

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429720004?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Programming Language Semantics as a

Foundation for Bayesian Inference

Marcin Szymczak

Doctor of Philosophy

Laboratory for Foundations of Computer Science

School of Informatics

University of Edinburgh

2018

Abstract

Bayesian modelling, in which our prior belief about the distribution on model pa-

rameters is updated by observed data, is a popular approach to statistical data analysis.

However, writing specific inference algorithms for Bayesian models by hand is time-

consuming and requires significant machine learning expertise.

Probabilistic programming promises to make Bayesian modelling easier and more

accessible by letting the user express a generative model as a short computer program

(with random variables), leaving inference to the generic algorithm provided by the

compiler of the given language. However, it is not easy to design a probabilistic pro-

gramming language correctly and define the meaning of programs expressible in it.

Moreover, the inference algorithms used by probabilistic programming systems usu-

ally lack formal correctness proofs and bugs have been found in some of them, which

limits the confidence one can have in the results they return.

In this work, we apply ideas from the areas of programming language theory and

statistics to show that probabilistic programming can be a reliable tool for Bayesian

inference. The first part of this dissertation concerns the design, semantics and type

system of a new, substantially enhanced version of the Tabular language. Tabular is a

schema-based probabilistic language, which means that instead of writing a full pro-

gram, the user only has to annotate the columns of a schema with expressions generat-

ing corresponding values. By adopting this paradigm, Tabular aims to be user-friendly,

but this unusual design also makes it harder to define the syntax and semantics correctly

and reason about the language. We define the syntax of a version of Tabular extended

with user-defined functions and pseudo-deterministic queries, design a dependent type

system for this language and endow it with a precise semantics. We also extend Tabu-

lar with a concise formula notation for hierarchical linear regressions, define the type

system of this extended language and show how to reduce it to pure Tabular.

In the second part of this dissertation, we present the first correctness proof for a

Metropolis-Hastings sampling algorithm for a higher-order probabilistic language. We

define a measure-theoretic semantics of the language by means of an operationally-

defined density function on program traces (sequences of random variables) and a map

from traces to program outputs. We then show that the distribution of samples returned

by our algorithm (a variant of “Trace MCMC” used by the Church language) matches

the program semantics in the limit.

Lay Summary
Bayesian probabilistic modelling, in which the user designs a model expressing how

they believe some observable data is generated from some unknown parameters, is

one of the most popular approaches to machine learning. However, implementing an

efficient inference algorithm, calculating the expected values of unknown parameters,

for a given probabilistic model, can be very difficult and time-consuming and require

significant knowledge of machine learning and statistics. Meanwhile, there are many

professionals whoe are not machine learning experts but would still like to apply prob-

abilistic modelling to problems in their areas. Probabilistic programming aims to make

Bayesian modelling more accessible by letting the user express the desired model as a

program in a given probabilistic language— the expected values of unknown parame-

ters are then computed automatically by the inference engine of the language.

This dissertation aims to advance the state of probabilistic programming and con-

sists of two parts. In the first part, we present a substantially extended version of a

particular existing probabilistic language, called Tabular, which, instead of extending

a general-purpose language with features for probabilistic programming, allows users

to specify models as annotated database schemas. We extend this language with user-

defined functions, which allow for some reusable model components to be defined

just once and used in programs wherever needed. We show how to reduce models

with functions to a simpler form on which we can run inference directly. Furthermore

we define a dependent type system for Tabular, which catches common modelling er-

rors and helps the user debug a model more quickly. We also endow the language

with a semantics, which defines precisely the mathematical meanings of programs,

and prove some properties of this extended language. We subsequently extend Tabular

with a sub-language which allows expressing hierarchical linear models, a wide and

commonly-used class of models, more concisely.

The second part of this dissertation is concerned with correctness of inference

algorithms for universal probabilistic languages, which can express a wide class of

probabilistic models. These languages typically use inference algorithms such as

Metropolis-Hastings Markov chain Monte Carlo, which generates a large number of

samples of some unknown quantity to approximate its distribution. Such algorithms

usually lack correctness proofs and bugs have been found in some of them. We present

the first formal proof of correctness of a variant of Metropolis-Hastings for a func-

tional probabilistic language, which shows that the distribution of samples actually

approximates the true distribution of the quantity of interest.

Acknowledgements

First and foremost, I thank my supervisor Andrew D. Gordon, who encouraged me

to apply for a PhD programme in the first place and who supported me throughout

my studies, even in the most difficult moments. No part of this work could have been

completed without his help and guidance.

I also thank my second supervisor David Aspinall for his continuous support and

his valuable feedback on my thesis, and Guido Sanguinetti and Sam Staton for agreeing

to examine this dissertation and for their useful comments, which helped me improve

the final version.

I am grateful to Microsoft Research for funding my scholarship and for offering

me two internships.

I thank all the researchers I have been honoured to meet, work with and learn from,

in particular (in alphabetical order) Johannes Borgström, Ugo Dal Lago, Aditya Nori,

Gordon Plotkin and Claudio Russo.

I am grateful to all my fellow PhD students in the School of Informatics, who made

my time as a student so enjoyable.

Finally, I thank my parents Janusz and Małgorzata for always believing in me, and

Dorota for keeping my spirits up in the hardest times.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

Chapter 4 is based on the paper “Probabilistic Programs as Spreadsheet Queries”

published at the 2015 European Symposium on Programming (ESOP), which is joint

work with Andrew D. Gordon, Claudio Russo, Johannes Borgström, Nicolas Rolland,

Thore Graepel and Daniel Tarlow.

Chapter 5 is based on the paper “Fabular: Regression Formulas as Probabilistic

Programming” published at the 2016 Symposium on Principles of Programming Lan-

guages (POPL), which is joint work with Johannes Borgström, Andrew D. Gordon,

Long Ouyang, Claudio Russo and Adam Ścibior.

Chapters 6 and 7 are based on the paper “A Lambda Calculus Foundation for Uni-

versal Probabilistic Programming” published at the 2016 International Conference on

Functional Programming (ICFP), which is joint work with Johannes Borgström, Ugo

Dal Lago and Andrew D. Gordon.

(Marcin Szymczak)

Table of Contents

1 Introduction 11

1.1 Dissertation Outline . 13

1.2 Thesis and Technical Contributions 15

1.3 Publications Included in This Dissertation 17

1.4 Summary of Contributions . 18

2 Related Work 21

2.1 Probabilistic Language Design . 21

2.1.1 Main Related Languages . 22

2.1.2 Spreadsheet and Database-based Systems 24

2.1.3 Brief Summary of Other Systems 25

2.2 Semantics of probabilistic languages 26

2.2.1 Original Research in Probabilistic Languages 26

2.2.2 Current Research on Probabilistic Languages 27

2.3 Correctness of inference in probabilistic programs 29

2.3.1 Multi-site MH for procedural programs [Hur et al., 2015] . . . 30

2.3.2 Single-site MH for abstract programs [Cai, 2016] 31

3 Preliminaries 33

3.1 Probabilistic Inference . 33

3.2 Measure Theory . 34

3.2.1 Basic Measure Theory . 34

3.2.2 A Measure Space on Program Traces 37

3.2.3 Metric and Topological Spaces 41

3.2.4 Subprobability and Probability Kernels 43

3.3 Metropolis-Hastings Sampling in General State Spaces 43

3.3.1 Markov Chains . 44

7

3.3.2 Metropolis-Hastings Markov chain Monte Carlo (MH-MCMC) 45

4 Tabular: A Schema-based Probabilistic Language 47

4.1 Introduction and Examples . 48

4.1.1 Probabilistic Programming in Tabular 48

4.1.2 User-Defined, Dependently-Typed Functions 51

4.1.3 Query Variables . 53

4.1.4 Critique of the Preliminary Version 53

4.1.5 Contributions . 55

4.1.6 Interface and Implementation 56

4.2 Syntax of Tabular . 57

4.2.1 Syntax of Databases . 57

4.2.2 Syntax of Core Schemas . 58

4.2.3 Syntax of Schemas with Functions and Indexing 62

4.3 Reduction to Core Tabular . 64

4.3.1 Reducing Function Applications 65

4.3.2 Reducing Indexed Models 72

4.3.3 Reducing Schemas . 76

4.4 Type System . 77

4.4.1 Syntax of Tabular Types . 78

4.4.2 Type Well-formedness and Expression Types 80

4.4.3 Model Types . 84

4.4.4 Table Types . 86

4.4.5 Schema Types . 91

4.4.6 Type Soundness and Termination of Reduction 91

4.5 Semantics . 93

4.5.1 Evaluation Environments and Databases 94

4.5.2 Input Database Conformance 94

4.5.3 Semantics of Probabilistic Models 97

4.5.4 The Probability Measures on Random Expressions 106

4.5.5 Semantics of Queries . 111

4.5.6 Output Database Conformance 117

4.6 Conclusions . 122

5 Fabular: Tabular with Regression Formulae 123
5.1 Linear Regression Formulae in R and Their Limitations 124

5.2 Syntax of the Regression Calculus 125

5.3 Typing Regression Formulae . 131

5.4 Fabular = Tabular + Regression Formulae 135

5.4.1 Syntax and Type System of Fabular 136

5.4.2 Translation to Core Tabular 137

5.4.3 Examples . 141

5.4.4 Type Soundness for Fabular 143

5.5 Conclusions . 146

6 Semantics of a Lambda Calculus with Continuous Distributions 147
6.1 A Probabilistic λ -calculus . 149

6.1.1 Big-step Sampling-based Semantics 152

6.1.2 Encoding Church in the Core Calculus 154

6.1.3 Example: Geometric Distribution 156

6.1.4 score and Soft Conditioning 158

6.2 Small-step Semantics . 160

6.2.1 Equivalence of Small-step and Big-step Semantics 169

6.3 A Distribution on Program Outcomes 172

6.3.1 Distributions on Random Traces and Program Outcomes . . . 173

6.3.2 Digression: Motivation for Bounded Scores 178

6.4 Conclusions . 179

7 Correct Metropolis-Hastings for Functional Probabilistic Programs 181
7.1 A Metropolis-Hastings Sampling Algorithm 182

7.2 Transition Kernel . 186

7.3 Correctness of Inference . 188

7.3.1 Additional properties of reduction 189

7.3.2 π-Irreducibility . 193

7.3.3 Aperiodicity . 194

7.3.4 Harris recurrence . 194

7.4 Examples . 199

7.4.1 Geometric Distribution . 199

7.4.2 Linear Regression with flip 200

7.4.3 Linear Regression with score 202

7.5 Discussion of the Algorithm . 203

7.5.1 Motivation for Using Multi-Site Inference 204

7.5.2 Problem With Identifying Random Variables 204

7.6 Conclusions . 206

8 Conclusions 209

A Alpha-equivalence of Tabular programs 213

B Proofs of the Propositions from Section 4.4.6 217
B.1 Proposition 1 . 217

B.2 Proposition 2 . 242

B.3 Proposition 3 . 245

C Proof of Tabular Output Database Conformance 249
C.1 Random Semantics . 249

C.2 Preservation Result for the Query Semantics 258

C.3 Progress Result for Query Semantics 269

D Proof of Lemma 18 in Chapter 5 277

E Proofs of Lemmas in Chapters 6 and 7 283
E.1 Deterministic reduction as a measurable function 290

E.2 Small- step reduction as a measurable function 293

E.3 Measurability of P and O . 295

E.4 Measurability of peval . 303

E.5 Compositionality of peval . 307

E.6 Measurability of q and Q . 309

References 317

Chapter 1

Introduction

Over the past half-century, machine learning has turned from a science-fiction fan-

tasy to a ubiquitous technology which we start taking for granted. These days, no-one

is astonished by computers using historical data to recognize handwritten postcodes,

predict stock markets, understand our speech and even drive our cars. The name “ma-

chine learning” is in fact an umbrella term encompassing all sorts of techniques for

inferring unknown quantities from existing data. One of the most successful and pop-

ular paradigms is model-based Bayesian machine learning.

In this paradigm, we need to define the problem by specifying first the prior dis-

tribution on the unknown parameters (according to which the parameters would be

distributed in the lack of any observations) and then a generative model, explaining

how we believe the observed output values were generated from the parameters. We

can then express the probability distribution on the unknown parameters in terms of

the prior distribution on the parameters and the output likelihood by using the Bayes

rule. But how do we represent such a model? And how can we efficiently perform

inference in a non-trivial model?

Implementing a custom inference algorithm for any real problem is not only cum-

bersome and time–consuming, but also requires a great deal of machine learning exper-

tise. Yet many of the people who need to use probabilistic inference are not machine

learning PhDs, but “domain experts” simply wanting to solve some problems in their

domains.

Probabilistic programming has been hailed as a way of bringing Bayesian inference

to the masses and making machine learning more accessible to domain experts [Gilks

et al., 1994, Goodman, 2013, Gordon, 2013]. It enables users to perform probabilistic

inference simply by providing a generative description of their model as a computer

11

program, without having to worry about the underlying inference engine. This way,

even non-experts can use probabilistic inference to reason about systems with random

behaviours, and experts can do so more rapidly. Because of that, the advent of prob-

abilistic programming has been compared to the revolution in software engineering

brought about by compilers and high-level languages [Duvenaud and Lloyd, 2013].

The reality, however, is much different from this idealised picture. Over twenty

years after BUGS [Gilks et al., 1994], the first mainstream probabilistic language for

Bayesian inference, was developed, the field still seems to be in its infancy, with ex-

perts still refusing to abandon their trusted problem-specific inference algorithms and

some non-experts unable apply this technology to problems in their areas.

For one thing, most currently available systems are not perfectly suited for people

who are not professional programmers. While tools such as Church [Goodman et al.,

2008], a higher-order Turing-complete probabilistic language, or BLOG [Milch et al.,

2005], a package based on higher-order logic, allow for many complex probabilis-

tic models to be expressed concisely, some business analysts and applied statisticians

might find them baffling, because using them requires familiarity with non-standard

programming paradigms (such as functional or logic programming). The recently-

proposed Tabular language [Gordon et al., 2014], in which models are expressed as

annotated database schemas and which can be embedded in spreadsheet applications,

represents an attempt to make probabilistic programming more accessible. In the first

part of this dissertation, we extend this language with user-defined functions, pseudo-

deterministic queries on inference results and an embedded calculus for representing

hierarchical linear regressions. We present the syntax of the resulting language, define

a reduction relations reducing compound models to the so-called Core form (corre-

sponding directly to factor graphs) and endow the language with a dependent type

system, catching common modelling errors. We also define the semantics of Tabular

and prove some theoretical results showing that the language is well-behaved.

Moreover, there is little confidence in the results returned by the underlying infer-

ence algorithms for probabilistic languages. The claims of validity of many of these

inference methods, such as “Trace MCMC” used by Church, are backed by limited

case studies rather than formal correctness proofs. To address this issue, we present

the first proof of correctness of the Metropolis-Hastings algorithm for a higher-order

functional probabilistic programming language. This proof involves defining a seman-

tics of a probabilistic lambda-calculus with recursion, which defines a distribution on

output values of the given program.

12

There are also other problems with implementing probabilistic programming sys-

tems, of which the poor performance of inference engines (speed of convergence of

MCMC, quality of approximations used by message-passing algorithms, etc.) is the

most prominent. However, the speed of convergence of approximate inference algo-

rithms for probabilistic languages has already received a lot of attention in the machine

learning community [Paige and Wood, 2014, Yang et al., 2013, Wood et al., 2014,

Ritchie et al., 2016, Le et al., 2017]. This dissertation is, instead, focused on the as-

pects of probabilistic programming which are often overlooked in the quest of speed

and performance.

1.1 Dissertation Outline

This section summarises the content of this dissertation.

Chapter 2 summarizes the previous work on probabilistic language design and se-

mantics and describes briefly some of the more popular probabilistic programming

systems.

Chapter 3 provides some background knowledge necessary to understand the de-

tails of this work, to make the material accessible to people coming from different

backgrounds (programming languages, machine learning, statistics).

Chapter 4 presents a new, extended version of Tabular, an easy-to-use schema-

driven language. We define the syntax of the language, which includes functions (de-

fined as tables), indexed models and a query operator for post-processing inference re-

sults, and give it a basic dependent type system with information flow tracking, to help

catch bugs before inference. We provide a reduction relation which reduces programs

with compound model expressions into simpler programs in what we call a “Core”

form, and we show that this reduction always yields a well-typed program. We define

a semantics of Core Tabular in two steps: first, a measure-theoretic semantics comput-

ing the joint distribution of all random expressions of interest in the program, and then

an operational semantics calculating the approximate values of queries. We show that

the output schema containing the computed values of queries is always well-formed.

The main technical results are Theorem 1, which states that reduction of Tabular mod-

els into Core form is type-sound, and Theorem 2, stating that the semantics of queries

produces valid output databases, conforming to the database schema. The material

presented in this chapter is a significant reworking of the paper on which the chapter

is based [Gordon et al., 2015], with updated language syntax (to facilitate reasoning

13

about substitution), a completely new semantics with proper support for conditioning

on values of continuous random draws (instead of relying on discretisation of real num-

bers), modified reduction relation for compound Tabular models and a more rigorous

proof of Theorem 1, which required significant effort due to the unusual nature of the

Tabular language.

Chapter 5 describes a further extension of Tabular: an embedded calculus for rep-

resenting hierarchical, generalized linear models, extending the popular formula no-

tation used by several statistical inference packages in the R language. We present a

type system for the calculus and embed the calculus in Tabular, which gives a new lan-

guage called Fabular. We define a translation from Fabular to Core Tabular and prove

Theorem 3, which states that the type soundness result for Tabular schema reduction

extends to Fabular. We also demonstrate the expressiveness and conciseness of Fabular

by several examples.

Chapter 6 defines the semantics of a probabilistic lambda-calculus with continuous

random variables and conditioning. We first specify an operational semantics reducing

an expression to a value deterministically, given a sequence of random draws. We

give both big-step and small-step semantics, which are equivalent by Theorem 4. We

then define a distribution on program traces as an integral of the evaluation function

with respect to the stock measure on traces, from which we can get a distribution on

program outcomes by a simple measure transformation. We prove Theorem 5, stating

that the distribution of outcomes of a valid program is a subprobability measure on the

space of values in our λ -calculus. The proof is fully rigorous and includes showing

the measurability of the functions defined in terms of the semantics—an issue often

neglected in similar developments. We also translate a subset of Church, a popular

real-life probabilistic functional language, to the core calculus, thus endowing it with

a rigorous semantics.

Chapter 7 presents a formal proof of correctness of a variant of the Trace MCMC

algorithm for inference in higher-order functional probabilistic programs, showing that

the distribution of samples returned by it matches the semantics of the program (as

defined in the previous chapter). We define a variant on the Trace MCMC algorithm

and use standard results from theoretical statistics to prove Theorem 6, which says

that the distribution of samples generated by this algorithm converges to the program

semantics. Again, the proof includes showing that all Lebesgue-integrated functions

are measurable and that all assumptions of the theorems used are satisfied.

14

1.2 Thesis and Technical Contributions

The central claim of this dissertation is that probabilistic programming can be a
convenient and trustworthy tool for Bayesian inference. The dissertation includes

the following key technical developments:

(1) A reduction relation reducing Tabular schemas with functions and indexing to a

Core form;

(2) A measure-theoretic semantics of Tabular, defining marginal distributions on

queried expressions, and an operational query semantics of Tabular, defining

the expected answers to pseudo-deterministic queries;

(3) A structural dependent type system for Tabular with information flow tracking;

(4) An extension of Tabular with an embedded hierarchical linear regression calcu-

lus and an adaptation of the Tabular type system and reduction relation to the

extended language, called Fabular;

(5) An operational sampling-based semantics of an untyped probabilistic lambda-

calculus with continuous distributions and conditioning, which gives rise to a

distribution on program outcomes;

(6) A rigorous proof of convergence of a variant of the Metropolis-Hastings algo-

rithm for a probabilistic lambda-calculus.

These developments lead to research contributions to probabilistic programming,

which support the thesis of this dissertation.

Regarding the first three points, we believe the new version of Tabular is the

only spreadsheet-based probabilistic language with user-defined functions, a type sys-

tem and a formal semantics. Other existing systems for probabilistic computation

in spreadsheets, such as @Risk (http://www.palisade.com/risk/) and Scenarios

(http://www.invrea.com), lack not only semantics and type systems, but also any

scientific publications. The query semantics of Tabular also demonstrates a new way of

defining the meaning of probabilistic programs, by focusing not on the distributions,

but on actual numerical values that the user may want to extract from the posterior

distributions.

Furthermore, regarding the third development, there currently exists no other prob-

abilistic language with statically-checked dependent types. The Stan language features

dependent types, but the type constraints are only checked at runtime.

15

Regarding point 4, the embedding of a linear regression calculus inside a general-

purpose probabilistic language is a novel idea. Moreover, this embedding and the

reduction to Core Tabular provides the calculus with a rigorously defined semantics,

which is also a novel contribution—R’s widely-used formula language lacks any for-

mal semantics, and the meaning of expressions is only explained in words.

As for point 5, defining the distributional semantics of the untyped probabilistic

lambda-calculus with continuous distributions and conditioning is an open research

problem. The most recent advance in this area is the work by Heunen et al. [2017],

who present a denotational semantics of a simply-typed lambda calculus with con-

tinuous and discrete observations and conditioning—however, their language, being

simply-typed, does not support higher-order recursion. To our best knowledge, our

semantics is the first to define distributions on output values for such a language (al-

though, admittedly, it does not define distributions on mathematical functions, treating

lambda-abstractions purely syntactically).

Finally, regarding point 6, this dissertation presents, to our best knowledge, the first

proof of correctness of a variant of Metropolis-Hastings for a higher-order functional

language. Hur et al. [2015] present a proof of correctness of Metropolis-Hastings.

but their proof only applies to an imperative, procedural language and is less rigorous

than this work—it only shows the reversibility of the constructed Markov chain, dis-

regarding aperiodicity and φ -irreducibility (which are proven in this dissertation), and

assumes without proof measurability of all functions used. A more general proof, ap-

plicable to a functional language, was presented by Cai [2016], but this proof does not

deal with language semantics, treating programs as dependent sequences of probability

kernels, and this yet unpublished work was made known to me and my collaborators

after the paper on which Chapters 6 and 7 are based was accepted for publication.

The main theoretical results of this dissertation are the following:

• Theorem 1: reduction of Tabular models with functions and indexing to Core

form is type-sound;

• Theorem 2: the query semantics of Tabular maps well-typed Tabular schemas

and conformant input databases to well-defined output databases;

• Theorem 3: Reduction of Fabular models to Core Tabular is type-sound.

• Theorem 4: the small-step and big-step semantics of the probabilistic lambda-

calculus are equivalent;

16

• Theorem 5: the semantics of the probabilistic lambda-calculus defines a sub-

probability measure on output values;

• Theorem 6: The distribution of values generated by the variant of Metropolis-

Hastings for the probabilistic lambda-calculus presented in this dissertation con-

verges to the semantics of the given program.

1.3 Publications Included in This Dissertation

The technical material included in this dissertation consists mostly of significantly

extended and revised content of three published conference papers:

• The starting point for Chapter 4 was the paper “Probabilistic Programs as Spread-

sheet Queries” [Gordon et al., 2015] published at the 2015 European Symposium

on Programming (ESOP), which was joint work with Andrew D. Gordon, Clau-

dio Russo, Johannes Borgström, Nicolas Rolland, Thore Graepel and Daniel

Tarlow. The syntax and type system of Tabular, as well as the reduction rules

reducing function applications and indexed models, have been substantially re-

worked to fix a problem with α-conversion found in the paper and to make the

presentation cleaner. The proof of type soundness of reduction to Core Tab-

ular has been updated and made more rigorous. This chapter also features a

completely new semantics of Core Tabular, which replaces the slightly inelegant

semantics presented in the paper, relying on discretisation of real numbers and

an unspecified abstract inference algorithm.

• Chapter 5 is based on the paper “Fabular: Regression Formulas as Probabilistic

Programming” [Borgström et al., 2016] published at the 2016 Symposium on

Principles of Programming Languages (POPL), which paper was joint work with

Johannes Borgström, Andrew D. Gordon, Long Ouyang, Claudio Russo and

Adam Ścibior. However, the syntax of the regression calculus presented here has

been modified, to make a clear distinction between local variables and globally-

visible parameters. The translation of Fabular to Core Tabular has been updated.

The proof of Theorem 3, which shows that the translation of Fabular to Tabular

is type-sound, is a new contribution and was not included in the aforementioned

publication.

17

• Chapters 6 and 7 are based on the paper “A Lambda Calculus Foundation for

Universal Probabilistic Programming” [Borgström et al., 2016] published at the

2016 International Conference on Functional Programming (ICFP), which was

joint work with Johannes Borgström, Ugo Dal Lago and Andrew D. Gordon.

This chapter uses a different definition of the density of transition kernel of the

presented variant of Metropolis-Hastings, which actually corresponds to an im-

plementable sampling procedure, fixes a bug in the examples of inference and

presents a more rigorous proof of the φ -irreducibility of the transition kernel of

the algorithm.

All the publications on which this dissertation is based were written in collabora-

tion with other researchers. However, my contributions were important and are sum-

marised at the end of each chapter. Only the parts of the papers to which I have made

significant contributions are included. All the new extensions and improvements upon

the work described in the papers are entirely my own work.

1.4 Summary of Contributions

In summary, this dissertation makes the following novel research contributions:

• The design, syntax and semantics of Tabular, the first schema-based probabilistic

language supporting user-defined functions;

• The first static dependent type system for a probabilistic programming language,

which allows catching modelling errors and includes information flow tracking;

• The first embedding of a hierarchical linear regression calculus in a general-

purpose probabilistic language (implicitly endowing the calculus with a seman-

tics);

• A semantics of a higher-order untyped probabilistic lambda-calculus with con-

tinuous random draws and soft and hard conditioning, defining distribution on

syntactic values;

• The first proof of correctness of a variant of the Metropolis-Hastings inference

algorithm for a functional probabilistic language.

18

These contributions have direct practical significance in times when machine learn-

ing is becoming ubiquitous and probabilistic programming is gaining ground as a way

of performing probabilistic inference. Reducible user-defined functions enhance the

modelling power of Tabular without making inference more complicated. The de-

pendent type system of Tabular guides model creation and speeds up modelling by

catching common errors statically, before running inference. The embedding of the re-

gression calculus in Tabular shows how probabilistic languages can be composed, with

the resulting language retaining a consistent semantics and type system. The semantics

of a higher-order functional language with recursion helps understand the mathemat-

ical meaning of arbitrary probabilistic models, including nonparametric models. Fi-

nally, proving correctness of inference algorithms is important when probabilistic pro-

gramming starts being used in safety-critical settings, such as controlling autonomous

vehicles.

While this dissertation is theoretical in nature, and the results are mostly theorems,

it should be stressed that a significant amount of more practical work has been involved

in the research that lead to it, including an early implementation of a typechecker for

Tabular, an implementation of Fabular, a preliminary implementation of the variant of

Metropolis-Hastings used in Chapter 7, and a compiler translating Tabular programs

to Stan. The work on the Fabular implementation was the most substantial part, and

in addition to a compiler translating formulas to Core Tabular, it included automatic

generation of plots showing quantities of potential interest to the user. This work has

not been published nor released and is not presented in this dissertation, but may be

included in future releases of Tabular or other derived systems.

19

Chapter 2

Related Work

In this chapter, we present an overview of the literature on probabilistic programming,

in order to show historical advances and the current state-of-the-art in the areas in-

volved and highlight the originality of the material included in this dissertation. We

begin by an overview of existing probabilistic programming languages, which aims to

show what the Tabular language presented in Chapter 4 brings to the table in terms

of expressiveness and ease-of-use, and introduces higher-order functional probabilistic

languages, which are the motivation for the work presented in Chapters 6 and 7. We

then present the related work on the semantics of probabilistic languages, in order to

compare our semantics presented in Chapter 6 to other related developments. Finally,

we discuss the scarce existing literature on the correctness of inference in probabilistic

languages, to put the developments presented in Chapter 7 in context.

2.1 Probabilistic Language Design

Over the past two decades, many probabilistic programming systems based on different

paradigms and using various inference algorithms have seen the light of day. Some of

these languages, such as BUGS, are designed to be efficient and easy to use, but only

support limited classes of models, while others, including Church, are more flexible

and allow defining all computable distributions, but are more complicated and require

significant programming expertise.

21

2.1.1 Main Related Languages

We present here some of the widely used probabilistic languages which are most rel-

evant to this dissertation: the BUGS language, which was the first widely-used prob-

abilistic language, Stan, which, like Tabular, aims to be a feature-rich language ac-

cessible to domain experts, and Church, the first well-known functional higher-order

probabilistic language which inspired the last two technical chapters of this disserta-

tion.

• BUGS (Bayesian inference using Gibbs sampling) [Gilks et al., 1994] was the

first mainstream software package providing a generic inference engine for ar-

bitrary, user-defined graphical models, specified in a high-level declarative lan-

guage. Models in this language are specified by a custom input format and in-

terpreted as factor graphs. As its name implies, BUGS uses Gibbs sampling

[Geman and Geman, 1984] for inference. At each step, the value of one param-

eter is updated, using its full conditional distribution.

BUGS gained some appeal in academia and was applied to statistical problems

in many disciplines [Lunn et al., 2009] throughout its lifespan. The language

had multiple implementations, most prominent of which were WinBUGS, de-

signed in the mid-1990s, and the later cross-platform implementation called

OpenBUGS.

Some application-specific interfaces for BUGS have also been created, such as

PKBugs for pharmacokinetic modelling and GeoBugs for spatial modelling.

• Stan [Stan Development Team, 2014] is a probabilistic programming package

inspired by BUGS which is currently one of the most popular and most actively

developed probabilistic programming languages.

Stan programs are compiled to machine code via C++. Unlike BUGS, which

updates only one parameter at a time by using Gibbs sampling, Stan can move

in any direction in the parameter space in a single step, by using a new algorithm

called No-U-Turn-Sampler (NUTS) [Hoffman and Gelman, 2013], a variant of

Hamiltonian Monte Carlo. The current version of Stan supports user-defined

functions and while-loops, making the language more expressive than BUGS.

Functions cannot contain local variable declarations, but recent work by [Gori-

nova, 2017] extends the language to lift this restriction.

22

Stan has been highly regarded for its flexibility and its efficient sampling algo-

rithm [Monnahan et al., 2017]. However, one important limitation of this system

is that the inference algorithm can only sample continuous variables, which elim-

inates the possibility of using discrete parameters directly in models. To enhance

the expressiveness of the modelling language, Stan supports direct manipulation

of the likelihood of the model by the target += ... construct.

• Church [Goodman et al., 2008] is a Turing-complete higher-order functional

probabilistic programming language which supports recursion, discrete and con-

tinuous random variables and conditioning. The syntax of the language is based

on Scheme [Sperber et al., 2010], a minimalist dialect of Lisp.

The top-level construct in Church is a probabilistic query, consisting of a se-

quence of function and variable definitions, an output expression to be evaluated

and a boolean-valued expression denoting the condition, depending on the sam-

pled random variables, which has to be satisfied for the given program run to be

valid.

An important feature of Church is memoisation, which, unlike memoisation in

deterministic languages, is a semantically significant construct in Church. When

a memoised procedure is first called with given parameters, its return value is

remembered, and on each subsequent call to this procedure with the same ar-

guments this stored value is returned, without re-evaluating the function (and

resampling random parameters). Stochastic memoisation can be used, for in-

stance, to implement the Dirichlet process, which allows clustering data when

the number of clusters is not known in advance.

The original implementation of the language is based on a variant of the Metropolis-

Hastings MCMC [Metropolis et al., 1953, Hastings, 1970] algorithm, which in

each step, given some trace of a probabilistic program, perturbs the value of

one elementary random choice, updates references to it in subsequent proba-

bility calculations and refreshes the trace by performing new evaluations if the

change has affected the control flow of the program. Wingate et al. [2011] de-

scribe the Metropolis-Hastings inference algorithm for Church in more detail

and propose a more efficient, “lightweight” implementation, based on a static

source-to-source translation turning a Church program into a MCMC inference

procedure.

Yang et al. [2014] use tracing and slicing to improve the efficiency of Trace

23

MCMC in Church. Their optimisations reduce the overhead resulting from hav-

ing to compute the address of every random variable on each random primitive

call and recompute the acceptance ratio at each step of the algorithm.

As an alternative to sampling-based methods, Stuhlmüller and Goodman [2012]

also presents an exact, deterministic inference engine for Church, based on dy-

namic programming.

Since its inception, Church has forked into several derived languages. One

of them is Venture [Mansinghka et al., 2014], with modified syntax and pro-

grammable, compositional inference. Another Church-based language is Angli-
can [Wood et al., 2014], whose original inference engine is based on the particle

MCMC algorithm [Andrieu et al., 2010], which, as Wood et al. [2014] show,

is more efficient than standard Metropolis-Hastings on some problems. A very

promising new approach to inference in Anglican (and probabilistic programs in

general), called inference compilation, was presented by Le et al. [2017], who

propose using deep neural networks to optimise the proposal distributions from

which random variables are sampled.

2.1.2 Spreadsheet and Database-based Systems

In this section, we present two packages for statistical inference which, like Tabular,

have spreadsheet-based interfaces.

• @Risk (http://www.palisade.com/risk/) is a commercial Excel plug-in for

probabilistic computation, designed specifically for risk analysis in business. It

allows generating large numbers of samples from probabilistic models via the

Monte Carlo method, features extensive visualisation tools and supports fitting

basic distributions to data, but, crucially, does not seem to support inference in

probabilistic models.

• Scenarios (http://www.invrea.com/) is another Excel plug-in, also aimed at

business users, which allows defining probabilistic models within spreadsheets.

Unlike @Risk, it allows conditioning on output values and computation of pos-

terior distributions on unknown parameters. However, it has neither formal se-

mantics nor a type system.

24

2.1.3 Brief Summary of Other Systems

To complete this section, we present here a quick overview of other selected proba-

bilistic programming languages.

• IBAL [Pfeffer, 2001]: a Turing-complete language implemented in OCaml, al-

lowing recursive function definitions. It uses variable elimination with memoi-

sation for inference.

• BLOG [Milch et al., 2005]: a logic language, designed to reason with an un-

known number of objects, allowing nonparametric models. Multiple inference

backends, including a Metropolis-Hastings-based one, are available.

• Autobayes [Schumann et al., 2008]: a package which generates C++ inference

code from Bayesian networks. It uses analytical methods (k-means clustering,

Expectation Maximisation and symbolic differentiation) whenever possible, oth-

erwise resorts to numerical optimization.

• Blaise [Bonawitz, 2008]: a package using a graphical modelling language. Blaise

programs are represented as generalised factor graphs (specifying dependencies

between variables), with the plate notation normally used for creating copies

of variables replaced with a composition structure, allowing for the number of

copies to be used as a variable. Blaise has a customisable, sampling based infer-

ence engine.

• FACTORIE [McCallum et al., 2009]: a Scala-based language for representing

undirected graphical models, requiring users to create factor graphs manually.

Uses a variant of MCMC for inference.

• Figaro [Pfeffer, 2009]: an object-oriented probabilistic language, also based on

Scala. It supports a broad class of models, including ones with unknown num-

ber of objects. It is equipped with multiple backends, including Metropolis—

Hastings (with custom proposals), exact inference and Expectation Maximiza-

tion.

• HANSEI [Kiselyov and Shan, 2009]: a probabilistic language embedded in

OCaml, supporting inference in nonparametric models. HANSEI’s inference

algorithm is based on importance sampling.

• ProbLog [Broeck et al., 2010]: a probabilistic extension of Prolog.

25

• Filzbach [Purves and Lyutsarev, 2012]: a MCMC-based tool for statistical in-

ference, used mostly in biological models. Highly efficient, but requires a very

low-level specification of the model.

• Fun [Borgström et al., 2013]: a first-order functional language based on a sub-

set of F#. Fun supports inference in factor graphs, using Infer.NET [Winn and

Minka, 2009] as a backend and has beet extened with recursion by [Georgoulas

et al., 2013] to support inference in continuous-time Markov chains.

• BayesDB [Mansinghka et al., 2015]: a probabilistic language based on databases,

with a SQL-like interface.

• ProPPA [Georgoulas et al., 2014]: a probabilistic language based on the Bio-

PEPA process algebra

2.2 Semantics of probabilistic languages

In this section, we present the related work on the semantics of probabilistic languages,

to put our semantics of a probabilistic lambda-calculus presented in Chapter 6 in con-

text. We conclude that no previous work defines distributions on the output values

of arbitrary programs in a probabilistic lambda-calculus with higher-order recursion,

continuous distributions and soft conditioning, which the semantics presented in this

dissertation does.

The literature on the semantics of probabilistic programs is split into two distinct

phases. Until the early 90’s, before the appearance of the first widely-used languages

for probabilistic inference, most of the research on probabilistic languages was carried

out with applications such as randomised algorithms, rather than machine learning, in

mind. Hence, most foundational calculi studied then had only discrete distributions

and no primitives for conditioning. After the turn of the century, probabilistic pro-

gramming for machine learning became more widespread, and became the main focus

of probabilistic language semantics research.

2.2.1 Original Research in Probabilistic Languages

The pioneering work on semantics of probabilistic programs was a paper by Saheb-

Djahromi [1978], which defines the semantics of a higher-order typed functional lan-

guage with discrete random draws, based on the discrete probabilistic domain. The

26

author presents a small-step operational semantics of the language, in which small-

step reductions are parametrised by reduction probabilities. This semantics induces

a distribution on program outcomes. A denotational semantics is also presented and

shown equivalent to the distribution defined by the operational semantics.

Kozen [1981] presents two different semantics for a while-language with random

numbers. In the first semantics, a program is defined as a (deterministic) partial mea-

surable function taking an initial valuation of its variables concatenated with an infinite

vector of random choices, and returning an updated valuation of its variables, together

with unused “tail” of the random vector. As it is straightforward to define a measure

on infinite sequences, this program can be seen as a measure transformer. The sec-

ond semantics takes an initial measure on inputs, and computes a measure of outputs

directly, in a compositional way. The two semantics are shown equivalent.

Jones and Plotkin [Jones, 1989, Jones and Plotkin, 1989] define the semantics of

(abstract) probabilistic computations in terms of continuous evaluations, a generaliza-

tion of measures. More precisely, they define the spaces of results as inductive partial

orders (ipos), which, with continuous functions between them as morphisms, form a

category Ipo, and an endofunctor V mapping objects in Ipo to evaluations and mor-

phisms to evaluation transformers, which yields a powerdomain of evaluations. They

then apply this theory to define the denotational semantics of a simple while-language

with discrete probabilistic choice and a functional language with recursion, also with

just discrete random draws.

2.2.2 Current Research on Probabilistic Languages

Ramsey and Pfeffer [2002] apply Giry’s probability monad [Giry, 1982] to define de-

notational semantics of a stochastic lambda-calculus with discrete distributions (easily

extensible to continuous ones). Their language supports neither recursion nor condi-

tioning.

Danos and Harmer [2002] define a semantics of probabilistic PCF based on game

theory and show the full abstraction result for it.

Park et al. [2005] present an operational semantics of a typed functional language

with recursion and higher-order functions, in which distributions are represented in

terms of sampling functions. The semantics is parametrized by an infinite “tape” of

random numbers on the unit interval, and the reduction relation is defined on tuples

of expressions and tapes: intuitively, it takes an expression and a tape, reduces this

27

expression by taking an element from the tape when a random number is needed, and

returns the reduced expression together with the remainder of the tape. The authors

show by example how this semantics could be used to define the distribution induced

by the program, but stop short of formalizing this idea.

Dal Lago and Zorzi [2012] study operational semantics for the probabilistic λ -

calculus with discrete random choice. They define, in inductive and coinductive way,

big-step and small-step semantics for both call-by-name and call-by-value λ -calculus,

and shows that in each case the big-step and small-step versions coincide.

Cousot and Monerau [2012] consider a generic semantics of a probabilistic lan-

guage and apply several forms of abstract interpretation to it.

Borgström et al. [2013] give denotational semantics to Fun, a functional proba-

bilistic language with discrete and continuous distributions and observations, as mea-

sure transformers—functions from finite measures to finite measures. They define the

semantics of open programs compositionally using arrow-like [Hughes, 1998] combi-

nators. Intuitively, when applied to a measure on the free variables in an expression,

the semantics of this expression returns a joint measure on the free variables and the

return value. The semantics supports zero-probability observations. However, the core

language supports neither higher-order functions nor recursion.

Bhat et al. [2013] presents a reduction system deriving densities of outcomes of

first-order probabilistic programs, together with a type system guaranteeing the exis-

tence of a density.

Toronto presents a new approach to probabilistic language semantics, which he

called “Running probabilistic programs backwards” [Toronto, 2014, Toronto et al.,

2015]. He treats a probabilistic program as a deterministic function from a source of

randomness (specifically, an infinite tree of values in the set [0,1]) with an associated

probability measure P to the set of program outcomes, and defines the semantics of the

program as a composition of P and the preimage of f . He then defines the preimage

operator compositionally, using arrows [Hughes, 1998]. His approach has the inter-

esting property that it leads directly to an inference algorithm: while preimages are

uncomputable in general, they can be approximated by sampling. Toronto defines an

implementable abstract semantics and proves that it is a conservative approximation

of the exact preimage semantics. However, this semantics is only defined for a first-

order language, due to the difficulties with making the higher-order “apply” function

measurable [Aumann, 1961].

Ehrhard et al. [2014] present a semantics of a probabilistic extension of PCF with

28

discrete random draws, based on coherence spaces, and show a full abstraction result

for the language with respect to this semantics.

Ścibior et al. [2015] define a denotational sampling-based semantics for a higher-

order probabilistic language based on Haskell, in terms of a limit of integrals of a

density on traces with respect to Borel measures on traces of finite length. Their se-

mantics is restricted to expressions of simple top-level types, excluding function types

and recursive types.

Bizjak and Birkedal [2015] define a step-indexed logical relation for reasoning

about equivalence of higher-order probabilistic programs with discrete random draws.

Huang and Morrisett [2016] present a denotational semantics of a first-order lan-

guage based on computable metric spaces. They restrict the semantics to computable

functions and show that the semantics is directly implementable.

Staton et al. [2016] define a denotational and operational semantics for a higher-

order typed language with both discrete and continuous random variables and soft

and hard conditioning. The authors define a denotational semantics for a first-order

language, as a distribution on pairs of program outcomes and scores which can be

normalised to yield a distribution on outcomes, and then use the Yoneda embedding of

the category of measurable spaces to lift the semantics to the higher-order language.

An operational semantics is also defined, and the denotational semantics is shown

sound with respect to the operational one. The semantics model used by [Staton et al.,

2016] does not support higher-order recursion, only first-order recursion.

Heunen et al. [2017] improve upon that work by providing an alternative, simpler

semantics for a higher-order typed language, based on so-called quasi-Borel spaces.

The semantics is defined in terms of a category in which the objects are quasi-Borel

spaces, that is Borel spaces paired with collections of functions satisfying certain prop-

erties, and morphism must preserve these properties when composed with functions

from such collections. This semantics also supports only first-order recursion.

2.3 Correctness of inference in probabilistic programs

To our best knowledge, the only other attempts at formalizing and proving correct a

trace-based sampling algorithm for probabilistic programs are the recent works by Hur

et al. [2015] and Cai [2016].

29

2.3.1 Multi-site MH for procedural programs [Hur et al., 2015]

Hur et al. [2015] present the first proof of correctness of Metropolis-Hastings for a

probabilistic language.

The authors define a while-language with continuous and discrete random draws

and observations. They define two different semantics for their language. The first

one is a denotational semantics, which defines the “meaning” of a program as the

expectation of an arbitrary function applied to the final state of the program—this is

equivalent to defining a probability measure on the final states.

The second semantics is a pseudo-deterministic, big-step sampling-based opera-

tional semantics. It takes a program, an initial state and a map storing a list of val-

ues for every variable (one value for every execution of a probabilistic assignment to

the given variable) and returns an updated state together with a weight, which is the

product of probability density functions corresponding to the distributions used in the

program, applied to the corresponding values in the map.

It is important that the “random vector” maps variables to lists, rather than simple

values, because in an imperative language different executions of the same probabilis-

tic assignment represent distinct random choices—a point missed in the design of other

algorithms, which, as the authors demonstrate, led to incorrect inference results.

In every step, the MCMC inference algorithm defined by Hur et al. perturbs every

random variable in the trace, according to a proposal distribution based on the target

distribution of the variable and, if available, its previous value. This is different from

the algorithm used by Church, where part of the trace is left unchanged. Resampling

all the variables makes it possible to define the proposal kernel as an integral of the

joint proposal density for all variables in the new trace, avoiding the problem that fixed

variables automatically set the value of the integral to zero.

The authors prove that their algorithm satisfies the detailed balance equation for

Metropolis-Hastings. They first show that the denotational and operational semantics

are equivalent. Then, they observe that the density of the target distribution on traces

corresponds to the sampling based semantics. Then they define joint proposal dis-

tribution in terms of densities of individual random choices, and use it to show that

the acceptance ratio used in the algorithm is computed according to the definition of

Metropolis-Hastings.

The authors do not discuss aperiodicity and irreversibility of their algorithm.

30

2.3.2 Single-site MH for abstract programs [Cai, 2016]

Cai [2016] presents the first correctness proof for density-less trace MCMC, updating

one variable at the time. Instead of working with a particular programming language,

he makes the proof completely abstract, treating programs as eidetic processes (se-

quences of probability kernels in which a kernel can depend on values drawn from all

previous kernels) and intentionally avoiding dealing with semantics. Hence, his proof

is parametric on a mapping from actual programs to eidetic processes and a naming

scheme identifying variables in a program, which must satisfy certain properties (most

notably prefix-freedom).

This work, not yet published, was only made known to us after the submission of

the paper on which chapters 6 and 7 are based.

31

Chapter 3

Preliminaries

We recapitulate here the less standard background knowledge needed to understand

this dissertation, with the aim of making it accessible to readers from various scientific

communities. We also present a non-standard stock measure on program traces, treated

as lists of reals of arbitrary length, which will be used in the semantics of Tabular in

Chapter 4 and the probabilistic lambda-calculus in Chapter 6.

We assume the reader already has some elementary knowledge of type systems,

lambda calculus and operational semantics. Should it not be the case, there are many

useful introductory resources on these subjects, including [Cardelli, 1997], [Baren-

dregt, 1992] and [Winskel, 1993, Chapter 2].

Basic Notation We write f : X → Y if f is a function with domain X and codomain

Y . If B⊆ Y , we write f−1(B) for the preimage of f under B:

f−1(B) = {x ∈ X | f (x) ∈ B}

We denote by [x∈ B] (so-called Iverson bracket) the indicator function of B applied

to x, i.e. 1 if x ∈ B and 0 otherwise:

[x ∈ B] =

1 if x ∈ B

0 otherwise

3.1 Probabilistic Inference

We begin by explaining some basic terms related to machine learning, and Bayesian

probabilistic modelling in particular. A more comprehensive explanation of these con-

cepts can be found in machine learning textbooks, including [MacKay, 2003, Murphy,

2012, Barber, 2012].

33

Suppose that we have some observed data D and an unknown parameter θ (possibly

being a vector containing several individual parameters), which we want to infer. A

prior distribution p(θ) is the probability distribution on θ which models our belief

about the likeliness of the parameter θ admitting given values in the absence of any

observations.

A likelihood P(D|θ) is the probability that the dataset D will be generated by the

model for the given value of the parameter θ .

A posterior distribution p(θ |D) is the probability distribution on θ conditioned on

the observed data D. Computation of the posterior distribution is usually the goal of

probabilistic inference.

If θ = (θ1, . . . ,θn) and 1≤ i≤ n, the marginal posterior distribution p(θi|D) is the

posterior distribution of θi given the observed data D.

3.2 Measure Theory

Semantics of probabilistic computations with continuous random variables is usually

formulated in terms of measure-theoretic probability, which is more general than the

straightforward textbook approaches based on Riemann integration of density func-

tions. In this section, we present the basic background knowledge on measure theory

needed to understand some parts of this dissertation and a convenient measure space

on program traces, useful in defining semantics of probabilistic programs.

A more complete, tutorial-style introduction to measure theory can be found in one

of the standard textbooks, for example [Billingsley, 1995].

3.2.1 Basic Measure Theory

This subsections presents some elementary definitions from measure theory, which

are needed to understand Section 4.5 in Chapter 4, Section 6.3 of Chapter 6 and Sec-

tions 7.2 and 7.3 of Chapter 7.

Measurable Spaces To work with measure theory, we first need to define a measur-

able space.

A σ -algebra on a set Ω is a set Σ of subsets of Ω satisfying the following properties:

• ∅ ∈ Σ

• Σ is closed under complements—that is, if A ∈ Σ, then Ω\A ∈ Σ.

34

• Σ is closed under countable unions—that is, if Ai ∈ Σ for all i∈N, then
⋃

i∈NAi ∈
Σ

If A ∈ Σ, then A is called a measurable subset of Ω (or simply a measurable set, if

the context is clear). If Σ is a σ -algebra on Ω, the tuple (Ω,Σ) is called a measurable

space.

A σ -algebra on Ω generated by a set S ⊆ P(Ω) of subsets of Ω, denoted σ(S), is

the smallest σ -algebra on Ω containing S. Equivalently

σ(S) =
⋂
{Σ | S⊆ Σ, Σ is a σ algebra on Ω}

Products of σ -algebras If (X1,Σ1), . . . ,(Xn,Σn) are measurable spaces, the product

of Σ1, . . . ,Σn is the σ algebra on X1×·· ·×Xn defined by:

Σ1⊗·· ·⊗Σn = σ({A1×·· ·×An | Ai ∈ Σi ∀i ∈ 1..n})

Borel σ -algebra on Rn The Borel σ -algebra B on R is the σ -algebra generated by

the set of open intervals {(a,∞) | a ∈ R}. The Borel σ -algebra Bn on Rn is the n-fold

closure of B (that is, B×·· ·×B, where we take the product of n copies of B).

Countably Generated σ -Algebras A σ algebra Σ is countably generated if it is

generated by a finite set.

Measures If (Ω,Σ) is a measurable space, a measure on (Ω,Σ) is a function µ : [0,∞]

such that:

• µ(∅) = 0

• µ is countably additive—that is, if A1,A2, · · · ∈ Σ, then µ(
⋃

i∈NAi) = ∑i∈N µ(Ai)

Note that the value of µ on a measurable set can be infinite. We call the triple

(Ω,Σ,µ) a measure space.

Products of Measures If µ1, . . . ,µn are measures on (X1.Σ1), . . . ,(Xn,Σn) respec-

tively, the product µ1⊗ ·· · ⊗ µn of µ1, . . . ,µn is the unique measure on (X1× ·· · ×
Xn,Σ1⊗·· ·⊗Σn) satisfying:

(µ1⊗·· ·⊗µn)(A1×·· ·×An) = µ1(A1) . . .µn(An)

for all A1 ∈ Σ1, . . . , An ∈ Σn.

35

Lebesgue measure on (Rn,Bn) The Lebesgue measure on (R,B) is the unique

measure λ such that λ ([a,b]) = b−a for all a,b∈R, a≤ b. The Lebesgue measure λn

on (Rn,Bn) is the n-fold closure of λ—that is, λ ×·· ·×λ , where λ appears n times.

Probability Measures A measure µ on (Ω,Σ) is called a probability measure if

µ(Ω) = 1 and subprobability measure if µ(Ω)≤ 1.

σ -Finite Measures A measure µ on (Ω,Σ) is σ -finite if there exists a sequence of

measurable sets Ai such that Ai ⊆ Ai+1 for all i and Ω =
⋃

i∈NAi and µ(Ai)< ∞ for all

i.

Measurable Functions A function f between measurable spaces (X ,ΣX) and (Y,ΣY)

is measurable ΣX/ΣY if for all B ∈ ΣY , f−1(B) ∈ ΣX . We write simply that f is mea-

surable if the σ -algebras are clear from the context.

Lebesgue Integral If (X ,ΣX) is a measurable space, a measurable function f : X →
[0,∞) is called simple if its image is a finite set. Every simple function f can be

expressed as:

f (x) =
n

∑
i=1

αi[x ∈ Ai]

where Ai = f−1(αi).

The Lebesgue integral
∫

f (x)µ(dx) of the simple function f : X → [0,∞) such that

f (x) = ∑
n
i=1 αi[x ∈ Ai] with respect to the measure µ on (X ,ΣX) is defined as:

∫
f (x)µ(dx) =

n

∑
i=1

αiµ(Ai)

Every non-negative measurable function can be approximated to arbitrary precision

by simple functions. The Lebesgue integral of an arbitrary non-negative measurable

function from X to R is defined as:

∫
f (x)µ(dx) = sup

{∫
g(x)µ(dx) | g simple, g≤ f

}
where the inequality g≤ f is defined pointwise. We write the above integral simply

as
∫

f (x)dx if the measure with respect to which the function is integrated is clear from

the context.

36

The restricted integral
∫

A f (x)µ(dx) is defined to be:∫
A

f (x)µ(dx) =
∫

f (x)[x ∈ A]µ(dx)

If (X ,ΣX ,µ) is a measure space and f : X → [0,∞) is measurable, the function

ν(A) =
∫

A f (x)µ(dx) is a measure on (X ,ΣX). We call the function f the density of

ν . The integral
∫

A f (x)µ(dx) is absolutely continuous with respect to µ—that is, if

µ(A) = 0, then
∫

A f (x)µ(dx) = 0.

σ -algebra Restriction The restriction Σ|A of a σ -algebra Σ on Ω is defined to be

Σ|A = {B∩A | B ∈ Σ}

Then (A,Σ|A) is a measurable space.

Measure Restriction If (Ω,Σ,µ) is a measure space, we define µ|A to be a restriction

of the measure µ to A:

µ|A(B) = µ(A∩B)

The restriction µ|A is a measure on (Ω,Σ).

Continuous Probability Distributions A continuous probability distribution D, typ-

ically parametrised by some parameters, is a probability measure on (R,B). We call

pdfD the density of D (or, in full, the probability density function of D), if pdfD is

the density of D with respect to the Lebesgue measure measure λ on (R,B)—that is,

D(A) =
∫

A pdfD(x)λ (dx).

Variational Norm The variational norm ‖ν1−ν2‖ of two measures ν1 and ν2 on

(Ω,Σ) is defined to be ‖ν1−ν2‖= supA∈Σ |ν1(A)−ν2(A)|.

3.2.2 A Measure Space on Program Traces

In this section, we present a measurable space of program traces (treated as real-valued

lists of arbitrary length) and a stock measure on this space of traces, with respect to

which density functions will be integrated to give semantics to programs in Chap-

ter 4 and 6. A basic knowledge of the existence of this measure space is necessary to

understand Section 4.5 of Chapter 4, where it is used to define marginals distributions

37

of random columns in Tabular. A more in-depth understanding is required to under-

stand Section 6.3 of Chapter 6 and Chapter 7, and especially the detailed proofs of

lemmas and theorems in these chapters, included in Appendix E.

We begin by defining a measurable space (U,S) of program traces. As a program

trace in a general-purpose probabilistic language can be any sequence (possibly empty)

of real values of arbitrary length, the space U of program traces is the disjoint union

of n-fold Cartesian products of real values for any n, that is, U,
⊎

n∈NRn (note that N
includes 0).

We want S to be a generalization of the Borel σ -algebra on the space of fixed-

dimensional tuples (that is, Rn) to the space of sequences of arbitrary length. Let Bn

be the Borel σ -algebra on Rn for n ≥ 0, where B0 = {{},{[]}} and R0 = {[]}. We

define S as follows:

S , {
⊎

n∈N
Hn | Hn ∈Bn for all n ∈ N}

That is, each set in S is a countable disjoint union of Borel subsets of Rn for each

n ∈ N. We can easily verify that S is indeed a σ -algebra:

Lemma 1 S is a σ -algebra on U.

Proof: We need to check that U ∈ S and that S is closed under complement and

countable union.

• We have U=
⊎

n∈NRn, so obviously U ∈S

• Let A ∈ S . Then A =
⊎

n∈NHn, where Hn ∈ Bn for all n. We have U \A =⊎
n∈N(Rn \Hn). Each Borel σ -algebra Bn is by definition closed under comple-

ment, so (Rn \Hn) ∈Bn for all n ∈ N. Thus, U \A ∈S , and so S is closed

under complement.

• Let Ai ∈S for all i ∈ N. Then for each i, Ai =
⊎

n∈NHin, where Hin ∈Bn. Each

Bn is closed under countable union, so for all n,
⋃

i∈NHin ∈Bn.

We have
⋃

i∈NAi =
⋃

i∈N(
⊎

n∈NHin) =
⊎

n∈N(
⋃

i∈NHin), so
⋃

i∈NAi ∈S . Hence

S is closed under countable union.

38

Hence, (U,S) is a measurable space.

We can also show that S is countably generated, which will be useful in Chapter 7.

It is a well-known fact that for each n ∈N, the Borel σ -algebra Bn on Rn is countably

generated. Let T0 = {{},{[]}} for each n > 0, let Tn be a countable subset of Bn such

that Bn = σ(Tn).

Lemma 2 S = σ(
⊎

n∈NTn)

Proof: We need to show that S ⊆ σ(
⊎

n∈NTn) and S ⊇ σ(
⊎

n∈NTn):

• S ⊇ σ(
⊎

n∈NTn): Take any A ∈
⊎

n∈NTn. Then A ∈ Ti for some i ∈ N. Thus, A

can be represented as
⊎

n∈NHn, where Hi ∈ Ti ⊆Bi and H j = ∅ ⊆B j for j 6= i.

Hence, A ∈S . Thus,
⊎

n∈NTn ⊆S . Since S is a σ -algebra containing
⊎

n∈NTn

and σ(
⊎

n∈NTn) is, by definition, the smallest σ -algebra containing
⊎

n∈NTn, we

have σ(
⊎

n∈NTn)⊆S , as required.

• S ⊆ σ(
⊎

n∈NTn): Let H =
⊎

n∈NHn ∈S . Then for each i ∈N, Hi ∈Bi = σ(Ti)⊆
σ(
⊎

n∈NTn). Thus, since a σ -algebra is closed under countable union, we have

H =
⊎

n∈NHn ∈ σ(
⊎

n∈NTn). Therefore, S ⊆ σ(
⊎

n∈NTn), as required.

Lemma 3 The set
⊎

i∈NTi is countable.

Proof: For any i ∈ R, Ti is countable by definition. Thus,
⊎

i∈NTi is a countable union

of countable sets, and so it is countable.

Corollary 1 The σ -algebra S is countably generated.

In order to define a distribution on program traces, we need a stock measure on

program traces, generalising the Lebesgue measure to the measurable space (U,S),

with respect to which the trace density function will be integrated. This measure µ is

defined as follows:

µ(A), ∑
n∈N

λn(A|Rn)

where λn is the Lebesgue measure on (Rn,Bn) for n≥ 1 and λ0 = δ ([]).

Lemma 4 µ is a measure on (U,S)

39

Proof: We need to check that µ(A) ∈ [0,∞] for all A ∈S , that µ(∅) = 0 and that µ

is countably additive:

• For all A∈S , we have λn(A|Rn)∈ [0,∞] by a property of the Lebesgue measure,

so obviously µ(A) = ∑n∈Nλn(A|Rn) ∈ [0,∞]

• If A =∅, then for every n ∈N, A|Rn =∅, and since λn is a measure, λn(∅) = 0.

Hence, µ(∅) = 0.

• Let Am ∈S for all m ∈ N. Then for every m, Am = ∑n∈NHmn, where Hmn ∈Bn

for every n. We have:

µ(∑
m∈N

Am) = µ(∑
m∈N

(∑
n∈N

Hmn)) = µ(∑
n∈N

(∑
m∈N

Hmn)) = ∑
n∈N

λn(∑
m∈N

Hmn)

= ∑
n∈N

∑
m∈N

λn(Hmn) = ∑
m∈N

∑
n∈N

λn(Hmn) = ∑
m∈N

µ(Am)

as required. The equality ∑n∈N∑m∈Nλn(Hmn) = ∑m∈N∑n∈Nλn(Hmn) follows

from Tonelli’s theorem for series [Tao, 2011].

We have shown that (U,S ,µ) is a measure space. We also want to prove that the

measure µ is σ -finite. We require this property to use some standard results from mea-

sure theory literature later in this chapters. Below, we write [a,b]n for {(x1, . . . ,xn) | xi ∈
[a,b] ∀i ∈ 1..n} if n≥ 1 and [a,b]0 for {[]}.

Lemma 5 The measure µ is σ -finite.

Proof: We have Rn =
⋃

k∈N[−k,k] for all n∈N. Thus, U=
⋃

n∈NRn =
⋃

n∈N
⋃

k∈N[−k,k]n.

Thus, U is a union of countably many sets of the form [−k,k]n. Meanwhile, for all k,

n∈N, µ([−k,k]n) = λn([−k,k]n) = (2k)n < ∞. Hence, U is a union of countably many

sets on which µ is finite, so µ is a σ -finite measure.

In the rest of this dissertation, we use
∫

f (s)ds as an abbreviation of the integral∫
f (s)µ(ds) of f with respect to the measure µ on traces. We will also write |s| for

the length of s and s@t for the concatenation of the sequences s and t. We write si for

the i-th element of s (starting from 1) and si.. j for the subtrace [si, . . . ,s j] of the trace

s = [t1, . . . , tn] (where 1≤ i≤ j ≤ n).

40

3.2.3 Metric and Topological Spaces

This section presents some basic definitions concerning metric and topological spaces,

which can give rise to measurable spaces. It also presents an alternative definition of

the measurable space of program traces, as a space induced by a metric. The definitions

presented here are used in Section 6.3 of Chapter 6 and in Chapter 7, but an in-depth

understanding of metric and topological spaces is only needed to understand the proofs

in Appendix E.

Borel σ -Algebra Induced by a Metric A metric space is a pair (Ω,d), where Ω is a

set and d is a real valued function on Ω×Ω which satisfies d(x,x) = 0 and d(x,y)+

d(y,z) ≥ d(x,z) for all x,y,z ∈ Ω. A subset A of Ω is called open if every point x in

A has a neighbourhood lying completely in A—that is, there exists ε > 0 such that

{y ∈Ω | d(x,y)< ε} ⊆ A.

A topology on a set Ω is the set O of subsets of Ω such that:

• ∅ ∈ O and Ω ∈ O

• O is closed under finite intersections—that is, if O1, . . . ,On ∈O , then O1∪·· ·∪
On ∈ O

• O is closed under countable unions—that is, if Oi ∈O for all i∈N, then
⋃

i∈NOi ∈
O .

The elements of O are called open sets and the pair (Ω,O) is called a topological

space.

A topology on Ω induced by a metric d is the smallest topology containing all the

open sets of (Ω,d).

The σ -algebra B(Ω) on Ω generated by the topology O is the Borel σ -algebra. We

call the σ -algebra on Ω generated by the topology induced by d the Borel σ -algebra

induced by d.

Closed Subsets of Metric and Topological Spaces Given a sequence of points xn

in a metric space (X ,d), we say that x is the limit of xn, written xn→ x, if for all ε > 0,

there exists an N such that d(xn,x) < ε . A subset A of a metric space is closed if it

contains all the limit points— that is, if xn ∈ A for all n and xn→ x, then x ∈ A.

41

A subset A of a topological space (X ,O) is closed if its complement X \A is open.

If (X ,O) is induced by a metric space (X ,d), then the closed sets in (X ,O) are pre-

cisely the closed sets in (X ,d).

A σ algebra induced by a metric space contains all its open and closed sets.

Separable Metric Spaces A subset A of a metric space (X ,d) is dense if

∀x ∈ X ,ε > 0 ∃y ∈ A d(x,y)< ε

A metric space is separable if it has a countable dense subset.

Continuous and Measurable Functions If (X ,dX) and (Y,dY) are metric spaces, a

function f : X → Y is continuous (with respect to the metrics dX , dY) if for every open

subset O of (Y,dY), f−1(O) is an open subset of (X ,dX). Equivalently, f is continuous

if for every x ∈ X and ε > 0, there exists δ such that for every x′ ∈ X , if dX(x,x′)< δ ,

then dY (f (x), f (x′))< ε .

If (X ,OX) and (Y,OY) are topological spaces, a function f : X → Y is continuous

(with respect to the topologies OX , OY) if for every open subset O of (Y,dY), f−1(O)

is an open subset of (X ,dX). Hence, a continuous function between metric spaces is

continuous with respect to the topologies induced by them.

If ΣX and ΣY are Borel σ -algebras generated by topologies OX and OY , respec-

tively, and f : X → Y is continuous with respect to OX and OY , then f is measurable

ΣX/ΣY . In this case, we call the function f Borel-measurable.

Products in Metric and Topological Spaces The Manhattan metric of metric spaces

(X1,d1), . . . ,(Xn,dn) is the metric d on X1×·· ·×Xn defined by d((x1, . . . ,xn),(y1, . . . ,yn))=

d1(x1,y1)+ · · ·+dn(xn,yn).

A product of topological spaces (X1,O1), . . . ,(Xn,On) is the smallest topology on

X1×·· ·×Xn such that all the maps πi (where πi(x1, . . . ,xn) = xi) are continuous.

If (Xi,Oi) is the topology induced by separable metric spaces (Xi,di) for each

i ∈ 1..n, the topology induced by the Manhattan metric of (X1,d1), . . . ,(Xn,dn) is the

product of (X1,O1), . . . ,(Xn,On).

Alternative definition of the measurable space of program traces A convenient

way of showing that a function is measurable is by showing that it is continuous as a

function between metric spaces. Because of that, it is convenient to redefine the σ -

algebra S as an algebra induced by a metric on U. That is, we want this metric to

42

induce a topology on U whose open sets generate S . We can define this metric as

follows:

d(s,s′),

∑
|s|
i=1 |si− s′i| if |s|= |s′|

∞ otherwise

where |s| denotes the length of s, as defined before. The set of open sets in this metric

space is clearly the disjoint union of open sets O(Rn,dn) of (Rn,dn) for each n ∈ N,

where dn is the standard Manhattan metric on Rn.

Lemma 6 The σ algebra S on U is induced by the metric d.

Proof: Let A ∈ S . Then A =
⊎

n∈NHn, where Hn ∈ Bn for each n. As each Bn

is generated by O(Rn,dn) and O(Rn,dn) ⊆ O(U,d), we have Hn ∈ σ(O(U,d)), so

A ∈ σ(O(U,d)), as σ -algebras are closed under countable union.

3.2.4 Subprobability and Probability Kernels

The following definitions are only used in Chapter 7.

If (X ,ΣX) and (Y,ΣY) are measurable spaces, a function K : X × ΣY → [0,1] is

called a subprobability kernel from (X ,ΣX) to (Y,ΣY) if:

• For every B ∈ ΣY , the function K(·,B) is measurable ΣX/B(R)|[0,1]

• For every x ∈ X , the function K(x, ·) is a subprobability measure.

Similarly, K is a probability kernel if K(x, ·) is a probability measure for every x.

If K(x,B) =
∫

B k(x,y)µ(dy), we say that K has density k with respect to the measure

µ .

3.3 Metropolis-Hastings Sampling in General State Spaces

This part of the chapter describes the Metropolis-Hastings (MH) sampling algorithm.

The material in this section is only needed to understand Chapter 7.

For more background theory on Markov chains on general state spaces, consult

[Nummelin, 1984]. A more gentle introduction to Metropolis-Hastings, focusing more

43

on its practical significance, can be found in one of the many machine learning text-

books, for example [MacKay, 2003] or [Murphy, 2012]. Meanwhile, for a more com-

prehensive account of the theory of MH on general measurable spaces, refer to [Tier-

ney, 1994], [Tierney, 1998] and [Roberts et al., 2004].

Sampling Algorithms The goal of Bayesian inference is to compute the posterior

distribution p(x|D) of some random function (the target distribution), given the prior

distribution p(x) and a set of observations D. In most cases, the posterior distribution

p(x|D) is impossible to compute analytically and it is necessary to resort to approxi-

mations. Sampling algorithms generate large numbers of samples from the posterior

distribution. These samples can then be used to compute the (approximate) properties

of the posterior distribution, such as its mean and variance, or to compute the approxi-

mate expectation of some function of the model output.

Random Variables In a measure-theoretic setting, a random variable on a set Y is

a measurable function f : Ω→ Y . This function can be understood as a map from a

source of randomness ω (being an element of the set Ω) to an observable outcome

f (ω) of a random draw.

3.3.1 Markov Chains

A Markov chain on a measurable space (X ,Σ) is a sequence of random variables on

X such that the distribution of each variable depends only on the value of the previous

variable. A Markov chain is defined by a distribution on the initial value X0 (often as-

sumed to be fixed) and a probability kernel P (from (X ,Σ) to (X ,Σ)) such that P(Xn,A)

is the probability that Xn+1 ∈ A.

We say that a probability measure π on (X ,Σ) is the invariant distribution (or

stationary distribution) of the Markov chain defined by P if

π(A) =
∫

A
P(x,A)π(dx)

for all A ∈ Σ.

The probability Pn(x,B) that the n-th element Xn of the Markov chain is in B if the

first element was x can be expressed inductively as follows:

P0(x,B) = [x ∈ B]

Pn+1(x,B) =
∫

Pn(y,B)P(x,dy)

44

Similarly, the probability Pn(x,B) that all first n elements of the Markov chain P

(as well as the starting element x) are in B can be expressed in the following way:

P0(x,B) = [x ∈ B]

Pn+1(x,B) =
∫

B
Pn(y,B)P(x,dy)

Properties of Markov Chains Let P be a Markov chain on (X ,Σ) with stationary

distribution π and let φ be any measure on (X ,Σ). We say that the kernel P is φ -

irreducible if φ(X)> 0 and for every x ∈ X and A ∈ Σ such that φ(A)> 0, there exists

n > 0 such that Pn(x,A) > 0. The kernel is strongly φ -irreducible if the above holds

for n = 1.

A φ -irreducible kernel P is periodic if there exist d > 1 and disjoint sets A1, . . . ,Ad ∈
Σ such that π(Ai) > 0 for all i ∈ 1..d and for every i, if x ∈ Ai, then P(x,Ai+1) = 1 if

i < d and P(x,Ai) = 1 if i = d. Otherwise, the kernel is aperiodic.

A φ -irreducible kernel P is Harris recurrent if for all x ∈ X and all sets A ∈ Σ

such that π(A)> 0, the probability that the Markov chain defined by P will reach A in

finitely many steps starting from x is 1.

3.3.2 Metropolis-Hastings Markov chain Monte Carlo (MH-MCMC)

Sampling directly from the target (posterior) distribution is often computationally ex-

pensive or even practically impossible, because of the presence of conditioning, which

sometimes cannot easily be simulated in a purely generative fashion. Because of this,

the Metropolis-Hastings MCMC algorithm samples from a simpler proposal distribu-

tion and subsequently discards some samples to ensure that the distribution of samples

matches the posterior.

More precisely, the MCMC algorithm generates samples by performing a random

walk on the parameter space, thus constructing a Markov chain whose stationary dis-

tribution π(·) is the distribution we want to sample from. In the Metropolis-Hastings

variant, at each step, the algorithm draws a sample x̂ from some proposal kernel Q(x, ·)
(proposal distribution parametrised by X) centred at the current state x of the Markov

chain. The sample is subsequently accepted with probability α(x, x̂), depending on

both the previous and the current sample, such that the resulting procedure generates

samples distributed according to the target posterior distribution.

From a generative perspective, the algorithm works as follows:

(1) Set k = 0 and choose some initial value x

45

(2) Sample a new value x̂ from the proposal kernel Q(xk, ·).

(3) Accept the sample x̂ with probability α(xk, x̂). If accepted, set xk+1 to x̂, other-

wise set xk+1 to xk.

(4) Set k to k+1 and continue from step 2.

Proposal Kernel with a Density We now concentrate on the particular case where

the proposal kernel and the target distribution have densities with respect to the same

measure— that is, Q(x,A) =
∫

A q(x,y)µ(dy) and π(A) =
∫

A π̇(x)µ(dx), where q(·, ·)
and π̂(·) are densities of the proposal kernel and target distribution, respectively. In

this case, the correct acceptance ratio is:

α(x,y) =

0 if π̂(x)q(x,y) = 0
π̂(y)q(x,y)
π̂(x)q(y,x) otherwise

This acceptance ratio ensures that the resulting Markov chain is reversible.

The algorithm described above constructs a Markov chain with the following tran-

sition kernel:

P(x,A) =
∫

A
α(x,y)q(x,y)µ(dy)+ [x ∈ A]

∫
(1−α(x,y))q(x,y)µ(dy)

46

Chapter 4

Tabular: A Schema-based

Probabilistic Language

Acknowledgement This chapter is based on the paper “Probabilistic Programs as Spread-

sheet Queries” [Gordon et al., 2015] published at the 2015 European Symposium on

Programming (ESOP). The paper was joint work with Andrew D. Gordon, Claudio

Russo, Johannes Borgström, Nicolas Rolland, Thore Graepel and Daniel Tarlow.

Most existing probabilistic languages are essentially probabilistic extensions of

conventional programming languages. They are convenient tools for specifying com-

plex Bayesian models, but require all the necessary data to be loaded and put in the

right data structures. This can often be problematic and require a large amount of data

pre-processing.

The Tabular language, first presented by Gordon et al. [2014], takes a different

approach. Instead of extending an ordinary programming language with primitives

for sampling and conditioning, Tabular extends schemas of relational databases with

probabilistic model expressions and annotations. This idea is based on the observation

that in model-based Bayesian machine learning, the starting point is not the model

itself, but the dataset to which one wants to fit a model, which has to be stored in some

sort of database—for example a spreadsheet. In Tabular, the probabilistic model is

built on top of the data, and the data do not need to be transformed to conform to the

program.

In this chapter, we present the syntax, dependent type system and semantics of a

new, substantially enhanced version of Tabular, which features user-defined functions

47

and queries on inference results. We present a reduction relation reducing Tabular

programs with function applications to Core models containing only simple expres-

sions and corresponding directly to factor graphs. By Theorem 1, this reduction is

type-sound. Taking the view that the meaning of a program is defined by the particu-

lar quantities we want to estimate, rather than just marginal distributions on program

variables, we define the semantics of a Tabular program to be the database of expected

outcomes of queries on probabilistic expressions. Theorem 2 shows that this seman-

tics is well-defined.

4.1 Introduction and Examples

In this section, we introduce Tabular informally, explaining its features by examples.

We also list the contributions of this chapter and compare the current formulation of

the language to the preliminary version of Tabular [Gordon et al., 2014].

4.1.1 Probabilistic Programming in Tabular

A Tabular program is constructed by extending a database schema with:

• Latent columns representing unknown parameters, not present in the database,

which we want to infer from the data,

• Annotations defining roles of respective columns in the probabilistic model (in-

put variables, modelled output variables, local variables),

• Model expressions, which express our belief about how the values in the given

column of the database were computed.

In the simplest case, model expressions are ordinary expressions written in a first-

order functional language with random draws. We refer to schemas and tables contain-

ing only such simple expressions as Core schemas and tables. Other kinds of models

include function applications and indexed models, which will be discussed later.

Let us begin the presentation of Tabular with an example adapted from [Gordon

et al., 2014]), implementing the TrueSkill model [Herbrich et al., 2006] for ranking

players in online video games. Suppose we have a database containing the outcomes

of past matches between some players. This database can have the following schema

(where we assume that each table has an implicit, integer-valued ID column, serving

as the primary key of the table):

48

table Players

Name string

table Matches

Player1 link(Players)

Player2 link(Players)

Win1 real

where Win1 is true if the match was won by player 1 and false if player 2 won the

match (we assume there are no draws). Based on these past results, we want to infer

the relative skills of the players.

According to the TrueSkill model, we quantify the performance of a given player

in a certain match by a numeric value, which is a noisy copy of the player’s skill. We

assume that each match was won by the player with higher performance value. We can

implement this model in Tabular by extending the above schema as follows 1:

table Players

Name string!det input

Skill real!rnd output Gaussian(100.0, 100.0)

table Matches

Player1 link(Players)!det input

Player2 link(Players)!det input

Perf1 real!rnd output Gaussian(Player1.Skill, 100.0)

Perf2 real!rnd output Gaussian(Player2.Skill, 100.0)

Win1 bool!rnd output Perf1 > Perf2

We have added one new column, not present in the database, to the Players table

and two columns to the Matches table. The Players table now has a Skill attribute. This

column is not expected to be present in the input database—its distribution is to be

inferred from the observed data. By assigning the expression Gaussian(100.0,100.0)

to this column, we have defined the prior distribution on players’ skills to be a Gaussian

with mean 100 and variance 100. Similarly, the values of the Perf1 and Perf2 columns

are, in the generative interpretation of the model, drawn from Gaussians centred at the

skills of the corresponding players (the expression Player1.Skill is a reference to the

value of Skill in the row of Players linked to by Player1, and similarly for Player2.Skill).

Finally, the observed Win1 column is assigned the expression Perf1 > Perf2, which

expresses the condition that in every row of the Matches table, Perf1 must be greater

than Perf2 if Win1 in this row is true in the database, and not greater than Perf2 if

Win1 is false—otherwise, the values of the parameters would be inconsistent with the

observations.
1As explained in section 4.2, in the formal syntax of Tabular, each column has a global and local

name, because of issues with α-conversion. In the introductory examples in this section, we only give
each column one name, serving both as a global and local identifier, to simplify presentation.

49

The types in the second schema include det and rnd annotations which specify

whether the data in the given column is deterministic (known in advance) or random

(to be inferred by the inference algorithm). These annotations, which we call spaces,

are used by the type system to catch information flow errors, such as supposedly de-

terministic data depending on random variables. Tabular columns can also be in space

qry, which will be discussed later.

Obviously, in order to perform inference in the above model, we need to parametrize

it on a particular dataset. In Tabular, like in BUGS and Stan, input data is decoupled

from the program and is loaded by the compiler from a separate spreadsheet. This

approach makes it possible to run inference in the same model with multiple datasets

without modifying the model. The TrueSkill model, as implemented above, was de-

signed to be applied to databases containing thousands of matches and players, but the

following is a valid tiny input database for this schema:

Players

ID Name

0 "Alice"

1 "Bob"

2 "Cynthia"

Matches

ID Player1 Player2 Win1

0 0 1 false

1 1 2 false

In this example, we have only three players, Alice, Bob and Cynthia, and we as-

sume that Bob beat Alice in the first match and was beaten by Cynthia in the second

one.

The default inference algorithm of Tabular, Expectation Propagation [Minka, 2001],

adds the approximate distributions of unobserved random columns to the input database.

The output database for the above tiny example is as follows:

Players

ID Name Skill

0 "Alice" Gaussian(95.25, 82.28)

1 "Bob" Gaussian(100.0, 70.66)

2 "Cynthia" Gaussian(104.8, 82.28)

Matches

ID Player1 Player2 Perf1 Perf2 Win1

0 0 1 Gaussian(90.49, 129.1) Gaussian(104.8, 123.6) false

1 1 2 Gaussian(95.25, 123.6) Gaussian(109.5, 129.1) false

50

This matches our intuition that Cynthia, having beaten the winner of the first match,

is most likely to be the best of the three players, and Alice is probably the weakest.

In addition to the style of inference described above, called query-by-latent-column,

Tabular also supports query-by-missing-value, where the database has some missing

entries for one or many output columns and the goal is to compute the distributions

on the missing values. For example, if we want to predict the outcome of an upcoming

match between Alice and Cynthia, we can extend the matches table as follows:

Matches

ID Player1 Player2 Win1

0 0 1 false

1 1 2 false

2 0 2 ?

The Tabular inference engine will then compute the distribution of Win1 in the third

column.

Matches

ID Player1 Player2 Perf1 Perf2 Win1

0 0 1 Gaussian(90.49, 129.1) Gaussian(104.8, 123.6) false

1 1 2 Gaussian(95.25, 123.6) Gaussian(109.5, 129.1) false

2 0 2 Gaussian(95.25, 182.3) Gaussian(104.8, 182.3) Bernoulli(0.3092)

4.1.2 User-Defined, Dependently-Typed Functions

In addition to basic models, the original formulation of Tabular featured a fixed col-

lection of conjugate models, which could be used to write complex programs more

concisely. In the new version, these models are replaced by user-defined functions,

which are defined in the same way as ordinary tables. Functions help Tabular users

make their schemas shorter and more concise by abstracting away arbitrary repeated

blocks of code which only differ by some values used in the model expressions. The

language features a library of standard functions, replacing the fixed collection of the

preliminary version.

To illustrate how functions can be used in Tabular, let us consider the well-known

problem of inferring the bias of a coin from the outcomes of coin tosses. Assuming

that each bias (between 0 and 1) is equally likely, this model can be represented in

Tabular as follows:

51

table Coins

V real!rnd[2] static output Dirichlet[2]([1.0, 1.0])

Flip mod(2)!rnd output Discrete[2](V)

where Dirichlet[2]([1.0,1.0]) is just the uniform distribution on pairs of two probabil-

ities adding up to 1, and Discrete[2](V) draws 0 or 1 (representing tails and heads,

respectively) with probability proportional to the corresponding component of V .

This model, in which the parameter to the discrete distribution has a uniform

Dirichlet prior, is an instance of the Conjugate Discrete model. Conjugate Discrete,

which is a building block of many more complex models, is defined in the standard

function library as follows:

fun CDiscrete

N int!det static input

R real!det static input

V real!rnd[N] static output Dirichlet[N]([for i < N→R])

ret mod(N)!rnd output Discrete[N](V)

The arguments of this function, N and R, denote, respectively, the length of the pa-

rameter vector and the value of each component of the hyperparameter vector passed

to the prior (the higher the value of R, the closer together the components of the param-

eter vector are expected to be). This function also demonstrates the use of dependent

types: real[N] indicates that the given column is an array of reals of size determined

by the variable N, and mod(N) denotes a non-negative integer smaller than N.

It is worth noting that in the definition of CDiscrete we could alternatively make

the entire pseudocount vector passed to Dirichlet[N] an argument of type real!det[N].

With this function in place, we can rewrite the coin toss model as follows:

table Coins

Flip mod(2)!rnd output CDiscrete(N=2, R=1.0)

The reduction algorithm presented later in this chapter reduces this table to the

form presented above, modulo renaming of column names.

Tabular also supports indexing function applications, which results in turning static

parameters of the model into arrays, indexed by a categorical variable. For example,

suppose that in the above problem we have two coins with different biases, and we

always toss one of them, chosen at random with equal probability. To infer the biases

of the coins, we can adapt the above Tabular program as follows:

table Coins

CoinUsed mod(2)!rnd output Discrete[2]([0.5, 0.5])

Flip int!rnd output CDiscrete(N=2, R=1)[CoinUsed < 2]

Now, we have two copies of the bias vector V, one for each coin, and at each row,

the vector indicated by the random variable CoinUsed is used.

52

4.1.3 Query Variables

Another novel feature of Tabular is the infer operator, which can be used to extract

properties of an inferred distribution, such as its mean (in case of, say, a Gaussian) or

bias (in case of a Bernoulli distribution). These properties can then be used to compute

some pseudo-deterministic data dependent on the inference results.

For instance, in the above biased coin example, we might be interested in extracting

the actual bias of the coin, as a numeric value rather than a distribution. Since the pos-

terior distribution of the bias is a Dirichlet distribution, parametrized by the “counts”

of the numbers of heads and tails, the bias itself is the count of heads divided by the

sum of the counts. Using the infer operator, we can compute it as follows:

table Coins

V real!rnd[2] static output Dirichlet[2]([1.0, 1.0])

Flip mod(2)!rnd output Discrete[2](V)

counts real!qry[2] static local infer.Dirichlet[2].counts(V)

Bias real!qry static output counts[1]/(counts[1]+counts[0])

For instance, if we apply this model to a tiny database consisting of three coin flip

outcomes, two of them being heads and one being tails, the inference algorithm returns

the following static quantities:

Coins

V counts Bias

Dirichlet(2, 3) [2,3] 0.6

In the expression infer.Dirichlet[2].counts(V), Dirichlet[2] denotes the type of distri-

bution from which we want to extract a property, counts is the name of the parameter

we want to extract (in Tabular, all distributions have named parameters) and V is the

column in which the distribution is defined.

Note that all columns containing calculations dependent on the result of a query

are in the qry space. Columns in this space can only reference random variables via

the query operator.

4.1.4 Critique of the Preliminary Version

A preliminary version of the Tabular language was presented by Gordon et al. [2014].

While the proposed design went a long way in making probabilistic programming more

intuitive and data-centric, the original formulation of the language suffered from some

deficiencies and left some room for improvement.

53

For one thing, the modelling language of the preliminary version of Tabular is

rather limited. Each column of data can only be modelled by a simple Fun expression,

a model from a small, fixed library of primitive models or an indexed library model.

There is no way of creating custom, reusable models and if the user wants to use,

for instance, their own conjugate model, they have to copy and paste the columns

containing all the parameters and the output of the model wherever they are used,

changing the hyperparameter values as required.

Apart from this, the syntax, semantics and type system of the language are rather

unintuitive. The type system of original Tabular associates each well-formed schema

with a quintuple of nested record types, which give the types of individual parameters,

inputs and outputs defined by the schema. Since a model expression in a single col-

umn of a table can have its own parameters and outputs, it is not immediately clear

what the random variables in the program are. The typing rules split the columns into

their parameter and output components, treating different kinds of variables defined by

a column separately and inserting their types in different nested record types—hence,

determining the type of a schema or a table requires manipulating nested records, mak-

ing it difficult to understand what the type of a given model should be.

The paper also defines the semantics of Tabular, by means of a reduction relation

translating well-typed Tabular schemas to so-called models, consisting of triples of

Fun expressions, which have well-defined measure-theoretic semantics [Gordon et al.,

2013]. Defining the semantics by means of translation to another language adds a

layer of indirection. Moreover, the translation rules are very complex, and rely on

manipulating let-spines.

It is also not possible to compute any quantities depending on inference results

inside Tabular. This means that, for instance, to perform decision theory, the user has

to first compute the marginal distribution of interest in Tabular, and then use another

tool to perform any computation based on some property (mean, variance, etc.) of this

distribution.

Finally, the original version of Tabular is not embedded in Excel (nor any other

spreadsheet package), but implemented as a standalone application based on Microsoft

Access. However, the new Excel plugin was implemented by other members of the

team and is outside the scope of this dissertation.

54

4.1.5 Contributions

We present a revised, significantly improved version of Tabular, featuring user-defined

functions, dependent types and pseudo-deterministic queries, which were all absent on

the preliminary version. This new version also fixes the problems with α-conversion

and variable substitution, found in the original formulation of Tabular, by giving each

column both a fixed external name and an α-convertible internal name.

We define a new, more structural type system of Tabular, in which the type of

any well-defined table has the same form as the table itself, with the function calls

expanded and the model expressions removed. In order to catch common modelling

errors, we introduce basic dependent expression types: an array type can have a size

depending on a previously defined deterministic column, and an integer-valued expres-

sion can have a bound, also defined by the value of a previous, deterministic column.

We provide a reduction system reducing Tabular programs with function calls and

indexing to schemas in Core Tabular, containing just basic model expressions. Core

schemas have the property that each column represents exactly one variable or array

of variables (with as many components as there are rows in the given table), so they

are easy to understand and have a straightforwards interpretation as factor graphs with

plates. We prove that every well-typed Tabular table reduces deterministically to a

unique Core Tabular table with the same type.

To enable the user to compute derived quantities based on inference results within

Tabular, we introduce a new infer operator, which extracts a property of an inferred

distribution, such as mean or variance. The value returned by infer can then be used in

subsequent computations, which are performed after inference is completed.

After adding the infer operator, we now have three different kinds of columns

in Tabular: deterministic columns, whose values are known before inference; ran-

dom columns, whose distributions are to be inferred and may depend on deterministic

columns, and query columns, depending on inferred distributions. The values or distri-

butions of these columns (in all rows) must be computed in the right order, for instance,

a random column cannot depend on the result of a query. To make sure that there are

no erroneous dependencies in the program, we split columns into three spaces: det,

rnd and qry; we add space annotations to the column types and extend the type system

to ensure that the constraints on dependencies between columns are preserved.

In addition to the reduction relation reducing schemas to Core form, we also define

the semantics of Core Tabular in two steps: first, we present a sampling-based op-

55

erational semantics, which can be integrated to obtain marginal measures on queried

expressions. Subsequently, we define another operational semantics, which computes

the values of pseudo-deterministic queries, taking the previously computed map of

marginals as input. We show that the composition of these two semantics, applied to a

well-typed schema and a conformant database, yields a well-formed output database.

In summary, this chapter makes the following novel research contributions:

• A dependent type system for probabilistic database schemas with information

flow tracking

• A syntactic embedding of user-defined functions inside schemas

• A reduction system reducing probabilistic schemas to a Core form, equivalent to

factor graphs

• Theorem 1: A type soundness result for the reduction system

• A sampling-based semantics mapping a source of randomness to the values of

queried expressions, which can be integrated to yield marginal measures on

queried expressions

• An operational query semantics computing results of pseudo-deterministic queries,

given marginal measures of queried expressions.

• Theorem 2: The composition of the sampling-based semantics and the query

semantics, applied to a well-typed schema with a conformant input database,

returns a well-formed output database.

4.1.6 Interface and Implementation

The new version of Tabular is implemented as an Excel plugin and both the database

and the annotated schema are loaded directly from spreadsheets. The aim of this em-

bedding was to provide domain experts with a convenient modelling environment. The

Tabular implementation is based on the Infer.NET backend, whose main inference al-

gorithm is Expectation Propagation [Minka, 2001].

Both the Excel interface and the backend were designed and developed by other

members of the research team and are left outside the scope of this dissertation. For

more details, see the original paper [Gordon et al., 2014].

56

Note About the Inference Engine

The default inference engine of Tabular, which uses Expectation Propagation [Minka,

2001], only allows conjugate models to be used in Tabular programs (that is, models

in which the posterior distribution of a variable has the same form as the prior). This

means that, for instance, defining a Gaussian distribution whose mean has a Gamma

prior will result in an error. However, conjugacy is not enforced by the language de-

sign, because it is a requirement of a particular inference algorithm and other backends

could be implemented.

4.2 Syntax of Tabular

Having introduced Tabular informally, we now present the formal syntax of the lan-

guage. Since programs and data are decoupled in Tabular, we need to define the syntax

for both Tabular databases and schemas.

4.2.1 Syntax of Databases

A Tabular database is a tuple DB = (δin,ρsz), consisting of two maps whose domain is

the set of names of tables in the database. The first map, δin = [ti 7→ τi
i∈1..n], assigns

to each table another map τi = [ci 7→ ai
j∈1..mi] mapping each column ci to an attribute

ai. An attribute ai = `i(Vi) consists of a level `i and a value Vi, which can be a scalar s

(that is, an integer, a real or a Boolean) or an array of values. The level of an attribute

can be either static, in which case the given column has only one value accross all

rows, or inst, which means that the column has one value per row. In the latter case, Vi

is actually an array of values, with one value per row. Column names c have the same

form as external column names in schemas (described below), except that they are not

allowed to be empty.

The second map, ρsz = [ti 7→ szi
i∈1..n], simply stores the sizes of tables. The value

of each inst-level attribute of table ti must be an array of size szi.

Any value Vi in the database can be nullable, that is, any static attribute can have an

empty value (denoted ?) and in any inst attribute, any number of component values can

be empty. An empty value in a row of an output column means that the distribution on

the given row and column is to be inferred from other data by the inference algorithm.

Databases, Tables, Attributes, and Values:

57

δin ::= [ti 7→ τi
i∈1..n] table map

c,o ::= b1.(. . .).bn column name

τ ::= [ci 7→ ai
i∈1..m] table in database

ρsz ::= [ti 7→ szi
i∈1..n] table size map

a ::= `(V) attribute value: V with level `

V ::= ? | s | [V0, . . . ,Vn−1] nullable value

`, pc ::= static | inst level (static < inst)

4.2.2 Syntax of Core Schemas

We begin by giving the syntax of Core schemas, which have a straightforward inter-

pretation as factor graphs and a direct semantics (presented later in this chapter). We

first define the basic building blocks of a Tabular column.

Index Expressions, Spaces and Dependent Types of Tabular:

e ::= index expression

x variable

s scalar constant

sizeof(t) size of a table

S ::= bool | int | real scalar type

spc ::= det | rnd | qry space

T,U ::= (S ! spc) | (mod(e) ! spc) | T [e] (attribute) type

c,o ::= _ | b1.(. . .).bn external column name

space(S ! spc), spc space(mod(e) ! spc), spc space(T [e]), space(T)

An indexed expression is a constant, a variable (referencing a previous column or

an array index) or a sizeof expression, returning the size of the given table (that is,

sizeof(t) returns ρsz(t) if ρsz is the map of table sizes).

A scalar type is one of bool, int or real. These correspond to scalar types in

conventional languages.

A space of a column, being part of its type, can be either det, rnd or qry, depending

on whether the column is deterministic, random or at query-level.

58

An attribute type can be either a scalar type S with a space, a dependent bounded in-

teger type mod(e), whose bound is defined by the indexed expression e, with a space,

or a recursively defined array type T [e], where T is an arbitrary type and e an in-

dexed expression defining the size of the array. We use link(t) as a shorthand for

mod(sizeof(t)).

An external column name, used to reference a column from another table or to

access a field of a reduced function body, is either empty (denoted by _) or consists of

a sequence of one or more atomic names bi, separated by dots.

The space operator, used in the remainder of this chapter, returns the unique space

annotation nested within the given type.

Expressions of Tabular:

E,F ::= expression

e index expression

g(E1, . . . ,En) deterministic primitive g

D[e1, . . . ,em](F1, . . . ,Fn) random draw from distribution D

if E then F1 else F2 if-then-else

[E1, . . . ,En] | E[F] array literal, lookup

[for x < e→ F] for loop (scope of index x is F)

infer.D[e1, . . . ,em].c(E) parameter c of inferred marginal of E

E : t.c dereference link E to instance of c

t.c dereference static attribute c of t

The grammar of expressions, defining models of the particular columns of the ta-

ble, is mostly standard for a first-order functional language. The expression

D[e1, . . . ,em](F1, . . . ,Fn) represents a random draw from a primitive distribution D with

hyperparameters determined by the indexed expressions e1, . . . ,em and parameters de-

fined by the expressions F1, . . . ,Fn. The operator infer.D[e1, . . . ,em].c(E) returns an

approximate value of the parameter c of the posterior distribution of expression E, ex-

pected to be of the form D[e1, . . . ,em]. Access to columns defined in previous tables is

provided via the operators t.c and E : t.c, referencing, respectively, the static attribute

with global name c of table t and the E-th row of inst-level attribute with global name

c of table t.

We assume a fixed (but extensible) collection of deterministic and random primi-

tives. The deterministic primitives include the following:

59

Deterministic Primitives: g : (x1 : T1, . . . ,xn : Tn)→ T

(>) : (x1 : real!det,x2 : real!det)→ bool!det

(>) : (x1 : int!det,x2 : int!det)→ bool!det

(=) : (x1 : int!det,x2 : int!det)→ bool!det

or : (x1 : bool!det,x2 : bool!det,)→ bool!det

(−) : (x1 : real!det,x2 : real!det)→ real!det

(−) : (x1 : int!det,x2 : int!det)→ int!det

Distribution signatures are parametrized by spc, to distinguish the use of corre-

sponding distributions in random models and inside queries. This distinction was

made to simplify typing rules for Tabular (shown in Section 4.4). The signatures of

distributions include the following:

Distributions: Dspc : [x1 : T1, . . . ,xm : Tm](c1 : U1, . . . ,cn : Un)→ T

Bernoullispc : (bias : real!spc)→ bool!rnd

Betaspc :: (a : real!spc,b : real!spc)→ real!rnd

Discretespc : [N : int!det](probs : real!spc[N])→mod(N)!rnd

Dirichletspc : [N : int!det](pseudocount : (real!spc)[N])→ (real!rnd)[N]

Gammaspc : (shape : real!spc,scale : real!spc)→ real!rnd

Gaussianspc : (mean : real!spc,variance : real!spc)→ real!rnd

VectorGaussianspc :

[N : int!det](mean : (real!spc)[N],covariance : real!spc[N][N])→
(real!rnd[N])

The names of parameters of distributions are fixed and not α-convertible, as they

can be referenced by name by the infer operator. The lists of deterministic and random

functions can be extended with any other operators and distributions. Moreover, we can

include multiple signatures for different parametrisations of the same distribution—for

instance, the Gaussian distribution, parametrised above by its mean and variance, can

also be parametrised by mean and precision (inverse of variance). This parametrisation

is convenient when defining the conjugate Gaussian model.

Distributions: Dspc : [x1 : T1, . . . ,xm : Tm](c1 : U1, . . . ,cn : Un)→ T

60

GaussianFromMeanAndPrecisionspc : (mean : real!spc,prec : real!spc)→ real!rnd

The syntax of Core Tabular schemas is as follows:

Core Tabular Schemas:

S ::= [] | (t1 = T1) :: S (database) schema

T ::= [] | (c. x : T ` viz M) :: T table (or function) (scope of x is T)

viz ::= input | local | output visibility

M,N ::= ε | E model expression

A Tabular schema S consists of any number of named tables T, each of which is

a sequence of columns. Every column in Core Tabular has a field name c, an internal

name x, a type T (as defined earlier), a level (static or inst), a visibility (input, output

or local) and a model expression, which is empty for input columns and is a simple

expression E for other types of columns. The local visibility is just like output, except

that local columns are not exported to the type of the schema (as defined by the type

system, described in Section 4.4), and so can be considered local variables. The default

level of a column is inst, and we usually omit the level if it is not static.

In the rest of this chapter, col denotes a single column (c. x : T ` viz M) of a table,

where its components are unimportant.

Motivation for double column names In the syntax of the new version of Tabular

presented in the paper on which this chapter is based [Gordon et al., 2015], each col-

umn only had one name. This caused a problem with alpha-conversion: if a column is

visible outside the given table, then its name cannot be alpha-convertible, since renam-

ing the column would break references to it from outside the table. On the other hand,

alpha-conversion is necessary for the substitution and function reduction (discussed in

Section 4.3) to work properly. To mitigate this issue, we now follow the standard ap-

proach used in module systems, first presented by Harper and Lillibridge [1994]: we

give each column two names, a local, alpha-convertible name, which is only in scope

of a given table, and a global, fixed field name, which can only be used outside the

table (or function).

In practice, we can assume that the internal and external name are initially the same

(with the latter possibly updated by substitution).

61

4.2.3 Syntax of Schemas with Functions and Indexing

The full Tabular language supports two additional kinds of model expressions: function

applications and indexed models.

A function is represented as a Core table whose last “return” column is identified

by the name ret and has visibility output. A function T can be applied to a list of

named arguments R, whose types and number must match the types and number of

input columns in the function table. Note that function arguments are identified by

the field name of the corresponding column. The reduction algorithm (presented in

Section 4.3) reduces a column containing a function application to the body of the

function with all input columns removed and the input variables in subsequent model

expressions replaced by the corresponding arguments.

The output column of a function can be referenced in the “caller” table simply by

the (local) name of the “caller” column. Other columns can be referenced by means of

a new operator e.c, where e is expected to be the local name x of the “caller” column

and c is the field name of the referenced column of the table (we need to use the field

name, because the local name is only in scope in the function itself).

An indexed expression M[eindex < esize] represents the model M with all rnd static

attributes turned into arrays of size esize and references to them replaced by array

lookups extracting the element at index eindex.

Full Tabular Schemas:

E ::= · · · | e.c expression

M,N ::= · · · |M[eindex < esize] | T R model expression

R ::= (c1 = e1, . . . ,cn = en) function arguments

The function field reference is only defined to be e.c rather than x.c in order for

substitution to be well-defined (as described in Section 4.3.1.1). Note that the index-

ing operator is only meaningful if it is applied (possibly multiple times) to a function

application, since it has no effect on basic expressions.

4.2.3.1 Free Variables and Core Columns

The free variables in a table T are all local variables used in model expressions which

are not bound by column declarations or for-loops. They are formally defined as fol-

lows:

62

Free Variables: fv(R), fv(E), fv(M)fv(T):

fv([]) =∅
fv((c = E) :: R) = fv(E)∪ fv(R)

fv(s) =∅
fv(x) = x

fv(sizeof(t)) =∅
fv(g(E1, . . . ,En)) = fv(E1)∪·· ·∪ fv(En)

fv(D[e1, . . . ,em](F1, . . . ,Fn) = fv(e1)∪·· ·∪ fv(em)∪ fv(E1)∪·· ·∪ fv(En)

fv(if E then F1 else F2) = fv(E1)∪ fv(F1)∪ fv(F2)

fv([E1, . . . ,En]) = fv(E1)∪·· ·∪ fv(En)

fv(E[F]) = fv(E)∪ fv(F)

fv([for x < e→ F]) = fv(F)\{x}
fv(infer.D[e1, . . . ,em].c(E)) = fv(e1)∪·· ·∪ fv(em)∪ fv(E)

fv(E : t.c) = fv(E)

fv(t.c) =∅
fv(x.c) = {x}

fv(ε) =∅
fv(T R) = fv(T)∪ fv(R)

fv(M[eindex < esize]) = fv(M)∪ fv(eindex)∪ fv(esize)

fv([]) =∅
fv(((c. x : T ` viz M) :: T) = fv(T)∪ fv(M)∪ (fv(T)\{x})

fv([]) =∅
fv((t = T) :: S) = fv(T)∪ fv(S)

Note that unbound occurrences of field names are not considered as free variables,

as they are a separate syntactic category.

The predicate Core states that the given schema, table or column is in Core form,

as defined earlier. Formally, we can define this operator by the following rules:

Core Attributes, Tables, and Schemas:

Core((c. x : T ` input ε)) Core((c. x : T ` local E)) Core((c. x : T ` output E))

Core([])

Core(col :: T) if Core(col) and Core(T)

63

Core([])

Core((t = T) :: S) if Core(T) and Core(S)

4.3 Reduction to Core Tabular

We now define the reduction relation reducing arbitrary well-typed Tabular schemas

(with function applications and indexing) to a Core form.

Judgments:

S→ S′ schema reduction

T→ T′ table reduction

M→M′ model reduction

As usual, we present a basic example before discussing the technical details. However,

this time we make the distinction between local and field names explicit, to illustrate

how substitution and renaming work.

Consider the following function implementing the very widely used Conjugate

Gaussian model, whose output is drawn from a Gaussian with mean modelled by an-

other Gaussian and precision (inverse of variance) drawn from a Gamma distribution:

fun CG

M . M real!det static input

P . P real!det static input

Mean . Mean real!rnd static output GaussianFromMeanAndPrecision(M,P)

Prec . Prec real!rnd static output Gamma(1.0, 1.0)

ret . ret real!rnd output GaussianFromMeanAndPrecision(Mean, Prec)

Suppose we want to use this function to model eruptions of the Old Faithful geyser.

The eruptions of this geyser, known for its regularity, can be split into two clusters

based on their duration and waiting time: some eruptions are shorter and occur more

frequently, others are longer but one has to wait longer to see them. Given a database

consisting of eruption durations and waiting times (not split into clusters), we want

to infer the means and precisions of the distributions of durations and waiting times

in each of the two clusters. If we simply modelled the duration and waiting time

with a call to CG, we would obtain a single distribution for the mean and precision of

each quantity, but we can turn each Mean and Prec column into an array of size 2 by

combining the function calls with indexing.

64

table Faithful

cluster . cluster mod(2)!rnd output (CDiscrete(N=2)

duration . duration real!rnd output CG(M=0.0, P=1.0)[cluster<2]

time . time real!rnd output CG(M=60.0, P=1.0)[cluster<2]

4.3.1 Reducing Function Applications

Before we introduce the reduction of indexed models, let us consider a simplified ver-

sion of the above model, with just function applications:

table Faithful

duration . duration real!rnd output CG(M=0.0, P=1.0)

time . time real!rnd output CG(M=60.0, P=1.0)

To reduce the duration and time columns to a Core form, we must expand the appli-

cations. This is done by just replacing the given column with the body of the function

with the arguments substituted for the input variables. The field name of the last col-

umn, always expected to be the keyword ret, is replaced by the name of the “caller”

column, and the field names of previous columns are prefixed with the field name of

the “caller” column. This is done to ensure that field names in the reduced table are

unique, even if the same function is used several times.

Meanwhile, local names can be refreshed (by alpha-conversion), to make sure they

do not clash with variables which are free in the remainder of the “caller” table (refer-

encing columns preceding the function application) or the remaining arguments. Ref-

erences to the columns of the function in the “caller” table (of the form x.c) are then

replaced with the refreshed local column names.

In the end, the above table reduces to the following form:

table Faithful

duration.Mean . Mean real!rnd static output GaussianFromMeanAndPrecision(0.0,1.0)

duration.Prec . Prec real!rnd static output Gamma(1.0,1.0)

duration . duration real!rnd output GaussianFromMeanAndPrecision(Mean,Prec)

time.Mean . Mean real!rnd static output GaussianFromMeanAndPrecision(60.0,1.0)

time.Prec . Prec real!rnd static output Gamma(1.0,1.0)

time . time real!rnd output GaussianFromMeanAndPrecision(Mean,Prec)

Note that, just like in ordinary languages, variable definitions can be overshadowed

by more closely scoped binders. The variable Mean in the duration column refers to

the definition in the column with external name duration.mean, and Mean in column

time refers to the definition in the column with field name time.Mean, and similarly

with Prec.

65

4.3.1.1 Binders and Capture-avoiding Substitution

In order to define the reduction rules formally, we first need two capture-avoiding sub-

stitution operators on tables: T{e/x}, which replaces free occurrences of the variable x

with the index expression e, and T〈y/x.c〉, which replaces function field references x.c

with a single local variable y.

The substitution T{e/x}, together with auxiliary operators E {e/x}, T {e/x}, R{e/x}
and M {e/x}, is defined as follows:

Substitution: E {e/x}, T {e/x}, R{e/x}, M {e/x}, T{e/x}

y{e/x},

e if y = x

y otherwise

s{e/x}, s

sizeof(t){e/x}, sizeof(t)

g(E1, . . . ,En){e/x}, g(E1 {e/x} , . . . ,En {e/x})
D[e1, . . . ,em](F1, . . . ,Fn){e/x}, D[e1 {e/x} , . . . ,em {e/x}](F1 {e/x} , . . . ,Fn {e/x})
(if E then F1 else F2){e/x}, if E {e/x} then F1 {e/x} else F2 {e/x}
[E1, . . . ,En]{e/x}, [E1 {e/x} , . . . ,En {e/x}]
(E[F]){e/x}, E {e/x} [F {e/x}]

[for y < e′→ F]{e/x},

[for y < e′ {e/x}→ F] if y = x

[for y < e′ {e/x}→ F {e/x}] otherwise if y /∈ fv(e)

infer.D[e1, . . . ,em].c(E){e/x}, infer.D[e1 {e/x} , . . . ,em {e/x}].c(E {e/x})
E : t.c{e/x}, E[A,e] : t.c

t.c{e/x}, t.c

e′.c{e/x}, (e′ {e/x}).c

S ! spc{e/x}, S ! spc

T [e′]{e/x}, (T {e/x})[e′ {e/x}]
mod(e′){e/x},mod(e′ {e/x})

[]{e/x}, []

((c = e′) :: R){e/x}, (c = e′ {e/x}) :: R{e/x}

ε {e/x}, ε

M[e1 < e2]{e/x},M {e/x} [e1 {e/x}< e2 {e/x}]
(T R){e/x}, (T{e/x}) (R {e/x})

[]{e/x}, []

66

((c. y : T ` viz M) :: T){e/x},(c. y : T {e/x} ` viz M {e/x}) :: T if y = x

(c. y : T {e/x} ` viz M {e/x}) :: (T{e/x}) if y 6= x and y /∈ fv(e)

In the reduction of function applications, only variables referencing Core columns

are ever substituted, so the case e′.c{e/x} is only defined for mathematical complete-

ness.

As usual, the substitution operator is applied to α-equivalence classes of terms,

rather than ground terms themselves, so we can always assume that binders are not

free in the substituted expression e. The substitution in α-equivalence classes of Tab-

ular programs could be defined more formally using the theory of nominal sets, devel-

oped by Pitts [2006]. To this end, we would have to show that the sets of all Tabular

expressions, types and tables are nominal sets (that is, sets whose all elements are sup-

ported2 by some finite sets of atomic names) and define for each data constructor K

a non-recursive function fK taking separate components of an expression and return-

ing the constructed expression with one step of the substitution (without recursing into

subexpressions) performed. Then, if we showed that all functions fK were supported

by some single set A and did not introduce new fresh variables (which would, in fact,

hold by inspection), by Theorem 5.1 from [Pitts, 2006] there would be a single family

of functions f̂s (one for each data sort s) such that for every s, the function f̂s would

unfold into repetitive applications of functions fK to the subterms of the original term.

This family would in fact define our substitution function.

A rigorous account of α-structural recursion for Tabular programs would, however,

be very tedious and rather uninteresting, so it is left outside the scope of this disser-

tation. To simplify presentation, in the remainder of this chapter we will resort to the

usual, slightly informal recursive definitions, which implicitly assume that all binders

are fresh.

The substitution T〈y/x.c〉 of function field accesses in tables, together with the aux-

iliary operators, is defined below.

Function field access substitution: E〈y/x.c〉, M〈y/x.c〉, T〈y/x.c〉

z〈y/x.c〉, z

2In this context, an element X of some nominal set is supported by A if for all a,a′ /∈ A, swapping a
and a′ in X has no effect

67

s〈y/x.c〉, s

sizeof(t)〈y/x.c〉, sizeof(t)

g(E1, . . . ,En)〈y/x.c〉, g(E1〈y/x.c〉, . . . ,En〈y/x.c〉)
D[e1, . . . ,em](F1, . . . ,Fn){e/x}, D[e1, . . . ,em](F1〈y/x.c〉, . . . ,Fn〈y/x.c〉)
(if E then F1 else F2)〈y/x.c〉, if E〈y/x.c〉 then F1〈y/x.c〉 else F2〈y/x.c〉
[E1, . . . ,En]〈y/x.c〉, [E1〈y/x.c〉, . . . ,En〈y/x.c〉]
(E[F])〈y/x.c〉, E〈y/x.c〉[F〈y/x.c〉]
[for z < e′→ F]〈y/x.c〉, [for z < e′→ F〈y/x.c〉]
infer.D[e1, . . . ,em].d(E)〈y/x.c〉, infer.D[e1, . . . ,em].d(E〈y/x.c〉)
E : t.d〈y/x.c〉, E〈z/x.c〉 : t.d

t.d〈y/x.c〉, t.d

e.d〈y/x.c〉,

y if e = x and d = c

e.d otherwise

ε〈y/x.c〉, ε

M[e1 < e2]〈y/x.c〉,M〈y/x.c〉[e1 < e2]

(T R)〈y/x.c〉, (T〈y/x.c〉) R

((c. z : T ` viz M) :: T)〈y/x.c〉,(c. z : T ` viz M〈y/x.c〉) :: T if y = x

(c. z : T ` viz M〈y/x.c〉) :: (T〈y/x.c〉) otherwise if y /∈ fv(e)

[]〈y/x.c〉, []

Note that we do not need to define field access substitutions in argument lists and

types, because they cannot contain any expressions of the form x.c by the definition of

the syntax.

To illustrate how field reference substitution works, consider again the simplified

version of the Old Faithful model from the beginning of Section 4.3.1, but this time

using different local variable and field names, to emphasise the fact that they are not

the same thing:

table Faithful

duration . x real!rnd output CG(M=0.0, P=1.0)

time . y real!rnd output CG(M=60.0, P=1.0)

Suppose we want to calculate the mean of the posterior distribution of the mean

of duration (using the infer operator, described in 4.1.3). To this end, we need to add

68

an additional column to the above table, which references the column with field name

Mean in the reduced application of CG in the column duration. As field names are not

binders, we need to use the local name x of the column duration. On the other hand, as

the local names of the columns of CG are not visible outside the function CG itself, we

need to access the column Mean of CG by using its field name. Hence, the reference

has the form x.Mean, and the full table is the following:

table Faithful

duration . x real!rnd output CG(M=0.0, P=1.0)

time . x’ real!rnd output CG(M=60.0, P=1.0)

duration_mean . z real!qry output infer.Gaussian.mean(x.Mean)

When the function application in column duration is reduced (as described in the

next section), and the column Mean of the application of CG in duration is turned into

a column with local name y in the main table, we need to substitute references to the

(no longer existing) column x.Mean in the rest of the table with the variable y by using

the operator 〈y/x.c〉. Applying this substitution to the last two columns of the above

table yields:

time . x’ real!rnd output CG(M=60.0, P=1.0)

duration_mean . z real!qry output infer.Gaussian.mean(y)

One might be concerned that the substitution 〈y/x.c〉 would not work correctly if the

function application pointed to by x was assigned to another variable z, for example in

a part of a table of the form:

field1 . z real!rnd output x

field2 . z’ real!rnd output z.c

However, it is impossible to assign a function application to another variable in

Tabular, as it is impossible to reference a function application as a whole. If a variable

x referencing a function application is used on its own (not in a field reference x.c), it

always denotes the last column of the reduced application, not the application itself.

The expression z.c in the above table is not well-typed, as z does not refer to a function.

4.3.1.2 Reduction Relation

The reduction is defined by means of the small-step reduction relation, reducing one

column of the function table at a time, being the least relation closed under the set of

rules presented below. In the reduction rules, we normally use o for the name of the

“caller” column and c for the name of a column in the function table, to disambiguate

between the two.

69

Reduction Rules for Tables: T→ T′

(RED APPL OUTPUT) (for Core(T))
y /∈ fv(T′,R)∪{x} c 6= ret

(o. x : T ` viz ((c. y : T ′ `′ output E) :: T) R) :: T′→
(o.c. y : T ′ (`∧ `′) viz E) :: (o. x : T ` viz T R) :: T′〈y/x.c〉

(RED APPL LOCAL) (for Core(T))
y /∈ fv(T′,R)∪{x}
(o. x : T ` viz ((c. y : T ′ `′ local E) :: T) R) :: T′→
(_. y : T ′ (`∧ `′) local E) :: (o. x : T ` viz T R) :: T′

(RED APPL INPUT) (for Core(T))

(o. x : T ` viz (c. y : T ′ `′ input ε) :: T (c = e) :: R) :: T′→
(o. x : T ` viz T

{
e/y
}

R) :: T′

(RED APPL RET)

(o. x : T ` viz [(ret. y : T ′ `′ output E)] []) :: T′→
(o. x : T ′ (`∧ `′) viz E) :: T′

(RED TABLE RIGHT)

T→ T′ Core(col)

col :: T→ col :: T′

The (RED APPL OUTPUT) rule (in which viz is expected to be local or output) re-

duces a single output column of a function by appending it to the main table, preceded

by the “caller” column with the unevaluated part of the application T R (which will be

reduced in the next step). If the function was called from a static column, the level of

the reduced function column is changed to static. Similarly, if the function was called

from a local column, the visibility of the reduced column is dropped to local. Because

the reduced column is appended to the main table, it has to be referenced using its

internal name (recall that field names are not binders). Hence, all references to it, of

the form x.c, are replaced with its internal name y. Meanwhile, the global name of the

reduced column is prefixed by the field name of the “caller” column.

To avoid capturing free variables which are not bound by the reduced column in the

original table, y is required to be fresh in T′ and R. This is always possible, because

70

tables are identified up to alpha-conversion of internal column names, so y can be

refreshed if needed (formally speaking, the reduction relation is a relation on alpha-

equivalence classes of syntactic terms).

(RED APPL LOCAL) is similar, except that we do not need to substitute y for x.c in

T, because the given column is not visible outside the function. The external name of

a reduced column can be empty, because local columns are not exported.

The (RED APPL INPUT) rule removes an input column and replaces all references

to it in the rest of the function with the corresponding argument.

The last column of a function is reduced by (RED APPL RET), which simply re-

places the application of the single ret column to the empty argument list with the

expression from the said column. The level is also changed to static if the ret column

was static. The internal and field names of the top level column are left unchanged,

and the names of the last column of the function are discarded, because the last column

of a function is always referenced by the name of the “caller” table.

(RED TABLE RIGHT) is a congruence rule, allowing us to move to the next column

of the main table if the current first column is already in Core form.

Example of Function Reduction To see how the reduction rules work, let us con-

sider again the version of the Old Faithful example used in Section 4.3.1.1, with the

additional duration_mean column:

table Faithful

duration . x real!rnd output CG(M=0.0, P=1.0)

time . x’ real!rnd output CG(M=60.0, P=1.0)

duration_mean . z real!qry output infer.Gaussian.mean(x.Mean)

The reduction rules reduce the duration column first. In the beginning, the rule

(RED APPL INPUT) is applied twice, and reduces the columns M and P of the function

CG in duration, replacing references to M and P in the body of CG with corresponding

arguments. The reduced table has the following form:

table Faithful

duration . x real!rnd output CG’()

time . x’ real!rnd output CG(M=60.0, P=1.0)

duration_mean . z real!qry output infer.Gaussian.mean(x.Mean)

where CG’ is the following partially evaluated function:

fun CG’

Mean . Mean real!rnd static output GaussianFromMeanAndPrecision(0.0,1.0)

Prec . Prec real!rnd static output Gamma(1.0, 1.0)

ret . ret real!rnd output GaussianFromMeanAndPrecision(Mean, Prec)

71

The next rule to be applied is (RED APPL OUTPUT), which reduces the first column

Mean of CG’ and replaces references to it, of the form x.Mean, with the local name of

the reduced column (which we can assume is still Mean, as the name does not conflict

with any other variable), in the rest of the top-level table by using the field substitution

operator. The reduced table has the following form:

table Faithful

duration.Mean . Mean real!rnd static output GaussianFromMeanAndPrecision(0.0,1.0)

duration . x real!rnd output CG’’()

time . x’ real!rnd output CG(M=60.0, P=1.0)

duration_mean . z real!qry output infer.Gaussian.mean(Mean)

where CG’’ is:

fun CG”

Prec . Prec real!rnd static output Gamma(1.0, 1.0)

ret . ret real!rnd output GaussianFromMeanAndPrecision(Mean, Prec)

Note that Mean in CG’’ refers to the column defined outside the function (which

is in scope of CG’’, as functions are assumed to be defined inline, even though the

implementation uses named functions).

The remaining columns of function applications are reduced similarly, except that

the local name Mean in the second application of CG has to be changed by α-conversion,

as Name is free in the last column of the top-level table.

4.3.2 Reducing Indexed Models

In order to reduce a column with an indexed function application, we need to transform

the function into an indexed form before applying it to the arguments. In the case of the

duration column of the original table of the running example, this transformation needs

to turn the expressions of all static rnd columns into arrays of size 2, with each element

modelled by the original expression, and replace all references to these columns in the

rest of the table with array accesses, returning the component at index cluster.

For instance, applying indexing [cluster < 2] to the function CG yields the follow-

ing indexed function

M . M real!det static input

P . P real!det static input

Mean . Mean real!rnd static output [for _ < 2→GaussianFromMeanAndPrecision(M,P)]

Prec . Prec real!rnd static output [for _ < 2→Gamma(1.0, 1.0)]

ret . ret real!rnd output GaussianFromMeanAndPrecision(Mean[cluster], Prec[cluster])

72

parametrised on the free variable cluster defined outside the function.

Reducing the application of this function to (M = 0.0,P = 1.0) in the duration

column gives the following table:

duration.Mean . Mean real!rnd[2] static output [for _ < 2→GaussianFromMeanAndPrecision(0.0,1.0)]

duration.Prec . Prec real!rnd[2] static output [for _ < 2→Gamma(1.0,1.0)]

duration . duration real!rnd output GaussianFromMeanAndPrecision (Mean[cluster], Prec[cluster)

More generally, table indexing is formalized via the operator indexA(T,e1,e2),

where T is the table (reduced application) to index, e1 and e2 are, respectively, the

index variable and the number of clusters and A is the (initially empty) set of static

rnd columns, which needs to be available to convert variables into array accesses cor-

rectly.

We disallow indexing tables with qry columns, since substituting a reference to a

query column with an array access with a random index would break the information

flow constraints, so indexed query columns would not have a well-defined semantics.

The predicate NoQry states that a given Core table or model has no qry-level columns.

Tables without query columns: NoQry(T), NoQry(M) for M 6= E

NoQry([])

NoQry((c. x : T ` viz E) :: T) iff ¬qry(T) and NoQry(T)

NoQry(T R) iff NoQry(T)
NoQry(M[e1 < e2]) iff NoQry(M)

The indexing operator makes use of a new capture-avoiding substitution operator:

E[A,e] denotes E with every variable x in the set of variables A (supposed to contain

only static rnd variables), occurring outside parts of syntax where an indexed expres-

sion e or a variable is expected, replaced with the array access x[e].

More formally, this operator is defined as follows:

Expression indexing: E[A,e]

x[A,e],

x[e] if x ∈ A

x otherwise

c[A,e], c

sizeof(t)[A,e], sizeof(t)

g(E1, . . . ,En)[A,e], g(E1[A,e], . . . ,En[A,e])

73

D[e1, . . . ,em](F1, . . . ,Fn)[A,e], D[e1, . . . ,em](F1[A,e], . . . ,Fn[A,e])

(if E then F1 else F2)[A,e], if E[A,e] then F1[A,e] else F2[A,e]

[E1, . . . ,En][A,e], [E1[A,e], . . . ,En[A,e]]

(E[F])[A,e], E[A,e][F [A,e]]

[for x < e′→ F][A,e], [for x < e′→ F [A,e]] if x /∈ fv(e)∪A

infer.D[e1, . . . ,em].y(E)[A,e], infer.D[e1, . . . ,em].y(E[A,e])

E : t.c[A,e], E[A,e] : t.c

t.c[A,e], t.c

x.c[A,e], x.c

We do not need to worry about variables which cannot be replaced with expres-

sions other than index expressions due to syntax restrictions, as (in non-qry columns

of functions) they are always expected to be deterministic or occur in function field ref-

erences of the form x.c, while indexing is only supposed to modify random variables

referencing Core columns.

The case infer.D[e1, . . . ,em].y(E)[A,e] is only defined for mathematical complete-

ness, as the infer operator can only be used in qry-level columns, which cannot be

indexed by assumption.

The indexing operator is defined inductively below.

Table Indexing: indexA(T,e1,e2), where NoQry(T)

indexA([],e1,e2), []

indexA((c. x : T static viz E) :: T,e1,e2),

(c. x : T [e2] static viz [for i < e2→ E[A, i]]) :: indexA∪{x}(T,e1,e2)

if viz 6= input and rnd(T) and x /∈ fv(e1)∪ fv(e2)∪A and i /∈ fv(E)

indexA((c. x : T ` input ε) :: T,e1,e2),

(c. x : T ` input ε) :: indexA(T,e1,e2) if x /∈ fv(e1)∪ fv(e2)∪A

indexA((c. x : T ` viz E) :: T,e1,e2),

(c. x : T ` viz E[A,e1]) :: indexA(T,e1,e2)

otherwise if x /∈ fv(e1)∪ fv(e2)∪A.

Unsurprisingly, indexing an empty table returns an empty table. In any static rnd

column, the model expression E is turned into an array of e2 elements, each modelled

by E. Since E may contain references to other static rnd columns of the original table,

74

which have been turned into arrays, we must replace these references (by means of

the [,] operator) with array accesses, returning values at indices corresponding to the

positions of the expressions. Before index is applied recursively to the rest of the table,

the variable x is added to the set A of rnd static variables, so that each reference to x

in subsequent rnd static and rnd inst columns would be replaced with an appropriate

array access.

Input columns are left unchanged by index, and in inst-level random columns,

references to previous static rnd columns are replaced by array accesses returning

the e1 -th component. Note that E[A, i] leaves expressions in deterministic columns

unchanged, because all variables in the set A are expected to be random.

With the index operator in place, we can define the remaining reduction rules re-

quired to reduce indexed expressions:

Reduction Rules for Models: M→M′

(RED INDEX)

Core(T) NoQry(T)
(T R)[eindex < esize]→ (index∅(T,eindex,esize)) R

(RED INDEX INNER)

M→M′

M[eindex < esize]→M′[eindex < esize]

(RED INDEX EXPR)

E[eindex < esize]→ E

Reduction Rules for Tables: T→ T′

(RED MODEL)

M→M′

(c. x : T ` viz M) :: T→ (c. x : T ` viz M′) :: T

The (RED INDEX) rule applies the index operator to the function table in an appli-

cation, returning a pure function application which will be reduced at table level.

The (RED INDEX INNER) rule simply allows reducing a model nested in an indexed

expression, in case this model is an indexed model itself. Since basic expressions have

no static parameters of their own, indexing a basic expressions has no effect, so the

(RED INDEX EXPR) rule just discards the indexing.

The (RED MODEL) rule allows reducing a model (other than a function application)

in a column of a table.

75

4.3.3 Reducing Schemas

Finally, we have two reduction rules for schemas:

Reduction Rules for Schemas: S→ S′

(RED SCHEMA LEFT)

T→ T′

(t = T) :: S→ (t = T′) :: S

(RED SCHEMA RIGHT)

S→ S′ Core(T)
(t = T) :: S→ (t = T) :: S′

The (RED SCHEMA LEFT) rule reduces the first table, while (RED SCHEMA RIGHT)

proceeds to the following table if the first one has already been fully reduced.

Putting all these rules together, we can finally reduce the Old Faithful model to

Core form:

table faithful

cluster.V . V real!rnd[2] static output Dirichlet[2]([for i < 2→1.0])

cluster . cluster mod(2)!rnd output Discrete[2](V)

duration.Mean . Mean real!rnd[2] static output [for i < 2→GaussianFromMeanAndPrecision(0.0, 1.0)]

duration.Prec . Prec real!rnd[2] static output [for i < 2→Gamma(1.0, 1.0)]

duration . duration real!rnd output GaussianFromMeanAndPrecision(Mean[cluster], Prec[cluster])

time.Mean . Mean real!rnd[2] static output [for i < 2→GaussianFromMeanAndPrecision(60.0, 1.0)]

time.Prec . Prec real!rnd[2] static output [for i < 2→Gamma(1.0, 1.0)]

time . time real!rnd output GaussianFromMeanAndPrecision(Mean[cluster], Prec[cluster])

As noted before, a Tabular model in Core form has a straightforward interpretation

as a factor graph. Assuming that the table faithful has n rows, the reduced Old Faithful

model corresponds to the following (directed) factor graph, in which we use abbre-

viated variable names (for example dM for duration.Mean) to make the presentation

cleaner:

d j

GaussianMP(dMc j ,dPc j)

dMi dPi

GaussianMP(0.0,1.0) Gamma(1.0,1.0)

t j

GaussianMP(tMc j , tPc j)

tMi tPi

GaussianMP(60.0,1.0) Gamma(1.0,1.0)

c j

cV

Discrete[2](cV)

Dirichlet[2]([1.0,1.0])

i ∈ 0,1

j ∈ 0..n−1

76

The boxes with solid edges are plates, which create multipe copies of given vari-

ables and factors—for instance, we have n values of dMi, one for each i, each drawn

from the same distribution GaussianMP(0.0,1.0). The boxes with dotted lines are

gates [Minka and Winn, 2008], which select a factor based on the value of a categori-

cal variable (c j in this case). While the graph above is directed to make the dependency

structure explicit, the arrow heads can be removed to obtain a standard, undirected fac-

tor graph.

4.4 Type System

Type systems are useful in probabilistic languages because they specify the domain of

each random variable and ensure that each random draw is used where a value in the

given domain is expected. Thus, types guide the modelling process and help prevent

incorrect dependencies between variables.

As seen in examples in the previous sections, Tabular makes use of basic dependent

types and determinacy and binding time annotations. All the type constraints in Tabular

are checked statically, which allows some modelling errors to be caught before the

inference procedure is started, thus saving the user time on debugging.

In this section, we define the Tabular type system formally and present the type

soundness property of the reduction system shown in Section 4.3 (deferring the de-

tailed proof until Appendix B).

In addition to the column types introduced in Section 4.2, we also give types to

model expressions, tables and schemas. These types define the spaces of input and

output variables of the probabilistic models defined by programs or their parts.

Limitations of the Type System The type system does not enforce conjugacy, which

is required by the default inference engine of Tabular, because we wanted to keep the

developments in this chapter independent of a particular inference algorithm. More-

over, well-typedness of a Tabular program does not guarantee that Expectation Propa-

gation inference will always succeed. Lack of conjugacy and other algorithm-specific

issues may result in the inference algorithm failing at runtime, in which case an error

message from the inference backend is shown to the user in the implementation.

77

4.4.1 Syntax of Tabular Types

To each model and table, we assign a type Q (hereafter called Q-type), which consists

of a list of column names (local and global), column types, levels and visibilities. A

single component of type Q is just a table column without a model expression. The

Q-types used here are akin to right-associating dependent record types [Pollack, 2002],

except that in their inhabitants, the values of fields may depend on previous fields, like

in translucent sums [Harper and Lillibridge, 1994].

The type Sty of a schema is just a list of table identifiers paired with corresponding

table types. Note that these types are notably simpler than the nested record types used

in the original formulation of Tabular [Gordon et al., 2014].

We define three predicates on Q-types: fun(Q), which means that the given type Q

is a valid function type, whose last column is marked as the return column, table(Q),

which states that Q has no deterministic static columns and can type a top-level (i.e.

non-function) table, and red(Q), which states that Q is the type of a reduced function

application, having no input columns.

Table and Schema Types:

Q ::= [] | (c . x : T ` viz) :: Q table type (scope of x is Q, viz 6= local)

Sty ::= (t : Q) :: Sty schema type

fun(Q) iff vizn = output and cn = ret

table(Q) iff for each i ∈ 1..n, `i = static⇒ rnd(Ti)∨qry(Ti)

red(Q) iff table(Q) and for each i ∈ 1..n, vizi = output

The predicate table(Q) ensures that no top-level columns can be referenced in

subsequent column types (because only static det columns can appear in types), which

guarantees that all column types in Core tables (including reduced tables) are closed,

except possibly for table size references. This property is necessary because columns

can be referenced from other tables, and any variables in a type would be free outside

the table in which the corresponding column was defined.

We extend the definition of fv to Q-types:

Free Variables: fv(Q)

fv([]) =∅
fv(((c. x : T ` viz)) :: Q) = fv(T)∪ (fv(Q)\{x})

78

Schemas, tables, models and expressions are all typechecked in a given typing en-

vironment Γ, which is an ordinary typing environment except that it has three kinds of

entries (for variables denoting previous columns, previous tables and reduced function

applications) and the entries for columns include level annotations as well as column

types (recall that column types themselves contain binding type annotations).

Tabular Typing Environments:

Γ ::=∅ | (Γ,x :` T) | (Γ, t : Q) | (Γ,x : Q) environment

The domain dom(Γ) of an environment Γ is the set of all variable and table names

in the environment:

Domain of an Environment:

dom(∅) =∅
dom(Γ,x :` T) = {x}∪dom(Γ)

dom(Γ, t : Q) = {t}∪dom(Γ)

dom(Γ,x : Q) = {x}∪dom(Γ)

Below is the list of all judgments of the Tabular type systems, which will be de-

scribed in detail in the remainder of this section.

Judgments of the Tabular Type System:

Γ ` � environment Γ is well-formed

Γ ` T in Γ, type T is well-formed

Γ `pc e : T in Γ at level pc, index expression e has type T

Γ ` Q in Γ, table type Q is well-formed

Γ ` Sty in Γ, schema type Sty is well-formed

Γ ` T <: U in Γ, T is a subtype of U

Γ `pc E : T in Γ at level pc, expression E has type T

Γ `pc R : Q→ Q′ R sends function type Q to model type Q′

Γ `pc M : Q model expression M has model type Q

Γ `pc T : Q table T has type Q

Γ ` S : Sty schema S has type Sty

79

Tabular programs and types are identified up to α-conversion of internal column

names and variables bound by for-loops. A formal definition of α-equivalence in

Tabular can be found in Appendix A.

4.4.2 Type Well-formedness and Expression Types

We begin with the well-formedness rules for environments and column types and typ-

ing rules for indexed expressions (which are mutually dependent on each other). Be-

low, ty(s) denotes the scalar type of the scalar s: real if s is a real number, int if it is an

integer and bool if it is a Boolean. The symbol @ denotes concatenation of Q-types

Rules for Types, Environments, and Index Expressions: Γ ` � Γ ` T Γ `pc e : T

(ENV EMPTY)

∅ ` �

(ENV VAR)

Γ ` T x /∈ dom(Γ)

Γ,x :pc T ` �

(ENV FUN) (red(Q))

Γ ` Q x /∈ dom(Γ)

Γ,x : Q ` �

(ENV TABLE) (table(Q))

Γ ` Q t /∈ dom(Γ)

Γ, t : Q ` �

(TYPE SCALAR)

Γ ` �
Γ ` S ! spc

(TYPE RANGE)

Γ `static e : int ! det

Γ `mod(e) ! spc

(TYPE ARRAY)

Γ ` T Γ `static e : int ! det

Γ ` T [e]

(INDEX VAR) (for `≤ pc)

Γ ` � Γ = Γ1,x :` T,Γ2

Γ `pc x : T

(INDEX SCALAR)

Γ ` � S = ty(s)

Γ `pc s : S ! det

(INDEX MOD)

Γ ` � 0≤ n < m

Γ `pc n : mod(m) ! det

(INDEX SIZEOF)

Γ ` � Γ = Γ′, t : Q,Γ′′

Γ `pc sizeof(t) : int ! det

(FUNREFRET)

Γ ` � Γ = Γ′,x : Q,Γ′′

Q = Q′@[(ret. y : T ` output)] `≤ pc

Γ `pc x : T

The (ENV EMPTY), (ENV VAR), (ENV FUN) and (ENV TABLE) rules state that an

environment is well typed if and only if its variables are unique, all column and ta-

ble types are well-formed (in the preceding part of the environment), all table types

satisfy the table predicate and all reduced function types satisfy red. The (TYPE

SCALAR) rule says that a scalar type is well-formed in any well-formed environ-

ment, while (TYPE RANGE) and (TYPE ARRAY) state that only static, determinis-

tic, integer-valued index expressions can appear in types. The (INDEX VAR) rule im-

poses the restriction that only static-level variables can be used in static expressions.

80

The rules (INDEX SCALAR) and (INDEX MOD) are straightforward, while (INDEX

SIZEOF) states that table sizes are treated as integers. Finally, (FUNREFRET) allows

to access the return column of a application via the local name of the “caller” column.

Next, we define well-formedness rules for Q-types and schema types:

Formation Rules for Table and Schema Types: Γ ` Q Γ ` Sty

(TABLE TYPE [])

Γ ` �
Γ ` []

(TABLE TYPE INPUT)

Γ ` T Γ,x :` T ` Q

c /∈ names(Q)

Γ ` (c. x : T ` input) :: Q

(TABLE TYPE OUTPUT)

Γ ` T Γ,x :` T ` Q

c /∈ names(Q)

Γ ` (c. x : T ` output) :: Q

(SCHEMA TYPE [])

Γ ` �
Γ ` []

(SCHEMA TYPE TABLE)

Γ ` Q table(Q) Γ, t : Q ` Sty

Γ ` (t : Q) :: Sty

These rules simply require all column types in a Q-type and all table types in a

schema type to be well-formed (in the environments formed by preceeding columns

and tables), all local identifiers to be unique and all field names to be unique within

the Q-types in which they are defined. Tables in a schema must also satisfy the table

predicate.

Every expression in Tabular belongs to one of the three spaces det, rnd and qry,

determined by the expression’s type. We want to allow information flow from det to

rnd space, because it is harmless to use a deterministic value where a value potentially

“tainted” by randomness is expected. Similarly, we want to allow flow from det to qry,

but not the other way round, nor between rnd and qry. We embed these restrictions in

the type system by means of a subtyping relation on column types. We first define a

preorder≤ on spaces as the least reflexive relation satisfying det≤ rnd and det≤ qry.

We also define a (partial) least upper bound spc∨ spc′.

Least upper bound: spc∨ spc′ (if spc≤ spc′ or spc′ ≤ spc)

spc∨ spc = spc det∨ rnd = rnd det∨qry = qry

(The combination rnd∨qry is intentionally not defined.)

We can lift the ∨ operation to types in the straightforward way.

81

Operations on Types and Spaces: T ∨ spc

(S ! spc)∨ spc′ , S ! (spc∨ spc′) T [e]∨ spc, (T ∨ spc)[e]

(mod(e) ! spc)∨ spc′ ,mod(e) ! (spc∨ spc′)

With these operations in place, we can define the subtyping rules:

Rules of Subtyping: Γ ` T <: U

(SUB SCALAR)

Γ ` � spc1 ≤ spc2

Γ ` S ! spc1 <: S ! spc2

(SUB MOD)

Γ `static e : int ! det spc1 ≤ spc2

Γ `mod(e) ! spc1 <: mod(e) ! spc2

(SUB ARRAY)

Γ ` T <: U

Γ `static e : int ! det

Γ ` T [e]<: U [e]

These rules state that Γ ` T <: U if and only if both T and U are well-formed in

Γ, they are of the same form and space(T)≤ space(U). This implies that we can use a

det value when a rnd or qry value is expected.

Below, we present the typing rules for basic model expressions. Most of them are

similar to the typing rules of Fun [Borgström et al., 2013], the language on which the

grammar of expressions is based, except that they also handle spaces. We also need to

add rules for dereference operators, function column accesses and the infer primitive.

Typing Rules for Expressions: Γ `pc E : T

(SUBSUM)

Γ `pc E : T Γ ` T <: U

Γ `pc E : U

(INDEX EXPRESSION)

Γ `pc e : T (e is an index expression)

Γ `pc e : T (e seen as an expression)

(DEREF STATIC)

Γ ` � Γ = Γ′, t : Q,Γ′′

Q = Q′@[(c. x : T static viz)]@Q′′

Γ `pc t.c : T

(DEREF INST)

Γ `pc E : link(t) ! spc

Γ = Γ′, t : Q,Γ′′

Q = Q′@[(c. x : T inst viz)]@Q′′

Γ `pc E : t.c : T ∨ spc

(RANDOM) (where σ(U),U{e1/x1} . . .{em/xm})
Drnd : [x1 : T1, . . . ,xm : Tm](c1 : U1, . . . ,cn : Un)→ T

Γ `static ei : Ti ∀i ∈ 1..m Γ `pc Fj : σ(U j) ∀ j ∈ 1..n Γ ` �
{x1, . . . ,xm}∩ (

⋃
i fv(ei)) =∅ xi 6= x j for i 6= j

Γ `pc D[e1, . . . ,em](F1, . . . ,Fn) : σ(T)

82

(ITER) (where x /∈ fv(T))

Γ `static e : int ! det

Γ,x :pc (mod(e) ! det) `pc F : T

Γ `pc [for x < e→ F] : T [e]

(INDEX)

space(T)≤ spc

Γ `pc E : T [e] Γ `pc F : mod(e) ! spc

Γ `pc E[F] : T ∨ spc

(INFER) (where σ(U),U{e1/x1} . . .{em/xm})
Dqry : [x1 : T1, . . . ,xm : Tm](c1 : U1, . . . ,cn : Un)→ T

Γ `static ei : Ti ∀i ∈ 1..m Γ `pc E : σ(T) j ∈ 1..n

{x1, . . . ,xm}∩ (
⋃

i fv(ei)) =∅ xi 6= x j for i 6= j

Γ `pc infer.D[e1, . . . ,em].c j(E) : σ(U j)

(PRIM)

Γ ` � g : (x1 : T1, . . . ,xn : Tn)→ T Γ `pc Ei : Ti∨ spc ∀i ∈ 1..n

xi 6= x j for i 6= j

Γ `pc g(E1, . . . ,En) : T ∨ spc

(IF)

Γ `pc E1 : (bool ! spc) Γ `pc E2 : T Γ `pc E3 : T space(T)≤ spc

Γ `pc if E1 then E2 else E3 : T ∨ spc

(ARRAY)

Γ ` � Γ `pc Ei : T ∀i ∈ 0..n−1

Γ `pc [E0, . . . ,En−1] : T [n]

(FUNREF)

Γ ` � Γ = Γ′,x : Q,Γ′′

Q = Q′@[(c. y : T ` viz)]@Q′′

`≤ pc x 6= ret

Γ `pc x.c : T

The (SUBSUM) rule is a standard subsumption rule, which, in conjunction with the

subtyping rules, allows det-level data to be used where rnd or qry-level data is ex-

pected. The (INDEX EXPRESSION) rule simply says that every valid typing judgment

for an index expression e is also a valid judgement at the level of expressions. The rule

(DEREF STATIC) checks that there is an entry for table t in the environment and that its

Q-type has column c with type T . (DEREF INST) is similar, except that it typechecks a

reference to an inst-level column. The index E must be an integer bounded by the size

of table t. An instance dereference is only deterministic if both the index and the refer-

83

ence column are deterministic, and a reference to the value of a deterministic column

at a random index (or vice versa) is random (and similarly for queries), so we need

to join the type of the referenced column with the space of the index. The (ARRAY),

(ITER) and (INDEX) rules are standard, except that, like in (DEREF INST), we need

to join T with spc, because an array access is deterministic only if both the array and

the index are deterministic. Similarly, in (IF), the space of T depends on determinacy

of both the guard and the branches. The (PRIM) rule allows applying deterministic

primitives to rnd and qry variables (but not a combination of the two) and changes the

space of the output accordingly in these cases (recall that all the argument and return

types of deterministic functions are assumed to be in det-space).

The (RANDOM) rule requires all hyperparameters of a distribution to be static.

Since the types of parameters and the output type may depend on them, we need to

substitute the values of hyperparameters in these types.

The (INFER) rule has a similar form to (RANDOM), but instead of typing the distri-

bution arguments, it checks whether the type of the expression E defining the distribu-

tion of interest (and usually referencing a previous column), matches the output type

of the distribution D, and returns the type of argument c j (with appropriate substitution

performed).Note that the rule uses the qry version of the signature of D, in which the

types of arguments are in qry-space. This ensures that the type of a post-inference

query is in qry-space, and thus the query is not part of the probabilistic model.

The (FUNREF) rule defines the type of a column access to be the type of the given

column in the type of the reduced table, as long as this column is visible at level pc.

4.4.3 Model Types

Before we extend the type system to compound models, we define typing rules for

function argument lists. The judgment Γ`pc R : Q→Q′ means that applying a function

of type Q to R at level pc yields a table of type Q′. The typing rules for arguments

are presented below. Recall that in functions called at static level, the level of every

column is reduced to static, hence the need to join ` with pc in output types.

Typing Rules for Arguments: Γ `pc R : Q→ Q′

(ARG INPUT)
Γ ``∧pc e : T Γ `pc R : Q{e/x}→ Q′

Γ `pc ((c = e) :: R) : ((c. x : T ` input) :: Q)→ Q′

84

(ARG OUTPUT)
Γ,x :`∧pc T `pc R : Q→ Q′ c 6= ret x /∈ fv(R)

Γ `pc R : ((c. x : T ` output) :: Q)→ ((c. x : T (`∧ pc) output) :: Q′)

(ARG RET)
Γ ` T

Γ `pc R : (ret. x : T ` output)→ (ret. x : T (`∧ pc) output)

The (ARG INPUT) rule typechecks the argument e, substitutes it for the input vari-

able x and proceeds with checking the rest of R, without copying the input column x to

the output type. If the column type ` is static, e must be static by definition, and if pc

is static, then e may be referenced in the subsequent static columns of the reduced ta-

ble, hence we need to typecheck e at level `∧ pc. The following rule, (ARG OUTPUT),

just adds x to the environment (as it may appear in the types of subsequent columns)

and proceeds with processing the rest of Q, copying the current column into the output

with updated level.

Finally, (ARG RET) just checks the well-formedness of the type of the output col-

umn and updates its level.

In order to simplify typechecking indexed models, we also define an indexing op-

erator for Q-types, which changes the types of all non-input static rnd columns in Q

into array types.

Indexing a Table Type: Q[e]

∅[e],∅

((c. x : T inst viz) :: Q)[e], (c. x : T inst viz) :: (Q[e]) if x /∈ fv(e)

((c. x : T static viz) :: Q)[e], (c. x : T static viz) :: (Q[e])

if viz = input or det(T) and x /∈ fv(e)

((c. x : T static viz) :: Q)[e], (c. x : T [e] static viz) :: (Q[e])

if viz 6= input and rnd(T) and x /∈ fv(e)

We also need to make sure function tables are Core and have no trailing local and

input columns:

Table and Schema Types:

fun(T) iff Core(T) and T= T1@[(ret. x : T ` output E)]

85

where @ denotes table concatenation.

The typing rules for (non-basic) models can now be defined as follows:

Typing Rules for Model Expressions: Γ `pc M : Q

(MODEL APPL)

Γ `pc T : Q fun(T) Γ `pc R : Q→ Q′

Γ `pc T R : Q′

(MODEL INDEXED)

Γ `pc M : Q Γ `pc eindex : mod(esize) ! rnd NoQry(M)

Γ `pc M[eindex < esize] : Q[esize]

The (MODEL APPL) rule typechecks the function table and the argument lists,

returning the output type of the argument typing judgment. Meanwhile, (MODEL IN-

DEXED) uses the Q-type indexing to construct the type of an indexed model from the

type of its base model. As stated in section 4.3, only tables with no qry columns can

be indexed, so we need to ensure that the table nested in M satisfies NoQry.

4.4.4 Table Types

The rules below are used for typechecking both top-level tables and function tables,

which can be called from a static column, so we need to add the pc level to the typing

judgment. To preserve information flow restrictions, a model expression in a column

at level ` can only reference variables at level at most `. Similarly, expressions in a

function at level pc cannot use variables at level greater than pc. Hence, all model

expressions are typechecked at level `∧ pc.

4.4.4.1 Tables with Core columns

We start with rules for typechecking Core columns.

Typing Rules for Tables - Core columns: Γ `pc T : Q

(TABLE [])

Γ ` �
Γ `pc [] : []

(TABLE INPUT)

Γ,x :`∧pc T `pc T : Q c /∈ names(Q)

Γ `pc (c. x : T ` input ε) :: T : (c. x : T (`∧ pc) input) :: Q

86

(TABLE CORE OUTPUT)

Γ ``∧pc E : T Γ,x :`∧pc T `pc T : Q c /∈ names(Q)

Γ `pc (c. x : T ` output E) :: T : (c. x : T (`∧pc) output) :: Q

(TABLE CORE LOCAL) (where x /∈ fv(Q))

Γ ``∧pc E : T Γ,x :`∧pc T `pc T : Q

Γ `pc (c. x : T ` local E) :: T : Q

The (TABLE []) rule is obvious. The (TABLE INPUT) rule just adds the variable x

to the environment (at level `∧ viz) and checks the rest of the table.

The (TABLE CORE OUTPUT) rule checks the model expression E and then type-

checks the rest of the table in the environment extended with x. The type of the current

column (with level joined with pc) is concatenated with the (recursively derived) type

of the rest of the table. (TABLE CORE LOCAL) is similar to (TABLE CORE OUTPUT),

except that the type of the current column does not appear in the table type and x can-

not be free in Q (otherwise Q could contain a variable not defined in the environment

Γ in the conclusion of the rule).

Example: checking Core Tabular functions To illustrate how the typing rules for

Core tables work, recall the functions CDiscrete from Section 4.1.2 and CGaussian

from 4.3. In this and the following examples, we will use the same column-based

notation for Q-types as for Tabular tables.

The function CDiscrete has the following form, with local and field names:

fun CDiscrete

N . N int!det static input

R . R real!det static input

V . V real!rnd[N] static output Dirichlet[N]([for i < N→R])

ret . ret mod(N)!rnd output Discrete[N](V)

To typecheck CDiscrete in an empty environment at level inst, we first add the

arguments N and R to the environment, by applying (TABLE INPUT).

Now, let Γ = N :static int ! det,R :static real ! det. Then, by (ITER) and (RANDOM),

we can show that

Γ `inst Dirichlet[N]([for i < N→ R]) : real ! rnd[N]

By applying (RANDOM) again, we get

Γ,V :static real ! rnd[N] `inst Discrete[N](V) : mod(N) ! rnd

87

By (TABLE CORE OUTPUT), the last column has type:

ret . ret mod(N)!rnd output

in the environment Γ,V :static real ! rnd[N]. Applying (TABLE CORE OUTPUT) again

adds the column

V . V real!rnd[N] static output

to this type. Finally, by applying (TABLE INPUT) twice, we get the type of CDiscrete:

N . N int!det static input

R . R real!det static input

V . V real!rnd[N] static output

ret . ret mod(N)!rnd output

Similarly, CG can be shown to have the following type in the empty environment:

M . M real!det static input

P . P real!det static input

Mean . Mean real!rnd static output

Prec . Prec real!rnd static output

ret . ret real!rnd output

Example: typing function applications Recall the coin flip example from Sec-

tion 4.1.2, shown here with double column names:

table Coins

Flip . Flip int!rnd output CDiscrete(N=2, R=1.0)

This example contains a single call to CDiscrete. By the argument typing rules, we

have

∅ `inst (N = 2,R = 1.0) : QCD→ Q′CD

where QCD is the type of CDiscrete, shown above, and QCD’ is the type of the

reduced function application, having the following form:

V . V real!rnd[2] static output

ret . ret mod(2)!rnd output

By (MODEL APPL), the type of the function application is Q′CD:

∅ `inst CDiscrete(N = 2,R = 1.0) : Q′CD

88

Example: indexing model types In the Old Faithful example, we applied indexing

[cluster < 2] to the application CG(M = 0.0,P = 1.0). It can be easily shown (like in

the example above) that in any environment Γ, this application has the following type

Q′CG:

Mean . Mean real!rnd static output

Prec . Prec real!rnd static output

ret . ret real!rnd output

According to the (MODEL INDEXED) rule, in an environment Γ such that Γ `inst

cluster : mod ! rnd, the indexed application CG(M = 0.0,P = 1.0)[cluster < 2] has the

following type:

Mean . Mean real!rnd[2] static output

Prec . Prec real!rnd[2] static output

ret . ret real!rnd output

4.4.4.2 Full Tabular Tables

To typecheck columns with non-basic models, we need a prefixing operator for Q-types

and two additional rules.

Prefixing function type column names: c.Q

c.((d . x : T ` viz) :: Q) = (c.d . x : T ` viz) :: c.Q if d 6= ret

c.([(ret. x : T ` viz)]) = [(c. x : T ` viz)]

c.([(d . x : T ` viz)]) = [(c.d . x : T ` viz)] if d 6= ret

Typing Rules for Tables: Γ `pc T : Q

(TABLE OUTPUT)

Γ ``∧pc M : Qc Γ,x : Qc `pc T : Q Qc = Q′c@[(ret. y : T `′ output)]

names(c.Qc)∩names(Q) =∅
Γ `pc (c. x : T ` output M) :: T : (c.Qc)@Q

(TABLE LOCAL)

Γ ``∧pc M : Qc Γ,x : Qc `pc T : Q Qc = Q′c@[(ret. y : T `′ output)]

Γ `pc (ε . x : T ` local M) :: T : Q

The (TABLE OUTPUT) rule typechecks the model M and then recurses into the rest

of the table with the environment extended with the type Q of M, assigned to x. Note

89

that local attributes of M cannot be referenced in T. This is a design choice—local

columns in functions are only meant to be used locally. (TABLE LOCAL) is similar,

except it does not export the type of the model.

Example: typing tables with compound models Recall the coin flip model:

table Coins

Flip . Flip mod(2)!rnd output CDiscrete(N=2, R=1.0)

We have already shown that the application CDiscrete(N = 2,R = 1.0) has the

following type:

V . V real!rnd[2] static output

ret . ret mod(2)!rnd output

By (TABLE OUTPUT), the type of the Coins table is:

Flip.V . V real!rnd[2] static output

Flip . Flip mod(2)!rnd output

Similarly, we can show that the Old Faithful model from the beginning of Sec-

tion 4.3.1 has the following type:

cluster.V . V real!rnd[2] static output

cluster . cluster mod(2)!rnd output

duration.Mean . Mean real!rnd[2] static output

duration.Prec . Prec real!rnd[2] static output

duration . duration real!rnd output

time.Mean . Mean real!rnd[2] static output

time.Prec . Prec real!rnd[2] static output

time . time real!rnd output

Example: accessing function fields Let us consider once again the version of the

Old Faithful model from Section 4.3.1, with an additional column containing a function

field access:

table Faithful

duration . x real!rnd output CG(M=0.0, P=1.0)

time . x’ real!rnd output CG(M=60.0, P=1.0)

duration_mean . z real!qry output infer.Gaussian.mean(x.Mean)

As shown before, each application of CG has the following type Q′CG:

Mean . Mean real!rnd static output

Prec . Prec real!rnd static output

ret . ret real!rnd output

90

According to the typing rules, if the initial typing environment is empty, the final

column is checked in the environment Γ = x : Q′CG,x
′ : Q′CG. This final column must

be typechecked by the (TABLE CORE OUTPUT) rule, which requires that

Γ `inst infer.Gaussian.mean(x.Mean) : real ! rnd

By (INFER), this only holds if

Γ `inst x.Mean : real ! rnd

The environment Γ can be easily shown to be well-formed. Since x has type Q′CG in the

environment, and this Q-type has a column with field name Mean and type real ! rnd,

the above judgment can be derived with (FUNREF).

4.4.5 Schema Types

We round off the description of the type system with the following two self-explanatory

rules for schemas:

Typing Rules for Schemas: Γ ` S : Sty

(SCHEMA [])

Γ ` �
Γ ` [] : []

(SCHEMA TABLE)

Γ `inst T : Q table(Q) Γ, t : Q ` S : Sty

Γ ` (t = T) :: S : (t : Q) :: Sty

Top-level tables in a schema are typechecked at level inst, because they can define

both static and inst-level columns. The table typing judgment only includes the level

parameter because it is also used for typing functions, which can be called from static

columns.

4.4.6 Type Soundness and Termination of Reduction

In this section, we present the key property of the reduction system: every well-typed

schema reduces to a Core schema with the same type. To prove the type soundness

property, we need to state and prove three separate propositions: type preservation,

progress and termination of reduction. As the proofs of these results are lengthy and

require multiple auxiliary lemmas, they are omitted from the main part of this disser-

tation and can instead be found in Appendix B.

91

The type preservation proposition states that if a schema can be reduced, this re-

duced schema is well-typed and has the same type as the original schema:

Proposition 1 (Type preservation) (1) If Γ `pc M : Q and M→M′, then Γ `pc M′ :

Q

(2) If Γ `inst T : Q and T→ T′, then Γ `inst T′ : Q

(3) If Γ ` S : Sty and S→ S′, then Γ ` S′ : Sty.

Proof: In Appendix B.

The progress property states that every well-typed schema which is not in Core

form can be reduced.

Proposition 2 (Progress) (1) If Γ `pc T : Q then either Core(T) or there is T′ such

that T→ T′.

(2) If Γ `pc S : Sty then either Core(S) or there is S′ such that S→ S′.

Proof: In Appendix B.

The final property needed for the type soundness theorem is termination of reduc-

tion:

Proposition 3 (Termination) There does not exist an infinite chain of reductions S1→
S2→

Proof: In Appendix B.

By putting these propositions together, we obtain the key theoretical result of this

section, the type soundness theorem (where we write→∗ for the reflexive and transitive

closure of the reduction relation):

Theorem 1 If ∅ ` S : Sty, then S→∗ S′ for some unique S′ such that Core(S′) and

∅ ` S : Sty.

Proof: By Propositions 1 and 2, we can construct a maximal chain of reductions

S→ S1→ S2 . . . such that ∅ ` Si : Sty for all i and either Core(Si) or Si→ Si+1. By

Proposition 3, we know that this chain must be finite, so we must have Core(Si) for

some Si. The uniqueness of this Si follows from the determinacy of the reduction rules.

92

4.5 Semantics

In this section, we present the semantics of Core Tabular. Following the philosophy of

Tabular, according to which a probabilistic program defines a query on the marginal

distributions of random variables, the semantics is a database containing the most likely

values of the requested parameters of marginals and the values of pseudo-deterministic

expressions depending on these parameters.

The semantics is defined in two parts. We first introduce a sampling semantics

computing the values of expressions in infer operators (that is, subexpressions E of

expressions of the form infer.D[e1, . . . ,em].c j(E)) for a given random trace. This se-

mantics can be integrated to obtain the posterior distributions on random expressions

on which queries depend. Then, we present a pseudo-deterministic query semantics

which, given the distributions on random expressions, extracts the parameters of these

distributions and computes the values of queries.

Restrictions of the semantics To handle conditioning and post-processing more

easily, we impose three additional restrictions on Tabular tables, not enforced by the

type system:

• Every expression in a conditioned output column must be a random draw from

a primitive distribution—that is, for every output column (c. x : T ` output E)

whose entry in the database is not static(?) or inst([?, . . . ,?]), E must be of the

form D[e1, . . . ,em](E1, . . . ,En). The reason for this restriction is that the sam-

pling semantics requires the density of the random expression E to be known.

The density may not exist in general, and even when it does, deriving the density

of an arbitrary random expression is a research problem in itself [Bhat et al.,

2013] and is outside the scope of this dissertation.

This restriction is not significant in practice, because in nearly all applications

of soft conditioning, the conditioning is performed on a value of a particular

random draw rather than an arbitrary computation, and the default inference al-

gorithm for Tabular is restricted to such models anyway.

• Likewise, to simplify identification of expressions inside the infer operator when

calculating the map of marginals, we only allow the infer operator to be used at

the top level— that is, in a column (c. x : T ` viz E), either

E = infer.D[e1, . . . ,em].c j(E ′) or E contains no subexpression of the form

93

infer.D[e1, . . . ,em].c j(E ′). This restriction could easily be removed by identify-

ing expressions in infer by their positions in the top-level expressions, in addition

to the names of corresponding columns—this would, however, be tedious, so we

avoid doing that to keep the presentation clean.

An alternative would be to pre-transform the schema by moving all infer opera-

tors to separate columns.

• To simplify presentation, we only consider real-valued continuous distributions.

However, the semantics could be easily extended to support discrete ones as

well.

Note that the semantics presented in this section is independent of the inference

engine used by the Tabular implementation and models supported by the semantics are

not necessarily supported by the inference algorithm.

4.5.1 Evaluation Environments and Databases

In order to define the semantics, we need several evaluation environments, storing

the values of already evaluated columns or local variables. As an environment is es-

sentially an intermediate database, we use the same notation for environments as for

databases—that is, δ is a schema-level environment consisting of maps τ of values of

columns in individual tables. We also overload the symbol τ to denote an environment

in which the identifiers are local variable names, rather than field names.

Non-nullable Values and Tabular Typing Environments:

τ ::= [x 7→ `(V) i∈1..n] table-level environment with local identifiers

We write δ ,(t 7→ τ) for the environment or database δ extended with table-level

database τ assigned to t, and τ,(c 7→ `(V)) for the table-level environment or database

τ with `(V) assigned to c (and similarly for environments with local names).

4.5.2 Input Database Conformance

A full Core Tabular model, for which we can define the semantics, consists of a Core

schema S and a database DB. Obviously, the model is only well-defined if the database

DB is a valid database for the schema S—that is, it has values for all the input columns

94

and the conditioned output columns of S, and all the values have the right types. Note

that whether a given database conforms to a schema depends only on the type of the

schema.

All output columns must have corresponding entries of the form static(V) or

inst([V1, . . . ,Vn]) in the database; all the values in these entries can, however, be absent

(recall that we denote an absent value by the wildcard “?”). Hence, an unconditioned

output column has an entry in DB in which all the values are “?”.

We formalize the notion of well-formedness by the conformance relation DB |=
Sty, stating that the database DB conforms to the schema type Sty. This relation is

defined inductively; we start by presenting the rules deriving the auxilary table-level

judgment (τ,ρsz) |=n Q, which states that the table-level database τ , having n rows

conforms, together with the table size map ρsz, to the table type Q.

Although values V are technically a distinct syntactic category from expressions

E in the syntax of Tabular, in the typing judgments in the rest of this section, we will

treat non-null values V as Tabular expressions and write Γ `` V : T to mean that V is

not “?” and has type T in Γ (at level `) when considered as a Tabular expression.

In the rules below, we write ρsz(T) for the type T with all table sizes of the form

sizeof(t) substituted by corresponding entries in ρsz.

Conformance Rules for Table-Level Input Databases: (τ,ρsz) |=n Q

(CONF [])

(τ,ρsz) |=n []

(CONF STATIC INPUT)

τ(c) = static(V) ∅ `static V : ρsz(T)

(τ,ρsz) |=n Q ¬det(T)

(τ,ρsz) |=n (c. x : T static input) :: Q

(CONF INST INPUT)

τ(c) = inst([V0, . . . ,Vn−1]) ∅ `inst Vi : ρsz(T) ∀i ∈ 0..n−1

(τ,ρsz) |=n Q

(τ,ρsz) |=n (c. x : T inst input) :: Q

95

(CONF STATIC OUTPUT)

τ(c) = static(V) V =? ∨∅ `static V : ρsz(T)

(τ,ρsz) |=n Q ¬det(T)

(τ,ρsz) |=n (c. x : T static output) :: Q

(CONF INST OUTPUT)

τ(c) = inst([V0, . . . ,Vn−1]) Vi =? ∨∅ `inst Vi : ρsz(T) ∀i ∈ 0..n−1

(τ,ρsz) |=n Q

(τ,ρsz) |=n (c. x : T inst output) :: Q

The first rule (CONF []) is obvious. The rule (CONF STATIC INPUT) requires that

for every static input column in the table type, there must be a well-typed value (with

the static tag) in the database τ . Static input columns cannot be deterministic, as

already required by the type system (recall that types of top-level Tabular tables are

supposed to be closed, and static det columns could be referenced in subsequent col-

umn types). Similarly, (CONF INST INPUT) states that each inst-level input column

must have an inst-tagged entry in the database, being an array of n well-typed values.

The (CONF STATIC OUTPUT) rule requires that the values on which static output

columns are conditioned must be well-typed (that is, values corresponding to static

output columns must either be wildcards “?” or values with matching types). Like-

wise, (CONF INST OUTPUT) requires all values on which particular rows of an inst

output column are conditioned to be well-typed— in other words, for each row of such

a column c, the corresponding value Vi in τ(c) can either be missing (denoted by ?) or

be well-typed.

The top-level judgment DB |= Sty is derived by the following rules:

Conformance Rules for Input Databases: DB |= Sty

(CONF SCHEMA [])

(δ ,ρsz) |= []

(CONF SCHEMA TABLE)

ρsz(t) ∈ N (δ (t),ρsz) |=ρsz(t)
Q (δ ,ρsz) |= Sty

(δ ,ρsz) |= (t : Q) :: Sty

The first rule (CONF SCHEMA []) states that every database conforms to an empty

96

schema type. The (CONF SCHEMA TABLE) rule checks the conformance of the database

stored in δ under t to the first table type Q in the given schema type and proceeds to

check the conformance of the database to the rest of the schema type. Obviously, ρsz

must store a valid size of the table stored at t.

4.5.3 Semantics of Probabilistic Models

We define the sampling semantics of Core Tabular, giving rise to the measure-theoretic

semantics of random expressions. To save space, we assume the fixed map ρsz, storing

sizes of tables in DB , and δin, being the map of tables in the input database, are globally

accessible and do not mention it explicitly in the evaluation rules.

We say that a schema S with database DB is evaluated with trace s if the values of

all sampled random variables in the schema are fixed to the consecutive elements of

the trace s (when sampling the required values for all rows of a given column before

moving to the next column).

The key top-level judgment in the operational semantics is DB ` S ⇓s
w δqry, which

states that in schema S with database DB, for every column c in table t with expression

of the form infer.D[e1, . . . ,em].c j(E), δqry(t)(c) = `(V), where:

• If the column c is static, V is the value to which E evaluates if the entire schema

S is evaluated with the random trace s.

• If the column c is inst, V = [V0, . . . ,Vρsz(t)−1], such that for each i ∈ 0..ρsz(t)−1,

Vi is the value to which E evaluates in the i-th row, if S is evaluated with the

random trace s.

We begin by showing the rules for evaluating Core expressions in unconditioned

columns. The judgment δ ;τ; i ` E ⇓s
w V says that in the schema-level environment δ

and table-level environment τ , the expression E reduces in the i-th row of the table

with trace s to a value V with weight w. The auxiliary judgment δ ;τ; i ` e ⇓ V for

indexed expressions is similar, except it has no trace or weight, as indexed expressions

cannot contain random draws.

Expression evaluation: δ ;τ; i ` e ⇓V , δ ;τ; i ` E ⇓s
w V

(EVAL VAR STATIC)

τ(x) = static(V)

δ ;τ; i ` x ⇓V

(EVAL VAR INST)

τ(x) = inst([V0, . . .Vn−1])

δ ;τ; i ` x ⇓Vi

(EVAL CONST)

δ ;τ; i ` s ⇓ s

97

(EVAL SIZEOF)

ρsz(t) = n

δ ;τ; i ` sizeof(t) ⇓ n

(EVAL INDEXED)

δ ;τ; i ` e ⇓V

δ ;τ; i ` e ⇓[]1 V

(EVAL DEREF STATIC)

δ (t)(c) = static V

δ ;τ; i ` t.c ⇓[]1 V

(EVAL DEREF INST)

δ ;τ; i ` E ⇓s
w k

δ (t)(c) = inst[V0, . . . ,Vρsz(t)−1]

δ ;τ; i ` E : t.c ⇓s
w Vk

(EVAL PRIM)

δ ;τ; i ` E j ⇓
s j
w j Vj ∀ j ∈ 1..n

δ ;τ; i ` g(E1, . . . ,En) ⇓s1@...@sn
w1...wn g(V1, . . . ,Vn)

(EVAL IF TRUE)

δ ;τ; i ` E1 ⇓s1
w1 true δ ;τ; i ` E2 ⇓s2

w2 V

δ ;τ; i ` if E1 then E2 else E3 ⇓s1@s2
w1w2 V

(EVAL IF FALSE)

δ ;τ; i ` E1 ⇓s1
w1 false δ ;τ; i ` E3 ⇓s2

w2 V

δ ;τ; i ` if E1 then E2 else E3 ⇓s1@s2
w1w2 V

(EVAL ARRAY)

δ ;τ; i ` E j ⇓
s j
w j Vj ∀ j ∈ 0..n−1

δ ;τ; i ` [E0, . . . ,En−1] ⇓s0@...@sn−1
w0...wn−1 [V0, . . . ,Vn−1]

(EVAL INDEX) (where j ∈ 0..n−1)

δ ;τ; i ` E ⇓s1
w1 [V0, . . . ,Vn−1] F ⇓s2

w2 j

δ ;τ; i ` E[F] ⇓s1@s2
w1w2 Vj

(EVAL ITER)

δ ;τ; i ` e ⇓ n

δ ;τ,(x 7→ static(j)); i ` F ⇓s j
w j Vj ∀ j ∈ 0..n−1

δ ;τ; i ` [for x < e→ F] ⇓s@s0@...@sn−1
ww0...wn−1 [V0, . . . ,Vn−1]

(EVAL RANDOM)

δ ;τ; i ` ei ⇓Vi ∀i ∈ 1..m

δ ;τ; i ` E j ⇓
s j
w j Wj ∀ j ∈ 1..n

pdfD[V1,...,Vn](W1, . . . ,Wm,c) = w

δ ;τ; i ` D[e1. . . . ,em](E1. . . . ,En) ⇓s1@...@sn@[c]
w1...wnw c

The rules (EVAL VAR STATIC) and (EVAL VAR INST) evaluate a variable x to its

value in the (table-level) environment τ . If the variable is at inst level in the environ-

ment, the corresponding entry in τ must be an array, whose i-th element is returned.

Similarly, (EVAL DEREF STATIC) evaluates a reference t.c to the value assigned to the

identifier c in the table-level database assigned to t in the map δ ; (EVAL DEREF INST)

evaluates an inst-level reference E : t.c to the k-th element of the array assigned to c

in the table-level database assigned to t, where k is the value obtained by evaluating

E. The expression E technically may contain a random draw, so its evaluation must be

parametrised by a trace and a weight, which are then copied to the evaluation judgment

for E : t.c. The rule (EVAL SIZEOF) simply applies the ρsz map to the table name t. In

98

the second assumption of (EVAL ITER), the value j of the local variable x is added to

the environment at level static, regardless of whether the currently evaluated expres-

sion is static or inst, because this has the desired effect of simulating a substitution of

j for x in F (we extend τ instead of using a substitution in order to preserve the con-

formance of the map τ to the typing environment, as defined later). All the other rules

are standard for a first-order language, except that the traces and weights appearing in

the assumptions of a rule must be combined in the judgment derived by this rule.

The (EVAL RANDOM) rule, which evaluates random draws for which there are no

entries in the input database, evaluates the parameters of the given distribution and

returns the first (and only) element c of the random trace, assumed to be the value

drawn from the distribution D, together with the weight w being the density of D at c.

To reduce expressions in Tabular columns, we need to define two additional judg-

ments: δ ;τ; i;V ` E ⇓s
w W states that in the environment consisting of δ and τ , the

expression E reduces in the i-th row to the value W under trace s, yielding weight

w, if the corresponding entry in the database (at row i) is V , which may be ?. If the

expression is static, then i is expected to be 0, as the column has only one row. The

judgment δ ;τ;`(V) ` E ⇓s
w W is similar, except that it evaluates the entire column of

a table; here, `(V) is the entry in the database and if ` = inst, then both V and W are

arrays, with one entry per row in the input and output databases.

Expression evaluation: δ ;τ; i;V ` E ⇓s
w W , δ ;τ;`(V) ` E ⇓s

w W

(EVAL COND)

δ ;τ; i ` ei ⇓Vi ∀i ∈ 1..m

δ ;τ; i ` E j ⇓
s j
w j Wj ∀ j ∈ 1..n

pdfD[V1,...,Vn](W1, . . . ,Wm,c) = w

δ ;τ; i;c ` D[e1. . . . ,em](E1. . . . ,En) ⇓s1@...@sn
w1...wnw c

(EVAL SAMPLE)

δ ;τ; i ` E ⇓s
w V

δ ;τ; i; ? ` E ⇓s
w V

(EVAL STATIC)

δ ;τ;0;V ` E ⇓s
w W

δ ;τ;static(V) ` E ⇓s
w W

(EVAL INST)

δ ;τ; i;Vi ` E ⇓si
wi Wi ∀i ∈ 1..n

δ ;τ; inst([V1, . . . ,Vn]) ` E ⇓s1@...@sn
w1...wn [W1, . . . ,Wn]

99

The rules (EVAL STATIC) and (EVAL INST) allow the derivation of the top-level

judgment for expressions, δ ;τ;`(V) ` E ⇓s
w W , from the judgment δ ;τ; i;V ` E ⇓s

w W

evaluating individual rows. While (EVAL STATIC) just copies the result obtained by

the latter judgment, (EVAL INST) combines the values obtained by evaluating E in

different rows into an array.

The two rules (EVAL SAMPLE) and (EVAL COND) evaluate top-level expressions

in single rows. The rule (EVAL SAMPLE) applies when the i-th row of the entry for

the column with expression E in the database is “?”—that is, E is not conditioned.

The expression E is then simply evaluated by the evaluation rules for unconditioned

columns presented earlier.

The (EVAL COND) rule applies when the top-level expression is a random draw

conditioned on the given value c. In this case, the random draw is evaluated to c, with-

out consuming any part of the random trace other than those consumed by evaluating

parameters, and the weight is set to the density of the distribution D (with the given

parameters) at c, multiplied by the weights yielded by evaluating parameters (which

must be equal to 1 unless at least one parameter is a nested random draw).

Next, we present the table evaluation rules. They derive the judgment t;δ ;τ ′ `
T ⇓s

w τ;τqry, which states that in the environments δ and τ ′, and given the (implicit)

database (δin,ρsz), the table T named t evaluates with trace s to the pair of databases

(τ,τqry), such that

• Every expression in a random or deterministic colummn c of T evaluates to the

tagged value τ(c) = `(V) (where, again, V is an array of values of E in different

rows if `= static)

• Every random expression inside an infer operator in a column c of T evaluates

to τqry(c) = `(V)

While the goal of the sampling semantics is to evaluate the expressions in qry-level

columns, the values of random and deterministic columns also need to be computed

(and added to the environment), because expressions in infer operators in subsequent

tables may depend on them.

The rules for evaluating tables are as shown below. These rules use an auxiliary

meta-language construct `〈t〉, which denotes static(?) if ` = static and inst([for i <

100

ρsz(t)→ ?]) if ` = inst (where the for-loop is in the metalanguage). We also use the

symbol @ for map concatenation.

Table Evaluation: t;δ ;τ ′ ` T ⇓s
w τ;τqry

(EVAL EMPTY)

t;δ ;τ ′ ` [] ⇓[]1 []

(EVAL INPUT) (where ¬qry(T))

t;δ ;τ ′,(x 7→ δin(t)(c)) ` T ⇓s
w τ;τqry

t;δ ;τ ′ ` (c. x : T ` input ε) :: T ⇓s
w [c 7→ δin(t)(c)]@τ;τqry

(EVAL OUTPUT) (where ¬qry(T))

δ ;τ ′;δin(t)(c) ` E ⇓s1
w1 V

t;δ ;τ ′,(x 7→ `(V)) ` T ⇓s2
w2 τ;τqry

t;δ ;τ ′ ` (c. x : T ` output E) :: T ⇓s1@s2
w1w2 [c 7→ `(V)]@τ,τqry

(EVAL LOCAL) (where ¬qry(T))

δ ;τ ′;`〈t〉 ` E ⇓s1
w1 V

t;δ ;τ ′,(x 7→ `(V)) ` T ⇓s2
w2 τ;τqry

t;δ ;τ ′ ` (c. x : T ` local E) :: T ⇓s1@s2
w1w2 τ;τqry

(EVAL QUERY)

qry(T)

E = infer.D[e1, . . . ,em].c j(E ′)

δ ;τ ′;`〈t〉 ` E ′ ⇓s1
w1 V

t;δ ;τ ′ ` T ⇓s2
w2 τ;τqry

t;δ ;τ ′ ` (c. x : T ` viz E) :: T ⇓s1@s2
w1w2 τ; [c 7→ `(V)]@τqry

(EVAL SKIP)

qry(T)

E 6= infer.D[e1, . . . ,em].c j(E ′)

t;δ ;τ ′ ` T ⇓s
w τ;τqry

t;δ ;τ ′ ` (c. x : T ` viz E) :: T ⇓s
w τ;τqry

The first rule, (EVAL EMPTY), is trivial. The rule (EVAL INPUT) simply copies a

value from the input database to the corresponding entry in τ . The rule (EVAL OUT-

PUT) evaluates the deterministic or random expression E in an output column, stores

its value in the environment τ ′, evaluates the rest of the table and adds the labelled

value obtained by evaluating E to the non-query map τ , obtained by evaluating the rest

of the table. The weight of the given output databases is the product of weights yielded

101

by evaluating the expression (once for each row if it is at inst level) and evaluating the

rest of the table. The following rule, (EVAL LOCAL), is similar, except that it does not

append the value of the evaluated expression to τ ′, as local columns are not exported.

The rule (EVAL QUERY) applies if the expression E in the given column is of the form

infer.D[e1, . . . ,em].c j(E ′); it evaluates the expression E ′ in the given environments and

adds the resulting tagged value `(V) to the query map τqry. Finally (EVAL SKIP) dis-

cards qry-level columns which are not of the form infer.D[e1, . . . ,em].c j(E ′)—these

will be evaluated later by the query semantics.

Note that if an input database conforms to the schema type, all the values added to

the environment τ ′ are not “?”.

At the end, we need to define two schema evaluating rules, deriving the top-level

judgment DB ` S ⇓s
w δqry:

Schema evaluation: DB ` S ⇓s
w δqry

(EVAL SCHEMA EMPTY)

(δ ,ρsz) ` [] ⇓[]1 []

(EVAL SCHEMA TABLE)

t;δ ;∅ ` T ⇓s1
w1 τt ;τtq

((δ ,(t→ τt)),ρsz) ` S ⇓s2
w2 δqry

(δ ,ρsz) ` (t = T) :: S ⇓s1@s2
w1w2 [t→ τtq]@δqry

The rule (EVAL SCHEMA EMPTY) is obvious, while (EVAL SCHEMA TABLE) eval-

uates the given table T with name t in the environment δ (the table-level environment,

storing values of variables evaluated in the current table, is initially empty), which

yields the non-query map τt and the query map τtq. The map τt is added to the envi-

ronment δ before evaluating the rest of the schema and τtq is added to the output map.

Note that we do not need to add τtq to the environment in which S is evaluated, be-

cause the random expressions nested in queries cannot be directly referenced by other

columns.

Example of Schema Evaluation To illustrate the random semantics with an exam-

ple, let us consider a very simplified version of the Old Faithful model, reduced to Core

form, which only models eruption durations and uses no indexing:

table faithful

duration.Mean . Mean real!rnd static output GaussianFromMeanAndPrecision(0.0, 1.0)

duration.Prec . Prec real!rnd static output Gamma(1.0, 1.0)

duration . duration real!rnd output GaussianFromMeanAndPrecision(Mean, Prec)

102

Obviously, evaluating this model with any input database and valid random trace

will yield the empty database, because the semantics returns a map of values of expres-

sions in infer operators, and the above model contains no infer. Let us now add a qry

level column, computing the mean of the posterior distribution of the mean duration.

table faithful

duration.Mean . Mean real!rnd static output GaussianFromMeanAndPrecision(0.0, 1.0)

duration.Prec . Prec real!rnd static output Gamma(1.0, 1.0)

duration . duration real!rnd output GaussianFromMeanAndPrecision(Mean, Prec)

posteriorMean . postMean real!qry static output infer.Gaussian.mean(Mean)

Suppose that we have a tiny input database, which contains no entries for the static

columns duration.Mean and duration.Prec and the duration column contains three en-

tries, storing eruption durations in minutes:

ID duration

0 4.0

1 5.0

2 4.0

More formally, the input database is DB = (δin,ρsz), where δin = [faithful 7→
[duration.Mean 7→ static(?),duration.Prec 7→ static(?),duration 7→ inst(4.0,5.0,4.0)]]

and ρsz = [faithful 7→ 3].

It is easy to see that every valid trace in this model will be of length 2. Now, let

us evaluate the model with trace s = [3.0,1.0]. We want to compute δqry and w such

that DB ` S ⇓s
w δqry, where S = [(faithful 7→ T)] and T is the table shown above. We

first need to compute τ , τqry and w such that faithful;∅;∅ ` T ⇓s
w τ,τqry (recall that the

schema only has one table, so the entire trace s will be “consumed” when evaluating

this table).

The first column of T has visibility output, so it can be evaluated with the rule

(EVAL OUTPUT):
(EVAL OUTPUT) (where ¬qry(T))

∅;∅;δin(faithful)(duration.Mean) ` E ⇓s1
w1 V

faithful;∅; [(Mean 7→ static(V))] ` T2 ⇓s2
w2 τ ′;τqry

faithful;∅;∅ ` (duration.Mean.Mean : real ! rnd static output E) :: T2 ⇓s1@s2
w1w2

[duration.Mean 7→ static(V)]@τ ′,τqry

where s = s1@s2 and w = w1w2 and E = GaussianFromMeanAndPrecision(0.0,1.0)

and T2 consists of all but the first column of the original table. In the first assumption,

103

we have δin(faithful)(duration.Mean) = static(?), as duration.Mean has no value in the

input database. Hence, the first assumption can be derived with (EVAL STATIC), whose

only assumption can in turn be derived with (EVAL SAMPLE), and the only assumption

of (EVAL SAMPLE), ∅;∅;0 ` E ⇓s1
w1 V , by (EVAL RANDOM):

(EVAL RANDOM)

∅;∅;0 ` 0.0 ⇓[]1 0.0

∅;∅;0 ` 1.0 ⇓[]1 1.0

pdf G(0.0,1.0,3.0) = w1

∅;∅;0;? ` G(0.0,1.0) ⇓[3.0]w1 3.0
where s1 = [3.0] and w1≈ 0.00443 and G is an alias for GaussianFromMeanAndPrecision,

used to save space.

Now we need to derive the second assumption and find w2, τ ′ and τqry. The second

column is also an unconditioned static output column, so it can be evaluated with

(EVAL OUTPUT):
(EVAL OUTPUT) (where ¬qry(T))

∅; [(Mean 7→ static(3.0))];static(?) ` E ′ ⇓s2
w′2

V ′

faithful;∅; [(Mean 7→ static(3.0)),(Prec 7→ static(V ′))] ` T3 ⇓
[]
w′′2

τ ′′;τqry

faithful;∅; [(Mean 7→ static(3.0))] `
(duration.Prec.Prec : real ! rnd static output E ′) :: T3 ⇓s2

w′2w′′2

[duration.Prec 7→ static(V ′)]@τ ′′,τqry

where E ′ = Gamma(1.0,1.0) and T3 contains the last two columns of the whole table

T. The first assumption of the above rule can, again, be derived by (EVAL RANDOM),

via (EVAL STATIC) and (EVAL SAMPLE). We get ∅; [(Mean 7→ static(3.0))];0;? `
Gamma(1.0,1.0) ⇓[1.0]w′2

1.0 and w′2 ≈ 0.36788. Now we need to derive the second

judgment in the above rule and find w′′2 and τ ′′ and τqry.

The third column is an inst output column, so it can again be evaluated by (EVAL

OUTPUT) (where we write τMP for [(Mean 7→ static(3.0)),(Prec 7→ static(1.0))] for

conciseness):
(EVAL OUTPUT) (where ¬qry(T))

∅;τMP; inst([4.0,5.0,4.0]) ` E ′′ ⇓[]w′3 V ′′

faithful;∅;τMP,(duration 7→ inst(V ′′)) ` T4 ⇓
[]
w′′3

τ ′′′;τqry

faithful;∅;τMP,(duration 7→ inst(V ′′)) `
(duration.duration : real ! rnd static output E ′′) :: T4 ⇓

[]
w′3w′′3

[duration 7→ inst(V ′′)]@τ ′′′,τqry

where E ′′ = GaussianFromMeanAndPrecision(Mean,Prec) and w′′2 = w′3w′′3 and T4

104

contains the last column of T. To derive the first judgment and find V ′′, we need

to use the rule (EVAL INST):
(EVAL INST)

∅;τMP;0;4.0 ` E ′′ ⇓[]ŵ0
W0

∅;τMP;1;5.0 ` E ′′ ⇓[]ŵ1
W1

∅;τMP;2;4.0 ` E ′′ ⇓[]ŵ2
W2

∅;τMP; inst([4.0,5.0,4.0]) ` E ′′ ⇓[]ŵ0ŵ1ŵ2
[W0,W1,W2]

where V ′′ = [W0,W1,W2] and w′3 = ŵ0ŵ1ŵ2. Each of the three assumptions of (EVAL

INST) can be derived with (EVAL COND), which in the case of the first judgment takes

the following form:
(EVAL COND)

∅;τMP;0 `Mean ⇓[]1 3.0

∅;τMP;0 ` Prec ⇓[]1 1.0

pdf G(3.0,1.0,4.0) = ŵ0

∅;τMP;0;4.0 ` G(Mean,Prec) ⇓[]ŵ0
4.0

where ŵ0 ≈ 0.24197. The first two assumptions can be derived easily with (QUERY

VAR STATIC).

In the same way, we can derive the remaining two assumptions of (EVAL INST)

and get W1 = 5.0, W2 = 4.0, ŵ1 ≈ 0.05399 and ŵ2 ≈ 0.24197. In the end, we get

∅;τMP; inst([4.0,5.0,4.0]) ` E ′′ ⇓[]0.00316 [4.0,5.0,4.0].

We still need to evaluate the last column containing the query, to derive the second

judgment in the last use of (EVAL OUTPUT). This column can be evaluated by (EVAL

QUERY):
(EVAL QUERY)

E ′′′ = infer.Gaussian.mean(Ê)

∅;τMPD; inst([?,?,?]) ` Ê ⇓[]1 V̂

faithful;∅;τMPD ` [] ⇓[]1 τ ′′′;τ ′qry

faithful;∅;τMPD ` [(posteriorMean.postMean : real ! qry static output E ′′′)] ⇓[]1
τ ′′′; [posteriorMean 7→ static(V̂)]@τ ′qry

where Ê = Mean, τMPD = τMP,(duration 7→ inst([4.0,5.0,4.0])). By (EVAL SAMPLE)

and (EVAL VAR STATIC), we immediately get ∅;τMPD; inst([?,?,?]) ` Mean ⇓[]1 3.0.

By (EVAL EMPTY), faithful;∅;τMPD ` [] ⇓s
w []; [], so we have faithful;∅;τMPD ` [(c. x :

real ! rnd static output E ′′′)] ⇓[]1 []; [posteriorMean 7→ static(3.0)].

Therefore, we have derived the judgment faithful;∅;∅ ` T ⇓[3.0,1.0]w τ,τqry, where

τ = [(Mean 7→ static(3.0)),(Prec 7→ static(1.0)),(duration 7→ inst([4.0,5.0,4.0]))] and

τqry = [posteriorMean 7→ static(3.0)] and w = w1w′2w′3 ≈ 0.000005.

105

By (EVAL SCHEMA TABLE), we get DB`S⇓[3.0,1.0]w [posteriorMean 7→ static(3.0)],

where w is as above. Note that while the output query map, containing just one entry

for posteriorMean, does not depend on the observed data in the column duration, the

weight w does.

Well-definedness of the Semantics If a schema S is well-typed and the database

DB conforms to its type Sty, then we expect that every map δqry to which the schema

evaluates under some trace s is valid—that is, it contains an entry with a matching

label for every occurrence of infer in a column of S, all the values in this entry are

well-typed and the array of values has size corresponding to the size of the table if the

column in question is at inst level.

The lemma below shows that the sampling semantics is well-formed in that respect.

We write dom(S) for the set of names of tables in S, S(t) for the table with name t in

S (if t ∈ dom(S)) and cols(T) for the set of columns of T.

Lemma 7 If Core(S) and ∅ ` S : Sty and (δin,ρsz) |= Sty and (δin,ρsz) ` S ⇓s
w δqry,

then for every t ∈ dom(S) and (c. x : T ` viz infer.D[e1, . . . ,em].c j(E ′)) ∈ cols(S(t)):

• If `= static, then δqry(t)(c) = static(V) and ∅ `static V : real ! rnd.

• If `= inst, then δqry(t)(c) = inst([V0, . . . ,Vρsz(t)−1]) and ∅ `inst Vi : real ! rnd for

all i ∈ 0..ρsz−1.

Proof: In Appendix C. The proof makes use of an additional conformance relation

(ρsz;δ ;τ) |=rnd
n Γ, relating evaluation environments to typing environments, which is

also defined in the appendix.

4.5.4 The Probability Measures on Random Expressions

We have already defined the sampling semantics of Tabular, associating an output

database storing the values of expressions in infer queries, together with the corre-

sponding weight, to each valid source of randomness, represented by a trace s. How-

ever, in order to define the query semantics, we need to compute the marginal distribu-

tions of such expressions, rather than individual weighted values. These marginals can

be computed by integrating the weight of a trace (treated as a function), conditioned

on the value of a given expression, with respect to the stock measure on program traces

defined in Section 3.2.2.

106

In order to do so, we first define a function P(S,DB) : U→ R which maps a trace s

to the weight yielded by evaluating the schema S with database DB, or to 0 if s is not

a valid trace in (S,DB):

P(S,DB)(s) =

w if DB ` S ⇓s
w δqry

0 otherwise

We also need to define a function computing the value of a given random expression

in an infer query for a given trace s. To make this a total function on traces, we

introduce an exception error3, which is returned if a given trace does not lead to a

value and which does not check against any type. The function O(S,DB,t,c,i) : U→
R]{error}maps a trace s to the value of the random expression in a query in column

c of table t in the i-th row (in case of static columns, the index i is discarded). If there

is such a value, then it must be in R, by the restriction that we only allow real-valued

continuous random variables. If the trace is not valid, the exception error is returned.

O(S,DB,t,c,i)(s) =

V if DB ` S ⇓s

w δqry and δqry(t)(c) = static(V)

Vi if DB ` S ⇓s
w δqry and δqry(t)(c) = inst([V0, . . . ,Vn−1])

error otherwise

These functions can only be used to define the marginal distributions if they are

measurable. We do not give a detailed proof of measurability, but such a proof would

effectively use the same ideas as the proofs of measurability of the functions PM and

OM in Chapter 6. Recall that B is the Borel σ -algebra on R and that if (X ,Σ1) and

Y,Σ2) are measurable spaces, a function f : X → Y is measurable Σ1/Σ2 if for all

B ∈ Σ2, f−1(B) ∈ Σ1.

Lemma 8 If Core(S) and ∅ ` S : Sty and DB |= Sty and DB = (δin,ρsz), then

• The function P(S,DB) is measurable S /B.

• For every t ∈ dom(S) and (c.x : T static viz infer.D[e1, . . . ,em].c j(E ′))∈ cols(S(t)),
the function O(S,DB,t,c,0) is measurable S /σ(B∪{error}).

• For every t ∈ dom(S) and (c.x : T inst viz infer.D[e1, . . . ,em].c j(E ′))∈ cols(S(t))
and i∈ 0..ρsz(t)−1, the function O(S,DB,t,c,i) is measurable S /σ(B∪{error}).

3To avoid confusion, we use the exception error to denote a computation not leading to a value in
the probabilistic semantics and fail to represent inference failure in the query semantics

107

Proof: Similar to the proofs of Lemmas 43 and 44 in Chapter 6.

We can now define the distributions on random expressions in Tabular queries.

Intuitively, an unnormalised marginal distribution of the expression E in a query in a

static column c in table t of the schema S will be the measure mapping a set A ⊆ R
of possible values of E to the integral of the model density P(S,DB) over the space of

traces, limited to traces for which the value of E is in A. Formally, the marginal is

defined as follows;

marg((S,DB), t,c)(A) =
∫

P(S,DB)(s)[(O(S,DB,t,c,0)(s)) ∈ A]ds

The marginal distribution of an expression E in the i-th row of the inst-level column

c is defined similarly:

marg((S,DB), t,c, i)(A) =
∫

P(S,DB)(s)[(O(S,DB,t,c,i)(s)) ∈ A]ds

Strictly speaking, the measure marg((S,DB), t,c)(A) is a restriction of the measure

mapping A ∈ σ(B∪{error}) to
∫

P(S,DB)(s)[(O(S,DB,t,c,0)(s)) ∈ A]ds to the set R of

real numbers (without error), and similarly for marg((S,DB), t,c, i)(A).

The above marginals are unnormalised. Obviously, they can only be normalised, to

yield valid probability distributions, if they are non-zero and finite. To guarantee that

the marginals are positive, it is enough to assume that the integral of the density P(S,DB)

is positive (or, in other words, that the program consisting of S and DB has positive

success probability), which is a standard assumption in the analysis of probabilistic

models.

Assumption 1 For every S, DB such that Core(S), ∅ ` S : Sty and DB |= Sty, we have∫
P(S,DB)(s)ds > 0

This assumption is sufficient to guarantee that all the marginals are non-zero:

Lemma 9 Let S, δin and ρsz be such that Core(S), ∅ ` S : Sty and (δin,ρsz) |= Sty.

Then, given Assumption 1, for every t ∈ dom(S) and

(c. x : T ` viz infer.D[e1, . . . ,em].c j(E ′)) ∈ cols(S(t)):

• If `= static, then marg((S,(δin,ρsz)), t,c)(R)> 0.

• If `= inst, then marg((S,(δin,ρsz)), t,c, i)(R)> 0 for every i ∈ 0..ρsz(t)−1.

108

Proof:

If ` = static, then by Lemma 7, for every s such that (δin,ρsz) ` S ⇓s
w δqry, we

have δqry(t)(c) = static(V) and ∅ `static V : real ! rnd, the latter judgment implying

V ∈ R. Hence, O(S,DB,t,c,0)(s) ∈ R. This implies that O(S,DB,t,c,0)(s) ∈ R whenever

P(S,DB)(s)> 0, so marg((S,DB), t,c)(R) =
∫

P(S,DB)(s)ds > 0 by Assumption 1.

The reasoning in the case `= inst is similar.

We also assume that the integral of the density P(S,DB)(s) is finite:

Assumption 2 For every S, DB such that Core(S), ∅ ` S : Sty and DB |= Sty, we have∫
P(S,DB)(s)ds < ∞.

This assumption is necessary to avoid some degenerate cases of programs hav-

ing an infinite normalisation constant and thus not defining probability measures on

columns. For instance, consider the following Tabular program S:

table t

c . x real!rnd static output Gamma(0.5, 1)

d . y real!rnd static output Gaussian(0.0, (sqrt(x)exp(x))^(−2)))

where sqrt and exp are primitive functions returning, respectively, the square root and

the natural exponential of the given argument, and a corresponding database DB =

[t 7→ [(c 7→ static(?)),(d 7→ static(0.0))]].

This program first draws a value from Gamma(0.5,1) and then observes that the

draw from Gaussian(0.0,(
√

x ex)−2), where x is the outcome of the first random draw,

returned 0. Recall that the density of the Gaussian distribution with mean µ and vari-

ance σ2 is:

pdfGaussian(µ,σ
2,y) =

1√
2πσ2

e−
(y−µ)2

2σ2

and the density of the Gamma distribution parametrised by the shape α and scale θ is:

pdfGamma(α,θ ,y) =
yα−1e−

y
θ

Γ(α)θ α

for y > 0, where Γ is the gamma function, which is positive for positive arguments and

satisfies Γ(n) = (n−1)! for all positive integers n.

Obviously, each trace leading to a positive weight in the above program consists of

just one real number c. In this case, the density of the program is

P(S,DB)([c]) =
c−0.5e−c

Γ(0.5)
1√

2π(c0.5 ec)−2
=

1
Γ(0.5)

√
2π

109

if c > 0 and P(S,DB)([c]) = 0 otherwise (because then c is outside the support of

Gamma). Thus, the integral of the density P(S,DB) over the space of all traces is:

∫
P(S,DB)(s)ds =

∫
R+

1
Γ(0.5)

√
2π

dc = ∞

Hence, we have marg((S,DB), t,c)(R)=
∫
R+

1
Γ(0.5)

√
2π
[pdfGamma(0.5,1,c)∈R]dc=∫

R+

1
Γ(0.5)

√
2π

dc=∞ and marg((S,DB), t,d)(R)=
∫
R+

1
Γ(0.5)

√
2π
[0.0∈R] =

∫
R+

1
Γ(0.5)

√
2π

dc=

∞, and so the program does not define marginal probability distributions on the table

columns.

The two above assumptions ensure that the unnormalised marginals are finite mea-

sures:

Lemma 10 If Core(S) and ∅ ` S : Sty and (δin,ρsz) |= Sty, then for every t ∈ dom(S)
and (c. x : T ` viz infer.D[e1, . . . ,em].c j(E ′)) ∈ cols(S(t)):

• If `= static, then marg((S,DB), t,c)(R)< ∞.

• If `= inst, then marg((S,DB), t,c, i)(R)< ∞ for every i ∈ 0..ρsz(t)−1.

Proof: Follows immediately from Assumption 2.

We can now normalise the marginal measures to obtain probability distributions on

random expressions in infer operators. If column c in table t is static, the distribution

of the expression in the query in c is defined as:

m̂arg((S,DB), t,c)(A),
marg((S,DB), t,c)(A)
marg((S,DB), t,c)(R)

If c is an inst-level column, and 0≤ i < ρsz(t), the distribution of the expression in

the i-th row of column c is:

m̂arg((S,DB), t,c, i)(A),
marg((S,DB), t,c, i)(A)
marg((S,DB), t,c, i)(R)

Lemma 11 If Core(S) and ∅ ` S : Sty and (δin,ρsz) |= Sty, then for every t ∈ dom(S)
and (c. x : T ` viz infer.D[e1, . . . ,em].c j(E ′)) ∈ cols(S(t)):

• If `= static, then m̂arg((S,DB), t,c) is a probability measure on B.

• If ` = inst, then m̂arg((S,DB), t,c, i) is a probability measure on B for every

i ∈ 0..ρsz(t)−1.

Proof: Follows from Lemma 9 and Lemma 10.

110

4.5.5 Semantics of Queries

With the definitions of marginals in place, we can define the semantics of Tabular

queries. This semantics will compute the values of all qry columns in a schema given

the marginal distributions of random expressions referenced in queries, as defined in

the previous section.

We begin by defining a function σ(S,DB), mapping a schema and a database to a

map of marginal distributions of expressions in infer queries. This map σ will assign

to each table name in S a table-level map η , mapping each global column name to

either a measure or an array of measures, depending on whether the given column is

static or inst.

Databases, Tables, Attributes, and Values:

σ ::= [ti 7→ ηi
i∈1..n] schema-level marginal map

η ::= [ci 7→ gi
i∈1..m] table-level marginal map

g ::= ν | [ν0, . . . ,νn−1] marginal map entry

We first define two auxiliary functions returning sets of names of static and inst

query columns with infer constructs:

qry_cols_static(T), {c | (c.x : T static viz infer.D[e1, . . . ,em].c j(E ′))∈ cols(T)}

qry_cols_inst(T), {c | (c. x : T inst viz infer.D[e1, . . . ,em].c j(E ′)) ∈ cols(T)}

We also define two functions marg_static and marg_inst which return the marginal

(or map of marginals) corresponding to the given column.

marg_static(S,DB, t,c), m̂arg((S,DB), t,c)

marg_inst(S,(δin,ρsz), t,c), [for i < ρsz(t)→ m̂arg((S,DB), t,c, i)]

Note that the for-loop in the second definition is in the meta-language. We can now

define the map σ(S,DB) of marginals in the model consisting of S and DB:

σ(S,DB) , [(t 7→ [c 7→ marg_static(S,DB, t,c) c∈qry_cols_static(S(t))] @

[c 7→ marg_inst(S,DB, t,c) c∈qry_cols_inst(S(t))]) t∈dom(S)]

111

Example of marginal map computation Let us now revisit the simplified Old Faith-

ful example to show how the map of marginals is constructed. To simplify computa-

tions, we restrict the model even further, by assuming the precision is fixed. This

results in the schema S consisting of a single table T of the following form:

table faithful

duration.Mean . Mean real!rnd static output GaussianFromMeanAndPrecision(0.0, 1.0)

duration . duration real!rnd output GaussianFromMeanAndPrecision(Mean, 1.0)

posteriorMean . postMean real!qry static output infer.Gaussian.mean(Mean)

Let the input database be DB = (δin,ρsz), where δin = [faithful 7→ [duration.Mean 7→
static(?),duration 7→ inst(4.0,5.0,4.0)]] and ρsz = [faithful 7→ 3].

The only infer operator is in the last column, so we have σ(S,DB) = [(faithful 7→
[posteriorMean 7→ static(m̂arg((S,DB), faithful,posteriorMean))])]. We can easily shown

that the unnormalised marginal marg((S,DB), faithful,posteriorMean) is:

marg((S,DB), faithful,posteriorMean)(A)

=
∫

P(S,DB)(s)[(O(S,DB,faithful,posteriorMean,0)(s)) ∈ A]ds

=
∫

pdfG(0,1,s1)pdfG(s1,1,4)pdfG(s1,1,5)pdfG(s1,1,4)[s1 ∈ A]λ (ds1)

=
∫

A
pdfG(0,1,s1)pdfG(s1,1,4)pdfG(s1,1,5)pdfG(s1,1,4)λ (ds1)

where we write G for GaussianFromMeanAndPrecision, to save space. We can see that

the normalised version of the above function is the posterior distribution of durationMean,

which can in this case (a conjugate Gaussian model with fixed precision) be analyti-

cally computed. We have:

m̂arg((S,DB), faithful,posteriorMean)) = G(3.25,4)

where we write G for the Gaussian distribution with mean and precision parameters.

Hence, the map of marginals is:

σ(S,DB) = [(faithful 7→ [posteriorMean 7→ static(G(3.25,4))])]

Query evaluation We can now present the rules computing the output database, con-

sisting of values of queries.

We begin by presenting rules for deterministically evaluating Core model expres-

sions without random draws. The judgment δ ;τ; i ` E ⇓V means that the expression E

evaluates deterministically to the value V in the environment consisting of a schema-

level map δ and table-level map τ , if we are currently evaluating the i-th row. The

112

rules below are essentially the rules for random expression evaluation with scores,

traces and the (EVAL RANDOM) case removed. In fact, the judgment δ ;τ; i ` E ⇓ V

could be defined as holding if and only if δ ;τ; i ` E ⇓[]1 V hold, but for clarity we define

it separately by the following inductive rules:

Deterministic expression evaluation: δ ;τ; i ` E ⇓V

(QUERY VAR STATIC)

τ(x) = static(V)

δ ;τ; i ` x ⇓V

(QUERY VAR INST)

τ(x) = inst([V0, . . .Vn−1])

δ ;τ; i ` x ⇓Vi

(QUERY CONST)

δ ;τ; i ` s ⇓ s

(QUERY PRIM)

δ ;τ; i ` E j ⇓Vj ∀ j ∈ 1..n

δ ;τ; i ` g(E1, . . . ,En) ⇓ g(V1, . . . ,Vn)

(QUERY IF TRUE)

δ ;τ; i ` E1 ⇓ true δ ;τ; i ` E2 ⇓V

δ ;τ; i ` if E1 then E2 else E3 ⇓V

(QUERY IF FALSE)

δ ;τ; i ` E1 ⇓ false δ ;τ; i ` E3 ⇓V

δ ;τ; i ` if E1 then E2 else E3 ⇓V

(QUERY ARRAY)

δ ;τ; i ` E j ⇓Vj ∀ j ∈ 0..n−1

δ ;τ; i ` [E0, . . . ,En−1] ⇓ [V0, . . . ,Vn−1]

(QUERY INDEX) (where j ∈ 0..n−1)

δ ;τ; i ` E ⇓ [V0, . . . ,Vn−1]

δ ;τ; i ` F ⇓ j

δ ;τ; i ` E[F] ⇓Vj

(QUERY ITER)

δ ;τ; i ` e ⇓ n

δ ;τ,(x 7→ static(j)); i ` F ⇓Vj ∀ j ∈ 0..n−1

δ ;τ; i ` [for x < e→ F] ⇓ [V0, . . . ,Vn−1]

(QUERY DEREF STATIC)

δ (t)(c) = static(V)

δ ;τ; i ` t.c ⇓V

(QUERY DEREF INST)

δ ;τ; i ` E ⇓ k

δ (t)(c) = inst([V0, . . . ,Vρsz(t)−1])

δ ;τ; i ` E : t.c ⇓Vk

(QUERY SIZEOF)

ρsz(t) = n

δ ;τ; i ` sizeof(t) ⇓ n

The type system does not guarantee that inference will succeed. If, for example,

the user defines a query infer.D[e1, . . . ,em].c j(E ′) in which the distribution D does not

match the marginal distribution of E ′, then the query is not well-defined and the “op-

timal” value of c j may be infinite. Because of this possibility of failure, a variable

can evaluate to an exception fail in the query semantics. Hence, we need to extend

above the set of deterministic evaluation rules with the standard exception-handling

rules shown below. In the remainder of this section, we will denote by G the gener-

alised values, which can be values V or fail. Note that the type system guarantees

that only expressions in qry columns can evaluate to fail.

113

Evaluation of Erroneous Expressions: δ ;τ; i ` E ⇓ G

(QUERY INDEX FAIL1)

δ ;τ; i ` E ⇓ [V0, . . . ,Vn−1]

δ ;τ; i ` F ⇓ fail
δ ;τ; i ` E[F] ⇓ fail

(QUERY INDEX FAIL2)

δ ;τ; i ` E ⇓ fail
δ ;τ; i ` E[F] ⇓ fail

(QUERY IF FAIL)

δ ;τ; i ` E1 ⇓ fail
δ ;τ; i ` if E1 then E2 else E3 ⇓ fail

(QUERY DEREF INST FAIL)

δ ;τ; i ` E ⇓ fail
δ ;τ; i ` E : t.c ⇓ fail

We assume that fail (unlike error in the random semantics) checks against any

type in space qry:

Typing Rules for Generalised Values: Γ `pc G : T

(FAIL)

Γ ` T qry(T)

Γ `pc fail : T

We can now define the table-level query evaluation rules. They derive the judgment

t;δin;δ ;τ ′;η ` T ⇓ τ , which states that the table T with name t, together with the

(implicit) input database (δin,ρsz), in the environment consisting of the table-level map

τ ′, schema-level map δ and a table-level map of marginals η , reduces to a table-level

map τ , containing the values of qry-level columns.

In the rest of this section, we overload the notation D[V1, . . .Vm](y1, . . . ,yn) to de-

note the probability measure corresponding to the distribution D with given arguments

and hyperparameters. Recall that we write ‖ν1−ν2‖ for the variational norm of two

measures ν1 and ν2 on (Ω,Σ), defined as ‖ν1−ν2‖= supA∈Σ |ν1(A)−ν2(A)|. We as-

sume that arg miny1,...,yn
f (y1, . . . ,yn) returns an n-tuple of exceptions fail if the mini-

mum does not exist and that if there are multiple combinations of arguments y1, . . . ,yn

minimising f , arg min returns one of them nondeterministically.

Table Evaluation: t;δin;δ ;τ ′;η ` T ⇓ τ

(VAL EMPTY)

t;δin;δ ;τ ′;η ` [] ⇓ []

(VAL INPUT) (where space(T) 6= rnd)

t;δin;δ ;τ ′,(x→ δin(t)(c));η ` T ⇓ τ

t;δin;δ ;τ ′;η ` (c. x : T ` input ε) :: T ⇓ τ@[c 7→ δin(t)(c)]

114

(VAL RANDOM) (where space(T) = rnd)

t;δin;δ ;τ ′;η ` T ⇓ τ

t;δin;δ ;τ ′;η ` (c. x : T ` viz M) :: T ⇓ τ

(VAL QUERY STATIC)

t;δ ;τ ′;0 ` ek ⇓ sk ∀k ∈ 1..m

(G1, . . . ,Gn) = arg miny1,...,yn
‖D[s1, . . .sm](y1, . . . ,yn)−η(c)‖

t;δin;δ ;τ ′,(x→ static(G j));η ` T ⇓ τ

t;δin;δ ;τ ′;η ` (c. x : T static viz (infer.D[e1, . . . ,em].c j(E ′))) :: T ⇓ τ@[c 7→ static(G j)]

(VAL QUERY INST)

t;δ ;τ ′; i ` ek ⇓ si,k ∀i ∈ 0..(ρsz(t)−1),k ∈ 1..m

(Gi,1, . . . ,Gi,n) = arg miny1,...,yn

∥∥D[si,1, . . .si,m](y1, . . . ,yn)−η(c)[i]
∥∥ ∀i ∈ 0..(ρsz(t)−1)

t;δin;δ ;τ ′,(x→ inst([G0, j, . . . ,Gρsz(t)−1, j])]);η ` T ⇓ τ

t;δin;δ ;τ ′;η ` (c. x : T inst viz (infer.D[e1, . . . ,em].c j(E ′))) :: T ⇓
τ@[c 7→ inst([G0, j, . . . ,Gρsz(t)−1, j]

(VAL QUERYORDET STATIC) (where space(T) 6= rnd, E 6= infer.D[e1, . . . ,em].c j(E ′)))

t;δ ;τ ′;0 ` E ⇓ G

t;δin;δ ;τ ′,(x→ static(G));η ` T ⇓ τ

t;δin;δ ;τ ′;η ` (c. x : T static viz E) :: T ⇓ τ@[c 7→ static(G)]

(VAL QUERYORDET INST) (where space(T) 6= rnd, E 6= infer.D[e1, . . . ,em].c j(E ′)))

t;δ ;τ ′; i ` E ⇓ Gi ∀i ∈ 0..(ρsz(t)−1)

t;δin;δ ;τ ′,(x→ inst([G0, . . . ,Gρsz(t)−1]));η ` T ⇓ τ

t;δin;δ ;τ ′;η ` (c. x : T inst viz E) :: T ⇓ τ@[c 7→ inst([G0, . . . ,Gρsz(t)−1])]

The base rule (VAL EMPTY) is, as usual, trivial. The (VAL INPUT) rule just copies

an input value from the input database to the output map; it also assigns this value

to x in the recursive call. Note that (VAL INPUT) only applies if the input column

was not marked as rnd—otherwise, the given value is not assumed to be part of the

output database and subsequent non-rnd values cannot depend on it. The rule (VAL

RANDOM) simply discards random columns in the given table.

The (VAL QUERY STATIC) rule evaluates a query of the form infer.D[e1, . . . ,em].c j(E ′)

in a static column. The rule evaluates the hyperparameters e1, . . . ,em to s1, . . . ,sm

(which are expected to be scalar values) and looks up the marginal distribution of the

expression E ′ in the marginal map η . It then tries to fit a distribution of the form

D[s1, . . . ,sm](y1, . . . ,yn) to the distribution η(c) of E ′, by minimising the variational

115

norm of D[s1, . . . ,sm](y1, . . . ,yn) and η(c) with respect to y1, . . . ,yn. Typically, the

posterior distribution η(c) of E ′ will also be of the form D[s1, . . . ,sm](G1, . . . ,Gn) and

the variational norm will be zero for y1 = G1, . . . ,yn = Gn. If the minimum exists,

the optimal value G j of the parameter c j (identified by name) is added to the output

database and to the environment used in the evaluation of the rest of the table. Oth-

erwise, the global column name c is mapped to static(fail) in the output database

and the local name x is mapped to static(fail) in the environment, meaning that all

subsequent expressions depending on x will evaluate to fail. Note that the minimum

of the variational norm may, in some degenerate cases, not be unique, so the semantics

is technically not deterministic.

The rule (VAL QUERY INST) is similar, except that it computes the optimal value

of c j in each row separately. If the minimum does not exist in some row i, only the

value Vi, j in that row is set to fail, not all the values in the given column.

The rules (VAL QUERYORDET STATIC) and (VAL QUERYORDET INST) just eval-

uate expressions in non-rnd columns not containing infer operators deterministically,

in the environments δ and τ .

Finally, we define the top-level judgment δin;δ `σ S ⇓ δout which states that in

the schema-level environment δ and given the marginal map σ , the schema S with

database DB = (δin,ρsz) evaluates to the map δout , storing the inferred values of all qry

columns (as well as the values of deterministic columns).

Schema evaluation: δin;δ `σ S ⇓ δout

(QUERY SCHEMA EMPTY)

δin;δ `σ [] ⇓ []

(QUERY SCHEMA TABLE)

t;δin;δ ;∅;σ(t) ` T ⇓ τt

δin;δ ,(t→ τt) `σ S ⇓ δout

δin;δ `σ (t = T) :: S ⇓ (t 7→ τt) :: δout

The rule (QUERY SCHEMA EMPTY) is obvious, while (QUERY SCHEMA TABLE)

evaluates the first table by calling the table-level evaluation judgment.

Example of Query Semantics To see how the query semantics computes the output

database, let us revisit the simplified version of the Old Faithful example once again:

table faithful

duration.Mean . Mean real!rnd static output GaussianFromMeanAndPrecision(0.0, 1.0)

duration . duration real!rnd output GaussianFromMeanAndPrecision(Mean, 1.0)

posteriorMean . postMean real!qry static output infer.Gaussian.mean(Mean)

116

Again, we assume that the input database is DB = (δin,ρsz), where δin = [faithful 7→
[duration.Mean 7→ static(?),duration 7→ inst(4.0,5.0,4.0)]] and ρsz = [faithful 7→ 3].

We have already shown that the marginal map σ(S,DB) for this model is σ(S,DB) =

[(faithful 7→ [posteriorMean 7→ static(G(3.25,4))])], where G is the Gaussian distribu-

tion with mean and precision parameters. We want to find δout such that δin;δ `σ S ⇓
δout , where σ = σ(S,DB).

To derive the above judgment by (QUERY SCHEMA TABLE), we need to first derive

its assumption faithful;δin;∅;∅;η `T⇓ τt , where η = [posteriorMean 7→ static(G(3.25,4))]

and δout = [faithful 7→ τt].

The first two columns, in space rnd, are discarded by the (VAL RANDOM) rule.

Hence, we only need to derive faithful;δin;∅;∅;η ` T′ ⇓ τt , where T′ contains only

the last column.

The above judgment can be derived with (VAL QUERY STATIC):
(VAL QUERY STATIC)

(GMean,GVar) = arg miny1,y2
‖Gaussian(y1,y2)−η(posteriorMean)‖

faithful;δin;∅; [(postMean→ static(GMean))];η ` [] ⇓ []
faithful;δin;∅;∅;η `
[(posteriorMean.postMean : real ! qry static output (infer.Gaussian.mean(Mean)))]

⇓ [posteriorMean 7→ static(GMean)]
We have η(posteriorMean) = G(3.25,4), so the values of y1, y2 minimising the

variational norm (to zero) are y1 = 3.25 and y2 = 0.25 (note that are fitting the Gaussian

parametrised by mean and variance to G(3.25,4), in which 4 is precision, the inverse

of variance). Hence, GMean = 3.25, and so τt = [posteriorMean 7→ static(3.25)].

Therefore, by (QUERY SCHEMA TABLE), we get δout = [faithful 7→ [posteriorMean 7→
static(3.25)]].

4.5.6 Output Database Conformance

Finally, we can formalise and prove the main result of this section, which states that the

query semantics reduces each well-typed schema S and a conformant input database

DB, using the marginal map σ(S,DB), to a valid output map δout . We begin by for-

mally defining the conformance of an output database to a schema type—this differs

from the definition of input database conformance by the fact that we require all output

columns to have well-typed, non-null values in the database and that we need to ac-

count for local values (which do not appear in table types).

We first define the relation (τ;ρsz) |=out
n Q, stating that the table-level output map τ ,

117

in which each inst-level column has n rows, together with the size map ρsz, conforms

to the table type Q. This relation is defined to be the least relation closed under the

rules shown below. We write value(G) to mean that the generalised value G is in fact

a value—that is, it is not fail and contains no fail as a subexpression in case it is an

array.

Conformance Rules for Table-level Output Maps: (τ;ρsz) |=out
n Q

(CONF [] OUT)

([];ρsz) |=out
n []

(CONF STATIC INPUT OUT) (where space(T) 6= rnd)

∅ `static G : ρsz(T) value(G)

(τ;ρsz) |=out
n Q

((c 7→ static(G)) :: τ;ρsz) |=out
n (c. x : T static input) :: Q

(CONF INST INPUT OUT) (where space(T) 6= rnd)

∅ `inst Gi : ρsz(T) ∀i ∈ 0..n−1

value(Gi) ∀i ∈ 0..n−1

(τ;ρsz) |=out
n Q

((c 7→ inst([G1, . . . ,Gn])) :: τ;ρsz) |=out
n (c. x : T inst input) :: Q

(CONF STATIC OUTPUT OUT) (where space(T) 6= rnd)

∅ `static G : ρsz(T)

det(T)⇒ value(G)

(τ;ρsz) |=out
n Q

((c 7→ static(G)) :: τ;ρsz) |=out
n (c. x : T static output) :: Q

(CONF INST OUTPUT OUT) (where space(T) 6= rnd)

∅ `inst Gi : ρsz(T) ∀i ∈ 0..n−1

det(T)⇒ value(Gi) ∀i ∈ 0..n−1

(τ;ρsz) |=out
n Q

((c 7→ inst([G1, . . . ,Gn])) :: τ;ρsz) |=out
n (c. x : T inst output) :: Q

(CONF STATIC LOCAL OUT)

(τ;ρsz) |=out
n Q

((c 7→ static(G)) :: τ;ρsz) |=out
n Q

118

(CONF INST LOCAL OUT)

(τ;ρsz) |=out
n Q

((c 7→ inst([G1, . . . ,Gn])) :: τ;ρsz) |=out
n Q

(CONF SKIP OUT)

rnd(T) (τ;ρsz) |=out
n Q

(τ;ρsz) |=out
n (c. x : T ` viz) :: Q

The output database conformance rules are different from the input database con-

formance rules in that the map τ is constructed dynamically in the conclusions of the

rules, rather than assumed to be constant. This reflects the fact that these maps are

created by evaluating subsequent columns of the table and adding corresponding en-

tries. The first rule (CONF [] OUT) states that an empty table-level database conforms

to the empty table type. The (CONF STATIC INPUT OUT) and (CONF INST INPUT

OUT) rules only make sure that the values of input columns (not marked as random)

are correctly copied to the output database. The rules (CONF STATIC OUTPUT OUT)

and (CONF INST OUTPUT OUT) state that if we append an output column to a table

type, an entry with a well-typed generalised value (or array of values) must be added

to a conformant output map τ for the resulting map to conform to the extended type.

As inference may fail, this generalised value (or one or more of the components of

the array of generalised values) may be fail if the given column is a qry column, but

is expected to be a proper value if the column is deterministic. Since the output map

τ contains also values for local columns, not present in the type Q, the rules (CONF

STATIC LOCAL OUT) and (CONF INST LOCAL OUT) allow a well-formed map to

contain entries for such columns (which are not checked in any way, as there is noth-

ing they could conform to). Finally, (CONF SKIP OUT) discards random columns,

which are not supposed to be present in the output database—they are parts of the

probabilistic model, not parts of the query.

We complete the definition of output database conformance by defining the top-

level conformance relation (δ ;ρsz) |=out Sty, stating that (δ ;ρsz) is a valid output

database for a schema with type Sty. This relation is defined to be the least relation

closed under the following rules:

Conformance Rules for Output Databases: (δ ;ρsz) |=out Sty

119

(CONF SCHEMA [] OUT)

([];ρsz) |=out []

(CONF SCHEMA TABLE OUT)

ρsz(t) ∈ N (τ;ρsz) |=out
ρsz(t)

Q (δ ,ρsz) |=out Sty

((t 7→ τ) :: δ ;ρsz) |=out (t : Q) :: Sty

The rule (CONF SCHEMA [] OUT) says that an empty database conforms to the

empty schema type, while (CONF SCHEMA TABLE OUT) states that if a database

(δ ,ρsz) conforms to the schema type S, then this database with the entry (t 7→ τ) added

to δ conforms to (t : Q) :: Sty if τ conforms to Q.

Proof of Output Database Conformance We can now state and prove the main the-

orem in this section, saying that the combination of the two semantics defined above,

applied to a well-typed schema with a conformant input database, computes a well-

typed output database.

Theorem 2 (Conformance) If (δin,ρsz) |= Sty, and Core(S) and ∅` S : Sty then there

exists a δout such that δin ` S⇓σ δout , where σ =σ(S,DB). Moreover, (δ ,ρsz) |=out Sty.

In order to prove this theorem, we first split it into three lemmas. The first one

states that the function σ(S,DB), applied to a well-typed schema and a conformant

database, produces a map of marginals conforming to the schema—that is, containing

a measure or array of measures for every expression in an infer construct:

Marginal Map Conformance: η |=marg
n T, (σ ;ρsz) |=marg S

(CONF MARG TABLE)

η(c) = static(ν)

∀ c ∈ qry_cols_static(T)
η(c) = inst([ν0, . . . ,νn−1])

∀ c ∈ qry_cols_inst(T)
η |=marg

n T

(CONF MARG SCHEMA)

(σ(t);ρsz) |=marg
ρsz(t)

S(t) ∀t ∈ dom(S)

(σ ;ρsz) |=marg S

Lemma 12 If Core(S) and Γ`S : Sty and (δin;ρsz) |= Sty, then (σ(S;(ρsz,δin));ρsz) |=marg

S.

120

Proof: Let σ = σ(S;(ρsz,δin)). Take any t in dom(S) and let T= S(t). Then take any

column col= (c.x : T ` viz M) of T such that M = infer.D[e1, . . . ,em].c j(E ′). Then, by

the definition of σ(S;(ρsz,δin)), if `= static, we have σ(t)(c)= static(m̂arg((S,DB), t,c)).

By Corollary 11, m̂arg((S,DB), t,c) = ν , where ν is a probability measure on (R,R).

Meanwhile, if `= inst, we have σ(t)(c)= inst([for i< ρsz(t)→ m̂arg((S,DB), t,c, i)]).

By Corollary 11, m̂arg((S,DB), t,c, i) = νi, for every i ∈ 0..ρsz(t)− 1, where νi is a

probability measure on (R,R).

Hence, for every t ∈ dom(S(t)), we have (σ(t);ρsz) |=marg
ρsz(t)

S(t) by (CONF MARG

TABLE), and so (σ ;ρsz) |=marg S by (CONF MARG SCHEMA), as required.

Next, we show that applying the query semantics to a well-typed schema with a

conformant database and a conformant map of marginals actually yields an output

database. A detailed proof of this fact is deferred until the appendix.

Lemma 13 If Core(S) and ∅ ` S : Sty and (δin,ρsz) |= Sty and (σ ,ρsz) |=marg S then

δin, [] ` S ⇓σ δout for some δout .

Proof: In Appendix C

Finally, we show that every output database computed by the semantics for a well-

typed schema with a conformant database conforms to the schema type. Again, the

details of the proof are in the appendix.

Lemma 14 If Core(S) and ∅ ` S : Sty and (δin;ρsz) |= Sty and δin; [] `σ S ⇓ δout , then

(δout ;ρsz) |=out Sty.

Proof: In Appendix C

The main theorem is the corollary of the three above lemmas.

Restatement of Theorem 2 If (δin,ρsz) |= Sty, and Core(S) and ∅ ` S : Sty then

there exists a δout such that δin `S⇓σ δout , where σ =σ(S,DB). Moreover, (δ ,ρsz) |=out

Sty.

Proof: By Lemma 12, we have (σ(S;(ρsz,δin));ρsz) |=marg S. Now, let

σ = σ(S;(ρsz,δin)). By Lemma 13, δin, [] ` S ⇓σ δout for some δout . By Lemma 14,

(δout ;ρsz) |=out Sty.

121

4.6 Conclusions

We have presented a new, significantly extended version of the Tabular schema-based

probabilistic programming language, with user-defined functions serving as reusable,

modular model components, a primitive for computing quantities depending on in-

ference results, useful in decision theory, and dependent types for catching common

modelling errors.

We endowed the language with a rigorous metatheory, strengthening its design. We

have defined a system of structural types, in which each table or model type shows the

variables used in the model, their domains, determinacies, numbers of instances (one

or many) and roles they play in the model. We have shown how to reduce compound

models to the Core form, directly corresponding to a factor graph, by providing a set

of reduction rules akin to operational semantics in conventional languages, and have

proven that this operation is type-sound. We also defined the semantics of the language,

as a combination of a random semantics computing weights of random traces and a

pseudo-deterministic query semantics using integrals of these weights to compute the

expected values of queries depending on parameters of inferred distributions.

Possible directions of future work include adding support for inference in time-

series models and allowing nested inference by extending the lattice of binding times,

so that the distributions computed in one run of inference could be queried by the

probabilistic model “active” in the following run.

Individual Contributions

The type system and reduction relation for Tabular presented in [Gordon et al., 2015].

were designed in a team effort, in collaboration with other authors. However, the

updated syntax of Tabular using separate internal and external column names and the

new versions of the type system and reduction relation presented here are all my own

work. The proof of type soundness for Tabular, the new semantics of Tabular presented

in Section 4.5 and the proofs of correctness of the semantics are also entirely my own

effort.

122

Chapter 5

Fabular: Tabular with Regression

Formulae

Acknowledgement This chapter is based on the paper “Fabular: Regression Formulas

as Probabilistic Programming” [Borgström et al., 2016] published at the 2016 Sympo-

sium on Principles of Programming Languages (POPL). The paper was joint work with

Johannes Borgström, Andrew D. Gordon, Long Ouyang, Claudio Russo and Adam

Ścibior.

The Tabular language, presented in Chapter 4, aims to bring probabilistic program-

ming to the large mass of casual users. However, the current statisticians’ weapon of

choice is the R language, which features a simple yet useful and popular formula nota-

tion for expressing linear models with group-level coefficients, which are a version of

linear models in which the values of regression coefficients may be different for data

points with a different value of some categorical predictor. This domain-specific lan-

guage, which can be used in conjunction with several inference packages such as lm

and lmer, allows a very concise representation of a class of models frequently used in

statistics, but lacks any formal semantics, with the meaning of formulae only defined

by the implementations of inference packages and informal textual descriptions in the

R documentation.

This chapter introduces Fabular, an extension of the Tabular language presented in

Chapter 4, with hierarchical regressions. This language includes an improved version

of the R formula language (supporting proper hierarchical regressions, whereby coeffi-

cients can themselves be modelled by other regressions), which can be used as ordinary

model expressions in Tabular. By providing a translation from Fabular to Core Tabu-

123

lar, which has a formally defined semantics, we also give a rigorous semantics to the

calculus. To ensure correctness of the embedding, we also define a type system of the

regression calculus and show that Fabular schemas with well-typed formulas reduce to

well-typed Core Tabular programs.

5.1 Linear Regression Formulae in R and Their Limita-

tions

The goal of usual (univariate) linear regression is to fit a line of the form yi = α× xi +

β + εi, where εi is the i-th error term, to a dataset consisting of points (xi,yi). The

unknown parameters α and β are called slope and intercept, respectively. Obviously,

this form of regression generalises trivially to the multivariate case. In the basic form

of linear regression with group-level coefficients (sometimes called random effects),

we assume that we additionally have a discrete categorical predictor c, admitting a

possibly different value ci in each i-th row, and that we have multiple values of either

α or β , one for each possible value of c. For instance, consider the formula yi =

α[ci]× xi + β + εi. where each ci is an integer in the range [0,n− 1], and assume

that each row of data consists of values (xi,yi,ci). In this regression, α is considered

to be an array of n parameters, and in each row i, the component of α to be used is

determined by the value ci of c in this row.

In the R formula language, the parameter names are anonymised, the intercept and

error term are added automatically and the dependence of the parameter of a variable x

on a categorical predictor c is denoted by x|c. Hence, the above hierarchical regression

formula can be written simply as y∼ x|c.

The main package for linear modelling with group-level coefficients, lmer, only

performs non-Bayesian maximum likelihood computation and does not allow defining

priors on coefficients. The blme package [Dorie, 2016] added the possibility to define

priors on global and group-level regression coefficients, allowing for defining hierar-

chical linear models, whereby coefficients of a given linear regression themselves have

probabilistic models. However, the priors have to be specified outside the formula lan-

guage, and they are limited to Gaussian and Student t distributions in case of global

coefficients— meanwhile, for group-level coefficients, one can only define a prior on

their covariance matrix, which may complicate modelling.

Motivated in equal measure by the popularity and the shortcomings of the R for-

124

mula language, we define a compositional calculus for hierarchical linear regressions,

in which global and group-level coefficients can themselves be modelled just like top-

level regressions, by the use of recursive syntax. This conforms to the spirit of hierar-

chical regression and allows defining coefficients with arbitrary priors, or even deeper

models where the coefficients in the model of a top-level coefficient are themselves

modelled by higher-level regressions.

We present a type system and semantics of this regression calculus, which sub-

sumes the R formula language, and embed the calculus in Tabular, showing how formu-

lae can be used as a convenient domain-specific language within a more standard prob-

abilistic programming system, shortening and simplifying larger probabilistic models.

5.2 Syntax of the Regression Calculus

The syntax of the calculus consists of predictors and regressions. Because of the com-

positionality of the calculus, regressions can model group-level coefficients dependent

on multiple categorical variables, which admit different values for different combina-

tions of these grouping variables. Such coefficients can be treated as multidimensional

arrays, with one dimension corresponding to each grouping factor. Hence, the predic-

tors and regressions, despite seemingly returning scalar values, define in fact multidi-

mensional arrays (of dimension zero in the case of top-level scalar expressions).

To reason about predictors and regressions in nested, hierarchical models, without

referencing their dimensionality directly, we introduce cube-expressions, which repre-

sent arrays of arbitrary dimensionality. We write~e for the dimension of a cube, being a

finite list [e0, . . .en−1] of non-negative integers. A cube-expression of base type T and

dimension ~e is a multi-dimensional array of type T [en−1] . . . [e0]. An index to a cube

of size ~e = [e0, . . .en−1] is a list~i = [i0, . . . , in−1] of integers such that 0 ≤ i j < e j for

each j ∈ 0..n−1. If E is a n-dimensional array and~i = [i0 . . . , in−1], we write E[~i] for

E[in−1] . . . [i0].

Predictors are deterministic quantities representing the data used in the model.

Their syntax is as follows:

Predictors:

u,v ::= predictor

s scalar (typically 0 or 1)

x variable (discrete or continuous)

125

u : v interaction

(u1, . . . ,un).v path expression

A scalar s is a cube whose every element is s, which is typically 1, denoting the

presence of an intercept term. A variable x simply denotes the cube corresponding to

x. An interaction u : v is the pointwise product of the cubes defined by u and v. Fi-

nally, a path expression (u1, . . . ,un).v denotes the cube defined by v composed with the

index transformers defined by u1, . . . ,un —that is, if v defines a cube E and u1, . . . ,un

are cubes E1, . . . ,En, then the cube (u1, . . . ,un).v applied to the index ~j = [j1, . . . , jm]

returns E[E1[~j]] . . . [En[~j]]. The purpose of path expression is to reference a variable

which has the same dimensionality as the parameters, and not outputs, of a given ex-

pression. Its main application is in defining priors on noise terms, as described later in

this section, in which case the parameter list u1, . . . ,un is empty and the predictor v is

expected to be a real-valued variable.

Regressions have the following syntax:

Regressions:

r ::= regression

D[e1, . . . ,em](v1. . . . ,vn) noise

v{α ∼ r} modelled predictor

r+ r′ sum

r|v grouping

x∼ r in r′ local binding (x alpha-convertible)

The noise D[e1, . . . ,em](v1. . . . ,vn) can be drawn from an arbitrary real-valued dis-

tribution D. We reuse the syntax and signatures of continuous distributions from Tabu-

lar (as defined in Chapter 4), except that we add the Dirac delta distribution (putting all

the probability mass on a single point) and an alternative parametrisation of Gamma,

with scale replaced by rate (inverse of scale).

The list of distributions supported is the following (but could easily be extended):

Real-Valued Distributions: Dspc : [x1 : T1, . . . ,xm : Tm](y1 : U1, . . . ,yn : Un)→ real ! rnd

Betaspc :: (a : real!spc,b : real!spc)→ real ! rnd

Gammaspc : (shape : real!spc,scale : real!spc)→ real ! rnd

126

Gaussianspc : (mean : real!spc,variance : real!spc)→ real ! rnd

GaussianFromMeanAndPrecisionspc : (mean : real!spc,prec : real!spc)→ real ! rnd

GammaFromShapeAndRatespc : (shape : real!spc, rate : real!spc)→ real ! rnd

Diracspc : (point : real!spc)→ real ! rnd

From the above list, the Gaussian and Gamma distributions are most commonly used

in linear models.

The modelled predictor v{α ∼ r} denotes a predictor whose parameter has a prior

defined by r. The predictor v can be an arbitrary dimensional cube, and the parameter

α can also be multi-dimensional, depending on the context. The sum r+ r′ returns the

pointwise sum of the cubes defined by regressions r and r′. The grouped regression

r|v is regression r with the top-level parameters turned into arrays indexed by v (or

with one dimension added to the parameters if they are already arrays). Finally, the

operator x∼ r in r′ binds the local variable x to the cube defined by r in the regression

r′. The variable x is akin to a local parameter, rather than a modelled predictor, and its

dimensionality must match the dimensionality of parameters in r′ (as long as r′ has no

grouping factors).

When showing regression formulas, we assume that the operator | binds more

tightly than +.

Scoping Rules, Alpha-Conversion and Free Variables Regression parameters α

are assumed to be fixed and unique; they are not α-convertible. Parameters are not

binders and cannot be referenced anywhere in the given regression.

On the other hand, local variables x, introduced by the construct x ∼ r in r′, are

α-convertible and can be referenced in the regression: in x ∼ r in r′, the variable x is

bound in r′. This is to allow, for instance, defining the prior of a parameter of a noise

term by another linear regression.

The set of free variables of a predictor or regression is defined below. Note that

parameters are not free variables.

Free Variables in Predictors and Regressions: fv(v), fv(r)

fv(s) =∅
fv(x) = {x}
fv(u : v) = fv(u)∪ fv(v)

fv((u1, . . . ,un).v) = fv(u1)∪·· ·∪ fv(un)∪ fv(v)

127

fv(D[k1, . . . ,km](u1, . . . ,un)) = fv(u1)∪·· ·∪ fv(un)

fv(v{α ∼ r}) = fv(v)∪ fv(r)

fv(r1 + r2) = fv(r1)∪ fv(r2)

fv(r|v) = fv(r)∪ fv(v)

fv(x∼ r in r′) = fv(r)∪ (fv(r′)\{x})

Abbreviations As the extended and more flexible modelling syntax arguably makes

the regression calculus wordier than the R formula language which inspired it, we

introduce several abbreviations allowing to write common models with default priors

more concisely. The term v{α} denotes a predictor v with parameter r whose prior is

a normal distribution with large variance, which is meant to simulate an uninformative

prior.

v{α}= v{α ∼ Gaussian(0,s2
large)}

The noise term will typically be a draw from the Gaussian distribution. We let

?{∼ r} be the Gaussian noise with the prior on precision defined by the regression r:

?{∼ r}= x∼ r in GaussianFromMeanAndPrecision(0,().x)

Note that x is a scalar variable, not a cube, so to access it we need to use the path

expression ().x with empty path. If we referenced it as just x, it would be incorrectly

treated as a predictor having the same dimensionality as the output cube of the noise

term itself.

The term ? stands for Gaussian noise whose precision has a Gamma prior with a

large rate.

? =?{∼ GammaFromShapeAndRate(0,slarge)}

Example: Cheese Sales To demonstrate the concision of the regression calculus,

let us now consider an example based on the cheese dataset from R’s bayesm pack-

age (https://www.rdocumentation.org/packages/bayesm). Suppose we have a

database storing the price of a pack of sliced cheese and the number of packs sold in

some year in stores belonging to various retail chains in different American cities.

128

Cities
ID city

0 LOS ANGELES

1 CHICAGO

2 HOUSTON

(. . .)

Chains
ID chain

0 LUCKY

1 RALPHS

2 KROGER CO

(. . .)

Sales
ID city chain price volume

0 LOS ANGELES LUCKY 2.57846 21374

1 LOS ANGELES RALPHS 3.727867 6427

2 LOS ANGELES VONS 2.711421 17302

3 CHICAGO DOMINICK 2.651206 13561

4 CHICAGO JEWEL 1.986674 42774

5 CHICAGO OMNI 2.386616 4498

6 HOUSTON KROGER CO 2.481124 6834

7 HOUSTON RANDALLS 3.428268 3764

8 DETROIT KROGER CO 2.747321 5505

9 SAN FRANCISCO LUCKY 3.716438 6041

(. . .)

Like in Tabular, we assume that each table has a numeric primary key ID and that

links are integers, but for the sake of readability we add additional string columns to

the tables Cities and Chains and use them as aliases for corresponding indices (so, for

example, HOUSTON is an alias for the index 2).

We are interested in checking how the sales volume depends on the price of this

cheese. In the simplest possible model, we may assume that the sales volume does not

depend on the price:

volume∼ 1{α}+?

In this model, we assume that the volume is always a noisy copy of a single, global

intercept α , drawn from a Gaussian with a large variance. As it is not realistic to expect

the sales not to depend on the price, we can add another term to the above regression,

to make it a linear function of the price:

volume∼ 1{α}+price{β}+?

129

Now, the regression contains an intercept α , drawn from a normal distribution, and

a slope term price{β}, being the price multiplied by the proportionality rate β , also

sampled from a wide normal distribution (and, obviously, expected to be negative).

Again, we need to add the noise term ?, as we cannot require all the observations to

match the model exactly.

The above model does not take into account cities and chains—the inferred pa-

rameters α and β are the same for every row of the Sales table. However, we might

expect that, for instance, how much price affects sales will depend on the retailer, as

customers of more upmarket stores are likely to pay less attention to the price. To

account for this, we can modify the model as follows:

volume∼ 1{α}+price{β}|chain+?

Now, we still have one global value of the intercept α , but the slope β is allowed to

be different in entries concerning different chains. In other words, we have one value

of β per chain.

Finally, we can expect the intercept of regression, representing the baseline demand

for cheese, to depend on the city, as the demand should be higher in more populous

areas. We can adapt the model as follows:

volume∼ 1{α}|city+price{β}|chain+?

We now have one value of α per city and one value of β per chain.

Example: Radon measurements and partial pooling In the above model, all the

regression parameters have default Gaussian priors, and so the nested regressions mod-

elling parameters are simple Gaussian distributions with no input variables.

To show the flexibility of the regression calculus, let us consider a more com-

plex model adapted from [Gelman and Hill, 2007], modelling radon radiation levels

in houses in different counties of Minnesota. The dataset for this model consists of

(continuous) measurements of radon activity in houses in different counties, together

with the floor on which the given measurement was taken (which can be treated as a

continuous predictor). Additionally, each county has an associated uranium level.

130

Counties
ID county uranium

0 AITKIN 0.502054

1 ANOKA 0.428565

2 BECKER 0.892741

(. . .)

Measurements
ID county floor activity

0 AITKIN 1 2.2

1 AITKIN 0 2.9

2 ANOKA 0 1.7

3 BECKER 1 1.2

(. . .)

Suppose that we expect the radon activity in each house to depend on the level

of uranium radiation in the given county and the floor on which the measurement was

taken (as the uranium radiation coming from the ground should be weaker on the upper

floor). We can then model radon activity by the following regression:

activity∼ 1{α ∼ r}|county+ floor{β}+?

where:

r = 1{γ}+uranium{ζ}+?

In this model, the radon activity in each house is a linear combination of a county-

level intercept α , modelled by the regression r and admitting different values for

houses in different counties, the floor on which the measurement was taken multiplied

by the global proportionality constant β and a default noise term ?. The regression r

consists of a global intercept γ and the uranium level in the given county multiplied by

some parameter ζ , having a default Gaussian prior. Note that while in the top-level re-

gression, both the input floor and the modelled output activity are in the top-level table

Measurements, the input uranium of the nested regression r is in the table Counties,

and the regression also produces one output per entry of this table. By conditioning r

on the predictor county, which is a link to the table Counties, we specify that r has one

input and output per county, not per measurement.

5.3 Typing Regression Formulae

We present a simple type system for regression formulae, which ensures that the given

formula is well-formed and gives the list of parameters defined by a hierarchical regres-

sion, together with their types and dimensionalities. In the typing rules and judgments,

we reuse the syntax of Tabular environments Γ, base types T and the typing judgment

131

for variables, Γ `pc x : T . When typechecking a regression r, we assume that all pre-

dictors occurring in r are defined in the initial environment Γ, corresponding to the

database storing the values of predictors. These predictors are all expected to be static

arrays, except for top-level predictors (i.e. not appearing in nested regressions), which

can be at inst level. If a top-level predictor is an inst-level scalar, it actually means

that it defines an array of the length equal to the size of the main table in the database,

just like inst-level columns in Tabular.

We begin by giving the typing rules for predictors, which define the judgment

Γ;~e;` ` v : T , which says that in the environment Γ, the predictor v defines a cube of

dimensionality~e with base type T , at level ` (which can be inst only if the predictor is

top-level). We write T [~e] for T [en] . . . [e1] if~e = [e1, . . . ,en]. Formally, the elements of

~e are Tabular indexed expressions, as defined in Section 4.2.2, so they can be scalars,

variables present in the environment or table sizes. The type system requires these

elements to be deterministic integers.

Typing rules for predictors: Γ;~e;` ` v : T

(SCALAR) (where~e = [e1, . . . ,en])

Γ ` � s ∈ R Γ `static ei : int ! det ∀i ∈ 1..n

Γ;~e;` ` s : real ! rnd

(VAR)

Γ `` x : T [~e]

Γ;~e;` ` x : T

(INTERACT)

Γ;~e;` ` u : real ! rnd Γ;~e;` ` v : real ! rnd

Γ;~e;` ` u : v : real ! rnd

(PATH) (where ~f = [f1, . . . , fn])

Γ;~e;` ` ui : mod(fi) ! det ∀i ∈ 1..n Γ;~f ;` ` v : T

Γ;~e;` ` (u1, . . . ,un).v : T

The (SCALAR) rule only allows real-valued constants to be used in the calculus (as

mentioned before, they are usually 1). The (VAR) rule states that if the variable x is

supposed to represent a cube of dimension ~e and base type T , it must have type T [~e]

in the environment. The following rule, (INTERACT), states that two predictors can

only be multiplied if their dimensions match. Meanwhile, (PATH) states that in a path

132

expression, the elements ui of a path must be cubes of bounded integers of matching

dimensions and the predictor v must be a cube of dimensions specified by the bounds

on path predictors. As stated before, the most common use case of the path expression

is defining priors on noise terms, in which case the path u1, . . . ,un is empty and v is a

scalar real-valued variable x. In this case the (PATH) rule simplifies to the following:
(PATH)

Γ `` x : real ! rnd

Γ;~e;` ` ().x : real ! rnd

The regression typing rules derive the judgment Γ;~e;~f ;` ` r ! Π, which states that

in the environment Γ, if the level of regression is ` (which must be static for nested

regressions), the dimensionality of the modelled predictor is ~e and the parameter di-

mensionality at the current level is ~f , the regression r defines the list of parameters Π

(which has the same syntax as an environment Γ). Elements of ~f , just like elements of

~e, are indexed expressions.

Typing rules for regressions: Γ;~e;~f ;` ` r ! Π

(NOISE) (where~e = [e1, . . . ,en] and ~f = [f1, . . . , fn′] and σ(U),U{ê1/x1} . . .{êm′/xm′})
Drnd : [x1 : T1, . . .xm′ : Tm′](c1 : U1, . . . ,cm : Um)→ real ! rnd

Γ ` � Γ `static ei : int ! det ∀i ∈ 1..n Γ `static fi : int ! det ∀i ∈ 1..n′

Γ `static êi : Ti ∀i ∈ 1..m′ Γ;~e;` ` u j : σ(U j) ∀ j ∈ 1..m

{x1, . . . ,xm′}∩ (
⋃

i fv(êi)) =∅ xi 6= x j for i 6= j

Γ;~e;~f ;` ` D[ê1, . . . , êm′](u1, . . .um) ! ∅

(COEFF)

Γ;~e;` ` v : real ! rnd Γ;~f ; [];static ` r ! Π

Γ;~e;~f ;` ` v{α ∼ r} ! Π,α : (real!rnd)[~f]

(SUM)

Γ;~e;~f ;` ` r ! Π Γ;~e;~f ;` ` r′ ! Π′

Γ;~e;~f ;` ` r+ r′ ! Π,Π′

(GROUP)

Γ;~e;` ` v : mod(f) ! det Γ;~e;(f :: ~f);` ` r ! Π

Γ;~e;~f ;` ` r|v ! Π

(BIND)

Γ;~f ; [];static ` r ! Π Γ,x :static (real!rnd)[~f];~e;~f ;` ` r′ ! Π′

Γ;~e;~f ;` ` x∼ r in r′ ! Π,Π′

133

The (NOISE) rule says that the noise term itself does not add any parameters to the

model, and requires that all predictors used as parameters of D have the right types.

Like in Tabular, types U j of parameter predictors may depend on hyperparameters êi,

which are expected to be constants, table sizes or deterministic variables (which must

be present in the initial environment, as there are no rules adding deterministic vari-

ables to the environment in the Fabular type system). The (COEFF) rule checks the type

and dimensionality of the predictor v and recursively typechecks the nested regression

r. As this nested regression models the parameter α of the top-level regression, the

parameter dimensionality of the top-level regression becomes the modelled predictor

dimensionality of r and the parameter dimensionality of r is initially empty. Mean-

while, (SUM) says that the list of parameters defined by a sum r+ r′ of regressions is

the concatenation of their individual parameter lists. The (GROUP) rule extends the

current parameter dimension vector ~f with the bound f of the categorical predictor v

and checks the nested regression r with this extended vector f :: ~f . This rule says that

if ~f = [] and r is a modelled regression of the form v{α ∼ r′}, the grouping factor

effectively turns the parameter α into an array of size f . Finally, (BIND) checks that r

defines a cube whose dimensionality matches the current parameter dimensionality ~f

and that the regression r′ is well typed in the environment extended with x, denoting

the cube defined by r.

Example Recall the cheese sales example from Section 5.2. By desugaring the last

discussed regression for this dataset, r = 1{α}|city+price{β}|chain+?, we get

r = 1{α ∼ Gaussian(0,slarge
2)}|city+price{β ∼ Gaussian(0,slarge

2)}|chain+

(x∼ GammaSR(1,slarge) in GaussianMP(0,().x))

(writing GaussianMP for GaussianFromMeanAndPrecision and GammaSR for

GammaFromShapeAndRate).

Suppose the tables Cities and Chains have pre-determined sizes nCities and nChains,

respectively. Then, an initial environment corresponding to the database can be of the

form:

Γ = city :inst mod(nCities) ! det,chain :inst mod(nChains) ! det,price :inst real ! det,

Hence, it is easy to check that the type of this regression r in Γ is as follows:

Γ; []; []; inst ` r : α : (real ! rnd)[nCities],β : (real ! rnd)[nChains]

134

Consider now the formula from the radon example:

activity∼ 1{α ∼ r}|county+ floor{β}+?

r = 1{γ}+uranium{ζ}+?

After desugaring, the regression r′ modelling activity has the following form:

r′ = 1{α ∼ r}|county+ floor{β ∼ Gaussian(0,slarge
2)}+

(x∼ GammaSR(1,slarge) in GaussianMP(0,().x))

where:

r = 1{γ ∼ Gaussian(0,slarge
2)}+uranium{ζ ∼ Gaussian(0,slarge

2)}

(x∼ GammaSR(1,slarge) in GaussianMP(0,().x))

Let us assume that the table Counties has nCounties rows. Then the environment

matching the database has the following form:

Γ = uranium :static (real !det)[nCounties],county :inst mod(nCounties) !det,floor :inst real !det,

To derive the type of regression r′, by the rule (COEFF), we first need to typecheck

the regression r at level static, with the output dimensionality set to [nCounties] (i.e. the

parameter dimensionality of the term 1{α ∼ r}, after setting ~f to [nCounties] by (GROUP)).

We can show that the type of r is as follows:

Γ; [nCounties]; [];static ` r : (γ : (real ! rnd),ζ : (real ! rnd))

Hence, the type of the full regression r′ is as follows:

Γ; []; []; inst ` r′ : (γ : (real ! rnd),ζ : (real ! rnd),α : (real ! rnd)[nCounties],β : (real ! rnd))

5.4 Fabular = Tabular + Regression Formulae

We now demonstrate how the domain-specific language of hierarchical linear regres-

sions can be combined with a general probabilistic programming system by embedding

the regression calculus in Tabular. We call the resulting language Fabular (Tabular +

Formulas). We illustrate the succinctness and flexibility of the resulting language by

several examples and provide a translation from Fabular to Core Tabular, just like for

other compound Tabular models. Since the Core Tabular semantics is restricted in that

135

expressions in all conditioned output columns must be random draws, we require the

regressions in Fabular to be of the form r+?, to ensure that the output expression of

the regression can be represented as a draw from a Gaussian (centred at the output

expression of r).

5.4.1 Syntax and Type System of Fabular

Fabular is an extension of Tabular with regression formulas, which are just another

kind of compound model, just like function applications and indexing.

Full Fabular Schemas:

M,N ::= · · · |∼ r+? model expression

By adapting the typing judgment for formulae and translating parameter lists Π to

Tabular Q-types, we can easily extend the Tabular type system to Fabular. We start by

defining the following translation of regression types to Tabular types.

Translation of Parameter Lists to Tabular Model Types: [[Π]]

[[Π,α : T]] = [[Π]]@[(α . y : T static output])

[[]] =∅

The local names y are irrelevant, because in regression types Π, parameters cannot

be referenced in subsequent parameter types T . The level of all parameters is static,

because parameters will be translated to arrays in static columns in the table where the

regression was used.

With this type translation in place, we can define the additional typing rule for

regression formulae.

Typing rules for Fabular tables: Γ `pc M : Q

(MODEL REGRESSION)

Γ;∅; []; [];` ` r+? ! Π

Γ `` r+? : [[Π]]@[(ret. y : real ! rnd ` output)]

136

This rule states that an embedded regression r+? is only well-typed in Fabular

if it is well-typed according to the type system for the calculus, and that the type

of regression in Fabular is its list of parameters Π concatenated with the type of the

top-level output expression defined by the regression. As in functions, we use the ret

keyword to denote the output of the model. The level ` is the level of the column where

the regression was used, and is normally expected to be inst—otherwise the regression

could only model a single data point.

5.4.2 Translation to Core Tabular

We now show how Fabular programs can be reduced to Core Tabular, by reducing re-

gression formulas to sequences of Tabular columns. We begin by showing the straight-

forward rules for translating predictors to Tabular expressions. As mentioned before,

a predictor will typically denote a multidimensional array, from which we will need to

extract the right component when translating regressions. If ~E = [E1, . . . ,En] is a list of

indices and v is a predictor of dimensionality~e = [e1, . . . ,en] and each ei is the bound

of Ei, then [[v]] ~E is the element of the cube defined by v at indices ~E. Below, we write

x[~E] for x[E1] . . . [En].

Translation of predictors to Tabular expressions

[[s]] ~E = s

[[x]] ~E = x[~E]

[[u : v]] ~E = [[u]] ~E× [[v]] ~E

[[(u1, . . . ,um).v]] ~E = [[v]] [[[u1]] ~E] . . . [[[um]] ~E]

The first case is obvious, as scalar predictors define cubes in which all entries are

set to the given scalar. In the second case, the element of a cube defined by a variable is

accessed simply by an ordinary array access in Tabular. In case of an interaction u : v,

we need to get the elements of cubes defined by u and v at index ~E, and multiply the

results. In a path expression, the categorical predictors u1, . . . ,um define cubes from

which we need to extract elements at index ~E, and pass them as indices to the cube

defined by v.

The translation of regressions is defined by means of the recursive function

[[`;~e;~f ;~v;r;K]]†, where ` is the current level, r is the currently reduced regression, ~e

and ~f are, respectively, output and parameter dimensionalities of r, ~v is the list of

137

categorical grouping factors for r and K = λE.T is a continuation, mapping a simple

Tabular expression E to a Core table T, possibly including the expression E (note that

continuations are meta-language functions). This operator returns a table T, which is

a Tabular translation of the given regression r.

Before defining this operator, we present an additional model reduction rule reduc-

ing regressions to Tabular models. In order to reduce the regression as a model M,

without looking at the table where it was used, and avoid having to replace references

to parameters from outside the regression with corresponding, newly-introduced local

variables (like in application reduction), we reduce a regression to a function applica-

tion, applying the table returned by the aforementioned operator to an empty argument

list. This way, references to the parameters in the outer table will be replaced by local

variables in the next phase, when this dummy application is reduced.

Reducing Fabular to Core Tabular M→M′

(RED REGR)

x 6= y 6= z

∼ r+?→ [[inst; []; []; [];r;K]]† []

where

K = λE.(_. x : real ! rnd inst local E)

:: (_. y : real ! rnd static local GammaFromShapeAndRate(0,slarge))

:: (ret. z : real ! rnd inst output GaussianFromMeanAndPrecision(x,y))

In the above rule, the initial level can be set to inst, because if the regression was

in a static column, all the columns would be reduced to static level when reducing the

dummy function application. The initial continuation maps the output expression E of

the regression r, to be computed by the translation operator, to a function table whose

last ret column is a draw from a Gaussian centred at the value of the expression E, with

a default Gamma prior. We set the expression in ret to a Gaussian centred at the value

of E, rather than the sum of E and a Gaussian centred at 0, because the semantics of

Fabular is only defined for schemas where the expressions in all conditioned columns

are simple random draws. The auxiliary first column, binding x to E, is introduced to

keep the invariant that the translation only uses continuations of the form K = λE.(c.

x : T ` viz E) :: T where T does not depend on E, which will be useful in the proof of

correctness of the translation.

138

The aforementioned operator [[`;~e;~f ;~v;r;K]]†, which performs the actual transla-

tion, is formally defined below. This translation is, strictly speaking, type-directed,

as we need to know the bounds f of categorical predictors v. If ~e = [e1, . . .en] and

~z = [z1, . . . ,zn], we write [for~z <~e→ E] for

[for z1 < e1→ [for z2 < e2→ . . . [for zn < xn→ E] . . .]] and fv(~z) for {z1, . . . ,zn}.
As mentioned above, the translation only uses linear continuations of the form

K = λE.(c. x : T ` viz E) :: T, where T does not not depend on E. If K has the above

form, we write fv(K) for fv(T)∪ fv(T).

Translation of regression parameters to Tabular

[[`;~e;~f ;~v;v{α ∼ r};K]]† ,

[[static;~f ; []; [];r;λE.(α . y : real ! rnd[~f] static output E):: (K 〈y;~e;~v;v{α ∼ r}〉)]]†

where y /∈ fv(K)∪ fv(~v)∪ fv(~e)∪ fv(v) and~v = [v1, . . . ,vn]

and〈y;~e;~v;v{α ∼ r}〉= [for~z <~e→ [[v]]~z× y[[[vn]]~z] . . . [[[v1]]~z]]

and fv(~z)∩ ({y}∪ fv(v)∪ fv(~v)) =∅
[[`;~e;~f ;~v;r|v;K]]† ,

[[`;~e; f :: ~f ;v ::~v;r;K]]† where Γ;~e;` ` v : mod(f) ! det

[[`;~e;~f ;~v;D[ê1, . . . êm′](u1, . . . ,um);K]]† ,

K[for~z <~e→ D[ê1, . . . êm′]([[u1]]~z, . . . , [[um]]~z)]

[[`;~e;~f ;~v;r1 + r2;K]]† ,

[[`;~e;~f ;~v;r1;λE1.(_. y : real ! rnd[~e] ` local E1) ::

[[`;~e;~f ;~v;r2;λE2.(_. z : real ! rnd[~e] ` local E2) :: K [for~z <~e→ y[~z]+ z[~z]]]]†]]

where y /∈ fv(K)∪ fv(r2)∪ fv(~v)∪ fv(~e)∪ fv(~f) and z /∈ fv(K)∪ fv(~v)∪ fv(~e)

and fv(~z)∩{y,z}=∅
[[`;~e;~f ;~v;y∼ r in r′;K]]† ,

[[static;~f ; []; [];r;λE.(_. y : real ! rnd[~f] static local E) :: [[`;~e;~f ;~v;r′;K]]†]]†

where y /∈ fv(K)∪ fv(~v)∪ fv(~e)∪ fv(~f)

The reason why we need to use continuations is that when processing a given re-

gression r, we cannot immediately compute its output expression, as we do not know

the local names of the parameters on which this expression depends, which are chosen

dynamically. Using a continuation is a way of delaying the computation of the output

expression until the local names of these parameters are known.

In the case of a modelled predictor v{α ∼ r}, we first need to construct a new

continuation K′ from K. In K′, the expression E, to be computed later, is put in the

139

first column of the table, defining the parameter α modelled by r. Note that we can-

not translate the output expression of regression r yet, because, as stated above, local

names of parameters (such as y here) are defined on the fly, and we do not know the

names of variables appearing in the translation of the output expression of r before

recursing into r. The rest of the table is obtained by passing the output expression of

the current regression v{α ∼ r} down to the continuation K. Having constructed the

new continuation K′, we compute recursively the translation of r with this continua-

tion. The previous parameter dimensionality ~f becomes the output dimensionality, as

the output expression of r models the parameter α .

In case the regression is of the form r|v, the predictor v is added to the list of

categorical predictors and its bound f to the list defining parameter dimensionality in

the recursive call.

If the regression is a noise term D[ê1, . . . êm′]([[u1]]~z, . . . , [[um]]~z), then its output ex-

pression is a nested for-loop of dimensionality~e, whose every component is a random

draw from D with the parameters obtained by accessing the elements of cubes defined

by u1, . . . ,um at the given index~z.

In the case of a sum r1 + r2 of two regressions, we recursively call the translation

function to translate both expressions r1 and r2 and put the translation of r2 in the

continuation of r1, to combine the tables resulting from translating these regressions.

The outputs of regressions r1 and r2 are stored in separate columns with local names y

and z and the output expression of r1 + r2, passed down to K, is then a pointwise sum

of the expressions stored in y and z.

Finally, if the regression is a local binding of the form y ∼ r in r′, it is evaluated

by translating r′ first (with current continuation K), treating y as a free variable (which

cannot be α-converted), and then putting the resulting table in the continuation of

r, where it will be preceded by the column with local name y defining the output

expression of r. This has the desired effect of binding the return expression of r in

r′. Note that in the translation of r, ~f becomes the output dimensionality, because y is

supposed to be at the level of parameters, rather than top-level predictors, in r′.

The translation shown above does not produce optimal code, as the rule translating

sums of regressions needlessly creates additional columns y and z, storing multidimen-

sional arrays which then need to be accessed to compute the pointwise sum of output

expressions of regressions. The translation was defined this way because the invariant

that the argument expression E is only used in the first column of the body of a con-

tinuation and that output expressions of regressions are computed in one go, instead

140

of the element at each index being computed separately, simplifies reasoning about the

translation, and specifically the proof of type soundness, presented later in this chapter.

In the implementation of a Fabular compiler, it would be easy to optimise the

translation by inlining the expressions E1 and E2, which define loops of the form

[for ~̂z <~e→ Ê1[~̂z]] and [for ~̂z <~e→ Ê2[~̂z]] respectively, and then simplifying E1[~z]

to Ê1[~z], and similarly for E2.

5.4.3 Examples

Recall again the two examples from Section 5.2. The last regression for the cheese

sales database, modelling sales volume, has three predictors: continuous predictor

price and discrete predictors city and chain. These predictors need to be defined in

the Fabular schema before the regression.

We first define a Tabular schema to which the given database conforms. We define

empty tables Cities and Chains (discarding the auxiliary string columns with names)

and a main table Sales, in which we define the city and chain predictors as input

columns, linking to the aforementioned tables. We then define price as a real-valued

input column. With these columns in place, we can finally define the regression, mod-

elling the observed volume column. Columns are referenced in regressions by their

local, not field, names, but in the examples we use same field and local names for input

columns.

table Cities

table Chains

table Sales

city . city link(Cities)!det input

chain . chain link(Chains)!det input

price . chain real!det input

volume . volume real!rnd output ∼(1{a} | city)+ (price{b} | chain)+ ?

This Fabular table reduces to the following Core Tabular schema (after applying the

translation and reducing the dummy function application produced by (RED REGR)):

141

table Cities

table Chains

table Sales

city . city link(Cities)!det input

chain . chain link(Chains)!det input

price . chain real!det input

a . x real!rnd[sizeof(Cities)] static output [for z < sizeof(Cities)→Gaussian(0, s_large ^ 2)]

_ . p real!rnd local 1*x[city]

b . y real!rnd[sizeof(Chains)] static output [for z < sizeof(Chains)→Gaussian(0, s_large ^ 2)]

_ . q real!rnd local price*y[chain]

_ . z real!rnd static local GammaSR(1, s_large)

_ . s real!rnd local GaussianMP(0, z)

_ . t real!rnd local q + s

volume . volume real!rnd output p + t

The radon example is similar. We have two tables, Counties and Measurements,

the latter being the top-level table in which the regression is defined. The difference

is that in this example, the Counties table has its own real-valued input, uranium. The

radon model can be encoded in Fabular as follows:

table Counties

uranium . uranium real!det input

table Measurements

county . county link(Counties)!det input

floor . floor real!det input

uranium . uranium real!det[sizeof(Counties)] static output [for i < sizeof(Counties)→ i:Counties.uranium]

activity . activity real!rnd output ∼(1{a ∼(1{ g } + uranium{ h })} | county)+ (floor{b})+ ?

Since predictors in regressions can only be locally defined variables, the column

uranium has to be copied to the Measurements table as a static array. While having

to do so may seem unnecessary, this is a design choice, made to simplify treatment of

regressions conditioned on multiple categorical variables (if we allowed references to

other tables, it would not be clear where a variable conditioned on multiple discrete

predictors, each with its own table, should be defined).

After inlining the auxiliary variables used in constructing sum expressions, this

model takes the following form:

142

table Counties

uranium . uranium real!det input

table Measurements

county . county link(Counties)!det input

floor . floor real!det input

uranium . uranium real!det[sizeof(Counties)] static output [for i < sizeof(Counties)→ i:Counties.uranium]

g . z1 real!rnd static output Gaussian(0, s_large ^ 2)

h . z2 real!rnd static output Gaussian(0, s_large ^ 2)

k . z3 real!rnd static local GammaSR(1, s_large)

l . s real!rnd static output [for z < sizeof(Counties)→Gaussian(0, z3)]

a . x real!rnd[sizeof(Counties)] static output [for z < sizeof(Counties)→1*g + uranium[z]*h + l[z]]

b . y real!rnd static output Gaussian(0, s_large ^ 2)

_ . z real!rnd static local GammaSR(1, s_large)

_ . t real!rnd local GaussianMP(0, z)

activity . activity real!rnd output 1*x[county] + floor*y + t

5.4.4 Type Soundness for Fabular

The type soundness result for the reduction of Tabular schema to Core Tabular extends

to the reduction of Fabular to Core Tabular. We present an outline of the proof here.

To simplify the proofs, we first define the following admissible typing rules for

cube expressions:

Additional typing rules for Tabular expressions

(CUBE ITER) (where~e = [e1, . . . ,en],~z = [z1, . . . ,zn])

Γ,z1 : mod(e1) ! det, . . . ,zn : mod(en) ! det `pc E : T

Γ `pc [for~z <~e→ E] : T [~e]

(CUBE INDEX) (where~e = [e1, . . . ,en], ~F = [F1, . . . ,Fn])

Γ `pc E : T [~e]

Γ `pc Fi : mod(ei) ! spc

Γ `pc E[~F] : T ∨ spc

To save space, we write Γ,~z : mod(~e) for Γ,z1 : mod(e1)!det, . . . ,zn : mod(en)!det.

Lemma 15 The rules (CUBE ITER) and (CUBE INDEX) are admissible.

Proof: Admissibility of both rules can be proven by induction on the size of~e.

Lemma 16 (Derived judgments) • If Γ;~e;` ` v : T and~e = [e1, . . . ,en], then

Γ `static ei : int ! det for all i ∈ 1..n.

143

• If Γ;~e;~f ;` ` r : Π and ~e = [e1, . . . ,en] and ~f = [f1, . . . , fm], then Γ `static ei :

int ! det for all i ∈ 1..n and Γ `static f j : int ! det for all j ∈ 1..m.

Proof: By induction on the derivation of Γ;~e;` ` v : T and Γ;~e;~f ;` ` r : Π, respec-

tively.

Lemma 17 If Γ;~e;`` v : T and~e= [e1, . . . ,en] and~z= [z1, . . . ,zn] then Γ,~z :` mod(~e)``

[[v]]~z : T

Proof: By induction on the derivation of Γ;~e;` ` v : T .

Lemma 18 If Γ;~e;~f ;`∧ pc ` r ! Π and K = λE.(c . x : real ! rnd[~e] ` viz E) :: T and

Γ,x :`∧pc real ! rnd[~e] `pc T : Q and Γ;~e;` ` vi : mod(fi) ! det for all i ∈ 1..n, then

• If viz = output, then Γ `pc [[`;~e;~f ;~v;r;K]]† : [[Π]]@

((c. x : real ! rnd[~e] (`∧pc) output)] :: Q)

• If viz = local, then Γ `pc [[`;~e;~f ;~v;r;K]]† : [[Π]]@Q

Proof: By induction on the derivation of Γ;~e;~f ;`∧pc` r ! Π, with appeal to Lemma 17.

Details in Appendix D

Proposition 4 (Type preservation for Fabular) (1) If Γ `pc M : Q and M → M′,

then Γ `pc M′ : Q

(2) If Γ `inst T : Q and T→ T′, then Γ `inst T′ : Q

(3) If Γ ` S : Sty and S→ S′, then Γ ` S′ : Sty.

Proof:

We only need to extend the proof of Proposition 1 with the case (RED REGR)

in part 2. In this case, we have M =∼ r+? and M′ = [[inst; []; []; [];r;K]]† [], where

K = λE.(_. x : real ! rnd inst local E)

:: (_. y : real ! rnd static local GammaFromShapeAndRate(0,slarge)) ::

(ret. z : real ! rnd inst output GaussianFromMeanAndPrecision(x,y)).
The judgment Γ `pc∼ r+? : Q must have been derived with (MODEL REGRES-

SION), so Γ;∅; []; [];pc ` (r+?) ! Π and Q = [[Π]]@[(ret. y : real ! rnd pc output)].

144

By inversion of typing, we have Γ;∅; []; [];pc ` r ! Π and Γ;∅; []; [];pc `? ! ∅, as ?

does not define any parameters.

Now, it is easy to check that

Γ,x :pc real ! rnd `pc (_. y : real ! rnd static local GammaFromShapeAndRate(0,slarge)) ::

(ret. z : real ! rnd inst output GaussianFromMeanAndPrecision(x,y))

: [(ret. y : real ! rnd pc output)].

Hence, by Lemma 18, Γ`pc [[inst; []; []; [];r;K]]† : [[Π]]@[(ret. y : real ! rnd pc output)].

Since all columns in [[Π]] are at static level (by the definition of [[Π]]), we have

Γ `pc [] : Q→ Q, and so by (MODEL APPL), Γ `pc [[inst; []; []; [];r;λE.(ret . y : real !

rnd ` output E)]]† [] : [[Π]]@[(ret. y : real ! rnd pc output)], as required.

Proposition 5 (Progress for Fabular) (1) If Γ `pc T : Q then either Core(T) or

there is T′ such that T→ T′.

(2) If Γ `pc S : Sty then either Core(S) or there is S′ such that S→ S′.

Proof:

If K = λE.(_. x : real ! rnd inst local E)

:: (_. y : real ! rnd static local GammaFromShapeAndRate(0,slarge)) ::

(ret. z : real ! rnd inst output GaussianFromMeanAndPrecision(x,y)),
it is easy to see that [[x; []; []; [];r;K]]† [] exists if the regression r is well-typed in Γ.

Hence, the progress property for Fabular follows immediately from the same property

for Tabular.

Proposition 6 (Termination for Fabular) There does not exist an infinite chain of re-

ductions S1→ S2→ . . .

Proof: To adapt the proof of termination to Fabular, it is enough to extend the metric

m to regressions, setting m(r) to k+1, where k is the number of columns in the table

obtained by reducing r, equal to the number of parameters in r plus the number of local

variable definitions plus two times the number of regression additions (each addition

generates two local columns) plus one output column (ret).

Theorem 3 If S is a Fabular schema and ∅ ` S : Sty, then S→∗ S′ for some unique S′

such that Core(S′) and ∅ ` S : Sty.

145

Proof: The proof is the same as the proof of type soundness of Tabular (Theorem 1),

using Propositions 4, 5 and 6.

5.5 Conclusions

In this chapter, we have defined a compositional hierarchical linear regression calculus,

which extends the languages of formulas used by the packages lm and lmer in R. We

have defined the syntax and type system of the calculus, and embedded the calculus in

Tabular, a probabilistic language with a rigorously-defined semantics. We have defined

a translation from this extended form of Tabular to Core Tabular and proven that this

translation is type-sound.

Limitations of Fabular and Future Work Because of the requirement that the top-

level regression must have a Gaussian noise, Fabular does not support generalised

linear models with arbitrary link functions. This is arguably the biggest limitation of

the language and removing it is an important direction of future work. Another limi-

tation is that Fabular only supports real-valued variables. Adding support for discrete

distributions, such as the Poisson distribution, could also be useful.

Other possible directions of future work include automated search for models fit-

ting the data, in the style of [Nori et al., 2015], and automatic plot generation from

inference results (which we have already implemented for a restricted set of models

for an earlier version of the regression calculus).

Individual Contributions

The paper on which this chapter was based [Borgström et al., 2016] was mostly written

in a team effort. However, the updated syntax of the regression calculus presented here

(with different treatment of local variables to ensure that variables are α-convertible),

updated type system for Fabular and the modified, simplified translation to Core Tabu-

lar are my own work. The proof of Theorem 3, showing correctness of the translation

of Fabular to Core Tabular, was not included in the paper and is also entirely my own

work.

146

Chapter 6

Semantics of a Lambda Calculus with

Continuous Distributions

Acknowledgement This chapter is based on the paper “A Lambda Calculus Founda-

tion for Universal Probabilistic Programming”[Borgström et al., 2016] published at

the 2016 International Conference on Functional Programming (ICFP). The paper was

joint work with Johannes Borgström, Ugo Dal Lago and Andrew D. Gordon.

In many popular probabilistic languages, including Tabular presented in Chapter 4,

programs are interpreted as factor graphs, with a bounded number of random vari-

ables. While such languages allow ease of use and efficient inference in many com-

monly used models, their expressive power is limited. In particular, they do not allow

models which do not define distributions on fixed sets of parameters, sometimes called

non-parametric models. Because of the need to overcome this limitation, a new class

of Universal probabilistic programming languages, based on functional or procedural

Turing-complete languages, has sprung into existence. Imperative universal languages

include the R2 language [Nori et al., 2014], while functional ones include Church

[Goodman et al., 2008], which pioneered universal probabilistic programming, and its

descendants Venture [Mansinghka et al., 2014] and Anglican [Tolpin et al., 2015].

Church is a probabilistic version of Scheme and supports recursion and higher-

order functions. A Church program consists of a sequence of (possibly recursive)

definitions, followed by the output expression eq and a condition ec which must be

satisfied for the given run to be valid:

(query (define x1 e1) ... (define xn en) eq ec)

147

For example, the following program defines the geometric distribution (which is

the distribution on the number of consecutive flips of a biased coin which come up

heads):

(query

(define flip (lambda (p) (< (rnd) p)))

(define geometric

(lambda (p)

(if (flip p) 0 (+ 1 (geometric p)))))

(define n (geometric .5))

n

(> n 2)

)

The first define statement defines the flip of a coin with bias p (between 0 and 1)

by means of the rnd function returning a sample from the uniform distribution on the

unit interval. The second statement defines a recursive function which samples from

flip with the given bias p until the it returns true, and returns the number of times false

was drawn. This function implements a draw from the geometric distribution with

bias p. Finally, the third statement draws the value of variable n from the geometric

distribution with bias 0.5. This value is then returned as the output expression, and

restricted to be greater than 2 by the conditioning statement at the end.

Every valid run of this program yields an integer greater than 2, drawn from the

geometric distribution with bias 0.5. This means that the distribution on the output

values is the geometric distribution conditional on the output value being bigger than 2.

This chapter presents a new approach to defining the semantics of higher-order

functional probabilistic languages. It consists of the following parts:

(1) Syntax of an untyped functional calculus:

In order to avoid the complexities of working with a full-featured probabilistic

language, we define an untyped probabilistic λ -calculus, capable of encoding

the core of Church. The key features of the calculus are draws from primitive

distributions and hard and soft conditioning by means of the fail exception and

a score operator, respectively. We provide a translation of Church programs to

the core calculus to demonstrate its expressiveness. To simplify presentation, we

restrict our attention to programs with only continuous random draws, but this

restriction could easily be lifted.

148

(2) Semantics of the calculus:

We endow the calculus with a sampling-based operational semantics, inspired

by [Nori et al., 2013], who define an operational semantics of a procedural while-

language, which reduces a program to a state (valuation of variables) and a cor-

responding weight, given a fixed list of outcomes of random draws. We define a

judgment M ⇓s
w G which means that given the linear trace (sequence of random

values) s, the expression M reduces to the generalised value G (which can be a

value or an exception) with weight w. We also provide a small-step semantics,

useful in the following chapter, defining the judgment (M,w,s)→ (M′,w′,s′),

which states that the expression M, together with the initial weight w, reduces

with trace s in one step to the expression M′, together with the updated weight

w′ and trace s′.

The main technical result of this chapter, Theorem 4, shows that the small-step

semantics is equivalent to the big-step semantics.

We also define a Borel σ -algebra on the terms of the calculus (induced by a

straightforward metric on terms) and use the sampling-based semantics to define

a sub-probability distribution JMKU(A) on return values of the expression M, by

integrating the function induced by the semantics, mapping a trace to a weight,

over the set of traces yielding a return value in the given set A. We prove that

this distribution is well-defined.

This chapter makes the following contributions:

(1) Syntax of an untyped λ -calculus with continuous random draws and soft and

hard conditioning, capable of encoding Church.

(2) A sampling-based semantics of the calculus, defining the meaning of a program

as a deterministic mapping from a random vector to the output value and weight.

(3) A function defining the sub-probability distribution on output values of the given

program, defined as an integral of the sampling-based semantics.

6.1 A Probabilistic λ -calculus

We start by presenting the probabilistic call-by-value λ -calculus which forms the basis

of our work. The calculus is kept small and simple to facilitate reasoning about it,

149

yet it retains the full expressiveness of functional probabilistic languages, which we

demonstrate by providing a translation of Church programs to this calculus. To further

simplify the reasoning in the rest of this chapter, we only include continuous random

draws in the calculus, as draws from discrete distributions can be encoded by draws

from the unit interval and inverse mass functions.

We admit a fixed, countable set of deterministic primitive functions g, each having

an arity |g| > 0, and a fixed, countable set of random functions D, each with an arity

|D| ≥ 0. We assume that each deterministic primitive g is equipped with an evaluation

function σg : R|g| → R and each random function D has an underlying probability

density function pdfD : R|D|+1→ R. Furthermore, we assume that all functions σg are

measurable R|g|/R and all densities pdfD measurable R|D|+1/R.

Syntax of the core calculus

V ::= value

c real-valued constant

x variable

λx.M lambda-abstraction (x bound in M)

M,N ::= expression

V value

M N application

D(V1, . . . ,V|D|) (continuous) random draw

g(V1, . . . ,V|g|) deterministic function

if V then M else N conditional

score(V) soft conditioning

fail exception

The only constants in the language are lambda-abstractions and real numbers—

we assume that true and false are encoded as 1 and 0, respectively. The lambda-

abstraction λx.M binds the variable x in M. As usual, we identify expressions up to

alpha-conversion of bound variables.

Primitive functions include the usual arithmetic operators on real numbers (+, ×
etc.) and comparisons. Random functions include the rnd primitive drawing a num-

ber from the uniform distribution on the unit interval (with density pdfrnd(c) = 1 if

c∈ [0,1] and 0 otherwise) and the usual Gaussian distribution Gaussian(m,v), with den-

sity pdfGaussian(m,v,c) = e−
(c−m)2

2v
√

2vπ if v > 0 and 0 otherwise. Only real-valued

150

distributions are supported, so draws from multivariate distributions, such as multivari-

ate Gaussian, must be simulated. Note that we assume that all deterministic functions

and densities of random primitives are total on R|g| or R|D|+1, and a value must be

returned even if the arguments do not make sense, like in the Gaussian example above.

The exception fail is used for hard conditioning and, when returned as an output

value of an expression, means that a constraint was not satisfied in the given run of the

program. The score operator is used for soft conditioning. It takes as argument a real

value from the unit interval and multiplies the weight of the current trace by its argu-

ment, returning a dummy value. Intuitively, score assigns higher probability to combi-

nations of random variables which make its argument larger. Because the arguments to

score are bounded by 1, this form of soft conditioning does not allow conditioning on

the outcome of an arbitrary random draw. For instance, it is, in general, not possible to

condition on the outcome of a draw from a Gaussian distribution, because the Gaussian

density can admit values greater than 1 and the expression score(pdfGaussian(µ,σ
2,c))

will result in failure if the density of Gaussian(µ,σ2) is greater than 1 at c. The reason

for this restriction is discussed in Section 6.3.2.

We denote by Λ the set of all terms and by CΛ the set of closed terms—that is,

terms in which all variables are bound by lambda-abstractions. We write V for the set

of all closed values and we define the set of generalised values to be the set G V =

V ∪{fail}. We also define a class of erroneous redexes, ranged over by variables

T , R, . . . , which are not well-formed expressions and cannot be reduced. Specifically,

erroneous redexes are expressions of the form:

• c M

• D(V1, . . . ,V|D|) where at least one of the arguments V1, . . . ,V|D| is a λ term

• g(V1, . . . ,V|g|) where at least one of the arguments V1, . . . ,V|g| is a λ term

• if V then M else N where V /∈ {true,false}

• score(V) where V /∈ (0,1]

To simplify the semantics, we only allow values to be used as primitive function

arguments, guards in conditionals and arguments to score, but the general forms of

these constructs, allowing arbitrary expressions to be used, can be derived in the usual

way using the let binding, which can itself be encoded as a function application:

151

Derived constructs

let x = M in N , (λx.N) M

D(M1, . . . ,M|D|), let x1 = M1 in . . .let x|D| = M|D| in D(x1, . . . ,x|D|)

where x1, . . . ,x|D| distinct and x1, . . . ,x|D| /∈ fvM1∪·· ·∪ fvM|D|
g(M1, . . . ,M|g|), let x1 = M1 in . . .let x|g| = M|g| in g(x1, . . . ,x|g|)

where x1, . . . ,x|g| distinct and x1, . . . ,x|g| /∈ fvM1∪·· ·∪ fvM|g|
score(M), let x = M in score(x)

6.1.1 Big-step Sampling-based Semantics

In this section, we define the big-step sampling-based semantics for the core calculus,

defining the judgment M ⇓s
w G, which means that the expression M reduces with trace

s to a generalised value G with weight w. If G ∈ V then the trace s is considered

valid and if G = fail, then s must have failed to satisfy a hard constraint and is not

considered a valid trace.

Formally, a trace s is defined to be a finite list of real numbers [s0,s1, . . . ,sn] of

arbitrary length n. Note that in contrast to, for example, [Park et al., 2005], who treat

traces as infinite streams, we only consider finite traces, and in the derivation of M ⇓s
w

G, s is precisely the list of random values used.

The big-step sampling-based semantics is defined to be the least relation closed

under the following rules:

Sampling-based semantics: M ⇓s
w G

(EVAL VAL)

G ∈ G V

G ⇓[]1 G

(EVAL RANDOM)

w = pdfD(~c,c)

w > 0

D(~c) ⇓[c]w c

(EVAL RANDOM FAIL)

pdfD(~c,c) = 0

D(~c) ⇓[c]0 fail

(EVAL PRIM)

g(~c) ⇓[]1 σg(~c)

(EVAL APPL)

M ⇓s1
w1 λx.P N ⇓s2

w2 V

P{V/x} ⇓s3
w3 G

M N ⇓s1@s2@s3
w1·w2·w3 G

(EVAL APPL RAISE1)

M ⇓s
w fail

M N ⇓s
w fail

(EVAL APPL RAISE2)

M ⇓s
w c

M N ⇓s
w fail

152

(EVAL APPL RAISE3)

M ⇓s1
w1 λx.P

N ⇓s2
w2 fail

M N ⇓s1@s2
w1·w2 fail

(EVAL IF TRUE)

M ⇓s
w G

if true then M else N ⇓s
w G

(EVAL IF FALSE)

N ⇓s
w G

if false then M else N ⇓s
w G

(EVAL SCORE)

c ∈ (0,1]

score(c) ⇓[]c true

(EVAL FAIL)

T is an erroneous redex

T ⇓[]1 fail

In the rules above,~c is a shorthand for c1, . . . ,c|g| in (EVAL PRIM) and c1, . . . ,c|D|
in (EVAL RANDOM) and (EVAL RANDOM FAIL).

The (EVAL VAL) rule just returns an expression which already is a value with

weight 1. The (EVAL RANDOM) rule evaluates the random draw D(~c) to c, the only

component of the trace s, assumed to be the value drawn from the distribution. The

weight returned is the value of the density function of D(~c) at c, required to be positive.

The (EVAL RANDOM FAIL) rule returns an exception if at the value c, deemed to be

the value drawn from D(~c), the density of D(~c) is in fact zero. (EVAL PRIM) evalu-

ates a deterministic function call, without consuming any randomness or changing the

weight.

The (EVAL APPL) rule is the standard application rule for the call-by-value lambda

calculus, modulo traces and weights. Derivation of each assumption consumes a (pos-

sibly empty) random vector and yields a weight—the random vector consumed by

(EVAL APPL) is then the concatenation of vectors consumed by subcomputations, and

the weight is the product of weights yielded by subcomputations.

The three subsequent rules for applications are necessary to account for the fact

that deriving one of the three assumptions of (EVAL APPL) may raise an exception,

making it impossible to compute the outcome of an application. The rules (EVAL

APPL RAISE1), (EVAL APPL RAISE2) and (EVAL APPL RAISE3) raise an exception

when computing the function fails, the function expression is in fact a real constant

and when computing the value of the argument fails, respectively.

The rules (EVAL IF TRUE) and (EVAL IF FALSE) are standard. The following rule,

(EVAL SCORE), reduces score(c) to the dummy value true with weight c, provided c

is a positive real bounded by one—the reason for enforcing this bound is explained later

in this chapter. The score primitive is expected to be used, for example, in conditionals

and let-expressions only for its side effect of changing the weight of the current trace,

and the return value is discarded. Finally, (EVAL FAIL) reduces an erroneous redex to

153

fail.

For example, suppose we have the following program M:

(λx.Gaussian(x,1)) Uniform()

This program samples a value from a Gaussian distribution with mean sampled

randomly from the unit interval and variance set to 1. Suppose that we are given the

random trace s = [0.3,0.7]. Since pdfUniform(0.3) = 1, by (EVAL RANDOM) we have

Uniform() ⇓[0.3]1 0.3. Similarly, by (EVAL RANDOM), we have Gaussian(0.3,1) ⇓[0.7]w

0.7, where w = pdfGaussian(0.3,1,0.7). Thus, (EVAL APPL) gives

(λx.Gaussian(x,1)) Uniform() ⇓[0.3,0.7]w 0.7

where, again, w = pdfGaussian(0.3,1,0.7).

6.1.2 Encoding Church in the Core Calculus

In this section, we define the translation of Church programs to the core calculus.

The syntax of the original presentation of Church, as defined in [Goodman et al.,

2008], consists of the following grammar of expressions, definitions and (top-level)

stochastic queries:

Syntax of Church

e ::= Expression

c constant

x variable

(g e1 . . .en) deterministic primitive function

(D e1 . . .en) random draw

(if e1 e2 e3) conditional

(lambda (x1 . . .xn) e) lambda abstraction

(e1 e2 . . .en) application

d ::= (define x e) Definition (possibly recursive)

q ::= (query d1 . . .dn e econd) Query

The syntax of Church expressions, based on Scheme, is self-explanatory—note that

the language, unlike our core calculus, supports functions with multiple arguments and

154

allows arbitrary expressions as primitive function arguments and guards. A Church

program is a query, consisting of a sequence of possibly recursive definitions (intro-

duced by the define keyword), an output expression and a boolean-valued condition,

which must evaluate to true for the given program run to be valid.

In order to translate recursive function definitions to the probabilistic λ -calculus,

we need to use the following call-by-value fixpoint operator fix x.M, defined as

fix x.M , λy.N f ix N f ix (λx.M)y

where

N f ix = λ z.λw.w(λy.((zz)w)y)

The translation of Church to the calculus is defined by the following rules:

Translation of Church

〈c〉= c

〈x〉= x

〈g e1, . . . ,en〉=
let x1 = e1 in . . .let xn = en in g(x1, . . . ,xn)

where x1, . . . ,xn distinct and x1, . . . ,xn /∈ fv(e1)∪·· ·∪ fv(en)

〈D e1, . . .en〉=
let x1 = e1 in . . .let xn = en in D(x1, . . . ,xn)

where x1, . . . ,xn distinct and x1, . . . ,xn /∈ fv(e1)∪·· ·∪ fv(en)

〈lambda () e〉= λx.〈e〉 where x /∈ fv(e)

〈lambda x e〉= λx.〈e〉
〈lambda (x1 . . . xn) e〉= λx1.〈lambda (x2 . . . xn) e〉
〈e1 e2〉= 〈e1〉 〈e2〉
〈e1 e2 . . . en〉= 〈(e1 e2) . . . en〉
〈if e1 e2 e3〉= let x = e1 in (if x then 〈e2〉 else 〈e3〉)

where x /∈ fv(e2)∪ fv(e3)

〈query (define x1 e1) . . .(define xn en) eout econd〉=
let x1 = (fix x1.〈e1〉) in
. . .

let xn = (fix xn.〈en〉) in
let b = econd in

155

if b then eout else fail

For completeness, it should be noted that the full Church language also supports

stochastic memoisation [Goodman et al., 2008]. Unlike memoisation in deterministic

languages, which is purely an optimization measure, stochastic memoisation is a se-

mantically significant construct. It amounts to restricting a given random function to

always return the same value for the same arguments in a single run of the program—

when a function is first called with given arguments, the return value is stored, and

when the function is called again with the same arguments, the stored value is returned,

without re-evaluating the function.

In Church, memoisation is provided by a special function mem, which takes a (pos-

sibly random) lambda abstraction and returns its memoised version. It is useful in

defining some nonparametric models, such as the Dirichlet Process [Ferguson, 1973],

since memoised random functions on integers can be treated as infinite lazy lists of

random values.

We could have added support for memoisation in our translation of Church by

changing the translation to state-passing style, but decided against doing so, because

memoisation is not the main focus of this work and we preferred to keep the encoding

simple.

6.1.3 Example: Geometric Distribution

To further explain the sampling-based semantics, let us revisit the geometric distribu-

tion example from the introduction. The translation of this example to the core calculus

(simplified slightly for readability) takes the following form (recall that let is actually

syntactic sugar for application).

let geometric =

(fix g.

λ p. (let z = rnd() in

let y = (z < p) in

if y then 0 else 1+(g p))) in

let n = geometric 0.5 in

let b = n > 1 in

if b then n else fail

156

Suppose we want to evaluate this program with trace s = [0.6,0.7,0.2]. That is, if

we call this program M, we want to find G, w such that M ⇓[0.6,0.7,0.2]w G.

After desugaring the let-bindings, by (EVAL APPL) we can substitute the definition

of geometric in the remainder of the program, without consuming any randomness or

changing weight. Then we need to evaluate the call to geometric. In the definition

of geometric, we can unfold the recursion by using the easy to show fact that for any

λx.M, M {fix x.M/x} V ⇓s
w G if and only if (fix x.M) V ⇓s

w G. Unfolding the recursion in

geometric 0.5 yields the following expression:

let z = rnd() in

let y = z < 0.5 in

if y then 0 else

1+((let z = rnd() in

let y = z < 0.5 in

if y then 0 else 1+(. . .))

Because of the call-by-value evaluation strategy, calls to rnd() are evaluated in

sequence, as they appear in the program. Applied to the first random draw, (EVAL

RANDOM) gives rnd() ⇓[0.6]1 0.6 (as the density of rnd is constant and equal to 1 on

the unit interval). By (EVAL APPL), we can (deterministically) reduce the outermost

let-expression, replacing z with 0.6. Then, by (EVAL PRIM), 0.6 < 0.5 ⇓[]1 false, so

applying (EVAL APPL) again, we can replace y with false. This makes the guard of

the outermost if-expression false, so by (EVAL IF FALSE), we evaluate the expression

by evaluating the else-branch, which takes the same form as the original unfolded body

of the call to geometric.

We evaluate the next unfolding of the recursion in the same way—this time, we

get rnd() ⇓[0.7]1 0.7, so the guard again evaluates to false. However, in the following

unfolding, we have rnd() ⇓[0.2]1 0.2, so this time, by (EVAL PRIM), the guard evaluates

to true and the recursion ends, with the outcome computed by (EVAL PRIM). In the

end, we get geometric 0.5 ⇓[0.6,0.7,0.2]1 2. Since the condition n > 1 is clearly satisfied,

we can easily derive M ⇓[0.6,0.7,0.2]1 2 for the full program M.

Note that as the only distribution sampled from is rnd(), which has a constant pdf,

this program evaluates with weight 1 for every valid trace, regardless of its length

and of the return value. This may seem counter-intuitive, because lower values are

clearly more likely (specifically, the program evaluates to any n > 1 with unnormalised

probability 1
2n+1). However, as described later in this chapter, the probability of a given

outcome is computed as an integral of the weight over the set of traces yielding this

157

outcome, and with respect to the stock measure on traces, sets of traces leading to

higher values are “smaller”.

6.1.4 score and Soft Conditioning

In addition to hard conditioning, performed by using the exception fail, which rejects

all program traces resulting in some Boolean condition not being satisfied, our calculus

also supports soft conditioning, which allows modifying the weight of a given trace

depending on how likely we consider this trace to be. Soft conditioning is frequently

used in machine learning to model observations of noisy data— for example, in the Old

Faithful eruption model in Section 4.3, we use it to account for the fact that eruptions

whose times are closer to the mean of a given cluster are more likely to be in this

cluster.

The most general form of soft conditioning allows multiplying the weight of the

given trace by an arbitrary positive number, which can be the density of some distri-

bution at a given point. This allows conditioning on the outcomes of arbitrary random

draws. For instance, we can use a construct like score(pdfGaussian(µ,σ
2,c)) to ac-

count for the fact that the observed value of a draw from a Gaussian with mean µ and

variance σ2 was c. However, unlike in the semantics of Tabular, where scores could be

values of arbitrary density functions, we decided to only allow scores bounded by 1 in

the probabilistic λ -calculus, because allowing scores greater than 1 in the presence of

recursion could cause well-behaved programs, terminating with probability 1, to have

infinite expected weight (as explained in Section 6.3.2).

A very popular kind of soft conditioning, often used in Bayesian linear regression,

is assuming that a given observed data point c is a noisy copy of some quantity x and

was drawn from a Gaussian centred at x. Because of the aforementioned restriction, we

cannot implement this directly, but we can still force x to be close to c by multiplying

the trace weight by the term exp(−(x− c)2), which is always between 0 and 1. This is

equivalent to assuming that c was drawn from a Gaussian with mean x and variance 1
2 ,

up to normalisation.

In principle, this form of soft conditioning can be simulated by hard conditioning,

by using rejection sampling, making a given trace more likely to be accepted if a given

variable is closer to its expected value. This could be done, for instance, by defining

the following operator, using the flip function, as defined in the opening example, and

the generalised version of if :

158

condition x c M , if flip(exp(−(x− c)2)) then M else fail

Here x is a random variable whose value we want to condition and c is the expected

value of x. The condition operator draws a sample from the uniform distribution on the

unit interval and only allows the execution to proceed if the sample is greater or equal to

exp(−(x−c)2) which has the effect of rejecting the given program run with probability

1− exp(−(x− c)2). Thus, in the context of sampling, this operator has the desired

effect of assigning lower probability to traces in which x is further from c. However,

this way of performing soft conditioning is very inefficient, since less likely traces

are rejected rather than just assigned lower weight—this means that a sampling-based

algorithm must generate possibly many more samples to yield meaningful results.

For this reason, our language includes the score operator, which only modifies the

weight of a given trace, without rejecting any traces. The condition function could be

redefined using score as follows:

condition x c M , let _ = score(exp(−(x− c)2)) in M

This version is semantically equivalent to the previous one (which can be shown by

integrating the weight, as explained later), but leads to much more efficient inference

algorithms. Note that the dummy value returned by score is discarded, so we can use

a wildcard in let.

Example: Linear Regression To illustrate the use of soft conditioning, let us con-

sider the standard Bayesian linear regression model. The model tries to fit a line

y = m× x+b+δ to the observed data, assuming that the coefficients m, b have Gaus-

sian priors and δ is the noise term. If we consider the noise to be modelled by a

Gaussian with mean 0 and variance 1
2 , we can perform the conditioning by multiply-

ing each trace weight by exp(−(y− ŷ)2) for each random value y expected to be ŷ, as

described above. This can be simulated by rejection sampling, accepting each value y

with probability exp(−(y− ŷ)2).

If we assume that we have observed four data points, (0,0), (1,1), (2,4) and (3,6)

and that the Gaussian priors of both coefficients m and b have mean 0 and variance

2, we can represent the model as the following program (written in Church syntax),

which samples the value of the regression at x = 4:

(query

159

(define sqr (lambda (x) (* x x)))

(define squash (lambda (x y) exp (- (sqr (- x y)))))

(define flip (lambda (p) (< (rnd) p)))

(define softeq (lambda (x y) (flip (squash x y))))

(define m (gaussian 0 2))

(define b (gaussian 0 2))

(define f (lambda (x y) (+ (* m x) y)))

(f 4)

(and (softeq (f 0) 0) (softeq (f 1) 1) (softeq (f 2) 4) (softeq (f 3) 6))

)

However, applying a sampling-based inference algorithm to this model would re-

sult in poor performance, because the model draws four auxiliary random variables to

perform the conditioning, and runs for which at least one condition is not satisfied are

discarded. In order to overcome this problem, we can transform this model into a se-

mantically equivalent one, by redefining softeq to use score and modify the weight

instead of rejecting a trace:

(define softeq (score (squash x y)))

In this updated version of the model, only two random values (for m and b) are

sampled and no traces are rejected, which leads to more efficient inference.

6.2 Small-step Semantics

Having defined and explained the big-step sampling-based semantics of the core cal-

culus, we now introduce an equivalent small-step semantics. In addition to offering a

different view on term evaluation, small-step semantics is more convenient to use in

certain proofs in this chapter and is also used in the definition of partial term evaluation

in Chapter 7.

We begin by defining the grammars of evaluation contexts and redexes.

Evaluation contexts E and redexes R

E ::=

[·]

160

E M

(λx.M) E

R ::=

(λx.M) V

D(~c)

g(~c)

score(c)

fail

if true then M else N

if false then M else N

T

Recall that the metavariable T ranges over erroneous redexes. As usual, E[M]

denotes the term obtained by plugging M into the unique hole in E.

We call an evaluation context E closed if any variable x only occurs in it as a

subterm of the term λx.M. We let C be the set of closed contexts. A term M is

reducible if M = E[R] for some E, R.

Lemma 19 Every closed term M is either a generalised value or can be split into

unique E, R such that M = E[R]. Moreover, if M /∈ G V and R = fail, then E is

proper (i.e. E 6= [·]).

Proof: By induction on the structure of M.

We define context composition E ◦E ′ inductively as follows:

Context composition: E ◦E ′

[·]◦E ′ , E ′

(E M)◦E ′ , (E ◦E ′) M

((λx.M) E)◦E ′ , (λx.M)(E ◦E ′)

Lemma 20 (E ◦E ′)[M] = E[E ′[M]].

Proof: By induction on the structure of E.

161

The deterministic reduction relation M det−→ N, reducing closed terms other than

random draws and score in context, is defined as follows:

Deterministic reduction: M det−−→ N

E[g(~c)] det−→ E[σg(~c)]

E[(λx.M) V]
det−→ E[M {V/x}]

E[if true then M1 else M2]
det−→ E[M1]

E[if false then M1 else M2]
det−→ E[M2]

E[T] det−→ E[fail]

E[fail] det−→ fail if E 6= []

These deterministic reduction rules are standard for a call-by-value λ -calculus.

Lemma 21 For every closed M, if M det−→M′ and M det−→M′′, then M′ = M′′.

Proof: The assumption M det−→M′ implies that M is not a generalised value. Hence,

Lemma 19 implies that M = E[R] for some unique E, R. If R = fail, then by

Lemma 19 E is proper and E[R] can only reduce to fail. If R 6= fail, then by inspec-

tion of the reduction rules, if E[R] det−→M′ and E[R] det−→M′′, then M′ = M′′ = E[N] for

some N uniquely determined by R.

Lemma 22 If E[R] det−→ E[N], then R det−→ N.

Proof: By case analysis on the deterministic reduction rules.

Lemma 23 If R det−→ N and R 6= fail, then for any closed E, E[R] det−→ E[N].

Proof: Follows immediately by case analysis on the reduction rules.

Lemma 24 For any closed E and M such that M 6=E ′[fail], if M det−→M′ then E[M]
det−→

E[M′].

162

Proof: Since M det−→M′ implies that M is not a generalised value, by Lemma 19 we

have M = E ′[R] for some E ′, R.

By assumption, we have R 6= fail, so by inspection of the reduction rules, we must

have E ′[R] det−→ E ′[N] for some N.

By Lemma 21, E ′[N] = M′, and by Lemma 20, E[M] = (E ◦E ′)[R] and E[M′] =

(E ◦E ′)[N].

Since Lemma 22 implies R det−→ N, by Lemma 23, (E ◦E ′)[R] det−→ (E ◦E ′)[N]. This

implies E[M]
det−→ E[M′], as required.

The full small-step sampling-based semantics is defined by a reduction relation on

configurations (M,w,s), where M is the current expression, w is the currently accumu-

lated weight and s is the remaining (yet to be consumed) random trace. The judgment

(M,w,s)→ (M′,w′,s′) means that the expression M with initial weight w reduces with

the random trace s to M′ in one step, updating the weight to w′ and leaving the suffix

s′ of trace s unused. We write c::s for a trace whose first element is c and rest is s.

Small-step semantics: (M,w,s)→ (M′,w′,s′)

(RED PURE)

M det−→ N

(M,w,s)→ (N,w,s)

(RED SCORE)

c ∈ (0,1]

(E[score(c)],w,s)→ (E[true],cw,s)

(RED RANDOM)

w′ = pdfD(~c,c) w′ > 0

(E[D(~c)],w,c::s)→ (E[c],ww′,s)

(RED RANDOM FAIL)

pdfD(~c,c) = 0

(E[D(~c)],w,c::s)→ (E[fail],0,s)

The rule (RED PURE) allows reducing an expression deterministically inside a con-

figuration, without affecting the current weight and trace. The (RED SCORE) rule

reduces score(c) (with a valid argument c) inside a context to a dummy value, mul-

tiplying the current weight by the argument c. The rule (RED RANDOM) reduces a

random draw (inside a context) to the first element c of the trace, removing this ele-

ment from the trace and multiplying the weight by the density of the given distribution

at c, assumed to be positive. Finally, (RED RANDOM FAIL) reduces a random draw to

an exception if the corresponding value in the trace is outside the support of the given

distribution.

163

Small-step reduction of configurations is deterministic:

Lemma 25 If (M,w,s) → (M′,w′,s′) and (M,w,s) → (M′′,w′′,s′′), then M′ = M′′,

w′ = w′′ and s′′ = s′.

Proof: By case analysis. Since there is no rule that reduces generalised values,

(M,w,s)→ (M′,w′,s′) implies that M /∈ G V , so by Lemma 19, M = E[R] for some

unique E, R.

• If (M,w,s)→ (M′,w′,s′) was derived with (RED PURE), then M = E[R], where

R 6= D(~c) and R 6= score(c), which implies that (M,w,s)→ (M′′,w′′,s′′) must also

have been derived with (RED PURE). Hence, we have w′′ = w′ = w, s′′ = s′ = s,

M det−→M′ and M det−→M′′. By Lemma 21, M′′ = M′, as required.

• If (M,w,s)→ (M′,w′,s′) was derived with (RED RANDOM), then M = E[D(~c)],

s = c :: s∗ and pdfD(~c,c)> 0. Hence, (M,w,s)→ (M′′,w′′,s′′) must also have been

derived with (RED RANDOM), and so M′′ = M′ = E[c], s′′ = s′ = s∗ and w′′ = w′ =

wpdfD(~c,c), as required. The (RED RANDOM FAIL) case is analogous.

• If (M,w,s)→ (M′,w′,s′) was derived with (RED SCORE), then M = E[score(c)]

and c ∈ (0,1], so (M,w,s)→ (M′′,w′′,s′′) must also have been derived with (RED

SCORE). Hence M′′ = M′ = E[true], w′′ = w′ = c ·w and s′′ = s′ = s.

Lemmas 22 and 23 about adding and removing contexts generalise to the pseudo-

determinsitic reduction of configurations.

Lemma 26 If M 6= E ′[fail], then for any closed E, if (M,w,s)→ (M′,w′,s′), then

(E[M],w,s)→ (E[M′],w′,s′).

Proof: By case analysis on the derivation of (M,w,s)→ (M′,w′,s′)

• If (M,w,s)→ (M′,w′,s′) was derived with (RED PURE), then M det−→ M′, so by

Lemma 24, E[M]
det−→ E[M′], and by (RED PURE), (E[M],w,s)→ (E[M′],w′,s′).

• If (M,w,s)→ (M′,w′,s′) was derived with (RED RANDOM), then M = E ′[D(~c)],

M′ = E ′[c], s = c :: s′ and w′ = wpdfD(~c,c), where pdfD(~c,c)> 0. By (RED RAN-

DOM) and Lemma 20, we can derive (E[M],w,s)→ (E[M′],w′,s′). Cases (RED

RANDOM FAIL) and (RED SCORE) are anaologous.

164

Lemma 27 If (E[R],w,s)→ (E[N],w′,s′), then (R,w,s)→ (N,w′,s′).

Proof: By case analysis

• If (E[R],w,s)→ (E[N],w′,s′) was derived with (RED PURE), then E[R] det−→ E[N],

so by Lemma 24, R det−→ N, which implies (M,w,s)→ (M′,w′,s′).

• If (E[R],w,s)→ (E[N],w′,s′) was derived with (RED RANDOM), then R = D(~c),

N = c, s = c :: s′ and w′ = wpdfD(~c,c), where pdfD(~c,c)> 0.

Hence, with (RED RANDOM), we can derive (D(~c),w,s)→ (c,w′,s′)

Cases (RED RANDOM FAIL) and (RED SCORE) are analogous.

We state several more lemmas about small step reduction, useful in the proof of

equivalence of big-step and small-step semantics. First, we note that only (RED RAN-

DOM FAIL) can set the weight to 0, which means that the weight is always positive

after successful reductions.

Lemma 28 If (M,w,s)→ (M′,w′,s′) was not derived with (RED RANDOM FAIL) and

w > 0, then w′ > 0.

Proof: By inspection.

Since the rules do not restrict the initial weight w, mutiplying the weight on both

sides by any positive number preserves the reduction relation.

Lemma 29 If (M,w,s)→ (M′,w′,s′), then for any w∗≥ 0, (M,ww∗,s)→ (M′,w′w∗,s′)

Proof: By case analysis.

Adding the same suffix to the initial and reduced traces preserves the relation.

Lemma 30 If (M,w,s)→ (M′,w′,s′), then for any s∗, (M,w,s@s∗)→ (M′,w′,s′@s∗)

Proof: By case analysis on the derivation of (M,w,s)→ (M′,w′,s′). The only inter-

esting cases are (RED RANDOM) and (RED RANDOM FAIL), which modify the trace.

• Case (RED RANDOM): We have M = E[D(~c)] and M′ = E[c] for some E, D,

~c and c such that s = c :: s′. Moreover, w′ = wŵ, where ŵ = pdfD(~c,c) > 0 .

Hence, for any s∗, (E[D(~c)],w,c :: (s′@s∗))→ (M′,wŵ,s′@s∗) follows by (RED

RANDOM)

165

• Case (RED RANDOM FAIL): similar.

Likewise, removing the unused part of the random trace preserves the reduction

relation.

Lemma 31 If (M,w,s)→ (M′,w′,s′), then there is s∗ such that s= s∗@s′ and (M,w,s∗)→
(M′,w′, [])

Proof: By case analysis. The only interesting cases are (RED RANDOM) and (RED

RANDOM FAIL).

• Case (RED RANDOM): Like in Lemma 30, we have M = E[D(~c)] and M′ = E[c]

for some E, D,~c and c such that s= c :: s′ and w′=wŵ, where ŵ= pdfD(~c,c)> 0.

Take s∗ = [c]. By (RED RANDOM), we have (E[D(~c)],w, [c])→ (M′,wŵ, []).

• Case (RED RANDOM FAIL): similar.

We define the closure (M,w,s)⇒ (M′,w′,s′) of the small-step semantics induc-

tively by stating that (M,w,s)⇒ (M′,w′,s′) if and only if (M,w,s) = (M′,w′,s′) or

(M,w,s)→ (M′′,w′′,s′′)⇒ (M′,w′,s′) for some M′′, w′′, s′′. We write (M,w,s)→k

(M′,w′,s′) if the configuration (M,w,s) reduces to (M′,w′,s′) in precisely k steps. The

multi-step reduction of an expression M to a generalised value G is deterministic for a

given trace s.

Lemma 32 If (M,w,s)⇒ (G′,w′,s′) and (M,w,s)⇒ (G′′,w′′,s′′), then G′ = G′′, w′ =

w′′ and s′ = s′′.

Proof: By induction on the derivation of (M,w,s)⇒ (G′,w′,s′).

• Base case: (M,w,s) = (G′,w′,s′). Generalised values do not reduce, so G′′ = G′ =

G, w′′ = w′ = w and s′′ = s′ = s.

• Induction step: (M,w,s)→ (M̂, ŵ, ŝ)⇒ (G′,w′,s′). Since M 6= G′′, we also have

(M,w,s)→ (M∗,w∗,s∗)⇒ (G′′,w′′,s′′).

By Lemma 25, (M∗,w∗,s∗)= (M̂, ŵ, ŝ), and so by induction hypothesis, (G′′,w′′,s′′)=

(G′,w′,s′), as required.

166

Expressions on both sides of a multi-step reduction can be placed in an arbitrary

closed context, as long as the final expression is not fail (because the context is

removed when reducing an exception).

Lemma 33 For any closed E, if (M,w,s)⇒ (M′,w′,s′) and M′ 6= fail, then we have

(E[M],w,s)⇒ (E[M′],w′,s′).

Proof: By induction on the number of steps in the derivation of (M,w,s)⇒ (M′,w′,s′),

with appeal to Lemma 26. Since M′ 6= fail, no expression in the derivation chain

(other than the last one) can be of the form E ′[fail].

If the last expression is fail, then the original expression will still reduce to fail

when put in any closed context.

Lemma 34 For any E, if (M,w,s)⇒ (fail,w′,s′) then

(E[M],w,s)⇒ (fail,w′,s′).

Proof: By induction on the number of steps in the derivation, using Lemmas 26

and 33. If E = [], the result holds trivially, so let us assume E 6= []. If (M,w,s)⇒
(fail,w′,s′) was derived in 0 steps, then M = fail, w′ = w′ and s′ = s, so by (RED

PURE), (E[fail],w,s)→ (fail,w,s), as required.

If (M,w,s)⇒ (fail,w′,s′) was derived in 1 or more steps, then:

• If M = E ′[fail] and E ′ 6= [], then ((E ◦E ′)[fail],w,s)→ (fail,w′,s′) by (RED

PURE).

• Otherwise, there exist M̂, ŵ, ŝ such that (M,w,s) → (M̂, ŵ, ŝ) ⇒ (fail,w′,s′),

where M /∈ G V . By induction hypothesis, (E[M̂], ŵ, ŝ)⇒ (fail,w′,s′) for any

E, and by Lemma 26, (E[M],w,s)→ (E[M̂], ŵ, ŝ).

A valid reduction must keep the weight non-negative.

Lemma 35 If (M,w,s)⇒ (M′,w′,s′) and w≥ 0, then w′ ≥ 0.

Proof: By induction on the number of steps in the derivation.

• If (M,w,s)⇒ (M′,w′,s′) was derived in 0 steps, then w′ = w, so w′ ≥ 0.

167

• If (M,w,s)⇒ (M′,w′,s′) was derived in 1 or more steps, then (M,w,s)→ (M∗,w∗,s∗)⇒
(M′,w′,s′).

If (M,w,s)→ (M∗,w∗,s∗) was derived with (RED PURE), then w∗ = w≥ 0.

If (M,w,s)→ (M∗,w∗,s∗) was derived with (RED RANDOM), then w∗ = w ·w′′ for

some w′′ > 0, so w∗ ≥ 0.

If (M,w,s)→ (M∗,w∗,s∗) was derived with (RED SCORE), then w∗=w ·c for some

c > 0, so w′ ≥ 0.

If (M,w,s)→ (M∗,w∗,s∗) was derived with (RED RANDOM FAIL), then w∗ = 0.

In either case, w∗ ≥ 0, so by induction hypothesis, w′ ≥ 0.

The multi-step reduction relation is preserved, together with the length of its deriva-

tion, when multiplying both initial and final weight by the same non-negative number.

Lemma 36 If (M,w,s)→k (M′,w′,s′), then for any w∗≥ 0, (M,ww∗,s)→k (M′,w′w∗,s′)

Proof: By induction on k, with appeal to Lemma 29.

Similarly, adding a suffix to the trace preserves the reduction and the length of its

derivation.

Lemma 37 If (M,w,s)→k (M′,w′,s∗), then for any s′, (M,w,s@s′)→k (M′,w′,s∗@s′)

Proof: By induction on k, with appeal to Lemma 30.

The closure of the small-step semantics is transitive:

Lemma 38 If both (M,1,s)⇒ (M′,w′, []) and (M′,1,s′)⇒ (M′′,w′′, []), then (M,1,s@s′)⇒
(M′′,w′w′′, []).

Proof: By Lemma 37, (M,1,s@s′)⇒ (M′,w′,s′) and by Lemma 35, w′ ≥ 0. Hence,

by Lemma 36, (M′,w′,s′)⇒ (M′′,w′w′′, []), which gives (M,1,s@s′)⇒ (M′′,w′w′′, []).

168

6.2.1 Equivalence of Small-step and Big-step Semantics

In this section, we prove that the big-step and small-step semantics are equivalent and

use this fact to show that the big-step semantics is deterministic. Since the big-step

semantics does not use contexts explicitly, we begin by stating two auxiliary lemmas

about the big-step semantics, saying that expressions reducing to fail also reduce to

fail when plugged into a context.

Lemma 39 For any E, E[fail] ⇓[]1 fail.

Proof: By induction on the structure of E.

• Base case: E = [], the result follows by (EVAL VAL).

• Induction step:

• Case E = (λx.L) E ′: By induction hypothesis, E ′[fail] ⇓[]1 fail, and by (EVAL

APPL RAISE2), (λx.L) E ′[fail] ⇓[]1 fail, as required.

• Case E = E ′ L: By induction hypothesis, E ′[fail] ⇓[]1 fail, so by (EVAL APPL

RAISE1), we get E ′[fail] L ⇓[]1 fail.

Lemma 40 For any closed E, if pdfD(~c,c) = 0, then E[D(~c)] ⇓[c]0 fail.

Proof: By induction on the structure of E.

• Base case: E = [], the result follows by (EVAL RANDOM FAIL).

• Induction step:

• Case E = (λx.L) E ′: By induction hypothesis, E ′[D(~c)] ⇓[c]0 fail, and by (EVAL

APPL RAISE2), (λx.L) E ′[D(~c)] ⇓[]0 fail, as required.

• Case E = E ′ L: By induction hypothesis, E ′[D(~c)] ⇓[c]0 fail, so by (EVAL APPL

RAISE1), we get E ′[D(~c)] L ⇓[]0 fail.

The following lemma, used in the induction step in the main proof, shows how a

single step of the small-step semantics can be simulated by big-step semantics.

Lemma 41 If (M,1,s)→ (M′,w, []) and M′ ⇓s′
w′ G, then M ⇓s@s′

w·w′ G.

Proof: In Appendix 6 .

169

We can now proceed to the main theorem of this chapter, stating that the closure

of small-step semantics reducing an expression completely to a generalised value is

equivalent to the big-step semantics.

Theorem 4 M ⇓s
w G if and only if (M,1,s)⇒ (G,w, []).

Proof: As usual, we split the equivalence into two implications:

(1) if M ⇓s
w G, then (M,1,s)⇒ (G,w, []):

The proof is by induction on the derivation of M ⇓s
w G.

• Case:

(EVAL VAL)

G ∈ G V

G ⇓[]1 G
Here, M =V , w = 1 and s = []. so (M,w0,s0) reduces to (V,w0,s0) in 0 steps

by the small-step semantics.

• Case:

(EVAL RANDOM)

w = pdfD(~c,c)

w > 0

D(~c) ⇓[c]w c
By (RED RANDOM) (taking E = []), (D(~c),1, [c])→ (c,w, []).

• Case:

(EVAL RANDOM FAIL)

pdfD(~c,c) = 0

D(~c) ⇓[c]0 fail

By (RED RANDOM FAIL) (taking E = []), (D(~c),1, [c])→ (fail,0, []).

• Case:

(EVAL PRIM)

g(~c) ⇓[]1 σg(~c)
By (RED PURE) (taking E = []), (g(~c),1, [])→ (σg(~c),1, []).

• Case:

(EVAL SCORE)

c ∈ (0,1]

score(c) ⇓[]c true
By (RED SCORE) (taking E = []), (D(~c),1, [])→ (c,w, []).

• Case:

(EVAL APPL)

M ⇓s1
w1 λx.M′

N ⇓s2
w2 V

M′ {V/x} ⇓s3
w3 G

M N ⇓s1@s2@s3
w1·w2·w3 G

170

By induction hypothesis, (M,1,s1)⇒ (λx.M′,w1, []), (N,1,s2)⇒ (V,w2, [])

and (M′ {V/x} ,1,s3)⇒ (G,w3, []).

By Lemma 33 (for E = [] N), (M N,1,s1)⇒ ((λx.M′) N,w1, []).

By Lemma 33 again (for E =(λx.M′) []), ((λx.M′) N,1,s2)⇒ ((λx.M′)V,w2, []).

By Lemma 38, (M N,1,s1@s2)⇒ ((λx.M′) V,w1w2, [])

By (RED PURE), ((λx.M′) V,w1 ·w2, [])→ (M′[V/x],w1 ·w2, []), which im-

plies (M N,1,s1@s2)⇒ ((λx.M′) V,w1w2, [])

Thus, the desired result follows by Lemma 38.

• Case:

(EVAL APPL RAISE1)

M ⇓s
w fail

M N ⇓s
w fail

By induction hypothesis, (M,1,s)⇒ (fail,w, []).

By Lemma 34 (with E = [] N)), (M N,1,s)⇒ (fail,w, []).

• Case:

(EVAL APPL RAISE2)

M ⇓s
w c

M N ⇓s
w fail

By induction hypothesis, (M,1,s) ⇒ (c,w, []). By Lemma 33 (with E =

[] N)), (M N,1,s)⇒ (c N,w, []).

By (RED PURE), (c N,w, [])→ (fail,w, []).

Thus, (M N,1,s)⇒ (fail,w, []).

• Case:

(EVAL APPL RAISE3)

M ⇓s1
w1 λx.M′

N ⇓s2
w2 fail

M N ⇓s1@s2
w1·w2 fail

By induction hypothesis, (M,1,s1)⇒ (λx.M′,w1, []), and (N,1,s2)⇒ (fail,w2, []).

By Lemma 33, (M N,1,s1)⇒ ((λx.M′) N,w1, []).

By Lemma 34, ((λx.M′) N,1,s2)⇒ (fail,w2, []).

Thus, by Lemma 38, (M N,1,s1@s2)⇒ (fail,w1 ·w2, []).

• Case:

(EVAL IF TRUE)

M2 ⇓s
w G

if true then M2 else M3 ⇓s
w G

By (RED PURE) (taking E = []), (if true thenM2 elseM3,1,s)→ (M2,1,s).

By induction hypothesis, (M2,1,s)⇒ (G,w, []).

Hence (if 1 then M2 else M3,1,s)⇒ (G,w, []).

• Case (EVAL IF FALSE): analogous to (EVAL IF TRUE)

171

• Case:

(EVAL FAIL)

T ⇓[]1 fail
By (RED PURE), (T,1, [])→ (fail,1, []).

(2) If (M,1,s)⇒ (G,w, []) then M ⇓s
w G:

We prove this statement by induction on the derivation of (M,1,s)⇒ (G,w, []),

with appeal to Lemma 41.

• Base case: If (M,1,s) = (G,w, []), then M ⇓w
s G by (EVAL VAL).

• Induction step: assume (M,1,s)→ (M′,w′,s′)→n (G,w, []). If (M,1,s)→
(M′,w′,s′) was derived with (RED RANDOM FAIL), then M =E[D(~c)], n= 1,

s = [c], G = fail and w = w′ = pdfD(~c,c) = 0. By Lemma 40, we have

M ⇓[c]0 fail, as required.

Otherwise, by Lemma 28, w′> 0, so by Lemma 36, (M′,1,s′)→n (G,w/w′, []).

By induction hypothesis, M′ ⇓s′
w/w′ G. By Lemma 31, (M,1,s∗)→ (M′,w′, []),

where s = s∗@s′.

Therefore, by Lemma 41, M ⇓s∗@s′
w G, and so M ⇓s

w G.

Now that we know that the big-step and small-step semantics are equivalent, and

the small-step semantics is deterministic for a fixed trace, we can state that the big-step

semantics is also deterministic.

Lemma 42 If M ⇓s
w G and M ⇓s

w′ G′, then w = w′ and G = G′.

Proof: Corollary of Lemma 32 and Theorem 4.

6.3 A Distribution on Program Outcomes

In the previous section, we have defined the operational semantics of the probabilistic

λ -calculus, which specifies the value returned by the program for each fixed random

trace. However, in probabilistic modelling, we are usually interested in the distribu-

tions on output values, rather than just single, isolated values sampled from the model.

In this section, we use the sampling-based semantics to define a subprobability

distribution on outcomes of a given program, like we did for expressions in queries in

172

Tabular in Chapter 4. Since the space of traces, over which we integrate the density

derived from the semantics, consists of sequences of arbitrary length, we need to resort

to measure theory and Lebesgue integration.

6.3.1 Distributions on Random Traces and Program Outcomes

Using the the sampling-based semantics and the measure space of program traces de-

scribed in Section 3.2.2, we can now define the distributions on program traces and

outcomes.

A functional view of sampling-based semantics We begin by interpreting the sampling-

based semantics as a pair of (total) functions, parametrised by the given program, map-

ping traces to outcomes and weights. These functions are similar to those used in the

random semantics of Tabular. The first of this functions, returning the outcome of

evaluation, is defined as follows:

OM(s),

G if M ⇓s
w G for some w ∈ R+

fail otherwise

The second function, defining the density of a trace in the given program, is defined

as:

PM(s),

w if M ⇓s
w G for some G ∈ G V

0 otherwise

A σ -algebra on syntactic terms As we interpret distributions as subprobability

measures, we need a measurable space on the set of programs in order to define a

distribution on outcomes of evaluation. To this end, we first define a metric on syntac-

tic terms as follows:

Metric on terms: d(M,N)

d(x,x), 0

d(c,d), |c−d|
d(M N,L P), d(M,L)+d(N,P)

d(λx.M,λx.N), d(M,N)

d(g(V1, . . . ,V|g|),g(V ′1, . . . ,V
′
|g|)), d(V1,V ′1)+ · · ·+d(V|g|,V ′|g|)

d(D(V1, . . . ,V|D|),D(V ′1, . . . ,V
′
|D|)), d(V1,V ′1)+ · · ·+d(V|D|,V ′|D|)

173

d(score(V),score(W)), d(V,W)

d(if V then M1 else M2,if W then N1 else N2), d(V,W)+d(M1,N1)+d(M2,N2)

d(M,N), ∞ otherwise

It is easy to check that d is, indeed, a metric, and so (Λ,d) is a metric space. We

define M to be the Borel σ -algebra on Λ induced by the metric d. We denote by

M |CΛ and M |G V the restrictions of M to, respectively, the set CΛ of closed terms

and the set G V of generalised values (both of which are closed subsets of the metric

space (Λ,d), and so are measurable).

Distributions on traces and outcomes For every closed program M, the functions

OM and PM are measurable, which we prove in the appendix.

Lemma 43 For every closed M, the function OM is measurable S /M |G V .

Proof: In Appendix E.

Lemma 44 For every closed M, PM is measurable S /B|R+ .

Proof: In Appendix E.

The distribution 〈〈M〉〉 on program traces, applied to a set of traces B∈S is simply

the integral of the density PM with respect to µ restricted to B. Recall that µ is the stock

measure on program traces defined in Section 3.2.2.

〈〈M〉〉(B),
∫

B
PM(s)µ(ds) =

∫
B

PM(s)ds

Lemma 45 〈〈M〉〉 is a subprobability measure on (U,S).

Proof: In Appendix E.

From the trace distribution, we can obtain the distribution on output values JMKU
by transforming 〈〈M〉〉 by the result function OM .

JMKU , 〈〈M〉〉O−1
M

By expanding this definition, we can write JMKU(A) as follows:

174

JMKU(A) = 〈〈M〉〉(O−1
M (A)) =

∫
O−1

M (A)
PM(s)ds =

∫
PM(s)[OM(s) ∈ A]ds

Intuitively, O−1
M (A) is the set of traces which yield an output value in A in the

program M, so JMKU(A) is the integral of the density over just the set of traces for

which the output value is in A.

Theorem 5 JMKU is a subprobability measure on (G V ,M |G V).

Proof: In Appendix E.

The measure JMKU defines a distribution on generalised values, treating the excep-

tion fail like a value. We can also define a distribution JMKU|V on values, excluding

fail, via a restricted distribution on traces 〈〈M〉〉V and a restricted density function

PV
M (which will also be useful in Chapter 7).

PV
M(s),

w if M ⇓s
w V for some V ∈ V

0 otherwise

Lemma 46 For every closed M, PV
M is measurable S /B|R+

Proof: In Appendix E.

〈〈M〉〉V (B),
∫

B
PV

M(s)ds = 〈〈M〉〉(B∩O−1
M (V))

Lemma 47 For every closed M, 〈〈M〉〉V is a subprobability measure on (U,S)

Proof: In Appendix E.

JMKU|V (A), 〈〈M〉〉V (O−1
M (A)) =

∫
PV

M(s)[OM(s) ∈ A]ds

Lemma 48 For every closed M, JMKU|V is a measure on (G V ,M |G V).

Proof: In Appendix E.

Note that because of the kind of measure restriction we are using, JMKU|V is de-

fined on generalised values and JMKU|V ({fail}) = 0. Alternatively, we could have

defined JMKU|V to be a measure on (V ,M |V).

175

Example: geometric distribution Let us demonstrate the calculation of distribu-

tions by revisiting the geometric distribution example from section 6.1.3:

let geometric =

(fix g.

λ p. (let z = rnd() in

let y = (z < p) in

if y then 0 else 1+(g p))) in

let n = geometric 0.5 in

let b = n > 1 in

if b then n else fail

Let Sn = {s′@[c] | s′ ∈ [0.5,1]n,c∈ [0,0.5)}. It is easy to check that Ogeometric 0.5([])=

fail, Pgeometric 0.5([]) = 0 and for any s of length n+1, we have:

Ogeometric 0.5(s) =

n if n > 1 and s ∈ Sn

fail otherwise

and

Pgeometric 0.5(s) = [s ∈ Sn]

Thus, we have:

〈〈geometric 0.5〉〉(B) =
∫

B
Pgeometric 0.5(s)ds

=
∞

∑
n=0

∫
Rn+1∩B

Pgeometric 0.5(s)λn+1(ds)

=
∞

∑
n=0

∫
Rn+1∩B

[s ∈ Sn]λn+1(ds)

=
∞

∑
n=0

λn+1(B∩Sn)

This leads to the value distribution assigning probabilities to individual outcomes

n > 1 as follows:

Jgeometric 0.5KU({n}) = 〈〈geometric 0.5〉〉(O−1
geometric 0.5{n})

= 〈〈geometric 0.5〉〉(Sn)

= λn+1(Sn)

=
1

2n+1

176

In case n ≤ 1, we have O−1
geometric 0.5({n}) = ∅, so Jgeometric 0.5KU({n}) = 0.

Moreover, the probability of the observation n > 1 not being satisfied is:

Jgeometric 0.5KU({fail}) = 〈〈geometric 0.5〉〉

(
S0∪S1∪

(
∞⋃

i=2

Ri+1 \Si

))
= 〈〈geometric 0.5〉〉(S0∪S1)

= λ1(S0)+λ2(S1)

=
3
4

where the second equality follows from the fact that Pgeometric 0.5(s) = 0 for all traces

s under which the program geometric 0.5 does not evaluate to a generalised value.

Note that Jgeometric 0.5KU is a probability measure due to the program terminating

with probability 1 and containing no calls to score, but in general, for an arbitrary

program M, JMKU only defines a subprobability measure.

Now, let us derive the distributions on traces and values restricted to successful

outcomes. We have

PV
geometric 0.5(s) =

1 if n > 1 and s ∈ Sn

0 otherwise

Thus:

〈〈geometric 0.5〉〉V (B) =
∫

B
PV
geometric 0.5(s)ds

=
∞

∑
n=2

λn+1(B∩Sn)

The unnormalised probability of each outcome n > 1 is still the same as before:

Jgeometric 0.5KU|V ({n}) = 〈〈geometric 0.5〉〉V (O−1
geometric 0.5{n}) =

1
2n+1

Similarly, Jgeometric 0.5KU|V ({n}) = 0 for n≤ 1. The difference is that

Jgeometric 0.5KU|V is restricted to values, so Jgeometric 0.5KU|V ({fail}) = 0 .

This affects the normalisation: since we have Jgeometric 0.5KU|V (G V) =

Jgeometric 0.5KU|V (V) = 1
4 , the normalised probability of each outcome n > 1 is

now 1
2n−1 .

Discrete variables For simplicity, we have decided to only include continuous dis-

tributions in the language and to restrict the space of traces to sequences of reals.

177

Discrete random draws can be simulated by continuous ones, like flip in the geomet-

ric distribution example. For a less trivial example of such encoding, consider the

Discrete distribution (as shown in Chapter 4) with a n-dimensional parameter vector

[p1, . . . , pn]. A draw from this distribution could be simulated by drawing a value c

from the uniform distribution rnd on the unit interval and then returning k such that

p1 + · · ·+ pk < c(p1 + · · ·+ pn)≤ p1 + · · ·+ pk+1.

The semantics of the language could, however, be easily extended to support dis-

crete distributions. For example, we could change the space of traces U to
⊎

n∈N(R]
N)n. The new σ -algebra S ′ would then be generated by sets of the form H1×·· ·×Hn

such that for each i, H i = H i
R]H i

N, where H i
R ∈B and H i

N ∈P(N).
We would also need to update µ to

µ
′ , ∑

n∈N
(λ ⊕µ#)

n

where µ# is the counting measure on N and ⊕ is a disjoint sum of measures (i.e.

λ ⊕µ#(H) = λ (H ∩R)+µ#(H ∩N)).
We could then add discrete distributions to the language. In the sampling-based

semantics, evaluating a discrete random draw would multiply the weight of the trace

by the probability mass function (that is, the density of the discrete distribution with

respect to the counting measure) at the given point. This could be formalized by the

following new rule in the big-step semantics, which also assumes the language has

integer constants n (alternatively, we could encode integers by Church numerals or use

a mapping from integers to reals).

(EVAL RANDOM DISCRETE)

w = pmfDdiscr
(~c,n) w > 0

Ddiscr(~c) ⇓
[n]
w n

6.3.2 Digression: Motivation for Bounded Scores

We have restricted score to only accept arguments in (0,1] to ensure that the trace dis-

tributions 〈〈M〉〉 and 〈〈M〉〉V are subprobability measures. Indeed, because of recursion,

if we allowed unbounded scores, the measure 〈〈M〉〉 could be non-finite or even non-

σ -finite, even if M terminated with probability 1. For example, consider the following

program inflate:

inflate, fix f (λx.if flip(0.5) then (score(2); f x) else x)

178

For every value V ∈V , the program inflate V terminates with probability 1, because

the probability of not returning the value V after n calls to flip is 1
2n , which goes to

0 as n goes to infinity. However, it is easy to check that 〈〈inflate V 〉〉(U) = ∞, and that

Jinflate V KU(A) = ∞ if V ∈ A and 0 otherwise. It is, then, impossible to normalize

〈〈inflate V 〉〉 to obtain a probability measure on traces.

Alternatively, we could have allowed unbounded scores and only considered pro-

grams M such that JMKU|V < ∞. We decided to use bounded scores instead, to avoid

having to add this condition to all lemmas in the next chapter.

6.4 Conclusions

In this chapter, we have defined an operational sampling-based semantics of an untyped

lambda-calculus with continuous random draws and soft and hard conditioning. Our

semantics reduces a program to an output value (or the exception fail) and a weight,

given a particular, fixed random trace. We define the distribution on output values of a

program as an integral of the weight with respect to a generalisation of the Lebesgue

measure to the space of program traces.

To our best knowledge, this is the first semantics of a Turing-complete functional

probabilistic language with continuous random draws and conditioning which defines

a probability distribution on output values of arbitrary programs. Admittedly, these

values are treated syntactically, which means we do not define distributions on lambda

terms treated as mathematical functions.

This semantics forms the basis of Chapter 7, where we prove correctness of Metropolis-

Hastings inference in functional probabilistic programs by showing that the distribu-

tion of samples converges to the program semantics.

Individual Contributions

The vast majority of the work on the semantics of the probabilistic lambda-calculus

presented here is my work, done with help from other authors on the paper this chapter

is based on [Borgström et al., 2016]. All the proofs presented in this chapter, as well

as Appendix E, are my own work1.

1With the exception of the short Lemma 138, proven by Johannes Borgström

179

Chapter 7

Correct Metropolis-Hastings for

Functional Probabilistic Programs

Acknowledgement This chapter is based on the paper “A Lambda Calculus Founda-

tion for Universal Probabilistic Programming”[Borgström et al., 2016] published at

the 2016 International Conference on Functional Programming (ICFP). The paper was

joint work with Johannes Borgström, Ugo Dal Lago and Andrew D. Gordon.

Inference in probabilistic languages such as Tabular, in which programs correspond

directly to factor graphs, can be performed by using various approximate message-

passing algorithms, such as Expectation Propagation [Minka, 2001] used by Infer.NET

[Winn and Minka, 2009], the default backend of Tabular.

Because of the presence of recursion, and thus the number of random variables pos-

sibly changing across runs, these inference techniques for fixed-dimensional models do

not apply to languages such as Church, discussed in Chapter 6. Instead, the algorithm

proposed by Goodman et al. [2008] and described in more detail in [Wingate et al.,

2011] (which we hereafter call Trace MCMC), is a version of the Metropolis-Hastings

algorithm [Metropolis et al., 1953, Hastings, 1970] which constructs a Markov chain

on the space of program traces —that is, lists of random variables sampled during the

execution of the program. At each step, the algorithm proposes some change to the last

accepted trace, and accepts or rejects the new trace with some probability depending

on the acceptance ratio, as in usual Metropolis-Hastings.

The Trace MCMC algorithm lacked any formal proof of correctness and bugs have,

indeed, been found in Wingate’s formulation [Kiselyov, 2016, Cai, 2016]. Verifying

181

correctness of inference algorithms is important in times when probabilistic program-

ming is increasingly being used in safety-critical settings, such as nuclear test detection

[Arora, 2011], road detection for autonomous vehicles [Mansinghka et al., 2013] and

Wide Area Motion Imagery (a recent DARPA PPAML challenge problem), which can

be used for tracking movements of an enemy army.

This chapter presents the first formal proof of correctness of a variant of Trace

MCMC for a functional probabilistic language. This algorithm is inspired by, but

slightly different from the one presented by Wingate et al. [2011]—the differences

between the two are discussed in Section 7.5.1.

We define this variant of Trace MCMC for the core calculus presented in Chapter

6 and formalize the algorithm, defining the proposal and transition kernels by integrat-

ing the transition kernel density. We then leverage results from literature on MCMC

on generalized state spaces [Tierney, 1994, Roberts et al., 2004] to show that the dis-

tribution of samples returned by the algorithm converges to the value distribution of

the program (defined by the semantics). Our proof is rigorous and includes proving

measurability of the function mapping traces to weights, proving measurability of the

proposal kernel and showing that the transition kernel is indeed a probability kernel.

The main technical contribution of this chapter is a formal proof of correctness of

a variant of Trace MCMC for a Turing-complete functional probabilistic language.

7.1 A Metropolis-Hastings Sampling Algorithm

We start by defining our version of the Metropolis-Hastings [Metropolis et al., 1953,

Hastings, 1970] inference algorithm, in a generative way. The algorithm is defined on

the sample space of program traces (i.e. finite lists of real values of arbitrary lengths),

which is the measurable space defined in Section 3.2.2. Hence, each random variable

in the Markov Chain is trace-valued.

Recall that (M,w,s)→ (M′,w′,s′) means that the program M with initial weight w

reduces to M′ with the random trace s in one step, where w′ is the updated weight after

performing the reduction and s′ is the unused suffix of trace s. We write (M,w,s)⇒
(M′,w′,s′) for the reflexive and transitive closure of the above relation—that is,

(M,w,s)⇒ (M′,w′,s′) means that M with initial weight w reduces to M′ in zero or

more steps, where, again, w′ is the updated weight and s′ the unused suffix of s. The

function PV
M is the density of the program M—that is, PV

M(s) returns the weight of the

trace s, which is set to 0 if the trace does not lead to a value. More formally, PV
M(s) = w

182

if (M,1,s)⇒ (V,w, []) for some value V and PV
M(s) = 0 otherwise.

The algorithm we are constructing aims to approximate the distribution on traces

〈〈M〉〉V (B) =
∫

B PV
M(s)ds, so PV

M is the density of the target distribution.

Assuming that the proposal kernel of the algorithm has a density q(s, t), from which

we can sample a new trace t given a previous trace s, the algorithm has the following

form.

(1) Sample an initial trace s such that PV
M(s) 6= 0 (for example, by performing rejec-

tion sampling until a valid trace is obtained)

(2) Propose a new trace t from the density q(s, ·)

(3) Accept the trace t with probability

α(s, t) = min
(

1,
PV

M(t)q(t,s)
PV

M(s)q(s, t)

)

(4) If the trace is accepted, output trace t, set s := t and repeat from step 2. Other-

wise, output the old trace s and also repeat from 2.

The above generic algorithm is parametric on the proposal density q(s, t), which

we take to be the density corresponding to the following proposal procedure: Suppose

that s = [c1, . . . ,cn] is a valid trace. A new trace t is proposed as follows:

(1) Let k = 1 and w = 1 and t = [].

(2) Let N be the expression obtained by reducing M deterministically as long as

possible —that is, (M,w, [])⇒ (N,w′, []) and N is not a deterministic redex or

score(V) in context. If N ∈ V , return t with weight w′. If N = fail, return []

with weight w′.

(3) Otherwise, if N = E[D(~c)], then:

• If k ≤ n, we sample dk from a Gaussian centred at ck (with some fixed

variance σ2).

• If k > n, we sample dk from the target distribution D(~c).

Let N′, w′′ be such that (N,w, [dk])→ (N′,w′′, []). Set M = N′, w = w′′ and

t = t@[dk] and k := k+1 and repeat from step 2.

183

Informally, the new trace t is obtained by evaluating the expression M such that

when the i-th random draw is reached, instead of sampling from the target distribution,

we sample from a Gaussian centred at si (if it exists), and we only start sampling from

the target when we run out of random values in the previous trace s.

We chose to always use Gaussian proposals in the algorithm because the unbounded

support of the Gaussian distribution helps to ensure φ -irreducibility (formally proven

later in this chapter), which we use to prove convergence. The downside of this choice

is that using a Gaussian to propose a new value for a distribution with bounded support

(for example the Gamma distribution, which is only defined on positive real numbers)

may result in the new value being outside the support of this target distribution. This

leads to the new trace being rejected. Note that this affects the performance of the

algorithm, but not its formal correctness.

Density of the proposal We now need to define the density of the above proposal.

Since the proposal process relies on reducing an already partially evaluated expression,

it is convenient to define an auxiliary function peval(M,s), which reduces the closed

term M with (possibly incomplete) trace s and returns the expression obtained after

fully consuming s. Formally, this function is defined as follows:

peval(M,s),

M if s = []

M′ if (M,1,s)⇒ (M̂, ŵ, ŝ)→ (M′,w′, [])

for some M̂, ŵ, ŝ,w′ such that ŝ 6= []

fail otherwise

Lemma 49 The function peval is measurable M |CΛ×S /M |CΛ

The peval operator satisfies the following important property:

Lemma 50 For all closed M, s, t, peval(peval(M,s), t) = peval(M,s@t)

The density q(s, t) of a valid trace t is then the product of the densities of the ele-

ments of s obtained by perturbing the elements of t, that is, Πk
i=1 pdfGaussian(si,σ

2, ti),

where k = min{|s|, |t|}, multiplied by the product of densities of the target distribu-

tions in N = peval(M,s) from which the remaining elements were sampled, in case

|t| > |s|. It might be tempting to define the latter product as PV
N ([tk+1, . . . , t|t|])—

however, the weight calculated this way would take into account calls to score reached

184

after we ran out of the previous trace s. Because of this, q(s, t) would not match

the actual density of the proposal procedure outlined above, which ignores soft con-

ditioning. Besides, implementing a proposal procedure matching this naive density

q(s, t) = Πk
i=1 pdfGaussian(si,σ

2, ti)PV
N ([tk+1, . . . , t|t|]) would be impractical, because

the Metropolis-Hastings algorithm is supposed to propose just a trace, not a weighted

trace, so accounting for the uses of score would require using an inefficient technique

such as rejection sampling, to ensure that a trace is proposed from the above density.

In order to define the true density of the proposal, we first define an alternative

version of PV
M , which ignores soft conditioning and returns only the product of densities

of distributions sampled from while evaluating M. This new function will itself be

defined in terms of a modified sampling-based semantics. We let the judgment M ↓s
w G

be defined inductively by the same set of rules as M ⇓s
w G, but with (EVAL SCORE)

replaced with:

(EVAL SCORE SKIP)

c ∈ (0,1]

score(c) ↓[]1 true

For completeness, we also define a small-step version of this modified seman-

tics, (M,w,s) (M′,w′,s′), which is defined inductively by the same set of rules as

(M,w,s)→ (M′,w′,s′) but with (RED SCORE) replaced with:

(RED SCORE SKIP)

c ∈ (0,1]

(E[score(c)],w,s) (E[true],w,s)

We let ∗ be the reflexive and transitive closure of .

We can now define the desired function, P∗M, as follows:

P∗M(s),

w if M ↓s
w V for some V ∈ V

0 otherwise

All the properties of the relations ⇓ and→ obviously hold also for ↓ and .

Lemma 51 For every closed M, P∗M is measurable S /B|R+

Proof: Almost identical to the proof of measurability of PV
M .

185

Using the functions peval and P∗M, the density q(s, t) for t 6= [] can be defined as:

q(s, t), (Πk
i=1 pdfGaussian(si,σ

2, ti))P∗N([tk+1, . . . , t|t|]) if t 6= []

where k = min{|s|, |t|} and N = peval(M, [t1, . . . , tk]).

The product Πk
i=1 pdfGaussian(si,σ

2, ti) is the density of the part of the trace t ob-

tained by perturbing elements of s and P∗N([tk+1, . . . , t|t|]) is the density of the suffix of

the trace resampled from the target distributions in the program. Note that if |t| ≤ |s|,
the suffix [tk+1, . . . , t|t|] is empty and N must evaluate to a generalised value without

sampling any random variables for the density to be non-zero.

The density q(s, t) is zero for complete traces t 6= [] which lead to failing observa-

tions, because the algorithm returns an empty trace in case the evaluation fails.

7.2 Transition Kernel

In order to reason about the above algorithm (applied to a fixed closed term M) us-

ing the standard measure-theoretic framework, we need to define its transition kernel

P(s,B) which for every s ∈ U and B ∈S gives the probability that the next sampled

value will be in B if the current trace is s. The transition kernel is itself defined in terms

of a proposal kernel Q(s,B), defining the probability of the next proposed value being

in B, and the acceptance ratio α(s, t).

To simplify the notation, we assume we are applying the algorithm to a fixed closed

term M, on which all functions defined in this section are implicitly parametric. Fur-

thermore, to avoid dealing with degenerate cases, we assume that M is not determinis-

tic, i.e. 〈〈M〉〉({[]}) = 0, and that M evaluates to a value with non-zero probability, i.e.

JMKU(V)> 0.

The Proposal Kernel The proposal kernel of the algorithm is the Lebesgue integral

of the density q(s, t) (treated as a function of t for a fixed s) with respect to the stock

measure on traces. We have already defined q(s, t) for non-empty traces t— to ensure

that Q(s,B) is a probability kernel, corresponding to the proposal procedure, we define

q(s, []) to be:

q(s, []), 1−
∫
U\{[]}

q(s, t)dt

186

The density at [] is the probability that the proposal procedure will return an invalid

trace. The density q is a measurable non-negative function, which can be Lebesgue

integrated in the usual way.

Lemma 52 For every s, t ∈ U, q(s, t)≥ 0.

Proof: In Appendix E.

Lemma 53 The function q is measurable S ×S /R|R+ .

Proof: In Appendix E.

We can now define the proposal kernel as:

Q(s,B),
∫

B
q(s, t)dt

This proposal kernel is a valid probability kernel.

Lemma 54 Q is a probability kernel on (U,S).

Proof: In Appendix E.

Transition Kernel We now define the transition kernel P(s,B), which gives the prob-

ability of the next trace returned by the algorithm being in B if the current trace is s.

The transition kernel depends on the proposal kernel Q defined above and the accep-

tance ratio α defined in 7.1, For completeness, we extend α(s, t) to the degenerate case

PV
M(s)q(s, t) = 0:

α(s, t),

1 if PV
M(s)q(s, t) = 0

min
{

1, PV
M(t)q(t,s)

PV
M(s)q(s,t)

}
otherwise

The transition kernel is defined in the usual way, following the literature on MCMC

on generalised state spaces [Tierney, 1994].

P(s,B),
∫

B
α(s, t)Q(s,dt)+ [s ∈ B]

∫
(1−α(s, t))Q(s,dt)

187

The first term
∫

B α(s, t)Q(s,dt) is the probability of a trace in B being proposed

and accepted. The second summand adds the probability of a new trace being rejected,

which also yields a trace in B if s ∈ B.

We define the n-fold closure Pn(s,B) of the transition kernel P at s to be the prob-

ability that the n-th trace returned by the algorithm will be in B if s is the initial trace.

P0(s,B) , [s ∈ B]

Pn+1(s,B) ,
∫

Pn(t,B)P(s,dt)

By applying a measure transformation to Pn(s,B) we can define the probability of

sampling a value in a set A ∈M |V in the n-th step:

T n(s,A), Pn(s,O−1
M (A))

7.3 Correctness of Inference

Having fully defined the inference algorithm and the corresponding transition kernel,

we can finally prove the main result of this section. We start by stating the main

theorem, to show precisely what we mean by a sampling algorithm being correct. Be-

low, we write ̂JMKU|V for the normalised distribution JMKU|V , i.e. ̂JMKU|V (A) =
JMKU|V (A)

JMKU|V (G V) .

Theorem 6 For every s ∈ U,

limn→∞||T n(s, ·)− ̂JMKU|V ||= 0

Thus, a sampling-based inference algorithm is correct if the distribution -of sampled

values approaches the true normalised distribution of output values of the given pro-

gram (as defined by the semantics) as the number of steps goes to infinity. The remain-

der of this section is the proof of the above theorem, stating that Trace MCMC is a

correct algorithm according to this criterion.

Our proof is based on the following known results from literature on statistics:

Lemma 55 (Roberts et al. [2004], Propositions 1 and 2) If P is a Metropolis-Hastings

kernel (as defined above) with a proposal kernel Q(s,B) =
∫

B q(s, t)dt and accep-

tance ratio α(s, t) = min
{

1, π̇(t)q(t,s)
π̇(s)q(s,t)

}
if π̇(s)q(s, t) = 0 and α(s, t) = 1 otherwise

and π(A) =
∫

A π̇(s)ds∫
π̇(s)ds , then π is the stationary distribution of the Markov chain defined

by P.

188

Lemma 56 (Roberts et al. [2004], Theorem 4 and subsequent remarks) Let P be

a Markov chain on a measurable space (E,E), where E is countably generated. If

π is the stationary distribution of P and P is φ -irreducible and aperiodic, then for

π-almost all x ∈ E,

limn→∞||Pn(x, ·)−π||= 0

Moreover, if P is Harris recurrent, the above holds for every x ∈ E.

Lemma 57 (Roberts and Rosenthal [2006], Theorem 6(vi)) Let P be a φ -irreducible

Markov chain on (E,E) with a stationary distribution π . If for every s ∈ E and B ∈ E

such that π(B) = 0, the probability of every state of P being in B is 0 (that is, if

limn→∞Pn(s,Bn) = 0), then P is Harris-recurrent.

We begin by showing that the Markov chain on traces defined by P converges to the

normalised trace distribution π(B) , 〈〈M〉〉
V (B)

〈〈M〉〉V (U) =
∫

B PV
M(s)ds∫

PV
M(s)ds

, that is limn→∞||Pn(x, ·)−
π|| = 0. By the above three results, we only need to prove that P is π-irreducible and

aperiodic and that the probability of P staying forever in a null set is 0.

7.3.1 Additional properties of reduction

In order to prove the convergence of the Markov chain, we need some additional tech-

nical lemmas about the various reduction relations used in this chapter.

We begin by showing that the density (restricted to traces yielding values) of a

closed program M at a trace s is 0 if and only if the density of M partially evaluated

with an prefix of s is 0 at the corresponding suffix.

Lemma 58 PV
peval(M,s)(t) = 0 if and only if PV

M(s@t) = 0.

To this end, we need some auxiliary results:

Lemma 59 If (M,w,s@t)→ (M′,w′,s′@t), then (M,w,s)→ (M′,w′,s′)

Proof: By case analysis.

Lemma 60 If (M,1,s@t)⇒ (V,w, []) and w> 0, then either s= [] or there exist unique

Mk, wk, sk 6= [], M′, w′ such that (M,1,s)⇒ (Mk,wk,sk)→ (M′,w′, []) and (M′,1, t)⇒
(V,w′′, []) for some w′′ > 0.

189

Proof: By induction on the length of derivation of (M,1,s@t)⇒ (V,w, []):

• Base case: (M,1,s@t) = (V,w, []). We have s = [], as required.

• Induction step: The result is trivial if s = []. Now, let us assume s 6= [].We

have (M,1,s@t)→ (M̂, ŵ, ŝ@t)→k (V,w, []) for some M̂, ŵ, ŝ and k ≥ 0. If

(M,1,s@t)→ (M̂, ŵ, ŝ@t) was derived with (RED RANDOM FAIL), then M̂ =

E[fail] for some E, which is a contradiction, since E[fail] can only reduce to

fail /∈ V . Hence, (M,1,s@t)→ (M̂, ŵ, ŝ@t) was not derived by (RED RAN-

DOM FAIL), so by Lemma 28, ŵ > 0.

– If ŝ = [], then by Lemma 59 we have (M,1,s)→ (M̂, ŵ, []), so (M,1,s)⇒
(Mk,wk,sk)→ (M̂, ŵ, []) for (Mk,wk,sk) = (M,1,s). By Lemma 36, we

have (M̂,1, t)→k (V,w/ŵ, []), where obviously w/ŵ > 0.

– If ŝ 6= [], then by Lemma 36, (M̂,1, ŝ@t)→k (V,w/ŵ, []), so by the induc-

tion hypothesis, there exist Mk, wk, sk 6= [], M′, w′ such that (M̂,1, ŝ)⇒
(Mk,wk,sk)→ (M′,w′, []) and (M′,1, t)⇒ (V,w′′, []) for some w′′ > 0.

By Lemma 59, (M,1,s)→ (M̂, ŵ, ŝ), so by Lemma 36 we have (M,1,s)→
(M̂, ŵ, ŝ)⇒ (Mk,wkŵ,sk)→ (M′,w′ŵ, []) as required.

In either case, the uniqueness follows by Lemma 175 in Appendix E.

Lemma 61 . If (M,w,s)⇒ (M′,w′,s′) and w > 0 and M′ 6= E[fail], then w′ > 0

Proof: By induction on the derivation of (M,w,s) ⇒ (M′,w′,s′), with appeal to

Lemma 28.

Restatement of Lemma 58 PV
peval(M,s)(t) = 0 if and only if PV

M(s@t) = 0.

Proof: The result follows immediately if s = [] (because peval(M, []) = M), so let us

assume that s 6= [].

• ⇒: For contradiction, let us suppose that PV
peval(M,s)(t) = 0 and PV

M(s@t) > 0.

Then we have (M,1,s@t) ⇒ (V,w, []) for some V , w > 0. By Lemma 60,

190

(M,1,s)⇒ (Mk,wk,sk)→ (M′,w′, []) for some Mk, wk, sk 6= [], M′, w′ and (M′,1, t)⇒
(V ′,w′′, []) for some V ′, w′′ > 0.

Hence, peval(M,s) = M′ and PV
M′(t) = w′′ > 0, which contradicts the assump-

tion.

• ⇐: Suppose PV
M(s@t)= 0 and PV

peval(M,s)(t)> 0. Then, we know that peval(M,s) 6=
fail (as otherwise we would have PV

peval(M,s)(t) = 0), so by definition of peval,

we have Mk, wk, sk 6= [], M′, w′ such that (M,1,s)⇒ (Mk,wk,sk)→ (M′,w′, []).

Moreover, (M′,1, t)⇒ (V,w′′, []) for some V ∈ V and w′′ > 0. We know that

M′ 6=E[fail], because otherwise it would not reduce to a value, so by Lemma 61,

w′> 0. Meanwhile, Lemma 38 yields (M,1,s@t)⇒ (V,w′w′′, []), so PV
M(s@t)=

w′w′′ > 0, which contradicts the assumption.

Now, we show that the density PV
M(s) is always smaller or equal to the score-less

density P∗M(s). To formally prove this intuitive property, we need the following lemma:

Lemma 62 If (M,1,s)⇒ (V,w, []) then (M,1,s) ∗ (V,w′, []) for some w′. Moreover,

w′ ≥ w.

Proof: By induction on the derivation of (M,1,s)⇒ (V,w, []).

• Base case: If (M,1,s) = (V,w, []), the result follows immediately.

• Induction step: If (M,1,s)⇒ (V,w, []) was derived in more than one step, we

have (M,1,s)→ (M′,w′,s′)→k (V,w, []) for some M, w′, s′,k≥ 0. If (M,1,s)→
(M′,w′,s′) was derived with (RED RANDOM FAIL), then w′ = 0 and M′ =

E[fail], which is a contradiction, as E[fail] cannot reduce to a value. Hence

(M,1,s)→ (M′,w′,s′) was not derived with (RED RANDOM FAIL), so w′ > 0

by Lemma 28. By Lemma 36, we get (M′,1,s′)→k (V,w/w′, []). By induction

hypothesis, (M′,1,s′) ∗ (V,w′′, []), where w′′ ≥ w/w′.

– If (M,1,s)→ (M′,w′,s′) was derived with (RED SCORE), then (M,1,s)

(M′,1,s′), so (M,1,s) (M′,1,s′) ∗ (V,w′′, []). Since w′ < 1 (scores

cannot be greater than 1), we have w′′ ≥ w/w′ ≥ w, as required.

– Otherwise, we have (M,1,s) (M′,w′,s′). By an equivalent of Lemma 36

for ∗, we have (M′,w′,s′) ∗ (V,w′w′′, []), so (M,1,s) (M′,w′,s′) ∗

(V,w′w′′, []), where w′w′′ ≥ w, as required.

191

We can now prove the property described above.

Lemma 63 For all s ∈ U, PV
M(s)≤ P∗M(s)

Proof: If there is no V ∈ V and w > 0 such that (M,1,s)⇒ (V,w, []), then PV
M(s) = 0,

so the inequality holds trivially.

If (M,1,s)⇒ (V,w, []) for some V , w> 0, then by Lemma 62, we have (M,1,s) ∗

(V,w′, []) for some w′ ≥ w. Hence, P∗M(s) = w′ ≥ w = PV
M(s), as required.

We also prove a partial converse of the above property, which states that if PV
M(t) =

0, then P∗M(t) = 0.

Lemma 64 If (M,1,s) ∗ (V,w, []) and w > 0, then (M,1,s)⇒ (V,w′, []) for some

w′ > 0.

Proof: Similar to proof of Lemma 62.

Lemma 65 If PV
M(t) = 0, then P∗M(t) = 0

Proof: Suppose for contradiction that PV
M(t) = 0 and P∗M(t) > 0. Then (M,1,s) ∗

(V,w, []) for some w > 0. But by Lemma 64, this implies that (M,1,s)⇒ (V,w′, []) for

some w′ > 0. Hence, PV
M(t)> 0, which contradicts the assumption.

Finally, we show that if the density q(s, t) is zero, then the density of the given

program M at t is also zero, and that the converse is also true for t 6= [].

Lemma 66 For all s, t ∈ U, if q(s, t) = 0, then PV
M(t) = 0

Proof: If t = [], then PV
M(t) = 0 by assumption, so now let us assume t 6= [].

Let k = min(|s|, |t|) and N = peval(M,s1..k). We have

q(s, t) = Πk
i=1 pdfGaussian(si,σ

2, ti)P∗N(tk+1..|t|). Since the Gaussian pdf is positive ev-

erywhere, q(s, t)= 0 implies P∗N(tk+1..|t|)= 0, which by Lemma 63 gives PV
N (tk+1..|t|)=

0. Hence, PV
M(t) = 0 by Lemma 58.

Lemma 67 For any s ∈ U, if t 6= [] and PV
M(t) = 0, then q(s, t) = 0.

192

Proof: Let k = min(|s|, |t|) and N = peval(M, t1..k). We have

q(s, t) = Πk
i=1 pdfGaussian(si,σ

2, ti)P∗N(tk+1..|t|). By Lemma 58, PV
N (tk+1..|t|) = 0, so by

Lemma 65, P∗N(tk+1..|t|) = 0, which implies q(s, t) = 0.

7.3.2 π-Irreducibility

We first prove strong irreducibility, which implies π-irreducibility.

Lemma 68 (Strong Irreducibility) If PV
M(s) 6= 0, then for any B such that 〈〈M〉〉V (B)>

0 we have P(s,B)> 0.

Proof:

For contradiction, let us suppose that P(s,B) = 0. We have:

• If PV
M(s) = 0, then α(s, t) = 1 for all t ∈ U, so we have P(s,B) ≥

∫
B q(s, t)dt.

Thus, if P(s,B) = 0, then q(s, t) = 0 for µ-almost-every t ∈U, so by Lemma 66,

we have PV
M(t) = 0 µ-almost everywhere on B, which implies

∫
B PV

M(t)dt = 0.

This contradicts the assumption 〈〈M〉〉V (B)> 0

• If PV
M(s)> 0, then

P(s,B) ≥
∫

B
α(s, t)q(s, t)dt

=
∫

B
min

({
q(s, t),

PV
M(t)q(t,s)

PV
M(s)

})
dt

=
∫

B1

q(s, t)dt +
1

PV
M(s)

∫
B2

PV
M(t)q(t,s)dt

where B1 =
{

t ∈ B | q(s, t)≤ PV
M(t)q(t,s)
PV

M(s)

}
and B2 = B \B1 (both sets are obvi-

ously measurable). If P(s,B) = 0, then
∫

B1
q(s, t)dt = 0 and

∫
B2

PV
M(t)q(t,s)dt =

0.

– If
∫

B1
q(s, t)dt = 0, then q(s, t) = 0 µ-almost everywhere on B1. By Lemma

66, this implies that PV
M(t)= 0 µ-almost everywhere on B1, so

∫
B1

PV
M(t)dt =

0.

– Similarly, if
∫

B2
PV

M(t)q(t,s)dt = 0, then PV
M(t)q(t,s) = 0 µ-almost every-

where on B2. By Lemma 66, if q(t,s) = 0, then PV
M(s) = 0, which con-

tradicts the assumption, so q(t,s) > 0 for all t ∈ U. Hence, PV
M(t) = 0

µ-almost everywhere on B2, so
∫

B2
PV

M(t)dt = 0.

193

Thus, we get 〈〈M〉〉V (B) =
∫

B PV
M(t)dt = 0, which contradicts the assumption.

Corollary 2 (Irreducibility) The Markov chain P is π-irreducible.

7.3.3 Aperiodicity

We now prove the aperiodicity of the transition kernel.

Lemma 69 (Aperiodicity) There do not exist integer d ≥ 2 and non-empty disjoint

sets B1, . . . ,Bd ∈S such that π(B1) > 0 and if s ∈ Bi, then P(s,B j) = 1, where j =

i+1 mod d.

Proof: For contradiction, suppose the Markov chain is periodic. Let s ∈ B1. Then

P(s,B2) = 1. Since P is a probability kernel, we have P(s,B1)≤ P(s,U\B2) = 0. But

π(B1)> 0 by assumption, so this contradicts strong irreducibility. Hence, the Markov

chain P is aperiodic.

We have now proven π-irreducibility, which guarantees that the algorithm con-

verges for π-almost-every starting trace s.

7.3.4 Harris recurrence

In order to show that the closure of the transition kernel converges to π for every start-

ing trace s (and not just π-almost-every trace s), we need to prove Harris recurrence.

Lemma 70 (Harris recurrence) For every s ∈ U and every set B ∈ S , such that

π(B) > 0, the probability that the Markov chain P will reach B in finitely many steps

starting from s is 1.

We will prove this property by using Lemma 57. As usual, we need some additional

lemmas. We begin by stating that the probability of a transition from s 6= [] to a null set

for π not containing s and the empty trace is always 0.

Lemma 71 If π(B) = 0 and s 6= [], then for any s 6= [], P(s,B\{s, []}) = 0.

194

Proof: Let B′ = B\{s, []}. As π(B) = 0 implies π(B′) = 0, we have
∫

B′ PV
M(t)dt = 0,

and so PV
M(t) = 0 µ-almost-everywhere on B′. Hence, by Lemma 67, for every s,

q(s, t) = 0 for µ-almost-every t ∈ B′. Thus, we have:

P(s,B′) =
∫

B′
α(s, t)q(s, t)dt

≤
∫

B′
q(s, t)dt

= 0

Corollary 3 If π(B) = 0, then for any s ∈ U, P(s,B)≤ P(s,{s, []})

Similarly, we prove that the transition from [] to a null set for π is not possible,

unless that null set contains [] (in which case proposing an invalid trace will result in

the algorithm staying in []). Note that we assume that in the algorithm, the initial trace

has positive density, and so is not empty, so this and several subsequent lemmas are

only proven for mathematical completeness.

Lemma 72 If π(B) = 0, then P([],B\{[]}) = 0.

Proof: Let B′ = B\{[]}. Since π(B) = 0 implies π(B′) = 0, we have
∫

B′ PV
M(t)dt = 0,

and so PV
M(t) = 0 µ-almost-everywhere on B′. By Lemma 65, P∗M(t) = 0 for µ-almost-

every t ∈ B′. Hence.

P([],B′) =
∫

B′
α([], t)q([], t)dt

≤
∫

B′
q([], t)dt

=
∫

B′
P∗M(t)dt

= 0

Corollary 4 If π(B) = 0, then P([],B)≤ P([],{[]}).

Now, we show that the Markov chain P cannot stay at the empty trace indefinitely.

Lemma 73 P([],{[]})< 1.

195

Proof: We have P([],{[]})=α([], [])q([], [])µ({[]})+
∫
(1−α([], t))q([], t)dt = q([], []),

as µ({[]}) = 1 and α([], t) = 1 for every t. Hence, P([],{[]}) = 1−
∫
U\{[]} q([], t)dt.

Since we assume that PV
M([]) = 0 and

∫
PV

M(s)ds > 0, by Lemma 66 we have∫
U\{[]} q([], t)dt > 0, and so P([],{[]})< 1, as required.

Similarly, we show that the probability of moving out of the current non-empty

trace is positive.

Lemma 74 If s 6= [], then P(s,{s})< 1.

Proof: We have P(s,{s}) = α(s,s)q(s,s)µ({s})+
∫
(1−α(s, t))q(s, t)dt. Since the

measure µ is zero on any singleton set other than {[]}, this simplifies to P(s,{s}) =∫
(1−α(s, t))q(s, t)dt.

If PV
M(s) = 0, then α(s, t) = 1 for every t ∈ U, so P(s,{s}) = 0.

If PV
M(s)> 0 then we have P(s,{s}) = 1−

∫
α(s, t)q(s, t)dt, so P(s,{s})< 1 by the

same reasoning as in the proof of Lemma 68 (taking B = U and using the assumption

that
∫

PV
M(t)dt > 0).

We also show that the algorithm cannot move to the empty trace from a non-empty

trace with probability 1. Note that such a transition is only ever possible if the starting

state s is invalid.

Lemma 75 If s 6= [], then P(s,{[]})≤ 1.

Proof: We have P(s,{[]}) = α(s, [])q(s, []). If PV
M(s) > 0, then α(s, []) = 0, so

P(s,{[]}) = 0. If PV
M(s) = 0, then P(s,{[]}) = q(s, []) = 1−

∫
U\{[]} q(s, t)dt < 1, by

the assumptions that
∫

PV
M(t)dt > 0 and PV

M([]) = 0 and Lemma 66.

Recall that Pn(s,B) is the probability of all n first elements of the Markov chain P,

as well as the starting element s, being in the set B.

We can now prove that the probability of staying in a set of zero probability goes

to 0 as the number of steps goes to infinity. We first show the following useful lemma:

Lemma 76 If π(B) = 0, then for every n ∈ N, Pn([],Bn)≤ (P([],{[]}))n.

Proof: By induction on n.

• Base case: n = 1: We have P1([],B) = P([],B)≤ P([],{[]}) by Corollary 4.

196

• Induction step: We have Pn+1([],Bn+1) =
∫

B Pn(t,Bn)P([],dt)≤∫
{[]}Pn(t,Bn)P([],dt) = Pn([],Bn)P([], [])≤ P([], [])n+1 by the induction hypoth-

esis.

We can now show the above property.

Lemma 77 If π(B) = 0, then for every s∈U, there exists cs ∈ [0,1) such that for every

n ∈ N, Pn(s,Bn)≤ cs
n.

Proof: Fix s∈B. If s= [], the result follows immediately by Lemma 76 and Lemma 73.

Now, assume that s 6= []. Define cs to be:

cs = max({P(s,{s}),P(s,{[]}),P([],{[]})})

By Lemmas 73, 74 and 75, cs < 1.

We can now prove the statement by induction on n.

• Base case: n= 1: We have P1(s,B)=P(s,B)≤P(s,{s, []})=P(s,{s})+P(s, []).

If PV
M(s)= 0, then P(s,{s})=

∫
(1−α(s, t))q(s, t)dt = 0 (because α(s, t)= 1 for

all t), and if PV
M(s)> 0, then P(s, []) = α(s, [])q(s, []) = 0 (because if q(s, [])> 0,

then α(s, []) = 0). In either case, P1(s,B)≤ cs.

• Induction step: We have Pn+1(s,Bn+1) =
∫

B Pn(t,Bn)P(s,dt)≤∫
{s,[]}Pn(t,Bn)P(s,dt) by absolute continuity. Hence, Pn+1(s,Bn+1)≤

Pn(s,Bn)P(s,{s})+Pn([],Bn)P(s,{[]}).

– If PV
M(s) = 0, then P(s,{s}) = 0 , so Pn+1(s,Bn+1) ≤ Pn([],Bn)P(s,{[]}).

By Lemma 76, Pn([],Bn)≤ cn
s . Hence, Pn+1(s,Bn+1)≤ cs

n+1, as required.

– If PV
M(s)> 0, then P(s,{[]}) = 0, so Pn+1(s,Bn+1)≤ Pn(s,Bn)P(s,{s}) =

Pn(s,Bn)P(s,{s}). Hence, we get Pn+1(s,Bn+1) ≤ cs
n+1 immediately by

the induction hypothesis.

From the above results and Lemma 57, we get Harris recurrence.

Lemma 78 The Markov chain P is Harrris recurrent.

197

Proof: By Lemma 77, for every s ∈ U and B ∈ S such that π(B) = 0, there exists

cs ∈ [0,1) such that for each n∈N, Pn(s,Bn)≤ cs
n, so limn→∞Pn(s,Bn) = 0 (that is, the

probability of the chain making a transition to a trace in B in every step is 0). Hence,

by Lemma 57, the chain P is Harris recurrent.

We can now prove the main theorem of this chapter. We begin by using Lemma 56

and the results shown in this section to prove convergence of the kernel P on traces.

Lemma 79 For every s ∈ U, limn→∞ ||Pn(x, ·)−π||= 0

Proof: By Lemma 55, π is the stationary distribution of P. By Corollary 2, P is π-

irreducible, by Lemma 69, P is aperiodic and by Lemma 78, it is also Harris recurrent.

Hence, by Lemma 56, we have limn→∞ ||Pn(x, ·)−π||= 0 for every s ∈ U.

We use the following useful property of the variational norm to obtain a conver-

gence result for output values.

Lemma 80 If (X1,Σ1) and (X2,Σ2) are measurable spaces and µ1 and µ2 are proba-

bility measures on (X1,Σ1) and f : X1→X2 is measurable Σ1/Σ2 and satisfies f−1(X2)=

X1, then

||µ1 f−1−µ2 f−1|| ≤ ||µ1−µ2||

Proof: We have supB∈Σ2
|µ1 f−1(B)− µ2 f−1(B)| = supA∈Σ′1

||µ1(A)− µ2(A)||, where

Σ′1 = { f−1(B)|B ∈ Σ2}. By measurability of f we get Σ′1 ⊆ Σ1, so by monotonicity of

sup we get supA∈Σ′1
|µ1(A)−µ2(A)| ≤ supA∈Σ1

|µ1(A)−µ2(A)|.

From the above two lemmas, we get correctness of the main theorem.

Restatement of Theorem 6 For every s ∈ U,

limn→∞||T n(s, ·)− ̂JMKU|V ||= 0

Proof: By Lemma 79, we have limn→∞ ||Pn(x, ·)−π||= 0.

By definition, T n(s,A) = Pn(s,O−1
M (A)) and ̂JMKU|V (A) = JMKU|V (A)

JMKU|V (G V)

=
〈〈M〉〉V (O−1

M (A))
〈〈M〉〉V (O−1

M (G V))
=
〈〈M〉〉V (O−1

M (A))
〈〈M〉〉V (U) = π(O−1

M (A)).

Thus, by Lemma 80 and the squeeze theorem for limits we get

lim
n→∞
||T n(s, ·)− ̂JMKU|V || ≤ lim

n→∞
||Pn(s, ·)−π||= 0.

198

7.4 Examples

In this section, we illustrate the behaviour of the inference algorithm in the presence

of hard and soft conditioning with several examples. Specifically, we revisit the geo-

metric distribution example from Section 6.1.3 and the two implementations of linear

regression from Section 6.1.4.

7.4.1 Geometric Distribution

We begin with the program implementing the geometric distribution (which we will

call Mgeom from now on):

let geometric =

(fix g.

λ p. (let z = rnd() in

let y = (z < p) in

if y then 0 else 1+(g p))) in

let n = geometric 0.5 in

let b = n > 1 in

if b then n else fail

This example does not use soft conditioning, and the only distribution sampled

from is rnd, whose density is equal to 1 on the whole unit interval, so the density

PV
Mgeom

(s) must be 1 for every valid trace s and 0 for every invalid trace. It is easy to see

that a non-empty trace with all elements in the unit interval is valid if and only if its last

element is greater or equal 0.5 (setting y to false), all other elements are less than 0.5

(setting y to true) and its length is greater than 2 (because of the conditioning at the

end). Thus, the set of valid traces is precisely Sgeom = {s | si ∈ [0,0.5) for i < |s|∧s|s| ∈
[0.5,1]∧ |s| > 2}. We have PV

Mgeom
(s) = [s ∈ Sgeom]. Moreover, because score is not

used in this model, P∗Mgeom
(s) = PV

Mgeom
(s) = [s ∈ Sgeom].

The transition density is q(s, t) = (Πk
i=1 pdfGaussian(si,σ

2, ti))P∗M′(tk+1..|t|), where

k = min{|s|, |t|} and M′ = peval(Mgeom,s1..k). By Lemma 58, PV
M′(tk+1..|t|) = 0 if and

only if PV
Mgeom

(t) = 0, which, in the absence of soft conditioning and draws from distri-

butions with non-constant densities, means P∗M′(tk+1..|s|) = PV
M′(tk+1..|s|) = PV

Mgeom
(t).

Hence, the density simplifies to q(s, t) = (Πk
i=1 pdfGaussian(si,σ

2, ti))[t ∈ Sgeom].

199

If PV
Mgeom

(s)q(s, t) = 0, then α(s, t) = 1. Otherwise, if t 6= [], we have:

α(s, t) = min

{
1,
[t ∈ Sgeom](Π

k
i=1 pdfGaussian(ti,σ

2,si))[s ∈ Sgeom]

[s ∈ Sgeom](Π
k
i=1 pdfGaussian(si,σ2, ti))[t ∈ Sgeom]

}
= 1

because the products of Gaussian densities obviously cancel out and PV
Mgeom

(s)q(s, t)>

0 implies that s ∈ Sgeom and t ∈ Sgeom.

We can easily check that q(s, []) = 1−
∫
U\{[]} q(s, t)dt > 0 (note that the proba-

bility of reaching fail and proposing an empty trace is positive because of the hard

conditioning), so if PV
Mgeom

(s) > 0, then α(s, []) = min
{

1,
PV

Mgeom([])q([],s)

PV
Mgeom(s)q(s,[])

}
= 0. Thus,

the acceptance ratio is:

α(s, t) =

0 if [t = []] and [s ∈ Sgeom]

1 otherwise

This effectively means that every valid trace is accepted. The proposal kernel of the

algorithm for this model is

Q(s,B) =
∫

B∩Sgeom

(Π
min{|s|,|t|}
i=1 pdfGaussian(si,σ

2, ti))dt

for [] /∈ B. We know that 1−α(s, t) = 1 if and only if t = [] and s ∈ Sgeom, and 1−
α(s, t) = 0 otherwise, so the transition kernel is:

P(s,B) =
∫

B∩Sgeom

Π
min{|s|,|t|}
i=1 pdfGaussian(si,σ

2, ti)dt

+[s ∈ B]
(∫

[s ∈ Sgeom][t = []]q(s, t)dt
)

=
∫

B∩Sgeom

Π
min{|s|,|t|}
i=1 pdfGaussian(si,σ

2, ti)dt

+[s ∈ B∩Sgeom]q(s, [])

=
∫

B∩Sgeom

Π
min{|s|,|t|}
i=1 pdfGaussian(si,σ

2, ti)dt

+[s ∈ B]
(

1−
∫

Sgeom

(Π
min{|s|,|t|}
i=1 pdfGaussian(si,σ

2, ti)dt
)

for [] /∈ B.

7.4.2 Linear Regression with flip

Let us now consider the version of the linear regression model from section 6.1.4 which

uses flip instead of soft conditioning. This model takes the following form when

translated to the core calculus (assuming we have a function and taking an arbitrary

number of arguments):

200

let sqr = λx. x∗ x in

let squash = λx. λy. exp(−(sqr(x− y))) in

let flip = λ p. rnd()< p in

let softeq = λx. λy. flip (squash x y) in

let m = Gaussian(0,2) in

let b = Gaussian(0,2) in

let f = λx. m∗ x+b in

let cond = and((softeq (f 0) 0), (softeq (f 1) 1), (softeq (f 2) 4), (softeq (f 3) 6)) in

if cond then (f 4) else fail

Every valid trace in this model (which we will call M f lip) consists of two val-

ues drawn from Gaussian(0,2), which are assigned to variables m and b, followed

by four values drawn from rnd() while evaluating the four calls to softeq. The hard

constraint is satisfied if and only if all calls to softeq return true. The expression

f lip (squash x y) evaluates to true if the value sampled from rnd is in the interval[
0,e−(x−y)2

)
. Because the density of rnd() is constant on the unit interval, on any trace

of length 6 the density PV
M f lip

(s) of the program depends only on the first two elements

of the trace s (assumed to be drawn from Gaussians) and on whether the remaining

four elements are in the “correct” intervals. Obviously, the density PV
M f lip

is zero on

traces of other lengths.

The full density of the above program is:

PV
M f lip

(s)=

(
Π2

i=1 pdfGaussian(0,2,si)
)
·
(

Π4
i=1

[
si+2 ∈

[
0,e−(s1·xi+s2−yi)

2
)])

if |s|= 6

0 otherwise

where xi and yi are the coordinates of the subsequent observed points. Since this ex-

ample, like the previous one, uses no soft conditioning, P∗M f lip
(s) = PV

M f lip
(s).

We can now derive the proposal density q(s, t). First, let us suppose that PV
M f lip

(s)>

0 and PV
M f lip

(t) > 0 (which implies |s| = 6 and |t| = 6, as shown above). The formula

for q(s, t) then has the following form:

q(s, t) = (Π6
i=1 pdfGaussian(si,σ

2, ti)P∗M′([])

where M′ = peval(M f lip, t). If M′ 6= fail (which is the case if all of s3, . . .s6 are in

the support of rnd) then the program M′ is deterministic and has the form:

if cond then (s1 ∗4+ s2) else fail

201

where cond is true if and only if the condition in the original program was satisfied.

Thus, is easy to see that P∗M′([]) = 1 if cond = true (which also implies M′ 6= fail)

and P∗M′([]) = 0 otherwise. Hence, the proposal density expands to:

q(s, t) =
(

Π
6
i=1 pdfGaussian(si,σ

2, ti)
)
·
(

Π
4
i=1[ti+2 ∈ [0,e−(t1·xi+t2−yi)

2
)]
)

if s, t ∈ R6. In case s ∈ R6 and t /∈ R6, the density q(s, t) is only non-zero if t = [] in

which case q(s, []) is the probability of proposing a trace violating the hard constraint.

The definition of q is extended to s /∈ R6 for purely technical reasons, as invalid states

are unreachable, so we omit the formula for this case.

For s, t ∈ R6, the acceptance ratio is:

α(s, t) = min
{

1,
Π2

i=1 pdfGaussian(0,2, ti)
Π2

i=1 pdfGaussian(0,2,si)

}
if PM f lip(s)q(s, t)> 0 and α(s, t)= 1 otherwise (note that the densities pdfGaussian(si,σ

2, ti)

and pdfGaussian(ti,σ
2,si) cancel out and that the assumption PM f lip(s)q(s, t)> 0 implies

that the hard condition is satisfied for both s and t). If t = [] and s is a valid trace, the

acceptance ratio is 0, as expected — because the proposal kernel may propose an in-

valid trace, q(s, []) > 0 in general, so PM f lip(s)q(s, []) > 0, and PM f lip([]) = 0 in the

formula for the acceptance ratio. The formulas for the proposal kernel Q and the tran-

sition kernel P can be obtained by plugging the definitions of q(s, t) and α(s, t) into

the defintitions of Q(s,B) and P(s,B), like in the previous example.

Note that a proposed trace t is only valid if all values ti for i ≥ 2 are within cer-

tain small intervals. As these values are proposed from Gaussian distributions, with

unbounded supports, this may be very unlikely to happen, especially if the number of

data points is much larger. This shows that simulating soft conditioning with hard con-

straints, while semantically correct, is very inefficient, and makes the case for adding

primitives for soft conditioning to probabilistic languages.

7.4.3 Linear Regression with score

In this updated version of the linear regression model, the softeq function is redefined

to call score instead of rejecting the trace with a given probability. This means that

all traces which can be proposed by the algorithm are valid, but still have different

weights, affecting the acceptance probability.

The updated program, Mscore, is the same as the previous one, except for the defi-

nition of softeq:

202

. . .

let so f teq = λx. λy. score(squash x y) in

. . .

This model does away with the additional random variables used previously to per-

form conditioning, so every valid trace consists of just two values, both drawn from

Gaussian(0,2). For any valid trace, the density PV
Mscore

is a product of the two Gaus-

sian densities and the values of the four arguments passed to score:

PV
Mscore

(s) = Π
2
i=1 pdfGaussian(0,2,si) Π

4
i=1e−(s1·xi+s2−yi)

2

The density q(s, t) for s ∈ R2 and t ∈ R2 has the following form:

q(s, t) = Π
2
i=1 pdfGaussian(si,σ

2, ti)P∗M′([])

where M′= peval(Mscore,s). As the function P∗M′ ignores arguments passed to score,

and M′ does not contain any random draws and returns a value, P∗M′([]) = 1. Hence,

the density is:

q(s, t) = Π
2
i=1 pdfGaussian(si,σ

2, ti)

If t /∈ R2, the density is 0 (including the case t = [], because
∫
U\{[]} q(s, t)dt = 1).

The acceptance ratio for s ∈ R2 and t ∈ R2 is:

α(s, t) = min

{
1,

Π2
i=1 pdfGaussian(0,2, ti) Π4

i=1e−(t1·xi+t2−yi)
2

Π2
i=1 pdfGaussian(0,2,si) Π4

i=1e−(s1·xi+s2−yi)2

}
since the proposal density is symmetric and so q(s, t) and q(t,s) cancel out. If s ∈ R2

and t /∈ R2, then α(s, t) = 1, but the proposal density is always zero for these traces.

This implementation of linear regression is obviously much more efficient than the

one using flip. Obviously, traces with lower scores are still more likely to be rejected,

but every proposed trace is valid and the acceptance probability depends on the ratio

of trace scores, rather than raw scores, which means that the algorithm is more likely

to move to a region with similar or higher probability.

7.5 Discussion of the Algorithm

In this section we discuss the motivation for using the particular version of Metropolis-

Hastings presented here, and also highlight some deficiencies of the algorithm we use.

203

7.5.1 Motivation for Using Multi-Site Inference

Unlike the algorithm presented by Wingate et al. [2011], and like the one used by Hur

et al. [2015], our version of Metropolis-Hastings is multi-site, in that it resamples all

elements of the trace at each step. This choice was made to ensure that the proposal

kernel has a density with respect to the stock measure on traces. The proposal kernel

in [Wingate et al., 2011], which only redraws one random variable in a program and

possibly variables depending on it, does not have a density, because any reasonable

measure on traces (or databases of random values, as they are called in the aforemen-

tioned paper) is zero on the set of traces in which the value of at least one continuous

variable is fixed. In other words, such a kernel is not absolutely continuous with respect

to the stock measure on program traces.

The choice of a proposal kernel with a density simplifies the proofs significantly

and allows us to use the standard framework for reasoning about Metropolis-Hastings

[Tierney, 1994, Roberts et al., 2004], without having to worry about the reversibility

of the constructed Markov chain. Alternatively, we could have used the results from

[Tierney, 1998] to construct a density-less proposal kernel yielding a reversible chain,

but the lack of density would have also complicated the proofs of irreducibility and

Harris recurrence.

Admittedly, a multi-site Metropolis-Hastings algorithm is in general less efficient.

In programs with multiple hard constraints involving many variables, such as the linear

regression with flip from Section 7.4.2, the probability that at least one condition will

not be satisfied after resampling all random variables can be very high. Even without

hard constraints, the probability that the weight of at least one newly sampled value

will be close to 0, and reduce the trace weight, can also be significant. Because of this,

the acceptance rate of the multi-site Metropolis-Hastings can be very low. Moreover,

in a multi-site algorithm more computations need to be performed to generate a trace,

and there is less scope for using optimization techniques such as slicing [Yang et al.,

2013, Hur et al., 2014].

7.5.2 Problem With Identifying Random Variables

A significant problem with the algorithm presented here is the way random variables

are identified in a trace. For simplicity, we have used linear traces, in which each

random variable is identified just by its position in a trace. This means that if the

previous trace was s, each i-th element of a new trace t (for i ≤ |s|) is sampled from

204

a Gaussian centred at the i-th element of s. However, because programs may have

branches, there is no guarantee that the i-th distribution reached when evaluating the

program with s will be the same as the i-th distribution encountered while following t.

Hence, the value of ti, proposed from Gaussian(si,σ
2), may be a value very unlikely

to be drawn from the corresponding distribution in the program, or even outside its

support.

For example, consider the following program (which does not represent any useful

machine learning model, but is a simple program illustrating problems which may

occur in larger, real-world models):

let flip = λ p. rnd()< p in

let x = flip 0.5 in

let y = if x then Gaussian(0,1) else 5 in

Gaussian(10,1)

Suppose the previous trace was s = [0.7,10.2] — this is a reasonably likely trace in

the program, since the second element is likely to have been drawn from Gaussian(10,1),

the second distribution reached when flip evaluates to false. Now, suppose the new

value of the first random variable is t1 = 0.3. Then flip 0.5 returns true, so the next

distribution reached is Gaussian(0,1). The algorithm will sample the new proposed

value t2 for the random draw Gaussian(0,1) from Gaussian(10.2,σ2), the distribu-

tion centred around the previous value of Gaussian(10,1). Obviously, this value is

very unlikely and the resulting trace will have a very low density and will almost cer-

tainly be rejected. This means that we will, in practice, never choose the then branch

having started with else.

Note that this problem does not invalidate the proof of correctness. Because the

Gaussian proposal distribution has infinite support, the probability of choosing the

then branch in the example above, while very low, is technically not zero, so strong

irreducibility still holds. The main theorem states only asymptotic convergence, so the

low probability of transition to another region in the state space is outweighed by the

number of samples going to infinity.

While identifying random variables in functional programs is inherently tricky, it

is possible to define a more efficient variable naming scheme. One possible solution

would be to use a labelled λ -calculus, such as the one proposed (for call-by-name

evaluation) by Lévy [1978] and adapted to call-by-value reduction by Blanc [2008].

In such a calculus, each subexpression of a program has a unique label, and reduction

205

combines the labels of all “active” terms and assigns the resulting label to the reduced

term. Hence, the labels in a partially evaluated expression represent the evaluation

histories of the subterms. By using such a calculus, we could represent traces as maps

from labels to values, rather than lists, and use the concatenation of labels on the path

in the expression tree going down to a random draw as an index of this random draw.

This way, we would use a value from the previous trace if and only if it was actually

drawn from the same distribution.

An attempt at defining a naming scheme for a functional probabilistic language

has already been made in the original paper describing lightweight MCMC for prob-

abilistic programs [Wingate et al., 2011], which presents an elegant source-to-source

transformation adding a parameter representing the current location to every function.

However, this naming system is not powerful enough to properly distinguish random

variables in a λ -calculus. Moreover, such a source-to-source transformation would

make the proofs more difficult.

At any rate, the design of an efficient variable identification scheme is left as future

work.

7.6 Conclusions

In this chapter, we have defined a variant of the Metropolis-Hastings algorithm for

the probabilistic λ -calculus presented in Chapter 6 and proven that the distribution

of samples generated by the algorithm converges asymptotically to the semantics of

the given program. To our best knowledge, it is the first such proof for a functional

language with recursion. Because of the use of linear traces, the algorithm is inefficient

(although still correct) for certain programs with structural choice, but this could be

fixed easily by using a more elaborate variable identification scheme.

Individual Contributions

The proof of correctness of Metropolis-Hastings for the probabilistic lambda-calculus

was done in collaboration with other authors of [Borgström et al., 2016], although

the idea of using the literature on Metropolis-Hastings on general state spaces was my

own. The corrections applied to the proof shown in the paper are entirely my own work.

Specifically, I have corrected the proposal density q (the original paper used the naive

densityq(s, t)=Πk
i=1 pdfGaussian(si,σ

2, ti)PV
N ([tk+1, . . . , t|t|]) where k =min{|s|, |t|}, as

206

described in Section 7.1) and presented a more rigorous proof of irreducibility and

Harris recurrence.

207

Chapter 8

Conclusions

This dissertation aims to advance the state of probabilistic programming by examining

the issues of clean design, correctness and trustworthiness of probabilistic languages.

Specifically, we first present a new version of the Tabular schema-based program-

ming language. Its clean meta-theory, rigorously defined semantics and a structural,

dependent type system catching common modelling errors make sure models express-

ible in this language have clearly defined meaning. We prove two theoretical results

which show that the language behaves correctly. Moreover, we extend the language

with a formula notation for expressing hierarchical linear regressions and define the

semantics of the resulting language by translation to pure Tabular.

Secondly, we study the meaning of models represented in a universal, Turing com-

plete functional language, by giving a measure-theoretic semantics to an untyped prob-

abilistic lambda-calculus with continuous distributions and soft and hard conditioning,

defining a sub-probability distribution on output values. While our operational ap-

proach does not solve the problem of defining distributions on functions in such lan-

guages, as values (including functions) are treated purely syntactically, we believe that

it is an important step towards understanding higher-order, Turing-complete languages.

Finally, we address the question of trustworthiness and reliability of probabilistic

languages by defining a variant of the Metropolis-Hastings algorithm for the afore-

mentioned calculus and formally proving its correctness, ensuring that the distribution

of samples converges to the distribution defined by the semantics program. We be-

lieve that verification of inference algorithms for probabilistic programs is important,

especially in an era where machine learning, and probabilistic programming, are in-

creasingly being used in safety-critical applications. Unlike testing an algorithm on a

limited example suite, presenting a formal proof thereof ensures that it cannot fail in

209

some corner cases, which may come up unexpectedly when using the given system to

solve a real-life problem.

While this dissertation has considered two separate aspects of probabilistic pro-

gramming, design of real-life probabilistic languages and semantics of a higher-order

foundational calculus, they are in fact interdependent: good, clean language design

should be driven by language semantics and, where applicable, type systems. Con-

versely, the semantics of calculi and their desirable theoretical properties should be in-

spired by the applications of these calculi, as foundations of real-world programming

languages. Clean probabilistic language design, semantics of universal probabilistic

languages and the proofs of correctness of inference algorithms are all stepping stones

to the goal of making probabilistic programming a trusted tool for Bayesian inference.

Further Work Many unsolved problems still remain in the area of probabilistic pro-

gramming. Here we describe how the work presented in this dissertation, and related

developments in probabilistic programming, can be extended and improved upon.

The Tabular Language Since its inception, the Tabular language has been ex-

tended with hierarchical generalised linear models, yielding Fabular [Borgström et al.,

2015]. Several other extensions are also possible. One idea would be to add direct sup-

port for inference in time series, which are difficult to express in the present version,

because of the assumption that random variables defined by all rows are identically

independently distributed.

Another possibility is extending the lattice of binding times with indices to allow

multiple runs of inference in Tabular models— this way, the user could write complex,

nested models, in which a qry variable from the i-th run of inference could be treated

as a deterministic variable in the i+1-th run.

A very interesting development would be implementing automatic model sugges-

tion in Tabular. This could be done by following the approach of Nori et al. [2015],

who present an algorithm for synthesising probabilistic programs by filling holes in

user-defined program sketches. Hutchison [2016] presented a convenient generative

grammar for interactive Tabular model creation, which could be adapted to automatic

model suggestion.

Finally, the idea of treating functions as expansible macros could be transplanted

to other probabilistic languages, such as Stan [Gelman et al., 2015]. There is currently

some ongoing work towards this goal [Gorinova, 2017].

210

Semantics of Probabilistic Programs Our semantics of an untyped probabilis-

tic lambda-calculus only defines distributions on functions treated in a purely syn-

tactic way, and different representations of mathematically equivalent functions are

not identified in our semantics. Defining distributions on mathematical functions in

higher-order, Turing-complete functional languages with higher-order recursion is still

an open problem.

One approach would be to extend the work of Staton et al. [2016] and Heunen

et al. [2017] to an untyped lambda-calculus—it is, however, not yet clear how this

could be done. Another idea would be to adapt the operational, metric-based approach

presented here and design a different metric on terms, quantifying true, behavioural

closeness of terms, as suggested by Crubillé and Dal Lago [2017].

Verification of Inference Algorithms As discussed in section 7.5.2, the variant

of Metropolis-Hastings used in this dissertation can be inefficient for programs with

conditional branches, due to the use of linear traces. An obvious improvement would

be the use of a more elaborate and efficient variable naming scheme, for example one

based on the labelled lambda calculus—traces would then be maps, rather than lists.

This would require redefining the measure space of program traces.

Another important goal would be to prove correctness of a single-site version of

MH, updating only one variable, and variables depending on it, at the time. In the case

of this variant, the additional difficulty is that the proposal kernel has no density with

respect to the stock measure on traces, so a more general theory of MCMC on general

state spaces (such as the one presented in [Tierney, 1998]) has to be used. However,

Cai [2016] has already presented a generic proof of correctness of such an algorithm,

using an abstract representation of a program as a dependent sequence of probability

kernels and a map of names of random variables, so it would be enough to instantiate

this framework with an appropriate translation of lambda-calculus terms to sequences

of kernels and an appropriate variable naming scheme.

It may be interesting to formalise the proof of correctness of MH for probabilistic

programs, for example in Isabelle, which has support for measure theory [Hölzl and

Heller, 2011].

Furthermore, other sampling-based inference algorithms are increasingly being

used in probabilistic programming, most notably Sequential Monte Carlo, which forms

the basis of a promising new approach to inference, called inference compilation [Le

et al., 2017]. Because of this, it would be very beneficial to prove correctness of SMC.

211

Appendix A

Alpha-equivalence of Tabular

programs

We identify Tabular programs up to consistent renaming of internal column names and

local variables occurring in expressions. Following [Pitts, 2013, p. 133], we define

alpha-equivalence by means of a variable permutation operator (x y)X , which naively

replaces all (free and bound) occurrences of x in part of syntax X (a schema, table,

model, expression or type) with y and vice versa. Note that this operator does not

change external column names and table names, as they are considered separate syn-

tactic categories from variables.

We also make use of a function vars(X), which returns the set of all (free and

bound) variables occurring in part of syntax X . This function is formally defined as

follows:

Variables (Free and Bound): vars(E), vars(R), vars(M), vars(T), vars(T)

vars(x), {x}
vars(s),∅
vars(sizeof(t)),∅
vars(g(E1, . . . ,En), vars(E1)∪·· ·∪ vars(En)

vars(if E then F1 else F2), vars(E)∪ vars(F1)∪ vars(F2)

vars([E1, . . . ,En]), vars(E1)∪·· ·∪ vars(En)

vars(E[F]), vars(E)∪ vars(F)

vars([for x < e→ F], {x}∪ vars(F)

vars(infer.D[e1, . . . ,em].d(E)) = vars(e1)∪·· ·∪ vars(em)∪ vars(E)

vars(E : t.c), vars(E)

213

vars(t.c),∅
vars(x.c), {x}

vars(ε),∅
vars(M[e1 < e2]), vars(M)∪ vars(e1)∪ vars(e2)

vars(T R), vars(T)∪ vars(R)

vars((c = e) :: R), vars(e)∪ vars(R)

vars([]),∅

vars(S ! spc),∅
vars(mod(e) ! spc), vars(e)

vars(T [e]), vars(T)∪ vars(e)

vars([]),∅
vars((c. x : T ` viz M) :: T), {x}∪ vars(T)∪ vars(M)∪ vars(T)

We begin by defining alpha-equivalence of basic expressions:

Alpha equivalence for expressions: E1 =α E2

(ALPHA EXPRESSION)

e1 = e2

e1 =α e2

(ALPHA DEREF STATIC)

t.c =α t.c

(ALPHA DEREF INST)

E =α E ′

E : t.c =α E ′ : t.c

(ALPHA RANDOM)

Fj =α F ′j ∀ j ∈ 1..n

D[e1, . . . ,em](F1, . . . ,Fn) =α D[e1, . . . ,em](F ′1, . . . ,F
′
n)

(ALPHA ITER)

(z x)F =α (z y)F ′

z /∈ vars(F,F ′,x,y)

[for x < e→ F] =α [for y < e→ F ′]

(ALPHA INDEX)

E =α E ′

F =α F ′

E[F] =α E ′[F ′]

(ALPHA INFER)

E =α E ′

infer.D[e1, . . . ,em].c j(E) =α infer.D[e1, . . . ,em].c j(E)

(ALPHA PRIM)

Ei =α E ′i ∀i ∈ 1..n

g(E1, . . . ,En) =α g(E ′1, . . . ,E
′
n)

(IF)

E1 =α E ′1 E2 =α E ′2 E3 =α E ′3
if E1 then E2 else E3 =α if E ′1 then E ′2 else E ′3

(ALPHA ARRAY)

Ei =α E ′i ∀i ∈ 0..n−1

[E0, . . . ,En−1] =α [E0, . . . ,En−1]

214

(ALPHA FUNREF)

x.c =α x.c

At the level of primitive expressions, there is only one construct, namely the for

loop, which binds a variable, so these rules effectively state that two expressions are

considered α-equivalent if they are the same up to renaming of variables bound by for

loops. The (ALPHA ITER) rule states that two loops [for x< e→F] and [for y< e→F ′]

(with same e) are alpha equivalent if the expressions F and F ′, with the bound variables

x and y replaced by a single variable fresh in both F and F ′, are α-equivalent.

All the other rules are just congruence rules, which state that two expressions are α-

equivalent if all of their subexpressions which can contain for loops are α-equivalent,

and all other components are the same. We do not need α equivalence rules for indexed

expressions e—they contain no binders, so two indexed expressions are α-equivalent

if and only if they are equal.

Below are the rules for (compound) model expressions:

Alpha equivalence for model expressions: M1 =α M2

(ALPHAEQ EMPTY)

ε =α ε

(ALPHAEQ MODELEXPR)

E1 =α E2

E1 =α E2

(ALPHAEQ MODELAPPL)

T1 =α T2

T1 R =α T2 R

(ALPHAEQ MODELINDEXED)

M1 =α M2

M1[e1 < e2] =α M2[e1 < e2]

The (ALPHAEQ EMPTY) rule is trivial, and (ALPHAEQ MODELEXPR) just states

that two α-equivalent basic expressions are also α-equivalent as model expressions.

The (ALPHAEQ MODELAPPL) rule says that two function applications are α-equivalent

if the function table themselves are α-equivalent (as defined below), and argument lists

are the same (they have no binders, so they are α-equivalent only if they are equal).

Finally, (ALPHAEQ MODELINDEXED) states that two indexed models are α equiva-

lent if the underlying models are α equivalent and the index and size expressions are

equal (again, they can have no binders).

We define alpha-equivalence for tables as follows:

215

Alpha equivalence for tables: T1 =α T2

(ALPHAEQ COLUMN)

M1 =α M2 (x z)T1 =α (y z)T2

z /∈ vars(x,y,T1,T2)

(c. x : T ` viz M1) :: T1 =α (c. y : T ` viz M2) :: T2

(ALPHAEQ EMPTY)

[] =α []

By (ALPHAEQ COLUMN), two non-empty tables are α-equivalent if and only if the

model expressions in their first columns are α-equivalent, the external names, levels,

visibilities and types in the first columns are the same (recall that column types have

no binders, so types are α-equivalent only if they are the same) and the rest of the two

tables, with occurrences of the internal names of the first columns replaced by a single

fresh variable, are α-equivalent. The (ALPHAEQ EMPTY) rule is trivial.

Finally, the following rules define the α-equivalence of schemas:

Alpha equivalence for schemas: S1 =α S2

(ALPHA SCHEMA [])

[] =α []

(ALPHA SCHEMA TABLE)

T=α T′ S=α S′

(t = T) :: S=α (t = T′) :: S′

The (ALPHA SCHEMA TABLE) rule states that two non-empty schemas are α-

equivalent if the first tables and the rests of the schemas are α-equivalent and the

names of the first tables match (recall that table names are not α-equivalent. The

(ALPHA SCHEMA []) rule states that two empty schemas are always α-equivalent.

216

Appendix B

Proofs of the Propositions from

Section 4.4.6

B.1 Proposition 1

As usual, the proof of the proposition requires some additional lemmas:

Lemma 81 (Weakening) (1) If Γ1,Γ2 `pc E : U and Γ1 ` T and x /∈ dom(Γ1,Γ2),

then Γ1,x :` T,Γ2 `pc E : U.

(2) If Γ1,Γ2 `pc R : Q→ Q′ and Γ1 ` T and c /∈ dom(Γ1,Γ2) and x /∈ dom(Q), then

Γ1,x :` T,Γ2 `pc R : Q→ Q′.

(3) If Γ1,Γ2 `pc M : Q and Γ1 ` T and x /∈ dom(Γ1,Γ2) and x /∈ dom(M) then Γ1,x :`

T,Γ2 `pc M : Q.

(4) If Γ1,Γ2 `pc T : Q and Γ1 ` T and x /∈ dom(Γ1,Γ2) and x /∈ dom(T), then Γ1,x :`

T,Γ2 `pc T : Q.

Proof: 1.) By induction on the derivation of Γ1,Γ2 `pc E : U .

2.) By induction on the derivation of Γ1,Γ2 `pc R : Q→ Q′.

3.) and 4.) By simultaneous induction on the derivation of Γ1,Γ2 `pc M : Q and

Γ1,Γ2 `pc T : Q

5.) By induction on the derivation of Γ `pc S : Sty

Lemma 82 (Derived judgments) (1) If Γ `pc E : T , then Γ ` �

217

(2) If Γ `pc M : Q, then Γ ` �

(3) If Γ `pc T : Q, then Γ ` �

(4) If Γ ` S : Sty, then Γ ` �

Proof: 1.) By induction on the derivation of Γ `pc E : T .

2.) and 3.) By simultaneous induction on the derivation of Γ `pc M : Q and Γ `pc

T : Q

4.) By induction on the derivation of Γ `pc S : Sty

The following sequence of lemmas (Lemmas 83 to 86) shows that all the judgments

in the type system are preserved by turning the first column of a Q type into a stantalone

variable and updating references to it in the rest of the judgment.

Lemma 83 (1) If Γ,x : (c. y : T ` viz) :: Q′,Γ′ ` � and y /∈ dom(Γ)∪dom(Γ′)∪{x}
and c 6= ret, then Γ,y :` T,x : Q′,Γ′ ` �.

(2) If Γ,x : (c. y : T ` viz) :: Q′,Γ′ ` T and y /∈ dom(Γ)∪dom(Γ′)∪{x} and c 6= ret,

then Γ,y :` T,x : Q′,Γ′ ` T

(3) If Γ,x : (c. y : T ` viz) :: Q′,Γ′ `Q and y /∈ dom(Γ)∪dom(Γ′)∪{x} and c 6= ret,

then Γ,y :` T,x : Q′,Γ′ ` Q

(4) If Γ,x : (c. y : T ` viz) :: Q′,Γ′ `pc e : T and y /∈ dom(Γ)∪ dom(Γ′)∪{x} and

c 6= ret, then Γ,y :` T,x : Q′,Γ′ `pc e : T .

Proof: By simultaneous induction on the derivation of Γ,x : (c. y : T ` viz) :: Q′,Γ′ ` �;
Γ,x : (c. y : T ` viz) :: Q′,Γ′ ` T ; Γ,x : (c. y : T ` viz) :: Q′,Γ′ ` Q and Γ,x : (c. y :

T ` viz) :: Q′,Γ′ `pc e : T . Interesting cases:

• Case (ENV FUN):

If Γ′ 6=∅, then the result follows immediately by the induction hypothesis. Now,

let us assume that Γ′ =∅:

(ENV FUN) (red(Q))

Γ ` (c. y : T ` viz) :: Q′ x /∈ dom(Γ)

Γ,x : (c. y : T ` viz) :: Q′ ` �
By a derived judgment, we have Γ ` �. Now we need to split on viz:

218

– Subcase viz = output: In this case, Γ ` (c. y : T ` viz) :: Q′ must have been

derived by (TABLE TYPE OUTPUT), so we have Γ ` T and Γ,y :` T ` Q′.

By (ENV FUN), we get Γ,y :` T,x : Q′ ` �, as required.

– Subcase viz = input: similar.

• Case (INDEX VAR):

(INDEX VAR) (for `≤ pc)

Γ,x : (c. y : T ` viz) :: Q′,Γ′ ` � Γ,x : (c. y : T ` viz) :: Q′,Γ′ = Γ′1,z :` T,Γ′′1
Γ,x : (c. y : T ` viz) :: Q′,Γ′ `pc z : T

By induction hypothesis, Γ,y :` T,x : Q′,Γ′ ` �. Since the well-formedness of

the environment ensures that x 6= z, we have z ∈ dom(Γ) or z ∈ dom(Γ′), and so

Γ,y :` T,x : Q′,Γ′ = Γ′2,z :` T,Γ′′2 . Hence, Γ,y :` T,x : Q′,Γ′ `pc z : T by (INDEX

VAR).

• Case (FUNREFRET):

(FUNREFRET)

Γ,x : (c. y : T ` viz) :: Q′,Γ′ ` � Γ,x : (c. y : T ` viz) :: Q′,Γ′ = Γ′1,z : Qz,Γ
′′
1

Qz = Q′z@[(ret. y : U `′ output)] `′ ≤ pc

Γ,x : (c. y : T ` viz) :: Q′,Γ′ `pc z : U

By induction hypothesis, Γ,y :` T,x : Q′,Γ′ ` �. Now, we need to consider two

cases: z 6= x and z = x.

If z 6= x, we must have Γ,y :` T,x : Q′,Γ′ = Γ′2,z : Qz,Γ
′′
2 for some Γ′2, Γ′′2 . Thus,

(FUNREFRET) gives Γ,x : (c. y : T ` viz) :: Q′,Γ′ `pc z : U , as required.

If z = x, then we have Qz = (c. y : T ` viz) :: Q′, where Q′ = Q′′@[(ret. y :

U `′ output)] for some Q′′, because c 6= ret.

Thus, we get Γ,y :` T,x : Q′,Γ′ `pc x : U by (FUNREFRET), as required.

Lemma 84 If Γ,x : (c. y : T ` viz) :: Q′,Γ′ ` T <: U and y /∈ dom(Γ)∪dom(Γ′)∪{x}
and c 6= ret, then Γ,y :` T,x : Q′,Γ′ ` T <: U.

Proof: By induction on the derivation of Γ,x : (c. y : T ` viz) :: Q′,Γ′ ` T <: U , with

appeal to Lemma 83.

219

Lemma 85 If Γ,x : (c. y : T ` viz) :: Q′,Γ′ `pc E : U and y /∈ dom(Γ)∪dom(Γ′)∪{x}
and c 6= ret, then Γ,y :` T,x : Q′,Γ′ `pc E〈y/x.c〉 : U.

Proof: By induction on the derivation of Γ,x : (c. y : T ` viz) :: Q′,Γ′ `pc E : U .

Interesting cases:

• Case (FUNREF): E = z.d

In all the following subcases, we have Γ,y :` T,x : Q′,Γ′ ` � by Lemma 83.

– If z 6= x, then z.d〈y/x.c〉= z.d and the derivation was of the form

(FUNREF)

Γ1 ` � Γ1 = Γ′1,z : Q1,Γ
′′
1

Q1 = Q′1@(d . z′ : U `′ viz)@Q′′1
`′ ≤ pc

Γ1 `pc z.d : U

where Γ1 = Γ,x : (c. y : T ` viz) :: Q′,Γ′. Since x 6= z implies z ∈ dom(Γ)

or z ∈ dom(Γ′), we have Γ,y :` T,x : Q′,Γ′ = Γ′2,z : Q1,Γ
′′
2 . Thus, Γ,y :`

T,x : Q′,Γ′ `pc z.d : U holds by (FUNREF).

– If z = x and d 6= c, then x.d〈y/x.c〉 = x.d, u = T and the derivation was of

the form
(FUNREF)

Γ1 ` � Γ1 = Γ,x : (c. y : T ` viz) :: Q′,Γ′

Q′ = Q1@(d . z′ : U `′ viz)@Q′′1
`′ ≤ pc

Γ1 `pc x.d : U

We obviously get Γ,y :` T,x : Q′,Γ′ `pc x.d : U . by applying (FUNREF)

again.

– If z = x and d = c, then x.c〈y/x.c〉= y and the derivation was

(FUNREF)

Γ1 ` �
Γ1 = Γ′,x : ((c. y : T ` viz) :: Q′),Γ′′

`≤ pc

Γ1 `pc x.c : T

We have Γ,y :` T,x : Q′,Γ′ `pc y : T by (INDEX VAR) and (INDEX EXPRES-

SION).

220

• Case:

(ITER) (where z /∈ fv(T))

Γ,x : (c. y : T ` viz) :: Q′,Γ′ `static e : int ! det

Γ,x : (c. y : T ` viz) :: Q′,Γ′,z :pc (mod(e) ! det) `pc F : U ′

Γ,x : (c. y : T ` viz) :: Q′,Γ′ `pc [for z < e→ F] : U ′[e]

By induction hypothesis, Γ,y :` T,x : Q′,Γ′ `static e : int ! det and Γ,y :` T,x :

Q′,Γ′,z :pc (mod(e)!det)`pc F〈y/x.c〉 :U ′. Hence, by (ITER), Γ,y :` T,x : Q′,Γ′ `pc

[for z < e→ F〈y/x.c〉] : U ′[e] as required

• Case:

(SUBSUM)

Γ,x : (c. y : T ` viz) :: Q′ `pc E : U ′ Γ,x : (c. y : T ` viz) :: Q′ `U ′ <: U

Γ,x : (c. y : T ` viz) :: Q′ `pc E : U

By induction hypothesis, Γ,y :` T,x : Q′ `pc E〈y/x.c〉 : U ′. By Lemma 84, we have

Γ,y :` T,x : Q′ `U ′ <: U . Hence, by (SUBSUM), Γ,y :` T,x : Q′ `pc E〈y/x.c〉 : U .

Lemma 86 If Γ,x : (c. y : T ` viz) :: Q′,Γ′ `pc R : Q→ Q′ and y /∈ dom(Γ)∪{x} and

c 6= ret, then Γ,y :` T,x : Q′,Γ′ `pc R : Q→ Q′.

Proof: This is a straightforward induction on the derivation of Γ,x : (c. y : T ` viz) ::

Q′,Γ′ `pc R : Q→ Q′. Note that x.c cannot appear in R, Q nor Q′.

Lemma 87 (1) If Γ,x : (c. y : T ` viz) :: Q′,Γ′ `pc M : Q and y /∈ dom(Γ)∪dom(Γ′)∪
{x} and c 6= ret, then Γ,y :` T,x : Q′,Γ′ `pc M〈y/x.c〉 : Q.

(2) If Γ,x : (c. y : T ` viz) :: Q′,Γ′ `pc T : Q and y /∈ dom(Γ)∪ dom(Γ′)∪{x} and

c 6= ret, then Γ,y :` T,x : Q′,Γ′ `pc T〈y/x.c〉 : Q.

Proof: By simultaneous induction on the derivation of Γ,x : (c. y : T ` viz) :: Q′,Γ′ `pc

M : Q and Γ,x : (c. y : T ` viz) :: Q′,Γ′ `pc T : Q.

• Case:

(TABLE [])

Γ ` �
Γ `pc [] : []

Trivial.

221

• Case:

(TABLE CORE OUTPUT)

Γ,x : (c. y : T ` viz) :: Q′,Γ′ ``′∧pc E : T

Γ,x : (c. y : T ` viz) :: Q′,Γ′,z :`
′∧pc T ′ `pc T1 : Q1

c /∈ names(Q1)

Γ,x : (c. y : T ` viz) :: Q′,Γ′ `pc

(c. z : T ′ `′ output E) :: T1 : (c. z : T ′ (`′∧pc) output)@Q1

By Lemma 85, we have Γ,y :` T,x : Q′,Γ′ ``′∧pc E〈y/x.c〉 : T . By induction

hypothesis, Γ,y :` T,x : Q′,Γ′,z :`
′∧pc T ′ `pc T1〈y/x.c〉 : Q1. Hence, by (TABLE

CORE OUTPUT), we get Γ,y :` T,x : Q′,Γ′ `pc (c.z : T ′ (`′∧pc) output E〈y/x.c〉) ::

T1〈y/x.c〉 : (c. z : T ′ `′ output) :: Q1, as required.

• Cases (TABLE CORE LOCAL) and (TABLE INPUT) similar.

• Case:

(MODEL APPL)

Γ,x : (c. y : T ` viz) :: Q′,Γ′ `pc T : Q∗ fun(T)
Γ,x : (c. y : T ` viz) :: Q′,Γ′ `pc R : Q∗→ Q

Γ,x : (c. y : T ` viz) :: Q′,Γ′ `pc T R : Q

By induction hypothesis, Γ,y :` T,x : Q′,Γ′ `pc T〈y/x.c〉 : Q∗ and by Lemma 86,

Γ,y :` T,x : Q′,Γ′ `pc R : Q∗→Q. Hence, by (MODEL APPL), we get Γ,y :` T,x :

Q′,Γ′ `pc T〈y/x.c〉R : Q as required.

• Case:

(MODEL INDEXED)

Γ,x : (c. y : T ` viz) :: Q′,Γ′ `pc M : Q∗

Γ,x : (c. y : T ` viz) :: Q′,Γ′ `pc eindex : mod(esize) ! rnd

Γ,x : (c. y : T ` viz) :: Q′,Γ′ `pc M[eindex < esize] : Q∗[esize]

By induction hypothesis, Γ,y :` T,x : Q′,Γ′ `pc M〈y/x.c〉 : Q∗ and Γ,y :` T,x :

Q′,Γ′ `pc eindex : mod(esize) ! rnd. Thus, by (MODEL INDEXED), Γ,y :` T,x :

Q′,Γ′ `pc M〈y/x.c〉[eindex < esize] : Q∗[esize] as required.

• Case:

222

(TABLE OUTPUT)

Γ,x : (c. y : T ` viz) :: Q′,Γ′ ``′∧pc M : Qc

Γ,x : (c. y : T ` viz) :: Q′,Γ′,z : Qc `pc T : Q1

Qc = Q′c@[(ret. y : T `′ output)]

names(c.Qc)∩ names(Q1) =∅
Γ,x : (c. y : T ` viz) :: Q′,Γ′ `pc (d . z : T ′ `′ output M) :: T : (c.Qc)@Q1

By induction hypothesis, Γ,y :` T,x : Q′,Γ′ ``′∧pc M〈y/x.c〉 : Qc and Γ,y :` T,x :

Q′,Γ′,z : Qc `pc T〈y/x.c〉 : Q1. Hence, by (TABLE OUTPUT), Γ,y :` T,x : Q′,Γ′ `pc

(d . z : T ′ `′ output M)〈y/x.c〉 :: T〈y/x.c〉 : (c.Qc)@Q1.

• Case (TABLE LOCAL) similar.

In order to prove that indexing function tables preserves typing, it is convenient

to define a new operator index_env(Γ,A,e), which takes a typing environment Γ, a

set A of variable names and an integer-valued indexed expression e, and returns the

environment Γ with the type T of every variable in A changed to the array type T [e].

The reason for this is that a model expression in an indexed column is expected to

be well-typed not in the same environment as in the original table, but in an environ-

ment we would obtain after typechecking the previous columns of the indexed table.

If we keep track of the names of indexed columns by adding them to A, we can use

index_env to obtain the correct, modified environment.

Environment indexing: index_env(Γ,A,e)

index_env(∅,A,e) =∅
index_env(Γ,x : Q,A,e) = index_env(Γ,A,e),x : Q

index_env(Γ, t : Q,A,e) = index_env(Γ,A,e), t : Q

index_env(Γ,x :` T ,A,e) =

index_env(Γ,A\{x},e),x :` T [e] if x ∈ A

index_env(Γ,A,e),x :` T otherwise

We also need a conformance relation relating the set A of names of indexed columns

to the environment Γ. This relation ensures that only static rnd columns can appear

in A, reflecting the fact that only the expressions in such columns can be turned into

arrays.

223

Variable set conformance: Γ ` A

(EMPTY)

∅ ` A

(NOTINA)

Γ ` A x /∈ A

Γ,x :` T ` A

(INA)

Γ ` A rnd(T)

Γ,x :static T ` A∪{x}

(TABLE)

Γ ` A

Γ, t : Q ` A

(FUN)

Γ ` A x /∈ A

Γ,x : Q ` A

Note that we do not require all static rnd variables in Γ to appear in A, because if

we were not to index some of these columns, well-typedness would still be preserved.

Lemma 88 If Γ,x :` T,Γ′ ` A and x ∈ A, then `= static and rnd(T).

Proof: Trivial.

The following sequence of lemmas (Lemmas 89, 91, 92) show that all judgments

in the type system are preserved by indexing.

Lemma 89 (1) If Γ,Γ′,Γ′′ ` � and Γ′ ` A and Γ `static e : int ! det, then

Γ, index_env(Γ′,A,e),Γ′′ ` �.

(2) If Γ,Γ′,Γ′′ ` T and Γ′ `A and Γ`static e : int ! det then Γ, index_env(Γ′,A,e),Γ′′ `
T

(3) If Γ,Γ′,Γ′′ `Q and Γ′ `A and Γ`static e : int ! det then Γ, index_env(Γ′,A,e),Γ′′ `
Q

(4) If Γ,Γ′,Γ′′ `static e′ : T and det(T) and Γ′ ` A and Γ `static e : int ! det, then

Γ, index_env(Γ′,A,e),Γ′′ `static e′ : T .

Proof: By simultaneous induction on the derivation of Γ,Γ′,Γ′′ ` � Γ,Γ′,Γ′′ ` T ,

Γ,Γ′,Γ′′ ` Q and Γ,Γ′,Γ′′ `static e′ : T . Interesting cases:

• Case (TYPE ARRAY):

(TYPE ARRAY)

Γ,Γ′,Γ′′ `U Γ,Γ′,Γ′′ `static e′ : int ! det

Γ,Γ′,Γ′′ `U [e′]

224

By induction hypothesis, Γ, index_env(Γ′,A,e),Γ′′ `U and Γ, index_env(Γ′,A,e),Γ′′

`static e′ : int ! det, so we have Γ, index_env(Γ′,A,e),Γ′′ ` U [e′] by (TYPE AR-

RAY).

• Case (INDEX VAR):

(INDEX VAR)

Γ,Γ′,Γ′′ ` � Γ,Γ′,Γ′′ = Γ1,x :static T,Γ2

Γ,Γ′,Γ′′ `static x : T

By induction hypothesis, Γ, index_env(Γ′,A,e),Γ′′ ` �. We have either x∈ dom(Γ)∪
dom(Γ′′) or x∈ dom(Γ′). In the former case, Γ, index_env(Γ′,A,e),Γ′′ `static x : T

follows trivially. In the latter, we have Γ′ = Γ′1,x :static T,Γ′2. Since det(T) by

assumption, Lemma 88 implies x /∈ A, so index_env(Γ′,A,e) = Γ′′1,x :static T,Γ′′2 .

Thus, we have Γ, index_env(Γ′,A,e),Γ′′ `static x : T by (INDEX VAR).

• Case (TABLE TYPE OUTPUT):

(TABLE TYPE OUTPUT)

Γ,Γ′,Γ′′ ` T Γ,Γ′,Γ′′,x :` T ` Q′

c /∈ names(Q′)

Γ,Γ′,Γ′′ ` (c. x : T ` output) :: Q′

By induction hypothesis, Γ, index_env(Γ′,A,e),Γ′′ `T and Γ, index_env(Γ′,A,e),Γ′′,x :`

T ` Q′, so by (TABLE TYPE OUTPUT) we get Γ, index_env(Γ′,A,e),Γ′′ ` (c. x :

T ` output) :: Q′.

• Case (ENV VAR):

– Subcase Γ′′ 6=∅: we have Γ′′ = Γ∗,x :pc T .

(ENV VAR)

Γ,Γ′,Γ∗ ` T x /∈ dom(Γ)∪dom(Γ′)∪dom(Γ∗)

Γ,Γ′,Γ∗,x :pc T ` �
By induction hypothesis, Γ, index_env(Γ′,A,e),Γ∗ ` T . Since indexing pre-

serves the domain of environment, we have x /∈ dom(Γ)∪dom(index_env(Γ′,A,e))∪
dom(Γ∗). Hence, Γ, index_env(Γ′,A,e),Γ∗,x :pc T ` � by (ENV VAR).

– Subcase Γ′′ =∅, Γ′ 6=∅: we have Γ′ = Γ∗∗,x :pc T .

(ENV VAR)

Γ,Γ∗∗ ` T x /∈ dom(Γ)∪dom(Γ∗∗)

Γ,Γ∗∗,x :pc T ` �

225

If x /∈ A, then index_env(Γ∗∗,x :pc T ,A,e) = index_env(Γ∗∗,A,e),x :pc T and

Γ∗∗ ` A. By induction hypothesis, Γ, index_env(Γ∗∗,A,e) ` T . Since index-

ing preserves the domain of environment, we have

x /∈ dom(Γ)∪dom(index_env(Γ∗∗,x :pc T ,A,e)). Thus, Γ, index_env(Γ∗∗,x :pc T ,A,e)`
� follows by (ENV VAR).

If x ∈ A, then index_env(Γ∗∗,x :pc T ,A,e) = index_env(Γ∗∗,A\{x},e),x :pc

T [e] and Γ∗∗ `A\{x}. By induction hypothesis, Γ, index_env(Γ∗∗,A\{x},e)`
T . By weakening, Γ, index_env(Γ∗∗,A\{x},e) `static e : int ! det, and so by

(TYPE ARRAY), Γ, index_env(Γ∗∗,A\{x},e) ` T [e] Hence, by (ENV VAR),

Γ, index_env(Γ∗∗,x :pc T ,A,e) ` �.

– Subcase Γ′′ =∅, Γ′ =∅: trivial.

• Case (FUNREFRET):

(FUNREFRET)

Γ,Γ′,Γ′′ ` � Γ,Γ′,Γ′′ = Γ′1,x : Q,Γ′′1

Q = Q′@(ret. y : U static output)

Γ,Γ′,Γ′′ `static x : U

By induction hypothesis, Γ, index_env(Γ′,A,e),Γ′′ ` �. If x∈ dom(Γ)∪dom(Γ′′),

then the result follows immediately. If x∈ dom(Γ′), then we have Γ, index_env(Γ′,A,e),Γ′′=

Γ′2,x : Q,Γ′′2 for some Γ′2 and Γ′′2 , because indexing an environment does not

change Q-types. Hence, we have Γ, index_env(Γ′,A,e),Γ′′ `static x : U , as re-

quired.

Lemma 90 For all Dspc : [x1 : T1, . . . ,xm : Tm](y1 : U1, . . . ,yn : Un)→ T , det(Ti) for

every i ∈ 1..m and rnd(T).

Proof: By inspection.

Lemma 91 If Γ,Γ′,Γ′′ `T <:U and Γ′ `A and Γ`static e : int ! det, then Γ, index_env(Γ′,A,e),Γ′′ `
T <: U.

Proof: By induction on the derivation of Γ,Γ′,Γ′′ ` T <: U , with appeal to Lemma

89.

226

Lemma 92 If Γ,Γ′ ``∧pc E : T and Γ′ `A and Γ`pc e1 : mod(e2)!rnd and A∩dom(Γ)=

∅ and either det(T) or `= inst, then Γ, index_env(Γ′,A,e2) ``∧pc E[A,e1] : T .

Proof: By induction on the derivation of Γ,Γ′ ``∧pc E : T . Interesting cases:

• Case (INDEX VAR):

(INDEX VAR) (for `′ ≤ `∧pc)

Γ,Γ′ ` � Γ,Γ′ = Γ1,x :`
′
T,Γ2

Γ,Γ′ ``∧pc x : T

By Lemma 89, we have Γ, index_env(Γ′,A,e2) ` �. We know that either x ∈
dom(Γ) or x∈ dom(Γ′). If x∈ dom(Γ), then x /∈A, so x[A,e1] = x and we trivially

get Γ, index_env(Γ′,A,e2) ``∧pc x : T . Now, let us assume that x ∈ dom(Γ′).

If x /∈ A, then again x[A,e1] = x and index_env(Γ′,A,e2) = Γ′1,x :`
′
T,Γ′2, so obvi-

ously Γ, index_env(Γ′,A,e2) ``∧pc x : T by (INDEX VAR).

If x ∈ A, then x[A,e1] = x[e1], index_env(Γ′,A,e2) = Γ′1,x :`
′

T [e2],Γ
′
2 and by

Lemma 88, `′ = static and rnd(T), which by assumption implies ` = inst (and

so `∧ pc = pc). By (INDEX VAR), we have Γ, index_env(Γ′,A,e2) `pc x : T [e2].

By weakening, Γ, index_env(Γ′,A,e2) `pc e1 : mod(e2) ! rnd. Thus, by (INDEX),

Γ, index_env(Γ′,A,e2) `pc x[e1] : T .

• Case (INDEX):

(INDEX)

space(T)≤ spc

Γ,Γ′ ``∧pc E ′ : T [e′] Γ,Γ′ ``∧pc F : mod(e′) ! spc

Γ,Γ′ ``∧pc E ′[F] : T ∨ spc

If det(T ∨ spc), then det(T) and spc = det, so we can apply the induction hy-

pothesis to both assumptions. This yields Γ, index_env(Γ′,A,e2) ``∧pc E ′[A,e1] :

T [e′] and Γ, index_env(Γ′,A,e2) ``∧pc F [A,e1] : mod(e′) ! spc. Hence, we get

Γ, index_env(Γ′,A,e2) ``∧pc (E ′[F])[A,e1] : T ∨ spc by (INDEX).

• Case (ITER):

(ITER) (where x /∈ fv(T))

Γ,Γ′ `static e : int ! det

Γ,Γ′,x :`∧pc (mod(e) ! det) ``∧pc F : T

Γ,Γ′ ``∧pc [for x < e→ F] : T [e]

227

We have index_env(Γ′,x :`∧pc (mod(e) ! det),A,e2) = index_env(Γ′,A,e2),x :`∧pc

(mod(e) ! det). By Lemma 89, Γ, index_env(Γ′,A,e2) `static e : int ! det and by

induction hypothesis, Γ, index_env(Γ′,A,e2),x :`∧pc (mod(e)!det)``∧pc F [A,e1] :

T . Thus, we get the required result directly by (ITER).

• Case (FUNREFRET):

(FUNREFRET)

Γ,Γ′ ` � Γ,Γ′ = Γ′1,x : Q,Γ′′1

Q = Q′@(ret. y : T `′ output)

`′ ≤ `∧pc

Γ,Γ′ ``∧pc x : T

Whether x ∈ dom(Γ) or x ∈ dom(Γ′), we have Γ, index_env(Γ′,A,e2) = Γ′2,x :

Q,Γ′′2 , so we have Γ, index_env(Γ′,A,e2) ``∧pc x : T by (FUNREFRET), which is

what we needed to show, since Γ′ ` A and dom(Γ)∩A =∅ imply x /∈ A, and so

x[A,e1] = x.

• Case (RANDOM):

(RANDOM) (where σ(U),U{e1/x1} . . .{em/xm})
Drnd : [x1 : T1, . . . ,xm : Tm](c1 : U1, . . . ,cn : Un)→ T

Γ,Γ′ `static ei : Ti ∀i ∈ 1..m Γ,Γ′ ``∧pc Fj : σ(U j) ∀ j ∈ 1..n Γ,Γ′ ` �
{x1, . . . ,xm}∩ (

⋃
i fv(ei)) =∅ xi 6= x j for i 6= j

Γ,Γ′ ``∧pc D[e1, . . . ,em](F1, . . . ,Fn) : σ(T)

By Lemma 90, det(Ti) for every i ∈ 1..m and rnd(T), so `= inst and Lemma 89

implies that Γ, index_env(Γ′,A,e2) ` � and Γ, index_env(Γ′,A,e2) `static ei : Ti for

all i ∈ 1..m. By induction hypothesis, Γ, index_env(Γ′,A,e2) ``∧pc Fj : σ(U j) for

all j∈ 1..n. Thus, by (RANDOM), Γ, index_env(Γ′,A,e2)`pc D[e1, . . . ,em](F1, . . . ,Fn) :

σ(T)

The following properties (Lemmas 93, 94, lemma:swap-type) show that we can

swap two independent variables in the environment in typing judgments for expres-

sions.

Lemma 93 (1) If Γ,x :` T,y :`
′
U,Γ′ ` � and Γ `U, then Γ,y :`

′
U,x :` T,Γ ` �

(2) If Γ,x :` T,y :`
′
U,Γ′ `V and Γ `U, then Γ,y :`

′
U,x :` T,Γ `V

228

(3) If Γ,x :` T,y :`
′
U,Γ′ ` Q and Γ `U, then Γ,y :`

′
U,x :` T,Γ ` Q

(4) If Γ,x :` T,y :`
′
U,Γ′ `pc e : V and Γ `U, then Γ,y :`

′
U,x :` T,Γ `pc e : V

Proof: By simultaneous induction on the derivation of Γ,x :` T,y :`
′
U,Γ′ ` �; Γ,x :`

T,y :`
′
U,Γ′ `V ; Γ,x :` T,y :`

′
U,Γ′ ` Q and Γ,x :` T,y :`

′
U,Γ′ `pc e : V

Lemma 94 If Γ,x :` T,y :`
′
U,Γ′ `V1 <: V2 and Γ `U, then Γ,y :`

′
U,x :` T,Γ `V1 <:

V2

Proof: By induction on the derivation of Γ,x :` T,y :`
′
U,Γ′ `V1 <: V2 with appeal to

Lemma 93.

Lemma 95 If Γ,x :` T,y :`
′
U,Γ′ `pc E : V and Γ `U, then Γ,y :`

′
U,x :` T,Γ′ `pc E : V

Proof: By induction on the derivation of Γ,x :` T,y :`
′
U,Γ′ `pc E : V , with appeal to

lemmas 93 amd 94.

Lemma 96 If Γ,Γ′ `static E : T and Γ′ ` A and Γ `static e2 : int ! det and A∩dom(Γ) =

∅ and i /∈ dom(Γ)∪ dom(Γ′) then Γ, index_env(Γ′,A,e2), i :static mod(e2) ! det `static

E[A, i] : T .

Proof: By induction on the derivation of Γ,Γ′ `static E : T . Interesting cases:

• Case (INDEX VAR):

(INDEX VAR)

Γ,Γ′ ` � Γ,Γ′ = Γ1,x :static T,Γ2

Γ,Γ′ `static x : T

By Lemma 89, Γ, index_env(Γ′,A,e2)` �. If x∈ dom(Γ), then x /∈A, so x[A, i] = x

and so we get Γ, index_env(Γ′,A,e2), i :static mod(e2) ! det `static x : T by (INDEX

VAR) and weakening. Now, let us assume that x ∈ dom(Γ′).

If x /∈ A, then again x[A, i] = x and index_env(Γ′,A,e2) = Γ′1,x :static T,Γ′2, so ob-

viously Γ, index_env(Γ′,A,e2), i :static mod(e2) ! det `static x : T by (INDEX VAR)

and weakening.

229

If x ∈ A, then x[A, i] = x[i] and index_env(Γ′,A,e2) = Γ′1,x :static T [e2],Γ
′
2. By

(INDEX VAR) and weakening, we have Γ, index_env(Γ′,A,e2), i :static mod(e2) !

det `static x : T [e2]. Thus, by (INDEX), Γ, index_env(Γ′,A,e2), i :static mod(e2) !

det `static x[i] : T .

• Case (ITER):

(ITER) (where x /∈ fv(T))

Γ,Γ′ `static e : int ! det

Γ,Γ′,x :static (mod(e) ! det) `static F : T

Γ,Γ′ `static [for x < e→ F] : T [e]

By Lemma 89, Γ, index_env(Γ′,A,e2) `static e : int ! det and by induction hy-

pothesis, Γ, index_env(Γ′,A,e2),x :static (mod(e) !det), i :static mod(e2) !det ``∧pc

F [A, i] : T . Since Γ`mod(e2)!det, by Lemma 95 we have Γ, index_env(Γ′,A,e2), i :static

mod(e2) ! det,x :static (mod(e) ! det) ``∧pc F [A, i] : T . By weakening,

Γ, index_env(Γ′,A,e2), i :static mod(e2)!det`static e : int!det. Thus, by (ITER), we

get Γ, index_env(Γ′,A,e2), i :static mod(e2) ! det `static [for x < e→ F [A, i]] : T [e],

as required.

• Case (FUNREFRET):

(FUNREFRET)

Γ,Γ′ ` � Γ,Γ′ = Γ′1,x : Q,Γ′′1

Q = Q′@(ret. y : T static output)

Γ,Γ′ `static x : T

If x ∈ dom(Γ), the result is obvious. Otherwise, if x ∈ dom(Γ′), from Γ′ ` A we

can infer that x /∈ A, so index_env(Γ′,A,e2) = Γ′2,x : Q,Γ′′2 and x[A, i] = x. Hence,

by (FUNREFRET) and weakening, Γ, index_env(Γ′,A,e2), i :static mod(e2) `static

x : T , as required.

Lemma 97 If Γ,Γ′ `pc T : Q and NoQry(T) and Γ `pc e1 : mod(e2) ! rnd and fv(e1)∪
fv(e2) /∈A and Γ′ `A and A∩dom(Γ)=∅, then Γ, index_env(Γ′,A,e2)`pc indexA(T,e1,e2) :

Q[e2].

Proof: By induction on the derivation of Γ,Γ′ `pc T : Q

230

• Case:

(TABLE [])

Γ,Γ′ ` �
Γ,Γ′ `pc [] : []

By Lemma 89. we have Γ, index_env(Γ′,A,e) ` �, so Γ, index_env(Γ′,A,e) `pc [] :

[] by (TABLE []).

• Case:

(TABLE INPUT)

Γ,Γ′,x :`∧pc T `pc T′ : Q′ c /∈ names(Q′)

Γ,Γ′ `pc (c. x : T ` input ε) :: T′ : (c. x : T (`∧ pc) input) :: Q′

Assume w.l.o.g. that x is fresh, that is, x /∈ A (x is bound, so we can alpha-convert

it if needed). Then we have Γ′,x :`∧pc T `A and x /∈ dom(index_env(Γ′,A,e),x :`∧pc

T). By induction hypothesis, Γ, index_env(Γ′,A,e2),x :`∧pc T `pc indexA(T′,e1,e2) :

Q′[e2]. Thus, by (TABLE INPUT), Γ, index_env(Γ,A,e2) `pc (c.x : T ` input ε) ::

indexA(T′,e1,e2) : (c. x : T (`∧ pc) input) :: Q′[e2], as required.

• Case:

(TABLE CORE OUTPUT)

Γ,Γ′ ``∧pc E : T Γ,Γ′,x :`∧pc T `pc T : Q c /∈ names(Q′)

Γ,Γ′ `pc (c. x : T ` output E) :: T : (c. x : T (`∧pc) output) :: Q

– Subcase: det(T) or `= inst:

By induction hypothesis, Γ, index_env(Γ,A,e2),x :`∧pc T `pc indexA(T,e1,e2) :

Q[e2]. By Lemma 92, Γ, index_env(Γ,A,e2) ``∧pc E[A,e1] : T . Thus, since

indexing a Q-type preserves its external names, by (TABLE CORE OUT-

PUT) we get Γ, index_env(Γ′,A,e2) `pc (c. x : T ` output E[A,e1]) ::

indexA(T,e1,e2) : (c. x : T (`∧pc) output) :: Q[e2], as required.

– Subcase: rnd(T), `= static:

We have Γ′,x :`∧pc T ` A∪{x} and obviously A∪{x}∩Γ=∅, so by induc-

tion hypothesis, Γ, index_env(Γ′,A,e2),x :`∧pc T [e2]`pc indexA∪{x}(T,e1,e2) :

Q. By Lemma 96, Γ, index_env(Γ′,A,e2) ``∧pc [for i < e2→ E[A, i]] : T [e2].

Hence, by (TABLE CORE OUTPUT),

Γ, index_env(Γ′,A,e2) `pc (c . x : T [e2] ` output [for i < e2 → E[A, i]]) ::

indexA(T,e1,e2) : (c. x : T [e2] (`∧pc) output) :: Q[e2] as required.

231

• Case:

(TABLE CORE LOCAL) (where x /∈ fv(Q))

Γ ``∧pc E : T Γ,x :`∧pc T `pc T : Q

Γ `pc (c. x : T ` local E) :: T : Q

Similar to (TABLE CORE OUTPUT).

Corollary 5 If Γ `pc T : Q and fun(T) and NoQry(T) and Γ `pc e1 : mod(e2) ! rnd,

then Γ `pc index∅(T,e1,e2) : Q[e2].

Lemma 98 If Γ `pc R : Q→ Q′ and Γ `static esize : int ! det then Γ `pc R : Q[esize]→
Q′[esize].

Proof: By induction on the derivation of Γ `pc R : Q→ Q′:

• Case:

(ARG INPUT)

Γ ``∧pc e : T Γ `pc R : Q{e/x}→ Q′

Γ `pc ((c = e) :: R) : ((c. x : T ` input) :: Q)→ Q′

By induction hypothesis, Γ `pc R : Q[esize]{e/x} → Q′[esize]. Hence, by (ARG

INPUT), we have Γ `pc ((c = e) :: R) : ((c. x : T ` input) :: Q[esize])→ Q′[esize],

as required.

• Case:

(ARG OUTPUT)

Γ,x :`∧pc T `pc R : Q→ Q′ c 6= ret x /∈ fv(R)

Γ `pc R : ((c. x : T ` output) :: Q)→ ((c. x : T (`∧ pc) output) :: Q′)

– Subcase det(T):

By weakening, Γ,x :`∧pc T `static esize : int ! det. By induction hypothesis,

Γ,x :`∧pc T `pc R : Q[esize]→ Q′[esize]. By (ARG OUTPUT), we have Γ `pc

R : ((c. x : T ` output) :: Q[esize])→ ((c. x : T (`∧ pc) output) :: Q′[esize]),

as required.

– Subcase rnd(T):

By type well-formedness rules, we can show that rnd(T) implies x /∈ fv(Q)∪
fv(Q′). Thus, it is straightforward to show that Γ,x :`∧pc T [esize] `pc R :

232

Q→Q′. Thus, by (ARG OUTPUT), we have Γ`pc R : ((c. x : T [esize] ` output) ::

Q[esize])→ ((c. x : T [esize] (`∧ pc) output) :: Q′[esize]) as required

• Case:

(ARG RET)

Γ ` T

Γ `pc R : (ret. x : T ` output)→ (ret. x : T (`∧ pc) output)

– Subcase det(T):

Trivial.

– Subcase rnd(T):

Since from Γ ` T and Γ `static esize : int ! det, we can derive Γ ` T [esize], the

result Γ`pc R : (ret. x : T [esize] ` output)→ (ret. x : T [esize] (`∧ pc) output)

follows immediately by (ARG RET).

Lemma 99 If Γ `` E : T and `≤ `′, then Γ ``′ E : T

Proof: By induction on the derivation of Γ `` E : T .

Lemma 100 (1) If Γ,x :`∧pc T,Γ′ ` � and Γ ``∧pc e : T , then

Γ,(Γ′ {e/x}) ` �.

(2) If Γ,x :`∧pc T,Γ′ ` T and Γ ``∧pc e : T , then Γ,(Γ′ {e/x}) ` T {e/x}

(3) If Γ,x :`∧pc T,Γ′ ` Q and Γ ``∧pc e : T , then Γ,(Γ′ {e/x}) ` Q{e/x}

(4) If Γ,x :`∧pc T,Γ′ `pc e′ : U and Γ ``∧pc e : T , then

Γ,(Γ′ {e/x}) `pc e′ {e/x} : U {e/x}.

Proof: By simultaneous induction on the derivation of Γ,x :`∧pc T,Γ′ ` �, Γ,x :`∧pc

T,Γ′ ` T , Γ,x :`∧pc T,Γ′ ` Q and Γ,x :`∧pc T,Γ′ `pc e′ : U . Interesting cases:

233

• Case (INDEX VAR):

(INDEX VAR) (for `′ ≤ pc)

Γ,x :`∧pc T,Γ′ ` � Γ,x :`∧pc T,Γ′ = Γ1,y :`
′
U,Γ2

Γ,x :`∧pc T,Γ′ `pc y : U

By induction hypothesis, Γ,(Γ′ {e/x}) ` �. If y 6= x, the result is obvious. If

y = x, then we have T = U . Since it follows from the derived judgments that

x /∈ fv(U), we have U = U {e/x}. Hence, Γ ``∧pc e : U {e/x}, and so by Lemma

99 and weakening, Γ,(Γ′ {e/x}) `pc e : U {e/x}, as required.

• Case (FUNREFRET):

(FUNREFRET)

Γ,x :`∧pc T,Γ′ ` � Γ,x :`∧pc T,Γ′ = Γ′1,z : Q,Γ′′1

Q = Q′@[(ret. y : U `′ output)]

`≤ pc

Γ,x :`∧pc T,Γ′ `pc z : U

By induction hypothesis, Γ,(Γ′ {e/x}) ` �. If z ∈ dom(Γ), the result follows im-

mediately. If z∈ dom(Γ′), we have Γ,(Γ′ {e/x})=Γ,Γ′2 {e/x} ,z : Q{e/x} ,Γ′′2 {e/x}
where Q{e/x} = Q{e/x}@[(ret. y : U {e/x} `′ output)] (recall that the fun predi-

cate does not allow U to contain any variable bound by columns in Q). Hence,

by (FUNREFRET), we have Γ,(Γ′ {e/x}) `pc z : U {e/x}

Lemma 101 If Γ,x :`∧pc T,Γ′ `pc E :U and Γ``∧pc e : T , then Γ,(Γ′ {e/x})`pc E {e/x} :

U {e/x}.

Proof: By induction on the derivation of Γ,x :`∧pc T,Γ′ `pc E : T . Interesting case:

(ITER) (where x /∈ fv(T))

Γ,x :`∧pc T,Γ′ `static e′ : int ! det

Γ,x :`∧pc T,Γ′,y :pc (mod(e′) ! det) `pc F : V

Γ,x :`∧pc T,Γ′ `pc [for y < e′→ F] : V [e′]

By Lemma 100, Γ,(Γ′ {e/x}) `pc e′ {e/x} : int ! det and by induction hypothesis,

Γ,(Γ′ {e/x}),y :pc (mod(e′ {e/x}) ! det) `pc F {e/x} : V {e/x}, so we have

Γ,(Γ′ {e/x}) `pc [for y < e′ {e/x}→ F {e/x}] : V {e/x} [e′ {e/x}] by (ITER).

234

Lemma 102 If Γ,x :`∧pc T `pc R : Q → Q′ and Γ ``∧pc e : T , then Γ `pc R{e/x} :

Q{e/x}→ Q′ {e/x}.

Proof: By induction on the derivation of Γ,x :`∧pc T `pc R : Q→ Q′.

Lemma 103 (1) If Γ,x :`∧pc T `pc M : Q and Γ ``∧pc e : T , then Γ `pc M {e/x} :

Q{e/x}.

(2) If Γ,x :`∧pc T `pc T : Q and Γ ``∧pc e : T , then Γ `pc T{e/x} : Q{e/x}.

Proof: By simultaneous induction on the derivation of Γ,x :`∧pc T `pc M : Q and

Γ,x :`∧pc T `pc T : Q, with appeal to Lemmas 101 and 102.

Lemma 104 (1) If Γ,x : [(ret. y : T ` output)],Γ′ ` � and Γ ``∧pc e : T , then

Γ,x :` T ` �.

(2) If Γ,x : [(ret. y : T ` output)],Γ′ ` T and Γ ``∧pc e : T , then Γ,x :` T ` T

(3) If Γ,x : [(ret. y : T ` output)],Γ′ ` Q and Γ ``∧pc e : T , then Γ,x :` T ` Q

(4) If Γ,x : [(ret. y : T ` output)],Γ′ `pc e′ : T and Γ ``∧pc e : T , then

Γ,x :` T `pc e : T .

Proof: By simultaneous induction on the derivation of Γ,x : [(ret. y : T ` output)],Γ′ `
�; Γ,x : [(ret. y : T ` output)],Γ′ ` T ; Γ,x : [(ret. y : T ` output)],Γ′ ` Q and Γ,x :

[(ret. y : T ` output)],Γ′ ` Q.

Lemma 105 If Γ,x : [(ret. y : T ` output)],Γ′ ` T <: U and Γ ``∧pc e : T , then Γ,x :`

T ` T <: U.

Proof: By induction on the derivation of Γ,x : [(ret. y : T ` output)],Γ′ ` T <: U , with

appeal to Lemma 104.

235

Lemma 106 If Γ,x : [(ret. y : T ` output)],Γ′ `pc E : U then Γ,x :` T `pc E : U.

Proof: By induction on the derivation of Γ,x : [(ret. y : T ` output)],Γ′ `pc E : U .

Interesting cases:

• Case (FUNREFRET):

(FUNREFRET)

Γ,x : [(ret. y : T ` output)],Γ′ ` �
Γ,x : [(ret. y : T ` output)],Γ′ = Γ′1,z : Q,Γ′′1

Q = Q′@[(ret. y′ : T ′ `′ output)]

`′ ≤ pc

Γ `pc z : T ′

By Lemma 104, we have Γ,x :` T,Γ′ ` �. If x 6= z, the proof is straightfor-

ward. Now let us assume x = z. Obviously, this implies Q′ = [] and [(ret. y′ :

T ′ `′ output)] = [(ret. y : T ` output)]. By (INDEX VAR), we have Γ,x :` T,Γ′ `pc

x : T , as required.

• Case (ITER):

(ITER) (where x /∈ fv(T))

Γ,x : [(ret. y : T ` output)],Γ′ `static e′ : int ! det

Γ,x : [(ret. y : T ` output)],z :pc (mod(e′) ! det) `pc F : V

Γ,x : [(ret. y : T ` output)],Γ′ `pc [for z < e′→ F] : V [e′]

By Lemma 104, Γ,x :` T,Γ′ `static e′ : int!det and by induction hypothesis, Γ,x :`

T,Γ′,z :pc (mod(e′) !det) `pc F : V . Hence, we get the required result by (ITER).

Lemma 107 If Γ,x : [(ret. y : T ` output)],Γ′ `pc R : Q→Q′ then Γ,x :` T `pc R : Q→
Q′.

Proof: By induction on the derivation of Γ,x : [(ret. y : T ` output)],Γ′ `pc R : Q→Q′

Lemma 108 (1) If Γ,x : [(ret. y : T ` output)],Γ′ `pc M : Q then Γ,x :` T `pc M : Q.

(2) If Γ,x : [(ret. y : T ` output)],Γ′ `pc T : Q then Γ,x :` T `pc T : Q.

236

Proof: By simultaneous induction on the derivation of Γ,x : [(ret. y : T ` output)],Γ′ `pc

M : Q and Γ,x : [(ret. y : T ` output)],Γ′ `pc T : Q.

Lemma 109 If Γ `pc R : Q→ Q′, then names(Q′)⊆ names(Q).

Proof: By induction on the derivation of Γ `pc R : Q→ Q′.

Lemma 110 If c /∈ names(Q) then for all o, o.c /∈ names(o.Q).

Proof: Obviously, o.c 6= ret, and every element of names(o.Q) other than ret is of the

form o.d for some d ∈ names(Q). Thus, o.c ∈ names(o.Q) implies o.c = o.d, and so

c = d, which contradicts the assumption.

Restatement of Proposition 1 [Type preservation]

(1) If Γ `pc M : Q and M→M′, then Γ `pc M′ : Q

(2) If Γ `inst T : Q and T→ T′, then Γ `inst T′ : Q

(3) If Γ ` S : Sty and S→ S′, then Γ ` S′ : Sty.

Proof: By simultaneous induction on the derivation of M→M′, T→ T′ and S→ S′.

• Case (RED APPL OUTPUT):

(RED APPL OUTPUT) (for Core(T f))

y /∈ fv(T′,R)∪{x} c 6= ret

(o. x : T ` viz ((c. y : T ′ `′ output E) :: T f) R) :: T′→
(o.c. y : T ′ `∧ `′ viz E) :: (o. x : T ` viz T f R) :: T′〈y/x.c〉

– Subcase viz = output:

In this case, Γ `inst T : Q must have been derived with:

(TABLE OUTPUT)

(1) Γ `` (c. y : T ′ `′ output E) :: T f R : (c. y : T ′ (`∧ `′) output) :: Q f

(2) Γ,x : (c. y : T ′ (`∧ `′) output) :: Q f `inst T1 : Q1

(3) Q f = Q′f @[(ret. y : T `′′ output)]

(4) (o.c∪ names(o.Q f))∩ names(Q1) =∅
Γ `inst (o. x : T ` output ((c. y : T ′ `′ output E) :: T f) R) :: T1 :

(o.c. y : T ′ (`∧ `′) output) :: (o.Q f)@Q1

237

Where Q = (c. y : T ′ `′ output) :: (o.Q f)@Q1 and the first assumption is

derived with:
(MODEL APPL)

(5) Γ `` (c. y : T ′ `′ output E) :: T f : (c. y : T ′ (`∧ `′) output) :: Q∗

(6) fun((c. y : T ′ `′ output E) :: T f)

(7) Γ `` R : (c. y : T ′ (`∧ `′) output) :: Q∗→ (c. y : T ′ (`∧ `′) output) :: Q f

Γ `` (c. y : T ′ `′ output E) :: T f R : (c. y : T ′ (`∧ `′) output) :: Q f

The first and third assumptions of the above must have been derived with

(TABLE CORE OUTPUT)

(8) Γ ``∧`′ E : T ′ (9) Γ,y :`∧`
′
T ′ `` T f : Q∗ (10) c /∈ names(Q∗)

Γ `` (c. y : T ′ `′ output E) :: T f : (c. y : T ′ (`∧ `′) output) :: Q∗

and
(ARG OUTPUT)

(11) Γ,y :`∧`
′
T `` R : Q∗→ Q f (12) c 6= ret (13) y /∈ fvR

Γ `` R : ((c. y : T ′ (`∧ `′) output) :: Q∗)→ ((c. y : T ′ (`∧ `′) output) :: Q f)

respectively.

By 109 and 110, we have o.c /∈ names(o.Q f), which combined with as-

sumption (4) gives o.c /∈ names(o.Q f @Q1).

By applying (MODEL APPL) to assumptions (9), (11) and (6) (which obvi-

ously implies fun(T f)) we get Γ,y :`∧`
′
T `` T f R : Q f .

By Lemma 87, we have Γ,y :`∧`
′
T ′,x : Qc `inst T1〈y/x.c〉 : Q1.

By (TABLE OUTPUT), the two above results and assumption (3) yield

Γ,y :`∧`
′
T `inst (o. x : T ` output (T f R)) :: T1〈y/x.c〉 : (o.Q f)@Q1.

Finally, by applying (TABLE CORE OUTPUT) to the above, assumption (8)

and o.c /∈ names(o.Q f @Q1), we get Γ `inst (o.c . y : T ′ `∧ `′ output E) ::

(o.x : T ` output T f R) ::T′〈y/x.c〉 : (o.c. y : T ′ (`∧ `′) output) :: (o.Q f)@Q1

as required.

– Subcase viz = local: similar

• Case (RED INDEX):

(RED INDEX)

Core(T f) NoQry(T f)

(T f R)[eindex < esize]→ (index∅(T f ,eindex,esize)) R

The judgment Γ `inst (T f R)[eindex < esize] : Q must have been derived with

(MODEL INDEXED), which also implies Q = Q∗[esize] for some Q∗:

238

(MODEL INDEXED)

Γ `pc (T f R) : Q∗ Γ `pc eindex : mod(esize) ! rnd NoQry(T f R)

Γ `pc (T f R)[eindex < esize] : Q∗[esize]

The assumption Γ `pc (T f R) : Q∗ of the above rule must have been derived with

(MODEL APPL):

(MODEL APPL)

Γ `pc T f : Q f fun(T f) Γ `pc R : Q f → Q∗

Γ `pc T f R : Q∗

By Corollary 5, we have Γ `pc index∅(T f ,eindex,esize) : Q f [esize]. By the inver-

sion of typing of Γ `pc eindex : mod(esize) ! rnd we have Γ `static esize : int ! det, so

by Lemma 98, Γ `pc R : Q f [esize]→ Q∗[esize]. Since fun(index∅(T f ,eindex,esize))

easily follows from fun(T f), we can derive Γ `pc index∅(T f ,eindex,esize) R :

Q∗[esize] by (MODEL APPL).

• Case (RED INDEX INNER):

(RED INDEX INNER)

M1→M′1
M1[eindex < esize]→M′1[eindex < esize]

Here Γ `pc M1[eindex < esize] : Q must have been derived with (MODEL IN-

DEXED):

(MODEL INDEXED)

Γ `pc M1 : Q1 Γ `pc eindex : mod(esize) ! rnd NoQry(M1)

Γ `pc M1[eindex < esize] : Q1[esize]

where Q = Q1[esize]. By induction hypothesis, we have Γ `pc M′1 : Q1. We can

easily show that NoQry(M1) and M1→M′1 imply NoQry(M′1). Thus, by (MODEL

INDEXED), we have Γ `pc M1[eindex < esize] : Q1[esize].

• Case (RED MODEL):

(RED MODEL)

M→M′

(c. x : T ` viz M) :: T1→ (c. x : T ` viz M′) :: T1

Here, Γ`pc (c.x : T ` viz M) ::T1 : Q must have been derived with either (TABLE

OUTPUT) or (TABLE LOCAL):

– Subcase (TABLE OUTPUT):

239

(TABLE OUTPUT)

Γ ``∧pc M : Qc Γ,x : Qc `pc T1 : Q1 Qc = Q′c@[(ret. y : T `′ output)]

names(c.Qc)∩ names(Q1)

Γ `pc (c. x : T ` output M) :: T1 : (c.Qc)@Q1

By induction hypothesis, Γ ``∧pc M′ : Qc, which immediately yields Γ `pc

(c. x : T ` output M′) :: T1 : (c.Qc)@Q1 by (TABLE OUTPUT).

– Subcase (TABLE LOCAL):

(TABLE LOCAL)

Γ ``∧pc M : Qc Γ,x : Qc `pc T1 : Q Qc = Q′c@[(ret. y : T `′ output)]

Γ `pc (ε . x : T ` local M) :: T1 : Q

By induction hypothesis, Γ``∧pc M′ : Qc, so we have Γ`pc (ε .x : T ` local M′) ::

T1 : Q by (TABLE LOCAL).

• Case (RED APPL LOCAL): Similar to (RED APPL OUTPUT)

• Case (RED APPL INPUT):

(RED APPL INPUT) (for Core(T f))

(o. x : T ` viz (c. y : T ′ `′ input ε) :: T f (c = e) :: R) :: T′→
(o. x : T ` viz T f

{
e/y
}

R) :: T′

– Subcase viz = output:

Here, Γ `inst T : Q must have been derived with:

(TABLE OUTPUT)

(1) Γ `` (c. y : T ′ `′ input ε) :: T f (c = e) :: R : Q f

(2) Γ,x : Q f `inst T′ : Q1

(3) Q f = Q′f @[(ret. y : T `′′ output)]

(4) names(o.Q f)∩ names(Q1)

Γ `inst (o. x : T ` output ((c. y : T ′ `′ input ε) :: T f) (c = e) :: R) :: T′ :
(o.Q f)@Q1

Assumption (1) must have been derived with:

(MODEL APPL)

(5) Γ `` (c. y : T ′ `′ input ε) :: T f : (c. y : T ′ (`∧ `′) input) :: Q∗

(6) fun((c. y : T ′ `′ input ε) :: T f)

(7) Γ `` (c = e) :: R : (c. y : T ′ (`∧ `′) input) :: Q∗→ Q f

Γ `` (c. y : T ′ `′ input ε) :: T f (c = e) :: R : Q f

240

Assumption (5) must have been derived with:

(TABLE INPUT)

Γ,y :`∧`
′
T ′ `` T f : Q∗ c /∈ names(Q∗)

Γ `` (c. y : T ′ `′ input ε) :: T f : (c. y : T ′ (`∧ `′) input) :: Q∗

and (7) with:

(ARG INPUT)

Γ ``∧`′ e : T Γ `` R : Q∗{e/y}→ Q f

Γ `` ((c = e) :: R) : ((c. y : T ′ (`∧ `′) input) :: Q∗)→ Q f

By Lemma 103, we have Γ `` T f
{

e/y
}

: Q∗
{

e/y
}

. As the fun predicate is

obviously preserved by substitution, (MODEL APPL) yields Γ`` T f
{

e/y
}

R :

Q f . Hence, by (TABLE OUTPUT), we have Γ`inst (o.x : T ` output T f
{

e/y
}

R) ::

T′ : (o.Q f)@Q1, as required.

– Subcase viz = local: similar.

• Case (RED APPL RET):

(RED APPL RET)

(o. x : T ` viz [(ret. y : T ′ `′ output E)] []) :: T′→
(o. x : T ′ `∧ `′ viz E) :: T′

– Subcase viz = output:

The judgment Γ `inst (o.x : T ` output [(ret.y : T ′ `′ output E)] []) :: T′ : Q

must have been derived with (TABLE OUTPUT):

(TABLE OUTPUT)

Γ `` [(ret. y : T ′ `′ output E)] [] : Qc Γ,x : Qc `inst T′ : Q1

Qc = Q′c@[(ret. y : T `′′ output)]

names(o.Qc)∩ names(Q1) = emptyset

Γ `inst (o. x : T ` output [(ret. y : T ′ `′ output E)] []) :: T′ : (o.Qc)@Q1

where Q = (o.Qc)@Q1. The first assumption must have been derived with

(MODEL APPL):

(MODEL APPL)

Γ `` [(ret. y : T ′ `′ output E)] : [(ret. y : T ′ (`∧ `′) output)]

fun([(ret. y : T ′ (`∧ `′) output E)])

Γ `` [] : [(ret. y : T ′ (`∧ `′) output)]→ [(ret. y : T ′ (`∧ `′) output)]

Γ `` [(ret. y : T ′ `′ output E)] [] : [(ret. y : T ′ (`∧ `′) output)]

241

where Qc = [(ret. y : T ′ (`∧ `′) output)]. By the last assumption of (TABLE

OUTPUT), T = T ′, so Qc = [(ret. y : T (`∧ `′) output)].

The first judgment above must have been derived with (TABLE CORE OUT-

PUT), and by inversion of typing, we have Γ ``∧`′ E : T and Γ,y :`∧`
′

T `` [] : [], which implies y /∈ dom(Γ). By Lemma 108, we have Γ,x :`∧`
′

T `inst T′ : Q1. Thus, by (TABLE CORE OUTPUT), we have Γ `inst (o. x :

T (` ∧ `′) output E) :: T′ : (o. x : T (`∧ `′) output) :: Q1. By the de-

rived judgments, we can easily show that fv(Q1)⊆ dom(Γ), which implies

x /∈ fv(Q1) and y /∈ fv(Q1). Hence we have (o. x : T (`∧ `′) output) ::

Q1 =α (o. y : T (`∧ `′) output) :: Q1 = (o.Qc)@Q1, and so Γ `inst (o. x :

T (`∧ `′) output E) :: T′ : (o.Qc)@Q1, as required.

– Subcase viz = local: similar.

• Case (RED TABLE RIGHT):

(RED TABLE RIGHT)

T1→ T′1 Core(col)

col :: T1→ col :: T′1

– Subcase: Γ `inst col :: T1 : Q derived with (TABLE CORE OUTPUT):

(TABLE CORE OUTPUT)

Γ `` E : T Γ,x :` T `inst T1 : Q1 c /∈ names(Q1)

Γ `inst (c. x : T ` output E) :: T1 : (c. x : T (`∧pc) output) :: Q1

where Q = (c. x : T (`∧pc) output) :: Q1. By induction hypothesis, Γ,x :`

T `inst T′1 : Q1, hence Γ`inst col ::T′1 : Q follows inmmediately from (TABLE

CORE OUTPUT).

– Subcases for (TABLE CORE LOCAL) and (TABLE INPUT) similar.

B.2 Proposition 2

To prove the progress property, we need the following lemma:

Lemma 111 If Γ`pc M[eindex < esize] : Q[esize], then there exists M′ such that M[eindex <

esize]→M′.

242

Proof: By induction on the derivation of Γ ``∧pc M[eindex < esize] : Q[esize]:

We know that Γ``∧pc M[eindex < esize] : Q[esize] must have been derived with (MODEL

INDEXED):

(MODEL INDEXED)

Γ `pc M : Q Γ `pc eindex : mod(esize) ! rnd NoQry(M)

Γ `pc M[eindex < esize] : Q[esize]

If Γ `pc M : Q has also been derived with (MODEL INDEXED), then M = M∗[e1 <

e2] and Q=Q∗[e2] for some M∗, Q∗, and so by induction hypothesis, M→M∗ for some

M∗. Hence, by (RED INDEX INNER), we have M[eindex < esize]→M∗[eindex < esize].

If Γ `pc M : Q has also been derived with (MODEL APPL), we have M = T R for

some T (satisfying NoQry(T) and Core(T)) and R. Since index∅ is a total function on

Core, NoQry tables and indexed expressions, by (RED INDEX) we have (T R)[eindex <

esize]→ index∅(T,eindex,esize) R.

Restatement of Proposition 2 [Progress]

(1) If Γ `pc T : Q then either Core(T) or there is T′ such that T→ T′.

(2) If Γ `pc S : Sty then either Core(S) or there is S′ such that S→ S′.

Proof: 1.) By induction on the derivation of Γ `pc T : Q:

• Case (TABLE OUTPUT):

(TABLE OUTPUT)

Γ ``∧pc M : Qc Γ,x : Qc `pc T′ : Q Qc = Q′c@[(ret. y : T `′ output)]

names(c.Qc)∩ names(Q) =∅
Γ `pc (c. x : T ` output M) :: T′ : (c.Qc)@Q

We need to split on derivation of Γ ``∧pc M : Qc:

– Subcase (MODEL APPL):

(MODEL APPL)

Γ ``∧pc T f : Q f fun(T f) Γ ``∧pc R : Q f → Qc

Γ ``∧pc T f R : Qc

243

* If Γ ``∧pc T f : Q f was derived with (TABLE CORE OUTPUT), then

T f = (d .y : T ′ `′ output E) :: T′f and Q f = (d . y : T ′ `′ output) :: Q′f .

We need to consider two cases:

· If Γ``∧pc R : Q f →Qc was derived with (ARG OUTPUT), then d 6=
ret, and so (c.x : T ` output (d .y : T ′ `′ output E) :: T′f R) :: T′→
(c.d .y : T ′ `∧`′ output E) :: (c.x : T ` output T′f R) :: T′〈y/x.c〉 by

(RED APPL OUTPUT) (note that we can always rename y to make

it sufficiently fresh to apply this rule).

· If Γ ``∧pc R : Q f → Qc was derived with (ARG RET), then d =

ret and Q′f = []. From fun((ret . y : T ′ `′ output E) :: T′f) we can

deduce T′f = []. Hence, by (RED APPL RET), we have (c . x :

T ` output [(ret . y : T ′ `′ output E)] []) :: T′ → (c . x : T ′ (`∧
`′) output E) :: T′, as required.

* If Γ``∧pc T f : Q f was derived with (TABLE CORE LOCAL), then T f =

(d . y : T ′ `′ local E) :: T′f so (after renaming y if necessary) we have

(c . x : T ` output (d . y : T ′ `′ local E) :: T′f R) :: T′→ (d . y : T ′ `∧
`′ local E) :: (c. x : T ` output T′f R) :: T′

* If Γ ``∧pc T f : Q f was derived with (TABLE INPUT), then T f = (d .

y : T ′ `′ input ε) :: T′f and Q f = (d . y : T ′ `′ input) :: Q′f . Hence,

Γ ``∧pc R : Q f → Qc must have been derived with (ARG INPUT),

which implies R = (d = e) :: R′. Thus, by (RED APPL INPUT), we

have (c . x : T ` output ((d . y : T ′ `′ input ε) :: T′f) (d = e) :: R′) ::

T′→ (c. x : T ` output T′f
{

e/y
}

R′) :: T′.

– Subcase (MODEL INDEXED):

(MODEL INDEXED)

Γ ``∧pc M′ : Q Γ ``∧pc eindex : mod(esize) ! rnd NoQry(M′)

Γ ``∧pc M′[eindex < esize] : Q[esize]

By Lemma 111, there exists M′′ such that M′[eindex < esize]→M′′. Hence,

by (RED MODEL), we have (c . x : T ` output M′[eindex < esize]) :: T′ →
(c. x : T ` output M′′) :: T′.

• Case (TABLE LOCAL): similar.

244

B.3 Proposition 3

In order to prove termination of reduction, we need to define some metric on schemas

and show that it is strictly decreasing under reduction. Let us define a metric m as

follows:

Metric on schemas: m(S)

m((t = T) :: S), m(T)+m(S)
m([]), 0

m((c. x : T ` viz M) :: T), m(M)+m(T)
m(T R), n(T)
m(E) = 0

m(ε) = 0

m(M[e1 < e2]) = m(M)+1

n((c. x : T ` viz M) :: T), n(T)+1

n([]), 0

Lemma 112 For any A, e1, e2, if Core(T) and NoQry(T), then n(index∅(T,e1,e2)) =

n(T)

Proof: This is an easy induction on the structure of T.

Lemma 113 (1) If M→M′, then m(M′)< m(M)

(2) If T→ T′, then m(T′)< m(T)

(3) If S→ S′, then m(S′)< m(S)

Proof: 1.) By induction on the derivation of M→M′:

• Case :

(RED INDEX INNER)

M′→M′′

M′[eindex < esize]→M′′[eindex < esize]

By induction hypothesis, m(M′′)< m(M′), so m(M′′[eindex < esize]) = m(M′′)+

1 < m(M′)+1 = m(M′′[eindex < esize]).

245

• Case:

(RED INDEX)

Core(T f) NoQry(T f)

(T f R)[eindex < esize]→ (index∅(T f ,eindex,esize)) R

We have m((T f R)[eindex < esize])= 1+n(T f) and m((index∅(T f ,eindex,esize))R)=

n((index∅(T f ,eindex,esize))), so the result follows immediately by Lemma 112.

• Case:

(RED INDEX EXPR)

E[eindex < esize]→ E

We have m(E[eindex < esize]) = 1 and m(E) = 0 (but this model expression is not

well-typed anyway).

2.) By induction on the derivation of T→ T′, with appeal to part 1:

• Case:

(RED APPL OUTPUT) (for Core(T1))

y /∈ fv(T′1,R)∪{x} c 6= ret

(o. x : T ` viz ((c. y : T ′ `′ output E) :: T1) R) :: T′1→
(o.c. y : T ′ `∧ `′ viz E) :: (o. x : T ` viz T1 R) :: T′1〈y/x.c〉

We have m((o.c.y : T ′ `∧`′ viz E) :: (o.x : T ` viz T1 R) :: T′1〈y/x.c〉) = n(T1)+

m(T′1)≤ 1+n(T1)+m(T′1)=m((o.x : T ` viz ((c.y : T ′ `′ output E) :: T1) R) ::

T′1), as required.

• Case:

(RED APPL LOCAL) (for Core(T1))

y /∈ fv(T′1,R)∪{x}
(o. x : T ` viz ((p. y : T ′ `′ local E) :: T1) R) :: T′1→

(p. y : T ′ `∧ `′ local E) :: (o. x : T ` viz T1 R) :: T′1
We have m((p . y : T ′ `∧ `′ local E) :: (o . x : T ` viz T1 R) :: T′1) = n(T1)+

m(T′1)≤ 1+n(T1)+m(T′1) = m((o.x : T ` viz ((c.y : T ′ `′ local E) :: T1) R) ::

T′1).

• Case:

(RED APPL INPUT) (for Core(T1))

(o. x : T ` viz (c. y : T ′ `′ input ε) :: T1 (c = e) :: R) :: T′1→
(o. x : T ` viz T1

{
e/y
}

R) :: T′1

246

Here, m((o . x : T ` viz T1
{

e/y
}

R) :: T′1) = n(T1) + m(T′1) ≤ 1 + n(T1) +

m(T′1) = m((o . x : T ` viz (c . y : T ′ `′ input ε) :: T1 (c = e) :: R) :: T′1), as

required.

• Case:

(RED APPL RET)

(o. x : T ` viz [(ret. y : T ′ `′ output E)] []) :: T′1→
(o. x : T ′ `∧ `′ viz E) :: T′1

We have m((o . x : T ′ `∧ `′ viz E) :: T′1) = m(T′1) ≤ 1 +m(T′1) = m((o . x :

T ` viz [(ret. y : T ′ `′ output E)] []) :: T′1), as required.

• Case:

(RED TABLE RIGHT)

T→ T′1 Core(col)

col :: T1→ col :: T′1
By induction hypothesis, n(T′1)< n(T), so n(col :: T′1) = n(T′1)< n(T) = n(col ::

T1).

• Case:

(RED MODEL)

M1→M′1
(c. x : T ` viz M1) :: T1→ (c. x : T ` viz M′1) :: T1

By part 1.) we have m(M′1)< m(M1), so m((c.x : T ` viz M′1) :: T1) = m(M′1)+

m(T1)< m(M1)+m(T1) = (c. x : T ` viz M1) :: T1.

3.) By induction on the derivation of S→ S′, with appeal to part 2:

• Case:

(RED SCHEMA LEFT)

T1→ T′1
(t = T1) :: S1→ (t = T′1) :: S1

By part 3.) we have m(T′1) < m(T1), so m((t = T′1) :: S1) = m(T′1)+m(S1) <

m(T1)+m(S1) = m((t = T1) :: S1)

• Case:

247

(RED SCHEMA RIGHT)

S1→ S′1 Core(T1)

(t = T1) :: S1→ (t = T1) :: S′1
By induction hypothesis we have m(S′1)<m(S1), so m((t =T1) ::S1)=m(T1)+

m(S1)< m(T1)+m(S′1) = m((t = T1) :: S′1).

Restatement of Proposition 3 [Termination] There does not exist an infinite chain

of reductions S1→ S2→ . . .

Proof: Suppose such a chain exists. The measure m on schemas is non-negative by

definition, so for all i∈N we have m(Si)≥ 0. By Lemma 113, m(Si+1)<m(Si), so be-

cause the measure is integer-valued by construction, m(Si+1)≤m(Si)−1. We can then

show by induction that m(Si+1) ≤ m(S1)− i, from which we get m(Sm(S1)+1) ≤ −1,

which is a contradiction, since the measure is non-negative.

248

Appendix C

Proof of Tabular Output Database

Conformance

This appendix includes detailed proofs of properties of the random and query seman-

tics of Tabular.

C.1 Random Semantics

In this section, we prove Lemma 7, which states that for every valid trace, the random

semantics returns a database of well-typed values of expressions in queries.

Restatement of Lemma 7 If Core(S) and ∅ ` S : Sty and (δin,ρsz) |= Sty and

(δin,ρsz)`S⇓s
w δqry, then for every t ∈ dom(S) and (c.x : T ` viz infer.D[e1, . . . ,em].c j(E ′))∈

cols(S(t)):

• If `= static, then δqry(t)(c) = static(V) and ∅ `static V : real ! rnd.

• If `= inst, then δqry(t)(c) = inst([V0, . . . ,Vρsz(t)−1]) and ∅ `inst V1 : real ! rnd for

all i ∈ 0..ρsz−1.

To prove this lemma, we need the following auxiliary definitions and results. In the

rest of this appendix, we write τ(T) for the type T with all variables in the domain of

τ whose entries in τ are scalars at static level substituted with their values in τ .

We begin by defining several auxiliary conformance relations relating evaluation

environments to types and typing environments: (τ,ρsz) |=rnd−t
n Q states that the table-

level map τ with table size n conforms to the table type Q; ρsz;δ ;τ |=rnd
n Γ states that

the evaluation environment consisting of schema-level map δ and table-level map τ

249

conforms to the typing environment Γ, assuming that the currently evaluated table has

n rows; (ρsz;δ ;τ) |=rnd−loc
n (Γ;Γ′) is similar, except that the typing environment is split

in two parts Γ and Γ′, where Γ′ contains local variables (that is, iterator variables in

for-loops). The last judgment is needed to allow storing a single value for an inst-level

iterator variable in the database during evaluation.

Table-level Random Database Conformance: (τ,ρsz) |=rnd−t
n Q

(CONF SKIP RND)

qry(T) (τ;ρsz) |=rnd−t
n Q

(τ;ρsz) |=rnd−t
n (c. x : T ` viz) :: Q

(CONF LOCAL RND)

(τ;ρsz) |=rnd−t
n Q

((c 7→ `(V)) :: τ;ρsz) |=rnd−t
n Q

(CONF STATIC INOUT RND)

viz ∈ {input,output} ∅ `static V : ρsz(T)

(τ;ρsz) |=rnd−t
n Q

((c 7→ static(V)) :: τ;ρsz) |=rnd−t
n (c. x : T static viz) :: Q

(CONF INST INOUT RND)

viz ∈ {input,output} ∅ `inst Vi : ρsz(T) ∀i ∈ 0..n−1

(τ;ρsz) |=rnd−t
n Q

((c 7→ inst([V1, . . . ,Vn])) :: τ;ρsz) |=rnd−t
n (c. x : T inst viz) :: Q

(CONF [] RND)

([];ρsz) |=rnd−t
n []

Conformance of Random Database to Environment: ρsz;δ ;τ |=rnd
n Γ

(RND VAR STATIC) (where ¬qry(T))

∅ `static V : ρsz(τ(T))

(ρsz;δ ;τ) |=rnd
n Γ

(ρsz;δ ;τ,(x 7→ static(V))) |=rnd
n Γ,x :static T

(RND VAR INST) (where ¬qry(T))

∅ `inst Vi : ρsz(τ(T)) ∀i ∈ 0..n−1

(ρsz;δ ;τ) |=rnd
n Γ

(ρsz;δ ;τ,(x 7→ inst([V1, . . . ,Vn]))) |=rnd
n Γ,x :inst T

250

(RND VAR QRY) (where qry(T))

(ρsz;δ ;τ) |=rnd
n Γ

(ρsz;δ ;τ) |=rnd
n Γ,x :` T

(RND TABLE)

ρsz(t) ∈ N
(τt ,ρsz) |=rnd−t

ρsz(t)
Q

(ρsz;δ ;τ) |=rnd
n Γ

(ρsz;δ ,(t 7→ τt);τ) |=rnd
n Γ, t : Q

(RND EMPTY)

(ρsz; []; []) |=rnd
n ∅

Conformance of Random Database to Local Environment: (ρsz;δ ;τ) |=rnd−loc
n (Γ;Γ′)

(RND VAR LOCAL)

∅ `static V : ρsz(τ(T))

(ρsz;δ ;τ) |=rnd
n (Γ;Γ′)

(ρsz;δ ;τ,(x 7→ static(V))) |=rnd−loc
n (Γ;Γ′,x :` T)

(RND VAR LOCAL EMPTY)

(ρsz;δ ;τ) |=rnd
n Γ

(ρsz;δ ;τ) |=rnd−loc
n (Γ;∅)

The below lemma states that evaluating random expressions with valid traces yields

well-typed values.

Lemma 114 If Γ,Γ′ `pc E : T and (ρsz;δ ;τ ′) |=rnd−loc
ρsz(t)

(Γ;Γ′) and δ ,τ ′, i ` E ⇓s
w Vi for

some i ∈ 0..ρsz(t)−1 then ∅ `pc Vi : ρsz(τ
′(T)).

Proof: By induction on the derivation of Γ,Γ′ `pc E : T . The proof is similar to the

proof of Lemma 127, with the fail cases removed.

Corollary 6 If Γ `pc E : T and (ρsz;δ ;τ ′) |=rnd
ρsz(t)

Γ and δ ,τ ′, i ` E ⇓s
w Vi for some

i ∈ 0..ρsz(t)−1 then ∅ `pc Vi : ρsz(τ
′(T)).

The following lemma shows that the table-level database τ containing deterministic

and random variables, obtained by evaluating a well-typed table with a valid trace,

conforms to the type of the said table.

Lemma 115 If Core(T) and Γ`inst T : Q and table(Q) and fv(Q)=∅ and (δin(t),ρsz) |=ρsz(t)

Q and t;δ ;τ ′ ` T ⇓s
w τ,τqry and (ρsz;δ ;τ ′) |=rnd

ρsz(t)
Γ then (τ,ρsz) |=rnd−t

ρsz(t)
Q

251

Proof: By induction on the derivation of t;δ ;τ ′ ` T ⇓s
w τ,τqry:

• Case (EVAL OUTPUT):

(EVAL OUTPUT) (where ¬qry(T))

δ ;τ ′;δin(t)(c) ` E ⇓s1
w1 V

t;δ ;τ ′,(x 7→ `(V)) ` T′ ⇓s2
w2 τ̂,τqry

t;δ ;τ ′ ` (c. x : T ` output E) :: T′ ⇓s1@s2
w1w2 [c 7→ `(V)]@τ̂,τqry

Here, Γ `inst (c.x : T ` output E) :: T′ : Q must have been derived with (TABLE

CORE OUTPUT), so Q= (c. x : T ` output) :: Q′. By the derivation of this typing

judgment, we have Γ,x :` T `inst T′ : Q′ and Γ `` E : T . By the assumption

¬qry(T), we know that E 6= infer.D[e1, . . . ,em].c j(E ′).

– Subcase `= static:

In this case, δ ;τ ′;δin(t)(c) ` E ⇓s1
w1 V must have been derived with (EVAL

STATIC), and the assumption of that rule, δ ;τ ′;δin(t)(c) ` E ⇓s1
w1 V must

have been derived with either (EVAL SAMPLE) or (EVAL COND):

* Subcase (EVAL SAMPLE): Here, we have δ ;τ ′;0`E ⇓s1
w1 V . By Corol-

lary 6 and the fact that T is a top-level type of an output column,

∅ `static V : ρsz(T).

By (RND VAR STATIC), (ρsz;δ ;τ ′,(x 7→ static(V))) |=rnd
ρsz(t)

Γ,x :static

T .

By induction hypothesis, (τ̂,ρsz) |=rnd−t
ρsz(t)

Q′, so by (CONF STATIC IN-

OUT RND), ((c 7→ `(V)) :: τ̂,ρsz) |=rnd−t
ρsz(t)

(c. x : T ` output) :: Q′,

* Subcase (EVAL COND): Here, δin(t)(c) = static(c′) and V = c′, where

c′ ∈R. By the derivation of (δin(t),ρsz) |=ρsz(t)
Q we have ∅ `static c′ :

ρsz(T). Hence, we have (ρsz;δ ;τ ′,(x 7→ static(V))) |=rnd
ρsz(t)

Γ,x :static

T , again by (RND VAR STATIC), so by induction hypothesis, (τ̂,ρsz) |=rnd−t
ρsz(t)

Q′, and so ((c 7→ `(V)) :: τ̂,ρsz) |=rnd−t
ρsz(t)

(c. x : T ` output) :: Q′ by

(CONF STATIC INOUT RND).

– Subcase `= inst: Similar to `= static.

• Case (EVAL LOCAL): Similar to (EVAL OUTPUT).

• Case (EVAL EMPTY): trivial.

• Case (EVAL INPUT):

252

(EVAL INPUT) (where ¬qry(T))

t;δ ;τ ′,(x 7→ δin(t)(c)) ` T′ ⇓s
w τ̂,τqry

t;δ ;τ ′ ` (c. x : T ` input ε) :: T′ ⇓s
w [c 7→ δin(t)(c)]@τ̂,τqry

Here, Γ `inst (c . x : T ` input ε) :: T′ : Q must have been derived with (TABLE

INPUT), so Q = (c. x : T ` input) :: Q′ and Γ,x :` T `inst T′ : Q.

– Subcase ` = static: By the derivation of (δin(t),ρsz) |=ρsz(t)
Q, we have

δin(t)(c) = static(V) and ∅ `static V : ρsz(T). Hence, (ρsz;δ ;τ ′,(x 7→
static(V))) |=rnd

ρsz(t)
Γ,x :static T , by (RND VAR STATIC). Then, by (CONF

STATIC INOUT RND), ((c 7→ `(V)) :: τ̂,ρsz) |=rnd−t
ρsz(t)

(c. x : T ` output) :: Q′,

– Subcase `= inst: similar.

• Case (EVAL QUERY):

(EVAL QUERY)

qry(T)

E = infer.D[e1, . . . ,em].c j(E ′)

δ ;τ ′;`〈t〉 ` E ′ ⇓s1
w1 V

t;δ ;τ ′ ` T ⇓s2
w2 τ̂,τ ′qry

t;δ ;τ ′ ` (c. x : T ` viz E) :: T ⇓s1@s2
w1w2 τ̂,τ ′qry@[c 7→ `(V)]

– Subcase viz = output:

In this case, Γ `inst (c. x : T ` viz E) :: T : Q must have been derived with

(TABLE CORE OUTPUT), so we have Q = (c. x : T ` output) :: Q′. By the

derivation of the typing judgment, Γ,x :` T `inst T′ : Q′ and Γ `` E : T .

* Subcase `= static:

By (RND VAR QRY), (ρsz;δ ;τ ′) |=rnd
ρsz(t)

Γ,x :static T , so by induction

hypothesis, (τ̂,ρsz) |=rnd−t
ρsz(t)

Q′, and so (τ̂,ρsz) |=rnd−t
ρsz(t)

(c. x : T ` output) ::

Q′ by (CONF SKIP RND).

* Subcase `= inst: similar.

– Subcase viz = local: similar

• Case (EVAL SKIP): Similar to (EVAL QUERY).

253

Lemma 116 If Core(T) and Γ`inst T : Q and table(Q) and fv(Q)=∅ and (δin(t),ρsz) |=ρsz(t)

Q and t;δ ;τ ′ ` T ⇓s
w τ,τqry and (ρsz;δ ;τ ′) |=rnd

ρsz(t)
Γ then the identifiers in τ and τqry

are unique.

Proof: The proof is a straightforward induction on the derivation of (δin(t),ρsz) |=ρsz(t)

Q, using the fact that external column names are distinct in well-formed Q-types.

This lemma states that the database of values of expressions in queries stores a

well-typed value for every expression in a query:

Lemma 117 If Core(T) and Γ`inst T : Q and table(Q) and fv(Q)=∅ and (δin(t),ρsz) |=ρsz(t)

Q and t;δ ;τ ′ ` T ⇓s
w τ,τqry and (ρsz;δ ;τ ′) |=rnd

ρsz(t)
Γ then for every

(d . x : T ` viz infer.D[e1, . . . ,em].c j(E ′)) ∈ cols(T):

• If `= static, then τqry(d) = static(V) and ∅ `static V : real ! rnd.

• If ` = inst, then τqry(d) = inst([V0, . . . ,Vρsz(t)−1]) and ∅ `inst Vi : real ! rnd for

all i ∈ 1..ρsz(t)−1.

Proof: By induction on the derivation of t;δ ;τ ′ ` T ⇓s
w τ,τqry:

• Case (EVAL OUTPUT):

(EVAL OUTPUT) (where ¬qry(T))

δ ;τ ′;δin(t)(c) ` E ⇓s1
w1 V

t;δ ;τ ′,(x 7→ `(V)) ` T′ ⇓s2
w2 τ̂,τqry

t;δ ;τ ′ ` (c. x : T ` output E) :: T′ ⇓s1@s2
w1w2 [c 7→ `(V)]@τ̂,τqry

Here, Γ `inst (c.x : T ` output E) :: T′ : Q must have been derived with (TABLE

CORE OUTPUT), so Q = (c. x : T ` output) :: Q′. By the derivation of the typing

judgment, we have Γ,x :` T `inst T′ : Q′ and Γ `` E : T . By the assumption

¬qry(T), we know that E 6= infer.D[e1, . . . ,em].c j(E ′).

– Subcase `= static:

In this case, δ ;τ ′;δin(t)(c) ` E ⇓s1
w1 V must have been derived with (EVAL

STATIC), and the assumption of that rule, δ ;τ ′;δin(t)(c) ` E ⇓s1
w1 V must

have been derived with either (EVAL SAMPLE) or (EVAL COND):

* Subcase (EVAL SAMPLE): Here, we have δ ;τ ′;0`E ⇓s1
w1 V . By Corol-

lary 6 and the fact that T is a top-level type of an output column,

254

∅ `static V : ρsz(T). Hence, by (RND VAR STATIC), (ρsz;δ ;τ ′,(x 7→
static(V))) |=rnd

ρsz(t)
Γ,x :static T . Therefore, the result follows by in-

duction hypothesis.

* Subcase (EVAL COND): Here, δin(t)(c) = static(c′) and V = c′, where

c′ ∈R. By the derivation of (δin(t),ρsz) |=ρsz(t)
Q we have ∅ `static c′ :

ρsz(T). Hence, we have (ρsz;δ ;τ ′,(x 7→ static(V))) |=rnd
ρsz(t)

Γ,x :static

T , again by (RND VAR STATIC), so the result follows by the induction

hypothesis.

– Subcase ` = inst: Similar to ` = static, repeating the reasoning for every

index.

• Case (EVAL LOCAL): Similar to (EVAL OUTPUT).

• Case (EVAL EMPTY): trivial.

• Case (EVAL INPUT):

(EVAL INPUT) (where ¬qry(T))

t;δ ;τ ′,(x 7→ δin(t)(c)) ` T′ ⇓s
w τ̂,τqry

t;δ ;τ ′ ` (c. x : T ` input ε) :: T′ ⇓s
w [c 7→ δin(t)(c)]@τ̂,τqry

Here, Γ `inst (c . x : T ` input ε) :: T′ : Q must have been derived with (TABLE

INPUT), so Q = (c. x : T ` input) :: Q′ and Γ,x :` T `inst T′ : Q.

– Subcase ` = static: By the derivation of (δin(t),ρsz) |=ρsz(t)
Q, we have

δin(t)(c) = static(V) and ∅ `static V : ρsz(T). Hence, (ρsz;δ ;τ ′,(x 7→
static(V))) |=rnd

ρsz(t)
Γ,x :static T , by (RND VAR STATIC) and the desired

result follows by the induction hypothesis.

– Subcase `= inst: similar.

• Case (EVAL QUERY):

(EVAL QUERY)

qry(T)

E = infer.D[e1, . . . ,em].c j(E ′)

t;δ ;τ ′;`〈t〉 ` E ′ ⇓s1
w1 V

t;δ ;τ ′ ` T ⇓s2
w2 τ̂,τ ′qry

t;δ ;τ ′ ` (c. x : T ` viz E) :: T ⇓s1@s2
w1w2 τ̂,τ ′qry@[c 7→ `(V)]

255

– Subcase viz = output:

In this case, Γ `inst (c. x : T ` viz E) :: T : Q must have been derived with

(TABLE CORE OUTPUT), so we have Q = (c. x : T ` output) :: Q′. By the

derivation of the typing judgment, Γ,x :` T `inst T′ : Q′ and Γ `` E : T .

Moreover, Γ `` infer.D[e1, . . . ,em].c j(E ′) : T must have been derived with

(INFER), so Γ `` E ′ : real ! rnd (using the assumption that only continuous

distributions are allowed).

* Subcase `= static:

Here, δ ;τ ′;`〈t〉 `E ′ ⇓s1
w1 V must have been derived with (EVAL STATIC),

and its assumption, δ ;τ ′;0;?`E ′ ⇓s1
w1 V , with (EVAL SAMPLE). Hence,

we have δ ;τ ′;0 ` E ′ ⇓s1
w1 V . By Corollary 6, ∅ `static V : real ! rnd.

Hence, if c= d, then the result holds immediately (note that by Lemma 116,

there is no entry for d in τ ′qry).

If c 6= d, then, by (RND VAR QRY), (ρsz;δ ;τ ′) |=rnd
ρsz(t)

Γ,x :static T , so

the conclusion follows by the induction hypothesis.

* Subcase `= inst: similar.

– Subcase viz = local: similar

• Case (EVAL SKIP):

(EVAL SKIP)

qry(T)

E 6= infer.D[e1, . . . ,em].c j(E ′)

t;δ ;τ ′ ` T′ ⇓s
w τ,τqry

t;δ ;τ ′ ` (c. x : T ` viz E) :: T ⇓s
w τ,τqry

– Subcase viz = output:

In this case, Γ `inst (c. x : T ` viz E) :: T′ : Q must have been derived with

(TABLE CORE OUTPUT), so Q = (c. x : T ` viz) :: Q′ and Γ,x :` T `inst

T′ : Q′. By (RND VAR QRY), (ρsz;δ ;τ ′) |=rnd
ρsz(t)

Γ,x :static T , so the desired

result follows by the induction hypothesis.

We can use the above results to show that the full output database returned by the

random semantics contains well-typed values for all expressions in queries.

256

Lemma 118 If Core(S) and Γ ` S : Sty and (δin,ρsz) |= Sty and Γ only contains entries

of the form (t : Q′) and (δ ,ρsz) ` S ⇓s
w δqry and (ρsz;δ ; []) |=rnd

n Γ then for every t ∈
dom(S) and (c. x : T ` viz infer.D[e1, . . . ,em].c j(E ′)) ∈ cols(S(t)):

• If `= static, then δqry(t)(c) = static(V) and ∅ `static V : real ! rnd.

• If `= inst, then δqry(t)(c) = inst([V0, . . . ,Vρsz(t)−1]) and ∅ `inst V : real ! rnd.

Proof: By induction on the derivation of (δin,ρsz) ` S ⇓s
w δqry:

• Case (QUERY SCHEMA TABLE):

(EVAL SCHEMA TABLE)

t;δ ;∅ ` T ⇓s1
w1 τt ,τtq

(δ ,(t ′→ τt);ρsz) ` S′ ⇓s2
w2 δqry

(δ ,ρsz) ` (t ′ = T) :: S′ ⇓s1@s2
w1w2 [t ′→ τtq]@δqry

Here, Γ ` S : Sty must have been derived with (SCHEMA TABLE), so we have

Γ `inst T : Q and Γ, t ′ : Q ` S′ : Sty′, where Sty = (t ′ : Q) :: Sty′.

By the derivation of (δin,ρsz) |= Sty, we have (δin(t),ρsz) |=ρsz(t)
Q and (δin,ρsz) |=

Sty′.

By Lemma 115, (τt ,ρsz) |=rnd−t
ρsz(t)

Q.

Meanwhile, by (RND TABLE) we have (ρsz;δ ,(t ′→ τt); []) |=rnd
n Γ, t ′ : Q.

If t = t ′, then the desired result holds by Lemma 117. Otherwise, it holds by

induction hypothesis.

• Case (QUERY SCHEMA EMPTY): trivial.

Restatement of Lemma 7 If Core(S) and ∅ ` S : Sty and (δin,ρsz) |= Sty and

(δin,ρsz)`S⇓s
w δqry, then for every t ∈ dom(S) and (c.x : T ` viz infer.D[e1, . . . ,em].c j(E ′))∈

cols(S(t)):

• If `= static, then δqry(t)(c) = static(V) and ∅ `static V : real ! rnd.

• If `= inst, then δqry(t)(c) = inst([V0, . . . ,Vρsz(t)−1]) and ∅ `inst V : real ! rnd.

Proof: Corollary of Lemma 118.

257

C.2 Preservation Result for the Query Semantics

In this section, we prove that every output database returned by the query semantics of

Tabular conforms to the schema type:

Restatement of Lemma 14 If Core(S) and ∅ ` S : Sty and (δin;ρsz) |= Sty and

δin; [] `σ S ⇓ δout , then (δout ;ρsz) |=out Sty.

Like in the random semantics, we need to introduce some auxiliary conformance

relations. The judgment (ρsz;δ ;τ) |=int
n Γ says that the evaluation environment con-

sisting of δ and τ conforms to the typing environment Γ if the size of the currently

evaluated table is n. The judgment (ρsz;δ ;τ) |=loc
n (Γ;Γ′) is similar, except that it is

used when evaluating expressions inside columns—the environment Γ contains types

of local variables (iterators in for-loops)m and the judgment allows an inst-level itera-

tor to have a single static variable in the evaluation environment.

Below, τ(T) denotes the type T with each variable x substituted by the scalar s if

τ = τ1@[(x 7→ static(s))]@τ2.

Conformance of an Intermediate Database: (ρsz;δ ;τ) |=int
n Γ

(CONF VAR STATIC) (where ¬rnd(T))

∅ `static G : ρsz(τ(T))

(ρsz;δ ;τ;η) |=int
n Γ det(T)⇒ value(G)

(ρsz;δ ;τ,(x 7→ static(G));η) |=int
n Γ,x :static T

(CONF VAR INST) (where ¬rnd(T))

∅ `inst Gi : ρsz(τ(T)) ∀i ∈ 0..n−1

(ρsz;δ ;τ;η) |=int
n Γ det(T)⇒ value(Gi) ∀i ∈ 0..n−1

(ρsz;δ ;τ,(x 7→ inst([G1, . . . ,Gn]));η) |=int
n Γ,x :inst T

(CONF VAR RND) (where rnd(T))

(ρsz;δ ;τ;η) |=int
n Γ

(ρsz;δ ;τ;η) |=int
n Γ,x :` T

(CONF TABLE)

ρsz(t) ∈ N
(τt ,ρsz) |=out

ρsz(t)
Q

(ρsz;δ ;τ;η) |=int
n Γ

(ρsz;δ ,(t 7→ τt);τ;η) |=int
n Γ, t : Q

(CONF EMPTY)

(ρsz; []; [];η) |=int
n ∅

258

Conformance of an Intermediate Database to Local Environment: (ρsz;δ ;τ) |=loc
n (Γ;Γ′)

(CONF VAR LOCAL)

∅ `` s : ρsz(τ(T))

(ρsz;δ ;τ;η) |=loc
n (Γ;Γ′)

(ρsz;δ ;τ,(x 7→ static(s));η) |=loc
n (Γ;Γ′,x :` T)

(CONF VAR LOCAL EMPTY)

(ρsz;δ ;τ;η) |=int
n Γ

(ρsz;δ ;τ;η) |=loc
n (Γ;∅)

We need some auxiliary lemmas:

Lemma 119 (1) If (ρsz,δ ,τ
′,η) |=int

n Γ′,x :static T,Γ′′, and¬rnd(T) then τ ′= τ ′1@[(x 7→
static(G))]@τ ′2 and ∅ `static G : ρsz(τ

′(T)) and value(G) if det(T).

(2) If (ρsz,δ ,τ
′,η) |=int

n Γ′,x :inst T,Γ′′ and ¬rnd(T)

then τ ′ = τ ′1@[(x 7→ inst([G0, . . . ,Gn−1]))]@τ ′2 and ∅ `inst Gi : ρsz(τ
′(T)) for

all i ∈ 0..n−1, where value(Gi) for all i ∈ 0..n−1 if det(T).

Proof:

(1) By induction on the derivation of (ρsz,δ ,τ
′,η) |=int

n Γ′,x :static T,Γ′′.

(2) By induction on the derivation of (ρsz,δ ,τ
′,η) |=int

n Γ′,x :inst T,Γ′′.

Lemma 120 (1) If (ρsz;δ ;τ ′;η) |=loc
n (Γ′1,x :static T,Γ′′1;Γ2) and ¬rnd(T) then τ ′ =

τ ′1@[(x 7→ static(G))]@τ ′2 and ∅ `static G : ρsz(τ
′(T)) and value(G) if det(T).

(2) If (ρsz;δ ;τ ′;η) |=loc
n (Γ′1,x :inst T,Γ′′1;Γ2) and ¬rnd(T)

then τ ′ = τ ′1@[(x 7→ inst([G0, . . . ,Gn−1]))]@τ ′2 and ∅ `inst Gi : ρsz(τ
′(T)) for

all i ∈ 0..n−1 value(Gi) for all i ∈ 0..n−1 if det(T).

(3) If (ρsz;δ ;τ ′;η) |=loc
n (Γ1;Γ′2,x :` T,Γ′′2), and ¬rnd(T) then

τ ′ = τ ′1@[(x 7→ static(s))]@τ ′2 and ∅ `` s : ρsz(τ
′(T)).

Proof:

259

(1) By induction on the derivation of (ρsz;δ ;τ ′;η) |=loc
n (Γ′1,x :static T,Γ′′1;Γ2), with

appeal to Lemma 119.

(2) By induction on the derivation of (ρsz;δ ;τ ′;η) |=loc
n (Γ′1,x :inst T,Γ′′1;Γ2), with

appeal to Lemma 119.

(3) By induction on the derivation of (ρsz;δ ;τ ′;η) |=int
n (Γ1;Γ′2,x :` T,Γ′′2)

Lemma 121 If (ρsz,δ ,τ
′,η) |=int

n Γ′, t : Q,Γ′′, then δ = δ1@[(t 7→ τt)]@δ2 and ρsz(t)∈
N and (τt ,ρsz) |=out

ρsz(t)
Q.

Proof: By induction on the derivation of (ρsz,δ ,τ
′,η) ` Γ′, t : Q,Γ′′. The proof is

straightforward, so details are omitted.

Lemma 122 If (ρsz,δ ,τ
′,η) |=loc

n (Γ;Γ′) and Γ,Γ′ = Γ1, t : Q,Γ2, then δ = δ1@[(t 7→
τt)]@δ2 and ρsz(t) ∈ N and (τt ,ρsz) |=out

ρsz(t)
Q.

Proof: By induction on the derivation of (ρsz,δ ,τ
′,η) |=loc

n (Γ;Γ′), with appeal to

Lemma 121.

Lemma 123 (1) If (τ,ρsz) |=out
n Q1@[(c. x : T static viz)]@Q2 and ¬rnd(T) then

τ = τ1@[(c 7→ static(G))]@τ2 and ∅ `static G : ρsz(T). and value(G) if det(T).

(2) If (τ,ρsz) |=out
n Q1@[(c. x : T inst viz)]@Q2 and ¬rnd(T) then τ = τ1@[(c 7→

inst([G0, . . . ,Gn−1]))]@τ2 and ∅`inst Gi : ρsz(T) for all i∈ 0..n−1 and value(Gi)

for all i ∈ 0..n−1 if det(T).

Proof: By induction on the derivation of (τ,ρsz) |=out
n Q1@[(c. x : T static viz)]@Q2,

and (τ,ρsz) |=out
n Q1@[(c. x : T inst viz)]@Q2. Again, we elide the details.

Lemma 124 If Γ,Γ′ `static e : int ! det and (ρsz;δ ;τ ′;η) |=loc
n (Γ;Γ′) and δ ;τ ′;η ; i `

e ⇓ G, then ρsz(τ
′(e)) = G and value(G).

Proof: By case analysis:

260

• If δ ,τ ′,η , i ` e ⇓ c was derived with (QUERY CONST), then e = G, so the result

follows trivially.

• If δ ,τ ′,η , i ` e ⇓ G was derived with (QUERY VAR STATIC), then e = x and

τ ′ = τ ′1@[(x 7→ static(G))]@τ ′2, so ρsz(τ
′(x)) = ρsz(G) = G. Since Γ `static e :

int ! det must have been derived with (INDEX VAR), followed by a finite number

(possibly 0) of applications of (SUBSUM), we have Γ,Γ′ = Γ1,x :static U,Γ2,

where Γ ` U <: int ! det, which also implies U = int ! det. Hence, by Lemma

120 (part 1 or 3, depending on whether x ∈ dom(Γ) or x ∈ dom(Γ′)), we have

value(G).

• If δ ,τ ′,η , i ` e ⇓ G was derived with (QUERY VAR INST), then e = x and τ ′ =

τ ′1@[(c 7→ inst([G0, . . . ,Gn−1]))]@τ ′2 Since Γ `static e : int ! det must have been

derived with (INDEX VAR), followed by a finite number (possibly 0) of applica-

tions of (SUBSUM), we have Γ,Γ′ = Γ1,x :static U,Γ2, where Γ `U <: int ! det,

which implies U = int ! det.

If x ∈ dom(Γ), then by Lemma 120 (part 2) and the uniqueness of identifiers in

τ ′, we have τ ′(x) = static(G). If x ∈ dom(Γ′), then by Lemma 120 (part 3) and

the uniqueness of identifiers in τ ′, we also have τ ′(x) = static(G), so in either

case we arrive at a contradiction Hence, this case is not possible.

• If δ ,τ ′,η , i ` e ⇓ n was derived with (QUERY SIZEOF), then e = sizeof(t) and

ρsz(t) = n, so ρsz(τ
′(sizeof(t))) = ρsz(sizeof(t)) = ρsz(t) = n.

Lemma 125 If Γ `static e : T and (ρsz;δ ;τ ′;η) |=int
ρsz(t)

Γ and t;δ ;τ ′;0 ` ek ⇓ sk for

all k ∈ 1..m and e is not of the form sizeof(t ′) and {x1, . . . ,xm}∩ (
⋃

k fv(ek)) =∅ and

fv(e{e1/x1} . . .{em/xm}) =∅, then ρsz(e{e1/x1} . . .{em/xm}) = e{s1/x1} . . .{sm/xm}

Proof: By case analysis. The only interesting case is e = x:

By the assumption fv(x{e1/x1} . . .{em/xm}) = ∅, we know that x = xi for some i ∈
1..m and either ei = s or ei = sizeof(t ′). Then, by inversion of the evaluation judgment,

t;δ ;τ ′;0 ` ei ⇓ si we know that either ei = si or ei = sizeof(t ′), where ρsz(t ′) = si.

Hence, ρsz(ei) = si, as required.

261

Lemma 126 If (ρsz;δ ;τ ′;η) |=int
ρsz(t)

Γ and t;δ ;τ ′;0 ` ek ⇓ sk for all k ∈ 1..m and T

contains no indexed expressions of the form sizeof(t ′) and {x1, . . . ,xm}∩ (
⋃

k fv(ek)) =

∅ and fv(T{e1/x1} . . .{em/xm}) =∅, then ρsz(T{e1/x1} . . .{em/xm}) = T{s1/x1} . . .{sm/xm}

Proof: By induction on the structure of T , with appeal to Lemma 125.

The below lemma states that evaluating a well-typed expression yields a well-typed

value:

Lemma 127 If Γ,Γ′ `pc E : T and¬rnd(T) and (ρsz;δ ;τ ′;η) |=loc
ρsz(t)

(Γ;Γ′) and t;δ ;τ ′; i`
E ⇓ G for some i ∈ 0..ρsz(t)−1, then ∅ `pc G : ρsz(τ

′(T)), where value(G) if det(T).

Proof:

By induction on the derivation of Γ,Γ′ `pc E : T . Interesting cases:

• Case (DEREF INST);

(DEREF INST)

Γ,Γ′ `pc E ′ : link(t) ! spc

Γ,Γ′ = Γ′1, t : Q,Γ′′1 Q = Q′@[(c. x : T ′ inst viz)]@Q′′

Γ,Γ′ `pc E ′ : t.c : T ′∨ spc

Here, t;δ ;τ ′; i ` E ⇓ G must have been derived with (QUERY DEREF INST) or

(QUERY DEREF INST FAIL).

– Subcase (QUERY DEREF INST):

(QUERY DEREF INST)

t;δ ;τ ′; i ` E ′ ⇓ k

k ∈ 0..ρsz(t)−1

δ (t)(c) = inst[G0, . . . ,Gρsz(t)−1]

t;δ ;τ ′; i ` E ′ : t.c ⇓ Gk

We have t;δ ;τ ′; i ` E ′ ⇓ k and δ (t)(c) = inst([G0, . . . ,Gρsz(t)−1]), where

G = Gk.

By Lemma 122, δ = δ1@[(t 7→ τt)]@δ2 and τt |=out
ρsz(t)

Q. Since Q=Q′@[(c. x :

T ′ inst viz)]@Q′′, by Lemma 123 we have

τt = δ (t)= τ1@[(c 7→ inst([G0, . . . ,Gρsz(t)−1]))]@τ2 and ∅`inst Gi : ρsz(T ′)

for all i ∈ 0..ρsz(t)− 1 and value(Gi) for all i ∈ 0..ρsz(t)− 1 if det(T ′),

which implies ∅ `inst Gk : ρsz(T ′) and value(Gk) if det(T ′). The predicate

table(Q), which holds by the well-formedness of Γ, implies fv(T ′) = ∅,

262

so τ ′(T ′) = T ′. Since, obviously, Γ ` T ′ <: T ′ ∨ spc, by (SUBSUM) we

have ∅ `inst Gk : ρsz(T ′∨ spc), and so ∅ `inst Gk : ρsz(τ
′(T ′∨ spc)), where

value(Gk) if det(T ′∨ spc), as required.

– Subcase (QUERY DEREF INST FAIL):

(QUERY DEREF INST FAIL)

t;δ ;τ ′; i ` E ′ ⇓ fail
t;δ ;τ ′; i ` E ′ : t.c ⇓ fail
By assumption, fail checks against any type, so we have ∅ `pc fail :

ρsz(τ
′(T)). By induction hypothesis, we have ¬det(T), as required.

• Case (ITER):

(ITER) (where x /∈ fv(T ′))

Γ,Γ′ `static e : int ! det

Γ,Γ′,x :pc (mod(e) ! det) `pc F : T ′

Γ,Γ′ `pc [for x < e→ F] : T ′[e]

The judgment t;δ ;τ ′; i ` E ⇓ G must have been derived with (QUERY ITER):

(QUERY ITER)

t;δ ;τ ′; i ` e ⇓ m

t;δ ;τ ′,(x 7→ static(j)); i ` F ⇓ G j ∀ j ∈ 0..m−1

t;δ ;τ ′; i ` [for x < e→ F] ⇓ [G0, . . . ,Gm−1]

By Lemma 124 we have ρsz(τ
′(e)) = m. Since ∅ `static j : mod(m) ! det for

all j ∈ 0..m− 1, by (CONF VAR LOCAL), (ρsz;δ ;τ ′,(x 7→ static(j));η) |=loc
n

(Γ;Γ′,x :pc (mod(e) ! det)). By induction hypothesis, ∅ `pc m : int ! det and

∅ `pc G j : ρsz(τ
′(T ′)) for all j ∈ 0..m− 1, where value(G j) for all j ∈ 0..m− 1

if det(T). Hence, by (ARRAY), we have Γ `pc [G0, . . . ,Gm−1] : ρsz(τ
′(T ′))[m],

where value([G0, . . . ,Gm−1]) if det(T ′[m]), as required.

• Case (INDEX SIZEOF):

(INDEX SIZEOF)

Γ,Γ′ ` � Γ,Γ′ = Γ∗, t : Q,Γ∗∗

Γ,Γ′ `pc sizeof(t) : int ! det

In this case t;δ ;τ ′; i ` E ⇓ G must have been derived with (QUERY SIZEOF):

(QUERY SIZEOF)

ρsz(t) = n

t;δ ;τ; i ` sizeof(t) ⇓ n

263

We have V = ρsz(t). By Lemma 122, ρsz(t) ∈ N, so we have ∅ `pc ρsz(t) :

int ! det.

• Case (INDEX VAR):

(INDEX VAR) (for `≤ pc)

Γ,Γ′ ` � Γ,Γ′ = Γ1,x :` T,Γ2

Γ,Γ′ `pc x : T

In this case, t;δ ;τ ′; i ` E ⇓ G must have been derived with either (QUERY VAR

STATIC) or (QUERY VAR INST):

– Subcase (QUERY VAR STATIC):

(QUERY VAR STATIC)

τ(x) = static(G)

t;δ ;τ; i ` x ⇓ G

* If x ∈ dom(Γ) and ` = static, then by Lemma 120 (part 1), τ ′(x) =

static(G′) and ∅ `static G′ : ρsz(τ
′(T)) for some G′ such that value(G′)

if det(T). Since identifiers in τ ′ are unique, G = G′, so ∅ `static G :

ρsz(τ
′(T)) and value(G) if det(T) as required.

* If x ∈ dom(Γ) and ` = inst, then by Lemma 120 (part 2), τ ′(x) =

inst([G0, . . . ,Gρsz(t)−1]), which contradicts the assumption that identi-

fiers in τ ′ are unique, so this case is not possible.

* If x ∈ dom(Γ′), then by Lemma 120 (part 3), τ ′(x) = static(s) and

∅ `static s : ρsz(τ
′(T)) for some scalar s. Like in the first case, we have

G = s, so ∅ `static s : ρsz(τ
′(T)), as required.

– Subcase (QUERY VAR INST):

(QUERY VAR INST)

τ(x) = inst([G0, . . .Gρsz(t)−1])

t;δ ;τ; i ` x ⇓Vi

* If x ∈ dom(Γ) and ` = static, then by Lemma 120 (part 1), τ ′(x) =

static(G′), which contradicts the assumption that identifiers in τ ′ are

unique. Hence, this case is not possible.

* If x ∈ dom(Γ) and ` = inst, then by Lemma 120 (part 2), τ ′(x) =

inst([G′0, . . . ,G
′
ρsz(t)−1]) and ∅`inst G′j : ρsz(τ

′(T)) for all j∈ 0..ρsz(t)−
1. and value(G′j) for all j ∈ 0..ρsz(t)−1 if det(T). Again, since iden-

tifiers in τ ′ are unique, G′i = Gi. Hence, ∅ `inst Gi : ρsz(τ
′(T)).

264

* If x∈ dom(Γ′), then by Lemma 120 (part 3), τ ′(x)= static(G′), which,

again, contradicts the uniqueness of identifiers.

This yields the following result for top-level expressions in table columns:

Corollary 7 If Γ `pc E : T and fv(T) = ∅ and ¬rnd(T) and (ρsz,δ ,τ
′,η) |=int

n (Γ)

and t;δ ;τ ′; i ` E ⇓ G for some i ∈ 0..n−1 then ∅ `pc G : ρsz(τ(T)), where value(G) if

det(T).

Lemma 128 For any distribution signature Dspc : [x1 : T1, . . . ,xm : Tm](c1 : U1, . . . ,cn :

Un)→ T ′, the types T1, . . . ,Tm have no free variables and sizeof expressions, and types

U1, . . . ,Un have no sizeof expressions and for all i ∈ 1..n, fv(Ui)⊆ {x1, . . .xn}.

Proof: By inspection of the signatures of distributions.

All table-level databases obtained by evaluating well-typed tables conform to the

table types:

Lemma 129 If Γ`inst T : Q and Core(T) and table(Q) and fv(Q)=∅ and (δin(t),ρsz) |=ρsz(t)

Q and t;δin;δ ;τ ′;η ` T ⇓ τ and (ρsz,δ ,τ
′,η) |=int

ρsz(t)
Γ, then (τ,ρsz) |=out

ρsz(t)
Q.

Proof: By induction on the derivation of t;δin;δ ;τ ′;η ` T ⇓ τ:

• Case (VAL QUERY STATIC):

(VAL QUERY STATIC)

t;δ ;τ ′;0 ` ek ⇓ sk ∀k ∈ 1..m

(G1, . . . ,Gn) = arg miny1,...,yn ‖D[s1, . . .sm](y1, . . . ,yn)−η(c)‖
t;δin;δ ;τ ′,(x→ static(G j));η ` T ⇓ τ̂

t;δin;δ ;τ ′;η ` (c. x : T static viz (infer.D[e1, . . . ,em].c j(E ′))) :: T′ ⇓
τ̂@[c 7→ static(G j)]

– Subcase viz = output:

In this case, Γ `inst T : Q must have been derived with (TABLE CORE OUT-

PUT):

(TABLE CORE OUTPUT)

Γ `static E : T Γ,x :static T `inst T′ : Q′ c /∈ names(Q)

Γ `inst (c. x : T static output E) :: T′ : (c. x : T static output) :: Q′

265

where E = infer.D[e1, . . . ,em].c j(E ′).

Hence, we have Γ `static infer.D[e1, . . . ,em].c j(E ′) : T . This judgment must

have been derived with (INFER):

(INFER) (where σ(U),U{e1/x1} . . .{em/xm})
Dqry : [x1 : T1, . . . ,xm : Tm](c1 : U1, . . . ,cn : Un)→ T ′

Γ `static ei : Ti ∀i ∈ 1..m Γ `static E ′ : σ(T ′) j ∈ 1..n

{x1, . . . ,xm}∩ (
⋃

i fv(ei)) =∅ xi 6= x j for i 6= j

Γ `static infer.D[e1, . . . ,em].c j(E ′) : σ(U j)

followed by 0 or more applications of (SUBSUM). Hence, we have Γ `
σ(U j) <: T , which in fact implies σ(U j) = T , as U j is in qry-space by

inspection of the distribution signatures.

By inspection of the distribution signatures, fv(Tk) =∅, so by Corollary 7

and Lemma 128, we have ∅ `pc sk : ρsz(Tk).

As the arg min operator takes a minimum over well-typed values (or re-

turns a tuple of exceptions fail, which check against any type), we have

∅ `static G j : U j {s1/x1} . . .{sm/xm}.

As σ(U j) = T is a top-level column type, it can, by assumption, contain no

free variables. By Lemma 128, U j contains no table size references.

Thus, by Lemma 126, we have ρsz(T) = ρsz(σ(U j)) =U j {s1/x1} . . .{s1/x1},
so ∅ `static G j : ρsz(T).

By (CONF VAR STATIC), we have (ρsz;δ ;τ ′,(x 7→ static(G j));η) |=int
ρsz(t)

Γ,x :static T (recall that T = σ(U j) is not det, so G j can be fail). More-

over, (δin(t),ρsz) |=ρsz(t)
(c. x : T static output) :: Q′ must have been de-

rived with (CONF STATIC OUTPUT), which implies (δin(t),ρsz) |=ρsz(t)

Q′. Hence, by induction hypothesis, (τ̂,ρsz) |=out
ρsz(t)

Q′. Therefore, by

(CONF STATIC OUTPUT OUT), (τ̂,(c 7→ static(G j));ρsz) |=out
ρsz(t)

(c. x :

T static output) :: Q′.

– Subcase viz = local: similar.

• Case (VAL QUERY INST): similar to the previous case (with the reasoning re-

peated for every index).

• Case (VAL QUERYORDET STATIC):

266

(VAL QUERYORDET STATIC) (where space(T) 6= rnd, E 6= infer.D[e1, . . . ,em].c j(E ′)))

t;δ ;τ ′;0 ` E ⇓ G

t;δin;δ ;τ ′,(x→ static(G));η ` T′ ⇓ τ̂

t;δin;δ ;τ ′;η ` (c. x : T static viz E) :: T′ ⇓ τ̂@[c 7→ static(G)]

– Subcase viz = output:

Here, Γ `inst T : Q must have been derived with (TABLE CORE OUTPUT):

(TABLE CORE OUTPUT)

Γ `static E : T Γ,x :static T `inst T′ : Q′ c /∈ names(Q)

Γ `inst (c. x : T static output E) :: T′ : (c. x : T static output) :: Q′

By Corollary 7, we have ∅ `static G : ρsz(τ(T)) and value(G) if det(T). As

fv(T) = ∅, this implies ∅ `static G : ρsz(T) . By (CONF VAR STATIC),

(ρsz;δ ;τ ′,(x 7→ static(G));η) |=int
ρsz(t)

Γ,x :static T . By the derivation of

(δin(t),ρsz) |=ρsz(t)
(c. x : T static output) :: Q′ we have (δin(t),ρsz) |=ρsz(t)

Q′. By induction hypothesis, (τ̂;ρsz) |=out
ρsz(t)

Q′. Thus, by (CONF STATIC

OUTPUT OUT), (τ̂,(c 7→ static(G));ρsz) |=out
ρsz(t)

(c. x : T static output) ::

Q′, as required.

– Subcase viz = local: similar.

• Case (VAL QUERYORDET INST): similar to (VAL QUERYORDET STATIC).

• Case (VAL EMPTY):

(VAL EMPTY)

t;δin;δ ;τ ′;η ` [] ⇓ []

Here, Γ`inst T : Q must have been derived with (TABLE []), so we have ([],ρsz) |=out
ρsz(t)

[] by (CONF [] OUT).

• Case (VAL INPUT):

(VAL INPUT) (where space(T) 6= rnd)

t;δin;δ ;τ ′,(x→ δin(t)(c));η ` T′ ⇓ τ

t;δin;δ ;τ ′;η ` (c. x : T ` input ε) :: T′ ⇓ τ@[c 7→ δin(t)(c)]

Here, Γ `inst T : Q must have been derived with (TABLE INPUT), so Q = (c. x :

T ` input) :: Q′ for some Q′.

If `= static, then (δin(t),ρsz) |=ρsz(t)
(c. x : T static input) :: Q′ must have been

derived with (CONF STATIC INPUT), so (δin(t),ρsz) |=ρsz(t)
Q′ and δin(t)(c) =

267

static(V) for some V such that ∅ `static V : ρsz(T) (note that V cannot be fail,

as there are no exceptions in the input database). By the derivation of (δin(t),ρsz) |=ρsz(t)

(c. x : T static input) :: Q′ we have (δin(t),ρsz) |=ρsz(t)
Q′. Thus, by induc-

tion hypothesis, (τ ′;ρsz) |=out
ρsz(t)

Q′, so by (CONF STATIC INPUT OUT) we have

(τ ′,(c 7→ static(V));ρsz) |=out
ρsz(t)

(c. x : T ` input) :: Q′,

If ` = inst, then (δin(t),ρsz) |=ρsz(t)
(c. x : T inst input) :: Q′ must have been

derived with (CONF INST INPUT), so (δin(t),ρsz) |=ρsz(t)
Q′ and δin(t)(c) =

inst([V0, . . . ,Vρsz(t)−1]) for some V such that ∅`static Vi : ρsz(T) for all i∈ 0..ρsz(t)−
1. By the derivation of (δin(t),ρsz) |=ρsz(t)

(c. x : T inst input) :: Q′ we have

(δin(t),ρsz) |=ρsz(t)
Q′. Thus, by induction hypothesis, (τ ′;ρsz) |=out

ρsz(t)
Q′, so by

(CONF INST INPUT OUT) we have (τ ′,(c 7→ inst([V0, . . . ,Vρsz(t)−1]));ρsz) |=out
ρsz(t)

(c. x : T ` input) :: Q′,

• Case (VAL RANDOM):

(VAL RANDOM) (where space(T) = rnd)

t;δin;δ ;τ ′;η ` T′ ⇓ τ

t;δin;δ ;τ ′;η ` (c. x : T ` viz M) :: T′ ⇓ τ

– Case viz = output

In this case, Γ `inst (c. x : T ` output M) :: T′ : Q must have been derived

with (TABLE CORE OUTPUT), so Q = (c. x : T ` output) :: Q′ for some Q′

such that Γ,x :` T `inst T′ : Q′. By (CONF VAR RND), (ρsz;δ ;τ ′;η) |=int
ρsz(t)

Γ,x :` T . By the derivation of (δin(t);ρsz) |=ρsz(t)
(c. x : T ` output) :: Q′ we

have (δin(t);ρsz) |=ρsz(t)
Q′. Hence, (τ ′;ρsz) |=out

ρsz(t)
(c. x : T ` output) :: Q′,

follows by the induction hypothesis.

– Cases viz = input and viz = local are similar.

Finally, we obtain the conformance result for schemas:

Lemma 130 If Core(S) and Γ ` S : Sty and Γ only contains entries of the form (t : Q′)

and (ρsz;δ ; [];η) |=int Γ and (δin;ρsz) |= Sty and δin;δ `σ S ⇓ δout , then (δout ;ρsz) |=out

Sty.

Proof: By induction on the derivation of Γ ` S : Sty:

268

• Case (SCHEMA TABLE):

(SCHEMA TABLE)

Γ `inst T : Q table(Q) Γ, t : Q ` S′ : Sty′

Γ ` (t = T) :: S′ : (t : Q) :: Sty′

Since (δin;ρsz) |= Sty and δin,δ `σ S ⇓ δout must have been derived with (CONF

SCHEMA TABLE) and (QUERY SCHEMA TABLE) respectively, from inversion

of these rules we get ρsz(t) ∈ N and (δin(t);ρsz) |=ρsz(t)
Q and (δin;ρsz) |= Sty′

and t;δin;δ ;∅;σ(t) ` T ⇓ τ and δin;δ ,(t → τ) `σ S′ ⇓ δ ′out . where δout = (t 7→
τ) :: δ ′out .

As Γ only contains table entries, we have fv(Q) =∅. By Lemma 129, we have

(τ;ρsz) |=out
ρsz(t)

Q, so by (CONF SCHEMA TABLE), (ρsz;δ ,(t 7→ τ); [];η) |=int

Γ, t : Q. By induction hypothesis,(δ ′out ;ρsz) |=out Sty′, so by (CONF SCHEMA

TABLE OUT) we have ((t 7→ τ) :: δ ′out ;ρsz) |=out (t = Q) :: Sty′, as required.

• Case (SCHEMA []):

(SCHEMA [])

Γ ` �
Γ ` [] : []

The result follows immediately by (CONF [] OUT).

Restatement of Lemma 14 If Core(S) and ∅ ` S : Sty and (δin;ρsz) |= Sty and

δin; [] `σ S ⇓ δout , then (δout ;ρsz) |=out Sty.

Proof: Corollary of Lemma 130.

C.3 Progress Result for Query Semantics

Finally, we show that every well-typed schema with a conforming input database and

marginal map actually evaluates to an output database.

Restatement of Lemma 13 If ∅ ` S : Sty and Core(S) and (δin,ρsz) |= Sty and

(σ ,ρsz) |=marg S then δin, [] ` S ⇓σ δout for some δout .

269

As usual, we need some auxiliary results:

Lemma 131 If Core(S) and (σ ;ρsz) |=marg S and S=S′,(t 7→T),S′′, then (σ(t);ρsz) |=marg

T.

Proof: Follows immediately from the marginal map conformance rules.

Lemma 132 (1) If (ρsz,δ ,τ
′,η) |=int

n Γ′,x :static T,Γ′′ and rnd(T), then η(x)= static(ν)

(2) If (ρsz,δ ,τ
′,η) |=int

n Γ′,x :inst T,Γ′′ and rnd(T), then η(x) = inst([ν0, . . . ,νn−1])

Proof:

(1) By induction on the derivation of (ρsz,δ ,τ
′,η) |=int

n Γ′,x :static T,Γ′′

(2) By induction on the derivation of (ρsz,δ ,τ
′,η) |=int

n Γ′,x :inst T,Γ′′

Lemma 133 If Γ,Γ′ `static e : int ! det and (ρsz;δ ;τ ′;η) |=loc
n (Γ;Γ′), then for every

i ∈ 0..n−1, δ ;τ ′;η ; i ` e ⇓ G for some unique G such that value(G).

Proof: By case analysis on the structure of e:

• If e = c, the result is obvious.

• If e = sizeof(t), then Γ,Γ′ `static e : int !det must have been derived with (INDEX

SIZEOF), so Γ,Γ′ = Γ1, t : Q,Γ2. By Lemma 122, we have ρsz(t) ∈ N, so by

(QUERY SIZEOF), we have δ ,τ ′,η , i ` e ⇓ ρsz(t) for every i ∈ 0..n−1.

• If e = x, then Γ,Γ′ `static e : int ! det must have been derived with (INDEX VAR)

followed by zero or more applications of (SUBSUM). Hence, Γ,Γ′ = Γ1,x :static

U,Γ2, where Γ `U <: int ! det, which implies U = int ! det.

If x ∈ dom(Γ), then by Lemma 120 (part 1), we have τ ′(x) = static(G) and

value(G). If x ∈ dom(Γ′), we also have τ ′(x) = static(G) and value(G) by part

3 of Lemma 120. In either case, we have δ ,τ ′,η , i ` e ⇓ G by (QUERY VAR

STATIC) and since identifiers in τ ′ are unique, there is no other derivation, so the

G is unique.

270

We now prove the progress result for expressions: every well-typed expression in

an evaluation environment conforming to the type environment evaluates to a value

(which may, in general, be fail).

Lemma 134 If Γ,Γ′ `pc E : T and ¬rnd(T) and (ρsz;δ ;τ ′;η) |=loc
n (Γ;Γ′) then for all

i ∈ 0..n−1, δ ;τ ′;η ; i ` E ⇓ Gi for some Gi.

Proof: By induction on the derivation of Γ `pc E : T . Interesting cases:

• Case (DEREF INST):

(DEREF INST)

Γ,Γ′ `pc E ′ : link(t) ! spc

Γ,Γ′ = Γ1, t : Q,Γ2 Q = Q′@[(c. x : T ′ inst viz)]@Q′′

Γ,Γ′ `pc E ′ : t.c : T ′∨ spc

By induction hypothesis, we have δ ,τ ′,η , i ` E ′ ⇓ G′i for all i. By Lemma 127,

we have ∅ `pc G′i : mod(ρsz(t)) ! spc, so by inversion of typing we have either

G′i = ni (where 0≤ ni < ρsz(t)−1) or G′i = fail.

By Lemmas 122 and 123, we have δ (t)(c) = inst([G0, . . . ,Gρsz(t)−1]), so for

all i ∈ 0..n− 1, we have δ ,τ ′,η , i ` E ′ : t.c ⇓ Gni by (QUERY DEREF INST) or

δ ,τ ′,η , i ` E ′ : t.c ⇓ fail by (QUERY DEREF INST FAIL).

• Case (ITER):

(ITER) (where x /∈ fv(T ′))

Γ,Γ′ `static e : int ! det

Γ,Γ′,x :pc (mod(e) ! det) `pc F : T ′

Γ,Γ′ `pc [for x < e→ F] : T ′[e]

By Lemma 133, for any i, we have δ ,τ ′,η , i ` e ⇓G for some unique G such that

value(G). By Lemma 127, ∅ `pc G : int ! det, so G = m for some integer m.

By Lemma 124 we have ρsz(τ
′(e))=m, so by (CONF VAR LOCAL), (ρsz;δ ;τ ′,(x 7→

static(j));η) |=int
n (Γ;Γ′,x :pc (mod(e) ! det)) for all j ∈ 0..m−1. Hence, by in-

duction hypothesis, for every i we have δ ;τ ′,(x 7→ static(j));η ; i ` F ⇓ G j for

some G j for every j ∈ 0..m− 1. Thus, by (QUERY ITER), we have δ ,τ ′,η , i `
e ⇓ [G0, . . . ,Gm−1] for all i ∈ 0..n−1.

271

• Case (INDEX SIZEOF):

(INDEX SIZEOF)

Γ,Γ′ ` � Γ,Γ′ = Γ1, t : Q,Γ2

Γ,Γ′ `pc sizeof(t) : int ! det

By Lemma 122, we have ρsz(t)∈N, so by (QUERY SIZEOF), we have δ ,τ ′,η , i`
E ⇓ ρsz(t) for every i ∈ 0..n−1.

• Case (INDEX VAR):

(INDEX VAR) (for `≤ pc)

Γ,Γ′ ` � Γ,Γ′ = Γ1,x :` T,Γ2

Γ,Γ′ `pc x : T

– If x∈ dom(Γ) and `= static, then by Lemma 120, we have τ ′(x)= static(G),

so we get the required result by (QUERY VAR STATIC).

– If x ∈ dom(Γ) and `= static, then by Lemma 120, we have

τ ′(x)= inst([G0, . . . ,Gn−1]), so by (QUERY VAR STATIC) we get δ ,τ ′,η , i`
E ⇓ Gi for all i ∈ 0..n−1.

– If x ∈ dom(Γ′), then by Lemma 120, we have τ ′(x) = static(G), so the

desired result follows by (QUERY VAR STATIC).

Corollary 8 If Γ `pc E : T and ¬rnd(T) and (ρsz;δ ;τ ′;η) |=int
n Γ then for all i∈ 0..n−

1, we have δ ;τ ′;η ; i ` E ⇓ Gi for some Gi.

We now show the progress result for tables: every well-typed table with a con-

forming table-level input database evaluates in a well-formed evaluation environment

to some output table:

Lemma 135 If Γ`T : Q and Core(T) and table(Q) and fv(Q)=∅ and and (δin(t);ρsz) |=ρsz(t)

Q and (ρsz;δ ;τ ′;η) |=int
ρsz(t)

Γ and (η ;ρsz) |=marg T then t;δin;δ ;τ ′;η ` T ⇓ τout for

some τout .

Proof:

By induction on the derivation of Γ ` T : Q:

272

• Case (TABLE CORE OUTPUT):

(TABLE CORE OUTPUT)

Γ ``∧pc E : T Γ,x :`∧pc T `pc T′ : Q′ c /∈ names(Q)

Γ `pc (c. x : T ` output E) :: T′ : (c. x : T (`∧pc) output) :: Q′

– Subcase `= static:

If E = infer.D[e1, . . . ,em].c j(E ′), then Γ`static E : T must have been derived

with (INFER):

(INFER) (where σ(U),U{e1/x1} . . .{em/xm})
Dqry : [x1 : T1, . . . ,xm : Tm](c1 : U1, . . . ,cn : Un)→ T ′

Γ `static ei : Ti ∀i ∈ 1..m Γ `static E ′ : σ(T ′) j ∈ 1..n

{x1, . . . ,xm}∩ (
⋃

i fv(ei)) =∅ xi 6= x j for i 6= j

Γ `static infer.D[e1, . . . ,em].c j(E ′) : σ(U j)

followed by 0 or more applications of (SUBSUM). Hence, we have Γ `
σ(U j) <: T (which in fact implies σ(U j) = T , as U j is in qry-space by

inspection of the distribution signatures).

By Corollary 8, we have δ ;τ ′;η ; i ` ei ⇓ G′i for some G′i for all i ∈ 1..m.

By Corollary 7 and Lemma 128, ∅ `static G′i : Ti. Moreover, since all Ti

are scalar types and are in det-space, we have G′i = si for some si for all

i ∈ 1..m.

By the derivation of (η ;ρsz) |=marg T, we know that η(c) = static(ν),

where ν is a measure on B. Let:

(G0, . . . ,Gρsz(t)−1) = arg miny1,...,yn ‖D[s1, . . .sm](y1, . . . ,yn)−ν‖

(where Gi = fail for all i if the arg min does not exist).

As the arg min operator takes a minimum over well-typed values (or re-

turns a tuple of exceptions fail, which check against any type), we have

∅ `static G j : U j {s1/x1} . . .{sm/xm}.

As σ(U j) = T is a top-level column type, we have fv(T) =∅ by assump-

tion. By Lemma 128, σ(U j) also contains no table size references. Thus,

by Lemma 126, we have ρsz(T) = ρsz(σ(U j)) = U j {s1/x1} . . .{s1/x1}, so

∅ `static G j : ρsz(T).

By (CONF VAR STATIC), we have (ρsz;δ ;τ ′,(x 7→ static(G j));η) |=int
ρsz(t)

Γ,x :static T . By induction hypothesis, t;δin;δ ;τ ′,(x 7→ static(G j));η `
T′ ⇓ τ ′out for some τ ′out . Thus, by (VAL QUERY STATIC),

273

t;δin;δ ;τ ′;η ` (c . x : T static output infer.D[e1, . . . ,em].c j(E ′)) :: T′ ⇓
(c 7→ static(G j)) :: τ ′out .

If E 6= infer.D[e1, . . . ,em].c j(E ′) and ¬rnd(T), then by Corollary 8, we get

δ ;τ ′;η ;0 ` E ⇓ G for some G, where value(G) if det(T). By Corollary 7,

∅ `static G : ρsz(τ
′(T)).

By (CONF VAR STATIC), (ρsz;δ ;τ ′,(x 7→ static(G));η) |=int
ρsz(t)

Γ,x :static

T . Hence, by induction hypothesis, we have t;δin;δ ;τ ′,(x 7→ static(G));η `
T′ ⇓ τ ′out for some τ ′out . Thus, by (VAL QUERYORDET STATIC), t;δin;δ ;τ ′;η `
(c. x : T static output E) :: T′ ⇓ (c 7→ static(G)) :: τ ′out .

If rnd(T), then we have (ρsz;δ ;τ ′;η) |=int
ρsz(t)

Γ,x :static T by (CONF VAR

RND). Hence, t;δin;δ ;τ ′;η ` T′ ⇓ τ ′out follows by induction hypothesis,

and so t;δin;δ ;τ ′;η ` (c. x : T static output E) :: T′ ⇓ τ ′out by (VAL RAN-

DOM).

– Subcase `= inst: similar (repeating the reasoning for every row).

• Case (TABLE CORE LOCAL): similar to (TABLE CORE OUTPUT).

• Case (TABLE INPUT):

(TABLE INPUT)

Γ,x :`∧pc T `pc T′ : Q′ c /∈ names(Q′)

Γ `pc (c. x : T ` input ε) :: T′ : (c. x : T (`∧ pc) input) :: Q′

– Subcase `= static:

Here, (δin(t),ρsz) |=ρsz(t)
(c. x : T static input) :: Q′ must have been derived

by (CONF STATIC INPUT), so we have δin(t)(c) = static(V) (note that we

have value(V), as there are no exceptions in the database) and ∅ `pc V :

ρsz(T) and (δ (t),ρsz) |=n Q′ and ¬det(T).

First, suppose that ¬rnd(T). Since fv(T) = ∅ by the table predicate,

by (CONF VAR STATIC) we have (ρsz;δ ;τ ′,(x 7→ static(V));η) |=int
ρsz(t)

Γ,x :static T .

By induction hypothesis, we have t;δin;δ ;τ ′,(x 7→ static(V));η `T′ ⇓ τ ′out

for some τ ′out .

Hence, by (VAL INPUT), t;δin;δ ;τ ′;η ` (c . x : T static input ε) :: T′ ⇓
(c 7→ δin(t)(c)) :: τ ′out .

274

Meanwhile, if rnd(T), then, again, (ρsz;δ ;τ ′;η) |=int
ρsz(t)

Γ,x :static T by

(CONF VAR RND). Hence, t;δin;δ ;τ ′;η ` T′ ⇓ τ ′out by the induction hy-

pothesis, so t;δin;δ ;τ ′;η ` (c . x : T static input ε) :: T′ ⇓ τ ′out by (VAL

RANDOM).

– Subcase `= inst: similar

• Case (TABLE []):

(TABLE [])

Γ ` �
Γ `pc [] : []

Here, we get t;δin;δ ;τ ′;η ` [] ⇓ [] immediately by (VAL EMPTY).

We finally obtain the desired progress result for schemas.

Lemma 136 If Γ ` S : Sty and Core(S) and (δin,ρsz) |= Sty and (ρsz,δ) |=int Γ and

(σ ,ρsz) |=marg S then δin,δ ` S ⇓σ δout for some δout .

Proof: By straightforward induction on the derivation of Γ ` S : Sty, with appeal to

Lemma 135

Restatement of Lemma 13 If ∅ ` S : Sty and Core(S) and (δin,ρsz) |= Sty and

(σ ,ρsz) |=marg S then δin, [] ` S ⇓σ δout for some δout .

Proof: Corollary of Lemma 136.

275

Appendix D

Proof of Lemma 18 in Chapter 5

Restatement of Lemma 18 If Γ;~e;~f ;`∧pc` r ! Π and K = λE.(c.x : real!rnd[~e] ` viz E) ::

T and Γ,x :`∧pc real ! rnd[~e] `pc T : Q and Γ;~e;` ` vi : mod(fi) !det for all i ∈ 1..n, then

• If viz= output, then Γ`pc [[`;~e;~f ;~v;r;K]]† : [[Π]]@((c. x : real ! rnd[~e] (`∧pc) output)] ::

Q)

• If viz = local, then Γ `pc [[`;~e;~f ;~v;r;K]]† : [[Π]]@Q

Proof: By induction on the derivation of Γ;~e;~f ;`∧pc` r ! Π, with appeal to Lemma 17:

• Case:

(NOISE) (where~e = [e1, . . . ,en] and ~f = [f1, . . . , fn′] and σ(U),U{ê1/x1} . . .{êm′/xm′})
Drnd : [x1 : T1, . . .xm′ : Tm′](c1 : U1, . . . ,cm : Um)→ real ! rnd

Γ ` � Γ `static ei : int ! det ∀i ∈ 1..n Γ `static fi : int ! det ∀i ∈ 1..n′

Γ `static êi : Ti ∀i ∈ 1..m′ Γ;~e;`∧pc ` u j : σ(U j) ∀ j ∈ 1..m

{x1, . . . ,xm′}∩ (
⋃

i fv(êi)) =∅ xi 6= x j for i 6= j

Γ;~e;~f ;`∧pc ` D[ê1, . . . , êm′](u1, . . .um) ! ∅

Here, [[`;~e;~f ;~v;D[ê1, . . . , êm′](u1, . . .um);K]]† =K [for~z<~e→D([[u1]]~z, . . . , [[um]]~z)]=

(c. x : real ! rnd[~e] ` viz [for~z <~e→ D[ê1, . . . , êm′]([[u1]]~z, . . . , [[um]]~z)]) :: T and

Π =∅.

By Lemma 17 we have Γ,~z :`∧pc mod(~e)!det``∧pc [[u j]]~z : σ(U j) for all j ∈ 1..m.

Hence, by (RANDOM), we have

Γ,~z :`∧pc mod(~e) ! det ``∧pc D[ê1, . . . , êm′]([[u1]]~z, . . . , [[um]]~z) : real ! rnd, and so

by (CUBE ITER), Γ ``∧pc [for~z <~e→ D[ê1, . . . , êm′]([[u1]]~z, . . . , [[um]]~z)] : (real !

rnd)[~e]. This implies Γ ``∧pc [for ~z <~e→ D[ê1, . . . , êm′]([[u1]]~z, . . . , [[um]]~z)] :

(real ! rnd)[~e].

277

By assumption, Γ,x :`∧pc real ! rnd[~e] `pc T : Q.

– Subcase viz = output:

By (TABLE CORE OUTPUT), we have Γ`pc (c.x : real!rnd[~e] ` output [for~z<

~e→D[ê1, . . . , êm′]([[u1]]~z, . . . , [[um]]~z)]) ::T : (c. x : real ! rnd[~e] (`∧pc) output) ::

Q, as required.

– Subcase viz = local:

By (TABLE CORE LOCAL), we have Γ`pc (c.x : real!rnd[~e] ` local [for~z<

~e→ D[ê1, . . . , êm′]([[u1]]~z, . . . , [[um]]~z)]) :: T : Q, as required.

• Case:

(COEFF)

Γ;~e;`∧pc ` v : real ! rnd Γ;~f ; [];static ` r ! Π

Γ;~e;~f ;`∧pc ` v{α ∼ r} ! Π,α : (real!rnd)[~f]

We have

[[`;~e;~f ;~v;v{α ∼ r′};K]]†

= [[static;~f ; []; [];r′;λE ′.(α . y : real ! rnd[~f] static output E ′):: (K 〈y;~e;~v;v{α ∼ r′}〉)]]†

= [[static;~f ; []; [];r′;K′]]†

where K′= λE ′.(α .y : real!rnd[~f] static output E ′) :: (c.x : real!rnd[~e] ` viz 〈y;~e;~v;v{α ∼
r′}〉) :: T and 〈y;~e;~v;v{α ∼ r′}〉= [for~z <~e→ [[v]]~z× y[[[vn]]~z] . . . [[[v1]]~z]].

By Lemma 17 and weakening, we have Γ,y :static real!rnd[~f],~z :`∧pc mod(~e)``∧pc

[[v]]~z :`∧pc real ! rnd and Γ,y :static real ! rnd[~f] ``∧pc [[vi]]~z : mod(fi) ! rnd for all

i ∈ 1..n.

By (INDEX VAR), we also have Γ,y :static real ! rnd[~f],~z :`∧pc mod(~e) ``∧pc y :

real ! rnd[~f].

Hence, by (CUBE INDEX), Γ,y :static real!rnd[~f],~z :`∧pc mod(~e)``∧pc y[[[vn]]~z x] . . . [[[v1]]~z x] :

real ! rnd.

Therefore, by (PRIM),

Γ,y :static real ! rnd[~f],~z :`∧pc mod(~e) ``∧pc [[v]]~z×y[[[vn]]~z] . . . [[[v1]]~z] : real ! rnd,

and so by (CUBE ITER),

Γ,y :static real!rnd[~f]``∧pc [for~z<~e→ [[v]]~z× y[[[vn]]~z] . . . [[[v1]]~z]] : real!rnd[~e].

By the assumption Γ,x :`∧pc real ! rnd[~e] `pc T : Q and weakening, we have

Γ,y :static real ! rnd[~f],x :`∧pc real ! rnd[~e] `pc T : Q

278

– Subcase viz = output:

By (TABLE CORE OUTPUT), we have Γ,y :static real!rnd[~f]`pc (c.x : real!

rnd[~e] ` output 〈y;~e;~v;v{α ∼ r′}〉) :: T : (c. x : real ! rnd[~e] `∧pc output) ::

Q.

Since K′ = λE.(α . y : real ! rnd[~f] static output E) ::

(c. x : real ! rnd[~e] ` output 〈y;~e;~v;v{α ∼ r′}〉) :: T, by induction hypothe-

sis, we have Γ `pc [[static;~f ; []; [];r′;K′]]† :

[[Π]]@[(α . y : real ! rnd[~f] static output)]@((c. x : real ! rnd[~e] `∧pc output) ::

Q), as required.

– Subcase viz = local:

By (TABLE CORE LOCAL), we have Γ,y :static real ! rnd[~f] `pc (c.x : real !

rnd[~e] ` local 〈y;~e;~v;v{α ∼ r′}〉) :: T : Q.

Since K′ = λE.(α . y : real ! rnd[~f] static output E) ::

(c.x : real ! rnd[~e] ` local 〈y;~e;~v;v{α ∼ r′}〉) :: T, by induction hypothesis,

we have Γ`pc [[static;~f ; []; [];r′;K′]]† : [[Π]]@[(α . y : real ! rnd[~f] static output)]@Q,

as required.

• Case:

(SUM)

Γ;~e;~f ;`∧pc ` r1 ! Π Γ;~e;~f ;`∧pc ` r2 ! Π′

Γ;~e;~f ;`∧pc ` r1 + r2 ! Π,Π′

In this case, [[`;~e;~f ;~v;r1 + r2;K]]† =

[[`;~e;~f ;~v;r1;λE1.(_. y : real ! rnd[~e] ` local E1) ::

[[`;~e;~f ;~v;r2;λE2.(_. z : real ! rnd[~e] ` local E2) :: K [for~z <~e→ y[~z]+ z[~z]]]]†]],

where y /∈ fv(K)∪ fv(r2) and z /∈ fv(K) and K [for~z <~e→ y[~z]+ z[~z]] = (c. x :

real ! rnd[~e] ` viz [for~z <~e→ y[~z]+ z[~z]]) :: T.

By assumption, we have Γ,x :`∧pc real!rnd[~e]`pc T : Q, so by weakening, Γ,y :`∧pc

real ! rnd[~e],z :`∧pc real ! rnd[~e],x :`∧pc real ! rnd[~e] `pc T : Q.

By (CUBE INDEX) and (PRIM), Γ,y :`∧pc real!rnd[~e],z :`∧pc real!rnd[~e],~z : mod(~e)``∧pc

y[~z] + z[~z] : real ! rnd, and so, by (CUBE ITER), Γ,y :`∧pc real ! rnd[~e],z :`∧pc

real ! rnd[~e] ``∧pc [for~z <~e→ y[~z]+ z[~z]] : real ! rnd[~e].

– Subcase viz = output:

279

By (TABLE CORE OUTPUT), Γ,y :`∧pc real ! rnd[~e],z :`∧pc real ! rnd[~e] `pc

(c.x : real!rnd[~e] ` output [for~z<~e→ y[~z]+ z[~z]]) ::T : (c. x : real ! rnd[~e] `∧pc output) ::

Q.

By weakening, Γ,y :`∧pc real ! rnd[~e];~e;~f ;`∧pc ` r2 ! Π and Γ,y :`∧pc real !

rnd[~e];~e;`∧pc ` vi : mod(fi) ! rnd for all i ∈ 1..n.

By induction hypothesis,

Γ,y :`∧pc real ! rnd[~e] `pc [[`;~e;~f ;~v;r2;λE2.(_. z : real ! rnd[~e] ` local E2) ::

(c. x : real ! rnd[~e] ` output [for~z <~e→ y[~z]+ z[~z]]) :: T]]† : [[Π′]]@((c. x :

real ! rnd[~e] `∧pc output)) :: Q.

Hence, by applying the induction hypothesis again, we get

Γ`pc [[`;~e;~f ;~v;r1;λE1.(_. y : real ! rnd[~e] ` local E1) ::[[`;~e;~f ;~v;r2;λE2.(_.

z : real!rnd[~e] ` local E2) :: (c.x : real!rnd[~e] ` output [for~z<~e→ y[~z]+ z[~z]]) ::

T]]†]] : [[Π,Π′]]@((c. x : real ! rnd[~e] `∧pc output)) :: Q, as required.

– Subcase viz = local: similar.

• Case:

(GROUP)

Γ;~e;` ` v : mod(f) Γ;~e;(f :: ~f);` ` r′ ! Π

Γ;~e;~f ;` ` r′|v ! Π

We have [[x;~e;~f ;~v;r′|v;K]]† = [[x;~e; f :: ~f ;v ::~v;r′;K]]†.

By induction hypothesis, Γ`pc [[x;~e; f :: ~f ;v ::~v;r′;K]]† : [[Π]]@((c. x : real ! rnd[~e] `∧pc viz) ::

Q), if viz = output and Γ `pc [[x;~e; f :: ~f ;v ::~v;r′;K]]† : [[Π]]@Q, if viz = local, as

required.

• Case:

(RES)

Γ;~f ; [];static ` r1 ! Π Γ,y :static (real!rnd)[~f];~e;~f ;`∧pc ` r2 ! Π′

Γ;~e;~f ;`∧pc ` y∼ r1 in r2 ! Π,Π′

Here, [[`;~e;~f ;~v;y∼ r in r′;K]]† = [[`;~e;~f ;~v;y∼ r in r′;λE.(c.x : real!rnd[~e] ` viz E) ::

T]]† = [[static;~f ; []; [];r;λE ′.(_.y : real!rnd[~f] static local E ′) :: [[`;~e;~f ;~v;r′;λE.(c.

x : real ! rnd[~e] ` viz E) :: T]]†]]†, where y /∈ fv(K).

By assumption and weakening, Γ,y :static real ! rnd[~f],x :`∧pc real ! rnd[~e] `pc T :

Q and Γ,y :static real ! rnd[~f];~e;`∧pc ` vi : mod(fi) ! rnd for all i ∈ 1..n.

280

– Subcase viz = output:

By induction hypothesis, Γ,y :static real ! rnd[~f] `pc [[`;~e;~f ;~v;r′;λE.(c. x :

real ! rnd[~e] ` output E) :: T]]† : [[Π′]]@((c. x : real ! rnd[~e] `∧pc output) ::

Q).

By applying the induction hypothesis again, we get

Γ `pc [[static;~f ; []; [];r;λE ′.(_. y : real ! rnd[~f] static local E ′)

:: [[`;~e;~f ;~v;r′;λE.(c.x : real!rnd[~e] ` output E) ::T]]†]]† : [[Π,Π′]]@((c. x :

real ! rnd[~e] `∧pc output) :: Q), as required.

– Subcase viz = local: similar.

281

Appendix E

Proofs of Lemmas in Chapters 6 and 7

This appendix contains the proofs of Lemma 41 and proofs of measurability of PM,

OM, PV
M , peval and q, as well as a proof that Q is a probability kernel.

Restatement of Lemma 41 If (M,1,s)→ (M′,w, []) and M′ ⇓s′
w′ G, then M ⇓s@s′

w·w′ G.

Proof: By induction on the structure of M.

If M = E[fail] for some E 6= [], the result follows immediately by Lemma 39.

Now, let us assume that M 6= E[fail].

• Base case: M = R:

• If M = g(~c) or M = c V or M = T , then M reduces to a generalised value in 1

step, so the result holds trivially (by one of the evaluation rules).

• Case M = if true thenM2 elseM3: We have (if true thenM2 elseM3,1, [])→
(M2,1, []). By assumption, M2 ⇓s′

w′ G. Thus, the desired result holds by (EVAL

IF TRUE).

• Case M = if false then M2 else M3: analogous to the previous case.

• Case M = (λx.N1) V : We have ((λx.N1) V,1, []) → (N1{V/x},1, []). Since

(λx.N1) and V are already values and N1{V/x} ⇓s′
w′ G by assumption, (EVAL

APPL) yields (λx.N1) V ⇓s′
w′ G.

• Case M =D(~c): (M,1,s)→ (M′,w, []) must have been derived with (RED RAN-

DOM) or (RED RANDOM FAIL). In the former case, s = [c], M′ = c, and

w = pdfD(~c,c), where c > 0. The second assumption then takes the form c ⇓[]1 c,

so the required result follows from (EVAL RANDOM). The (RED RANDOM

FAIL) case is similar, with the result following from (EVAL RANDOM FAIL).

• Case M = score(c), c ∈ (0,1]: (M,1,s)→ (M′,w, []) must have been derived

with (RED SCORE), so M′ = true, w = c and s = []. Thus, the result then

283

follows from (EVAL SCORE).

• Induction step: M = E[R], E 6= [], R 6= fail:

• Case E = (λx.L) E ′: M = (λx.L) E ′[R].

We have ((λx.L) E ′[R],1,s)→ ((λx.L) E ′[N],w, []) for some N, so by Lem-

mas 26 and 27, (E ′[R],1,s)→ (E ′[N],w, []). By assumption, (λx.L) E ′[N] ⇓s′
w′ G.

• If (λx.L) E ′[N] ⇓s′
w′ G was derived with (EVAL APPL), then E ′[N] ⇓s1

w1 V and

(λx.L) V ⇓s2
w2 G, where w′ = w1w2 and s′ = s1@s2. By induction hypothesis,

E ′[R] ⇓s@s1
ww1 V , so (EVAL APPL) gives (λx.L) E ′[R] ⇓s@s′

ww′ G, as required.

• If (λx.L) E ′[N]⇓s′
w′ G was derived with (EVAL APPL RAISE3), then G= fail

and E ′[N] ⇓s′
w′ fail. By induction hypothesis, E ′[R] ⇓s@s′

ww′ fail, so by (EVAL

APPL RAISE3), (λx.L) E ′[R] ⇓s@s′
ww′ fail

• Case E = E ′ L: M = E ′[R] L:

We have (E ′[R] L,1,s)→ (E ′[N] L,w, []) for some N, so by lemmas 26 and 27,

(E ′[R],1,s)→ (E ′[N],w, []). By assumption, E ′[N] L ⇓s′
w′ G.

• If E ′[N] L ⇓s′
w′ G was derived with (EVAL APPL), then E ′[N] ⇓w1

s1 (λx.N′),

L ⇓w2
s2 V and N′ {V/x} ⇓w3

s3 G, where w′=w1w2w3 and s′= s1@s2@s3. By in-

duction hypothesis, E ′[R] ⇓s@s1
ww1 (λx.N′), so (EVAL APPL) gives E ′[R] L ⇓s@s′

ww′

G, as required.

• If E ′[N] L ⇓s′
w′ G was derived with (EVAL APPL RAISE1), then G = fail

and E ′[N] ⇓s′
w′ fail. By induction hypothesis, E ′[R] ⇓s@s′

ww′ fail, so by (EVAL

APPL RAISE1), E ′[R] L ⇓s@s′
ww′ fail

• If E ′[N] L ⇓s′
w′ G was derived with (EVAL APPL RAISE3), then E ′[N] ⇓s1

w1

(λx.N′) and L ⇓s2
w2 fail, where w′ = w1w2 and s′ = s1@s2. By induction

hypothesis, E ′[R]⇓s@s1
ww1 (λx.N′), so (EVAL APPL RAISE3) gives E ′[R] L⇓s@s′

ww′

fail, as required.

• If E ′[N] L ⇓s′
w′ G was derived with (EVAL APPL RAISE1), then G = fail

and E ′[N] ⇓s′
w′ c. By induction hypothesis, E ′[R] ⇓s@s′

ww′ c, so by (EVAL APPL

RAISE1), E ′[R] L ⇓s@s′
ww′ fail.

The proofs of measurability usually proceed by decomposing the functions into

simpler operations. However, unlike Toronto [2014], we do not define these func-

tions entirely in terms of general measurable operators, because the scope for reuse

is limited here. We would have, for instance, to define multiple functions projecting

different subexpressions of different expressions, and prove them measurable. Hence,

284

the overhead resulting from these extra definitions would be greater than the benefits.

A convenient way of showing that a function is Borel-measurable is to show that

it is continuous as a function between metric spaces. If we have a function between

products of metric spaces which is continuous with respect to the Manhattan product

metric, then it is measurable with respect to the σ -algebras induced by the Manhattan

metrics. We want to show that these σ -algebras are just products of σ -algebras induced

by individual metrics. To this end, we can use the following standard result in measure

theory:

Lemma 137 (Gallay [2009, Proposition 4.2 b)]) If (X1,d1) and (X2,d2) are separa-

ble metric spaces then

B(X1×X2) = B(X1)×B(X2)

where B(X) is the σ -algebra induced by the metric space (X ,d)

Functions in this chapter will be defined on subspaces of (Λ,M), (R,B) and

(U,S), and their products. We already know that (Λ,CΛ) is induced by the metric

on terms defined in Section 6.3.1 and that (U,S) is induced by a metric on traces.

Obviously, (R,B) is induced by the standard metric on R. It is easy to show that

(R,d) and (U,d) are separable. We can also show that this property holds for (Λ,d):

Lemma 138 ΛQ is a dense subset of (Λ,d)

Proof: We need to prove that

∀M ∈ Λ,ε > 0 ∃MQ ∈ ΛQ d(M,Mq)< ε

This can be easily shown by induction (the base case follows from the fact that Q
is a dense subset of R).

Corollary 9 The metric space (Λ,d) is separable.

It is clear that if a metric space (X ,d) is separable, then for all A⊆ X , the restricted

space (A,d) is also separable, so, for instance, (CΛ,d) is a separable metric space.

Corollary 10 The σ -algebra on CΛ×R×U induced by the Manhattan metric d de-

fined as:

d((M,w,s),(M′,w′,s′)), d(M,M′)+d(w,w′)+d(s,s′)

is M |CΛ×R×S .

285

Note: Throughout this appendix, we call a function between metric spaces “mea-

surable” if it is Borel measurable (with respect to σ -algebras induced by the metrics),

unless stated otherwise.

The following lemma will also be useful in proving measurability of PM, OM and

PV
M .

Lemma 139 (Billingsley [1995, ex. 13.1]) Let (Ω,Σ) and (Ω′,Σ′) be two measurable

spaces, T : Ω→Ω′ a function and A1,A2, . . . a countable collection of sets in Σ whose

union is Ω. Let Σn = {A | A ⊆ AN ,A ∈ Σ} be a σ -algebra in An and Tn : An → Ω′ a

restriction of T to An. Then T is measurable Σ/Σ′ if and only if Tn is measurable Σn/Σ′

for every n.

We can use Lemma 139 to split the space CΛ of closed expressions into subspaces

of expressions of different type, and restrict functions (such as the reduction relation)

to a given type of expression, to process different cases separately.

We write Subst(M,x,v) for M{V/x}, to emphasize the fact that substitution is a

function.

Detailed definition of substitution

Subst(c,x,V), c

Subst(x,x,V),V

Subst(x,y,V), y if x 6= y

Subst(λx.M,x,V), λx.M

Subst(λx.M,y,V), λx.(Subst(M,y,V)) if x 6= y

Subst(M N,x,V), Subst(M,x,V) Subst(N,x,V)

Subst(D(V1, . . . ,V|D|),x,V), D(Subst(V1,x,V), . . . ,Subst(V|D|,x,V))

Subst(g(V1, . . . ,V|g|),x,V), g(Subst(V1,x,V), . . . ,Subst(V|g|,x,V))

Subst(if W then M else L,x,V),

if Subst(W,x,V) then Subst(M,x,V) else Subst(L,x,V)

Subst(score(V ′),x,V), score(Subst(V ′,x,V))

Subst(fail,x,V), fail

For convenience, let us also define a metric on contexts:

286

d([·], [·]) , 0

d(EM,FN) , d(E,F)+d(M,N)

d((λx.M)E,(λx.N)F) , d(M,N)+d(E,F)

d(E,F) , ∞ otherwise

Lemma 140 d(E[M],F [N])≤ d(E,F)+d(M,N).

Proof: By induction on the structure of E.

If d(E,F) = ∞, then the result is obvious, since d(M′,N′)≤ ∞ for all M′,N′.

Now let us assume d(E,F) 6= ∞ and prove the result by simultaneous induction on

the structure on E and F :

• Case E = F = [·]: in this case, E[M] = M, F [N] = N, and d(E,F) = 0, so obvi-

ously d(E[M],F [N]) = d(E,F)+d(M,N)

• Case E = E ′ L1, F = F ′ L2:

We have d(E[M],F [N]) = d(E ′[M] L1,F ′[N] L2) = d(E ′[M],F ′[N])+d(L1,L2).

By induction hypothesis, d(E ′[M],F ′[N])≤ d(E ′,F ′)+d(M,N), so d(E[M],F [N])≤
d(E ′,F ′)+d(M,N)+d(L1,L2) = d(E,F)+d(M,N).

• Case E = (λx.L1) E ′, F = (λx.L2) F ′:

We have d(E[M],F [N])= d((λx.L1)(E ′[M]),(λx.L2)(F ′[N]))= d(λx.L1,λx.L2)+

d(E ′[M],F ′[N]). By induction hypothesis, d(E ′[M],F ′[N])≤ d(E ′,F ′)+d(M,N),

so d(E[M],F [N])≤ d(E ′,F ′)+d(λx.L1,λx.L2)+d(M,N)= d(E,F)+d(M,N).

Lemma 141 If d(E,F) = ∞, then for all R1, R2, d(E[R1],F [R2]) = ∞‘.

Proof: By induction on the structure of E:

• If E = [], then d(E,F) = ∞ implies F 6= []:

– If F = (λx.M) F ′, then d(E[R1],F [R2]) = d(R1,(λx.M) F ′[R2]) = ∞, be-

cause R1 is either not an application or of the form V1 V2, and F ′[R2] is not

a value.

287

– If F = F ′ N, then d(E[R1],F [R2]) = d(R1,F ′[R2] N) = ∞, because R1 is

either not an application or of the form V1 V2, and F ′[R2] is not a value.

• If E = (λx.M) E ′, then:

– If F = F ′ N, then d(E[R1],F [R2]) = d(λx.M,F ′[R2])+ d(E ′[R1],N) = ∞,

because d(λx.M,F ′[R2]) = ∞, asF ′[R2] cannot be a lambda-abstraction.

– If F = (λx.N) F ′, then d(E,F) = ∞ implies that either d(M,N) = ∞ or

d(E ′,F ′) = ∞. We have d(E[R1],F [R2]) = d(M,N)+d(E ′[R1],F ′[R2]). If

d(M,N)=∞, then obviously d(E[R1],F [R2])=∞. Otherwise, by induction

hypothesis, d(E ′,F ′)=∞ gives d(E ′[R1],F ′[R2])=∞, and so d(E[R1],F [R2])=

∞.

• If E = E ′ M and F = F ′ N, then d(E,F) = ∞ implies that either d(M,N) = ∞

or d(E ′,F ′) = ∞. We have d(E[R1],F [R2]) = d(M,N) + d(E ′[R1],F ′[R2]), so

d(E ′[R1],F ′[R2]) = ∞ follows like in the previous case.

The property also holds in all remaining cases by symmetry of d.

Lemma 142 d(E[R1],F [R2]) = d(E,F)+d(R1,R2).

Proof: If d(E,F) = ∞, then d(E[R1],F [R2]) = ∞ by Lemma 141, otherwise the proof

is the same as the proof of lemma 140, with inequality replaced by equality when ap-

plying the induction hypothesis.

Lemma 143 d(Subst(M,x,V),Subst(N,x,W))≤ d(M,N)+k ·d(V,W) where k is the

max of the multiplicities of x in M and N

Proof: By simultaneous induction on the structure of M and N.

Let C denote the set of contexts and G the set of primitive functions. Let:

• Λappl , {E[(λx.M)V] | E ∈ C ,(λx.M) ∈CΛ,V ∈ V }

• Λapplc , {E[c V] | E ∈ C ,c ∈ R,V ∈ V }

• Λiftrue , {E[if true then M else N] | E ∈ C ,M,N ∈CΛ}

288

• Λiffalse , {E[if false then M else N] | E ∈ C ,M,N ∈CΛ}

• Λfail , {E[fail] | E ∈ C \{[]}}

• Λprim(g), {E[g(~c)] | E ∈ C ,~c ∈ R|g|}

• Λprim ,
⋃

g∈G Λprim(g)

• AΛif , {E[if G then M else N] | E ∈ C ,M,N ∈CΛ,G ∈ G V }

• Λdist(D), {E[D(~c)] | E ∈ C ,~c ∈ R|D|}

• Λdist ,
⋃

D∈D Prnd(D)

• AΛprim ,
⋃

g∈G E[g(G1, . . . ,G|g|)] | E ∈ C ,G1, . . . ,G|g| ∈ G V }

• AΛdist ,
⋃

D∈D E[D(G1, . . . ,G|D|)] | E ∈ C ,G1, . . . ,G|D| ∈ G V }

• AΛscr , {E[score(c)] | E ∈ C ,c ∈ R}

• Λscr , {E[score(c)] | E ∈ C ,c ∈ (0,1]}

Lemma 144 All the sets above are measurable.

Proof: All these sets except for Λscr are closed, so they are obviously measurable. The

set Λscr is not closed (for example, we can define a sequence of points in Λscr whose

limit is score(0) /∈ Λscr), but it is still measurable:

Define a function iscr : AΛscr→ R by iscr(E[score(c)]) = c. This function is con-

tinuous and so measurable. Since the interval (0,1] is a Borel subset of R, i−1
scr((0,1]) =

Λscr is measurable.

Now, we need to define the set of erroneous redexes of all types.

• RΛif , AΛif \ (Λiftrue∪Λiffalse))

• RΛprim , AΛprim \Λprim

• RΛdist , AΛdist \Λdist

• RΛscr , AΛscr \Λscr

• Λerror , RΛif ∪RΛprim∪RΛdist∪RΛscr

Lemma 145 The set Λerror is measurable.

289

Proof: It is constructed from measurable sets by operations preserving measurability.

Define:

Λdet = Λappl∪Λcappl ∪Λiftrue∪Λiffalse∪Λfail∪Λprim∪Λerror

Lemma 146 Λdet is measurable.

Proof: Λdet is a union of measurable sets.

Lemma 147 G V is measurable.

Proof: It is easy to see that G V is precisely the union of sets of all closed expressions

of the form c, λx.M and fail, so it is closed, and hence measurable.

Lemma 148 V is measurable.

Proof: V is the union of sets of all closed expressions of the form c and λx.M, so it is

closed, and hence measurable.

E.1 Deterministic reduction as a measurable function

Let us define a function performing one step of the reduction relation. This function

has to be defined piecewise. Let us start with sub-functions reducing deterministic

redexes of the given type.

gappl : Λappl→CΛ

gappl(E[(λx.M) V]) = E[Subst(M,x,v)]

Lemma 149 gappl is measurable.

Proof: By Lemma 142, we have d(E[(λx.M)V],F [(λx.N)W]) = d(E,F)+d(M,N)+

d(V,W) and by Lemma 143, d(E[Subst(M,x,V)],F [Subst(N,x,W)])≤ d(E,F)+d(M,N)+

k ·d(V,W), where k is the maximum of the multiplicities of x in M and N.

290

For any ε > 0, take δ = ε

k+1 . Then, if d(E[(λx.M)V],F [(λx.N)W])< δ , then

d(E[Subst(M,x,V)],F [Subst(N,x,W)]) ≤ d(E,F)+d(M,N)+ k ·d(V,W)

≤ (k+1) · (d(E,F)+d(M,N)+d(V,W))

= (k+1) ·d(E[(λx.M)V],F [(λx.N)W])

< ε

Thus, gappl is continuous, and so measurable.

gapplc : Λapplc→CΛ

gapplc(E[c M]) = E[fail]

Lemma 150 gapplc is measurable.

Proof: It is easy to check that gapplc is continous.

gprim : Λprim→CΛ

gprim(E[g(~c)]) = E[σg(~c)]

Lemma 151 gprim is measurable.

Proof: By assumption, every primitive function g is measurable. gprim is a composi-

tion of a function splitting a context and a redex, g and a function combining a context

with a redex, all of which are measurable.

giftrue : Λiftrue→CΛ

giftrue(E[if true then M1 else M2]) = E[M1]

giffalse : Λiffalse→CΛ

giffalse(E[if false then M1 else M2]) = E[M2]

Lemma 152 giftrue and giffalse are measurable.

Proof: We have d(E[if true then M1 else N1],F [if true then M2 else N2]) =

d(E,F)+ d(M1,M2)+ d(N1,N2) ≥ d(E[M1],F [M2]), so giftrue is continuous, and so

measurable, and similarly for giffalse.

291

gfail : Λfail→CΛ

gfail(E[fail]) = fail

Lemma 153 gfail is measurable.

Proof: Obvious, since it is a constant function.

gerror : Λerror→CΛ

gerror(E[T]) = E[fail]

Lemma 154 gerror is measurable.

Proof: We have d(E[T1],F [T2])≥ d(E,F) = d(E[fail],F [fail]), so gerror is contin-

uous and hence measurable.

g′det : Λdet →CΛ

g′det = gappl∪gapplc∪gprim∪giftrue∪giffalse∪gfail∪gerror

Lemma 155 g′det is measurable.

Proof: Follows directly from Lemma 139.

Lemma 156 M det−→ N if and only if g′det(M) = N.

Proof: By inspection.

292

E.2 Small- step reduction as a measurable function

Let

Tval = G V ×R×U
Tdet = Λdet×R×U
Tscr = Λscr×R×U
Trnd = {(E[D(~c)],w,c :: s) |E ∈ C ,D ∈D ,~c ∈ R|D|,w ∈ R,s ∈ U,c ∈ R,

pdfD(~c,c)> 0}

Lemma 157 Tval, Tdet, Tscr and Trnd are measurable.

Proof: The measurability of Tval, Tdet and Tscr is obvious (they are products of

measurable sets), so let us focus on Trnd.

For each distribution D, define a function iD : Λrnd(D)×R× (U\{[]})→R|D|×R
by iD(E[D(~c)],w,c :: s) = (c,~c). This function is continuous, and so measurable. Then,

since for each D, pdfD is measurable by assumption, the function jd = pdfD ◦iD is mea-

surable. Then, Trnd =
⋃

D∈D j−1
D ((0,∞)), and since the set of distributions is countable,

Trnd is measurable.

Let T =CΛ×R×U and let Tblocked = T \ (Tval∪Tdet∪Tscr ∪Trnd) be the set

of non-reducible (“stuck”) triples, whose first components are not values. Obviously,

Tblocked is measurable.

Define:

gval : Tval→T

gval(G,w,s) = (fail,0, [])

Obviously, gval is measurable.

gdet : Tdet→T

gdet(M,w,s) = (g′det(M),w,s)

Lemma 158 gdet is measurable.

Proof: All components of gdet are measurable.

293

grnd : Trnd→T

grnd , (g1,g2,g3)

g1(E[D(~c)],w,c :: s) , E[c]

g2(E[D(~c)],w,c :: s) , w ·pdfD(~c,c),

g3(E[D(~c)],w,c :: s) , s

Lemma 159 grnd is measurable.

Proof: For g1, we have d(E[c],E ′[c′]) ≤ d(E,E ′)+ d(c,c′) ≤ d(E,E ′)+ d(~c,~c′)+

d(w,w′)+d(s,s′) = d((E[D(~c)],w,c :: s),(E ′[D(~c′)],w′,c′ :: s′)) and d((E[D(~c)],w,c ::

s),(E ′[E(~c′)],w′,c′ :: s′))=∞ if D 6=E, so g1 is continuous and hence Borel-measurable.

For g2, we have g2(E[D(~c)],w,c :: s)= gw(E[D(~c)],w,c :: s)×(pdfD ◦gc)(E[D(~c)],w,c ::

s), where gw(E[D(~c)],w,c :: s) = w and gc(E[D(~c)],w,c :: s) = (~c,c). The continuity

(and so measurability) of gw and gc can be easily checked (as for g1 above). Thus,

pdfD ◦gc is a composition of measurable functions (since distributions are assumed to

be measurable), and so g2 is a pointwise product of measurable real-valued functions,

so it is measurable.

The continuity (and so measurability) of g3 can be shown in a similar way to g1.

Hence, all the component functions of grnd are measurable, so grnd is itself mea-

surable.

gscr : Tscr→T

gscr(E[score(c)],w,s) , (E[true],c ·w,s)

Lemma 160 gscr is measurable.

Proof: The first component function of gscr can easily be shown continuous, and so

measurable, and ditto for the third component. The second component is a pointwise

product of two measurable functions, like in the grnd case. Hence, gscr is measurable.

For completeness, we also define:

294

gblocked : Tblocked→T

gblocked(M,w,s) , (fail,0, [])

This function is trivially measurable.

Define

g : T →T

g , gval∪gdet∪gscr∪gblocked

Lemma 161 g is measurable.

Proof: Follows from Lemma 139.

Lemma 162 For every (M,w,s) ∈T ,

(1) If (M,w,s)→ (M′,w′,s′), then g(M,w,s) = (M′,w′,s′).

(2) If g(M,w,s) = (M′,w′,s′) 6= (fail,0, []) , then (M,w,s)→ (M′,w′,s′).

Proof: By inspection.

E.3 Measurability of P and O

It is easy to check that the sets G V and R+ (nonnegative reals) form ωCPOs with the

orderings fail ≤M for all M and 0 ≤ x, respectively. This means that functions into

G V and R+ also form ωCPOs with pointwise ordering.

Define:

ΘΛ(f)(M,w,s),

M if M ∈ G V ,s = []

f (g(M,w,s)) otherwise

Θw(f)(M,w,s),

w if M ∈ G V ,s = []

f (g(M,w,s)) otherwise

It can be shown that these functions are continuous, so we can define:

⊥Λ = (M,w,s) 7→ fail

295

⊥w = (M,w,s) 7→ 0

O′(M,s), sup
n

Θ
n
Λ(⊥Λ)(M,1,s)

P′(M,s), sup
n

Θ
n
w(⊥w)(M,1,s)

Lemma 163 If (M,w0,s)⇒ (G,w, []), then supn Θn
w(⊥w)(M,w0,s)=w and supn Θn

Λ
(⊥Λ)(M,w0,s)=

G.

Proof: By induction on the derivation of (M,w0,s)⇒ (G,w, []):

• If (M,w0,s)→0 (G,w, []), and so M ∈ G V and s = [], then the equalities follow

directly from the definitions of Θw and ΘΛ.

• If (M,w0,s)→ (M′,w′,s′)⇒ (G,w, []), assume that supn Θn
w(⊥w)(M′,w′,s′)=w

and supn Θn
Λ
(⊥Λ)(M′,w′,s′)=G, We have M /∈G V . By Lemma 162, g(M,w0,s)=

(M′,w′,s′). Hence

sup
n

Θ
n
w(⊥w)(M,w0,s) = sup

n
Θ

n
w(⊥w)(g(M,w0,s))

= sup
n

Θ
n
w(⊥w)(M′,w′,s′) = w

by induction hypothesis. Similarly, supn Θn
Λ
(⊥Λ)(M,w0,s) = G.

Corollary 11 If (M,1,s)⇒ (G,w, []), then P′(M,s) = w and O′(M,s) = G.

Lemma 164 If supn Θn
w(⊥w)(M,w0,s) = w 6= 0, then (M,w0,s)⇒ (G,w, []) for some

G ∈ G V .

Proof: Because the supremum is taken with respect to a flat ωCPO, supn Θn
w(⊥w)(M,w0,s)=

w > 0 implies Θk
w(⊥w)(M,w0,s) = w for some k > 0. We can then prove the result by

indiction on k:

• Base case, k = 1: We must have Θw(⊥w)(M,w0,s) = w0, M = G ∈ G V and

s = [] as otherwise we would obtain ⊥w(M,w0,s) = 0. Hence (M,w0,s) reduces

to (G,w0, []) in 0 steps.

296

• Induction step: Θk+1
w (⊥w)(M,w0,s) = w. If M ∈ G V and s = [], then w = w0

and (M,w0,s) reduces to itself in 0 steps, like in the base case. Otherwise, we

have Θk
w(⊥w)((M′,w′,s′)) = w, where g(M,w0,s) = (M′,w′,s′). We know that

(M′,w′,s′) 6= (fail,0, []), because otherwise we would have w = 0. Thus, by

Lemma 162, (M,w0,s)→ (M′,w′,s′). By induction hypothesis, (M′,w′,s′)⇒
(G,w, []), which implies (M,w0,s)⇒ (G,w, []).

Lemma 165 If supn Θn
Λ
(⊥w)(M,w0,s) =V ∈ V , then (M,w0,s)⇒ (V,w, []) for some

w ∈ R.

Proof: Similar to the proof of Lemma 164.

Corollary 12 If there are no G,w such that (M,1,s)⇒ (G,w, []), then P′(M,s) = 0

and O′(M,s) = fail.

Corollary 13 For any M, PM = P′(M, ·) and OM = O′(M, ·).

Lemma 166 If (X ,Σ1) and (Y,Σ2) are measurable spaces, Y forms a flat ωCPO with a

bottom element⊥ such that {⊥} ∈ Σ2 and f1, f2, . . . is a ω-chain of Σ1/Σ2 measurable

functions (on the ωCPO with pointwise ordering), then supi fi is Σ1/Σ2 measurable.

Proof: Since f−1(A∪{⊥}) = f−1(A)∪ f−1({⊥}), we only need to show that

(supi fi)
−1({⊥}) ∈ Σ1 and (supi fi)

−1(A) ∈ Σ1 for all A ∈ Σ2 such that ⊥ /∈ A.

We have (supi fi)
−1({⊥}) =

⋂
i f−1

i ({⊥}), which is measurable by definition. If

⊥ /∈ A, then supi fi(x) ∈ A if and only if fi(x) ∈ A for some i, so by extensionality of

sets, supi f−1
i (A) =

⋃
i f−1

i (A)⊆ Σ1.

Lemma 167 P′ is measurable (M |CΛ×S)/R|R+ .

Proof: First, let us show by induction on n that Θn
w(⊥w) is measurable for every n:

• Base case, n = 0: Θ0
w(⊥w) =⊥w is a constant function, and so trivially measur-

able.

297

• Induction step: suppose Θn
w(⊥w) is measurable. Then we have Θn+1

w (⊥w) =

Θw(Θ
n
w(⊥w)), so it is enough to show that Θw(f) is measurable if f is measur-

able:

The domain of the first case is G V ×R×{[]}, which is clearly measurable. The

domain of the second case is measurable as the complement of the above set in

T .

The sub-function corresponding to the first case returns the second component

of its argument, so it is continuous and hence measurable. The second case is a

composition of two measurable functions, hence measurable.

Thus, Θw(f) is measurable for any measurable f , and so Θn+1
w (⊥w) is measur-

able.

By Lemma 166, supn Θn
w(⊥w) is measurable. Since P′ is a composition of supn Θn

w(⊥w)

and a continuous function mapping (M,s) to (M,1,s), it is a composition of measur-

able functions, and so it is measurable.

Lemma 168 O′ is measurable (M |CΛ×S)/M |G V .

Proof: Similar to the proof of Lemma 167.

Restatement of Lemma 44 For any closed term M, the function PM is measurable

S /R|R+ .

Proof: Since P′ is measurable, PM = P′(M, ·) is measurable for every M ∈CΛ.

Restatement of Lemma 43 For each M, the function OM is measurable S /M |G V .

Proof: Since O′ is measurable, OM = O′(M, ·) is measurable for every M ∈CΛ.

Lemma 169 For all M, s, PV
M(s) = PM(s)[OM(s) ∈ V]

Proof: By Lemma 42, if M ⇓w
s G, then w, G are unique. If M ⇓w

s V , then PM(s) = w,

PV
M(s) and OM(s)∈V , so the equality holds. If M ⇓w

s fail, then PM(s)=w, PV
M(s)= 0

and OM(s) /∈ V), so both sides of the equation are 0. If there is no G such that M ⇓w
s G,

then both sides are also 0.

298

Restatement of Lemma 46 PV
M is measurable S /R+ for every M.

Proof: By Lemma 169, PV
M(s) = PM(s)[OM(s) ∈ V] , so PV

M is a pointwise product of

a measurable function and a composition of OM and an indicator function for a mea-

surable set, hence it is measurable.

To simplify the notation, let us write Rn(M,w,s) for Φn(⊥w)(M,w,s) in the subse-

quent lemmas.

Lemma 170 For every M ∈CΛ, n≥ 1, w≥ 0 and s, Rn(M,w,s) = wRn(M,1,s).

Proof: By induction on n:

• Base case: n = 1

We have R(M,w,s) = w if M ∈ G V and s = [] and R(M,w,s) = 0 otherwise.

In the former case, we also have R(M,1,s) = 1, so obviously wR(M,1,s) = w =

R(M,w,s). In the latter case, R(M,1,s) = 0, so also wR(M,1,s) = 0 = R(M,w,s)

• Induction step:

Suppose the hypothesis holds for some n. By definition of Rn, we have:

Rn+1(M,w,s) =

w if M ∈ G V ,s = [].

Rn(g(M,w,s)) otherwise

If M ∈ G V , s = [], then we have Rn+1(M,1,s) = 1, so wRn+1(M,1,s) = w =

Rn+1(M,w,s).

Otherwise, we have Rn+1(M,1,s) = Rn(g(M,1,s)) and g(M,w,s) = (M′,w′,s′)

for some M′, w′ ≥ 0 and s′.

If w > 0, then g(M,1,s) = (M′,w′/w,s′) by Lemma 29 and Lemma 162 (it is

easy to check that if (M′,w′,s′) = (fail,0, []), then g(M,1,s) = (fail,0, []), as

success or failure of reduction does not depend on the initial weight). By in-

duction hypothesis, Rn(M′,w′/w,s′) = (w′/w)Rn(M′,1,s′) and Rn(M′,w′,s′) =

w′Rn(M′,1,s′). Hence, we have Rn+1(M,w,s) = Rn(M′,w′,s′) = w′Rn(M′,1,s′)

and wRn+1(M,1,s) = wRn(M′,w′/w,s′) = w′Rn(M′,1,s′), so Rn+1(M,w,s) =

w′Rn(M′,1,s′), as required.

Meanwhile, if w = 0, then obviously w′ = 0, so Rn+1(M,w,s) = Rn(M′,0,s′) = 0

by induction hypothesis.

299

Corollary 14 For every M ∈CΛ, n≥ 1, Rn(M,0,s) = 0.

Lemma 171 For any M ∈CΛ and n≥ 1,
∫

Rn(M,1,s)ds≤ 1.

Proof: By induction on n:

• Base case: n = 1:
∫

Rn(M,1,s)ds≤ 1. We have:

R1(M,1,s) =

1 if M ∈ G V ,s = [].

0 otherwise

Thus:
∫

R1(M,1,s)ds =
∫
{[]}R1(M,1,s)ds = R1(M,1, []) = [M ∈ G V]. This

immediately gives
∫

R1(M,1,s)ds≤ 1.

• Induction step: Suppose
∫

Rn(N,1,s)ds≤ 1 for every closed N and some n≥ 1.

We need to show
∫

Rn+1(M,1,s)ds ≤ 1 for every closed M. We must consider

several cases:

– Case M = E[D(~c)]:

We have g(E[D(~c)],1, []) = (fail,0, []) and

g(E[D(~c)],1,c :: s)= (E[c],pdfD(~c,c),s) if pdfD(~c,c)> 0 and g(E[D(~c)],1,c ::

s) = (E[fail],0,s) if pdfD(~c,c) = 0.

We have Rn+1(E[D(~c)],1, [])=Rn(E[fail],0, [])= 0 by Corollary 14. Mean-

while, by Lemma 170, Rn(E[c],pdfD(~c,c),s) = pdfD(~c,c)R
n(E[c],1,s) and

by Corollary 14, Rn(E[fail],0,s)=Rn(E[c],0,s)= 0, so Rn+1(E[D(~c)],1,c ::

s) = pdfD(~c,c)R
n(E[c],1,s) for all c ∈ R.

300

Hence, we have:∫
Rn+1(E[D(~c)],1,s)µ(ds)∫

U\{[]}
Rn+1(E[D(~c)],1,s)µ(ds)

=
∞

∑
i=1

∫
Ri

Rn+1(E[D(~c)],1,s)µ(ds)

(by Thm 16.9 from [Billingsley, 1995])

=
∞

∑
i=1

∫
Ri

Rn+1(E[D(~c)],1,s) λ
i(ds)

(by Lemma 187)

=
∞

∑
i=1

∫
Ri

pdfD(~c,c)R
n(E[c],1,s2..i)λ

i(ds)

=
∞

∑
i=1

∫
R

pdfD(~c,c)
∫
Ri−1

Rn(E[c],1,s′) λ
i−1(ds′) λ (dc)

(by Fubini’s theorem)

=
∫
R

pdfD(~c,c)
∞

∑
i=0

∫
Ri

Rn(E[c],1,s′) λ
i(ds′) λ (dc)

(by Lemma 185)

=
∫
R

pdfD(~c,c)
(∫

Rn(E[c],1,s′) µ(ds′)
)

λ (dc)

≤
∫
R

pdfD(~c,c) λ (dc)

(by induction hypothesis)

≤ 1

where the last inequality follows from the assumption that each distribution

D is a subprobability measure with density pdfD.

– Case M = E[score(c)], c ∈ (0,1]:

In this case, g(E[score(c)],1,s) = g(E[true],c,s), and so for any s, we

have Rn+1(E[score(c)],1,s) = Rn(E[true],c,s) = cRn(E[true],1,s) by

Lemma 170. Hence
∫

Rn+1(E[score(c)],1,s)ds=
∫

cRn(E[true],1,s)ds=

c
∫

Rn(E[true],1,s)ds≤ c by induction hypothesis.

Thus,
∫

Rn+1(E[score(c)],1,s)ds≤ 1, as required.

– Case M ∈ Λdet :

We have g(M,1,s)= (N,1,s) for some fixed N for every s, and so Rn+1(M,1,s)=

Rn(N,1,s). Thus
∫

Rn+1(M,1,s)ds =
∫

Rn(N,1,s)ds≤ 1 by induction hy-

pothesis.

301

– Case M ∈G V : Here, g(M,1,s)= (fail,0, []) for every s. We have Rn+1(M,1, [])=

1 and Rn+1(M,1,s)=Rn(fail,0, [])= 0 if s 6= []. Thus:
∫

Rn+1(M,1,s)ds=

Rn+1(M,1, []) = 1.

Lemma 172 For every closed M and s, supn Rn(M,1,s) = limn→∞ Rn(M,1,s), where

the supremum is taken with respect to the flat ωCPO on reals.

Proof:

If supn Rn(M,1,s) = w > 0, then, since the supremum is taken with respect to a flat

ωCPO, we must have w = Rk(M,1,s) for some k. It is easy to check that Rl(M,1,s) =

Rk(M,1,s) = w for all l ≥ k, so limn→∞ Rn(M,1,s) = w.

If supn Rn(M,1,s)= 0, then we must have Rk(M,1,s)= 0 for all k, so limn→∞ Rn(M,1,s)=

0.

Lemma 173 For every closed M,
∫

PM(s)ds≤ 1

Proof: For every s, we have PM(s)= supn Rn(M,1,s)= limn→∞ Rn(M,1,s) by Lemma 172.

The sequence of function Rn is obviously pointwise non-decreasing. Hence,
∫

PM(s)ds=

limn→∞

∫
Rn(M,1,s)ds by the monotone convergence theorem. This implies

∫
PM(s)ds≤

1 by Lemma 171.

Lemma 174 For every closed M,
∫

PV
M(s)ds≤ 1

Proof: Obviously, PV
M(s)≤ PM(s) for every s, so

∫
PV

M(s)ds≤
∫

PM(s)ds≤ 1.

Restatement of Lemma 45 〈〈M〉〉 is a subprobability measure on (U,S).

Proof: Since PM(s) is nonnegative for every s, the function 〈〈M〉〉 is a measure of

density PM with respect to the stock measure µ [Gallay, 2009, Section 2.3.3]. By

Lemma 173, it is a subprobability measure.

Restatement of Theorem 5 JMKU is a subprobabiilty measure on (G V ,M |G V).

302

Proof: The function JMKU is a transformation of the measure 〈〈M〉〉 on (U,S) by the

S /M |G V -measurable function OM, so it is a measure on (G V ,M |G V) [Billingsley,

1995, Section 13, Transformations of Measures]. Since 〈〈M〉〉(U) ≤ 1 by Lemma 45,

JMKU(G V) = 〈〈M〉〉(O−1
M (G V)) = 〈〈M〉〉(U)≤ 1.

Restatement of Lemma 47 For every closed M, 〈〈M〉〉V is a subprobability measure

on (U,S)

Proof: As PV
M(s) is nonnegative for every s, 〈〈M〉〉V is a measure of density PV

M with

respect to the stock measure µ . By Lemma 174, it is a subprobability measure.

Restatement of Lemma 48 For every closed M, JMKU|V is a subprobability mea-

sure on (G V ,M |G V)

Proof: Since JMKU|V (A) = 〈〈M〉〉V (O−1
M (A)), JMKU|V (A) is a transformation of the

measure 〈〈M〉〉V by the S /M |G V -measurable function OM, so it is a measure on

(G V ,M |G V). We have JMKU|V (G V) = 〈〈M〉〉V (O−1
M (G V)) = 〈〈M〉〉V (U) ≤ 1, by

Lemma 47, so JMKU|V is a subprobability measure.

E.4 Measurability of peval

Like in the previous section, we start by giving an alternative definition of peval, using

the function g instead of referring to the reduction relation directly.

The set of closed terms CΛ is a ωCPO with respect to the partial order defined by

fail≤ G for all G. Hence the set F of all functions (CΛ×R×U)→CΛ is a ωCPO
with respect to the pointwise order. Define Φ : F→ F as:

Φ(f)(M,w,s) =

M if s = []

f (g(M,w,s)) otherwise

It is easy to check that Φ is monotone and preserves suprema of ω-chains, so it is

continuous. Hence, we can define:

peval′(M,s) = sup
k

Φ
k(⊥Λ)(M,1,s)

303

where ⊥Λ(M,w,s) = fail, as before.

We first need to show that the original peval function is well-defined.

Lemma 175 If (M,w0,s)⇒ (Mk,wk,sk)→ (M′,w′, []) and sk 6= [] and (M,w0,s)⇒
(Ml,wl,sl)→ (M′′,w′′, []) and sl 6= [], then M′ = M′′ and w′ = w′′.

Proof: By induction on the derivation of (M,w0,s)⇒ (Mk,wk,sk):

• If (M,w0,s)⇒ (Mk,wk,sk) was derived in 0 steps, we have Mk = M, wk = w and

sk = s, and so (M,w0,s)→ (M′,w′, []), where s 6= [].

If (M,w0,s)⇒ (Ml,wl,sl) was derived in 0 steps, then (Ml,wl,sl) = (M,w0,s),

and so M′′ = M′ and w′′ = w′ by Lemma 25.

If (M,w0,s)⇒ (Ml,wl,sl) was derived in 1 or more steps, we have (M,w0,s)→
(M̂, ŵ, ŝ)⇒ (Ml,wl,sl)→ (M′′,w′′, []) and sl 6= [], for some M̂, ŵ, ŝ. By Lemma

25, ŝ = []. We have (M̂, ŵ, []) ⇒ (Ml,wl,sl), where sl 6= []. This leads to a

contradiction, as it is easy to show that reducing a term with an empty trace

cannot yield a triple with a non-empty trace (there is no rule which adds an

element to a trace)

• If (M,w0,s)⇒ (Mk,wk,sk) was derived in 1 on more steps, we have (M,w0,s)→
(M∗,w∗,s∗)→k (Mk,wk,sk)→ (M′,w′, []) for some k ≥ 0, M∗, w∗, s∗. Now, if

(M,w0,s)⇒ (Ml,wl,sl) was derived in 1 or more steps, we have (M,w0,s)→
(M̂,Ŵ , ŝ) ⇒ (Ml,wl,sl) → (M′′,w′′, []) and sl 6= [] for some M̂, ŵ, ŝ, where

(M̂,Ŵ , ŝ) = (M∗,w∗,s∗) by Lemma 25. Hence, the result follows by the in-

duction hypothesis.

If (M,w0,s)⇒ (Ml,wl,sl) was derived in 0 steps, then (Ml,wl,sl) = (M,w0,s),

and so (M,w0,s)→ (M′′,w′′, []). By Lemma 25, this implies s∗= [], so (M∗,w∗, [])⇒
(Mk,wk,sk) for sk 6= [], which is impossible, as explained in the previous case.

Lemma 176 If (M,w0,s)⇒ (Mk,wk,sk)→ (M′,w′, []) and sk 6= [], then supn Φn(⊥Λ)(M,w0,s)=

M′.

Proof: By induction on the length of derivation of (M,w0,s)⇒ (Mk,wk,sk)→ (M′,w′, []).

Suppose (M,w0,s)→k (Mk,wk,sk)→ (M′,w′, []).

304

• Base case, k = 0: We have (M,w0,s)→ (M′,w′, []) and s 6= []. Hence, by Lemma

162, g(M,w0,s)= (M′,w′, []), and so, by monotonicity of Φ, supk Φk(⊥Λ)(M,w0,s)=

supk Φ(Φ(Φk(⊥Λ)))(M,w0,s) = supk Φ(Φk(⊥Λ))(M′,w′, []) = M′, as required.

• Induction step: Let (M,w0,s)→k+1 (Mk,wk,sk)→ (M′,w′, []). Then there ex-

ist M∗, w∗, s∗ such that (M,w0,s)→ (M∗,w∗,s∗)→k (Mk,wk,sk)→ (M′,w′, []).

Now, we have supk Φk(⊥Λ)(M,w0,s) = supk Φ(Φk(⊥Λ))(M,w0,s) =

supk Φk(⊥Λ)(M∗,w∗,s∗), and supk Φk(⊥Λ)(M∗,w∗,s∗) = M′ by induction hy-

pothesis, which ends the proof.

Corollary 15 If (M,1,s)⇒ (Mk,wk,sk)→ (M′,w′, []) and sk 6= [], then peval′(M,s)=

M′.

Lemma 177 If supn Φn(⊥Λ)(M,w0,s) = M′ 6= fail, then either s = [] or (M,w0,s)⇒
(Mk,wk,sk)→ (M′,w′, []) for some Mk, wk, sk, w′, where sk 6= [].

Proof: Like in lemma 164, for every M, w0, s, we must have Φk(⊥Λ)(M,w0,s) = M′

for some k > 0, and we can prove the result by induction on k.

• Base case. k = 1: we must have s = [] as otherwise we would have M′ = fail.

• Induction step: suppose Φk+1(⊥Λ)(M,w0,s) = M′. By definition of Φ, if s 6= [],

we have Φk(⊥Λ)(M∗,w∗,s∗) = M′, where g(M,w0,s) → (M∗,w∗,s∗). Since

M′ 6= fail by assumption, Lemma 162 yields (M,w0,s)→ (M∗,w∗,s∗). By in-

duction hypothesis, either s∗= [] or (M∗,w∗,s∗)⇒ (M∗∗,w∗∗,s∗∗)→ (M′,w′′, [])

for some M∗∗, w∗∗, s∗∗, w′′, where s∗∗ 6= []. In the former case, we have (M,w0,s)⇒
(Mk,wk,sk)→ (M′,w′, []) with (M,w0,s)= (Mk,wk,sk), (M∗,w∗,s∗)= (M′,w′, [])

and sk 6= [], as required. In the latter case, we have (M,w0,s)⇒ (M∗∗,w∗∗,s∗∗)→
(M′,w′′, []), with s∗∗ 6= [].

Lemma 178 peval= peval′

305

Proof: We need to show that peval(M,s) = peval′(M,s) for all M ∈CΛ, s ∈ U.

If s = [], then the equality follows trivially from the two definitions. Now, assume

s 6= [].

If peval′(M,s) = M′ 6= fail, then it follows from Lemma 177 that peval(M,s) =

M′,

Now, let peval′(M,s) = fail and suppose that peval(M,s) = M′ 6= fail. Since

s 6= [], by definition of peval there must be Mk, wk, sk, w′ such that (M,1,s) ⇒
(Mk,wk,sk)→ (M′,w′, []) and sk 6= []. But by Corollary 15, this implies that peval′(M,s)=

M′ 6= fail, which yields a contradiction. Hence peval(M,s) = fail.

Lemma 179 For every k, pevalk = Φk(⊥λ) is measurable.

Proof: By induction on k:

• Base case: k = 0: peval0 = ⊥λ is a constant function on CΛ×U, so trivially

measurable.

• Induction step : we have pevalk+1 = Φ(pevalk), so it is enough to show that

Φ(f) is measurable if f is measurable. Φ(f) is defined in pieces, so we want to

use Lemma 139.

The domain of the first case is CΛ×{[]}, so obviously measurable. The do-

main of the second case is p−1(g−1(CΛ×R×U)∩ (CΛ×{1}× (U \ {[]}))),
and p(M,s) = (M,1,s) is continuous, and so measurable. Hence, the domain is

measurable. Finally, the domain of the last case is the complement of the union

of the two above measurable sets, which means it is also measurable.

Thus, we only need to show that the functions corresponding to these three cases

are measurable. This is obvious in the first and third case, because the cor-

resonding functions are constant. The function for the second case is φ(M,s) =

f (g(p(M,s))), where p is as defined above and g′ is the restriction of g to

g−1(CΛ×R×U), which is measurable since restrictions preserve measrability.

Since composition of measurable functions is measurable, φ is measurable.

Thus, pevalk+1 is measurable, as required.

306

Lemma 180 The function peval′ is measurable M |CΛ×S /M |CΛ

Proof: Corollary of Lemmas 179 and 166.

Restatement of Lemma 49 The function peval is measurable M |CΛ×S /M |CΛ

Proof: Corollary of Lemma 180 and Lemma 178.

E.5 Compositionality of peval

Lemma 181 If (M,1,s)⇒ (Mk,wk,sk)→ (M′,w′, []) for sk 6= [] and (M′,1, t)⇒ (Ml,wl, tl)→
(M′′,w′′, []) for sk 6= [], then (M,1,s@t)⇒ (Ml,w′wl, tl)→ (M′′,w′w′′, []).

Proof: By Lemma 37, we have (M,1,s@t)⇒ (Mk,wk,sk@t)→ (M′,w′, t) and by

Lemma 36, (M′,w′, t)⇒ (Ml,w′wl, tl)→ (M′′,w′w′′, []), so (M,1,s@t)⇒ (Ml,w′wl, tl)→
(M′′,w′w′′, []).

Lemma 182 If (M,1,s@t)⇒ (M′′,w′′, []) and M′′ 6= fail, then either s = [] or there

exist unique Mk, wk, sk 6= [], M′ 6= fail, w′, w′′′ such that (M,1,s)⇒ (Mk,wk,sk)→
(M′,w′, []) and (M′,1, t)⇒ (M′′,w′′′, []).

Proof: By induction on the length of derivation of (M,1,s@t)⇒ (M′′,w′′, []):

• Base case: (M,1,s@t) = (M′′,w′′, []). We have s = [], as required.

• Induction step: The result is trivial if s = []. Now, let us assume s 6= []. We have

(M,1,s@t)→ (M̂, ŵ, ŝ@t)→k (M′′,w′′, []) for some M̂, ŵ, ŝ and k ≥ 0.

If (M,1,s@t)→ (M̂, ŵ, ŝ@t) was derived with (RED RANDOM FAIL), then M̂ =

E[fail] for some E, which can only reduce to fail. Hence because M′′ 6= fail

by assumption, we must have k = 0. We get (M,1,s)→ (E[fail],0, []) and

(E[fail],0, [])→0 (E[fail],0, []), as required.

Now, assume (M,1,s@t)→ (M̂, ŵ, ŝ@t) was not derived by (RED RANDOM

FAIL). By Lemma 28, ŵ > 0.

307

– If ŝ = [], then by Lemma 59 we have (M,1,s)→ (M̂, ŵ, []), so (M,1,s)⇒
(Mk,wk,sk)→ (M̂, ŵ, []) for (Mk,wk,sk) = (M,1,s). By Lemma 36, we

have (M̂,1, t)→k (M′′,w′′/ŵ, []), and M̂ 6= fail follows from the fact that

fail cannot reduce to M′′ 6= fail. .

– If ŝ 6= [], then by Lemma 36, (M̂,1, ŝ@t)→k (M′′,w′′/ŵ, []), so by the in-

duction hypothesis, there exist Mk, wk, sk 6= [], M′ 6= fail, w′, w′′′ such that

(M̂,1, ŝ)⇒ (Mk,wk,sk)→ (M′,w′, []) and (M′,1, t)⇒ (M′′,w′′′, []).

By Lemma 59, (M,1,s)→ (M̂, ŵ, ŝ), so by Lemma 36 we have (M,1,s)→
(M̂, ŵ, ŝ)⇒ (Mk,wkŵ,sk)→ (M′,w′ŵ, []) as required.

The uniqueness follows by Lemma 175 in Appendix E.

Restatement of Lemma 50 For all closed M, s, t, peval(peval(M,s), t)= peval(M,s@t)

Proof: If s= [] or t = [], the result follows immediately, because peval(peval(M, []), t)=

peval(M), t) and peval(peval(M,s), []) = peval(M),s). Now, let us assume that

s 6= [] and t 6= [].

If (M,1,s)⇒ (Mk,wk,sk)→ (M′,w′, []) and (M′,1, t)⇒ (Ml,wl, tl)→ (M′′,w′′, [])

for some sk, tl 6= [], then we have peval(M,s) = M′ and peval(M′, t) = M′′, so

peval(peval(M,s), t)=M′′. By Lemma 181, (M,1,s@t)⇒ (Ml,w′wl, tl)→ (M′′,w′w′′, []),

and so peval(M,s@t) = M′′, as required.

If there are no Mk, wk, sk, M′, w′ such that (M,1,s)⇒ (Mk,wk,sk)→ (M′,w′, []),

then peval(M,s) = fail, and so peval(peval(M,s), t) = fail. Suppose for con-

tradiction that peval(M,s@t) = M′′ 6= fail. Then we must have (M,1,s@t) ⇒
(Ml,wl, tl)→ (M′′,w′′, []), for some Ml , wl , w′′.But by Lemma 182, we have (M,1,s)⇒
(Mk,wk,sk)→ (M′,w′, []) for some Mk, wk, sk, M′, w′, which contradicts the assump-

tion.

If we have (M,1,s)⇒ (Mk,wk,sk)→ (M′,w′, []) but not (M′,1, t)⇒ (Ml,wl, tl)→
(M′′,w′′, []), then peval(M,s)=M′ and peval(peval(M,s), t)= peval(M′, t)= fail.

Again, suppose for contradiction that peval(M,s@t) = M′′ 6= fail. We must have

(M,1,s@t)⇒ (Ml,wl, tl)→ (M′′,w′′, []), for some Ml , wl , w′′. By Lemma 182 and

Lemma 175, we have (M,1,s)⇒ (Mk,wk,sk)→ (M′,w′, []) and (M′,1, t)⇒ (M′′,w′′′, [])

for some Mk, wk, sk, M′, w′, w′′′. But by Lemma 182 (taking the second trace to be []),

308

we have (M′,1, t)⇒ (Ml,wl, tl)→ (M̂, ŵ, []) for some Ml , wl , tl , M̂ 6= fail, ŵ, which

contradicts the assumption.

E.6 Measurability of q and Q

Lemma 183 If M ⇓[]w G and M ⇓s
w′ G′, then s = [].

Proof: By induction on the derivation of M ⇓[]w G.

Lemma 184 If PV
M([])> 0, then PV

M(t) = 0 for all t 6= [].

Proof: Follows directly from Lemma 183.

Lemma 185 (Tonelli’s theorem for sums and integrals, 1.4.46 in [Tao, 2011]) If (Ω,Σ,µ)

is a measure space and f1, f2, . . . a sequence of non-negative measurable functions,

then ∫
Ω

∞

∑
i=1

fi(x) µ(dx) =
∞

∑
i=1

∫
Ω

fi(x) µ(dx)

Proof: Follows from the monotone convergence theorem.

Lemma 186 (Linearity of Lebesgue integral, 1.4.37 ii) from [Tao, 2011]) If (Ω,Σ)

is a measurable space, f a non-negative measurable function, and µi,µ2, . . . a se-

quence of measures on Σ, then∫
Ω

f (x)
∞

∑
i=1

µi(dx) =
∞

∑
i=1

∫
Ω

f (x) µi(dx)

Lemma 187 (Ex. 1.4.36 xi) from [Tao, 2011]) If (Ω,Σ,µ) is a measure space and f

a nonnegative measurable function on Ω and B ∈ Σ and f B a restriction of f to B, then

∫
Ω

f (x)[x ∈ B] µ(dx) =
∫

B
f (x) µ

B(dx)

309

Below we write q(s, t) as qM(s, t), to make the dependency on M explicit.

Let q∗M be defined as follows:

q∗M(s, t) =

PV
M([]) if t = []

qM(s, t) otherwise

Lemma 188 For all M ∈CΛ and s,y ∈ U

q∗M(s, t)=

P∗M(t) if s = [] or t = []

pdfGaussian(s1,σ
2, t1)q∗peval(M,[s1])

([s2, . . .s|s|], [t2, . . . t|t|]) otherwise

Proof: By induction on |s|:

• Case s = []:

If t = [], the result follows directly from the definition of q∗M. Otherwise, q∗M([], t)=

qM([], t) = P∗M(t), as required.

• Case |s|= n+1 > 0:

Again, if t = [], the result follows immediately. Otherwise, we have

q∗M(s, t) = qM(s, t) = Π
k
i=1(pdfGaussian(si,σ

2, ti))P∗peval(M,[t1,...,tk])
(t)

where k = min(|s|, |t|)> 0. Hence

q∗M(s, t) = pdfGaussian(s1,σ
2, t1)Πk

i=2(pdfGaussian(si,σ
2, ti))

P∗peval(M,[t1,...,tk])
([tk+1, . . . , t|t|])

(by Lemma 50) = pdfGaussian(s1,σ
2, t1)Πk

i=2(pdfGaussian(si,σ
2, ti))

P∗peval(peval(M,[t1]),[t2,...,tk])
([tk+1, . . . , t|t|])

= (pdfGaussian(s1,σ
2, t1))q∗peval(M,[s1])

([s2, . . . ,s|s|)], [t2, . . . , t|t|])

as required.

Lemma 189 If P∗M([])> 0, then peval(M, t) = fail for every t 6= [].

310

Proof: It P∗M([]) = w > 0, then we must have M ↓[]w V for some V ∈ V , which implies

(M,1, []) ∗ (G,w, []). Using a lemma analogous to Lemma 30 for the score-ignoring

reduction relation, we can easily show by induction that (M,1, t) ∗ (G,w, t) for any

t 6= []. Because the reduction relation is deterministic, this implies that there are no

M′, w′ such that (M,1, t) ∗ (M′,w′, []) (if there were, we would have (M′,w′, []) ∗

(G,w, t), but no reduction rule can add an element to a trace). This means that peval,

by applying reduction repeatedly, will never reach (M′, []) for any M′, so peval(M, t)=

fail.

Lemma 190 If P∗M([])> 0, then q∗M(s, t) = 0 for all s ∈ U, t 6= [].

Proof: Follows easily from Lemma 189.

In order to prove measurability of the proposal density q, it is convenient to provide

an alternative, fixpoint-based definition of P∗M, by means of a function P′∗, analogous

to P′ for PM.

Define:

hscr : Tscr→T

hscr(E[score(c)],w,s) , (E[true],w,s)

Lemma 191 hscr is measurable.

Proof: Similar to the proof of measurability of gscr.

h : T →T

h , gval∪gdet∪hscr∪gblocked

Lemma 192 h is measurable.

Proof: Identical to the proof of measurability of g, except that hscr replaces gscr.

311

Ψw(f)(M,w,s),

w if M ∈ V ,s = []

f (h(M,w,s)) otherwise

P′∗(M,s), sup
n

Ψ
n
w(⊥w)(M,1,s)

Lemma 193 P′∗ is measurable

Proof: Similar to the proof of measurability of P′.

Lemma 194 (M,w,s)⇒ (G,w′, []) for some w′ if and only if (M,w,s) ∗ (G,w′′, [])

for some w′′.

Proof: The proof is a straightforward induction on the derivation of (M,w,s) ⇒
(G,w′, []). Details omitted.

Lemma 195 If (M,w0,s) ∗ (V,w, []), then

supn Ψn
w(⊥w)(M,w0,s) = w and supn Θn

Λ
(⊥Λ)(M,w0,s) =V .

Proof: Similar to the proof of Lemma 163.

Lemma 196 If supn Ψn
w(⊥w)(M,w0,s) = w 6= 0, then (M,w0,s) ∗ (V,w, []) for some

V ∈ V .

Proof: Similar to the proof of Lemma 164.

Lemma 197 For every M ∈CΛ and s, P′∗(M,s) = P∗M(s)

Proof: If (M,1,s) ∗ (V,w, []), then P∗M(s)=w and P′∗(M,s)= supn Ψn
w(⊥w)(M,1,s)=

w by Lemma 195.

Now assume there are no V , w such that (M,1,s) ∗ (V,w, []). Obviously, P∗M(s) =

0. If P′∗(M,s) = supn Ψn
w(⊥w)(M,1,s) = w ≥ 0, then by Lemma 196, (M,w0,s) ∗

(V,w, []) for some V , w, which contradicts the assumption. Hence, P′∗(M,s) = 0.

312

Corollary 16 P∗M(s) is measurable.

Lemma 198
∫

P∗M(s)ds≤ 1

Proof: Similar to the proof of Lemma 173.

Lemma 199 For all s ∈ U and M ∈CΛ,
∫
U\[] qM(s, t)µ(dt)≤ 1.

Proof: By induction on |s|.

• Base case: s = [] ∫
U\{[]}

qM([], t) µ(dt)

=
∫
U\{[]}

P∗M(t) µ(dt)

≤
∫

P∗M(t) µ(dt)

by Lemma 198 ≤ 1

• Induction step: s 6= []

We have:∫
U\{[]}

qM(s, t) µ(dt)

=
∫
U\{[]}

q∗M(s, t) µ(dt)

=
∞

∑
i=1

∫
Ri

q∗M(s, t) µ(dt)

(by Thm 16.9 from [Billingsley, 1995])

=
∞

∑
i=1

∫
Ri

q∗M(s, t) λ
i(dt)

(by Lemma 187)

=
∞

∑
i=1

∫
Ri

pdfGaussian(s1,σ
2, t1)q∗peval(M,[t1])([s2, . . . ,s|s|], [t2, . . . , t|t|]) λ

i(dt)

=
∞

∑
i=1

∫
R

pdfGaussian(s1,σ
2, t1)

∫
Ri−1

q∗peval(M,[t1])(s
′, t ′) λ

i−1(dt ′) λ (dt1)

(by Fubini’s theorem)

=
∫
R

pdfGaussian(s1,σ
2, t1)

∞

∑
i=0

∫
Ri

q∗peval(M,[t1])(s
′, t ′) λ

i(dt ′) λ (dt1)

(by Lemma 185)

=
∫
R

pdfGaussian(s1,σ
2, t1)

(∫
{[]}

P∗peval(M,[t1])(t
′) µ(dt ′) +∫

U\{[]}
q∗peval(M,[t1])(s

′, t ′) µ(dt ′)
)

λ (dt1)

313

Now, we need to show that for all N,

∫
{[]}

P∗N(t
′) µ(dt ′)+

∫
U\{[]}

q∗N(s
′, t ′) µ(dt ′)≤ 1 (E.1)

First, note that
∫
{[]}P∗N(t ′) µ(dt ′) ≤

∫
UP∗N(t ′) µ(dt ′) ≤ 1, by Lemma 198. We

also have
∫
{[]}P∗N(t ′) µ(dt) = P∗N([]), so by Lemma 190, if P∗N([])> 0, then∫

{[]}
P∗N(t

′) µ(dt ′)+
∫
U\{[]}

q∗N(s
′, t ′) µ(dt ′) =

∫
{[]}

P∗N(t
′) µ(dt ′)≤ 1

On the other hand, if P∗N([]) = 0, then∫
{[]}

P∗N(t
′) µ(dt ′)+

∫
U\{[]}

q∗N(s
′, t ′) µ(dt ′)

=
∫
U\{[]}

q∗N(s
′, t ′) µ(dt ′) =

∫
U\{[]}

qN(s′, t ′) µ(dt ′)≤ 1

by induction hypothesis.

Hence: ∫
U\{[]}

qM(s, t) µ(dt)

≤
∫
R

pdfGaussian(s1,σ
2, t1) λ (dt1)

= 1

as required.

Restatement of Lemma 52 For every s, t ∈ U and M ∈CΛ , qM(s, t)≥ 0.

Proof: Corollary of Lemma 199.

Restatement of Lemma 53 For any closed program M, the function q is measurable

S ×S /R|R+ .

Proof: It is enough to show that q(s, t) is measurable for every |s| = n and |t| = m,

then the result follows from Lemma 139.

Note that a function taking a sequence s and returning any subsequence of it is

trivially continuous and measurable, so for any function of s and t to be measurable, it

is enough to show that it is measurable as a function of some projections of s and t.

314

• If m> 0 and n<m, then we have q(s, t)=Πn
i=1 pdfGaussian(s1,σ

2, ti)P∗peval(M,t1..n)
(tn+1..m)=

Πn
i=1 pdfGaussian(si,σ

2, ti)P′∗(peval(M, t1..n), tn+1..m)

Each pdfGaussian(si,σ
2, ti) is measurable, as a composition of a function project-

ing (si, ti) from (s, t) and the Gaussian pdf, so their pointwise product must be

measurable.

Now, P′∗ is measurable, and the function mapping (s, t) to (peval(M, t1..n), tn+1..m)

is a pair of two measurable functions, one of which is a composition of the mea-

surable peval(M, ·) and a projection of t1..n, and the other just a projection of

tn+1..m). Hence, the function mapping (s, t) to P′∗(peval(M, t1..n), tn+1..m) is a

composition of measurable functions.

Thus, q(s, t) is a pointwise product of measurable functions, so it is measurable.

• If m > 0 and n≥ m, then q(s, t) = Πm
i=1 pdfGaussian(s1,σ

2, ti)P∗peval(M,t)([])

= Πm
i=1 pdfGaussian(si,σ

2, ti)P′∗(peval(M, t), [])

Now, the function mapping (s, t) to Πm
i=1 pdfGaussian(si,σ

2, ti) is measurable like

in the previous case. The function mapping (s, t) to (peval(M, t), []) is a pair-

ing of two measurable functions, one being a composition of the projection

of t and peval(M, ·), the other being a constant function returning []. Hence,

P′∗(peval(M, t), []) is a composition of two measurable functions. Thus, q(s, t)

is measurable.

• If m = 0, then q(s, []) = 1−
∫
U\{[]} q(s, t)µ(dt). Since we have already shown

that q(s, t) is measurable on U× (U \ []),
∫
U\{[]} q(s, t)µ(dt) is measurable by

Fubini’s theorem, so q(s, []) is a difference of measurable functions, and hence it

is measurable.

Restatement of Lemma 54 The function Q is a probability kernel on (U,S).

Proof: We need to verify the two properties of probability kernels:

(1) For every s ∈ U, Q(s, ·) is a probability distribution on U. Since for every s ∈ U,

q(s, ·) is non-negative measurable S (by [Billingsley, 1995, Theorem 18.1]),

Q(s,B) =
∫

B q(s,y)µ(dy) (as a function of B) is a well-defined measure for all

s ∈ U. Finally, Q(s,U) = Q(s, [])+Q(s,U\{[]}) = 1.

315

(2) For every B ∈ S , Q(·,B) is a non-negative measurable function on U: Since

(U,S ,µ) is a σ -finite measure space, q(·, ·) is non-negative and measurable

S ×S and Q(s,B) =
∫

B q(s,y)µ(ds), this follows from [Billingsley, 1995, The-

orem 18.3].

316

References

C. Andrieu, A. Doucet, and R. Holenstein. Particle Markov chain Monte Carlo meth-

ods. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

72(3):269–342, 2010. ISSN 1467-9868. doi: 10.1111/j.1467-9868.2009.00736.x.

URL http://dx.doi.org/10.1111/j.1467-9868.2009.00736.x.

N. Arora. Global seismic monitoring: A Bayesian approach, 2011. Presentation at the

Twenty-Fifth Conference on Artificial Intelligence (AAAI-11), San Francisco, CA,

USA.

R. J. Aumann. Borel structures for function spaces. Illinois J. Math., 5(4):614–630,

12 1961. URL http://projecteuclid.org/euclid.ijm/1255631584.

D. Barber. Bayesian Reasoning and Machine Learning. Cambridge University Press,

2012.

H. P. Barendregt. Handbook of logic in computer science (vol. 2). chapter Lambda

Calculi with Types, pages 117–309. Oxford University Press, Inc., New York, NY,

USA, 1992. ISBN 0-19-853761-1. URL http://dl.acm.org/citation.cfm?

id=162552.162561.

S. Bhat, J. Borgström, A. D. Gordon, and C. V. Russo. Deriving probability

density functions from probabilistic functional programs. In N. Peterman and

S. Smolka, editors, Tools and Algorithms for the Construction and Analysis of Sys-

tems (TACAS’13), volume 7795 of Lecture Notes in Computer Science, pages 508–

522. Springer, 2013.

P. Billingsley. Probability and Measure. Wiley, 3rd edition, 1995.

A. Bizjak and L. Birkedal. Step-indexed logical relations for probability. In A. M.

Pitts, editor, Proceedings of FoSSaCS 2015, volume 9034 of LNCS, pages 279–294.

Springer, 2015.

317

T. Blanc. Propriétés de sécurité dans le lambda-calcul. PhD thesis, Ecole Polytech-

nique, 2008. URL http://moscova.inria.fr/~tblanc/memoire.pdf.

K. A. Bonawitz. Composable Probabilistic Inference with Blaise. PhD thesis, MIT,

2008. Available as Technical Report MIT-CSAIL-TR-2008-044.

J. Borgström, A. D. Gordon, M. Greenberg, J. Margetson, and J. V. Gael. Measure

transformer semantics for Bayesian machine learning. Logical Methods in Computer

Science, 9(3), 2013. Preliminary version at ESOP’11.

J. Borgström, A. D. Gordon, L. Ouyang, C. Russo, A. Ścibior, and M. Szymczak. Fab-

ular: Regression formulas as probabilistic programming. Technical Report MSR–

TR–2015–83, Microsoft Research, 2015.

J. Borgström, A. D. Gordon, L. Ouyang, C. Russo, A. Ścibior, and M. Szymczak.

Fabular: Regression formulas as probabilistic programming. In Proceedings of the

43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’16, pages 271–283, New York, NY, USA, 2016. ACM. ISBN

978-1-4503-3549-2. doi: 10.1145/2837614.2837653. URL http://doi.acm.org/

10.1145/2837614.2837653.

J. Borgström, U. D. Lago, A. D. Gordon, and M. Szymczak. A lambda-calculus

foundation for universal probabilistic programming. In J. Garrigue, G. Keller,

and E. Sumii, editors, Proceedings of the 21st ACM SIGPLAN International Con-

ference on Functional Programming, ICFP 2016, Nara, Japan, September 18-22,

2016, pages 33–46. ACM, 2016. ISBN 978-1-4503-4219-3. doi: 10.1145/2951913.

2951942. URL http://doi.acm.org/10.1145/2951913.2951942.

G. V. d. Broeck, I. Thon, M. v. Otterlo, and L. D. Raedt. DTProbLog: A decision-

theoretic probabilistic Prolog. In Proceedings of the Twenty-Fourth AAAI Con-

ference on Artificial Intelligence, AAAI’10, pages 1217–1222. AAAI Press, 2010.

URL http://dl.acm.org/citation.cfm?id=2898607.2898801.

Y. Cai. Asymptotic correctness criteria for the lightweight implementation of proba-

bilistic programming. Unpublished manuscript, 2016.

L. Cardelli. Type systems. In A. B. Tucker, editor, The Computer Science and Engi-

neering Handbook, pages 2208–2236. CRC Press, 1997. ISBN 0-8493-2909-4.

318

P. Cousot and M. Monerau. Probabilistic abstract interpretation. In H. Seidel, editor,

22nd European Symposium on Programming (ESOP 2012), volume 7211 of Lecture

Notes in Computer Science, pages 166–190, Heidelberg, 2012. Springer.

R. Crubillé and U. Dal Lago. Metric reasoning about lambda-terms: The general

case. In Programming Languages and Systems - 26th European Symposium on

Programming, ESOP 2017, Held as Part of the European Joint Conferences on The-

ory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,

Proceedings, pages 341–367, 2017. doi: 10.1007/978-3-662-54434-1_13. URL

https://doi.org/10.1007/978-3-662-54434-1_13.

U. Dal Lago and M. Zorzi. Probabilistic operational semantics for the lambda calculus.

RAIRO-Theor. Inf. Appl., 46(3):413–450, 2012. doi: 10.1051/ita/2012012. URL

http://dx.doi.org/10.1051/ita/2012012.

V. Danos and R. Harmer. Probabilistic game semantics. ACM Transactions on Com-

putational Logic, 3(3):359–382, 2002.

V. Dorie. Package blme, Reference Manual, Version 1.0-4, 2016. URL https://

cran.r-project.org/web/packages/blme/index.html.

D. Duvenaud and J. Lloyd. Introduction to Probabilistic Programming. Talk at Com-

putational and Biological Learning Lab, University of Cambridge. Slides available

online at http://mlg.eng.cam.ac.uk/Lloyd/talks/prob-prog-intro.pdf, 2013.

T. Ehrhard, C. Tasson, and M. Pagani. Probabilistic coherence spaces are fully abstract

for probabilistic PCF. In Proceedings of POPL 2014, pages 309–320. ACM, 2014.

T. S. Ferguson. A Bayesian analysis of some nonparametric problems. Ann. Statist., 1

(2):209–230, 03 1973. doi: 10.1214/aos/1176342360. URL http://dx.doi.org/

10.1214/aos/1176342360.

T. Gallay. Théorie de la mesure et de l’intégration. 2009. URL

http://im2ag-webmath.e.ujf-grenoble.fr/enseignement2/IMG/pdf/

integrationa.pdf. Course notes.

A. Gelman and J. Hill. Data Analysis Using Regression and Multilevel/Hierarchical

Models. Cambridge University Press, 2007.

319

A. Gelman, D. Lee, and J. Guo. Stan: A probabilistic programming language

for Bayesian inference and optimization. Journal of Educational and Behav-

ioral Statistics, 40(5):530–543, 2015. doi: 10.3102/1076998615606113. URL

http://jeb.sagepub.com/content/40/5/530.abstract.

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian

restoration of images. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, PAMI-6(6):721–741, Nov 1984. ISSN 0162-8828. doi: 10.1109/TPAMI.

1984.4767596.

A. Georgoulas, J. Hillston, and G. Sanguinetti. ABC-Fun: A probabilistic program-

ming language for biology. In Computational Methods in Systems Biology - 11th

International Conference, CMSB 2013, Klosterneuburg, Austria, September 22-24,

2013. Proceedings, pages 150–163, 2013. doi: 10.1007/978-3-642-40708-6_12.

URL https://doi.org/10.1007/978-3-642-40708-6_12.

A. Georgoulas, J. Hillston, D. Milios, and G. Sanguinetti. Probabilistic Program-

ming Process Algebra. In Quantitative Evaluation of Systems - 11th Interna-

tional Conference, QEST 2014, Florence, Italy, September 8-10, 2014. Proceed-

ings, pages 249–264, 2014. doi: 10.1007/978-3-319-10696-0_21. URL https:

//doi.org/10.1007/978-3-319-10696-0_21.

W. R. Gilks, A. Thomas, and D. J. Spiegelhalter. A language and program for complex

Bayesian modelling. The Statistician, 43:169–178, 1994.

M. Giry. A categorical approach to probability theory. In B. Banaschewski, editor, Cat-

egorical Aspects of Topology and Analysis, volume 915 of Lecture Notes in Mathe-

matics, pages 68–85. Springer Berlin Heidelberg, 1982. ISBN 978-3-540-11211-2.

doi: 10.1007/BFb0092872. URL http://dx.doi.org/10.1007/BFb0092872.

N. Goodman, V. K. Mansinghka, D. M. Roy, K. Bonawitz, and J. B. Tenenbaum.

Church: a language for generative models. In Uncertainty in Artificial Intelligence

(UAI’08), pages 220–229. AUAI Press, 2008.

N. D. Goodman. The principles and practice of probabilistic programming. In Princi-

ples of Programming Languages (POPL’13), pages 399–402, 2013.

A. D. Gordon. An agenda for probabilistic programming: Usable, portable, and

ubiquitous. Available online at https://www.microsoft.com/en-us/research/wp-

content/uploads/2016/02/fun-agendaforprobabilisticprogramming.pdf, 2013.

320

A. D. Gordon, M. Aizatulin, J. Borgström, G. Claret, T. Graepel, A. Nori, S. Rajamani,

and C. Russo. A model-learner pattern for Bayesian reasoning. In Principles of

Programming Languages (POPL’13), 2013.

A. D. Gordon, T. Graepel, N. Rolland, C. V. Russo, J. Borgström, and J. Guiver. Tab-

ular: a schema-driven probabilistic programming language. In Principles of Pro-

gramming Languages (POPL’14), 2014.

A. D. Gordon, C. V. Russo, M. Szymczak, J. Borgström, N. Rolland, T. Graepel, and

D. Tarlow. Probabilistic programs as spreadsheet queries. In J. Vitek, editor, Pro-

gramming Languages and Systems (ESOP 2015), volume 9032 of Lecture Notes in

Computer Science, pages 1–25. Springer, 2015.

M. I. Gorinova. Probabilistic Programming with SlicStan, 2017. URL http:

//homepages.inf.ed.ac.uk/s1207807/files/slicstan.pdf. Master by Re-

search dissertation, University of Edinburgh.

R. Harper and M. Lillibridge. A type-theoretic approach to higher-order modules with

sharing. In H. Boehm, B. Lang, and D. M. Yellin, editors, Conference Record of

POPL’94: 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, Portland, Oregon, USA, January 17-21, 1994, pages 123–137. ACM

Press, 1994. ISBN 0-89791-636-0. doi: 10.1145/174675.176927. URL http:

//doi.acm.org/10.1145/174675.176927.

W. K. Hastings. Monte Carlo sampling methods using Markov chains and their appli-

cations. Biometrika, 57(1):97–109, 1970.

R. Herbrich, T. Minka, and T. Graepel. TrueSkilltm: A Bayesian skill rating system.

In Advances in Neural Information Processing Systems (NIPS’06), 2006.

C. Heunen, O. Kammar, S. Staton, and H. Yang. A convenient category for higher-

order probability theory. In 32nd Annual ACM/IEEE Symposium on Logic in

Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–

12, 2017. doi: 10.1109/LICS.2017.8005137. URL https://doi.org/10.1109/

LICS.2017.8005137.

M. D. Hoffman and A. Gelman. The no-U-turn sampler: Adaptively setting path

lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, in

press, 2013.

321

J. Hölzl and A. Heller. Three Chapters of Measure Theory in Isabelle/HOL, pages

135–151. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. ISBN 978-3-

642-22863-6. doi: 10.1007/978-3-642-22863-6_12. URL https://doi.org/10.

1007/978-3-642-22863-6_12.

D. Huang and G. Morrisett. An application of computable distributions to the se-

mantics of probabilistic programming languages. In P. Thiemann, editor, Program-

ming Languages and Systems - 25th European Symposium on Programming, ESOP

2016, Held as Part of the European Joint Conferences on Theory and Practice of

Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceed-

ings, volume 9632 of Lecture Notes in Computer Science, pages 337–363. Springer,

2016. ISBN 978-3-662-49497-4. doi: 10.1007/978-3-662-49498-1_14. URL

https://doi.org/10.1007/978-3-662-49498-1_14.

J. Hughes. Generalising monads to arrows. Science of Computer Programming, 37:

67–111, 1998.

C. Hur, A. V. Nori, S. K. Rajamani, and S. Samuel. Slicing probabilistic programs.

In ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014, pages 133–144,

2014. doi: 10.1145/2594291.2594303. URL http://doi.acm.org/10.1145/

2594291.2594303.

C. Hur, A. V. Nori, S. K. Rajamani, and S. Samuel. A provably correct sampler for

probabilistic programs. In P. Harsha and G. Ramalingam, editors, Proceedings of

FSTTCS 2015, volume 45 of LIPIcs, pages 475–488. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 2015.

D. Hutchison. ModelWizard: Toward interactive model construction. CoRR,

abs/1604.04639, 2016. URL http://arxiv.org/abs/1604.04639.

C. Jones. Probabilistic non-determinism. PhD thesis, University of Edinburgh, Ed-

inburgh, Scotland, UK, 1989. URL http://www.lfcs.inf.ed.ac.uk/reports/

90/ECS-LFCS-90-105/.

C. Jones and G. D. Plotkin. A probabilistic powerdomain of evaluations. In Logic in

Computer Science (LICS’89), pages 186–195. IEEE Computer Society, 1989.

322

O. Kiselyov. Problems of the lightweight implementation of probabilistic program-

ming, 2016. Poster at PPS’2016 workshop.

O. Kiselyov and C. Shan. Monolingual probabilistic programming using generalized

coroutines. In Uncertainty in Artificial Intelligence (UAI’09), 2009.

D. Kozen. Semantics of probabilistic programs. Journal of Computer and System

Sciences, 22(3):328–350, 1981.

T. A. Le, A. G. Baydin, and F. Wood. Inference compilation and universal probabilistic

programming. In Proceedings of the 20th International Conference on Artificial In-

telligence and Statistics (AISTATS), volume 54 of Proceedings of Machine Learning

Research, pages 1338–1348, Fort Lauderdale, FL, USA, 2017. PMLR.

J.-J. Lévy. Réductions correctes et optimales dans le lambda-calcul. PhD thesis,

Université Paris 7, 1978. URL http://moscova.inria.fr/~levy/pubs/78phd.

pdf.

D. Lunn, D. Spiegelhalter, A. Thomas, and N. Best. The BUGS project: Evolution,

critique and future directions. Statistics in Medicine, 28(25):3049–3067, 2009. ISSN

1097-0258. doi: 10.1002/sim.3680. URL http://dx.doi.org/10.1002/sim.

3680.

D. J. C. MacKay. Information Theory, Inference, and Learning Algorithms. CUP,

2003.

V. Mansinghka, D. Selsam, and Y. Perov. Venture: a higher-order probabilistic pro-

gramming platform with programmable inference. CoRR, 2014. arXiv:1404.0099v1

[cs.AI].

V. K. Mansinghka, T. D. Kulkarni, Y. N. Perov, and J. B. Tenenbaum. Approximate

Bayesian image interpretation using generative probabilistic graphics programs.

Available at http://arxiv.org/abs/1307.0060, 2013.

V. K. Mansinghka, R. Tibbetts, J. Baxter, P. Shafto, and B. Eaves. BayesDB: A proba-

bilistic programming system for querying the probable implications of data. CoRR,

abs/1512.05006, 2015. URL http://arxiv.org/abs/1512.05006.

323

A. McCallum, K. Schultz, and S. Singh. FACTORIE: probabilistic programming via

imperatively defined factor graphs. In Advances in Neural Information Process-

ing Systems 22: 23rd Annual Conference on Neural Information Processing Sys-

tems 2009. Proceedings of a meeting held 7-10 December 2009, Vancouver, British

Columbia, Canada., pages 1249–1257, 2009.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equa-

tion of state calculations by fast computing machines. Journal of Chemical Physics,

21:1087–1092, 1953.

B. Milch, B. Marthi, S. J. Russell, D. Sontag, D. L. Ong, and A. Kolobov. BLOG:

Probabilistic models with unknown objects. In Probabilistic, Logical and Relational

Learning — A Further Synthesis, 2005.

T. Minka and J. Winn. Gates: A graphical notation for mixture models. Technical

report, December 2008. URL https://www.microsoft.com/en-us/research/

publication/gates-a-graphical-notation-for-mixture-models/.

T. P. Minka. Expectation Propagation for approximate Bayesian inference. In Uncer-

tainty in Artificial Intelligence (UAI’01), pages 362–369. Morgan Kaufmann, 2001.

C. C. Monnahan, J. T. Thorson, and T. A. Branch. Faster estimation of Bayesian mod-

els in ecology using Hamiltonian Monte Carlo. Methods in Ecology and Evolution,

8(3):339–348, 2017. ISSN 2041-210X. doi: 10.1111/2041-210X.12681. URL

http://dx.doi.org/10.1111/2041-210X.12681.

K. P. Murphy. Machine learning: a probabilistic perspective. MIT Press, Cambridge,

MA, 2012.

A. Nori, C.-K. Hur, and S. Rajamani. Semantics sensitive sam-

pling for probabilistic programs. Technical report, October 2013.

URL https://www.microsoft.com/en-us/research/publication/

semantics-sensitive-sampling-for-probabilistic-programs/.

A. Nori, S. Ozair, S. Rajamani, and D. a. Vijaykeerthy. Efficient syn-

thesis of probabilistic programs. In Programming Language Design and

Implementation (PLDI). ACM—Association for Computing Machinery, June

2015. URL https://www.microsoft.com/en-us/research/publication/

efficient-synthesis-of-probabilistic-programs/.

324

A. V. Nori, C. Hur, S. K. Rajamani, and S. Samuel. R2: an efficient MCMC sampler

for probabilistic programs. In C. E. Brodley and P. Stone, editors, Proceedings of

AAAI 2014, pages 2476–2482. AAAI Press, 2014.

E. Nummelin. General Irreducible Markov Chains and Non-Negative Operators.

Cambridge Tracts in Mathematics ; no. 83. Cambridge University Press, Cambridge,

1984. ISBN 9780511526237.

B. Paige and F. D. Wood. A compilation target for probabilistic programming lan-

guages. In Proceedings of the 31th International Conference on Machine Learn-

ing, ICML 2014, Beijing, China, 21-26 June 2014, pages 1935–1943, 2014. URL

http://jmlr.org/proceedings/papers/v32/paige14.html.

S. Park, F. Pfenning, and S. Thrun. A probabilistic language based upon sampling

functions. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages, POPL 2005, Long Beach, California, USA, Jan-

uary 12-14, 2005, pages 171–182, 2005. doi: 10.1145/1040305.1040320. URL

http://doi.acm.org/10.1145/1040305.1040320.

A. Pfeffer. IBAL: A probabilistic rational programming language. In B. Nebel, editor,

International Joint Conference on Artificial Intelligence (IJCAI’01), pages 733–740.

Morgan Kaufmann, 2001.

A. Pfeffer. Figaro: An object-oriented probabilistic programming language. Technical

report, Charles River Analytics, 2009.

A. M. Pitts. Alpha-structural recursion and induction. Journal of the ACM, 53:459–

506, 2006. doi: http://doi.acm.org/10.1145/1147954.1147961.

A. M. Pitts. Nominal Sets: Names and Symmetry in Computer Science, volume 57 of

Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,

2013. ISBN 9781107017788.

R. Pollack. Dependently typed records in type theory. Formal Aspects of Computing,

13:386–402, 2002. URL http://homepages.inf.ed.ac.uk/rpollack/export/

recordsFAC.ps.gz.

D. Purves and V. Lyutsarev. Filzbach User Guide, 2012. Available at

http://research.microsoft.com/en-us/um/cambridge/groups/science/

tools/filzbach/filzbach.htm.

325

N. Ramsey and A. Pfeffer. Stochastic lambda calculus and monads of probability

distributions. In Conference Record of POPL 2002: The 29th SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, Portland, OR, USA, January

16-18, 2002, pages 154–165, 2002. doi: 10.1145/503272.503288. URL http:

//doi.acm.org/10.1145/503272.503288.

D. Ritchie, A. Stuhlmüller, and N. D. Goodman. C3: lightweight incrementalized

MCMC for probabilistic programs using continuations and callsite caching. In Pro-

ceedings of the 19th International Conference on Artificial Intelligence and Statis-

tics, AISTATS 2016, Cadiz, Spain, May 9-11, 2016, pages 28–37, 2016. URL

http://jmlr.org/proceedings/papers/v51/ritchie16.html.

G. O. Roberts and J. S. Rosenthal. Harris recurrence of metropolis-within-gibbs

and trans-dimensional markov chains. Ann. Appl. Probab., 16(4):2123–2139, 11

2006. doi: 10.1214/105051606000000510. URL http://dx.doi.org/10.1214/

105051606000000510.

G. O. Roberts, J. S. Rosenthal, et al. General state space Markov chains and MCMC

algorithms. Probability Surveys, 1:20–71, 2004.

N. Saheb-Djahromi. Probabilistic LCF, pages 442–451. Springer Berlin Heidelberg,

Berlin, Heidelberg, 1978. ISBN 978-3-540-35757-5. doi: 10.1007/3-540-08921-7_

92. URL http://dx.doi.org/10.1007/3-540-08921-7_92.

J. Schumann, T. Pressburger, E. Denney, W. Buntine, and B. Fischer. AutoBayes pro-

gram synthesis system users manual. Technical Report NASA/TM–2008–215366,

NASA Ames Research Center, 2008.

A. Ścibior, Z. Ghahramani, and A. D. Gordon. Practical probabilistic programming

with monads. In B. Lippmeier, editor, Proceedings of Haskell 2015, pages 165–176.

ACM, 2015.

M. Sperber, R. K. Dybvig, M. Flatt, and A. van Straaten. Revised [6] report on the

algorithmic language Scheme, volume 19. Cambridge University Press, 2010.

Stan Development Team. Stan Modeling Language: User’s Guide and Reference Man-

ual, Version 2.2, 2014. URL http://mc-stan.org/.

326

S. Staton, H. Yang, F. D. Wood, C. Heunen, and O. Kammar. Semantics for proba-

bilistic programming: higher-order functions, continuous distributions, and soft con-

straints. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Com-

puter Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages 525–534, 2016.

doi: 10.1145/2933575.2935313. URL http://doi.acm.org/10.1145/2933575.

2935313.

A. Stuhlmüller and N. D. Goodman. A dynamic programming algorithm for inference

in recursive probabilistic programs. CoRR, abs/1206.3555, 2012.

T. Tao. An Introduction to Measure Theory. AMS, 2011.

L. Tierney. Markov chains for exploring posterior distributions. The Annals of Statis-

tics, 22(4):1701–1728, 1994.

L. Tierney. A note on Metropolis-Hastings kernels for general state spaces. The Annals

of Applied Probability, 8(1):1–9, 02 1998.

D. Tolpin, J. van de Meent, and F. Wood. Probabilistic programming in Anglican. In

A. Bifet, M. May, B. Zadrozny, R. Gavaldà, D. Pedreschi, F. Bonchi, J. S. Cardoso,

and M. Spiliopoulou, editors, Proceedings of ECML PKDD 2015, Part III, volume

9286 of LNCS, pages 308–311. Springer, 2015.

N. Toronto. Useful Languages for Probabilistic Modeling and Inference. PhD thesis,

Brigham Young University, Provo, UT, 2014. URL https://www.cs.umd.edu/

~ntoronto/papers/toronto-2014diss.pdf.

N. Toronto, J. McCarthy, and D. Van Horn. Running probabilistic programs back-

wards. In J. Vitek, editor, Programming Languages and Systems: 24th European

Symposium on Programming, ESOP 2015, Held as Part of the European Joint Con-

ferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-

18, 2015, Proceedings, pages 53–79, Berlin, Heidelberg, 2015. Springer Berlin Hei-

delberg. ISBN 978-3-662-46669-8. doi: 10.1007/978-3-662-46669-8_3. URL

https://doi.org/10.1007/978-3-662-46669-8_3.

D. Wingate, A. Stuhlmueller, and N. Goodman. Lightweight implementations of prob-

abilistic programming languages via transformational compilation. In Proceedings

of the 14th Intl. Conf. on Artificial Intelligence and Statistics, page 131, 2011.

327

J. Winn and T. Minka. Probabilistic programming with Infer.NET. Machine Learning

Summer School lecture notes, available at http://research.microsoft.com/

~minka/papers/mlss2009/, 2009.

G. Winskel. The Formal Semantics of Programming Languages: An Introduction. MIT

Press, Cambridge, MA, USA, 1993. ISBN 0-262-23169-7.

F. Wood, J. W. van de Meent, and V. Mansinghka. A new approach to probabilistic

programming inference. In Proceedings of the 17th International conference on

Artificial Intelligence and Statistics, volume 33 of JMLR Workshop and Conference

Proceedings, 2014. arXiv:1403.0504v2 [cs.AI].

L. Yang, Y.-T. Yeh, N. D. Goodman, and P. Hanrahan. Incrementalizing McMC in

probabilistic programs through tracing and slicing. 2013.

L. Yang, P. Hanrahan, and N. D. Goodman. Generating efficient McMC kernels from

probabilistic programs. In AISTATS, volume 33 of JMLR Proceedings, pages 1068–

1076. JMLR.org, 2014.

328

	cover sheet
	thesis

