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Abstract 
This thesis studies the foundations of formal program development. It brings 
together aspects of algebraic specification and type theory and applies them 
to powerful new mechanisms for modular programming and specification. 

The language ASL+ is the vehicle for the study. It is a typed A-calculus 
built on top of a core-level programming language and the algebraic specifi-
cation language ASL. The A-calculus expresses the structure of programs and 
specifications in the same language, allowing higher-order parameterisation 
of each, and allowing specification of parameterised programs. 

ASL+ has a model-theoretic semantics based on an arbitrary institution, 
and two formal systems: a type-checking system to check well-formedness, 
and a proof system to prove that a program satisfies a specification or that 
one specification refines another. The type-checking system builds on simply 
typed A-calculus. The proof system is richer: a type theory with subtyping, 
dependent products, power types, and singleton types. This is a novel com-
bination; establishing even basic properties poses a challenge. 

I demonstrate the use of ASL+ with an example program development, 
introducing some rules and issues such as sharing. The formal study begins 
with two fundamental investigations into sub-languages of ASL+, new typed 
A-calculi in their own right. The first calculus A<{}  features singleton types, 
the second calculus A Power  features power types. Both calculi mix subtyp-
ing with type-dependency. I prove that each is strongly normalizing, and 
has expected admissible rules; for example, A<{}  has subject reduction and 
minimal typing. The calculus A Power  is given a restricted system for rough 
type-checking which is decidable. Rough types help organize a model defini-
tion. 

I examine two versions of ASL+ itself. The first is an abstract kernel 
language which treats the underlying core-level languages as sets of combi-
nators. It is built on a calculus AASL+  which extends A<{}  and A PowerS  Practical 
examples must be translated into this version of ASL+, because it does not 
automatically express the sharing behaviour of parameterised programs. In-
stead of a translation, I give a second version of ASL+ in a specific institution 
FTC. The institution is based on FPC, a functional language with recur-
sive types, together with an LCF-style extension to higher-order logic. This 
concrete version of ASL+ has a more powerful type-checking system than 
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the abstract version, so programs and specifications can be written directly 
without translation. 
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1 Introduction 

This thesis studies modular specification and programming, combining 
aspects of algebraic specification and type theory. This introduction 
provides some background, including fundamental definitions. 

The vehicle used for the study is a language called ASL+ which fol-
lows the algebraic tradition. It has a formal, model-theoretic semantics 
which is paramount. The language and its semantics are based on an 
arbitrary institution which provides the building blocks for constructing 
programs and specifications. 

1.1 Institutions 6 
1.2 ASL 10 
1.3 Parameterisation in ASL 16 
1.4 ASL+ 19 
1.5 Pre-requisites and Conventions 21 
1.6 Outline of the Thesis 22 

T 0 DEVELOP PROGRAMS FORMALLY, we need both a specification language and 
a programming language, and a formal semantics for each of them. The 

syntax of the two languages must be connected, so specifications can de-
scribe properties of programs. The semantics must be connected, so the 
logic of the specification language indeed expresses the behaviour of pro-
grams. 

Whatever way these connections are made, there is a fundamental ques-
tion which we can ask, and at least some of the time, which we can answer. 
The question is: does the program P implement, or satisfy, the specification 
SP? 	The statement that P satisfies SP is written 

P: Sp. 

Another question, aiming towards a gradual development of specifications 
towards programs, is: does one specification SP2  implement, or refine, an- 
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other specification SP1? This is written as 

sP1  - sP2. 

Intuitively, one specification refines to another when some design or coding 
decisions are taken, reducing the collection of programs that count as correct 
implementations. 

In algebraic specification, programs are modelled by algebras, and we 
write !{Pfl  for the algebra denoted by the program P. The most direct in-
terpretation of a specification SP is the collection of algebras which model 
programs that implement SP. An algebra that models an implementation of 
SP is said to be a model of SP, and we write [SPill  for the class of models of SP. 
If TSM = 0, then SP cannot be implemented and is said to be inconsistent. 

A language that has a model-level semantics like this follows the model-
theoretic approach advocated by Sannella and Tarlecki [1992]. With this ap-
proach satisfaction is easily defined: 

	

P: SP 	 IPESPJ1. 

Refinement is also easily defined. If SP1  -SP2  then every algebra which is a 
model of SP2  must also be a model of SP1 , so 

	

SP1 SP2 	 I SP2 dlljSP1j 

where c denotes class inclusion. 
Refinement is important because proving each development stage correct 

separately is more tractable than proving correctness of the final program in 
one go. If one ensures vertical composition for refinements, so that SP1  --.SP2  
and SP2  - SP3  implies SP1  SP3 , then the same end is achieved: 

SP1 	... 	SP 	E E[SP 

PI1 

With the definition of the refinement relation as inclusion, vertical composi-
tion obviously holds. (The other direction, horizontal composition, concerns 
operations used to put specifications together: it holds for a unary opera-
tion f if SP-SP2  implies f(SP1 )-f(SP2 ). With the definitions above, this 
is true when f is monotonic.) 

Three kinds of parameterisation 

In this thesis I study the language ASL+, which was invented by Sannella, 
Sokolowski, and Tarlecki, Sannella, Sokolowski, and Tarlecki [1990, 1992], 
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and later christened by Sannella. ASL+ can express both programs and speci-
fications (so it is a wide-spectrum language) and it has a model-level seman-
tics following the outline above. But ASL+ has more than just specifications 
and programs; as well, it can express three different kinds of parameteri-
sation useful for program development: parameterised programs, parame-
terised specifications and specifications of parameterised programs. 

A parameterised program acts as a function from programs to pro-
grams, and is used for building large programs in a modular fash-
ion. The advantages of reusability and separate development are well-
known. Several modern programming languages have module systems 
which can express parameterised programs; in the module system of 
SML (Standard ML, Paulson [1991]), for example, parameterised pro-
grams are known as functors. 

In ASL+, parameterised programs are written using A-abstractions. 

A parameterised specification acts as a function from specifications to 
specifications, and is used for building large specifications. Many speci-
fication languages have some form of parameterised specification; an 
example is ASL Sannella and Wirsing [1983]. But not all forms of pa-
rameterisation found in specification languages act as functions from 
specifications to specifications. 

In ASL+, parameterised specifications are also written using A-abstractions. 

A specification of a parameterised program acts as a collection of func-
tions from programs to programs, allowing the modular structure of 
a program to be specified. In [ML (Extended ML, Kahrs et al. [1994]), 
functor specifications are used to specify Standard ML functors, so they 
are specifications of parameterised programs. 

In ASL+, specifications of parameterised programs are written using 
H-abstractions. 

The third kind of parameterisation is one of the novelties in ASL+; speci-
fications of parameterised programs are sometimes called H-specifications. 
Sannella, Sokolowski, and Tarlecki introduced H-specifications when they re-
alised that the functor specifications of Extended ML could not be expressed 
in ASL, which they hoped to use as a semantic kernel. 

Sometimes the structure of an implementation mirrors the structure of 
its requirement specification, but there is no reason why this should be en-
forced by the language. It may be easy to express the specification using a 
decomposition which is unnatural or even impossible from a programming 
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point of view. Researchers argue that the structure of a requirements speci-
fication should not determine the structure of an implementation [Fitzger-
ald and Jones, 1990, Sannella et al., 1992], although some languages and 
development methodologies do enforce this. (For good reason - if the im-
plementation has the same decomposition as the specification, it is liable 
to be easier to prove correct.) Adding Il-specifications to a language allows 
the structure of the implementation to enter the realm of specification, so 
the most flexible approach is to have both H-abstracted and A-abstracted 
specifications. 

Much more can be said about methodology and program structure versus 
specification structure. Sannella et al. [1992] give discussion and references, 
and also some analysis which characterises when it is possible to implement 
a parameterised specification with a parameterised program, decomposing 
the implementation in the same way as the specification. (We might even 
consider adding a special operator to the language of ASL+ to correspond to 
this development step.) For this thesis, the issues are explored a little bit in 
the example formal development in Chapter 2, which motivates another kind 
of parameterisation: specifications parameterised upon programs. Mainly I 
am concerned with semantic foundations rather than methodology, and the 
main topic is the type systems underlying ASL+. 

Two kinds of type system, one with subtyping 

ASL+ is a typed A-calculus, with both A-abstraction and H-abstraction. The 
forms of abstraction are entirely general, and ASL+ has higher-order versions 
of all the forms of parameterisation mentioned. Moreover, the language con-
tains a novel term former Spec (SP) which is used to parameterise on refine-
ments of SP. 

Not surprisingly, this makes for a complicated type-checking system. In 
fact, we study two kinds of type system, one for type-checking, and the other 
for satisfaction. 

A type-checking system proves the structural well-formedness of syn-
tactic expressions. In general, only typed terms have a denotation in 
the semantics, and we aim for type-checking to be decidable. 

A satisfaction system proves the implementation relations: that a pro-
gram satisfies a specification, or that one specification refines another. 
Showing satisfaction involves proving logical consequences, to show 
that a program satisfies some axioms, for example. Depending on the 
logic used, satisfaction is often undecidable. 
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We should only prove satisfaction between typable objects, so satisfaction 
subsumes type-checking. But it is useful to separate the type-checking com-
ponent of satisfaction, so that type-checkers can be used to check source 
texts mechanically, just as with ordinary programming languages. The type-
checking part of satisfaction is a fairly obvious fragment which should be 
decidable.' An important topic not addressed in this thesis is the study of 
other decidable fragments of satisfaction systems, and strategies for proof 
search. 

Both type-checking and satisfaction systems are theories of typing judge-
ments; the difference is what the types are. In a satisfaction system, types 
are specifications, but in a type-checking system the types have a simpler 
structure. To begin with, I study the typed A-calculus underlying ASL+ in a 
pure setting, and type-checking is called rough typing to distinguish it from 
typing in the system with "full" types. When the pure theory is applied to 
ASL+, the system with full types is the one used for proving satisfaction. 

Satisfaction systems are based on type systems with subtyping. The cor-
respondence is easy to see: 

elementhood, P: A 	 satisfaction, P : A 

subtyping, A ::!~ B 	 refinement, B-A 

The elementhood of a term P in a type A is like satisfaction of a specification 
A by a program P. Saying that a type A is a subtype of another type B is like 
saying that the specification A is a refinement of the specification B. 

Of course, the viewpoint of types-as-specifications is not new; it is pur-
sued in many variants of Martin-Löf's type theory [Nordstrom et al., 19901 
and in studies influenced by algebraic specification [Streicher and Wirsing, 
1991, Luo, 1993]. What differs here is that programs and specifications are 
built not in a type theory directly, but using other languages. The typed A-
calculus of ASL+ is a structuring mechanism for programming and specifica-
tion in-the-large. Thus we extend Burstall and Lampson's original conception 
of modular programming as typed functional programming [Burstall, 1984, 
Lampson and Burstall, 1988] to the realms of specification. 

The rest of this introduction is as follows. Section 1.1 introduces the 
notion of institution, which provides an abstract model theory for specifica-
tions and programs. ASL+ is based on an arbitrary institution. Section 1.2 de-
scribes ASL, the specification language upon which ASL+ is based. Section 1.3 
describes the limited parameterisation capabilities of ASL, and Section 1.4 

'Some researchers fancy programming with powerful semi-decidable type-checking sys-
tems, but here I am talking about type-checking in-the-large, for putting together program 
modules, which is usually simpler. 
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then contains a brief overview of ASL+ and its vastly extended parameterisa-
tion features. Section 1.5 mentions some conventions and notations used in 
the thesis and Section 1.6 gives an outline of the thesis content. 

1,1 Institutions 

Classically, algebraic specification models programs as many-sorted alge-
bras, and expresses their properties using many-sorted equational logic. This 
abstracts away from the details that are not concerned with correctness; al-
gorithmic complexity, for example, plays no part in classical algebraic speci-
fication. 

It was soon realised that many-sorted algebras are not flexible enough 
to handle all of the data that programs might manipulate (e.g., higher-order 
functions), and equational logic is not expressive enough to describe some 
properties of the data (e.g., exception conditions) in a natural way, if at all. 

Researchers have proposed many variants of algebra and logic to solve 
these problems, yet it seems that much of the study of specification lan-
guages can be abstracted away from these "low-level" details. A tool for this 
is the theory of institutions, which provides an abstract model theory, a stan-
dard way of viewing an algebra and its related logic. Unlike model theory 
in logic, the theory of institutions allows us to change notation, by relat-
ing models over different signatures. This is essential for applied logics in 
computer science, where program parts change name according to scope. 

Definition 1.1 (Institution [Goguen and Burstall, 1992]). 
An institution 1 consists of: 

A category of signatures, Sign2 . 
We often use to range over the objects of this category, and a : 
" to range over the morphisms. Intuitively, a signature provides the 

vocabulary for expressing properties of models. 

A sentence functor Sen2  : Sign' - Set. 
For each signature , there is a set of s-sentences in the logic, Sen2  (s'); 
for each signature morphism a : f - X' there is a translation of sen-
tences Sen2 (a). 

A model functor Mod' : Sign' -. Cato,'. 
For each signature E, there is a category of X-models, Mod2 (1) and 
for each signature morphism a : X -. ' there is a functor Mod' (u), 
known as the a-reduct functor, which translates £'-models (and I'-
model morphisms) to s-models (and1-model morphisms). 
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For every signature Z, a satisfaction relation 	c I Mod' (E)I x Sen2 (1) 
between 2'-models and 1-sentences. 
The satisfaction relation provides us with the truth of a sentence in a 
particular mode1 

For any signature morphism a : X -. ', sentence p E Sen1(1) and model 
m' E I Mod' (s') 1, the satisfaction condition 

M 4 Sen2 (o-)(p) 	Mod2 (a)(m') 4 

must hold. 	 o 

The satisfaction condition states that satisfaction is preserved when trans-
lating models and sentences along a signature morphism, hence the slogan 
"truth is invariant under change of notation." 

Notation for institutions. When working with a particular institution, I of-
ten drop the 1 superscripts. I often call models in an arbitrary institution 
"algebras" to avoid overloading the word "model" too much. The function 
Sen(a) is written simply as a. For a category C such as Sign or Mod (1), 
sometimes I write C to mean the objects I CI of C. The reduct functor Mod (0- ) 
is usually used as a function on models; this function is abbreviated 

- , 
or 

when we have a signature inclusion t : X i", as -If, the function which 
returns the restriction of a '-mode1 to a -model. If m = m' then we say 
that m' is a a-expansion of m. For the satisfaction relation, if cP c Sen(s) 
is a set of sentences then m 	cI holds iff for all 'P E 0, m = 	p; 
if k g Mod(s) is a collection of models, then k 	'p iff for all m E 
m 	'p. Semantic entailment between sentences is defined in the usual 
way: çJi 	cp iff for all m, m ~=z ct implies m 	cp. Finally, {fl denotes 
the class of 1-models which satisfy 0. 

A familiar case of Definition 1.1 is the institution J'9L of first-order logic. 

Example 1.2 (First-order logic (9C). A first order signature is a pair 1 = 

(Q, Y) where for each n E w, On is a set of function symbols of arity fl 
and Y is a set of relation symbols of arity n. A morphism of signatures 
a : 	- _Y" is a pair of mappings af : Q - Q' and ar : Y - Y. 

A £-sentence is the usual notion of a first-order sentence, i.e., a formula 
'p built inductively by R(m1 , . . . ,m 1), cp, Pi A 'P2, (P1 V (P2, (p1 ==> 
Vx.'p1 (x) and x.p1(x), where the m1 are terms built from variables and 
constants in Q and pi, 'P2 are formale. The translation of a sentence under 

2The fine-scale satisfaction relation of an institution generates the implementation re-
lations for programs and specifications, also called "satisfaction relations" in this thesis. 
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a signature morphism o-  = (a f , 0r) is the homomorphic extension of the 
renamings of the function symbols of and the relation symbols °r• 

AI-model rn is a first-order model, i.e., a set Iml together with assign-
ments of the function symbols f e Q to n-ary mappings fm  on I rn I and 
assignments of the relation symbols R e Yn  to n-ary relations Rrn  on rn. A 
s-model morphism is a homomorphism between X-models. The translation 
of I'-model rn to a £-model rnl- along a signature morphism o : I - X' is 
defined by 	= u(f)m and Rrniu = 0(R)m. 

Satisfaction M cp is defined via the usual notion of the truth of p  for 
all valuations of free variables into I rn. 	 n 

Another common example is the institution of equational logic, EQ. . A sig-
nature in EQ is a many-sorted algebraic signature; terms over a signature are 
built up from the function symbols and a set of variables, and sentences are 
universally-quantified equations between two terms of the same sort. Mod-
els are many-sorted algebras, and satisfaction is defined in the obvious way. 
This and other examples of institutions are spelt out by Goguen and Burstall 
[1992]. 

Lid Institutional semantics 

An institution provides some of the semantic foundation for formal program 
development. An institutional semantics uses parts of an institution to inter-
pret a programming and specification language in a standard way. 

A program P determines a signature Sig(P) which describes its vocab-
ulary: typically, the names and types of its variable and procedure dec-
larations. If Sig(P) - £, we say that P is a E-program. The denotation 
of a s-program is a .'-algebra, so TPJ E Mod(s). Similarly, a specifica-
tion SP determines a signature Sig(SP), and if Sig(SP) = E, we call SP a 
I-specification. The denotation of a s-specification is a class of models over 
I, so l[SPjfl 	Mod(f). The semantics of programs and specifications are 
connected by the same notion of signature and model. 

Sentences are used in the syntax of specifications to express logical prop-
erties. Programs, on the other hand, are usually written in a more restricted 
(executable) language. For example, orthogonal term rewriting systems [Der-
showitz and Jouannaud, 1990] are a suitable programming language for TQ; 
programs are special sets of oriented equations which can only be combined 
in certain ways. In a different setting, orthogonal term rewriting systems 
could be used as executable specifications for a more low-level program-
ming language. To contrast, in an institution for constructive type theory, 
programs are not more restricted than specifications because both are terms 
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from the same language - but with different types [Luo, 1993]. The frame-
work of institutional semantics encompasses a wide variety of settings, but 
whatever the setting, the syntax of programs and the syntax of specifications 
are connected by the sentences of the institution. 

1.1.2 Proof systems for institutions 

To develop programs formally using an institutional semantics, we need 
proof systems for deriving instances of the two implementation relations, 
P : SP and SP1  --.SP2. Because sentences appear in specifications, proving 
either of these relations can involve logical reasoning, so we need a proof 
system for reasoning in the logic of the institution. Logically, the important 
thing about a proof system is the consequence (derivability) relation which 
it gives rise to. 

Definition 1.3 (Consequence Relation). 
A consequence relation H consists of: 

A category of signatures, Sign H 

A sentence functor Sen H : Sign'-- 	Set. 

For each f E Sign H,  a relation 	c Pow(Sen(f)) x Sen(s). 

As usual, s1,.. . , s - s means ({ s1 , . . . , s I , s) E HE. Each relation HE 
must satisfy the following structural properties: 

Reflexivity.  s HE S. 

Transitivity. If di H' p and 0, p Hx p' then ct HE q'. 

Weakening. If 0 HE cp then cP,p' lE cp. 

Translation. If cli H' cp then o() HE' o- (p). 

where dl  c Sen(X), p,  q2' E Sen(cP), and a : ' - E'. 

This definition adds signatures to the usual definition of a consequence re-
lation [Avron, 1991]; the structural properties are the usual ones, together 
with the condition that consequence is preserved by signature morphisms. 

Fact 1.4. The satisfaction relation =' of an institution 1 extends to a con-
sequence relation (with the definition of (P =' p given earlier). 
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Definition 1.5 (Deduction relation for an institution). 
A deduction relation for an institution 2 is a consequence relation i2 for 
Sign2 and Sen2, which is sound for i=' , so that 

Hp z 

for all Z c Sign', cP c Sen2 (Z), and p c Sen2 (Z). 
A deduction relation is complete if the opposite implication also holds. 

Several researchers have studied institutions extended with a deduction re-
lation; Meseguer [1989] for example, gives almost the same definitions as 
above. He calls a consequence relation indexed by signatures an entailment 
system, and he calls the combination of an institution and a sound deduction 
relation a logic. 

As well as a deduction relation for the logic of the institution, we may 
want sound proof systems for proving properties of programs and specifi-
cations. Such proof systems give rise to relations P H p, which implies 
[PIfl Sig(P) p, and SP F- p, which implies jSP 	SigSP) p. These relations 
are subsumed by P : SP and SP ::~ SF' in the language ASL. 

1.2 ASL 

ASL [Sannella and Wirsing, 1983] is a specification language composed of 
a small number of specification building operators. The operators are low-
level, but powerful enough to allow high-level languages to be understood 
by translating into ASL, using it as a kernel language. Sannella and Tarlecki 
[1988a] give ASL an institution independent treatment, which I shall briefly 
review. 

The syntax of ASL consists of specification expressions SP, built from a 
context-free grammar: 

SP ::= X 
I 	impose c! on SF I translate SF by o 
I 	derive from SF by o 	SP union SP 
I 	minimal SP wrt cr I iso-close SP 
I 	abstract SP wrt P via u 

where I is a signature from the underlying institution, o is a signature mor-
phism, and is a set of sentences. 

To write specifications with ASL in some particular institution, we need 
additional institution-dependent syntax for writing the "semantic" parts of 
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the specification expression grammar. Concrete syntax for a particular in-
stitution will be defined rigorously in Chapter 6, but for most of the thesis 
I shall use intuitive syntax for writing signatures, signature morphisms, and 
algebras, in a typical institution. For example, 

=def 	 =def 
	

Ocd =def 	 PC =d,f 

Sig 	 Sig 	 [c—ct,v—w] aig 
type c 	type d 
	

type C = nat 
valv:c - c 	type 	 val v = succ 

end 	 vaiw: cl — cl 	 end 
end 

This defines two signatures Ic and i'd,  a signature morphism 0 cd : Ic — 
between them and a -algebra, P. This assumes that flat stands for an 
implementation of the natural numbers and succ is the successor function 
on nat. 

Here is an informal explanation of the ASL operators, in terms of the 
model classes they define. Formal definitions follow in Definition 1.6. 

The class of all s-algebras; a trivial specification. 

impose 0 on SP 
The models of SP which satisfy the axioms cI. 

translate SF by a- 
The models which are u-expansions of models of SP. Useful for ex-
panding the signature of a specification with some extra uninterpreted 
symbols. 

derive from SP' by a 
The cr-reducts of the models of SF'. Useful for hiding symbols used in 
a specification. 

SF1  union SP2  
The union of specifications SF1  and SF2, which consists of the intersec-
tion of the models of SP1  and SF2. 

minimal SF wrt a 
The models of SF which are minimal expansions of their cr-reducts, 
removing models which are "larger" than necessary. For example, re-
stricting to reachable models. 

iso-close SF 
The closure of the models of SP under isomorphism. 
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abstract SP wrt cP via o 
The closure of the models of SP under a behavioural equivalence re-
lation determined by a set of sentences cI and signature morphism a. 
Used for abstracting away from particular models to include all models 
which behave in a similar way. 

ASL is a low-level formalism, and we often use combinations of operators 
when writing specifications. Derived syntax is useful, for example: 

(1, 0), which abbreviates impose cP  on Z. 

the operator enrich, used like this: 

enrich SP 
with sig 

end 
axioms (J5 

end 

which abbreviates the use of translate and union: 

(translate SP by L) union (s',qb > 

where .f' is the signaturef of SP, extended by the new declarations in 
ellipsis, and i : . 	' is the inclusion of Z in i". 

In this way, higher-level constructs are quickly created. A fully formal treat-
ment should describe how derived syntax is parsed and type-checked, as 
well as its translation to ASL operators. Translating well-typed source terms 
should give terms which can be type-checked in ASL. 

1.2.1 Type-checking 

To type-check ASL expressions, we use the set of type-checking rules shown 
in Figure 1.1. These determine the signature of a specification expression: 

SP = S(s) 	SP is a E-specification. 

The rules are deterministic, so a specification has at most one type. This is 
equivalent to a definition by structural induction on SP, and justifies writing 
Sig (SP) to stand for the f such that o. SP => 5(E). 

If concrete syntax is provided for the parts of the ambient institution, the 
"semantic" premises in Figure 1.1 like cP c Sen(E) can be replaced by further 
type-checking judgements, to check the well-formedness of syntactic repre-
sentations for sentences, etc. This is carried out for a particular institution 
in Chapter 6. 
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SP => 5(E) 	'P c Sen(f) 
o. impose cPon SP => S(11) 

SP=S(E) 	o:E - E' 
translate SP by cr => 5(E') 

0. SP' => S(E') 	r:E-.E' 
derive from SP'by o = S(1) 

0. Si'1  ==> 5(E) 	SP2  = S(E) 
SP, union SP2  => 5(Z) 

SP==S(E) a:E'-.E 
minimal SP wrt x ==> S (E) 

0.  SP => 5(E) 
10. iso-close SP 	S (E) 

0. SP => 5(E) 	o:Z - Z' 	'PSen(E') 
abstract SPwrt 'P via o-  => 5(E) 

Figure 1.1: Type-checking ASL operators 
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1.2.2 Semantics 

The semantics of a specification expression SP can now be defined conve- 
niently by induction on a typing derivation o. SF 	S (X). This is equival- 
ent to a definition by induction on the structure of SF, but ensures that we 
only consider well-typed expressions. 

Definition 1.6 (Semantics of ASL specifications). 
Let o. SF => 5(X). We define j  o. SP = S(X) I E Spec (1) by induction on 
the typing derivation of o. SF ==> 5(X), 

=> S(X)=I Mod (X)I 

o. impose ct on SP z=> S(X)J1 
{mESP=s(X)ifl I m=x} 

translate SF by a ==> S (X') JI = 
{mEMod(X') I mI 	SF == S(X)Jj} 

derive from SP' by ci => S(X)]1 = 
{mI- I M  T 0. SP' => S(X')} 

III 	SP, UflOfl 5P2  => S(X)ill = 
SF1  => S(X)n T o. SF2  ==> S(X) 

[{ 	minimal SF wrt ci 	5(X) 1] = 
{ m E If SF ==> 5(X)l I m is o-  -minimal in Mod (1) } 

EliPo. iso-close SF = S(X) 1 = 
{mE Mod (X) 1 3 rn'EIf io. SF = S(X) mm'} 

Elio. abstract SF wrt cP  via ci => S (I) If = 
{mE Mod (X) 1 3 m'EIf  P,. SF = S(X)]l.m4m'} El 

A couple of notations used above need explanation. 
An algebra m e Mod(X) is a-minimal in a collection K Mod(X) if 

rn E K and m has no proper subalgebra in K with an isomorphic a-reduct. 
This requires a notion of subalgebra, which can be provided by giving a fac-
torisation system on each category Mod (X); subalgebras are then the sub-
objects of the factorisation system. Minimality requirements can be used to 
express reachability; informally, reachable models are ones in which certain 
induction principles are valid. 

Two models M1, M2 E Mod (1) are observationally equivalent wrt via 
a, written rn1 	m2, iff for every a-expansion rn'1  of rn1  there is a o-- 
expansion rn'2  of m2 such that 

V (PC . rn p 	m i= p, 
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and vice-versa: for every 0--expansion m of m2, there is a m, and so on. 
Intuitively, this captures a model-theoretic notion of observational equival-
ence because X' can be a larger signature than X, introducing some symbols 
for "free variables." Then a u-expansion of a X-model corresponds to an 
environment for the free variables. The sentences 0 are the permissible ob-
servations. 

For more details of this institution-independent semantics of ASL, see 
Sannella and Tarlecki [1988a]. 

1.2.3 Satisfaction in ASL 

Now that we have a type-checking system for ASL and a semantics based on 
it, we can define a satisfaction system for proving refinement of specifica-
tions SP :!~ SF', or, when programs are added, satisfaction of specifications 
P: Sp. 

The soundness of the satisfaction system is vital. To even consider it, we 
should have the important agreement connection between the type-checking 
system and the satisfaction system; it only makes sense to assert SP :!~ SF' 
(or P : SF) if the signatures of SP and SP' (or P and SP) are the same. For 
refinement, we expect that whenever SP :5 SP' is provable, then there is some 
X such that o. SP => 5(X) and o. SF' => 5(X). 

As mentioned above, a satisfaction system for ASL also gives proof rela-
tions for proving properties of programs and specifications. We can define: 

P H 'P =d,f P : impose { 'P } on Sig (P) 

SF H p =d,f SP :5 impose { cp } on Sig (SP) 

However, the definition of both P : SP and SF ::~ SP' must refer to the sat-
isfaction relation of the institution to handle impose specifications in the 
first place, so it may be more realistic to give proof systems for the relations 
P H 'P and SP H p first, then define P : SF and SF :!~ SP' using them. 

I shall not give the rules for a satisfaction system here; example rules of 
satisfaction systems for ASL will be given in Chapters 5 and 7. There is still 
scope for further research into finding good systems for proving satisfaction 
for ASL, but the main concern of this thesis is how to extend such a system 
to ASL+. 

Pattern of development 

The pattern followed above for ASL is typical. First we define the context-
free syntax of a language, followed by some type-checking rules to restrict 
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to meaningful expressions. Then we define a semantics of well-typed terms 
by induction over typing derivations. Then a satisfaction system can be de-
fined, which is a proof system for the two implementation relations. The 
satisfaction system must be proven sound with respect to the semantics, 
and it must be shown to agree with the type-checking system. This pattern 
of development, or some part of it, will be repeated several times over in the 
rest of the thesis. 

In general both the type-checking rules and the satisfaction rules are 
context-sensitive, as when parameterisation is added. 

1.3 	Parame te nation in ASL 

ASL has a limited mechanism for writing parameterised specifications using 
a A-calculus notation. The limitation is to single-parameter specifications 
over a fixed signature. To add parameterisation, the syntax of specification 
expressions is extended: 

F ::= AX:Spec(').SP 
SP ::= ... I X I FSP 

The expression AX: Spec (s). SP is a parameterised specification which can 
be applied to a specification expression to yield a new specification. The 
identifier X can be used as a f-specification inside the body specification SP. 

1.3.1 Type-checking parameterised specifications 

To type-check a specification expression, we now use a context which can 
contain an assumption about the type of the variable X. A context F is either 
empty or is a declaration X: S (2) for some 2: 

F ::= 0 I X:S(2) 

For ASL, instead of using a context we might simply attach a tag to the vari- 
able, writing 	for example. But when we move to ASL+, an explicit 
context is more convenient because it can contain interdependent variables 
that are declared in sequence. 

Three new type-checking rules are shown in Figure 1.2. The first types a 
variable in a context which declares it, and the second types a parameterised 
specification, with a type of the form 5(2) => 5(2'). This says that it is a 
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X:S(1) 0. X =' 5(X) 

X:S(X) 0. SP = s(X') 
AX: Spec (X).SP = 5(X) = S(X') 

F => s(1) => S(') 	SP => 5(X) 
FSP = S(X') 

Figure 1.2: Type-checking ASL parameterisation 

mapping from X-specifications to X'-specifications. The third rule, for ap-
plying a parameterised specification with type 5(X) = S(X'), checks that the 
argument specification has the signature X. 

We still need to use the rules of Figure 1.1 to type the ASL operators, 
but they must be modified to contain a context F. For example, the rule for 
impose becomes: 

F o. SP=X 	PSen(X) 
F o. imposecPon SP = X 

Although the context plays no part in any of the rules of Figure 1.1, it must 
be added to each typing premise and conclusion to record any assumption 
about the variable X. 

The rules of Figure 1.2 bear an obvious resemblance to the type-checking 
rules of the simply-typed A-calculus, A [Hindley and Seldin, 1987, Baren-
dregt, 1992]. But they are more restrictive, because A allows contexts of 
more than one variable, and the variables are allowed to have function types. 
This corresponds to higher-order parameterisation, which is introduced in 
ASL+. 

1.3.2 Semantics of parameterised specifications 

There are a couple of choices available for giving a semantics to parame-
terised specifications. We may choose to interpret AX: Spec (X). SP purely as 
a syntactic notation for macro definition, and define application by: 

(AX: Spec (X). SP) SParg =def SP[SPargIX] 

where SP[SParg IX] is the substitution of SParg  for X in SP. 
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Oriented from left to right, the equation above is the fl-reduction relation 
of the A-calculus. Examining the rules in Figures 1.1 and 1.2, it is easy to 
show the important subject reduction property of the type system. If 

o. AX: Spec ().SP = S(s) =S(") 

and 
0. SParg => S(E) 

then we also have 
O SP[SParg/X] ==> 5(r). 

This says that fl-reduction is sound for typing. 
Moreover, we can show that by repeatedly /3-reducing, any specification 

expression can be reduced to a unique normal form which is a term with-
out any applications. This means that fl-reduction provides an operational 
semantics for specification expressions. 

Defining application as macro-expansion, the term AX: Spec (1). SP itself 
does not have a model-theoretic denotation. An alternative semantics of 
parameterisation defines [AX: Spec (I). Sfl  as a function on model classes, 
namely the function f such that 

f(k) = E[SII{X.k] 

for all k c Mod(s). Here {SP [x _.k]  is the interpretation of SF in the environ-
ment which assigns X to the model class k; this is similar to the environment 
model semantics for the A-calculus. Now we have a denotational semantics 
for all specification expressions. 

An important property of an environment model semantics is the relation 
between syntactic substitution and updating the environment, namely that: 

= MJ[xNJ] 

Typically, if this property holds we can show soundness of fl-reduction, 
which proves that the operational semantics is sound for the denotational 
semantics. 

Until now, most studies of parameterisation in specification languages 
have had a bias towards either an operational semantics or a denotational 
semantics. The range goes from the macro-expansion idea above; through 
so-called presentation-level semantics in which the meaning of parameteri-
sation is defined as a function on the syntax for specification expressions; 
to wholly denotational approaches like push out parameterisation, where a 
parameterised specification itself is a semantic entity, and application is de-
fined using a diagram in the category of specifications. 
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One of my aims in pursuing the A-calculus approach to parameterisation 
is to provide a framework which provides both an operational and a deno-
tational interpretation of the whole language, in the sense described above. 
Each language I shall study has a context-sensitive equational theory which 
includes $-equality, and which must be proved sound for the semantics. Op-
erational semantics is not be considered explicitly apart from considering 
the important properties of strong normalization and subject reduction. 

1.4 ASL+ 

ASL+ was introduced by Sannella et al. [1992] as an extended version of 
ASL, although the choice of specification building operators is orthogonal 
to the main design of ASL+. As a brief introduction to the language, I shall 
review the syntax of ASL+ given by Sannella et al. [1992]? The use of ASL+ is 
demonstrated by example in the next chapter, and two new versions of ASL+ 
are presented in detail later in the thesis, in Chapters 5 and 7. 

ASL+ departs radically from ASL by adding programs to the syntax, along 
with constructors for A-abstraction, H-abstraction, and the Spec constructor 
which builds power sets. 

The expressions in ASL+ are called pre-terms, and are ranged over by 
several meta-variables. We use M, N,... for arbitrary pre-terms and SP for 
pre-terms which are intended to denote specifications, although there is no 
difference formally. Other variables like A, B, F, G, H are also used. Pre-terms 
are formed by a context-free grammar: 

M,SP ::= X I {M} I AX:SP.M I MM 
I HX:SP.SP Spec(SP) 
'P 

I 	I impose cPonSP I 

The last line is continued with the syntax of ASL from Section 1.2. The new 
meta-variable P ranges over programs written in some unspecified institution-
dependent syntax. Borrowing terminology from SML, I sometimes call pro-
grams P and ASL specifications core-level programs and specifications, to 
distinguish from the module-level part of the language provided by the ASL+ 
A-calculus. (The separation between the two levels is discussed more in Sec-
tion 6.9.3.) 

3With one minor difference: the union operator here is left at the level of ASL terms, as 
it was in Sannella et al. [1990]. 
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ASL had separate syntactic categories for parameterised specifications 
and ordinary specifications, but ASL+ has a single syntactic category of pre-
terms, which may be programs, specifications, or parameterised objects; 
context-sensitive type-checking rules are used to determine what kind of 
object something is. (This mixing of syntax into a single category of terms 
and the use of several meta-variables is typical in complex type theories.) 

Here is a description of the operators of ASL+. 

X is a variable; it only makes sense with respect to a context, because vari-
ables can range over programs, specifications, parameterised programs, 
etc. 

{M} is the tight singleton specification which is satisfied uniquely by M. Sin-
gletons allow a program to turned into a specification, providing the 
crucial (and only) connection between the two. 

More details of singleton types are given in Chapter 3. 

AX:SP. M is a parameterised object, which can be applied to terms satisfying 
the specification SP. For example, the term 

AX: Spec (SP). SP' 

is a parameterised specification which can be applied to refinements 
of SP. In ASL+ parameters can have semantic requirements, unlike ASL 
where parameters always have the form Spec (1) for some signature 
£, amounting only to type-checking requirements. Another example of 
parameterisation is the term 

AX:SP. P 

which is a parameterised program that can be applied to programs 
which satisfy SP. Semantically it denotes a function on algebras. 

M N is the application of a parameterised object M to an object N. For this 
to be meaningful, we must check that M indeed denotes a function, 
and that N denotes a value in its domain. This is the crux of the type-
checking and satisfaction systems we shall study. 

TIX:SP. SP' is the specification of a parameterised object. Semantically, it 
denotes the collection of functions f which map elements m of IISP 
to elements f(m) of 1SP']x.mi.  The dependency in the H-term means 
we can specify functions which depend on their arguments. 
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Spec(SP) is the specification of refinements of SP. If SP denotes a set, 
Spec (SP) denotes the power set of SP. This constructor was devised 
for similar purposes as Cardelli's idea of a power type [Cardelli, 1988], 
written as Power(A) - it allows a single form of A-abstraction to ex-
press both kinds of parameterisation shown above. 

More details of power types are given in Chapter 4. 

Several abbreviations will be used for terms. The term AX:A Y:B.0 ab-
breviates AX:A.AY:B.0 and AX, Y:A.0 abbreviates AX:A Y:A.C. Similarly for 
H-terms. Sometimes I write applications FM using parentheses, as F(M), 
and the curried application F M N is sometimes written as F(M,N). 

The type-checking system, semantics, and satisfaction system for ASL+ 
are developed in the rest of the thesis. 

1.5 Pre-requisites and Conventions 

I have tried to keep the pre-requisites to a minimum, and to make the ma-
terial accessible to readers from either the algebraic specification camp or 
the type theory camp. Standard references for each field may be helpful, for 
example [Wirsing, 1990] and Barendregt [1992]. 

Here are some notational conventions used in the thesis. 

Set notation. If S is a set, Pow(S) denotes the power set of S and Fin(S) 
denotes the set of finite subsets of S. 

The set of total functions between two sets S and T is written as S - T 
and the set of partial functions between the two sets as S - T. Often I write 
f :S - T instead off ES - T. If  ES — T, then the domain of S is written 
Dom(S). The "updated" function f[s - t] is defined by 

c 
f[s - t1(X) = 	

t 	ifx= s,
f(x) otherwise. 

Grammars. When specifying context-free grammars I sometimes use meta-
variables suggestively, rather than the names of the sets they range over. For 
example, 

n ::= 0 I succ(n) 
i ::= n 	—n 

rather than 
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nat ::= 0 I succ(nat) 

mt ::= flat I 	- nat 

Preceding sections used this convention already; it avoids the need to intro-
duce names for syntactic categories. 

1.6 Outline of the Thesis 

Each chapter begins with an overview and table of contents and ends with a 
summary and a comparison to the relevant related work. Here is an outline. 

Chapter 2 motivates the design of ASL+ by sketching an example of modu-
lar formal program development. The example demonstrates specifications 
parameterised on specifications and programs. It also demonstrates param-
eterised programs and specifications of parameterised programs. Some of 
the features of ASL+, and the concerns with their formalization, are intro-
duced. In part, the quest of the thesis is to make the underpinnings of this 
example completely formal. 

Chapter 3 is the first of two fundamental studies of new typed A-calculi 
which are sub-systems of ASL+. This chapter introduces a type-system called 
A<{}  which has subtyping and singleton types. Some basic concepts of sub-
typing are introduced, and good properties of the calculus are established, 
including subject reduction and minimal typing. The calculus is given a PER 
model semantics, which is the first PER semantics of a system with depen-
dent types and subtyping. The typing rules are proved sound in the model. 

Chapter 4 is the second fundamental study, and introduces a type-system 
called Ap0w . This is a predicative fragment of Cardelli's 1988 power type 
system, containing only power types and the H-type dependent product con-
structor. This system is shown to have some expected basic properties and is 
given a companion system for rough type-checking, based on non-dependent 
types. Rough typing enjoys the subject reduction property and uniqueness 
of types. The full system and rough typing have the agreement property 
mentioned before; this is used to establish that the full system is strongly 
normalizing. Subject reduction for the full system is not proved, however. 
Rough types are used to structure a model definition for A Power,  given as a 
novel form of applicative structure. This improves on the model in Chapter 3 
which despite being a small extension of the simply-typed calculus, is based 
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on a A-model, following earlier work on subtyping calculi. (In Chapter 5, sin-
gleton types are added to the applicative structure model definition.) Several 
examples of A Power  models are described. 

Chapter 3 and Chapter 4 are self-contained, and can each be read inde-
pendently of the rest of the thesis. 

Chapter 5 revisits some of the basic ideas behind ASL+, showing how the 
abstract language would be used for a real language, before reformulating it 
to solve problems with the original definition given by Sannella et al. [1992]. 
Things begin from AASL+,  a combination of the syntax of Ap0wr  and A<{}  with 
unspecified sets of program and specification building operators. The rough 
typing system of AASL+  is defined first, and the model definition of A Power 

is extended to a definition of model for AASL+.  The satisfaction system for 
AASL+ is based on the type systems of Apo,,  and A<{} , augmented with a con-
sequence relation for proving things about the program and specification 
building operators. ASL+ itself is defined by a particular choice of the pro-
gram and specification building operators and a particular consequence re-
lation. The specification building operators are chosen to be the institution-
independent operators of ASL shown in Section 1.2. 

The second part of Chapter 5 highlights problems with this abstract treat-
ment of ASL+, which make it difficult to use rough typing to explain the com-
position of modular programs. (It is because rough typing is based on simple 
types, so cannot explain the propagation of type identities.) The example of 
Chapter 2 does not really work yet, and more effort is needed to formalize 
it. 

Chapter 6 begins an effort towards formalizing ASL+ examples directly, 
following the maxim that to understand the general we must first under-
stand the specific. This chapter defines a new institution which captures the 
programming language and logic used in Chapter 2. The institution is FPC, 
based on the classical domain theoretic semantics of FPC, a tiny but pow-
erful functional programming language [Gunter, 1992, Plotkin, 1985] which 
has partial recursive functions and recursive types. The logic of FPC is 
Higher Order Logic, extended with LCF-style constructs for reasoning about 
the types of FPC. Concrete syntax and type-checking rules are given for sig-
natures, signature morphisms, and algebras in FPC. An important novelty 
is that signatures in FPC can have type equations which are used in type-
checking and restrict the range of models. 

Chapter 7 builds a concrete version of ASL+ on top of FPC, called ASL+FPC. 
The rough type system of ASL+FPC  is more expressive than the one studied 
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in Chapter 5, because it incorporates a form of dependent types. Because 
signatures in FPC have type equations, we can now directly explain the ex-
amples in Chapter 2. A new semantics for this version of ASL+ is given, 
based on the enhanced rough typing system. Some ideas for a satisfaction 
system for ASL+FPC  are sketched. 

Chapter 8 reviews what has been achieved and sets forth some ideas for 
future work. 

Appendix A provides some details about the formulation of the language 
FPC, extending the coverage in Chapter 6, and it gives some details of a pro-
visional satisfaction system for ASL+FPC,  following the ideas in Chapter 7. 



2 An Example in ASL+ 

This chapter sketches an example to motivate and demonstrate the 
mechanisms of ASL+ for expressing and developing the large-scale 
structure of software systems. 

The example is a keyword-in-context index, which is traditional for 
demonstrating modular programming since Parnas's seminal paper 
[Parnas, 1972]. It consists of only a small number of modules, but is 
enough to illustrate some salient features of ASL+. 

The example is pitched at an intuitive and slightly informal level. In 
part, the quest of the following chapters is to demonstrate that ASL+ 
and this example can be given a fully formal underpinning. 

2.1 	Requirements Specification 	 25 
2.2 	Formal Development 	 37 
2.3 Summary 	 44 

2.1 Requirements Specification 

T HIS EXAMPLE DEMONSTRATES the use of ASL+ in a small development of a 
modular program from a modular specification. The program is written 

in a functional programming language, and the specification uses a higher-
order logic for writing axioms. Similar but smaller examples were under-
taken by Sannella et al. [1990] and Sokolowski [1989]. 

This first section describes writing the requirements specification from 
an informal description of the problem: this specification is to be delivered 
by a customer to a software house for formal development of an implemen-
tation. That second phase is described in Section 2.2. The intention is to 
demonstrate the use of the language, rather than show a perfect example of 
program development. Because of this, some bad design choices are taken 
deliberately. 
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2.1.1 Problem description 

The problem is to generate a keyword-in-context index from a collection of 
titles. A title is a sequence of words; some words are considered significant 
and called keywords. The index should consist of titles with a single empha-
sised keyword. It is sorted by keyword, and where a keyword k occurs in 
several titles, the order is determined by forming the "circular shift" of the 
keywords in each title, such that k is at the front. The order of titles under k 
is then given by the lexicographic ordering (extending the keyword ordering) 
of their circular shifts. 

For example, given as input the titles of these books: 

Northcott, Jim, Chips and jobs: acceptance of new technology at 
work. London Policy Studies Institute 1985. 

Schroeder, Dirk, Computer software protection and semiconduc-
tor chips. London Butterworths 1990. 

Walton, John K., Fish and chips and the British working class, 
1870-1940 Leicester University Press, 1992. 

the output would start like this: 

Chips and jobs: acceptance of new technology at work 
Fish and chips and the British working class, 1870-1940 
Computer software protection and semiconductor chips 
Chips and jobs: acceptance of new technology at work 
Fish and chips and the British working class, 1870-1940 

assuming that "at," "and," "of," and "the" are non-keywords. 

2.1.2 Formalising the description 

The first decision is what sort of entity we want delivered as an implemen-
tation. We may already have a datatype for titles and keywords in mind, or 
even a specific set of titles that we want to generate an index for. But if we 
ask the software house for an implementation which is generic as far as pos-
sible, we may generate other indexes later, or re-use the indexing function in 
another setting. 

We shall build a specification KWICFUN which specifies a program param-
eterised on datatypes for words, keywords, emphasised words, titles, and em-
phasised titles. Given implementations of these types, the program should 
return a function to generate a keyword-in-context index from a set of titles. 
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2.1.3 Library specifications 

Before beginning the design of the requirements specification, we mention a 
couple of specifications which might be part of a standard library. 

As well as assuming a library of specifications, we assume that the pro-
gramming language has some pervasive types, which are standard implemen-
tations of certain library specifications. For example, it would be unusual or 
even impossible to re-implement the standard type bool of booleans in a 
programming language. We shall assume that these pervasive types are de-
clared in a initial context and have standard properties available, in other 
words, they are assumed to satisfy the standard library specifications. Of 
course, it's absolutely crucial to the soundness of the development that the 
properties of such pervasive types really hold in the programming language 
used. 

This treatment of pervasive types seems more realistic than in specifi-
cation languages which must import the specification BOOLEAN of booleans 
into every specification. Besides avoiding such verbosity, we assume that 
the same implementation of bool is used everywhere. It means that speci-
fications and algebras can be open because they refer to sort and operation 
names which are not declared locally. 

As well as boo!, the pervasive types will include: strings string; product 
types ocx /3 for types cx, /3 with projections fst, snd; and the type option for 
any type cx, which has constructors none and some(e). 

To build parameterised datatypes, we often use the trivial specification 
ELI of algebras with a single carrier el t: 

ELT =d,f spec 
type elt 

end 

The parameterised specification ORD maps refinements of ELT to specifi-
cations in which el t is a total order: 

ORD =def AELT' ~ ELI. 
enrich ELT' 

with spec 
val 	eltxelt - boo! 

X:!~X 

x:5 y A y~x==x=y 

xy A y:!~z=x<z 

x:5y Vy:!~x 
end 
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As usual, axioms are assumed to be implicitly universally quantified over 
their free variables. In ASL+, the notation AX :!~ SP. SP' is shorthand for 
AX: Spec (SP). SP'. 

Specifications of lists come in two flavours: a specification of a parame-
tensed program, LISTFUN and a parameterised specification, LIST. 

LISTFUN =def 

H [it: ELI. 
Spec 

type elt = Elt.elt 
type list 
val nil :list 
val cons :elt xlist - list 
val null : list - boo! 
val hd:list 	OPtIOflelt 
val tl : list 	option- -j t  

axioms 
null (nil) = true 
null (cons (e,l)) = false 
hd (cons (e, 1)) = some(e) 
t  (cons (e, 1)) = some(l) 
hd(nil) = none 

tl(nil) = none 
end 

LIST = def 

A ELI' :!~ ELT. 
enrich ELT' 

with spec 
type list 
val nil :list 
val cons: eltx list -. list 
val null : list - boo! 
val hd:list 	option elt 
valtl :list - option--j5 
axioms 

as above 
end 

LISTFUN specifies programs which map an argument implementation of ELI 
into an implementation of lists of elements of the argument type el t, whereas 
LIST maps refinements ELI' of ELT into specifications of lists over the el t 
sort. We use LISTFUN when specifying the design structure of the implemen- 

tation, and LIST for structuring the requirements specification. The denota-
tions of LISTFUN and LIST are related by a Galois connection which is the 
main topic studied by Sannella et al. [1992]. 
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We shall use lists throughout the development, although in several places, 
sets would be a better choice. 

2.1.4 Words, keywords, and emphasis 

The first datatype we specify is for words. The simple requirement is that 
words are totally ordered, which we specify by renaming an application of 
the library specification ORD. Additionally, we give a constructor for building 
words so that we can specify some non-keywords later. 

WORD =d,f  enrich translate ORD(ELT) by [elt -. word] 
with spec 

valmakeword : string - word 
end 

The next datatype is for keywords. A keyword type is not a fresh datatype; 
rather we wish to capture the idea that it is an extension of a given word 
datatype. This is A-abstraction rather than H-abstraction, since we take a 
particular word type to build the specification, rather than specifying a pa-
rameterised program to build the datatype for any word type. The situation 
is similar to the pervasive types like boo!: we want to base the specification 
on a particular implementation of WORD. In this case the implementation is 
made into a parameter of the specification, rather than being fixed every-
where. 

Given an implementation Word: WORD, we specify a predicate i skeyword 
defined on the carrier of Word: 

KEYWORD =d,f 
AWord : WORD. 

spec 
type word = Wo rd. word 
val iskeyword : word - bool 
axioms 

i skeyword(Word . makeword("at")) = false 
i skeyword(Word. makeword("and")) = false 
i skeywo rd(Wo rd. makeword("of")) = false 
iskeyword(Word .makeword("the")) = false 

end 

The type equation word = Word . word specifies that the specification should 
require the same carrier for word as was passed in the parameter. 

The type of emphasised words is defined to be the product of a given type 
of words and a type of emphasis decorations. Emphasis decorations include 
a value for indicating keywords, keyword, and one for unadorned words, 
plain. 
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EMPHWORD =def 

AWord : WORD. 
spec 

type emphasis 
val keyword: emphasis 
vaiplain : emphasis 
type word = Word. word x emphasis 

end 

The type equation word= Word. word x emphasis specifies the implementa-
tion of word concretely, rather than axiomatically. This fixes the implemen-
tation of word in any application of EMPHWORD. 

2.15 Dot notation and type equations 

The "dot notation" used above in the LISTFUN and KEYWORD specifications, 
and the type equations like word = Word.word used in KEYWORD, are not 
primitive parts of ASL+ as it was originally conceived. They can be removed 
by translation into a form which uses the singleton constructor: 

KEYWORD =d,f 

i\Word : WORD. 
derive from 

impose 
{ iskeyword(Word.makeword("at")) = false ... } 
on 

translate {Word} by Uwpjj 

by KEYWORD 

where a WORD : 11VORD -. Word. I wORD  u { I skeyword } is given by 

ciWORD def [word Word. word, make-word — Word.makeword] 

and UKEYI4JORD : IKEywORD - Word. IwO  u { I skeyword } is given by 

UKEYWORD =def [word —. Word .word, is- keyword -. is-keyword I 

Here IWORD  is the signature of WORD, XKEYWORD  is the signature of the body 
of KEYWORD, and Word .XvoRD  stands for the signature SWORD  renamed by 
prefixing the components with "Word.". 

This translation explicitly ensures that the body of the parameterised 
specification is specified as an extension of the argument algebra Word, which 
uniquely satisfies {Word}. A similar way of handling dot notation was sug-
gested in the appendix of Sannella et al. [1990]. 
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This translation testifies to the power of the kernel language, but it isn't 
clear that it is advisable. The type-checker must pay careful attention to the 
renaming of symbols in this way, and the translation has the flavour of an 
ad-hoc "hack" needed to manage the current context of declarations which 
arise from A- or H-abstraction. Furthermore, for more complicated examples 
like EMPHWORD, this renaming approach is not sufficient, because we wish to 
express equality of part of a type expression, rather than just the identity 
of names. In that case it seems that we need a richer notion of signature 
morphism, or a special kind of axiom in the logic which can express equality 
of types. 

Chapter 7 gives the scheme a more satisfactory basis, so that an algebraic 
signature is generated according to the current context, which contains the 
symbols renamed appropriately. The semantics is made aware of the notion 
of context, and signatures are extended to include type equations like those 
above. 

2.1.6 Titles and emphasised titles 

Let's return to the specification. Next we define a datatype for titles, which is 
parameterised on an implementation of WORD and an implementation of lists 
of words. Titles have a destructor for giving the list of words in a title, and a 
constructor for creating a title from a list of words 

TITLE =def 

AWord: WORD 
WordList : LIST (spec type elt = Word.word end) 

spec 
type title 
Va! wordsoftitle : title - WordList.list 
valmaketitie :WordList.list - title 
axiom wordsoLti tie(maketi tie(s)) = s 

end 

The term 

LIST (spec type elt =Word. word end) 

constructs a specification of lists over the type Word. word. 
Emphasised titles are like titles, except they contain emphasised words 

instead of words. It would be nice to re-use the TITLE specification to specify 
emphasised titles, by writing: 

'Recall that AX:A Y:B. C is an abbreviation for AX:A. AY:B. C. 
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AWord : WORD 
EmphWord : EMPHWORD(Word) 
EmphWordList : LIST (spec type elt = EmphWord-word end) 

TITLE (EmphWord, EmphWordList) 

Unfortunately, this doesn't quite work because the signature of EmphWord is 
not compatible with that of WORD, since it does not contain a makewo rd oper-
ator. To amend this, we could either add a make-word function to EMPH WORD, 
or as suggested already, remove make-word from WORD since it is perhaps 
over-specifying WORD to include it in the first place. 

Instead we give a similar specification to TITLE, defining: 

EMPHTITLE =d,f 
AWord : WORD 
EmphWord: EMPHWORD(Word) 
EmphWordList : LIST (spec type elt = EmphWord.word end). 

spec 
type title 
valwordsoftitle : title - EmphWordList.list 
val make-ti tle: EmphWordList.list 	title 
axiom wordsofti tle(maketi tie(s)) = s 

end 

A different specification for EMPHTITLE would be to fix the implementa-
tion type based on some implementation of titles, in a similar way to the 
specification of words and emphasised words. For example, 

A Word: WORD 

WordList : LIST(spec type elt = Word.word end) 
Title: TITLE (Word, WordLi st) 
EmphWord : EMPHWORD(Word) 
EmphList : LIST (spec type elt = EmphWord. emphasi s end) 

spec 
type title = Title.title x EmphList.list 

end 

This specifies a concrete implementation of emphasised titles. 

2.1.7 Target specification 

We can now give the main specification, which has three axioms: 

KWICFUN =def 
H List: LISTFUN 
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Word : WORD 
Keyword : KEYWORD (Word) 
EmphWord : EMPHWORD (Word) 
Title: TITLE (Word, List (aig type elt = Word.word end)) 
EmphTitie: 

EMPHTITLE (Word, EmphWord, 
Li St (aig type elt = EmphWord .word end)) 

TitieList : LIST(spec type elt = Title.titie end) 
EmphTitieList : LIST (spec type elt = EmphTitie.title end). 

spec 
valmakekwic :TitleList.list — EmphTitieList.list 
axioms 

makekwic(ts) consists of titles in ts with exactly one key-
word emphasised. 

e Eli,, makekwic(ts) = 

si ngi ekeywordemphasi sed (e) 
A titieofemphtitle(e) Eli,, ts 

Every title appears in the output exactly once for each key-
word occurrence, with that occurrence emphasised. 

t Eiist ts 
Vk. 

Keyword. i skeyword(Ti tie. wordsoLti tl e(t)k) 

!e.e e115 makekwic(ts) 

A titieofemphtitie(e) = t 
A fst(EmphTitle.wordsoftitle(e)k) 

= Emph Word. keyword 

makekwi c( ts) is sorted lexicographically on the circular 
shift of the keywords of each title needed to bring the single 
emphasised word to the front. 

orderedby(Word.:!~1 o title-shift, 
makekwi c(ts)) 

end 

We assume that the logic available is powerful enough to define functions 
recursively similarly to the way they might be implemented in the destination 
programming language. The axioms above are given in terms of a number of 
such auxiliary functions; in a weaker institution these might be specified as 
hidden functions, but here we assume that local definitions can be expressed 
in the logic, or simply that the definitions are abbreviations in the meta-
language. 
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The following definitions are used in the axioms: 

Operations on lists and orderings: 

in 	 =def ntheiement(i, n) 

a < b 	 =def a:!~b A -'(b:!~a) 

1 :5Iex m 	=def (r.19r = m) V 
(t,u,v,w.t <u 

A I = s@[t]@v A m = s@[uJ@w) 
a. 	f) b 	=def (fa) :!~ (fb) 

orderedby(, 1) =def Vn.O < n < length(l) 	tn :!~ tn+1 

Specific operations and predicates: 

titieofemphtitie(e) =def 

Ti tie. maketi ti e(wordsofemphti ti e(e)) 

emphasi sofemphti ti e(e) =def 

map fst (EmphTi tie. wordsofti ti e(e)) 

wordsofemphtitle(e) =def 

map snd (EmphTitle.wordsoftitie(e)) 

single-keyword-emphasised(e) =def 

!w. (emphasi sofemphti ti e(e)) = EmphWord . keyword 

A Keyword.iskeyword((wordsofemphtit1e(e))) 

title-shift(e) =def 

ci. 1 = [emphword(e)]@m@n 

A keywordsofemphti ti e(e) = n@[emphword(e)]@m 

keywordsoLemphtitle(e) = 

filter Keyword.iskeyword (wordsofemphtitle(e)) 

emphword(e) =def 

snd(nthei ement(cw. (emphasi sofemphti ti e (e))w = keyword, 

EmphTi tie. wordsofti ti e(e))) 

The symbol EIISt denotes a membership function on lists; @ is the append op-
erator on lists; c is a logical choice operator such that P(cx.P(x)) provided 
2x.P(x). These definitions are quite informal in that we heavily overload 
symbols and have omitted to say where many of them come from. For ex-
ample, map is a function that can be defined for any two implementations 
Li sti and Li st2 of lists: 

va1 map :List1.1ist-List2.iist =d,f 

Af: Listl.eit - List2.eit. 
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pmap.AI.ifListl. null (1) 
then List2.nil 
else Li st2 . cons (f (Li sti. hd(1)), map (Li sti. ti (1))) 

The append operator @, the function nth-el ement, and the function filter 
would be defined similarly. 

There is a certain amount of (automatic) type-checking that may be done 
on the specification KWICFUN to ensure its well-formedness, which might 
be the obligation of the customer. On the other hand, well-definedness of 
the specification, in the sense of consistency, will be demonstrated by the 
software house's ability to deliver an implementation Kwi c such that Kwi C: 
KWICFUN. 

2.1.8 Over-specification? 

From the viewpoint of the final KWICFUN specification, we have probably 
over-specified  WORD and KEYWORD by including make-word and the related 
axioms. 

The task of the software house is to provide a parameterised program 
which implements an index given any implementations of WORD and KEYWORD. 
Restrictions on which words are keywords, for example, may be require-
ments the customer wishes to impose on the datatypes later, but it is per-
haps misguided to deliver these as part of the KWICFUN specification itself. 

The "accidentally delivered" information probably isn't necessary for a 
good implementation, and the customer may be surprised if an implementa-
tion made use of it. There might be a problem if KWICFUN was needed later 
for indexes where the word "the" was to be considered a keyword after all, 
for example. 

Fortunately, the situation can be rectified at a later point using a rule 
for "contravariant refinement" to adjust the requirement specification; see 
Section 2.2.1. 

2.1.9 Discussion 

In this section we discuss a couple of the design issues behind the KWICFUN 
specification. 

Forms of parameterisation. KEYWORD and some of the following specifi-
cations show a perhaps unusual form of parameterisation; a specification 
parameterised upon an algebra. An alternative might be to define KEYWORD 
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instead as a parameterised specification, with heading AW :5 WORD, and then 
apply keyword to a singleton argument when necessary, KEYWORD ({Word}). 

But we don't require the extra flexibility of a parameterised specification 
in this example. Even if we were to need keywords over a refinement WORD' _< 
WORD, every Word: WORD' is a permissible argument to KEYWORD as it stands, 
by the subsumption principle of subtyping systems: M : SP and SP :5 SP' 
implies M: SP': 

M: SP 	SP:5SP' 
M: SP,  

The language SPECTRAL also features specifications parameterised on alge-
bras and claims that user-defined specifications parameterised on specifi-
cations are not needed [Krieg-BrUckner and Sannella, 1991]. (The examples 
here seem to back that opinion, more or less, but hardly constitute sufficient 
evidence.) 

Sharing implementations. I suggested above that it is natural to regard 
keywords and the other datatypes as defined with respect to a given imple-
mentation of WORD. If this wasn't observed, we might instead write: 

KEYWORD' =d,f  enrich WORD 
with spec 

val -iskeyword : word - bool 
axiom iskeyword(makeword("a")) = false 

end 

But then we would run into problems when writing KWICFUN. Because KWICFUN 
has several parameters which are related, rather than a single monolithic pa-
rameter, we need some way to specify that parts of the parameters share the 
same implementation, so that certain types are equal. In the second axiom 
of KWICFUN, for example, the term Keyword. I skeyword is applied to a word 
from Ti tie. For this to type-check, Keyword. word and Ti tie. word must be 
equal types. 

Here the parameterisation of KEYWORD, together with the type equations, 
enforces the sharing needed; this is sharing by parameterisation, like in Peb-
ble [Lampson and Burstall, 1988]. 

By contrast, the example in Sannella et al. [1990] expressed sharing via 
extensional equality on sorts in special axioms; a similar approach is via 
the sharing constraints of Standard ML, which are specially restricted equa-
tions between components. Sharing constraints would be needed if we used 
the specification KEYWORD' instead of KEYWORD. Compared with sharing by 
parameterisation, sharing constraints have a post-hoc flavour, because one 
does not need to anticipate which parts of a module to parameterise over 
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in advance. Of course, this can cause unexpected problems when combin-
ing modules at a late stage which do not satisfy their sharing constraints; 
the benefit of extra parameterisation is that it allows more flexibility in the 
development order. 

Perhaps sharing constraints are more suitable for "fine-grain" sharing of 
components of modules, whilst extra parameterisation is more suitable for 
expressing sharing of modules themselves. In any case, the vital thing is that 
the type-checker can understand the propagation of type equations, since 
these are needed for type-checking axioms, and when it comes to implemen-
tation, for type-checking function definitions. The issues behind the task of 
type-checking have implications which reach to the heart of the semantics 
of the language, and will be explored towards the end of Chapter 5 and in 
Chapter 7. 

2.2 Formal Development 

Now we assume the role of the supplier whose job it is to implement the 
specification KWICFUN. We begin the refinement of the specification KWICFUN 
towards a concrete implementation, which will be provably correct by virtue 
of having been built from provably correct components via correctness pre-
serving composition operators. 

2.2.1 Delivering a better product 

On receiving the KWICFUN specification, let's suppose the head programmer 
at the software house looks at the WORD and KEYWORD specifications, and de-
cides that the presence of make-word and the axioms in KEYWORD comprise 
over-specification. This is a subjective decision a programmer may make 
when given a formal implementation task. The pruning of suspect informa-
tion unnecessary for the job in hand will prevent other programmers from 
seeing and perhaps exploiting it. 

The spurious detail is removed by editing the original specifications: 

WORD, =def  translate ORD(ELT) by [elt — word] 

KEYWORD, =def  A Word : WORD, 
Sig 

valiskeyword:Wo rd. word -. boo! 
end 
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EMPHWORD1, TITLE1, EMPHTITLE1 
each as before, except parameterised on -1 variants. 

The main specification has now becomes more restrictive, because the do-
main of the function space has become larger: 

KWICFUN1 =def 

H List: LISTEUN 
Word : WORD, 
Keyword : KEYWORD, (Word) 
EmphWord : EMPHWORD1 (Word) 
Title :TITLE1 (Word, Li st (aig type elt = Word.word end)) 
EmphTitle: 
EMPHTITLE1 (Word, EmphWord, 

List (aig type elt = EmphWordword end)) 

(as before) 

The correctness of this kind of refinement, by removal of detail from a 
function argument, is captured formally in ASL+ by the contravariance of the 
domain of the H-constructor in the subtyping rule: 

[X :S'] 

S':!!~S 	T<T' 
HX:S. T :!~ HX:S'. T' 

With this rule we can show KWICFUN1 :5 KWICFUN (so KWICFUN —KWIC FUN1), 

using several stages: 
WORD ::~ WORD, 

then 
[Word: WORD,] 

KEYWORD (Word) :!~ KEYWORD, (Word) 

and similarly for the parameters based on EMPHWORD, TITLE, EMPHTITLE and 
the rest of KWICFUN. 

Removal of trivial constructors. An alternative way of expressing the re-
finement above is via a constructor implementation [Sannella and Tarlecki, 
1988b]: 

KWICFUN-1KWICFUN1 

where 

K = Af: KWICFUN1.Alw ke t e' t' 1'. f(L, w, k, e, t, e', t', 1') 
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and K is proved to map elements of KWICFUN1 into elements of KWICFUN. 
We would rather elide the use of trivial constructors like K, however, since 
K =rl idKWICFUN1. 

Refinement of parameterised specifications In the same way that we show 
the refinement between the two H-specifications KWICFUN, and KWICFUN, we 
might extend the notion of implementation to parameterised terms, for ex-
ample to say that KEYWORD :!~ KEYWORD,. 

Given two parameterised terms, P = AX:SP. M is a refinement of P' = 

AX:SP'. M' when SP refines to SP' (so every argument valid for P' is also 
valid for P) and for every N in SP', P refines P' "pointwise", P(N) ::~ F(N). 

[X: SP'] 

SP' :5SP 	M:5M' 
AX:SP.M AX:SP'.M' 

Refinement of parameterised terms like this is similar to certain higher-order 
subtyping systems where subtyping has been extended to type-operators 
[Cardelli, 1990, Pierce and Turner, 1994, Steffen and Pierce, 1994]. The idea 
of weakening the argument specification SP' also occurred to Sannella and 
Wirsing [19821, who describe a similar notion of refinement of parameterised 
specifications in CLEAR. 

This kind of refinement can already be expressed in the framework, via 
power types. Instead of asking for a refinement of P' AX:SP'. M' we can 
ask for an implementation of the specification TIX:SP'. Spec (M'). Given such 
an implementation P, then by the application rule for dependent products 
types, 

P : HX:SP'. Spec (M') 	N: SP' 
P(N) : Spec (M'[N/X]) 

and by 13-conversion, P'(N) = Spec(M'[N/X]), so we have P(N) :5 P(N) for 
every N: SP' necessarily. 

This way of expressing refinement of parameterised objects results in a 
significant simplification of the type system compared with the higher-order 
subtyping systems cited above. It is explained in more detail in Section 4.3.2. 

2.2.2 Bottom up development: shifting and sorting 

The next stage in the development is to ponder what tools could be used to 
solve the problem. Parnas's original solution was based on two procedures: 
one to form the circular shifts of the titles and another to sort according to 
the shifts. We can specify these as two parameterised programs. 
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The task to implementation the circular shift function is a small self-
contained problem: 

CIRCSHIFTFUN =def 

IlElt: ELI 
EltList : LIST ({Elt}) 
EltListList : LIST (Spec type elt = EltList.list end). 

Spec 
val ci rcshi fts : El tLi St .1 i St 	EltListList.li St 
axiom 
circshifts(1) consists of all circular shifts oft 

m E[st ci rc_shifts(t) 
Ra,b.t=a@b A m=b@a 

end 

The programmer who tackles this task should return with a program Ci rcshi ft 
and a proof that: 

Ci rcshift : CIRCSHIFTFUN 

Sorting, meanwhile, is specified and formally developed so often that any 
reputable software house must have many examples of formally developed 
sorting procedures in its library'. We assume that sorting programs are 
parameterised upon the ordering to be sorted and an implementation of 
lists, and satisfy a specification of the form: 

SORTFUN =d,f 

H El  : ORD(ELT) 
EltList : LIST (El t) 

Spec 
val sort :EltList.liSt 	EltList.list 
axioms 

sort(t) is a sorted copy oft, with respect to E7t.:5 
a (=— list I 	a. Elist sort(I) 
repetitions (a, I) = repeti ti ons(a, sort(I)) 
orderedby(Elt.:!~, sort(I)) 

end 

Again, the functions repetitions and ordered-by are assumed to be de-
fined concretely within the logic. We assume that there are implementa-
tions of this specification available, for example, InsertSort : SORTFUN, 
QuickSort: SORTFUN, etc. 

2There is an example in the appendix of Sannella et al. [1990]. 
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2.2.3 Composition 

Bearing in mind the "building blocks" defined above, we can give a new form 
of the main specification which makes explicit the intention to use them: 

BUJLDKWICFUN =def 
HCi rcshift :CIRCSHIFTFUN TISort : SORTFUN KWICFUN1  

We can proceed now by what [Sokolowski, 19891 calls a canonical imple-
mentation step. This is to "follow the hint" provided by the Il-abstraction, 
and write a parameterised algebra by A-abstracting over the parameters ap-
pearing in the Il-specification. So we A-abstract over implementations of 
CIRCSHIFTFUN and SORTFUN, and can then implement KWICFUN1  in a context 
where they are available for use. This allows development to proceed inde-
pendently and in parallel, because work on an implementation of KWICFUN1  
can take place under the assumption that CIRCSHIFTFUN and SORTFUN have 
been implemented already. 

BuildKwic =def 
A Ci rcshi ft : CIRCSHIFTFUN 
Sort: SORTFUN. 

2.2.4 Final step 

It is fairly straightforward to implement BUILDKWICFUN directly, making 
use of similar functions to those used in the specification of KWICFUN - 
following the bias of the specification. More efficient implementations would 
certainly be possible, but they would probably be harder to prove correct. 

The algorithm implemented for makekwi c is: 

build the circular shifts of the keywords in each title; 

form pairs of keyword shifts and emphasised titles by emphasising the 
first word in each circular shift for each title; 

sort the pairs by their first component, with the lexicographic extension 
of Word.< 

The output is the list formed by taking all the second components of the 
final list. The result looks something like this: 

Build_Kwic =d,f 

ACi rcshift : CIRCSHIFTFUN 
Sort : SORTFUN 
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List: LISTFUN 
Word : WORD, 
Keyword: KEYWORD, (Word) 
EmphWord : EMPHWORD1(Word) 
Title :TITLE1 (Word, List (aig type elt = Word. word  end)) 
EmphTitie: 
EMPHTITLE1 (Word, EmphWord, 

List (algtype elt = EmphWord.word end)) 
TitleList : LIST (spec type elt = Title.title end) 
EmphTi tl eLi st : LIST (spec type elt = EmphTi tl e. ti tl e end). 

local 
mod WordList = List(alg type elt = Wo rd. word end) 
mod WordListList = List (aig 

type eit = Wordlist.list 
end) 

mod Crc = Ci rcshi f t (Word, WordLi st, WordLi stLi st) 
type wordtitie = WordList.iist x EmphTitie.ti tie 
mod WordTitieList = List (aig elt = wordtitle end) 
mod Srt = Sort (aig eit = wordti tie 

= Word.:!~1 o f s t end, 
WordTi ti e L i st) 

in 
val makekwi c = 

fun(ts: EmphTitieList.list). 
local 

val keywords = 

valshifts = Crc.circshifts(keywords) 
valtitieshifts = 

valsortedtitieshifts = Srt.sort(titieshifts) 
in 

map fst sortedtitieshifts 
end 

end 
end 

This program uses some local modules and type definitions to express the 
algorithm described above; the function xJ is some implementation of : 5Iex. 

The omitted parts of the program can be filled in fairly easily, following the 
specification for hints. 

22.5 Proof of correctness 

We are obliged to show that the axioms of KWICFUN1 are indeed satisfied in 
the body of Bull dKwi c. This can be done by making use of the properties of 
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the argument algebras Ci rcshi ft... EmphTi ti e. Finally we will have estab-
lished that BuildKwic : BUILDKWICFUN, and we can glue the components 
together to deliver the final product: 

Kwic =d,f BuildKwic(Ci rcshift,QuickSort) 

and evidence that 

Kwic:KWICFUN1 :!~ KWICFUN 

Once the Kwi c program and its correctness proof is delivered, it can be 
applied some algebras of the right signatures, satisfying the argument speci-
fications, to finally get a keyword-in-context index. 

2.2.6 Changing the requirements 

Imagine that the program Kwi c has been in use for some time, before the cus-
tomers realise that they want to deal with indexes in which the word "and" is 
a keyword. They realise that KWICFUN, ought to have been their requirement 
at the outset, so now they ask for an implementation of KWICFUN, instead. 

But the customers are reluctant to accept any implementation of KWICFUN, 

now, because they have generated indexes using Kwi c and they would prefer 
that any new implementation Kwi c1 : KWICFUN, built the same indexes as 
before, when given the same set of keywords. (Notice that KWICFUN admits 
some freedom: it does not specify the output order of titles whose circular-
shifted keyword lists are identical.) 

ASL+ has a way of specifying this requirement. The singleton specifica-
tion operator is a higher-order operator, which is tagged with a specification 
that its argument must satisfy. The requirement can be posed by: 

KWICFUN2 =d,f {KWiC}KWICFUN 

This is a sort of abstract-model specification in a higher-order setting. Intu-
itively, {M}5p stands for the equivalence class of M considered at SP. The 
equivalence class of Kwi c at KWICFUN is the collection of all functions which, 
when restricted to the domain of KWICFUN, are equal to Kwi c. Introducing a 
stratified equality relative to a specification, written M = N: SP, the general 
rule for A is: 

[X: SP'] 

SP' 	SP 	M = 	: sp" 	 (EQ-A) 

AX: SP.M = AX : SP'.M' : HX: SP'.SP" 

which allows us to consider a more permissive equality between higher-order 
objects, when given some specification which restricts the observations we 
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can perform. This equality is the motivation for using a PER semantics; the 
details are first introduced for a subtyping system in Chapter 3. 

The software company is now in the enviable position of being able to 
charge money for doing no work! They can easily provide an implementation 
of KWICFUN1  which also satisfies KWICFUN2  - namely Kwi c itself, since they 
had the foresight to implement KWICFUN1  anyway. 

In general, implementing a singleton specification {M}5p can involve con-
siderable work. For one thing, {M}5p is inconsistent unless M : SP, which 
may require proof. For another thing, although M will always be a permis-
sible implementation, it may not be the best, or even a feasible one. In this 
case we could use Kwic because it also satisfies KWICFUN1. If the software 
house had instead given an implementation of KWICFUN which relied on the 
specified non-keywords, then we would have to construct a new implemen-
tation which behaved as Kwi c when given a set of old keywords, but used a 
different algorithm for the general case. 

This example also demonstrates a use for a form of intersection types in 
ASL+, since the specification the customer wants implemented can be for-
mally described as: 

KWICFUN1 A KWICFUN2 

Semantically, intersection types are like specification unions, as used in ASL 
(see Section 1.2). Here we use the intersection operator more generally than 
in ASL, since we are combining two specifications of parameterised pro-
grams; collections of functions rather than collections of algebras. Speci-
fication unions were added to the higher-order part of ASL+ in Sannella et al. 
[1992], but they will not be treated in such generality in this thesis (see com-
ments in Section 5.2). 

2.3 Summary 

In this chapter I sketched the use of ASL+ in the process of formal program 
development. The keyword-in-context example is somewhat small and con-
trived, and most of the modules are abstract data types. More examples of 
the higher-order parameterisation facilities given by ASL+ should be studied, 
although getting the familiar part of the calculus right is a sensible first goal. 

Some of the details of the example were omitted, or were hazy. Part of 
the quest of the following chapters is to demonstrate that this example can 
be given a completely formal underpinning. 
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A typed A-calculus called A<  is introduced, which combines subtypes 
and singleton types. The calculus is a minimal calculus of subtyping 
with a restricted form of dependent types. 

The presence of dependent types leads to a circularity between the def-
initions of the judgements, which means that meta-theoretic properties 
are more difficult to establish than for systems without subtyping or 
without dependent types. This circularity is tackled here to prove that 
the system has some good meta-theoretic properties, including subject 
reduction and minimal types. 

A PER model for A<{} is defined, combining previous work on PER mod-
els for non-dependent subtyping systems and for dependent systems 
without subtyping. This is the first PER model for a system with both 
features. 

3.1 Introducing Singletons 45 

3.2 Uses of Singleton Types 48 
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3.4 Basic Properties 55 

3.5 Further Properties 63 

3.6 A PER Interpretation of A<{}  67 
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3.1 Introducing Singletons 

T YPE SYSTEMS for current programming languages provide only coarse dis-

tinctions amongst data values: real, boo!, string, etc. Constructive type 

theories for program specification can provide very fine distinctions such as 

{ x e nat I prime(x) }, but the problem of checking whether a term inhabits 

a type may be undecidable. We need to study systems in between, so that 
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types may express more exact requirements in programs, without losing the 
possibility of efficient mechanical type-checking. 

Intersection types are one way of making types more exact, constructing 
types by "cutting down from above." By contrast, singleton types allow types 
to be "built from below." 

If we view types as specifications, then a singleton type imposes the most 
stringent requirement imaginable. Let fac stand for the program 

pf. Ax:nat.ifx = 0 then 1 else x * (f (x —1)) 

Then {fac} is a specification of the factorial function, and 

fac : {fac} 

says that fac certainly satisfies the specification {fac}. This is an instance of 
the principal assertion for singleton types, M: {M}. 

But we can write the factorial function in many other ways; it would be 
useful if whenever fac' is an implementation of the factorial function, we 
have also: 

fac' : {fac}. 

This leads to the idea of letting {M} stand for the collection of terms that 
have the same denotation as M in the semantics, or as an approximation, the 
collection of terms equal to M in some theory of equality. 

Subtyping systems can substitute a term of a desired type with a term 
having a more refined type; the principal rule for subtyping is subsumption: 

M:A A<B 
M:B 

Subsumption for ground types suggests subtyping at higher types; for exam-
ple, a function defined over mt may be used where one defined only over flat 
is needed, since every natural is an integer and thus a valid argument. So we 
expect mt - mt to be a subtype of nat - mt. 

A stratified equality now arises: we may have two functions defined over 
mt that have equal values at every natural: 

(Ax:int.ifx> O then x else 2 * x) = (Ax:int.x) : nat -= mt 

but can be differentiated on integers: 

(Ax:int. if x > 0 then x else 2 * x) * (Ax:int. x) : mt - mt 

These functions are interchangeable in a context where arguments of type 
nat are supplied. 
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These two ideas influence my treatment of singleton types. We shall con-
sider {M} to be an equivalence class of terms, but relative to a particular 
type. So a type-tag is attached to the singleton, and the introduction rule for 
singletons is: 

M:A 
M: {M}A  

Singleton types have a non-informative flavour, that is to say, there is no 
term operator corresponding to singleton introduction, as would be typical 
for types in a constructive type theory. 

Neither is there an elimination operator for singleton types. In fact, no 
explicit elimination rules for singleton types will be used at all. Instead, we 
treat singleton types as a way of expressing the natural typed-equational the-
ory of the system, which would otherwise be given as an additional collection 
of rules. The typing assertion M : {N}A  asserts M = N : A. This results in 
a more perspicuous system than using a rule of untyped fl-conversion  does. 
In particular, it can be given a semantical interpretation directly without re-
lying on meta-properties such as the Church-Rosser property and subject 
reduction. Further discussion on this point is given in the next chapter, in 
Section 4.4.2. 

The non-informative aspect of singleton types makes the meta-theory of 
the system harder to deal with. Because elements of singleton types are not 
distinguished from other types by constructive information, the uniqueness 
of types property is lost. This is in contrast to elements of equality types, for 
example. Subtyping itself already breaks uniqueness of types, of course, so 
the key to solving the meta-theory is to understand the interaction between 
subtyping and singleton types. 

In the rest of the chapter I study the addition of singleton types to the 
simply-typed A-calculus with subtyping, known as A<. The resulting system, 
A<, is a minimal type system with singleton types and subtyping. Single-
ton types introduce type-term dependency, which complicates the study, but 
leads to a system with some interesting aspects, such as the integration of 
definitions and the ability to "escape" A-abstraction and type function bodies 
in the presence of their arguments. 

The system A<{}  is original,' although it is related to a fragment of the 
system ATTT due to Hayashi [1994]; my singleton types have the same form 
as Hayashi's, but are handled in a different way, see Section 3.7 for a compar-
ison. As far as I am aware, Hayashi's systems and the work that spawned A<{}  
in Sannella et al. [1992] are the only other appearances of singleton types in 
the literature. 

'Most of the content of this chapter was first published in the paper "Subtypirig with 
Singleton Types" which I presented at Computer Science Logic 1994 [Aspinall, 1995a]. 
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The next section outlines some possible applications of type systems with 
singleton types. In Section 3.3 the complete definition of A<u is presented 
and in the two following sections, some properties of the syntax are estab-
lished. In Section 3.6 A< is given a PER semantics and a proof of soundness. 
Section 3.7 has some discussion and comparison to related work, and Sec-
tion 3.8 concludes with a summary. 

This chapter and Chapter 4 can each be read independently of the rest 
of the thesis. I have tried to make this chapter accessible to readers without 
a background in type-theory or subtyping, and I have tried to make it serve 
as an introduction to the work later. Nonetheless, a standard reference for 
typed lambda calculi may be helpful, for example Barendregt [1992]. 

3.2 	Uses of Singleton Types 

The original motivation for this work comes from types-as-specifications: 
given a program P we can form the very tight specification {P } which is met 
uniquely by P. However, singleton types may have other uses inside a type 
system. 

3.2.1 Singleton types as definitions 

Definition by abbreviation is essential for the practical use of a type system 
in a programming language or proof assistant. If M is a large expression 
occurring inside N several times, we may write 

x=MinN' 

instead, where N' is the result of replacing occurrences of M in N with the 
variable x. Treatments in the literature include Harper and Pollack [1991] 
and Sever! and Poll [1994]. Typically, definitions are introduced as a new 
concept that extends the type theory being studied and causes additional 
complication; with singleton types we get a form of definitions in the system 
for free. 

Sever! and Poll [1994] study the addition of definitions to Pure Type Sys-
tems [Barendregt, 1992]. The setting is Church-style, so typed definitions are 
appropriate, with the form 

x =M:AinN 

This may be compared to a A-abstraction over a singleton type in A {} which 
is applied to a trivially suitable argument: 

(Ax:{M IA.  N) M 



Singleton Types 

This in turn can be compared with the regular "trick" in A: 

(Ax:A.N)M 

Severi and Poll point out three reasons for introducing definitions as a new 
concept: 

fl-reduction replaces all instances of x in N by M, whereas it is useful 
to be able to replace instances one-by-one when desired. 

The information that x = M may lead to a (different) typing for N that 
otherwise wouldn't be possible. 

The A-abstraction Ax : AN may not be permitted in the type-system. 

The third point is relevant in the context of Pure Type Systems. To deal 
with the first point, Severi and Poll introduce a new kind of reduction. A 
6-reduction replaces a single instance of x with M. We might equally well 
consider a new kind of reduction in A, , defined for applications having the 
special form shown above; it isn't necessary to add a new syntactic form to 
do this. Reduction relations aren't studied here, but it would be an interest-
ing extension. 

In A<{}  we have the benefit of the second point. Interestingly, because of 
the presence of singleton types, it isn't even necessary for the term M to be 
"revealed" to the function body N in the type label to use x = M when typing 
N. The term (Ax:A.N)M has exactly the same types as (Ax:{M}A.N)M. 
Moreover the two terms are provably equal in A<{}. 

3.2.2 Singleton types and improved typings 

The system A<{}  is a non-conservative extension of the well-known subtyping 
systems; better non-dependent typings are possible than in non-dependent 
subtyping systems. A simple concrete example is the identity function on 
real numbers, written Ax: real. x. Then in A<: 

Ax:real.x : real - real 
mt - real 

I int -'int 

The third typing is possible in A<{} , so a given A< function can have more A 
typings in A<{}. 

In a programming setting, singletons could be used to derive good typings 
between a collection of functions inside a module, and then by removing 
detail from these types we could get a collection of non-dependent types for 
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typing outwith the module boundary. The example in Section 3.2.1 shows 
how we can "in-line" function arguments when type-checking, which is sure 
to result in better typings than a more abstract non-dependent scheme (such 
as intersection types) would do alone. But I haven't examined examples in 
detail, so it remains to find out how useful this could be. 

The difficulty, of course, is in knowing when to in-line and how to manage 
the complexity of type-checking. Dependent types will lead to an undecid-
able type system unless there is some decidable restriction on the form of 
terms allowed in types, so that equality can be tested. In practice it might be 
necessary to annotate programs with directives to indicate to the compiler 
when to use extra-informative, dependent, typings. 

One possibly desirable theoretical property is missed, though. In general, 
there may be no minimal type in A< amongst the possible A< types for 
a given term. This can be seen from the identity function example above: 
real -. real and mt - mt are incomparable types. One way to repair this 
would be to add intersection types. However, A<  itself does possess the 
minimal type property, see Section 3.5.3. 

3.3 The SystemA<{} 

Now we describe the system A<{} , summarized in the tables at the end of 
the chapter beginning on page 80. The presentation follows the familiar for-
mat for subtyping systems: we have well-formedness, typing, and subtyping 
judgements. Additionally, we have the pure equational theory generated by 
the singleton rules as explained in the previous section. 

Syntax. The meta-variables A, B, C... and M, N.... and F range over pre-
types, pre-terms and pre-contexts respectively, which are given by the gram-
mar: 

A ::= K I TIx:A.B I {M}A  
M ::= x I Ax:A.M I MN 
F ::= 0 I F,x:A 

Since there are no type variables, we assume the existence of a set of atomic 
type symbols X, ranged over by K. Constants are not included in the system, 
for the sake of brevity; we can simulate them by using a fixed initial context. 

I shall follow the usual conventions and use obvious abbreviations in what 
follows. Free and bound variables are defined as usual. Pre-types, pre-terms, 
and pre-contexts that are alpha-convertible are identified, and I write to 
stand for syntactic identity. Pre-contexts are additionally restricted so that 
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no variable x is declared more than once; this is assumed implicitly in the 
typing rules. 

Beta-reduction and conversion are defined as usual over terms, and ex-
tended to types in a way compatible with (i.e. as a congruence with respect 
to) the type-constructors. For notation, M - N indicates an outermost 

	

single-step of reduction, and M 	N' is the transitive, reflexive, and com- 
patible closure of M - N. Beta-conversion is the symmetric closure of- 8, 
written M = N. There is no application at the level of types; convertible 
types can only differ within corresponding singleton components. 

Judgements. The judgement forms are: 

> F 	 F is a well-formed context 
F > A type 	A is a well-formed type in F 
F >M:A 	 M has type AinF 
F>A:5B 	 A is a subtype of B in F 

I occasionally use F > J to range over judgements with context F. A judge-
ment is valid iff it can be derived using the rules of Figures 3.1-3.4, shown at 
the end of the chapter, beginning on page 80. As usual, "F > J" abbreviates 
"F > J is valid." The rules are described individually in the next subsection. 

There is an auxiliary notation for the equality judgement defined in terms 
of the typing judgement: 

	

FM=N:A 	=def 	F>M:{N}A 

The four primitive judgements must be defined simultaneously: it is char-
acteristic that typing should be dependent on the formation judgements 
through (v) and subtyping through (suB). The presence of dependent types 
means that formation and subtyping are also dependent on the typing judge-
ment, through rules (FORM- 11), (SUB- 11), (SUB-EQ-sYM), and (SUB-EQ-ITER). 

3.3.1 Rules defining A<{} 

Here is an explanation of the rules defining the system. 

Contexts 

There are just two rules of context formation, 

(EMPTY) 

- 7 
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F > A type 

F, x : A c> 	 (EXTEND) 

and the rule of variable typing makes use of the context: 

1' 

(VAR) 

Basic subtyping rules 

The rule of subsumption is the characteristic rule of type systems with sub-
typing: 

FM:A F>A::~B 
F 
	

(SUB) >M:B  

It captures the informal meaning of the subtype relation: if type A is a sub-
type of type B, then every element of A is also an element of B. 

The subtyping relation is reflexive on well-formed types: 

F > A type 

F L A < A 	 (SUB-REFL) 

and transitive: 
FA:!~B FB:!~C 

FA<C (SUB-TRANS) 

Atomic types 

The rule (FORM-ATOMIC) says that a primitive type is valid in a valid context: 

1 

(FORM-ATOMIC) 

Subtyping between atomic types is given by a built-in relation, 

:!~Atorn c ,fJCx3( 

which we assume to be reflexive and transitive. Restricting :5Atom to atomic 
types ensures that subtyping retains a structural character; that is, types 
related by the subtype relation will have a similar shape. 

The rule (SUB-ATOMIC) includes :5Atom in the subtyping relation: 

F 	K:!~AtomK' 

F > K < K' 
	 (SUB-ATOMIC) 
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Dependent product types 

Dependent product types (TI-types) are formed by the rule: 

F, x: A > B type 
F > TIx:A.B type 	 (FORM-17) 

Lambda abstraction introduces a term of a II-type: 

F,x:A>M:B 
F > Ax:A.M:Hx:A.B 

and function application eliminates such a term: 

TM:TIx:A.B TN:A 
F> MN: B[N/x] 

These three rules are common to all type theories with dependent products. 
Note that our function spaces here are strictly first order, in the sense that 
there is no abstraction or quantification over types. 

The subtyping rule for dependent products (SUB-17) is contravariant in the 
domain of the function space and covariant in the codomain: 

F>A':!~A F,x:A'BB' F,x:A>Btype 
F > Hx:A.B ::!~ Hx:A'.B' (SUB-II) 

The contravariance is intuitive and semantically sound, but its form is some-
times problematical to the syntax, as with the corresponding form of bounded 
quantification over second order types [Ghelli, 1990, Pierce, 1992]. More in-
vestigation is needed to decide the point here: a contributing factor in the 
second order case is the presence of a top type T of which there is no ana-
logue in A<{} . 

Singleton types and equality 

Singleton types are formed by the rule: 

F > M : A type 
F > {M}A type (FORM- { }) 

which says that {M}A is a valid type in some context F if the term M has 
type A in F. Terms of singleton type are introduced by the equality rules, 
principally reflexivity: 
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FM:A 
(EQ-REFL) F>M=M:A 
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(this is the rule of singleton introduction from Section 3.1 under a different 
guise, by the definition that M = M : A means M: {M}A). Symmetry and 
transitivity are derived rules using the subtyping rules shown below. There 
are two other equality rules: 

F>A'<A F,x:A'>M=M':B' F,x:A>M:B 
F> Ax:A.M=Ax:A'.M' :Hx:A'.B' 

F> M=M':Hx:A.B F> N=N':A 
F>MN=M'N' :B[N/x] 

(EQ-A) 

(EQ-APP) 

(EQ-A) deserves some discussion. The first two premises allow one to derive 
equalities between functions on restricted domains, like the example shown 
in Section 3.1; the final premise is a well-formedness constraint, to ensure 
that the term Ax:A. M appearing in the conclusion is typable. The usual form 
of A-equality is between functions with the same domain, 

F, x: A > M = M' : B 
F > Ax:A.M = Ax:A.M' :Hx:A.B (EQ-A-EQUAL-BOUND) 

It is an admissible instance of (EQ-A). In fact, the presence of the stronger 
equality rule leads to the admissibility of a correspondingly stronger typing 
rule: 

F>A'<A 	F,x:A' >M:B' 	F,x:A>M:B 
F> Ax:A.M:Hx:A'.B' (A-NARROW) 

which allows one to give a more refined type for a function, based on more 
refined knowledge about its argument type. This is in contrast with usual 
subtyping systems where a function has a single type via A-introduction that 
may be promoted via (suB). This stronger rule was the basis of the example 
in Section 3.2.2. To include (EQ-A) in the stronger form was a design decision, 
but it is interesting to notice that in a system with untagged singletons, the 
stronger rule is forced by the rule (SUB-H). 

Sublyping singletons 

Subtyping of singleton types is provided by three rules. First, we propose 
that a singleton is a subtype of its containing type: 

F>M:A 
F> {M}A <A (SUB- 11) 

Another property we require is the principle of monotonicity of equality 
with respect to subtyping; if two terms are equal at a type A then they must 
be equal at any supertype of A: 

ri=rrn 	rn<n 
F>M=N:B 
	

(EQ-SUB) 
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We can express this principle via subtyping of singleton types. In general, as 
we pass from subtype to supertype, the equivalence class of any particular 
term gets larger: 

F>N:A F>A:5B 
F> {N}A ~ {N} 

	
(SUB-EoJ 

Since N: {N}A by (EQ-REFL), assuming that N : A is implied by M = N : A, the 
previous rule will follow from this one using subsumption (SUB). 

Our term-level equality is reflexive (and, we will see, transitive), but not 
yet symmetric. We have to add a rule of symmetry, such as: 

F> M=N:A 
F> N=M:A (EQ-sYM) 

Again, we can express this rule with singleton subtyping. If we consider that 
two types A, B are equal if A :5 B and B :!~; A, then the rule below establishes 
that if two terms are equal at a type, then their equivalence classes are the 
same: 

F>M=N:A 
F > {N}A :5{M}A 	 (SUB-EQc-sYM) 

the other direction and the previous rule follows from this rule, again through 
(EQ-REFL) and (SUB). 

In the definition of the system, we combine these two singleton subtyping 
rules into a single rule: 

F>M=N:A F>A:f~_B 
F> {N}A :!~ {M}B (SUB-EQ-SYM) 

which is our second rule of singleton subtyping. 
The final rule counteracts monotomcity of equality. Notice that single-

tons can be nested in the syntax, so we can form {M}A, {M}{N}A , {M}{N}p}A.... 
The equivalence class of M seen at type A is {M}A. The equivalence class of 
N seen at {M}A is either empty, if M N : A, or equal to {M}A. In particular, 
{M}A = {M}{M}A. We already have that {M}{ M }A ::5; {M}A by (sul3-{}), for the 
other direction we need a new rule: 

F>M:A 
F > {M}A 	

(SUB-EQ-ITER) 

3.4 Basic Properties 

In this section we establish some basic expected properties of the presen-
tation of A<. The first properties concern well-formedness conditions for 
contexts and the behaviour of variables. 

Recall that no variable is declared more than once in a pre-context. 
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Notation 3.1. Let F x1 : A1,... be a pre-context. 

Dom(F) =def {x1, ... } is the set of variables F declares. 

def x1 :All ... ,x_1 : A_1 is the restriction of  up to x1_ 1. 

F(x1) =def A, viewing F as a partial mapping F: V - T. 

F g F' iff every declaration x1 : Ai in F also appears in P. 

One derivation is "shorter" than another if it has fewer proof rules in its 
proof tree; this measure is used in many proofs. 

A simultaneous substitution is a partial map from variables to pre-terms; a 
renaming is the special case of a simultaneous substitution which is a bijec-
tion on a subset of V. Substitution is extended to contexts componentwise, 
so that if F 	x1 : A1,... then F[N/x] 	x1 : A1[N/x],x2 : A2[N/x]..... 
Substitution is also extended to judgements J componentwise. 

Proposition 3.2 (Contexts). 
Leff x1 : A1 ,.. .x : A be a pre-con text. Then: 

(Context formation). 
If > F then there are shorter derivations of F I , > Ai type for each 
1 :!~ i :5 n. 

(Correctness of contexts). 
If F > J where J is a formation or typing judgement, then > F with a 
shorter derivation, and FV(J) Dom(F). 

(Renaming). 
If 	> J and cP is a renaming of Dom(F), then 0 (F) r>cP(J). 

(Thinning). 
1fF t> J and F c F' with > F', then F' > J. 

Proof Standard. Context formation and correctness of contexts follow by 
induction over the rules. To prove renaming, we use induction on the height 
of derivations and a quantification over all Dom(F) renamings. Then renam-
ing is used to prove thinning; in the cases for A and H when the context is 
extended in the premise, renaming is used to ensure that the thinned context 
can be extended without variable clashes. 	 El 
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Notice that thinning encompasses both permutation of the context (re-ordering 
declarations) and weakening (adding a declaration to the end). 

Proposition 3.3 (Substitution). 
F, x: A, F' > J and F > M: A => F, F'[M/x] > J[M/x]. 

Proposition 3.4 (Bound narrowing). 
F, x: A, F' > J and F > A': Power (A) = F, x : A', F' > J. 

Proof Let y be a fresh variable. Using Proposition 3.2 (part 2, then part 1 
repeatedly together with part 4) and the assumption we can derive F, y : A', x : A, F' 
J. By the variable rule and subsumption, F, y : A' > y : A. Hence by Proposi-
tion 3.3, F,y : A',F'[y/x] > J[y/x]. The result follows by renaming y back 
to x using Proposition 3.2(3). 	 E 

The next proposition shows implications between judgements. Some pre-
sentations of type theories simply require the consequences of these impli-
cations as extra premises in the rules to begin with (often implicitly); the 
approach taken here seems more satisfactory from the point of view of pro-
viding a minimal presentation, although it can make inductive proofs on 
derivation lengths more tricky. 

Proposition IS (Type correctness I). 

	

1.FM:A 	==> 	FAtype 

	

2.FcA:!!~_B 	==> 	F>Atype and FBtype 

Proof Simultaneous induction on derivation heights. We show part 1 by induction 
over the typing rules. 

Case (VAR): By (GEN-TYPE). 

Case (A): By IH and (FORM-H). 

Case (APP): IH gives F > TIx:A. B type which must have been derived with (FORM-H) 
whose premise is F, x : A > B type. Hence F > B[N/x] type using the premise 
of the rule and substitution. 

Case (SUB): By IH (ii). 

Case (EQ-Rum): Use (FORM- 11)on the premise. 

Case (EQ-A): Using (FORM-A), we must show F > Ax:A'.M' : Hx:A.B'. This fol-
lows by the induction hypothesis for the second premise and the premise of 
(FORM- {}). 

Case (EQ-APP): Similarly. 

We show part 2 by induction over the subtyping rules. 
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Case (SUB-REFL): Premise. 

Case (SUB-TRANS): By the induction hypothesis. 

Case (SUB-ATOMIC): Using (FORM-ATOMIC). 

Case (sui3-H): For the left-hand type, use the third premise and (FORM-H). For the 
right-hand type, use the IH to get F, x: A' > B' type then (FORM-17). 

Case (SUB-{}): Use (FORM- 11) or IH for part 1. 

Case (SUB-EQ-SYM): Use IH for part 1 to get F > {N}A, hence well-f ormedness of the 
left-hand type and also F > N: A. Then: 

FN:A 
F>M:{N}A F{N}A:!~A FA:!~B 

F > M:B 
F > JMJB type 

which shows well-f ormedness of the right-hand type. 

Case (SUB-EQ-ITER): Use premise and (FORM-11) for the left-hand type; for the other 
side use (EQ-REFL) then (FORM-[ 1). 	 0 

A generation principle decomposes a derived judgement into further de-
rived judgements, usually sub derivations of the first. It tells how a particular 
judgement was generated. 

For the context and type-formation judgement, the generation principles 
are merely inversions of the rules; there is at most one rule that could have 
been used last in the derivation of a given type-formation judgement. This 
is used to show a simple corollary of the above proposition. 

Corollary 36 (Type correctness II). 
3.1- >M=N:A = 

4.FM=N:A ==~> FN:A 

5.F>{M}A :!~B 	 FM:A and F>M:B 

6.F 	[MIA :!~B 	==> 	FM:B 

Proof Parts 4 and 5 follow from part 1 and part 2 respectively, by the 
premise of (FORM-11). Parts 3 and 6 follow from part 4 and S respectively, 
using (suB-{}) and (EQ-REFL), with (suB). 	 0 
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We now give generation principles for the subtyping and typing judge-
ments. First showing a generation result for the subtyping judgement allows 
us to then prove one for the typing judgement. There is a case according to 
each syntactic form on either side of the subtyping symbol. 

Proposition 3.7 (Subtyping generation). 
1.F>K<B => For some K', 

B K' 

K :5Atom K' 

2. F > FIx:A.B :5 C => For someA',B', 
C FIx:A'.B', 
F>A':5A, 
F, x: A' > 13 :5  B' 
F, x: A> B type. 

3.F>{M}A :!~B=F>M:B 

F > A :!~ K' = For some K, 

where A{M}B 	AEK 
K :!~Atom K' 

F> C:5TIx:A'.B' => For some A,B, 
where  EA {M}D 	CEHx:A.B 

F>A'<A 
F, x: A' > B :!~ B' 
F, x: A> B type. 

F> C :!E; {N}B => For some M, A, C {M}A 

Proof We use induction on the derivation of subtyping judgements to show parts 
part 1 and part 2; only the possible last rules are considered in the cases below. 
Part 3 follows from Corollary 3.6 and (sulI-11). Parts 4-6 then follow directly by 
consideration of parts 1-3. 

Case (SUB-REFL): Immediate, by reflexivity of :!~Atom. 

Case (suB-1&Ns): By the induction hypothesis for the left premise, then the 
right, then the result by transitivity of :5Atom. 

Case (SUB-ATOMIC): Immediate. 

Case (SUB-1EFL): By Proposition 3.5 and type-formation generation, F, x : A> 
B type and by Proposition 3.2, (GEN-TYPE), F > A type. 

Case (SUB-TRANS): By the induction hypothesis for the left premise, then the 
right premise, and the result using (SUB-TRANS) again. 

Case (SUB-17): Immediate by the premises. 
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To show a generation principle for typing, we make use of some admis-
sible rules, taken from Figure 3.5 on page 83. The admissible rules are de-
scribed in Section 3.4.1. 

The generation principle for the typing judgement F > M : A looks un-
usual, because we must account for the possibility that A is a singleton. 

Proposition 3.8 (Typing generation). 
F > x: A => F> {x}r() < A 

F> Ax:A.M:C == For some A', B, B', 
F>A'<A 
F, x: A' > M: B' 
F,x:A>M:B 
F > {Ax:A.M}gx:A'.B' < C 

3.F> MN: C= For some A,B, 
F > M:FIx:A.B 
F.>N:A 
F > {MN}B[N/X ] < C 

Proof We make use of this admissible rule: 

which is derived thus: 

F> {M}A :!~ B 
F> {M}A :5 {M}B 

F>M:A 
F> M=M:A 

 

(SUB-INcL) 

F>M:A F> {M}A :!~ B 

 

F> {M}A :!~ {M}{M}A 	 F> {M}{M}A :!~ {M} 

F> {M}A :!5; {M}B 

using (SUB-EQ-ITER), (SUB-EQ-sYM) and Proposition 3.5. Each case of the proposition 3.8 
is proved by induction on the derivation. 

Case (VAR): then F > {x}j-(x) :!~ F(x) by (SUB-

Case (SUB): by IH, (SUB-TRANS). 

Case (EQ-REFL): let the premise be F > x : A. 
By the IH, F > {x}j-(x) :5 A. Hence the result using (SUB-INcL). 

Case (A): we have F, x : A > M : B by the premise, and 
F > {Ax:A.M}rJ.A. B :!~ TIx:A.B by (SUB- 

Case (SUB): by IH, (suE-1RANs). 

Case (EQ-REFL): by IH, (SUB-INcL). 
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Case(EQ-A): by the premises, F,x:A > M:B and F,x:A' > M:B',using 
Corollary 3.6. 
F > {Ax:A.M}j-Jx:AB :!~ {Ax:A'.M'}j-ix:A'.B' follows by (SUB-EQ) (using 
(SUB-REFL) and Proposition 3.5). 

3. Case (APP): by premises and (suB-{}). 

Case (SUB): by IH, (SUB-TRANS). 

Case (EQ-REFL): by IH, (SUB-INcL). 

Case (EQ-APP): by Corollary 3.6, F > M : TIx:A.B and F > N : A. The result 
by (SUB-EQ) as above. 	 El 

The consequence of typing generation can be further broken down in specific 
instances by using the subtyping generation principle once more, and so on. 

3.4.1 Admissible rules of A<{} 

We continue the development of the meta-theory by showing some important 
admissible rules of A< in Table 3.5, several of which have been mentioned 
before. They are important either because it is natural to want them to hold, 
or because they are useful in following proofs. 

First, we have symmetry and transitivity of equality: 

F>M=N:A 
F >N=M:A 

F>L=M:A F>M=N:A 
F>L=N:A 

(EQ-sYM) 

(EQ-TRANS) 

Interestingly, the usual rule for a-conversion turns out to be admissible. 
We can give ?tx:A.M the tight dependent type Hx:A. {M}B using ({}-I), and 
then use (APP) to give: 

F,x:A>M:B F>N:A 
F> (Ax:A. M) N = M[N/x] : B[N/x] 

There are several easily derived rules for subtyping singletons. One is 
(SUB-EQ), recovered from (SUB-EQ-sYM): 

F >M=N:A F >A:5B 
F > {M}A :!~ {N}B (SUB-EQ) 

An important instance of this rule is when A B, and the second premise is 
implied by the first, by Corollary 3.6. 
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Corresponding to (SUB-Eo), (EQ-SUB) shows the monotonicity of equality wrt 
the subtyping relation. 

F>M=N:A F>A:!~B 
F>M=N:B 	 (EQ-SUB) 

We mentioned the final rule in the table, (A-NARROW), in Section 3.3.1. 

Proof of admissible and derivable rules We prove the admissibility or 
derivability of the rules in Figure 3.5. 

• (A-NARROW) holds because we may derive: 

F, x: A' > M: B' 
F>A':5A 	F,x:A' > M=M':B' 	T,x:A> M:B 

F> Ax:A.M=Ax:A'.M:FIx:A'.B' 

and 
F, x: A' > M: B' 

F> Ax:A'.M:FIx:A'.B' 
F> {Ax:A'.M}rIx: Ar B :!~ Hx:A'.B' 

and then use (SUB) to get F > Ax:A. M : Hx:A'. B'. 

(EQ-SYM) By this derivation, using Proposition 3.5. 

F > A type 
F>N:A F>M=N:A F>A_<A 

F > N = N : A 	F> {N}A :5 {M}A 
F> N=M:A 

(EQ-TRANS) Using (EQ-SYM) and Proposition 3.5 again: 

F>M=N:A F>Atype 
F>N=M:A F>A:!~A 

F > L = M: A 	F> {M}A :!~ {N}A 
F> L=N:A 

(EQ-SUB) Follows easily from (EQ-SYM), (SUB), (SUB-EQ-SYM). 

(EQ-f3) Using (A) and (EQ-APP), we have: 

F,x:A>M:B 
F,x:A > M:{M}B 

F>Ax:A.M:Hx:A.{M}B F>N:A 
F> (Ax:A. M) N = M[N/x] : B[N/x] 

(SUB-EQ) by (EQ-sYM) and (SUB-EQ-SYM): 

F>M=N:A 
F>N=M:A F>A:!~B 

F> {M}A:5{N}B 	 0 
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3.5 Further Properties 

In this section we study some further meta-theory of A<, working towards 
a proof of subject reduction and the minimal type property. 

35.1 Removing singletons 

Subtyping generation, Proposition 3.7, is rather weak in the singleton case 
{M}A :!~ B. We'd like to say something about the relationship between A 
and B; when B doesn't have the form of a singleton, we expect that A :5 B. 
However, when B 	fNJc for some C, we may have A :5 C or vice-versa, 
because of rules (SUB-EQ-sYM) and (SUB-EQ-ITER). A generation lemma covering 
these cases becomes untidy to state, and difficult to prove directly because 
of the rule (SUB-TRANS). 

Here we define an operation (—)o which erases outermost singletons 
from a type. A simple lemma relates a type to its singleton-deleted form; 
this strengthens the generation result sufficiently to give us a tool to help 
show that A<u possesses minimal types. 

Definition 3.9 (Singleton removal). 

({M}A) =A 
P 9 =P 

(Hx:A.B) 0 =Hx:A.B 

Proposition 3.10 (Properties of singleton removal). 
FcA type =F > A < AO  

F > A :!-< B 	F > A _< 

3.F{M}A :5B and B{N}cF>A:5B 

Proof Part 1 by induction on the structure of types. Use (SUB-REFL) except in 
the case that A {M}B for some M, B, when we apply the induction hypoth-
esis to obtain F > B :!~ B, and by type-formation and (suB-m, F > {M}B :5 B; 
hence the result via (SUB-TRANS). 

Part 2 by induction on the subtyping derivation. For (REFL), (SUB-11) and 
(SUB-EQ-ITER) we can use part 1 and Proposition 3.5. Use the induction hypoth-
esis for (SUB-TRANS) and (SUB-EQ-sYM). There's nothing to do for (SUB-ATOMIC) 
and (suI3-TI). 

Part 3 then follows immediately. 
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3.5.2 Subject reduction 

We can now use the generation principles to show that subject reduction 
for f3 holds, for both typing and subtyping. The syntactic proof of this is 
surprisingly involved, compared to subtyping systems without dependent 
types, or systems of dependent types without subtyping. 

Theorem 3.11 (Subject reduction holds for Ek<{}). 

1fF > M: A and M — M', then F > M': A. 

1fF > A :5 B and  —MA', then  > A' :!~ B. 

1fF > A :5 B and B —$ B', then F > A :!~ B'. 

Proof Simultaneously for a single reduction step, by induction on the struc-
ture of terms and types. For terms, this involves the use of Proposition 3.8 
and the equality rules, plus Lemma 3.12 below. For types, we use Proposi- 
tion 3.7 and Proposition 3.5. 	 E 

The critical lemma is the case of a one-step outermost reduction. 

Lemma 3.12. 

F> (Ax:A.M)N:C 
F>M[N/x]:C 

Proof By typing generation, Proposition 3.8, we have: 

F> Ax:A.M:Hx:A1.B1 
F > N : A1 

F > {(Ax:A.M)(N)}B1 [N/ X ] :!~; C 	 (*) 
F > A2 < A 

F,x:A>M:B 

F, x: A2 > M: B2 

F> {AX:A.M}J-I X:A7 B2 :5 FIXAi.Bi 

By Propositions 3.10,3.7 and the last of these, we have: 

F > Hx:A2.B2 :~;Hx:A1.B1 
F > A1 :!~ A2 

F, x: A1 > B2 :!~ B1 

Now using bound narrowing and (suB) we have: 

F, x: A1 > M: B1 
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So we can apply the admissible rule (EQ-f3), 

F,x:A1 >M:B1 F>N:A1 

F> (Ax:A1.M)(N) = M[N/xJ : Bi[N/x] 

and by (EQ-A), (EQ-APP): 

F> A1 :!~A 	F,x:A1 > M=M:B1 	F,x:A > M:B 	F> N:A1 

F> (Ax:A.M)(N) = (Ax:Ai.M)(N) :B1[N/x] 

By transitivity: 
F> (Ax:A.M)(N) = M[N/x] :Bi[N/x] 	 (**) 

Finally, making use of a rule admissible via Corollary 3.6, (SUB-nLkNs) and (SUB-EQ-SYM): 

F>P=Q:D F>{P}D:!~C 

F> {Q}D ~ {P}D 
F> Q:C 

with (**) and (*) as the premises; P 	(Ax:A.M)(N), Q 	M[N/x], and D 

B1[N/x]. Thus 
F > M[N/x] : C 

as required. 	 o 

3.5.3 Minimal types 

With untagged singletons, minimal types are a triviality: the minimal type 
for a term M is {M}! When type tags are added, the issue is not so obvious. 
Here we show a strengthening of Typing Generation to give minimal types. 

The minimal type min(M), of a term M in a context F, has the form 
{M}Am for some Am which we call the non-singleton minimal type of M. Here 
we give a partial inductive definition of minF (M) which we show in the fol-
lowing lemma to be well defined on all F, M such that F > M : A for some 
A. 

Definition 3.13 (Minimal types). 

flhlflj-(X) = {x}r() 

minr (Ax:A.M) = {Ax:A. M}Hx.A.mrX.A(M) 

flThF (MN) = {MN}Bm [N/ X 1 where (minr (M)) 	FIx:Am. Bm 

and  > N: Am 

This lemma establishes the existence and minimality of minF(M). 
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M. 

Theorem 3.14 (A< has minimal types). 

	

1.F>M:A 	 F>M:minp(M) 

	

2. F> M:A 	 F> minr(M):!~A 

Proof We prove part 1 and part 2 simultaneously by induction on the derivation 
of 	> M: A. 

Case (VAR): part 1 by (EQ-REFL), part 2 by (SUB-{}). 

Case (A): By IH for part 1, F, x : A > M: minr,x:A(M). 
Then part 1 follows via (A) and (EQ-REFL). 
By (SUB-11), we get F > {Ax:A.M}flx. fl2-iflr A(M) FIx:A.minJ-,x:A(M) 
and by IH for part 2 and (SUB-II), F > Hx:A.minj-,x;A(M) :5 Hx:A.B. Hence 
part 2 via (SUB-TRANS). 

Case (App): By IH for part 2, F > minr(M) :5 Hx:A.B. 
Using Proposition 3. 10, F> minj-(M) 	Hx:A.B. 
Using Proposition 3.7, we have that 

minj-(M) EEHXAmBm 

F > A :5 Am 

F, x: A > Bm ~ B 

Now F > N : Am so F > MN : Bm[N/X] which gives part 1 using (EQ-REFL). 
By substitution, Prop. 3.2, F > Bm[N/X] B[N/x], hence part 2 using part 1, 
(SUB-11) and (SUB-TRANS). 

Case (SUB): part 1 by the induction hypothesis; part 2 by the induction hypothesis 
and (SUB-TRANS). 

Case (EQ-REFL): part 1 by the induction hypothesis. 
For part 2, by IH, F > minr(M) :!~ A; we may use the admissible rule (SUB-INcL) 
(shown on page 60) to get F > [MIA,,, :5 {M}A. 

Case (EQ-A): part 1 by the induction hypothesis, (A), (EQ-REFL). 
part 2: by the induction hypothesis, (suB-{}), we have F, x : A' > flhiflp,x:A' (M) ~ 

{M'}B' :!~ B' hence 

F > TIx:A'.minj-(M) ~ Hx:A'.B' 

using (SUB-17). By the result for part 1 and (SUB-EQ.) (see below), 

F> {Ax:A.M}HX.PjflFX.A(M) ~ {Ax:A.M}17x:A'.B' 

and by (SUB-EQ) and the conclusion of (EQ-A), 

F > 	 :5 

and so the result follows by (SUB-TRANS). 
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Case (EQ-APP): By IH for part 2, F > minj-(M) :5 FIx:A. B. 
Again as for (App), we use Propositions 3.10 and 3.7 to get part 1. 
For part 2, we use (SUB-EQ) with F > Bm[N/x] -_!~ B[N/x] to get F> {MN}B 1[NI x 1 ~ 
{MN}B[N/x ]. Again, using the original conclusion with (SUB-Eo) gives F > 

{MN}BIN/x} :!~ {M'N'}B[N/xI and the result by (SUB-TRANS). 	 D 

3.6 A PER Interpretation of A< 11 

In this section I shall define a PER model for A<, in a fairly direct modifica-
tion of the standard definitions for A< and related calculi [see for example 
Mitchell, 1996, Cardelli and Longo, 1991, Bruce and Longo, 1990]. We inter-
pret types as PERs (partial equivalence relations) over a global value space 
D, which is the domain of a model of the untyped A-calculus. PERs often 
feature in realizability models as a way of dealing with polymorphism. Here 
the reason for types-as-PERs rather than types-as-sets is more basic: sets are 
insufficient to model the typed equational theory of the calculus. 

In Section 4.6 on page 113 there is a discussion on different varieties 
of models for subtyping calculi, which provides further explanation for the 
present definition. In Chapter 4, there is an abstract model definition given 
for A power, using an applicative structure and not based on a lambda model. 
It was developed after the model given here, and relies on the idea of rough 
typing. In Chapter 5, singleton types are included in this alternative form of 
model. 

The definitions here vary slightly from related accounts in the literature, 
by incorporating type-term dependency and making other minor changes. 
As an unimportant matter of preference, I use the axiomatic definition of 
A-model (rather than a combinatory model definition), to be explicit about 
the use of the characterising axioms. 

Definition 3.15 (Lambda model [Hindley and Seldin, 1987]). 
A lambda model is a triple, V = (D, , ]), where D is a set, is a binary 
operation on D and [— 	: A -. (Var - D) -. D is an interpretation of 
untyped lambda-terms in an environment. If 17: Var — D, then the following 
axioms must hold: 

VAR 11jx]117 =q(x) 

APP 	[[MN 17 = 

cx 	11jAx.M 111 r7 
= [{Ay.M[y/x] 111 

(Vd E D. M1I17[x - ci] = N][x 	ci] 	111Ax.M111 17 = 111Ax.N1117 
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FV 	(Vx E FV(M).rj(x) = ri'(x)) => IM = 

$ 	Vcl E D. iAx.M 	d = 1M[x  ci] 

From the above axioms (except /3), we also have: 

SUBST 	 = 	- 

An environment rj' extends another ij, written Ti  g Ti', if for all variables x: 

q(x) is defined => 	q'(x) is defined and r(x) = ri'(x) 

We shall use products in the model, which can be defined by: 

(a, b) = iAf.fxy]i[x - ct,y - b] 

Tr'p = p [ AX.Ay.XIfl[] 

1T2P = P iAX.AY.Y[] 

From now on, let V be some arbitrary fixed A-model. The A-model inter-
prets untyped terms; as an informality, I omit the obvious Erase operation 
which deletes type information, so IjMj abbreviates {Erase(M)]. The fact 
that the erasure operation distributes with substitution will be used implic-
itly below. 

Lower case letters are used to range over the domain D of V. Partial 
equivalence relations on D are symmetric and transitive relations on D, i.e. 
subsets of D x D. PER indicates the set of all PERs on D. The domain of 
R, dom(R), is the set { ci I ci R ci }, but we will often write ci e R instead 
of ci E dom(R). The equivalence class { ci' I ci' D ci } of ci in R is written 
[ci]s and Q(R) is the set of equivalence classes { [d]R I ci E dom(R) } in R. 
Inclusion of PERs, written R c S, is simply subset inclusion on D x D. 

It is well known that PER can be extended to a category by taking mor-
phisms between PERs R and S to be computable functions between their 
quotients, i.e. f : Q(R) - Q(S) for which there is a p E D such that 
1d E dom(R) => f([d]R) = [p d]5. This fact isn't used in what follows. 

We give some constructions for building PERs; it is straightforward to 
check that these really do define PERs. 

Definition 3.16 (PER constructions). 
We define PERs to interpret the types of A<{} , as follows: 

For each atomic type K, we assume a PER RK  such that K :5j4O K' 

implies RK g RK'. 
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Let R be a PER and S(i) be a PER for all i E dom(R), such that whenever 
i R j, S(i) = S(j). Define the PER 17 (R, S) by: 

f 
H(R,S) g 	iff 	Va,b. ci R b ==> fOci S(a) g.b 

Define the PER X(R, S) by: 

(ai ,b1 ) J(R,S) (a2,b2 ) 	iff 	ci j  R a2  and b1  S(a1 ) b2  

Let R be a PER. Define the PER [p]R  by: 

m[p}Rn 	iff m R n and m R p 

101 

Now we can give the interpretation of contexts and types. The inter-
pretation TFJ of a well-formed context F is a PER. The interpretation of a 
well-formed type in some context is a map [F > All : dom(E[Fll) - PER that 
is invariant under choice of representative of equivalence class in EI1FIfl.  An 
alternative scheme is to define TF > A : Q(![F]j) - PER, and then the inter-
pretation of a term is easily made into a morphism in the category PER. We 
take the first approach here because it seems more elementary when deal-
ing with environments. The drawback is that the interpretation is a partial 
definition, because it will be a product of the soundness theorem itself that 
F1 or TF > All 

rl indeed denote PERs. In any case, giving a partial definition 
for the interpretation function is typical of semantics for dependent type 
systems. 

Definition 3.17 (Interpretation of contexts and types). 
For each context F, we define a PER E[FIfl  by: 

{O]l=DXD 

[F,x:A]j=X(E[FjF 1::  All) 

For each context F and type A, we define a PER [[F > All,7 9 for each r E 

dom([[Fll): 

[[F > Kll 17 = RK  

[[F > Hx:A.B][ =H([[F > AllAci. [[F, x: A  > Bll(qa)) 

[[F > {M}A][,7  = [[[MllqF]ErA]q 

M. 
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Notice that > is just used as a place-holder here, it does not signify a judge-
ment derivation. A is lambda-abstraction at the meta-level, and r/: Var - D 
is the environment defined by projections on q, 

170 (y) undefined, for all y. 

( 7T (q), 	ifyx, 17 1x:A( y ) = 

(m())1(y) ifyx. 

. 

This is a partial definition because the second clause for contexts is well-
defined only if IF c> A][ 1 

= IF > A4 7 whenever 'h In p72, and similarly 
for the clause for H-types. 

The following theorem establishes the main result, soundness of the in-
terpretation. It shows the additional well-definedness property that the PER 
IF > A]],. is unaffected by the choice of representative 17 e [F]], whenever 
there is a derivation of F > A. The parts of the theorem need to be proven 
together because of the presence of dependent types. 

Theorem 3.18 (Well-definedness and soundness). 
>F => [[FIIEPER. 

F > A type = 

Vii1,ri2 . T71 [[F]] 172 => IF r> A]],,1 = 
IF r> A]] 2 

and IF > A]],71, [[F c> A]]172 are both well-defined. 

3.F>M:A = 

V171,172. rj i [[F]] r12 => TM1171r ([[F > A]]171) [[M]]172r 

4.F>A<B 
V17E In. [[F > A]],c.[[F i> B]]17 

Equivalence classes are disjoint, so [m]R c [f]R implies m R n if [m]R 
is non-empty. The consequence of part 2 of the theorem implies that the 
interpretation of {M}A is non-empty, thus F > {M}A :!~ INIA implies that M 
and N are equal at type A in the PER model. 

To prove Theorem 3.18 we require some auxiliary propositions establish-
ing properties of the definitions. 

Lemma 3.19 (Semantic weakening). 
Let F1, F2 be two contexts with r1 E [[F1]], th E [F2]], and 17111 C 1712 

Then: 

1. For terms 	withFV(M) c dom(F), [[M]]171r1 = [[M]]172r2 

70 
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2. For types  with FV(A) c dom(F1), [F1  c> A 1  = [[F2 t> A 2  

Proof The first part is immediate by the assumptions and axiom (FV) of V. We 
show the second holds for all Fi, hi, F2, 112 by induction on A. 

Case A 	: Trivial. 

Case A 17x: B.C: 
By the induction hypothesis, [[F1 > BJ[111 = [F2 r> B][, 2. 
Let a E [[F1 > B]111. Then [F1,x:A > B][ 111  a) = [F2,x:A > B] 112 > by 
the induction hypothesis, since (17 1 ,a) E [F1,x : A and (112,a)  E [F2,X : A. 
Hence [[F1 > FIx : B.C 111  = [F2  > lix : B.Cjfl 112. 

Case A {M}B: 
By the induction hypothesis, [F1  > B][, 1  = [F2  r' B 112. 
By part 1, [M 111 r1  = [ M1112r2. 
Hence [[F1 > {M}B][1 = [F2  > {M}B 112. 	 El 

Lemma 3.20 (Semantic contexts). 
V17 1 ,17 2.VxEdom(F).r71  [fl h2 = qi F(x) [FF(x) 111  q21(x). 

Proof For all F = F1  by induction on the structure of F1: 

Case F1 	: vacuous. 

Case F1 F,y:A: Let (rj1,a1 ) [F,y:A j (R2,  a2). Then: 

r1l [fl 112 
a1 [F > Al 171  a2 	(**) 

by the definition of (R, S). Assume x E dom(Fi). 
If x y then 	 = a1  and (112,a2)LY(y) = a2, so the result 
by (**) and Lemma 3.19. 
If x y then by the induction hypothesis, 

171 F(x) [F > F(x)1111 112F(x) 

(17i,ai)'Y(x) [F,y :A ' F(x)1(qi , ai ) (17 1,a1 )'Y(x) 

by the definition of r7F and by Lemma 3.19. 	 El 



Singleton Types 	 72 

Lemma 3.21 (Relating semantic and syntactic substitution). 
Let F, x :A,F' be  context, n = [Nr for some term N, some r E 

For q1  e [[F', F[N/x]l,  rj 2  E [[F, x : A, F' with r7T C q1r'.r[NIx] C th F,x:A,F' 

where 	 = n, we have: 

For terms M with FV(M) c ciom(F, x :A,F'), 

[[M[N/X]F',r[N/x] = [[MJ1,{x:Ar' 

For types B with FV(B) g dom(F, x : A, F'), 

[[F', F[N/x] > B[N/x]1 = [[F, x: A,F' > B 2  

Proof The first part follows from axioms (SUB),(FV) in V and semantic weakening, 
Lemma 3.19 above. For the second part, use induction on B: 

Case B K: Trivial. 

Case B 17y: C.D: 
By the induction hypothesis, [[F', F[N/x] > C[N/x]1 = [[F, x: A, F' > C 2. 

Let c E [[F', F[N/x] > C[N/x] 1 . Then by the induction hypothesis, 

[[F', F[N/x],y : C[N/x] > D[NIx]1(,,1 C) = IF, x: A,F',y : C > 
The result is seen by the definition of H(R,S). 

Case B {M} c: By the induction hypothesis, we have the result for C. The result 
follows by part 1 for terms and the definition of interpretation for {M} C. D 

Now we can prove the main result. 

Proof of Theorem 3.18 The parts are proved simultaneously by induction on 
derivations. The proof ends on page 76. 

Part 1. Easy, using part 2. 

Part 2. We use a nested induction on the structure of A, which circumvents the 
lack of well-formedness premises in (FORM-H) and (FORM-11), see the remarks in 
Section 3.4. 

Case (FORM-ATOMIC): Trivial. 

Case (FoRM-H): By IH, we have 

[[F> A 1  = IF > A 2  

Vrj 3,rj4 . T73 IF, x:AIfl r14 => IF, x:C > B 3  = IF, x:C > B 

So Va E IF > A1] J1.IF, x: A > B1 a) = jr, x: A > Bq2 a) 
Hence [[F> 17x:A.B1,71 = [[F> Hx:A.BJJ, 2 by the definition ofH(R,S). 
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Case (FORM- 11): By the IH we have that II' > A 1  = IF > A 2. 
We use induction on the derivation here; by the IH for part 2: 

EM 1F E IF > A q1  

{M]I 2r E IF > A 2  = F > A 1  

Hence 
IM 11 EF > A 1  M1 2  F. 

Part 3. 

Case (VAR): M rh F = ri'(x) and similarly for '72;  the result follows by Lemma 3.20. 

Case (A): Let fi = {Ax.Mi '71r and f2  similarly. We wish to show 

fi Tr > TIx:A.B 1  f2 

which holds 1ff for all a1 , a2: 

a1  IF > Aj rj1 a2=  fi•a1  IF,x:A>B] qiai ) f 2 .ci2  

Suppose the antecedent. By axiom (13), 

a = IM '71F [X a1] 

where 
'7i F[x.al ] = (r111 a1)1" 	E Tr, x:A 

and similarly for f2, '72, a2. So we can apply the IH for the premise to get 

M ('71 ai )T 	F, x: A > B(1 ai)  M('72 a2)" 

which establishes the result. 

Case (APP): Let m1  =F, and m2,  ni, fl2  similarly. 
By IH we have 

m IF > TIx:A.B]J 1  m2 

n1  [F > A 1  fl2 

So by the definition of H(R, S), 

m1  ni IF, x : A > B1( 11) m2 . 

ByLemma 3.21, [F, x:A t> BJJ(1 fli) = [F> B[Nlx]l rl 	° 

mn1 [F>B[N/x]'71  m2 •n2  

Finally by the (APP) axiom for the model, 

[MNI'71r [F > B[N/xfl'71  [MNI'72F. 
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Case (SUB): By IH for the first premise, 

jM 1  IF > A 1  M412  

and by IH for part 3 and the second premise, 

	

IF > A 	c IF > B 1  

hence the result 
jM 1  T > B 1  M J2. 

Case (EQ-REFL): By IH, 
M 71  IF > A 1  M 2  

and so also 
M 11  F > AJj 1  M 1  

hence 
M 71  T> {M}A 1  jM4 2. 

Case (EQ-A): Let f' = Ax.M]I, 1r, f = IAx.M' 1r, f2 = IAx.MJI, 1r. We wish to 
show 

f' {F > TIx:A'.B' 1  f2 

fi IF > FIx:A'.B' 1  f 

which holds 1ff for all a4, a2: 

a1  IFA 1  a2 	 f, a, IF, x:A'>B']l(,,iai) f26i2 

fi a1  IF, x:A' > B'(qi , ai ) f 	2 

Suppose the antecedent. By axiom (fi), 

	

fi a = 	• a] 
f2 a2 = M102r{x a21 

	

= 	- a1] 

And as before, we can apply the IH for the 2nd premise to get 

M(,liai )Fx:A' IF, x :A' ' B' i , ai ) IM072, a2 )T 4' 

IM1( i,ai )1'x:4' IT, x: A' r' B'I iai) IM'](,liai )r.x:A' 

which establishes the result. 
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Case (EQ-APP): Let m1  = [ M 1r, and m, m2,  nj, n', n2 similarly. 
By IH we have 

m1  [F > 1Ix:A.B 1  m2 
m1  [F> FIx:A.B 1  m 

n1  [F > A,11  n 

n1  [F> A 1  n 

So, as for (APP), 

m1 •n1 [F>B[N/xfl, 1  M2 n2 

m1  n1  [F > B[N/x] 1  m n 

and 
[MN 1r [F > B[N/xU 1  [MN 2r 

[MN]I,. 1r [F > B[N/xI 1  [M'N' 1r 

which establishes the case. 

Part 4. 

Case (SUB-REFL): Trivial. 

Case (SUB-TRANS): By the induction hypothesis and transitivity of 

Case (SUB-ATOMIC): By the restriction that R K g RK'. 

Case (SUB-17): We wish to show 

[F > Hx:A.B 	[F> Hx:A'.B']177  

Let f E [F > Hx:A.B]j,. So for all cil ,a2, 

	

a1  [F>A1 q  a2 	==> 	f•a1 [F,x:ANB 	ai) fa2 

By the induction hypothesis for the first premise, [F > A' rl 	[F N A. 
Observe that in the definition of [F > -, types play no role except to 
ensure that variables in the environment g inhabit their claimed types, in 
Lemma 3.20. So we may replace [F, x: A N BI by [F, x: A' > B, 

	

al [F> A'] 17  a2 	==> 	f•a1  Tr, x:A' > B,7 a> La2 

By the induction hypothesis for the second premise, 

[F,x:A' > B> 	[F,x:A' N B', 1 > 

hence 

	

a1[F>A'a2 	 f . al Tr,  x:A'NB'ai)f . a2 

which implies f E [F > I7x:A'. B'j as required. 
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Case (suB-11): By the definition of [m]R. 

Case (SUB-EQ-SYM): We wish to show 

IF > 	 IF 

Let n e IF r> fNIAIrly  so 

n IF > A 	{N]j,,r 

By IH for part 2 and the first premise, 

M]I,r IF > AlNI rl r 

n IF > A 
ri  Mr 

By IH for the second premise, IF > AJJ,, c IF r> BIN,  hence 

n IF > B Mr 

and so 
fl E IF > {M}B J  

which establishes the result. 

Case (SUB-EQ-rrER): This follows from the definition of [MIA.  Since 

a [MIA  b 	iff 	(a A b) A (a A m) 

whereas 

a [m][m]A  b 	iff 	(a [MIA  b) A (a {m]A m) 
iff 	(a A b) A (a A m) A (a A m) 

A (a Am) 
iff 	(aAb) A (aAm). 

3.7 Discussion 

This section discusses alternative formulations of A<  and related work. Sec-
tion 3.8 concludes the chapter. 
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3.7.1 Alternative formulations 

An alternative presentation of the system can be given which has no typing 
judgement, but recovers typing by subtyping of singleton types, thus: 

F > M : A 	 3B. F > {M}B :!~ A 

This replacement works more smoothly with untagged singletons, where 

F>M:A 	 F>{M}<A 

The system with untagged singletons has some interesting admissible rules 
- for example, the rule (EQ-A) is admissible in the presence of the weaker 
(EQ-A-EQUAL-BOUNDS) rule shown on page 54, via (sus-II). Without a tag, {M} 
lifts some subtype polymorphism to the type level. However, the system 
with untagged singletons does not interpret a typed equational theory, or 
relate clearly to a PER model. 

A "wrapped-up" version of A<{} with only a subtyping judgement form 
suggests new directions. One is the possibility of unifying terms and types 
by identifying a term M with its singleton type {M}. There are numerous 
disparate cases where researchers have found cause to replace or augment a 
typing relation with a pre-order over terms in this way [Mosses, 1989, Feijs, 
1989, Levy et al., 1991, Dami, 1995, for example]. In a wrapped-up A<{} 
we still have a good distinction between types and terms because the latter 
are always warmly insulated in singleton braces. The PER model reflects 
this distinction. Although subtyping imposes an ordering on terms here, 
it degenerates to equality within the same type; another direction to study 
would be a variant of A<{} where the ordering on terms signifies some kind 
of refinement principle rather than equality. This would integrate nicely into 
the model of program development, so that we have a refinement sequence 
of the form SP, 	... 	 ... {P}. The model definition given 
in the next chapter could be extended to allow this kind of interpretation 
(see Section 4.6.1). 

The presentation can be abbreviated still further. For example, the con-
text judgement can be removed in preference for a weakening rule, in the 
style of Pure Type Systems [Barendregt, 19921. This would give a theory with 
just two judgement forms (and doing this for the theory in the next chapter 
would leave just one judgement form). While removing the context judge-
ment makes for a concise presentation and some slightly shorter syntactic 
proofs, it seems to have little other benefit. 
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37.2 Related work 

During this work, I drew inspiration from research into type systems for 
object-oriented programming languages. The system most studied is the ex-
tension of System F with subtyping called F< . Variants of F, and its PER 
semantics are described by Bruce and Longo [1990], Scedrov [1990], and 
Cardelli and Longo [1991]. The equational theory of F< is investigated in 
Cardelli et al. [1992]. So far none of these systems has dependent types; 
there are examples of PER semantics for dependent type systems in the lit-
erature, but not for dependent subtyping systems. Here I have shown that 
the extension is smooth, at least for a containment semantics. The next 
chapter extends this to a calculus with type-valued functions and type-term 
abstraction. 

ATTandATTT Susumu Hayashi's work [1994] was mentioned in Section 3.1. 
He describes two systems with singleton, union, and intersection types. The 
first system is called ATT. Apart from the presence of more type construc-
tors, ATT differs from A< f I  in these aspects: 

ATT is based on untyped A-calculus, so A-abstractions are untyped; 

ATT has primitive rules for type conversion and subject reduction (he 
added subject reduction because he couldn't prove it - counterexam-
ples are known for similar systems); 

Function spaces are restricted to be non-dependent, i.e., of the form 
A - B, but dependent products can be encoded using the other type 
constructors; 

There is no subtyping judgement or equality judgement, but at least 
the second of these can also be encoded; 

The rules for singleton elimination differ, see below. 

Hayashi gives a set-theoretic semantics for ATT, and then goes on to describe 
his second system, ATTT. This system is typed; it extends System F with 
the same type constructors as before, but this time the "non-informative" 
types are treated specially, as refinements of the usual F types. This achieves 
a weak separation between typing and specification, so that type-checking 
remains decidable although refinement checking is not. I develop a similar 
scheme for ASL+, beginning from the rough typing system introduced in 
Section 4.5; see also the discussion in Section 4.9.1 about related work by 
Pfenning [1993]. 
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My rules for singleton types differ from Hayashi's. He has two rules for 
singleton elimination. The simpler one 

F > M: {N}A  
F>M:A 

is admissible in A<{}  by Corollary 3.6. The other rule expresses a replacement 
scheme, and reflects Hayashi's intention to encode a constructive logic. This 
strong rule treats the intersection of two singletons as a propositional equal-
ity: 

F>M:A 
F>N:A 

F > P: {M}A  n {N}A 	F> Q: B[M/x] 	F, x : A > B 

F> Q: B[N/x] 

Hayashi expresses doubt that this elimination rule is the only "right" one. 
Hayashi's systems are powerful and offer a new perspective on type the-

ory for program extraction: constructive, but slightly less so. The motiva-
tions here are less grandiose, but it would be interesting to compare exten-
sions of A< with ATT and ATIT more formally. 

3.8 Summary 

This chapter presented the calculus A<j, which extends A<, the simply typed 
lambda calculus with subtyping. The new feature is singleton types, which 
also introduce type-term dependency into the system. The syntax was de-
scribed in Section 3.3 and is summarised in Figures 3.1-3.4, starting on 
page 80. A PER model was given for A< and proven sound, in Section 3.6. In 
the model, singleton types {M}A  are interpreted as the equivalence class of 
EIIM]I in the PER TAI This is the first PER model for a system with subtyping 
and dependent types. 

The aim was to establish some basic meta-theory of subtyping in the de-
pendent setting, without the complication of functions from terms to types 
or (bounded) polymorphism that would be in a more realistic system. A 
richer system is an obvious next step, which is taken in the next chapter 
when I introduce a system with power types. 

The important results in this chapter are the basic properties of the pre-
sentation of A,11  established in Section 3.4, which show that it is a sensible 
system; the further properties shown in Section 3.5, which are the minimal 
type property, Theorem 3.14, and subject reduction, Theorem 3.11; and the 
soundness result for the PER model definition, Theorem 3.18. 
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> () 
	

(EMPTY) 

F > A type 	
(EXTEND) 

(FORM-ATOMIC) 

F, x: A> B type 

F > Hx:A.B 

F>M:A 
F > {M}A type 

Figure 3.1: Context and type formation for A<{}  

(FORM-H) 

(FORM- { }) 

(VAR) 

F,x:A>M:B 
F> Ax:A.M:Hx:A.B 

F>M:Hx:A.B F>N:A 
F > MN: B[N/x] 

F>M:A F>A:5B 
F>M:B 

(A) 

(APP) 

Figure 3.2: Typing for A,,,  
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F>M:A 
F >M=M:A 
	

(EQ-REFL) 

F>A':5A F,x:A'>M=M':B' F,x:A>M:B 
F> Ax:A. M = Ax:A'. M' :TIx:A'.B' (EQ-A) 

F> M=M':Hx:A.B F> N=N':A 
F>MN=M'N' :B[N/x] 

Note: F > M = N: A is short for F > M: {N}A. 

Figure 3.3: Equality for A<{} 

(EQ-APP) 
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F > A type 	
(SUB-REFL) 

F>A:!~B 	F > B < C 
F > A < C 

>F 	K:5AtomK' 
F> K < K' 

F>A'::~A 	F,x:A' >B:!~_B' 	F,x:A>B 
F > TIx:A.B < TIx:A'.B' 

F>M:A 
F> {M}A < A 

F >M=N:A F> A:!~B 
F > {N}A :5 {M}B 

F>M:A 
F > {M}A {M}{4'I}A 

(SUB-TRANS) 

(SUB-ATOMIC) 

(SUB-H) 

(SUB- 11) 

(SUB-EQ-sYM) 

(SUB-EQ-ITER) 

Figure 3.4: Subtyping for A<{} 
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F>A'<A 
F,x:A'>M:B' 	F,x:A>M:B 	(A-NARROW) 

F> Ax:A.M:FIx:A'.B' 

F>M=N:A 
F> N=M:A 	 (EQ-sYM) 

F>L=M:A F>M=N:A 
F > L = N : A 	 (EQTRANS) 

F>M=N:A F > A < B 
F> M=N:B 	 (EQSUB) 

F,x:A> M:B F> N:A 
F > (Ax:A.M)N = M[N/x] : B[N/x] 	

(EQ-fl) 

F>M=N:A F>A:5B 
F> {M}A ~ {N}B 

	
(SUB-EoJ 

Figure 3.5: Admissible rules of A<u 



4 Power Types 

A typed A-calculus called A Power  is introduced, which is a predicative 
fragment of Cardelli's power type system. Power types integrate sub-
typing into the typing judgement, allowing bounded abstraction and 
bounded quantification over both types and terms. This gives a pow-
erful system of dependent types. 

This chapter contains the first in-depth study of power types. Basic 
properties of A Power  are proved, and it is given a model definition in 
the style of applicative structures. A particular novelty is the auxiliary 
system for rough typing, which assigns simple types to terms in A power. 

These "rough" types are used to structure the model definition, and 
prove strong normalization of the calculus. 
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4.1 Sublyping via Power Types 

P
OWER TYPES were introduced by Cardelli [1988], who explained the idea 
that Power(A) is the type "whose elements are all of the subtypes of the 

type A," 
A type 

Power(A) type 



Power Types 

Instead of a separate definition of subtyping, a relation between types is 
induced by inhabitation of power types: 

A:!~;B =def A:Power(B) 

The rules for power types are chosen to make this definition sensible. The 
three basic rules are (what Cardelli called) the power-introduction, power-
elimination and power-subtyping rules: 

A type 
	

M:A 	A:Power(B) 
A:Power(A) 	 M:B 

A: Power(B) 
Power(A) : Power(Power(B)) 

The first rule makes the induced subtyping relation reflexive. The second 
rule is the characteristic rule of subtyping called subsumption, which adds 
subtype polymorphism to the system. Together with the third rule, this 
makes the induced subtyping relation transitive. Other rules capture the 
subtyping behaviour of type constructors. 

The main motivation Cardelli had for power types was to encode bounded 
type abstraction and quantification by the usual A-abstraction and depen-
dent function space, 

Aoc::~A.M =def AocPower(A).M 
VO :!~ A.B =def Hcx:Power(A).B 

This simplifies the type system, since there is no need to add new constructs 
to the language. 

Cardelli's 1988 system was meant as a flexible type system for program-
ming languages, particularly languages with object-oriented features. Bounded 
type abstraction and quantification feature in early attempts to capture the 
polymorphism of functions (or methods) which operate on subclasses of a 
particular class, where a class is modelled by a type and the class hierarchy is 
modelled by the subtype relation. Whereas the function Acx:Type. M may be 
applied to any type argument A, the function Acx < B.M can only be applied 
to a type A which is a subtype of B. (Further explanation of the approach 
and examples can be found in Gunter and Mitchell [1994].) My application of 
bounded abstraction is different: subtyping approximates specification re-
finement, and we write AX :!—< SP.M for the function which can be applied to 
any specification refining SP. 

As well as power types, Cardelli's 1988 system has universal polymor-
phism via the Type : Type rule, dependent sum and product types, recursive 
types, variant types, record types and abstract types. The system is so pow- 
erful, in fact, that it is inconsistent when viewed as a logic 	every type is 
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inhabited in the empty context - and type-checking is undecidable. This was 
no surprise; Cardelli presented the system as a showcase combining most of 
the typing ideas that he and others had studied in the preceding decade. 

Since 1988, Cardelli and others have studied various fragments of the 
full system, notably in the type system of Quest [Cardelli and Longo, 1991, 
Bruce and Longo, 1990]. Quest uses power kinds to capture subtyping, so 
that Power (A) is the kind of all subtypes of A, and does not enjoy the status 
of a type itself. One reason for this restriction was semantic: it was difficult 
to incorporate a type of all subtypes into the models of polymorphism being 
studied for Quest at the times 

Power types seem not to have been studied since. This chapter contains 
part of the original contribution of the thesis: the first in-depth study of 
power types. A predicative fragment of Cardelli's system is defined, called 
A Power.  It forms the core of the type system underlying ASL+. The formal defi-
nition of A Power  is given in Section 4.2; examples of its expressibility follow in 
Section 4.3. The remaining sections in the chapter explore basic meta-theory 
of the system and a semantics for it. In particular, the semantics and some 
of the meta-theory is based on a system for rough typing, which assigns 
"rough" non-dependent types to A Power  terms. Rough typing is introduced in 
Section 4.5. Some discussion and comparison with related work appears at 
the end in Section 4.9 and Section 4.10 concludes with a summary. 

4.2 	The System A Power 

First we define the context-free abstract syntax. Let .% be a set of atomic type 
constants. The set Tx  of A Power  pre-terms over IC is given by the grammar: 

T ::= IC I V I AV:T.T I TT I TIV:T.T I Power(T) 

(writing T for short), where V is a countable infinite set of variables. I shall 
use these metavariable conventions: 

variables: 	x,y,...EV 

atomic types: 	K,... E IC 

pre-terms: 	A, B, C,D,E,F,...,M,N,P,... E T 

I use the usual conventions for writing pre-terms in the abstract syntax: 
applications associate to the left; the scope of bound variables extends as far 
right as possible; parentheses are used for grouping. The notions of closed 

'Luca Cardelli told me this. 
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term, free variables of a term FV(M), substitution M[N/x],  and /3, rj reduc-
tion and conversion are all defined as usual. Terms which are o-equivalent 
are considered as syntactically identical; the symbol is reserved for syn-
tactic identity. The dependent product Hx:A. B degenerates to the ordinary 
function space A - B when x does not appear free in B. An abbreviation 
is sometimes used for repeated abstraction or quantification over the same 
domain; for example, Fix, y:A. B stands for the term Hx:A. FIy:A. B. 

Not all pre-terms make sense. The well-formed pre-terms consist of terms 
and types, defined in Definition 4.1 below. These are not disjoint; types 
are also terms of the calculus. I often use letters near the beginning of the 
alphabet to range over pre-terms which turn out to be types. 

A pre-context is a sequence of variable declarations x1  : A 1 , x2  : A 2  
with the stipulation that no variable is declared more than once. The empty 
pre-context is sometimes written as () to draw attention to its presence, oth-
erwise it is invisible. The meta-variables F, \,... range over pre-contexts. 

4.2.1 Presentation Of Ap e, 

The system A Power  is defined using three forms of judgement: 

> F 	 F is a well-formed context 
F > M : A 	 In context F, M has type A 
F > M = N: A 	In context F, M and N are equal at type A 

The judgements are defined simultaneously by the rules in Figures 4.1 and 4.2. 
As usual, I shall write F > M : A to mean "the judgement F > M : A is deriv-
able," etc. 

Here is a brief outline of the rules. Many rules are similar to those in A<{} , 
which were explained in detail in Section 3.3.1 on page 51. 

Context formation (Figure 4.2). 
These rules are standard. The rule (EMPTY) says that the empty context is 
valid and (EXTEND) adds declarations to contexts. The judgement F > A 
Power (B) serves to say that A is a well-formed type, as well as asserting that 
A is a subtype of B. This is a general pattern. 

Typing rules (Figure 4.1). 
The rules (VAR), (A), (APP) and (SUB) are standard. The rule (coNy) is also stan-
dard, and ensures that equal types have the same elements. The rule (AToMIc) 
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>F 
F > K: Power(K) (ATOMIC) 

>F 	xEDom(F) 
F>x:F(x) 

(VAR) 

F,x:A>M:B 
F > Ax:A. M: Hx:A. B 

F>M:FIx:A.B 	F>N:A 
F > MN:B[N/x] 

(APP) 

F>M:A 	F>A:Power(B) 
F >M:B 

(SUB)  

F > M:H,:A. Power (B) 
(REFL) 

F > M: TIx:A. Power(Mx) 

F>M:A 	F > A = B: Power(C) 
F>M:B (C0NV)  

F,x:A' > B:Power(B') 
F > A': Power(A) 	F, x: A >  B: Power(C) (H) 

F > Hx:A.B : Power (TIx:A'.B') 

F > A: Power(B) 
F> Power(A) : Power(Power(B)) 

(Power) 

Figure 4.1: Typing for A Power 
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> () 
	

(EMPTY) 

>F 	F>A:Power(B) 
> F, x: A (EXTEND) 

F>M:A 
F> M=M:A (EQ REFL) 

F> N=M:A 
F> M=N:A (EQSYM) 

F>M=N:A 	F>N=P:A 
F > M = P : A (EQTRANS) 

F,x:A>M=M':B 
F> Ax:A. M = Ax:A. M' : Hx:A. B (EQ-A) 

F> M =M' :Hx:A.B 	F > N= N' :A 
F > MN = M'N' : B[N/x] (E 

F,x:A>M:B 	F>N:A 
F > (Ax:A. M) N = M[N/x] : B[N/x] 

F > M:TIx:A.B 
F> Ax:A.Mx = M: TIx:A.B (EQ17) 

Figure 4.2: Context formation and equality for A Power 



Power Types 

introduces atomic types into the system; each atomic type is a subtype of it-
self, and so is self-evidently well-formed. 

The rule (REFL) is a rule-scheme; the vector notation is shorthand for: 

F > M : T1x1:A1 . . . .Hx:A. Power(B) 
F > M: T1x1:A1. ... Tfx:A) . Power (Mx1 .. x) 

We can define a derived subtyping relation for higher types by extending 
the subtype relation pointwise: if a function M has a type Hx:A. Power(B), 
this expresses that it is a subtype of B pointwise (this is explained further in 
Section 4.3.2). For each n ~ 0, the rule (REFL) asserts reflexivity of the induced 
subtype relation for n-ary type-valued functions.2 Reflexivity of subtyping for 
types is the case that n = 0. 

The rule (FL) is the so-called con travariant rule for subtyping function 
spaces, generalised to dependent products. The last premise is a well-formedness 
check that the term B can be typed under the assumption x : A. 

The rule (Power) is the rule of power typing which allows iteration of the 
Power constructor: intuitively, if A is a subset of B, then the collection of all 
subsets of A is a subset of the collection of all subsets of B. 

Equality rules (Figure 4.2). 
These rules are standard. In the rule (EQ-r)), the usual side condition x 
FV(M) is intended. With subtyping, the rules have some more general con-
sequences, shown in Proposition 4.9. 

Now we can be more precise about terms, types and subtypes. 

Definition 4.1 (Terms, types and subtypes). 
M is a F-term if for some A, F > M: A. 

AisaF-typeif for some B, F > A: Power(B). 

A is a subtype of B in F if F > A: Power(B). 

Sometimes I shall use the adjective "well-formed" to emphasise that a term 
or type can be typed in the calculus, as required by Definition 4.1. (This is to 
avoid confusion when another kind of type enters the picture in Section 4.5.) 
And I will use these derived judgement forms: 

F > A ::5 B 	=def 	F > A: Power(B) 

F > A type 	=def 	for some B, F > A: Power(B) 

F > A = B 	=def 	for some C, F > A = B: Power(C) 

2A technical note: (REEL) adds a case of r7-subject reduction to the sytem; if y 
TIx:A. Power(B) then using (A) we could derive Ax:A.yx : llx:A. Power (yx), but we 
need (REEL) to derive y : TIx:A. Power (yx). 
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Section 4.4 shows that these definitions make sense, by proving that (amongst 
other things), the subtyping and type equality relations are each reflexive and 
transitive. 

In this chapter I will be less aggressive than I could be with the derived 
judgements above (and with the ones for bounded quantification and ab-
straction shown in Section 4.1); this is to be sure that the presence of power 
types is not forgotten! 

4.3 	Examples in A Power 

As a calculus of functions, A Power  is no more expressive than the simply-
typed A-calculus? In contrast with Cardelli's system, it is predicative. It is 
not possible to write a function which operates on any type, so there is no 
universal polymorphism in the style of System F. Instead we can abstract 
over subtypes of types, or subtypes of subtypes, and so on. 

Despite this it is still possible to express complex typing ideas, because of 
the combination of subtyping, dependent types and power types. In partic-
ular, the calculus goes beyond AP, the type system of the Edinburgh Logical 
Framework, and beyond AP, the extension of AP with subtyping introduced 
by Aspinall and Compagnoni [1996]. I shall introduce a few examples in this 
section, hoping that they will help you both to understand the system and to 
persuade you that interest in A Power  may reach beyond ASL+. 

The examples are in three sub-sections: programming-language style ex-
amples in Section 4.3.1, the use of power types for higher-order subtyping in 
Section 4.3.2, and the use of A Power  as a logical framework, in Section 4.3.3. 
The main application, to ASL+, is studied in other chapters. A prototype 
type-checker was used to develop and check the examples in this section. 

4.3.1 A programming example 

Here's a quick programming-style example in A Power  to demonstrate the use 
of dependent types with subtypes. 

31f a term M is typable in A power,  then the type-erasure of M can be assigned a simple 
type, treating II and Power as families of constants. This is demonstrated indirectly by 
the "rough" typing rules in Section 4.5. 



Power Types 	 92 

Suppose mt is an atomic type and let FPRM be the context: 

flat : Power(int), 

Upto : nat - Power(nat), 

Perm :TIn:nat. Power((Upton) — (Upton)) 

Invperm :TIn:nat. (Perm n) -. (Perm n) 

Imagine that Upton stands for the set { m E flat I m :!~ n }, and Perm n is 
the set of permutations of { 1,. . . , n }, which is a subset of the set of func-
tions from Upto n to Upto n. The function Invperm n p yields the inverse of 
the permutation p on such a set. 

We can write a function to apply the inverse of a permutation of { 1,... , n } 
to any number in that range: 

ApplyPerm =def An:nat. Ap:Perm n. Am:Upto n. invpermnp m 

This has the expected typing: 

FPERM > ApplyPerm : TIn:nat. (Perm n) - (Upton) -. (Upton) 

which is derived using the subsumption rule (SUB). 
Other simple examples of subtyping were given in the last chapter. 

4.3.2 Subtyping type operators and families 

Systems of higher-order subtyping extend the subtyping relation to type-
constructors. They were invented to increase the scope of the subtyping 
model of object-oriented languages mentioned in Section 4.1. To date, most 
systems studied are variants of FW with subtyping, known as F<c [Cardelli, 
1990, Pierce and Turner, 1994, Steffen and Pierce, 1994, Compagnoni, 1995, 
Pierce and Pollack, 1992]. In these systems, one can declare a type variable 
ranging over type operators: 

F 	:!~; 	Af3:!~nat.List($x$). 

A related system which has dependent types instead of polymorphism is 
the calculus of subtyping and dependent types AP, introduced by Aspinall 
and Compagnoni [1996]. In AP, one can declare a variable ranging over type 
families: 

G :5 Ax:nat.Vecnat (5*x) 

In the first case, F ranges over constructors that map any subtype /3 of nat 
to a subtype of List($ x /3); in the second case G ranges over constructors 
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that map an element x of flat to a subtype of the type of vectors of numbers 
with S * x elements. 

The higher-order subtyping systems have a pointwise rule for subtyping 
type operators constructed with A: 

F, c:K > A:5B 
F > Ac:K.A :5 Ac:K.B (SUB-A) 

Intuitively, Acx:K.A is a subtype of Aoc:K.B if for every constructor C of kind 
K (or every element C of type K in AP<), the type A[C/cx] is a subtype of the 
type B[C/cx]. 

There is a corresponding rule for applications: 

FH::~J F'JC:K 
F 	H C ~ J C 
	

(SUB-APP) 

The second premise of (SUB-APP) ensures that the application J C is well-
typed; this implies that H C is also well-typed. 

Here is an example using (SUB-APP): 

G  :5 (Ax:nat.Vecnat (5*x))n 
(Ax:nat. Vecnat (5 * x)) n 	Vecnat (S * fl) 

G  :!~ Vecnar (S*n) 

(where n: flat in the context). This derivation uses the conversion and tran-
sitivity rules. 

In a semantics where A :5 B]J is interpreted as a relation between lAi 
and I{B]1 (for example, as containment of PERs), to interpret the rule (SUB-A) 
we must lift the subtype relation to type functions in a pointwise fashion. 
This is the basis of the interpretation suggested in Bruce and Mitchell [19921 
and called the HOPER model in Compagnoni and Pierce [1996] and Steffen 
and Pierce [1994]. 

In A Power, there is no rule corresponding to (suB-A). Indeed it is impossible 
to prove anything with the form F r> Aix:K. A: Power (Q. With power types, 
the rules above for higher-order subtyping would be harder to interpret se-
mantically, at least because the interpretation of AocK. A : Power (C) would 
have to be considered pointwise rather than directly as a subset inclusion, 
so the meaning of Power in a term would depend on its context. This is a 
reflection that with higher-order subtyping, the subtyping relation is really a 
family of relations indexed by kinds. 

Despite the lack of (SUB-A) and (suB-APP), it's pleasing to see that power 
types can express the same typings as higher-order subtyping. Here's an 
informal explanation of how. Suppose that oc is constrained to be a subtype 
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of a type-constructor H with domain K; this is exactly like asking 01 to be 
an element of HccK. Power (H x), since each application of cxM must be 
a subtype of HM. Using this "rj-like" expansion for Il-types, higher-order 
bounded abstraction and quantification, and also bounded dependent type 
functions, can be reduced to abstraction and quantification over 17-types 
with power types in their codomain. 

Instead of the variable declarations above, in A Power  we could write: 

F 	: 	Hf3: Power (nat). Power (List (f3 x /3)) 

	

G 	: 	Hx:nat. Power( Vecnat  (5 * x)) 

Now, to derive G n :5 Vecnat (S * n) we need only a single use of (App): 

G: Hx:nat. Power( Vecnar  (5 * x)) 	n: nat 
Gn: Power( Vecnat  (5 * n)) 

The substitution in the rule for dependent products takes the place of uses 
of conversion and transitivity in the other systems, so derivations in A Power 

are more direct 

I believe that this is an original observation about power types. It pro-
vides further justification for using power types, in fact; Cardelli told me 
that the use for II-types with Power in the codomain, was unclear. Higher-
order subtyping is a direct application of them. 

4.3.3 A Power  as a logical framework 

A power  is related to the type system AP, which underlies the Edinburgh Logical 
Framework, LF [Harper et al., 1993]. 

One idea behind the LF project was that, given a framework for defining 
logics, it should be possible to develop generic computer-assisted proof tools 
which work for any logic encoded in the framework. But to use such proof 
tools in practice, carefully-manufactured forms of abbreviation are vital, to 
manage the burden of formality. Adding subtyping to LF introduces two 
useful forms of abbreviation: 

Shorter and better representations of object logic syntax; 

Proof reuse: one proof term can prove several similar propositions. 

'Although the practical effects on the differences in type-checking algorithms have not 
been fully investigated yet. 
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The desire for subtyping in LF was first mentioned by Mason [1987], to im-
prove the representation for Hoare Logic. Later, Pfenning [1993] showed 
examples of proof-reuse through a restricted form of subtyping called re-
finement types. More recently, Aspinall and Compagnoni [1996] proved that 
the direct addition of subtyping to AP has a decidable type-checking prob-
lem. To achieve the benefits of subtyping in other type theories for proof 
assistants, Luo [1996] advocates the addition of subtyping to a typed vari-
ant of Martin-Löf's logical framework. Several other studies of subtyping in 
dependent type theories are currently underway. 

It's quite easy to see that A Power  can be used in the same way as AP. Let v 
be a single atomic type. Then declare a universe of types by writing: 

U =def  Power(v) 

Now we may use U in place of Type in LF, to declare the term formers and 
judgements of a logic. If F > A: U and F, x : A > B: U, then we do not have 
F > TIx:A. B: U, but rather F > Ilx:A. B : Power(Hx:A. v). But since AP lacks 
quantification or abstraction over types, this difference has little effect, and 
we can translate any AP judgement into one which holds in A power 5  

With power types we can declare one syntactic category to be a subtype 
of another, or one judgement to be a subtype of another, so that every proof 
of the first judgement is also a proof of the second. This is also possible in 
the proposals studied in Pfenning [1993], Aspinall and Compagnoni [1996]. 
Where A Power goes beyond both these systems is in the possibility, for exam-
ple, to refine the universe U. 

ELF+ 

Gardner [1992] suggests refining the universe of LF. She defines an improved 
framework ELF+ which can distinguish between terms that represent pieces 
of object-level syntax, terms which represent proofs, and all other terms 
(such as those which represent rules of the logic). This partitioning allows 
more precise statements of adequacy theorems, which state that the terms 
and judgements of the logic are in correspondence with their representations 
in the framework. I don't know whether this advantage can be inherited in 
Ap0wr ; one would need to study properties of canonical typings of terms, 
or a translation semantics [Breazu-Tannen et al., 1991]. Nevertheless, it is 
instructive to look at the "emulation" of ELF+ inside A power,  revisiting some 
of Gardner's examples to see where the addition of power types is useful. 

'Perhaps, moreover, A Power  is conservative over AP under this translation. But I haven't 
investigated this. 
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ELF+ is defined as a Pure Type System but we can emulate it in A Power  by 
declaring three subtypes of U: 

Type :Power(U) 

Sort :Power(U) 

Judge : Power (U) 

In fact, we could equally well begin with three atomic types. 
The idea is that types inhabiting Sort are the syntactic categories of the 

object logic, whilst types inhabiting Judge are its judgements. (As usual, the 
representation of the object logic is made by encoding its term constructors 
and rules as dependently typed constants and types, respectively.) The uni-
verse Type is a spare universe to house so-called "extra constants" which 
are artefacts of the encoding with no correspondence in the object logic. In 
ELF+, Type also serves to house H-abstractions of sorts and judgements. 

Gardner gives examples of encodings which use these universes. Ex-
amples where power types are useful include higher-order logic [Gardner, 
1992, Examples 4.2.3, 5.1.10] and the modal logic S4 [Gardner, 1992, Exam-
ple 5.1.12]. The examples are carried out for LF in Avron et al. [1992]. I will 
highlight the improvements achieved with power types. 

Higher-order logic. In the Church-style representation of higher-order logic 
(HOL), terms of the logic are simply typed, using types of the form: 

T ::= L 1 0 I TT 

The HOL types are represented by elements in an LF type dom: 

dom :Type 

i :dom 

0 :dom 

= 	:dom - dom — dom 

The HOL terms with domain T are represented as elements of an LF type 
obj (T), where obj : dom -. Type. In ELF+, dom and the mapping obj are 
shown to be artefacts of the encoding, because they inhabit Type, and obj is 
instead given the type: 

obj : dom -. Sort 

to express that elements of obj (T) correspond with object logic syntax. In 
A power,  we can go a stage further, and remove obj altogether, by declaring: 

dom : Power(Sort) 
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Now we may imagine the mapping obj to be implicit. Because we no longer 
need to write obj, the representation of the logic becomes more concise, yet 
no less accurate. For example, the application term former is represented as: 

app 	:Ils,t: dom. (s => t) - s -. t 

instead of 

app 	: Its, t: dom. obj (s => t) -. obj (s) - obj (t) 

In LF and ELF+, the proliferation of obj quickly pollutes large terms. 

Although this example is simple, it is important to emphasise that it 
goes beyond the proposals of Pfenning [1993] and Aspmall and Compagnoni 
[1996] because dom is declared as a sub-kind of the universe Sort. Power 
types apply uniformly; other systems would have to be extended with sub-
kinding to cope with this example. 

Modal logic S4. The representation of Hilbert-style S4 in LF, due to Avron 
et al. [1992], uses an auxiliary judgement cF valid to define the intended 
judgement cP true. The auxiliary judgement is used because the rule for 
necessity introducing D should only apply to true judgements under no as-
sumptions; this would not follow were the rule encoded in the usual way for 
a single judgement çfi  true. 

In ELF+, the example proceeds by declaring: 

0 :Sort 

0 :o - o 

true :o-.Judge 
valid :o-Type 

C :Hcli:o.vaild(cli) -. true(cli) 

The ELF+ typing of vail d indicates that an expression vail d() is an arte-
fact of the encoding since it inhabits Type rather than Judge. The pseudo-
rule C expresses the relationship between the auxiliary judgement and true. 

In A power,  we can instead declare: 

valid :TRP:o. Power(true(cP)) 

Now the use of the rule C becomes implicit, and no longer pollutes the en-
coded proof terms. Moreover, one proof term can prove several related 
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judgements involving both val i d and true, but I shall not give examples 
here. (A general explanation is given by the logical understanding of sub-
typing as intuitionistic implication, studied by Longo et al. [1995].) A similar 
example by Henning [1993] shows that the cut-free proofs can be considered 
as a subtype of all natural deduction proofs for first-order logic. 

The S4 example is also possible in AP,. Both examples, once they make 
use of subtyping, no longer need the universe Type. More complicated ex-
amples might still need the extra universe Type to hold auxiliary judgements 
used to prove side-conditions of rules in the object logic. 

4.4 Basic Properties 

In this section I shall establish some simple meta-properties of the type sys-
tem A Power• 

Since the three judgement forms are defined simultaneously, several meta-
properties are proved by simultaneous induction on the number of rules in 
a derivation of an arbitrary judgement. Meta-properties which are proved in 
this way are often expressed as admissible rules. By contrast, derivable rules 
are those which can be constructed simply by a composition of rules of the 
system. 

Proposition 4.2 (Derivable rules). 
These rules are derivable in A power : 

F > A type 	
(sus-REFL) F > A < A 

F > A ::~ B 	F > B _ C 	
(SUB-TRANS) F>AC 

F > A type 

F > A = A 	 (EQT-REFL) 

FiB=A 
F > A = B 	 (EQT-sYM) 

Proof The rule (SUB-REn) is just an instance of (Rum). The rule (sus-TRANS) 
follows from (suI3) and (Power). The rules (EQT-REFL) and (EQT-sYM) are just 
special cases of (EQ-REFL) and (Ect-sYM) respectively. 	 0 
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I shall be careful to distinguish derivable rules from those which are ad-
missible but not derivable. This is because when considering the semantics 
we will treat some of the important admissible rules (e.g., substitution and 
thinning) as part of the system, making sure that they are valid in every 
model. These "important" admissible rules could be added to the presenta-
tion of the system as is done by other authors [Streicher, 1991, Pitts, 1996], 
but this spoils the direct proof of several meta-properties. So I stick with a 
presentation in which they are easily proved admissible. 

Recall that no variable is declared more than once in a pre-context. 

Notation 4.3. Let F x1 : A1 ,... be a pre-context. 

Dom(F) =def { x1,... } is the set of variables F declares. 

def x1 : A1,... ,x1_ 1 : A_1 is the restriction of  up to x1_ 1 . 

F(x1) =def A1, viewing F as a partial mapping F: V - T. 

F c F' iff every declaration x1 : Ai in F also appears in F'. 

I shall use J as an additional meta-variable to range over the three judge-
ments of the system, and F > J to indicate a judgement with context F. One 
derivation is "shorter" than another if it has fewer proof rules in its proof 
tree; this measure is used in many proofs. 

A simultaneous substitution is a partial map from variables to pre-terms; a 
renaming is the special case of a simultaneous substitution which is a bijec-
tion on a subset of V. Substitution is extended to contexts componentwise, 
so that if F 	x1 : A1,... then F[N/x] = x1 : A1[N/x],x2 : A2[N/x]..... 
Substitution is also extended to judgements J componentwise. 

The proofs of the next few propositions follow similar proofs given for 
A< 	in Section 3.4 on page 55. 

Proposition 4.4 (Contexts). 
LetF x1 : A1, . . . x : A be a pre-context. Then: 

(Context formation). 
If > F then there are shorter derivations of FI x, > A1 type for each 
1 ::~ i :5 n. 

(Correctness of contexts). 
If F > J where J is a typing or equality judgement, then > F with a 
shorter derivation, and FV(J) Dom(F). 

(Renaming). 
If 	> J and 0 is a renaming of Dom (F), then 0 (F) c> (J). 
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4. (Thinning). 
If  > J and  g F' with > F', then F' > J. 

Proposition 4.5 (Substitution). 
F, x: A, F' > J and F > M: A => F, F'[M/x] > J[M/x]. 

Proposition 4.6 (Bound narrowing). 
F, x : A, F' > J and F > A' : Power(A) 	: F, x : A', F' > J. 

The next proposition establishes simple formation properties of typing 
compound terms. 

Proposition 4.7 (Formation). 
F > Ax:A.M: C = F > A type and 3B. F, x: A  M: B. 

F > MN: C 	A,B. F > M : FIx:A.B and F N: A. 

F > TIx:A.B : C ==> F > A type and F, x : A > B type. 

F > Power(A) : C => F > A type. 

Moreover, for each part, the judgements in the consequence occur as 
subderivations of the judgement in the antecedent. 

Proof By induction on derivations. In each case, following the left branch 
of the tree we eventually meet the rule that introduced the constructor, either 
(A), (APP), (Ii) or (Power). The premises of this rule give the result required. D 

The next proposition states that every pre-term that appears in the pred-
icate position of a judgement (i.e., on the right of ':') is indeed what we call a 
type. 

Proposition 4.8 (Type correctness). 
1.FM:A => FAtype. 

2.F>M=N:A == F>Atype and FM,N:A. 

Proof The parts are proved together, by induction on derivations, using 
Proposition 4.7 in several cases, also Propositions 4.4 and 4.5. 	 El 

The few basic equality rules of Figure 4.2 have some important admis-
sible rules as consequences. These include congruence rules for the type 
constructors, because lambda-abstraction and application apply uniformly 
to types as well as terms. We also have rules of subsumption, conversion, 
and substitution for the equality judgement itself. 
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Proposition 4.9 (Admissible equality rules). 

F>M=N:A F>A=B 
F>M=N:B 

F>M=N:A F>A:!~B 
F >M=N:B 

F,x:A> M=M':B F >N=N':A 
F > M[N/x] = M'[N'/x] : B[N'/x] 

F>A'::~A 	F,x:A'>B:!~B' 
T,x:A> M:B 	F,x:A' > M=M':B' 

F> Ax:A.M=Ax:A'.M':Hx:A'.B' 

(EQ-coNy) 

(EQ-SUB) 

(EQ-SUBST) 

(EQ-A') 

Proof Each case is derived using lambda-abstraction, application, beta-
conversion, together with symmetry, transitivity and Proposition 4.8. We 
omit details and just mention the other rules used. For the rule (EQ-SUB), we 
use (SUB); for the rules (EQ-coNy) and (EQ-SUBST) we use (coNy). For (EQ-A'), 
there is an essential use of (EQ-r)). 	 U 

The rule (EQ-A') is a more general rule of A-equality which allows us to 
restrict the domain of comparison of two functions. 

Proposition 4.10 (Admissible type equality rules). 

F>A=B F>B=C 
F>A=C 

F>A=B 
F> Power(A) = Power(B) 

F, x: A> B = B' 

F > Hx:A.B = F[x:A.B' 

(EQT-TRANS) 

(EQ-Power) 

(EQ-H) 

Proof The congruence rules (EQ-Power) and (EQ-H) are proved as in Proposi-
tion 4.9, using beta-conversion. The transitivity rule (EQT-TRANS) follows from 
the admissibility of another rule: 

F > A = B: Power(C) 
F > A = B: Power(B) 

	 (EQ-SUB-REFL) 
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since from the first premise of (EQT-TRANS) we can then show F > A = B 
Power (B) and by symmetry twice, F t> B = C: Power (B), and finally F L> A = 
C using (EQ-TRANS). We can show that the rule (EQ-SUB-REFL) is admissible using 
similar reasoning as for the congruence rules, using (coNy). 	 El 

The rule (EQ-SUE-REFL) demonstrates that the equality of types is an "ab-
solute" notion, in the sense that the derivability of F > A = B : C is not 
affected by the type C when A and B are types. The term on the right-hand 
side of equality judgements in such cases merely ensures that equational 
deductions are combined properly, just as types in an equational theory for 
the simply typed A-calculus do [Mitchell, 1990]. This contrasts with the case 
when A and B are non-type terms, when C can affect whether or not A and 
B are considered equal (see the example in Section 3.1). 

This justifies using the derived judgement form F > A = B. The seman-
tics considered later reflects this aspect of the syntax, that type-equality is 
"absolute". 

4.4.1 Further properties 

We would like to prove more about the A Power  system than the properties in 
the previous section. One desirable property is the connection with reduc-
tion, known as subject reduction: 

If  > M:A and M— q M', then F > M':Atoo. 

Subject reduction is an important practical property. It allows type-checking 
algorithms to use untyped reduction to simplify terms, and for a compiled 
language based on the type system, it justifies the removal of run-time type-
checking. 

Unfortunately subject reduction seems difficult to prove for A power,  and 
remains open. Several other desirable properties are closely related to sub-
ject reduction and may be as hard to prove. This section discusses the prob-
lems in attempting to prove subject reduction, and possible solutions. 

The key to proving subject reduction is to first establish a generation prin-
ciple for the system, which gives a way of decomposing derivations by stating 
how a particular judgement was derived. A generation principle is important 
for meta-theoretic analysis, and leads to other results besides subject reduc-
tion. 

In deterministic type-systems where there is a correspondence between 
typing rules and term constructors and every term has a unique type, a gen-
eration principle is trivial to derive, amounting to an inversion of the rules. 
In a system with dependent types or subtyping, the statement and proof 
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of generation principles is made difficult because the presentation is not 
syntax-directed - so the last rule of a derived judgement is not uniquely 
determined by its form. 

The formation proposition (Proposition 4.7) is a weak generation princi-
ple and says something about how derived judgements were built up. But it 
is not strong enough. To tackle the meta-theory of A Power we need a stronger 
principle which garners a link between the type C of a judgement F > M : C 
and the judgements concerning subterms of M asserted to exist. For exam-
ple, for the A-case, it might be something like this: 

F>Ax:A.M:C => C=TIx:A'.B' 
where F > A' :!~ A and there is a B such that F, x : A' > M : B and 
F, x : A > B :5 Y. 

This captures the observation that after an application of (A) to derive Ax:A. M: 
FIx:A. B, there can be a series of uses of subsumption (SUB) and conversion 
(coNy) through which FIx:A. B mutates into C: 

x:AM:B 
Ax:A.M : FIx:A.B 

Ax:A.M:C1 	C1:5C1+1 
(SUB) 

Ax:A.M: 

Ax:A.M:Ck 	 Ck=Ck+1 
(coNy) Ax:A.M: Ck+1 

Ax:A.M: C 

The two cut-like rules (SUB) and (coNy) make it tricky to prove the statement 
above by a direct induction, because arbitrary terms can appear in the inter-
vening typings. To "join up" the C1's we need to appeal to the generation 
principle being proved. Actually, it is worse than this, because the rule (REFL) 

may also appear in the derivation introducing further detours, so the puta-
tive statement of A-generation given above needs altering. 

The traditional syntactic way to handle this situation is to by reformu-
lating the system in a more syntax-directed fashion, eliminating the cut-
like rules. The generation principle for the cut-free system is immediate. 
This programme has been carried out for several subtyping systems by now 
[Curien and Ghelli, 1992, Compagnoni, 1995], including the first dependent 
type system in Aspinall and Compagnoni [1996]. Unfortunately it is hard to 
extend the techniques there directly to A powerS The sticking point is bounded 
operator abstraction which makes it difficult to prove lemmas about substi-
tution in the syntax-directed system before having proved other properties 
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which in turn depend on substitution. For AP, in Aspinall and Compagnoni 
[1996], we managed to find a judicious order in which to prove these prop-
erties. 

A new proof technique has been developed recently by Compagnoni and 
Goguen [1997] which avoids this problem. Several desirable properties are 
proved at once using a typed operational semantics for subtyping, which is 
a deterministic reformulation of the system with extensive type annotations 
and control over reduction order. The cost is having to prove equivalence 
between the typed operational semantics and the original presentation using 
a model-theoretic construction. But in future work, perhaps a generalization 
of the model definition for A Power  given in Section 4.6 could be used to apply 
this new technique. 

Summary of further properties 

This is a summary of further properties we would like to prove for A PowerS 

Conjecture 4.11 (Strengthening). 
F, x : A, F' > J and x FV(F',J) => F, F' > J. 

Conjecture 4.12 (Variable Generation). 
F,x:A>x:B and xFV(B) = 	FA:Power(B). 

Conjecture 4.13 (Closure under reduction). 
FJ and j—,,7  J' => FJ'. 

The well-known proofs of these properties are connected. To show clo-
sure for r7-reduction and variable generation we need strengthening; to show 
closure we need a generation principle which has the variable generation 
result as a special case. 

4.4.2 Remarks about the presentation of Apower  

In this section I shall discuss a few aspects of the presentation of A power, 

comparing with other type theories. This is partly to justify the definition, 
which has several variations from traditional type theory (as well as varia-
tions from traditional subtyping systems). A comparison between A Power  and 
the related work appears in Section 4.9.1. 
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Lack of type-formation judgement 

Typically, dependent type theories have a judgement form 

F > A type 

which asserts that A is a well-formed type. Philosophically, this should be 
a more primitive judgement than "F > M : A" which asserts that the term 
M has type A. Indeed, it is conventional in Martin-1,6f style presentations to 
assume that any rule with the conclusion F > M : A has F > A type as a tacit 
premise. 

In Apower , typing judgements of the form F > A : Power(B) assert that 
A is a type, so to find out whether A is a type we must find a supertype 
of it. One supertype is A itself; A : Power(A) holds for the canonical types 
(non-variables/applications) because atomic types are supertypes of them-
selves by (ATOMIC) and the rules (H) (Power) decompose H and Power types. 
Non-canonical types (variables and applications) also inhabit Power-types, al-
though showing this may take several steps of conversion and subsumption. 

It is much easier to present the syntax in this way than to attempt a for-
mulation which separates types from terms more fully. To separate types 
from terms we must either duplicate the rules for abstraction and applica-
tion, or we have a rule: 

A: Power (B) 
A type 

which collapses the two notions anyway. 
Although more complex, a presentation with a type-formation judgement 

might still be useful, because it would allow type formation to be interpreted 
in a different way to typing. 

Multiple-identity 

In Martin-1,6f type theory, a well-formed string is either a term or a type. In 
kpower, we allow "confusion" between the notions, so that a pre-term can be 
a term or a type. Luo [1994] calls this confusion "multiple-identity". It is a 
hang-over from classical set-theory, where everything is a set. The original 
presentations of the Calculus of Constructions and the Extended Calculus 
of Constructions [for references, see Luo, 1994] have multiple-identity, but 
in many recent studies of both syntax and semantics, it is eschewed. One 
reason for this is because types and terms are interpreted differently, so 
some way of disambiguating is needed to define the interpretation function. 
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To present A Power  in a way which avoids multiple-identity, we could treat 
the elements of Power (A) as names of types (a la Tarski), introducing a rule: 

M: Power(A) 
T(M)<A 

Studying this idea might lead to a more type-theoretic explanation of power 
types; but it would enlarge the presentation considerably, since we would 
need rules for manipulating such types, and proving their equality. 

Levels of power types 

Many typed A-calculi can be split into a finite number of "levels"; intuitively 
the level of a non-functional term is the number of colons that may appear 
before it. (This can be made into a definition which extends to functions, 
see Barendregt [19921.) If M : A is derivable, then level(A) = level(M) + 1. 
Commonly, terms of level 0 are called "terms", terms of level 1 are called 
"types" and terms of level 2 are called "kinds". 

Because of (ATOMIC) and (Power), A Power  has an unbounded number of lev-
els. In the empty context we can derive: 

K: Power(i) : Power(Power(K)): .. Power"(K): 

Limiting the nesting of power types leads to natural sub-languages of A Power 
which have a finite number of levels. Such languages may be interesting 
in proof techniques or model constructions; there is a similarity to the Ex-
tended Calculus of Constructions with an unbounded hierarchy of universes 
[Luo, 19941. 

How deeply nested do power types get? In Section 4.3.3 there were terms 
like Power (Sort) which have level 3; to be able to form such a thing we need 
to have terms with level 4. I don't know any natural examples of terms which 
need a deeper nesting than this. 

Semantic versus syntactic presentation 

The presentation of A Power  given in Figures 4.1 and 4.2 uses an equality judge-
ment. This form of presentation for dependent type systems is sometimes 
described as semantic, in contrast to a presentation which defines a rule of 
conversion using untyped conversion, described as a syntactic presentation. 

FM:A TA=B FM:A A= q B T>Btype 

106 
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The semantic presentation, using the first rule, is needed to give a proper 
proof of soundness for dependent types. At once it excludes the possibility 
that untypable terms can occur in typing derivations, which the second rule 
does not. 

If the system has the Church-Rosser property and subject reduction, it 
follows that only typable terms need occur in derivations in a syntactic pre-
sentation [Geuvers and Werner, 1994]. The meta-theory of syntactic presen-
tations seems to be more tractable in the sense that there may be combi-
natorial proofs of properties such as subject reduction (although once rj-
reduction is included, these proofs rely on strong normalization [Geuvers, 
1993]). For semantic presentations, the typical method of attack has been 
via a model construction [Streicher, 1991, Goguen, 1994]. 

Pure Type Systems [Barendregt, 19921 are defined with a syntactic pre-
sentation using the second rule above. The original presentation of ASL+ 
[Sannella et al., 1992] is similar, but uses split rules of conversion - a rule of 
type-reduction and a rule of well-formed type-expansion. With this scheme, 
the Church-Rosser property is not needed to argue that untypable terms do 
not occur in derivations, but subject reduction remains essential. Unfor-
tunately the sketched proof of the subject reduction property by Sannella, 
Sokolowski, and Tarlecki was incomplete and seems difficult to fix, as ex-
plained in Section 4.4.1. 

4.5 Rough Type-checking 

Although A Power  is a dependently-typed calculus, we can approximate type-
checking using "rough" types without term dependency. Rough type-checking 
is useful because it enforces a structural well-formedness property which is 
a necessary condition for typability in the full system. It is easy to check 
rough typabiity because we never need to test equality of terms, so we have 
static type-checking for rough types. More over, two pre-terms which are 
in the full typing relation of A Power  must have related rough types, and two 
terms which are equal in the equational theory must have the same rough 
type. 

The idea of rough type-checking in A Power  comes from Sannella et al. 
[1992], where it was also suggested that rough types could be used to give a 

'Rough types were called "types" in Sannella et at [1992], but using this name we 
couldn't call anything in the full system a "type". Rough types were called "kinds" in 
the early presentation of my work in [Aspinall, 1995b], but this name confused some 
people. Another possibility is "simple type" which suggests the removal of dependency 
and relationship to A. I shall stick to "rough types" here because it gives extra intuition 
and relates to the explanation in Sannella et al. [1992] where a term is called "roughly well 
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foundationally-se cure semantics to the language. The model definition given 
in Section 4.6 uses rough types to do this. 

A further application of rough types is the proof of strong normalization 
for A power,  which follows from strongly normalization for roughly-typable 
terms. This proof is given in Section 4.8. 

4.5.1 Rough typing system 

Given a set IC of atomic types, the set Tyx  of rough types over IC consists 
of type constants, arrow types, and power types, defined inductively by the 
grammar: 

Ty ::= IC I Ty=Ty I P(Ty) 

We write just Ty for short when the set IC is understood. 
These are the types of the simply-typed A-calculus extended with a power 

type constructor. We use T, U,... to range over Ty. 

There are two rough typing judgements: 

o. F 	 "F is a roughly-typable context" 
F 	M => T 	 "M has rough type T in F" 

The judgements are defined inductively by the rules in Figure 4.3 on the next 
page. Notice that full Apo, contexts are used in the rough typing judge-
ments; at the cost of extra judgement forms and syntax we could instead 
introduce rough contexts, declaring variables with rough types, and then 
type-check a A Power  context to a rough context. At the moment this is done 
"on-the-fly" by the variable rule, but the idea of a rough context is behind the 
scenes (and would be used in a practical implementation). 

One way to understand rough typing rules is as an abstract interpretation 
of terms-in-context, which follows set-theoretic intuitions for the calculus. 
The rough type of a term tells us what kind of beast it denotes: lambda terms 
denote functions and have arrow rough-types; atomic types and power types 
denote collections of values and have power rough-types. A term Hx:A. B 
has a rough type of the form P(T => v), which indicates that it denotes a 
collection of functions. 

Example 4.14. To illustrate rough typing, recall the example context FPERM 

from Section 4.3.1 on page 91. We can derive these rough typings: 

FPERM 	Perm ==> mt = P(int => int) 

formed" if it has a rough type. 
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0. 0 

F FA==P(T) 

F K => P(K) 

F 	F x  o. F(x) = P(T) 
F o. x => T 

FA=P(T) F,x:AM==v 
F 	Ax:A.M ==m> T => v 

F 	M ==> T => V F N => T 
FMN=v 

F mo. A = P(T) 	F, x : A B => P(v) 
F No. TIx:A.B => P(T => v) 

F o. A ==> P(T) 
F Power(A) => P(P(T)) 

Figure 4.3: Rough typing for A Power 
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FPERM 	invperm = int = (int = int) => (int = int). 

At once we see how "rough" this is: Perm and Invperm were defined on nat, 
but nat gets replaced by the atomic type mt. 

In general, rough typing judgements - or to be more precise, their trans-
lation got by mapping -r = v to FIx:T. v - do not hold in the full A Power  type 
system. Certainly we do not have: 

FpERI > Perm : int - Power(int 	int). 

For starters, Perm is not defined on all of mt. 

In Theorem 4.19 on the next page, we prove that typability in the full 
calculus guarantees rough typability. From the above example we can see 
that the converse fails, since we have 

FPERM,i : in  ii. Perm(i) =' P (in t => int) 

but this term cannot be typed in the rules of Figure 4.1. (To prove this we 
would need to use a generation principle or model construction). 

Although rough typing judgements are not generally valid in the full sys-
tem, given a context F and term M, it is possible to apply a "rounding up" 
operation which replaces all types appearing in variable declarations and 
bindings by terms corresponding to their rough types, so removing depen-
dency. This translates any rough-typing derivation into a derivation in the 
full calculus. Comparing the rules in Figure 4.3 and Figure 4.1 it should be 
clear how to do this: the translated derivation uses only the typing rules of 
A power,  and not (suB), (coNy) or (REFL). This gives a precise explanation of how 
the rough-typing system can be seen as a subsystem of the full system. More 
details of this "rounding up" operation are sketched by Sannella and Tarlecki 
[1991]. 

4.5.2 Properties of rough typing 

It is easy to establish meta-properties of the rough-typing system because 
the types are non-dependent and subtyping has been removed. 

Proposition 4.15 (Properties of rough typing). 
F M = T implies o.  F 

1fF o.. M = T. then T is the unique such rough type. 

Rough type-checking and rough type-inference are decidable. 

Proof 



Power Types 	 111 

By a simple induction over derivations. 

For a given M only one rough typing rule can have a matching conclu-
sion. 

For any rule in Figure 4.3, count the number of symbols to the left 
of the rough type in the conclusion. In each case, every premise of a 
rule has strictly fewer symbols, so we have a termination ordering for 
deciding the relation. Moreover, we can turn the rules into an algorithm 
for computing T, since there is at most one rule which matches any M7 

D 

Proposition 4.16 (Thinning and substitution for rough typing). 
1ff M => T and  c F' with PP. F', then F' o. M => T. 

1fF, x : A, F' 	M 	v, F o. A => P(T), F mo. N => T, then 
F, F'[N/x] 	M[N/x] 	v. 

Proof Each part by induction on derivations. 	 E 

Proposition 4.17 (Strengthening for rough typing). 
If F,x:A,F' Po. M => T and xFV(F'),FV(M), then F,F' o,. M = T. 

Proof By simultaneous induction also for the context rough-typing judge-
ment, using free-variable properties of roughly-typable contexts (analogous 
to part 2 of Proposition 4.4). 	 n 

The rough-typing system has a direct generation principle since there is 
a single typing rule for each term-former. This allows us to show the subject 
reduction property without any fuss. 

Proposition 4.18 (Subject reduction for rough typing). 
If F o. M ==> T and M 	M', then F M' 	T tOO. 

Proof Using generation, with substitution for $-reduction and with strength- 
ening for rj-reduction. 	 0 

The agreement property below is the important connection between rough 
types and typing in full "Power,  which was claimed at the beginning of this 
section. Part 4 is just needed to make the induction go through. 

Theorem 4.19 (Agreement of rough typing). 
1. If> F then F. 

7This assumes that we can determine the syntactic identity of two atomic types, i.e., 
whether K K'. 
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2. IfF>M:A then for some -re Ty, F P,. M => T and F io. A => P(T). 

3.IfF>M=N:A then for some TE Ty, FM,N => Tand 
F Po. A =~> P(T). 

4.1fF> A:Power(B) thenforsome -reTy,F oo. A => P(T) 

Proof By induction on the derivation in the full system. 	 El 

So if F > M : A in A power, M and A must necessarily be typable with rough 
types, and moreover, the rough type of A is P(T) where T is the rough type 
of M. 

4.5.3 Remarks about rough typing 

Type-checking in A PowerS Rough types have a simpler structure than types 
in the full system 	in particular, there is no A-abstraction or application 
in rough types. This means that the rough type of a term may be more 
informative than a particular type in the full system. For example, from a 
judgement F > x : y z, we need further analysis to tell whether x denotes 
a value of atomic type, a function, or a collection. Rough typing provides 
this analysis. It is important for type-checking algorithms, which have to 
determine whether something is a function or a type. This can be difficult 
with subtyping and bounded type variables; see Section 4.9.1 on page 135 
for more discussion. 

Different atomic types. A generalization of the connection between A Power 

and its rough types would be to allow different sets of atomic types, and 
consider a mapping from J( in A Power to types over a set RiC of atomic 
rough types. This would be useful for the semantics considered in the next 
section. However, it will be subsumed in AASL+ by other extensions. 

A Power as a fragment of HOL. The rough-types of A Power can be seen as the 
types of a Church-style formulation of higher-order logic, taking P(T) as an 
abbreviation for T => Prop. Then a straightforward translation of the terms 
of A Power into HOL terms gives an understanding of A Power inside higher-order 
logic. 

The idea for this is laid out in a general setting of dependent types by 
Jacobs and Meiham [1993]. To add the richer equational theory which re-
sults from the addition of subtyping, types would need to be interpreted 
as relations rather than predicates, so taking P(T) as an abbreviation for 
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T X T => Prop. This interpretation is closely connected with models consid-
ered in Section 4.6, and also with the understanding of subtyping as intu-
itionistic implication explained by Longo et al. [1995]. 

Rough typing elsewhere. Rough type-checking makes sense for other type 
systems with dependent types, and may be a useful tool. It is similar in spirit 
to the reduction-preserving dependency-removal translations which are used 
to show strong normalization of the systems of the Lambda Cube, starting 
from Plotkin's original idea for LF [Geuvers and Nederhof, 1991, Harper et al., 
1993]. Strong normalization for A Power  is proved in Section 4.8 using rough 
typing. 

4.6 Semantics 

In this section I shall give an environment model definition for A Power  and 
some examples of models. This begins in Section 4.6.1 on page 117. Before 
that I shall discuss some of the motivations for doing this, and how the 
model definition was arrived at. 

Motivations 

For constructive type theories, a semantical interpretation is often a sec-
ondary construction, perhaps a tool to prove consistency or strong normal-
ization. The important thing for such theories is the syntax. But applying 
A Power  to ASL+, we have an intended model where atomic types denote classes 
of algebras in some institution. Algebras are the denotations of programs, 
so a parameterised program denotes a mapping of algebras. 

Starting with an intended model in mind, soundness of the interpretation 
is crucial, and also influences the model definition. Put crudely, the defini-
tion was arrived at by adjusting the set-theoretic model to handle the equa-
tional theory of A power,  and then abstracting far enough to capture a term 
model, sometimes a good tool for studying syntax. I do not claim to have 
abstractly characterised the structure of a AP,, model, although it would 
be interesting to try to do that. 

My adjustment of the set-theoretic model for ASL+ to capture the equa-
tional theory was first published in Aspinall [1995b], changing the model 
given in Sannella et al. [1992] and using rough typing. That model is an 
instance of the model definition given for AASL+  in the next chapter, which 
extends the model definition for A Power  given here. 
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Containment versus coercion 

Subtyping calculi have two basic kinds of model. With a typed value space, 
we may choose a coercion semantics, where each use of subsumption is mod-
elled by the insertion of a coercion from type to supertype. If A :5 B, there is 
a map cA,B : JAI - 

0 cAB 

0111B11 

In some sense this is the most general setting, because coercions may be 
merely identities. But it requires a way of relating coercions to the syn-
tax: either we forgo (SUB) and introduce coercions explicitly into the syntax 
[Cardelli and Longo, 19911, or we reconstruct coercions by a translation pro-
cess [Breazu-Tannen et al., 1991]. Either route needs a coherence property 
of the interpretation, to show that different ways of putting coercions into a 
coercion-free judgement have the same interpretation. This coherence prop-
erty can be quite difficult to establish in a general form, and has yet to be 
demonstrated in a subtyping calculus more complex than F<. See Curien and 
Ghelli [1992] for this, or [Mitchell, 1996, Chapter 10] for the simpler example 
of A<. 

The other kind of model is a containment semantics in which subtyping 
is interpreted as containment between types: if types are interpreted as sets, 
for example, then subtyping would be interpreted by subset inclusion: 

.13 

This may be appropriate when subtypes really are intended as subsets, which 
is the case for the ASL+. In programming languages, the coercion viewpoint 
may be more appropriate; there can be real work in coercing an integer into 
a real number, for example. 

With a containment semantics there is no problem of coherence, but there 
is a fundamental difficulty with the contravariant rule for subtyping Il-types. 
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In the syntax we have that mt - mt :5 nat - int, but this does not hold as 
a set-theoretic inclusion; Z Z N - Z when the semantic -. denotes set-
theoretic function space. This is usually solved by interpreting nat - mt as 
the collection of all partial functions defined at least on N; then the inclusion 
Z - Z N - Z holds, Of course, we need a universe of values over which to 
form this "collection of all partial functions," and this is what leads to using 
an untyped value space in containment semantics. 

Typically, the untyped value space in a containment semantics is the do-
main of a model of the untyped A-calculus; a term is interpreted via the 
interpretation of its type-erasure, as was done for the model of A<{} in Sec-
tion 3.6. But it is surprising to base a semantics for that calculus and even for 
A< on a model of the untyped A-calculus; A-models contain many more func-
tions than can be expressed in the typed language being modelled. Yet to 
date this is the approach that has been followed most often in the literature.8 
For A Power I shall stay closer to the much simpler set-theoretic semantics of 
the simply-typed A-calculus. 

A typed containment semantics for power types 

I will give a containment semantics for A Power which is nevertheless based on 
a typed value space. Rough types make this possible. Whenever A :!~ B then 
A and B have the same rough type P(T), say, and so both may be interpreted 
as subsets of the interpretation of : 

T]1 

QA1B 

(in the models below, E[T]j is written as VT) 

Since every type TIx:C.D has a rough type of the form P(TC => TD), we 
can form the "collection of all functions with domain at least C]I" using E{TcJJ 
as a universe, rather than a universal domain. Approximately, 

Hx:C. DI {f: 	TD 
Vc E [[C', f(c) defined 

and f(c) E 
	

I 

81 is perhaps more excusable once the language is enriched with polymorphism and 
other constructs. 
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The main reason that I choose this form of interpretation is because of 
the intended model, where specification refinement is modelled as inclusion 
of classes of algebras. It only makes sense to consider algebras over the 
same signature; so algebraic signatures correspond to the atomic types used 
to build the rough types for AASL+ in Section 5.2. 

Another reason for the choice is that the set-theoretic intuition behind 
power types, that Power(A) stands for the collection of subsets of A, fits 
better with a containment interpretation than with a coercion interpretation. 
A coercion interpretation interprets a separate subtyping judgement A < B 
by constructing a map CA,B: 	-. j[Bjfl. Because we combine the typing and 
subtyping judgements it seems harder to do this. The type Power (B) might 
be conceived as the "type of coercions into B" but then we need some way 
of recovering the domain of a coercion inhabiting Power(B), and the details 
are messy. 

From sets to PERs 

There is another aspect to the structure of models. Section 3.1 described 
the stratified equality between terms in a subtyping system. A model which 
interprets types as sets is not adequate for this. In the equation 

Ax:A.M = Ax:A'.M' :Hx:A'.B' 

the equality of the two sides depends on "restricting observations" to the 
type Hx:A'. Y. This leads to interpreting a type A: P(T) as a partial equival-
ence relation on [r}J;  the partiality captures the subset part of the interpre-
tation, and we have an equivalence relation because the equality judgement 
is an equivalence relation on terms at any one type. 

(This use of PERs is not related to realizability: we use PERs over a hi-
erarchy of domains rather than the single domain of a partial combinatory 
algebra.) 

Because the full calculus is interpreted with respect to an interpretation 
of rough types, we have an external equality notion. In other words, rather 
than defining [{Ax:A. M : Hx:A'. B']]  to be an equivalence class of values at 
type Hx:A'. B', we give a fixed interpretation of Ax:A. M, depending only on 
its rough type. 

Plan 

The model definition for Apower is given in stages, in a standard way. First we 
give a definition of applicative structure which provides a semantic universe 
for the interpretation, together with fixed interpretations of the constants. 
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This is in Section 4.6.1. Then we define notions of environment and inter-
pretation for an applicative structure. An environment is used to interpret 
the free variables in a term. The interpretation itself is a mapping from 
well-typed terms and environments into the applicative structure. These 
definitions are in Section 4.6.2. Finally we give the model definition itself, in 
Section 4.6.3, which is a set of axioms that must be satisfied by an interpre-
tation. 

4.6.1 Structures 

A A Power  applicative structure is similar to an ordinary typed-applicative struc-
ture for A [Mitchell, 1990, see e.g., ]. It provides semantic domains for every 
rough type of A power.  The domains are sets. 

Definition 420 (A Power  applicative structure). 
A A Power  applicative structure V = (D, Const, App) consists of: 

A family of sets { VT }TETY 

A constant Const(K) E V< for each K E JC 

A mapping APPTU : DTV VT V° for each T, V E Ty. 	El 

The type-superscripts from the mappings AppTu  are usually omitted, but 
they will always be uniquely determined in formulae. 

Of course there are many A Power structures; interesting examples are the 
full type hierarchy, a variant of it with partial functions, and the term struc-
ture. The second example structure will be applied later in a model for ASL+ 
(in Chapter 5). The term structure will be a good test for the model definition 
given later, and has potential applications not studied further here. The sim-
ple case of the full type hierarchy with total functions is the most obvious 
instance of the definitions. 

Notation 4.21. Given a set 5, I write REL(S) for the set of relations on 5, 
REL(S) = def Pow(SxS). If 	E REL(S), then dom(R) = {cijaRb}. A 
relation is a partial equivalence (PER) if it is symmetric and transitive. I write 
PER(S) for the set of PERs on S. The notation ci - f(ci) is used to stand 
for the function mapping ci to f(ci), in other words, A-abstraction in the 
meta-language. 

Example 4.22 (Full hierarchy structure). Given a family of sets and PERs 
C = { C, RK  E PER(CK) }KEX,  the full hierarchy Yc  on C is defined by 
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K  =CK 

J'T LI = T __ FO 

yP(-r) = REL(J'T) 

App (f,m) =f(m) 

Const(K) =RK  

In the full hierarchy structure, we define the set JP(T)  to be the set of 
all relations over JT,  rather than the set of all PERs. The reason for this is 
technical: because the interpretation in the full structure (Example 4.28) is 
defined over rough types, the type-constructors are not guaranteed to con-
struct PERs. PERs are guaranteed by the soundness result for the full cal-
culus, however. Using REL(J'T ) is a design choice: instead we could adjust 
the interpretation (in Example 4.28) to return the empty relation - a PER 
trivially - in case of failure. The approach here seems less ugly, and opens 
the way towards models with different interpretations of types, models of 
reduction or program refinement, for example. 

Example 4.23 (Full hierarchy partial function structure). Given a family of 
sets and PERs C = { C, RK  E PER(CK) }KEX,  the full hierarchy partial function 
structure Pc  on C is defined by 

TK =CK U{} 

TTV _ (PT _TU)U{} 

PP(T) = REL(TT) U 10 } 

I 

<> 	if f =<>, m = or f(m) is undefined 
App(f,m) = f(m) otherwise 

Const(K) =RK  

where c is a distinct token, not in any CK. 	 U 

Example 4.24 (Term structure). The term structure T- of roughly-typed terms 
in a pre-context F is defined by 

y' ={M I FM=T} 

App (M,N) =MN 

Const(K) = K 
U 

4.6.2 Environments and interpretations 

To define the interpretation of terms, we need to interpret free variables de-
clared in the context. For each roughly-typable context F, a semantic domain 
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VT is defined by induction on F: 

DO 

DE,x:A = V1  x DT 	where F o,. A => P(T) 

where { * } is any singleton set. A F-environment is a nested tuple q E V1. 
Because we use a name-free semantics for environments, if cI is a renaming 
on Dom (r) then 1) is a (F)-environment iff it is a F-environment. 

Given a F-environment rj E D', we define projections for the variables of 
F by: 

undefined, for ally. 

17 	
snd(ri), 	ifyx, Fx:A(y) =  

I (fst)T (y) ify EA x. 

So if r 	F(x) ==> P(T), then qT(x) E VT. 

We can define thinning between environments using the projection nota-
tion. If F1  c F2  and we have r1l  E D' and r12 E D12  then we write r 1 1  

if 
r'(x)

F2  
= 72 (x) 

for all  E Dom(F1 ). 
We use the notation q I x, for the restriction of a F-environment q to vari-

ables declared before x, meaning the shorter tuple fst'(ri) when x1  is the 
Ith variable of n declared in F. 

Unlike a partial function environment mapping variables to U { VT }TETY, 
this tupled form of environment comes with an explicit notion of the do-
main V1  associated to a context. We need this because relations over V1  are 
used in the soundness proof. Using tuples gives us an interpretation func-
tion reminiscent of the categorical semantics of simply-typed A-calculus in 
(set-like) CCCs. Tuples are a rather concrete construction: more abstractly, 
contexts could be treated in the same way as types. 

Definition 4.25 (A Power  interpretation). 
An A Power  interpretation in V consists of: 

a meaning function [[F - 	-  r_: T - V1 - VT, for each roughly- 
typable context F and T E Ty, such that whenever F om. M => T and 
rl eV1, then [[FM => T (EDT . 

119 

a mapping ReIT : DP(T) -. REL(VT ) for each T E Ty. 	 Eli 
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The meaning function in an interpretation is indexed by a rough type and 
a context; we use the judgement notation in IF o. M ==> T just to indicate 
a roughly-typed term in context, not to indicate that the meaning function 
is defined on a derivation. (But it is often convenient to define meaning 
functions by induction over rough-typing derivations.) When F and T are 
understood, we write just 

The mapping ReIT  in an interpretation characterises the behaviour (or 
extension) of the elements denoting types, just as App characterises the ex-
tension of the elements denoting functions. It is part of the interpretation so 
that we could consider different "views" of types within the same applicative 
structure. If ci E DF'(T)  I shall write R as shorthand for the relation given by 
ReIT (ci). 

The definition of interpretation does not require a priori that Re IT  (a) is a 
partial equivalence relation, for the reason outlined before. Instead it will be 
a consequence of the soundness theorem that any well-formed type of A Power 

in fact denotes a PER. This differs from the concrete model instance for A<{}  
given in the last chapter, where the interpretation was a partial definition 
which proved to be well-defined on well-typed terms; here we assume that 
any interpretation function is well-defined on all roughly-typed terms. 

We show how the structures of Examples 4.22-4.24 can be extended to 
interpretations in the next section. 

4.6.3 Models 

Before the definition, here are two constructions on relations. Let V be a 
Apower  interpretation. Given R E REL(DT) and G E dom(R) - REL(DU), 
define 

H(R,G) EREL(DT ') by: 

f FI(R,G)  8 	1ff 

Twr(R) E PER(DP(T))  by: 

a. Twr(R) b 	1ff  

Vci,b.(a. R b) 
=App(f,ci) G(a) App(g,b). 

Re! (a) = ReI(b) E PER(DT) 
and Re!(a)R. 

The good closure properties of PERs are well-known. The fact below is im-
portant in the soundness proof. 

Fact 4.26. If R E PER(DT) and G(a) = G(b) (E PER(DV)  whenever ci R b, 
then MR, G) c PER(DT°). 
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Definition 4.27 (A Power  environment model). 
A A Power  environment model for a structure V is an interpretation for V such 
that the following conditions are satisfied. 
For all roughly-typable contexts F and all rj E 

CONST IIIK].1  = Const(K). 

CONST2 R K  11 rl E PER(VK). 

VAR 	Mq =  

APP 	TMN 	= App (E[M, tjiN). 

FAMILY 	If for all a, b (a RA b) = 	R1B a> = RB(q b)' then 

RIHX.AB = I7(RIAI rl  RBI >) 

SUBSET 	RIpower (C) = Twr(Rc). 

In the above axioms we assume that for some T, v, F 	x => T, F 
TIx:A.B => P(T => v) and F PP. Power(C) => P(P(T)). 

ABS If F io. A => P(-r), F,x:A No. B = P(v),and F Po. M,N 	T, 

then 

Vcl, e. ci RA] 	e 	> IM]1(, ci) RB] ll a) [IIN]1( ri , e) 

implies 

Vd,e. ci R[A 
ri 

e => 

App (Ax:A. M]I q  ci) RBd) DIN], e) 

THIN Let F1 , F2  be roughly-typable contexts with cP a renaming on Dom (F1 ), 
P(F1 ) c I'2, r7l E DT' and r72 E Df'2.  We require that 

P(F1 ) 	(M) => T 1  = [ F2  M =z> T 2  

whenever F M =z> T and r711' C 

SUBST Let F1  F, x: A, F', and F2  = F, F'[N/x] where F N => v and 
F o. A ==> P(u). Let q1  E DEl  and r12  E D12  We require that 

M => T 1  = [ F2  o. M[N/x] => T 2  

wheneverF1  Po. M => T, rii hl (x) = IF o. N 1 1 E ReI(IF Po. A 1 1) 
and r 1T' 	 o 
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The axioms CONST, VAR, APP define the meaning function in these cases, 
and are standard in the model-definition for untyped and simply-typed A-
calculus [Meyer, 1982, Mitchell, 1990]. The axiom CONST2 requires that 
atomic types are interpreted as PERs. The axioms FAMILY and SUBSET define 
the extension of the denotation of types of the form TIx:A. B and Power (C). 

The axiom ABS ensures the soundness of the three equality rules which 
mention the A-constructor. 

Thinning THIN and substitution SUBST are two fundamental properties 
that any model should satisfy. The substitution property need only be satis-
fied when the environment is updated with a value which lies in the domain 
of the PER which interprets the type A in the context. Proposition 4.16 en-
sures that the conditions THIN and SUBST are meaningful. 

The soundness proof for models is given in Section 4.7. In the rest of this 
section each example structure is extended to a model. 

Full hierarchy model 

Example 4.28. An interpretation in the full structure can be defined by: 

ReI(A) = A 

I[F o.  X=T 	= r(x) 

= RK  
IF Ax:A.M ==> T 	ri 

the function f: VT - V° defined by 
=> 

for all n E VT 

F 	MN =z> v 	App (If M ==> T => v, IF o. N => T) 

F 	TIx:A.B = P(T = 	ri = TI(REA]q a - RBI()) 

IF 	Power(A) ==> P(P(T)fl, 	= Twr(R1A] 
ri 
 ) 

In this structure, it is not necessarily the case that R ITIx:A.B],.1 is a PER, since 
the uniformity condition that a R[A] ri 

b = 	R[B a> = RB](b) may fail. 
For example, if B 	zx, the "rough-soundness" requirement that q(z) E 
DP(T(v)) imposes no restriction relating the value of z at one element of 
VT to another. This explains the technical need to generalize to relations. 

Lemma 4.29. The interpretation defined in Example 4.28 is a model OfApower. 

Proof We must check two things. First, that the interpretation function is 
type correct, in the sense that IF op. M => TJl rlE VT  for all rj E VT; this is 
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easy. Second, we must check that the model axioms are satisfied. All follow 
directly from the definitions, except SUBST and THIN which are proved by 
induction on rough-typing derivations. 	 D 

In the interpretation of Example 4.28, the meaning of the type A is ig-
nored in the interpretation of Ax:A.M; we rely on I[MJl( q, e) being defined 
for every e E VT.  This is where the next example differs. 

Full hierarchy partial function model 

Example 4.30. An interpretation in the partial structure can be defined by: 

(A ifA*<c> 
ReI(A) = 	0 otherwise 

= r(x) 

= RK 

jF 	Ax:A.M => T = VJjr, = 
the partial function f: VT - VU defined by 

f(n)— 	
IF, x:A 	M 	vill(,.1,) ifnEA 

- undefined 	 otherwise 
for all n E VT. 

IF 	MN => v 	App(E[F o. M => T => v, [F  N => T) 

IF 	FIx:A.B => P(T = 	= I7(RjA j T1 - RIB qa)) 
jF Po. Power(A) = P(P(T)fl 

17 
= 

Lemma 4.31. The interpretation defined in Example 4.30 is a model OfApower. 

Proof Similar to the proof of Lemma 4.29. 	 D 

The partial function interpretation pays attention to the advertised do-
mains of A-abstractions, so that [[Ax:A.M  is undefined for values e E VT 
which are not in Re! (A ,)• Moreover, if a function variable is declared as 
having a type Hx:A.B, it need not be defined outside [IjA. This is why we 
add an error value <>to each of the domains. 

This construction is a more formal way of capturing the usual "partial 
definition" method of giving the interpretation function for dependent type-
systems, the method first used by Streicher [1991]. With a partial definition, 
the error element o is delegated to the meta-language, and one proves that 
the definition is meaningful for any well-typed term by induction on typing 

9and in fact independently by Sarinella et al. [1992] for ASL+. 
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derivations. By contrast, the approach here asks for a pre-interpretation of 
roughly-typable terms, some of which are not well-typed in the full system. 
(Pitts [19961 has another careful approach; he inductively defines a relation 
between a term and its denotation. The soundness proof shows that this 
relation amounts to a total function on well-typed terms.) 

Unfortunately, the partial function model of Example 4.30 doesn't be-
have quite as we might hope. It would be nice to establish the correctness 
property that, under some assumptions about the environment r, well-typed 
terms do not denote : 

F>M:A 

We could prove this as a corollary of the soundness theorem (Theorem 4.38 
below), if we had designed the interpretation so that for any type A, 
dom(R A ). However, this fails because of empty types. If B denotes an 
empty type, so RBT, = 0, then UIx:B. C]1 is the total relation which relates 
every element of DTV  to every other. 

This can't be fixed just by changing the definition of 1Hx:B. C rl in the 
interpretation; instead the model axiom FAMILY has to be modified to be 
"strict" made aware of the error element o. It would become: 

f RJJX:AB 9 

iff 
çf * ,g * 
J Va,b. (a RA b) ==App(f,a) RBI(qa)  App(g,b) 

And we would add the condition that 1J11Ix:A.B I rl = c' if either {A 	= 
or A(q 	= for some a E RAIq to make the H-constructor "strict". 
Then the soundness proof in Theorem 4.38 could be replayed to establish 
the correctness property above. 

Term model 

The final example is the term model, which is defined using the equational 
theory of the full system. This demonstrates the "externalisation" of equality 
in this model construction: usually one would use quotients of terms to 
construct a term model. 

Example 4.32. An interpretation in the term structure T1- can be defined 
by: 

FM==T 	F(M) 

Re! (A) = { (M, N) I F M = N : A 

124 
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Where ril 	denotes the result of substituting each free variable x in M for 

It seems difficult to prove directly that the model conditions are satisfied 
by the term model. In particular, showing the right-to-left direction of the 
equalities in FAMILY and SUBSET are satisfied calls for some of the advanced 
meta-properties of the syntax mentioned in Section 4.4.1. (This is a shame 
because I had hoped that a term model construction would give some help 
in establishing those very properties!) 

Conjecture 4.33. The interpretation defined in Example 4.32 is a model of 
A PowerS 

Proof Conjecture 4.12 is used for the right-to-left direction of SUBSET and 
Conjecture 4.11 is used for the right-to-left direction of FAMILY. 	El 

4.7 Soundness 

This section is taken up by a proof of soundness for any A Power  interpretation 
which satisfies the model axioms. 

Specifically, when F > M : A, then 	rl is in the domain of the rela- 
tion RR T,, and when F > M = N : A, then IIMI q  is related to EIjNl,. by 
REA. Moreover, ReI(lAJJ,.)  is a partial equivalence relation on VT,  where 
F A = P(T). 

However, we can only expect soundness if the environment rj satisfies the 
context in a suitable sense. The interpretation of a context F is defined by 
combining the relations which interpret its component hypes. 

Let S and T be sets, R E REL(S), and G E dom(R) - REL(T). Then we 
define 

Z (R, G) EREL(SxT) by: 

p 	
rn(p) R Tri(q) 

(R,G) q 	iff 	
I 2(P) G( 1 (p)) 	2 (q) 

Fact 4.34. If RE PER(S) and G(a) = G(b) E PER(T) whenever ci R b, then 
'(R,G) E PER (SXT). 

Definition 4.35 (Interpretation of contexts). 
Given a model for a structure 21), we define [[FIJI E REL(V') for roughly-
typable contexts F by structural induction on F: 

EH ={(*,*)} 

[[F', x: A 	=X([[F',ri 
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We say that 111, 112 E VT are related environments satisfying F iff 111 vi 
112. 

Fact 4.36. If F is roughly-typable and r1l  in '72,  then it follows that 

'7ç(x) Rlrjr(x) 	P(T) i 1 
11 17 2 

for all x E Dom(F). 

Lemma 4.37. Suppose that RA q  E PER(DT) and that ci RIAIr,  e 

RIBd> = REB] qe) E PER(DV)  for all d, e. Then the following properties hold 
in any model: 

WEAK-EXT 	Vd,e. d RAI,1  e ==> Mll('7 ,ci) RB d)  lINli(11e) 

implies 

Vd,e. d RA e 
App (Ax:A. Mli 11, ci) RB d)  App([[Ax:A. Nil 11, e). 

ETA 	Vcl,e. ci RA rl e => App ([[Mil 11, ci) RIB(q d) App(l[Nli 11, e) 

implies 

Vcl,e. ci RjAj rl e 
App([[Ax:A. Mxli 1

79 ci) RIB(,ld)  App(jjN 11, e) 

Proof WEAK-EXT follows from ABS using symmetry, transitivity and the 
assumption. ETA follows from ABS using the axioms THIN and APP. 

Theorem 4.38 (Soundness for models). 
If c> F then [Eli E PER(VF) 

IfF>M:A, then for all '7 l ,112 EDT, 

111 	[[Eli '72 	=> 	ljMIfl 111  RIAT 171  [[Mil112. 

IfFM=N:A,then for all 

'ii 	in 112 	=> 	[[Mli 111  RIAl, [[Nil r72' 

Proof Simultaneously by induction on derivation heights, using the model condi-
tions. 

At a couple of points in the proof, we assume that any derivation of F > M: A 
or F > M = N: A has a shorter derivation of F > A type. This is needed to use the 
induction hypothesis to show that 

REAL, = RIA 7  E PER(DT) 
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where F o. A 	P(T). The assumption is justified because any derivation has a 
corresponding derivation in a modified system with "strong" rules with subderiva-
tions F > A type in the premises. It is easy to argue that the system with strong 
rules is equivalent, using Proposition 4.7 (Troelstra [1987] gives details). Alterna-
tively, the equality above can be added to the statement of parts 2 and 3 of the 
theorem, at the cost of more work in the proof. 

Now we consider each of the cases in detail. The part 2 cases for (A) and (APP) 

are special cases of part 3 for (EQ-A) and (EQ-APP), respectively. 

This proof ends on page 132. 

Case (EMPTY): Then OIfl = { (*, *) } c PER({ * }) by definition. 

Case (EXTEND): We have > F', x : A. By the induction hypothesis and the 
premise F' ' A type, we have 

	

RIAI th = RIAIq 	E PER(DT), 

for all rh, T12 such that r1 R11-' 112,  where F' 	A => P(-r). By the in- 
duction hypothesis for the shorter derivation of > F', wi E PER(DF). 
So by Fact 4.34, [F', x: AlE PER(D) as required. 

Case (ATOMIC): We have : Power(K), so by CONST, we must show that 

COflSt(K) Rlpower(K)fl r1i Const(K) 

which by SUBSET holds iff 

Rcoflst(K) = RcQfl$t(K) E PER 
	

and Rcoflst(K) c 

which follows by CONST2 and tautology. 

Case (VAR): We have F > x: F(x), so by VAR, we must show that 

111(x) RIFi>F(x)]q  112(X) 

which follows by the assumption that ru vi 112  using Fact 4.36 and 
THIN, since 111FIx F. 

Case (suB): By the induction hypothesis, 

MIfl11 RIAth   M1172 

A 111  Rlpower(B)] 	A 112  

by SUBSET, 

RIAII c REBj 
T71 

 

hence 

	

[MI 111  REB 	[MI 112. 
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Case (REFL): We must show 

M]I,11  Rfj;:A Power(Mx)1 

Which, expanding and using FAMILY, holds iff for all ci, ë such that 
(rii,d) 	 (i2,ë), 

App (TM 1, ci) 

V, .k: A Po. Power(M2)1(q1,  j) 	 (2) 

App (M 2, ë) 

which by SUBSET holds iff 

R APP  (MId) = RAPP(IM,e)E PER(DT) 	(2) 

and 
RAPP([MI) R I M X1 	 (3) 

(3) follows from APP, VAR and THIN. To show (2), we use the induction 
hypothesis, to give: 

M 1I1 R H; :A Power(B)]1  I{M1Oq2 

hence by FAMILY, 

App (J[M 1 , ci) [F, :A 	Power(B)],.j1ci>  App (M 2 , i) 

and then (2) follows by SUBSET, using the agreement of rough typing 
to show that both F, , : AP,. Power(M) => P(T) and F, : A 
Power(B) => P(T). 

The condition for applying FAMILY in (1) can be shown to hold using 
the assumption about "strong" derivations, together with APP, VAR and 
SUBSET, and expanding the vector notation. Similar reasoning applies in 
other cases involving FAMILY. 

Case (coNy): Follows easily by the induction hypothesis for the premises, 
using SUBSET. 

Case (H): We must show 

Hx:A. Bfl,71  R[power(jjxA'B') 
171 

 Hx:A. BJj, 2  

which by SUBSET holds iff 

RTIX :AB] 	= REI7x:A.BT 172 	
E 

p(TV) 	 (1) 

RE17xAB 	R[jjx.A'B' 	 (2) 
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By the induction hypothesis for the shorter derivation of F > A type and 
SUBSET, 

RiA 	= RAJJ,
72 
 E PER(DT ) 	 (3) 

and by the induction hypothesis for the premise F, x : A > B type and 
the SUBSET axiom again, 

RlF,x:A>B u) = RF,x:ArB2a> E PER(DL)) 	(4) 

for all a E 	so by (4), (5), FAMILY and Fact 4.26 the equation (1) 
holds. 

To show the inclusion in (2), let f, g E DTV and suppose 

f RJJX:AB 	9. 	 (6) 

We must show 

f RjjX'' 	9 	 (7) 

which by FAMILY is implied by 

Vd,e.d R~A'j 	e 	
(8) 

App(f, d) REF,X:AB 	ci) 
App (g,e) 

Suppose that d RJA'j e for some d, e. By induction hypothesis for the 
premise F > A' : Power(A) and SUBSET, 

RA'I T, 	REAF I7 

so 
App(f,d) RIFx.AB 

th 
App (g,e) 

using FAMILY and (6). By induction hypothesis for the premise F, x 
A' > B: Power(B') and SUBSET, 

R[rx.A' BIq, d) c RET x:A' B'](1 ci) 

hence 
App(f, d) REF,x:A' B' 1 App (g, e) 

as required. 

Case (Power): We must show 

E{Power(A)], 1 REPower 2 (B)] 	IPower(A)1, 2 

which by SUBSET holds iff 

129 

REpower(A) = REpower(A) E PER(VP(T)) 	(1) 

Rlpower(A)fl 17,
R[power fl,7 	 (2) 
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By the induction hypothesis and SUBSET, we have 

RA T7 1 
= REAI, E PER(VT) 	 (3) 

RA 	RB 	 (4) 

so (1) follows from (3) using SUBSET. To show the inclusion (2), suppose 
that s RVower(A)j 171 

t. Then by SUBSET and (3), (4), 

Rs  = Rt C RIB]  

which implies (2) by SUBSET. 

3. Case (EQ-REFL): By the induction hypothesis. 

Case (EQ-SYM): We must show 

N,11  RA 1  M412  

We need to appeal to the premise F > A type for the "strong" rule which 
by induction hypothesis guarantees that REA rI  = RA 17  e PER(DT) for 
some T. Now by induction hypothesis for the premise of the rule, 

M472  RA 2  NJI,J1  

hence the result by symmetry of RIAIq• 

Case (EQ-TRANS): Similar to the proof for (EQ-sYM), using SUBSET to show that 
RIA] r7i 

is transitive. 

Case (EQ-A): We must show 

Ax:A.M 1  R1J7X:AB rh 
[Ax:A.M'2 

The induction hypothesis gives 

Vd,e.d IA 1  e 
= 	x :A > M 1 d) REEX.ABI( d) F, x :A > M'1( 2, e) 

By WEAK-EXT, we get 

Vct,e.d A 1  e 

App(Ax:A.M 1, d) R[FX:AB](d) App([Ax:A.M, 2, e) 

from which the result follows by FAMILY. 

Case (EQ-APP): By the APP axiom, we must show 

App (IM ,71, [N1) RB[NIxI]q  App (M'472, N' 412) 

Using the induction hypothesis for the premises, we have 

M 1  REHX.JB 	M'42 
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NJ,.J1  RA],1 	N'ill q2  

and so by the axiom FAMILY, we have 

App (DIMI q1  N,71) RlB]r 	
T71

) 
App (M,72 ,E Ni, 2 ) 

But using SUBST, 

INIflq1) = 

so we are done. 

Case (EQ-fl): We must show 

I (Ax:A. M) NJ 71  RB[N/x] 	M'[N'/x] I T72 	
(1) 

By the induction hypothesis, 

x: A > M1, d) RT,x:AB](,lld) EF, x: A > M'2, e) 

for all ci, e such that d RFA I r, I  e, and 

NJ 1  RIA 	N'Ifl q2  

using SUBST, 

RlrB[N/x] 1 17, = RIFX:ABI( I11  IF > NIq> 	 (2) 

and 
[1', X: A > Mi(q2, N'J2) = DIF > M'[N'/x],72 	(3) 

By the ABS axiom, 

App(Ax:A. M q1  IN] 11 ) R[Fx:ABJ71 IN]J1)TM](172,TN'1,72) 

which gives the result (1) using (2) and (3). 

Case (EQ-r7): We must show 

IAx:A.Mx 1  R[H.AB] th  EN]q2 

By FAMILY, it suffices to show that 

Vd,e.ci RjF>Aj 	e 

App(Ax:A. Mx 1 , d) R[FX:AB 	d) 
App(E{N 2 , e) 

which follows by ETA and the induction hypothesis for the premise, 
using FAMILY. 	 El 
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As an extension of this theorem, all of the admissible rules shown in Sec-
tion 4.4 are sound in any model; details are omitted. 

Here is the special case of Theorem 4.38 which expresses soundness of 
the typing judgement. 

Corollary 4.39 (Soundness of Typing). 
IfFcM:A, then for all rj,rjeR11 	= 	TMI r7 

4.8 Strong Normalization 

In this section I show that J3rj-reduction is strongly normalizing on roughly-
typed terms. By Theorem 4.19 all typable terms of Apowe r are roughly-typable, 
so we get strong normalization for A Power  terms as a corollary. 

The proof follows the well-known computability method due to Tait and 
Martin-Löf [Barendregt, 1992, Luo, 1994, see, for example], with amendments 
for power types. We use a slightly extended language of terms, 

T::= ... I LTi 

The new constructor is motivated by a reduction relation on terms with 
power type which is useful in type-checking algorithms, but we will not need 
the reduction here.'° The new constructor has a rough typing rule: 

F mo. A == P(T) 

FLAj=T 

Now some basic definitions. 

Definition 4.40. 
A term is a canonical term if it has one of the forms: K, Ax:A. M, 
Hx:A.B, or Power (A). 

A term is a base term if it is either a variable, or has the form M N or 
!Mj, where M is a base term. 

Weak-head reduction is the one-step reduction relation defined by: 

M -0,7  N 	M 	vh M' 
	

lvi wh IVI 

MwhN 	MN wh MN 
	

LMi wh 1M'J 

where M - N is an outermost single-step of $ or q reduction. 

'°For the cognoscenti, the reduction relation includes the replacement [Power (A)] 
A. It is used when a type variable is promoted to its bound declared in the context, when 
we have to "strip" Power-constructors. This operation crops up when the well-known 
algorithms for subtyping [Curien and Ghelli, 1992, Compagnoni, 1995, Steffen and Pierce, 
19941 are re-expressed for power types. 
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SN is the set of &I-strongly normalizing terms in T. 

A roughly-typable term is either canonical, a base term, or a term which 
can be weak-head reduced. This case distinction lies at the heart of the 
computability proof of strong normalization. 

Definition 4.41 (Saturated sets). 
A set of pre-terms S is a saturated set if 

S c SN. 

If M e SN is a base term, then M E S. 

If M E SN is a weak-head redex and M' E S where M wh M', then 
M E S too. 

Next we define an interpretation of types by giving a term applicative 
structure of strongly normalizing pre-terms, and we define an interpretation 
of terms by substitution. I follow Section 4.6.1 for notation, although the 
language is extended here. 

Definition 4.42. 
The term applicative structure S is defined by: 

5K =SN 
ST=>11 ={MT I VNE ST.  MNESV} 
SP(T) = IM E T I LMi E ST  } 

Let 	M ==> T and r, E S. Define jF P,. M => T1]ri = 

I haven't bothered to define App and Const because the 'Power  model axioms 
aren't needed. The second lemma below says that [F M 	rl satisfies 
the "rough soundness" requirement for meaning functions given as the first 
part of Definition 4.25. This yields the strong normalization result. 

Lemma 4.43. For all -r, the set 5T  is saturated. 

Proof By induction on the structure of T. I shall show the new case for 
power types, where T P(v) and S° is saturated by induction hypothesis. 
We must check the conditions to show that S°  is saturated. 

1. Suppose M E S!'(v). Then LMj E Su  and is SN by the induction hypoth-
esis. Hence M is SN. 

2. Let M be a SN base term. Then so too is LMj, which establishes M E 
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3. Suppose that M 	ivh M' and M' E S0). Then LM'] E S° and by the 
induction hypothesis, [M] E 5° too, because LMi 	LM'i. Hence 
MES1' ° . 	 o 

Lemma 4.44. Let F o,. M => T. For all rj E S, IF M = T rl EST. 

Proof By induction on the derivation of F PP. M ==> T. 	 0 

Theorem 4.45 (Strong normalization for roughly-typed terms). 
If F M =' T then M is fi q -strongly normalizing. 

Proof Immediate by Lemmas 4.43 and 4.44. 	 0 

Corollary 4.46 (Strong normalization for A power). 

If F > M : A, then M is $ q -strongly normalizing. 

Proof Immediate by Theorem 4.19. 	 0 

4.9 Discussion 

This section contains a comparison between A Power  and related type systems, 
and a note about a simplified formulation of A power•  Section 4.10 concludes 
this chapter with a summary. 

4.9.1 Comparison with other systems 

Cardelli. The closest relative to A Power  is Cardelli's power type system in-
troduced in Cardelli [1988]. That system was not studied in great detail, 
however, and its sheer complexity (number of typing features) means that 
it has some necessarily tricky aspects - type-checking is undecidable and 
every type is inhabited. 

A Power  is a fragment of Cardelli's system, with some differences: 

the rules for deriving equality are made explicit as an equality judge-
ment; they were described only informally in Cardelli [1988]. 

there is no type formation judgement (see remarks in Section 4.4.2). 
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LF and higher-order subtyping systems. Section 4.3 has already compared 
A Power  against some related systems, including higher-order subtyping sys-
tems based on F ° , see Section 4.3.2 on page 92. At first appearance, A Power 

is a simplification of these systems, since subtyping of type-constructors is 
achieved indirectly, so we need fewer rules. But because of its uniformity, 
there is another sense in which A Power  is more complicated. 

In the formulations of F<CV  successfully studied to date, type-constructors 
are unbounded. For example, it is not possible to write a constructor such 
as this: 

SquareNumArray =def  Ao :5 Num. An:cx.Array(n,n) 

But this can be written in A power,  which adds new complexities. 

Here is a hint of what the problem is. In Section 4.5.3 on page 112 I men-
tioned that in a type system with bounded type variables, it can be difficult 
to tell if a type is the type of a function. Without bounded type variables, it 
is enough to see if the type is (or reduces to) a TI-type. With bounded type 
variables, so cx :5 TIx:A. B, one has to examine the bound to see if it is a 
function type. In general, this involves iteration along the context and (for 
higher-order subtyping) normalization steps. This makes type-checking al-
gorithms and meta-theoretical analysis more intricate than without bounded 
variables. Since AP ... er  places no restrictions on where bounded variables are 
allowed, the meta-theoretical studies of F<' and AP, cannot be straightfor-
wardly adapted. 

Recently a variant of F<°  with bounded type abstraction was successfully 
tackled by Compagnoni and Goguen [1997]; this work was mentioned already 
in Section 4.4.1. Their new technique might be useful for Apowe ,-, but I haven't 
investigated yet. 

Pfenning. Pfenning's refinement  types extension of LF [Pfenning, 1993] is 
related to A power; it too is a predicative system of dependent types with a 
form of subtyping. Instead of a relation of subtyping on all types, Pfenning 
introduces a special class of types (called "sorts") which refine the "proper 
types" of LF. The subtyping relation is only considered between sorts. This is 
powerful enough to allow some useful examples and yet allows a straightfor-
ward proof of conservativity over LF. But subtyping is more restricted than 
in A power;  one cannot A-abstract over a subtype, for example. 

There is an analogy between the rough types of A Power  and Pfenning's 
separation of "proper types" from sorts. Neither proper types nor rough 
types admit subtyping. Sorts have a subtyping relation, and each sort is a 
refinement of a designated proper type: 

THR<<S 	 FHR,S::A 
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In A Power, types have a subtyping relation, and related types have the same 
rough type: 

F>R::~S 	 F mo R,S=P(T) 

The difference is that we have two formal systems rather than one, and rough 
types have a simpler (non-dependent) structure than refinement types. The 
dea motivating rough types is the structure of the semantic domains. 

Richer types for Z. The types of the specification language Z, in which 
terms denote sets, are similar to the rough types of A power; Z has types of 
the form K, P(T) and -r x u. The official type system of Z has been extended 
by Spivey [1996] with mechanisms for defining parameterised type construc-
tors called "abbreviations" a[]. There is a subtyping relation which begins 
by taking a[U] :!~ T[u/cx], where a[ii] abbreviates the type T. Type construc-
tors are always monotonic with respect to the inclusion relation. 

The analogy with A Power is again that a term may have many "richer" types, 
but only one "official" type, and there is a subtyping relation on richer types. 
Spivey has considered the algorithmic aspects of type-checking with richer 
types. However, the richer type system is still non-dependent, so less expres-
sive than LF or A PowerS 

4.9.2 A simplified version of Apower 

Much of the complexity of A Power comes from the con travariant rule for H: 

F, x: A' > B: Power(B) 
F> A':Power(A) 	F,x:A> B:Power(C) 	 (H) 

F > Hx:A.B: Power (Hx:A'.B') 

Apart from PERs assigned to atomic types, this rule is the only way that 
interesting PERs appear in the semantics of Ap0w ,-- considering a PER "in-
teresting" if it does not degenerate to a predicate. 

An alternative to H is the more restricted equal domains rule, 

F,x:A> B:Power(B') 
F> Hx:A.B: Power (Hx:A.B') (H-Eo) 

This rule was originally used in ASL+, and is also used in most (if not all) of 
the studies of F<° . One reason to avoid the contravariant rule in F<w is that 
when used for bounded quantifiers and combined with top types, it renders 
subtyping relation undecidable [Pierce, 1994]. 
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For AP<, Compagnoni and I proved that the contravariant rule does not 
compromise decidability in a system with dependent types but no top type 
[Aspinall and Compagnoni, 1996]. I conjecture that likewise, the contravari-
ant rule does not cause undecidability of Apower . However, it is the reason 
for a more complicated semantics and some proofs are made more difficult. 
My investigations suggest that with (H-EQ) in place of (Ii), Conjectures 4.11-
Conjecture 4.13 are provable using syntactic techniques. Some details con-
cerning r-reduction remain to be checked. 

The simplified version of A Power  with an equal domains rule might be ad-
equate in the practical application of ASL+. The cost is needing an extra 
"trivial" development step occasionally, namely, using a constructor to trim 
the domain of a parameterised program or specification. An example was 
shown in Section 2.2.1 on page 38. 

4.10 Summary 

This chapter described the type system A Power,  a fragment of Cardelli's origi-
nal power type system [Cardelli, 19881. 

Power types provide a cunning way of dealing with the subtyping judge-
ment at the same time as the typing judgement. At first sight it appears to 
be a simplification, because two separate concerns are combined into one. 
However, the generalisation which occurs from using Power(A) as both a 
term and a type leads to complication of the meta-theory. 

I introduced and studied the syntax of Apower , given in Figure 4.1 on 
page 88 and Figure 4.2 following, and the semantics, in Sections 4.6.1-4.6.3. 

The semantics is set-based, but uses partial equivalence relations to in-
terpret the equality judgement. The subtyping relation induced by power 
types is understood as inclusion between PER5. In contrast to other work on 
semantics of dependent types, the intended model is made by "carving out" 
from a classical set-hierarchy. Every term in Apo, has a rough type which 
is either an atomic type, or one of the forms T => v or P(T), where T and v 
are rough types. These rough types are used to structure the set hierarchy. 
The model definition is a collection of axioms which an interpretation must 
satisfy to be sound. 

The important results in this chapter are the basic properties of A Power 

established in Section 4.4, particularly type correctness, Proposition 4.8; the 
agreement with the rough typing system, Theorem 4.19; the soundness prop-
erty for the semantics, Theorem 4.38; and the strong normalization result 
Corollary 4.46. 



5 ASL+ 

The typed A-calculus which underlies ASL+ is introduced. The calcu-
lus is called AASL+, and it is obtained by mixing the languages A<u  and 
A Power  of the preceding chapters with abstract operators for building 
programs and specifications. The rough type-checking system and se-
mantics for AASL+  are based on the definitions given for A Power. 

The language ASL+ itself is an instance of AASL+,  given by choosing par-
ticular sets of program and specification building operators. The speci-
fication building operators are those of ASL. 

This new definition improves on the original suggestions for ASL+. Un-
fortunately, it cannot be used directly for the examples of Chapter 2, 
because extra translations are needed to handle sharing and dot nota-
tion. This drawback is investigated in the latter part of the chapter. 
Chapters 6 and 7 then introduce a version of ASL+ for a particular in-
stitution, which can be used for the Chapter 2 examples. 
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5.1 The ASL+Scheme 

QNE OF THE IDEAS behind ASL+ is that it is institution independent. Starting 
from an institution whose algebras are models of programs in a "core-

level" language, we get a modular programming and specification language 
for free by adding the ASL+ typed A-calculus on top. In this chapter I shall 
describe this construction scheme in detail, improving and extending the 
original proposal of Sannella et ad. [1992]. 

To use ASL+ in a real situation, there is a two-stage process: 

abstract 	 Language L 

ASL+ 	 based on q 

instantiation 	translation 

Z~E5 

A modular programming and specification language L can be given a se-
mantics using ASL+ as a kernel language. But ASL+ itself is an abstract lan-
guage; we must first instantiate it to a particular institution 1, upon which 
the semantics of the core-language of L is based. Instantiating to J means 
not only selecting the institution 1, but also equipping it with syntactic sup-
port: a proof system for proving semantic entailment, and abstract syntax 
and type-checking systems for representing signatures, models, etc. Since 
L is a high-level language, we must translate the phrases of L into terms of 
the instantiated kernel language ASL+2. Translating may involve complex 
context-sensitive handling of parameters, dot notation, etc. as well as simply 
expanding macros for syntactic sugar. 

The abstract formulation of ASL+ described in this chapter is based upon 
a type system AASL+, extending the type systems A<{} and Ap0wer given previ-
ously. In fact there is another step of instantiation to get to ASL+: 

abstract 
instantiation _____*( ,) 

The type system AASL+ has sets of constants which represent operators for 
building programs and specifications; these constants give the abstract syn-
tax of the core-level programming language and specification language. In 
the type system, the choice of these constants is not fixed, so the speci-
fication language isn't fixed to be ASL. This formalizes the observation by 
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Sannella et al. [1992] that the choice of the underlying specification language 
is orthogonal to the design of the rest of the languages 

We get ASL+ from AASL+ by choosing particular sets of constants, based 
on operations on models in an arbitrary institution. As far as ASL+ is con-
cerned, this reduces the syntax of the underlying languages to something 
very simple, instead of, for example, beginning from definitions of syntac-
tic representations for the parts of an arbitrary institution (which would be 
needed to fully specify the syntax of ASL, as explained in Section 1.2). The 
treatment of the underlying type-checking and proof systems is also encom-
passed in a simple way, by assuming that the specification and program 
building operators are simply typed, and by assuming a consequence rela-
tion for proving the implementation relations for core-level programs and 
specifications. 

This simple treatment is appealing but it is too simple. My goal is to 
design a language which can directly express the parameterisation mecha-
nisms used in Chapter 2, without needing complex translations. The version 
of ASL+ given in this chapter does not achieve this goal, for two reasons. 
First, the language has no built-in notion of context for declaring a current 
environment of modules, nor a built-in way of understanding the dot nota-
tion which refers to the context. A context-sensitive translation is needed to 
fix this, which means duplicating the type-checking rules. Second, the rough 
type-checking system fails to explain the putting-together-of-signatures dur-
ing parameter passing necessary to express sharing between types, and nec-
essary to give an effective type-checker and an institutional semantics for 
the language. Again, a complex context-sensitive translation from the source 
language would be needed to fix this (similar to translations hinted at for Ex-
tended ML by Sannella and Tarlecki [19891). It might be better to begin with 
a language closer to the goal. 

This chapter is structured as follows. The definition of the type system 
AASL+ begins in Section 5.2 with the syntax and rough typing system. A model 
definition for AASL+  is given in Section 5.3; as for A Power,  an interpretation is 
defined over roughly-typable terms. The language ASL+ itself is described 
in Section 5.4, by choosing sets of constants for AASL+  based on an arbitrary 
underlying institution 2. Section 5.4 also defines the intended model for 
ASL+ in 2. In Section 5.5, the satisfaction system of AASL+  is defined, which 
extends the type system of A Power  with rules for singleton types and with a 
consequence relation 	for reasoning about the core-level language. In Sec- 
tion 5.6, some rules are suggested for defining F for ASL+. In Section 5.7, I 

'The language can be any AR-like language. The type system AASL, has some features 
which are specially for the application to ASL+, which is why it does not have a generic 
name such as Apowe,- 	- thank goodness! 
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revisit the original proposal for ASL+ to describe reasons behind the revised 
definitions, and take stock of my achievements. 

In Section 5.8 the problems mentioned above are described in more detail. 
The remainder of the chapter, introduced in Section 5.8.2, considers sharing 
constraints and putting together signatures. The chapter concludes with 
mention of some related work in Section 5.11 and a summary in Section 5.12. 

5.2 The System AASL+ 

This section introduces the type system underlying ASL+, called AASL+.  We 
get AASL+ by combining the languages and type systems of A< and A power, 

and adding combinators for building simple programs and specifications. 
Simple programs and specifications are provided with a consequence rela-
tion for proving satisfaction, equality and refinement. 

The original language described by Sannella et al. [1992] also has a par-
ticular variety of bounded intersection type, used to construct specification 
unions. For simplicity's sake I shall not treat specification union in full gen-
erality here, but restrict it to the level of simple specifications as in an earlier 
formulation of ASL+ [Sannella et al., 1990]. Although there are some ques-
tions, one could extend the definitions below to include intersection types 
following other studies [Pierce, 1991, Compagnoni, 1995]. 

As usual, the syntax begins with a context-free grammar of pre-terms, in 
Section 5.2.1. In general, we cannot decide whether a pre-term has a "proper" 
denotation in the semantics. This is because we can parameterise on speci-
fications, for example writing AX:SP. M, so the definedness of a function 
application depends on whether the argument satisfies the parameter speci-
fication. Checking satisfaction is typically undecidable. 

In practice, some amount of checking can be performed: this is the job 
of the rough typing system defined in Section 5.2.2, which follows the same 
ideas as rough typing for Apower. For AASL+,  we give the rough typing system 
first. The "full" typing system, known as the satisfaction system, follows 
much later in Section 5.5. 

5.2.1 Syntax 

The syntax of AASL+  is based on three disjoint sets: 

a set Sign of atomic type constants, ranged over by X. 

a set P80 of program building operators, ranged over by p. 
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a set 580 of specification building operators, ranged over by s. 

and also a fixed countable set V of variables, ranged over by X, Y..... 

Each PBO p or SBO s must be provided with a unique arity, which is an 
element of Sign* x Sign. We write Arity(p) to indicate the arity of p. We 
assume that for any p or s, there is an effective procedure for calculating 
Arity(p) or Arity(s). 

The set of simple programs is the set of terms built using only PBOs and 
variables; the set of simple specifications is the set of terms built using only 
SBOs, variables, and atomic types from Sign. 

The sets Sign, PBO, SBO together with the Arity() function form a notion 
of signature for AASL+ itself. Most of the time, we assume some fixed signa-
ture. The language ASL+ is defined by giving a particular signature for AASL+, 

in Section 5.4. 
The set Tsjgfl,pBo 580 of pre-terms over Sign, P80 and SBO is defined by the 

grammar: 

T ::= Sign I PBO[T... TI 	SB0[T. .. T] 
I V  I AV:T.T I TT 	FIV:T.T 

Spec(T) I ITIT 

We omit the subscript from T. The usual conventions apply for bound vari-
ables and the identification of tx-equivalent terms. The term Power(A) is a 
synonym for Spec (A). 

The set Csjgn,pBo,SBQ  of pre-contexts consists of sequences of declarations 
defined via the grammar: 

C ::= () I C,V:T 

Pre-contexts are ranged over by F and we make the usual assumption that 
no variable is declared more than once in a pre-context. 

Setting K = Sign, this syntax properly extends the syntax of both A<{}  
(given in Section 3.3) and A Power (Section 4.2). Compared with the syntax for 
A<{} , there is now a single syntactic category of terms, and we no longer 
assume any subtyping relation on the atomic types. 

5.2.2 Rough type-checking 

Rough type-checking for Apower was described in Section 4.5. The definitions 
are similar for AASL+. 

The set Ty59  of rough types of AASL+ is defined by the grammar: 
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F 	Arity(p)=(2'1••'k,) 	for 1:!E;i:5k,FM 

Fp [MI ••Mk]= 

F 	Arity(s) = (i 	Jk,') 	for 1 :!~ i :5 k, F Pp. Ai => P() 
F s[A• A] = P(1) 

FM=T FA=P(T) 
Foo. {M}A = P(T) 

Figure 5.1: Rough typing for AASL+ 

Ty ::= Sign I Ty => Ty I P(Ty) 

This is just the same as for A Power, setting 3( = Sign. 

The rough typing rules for pre-terms of AASL+ extend those for A Power 

shown in Figure 4.3 on page 109, by the new rules shown in Figure 5.1. 
The properties of rough typing in Propositions 4.15-4.18 hold for AASL+ 

too; the proofs are easily extended. For decidability of rough typing, Propo-
sition 4.15(3), we use the assumption that Arity() is effectively computable. 
(We also tacitly assume that the identity of elements in Sign, PBO and SBO is 
decidable.) 

Finally, the strong normalization proof of $q-reduction based on rough 
typing for Apower given in Section 4.8 extends without difficulty to AASL+. 

5.3 Semantics 

The semantics of AASL+ extends the semantics for A Power given in Section 4.6. 
We modify applicative structures to interpret the extra constants in the sets 
PBO, SB0, and we add extra axioms to the model definition. 

Definition 5.1 (AASL+ applicative structure). 
A AASL+ applicative structure for (Sign, P80, 580) is a Ap0wr applicative struc-
ture' for the atomic types Sign, with the Const map also defined on PBOs p 
and SBOs s, so that: 

Const(J) E 

2see Definition 4.20 on page 117. 
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Const(p) E DEl X 	X D -. DY 

Const(s) E Dr) x 	x DP(Ek) DP(E) 

where p and s have arity ( . . 

Interpretations and environments are defined just as for A power• To give 
the model definition we need a new construction on relations. Given R E 
REL(DT) and a E VT define 

[a]R EREL(DT)by: 

b[a]Rc 	iff 	b R c and bRa. 

Fact 5.2. If R E PER(DT) and a E DT, then [a]R E PER(DT). 

Definition 5.3 (AAsL+ environment model). 
A AASL+ environment model for a AASL+ structure V is a A Power mode13 for 
V which satisfies the following axioms for constants, together with the re-
maining axioms for A Power models, for all roughly typable contexts F and all 
rj E 

CONST 	 = Const(E). 

CONST2 	E[p[MI . 	Mk fl 1
7 

= Cons t(p) (1M1 11 , ..., 

CONST3 s[A1. . . 	 = Const(s)(Al ,,...jAk td. 

We assume that F Po. p[M1 . M] => 	and F 	s[A1 . . . Ad == P(s), 
for some signature 1. 

Moreover an AASL+ model must satisfy the axioms: 

SINGLE 	RE{M}A 	= 

TOP 	R~_-j 
17 

	 L1J 

The constant axioms for signatures, PBOs, and SBOs ensure that their 
interpretation is given by the Const map of the applicative structure. There 
is no requirement that PBOs respect equivalence classes or that SBOs map 
PERs to PERs; these conditions are enforced only for particular uses of PBOs 
and SBOs, later on in Section 5.5.4. 

The axiom SINGLE fixes the extension of the interpretation of the single- 
ton type as the equivalence class of 	in the relation which interprets the 

3see Definition 4.27 on page 121. 
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type A. The axiom TOP fixes the extension of the interpretation of a signa-
ture ' to be the total relation on D. 

Coming to model instances, the novel aspect of this semantics is that 
it allows X-specifications SP to be interpreted as relations on —Y-algebras, 
rather than as sets (or classes) of1-algebras. The reason that TOP fixes 
the interpretation of atomic types _Y E Sign as the total relation on RE  is 
to make the type £ behave as a "top type" in the inclusion ordering of 1-
specifications. All terms denoting values in D1  will have type and are 
considered equal at that type. A term SP denoting a value [SPill E D" will 
be a subtype of, so it will be sound to derive SP: Spec (1). The reason we 
want this is so that AX: Spec (s). M denotes a function parameterised on X-
specifications, as expected. To be applicable to any _1 -specification, 1 must 
denote the total relation on '-algebras. 

5.4 The Language ASL+ 

The language ASL+ is given by a particular signature for AASL+, in other 
words, a choice of Sign, P80 and SBO. In this section I define ASL+ together 
with its intended model, which is a model of AASL+. 

We begin from an arbitrary institution 1 = (Sign, Mod, Sen, =). The syntax 
of ASL+ is based on signatures of the institution as atomic types, so Sign = 

I Sign I. 
The sets PBO and 580 are chosen to be institution-independent program 

and specification building operators, and are described in Sections 5.4.3 and 
Sections 5.4.2 respectively. First we define the underlying A Power  applicative 
structure. 

5.4.1 Applicative structure 

We assume that for each E e JSignj, Mod(X) is a small category, hence 
Mod(X)I is a set. This restriction requires that we limit consideration to 

institutions where algebras over each signature are built within some fixed 
universe. A more sophisticated semantics might use a category-theoretic 
model definition for A Power  and ASL+, which would push the problem of size 
elsewhere. 

Now we define a A Power  applicative structure, named l after the underlying 
institution: 
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11  =IMod(u{} 
TV = (T 	U) u { } 

2P(T) = REL(1T) u { <> } 

I 

<> 	iff = o, m = K> orf(m) is undefined 
App(f,in) = 

f(m) otherwise 
Const(2) = ( IMod()I x Mod() I) U { K>} 

This is an instance of the full hierarchy partial function structure given in 
Example 4.23. 

This A Power  applicative structure is extended to a AASL+  applicative struc-
ture by defining the sets 580 and PBO and their interpretations, in the next 
two sub-sections. 

5.42 Specification building operators 

The specification building operators of ASL+ are those of ASL: 

SBO =def {I, Try, Dcr, 	 U} 

Each of these tokens stands for a family of operators, variously indexed by a 
signature 1, a set of E-sentences 4i,  a signature morphism o : -. i", and a 
set of "-sentences V. The single letters are abbreviations for the operators 
that were introduced in Section 1.2: 

L[SP] 	 impose cPon SF 

TI[SP] 	translate SF by o 
D0-[SP] 	derive from SP by o 
U[SP1,SP2] 	SF1  union 5P2  
MO-[SP] 	minimal SPwrtcr 

abstract SP wrt P' via a 

(I'm leaving out iso-close to make the list a wee bit shorter). 
Since we are in an arbitrary institution, there is no concrete syntax for 

describing signatures E, etc. 

The interpretation of these SBOs in 1 is given in the table below. All the 
operators are total and, by convention, strict (if any of the argument relations 
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are c, then the result is ). 

Arity Interpretation 

(X,') Const(I)(R) 

={(m,m')ER I m  4 45 Am' 

To- Cons t(T)(R) 
={(m,m') 	I (mI-,m'J,-)ER} 

D (',X) Const(Dcj-)(R) 
= {(mI,-,m') I 	(m,m') ER} 

Me,- (',E') Const(M ff )(R) 

= { (m,m') ER m,m' cr-minimal in IMod2()I } 

A- (,E) Const(A-)(R) 
, = 	(m, m) 

I 

m j, m' and em". 
(m, m") E R V (m", m) E R 

U, (X,) Const(U)(R1,R2 ) 
={(m,m') 	I (m,m')ER1  A (m,m')ER21 

This generalises the ASL semantics given in Definition 1.6 on page 14; see 
there for definitions used above. Mostly, the usual semantics is generalised 
by taking the product of the operator with itself. The abstract operator is 
slightly different: it returns the parts of the equivalence relation —' which 
have some intersection with the argument relation. This only pays attention 
to the domain of the argument relation, and always returns a "full" subrela- 
tion of 	. The idea behind this definition is explained in Section 5.4.5. 

5.4.3 Program building operators 

Program building operators for an arbitrary institution have been less well 
studied than specification building operators. The following examples are 
given as operations for manipulating constructors by Sannella and Tarlecki 
[1988b]; some of these rely on additional assumptions about the underlying 
institution. 

PO Thief {Rcr ,So-', Q45,E' cr, U11 ,19 } 

These operators are indexed by a : X - £', a' : £' - X, 45 g Sen(), 
45' c Sen(X'), a1  : 2 - £, and cr2  : 2 -. 22. Descriptive names for the 

147 
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operations are: 

R[P] 
S.,-'[P] 

Q[P] 
E',,-[P] 
U0-1,0-7  [Pa, P21 

reduct of P by a 
restrict P via a' 
quotient P by ct 
extend P to V via a 
a-union P1 , o-1  and P2 , o-2  

Here is a brief explanation of them. 

reduct of P by a is the reduct operation on models. It can be used to hide 
some parts of a program. 

restrict P via a' restricts P to a minimal expansion of its a' reduct, in other 
words, its unique o-'-minimal subalgebra. (This assumes that the insti-
tution is supplied with a notion of subalgebra, and unique restrictions 
exist; see Section 1.2.) This can be used to remove "junk" from models. 

quotient P by cP returns the quotient of P with respect to the equivalence 
relation on sorts induced by the set of equations cu. (This assumes 
several things about the underlying institution.) This can be used to 
make new datatypes by quotienting old ones. 

extend P to cP' via a yields the unique free extension of P to a model of 
', where V is a set of equations over _Y'. This relies on the existence 

of free functors F0-, : Mod(s) -. 	']I in the institution. This allows 
definition of freely-generated datatypes, for example. 

a-union P1, a1  and P2 , a2  returns the amalgamation of P1  and P2  with re-
spect to a1, a2. This assumes that the institution has pushouts in the 
category of signatures, and that these give rise to unique amalgama-
tions in the model categories. When defined, the result is a * model, 
where 

a2 * 

is a pushout in Sign. This operation allows two programs to be com-
bined, provided they have the same implementation of shared symbols. 
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The semantics is defined on models rather than isomorphism classes, so 
some of the operators must select canonical representatives. In practice this 
is not a problem, because we work with finite syntactic representations of 
models and operations on them. 

The semantics of the PBOs is given in the table below. Again, each oper-
ator is strict: if any of the arguments is o, then so is the result. All opera-
tors are total except for the a-union operator; however, other operators may 
only be partial, depending on the institution or design choice. (For exam-
ple, whilst Fc,-' exists in some institutions, it is not guaranteed to result in 
a model which satisfies ' exactly; in these cases we might choose to make 
extend P to P' via a undefined). 

Arity Interpretation 

Re,- (',) Const(R,-)(m) = mId- 
Const(S,-')(m) = a'-subalgebraofm 

Qp ( —Y, f) Const(Q)(m) = m/ 
(,I") Const(E',,-)(m) = F,p'(m) 

U r1,cy7  (i 	'2,) Const(Ucj-i ,,)(mi,m2 ) 

- ç amalgamation of m1, m2 	if m1I1 - m2I2, - 	
otherwise. 

For more details of these operations, see Sannella and Tarlecki [1988b]. 

5.4.4 Interpretation in 1 

The previous sections defined a AASL+ applicative structure. Now we can 
define a meaning function for this structure. 

Definition 5.4. Using the definitions of the Const map given above, we de-
fine an interpretation in the applicative structure q  given in Section 5.4.1 
by: 

Re/ (A) = A 

FX=T = ,(x) 

IF 	=> P(T) 7  = IMod(,Y)I x IMod(,1)I 

F o. p [Ml  ... M] = 	= Cons t(p)(Ml...I{Mk) 

F 	s[A1...  Ad => P(X) = Const(s)(A1 .. jAk) 

where the rest of the interpretation is defined in the same way as the inter- 
pretation given in Example 4.28 on page 122. 	 n 
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Lemma S.S. The interpretation defined in Definition 5.4 yields a model of 
AASL+ for (Sign, SBO, PBO). 

Proof As the proof of Lemma 4.29 on page 122, proving the extra axioms 
in Definition 5.3. 	 0 

5.4.5 Motivating specifications-as-PERs 

Section 5.4.2 generalised the semantics of the ASL specification building op-
erators from operations on sets (or classes) to operations on PERs. Why use 
PERs for specifications? 

For types, the reason to generalise from types-as-sets to types-as-PERs 
was explained in Section 4.6 on page 116. With subtyping, two terms can be 
equal at one type, but different at another (examples were in Sections 2.2.6 
and 3.1), so the interpretation of types must include an equality relation as 
well as a collection of elements. 

For specifications, a semantics for ASL+ would not need to use PERs 
throughout. Instead it could use the usual semantics for SBOs and introduce 
PERs only at higher-types. But using PERs throughout offers an interesting 
new way of treating observational equivalence. 

The abstract operator of ASL closes up a class of models under a re-
lation of observational equivalence, as described in Section 1.2. Usually, 
abstract SP wrt cP via o is interpreted as: 

{ m I mEMod(') A m'ESP]1.mm'} 

In the PER semantics a specification is interpreted as a PER, which gives the 
collection of models which satisfy it, together with an equivalence relation 
on those models. The equivalence relation is intended to be an appropriate 
observational equivalence. The abstract operator now retains equivalence 
classes in the result: 

{ (m,m') I mE Mod () A m'EDom(lSP).mm'} 

The equivalence relation of the argument SF is replaced with a different re-
lation, only paying attention to the models of SP. This can either hide or 
reveal equivalences. Just as in ASL, the use of observational equivalence is 
controlled by the low-level abstract operator; a translation from a high-level 
language would insert abstract automatically in appropriate places. 

Here is the interesting point. The equivalence relation is respected every-
where in the semantics. In particular, the interpretation of a Il-specification 
TIX:SP. SP' is the collection of functions which map implementations of SP to 
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implementations of SP', preserving equivalence. When the equivalence rela-
tion is observational equivalence, then observationally equivalent models of 
SP must be mapped to observationally equivalent models of SP'. This is pre-
cisely the requirement of stability, which should be met by all definable con-
structors in a decent programming language, researchers say [Schoett, 1987, 
Sannella and Tarlecki, 19971. Stability relates to providing abstraction across 
module boundaries; here it is built into the semantics of parameterisation 

This needs further research. Alternative generalisations of the operators 
should be investigated, and we should study refinement at higher types to 
see whether the type-theoretical rules and semantics here give useful mean-
ings of higher-order observational equivalence. 

5.5 	The Satisfaction System of AASL+ 

The satisfaction system of AASL+  is the type system which forms the basis 
of the system for proving satisfaction in ASL+, which will be explained in 
Section 5.6. The satisfaction system of AASL+ extends the type system of 
?tPower  with rules for singletons, similar to those of A<, and with rules for 
using an external proof system for PBOs and SBOs. 

Section 5.5.1 defines the form of consequence relation used to capture the 
external proof system. Section 5.5.2 defines the satisfaction system itself. 
Section 5.5.3 extends the meta-theory of APower to AASL+ and Section 5.5.4 
presents a soundness proof for the satisfaction system. 

5.5.1 Consequence relations for AASL+ 

To prove satisfaction, equality, and refinement for terms written with PBOs 
and SBOs, we need to appeal to an externally-provided proof system. To 
define the type system of AASL+,  we don't need to know the detailed structure 
of this external proof system; it is enough to know the consequence relation 
(CR) that it gives rise to. But the CR must be schematic in some variables so 
we can substitute for complex ASL+ terms. 

Rather than give a new definition of CR which axiomatises the notion of 
free variables in sentences, we can simply re-use the signature-indexed def-
inition of CR in Definition 1.3, using contexts F as the notion of signature. 

4This shows an alternative to the suggestion in Sannella et al. [1992, Section 41 that 
specifying stability would violate the regularity condition that every specification of a 
parameterised algebra can be expressed as a cartesian product. Here, requiring or not 
requiring stability corresponds to particular uses of abstract, and all specifications of 
parameterised algebras are regular. 
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Contexts have a categorical structure: morphisms between contexts are sub-
stitutions, with renaming and weakening as special cases. 

In fact, indexing the CR by an abstract notion of context seems the easiest 
way to characterise a schematic consequence, compared to indexing by sets 
of free variables. Without the definition of the syntax of terms and sentences 
to hand, substitution is difficult to axiomatise abstractly [for remarks, see 
Avron, 1992]. 

Definition 1.3 works because to express a structural proof system, we 
need a single context for the whole consequence, rather than different con-
texts over each sentence. This is a "truth" type of interpretation, as opposed 
to a "validity" type. (Both types of interpretation, and richer notions of con-
sequence relation, are described in Harper et al. [19891.) Informally speaking, 
the single context declares the meta-variables in some composition of rules 
from the proof system, and the meta-variables may be instantiated through-
out for ASL+ terms. 

Sentences of a consequence relation for AASL+ have two forms: 

P=P:SP I SP~SP 

where P ranges over simple programs and SP ranges over simple specifica-
tions, described in Section 5.2.1. I will use s to range over sentences, and A 
to range over sets of sentences. The sentence P : SP abbreviates P = P : SP. 
Sentences are roughly typed by the rules: 

FP,P'=J 	FSP=P() 
	

F SP, SP' = P(1) 
F 	P=P':SP = 

	
FSP:!~SP'=X 

Fully-applied PBOs and SBOs have rough types of the form X or P(s), so it is 
enough for rough typing to use contexts F whose types have the formf or 
Spec (1). This leads to the next definition. 

Definition 5.6 (Consequence relation for AAsL+). 
A (Sign, SBO, PBQ) consequence relation is a CR 	where 

Sign t is the category in which 

- an object is a AASL+ pre-context F where each declaration has the 
form X : Z or X : Spec (Z), for some I E Sign; 

- a morphism y : F - F' is a substitution from Dom(F) to simple 
programs and specifications over Sign, SBO, PBO, such that 

F 10- X=T => F'y(X)=T 

for all X E Dom (F). 



Sen t (F) = {s I 2. F o,. s = 

A substitution y extends to terms in the obvious way; then Sen t (y)(s) 
is given by applying y to the terms of s. 

Each relation -- meets the following closure conditions: 

Symmetry. 	If A P111F P = P : SP then A Pill- P' = P : SP. 

Transitivity for =. If A - P1 = P2 : SP and A - P2 = P3 : SP, 
then A -- P1 = P3 : SP. 

Transitivity for :!~. If A PillF SP < SP' and A -- SP' :5 SP" then 
A 	- SP :!~ SP". 

Subsumption. 

	

	If A PWF P = P : SP and A - SP :5 SP' then 
A P-at-P=P':SP'. 

Top. 

	

	 If A F- P : I and A -'- P :I then A I-s- 
P=P':I. 

Formation for =. A -- P = P : SP implies A 	SP :5 E. 

Formation for:5. Either A Patr SP :5 SP' or A I-- SP' :5 SP 
implies A -- s-at SP :!~ SP and A F'- SP :5 1. 	Ei 

Using properties of rough typing, it is easy to show that Sign 't is a category 
and Sent is a functor. The closure conditions on 	capture intuitive con- 
ditions corresponding to familiar rules from subtyping systems. The atomic 
types I are treated as "top" types: any two X-programs are equal at type 

, and by formation for :5, any .Y-specification is a refinement of 1. This 
accords with the model axiom which fixes the interpretation of I. 

None of the requirements assert a sentence directly; for example, we do 
not have that F mo. SF =* 	implies A j-- SP :!:_~ I. This allows for PBO5 
or SBOs to be partial, requiring some semantic conditions in the antecedent 
of the consequence relation to be well-defined. A typical example is the 
amalgamation operator, where the program a-union P1, o and P2, O2 is only 
well-defined if [[P1 ]1 1 1 = [[P2 ]1 	This program can have a rough type yet an 
undefined denotation, in which case it should be excluded from the satisfac-
tion system. 

5.5.2 The satisfaction system 

The rules of the satisfaction system for AASL+ given in Figures 5.2 and 5.3 
extend the typing and equality judgements of A Power given in Figures 4.1 
and 4.2 on pages 88 and 89. 
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Rules for singletons 

The singleton type rules are shown in Figure 5.2 on the following page. These 
are taken from the system A< defined in Chapter 3, modifying for the dif-
ferent judgement forms and for power types. 

Here is a quick review, comparing the rules of A< against the new ones. 
First, we need no formation rule for singletons, because the rule ({}-suB-TAG) 
does the job.5 The typing rules given in Figure 3.2 on page 80 are already in 
A Power, as are the equality rules in Figure 3.3 on page 81. From the subtyp-
ing rules in Figure 3.4 on page 82, we take (SUB- 11) and (SUB-EQ-ITER), which 
appear in Figure 5.2 as ({}-SUB-TAG) and ({}-{}-suB). The "subtyping of equiv-
alence classes" part of the composite rule (SUB-EQ-sYM) appears as ({}-SUB); 
the symmetry part of (SUB-EQ-syM) is not needed because we already have 
symmetry for equality. Finally, we have a rule ({ } -ELIM) which connects in-
habitation of singleton types with the equality judgement, introducing the 
equality F > M = N : A from a singleton typing F > M: {N}A. (The opposite 
direction of this rule is admissible.) 

Rules for PBOs and SBOs 

The rules for PBOs and SBOs are shown in Figure 5.3 on page 156. 
These rules use substitutions 0 to instantiate the consequence relation 
This is a richer form of substitution than morphisms in Sign t , because 

the target context can be any pre-context of AASL+, and the typing require-
ment is in the full system. Specifically, we write 0 : F' - F iff 

F> 0(X) : 0(F'(X)) 

for all X e Dom(F'). So 0 : F' - F is a shorthand for several premises 
The premise F > 0(A) is also an abbreviation. When A = { s, .. . ,s } and 

is non empty, then F > 0(A) stands for the n premises: 

F > 0(s1 ), ..., F > 6(s). 

Again, substitution on a sentence Si S defined by extending 0 to the terms 
of s. If s 	SP ::~ SP', for example, then F > 0(s1) stands for the AASL+ 
judgement F > 0(SP) : Spec (0(SP')). 

5Remember that in Apo,,,, F > A type abbreviates F > A: Power (B) for some B. 
61 Figure 5.3, the source context F' of substitutions 0 always comes from an instance 

of 	which means that r, (x) 	X or F'(X) 	Spec (Z), so the substitution on the 
right-hand side is superfluous. 
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F>M:A 
F > M: {M}A 	 ({}-INTR0) 

F>M:A 
F> MIA:  Power(A) 	 ({ } -SUB-TAG) 

F>M:A F>A:Power(B) 
F> {M}A : Power({M}B) 	

({}-suB) 

F>M:A 
F> {MIA: Power({M}{M}A ) 

F > M: {N}A 

F > M = N : A 	 (II-ELIM) 

Figure 5.2: Singleton types in AASL+ 
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L\F4'P:SP 	0:F'—F 	F>0(L\) 
(PBo) 

F> 0(P) : 0(SP) 

A-SP:5SP' 0:F'-.F 1>0(A) 

F> 0(SP) : Spec(6(SP')) 	
(sBo) 

A-P=P':SP 0:F'-'F 1>0(A) 

F> 9(P) = 0(P') : 0(SP) 	 (EQ-PBo) 

A F 	SP ~ SP' 
A 	SP' :!!~_ SP 	0 : F' - F 	F> 0(A) 	(EQ-sBo) 

F > 0(SP) = 0(SP') : Spec(0(SP')) 

F>M:X F>N:J 
(EQ.TOP) 

Figure 5.3: SBOs and PBOS in AASL+ 

When A = 0, then by convention F > 0(A) stands for the single premise 
> F. This ensures that the context F is well-formed in the conclusion of each 
rule which uses 

The rule (PB0) proves that a program term built with simple program con-
structors satisfies a specification built with simple specification construc-
tors. Recall that P : SF is defined to mean P = P : SP as a sentence of 
The rule (EQ-PBo) handles the more general assertion, introducing an equality 
into the system. The rule (sBo) proves refinement between two specifica-
tions built with simple constructors, and the equality of such specifications 
is proved by showing that each is a refinement of the other, with the rule 
(EQ-sBo). 

Substitution is grafted on to each of these rules as 	is added to the 
typing and equality judgements. In the combined proof system, we can use 
the satisfaction rules for the AASL+ type constructors and the proof system of 
Pal one after another, as the structure of a specification or program is broken 
down. Substitution is needed because AASL+ assumptions can only have the 
form X: A, and not M : A for arbitrary terms M. We think of assumptions X: 
A as typing declarations for free variables rather than logical assumptions, 
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but the distinction is blurred somewhat at this stage.7  
The last rule in Figure 5.3, (EQ-TOP), treats an atomic signature type E 

Sign as a top type, and asserts that two terms which denote '-algebras are 
indistinguishable at type E. 

5.5.3 Properties of satisfaction 

In this section we extend the results of Section 4.4 to AASL+.  First we prove the 
agreement property between the rough typing system and the satisfaction 
system. 

This is a re-statement of Theorem 4.19 on page 111. 

Theorem 5.7 (Agreement of rough typing for AASL+). 

If> F then F. 

1fF> M : A then for some T E Ty, F M => T and F o. A = P(T). 

3.ffF>M=N:A then for some TE Ty, F o. M,N ==> Tand 
F A => P(T). 

4. 1fF> A:Power(B) then for some -rE Ty,F mo. A => P(T) 

Proof We sketch one new case for the second part, for the rule (EQ-PBo). 
The remaining cases to check are similar or straightforward. 

Case (EQ-PB0): By the definition of sentences and proof relations, A --' 
P = P' : SP means that the required result holds in F' for P, P' and 
SP. By the translation condition for consequence relations, we can as-
sume that the variables of F' and F are distinct. Using the extension 
of Proposition 4.16, we thin the context to F',F and then use substitu-
tion repeatedly to substitute each variable X c Dom(F) for the term 
0(X), preserving the rough typing and yielding F 	0(P) 	- 
F o. 0(P') =:> 	and  P. 0(SP) =- P(X),asrequired. 

To prove thinning, substitution and bound narrowing, we must simulta-
neously prove corresponding statements about substitutions 0. These state-
ments are gathered in the lemma below. For the substitution case, we use a 
substitution 0[N/X], which is defined by: 

(0[N/X]) (Y) = 0(Y) [NIX] 

This corresponds to the substitution of N for X in every part of 0. 

71ndeed, a system indexed by rough-contexts with arbitrary assumptions might be 
worth studying, at least because this would be a consequence relation itself, and there 
would be an easy way to state conservativity over F. 
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Lemma 5.8 (Substitutions for roughly typed variables). 
1.1f6:F'—F and FcF'with>F' then 6:F'--.F'. 

2. 1f6:F' -F,X:A,F' and  > N: A, then O[N/X] :F' — F,F'[N/X]. 

3. If 6 :F' -. F,X :A,F' and  > A: Power (A) then U :F' - F,X :A',F' 

Proof Simultaneously with the extensions to AASL+ of Proposition 4.4(3), 
Proposition 4.5 and Proposition 4.6. In each case, the induction hypothesis 
for a statement above helps prove the proposition for the rules in Figure 5.3. 

The remainder of Proposition 4.4 extends to AASL+ easily, so this estab-
lishes the extension of Propositions 4.4-4.6. The formation property Propo-
sition 4.7 needs an extra case, and care with the PBO and SBO rules. 

Proposition 5.9 (Formation for AASL+). 
F > Ax:A.M : C == F > A type and B. F, x :A> M :B. 

2.F>MN:C => 	A,B. F>M:TIx:A.B and F>N:A. 

F c FIx:A.B : C => F > A type and F, x : A> B type. 

4. F> Power(A) : C ==> F > A type. 

5.F>{M}A :C = F>M:A. 

Proof As for Proposition 4.7, except that term in question could now be 
introduced by (PBO) or (SBO). Consider (PBO); either 6(P) 	p[M1 . . . Mfl], or 
6(P) N and N may have the term former of interest outermost. If so, it 
must be that P Y for some variable Y, with 6(Y) = N. By the definition of 
o : F' - F we have a subderivation ofF> N: F'(Y). We can use the induction 
hypothesis for this derivation to get the result. Similarly for (SBO). 	n 

Type correctness extends Proposition 4.8. The statement is the same. 

Proposition 510 (Type correctness for AAsL±). 
1.F>M:A => F>Atype. 

F >M=N:A => F >Atype and F >M,N:A. 

Proof The cases for the singleton rules are straightforward, making use of 
Proposition 5.9 for ({}-ELIM). For the PBO and SBO rules, we show the proof 
for (EQ-PBO). 

Case (EQ-PBO): For part 1 we must show F > 6(SP) type. By the reflexivity 
requirement for 	, we must have that L\ -- SP ::~ SP, so we can use 
(SBO) to derive F> 6(SP) : Spec(0(SP)) as required. For part 2, to show 
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F > 0(P) : 0(SP), use (PBo); to show F > 0(P) : 0(SP), use (PBo) too, 
using the symmetry requirement for 	 0 

Finally, the admissible rules shown in Propositions 4.9 and 4.10 remain 
admissible in AASL+, since their proofs rely only on the preceding proposi-
tions and derivations in A Power. 

5.5.4 Soundness of satisfaction 

In this section we extend to AASL+ the soundness result for A Power given in Sec- 
tion 4.7. We must assume that the consequence relation 	is itself sound. 

Let 171, r12 be a pair of environments such that r1l 	Fjfl ri2, where the 
declarations in F only have the form or Spec (s). We write 

(171,172) 	P=P':SP 	
171 

RjspT 	P'4 2 

and 
(r11, r12) 1= SP:!~SP 	 = R~ spj E PER (DX) 

A R~ spj 0 R15 ' 

Given F-sentences of a AASL+ consequence relation, 

Definition 5.11 (Sound consequence relations). 
A AASL+ consequence relation 	is sound if 

{si ,...,s} ---s 

implies that 

(171, 172) '= s1 A 	A (rj 1 ,r 2 ) = s 	(171, t72) 	s 

for all r7 1 TF1 172. 

The interpretation of contexts and conventions for environments are un-
changed. The following theorem is a re-statement of Theorem 4.38 on page 126. 

Theorem 5.12 (Soundness of satisfaction for AASL+ models). 
Let 	be a sound consequence relation according to Definition 5.11. 

If> F then ][F]J E PER(D) 

If F > M :A, then for all th, 172 E 

q1 	[[TI] 172 	=> 	[[MI] , J1 R ~ Aj 	[[M]]172. 
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Proof systems for the core-level are not the main topic of this thesis, so 
the system shown here is incomplete and imperfect. I provide it just to give 
some ideas of what the rules for ASL+ PBOs and SBOs look like, and to see 
how they fit with the satisfaction rules of AASL+. 

There are several ways that a relation A -- s could be presented. A 
natural-deduction style of presentation might be the clearest, with rules like 
this: 

sP1 :5 sP2 	sP2 :!~ sP3 
sP:5sP 	 SP, :!E~-sP3 

then A 	s holds if there is derivation of s from assumptions A, when s 
and A are well-typed in F. This convention hides the context of assumptions 
and free variables. Another convention is to identify variables in F with 
meta-variables in the presentation, because -- is supposed to capture the 
schematic consequences of derived proof rules. 

Because I only present a few rules, I shall be overly explicit and not use 
any conventions; I define the relation A -- s directly, as the least relation 
generated inductively by a set of rules. This is an unusually verbose form of 
presentation for a logic, and it means adding as rules some of the structural 
properties that the CR must satisfy Moreover, I shall be careful to include 
all the typing information for each rule. 

The rules are shown in Figures 5.4-5.6. We assume that there is a proof 
system provided for the logic of the underlying institution 1, which gives rise 
to a deduction relation 	(see Definition 1.5 on page 10). For deductions 
between sets of sentences, cP -s 	means 01 i— p for all 'p E 02, where 

Sen(). 

Structural rules (Figure 5.4). 
These rules express the structural properties that any CR according to Def-
inition 1.3 must satisfy, together with some of the properties that a CR for 
ASL+ must satisfy, from Definition 5.6. 

Rules for programs (Figure 5.5). 
These rules are used to prove that a program satisfies a specification, or that 
two programs are equivalent. The figure contains a only a few example rules 
and is far from complete. Sentences P : SP here abbreviate P = P : SP. 

The first rule says that any two s-programs satisfy the trivial X-specification 
and are indistinguishable at that type; this fulfills the "top equality" require-
ment from Definition 5.6. The next few rules are structural rules for some 

8But similar presentations are commonly used for categorical logics, for examples see 
Lambek and Scott [1986], Pitts [1996]. And a similar presentation is also used for the logic 
LFPC in Section 6.4. 
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A 	A, s --- s' 

L\4s Fs'=J 
A, S, [5-91 s 

A H,X:A,E' S 	F o. A ==> P(T) 	F o. N => T 

A[NIX] I-,' s[NIX] 

F P,. SP ==> P(1) 
SP:!~;SP 

A 3- P=P':SP 
A PAt

F 
P'=P:SP 

A-P=P':SP AP'=P":SP 
A 	P=P":SP 

A -- SP1 :!~ SF2 	A I- - SP2 :!~ SF3 
A F' - SF1 :!~; SF3 

A MF 
P : SP 	A 	- SP :!~ SP' 

A 	- P: SP' 

Figure 5.4: ASL+ proof system - structural rules 
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FP,P'=J 
- P=P':f 

A- P:SP 	FP==2' 	:f -'  

AF- R,4P]:D[SP] 

A 	- P:SP 	FP=E 	P'cSen'(E') 

A 	Ep',[P]:Lp'[T[SP]] 

02 * 

A 	- P1  : SP1 	F P1  = 	
I 
____ 

A I-- P2  : SP2 	F P2  => £2 

A -- Uff1 U2 [Pl,P2] : UE*[T[SP1], T[SP2 

cPF-  c  
A - 	E[P] : SP 	cPv Sen2  (I') 

A -- E,- [PI = E3-[P] : SP 

A-P1 :SP 
A 	- P2  : SP 	V p E cIi. A H- P1  : I{tj } [X] 	A -- P2 : I{q3} [-1] 

A - 9- Pl=P2:A,fd1[SP] 

Figure 5.5: ASL+ proof system - programs 
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PBOs, breaking down the structure of a program in tandem with the struc-
ture of a specification. To prove that a program satisfies a specification with 
a different structure, we may first need to massage the structure of the speci-
fication, using the rules in Figure 5.6, and then use subsumption. 

Two simple rules proving non-trivial program equivalence are shown. The 
first uses the proof system of q to show that two free extensions E,0-[P] and 
Ep;[P] are equivalent just in case cl and c are equivalent sets of equations 
in the logic. By this rule, a program expressed using one algorithm can be 
proved equivalent to one expressed using another slightly different one, for 
example. 

The other rule for program equivalence, at the bottom of the table, is a 
putative rule intended to prove the equivalence of two programs in a speci-
fication built with abstract. This attempts to capture a simple case of the 
definition of 01 , with o = Id. We can prove P1 F--.z (p by proving P1 : I{}[] 
in the system, and similarly for P2. However, this rule breaks the definition 
of Pill because the relation occurs negatively in the premise. This could be 
solved by using a direct definition of P E-, p, written using another set of 
rules. Still this rule doesn't represent a feasible proof method, since cl is 
typically an infinite set. We need to investigate proof techniques here. 

Rules for specifications (Figure 5.6). 
These rules are example rules for proving refinement of specifications. Some 
of them are stolen from a more complete set studied by Farrés-Casals [1992]. 
In this figure, a sentence SP = SP' abbreviates the two sentences SP :5 SP' 
and SP' :!~ SP - used in a conclusion it abbreviates two rules. 

The first rule in Figure 5.6 establishes the "top refinement" property, that 
any s-specification is a refinement of the trivial specification X. The next rule 
is the only rule which refers to the underlying proof system. The following 
axioms can be used for proving refinements or massaging the structure of 
specifications. The last rule in the table is an example of a simplification rule, 
which proves refinement between specifications with the same outermost 
constructor. Simplification by stripping the outermost constructors is sound 
for any of the familiar ASL constructors, because they are monotonic on the 
model class inclusion ordering. 

Many more rules from Farrés-Casals [1992] could be included here, in-
cluding proofs of refinements between specifications with differing struc-
ture, and more simplification rules. And rules are needed to handle the SBOs 
missed here, in particular abstract and minimal. 
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Fm.  SP ==' 

01 Hi. 02 	F o. SP ==> P(J) 	01,02 c Sen2 (X) 

-'- L 1  [SP] :5 42 1-Y ] 

p(2L') 01, 02 Sen(.Y) 
Lpi Elcp 2 [SP]] = 41u2[SP] 

F 	SP = P(s) 	IcSen(-Y) 	a:X -' 
P 	4[D-[SP]] = D[I0-()[SP]] 

F SP P(X) clicSen(-Y) u:-E' 
Icj()[Ta[SP]] T[Ick[SPJ] 

02 * 

t 

	

cr1 	Oi* 

Fm. SP =' P(X) 
	

02 
PWF  Tcj.i[Dcj-2[SP]] = D[T[SP]] 

j- - U[SP1 ,SP2 ] = U[SP2,SP1 } 

F- - UE[SP1,U[SP2,SP3]] = U[U[SP1,SP2],SPA 

I-g- sP1 	sP2  

-- D[SP1] Dcr[SP2] 

Figure 56: ASL+ proof system — specifications 
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5.6.1 Properties of the ASL+ proof system 

By the construction of the system, all sentences are well-typed. 

Proposition 5.13. If As, where A = { si, . . . ,s }, then there are signa- 
tures X1 , . .. , 2, X such that F 	si ==> 1i and F P,. s => Z. 

Proof Induction on the derivation of A 	s. 	 El 

The two vital properties are that 	forms a consequence relation for 
AASL+, and that it is sound for the semantics. I only give proof sketches. 

Proposition 5.14. 	is a AASL+  consequence relation according to Defini- 
tion 5.6. 

Proof Most requirements follow directly from the conventions of the pre-
sentation and the structural rules of Figure 5.4. Remaining requirements are 
admissible in the presentation. 	 E 

Proposition 5.15. -- is a sound consequence relation for the AASL+ seman-
tics, according to Definition 5.11. 

Proof By induction on derivations of j- , using the semantics of the ASL+ 
operators defined in Sections 5.4.2 and 5.4.3. 	 El 

5.7 Improvements Over the Original 

This section compares the formulation of ASL+ given in this chapter against 
the original proposal by Sannella et al. The purpose is to highlight the im-
provements I have made and to justify the definitions a bit more. (Read-
ers not interested in this purpose may happily proceed to Section 5.8 on 
page 170.) 

ASL+ was first described in [Sannella et al., 1992, Sannella and Tarlecki, 
1991], and earlier versions of those publications. The original syntax was 
outlined in Section 1.4 on page 19. The next few subsections describe some 
problems with the original syntax and proof system, and what I have done 
to improve matters. 

5.7.1 Unspecified syntax for algebras 

The original presentation of ASL+ includes unspecified syntax for core-level 
programs denoting algebras in the base institution. Syntactic algebras can 
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be type-checked, so there should be a type-checking judgement: 

FP = 

where F is a context declaring the free variables which may appear in P, 
along with their types. If this judgement holds, then P denotes as-algebra. 
Sannella et al. required that this judgement be substitutive, so we can infer: 

F,X:T,F'P= 	FN=T 
F,F' o,. P[NIX] = 

where N is any term of the module calculus, and T is the typing requirement 
it must meet. 

Further assumptions of the algebra typing judgement would be needed, 
actually, to prove the properties which were shown in Section 5.5.3. More-
over, we need an assumption relating the denotation of a substituted algebra 
expression to its denotation in an extended environment (like Lemma 3.21 
on page 72). These assumptions are needed for the algebra typing judge-
ment and semantics, to prove the corresponding properties for the whole 
calculus. 

Here is the difficulty. The assumptions about substitution imply that the 
language of algebras includes the language of ASL+, so that both the syntax 
and semantics of the two levels are already intermingled. The term N above 
can be any term of ASL+, so we must know how to substitute N into an alge-
bra P for the term P[NIX] to be meaningful. But this destroys the thought 
that we may begin from an arbitrary core-level language and add the ASL+ 
A-calculus on top. For terms like P[NIX]  to be meaningful, the core-level 
syntax must be defined simultaneously with the ASL+ syntax. This means 
that ASL+, as originally proposed, could not be an institution-independent 
framework, unless we have a rather more concrete form of institution to 
hand. 

To avoid this difficulty, I began with a more precise language. Instead 
of giving the core-language for programs by some unspecified syntax with 
particular properties, it is given by a set of combinators (PBOs) which denote 
mappings from tuples of algebras to algebras. Such functions (or their ex-
tensions to mappings on classes of algebras) are known as constructors in 
the literature [Sannella and Tarlecki, 1988b]. Similarly, rather than fix the 
particular specification building operators of ASL, I treated core-level speci-
fications as an abstract set of SBOs, which are combinators that denote op-
erations on classes of algebras. With this more precise language, it is easy 
to include the syntax of fully-applied combinators in the ASL+ A-calculus, 
solving the problem of what substitution means. 
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5.7.2 Semantic inference rules 

Another difficulty with the original version of ASL+ is with the rules for so-
called semantic inference. These were given as part of the formal system for 
proving satisfaction: 

[[PL, E 	for all p consistent with F 

F>P:SP 

EIiSP11P  	ISP', for all p consistent with F 

F> SP: Spec (SP') 

These rules were intended to apply only to simple programs and specifica-
tions - those built with the core programming language, or with the ASL 
specification building operators. The idea is that an external proof system 
would be employed to approximate the use of the semantics in these rules. 
Unfortunately, this requirement is too informal. 

Once again, "simple" programs and specifications may be built using con-
structs of ASL+ within, which makes them somewhat less simple. For exam-
ple, we may write: 

impose cP on F(M) 

where F(M) is the application of a parameterised specification. To prove that 
a program satisfies this specification, we should first prove that it satisfies çfi, 
and then that it satisfies F(M). To prove the second satisfaction, we ought 
to use higher-order rules for application terms which are proper to ASL+, 
rather than only the "semantic inference" rule shown above. 

The study of proofs in the original formulation is doomed because of this. 
Using the rules above and bypassing the rules that are proper to ASL+, we 
could prove any valid satisfaction P : SP by proving 

P : impose 0 on SP 

and any valid refinement SP < SP' by proving 

impose 0 on SP: Spec (impose 0 on SP'). 

Clearly the rules of semantic inference had to be modified. 

In this case, I solved the problem by bringing the external proof system 
into the picture, making the formal system for satisfaction more precise. In-
stead of referring to the semantics, a consequence relation j-Y-y must be pro-
vided. The consequence relation captures derivability in the external proof 
system. 

For this treatment to work, the consequence relation must be schematic, 
to allow substitution for complex ASL+ terms inside simple programs and 
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specifications. For example, to prove satisfaction of the specification above, 
the consequence relation would contain the tuples 

P : XtP : impose  ct)on  X 

for all simple programs P that satisfy the formulae & Then we use the cut-
like rule (PBo) for joining this assertion with the other rules of AASL+,  to allow 
the derivation: 

P : XtP : impose  ctonX 	P:F(M) 
P :impose (Pon F(M) 

To apply this rule I used a substitution X - F(M) to instantiate a tuple in 
the consequence relation 	The antecedent is then proved in the second 
premise, using the rules of AASL+  once more. 

Of course, the program P itself might be built using ASL+ constructs too, 
so the consequence relation must contain schematic consequences which al-
low programs as well as specifications to be broken down. In other words, 
it captures the derivation relation of a structural proof system, rather than a 
proof system which only proves entailments between normal forms. More-
over, as well as satisfaction P : SP, the consequence relation must prove 
refinement SP :5 SP' and equality of two programs satisfying a specification 
P = P : SP. Since equality should be reflexive, we used P : SP to abbreviate 
P=P:SP. 

5.7.3 Other improvements 

For the historical record, here are some more notes about the formalism 
presented in the last section of Sannella et al. [1992] and differences with 
the work here. Some of these comments are technical and esoteric. 

Semantics. The definition of the semantics here has been structured us-
ing rough types, as explained in Sections 4.5 and 5.2.2, and as suggested 
in Sannella et al. [1992]. In loc.cit., the semantics was given using a par-
tial definition with slightly informal and "non-local" side conditions; in the 
clause for [AX:SP. ObJ]I the side condition is "provided for each v E E[SP,, 

IObJ]1p[v /x] is defined." This is a stricter version of the partial function 
model outlined in Example 4.30; there, the A-term is interpreted as a func-
tion which could return an error element when applied to some v E E[SPL, 
and is not undefined whenever the body is undefined for some v. On terms 
which are typable in AASL+,  there is no difference between these partial defi-
nitions and the full model which ignores the domain specification SP in the 
interpretation for A, and just uses rough types. 
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Reduction rules. The presentation in loc.cit. uses a "split" rule of conver-
sion for types based on untyped reduction, as mentioned in Section 4.4.2. 
The combination of untyped reduction rules and singleton types without 
type tags, has some strange effects. In particular, one can derive: 

M':A 
M' : {M'} 	{M'} 8  {M} 	M: SP 

{M} 	 {M} : Spec (SP) 
M': SP 

This shows the derivability of a rule allowing well-formed /3-expansion of 
terms satisfying a specification: 

M: SP M'- 8 M M' :A 

M': SP 

Embarrassingly, Sannella et al. stated that they had specifically excluded 
this rule from the system! This goes to show that the interaction of "non-
informative" type constructors can be subtle. 

The reason for not wanting this rule is methodological: ideally, we should 
prove (AX:A. M)N : SP in a structural way, not simply by /3-reduction and 
proving M[NIX] : SP. But the methodological aspects of the system should 
not be confused with the logical aspects; practical implementations can en-
force a particular proof search mechanism if required. 

Nevertheless, the derivability of the rule above is still perturbing, and mo-
tivates using singletons with type tags and a semantic-oriented presentation 
instead of untyped reduction. See the discussion in Section 4.4.2. 

Subject reduction. Sannella et al. [1992, Lemma 7.3] claimed subject re-
duction for their system. Unfortunately the sketched proof in Sannella and 
Tarlecki [1991] was incomplete and is non-trivial to fix, see Section 4.4.1. 
This problem is still open. 

Other changes. The original semantics used sets rather than PERs; the orig-
inal proof system used the H rule of equal domains (see Section 4.9.2). 

5.8 Two Problems 

As I mentioned in Section 5.1, there are a couple of problems with this for-
mulation of ASL+, which prevent it being a directly useful module language. 
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The first is the context problem. This problem is that the PBO and SBO 
mechanism does not provide a framework for understanding a current con-
text of declarations, or a current environment of bindings. A good way of 
dealing with contexts is essential to the realistic use of the language, as soon 
as we go beyond "closed" programs or specifications, or beyond simple ex-
amples of parameterisation with only one parameter. We consider this prob-
lem in Section 5.8.1. 

The second problem is that rough types are not good enough to type-
check programs and specifications like those shown in Chapter 2. The re-
lated fact is that those programs do not have a direct semantics in an insti- 
tution. This is the sharing problem 	to explain the propagation of type 
equalities properly. This is investigated in the rest of this chapter, beginning 
in Section 5.8.2. 

5.8.1 The context problem 

The treatment of PBOs and SBOs as combinators is not very satisfactory for 
constructing modular systems. 

To write the parameterised program Li St and its specification LISTFUN 
shown in Section 2.1.3 on page 28, we begin with the signatures: 

ELT =def Sig 	 XLIST =def Sig 
type elt 	 type elt 

end 	 type list 
val nil :list 
val cons : elt x list - list 

end 

In the abstract formulation of ASL+ given in the last section, ZELT andfLIST  
could be represented by nullary SBOs (corresponding to the syntax above), 
and Li St might be defined as 

Li St =def  AX:ELT. extend X to oP list via LILT—LIST 

where Olit are the axioms specifying lists, shown in the specification LISTFUN 
on page 28. The specifications LISTFUN and LIST would be written similarly. 
The three terms all have the general form: 

17 X : PARAME TER TYPE . EKTENDOPERATOR( X, extrabits) 

(remember that to explain the dot notation, LISTFUN has to be translated to 
use singleton types and enrich, as explained in Section 2.1.5). 
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This idiom is prevalent in the examples in Chapter 2 and the examples 
of ASL+ elsewhere. In each case, the parameter is used in a standard way to 
build the result. When the parameter is a specification, as in LIST, then there 
is more choice: we might use an operator for closing up the parameter under 
some equivalence, for example, before enriching it. But when the parameter 
is a program, as in LISTFUN and List, we intend a constructive interpreta-
tion, where a new program is built (or specified) from the parameter without 
altering it; in other words, the body defines a persistent constructor [Sannella 
and Tarlecki, 1988b]. 

This idea lies behind the dot notation used in LISTFUN. There is an 
implicitly-available algebra which represents the current context. When pro-
gramming, it is more convenient to use pieces of parameters with the dot 
notation than to each time explicitly extend, and perhaps rename, the pa-
rameter. This is similar, although not quite as extreme, to the difference be-
tween programming in A-calculus and combinatory logic; in the second case 
one can only use closed terms. Here, we have open terms at the module-level 
terms, but closed terms for core-level signatures and algebras. The Li St ex-
ample above is readable, but once many parameters are added, things get 
worse, piling extension on extension, without any name-space management 
unless renamings are supplied explicitly by the user. 

Because the most important parameters in the examples were all algebras, 
it seems worthwhile trying to do something about this. We can treat algebra 
parameters specially, and introduce a form of context which allows algebras 
and signatures to be open. Then this will also explain the implicit use of 
pervasive datatypes, like the algebra of booleans. 

To do this, the idea of combinators for building programs is not so good, 
because we want dot notation to refer to parts of algebras. It seems better to 
return to something like the original assumption described in Section 5.7.1: 
having some unspecified syntax which respects substitution operations, so 
there is a closer link to the concrete syntax used for simple programs and 
specifications. But restrictions should be made so that the free variables in 
the unspecified syntax only range over "core-level" entities. We want a notion 
of an algebra or signature fragment, which is meaningful in a context. The 
context for simple programs and specifications should only mention core-
level entities, so there should be a way of extracting a core-level context 
from an ASL+ context. Moreover, we would like to integrate a good way of 
handling the dot notation used in Chapter 2, to project from the components 
of a context. 

These are some motivations behind the approach taken in Chapter 6 and 
Chapter 7, using the institution FTC. The ideas outlined above will become 
clearer in these later chapters; a context for defining JTC algebras and sig-
nature expressions is simply an JTC signature, and it is built by renaming 
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components with a dot-prefixing operation. 

5.8.2 The sharing problem 

An appealing view of modular programming is to treat the putting-together 
of programming modules as typed functional programming [Burstall, 1984]. 
This is based on an analogy between interfaces and types, and program mod-
ules and values. So a module whose interface contains other modules is 
understood as a function from modules to modules. 

Unfortunately, the "rough types" used for type-checking in ASL+ are not 
good enough to understand the composition of parameterised programs and 
specifications in this way. For example, the functor Li St shown above is 
given the rough type: 

0 	Li s t 	'ELT 	' LIST 

which reflects that it maps ' T-algebras to Lf5 -algebras. 
There are two related difficulties. The crucial one is that the rough type 

EaT - ELIST makes no connection between result of applying Li St and the 
argument algebra, although from the definition of List we know that the 
result is always a ELIç-expansion of the argument. The semantics of the 
rough type reflects this lack of connection: the function space EELT - ELIST 

includes constant functions which ignore their argument entirely. 
The other difficulty is that the type EELT — ELIST only allows Li St to be 

applied to ET-algebras: in practice we may want to use an algebra such as 
Nat which has the richer signature: 

ENAT =d,f Sig 
type elt 
val zero : elt 
valsucc:elt - elt 

end 

To apply Li St to Nat we first need to cut it down to size, writing something 
like: 

Li stNat =def  Li St (reduct of Nat by LIELT,NAT) 

The rough type for this instance of reduct is: 

() P,. reduct of - by tELT,NAT = ENAT - Eam 

which, like the type of List, makes no connection between argument and 
result. 
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Because there is no connection, rough typing information alone is not 
enough to type-check program-level and specification-level terms when mod-
ules are combined. Suppose we rename Li stNat by prefixing LUST  with 
"Li stNat." and rename Nat by prefixing XNAT  with "Nat. ". This renaming 
might happen automatically with a notion of a current context of declara-
tions; when the two modules are combined the signature of the context be-
comes the union of these two signatures, L = Nat.LNAT u ListNat.LLIST. 
In this signature, we would hope to write a formula such as this: 

ListNat.hd(ListNat.cons(Nat.zero,ListNat.nil)) = Nat.zero 

To know that this formula is well-typed, we must know the type equation 
ListNat.elt = Nat. elt. But nothing in rough type of List entitles us to 
suppose that these two types are equal, and they are distinct sorts in L. 

The ASL+ specification (or "full type") for Li st is much better; as well as 
imposing axioms for the list functions in the result, a dependent type and 
the singleton construct specify that the result should be an expansion of the 
input: 

List : I1X:L r . impose PLIST on translate {X} by tEELT,LIST 

The idea of using dependent types to express modular structure appeared in 
Pebble [Lampson and Burstall, 1988] and was explained by MacQueen [1986]. 

The Il-type for Li st correctly cuts down the range of permissible imple-
mentations to those which make use of their parameter. With suitable rules 
for reasoning about the renaming SBOs, we might now prove the equations: 

ListNat.elt = (reduct of Nat by LSELT,ENAT).elt 

and 
(reduct of Nat by L5ELTNAT).elt = Nat. elt 

which justify writing the formula above. To deduce the second equation, we 
need to know that reduct of - by 1E1T,11T  satisfies the specification 

reduct of -by  tELTNAT : TIX:LNAT. derive from {X} by LEELTNAT 

and then we use the putative rules about renamings again. 
But this is not satisfactory - we want to deal fully with type-checking 

in the rough typing system, automatically if possible, and not have to deal 
with it in the satisfaction system when human intervention is perhaps needed 
(depending on the logic). 

Even worse, because rough typing fails, the obvious, direct institutional 
semantics for the constructs above does not work. If fct, is the signature 
mentioned above, in a typical institution, the set of sentences Sen(L) only 
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consists of "well-typed" sentences over X, and so does not contain the 
formula above, because Li stNat.el t and Nat. el t are distinct sort names. 

Somehow, we must either rename names which share to a single name 
(similar to a pushout semantics, taking amalgamated unions of signatures), 
or we must add sharing equations between the type names. Pushouts serve 
at the semantic level, but names in semantic signatures need to be related to 
the program-level identifiers which the user writes during modular construc-
tion of programs. Identification of names is also less flexible than sharing 
equations with type expressions, as mentioned in Section 2.1.5. 

One way or another, the sharing information must be known to type-
check terms, hence programs, formulae and specifications. But the rough 
types used so far cannot provide this information. 

I draw two conclusions from these observations: 

Simple rough types are not sufficient to capture the "type-checking" part 
of putting together modules in ASL+. 

Ordinary algebraic signatures are not sufficient to capture sharing be-
tween sort names needed for type-checking with program-level identi-
fiers. 

The next two sections are taken up by more consideration and justification 
of these conclusions. In Section 5.9 we see where the problem of sharing 
arises when constructing modular programs, and look at different ways of 
expressing sharing. In Section 5.10 we consider ways of incorporating shar-
ing into an institutional semantics, and argue that the best approach is to 
modify signatures to incorporate sharing information. This will be done in 
the institution JTC defined in Chapter 6. 

The first conclusion will be confronted in Chapter 7 when a more sophis-
ticated rough typing system is defined for the institution FTC, incorporating 
dependent types. 

5.9 Sharing in Modular Programs 

The need for ways of expressing sharing in modular programs has been un-
derstood for some time, probably long before MacQueen's seminal exposi-
tion on the subject written during the development of SML [MacQueen, 19861. 
However, it seems worth re-investigating the basics here, to understand the 
alternatives and carefully motivate extensions to ASL+. 
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Aliasing 

Aliasing is a well-known difficulty when trying to formally understand pro-
gramming languages. Flexible methods of name binding and parameter pass-
ing mean that the same program entity (type, value, module, or whatever) can 
be referred to via several different identifiers, even within the same scope. 
Conversely, the same identifier may be used in different scopes to refer to 
different entities. The problem is to keep track of the proliferation and varia-
tion of identifiers. This is necessary for giving a formal semantics, a program 
logic, or perhaps a type-system to the programming language. 

Aliasing can be handled by converting any identifier to a canonical one 
by a so-called "unique origin" rule, or by associating each identifier with 
some other reference value. For example, the 1990 formal semantics of Stan-
dard ML [Milner et al., 19901 associates unique semantic-level stamps (called 
names) to types and modules, when defining compile-time type-checking. 
Type identifiers may be bound to different names according to the scope. 

Although aliasing is rife in programming languages, in logics and type 
theories it is sometimes less apparent. This is partly because of the com-
plexity of programming language features, but also partly because logics and 
type theories are studied in the abstract: for example, definitions  are typically 
dealt with in the informal meta-language rather than in the object language 
itself. Yet when given a formal treatment, definitions turn out to be less 
tractable than might be hoped [Griffin, 1988, Harper and Pollack, 1991, Seven 
and Poll, 1994]. Researchers applying type theory are currently adding such 
"high-level" concepts to the formal part of the theory, both to understand 
their implementation, and to bring the mechanical language gradually closer 
to the looser language of the mathematician. And as the implementation of 
mathematical theories becomes more advanced, new issues of modularisa-
tion and re-use need to be dealt with, and this brings in further problems of 
name-space management and aliasing. 

Modular programming 

An important case of aliasing occurs when building modular programs [Mac-
Queen, 1986]. In this setting, when two identifiers for modules (or other 
entities) stand for the same thing, we say that they share. This is because 
in the compiled program, the two names really share the same implemen-
tation. (Whether the compiler reuses the same code is a slightly different 
issue: for optimization it might be desirable to duplicate code by in-lining, 
for example.) As well as type-checking, we need to know about sharing for 
constructing proofs about specifications and programs. 
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Sharing can be split into two kinds. First, for the combination of two pro-
gram modules to make sense, some subparts may have to share the same 
implementation. Two modules which communicate using sets of integers, 
for example, are only compatible if their underlying implementations of in-
teger sets are the same. Second, when a generic or parameterised module 
is instantiated, part of the result may share with part of the argument. For 
example, when a module which yields binary trees of sets of integers is given 
an input module describing sets of integers, we might like to construct trees 
using previously constructed sets of integers (to give a more realistic version 
of the Li stNat example from Section 5.8.2). Again, the underlying imple-
mentations must be the same. 

In the next few subsections, I will elaborate on the two kinds of sharing 
mentioned above: sharing in the parameter, and parameter-result sharing. I 
will also explain the need to propagate "extra" sharing from the argument 
- argument-result sharing - and how sharing by parameterisation can be 
used with higher-order modules. 

5.9.1 Sharing in the parameter 

Plugging modules together by parameterisation, we may need to know that 
there is some sharing between the modules to be used as arguments; for 
example, that two of them will have the same implementation of integer 
sets. 

Sharing in the parameter amounts to requiring sharing amongst some 
parts of the context, where the context is a collection of assumptions about 
the interfaces of modules. Typically we need to assume this kind of sharing 
for the formal parameters of a parameterised module. 
In SML, sharing in the parameter appears in functor headings like this: 

	

functor F (structure Si 
	

sig type intset ... end 

	

structure 52 
	

sig type intset ... end 

sharing type S1.intset = S2.intset) 

MacQueen [1986] calls this the "diamond import" situation, because of the 
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picture: 
intset 

/\ 
Si 
	

52 

F 
This means that F should only be applicable to structures Si and 52 which 
have the same implementation of I ntset. 

5.9.2 Parameter-result sharing 

When a generic or parameterised module is instantiated, we may need to 
know that part of the result shares with the argument that was used as an 
instantiation. 

Parameter-result sharing is the kind of sharing that occurs between some 
parts of a module and its context. Typically this occurs when a program 
entity is propagated from the import interface of a parameterised module 
to the export interface, so the body of the parameterised module constructs 
this kind of sharing from entities in the formal parameter. 
In SML, this type of sharing appears in functor headings like this: 

functor G (structure S : sig type intset ... end) 
sig type t ... sharing type t = S.intset end 

This heading tells us that the functor C must propagate the type i ntset 
from the argument to the type t in the result. 

Perhaps only pedantic SML programmers write parameter-result sharing, 
because the SML type-checker automatically infers it from the body of the 
functor, which is always written under the functor heading in SML. In other 
languages where the functor body is not available, one needs to carefully 
specify parameter-result sharing. One case is Extended ML [Kahrs et al., 
1994], where functor bodies can be unimplemented; other cases occur when 
there is a higher-order parameterisation or mechanisms for separate compi-
lation, when again functor bodies can be unknown. In ASL+, parameter-result 
sharing is needed because of higher-order parameterisation. 
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5.9.3 Argument-result sharing 

When an argument is supplied to a parameterised module, it may witness 
"extra sharing" over and above the requirements expressed in the formal pa-
rameter. Rather than forgetting this extra sharing, the type-checker typically 
propagates it to the result of applying the parameterised module. 
For example, in S M L if we have a functor 

functor F (structure S:sig type t end) : sig type t=S.t end 

then we can apply F to a structure with a richer signature, for example, 

structure I = F(struct type t=int end) 

The inferred signature of the argument structure here expresses the fact 
that t shares with I nt, which is a name from the context. Although this 
sharing equation is not requested in the parameter signature of F, we might 
reasonably expect the equality to be propagated, so that T. t = I nt. Indeed, 
this behaviour turns out to be invaluable in practice. 

Perhaps it seems strange to imagine that this "extra sharing" would not be 
propagated: reasoning equationally, if F(S).t = S. t and S. t = I nt, it follows 
that F(S).t = I nt. However, this is a design choice, because of the different 
ways of treating type equality in programming languages. In type theories we 
expect types to be compared with a structural equality, but in programming 
languages it is more usual to use name equality. Name equality is efficient to 
implement, and moreover, allows type abstraction by preventing confusion 
of types which "accidentally" have the same structure. With name equality, 
we have a choice over whether to propagate extra sharing or not. 

The standard forgetful explanation of how to apply parameterised speci-
fications in ASL or ASL+ corresponds roughly to generating new type names 
when a parameterised module is applied This standard explanation is that 
the derive operator or reduct function must be used to forget any extra 
information present in the argument signature, as shown for the example 
Li stNat on page 173. If sharing information about type identities is part 
of the signature, as will be proposed in Section 5.10, it is forgotten by the 
derive operation and cannot be propagated to the result. 

The crux here is that parameterised programs and specifications in ASL+ 
are given fixed input and output signatures. For example, a parameterised 

9lhere is still a question over whether each application of a module produces new 
names, or whether every application of a module to the same argument produces the same 
names: this is the distinction between a generative and applicative semantics mentioned 
in Section 7.3.5. 
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program denotes a single function, 

f : Mod (2 par ) - Mod (f res ). 

But in practical module systems, a parameterised program denotes a family 
of functions indexed by the signature of the actual parameter, 

farq : Mod (arg ) 	Mod (res (D 2'a g ), 

where the result signature 2'res 1arg  depends in some way on the signa-
ture of the actual argument. This dependence of the output signature upon 
the input signature is reflected in most explanations of parameterisation in 
specification languages, too, in particular including the pushout approach 
widely used since CLEAR [Burstall and Goguen, 1980]. The signature of the 
output need not contain extra names'° but it should contain the sharing 
information from arg , to allow argument-result sharing. 

If sharing information is added to the institutional notion of signature, 
then the rough typing approach in ASL+ cannot be good enough. If sharing 
is explained outside the institution signatures, then we would need extra an-
notations to explain the propagation behaviour of parameterised programs. 
A whole new type system would be needed to type-check modular programs. 

5.9.4 Sharing by parameterisation 

At least since Pebble [Lampson and Burstall, 19881, researchers have known 
that sharing in the parameter is not needed when higher-order parameteri-
sation is available. This is because, in the absence of cyclic dependencies, we 
can re-express examples like the one above by "lifting" out the common part 
of the parameters and putting it into a new parameter. 

Sharing by parameterisation was used heavily in the example in Chap-
ter 2. To re-cap, here is a variation of the first example above (in a putative 
extension of SML): 

functor F' 
(structure IntSet: INTSET 
functor FS1(X:INTSET) : sig 

sharing type intset = X.intset 
end 

functor FS2(X:INTSET) : sig 

°CertainIy not extra user-level identifiers; additional names from the input could be 
treated as hidden in the output. See Section 7.3.2. 
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sharing type intset = X.intset 
end) 

= struct 
structure S1=FS1(IntSet) 

and S2=FS2(IntSet) 

end 

The functor body provides the desired sharing, by construction. 
The change from F to F' adds an extra parameter to the functor and 

moves the declaration of Si and S2 into the functor body. This makes the 
modular structure more complicated, but it has important advantages. First, 
the application of F' cannot fail because of accidentally basing Si and S2 
on different SET-structures. Second, more freedom is allowed in the order 
of program development; we may implement IntSet and FS1, FS2 in any 
order. 

The crucial point is this: to know S1.intset=52.intset in the body 
of the functor, we must know the parameter-result sharing specified in the 
functor heading for FSi and FS2. So using sharing-by-parameterisation, we 
can reduce sharing in the parameter to parameter-result sharing, but the 
latter is still needed. 

5.9.5 How to provide sharing 

The preceding subsections surveyed the different ways that sharing can be 
constructed or requested in modular programs. The conclusion is that, when 
higher-order parameterisation is available, there is one kind of sharing which 
must be explained: sharing between parameter and result. To be a useful way 
of deriving type identities, the possibility for allowing extra sharing from the 
argument is also important. 

The type system I shall define in Chapter 7 focuses on providing parameter-
result sharing, including propagation of extra sharing from the argument. 

5.10 Sharing in Institutions 

Suppose we wish to extend an institution-based semantics of a specification 
and programming language to one which provides parameterised specifica-
tions and programs. We want a generic construction which works on any 
particular institution and any simple specification or programming language 
over it. 
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Following the model-theoretic approach outlined in Chapter 1, programs 
are syntactic expressions which denote models from an institution 2, and 
specifications denote classes of models. More fanciful views than this are 
certainly possible, to bring the syntax of programs and specifications further 
into the picture. (For example, we can consider a programming language to 
be an institution in which the satisfaction relation is a function from sen-
tences to models.) But I shan't consider syntax further just yet. 

The problem is to account for sharing. While a real language (particularly 
a programming language) may already include an understanding of sharing, 
the usual institutional semantics of ASL in an institution such as EQ or 
JOC does not. 

What is meant by this? Simply that there is no way to specify sharing in 
algebraic signatures. For example, in the signature 

=def Sig 
sorts s, t 
opns c : s, d: t 

end 

the equation "c=d" is ill-typed and so not in Sen(s). But examples in Sec-
tion 5.9 showed that, either by assumption or by the way the program is 
constructed, the two sorts s and t might always denote the same set, so the 
equation c = d is type-correct. 

There are two basic ways to solve this, corresponding to whether or not 
we deal with sharing information. 

Ignore sharing We could extend the satisfaction relation 	to be three val- 
ued, so that A 	cp E { true, false, wrong }. Then Sen(E) is extended 
to contain all formulae which could possibly have a denotation. So now 
c = ci Sen(E), but if Ac  * Ad, then (A 	c = ci) = wrong. This is a 
bit like dynamic type-checking in programming languages. 

Handle sharing If we deal with sharing information somehow along with 
signatures, then we can maintain the idea of static type-checking. Then 
Sen(X) consists only of formulae which have a denotation in the se-
mantics, as usual. 

The idea of a three-valued or partial satisfaction is interesting, and multiple-
valued satisfaction relations have already been studied in the institutions 
literature. The satisfaction condition makes sense because formulae should 
not change definedness under a renaming. However, some standard con-
structions on institutions with two-valued satisfaction relations, such as the 
addition of negation, need modification. 
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More importantly, it seems wrong to ignore sharing when we have lan-
guages that can be statically type-checked. Using a statically type-checked 
specification language is even more advisable than using a statically type-
checked programming language. It seems strange that some formulae might 
make sense "accidentally" - only for particular implementations of the speci-
fication or its parameters. So I shall pursue the "static type-checking" sce-
nario, adding sharing to the framework. 

There are two ways of adding sharing to the framework: 

External sharing - sharing is resolved outwith the institutional notion of 
signature. For example, we could maintain a map from "external iden-
tifiers" to "internal names," the latter being names in an algebraic sig-
nature. This is (a bit) like the 1990 SML semantics, and was suggested 
in the algebraic semantics sketched for EML by Sannella and Tarlecki 
[19861. 

Internal sharing - sharing is made part of signatures in the institution. For 
example, to handle type sharing, signatures might be given an equival-
ence relation on sorts. 

The advantage of external sharing is that we stick to a familiar-looking in-
stitution with ordinary algebraic signatures. The considerable disadvantage 
is that we completely break the institution-independent framework: for ex-
ample, the specification building operators of ASL would have to be lifted to 
operate on the "external" part of algebraic signatures. Much extra complex-
ity is hidden in the translation function mapping the source language into 
the institutional semantics, and it would have to be defined afresh whenever 
we modify the source language. 

The alternative, having sharing internal to signatures, means that we 
must modify the institution. After that, we retain the advantage of being 
able to apply the familiar institution-independent framework. Following this 
choice, signatures are static typing environments which contain the com-
plete information needed to type-check terms and formulae. This means 
that Sen(s) is exactly the set of well-typed formulae in the abstract syntax 
over the signature f. 

The advantage of an institutional semantics is an excellent motivation for 
following the internal sharing approach. There is still a question about how 
the sharing information is expressed. We could use an equivalence relation 
on sort names, or perhaps a class of models over some subsignature to force 
the interpretation of some of the symbols." 

"this last idea is reminiscent of hierarchical specifications, see Wirsmg [1990]. 
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Chapter 6 defines an institution JTC which expresses sharing by adding 
"symbolic type equations" to signatures. This allows signatures to remain 
close to the concrete syntax of the language, because names in a signature 
are also used as program-level identifiers. For FTC, the sentence functor 
is defined directly upon the richer signatures. This approach takes advan-
tage of having syntax to describe algebras: the symbolic type equations are 
composed of type-expressions in the underlying programming language. 

5.11 Related Work 

Researchers have studied numerous foundations for module parameterisa-
tion in specification languages [for brief surveys see Wirsing, 1990, Sannella 
et al., 1992] and also in programming languages [for references see Leroy, 
1996b]. But there is hardly any work on modules for wide-spectrum lan-
guages which encompass both program and specification parameterisation. 
Exceptions include the original description of ASL+ [Sannella et al., 1992] 
and the languages EML [Kahrs et al., 1994] and SPECTRAL [Krieg-BrUckner 
and Sannella, 19911, which each have H-abstractions, but no A-abstraction 
over specifications. 

Here I shall mention some work related to ASL+ from the areas of type 
theory and specification; this is not an attempt at a full survey. Related work 
on programming languages (which relates more with the last two sections 
above) will be compared in Chapter 7. 

Module algebra [Bergstra et al., 1990] Specifications in ASL+ are built us-
ing SBOs, which were formalized in Section 5.2 as n-ary operations in an 
algebraic signature. The module algebra of Bergstra et al. uses operators for 
building specifications in JOC, specified as an abstract datatype. Rather 
than a sort for (the algebras in) each signature, there is a single sort M 
of modules, together with an operation Sig(—) : M - Sign. The abstract 
datatype has axioms for the laws that the SBOs must satisfy. In ASL+, such 
laws are instead expresssed via 	We could use the operations of module 
algebra as an alternative set of SBOs for AASL+, for the particular institution 
:roc. 

Type theoretic approaches Several researchers have tried to fit algebraic 
specification languages inside type theories; Luo [1993] gives a nice refor-
mulation of ASL inside ECC, for example. Type theory appears promising 
for program development: specifications and programs can be written in the 
same language, and there are useful constructs for modularisation, including 
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A-abstraction for parameterisation, 17-abstraction for specifying parameteri-
sation programs which depend on their arguments, and 1-types for building 
up programs. These last two features are exploited by Burstall and McK-
rnna [1991] in the deliverables approach to program development; Reus and 
Streicher [1992] reformulated the axioms of module algebra in this setting. 

But type theory is not (yet) a panacea; in particular, £-types do not pro-
vide the right explanation of modular programming (dependent records would 
be better) and user-level support for writing modules is only now being in-
vestigated [Courant, 1997b]. Moreover, the ASL+ approach works not in an 
obese type theory, but for an arbitrary programming and specification lan-
guage, without adding anything new to them. 

COLD-K [Jonkers, 19891 The specification language COLD-K has a param-
eterisation mechanism studied by Feijs [1989]. It is based on A-calculus ex-
tended with a conditional fi -reduction rule, called it: 

(Ax 	R.M)N— M[N/x] 	provided N R 

The term R acts as a so-called parameter restriction. The relation is defined 
on terms of the calculus, extending reflexivity and assumptions pointwise to 
A-terms. The proof system for M 	N includes a contravariant rule for 
A-terms. This gives a calculus of higher-order parameterisation which has 
similarities with the type-level of higher-order subtyping calculi mentioned 
in the last chapter (see Section 4.3.2), and hence with AASL+. The conditional 
rule for fl-conversion corresponds to the usual check that an argument type 
A ::~ B in the rule for applying type operators (Ao( :!~; B. M)A. A term can-
not be written in the (full) type systems studied here unless it satisfies the 
parameter restriction. 

To limit the terms that can be written in the COLD-K A-calculus, Feijs 
gives a Curry type-assignment system, starting from an algebra of constants 
over a single sort and a pre-order on the sort. A model is constructed by 
extending the algebra with a "top" element of its domain, and interpreting 
Curry typed terms as functions, in the usual way. 

This is close to the ideas behind rough typing and SBOs in ASL+, except 
that Feijs begins from a single type 0 for all specifications, rather than types 
P(E) for each '12 A single type for all specifications gives a more general 
notion of parameter: one can write functionals operating on specifications 
of arbitrary signature, for example. Arguably, such flexibility is not so useful 
when programming and specifying in-the-large, because we want modules 

12 He mentions the possibility for other sorts, but the suggestion is that these would be 
used for syntactic purposes: parameterised renamings and the like. 
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to have fixed input and output interfaces to comrninicate requirements be-
tween separate parts of the development (the interfaces should be fixed, but 
arguments which are more general than the interfaces should be allowed). 
But this is a point of methodology rather than a criticism of the language. 

Compared with ASL+, COLD-K has no H-abstraction (and no level of pro-
grams). 

Cengarle and Wirsing [1994] A similar specification language with higher-
order parameterisation based on A-calculus was introduced by Cengarle and 
Wirsing and studied in detail in Cengarle's thesis [1994]. The basic calcu-
lus is similar to COLD-K's A-calculus, but instead of conditional /3-reduction, 
Cengarle provides her language with a formal system for deriving a set of 
requirements which must be satisfied for any particular parameter. She also 
distinguishes a type of specifications 1 from the type of signatures 0, and al-
lows parameterised signatures as well as parameterised specifications. Later, 
parameterised requirements enter the picture. 

A crucial part of Cengarle's language is the use of the function Sig(—) 
as part of the object language, rather than a meta-language entity (this idea 
is suggested in Wirsing [1990]).  It means that the body of a parameterised 
specification can compute the desired output signature based on the signa-
ture of its parameter, which may vary. This is a flexible technique, but still 
requires the user to explicitly construct combinations of signatures - for a 
high-level language, we might prefer that pushouts or amalgamations were 
constructed automatically. 

Apart from these differences, ASL+ stands apart from Cengarle's lan-
guage because it includes H-specifications and parameterisation on programs, 
as well as parameterised specifications, and is given a model-theoretic se-
mantics rather than a presentation-level semantics (see the discussion in 
Chapter 1 on page 18). 

5.12 Summary 

This chapter described the idea behind ASL+ as a generic construction for 
building a modular programming and specification language from an arbi-
trary institution. An abstract version of ASL+ was defined which was in-
tended to realise this goal, based on modifications to the original work by 
Sannella et al. [1992]. 

The abstract version of ASL+ was defined using AASL+,  an extension of 
the type systems A<{}  and A Power  of the previous chapters. The definition 
of AASL+  began with a rough type-checking system and a semantics based on 
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the definitions given for A Power•  The "full" type system, called the satisfaction 
system, was based on a consequence relation -- for proving satisfaction for 
simple specifications and programs built with PBOs and SBOs. All the results 
proved for Apower  in Chapter 4 also hold for AASL+. 

To define ASL+ itself, specific PBOs and SBOs were defined, for construct-
ing programs and specifications based on an arbitrary institution. The syntax 
and semantics of these operators is based on Sannella and Tarlecki [1988a,b]. 
Then a proof system defining 	was sketched, demonstrating some old 
rules from Farrés-Casals [1992] and some new (but unexciting) rules; further 
research is needed here. 

This abstract description of ASL+ can serve only as a kernel language; 
examples such as those in Chapter 2 need translation to be fully formalized. 
This is because of two problems described in Section 5.8: the context problem 
and the sharing problem. These problems are related, in fact, since we wish 
to find a useful form of context and at the same time explain sharing between 
the context and the body of parameterised program or specification. 

These problems were explained and explored in the later part of this 
chapter. The exploration motivated a design decision. In Section 5.10 I de-
scribed the idea of including symbolic type expressions in the signatures 
of an institution, so that the names of the signature can really be used as 
program-level identifiers, as in the examples in Chapter 2. This idea is taken 
up in Chapter 6. 



6 The Institution FPC 

This chapter defines an institution FPC, complete with a syntax for sig-
natures and algebras. It is based on a small functional prograrmning 
language together with a suitable program logic. The functional lan-
guage is FPC, which has partial recursive functions and recursive types. 
The program logic is a version of Higher Order Logic, extended with 
constructs for reasoning about the types of FPC. 

In the next chapter, the institution FPC is used to define ASL+FPC,  a 
concrete version of ASL+. 
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6.1 Overview 

T HE LANGUAGE ASL+ was conceived as a construction to build a modular 
specification and programming language from a core-level programming 

language and a corresponding program logic. The construction is supposed 
to work for any programming language and program logic with an institu-
tional semantics. 

Institution-independent generalities are all very well, but to illustrate the 
use of ASL+, we present examples using specific instances. A good way to 
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be encouraged that generalities work is to carefully examine particular in-
stances, spelling out low-level details it is tempting to omit. 

This chapter and the following one present my attempt to examine one 
particular instance of ASL+. Rather than use a programming language con-
trived from the simplest institution EQ., I shall use a language which more 
closely resembles a modern functional programming language such as Stan-
dard ML, together with a suitable logic for writing specifications. It should be 
able to formalize the examples earlier in the thesis completely. This means 
in the core language, dealing with higher-order types, and both recursive 
functions and recursive types; in the module language, it means handling 
sharing and the propagation of type equalities. 

As a picture, the syntax fits together like this: 

The programming language is built upon FPC, a minimal A-calculus with re-
cursive types. Programs are groups of declarations of FPC types and terms. 
Signatures are the "types" of programs; declarations of type names and value 
names with types. The program logic, dubbed LFPC, is a version of Higher 
Order Logic (HOL) extended with LCF-like constructs for reasoning about the 
types of FPC. Terms of FPC are also terms in LFPC. The propositions of LFPC, 
together with the syntax for signatures and the SBUs of ASL, give a specifi-
cation language. Combining the programming and specification languages 
and adding the ASL+ A-calculus for higher-order modules, we finally arrive 
at ASL+FPC 
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For each piece of the syntax, there is a corresponding semantics: 

The typed A-calculus FPC has a standard CPO model .iM in a category which 
allows the solution of recursive domain equations. The FPC signatures and 
algebras are the denotations of signature expressions and programs in the 
programming language. The logic LFPC has a set-theoretic model £ which 
interprets the predicate on an FPC type as the CPO order relation on its 
domain in N. (The type itself is modelled as the underlying set of the do-
main.) Formulae from LFPC are combined with algebras and signatures in 
the institution for FPC, FPC. Finally we can give a semantics for ASL+FPC, 
in a similar form to the semantics defined in earlier chapters. 

This chapter contains the "core" language part of this construction, which 
defines the institution FPC and the syntax for signatures and algebras. Sec-
tion 6.2 introduces the syntax for FPC; Section 6.3 defines its semantics. 
Section 6.4 introduces the syntax for LFPC, and Section 6.5 defines its se-
mantics. Section 6.6 sketches a proof system for the logic. The institution 
FPC is defined in Section 6.7, and a syntax for programs and signatures 
follows in Section 6.8. More details of FPC appear in Appendix A, including 
definitions of standard types and a presentation of the LFPC proof system. 

Section 6.9 discusses the design of ITTC and compares it with related 
work. Section 6.10 concludes with a summary. The study of the module 
calculus proper begins in Chapter 7. 
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6.2 The Language FPC 

The language FPC (Fixed Point Calculus) is an extension of the simply-typed 
lambda calculus with product types, s x t, sum types s + t, and recursive 
types pa.t [Plotkin, 1985, Gunter, 19921. 

With these type constructors no base types are necessary because famil-
iar datatypes can be built-up beginning from the empty type pci.a. For each 
function type s -) p, we can define a fixed point operator so that we can pro-
gram with recursive functions. The expressiveness of FPC is well-known; for 
reference, Appendix A has some more details of how the familiar datatypes 
and fixed point operators can be defined. 

In practice, of course, the full type expressions for familiar datatypes are 
too cumbersome to write out every time, and we need to declare type defini-
tions for abbreviation. For the same reason, we need to declare terms, such 
as the fixed point operator. Declarations are added at the level of programs 
(rather than expressions); to allow for them we add type and term constants 
to the language of expressions. 

This section reviews the syntax of FPC. The presentation given here dif-
fers from those cited above, because it is factored by a signature to specify 
type and term constants. 

6.2.1 FPC types and signatures 

Let TyVar and TyConst be disjoint countable sets, the type variables and 
the type constants. I use a,... to range over TyVar and c, ci,... to range 
over TyConst. The set of FPC types, ranged over by t, is generated by the 
grammar: 

t ::= c I a I t—)t I txt  I t+t I pa.t 

The free and bound variables of a type are defined as usual, and o-convertible 
types are considered syntactically identical. Substitution of the type s for the 
type variable a in the type t is written [s/alt. 

Given a subset Ty 	TyConst, we write ProgTypes(Ty) for the set of 
closed types containing constants only from Ty. 

The syntax of FPC is parameterised on a notion of signature, which is 
equipped with sharing equations for type constants.' Let TmConst be an-
other countable set, the term constants. I use v,... to range over TmConst. 
Occasionally I use v, v' to range over TyConst u TmConst. 

1J  place of the usual algebraic terminology of "sorts" and "operators," I will oten speak 
of "type constants" and "term constants". 
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Definition 6.1 (FPC Signatures). 
An FPC signature ' is a triple (Ty, SIrS, Tm) where 

Ty 	TyConst is a set of type constants, 

shr : Ty -. Fin (Prog Types (Ty)) is an assignment of finite sets of 
types to type constants, 

Tm : TmConst - ProgTypes (TyE) is a partial assignment of types to 
term constants. 	 o 

The set of type constants Ty determines the set of .1-types, Pro gTypes 
For simplicity, signatures do not allow overloading, so a partial function TmX 

gives the types of term constants; the set of term constants defined by I is 
Dom(Tm). 

The component sW expresses sharing between types, or type definitions 
so a type constant can abbreviate a complicated type-expression. (See Sec-
tion 5.10 for motivation behind adding type equations to signatures.) 

The equations given by ShE  are asymmetric. In principle the sharing equa-
tions of a signature should be unifiable and have a solution as a set of type 
assignments for the type constants of the signature, in other words, there 
should be a partial function from TYX  to  ProgTypes(TyX).  Instead, at this 
stage a function into Fin(ProgTypes(T)) allows signatures to be put to-
gether easily. No restrictions are put on sW to prevent inconsistent equali-
ties between types; none are necessary for the following definitions to make 
sense, and such "monster" signatures  are prevented in the concrete syntax. 
However, inconsistent sharing equations can arise when type-checking the 
module language (see the discussion on page 258). 

Definition 6.2 (Type equality generated by a signature). 
A signature 1 = (Ty,Sh, TmX)  gives rise to an equality relation on types, 
written =, which is defined to be the least equivalence relation generated by 
the set { c = t I t c= SW (c), c E ryE } and compatible with the type formers. 

(Notice that =E  does not identify a recursive type with its unfolding the 
equality is intended to identify types which have the same elements, but a 
recursive type and its unfolding are only isomorphic in the syntax of terms 
considered below.) 

2Tffls is the fearsome terminology used in SML. 
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Definition 6.1 defines a rather syntactic form of signature; we would ex-
pect the two signatures 

Sig 	 Sig 
type c 	 type c 
type d 	 type ci 
sharing c = d 	 sharing d = c 

end 	 end 

to be essentially equivalent? Signatures use SIr, rather than the equality 
relation =_v directly, because it allows a practical implementation to recover 
syntactic representations of signatures. (Researchers criticized the 1990 def-
inition of SML [Milner et al., 19901 for not allowing this.) Semantically we 
consider signatures modulo an equivalence relation, given in Definition 6.9. 

Notation 6.3. Let X = (Ty,':, Shr,  Tm) be a signature. I will use several 
shorthand notations: 

Notation 

Pro gTypes (2) 
CEX 
C := t E 2 
VEX 
V :tEX 

Meaning 

Pro gTypes (T),-") 
cETy 
t E Sh5 (c) 
V E Dom(Tm') 
Tmr(v) = t 

Xu{c} 	(Tu{ c }, SW,  TmX) 

Xu{c:=t} 
Xu{v:t} 	(T, SW'  Tm[v—t]) 
0 	 ({ },{ },{ }) 

In the last case 0 is the empty signature. 

This notation is used for triples (Ty, Sb, Tm) which are not necessarily proper 
signatures, perhaps because the domain of Sh is not Ty, or because part of 
the range of Sb or Tm lies outside Pro gTypes (Ty). To draw attention to this, 
we may call such a triple a pre-signature. All the notations above make sense 
for pre-signatures. 

62.2 FPC terms and type-checking 

Let Tm Var be a countable set of term variables, disjoint from TmConst. I 
shall use x, y,... to range over Tm Var. The set of FPC terms is given by the 
grammar: 

3The syntax used here is defined formally in Section 6.8.2. 
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e ::= V I x 
I fun(x:t).e I ee 
I (e, e) I 	fst(e) I 	snd(e) 
I init+t (e) I inrt ~t (e) 

case e of inl(x) => e orinr(x) => e 
I intropat(e) I elim(e) 

The free and bound variables of a term are defined as usual oz-convertible 
terms are identified. Substitution for terms is written e[f/x]. 

Given a signature £, the set of 1-terms, ProgTerms(), is the set of closed 
terms which contain only term constants v E I and types in Pro gTypes (s). 

FPC is a typed language, and only typable terms are assigned a meaning 
in the semantics. A term is typed with respect to a signaturef and a context 
G of assumptions x : t about the types of free variables. As usual, typing 
contexts must not contain repeated declarations for the same variable. The 
typing judgement for FPC is: 

G >' e : t "term e has type t in context G, in signature f " 

It is defined in Figure 6.1. 

Typing in FPC has some good properties. 

Proposition 6.4 (FPC typing has good properties). 
(Closure). 
If G >1 e: t, thenFV(e) Dom(G) and  E ProgTypes(). 
Moreover, if a term constant v appears in e, then v E . 

(Type unicity). 
If G >1 e : s and G c e : t then s =z t. 

Proof Standard. 	 0 

Using Proposition 6.4(1), if >r e : t, then e E ProgTerms(Z). 

6.2.3 Changing signature 

A signature morphism is a consistent renaming of the type and term con-
stants in a signature, which preserves sharing. 

Definition 6.5 (FPC Signature Morphisms). 
A signature morphism u : - I' is a pair (Ty', Tm° ) where 

Ty:Ty' - Ty 
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V :t Cl 
G > v : t 

t E ProgTypes(~J) 

G,x:t,G' >1 x:t 

G,x:s > e : t 

G >E fun (x: s). e : s -) t 

G > 	e1 :s -) t 	G > f e2 : s 
G > 	e1 e2 : t 

G'-e1 :s 	G>e2:t 

G >1 (el, e2) :sxt 

G 	e : s x t 
G >1 fst(e) : s 

G 	e: s x t 
G >1 snd(e) : t 

G 	e1 : s 
G >1 in1 +t(ei) : s + t 

G > e2 : t 

G >1 inrs+t(e2) : s + t 

G > 	e: s1 + s2 
G,x:s1 > V e. 
G,y:s2 >1 e2 :t 

G 
of inl(x) =' e 	

: t case e 
or inr(y) 

G r 	e: [pci.t/ci]t 

G > intropa.t(e) :pci.t 

G > e : pa.t 
G > 	elim(e) : [pci.t/ci]t 

G>e:s S=t 
G >1 e : t 

Figure 6.1: FPC type-checking 
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Tm°  : Dom(Trn) - Dom(Tm') 

are functions such that 

c:=tE I => o-(c)='o(t) 

v:tE f == 	Tn'(o(v))='a(t) 

for all c, v e Y. As usual, o also stands for the homomorphic extension of 
Ty' to types or for the extension of Tm°  and Ty' to terms. 	 o 

A signature morphism a : I - " translates 1 types and terms to Y" types 
and terms, preserving the type equality of E. The translation also preserves 
typing; the next proposition establishes this. If G is a context, 0-  (G) is the 
context obtained by replacing each declaration x : t j  in G with x: a(t1). 

Proposition 6.6 (FPC typing is preserved by signature change). 
Let a : - £' be a signature morphism. 

t E ProgTypes() = 	a(t) E ProgTypes(2'). 

s =E t 	==> 	o-  (s) =' o-  (t). 

G >1  e : t 	==> 	o-  (G) > 
Z ' 

o-  (e) : o-  (t). 

e E ProgTerms() = a(e) E ProgTerms(X'). 

Proof 

1. Immediate from definition of signature morphism. 

By induction on the generation of the equality s = t. In the base 
case where c := t E E, it follows immediately from the definition that 
a(c) =j'  a(t). 

Easy induction on the derivation of C >1  e : t. 

Immediate from part 3. 	 0 
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A special case of signature morphism is the inclusion between a signature 
2 and a richer one 2' having more constants or equalities. 

Definition 6.7 (FPC subsignatures and inclusions). 
A signature 2 is a subsignature of 2', written 2 c 2', if 

TyTy, 

c := t e 2 => c =' t, and 

v:tE2 

When 5 5', there is a canonical signature morphism t j,z,  : S - 5', the 
inclusion of S in 5', composed of the evident inclusions. 

Example 6.8. Define three signatures by: 

El def 

Sig 
type c 
val v: (c x boo!) 

x(c x boo!) 
end 

=def 

Sig 
type c 
type ci 
sharing ci = c x boo! 
val v : ci x ci 

end 

23 =def 

Sig 
type c 
type ci 
val v: (c x boo!) x ci 

end 

Then 5 c 12 and 23 2:2  but Si  and 53 are unrelated. 	 X 

The subsignature relation is reflexive and transitive. It generates an equiv-
alence relation on signatures which is the intended equality between signa-
tures. Signature morphisms also have a intended equality. 

Definition 6.9 (FPC signature and signature morphism equality). 
Let 5,5' be signatures. Then S = 5' iff S 9  5'  A 5'  9  5. 

Suppose o, cr2  : S -1'. Then i = a2  iff 

VcEX.c11(c) =' U2 (C) 	A 	Vv eS.o-1 (v) =o2(v). 

6.3 Fixed Point Semantics of FPC 

This section recalls the standard domain construction in Gunter and Scott 
[1990], which gives FPC types a fixed-point semantics using a universal do-
main U. Then an environment model is defined for FPC. 



The Institution JTC 

6.3.1 Universal domain 

A universal domain can give a semantics for recursive types, using the fixed 
point theorem for CPOs to solve recursive domain equations. To define the 
semantics ofFPC, it is enough to rely on abstract properties of the universal 
domain without worrying about its concrete construction. 

The definitions in this section are standard. 

CPOs. A cpo D is a partially ordered set in which every directed subset has 
a least upper bound. The underlying set of D is written as IDI.  A pointed cpo, 
or cppo, is a cpo which has a least element. The lift of a cpo D is the cppo 
D1  whose underlying set is D u { ± } for i 0 D, and whose partial order is 
that of D extended by making ± least. I write up : D -b  D1  for the injection 
function. Given a cppo D we can form the cpo D1  which has the least element 
removed. A function f : D - F between cpos is continuous if it is monotone 
and preserves least upper bounds of directed subsets. 

CPO constructions. The Cartesian product of two cpos D and E is D x E 
which has the set of all pairs (d, e) with d E D, e E E as underlying set, 
ordered componentwise. If D and E are pointed, their smash product is the 
cppo D®E, which is defined as (DI  xE). The function smash :DxE - D®E 
is defined by 

(d, e) ifd*i and e*±, 
smash(d,e) = 1 ---D®E otherwise. 

I write the projection functions (strict on D (& E) as fst and snd. 
The disjoint union of cpos D and F is the cpo D i±) F which has as under-

lying set { (Dx {O}) u (E x { 1 }) }, where (d, 0) EDE (d, 0) if  ED d', and 
similarly for elements from E. If D and F are cppos, their coalesced sum is 
the cppo D E, defined as (D I  w E1 ) 1. The functions ml : D - D ED F and 
inr:E - D ED Fare defined by: 

( (d, 0) ifci 	_L, ( (e,1) if  * I, inl(d) = 
	'DE otherwise. 	inr(e) = - 

'DE otherwise. 

For every pair of functions f : D -. F and g : F - F, where F is a cppo, the 
sum eliminator If gj : D ED F - F is defined by: 

If (d) ifx=(d,O), 
g] (x) = 	g(e) ifx= (e,1), 

1 IF otherwise. 

198 
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The continuous function space of two cpos D and E is [D -. E], the cpo 
of continuous functions from D to E ordered pointwise. Given a continuous 
function f: [D - E], strict  is the element of ED1  -. E1 J defined by: 

c 1E 	ifx=±D , 
strict(f)(d) = 	

f(x) otherwise. 

We assume some category Dom whose objects are domains, which are 
cpos of some kind, and whose morphisms are continuous functions. The 
precise details of Dom are not important to the construction; it is enough 
to know that it is closed under the above domain constructors and that it 
possesses a universal domain, 'U, in the following sense. Given a domain D, 
we say that E is a sub-domain of D, written E i D, if I El c I DI and there is a 
morphismp :D - E such that p o  p = p and p(x) ED  x for each x ED. We 
require that 'U has a isomorphic copy of every domain D as a subdomain, 
and that the collection of all subdomains of 'U also forms a domain; thus 
there is a special subdomam PU < 'U which is isomorphic to the domain of 
subdomains of U. Let p  stand for the isomorphism, so p(D) 	p(E) if 
D <E for D,E i U. 

To solve domain equations, 'U should have continuous functions corre-
sponding to the domain constructors. A continuous function R : PU - PU 
represents a domain constructor F : Dom -. Dom if F(D) p'(R((p(D1 ))) 
where D D1  i U. For FPC, we need continuous functions on PU as follows: 

U_) which represents (D, E) - [D -. El l ; 

U><  which represents the smash product; 

U+  which represents the coalesced sum. 

From now on, we assume a fixed category Dom with a universal domain 'U 
satisfying these properties. 

6.3.2 Interpretation of FPC 

The interpretation of types 1vfl{t]j  is defined relative to a type environment 
t which is a partial function that assigns pointed domains4  to type variables 
and type constants. 

4precisely, elements p(D) of PU corresponding to pointed domains D. 
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Definition 6.10 (Interpretation of FPC types). 
Let t be a type expression and t a type environment which is defined on the 
free variables and type constants in t. The interpretation of t is defined by 
induction on its structure: 

LMDlciIll1 = 

Jv! {c]11 = t(c) 

Jv!s —) t1t  = 

1v1s x t]]1  = 

J'4llIS + t11 = 

MllIpci.till1 = fix(D - JVLEtIllL[a -. D] 
	 I 

To interpret terms we need both a type environment t and a (term) envi-
ronment p, which is a partial function from Tm Var U TmConst to elements 
of domains. The two environments must be consistent with the signature 
and context. Because types occurring in well-typed terms are always closed, 
the type environment only needs to be defined on type constants from the 
signature. 

Definition 6.11 (FPC Environments for signatures and contexts). 
Let 2 be a signature. 

The type environment t is a 2-type environment if Dom(t) = TyZ and 

c:=tEX => t(c)=JvLt 1, 

for all c E TyConst. 

The term environment p is a (G,2, t)-FPC environment if Dom (p) = 
TW U Dom(G) and 

v:tE2 => p(v)EJvllljt]11, 

x : t E G => p(x) E J%'101 , 

for all v E TmConst and x E Tm Var. 
If G is the empty context, we speak of a (2, L)-FPC environment. 

Given a 2-type environment i, Definition 6.10 assigns a semantic domain 
J%1{t]J 1  to every type t E ProgTypes(2). Alpha-convertible types have the 
same denotation, as do any pair of types equal in 2. 
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Fact 6.12. If t is a 1-type environment, then s =z t implies lvi I[sjfl = L71uIt]. 

Given a 1-type environment t and a (G, I, t)-FPC environment p, Defi-
nition 6.13 below assigns a meaning lvfl{G >1  e: tJj1  to terms e such that 
G 	e : t. The interpretation of e is an element of a domain D in Dom with 
D 	.Mj[tj. For clarity, we elide the isomorphisms between domains D and 
elements of PU in the definition. 

Definition 6.13 (Intepretation of FPC terms). 
Suppose G 	e : t. Let t be a _Y-type environment and p be a (G, _Y, L)-FPC 
environment. The interpretation of e in L, p is defined by induction on the 
typing derivation: 

1vijG >f v : t], = p(v) 

1viG >zX: tj tP  = p(x) 

1v1G > fun (x : s). e : s —) t 1  = up(strict(f)) where f is defined by 

	

f(cl) = _MG, : S 	e : t(p[x - d]) 

for all ci e jv1s 

jv1G > el  e2  : 	= 1v1G >E  el  : s —) 	(LMG 	e2  : s]I) 

14G r (el, e2) : s x Otp = 

smash(-'MG > e : 	> e2 : t]) 

1vIG 	fst(e) : s]11, = fst(lvflG > e: s x t L p) 

1vlG > snd(e) : th1 = snd(.MG >E e: S X t 1 ) 

1v1G > in1 +t (ei ) : s + t], = inI(LMG r 	e1  : 

jv1G I 	inr + (e2 ) : s + t 1  = inr(li4G 	e2 : t 1 ) 

• 'Al hIG > case e ofinl(x) = e1  orinr(y) => e2  : t 	= 

[f, g]CW!G > e : s1 + S2I L p) 
where f and g are defined by: 

	

f(ct) = lvi G,x : S1 	e1  : tL(p[x - ci]) 

g(e) = lvi G,y :s2  >1  e2  : tL(p[y - e]) 

for all ci E 	e E lvi s2 
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Jv1G >1  intropat (e) : pcl.th,, = JvlG >E  e: [pcl.t/a]t 

JvfljG > ' elim(e) : [pa.t/ajtiflLP = .MEIIG > e: pa.tjfl, 

JvIE[G >E e : tj 1, = Jv1G > e : s]1, 	(where s = t). 

Alpha-convertible terms have the same denotation. Because typing deriva-
tions for any statement G >1  e : t differ only in the places that the type 
equality rule appears, and this rule is ignored in the interpretation function 
(last case above), the interpretation of C >r  e : t is independent of the typing 
derivation used to define it. Furthermore, by the unicity of FPC typing, the 
choice of type t cannot affect the interpretation of e. By these observations 
we have the following fact. 

Fact 6.14. The interpretation of any typable term e in context G is unique, 
for a given choice of environments t, p. 

Section 6.7 extends this fine-grained semantics of types and terms to a 
notion of algebra for FPC. To end this section, we show that the interpreta-
tion of types and terms is unaffected by the choice of names for constants. 

Definition 6.15 (Environment reducts). 
Let o-  : Z -. 2" be a signature morphism. Suppose L is a '-type environment 
and p is a (o- (G),X', t)-FPC environment. We define the reduct of L by a, 
written t and the reduct of p by a, written p by: 

ç L(o- (c)) 	for all ce', 
undefined otherwise. 

tI(a) = t(a) 

p(a(v)) 	for ally E, 
p0-(v) 

= L undefined otherwise. 
pJ(x) = p(x) 

for all c, a, v, x. It follows directly that t i is a s-type environment and p I 
is a (G, f, tI3-)-FPC  environment. 	 E 

Proposition 6.16 (FPC meaning is preserved by signature change). 
Let a : - X' be a signature morphism. Suppose t is a '-type environment 
and p is a (a (G), E', t) -FPC environment. Then 

• 	ME[t L 	= Ma(t)1fl1  

MG > e : t1 = 1a(G) 	' a(e) : 

Proof By induction on the definition of .M!{—,  using Proposition 6.6. 	11 
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T E LogTypes() 

G,Z:T,G' > z:T 

	

Ge:t 	Ge':t 
G > e g e' :prop 

G,Z:T >r  h:T' 

G >- Az:T. h: T - T' 

	

G>Xh :T 	G>h':T 
G > h = h': prop 

Gh:T — T' 	G - h':T 
G >1  h (h') : T' 

G > h:prop 	G 	h': prop 

G >1  h = h' : prop 

G,Z:T >1  h: prop 

G 	cz:T.h:T 

Figure 6.2: LFPC type-checking 

6.4 A Logic for FPC 

This section extends a higher-order logic with terms from FPC and with con-
structs from LCF [Paulson, 19871 for expressing properties of the domains 
of FPC expressions. I call the logic LFPC. Formulae of the logic will be used 
as sentences in the institution FPC. 

6.4.1 Syntax of LFPC 

We use a formulation of Higher-Order Logic similar to that described by Gor-
don and Melham [1993], which takes equality, implication and Hubert's ep-
silon as the primitive logical constructs. Other connectives are definable in 
terms of these. The extension is minimal: FPC types are added as base types 
of the logic and FPC terms are added to the terms of the logic. The cpo order 
relation is added to express the properties of domains. 

Given an FPC signature 1, the set LogTypes (') of types of LFPC, ranged 
over by T, is given by the grammar: 

T ::= t I prop I T - T 

where t c ProgTypes(1). The type equality induced by a signature extends 
to LFPC types in the obvious way. 

Notice that the "logical" function type s - t is distinct from the function 
type s -) t in FPC; the latter denotes a cpo of continuous functions, but 
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the former denotes a full set-theoretic function space. Both are needed; ab-
straction in the programming language can only be over terms of program 
type, but A-abstraction is used in the logic to define the connectives and 
quantifiers, and to construct predicates. Moreover, non-continuous or non-
monotonic functions can be useful for writing specifications [Broy et al., 
1993b]. 

Unlike the usual formulation of HOL, there is no infinite type t of individ-
uals. This is because FPC already has a rich class of types, including types 
such as nat =def  pcl.unit + ci which denote countably infinite collections. 
(However, every FPC type has a bottom element; to get rid of it mechanisms 
of type definition would be useful in the logic, allowing one to define sub-
sets, for example [Gordon and Melham, 1993]. And if the type system were 
extended with subtyping for such subset definitions, it might alleviate some 
of the well-known drudgery of LCF-style reasoning with i.) 

Let LogVar be a countable set of variables ranged over by z. We assume 
Log Var D Tm Var, so that we can abstract over terms of the programming 
language inside the logic, but not vice-versa. The set of terms of LFPC, ranged 
over by h, is given by: 

h ::= Az:T. h I h(h) I z I h = h I h => h I ez:T. h 
I e I ee 

where e ranges over terms of FPC. Notice that application in the logic is writ-
ten with parentheses, whereas application in FPC is written by juxtaposition. 
The usual logical connectives can be defined with the primitives above; def-
initions are given for reference in Section A.3 on page 271. I will use the 
derived forms there without further comment. 

The set LogTerms(E) is defined to be the subset of closed terms with 
types in LogTypes () and term constants in f. 

Terms of LFPC are type-checked with the rules in Figure 6.2. The rules 
extend the definition given in Figure 6.1 on page 195, and the type-checking 
assertion is written in the same way, as G 	h : T. Contexts may now 
include declarations of logical variables, z : T, which are ignored in the typing 
and semantics of program terms. 

A formula is a term with type prop. I shall use p  to range over logi-
cal terms which are (intended to be) formulae, and cl to range over sets of 
formulae. 

Remark 6.17. Adding program terms to the logic makes them into "first-
class citizens" that can be passed to predicates, etc. But strictly speaking, 
they don't need to be added: with quantification over program types, which 
we certainly want for specification, we can express any program term e via 
the c-operator as cx:t. (x E e A e x), relying on anti-symmetry for . 
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Here is the extension of Proposition 6.4 to typing in LFPC. 

Proposition 6.18 (LFPC typing has good properties). 
(Closure). 
If G > h: T, then FV(h) g Dom(G) and  E LogTypes(Z). 
Moreover, if a term constant v appears in e, then v E 1. 

(Type unicity). 
IfG >E h:T and G > h: T' then T= -r'. 

Proof Standard. 	 0 

A signature morphism a : f - " extends to a translation from LogTerms (X) 
to LogTerms(') terms, again written as a. This translation preserves the 
typing of terms. 

Proposition 6.19 (LFPC typing is preserved by signature change). 
If a :1 - X' is a signature morphism and  >1 h: T, then o- (G) -' o- (h) 
o- ( -r). 

Proof Easy induction on the derivation of G >1 h: t. 	 11 

6.5 Semantics of LFPC 

The semantics for LFPC is a standard set-theoretic interpretation for higher-
order logic (see Gordon and Meiham [1993], for example). Each type denotes 
a non-empty set; the set of truth values is a two element set and an arrow 
type is interpreted as a set of total functions. Types t of the programming 
language are interpreted as the underlying set of the cppo ME[t]. 

Definition 6.20 (Interpretation of LFPC types). 
Suppose T E LogTypes (X) and i is a 1-type environment. The interpretation 
Of T is given by structural induction: 

£prop]J = {ff,tt} 

£It]IL = Jtlt[t]l 

L~T  - T] = £{TIL - 

To interpret logic terms, we need an extended form of term environment 
which maps variables in Log Var to the domains defined above. 
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Definition 6.21 (LFPC environments). 
Let t be a 1-type environment and G an LFPC context. An environment p 
is a (G,', t)-LFPC environment if it maps logic variables z : T declared in G 
to elements of the set £IIITL,  and behaves like a (G, _Y, L)-FPC environment 
otherwise. 

The interpretation of terms is straightforward. To interpret the choice 
operator E we assume a choice function which, given any non-empty subset 
of a type, picks an arbitrary element of that subset. This is used in the 
final clause of the definition below. Terms from the programming language 
FPC are interpreted as elements of domains, and 	is interpreted as the 
approximation relation on the domains. 

Definition 6.22 (Interpretation of LFPC terms). 
Suppose G > h: T. Let t be a 2'-type environment and p be a (G,2', L)-LFPC 
environment. We define the interpretation of h in i, p by induction on the 
typing derivation: 

£IG > E Z: Ttp = p(z) 

£G r 	e: t]11, = Jv!G 	e: tl L (pITmVar ) 

IJG >1 e 	e2 : propl,, = 

tt 	if 1v!G > e : tjo Jv1G > e2 : t]] tp 

L if otherwise 

£IG >1  h=h':roI= 

ç tt if £IG >1  h: UIlltp = QG 	h' : TIfl LP  

R if otherwise 

f TG >1 h=h':propILP= 

tt if p = tt and p' = tt, or if p = if 
L if otherwise 

where p = £ EIIG >1  h: propIll  and p' = LEG 	h': 

LEG >1  Az:T. h: T -. T']ltp = the function f where: 

f (m) = LEG,z : T 	h: T' Lp[Z m] 

for all m E LETL 

LEG >1  h(h) : 	= LEG >1  h: T - T' tp (LEG >1  h' : T) 
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£jG > cz:T.h:Tfl1 = 

çany mEW 	ifW*ø, 
anymE1[{T]] otherwise. 

where 

W={mECl{T 1  I £G,z:T > h:prop]1p[zm]=tt} El 

The next proposition establishes the satisfaction condition of the institu-
tion based on LFPC. 

Proposition 6.23 (LFPC meaning is preserved by signature change). 
Let a : - ' be a signature morphism. Suppose t is a X'-type environment 
and p is a (a (G), i", ) -LFPC environment. Then 

£G > h: TtlpI = £ a(G) 	' a(h) : 

Proof By induction on the definition of £j—, using Proposition 6.16 for 
the case of FPC terms embedded in LFPC. 

6.6 A Proof System for LFPC 

To reason formally about programs in FPC we need a proof system for LFPC. 
A suitable system consists of axioms and rules for higher-order logic, aug-
mented with an axiomatization of the domain theory used in the fixed-point 
semantics of FPC expressions. Here we mention some of the axioms for FPC. 
A putative full proof system is presented for reference in Section A.4 on 
page 273. 

The proof system derives sequents with the form: 

iP F-' (p [G] 

where is an FPC signature and G is a LFPC context; p is a X-formulae and 
cI a set of X formulae k, each with free variables in G. The context [G] is 
omitted if it is empty. 

First there must be axiom schemes for reflexivity, transitivity, antisym-
metry and monotonicity of , the latter is: 

F-  Vf :s —) t.Vx,y :s.x y ==> f  E f  

Here s and t range over types of FPC, and s -) t is (or rather, denotes) the 
continuous function space. 
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The existence of a least fixed point operator is guaranteed by the seman-
tics of the recursive types, and there are FPC terms which correspond to such 
operators. To use this in the logic, we need to define a canonical fixed point 
operator. It's also useful to have a canonical bottom element of each FPC 
type. 

FIXS,t 	def 	fun (f : (s -) t) -) (s -) t)). 
(fun (x : r). fun (y : s). f (elim(x) x) y) 
(intror  (fun (x : r). fun (y : s).f (elim(x) x) y)) 

where r pa.a -) (s -) t) 

def 	FIXS,S  (fun (f : s -) s).f) 

Now the properties of FIX can be expressed with axioms, for example: 

FE V f : (s -) t) -) (s -) t).FIX5,t f = f(FIXf) 

Further axioms are needed. To summarize, we need to have: 

axioms characterising FPC types as CPOs; 

the rule of fixed point induction; 

axioms for products, sums and function types, including definedness, 
strictness, distinctness and evaluation properties; 

axioms which characterise the recursive type constructors intro and 
elim as witnessing the isomorphism pal [pa.t/a]t. 

Together, these axioms and rules are enough to derive a large body of theo-
rems about recursively defined datatypes, including principles of structural 
induction. This exercise has been undertaken in several places [see e.g., Paul-
son, 1987]. 

The crucial property of the formal system is of course that it is sound 
with respect to the semantics. The theorem is stated without proof. 

Theorem 6.24 (Hi' is sound). 
Let bea-type environment and  be  (G,1,t)-LFPC environment. 
Suppose { p1  . . . Wn } HE p [ G]. Then 

£EIIG >E  pi:prop]1=tt 

£IG >1  (p,,: ProPIflLP = tt 

implies 
ProP]ILP = tt. 
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6.7 The Institution FPC 

Now we put together the definitions of previous sections to form the insti-
tution FPC. This is straightforward, with the exception that there seems 
to be no good definition of homomorphism known for algebras with higher-
order carriers. Instead we use a discrete model category; anyway, it seems 
that higher-order logic can capture most uses made of homomorphisms by 
model-theoretic constructions. 

6.7.1 Signatures, sign C 

FPC signatures were defined in Definition 6.1 on page 192 and signature 
morphisms were defined in Definition 6.5. 

We consider semantic FPC signatures and semantic FPC signature mor-
phisms as equivalence classes of FPC signatures and signature morphisms, 
with respect to the equalities defined in Definition 6.9. (An equivalent alter-
native would be to definea semantic signatures as triples (Ty, =, Tnr)). 

As a corollary of Proposition 6.6 and Proposition 6.19, equal signatures 
have the same sets of types, equality relation and sets of program and logic 
terms. Moreover, if X = ', then Ty-7  = Ty5  and Dom(TmX) = Dom(Trn'), 
and it is easy to show that a signature morphism with domain (or codomain) 
X also has domain (codomain) i". This justifies using equivalence classes of 
signatures as objects. However, we shall abuse notation by not distinguish-
ing signatures and signature morphisms from the equivalence classes they 
represent. 

Given a signature 1, the identity signature morphism id : . - 	is the 
equivalence class of the inclusion t. Given signature morphisms o : 
2:1  and 02 : 	- 2, their composition o ; o2 is the equivalence class of the 
componentwise composition (Ty°' ; Ty °, Tm°1  ; Tin"), for some choice of 
representatives; it is readily shown to be a signature morphism from 2 0  to 
X. Composition is clearly associative. 

Thus semantic signatures and signature morphisms form a category, which 
FPC we call Sign. 

6.7.2 Sentences, Sen' 

Terms in the logic LFPC were defined in Section 6.4.1 on page 203. A term 'p 
is a -formula if > tp : prop. The set of 1-sentences is defined by: 

Sen(E) =def { 'p 	'p : prop } 
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Given a signature morphism o : E - i", we define SenC(a)  to be the 
extension of o to LFPC 1-terms. By Proposition 6.19, the translation of a 
Z-formula is a '-formula. 

It is straightforward to show that Sen 	: SignC -p  Set is indeed a 
functor. 

67.3 Models, ModYTC 

The denotational semantics for FPC terms given in Section 6.3.2 extends to 
give a notion of algebra for FPC. An FPC algebra interprets type constants 
as domains from Dom and term constants as elements of the appropriate 
domains. 

Definition 6.25 (FPC Algebras). 
Let 	be a signature. A _Y -algebra A is a pair (ILA, PA) where 

tA is a X-type environment, and 

PA is a (E, LA)-FPC environment. 

An equivalent view of a E-algebra A is as 

a Ty-indexed set { IAI }cET of domains in Dom such that c := t E 
implies J AI, = 	t]L for all c, and 

for each v : t E X, an element A, E Jv1tJ 

where t is the type-variable environment defined by t(c) = AI for all c E 

Ty-v . We use these two views of algebras interchangeably. Notice that there 
are no "empty sorts" in this framework. 

Definition 6.26 (Reduct of an algebra). 
Let o : X -. ' be a signature morphism and A' = (LA', PA') be a '-algebra. 
The o-reduct of A' is the s-algebra A'j , =def (LA'  o, PA' cr) 

For every signature X, the collection of s-algebras forms a discrete cate-
gory denoted Mod(). For a signature morphism u : 1 - i",  M0dYT((a) 

is the reduct function - - of Definition 6.26, which maps algebras in Mod-' (i" ) 
to algebras in Mod 	(1). It is straightforward to show functorality of 
MOdYTC.  
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6.7.4 Satisfaction, JPC 

We define the satisfaction relation between 1-algebras A = (LA, PA) and for-
mulae cp by: 

YFC A =,. 	iff 	LEE v-  'p : propiflLAPA = tt 

Lemma 6.27 (Satisfaction lemma for FTC). 
Let  be a '-a1gebra and a-  : E - " a signature morphism. Then 

Al, Jpc 
 'p 	1ff 	A JTC 0

-  ((P) 

Proof Follows directly from Proposition 6.23. 	 El 

Combining the previous definitions, we get an institution. 

Definition 6.28 (The institution FPC). 
The institution ITC = def 

(SignYTC ,  Sen C, Mod1, YPC) 	 D 

68 Syntax for FPC Signatures and Algebras 

FPC is a bare language of expressions. To construct programs in FPC we need 
a way of naming and packaging together groups of types and terms. To write 
specifications, we need a way of packaging axioms together with names of 
types and terms. 

ASL+ provides a language for building specifications using the institution-
independent operators of ASL, so all we need at this point is a syntax for 
writing programs (which denote algebras), a syntax for writing signatures, 
and a syntax for signature morphisms. Caring about a feasible program 
and specification language rather than abstract results, we use syntax for 
finite signatures, and syntax for algebras of finite signature expressible using 
FPC. (This is in contrast with the ASL syntax defined by Wirsing [1986], for 
example.) A signature I is finite just in case Ty is finite, SW (c) is finite for 
all c E T),-7  and Dom(Tnr) is finite. 

The main definitions begin in Section 6.8.2. First we consider a moti-
vation behind them: the desire to work in a context. This was mentioned in 
Sections 2.1.5 and 5.8. 
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6.8.1 Working in a context 

Semantically, signatures are always closed, in the sense that all type con-
stants referred to are declared in the signature. This is implicit in the def-
inition of FPC signature. However, when writing real programs or specifi-
cations, we often work in an environment of already-defined types, func-
tions, programs and specifications, perhaps taken from standard libraries. 
When writing parameterised programs and specifications, or using separate 
compilation of program parts, we have a context of declared programs and 
specifications; the context corresponds to the formal parameters or mod-
ule interface. The difference between an environment and a context is that 
the bindings for the values in an environment are known. Any environment 
has an underlying context, given by the types which can be inferred for its 
bindings. Ideally, we should be able to do type-checking with just a context 
containing typing assumptions; this is in FPC because signatures contain 
enough information to express sharing. 

When writing signatures and algebras, a context is simply an FPC signa-
ture. This is because the "core" language FPC knows nothing about the mod-
ule language; once we move to ASL+ in Chapter 7, a context will also contain 
components corresponding to specifications, parameterised programs, etc., 
which have more complex types. 

Working in a context, we can relax the closure restriction on syntactic 
expressions, and use signatures which may not themselves be closed, but 
are closed when they are added to the context. This is formalized with a 
signature extension, which is a special kind of inclusion in which only new 
type constants and term constants are added. 

Definition 6.29 (Signature extension). 
is an extension of X if both Z and X are signatures, and 

Z,t, c 

sill  I Tyc = ShScD 

• 	TmEIDom(Tzc) = TmSC tx  

If E is an extension of 2, we think of 2 as a signature-in-context. An 
algebra-in-context is then given by a function f Mod (2) - Mod (1) which 
expands any 2-algebra A to a 2-algebra f(A), so that f(A)I f,t, = A, and 
the context part of the algebra is not affected. (Sannella and Tarlecki [1988b] 
call such a function f a persistent constructor). 

Because of the syntactic equality = (rather than =) in the second and 
third clauses of Definition 6.29, the notion of signature extension is not sta-
ble under semantical signature equality. We want this because declaring 
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new terms in a context should not change the context in any way: most 
importantly, it should not introduce new sharing in the context.5  Otherwise 
we could get inconsistencies: there might be an algebra in Mod() which 
could not be expanded to an algebra in Mod (1). Inconsistency ought to be 
limited to the specification part of the calculus, as far as possible. 

Definition 6.30 (Signature morphism in context). 
Given two extensions —11, 12  of 	a signature morphism in con text 	be- 
tween them is defined to be an FPC signature morphism o : El - 2 such 
that 	

id 
> ctx 

Lif 	 L2 

0 

In words, the action of ci on 	is the identity. 

In the next section, signatures in context are built by the union of a sig-
nature for the context X with a pre-signature. Signature morphisms in 
context are built using the union of the identity signature morphism icI, 
with a pre-signature morphism, which is a pair of maps defined on the type 
and term constants declared in a pre-signature. 

Notation 6.31. 
1. Let i  and 2  be pre-signatures. The pre-signature 1l  U 12  is the "se-

quential" union of _11  with E2, defined by 

U 1 =def (Ty' U T2,Sh12,TmX12) 

where 

I Shy' (c) cc Zi A c It 12 
Shn12 (c) = Shx? (c) c 0 11 A c E 12 

[ Sh 	(c) u Sh2 (c) c A c C 

I Tm(v) veJ2  
Tm 12  (v) = - Tm' (v) v E 

undefined otherwise 

for all ce TYr1  u Ty52  and  e TmConst. 

51t would be possible to relax Definition 6.29 to state just that the sharing in f <  is 
unchanged, but allowing it to be expressed differently, so giving a definition stable under 
signature equality. But we would not expect this in the syntax. 
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We write Xt extu £ if —Yct, u £ is a signature extension of'. 

We write o-  : [2:J'1 £2 if fax 9extu £i, £ctx 9extu £2, and 

U 	def (Ty°  U IdT),XCX , Tm'1  U Dom(TmCtX)) 

is a signature morphism in contextXCb(  betweenFctx  U If, andf ctx  U £2. 

The union operation £i U £2 can be defined in terms of the notation in Nota-
tion 6.3 for adding components piecemeal. If Xi and £2 are signatures, then 
—Yl U £2 is also a signature, possibly updating points of TmE1  from Tm2.  (Of 
course, it could be a monster signature having inconsistent type equations, 
hence an empty class of models.) 

6.8.2 Syntax and type-checking 

Syntactic signature expressions are finite sequences of declarations of type 
constants, typed term constants, and sharing equations between type con-
stants and type expressions. Syntactic signature morphisms are sequences 
of renamings. 

Syntactic algebra expressions (programs) are sequences of assignments 
of types to type names and terms to typed term names v : t. The type 
decoration is added so that every syntactical algebra can be easily associated 
with a unique syntactical signature. (In some examples the type decoration 
is omitted, but it should be clear what the intended decoration is.) 

The grammar for signatures, signature morphisms, and algebras is: 

S ::= sigsdec* end 
sdec ::= type c I val v : t I sharing c = t 

s ::= [renam*] 
renam ::= c — c I v — v 

P ::= aig pclec*  end 
pdec ::= typec=t I valv:t=e 

In examples, sequences are written by juxtaposition. 

The rules for type-checking use pre-signatures throughout. A more ab-
stract treatment might use signature extensions rather than pre-signatures; 
because we have a concrete institution with pre-signatures, we can use "par-
tial" objects rather than morphisms between "full" objects, making the rules 
easier to read. Pre-signatures are also used in the presentation of ASL+FPC 
in Chapter 7. 

The judgement forms are: 
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£crx 	0 

sdecs =* ' 	c Gym u) 
ctxPP.sdecs type c == X u { c } 

	

f ctx  Po. sdecs => Z 	v (X u X) 	t E ProgTypes(E u ) 
Xcrx 	sdecs val v : t => 1 u { v : t } 

	

2:ctx  mo. sdecs ==> X 	t e ProgTypes (Ect, U ) 	c E Ty 

	

Ictx  o. sdecs sharing c = t 	If  u { c := t } 

sdecs = 

	

Ictx 	sig sdecs end = 

'ctx 	extu ' 	 ctx 	extu ' 

{ ri  } denotes functions (Tyr, Tmfl 	Ty° = 
def 

Tyr U dTy _ Dom(Tyr) 

Dom(Tyr) Ty! 	 Tm° def Tm' U idprrz 
Dom(Tmr) c Tm 	 o: [] - 

	

'ctx 	[ri  ... rJ 

Figure 6.3: Type-checking signatures and renamings 

£ctx 0. S == X 	Inf,tx, S has pre-signature 
ECX 0. P ' 	 In E, P has pre-signature f 

'ctx 11. s = E - 	In Zctx, s is a renaming from to ' 

The first two of these are type inference judgements, since the pre-signature 
X is determined by the syntactic signature S or the program P. A renaming, 
on the other hand, does not determine its source or destination signature 
uniquely. 

The rules for type-checking are defined in Figures 6.3 and 6.4. No re-
binding of names is allowed in either signatures or algebras. 

The rule for adding sharing c = t to a signature ensures that c is a 
type constant declared in the signature, rather than in the context, so the 
declaration type c must appear earlier in the signature. This motivates the 
abbreviation: 

	

type c = t 	=def 	type c sharing c = t 

215 
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Ectx 	0 

pdecs => 	c (—Yct, u) 	t E ProgTypes( 	uf) 
pdecs type c = t => Z u { c := t } 

e : t 
pdecs 	2L 	v it ('Ect, U) 	t ProgTypes( 	U ') 

Zct, o. pdecs val V : t = e = 	U { v : t } 

Zctx pdecs 
aig pdecs end = 

Figure 6A: Type-checking algebras 

which was used heavily in the examples in Chapter 2. 
In the rule for checking signature morphisms, the renamings must denote 

a pair of functions from a subset of the type and term constants in the 
part of the source signature f which extends the context Zct, The rest of 
the mapping is set as the identity on f, and the result must be a signature 
morphism from £ to the target signature E'. In practice this means that a 
renaming doesn't need to mention every name in a signature; omitted names 
are mapped to themselves. 

The side-conditions in the rules for adding type constant declarations to 
signatures and algebras ensure that the resulting signature is an extension 
of the context. This is stated in the proposition below. 

Proposition 6.32 (Typing yields signature extensions). 
Let Ect, be an FPC signature. 

If either 	S ==> Z or 	P ==> E then X is unique, and 
'ctx extu X. 

IfXc(-,< 	[r . . . rj 	 then fctx extu f and 'crx extu "• 

Proof Easy. 	 U 

When writing syntax for renamings, it is useful not to have to write syn-
tax also for the source and target signatures. If the source signature is given, 
then a unique target signature can be constructed as the image of the renam-
ing. This is used in Chapter 7. 
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Lemma 6.33 (Signature morphism targets). 
Given a source signature X, if there is a target signature ' such that £ 
s = 	- i", then there is a unique target signature s(s), such that s(X) 
E' for any other targets'. 

Proof Define s(s) as the image of' under a, written o-  (1): 

cr(') def (o(Ty'),SW;o,Tm';a) 

where o is the pair of functions (Ty', Tm°) determined by s as in the rule 
in Figure 6.3. 	 El 

Because signatures were designed to be close to the syntax, we can re-
cover syntactic representations of finite signatures. 

Proposition 6.34 (Signatures representations can be recovered). 
extu 2' and Z is finite, then given orderings on TyConst and TmConst, 

we can recover a unique syntactic representation Syntax(X) such thatY 
Syntax(X) =' 1. 

Proof The given orderings can be extended to type expressions in some 
canonical way. Then we can recover a signature expression Syntax(2) with 
the form: 

Sig 
type C1 
sharing c1  = t1,1 
valv1  : t 

end 

listing all the types, then the sharing equations, then the value declarations 
of the signature. 	 o 

It won't be used here, but Syntax(X) would be useful in practical implemen-
tations, for reporting inferred types to the user15  

6.8.3 Semantics of signatures, morphisms, and algebras 

Definition 6.35 (Interpretation of syntactic signatures). 
The interpretation of a signature expression S in a context Zcu  is defined 
to be the signature in context f ct, extu given by the typing judgement 
.ctx  0. s=zE. 

6A good implementation would attempt to order the declarations as they were input 
by the user, rather than re-ordering them into a canonical form. For this, FPC signatures 
should be defined in a less algebraic and more type-theoretic style, even closer to the 
syntax, i.e., as lists of declarations - see comments in Section 8.2. 
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Definition 6.36 (Interpretation of syntactic signature morphisms). 
The interpretation of a signature morphism expression s in a context 
where 	s => 	-. X', is defined to be the signature morphism in 
context o : [L<]' -. £' determined by s. 

Definition 6.37 (Interpretation of syntactic algebras). 
The interpretation of an algebra expression P well-typed in a context Xct, is 
defined to be the functor fp : Mod (I) - Mod (Z U ) given by 

fp(A)=T2 

where the interpretation TX 	P 	
( 1A , PA) 

is defined using induc- 
tion on the typing derivation of 	pdecs => , with P aig pdecs end: 

=z 

• P[fct, op. pdecs type c = t 	U { C := t 11 (LA, PA) 
= (LAIC 	 PA) 

PI{XCX 	pdecs vat  : t = e = 	u {v : t}]l(LAOA) 

= (LA, PA[V -. 	>1  e: ttA, PA 	
o 

6.9 Discussion and Related Work 

This section begins with a comparison to the related work, in Sections 6.9.1 
and 6.9.2, and then discusses some points of the design of the institution 
JTC and its syntax, in Section 6.9.3. 

There is not much, if anything, in the literature which aims for the same 
breadth as the work begun here: putting together a programming language, 
specification language, program logic, and higher-order module system. How-
ever there are comparisons between the institution JPC and some other 
work. The next two subsections discuss some related logics and specifica-
tion languages. 

6.9.1 Related logics 

The idea of embedding an LCF-style logic in a higher-order logic has occurred 
to several researchers over the last few years. Here I want to mention three 
other projects. The first two, HOL-CPO and HOLCF, are implementations of 
logics; the third, Aw, is more theoretical and also considers a program-
ming language. None of them is oriented towards design of a specification 
language. 
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HOL-CPO Sten Agerhoim [1994a, 1994b] has implemented the logic of LCF 
in the HOL theorem prover [Gordon and Melham, 1993], by definitional 
extension. This has the benefits of being able to formalise admissibility 
within the logic (see comments in Section 6.9.3). A cpo is formalized as 
a pair of a predicate, describing a subset of a HOL type, and an order 
relation on the type. 

HOLCF Regensburger [1994] has implemented another axiomatisation of 
LCF by extension of Isabelle/HOL, the implementation of the HOL logic 
inside the Isabelle theorem prover [Paulson, 1994]. His axiomatisation 
is more sophisticated than Agerhoim's, making use of Isabelle's order-
sorted polymorphism to define a type class for cpos, so a cpo is simply 
a type of the logic equipped with some special operations and proper-
ties. 

Aw 	Poll [1994] describes the hand-in-hand construction of a family of pro- 
gramming languages and corresponding programming logics, each with 
higher-order polymorphism. He uses the concise framework of Pure 
Type Systems [Barendregt, 1992] to describe the systems, formulating 
the dependencies to prevent logical operations appearing in programs. 
The final system is Aw, which is a programming language with re-
cursive types and a fixed-point operator tied together with an LCF-like 
extension to a higher-order logic. 

The rule-structure of the PTS defining Aw allows program terms as 
subterms in the logic, but terms of the logic (of program type) cannot 
occur in program terms. For us, LFPC makes the distinction by making 
the program types a subset of the logical types. Poll's approach sacri-
fices flexibility: he is cannot write a function mapping a chain (encoded 
as a predicate) to its LUB, for example, because the type of such a func-
tion is disallowed in the framework [Poll, 1994, p.95]. LFPC does not 
suffer from this drawback. 

A major difference to Poll's treatment is that while LFPC is a logic for 
FPC with a call-by-value operational semantics, Aw must allow an ar-
bitrary beta-reduction order in its programming language, because the 
same type-theoretic framework, which does not distinguish reduction 
order, is used for writing both programs and specifications.7  

7This criticism applies equally to other type-theoretic approaches which model program 
computation using the reduction of the type theory. 
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6.9.2 Related specification languages 

The specification language based on JTC appears as part of ASL+FPC in the 
next chapter, but we are almost there: the parts of the syntax defined in 
Section 6.8 provide the institution-dependent syntax needed for ASL expres-
sions - see Section 1.2. Here is a quick mention of some related specification 
languages. 

EML [Kahrs et al., 19941 was mentioned in Section 1.4. The module param-
eterisation of ASL+ was invented to capture and generalise that of [ML. 

The language FPC can be seen as a restricted fragment of the core-
level language of SML, containing the power of recursive functions and 
non-parameterised datatype declarations, but without polymorphism, 
exceptions, or assignment. Attempts towards giving EML an algebraic 
semantics are unfinished as yet [Sannella and Tarlecki, 1986, 1989]. 

SPECTRUM Manfred Broy's group in Munich has developed a specification 
language with an institutional semantics, having higher-order functions 
and order-sorted polymorphism [Broy et al., 1993a,b]. The logic of 
SPECTRUM is 3-valued. It does not have a module language, but the 
order-sorted polymorphism compensates to some extent [Grosu and 
Nazareth, 19941. 

Metasoft Tarlecki [1992] describes a module system for the Metasoft speci-
fication language which includes the idea of having "symbolic type ex-
pressions" in signatures, also one of the innovations in FTC. 

This idea was re-invented lately, in studies of type systems for the SML 

module system which add "manifest types" to signatures [Leroy, 1994, 
Harper and Lillibridge, 1994]. These type systems are discussed more 
in the next chapter. 

Hofmann and Sannella Hofmann and Sannella [1996] define the basic com-
ponents of an institution closely related to FTC. They do not provide 
a syntax for signatures and algebras, however; their motivation is to 
study behavioural equivalence in a higher-order setting. 

6.9.3 Remarks on language design 

Here are a few remarks about the design of FTC, continuing some compar-
isons to the related work. 
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Stratification of levels 

Syntactical signatures and algebras are similar to record types and values. 
Why not simply add these to FPC? There are two reasons. 

First, algebra expressions allow bindings of identifiers to types as well as 
to values, so they are more than ordinary record types. This could be accom-
modated by a richer notion, such as sigma-types (dependent products), ex-
istential types, or dependent records [Luo, 1993, Mitchell and Plotkin, 1988, 
Nordstrom et at, 19901. But the underlying type-system would have to be 
changed; we would no longer be in the world of simple types and we would 
have to consider a more complicated program semantics. 

The second reason concerns a tacit aspect of ASL+: it imposes a stratifi-
cation of design levels in programming and specification. The programming 
language is not expected to incorporate modules as values which can be 
computed with. Modules appear at a higher level, so the modular structure 
of a program is essentially something static that doesn't change during the 
course of its execution. (This can be contrasted with object-oriented pro-
grams, where objects are in some sense modules, and may be created and 
destroyed dynamically while a program executes.) Of course, the modular 
structure of a specification is also static. 

From an engineering point of view, this stratification of levels may be 
desirable. The strategy is exemplified for programming languages by SML 
and explained by MacQueen [19911. Using richer type-theoretic constructs 
for modules would lose the stratification. 

Having said it may be desirable, the separation of levels here is somewhat 
extreme: it causes difficulty in Chapter 7, because the core-level language has 
no reference to the module-level context. 

Embedding syntax or semantics 

Both of the logics HOL-CPO and HOLCF mentioned in Section 6.9.1 are for-
malizations of the semantics of LCF. In these theories, the term FIX(f) is 
defined to be Li f 1  (i). Classical rules of LCF like fixed point induction can 
then be derived 

In contrast, the approach in this chapter is an direct embedding of the 
syntax of FPC inside the logic, adding axioms to HOL which reflect the LFPC 

8For recursive types, neither HOL-CPO and HOLCF have an axiomatization, and the 
solution of recursive domain equations within the logic itself is not possible. As in LCF, 
the axiomatisation must be extended when recursively-defined types are added (typically, 
tools are written to help with this). 
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semantics, just as LCF adds axioms to first order logic. However, the ax-
iomatization here goes beyond LCF, for example because we can express the 
semantic property of admissibility. This is claimed to be one of the major 
advantages of HOL-CPO and HOLCF. In the first-order world of LCF, admis-
sibility had to be hard-coded as an incomplete set of syntactic tests and 
heuristics [Paulson, 1987]. 

Whilst an embedding of the semantics is theoretically heart-warming, it 
seems more feasible for practical development tools to assert axioms directly 
from real programs, rather than using a translation to reconstruct logically 
equivalent models and terms inside the theorem prover. Embedding only 
the syntax reflects this more direct approach, where we reason directly with 
the syntax of programs. And because the syntax of FPC is not an object of 
discourse in the logic, this doesn't result in contraditions: it is safe to assert 
that pred(succ(0)) = 0, for example. 

Internal and external program logics 

The logic LFPC is used to reason about programs written in FPC, which is a 
separate language (although arbitrary FPC expressions are allowed in LFPC). 
This is an example of the so-called external approach, like Erik Poll's system 
Aw mentioned in Section 6.9.1. In fact, FPC is more separated than Aw, 
which has the advantages mentioned before. 

Some researchers argue that for program development, an internal ap-
proach is preferable, where a single language encompasses both programs 
and specifications. In type theory, for example, programs arise as a special 
case of proofs. The advantage is that a program and its correctness proof 
are synthesized together, so there is no duplication of work (writing a loop, 
then using an inductive proof, etc.). The disadvantage is that the structure of 
programs and proofs is forced to be the same, and there is a need to extract 
programs from proofs somehow (and then a need to optimise them, since 
the simplest proofs rarely correspond with the most efficient programs). 

Erik Poll discusses more about the internal and external approaches in 
his thesis [Poll, 1994]. It's worth saying that although FPC uses the exter-
nal approach, nothing in ASL+ forces this: one could instead begin from an 
institution in which sentences are propositions in a constructive type theory. 

6.10 Summary 

This chapter described the construction of an institution FPC for ASL+, 
based on FPC as a programming language, described in Section 6.2, and HOL 
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extended with LCF as a program logic, described in Section 6.4. 

When I began this project, I imagined that I would easily find a definition 
in the literature for an institution similar to FPC. It was surprising to dis-
cover that similar attempts are few and far between; most work in algebraic 
specification is restricted to first-order languages, for which the semantic ba-
sis is better understood. So the work on FPC was started as an exercise in 
pushing the definitions through to examine how the institution-independent 
framework deals with a concrete instance of ASL+, based on a realistic set-
ting - something like a subset of Standard ML. Perhaps this is the first time 
that this exercise has been carried out for a language like FPC. 

The construction of FPC has been fully formalized, finishing with a syn-
tax for writing signatures, signature morphisms, and algebras in Section 6.8. 
These parts of the syntax are not required by the definition of institution, 
but they are required to build a syntax for a programming language and a 
specification language based on one. (In particular, we could get a complete 
syntax for ASL expressions in FPC— see Section 1.2.) 

An unusual feature was the use of type equations in the definition of 
FPC signature, Definition 6.1. As outlined in Chapter 5, this allows sharing 
to be accommodated directly in an institutional semantics, without needing 
to introduce special mappings from program-level identifiers to semantical 
names. The set of sentences Sen1  (f) consists exactly of the well-typed 
propositions in f. 

One of the lessons of this exercise is the importance of type-checking, as a 
necessary step from semantic foundations towards practical applications us-
ing concrete syntax. Type-checking rules were given for each core-language 
part of the syntax picture shown in the introduction. The lesson will be rein-
forced, which completes the picture by studying type-checking in the module 
language ASL+FPC. 



7 ASL+ based on FPC 

This chapter describes an instance of ASL+ called ASL+FPC,  based on 
the institution FPC defined in Chapter 6. The language ASL+FPC  tack-
les the context and sharing problems described in Chapter 5. Using 
some of the concrete details of FPC, the result is a language with a 
better notion of context and a more powerful rough type system which 
can express type propagation across module boundaries. The examples 
in Chapter 2 work directly in ASL+FPC. 

This is an experimental first-step towards an expressive type system, 
rather than a robust and final solution. 

7.1 Modules for FPC 224 
7.2 Syntax 225 
7.3 Design for Modules in FPC 237 
7.4 Semantics 250 
7.5 Satisfaction System for ASL+FPC 254 
7.6 Discussion 256 
7.7 Summary 261 

7.1 Modules for FPC 

W ITH A PARTICULAR INSTITUTION to hand, we can learn from the specifics 
before generalising to an abstract setting. In this chapter I shall design 

a version of ASL+ based on the formulation of TC In Chapter 6. It is dubbed 
ASL+FPC. 

The language ASL+FPC  tackles the problems which the abstract version 
of ASL+ in Chapter 5 was criticised for. The new language has a built-in no-
tion of context, given by a dot-notation renaming mechanism. It can explain 
the propagation of type identity in the rough type-checking system, because 
rough types may contain identifiers (inside signatures), and the arrow type 
is changed to a dependent product. The examples given in Chapter 2 work 
directly in ASL+FPC. 
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In fact only a few places in this chapter do rely on the specifics of FPC, 
but studying the details in a concrete setting has helped to understand the 
problems. Most of the time spent here has been syntactic skullduggery: 
designing a language in which the ASL+ constructs are transformed from 
heavily-typed semantical constructions into lightweight syntax, which works 
for real examples. Some of the particular problems involved, and several of 
the devices used to solve them, are original, because ASL+ has new parame-
terisation constructions not present in other languages. But I also draw on 
recent research into type systems for programming language modules [in-
cluding: Leroy, 1994, 1995, 1996a,b, Courant, 1997a] and learnt much from 
discussions with a colleague at Edinburgh who is writing a thesis on a related 
topic [Russo, 19971. 

The type system given here is not the end of the story, by any means; it 
has some bad features and some features missing, which are discussed in 
the final sections. I think it is an experimental step in the right direction. 

The chapter begins with the syntax and rough type-checking systems for 
ASL+FPC, in Section 7.2. The definitions given here may appear ad hoc, 
so I have included a commentary on how the design was reached, as an 
interlude in Section 7.3; it may help to refer to it while reading Section 7.2. 
The commentary also includes some mention of related module systems. 
Returning to the definitions, roughly-typable terms are given a set-theoretic 
semantics in Section 7.4, and some early ideas for a type-system for proving 
satisfaction are given in Section 7.5. Some of the difficulties with the system 
are revealed in Section 7.6, which also mentions some related work. Finally, 
Section 7.7 summarizes. 

7.2 Syntax 

The syntax and rough type-checking for ASL+FPC  begins in Section 7.2.1. 
Before then, I give some auxiliary definitions. Throughout this chapter, £ 
ranges over pre-signatures of FPC, and all talk of (semantic) "signatures" will 
refer pre-signatures unless stated. Pre-signatures were already used in the 
type-checking rules for algebras and signatures in Section 6.8.2. 

Operations on signatures 

The syntax uses a new set of variables ModVar, the module variables, ranged 
over by X, Y, Z,.... We treat the dot operator as a special "prefix" name 
constructor operator on the type and term constants of FPC: 
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ModVar x TyConst - TyConst 
ModVar x TmConst - TmConst 

such that X.v v and whenever X.v Y.v' then X Y and v v', for 
all X, Y e Mod Var and for all type or term constants v, V. In other words, 
the prefix of a constant by an algebra variable yields a new constant, and 
two syntactically equal "dotted constants" must have been constructed from 
equal components. The idea is that in an implementation, the dot is a special 
character which is not normally allowed in names of identifiers. 

Definition 7.1 (Dot renamings with respect to a signature). 
The dotting operation extends to types and terms over a signature. We 
define 

X.t 	=d,f 	t[X.c,.../c .... J 
XE.e 	=def 	e[X.v,.../v .... ] 
XE.h =d,f 

where the above notation indicates the simultaneous prefixing of all 
constants c, v E _1  (v ranges over both type and term constants). Con-
stants not in I are not affected. 

The dotting operation extends to give a renaming operation on signa-
tures by prefixing all the names: 

def ({X-C I ce'}, 
{c-.{X.t I c:=tEX} 	cEfl, 
{X.v—X.t I v:tE2L'}) 

0 

It is easy to see that the extension of the dotting operation to signatures is 
an isomorphic renaming, such that the types and terms over the renamed 
signature are disjoint with those over the original. Definition 7.1 also makes 
sense for pre-signatures. 

As well as the full-blown dot renaming of a signature, we require a slightly 
different operation which adds extra sharing equations to a signature. 

Definition 7.2 (Strengthening of a signature). 
Given a pre-signature I and a variable X c ModVar, we define the strength-
ening of Z by X, written Z/X, to be the signature (Ty, Sh, Trn) where the 
new sharing component Sh is defined for c E Ty by: 

Sh (c) = Sh-Y(c) U {X.c}. 

This operation is used when projecting a variable from the context. When 
X : 	appears in the context, we can use X to denote a 1-algebra, knowing 
that for every type c in X, the equation c = X.c holds. 
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Definition 7.3 (Sharing-only subsignature). 
We write 11 sh 2 if 

El c 

Ty' = TY72  

Tm' = Tm 2  

If i 9,h X2, then Z2  only differs from El  in having more sharing. 

Substitution and reduction 

The use of substitution in the rough type-checking system is restricted to 
renaming one variable for another. Constants X.v are renamed to constants 
Y.v throughout an expression, for example. 

Applications are only allowed to have variables as operands, so the only 
kind of fl-redex which appears is: 

(AX:A. M) Y —$ M[Y/X] 

and the reduct is simply the renaming of X by Y in M. Reduction involves 
replacement in algebra expressions, signature expressions, and formulae; as 
usual, we may need to rename to avoid clashes. We omit the full definition, 
which would be given by induction over the structure of terms shown in the 
next section. 

7.2.1 Syntax and rough type-checking 

The pre-contexts and pre-terms of ASL+FPC are formed from the grammar: 

F ::= 	I F,SP I F,X:A  I F,X=M 

M, SP, A,B ::= X I P I S 
I 	impose p on SF 
I 	derive from SF by s : S 
I 	translate SP by s 
I 	enrich SF with SP 
I AX:A.M I MX 
I 	TIX:A.B I Spec (A) 
I [X=M]M:A 
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Variables X, Y, Z,... are taken from the set Mod Var. Recall that S ranges 
over signature expressions of FPC, P over algebra expressions, and s over 
signature morphism expressions. These were defined in Section 6.8. The 
variable cp ranges over terms of LFPC, as defined in Section 6.4.1. Since the 
logic LFPC has conjunction and the truth value T, a finite set of formulae cP 
can be replaced with a single formula 'p in linpose 

The meta-variables SP, A,B,M,N and variants will all be used to range 
over the set of pre-terms. The intuition is that SP stands for terms which 
turn out to denote "base" specifications (collections of FPC algebras), whilst 
A, B stand for arbitrary collections and M, N for arbitrary terms. 

As well as allowing declaration and bindings of variables, contexts can 
be directly extended by base specification expressions. This is to allow the 
specification of "pervasive" datatypes of the language which are visible ev-
erywhere, such as BOOLEAN. As usual, a pre-context cannot contain repeated 
declarations of the same variable. 

In contrast with the abstract formulation of ASL+ in Chapter 5, I have 
included a specific subset of the specification building operators of ASL, as 
well as the context-sensitive syntax for signatures and algebras from FPC. We 
use a primitive enrich operator instead of considering enrich to be defined 
via translate and union. Unions, along with the other ASL operators, are 
left for future treatment. (Alternatively, it might be better to consider a 
small group of higher-level constructs - see discussion in Section 7.6.1 on 
page 258.) 

The pre-terms of the A-calculus fragment are as in ASL+, except that ap-
plication MX is only to variables, and singleton types are omitted. The pre-
term [X = M]N : A is a local binding construct; X is bound (to M) in N, but 
is not bound in M or A. 

Rough types and rough contexts 

The syntax is: 

T ::=ZYI lrrX:A.T I P(T) 
F ::= () I 	I F,X:T 

where £ ranges over pre-signatures. As usual, we may write A - T for 
HX:A. T when X does not appear bound in T. 

Rough types which differ only in the choice of bound variables are con-
sidered identical. Substitution on terms was explained at the start of this 

'This is a minor simplification to avoid cluttering the presentation; a real specification 
language would prefer to keep axioms separate, and also to name them. 
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section; substitution and renaming for rough types is defined similarly. No-
tice that this involves substitution or renaming inside semantic signatures 
E, and that the notion of bound and free module variables is extended to 
consider the variables appearing in signatures. 

Unlike the rough typing systems considered before which used "full" con-
texts, we now have a separate syntax for rough contexts. This is simply for 
convenience because rough typing is more complicated than before. I use F 
to range over both rough contexts and "full" contexts, but it should be clear 
which is intended; when they are used close by, FR is used for the rough 
context. 

Rough typing judgements 

There are five judgement forms: 

F 	sig ZF 	 Er is the underlying FPC signature of F 
F 	T 	 T is a well-formed rough type in F 

F 	 F is a rough typing context 
F 	T :!~ T' 	 Tisa subtype ofT' 
F P, M => T 	 M has rough type T 

These judgements are defined in Figures 7.1-7.4. In all cases, F is a rough 
context. The rules in each figure are described below. 

Formation rules (Figure 7.1). 
The first four rules in this table construct the underlying FPC signature of a 
context. This is done by combining the pre-signatures for the pervasive parts 
of the context, together with the dot-renamed components X.X for variables 
X which range over -a1gebras Module variables which have non-signature 
types do not contribute to the FPC signature of the context, since there is no 
way to use them directly in any FPC type or term. 

The three rules for forming rough types are straightforward. In the case 
of a pre-signature, we must check that it is an extension of the signature of 
the context. Formation of contexts is standard. 

Sublyping rules (Figure 7.2). 
The subtyping rules lift the sharing-only subsignature relation to a relation 
on rough types. The rule for H-rough types is the usual contravariant rule; 
for power rough types, the relation is covariant. Semantically this captures 
an inclusion on the domains interpreting rough types. 

2Tjs is a sort of "flattening" operation, since FPC does not have "nested algebras" akin 
to nested modules in programming languages. 
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Programs and ASL terms (Figure 7.3). 
The rules for rough typing ASL terms, including FPC signatures and alge-
bras, involve some signature calculation. The first two rules, introducing 
signatures and programs into the system, are straightforward; they invoke 
the type-checking system for the core-level from Section 6.8. The rule for 
impose is also straightforward; it invokes the type-checking rules for LFPC 
in Section 6.4.1 to be sure that 'p is a well-typed proposition. 

The rules for derive and translate use syntax for signature morphisms, 
which allows some polymorphism. The argument of derive from - by s : S 
or of translate - by s can have any signature which fits suitably with s, 
according to the type-checking rules in Figure 6.3 on page 215. The result 
signature of derive has to be given, but the result of translate is inferred, as 
the smallest image s(s) of s, defined in Lemma 6.33 on page 217? The ideas 
behind these rules are explained more in Section 7.3.6. 

The rule for enrich is similar to a rule for the dependent sum in type 
theory: just as x occurs bound in B in the term Ex:A. B, so all the symbols 
of SF occur bound in SF' in the term enrich SP with SF'. The non-symmetry 
in enrich isn't shown by its usual definition in terms of translate and union 
(see page 12), but here the directly-defined semantics of enrich SP with SP' 
shows the dependency: models of the result are extensions of models of SP. 

ASL+ terms (Figure 7.4). 
The rough type of a variable X which has signature type I is the strength-
ened version of E which reflects the sharing of X with the context, since it 
denotes a projection on the X.-named part of the underlying environment. 

Functions can only be applied to variables. To use the application rule it 
may be necessary to rename the bound variable of the TI-type of the function 
to match the operand The application rule is the crucial places for allowing 
propagation of type identities: the use of subtyping here allows the actual 
parameter to have a richer type with more sharing equations than the type of 
the formal parameter A. Propagation of the type identities occurs because 
after application any mention of X.c in the result type T' will refer to a 
variable declared in the context, possibly having more sharing equations, 
rather than the bound variable of the H-type. 

The rule for a binding [X = M]N : A allows N to be typed in the rough 
context extended by the typing of M, but the rough type of A has to be 

3This means that translate can only be used with surjective signature morphisms. But 
we can express translation along inclusions translate SP by X 	' using an enrich- 
ment enrich SP with S, where S = Syntcix(X' - 

4A couple of people have mentioned that this renaming idea seems like a cunning and 
potentially useful trick; probably it has been used elsewhere in A-calculi implementations, 
but I don't know where. 
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valid in the context F, so the dependency on X must be removed. The type 
in the extended context should be a subtype of the type of A. This rule 
is restricted to algebras or specifications in the body N, but the restriction 
could perhaps be lifted at the cost of extra complication (to define projection 
and weakening operations on environments). 

The other rules in Figure 7.4 are much the same as rough typing rules 
seen for A Power in Section 4.5, except that A- and H-terms now have depen-
dent rough types. 

72.2 Expected properties of rough typing 

Detailed proofs for this section have not yet been completed, so the state-
ments below should be regarded as conjectures at this time. 

Proposition 7.4 (Formation). 
Suppose one of 	T, F T :5 T', or F P,. M => T. Then there is a 
subderivation of ip. F. 

If F, then for some Er, F ==> Sig Er and Er E=- Sign'. 

If 	M = T,F 10. T :!~ T' or  10. T' :5~ T then 	T. 

Proof Induction on derivations. 

Proposition 7.5 (Bound narrowing). 
LetF1 F,X:T1,F' and F2 F,X:T 2,F' with 	T :5; T1. Then 

If F1 	sig IF, then there is Er., such that F2 : s ig Er2 and Er1 9,h Er2. 

If F, o. J then F2 po. J, where J represents a (type or context) formation 
or subtyping judgement. 

If F, o. M ==> 01 then there is 02 such that F2 o,. M = 02 and 
F2 	02 < 01. 

Proof By induction on derivations, using properties of the union operator 
on signatures. 	 0 

Theorem 7.6 (Closure under reduction). 
If 	op. M1 	Ti and M1 -. M2, then F o,. M2 => T2 for some T2 such that 
F T2 T1. 

Proof Using Proposition 7.5. 	 0 
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F Sig 'F 
F,2 =sig  1U' 

F => Sig  I-
F,X:2' => Sig 

	

F =>Sig IF 	T is not a signature 
F,X:T =>Sig IF 

F 	F => Sig IF 	IF extu 

FA=P(T) F,X:TT' 

	

F 	1TX :A. T' 

F 10- T 
F P(T) 

Figure 7.1: Formation rules of ASL+FPC 
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IF 9extu 1, IF extu 

'F 	F 	sig IF 	('FU")sh (IF UX) 

F.E :!~' 

	

F PP. A => Ti 	F T2 < Ti 

	

F o. A2 = T2 	F,X:T2 T ~ T- 

F P,. TrX:A1.T ~ TrX:A2.T 

	

F 	T < T' 

F P,. P(T) :!~ P(-r') 

Figure 72: Subtyping rules for rough types of ASL+FPC 

No. FsigXF IFSX 

F Po. S = P(1) 

F sig r 	Ir 10 PX 

F No. SP - P(1) 	F ==>Sig IF 	>ZFU-y (P :prop 
F o,. impose 'p on SP => P(X) 

,ctx s= 
F 11 SPPC—Y') 	Fsigr 

F o. derive from SP by s : S - P(') 

FSP=P(X) 	F =>Sig IF 	1rSXS(1) 

F o,. translate SP by s => P(s(')) 

FSP=P(J) 	F,X SP' ==P(2") 

F 	enrich SPwith SP' => P('u") 

Figure 7.3: Rough typing programs and ASL terms 
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pF F(X) 

o F 	F(X) T 	T non-signature 

FX=T 

FA==P(T) 	F,X:T 10- M=T' 
F oo. AX:A. M =:> TrX : A.T' 

FM='1rX:A.T' 	FX=='T0  
FA==P(T) 	 FTO:5T 

FMX T' 

F A => P(T) 	F,X:T B => P(T') 
F HX:A.B = P(7rX:A.T') 

F P ,. A => P(T) 
F o,. Spec(A) => P(P(T)) 

F o. A => P(T) 
F io. M => TM 	 31. T.EZ V TP(') 
F I X:TMN=TN 	F,X:TM 10 TNT 

F io. [X=M]N:A => T 

Figure 7.4: Rough typing ASL+ terms 
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F => FR FRSP=P() 
F, SP = 

F = FR FRA=P(T) 
F,X:A ==> FR,X:T 

F => FR FRM=T 
F,X=M ==> FR,X:T 

Figure 7.5: Rough typing full contexts 

Theorem 7.7 (Strong normalization). 
If F o. M ==> T then M is $ -strongly normalizing. 

Proof The limitation on the kinds of f3-redices that can appear means that 
a $-reduction reduces the number of redices in a term. Theorem 7.6 says 
that the result of reducing is a typable term, so reduction terminates. 	n 

7.2.3 Using rough typing 

Now I shall give an example of rough typing to demonstrate that it solves the 
two problems described in Section 5.8 - there is a useful notion of context, 
and desired propagation of type identities takes place. 

To perform rough type-checking with respect to a "full" context, we must 
first extract a rough context from the full one. A full context type-checks to 
a rough context, written 

F => FR 

by the rules shown in Figure 7.5. A practical implementation would probably 
store rough types along with the full terms in a single environment, rather 
than having two separate notions of context. 

Now let's build up a rough context by type-checking a full one according 
to the rules in Figure 7.5. Actually, we only need the first and last of them. 
The first declaration is 

ELT =sig 
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type elt 
end 

Let the denotation of this expression be IELT,  so we have the rough typing: 

() Po. ELT = PCIrjT). 

Now we declare a functor for building lists over some 	y-algebra: 

List =AE1t : ELT aig 
type elt = Elt.elt 
type list = liSte]t 
val ni 1:list=  

end 

(IiStel t is a complex type-expression in FPC which expresses the type of lists 
over the type el t). This has the rough typing 

11 o. List => HE1t:ELT.,FLIsT[Elt.elt] 

where F1 	ELT : P(ET), writing the inferred signature of the algebra as 
LIsT[Ei t. el t] to indicate the dependency on El t. This signature contains 

the equation el t = El t. el t. 
Now let's apply the Li st functor to an algebra, declaring 

Nat =alg 
type elt = nat 

end 

Let F2 be the rough context which extends F1 with the declaration of List 
with its rough typing above, and F3  the context which extends F2 with the 
declaration of Nat with the type 	T[nat] - this is the inferred type for Nat 
which expresses the equality between el t and nat. 

Now we can derive: 

F3  io. List Nat => XLIST[Nat.elt] 

so if we extend the full context by the declaration 

ListNat =List(Nat) 

we have a corresponding rough context F4  which declares Li stNat with the 
rough type above. Then in the underlying FPC signature IF, we can prove 
the equation Li stNat. el t = nat. So the identity of the argument type has 
been successfully propagated to the result, and this solves the fundamental 
problem posed in Section 5.8.2. 
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7.3 Design for Modules in FPC 

In the following subsections, I discuss some of the issues in the design of 
ASL+FPC, to explain how the definitions in Section 7.2 were reached. This 
also explores the language a little bit further than the short example above. 
But readers uninterested in this entertaining interlude may skip to the se-
mantics of the language, in Section 7.4 on page 250. 

Constructing the institution FPC in the previous chapter was straight-
forward. Now we wish to add the higher-order module constructions and 
specification building operators of ASL+. Ideally, this should be a modular 
construction itself; we want to use the institution J'TC (or another core-
language) without modification, so we can be sure that properties of FPC 
are not disturbed by adding ASL+ "on top". 

The idea that adding a module system to a language should be a mod-
ular construction itself has been promoted for the SML and EML module 
languages by Sannella [Sannella and Tarlecki, 1986, Sannella and Wallen, 
1992], and followed by Leroy In an implementation of one of his type sys-
tems [Leroy, 1996a]. 

In practice, the restriction that the core-language cannot be modified to 
add modules is too harsh. One small change is to add dot notation to the 
language to access module components. 

7.3.1 Dot notation and contexts 

There is a problem to confront immediately. Inside an FPC program, there is 
no way to refer to other programs - this is a serious difficulty for modular 
programming! For the abstract version of ASL+ in Chapter 5, I postulated 
program building operators which allow the extension of one program by 
some more declarations, for example. Here I shall take a more direct ap-
proach, using clot notation to project components from a module-language 
expression. For example, we could write F(P).c to stand for the type com-
ponent c of the module F(P) and then use this within type expressions in 
another module. But expressions like F(P) cannot occur in FPC programs, 
because that would imply a circularity: the need to define FPC at the same 
time as ASL+FPC. 

How can we break this circularity? The syntax and semantics of FPC 
types are defined with respect to a fixed signature. The signature does not 
mention names of variables used in the module-language, or their types. And 
the semantics of algebras provides no way of accessing environments for the 
module language. 
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A simplistic solution is to treat the use of dot-notation as a construction 
on names only, so that if c E TyConst, X is a module-level variable, then X.c 
is a new type constant. Since the syntax for algebras and signatures in Sec-
tion 6.8.2 was presumptuously factored by a notion of context, this approach 
looks promising: we can build up a signature for the context which names 
all of the module expressions we need to use, using the dot notation to re-
name their signatures and put them together. Semantically, these syntactic 
operations construct a colimit in the category of signatures. 

The difficulty with this simplistic solution is that the expression X.c is 
just a name in FPC, and not amenable to substitution; F(P).c still has no 
meaning, unless we enlarge TyConst to include the whole syntax. That, 
apart from being unaesthetic, is not really feasible, since there is a context-
sensitive equality on module language expressions. To prove as many type 
equalities as possible, we should be able to use F(P) = F(P') to deduce 
F(P).c = F(P).c, so the module-level context is important. Again, it could 
not be accommodated without changing the definition of FPC signature. 

Accepting that we cannot substitute module-level expressions into FPC 
types and terms, my solution is to push the simple variable-renaming ap-
proach as far as possible. Instead of writing a program: 

aig 
type c = F(P).d x nat 

end 

we must use a local binding to write: 

local 
X = F(P) 

in 
aig 

type c = X.d x nat 
end 

end 

The local binding is part of the module language. One might imagine a syn-
tactic translation which automatically lifts the use of module expressions 
outside core-level programs in this way, although in many cases it should 
not be too uncomfortable to write the long-hand directly. (This form is al-
ready a requirement in SML, for example.) 

The difference with the abstract approach of PBOs and SBOs in Chapter 5 
is that a connection is now made between the core-language context (FPC 
signature) and the module-level context: we can build the former directly 
from the latter, by picking out all the components which denote algebras. 
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7.3.2 Hiding the bound names 

There is a question about the local-binding approach suggested above: what 
signature does the overall algebra expression have? 

The algebra is defined in a context X U X.,Fx which includes the whole 
signature of F(P). The signature X,N  is the signature of the current context, 
Ix  is the pre-signature of F(P), and X.Xx is a renamed copy of Ix obtained 
by prefixing all the component names by X. Outside the scope of the binding, 
though, we must remove mention of X from the signature. 

Suppose the signature _Yx of F(P) is (the denotation of): 

Sig 
type d = nat 

end 

Then we can remove mention of X by replacing X.d by nat, to get for the 
whole expression the signature: 

Sig 
type c = natx nat 

end 

The type-checker takes advantage of the type equation in the signature of 
F(P) to propagate the type equality and deduce that c = nat x nat in the 
result. 

However, this is not possible in general, since there may be no type equa-
tion for d in the signature Xx.  One could simply remove the sharing equation 
for c from the signature, but there would still be a difficulty if X.c appeared 
in the type of a value rather than a sharing equation. 

What we need is a general way to remove or hide the X part of the context 
in the result. One way is to make a closure restriction, to force the user to 
declare all the types used in a signature within that signature (this is the 
approach taken in several languages, including COLD-K [Jonkers,  1989] for 
example). This is useless unless we have some way to refer to the context, so 
at least sharing equations must contain open terms. But then the problem 
remains. 

Another way to remove the parameter X is to automatically expand the 
signature with an extra type when the possibility of a signature without a 
name for a type arises. (Both this possibility and the last are part-way steps 
towards pushout parameterisation when the whole parameter is explicitly 
copied to the result; but we want to include something less than the whole 
parameter, and also find a syntactic method for handling identifiers.) 
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Following a syntactic approach and identifying program-level names with 
the names in the semantic signature, adding extra types to the signature 
leads to the tricky question of finding program-level identifiers for the extra 
types. In SML, the extra types do not need program-level identifiers: there is 
a distinction between names in semantic and syntactic signatures, and a se-
mantic signature may have bound names for which there is no corresponding 
program-level identifier. Signatures with bound names occur in the elabora-
tion of programs, but have no direct program-level syntax. With the limited 
module system of SML, this is not so much of a problem,5  but with higher-
order modules, it becomes useful to write signatures with bound names. 

Instead of adding extra program identifiers, one of Leroy's module typing 
systems [Leroy, 19951 takes the opposite approach, by attempting to auto-
matically remove dependencies and by deleting sharing equations. When 
this fails and a value occurs which has a type that cannot be expressed syn-
tactically, that value is deleted from the result signature. 

FPC signatures do not have hidden parts so my approach avoids bound 
names in signatures, like the syntactic module type systems for program-
ming due to Leroy and others. Rather than use one of the slightly distasteful 
methods above to do this, I instead burden the user, and require the local 
construct to have a signature valid in the context without X. So we must 
write something like this: 

local 
X = F(P) 

in 
aig 

type c = X.d x nat 

end: sig 
type c 

end 
end 

In this case the user has given the permission for the equation about the 
identity of c to be removed. Another possibility would be to introduce a new 
type ci in the result algebra: then the user could express that c is equal to 
ci x nat. 

In the formal syntax in Section 7.2, local is written more briefly as [X = 
M]N : A, and the signature is generalised to any specification term. Using 

5except that some compilers invent strange type names like ? . t, and then give even 
stranger error messages like Type error: ?.t does not match ?.t! 

6although perhaps they should; some proof methods for specifications with hidden 
parts rely on information about the structure of the signature [Farrés-Casals, 1992, for 
example]. 
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a specification term has no difference for rough typing, but it is useful in 
the satisfaction system, to serve as a place to put axioms exported from the 
body, for example. 

7.3.3 Making rough types dependent 

In Chapter 5, I described the problem with using an arrow type of the form 
= 	2 for the type of a parameterised program: it doesn't express any 

relationship between i  and 12.  This means that the type-checker cannot 
deduce propagation of types from argument to result, and therefore cannot 
know when certain types which should be regarded as equal are in fact equal. 
This makes the notion of an environment or context unworkable, since there 
is no way to relate the results of building modular programs to their inputs. 

The solution I have adopted is to introduce dependent products into 
rough types: 

T ::= ZY I TrX : T.T I P(T) 

We have dependent types here because module-level variables X can occur 
(necessarily) free in the names of a pre-signature 2. 

For example, let: 

2 =sig 	 2cvtX.c] =sig 
type c 	 type c 

end 	 sharing c = X.c 
val v : c 

end 

(strictly, there should be semantic braces around the syntax of the signatures 
above). I call the second signature 2cv[x.c]  to informally indicate the free 
name X.c inside which shares with the type c. By this convention, the same 
signature without the sharing equation would be called Zcv . The signature 
might have other names X.ci, X.e appearing inside too; all these would be 
taken to be bound by the same module variable X. 

The rough type irX : 2c.2v[xc] describes a choice program which returns 
some element of its argument type. Suppose F is such a program, and we 
have an argument structure P = aig type c = nat end, then the expected 
argument and result signatures of F would be: 

I:cn =sig 	 2v[nat] =sig 
type c = nat 	 type c 

end 	 sharing c = flat 
Va! v : C 

end 
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(again, missing semantic braces). 

The application of F is typed by the rule: 

F => i-rX : 'c 2'v[X c] 	P 	. 	 'cn 
F(P) 	('V[X.C])[nat/X.c1 

the inferred signature fcn  expresses that c shares with flat. This sharing gets 
propagated to the result signature (CV[X.C])[nat/X.c]  which is equal to the 
signature 'cv[nat]  shown above. 

So far so good; but we have the same difficulty as before with arguments 
for which no concrete (sharing) type is known, when the type c is abstract. 
Such arguments occur if there is some mechanism for providing abstraction 
in the module language (for example, by restricting the signature for P to one 
which conceals the implementation of c); or in any case, via specifications - 
instead of an explicit algebra, the argument could be a variable Y assumed 
to satisfy some specification. 

Suppose the argument is a term M, where M.c is an abstract type for one 
of these reasons. Then we cannot substitute M.c for X.c in the signature 
If M is a non-variable, then neither can we substitute M itself for X, since we 
cannot write M.c inside FPC types. We could try solving this problem in the 
same way as for ASL+ terms in Section 7.3.1 above, by introducing a local 
binding for X around the rough type. This would lead to a further revised 
syntax for rough types, 

T ::= Z I TUX: T.T I P(T) I [X = MIT 

However, this would give a system with true term dependency (previously the 
dependency was just on names), and it is tricky to define an effective way of 
deciding when two such types are equal: a type-checking procedure would 
have to consider permutation of bindings around signature rough types, as 
well as term equality. 

Instead I chose a pragmatic and approximate solution: restrict the appli-
cation of parameterised programs to terms which we can always substitute 
into the body of a rough type. In this case, we can rename inside rough 
types, so we can have applications with the form FX. This is the only kind 
of application that is allowed in ASL+FPC,  although other kinds of applica-
tion could be added. For example, we could allow application to an algebra 
expression P without hidden type identities, because we can always give a 
type to FP by substituting the type definitions of P. (See also the discussion 
in Section 7.6.1 on page 257.) 

The restriction on applications may seem limiting, but in practice one 
usually works with an environment of bindings to variables anyway, so the 
restriction is that the operand is something defined in the environment or a 
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parameter declared in the context. Since there is a notation for declaring lo-
ca[ bindings, this does not mean an ever-increasing environment. And using 
local bindings, the problem of removing the dependency on the operand has 
been passed on to the programmer. 

To understand what happens with the F(P) example above when P is a 
variable defined in the environment, see the example in Section 7.2.3. 

73.4 Dependency between parameters 

The rough types shown in the last section allow basic parameter-result shar-
ing to be handled, but the scheme is unsound for some cases of higher-order 
parameterisation, because dependency between parameters is lost. (By "un-
sound" I mean that some terms are roughly-typable and yet do not appear in 
the satisfaction system; of course, we expect this because the satisfaction 
systems checks logical consequences, which can eliminate some roughly-
typable terms. But we'd like the gap between the two type systems to be 
as small as possible, so we can eliminate the largest possible set of wrong 
terms.) 

Here is an example of dependency between parameters. Consider a vari-
ation of the example before, where we have an ASL+ specification: 

CHOICEFUN =def FIX :!~- (spec 
type C 
axiom 3x: c. x * 

end). 
HY:X X . Sig 

type c = Y.c 
Va! v : C 

end 

this has the rough type: 

TrX: P(X). irY : 	
. 'vIY.cI 

which expresses that it is the type of functions mapping Z, -specifications 
to functions from Yc-algebras m to an algebra with a chosen element from 
ImI. This rough type has lost the dependency of the parameter Y upon the 
parameter X. If we apply a function F : CHOICEFUN to a specification for 
which some concrete implementation of c is given,7 

G =def F (spec type c = nat end) 

7Notice that the argument to F is valid because the axiom Ix : c.x * _Lc is satisfied 
once c = nat, although we wouldn't expect rough typing to detect this. 
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by the usual application rule, the rough type of G is 

TrY : c•v[Y.c] 

However, G should only be applicable to -algebras in which c = nat, rather 
than any -algebra. The rough type of G ought to be: 

TTY : ' 'ctnat} 1v[Y.c] 

The problem is that specification parameters, which can be substituted 
with specifications having more sharing than their types require, may appear 
inside parameter specifications for algebras. With rough types of the form 
T -X: P(T).TrY : T'.T" any dependency ofT' onXhasbeenlost. This problem 
is unique to the specification setting, and does not appear in the modular 
programming type systems studied by Leroy and others. 

One fix could be to extend dot notation to allow projection on specifica-
tion expressions, as well as algebra expressions. The rationale behind this 
is if a specification SP has a fixed implementation of some type c, which is 
expressed in its signature as sharing equation c = nat, for example, then 
any program P satisfying SP must have P.c = nat. In the example above, 
the rough type of G might be written TTY : Xc x.ci.Eviy.ci. However, dot nota-
tion on specification expressions in other cases is not well-defined, because 
different models of a loose specification SP can implement c with different 
concrete types. So it is hard to see how to add it. 

The solution to this problem I chose for ASL+FPC is to allow re-calculation 
of the rough type of the parameter, so that rough types become 

T ::= 	I 1TX:A.T I P(T) 

where A is an ASL+ term. Now the rule for application must perform some 
substitution inside full terms A as well as in rough types 8, but whenever 
we need to compare rough types, we compare TrX : A.T and irX : A'.T' by 
comparing the rough types of A and A'. 

In the case above, the rough type of CHOICEFUN becomes: 

Spec (sig type c axiom Ix: c.x * _Lc  end).TrY : X. v jy.c  

and then the rough type of G would be 

TrY : sig type c = flat end.fiy.i. 

So now G is only applicable to algebras in which c = nat, as required. 

8for type-checking, perhaps substitution of type expressions would be enough. 
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7.35 Type abstraction and hiding 

In module systems for programming languages, type abstraction is achieved 
by hiding type identities. For example, if we define a stack module: 

P =def aig 
type stack = list ,at 
val empty = 

end 

Then giving this module the signature 

S = def Sig 

type stack 
val empty: stack 

end 

prevents access to the underlying representation of stack, apart from through 
the interface functions. This is because the type-checker conceals the iden-
tity of stack, so elements of stack aren't amenable to the usual operations 
on lISt natO 

There are different choices of how abstraction is introduced. If we have a 
"signature constraint" operation on modules as part of the language, then 

P:S 

is a module like P except with the identity of stack hidden. 
With a generative semantics for this construct, each time the expression 

appears a fresh and distinct stack type would be generated, and so we would 
have that P : S * P : S. With an applicative semantics, we would consider 
all abstract types generated in the same way to be equal, so P : S = P : S. 
The argument in favour of a generative semantics is that it avoids "acciden-
tal" identification of types: if two abstract types happen to have the same 
implementation, they should not necessarily be considered equal, only types 
generated at the same point in the program should be considered equal. The 
argument against a generative semantics is that it is harder to reason about 
than an applicative semantics, because it does not admit the principle of sub-
stitution of equals-for-equals. For this reason, the treatment of ASL+ follows 
an applicative approach. 

Semantically, the applicative interpretation for the constraint operation 
above is simply to apply the reduct functor -_Ys  : Mod(Ep) - Mod (1s) to P, 
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where fp is the inferred signature for P which reveals the implementation 
of stack and 2:s is the constraining signature which hides it. There is no 
constraint operation like this in ASL+FPC  because it can be simulated using 
the binding construct, which has a constraining signature as explained in 
Section 7.3.2. 

Coming to ASL-style specifications, on the other hand, type abstraction 
means more than just hiding type identities via the reduct functor. For ex-
ample, the specification 

derive from {P} by t : - fp 

has just one model, {P]j E Mod(s). Although the identity of stack has been 
hidden in the signature of this specification, its class of models is unchanged 
by the derive operation. Instead, to give a specification of algebras which im-
plement the stack operations, we would have to use the abstract operation 
of ASL. In fact, a more high-level specification language would probably in-
terpret the ":" constraint operator appearing before specifications as a com-
bination of derive and abstract. 

This example of the difference between type abstraction in programming 
and specification (at least, in terms of the ASL+ semantics) raises questions 
over how to type-check the derive and translate operations. This we inves-
tigate next. 

7.3.6 Handling renaming 

The crux for propagating sharing properly is to allow the result signature 
of a parameterised program or specification to vary according the argument 
signature. Since parameterisation is understood in the syntax via substitu-
tion, we want to capture this variation in signature by a more liberal form 
of substitution, which allows a variable to substituted by a variable having a 
more refined type. 

The refinement on types allowed is an "increase in sharing", so that if 
£ c 	', but ' only differs from Z in having more sharing equations, then we 
may substitute a£'-algebra for a X-algebra. Semantically in FTC, we have an 
inclusion between Mod(') and Mod (1) in this case, which makes it easier 
to deal with. (Easier, that is, than the more flexible case that X' also contains 
additional sorts and operations over X; comments about this alternative are 
made later.) 

Using rough types we want express, as accurately as possible, the prop-
agation behaviour of terms in the module language. For variables, we use 
the idea of strengthening the type from the context, to reflect that it shares 
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with the context The typing rules for explicitly given algebras simply copy 
the type expressions into the signature (this happens in the type-checking 
rules in Section 6.8.2). We briefly considered functions above. What's left to 
look at is the operators of ASL. Here we examine the renaming and hiding 
operators translate and derive. 

Renaming with translate 

The usual rule for rough typing translate is: 

0. SF => P(i) 	a : 11 - 12 

translate SP by cr => P('2) 

In the semantics, we think of translate being interpreted by a family of oper-
ators I11,2;  this was the abstract understanding of SBOs used in Chapter 5. 

However, any model of translate SF by o-  has a o--reduct in SF, which 
implies that whenever c =.f, t, then it is safe to assume o-  (c) =Z2  0-  (t). This 
would result in a more powerful rough type-checking system, since more 
terms with no denotation will be eliminated by rough typing. 

For example, we expect that 

F P,. translate sig type c = nat end by [c -. ci] 	- Jd 

	

=> 	PC[d = nat]) 

	

where 1c  and 	each declare one unspecified type, and d[d = nat] is the 
denotation of sig type ci = nat end. 

Because signatures are allowed to vary, and because a function can be 
applied to a term with a more refined type than its apparent domain, Sig (SP) 
may have more sharing than the fixed domain 2:1  of the signature morphism 
o-. So the sharing equation c = t actually appears in a super-signature of . 
Generalising, we get a rule like this: 

SF => (X  I 	2 	i sh i 	'2 = 
translate SP by a => P () 

where a * (f) denotes the signature (TyX2,  Sh, Tm2)  with the sharing equa-
tions Sh defined by 

Sh(c) =Shi2(c)u{o(ti)ci.u(c)  =c1 A c1  =t1  E}. 

The signature 12  has the (extra) sharing equations propagated from by a. 
This constructs a pushout in Sign. 

9See Definition 7.2. This terminology is due to Leroy [1994] and doesn't relate to the 
usual type-theoretic notion of "strengthening" a context by removing variables. 
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But there is an easier institution-dependent way to arrive at the same 
result. Suppose instead that the translate specification is built using the 
syntax for a signature morphism. This is just a set of renamings, so the 
same syntax can denote many morphisms between similar signatures. In 
particular, given a source signature , the target signature determined by 
a renaming s (2:) will contain exactly the sharing equations required above. 
This results in a rule for translate which is more realistic and more readable: 

SP == P(s) 	0. s 
translate SP by s = P(s(2L')) 

It relies on the "natural polymorphism" of the syntax. 

Hiding with derive 

The derive operator is used to construct specifications with hidden parts. In 
many institutions, hiding is necessary to express certain specifications. With 
FPC, we could perhaps do without hiding of operators, since we can write 
formulae which are existentially-quantified on terms of any order. But there 
is no way to write formulae which are existentially quantified upon types. 

The usual rule for typing derive is this: 

SP = P('2) 	0- : I1 - 2  

derive from SP by a => P (Xi) 

Let's consider whether any type equalities should be propagated between 12 
and fl, particularly in case the argument specification SP has a supersigna-
ture of £2 with more sharing. We expect the typing of derive to hide names 
as usual. The question of whether derive should conceal type identities was 
mentioned in Section 7.3.5. Concealing type identities in programs makes 
good sense because it is how type abstraction is achieved, but in specifica-
tions type abstraction is achieved with the abstract operator (which I won't 
consider here). 

It would be possible to allow derive to propagate some type identities: 
those which can still be expressed in the result signature, for example. But 
this would be a half-solution. Again, I stick with the original scheme; to begin 
with, it is questionable whether we want the raw derive operator for arbitrary 
signature morphisms in the language - see the discussion on page 258. 

In the end, the rule above is modified only to use concrete syntax for 
signature morphisms. As before, compared to a rule containing a fixed se-
mantic signature morphism, this allows specifications over supersignatures 
Of £2 as arguments: 

F 	SP = P(12) X 	S 	 s 	- £2 

derive from SP by s : S => P (11) 
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Because the destination of a signature morphism cannot uniquely determine 
its source, we must also give the syntax for a signature as part of the derive 
construct. (A common and convenient addition would be to use an operator 
hide to hide some specified sorts and constants from a signature.) 

7.3.7 Redundancy of singletons 

Because FPC has type equations built into signatures, a choice motivated in 
Chapter 5, the prototypical use of singleton types to construct specifications 
from algebras is redundant. The specification 

{X} 

where X denotes a X-algebra, can be expanded into this specification in the 
context declaring X: 

Spec 
type c 
sharing c1  = X.c1  
Val v1 : t1  
axiom v1  = X.v1  

end 

(the subscripting suggests several statements of each form, according to the 
types and values in X). Rather than explaining dot notation via singleton 
types as suggested by Sannella et al. [1990] (see Section 2.1.5), expressions 
like this now have a direct semantics, because we the underlying context is 
available explicitly as an algebra. 

Type sharing equations are more expressive than singleton types with re-
namings. For example, suppose we have a signature for types with a default 
value: 

= def Sig 
type C 

val v : C 

end 

Then we can write the specification of a parameterised program which makes 
products of the f, type as 

PRODFUN =def  LIX :sig 
type c 
val v : C 

end. spec 
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type c = X.c x X.c 
val v : c 

axiom v = (X.v,X.v) 
end 

Now if Prod: PRODFUN, then Prod has the rough type 

TrX:L.Lu{c:= X.c  x X.c }, 

which allows the type-checker to know that the result of a Prod(P) is a ,-
algebra whose type c is equal to P.c x P.c. Using the singleton construct in 
place of sharing equations, this could not be expressed, because there is no 
(ordinary) signature morphism which can express the equation c = X.c xX.c. 

Because the primary reason for singleton types is no longer necessary, 
they are not included in the syntax of ASL+FPC. 

7.4 Semantics 

A set-theoretic semantics of the rough typing judgements is given in Defini-
tion 7.8 below. For simplicity, sets are used to interpret specifications, rather 
than PERs as in previous chapters. This means that the satisfaction system 
will not be sound for a contravariant rule for H, and it must use the simpler 
equal-domains rule shown in Section 4.9.2. 

The interpretation is a partial definition, because function applications 
can be undefined if the operand does not meet the semantic requirements 
of the function parameter. In fact, even if rough types were used as the 
parameters, the interpretation of a term might not be a well-defined element 
of the interpretation of its rough type; a rough type can be empty, because 
signatures can contain inconsistent sharing equations. This is in contrast to 
the semantics based on rough typing in Chapter 5, where rough types always 
have non-error elements, so if there are only rough types in parameters (or if 
all PBOs and SBOs are total), then roughly typed terms always have a defined 
(non-c) interpretation. For simplicity, I do not formalize 0 in this semantics. 

As before, a full soundness proof must wait for the satisfaction system, 
although soundness for rough typing, modulo definedness, is proved as a 
property of the definition below in Proposition 7.10. 

The semantics exploits the fact that in JPC, if £ 	", then whenever 
m E Mod(Y"), then m e Mod(f) too. This means, for example, that no co-
ercion is needed to interpret the variable rule, although the signature of the 
obvious extension of Alg(y) is - u X rather than - U XIX. The semantic 
inclusion means that no coercion functions are needed to interpret syntactic 
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subtyping, and so no interpretation of the subtyping judgement is given be-
low. If arbitrary subsignatures were allowed in the rough subtyping relation, 
this issue (and some others) would have to be tackled, see Section 7.6.1 for 
discussion. 

	

The interpretation of the judgement F 	sig X- is a function for extract- 
ing the underlying algebra of an environment. Applied to an environment y, 
this function is written AlgT  (y) where y is in the interpretation of the context 
F. The interpretation of the context F is written .ME[ Fill y. The interpreta-
tion of well-formed rough types is constructed beginning from .ME[F 
which is the set of algebras from Mod( 1  u .1) which extend the algebra 
given by Alg(y). Finally the interpretation of a term JtlE[F 	M = 	is 
an element of JvflIF 	when defined. 

Definition 7.8 (Interpretation of rough typing judgements). 
The interpretation of each rough typing judgement is defined by induction 
over its derivation. Each clause in the definitions below corresponds to a 
rule in Figures 7.1-7.4. Meta-variables introduced wildly below correspond 
to ones appearing in the premises of the rules. 
Algebra of an environment: 

Alg(>(*) = (0,0) (the unique object of Mod (0)) 

Alg'((y,m))=m 

c 
A Id"  T((y,Im)) 	m 	if 	1, = 	

Aid (y) if T is anon-signature. 

Interpretation of rough contexts: 

• 

F, I I = {(y,m) yLM F, mEJv!F 

lF,X:T={(y,m) 
	y e JAIT o,. F, m E 1F 	T, 

} 

Interpretation of rough types: 

mI r = Aid (y)} 

LME{F 	TrX:A.T'II 	 T'I(y, m) 

J'vlE{F o. P(T)]1 = Pow(JvlE{F 	TL) 

Interpretation of ASL terms: 
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S => P(flJI = 

{mEMod(i-u) I mizr =A!c/(y)} 

MIF o. P 	= 	 Aij(y) 

JVflIF . impose p on SP => P(1), = 

{mEJ1F P.. SP = P(fl, 	m 	p} 

• -m IF derive from SP by s : S => P(X), = 

{ miff I mEJVlF SP 

where a is the denotation of Zr  o. S 	X 

• Ni IF translate SP by s 	 = 

{mE Mod ( i-us()) 1 miff E JVJF 1,  SP 

where a is the denotation of ZF 	s => I - s(fl. 

ME[F o. enrich SPwith SP' ==> P(XUf')I= 

E J%1[F SP = P2')], A 

I 	 } 
mEMod(IrUXU') m E 	 SP' 

Interpretation of ASL+ terms: 

LMEIIF P. X : 	= (tx,Px) given by 

j-(c) 	c E IF, 
1 =def 	t1(X.c) CE. 

where (IF, PH = Aid (y). 

Jv!F P.. X ==> Ty = YF(X) 

I 

P1(V) 	VEj-, 
px(V) def p1(X.v) v 

-%1IF o. AX:A.M = rrX : A.T']I = the function  given by 

f(m) =J1 IF, X:T M => Ti(y, m) 

form ELMF A => P(T)]I. 

MIF MX - T', = 

.MIF o,. M => TrX : A.T']1 (J.1IF op. X 	: To) 

JvflIF 	TIX:A.B =' P(TrX:A.T')]J= 

TImEJF o. APi-yflJVflIF 	B 	P(T')Ifl(y,m) 
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.M{F o,. Spec(A) => P(P(T))]1 = Pow(JvljF 	A = P(T)]1) 

JvflF o,. [X = M]N : A => Tj = RT (k) where 

k = def JVIEIIF,X:TM Po. N = TN]l(y,m) 

where m = MEIIF o,. M = Tmiyl and 

( kI XF u 	 if  
RT(k)= 	{a 	Ek} if TP(X) 

where F => Sig F• 	 0 

We shall use the full contexts in the next section; these have an obvious 
interpretation using the definition above, by induction on a derivation of 
F == FR. 

Definition 7.9 (Interpretation of contexts). 
The interpretation of a context F such that F = FR for some FR is given 
by: 

'MO == 

rMIIiF,SP == 	FR, fl = 

	

{ (y, m) 	yEJ1F = FRL mEJv1Tr, o. SP =>  

11IF,X:A = FR,X:T]I= 

	

{ (y, m) 	yEMF = FR I, mEJv!FR A 	P(Tfl1 } 

LMIF,X = M = FR,X:TJ1= 

	

{ (y, m) 	yEJt1F = FRL m=JvlFR 0,  M => T} 

Proposition 7.10 (Rough soundness). 
Suppose  mo. M => T. Then] MIflEJ'fl[TIllwheneverbothare defined, 

for all y E .MI[F]1, whenever  JVflJIFJI  is defined. 

Proof (Sketch). By induction on the typing derivation for M and formation 

	

derivation for T. 	 0 
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7.5 Satisfaction System for ASL+FPC 

Now we have an improved rough typing system which puts modules together 
in a context. We want to extend these changes to the satisfaction system. 
Here I shall just sketch a few of the rules a satisfaction system might contain. 
The rules would be similar to those presented for the abstract version of 
ASL+, in Sections 5.5 and 5.6. 

There are four judgements used in the satisfaction system: 

> F 	 F is a well-formed context 
F> M: A 	 M satisfies A 
F > M = N 	M and N are equal in context F 
F;M H p 	 cp holds inM 
F I— cp 	 p holds mF 

The first three judgements are as usual, except that equality judgement is 
not relative to a type here, because we have a set-theoretic semantics. The 
last two judgements prove properties of terms M or of the context F. In 
the first case, the property p holds for the term M, which must denote an 
algebra or a set of algebras. In the second case, p holds for the underlying 
algebra of the context F. 

These new judgements allow combinations of properties to be proved for 
the context and for terms, and then used in rules which are certain kinds of 
"cut". As with the system presented in Chapter 5, there is no general logical 
rule of cut, since the satisfaction judgement is not a consequence relation 
which allows deduction from arbitrary premises. Instead properties of the 
context or terms can be used in key places. For example, a possible rule for 
impose would be: 

F ==> FR 
FR => sig -'F 	 F H Pr 

F>M:SP 	FRM=X 	F; M i- q9m 	q r A (Pm  Hp 

F > M : impose p  on SP 

To show that M satisfies impose p on SP, we must show that it satisfies SF 
and additionally that it satisfies p. The logical satisfaction is proved in the 
signature which extends the signature of the context by the signature of M. 
To prove it, we may use any properties of the context and of M itself. 

Properties of a term M can be derived in two ways. If M is an explicit 
program F, then we can assert an equality which comes from a declaration 
inside P: 

Va! V : t = e appears in P 
F;P F— v = e 
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If on the other hand, M can be shown to satisfy or refine an impose specifi-
cation already, we can assert the axiom directly: 

F > M : impose p on SP F> SP: Spec (impose p on SP') 
F;MHq 	 F;SPHq 

For ASL specifications, these rules rely on the presence of rules for reasoning 
about the equality of specification terms and proving refinements, to obtain a 
specification with impose as the outermost constructor.'° Suitable rules can 
be formed by modifying those given in Wirsing [1990], Farrés-Casals [19921, 
for example. 

For specifications built using parameterised terms, for example when 
M = F X, we must find a TI-type of the form TIY:A.impose (p on SP for 
F. This can arise from a generic proof for F, which relies on proving first 
F : TIY:A. impose p on SP and then X : A. Or it can arise from a slightly dif-
ferent information flow: find an A such that X: A and A is chosen to express 
enough information about X so that F : TIY:A. impose p  on SP can be de-
rived. Both these techniques are possible, in particular because of the gener-
alised A-rule which we adopt (called (A-NARROW) in Section 3.3.1 on page 54): 

F>A':Spec(A) F,X:A'>M:B' F,X:A>M:B 
F> AX:A.M : TIX:A'.B' 

(Because we do not have the contravariant rule here, the use of this rule 
allows unrelated types to be derived for the same A-term.) 

Properties of the context are proved by renaming properties of terms 
inside the context. There are three rules to deal with the three different 
kinds of declaration a context may contain. 

F> SP: Spec (impose tp on SP') 
FE F1,X: SP, F 	FR 	SP ==> Spec (1) 

FHXp 

FF1,X=M, F1' 	F;M I- p 	FR o. M == Spec (1) 
F Xy. 

F 	F1, SP, F1' 	F> SP: Spec (impose (p on SP') 
Fi-q 

Other rules for dealing with assertions allow properties tp to be combined, 
and the trivial derivation of T from any context or term. 

'°An alternative strategy would be to extend the definition of F; M F- p to allow theo- 
rem proving by decomposing the structure of M itself, as suggested for ASL by Sarinella 
and Tarlecki [1988a]. 
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As well as these new rules, we have rules similar to the ones seen before 
1111 APower and A< for the higher-order type constructors. To prove equalities, 
we also need congruence rules for the ASL terms, to admit equality relations 
on the syntactic representations of signatures and algebras, for example. 

The rules suggested here are provisional; more work is needed to study 
their formal properties and suitability for the task. More rules are proba-
bly needed, and strategies for proof search should be studied in practice 
one would wish for cunning ways to control the search space for proving 
consequences, as suggested by Sannella and Burstall [1983]. 

We end by stating without proof the desired agreement and soundness 
properties of the satisfaction system. 

Theorem 7.11 (Agreement with rough typing). 
If > F then for some FR,  F == FR. 

1fF > M : A then for some T, FR M => T and FR o. A == P(T), 
where  = FR. 

Theorem 7.12 (Soundness). 
Suppose > F and let y E J%1F = FR L 

1fF > M : A, then J%4M1fl E %M Y' 

IfF>M=Nand for some A,FM:AandFN:A, then 
JvjIM], = JvflIN]I. 

If F;M I— cp then for some E,FR  M => E or FR  M = P(s) and 
Jv{M] =FPc U.p. 

if  I— p then y14::Pc  . 

In the second case, actually, the existence of A ought to follow from F > M = 
N by a meta-theorem of the satisfaction system. 

7.6 Discussion 

This section discusses some shortcomings and desirable improvements for 
the work here, and mentions some related work. The chapter is summarised 
in Section 7.7. 
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7.6.1 Shortcomings and improvements 

The rough typing system presented here is only a first-step towards a more 
expressive type system, rather than a robust and final solution. Several prob-
lems with it remain, and there are some highly-desirable extensions. These 
are discussed below. 

Propagation with higher-order modules 

The examples in Chapter 2 made little use of higher-order modules: most 
of the modules used as parameters were ground terms. The type system 
presented here has some problems dealing with the expected propagation of 
sharing in more general cases. 

The typical example" is the parameterised program App] yFun which 
takes a parameterised program F as an argument and applies it to a second 
argument X. The application App] yFun(F) should behave just as F itself. 

App] yFun =d,f  A F: sig type c end - sig type c end. 
AX: sig type c end. F(X) 

We have the rough typing: 

() 	Appl yFun = TrF: sig type c end sig type c end. 
'rrX : sig type c end. sig type c end. 

Now App] yFun can be applied to a module which has a more refined type 
which expresses some sharing, for example, 

Id =d,f  AX: sigtypec end. algtype c =X.cend 

with 

() P,. Id ==> irX: sig type c end. 1x.j. 

But the rough type of App] yFun (Id) is 

() o. App] yFun (Id) 	rrX: sig type c end.f.  

which has lost the sharing expressed by Id. 
Leroy's syntactic solution to this [Leroy, 19951 is to introduce a new kind 

of name: as well as allowing names X.c, he considers X(Y . .. . ).c to be a new 
name. Then the types of applications like App] yFun above can be strength-
ened in the same way that variable types are, to express the sharing in the 

11see Leroy [1995] 
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result as type c = F(X).c. (This means that the left hand sides of applica-
tion terms have to be restricted too, although the right hand sides can now 
be applications of variables as well as just variables). 

At this stage it is getting painful to maintain the restriction of not permit-
ting module-level expressions inside core-level expressions. In retrospect, a 
better module language might be obtained by properly mixing the syntax; 
see the discussion in Section 8.2. 

Better rough typing 

The rough typing system does not guarantee that inconsistent signatures 
cannot arise during type-checking. One simple example is when derive is 
used to hide a type identity: 

F =def  AX: (derive from (spec type c = bool end) by [c -. c]: Xe). SP 

Now the parameterised specification F is only applicable to classes of models 
in which c is implemented by boo!, but this information has been hidden in 
the rough type of its parameter, which is fc. Because we are allowed to pass 
parameters with more sharing, we can now write something like 

F (spec type c = nat end) 

which is obviously wrong and would not be a term in the satisfaction system. 
But it is roughly typable. Other examples are possible which rely on the use 
of the binding construct, because that too can hide type-sharing. 

What can we do to fix such problems? One approach may be to restrict 
the language: it isn't clear that having the full generality of the ASL operators 
available in a high-level language is right, and perhaps with more restrictive 
higher-level constructs such inconsistencies could be avoided. In the case 
above, a derive operation would not be allowed alone - instead we would 
have a combination of derive followed by abstract, which would allow dif-
ferent implementations of the type c once its identity was hidden. 

Alternatively, the framework itself may be considered to be at fault. We 
have no distinction here between free names in signatures and "rigid" (or 
bound) names. Rigid names are those which have some fixed, but unknown, 
interpretation. This distinction is made in the SML stamp-based semantics, 
but the type-theoretic treatments of modular programming [Leroy, 1994, 
Harper and Lillibridge, 19941 manage to avoid it and treat types as I have 
done here: either "manifest" (with known sharing equations) or "abstract" 
(no known sharing equations, and free). The deep reason is that for mod-
ular programming, parameter signatures are fixed and there is no way to 



ASL+ based on FPC 	 - 	 259 

introduce rigid names in parameters. In ASL+ parameter signatures can vary 
because we have variables ranging over specifications which can be instanti-
ated with specifications of a super-signature; and because of expressions like 
those above. This also explains why other studies have found parameterised 
signatures (and even parameterised renamings) to be useful. 

Passing parameters with more components 

In real languages for modular programming, one is usually allowed to sub-
stitute an algebra over any super-signature, so that extra components of the 
parameter are forgotten automatically. This is a richer form of subtyping 
than the one adopted here, but it is harder to cope with in the syntax and 
semantics, since it calls for the use of coercion functions (built up from the 
reduct functors), to "cut-down" an algebra to the right size, by forgetting ex-
tra components. To do this we would need to define an interpretation of the 
subtyping judgement as a coercion function, but more crucially, prove some 
kind of coherence property which relates the interpretation of the substitu-
tion of a coerced-term with the coercion of the substitution. See the remarks 
in Section 4.6 for similar discussion. 

There is a further difficulty raised by allowing parameters with more com-
ponents. The new components might obscure other declarations: in other 
words, it becomes possible to re-bind the same name. This is tricky to tackle; 
whilst names in signatures behave like bound variables, they cannot be re-
named. Some form of distinction is needed between the names of the type 
and term constants in the signature, and the identifiers used in types and 
terms. This has been addressed in a couple of ways in the recent treatments 
of type-theoretic module systems (see for example Leroy [1994], Harper and 
Lillibridge [19941). 

Despite these difficulties, I believe that a proper treatment of modular 
programming and specification should allow this kind of subtyping. 

Nested sub-algebras 

In most module languages there is a facility for declaring a sub-module nested 
within another module. This is not allowed here; there are a couple of rea-
sons why it is difficult to add. 

The first reason concerns the mix of languages mentioned before: at the 
moment there is a strict separation between the core language FPC and the 
modular extension to ASL+. So the rules for writing syntactic signature and 
algebra expressions only have an FPC signature for a context, rather than 
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a full ASL+FPC  context. This precludes directly including something like 
mod L = M in an algebra, for example. 

Instead we might try to extend the "variable-only" treatment, and allow 
the rules for signatures and algebras to understand the fact that some names 
have a special construction which indicates they denote components of a 
module. Then we might write mod L = X, for example. 

However, in both cases there is a more serious problem to be addressed: 
again, the problem mentioned above of re-binding names. In this case, a 
nested module could have the same name as a module in the context - 
forcing it to be different seems rather too strong at this point. 

The renaming by flattening approach to adding nested sub-algebras ex-
tends the treatment of signatures as contexts to signatures declared over 
those contexts. In other words, we would have extensions like £UX.2' 9  extu 

11  u Y.. At this point, it becomes questionable whether flattening is right. 
In real implementations, the modular structure is retained: the dot-notation 
corresponds to a look-up operation rather than a fixed projection defined 
ahead of time based on a global renaming. Although it is tempting to ex-
plain nested sub-algebras by the flattening approach, I believe a better un-
derstanding would be gained by treating nested signatures properly. This 
would mean altering the underlying institution once again and not using 

PC itself directly. 

16.2 Related work on syntactic module type systems 

Leroy, and Harper and Lillibridge independently, introduced the idea of sig-
natures with explicit type-sharing equations to give a type-theoretic version 
of the SML module system which could explain the forms of type abstrac-
tion and propagation in SML [Harper and Lillibridge, 1994, Leroy, 1994]. The 
intention was to get an accurate and type-theoretic description which cap-
tures the operational description of the SML semantics Milner et al. [1990], 
and also repair problems with it such as the lack of support for separate 
compilation. Leroy [1995] later extended his work to consider higher-order 
modules. 

The rough type system here follows some of these researchers' ideas, 
although it began life from the conception of adding type equations to alge-
braic signatures to explain sharing and fix the institutional semantics. Sim-
ilar ideas for type equations in signatures were used by Tarlecki [1992]. I 
have aimed for a type system which relates directly to the abstract syntax of 
the module language; even some of Leroy's systems require extra stages of 
translation. 
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Many of the restrictions in the type system presented here arise from 
the inability to substitute module-level expressions into core-level expres-
sions: the strict separation of the syntax of FPC from ASL+. This is why we 
introduce local bindings, which are not present in other systems. (In com-
pensation, other systems have the possibility of nested modules, which can 
be hidden by a signature constraint operation.) 

Leroy [1996b] makes restrictions on what kind of applications are allowed 
and where they may appear, similar to the restrictions made here because of 
the substitution problem. Leroy's motivation instead is to capture a gener-
ative semantics in which substitution is not a valid operation. A name-level 
understanding of type equality seems essential for dealing with a generative 
semantics. 

Some recent work on module systems by Courant [1997a,b] attempts to 
remove these restrictions from Leroy's systems by introducing generation 
of type names at a different stage, when structure declarations are made 
(X = F(M)) instead of when functors are applied (F(M)); expressions then 
retain an applicative semantics, but declarations have to be treated specially. 
This idea might work well with the treatment of contexts here. 

7.7 Summary 

This chapter described an instance of ASL+ based on the institution JTC de-
fined in Chapter 6. I introduced a new rough typing system for the language. 
This has two major improvements over the previous rough typing system for 
the abstract version of ASL+ in Chapter 5. 

The first improvement given by the new type system is that it allows pro-
grams and specifications in-context to be dealt with, giving a formal treat-
ment of dot notation for renaming the parameters in the bodies of abstrac-
tions, for example. Before this point, the dot notation was explained in an 
informal way by appealing to some translation on the source language in-
volving singleton types (see the example in Section 2.1.5). This translation 
is less general than the present treatment which allows sharing equations 
which express sharing between parts of types. 

The second improvement given by the new type system is that it explains 
the propagation of type information from the argument to the result in a 
parameterised program. This means that parameterised programs do not 
denote a single function between model classes over two fixed signatures 
-'arg Xres, but rather a family of functions indexed by signatures rg  such 
that Earg 	rg' from the model class of 	to the model class of a sig- 
nature Xres[ rg ] which may depend on the sharing equations in -rg  This is 
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closer to the situation in real programming languages and pushout parame-
terisation. 

I gave a semantics for the language based on this new type system, which 
is an original step beyond the purely syntactic treatments of the work on 
programming languages. I agree with the arguments given by Leroy [1994], 
Harper and Lillibridge [1994] that there should be closer connection between 
the syntax and semantics than is evident in the operational explanations of 
type-checking (such as in the 1990 S M L semantics Milner et al. [19901) and ex-
planations which are more type-theoretical are needed. However, the model-
theoretic semantics is still paramount in the theory of algebraic specification, 
so it is important to connect the two sides. This poses some new challenges. 

The rough typing system given here still has drawbacks, described in the 
previous section. It is an experimental first-step towards an expressive type 
system, rather than a robust and final solution. There is much scope for 
further research. 
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8.1 Summary 

T HE OBJECTIVE of this thesis was to study techniques and foundations for 
the modular development of large programs and specifications, using 

the language ASL+ which was introduced in the closing sections of Sannella 
et al. [1992]. 

The work began with two fundamental studies of type systems which are 
fragments of ASL+. 

The first study was of the system A<{} , which combines subtyping with 
singleton types, introduced in Chapter 3. This was one of only a few stud-
ies of dependently-typed subtyping systems in the literature when it was first 
published [Aspinall, 1995a]. Since then more has been done and the research 
area is quite active, driven by a desire to add subtyping and similar con-
structs to theorem provers based on type theory [Aspinall and Compagnoni, 
1996, Betarte and Tasistro, 1996, 1997, Bailey, 1996, Chen and Longo, 1996, 
Chen, 1997]. 

The second study was of the system 'Power,  introduced in Chapter 4. This 
appears to be the first in-depth study of power types in the literature. It 
forms the core of ASL+, and has a rough typing system which is decidable 
and approximates typing in the full system. 

In Chapter 5, I gave a formalization of ASL+ based on the type systems 
given before. This involves special notions of consequence relations for 
proof systems of the underlying institution. 

My goal was to capture ASL+ as an institution-independent generic lan-
guage, which captures parameterisation as it is used in real specification 
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and programming languages. In particular, I wanted to completely formalize 
the example of Chapter 2 and other similar examples. To get a useful lan-
guage, we should just have to instantiate to a given institution and use the 
type-checking rules of ASL+, and not a complex translation and duplicated 
type-checking rules for higher-order modules in the source language. The 
original proposal of ASL+ falls short of this goal for technical reasons to do 
with type-checking, explained in Chapter S. 

With a view to solving these problems and formalizing the examples fully, 
in Chapter 6, I gave a complete description of an institution based on FPC, 
a minimal functional programming language with recursive types. The logic 
of the institution is an LCF-style extension to Higher-Order Logic. 

In Chapter 7, I introduced a new rough typing system for ASL+FPC,  a 
version of ASL+ based on FPC. This system successfully captures the type-
checking requirements of the examples in Chapter 2. However, there are 
similar examples involving use of higher-order parameterisation, for which 
the type-checking system of ASL+FPC  is not sufficient. 

It seems quite difficult to design a good type-checking system for ASL+ 
which deals properly with putting signatures together. In retrospect the dif-
ficulty isn't surprising; for the case of programming languages alone, re-
search is still highly active into finding good understandings of higher-order 
module systems the goal being to find understandings which are less op-
erational and more type-theoretic [Leroy, 1994, 1995, 1996b,a, Harper and 
Lillibridge, 1994]. And for ASL+ we want to explain not only the process of 
type-checking, but also the model-theoretic semantics of the language. 

The goal to find a suitable type-checking system is important because in a 
typical institution, the semantics of ASL+ is strongly typed, so type-checking 
is an absolute precursor to defining the semantics. It must also be a precur-
sor to serious investigation of the proof system for proving satisfaction of 
a specification by a program, or refinement of specifications. The work here 
still leaves questions to be answered. 

8.2 Future directions 

Examples of program development 

To begin with, further examples of formal development should be under-
taken in languages like ASL+. The new forms of structuring programs with 
higher-order module languages are only now being explored, as such lan-
guages become available in prototype. ASL+ allows specifications to be struc-
tured in similar ways, and also allows study of the transition between speci- 
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fication structure and program structure, via TI-specifications. The impor-
tance of being able to specify program structure has been recognised in the 
on-going Common Framework Initiative [CoFI, 1997] into defining a paradig-
matic algebraic specification language; the emerging language CASL provides 
architectural specifications which are akin to first-order 17 -specifications with 
several arguments [CoFI Task Group on Language Design, 19971. An impor-
tant issue to look at is the possible development steps used in refining ar-
chitectural specifications, comparing with the implementation relations used 
for parameterised specifications. These points were touched upon in Chap-
ter 2, but more needs to be done. 

Meta-theory of complex type systems 

On the type theory side, the fundamental studies of Chapter 3 and Chapter 4 
left some questions to be answered, particularly over the meta-theory of 
A Power-  However, it is less clear whether A Power  itself is necessary as a basis 
for ASL+, since the variety of parameterisation mechanisms possible in Ap wer  
have hardly been exploited in the ASL+ examples studied to date. So far, we 
have used algebras parameterised on algebras, specifications parameterised 
on specifications and specifications parameterised on algebras. As a type 
system, modelling specifications with types, this parameterisation structure 
is described by the corner of Barendregt's A-cube known as APw [Barendregt, 
1992]. For ASL+ we need a subtyping variant of APw which provides bounded 
abstraction and quantification. The particular system needed has not been 
studied in the literature yet, although work on extending other corners of 
the cube with subtyping comes close [Aspinall and Compagnoni, 1996, Chen, 
1997, Compagnoni and Goguen, 19971. 

PER semantics for (higher-order) observational equivalence 

The abstract formulation of ASL+ studied in Chapter 5 introduced the idea 
of modelling specifications by relations on algebras rather than classes of al-
gebras. This arose for the same reason that a types-as-sets semantics needs 
to be generalised to cope with the stratified equational theory of subtyping 
systems. As mentioned in Section 5.4.5, it would be interesting to see if a 
PER semantics for specifications is useful: integrating a relation of obser-
vational equivalence as part of the semantic denotation, rather than closing 
up the class of models under such an equivalence. There are connections 
with type systems for record subtyping, because of the obvious relationship 
between (dependent) record types and signatures in typical institutions (see 
the comments in Section 6.9.3). The new breed of type systems for modular 
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programming pursues these ideas [Leroy, 1995, Harper and Lihibridge, 1994, 
Courant, 1997a]. 

Type theory like institutions 

The motivation behind this new breed of type systems for modular pro-
gramming is to come up with type-checking rules for module composition, 
which work at (or very close to) the level of the source language syntax. 
Re-examining ASL+FPC  with this idea in mind, the starting point of FPC sig-
nature in Definition 6.1 seems like an odd half-way house; probably FPC 
signatures and signature morphisms should be defined as in the abstract 
syntax of Section 6.8.2. Then the category sign''  would be similar to a cat-
egory of contexts as in the semantics of dependent types [Hofmann, 1997, 
Pitts, 1996]. Semantic signatures with a different order of declarations are 
isomorphic rather than identical. 

A morphism between contexts in type theory semantics corresponds to 
a substitution; this is somewhat richer than renaming, and is like a derived 
signature morphism in the usual algebraic setting. Using a richer form of 
morphism between signatures allows a type constant in one signature to be 
mapped to a type expression over another signature. This means that shar-
ing equations, which were added to signatures, could be removed again, and 
expressed with signature morphisms instead. But these are early thoughts, 
and derived signature morphisms are known to break some desirable alge-
braic properties. 

This type-theoretic view is more finitary than the classical definitions for 
many-sorted algebras, but for the case of real programs and specifications, 
there seems to be nothing wrong in such limitations. 

Type systems and proof search 

An important research goal is to study mechanisms of proof search in struc-
tured specifications and programs. For the abstract version of ASL+ studied 
in Chapter 5, we want ways of reducing satisfaction judgements between 
higher-order objects to sets of proof obligations to be proved in the under-
lying proof systems. For the concrete version of ASL+ studied in Chapter 7, 
we want strategies for proof search in the satisfaction system. In both cases, 
there are parallels with the design of algorithmic versions of the type sys-
tems in question. But with specifications things seem more difficult: if we 
wish to prove a property p of an application of a parameterised program 
F(M), it is unrealistic to suppose that there is a "canonical" TI-specification 
TIX:SP. SF' for F which always provides enough information to deduce p  in 
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a schematic way. Some peculiar properties of M not assumed in SP may be 
required. In this case, we would need rules like the generalised A-rule con-
sidered in Chapter 3, so that F can be given other 17-types which make use of 
particular properties of the actual argument M. We might want to combine 
such types together; this is an obvious application for intersection types (see 
also the example in Section 2.2.6). 

An improved abstract ASL+ 

Another future task is to describe the construction of the module language 
of Chapter 7, or an improved version of it, in an abstract and institution-
independent way. Some extra assumptions will be needed. The syntax and 
type-checking judgements of the core-language in Section 6.8 were described 
in a way suitable for abstraction, by relating pre-signatures to a class of sig-
nature inclusions, the signature extensions. (The definitions work just as 
well if we work with syntax for signatures throughout, as suggested above; 
inclusion between signatures can then be defined inductively over the length 
of the subsignature.) Moving to an abstract setting, we might postulate a 
special class of inclusions corresponding to extensions, and axiomatize the 
dot-notation renamings in terms of these. Related abstractions were intro-
duced by Sannella and Tarlecki [1986], who defined the notion of institution 
with syntax. And there are several places already where the category Sign 
of an institution has been equipped with a system of inclusions, notably in 
Goguen [1991]. 

Mixing languages 

Whilst the renaming approach of handling dot-notation described in Sec-
tion 7.3.1 seems simple in outline, it turns out to be complicated in detail 
and has serious defects. I believe that a more satisfactory solution would 
be achieved by intimately combining the syntax and semantics of the mod-
ule language with those of the core language, reflecting that the two lan-
guage grammars are mutually-defined once we add modules and dot nota-
tion. Because the notion of core-level type-equality becomes dependent on 
the module-level context, this construction shows its true colours to be a 
simultaneous definition, rather than a construction which takes a core-level 
language and "adds modules on top", as some of the module-language folk-
lore seems to suggest. 

A similar thing happens when putting institutions together: to get proper 
"mixing" of the institutions, one has to use presentations of the syntax 
known as parchments [Goguen and Burstall, 1986]. The syntax of parch-
ments can be combined to give the expected results [Tarlecki, 1996]. A sim- 
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ilar point is made for the combination of logical encodings, described by 
Harper et al. [19941. 

There might be ways of building ASL+ in an abstract way, following these 
ideas. In likelihood we would need to deal with contexts explicitly so re-
cent ideas of context institutions and context parchments [Pawlowski, 19961 
might be applicable. The parchment and institution theories do not apply 
directly, because they work with the sentences of institutions rather than 
syntax for signatures and models. But one can define institutions in which 
the sentences are programs, for example (see the comments in Section 5.10). 
Of course, once such an abstract construction was conceived, we would be 
obliged to persuade everyone that it does the right thing! So it would be 
worth revisiting the specific case of ASL+FPC  defined in this manner. 

8.3 Finally 

I believe that the study in this thesis provides progress towards rigorous 
methods of programming and specification in-the-large. I have forged some 
new connections between parameterisation mechanisms used in specifica-
tion languages and forms of parameterisation used in advanced type sys-
tems, and the work has lead to contributions in both areas. I have made 
preliminary investigations into new language designs, for solving some prob-
lems with existing languages. 

Apart from specification and programming languages, advanced type sys-
tems with subtyping and module facilities have another important applica-
tion: to automated proof assistants. One day we may see these proof assis-
tants themselves form a basis for practical formal program development in 
a language with some features of ASL+. This is one of the ultimate aims of 
this research. 
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Ad A Pervasive Environment for FPC 

FPC is expressive enough to describe most of the common datatypes used 
in programming. Here we describe a collection of common types and opera-
tions on them, which might be part of a "pervasive environment" or standard 
library for a real programming language. 

We take the view that the expressions written below are definitions in the 
meta-language. Some types and terms are parameterised by types, which is 
impossible in FPC itself since type functions cannot be expressed. We freely 
use subscripts, bracketed terms and "niixfix" notation on the left hand side 
to indicate where such parameters are resolved in the meta-language. 

Empty and unit types 

void =def pa.ci 
unit 	=def  void - void 
unity 	def fun (x: void).x 
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Boolean type 

bool 	 def 

true 	 def 

false 	 def 

if b then e1  else e2  =def 

unit + unit 
m1b001 (unity) 
rnrb00, ( unity) 
case b of inl(x) => e1  orinr(y) = 

Option type 

optiont 	def 	+ unit 
somet(e) =def ifllopton(e) 
nonet 	=def inr010  (unity) 

Fixed point operator 

FIX, 	def 	fun (f: (s - t) - (s - t)). 
(fun (x : r). fun (y : s).f (elim(x) x) y) 
(intror  (fun (x :r). fun (y :s).f (elirn(x) x) y)) 

where r pa.ci - (s - t) 

is 	=def FIXs,s (fun (f:s—s).f) 

funrec f (x : s) : t. e 	def FJX5,t (fun (f : s - t). fun (x : s). e) 

Natural numbers type 

nat = def 	pcLunit+a 
0 = def 	intronat(irilunit+nat(unity)) 
succ(e) def 	intronat(inrunjt+nat(e)) 
pred(e) = def 	case elim(e) ofinl(x) => 0 orinr(y) = y 
zero?(e) =def 	case elim(e) of inl(x) => true orinr(y) => false 
itert =def 	fun (z : t). 

fun (s : t - t). 
funrec iter' (n: nat) : t. 

if zero?(n) then z else s (iter' (pred(n))) 

Clearly we can define other familiar functions on the datatypes, as well 
as other datatypes such as !IStt. 
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A.2 	Operational Semantics of FPC 

The operational semantics of FPC expressions are shown in Figure A.1 on the 
next page. The rules axiomatise an evaluation relation on expressions e, in-
dependent of typing. If e t r we say that e evaluates to value r. The values, 
r, are the subset of the closed expressions e definable in the grammar: 

r 	::= v I x I fun (x:t).e I (r, r) 
I ifllt+2 (Y) I inr t1+t2 (r) I intro (r) 

The rule for function application makes this a call-by-value operational se-
mantics (and the denotational semantics given in Chapter 6 corresponds 
with this). 

The following proposition summarizes two standard properties of the 
operational semantics of FPC. 

Proposition A.! (Operational semantics of FPC). 
(Closure of typing under evaluation relation). 

IfG>E e: t and  er,  then Gr:talso. 

(Soundness and Adequacy wrt den otational semantics in Definition 6.13 
on page 201). 

(a)Ife 4 r  then  Jvllel 1 p=Jvllrlp;ife 4 then JvlIIel LP =± 

(b) If Jvle LP  = .Mle'] 	and e l r, then e' 4 r also. 

for suitable environments t, p. 

Proof See Gunter [1992]. 	 El 

A.3 Derived Connectives of LFPC 

Higher-order logic extended with FPC was defined in Section 6.4. Only a 
few primitive connectives are needed and then the truth values, conjunction, 
disjunction and quantifiers can all be defined. Here are suitable definitions 
using the primitives of LFPC: 
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fun (x:t).e 4 fun (x:t).e 

fun (x:t).e' 	e2 4 r' 	e'[r'/x] 	r 
e1 e2 U r 

e1 r1 	e2 1r2  
(el, e2) 4  (ri,r2) 

e 4 (r1, r2) 
fst(e) J 

e Jj (r1, r2) 
snd(e) 4 r2 

J r1  
init1+t2 (ei) JJ  init1't2 (r1 ) 

e2 
inrt1+t2 (e2) 4 inr 1+2 (r) 

e 4 inl(r1 ) 	e1[r1/x] 4 r 

	

case e of inl(x) => e 1  orinr(y) => e2 	r 

e 4 inr(r2) 	e2[r2/y] 4 r 
case e ofinl(x) => e1 orinr(y) => e2 4 r 

e r 
intro(e) 4 intro(r) 

e 4 intropa. t(r) 

elimpat (e) 4 r 

Figure A.1: Call-by-value operational semantics of FPC 
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T =def (Ap:prop. p) = (Ap:prop. p) 
VT  =def AP:T - prop.P = Az:T.T 

def AP:T - prop.P (Ez:T.P z) 
F = def Vp: prop. p 

def Ap:prop.p =' F 
A =def Ap1 ,p2:prop.Vp:  prop. (p1 z= 	(p2 = 	p)) 

- P 
V def Ap1 , p2:prop. V 	: prop. (p1 = p) = 

(P2 = p) = p 
h1  * h2 def (h 	= h2) 

We have used V  : T.P in place of VT (Az:T.P). We also write Vy, z : T.P to 
abbreviate V  : T. V  : T. F, and so on for more than two variables. Similarly 
for 1. We also use the usual infix notation for A and  V. 

The familiar rules for these connectives are derivable from those given in 
the next section. 

A.4 A Proof System for LFPC 

Here we present a bare proof system for LFPC, consisting of structural rules 
for the primitive connectives of the logic and axioms for the 	operator. 
Some axioms for were already mentioned in Section 6.6 on page 207. 

The rules can be formulated in a multitude of ways (see for example Gor-
don and Melham [1993], Lambek and Scott [1986]);  here we give a simple for-
mulation which avoids dependency between the primitive connectives. This 
results in some redundancy, for example, the cut rule may be derived from 
the implication rules. 

Recall that the proof system derives sequents with the form: 

tP H-' (p [G] 

wheref is an FPC signature and G is a LFPC context, describing the constants 
and free variables of the formula cp and the set of formulae cP. The context 
[G] is often omitted for brevity; in most rules, the context is fixed. 

Structural axioms and rules 

G 	cp : prop 
q2Hcp[G] 
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P i—s p [G] 	G 	qY : prop 

p' F-  p [G] 

cPF-qJ 	pHp' 

HP GcG' 

4 	p [G'] 

G >1  h:T 	0 H p [G,z:T,G'] 

cP[h/z] E  p[h/z] [G,G'] 

Equality axioms and rules 

G v h: T 
F-i' h = h [G] 

G >1  h l , h 2 :T 	G,Z:T 	(p: prop 
hi  = h 2, p[hi/z] H tp[h2 /z] [G] 

G 	p1,p2 :prop 	 F- q 2  [G] 	P, (p 2  F-s  cp [C] 

'Pi = P2 

G,z:Th:T' 	G>h':T 

i-' (Az:r.h)h' = h[h'/z] [G] 

G 	f : T - T' 

F-s  Az:T.fz = f [G] 

G,Z:T > h l , h 2 :T' 

h 1  = 	- Az:T. h1  = Az:T. h 2  [G, z: T] 

F-s  Vx:prop.x=T V x=F 

Implication rules 
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,cPi F-i' 'P2 
	 F- 'Pl==p2 	cPH(PI 

'Pi => 'P2 
	 H- cP2 

Choice axiom 

G,Z:T 	p:prop 

'P H  p[Ez:T.'p/z]  [G,z:T] 

Order relation 

I— Vx:t.xx 

HVx,y,z:t.xy A yz==xz 

H Vx,y:t.xy A yx=x=y 

H Vf:s -) t.Vx,y:s.xy = fxfy 

F— s  Vx: t. it x 

H Vf: (s -) t) -) (s -) t)FIX,f = f(FJX5,tf) 

FPC types are CPOs 

Sets in HOL Sets in HOL are represented as predicates; rather than a single 
type of sets, we have setT def T - prop. Much useful derived notation can 
be defined, including: 

xES 	 = def S(x) 
VxES.P(x) def VXT.S(X)P(X) 

IX E S-P(x) =def 	x : T.S(x) A P(x) 
S-5' 	=def Af:T — T'. Vx E S.f(x) e T 
pow(S) 	= def AT:T - prop. Vx : T.x e T =' x E S 

By convention, S : setT. Some type information will be omitted for clarity. 
The following definitions are a direct translation of the standard definitions 
from Section 6.3. 
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UB(j,S) 	 =def Vx E S.x j 
LUB(j, S) 	 =def 'c/x E S. UB(x, S) = jE x 

def 	 LUB(j, S) 

Injective(f,S) =def Vx ES. Vy E S.x * y = f(x) * f(y) 
Onto(f, 5, S') 	=def Vy E 5'. 3X E S. f(x) = y 
Finite(S) 	=def Vf ES S. Injective(f) ==> Onto(f) 
Directed(S) 	=dd 

VT E pow(S). Finite(T) ==> Rj ES. UB(j,S) 

Complete(S) 	=def 

VT E pow(S). Di rected(S) => 2j E S. LUB(j, S) 

Here is the single axiom which characterises FPC types as CPOs. The term 
Ax:t. T represents the underlying set of the domain which interprets t. 

- Comp]ete(Ax:t.T) 

Fixed Point Induction 

Suppose P is a predicate over some FPC type, P : t - prop. 

Admissible(P) =def 

Directed(S) VS E pow(Ax:t.T). 	
(=— S.P(x)) => P(S) 

The rule of fixed point induction is: 

1 F—  P( 10 
1 i—s  Admissible(P) 	P - Vx:t.P(x) =P(fx) 

P H-i'  P(FJXf) 

Axioms for functions 

	

G 	e: s 

H- 	-L s-)t  e = It [G] 

	

G > 	e: s -) t 

e Is = it [G] 

G,x:se:t 	Ge':s 

- 	e' * i = (fun (x : s). e) e' = (Ax:s. e)e' [G] 
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Axioms for products and sums 

The axioms characterising the product and sum constructors correspond 
directly to the definition of the semantics in Definition 6.13. As usual with 
LCF, there is a proliferation of axioms concerning definedness and strictness, 
as well as the uniqueness and "evaluation" axioms. 

In the axioms below, it is assumed that G >1  e1  : s, G >Z  e2  : t and 
G >1  p : s x t. All the axioms also have context G. 

H '  (fst(p),snd(p)) = p 

1-1  e1  * -'-i A e2  * ' 	(e1 ,e2 ) 

1--1  e1  = i s  V e2 = it 	(e1 ,e2 ) = 

H1  fst(i) = 	 H1  fst((e1,e2 )) = e1  

H1  snd(i_5 ) = it 	 F-1  snd((e1,e2 )) = e2  

In the axioms below, it also assumed that G, x : s >1 fi : u and G, y 
t >1  f2 : U. 

H1  in15+ (ei ) * inrS+(e2) 

H1  e1  * ±5 => in15+ (e1) * 'S+t 

1--1  e2  # -L t 	inlS+(e2) * 15+t 

H1  e1 = -Ls 	in1+(e1) = 

H-1  e2  = 	=> inlS+t(e2) = J-S+ 

H1  e * -i - + 	(case e of inl(x) => fi orinr(y) f2) * i 

H1  case js+t  of inl(x) => fi orinr(y) = f2 = 

H-1  case inls+t (e1 ) ofinl(x) > fi orinr(y) => f2 = f [el  /x] 

H1  case inrs+t (e2 ) ofinl(x) = fi orinr(y) = f2 = f2[e2/y] 
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Axioms for recursive types 

The term constructors are characterised as isomorphisms. 

E intro.t(I[pa.t/a]t) = J-pa.t 

G > e: [pci.t/ci]t 
I_I elim(intropa.t (e)) = e 

G > e: pci.t 
i-s  intropa.t (elim(e)) = e 
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