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Abstract

This thesis presents an investigation into the transcriptional regulation of

TaxolTM biosynthsis in Taxus cuspidata cell suspension cultures. The potent

anticancer drug TaxolTM has been shown to be successful in the treatment of

breast, lung and ovarian cancer and the acquired immunodeficiency syndrome

(AIDS) related Kaposi’s sarcoma. Produced by all species of yew, TaxolTM

belongs to the class of taxane diterpenoids and is of huge pharmaceutical im-

portance.

The plant material utilised in this thesis is a cell suspension culture initi-

ated from isolated procambium cells of T. cuspidata. The latter is a meristem-

atic tissue giving rise to the conductive tissue of plants. This un-differentiated

cell suspension culture exhibits an increased and stable production of TaxolTM

in response to the plant hormone elicitor methyljasmonate, limited cell aggre-

gation and fast growth when compared to a cell suspension culture initiated

from differentiated cells (somatic) of T. cuspidata.

In order to assess the stem cell characteristics of the employed procam-

bium cell suspension culture, the transcriptome of T. cuspidata was sequenced

utilising Roche/ 454 and Illumina/ Solexa NlaIII tag sequencing technolo-

xiv



gies. Statistical analysis uncovered differential expression profiles of 563 genes

present within the procambium cell derived transcriptome by comparison with

the somatic cell derived transcriptome. Gene ontology analysis of the latter

identified that genes associated with response to stress and defence response

were upregulated in the differentially expressed portion within the procambium

cell suspension culture. This is consistent with the characteristics of animal

stem cells which exhibit robust defence strategies to environmental stress. Fur-

thermore PHLOEM INTERCALATED WITH XYLEM (PXY ) and TRAC-

HEARY ELEMENT DIFFERENTIATION 2 (TED2 ), which are essential for

ordered procambium cell division and differentiation into trachaery elements

respectively in A. thaliana and Z. elegans, are up-regulated in the T. cuspidata

procambium cell suspension culture.

Further T. cuspidata homologues of the jasmonate signalling components

JASMONATE ZINC FINGER LIKE ZIM DOMAIN 2 (JAZ2) and JAZ3 were

identified among up-regulated transcripts in response to jasmonate treatment

in both the procambium and the somatic cell line. Blast analysis identified 211

transcription factors within the APETELA 2 (AP2), BASIC-HELIX-LOOP-

HELIX (bHLH), WRKY, MYB and BASIC-LEUCIN-ZIPPER (bZIP) fami-

lies. Further characterisation established 21 transcription factors which are sig-

nificantly up-regulated in response to jasmonate treatment and show a higher

expression level in procambium cells. These provide promising targets for fur-

ther functional characterisation to elucidate their involvement within TaxolTM

biosynthesis.

In order to investigate transcriptional regulation of the TaxolTM struc-

xv



tural genes, a 513 bp fragment corresponding to the TAXADIENE SYN-

THASE (TASY ) promoter was cloned by genome walking. In-silico analysis

of the TASY and 3’-N-DEBENZOYLTAXOL N-BENZOYLTRANSFERASE

(DBTNBT ) promoter resulted in the identification of methyljasmonate and

pathogen-responsive elements which may significantly contribute to jasmonate

mediated accumulation of TaxolTM. Analysis of a chimeric promoter construct

driving the reporter gene β-GLUCURONIDASE (GUS ) in N. benthamiana

confirmed jasmonate-responsiveness of the TASY promoter.

Finally, comparison of the expression level of genes coding for poten-

tially rate-limiting enzymes within the TaxolTM pathway established a signifi-

cantly increased expression of BACCATIN II PHENYLPROPANOYLTRANS-

FERASE (BAPT ) in response to jasmonate treatment within the procambium

cell suspension culture. Furthermore transcripts of TASY, PHENYLALA-

NINE AMINOMUTASE (PAM ) and DBTNBT show an overall higher ex-

pression and prolonged transcript accumulation in procambium compared to

somatic cells.

In this thesis jasmonate-signalling components, jasmonate-responsive tran-

scription factors and differential gene expression profiles of TaxolTM structural

genes were identified which, may contribute to an increased TaxolTM produc-

tion in the utilised procambium cell suspension culture. Furthermore the T.

cuspidata procambium cell suspension culture was found to have an increased

level of stress- and defence-response reflected by differential gene expression

profiles and content of phenolic compounds and TaxolTM.
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Chapter 1

Introduction

1.1 Natural products in medicine

Plants have always been of major importance to mankind, serving as food,

shelter, clothing, fuel, tools and many more. As an integral part of every

culture throughout history, plants have also played a vital role in traditional

medicine in treating and preventing human diseases. The earliest written

account of drugs of plant origin date from about 2600 BC and were found in

Mesopotamia. Oils of Cedrus species and cypress (Cupressus sempervirens)

are recorded, both of which are still in use today [Gurib-Fakim, 2006]. Early

medicines, besides oil, were administered in the form of crude extracts, teas,

poultices or powders [Balunas and Kinghorn, 2005].

In more recent history the first drugs in sophisticated western medicine

were also predominantly of plant origin; namely aspirin, digitoxin, morphine,

quinine and philocarpine [Butler, 2005]. The importance of phytopharmaca

1



1.1. NATURAL PRODUCTS IN MEDICINE

continues in current times and is highlighted by 28% of new drugs approved

between 1981-2002 being plant natural products with a further 24% synthe-

sised around a pharmacore derived from a plant compound [Harvey, 2007].

Furthermore the WHO classified 252 drugs as basic and essential from which

11% are produced by plants [Rates, 2001]. The great success of drugs from

plant origin can be ascribed to a number of characteristics: (1) Plant natural

products have a high structural diversity with common structural features,

which have been shown to be highly relevant in drug discovery such as chiral

centres, aromatic rings, complex ring systems, degree of molecule saturation

and number and ratio of heteroatoms [Balunas and Kinghorn, 2005], (2) the

high bioactivity of plant-derived compounds can be attributed to structural

similarity of protein targets across many species, (3) conventional medicine

can be inefficient (e.g. side effects) and (4) a growing ecological awareness

suggests that plant-derived natural medicine is harmless [Harvey, 2007].

Furthermore plant products can be utilised as lead-compounds important

in the development and synthesis of new drugs [Rates, 2001]. There is a huge

potential for the discovery of new relevant plant natural products with ther-

apeutic activity, which are mainly synthesised in plant secondary metabolism

[reviewed in 1.2] since only 5% - 15% of higher plants have been chemically an-

alyzed [Wink, 1985]. This constitutes a big opportunity for the identification

of novel chemical classes with a potentially undiscovered mechanism of action

or cellular targets relevant to treatment and drug design [Lindholm, 2005].

2



1.1. NATURAL PRODUCTS IN MEDICINE

Cancer drugs of plant origin.

Name Origin Therapeutic use Publication Mechanism of action

TaxolTM Taxus brevifolia Ovarian, breast and non-small

lung cancer

[Wani et al.,

1971]

Microtubule stabilisation

Docetaxel Taxus baccata Ovarian, breast and bronchial

carcinomas

[Mangatal et al.,

1989]

Microtubule stabilisation

Camptothecin Camptotheca

acuminata

Gastrodintestinal tumors [Wall et al., 1966] Enhances binding of topoi-

somerase I to DNA, thus

promoting DNA strand

breaks

Irinotecan Synthesised from

camptothecin

Colorectal carcenoma [Kunimoto et al.,

1987]

DNA topoisomerase I in-

hibitor

Topotecan Analogue of

camptothecin

Ovarian carcenoma [Kingsbury et al.,

1991]

DNA topoisomerase I in-

hibitor

Etopside Podophyllum sp. SCLC, leukemia, non-Hodgkin

lymphoma, Hodgkinś disease

and testicular cancer

[Keller-Juslen

et al., 1971]

DNA topoisomerase II in-

hibitor

Teniposide related to Etopo-

side

Used in combination therapies [Staehelin, 1970] DNA topoisomerase II in-

hibitor

Vinblastine Vinca rosea Hodgkinś disease and chorio-

carcinoma

[Neuss et al.,

1962] [Neuss

et al., 1964]

[Neuss et al.,

1959]

Antimitotic, inhibition of

cell division

Vincristine Vinca rosea Leukemia, SCLC and malign

lymphoma

[Farnsworth,

1988]

Antimitotic

Vinorelbine Synthesised from

vinblastine

SCLC and breast cancer [Mangeney et al.,

1979]

Antimitotic, inhibiton of

tubulin polymerisation

Table 1.1: The table lists compounds of plant origin or their analogues which
are used in cancer treatment. A common target is tubulin resulting in fail-
ure of proper microtubule dynamics thus hampering cell division [reviewed
in 1.4.3] and topoisomerase I and II. Cancer drugs targeting the latter pro-
moting topoisomerase generated DNA breaks [Pommier, 1993, Baldwin and
Osheroff, 2005]. The drugs can be grouped into taxenes: TaxolTM and doc-
etaxel; camptothecins: camptothecin, irinotecan and topotecan; epipodophyl-
lotoxons: etopside and teniposide and Vinca alkaloids: vinblastine, vincristine
and vinorelbine.
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1.1.1 Cancer drugs of plant origin

The demand for anticancer drugs is bigger than ever with cancer being the sec-

ond leading cause of death with roughly 600,000 in the United States (recorded

in 2007) and over 1.4 million new cases of cancer diagnosed annually [Jemal

et al., 2007]. The most common forms are lung, breast, colorectal and stomach

cancer, which showed an increase of 22% since 1990 [Parkin et al., 2001].

Drugs of plant origin or mimics of natural products accounted for 48% of

the drugs available in the treatment of cancer between 1940 and 2002 [Newman

et al., 2003]. The main anticancer drugs of plant origin [Table 1.1] are camp-

tothecins from Campotheca acuminata [van der Heijden et al., 2004], Vinca

alkaloids (vinblastine and vincristine) from Catharanthus roseus (Madagascar

periwinkle) [Okouneva et al., 2003], epipodophyllotoxins from Podophyllum

peltatum and taxenes including paclitaxel or TaxolTM originally isolated in

Taxus brevifolia but sythesised in all species of Taxus [Balunas and Kinghorn,

2005].

One third of anticancer drug sales in 2002 can be accredited to taxenes

and camptothecins with a combined total of over 2.75 billion dollars [Oberlies

and Kroll, 2004]. Although of huge pharmaceutical and economical impor-

tance, the vast majority of anticancer drugs of plant origin cannot be syn-

thesised economically or rely on an unsustainable semi-synthetic process with

precursors of plant origin [Rates, 2001]. This highlights the need for in-depth

molecular knowledge of plants such as Taxus , thus providing promising targets

for metabolic engineering.
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1.2. PLANT SECONDARY METABOLISM

1.2 Plant secondary metabolism

Integral to the life cycle of plants is their ability to protect themselves against

abiotic- and biotic-stress. The coexistence of plants and insects for 350 mil-

lion years have triggered the development of a diverse array of plant defensive

mechanisms and contributed to increased diversity of plant species, defensive

structures and herbivors mode of attack [Gatehouse, 2002]. The group of com-

pounds responsible for a plethora of chemical protective measures against her-

bivores and abiotic-stress are collectively termed secondary metabolites [Pich-

ersky and Gang, 2000].

In the past few decades the interest in secondary metabolites has in-

creased as more of this diverse group of plant products find their way into

our modern life [Wink, 1985]. We exploit them as pharmaceuticals (e.g. the

diterpenoid TaxolTM), fragrances, flavours and many more [Table 1.2]. Thus

knowledge about their biosynthesis is of huge biotechnological and economical

importance [Wink, 1985].

By definition secondary metabolites are not essential for growth and de-

velopment but indespensable for the survival of a plant [Hartman, 1996]. Sec-

ondary also in the sense that their biosynthesis is restricted to a specific plant

group [Pichersky and Gang, 2000]. Primary metabolism is conserved and uni-

form among the plant kingdom, by contrast secondary metabolites are diverse

and adaptive, contributing to the interaction of the plant with its environment

[Fig.: 1.1] [Hartman, 1996]. The diversity of secondary metabolites is demon-

strated by the existence of subtly different defence strategies among different

genotypes of the same plant species [Jander et al., 2001]. The level of speci-
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Examples of secondary metabolites uses in modern life.

Use Compound Plant species

Pharmaceutical TaxolTM Taxus brevifolia

Atropine Atropa belladonna

Scopolamine Datura stramonium

Quinine Cinchona pubesence

Cardenolides Digitalis latana

Codeine Papaver somniferum

Fragrances Rose oil Rosa sp.

Lavender oil Lavendula angustifolia

Flavours Vanillin Vanilla planifolia

Capsaicin Capsicum frutenscens

Colours Indigo Indigofera tinctoria

Shikonine Lithospermum erythrorhyzon

Poisons Coniine Conium maculatum

Strychnine Strychnos nux vomicaend

Stimulants Caffeine Coffea arabica

Theophylline Thea sinensis

Nicotine Nicotiana sylvestris

Hallucinogen Cocaine Erythroxylon coca

Cannabinol Cannabis sativa

Insecticide Nicotine Nicotiana sylvestris

Pyrethrin Pyrethrum cinerariifolium

Table 1.2: The table gives examples of plant secondary metabolites exploited
by man for various purposes with the compound name and the plant species
of origin [Wink, 1985].
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ficity enables the use of such compounds as taxonomic markers [Bennett et al.,

1994]. The chemical composition present in Taxus cuspidata, the plant model

used for this thesis, was found to be very different from other species within

the same genus but most resembled that of Taxus canadensis [Wang et al.,

2010].

Foundation of the plant specific array of secondary compounds are key-

intermediates from which a few biosynthetic routes lead to numerous products

as seen among monoterpene biosynthesis [Hartman, 1996]. A further con-

tributing factor is found among the biosynthetic enzymes involved. Some have

been shown to synthesise multiple products from different, or the same, sub-

strates [Allina et al., 1998,Maury et al., 1999,Phillips et al., 1999].

From their original proposed function as protectants against biotic- and

abiotic-stress, secondary metabolites have evolved into other biological activ-

ities such as attraction of pollinators or allelopathy [Fig.: 1.1] [Wink, 1985].

It is noteworthy that some compounds combine the function of repellent and

attractant. For example volatile terpenes function as antimicrobials but also

attract pollinators [Wink, 1985].

Among the secondary metabolites accumulated for plant defence are two

classes which can be characterised as static and active. The first group in-

cludes compounds constitutively produced and contributing to plant defence

such as physical barriers, resin, deterrents of feeding or egg deposition or tox-

ins [Bennett et al., 1994, Gatehouse, 2002]. Should a herbivore attack, the

accumulated and stored static compounds provide the necessary level of pro-

tection [Gatehouse, 2002]. In contrast active metabolites are only accumulated
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Groups and Functions of secondary metabolites

Figure 1.1: Secondary metabolite biosynthesis from common precursors of
primary metabolism and their functions within the interaction of a plants
with its environment [Hartman, 1996]

in response to biotic- or abiotic-stress as their on-demand reversible biosyn-

thesis constitutes resource limitation. For example this becomes apparent in

Nicotiana sylvestris where the nitrogen employed for the synthesis of the al-

kaloid nicotine can’t be recycled into the plant metabolism and can therefore

be considered wasted [Baldwin, 1998]. A drawback in the induced accumu-

lation of chemical defence compounds is the presence of a lag time from the

external stimulus until the release of secondary metabolites, thereby allowing
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biotic- or abiotic-stresses to inflict potentially irreparable damage [Baldwin,

1998, Agrawal et al., 2002]. TaxolTM also belongs to the class of active sec-

ondary metabolites, showing accumulation in response to biotic elicitors [Nims

et al., 2006].

1.2.1 Plant Terpenoids

TaxolTM belongs to the class of taxane diterpenoids, more specifically to the

taxoids with an oxetane ring and a β-phenylalanine C-13 side chain. Increasing

interest in TaxolTM has triggered the isolation and characterisation of over 360

taxane diterpenoids within 16 subgroups from various plant parts of Taxus

species, most of which contain the pentamethyl [9.3.1.0]3,8 tricyclopentadecane

(taxoid) skeleton [Baloglu and Kingston, 1999,Jennewein et al., 2003].

With over 30,000 identified compounds, plant terpenoids form the largest

class of natural products [Theis and Lerdau, 2003, Connolly and Hill, 1991].

Terpenes are found in primary metabolism as hormones (e.g. gibberellins,

abscisic acid), photosynthetic pigments (e.g. carotenoids), electron carriers

(e.g. ubiquinone), mediators of polysaccharide assembly (e.g. polyprenyl phos-

phates) and structural membrane components (e.g. phytosterols) [Harborne,

1991]. Others function as secondary products including herbivore deterrents,

fungal toxicity and pollinator attraction [Theis and Lerdau, 2003].

Plant terpenoids are synthesised from the repetitive joining of IPP (isopen-

tenyl pyrophosphate) and can hence be classified according to the number

of IPP molecules utilised, increasing sequentially by five carbon units [Table

1.3] [McGarvey and Croteau, 1995,Bouvier et al., 2005]. IPP itself can be syn-
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Plant terpenoid classification

Terpenoid class number of IPP units number of carbon units

Hemiterpenoids 1 5

Monoterpenoids 2 10

Sesquiterpenoids 3 15

Diterpenoids 4 20

Sesterpenoids 5 25

Triterpenoids 6 30

Tetraterpenoids 8 40

Polyterpenoids ≤8 NA

Table 1.3: The table shows the classification of plant terpenoids according to
the number of IPP and carbon units present.

thesised in the cytosol and the plastids via the MVA or the MEP (sometimes

refered to as DXP) pathway respectively [Bouvier et al., 2005]. Although

terpenoids constitute a large group of compounds, they are all synthesised

via a common pathway [Fig.: 1.2] thus complex regulation must be in place

to ensure their correct spatial and temporal distribution at an appropriate

level [McGarvey and Croteau, 1995].

Biosynthesis of terpenoids often occurs in a tissue-specific manner. Monoter-

penes designated for plant defence within species of Mentha (mint) are syn-

thesised in glandular trichomes on the leaf surface [Gershenzon et al., 1989].

Linalool utilised by Clarkia breweri (Brewer’s clarkia) to attract pollinators is

synthesised in the flower petals [Pichersky et al., 1994]. In conifers the syn-

thesis of wound induced mono- and diterpenoids is restricted to the area of

stimulus [Blanchette, 1992].
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Pathway of terpenoid synthesis

Figure 1.2: Schematic outlining the formation of different terpenoids from
common precursors. Source: [McGarvey and Croteau, 1995]

Diterpenoids are synthesised in the plastids via the MEP pathway as is

the utilised IPP, the precursor molecule for TaxolTM, starting from pyruvate

and glyceraldehyde-3-phosphate [Kleining, 1989]. TAXADIENE SYNTHASE,

the enzyme resposible for the committing step in the TaxolTM biosynthesis

pathway [reviewed in 1.4.2.] was found to harbour an N-terminal plastidial

targeting sequence [Williams et al., 2000].
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1.3 Jasmonate-responsive gene expression

Jamonates are key signalling molecules involved in defence response to biotic-

or abiotic-stress leading to the accumulation of protective secondary metabo-

lites including TaxolTM [reviewed in 1.2] [McConn et al., 1997,Wu and Ge,

2004]. Biosynthesis of secondary metabolites in response to jasmonates has

been shown in a variety of different plant species [Memelink et al., 2001].

The ability of cells to rapidly respond to environmental stimuli depends

on the regulation of gene expression. Gene transcription in eukaryotic species

is carried out by the RNA POLYMERASE II machinery and the basal tran-

scription factors [reviewed by [Selth et al., 2010]]. However, it is becoming

increasingly clear that expression of inducible genes and thus their transcrip-

tional control is governed by more complex systems [reviewed by [Weake and

Workman, 2010]]. For example overlap of signal transduction and transcrip-

tion regulation has been shown in S. cerevisiae [Weake and Workman, 2010].

In plants, promoter elements conferring jasmonate-responsiveness such as the

GCC-motif and G-box [reviewed in 1.3.3] are dependent on the jasmonate

signalling component COI1 [Benedetti et al., 1995,Lorenzo et al., 2003].

1.3.1 The plant hormone jasmonic acid

Jasmonic acid and its methyl ester belong to a class of plant hormones collec-

tively called jasmonates which are synthesised from the oxygenated fatty acid

derived precursor linolic acid (18:3) via the octadecanoid pathway [Sembdner

and Parthier, 1993,Somerville and Browse, 1991]. α-Linolenic acid is released
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through hyrdolisis from choloroplast membranes. Hydrolases associated with

jasmonate biosynthesis are the wound-induced phospholipase A2 and a DE-

FENCE IN ANTHER DEHISCENCE (DAD)-like phospholipase A1 [Ishiguro

et al., 2001,Narvaez-Vasqueza et al., 1999]. The biosynthesis of jasmonates is

reviewed by Schaller et al. [2005].

Biological functions originally associated with the free acid and the methyl

ester are growth inhibition and promotion of senesence respectively [Ueda and

Kato, 1980,Dathe et al., 1981]. Further developmental functions of jasmonates

are inhibition of seed germination, stimulation of tendril coiling, various as-

pects of flower development, tuberization in potato and others [Wasternack,

2007,Dathe et al., 1981,Corbineau et al., 1988,Ueda and Kato, 1980,Falken-

stein et al., 1991,Weiler et al., 1998]. Jasmonates are also involved in response

to biotic- and abiotic-stress. JA concentration increases locally in response to

pathogen infection or wounding in concert with expression of PR genes, which

is also shown for exogenously applied JA [Lorenzo and Solano, 2005,Waster-

nack, 2007,Stintzi et al., 1993]. Expression of proteinase inhibitors and antimi-

crobial phytoalexins in response to jasmonates highlights their crucial role in

plant defence [Farmer and Ryan, 1990,Gundlach et al., 1992]. Defence-gene-

induced enhanced resistance against herbivor and pathogens is also mediated

by jasmonates [Reymond and Farmer, 1998]. Furthermore mutations in the A.

thaliana loci coi1 and jar1, both coding for JA signalling components, show

compromised defence-gene expression in response to pathogen challenge [Xie

et al., 1998,Staswick and Tiryaki, 2004].
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1.3.2 Jasmonate signal transduction

COI1, an F-box protein is central to jasmonate signal transduction [Fig.: 1.3]

[Xie et al., 1998]. Although identified in A. thaliana, homologues exist in

N. attenuata and L. esculentum indicating that the jasmonate signalling is

conserved in other species [Paschold et al., 2007,Li et al., 2004]. COI1 forms

part of the SCF multiprotein complex which functions as E3 ubiquitin ligase

[del Pozo and Estelle, 2000,Devoto et al., 2002]. As such the SCFCOI1 complex

catalyses the ubiquitination of proteins destined for degradation by the 26S

proteasome, the F-box of COI1 confers the substrate specificity [Devoto et al.,

2002, Xu et al., 2002]. In the presence of the plant hormone, the SCFCOI1

complex targets the JAZ proteins for degradation [Chini et al., 2007]. In A.

thaliana 12 members of the JAZ family have been identified which act as JA-

repressors [Thines et al., 2007]. It was recently shown that JAZ proteins recruit

the Groucho/Tup1-type co-repressor TPL mediated by the adaptor protein

NINJA [Pauwels et al., 2010]. Characterisation of the enzyme encoded by

the JAR1 locus provided further insights into jasmonate signalling, which was

found to conjugate the amino-acid isoleucine (Ile) to JA generating JA-Ile. An

interaction between JAZ1 and COI1 in the presence of JA-Ile was subsequently

shown which initiates proteolysis mediated degradation of JAZ and activation

of the bHLH transcription factor MYC2 [Staswick and Tiryaki, 2004,Lorenzo

et al., 2004, Chini et al., 2007]. MYC2 in turn activates expression of early

JA-responsive genes including JAZ proteins resulting in a negative feedback

loop [Chini et al., 2007].

Jasmonate-responsive induction of secondary pathways in different plant
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species occurs in a time specific manner. Transcripts of biosynthetic genes of

phenylpropanoid biosynthesis in Medicago truncatula peak after 2 hours. In

contrast expression of structural genes involved in triterpene biosynthesis in

the same species occurs within 12-24 hours [Suzuki et al., 2005]. In tobacco

cells the peak of expression of genes involved in nicotine biosynthesis occurs

1-2 hours after jasmonate perception [Goossens et al., 2003]. Hence different

Jasmonate signal transduction

Figure 1.3: Jasmonate signal transduction. Jasmonate biosynthesis is triggered
by biotic or abiotic stress. JAR1 generates JA-Ile which increases affinity of
the SCFCOI1 to the JAZ repressor complex. The SCFCOI1 complex catalyses
ubiqitination and degradation of JAZ which forms with TPL and NINJA a
repressor complex. Liberation of MYC2 triggers transcriptional activation of
early jasmonate-responsive genes [adapted from [Baker et al., 2010]].
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modes of downstream regulation after perceiving the jasmonate signal must

be in place which result in the observed staggered induction of secondary

pathways. However, these may share common components [Pauwels et al.,

2009].

1.3.3 Jasmonate-responsive promoter elements

The promoter region of a gene is the controlling element conferring tightly

regulated expression in a spatial and temporal dependent manner. Cellular

processes are activated through correct gene expression which is also true for

response to environmental cues resulting in dynamic signalling cascades and

biosynthesis of secondary metabolites [Yamaguchi-Shinozaki and Shinozaki,

2005].

Cis acting elements within gene promoters function as binding sites for

trans TFs, acting as transcriptional activators or repressors [Latchman, 1997].

These elements are conserved and in combination with several cis-elements

present in multiple gene promoters allow for specific and co-ordinate gene

expression [Singh, 1998].

The GCC promoter element

The GCC motif (GCCGCC), present in several defence-responsive genes in-

cluding THIONIN2.1 and PR genes was originally identified as an ethylene-

responsive element and shown to interact with TFs of the ERF family [Gu

et al., 2002]. However it is also present in the promoter of PLANT DE-
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FENSIN1.2, a common indicator for jasmonate-dependent defence responses

[Brown et al., 2003]. The expression of PR genes in tobacco is induced by ethy-

lene through the essential GCC promoter element [Ohme-Takagi and Shinshi,

1995]. However, pathogen-responsive jasmonate and ethylene-signalling are

both required for expression of PDF1.2 [Penninckx et al., 1998].

The GCC motif is also part of the a jasmonate-responsive element, JERE,

present in the promoter of STR which is involved in indole alkaloid biosynthesis

in Catharanthus roseus [Menke et al., 1999]. JA-responsiveness is abolished by

deletion or mutation of the JERE and jasmonate-responsiveness was confirmed

by expression of a reporter gene driven by JERE [Menke et al., 1999]. The

two TFs ORCA2 and ORCA3 interact with JERE. The latter belong to the

AP2/ERF family of TF [reviewed in 1.4] and as such harbour a AP2/ ERF

DNA-binding domain which is unique to plants [van der Fits and Memelink,

2000].

The G- and T/G-box promoter element

The G-box promoter element (CACGTG) is the target binding site of MYC2

in jasmonate signal transduction which highlights the importance of this se-

quence and the related T/G-motif (AACGTG) in jasmonate-responsive tran-

scription [Chini et al., 2007]. G- and T/G-boxes essential for JA-inducibility

are present in several promoters [Table: 1.4]. Essential supplementary se-

quences adjacent to the G-box have been identified in the LAP and ORCA3

gene promoters where a GAGTA repeat and an A/T rich sequence confers

correct transcription activation in response to JA and expression level respec-
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G-boxes essential for jasmonate-responsive transcription.

Gene name Plant species Publication

PROTEINASE INHIBITOR 2 Potato [Kim et al., 1992]

VEGETATIVE STORAGE PROTEIN B Glycine max [Mason et al., 1993]

VEGETATIVE STORAGE PROTEIN 1 A. thaliana [Guerineau et al., 2003]

LEUCINE AMINOPEPTIDASE L. esculentum [Boter et al., 2004]

PUTRESCINE N-METHYLTRANS-

FERASE 1A

Podophyllum sp. [Xu and Timko, 2004]

ORCA3 C. roseus [Endt et al., 2007]

Table 1.4: The table lists genes from several plant species which harbour in
their promoter a G-box motif essential for jasmonate inducibility.

tively [Boter et al., 2004,Endt et al., 2007]. Analysis of A. thaliana promoters

established a statistically significant overrepresentation of G-box motifs among

jasmonate-responsive genes [Mahalingam et al., 2003].

The as-1-type and JASE promoter element

The promoter of LIPOXYGENASE 1 in barley harbours an as-1-type (TGACG)

motif, which is essential for JA-responsiveness [Rouster et al., 1997]. The

as-1-type motif is also present and essential in the NOPALINE SYNTHASE

promoter of the Agrobacterium thumefaciens T-DNA [Kim et al., 1993]. Ele-

ments conferring jasmonate-responsiveness without a common consensus se-

quence found in the promoter of 12-OXO-PHYTODIENOIC ACID-10,11-

REDUCTASE are the jasmonate-responsive elements 1 (CGTCAATGAA) and

2 (CATACGTCGTCAA). It is noteworthy that the latter has a ACGT core

also present in the G-box motif [He and Gan, 2001].
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1.4 TF families in secondary metabolism

Coordinate transcriptional control of pathway genes is key to biosynthesis and

accumulation of secondary metabolites [Zhao and Last, 1996, Pelletier et al.,

1999]. In the biosynthethis of benzylisoquinoline alkaloids in poppy cell cul-

tures, genes involved in other aspects of biosynthesis including supply of pre-

cursors, co-factors and energy molecules (e.g. adenosine triphosphate) required

for metabolic enzymes, also show correlated expression to pathway genes [Zu-

lak et al., 2007]. Transcriptional regulation can be attributed to specific TFs

which govern the expression of target genes [Endt et al., 2007].

Transcription factors are characterised as modular proteins, harbouring

a DNA-binding domain and an autonomous activator or repressor domain.

Through interaction with cis elements within a target gene promoter in a

sequence specific manner, TFs are capable of modulating the rate of transcrip-

tion [Latchman, 1997]. Transcription factor activity may depend on the inter-

action with additional co-factors (activators, repressors and in some cases cro-

matin remodelling factors) or competition with other TFs [Davies and Schwinn,

2003,Singh, 1998].

1.4.1 The AP2/ERF family TFs

The AP2/ERF domain TF family mediate transcriptional activation in re-

sponse to biotic- and abiotic-stress and jasmonates. The AP2 domain was

originally implicated in stress response on three TFs (PTI-4, PTI-5 and PTI-

6) which showed interaction with the tomato disease resistance protein PTO
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mediating PR gene expression [Zhou et al., 1997]. The AP2/ERF domain TFs

ORCA2 and ORCA3 are involved in transcriptional regulation of terpenoid

indole alkaloid (TIA) biosynthesis in Catharanthus roseus. The jasmonate and

pathogen-responsive ORCA2 mediates expression of STR [Menke et al., 1999].

In contrast ORCA3 induces coordinate expression of STR, TRYPTOPHAN

DECARBOXYLASE and CYTOCHROME P450 REDUCTASE in response

to jasmonate [van der Fits and Memelink, 2000]. Overexpession of ORCA3

resulted in increased TIA accumulation [van der Fits and Memelink, 2000].

The AP2/ERF domain TF family can be further classified into an AP2/ERF

group, which have only one AP2 domain and function in biotic and abi-

otic stress response, and an AP2 group which exhibit two AP2 domains and

are implicated in cambial tissue development [Riechmann and Meyerowitz,

1998], [van der Graaff et al., 2000]. Although thought to be plant specific

TFs of the AP2/ERF family have been identified in certain species of cili-

ates, cyanobacteria, viruses and Bacteriophages [Shigyo et al., 2006]. The

AP2/ERF domain consists of approximately 60 conserved amino acids [Shigyo

et al., 2006]. Further N-terminal domains present in several AP2/ERF family

TFs are an acidic domain and a serine rich region, both potentially involved

in transcriptional activation [Riechmann and Meyerowitz, 1998].

A significant form of post-transcriptional regulation of AP2/ERF-domain

TFs is phosphorylation. Pti-4 is phosphorylated through the receptor kinase

Pto which increases its affinity to the PR gene promoters [Gu et al., 2000].

The rice TF OsEREBP1 also exhibits enhanced binding to the target GCC-

box upon phosphorylation [Cheong et al., 2003].
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1.4.2 The bHLH and bZIP family TFs

bHLH domain TFs are found both in animals and plants where they function

in diverse processes. In plants bHLH proteins are involved in anthocyanin

biosynthesis, phytochrome signalling and other plant specific processes [Buck

and Atchley, 2003]. The functional motif includes a DNA-binding domain and

a region comprised of two α-helices separated by a loop which confers homo-

and heterodimerisation [Atchley and Fitch, 1997]. The binding motif of bHLH

TFs is the E-box (G-box in plants); however, several binding motifs have been

identified in animals, metazoan and fungi [Buck and Atchley, 2003]. The G-

box promoter element has been shown to be jasmonate-responsive; however,

bHLH TF binding sites are present in a multitude of non-jasmonate-responsive

genes [Guedes-Correa et al., 2008,Buck and Atchley, 2003].

In flavanoid biosynthesis in maize the R/C1 protein, composed of a

bHLH/ MYB TF heterodimer respectively coordinately regulates the antho-

cyanin structural genes [Mol et al., 1998]. Similar bHLH interactions have been

found in Petunia hybrida and Anthirinum majus. In A. thaliana biosynthesis

of the seed coat tannin is also regulated by bHLH/MYB proteins [Endt et al.,

2002]. A jasmonate-responsive bHLH TF has been identified in C. roseus.

CrMYC2 interacts with the G-box like element in the STR promoter which

forms part of the JERE [Davies and Schwinn, 2003].

The bZIP domain TFs form a large multigene family conserved in all

higher eukaryotes [Deppmann et al., 2006]. This family of TFs exhibit a highly

conserved basic DNA-binding domain and a coiled coil leucine zipper domain

[Hurst, 1995]. The promoter binding sites of bZIPs TFs are G-box related
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sequences most of which harbour the ACGT core element [Davies and Schwinn,

2003]. bZIP TFs also interact with the as-1-type cis element present in the

promoter of PR genes. Although the LAP gene and A. thumefaciens T-DNA

exhibits a jasmonate-responsive as-1 type promoter element, bZIP binding to

as-1 elements in the PR gene promoter occurs in pathogen-induced and salycilic

acid dependent systemic acquired resistance [Schuetze et al., 2008].

The bZIP TF family functions in the transcriptional regulation of a va-

riety of crucial cellular and developmental processes [Amoutzias et al., 2007].

The observed functional versatility can partly be attributed to dimerisation

of bZIP TFs with other TF homo- or heteromonomers [Klemm et al., 1998].

Another advantage of dimerisation, which is conferred by the leucine zipper

domain is the expansion of DNA-binding specificity and contact with novel

DNA motifs [Cai et al., 2008]. As seen with AP2/ERF TFs phosphorylation

is a common theme, regulating bZIP TF activity in plants [Schuetze et al.,

2008].

1.4.3 Pathogen-responsive WRKY family TFs

The functional DNA-binding domain of the WRKY transcriptional regula-

tors consist of a zinc-finger like motif and an N-terminal amino acid stretch

[WRKYGQK] which is discriminatory for WRKY TFs [Rushton et al., 1996].

Only found in plants, WRKY TFs are further classified into three groups with

group I containing two WRKY domains and group II only one WRKY do-

main. Group III consists of members of both groups I and II, which show

a distinction within their zinc-finger like motif [Eulgem et al., 2000]. DNA-
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binding of group I WRKY TFs is performed by the C-terminal domain [Hara

et al., 2000]. Indeed sequence analysis showed a closer resemblance of the C-

terminal domain of group I TF to the single WRKY domain of group II. The

N-terminal domain of group I WRKYs might participate in DNA binding or

the creation of a binding platform for protein interaction [Eulgem et al., 2000].

WRKY TFs recognise the W-box promoter element [(T)(T)TGAC(C/T)]

as their target binding sequence which contains the TGAC core essential for

WRKY interaction [Rushton et al., 1995]. WRKY TFs regulate pathogen

elicited gene expression and W-boxes are present in promoters of genes as-

sociated with defence response [Rushton and Somssich, 1998]. The WRKY1

TF in parsley is rapidly induced and mediates defence responses to fungal

pathogens [Eulgem et al., 1999].

In plant secondary metabolism a WRKY TF was recently shown to co-

ordinately regulate the expression of berberine pathway genes through inter-

action with a W-box present in target promoters in cell cultures of Coptis

japonica [Kato et al., 2007]. In accordance with pathogen induced accumula-

tion of secondary metabolites, a csc from Taxus chinensis accumulates TaxolTM

in response to a fungal elicitor [Xu et al., 2004].

1.4.4 The MYB TF family

The MYB DNA binding domain of this class of transcriptional regulators is

composed of a helix-helix-turn-helix motif. Most plant MYB TFs exhibit two

repeats of the functional motif (R2R3 class) both of which are required for

DNA interaction. However, the first MYB domain TF isolated, the C1 protein
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in maize, harbours three motif repeats [Jin and Martin, 1999]. As MYB family

proteins are classified by their DNA-binding motif structure, the MYB target

binding site does not conform to a uniform consensus motif. Animal three-

repeat and some plant two-repeat MYB TFs recognise the MYB binding site

I: [T/CAACG/TGA/C/TA/C/T]; however, the majority of plant R2R3 MYB

TFs will bind to the MYB binding site II: [TAACTAAC] [Romero et al., 1998].

Since the isolation of the C1 protein in maize, MYB TFs have been im-

plicated in transcriptional regulation of plant secondary metabolism. Several

R2R3 MYB TFs controlling anthocyanin biosynthesis in maize, ZmMYBPL,

ZmMYB1 and ZmMYB38, Petunia hybrida, PhMYBAN2 and PhMYB2 and

in Anthirinum majus, AmMYB305, have been identified [Jin and Martin,

1999]. In tobacco a jasmonate-responsive MYB TF has been shown to regulate

phenylpropanoid biosynthesis [Galis et al., 2006]. Furthermore MYB TFs in

accordance with bHLH proteins regulate flavanoid biosynthesis in maize [Mol

et al., 1998].

1.5 The biology and chemistry of TaxolTM

Interest in TaxolTM can be largely accredited to the successful clinical tri-

als which started in 1984. However, already in Phase II of the trials supply

constraints were apparent, which were later overcome by the semisynthesis of

TaxolTM [Goodman and Walsh, 2001]. Today TaxolTM (Bristol-Mayer-Squibb)

and decetaxel (Taxotere, Aventis) are in clinical use. These two taxenes have

been shown to be successful in the treatment of ovarian, breast and non-small
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lung cancer in mono and combinational therapy. Effects of taxenes have also

been shown in prostate, head and neck, gastric, cervical and germ-cell cancer

and the HIV-related Kaposi’s sarcoma [Crown and O’Leary, 2000].

1.5.1 The history of TaxolTM

The Cancer Chemotherapy National Service Center was created by the Na-

tional Cancer Institute in 1955 as a drug research and development program

with collaborators in academics and industry. In order to explore plant nat-

ural products as anticancer drugs, the CCNSC carried out a screen for drugs

with in-vivo antitumor activity using the leukaemia mouse lines L1210 and

P388. The screen was led by the USDA and involved 114,000 plant derived ex-

tracts [Cragg, 1998]. In 1962 plant samples of stem, fruit, leaves, twig and bark

of Taxus brevifolia were submitted for screening [Goodman and Walsh, 2001].

The bark extract from Taxus brevifolia showed activity in the leukaemia mod-

els and in a subsequent KB cytoactivity assay. The sample was recollected

in order to isolate the active compound, which succeeded in 1967 and was

named TaxolTM. In 1971 the chemical structure of TaxolTM was resolved by

X-ray analysis and 1H-NMR as a tetracyclic, highly oxygenated diterpene with

a ester side chain at carbon atom 13 (C-13) [Cragg, 1998]. Further scientific

interest was caused by Dr. Susan Horwitz who first showed insights into the

TaxolTM mechanism of action as a tubulin promoting agent [Horowitz et al.,

1979].

Although the extract from Taxus brevifolia showed activity in the initial

bioassays, it was only one of numerous entries and was therefore shown but
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moderate interest. However, the extract containing TaxolTM made its break-

through when tested against the B16 melanoma model and was subsequently

put forward for clinical trials [Cragg, 1998].

En route to the availability of TaxolTM as an anticancer drug in clinical

use numerous challenges had to be overcome, the most apparent being supply

constraints. The initial yield of only 0.01% of TaxolTM from the bark of Taxus

brevifolia highlights the difficulty to obtain sufficient amounts necessary for

clinical trials. This equates to one kg of TaxolTM to about 3000 yew trees.

This was compounded by the high dose of TaxolTM requirement in clinical

use [Goodman and Walsh, 2001].

1.5.2 TaxolTM biosynthetic pathway

The acyclic precursor for TaxolTM biosynthesis, GGPP (C-20) [Fig.: 1.4], is

supplied by the GGPPS which couples IPP (C-5) with FPP (C-15). Three IPP

units, which derive from the plastidial MEP pathway, and DMPP, the IPP

isomer, are required for GGPP synthesis. The enzyme constitutes the branch-

point progenitor for a variety of diterpenoids and tetraterpenoids, several of

which are relevant to the process of photosynthesis [Hefner et al., 1998] [Walker

and Croteau, 2001]. The cyclisation of GGPP to taxa-4(5),11(12)-diene by the

diterpene cyclase TASY, is the committed step which forms the taxane skele-

ton [Wildung and Croteau, 1996]. The cytochrome P450-mediated hydroxyla-

tion and double bond migration by T5αH yields taxa-4(5),11(12)-diene-5-α-ol.

At this point a branch in the metabolic pathway occurs. The enzyme TαH

catalyses the conversion of taxa-4(20),11(12)-dien-5-α-ol to taxa-4(20),11(12)-
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diene 5-α, 13-α-diol [Jennewein et al., 2001]. The alternative branch in the

pathway implements TDAT to form taxa 4(20),11(12)-diene-5-α-yl acetate

from taxa-4(20),11(12)-dien-5-α-ol [Walker et al., 1999], which is then further

converted to taxa-4(20),11(12) diene 5-α-acetoxy-10-β-ol by T10βH [Schoen-

dorf et al., 2001]. The steps leading from the acetate or the diol intermediates

The TaxolTM biosynthetic pathway

Figure 1.4: TaxolTM biosynthetic pathway. The pathway branch is shown in
the dashed box.
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to functionalized taxanes are unknown. Highly modified taxane production oc-

curs via taxane DBBT [Walker and Croteau, 2000a] to produce 10-DAB, which

is then converted to baccatin III by DBAT [Walker and Croteau, 2000b]. The

transferase BAPT catalyses the coupling of the β-phenylalanine side chain

(derived from phenylalanine via PAM [Jennewein et al., 2004]) to baccatin III

to produce 3́-N-debenzoyl taxol [Walker et al., 2002]. The final step yielding

TaxolTM is catalysed by DBTNBT which couples a benzoyl group to 3́-N-

debenzoyl taxol [Walker et al., 2002]. BAPT and DBTNBT have recently

been identified as putative rate limiting steps of the TaxolTM pathway [Nims

et al., 2006].

1.5.3 TaxolTM bioactivity

With the elucidation of the chemical structure of TaxolTM its cellular effect in

interfering in microtubule function became apparent [Horowitz et al., 1979].

Microtubules are cellular structural components and are essential for proper

cellular movement, cell shape integrity and cytokinesis. The building blocks of

microtubules, which are highly dynamic protein polymers, are αβ-tubulin het-

erodimers. Polymerisation and depolymerisation occurs in a tightly regulated

reversible hydrolysis where GTP binds the β-tubulin subunit and is converted

to GDP and orthophosphate [Hyams and Lloyd, 1994].

Several structural features of TaxolTM, including the N-benzoyl pheny-

lalanine C-13 side chain, the acetate at C-4, the benzoate group at C-2, the

oxetane ring and the cup shaped taxane core itself are important elements

contributing to the activity and tubulin binding [Croteau et al., 2006]. Bind-
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ing of TaxolTM occurs on the inner surface with one molecule per heterodimer

along the length of the microtubule [Yeung et al., 1999]. TaxolTM can associate

to either GTP- or GDP- bound tubulin resulting in a conformational change

of the heterodimer thus stabilising the microtubules [Arnal and Wade, 1995].

The primary effect is the prevention of dynamic changes of microtubules of the

mitotic spindle, which leads to arrest in G2/M phase and results in failure of

chromosome segregation and leads ultimately to apoptosis [Blagosklonny and

Fojo, 1999]. The cell cycle arrest and inhibition of proliferation is of particular

advantage in cancer cells, which exhibit a fast growth rate [Cho et al., 2008].

Several downstream effects of mitotic arrest have been described includ-

ing hyperphosphorylation of numerous proteins including Bcl2, a protein with

antiapoptotic function, thus initiating the apoptotic program. Another hy-

perphosphorylated protein in TaxolTM cytotoxicity is the cell cycle checkpoint

TF p53. This tumor suppressor protein can induce growth arrest and apop-

tosis. Other effects induced by TaxolTM and mitotic arrest are the induction

of cytokines and expression of early response genes, including TFs with tumor

suppressor activities [Blagosklonny and Fojo, 1999,Blagosklonny, 2002].

In 1984 phase I of the TaxolTM clinical trials started followed by phase

II in 1985. Although supply constraints limited the trials especially in phase

II to a smaller number of participants, TaxolTM administration showed clear

clinical responses in breast and ovarian cancer [Hoff, 1998,Holmes et al., 1991].

1.5.4 Supply and synthesis of TaxolTM

TaxolTM extraction was confined to the same method and source (bark) from

29



1.6. TAXUS CUSPIDATA - THE MODEL PLANT

1962 until 1993. From 1978 onwards Hauser Chemical Research of Boulder

was contracted by the National Cancer Institute to manage the bark extracts

necessary for clinical trials. However, it was clear that a more sustainable

method had to be found as removing the bark kills the slow growing yew

tree [Goodman and Walsh, 2001].

A method for semi-synthesis of TaxolTM was published in 1981. This

process used the precursor 10-deacetylbaccatin III, which can be readily ex-

tracted from harvested needles of yew. The advantage of this method is that it

used a renewable plant source and doesn’t interfere with the tree’s growth [De-

nis et al., 1988]. Shortly afterwards a similar method was put forward using

the same precursor where the TaxolTM yield was increased by 80% (Holton,

1990). This process was adopted by the manufacturer Bristol-Myers Squibb,

who trademarked the name of the drug TaxolTM [Morrissey, 2003].

1.6 The model plant Taxus cuspidata

The plant material utilised in this work is a procambium csc from Taxus cusp-

idata (Siebold and Zucc.). A homogeneous cell layer of procambium cells was

separated from a young twig [Fig.: 1.5] and cultured on solid medium [Lee

et al., 2010]. The procambium is a primary meristem derived from the apical

meristem and gives rise to primary xylem and phloem [Donner et al., 2010]. It

also produces the vascular cambium from which secondary xylem and phloem

derive. Differentiation into the conductive tissue occurs during the process of

xylogenesis [Fukuda, 1996].
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The procambium cell layer within tissue context

Figure 1.5: Cross section of twig showing the distinct cell layers including the
procambium. Source: [Lee et al., 2010]

Cultured plant cells acquire a state which enables the regeneration of

whole plants [Johri and Bhojwani, 1965]. The process of callus formation

was described as de-differentiation of somatic cells which is accompanied by

the withdrawal from a given differentiated cell morphology [Grafi and Avivi,

2004]. This was recently redefined as the acquisition of a pericycle cell-like

state [Sugimoto et al., 2010]. Yet differential gene expression patterns were

observed among callus forming cells suggesting a degree of heterogeny among

callus cells [Gordon et al., 2007]. This heterogeny was observed in Taxus csc

which may contribute to the observed variability of TaxolTM accumulation from

cell lines induced from somatic cell types [Naill and Roberts, 2005a,Ketchum
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et al., 1999]. In contrast the employed csc was induced from procambium cells

which had never entered a differentiated cell state [Lee et al., 2010]. Associated

positive traits include stable and increased TaxolTM accumulation and drasti-

cally reduced cell aggregation. An especially larger aggregate size can hamper

nutrient and oxygen supply thus altering growth behaviour of csc [Hulst et al.,

1989] [Pepin et al., 1999]. Furthermore cell aggregation can interfere with sec-

ondary metabolite accumulation. In Salvia officinalis and Daucus carota csc

large cell aggregates negatively influenced production of secondary metabo-

lites [Bolta et al., 2003] [Madhusudhan and Ravishankar, 1996]. However, large

aggregate size favours the accumulation of anthocyanins in Fragaria ananassa

csc [Edahiro and Seki, 2006]. Although it has been shown that large aggre-

gate size in a Taxus cuspidata csc increases TaxolTM accumulation by 5 fold

to 4.9 mg/L in 50 ml culture [Xu et al., 1998], cell aggregation and associated

features such as limited oxygen supply hamper stable large-scale growth in a

bioreactor environment [Roberts, 2007].

Working with Taxus cuspidata

Working with the Taxus cuspidata procambium csc is impeded by character-

istics such as a high phenolic content [8 mg/ g dry weight] as compared to

the somatic csc [0.7 mg/ g dry weight] [Lee, personal conversation] and with

10,850 Mb (1C), a large genome [Murray, 1998]. Taxus cuspidata is a diploid

plant with 24 chromosomes [Murray, 1998].

Plant metabolites such as phenolic compounds and terpenes interfere dur-

ing the extraction of nucleic acids and can react irreversibly with proteins and
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nucleic acids [Katterman and Shattuck, 1983]. Residual phenolic compounds

present in extracted nucleic acids render them unsuitable for enzymatic restric-

tion and amplification by Taq DNA polymerase [Porebski et al., 1997,Michiels

et al., 2003].

.

1.6.1 Taxus as plant model

Since the early 1970s Taxus species were utilised as model plants on the

background of TaxolTM research. Initial studies concentrated on the isola-

tion and structural analysis of TaxolTM [Wani et al., 1971], Taxol mode of ac-

tion [Horowitz et al., 1979,Fuchs and Johnson, 1978,Jacrot et al., 1983,Riondel

et al., 1986], the isolation of further Taxenes [McLaughlin et al., 1981,Kingston

et al., 1982,Huang et al., 1986] and TaxolTM content analysis in different species

of Taxus and tissue types [Vidensek et al., 1990,Witherup et al., 1990].

The structural characterisation of TaxolTM as a diterpenoid increased sci-

entific interest in this class of taxenes, resulting in more than 550 identified and

isolated compounds from Taxus species. Chemical surveys in Taxus cuspidata

shown a total of 152 diterpenoids and 41 non-taxene compounds among which

are sesquiterpene, ecdysteroids, steroids, lignans, flavonoids and others [Wang

et al., 2010].

Due to attempts to utilise the plant cell culture platform for large-scale

production of TaxolTM, numerous reports have been published concentrating

on optimisation of cell type, medium composition, growth condition and elic-
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itor studies for Taxus csc [Ellis et al., 1996,Wang et al., 2001,Wu and Lin,

2003].

1.6.2 Botany of Taxus

Taxus cuspidata (Siebold and Zucc.) or the Japanese yew is a small coniferous

tree up to 16 m tall and grows in a pyramidal form with spreading or ascending

branches [Hartzell, 1991]. The shoots of the tree are red-brown with spirally ar-

ranged, linear dark green leaves of 15-25 x 2-3 mm [Ohwi, 1965]. The Japanese

yew is in the Taxaceae family. The genus Taxus, which is largely confined to

the middle latitudes of the northern hemisphere, belongs to the taxonomic

order Taxales [Fig.: 1.6]. Plants in this order bear an aril, a fleshy envelope,

which surrounds the seeds, the distinctive feature distancing them from the

Coniferales. Yew trees are extremely slow growing with germination taking up

to two years and for a yew to reach its mature height about 200 years [Suffness,

1995].

Taxus cuspidata is native to Japan; China (Heilongjiang, Jilin, Liaoning,

Shaanxi); the Republic of Korea (South), the Democratic People’s Republic of

Korea (North) and the Russian Federation (Kuril, Primorye, Sakhalin) [IUC,

2010]. Taxus species can be found from almost sea level to an altitude of

3000 m along the entire latitude [Fig.: 1.7] [de Laubenfels, 1988]. Within

the genus Taxus are nine species, which are namely: T. baccata (L.) or the

European yew; T. brevifolia (Nutt.) or the Pacific or the Western yew, T.

canadensis (Marshall) or the Canadian yew; T. chinensis (Pilg. Rehder) or

the Chinese yew; T. floridana (Nutt. ex Chapman) or the Florida yew; T.
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globosa (Schltdl.) or the Mexican yew; T. sumatrana (Miq. de Laub.) or the

Sumatran yew, T. wallichiana (Zucc.) or the Himalayan yew and T. cuspidata

(Siebold and Zucc.) [Hartzell, 1991]. The occurrence of Taxus is dated to

200 million years ago, proven by a fossil record of Paleotaxus rediviva, whose

structure is identical to the modern yew. In 1998 Taxus cuspidata was assessed

by the Conifer-Specialist-Group with a lower risk status in the IUCN Red List

of threatened species [IUC, 2010].
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Taxus cuspidata

Figure 1.6: Plate from Flora Japonica, Sectio Prima, showing Taxus cuspidata
(Siebold and Zucc.), published in 1870 [Illustration 128]. Source: [von Siebold
and Zuccarini, 1870].
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Taxus habitats

Figure 1.7: Map showing the natural habitat of Taxus species labelled in
red. Source: [URL: http://www.conifers.org/ta/ta/index.htm; The Conifer
Database.]

Taxus cuspidata is distantly related to other gymnosperm organisms used

as models such as the pine and Picea species. The latter are found among the

Pinophyta within the Pinacea family which belongs to the subclass of the

pinidae. In contrast Taxus cuspidata within the Taxaceae is found within the

subclass of the Taxidae [Fig.: 1.8]. The divergence of the Taxidae and Pinidae

from the Corditidae is estimated at about 300 MYA [Sitte et al., 1991]. The

well characterised angiosperm plant model A. thaliana is found among eudicots

within the Brassicales. Other frequently used and well characterised plant

models are Oryza and Zea species found within the monocots. The divergence

time of the eudicots and monocots within the angiosperms is estimated at

131-200 MYA [Nam et al., 2003].
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Divergance of gymnosperm and angiosperm model organisms

Figure 1.8: The diagram shows the evolution of angiosperms and gymnosperms
from the Psilophytatae, the Progymnospermae, over time and highlights the
divergence and relationship of plant model organisms [adapted from [Sitte
et al., 1991]

Ethnobotany of Taxus

The yew tree was treasured because of its hard durable wood, feared due to its

toxic foliage and worshiped by several cultures throughout history. The name

Taxus is derived from the Greek word for yew, toxos, which is thought to

originate from the combination of the Greek words toxicon and toxon meaning
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poison and bow, respectively. This sums up the valuable characteristics of the

yew tree known by the ancient Egyptian, Greek, Roman, Celtic and Asian

cultures. Each culture gave the yew tree its unique connotation. However, it

was always a sacred tree associated with long life and the underworld [Suffness,

1995].

The yew tree was used in traditional medicine to treat tuberculosis and

epilepsy. A tea from yew was used to initiate abortions in medieval times

and an extract, brewed from yew foliage was used as poison. The yew tree

gained entry into modern medicine in the late 1970s with the discovery of

TaxolTM [Suffness, 1995].

1.7 Project aims

The non-model organism Taxus cuspidata produces the potent anti-cancer drug

TaxolTM which makes it attractive for molecular studies concerned with the

regulation of the TaxolTM biosynthesis pathway. In this project molecular re-

sources and methodology were established necessary for the identification and

characterisation of transcription factors which govern TaxolTM biosynthesis. A

further aim was the characterisation of the employed csc which was initiated

from T. cuspidata procambium tissue.

Specific aims of the project were as follows:

• Cloning of TaxolTM biosynthetic gene promoters and their In-silico

analysis.

• Establishment of a transient transformation assay using T. cuspidata
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csc for functional characterisation of the isolated TaxolTM biosynthetic gene

promoters.

• Sequencing of the T. cuspidata transcriptome.

• Identification of jasmonate-responsive transcription factors from T.

cuspidata.

• Characterisation of TaxolTM biosynthetic gene expression in the pro-

cambium and somatic csc.

• Characterisation of the employed procambium csc by identification of

marker genes.
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Chapter 2

Materials and Methods

2.1 Plant material

Taxus cuspidata cell suspension cultures

Taxus cuspidata callus was obtained from the biotechnology company Un-

hwa [Lee et al., 2010]. Both the homogenous procambium [CMC] and the

heterogenous somatic [DDC] callus were propagated and maintained at 20◦C

in the dark on petri-dishes containing 35 ml callus growth medium [Table.:

2.1] supplemented with 0.5 mg/L gibberellic acid∗ and 1% sucrose∗, 0.4% gel-

rite and 0.01% activated charcoal. The CMC callus was sub-cultured every 14

days and the DDC every 21 days. A cell suspension culture [csc] from T. cus-

pidata CMC callus was established using 2.5 g of 10 day old callus suspended

in 40 ml of liquid growth medium supplemented with 1 mg/L gibberellic acid∗

and 2% sucrose∗. The medium was adjusted to pH 5.5 and autoclaved. Sub-

culturing of the csc 1/10 (v/v) was carried out every 10-14 days. [Asterisks
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Taxus medium salts, amino acids and other compounds
Compound Final conc. mg/L
Potassium nitrate 1011.1
Magnesium sulphate heptahydrate 121.56
Manganous sulfate tetrahydrate 10
Zinc sulphate heptahydrate 2
Cupric sulfate pentahydrate 0.025
Calcium chloride monohydrate 113.23
Potassium iodide 0.75
Cobalt(II) chloride hexahydrate 0.025
Monobasic sodium phosphate, monohydrate 130.44
Boric acid 3
Sodium molybdate dihydrate 0.25
Iron sodium ethylenediaminotetraacetate 36.7
Myo-inositol 100
Thiamine-hydrocloride 10
Nicotinic acid 1
Pyridoxine hydrochloride 1
L-Aspartic acid 133
L-Arginine 175
Glycine 75
L-Proline 115
L-Ascorbic acid∗ 100
Citric acid∗ 150
Picloram 1

Table 2.1: T. cuspidata medium composition

indicate compounds which were dissolved in 100 ml of dH2O, filter sterilised

and added after autoclaving.]

Tobacco plants

Nicotiana benthamiana plants utilised in transient agroinfiltration assays were

grown under long day conditions [16 h light, 8 h dark, light intensity 1000

µmol m−2 sec−1] at 25◦ C.
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Methyljamonate treatment of Nicotiana benthamiana plants

A 100 mM stock solution of MeJA in ethanol was prepared and stored at -

20◦C. For treatment of N. benthamiana plants the stock was further diluted

to 200 µM and equally sprayed over the leaf areas previously infiltrated with

Agrobacterium.

2.2 Plant transformation methods

Particle bombardment of Taxus cuspidata csc

In order to transform the utilised plant material by particle bombardment the

DNA construct designed for transformation was coated onto the microcarriers

(gold particles) [Bio-Rad, USA]. A suspension was prepared containing 50 mg

gold microcarriers in 1 ml of sterile H2O by vigorous vortexing for 1-2 min. The

suspension was subsequently centrifuged at 13,000 rpm for 1 min and the su-

pernatant was carefully discarded. The microcarriers were washed using 100%

ethanol and subsequently centrifuged three times. To remove the ethanol a

wash using sterile H2O was performed. After discarding the supernatant, the

prepared microcarriers were resuspended in 1 ml of sterile H2O. 5 µg of plasmid

DNA were added to an aliquot of 25 µl of microcarrier suspension and briefly

vortexed. The DNA was precipitated onto the microcarriers using 25 µl of 2.5

M CaCl2. The suspension was mixed gently by pipetting and 10 µl of 0.1 M

spermidine was added. Both CaCl2 and spermidine are essential for good DNA
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precipitation and exclusion of spermidine results in decreased transformation

efficiency [Zuraida et al., 2010]. Precipitation of DNA by high CaCl2 concen-

tration is caused by competition of salt ions with H2O molecules [Edsall and

Wyman, 1958]. The multivalent cation spermidine, binds to, and condenses

the DNA in aqueous solutions [Wan and Wilkins, 1993,Pelta et al., 1996]. Af-

ter gentle mixing the suspension was gently vortexed for 2 min and incubated

on ice for 30 min. The pelleted microcarriers were subsequently washed using

200 µl of 100% ethanol and after further centrifugation resuspended in 100 µl

of 100% ethanol.

Particle bombarment was performed with various rupture disc pressures

including 650 psi, 1100 psi and 1350 psi. The vacuum pressure at the time of

bombardment was 28 mmHg. 1.0 µm and 1.6 µm microcarriers were utilised

at a target distance of 3 cm.

Isolation and electroporation of Taxus cuspidata protoplasts

The enzymes used for protoplast isolation (1 % [w/v] Cellulase-Trichoderma,

0.1% [w/v] Pectolyase Y-23 [MP Biochemicals, UK] and 0.2% [w/v] Driselase

[Sigma-Aldrich, USA]) were dissolved in 5 ml TEX buffer [500 mg/L MES (2-

(N-Morpholine)-ethane sulfonic acid), 750 mg/L calcium chloride dihydrate,

250 mg/L ammonium nitrate, 0.5 M mannitol, pH 5.7 with KOH] by vigorous

shaking and left at room temperature for 30 min. The enzyme mix was then

centrifuged at 10,000 g for 10 min to remove insoluble particles and the super-

natant was used for isolation of protoplasts. Protoplasts from 2 ml settled cell

volume of procambium csc from T. cuspidata were generated by enzymatic
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digestion in 7 ml of enzyme mix overnight in the dark. The digestion was

performed in a petri-dish to ensure sterile conditions. Prior to protoplast pu-

rification the petri-dish was shaken gently to liberate the maximum number

of protoplasts. The protoplast suspension was then gently transferred on top

of 10 ml of 16% sucrose solution and centrifuged for 15 min at 100 g without

break. The viable protoplasts were harvested from sucrose-enzyme solution

interphase and washed in 10 ml electroporation buffer [0.4 M sucrose, 2.4 g/L

hepes, 6 g/L KCl, 600 mg/L calcium chloride dihydrate pH 7.2 with KOH]. The

protoplasts were then passed through a 100 µm nylon filter which previously

had been wetted with electroporation buffer.

After a further centrifugation for 15 min at 100 g without break the pro-

toplasts were resuspended in an appropriate volume of electroporation buffer

in order to obtain 3 X 106 protoplasts/ ml [according to the thickness of the

isolated protoplast layer].

500 µl of the isolated and purified protoplast suspension were transferred

into a plastic cuvette, and mixed with 100 µl of electroporation buffer con-

taining 50 µg of DNA. The DNA/ cell mixture was incubated for 5 min at

room temperature. The electroporation is performed with 910 µF and the

optimum voltage for T. cuspidata procambium protoplasts of 170 V by low-

ering the electrodes into the plastic cuvette. Electroporation was performed

with a home-built device [by Prof. J. Denecke, Leeds] with an electrode dis-

tance of 3.5 mm. After electroporation the protoplasts were left stationary for

roughly 15 min and then diluted five times in TEX buffer. Gene expression of

the transformed protoplasts was analysed after an overnight incubation in the
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dark at room temperature.

Agrobacterium infiltration of Nicotiana benthamiana plants

Single colonies of the transformed Agrobacterium strain were grown in a 5 ml

volume of LB-medium at 28◦C for 1-3 days and centrifuged at 2,500 rpm for

15 min at 16◦C. The pellet was subsequently resuspended in 1 ml of infiltra-

tion buffer [0.01 M magnesium chloride, 0.01 M MES, pH 5.6 KOH, 15 µM

acetosyringone] and the OD600 was determined of a 1 in 100 dilution of the

resuspension. The Agrobacterium resuspension was diluted to the appropriate

OD. Immediately prior to infiltration a syringe tip was used to make a fine

incision into the lower surface of a fully expanded N. benthaminana leaf at the

side of infiltration. A volume of 100 µl was infiltrated into the leaf using a 1 ml

syringe by applying gentle counter-pressure to the upper leaf surface. In this

way 4 - 6 infiltrations were performed on one leaf. Jasmonate treatment was

performed 12 hours after infiltration [Yang et al., 2000,Voinnet et al., 2003].

2.3 Reporter assays

Fluorometric GUS activity assay

GUS activity was measured by monitoring cleavage of the β-glucuronidase

substrate MUG which yields 4-MU and sugar glucuronic acid [Jefferson, 1989,

Gallagher, 1992]. Roughly 50 mg of plant tissue were ground in liquid nitrogen
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and added to 500 µl of GUS extraction buffer [50 mM Sodium phosphate pH

7.0, 10 mM β-mercaptoethanol, 10 mM EDTA, 0.1% sarcosyl, 0.1 % [v/v]

triton X-100]. The samples were stored on ice and centrifuged at 12,000 rpm

for 10 min at 4◦C. Subsequently 100 µl of the resulting protein extract were

added to 900 µl of GUS assay buffer [GUS extraction buffer containing 2 mM

MUG]. The samples were then incubated at 37◦C. The reaction was stopped

after 1 hour by the addition of 200 µl of GUS stop solution [0.2 M Sodium

carbonate] followed by vortexing of the sample. Using excitation of 365 nm

and measuring emission at 455 nm, the amount of 4-MU produced from the

substrate 4-methylumbelliferyl β-D-glucuronide was quantified.

To normalise the GUS activity to the imput protein concentration of the

used samples a Bradford assay was performed. 5 µl of protein extract used to

measure GUS activity was added to 200 µl Bradford reagent and 795 µl H2O.

The resulting protein concentration was used to express the GUS activity as

pmol MU/ min/ mg protein.

α-Amylase activity assay

α-Amylase [1,4-α-D-glucan glucanohydrolase] hydrolyses blocked p-nitrophenyl

maltoheptaoside into blocked maltosaccharide and p-nitrophenyl malto-saccharide.

The latter is further hydrolysed by the action of a thermostable α-glucosidase

to yield p-nitrophenol and glucose [Nater et al., 2005].

Transformed protoplasts utilised to measure the α-amylase activity were

centrifuged at 13,000 rpm for 4 min and the pellet was resuspended in 500 µl of

extraction buffer [50 mM malic acid, 50 mM sodium chloride, 40 mM calcium
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chloride, 0.02 % sodium azide, 0.02 % BSA, pH 5.4]. Following sonication

[Ultrawave Ltd, UK] for 5 sec at amplitude 10 the samples were centrifuged at

13,000 rpm for 4 min. 30 µl of the supernatant were added to 30 µl substrate

[Kit, Megazyme, Australia, containing: blocked p-nitrophenyl maltoheptaoside

5.45 mg/ml, α-glucosidase 100 U at pH 5.2]. The reaction was started by

incubating the sample at 40◦C and stopped after exactly 30 min by the addition

of 150 µl stopping solution [1% (w/v) Trizma base, pH 11]. The generated p-

nitrophenol absorbs light at a wavelength of 405 nm.

2.4 DNA manipulation and analysis

Extraction of Taxus cuspidata genomic DNA

About 300 mg of the T. cuspidata csc was collected and the culture medium

was removed by placing the cells on top of a fine nylon mesh above a stack

of tissue paper. The plant material was subsequently ground with 5 µl of 1%

(v/v) 2-mercaptoethanol. After adding 300 µl of extraction buffer [250 mM

NaCl, 25 mM EDTA, 0.5% SDS, 200 mM Tris-HCl pH 8.0] the homogenate was

incubated for 1 hour at room temperature. Freshly prepared PVP [MW 10,000]

solution [6% of the final volume] and half a volume of 7.5 M ammonium acetate

were added separately. The homogenate was then incubated for 30 min on ice

and centrifuged at 4◦C at 10,000 g. The supernatant was carefully removed and

transferred to a fresh tube to which an equal volume of ice cold isopropanol was

added. Following an incubation for 30 min at -20◦C to precipitate the DNA,

the tube was centrifuged at 4◦C for 30 min at 10,000 g. The supernatant was
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discarded and the pellet was allowed to dry. The DNA was then resuspended

in 500 µl TE buffer [10 mM Tris-HCl pH 8.0, 0.1 mM EDTA pH 8.0]. Two

µl of RNase [1 mg/ml] were added to the solution and incubated at 37◦C for

15 min. To remove the RNase and plant pigments, one volume chloroform-

isoamyl alcohol (24:1) was added and after several inversions centrifuged at

10,000 g for 5 min at 4◦C. The aqueous fraction was removed and transferred

to a new tube. The chloroform extraction was repeated once more. The

aqueous fraction was then transferred to a fresh tube and 1 volume of ice cold

isopropanol was added and incubated for 30 min at -20◦C. After centrifugation

at 10,000 g for 30 min, the pellet was washed with 1 ml of 80% ethanol and air

dried under sterile conditions. The pelleted DNA was subsequently redissolved

in 30 µl TE buffer [Kim et al., 1997].

Cloning of TASY::GUS fusion construct

For the bombardment of T. cuspidata csc three plasmids were cloned [Fig.: 2.1]

to assess the jasmonate inducibility of the isolated TASY promoter fragment.

A fragment from the pJIT-166int vector [Fig.: 2.2 A] [Guerineau et al., 1992]

harbouring the GUS reporter gene under the control of the constitutive CaM V

35S promoter was cloned into the SacI - XhoI site of the pGreenII 0049 vector

[Fig.: 2.2 B] [Hellens et al., 2000]. A CaM V 35S promoterless fragment from

the pJIT-166int vector was also cloned into the HindIII - XhoI sites of the

pGreenII 0049 vector. The isolated TASY promoter was cloned as HindIII -

SalI fragment into the latter.
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Name Sequence [5’]

TASY hind-fwd: GGCAAGCTTGTCCACTATCTACTTTGAAAATACCTCT

TASY sal-re: ATAGTCGACTTCTGCAGAGAGGCAGGGGAAC

Figure 2.1: Cloned GUS reporter constructs; [I]: The GUS gene under the con-
trol of a double CaM V 35S promoter; [II]: A promoterless control construct;
[III]: The GUS gene under the control of the TASY promoter.

Figure 2.2: [A]: The pJIT166 vector harbouring the GUS reporter gene; [B]:
The pGreen0049 vectors which has the left [LB] and right [RB] T-DNA inte-
gration border.
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Gateway R© BP and LR reactions

The Gateway R© cloning manual can be found at: www.tcd.ie/Genetics/staff/

Noel.Murphy/recombinant%20dna%20ge4021/gatewayman.pdf. The Gateway R©

cloning [Invitrogen, USA] technology involving the BP and LR recombination

reactions was performed according to the manufacturer’s instructions. This

includes the PCR amplification of a desired DNA fragment using gene specific

primers which have additional Att-overhangs. These support the site-specific

recombination of the PCR fragment into the pENTRYTM vector during the

BP reaction. Following transformation of 1 µl of the recombined DNA from the

BP reaction into E. coli strain XL1-blueTM, the plasmid DNA was extracted

and utilised in the LR reaction in which the DNA fragment of interest, now

within the pENTRY vector, is transferred by site-specific recombination into

an appropriate destination vector. Subsequent transformation into E. coli and

sequencing of the extracted plasmid DNA was performed.

Gateway R© overhangs:

Name Sequence [5’]

Attb1: GGGGACAAGTTTGTACAAAAAAGCAGGCTTC

Attb2: GGGGACCACTTTGTACAAGAAAGCTGGGTG

Specific primers:

DBTNBT fwd: ATGGGGAACTGGAAGTGGAT

DBTNBT re: GACTGGATCAAAGATGAAACGAT

TASY fwd: AACTCGCAATAGCTAGGACATCTT

TASY re: GCAGAGAGGCAGGGGAACTAC
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Cloning into pGEMt-easy vector and sequencing

DNA fragments obtained by PCR using A-tailing Taq polymerase were ligated

in the pGEMt-easy vector system [Promega, Fitchburg, USA]. A reaction mix-

ture containing 4.2 µl of gel extracted PCR product, 1 µl pGEMt-easy Vector

and 0.8 µl T4 fast ligase within an appropriate buffer were incubated at 16 C for

5-12 hours. Subsequently 1 µl of the ligation mixture was transformed into 100

µl of competent Xl1-blue or DH5α competent E. coli cells. The transformed

cells were plated onto LB medium containing 80 µl 0.1 M isopropyl thiogalac-

toside (IPTG) [Sigma-Aldrich, USA] and 40 µl 20 mg/ ml 5-bromo-4-chloro-3-

indolyl-beta-D-galactopyranoside (X-gal)[Sigma-Aldrich, USA] which confers

blue/ white selection allowing for the detection of integrated insert into the

pGEMt-easy vector. White colonies were picked under sterile conditions and

grown over-night in 5 ml LB medium with the appropriate antibiotic. Plasmid

DNA was extracted using the QIAGEN mini kit following the manufacturer’s

instructions. Plasmid DNA and the Sp6 and T7 sequencing primers were sub-

mitted for sequencing in individual reactions. Sequencing was performed by

the Gene-pool genomics facility at the University of Edinburgh.

Sequencing primers:

Name Sequence [5’]

Sp6: TATTTAGGTGACACTATAG
T7: TAATACGACTCACTATAGGG
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Genotypes of utilised E. coli strains

E. coli

DH5αTM F-80lacZ∆M15 ∆(lacZYA -argF) U169 recA1 endA1 hsdR17

(rK-, mK+) phoA supE44 λ thi1 gyrA96 relA1

XL1-blueTM endA1 gyrA96(nalR) thi-1 recA1 relA1 lac glnV44 F (Tn10

proAB+ lacIq ∆(lacZ)M15) hsdR17(rK- mK+)

DB3.1TM F- gyrA462 endA1 glnV44 ∆(sr1-recA) mcrB mrr hsdS20(rB-,

mB-) ara14 galK2 lacY1 proA2 rpsL20(Smr) xyl5 ∆ leu mtl1

DH10BTM FÐ mcrA ∆ (mrr-hsdRMS-mcrBC) 80lacZ ∆M15 ∆ lacX74

recA1 endA1 araD139 ∆(ara leu) 7697 galU galK rpsL nupG λ-

Preparation and transformation of E. coli competent cells

A fresh colony forming unit (cfu) of an E. coli strain was used to inoculate a

5 ml LB medium culture grown at 37◦C overnight in the presence of the ap-

propriate antibiotic. This was used to inoculate a 500 ml LB medium culture

which was grown at 37◦C to an OD600 of 0.4-0.5. The cells were pre-chilled

by swirling the culture flask for 1-2 min in an ice bath and subsequently cen-

trifuged at 2236 g for 10 min at 4◦C. The cells were resuspended in 50 ml of

ice cold TSS buffer [LB-medium supplemented with 10 % (v/v) PEG 3350,

5% (v/v) DMSO, 1 M MgSO4, pH 6.5] and snap frozen in liquid nitrogen in

appropriate aliquots. The cells were stored at -80◦C until used for transforma-

tion.

For transformation of plasmid DNA a 100 µl competent cell aliquot was

thawed on ice. The DNA was mixed in a second tube with 20 µl of 5X KCM

buffer [0.5 M KCl, 0.25 M MgCl2, 0.15 M CaCl2] and diluted to a final volume

53



2.4. DNA MANIPULATION AND ANALYSIS

of 100 µl with ddH2O. The cells were added to the KCM-DNA solution and

incubated for 20 min on ice. A heat shock of the cells was performed by

incubation for 5 min at 37◦C followed by immediate incubation on ice for a

further 2 min. 2 ml of pre-warmed LB-medium was subsequently added to

the cells which were then incubated for 1 hour at 37◦C. An aliquot of 100 µl

was spread onto selective medium containing the appropriate antibiotic within

a petri-dish, which was incubated up-side down overnight at 37◦C [Walhout

et al., 2000].

Preparation and transformation of A. tumefaciens competent cells

A fresh colony of an A. tumefaciens strain was used to inoculate a 5 ml LB

medium culture grown at 28◦C overnight in the presence of the appropriate

antibiotic. 2 ml of the overnight culture were used to inoculate a 50 ml LB

medium culture and grown at 28◦C to a OD600 of 0.5. The cells were pre-

chilled by swirling the culture flask for 1-2 min in an ice bath and subsequently

centrifuged at 3,000 g for 10 min at 4◦C. The cells were re-suspended in 1 ml

of ice-cold CaCl2 [20 mM], dispensed in 100 µl aliquots and frozen in liquid

nitrogen. The cells were stored at -80◦C until used for transformation.

The competent cells were thawed on ice for 1 hour and 1 µg of plasmid

DNA was added to the cells after which the cells were incubated on ice for a

further 30 min. The cells were snap frozen in liquid nitrogen and subsequently

incubated at 37◦C for 5 min. 1 ml of LB medium was added to the cells

which were then incubated for 2-4 hours at 28◦C. An aliquot of 100 µl was

spread onto selective medium containing the appropriate antibiotic and was
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incubated up-side down for two to three days at 28◦C [Manda YU, personal

communication].

2.5 PCR-based methods

All PCR-based methods were performed on a Peltier Thermal Cycler PTC-200

DNA-Engine [MJ Research]. PCR reactions were performed in a 25 µl reaction

volume following a general protocol utilising DNATaq polymerase purified in

our lab [1µl] by Dr. Yiqin Wang [Pluthero, 1993] or commercial [0.2 µl] DNA

Taq polymerase, the appropriate buffer containing 7.5 mM MgCl2, 1 µl dNTPs

[10 mM; 2.5 mM of each nucleotide] and appropriate primers.

Unless otherwise stated the following PCR conditions were used for the

amplification of DNA. Used annealing temperatures were 4◦C below the Tm-

value provided and for every 1kb expected amplification size 1 min extension

time was allowed.

step 1: 94◦C 1:00 min
step 2: 94◦C 0:40 min
step 3: appropriate annealing temp. 0:40 min
step 4: 72◦C appropriate extension time: 0:30 - 2:00 min
step 6: go to step 2: 29 x
step 4: 72◦C 10:00 min
step 5: 4◦C for ever
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Genome walking

The genome walking approach was adapted from the Clonetech [USA] Genome-

WalkerTM methodology. Genomic DNA from T. cuspidata [2.5 µg] was di-

gested in individual reactions with 8 µl [20 U/ µl] of the blunt end restriction

enzymes PvuII [Roche, Germany], EcoRV, StuI, NaeI and SmaI [New Eng-

land Biolabs, UK] in a 100 µl volume for 5 hours at 37◦C. To each reaction

an equal volume of phenol was added followed by centrifugation at 13,000 rpm

for 2 min. The last step was repeated using the aqueous layer and an equal

volume of chloroform. The DNA was subsequently precipitated by adding two

volumes of ice cold 95% EtOH and 9.5 µl 3 M sodium acetate. After vortexing

the reaction was centrifuged at 14,000 rpm for 30 min at 4◦C, the supernatant

was discarded and the pellet was allowed to air dry. This was subsequently

dissolved in 20 µl TE buffer [10 mM Tris-HCl pH 8.0 with, 1 mM EDTA].

From each digest 4 µl were used in a ligation reaction to 2 µl of adaptor [Fig.:

2.3] using 0.5 µl of T4 DNA ligase [20 U/ µl] [New England Biolabs, UK] in

an 8 µl reaction volume containing the appropriate buffer at 16◦C overnight.

The reaction was heat inactivated by incubation at 70◦C for 5 min and diluted

10/1 in TE buffer. Of each library 1 µl was used in the primary PCR reaction

using ExTaq polymerase [Takara Bio. Inc, Japan], and a 1 in 50 dilution of the

latter product was utilised in the secondary PCR reaction as a template. For

the nested PCR a 1 in 50 diluted product from secondary PCR was utilised as

a template. The amplified fragments were subject to agarose gel electrophore-

sis and after excision and gel purification cloned into the pGEMt-easy vector

system.
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Figure 2.3: The genome walking adapter sequence and the binding sites and
sequences of the adapter specific primers AP1 and AP2 [GenomeWalkerTM;
Clonetech, USA].

Name Sequence [5’]

TSgwpri: GAGGGATATCATCCACAATGGTACTG

TSgwsec: CACAATGGTACTGGAAGTCTCGGAAAC

TSgwnes: CTGGAAGTCTCGGAAACCACC

Primary PCR conditions

step 1: 94◦C 0:25 min
step 2: 72◦C 3:00 min
step 3: go to step 1 7x
step 4: 94◦C 0:25 min
step 5: 67◦C 3:00 min
step 6: go to step 4 32x
step 4: 67◦C 7:00 min
step 5: 4◦C for ever
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Secondary PCR conditions

step 1: 94◦C 0:25 min
step 2: 72◦C 3:00 min
step 3: go to step 1 5x
step 4: 94◦C 0:25 min
step 5: 67◦C 3:00 min
step 6: go to step 4 20x
step 4: 67◦C 7:00 min
step 5: 4◦C for ever

Reverse transcriptase-PCR

RT-PCR was perfomed using 1 µg of total RNA from T. cuspidata. RNA

was extracted using the RNeasy plant RNA extraction kit [Qiagen, Venlo,

Netherlands] following the manufacturer’s instructions. First strand cDNA

synthesis was done utilising the Omniscript R© RT kit [Qiagen, Venlo, Nether-

lands] following the manufacturer’s instructions. Reverse transcription was

done utilising oligo-d(T) in the presence of the appropriate buffer, 1 µl [5 µM]

dNTP and RNasin R© RNase inhibitor [40 u/ µl] [Promega, Fitchburg, USA].

The reaction was incubated at 37 ◦C for 1 hour followed by 10 min at 70 ◦C.

The cDNA was diluted 1 in 10 and utilised as the template for subsequent

PCR reactions.

RT-PCR conditions

step 1: 94◦C 2:00 min
step 2: 94◦C 0:40 min
step 3: appropriate annealing temp. 0:40 min
step 4: 72◦C 0:30 min
step 5: go to step 2: 20x
step 4: 72◦C 10:00 min
step 5: 4◦C for ever
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Primers used for RT-PCR

Name Sequence [5’]

oligo-d(T): TTTTTTTTTTTTTTTTTT

rRNAfwd: GGGTGTCCCCGCCCCGGAG

rRNAre: GGGCGTGTTCGGCACGTCCG

Gene specific RT-PCR primers

Name Sequence [5’]

TASY fwd: AAAAGGCTCGAGGACAACAAG

TASY re: TTGAATTGGATCAATATAAACTTTC

BAPT fwd: TTTCTTTGCGTTCTTCCATGATGCG

BAPT re: GGGAGCGAATGTGTATGGTAGTGCA

PAM fwd: GGCAGACAACAACGACGCCCT

PAM re: ACCTACAGTCGCTTCTGCGGAATTTC

DBTNBT fwd: CTATGGTAATGCCGCTGGTAAT

DBTNBT re: TTTGTTGAATTACCCCATGTTG

Region of interest (ROI) analysis of RT-PCR

To aid visualisation of the RT-PCR a ROI analysis was performed using a Ko-

dak Digital ScienceTM 1D setup, which measures the intensity of the amplified

RT-PCR band versus the background. The intensity levels were subsequently

normalised to the expression level present in CMC at 0 hours post jasmonate

treatment (100%).
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Cloning of TED2 probe

Degenerate PCR was used to clone the 412 bp long TED2 fragment utilised

as the probe in northern analysis. The method allows for the amplification of

DNA where no sequence information is available. Primer design is performed

on the basis of multiple amino acid sequence alignment from homologues of the

gene of interest within the same or different organisms. Regions which show a

high degree of conservation are chosen for primer design which take sequence

variations into account and represent a pool of very similar yet different primer

combinations. Primers were designed to amplify the N-terminal region of the

TED2 gene using the aligned authenitic Zinnia elegans and two homologues

from Populus trichocarpa as a sequence guide [Appendix I]. PCR was per-

formed using T. cuspidata cDNA as a template. The amplified PCR fragment

was gel extracted after agarose electrophoresis and cloned into pGEMt-easy

vector for sequence verification. The nucleotide sequence of the isolated T.

cuspidata TED2 fragment was translated into an amino acid sequence which

showed 69% sequence identity and 93% sequence similarity to the authentic

TED2 gene from Z. elegans.

TED2 degenerate PCR primers

forward: ACNGTVTCNACNAARGARAARGC

reverse CNGCYTGNGANARNGGRTA

For mixed base defentition see Appendix I
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TED2 PCR conditions

step 1: 94◦C 0:10 min
step 2: 94◦C 0:20 min
step 3: 57◦C 0:20 min
step 4: 72◦C 0:30 min
step 5: go to step 2: 30x
step 4: 72◦C 10:00 min
step 5: 4◦C for ever

2.6 Northern blot analysis

Total RNA was extracted from T. cuspidata csc using the Quiagen plant RNase

extraction kit [Qiagen, Venlo, Netherlands] following the manufacturer’s in-

structions. The absorbance of each sample was measured at 260 nm, and used

to calculate the concentration of RNA. Samples [10 µg] were separated on

formaldehyde-agarose gels [Sambrook et al., 1989], transferred to a Hybond

TM-N hybridisation membrane according to the instructions of the supplier

[Amersham, UK] and hybridized with the relevant probe. Blots were washed

twice for 30 min each at 65◦C in 4 x SSC, 1% (w/v) SDS, which was followed

by two washes at 65◦C in 4 x SSC, 0.5% (w/v) SDS. Blots were exposed to X-

Omat-ARTM imaging film (Kodak) for an appropriate period. The previously

cloned TED2 probe was excised using the EcoRI restriction enzyme and la-

belled with α-32P-dCTP by random priming using the Prime-a-Gene labelling

system [Promega, UK].
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2.7 Genomic library construction

Isolation of nuclei from T. cuspidata

Isolation of nuclear plugs was performed as previously described [Hein et al.,

2005]. 20 g of frozen T. cuspidata csc were ground to a fine powder with liq-

uid nitrogen and transferred to a flask containing 350 ml MEB buffer, pH 6.0

[1 M MPD (2-methyl-2,4-pentanediol); 10 mM PIPES KOH; 10 mM MgCl2;

4% (w/v) polyvinylpyrrolidone-10; 10 mM sodium metabisulfite; 0.2% (v/v)

β-mercaptoethanol; 0.5% (v/v) Triton X-100; the pH was adjusted with HCl].

The homogenate was incubated at room temperature for 12 min with a gentle

stir every 2 min and was subsequently filtered through one layer of miracloth

and then again through two layers of miracloth. Small quantities of the ho-

mogenate were filtered by gravity and gentle agitation through a stack of 40

µm nylon mesh on top of a 20 µm nylon mesh. The homogenate was cen-

trifuged at 650 g for 20 min and the pelleted nuclei were resuspended in 15

ml of MPDB buffer, pH 7.0 [MEB buffer without the polyvinylpyrrolidone-10;

the pH was adjusted with NaOH]. The homogenate containing the nuclei was

layered on a discontinuous percoll gradient consisting of 3 ml layers within a

glass tube of 95%, 60%, 45%, 30% and 15% percoll diluted with MPDB. Fol-

lowing centrifugation at 650 g for 20 min the nuclei were harvested from the

interphase below the 30% percoll layer, pooled and diluted with 15 ml MPDB

buffer. The nuclei suspension was subsequently loaded on top of 10 ml 85%

percoll diluted with MPDB, centrifuged at 650 g for 20 min and harvested from

the percoll/ MPDB buffer interphase and diluted in 20 ml of MPDB. The last
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step was repeated with 37.5% percoll. The supernatant was gently removed

and the collected nuclei at the bottom of the tube were resuspended in 25 ml

MPDB buffer. This step was repeated twice again where in the last repeat the

nuclei were resuspended in MPDB(-) buffer not containing β-mercaptoethanol

and Triton-X [Hein et al., 2005].

Embedding of nuclei, lysis and washing of nuclear plugs

Embedding of nuclei was performed as previously described [Peterson et al.,

2002]. InCert R© agarose [Cambrex, USA] was utilised for the preparation of

nuclear plugs. A 1 % agarose solution was prepared in MPDB(-) buffer and

incubated at 45◦C in a waterbath. The nuclei were pre-warmed to 45◦C for

5-10 min and gently mixed with an approximately equal volume of the agarose

solution using a wide-bore pipette tip (with cut off end). The mixture was

carefully aliquoted into pre-chilled disposable plug moulds [CHEF, Bio-Rad,

USA].

Lysis and washing of nuclear plugs was performed as previously described

[Farrar and Donnison, 2007]. The nuclear plugs were allowed to set overnight

at 4◦C. For subsequent lysis the plugs were gently retrieved from the mould

and incubated in 50 ml lysis buffer [0.5 M EDTA pH 9, 1 % (w/v) sodium

lauryl sarcosine, 0.1 mg/ ml proteinase K] at 50◦C for 24-48 hours with gentle

shaking. Following this the plugs were washed in 0.5 M EDTA [pH 9] for 1

hour at 50◦C with gentle shaking. The last step was repeated twice utilising
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0.05 M EDTA [pH 8]. Following this the plugs were washed twice more for

1 hour in TE (20:50) buffer [20 mM Tris-HCl, 50 mM EDTA, pH 8]. Prior

to enzymatic digestion the nuclear plugs were washed three times for 1 hour

each at 4◦C in ice cold TE-PMSF buffer [10 mM Tris-HCl, 1 mM EDTA pH 8,

0.1 mM PMSF] which was repeated a further three times utilising TE (20:50)

buffer.

Electroelution of HMW DNA

Electroelution of HMW BAC insert DNA was performed as previously de-

scribed [Strong et al., 1997]. The dialysis tubing (12,000 - 14,000 D. molecular

weight cut off) [Medicell Int. Ltd., UK] was prepared by heating the strips

[8-10 cm length] at 90◦C for 10 min in buffer A [1 mM EDTA 2 % (w/v)

Sodium bicarbonate] followed by boiling the membrane for 10 min in dH2O.

The tubing was subsequently rinsed in dH2O several times and stored at 4◦C

in 50 % EtOH. Immediately prior to use the dialysis tubing was rinsed thor-

oughly in sterile dH2O and then in sterile 1 X TAE buffer [40 mM Tris-acetate,

1 mM EDTA, pH 8]. For each electroelution, a gel slice of 300 mg was used

and prepared by equilibration in 50 ml of 1 X TAE buffer at 4◦C for 30 min.

The gel slice was placed longitudinally into the membrane and 300 - 400 µl of

sterile 1 X TAE was added. Care was taken that upon sealing of the dialysis

tubing all air was removed. The dialysis tubing containing the membrane was

submerged in 4◦C cold 1 X TAE buffer in an electrophoration tank with the

membrane being proximal to the negative pole. Electroelution was performed

at 4◦C at 4-5 V/ cm for 2 hours. To disassociate the DNA from the mem-
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brane the polarity was reversed for one minute. The eluted DNA was carefully

pipetted from the dialysis tubing.

BAC prep alkaline lysis

DNA was isolated from BAC clones as as previously described [Farrar and

Donnison, 2007]. 10 ml of LB medium containing the appropriate antibiotic

was inoculated with a fresh cfu and grown overnight at 37◦C. The culture was

sequentially centrifuged for 5 min at maximum speed in a 2 ml eppendorf tube

and the supernatant was discarded. The pellet was subsequently resuspended

in 200 µl of ice cold buffer I [25 mM Tris-HCl, pH 8.0; 10 mM EDTA; 0.9

% glucose] and chilled on ice. 200 µl of freshly prepared buffer II [1% SDS;

0.2 M NaOH] were added to each sample, mixed thoroughly by inversion and

subsequently incubated on ice for 4 min. 300 µl of solution III [3 M KOAc;

11.5% glacial acetic acid] were added and mixed thoroughly. After incubation

for 1 hour on ice, the samples were centrifuged at maximum speed for 10 min

and the supernatant was discarded. An equal volume of chilled isopropanol was

added to each sample and mixed by inversion. The samples were subsequently

centrifuged at maximum speed for 10 min and the supernatant was discarded.

The pellet was washed with 70% EtOH, air dried and resuspended in 50 µl

dH20.

For the determination of BAC insert size, 20 µl of the BAC DNA prep

from 19 BAC clones were digested with 0.3 µl of the restriction enzyme NotI

at 37◦C for 3 hours. The BAC DNA restriction reactions were subject to

PFGE and the average insert size was determined according to the employed
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size marker.

2.8 Web resources

Function Web-adress

Plant Cis element database: http://www.dna.affrc.go.jp/PLACE/

Plant TF database: http://plntfdb.bio.uni-potsdam.de/v3.0/

NCBI blast: http://blast.ncbi.nlm.nih.gov/Blast.cgi

NCBI ORF finder: http://www.ncbi.nlm.nih.gov/projects/gorf/

NCBI conserved domain search: http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi

Base translation: http://expasy.org/tools/dna.html

Sequence alignment: www.ch.embnet.org/software/TCoffee.html

TAIR N-browse: http://www.arabidopsis.org/tools/nbrowse.jsp
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Chapter 3

Cloning and analysis of TaxolTM

biosynthetic gene promoters

3.1 Introduction

Biosynthesis and accumulation of secondary metabolites, such as the taxene

diterpenoid TaxolTM, is induced by biotic- and abiotic-elicitors [Zhang et al.,

2000]. This results in the expression of TaxolTM biosynthetic enzymes which

are mediated by the plant hormone methyljasmonate and controlled at the

transcriptional level [Nims et al., 2006]. Transcription is governed by a complex

network of regulators which control promoter activity in response to signal

transduction cascades induced by environmental cues [Singh, 1998]. Several

TFs are often required to interact with cis elements in the promoter region of

target genes to activate transcription [Endt et al., 2002].

Despite the growing demand for the anticancer drug TaxolTM relatively
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little is known about the transcriptional regulation of the biosynthetic genes

involved in the TaxolTM pathway. The latter is partly due to the fact that the

TaxolTM pathway is not yet fully characterised [Nims et al., 2006]. Further-

more, as a non-model organism the lack of genomic sequence data for Taxus

species poses another limitation on work concerned with DNA out-with the

transcribed population. The genome of Taxus cuspidata is very large with

10,850 Mb. To restrict the target size, functional studies used exclusively

cDNA cloned from RNA of Taxus [Guo et al., 2006].

Promoter studies in this thesis concentrate on the genes encoding TASY,

BAPT and DBTNBT. The terpene synthase TASY is the committing enzyme

in the TaxolTM pathway and as such, synthesising the taxene core from the pre-

cursor molecule IPP [Wildung and Croteau, 1996], might be governed by tran-

scriptional regulation which tightly influences the expression of downstream

pathway genes.

The biosynthesis pathway of diterpenoids does not conform to a linear

fashion but with pathway branches feeding in or branching off at multiple

steps resulting in different intermediates and end products, which is also true

for the TaxolTM pathway [Nims et al., 2006] [reviewed in 1.5.2; Fig.: 1.4].

BAPT and DBTNBT are enzymes responsible for the last steps in TaxolTM

biosynthesis. BAPT catalyses the attachment of the side chain precursor to

the taxene core [Walker et al., 2002] and the last benzoylation is catalysed by

DBTNBT [Walker et al., 2002].

Hence the latter enzymes may represent biosynthetic steps unique to

the TaxolTM pathway which by extension may also apply for the underlying
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transcriptional regulation. Furthermore DBTNBT was identified as a possible

rate limiting step within the pathway exhibiting a low expression level [Nims

et al., 2006].

Cloning and analysis of TaxolTM biosynthetic gene promoter regions will

greatly contribute to the identification of transcriptional regulators and the

underlying molecular mechanism involved.

3.2 Genomic library construction attempts

In order to clone the promoter regions of TASY, BAPT and DBTNBT at-

tempts have been made to construct and screen a genomic DNA library from

T. cuspidata. Plant BAC libraries have been constructed from a wide variety

of species [Peterson et al., 2002] and are valuable resources providing tools for

functional gene elucidation within the genomic context [Farrar and Donnison,

2007]. Genes encoding for enzymes involved in plant secondary metabolism

have in several instances been shown to be linked. Biosynthetic genes of diter-

pene biosynthesis in rice and triterpene biosynthesis in oat and A. thaliana

are located in gene clusters [Osbourn, 2010]. This finding provided a further

rational for the construction of a BAC library which potentially aided to the

discovery of missing TaxolTM pathway components.

For the isolation of Megabase-size genomic DNA from T. cuspidata nu-

clear plugs were prepared as previously described by Hein et al., [2005] and em-

bedded in 0.8% low melting point agarose [Sigma-Aldrich Co., Missouri, USA].

The agarose provides a protective matrix preventing the damage of nuclei and
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thus shearing of the genomic DNA. Furthermore the porous characteristic of

the agarose allows for the diffusion of reagents necessary for purification and

manipulation of the genomic DNA in subsequent steps [Schwartz and Cantor,

1984]. To make the genomic DNA accessible for enzymatic restriction the nu-

clear plugs were lysed and washed as described by Farrar and Donnison [2007].

Prior to partial digestion with the type II restriction endonuclease HindIII

[New England Biolabs, UK] a test restriction was carried out to determine the

optimal enzyme concentration. For this a quarter of a nuclear plug was incu-

BAC HindIII test restriction of T. cuspidata HMW genomic DNA

Figure 3.1: One quarter nuclear plug was partially digested for 1 h with in-
creasing units (U) of HindIII and analysed by PFG-electrophoresis.
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bated for four hours at 4◦C with the enzyme mix to enable complete diffusion of

the reagents necessary for restriction digestion of the genomic DNA. Included

in the individual enzyme mixtures was the buffer and various concentrations

of the restriction enzyme HindIII which correlated to 0, 0.1, 0.2, 0.4, 0.8, 1.0,

1.6 and 2.0 enzyme units [Fig.: 3.1]. The enzyme concentration of 1.0 unit was

found to be optimal for partial digestion generating a substantial portion of

genomic DNA of the target size of 100-300 kb and at the same time showing a

reduced amount of undigested DNA thus resulting in a larger overall volume of

First and second size selection of T. cuspidata HMW genomic DNA

Figure 3.2: Re-assembled gel fragments after PFG-electrophoresis and ethid-
ium bromide staining; [A]: First size selection of the target size of 100-300 kb.
[B]: Two gel segments containing HMW DNA from 100-200 kb and 200-300 kb
were subject to a second size selection. Visible above and below the excised gel
fraction is the co-migrating HMW DNA from the first size selection out-with
the target size.
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partially digested HMW genomic DNA. The nuclear plugs were subsequently

incubated with the enzyme mix as described above and individually digested

with the previously determined HindIII concentration of 1.0 unit at 37◦C for

1 hour. The restriction enzyme HindIII was chosen because of the employed

BAC vector, pIndigoBAC-5 [Epicentre Biotechnologies, Madison USA] carries

compatible HindIII cloning sites. After digestion the nuclear plugs were sub-

ject to PFG electrophoresis using a CHEF-DRII setup [Bio-Rad Laboratories

Inc., California USA] on a 1% agarose gel [Seakam gold, Cambrex Bio Science,

Maine USA].

In order to isolate the HMW genomic DNA of 100-300 kb, two size selec-

tions were performed [Fig.: 3.2]. Prior to excision of target size DNA, the left

and right edges, which contained the co-migrating DNA size marker within the

agarose gel, were removed and stained with ethidium bromide [Sigma-Aldrich

Co., Missouri, USA]. These were subjected to UV-light and physical markers

were cut into the agarose gel highlighting the position of the appropriate size

marker DNA bands. The agarose gels containing the DNA size marker were

reassembled with the previously removed middle part of the gel containing the

partially digested genomic DNA and according to the physical markers within

the left and right gel fragments the appropriate gel section was excised [Fig.:

3.2 A].

In order to exclude co-migrating smaller genomic DNA fragments out-

with the target size a second size selection was performed. This included

PFG electrophoresis of the previously excised gel fragments. Digested DNA

from 100-200 kb and 200-300 kb were individually purified in the same way as
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described above [Fig.: 3.2 B].

Following the second size selection, the agarose gel embedded DNA is

liberated by electroelution, which is a electrophoresis coupled dialysis of the

DNA, as previously described by Strong et al., [1997]. The concentration of

the partially digested HindIII genomic DNA was subsequently determined [3.5

ng/µ] [Fig.: 3.3 A] using a nano-drop setup.

Isolated HMW genomic DNA for BAC library construction and the BAC vector

Figure 3.3: [A]: An aliquot of the pooled electroeluted HMW genomic DNA
for BAC library construction from both size selected fractions (100-200 and
200-300) was run by standard electrophoresis on a 1% agarose gel; [B]: The
pIndigoBAC-5 vector used for construction of the T. cuspidata genomic library.
The Vector is HindIII precut and dephosphorylated thus ensuring high BAC
insert integration efficiency.

The subsequent ligation of the HMW DNA was performed as described

by Peterson et al., [2002], 140 ng of partially digested genomic DNA and 50
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ng of the pre-cut and dephosphorylated BAC vector pIndigoBAC-5 [Fig.: 3.3

B] were incubated using T4 ligase [400.000 units/ml, New England Biolabs,

UK] over night at 16◦C. The pre-cut vector was utilised to ensure high insert

integration efficiency. Following ligation a dialysis was performed.

For transformation of the BAC constructs electrocompetent E. coli cells

[E. cloni 10G BAC cells, Lucigen, Wisconsin USA] were utilised. This E.

coli strain, DH10B, carries the mcr and mrr mutations thus allowing for the

transformation of large methylated genomic DNA fragments without generat-

ing deletions or rearrangements of the insert. Furthermore, these cells were

optimised for high transformation efficiency.

With a haploid genome size of 10,850 Mb a target of 400,000 cfus are

required with an average insert size of 110 kb to reach 4x genome coverage.

The competent cells employed exhibited an expected transformation efficiency

of 1x107 cfu/µg 150 kb BAC insert [Lucigen, Wisconsin USA] per 20µl cell

aliquot, however transformation with 32 ng of the ligation mixture resulted

in 3601 cfus which correspond to 1.2% of the expected outcome. In order

to increase the transformation efficiency an increased amount of 200 ng of

BAC insert DNA was utilised which resulted in 2900 cfus after transforma-

tion. Further attempts to increase the ligation efficiency were made by using

high strength T4 ligase [2,000,000 units/ml] however, no increase in cfus was

observed. In order to circumvent the need to buy electro-competent cells,

home-made competent cells were utilised [described in 2.4], however this re-

sulted in a significant decrease of 150-1500 cfus per transformation using a 20

µl cell aliquot with an average of 1110 cfus after several transformations.
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In order to determine the average insert size of the cloned BAC con-

structs, liquid cultures were grown from 19 cfus over night at 37◦C and fol-

lowing a BAC prep by alkaline lysis a restriction digest was performed to

determine the average insert size. For this the endonuclease NotI was chosen

as its recognition sequence motif flanked the insertion sites on the BAC vector.

Furthermore NotI recognises an eight nucleotide sequence motif which occurs

less frequently within the genomic DNA thereby generating larger fragments

or no restriction within the BAC insert. This is favoured when determining

the BAC insert size. Restriction digest with NotI showed an average insert

BAC insert size determination

Figure 3.4: DNA from BAC clones was isolated and digested with NotI to de-
termine the average insert size. The arrow below the co-migrating size marker
indicates the pIndigoBAC-5 vector backbone, asterisks indicates an empty vec-
tor and the dollar symbol a colony forming unit (cfu) not harbouring a BAC
construct. An average insert size of 73 kb was determined.
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size of 73 Kb with 76% of the cfus harbouring a BAC construct [Fig.: 3.4].

Recalculation of the required cfus, the smaller than expected insert size

along with the absence of a BAC construct in 24% of cfus, after, resulted in

attainment of the target of 4x genome coverage of about 793.000 cfus. Due to

economical and logistical constraints, concerned with the amount of required

BAC vector, insert DNA, competent cells and storage, the construction of the

genomic library from T. cuspidata was abandoned.

3.3 Genome walking

The Genome walking approach was utilised in order to clone TaxolTM biosyn-

thetic gene promoters which resulted in the isolation of a 513 bp promoter

fragment from TASY.

The genome walking approach includes the individual partial digestion of

T. cuspidata genomic DNA with restriction endonucleases generating a blunt

end restriction site. Enzymes used for digestion include PvuII [Roche, Ger-

many], EcoRV, StuI, NaeI and SmaI [New England Biolabs, UK]. As recogni-

tion sequences for the different restriction enzymes occur at different locations

within the genome a variety of enzymes were used to increase the likelihood

of generating a partially digested genome-adapter fragment which would be

favoured by PCR and result in amplification of the genomic fragment of in-

terest. A blunt-end adaptor [described in 2.5; Fig.: 2.1] was ligated to the

different libraries of partially digested genomic DNA. A primary PCR using

ExTaq polymerase [Takara Bio. Inc, Japan] was performed using a gene spe-
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cific primer [approximately 200 bp downstream of the ATG] and an adaptor

specific primer, AP1, utilising the partially digested genome walking libraries

as a template [Fig.: 3.5A]. The amplified DNA was diluted 1:50 in TE buffer

and an appropriate volume was used as a template in a secondary PCR [Fig.:

3.6], which utilised another gene specific primer, partly overlapping with the

previously used, and a nested adaptor specific primer AP2. Following this

the amplified products from the PvuII were again diluted 1:50 in TE buffer

which was used in a nested PCR using the adaptor specific primer AP2 and

a further nested gene specific primer. Nested PCR was performed to verify

the authenticity of the amplified fragment using the TASY specific primers.

Genome walking primary and secondary PCR

Figure 3.5: A primary [A] and secondary [B] PCR was performed on adapter
ligated libraries of T. cuspidata partially digested genomic DNA using various
blunt end restriction endonucleases.
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The amplified fragment from the nested PCR [Fig.: 3.6] was subject to gel-

electrophoresis using a 0.8% agarose gel and after excision the DNA was ex-

tracted using the gel extraction kit [Qiagen, Venlo, Netherlands] according to

the manufacturer’s instructions.

The amplified fragment was subsequently cloned into the pGEMt-easy

vector system which involves the T4 ligase mediated insertion of the 5’-A-tailed

PCR product into the 3’-terminal thiamidine flanked linearised vector. Subse-

quent sequencing using the T7 and SP6 sequencing primers whose annealing

sites are present on the pGEMt-easy vector confirmed the isolation of a 700

bp fragment [Fig.: 3.5] which corresponds to a 513 bp long promoter region of

TASY.

Genome walking PvuII library nested PCR

Figure 3.6: A 700 bp fragment (arrow) was amplified in the nested PCR of
the genome walking approach which includes 513 bp of the TASY promoter
region.
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Although this procedure was also performed for the TaxolTM biosynthetic

genes BAPT and DBTNBT, the amplified fragments [data not shown] after

sequencing could not be confirmed as authentic promoter fragments of the

genes of interest.

Recently the promoter sequences from TASY (1436 bp) and DBTNBT

(1891 bp) were submitted to the NCBI nucleotide public domain. Sequence

alignment of the 1436 bp long promoter fragment with the sequence obtained

through genome walking showed an overlap which further confirmed the au-

thenticity of the cloned TASY promoter.

3.4 In-silico promoter analysis

In-silico analysis of the TASY and DBTNBT promoter sequences was per-

formed. In order to estimate the transcription start site, the promoter se-

quences were compared with the cDNA entries in the public domain. This

identified a 5’ UTR of 21 and 35 nucleotides upstream of the translation start

site [ATG] for the TASY and DBTNBT promoters respectively.

The in-silico analysis concentrated on the identification of known jas-

monate and pathogen-responsive elements. Also included were target binding

sites of TF families previously shown to be involved in transcriptional regula-

tion of secondary metabolites.

Several cis elements which may confer jasmonate and pathogen inducibil-

ity were located within the proximal TASY promoter region [Table: 3.1]. A

jasmonate-responsive GCC-box element is located at position -142 [according
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to the transcription start site]. A G-box and T/G box at positions -158 and

-255 respectively and a CGTCA motif at position -189 are also present in the

proximal region.

cis element Sequence Position Direction

GCC-box GCCGCC -142 forward

G-box CACGTG -158 forward
T/G-box AACGTG -255 forward

CGTCA-motif CGTCA -189 forward

W-box TGACT -136 forward
TGACT -352 reverse
TGACT -801 forward
TGACT -904 forward
TGACC -1304 forward

MYB I cons. TAACTG -1295 reverse
TAACGG - 1329 forward

Table 3.1: TASY promoter cis elements

Within the proximal promoter region is a pathogen-responsive W-box

element at position -139. It is noteworthy that this overlaps partly with the

GCC-box element. However four further W-boxes are located within the TASY

promoter. Furthermore two MYB I consensus motifs are present at positions

-1295 and -1329.

In-silico analysis of the DBTNBT promoter revealed a G-box motif at

position -92 in the proximal promoter region and a G-box related element

at position -443 [Table: 3.2]. Also present are two W-boxes one of which is
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located within the proximal promoter at position -146. Furthermore several

MYB consensus motif binding sites of type I and II are present in the DBTNBT

promoter region.

cis element Sequence Position Direction

G-box CACGTG -92 forward
CACGTT -443 reverse

W-box TGACT -146 reverse
TGACC -923 reverse

MYB I cons. CCGTTG -722 forward
CTGTTG -1139 forward
CGGTTG -1726 reverse

MYB II cons. TAACAAA -261 forward

Table 3.2: DBTNBT promoter cis elements

3.5 Functional characterisation of theTASY and

DBTNBT promoters

Particle bombardment of Taxus cuspidata

To assess the jasmonate-responsiveness of the cloned TASY promoter fragment

attempts have been made to develop a transient transformation assay using the

utilised T. cuspidata cell suspension culture [csc]. Initial studies concentrated

on particle bombardment of the utilised plant material which involves the

shooting of microcarriers [gold particles] which deliver the desired DNA into

the plant cell [Gan, 1989]. Exogenous DNA once it enters the nucleus can be
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transcribed and expressed by the host plant [Levy et al., 2005].This extensively

used approach for transient transformation of a variety of different plant species

provides a platform for the expression of chimeric gene constructs and their

analysis [Klein et al., 1992].

Transiently transformed T. cuspidata cells expressing the reporter GFP

Figure 3.7: T. cuspidata GFP activity. [A]: Three individual cells showing
GFP fluorescence under blue light 14 hours after bombardment; [B]: Overview
of cells expressing the GFP reporter.

Bombardment of the T. cuspidata csc was performed with the Bio-Rad

PDS1000/He system [Bio-Rad, Hercules, CA] according to the manufacturer’s

instructions. In order to asses the efficiency of the transient transformation

conditions a plasmid harbouring the GFP reporter gene controlled by the

constitutive CaM V 35S promoter was utilised. A thin layer of T. cuspidata

csc was transferred onto a sterile filter paper four hours prior to bombardment

and placed onto solid growth medium containing 8 g/L agar-agar. For each
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shot 0.5 µg of plasmid DNA was precipitated onto 500 µg of 1.6 µm gold

microcarriers.

GUS activity assay

Figure 3.8: T. cuspidata cells were transfromed by particle bombardment with
a construct harbouring the -513 TASY promoter construct driving the reporter
gene GUS with and without methyljasmonate. Mock: promoterless GUS plas-
mid

Rupture disc pressures of 650 psi, 1100 psi and 1350 psi were applied

in combination with 1.0 µm and 1.6 µm microcarriers. No GFP expression

was observed with 650 psi and 1100 psi using 1.0 µm microcarriers and only

limited GFP expression with 1350 psi. The latter rapture disc pressure was

therefore used with an increased size of 1.6 µm microcarriers which increased

the number of GFP expressing T. cuspidata cells. Effects of various target
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distances of 9 cm, 6 cm and 3 cm were tested with the latter showing the

highest GFP expression. In an effort to further increase the transformation

efficiency, three replicate shots were applied which resulted in a larger number

of transformed cells [Fig.: 3.7].

A promoterGUS fusion construct was cloned in order to asses the methyl-

jasmonate inducibility of the -513 TASY promoter. Bombardment was per-

formed as described above with three sequential shots using 1.6 µm microcar-

riers and a rapture disc pressure of 1350 psi. After bombardment the cells were

harvested from the filter paper and transferred into liquid growth medium. A

population of the bombarded cells was elicited with 100 µM MeJA. The cells

were harvested after 24 hours which correlates to the peak of TASY expression

after elicitation [Nims et al., 2006] and a GUS activity assay was performed.

However, no expression of GUS was detected [Fig.: 3.8].

Taxus cuspidata protoplast isolation and transformation

Due to the limited success of particle bombardment, attempts have been made

to utilise electroporation of isolated protoplasts from T. cuspidata as a tran-

sient transformation platform. Protoplasts are plant cells which had their cell

walls removed, however, they retain their viability, cell identity and differ-

entiated state [Sheen, 2001]. Transformation of protoplasts has been shown

in various plant species where they have been utilised to study a variety of

different cellular aspects [Davey et al., 2005,Sheen, 2001].

To determine the ideal enzyme composition for the digestion of the cell

wall present in T. cuspidata procambium csc, several enzymes were utilised.
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Cellulases are widely used in the isolation of protoplasts [Cocking, 1972].

Three different commercial cellulase preparations from Trichoderma viride

were utilised, cellulase-Trichoderma [Calbiochem, USA], cellulase Onozuka RS

and cellulase Onozuka R10. Equal settled cell volumes of 1 ml of the T. cusp-

idata csc were digested with 1% [w/v] cellulase (1U/mg) and equal concentra-

tions of Onozuka RS and cellulase Onozuka R10 dissolved in TEX buffer over

night in the dark at room temperature. Cellulase-Trichoderma was found to

be most effective. Further enzymes used in the isolation of T. cuspidata pro-

toplasts were 0.1% [w/v] pectolyase Y-23 [MP Biochemicals, UK] and 0.2%

[w/v] DriselaseTM [Sigma-Aldrich, USA]. Protoplast isolation was performed

in an osmoticum of 0.5 M Mannitol [Naill and Roberts, 2005b].

To determine electroporation conditions suitable for protoplasts isolated

from the T. cuspidata procambium csc a voltage range from 140 V to 200 V

in 15 V increments was employed. 500 µl of previously isolated protoplasts

with an estimated density of 3 X 106 [according to the thickness of the iso-

lated protoplast layer] were mixed with 50 µg of plasmid DNA harbouring the

α-AMYLASE reporter gene under the control of the CaMV 35S promoter.

Following electroporation the α-amylase reporter assay was performed. The

highest transformation of T. cuspidata procambium protoplasts was achieved

at a 170 volts [Fig.: 3.9]. The expected OD of the reporter assay is between

0.1 and 1.0 with lower readings being not reliable [Prof. J. Denecke, personal

communication]. Although an isolation procedure for protoplasts from T. cus-

pidata procambium cells has been established the observed transformation

efficiency by protoplast electroporation was insufficient.
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Agrobacterium infiltration of Nicotiana benthamiana

Although attempts have been made to utilise the plant model T. cuspidata

for transformation and analysis of the TASY and DBTNBT promoters, an

efficient transient transformation approach could not be established. Thus

the chimeric constructs harbouring the TASY and DBTNBT gene promoters

[Fig.: 3.10 A and B] driving the GUS reporter gene were transformed into

Agrobacterium tumefaciens and used for infiltration of Nicotiana benthamiana

leaves.

The constructs were cloned using the Gateway R© vector pMDC162 [Fig.:

α-amylase activity assay

Figure 3.9: Activity of α-amylase was measured on T. cuspidata protoplasts
using various electroporation conditions.
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3.10 C] [Curtis and Grossniklaus, 2003]. The Gateway R© cloning method [de-

scribed in 2.4] utilises a site-specific bacteriophage lambda mediated recom-

bination of DNA fragments [Earley et al., 2006]. An initial amplification of

the DNA fragment of interest uses specific primer pairs carrying AttB over-

hangs necessary for recombination into the generic pENTRY vector during the

BP reaction. The latter vector, harbouring a bacterial origin of replication is

designed for recombination and propagation within the E. coli host. The sub-

sequent LR reaction transfers the cloned fragment into the specific destination

vector pMDC162 harbouring the Gateway R© cassette, which drives the GUS

reporter gene, and left and right border for Agrobacterium mediated expression

in N. benthamiana.

The 7 week old N. benthamiana plants, past their 9 leaf developmental

stage were used for infiltration. The Agrobacterium suspension carrying the

chimeric T. cuspidata TASY and DBTNBT promoter GUS constructs were in-

filtrated in concert with the silencing suppressor construct p19 [Voinnet et al.,

2003]. The promoter constructs and silencing suppressor were infiltrated at

an optical density at a wavelength of 600 nm of OD 0.5 and OD 0.2 respec-

tively. A volume of 100 µM of the Agrobacterium suspension resulted in an

infiltrated leaf area of 3-4 cm2 which was marked for ease of subsequent treat-

ment and leaf disc incision. Treatment with MeJA was performed by spraying

the plants with 200 µM MeJA in 0.2 % ethanol. The infiltrated and treated

plants were incubated in a growth chamber at 22◦C under 16h light. Four

leaf discs with a radius of 8.5 mm were excised 30 h post infiltration and

fluorometric GUS assays were performed to assess the MeJA-responsiveness
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Figure 3.10: [A]: The amplified TASY and [B]: DBTNBT promoter bearing
Gateway R© the overhangs; [C]: The Gateway R© vector pMDC162.

of the TASY and DBTNBT gene promoters. GUS activity was detected in

infiltrated leaves with the TASY promoter driving the GUS reporter gene.

However upon jasmonate treatment no GUS activity was measured using the

DBTNBT promoter construct in N. benthamiana [Fig.: 3.11].

3.6 Discussion

The isolation and characterisation of promoter sequences is an important step

en route to uncovering transcriptional regulation leading to gene expression

[Terauchi and Kahl, 2000]. Attempts have been made to construct and screen
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GUS activity assay

Figure 3.11: GUS activity assay using the TASY and DBTNBT promoters in
the presence and absence of methyljasmonate. Mock: infiltration buffer only.

a genomic BAC library in order to isolate the promoter regions of the TaxolTM

biosynthetic genes TASY, BAPT and DBTNBT. T. cuspidata is a diploid

plant species with a haploid genome size of 10,850 Mb [Murray, 1998]. A

discriminatory factor when constructing a BAC library is the probability of

detecting the gene of interest. This probability can be determined by P =

1-eN[ln(1−I/GS)], [Farrar and Donnison, 2007]. Applying this calculation to the

T. cuspidata genomic BAC library would require, for a probability of 98% to
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detect a given gene, a number of 581,442 BAC clones [Appendix II]. However,

the calculated probability assumes that the gene of interest is not toxic in the

bacterial host and as such doesn’t cause any lethal effect or rearrangement

[Farrar and Donnison, 2007]. Furthermore empty BAC vectors or cfus without

a BAC construct, as observed among the T. cuspidata genomic library, are not

integrated in this equation, rendering the calculated probability a theoretical

value.

Although two size selections were performed with a target size of 100-300

kb the average insert size of 73 kb was lower than expected. The transforma-

tion efficiency of the employed electrocompetent cells also showed a lower cfu

frequency. A higher vector to insert ratio and high strength T4 DNA ligase did

not result in increased transformation efficiency. The observed transformation

efficiency of the utilised competent cells was 1x105 cfu/µg 73 kb BAC insert

which corresponds to about 1.2% of the expected outcome. These factors

rendered the construction of a genomic BAC library from T. cuspidata im-

practical. However there are examples of BAC libraries of plant species with

large genomes such as Hordeum vulgare (Barley) which has a haploid genome

size of 5,000 Mb. The associated BAC library contains 313,344 BAC clones

with an average insert size of 110 kb, which equates to a genome coverage of

6.3 [Yu et al., 2000]. Furthermore a method describing the storage and PCR

based target gene isolation of a single BAC clone has been described using

Allium cepa (onion) which also harbours a large haploid genome of 15,000

Mb [Suzuki et al., 2002]. The described storage and screening methodology

could be applied to a T. cuspidata BAC library.
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Successful isolation of a 513 bp fragment corresponding to the TASY

promoter was performed using genome walking. Similar adapter ligation PCRs

have been used frequently to isolate un-cloned genomic DNA fragments [Siebert

et al., 1995]. Five different restriction enzymes were used in order to increase

the likelihood of generating a genome-adapter fragment from partially digested

genomic DNA whose length would conform to the applied PCR conditions. Al-

though this approach was applied to amplify promoter fragments from TASY,

BAPT and DBTNBT, sequencing of the amplified fragments was not able to

confirm the authenticity of the BAPT and DBTNBT fragments. It is possible

that identical sequences to the primer annealing sites of BAPT and DBTNBT

within the T. cuspidata genome exist, which result in the amplification of

specific yet not authentic PCR products.

The cloned 513 bp promoter fragment was further confirmed as genuine

by comparison to a 1436 bp long sequence from the NCBI public domain

corresponding to the TASY promoter.

In-silico analysis of the TASY and DBTNBT promoter revealed several

jasmonate and pathogen-responsive cis elements. At position -142 within the

proximal TASY promoter a GCC-box was located. A central GCC-box is

part of the JERE element within the STR promoter in C. roseus [Menke

et al., 1999]. JERE interacting TFs are AP2 TF family members and confer

jasmonate regulated gene expression [van der Fits and Memelink, 2000].

The proximal TASY promoter harbours further jasmonate-responsive

elements namely a G-box at position -158 and a related T/G-box at -255.

Two G-boxes are also present in the DBTNBT promoter: one in the proximal
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region at position -92 and a further in the upstream promoter region. G-box

elements have been found to be over represented in promoters of jasmonate-

responsive genes [Mahalingam et al., 2003]. The bHLH TF CrMYC2 was

found to interact with the G-box and T/G-box. Originally isolated using the

G-box sequence (CACGTG) as bait in a yeast one-hybrid screen, CrMYC2

showed interaction with the T/G-box element within the ORCA3 promoter in

a jasmonate-responsive fashion [Pre et al., 2000].

A CGTCA motif is also located at position -189 with the proximal

TASY promoter. In Hordeum vulgare the CGTCA motif exists as inverted

repeats where it interacts with a TF of the bZIP family to confer jasmonate-

responsiveness [Rouster et al., 1997].

Both analysed promoters were found to harbour several W-boxes of which

two are located within the proximal regions at positions -136 and -92 in the

TASY and DBTNBT promoter respectively. Pathogen-responsive gene ex-

pression has been shown to be regulated by WRKY TFs which bind to W-box

elements [Rushton and Somssich, 1998]. It has also been shown that fungal

elicitors contribute to TaxolTM accumulation [Xu et al., 2004].

The MYB consensus motif CNGTTR is present twice in the TASY and

three times in the DBTNBT promoter. This motif conforms to the MYB

binding site I [Romero et al., 1998]. In Petunia hybrida the TF MYB.Ph3

which is involved in regulation of flavonoid biosynthesis recognises a GTTA

motif, which forms part of the MYB I motif [Solano et al., 1995]. A further

MYB II binding consensus motif was also located within the proximal promoter

DBTNBT at position -261.
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In order to functionally characterise the TASY and DBTNBT promoters,

attempts have been made to develop a transient transformation assay utilis-

ing the T. cuspidata procambium csc. The advantage of effective transient

assays is the relatively quick analysis of chimeric gene constructs rather than

time consuming and laborious stable transformation [Hadlington and Denecke,

2001].

Particle bombardment was performed with a rupture disc pressure of

1350 psi in combination with 1.6 µm microcarriers with three replicate shots

at a target distance of 3 cm which was found to achieve the highest transforma-

tion efficiency. However analysis of a TASY promoter GUS fusion construct

revealed no detectable GUS activity. All transformations were performed using

0.5 µg of plasmid DNA and 500 µg of microacarriers. A similar study using

particle bombardment utilised four different somatic csc from Taxus species,

established varying transformation susceptibilities among the bombarded em-

ployed cell lines [Vongpaseuth et al., 2007].

Protoplast isolation and electroporation was performed using T. cusp-

idata procambium csc. As plant cell walls restrict the movement of macro-

molecules, protoplasts provide an attractive alternative for transformation

[Bates, 1999]. A previous report demonstrated the isolation of protoplasts from

Taxus for the purpose of protein content analysis by flow cytrometry [Naill and

Roberts, 2005b]. However transformation of Taxus protoplast has not been

shown.

To relate the employed enzymes used for protoplast isolation to the

given cell wall composition, the effects of three different commercial cellu-
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lase preparations were tested. cellulase hydrolyses 1,4-β-D-glucosidic linkages

in cellulose, lichenin and cereal β-D-glucans [Buchholz et al., 1983]. Employed

were cellulase-Trichoderma, cellulase Onozuka RS and cellulase Onozuka R10.

cellulase-Trichoderma 1% [w/v] in combination with 0.1% [w/v] pectolyase,

from Basidiomycetes species which exhibits endo-polygalacturonase and endo-

pectin lyase activity, and 0.2% [w/v] DriselaseTM, an enzyme preparation from

Basidiomycetes species which includes laminarinase, xylanase and cellulase ac-

tivity was found to generate the highest observed yield of viable protoplasts.

Successful electroporation of plant protoplasts depends on various pa-

rameters including protoplast diameter and the utilised medium composi-

tion [Saunders et al., 1995]. To identify conditions suitable for the transfor-

mation of T. cuspidata protoplasts by electroporation, increased voltages were

used starting from 140 V to 200 V in 15 V increments. To assess the electro-

poration efficiency the standardised α-amylase reporter assay was performed

which revealed the highest activity at 170 Volts. The utilised TEX buffer is

also used for the electroporation of N. benthamiana protoplasts with optimum

electroporation conditions of 160 Volts [Hadlington and Denecke, 2001]. Al-

though α-AMYLASE activity was recorded, the achieved activity relating to

the transformation efficiency was 2.5 fold below the expected outcome render-

ing this approach insufficient as readings below 0.1 are unreliable [Prof. J.

Denecke, personal communication].

To overcome the transformation limitations experienced with the model

plant T. cuspidata an established approach of Agrobacterium-mediated tran-

sient expression in leaves of N. benthamiana was adopted [Yang et al., 2000].
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This method targets more leaf cells thus increasing the transformation effi-

ciency compared with particle bombardment [Levy et al., 2005]. The chimeric

constructs harbouring theGUS reporter gene driven by the TASY andDBTNBT

gene promoters were introduced into N. benthamiana leaves and treated with

methyljasmonate. GUS expression was observed by the TASY construct, how-

ever, no GUS activity was seen in the DBTNBT construct. The samples were

analysed 24 h after treatment at which point expression of both genes in the

T. cuspidata csc was found to be high by RT-PCR [chapter 5].

Located within the proximal TASY promoter are several putative jasmonate-

responsive elements including a GCC-box, a CGTCA motif and a G- and

T/G-box. These conserved cis elements provide binding sites for jasmonate-

responsive TFs. Although a G-box is also present within the DBTNBT pro-

moter, no jasmonate-responsiveness was observed after treatment. This may

indicate that DBTNBT expression in T. cuspidata is controlled by a more

complex transcriptional regulation not conserved in N. benthamiana.
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Chapter 4

Transcriptome sequencing of

Taxus cuspidata

The employed csc was initiated from isolated procambium cells of T. cusp-

idata [Lee et al., 2010]. The procambium, which gives rise to the vascular

tissue, is formed by the apical meristem and can be regarded as vascular stem

cells [Fukuda, 2004]. Among the unique characteristics of the procambium

derived csc, in this thesis referred to as cambial meristematic cells [CMCs],

is an increased production of TaxolTM of 443 % with 102 mg/kg FCW. In

contrast a csc initiated from somatic dedifferentiated needle cells [DDCs] in a

125 ml culture volume accumulated 23 mg of TaxolTM /kg FCW [Lee et al.,

2010]. To facilitate the identification of jasmonate-responsive TFs as potential

regulators, which govern transcriptional control of the TaxolTM biosynthetic

pathway and may be responsible for the observed increase in TaxolTM pro-

duction, the sequencing of the T. cuspidata transcriptome was performed. A
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further rationale was the identification of genes differentially expressed in the

procambium csc when compared to the somatic csc, which may be associated

with its stem cell identity.

4.1 Sequencing Methods

As T. cuspidata is not a widely used model organism, only limited sequence

data resources were available at the onset of this project. However, non-model

organisms especially possess valuable traits, which emphasises the need for

sequence data resources necessary for functional molecular studies [Coemans

et al., 2005]. These traits can be important pharmaceutically [TaxolTM: T.

cuspidata], economically [Banana crop: Musa acuminata], ecologically [Pine

foundation species: Pinus contorta] or from a population biology perspective

[Glanville fritillary butterfly: Melitaea cinxia] [Coemans et al., 2005,Parchman

et al., 2010,Vera et al., 2008].

Historically EST data has provided an attractive method for obtaining

sequence data from non-model organisms where whole genome data is unavail-

able. This approach is especially appealing with organisms harbouring a large

genome, such as Pine, as ESTs are representative of functional open reading

frames, lacking introns and intragenic regions [Parchman et al., 2010]. Recent

advances in next-generation sequencing technologies such as Roche/ 454 and

Illumina/ Solexa provide cost-effective, fast and highly accurate approaches

for the generation of sequencing data [Mardis, 2008]. With the focus on the

transcribed portion of the genome, the generated cDNA used in transcriptome
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sequencing minimises the target sequencing size and thus reduces input time

and labour. A further advantage of the combination of Roche/ 454 and Illu-

mina/ Solexa sequencing technologies is the versatility of the approach. Whilst

Roche/ 454 allows for the de-novo sequencing of the transcribed genes in T.

cuspidata, Illumina/ Solexa NlaIII tag sequencing will monitor the expression

profile thus providing qualitative and quantitative data respectively [Mardis,

2008], 2008; www.illumina.com).

4.1.1 The Roche/ 454 technology

The Roche/ 454 Life Science sequencing technology [454, Bradford, USA; since

2007 Roche, Basel, Switzerland ; http://www.454.com] was introduced to the

scientific community in 2004 [Rothberg and Leamon, 2008]. The introduc-

tory paper from 2005 is cited to date over 600 times which demonstrates

the immense impact of this technology [Margulies et al., 2005]. Ambitious

projects employing 454 sequencing include the de-novo sequencing of bacte-

rial genomes [Margulies et al., 2005], the genome sequencing of an individual

human [Wheeler et al., 2008] and the partial sequencing of a Neanderthal

genome [Briggs et al., 2007,Green et al., 2006,Noonan et al., 2006].

The strength of Roche/ 454 is the generation of long sequencing reads

with the current technology achieving up to 400 bp and a total of 1 X 106

sequence reads [Voelkerding et al., 2009]. The Roche/ 454 sequencing tech-

nology employs chemiluminesence coupled with pyrosequencing [Fig.: 4.1]. In

the initial emulsion PCR, designed to amplify the target DNA, sheared frag-

ments of 400-600 bp in length which are attached to streptavidin beads through
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Figure 4.1: Diagram showing the Roche/ 454 methodology. [A]: Sample prepa-
ration: the sheard single stranded (sst) DNA fragments are ligated to specific
adapters; [B]: Emulsion PCR: the sst DNA fragments are annealed to cap-
ture beads within emulsion droplet microreactors for clonal amplification; [C]:
Sequencing: each individual bead is placed into a single well of the picotiter
plate. Enzymes and reagents necessary for pyrosequencing are added to the
beads and the primer is hybridized to the template. Upon incorporation of one
of the sequentially added dNTPs, ATP sulfurylase catalyses the conversion of
the released pyrophosphate (PPi) and adenosine 5’-phosphosulfate (APS) into
ATP and sulphate. The ATP is utilised in a subsequent reaction with luciferin
in which luciferase catalyses their conversion into oxyluciferin and visible light.
Source: [Mardis, 2008,Voelkerding et al., 2009]
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specific adapters are used. Each individual fragment is captured in an emul-

sion droplet which provides the amplification environment resulting in 1 X 107

clonal copies of the single-stranded target DNA [Margulies et al., 2005]. A sub-

sequent pyrosequencing reaction using chemiluminesence is carried out where

each target bead is transferred into a well of a picotiter plate thus allowing

parallel reactions. In this sequencing-by-synthesis approach, nucleotides are

added into the wells in a sequential fashion, causing the release of PPi through

incorporation of complementary nucleotides to the target DNA fragment. The

light emitted through released PPi is monitored and nucleotides of target DNA

determined [Morozova and Marra, 2008,Mardis, 2008].

4.1.2 The Illumina/ Solexa technology

The Illumina/ Solexa [San Diego, USA.; http://www.illumina.com] sequencing

approach concentrated on the generation of expression profiles for the Taxus

cuspidata transcriptome generated by the Roche/ 454 technology. Although

generated sequence reads are only 25-35 bp in length, the employed NlaIII

tag sequencing methodology creates a digital gene expression profile by mir-

roring the frequency of a sequenced tag through its occurrence in the cDNA

population [Mardis, 2008] [Illumina work flow sheet].

During the initial stages of sample preparation, a signature tag corre-

sponding to the 3’ end of each transcript is generated using the NlaIII restric-

tion endonuclease [Illumina protocol]. Following a bridge amplification step,

which produces 1 X 107 clonal copies of the target fragment, the sequence is

generated in a sequencing-by-synthesis approach. DNA polymerase and all
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four nucleotides are provided simultaneously. The latter each carry a spe-

cific fluorescent label, which is monitored during incorporation into the newly

synthesised signature tag [Mardis, 2008,Voelkerding et al., 2009].

4.2 Experimental design

The csc of DDCs and CMCs from T. cuspidata were employed for the sequenc-

ing of the transcriptome. We reasoned that a comparison of gene expression

profiles present in the CMCs to DDCs would reveal genes preferentially ex-

pressed in the procambium thus contributing to its given meristematic char-

acter. To accommodate the identification of TFs a set of jasmonate treated

samples were employed. Both cell type cultures of the T. cuspidata [5 days

after subculturing] were adjusted with fresh medium to 100 ml and grown for 2

h in the dark to acclimatise. The cultures were elicited with 100 µM MeJA and

samples were taken at 0.5 h, 2 h and 12 h post elicitation [Fig.: 4.2]. The total

RNA was extracted using a RNesay plant RNA kit [Qiagen, Venlo, Nether-

lands] following the manufacturer’s instructions from all samples and the in-

tegrity of the RNA was subsequently assessed by agarose gel electroporation.

To verify the MeJA treatment of the samples, RT-PCR was performed show-

ing the up-regulation of two TaxolTM biosynthetic genes, TASY and DBBT

in response to jasmonate treatment [Fig.: 4.3]. To enable subsequent statis-

tical analysis three biological replicates were generated. The sample used for

Roche/ 454 sequencing was prepared using equal amounts of the total RNA

designated for Illumina/ Solexa sequencing.
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Transcriptome sequencing experimental design

Figure 4.2: Schematic showing the experimental design including various sam-
ples, RNA extraction, sample preparation, sequencing, assembly and annota-
tion.

Note that the subsequent steps including DNAse treatment, cDNA syn-

thesis, normalisation of the 454 sample using Kamchatka crab duplex-specific

endonuclease [Zhulidov et al., 2004], Roche/ 454 and Illumina/ Solexa sequenc-

ing, mapping, annotation of the generated sequence contigs were performed

by the Gene-pool genomics facility at the University of Edinburgh and the
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statistical analysis using EdgeR [Robinson et al., 2010] was done by Florian

Halbritter.

MeJA elicitation of transcriptome samples

Figure 4.3: RT-PCR showing the induction of TaxolTM biosynthetic genes
TASY and DBBT after elicitation with 100µM MeJA in transcriptome se-
quencing samples prepared from the CMCs and DDCs. rRNA: ribosomal
RNA.

4.3 Transcriptome characterisation

Roche/454 sequencing was performed on a Roche GS FLX genome sequencer.

The sample prepared from T. cuspidata cDNA was quantified and 2,000,000

beads were loaded onto a GS FLX pico titre plate. Roche/ 454 pyrosequencing

achieved a total of 860,800 reads with an average length of 351 bp, thus a total

of 302 Mbp was generated [Table: 4.1].
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Figure 4.4: Contig length generated by Roche/ 454 sequencing and subsequent
assembly using Newbler Assembler 2.0.1 as percentage of the total transcript
count of 36,823.

The 454 sequence reads were assembled into contigs using the Newbler

Assembler 2.0.1 [454 Life Science] software, which generated a total of 36,906

contigs with an average length of 699 bp. Comparison of all Kamchatka nor-

malised contigs revealed that 30,823 [83.5% of the total contig number] were

unique within the T. cuspidata transcriptome [Table: 4.1]. The largest group

of contigs [50%] are up to 500 bp in length. However, a substantial number

[31%] are in the size group of 500 bp - 1500 bp and 6.5% of the contigs are 1500

bp - 3000 bp in length. The maximum contig length within the transcriptome

is 10355 bp [Fig.: 4.4].

A few months later a second assembly was performed using the new New-

bler Assembler software version 2.3 [454 Life Science]. Although both programs

are specifically designed for the assembly of Roche/ 454 pyrosequencing reads,
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Assembly and annotation statistics

Roche/ 454
total number of reads 860,8001
average length 351 bp

Newbler Assembler 2.0.1
total number of contigs 36,905
unique contigs 30,823
average contig length 699 bp

Newbler Assembler 2.3
total number of isotigs 19,614

Annotation
total number of annotated contigs 18,173
contigs with uncharacterised hit 12,902
contigs with characterised hit 5,271
contigs with no annotation 12,650

Table 4.1: Transcriptome statistics of Roche/ 454; number of reads, assembly
and annotation using two different versions of the Newbler Assembler and
subsequent annotation.

the Newbler Assembler 2.0.1 was originally designed for linear assembly of

genomic data. In contrast the Newbler Assembler 2.3 supports incremental

assembly thus taking alternative splicing events into account. This assem-

bly generated 19,614 isotigs. In summary, the assemblies performed using the

Newbler Assembler 2.0.1 and 2.3 mirror the transcript and expressed gene con-

tent in T. cuspidata. Note that all subsequent analysis of the transcriptome

data was performed using the contig assembly of the Newbler 2.0.1 version.

The contigs were subject to BLAST searches [http://blast.ncbi.nlm.nih.

gov/Blast.cgi] using the plant protein entries using the Uniref100 [UniProt

Reference Clusters] database using an E-value cut-off of e 1 x 10−3. This

generated 18,173 annotated contigs [59% of the total contig number] indicating
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Most frequent plant species used for transcriptome annotation

Figure 4.5: The 19 top plant species used for the annotation of the transcrip-
tome. This includes the coniferus tree Picea sitchensis, Taxus media and Taxus
cuspidata.

that T. cuspidata has a vast gene content of 12,650 transcripts which are unique

to the genus Taxus. However, of the annotated contigs 12,902 or 71% show the

highest similarity to a gene with an unknown function. The remaining 29%

corresponding to 5271 contigs have a protein function assigned [Table: 4.1].

The contigs from T. cuspidata showed significant similarities to entries within

60 different plant species used for annotation. It is noteworthy that within the

annotated fraction of 18,173 contigs 34% showed the highest similarity to Picea

sitchensis [Fig.: 4.5]. Other plant species which show high BLAST matches
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contig P. sitchensis A. thaliana O. sativa Z. mays gene function

00317 76 70 64 42 abhydrolase 3
01434 69 49 64 53 DNA-binding protein
01458 67 50 52 49 alcohol dehydrogenase
00295 86 77 63 56 ccr4-associated factor
00541 76 68 73 71 peroxisomal biog. factor
00580 66 42 48 49 bZIP TF
00895 81 59 54 54 N-acetyltransferase
01276 74 47 67 n/a glycosyltransferase
01730 66 50 51 46 zinc finger protein
03246 70 67 66 68 indole-3-glycerol phos-

phate synthase
73% 58% 60% 54%

Table 4.2: Sequence identities in % of T. cuspidata to other gymnosperm and
angiosperm model organisms.

include Vitis vinifera, Ricinus communis and Populus trichocarpa.

To assess whether the given divergence time of T. cuspidata to other gym-

nosperm and angiosperm model organisms is reflected at the sequence level,

identity comparison was performed. To this end the sequence of 10 randomly

selected contigs from T. cuspidata which were annotated with homologues from

Picea sitchensis were retrieved and the average amino acid sequence identity

was scored. P. sitchensis showed a sequence identity of 73 % to the homo-

logues T. cuspidata contig, A. thaliana 58 %, O. sativa 60 % and Z. mays

54 % [Table: 4.2]. The observed percentages underpin the expected sequence

diversity which is reflected by the divergence time of T. cuspidata to other

gymnosperm and angiosperm plant models.

A gene ontology classification was performed using Annot8r [Schmid and
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Blaxter, 2008] which resulted in a significant portion being associated with

a GO term. A total of 1139 GO terms which account for a wide function-

ality of genes were assigned to 7739 contigs. As the cDNA for Roche/ 454

sequencing was prepared using total RNA from both cell types and MeJA

treated csc, the frequency of the GO terms are not representative of a single

sample. In order to quantify the generated Roche/ 454 transcriptome data

Figure 4.6: Achieved tag counts by Illumina/ Solexa sequencing across all
samples from CMCs and DDCs.

Illumina/ Solexa NlaIII DGE tag sequencing was carried out. The DGE ap-

proach combines the generation of a global gene expression profile with the

detection of rare transcripts thus providing an ideal technology for non-model

organisms [’t Hoen et al., 2008]. Sequencing was accomplished on a GAII
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and GAIIx Illumina sequencer. As two different Illumina Genome Analysers

were employed the achieved number of tags clearly mirrors the performance

of the next generation GAIIx versus the GAII. Samples sequenced on the lat-

ter, namely CMC#2, CMC#3 and CMC#2-12 hours p.e. show a consistently

lower tag count. DGE tag counts from samples sequenced on GAIIx range from

8,584,203 to 16,102,621 [Fig.: 4.6]. The resulting expression values were nor-

malised to transcript counts per million [TPM], thereby revealing expression

levels ranging from 0 to 47914 DGE tag counts.

4.4 The procambium csc specific transcriptome

In order to characterise the expression profile present in the CMCs, the Illu-

mina/ Solexa data for the untreated CMC and DDC samples was statistically

analysed. The software used for the determination of differentially expressed

contigs within the DGE data was the edgeR Bioconductor package [Robinson

et al., 2010]. To facilitate a stringent analysis further statistical parameters

were applied to filter out transcripts showing a less convincing differential ex-

pression profile. These included a false discovery rate [p-value] of 0.05 and

a minimal difference in tag count of 10 across all samples [including repli-

cates]. This approach identified a total of 563 differentially expressed contigs

in CMCs compared to DDCs [Fig.: 4.7]. Of these 296 and 267 showed up- and

down-regulated expression in CMCs respectively.

As previously described the annotation of the T. cuspidata transcrip-

tome data was insufficient, thus careful annotation of the d.e. contigs was
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Figure 4.7: The heatmap shows the 563 differentially expressed contigs in
the CMCs when compared to the DDCs. Contigs are clustered in rows with
red and blue indicating up- and down-regulated expression values respectively.
The sub-clusters at the bottom correspond to contigs which have an overall
higher expression level.
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performed. To this end a tBlastn analysis was done in which the translated

nucleotide sequence is used to retrieve an homologue of the query sequence

through which 375 contigs could be annotated. Subsequent determination of

the corresponding GO term was performed computationally by the Gene-pool

genomics facility at the University of Edinburgh. A total of 204 contigs could

be associated with a term within 55 GO groups. The most frequent GO terms

were grouped together and the presence of relative up- and down-regulated

contigs was scored. This revealed that the procambium derived CMCs showed

a noticable up-regulation of genes involved in "response to stress" and "defence

response" [Fig.: 4.8]. Genes involved in lipid metabolism showed a significant

Gene ontology enrichment

Figure 4.8: Most frequently occuring GO terms within the up- and down-
regulated fraction among the 563 differentially expressed contigs in CMCs
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down-regulation in CMCs. Furthermore, genes associated with DNA- and car-

bohydrate metabolic processes, transport and signal transduction showed a

slight increase.

Sequence alignment of contig 01805 with A. thaliana and poplar homologue

Figure 4.9: The multiple amino acid alignment shows the sequence similarity
of the T. cuspidata clavata-like receptor with the authentic PXY (At5G61480)
and the Populus trichocarpa homologue (EEE78472). The kinase domain is
underlined in blue.

Within the d.e. genes in the CMCs is the clavata-like receptor contig

01805 which shows high amino acid similarity to the A. thaliana PXY gene

and the Populus trichocarpa homologue [EEE78472] [Fig.: 4.9]. Members of

this family exhibit a protein kinase domain. The A. thaliana PXY transcript

is procambium localised and essential for ordered cell division and formation

of vascular tissue [Etchells and Turner, 2010]. The expression profile of the T.

cuspidata clavata-like receptor shows an increased (log2) fold-change of 2.1 in

CMCs [Fig.: 4.10 A].
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Figure 4.10: DGE expression data. [A]: The T. cuspidata homologue contig
01805 of the A. thaliana PXY gene; [B]: contig 13935 the AIF3 [AT3G17100]
homologue.

Eight TFs were annotated among the 563 d.e. contigs in the CMCs of

which through sequence analysis five A. thaliana homologues could be identi-

fied. Three TFs show up- and four down-regulation. Subsequent attempts to

identify associated transcriptional networks using TAIR were futile. However,

among the TFs is At317100, a bHLH TF [Appendix III] whose expression pro-

file in T. cuspidata shows significant down-regulation in CMCs with a (log2)

fold-change of -2.3 [Fig.: 4.10 B]. At317100 has recently been shown to interact

with AtBS1 [Wang et al., 2009]. The latter is a component of brassinosteroid

signalling which is involved in vascular bundle formation and early procambial
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division [Ibanes et al., 2009].

Prior to the transcriptome sequencing, attempts had been made to con-

firm the procambium character of the employed csc by monitoring the expres-

sion of the TED2 homologue in T. cuspidata. TED2 is cambium specific and

is involved in formation of tracheary elements, which are part of the plant

conductive tissue [Fukuda, 1997].

Figure 4.11: [A]: Degenerate PCR for the synthesis of the TED2 northern
probe, the asterisk indicates the 412 bp amplifed fragment; [B]: Northern anal-
ysis of the TED2 gene in the procambium [CMC] and somatic [DDC] derived
csc. rRNA: ribosomal RNA.

The probe utilised for the TED2 homologue in T. cuspidata was syn-

thesised by degenerate PCR from CMC cDNA. This method allows for the

amplification of DNA where no sequence information is available. Primer de-

sign was performed on the basis of multiple amino acid sequence alignments of

the authentic Zinnea elegans TED2 gene and two poplar homologues [Apendix

I]. Regions which show a high degree of conservation were chosen for primer
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design. The designed primers are the translated nucleotide representative of

the amino acids and take sequence variations into account thus constituting

a pool of very similar yet different specific primer combinations. Degenerate

PCR generated a 412 bp long fragment [Fig.: 4.11 A] which showed a 69%

sequence identity and 93% similarity to the authentic TED2 fragment from

Zinnia elegans. RNA from CMCs and DDCs was prepared and northern anal-

ysis was performed using the synthesised TED2 fragment as a probe. A single

band could be detected in the CMCs [Fig.: 4.11 B]. In contrast, no TED2

transcript was detected in DDCs.

4.5 The JA-responsive transcriptome andT. cus-

pidata TFs

Transcription factors have a crucial function in regulating gene expression act-

ing as mediators of signal transduction and transcription [Endt et al., 2002].

Jasmonates induce the biosynthesis of secondary metabolites in several plant

species [Memelink et al., 2001,van der Fits and Memelink, 2000]. More impor-

tantly TaxolTM biosynthesis is jasmonate-responsive [Nims et al., 2006] thus

identification of jasmonate inducible TFs provides a major step in elucidating

the underlying transcriptional regulation in T. cuspidata.

Statistical analysis was carried out to compare the jasmonate-treated

CMC samples over time with the assumption that contigs exhibit d.e. in at

least one of the three employed time points, namely 0.5 h, 2 h and 12 h post

elicitation and conform to a linear up- or down-regulation. This resulted in the
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identification of 1646 d.e. contigs with a false discovery rate of 0.05 in CMCs.

In contrast analysis of the expression profiles in the jasmonate elicited

DDC samples over time resulted in the identification of only 487 d.e. contigs.

Surprisingly only 179 contigs showed d.e. in both cell types of which 89 contigs

could be mapped to a GO term representing 40 different cellular processes.

Comparing the GO term frequency and associated expression profiles within

the two cell types after jasmonate treatment did not generate a coherent result.

However, components of the jasmonate signalling pathway in T. cuspidata

could be identified among the 179 shared d.e. contigs. GO term 0009867:

"jasmonic acid mediated signalling pathway" was assigned to contigs 11289,

33381 and 22910 and GO term 0009753: "response to jasmonic acid stimulus"

was assigned to contig 14280. Where as contig14280 is down-regulated in

CMCs, contigs 11289, 33381 and 22910 are up-regulated in both cell types.

Sequence analysis was able to verify these contigs as T. cuspidata homologues

of the A. thaliana JAZ10, JAZ3 and JAZ2 and the N. tabacum JAZ3 repressors

[Appendix IV]. The highest (log2) fold-change was observed in the 2 hour

time point after jasmonate treatment which might coincide with active JAZ

transcription mediated by MYC2 [Chini et al., 2007].

Hierarchical clustering analysis was performed using the data set of the

1646 d.e. contigs in CMCs visualised as a dendrogram and heatmap [Fig.:

4.12]. This exhibits the sample integrity of the biological triplicates which

map closest to each other. However CMC#2-2 hours p.e. does not conform to

the observed trend. The d.e. contigs show up- and down-regulation in response

to jasmonate treatment. The transcriptional changes mediated by jasmonate
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Figure 4.12: Heatmap and dendrogram of the 1646 d.e. contigs in at least one
time point in response to jasmonate treatment.

118



4.5. THE JA-RESPONSIVE TRANSCRIPTOME AND T. CUSPIDATA
TFS

is demonstrated by the dendrogram position of the 12 hour samples which

maps closest to the untreated population followed by the 0.5 hour samples.

Figure 4.13: Identified TFs in T. cuspidata; [A]: total numbers of identified
TFs in T. cuspidata from five different families; [B]: number of up- and down-
regulated TFs in response to jasmonate treatment in at least one time point
CMCs. [%] represent the number of jasmonate-responsive TFs relative to all
family members.

As previously described, annotation resulted in only 17 % of the to-

tal contig number being assigned to a protein with known function. Thus

Blastx [NCBI] searches were performed using amino acid queries from differ-

ent poplar and A. thaliana TFs. The latter were retrieved from the Plant

Transcription Factor database. The identification concentrated on TF families

which have been shown to be JA-responsive and known to function as regu-
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lators of secondary metabolism namely AP2/ER, MYB, bHLH, WRKY and

bZIP TFs [Pauwels et al., 2008]. The putative T. cuspidata TF sequence was

retrieved from the collection of Roche/454 contigs, the reading frame was de-

termined and the authenticity was confirmed by identification of the functional

domain. Due to constraints such as the presence of a partial TF domain on

truncated contigs or high amino acid divergence from T. cuspidata to poplar

and A. thaliana TFs the possibility cannot be excluded that TF were missed

during this analysis. This approach identified a total of 211 TFs within five dif-

ferent TF familys in T. cuspidata [Fig.: 4.13 A]. The correlating fold-changes,

representative of CMCs, revealed that 115 TFs exhibit d.e. in response to

jasmonate in at least one time point of which 60 and 55 show up- and down-

regulation respectively [Fig.: 4.13 B] [Appendix V]. Although within the bHLH

family 11 and 22 TFs are up- and down-regulated respectively, this family ex-

hibits, with 75 % of all members, the highest jasmonate-responsiveness. 53 %

and 51% of the MYB and AP2 TF families respectively show d.e. in response to

jasmonate with in both cases significantly more up- than down-regulated TFs.

Jasmonate-responsiveness was to a lesser extent observed within the bZIP and

WRKY families with predominantly more bZIPs being down-regulated and

only 39 % of WRKY TFs in T. cuspidata CMCs.

The employed CMCs exhibit a higher production of TaxolTM in response

to elicitation by jasmonate [Lee et al., 2010]. Thus gene expression profiles of

the subset of up-regulated TFs within CMCs were compared to DDCs. This

identified 21 TFs which show higher expression in the employed T. cuspidata

procambium cell line [Appendix VI]. In an attempt to further characterise the
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identified TFs, BLAST searches have been performed to find characterised A.

thaliana homologues [Appendix VII]. For 10 T. cuspidata TFs a homologue

could be established within all five TF families. Interestingly five of the char-

acterised TFs are involved in pathogenesis and stress response [homologues of

contigs 00499, 22386, 27015, 12425 and 00580] and three in biosynthetic pro-

cesses [homologues of contigs 17139, 15240 and 27015]. However the homologue

of contig 17139 belongs to the AP2 class possessing two AP2 domains. TFs

of this subgroup are involved in regulation of developmental processes [Riech-

mann and Meyerowitz, 1998].

4.6 Discussion

The potent anticancer drug TaxolTM is produced by T. cuspidata. Being a not

widely used model organism, sequence resources necessary for molecular stud-

ies of T. cuspidata were not available. Thus sequencing of the transcriptome

utilising a combination of Roche/ 454 and Illumina/ Solexa sequencing was

used to generate quantitative sequence data and qualitative data, reflecting

gene expression profiles respectively under different conditions.

With the aim to detect rare transcripts corresponding to transcriptional

regulators, normalisation of the cDNA sample utilised for Roche/ 454 sequenc-

ing was performed by Evrogen [Russia]. To eliminate the repetitive sequencing

of highly expressed genes, a method involving the denaturation, re-association

and degradation using the Kamchatka crab duble-strand nuclease which specif-

ically cleaves nucleic acid duplexes was employed [Zhulidov et al., 2004]. Nor-
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malisation of the Roche/ 454 sample resulted in 30,823 unique contigs of a total

of 36,905 which corresponds to 17% of repetitive sequencing, which suggests

a significant reduction in abundant transcripts. A recent study in Momordica

charantia found an average increase of gene discovery of 2.9 fold in a Kam-

chatka crab normalised Roche/ 454 sequenced population when compared to

a non-normalised population [Yang et al., 2010].

Gene content in multicellular organisms varies considerably; however, the

number of genes in higher plants ranges from 26,500 in A. thaliana [Initiative,

2000] to 41,000 and 45,000 in rice and poplar respectively [Sterck et al., 2007].

Assuming a similar gene number in T. cuspidata as in the tree poplar with

an average transcript length of 1.5 kb [Hilson et al., 2004] a transcriptome

coverage using Roche/ 454 technology of 4.4 x was achieved.

One aspect of the transcriptome sequencing concentrated on the identi-

fication of MeJA-responsive TF which are expressed frequently at low abun-

dance [Lopato et al., 2006]. Illumina/ Solexa sequencing resulted in the gen-

eration of 2 X 106 to 16 X 106 tags across the utilised samples. This is ample

for the detection of low-abundance transcripts which was shown to require a

tag count of at least 2 X 106 [’t Hoen et al., 2008].

Annotation of the T. cuspidata transcriptome resulted in 5,271 contigs

being assigned a protein function by BLAST analysis against the plant entries

in Uniref100. However 12,902 contigs showed an annotation to an uncharac-

terised protein and a vast number of 12,650 showed no annotation. The model

plant used in this thesis is found within the Taxidae which show a divergence

time to other plant models used within the Pinidae of 400 MYA [Sitte et al.,
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1991]. Indeed Picea sitchensis or Sitka spruce, found in the latter, is the most

frequently used plant species annotation of the T. cuspidata transcriptome.

Although used as a model, Picea sp. are less well characterised than the fre-

quently used angiosperm species A. thaliana, O. sativa and Z. mays, which

contributed 3.5%, 4.6% and 1.5% respectively to the T. cuspidata annotation.

This trend was also observed when scoring the sequence identity of distantly

related gymnosperm and angiosperm model species.

Confirming the procambium identity

Statistical comparison of the CMC to the DDC transcriptome resulted in the

identification of 563 d.e. contigs. This correlates to 1.8 % of the total unique

contig number in the T. cuspidata transcriptome which are being affected by

the characteristics of the employed CMCs. It would be interesting to further

analyse these contigs; however, constraints associated with annotation made

this initially problematic. Indeed computational annotation was insufficient

and after careful manual annotation only 375 of the d.e. contigs were assigned

a protein function. These transcripts are likely to contribute to self-renewal

and facilitate initiation into the differentiated state of their progeny cells form-

ing the vascular tissue [Singh and Bhalla, 2006]. To this end the employed

procambium csc showed the ability to differentiate at high frequency into tra-

cheary elements which are part of the conductive plant tissue under modified

culture medium conditions [Lee et al., 2010].

GO term analysis of the d.e. contigs showed that more up-regulated

transcripts associated with defence response and response to stress are present
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within CMCs. This is consistent with cellular characteristics in mammalian

stem cells which exhibit a high resistance to stress [Ramalho-Santos et al.,

2002]. This finding can be explained by the need to ensure correct cellu-

lar execution as further cell division and subsequent proliferation occurs from

stem cell templates [Reya et al., 2001]. Genes associated with lipid metabolism

showed a significant down-regulation in CMCs; however, this finding cannot be

explained. Although GO term analysis also established a slight up-regulation

of contigs associated with signal transduction, Notch or JAK-STAT signalling

components involved in regulating stem cell numbers and self-renewal respec-

tively could not be identified among the d.e. contigs [Androutsellis-Theotokis

et al., 2006,Kiger et al., 2001].

The homologue of the A. thaliana PXY gene shows d.e. in the CMCs.

Expression of contig 01805 is significantly up-regulated which suggests a con-

tribution to proper meristem function in T. cuspidata. PXY is a receptor-like-

kinase, closely related to CLV and BAM123 which confer proliferation and

maintenance of dividing cells respectively in the shoot apical meristem [Fisher

and Turner, 2007,Clark et al., 1997,DeYoung et al., 2006]. The pxy mutant

exhibits failure of vascular bundle development and shortened inflouresence

in A. thaliana indicating its function in vascular tissue formation [Fisher and

Turner, 2007].

Maintenance of procambium cells is regulated by auxin and cytokinin sig-

nalling in a coordinate fashion [Fukuda, 2004]. Although controlling a variety

of developmental processes, brassinosteroids produced in the procambium ini-

tiate differentiation of procambial cells in the presence of auxin [Kang et al.,
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2010, Clouse and Sasse, 1998]. In this context the T. cuspidata homologue,

contig 13935, of the A. thaliana AIF3 protein is down-regulated in CMCs.

AIF3 is a bHLH TF; however, sequence analysis revealed no DNA interaction

which suggests a function as a co-regulator. AIF3 was shown to interact with

AtBS1 in vitro which in turn stimulates brassinosteroid signalling [Wang et al.,

2009]. The domain structure of AIF3 and the highly similar AIF1 suggest a

function as negative regulators of AtBS1 [Wang et al., 2009]. This is consistent

with contig 13935 being down-regulated in CMCs, which may indicate a role

in modulating brassinosteroid mediated differentiation.

Prior to sequencing the T. cuspidata transcriptome degenerate PCR and

northern analysis was performed to evaluate the expression of the TED2 ho-

mologue from Z. elegans. Northern analysis was able to detect a single band in

CMCs compared with no signal in DDCs. A previous study showed that during

tracheary element differentiation in Z. elegans csc specific genes are activated

during distinct phases including (I) de-differentiation of somatic cells, (II) the

stem-cell-like state and (III) the development of tracheary elements [Fukuda,

1997]. The accumulation of the TED2 transcript in Z. elegans csc during the

stem-cell-like-state was restricted to state II and has therefore been utilised as

a procambium specific marker gene for T. cuspidata CMCs [Fukuda, 1997].

Taken together, the accumulated data suggests that the employed CMCs

from T. cuspidata conform to the known characteristics of a procambium tis-

sue.
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Jasmonate-responsive transcriptome and T. cuspidata TFs

The jasmonate elicited subset of samples used was to facilitate the identi-

fication of jasmonate-responsive TFs. The expression of TaxolTM structural

genes was previously reported in a somatic csc of T. cuspidata which peak

within 6-12 hours p.e. [Nims et al., 2006]. Thus samples utilised were taken

0.5 h, 2 h and 12 h after jasmonte treatment. Statistical analysis identified

1646 d.e. contigs in at least one of the three time points. This correlates to

5.3 % of the total unique contig number. Dendrogram and heatmap on the

clustered 1646 d.e. contigs demonstrate the sample integrity. Although the

biological replicates show high overlap in their transcript make-up, CMC#2-2

h p.e. maps out-with the expected position. The underlying cause is unknown.

The dendrogram further visualises the genetic reprogramming in T. cuspidata

csc with the 12 hour samples mapping closest to the untreated cells followed

by the 0.5 hour and 2 hour sample post elicitation. This suggests a peak of

jasmonate-responsive transcription at 2 hours after treatment.

Annotation limitations didn’t allow for further detailed analysis, however

differentially regulated transcripts are likely to represent known JA mediated

responses including JA signalling components, secondary metabolite structural

genes, defence response associated genes and cell cycle components [Pauwels

et al., 2008,Galis et al., 2006,Brown et al., 2003]. Further expected are TFs

associated with JA-responsive processes. Surprisingly there was only little

overlap in jasmonate-responsive gene expression in CMCs and DDCs. A dif-

ferential effect of jasmonate responses has been previously reported reflect-

ing different cell types of the same species. For instance activation of the
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A. thaliana glucosinolate biosynthesis pathway in response to jasmonate was

observed in liquid grown seedlings but not in a csc [Sasaki-Sekimoto et al.,

2005,Pauwels et al., 2009].

Analysis of the shared d.e. contigs in CMCs and DDCs revealed that the

T. cuspidata homologues of the jasmonate signalling repressors JAZ2, JAZ3

and JAZ10 [reviewed in 1.2.3] show d.e. in response to jasmonate treatment.

Whereas JAZ2 and JAZ3 are up-regulated in both cell types, JAZ10 is down-

regulated in CMCs. JAZ repressors are important signalling components which

liberate the TF MYC2 upon JA perception which in turn activates transcrip-

tion of early JA response genes including JAZ repressors itself initiating the

negative feedback loop [Chini et al., 2007]. The observed fold-change at 2 hours

might indicate the peak of MYC2 mediated JAZ expression in T. cuspidata.

Induction of JAZ gene expression has been shown in A. thaliana in response

to jasmonate treatment with the highest expression at 2 hours [Thines et al.,

2007]. Interaction of both JAZ2 and JAZ3 with MYC2 has been shown. The

latter also interacts with COI1 to mediate JA signalling however JAZ2-COI1

interaction has not yet been determined [Chung et al., 2009]. Expression of

JAZ2 and JAZ10 has been shown in response to JA and wounding [Yan et al.,

2007,Thines et al., 2007] and JAZ10 has been implicated in JA mediated devel-

opmental processes, especially in the regulation of cambium during secondary

plant growth in A. thaliana shoots [Sehr et al., 2010]. How different JAZ

proteins and to which extent they mediate specific JA-responsive physiologi-

cal and metabolic processes is not clear [Chung et al., 2009]. An indication

was found by the observation that JAZ-MYC2 interaction depends on a plant-
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specific sequence motif which is present only in a small subgroup of bHLH

TFs [Chini et al., 2007,Heim et al., 2003]. Thus MYC2 might not be the only

JAZ interacting TF [Chung et al., 2009]. It is therefore tempting to speculate

a role for JAZ2- and JAZ3-mediated JA induced TF interaction resulting in

TaxolTM biosynthesis.

Manual BLAST searches and sequence analysis identified 211 TFs within

the AP2/ERF, bHLH, WRKY, MYB and bZIP families. A substantial por-

tion of TFs [115] show d.e. in response to jasmonate, especially the bHLH

family. Most frequent up-regulation was observed within the AP2 and MYB

families. The AP2 and bHLH TF families operate in jasmonate signalling and

their up-regulation, including members of the MYB family has been previ-

ously reported [Pauwels et al., 2008]. Expression profile comparison revealed

21 TFs with a higher expression level in response to jasmonate treatment in

CMCs. Further homology searches and characterisation of the Tfs established

10 homologues in A. thaliana of which are five involved in pathogenesis and

stress related processes which might suggest an overlap of JA mediated stress

responses. Furthermore two regulators of secondary metabolism could be iden-

tified among the A. thaliana homologues involved in flavonoid and anthocyanin

biosynthesis. Furthermore the 11 remaining TFs for which no A. thaliana ho-

mologue could be established may function in processes not conserved such

as TaxolTM biosynthesis. However these identified TFs [Appendix VII] pro-

vide promising targets for functional studies to assess their binding capacity

to structural gene promoters thus modulating TaxolTM biosynthesis in CMCs.
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Chapter 5

Gene expression profiling of

TaxolTM structural genes in CMCs

5.1 Introduction

Biosynthesis of secondary metabolites in plants depends on co-ordinate tran-

scriptional regulation of structural genes [Endt et al., 2002]. This is controlled

by specific TFs mediating expression levels of target genes, resulting in regula-

tion of pathway flux [Broun, 2004,Endt et al., 2002]. Indeed, enzymes involved

in TaxolTM biosynthesis have been shown to be regulated on the transcrip-

tional level with the two terminal pathway enzymes performing potentially

rate-limiting steps [Nims et al., 2006]. These include the attachment of the β-

phenylalanine side-chain to baccatin III by BAPT and the addition of a benzoyl

group to 3’-N -debenzoyl taxol catalysed by DBTNBT [reviewed in 1.5.2; Fig.:

1.4] [Walker et al., 2002,Walker et al., 2002]. To gain further understand-
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ing about the transcriptional regulation governing the TaxolTM biosynthetic

pathway in T. cuspidata and potential TF targets resulting in the observed

increased TaxolTM production in CMCs, an insight into the expression profile

of structural genes is important.

5.2 BAPT is up-regulated in CMCs

As previously mentioned, the employed T. cuspidata CMCs exhibit an in-

creased production of TaxolTM [Lee et al., 2010]. RT-PCR was performed to

monitor and compare the expression profile of structural genes in CMCs and

DDCs. To this end csc of both cell types were adjusted to a culture volume of

Jasmonate induction of TaxolTM structural genes

Figure 5.1: Induction of TaxolTM pathway genes in response to jasmonate
treatment in CMCs and DDCs over time. Mock: EtOH treatment using PAM
primers, rRNA: ribosomal RNA.

50 ml and grown for 2 hours at room temperature in the dark to acclimatise.
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The csc were elicited with 100 µM MeJA. Samples were taken over 48 hours

with 4 hour increments for up to 24 hours followed by a 30 hour and 48 hour

time point. Total RNA was extracted using the RNeasy plant RNA extraction

kit [Qiagen, Venlo, Netherlands] followed by oligo-d(T) mediated first strand

cDNA synthesis using the Omniscript R© RT kit [Qiagen, Venlo, Netherlands]

following the manufacturer’s instructions.

RT-PCR was performed to assess the expression levels of TASY, the

first enzyme in the TaxolTM pathway, BAPT and DBTNBT, which encode

the two terminal pathway enzymes and PAM [Jennewein et al., 2004]. To aid

visualisation a region of interest (ROI) analysis was performed [described in

2.5] which reflects the gene expression level over time.

Expression of TASY is highly similar in CMCs and DDCs in the first 20

hours after treatment [Fig.: 5.1 and 5.2 A]. Whereas TASY expression peaks

at 20 hours in DDCs, expression levels continue to be high in CMCs until

30 hours in response to jasmonate. Expression of PAM is up-regulated to a

similar level in both cell types at 4 hours p.e. [Fig.: 5.1 and 5.2 B]; however,

there is then a steady decline in expression in DDCs. In contrast, expression

is maintained to a high level in CMCs until 30 hours after treatment.

The enzyme BAPT, catalysing the second last step en route to TaxolTM,

shows the highest difference in expression in CMCs to DDCs [Fig.: 5.1 and

5.3 A]. BAPT expression is detectable only at a low level 4 - 8 hours after

jasmonate treatment in DDCs. In CMCs however, BAPT expression peaks at

8 hours and only decreases 30 hours after treatment. There is also a higher

expression of DBTNBT in CMCs compared to DDCs [Fig.: 5.1 and 5.3 B].
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Figure 5.2: Results of the ROI intensity analysis showing the expression of
TaxolTM structural genes in response to jasmonate treatment over time. Ex-
pression values in % are normalised to the expression in CMC at 0 h p.e.
(100%). [A]: TASY ; [B]: PAM.

Both cell types show expression at 4 hours in response to jasmonate although

to a higher level in CMCs. DBTNBT peaks in DDCs at 12 hours with a

constant decrease thereafter. In contrast a steady expression level is observed

in CMCs which continues until 30 hours in response to jasmonate treatment.
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Figure 5.3: Results of the ROI intensity analysis showing the expression of
TaxolTM structural genes in response to jasmonate treatment over time. Ex-
pression values in % are normalised to the expression in CMC at 0 h p.e.
(100%). [A]: BAPT ; [B]: DBTNBT.

5.3 DGE data of TaxolTM structural genes

TaxolTM pathway components were identified among the annotated contigs

within the T. cuspidata transcriptome [Appendix VIII]. The normalised ex-
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pression levels present in CMCs and DDCs of the unelicited and treated sam-

ples 12 hours after elicitation were compared [Fig.: 5.4]. Genes involved in the

TaxolTM pathway show induction in response to jasmonate, but to different

levels of transcript abundance.

Figure 5.4: [A]: DGE expression profiles of TaxolTM structural genes; [B]:
Outline of TaxolTM pathway enzymes.

Expression of the early pathway genes TASY, T5αH and T5H is induced

in response to jasmonate 12 hours after treatment; however, transcripts of

T5αH, especially in CMCs, are present in unelicited cultures. Transcripts of

T5αH and T5H are up-regulated in CMCs. Surprisingly induction of TASY

is higher in DDCs. In contrast no detectable increase of expression of T5H is

observed in DDCs.
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Although expression levels of DBBT and DBAT also show up-regulation

in response to jasmonate, transcripts of both are observed in unelicited cultures

especially in DDCs. Whereas jasmonate treatment induced DBBT expression

in CMCs, no significant increase of expression is observed in DDCs. Transcript

levels of DBAT are up-regulated in both cell types in response to jasmonate

with a slight increase in abundance in DDCs.

Expression of BAPT, DBTNBT and PAM is up-regulated 12 hours after

treatment, however increased expression of BAPT is only observed in CMCs.

In contrast transcript abundance of DBTNBT and PAM is increased in both

cell types but to a higher level in CMCs.

5.4 Discussion

The employed procambium-derived CMC culture accumulates 443%more TaxolTM

in response to jasmonate treatment than a somatic culture of T. cuspidata [Lee

et al., 2010]. Thus expression levels of the TaxolTM biosynthetic genes in CMCs

and DDCs may provide insights in the underlying metabolic regulation. A re-

cent study [Nims et al., 2006] identified BAPT and DBTNBT as potential

bottlenecks within the pathway. Expression level of these two genes along

with TASY and PAM was assessed. TASY is the first enzyme in the TaxolTM

pathway responsible for the formation of taxa-4(5),11(12)-diene which consti-

tutes the committing step of the pathway [Wildung and Croteau, 1996]. PAM

synthesises the TaxolTM side-chain from phenylalanine [Jennewein et al., 2004].

BAPT and DBTNBT catalyse the side-chain attachment to the taxene core
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and a benzoylation respectively [Walker et al., 2002,Walker et al., 2002].

RT-PCR revealed an increased transcript abundance in CMCs in re-

sponse to jasmonate in concert with a differential temporal pattern of expres-

sion to DDCs. Transcript abundance of BAPT is highly up-regulated after

treatment in CMCs. In contrast the same PCR conditions showed only minor

amplification in DDCs. The increased expression of BAPT may constitute

a contributing factor accounting for the observed increased accumulation of

TaxolTM in CMCs. Furthermore the expression level of TASY in CMCs, al-

though very similar to DDCs, is increased by jasmonate treatment with pro-

longed transcript accumulation. Similarly expression of PAM and DBTNBT

peaks in DDCs at 4 and 8 hours respectively whereas in CMCs a continued

expression is observed until 30 hours after treatment. In conclusion RT-PCR

shows that an increased transcript abundance is present within CMCs of all

genes monitored, which confirms a regulation of TaxolTM biosynthesis on the

transcript level.

DGE expression data from CMCs and DDCs of genes involved in the

TaxolTM pathway was compared in the unelicited sample and 12 hours after

jasmonate treatment. A similar trend to the RT-PCR data of increased tran-

script levels in CMCs was observed. However, tag counts of TASY show a

higher expression in DDCs which could not be confirmed by RT-PCR. Fur-

thermore transcripts levels in the un-elicited cultures for most pathway genes,

except T5αH are higher in DDCs. It would be interesting to monitor the level

of intermediate compounds in both CMCs and DDCs to elucidate whether the

observed transcript level correlates to the quantity of intermediates of early
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pathway steps in un-elicited cultures. In this context, 10-DAB, the interme-

diate synthesised by DBBT was found to be present in un-elicited cultures

of T. cuspidata [Nims et al., 2006], which further suggests that the terminal

pathway enzymes confer jasmonate-responsive TaxolTM specificity and the ob-

served basal level of expressed enzymes in DDCs in the absence of jasmonate

treatment leads to the synthesis of 10-DAB. In addition levels of TaxolTM

accumulation have been found to vary considerably among and within Taxus

species, depending on factors including plant part and age of plants, and within

cultures [Mukherjee et al., 2002, Tabata, 2004]. In this context, a recent re-

port failed to detect TaxolTM by HPLC within a jasmonate elicited culture of

T. chinensis [Qiu et al., 2009]. The observed irregularity of TaxolTM accu-

mulation could mirror the observed differential levels of transcript abundance

detected by RT-PCR and Illumina/ Solexa expression profiling in CMCs and

DDCs.

In addition the DGE data reflect the level of transcript abundance at 12

hours after treatment. Although RT-PCR established a continuous transcript

level in CMCs from 8 to 30 hours post elicitation, transcript abundance in

DDCs may peak earlier as observed with PAM and DBTNBT. Thus the 12

hour time point does not constitute an actual representation of transcript

abundance in DDCs over time.
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Chapter 6

General discussion

The secondary metabolite and potent anti-cancer drug TaxolTM is synthesised

by all species of Taxus (yew) [Croteau et al., 2006]. Of hugh pharmaceutical

importance, TaxolTM has been shown to be effective against a variety of can-

cers. Furthermore the FDA approved the plant cell culture process for supply

of TaxolTM, moving away from the unsustainable extraction of TaxolTM from

bark and semisynthesis [Nims et al., 2006,Goodman and Walsh, 2001].

To this end a csc from T. cuspidata was employed as the model organism

utilised in this thesis. Initiated from isolated procambium cells the cell line

consists of homogenous undifferentiated CMCs [Lee et al., 2010]. Favourable

characteristics such as an increased production of TaxolTM, fast and stable

growth rate and limited cell aggregation in comparison to a somatic DDC line

from T. cuspidata [Lee et al., 2010] make CMCs an optimal model to study

the transcriptional regulation of the TaxolTM biosynthetic pathway. In this

work standard molecular approaches were adapted to T. cuspidata and high

139



6. GENERAL DISCUSSION

throughput sequencing Roche/ 454 and Illumina/ Solexa have been applied

to confirm the procambium characteristics of CMCs and to identify putative

transcriptional activators governing TaxolTM biosynthesis.

TaxolTM pathway regulation

The plant hormone jasmonate mediates stress induced synthesis of secondary

metabolites in various plant species [Memelink et al., 2001]. More importantly

transcripts encoding for enzymes involved in the TaxolTM pathway show in-

creased expression in response to methyljasmonate treatment resulting in ac-

cumulation of TaxolTM in Taxus csc [Mirjalili and Linden, 1996,Nims et al.,

2006]. In order to identify jasmonate signalling components and transcriptional

activators governing the TaxolTM pathway the transcriptome sequencing of T.

cuspidata was performed employing Roche/ 454 in combination with Illumina/

Solexa sequencing. Comparison of d.e. contigs within CMCs and DDCs uncov-

ered differential expression of the T. cuspidata homologues of the jasmonate

signalling components JAZ2 and JAZ3 in response to jasmonate treatment.

Consistent with MYC2 mediated JAZ expression in A. thaliana [Thines et al.,

2007], the highest fold-change in T. cuspidata was observed at 2 hours fol-

lowing treatment. JAZ proteins act as suppressors of the MYC2 TF which

activates the expression of early jasmonate-responsive genes including JAZ

suppressors [Chini et al., 2007]. Interaction of both JAZ2 and JAZ3 with

MYC2 was shown; however, Chung et al., [2009] argued that on the basis of

JAZ-MYC2 interaction characteristics, other TFs may also be JAZ protein

targets responsible for mediating the diverse jasmonate-responsive processes.
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Thus the JA-signalling components JAZ2 and JAZ3 might be involved in me-

diating transcriptional regulation of TaxolTM biosynthesis.

Blast searches and sequence analysis identified 211 TFs within the AP2/ERF,

bHLH, bZIP, WRKY and MYB families of which 115 show differential ex-

pression in response to jasmonate. TFs within the AP2/ERF family showed

Figure 6.1: Model for regulation of the TaxolTM pathway in CMCs: jasmonate
treatment in CMCs and DDCs triggers the synthesis of TaxolTM structural
genes mediated by JA-signalling including the MYC2 suppressors JAZ2 and
JAZ3 through the transcriptional activation of unknown TFs. A higher ex-
pression level of BAPT may contributes to a increased TaxolTM accumulation
in CMCs.

the highest up-regulation in response to jasmonate treatment. Members of

the AP2 family such as the ORCA3 TF in C. roseus, which mediates tran-

scriptional activation of TIA biosynthesis, are jasmonate inducible [van der
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Fits and Memelink, 2001]. As the CMC suspension culture exhibits an in-

creased amount of TaxolTM accumulation, expression levels of the subset of up-

regulated TFs in response to treatment in CMCs were compared with DDCs.

This revealed 21 TF candidates which provide promising targets for further

functional analysis. The largest number of d.e. TFs which show higher ex-

pression in CMCs belong to the AP2/ERF [10 TFs] and the MYB [5 TFs]

families. Both have a well characterised function in the transcriptional regu-

lation of secondary metabolism [Menke et al., 1999,Galis et al., 2006]. MYB

TFs are known to hetero-dimerise with TFs of the bHLH family [Mol et al.,

1998], two members of which show also higher expression in CMCs. Homology

searches established 11 A. thaliana homologues of which two are involved in

the regulation of secondary metabolism. Five contigs were found to function in

pathogenesis or response to stress which might be consistent with observed JA

induced stress-responsiveness [Reymond and Farmer, 1998]. Furthermore, TFs

are valuable tools for the engineering of metabolic pathways. For example this

was highlighted by over-expression of the TFs C1 and LEAF COLOUR in the

crop plant tomato which resulted in an increased accumulation of health ben-

eficial flavonols [Bovy et al., 2002]. Once interaction of T. cuspidata TFs with

promoters of TaxolTM structural genes has been confirmed, over-expression of

the regulators may result in an increased TaxolTM biosynthesis. Further anal-

ysis of the translated TF amino acid sequence of identified TFs was impeded

by a large number of truncated transcripts. Phylogenetic analysis could re-

veal subgroups within families and uncover evolutionarily conserved or Taxus

specific domain characteristics.
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After attempts to construct a BAC library from T. cuspidata genomic

DNA, genome walking led to the isolation of a 513 bp long fragment cor-

responding to the promoter region of TASY. Subsequent in-silico analysis

of the TASY and DBTNBT promoter established the presence of multiple

jasmonate-responsive [GCC-box, G-box and T/G-box] and pathogen inducible

[W-box] promoter elements. This is consistent with TaxolTM accumulation in

response to jasmonate and fungal elicitation [Mirjalili and Linden, 1996, Xu

et al., 2004]. Further jasmonate inducibility could be shown for the TASY

promoter in N. benthamiana. However DBTNBT expression in response to

jasmonate treatment could not be detected. This may indicate that factors

are required which are not evolutionarily conserved from N. benthamiana to

Taxus. Dual infiltration of identified regulators and chimeric promoter-reporter

constructs in the presence and absence of jasmonate would further establish

an interaction of TFs to TaxolTM structural genes.

RT-PCR revealed that transcripts of TASY, PAM, BAPT and DBTNBT

accumulate in CMCs and DDCs in response to jasmonate treatment. The

higher and prolonged expression level in CMCs might be indicative of increased

TaxolTM accumulation. A further contributing factor to the latter could be the

increased expression of BAPT in CMCs versus DDCs. The reaction performed

by BAPT was previously identified as a potential rate limiting step, ligating the

phenylalanine derived side-chain to the taxene core [Nims et al., 2006,Walker

et al., 2002].
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Procambium associated genes are expressed in CMCs

The procambium is a primary meristem involved in the formation of vascular

tissue [Fukuda, 2004]. Vascular development from procambium cells involves

the differentiation of phloem and xylem precursor cells into the distinct cell

types forming the vascular bundles. Present among them are TEs which un-

dergo cell death to form hollow tubes for movement of fluids [Fukuda, 2004].

Crucial in the development of vascular bundles is ordered cell division.

The receptor like kinase PXY is expressed within dividing meristematic pro-

cambium cells of A. thaliana where it is essential for ordered cell division

[Fisher and Turner, 2007]. Consistent with this is the up-regulation of the

PXY homologue in T. cuspidata CMCs. Receptor like kinases have also been

implicated in the asymmetric cell division prior to lateral root initiation in A.

thaliana [Smet et al., 2008]. However in the ordered cell division of vascu-

lar initials PXY interacts with the peptide ligands CLE41 and CLE42 which

are expressed in adjoining phloem cells thus performing orientation dependent

signalling resulting in co-ordinated cell division [Etchells and Turner, 2010].

Mesophyll cells of Z. elegans can differentiate into tracheary elements in

culture. This transdifferentiation (dedifferentiation followed by redifferentia-

tion) process involves three distinct stages [Fig.: 5.1] in which mesophyll cells

dedifferentiate (I) followed by a procambium-like state (II) which corresponds

to potency restriction and transition into precursor cells of tracheary elements

and (III) the formation of a secondary wall and developmentally programmed

cell death [Fukuda, 1997]. Transcripts which accumulate in the procambium-

like stage II include TED2 which encodes a ζ-crystallin hydrophobic polypep-
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tide [Fukuda, 1997, Demura and Fukuda, 1994]. Northern analysis showed

TED2 expression in T. cuspidata CMCs. In contrast no expression was de-

tected in DDCs. Expression analysis in Z. elegans seedlings showed that the

Figure 6.2: Transdifferentiation stages of Z. elegans somatic cells to tracheary
elements. MC: mesophyll cells, WAC: wound-activated cells, DD: dedifferen-
tiated cells, PC: procambial cells, pXC: xylem cell precursors, TE: tracheary
elements, XP: xylem parenchyma cells [Fukuda, 2004].

TED2 transcript accumulates in a very early phase in procambial tissue in

immature primary xylem and phloem cells within the root/ hypocotyl bound-

ary and in root procambium cells [Demura and Fukuda, 1994]. This indicates

that the T. cuspidata TED2 transcript detected in CMCs is indicative of the

procambium characteristic of this csc.

Maintenance and differentiation of procambium cells within the plant

tissue context is regulated by polar auxin transport, cytokinin and brassenos-

teroids signalling [Fukuda, 2004]. Cytokinin was implicated in the formation

of procambium by mutation in the A. thaliana wooden leg locus. Mutants ex-

hibit a reduced number of procambium cells in embryos [Scheres et al., 1995].
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WOODEN LEG was subsequently characterised as a cytokinin receptor [Mae-

hoenen et al., 2000]. A T. cuspidata homologue of WOODEN LEG was found

to be up-regulated 12 fold in CMCs relative to DDCs [Lee et al., 2010] which

suggests a role for cytokinin in the maintenance of T. cuspidata procambium

cells.

Intracellular signals which confer procambium maintenance and initi-

ate differentiation into xylem precursor cells include auxin and BR signalling

[Fukuda, 2004]. Furthermore the effect of BR signalling on xylem formation

was demonstrated in cress seedlings which showed reduced xylem but increased

phloem differentiation in response to a BR biosynthesis inhibitor [Nagata et al.,

2001]. Endogenous BR content increases in transdifferentiating Z. elegans cells

which coincides with the transition from procambium-like cells to tracheary el-

ements (stage 2 to stage 3 in vitro) [Fig.: 6.1] [Yamamoto et al., 2001]. The

BR signal triggers transcriptional activation of xylem-precursor cell related

gene expression [Fukuda, 2004]. AtBS1, a bHLH protein was recently shown

to function as a stimulator of BR signalling and AIF3 a negative regulator

of AtBS1 was identified in an yeast two-hybrid screen [Wang et al., 2009].

The T. cuspidata homologue of AIF3 is significantly down-regulated in CMCs

which would suggest increased BR signalling in CMCs indicating an overlap

with transdifferentiating Z. elegans stage II cells. Thus contig 13935 might

be involved in mediating BR signalling in T. cuspidata procambium cells. In-

vestigations into how AIF proteins function are required [Wang et al., 2009].

Furthermore key components of BR signalling might be conserved from A.

thaliana and Z. elegans to T. cuspidata, however, the presence of additional
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factors modulating BR mediated maintenance and differentiation of CMCs

cannot be ruled out. It would be interesting to measure the BR level in both

cell types to elucidate whether the down-regulation of AIF3 homologue in T.

cuspidata CMCs mirrors the BR content.

CMCs exhibit increased defences

Mapping of the most frequent GO terms among the 563 d.e. contigs in CMCs

versus DDCs revealed that the subgroup of contigs associated with "response

to stress" and "defence response" are up-regulated in CMCs. Consistent with

this finding is the high resistance to stress which was reported in mammalian

stem cells [Ramalho-Santos et al., 2002]. Furthermore, in plants two theo-

ries have been proposed regarding the accumulation of protective secondary

metabolites such as the diterpenoid TaxolTM. Tissues with the highest fitness

value such as meristems are predicted, according to the "optimal defence the-

ory", to receive the highest level of protection [Rhoades, 1979]. In contrast the

"growth differentiation balance hypothesis" predicts an opposite pattern for

the presence of protective compounds, as growth (performed by sink-tissues)

precedes the differentiation process (performed by source-tissues) [Herms and

Mattson, 1992,Cronin and Hay, 1996]. Content of the antiherbivore phlorotan-

nin compounds in kelps and rockweed was found to be higher in meristematic

tissue compared to vegetative tissue which supports the "optimal defence the-

ory" [VanAlstyne et al., 1999]. Consistent with this is a higher level of phenolic

compounds of 8 mg/ g dry weight in CMCs versus 0.7 mg/ g dry weight in

DDCs [Lee, personal communication]. Phenolics and terpenoids are the most
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important defence compounds in conifers [Mumm and Hilker, 2006]. The ob-

served 443% increase in TaxolTM synthesis in CMCs might also be attributed

to an increased defence strategy of T. cuspidata meristematic cells. Further-

more the increased amounts of phenolics and TaxolTM are present within a

homogenous csc indicating a translocation-independent system contrasting al-

location within the plant tissue context. This suggests that innate cellular

characteristics result in increased biosynthesis of protective compounds.

Considerations for improved TaxolTM synthesis in CMCs

Plant cell cultures from Taxus species are an attractive source for TaxolTM

supply. Advantages are a faster growth rate and a lower content of waxy

constituents, pigments and non-polar lipids compared to the bark or plant

material of Taxus, which simplifies the extraction of TaxolTM [Jaziri et al.,

1996]. The culture environment and medium composition can be tightly con-

trolled resulting in optimal growth conditions [Leistner, 2005]. The utilised

CMCs in this thesis exhibit an increased production of the secondary metabo-

lite [Lee et al., 2010]. A further possible explanation for this can be found

when considering previously conducted TaxolTM localisation experiments. Us-

ing an antitaxol antiserum, TaxolTM within tissues of T. cuspidata was shown

to be almost exclusively located in the cell walls of phloem, vascular cambium

and xylem [Russin et al., 1995]. Although TaxolTM accumulation is reported

in csc of both CMCs and DDCs, [Lee et al., 2010], procambium cells give rise

to vascular tissues where TaxolTM was predominantly localised, it is there-

fore tempting to speculate that factors are present within procambium cells
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which are a prerequisite for a high TaxolTM content within the Taxus tissue

context. These could have been retained within CMCs resulting in increased

production of TaxolTM. Attempts have been made in this thesis to identify con-

tributing up-regulated transcriptional regulators and rate limiting steps within

the TaxolTM pathway in CMCs. In conclusion CMCs constitute an ideal sys-

tem for the supply of TaxolTM. This however could be further improved by

the isolation of CMCs from T. floridana which has a higher TaxolTM content

of 516 µg/ g dry needles compared to T. cuspidata with only 105 µg/ g dry

needles [van Rozendaal et al., 2000].

For engineering of metabolic pathways, stable plant transformation tech-

niques are necessary. Agrobacterium mediated transformation of shoot seg-

ments and csc was shown with varying success in several Taxus species in-

cluding T. cuspidata [Han et al., 1994, Ketchum et al., 2007]. To increase

pathway flux the over expression of rate-limiting enzymes has been success-

fully applied to improve the accumulation of essential oils in Mentha x piperita

L. [Mahmoud and Croteau, 2001]. Especially BAPT was previously identified

as performing a rate-limiting step [Nims et al., 2006]. DGE expression data in-

dicates a low expression of BAPT even in jasmonate treated CMCs compared

to other pathway genes, which makes this gene a target in an over-expression

approach. However, increased accumulation of a desired compound may also

depend on appropriate precursor and co-factor supply, storage or translocation

systems [Zulak et al., 2007]. These aspects, including the regulation of struc-

tural genes, are controlled by TFs [Endt et al., 2002]. To this end 211 TFs

within five families have been identified and partially characterised, which con-
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stitutes candidates for further functional elucidation and eventually to increase

TaxolTM pathway flux.

Figure 6.3: Simplified version of TaxolTM pathway branches. The pathway fol-
lows the route highlighted in green for the biosynthesis of TaxolTM. I: partially
jasmonate independent steps, II: steps not involved in TaxolTM synthesis, III:
late pathway steps. Enzymes (black), Intermediates (green and blue). Adapted
from [Nims et al., 2006].

The TaxolTM pathway can be divided into several segments [Nims et al.,

2006]. TASY to DBBT represent (I) early pathway steps [Fig.: 6.3], (II) a

branch point implementing TDAT and (III) the late pathway steps from the

intermediate 10-DAB to TaxolTM which also includes synthesis and ligation

of the side chain. 10-DAB was detected in unelicited cultures [Nims et al.,
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2006] indicating that the early pathway is partially jasmonate independent.

The branch point enzymes are not involved in the synthesis of TaxolTM [Nims

et al., 2006]. This suggests that several modes of transcriptional regulation

(which may share common factors) must be in place which govern the distinct

pathway segments. Similarly differential expression of two early pathway genes

involved in anthocyanin biosynthesis in Z. mays in response to over-expression

of the TFs R and C1 was observed [Grotewold et al., 1998]. This indicates

that for complex pathway regulation more than one TF may be required.

A further consideration in improving TaxolTM biosynthesis could in-

volve T. cuspidata homologues of known jasmonate-responsive TFs from other

species. For this, however, evolutionary conservation/ divergence from an-

giosperm species to T. cuspidata must be factored into investigation. Attempts

to identify homologues of the C. roseus ORCA TFs in T. cuspidata were not

successful. ORCA3 governs jasmonate-responsive transcriptional regulation

of genes in primary and secondary metabolism involved in TIA biosynthe-

sis [van der Fits and Memelink, 2000]. There is a divergence time of 400 MY

in which angiosperms to Taxus species co-evolved which might explain the

absence of ORCA homologues. Furthermore secondary metabolism is diverse

and adaptive [Hartman, 1996] thus genes and regulators involved are under

less conservation pressure. A diverged evolution resulting in species specific

regulation was shown in maize and petunia on genes involved in anthocyanin

synthesis. In response to TF over-expression, the C2 gene in maize and CHAL-

CONE SYNTHASE A in petunia are induced and not affected respectively,

which indicates a modification within their promoter sequences [Quattrocchio
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et al., 1998]. Therefore even if counterparts of known JA-responsive TFs in-

volved in secondary metabolism from angiosperm species within T. cuspidata

exist, the regulators or their targets may have functionally diverged.
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Appendix I

TED2 sequence alignment

Figure 6.4: Relevant part of the multiple protein sequence alignment of the
authentic TED2 from Zinnea elegans [Accesion: BAA06460] and two homo-
logues from Populus trichocarpa [Accession: XP002326531 and XP002328749]
used for degenerate primer design. Sequences used for the forward and reverse
primer design are indicated.



Mixed base definitions for degenerate primer design

Code letter Base

R A,G

Y C, T

M A, C

K G, T

S C, G

W A, T

H A, C, T

B C, G, T

V A, C, G

D A, G, T

N A, C, G, T

Table 6.1: The letter codes were used for the design of degenerate primers to
amplify the TED2 orthologue from T. cuspidata genomic DNA



Appendix II

Probability of BAC library screening

The probability to find a target gene within a constructed genomic library

can be calculated with the following equation:

P = 1-eN[ln(1−I/GS)]

N represents the number of BAC clones required = X

I represents the average insert size = 73 kb

GS is the haploid genome size = 10850 Mb

This formula was applied to calculate the number of required cfus har-

bouring a BAC construct with a probability of 98% to find the gene of interest

within the genomic library.

[1] It is necessary to rearrange the formula to calculate the number of

cfu where N is equal to the natural log of 1-P.

N [ln(1-I/GS)] = ln(1-P)

[2] To isolate N the formula is further rearranged

N = (ln(1-P) / (ln 1-I/GS)

N = (ln(1-0.98) / (ln 1-73 kb/10,850,000)

N = ln 0.02 / ln 1-6.728 x 10−6

N = ln 0.02 / ln 0.9999932719

N = ln 0.02 / -6.728133233 x 10−6

N = -3.912023005 / -6.728133233 x 10−6



N = 581,422 cfu

Applying this calculation, the required number of cfu of which all harbour

a BAC construct with an averge insert size of 73 kb of T. cuspidata genomic

DNA is 581,422 to have a 98% probability to find the gene of interest within

the library.
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Appendix V: T. cuspidata TFs

up-regulated AP2/ERF TFs

Contig log2 FC 0.5h p.e. log2 FC 2h p.e. log2 FC 12h p.e.

significant log2 fold-change at 0.5 h p.e.

02463 6.1 -3.0 1.6
00499 4.9 -0.8 -0.8
22386 4.5 1.0 -5.8
04485 4.4 0.3 0.3
14838 3.1 -0.7 -2.2
26170 2.3 -0.8 -3.6
07245 2.3 0.3 -3.6
16850 2.0 0.1 -1.6
03304 1.7 -0.6 0.1
22558 1.5 0.6 -1.7
17139 1.5 -0.9 -0.4
10213 1.5 0.3 -0.3
01431 1.5 -1.1 0.6
25770 1.2 2.8 -1.2

significant log2 fold-change at 2 h p.e.

13174 0.2 2.9 0.1
00242 0.7 1.3 -1.7

significant log2 fold-change at 12 h p.e.

03038 -0.2 0.6 3.5
00241 0.6 -0.9 2.1
17529 0.8 -0.8 1.6

down-regulated AP2/ERF TFs

Contig log2 FC 0.5h p.e. log2 FC 2h p.e. log2 FC 12h p.e.

significant log2 fold-change at 0.5 h p.e.

31207 -2.1 0.0 2.3
22973 -5.2 1.3 1.5
17789 -3.6 0.6 -2.9
17303 -1.6 0.2 -0.1
17212 -3.2 -0.2 1.3
13937 -1.4 1.3 -1.5



down-regulated AP2/ERF TFs

Contig log2 FC 0.5h p.e. log2 FC 2h p.e. log2 FC 12h p.e.

significant log2 fold-change at 2 h p.e.

04977 -0.1 -1.1 1.5

significant log2 fold-change at 12 h p.e.

18881 -0.1 -0.7 -6.3
18880 0.0 0.2 -1.0
26842 -0.2 0.8 -1.0

AP2/ERF TFs with no significant fold change

34146 -0.5 -0.2 -0.3
32800 -0.4 0.2 -0.6
27511 -0.1 0.1 -0.5
26196 0.0 0.3 -0.3
26194 0.0 0.1 -0.1
26133 0.0 0.0 0.0
25513 0.0 0.6 -0.6
24081 0.1 0.0 0.6
22332 -0.4 0.5 -0.4
21469 0.8 0.3 -0.8
21348 0.0 0.1 -0.1
18166 0.1 0.6 -0.7
17753 -0.2 -0.2 -0.4
16735 -0.3 0.3 -0.4
14538 0.4 0.5 0.4
13601 -0.5 0.8 0.4
10324 -0.1 -0.8 -1.4
09700 0.4 -0.4 -0.8
08181 -0.8 -0.5 -0.7
08057 0.0 0.0 -0.1
03962 -0.9 0.7 -1.7
02462 0.0 0.2 0.0
02459 0.7 -0.6 0.0
02285 0.4 -0.5 -0.2
01900 -0.2 0.4 0.8
01858 -0.4 -0.2 0.1
00114 0.0 0.2 -0.2



up-regulated bHLH TFs

Contig log2 FC 0.5h p.e. log2 FC 2h p.e. log2 FC 12h p.e.

significant log2 fold-change at 0.5 h p.e.

11748 2.4 0.2 -1.2
02991 2.3 2.3 -1.2
13935 2.1 0.7 -0.1
08058 1.5 0.2 0.1
15303 1.0 0.7 -0.5

significant log2 fold-change at 2 h p.e.

02611 -0.6 2.8 -0.3
19503 0.6 2.0 -2.2
12353 -0.8 1.4 -1.2
03153 0.2 1.4 -1.8
15240 0.5 1.1 -2.5

significant log2 fold-change at 12 h p.e.

00987 0.7 0.9 1.1

down-regulated bHLH TFs

Contig log2 FC 0.5h p.e. log2 FC 2h p.e. log2 FC 12h p.e.

significant log2 fold-change at 0.5 h p.e.

22017 -2.8 0.4 -3.6
19897 -2.5 -0.2 -2.4
31235 -2.3 1.3 3.4
01822 -2.3 0.4 -0.9
17793 -1.9 -0.4 0.9
20806 -1.3 -0.1 -0.2
20044 -1.7 -0.1 -2.2
02439 -1.4 -0.2 -1.8
16264 -1.1 0.6 -0.6

significant log2 fold-change at 2 h p.e.

17494 0.2 -1.6 -0.4
19154 -0.1 -1.1 1.1



down-regulated bHLH TFs

Contig log2 FC 0.5h p.e. log2 FC 2h p.e. log2 FC 12h p.e.

significant log2 fold-change at 12 h p.e.

10889 0.9 0.6 -2.6
12598 -0.8 0.3 -2.3
19109 0.3 -0.8 -2.1
04335 -0.8 -0.7 -1.9
21972 0.1 -0.2 -1.8
02498 -0.5 0.6 -1.7
02518 -0.1 0.6 -1.5
32372 0.3 0.3 -1.3
22095 0.0 1.0 -1.3
14220 -0.2 -0.8 -1.1
15365 0.3 0.7 -1.0

bHLH TFs with no significant fold-change

Contig log2 FC 0.5h p.e. log2 FC 2h p.e. log2 FC 12h p.e.

33006 -0.1 -0.2 -0.9
28045 0.1 0.2 -0.4
21671 -0.1 0.4 0.2
19723 -0.3 1.0 -0.1
12354 -0.4 0.4 -0.3
16478 0.2 0.6 0.3
05557 -0.5 -1.0 -0.3
02514 0.2 0.0 -0.2
02513 0.0 -0.1 0.0
02512 0.0 0.6 -0.6
01083 -0.8 0.7 -0.7



up-regulated WRKY TFs

Contig log2 FC 0.5h p.e. log2 FC 2h p.e. log2 FC 12h p.e.

significant log2 fold-change at 0.5 h p.e.

19284 3.6 0.5 1.3
09595 2.3 0.2 1.8
27015 1.6 -1.2 -1.1
10530 1.5 -1.4 0.9
26745 1.1 -1.0 -0.5
23796 1.1 1.2 0.0
09027 1.0 0.1 -0.8

significant log2 fold-change at 2 h p.e.

04263 0.8 3.0 0.8
20584 0.4 1.0 -1.0

down-regulated WRKY TFs

Contig log2 FC 0.5h p.e. log2 FC 2h p.e. log2 FC 12h p.e.

significant log2 fold-change at 0.5 h p.e.

06574 -1.2 0.6 -1.4
19093 -1.1 -0.2 1.0

significant log2 fold-change at 2 h p.e.

21172 -0.1 -1.2 -0.5

significant log2 fold-change at 12 h p.e.

04857 -0.4 0.5 -2.2
16617 -0.4 -0.4 -1.8
10839 -0.5 0.7 -1.4
15956 -0.5 -0.8 -1.3
29087 0.5 0.7 -1.2



WRKY TFs with no significant fold-change

Contig log2 FC 0.5h p.e. log2 FC 2h p.e. log2 FC 12h p.e.

35166 0.0 0.2 -0.1
32598 0.0 0.2 -0.2
32419 -0.3 -0.4 -0.2
31780 0.0 0.0 0.0
29217 -0.8 0.1 -0.3
28143 0.0 0.0 0.0
24944 0.3 -0.1 -0.4
24699 0.0 0.0 0.0
24463 -0.1 -0.3 -1.0
23553 -0.1 0.1 -0.1
21666 -0.1 0.5 -1.0
21078 0.5 -0.2 -0.4
21048 -0.4 -0.1 0.2
19509 -0.1 0.0 -0.6
19392 -0.1 -0.2 -0.5
19342 -0.1 -0.3 0.2
19260 -0.9 -0.4 0.3
14650 0.2 -0.2 -0.3
14506 0.1 0.1 0.1
12889 -0.1 0.2 -0.6
11929 -0.8 0.0 0.0
11928 0.0 0.1 -0.1
11676 -0.3 0.0 0.0
09626 0.3 -0.2 -0.5
07935 -0.1 -0.1 -0.8
02885 0.3 -0.3 -0.7



up-regulated MYB TFs

Contig log2 FC 0.5h p.e. log2 FC 2h p.e. log2 FC 12h p.e.

significant log2 fold-change at 0.5 h p.e.

05913 3.3 -1.6 -1.1
21458 3.1 -0.7 0.4
12379 3.0 0.0 -2.4
10258 3.0 -0.8 -1.9
10855 2.7 -0.3 0.0
10385 2.6 -0.9 -0.3
15401 2.4 0.5 0.9
12425 2.1 2.0 -3.2
06799 1.8 -0.4 -0.2
16463 1.7 -0.7 0.5
16408 1.3 -0.8 -1.5
20421 1.3 1.7 -2.2
14612 1.3 -0.2 -1.9
33050 1.2 0.3 -2.1
23804 1.1 0.3 -1.3

significant log2 fold-change at 2 h p.e.

27845 0.4 1.1 -1.3

down-regulated MYB TFs

Contig log2 FC 0.5h p.e. log2 FC 2h p.e. log2 FC 12h p.e.

significant log2 fold-change at 0.5 h p.e.

18201 -1.4 -1.3 0.3

significant log2 fold-change at 2 h p.e.

26508 0.8 -1.9 1.0
06305 -0.1 -1.2 -1.9

significant log2 fold-change at 12 h p.e.

09261 0.6 -0.8 -1.8
26217 0.3 0.7 -1.5
23200 0.6 -0.1 -1.3



MYB TFs with no significant fold-change

Contig log2 FC 0.4h p.e. log2 FC 2h p.e. log2 FC 12h p.e.

33324 0.0 0.2 -0.2
29875 0.0 0.2 -0.2
28128 -0.9 -0.4 -0.3
28055 0.0 0.5 -0.8
27559 0.3 0.2 -0.4
26516 0.1 -0.5 0.2
26386 0.8 0.9 -0.4
25515 -0.5 -1.0 -0.6
24985 0.1 0.3 0.4
23296 0.0 0.0 0.0
22158 -0.5 0.0 -0.8
21477 0.1 0.1 -0.2
25515 -0.5 -1.0 -0.6
24985 0.1 0.3 0.4
23296 0.0 0.0 0.0
22158 -0.5 0.0 -0.8
21477 0.1 0.1 -0.2
20533 -0.1 0.1 -0.1
17959 0.3 -0.5 -0.4
17907 0.8 -0.5 0.1
15537 -0.3 0.0 -0.8
13883 0.0 0.2 -0.2
11102 0.5 0.0 -0.9
02895 0.9 -0.6 0.1



up-regulated bZIP TFs

Contig log2 FC 0.5h p.e. log2 FC 2h p.e. log2 FC 12h p.e.

significant log2 fold-change at 0.5 h p.e.

02478 1.4 -0.6 -4.5
12936 1.2 -0.5 -3.3

significant log2 fold-change at 2 h p.e.

00580 -0.6 1.5 -0.5
06766 0.8 1.3 -2.3

significant log2 fold-change at 12 h p.e.

18322 -0.1 -0.4 1.3

down-regulated bZIP TFs

Contig log2 FC 0.5h log2 FC 2h p.e. log2 FC 12h p.e.

significant log2 fold-change at 0.5 h p.e.

29275 -3.3 0.2 -3.0
05234 -1.3 0.0 1.1

significant log2 fold-change at 2 h p.e.

12221 -0.3 -1.3 -0.2
10106 0.1 -1.5 0.3
24743 -0.2 -1.1 -1.0

significant log2 fold-change at 12 h p.e.

22060 -0.6 -0.1 -1.5
14809 -0.5 0.6 -1.7
08495 -0.7 0.5 -1.1
02143 -0.9 0.6 -1.6



bZIP TFs with no significant fold-change

Contig log2 FC 0.5h p.e. log2 FC 2h p.e. log2 FC 12h p.e.

28674 0.2 -0.2 0.0
22591 -0.6 -0.5 -0.1
17618 -0.1 0.3 -0.3
16097 -0.7 0.3 -0.2
15895 -0.9 0.4 -0.5
15750 -0.4 0.2 -0.2
11083 -0.6 0.0 0.1
10140 0.3 -0.1 -0.9
08012 -0.3 0.6 -0.5
06216 -0.9 0.9 -0.5
05322 -0.3 -0.2 0.0
02039 0.0 -0.3 -0.4
00761 -0.7 -0.2 0.6
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A plethora of important, chemically diverse natural products 
are derived from plants1. In principle, plant cell culture offers 
an attractive option for producing many of these compounds2,3. 
However, it is often not commercially viable because of 
difficulties associated with culturing dedifferentiated 
plant cells (DDCs) on an industrial scale3. To bypass the 
dedifferentiation step, we isolated and cultured innately 
undifferentiated cambial meristematic cells (CMCs). Using a 
combination of deep sequencing technologies, we identified 
marker genes and transcriptional programs consistent with a 
stem cell identity. This notion was further supported by the 
morphology of CMCs, their hypersensitivity to -irradiation and 
radiomimetic drugs and their ability to differentiate at high 
frequency. Suspension culture of CMCs derived from Taxus 
cuspidata, the source of the key anticancer drug, paclitaxel 
(Taxol)2,3, circumvented obstacles routinely associated with the 
commercial growth of DDCs. These cells may provide a cost-
effective and environmentally friendly platform for sustainable 
production of a variety of important plant natural products.

Only plant stem cells, embedded in meristems located at the tips 
of shoots and roots or contained inside the vascular system, can 
divide and give rise to cells that ultimately undergo differentia-
tion while simultaneously giving rise to new stem cells4. These 
cells can be considered immortal due to their ability to theoreti-
cally divide an unlimited number of times. Consequently, since the 
beginnings of tissue culture in the 1940s, cell suspension cultures 
have been routinely generated through what was believed to be a 
 dedifferentiation process5. Recent evidence suggests this mecha-
nism might not entail a simple reverse reprogramming6. Regardless 
of the mechanism involved, this process results in mitotic reacti-
vation of specialized cell types within a given organ, generating a 
multicellular mixture of proliferating cells7. Suspension cultures 
derived from such cellular assortments often exhibit poor growth 
properties with low and inconsistent yields of natural products3, 
owing to deleterious genetic and epigenetic changes that occur 
during this process7,8.

To circumvent this so-called dedifferentiation procedure, we devel-
oped an innately undifferentiated cell line derived from cambium 
cells, which function as vascular stem cells9. Also, paclitaxel biosyn-
thesis in T. cuspidata is most conspicuous within the region contain-
ing these CMCs10. A recently developed twig was collected from a 
wild yew, T. cuspidata (Fig. 1a). We gently peeled tissue that contained 
cambium, phloem, cortex and epidermis from the xylem (Fig. 1b and 
Supplementary Fig. 1a–c) and confirmed the absence of xylem cells 
by staining with phloroglucinol-HCl, which detects lignin deposition 
(Supplementary Fig. 2a–f). After this tissue was cultured on solid 
isolation medium for 30 d (Fig. 1c), actively proliferating cambium 
cells could be gently separated from the DDCs derived from phloem, 
cortex and epidermis (Fig. 1c–e and Supplementary Fig. 3a–e). This 
mass of proliferating cells was distinct from DDCs derived from a 
needle or embryo (Fig. 1f,g), and the morphology of these CMCs dif-
fered from adjacent cells (Fig. 1h and Supplementary Fig. 3b–e). We 
also used this technology to produce such cells from a variety of plant 
species, including ginseng (Panax ginseng), ginkgo (Ginkgo biloba) 
and tomato (Solanum lycopersicon). This suggests that the procedure 
has broad utility (Supplementary Fig. 4a–f).

Microscopic analysis of a suspension culture of T. cuspidata cells 
revealed the presence of small, abundant vacuoles within the cultured 
cells. This characteristic feature of CMCs11 enables them to with-
stand the pressure generated by the expanding secondary xylem12. 
In contrast, dedifferentiated T. cuspidata cells derived from needles 
or embryos possessed only one large vacuole, typical of such plant 
cells (Fig. 1i,j). The ability to differentiate into either a tracheary 
element, the main conductive cell of the xylem, or a phloem element 
is a defining trait of CMCs13,14. These cultured cells could be con-
ditionally differentiated into a tracheary element at high frequency.  
In contrast, no tracheary elements were formed from T. cuspidata 
DDCs (Fig. 1k,l). Both animal and plant stem cells are particularly 
sensitive to cell death triggered by ionizing radiation, to safeguard 
genome integrity in populations of such cells15. In a similar fashion, 
these cultured cells are hypersensitive to -irradiation (Fig. 1m) and 
display increased cell death in response to the radiomimetic drug 
zeocin15 (Fig. 1n). In aggregate, our findings, based on a variety of 
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approaches, are consistent with the notion that these cultured cells 
exhibit stem cell–like properties, consistent with a CMC identity.

We used a combination of deep sequencing technologies to compare 
the molecular signatures of these cells and those of typical DDCs. First, 
we used an approach based on massively parallel pyrosequencing16 
to profile the T. cuspidata transcriptome. A total of 860,800 reads of 
average length 351 bp generated 301 MB of sequence (Supplementary 
Fig. 5a and Supplementary Tables 1–3). From these sequence data, 
we assembled 36,906 contigs de novo (average length, 700 bp; maxi-
mum length, 10,355 bp), with 8,865 contigs > 1 kb (Supplementary 
Fig. 5b and Supplementary Tables 4–6). We subjected contigs from 
the T. cuspidata transcriptome (Supplementary Data Set 1) to BLAST 
searches and 62% were assigned a putative function (Supplementary 
Data Set 2). This data set should provide an important resource because 
there is currently no large-scale sequence information derived from this 
division of the plant kingdom. The determination of the T. cuspidata 
transcriptome enabled us to use digital gene expression tag profiling16 
to compare gene expression in prospective CMCs with gene expression 
in DDCs (Supplementary Data Set 3) in the absence of exogenous 
chemical elicitors that can induce paclitaxel biosynthesis.

Digital gene expression tag profiling analysis established that 563 
genes were differentially expressed in CMCs, with 296 upregulated 
and 267 downregulated (Fig. 2a, Supplementary Figs. 6 and 7 and 
Data Set 4). A subset of these genes were validated by RT-PCR 

(Supplementary Fig. 8). Phloem intercalated with xylem (PXY) 
encodes a leucine-rich repeat (LRR) receptor-like kinase (RLK), 
which is conspicuously expressed in CMCs. PXY is a member of 
a small series of closely related LRR RLKs, mutations that impact 
CMC function17. T. cuspidata contig 01805 exhibits high similarity 
to PXY (Supplementary Fig. 9a) and is differentially expressed in 
our prospective CMC suspension cells (Supplementary Data Set 4). 
Analysis by qRT-PCR established that expression of contig 01805 is 
upregulated ninefold in these cells relative to DDCs (Fig. 2b).

Wooden Leg (WOL) encodes a two-component histidine kinase 
which is a member of a small gene family in Arabidopsis18. WOL-like 
proteins are unique in having two putative receiver or D-domains 
and mutations in WOL affect vascular morphogenesis18. WOL is 
expressed in the cambium18 and WOL-like genes are expressed in the 
cambial zone of the silver birch (Betula pendula) and poplar (Populus 
trichocarpa)19. T. cuspidata contig 10710 exhibits high similarity to 
WOL and its related genes (Supplementary Fig. 9b). Gene expression 
analysis established that this gene is upregulated 12-fold in CMCs 
relative to DDCs (Fig. 2b).

To assess the molecular composition and the relative expression 
of genes indicative of given biological pathways in our prospective 
CMCs, we performed enrichment analysis of Gene Ontology (GO) 
terms within our data set. This approach established that both stress 
and biotic defense response genes were prominently over-represented  
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Experiments were repeated at least twice with similar results. Data points represent the mean of three samples  s.d.

Figure 1 Isolation and culture of  
T. cuspidata CMCs. (a) Schematic  
cross-section illustrating the location  
of cambium cells within a typical  
twig. Reproduced with permission  
from reference 12. (b) Preparation  
of T. cuspidata explant by peeling  
off cambium, phloem, cortex and  
epidermal cells from the xylem. Cell 
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(Fig. 2c). Stem cells exhibit a low threshold for auto-execution through 
apoptosis but express robust defenses against environmental stresses20. 
Collectively, our Digital gene expression tag profiling data are therefore 
consistent with a CMC identity for these cultured cells.

We used a solid growth media format and representative cell 
lines to compare the growth properties of these CMCs with DDCs 
derived from the same wild tree. At 22 months after inoculation, the 
T. cuspidata needle- and embryo-derived DDCs produced a total dry 
cell weight (d.c.w.) of 0.32 g and 0.41 g, respectively, when grown on 
solid media with subculturing every 2 weeks (Fig. 2d). In contrast, the 
d.c.w. generated from CMCs was 1,250 g, an increase of 4.0 × 105% 
and 3.0 × 105%, respectively. Moreover, these cells were still grow-
ing rapidly following 22 months of culture, whereas DDCs possessed 
conspicuous necrotic patches (Supplementary Fig. 10) and displayed 
signs of a rapid decrease in their viable cell biomass.

Pronounced cell aggregation is a typical feature of suspension 
cultures comprised of DDCs. This can lead to differences in local 
environments between cells significantly reducing growth rate and 
natural product biosynthesis3. In representative suspension cultures 
of DDCs derived from either T. cuspidata needles or embryos, the pro-
portion of cell aggregates with a diameter <0.5 mm was only 2% or 5%, 
respectively (n = 150 cells). Conversely, in representative CMCs, 93% 
of cell aggregates had a diameter <0.5 mm, with many cells present as 
singletons or components of aggregates comprised of only 2-3 cells  
(n = 150 cells) (Fig. 2e and Supplementary Fig. 11).

We next determined the magnitude of paclitaxel biosynthesis in this 
novel cell line during batch culture in a 125 ml Erlenmeyer flask. At  
14 d after inoculation of flask cultures with cells, cells were transferred 
to production medium containing the elicitors methyl-jasmonate2 
and chitosan, together with a precursor phenylalanine, to induce 
paclitaxel biosynthesis. Levels of paclitaxel were measured 10 d later 
by high-performance liquid chromatography (HPLC). The amount 
of paclitaxel produced, 102 mg/kg fresh cell weight (f.c.w.), was con-
spicuously greater than that generated by either needle or embryo-
derived DDCs at a f.c.w. value of 23 mg/kg or 39 mg/kg, respectively 
(Fig. 2f). Measurements of this natural product were confirmed by 
liquid chromatography mass spectrometry (LC-MS) (Supplementary 
Fig. 12a–d). Further, genes encoding key enzymes integral to the 
biosynthesis of paclitaxel2,3 were induced more strongly in CMCs 
than in DDCs (Supplementary Fig. 13).

To establish whether these cells exhibit superior growth proper-
ties on a larger scale, we first investigated their performance in a  
10 liter stirred tank bioreactor. In this environment, shear stress can 
limit growth, and the problem is often intensified by cell aggrega-
tion21. The CMCs in this bioreactor grew significantly faster than 
DDCs (Fig. 3a). Further, in response to shear stress, the survival 
rate of CMCs was strikingly higher than for DDCs, which by the 

end of the culture period had largely turned necrotic and had 
stopped growing (Supplementary Fig. 14a–c).

Next, we explored the performance of these cells in a 3 liter air-
lift bioreactor. Large aggregates of DDCs formed in this bioreactor, 
leading to reduced cell mixing and circulation, which subsequently 
resulted in cell adherence to the bioreactor wall. Furthermore, many of 
these adhered cellular aggregates developed necrotic patches. After 4 
months of culture, the growth of DDCs from either needle or embryo, 
expressed as dry cell weight (d.c.w.), were 3.33 g and 5.08 g, respec-
tively. In contrast, the CMC line had generated a d.c.w. of 3,819.44 g, 
an increase of 114,000% and 75,000%, respectively (Fig. 3b). We also 
analyzed the growth of these cell lines in a 20 liter air-lift bioreactor, 
routinely used as a pilot for subsequent large-scale production. DDCs 
did not grow in this size bioreactor under the conditions tested and 
rapidly became necrotic. Conversely, CMCs always grew rapidly, 
increasing their d.c.w. from 3.65 g/l to 12.85 g/l within 14 d (Fig. 3c).  
Their relative tolerance of shear stress can likely be attributed to 
their small and abundant vacuoles, reduced aggregation and thin 
cell walls21.

We attempted to improve the performance of needle- and embryo-
derived DDCs by specifically selecting the more rapidly growing cells 
at each subculture on solid media for a period of 1.8 years. This proc-
ess improved the growth of needle-, but not embryo-derived, DDCs 
in a 3 liter air-lift bioreactor. However, the performance of CMCs was 
still strikingly superior to that of these extensively selected cells with 
respect to specific growth rate ( ), doubling time (Td) and growth 
index (GI) (Supplementary Fig. 15 and Supplementary Table 7). 
A key trait for the exploitation of plant cells on an industrial scale 
is the stability of their growth in suspension culture3. We therefore 
monitored the growth stability of these cells compared to selected 

12
a

c

e f

d

b
20

DDC

*

*
CMC

*P < 0.05
15

10

5

0

1,400

Needle-DDC
Embryo-DDC
CMC

1,200

C
M

C
-d

ry
 c

el
l w

ei
gh

t (
g)

P
ac

lit
ax

el
 y

ie
ld

(m
g/

kg
 fr

es
h 

w
ei

gh
t)

E
m

bryo, needle-dry cell
w

eight (g)

1,000

800

600

400

0

2

4

6

8

10

200

120

100

80

60

40

20

0

0
1 2 3 4 5 6 22

Time on solid culture (months)

4 6

Down Up

8 10 12 14 Ct01805 Ct10710
ContigsNorm. mean

expression-CMC[log2]

N
or

m
. m

ea
n

ex
pr

es
si

on
-D

D
C

[lo
g2

]

R
el

at
iv

e 
ge

ne
 e

xp
re

ss
io

n

R
el

at
iv

e 
pe

rc
en

t o
f G

O
 te

rm
s

D
is

tr
ib

ut
io

n 
of

ag
gr

eg
at

e 
si

ze
 (

%
)

10

8

6

4

100

80

60

120 >3 mm

<0.5 mm

1.0 to 3.0 mm
0.5 to 1.0 mm100

80

60

40

Needle-
DDC

Embryo-
DDC

CMC Needle-
DDC

Embryo-
DDC

CMC

20

0

40

DNA m
eta

bo
lic

pr
oc

es
se

s

Car
bo

hy
dr

ate
 m

eta
bo

lic

pr
oc

es
se

s

Cell
 w

all
 pr

oc
es

se
s

Res
po

ns
e t

o s
tre

ss

Pro
tei

n m
eta

bo
lis

m

Oxid
ati

on
 / r

ed
uc

tio
n

Tra
ns

po
rt

Lip
id 

meta
bo

lis
m

Defe
ns

e r
es

po
ns

e

Sign
al 

tra
ns

du
cti

on

20

0

Figure 2 Characterization of CMCs from T. cuspidata, including 
transcriptome profiling using digital gene expression tags. (a) Scatter plot 
showing differentially expressed genes (DEGs) (blue and red) in CMCs 
and non-DEGs (black). The deployment of further filtering approaches 
identified more robust DEGs (red), whereas other DEGs (blue) were filtered 
out. FDR  0.05; n = 1,229. (b) Analysis of the expression of contig 
01805 and contig 10710. (c) Relative percentage of GO groups within 
CMC DEGs. (d) Growth of CMCs and DDCs derived from needles or embryos 
on solid growth media from an initial 3 g f.c.w. 95% confidence limits 
are too small to be visible on this scale. (e) Bar graph reporting the extent 
of cell aggregation in DDC and CMC suspension cultures. (f) Paclitaxel 
production by 3-month-old DDCs and CMCs 10 d after elicitation, following 
batch culture in a flask format. Error bars represent 95% confidence 
limits. These experiments were repeated three times with similar results.
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DDCs derived from needles. The CMCs exhibited a relatively constant 
growth rate over time. In contrast, we observed striking fluctuations 
in growth rates during the culture of DDCs (Supplementary Fig. 16). 
Finally, we determined the growth of CMCs within a 3 ton bioreactor.  
These cells were again successfully cultured with high performance 
(Supplementary Fig. 17a and b), establishing their utility for growth 
on an industrial scale.

We determined the level of paclitaxel production of these different 
T. cuspidata cell suspensions in both 3 liter and 20 liter air-lift bio-
reactors. At 10 d after elicitation, CMCs again synthesized strikingly 
more paclitaxel than either of the DDC lines in a 3 liter air-lift bio-
reactor. Further, elicitation induced a 220% (11 mg/kg) and 433% 
(13 mg/kg) increase in paclitaxel production within needle- and 
embryo-derived DDCs respectively, whereas the induction was 
14,000% (98 mg/kg) with CMCs (Fig. 3d). CMCs secreted 2.7 ×  
104% and 7.2 × 104% more paclitaxel into the culture medium than 
the low levels secreted by either needle- or embryo-derived DDCs, 
respectively (Fig. 3e,f). The amount of paclitaxel secreted to the 
medium during culture varies significantly both between Taxus 
 species and in response to different culture conditions22. Our 
DDCs secreted less paclitaxel than might be expected. Nevertheless,  
T. cuspidata CMCs secreted a strikingly greater amount of paclitaxel 
into the medium under these culture conditions than the associated 
DDCs. Moreover, these cells also synthesized strikingly more of the 
related taxanes baccatin III and 10-deacetylbaccatin III2,3 (Fig. 3g). 
No paclitaxel production was detected by either DDC line in a  
20 liter air-lift bioreactor. In contrast, CMCs synthesized 268 mg/kg 
and were again highly responsive to elicitation (Fig. 3h). Previously 

reported values for T. cuspidata paclitaxel production range from 
20–84 mg/kg f.c.w.23,24. However, these data, including the maxi-
mum value, were obtained from flask cultures, whereas our data 
suggest that DDCs have improved function relative to their perform-
ance on a larger scale. Our findings imply that CMCs synthesize 
strikingly more paclitaxel and are significantly more responsive to 
elicitation when batch cultured in either 3 liter or 20 liter air-lift 
bioreactors compared to typical T. cuspidata suspension cells.

Perfusion culture promotes the secretion of secondary metabolites 
into the culture medium, aiding both purification and natural product 
biosynthesis22. We therefore compared the magnitude of paclitaxel 
secretion after perfusion culture. Following 45 d of perfusion culture, 
needle- and embryo-derived DDCs were largely necrotic; however, 
CMCs produced a combined total of 264 mg of paclitaxel per kg of 
cells and 74% of this was secreted directly into the medium (Fig. 3i,j). 
Perfusion culture of these cells therefore both promotes paclitaxel 
biosynthesis and increases the proportion of this secondary product 
that is secreted into the medium, facilitating its cost-effective purifi-
cation. The future deployment of metabolic engineering approaches 
and higher yielding Taxus species may further enhance paclitaxel 
biosynthesis in these cells2,3.

We also monitored these T. cuspidata suspension cultures for 
the production of the abietane tricyclic diterpenoid derivatives, 
taxamairin A and taxamairin C, which have also been shown to 
possess antitumor activities25. Elicitation of these cells within a  
3 liter air-lift bioreactor induced increases in both taxamairin C and 
 especially taxamairin A to 520.8 and 4,982.5 mg/kg f.c.w., respectively, 
in CMCs. These values were far greater than those determined in 

Figure 3 Growth and natural product biosynthesis of CMC suspensions. (a) Growth of CMCs and needle-derived DDCs in a 
10 liter stirred tank bioreactor. (b) Growth of given cell suspension cultures in a 3 liter air-lift bioreactor format determined 
as d.c.w. At each passage, 14 d after inoculation, suspension cells were transferred to additional 3 liter air-lift bioreactors, 
as required. (c) Growth of needle- and embryo-derived DDCs and CMC suspension cultures in a 20 liter air-lift bioreactor, 
determined as d.c.w. accumulation following a single passage. (d) Total paclitaxel production following elicitation of  
the indicated 6-month-old repeatedly subcultured cell suspensions, after batch culture in a 3 liter air-lift bioreactor.  
(e) Intracellular and extracellular paclitaxel yield from the indicated batch cultured suspension cells grown in a 3 liter air-lift 
bioreactor. (f) Percentage of paclitaxel released into the production medium after batch culture of the given cell suspensions in 
a 3 liter air-lift bioreactor. (g) Synthesis of baccatin III and 10-deacetylbaccatin III in CMCs relative to needle-derived DDCs. 
(h) Magnitude of paclitaxel biosynthesis following elicitation of 28-month-old CMCs in a 20 liter air-lift bioreactor. Needle- and 
embryo-derived DDC suspensions did not routinely grow in this size bioreactor. (i) Intracellular and extracellular paclitaxel yield after 45 d of perfusion of 
cultured needle- and embryo-derived DDCs and CMCs in a 3 liter air-lift bioreactor. (j) Percentage of paclitaxel released into the production medium after 
perfusion culture of the given cell suspensions as indicated in i. (k) Synthesis of taxamairin A and C in CMCs and needle-derived DDCs after batch culture 
in a 3 liter air-lift bioreactor. (l) Synthesis of ginsenosides in P. ginseng CMC and pith-derived DDC suspension cells after batch culture in a 3 liter air-lift 
bioreactor. Error bars represent 95% confidence limits. These experiments were repeated twice with similar results.
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DDCs (Fig. 3k). Suspension cultures of T. cuspidata have previously 
been reported to produce 0.92 and 26.08 mg/kg f.c.w. of taxamairin 
C and taxamairin A, respectively26. Our data imply that CMCs 
might provide a considerably better source of these abietanes than 
DDCs. To establish whether CMCs derived from other plant species 
also exhibit superior properties with respect to the biosynthesis of 
 commercially relevant natural products, we determined the synthesis 
of ginsenosides, a class of triterpenoid saponins derived exclusively 
from the plant genus Panax. Ginsenosides have been reported to 
show multiple bioactivities including neuroprotection, antioxidative 
effects and the modulation of angiogenesis27. Following elicitation 
of tap root–derived P. ginseng suspension cells, cultured using a  
3 liter air-lift bioreactor, ginsenoside F2 and gypenoside XVII  
accumulated to strikingly greater levels in P. ginseng CMCs relative 
to DDCs. Ginsenoside F2 and gypenoside XVII accrued to 791 and 
4,425 mg/kg f.c.w., respectively (Fig. 3l). Previously, ginsenoside F2 
has been reported to reach 33.3 mg/kg f.c.w.28 and gypenoside XVII 
183.3 mg/kg f.c.w.29 in ginseng roots. Thus, CMCs synthesize 23.8- 
and 24.1-fold more ginsenoside F2 and gypenoside XVII, respectively, 
than previously described sources. Therefore, CMCs may also be used 
for the production of ginsenosides.

Numerous medicines, perfumes, pigments, antimicrobials and 
insecticides are derived from plant natural products1–3,30. Cultured 
cambial meristematic cells may provide a cost-effective, environ-
mentally friendly and sustainable source of paclitaxel and poten-
tially other important natural products. Unlike plant cultivation, this 
approach is not subject to the unpredictability caused by variation 
in climatic conditions or political instability in certain parts of the 
world. Furthermore, CMCs from reference species may also provide 
an important biological tool to explore plant stem cell function. 

METHODS
Methods and any associated references are available in the online version 
of the paper at http://www.nature.com/naturebiotechnology/.

Accession codes. Sequence Read Archive: ERP000352.

Note: Supplementary information is available on the Nature Biotechnology website.
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ONLINE METHODS
Collection and sterilization of T. cuspidata samples. Twig, needle and seed 
samples were collected from a wild-grown T. cuspidata tree. Twig and needle 
samples were immediately deposited in 0.56 mM ascorbic acid solution. They 
were stored at 4 °C for 1 month. Then, they were washed in running tap water 
for 30 min and surface disinfected with 70% ethanol for 1 min, followed by 
1% sodium hypochlorite for 20 min for twigs and 15 min for needles and 
0.07% NaOCl for 20 min, and rinsed 5 times with sterilized distilled water 
(dH2O). Lastly, they were rinsed once with dH2O containing 150 mg/l citric 
acid. Seeds were put into 0.01% NaOCl for 24 h with agitation. They were 
washed in running tap water for 4 h, surface disinfected with 70% ethanol 
for 1 min and then placed in a 1% NaOCl for 15 min. Then, they were rinsed  
5 times with dH2O.

Isolation of CMCs. For CMCs, cambium, phloem, cortex and epidermal  
tissue were peeled off from the xylem and the epidermal tissue side was laid on 
B5 medium31 excluding (NH4)2SO4 with 1 mg/l picloram, 30 g/l sucrose and  
4 g/l gelrite. After 4 to 7 d, cell division was evident only in cambium and after 
15 d, DDCs started to form from the layer that consisted of phloem, cortex and 
epidermis by dedifferentiation. At 30 d post-culture, there was a visible split 
between cambium cells and DDCs of the phloem, cortex and epidermis. This 
separation was obvious because cambium cells uniformly divided resulting in 
the formation of a flat plate of cells. In contrast, DDCs derived from phloem, 
cortex and epidermis proliferated in an irregular form, presumably due to the 
discrepancy between cell division rates. Following the natural separation of 
cambium from the other cell types, this cell layer was transferred onto dif-
ferent Petri dishes containing B5 medium excluding (NH4)2SO4 with 1 mg/l 
picloram, 10 g/l sucrose and 4 g/l gelrite. Initial cell inoculum size was 3.0 g 
(f.c.w.) and subsequently, CMCs were subcultured onto the fresh medium 
every 2 weeks. Establishment of P. ginseng CMCs was as described above except 
that the isolation medium contained McCown woody plant medium with  
2 mg/l IAA, 30 g/l sucrose, 100 mg/l ascorbic acid, 150 mg/l citric acid and  
3 g/l gelrite. For lignin visualization, tissues were stained with phloroglucinol-
HCl (0.5% (wt/vol) phloroglucinol in 6 N HCl) for 5 min and then observed 
under a light microscope.

Establishment of cell suspension cultures and natural product production.  
Initial suspension cultures were established by inoculating a sample of  
2.5 g (f.c.w.) cultured cells derived from either cambium, needles or embryos 
into 125 ml Erlenmeyer flasks containing 25 ml of B5 medium containing 
1 mg/l picloram, and 20 g/l sucrose, excluding (NH4)2SO4. The flasks were 
agitated at 100 r.p.m. and 21 °C in the dark. Subculturing was undertaken 
at 2-week intervals.

For culturing the cells in 3 liter and 20 liter air-lift bioreactors, the same 
medium that was used in the initial suspension culture was applied. Diameter, 
height and pore size of micro-sparger used in the bioreactor was 2 cm,  
0.4 cm, 0.2 m, respectively. Aeration rate was 0.1–0.2 vol/vol/min (v.v.m.) 
in 3 liter air-lift bioreactor, and 0.08–0.18 v.v.m. in 20 liter air-lift bioreactor. 
3.25 g/l (d.c.w.) of CMCs, 3.3 g/l (d.c.w.) of needle-derived DDCs and 3.1 g/l 
(d.c.w.) of embryo-derived DDCs were inoculated in 3 liter air-lift bioreactor.  
3.65 g/l (d.c.w.) of CMCs, 3.64 g/l (d.c.w.) of needle-derived DDCs and 3.41 g/l 
(d.c.w.) of embryo-derived DDCs were inoculated in 20 liter air-lift bioreactor. 
Working volume was 80% of total capacity, which is 2.4 liters in 3 liter air-lift 
bioreactor and 16 liters in 20 liter air-lift bioreactor. Subculturing of CMCs and 
DDCs was undertaken every 2 weeks in 3 liter and 20 liter air-lift bioreactor 
with same initial inoculum size and conditioned medium was recycled with 
the ratio of 25% of working volume. Growth rate was measured in d.c.w. (g/l) 
after vacuum filtration and drying of the cells in an oven at 70 °C for 24 h. We 
call these CMCs Ddobyul, meaning ‘another star’ in Korean.

To test the capacity for production of paclitaxel in the flask and 3 liter and  
20 liter air-lift bioreactors, cells at 14 d of culturing were transferred to B5 
medium excluding KNO3, and containing 60 g/l fructose and 2 mg/l 1-naphtalene 
acetic acid (NAA), and elicitors such as 50 mg/l, chitosan and 100 M methyl-
jasmonate, in addition to 0.1 mM of the precursor, phenylalanine.

Me-JA was dissolved in 90% ethanol, chitosan in glacial acetic acid and 
phenylalanine in distilled water before dilution to the required concentrations. 
After 10 d, paclitaxel content was analyzed. Taxane and abietane production was 

elicited in a similar fashion. Stress-triggered ginsenoside accrual was mediated 
by reducing air supply from a constant 0.1 v.v.m. into a 3 liter air-lift bioreactor, 
for 13 d of culture, to 0.1 v.v.m. for a 30 min period twice per day for 3 d.

Establishment of needle and embryo DDC cultures. DDCs were induced 
from embryos and needles largely as previously described32,33. For induc-
tion of needle-derived DDCs, both ends of the needle were cut in 0.3~0.5 cm 
(length and width) and were laid on B5 medium containing 1 mg/l picloram, 
30 g/l sucrose and 4 g/l gelrite, excluding (NH4)2SO4. After 30 d of culturing, 
DDCs were induced from the cut edges (Fig. 1f). As culture period continued, 
DDCs formed over the whole explants. Induced DDCs were transferred to B5 
medium containing 1 mg/l picloram, 10 g/l sucrose and 4 g/l gelrite, excluding 
(NH4)2SO4 for growth. Initial inoculum size was 3.0 g (f.c.w.) and DDCs were 
subcultured to fresh medium every 2 weeks.

For induction of embryo-derived DDCs, both ends of the zygotic embryo 
were cut and laid on B5 medium containing 1 mg/l 2,4-D, 30 g/l sucrose and  
4 g/l gelrite, excluding (NH4)2SO4. After 23 d of culturing, DDCs were induced 
from the cut edges (Fig. 1g). As culture period continued, DDCs formed over 
the whole explant. Induced DDCs were transferred to B5 medium containing 
1 mg/l picloram, 10 g/l sucrose and 4 g/l gelrite, excluding (NH4)2SO4 for 
growth. Initial inoculum size was 3.0 g (f.c.w.) and DDCs were subcultured 
to fresh medium every 2 weeks.

CMC differentiation. The media used to induce CMC differentiation into 
tracheary elements (TEs) was B5 medium, excluding (NH4)2SO4 with 10 mg/l 
NAA, 2 mg/l kinetin, 6 mg/l GA3 and 60 g/l sucrose. TEs were identified by 
virtue of their bright fluorescence, due to the presence of lignified secondary 
cell walls. The extent of TE differentiation was determined as the percentage 
of TEs per total number of cells. This analysis was undertaken in triplicate and 
in each case 200 cells were counted.

Response of T. cuspidata cell suspensions to g-irradiation and radiomimetic 
drugs. CMCs and needle-derived DDCs were obtained from suspension cul-
tures obtained from 20 liter air-lift bioreactors. For gamma-irradiation (Co60), 
cells were irradiated at a dose rate of 0.92 Gy/min for 0~400 Gy, which has been 
modified from a method described previously34. Then, cells were suspension 
cultured for 24 h in 100 ml flasks at 21 °C, 100 r.p.m. in the dark (volume of cells 
to liters of medium was 1:10). Suspension cells were treated with Zeocin (200 

g/ml, Invitrogen) at 7 d after subculture, essentially as described previously34. 
The treated suspension cell culture was incubated in the dark for 24 or 48 h. 
For cell death determination, cells were treated with 2% Evan’s blue for 3 min 
and washed with sterile water several times, then transferred to a microscope 
slide covered with a thin cover slip. For each sample, cell death was determined  
5 times independently and the average cell death rate was measured by exclud-
ing the maximum and minimum number of cell counts. All experiments were 
undertaken in triplicate.

Determination of T. cuspidata transcriptome. RNA was isolated using a 
Qiagen plant RNA kit following the manufacturer’s instructions. cDNA was 
synthesized by employing a SMART procedure to enrich for full-length 
sequences35. The resulting cDNA was normalized using kamchatka crab 
duplex-specific nuclease36, to aid the discovery of rare transcripts. cDNA was 
sheared using Covaris instruments settings: target size 500 bp, duty cycle 5%, 
intensity 3, cycles/burst 200 and time 90 s. Library preparation was undertaken 
using a Roche GS FLX library kit. The concentration and quality of the synthe-
sized library was analyzed using a Agilment bio-analyzer. Titration emulsion 
PCR using a GS FLX emPCR kit was undertaken to determine the optimum 
number of beads to load for large-scale sequencing. A Beckman/Coulter 
Multisizer 3 bead counter was employed to determine the concentration of 
beads. Two million beads were loaded onto a GS FLX pico titer plate using a 
Roche 70 × 75 kit.

The sequencing reagents used and washes undertaken followed protocols 
from the manufacturer. The T. cuspidata transcriptome was determined in 
the GenePool genomics facility at the University of Edinburgh using a Roche 
454 GS FLX instrument in titanium mode, which uses massively parallel 
pyrosequencing technology37,38. A total of 860,800 reads were achieved of  
351 bp average length, which generated 301 MB of sequence. These data were 
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 assembled into isotigs by employing Newbler 2.3. BLAST was used to search for 
similar sequences within available sequence databases. Annot8r was employed 
to predict GO terms for each isotig39.

Digital gene expression tag profiling. The analysis of global gene expression 
in T. cuspidata cell suspension cultures was carried out by digital gene expres-
sion tag profiling, using an improved method based on previously described 
technology40. Potentially contaminating DNA was removed from RNA sam-
ples using Ambion turbo DNase treatment. NlaIII library preparation was 
accomplished by following the manufacturer’s standard protocol. Fifteen PCR 
cycles were used for amplification. We used 1–10 g of a given library for 
sequencing from each sample. Sequencing was carried out in the GenePool 
genomics facility at the University of Edinburgh using a Genome Analyser 
(GA) IIx Illumina Solexa sequencing machine. Three replicates each of both 
cell lines (CMC/DDC) were sequenced following the manufacturer’s protocol.  
Subsequently, reads were aligned to the T. cuspidata reference genome 
using MAQ v. 6.0.8. and uniquely aligned reads to the previously assembled  
T. cuspidata transcriptome were counted.

Statistical analysis. Statistical analysis was performed in R using the edgeR 
Bioconductor library40,41. We sought to reduce problems created by vary-
ing library sizes and noise for genes not highly expressed, by stabilizing read 
counts through adding a small constant. Therefore we first rescaled the read 
counts in each library by dividing by the sum of all read counts in the upper 
quartile of expression values42 and afterwards added a constant factor C  
(C = 10) to each count. This transformation alters the signal in such a way that 
differences between groups for contigs with low expression are less likely to be 
considered differentially expressed, while leaving high transcript counts largely 
untouched. Briefly, edgeR uses an overdispersed Poisson distribution to model 
read count data, where the degree of overdispersion is moderated using an 
empirical Bayes procedure. Differential expression is assessed using a modified 
version of Fisher’s exact test. We ran edgeR according to the steps outlined in 
the library’s tutorial (using parameter settings prior. n = 10, grid.length = 500). 
P-values were adjusted for the false discovery rate and we deemed a threshold 
of false discovery rate (FDR)  0.05 to be appropriate to detect differentially 
expressed contigs (n = 1,229).

In the latter analysis, we decided to first focus on only those differentially 
expressed contigs, that showed a considerably large change (that is, the mini-
mum difference between any replicates in both groups, DDC and CMC, was 
at least ten transcripts per million) and for which the direction of change was 
consistent between all replicates (that is, all replicates are either higher or 
all replicates are lower in one group than in the other). We considered these 
filtered contigs (n = 563) the most interesting candidates for immediate study 
and held out the rest for further follow-up studies.

Gene expression analysis. The determination of gene expression levels were 
carried out by either RT-PCR or qRT-PCR as previously described43. The 
primer sequences employed are listed below:

Primer sequences for qRT-PCR.
Ct01805-F: CTTGGCAAGGATCCAGTTTAG
Ct01805-R: AGACCAAGCCCAGGGTCTTC
Ct10710-F: TTCTTCGGCTGTCAGTGATG
Ct10710-R: CCGATAGAAGCTTGCAGGAA
Primer sequences for RT-PCR.
Ct27072-F: CACTTGGAGTTCGTCGTTGA
Ct27072-R: CACTGTGCACACTCACCAAA
Ct36802-F: GAGCCGTTGCATGGTACACT
Ct36802-R: TAACCGTGGTGCTCAAATCA
Ct18649-F: CCTGACAACAGCGTCTCTGA
Ct18649-R: AAACCACCAGTACCCACAGC
Ct33753-F: GTTAGACCCTTCACCGTCCA
Ct33753-R: CTGCAAAGATGAGAGTGGAATG
Ct30863-F: GCAACGTCTGAAACGCAGTA
Ct30863-R: AGAGTTGCGAACAGCAAAGG
Ct34959-F: ACTCGATAGAGCCGACAAGG
Ct34959-R: CAGCTGATCGTCCAGCTATG
Ct01720-F: CTCCTCTCCAACGAGGAAAA

Ct01720-R: GTTTTCCCCAGAAGGGAATC
Ct09814-F: TTTGAGGCATGTGGGTTTTA
Ct09814-R: TGTCAATCTGTTGCATTGGA
Ct07968-F: CGACAACATTCTTGCATTGA
Ct07968-R: AACCGTTGCAGGGAACTTAC
Ct03409-F: ATGTTCCAAAAATGGGAGGA
Ct03409-R: GCTTGGAAAGACCTGAAGGA
Ct04884-F: AGTGAATGTAAGCCCCATGA
Ct04884-R: TTTGGCATCTTCTTGGATGA
Ct07286-F: GTCCATCCATTGTCCATAGAAA
Ct07286-R: TGGCAACATTGGTAAAGATATTCA

Perfusion culture. Perfusion culture was initiated in a similar fashion to 
that described for the bioreactors. On day 14, cultures were elicited with 
50 mg/l chitosan, 0.1 mM phenylalanine and 100 M methyl jasmonate. 
After elicitation, the spent medium was removed aseptically and replaced 
with an equal volume of fresh B5 medium excluding KNO3 with 60 g/l 
fructose and 2 mg/l 1-naphtalene acetic acid (NAA) and elicitors of 50 mg/l  
chitosan, 0.1 mM phenylalanine and 100 M methyl-jasmonate every  
5 d. After 45 d of extended culture, intracellular and extracellular paclitaxel 
levels were analyzed.

Analysis of taxanes (paclitaxel, baccatin III, 10-deacetylbaccatin III) content. 
After their separation from the production medium, 0.2 g of cells were weighed, 
soaked in 4 ml of methanol (Sigma)/dichloromethane (Sigma) (1:1 vol/vol) and 
sonicated (Branson) for 1 h. The methanol/dichloromethane extract (4 ml) 
was filtered and concentrated in vacuo and subsequently redissolved in 4 
ml of dichloromethane and partitioned with 2 ml of water. The latter step 
was repeated three times and only the dichloromethane fraction was col-
lected. This fraction was concentrated, then redissolved in 1 ml of methanol 
and centrifuged at 8,000g for 3 min before HPLC analysis. For determining 
the extracellular paclitaxel concentration, production medium (5 ml) was 
extracted 3 times with the same volume of dichloromethane. The combined 
dichloromethane fraction was subsequently concentrated and then redis-
solved in 0.5 ml methanol. HPLC (nanospace SI-2, Shiseido) with a C18 col-
umn (Capcell pak C18 MGII column, 5 m, 3.0 mm × 250 mm, Shiseido) was 
used for the analysis. Column temperature was 40 °C and the mobile phase 
was a mixture of water and acetonitrile (Burdick & Jackson) (1:1 isocratic) 
at a flow rate of 0.5 ml/min. A UV-VIS detector monitored at 227 nm and 
the sample injection volume was 10 l. Authentic paclitaxel, baccatin III, 
10-deacetylbaccatin III standard was purchased from Sigma.

Analysis of abietanes (taxamairin A and taxamairin C) content. After 
their separation from the production medium, 20 mg of lyophilized cells 
were weighed, soaked in 4 ml of methanol (Sigma)/dichloromethane (Sigma)  
(1:1 vol/vol) and sonicated (Branson) for 1 h. The methanol/dichloromethane 
extract (4 ml) was filtered and concentrated in vacuo and subsequently redis-
solved in 4 ml of dichloromethane and partitioned with 2 ml of water. The 
latter step was repeated three times and only the dichloromethane frac-
tion was collected. This fraction was concentrated, then redissolved in  
1 ml of methanol and centrifuged at 8,000g for 3 min. Then it was filtered 
through 0.2 m filter for UPLC analysis. UPLC (Waters) with a C18 column 
(BEH C18 1.7 m, 2.1 × 100 mm Waters) was used for the analysis. Column 
temperature was 40 °C and the mobile phase was a mixture of water and 
acetonitrile (Burdick & Jackson) flow rate of 0.4 ml/min. Water (solvent A) 
and acetonitrile (solvent B) as mobile phase with a linear gradient was used: 
(1 min: 0% B, 13 min: 100% B, 15 min: 100% B, 16.2 min: 0% B, 17 min: 
0% B). A UV-VIS detector monitored at 210 nm and the sample injection 
volume was 2 l. Authentic taxamairin A and taxamairin C standard were 
isolated at Unhwa.

Analysis of ginsenosides (ginsenoside F2, gypenoside XVII) content. 
Compounds of Panax ginseng CMCs were analyzed through HPLC-ELSD 
(Younglin) and two major peaks were isolated. The two compounds isolated 
were identified as ginsenoside F2 and gypenoside XVII through LC-MS 
(Agilent), 1H NMR, 13C NMR and 2D NMR (Varian). For quantification of 
ginsenoside F2 and gypenoside XVII in Panax ginseng CMCs, cultured cells 
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were separated from the medium and were lyophilized. 100 mg of lyophilized 
cells were put into 2 ml of methanol (Sigma), vortexed for 5 min, and were 
extracted for 1 h. Cells were centrifuged at 8,000g for 3 min. After concen-
tration of the supernatant, it was dissolved in 200 l of methanol and fil-
tered through 0.2 m filter for UPLC analysis. UPLC with a C18 column 
(BEH C18 1.7 m, 2.1 × 100 mm Waters) was used for the analysis. Column 
temperature was 40 °C and the mobile phase was a mixture of water and 
acetonitrile (Burdick & Jackson), flow rate of 0.4 ml/min. Water (solvent A) 
and acetonitrile (solvent B) as mobile phase with a linear gradient was used: 
(0 min: 0% B, 9 min: 100% B, 11 min: 100% B, 11.2 min: 0% B, 12 min: 0% B). 
A UV-VIS detector monitored at 203 nm and the sample injection volume was 
2 l. Standard of gypenoside XVII were isolated by Unhwa. Ginsenoside F2 
was purchased from LKT Laboratories.

Microscopy. Light microscopy was undertaken using a model BX41, Olympus. 
A polarizer for transmitted light, model U-POT, Olympus, was used for TE 
images. TEs were identified by virtue of their bright fluorescence, due to the 
presence of lignified secondary cell walls.

Vacuole experimentation was undertaken based on modifications of the 
methods described previously44,45. Briefly, CMCs, needle- and embryo-derived 
DDCs were stained with 0.01% (wt/vol) neutral red (SIGMA-ALDRICH)  
for 3 min. Then, cells were washed with 0.1 M phosphate buffer (pH 7.2) 
and were observed with an optical microscope (BX41 Olympus) using the  
same buffer.

LC-MS. Analysis was undertaken using an HP 1100 Series liquid 
chromatography/HP 1100 Series mass selective detector (Agilent Technologies). 
Samples (2 l) were separated on a PerfectSil Target ODS-3 (4.6 mm × 150 mm ×  
3 m) using water (10 mM ammonium acetate): acetonitrile which was iso-
cratic: 50% acetonitrile for 60 min, at 0.4 ml/min flow rate. Mass detection 
of paclitaxel was by electrospray ionization (ESI) in the positive ion mode. 
The drying gas was N2 at 10 l/min, 350 °C, 30 p.s.i. The vaporizer was set to 

300 °C, capillary to 4,000 V. Identification of paclitaxel was accomplished by 
comparison of retention times and mass with authentic standards.
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