HA 4.052 
788 ILE HB 0.369 
788 ILE HG12 0.724 
788 ILE HC13 1.147 
788 ILE CB 39.519 
788 ILE HG2 0.744 
788 ILE HD1 0.633 
789 HIS HE2 7.57 
789 HIS CE1 136.814 
789 HIS H 8.326 
789 HIS CA 55.161 
789 HIS HE1 8.076 
789 HIS N 123.144 
789 HIS H132 7.083 
789 HIS C132 120.697 
789 HIS CB 31.106 
789 HIS HA 5.421 
789 HIS HB3 3.086 
789 HIS H82 3.042 
790 THR CC2 21.376 
790 THR H 8.557 
790 THE CA 61.186 
790 THR HG1 5.768 
790 THE HB 4.274 
790 THR N 119.059 
790 THR CB 67.919 
790 THR HA 4.74 
790 THR HC2 0.559 
791 VAL CG2 22.065 
791 VAL H 8.203 
791 VAL CA 59.849 
791 VAL N 125.346 
791 VAL CG1 21.114 
791 VAL CB 35.891 
791 VAL HB 2.067 
791 VAL HA 5.256 
791 VAL HG2 0.911 
791 VAL HG1 0.885 
792 CYS H 8.596 
792 CYS CA 54.322 
792 CYS N 125.509 
792 CYS CB 38.12 
792 CYS HA 4.159 
792 CYS H133 2.657 
792 CYS H132 2.064 
793 ILE H 9.182 
793 thE CA 58.844 
793 ILE N 132.538 
793 ILE CD! 11.717 
793 ILE Ccl 25.987 
793 ILE CG2 17.47 
793 ILE HA 4.704 
793 ILE HB 2.005 
793 ILE HG12 1.244 
793 ILE HC13 1.544 
793 ILE CB 37.543 
793 ILE HG2 0.949 
793 ILE HD! 0.817 



APPENDIX C. CHEMICAL SHIFT TABLES FOR THE 13 C,- 15 N-IJABELED FH-13178 

Residue Residue Atom Shift Residue Residue Atom Shift 

Number Type Number Type 
794 ASN ND2 112.249 799 PRO HD3 3.91 
794 ASN HD22 7.603 799 PRO HD2 3.723 
794 ASN HD21 6.788 799 PRO CB 34.866 
794 ASN H 12.141 799 PRO CA 63.086 
794 ASN CA 53.785 799 PRO HG2 1.969 
794 ASN N 131.132 799 PRO HC3 2.098 
794 ASN CB 37.885 799 PRO CD 51.095 
794 ASN HA 4.28 799 PRO CC 25.987 
794 ASN HB3 2.975 799 PRO HA 4.986 
794 ASN H132 2.456 799 PRO H83 2.545 
795 CLY H 6.597 799 PRO H82 2.135 
795 CLY HA2 3.31 800 CLU H 8.646 
795 CLY HA3 4.022 800 GLU CA 57.103 
795 CLY CA 45.75 800 GLU HC2 2.42 
795 GLY N 102.492 800 GLU HG3 2.42 
796 ARG NE 85.046 800 GLU N 120.531 
796 ARC H 7.705 800 GLU CB 30.317 
796 ARG CA 53.794 800 CLU CC 36.422 
796 ARC CG 27.018 800 GLU HA 4.097 
796 ARC CD 43.459 800 CLU HB3 2.009 
796 ARC N 122.775 800 GLU H132 2.006 
796 ARC HE 7.245 801 VAL CC2 21.36 
796 ARC HA 4.562 801 VAL H 8.54 
796 ARC HD3 3.205 801 VAL CA 63.377 
796 ARC HD2 3.202 801 VAL N 124.836 
796 ARC HC2 1.645 801 VAL CC1 19.96 
796 ARC HC3 1.645 801 VAL CB 31.486 
796 ARC CD 33.1 801 VAL HB 1.644 
796 ARC H133 1.788 801 VAL HA 3.652 
796 ARC HB2 1.545 801 VAL HC2 0.325 
797 TRP HH2 6.073 801 VAL HG1 0.2 
797 TRP CZ2 112.594 802 ASN ND2 112.53 
797 TRP CZ3 121.539 802 ASN HD22 7.612 
797 TRP CA 56.841 802 ASN HD21 6.928 
797 TRP HZ2 6.556 802 ASN H 8.241 
797 TRP N 126.122 802 ASN CA 52.843 
797 TRP CE3 122.812 802 ASN N 125.8 
797 TRP HA 4.106 802 ASN CD 39.906 
797 TRP CD1 126.638 802 ASN HA 4.848 
797 TRP HES 9.577 802 ASN HB3 2.806 
797 TRP HD1 7.18 802 ASN H132 2.611 
797 TRP HE3 7.273 803 CYS H 8.467 
797 TRP CH2 123.636 803 CYS CA 53.208 
797 TRP HB3 3.486 803 CYS N 121.643 
797 TRP HZ3 6.558 803 CYS CB 39.004 
797 TRP H 8.151 803 CYS HA 5.063 
797 TRP NES 125.042 803 CYS HB3 3.476 
797 TRP CB 29.628 803 CYS HB2 2.423 
797 TRP HB2 2.808 804 SER H 8.123 
798 ASP H 9.423 804 SER CA 60.589 
798 ASP CA 50.921 804 SER N 123.157 
798 ASP N 124.586 804 SER CB 64.828 
798 ASP CB 44.151 804 SER HA 4.26 
798 ASP H133 3.01 804 SER H83 3.86 
798 ASP HB2 2.298 804 SER H132 3.86 


