
Type Systems
for

Modular Programs
and Specifications

David R. Aspinall

Doctor of Philosophy
University of Edinburgh

1997

0

Short Contents

Abstract ii

Declaration Iv

Preface V

Table of Contents vi

List of Figures xii

1 	Introduction 1

2 An Example in ASL+ 25

3 Singleton Types 45

4 Power Types 84

5 ASL-i- 138

6 The Institution JTC 188

7 ASL+ based on JTC 224

8 Conclusions 263

A More about FPC 269

Bibliography 279

Index 291

Abstract
This thesis studies the foundations of formal program development. It brings
together aspects of algebraic specification and type theory and applies them
to powerful new mechanisms for modular programming and specification.

The language ASL+ is the vehicle for the study. It is a typed A-calculus
built on top of a core-level programming language and the algebraic specifi-
cation language ASL. The A-calculus expresses the structure of programs and
specifications in the same language, allowing higher-order parameterisation
of each, and allowing specification of parameterised programs.

ASL+ has a model-theoretic semantics based on an arbitrary institution,
and two formal systems: a type-checking system to check well-formedness,
and a proof system to prove that a program satisfies a specification or that
one specification refines another. The type-checking system builds on simply
typed A-calculus. The proof system is richer: a type theory with subtyping,
dependent products, power types, and singleton types. This is a novel com-
bination; establishing even basic properties poses a challenge.

I demonstrate the use of ASL+ with an example program development,
introducing some rules and issues such as sharing. The formal study begins
with two fundamental investigations into sub-languages of ASL+, new typed
A-calculi in their own right. The first calculus A<{} features singleton types,
the second calculus A Power features power types. Both calculi mix subtyp-
ing with type-dependency. I prove that each is strongly normalizing, and
has expected admissible rules; for example, A<{} has subject reduction and
minimal typing. The calculus A Power is given a restricted system for rough
type-checking which is decidable. Rough types help organize a model defini-
tion.

I examine two versions of ASL+ itself. The first is an abstract kernel
language which treats the underlying core-level languages as sets of combi-
nators. It is built on a calculus AASL+ which extends A<{} and A PowerS Practical
examples must be translated into this version of ASL+, because it does not
automatically express the sharing behaviour of parameterised programs. In-
stead of a translation, I give a second version of ASL+ in a specific institution
FTC. The institution is based on FPC, a functional language with recur-
sive types, together with an LCF-style extension to higher-order logic. This
concrete version of ASL+ has a more powerful type-checking system than

Abstract 	 111

the abstract version, so programs and specifications can be written directly
without translation.

Preface
Acknowledgements

I'm grateful to many kind people for their help and encouragement along the
way. This is a quick summary.

First to my supervisors, Don Sannella, Benjamin Pierce, and (an occasional
unofficial supervisor) Andrzej Tarlecki, for their time spent coaching me.
Next, to the many friends and colleagues I met at Edinburgh, for discussions
technical and not. Special thanks to Claudio Russo, for talks on the subject
of Chapter 7 and help implementing prototype type-checkers, and to Adriana
Compagnoni for our enjoyable collaboration on subtyping. Also to Healfdene
Goguen, Martin Hofmann, Neil Ghani, Christoph LUth, Chris Owens, James
McKinna, and Andrew Wilson. Thanks to Luca Cardelli for listening to my
explanation of my work on power types. Thanks to Andrew Kennedy for
reading a draft at the last minute, and to everyone else who read parts of
drafts: Adriana Compagnoni, Healf Goguen, Christoph LUth, Markus Wenzel.
Thanks to Larry Paulson and Graham Titmus for guidance early in my career.

I'm grateful to my examiners, Martin Wirsing and Rod Burstall, for their
suggestions and their time spent examining this thesis.

Finally, to my friends and family who have supported me over the past
years. This thesis is dedicated to my parents, Roy and Eurwen, and my grand-
mother Mary Wilkinson.

Edinburgh,
August 1997.

Contents

Abstract 	 ii

Declaration 	 iv

Preface 	 V

List of Figures 	 xii

1 	Introduction 1
1.1 Institutions 6

1.1.1 	Institutional semantics 8
1.1.2 	Proof systems for institutions 9

1.2 ASL 10
1.2.1 	Type-checking 12
1.2.2 	Semantics14
1.2.3 	Satisfaction in ASL 15

1.3 Parameterisation in ASL 16
1.3.1 	Type-checking parameterised specifications 16
1.3.2 	Semantics of parameterised specifications 17

1.4 ASL+ 19
1.5 Pre-requisites and Conventions 21
1.6 Outline of the Thesis 22

2 An Example in ASL+ 	 25
2.1 	Requirements Specification25

2.1.1 Problem description26

2.1.2 Formalising the description26

2.1.3 Library specifications27

2.1.4 Words, keywords, and emphasis29

2.1.5 Dot notation and type equations30

Contents 	 Vii

2.1.6 Titles and emphasised titles 31
2.1.7 Target specification 32
2.1.8 Over-specification? 35
2.1.9 Discussion 35

2.2 	Formal Development 37
2.2.1 Delivering a better product37
2.2.2 Bottom up development: shifting and sorting 39
2.2.3 Composition 41
2.2.4 Final step 41
2.2.5 Proof of correctness 42
2.2.6 Changing the requirements43

2.3 	Summary 44

3 Singleton Types 	 45
3.1 Introducing Singletons 45
3.2 Uses of Singleton Types 48

3.2.1 	Singleton types as definitions 48
3.2.2 	Singleton types and improved typings49

3.3 The System A <{} 50
3.3.1 	Rules defining A< 51

3.4 Basic Properties 55
3.4.1 	Admissible rules of A<{} 61

3.5 Further Properties63
3.5.1 	Removing singletons63
3.5.2 	Subject reduction64
3.5.3 	Minimal types 65

3.6 A PER Interpretation of A< 67
3.7 Discussion 76

3.7.1 	Alternative formulations 77
3.7.2 	Related work78

3.8 Summary 79

Contents 	 viii

4 Power Types 	 84
4.1 Subtyping via Power Types 84
4.2 The System A Power 86

4.2.1 	Presentation of Apower 87
4.3 Examples in ''Power 91

4.3.1 	A programming example 91
4.3.2 	Subtyping type operators and families92
4.3.3 	A Power as a logical framework94

4.4 Basic Properties 98
4.4.1 	Further properties 102
4.4.2 	Remarks about the presentation of A Power 104

4.5 Rough Type-checking107
4.5.1 	Rough typing system108
4.5.2 	Properties of rough typing 110
4.5.3 	Remarks about rough typing112

4.6 Semantics 113
4.6.1 	Structures 117
4.6.2 	Environments and interpretations 118
4.6.3 	Models 120

4.7 Soundness 125
4.8 Strong Normalization 132
4.9 Discussion 134

4.9.1 	Comparison with other systems134
4.9.2 	A simplified version of Apower 136

4.10 Summary 137

5 ASL-i- 	 138
5.1 The ASL+Scheme 139
5.2 The System AASL+ 141

5.2.1 	Syntax 141
5.2.2 	Rough type-checking142

5.3 Semantics 143
5.4 The Language ASL 145

5.4.1 	Applicative structure145
5.4.2 	Specification building operators146
5.4.3 	Program building operators 147

Contents 	 ix

5.4.4 Interpretation in I 149

5.4.5 Motivating specifications-as-PERs 150

5.5 	The Satisfaction System of AASL+ 151

5.5.1 Consequence relations for AASL+ 151

5.5.2 The satisfaction system 153

5.5.3 Properties of satisfaction 157
5.5.4 Soundness of satisfaction159

5.6 Proving Satisfaction in ASL+ 160
5.6.1 	Properties of the ASL+ proof system166

5.7 Improvements Over the Original166
5.7.1 	Unspecified syntax for algebras 166
5.7.2 	Semantic inference rules 168

5.7.3 	Other improvements169
5.8 Two Problems 170

5.8.1 	The context problem171
5.8.2 	The sharing problem173

5.9 Sharing in Modular Programs175
5.9.1 	Sharing in the parameter 177
5.9.2 	Parameter-result sharing 178
5.9.3 	Argument-result sharing 179

5.9.4 	Sharing by parameterisation 180
5.9.5 	How to provide sharing 181

5.10 Sharing in Institutions 181

5.11 Related Work184
5.12 Summary186

	

6 The Institution FPC
	

FM
6.1 Overview188

	

6.2 	The Language FPC191

6.2.1 FPC types and signatures191
6.2.2 FPC terms and type-checking193

6.2.3 Changing signature194

	

6.3 	Fixed Point Semantics of FPC197

6.3.1 Universal domain198

6.3.2 Interpretation of FPC199

	

6.4 	A Logic for FPC 203

Contents 	 - 	 X

6.4.1 	Syntax of LFPC203
6.5 Semantics of LFPC205
6.6 A Proof System for LFPC207
6.7 The Institution FPC 209

6.7.1 	Signatures, 	Sign1 209
6.7.2 	Sentences, 	Sen C 209
6.7.3 	Models, 	Mod C 210
6.7.4 	Satisfaction, 	F 211

6.8 Syntax for FPC Signatures and Algebras 211
6.8.1 	Working in a context212
6.8.2 	Syntax and type-checking214
6.8.3 	Semantics of signatures, morphisms, and algebras . . . 217

6.9 Discussion and Related Work218
6.9.1 	Related logics 218
6.9.2 	Related specification languages 220
6.9.3 	Remarks on language design220

6.10 Summary 222

7 ASL+ based onFPC 	 224
7.1 Modules for FPC 224
7.2 Syntax 225

7.2.1 	Syntax and rough type-checking227
7.2.2 	Expected properties of rough typing231
7.2.3 	Using rough typing235

7.3 Design for Modules in FPC 237
7.3.1 	Dot notation and contexts 237
7.3.2 	Hiding the bound names 239
7.3.3 	Making rough types dependent 241
7.3.4 	Dependency between parameters243
7.3.5 	Type abstraction and hiding 245
7.3.6 	Handling renaming246
7.3.7 	Redundancy of singletons 249

7.4 Semantics 250
7.5 Satisfaction System for ASL+FPC 254
7.6 Discussion 256

7.6.1 	Shortcomings and improvements257

Contents 	 - 	 xi

7.6.2 Related work on syntactic module type systems260

7.7 Summary261

8 Conclusions 	 263
8.1 Summary263
8.2 	Future directions264
8.3 Finally268

A More about FPC 	 269
A.1 	A Pervasive Environment for FPC269
A.2 	Operational Semantics of FPC271
A.3 	Derived Connectives of LFPC271
A.4 	A Proof System for LFPC273

Bibliography 	 279

Index 	 291

Figures
1.1 Type-checking ASL operators13
1.2 Type-checking ASL parameterisation17

	

3.1 	Context and type formation for A< 80

	

3.2 	Typing for A<{} 80

	

3.3 	Equality for A<{} 81

	

3.4 	Subtyping for A< 82

	

3.5 	Admissible rules of A<{} 83

	

4.1 	Typing for Apower 88

	

4.2 	Context formation and equality for A Power 89

4.3 RoughtypingforApowe, -109

5.1 Rough typing for AAsL+ 143

5.2 Singleton types in AASL+ 155
5.3 SBOs and PBOS in AASL+ 156

5.4 ASL+ proof system - structural rules 162

5.5 ASL+ proof system - programs 163

5.6 ASL+ proof system - specifications 165

	

6.1 	FPC type-checking195

	

6.2 	LFPC type-checking203

	

6.3 	Type-checking signatures and renamings215

	

6.4 	Type-checking algebras 216

7.1 Formation rules of ASL+FPC 232
7.2 Subtyping rules for rough types of ASL+FPC233

7.3 Rough typing programs and ASL terms233

7.4 Rough typing ASL+ terms 234

7.5 Rough typing full contexts 235

A.1 	Call-by-value operational semantics of FPC272

1 Introduction

This thesis studies modular specification and programming, combining
aspects of algebraic specification and type theory. This introduction
provides some background, including fundamental definitions.

The vehicle used for the study is a language called ASL+ which fol-
lows the algebraic tradition. It has a formal, model-theoretic semantics
which is paramount. The language and its semantics are based on an
arbitrary institution which provides the building blocks for constructing
programs and specifications.

1.1 Institutions 6
1.2 ASL 10
1.3 Parameterisation in ASL 16
1.4 ASL+ 19
1.5 Pre-requisites and Conventions 21
1.6 Outline of the Thesis 22

T 0 DEVELOP PROGRAMS FORMALLY, we need both a specification language and
a programming language, and a formal semantics for each of them. The

syntax of the two languages must be connected, so specifications can de-
scribe properties of programs. The semantics must be connected, so the
logic of the specification language indeed expresses the behaviour of pro-
grams.

Whatever way these connections are made, there is a fundamental ques-
tion which we can ask, and at least some of the time, which we can answer.
The question is: does the program P implement, or satisfy, the specification
SP? 	The statement that P satisfies SP is written

P: Sp.

Another question, aiming towards a gradual development of specifications
towards programs, is: does one specification SP2 implement, or refine, an-

Introduction 	 2

other specification SP1? This is written as

sP1 - sP2.

Intuitively, one specification refines to another when some design or coding
decisions are taken, reducing the collection of programs that count as correct
implementations.

In algebraic specification, programs are modelled by algebras, and we
write !{Pfl for the algebra denoted by the program P. The most direct in-
terpretation of a specification SP is the collection of algebras which model
programs that implement SP. An algebra that models an implementation of
SP is said to be a model of SP, and we write [SPill for the class of models of SP.
If TSM = 0, then SP cannot be implemented and is said to be inconsistent.

A language that has a model-level semantics like this follows the model-
theoretic approach advocated by Sannella and Tarlecki [1992]. With this ap-
proach satisfaction is easily defined:

	

P: SP 	 IPESPJ1.

Refinement is also easily defined. If SP1 -SP2 then every algebra which is a
model of SP2 must also be a model of SP1 , so

	

SP1 SP2 	 I SP2 dlljSP1j

where c denotes class inclusion.
Refinement is important because proving each development stage correct

separately is more tractable than proving correctness of the final program in
one go. If one ensures vertical composition for refinements, so that SP1 --.SP2
and SP2 - SP3 implies SP1 SP3 , then the same end is achieved:

SP1 	... 	SP 	E E[SP

PI1

With the definition of the refinement relation as inclusion, vertical composi-
tion obviously holds. (The other direction, horizontal composition, concerns
operations used to put specifications together: it holds for a unary opera-
tion f if SP-SP2 implies f(SP1)-f(SP2). With the definitions above, this
is true when f is monotonic.)

Three kinds of parameterisation

In this thesis I study the language ASL+, which was invented by Sannella,
Sokolowski, and Tarlecki, Sannella, Sokolowski, and Tarlecki [1990, 1992],

Introduction 	 3

and later christened by Sannella. ASL+ can express both programs and speci-
fications (so it is a wide-spectrum language) and it has a model-level seman-
tics following the outline above. But ASL+ has more than just specifications
and programs; as well, it can express three different kinds of parameteri-
sation useful for program development: parameterised programs, parame-
terised specifications and specifications of parameterised programs.

A parameterised program acts as a function from programs to pro-
grams, and is used for building large programs in a modular fash-
ion. The advantages of reusability and separate development are well-
known. Several modern programming languages have module systems
which can express parameterised programs; in the module system of
SML (Standard ML, Paulson [1991]), for example, parameterised pro-
grams are known as functors.

In ASL+, parameterised programs are written using A-abstractions.

A parameterised specification acts as a function from specifications to
specifications, and is used for building large specifications. Many speci-
fication languages have some form of parameterised specification; an
example is ASL Sannella and Wirsing [1983]. But not all forms of pa-
rameterisation found in specification languages act as functions from
specifications to specifications.

In ASL+, parameterised specifications are also written using A-abstractions.

A specification of a parameterised program acts as a collection of func-
tions from programs to programs, allowing the modular structure of
a program to be specified. In [ML (Extended ML, Kahrs et al. [1994]),
functor specifications are used to specify Standard ML functors, so they
are specifications of parameterised programs.

In ASL+, specifications of parameterised programs are written using
H-abstractions.

The third kind of parameterisation is one of the novelties in ASL+; speci-
fications of parameterised programs are sometimes called H-specifications.
Sannella, Sokolowski, and Tarlecki introduced H-specifications when they re-
alised that the functor specifications of Extended ML could not be expressed
in ASL, which they hoped to use as a semantic kernel.

Sometimes the structure of an implementation mirrors the structure of
its requirement specification, but there is no reason why this should be en-
forced by the language. It may be easy to express the specification using a
decomposition which is unnatural or even impossible from a programming

Introduction 	 - 4

point of view. Researchers argue that the structure of a requirements speci-
fication should not determine the structure of an implementation [Fitzger-
ald and Jones, 1990, Sannella et al., 1992], although some languages and
development methodologies do enforce this. (For good reason - if the im-
plementation has the same decomposition as the specification, it is liable
to be easier to prove correct.) Adding Il-specifications to a language allows
the structure of the implementation to enter the realm of specification, so
the most flexible approach is to have both H-abstracted and A-abstracted
specifications.

Much more can be said about methodology and program structure versus
specification structure. Sannella et al. [1992] give discussion and references,
and also some analysis which characterises when it is possible to implement
a parameterised specification with a parameterised program, decomposing
the implementation in the same way as the specification. (We might even
consider adding a special operator to the language of ASL+ to correspond to
this development step.) For this thesis, the issues are explored a little bit in
the example formal development in Chapter 2, which motivates another kind
of parameterisation: specifications parameterised upon programs. Mainly I
am concerned with semantic foundations rather than methodology, and the
main topic is the type systems underlying ASL+.

Two kinds of type system, one with subtyping

ASL+ is a typed A-calculus, with both A-abstraction and H-abstraction. The
forms of abstraction are entirely general, and ASL+ has higher-order versions
of all the forms of parameterisation mentioned. Moreover, the language con-
tains a novel term former Spec (SP) which is used to parameterise on refine-
ments of SP.

Not surprisingly, this makes for a complicated type-checking system. In
fact, we study two kinds of type system, one for type-checking, and the other
for satisfaction.

A type-checking system proves the structural well-formedness of syn-
tactic expressions. In general, only typed terms have a denotation in
the semantics, and we aim for type-checking to be decidable.

A satisfaction system proves the implementation relations: that a pro-
gram satisfies a specification, or that one specification refines another.
Showing satisfaction involves proving logical consequences, to show
that a program satisfies some axioms, for example. Depending on the
logic used, satisfaction is often undecidable.

Introduction 	 - 	 S

We should only prove satisfaction between typable objects, so satisfaction
subsumes type-checking. But it is useful to separate the type-checking com-
ponent of satisfaction, so that type-checkers can be used to check source
texts mechanically, just as with ordinary programming languages. The type-
checking part of satisfaction is a fairly obvious fragment which should be
decidable.' An important topic not addressed in this thesis is the study of
other decidable fragments of satisfaction systems, and strategies for proof
search.

Both type-checking and satisfaction systems are theories of typing judge-
ments; the difference is what the types are. In a satisfaction system, types
are specifications, but in a type-checking system the types have a simpler
structure. To begin with, I study the typed A-calculus underlying ASL+ in a
pure setting, and type-checking is called rough typing to distinguish it from
typing in the system with "full" types. When the pure theory is applied to
ASL+, the system with full types is the one used for proving satisfaction.

Satisfaction systems are based on type systems with subtyping. The cor-
respondence is easy to see:

elementhood, P: A 	 satisfaction, P : A

subtyping, A ::!~ B 	 refinement, B-A

The elementhood of a term P in a type A is like satisfaction of a specification
A by a program P. Saying that a type A is a subtype of another type B is like
saying that the specification A is a refinement of the specification B.

Of course, the viewpoint of types-as-specifications is not new; it is pur-
sued in many variants of Martin-Löf's type theory [Nordstrom et al., 19901
and in studies influenced by algebraic specification [Streicher and Wirsing,
1991, Luo, 1993]. What differs here is that programs and specifications are
built not in a type theory directly, but using other languages. The typed A-
calculus of ASL+ is a structuring mechanism for programming and specifica-
tion in-the-large. Thus we extend Burstall and Lampson's original conception
of modular programming as typed functional programming [Burstall, 1984,
Lampson and Burstall, 1988] to the realms of specification.

The rest of this introduction is as follows. Section 1.1 introduces the
notion of institution, which provides an abstract model theory for specifica-
tions and programs. ASL+ is based on an arbitrary institution. Section 1.2 de-
scribes ASL, the specification language upon which ASL+ is based. Section 1.3
describes the limited parameterisation capabilities of ASL, and Section 1.4

'Some researchers fancy programming with powerful semi-decidable type-checking sys-
tems, but here I am talking about type-checking in-the-large, for putting together program
modules, which is usually simpler.

Introduction 	 U.

then contains a brief overview of ASL+ and its vastly extended parameterisa-
tion features. Section 1.5 mentions some conventions and notations used in
the thesis and Section 1.6 gives an outline of the thesis content.

1,1 Institutions

Classically, algebraic specification models programs as many-sorted alge-
bras, and expresses their properties using many-sorted equational logic. This
abstracts away from the details that are not concerned with correctness; al-
gorithmic complexity, for example, plays no part in classical algebraic speci-
fication.

It was soon realised that many-sorted algebras are not flexible enough
to handle all of the data that programs might manipulate (e.g., higher-order
functions), and equational logic is not expressive enough to describe some
properties of the data (e.g., exception conditions) in a natural way, if at all.

Researchers have proposed many variants of algebra and logic to solve
these problems, yet it seems that much of the study of specification lan-
guages can be abstracted away from these "low-level" details. A tool for this
is the theory of institutions, which provides an abstract model theory, a stan-
dard way of viewing an algebra and its related logic. Unlike model theory
in logic, the theory of institutions allows us to change notation, by relat-
ing models over different signatures. This is essential for applied logics in
computer science, where program parts change name according to scope.

Definition 1.1 (Institution [Goguen and Burstall, 1992]).
An institution 1 consists of:

A category of signatures, Sign2 .
We often use to range over the objects of this category, and a :
" to range over the morphisms. Intuitively, a signature provides the

vocabulary for expressing properties of models.

A sentence functor Sen2 : Sign' - Set.
For each signature , there is a set of s-sentences in the logic, Sen2 (s');
for each signature morphism a : f - X' there is a translation of sen-
tences Sen2 (a).

A model functor Mod' : Sign' -. Cato,'.
For each signature E, there is a category of X-models, Mod2 (1) and
for each signature morphism a : X -. ' there is a functor Mod' (u),
known as the a-reduct functor, which translates £'-models (and I'-
model morphisms) to s-models (and1-model morphisms).

Introduction 	 7

For every signature Z, a satisfaction relation 	c I Mod' (E)I x Sen2 (1)
between 2'-models and 1-sentences.
The satisfaction relation provides us with the truth of a sentence in a
particular mode1

For any signature morphism a : X -. ', sentence p E Sen1(1) and model
m' E I Mod' (s') 1, the satisfaction condition

M 4 Sen2 (o-)(p) 	Mod2 (a)(m') 4

must hold. 	 o

The satisfaction condition states that satisfaction is preserved when trans-
lating models and sentences along a signature morphism, hence the slogan
"truth is invariant under change of notation."

Notation for institutions. When working with a particular institution, I of-
ten drop the 1 superscripts. I often call models in an arbitrary institution
"algebras" to avoid overloading the word "model" too much. The function
Sen(a) is written simply as a. For a category C such as Sign or Mod (1),
sometimes I write C to mean the objects I CI of C. The reduct functor Mod (0-)
is usually used as a function on models; this function is abbreviated

- ,
or

when we have a signature inclusion t : X i", as -If, the function which
returns the restriction of a '-mode1 to a -model. If m = m' then we say
that m' is a a-expansion of m. For the satisfaction relation, if cP c Sen(s)
is a set of sentences then m 	cI holds iff for all 'P E 0, m = 	p;
if k g Mod(s) is a collection of models, then k 	'p iff for all m E
m 	'p. Semantic entailment between sentences is defined in the usual
way: çJi 	cp iff for all m, m ~=z ct implies m 	cp. Finally, {fl denotes
the class of 1-models which satisfy 0.

A familiar case of Definition 1.1 is the institution J'9L of first-order logic.

Example 1.2 (First-order logic (9C). A first order signature is a pair 1 =

(Q, Y) where for each n E w, On is a set of function symbols of arity fl
and Y is a set of relation symbols of arity n. A morphism of signatures
a : 	- _Y" is a pair of mappings af : Q - Q' and ar : Y - Y.

A £-sentence is the usual notion of a first-order sentence, i.e., a formula
'p built inductively by R(m1 , . . . ,m 1), cp, Pi A 'P2, (P1 V (P2, (p1 ==>
Vx.'p1 (x) and x.p1(x), where the m1 are terms built from variables and
constants in Q and pi, 'P2 are formale. The translation of a sentence under

2The fine-scale satisfaction relation of an institution generates the implementation re-
lations for programs and specifications, also called "satisfaction relations" in this thesis.

Introduction

a signature morphism o- = (a f , 0r) is the homomorphic extension of the
renamings of the function symbols of and the relation symbols °r•

AI-model rn is a first-order model, i.e., a set Iml together with assign-
ments of the function symbols f e Q to n-ary mappings fm on I rn I and
assignments of the relation symbols R e Yn to n-ary relations Rrn on rn. A
s-model morphism is a homomorphism between X-models. The translation
of I'-model rn to a £-model rnl- along a signature morphism o : I - X' is
defined by 	= u(f)m and Rrniu = 0(R)m.

Satisfaction M cp is defined via the usual notion of the truth of p for
all valuations of free variables into I rn. 	 n

Another common example is the institution of equational logic, EQ. . A sig-
nature in EQ is a many-sorted algebraic signature; terms over a signature are
built up from the function symbols and a set of variables, and sentences are
universally-quantified equations between two terms of the same sort. Mod-
els are many-sorted algebras, and satisfaction is defined in the obvious way.
This and other examples of institutions are spelt out by Goguen and Burstall
[1992].

Lid Institutional semantics

An institution provides some of the semantic foundation for formal program
development. An institutional semantics uses parts of an institution to inter-
pret a programming and specification language in a standard way.

A program P determines a signature Sig(P) which describes its vocab-
ulary: typically, the names and types of its variable and procedure dec-
larations. If Sig(P) - £, we say that P is a E-program. The denotation
of a s-program is a .'-algebra, so TPJ E Mod(s). Similarly, a specifica-
tion SP determines a signature Sig(SP), and if Sig(SP) = E, we call SP a
I-specification. The denotation of a s-specification is a class of models over
I, so l[SPjfl 	Mod(f). The semantics of programs and specifications are
connected by the same notion of signature and model.

Sentences are used in the syntax of specifications to express logical prop-
erties. Programs, on the other hand, are usually written in a more restricted
(executable) language. For example, orthogonal term rewriting systems [Der-
showitz and Jouannaud, 1990] are a suitable programming language for TQ;
programs are special sets of oriented equations which can only be combined
in certain ways. In a different setting, orthogonal term rewriting systems
could be used as executable specifications for a more low-level program-
ming language. To contrast, in an institution for constructive type theory,
programs are not more restricted than specifications because both are terms

Introduction

from the same language - but with different types [Luo, 1993]. The frame-
work of institutional semantics encompasses a wide variety of settings, but
whatever the setting, the syntax of programs and the syntax of specifications
are connected by the sentences of the institution.

1.1.2 Proof systems for institutions

To develop programs formally using an institutional semantics, we need
proof systems for deriving instances of the two implementation relations,
P : SP and SP1 --.SP2. Because sentences appear in specifications, proving
either of these relations can involve logical reasoning, so we need a proof
system for reasoning in the logic of the institution. Logically, the important
thing about a proof system is the consequence (derivability) relation which
it gives rise to.

Definition 1.3 (Consequence Relation).
A consequence relation H consists of:

A category of signatures, Sign H

A sentence functor Sen H : Sign'-- 	Set.

For each f E Sign H, a relation 	c Pow(Sen(f)) x Sen(s).

As usual, s1,.. . , s - s means ({ s1 , . . . , s I , s) E HE. Each relation HE
must satisfy the following structural properties:

Reflexivity. s HE S.

Transitivity. If di H' p and 0, p Hx p' then ct HE q'.

Weakening. If 0 HE cp then cP,p' lE cp.

Translation. If cli H' cp then o() HE' o- (p).

where dl c Sen(X), p, q2' E Sen(cP), and a : ' - E'.

This definition adds signatures to the usual definition of a consequence re-
lation [Avron, 1991]; the structural properties are the usual ones, together
with the condition that consequence is preserved by signature morphisms.

Fact 1.4. The satisfaction relation =' of an institution 1 extends to a con-
sequence relation (with the definition of (P =' p given earlier).

Introduction 	 '[C

Definition 1.5 (Deduction relation for an institution).
A deduction relation for an institution 2 is a consequence relation i2 for
Sign2 and Sen2, which is sound for i=' , so that

Hp z

for all Z c Sign', cP c Sen2 (Z), and p c Sen2 (Z).
A deduction relation is complete if the opposite implication also holds.

Several researchers have studied institutions extended with a deduction re-
lation; Meseguer [1989] for example, gives almost the same definitions as
above. He calls a consequence relation indexed by signatures an entailment
system, and he calls the combination of an institution and a sound deduction
relation a logic.

As well as a deduction relation for the logic of the institution, we may
want sound proof systems for proving properties of programs and specifi-
cations. Such proof systems give rise to relations P H p, which implies
[PIfl Sig(P) p, and SP F- p, which implies jSP 	SigSP) p. These relations
are subsumed by P : SP and SP ::~ SF' in the language ASL.

1.2 ASL

ASL [Sannella and Wirsing, 1983] is a specification language composed of
a small number of specification building operators. The operators are low-
level, but powerful enough to allow high-level languages to be understood
by translating into ASL, using it as a kernel language. Sannella and Tarlecki
[1988a] give ASL an institution independent treatment, which I shall briefly
review.

The syntax of ASL consists of specification expressions SP, built from a
context-free grammar:

SP ::= X
I 	impose c! on SF I translate SF by o
I 	derive from SF by o 	SP union SP
I 	minimal SP wrt cr I iso-close SP
I 	abstract SP wrt P via u

where I is a signature from the underlying institution, o is a signature mor-
phism, and is a set of sentences.

To write specifications with ASL in some particular institution, we need
additional institution-dependent syntax for writing the "semantic" parts of

Introduction

the specification expression grammar. Concrete syntax for a particular in-
stitution will be defined rigorously in Chapter 6, but for most of the thesis
I shall use intuitive syntax for writing signatures, signature morphisms, and
algebras, in a typical institution. For example,

=def 	 =def
	

Ocd =def 	 PC =d,f

Sig 	 Sig 	 [c—ct,v—w] aig
type c 	type d
	

type C = nat
valv:c - c 	type 	 val v = succ

end 	 vaiw: cl — cl 	 end
end

This defines two signatures Ic and i'd, a signature morphism 0 cd : Ic —
between them and a -algebra, P. This assumes that flat stands for an
implementation of the natural numbers and succ is the successor function
on nat.

Here is an informal explanation of the ASL operators, in terms of the
model classes they define. Formal definitions follow in Definition 1.6.

The class of all s-algebras; a trivial specification.

impose 0 on SP
The models of SP which satisfy the axioms cI.

translate SF by a-
The models which are u-expansions of models of SP. Useful for ex-
panding the signature of a specification with some extra uninterpreted
symbols.

derive from SP' by a
The cr-reducts of the models of SF'. Useful for hiding symbols used in
a specification.

SF1 union SP2
The union of specifications SF1 and SF2, which consists of the intersec-
tion of the models of SP1 and SF2.

minimal SF wrt a
The models of SF which are minimal expansions of their cr-reducts,
removing models which are "larger" than necessary. For example, re-
stricting to reachable models.

iso-close SF
The closure of the models of SP under isomorphism.

Introduction 	 12

abstract SP wrt cP via o
The closure of the models of SP under a behavioural equivalence re-
lation determined by a set of sentences cI and signature morphism a.
Used for abstracting away from particular models to include all models
which behave in a similar way.

ASL is a low-level formalism, and we often use combinations of operators
when writing specifications. Derived syntax is useful, for example:

(1, 0), which abbreviates impose cP on Z.

the operator enrich, used like this:

enrich SP
with sig

end
axioms (J5

end

which abbreviates the use of translate and union:

(translate SP by L) union (s',qb >

where .f' is the signaturef of SP, extended by the new declarations in
ellipsis, and i : . 	' is the inclusion of Z in i".

In this way, higher-level constructs are quickly created. A fully formal treat-
ment should describe how derived syntax is parsed and type-checked, as
well as its translation to ASL operators. Translating well-typed source terms
should give terms which can be type-checked in ASL.

1.2.1 Type-checking

To type-check ASL expressions, we use the set of type-checking rules shown
in Figure 1.1. These determine the signature of a specification expression:

SP = S(s) 	SP is a E-specification.

The rules are deterministic, so a specification has at most one type. This is
equivalent to a definition by structural induction on SP, and justifies writing
Sig (SP) to stand for the f such that o. SP => 5(E).

If concrete syntax is provided for the parts of the ambient institution, the
"semantic" premises in Figure 1.1 like cP c Sen(E) can be replaced by further
type-checking judgements, to check the well-formedness of syntactic repre-
sentations for sentences, etc. This is carried out for a particular institution
in Chapter 6.

Introduction - 	 - 	 - 	- 	 13

SP => 5(E) 	'P c Sen(f)
o. impose cPon SP => S(11)

SP=S(E) 	o:E - E'
translate SP by cr => 5(E')

0. SP' => S(E') 	r:E-.E'
derive from SP'by o = S(1)

0. Si'1 ==> 5(E) 	SP2 = S(E)
SP, union SP2 => 5(Z)

SP==S(E) a:E'-.E
minimal SP wrt x ==> S (E)

0. SP => 5(E)
10. iso-close SP 	S (E)

0. SP => 5(E) 	o:Z - Z' 	'PSen(E')
abstract SPwrt 'P via o- => 5(E)

Figure 1.1: Type-checking ASL operators

Introduction 	 14

1.2.2 Semantics

The semantics of a specification expression SP can now be defined conve-
niently by induction on a typing derivation o. SF 	S (X). This is equival-
ent to a definition by induction on the structure of SF, but ensures that we
only consider well-typed expressions.

Definition 1.6 (Semantics of ASL specifications).
Let o. SF => 5(X). We define j o. SP = S(X) I E Spec (1) by induction on
the typing derivation of o. SF ==> 5(X),

=> S(X)=I Mod (X)I

o. impose ct on SP z=> S(X)J1
{mESP=s(X)ifl I m=x}

translate SF by a ==> S (X') JI =
{mEMod(X') I mI 	SF == S(X)Jj}

derive from SP' by ci => S(X)]1 =
{mI- I M T 0. SP' => S(X')}

III 	SP, UflOfl 5P2 => S(X)ill =
SF1 => S(X)n T o. SF2 ==> S(X)

[{ 	minimal SF wrt ci 	5(X) 1] =
{ m E If SF ==> 5(X)l I m is o- -minimal in Mod (1) }

EliPo. iso-close SF = S(X) 1 =
{mE Mod (X) 1 3 rn'EIf io. SF = S(X) mm'}

Elio. abstract SF wrt cP via ci => S (I) If =
{mE Mod (X) 1 3 m'EIf P,. SF = S(X)]l.m4m'} El

A couple of notations used above need explanation.
An algebra m e Mod(X) is a-minimal in a collection K Mod(X) if

rn E K and m has no proper subalgebra in K with an isomorphic a-reduct.
This requires a notion of subalgebra, which can be provided by giving a fac-
torisation system on each category Mod (X); subalgebras are then the sub-
objects of the factorisation system. Minimality requirements can be used to
express reachability; informally, reachable models are ones in which certain
induction principles are valid.

Two models M1, M2 E Mod (1) are observationally equivalent wrt via
a, written rn1 	m2, iff for every a-expansion rn'1 of rn1 there is a o--
expansion rn'2 of m2 such that

V (PC . rn p 	m i= p,

Introduction 	 15

and vice-versa: for every 0--expansion m of m2, there is a m, and so on.
Intuitively, this captures a model-theoretic notion of observational equival-
ence because X' can be a larger signature than X, introducing some symbols
for "free variables." Then a u-expansion of a X-model corresponds to an
environment for the free variables. The sentences 0 are the permissible ob-
servations.

For more details of this institution-independent semantics of ASL, see
Sannella and Tarlecki [1988a].

1.2.3 Satisfaction in ASL

Now that we have a type-checking system for ASL and a semantics based on
it, we can define a satisfaction system for proving refinement of specifica-
tions SP :!~ SF', or, when programs are added, satisfaction of specifications
P: Sp.

The soundness of the satisfaction system is vital. To even consider it, we
should have the important agreement connection between the type-checking
system and the satisfaction system; it only makes sense to assert SP :!~ SF'
(or P : SF) if the signatures of SP and SP' (or P and SP) are the same. For
refinement, we expect that whenever SP :5 SP' is provable, then there is some
X such that o. SP => 5(X) and o. SF' => 5(X).

As mentioned above, a satisfaction system for ASL also gives proof rela-
tions for proving properties of programs and specifications. We can define:

P H 'P =d,f P : impose { 'P } on Sig (P)

SF H p =d,f SP :5 impose { cp } on Sig (SP)

However, the definition of both P : SP and SF ::~ SP' must refer to the sat-
isfaction relation of the institution to handle impose specifications in the
first place, so it may be more realistic to give proof systems for the relations
P H 'P and SP H p first, then define P : SF and SF :!~ SP' using them.

I shall not give the rules for a satisfaction system here; example rules of
satisfaction systems for ASL will be given in Chapters 5 and 7. There is still
scope for further research into finding good systems for proving satisfaction
for ASL, but the main concern of this thesis is how to extend such a system
to ASL+.

Pattern of development

The pattern followed above for ASL is typical. First we define the context-
free syntax of a language, followed by some type-checking rules to restrict

Introduction - 	- 	 16

to meaningful expressions. Then we define a semantics of well-typed terms
by induction over typing derivations. Then a satisfaction system can be de-
fined, which is a proof system for the two implementation relations. The
satisfaction system must be proven sound with respect to the semantics,
and it must be shown to agree with the type-checking system. This pattern
of development, or some part of it, will be repeated several times over in the
rest of the thesis.

In general both the type-checking rules and the satisfaction rules are
context-sensitive, as when parameterisation is added.

1.3 	Parame te nation in ASL

ASL has a limited mechanism for writing parameterised specifications using
a A-calculus notation. The limitation is to single-parameter specifications
over a fixed signature. To add parameterisation, the syntax of specification
expressions is extended:

F ::= AX:Spec(').SP
SP ::= ... I X I FSP

The expression AX: Spec (s). SP is a parameterised specification which can
be applied to a specification expression to yield a new specification. The
identifier X can be used as a f-specification inside the body specification SP.

1.3.1 Type-checking parameterised specifications

To type-check a specification expression, we now use a context which can
contain an assumption about the type of the variable X. A context F is either
empty or is a declaration X: S (2) for some 2:

F ::= 0 I X:S(2)

For ASL, instead of using a context we might simply attach a tag to the vari-
able, writing 	for example. But when we move to ASL+, an explicit
context is more convenient because it can contain interdependent variables
that are declared in sequence.

Three new type-checking rules are shown in Figure 1.2. The first types a
variable in a context which declares it, and the second types a parameterised
specification, with a type of the form 5(2) => 5(2'). This says that it is a

Introduction 	 17

X:S(1) 0. X =' 5(X)

X:S(X) 0. SP = s(X')
AX: Spec (X).SP = 5(X) = S(X')

F => s(1) => S(') 	SP => 5(X)
FSP = S(X')

Figure 1.2: Type-checking ASL parameterisation

mapping from X-specifications to X'-specifications. The third rule, for ap-
plying a parameterised specification with type 5(X) = S(X'), checks that the
argument specification has the signature X.

We still need to use the rules of Figure 1.1 to type the ASL operators,
but they must be modified to contain a context F. For example, the rule for
impose becomes:

F o. SP=X 	PSen(X)
F o. imposecPon SP = X

Although the context plays no part in any of the rules of Figure 1.1, it must
be added to each typing premise and conclusion to record any assumption
about the variable X.

The rules of Figure 1.2 bear an obvious resemblance to the type-checking
rules of the simply-typed A-calculus, A [Hindley and Seldin, 1987, Baren-
dregt, 1992]. But they are more restrictive, because A allows contexts of
more than one variable, and the variables are allowed to have function types.
This corresponds to higher-order parameterisation, which is introduced in
ASL+.

1.3.2 Semantics of parameterised specifications

There are a couple of choices available for giving a semantics to parame-
terised specifications. We may choose to interpret AX: Spec (X). SP purely as
a syntactic notation for macro definition, and define application by:

(AX: Spec (X). SP) SParg =def SP[SPargIX]

where SP[SParg IX] is the substitution of SParg for X in SP.

Introduction 	 - 	 18

Oriented from left to right, the equation above is the fl-reduction relation
of the A-calculus. Examining the rules in Figures 1.1 and 1.2, it is easy to
show the important subject reduction property of the type system. If

o. AX: Spec ().SP = S(s) =S(")

and
0. SParg => S(E)

then we also have
O SP[SParg/X] ==> 5(r).

This says that fl-reduction is sound for typing.
Moreover, we can show that by repeatedly /3-reducing, any specification

expression can be reduced to a unique normal form which is a term with-
out any applications. This means that fl-reduction provides an operational
semantics for specification expressions.

Defining application as macro-expansion, the term AX: Spec (1). SP itself
does not have a model-theoretic denotation. An alternative semantics of
parameterisation defines [AX: Spec (I). Sfl as a function on model classes,
namely the function f such that

f(k) = E[SII{X.k]

for all k c Mod(s). Here {SP [x _.k] is the interpretation of SF in the environ-
ment which assigns X to the model class k; this is similar to the environment
model semantics for the A-calculus. Now we have a denotational semantics
for all specification expressions.

An important property of an environment model semantics is the relation
between syntactic substitution and updating the environment, namely that:

= MJ[xNJ]

Typically, if this property holds we can show soundness of fl-reduction,
which proves that the operational semantics is sound for the denotational
semantics.

Until now, most studies of parameterisation in specification languages
have had a bias towards either an operational semantics or a denotational
semantics. The range goes from the macro-expansion idea above; through
so-called presentation-level semantics in which the meaning of parameteri-
sation is defined as a function on the syntax for specification expressions;
to wholly denotational approaches like push out parameterisation, where a
parameterised specification itself is a semantic entity, and application is de-
fined using a diagram in the category of specifications.

Introduction 	 19

One of my aims in pursuing the A-calculus approach to parameterisation
is to provide a framework which provides both an operational and a deno-
tational interpretation of the whole language, in the sense described above.
Each language I shall study has a context-sensitive equational theory which
includes $-equality, and which must be proved sound for the semantics. Op-
erational semantics is not be considered explicitly apart from considering
the important properties of strong normalization and subject reduction.

1.4 ASL+

ASL+ was introduced by Sannella et al. [1992] as an extended version of
ASL, although the choice of specification building operators is orthogonal
to the main design of ASL+. As a brief introduction to the language, I shall
review the syntax of ASL+ given by Sannella et al. [1992]? The use of ASL+ is
demonstrated by example in the next chapter, and two new versions of ASL+
are presented in detail later in the thesis, in Chapters 5 and 7.

ASL+ departs radically from ASL by adding programs to the syntax, along
with constructors for A-abstraction, H-abstraction, and the Spec constructor
which builds power sets.

The expressions in ASL+ are called pre-terms, and are ranged over by
several meta-variables. We use M, N,... for arbitrary pre-terms and SP for
pre-terms which are intended to denote specifications, although there is no
difference formally. Other variables like A, B, F, G, H are also used. Pre-terms
are formed by a context-free grammar:

M,SP ::= X I {M} I AX:SP.M I MM
I HX:SP.SP Spec(SP)
'P

I 	I impose cPonSP I

The last line is continued with the syntax of ASL from Section 1.2. The new
meta-variable P ranges over programs written in some unspecified institution-
dependent syntax. Borrowing terminology from SML, I sometimes call pro-
grams P and ASL specifications core-level programs and specifications, to
distinguish from the module-level part of the language provided by the ASL+
A-calculus. (The separation between the two levels is discussed more in Sec-
tion 6.9.3.)

3With one minor difference: the union operator here is left at the level of ASL terms, as
it was in Sannella et al. [1990].

Introduction 	 20

ASL had separate syntactic categories for parameterised specifications
and ordinary specifications, but ASL+ has a single syntactic category of pre-
terms, which may be programs, specifications, or parameterised objects;
context-sensitive type-checking rules are used to determine what kind of
object something is. (This mixing of syntax into a single category of terms
and the use of several meta-variables is typical in complex type theories.)

Here is a description of the operators of ASL+.

X is a variable; it only makes sense with respect to a context, because vari-
ables can range over programs, specifications, parameterised programs,
etc.

{M} is the tight singleton specification which is satisfied uniquely by M. Sin-
gletons allow a program to turned into a specification, providing the
crucial (and only) connection between the two.

More details of singleton types are given in Chapter 3.

AX:SP. M is a parameterised object, which can be applied to terms satisfying
the specification SP. For example, the term

AX: Spec (SP). SP'

is a parameterised specification which can be applied to refinements
of SP. In ASL+ parameters can have semantic requirements, unlike ASL
where parameters always have the form Spec (1) for some signature
£, amounting only to type-checking requirements. Another example of
parameterisation is the term

AX:SP. P

which is a parameterised program that can be applied to programs
which satisfy SP. Semantically it denotes a function on algebras.

M N is the application of a parameterised object M to an object N. For this
to be meaningful, we must check that M indeed denotes a function,
and that N denotes a value in its domain. This is the crux of the type-
checking and satisfaction systems we shall study.

TIX:SP. SP' is the specification of a parameterised object. Semantically, it
denotes the collection of functions f which map elements m of IISP
to elements f(m) of 1SP']x.mi. The dependency in the H-term means
we can specify functions which depend on their arguments.

Introduction 	 21

Spec(SP) is the specification of refinements of SP. If SP denotes a set,
Spec (SP) denotes the power set of SP. This constructor was devised
for similar purposes as Cardelli's idea of a power type [Cardelli, 1988],
written as Power(A) - it allows a single form of A-abstraction to ex-
press both kinds of parameterisation shown above.

More details of power types are given in Chapter 4.

Several abbreviations will be used for terms. The term AX:A Y:B.0 ab-
breviates AX:A.AY:B.0 and AX, Y:A.0 abbreviates AX:A Y:A.C. Similarly for
H-terms. Sometimes I write applications FM using parentheses, as F(M),
and the curried application F M N is sometimes written as F(M,N).

The type-checking system, semantics, and satisfaction system for ASL+
are developed in the rest of the thesis.

1.5 Pre-requisites and Conventions

I have tried to keep the pre-requisites to a minimum, and to make the ma-
terial accessible to readers from either the algebraic specification camp or
the type theory camp. Standard references for each field may be helpful, for
example [Wirsing, 1990] and Barendregt [1992].

Here are some notational conventions used in the thesis.

Set notation. If S is a set, Pow(S) denotes the power set of S and Fin(S)
denotes the set of finite subsets of S.

The set of total functions between two sets S and T is written as S - T
and the set of partial functions between the two sets as S - T. Often I write
f :S - T instead off ES - T. If ES — T, then the domain of S is written
Dom(S). The "updated" function f[s - t] is defined by

c
f[s - t1(X) = 	

t 	ifx= s,
f(x) otherwise.

Grammars. When specifying context-free grammars I sometimes use meta-
variables suggestively, rather than the names of the sets they range over. For
example,

n ::= 0 I succ(n)
i ::= n 	—n

rather than

Introduction 	 - 	 22

nat ::= 0 I succ(nat)

mt ::= flat I 	- nat

Preceding sections used this convention already; it avoids the need to intro-
duce names for syntactic categories.

1.6 Outline of the Thesis

Each chapter begins with an overview and table of contents and ends with a
summary and a comparison to the relevant related work. Here is an outline.

Chapter 2 motivates the design of ASL+ by sketching an example of modu-
lar formal program development. The example demonstrates specifications
parameterised on specifications and programs. It also demonstrates param-
eterised programs and specifications of parameterised programs. Some of
the features of ASL+, and the concerns with their formalization, are intro-
duced. In part, the quest of the thesis is to make the underpinnings of this
example completely formal.

Chapter 3 is the first of two fundamental studies of new typed A-calculi
which are sub-systems of ASL+. This chapter introduces a type-system called
A<{} which has subtyping and singleton types. Some basic concepts of sub-
typing are introduced, and good properties of the calculus are established,
including subject reduction and minimal typing. The calculus is given a PER
model semantics, which is the first PER semantics of a system with depen-
dent types and subtyping. The typing rules are proved sound in the model.

Chapter 4 is the second fundamental study, and introduces a type-system
called Ap0w . This is a predicative fragment of Cardelli's 1988 power type
system, containing only power types and the H-type dependent product con-
structor. This system is shown to have some expected basic properties and is
given a companion system for rough type-checking, based on non-dependent
types. Rough typing enjoys the subject reduction property and uniqueness
of types. The full system and rough typing have the agreement property
mentioned before; this is used to establish that the full system is strongly
normalizing. Subject reduction for the full system is not proved, however.
Rough types are used to structure a model definition for A Power, given as a
novel form of applicative structure. This improves on the model in Chapter 3
which despite being a small extension of the simply-typed calculus, is based

Introduction 	 23

on a A-model, following earlier work on subtyping calculi. (In Chapter 5, sin-
gleton types are added to the applicative structure model definition.) Several
examples of A Power models are described.

Chapter 3 and Chapter 4 are self-contained, and can each be read inde-
pendently of the rest of the thesis.

Chapter 5 revisits some of the basic ideas behind ASL+, showing how the
abstract language would be used for a real language, before reformulating it
to solve problems with the original definition given by Sannella et al. [1992].
Things begin from AASL+, a combination of the syntax of Ap0wr and A<{} with
unspecified sets of program and specification building operators. The rough
typing system of AASL+ is defined first, and the model definition of A Power

is extended to a definition of model for AASL+. The satisfaction system for
AASL+ is based on the type systems of Apo,, and A<{} , augmented with a con-
sequence relation for proving things about the program and specification
building operators. ASL+ itself is defined by a particular choice of the pro-
gram and specification building operators and a particular consequence re-
lation. The specification building operators are chosen to be the institution-
independent operators of ASL shown in Section 1.2.

The second part of Chapter 5 highlights problems with this abstract treat-
ment of ASL+, which make it difficult to use rough typing to explain the com-
position of modular programs. (It is because rough typing is based on simple
types, so cannot explain the propagation of type identities.) The example of
Chapter 2 does not really work yet, and more effort is needed to formalize
it.

Chapter 6 begins an effort towards formalizing ASL+ examples directly,
following the maxim that to understand the general we must first under-
stand the specific. This chapter defines a new institution which captures the
programming language and logic used in Chapter 2. The institution is FPC,
based on the classical domain theoretic semantics of FPC, a tiny but pow-
erful functional programming language [Gunter, 1992, Plotkin, 1985] which
has partial recursive functions and recursive types. The logic of FPC is
Higher Order Logic, extended with LCF-style constructs for reasoning about
the types of FPC. Concrete syntax and type-checking rules are given for sig-
natures, signature morphisms, and algebras in FPC. An important novelty
is that signatures in FPC can have type equations which are used in type-
checking and restrict the range of models.

Chapter 7 builds a concrete version of ASL+ on top of FPC, called ASL+FPC.
The rough type system of ASL+FPC is more expressive than the one studied

Introduction 	 24

in Chapter 5, because it incorporates a form of dependent types. Because
signatures in FPC have type equations, we can now directly explain the ex-
amples in Chapter 2. A new semantics for this version of ASL+ is given,
based on the enhanced rough typing system. Some ideas for a satisfaction
system for ASL+FPC are sketched.

Chapter 8 reviews what has been achieved and sets forth some ideas for
future work.

Appendix A provides some details about the formulation of the language
FPC, extending the coverage in Chapter 6, and it gives some details of a pro-
visional satisfaction system for ASL+FPC, following the ideas in Chapter 7.

2 An Example in ASL+

This chapter sketches an example to motivate and demonstrate the
mechanisms of ASL+ for expressing and developing the large-scale
structure of software systems.

The example is a keyword-in-context index, which is traditional for
demonstrating modular programming since Parnas's seminal paper
[Parnas, 1972]. It consists of only a small number of modules, but is
enough to illustrate some salient features of ASL+.

The example is pitched at an intuitive and slightly informal level. In
part, the quest of the following chapters is to demonstrate that ASL+
and this example can be given a fully formal underpinning.

2.1 	Requirements Specification 	 25
2.2 	Formal Development 	 37
2.3 Summary 	 44

2.1 Requirements Specification

T HIS EXAMPLE DEMONSTRATES the use of ASL+ in a small development of a
modular program from a modular specification. The program is written

in a functional programming language, and the specification uses a higher-
order logic for writing axioms. Similar but smaller examples were under-
taken by Sannella et al. [1990] and Sokolowski [1989].

This first section describes writing the requirements specification from
an informal description of the problem: this specification is to be delivered
by a customer to a software house for formal development of an implemen-
tation. That second phase is described in Section 2.2. The intention is to
demonstrate the use of the language, rather than show a perfect example of
program development. Because of this, some bad design choices are taken
deliberately.

An Example in ASL+ 	 RE

2.1.1 Problem description

The problem is to generate a keyword-in-context index from a collection of
titles. A title is a sequence of words; some words are considered significant
and called keywords. The index should consist of titles with a single empha-
sised keyword. It is sorted by keyword, and where a keyword k occurs in
several titles, the order is determined by forming the "circular shift" of the
keywords in each title, such that k is at the front. The order of titles under k
is then given by the lexicographic ordering (extending the keyword ordering)
of their circular shifts.

For example, given as input the titles of these books:

Northcott, Jim, Chips and jobs: acceptance of new technology at
work. London Policy Studies Institute 1985.

Schroeder, Dirk, Computer software protection and semiconduc-
tor chips. London Butterworths 1990.

Walton, John K., Fish and chips and the British working class,
1870-1940 Leicester University Press, 1992.

the output would start like this:

Chips and jobs: acceptance of new technology at work
Fish and chips and the British working class, 1870-1940
Computer software protection and semiconductor chips
Chips and jobs: acceptance of new technology at work
Fish and chips and the British working class, 1870-1940

assuming that "at," "and," "of," and "the" are non-keywords.

2.1.2 Formalising the description

The first decision is what sort of entity we want delivered as an implemen-
tation. We may already have a datatype for titles and keywords in mind, or
even a specific set of titles that we want to generate an index for. But if we
ask the software house for an implementation which is generic as far as pos-
sible, we may generate other indexes later, or re-use the indexing function in
another setting.

We shall build a specification KWICFUN which specifies a program param-
eterised on datatypes for words, keywords, emphasised words, titles, and em-
phasised titles. Given implementations of these types, the program should
return a function to generate a keyword-in-context index from a set of titles.

An Example in ASL+ 	 27

2.1.3 Library specifications

Before beginning the design of the requirements specification, we mention a
couple of specifications which might be part of a standard library.

As well as assuming a library of specifications, we assume that the pro-
gramming language has some pervasive types, which are standard implemen-
tations of certain library specifications. For example, it would be unusual or
even impossible to re-implement the standard type bool of booleans in a
programming language. We shall assume that these pervasive types are de-
clared in a initial context and have standard properties available, in other
words, they are assumed to satisfy the standard library specifications. Of
course, it's absolutely crucial to the soundness of the development that the
properties of such pervasive types really hold in the programming language
used.

This treatment of pervasive types seems more realistic than in specifi-
cation languages which must import the specification BOOLEAN of booleans
into every specification. Besides avoiding such verbosity, we assume that
the same implementation of bool is used everywhere. It means that speci-
fications and algebras can be open because they refer to sort and operation
names which are not declared locally.

As well as boo!, the pervasive types will include: strings string; product
types ocx /3 for types cx, /3 with projections fst, snd; and the type option for
any type cx, which has constructors none and some(e).

To build parameterised datatypes, we often use the trivial specification
ELI of algebras with a single carrier el t:

ELT =d,f spec
type elt

end

The parameterised specification ORD maps refinements of ELT to specifi-
cations in which el t is a total order:

ORD =def AELT' ~ ELI.
enrich ELT'

with spec
val 	eltxelt - boo!

X:!~X

x:5 y A y~x==x=y

xy A y:!~z=x<z

x:5y Vy:!~x
end

An Example in ASL+ 	 28

As usual, axioms are assumed to be implicitly universally quantified over
their free variables. In ASL+, the notation AX :!~ SP. SP' is shorthand for
AX: Spec (SP). SP'.

Specifications of lists come in two flavours: a specification of a parame-
tensed program, LISTFUN and a parameterised specification, LIST.

LISTFUN =def

H [it: ELI.
Spec

type elt = Elt.elt
type list
val nil :list
val cons :elt xlist - list
val null : list - boo!
val hd:list 	OPtIOflelt
val tl : list 	option- -j t

axioms
null (nil) = true
null (cons (e,l)) = false
hd (cons (e, 1)) = some(e)
t (cons (e, 1)) = some(l)
hd(nil) = none

tl(nil) = none
end

LIST = def

A ELI' :!~ ELT.
enrich ELT'

with spec
type list
val nil :list
val cons: eltx list -. list
val null : list - boo!
val hd:list 	option elt
valtl :list - option--j5
axioms

as above
end

LISTFUN specifies programs which map an argument implementation of ELI
into an implementation of lists of elements of the argument type el t, whereas
LIST maps refinements ELI' of ELT into specifications of lists over the el t
sort. We use LISTFUN when specifying the design structure of the implemen-

tation, and LIST for structuring the requirements specification. The denota-
tions of LISTFUN and LIST are related by a Galois connection which is the
main topic studied by Sannella et al. [1992].

An Example in ASL+ 	 29

We shall use lists throughout the development, although in several places,
sets would be a better choice.

2.1.4 Words, keywords, and emphasis

The first datatype we specify is for words. The simple requirement is that
words are totally ordered, which we specify by renaming an application of
the library specification ORD. Additionally, we give a constructor for building
words so that we can specify some non-keywords later.

WORD =d,f enrich translate ORD(ELT) by [elt -. word]
with spec

valmakeword : string - word
end

The next datatype is for keywords. A keyword type is not a fresh datatype;
rather we wish to capture the idea that it is an extension of a given word
datatype. This is A-abstraction rather than H-abstraction, since we take a
particular word type to build the specification, rather than specifying a pa-
rameterised program to build the datatype for any word type. The situation
is similar to the pervasive types like boo!: we want to base the specification
on a particular implementation of WORD. In this case the implementation is
made into a parameter of the specification, rather than being fixed every-
where.

Given an implementation Word: WORD, we specify a predicate i skeyword
defined on the carrier of Word:

KEYWORD =d,f
AWord : WORD.

spec
type word = Wo rd. word
val iskeyword : word - bool
axioms

i skeyword(Word . makeword("at")) = false
i skeyword(Word. makeword("and")) = false
i skeywo rd(Wo rd. makeword("of")) = false
iskeyword(Word .makeword("the")) = false

end

The type equation word = Word . word specifies that the specification should
require the same carrier for word as was passed in the parameter.

The type of emphasised words is defined to be the product of a given type
of words and a type of emphasis decorations. Emphasis decorations include
a value for indicating keywords, keyword, and one for unadorned words,
plain.

An Example in ASL+ 	 30

EMPHWORD =def

AWord : WORD.
spec

type emphasis
val keyword: emphasis
vaiplain : emphasis
type word = Word. word x emphasis

end

The type equation word= Word. word x emphasis specifies the implementa-
tion of word concretely, rather than axiomatically. This fixes the implemen-
tation of word in any application of EMPHWORD.

2.15 Dot notation and type equations

The "dot notation" used above in the LISTFUN and KEYWORD specifications,
and the type equations like word = Word.word used in KEYWORD, are not
primitive parts of ASL+ as it was originally conceived. They can be removed
by translation into a form which uses the singleton constructor:

KEYWORD =d,f

i\Word : WORD.
derive from

impose
{ iskeyword(Word.makeword("at")) = false ... }
on

translate {Word} by Uwpjj

by KEYWORD

where a WORD : 11VORD -. Word. I wORD u { I skeyword } is given by

ciWORD def [word Word. word, make-word — Word.makeword]

and UKEYI4JORD : IKEywORD - Word. IwO u { I skeyword } is given by

UKEYWORD =def [word —. Word .word, is- keyword -. is-keyword I

Here IWORD is the signature of WORD, XKEYWORD is the signature of the body
of KEYWORD, and Word .XvoRD stands for the signature SWORD renamed by
prefixing the components with "Word.".

This translation explicitly ensures that the body of the parameterised
specification is specified as an extension of the argument algebra Word, which
uniquely satisfies {Word}. A similar way of handling dot notation was sug-
gested in the appendix of Sannella et al. [1990].

An Example in ASL+ 	 ________ 	 31

This translation testifies to the power of the kernel language, but it isn't
clear that it is advisable. The type-checker must pay careful attention to the
renaming of symbols in this way, and the translation has the flavour of an
ad-hoc "hack" needed to manage the current context of declarations which
arise from A- or H-abstraction. Furthermore, for more complicated examples
like EMPHWORD, this renaming approach is not sufficient, because we wish to
express equality of part of a type expression, rather than just the identity
of names. In that case it seems that we need a richer notion of signature
morphism, or a special kind of axiom in the logic which can express equality
of types.

Chapter 7 gives the scheme a more satisfactory basis, so that an algebraic
signature is generated according to the current context, which contains the
symbols renamed appropriately. The semantics is made aware of the notion
of context, and signatures are extended to include type equations like those
above.

2.1.6 Titles and emphasised titles

Let's return to the specification. Next we define a datatype for titles, which is
parameterised on an implementation of WORD and an implementation of lists
of words. Titles have a destructor for giving the list of words in a title, and a
constructor for creating a title from a list of words

TITLE =def

AWord: WORD
WordList : LIST (spec type elt = Word.word end)

spec
type title
Va! wordsoftitle : title - WordList.list
valmaketitie :WordList.list - title
axiom wordsoLti tie(maketi tie(s)) = s

end

The term

LIST (spec type elt =Word. word end)

constructs a specification of lists over the type Word. word.
Emphasised titles are like titles, except they contain emphasised words

instead of words. It would be nice to re-use the TITLE specification to specify
emphasised titles, by writing:

'Recall that AX:A Y:B. C is an abbreviation for AX:A. AY:B. C.

AnExample in ASL+ 	 32

AWord : WORD
EmphWord : EMPHWORD(Word)
EmphWordList : LIST (spec type elt = EmphWord-word end)

TITLE (EmphWord, EmphWordList)

Unfortunately, this doesn't quite work because the signature of EmphWord is
not compatible with that of WORD, since it does not contain a makewo rd oper-
ator. To amend this, we could either add a make-word function to EMPH WORD,
or as suggested already, remove make-word from WORD since it is perhaps
over-specifying WORD to include it in the first place.

Instead we give a similar specification to TITLE, defining:

EMPHTITLE =d,f
AWord : WORD
EmphWord: EMPHWORD(Word)
EmphWordList : LIST (spec type elt = EmphWord.word end).

spec
type title
valwordsoftitle : title - EmphWordList.list
val make-ti tle: EmphWordList.list 	title
axiom wordsofti tle(maketi tie(s)) = s

end

A different specification for EMPHTITLE would be to fix the implementa-
tion type based on some implementation of titles, in a similar way to the
specification of words and emphasised words. For example,

A Word: WORD

WordList : LIST(spec type elt = Word.word end)
Title: TITLE (Word, WordLi st)
EmphWord : EMPHWORD(Word)
EmphList : LIST (spec type elt = EmphWord. emphasi s end)

spec
type title = Title.title x EmphList.list

end

This specifies a concrete implementation of emphasised titles.

2.1.7 Target specification

We can now give the main specification, which has three axioms:

KWICFUN =def
H List: LISTFUN

An Example in ASL+ 	 - 	 33

Word : WORD
Keyword : KEYWORD (Word)
EmphWord : EMPHWORD (Word)
Title: TITLE (Word, List (aig type elt = Word.word end))
EmphTitie:

EMPHTITLE (Word, EmphWord,
Li St (aig type elt = EmphWord .word end))

TitieList : LIST(spec type elt = Title.titie end)
EmphTitieList : LIST (spec type elt = EmphTitie.title end).

spec
valmakekwic :TitleList.list — EmphTitieList.list
axioms

makekwic(ts) consists of titles in ts with exactly one key-
word emphasised.

e Eli,, makekwic(ts) =

si ngi ekeywordemphasi sed (e)
A titieofemphtitle(e) Eli,, ts

Every title appears in the output exactly once for each key-
word occurrence, with that occurrence emphasised.

t Eiist ts
Vk.

Keyword. i skeyword(Ti tie. wordsoLti tl e(t)k)

!e.e e115 makekwic(ts)

A titieofemphtitie(e) = t
A fst(EmphTitle.wordsoftitle(e)k)

= Emph Word. keyword

makekwi c(ts) is sorted lexicographically on the circular
shift of the keywords of each title needed to bring the single
emphasised word to the front.

orderedby(Word.:!~1 o title-shift,
makekwi c(ts))

end

We assume that the logic available is powerful enough to define functions
recursively similarly to the way they might be implemented in the destination
programming language. The axioms above are given in terms of a number of
such auxiliary functions; in a weaker institution these might be specified as
hidden functions, but here we assume that local definitions can be expressed
in the logic, or simply that the definitions are abbreviations in the meta-
language.

An Example in ASL+
	 34

The following definitions are used in the axioms:

Operations on lists and orderings:

in 	 =def ntheiement(i, n)

a < b 	 =def a:!~b A -'(b:!~a)

1 :5Iex m 	=def (r.19r = m) V
(t,u,v,w.t <u

A I = s@[t]@v A m = s@[uJ@w)
a. 	f) b 	=def (fa) :!~ (fb)

orderedby(, 1) =def Vn.O < n < length(l) 	tn :!~ tn+1

Specific operations and predicates:

titieofemphtitie(e) =def

Ti tie. maketi ti e(wordsofemphti ti e(e))

emphasi sofemphti ti e(e) =def

map fst (EmphTi tie. wordsofti ti e(e))

wordsofemphtitle(e) =def

map snd (EmphTitle.wordsoftitie(e))

single-keyword-emphasised(e) =def

!w. (emphasi sofemphti ti e(e)) = EmphWord . keyword

A Keyword.iskeyword((wordsofemphtit1e(e)))

title-shift(e) =def

ci. 1 = [emphword(e)]@m@n

A keywordsofemphti ti e(e) = n@[emphword(e)]@m

keywordsoLemphtitle(e) =

filter Keyword.iskeyword (wordsofemphtitle(e))

emphword(e) =def

snd(nthei ement(cw. (emphasi sofemphti ti e (e))w = keyword,

EmphTi tie. wordsofti ti e(e)))

The symbol EIISt denotes a membership function on lists; @ is the append op-
erator on lists; c is a logical choice operator such that P(cx.P(x)) provided
2x.P(x). These definitions are quite informal in that we heavily overload
symbols and have omitted to say where many of them come from. For ex-
ample, map is a function that can be defined for any two implementations
Li sti and Li st2 of lists:

va1 map :List1.1ist-List2.iist =d,f

Af: Listl.eit - List2.eit.

An Example in ASL+ 	 - 	 35

pmap.AI.ifListl. null (1)
then List2.nil
else Li st2 . cons (f (Li sti. hd(1)), map (Li sti. ti (1)))

The append operator @, the function nth-el ement, and the function filter
would be defined similarly.

There is a certain amount of (automatic) type-checking that may be done
on the specification KWICFUN to ensure its well-formedness, which might
be the obligation of the customer. On the other hand, well-definedness of
the specification, in the sense of consistency, will be demonstrated by the
software house's ability to deliver an implementation Kwi c such that Kwi C:
KWICFUN.

2.1.8 Over-specification?

From the viewpoint of the final KWICFUN specification, we have probably
over-specified WORD and KEYWORD by including make-word and the related
axioms.

The task of the software house is to provide a parameterised program
which implements an index given any implementations of WORD and KEYWORD.
Restrictions on which words are keywords, for example, may be require-
ments the customer wishes to impose on the datatypes later, but it is per-
haps misguided to deliver these as part of the KWICFUN specification itself.

The "accidentally delivered" information probably isn't necessary for a
good implementation, and the customer may be surprised if an implementa-
tion made use of it. There might be a problem if KWICFUN was needed later
for indexes where the word "the" was to be considered a keyword after all,
for example.

Fortunately, the situation can be rectified at a later point using a rule
for "contravariant refinement" to adjust the requirement specification; see
Section 2.2.1.

2.1.9 Discussion

In this section we discuss a couple of the design issues behind the KWICFUN
specification.

Forms of parameterisation. KEYWORD and some of the following specifi-
cations show a perhaps unusual form of parameterisation; a specification
parameterised upon an algebra. An alternative might be to define KEYWORD

An Example in ASL+ 	 041

instead as a parameterised specification, with heading AW :5 WORD, and then
apply keyword to a singleton argument when necessary, KEYWORD ({Word}).

But we don't require the extra flexibility of a parameterised specification
in this example. Even if we were to need keywords over a refinement WORD' _<
WORD, every Word: WORD' is a permissible argument to KEYWORD as it stands,
by the subsumption principle of subtyping systems: M : SP and SP :5 SP'
implies M: SP':

M: SP 	SP:5SP'
M: SP,

The language SPECTRAL also features specifications parameterised on alge-
bras and claims that user-defined specifications parameterised on specifi-
cations are not needed [Krieg-BrUckner and Sannella, 1991]. (The examples
here seem to back that opinion, more or less, but hardly constitute sufficient
evidence.)

Sharing implementations. I suggested above that it is natural to regard
keywords and the other datatypes as defined with respect to a given imple-
mentation of WORD. If this wasn't observed, we might instead write:

KEYWORD' =d,f enrich WORD
with spec

val -iskeyword : word - bool
axiom iskeyword(makeword("a")) = false

end

But then we would run into problems when writing KWICFUN. Because KWICFUN
has several parameters which are related, rather than a single monolithic pa-
rameter, we need some way to specify that parts of the parameters share the
same implementation, so that certain types are equal. In the second axiom
of KWICFUN, for example, the term Keyword. I skeyword is applied to a word
from Ti tie. For this to type-check, Keyword. word and Ti tie. word must be
equal types.

Here the parameterisation of KEYWORD, together with the type equations,
enforces the sharing needed; this is sharing by parameterisation, like in Peb-
ble [Lampson and Burstall, 1988].

By contrast, the example in Sannella et al. [1990] expressed sharing via
extensional equality on sorts in special axioms; a similar approach is via
the sharing constraints of Standard ML, which are specially restricted equa-
tions between components. Sharing constraints would be needed if we used
the specification KEYWORD' instead of KEYWORD. Compared with sharing by
parameterisation, sharing constraints have a post-hoc flavour, because one
does not need to anticipate which parts of a module to parameterise over

An Example in ASL+ 	 37

in advance. Of course, this can cause unexpected problems when combin-
ing modules at a late stage which do not satisfy their sharing constraints;
the benefit of extra parameterisation is that it allows more flexibility in the
development order.

Perhaps sharing constraints are more suitable for "fine-grain" sharing of
components of modules, whilst extra parameterisation is more suitable for
expressing sharing of modules themselves. In any case, the vital thing is that
the type-checker can understand the propagation of type equations, since
these are needed for type-checking axioms, and when it comes to implemen-
tation, for type-checking function definitions. The issues behind the task of
type-checking have implications which reach to the heart of the semantics
of the language, and will be explored towards the end of Chapter 5 and in
Chapter 7.

2.2 Formal Development

Now we assume the role of the supplier whose job it is to implement the
specification KWICFUN. We begin the refinement of the specification KWICFUN
towards a concrete implementation, which will be provably correct by virtue
of having been built from provably correct components via correctness pre-
serving composition operators.

2.2.1 Delivering a better product

On receiving the KWICFUN specification, let's suppose the head programmer
at the software house looks at the WORD and KEYWORD specifications, and de-
cides that the presence of make-word and the axioms in KEYWORD comprise
over-specification. This is a subjective decision a programmer may make
when given a formal implementation task. The pruning of suspect informa-
tion unnecessary for the job in hand will prevent other programmers from
seeing and perhaps exploiting it.

The spurious detail is removed by editing the original specifications:

WORD, =def translate ORD(ELT) by [elt — word]

KEYWORD, =def A Word : WORD,
Sig

valiskeyword:Wo rd. word -. boo!
end

An Example in ASL+ 	 - 	 38

EMPHWORD1, TITLE1, EMPHTITLE1
each as before, except parameterised on -1 variants.

The main specification has now becomes more restrictive, because the do-
main of the function space has become larger:

KWICFUN1 =def

H List: LISTEUN
Word : WORD,
Keyword : KEYWORD, (Word)
EmphWord : EMPHWORD1 (Word)
Title :TITLE1 (Word, Li st (aig type elt = Word.word end))
EmphTitle:
EMPHTITLE1 (Word, EmphWord,

List (aig type elt = EmphWordword end))

(as before)

The correctness of this kind of refinement, by removal of detail from a
function argument, is captured formally in ASL+ by the contravariance of the
domain of the H-constructor in the subtyping rule:

[X :S']

S':!!~S 	T<T'
HX:S. T :!~ HX:S'. T'

With this rule we can show KWICFUN1 :5 KWICFUN (so KWICFUN —KWIC FUN1),

using several stages:
WORD ::~ WORD,

then
[Word: WORD,]

KEYWORD (Word) :!~ KEYWORD, (Word)

and similarly for the parameters based on EMPHWORD, TITLE, EMPHTITLE and
the rest of KWICFUN.

Removal of trivial constructors. An alternative way of expressing the re-
finement above is via a constructor implementation [Sannella and Tarlecki,
1988b]:

KWICFUN-1KWICFUN1

where

K = Af: KWICFUN1.Alw ke t e' t' 1'. f(L, w, k, e, t, e', t', 1')

An Example in ASL+

and K is proved to map elements of KWICFUN1 into elements of KWICFUN.
We would rather elide the use of trivial constructors like K, however, since
K =rl idKWICFUN1.

Refinement of parameterised specifications In the same way that we show
the refinement between the two H-specifications KWICFUN, and KWICFUN, we
might extend the notion of implementation to parameterised terms, for ex-
ample to say that KEYWORD :!~ KEYWORD,.

Given two parameterised terms, P = AX:SP. M is a refinement of P' =

AX:SP'. M' when SP refines to SP' (so every argument valid for P' is also
valid for P) and for every N in SP', P refines P' "pointwise", P(N) ::~ F(N).

[X: SP']

SP' :5SP 	M:5M'
AX:SP.M AX:SP'.M'

Refinement of parameterised terms like this is similar to certain higher-order
subtyping systems where subtyping has been extended to type-operators
[Cardelli, 1990, Pierce and Turner, 1994, Steffen and Pierce, 1994]. The idea
of weakening the argument specification SP' also occurred to Sannella and
Wirsing [19821, who describe a similar notion of refinement of parameterised
specifications in CLEAR.

This kind of refinement can already be expressed in the framework, via
power types. Instead of asking for a refinement of P' AX:SP'. M' we can
ask for an implementation of the specification TIX:SP'. Spec (M'). Given such
an implementation P, then by the application rule for dependent products
types,

P : HX:SP'. Spec (M') 	N: SP'
P(N) : Spec (M'[N/X])

and by 13-conversion, P'(N) = Spec(M'[N/X]), so we have P(N) :5 P(N) for
every N: SP' necessarily.

This way of expressing refinement of parameterised objects results in a
significant simplification of the type system compared with the higher-order
subtyping systems cited above. It is explained in more detail in Section 4.3.2.

2.2.2 Bottom up development: shifting and sorting

The next stage in the development is to ponder what tools could be used to
solve the problem. Parnas's original solution was based on two procedures:
one to form the circular shifts of the titles and another to sort according to
the shifts. We can specify these as two parameterised programs.

An Example in ASL+ 	 40

The task to implementation the circular shift function is a small self-
contained problem:

CIRCSHIFTFUN =def

IlElt: ELI
EltList : LIST ({Elt})
EltListList : LIST (Spec type elt = EltList.list end).

Spec
val ci rcshi fts : El tLi St .1 i St 	EltListList.li St
axiom
circshifts(1) consists of all circular shifts oft

m E[st ci rc_shifts(t)
Ra,b.t=a@b A m=b@a

end

The programmer who tackles this task should return with a program Ci rcshi ft
and a proof that:

Ci rcshift : CIRCSHIFTFUN

Sorting, meanwhile, is specified and formally developed so often that any
reputable software house must have many examples of formally developed
sorting procedures in its library'. We assume that sorting programs are
parameterised upon the ordering to be sorted and an implementation of
lists, and satisfy a specification of the form:

SORTFUN =d,f

H El : ORD(ELT)
EltList : LIST (El t)

Spec
val sort :EltList.liSt 	EltList.list
axioms

sort(t) is a sorted copy oft, with respect to E7t.:5
a (=— list I 	a. Elist sort(I)
repetitions (a, I) = repeti ti ons(a, sort(I))
orderedby(Elt.:!~, sort(I))

end

Again, the functions repetitions and ordered-by are assumed to be de-
fined concretely within the logic. We assume that there are implementa-
tions of this specification available, for example, InsertSort : SORTFUN,
QuickSort: SORTFUN, etc.

2There is an example in the appendix of Sannella et al. [1990].

An Example in ASL+
	 41

2.2.3 Composition

Bearing in mind the "building blocks" defined above, we can give a new form
of the main specification which makes explicit the intention to use them:

BUJLDKWICFUN =def
HCi rcshift :CIRCSHIFTFUN TISort : SORTFUN KWICFUN1

We can proceed now by what [Sokolowski, 19891 calls a canonical imple-
mentation step. This is to "follow the hint" provided by the Il-abstraction,
and write a parameterised algebra by A-abstracting over the parameters ap-
pearing in the Il-specification. So we A-abstract over implementations of
CIRCSHIFTFUN and SORTFUN, and can then implement KWICFUN1 in a context
where they are available for use. This allows development to proceed inde-
pendently and in parallel, because work on an implementation of KWICFUN1
can take place under the assumption that CIRCSHIFTFUN and SORTFUN have
been implemented already.

BuildKwic =def
A Ci rcshi ft : CIRCSHIFTFUN
Sort: SORTFUN.

2.2.4 Final step

It is fairly straightforward to implement BUILDKWICFUN directly, making
use of similar functions to those used in the specification of KWICFUN -
following the bias of the specification. More efficient implementations would
certainly be possible, but they would probably be harder to prove correct.

The algorithm implemented for makekwi c is:

build the circular shifts of the keywords in each title;

form pairs of keyword shifts and emphasised titles by emphasising the
first word in each circular shift for each title;

sort the pairs by their first component, with the lexicographic extension
of Word.<

The output is the list formed by taking all the second components of the
final list. The result looks something like this:

Build_Kwic =d,f

ACi rcshift : CIRCSHIFTFUN
Sort : SORTFUN

An Example in ASL+ 	 42

List: LISTFUN
Word : WORD,
Keyword: KEYWORD, (Word)
EmphWord : EMPHWORD1(Word)
Title :TITLE1 (Word, List (aig type elt = Word. word end))
EmphTitie:
EMPHTITLE1 (Word, EmphWord,

List (algtype elt = EmphWord.word end))
TitleList : LIST (spec type elt = Title.title end)
EmphTi tl eLi st : LIST (spec type elt = EmphTi tl e. ti tl e end).

local
mod WordList = List(alg type elt = Wo rd. word end)
mod WordListList = List (aig

type eit = Wordlist.list
end)

mod Crc = Ci rcshi f t (Word, WordLi st, WordLi stLi st)
type wordtitie = WordList.iist x EmphTitie.ti tie
mod WordTitieList = List (aig elt = wordtitle end)
mod Srt = Sort (aig eit = wordti tie

= Word.:!~1 o f s t end,
WordTi ti e L i st)

in
val makekwi c =

fun(ts: EmphTitieList.list).
local

val keywords =

valshifts = Crc.circshifts(keywords)
valtitieshifts =

valsortedtitieshifts = Srt.sort(titieshifts)
in

map fst sortedtitieshifts
end

end
end

This program uses some local modules and type definitions to express the
algorithm described above; the function xJ is some implementation of : 5Iex.

The omitted parts of the program can be filled in fairly easily, following the
specification for hints.

22.5 Proof of correctness

We are obliged to show that the axioms of KWICFUN1 are indeed satisfied in
the body of Bull dKwi c. This can be done by making use of the properties of

An Example in ASL+
	

43

the argument algebras Ci rcshi ft... EmphTi ti e. Finally we will have estab-
lished that BuildKwic : BUILDKWICFUN, and we can glue the components
together to deliver the final product:

Kwic =d,f BuildKwic(Ci rcshift,QuickSort)

and evidence that

Kwic:KWICFUN1 :!~ KWICFUN

Once the Kwi c program and its correctness proof is delivered, it can be
applied some algebras of the right signatures, satisfying the argument speci-
fications, to finally get a keyword-in-context index.

2.2.6 Changing the requirements

Imagine that the program Kwi c has been in use for some time, before the cus-
tomers realise that they want to deal with indexes in which the word "and" is
a keyword. They realise that KWICFUN, ought to have been their requirement
at the outset, so now they ask for an implementation of KWICFUN, instead.

But the customers are reluctant to accept any implementation of KWICFUN,

now, because they have generated indexes using Kwi c and they would prefer
that any new implementation Kwi c1 : KWICFUN, built the same indexes as
before, when given the same set of keywords. (Notice that KWICFUN admits
some freedom: it does not specify the output order of titles whose circular-
shifted keyword lists are identical.)

ASL+ has a way of specifying this requirement. The singleton specifica-
tion operator is a higher-order operator, which is tagged with a specification
that its argument must satisfy. The requirement can be posed by:

KWICFUN2 =d,f {KWiC}KWICFUN

This is a sort of abstract-model specification in a higher-order setting. Intu-
itively, {M}5p stands for the equivalence class of M considered at SP. The
equivalence class of Kwi c at KWICFUN is the collection of all functions which,
when restricted to the domain of KWICFUN, are equal to Kwi c. Introducing a
stratified equality relative to a specification, written M = N: SP, the general
rule for A is:

[X: SP']

SP' 	SP 	M = 	: sp" 	 (EQ-A)

AX: SP.M = AX : SP'.M' : HX: SP'.SP"

which allows us to consider a more permissive equality between higher-order
objects, when given some specification which restricts the observations we

An Example in ASL+

can perform. This equality is the motivation for using a PER semantics; the
details are first introduced for a subtyping system in Chapter 3.

The software company is now in the enviable position of being able to
charge money for doing no work! They can easily provide an implementation
of KWICFUN1 which also satisfies KWICFUN2 - namely Kwi c itself, since they
had the foresight to implement KWICFUN1 anyway.

In general, implementing a singleton specification {M}5p can involve con-
siderable work. For one thing, {M}5p is inconsistent unless M : SP, which
may require proof. For another thing, although M will always be a permis-
sible implementation, it may not be the best, or even a feasible one. In this
case we could use Kwic because it also satisfies KWICFUN1. If the software
house had instead given an implementation of KWICFUN which relied on the
specified non-keywords, then we would have to construct a new implemen-
tation which behaved as Kwi c when given a set of old keywords, but used a
different algorithm for the general case.

This example also demonstrates a use for a form of intersection types in
ASL+, since the specification the customer wants implemented can be for-
mally described as:

KWICFUN1 A KWICFUN2

Semantically, intersection types are like specification unions, as used in ASL
(see Section 1.2). Here we use the intersection operator more generally than
in ASL, since we are combining two specifications of parameterised pro-
grams; collections of functions rather than collections of algebras. Speci-
fication unions were added to the higher-order part of ASL+ in Sannella et al.
[1992], but they will not be treated in such generality in this thesis (see com-
ments in Section 5.2).

2.3 Summary

In this chapter I sketched the use of ASL+ in the process of formal program
development. The keyword-in-context example is somewhat small and con-
trived, and most of the modules are abstract data types. More examples of
the higher-order parameterisation facilities given by ASL+ should be studied,
although getting the familiar part of the calculus right is a sensible first goal.

Some of the details of the example were omitted, or were hazy. Part of
the quest of the following chapters is to demonstrate that this example can
be given a completely formal underpinning.

3 Singleton Types

A typed A-calculus called A< is introduced, which combines subtypes
and singleton types. The calculus is a minimal calculus of subtyping
with a restricted form of dependent types.

The presence of dependent types leads to a circularity between the def-
initions of the judgements, which means that meta-theoretic properties
are more difficult to establish than for systems without subtyping or
without dependent types. This circularity is tackled here to prove that
the system has some good meta-theoretic properties, including subject
reduction and minimal types.

A PER model for A<{} is defined, combining previous work on PER mod-
els for non-dependent subtyping systems and for dependent systems
without subtyping. This is the first PER model for a system with both
features.

3.1 Introducing Singletons 45

3.2 Uses of Singleton Types 48

3.3 The System k<{} 50

3.4 Basic Properties 55

3.5 Further Properties 63

3.6 A PER Interpretation of A<{} 67

3.7 Discussion 76

3.8 Summary 79

3.1 Introducing Singletons

T YPE SYSTEMS for current programming languages provide only coarse dis-

tinctions amongst data values: real, boo!, string, etc. Constructive type

theories for program specification can provide very fine distinctions such as

{ x e nat I prime(x) }, but the problem of checking whether a term inhabits

a type may be undecidable. We need to study systems in between, so that

Singleton Types - 	 46

types may express more exact requirements in programs, without losing the
possibility of efficient mechanical type-checking.

Intersection types are one way of making types more exact, constructing
types by "cutting down from above." By contrast, singleton types allow types
to be "built from below."

If we view types as specifications, then a singleton type imposes the most
stringent requirement imaginable. Let fac stand for the program

pf. Ax:nat.ifx = 0 then 1 else x * (f (x —1))

Then {fac} is a specification of the factorial function, and

fac : {fac}

says that fac certainly satisfies the specification {fac}. This is an instance of
the principal assertion for singleton types, M: {M}.

But we can write the factorial function in many other ways; it would be
useful if whenever fac' is an implementation of the factorial function, we
have also:

fac' : {fac}.

This leads to the idea of letting {M} stand for the collection of terms that
have the same denotation as M in the semantics, or as an approximation, the
collection of terms equal to M in some theory of equality.

Subtyping systems can substitute a term of a desired type with a term
having a more refined type; the principal rule for subtyping is subsumption:

M:A A<B
M:B

Subsumption for ground types suggests subtyping at higher types; for exam-
ple, a function defined over mt may be used where one defined only over flat
is needed, since every natural is an integer and thus a valid argument. So we
expect mt - mt to be a subtype of nat - mt.

A stratified equality now arises: we may have two functions defined over
mt that have equal values at every natural:

(Ax:int.ifx> O then x else 2 * x) = (Ax:int.x) : nat -= mt

but can be differentiated on integers:

(Ax:int. if x > 0 then x else 2 * x) * (Ax:int. x) : mt - mt

These functions are interchangeable in a context where arguments of type
nat are supplied.

Singleton Types

These two ideas influence my treatment of singleton types. We shall con-
sider {M} to be an equivalence class of terms, but relative to a particular
type. So a type-tag is attached to the singleton, and the introduction rule for
singletons is:

M:A
M: {M}A

Singleton types have a non-informative flavour, that is to say, there is no
term operator corresponding to singleton introduction, as would be typical
for types in a constructive type theory.

Neither is there an elimination operator for singleton types. In fact, no
explicit elimination rules for singleton types will be used at all. Instead, we
treat singleton types as a way of expressing the natural typed-equational the-
ory of the system, which would otherwise be given as an additional collection
of rules. The typing assertion M : {N}A asserts M = N : A. This results in
a more perspicuous system than using a rule of untyped fl-conversion does.
In particular, it can be given a semantical interpretation directly without re-
lying on meta-properties such as the Church-Rosser property and subject
reduction. Further discussion on this point is given in the next chapter, in
Section 4.4.2.

The non-informative aspect of singleton types makes the meta-theory of
the system harder to deal with. Because elements of singleton types are not
distinguished from other types by constructive information, the uniqueness
of types property is lost. This is in contrast to elements of equality types, for
example. Subtyping itself already breaks uniqueness of types, of course, so
the key to solving the meta-theory is to understand the interaction between
subtyping and singleton types.

In the rest of the chapter I study the addition of singleton types to the
simply-typed A-calculus with subtyping, known as A<. The resulting system,
A<, is a minimal type system with singleton types and subtyping. Single-
ton types introduce type-term dependency, which complicates the study, but
leads to a system with some interesting aspects, such as the integration of
definitions and the ability to "escape" A-abstraction and type function bodies
in the presence of their arguments.

The system A<{} is original,' although it is related to a fragment of the
system ATTT due to Hayashi [1994]; my singleton types have the same form
as Hayashi's, but are handled in a different way, see Section 3.7 for a compar-
ison. As far as I am aware, Hayashi's systems and the work that spawned A<{}
in Sannella et al. [1992] are the only other appearances of singleton types in
the literature.

'Most of the content of this chapter was first published in the paper "Subtypirig with
Singleton Types" which I presented at Computer Science Logic 1994 [Aspinall, 1995a].

Singleton Types 	48

The next section outlines some possible applications of type systems with
singleton types. In Section 3.3 the complete definition of A<u is presented
and in the two following sections, some properties of the syntax are estab-
lished. In Section 3.6 A< is given a PER semantics and a proof of soundness.
Section 3.7 has some discussion and comparison to related work, and Sec-
tion 3.8 concludes with a summary.

This chapter and Chapter 4 can each be read independently of the rest
of the thesis. I have tried to make this chapter accessible to readers without
a background in type-theory or subtyping, and I have tried to make it serve
as an introduction to the work later. Nonetheless, a standard reference for
typed lambda calculi may be helpful, for example Barendregt [1992].

3.2 	Uses of Singleton Types

The original motivation for this work comes from types-as-specifications:
given a program P we can form the very tight specification {P } which is met
uniquely by P. However, singleton types may have other uses inside a type
system.

3.2.1 Singleton types as definitions

Definition by abbreviation is essential for the practical use of a type system
in a programming language or proof assistant. If M is a large expression
occurring inside N several times, we may write

x=MinN'

instead, where N' is the result of replacing occurrences of M in N with the
variable x. Treatments in the literature include Harper and Pollack [1991]
and Sever! and Poll [1994]. Typically, definitions are introduced as a new
concept that extends the type theory being studied and causes additional
complication; with singleton types we get a form of definitions in the system
for free.

Sever! and Poll [1994] study the addition of definitions to Pure Type Sys-
tems [Barendregt, 1992]. The setting is Church-style, so typed definitions are
appropriate, with the form

x =M:AinN

This may be compared to a A-abstraction over a singleton type in A {} which
is applied to a trivially suitable argument:

(Ax:{M IA. N) M

Singleton Types

This in turn can be compared with the regular "trick" in A:

(Ax:A.N)M

Severi and Poll point out three reasons for introducing definitions as a new
concept:

fl-reduction replaces all instances of x in N by M, whereas it is useful
to be able to replace instances one-by-one when desired.

The information that x = M may lead to a (different) typing for N that
otherwise wouldn't be possible.

The A-abstraction Ax : AN may not be permitted in the type-system.

The third point is relevant in the context of Pure Type Systems. To deal
with the first point, Severi and Poll introduce a new kind of reduction. A
6-reduction replaces a single instance of x with M. We might equally well
consider a new kind of reduction in A, , defined for applications having the
special form shown above; it isn't necessary to add a new syntactic form to
do this. Reduction relations aren't studied here, but it would be an interest-
ing extension.

In A<{} we have the benefit of the second point. Interestingly, because of
the presence of singleton types, it isn't even necessary for the term M to be
"revealed" to the function body N in the type label to use x = M when typing
N. The term (Ax:A.N)M has exactly the same types as (Ax:{M}A.N)M.
Moreover the two terms are provably equal in A<{}.

3.2.2 Singleton types and improved typings

The system A<{} is a non-conservative extension of the well-known subtyping
systems; better non-dependent typings are possible than in non-dependent
subtyping systems. A simple concrete example is the identity function on
real numbers, written Ax: real. x. Then in A<:

Ax:real.x : real - real
mt - real

I int -'int

The third typing is possible in A<{} , so a given A< function can have more A
typings in A<{}.

In a programming setting, singletons could be used to derive good typings
between a collection of functions inside a module, and then by removing
detail from these types we could get a collection of non-dependent types for

Singleton Types 	 - 	 50

typing outwith the module boundary. The example in Section 3.2.1 shows
how we can "in-line" function arguments when type-checking, which is sure
to result in better typings than a more abstract non-dependent scheme (such
as intersection types) would do alone. But I haven't examined examples in
detail, so it remains to find out how useful this could be.

The difficulty, of course, is in knowing when to in-line and how to manage
the complexity of type-checking. Dependent types will lead to an undecid-
able type system unless there is some decidable restriction on the form of
terms allowed in types, so that equality can be tested. In practice it might be
necessary to annotate programs with directives to indicate to the compiler
when to use extra-informative, dependent, typings.

One possibly desirable theoretical property is missed, though. In general,
there may be no minimal type in A< amongst the possible A< types for
a given term. This can be seen from the identity function example above:
real -. real and mt - mt are incomparable types. One way to repair this
would be to add intersection types. However, A< itself does possess the
minimal type property, see Section 3.5.3.

3.3 The SystemA<{}

Now we describe the system A<{} , summarized in the tables at the end of
the chapter beginning on page 80. The presentation follows the familiar for-
mat for subtyping systems: we have well-formedness, typing, and subtyping
judgements. Additionally, we have the pure equational theory generated by
the singleton rules as explained in the previous section.

Syntax. The meta-variables A, B, C... and M, N.... and F range over pre-
types, pre-terms and pre-contexts respectively, which are given by the gram-
mar:

A ::= K I TIx:A.B I {M}A
M ::= x I Ax:A.M I MN
F ::= 0 I F,x:A

Since there are no type variables, we assume the existence of a set of atomic
type symbols X, ranged over by K. Constants are not included in the system,
for the sake of brevity; we can simulate them by using a fixed initial context.

I shall follow the usual conventions and use obvious abbreviations in what
follows. Free and bound variables are defined as usual. Pre-types, pre-terms,
and pre-contexts that are alpha-convertible are identified, and I write to
stand for syntactic identity. Pre-contexts are additionally restricted so that

Singleton Types 	- 	 Si

no variable x is declared more than once; this is assumed implicitly in the
typing rules.

Beta-reduction and conversion are defined as usual over terms, and ex-
tended to types in a way compatible with (i.e. as a congruence with respect
to) the type-constructors. For notation, M - N indicates an outermost

	

single-step of reduction, and M 	N' is the transitive, reflexive, and com-
patible closure of M - N. Beta-conversion is the symmetric closure of- 8,
written M = N. There is no application at the level of types; convertible
types can only differ within corresponding singleton components.

Judgements. The judgement forms are:

> F 	 F is a well-formed context
F > A type 	A is a well-formed type in F
F >M:A 	 M has type AinF
F>A:5B 	 A is a subtype of B in F

I occasionally use F > J to range over judgements with context F. A judge-
ment is valid iff it can be derived using the rules of Figures 3.1-3.4, shown at
the end of the chapter, beginning on page 80. As usual, "F > J" abbreviates
"F > J is valid." The rules are described individually in the next subsection.

There is an auxiliary notation for the equality judgement defined in terms
of the typing judgement:

	

FM=N:A 	=def 	F>M:{N}A

The four primitive judgements must be defined simultaneously: it is char-
acteristic that typing should be dependent on the formation judgements
through (v) and subtyping through (suB). The presence of dependent types
means that formation and subtyping are also dependent on the typing judge-
ment, through rules (FORM- 11), (SUB- 11), (SUB-EQ-sYM), and (SUB-EQ-ITER).

3.3.1 Rules defining A<{}

Here is an explanation of the rules defining the system.

Contexts

There are just two rules of context formation,

(EMPTY)

- 7

52 Singleton Types

F > A type

F, x : A c> 	 (EXTEND)

and the rule of variable typing makes use of the context:

1'

(VAR)

Basic subtyping rules

The rule of subsumption is the characteristic rule of type systems with sub-
typing:

FM:A F>A::~B
F
	

(SUB) >M:B

It captures the informal meaning of the subtype relation: if type A is a sub-
type of type B, then every element of A is also an element of B.

The subtyping relation is reflexive on well-formed types:

F > A type

F L A < A 	 (SUB-REFL)

and transitive:
FA:!~B FB:!~C

FA<C (SUB-TRANS)

Atomic types

The rule (FORM-ATOMIC) says that a primitive type is valid in a valid context:

1

(FORM-ATOMIC)

Subtyping between atomic types is given by a built-in relation,

:!~Atorn c ,fJCx3(

which we assume to be reflexive and transitive. Restricting :5Atom to atomic
types ensures that subtyping retains a structural character; that is, types
related by the subtype relation will have a similar shape.

The rule (SUB-ATOMIC) includes :5Atom in the subtyping relation:

F 	K:!~AtomK'

F > K < K'
	 (SUB-ATOMIC)

Singleton Types

Dependent product types

Dependent product types (TI-types) are formed by the rule:

F, x: A > B type
F > TIx:A.B type 	 (FORM-17)

Lambda abstraction introduces a term of a II-type:

F,x:A>M:B
F > Ax:A.M:Hx:A.B

and function application eliminates such a term:

TM:TIx:A.B TN:A
F> MN: B[N/x]

These three rules are common to all type theories with dependent products.
Note that our function spaces here are strictly first order, in the sense that
there is no abstraction or quantification over types.

The subtyping rule for dependent products (SUB-17) is contravariant in the
domain of the function space and covariant in the codomain:

F>A':!~A F,x:A'BB' F,x:A>Btype
F > Hx:A.B ::!~ Hx:A'.B' (SUB-II)

The contravariance is intuitive and semantically sound, but its form is some-
times problematical to the syntax, as with the corresponding form of bounded
quantification over second order types [Ghelli, 1990, Pierce, 1992]. More in-
vestigation is needed to decide the point here: a contributing factor in the
second order case is the presence of a top type T of which there is no ana-
logue in A<{} .

Singleton types and equality

Singleton types are formed by the rule:

F > M : A type
F > {M}A type (FORM- { })

which says that {M}A is a valid type in some context F if the term M has
type A in F. Terms of singleton type are introduced by the equality rules,
principally reflexivity:

53

FM:A
(EQ-REFL) F>M=M:A

Singleton Types
	

S4

(this is the rule of singleton introduction from Section 3.1 under a different
guise, by the definition that M = M : A means M: {M}A). Symmetry and
transitivity are derived rules using the subtyping rules shown below. There
are two other equality rules:

F>A'<A F,x:A'>M=M':B' F,x:A>M:B
F> Ax:A.M=Ax:A'.M' :Hx:A'.B'

F> M=M':Hx:A.B F> N=N':A
F>MN=M'N' :B[N/x]

(EQ-A)

(EQ-APP)

(EQ-A) deserves some discussion. The first two premises allow one to derive
equalities between functions on restricted domains, like the example shown
in Section 3.1; the final premise is a well-formedness constraint, to ensure
that the term Ax:A. M appearing in the conclusion is typable. The usual form
of A-equality is between functions with the same domain,

F, x: A > M = M' : B
F > Ax:A.M = Ax:A.M' :Hx:A.B (EQ-A-EQUAL-BOUND)

It is an admissible instance of (EQ-A). In fact, the presence of the stronger
equality rule leads to the admissibility of a correspondingly stronger typing
rule:

F>A'<A 	F,x:A' >M:B' 	F,x:A>M:B
F> Ax:A.M:Hx:A'.B' (A-NARROW)

which allows one to give a more refined type for a function, based on more
refined knowledge about its argument type. This is in contrast with usual
subtyping systems where a function has a single type via A-introduction that
may be promoted via (suB). This stronger rule was the basis of the example
in Section 3.2.2. To include (EQ-A) in the stronger form was a design decision,
but it is interesting to notice that in a system with untagged singletons, the
stronger rule is forced by the rule (SUB-H).

Sublyping singletons

Subtyping of singleton types is provided by three rules. First, we propose
that a singleton is a subtype of its containing type:

F>M:A
F> {M}A <A (SUB- 11)

Another property we require is the principle of monotonicity of equality
with respect to subtyping; if two terms are equal at a type A then they must
be equal at any supertype of A:

ri=rrn 	rn<n
F>M=N:B
	

(EQ-SUB)

Singleton Types

We can express this principle via subtyping of singleton types. In general, as
we pass from subtype to supertype, the equivalence class of any particular
term gets larger:

F>N:A F>A:5B
F> {N}A ~ {N}

	
(SUB-EoJ

Since N: {N}A by (EQ-REFL), assuming that N : A is implied by M = N : A, the
previous rule will follow from this one using subsumption (SUB).

Our term-level equality is reflexive (and, we will see, transitive), but not
yet symmetric. We have to add a rule of symmetry, such as:

F> M=N:A
F> N=M:A (EQ-sYM)

Again, we can express this rule with singleton subtyping. If we consider that
two types A, B are equal if A :5 B and B :!~; A, then the rule below establishes
that if two terms are equal at a type, then their equivalence classes are the
same:

F>M=N:A
F > {N}A :5{M}A 	 (SUB-EQc-sYM)

the other direction and the previous rule follows from this rule, again through
(EQ-REFL) and (SUB).

In the definition of the system, we combine these two singleton subtyping
rules into a single rule:

F>M=N:A F>A:f~_B
F> {N}A :!~ {M}B (SUB-EQ-SYM)

which is our second rule of singleton subtyping.
The final rule counteracts monotomcity of equality. Notice that single-

tons can be nested in the syntax, so we can form {M}A, {M}{N}A , {M}{N}p}A....
The equivalence class of M seen at type A is {M}A. The equivalence class of
N seen at {M}A is either empty, if M N : A, or equal to {M}A. In particular,
{M}A = {M}{M}A. We already have that {M}{ M }A ::5; {M}A by (sul3-{}), for the
other direction we need a new rule:

F>M:A
F > {M}A 	

(SUB-EQ-ITER)

3.4 Basic Properties

In this section we establish some basic expected properties of the presen-
tation of A<. The first properties concern well-formedness conditions for
contexts and the behaviour of variables.

Recall that no variable is declared more than once in a pre-context.

55

Singleton Types 	 56

Notation 3.1. Let F x1 : A1,... be a pre-context.

Dom(F) =def {x1, ... } is the set of variables F declares.

def x1 :All ... ,x_1 : A_1 is the restriction of up to x1_ 1.

F(x1) =def A, viewing F as a partial mapping F: V - T.

F g F' iff every declaration x1 : Ai in F also appears in P.

One derivation is "shorter" than another if it has fewer proof rules in its
proof tree; this measure is used in many proofs.

A simultaneous substitution is a partial map from variables to pre-terms; a
renaming is the special case of a simultaneous substitution which is a bijec-
tion on a subset of V. Substitution is extended to contexts componentwise,
so that if F 	x1 : A1,... then F[N/x] 	x1 : A1[N/x],x2 : A2[N/x].....
Substitution is also extended to judgements J componentwise.

Proposition 3.2 (Contexts).
Leff x1 : A1 ,.. .x : A be a pre-con text. Then:

(Context formation).
If > F then there are shorter derivations of F I , > Ai type for each
1 :!~ i :5 n.

(Correctness of contexts).
If F > J where J is a formation or typing judgement, then > F with a
shorter derivation, and FV(J) Dom(F).

(Renaming).
If 	> J and cP is a renaming of Dom(F), then 0 (F) r>cP(J).

(Thinning).
1fF t> J and F c F' with > F', then F' > J.

Proof Standard. Context formation and correctness of contexts follow by
induction over the rules. To prove renaming, we use induction on the height
of derivations and a quantification over all Dom(F) renamings. Then renam-
ing is used to prove thinning; in the cases for A and H when the context is
extended in the premise, renaming is used to ensure that the thinned context
can be extended without variable clashes. 	 El

	

Singleton Types 	 57

Notice that thinning encompasses both permutation of the context (re-ordering
declarations) and weakening (adding a declaration to the end).

Proposition 3.3 (Substitution).
F, x: A, F' > J and F > M: A => F, F'[M/x] > J[M/x].

Proposition 3.4 (Bound narrowing).
F, x: A, F' > J and F > A': Power (A) = F, x : A', F' > J.

Proof Let y be a fresh variable. Using Proposition 3.2 (part 2, then part 1
repeatedly together with part 4) and the assumption we can derive F, y : A', x : A, F'
J. By the variable rule and subsumption, F, y : A' > y : A. Hence by Proposi-
tion 3.3, F,y : A',F'[y/x] > J[y/x]. The result follows by renaming y back
to x using Proposition 3.2(3). 	 E

The next proposition shows implications between judgements. Some pre-
sentations of type theories simply require the consequences of these impli-
cations as extra premises in the rules to begin with (often implicitly); the
approach taken here seems more satisfactory from the point of view of pro-
viding a minimal presentation, although it can make inductive proofs on
derivation lengths more tricky.

Proposition IS (Type correctness I).

	

1.FM:A 	==> 	FAtype

	

2.FcA:!!~_B 	==> 	F>Atype and FBtype

Proof Simultaneous induction on derivation heights. We show part 1 by induction
over the typing rules.

Case (VAR): By (GEN-TYPE).

Case (A): By IH and (FORM-H).

Case (APP): IH gives F > TIx:A. B type which must have been derived with (FORM-H)
whose premise is F, x : A > B type. Hence F > B[N/x] type using the premise
of the rule and substitution.

Case (SUB): By IH (ii).

Case (EQ-Rum): Use (FORM- 11)on the premise.

Case (EQ-A): Using (FORM-A), we must show F > Ax:A'.M' : Hx:A.B'. This fol-
lows by the induction hypothesis for the second premise and the premise of
(FORM- {}).

Case (EQ-APP): Similarly.

We show part 2 by induction over the subtyping rules.

Singleton Types 	 58

Case (SUB-REFL): Premise.

Case (SUB-TRANS): By the induction hypothesis.

Case (SUB-ATOMIC): Using (FORM-ATOMIC).

Case (sui3-H): For the left-hand type, use the third premise and (FORM-H). For the
right-hand type, use the IH to get F, x: A' > B' type then (FORM-17).

Case (SUB-{}): Use (FORM- 11) or IH for part 1.

Case (SUB-EQ-SYM): Use IH for part 1 to get F > {N}A, hence well-f ormedness of the
left-hand type and also F > N: A. Then:

FN:A
F>M:{N}A F{N}A:!~A FA:!~B

F > M:B
F > JMJB type

which shows well-f ormedness of the right-hand type.

Case (SUB-EQ-ITER): Use premise and (FORM-11) for the left-hand type; for the other
side use (EQ-REFL) then (FORM-[1). 	 0

A generation principle decomposes a derived judgement into further de-
rived judgements, usually sub derivations of the first. It tells how a particular
judgement was generated.

For the context and type-formation judgement, the generation principles
are merely inversions of the rules; there is at most one rule that could have
been used last in the derivation of a given type-formation judgement. This
is used to show a simple corollary of the above proposition.

Corollary 36 (Type correctness II).
3.1- >M=N:A =

4.FM=N:A ==~> FN:A

5.F>{M}A :!~B 	 FM:A and F>M:B

6.F 	[MIA :!~B 	==> 	FM:B

Proof Parts 4 and 5 follow from part 1 and part 2 respectively, by the
premise of (FORM-11). Parts 3 and 6 follow from part 4 and S respectively,
using (suB-{}) and (EQ-REFL), with (suB). 	 0

Singleton Types

We now give generation principles for the subtyping and typing judge-
ments. First showing a generation result for the subtyping judgement allows
us to then prove one for the typing judgement. There is a case according to
each syntactic form on either side of the subtyping symbol.

Proposition 3.7 (Subtyping generation).
1.F>K<B => For some K',

B K'

K :5Atom K'

2. F > FIx:A.B :5 C => For someA',B',
C FIx:A'.B',
F>A':5A,
F, x: A' > 13 :5 B'
F, x: A> B type.

3.F>{M}A :!~B=F>M:B

F > A :!~ K' = For some K,

where A{M}B 	AEK
K :!~Atom K'

F> C:5TIx:A'.B' => For some A,B,
where EA {M}D 	CEHx:A.B

F>A'<A
F, x: A' > B :!~ B'
F, x: A> B type.

F> C :!E; {N}B => For some M, A, C {M}A

Proof We use induction on the derivation of subtyping judgements to show parts
part 1 and part 2; only the possible last rules are considered in the cases below.
Part 3 follows from Corollary 3.6 and (sulI-11). Parts 4-6 then follow directly by
consideration of parts 1-3.

Case (SUB-REFL): Immediate, by reflexivity of :!~Atom.

Case (suB-1&Ns): By the induction hypothesis for the left premise, then the
right, then the result by transitivity of :5Atom.

Case (SUB-ATOMIC): Immediate.

Case (SUB-1EFL): By Proposition 3.5 and type-formation generation, F, x : A>
B type and by Proposition 3.2, (GEN-TYPE), F > A type.

Case (SUB-TRANS): By the induction hypothesis for the left premise, then the
right premise, and the result using (SUB-TRANS) again.

Case (SUB-17): Immediate by the premises.

Singleton Types -

To show a generation principle for typing, we make use of some admis-
sible rules, taken from Figure 3.5 on page 83. The admissible rules are de-
scribed in Section 3.4.1.

The generation principle for the typing judgement F > M : A looks un-
usual, because we must account for the possibility that A is a singleton.

Proposition 3.8 (Typing generation).
F > x: A => F> {x}r() < A

F> Ax:A.M:C == For some A', B, B',
F>A'<A
F, x: A' > M: B'
F,x:A>M:B
F > {Ax:A.M}gx:A'.B' < C

3.F> MN: C= For some A,B,
F > M:FIx:A.B
F.>N:A
F > {MN}B[N/X] < C

Proof We make use of this admissible rule:

which is derived thus:

F> {M}A :!~ B
F> {M}A :5 {M}B

F>M:A
F> M=M:A

(SUB-INcL)

F>M:A F> {M}A :!~ B

F> {M}A :!~ {M}{M}A 	 F> {M}{M}A :!~ {M}

F> {M}A :!5; {M}B

using (SUB-EQ-ITER), (SUB-EQ-sYM) and Proposition 3.5. Each case of the proposition 3.8
is proved by induction on the derivation.

Case (VAR): then F > {x}j-(x) :!~ F(x) by (SUB-

Case (SUB): by IH, (SUB-TRANS).

Case (EQ-REFL): let the premise be F > x : A.
By the IH, F > {x}j-(x) :5 A. Hence the result using (SUB-INcL).

Case (A): we have F, x : A > M : B by the premise, and
F > {Ax:A.M}rJ.A. B :!~ TIx:A.B by (SUB-

Case (SUB): by IH, (suE-1RANs).

Case (EQ-REFL): by IH, (SUB-INcL).

Singleton Types
	 61

Case(EQ-A): by the premises, F,x:A > M:B and F,x:A' > M:B',using
Corollary 3.6.
F > {Ax:A.M}j-Jx:AB :!~ {Ax:A'.M'}j-ix:A'.B' follows by (SUB-EQ) (using
(SUB-REFL) and Proposition 3.5).

3. Case (APP): by premises and (suB-{}).

Case (SUB): by IH, (SUB-TRANS).

Case (EQ-REFL): by IH, (SUB-INcL).

Case (EQ-APP): by Corollary 3.6, F > M : TIx:A.B and F > N : A. The result
by (SUB-EQ) as above. 	 El

The consequence of typing generation can be further broken down in specific
instances by using the subtyping generation principle once more, and so on.

3.4.1 Admissible rules of A<{}

We continue the development of the meta-theory by showing some important
admissible rules of A< in Table 3.5, several of which have been mentioned
before. They are important either because it is natural to want them to hold,
or because they are useful in following proofs.

First, we have symmetry and transitivity of equality:

F>M=N:A
F >N=M:A

F>L=M:A F>M=N:A
F>L=N:A

(EQ-sYM)

(EQ-TRANS)

Interestingly, the usual rule for a-conversion turns out to be admissible.
We can give ?tx:A.M the tight dependent type Hx:A. {M}B using ({}-I), and
then use (APP) to give:

F,x:A>M:B F>N:A
F> (Ax:A. M) N = M[N/x] : B[N/x]

There are several easily derived rules for subtyping singletons. One is
(SUB-EQ), recovered from (SUB-EQ-sYM):

F >M=N:A F >A:5B
F > {M}A :!~ {N}B (SUB-EQ)

An important instance of this rule is when A B, and the second premise is
implied by the first, by Corollary 3.6.

Singleton Types 	 62

Corresponding to (SUB-Eo), (EQ-SUB) shows the monotonicity of equality wrt
the subtyping relation.

F>M=N:A F>A:!~B
F>M=N:B 	 (EQ-SUB)

We mentioned the final rule in the table, (A-NARROW), in Section 3.3.1.

Proof of admissible and derivable rules We prove the admissibility or
derivability of the rules in Figure 3.5.

• (A-NARROW) holds because we may derive:

F, x: A' > M: B'
F>A':5A 	F,x:A' > M=M':B' 	T,x:A> M:B

F> Ax:A.M=Ax:A'.M:FIx:A'.B'

and
F, x: A' > M: B'

F> Ax:A'.M:FIx:A'.B'
F> {Ax:A'.M}rIx: Ar B :!~ Hx:A'.B'

and then use (SUB) to get F > Ax:A. M : Hx:A'. B'.

(EQ-SYM) By this derivation, using Proposition 3.5.

F > A type
F>N:A F>M=N:A F>A_<A

F > N = N : A 	F> {N}A :5 {M}A
F> N=M:A

(EQ-TRANS) Using (EQ-SYM) and Proposition 3.5 again:

F>M=N:A F>Atype
F>N=M:A F>A:!~A

F > L = M: A 	F> {M}A :!~ {N}A
F> L=N:A

(EQ-SUB) Follows easily from (EQ-SYM), (SUB), (SUB-EQ-SYM).

(EQ-f3) Using (A) and (EQ-APP), we have:

F,x:A>M:B
F,x:A > M:{M}B

F>Ax:A.M:Hx:A.{M}B F>N:A
F> (Ax:A. M) N = M[N/x] : B[N/x]

(SUB-EQ) by (EQ-sYM) and (SUB-EQ-SYM):

F>M=N:A
F>N=M:A F>A:!~B

F> {M}A:5{N}B 	 0

Singleton Types 	 63

3.5 Further Properties

In this section we study some further meta-theory of A<, working towards
a proof of subject reduction and the minimal type property.

35.1 Removing singletons

Subtyping generation, Proposition 3.7, is rather weak in the singleton case
{M}A :!~ B. We'd like to say something about the relationship between A
and B; when B doesn't have the form of a singleton, we expect that A :5 B.
However, when B 	fNJc for some C, we may have A :5 C or vice-versa,
because of rules (SUB-EQ-sYM) and (SUB-EQ-ITER). A generation lemma covering
these cases becomes untidy to state, and difficult to prove directly because
of the rule (SUB-TRANS).

Here we define an operation (—)o which erases outermost singletons
from a type. A simple lemma relates a type to its singleton-deleted form;
this strengthens the generation result sufficiently to give us a tool to help
show that A<u possesses minimal types.

Definition 3.9 (Singleton removal).

({M}A) =A
P 9 =P

(Hx:A.B) 0 =Hx:A.B

Proposition 3.10 (Properties of singleton removal).
FcA type =F > A < AO

F > A :!-< B 	F > A _<

3.F{M}A :5B and B{N}cF>A:5B

Proof Part 1 by induction on the structure of types. Use (SUB-REFL) except in
the case that A {M}B for some M, B, when we apply the induction hypoth-
esis to obtain F > B :!~ B, and by type-formation and (suB-m, F > {M}B :5 B;
hence the result via (SUB-TRANS).

Part 2 by induction on the subtyping derivation. For (REFL), (SUB-11) and
(SUB-EQ-ITER) we can use part 1 and Proposition 3.5. Use the induction hypoth-
esis for (SUB-TRANS) and (SUB-EQ-sYM). There's nothing to do for (SUB-ATOMIC)
and (suI3-TI).

Part 3 then follows immediately.

Singleton Types 	 64

3.5.2 Subject reduction

We can now use the generation principles to show that subject reduction
for f3 holds, for both typing and subtyping. The syntactic proof of this is
surprisingly involved, compared to subtyping systems without dependent
types, or systems of dependent types without subtyping.

Theorem 3.11 (Subject reduction holds for Ek<{}).

1fF > M: A and M — M', then F > M': A.

1fF > A :5 B and —MA', then > A' :!~ B.

1fF > A :5 B and B —$ B', then F > A :!~ B'.

Proof Simultaneously for a single reduction step, by induction on the struc-
ture of terms and types. For terms, this involves the use of Proposition 3.8
and the equality rules, plus Lemma 3.12 below. For types, we use Proposi-
tion 3.7 and Proposition 3.5. 	 E

The critical lemma is the case of a one-step outermost reduction.

Lemma 3.12.

F> (Ax:A.M)N:C
F>M[N/x]:C

Proof By typing generation, Proposition 3.8, we have:

F> Ax:A.M:Hx:A1.B1
F > N : A1

F > {(Ax:A.M)(N)}B1 [N/ X] :!~; C 	 (*)
F > A2 < A

F,x:A>M:B

F, x: A2 > M: B2

F> {AX:A.M}J-I X:A7 B2 :5 FIXAi.Bi

By Propositions 3.10,3.7 and the last of these, we have:

F > Hx:A2.B2 :~;Hx:A1.B1
F > A1 :!~ A2

F, x: A1 > B2 :!~ B1

Now using bound narrowing and (suB) we have:

F, x: A1 > M: B1

Singleton Types 	 65

So we can apply the admissible rule (EQ-f3),

F,x:A1 >M:B1 F>N:A1

F> (Ax:A1.M)(N) = M[N/xJ : Bi[N/x]

and by (EQ-A), (EQ-APP):

F> A1 :!~A 	F,x:A1 > M=M:B1 	F,x:A > M:B 	F> N:A1

F> (Ax:A.M)(N) = (Ax:Ai.M)(N) :B1[N/x]

By transitivity:
F> (Ax:A.M)(N) = M[N/x] :Bi[N/x] 	 (**)

Finally, making use of a rule admissible via Corollary 3.6, (SUB-nLkNs) and (SUB-EQ-SYM):

F>P=Q:D F>{P}D:!~C

F> {Q}D ~ {P}D
F> Q:C

with (**) and (*) as the premises; P 	(Ax:A.M)(N), Q 	M[N/x], and D

B1[N/x]. Thus
F > M[N/x] : C

as required. 	 o

3.5.3 Minimal types

With untagged singletons, minimal types are a triviality: the minimal type
for a term M is {M}! When type tags are added, the issue is not so obvious.
Here we show a strengthening of Typing Generation to give minimal types.

The minimal type min(M), of a term M in a context F, has the form
{M}Am for some Am which we call the non-singleton minimal type of M. Here
we give a partial inductive definition of minF (M) which we show in the fol-
lowing lemma to be well defined on all F, M such that F > M : A for some
A.

Definition 3.13 (Minimal types).

flhlflj-(X) = {x}r()

minr (Ax:A.M) = {Ax:A. M}Hx.A.mrX.A(M)

flThF (MN) = {MN}Bm [N/ X 1 where (minr (M)) 	FIx:Am. Bm

and > N: Am

This lemma establishes the existence and minimality of minF(M).

	

Singleton Types
	

M.

Theorem 3.14 (A< has minimal types).

	

1.F>M:A 	 F>M:minp(M)

	

2. F> M:A 	 F> minr(M):!~A

Proof We prove part 1 and part 2 simultaneously by induction on the derivation
of 	> M: A.

Case (VAR): part 1 by (EQ-REFL), part 2 by (SUB-{}).

Case (A): By IH for part 1, F, x : A > M: minr,x:A(M).
Then part 1 follows via (A) and (EQ-REFL).
By (SUB-11), we get F > {Ax:A.M}flx. fl2-iflr A(M) FIx:A.minJ-,x:A(M)
and by IH for part 2 and (SUB-II), F > Hx:A.minj-,x;A(M) :5 Hx:A.B. Hence
part 2 via (SUB-TRANS).

Case (App): By IH for part 2, F > minr(M) :5 Hx:A.B.
Using Proposition 3. 10, F> minj-(M) 	Hx:A.B.
Using Proposition 3.7, we have that

minj-(M) EEHXAmBm

F > A :5 Am

F, x: A > Bm ~ B

Now F > N : Am so F > MN : Bm[N/X] which gives part 1 using (EQ-REFL).
By substitution, Prop. 3.2, F > Bm[N/X] B[N/x], hence part 2 using part 1,
(SUB-11) and (SUB-TRANS).

Case (SUB): part 1 by the induction hypothesis; part 2 by the induction hypothesis
and (SUB-TRANS).

Case (EQ-REFL): part 1 by the induction hypothesis.
For part 2, by IH, F > minr(M) :!~ A; we may use the admissible rule (SUB-INcL)
(shown on page 60) to get F > [MIA,,, :5 {M}A.

Case (EQ-A): part 1 by the induction hypothesis, (A), (EQ-REFL).
part 2: by the induction hypothesis, (suB-{}), we have F, x : A' > flhiflp,x:A' (M) ~

{M'}B' :!~ B' hence

F > TIx:A'.minj-(M) ~ Hx:A'.B'

using (SUB-17). By the result for part 1 and (SUB-EQ.) (see below),

F> {Ax:A.M}HX.PjflFX.A(M) ~ {Ax:A.M}17x:A'.B'

and by (SUB-EQ) and the conclusion of (EQ-A),

F > 	 :5

and so the result follows by (SUB-TRANS).

Singleton Types 	 - 	 67

Case (EQ-APP): By IH for part 2, F > minj-(M) :5 FIx:A. B.
Again as for (App), we use Propositions 3.10 and 3.7 to get part 1.
For part 2, we use (SUB-EQ) with F > Bm[N/x] -_!~ B[N/x] to get F> {MN}B 1[NI x 1 ~
{MN}B[N/x]. Again, using the original conclusion with (SUB-Eo) gives F >

{MN}BIN/x} :!~ {M'N'}B[N/xI and the result by (SUB-TRANS). 	 D

3.6 A PER Interpretation of A< 11

In this section I shall define a PER model for A<, in a fairly direct modifica-
tion of the standard definitions for A< and related calculi [see for example
Mitchell, 1996, Cardelli and Longo, 1991, Bruce and Longo, 1990]. We inter-
pret types as PERs (partial equivalence relations) over a global value space
D, which is the domain of a model of the untyped A-calculus. PERs often
feature in realizability models as a way of dealing with polymorphism. Here
the reason for types-as-PERs rather than types-as-sets is more basic: sets are
insufficient to model the typed equational theory of the calculus.

In Section 4.6 on page 113 there is a discussion on different varieties
of models for subtyping calculi, which provides further explanation for the
present definition. In Chapter 4, there is an abstract model definition given
for A power, using an applicative structure and not based on a lambda model.
It was developed after the model given here, and relies on the idea of rough
typing. In Chapter 5, singleton types are included in this alternative form of
model.

The definitions here vary slightly from related accounts in the literature,
by incorporating type-term dependency and making other minor changes.
As an unimportant matter of preference, I use the axiomatic definition of
A-model (rather than a combinatory model definition), to be explicit about
the use of the characterising axioms.

Definition 3.15 (Lambda model [Hindley and Seldin, 1987]).
A lambda model is a triple, V = (D, ,]), where D is a set, is a binary
operation on D and [— 	: A -. (Var - D) -. D is an interpretation of
untyped lambda-terms in an environment. If 17: Var — D, then the following
axioms must hold:

VAR 11jx]117 =q(x)

APP 	[[MN 17 =

cx 	11jAx.M 111 r7
= [{Ay.M[y/x] 111

(Vd E D. M1I17[x - ci] = N][x 	ci] 	111Ax.M111 17 = 111Ax.N1117

Singleton Types

FV 	(Vx E FV(M).rj(x) = ri'(x)) => IM =

$ 	Vcl E D. iAx.M 	d = 1M[x ci]

From the above axioms (except /3), we also have:

SUBST 	 = 	-

An environment rj' extends another ij, written Ti g Ti', if for all variables x:

q(x) is defined => 	q'(x) is defined and r(x) = ri'(x)

We shall use products in the model, which can be defined by:

(a, b) = iAf.fxy]i[x - ct,y - b]

Tr'p = p [AX.Ay.XIfl[]

1T2P = P iAX.AY.Y[]

From now on, let V be some arbitrary fixed A-model. The A-model inter-
prets untyped terms; as an informality, I omit the obvious Erase operation
which deletes type information, so IjMj abbreviates {Erase(M)]. The fact
that the erasure operation distributes with substitution will be used implic-
itly below.

Lower case letters are used to range over the domain D of V. Partial
equivalence relations on D are symmetric and transitive relations on D, i.e.
subsets of D x D. PER indicates the set of all PERs on D. The domain of
R, dom(R), is the set { ci I ci R ci }, but we will often write ci e R instead
of ci E dom(R). The equivalence class { ci' I ci' D ci } of ci in R is written
[ci]s and Q(R) is the set of equivalence classes { [d]R I ci E dom(R) } in R.
Inclusion of PERs, written R c S, is simply subset inclusion on D x D.

It is well known that PER can be extended to a category by taking mor-
phisms between PERs R and S to be computable functions between their
quotients, i.e. f : Q(R) - Q(S) for which there is a p E D such that
1d E dom(R) => f([d]R) = [p d]5. This fact isn't used in what follows.

We give some constructions for building PERs; it is straightforward to
check that these really do define PERs.

Definition 3.16 (PER constructions).
We define PERs to interpret the types of A<{} , as follows:

For each atomic type K, we assume a PER RK such that K :5j4O K'

implies RK g RK'.

Singleton Types

Let R be a PER and S(i) be a PER for all i E dom(R), such that whenever
i R j, S(i) = S(j). Define the PER 17 (R, S) by:

f
H(R,S) g 	iff 	Va,b. ci R b ==> fOci S(a) g.b

Define the PER X(R, S) by:

(ai ,b1) J(R,S) (a2,b2) 	iff 	ci j R a2 and b1 S(a1) b2

Let R be a PER. Define the PER [p]R by:

m[p}Rn 	iff m R n and m R p

101

Now we can give the interpretation of contexts and types. The inter-
pretation TFJ of a well-formed context F is a PER. The interpretation of a
well-formed type in some context is a map [F > All : dom(E[Fll) - PER that
is invariant under choice of representative of equivalence class in EI1FIfl. An
alternative scheme is to define TF > A : Q(![F]j) - PER, and then the inter-
pretation of a term is easily made into a morphism in the category PER. We
take the first approach here because it seems more elementary when deal-
ing with environments. The drawback is that the interpretation is a partial
definition, because it will be a product of the soundness theorem itself that
F1 or TF > All

rl indeed denote PERs. In any case, giving a partial definition
for the interpretation function is typical of semantics for dependent type
systems.

Definition 3.17 (Interpretation of contexts and types).
For each context F, we define a PER E[FIfl by:

{O]l=DXD

[F,x:A]j=X(E[FjF 1:: All)

For each context F and type A, we define a PER [[F > All,7 9 for each r E

dom([[Fll):

[[F > Kll 17 = RK

[[F > Hx:A.B][=H([[F > AllAci. [[F, x: A > Bll(qa))

[[F > {M}A][,7 = [[[MllqF]ErA]q

M.

Singleton Types

Notice that > is just used as a place-holder here, it does not signify a judge-
ment derivation. A is lambda-abstraction at the meta-level, and r/: Var - D
is the environment defined by projections on q,

170 (y) undefined, for all y.

(7T (q), 	ifyx, 17 1x:A(y) =

(m())1(y) ifyx.

.

This is a partial definition because the second clause for contexts is well-
defined only if IF c> A][1

= IF > A4 7 whenever 'h In p72, and similarly
for the clause for H-types.

The following theorem establishes the main result, soundness of the in-
terpretation. It shows the additional well-definedness property that the PER
IF > A]],. is unaffected by the choice of representative 17 e [F]], whenever
there is a derivation of F > A. The parts of the theorem need to be proven
together because of the presence of dependent types.

Theorem 3.18 (Well-definedness and soundness).
>F => [[FIIEPER.

F > A type =

Vii1,ri2 . T71 [[F]] 172 => IF r> A]],,1 =
IF r> A]] 2

and IF > A]],71, [[F c> A]]172 are both well-defined.

3.F>M:A =

V171,172. rj i [[F]] r12 => TM1171r ([[F > A]]171) [[M]]172r

4.F>A<B
V17E In. [[F > A]],c.[[F i> B]]17

Equivalence classes are disjoint, so [m]R c [f]R implies m R n if [m]R
is non-empty. The consequence of part 2 of the theorem implies that the
interpretation of {M}A is non-empty, thus F > {M}A :!~ INIA implies that M
and N are equal at type A in the PER model.

To prove Theorem 3.18 we require some auxiliary propositions establish-
ing properties of the definitions.

Lemma 3.19 (Semantic weakening).
Let F1, F2 be two contexts with r1 E [[F1]], th E [F2]], and 17111 C 1712

Then:

1. For terms 	withFV(M) c dom(F), [[M]]171r1 = [[M]]172r2

70

Singleton Types 	 71

2. For types with FV(A) c dom(F1), [F1 c> A 1 = [[F2 t> A 2

Proof The first part is immediate by the assumptions and axiom (FV) of V. We
show the second holds for all Fi, hi, F2, 112 by induction on A.

Case A 	: Trivial.

Case A 17x: B.C:
By the induction hypothesis, [[F1 > BJ[111 = [F2 r> B][, 2.
Let a E [[F1 > B]111. Then [F1,x:A > B][111 a) = [F2,x:A > B] 112 > by
the induction hypothesis, since (17 1 ,a) E [F1,x : A and (112,a) E [F2,X : A.
Hence [[F1 > FIx : B.C 111 = [F2 > lix : B.Cjfl 112.

Case A {M}B:
By the induction hypothesis, [F1 > B][, 1 = [F2 r' B 112.
By part 1, [M 111 r1 = [M1112r2.
Hence [[F1 > {M}B][1 = [F2 > {M}B 112. 	 El

Lemma 3.20 (Semantic contexts).
V17 1 ,17 2.VxEdom(F).r71 [fl h2 = qi F(x) [FF(x) 111 q21(x).

Proof For all F = F1 by induction on the structure of F1:

Case F1 	: vacuous.

Case F1 F,y:A: Let (rj1,a1) [F,y:A j (R2, a2). Then:

r1l [fl 112
a1 [F > Al 171 a2 	(**)

by the definition of (R, S). Assume x E dom(Fi).
If x y then 	 = a1 and (112,a2)LY(y) = a2, so the result
by (**) and Lemma 3.19.
If x y then by the induction hypothesis,

171 F(x) [F > F(x)1111 112F(x)

(17i,ai)'Y(x) [F,y :A ' F(x)1(qi , ai) (17 1,a1)'Y(x)

by the definition of r7F and by Lemma 3.19. 	 El

Singleton Types 	 72

Lemma 3.21 (Relating semantic and syntactic substitution).
Let F, x :A,F' be context, n = [Nr for some term N, some r E

For q1 e [[F', F[N/x]l, rj 2 E [[F, x : A, F' with r7T C q1r'.r[NIx] C th F,x:A,F'

where 	 = n, we have:

For terms M with FV(M) c ciom(F, x :A,F'),

[[M[N/X]F',r[N/x] = [[MJ1,{x:Ar'

For types B with FV(B) g dom(F, x : A, F'),

[[F', F[N/x] > B[N/x]1 = [[F, x: A,F' > B 2

Proof The first part follows from axioms (SUB),(FV) in V and semantic weakening,
Lemma 3.19 above. For the second part, use induction on B:

Case B K: Trivial.

Case B 17y: C.D:
By the induction hypothesis, [[F', F[N/x] > C[N/x]1 = [[F, x: A, F' > C 2.

Let c E [[F', F[N/x] > C[N/x] 1 . Then by the induction hypothesis,

[[F', F[N/x],y : C[N/x] > D[NIx]1(,,1 C) = IF, x: A,F',y : C >
The result is seen by the definition of H(R,S).

Case B {M} c: By the induction hypothesis, we have the result for C. The result
follows by part 1 for terms and the definition of interpretation for {M} C. D

Now we can prove the main result.

Proof of Theorem 3.18 The parts are proved simultaneously by induction on
derivations. The proof ends on page 76.

Part 1. Easy, using part 2.

Part 2. We use a nested induction on the structure of A, which circumvents the
lack of well-formedness premises in (FORM-H) and (FORM-11), see the remarks in
Section 3.4.

Case (FORM-ATOMIC): Trivial.

Case (FoRM-H): By IH, we have

[[F> A 1 = IF > A 2

Vrj 3,rj4 . T73 IF, x:AIfl r14 => IF, x:C > B 3 = IF, x:C > B

So Va E IF > A1] J1.IF, x: A > B1 a) = jr, x: A > Bq2 a)
Hence [[F> 17x:A.B1,71 = [[F> Hx:A.BJJ, 2 by the definition ofH(R,S).

Singleton Types 	 73

Case (FORM- 11): By the IH we have that II' > A 1 = IF > A 2.
We use induction on the derivation here; by the IH for part 2:

EM 1F E IF > A q1

{M]I 2r E IF > A 2 = F > A 1

Hence
IM 11 EF > A 1 M1 2 F.

Part 3.

Case (VAR): M rh F = ri'(x) and similarly for '72; the result follows by Lemma 3.20.

Case (A): Let fi = {Ax.Mi '71r and f2 similarly. We wish to show

fi Tr > TIx:A.B 1 f2

which holds 1ff for all a1 , a2:

a1 IF > Aj rj1 a2= fi•a1 IF,x:A>B] qiai) f 2 .ci2

Suppose the antecedent. By axiom (13),

a = IM '71F [X a1]

where
'7i F[x.al] = (r111 a1)1" 	E Tr, x:A

and similarly for f2, '72, a2. So we can apply the IH for the premise to get

M ('71 ai)T 	F, x: A > B(1 ai) M('72 a2)"

which establishes the result.

Case (APP): Let m1 =F, and m2, ni, fl2 similarly.
By IH we have

m IF > TIx:A.B]J 1 m2

n1 [F > A 1 fl2

So by the definition of H(R, S),

m1 ni IF, x : A > B1(11) m2 .

ByLemma 3.21, [F, x:A t> BJJ(1 fli) = [F> B[Nlx]l rl 	°

mn1 [F>B[N/x]'71 m2 •n2

Finally by the (APP) axiom for the model,

[MNI'71r [F > B[N/xfl'71 [MNI'72F.

Singleton Types 	 74

Case (SUB): By IH for the first premise,

jM 1 IF > A 1 M412

and by IH for part 3 and the second premise,

	

IF > A 	c IF > B 1

hence the result
jM 1 T > B 1 M J2.

Case (EQ-REFL): By IH,
M 71 IF > A 1 M 2

and so also
M 11 F > AJj 1 M 1

hence
M 71 T> {M}A 1 jM4 2.

Case (EQ-A): Let f' = Ax.M]I, 1r, f = IAx.M' 1r, f2 = IAx.MJI, 1r. We wish to
show

f' {F > TIx:A'.B' 1 f2

fi IF > FIx:A'.B' 1 f

which holds 1ff for all a4, a2:

a1 IFA 1 a2 	 f, a, IF, x:A'>B']l(,,iai) f26i2

fi a1 IF, x:A' > B'(qi , ai) f 	2

Suppose the antecedent. By axiom (fi),

	

fi a = 	• a]
f2 a2 = M102r{x a21

	

= 	- a1]

And as before, we can apply the IH for the 2nd premise to get

M(,liai)Fx:A' IF, x :A' ' B' i , ai) IM072, a2)T 4'

IM1(i,ai)1'x:4' IT, x: A' r' B'I iai) IM'](,liai)r.x:A'

which establishes the result.

Singleton Types
	 75

Case (EQ-APP): Let m1 = [M 1r, and m, m2, nj, n', n2 similarly.
By IH we have

m1 [F > 1Ix:A.B 1 m2
m1 [F> FIx:A.B 1 m

n1 [F > A,11 n

n1 [F> A 1 n

So, as for (APP),

m1 •n1 [F>B[N/xfl, 1 M2 n2

m1 n1 [F > B[N/x] 1 m n

and
[MN 1r [F > B[N/xU 1 [MN 2r

[MN]I,. 1r [F > B[N/xI 1 [M'N' 1r

which establishes the case.

Part 4.

Case (SUB-REFL): Trivial.

Case (SUB-TRANS): By the induction hypothesis and transitivity of

Case (SUB-ATOMIC): By the restriction that R K g RK'.

Case (SUB-17): We wish to show

[F > Hx:A.B 	[F> Hx:A'.B']177

Let f E [F > Hx:A.B]j,. So for all cil ,a2,

	

a1 [F>A1 q a2 	==> 	f•a1 [F,x:ANB 	ai) fa2

By the induction hypothesis for the first premise, [F > A' rl 	[F N A.
Observe that in the definition of [F > -, types play no role except to
ensure that variables in the environment g inhabit their claimed types, in
Lemma 3.20. So we may replace [F, x: A N BI by [F, x: A' > B,

	

al [F> A'] 17 a2 	==> 	f•a1 Tr, x:A' > B,7 a> La2

By the induction hypothesis for the second premise,

[F,x:A' > B> 	[F,x:A' N B', 1 >

hence

	

a1[F>A'a2 	 f . al Tr, x:A'NB'ai)f . a2

which implies f E [F > I7x:A'. B'j as required.

Singleton Types 	 - 	 76

Case (suB-11): By the definition of [m]R.

Case (SUB-EQ-SYM): We wish to show

IF > 	 IF

Let n e IF r> fNIAIrly so

n IF > A 	{N]j,,r

By IH for part 2 and the first premise,

M]I,r IF > AlNI rl r

n IF > A
ri Mr

By IH for the second premise, IF > AJJ,, c IF r> BIN, hence

n IF > B Mr

and so
fl E IF > {M}B J

which establishes the result.

Case (SUB-EQ-rrER): This follows from the definition of [MIA. Since

a [MIA b 	iff 	(a A b) A (a A m)

whereas

a [m][m]A b 	iff 	(a [MIA b) A (a {m]A m)
iff 	(a A b) A (a A m) A (a A m)

A (a Am)
iff 	(aAb) A (aAm).

3.7 Discussion

This section discusses alternative formulations of A< and related work. Sec-
tion 3.8 concludes the chapter.

Singleton Types 	 77

3.7.1 Alternative formulations

An alternative presentation of the system can be given which has no typing
judgement, but recovers typing by subtyping of singleton types, thus:

F > M : A 	 3B. F > {M}B :!~ A

This replacement works more smoothly with untagged singletons, where

F>M:A 	 F>{M}<A

The system with untagged singletons has some interesting admissible rules
- for example, the rule (EQ-A) is admissible in the presence of the weaker
(EQ-A-EQUAL-BOUNDS) rule shown on page 54, via (sus-II). Without a tag, {M}
lifts some subtype polymorphism to the type level. However, the system
with untagged singletons does not interpret a typed equational theory, or
relate clearly to a PER model.

A "wrapped-up" version of A<{} with only a subtyping judgement form
suggests new directions. One is the possibility of unifying terms and types
by identifying a term M with its singleton type {M}. There are numerous
disparate cases where researchers have found cause to replace or augment a
typing relation with a pre-order over terms in this way [Mosses, 1989, Feijs,
1989, Levy et al., 1991, Dami, 1995, for example]. In a wrapped-up A<{}
we still have a good distinction between types and terms because the latter
are always warmly insulated in singleton braces. The PER model reflects
this distinction. Although subtyping imposes an ordering on terms here,
it degenerates to equality within the same type; another direction to study
would be a variant of A<{} where the ordering on terms signifies some kind
of refinement principle rather than equality. This would integrate nicely into
the model of program development, so that we have a refinement sequence
of the form SP, {P}. The model definition given
in the next chapter could be extended to allow this kind of interpretation
(see Section 4.6.1).

The presentation can be abbreviated still further. For example, the con-
text judgement can be removed in preference for a weakening rule, in the
style of Pure Type Systems [Barendregt, 19921. This would give a theory with
just two judgement forms (and doing this for the theory in the next chapter
would leave just one judgement form). While removing the context judge-
ment makes for a concise presentation and some slightly shorter syntactic
proofs, it seems to have little other benefit.

Singleton Types 	 78

37.2 Related work

During this work, I drew inspiration from research into type systems for
object-oriented programming languages. The system most studied is the ex-
tension of System F with subtyping called F< . Variants of F, and its PER
semantics are described by Bruce and Longo [1990], Scedrov [1990], and
Cardelli and Longo [1991]. The equational theory of F< is investigated in
Cardelli et al. [1992]. So far none of these systems has dependent types;
there are examples of PER semantics for dependent type systems in the lit-
erature, but not for dependent subtyping systems. Here I have shown that
the extension is smooth, at least for a containment semantics. The next
chapter extends this to a calculus with type-valued functions and type-term
abstraction.

ATTandATTT Susumu Hayashi's work [1994] was mentioned in Section 3.1.
He describes two systems with singleton, union, and intersection types. The
first system is called ATT. Apart from the presence of more type construc-
tors, ATT differs from A< f I in these aspects:

ATT is based on untyped A-calculus, so A-abstractions are untyped;

ATT has primitive rules for type conversion and subject reduction (he
added subject reduction because he couldn't prove it - counterexam-
ples are known for similar systems);

Function spaces are restricted to be non-dependent, i.e., of the form
A - B, but dependent products can be encoded using the other type
constructors;

There is no subtyping judgement or equality judgement, but at least
the second of these can also be encoded;

The rules for singleton elimination differ, see below.

Hayashi gives a set-theoretic semantics for ATT, and then goes on to describe
his second system, ATTT. This system is typed; it extends System F with
the same type constructors as before, but this time the "non-informative"
types are treated specially, as refinements of the usual F types. This achieves
a weak separation between typing and specification, so that type-checking
remains decidable although refinement checking is not. I develop a similar
scheme for ASL+, beginning from the rough typing system introduced in
Section 4.5; see also the discussion in Section 4.9.1 about related work by
Pfenning [1993].

Singleton Types
	 79

My rules for singleton types differ from Hayashi's. He has two rules for
singleton elimination. The simpler one

F > M: {N}A
F>M:A

is admissible in A<{} by Corollary 3.6. The other rule expresses a replacement
scheme, and reflects Hayashi's intention to encode a constructive logic. This
strong rule treats the intersection of two singletons as a propositional equal-
ity:

F>M:A
F>N:A

F > P: {M}A n {N}A 	F> Q: B[M/x] 	F, x : A > B

F> Q: B[N/x]

Hayashi expresses doubt that this elimination rule is the only "right" one.
Hayashi's systems are powerful and offer a new perspective on type the-

ory for program extraction: constructive, but slightly less so. The motiva-
tions here are less grandiose, but it would be interesting to compare exten-
sions of A< with ATT and ATIT more formally.

3.8 Summary

This chapter presented the calculus A<j, which extends A<, the simply typed
lambda calculus with subtyping. The new feature is singleton types, which
also introduce type-term dependency into the system. The syntax was de-
scribed in Section 3.3 and is summarised in Figures 3.1-3.4, starting on
page 80. A PER model was given for A< and proven sound, in Section 3.6. In
the model, singleton types {M}A are interpreted as the equivalence class of
EIIM]I in the PER TAI This is the first PER model for a system with subtyping
and dependent types.

The aim was to establish some basic meta-theory of subtyping in the de-
pendent setting, without the complication of functions from terms to types
or (bounded) polymorphism that would be in a more realistic system. A
richer system is an obvious next step, which is taken in the next chapter
when I introduce a system with power types.

The important results in this chapter are the basic properties of the pre-
sentation of A,11 established in Section 3.4, which show that it is a sensible
system; the further properties shown in Section 3.5, which are the minimal
type property, Theorem 3.14, and subject reduction, Theorem 3.11; and the
soundness result for the PER model definition, Theorem 3.18.

Singleton Types 	 80

> ()
	

(EMPTY)

F > A type 	
(EXTEND)

(FORM-ATOMIC)

F, x: A> B type

F > Hx:A.B

F>M:A
F > {M}A type

Figure 3.1: Context and type formation for A<{}

(FORM-H)

(FORM- { })

(VAR)

F,x:A>M:B
F> Ax:A.M:Hx:A.B

F>M:Hx:A.B F>N:A
F > MN: B[N/x]

F>M:A F>A:5B
F>M:B

(A)

(APP)

Figure 3.2: Typing for A,,,

Singleton Types 	 81

F>M:A
F >M=M:A
	

(EQ-REFL)

F>A':5A F,x:A'>M=M':B' F,x:A>M:B
F> Ax:A. M = Ax:A'. M' :TIx:A'.B' (EQ-A)

F> M=M':Hx:A.B F> N=N':A
F>MN=M'N' :B[N/x]

Note: F > M = N: A is short for F > M: {N}A.

Figure 3.3: Equality for A<{}

(EQ-APP)

Singleton Types 	 82

F > A type 	
(SUB-REFL)

F>A:!~B 	F > B < C
F > A < C

>F 	K:5AtomK'
F> K < K'

F>A'::~A 	F,x:A' >B:!~_B' 	F,x:A>B
F > TIx:A.B < TIx:A'.B'

F>M:A
F> {M}A < A

F >M=N:A F> A:!~B
F > {N}A :5 {M}B

F>M:A
F > {M}A {M}{4'I}A

(SUB-TRANS)

(SUB-ATOMIC)

(SUB-H)

(SUB- 11)

(SUB-EQ-sYM)

(SUB-EQ-ITER)

Figure 3.4: Subtyping for A<{}

Singleton Types 	 83

F>A'<A
F,x:A'>M:B' 	F,x:A>M:B 	(A-NARROW)

F> Ax:A.M:FIx:A'.B'

F>M=N:A
F> N=M:A 	 (EQ-sYM)

F>L=M:A F>M=N:A
F > L = N : A 	 (EQTRANS)

F>M=N:A F > A < B
F> M=N:B 	 (EQSUB)

F,x:A> M:B F> N:A
F > (Ax:A.M)N = M[N/x] : B[N/x] 	

(EQ-fl)

F>M=N:A F>A:5B
F> {M}A ~ {N}B

	
(SUB-EoJ

Figure 3.5: Admissible rules of A<u

4 Power Types

A typed A-calculus called A Power is introduced, which is a predicative
fragment of Cardelli's power type system. Power types integrate sub-
typing into the typing judgement, allowing bounded abstraction and
bounded quantification over both types and terms. This gives a pow-
erful system of dependent types.

This chapter contains the first in-depth study of power types. Basic
properties of A Power are proved, and it is given a model definition in
the style of applicative structures. A particular novelty is the auxiliary
system for rough typing, which assigns simple types to terms in A power.

These "rough" types are used to structure the model definition, and
prove strong normalization of the calculus.

4.1 Subtyping via Power Types 84
4.2 The System A power 86
4.3 Examples in A power 91

4.4 Basic Properties 98

4.5 Rough Type-checking 107

4.6 Semantics 113

4.7 Soundness 125

4.8 Strong Normalization 132

4.9 Discussion 134

4.10 Summary 137

4.1 Sublyping via Power Types

P
OWER TYPES were introduced by Cardelli [1988], who explained the idea
that Power(A) is the type "whose elements are all of the subtypes of the

type A,"
A type

Power(A) type

Power Types

Instead of a separate definition of subtyping, a relation between types is
induced by inhabitation of power types:

A:!~;B =def A:Power(B)

The rules for power types are chosen to make this definition sensible. The
three basic rules are (what Cardelli called) the power-introduction, power-
elimination and power-subtyping rules:

A type
	

M:A 	A:Power(B)
A:Power(A) 	 M:B

A: Power(B)
Power(A) : Power(Power(B))

The first rule makes the induced subtyping relation reflexive. The second
rule is the characteristic rule of subtyping called subsumption, which adds
subtype polymorphism to the system. Together with the third rule, this
makes the induced subtyping relation transitive. Other rules capture the
subtyping behaviour of type constructors.

The main motivation Cardelli had for power types was to encode bounded
type abstraction and quantification by the usual A-abstraction and depen-
dent function space,

Aoc::~A.M =def AocPower(A).M
VO :!~ A.B =def Hcx:Power(A).B

This simplifies the type system, since there is no need to add new constructs
to the language.

Cardelli's 1988 system was meant as a flexible type system for program-
ming languages, particularly languages with object-oriented features. Bounded
type abstraction and quantification feature in early attempts to capture the
polymorphism of functions (or methods) which operate on subclasses of a
particular class, where a class is modelled by a type and the class hierarchy is
modelled by the subtype relation. Whereas the function Acx:Type. M may be
applied to any type argument A, the function Acx < B.M can only be applied
to a type A which is a subtype of B. (Further explanation of the approach
and examples can be found in Gunter and Mitchell [1994].) My application of
bounded abstraction is different: subtyping approximates specification re-
finement, and we write AX :!—< SP.M for the function which can be applied to
any specification refining SP.

As well as power types, Cardelli's 1988 system has universal polymor-
phism via the Type : Type rule, dependent sum and product types, recursive
types, variant types, record types and abstract types. The system is so pow-
erful, in fact, that it is inconsistent when viewed as a logic 	every type is

Power Types 	 86

inhabited in the empty context - and type-checking is undecidable. This was
no surprise; Cardelli presented the system as a showcase combining most of
the typing ideas that he and others had studied in the preceding decade.

Since 1988, Cardelli and others have studied various fragments of the
full system, notably in the type system of Quest [Cardelli and Longo, 1991,
Bruce and Longo, 1990]. Quest uses power kinds to capture subtyping, so
that Power (A) is the kind of all subtypes of A, and does not enjoy the status
of a type itself. One reason for this restriction was semantic: it was difficult
to incorporate a type of all subtypes into the models of polymorphism being
studied for Quest at the times

Power types seem not to have been studied since. This chapter contains
part of the original contribution of the thesis: the first in-depth study of
power types. A predicative fragment of Cardelli's system is defined, called
A Power. It forms the core of the type system underlying ASL+. The formal defi-
nition of A Power is given in Section 4.2; examples of its expressibility follow in
Section 4.3. The remaining sections in the chapter explore basic meta-theory
of the system and a semantics for it. In particular, the semantics and some
of the meta-theory is based on a system for rough typing, which assigns
"rough" non-dependent types to A Power terms. Rough typing is introduced in
Section 4.5. Some discussion and comparison with related work appears at
the end in Section 4.9 and Section 4.10 concludes with a summary.

4.2 	The System A Power

First we define the context-free abstract syntax. Let .% be a set of atomic type
constants. The set Tx of A Power pre-terms over IC is given by the grammar:

T ::= IC I V I AV:T.T I TT I TIV:T.T I Power(T)

(writing T for short), where V is a countable infinite set of variables. I shall
use these metavariable conventions:

variables: 	x,y,...EV

atomic types: 	K,... E IC

pre-terms: 	A, B, C,D,E,F,...,M,N,P,... E T

I use the usual conventions for writing pre-terms in the abstract syntax:
applications associate to the left; the scope of bound variables extends as far
right as possible; parentheses are used for grouping. The notions of closed

'Luca Cardelli told me this.

Power Types 	 87

term, free variables of a term FV(M), substitution M[N/x], and /3, rj reduc-
tion and conversion are all defined as usual. Terms which are o-equivalent
are considered as syntactically identical; the symbol is reserved for syn-
tactic identity. The dependent product Hx:A. B degenerates to the ordinary
function space A - B when x does not appear free in B. An abbreviation
is sometimes used for repeated abstraction or quantification over the same
domain; for example, Fix, y:A. B stands for the term Hx:A. FIy:A. B.

Not all pre-terms make sense. The well-formed pre-terms consist of terms
and types, defined in Definition 4.1 below. These are not disjoint; types
are also terms of the calculus. I often use letters near the beginning of the
alphabet to range over pre-terms which turn out to be types.

A pre-context is a sequence of variable declarations x1 : A 1 , x2 : A 2
with the stipulation that no variable is declared more than once. The empty
pre-context is sometimes written as () to draw attention to its presence, oth-
erwise it is invisible. The meta-variables F, \,... range over pre-contexts.

4.2.1 Presentation Of Ap e,

The system A Power is defined using three forms of judgement:

> F 	 F is a well-formed context
F > M : A 	 In context F, M has type A
F > M = N: A 	In context F, M and N are equal at type A

The judgements are defined simultaneously by the rules in Figures 4.1 and 4.2.
As usual, I shall write F > M : A to mean "the judgement F > M : A is deriv-
able," etc.

Here is a brief outline of the rules. Many rules are similar to those in A<{} ,
which were explained in detail in Section 3.3.1 on page 51.

Context formation (Figure 4.2).
These rules are standard. The rule (EMPTY) says that the empty context is
valid and (EXTEND) adds declarations to contexts. The judgement F > A
Power (B) serves to say that A is a well-formed type, as well as asserting that
A is a subtype of B. This is a general pattern.

Typing rules (Figure 4.1).
The rules (VAR), (A), (APP) and (SUB) are standard. The rule (coNy) is also stan-
dard, and ensures that equal types have the same elements. The rule (AToMIc)

Power Types
	

88

>F
F > K: Power(K) (ATOMIC)

>F 	xEDom(F)
F>x:F(x)

(VAR)

F,x:A>M:B
F > Ax:A. M: Hx:A. B

F>M:FIx:A.B 	F>N:A
F > MN:B[N/x]

(APP)

F>M:A 	F>A:Power(B)
F >M:B

(SUB)

F > M:H,:A. Power (B)
(REFL)

F > M: TIx:A. Power(Mx)

F>M:A 	F > A = B: Power(C)
F>M:B (C0NV)

F,x:A' > B:Power(B')
F > A': Power(A) 	F, x: A > B: Power(C) (H)

F > Hx:A.B : Power (TIx:A'.B')

F > A: Power(B)
F> Power(A) : Power(Power(B))

(Power)

Figure 4.1: Typing for A Power

Power Types
	

89

> ()
	

(EMPTY)

>F 	F>A:Power(B)
> F, x: A (EXTEND)

F>M:A
F> M=M:A (EQ REFL)

F> N=M:A
F> M=N:A (EQSYM)

F>M=N:A 	F>N=P:A
F > M = P : A (EQTRANS)

F,x:A>M=M':B
F> Ax:A. M = Ax:A. M' : Hx:A. B (EQ-A)

F> M =M' :Hx:A.B 	F > N= N' :A
F > MN = M'N' : B[N/x] (E

F,x:A>M:B 	F>N:A
F > (Ax:A. M) N = M[N/x] : B[N/x]

F > M:TIx:A.B
F> Ax:A.Mx = M: TIx:A.B (EQ17)

Figure 4.2: Context formation and equality for A Power

Power Types

introduces atomic types into the system; each atomic type is a subtype of it-
self, and so is self-evidently well-formed.

The rule (REFL) is a rule-scheme; the vector notation is shorthand for:

F > M : T1x1:A1Hx:A. Power(B)
F > M: T1x1:A1. ... Tfx:A) . Power (Mx1 .. x)

We can define a derived subtyping relation for higher types by extending
the subtype relation pointwise: if a function M has a type Hx:A. Power(B),
this expresses that it is a subtype of B pointwise (this is explained further in
Section 4.3.2). For each n ~ 0, the rule (REFL) asserts reflexivity of the induced
subtype relation for n-ary type-valued functions.2 Reflexivity of subtyping for
types is the case that n = 0.

The rule (FL) is the so-called con travariant rule for subtyping function
spaces, generalised to dependent products. The last premise is a well-formedness
check that the term B can be typed under the assumption x : A.

The rule (Power) is the rule of power typing which allows iteration of the
Power constructor: intuitively, if A is a subset of B, then the collection of all
subsets of A is a subset of the collection of all subsets of B.

Equality rules (Figure 4.2).
These rules are standard. In the rule (EQ-r)), the usual side condition x
FV(M) is intended. With subtyping, the rules have some more general con-
sequences, shown in Proposition 4.9.

Now we can be more precise about terms, types and subtypes.

Definition 4.1 (Terms, types and subtypes).
M is a F-term if for some A, F > M: A.

AisaF-typeif for some B, F > A: Power(B).

A is a subtype of B in F if F > A: Power(B).

Sometimes I shall use the adjective "well-formed" to emphasise that a term
or type can be typed in the calculus, as required by Definition 4.1. (This is to
avoid confusion when another kind of type enters the picture in Section 4.5.)
And I will use these derived judgement forms:

F > A ::5 B 	=def 	F > A: Power(B)

F > A type 	=def 	for some B, F > A: Power(B)

F > A = B 	=def 	for some C, F > A = B: Power(C)

2A technical note: (REEL) adds a case of r7-subject reduction to the sytem; if y
TIx:A. Power(B) then using (A) we could derive Ax:A.yx : llx:A. Power (yx), but we
need (REEL) to derive y : TIx:A. Power (yx).

Power Types 	 91

Section 4.4 shows that these definitions make sense, by proving that (amongst
other things), the subtyping and type equality relations are each reflexive and
transitive.

In this chapter I will be less aggressive than I could be with the derived
judgements above (and with the ones for bounded quantification and ab-
straction shown in Section 4.1); this is to be sure that the presence of power
types is not forgotten!

4.3 	Examples in A Power

As a calculus of functions, A Power is no more expressive than the simply-
typed A-calculus? In contrast with Cardelli's system, it is predicative. It is
not possible to write a function which operates on any type, so there is no
universal polymorphism in the style of System F. Instead we can abstract
over subtypes of types, or subtypes of subtypes, and so on.

Despite this it is still possible to express complex typing ideas, because of
the combination of subtyping, dependent types and power types. In partic-
ular, the calculus goes beyond AP, the type system of the Edinburgh Logical
Framework, and beyond AP, the extension of AP with subtyping introduced
by Aspinall and Compagnoni [1996]. I shall introduce a few examples in this
section, hoping that they will help you both to understand the system and to
persuade you that interest in A Power may reach beyond ASL+.

The examples are in three sub-sections: programming-language style ex-
amples in Section 4.3.1, the use of power types for higher-order subtyping in
Section 4.3.2, and the use of A Power as a logical framework, in Section 4.3.3.
The main application, to ASL+, is studied in other chapters. A prototype
type-checker was used to develop and check the examples in this section.

4.3.1 A programming example

Here's a quick programming-style example in A Power to demonstrate the use
of dependent types with subtypes.

31f a term M is typable in A power, then the type-erasure of M can be assigned a simple
type, treating II and Power as families of constants. This is demonstrated indirectly by
the "rough" typing rules in Section 4.5.

Power Types 	 92

Suppose mt is an atomic type and let FPRM be the context:

flat : Power(int),

Upto : nat - Power(nat),

Perm :TIn:nat. Power((Upton) — (Upton))

Invperm :TIn:nat. (Perm n) -. (Perm n)

Imagine that Upton stands for the set { m E flat I m :!~ n }, and Perm n is
the set of permutations of { 1,. . . , n }, which is a subset of the set of func-
tions from Upto n to Upto n. The function Invperm n p yields the inverse of
the permutation p on such a set.

We can write a function to apply the inverse of a permutation of { 1,... , n }
to any number in that range:

ApplyPerm =def An:nat. Ap:Perm n. Am:Upto n. invpermnp m

This has the expected typing:

FPERM > ApplyPerm : TIn:nat. (Perm n) - (Upton) -. (Upton)

which is derived using the subsumption rule (SUB).
Other simple examples of subtyping were given in the last chapter.

4.3.2 Subtyping type operators and families

Systems of higher-order subtyping extend the subtyping relation to type-
constructors. They were invented to increase the scope of the subtyping
model of object-oriented languages mentioned in Section 4.1. To date, most
systems studied are variants of FW with subtyping, known as F<c [Cardelli,
1990, Pierce and Turner, 1994, Steffen and Pierce, 1994, Compagnoni, 1995,
Pierce and Pollack, 1992]. In these systems, one can declare a type variable
ranging over type operators:

F 	:!~; 	Af3:!~nat.List(x).

A related system which has dependent types instead of polymorphism is
the calculus of subtyping and dependent types AP, introduced by Aspinall
and Compagnoni [1996]. In AP, one can declare a variable ranging over type
families:

G :5 Ax:nat.Vecnat (5*x)

In the first case, F ranges over constructors that map any subtype /3 of nat
to a subtype of List($ x /3); in the second case G ranges over constructors

Power Types 	 93

that map an element x of flat to a subtype of the type of vectors of numbers
with S * x elements.

The higher-order subtyping systems have a pointwise rule for subtyping
type operators constructed with A:

F, c:K > A:5B
F > Ac:K.A :5 Ac:K.B (SUB-A)

Intuitively, Acx:K.A is a subtype of Aoc:K.B if for every constructor C of kind
K (or every element C of type K in AP<), the type A[C/cx] is a subtype of the
type B[C/cx].

There is a corresponding rule for applications:

FH::~J F'JC:K
F 	H C ~ J C
	

(SUB-APP)

The second premise of (SUB-APP) ensures that the application J C is well-
typed; this implies that H C is also well-typed.

Here is an example using (SUB-APP):

G :5 (Ax:nat.Vecnat (5*x))n
(Ax:nat. Vecnat (5 * x)) n 	Vecnat (S * fl)

G :!~ Vecnar (S*n)

(where n: flat in the context). This derivation uses the conversion and tran-
sitivity rules.

In a semantics where A :5 B]J is interpreted as a relation between lAi
and I{B]1 (for example, as containment of PERs), to interpret the rule (SUB-A)
we must lift the subtype relation to type functions in a pointwise fashion.
This is the basis of the interpretation suggested in Bruce and Mitchell [19921
and called the HOPER model in Compagnoni and Pierce [1996] and Steffen
and Pierce [1994].

In A Power, there is no rule corresponding to (suB-A). Indeed it is impossible
to prove anything with the form F r> Aix:K. A: Power (Q. With power types,
the rules above for higher-order subtyping would be harder to interpret se-
mantically, at least because the interpretation of AocK. A : Power (C) would
have to be considered pointwise rather than directly as a subset inclusion,
so the meaning of Power in a term would depend on its context. This is a
reflection that with higher-order subtyping, the subtyping relation is really a
family of relations indexed by kinds.

Despite the lack of (SUB-A) and (suB-APP), it's pleasing to see that power
types can express the same typings as higher-order subtyping. Here's an
informal explanation of how. Suppose that oc is constrained to be a subtype

Power Types 	 94

of a type-constructor H with domain K; this is exactly like asking 01 to be
an element of HccK. Power (H x), since each application of cxM must be
a subtype of HM. Using this "rj-like" expansion for Il-types, higher-order
bounded abstraction and quantification, and also bounded dependent type
functions, can be reduced to abstraction and quantification over 17-types
with power types in their codomain.

Instead of the variable declarations above, in A Power we could write:

F 	: 	Hf3: Power (nat). Power (List (f3 x /3))

	

G 	: 	Hx:nat. Power(Vecnat (5 * x))

Now, to derive G n :5 Vecnat (S * n) we need only a single use of (App):

G: Hx:nat. Power(Vecnar (5 * x)) 	n: nat
Gn: Power(Vecnat (5 * n))

The substitution in the rule for dependent products takes the place of uses
of conversion and transitivity in the other systems, so derivations in A Power

are more direct

I believe that this is an original observation about power types. It pro-
vides further justification for using power types, in fact; Cardelli told me
that the use for II-types with Power in the codomain, was unclear. Higher-
order subtyping is a direct application of them.

4.3.3 A Power as a logical framework

A power is related to the type system AP, which underlies the Edinburgh Logical
Framework, LF [Harper et al., 1993].

One idea behind the LF project was that, given a framework for defining
logics, it should be possible to develop generic computer-assisted proof tools
which work for any logic encoded in the framework. But to use such proof
tools in practice, carefully-manufactured forms of abbreviation are vital, to
manage the burden of formality. Adding subtyping to LF introduces two
useful forms of abbreviation:

Shorter and better representations of object logic syntax;

Proof reuse: one proof term can prove several similar propositions.

'Although the practical effects on the differences in type-checking algorithms have not
been fully investigated yet.

Power Types 	 95

The desire for subtyping in LF was first mentioned by Mason [1987], to im-
prove the representation for Hoare Logic. Later, Pfenning [1993] showed
examples of proof-reuse through a restricted form of subtyping called re-
finement types. More recently, Aspinall and Compagnoni [1996] proved that
the direct addition of subtyping to AP has a decidable type-checking prob-
lem. To achieve the benefits of subtyping in other type theories for proof
assistants, Luo [1996] advocates the addition of subtyping to a typed vari-
ant of Martin-Löf's logical framework. Several other studies of subtyping in
dependent type theories are currently underway.

It's quite easy to see that A Power can be used in the same way as AP. Let v
be a single atomic type. Then declare a universe of types by writing:

U =def Power(v)

Now we may use U in place of Type in LF, to declare the term formers and
judgements of a logic. If F > A: U and F, x : A > B: U, then we do not have
F > TIx:A. B: U, but rather F > Ilx:A. B : Power(Hx:A. v). But since AP lacks
quantification or abstraction over types, this difference has little effect, and
we can translate any AP judgement into one which holds in A power 5

With power types we can declare one syntactic category to be a subtype
of another, or one judgement to be a subtype of another, so that every proof
of the first judgement is also a proof of the second. This is also possible in
the proposals studied in Pfenning [1993], Aspinall and Compagnoni [1996].
Where A Power goes beyond both these systems is in the possibility, for exam-
ple, to refine the universe U.

ELF+

Gardner [1992] suggests refining the universe of LF. She defines an improved
framework ELF+ which can distinguish between terms that represent pieces
of object-level syntax, terms which represent proofs, and all other terms
(such as those which represent rules of the logic). This partitioning allows
more precise statements of adequacy theorems, which state that the terms
and judgements of the logic are in correspondence with their representations
in the framework. I don't know whether this advantage can be inherited in
Ap0wr ; one would need to study properties of canonical typings of terms,
or a translation semantics [Breazu-Tannen et al., 1991]. Nevertheless, it is
instructive to look at the "emulation" of ELF+ inside A power, revisiting some
of Gardner's examples to see where the addition of power types is useful.

'Perhaps, moreover, A Power is conservative over AP under this translation. But I haven't
investigated this.

Power Types 	 96

ELF+ is defined as a Pure Type System but we can emulate it in A Power by
declaring three subtypes of U:

Type :Power(U)

Sort :Power(U)

Judge : Power (U)

In fact, we could equally well begin with three atomic types.
The idea is that types inhabiting Sort are the syntactic categories of the

object logic, whilst types inhabiting Judge are its judgements. (As usual, the
representation of the object logic is made by encoding its term constructors
and rules as dependently typed constants and types, respectively.) The uni-
verse Type is a spare universe to house so-called "extra constants" which
are artefacts of the encoding with no correspondence in the object logic. In
ELF+, Type also serves to house H-abstractions of sorts and judgements.

Gardner gives examples of encodings which use these universes. Ex-
amples where power types are useful include higher-order logic [Gardner,
1992, Examples 4.2.3, 5.1.10] and the modal logic S4 [Gardner, 1992, Exam-
ple 5.1.12]. The examples are carried out for LF in Avron et al. [1992]. I will
highlight the improvements achieved with power types.

Higher-order logic. In the Church-style representation of higher-order logic
(HOL), terms of the logic are simply typed, using types of the form:

T ::= L 1 0 I TT

The HOL types are represented by elements in an LF type dom:

dom :Type

i :dom

0 :dom

= 	:dom - dom — dom

The HOL terms with domain T are represented as elements of an LF type
obj (T), where obj : dom -. Type. In ELF+, dom and the mapping obj are
shown to be artefacts of the encoding, because they inhabit Type, and obj is
instead given the type:

obj : dom -. Sort

to express that elements of obj (T) correspond with object logic syntax. In
A power, we can go a stage further, and remove obj altogether, by declaring:

dom : Power(Sort)

Power Types 	 - 	 - 	 97

Now we may imagine the mapping obj to be implicit. Because we no longer
need to write obj, the representation of the logic becomes more concise, yet
no less accurate. For example, the application term former is represented as:

app 	:Ils,t: dom. (s => t) - s -. t

instead of

app 	: Its, t: dom. obj (s => t) -. obj (s) - obj (t)

In LF and ELF+, the proliferation of obj quickly pollutes large terms.

Although this example is simple, it is important to emphasise that it
goes beyond the proposals of Pfenning [1993] and Aspmall and Compagnoni
[1996] because dom is declared as a sub-kind of the universe Sort. Power
types apply uniformly; other systems would have to be extended with sub-
kinding to cope with this example.

Modal logic S4. The representation of Hilbert-style S4 in LF, due to Avron
et al. [1992], uses an auxiliary judgement cF valid to define the intended
judgement cP true. The auxiliary judgement is used because the rule for
necessity introducing D should only apply to true judgements under no as-
sumptions; this would not follow were the rule encoded in the usual way for
a single judgement çfi true.

In ELF+, the example proceeds by declaring:

0 :Sort

0 :o - o

true :o-.Judge
valid :o-Type

C :Hcli:o.vaild(cli) -. true(cli)

The ELF+ typing of vail d indicates that an expression vail d() is an arte-
fact of the encoding since it inhabits Type rather than Judge. The pseudo-
rule C expresses the relationship between the auxiliary judgement and true.

In A power, we can instead declare:

valid :TRP:o. Power(true(cP))

Now the use of the rule C becomes implicit, and no longer pollutes the en-
coded proof terms. Moreover, one proof term can prove several related

Power Types

judgements involving both val i d and true, but I shall not give examples
here. (A general explanation is given by the logical understanding of sub-
typing as intuitionistic implication, studied by Longo et al. [1995].) A similar
example by Henning [1993] shows that the cut-free proofs can be considered
as a subtype of all natural deduction proofs for first-order logic.

The S4 example is also possible in AP,. Both examples, once they make
use of subtyping, no longer need the universe Type. More complicated ex-
amples might still need the extra universe Type to hold auxiliary judgements
used to prove side-conditions of rules in the object logic.

4.4 Basic Properties

In this section I shall establish some simple meta-properties of the type sys-
tem A Power•

Since the three judgement forms are defined simultaneously, several meta-
properties are proved by simultaneous induction on the number of rules in
a derivation of an arbitrary judgement. Meta-properties which are proved in
this way are often expressed as admissible rules. By contrast, derivable rules
are those which can be constructed simply by a composition of rules of the
system.

Proposition 4.2 (Derivable rules).
These rules are derivable in A power :

F > A type 	
(sus-REFL) F > A < A

F > A ::~ B 	F > B _ C 	
(SUB-TRANS) F>AC

F > A type

F > A = A 	 (EQT-REFL)

FiB=A
F > A = B 	 (EQT-sYM)

Proof The rule (SUB-REn) is just an instance of (Rum). The rule (sus-TRANS)
follows from (suI3) and (Power). The rules (EQT-REFL) and (EQT-sYM) are just
special cases of (EQ-REFL) and (Ect-sYM) respectively. 	 0

Power Types 	 99

I shall be careful to distinguish derivable rules from those which are ad-
missible but not derivable. This is because when considering the semantics
we will treat some of the important admissible rules (e.g., substitution and
thinning) as part of the system, making sure that they are valid in every
model. These "important" admissible rules could be added to the presenta-
tion of the system as is done by other authors [Streicher, 1991, Pitts, 1996],
but this spoils the direct proof of several meta-properties. So I stick with a
presentation in which they are easily proved admissible.

Recall that no variable is declared more than once in a pre-context.

Notation 4.3. Let F x1 : A1 ,... be a pre-context.

Dom(F) =def { x1,... } is the set of variables F declares.

def x1 : A1,... ,x1_ 1 : A_1 is the restriction of up to x1_ 1 .

F(x1) =def A1, viewing F as a partial mapping F: V - T.

F c F' iff every declaration x1 : Ai in F also appears in F'.

I shall use J as an additional meta-variable to range over the three judge-
ments of the system, and F > J to indicate a judgement with context F. One
derivation is "shorter" than another if it has fewer proof rules in its proof
tree; this measure is used in many proofs.

A simultaneous substitution is a partial map from variables to pre-terms; a
renaming is the special case of a simultaneous substitution which is a bijec-
tion on a subset of V. Substitution is extended to contexts componentwise,
so that if F 	x1 : A1,... then F[N/x] = x1 : A1[N/x],x2 : A2[N/x].....
Substitution is also extended to judgements J componentwise.

The proofs of the next few propositions follow similar proofs given for
A< 	in Section 3.4 on page 55.

Proposition 4.4 (Contexts).
LetF x1 : A1, . . . x : A be a pre-context. Then:

(Context formation).
If > F then there are shorter derivations of FI x, > A1 type for each
1 ::~ i :5 n.

(Correctness of contexts).
If F > J where J is a typing or equality judgement, then > F with a
shorter derivation, and FV(J) Dom(F).

(Renaming).
If 	> J and 0 is a renaming of Dom (F), then 0 (F) c> (J).

Power Types 	 100

4. (Thinning).
If > J and g F' with > F', then F' > J.

Proposition 4.5 (Substitution).
F, x: A, F' > J and F > M: A => F, F'[M/x] > J[M/x].

Proposition 4.6 (Bound narrowing).
F, x : A, F' > J and F > A' : Power(A) 	: F, x : A', F' > J.

The next proposition establishes simple formation properties of typing
compound terms.

Proposition 4.7 (Formation).
F > Ax:A.M: C = F > A type and 3B. F, x: A M: B.

F > MN: C 	A,B. F > M : FIx:A.B and F N: A.

F > TIx:A.B : C ==> F > A type and F, x : A > B type.

F > Power(A) : C => F > A type.

Moreover, for each part, the judgements in the consequence occur as
subderivations of the judgement in the antecedent.

Proof By induction on derivations. In each case, following the left branch
of the tree we eventually meet the rule that introduced the constructor, either
(A), (APP), (Ii) or (Power). The premises of this rule give the result required. D

The next proposition states that every pre-term that appears in the pred-
icate position of a judgement (i.e., on the right of ':') is indeed what we call a
type.

Proposition 4.8 (Type correctness).
1.FM:A => FAtype.

2.F>M=N:A == F>Atype and FM,N:A.

Proof The parts are proved together, by induction on derivations, using
Proposition 4.7 in several cases, also Propositions 4.4 and 4.5. 	 El

The few basic equality rules of Figure 4.2 have some important admis-
sible rules as consequences. These include congruence rules for the type
constructors, because lambda-abstraction and application apply uniformly
to types as well as terms. We also have rules of subsumption, conversion,
and substitution for the equality judgement itself.

Power Types 	 101

Proposition 4.9 (Admissible equality rules).

F>M=N:A F>A=B
F>M=N:B

F>M=N:A F>A:!~B
F >M=N:B

F,x:A> M=M':B F >N=N':A
F > M[N/x] = M'[N'/x] : B[N'/x]

F>A'::~A 	F,x:A'>B:!~B'
T,x:A> M:B 	F,x:A' > M=M':B'

F> Ax:A.M=Ax:A'.M':Hx:A'.B'

(EQ-coNy)

(EQ-SUB)

(EQ-SUBST)

(EQ-A')

Proof Each case is derived using lambda-abstraction, application, beta-
conversion, together with symmetry, transitivity and Proposition 4.8. We
omit details and just mention the other rules used. For the rule (EQ-SUB), we
use (SUB); for the rules (EQ-coNy) and (EQ-SUBST) we use (coNy). For (EQ-A'),
there is an essential use of (EQ-r)). 	 U

The rule (EQ-A') is a more general rule of A-equality which allows us to
restrict the domain of comparison of two functions.

Proposition 4.10 (Admissible type equality rules).

F>A=B F>B=C
F>A=C

F>A=B
F> Power(A) = Power(B)

F, x: A> B = B'

F > Hx:A.B = F[x:A.B'

(EQT-TRANS)

(EQ-Power)

(EQ-H)

Proof The congruence rules (EQ-Power) and (EQ-H) are proved as in Proposi-
tion 4.9, using beta-conversion. The transitivity rule (EQT-TRANS) follows from
the admissibility of another rule:

F > A = B: Power(C)
F > A = B: Power(B)

	 (EQ-SUB-REFL)

Power Types 	 102

since from the first premise of (EQT-TRANS) we can then show F > A = B
Power (B) and by symmetry twice, F t> B = C: Power (B), and finally F L> A =
C using (EQ-TRANS). We can show that the rule (EQ-SUB-REFL) is admissible using
similar reasoning as for the congruence rules, using (coNy). 	 El

The rule (EQ-SUE-REFL) demonstrates that the equality of types is an "ab-
solute" notion, in the sense that the derivability of F > A = B : C is not
affected by the type C when A and B are types. The term on the right-hand
side of equality judgements in such cases merely ensures that equational
deductions are combined properly, just as types in an equational theory for
the simply typed A-calculus do [Mitchell, 1990]. This contrasts with the case
when A and B are non-type terms, when C can affect whether or not A and
B are considered equal (see the example in Section 3.1).

This justifies using the derived judgement form F > A = B. The seman-
tics considered later reflects this aspect of the syntax, that type-equality is
"absolute".

4.4.1 Further properties

We would like to prove more about the A Power system than the properties in
the previous section. One desirable property is the connection with reduc-
tion, known as subject reduction:

If > M:A and M— q M', then F > M':Atoo.

Subject reduction is an important practical property. It allows type-checking
algorithms to use untyped reduction to simplify terms, and for a compiled
language based on the type system, it justifies the removal of run-time type-
checking.

Unfortunately subject reduction seems difficult to prove for A power, and
remains open. Several other desirable properties are closely related to sub-
ject reduction and may be as hard to prove. This section discusses the prob-
lems in attempting to prove subject reduction, and possible solutions.

The key to proving subject reduction is to first establish a generation prin-
ciple for the system, which gives a way of decomposing derivations by stating
how a particular judgement was derived. A generation principle is important
for meta-theoretic analysis, and leads to other results besides subject reduc-
tion.

In deterministic type-systems where there is a correspondence between
typing rules and term constructors and every term has a unique type, a gen-
eration principle is trivial to derive, amounting to an inversion of the rules.
In a system with dependent types or subtyping, the statement and proof

Power Types 	 103

of generation principles is made difficult because the presentation is not
syntax-directed - so the last rule of a derived judgement is not uniquely
determined by its form.

The formation proposition (Proposition 4.7) is a weak generation princi-
ple and says something about how derived judgements were built up. But it
is not strong enough. To tackle the meta-theory of A Power we need a stronger
principle which garners a link between the type C of a judgement F > M : C
and the judgements concerning subterms of M asserted to exist. For exam-
ple, for the A-case, it might be something like this:

F>Ax:A.M:C => C=TIx:A'.B'
where F > A' :!~ A and there is a B such that F, x : A' > M : B and
F, x : A > B :5 Y.

This captures the observation that after an application of (A) to derive Ax:A. M:
FIx:A. B, there can be a series of uses of subsumption (SUB) and conversion
(coNy) through which FIx:A. B mutates into C:

x:AM:B
Ax:A.M : FIx:A.B

Ax:A.M:C1 	C1:5C1+1
(SUB)

Ax:A.M:

Ax:A.M:Ck 	 Ck=Ck+1
(coNy) Ax:A.M: Ck+1

Ax:A.M: C

The two cut-like rules (SUB) and (coNy) make it tricky to prove the statement
above by a direct induction, because arbitrary terms can appear in the inter-
vening typings. To "join up" the C1's we need to appeal to the generation
principle being proved. Actually, it is worse than this, because the rule (REFL)

may also appear in the derivation introducing further detours, so the puta-
tive statement of A-generation given above needs altering.

The traditional syntactic way to handle this situation is to by reformu-
lating the system in a more syntax-directed fashion, eliminating the cut-
like rules. The generation principle for the cut-free system is immediate.
This programme has been carried out for several subtyping systems by now
[Curien and Ghelli, 1992, Compagnoni, 1995], including the first dependent
type system in Aspinall and Compagnoni [1996]. Unfortunately it is hard to
extend the techniques there directly to A powerS The sticking point is bounded
operator abstraction which makes it difficult to prove lemmas about substi-
tution in the syntax-directed system before having proved other properties

Power Types 	 104

which in turn depend on substitution. For AP, in Aspinall and Compagnoni
[1996], we managed to find a judicious order in which to prove these prop-
erties.

A new proof technique has been developed recently by Compagnoni and
Goguen [1997] which avoids this problem. Several desirable properties are
proved at once using a typed operational semantics for subtyping, which is
a deterministic reformulation of the system with extensive type annotations
and control over reduction order. The cost is having to prove equivalence
between the typed operational semantics and the original presentation using
a model-theoretic construction. But in future work, perhaps a generalization
of the model definition for A Power given in Section 4.6 could be used to apply
this new technique.

Summary of further properties

This is a summary of further properties we would like to prove for A PowerS

Conjecture 4.11 (Strengthening).
F, x : A, F' > J and x FV(F',J) => F, F' > J.

Conjecture 4.12 (Variable Generation).
F,x:A>x:B and xFV(B) = 	FA:Power(B).

Conjecture 4.13 (Closure under reduction).
FJ and j—,,7 J' => FJ'.

The well-known proofs of these properties are connected. To show clo-
sure for r7-reduction and variable generation we need strengthening; to show
closure we need a generation principle which has the variable generation
result as a special case.

4.4.2 Remarks about the presentation of Apower

In this section I shall discuss a few aspects of the presentation of A power,

comparing with other type theories. This is partly to justify the definition,
which has several variations from traditional type theory (as well as varia-
tions from traditional subtyping systems). A comparison between A Power and
the related work appears in Section 4.9.1.

Power Types 	 105

Lack of type-formation judgement

Typically, dependent type theories have a judgement form

F > A type

which asserts that A is a well-formed type. Philosophically, this should be
a more primitive judgement than "F > M : A" which asserts that the term
M has type A. Indeed, it is conventional in Martin-1,6f style presentations to
assume that any rule with the conclusion F > M : A has F > A type as a tacit
premise.

In Apower , typing judgements of the form F > A : Power(B) assert that
A is a type, so to find out whether A is a type we must find a supertype
of it. One supertype is A itself; A : Power(A) holds for the canonical types
(non-variables/applications) because atomic types are supertypes of them-
selves by (ATOMIC) and the rules (H) (Power) decompose H and Power types.
Non-canonical types (variables and applications) also inhabit Power-types, al-
though showing this may take several steps of conversion and subsumption.

It is much easier to present the syntax in this way than to attempt a for-
mulation which separates types from terms more fully. To separate types
from terms we must either duplicate the rules for abstraction and applica-
tion, or we have a rule:

A: Power (B)
A type

which collapses the two notions anyway.
Although more complex, a presentation with a type-formation judgement

might still be useful, because it would allow type formation to be interpreted
in a different way to typing.

Multiple-identity

In Martin-1,6f type theory, a well-formed string is either a term or a type. In
kpower, we allow "confusion" between the notions, so that a pre-term can be
a term or a type. Luo [1994] calls this confusion "multiple-identity". It is a
hang-over from classical set-theory, where everything is a set. The original
presentations of the Calculus of Constructions and the Extended Calculus
of Constructions [for references, see Luo, 1994] have multiple-identity, but
in many recent studies of both syntax and semantics, it is eschewed. One
reason for this is because types and terms are interpreted differently, so
some way of disambiguating is needed to define the interpretation function.

Power Types

To present A Power in a way which avoids multiple-identity, we could treat
the elements of Power (A) as names of types (a la Tarski), introducing a rule:

M: Power(A)
T(M)<A

Studying this idea might lead to a more type-theoretic explanation of power
types; but it would enlarge the presentation considerably, since we would
need rules for manipulating such types, and proving their equality.

Levels of power types

Many typed A-calculi can be split into a finite number of "levels"; intuitively
the level of a non-functional term is the number of colons that may appear
before it. (This can be made into a definition which extends to functions,
see Barendregt [19921.) If M : A is derivable, then level(A) = level(M) + 1.
Commonly, terms of level 0 are called "terms", terms of level 1 are called
"types" and terms of level 2 are called "kinds".

Because of (ATOMIC) and (Power), A Power has an unbounded number of lev-
els. In the empty context we can derive:

K: Power(i) : Power(Power(K)): .. Power"(K):

Limiting the nesting of power types leads to natural sub-languages of A Power
which have a finite number of levels. Such languages may be interesting
in proof techniques or model constructions; there is a similarity to the Ex-
tended Calculus of Constructions with an unbounded hierarchy of universes
[Luo, 19941.

How deeply nested do power types get? In Section 4.3.3 there were terms
like Power (Sort) which have level 3; to be able to form such a thing we need
to have terms with level 4. I don't know any natural examples of terms which
need a deeper nesting than this.

Semantic versus syntactic presentation

The presentation of A Power given in Figures 4.1 and 4.2 uses an equality judge-
ment. This form of presentation for dependent type systems is sometimes
described as semantic, in contrast to a presentation which defines a rule of
conversion using untyped conversion, described as a syntactic presentation.

FM:A TA=B FM:A A= q B T>Btype

106

Power Types 	 107

The semantic presentation, using the first rule, is needed to give a proper
proof of soundness for dependent types. At once it excludes the possibility
that untypable terms can occur in typing derivations, which the second rule
does not.

If the system has the Church-Rosser property and subject reduction, it
follows that only typable terms need occur in derivations in a syntactic pre-
sentation [Geuvers and Werner, 1994]. The meta-theory of syntactic presen-
tations seems to be more tractable in the sense that there may be combi-
natorial proofs of properties such as subject reduction (although once rj-
reduction is included, these proofs rely on strong normalization [Geuvers,
1993]). For semantic presentations, the typical method of attack has been
via a model construction [Streicher, 1991, Goguen, 1994].

Pure Type Systems [Barendregt, 19921 are defined with a syntactic pre-
sentation using the second rule above. The original presentation of ASL+
[Sannella et al., 1992] is similar, but uses split rules of conversion - a rule of
type-reduction and a rule of well-formed type-expansion. With this scheme,
the Church-Rosser property is not needed to argue that untypable terms do
not occur in derivations, but subject reduction remains essential. Unfor-
tunately the sketched proof of the subject reduction property by Sannella,
Sokolowski, and Tarlecki was incomplete and seems difficult to fix, as ex-
plained in Section 4.4.1.

4.5 Rough Type-checking

Although A Power is a dependently-typed calculus, we can approximate type-
checking using "rough" types without term dependency. Rough type-checking
is useful because it enforces a structural well-formedness property which is
a necessary condition for typability in the full system. It is easy to check
rough typabiity because we never need to test equality of terms, so we have
static type-checking for rough types. More over, two pre-terms which are
in the full typing relation of A Power must have related rough types, and two
terms which are equal in the equational theory must have the same rough
type.

The idea of rough type-checking in A Power comes from Sannella et al.
[1992], where it was also suggested that rough types could be used to give a

'Rough types were called "types" in Sannella et at [1992], but using this name we
couldn't call anything in the full system a "type". Rough types were called "kinds" in
the early presentation of my work in [Aspinall, 1995b], but this name confused some
people. Another possibility is "simple type" which suggests the removal of dependency
and relationship to A. I shall stick to "rough types" here because it gives extra intuition
and relates to the explanation in Sannella et al. [1992] where a term is called "roughly well

Power Types 	 108

foundationally-se cure semantics to the language. The model definition given
in Section 4.6 uses rough types to do this.

A further application of rough types is the proof of strong normalization
for A power, which follows from strongly normalization for roughly-typable
terms. This proof is given in Section 4.8.

4.5.1 Rough typing system

Given a set IC of atomic types, the set Tyx of rough types over IC consists
of type constants, arrow types, and power types, defined inductively by the
grammar:

Ty ::= IC I Ty=Ty I P(Ty)

We write just Ty for short when the set IC is understood.
These are the types of the simply-typed A-calculus extended with a power

type constructor. We use T, U,... to range over Ty.

There are two rough typing judgements:

o. F 	 "F is a roughly-typable context"
F 	M => T 	 "M has rough type T in F"

The judgements are defined inductively by the rules in Figure 4.3 on the next
page. Notice that full Apo, contexts are used in the rough typing judge-
ments; at the cost of extra judgement forms and syntax we could instead
introduce rough contexts, declaring variables with rough types, and then
type-check a A Power context to a rough context. At the moment this is done
"on-the-fly" by the variable rule, but the idea of a rough context is behind the
scenes (and would be used in a practical implementation).

One way to understand rough typing rules is as an abstract interpretation
of terms-in-context, which follows set-theoretic intuitions for the calculus.
The rough type of a term tells us what kind of beast it denotes: lambda terms
denote functions and have arrow rough-types; atomic types and power types
denote collections of values and have power rough-types. A term Hx:A. B
has a rough type of the form P(T => v), which indicates that it denotes a
collection of functions.

Example 4.14. To illustrate rough typing, recall the example context FPERM

from Section 4.3.1 on page 91. We can derive these rough typings:

FPERM 	Perm ==> mt = P(int => int)

formed" if it has a rough type.

Power Types 	 109

0. 0

F FA==P(T)

F K => P(K)

F 	F x o. F(x) = P(T)
F o. x => T

FA=P(T) F,x:AM==v
F 	Ax:A.M ==m> T => v

F 	M ==> T => V F N => T
FMN=v

F mo. A = P(T) 	F, x : A B => P(v)
F No. TIx:A.B => P(T => v)

F o. A ==> P(T)
F Power(A) => P(P(T))

Figure 4.3: Rough typing for A Power

Power Types 	 110

FPERM 	invperm = int = (int = int) => (int = int).

At once we see how "rough" this is: Perm and Invperm were defined on nat,
but nat gets replaced by the atomic type mt.

In general, rough typing judgements - or to be more precise, their trans-
lation got by mapping -r = v to FIx:T. v - do not hold in the full A Power type
system. Certainly we do not have:

FpERI > Perm : int - Power(int 	int).

For starters, Perm is not defined on all of mt.

In Theorem 4.19 on the next page, we prove that typability in the full
calculus guarantees rough typability. From the above example we can see
that the converse fails, since we have

FPERM,i : in ii. Perm(i) =' P (in t => int)

but this term cannot be typed in the rules of Figure 4.1. (To prove this we
would need to use a generation principle or model construction).

Although rough typing judgements are not generally valid in the full sys-
tem, given a context F and term M, it is possible to apply a "rounding up"
operation which replaces all types appearing in variable declarations and
bindings by terms corresponding to their rough types, so removing depen-
dency. This translates any rough-typing derivation into a derivation in the
full calculus. Comparing the rules in Figure 4.3 and Figure 4.1 it should be
clear how to do this: the translated derivation uses only the typing rules of
A power, and not (suB), (coNy) or (REFL). This gives a precise explanation of how
the rough-typing system can be seen as a subsystem of the full system. More
details of this "rounding up" operation are sketched by Sannella and Tarlecki
[1991].

4.5.2 Properties of rough typing

It is easy to establish meta-properties of the rough-typing system because
the types are non-dependent and subtyping has been removed.

Proposition 4.15 (Properties of rough typing).
F M = T implies o. F

1fF o.. M = T. then T is the unique such rough type.

Rough type-checking and rough type-inference are decidable.

Proof

Power Types 	 111

By a simple induction over derivations.

For a given M only one rough typing rule can have a matching conclu-
sion.

For any rule in Figure 4.3, count the number of symbols to the left
of the rough type in the conclusion. In each case, every premise of a
rule has strictly fewer symbols, so we have a termination ordering for
deciding the relation. Moreover, we can turn the rules into an algorithm
for computing T, since there is at most one rule which matches any M7

D

Proposition 4.16 (Thinning and substitution for rough typing).
1ff M => T and c F' with PP. F', then F' o. M => T.

1fF, x : A, F' 	M 	v, F o. A => P(T), F mo. N => T, then
F, F'[N/x] 	M[N/x] 	v.

Proof Each part by induction on derivations. 	 E

Proposition 4.17 (Strengthening for rough typing).
If F,x:A,F' Po. M => T and xFV(F'),FV(M), then F,F' o,. M = T.

Proof By simultaneous induction also for the context rough-typing judge-
ment, using free-variable properties of roughly-typable contexts (analogous
to part 2 of Proposition 4.4). 	 n

The rough-typing system has a direct generation principle since there is
a single typing rule for each term-former. This allows us to show the subject
reduction property without any fuss.

Proposition 4.18 (Subject reduction for rough typing).
If F o. M ==> T and M 	M', then F M' 	T tOO.

Proof Using generation, with substitution for $-reduction and with strength-
ening for rj-reduction. 	 0

The agreement property below is the important connection between rough
types and typing in full "Power, which was claimed at the beginning of this
section. Part 4 is just needed to make the induction go through.

Theorem 4.19 (Agreement of rough typing).
1. If> F then F.

7This assumes that we can determine the syntactic identity of two atomic types, i.e.,
whether K K'.

Power Types 	 112

2. IfF>M:A then for some -re Ty, F P,. M => T and F io. A => P(T).

3.IfF>M=N:A then for some TE Ty, FM,N => Tand
F Po. A =~> P(T).

4.1fF> A:Power(B) thenforsome -reTy,F oo. A => P(T)

Proof By induction on the derivation in the full system. 	 El

So if F > M : A in A power, M and A must necessarily be typable with rough
types, and moreover, the rough type of A is P(T) where T is the rough type
of M.

4.5.3 Remarks about rough typing

Type-checking in A PowerS Rough types have a simpler structure than types
in the full system 	in particular, there is no A-abstraction or application
in rough types. This means that the rough type of a term may be more
informative than a particular type in the full system. For example, from a
judgement F > x : y z, we need further analysis to tell whether x denotes
a value of atomic type, a function, or a collection. Rough typing provides
this analysis. It is important for type-checking algorithms, which have to
determine whether something is a function or a type. This can be difficult
with subtyping and bounded type variables; see Section 4.9.1 on page 135
for more discussion.

Different atomic types. A generalization of the connection between A Power

and its rough types would be to allow different sets of atomic types, and
consider a mapping from J(in A Power to types over a set RiC of atomic
rough types. This would be useful for the semantics considered in the next
section. However, it will be subsumed in AASL+ by other extensions.

A Power as a fragment of HOL. The rough-types of A Power can be seen as the
types of a Church-style formulation of higher-order logic, taking P(T) as an
abbreviation for T => Prop. Then a straightforward translation of the terms
of A Power into HOL terms gives an understanding of A Power inside higher-order
logic.

The idea for this is laid out in a general setting of dependent types by
Jacobs and Meiham [1993]. To add the richer equational theory which re-
sults from the addition of subtyping, types would need to be interpreted
as relations rather than predicates, so taking P(T) as an abbreviation for

Power Types 	 113

T X T => Prop. This interpretation is closely connected with models consid-
ered in Section 4.6, and also with the understanding of subtyping as intu-
itionistic implication explained by Longo et al. [1995].

Rough typing elsewhere. Rough type-checking makes sense for other type
systems with dependent types, and may be a useful tool. It is similar in spirit
to the reduction-preserving dependency-removal translations which are used
to show strong normalization of the systems of the Lambda Cube, starting
from Plotkin's original idea for LF [Geuvers and Nederhof, 1991, Harper et al.,
1993]. Strong normalization for A Power is proved in Section 4.8 using rough
typing.

4.6 Semantics

In this section I shall give an environment model definition for A Power and
some examples of models. This begins in Section 4.6.1 on page 117. Before
that I shall discuss some of the motivations for doing this, and how the
model definition was arrived at.

Motivations

For constructive type theories, a semantical interpretation is often a sec-
ondary construction, perhaps a tool to prove consistency or strong normal-
ization. The important thing for such theories is the syntax. But applying
A Power to ASL+, we have an intended model where atomic types denote classes
of algebras in some institution. Algebras are the denotations of programs,
so a parameterised program denotes a mapping of algebras.

Starting with an intended model in mind, soundness of the interpretation
is crucial, and also influences the model definition. Put crudely, the defini-
tion was arrived at by adjusting the set-theoretic model to handle the equa-
tional theory of A power, and then abstracting far enough to capture a term
model, sometimes a good tool for studying syntax. I do not claim to have
abstractly characterised the structure of a AP,, model, although it would
be interesting to try to do that.

My adjustment of the set-theoretic model for ASL+ to capture the equa-
tional theory was first published in Aspinall [1995b], changing the model
given in Sannella et al. [1992] and using rough typing. That model is an
instance of the model definition given for AASL+ in the next chapter, which
extends the model definition for A Power given here.

Power Types 	 114

Containment versus coercion

Subtyping calculi have two basic kinds of model. With a typed value space,
we may choose a coercion semantics, where each use of subsumption is mod-
elled by the insertion of a coercion from type to supertype. If A :5 B, there is
a map cA,B : JAI -

0 cAB

0111B11

In some sense this is the most general setting, because coercions may be
merely identities. But it requires a way of relating coercions to the syn-
tax: either we forgo (SUB) and introduce coercions explicitly into the syntax
[Cardelli and Longo, 19911, or we reconstruct coercions by a translation pro-
cess [Breazu-Tannen et al., 1991]. Either route needs a coherence property
of the interpretation, to show that different ways of putting coercions into a
coercion-free judgement have the same interpretation. This coherence prop-
erty can be quite difficult to establish in a general form, and has yet to be
demonstrated in a subtyping calculus more complex than F<. See Curien and
Ghelli [1992] for this, or [Mitchell, 1996, Chapter 10] for the simpler example
of A<.

The other kind of model is a containment semantics in which subtyping
is interpreted as containment between types: if types are interpreted as sets,
for example, then subtyping would be interpreted by subset inclusion:

.13

This may be appropriate when subtypes really are intended as subsets, which
is the case for the ASL+. In programming languages, the coercion viewpoint
may be more appropriate; there can be real work in coercing an integer into
a real number, for example.

With a containment semantics there is no problem of coherence, but there
is a fundamental difficulty with the contravariant rule for subtyping Il-types.

Power Types 	 115

In the syntax we have that mt - mt :5 nat - int, but this does not hold as
a set-theoretic inclusion; Z Z N - Z when the semantic -. denotes set-
theoretic function space. This is usually solved by interpreting nat - mt as
the collection of all partial functions defined at least on N; then the inclusion
Z - Z N - Z holds, Of course, we need a universe of values over which to
form this "collection of all partial functions," and this is what leads to using
an untyped value space in containment semantics.

Typically, the untyped value space in a containment semantics is the do-
main of a model of the untyped A-calculus; a term is interpreted via the
interpretation of its type-erasure, as was done for the model of A<{} in Sec-
tion 3.6. But it is surprising to base a semantics for that calculus and even for
A< on a model of the untyped A-calculus; A-models contain many more func-
tions than can be expressed in the typed language being modelled. Yet to
date this is the approach that has been followed most often in the literature.8
For A Power I shall stay closer to the much simpler set-theoretic semantics of
the simply-typed A-calculus.

A typed containment semantics for power types

I will give a containment semantics for A Power which is nevertheless based on
a typed value space. Rough types make this possible. Whenever A :!~ B then
A and B have the same rough type P(T), say, and so both may be interpreted
as subsets of the interpretation of :

T]1

QA1B

(in the models below, E[T]j is written as VT)

Since every type TIx:C.D has a rough type of the form P(TC => TD), we
can form the "collection of all functions with domain at least C]I" using E{TcJJ
as a universe, rather than a universal domain. Approximately,

Hx:C. DI {f: 	TD
Vc E [[C', f(c) defined

and f(c) E
	

I

81 is perhaps more excusable once the language is enriched with polymorphism and
other constructs.

Power Types 	 - 	 116

The main reason that I choose this form of interpretation is because of
the intended model, where specification refinement is modelled as inclusion
of classes of algebras. It only makes sense to consider algebras over the
same signature; so algebraic signatures correspond to the atomic types used
to build the rough types for AASL+ in Section 5.2.

Another reason for the choice is that the set-theoretic intuition behind
power types, that Power(A) stands for the collection of subsets of A, fits
better with a containment interpretation than with a coercion interpretation.
A coercion interpretation interprets a separate subtyping judgement A < B
by constructing a map CA,B: 	-. j[Bjfl. Because we combine the typing and
subtyping judgements it seems harder to do this. The type Power (B) might
be conceived as the "type of coercions into B" but then we need some way
of recovering the domain of a coercion inhabiting Power(B), and the details
are messy.

From sets to PERs

There is another aspect to the structure of models. Section 3.1 described
the stratified equality between terms in a subtyping system. A model which
interprets types as sets is not adequate for this. In the equation

Ax:A.M = Ax:A'.M' :Hx:A'.B'

the equality of the two sides depends on "restricting observations" to the
type Hx:A'. Y. This leads to interpreting a type A: P(T) as a partial equival-
ence relation on [r}J; the partiality captures the subset part of the interpre-
tation, and we have an equivalence relation because the equality judgement
is an equivalence relation on terms at any one type.

(This use of PERs is not related to realizability: we use PERs over a hi-
erarchy of domains rather than the single domain of a partial combinatory
algebra.)

Because the full calculus is interpreted with respect to an interpretation
of rough types, we have an external equality notion. In other words, rather
than defining [{Ax:A. M : Hx:A'. B']] to be an equivalence class of values at
type Hx:A'. B', we give a fixed interpretation of Ax:A. M, depending only on
its rough type.

Plan

The model definition for Apower is given in stages, in a standard way. First we
give a definition of applicative structure which provides a semantic universe
for the interpretation, together with fixed interpretations of the constants.

Power Types 	 117

This is in Section 4.6.1. Then we define notions of environment and inter-
pretation for an applicative structure. An environment is used to interpret
the free variables in a term. The interpretation itself is a mapping from
well-typed terms and environments into the applicative structure. These
definitions are in Section 4.6.2. Finally we give the model definition itself, in
Section 4.6.3, which is a set of axioms that must be satisfied by an interpre-
tation.

4.6.1 Structures

A A Power applicative structure is similar to an ordinary typed-applicative struc-
ture for A [Mitchell, 1990, see e.g.,]. It provides semantic domains for every
rough type of A power. The domains are sets.

Definition 420 (A Power applicative structure).
A A Power applicative structure V = (D, Const, App) consists of:

A family of sets { VT }TETY

A constant Const(K) E V< for each K E JC

A mapping APPTU : DTV VT V° for each T, V E Ty. 	El

The type-superscripts from the mappings AppTu are usually omitted, but
they will always be uniquely determined in formulae.

Of course there are many A Power structures; interesting examples are the
full type hierarchy, a variant of it with partial functions, and the term struc-
ture. The second example structure will be applied later in a model for ASL+
(in Chapter 5). The term structure will be a good test for the model definition
given later, and has potential applications not studied further here. The sim-
ple case of the full type hierarchy with total functions is the most obvious
instance of the definitions.

Notation 4.21. Given a set 5, I write REL(S) for the set of relations on 5,
REL(S) = def Pow(SxS). If 	E REL(S), then dom(R) = {cijaRb}. A
relation is a partial equivalence (PER) if it is symmetric and transitive. I write
PER(S) for the set of PERs on S. The notation ci - f(ci) is used to stand
for the function mapping ci to f(ci), in other words, A-abstraction in the
meta-language.

Example 4.22 (Full hierarchy structure). Given a family of sets and PERs
C = { C, RK E PER(CK) }KEX, the full hierarchy Yc on C is defined by

Power Types
	 118

K =CK

J'T LI = T __ FO

yP(-r) = REL(J'T)

App (f,m) =f(m)

Const(K) =RK

In the full hierarchy structure, we define the set JP(T) to be the set of
all relations over JT, rather than the set of all PERs. The reason for this is
technical: because the interpretation in the full structure (Example 4.28) is
defined over rough types, the type-constructors are not guaranteed to con-
struct PERs. PERs are guaranteed by the soundness result for the full cal-
culus, however. Using REL(J'T) is a design choice: instead we could adjust
the interpretation (in Example 4.28) to return the empty relation - a PER
trivially - in case of failure. The approach here seems less ugly, and opens
the way towards models with different interpretations of types, models of
reduction or program refinement, for example.

Example 4.23 (Full hierarchy partial function structure). Given a family of
sets and PERs C = { C, RK E PER(CK) }KEX, the full hierarchy partial function
structure Pc on C is defined by

TK =CK U{}

TTV _ (PT _TU)U{}

PP(T) = REL(TT) U 10 }

I

<> 	if f =<>, m = or f(m) is undefined
App(f,m) = f(m) otherwise

Const(K) =RK

where c is a distinct token, not in any CK. 	 U

Example 4.24 (Term structure). The term structure T- of roughly-typed terms
in a pre-context F is defined by

y' ={M I FM=T}

App (M,N) =MN

Const(K) = K
U

4.6.2 Environments and interpretations

To define the interpretation of terms, we need to interpret free variables de-
clared in the context. For each roughly-typable context F, a semantic domain

Power Types - -

VT is defined by induction on F:

DO

DE,x:A = V1 x DT 	where F o,. A => P(T)

where { * } is any singleton set. A F-environment is a nested tuple q E V1.
Because we use a name-free semantics for environments, if cI is a renaming
on Dom (r) then 1) is a (F)-environment iff it is a F-environment.

Given a F-environment rj E D', we define projections for the variables of
F by:

undefined, for ally.

17 	
snd(ri), 	ifyx, Fx:A(y) =

I (fst)T (y) ify EA x.

So if r 	F(x) ==> P(T), then qT(x) E VT.

We can define thinning between environments using the projection nota-
tion. If F1 c F2 and we have r1l E D' and r12 E D12 then we write r 1 1

if
r'(x)

F2
= 72 (x)

for all E Dom(F1).
We use the notation q I x, for the restriction of a F-environment q to vari-

ables declared before x, meaning the shorter tuple fst'(ri) when x1 is the
Ith variable of n declared in F.

Unlike a partial function environment mapping variables to U { VT }TETY,
this tupled form of environment comes with an explicit notion of the do-
main V1 associated to a context. We need this because relations over V1 are
used in the soundness proof. Using tuples gives us an interpretation func-
tion reminiscent of the categorical semantics of simply-typed A-calculus in
(set-like) CCCs. Tuples are a rather concrete construction: more abstractly,
contexts could be treated in the same way as types.

Definition 4.25 (A Power interpretation).
An A Power interpretation in V consists of:

a meaning function [[F - 	- r_: T - V1 - VT, for each roughly-
typable context F and T E Ty, such that whenever F om. M => T and
rl eV1, then [[FM => T (EDT .

119

a mapping ReIT : DP(T) -. REL(VT) for each T E Ty. 	 Eli

Power Types 	 120

The meaning function in an interpretation is indexed by a rough type and
a context; we use the judgement notation in IF o. M ==> T just to indicate
a roughly-typed term in context, not to indicate that the meaning function
is defined on a derivation. (But it is often convenient to define meaning
functions by induction over rough-typing derivations.) When F and T are
understood, we write just

The mapping ReIT in an interpretation characterises the behaviour (or
extension) of the elements denoting types, just as App characterises the ex-
tension of the elements denoting functions. It is part of the interpretation so
that we could consider different "views" of types within the same applicative
structure. If ci E DF'(T) I shall write R as shorthand for the relation given by
ReIT (ci).

The definition of interpretation does not require a priori that Re IT (a) is a
partial equivalence relation, for the reason outlined before. Instead it will be
a consequence of the soundness theorem that any well-formed type of A Power

in fact denotes a PER. This differs from the concrete model instance for A<{}
given in the last chapter, where the interpretation was a partial definition
which proved to be well-defined on well-typed terms; here we assume that
any interpretation function is well-defined on all roughly-typed terms.

We show how the structures of Examples 4.22-4.24 can be extended to
interpretations in the next section.

4.6.3 Models

Before the definition, here are two constructions on relations. Let V be a
Apower interpretation. Given R E REL(DT) and G E dom(R) - REL(DU),
define

H(R,G) EREL(DT ') by:

f FI(R,G) 8 	1ff

Twr(R) E PER(DP(T)) by:

a. Twr(R) b 	1ff

Vci,b.(a. R b)
=App(f,ci) G(a) App(g,b).

Re! (a) = ReI(b) E PER(DT)
and Re!(a)R.

The good closure properties of PERs are well-known. The fact below is im-
portant in the soundness proof.

Fact 4.26. If R E PER(DT) and G(a) = G(b) (E PER(DV) whenever ci R b,
then MR, G) c PER(DT°).

Power Types 	 121

Definition 4.27 (A Power environment model).
A A Power environment model for a structure V is an interpretation for V such
that the following conditions are satisfied.
For all roughly-typable contexts F and all rj E

CONST IIIK].1 = Const(K).

CONST2 R K 11 rl E PER(VK).

VAR 	Mq =

APP 	TMN 	= App (E[M, tjiN).

FAMILY 	If for all a, b (a RA b) = 	R1B a> = RB(q b)' then

RIHX.AB = I7(RIAI rl RBI >)

SUBSET 	RIpower (C) = Twr(Rc).

In the above axioms we assume that for some T, v, F 	x => T, F
TIx:A.B => P(T => v) and F PP. Power(C) => P(P(T)).

ABS If F io. A => P(-r), F,x:A No. B = P(v),and F Po. M,N 	T,

then

Vcl, e. ci RA] 	e 	> IM]1(, ci) RB] ll a) [IIN]1(ri , e)

implies

Vd,e. ci R[A
ri

e =>

App (Ax:A. M]I q ci) RBd) DIN], e)

THIN Let F1 , F2 be roughly-typable contexts with cP a renaming on Dom (F1),
P(F1) c I'2, r7l E DT' and r72 E Df'2. We require that

P(F1) 	(M) => T 1 = [F2 M =z> T 2

whenever F M =z> T and r711' C

SUBST Let F1 F, x: A, F', and F2 = F, F'[N/x] where F N => v and
F o. A ==> P(u). Let q1 E DEl and r12 E D12 We require that

M => T 1 = [F2 o. M[N/x] => T 2

wheneverF1 Po. M => T, rii hl (x) = IF o. N 1 1 E ReI(IF Po. A 1 1)
and r 1T' 	 o

Power Types 	 122

The axioms CONST, VAR, APP define the meaning function in these cases,
and are standard in the model-definition for untyped and simply-typed A-
calculus [Meyer, 1982, Mitchell, 1990]. The axiom CONST2 requires that
atomic types are interpreted as PERs. The axioms FAMILY and SUBSET define
the extension of the denotation of types of the form TIx:A. B and Power (C).

The axiom ABS ensures the soundness of the three equality rules which
mention the A-constructor.

Thinning THIN and substitution SUBST are two fundamental properties
that any model should satisfy. The substitution property need only be satis-
fied when the environment is updated with a value which lies in the domain
of the PER which interprets the type A in the context. Proposition 4.16 en-
sures that the conditions THIN and SUBST are meaningful.

The soundness proof for models is given in Section 4.7. In the rest of this
section each example structure is extended to a model.

Full hierarchy model

Example 4.28. An interpretation in the full structure can be defined by:

ReI(A) = A

I[F o. X=T 	= r(x)

= RK
IF Ax:A.M ==> T 	ri

the function f: VT - V° defined by
=>

for all n E VT

F 	MN =z> v 	App (If M ==> T => v, IF o. N => T)

F 	TIx:A.B = P(T = 	ri = TI(REA]q a - RBI())

IF 	Power(A) ==> P(P(T)fl, 	= Twr(R1A]
ri
)

In this structure, it is not necessarily the case that R ITIx:A.B],.1 is a PER, since
the uniformity condition that a R[A] ri

b = 	R[B a> = RB](b) may fail.
For example, if B 	zx, the "rough-soundness" requirement that q(z) E
DP(T(v)) imposes no restriction relating the value of z at one element of
VT to another. This explains the technical need to generalize to relations.

Lemma 4.29. The interpretation defined in Example 4.28 is a model OfApower.

Proof We must check two things. First, that the interpretation function is
type correct, in the sense that IF op. M => TJl rlE VT for all rj E VT; this is

Power Types 	 123

easy. Second, we must check that the model axioms are satisfied. All follow
directly from the definitions, except SUBST and THIN which are proved by
induction on rough-typing derivations. 	 D

In the interpretation of Example 4.28, the meaning of the type A is ig-
nored in the interpretation of Ax:A.M; we rely on I[MJl(q, e) being defined
for every e E VT. This is where the next example differs.

Full hierarchy partial function model

Example 4.30. An interpretation in the partial structure can be defined by:

(A ifA*<c>
ReI(A) = 	0 otherwise

= r(x)

= RK

jF 	Ax:A.M => T = VJjr, =
the partial function f: VT - VU defined by

f(n)— 	
IF, x:A 	M 	vill(,.1,) ifnEA

- undefined 	 otherwise
for all n E VT.

IF 	MN => v 	App(E[F o. M => T => v, [F N => T)

IF 	FIx:A.B => P(T = 	= I7(RjA j T1 - RIB qa))
jF Po. Power(A) = P(P(T)fl

17
=

Lemma 4.31. The interpretation defined in Example 4.30 is a model OfApower.

Proof Similar to the proof of Lemma 4.29. 	 D

The partial function interpretation pays attention to the advertised do-
mains of A-abstractions, so that [[Ax:A.M is undefined for values e E VT
which are not in Re! (A ,)• Moreover, if a function variable is declared as
having a type Hx:A.B, it need not be defined outside [IjA. This is why we
add an error value <>to each of the domains.

This construction is a more formal way of capturing the usual "partial
definition" method of giving the interpretation function for dependent type-
systems, the method first used by Streicher [1991]. With a partial definition,
the error element o is delegated to the meta-language, and one proves that
the definition is meaningful for any well-typed term by induction on typing

9and in fact independently by Sarinella et al. [1992] for ASL+.

Power Types

derivations. By contrast, the approach here asks for a pre-interpretation of
roughly-typable terms, some of which are not well-typed in the full system.
(Pitts [19961 has another careful approach; he inductively defines a relation
between a term and its denotation. The soundness proof shows that this
relation amounts to a total function on well-typed terms.)

Unfortunately, the partial function model of Example 4.30 doesn't be-
have quite as we might hope. It would be nice to establish the correctness
property that, under some assumptions about the environment r, well-typed
terms do not denote :

F>M:A

We could prove this as a corollary of the soundness theorem (Theorem 4.38
below), if we had designed the interpretation so that for any type A,
dom(R A). However, this fails because of empty types. If B denotes an
empty type, so RBT, = 0, then UIx:B. C]1 is the total relation which relates
every element of DTV to every other.

This can't be fixed just by changing the definition of 1Hx:B. C rl in the
interpretation; instead the model axiom FAMILY has to be modified to be
"strict" made aware of the error element o. It would become:

f RJJX:AB 9

iff
çf * ,g *
J Va,b. (a RA b) ==App(f,a) RBI(qa) App(g,b)

And we would add the condition that 1J11Ix:A.B I rl = c' if either {A 	=
or A(q 	= for some a E RAIq to make the H-constructor "strict".
Then the soundness proof in Theorem 4.38 could be replayed to establish
the correctness property above.

Term model

The final example is the term model, which is defined using the equational
theory of the full system. This demonstrates the "externalisation" of equality
in this model construction: usually one would use quotients of terms to
construct a term model.

Example 4.32. An interpretation in the term structure T1- can be defined
by:

FM==T 	F(M)

Re! (A) = { (M, N) I F M = N : A

124

Power Types

Where ril 	denotes the result of substituting each free variable x in M for

It seems difficult to prove directly that the model conditions are satisfied
by the term model. In particular, showing the right-to-left direction of the
equalities in FAMILY and SUBSET are satisfied calls for some of the advanced
meta-properties of the syntax mentioned in Section 4.4.1. (This is a shame
because I had hoped that a term model construction would give some help
in establishing those very properties!)

Conjecture 4.33. The interpretation defined in Example 4.32 is a model of
A PowerS

Proof Conjecture 4.12 is used for the right-to-left direction of SUBSET and
Conjecture 4.11 is used for the right-to-left direction of FAMILY. 	El

4.7 Soundness

This section is taken up by a proof of soundness for any A Power interpretation
which satisfies the model axioms.

Specifically, when F > M : A, then 	rl is in the domain of the rela-
tion RR T,, and when F > M = N : A, then IIMI q is related to EIjNl,. by
REA. Moreover, ReI(lAJJ,.) is a partial equivalence relation on VT, where
F A = P(T).

However, we can only expect soundness if the environment rj satisfies the
context in a suitable sense. The interpretation of a context F is defined by
combining the relations which interpret its component hypes.

Let S and T be sets, R E REL(S), and G E dom(R) - REL(T). Then we
define

Z (R, G) EREL(SxT) by:

p 	
rn(p) R Tri(q)

(R,G) q 	iff 	
I 2(P) G(1 (p)) 	2 (q)

Fact 4.34. If RE PER(S) and G(a) = G(b) E PER(T) whenever ci R b, then
'(R,G) E PER (SXT).

Definition 4.35 (Interpretation of contexts).
Given a model for a structure 21), we define [[FIJI E REL(V') for roughly-
typable contexts F by structural induction on F:

EH ={(*,*)}

[[F', x: A 	=X([[F',ri

Power Types 	 126

We say that 111, 112 E VT are related environments satisfying F iff 111 vi
112.

Fact 4.36. If F is roughly-typable and r1l in '72, then it follows that

'7ç(x) Rlrjr(x) 	P(T) i 1
11 17 2

for all x E Dom(F).

Lemma 4.37. Suppose that RA q E PER(DT) and that ci RIAIr, e

RIBd> = REB] qe) E PER(DV) for all d, e. Then the following properties hold
in any model:

WEAK-EXT 	Vd,e. d RAI,1 e ==> Mll('7 ,ci) RB d) lINli(11e)

implies

Vd,e. d RA e
App (Ax:A. Mli 11, ci) RB d) App([[Ax:A. Nil 11, e).

ETA 	Vcl,e. ci RA rl e => App ([[Mil 11, ci) RIB(q d) App(l[Nli 11, e)

implies

Vcl,e. ci RjAj rl e
App([[Ax:A. Mxli 1

79 ci) RIB(,ld) App(jjN 11, e)

Proof WEAK-EXT follows from ABS using symmetry, transitivity and the
assumption. ETA follows from ABS using the axioms THIN and APP.

Theorem 4.38 (Soundness for models).
If c> F then [Eli E PER(VF)

IfF>M:A, then for all '7 l ,112 EDT,

111 	[[Eli '72 	=> 	ljMIfl 111 RIAT 171 [[Mil112.

IfFM=N:A,then for all

'ii 	in 112 	=> 	[[Mli 111 RIAl, [[Nil r72'

Proof Simultaneously by induction on derivation heights, using the model condi-
tions.

At a couple of points in the proof, we assume that any derivation of F > M: A
or F > M = N: A has a shorter derivation of F > A type. This is needed to use the
induction hypothesis to show that

REAL, = RIA 7 E PER(DT)

Power Types
	 127

where F o. A 	P(T). The assumption is justified because any derivation has a
corresponding derivation in a modified system with "strong" rules with subderiva-
tions F > A type in the premises. It is easy to argue that the system with strong
rules is equivalent, using Proposition 4.7 (Troelstra [1987] gives details). Alterna-
tively, the equality above can be added to the statement of parts 2 and 3 of the
theorem, at the cost of more work in the proof.

Now we consider each of the cases in detail. The part 2 cases for (A) and (APP)

are special cases of part 3 for (EQ-A) and (EQ-APP), respectively.

This proof ends on page 132.

Case (EMPTY): Then OIfl = { (*, *) } c PER({ * }) by definition.

Case (EXTEND): We have > F', x : A. By the induction hypothesis and the
premise F' ' A type, we have

	

RIAI th = RIAIq 	E PER(DT),

for all rh, T12 such that r1 R11-' 112, where F' 	A => P(-r). By the in-
duction hypothesis for the shorter derivation of > F', wi E PER(DF).
So by Fact 4.34, [F', x: AlE PER(D) as required.

Case (ATOMIC): We have : Power(K), so by CONST, we must show that

COflSt(K) Rlpower(K)fl r1i Const(K)

which by SUBSET holds iff

Rcoflst(K) = RcQfl$t(K) E PER
	

and Rcoflst(K) c

which follows by CONST2 and tautology.

Case (VAR): We have F > x: F(x), so by VAR, we must show that

111(x) RIFi>F(x)]q 112(X)

which follows by the assumption that ru vi 112 using Fact 4.36 and
THIN, since 111FIx F.

Case (suB): By the induction hypothesis,

MIfl11 RIAth M1172

A 111 Rlpower(B)] 	A 112

by SUBSET,

RIAII c REBj
T71

hence

	

[MI 111 REB 	[MI 112.

Power Types 	 128

Case (REFL): We must show

M]I,11 Rfj;:A Power(Mx)1

Which, expanding and using FAMILY, holds iff for all ci, ë such that
(rii,d) 	 (i2,ë),

App (TM 1, ci)

V, .k: A Po. Power(M2)1(q1, j) 	 (2)

App (M 2, ë)

which by SUBSET holds iff

R APP (MId) = RAPP(IM,e)E PER(DT) 	(2)

and
RAPP([MI) R I M X1 	 (3)

(3) follows from APP, VAR and THIN. To show (2), we use the induction
hypothesis, to give:

M 1I1 R H; :A Power(B)]1 I{M1Oq2

hence by FAMILY,

App (J[M 1 , ci) [F, :A 	Power(B)],.j1ci> App (M 2 , i)

and then (2) follows by SUBSET, using the agreement of rough typing
to show that both F, , : AP,. Power(M) => P(T) and F, : A
Power(B) => P(T).

The condition for applying FAMILY in (1) can be shown to hold using
the assumption about "strong" derivations, together with APP, VAR and
SUBSET, and expanding the vector notation. Similar reasoning applies in
other cases involving FAMILY.

Case (coNy): Follows easily by the induction hypothesis for the premises,
using SUBSET.

Case (H): We must show

Hx:A. Bfl,71 R[power(jjxA'B')
171

 Hx:A. BJj, 2

which by SUBSET holds iff

RTIX :AB] 	= REI7x:A.BT 172 	
E

p(TV) 	 (1)

RE17xAB 	R[jjx.A'B' 	 (2)

Power Types

By the induction hypothesis for the shorter derivation of F > A type and
SUBSET,

RiA 	= RAJJ,
72
 E PER(DT) 	 (3)

and by the induction hypothesis for the premise F, x : A > B type and
the SUBSET axiom again,

RlF,x:A>B u) = RF,x:ArB2a> E PER(DL)) 	(4)

for all a E 	so by (4), (5), FAMILY and Fact 4.26 the equation (1)
holds.

To show the inclusion in (2), let f, g E DTV and suppose

f RJJX:AB 	9. 	 (6)

We must show

f RjjX'' 	9 	 (7)

which by FAMILY is implied by

Vd,e.d R~A'j 	e 	
(8)

App(f, d) REF,X:AB 	ci)
App (g,e)

Suppose that d RJA'j e for some d, e. By induction hypothesis for the
premise F > A' : Power(A) and SUBSET,

RA'I T, 	REAF I7

so
App(f,d) RIFx.AB

th
App (g,e)

using FAMILY and (6). By induction hypothesis for the premise F, x
A' > B: Power(B') and SUBSET,

R[rx.A' BIq, d) c RET x:A' B'](1 ci)

hence
App(f, d) REF,x:A' B' 1 App (g, e)

as required.

Case (Power): We must show

E{Power(A)], 1 REPower 2 (B)] 	IPower(A)1, 2

which by SUBSET holds iff

129

REpower(A) = REpower(A) E PER(VP(T)) 	(1)

Rlpower(A)fl 17,
R[power fl,7 	 (2)

Power Types 	 130

By the induction hypothesis and SUBSET, we have

RA T7 1
= REAI, E PER(VT) 	 (3)

RA 	RB 	 (4)

so (1) follows from (3) using SUBSET. To show the inclusion (2), suppose
that s RVower(A)j 171

t. Then by SUBSET and (3), (4),

Rs = Rt C RIB]

which implies (2) by SUBSET.

3. Case (EQ-REFL): By the induction hypothesis.

Case (EQ-SYM): We must show

N,11 RA 1 M412

We need to appeal to the premise F > A type for the "strong" rule which
by induction hypothesis guarantees that REA rI = RA 17 e PER(DT) for
some T. Now by induction hypothesis for the premise of the rule,

M472 RA 2 NJI,J1

hence the result by symmetry of RIAIq•

Case (EQ-TRANS): Similar to the proof for (EQ-sYM), using SUBSET to show that
RIA] r7i

is transitive.

Case (EQ-A): We must show

Ax:A.M 1 R1J7X:AB rh
[Ax:A.M'2

The induction hypothesis gives

Vd,e.d IA 1 e
= 	x :A > M 1 d) REEX.ABI(d) F, x :A > M'1(2, e)

By WEAK-EXT, we get

Vct,e.d A 1 e

App(Ax:A.M 1, d) R[FX:AB](d) App([Ax:A.M, 2, e)

from which the result follows by FAMILY.

Case (EQ-APP): By the APP axiom, we must show

App (IM ,71, [N1) RB[NIxI]q App (M'472, N' 412)

Using the induction hypothesis for the premises, we have

M 1 REHX.JB 	M'42

Power Types
	 131

NJ,.J1 RA],1 	N'ill q2

and so by the axiom FAMILY, we have

App (DIMI q1 N,71) RlB]r 	
T71

)
App (M,72 ,E Ni, 2)

But using SUBST,

INIflq1) =

so we are done.

Case (EQ-fl): We must show

I (Ax:A. M) NJ 71 RB[N/x] 	M'[N'/x] I T72 	
(1)

By the induction hypothesis,

x: A > M1, d) RT,x:AB](,lld) EF, x: A > M'2, e)

for all ci, e such that d RFA I r, I e, and

NJ 1 RIA 	N'Ifl q2

using SUBST,

RlrB[N/x] 1 17, = RIFX:ABI(I11 IF > NIq> 	 (2)

and
[1', X: A > Mi(q2, N'J2) = DIF > M'[N'/x],72 	(3)

By the ABS axiom,

App(Ax:A. M q1 IN] 11) R[Fx:ABJ71 IN]J1)TM](172,TN'1,72)

which gives the result (1) using (2) and (3).

Case (EQ-r7): We must show

IAx:A.Mx 1 R[H.AB] th EN]q2

By FAMILY, it suffices to show that

Vd,e.ci RjF>Aj 	e

App(Ax:A. Mx 1 , d) R[FX:AB 	d)
App(E{N 2 , e)

which follows by ETA and the induction hypothesis for the premise,
using FAMILY. 	 El

Power Types 	 132

As an extension of this theorem, all of the admissible rules shown in Sec-
tion 4.4 are sound in any model; details are omitted.

Here is the special case of Theorem 4.38 which expresses soundness of
the typing judgement.

Corollary 4.39 (Soundness of Typing).
IfFcM:A, then for all rj,rjeR11 	= 	TMI r7

4.8 Strong Normalization

In this section I show that J3rj-reduction is strongly normalizing on roughly-
typed terms. By Theorem 4.19 all typable terms of Apowe r are roughly-typable,
so we get strong normalization for A Power terms as a corollary.

The proof follows the well-known computability method due to Tait and
Martin-Löf [Barendregt, 1992, Luo, 1994, see, for example], with amendments
for power types. We use a slightly extended language of terms,

T::= ... I LTi

The new constructor is motivated by a reduction relation on terms with
power type which is useful in type-checking algorithms, but we will not need
the reduction here.'° The new constructor has a rough typing rule:

F mo. A == P(T)

FLAj=T

Now some basic definitions.

Definition 4.40.
A term is a canonical term if it has one of the forms: K, Ax:A. M,
Hx:A.B, or Power (A).

A term is a base term if it is either a variable, or has the form M N or
!Mj, where M is a base term.

Weak-head reduction is the one-step reduction relation defined by:

M -0,7 N 	M 	vh M'
	

lvi wh IVI

MwhN 	MN wh MN
	

LMi wh 1M'J

where M - N is an outermost single-step of $ or q reduction.

'°For the cognoscenti, the reduction relation includes the replacement [Power (A)]
A. It is used when a type variable is promoted to its bound declared in the context, when
we have to "strip" Power-constructors. This operation crops up when the well-known
algorithms for subtyping [Curien and Ghelli, 1992, Compagnoni, 1995, Steffen and Pierce,
19941 are re-expressed for power types.

Power Types 	 1.3.3

SN is the set of &I-strongly normalizing terms in T.

A roughly-typable term is either canonical, a base term, or a term which
can be weak-head reduced. This case distinction lies at the heart of the
computability proof of strong normalization.

Definition 4.41 (Saturated sets).
A set of pre-terms S is a saturated set if

S c SN.

If M e SN is a base term, then M E S.

If M E SN is a weak-head redex and M' E S where M wh M', then
M E S too.

Next we define an interpretation of types by giving a term applicative
structure of strongly normalizing pre-terms, and we define an interpretation
of terms by substitution. I follow Section 4.6.1 for notation, although the
language is extended here.

Definition 4.42.
The term applicative structure S is defined by:

5K =SN
ST=>11 ={MT I VNE ST. MNESV}
SP(T) = IM E T I LMi E ST }

Let 	M ==> T and r, E S. Define jF P,. M => T1]ri =

I haven't bothered to define App and Const because the 'Power model axioms
aren't needed. The second lemma below says that [F M 	rl satisfies
the "rough soundness" requirement for meaning functions given as the first
part of Definition 4.25. This yields the strong normalization result.

Lemma 4.43. For all -r, the set 5T is saturated.

Proof By induction on the structure of T. I shall show the new case for
power types, where T P(v) and S° is saturated by induction hypothesis.
We must check the conditions to show that S° is saturated.

1. Suppose M E S!'(v). Then LMj E Su and is SN by the induction hypoth-
esis. Hence M is SN.

2. Let M be a SN base term. Then so too is LMj, which establishes M E

Power Types 	 134

3. Suppose that M 	ivh M' and M' E S0). Then LM'] E S° and by the
induction hypothesis, [M] E 5° too, because LMi 	LM'i. Hence
MES1' ° . 	 o

Lemma 4.44. Let F o,. M => T. For all rj E S, IF M = T rl EST.

Proof By induction on the derivation of F PP. M ==> T. 	 0

Theorem 4.45 (Strong normalization for roughly-typed terms).
If F M =' T then M is fi q -strongly normalizing.

Proof Immediate by Lemmas 4.43 and 4.44. 	 0

Corollary 4.46 (Strong normalization for A power).

If F > M : A, then M is $ q -strongly normalizing.

Proof Immediate by Theorem 4.19. 	 0

4.9 Discussion

This section contains a comparison between A Power and related type systems,
and a note about a simplified formulation of A power• Section 4.10 concludes
this chapter with a summary.

4.9.1 Comparison with other systems

Cardelli. The closest relative to A Power is Cardelli's power type system in-
troduced in Cardelli [1988]. That system was not studied in great detail,
however, and its sheer complexity (number of typing features) means that
it has some necessarily tricky aspects - type-checking is undecidable and
every type is inhabited.

A Power is a fragment of Cardelli's system, with some differences:

the rules for deriving equality are made explicit as an equality judge-
ment; they were described only informally in Cardelli [1988].

there is no type formation judgement (see remarks in Section 4.4.2).

Power Types 	 - 	135

LF and higher-order subtyping systems. Section 4.3 has already compared
A Power against some related systems, including higher-order subtyping sys-
tems based on F ° , see Section 4.3.2 on page 92. At first appearance, A Power

is a simplification of these systems, since subtyping of type-constructors is
achieved indirectly, so we need fewer rules. But because of its uniformity,
there is another sense in which A Power is more complicated.

In the formulations of F<CV successfully studied to date, type-constructors
are unbounded. For example, it is not possible to write a constructor such
as this:

SquareNumArray =def Ao :5 Num. An:cx.Array(n,n)

But this can be written in A power, which adds new complexities.

Here is a hint of what the problem is. In Section 4.5.3 on page 112 I men-
tioned that in a type system with bounded type variables, it can be difficult
to tell if a type is the type of a function. Without bounded type variables, it
is enough to see if the type is (or reduces to) a TI-type. With bounded type
variables, so cx :5 TIx:A. B, one has to examine the bound to see if it is a
function type. In general, this involves iteration along the context and (for
higher-order subtyping) normalization steps. This makes type-checking al-
gorithms and meta-theoretical analysis more intricate than without bounded
variables. Since AP ... er places no restrictions on where bounded variables are
allowed, the meta-theoretical studies of F<' and AP, cannot be straightfor-
wardly adapted.

Recently a variant of F<° with bounded type abstraction was successfully
tackled by Compagnoni and Goguen [1997]; this work was mentioned already
in Section 4.4.1. Their new technique might be useful for Apowe ,-, but I haven't
investigated yet.

Pfenning. Pfenning's refinement types extension of LF [Pfenning, 1993] is
related to A power; it too is a predicative system of dependent types with a
form of subtyping. Instead of a relation of subtyping on all types, Pfenning
introduces a special class of types (called "sorts") which refine the "proper
types" of LF. The subtyping relation is only considered between sorts. This is
powerful enough to allow some useful examples and yet allows a straightfor-
ward proof of conservativity over LF. But subtyping is more restricted than
in A power; one cannot A-abstract over a subtype, for example.

There is an analogy between the rough types of A Power and Pfenning's
separation of "proper types" from sorts. Neither proper types nor rough
types admit subtyping. Sorts have a subtyping relation, and each sort is a
refinement of a designated proper type:

THR<<S 	 FHR,S::A

Power- Types- 	 136

In A Power, types have a subtyping relation, and related types have the same
rough type:

F>R::~S 	 F mo R,S=P(T)

The difference is that we have two formal systems rather than one, and rough
types have a simpler (non-dependent) structure than refinement types. The
dea motivating rough types is the structure of the semantic domains.

Richer types for Z. The types of the specification language Z, in which
terms denote sets, are similar to the rough types of A power; Z has types of
the form K, P(T) and -r x u. The official type system of Z has been extended
by Spivey [1996] with mechanisms for defining parameterised type construc-
tors called "abbreviations" a[]. There is a subtyping relation which begins
by taking a[U] :!~ T[u/cx], where a[ii] abbreviates the type T. Type construc-
tors are always monotonic with respect to the inclusion relation.

The analogy with A Power is again that a term may have many "richer" types,
but only one "official" type, and there is a subtyping relation on richer types.
Spivey has considered the algorithmic aspects of type-checking with richer
types. However, the richer type system is still non-dependent, so less expres-
sive than LF or A PowerS

4.9.2 A simplified version of Apower

Much of the complexity of A Power comes from the con travariant rule for H:

F, x: A' > B: Power(B)
F> A':Power(A) 	F,x:A> B:Power(C) 	 (H)

F > Hx:A.B: Power (Hx:A'.B')

Apart from PERs assigned to atomic types, this rule is the only way that
interesting PERs appear in the semantics of Ap0w ,-- considering a PER "in-
teresting" if it does not degenerate to a predicate.

An alternative to H is the more restricted equal domains rule,

F,x:A> B:Power(B')
F> Hx:A.B: Power (Hx:A.B') (H-Eo)

This rule was originally used in ASL+, and is also used in most (if not all) of
the studies of F<° . One reason to avoid the contravariant rule in F<w is that
when used for bounded quantifiers and combined with top types, it renders
subtyping relation undecidable [Pierce, 1994].

Power Types 	 137

For AP<, Compagnoni and I proved that the contravariant rule does not
compromise decidability in a system with dependent types but no top type
[Aspinall and Compagnoni, 1996]. I conjecture that likewise, the contravari-
ant rule does not cause undecidability of Apower . However, it is the reason
for a more complicated semantics and some proofs are made more difficult.
My investigations suggest that with (H-EQ) in place of (Ii), Conjectures 4.11-
Conjecture 4.13 are provable using syntactic techniques. Some details con-
cerning r-reduction remain to be checked.

The simplified version of A Power with an equal domains rule might be ad-
equate in the practical application of ASL+. The cost is needing an extra
"trivial" development step occasionally, namely, using a constructor to trim
the domain of a parameterised program or specification. An example was
shown in Section 2.2.1 on page 38.

4.10 Summary

This chapter described the type system A Power, a fragment of Cardelli's origi-
nal power type system [Cardelli, 19881.

Power types provide a cunning way of dealing with the subtyping judge-
ment at the same time as the typing judgement. At first sight it appears to
be a simplification, because two separate concerns are combined into one.
However, the generalisation which occurs from using Power(A) as both a
term and a type leads to complication of the meta-theory.

I introduced and studied the syntax of Apower , given in Figure 4.1 on
page 88 and Figure 4.2 following, and the semantics, in Sections 4.6.1-4.6.3.

The semantics is set-based, but uses partial equivalence relations to in-
terpret the equality judgement. The subtyping relation induced by power
types is understood as inclusion between PER5. In contrast to other work on
semantics of dependent types, the intended model is made by "carving out"
from a classical set-hierarchy. Every term in Apo, has a rough type which
is either an atomic type, or one of the forms T => v or P(T), where T and v
are rough types. These rough types are used to structure the set hierarchy.
The model definition is a collection of axioms which an interpretation must
satisfy to be sound.

The important results in this chapter are the basic properties of A Power

established in Section 4.4, particularly type correctness, Proposition 4.8; the
agreement with the rough typing system, Theorem 4.19; the soundness prop-
erty for the semantics, Theorem 4.38; and the strong normalization result
Corollary 4.46.

5 ASL+

The typed A-calculus which underlies ASL+ is introduced. The calcu-
lus is called AASL+, and it is obtained by mixing the languages A<u and
A Power of the preceding chapters with abstract operators for building
programs and specifications. The rough type-checking system and se-
mantics for AASL+ are based on the definitions given for A Power.

The language ASL+ itself is an instance of AASL+, given by choosing par-
ticular sets of program and specification building operators. The speci-
fication building operators are those of ASL.

This new definition improves on the original suggestions for ASL+. Un-
fortunately, it cannot be used directly for the examples of Chapter 2,
because extra translations are needed to handle sharing and dot nota-
tion. This drawback is investigated in the latter part of the chapter.
Chapters 6 and 7 then introduce a version of ASL+ for a particular in-
stitution, which can be used for the Chapter 2 examples.

5.1 The ASL+Scheme 139

5.2 The System AASL+ 141

5.3 Semantics 143

5.4 The Language ASL+ 145

5.5 The Satisfaction System of AASL+ 151

5.6 Proving Satisfaction in ASL+ 160

5.7 Improvements Over the Original 166

5.8 Two Problems 170

5.9 Sharing in Modular Programs 175

5.10 Sharing in Institutions 181

5.11 Related Work 184

5.12 Summary 186

ASL+ 	 139

5.1 The ASL+Scheme

QNE OF THE IDEAS behind ASL+ is that it is institution independent. Starting
from an institution whose algebras are models of programs in a "core-

level" language, we get a modular programming and specification language
for free by adding the ASL+ typed A-calculus on top. In this chapter I shall
describe this construction scheme in detail, improving and extending the
original proposal of Sannella et ad. [1992].

To use ASL+ in a real situation, there is a two-stage process:

abstract 	 Language L

ASL+ 	 based on q

instantiation 	translation

Z~E5

A modular programming and specification language L can be given a se-
mantics using ASL+ as a kernel language. But ASL+ itself is an abstract lan-
guage; we must first instantiate it to a particular institution 1, upon which
the semantics of the core-language of L is based. Instantiating to J means
not only selecting the institution 1, but also equipping it with syntactic sup-
port: a proof system for proving semantic entailment, and abstract syntax
and type-checking systems for representing signatures, models, etc. Since
L is a high-level language, we must translate the phrases of L into terms of
the instantiated kernel language ASL+2. Translating may involve complex
context-sensitive handling of parameters, dot notation, etc. as well as simply
expanding macros for syntactic sugar.

The abstract formulation of ASL+ described in this chapter is based upon
a type system AASL+, extending the type systems A<{} and Ap0wer given previ-
ously. In fact there is another step of instantiation to get to ASL+:

abstract
instantiation _____*(,)

The type system AASL+ has sets of constants which represent operators for
building programs and specifications; these constants give the abstract syn-
tax of the core-level programming language and specification language. In
the type system, the choice of these constants is not fixed, so the speci-
fication language isn't fixed to be ASL. This formalizes the observation by

ASL+ 	 140

Sannella et al. [1992] that the choice of the underlying specification language
is orthogonal to the design of the rest of the languages

We get ASL+ from AASL+ by choosing particular sets of constants, based
on operations on models in an arbitrary institution. As far as ASL+ is con-
cerned, this reduces the syntax of the underlying languages to something
very simple, instead of, for example, beginning from definitions of syntac-
tic representations for the parts of an arbitrary institution (which would be
needed to fully specify the syntax of ASL, as explained in Section 1.2). The
treatment of the underlying type-checking and proof systems is also encom-
passed in a simple way, by assuming that the specification and program
building operators are simply typed, and by assuming a consequence rela-
tion for proving the implementation relations for core-level programs and
specifications.

This simple treatment is appealing but it is too simple. My goal is to
design a language which can directly express the parameterisation mecha-
nisms used in Chapter 2, without needing complex translations. The version
of ASL+ given in this chapter does not achieve this goal, for two reasons.
First, the language has no built-in notion of context for declaring a current
environment of modules, nor a built-in way of understanding the dot nota-
tion which refers to the context. A context-sensitive translation is needed to
fix this, which means duplicating the type-checking rules. Second, the rough
type-checking system fails to explain the putting-together-of-signatures dur-
ing parameter passing necessary to express sharing between types, and nec-
essary to give an effective type-checker and an institutional semantics for
the language. Again, a complex context-sensitive translation from the source
language would be needed to fix this (similar to translations hinted at for Ex-
tended ML by Sannella and Tarlecki [19891). It might be better to begin with
a language closer to the goal.

This chapter is structured as follows. The definition of the type system
AASL+ begins in Section 5.2 with the syntax and rough typing system. A model
definition for AASL+ is given in Section 5.3; as for A Power, an interpretation is
defined over roughly-typable terms. The language ASL+ itself is described
in Section 5.4, by choosing sets of constants for AASL+ based on an arbitrary
underlying institution 2. Section 5.4 also defines the intended model for
ASL+ in 2. In Section 5.5, the satisfaction system of AASL+ is defined, which
extends the type system of A Power with rules for singleton types and with a
consequence relation 	for reasoning about the core-level language. In Sec-
tion 5.6, some rules are suggested for defining F for ASL+. In Section 5.7, I

'The language can be any AR-like language. The type system AASL, has some features
which are specially for the application to ASL+, which is why it does not have a generic
name such as Apowe,- 	- thank goodness!

ASL+ 	 141

revisit the original proposal for ASL+ to describe reasons behind the revised
definitions, and take stock of my achievements.

In Section 5.8 the problems mentioned above are described in more detail.
The remainder of the chapter, introduced in Section 5.8.2, considers sharing
constraints and putting together signatures. The chapter concludes with
mention of some related work in Section 5.11 and a summary in Section 5.12.

5.2 The System AASL+

This section introduces the type system underlying ASL+, called AASL+. We
get AASL+ by combining the languages and type systems of A< and A power,

and adding combinators for building simple programs and specifications.
Simple programs and specifications are provided with a consequence rela-
tion for proving satisfaction, equality and refinement.

The original language described by Sannella et al. [1992] also has a par-
ticular variety of bounded intersection type, used to construct specification
unions. For simplicity's sake I shall not treat specification union in full gen-
erality here, but restrict it to the level of simple specifications as in an earlier
formulation of ASL+ [Sannella et al., 1990]. Although there are some ques-
tions, one could extend the definitions below to include intersection types
following other studies [Pierce, 1991, Compagnoni, 1995].

As usual, the syntax begins with a context-free grammar of pre-terms, in
Section 5.2.1. In general, we cannot decide whether a pre-term has a "proper"
denotation in the semantics. This is because we can parameterise on speci-
fications, for example writing AX:SP. M, so the definedness of a function
application depends on whether the argument satisfies the parameter speci-
fication. Checking satisfaction is typically undecidable.

In practice, some amount of checking can be performed: this is the job
of the rough typing system defined in Section 5.2.2, which follows the same
ideas as rough typing for Apower. For AASL+, we give the rough typing system
first. The "full" typing system, known as the satisfaction system, follows
much later in Section 5.5.

5.2.1 Syntax

The syntax of AASL+ is based on three disjoint sets:

a set Sign of atomic type constants, ranged over by X.

a set P80 of program building operators, ranged over by p.

ASL+ 	 142

a set 580 of specification building operators, ranged over by s.

and also a fixed countable set V of variables, ranged over by X, Y.....

Each PBO p or SBO s must be provided with a unique arity, which is an
element of Sign* x Sign. We write Arity(p) to indicate the arity of p. We
assume that for any p or s, there is an effective procedure for calculating
Arity(p) or Arity(s).

The set of simple programs is the set of terms built using only PBOs and
variables; the set of simple specifications is the set of terms built using only
SBOs, variables, and atomic types from Sign.

The sets Sign, PBO, SBO together with the Arity() function form a notion
of signature for AASL+ itself. Most of the time, we assume some fixed signa-
ture. The language ASL+ is defined by giving a particular signature for AASL+,

in Section 5.4.
The set Tsjgfl,pBo 580 of pre-terms over Sign, P80 and SBO is defined by the

grammar:

T ::= Sign I PBO[T... TI 	SB0[T. .. T]
I V I AV:T.T I TT 	FIV:T.T

Spec(T) I ITIT

We omit the subscript from T. The usual conventions apply for bound vari-
ables and the identification of tx-equivalent terms. The term Power(A) is a
synonym for Spec (A).

The set Csjgn,pBo,SBQ of pre-contexts consists of sequences of declarations
defined via the grammar:

C ::= () I C,V:T

Pre-contexts are ranged over by F and we make the usual assumption that
no variable is declared more than once in a pre-context.

Setting K = Sign, this syntax properly extends the syntax of both A<{}
(given in Section 3.3) and A Power (Section 4.2). Compared with the syntax for
A<{} , there is now a single syntactic category of terms, and we no longer
assume any subtyping relation on the atomic types.

5.2.2 Rough type-checking

Rough type-checking for Apower was described in Section 4.5. The definitions
are similar for AASL+.

The set Ty59 of rough types of AASL+ is defined by the grammar:

ASL+ 	 143

F 	Arity(p)=(2'1••'k,) 	for 1:!E;i:5k,FM

Fp [MI ••Mk]=

F 	Arity(s) = (i 	Jk,') 	for 1 :!~ i :5 k, F Pp. Ai => P()
F s[A• A] = P(1)

FM=T FA=P(T)
Foo. {M}A = P(T)

Figure 5.1: Rough typing for AASL+

Ty ::= Sign I Ty => Ty I P(Ty)

This is just the same as for A Power, setting 3(= Sign.

The rough typing rules for pre-terms of AASL+ extend those for A Power

shown in Figure 4.3 on page 109, by the new rules shown in Figure 5.1.
The properties of rough typing in Propositions 4.15-4.18 hold for AASL+

too; the proofs are easily extended. For decidability of rough typing, Propo-
sition 4.15(3), we use the assumption that Arity() is effectively computable.
(We also tacitly assume that the identity of elements in Sign, PBO and SBO is
decidable.)

Finally, the strong normalization proof of $q-reduction based on rough
typing for Apower given in Section 4.8 extends without difficulty to AASL+.

5.3 Semantics

The semantics of AASL+ extends the semantics for A Power given in Section 4.6.
We modify applicative structures to interpret the extra constants in the sets
PBO, SB0, and we add extra axioms to the model definition.

Definition 5.1 (AASL+ applicative structure).
A AASL+ applicative structure for (Sign, P80, 580) is a Ap0wr applicative struc-
ture' for the atomic types Sign, with the Const map also defined on PBOs p
and SBOs s, so that:

Const(J) E

2see Definition 4.20 on page 117.

ASL+
	

144

Const(p) E DEl X 	X D -. DY

Const(s) E Dr) x 	x DP(Ek) DP(E)

where p and s have arity (. .

Interpretations and environments are defined just as for A power• To give
the model definition we need a new construction on relations. Given R E
REL(DT) and a E VT define

[a]R EREL(DT)by:

b[a]Rc 	iff 	b R c and bRa.

Fact 5.2. If R E PER(DT) and a E DT, then [a]R E PER(DT).

Definition 5.3 (AAsL+ environment model).
A AASL+ environment model for a AASL+ structure V is a A Power mode13 for
V which satisfies the following axioms for constants, together with the re-
maining axioms for A Power models, for all roughly typable contexts F and all
rj E

CONST 	 = Const(E).

CONST2 	E[p[MI . 	Mk fl 1
7

= Cons t(p) (1M1 11 , ...,

CONST3 s[A1. . . 	 = Const(s)(Al ,,...jAk td.

We assume that F Po. p[M1 . M] => 	and F 	s[A1 . . . Ad == P(s),
for some signature 1.

Moreover an AASL+ model must satisfy the axioms:

SINGLE 	RE{M}A 	=

TOP 	R~_-j
17

	 L1J

The constant axioms for signatures, PBOs, and SBOs ensure that their
interpretation is given by the Const map of the applicative structure. There
is no requirement that PBOs respect equivalence classes or that SBOs map
PERs to PERs; these conditions are enforced only for particular uses of PBOs
and SBOs, later on in Section 5.5.4.

The axiom SINGLE fixes the extension of the interpretation of the single-
ton type as the equivalence class of 	in the relation which interprets the

3see Definition 4.27 on page 121.

ASL+ 	 145

type A. The axiom TOP fixes the extension of the interpretation of a signa-
ture ' to be the total relation on D.

Coming to model instances, the novel aspect of this semantics is that
it allows X-specifications SP to be interpreted as relations on —Y-algebras,
rather than as sets (or classes) of1-algebras. The reason that TOP fixes
the interpretation of atomic types _Y E Sign as the total relation on RE is
to make the type £ behave as a "top type" in the inclusion ordering of 1-
specifications. All terms denoting values in D1 will have type and are
considered equal at that type. A term SP denoting a value [SPill E D" will
be a subtype of, so it will be sound to derive SP: Spec (1). The reason we
want this is so that AX: Spec (s). M denotes a function parameterised on X-
specifications, as expected. To be applicable to any _1 -specification, 1 must
denote the total relation on '-algebras.

5.4 The Language ASL+

The language ASL+ is given by a particular signature for AASL+, in other
words, a choice of Sign, P80 and SBO. In this section I define ASL+ together
with its intended model, which is a model of AASL+.

We begin from an arbitrary institution 1 = (Sign, Mod, Sen, =). The syntax
of ASL+ is based on signatures of the institution as atomic types, so Sign =

I Sign I.
The sets PBO and 580 are chosen to be institution-independent program

and specification building operators, and are described in Sections 5.4.3 and
Sections 5.4.2 respectively. First we define the underlying A Power applicative
structure.

5.4.1 Applicative structure

We assume that for each E e JSignj, Mod(X) is a small category, hence
Mod(X)I is a set. This restriction requires that we limit consideration to

institutions where algebras over each signature are built within some fixed
universe. A more sophisticated semantics might use a category-theoretic
model definition for A Power and ASL+, which would push the problem of size
elsewhere.

Now we define a A Power applicative structure, named l after the underlying
institution:

ASL+ 	 146

11 =IMod(u{}
TV = (T 	U) u { }

2P(T) = REL(1T) u { <> }

I

<> 	iff = o, m = K> orf(m) is undefined
App(f,in) =

f(m) otherwise
Const(2) = (IMod()I x Mod() I) U { K>}

This is an instance of the full hierarchy partial function structure given in
Example 4.23.

This A Power applicative structure is extended to a AASL+ applicative struc-
ture by defining the sets 580 and PBO and their interpretations, in the next
two sub-sections.

5.42 Specification building operators

The specification building operators of ASL+ are those of ASL:

SBO =def {I, Try, Dcr, 	 U}

Each of these tokens stands for a family of operators, variously indexed by a
signature 1, a set of E-sentences 4i, a signature morphism o : -. i", and a
set of "-sentences V. The single letters are abbreviations for the operators
that were introduced in Section 1.2:

L[SP] 	 impose cPon SF

TI[SP] 	translate SF by o
D0-[SP] 	derive from SP by o
U[SP1,SP2] 	SF1 union 5P2
MO-[SP] 	minimal SPwrtcr

abstract SP wrt P' via a

(I'm leaving out iso-close to make the list a wee bit shorter).
Since we are in an arbitrary institution, there is no concrete syntax for

describing signatures E, etc.

The interpretation of these SBOs in 1 is given in the table below. All the
operators are total and, by convention, strict (if any of the argument relations

ASL+

are c, then the result is).

Arity Interpretation

(X,') Const(I)(R)

={(m,m')ER I m 4 45 Am'

To- Cons t(T)(R)
={(m,m') 	I (mI-,m'J,-)ER}

D (',X) Const(Dcj-)(R)
= {(mI,-,m') I 	(m,m') ER}

Me,- (',E') Const(M ff)(R)

= { (m,m') ER m,m' cr-minimal in IMod2()I }

A- (,E) Const(A-)(R)
, = 	(m, m)

I

m j, m' and em".
(m, m") E R V (m", m) E R

U, (X,) Const(U)(R1,R2)
={(m,m') 	I (m,m')ER1 A (m,m')ER21

This generalises the ASL semantics given in Definition 1.6 on page 14; see
there for definitions used above. Mostly, the usual semantics is generalised
by taking the product of the operator with itself. The abstract operator is
slightly different: it returns the parts of the equivalence relation —' which
have some intersection with the argument relation. This only pays attention
to the domain of the argument relation, and always returns a "full" subrela-
tion of 	. The idea behind this definition is explained in Section 5.4.5.

5.4.3 Program building operators

Program building operators for an arbitrary institution have been less well
studied than specification building operators. The following examples are
given as operations for manipulating constructors by Sannella and Tarlecki
[1988b]; some of these rely on additional assumptions about the underlying
institution.

PO Thief {Rcr ,So-', Q45,E' cr, U11 ,19 }

These operators are indexed by a : X - £', a' : £' - X, 45 g Sen(),
45' c Sen(X'), a1 : 2 - £, and cr2 : 2 -. 22. Descriptive names for the

147

ASL+ 	 148

operations are:

R[P]
S.,-'[P]

Q[P]
E',,-[P]
U0-1,0-7 [Pa, P21

reduct of P by a
restrict P via a'
quotient P by ct
extend P to V via a
a-union P1 , o-1 and P2 , o-2

Here is a brief explanation of them.

reduct of P by a is the reduct operation on models. It can be used to hide
some parts of a program.

restrict P via a' restricts P to a minimal expansion of its a' reduct, in other
words, its unique o-'-minimal subalgebra. (This assumes that the insti-
tution is supplied with a notion of subalgebra, and unique restrictions
exist; see Section 1.2.) This can be used to remove "junk" from models.

quotient P by cP returns the quotient of P with respect to the equivalence
relation on sorts induced by the set of equations cu. (This assumes
several things about the underlying institution.) This can be used to
make new datatypes by quotienting old ones.

extend P to cP' via a yields the unique free extension of P to a model of
', where V is a set of equations over _Y'. This relies on the existence

of free functors F0-, : Mod(s) -. 	']I in the institution. This allows
definition of freely-generated datatypes, for example.

a-union P1, a1 and P2 , a2 returns the amalgamation of P1 and P2 with re-
spect to a1, a2. This assumes that the institution has pushouts in the
category of signatures, and that these give rise to unique amalgama-
tions in the model categories. When defined, the result is a * model,
where

a2 *

is a pushout in Sign. This operation allows two programs to be com-
bined, provided they have the same implementation of shared symbols.

ASL+
	

149

The semantics is defined on models rather than isomorphism classes, so
some of the operators must select canonical representatives. In practice this
is not a problem, because we work with finite syntactic representations of
models and operations on them.

The semantics of the PBOs is given in the table below. Again, each oper-
ator is strict: if any of the arguments is o, then so is the result. All opera-
tors are total except for the a-union operator; however, other operators may
only be partial, depending on the institution or design choice. (For exam-
ple, whilst Fc,-' exists in some institutions, it is not guaranteed to result in
a model which satisfies ' exactly; in these cases we might choose to make
extend P to P' via a undefined).

Arity Interpretation

Re,- (',) Const(R,-)(m) = mId-
Const(S,-')(m) = a'-subalgebraofm

Qp (—Y, f) Const(Q)(m) = m/
(,I") Const(E',,-)(m) = F,p'(m)

U r1,cy7 (i 	'2,) Const(Ucj-i ,,)(mi,m2)

- ç amalgamation of m1, m2 	if m1I1 - m2I2, - 	
otherwise.

For more details of these operations, see Sannella and Tarlecki [1988b].

5.4.4 Interpretation in 1

The previous sections defined a AASL+ applicative structure. Now we can
define a meaning function for this structure.

Definition 5.4. Using the definitions of the Const map given above, we de-
fine an interpretation in the applicative structure q given in Section 5.4.1
by:

Re/ (A) = A

FX=T = ,(x)

IF 	=> P(T) 7 = IMod(,Y)I x IMod(,1)I

F o. p [Ml ... M] = 	= Cons t(p)(Ml...I{Mk)

F 	s[A1... Ad => P(X) = Const(s)(A1 .. jAk)

where the rest of the interpretation is defined in the same way as the inter-
pretation given in Example 4.28 on page 122. 	 n

ASL+ 	 ISO

Lemma S.S. The interpretation defined in Definition 5.4 yields a model of
AASL+ for (Sign, SBO, PBO).

Proof As the proof of Lemma 4.29 on page 122, proving the extra axioms
in Definition 5.3. 	 0

5.4.5 Motivating specifications-as-PERs

Section 5.4.2 generalised the semantics of the ASL specification building op-
erators from operations on sets (or classes) to operations on PERs. Why use
PERs for specifications?

For types, the reason to generalise from types-as-sets to types-as-PERs
was explained in Section 4.6 on page 116. With subtyping, two terms can be
equal at one type, but different at another (examples were in Sections 2.2.6
and 3.1), so the interpretation of types must include an equality relation as
well as a collection of elements.

For specifications, a semantics for ASL+ would not need to use PERs
throughout. Instead it could use the usual semantics for SBOs and introduce
PERs only at higher-types. But using PERs throughout offers an interesting
new way of treating observational equivalence.

The abstract operator of ASL closes up a class of models under a re-
lation of observational equivalence, as described in Section 1.2. Usually,
abstract SP wrt cP via o is interpreted as:

{ m I mEMod(') A m'ESP]1.mm'}

In the PER semantics a specification is interpreted as a PER, which gives the
collection of models which satisfy it, together with an equivalence relation
on those models. The equivalence relation is intended to be an appropriate
observational equivalence. The abstract operator now retains equivalence
classes in the result:

{ (m,m') I mE Mod () A m'EDom(lSP).mm'}

The equivalence relation of the argument SF is replaced with a different re-
lation, only paying attention to the models of SP. This can either hide or
reveal equivalences. Just as in ASL, the use of observational equivalence is
controlled by the low-level abstract operator; a translation from a high-level
language would insert abstract automatically in appropriate places.

Here is the interesting point. The equivalence relation is respected every-
where in the semantics. In particular, the interpretation of a Il-specification
TIX:SP. SP' is the collection of functions which map implementations of SP to

ASL+ 	 151

implementations of SP', preserving equivalence. When the equivalence rela-
tion is observational equivalence, then observationally equivalent models of
SP must be mapped to observationally equivalent models of SP'. This is pre-
cisely the requirement of stability, which should be met by all definable con-
structors in a decent programming language, researchers say [Schoett, 1987,
Sannella and Tarlecki, 19971. Stability relates to providing abstraction across
module boundaries; here it is built into the semantics of parameterisation

This needs further research. Alternative generalisations of the operators
should be investigated, and we should study refinement at higher types to
see whether the type-theoretical rules and semantics here give useful mean-
ings of higher-order observational equivalence.

5.5 	The Satisfaction System of AASL+

The satisfaction system of AASL+ is the type system which forms the basis
of the system for proving satisfaction in ASL+, which will be explained in
Section 5.6. The satisfaction system of AASL+ extends the type system of
?tPower with rules for singletons, similar to those of A<, and with rules for
using an external proof system for PBOs and SBOs.

Section 5.5.1 defines the form of consequence relation used to capture the
external proof system. Section 5.5.2 defines the satisfaction system itself.
Section 5.5.3 extends the meta-theory of APower to AASL+ and Section 5.5.4
presents a soundness proof for the satisfaction system.

5.5.1 Consequence relations for AASL+

To prove satisfaction, equality, and refinement for terms written with PBOs
and SBOs, we need to appeal to an externally-provided proof system. To
define the type system of AASL+, we don't need to know the detailed structure
of this external proof system; it is enough to know the consequence relation
(CR) that it gives rise to. But the CR must be schematic in some variables so
we can substitute for complex ASL+ terms.

Rather than give a new definition of CR which axiomatises the notion of
free variables in sentences, we can simply re-use the signature-indexed def-
inition of CR in Definition 1.3, using contexts F as the notion of signature.

4This shows an alternative to the suggestion in Sannella et al. [1992, Section 41 that
specifying stability would violate the regularity condition that every specification of a
parameterised algebra can be expressed as a cartesian product. Here, requiring or not
requiring stability corresponds to particular uses of abstract, and all specifications of
parameterised algebras are regular.

ASL+ 	 152

Contexts have a categorical structure: morphisms between contexts are sub-
stitutions, with renaming and weakening as special cases.

In fact, indexing the CR by an abstract notion of context seems the easiest
way to characterise a schematic consequence, compared to indexing by sets
of free variables. Without the definition of the syntax of terms and sentences
to hand, substitution is difficult to axiomatise abstractly [for remarks, see
Avron, 1992].

Definition 1.3 works because to express a structural proof system, we
need a single context for the whole consequence, rather than different con-
texts over each sentence. This is a "truth" type of interpretation, as opposed
to a "validity" type. (Both types of interpretation, and richer notions of con-
sequence relation, are described in Harper et al. [19891.) Informally speaking,
the single context declares the meta-variables in some composition of rules
from the proof system, and the meta-variables may be instantiated through-
out for ASL+ terms.

Sentences of a consequence relation for AASL+ have two forms:

P=P:SP I SP~SP

where P ranges over simple programs and SP ranges over simple specifica-
tions, described in Section 5.2.1. I will use s to range over sentences, and A
to range over sets of sentences. The sentence P : SP abbreviates P = P : SP.
Sentences are roughly typed by the rules:

FP,P'=J 	FSP=P()
	

F SP, SP' = P(1)
F 	P=P':SP =

	
FSP:!~SP'=X

Fully-applied PBOs and SBOs have rough types of the form X or P(s), so it is
enough for rough typing to use contexts F whose types have the formf or
Spec (1). This leads to the next definition.

Definition 5.6 (Consequence relation for AAsL+).
A (Sign, SBO, PBQ) consequence relation is a CR 	where

Sign t is the category in which

- an object is a AASL+ pre-context F where each declaration has the
form X : Z or X : Spec (Z), for some I E Sign;

- a morphism y : F - F' is a substitution from Dom(F) to simple
programs and specifications over Sign, SBO, PBO, such that

F 10- X=T => F'y(X)=T

for all X E Dom (F).

Sen t (F) = {s I 2. F o,. s =

A substitution y extends to terms in the obvious way; then Sen t (y)(s)
is given by applying y to the terms of s.

Each relation -- meets the following closure conditions:

Symmetry. 	If A P111F P = P : SP then A Pill- P' = P : SP.

Transitivity for =. If A - P1 = P2 : SP and A - P2 = P3 : SP,
then A -- P1 = P3 : SP.

Transitivity for :!~. If A PillF SP < SP' and A -- SP' :5 SP" then
A 	- SP :!~ SP".

Subsumption.

	

	If A PWF P = P : SP and A - SP :5 SP' then
A P-at-P=P':SP'.

Top.

	

	 If A F- P : I and A -'- P :I then A I-s-
P=P':I.

Formation for =. A -- P = P : SP implies A 	SP :5 E.

Formation for:5. Either A Patr SP :5 SP' or A I-- SP' :5 SP
implies A -- s-at SP :!~ SP and A F'- SP :5 1. 	Ei

Using properties of rough typing, it is easy to show that Sign 't is a category
and Sent is a functor. The closure conditions on 	capture intuitive con-
ditions corresponding to familiar rules from subtyping systems. The atomic
types I are treated as "top" types: any two X-programs are equal at type

, and by formation for :5, any .Y-specification is a refinement of 1. This
accords with the model axiom which fixes the interpretation of I.

None of the requirements assert a sentence directly; for example, we do
not have that F mo. SF =* 	implies A j-- SP :!:_~ I. This allows for PBO5
or SBOs to be partial, requiring some semantic conditions in the antecedent
of the consequence relation to be well-defined. A typical example is the
amalgamation operator, where the program a-union P1, o and P2, O2 is only
well-defined if [[P1]1 1 1 = [[P2]1 	This program can have a rough type yet an
undefined denotation, in which case it should be excluded from the satisfac-
tion system.

5.5.2 The satisfaction system

The rules of the satisfaction system for AASL+ given in Figures 5.2 and 5.3
extend the typing and equality judgements of A Power given in Figures 4.1
and 4.2 on pages 88 and 89.

ASL+ 	 - 	154

Rules for singletons

The singleton type rules are shown in Figure 5.2 on the following page. These
are taken from the system A< defined in Chapter 3, modifying for the dif-
ferent judgement forms and for power types.

Here is a quick review, comparing the rules of A< against the new ones.
First, we need no formation rule for singletons, because the rule ({}-suB-TAG)
does the job.5 The typing rules given in Figure 3.2 on page 80 are already in
A Power, as are the equality rules in Figure 3.3 on page 81. From the subtyp-
ing rules in Figure 3.4 on page 82, we take (SUB- 11) and (SUB-EQ-ITER), which
appear in Figure 5.2 as ({}-SUB-TAG) and ({}-{}-suB). The "subtyping of equiv-
alence classes" part of the composite rule (SUB-EQ-sYM) appears as ({}-SUB);
the symmetry part of (SUB-EQ-syM) is not needed because we already have
symmetry for equality. Finally, we have a rule ({ } -ELIM) which connects in-
habitation of singleton types with the equality judgement, introducing the
equality F > M = N : A from a singleton typing F > M: {N}A. (The opposite
direction of this rule is admissible.)

Rules for PBOs and SBOs

The rules for PBOs and SBOs are shown in Figure 5.3 on page 156.
These rules use substitutions 0 to instantiate the consequence relation
This is a richer form of substitution than morphisms in Sign t , because

the target context can be any pre-context of AASL+, and the typing require-
ment is in the full system. Specifically, we write 0 : F' - F iff

F> 0(X) : 0(F'(X))

for all X e Dom(F'). So 0 : F' - F is a shorthand for several premises
The premise F > 0(A) is also an abbreviation. When A = { s, .. . ,s } and

is non empty, then F > 0(A) stands for the n premises:

F > 0(s1), ..., F > 6(s).

Again, substitution on a sentence Si S defined by extending 0 to the terms
of s. If s 	SP ::~ SP', for example, then F > 0(s1) stands for the AASL+
judgement F > 0(SP) : Spec (0(SP')).

5Remember that in Apo,,,, F > A type abbreviates F > A: Power (B) for some B.
61 Figure 5.3, the source context F' of substitutions 0 always comes from an instance

of 	which means that r, (x) 	X or F'(X) 	Spec (Z), so the substitution on the
right-hand side is superfluous.

ASL+ 	 155

F>M:A
F > M: {M}A 	 ({}-INTR0)

F>M:A
F> MIA: Power(A) 	 ({ } -SUB-TAG)

F>M:A F>A:Power(B)
F> {M}A : Power({M}B) 	

({}-suB)

F>M:A
F> {MIA: Power({M}{M}A)

F > M: {N}A

F > M = N : A 	 (II-ELIM)

Figure 5.2: Singleton types in AASL+

ASL+
	 156

L\F4'P:SP 	0:F'—F 	F>0(L\)
(PBo)

F> 0(P) : 0(SP)

A-SP:5SP' 0:F'-.F 1>0(A)

F> 0(SP) : Spec(6(SP')) 	
(sBo)

A-P=P':SP 0:F'-'F 1>0(A)

F> 9(P) = 0(P') : 0(SP) 	 (EQ-PBo)

A F 	SP ~ SP'
A 	SP' :!!~_ SP 	0 : F' - F 	F> 0(A) 	(EQ-sBo)

F > 0(SP) = 0(SP') : Spec(0(SP'))

F>M:X F>N:J
(EQ.TOP)

Figure 5.3: SBOs and PBOS in AASL+

When A = 0, then by convention F > 0(A) stands for the single premise
> F. This ensures that the context F is well-formed in the conclusion of each
rule which uses

The rule (PB0) proves that a program term built with simple program con-
structors satisfies a specification built with simple specification construc-
tors. Recall that P : SF is defined to mean P = P : SP as a sentence of
The rule (EQ-PBo) handles the more general assertion, introducing an equality
into the system. The rule (sBo) proves refinement between two specifica-
tions built with simple constructors, and the equality of such specifications
is proved by showing that each is a refinement of the other, with the rule
(EQ-sBo).

Substitution is grafted on to each of these rules as 	is added to the
typing and equality judgements. In the combined proof system, we can use
the satisfaction rules for the AASL+ type constructors and the proof system of
Pal one after another, as the structure of a specification or program is broken
down. Substitution is needed because AASL+ assumptions can only have the
form X: A, and not M : A for arbitrary terms M. We think of assumptions X:
A as typing declarations for free variables rather than logical assumptions,

ASL+ 	 157

but the distinction is blurred somewhat at this stage.7
The last rule in Figure 5.3, (EQ-TOP), treats an atomic signature type E

Sign as a top type, and asserts that two terms which denote '-algebras are
indistinguishable at type E.

5.5.3 Properties of satisfaction

In this section we extend the results of Section 4.4 to AASL+. First we prove the
agreement property between the rough typing system and the satisfaction
system.

This is a re-statement of Theorem 4.19 on page 111.

Theorem 5.7 (Agreement of rough typing for AASL+).

If> F then F.

1fF> M : A then for some T E Ty, F M => T and F o. A = P(T).

3.ffF>M=N:A then for some TE Ty, F o. M,N ==> Tand
F A => P(T).

4. 1fF> A:Power(B) then for some -rE Ty,F mo. A => P(T)

Proof We sketch one new case for the second part, for the rule (EQ-PBo).
The remaining cases to check are similar or straightforward.

Case (EQ-PB0): By the definition of sentences and proof relations, A --'
P = P' : SP means that the required result holds in F' for P, P' and
SP. By the translation condition for consequence relations, we can as-
sume that the variables of F' and F are distinct. Using the extension
of Proposition 4.16, we thin the context to F',F and then use substitu-
tion repeatedly to substitute each variable X c Dom(F) for the term
0(X), preserving the rough typing and yielding F 	0(P) 	-
F o. 0(P') =:> 	and P. 0(SP) =- P(X),asrequired.

To prove thinning, substitution and bound narrowing, we must simulta-
neously prove corresponding statements about substitutions 0. These state-
ments are gathered in the lemma below. For the substitution case, we use a
substitution 0[N/X], which is defined by:

(0[N/X]) (Y) = 0(Y) [NIX]

This corresponds to the substitution of N for X in every part of 0.

71ndeed, a system indexed by rough-contexts with arbitrary assumptions might be
worth studying, at least because this would be a consequence relation itself, and there
would be an easy way to state conservativity over F.

ASL+ 	 158

Lemma 5.8 (Substitutions for roughly typed variables).
1.1f6:F'—F and FcF'with>F' then 6:F'--.F'.

2. 1f6:F' -F,X:A,F' and > N: A, then O[N/X] :F' — F,F'[N/X].

3. If 6 :F' -. F,X :A,F' and > A: Power (A) then U :F' - F,X :A',F'

Proof Simultaneously with the extensions to AASL+ of Proposition 4.4(3),
Proposition 4.5 and Proposition 4.6. In each case, the induction hypothesis
for a statement above helps prove the proposition for the rules in Figure 5.3.

The remainder of Proposition 4.4 extends to AASL+ easily, so this estab-
lishes the extension of Propositions 4.4-4.6. The formation property Propo-
sition 4.7 needs an extra case, and care with the PBO and SBO rules.

Proposition 5.9 (Formation for AASL+).
F > Ax:A.M : C == F > A type and B. F, x :A> M :B.

2.F>MN:C => 	A,B. F>M:TIx:A.B and F>N:A.

F c FIx:A.B : C => F > A type and F, x : A> B type.

4. F> Power(A) : C ==> F > A type.

5.F>{M}A :C = F>M:A.

Proof As for Proposition 4.7, except that term in question could now be
introduced by (PBO) or (SBO). Consider (PBO); either 6(P) 	p[M1 . . . Mfl], or
6(P) N and N may have the term former of interest outermost. If so, it
must be that P Y for some variable Y, with 6(Y) = N. By the definition of
o : F' - F we have a subderivation ofF> N: F'(Y). We can use the induction
hypothesis for this derivation to get the result. Similarly for (SBO). 	n

Type correctness extends Proposition 4.8. The statement is the same.

Proposition 510 (Type correctness for AAsL±).
1.F>M:A => F>Atype.

F >M=N:A => F >Atype and F >M,N:A.

Proof The cases for the singleton rules are straightforward, making use of
Proposition 5.9 for ({}-ELIM). For the PBO and SBO rules, we show the proof
for (EQ-PBO).

Case (EQ-PBO): For part 1 we must show F > 6(SP) type. By the reflexivity
requirement for 	, we must have that L\ -- SP ::~ SP, so we can use
(SBO) to derive F> 6(SP) : Spec(0(SP)) as required. For part 2, to show

ASL+ 	 159

F > 0(P) : 0(SP), use (PBo); to show F > 0(P) : 0(SP), use (PBo) too,
using the symmetry requirement for 	 0

Finally, the admissible rules shown in Propositions 4.9 and 4.10 remain
admissible in AASL+, since their proofs rely only on the preceding proposi-
tions and derivations in A Power.

5.5.4 Soundness of satisfaction

In this section we extend to AASL+ the soundness result for A Power given in Sec-
tion 4.7. We must assume that the consequence relation 	is itself sound.

Let 171, r12 be a pair of environments such that r1l 	Fjfl ri2, where the
declarations in F only have the form or Spec (s). We write

(171,172) 	P=P':SP 	
171

RjspT 	P'4 2

and
(r11, r12) 1= SP:!~SP 	 = R~ spj E PER (DX)

A R~ spj 0 R15 '

Given F-sentences of a AASL+ consequence relation,

Definition 5.11 (Sound consequence relations).
A AASL+ consequence relation 	is sound if

{si ,...,s} ---s

implies that

(171, 172) '= s1 A 	A (rj 1 ,r 2) = s 	(171, t72) 	s

for all r7 1 TF1 172.

The interpretation of contexts and conventions for environments are un-
changed. The following theorem is a re-statement of Theorem 4.38 on page 126.

Theorem 5.12 (Soundness of satisfaction for AASL+ models).
Let 	be a sound consequence relation according to Definition 5.11.

If> F then][F]J E PER(D)

If F > M :A, then for all th, 172 E

q1 	[[TI] 172 	=> 	[[MI] , J1 R ~ Aj 	[[M]]172.

ASL+ 	 - 	 - 	 161

Proof systems for the core-level are not the main topic of this thesis, so
the system shown here is incomplete and imperfect. I provide it just to give
some ideas of what the rules for ASL+ PBOs and SBOs look like, and to see
how they fit with the satisfaction rules of AASL+.

There are several ways that a relation A -- s could be presented. A
natural-deduction style of presentation might be the clearest, with rules like
this:

sP1 :5 sP2 	sP2 :!~ sP3
sP:5sP 	 SP, :!E~-sP3

then A 	s holds if there is derivation of s from assumptions A, when s
and A are well-typed in F. This convention hides the context of assumptions
and free variables. Another convention is to identify variables in F with
meta-variables in the presentation, because -- is supposed to capture the
schematic consequences of derived proof rules.

Because I only present a few rules, I shall be overly explicit and not use
any conventions; I define the relation A -- s directly, as the least relation
generated inductively by a set of rules. This is an unusually verbose form of
presentation for a logic, and it means adding as rules some of the structural
properties that the CR must satisfy Moreover, I shall be careful to include
all the typing information for each rule.

The rules are shown in Figures 5.4-5.6. We assume that there is a proof
system provided for the logic of the underlying institution 1, which gives rise
to a deduction relation 	(see Definition 1.5 on page 10). For deductions
between sets of sentences, cP -s 	means 01 i— p for all 'p E 02, where

Sen().

Structural rules (Figure 5.4).
These rules express the structural properties that any CR according to Def-
inition 1.3 must satisfy, together with some of the properties that a CR for
ASL+ must satisfy, from Definition 5.6.

Rules for programs (Figure 5.5).
These rules are used to prove that a program satisfies a specification, or that
two programs are equivalent. The figure contains a only a few example rules
and is far from complete. Sentences P : SP here abbreviate P = P : SP.

The first rule says that any two s-programs satisfy the trivial X-specification
and are indistinguishable at that type; this fulfills the "top equality" require-
ment from Definition 5.6. The next few rules are structural rules for some

8But similar presentations are commonly used for categorical logics, for examples see
Lambek and Scott [1986], Pitts [1996]. And a similar presentation is also used for the logic
LFPC in Section 6.4.

ASL+ 	 162

A 	A, s --- s'

L\4s Fs'=J
A, S, [5-91 s

A H,X:A,E' S 	F o. A ==> P(T) 	F o. N => T

A[NIX] I-,' s[NIX]

F P,. SP ==> P(1)
SP:!~;SP

A 3- P=P':SP
A PAt

F
P'=P:SP

A-P=P':SP AP'=P":SP
A 	P=P":SP

A -- SP1 :!~ SF2 	A I- - SP2 :!~ SF3
A F' - SF1 :!~; SF3

A MF
P : SP 	A 	- SP :!~ SP'

A 	- P: SP'

Figure 5.4: ASL+ proof system - structural rules

ASL+
	

163

FP,P'=J
- P=P':f

A- P:SP 	FP==2' 	:f -'

AF- R,4P]:D[SP]

A 	- P:SP 	FP=E 	P'cSen'(E')

A 	Ep',[P]:Lp'[T[SP]]

02 *

A 	- P1 : SP1 	F P1 = 	
I

A I-- P2 : SP2 	F P2 => £2

A -- Uff1 U2 [Pl,P2] : UE*[T[SP1], T[SP2

cPF- c
A - 	E[P] : SP 	cPv Sen2 (I')

A -- E,- [PI = E3-[P] : SP

A-P1 :SP
A 	- P2 : SP 	V p E cIi. A H- P1 : I{tj } [X] 	A -- P2 : I{q3} [-1]

A - 9- Pl=P2:A,fd1[SP]

Figure 5.5: ASL+ proof system - programs

ASL+ 	 164

PBOs, breaking down the structure of a program in tandem with the struc-
ture of a specification. To prove that a program satisfies a specification with
a different structure, we may first need to massage the structure of the speci-
fication, using the rules in Figure 5.6, and then use subsumption.

Two simple rules proving non-trivial program equivalence are shown. The
first uses the proof system of q to show that two free extensions E,0-[P] and
Ep;[P] are equivalent just in case cl and c are equivalent sets of equations
in the logic. By this rule, a program expressed using one algorithm can be
proved equivalent to one expressed using another slightly different one, for
example.

The other rule for program equivalence, at the bottom of the table, is a
putative rule intended to prove the equivalence of two programs in a speci-
fication built with abstract. This attempts to capture a simple case of the
definition of 01 , with o = Id. We can prove P1 F--.z (p by proving P1 : I{}[]
in the system, and similarly for P2. However, this rule breaks the definition
of Pill because the relation occurs negatively in the premise. This could be
solved by using a direct definition of P E-, p, written using another set of
rules. Still this rule doesn't represent a feasible proof method, since cl is
typically an infinite set. We need to investigate proof techniques here.

Rules for specifications (Figure 5.6).
These rules are example rules for proving refinement of specifications. Some
of them are stolen from a more complete set studied by Farrés-Casals [1992].
In this figure, a sentence SP = SP' abbreviates the two sentences SP :5 SP'
and SP' :!~ SP - used in a conclusion it abbreviates two rules.

The first rule in Figure 5.6 establishes the "top refinement" property, that
any s-specification is a refinement of the trivial specification X. The next rule
is the only rule which refers to the underlying proof system. The following
axioms can be used for proving refinements or massaging the structure of
specifications. The last rule in the table is an example of a simplification rule,
which proves refinement between specifications with the same outermost
constructor. Simplification by stripping the outermost constructors is sound
for any of the familiar ASL constructors, because they are monotonic on the
model class inclusion ordering.

Many more rules from Farrés-Casals [1992] could be included here, in-
cluding proofs of refinements between specifications with differing struc-
ture, and more simplification rules. And rules are needed to handle the SBOs
missed here, in particular abstract and minimal.

ASL+ 	 165

Fm. SP =='

01 Hi. 02 	F o. SP ==> P(J) 	01,02 c Sen2 (X)

-'- L 1 [SP] :5 42 1-Y]

p(2L') 01, 02 Sen(.Y)
Lpi Elcp 2 [SP]] = 41u2[SP]

F 	SP = P(s) 	IcSen(-Y) 	a:X -'
P 	4[D-[SP]] = D[I0-()[SP]]

F SP P(X) clicSen(-Y) u:-E'
Icj()[Ta[SP]] T[Ick[SPJ]

02 *

t

	

cr1 	Oi*

Fm. SP =' P(X)
	

02
PWF Tcj.i[Dcj-2[SP]] = D[T[SP]]

j- - U[SP1 ,SP2] = U[SP2,SP1 }

F- - UE[SP1,U[SP2,SP3]] = U[U[SP1,SP2],SPA

I-g- sP1 	sP2

-- D[SP1] Dcr[SP2]

Figure 56: ASL+ proof system — specifications

ASL+ 	 166

5.6.1 Properties of the ASL+ proof system

By the construction of the system, all sentences are well-typed.

Proposition 5.13. If As, where A = { si, . . . ,s }, then there are signa-
tures X1 , . .. , 2, X such that F 	si ==> 1i and F P,. s => Z.

Proof Induction on the derivation of A 	s. 	 El

The two vital properties are that 	forms a consequence relation for
AASL+, and that it is sound for the semantics. I only give proof sketches.

Proposition 5.14. 	is a AASL+ consequence relation according to Defini-
tion 5.6.

Proof Most requirements follow directly from the conventions of the pre-
sentation and the structural rules of Figure 5.4. Remaining requirements are
admissible in the presentation. 	 E

Proposition 5.15. -- is a sound consequence relation for the AASL+ seman-
tics, according to Definition 5.11.

Proof By induction on derivations of j- , using the semantics of the ASL+
operators defined in Sections 5.4.2 and 5.4.3. 	 El

5.7 Improvements Over the Original

This section compares the formulation of ASL+ given in this chapter against
the original proposal by Sannella et al. The purpose is to highlight the im-
provements I have made and to justify the definitions a bit more. (Read-
ers not interested in this purpose may happily proceed to Section 5.8 on
page 170.)

ASL+ was first described in [Sannella et al., 1992, Sannella and Tarlecki,
1991], and earlier versions of those publications. The original syntax was
outlined in Section 1.4 on page 19. The next few subsections describe some
problems with the original syntax and proof system, and what I have done
to improve matters.

5.7.1 Unspecified syntax for algebras

The original presentation of ASL+ includes unspecified syntax for core-level
programs denoting algebras in the base institution. Syntactic algebras can

ASL+ 	 167

be type-checked, so there should be a type-checking judgement:

FP =

where F is a context declaring the free variables which may appear in P,
along with their types. If this judgement holds, then P denotes as-algebra.
Sannella et al. required that this judgement be substitutive, so we can infer:

F,X:T,F'P= 	FN=T
F,F' o,. P[NIX] =

where N is any term of the module calculus, and T is the typing requirement
it must meet.

Further assumptions of the algebra typing judgement would be needed,
actually, to prove the properties which were shown in Section 5.5.3. More-
over, we need an assumption relating the denotation of a substituted algebra
expression to its denotation in an extended environment (like Lemma 3.21
on page 72). These assumptions are needed for the algebra typing judge-
ment and semantics, to prove the corresponding properties for the whole
calculus.

Here is the difficulty. The assumptions about substitution imply that the
language of algebras includes the language of ASL+, so that both the syntax
and semantics of the two levels are already intermingled. The term N above
can be any term of ASL+, so we must know how to substitute N into an alge-
bra P for the term P[NIX] to be meaningful. But this destroys the thought
that we may begin from an arbitrary core-level language and add the ASL+
A-calculus on top. For terms like P[NIX] to be meaningful, the core-level
syntax must be defined simultaneously with the ASL+ syntax. This means
that ASL+, as originally proposed, could not be an institution-independent
framework, unless we have a rather more concrete form of institution to
hand.

To avoid this difficulty, I began with a more precise language. Instead
of giving the core-language for programs by some unspecified syntax with
particular properties, it is given by a set of combinators (PBOs) which denote
mappings from tuples of algebras to algebras. Such functions (or their ex-
tensions to mappings on classes of algebras) are known as constructors in
the literature [Sannella and Tarlecki, 1988b]. Similarly, rather than fix the
particular specification building operators of ASL, I treated core-level speci-
fications as an abstract set of SBOs, which are combinators that denote op-
erations on classes of algebras. With this more precise language, it is easy
to include the syntax of fully-applied combinators in the ASL+ A-calculus,
solving the problem of what substitution means.

ASL+ 	 - 	 168

5.7.2 Semantic inference rules

Another difficulty with the original version of ASL+ is with the rules for so-
called semantic inference. These were given as part of the formal system for
proving satisfaction:

[[PL, E 	for all p consistent with F

F>P:SP

EIiSP11P 	ISP', for all p consistent with F

F> SP: Spec (SP')

These rules were intended to apply only to simple programs and specifica-
tions - those built with the core programming language, or with the ASL
specification building operators. The idea is that an external proof system
would be employed to approximate the use of the semantics in these rules.
Unfortunately, this requirement is too informal.

Once again, "simple" programs and specifications may be built using con-
structs of ASL+ within, which makes them somewhat less simple. For exam-
ple, we may write:

impose cP on F(M)

where F(M) is the application of a parameterised specification. To prove that
a program satisfies this specification, we should first prove that it satisfies çfi,
and then that it satisfies F(M). To prove the second satisfaction, we ought
to use higher-order rules for application terms which are proper to ASL+,
rather than only the "semantic inference" rule shown above.

The study of proofs in the original formulation is doomed because of this.
Using the rules above and bypassing the rules that are proper to ASL+, we
could prove any valid satisfaction P : SP by proving

P : impose 0 on SP

and any valid refinement SP < SP' by proving

impose 0 on SP: Spec (impose 0 on SP').

Clearly the rules of semantic inference had to be modified.

In this case, I solved the problem by bringing the external proof system
into the picture, making the formal system for satisfaction more precise. In-
stead of referring to the semantics, a consequence relation j-Y-y must be pro-
vided. The consequence relation captures derivability in the external proof
system.

For this treatment to work, the consequence relation must be schematic,
to allow substitution for complex ASL+ terms inside simple programs and

ASL+
	 169

specifications. For example, to prove satisfaction of the specification above,
the consequence relation would contain the tuples

P : XtP : impose ct)on X

for all simple programs P that satisfy the formulae & Then we use the cut-
like rule (PBo) for joining this assertion with the other rules of AASL+, to allow
the derivation:

P : XtP : impose ctonX 	P:F(M)
P :impose (Pon F(M)

To apply this rule I used a substitution X - F(M) to instantiate a tuple in
the consequence relation 	The antecedent is then proved in the second
premise, using the rules of AASL+ once more.

Of course, the program P itself might be built using ASL+ constructs too,
so the consequence relation must contain schematic consequences which al-
low programs as well as specifications to be broken down. In other words,
it captures the derivation relation of a structural proof system, rather than a
proof system which only proves entailments between normal forms. More-
over, as well as satisfaction P : SP, the consequence relation must prove
refinement SP :5 SP' and equality of two programs satisfying a specification
P = P : SP. Since equality should be reflexive, we used P : SP to abbreviate
P=P:SP.

5.7.3 Other improvements

For the historical record, here are some more notes about the formalism
presented in the last section of Sannella et al. [1992] and differences with
the work here. Some of these comments are technical and esoteric.

Semantics. The definition of the semantics here has been structured us-
ing rough types, as explained in Sections 4.5 and 5.2.2, and as suggested
in Sannella et al. [1992]. In loc.cit., the semantics was given using a par-
tial definition with slightly informal and "non-local" side conditions; in the
clause for [AX:SP. ObJ]I the side condition is "provided for each v E E[SP,,

IObJ]1p[v /x] is defined." This is a stricter version of the partial function
model outlined in Example 4.30; there, the A-term is interpreted as a func-
tion which could return an error element when applied to some v E E[SPL,
and is not undefined whenever the body is undefined for some v. On terms
which are typable in AASL+, there is no difference between these partial defi-
nitions and the full model which ignores the domain specification SP in the
interpretation for A, and just uses rough types.

ASL+ 	 170

Reduction rules. The presentation in loc.cit. uses a "split" rule of conver-
sion for types based on untyped reduction, as mentioned in Section 4.4.2.
The combination of untyped reduction rules and singleton types without
type tags, has some strange effects. In particular, one can derive:

M':A
M' : {M'} 	{M'} 8 {M} 	M: SP

{M} 	 {M} : Spec (SP)
M': SP

This shows the derivability of a rule allowing well-formed /3-expansion of
terms satisfying a specification:

M: SP M'- 8 M M' :A

M': SP

Embarrassingly, Sannella et al. stated that they had specifically excluded
this rule from the system! This goes to show that the interaction of "non-
informative" type constructors can be subtle.

The reason for not wanting this rule is methodological: ideally, we should
prove (AX:A. M)N : SP in a structural way, not simply by /3-reduction and
proving M[NIX] : SP. But the methodological aspects of the system should
not be confused with the logical aspects; practical implementations can en-
force a particular proof search mechanism if required.

Nevertheless, the derivability of the rule above is still perturbing, and mo-
tivates using singletons with type tags and a semantic-oriented presentation
instead of untyped reduction. See the discussion in Section 4.4.2.

Subject reduction. Sannella et al. [1992, Lemma 7.3] claimed subject re-
duction for their system. Unfortunately the sketched proof in Sannella and
Tarlecki [1991] was incomplete and is non-trivial to fix, see Section 4.4.1.
This problem is still open.

Other changes. The original semantics used sets rather than PERs; the orig-
inal proof system used the H rule of equal domains (see Section 4.9.2).

5.8 Two Problems

As I mentioned in Section 5.1, there are a couple of problems with this for-
mulation of ASL+, which prevent it being a directly useful module language.

ASL+ 	 171

The first is the context problem. This problem is that the PBO and SBO
mechanism does not provide a framework for understanding a current con-
text of declarations, or a current environment of bindings. A good way of
dealing with contexts is essential to the realistic use of the language, as soon
as we go beyond "closed" programs or specifications, or beyond simple ex-
amples of parameterisation with only one parameter. We consider this prob-
lem in Section 5.8.1.

The second problem is that rough types are not good enough to type-
check programs and specifications like those shown in Chapter 2. The re-
lated fact is that those programs do not have a direct semantics in an insti-
tution. This is the sharing problem 	to explain the propagation of type
equalities properly. This is investigated in the rest of this chapter, beginning
in Section 5.8.2.

5.8.1 The context problem

The treatment of PBOs and SBOs as combinators is not very satisfactory for
constructing modular systems.

To write the parameterised program Li St and its specification LISTFUN
shown in Section 2.1.3 on page 28, we begin with the signatures:

ELT =def Sig 	 XLIST =def Sig
type elt 	 type elt

end 	 type list
val nil :list
val cons : elt x list - list

end

In the abstract formulation of ASL+ given in the last section, ZELT andfLIST
could be represented by nullary SBOs (corresponding to the syntax above),
and Li St might be defined as

Li St =def AX:ELT. extend X to oP list via LILT—LIST

where Olit are the axioms specifying lists, shown in the specification LISTFUN
on page 28. The specifications LISTFUN and LIST would be written similarly.
The three terms all have the general form:

17 X : PARAME TER TYPE . EKTENDOPERATOR(X, extrabits)

(remember that to explain the dot notation, LISTFUN has to be translated to
use singleton types and enrich, as explained in Section 2.1.5).

ASL+ 	 172

This idiom is prevalent in the examples in Chapter 2 and the examples
of ASL+ elsewhere. In each case, the parameter is used in a standard way to
build the result. When the parameter is a specification, as in LIST, then there
is more choice: we might use an operator for closing up the parameter under
some equivalence, for example, before enriching it. But when the parameter
is a program, as in LISTFUN and List, we intend a constructive interpreta-
tion, where a new program is built (or specified) from the parameter without
altering it; in other words, the body defines a persistent constructor [Sannella
and Tarlecki, 1988b].

This idea lies behind the dot notation used in LISTFUN. There is an
implicitly-available algebra which represents the current context. When pro-
gramming, it is more convenient to use pieces of parameters with the dot
notation than to each time explicitly extend, and perhaps rename, the pa-
rameter. This is similar, although not quite as extreme, to the difference be-
tween programming in A-calculus and combinatory logic; in the second case
one can only use closed terms. Here, we have open terms at the module-level
terms, but closed terms for core-level signatures and algebras. The Li St ex-
ample above is readable, but once many parameters are added, things get
worse, piling extension on extension, without any name-space management
unless renamings are supplied explicitly by the user.

Because the most important parameters in the examples were all algebras,
it seems worthwhile trying to do something about this. We can treat algebra
parameters specially, and introduce a form of context which allows algebras
and signatures to be open. Then this will also explain the implicit use of
pervasive datatypes, like the algebra of booleans.

To do this, the idea of combinators for building programs is not so good,
because we want dot notation to refer to parts of algebras. It seems better to
return to something like the original assumption described in Section 5.7.1:
having some unspecified syntax which respects substitution operations, so
there is a closer link to the concrete syntax used for simple programs and
specifications. But restrictions should be made so that the free variables in
the unspecified syntax only range over "core-level" entities. We want a notion
of an algebra or signature fragment, which is meaningful in a context. The
context for simple programs and specifications should only mention core-
level entities, so there should be a way of extracting a core-level context
from an ASL+ context. Moreover, we would like to integrate a good way of
handling the dot notation used in Chapter 2, to project from the components
of a context.

These are some motivations behind the approach taken in Chapter 6 and
Chapter 7, using the institution FTC. The ideas outlined above will become
clearer in these later chapters; a context for defining JTC algebras and sig-
nature expressions is simply an JTC signature, and it is built by renaming

ASL+ 	 - 	 173

components with a dot-prefixing operation.

5.8.2 The sharing problem

An appealing view of modular programming is to treat the putting-together
of programming modules as typed functional programming [Burstall, 1984].
This is based on an analogy between interfaces and types, and program mod-
ules and values. So a module whose interface contains other modules is
understood as a function from modules to modules.

Unfortunately, the "rough types" used for type-checking in ASL+ are not
good enough to understand the composition of parameterised programs and
specifications in this way. For example, the functor Li St shown above is
given the rough type:

0 	Li s t 	'ELT 	' LIST

which reflects that it maps ' T-algebras to Lf5 -algebras.
There are two related difficulties. The crucial one is that the rough type

EaT - ELIST makes no connection between result of applying Li St and the
argument algebra, although from the definition of List we know that the
result is always a ELIç-expansion of the argument. The semantics of the
rough type reflects this lack of connection: the function space EELT - ELIST

includes constant functions which ignore their argument entirely.
The other difficulty is that the type EELT — ELIST only allows Li St to be

applied to ET-algebras: in practice we may want to use an algebra such as
Nat which has the richer signature:

ENAT =d,f Sig
type elt
val zero : elt
valsucc:elt - elt

end

To apply Li St to Nat we first need to cut it down to size, writing something
like:

Li stNat =def Li St (reduct of Nat by LIELT,NAT)

The rough type for this instance of reduct is:

() P,. reduct of - by tELT,NAT = ENAT - Eam

which, like the type of List, makes no connection between argument and
result.

ASL+
	 174

Because there is no connection, rough typing information alone is not
enough to type-check program-level and specification-level terms when mod-
ules are combined. Suppose we rename Li stNat by prefixing LUST with
"Li stNat." and rename Nat by prefixing XNAT with "Nat. ". This renaming
might happen automatically with a notion of a current context of declara-
tions; when the two modules are combined the signature of the context be-
comes the union of these two signatures, L = Nat.LNAT u ListNat.LLIST.
In this signature, we would hope to write a formula such as this:

ListNat.hd(ListNat.cons(Nat.zero,ListNat.nil)) = Nat.zero

To know that this formula is well-typed, we must know the type equation
ListNat.elt = Nat. elt. But nothing in rough type of List entitles us to
suppose that these two types are equal, and they are distinct sorts in L.

The ASL+ specification (or "full type") for Li st is much better; as well as
imposing axioms for the list functions in the result, a dependent type and
the singleton construct specify that the result should be an expansion of the
input:

List : I1X:L r . impose PLIST on translate {X} by tEELT,LIST

The idea of using dependent types to express modular structure appeared in
Pebble [Lampson and Burstall, 1988] and was explained by MacQueen [1986].

The Il-type for Li st correctly cuts down the range of permissible imple-
mentations to those which make use of their parameter. With suitable rules
for reasoning about the renaming SBOs, we might now prove the equations:

ListNat.elt = (reduct of Nat by LSELT,ENAT).elt

and
(reduct of Nat by L5ELTNAT).elt = Nat. elt

which justify writing the formula above. To deduce the second equation, we
need to know that reduct of - by 1E1T,11T satisfies the specification

reduct of -by tELTNAT : TIX:LNAT. derive from {X} by LEELTNAT

and then we use the putative rules about renamings again.
But this is not satisfactory - we want to deal fully with type-checking

in the rough typing system, automatically if possible, and not have to deal
with it in the satisfaction system when human intervention is perhaps needed
(depending on the logic).

Even worse, because rough typing fails, the obvious, direct institutional
semantics for the constructs above does not work. If fct, is the signature
mentioned above, in a typical institution, the set of sentences Sen(L) only

ASL+ 	 175

consists of "well-typed" sentences over X, and so does not contain the
formula above, because Li stNat.el t and Nat. el t are distinct sort names.

Somehow, we must either rename names which share to a single name
(similar to a pushout semantics, taking amalgamated unions of signatures),
or we must add sharing equations between the type names. Pushouts serve
at the semantic level, but names in semantic signatures need to be related to
the program-level identifiers which the user writes during modular construc-
tion of programs. Identification of names is also less flexible than sharing
equations with type expressions, as mentioned in Section 2.1.5.

One way or another, the sharing information must be known to type-
check terms, hence programs, formulae and specifications. But the rough
types used so far cannot provide this information.

I draw two conclusions from these observations:

Simple rough types are not sufficient to capture the "type-checking" part
of putting together modules in ASL+.

Ordinary algebraic signatures are not sufficient to capture sharing be-
tween sort names needed for type-checking with program-level identi-
fiers.

The next two sections are taken up by more consideration and justification
of these conclusions. In Section 5.9 we see where the problem of sharing
arises when constructing modular programs, and look at different ways of
expressing sharing. In Section 5.10 we consider ways of incorporating shar-
ing into an institutional semantics, and argue that the best approach is to
modify signatures to incorporate sharing information. This will be done in
the institution JTC defined in Chapter 6.

The first conclusion will be confronted in Chapter 7 when a more sophis-
ticated rough typing system is defined for the institution FTC, incorporating
dependent types.

5.9 Sharing in Modular Programs

The need for ways of expressing sharing in modular programs has been un-
derstood for some time, probably long before MacQueen's seminal exposi-
tion on the subject written during the development of SML [MacQueen, 19861.
However, it seems worth re-investigating the basics here, to understand the
alternatives and carefully motivate extensions to ASL+.

ASL+ 	- 	 176

Aliasing

Aliasing is a well-known difficulty when trying to formally understand pro-
gramming languages. Flexible methods of name binding and parameter pass-
ing mean that the same program entity (type, value, module, or whatever) can
be referred to via several different identifiers, even within the same scope.
Conversely, the same identifier may be used in different scopes to refer to
different entities. The problem is to keep track of the proliferation and varia-
tion of identifiers. This is necessary for giving a formal semantics, a program
logic, or perhaps a type-system to the programming language.

Aliasing can be handled by converting any identifier to a canonical one
by a so-called "unique origin" rule, or by associating each identifier with
some other reference value. For example, the 1990 formal semantics of Stan-
dard ML [Milner et al., 19901 associates unique semantic-level stamps (called
names) to types and modules, when defining compile-time type-checking.
Type identifiers may be bound to different names according to the scope.

Although aliasing is rife in programming languages, in logics and type
theories it is sometimes less apparent. This is partly because of the com-
plexity of programming language features, but also partly because logics and
type theories are studied in the abstract: for example, definitions are typically
dealt with in the informal meta-language rather than in the object language
itself. Yet when given a formal treatment, definitions turn out to be less
tractable than might be hoped [Griffin, 1988, Harper and Pollack, 1991, Seven
and Poll, 1994]. Researchers applying type theory are currently adding such
"high-level" concepts to the formal part of the theory, both to understand
their implementation, and to bring the mechanical language gradually closer
to the looser language of the mathematician. And as the implementation of
mathematical theories becomes more advanced, new issues of modularisa-
tion and re-use need to be dealt with, and this brings in further problems of
name-space management and aliasing.

Modular programming

An important case of aliasing occurs when building modular programs [Mac-
Queen, 1986]. In this setting, when two identifiers for modules (or other
entities) stand for the same thing, we say that they share. This is because
in the compiled program, the two names really share the same implemen-
tation. (Whether the compiler reuses the same code is a slightly different
issue: for optimization it might be desirable to duplicate code by in-lining,
for example.) As well as type-checking, we need to know about sharing for
constructing proofs about specifications and programs.

ASL+ 	 177

Sharing can be split into two kinds. First, for the combination of two pro-
gram modules to make sense, some subparts may have to share the same
implementation. Two modules which communicate using sets of integers,
for example, are only compatible if their underlying implementations of in-
teger sets are the same. Second, when a generic or parameterised module
is instantiated, part of the result may share with part of the argument. For
example, when a module which yields binary trees of sets of integers is given
an input module describing sets of integers, we might like to construct trees
using previously constructed sets of integers (to give a more realistic version
of the Li stNat example from Section 5.8.2). Again, the underlying imple-
mentations must be the same.

In the next few subsections, I will elaborate on the two kinds of sharing
mentioned above: sharing in the parameter, and parameter-result sharing. I
will also explain the need to propagate "extra" sharing from the argument
- argument-result sharing - and how sharing by parameterisation can be
used with higher-order modules.

5.9.1 Sharing in the parameter

Plugging modules together by parameterisation, we may need to know that
there is some sharing between the modules to be used as arguments; for
example, that two of them will have the same implementation of integer
sets.

Sharing in the parameter amounts to requiring sharing amongst some
parts of the context, where the context is a collection of assumptions about
the interfaces of modules. Typically we need to assume this kind of sharing
for the formal parameters of a parameterised module.
In SML, sharing in the parameter appears in functor headings like this:

	

functor F (structure Si
	

sig type intset ... end

	

structure 52
	

sig type intset ... end

sharing type S1.intset = S2.intset)

MacQueen [1986] calls this the "diamond import" situation, because of the

ASL+
	 178

picture:
intset

/\
Si
	

52

F
This means that F should only be applicable to structures Si and 52 which
have the same implementation of I ntset.

5.9.2 Parameter-result sharing

When a generic or parameterised module is instantiated, we may need to
know that part of the result shares with the argument that was used as an
instantiation.

Parameter-result sharing is the kind of sharing that occurs between some
parts of a module and its context. Typically this occurs when a program
entity is propagated from the import interface of a parameterised module
to the export interface, so the body of the parameterised module constructs
this kind of sharing from entities in the formal parameter.
In SML, this type of sharing appears in functor headings like this:

functor G (structure S : sig type intset ... end)
sig type t ... sharing type t = S.intset end

This heading tells us that the functor C must propagate the type i ntset
from the argument to the type t in the result.

Perhaps only pedantic SML programmers write parameter-result sharing,
because the SML type-checker automatically infers it from the body of the
functor, which is always written under the functor heading in SML. In other
languages where the functor body is not available, one needs to carefully
specify parameter-result sharing. One case is Extended ML [Kahrs et al.,
1994], where functor bodies can be unimplemented; other cases occur when
there is a higher-order parameterisation or mechanisms for separate compi-
lation, when again functor bodies can be unknown. In ASL+, parameter-result
sharing is needed because of higher-order parameterisation.

ASL+
	 179

5.9.3 Argument-result sharing

When an argument is supplied to a parameterised module, it may witness
"extra sharing" over and above the requirements expressed in the formal pa-
rameter. Rather than forgetting this extra sharing, the type-checker typically
propagates it to the result of applying the parameterised module.
For example, in S M L if we have a functor

functor F (structure S:sig type t end) : sig type t=S.t end

then we can apply F to a structure with a richer signature, for example,

structure I = F(struct type t=int end)

The inferred signature of the argument structure here expresses the fact
that t shares with I nt, which is a name from the context. Although this
sharing equation is not requested in the parameter signature of F, we might
reasonably expect the equality to be propagated, so that T. t = I nt. Indeed,
this behaviour turns out to be invaluable in practice.

Perhaps it seems strange to imagine that this "extra sharing" would not be
propagated: reasoning equationally, if F(S).t = S. t and S. t = I nt, it follows
that F(S).t = I nt. However, this is a design choice, because of the different
ways of treating type equality in programming languages. In type theories we
expect types to be compared with a structural equality, but in programming
languages it is more usual to use name equality. Name equality is efficient to
implement, and moreover, allows type abstraction by preventing confusion
of types which "accidentally" have the same structure. With name equality,
we have a choice over whether to propagate extra sharing or not.

The standard forgetful explanation of how to apply parameterised speci-
fications in ASL or ASL+ corresponds roughly to generating new type names
when a parameterised module is applied This standard explanation is that
the derive operator or reduct function must be used to forget any extra
information present in the argument signature, as shown for the example
Li stNat on page 173. If sharing information about type identities is part
of the signature, as will be proposed in Section 5.10, it is forgotten by the
derive operation and cannot be propagated to the result.

The crux here is that parameterised programs and specifications in ASL+
are given fixed input and output signatures. For example, a parameterised

9lhere is still a question over whether each application of a module produces new
names, or whether every application of a module to the same argument produces the same
names: this is the distinction between a generative and applicative semantics mentioned
in Section 7.3.5.

ASL+
	 180

program denotes a single function,

f : Mod (2 par) - Mod (f res).

But in practical module systems, a parameterised program denotes a family
of functions indexed by the signature of the actual parameter,

farq : Mod (arg) 	Mod (res (D 2'a g),

where the result signature 2'res 1arg depends in some way on the signa-
ture of the actual argument. This dependence of the output signature upon
the input signature is reflected in most explanations of parameterisation in
specification languages, too, in particular including the pushout approach
widely used since CLEAR [Burstall and Goguen, 1980]. The signature of the
output need not contain extra names'° but it should contain the sharing
information from arg , to allow argument-result sharing.

If sharing information is added to the institutional notion of signature,
then the rough typing approach in ASL+ cannot be good enough. If sharing
is explained outside the institution signatures, then we would need extra an-
notations to explain the propagation behaviour of parameterised programs.
A whole new type system would be needed to type-check modular programs.

5.9.4 Sharing by parameterisation

At least since Pebble [Lampson and Burstall, 19881, researchers have known
that sharing in the parameter is not needed when higher-order parameteri-
sation is available. This is because, in the absence of cyclic dependencies, we
can re-express examples like the one above by "lifting" out the common part
of the parameters and putting it into a new parameter.

Sharing by parameterisation was used heavily in the example in Chap-
ter 2. To re-cap, here is a variation of the first example above (in a putative
extension of SML):

functor F'
(structure IntSet: INTSET
functor FS1(X:INTSET) : sig

sharing type intset = X.intset
end

functor FS2(X:INTSET) : sig

°CertainIy not extra user-level identifiers; additional names from the input could be
treated as hidden in the output. See Section 7.3.2.

ASL+
	 181

sharing type intset = X.intset
end)

= struct
structure S1=FS1(IntSet)

and S2=FS2(IntSet)

end

The functor body provides the desired sharing, by construction.
The change from F to F' adds an extra parameter to the functor and

moves the declaration of Si and S2 into the functor body. This makes the
modular structure more complicated, but it has important advantages. First,
the application of F' cannot fail because of accidentally basing Si and S2
on different SET-structures. Second, more freedom is allowed in the order
of program development; we may implement IntSet and FS1, FS2 in any
order.

The crucial point is this: to know S1.intset=52.intset in the body
of the functor, we must know the parameter-result sharing specified in the
functor heading for FSi and FS2. So using sharing-by-parameterisation, we
can reduce sharing in the parameter to parameter-result sharing, but the
latter is still needed.

5.9.5 How to provide sharing

The preceding subsections surveyed the different ways that sharing can be
constructed or requested in modular programs. The conclusion is that, when
higher-order parameterisation is available, there is one kind of sharing which
must be explained: sharing between parameter and result. To be a useful way
of deriving type identities, the possibility for allowing extra sharing from the
argument is also important.

The type system I shall define in Chapter 7 focuses on providing parameter-
result sharing, including propagation of extra sharing from the argument.

5.10 Sharing in Institutions

Suppose we wish to extend an institution-based semantics of a specification
and programming language to one which provides parameterised specifica-
tions and programs. We want a generic construction which works on any
particular institution and any simple specification or programming language
over it.

ASL+ 	 182

Following the model-theoretic approach outlined in Chapter 1, programs
are syntactic expressions which denote models from an institution 2, and
specifications denote classes of models. More fanciful views than this are
certainly possible, to bring the syntax of programs and specifications further
into the picture. (For example, we can consider a programming language to
be an institution in which the satisfaction relation is a function from sen-
tences to models.) But I shan't consider syntax further just yet.

The problem is to account for sharing. While a real language (particularly
a programming language) may already include an understanding of sharing,
the usual institutional semantics of ASL in an institution such as EQ or
JOC does not.

What is meant by this? Simply that there is no way to specify sharing in
algebraic signatures. For example, in the signature

=def Sig
sorts s, t
opns c : s, d: t

end

the equation "c=d" is ill-typed and so not in Sen(s). But examples in Sec-
tion 5.9 showed that, either by assumption or by the way the program is
constructed, the two sorts s and t might always denote the same set, so the
equation c = d is type-correct.

There are two basic ways to solve this, corresponding to whether or not
we deal with sharing information.

Ignore sharing We could extend the satisfaction relation 	to be three val-
ued, so that A 	cp E { true, false, wrong }. Then Sen(E) is extended
to contain all formulae which could possibly have a denotation. So now
c = ci Sen(E), but if Ac * Ad, then (A 	c = ci) = wrong. This is a
bit like dynamic type-checking in programming languages.

Handle sharing If we deal with sharing information somehow along with
signatures, then we can maintain the idea of static type-checking. Then
Sen(X) consists only of formulae which have a denotation in the se-
mantics, as usual.

The idea of a three-valued or partial satisfaction is interesting, and multiple-
valued satisfaction relations have already been studied in the institutions
literature. The satisfaction condition makes sense because formulae should
not change definedness under a renaming. However, some standard con-
structions on institutions with two-valued satisfaction relations, such as the
addition of negation, need modification.

ASL+ 	 183

More importantly, it seems wrong to ignore sharing when we have lan-
guages that can be statically type-checked. Using a statically type-checked
specification language is even more advisable than using a statically type-
checked programming language. It seems strange that some formulae might
make sense "accidentally" - only for particular implementations of the speci-
fication or its parameters. So I shall pursue the "static type-checking" sce-
nario, adding sharing to the framework.

There are two ways of adding sharing to the framework:

External sharing - sharing is resolved outwith the institutional notion of
signature. For example, we could maintain a map from "external iden-
tifiers" to "internal names," the latter being names in an algebraic sig-
nature. This is (a bit) like the 1990 SML semantics, and was suggested
in the algebraic semantics sketched for EML by Sannella and Tarlecki
[19861.

Internal sharing - sharing is made part of signatures in the institution. For
example, to handle type sharing, signatures might be given an equival-
ence relation on sorts.

The advantage of external sharing is that we stick to a familiar-looking in-
stitution with ordinary algebraic signatures. The considerable disadvantage
is that we completely break the institution-independent framework: for ex-
ample, the specification building operators of ASL would have to be lifted to
operate on the "external" part of algebraic signatures. Much extra complex-
ity is hidden in the translation function mapping the source language into
the institutional semantics, and it would have to be defined afresh whenever
we modify the source language.

The alternative, having sharing internal to signatures, means that we
must modify the institution. After that, we retain the advantage of being
able to apply the familiar institution-independent framework. Following this
choice, signatures are static typing environments which contain the com-
plete information needed to type-check terms and formulae. This means
that Sen(s) is exactly the set of well-typed formulae in the abstract syntax
over the signature f.

The advantage of an institutional semantics is an excellent motivation for
following the internal sharing approach. There is still a question about how
the sharing information is expressed. We could use an equivalence relation
on sort names, or perhaps a class of models over some subsignature to force
the interpretation of some of the symbols."

"this last idea is reminiscent of hierarchical specifications, see Wirsmg [1990].

ASL+ 	 184

Chapter 6 defines an institution JTC which expresses sharing by adding
"symbolic type equations" to signatures. This allows signatures to remain
close to the concrete syntax of the language, because names in a signature
are also used as program-level identifiers. For FTC, the sentence functor
is defined directly upon the richer signatures. This approach takes advan-
tage of having syntax to describe algebras: the symbolic type equations are
composed of type-expressions in the underlying programming language.

5.11 Related Work

Researchers have studied numerous foundations for module parameterisa-
tion in specification languages [for brief surveys see Wirsing, 1990, Sannella
et al., 1992] and also in programming languages [for references see Leroy,
1996b]. But there is hardly any work on modules for wide-spectrum lan-
guages which encompass both program and specification parameterisation.
Exceptions include the original description of ASL+ [Sannella et al., 1992]
and the languages EML [Kahrs et al., 1994] and SPECTRAL [Krieg-BrUckner
and Sannella, 19911, which each have H-abstractions, but no A-abstraction
over specifications.

Here I shall mention some work related to ASL+ from the areas of type
theory and specification; this is not an attempt at a full survey. Related work
on programming languages (which relates more with the last two sections
above) will be compared in Chapter 7.

Module algebra [Bergstra et al., 1990] Specifications in ASL+ are built us-
ing SBOs, which were formalized in Section 5.2 as n-ary operations in an
algebraic signature. The module algebra of Bergstra et al. uses operators for
building specifications in JOC, specified as an abstract datatype. Rather
than a sort for (the algebras in) each signature, there is a single sort M
of modules, together with an operation Sig(—) : M - Sign. The abstract
datatype has axioms for the laws that the SBOs must satisfy. In ASL+, such
laws are instead expresssed via 	We could use the operations of module
algebra as an alternative set of SBOs for AASL+, for the particular institution
:roc.

Type theoretic approaches Several researchers have tried to fit algebraic
specification languages inside type theories; Luo [1993] gives a nice refor-
mulation of ASL inside ECC, for example. Type theory appears promising
for program development: specifications and programs can be written in the
same language, and there are useful constructs for modularisation, including

ASL+ 	 185

A-abstraction for parameterisation, 17-abstraction for specifying parameteri-
sation programs which depend on their arguments, and 1-types for building
up programs. These last two features are exploited by Burstall and McK-
rnna [1991] in the deliverables approach to program development; Reus and
Streicher [1992] reformulated the axioms of module algebra in this setting.

But type theory is not (yet) a panacea; in particular, £-types do not pro-
vide the right explanation of modular programming (dependent records would
be better) and user-level support for writing modules is only now being in-
vestigated [Courant, 1997b]. Moreover, the ASL+ approach works not in an
obese type theory, but for an arbitrary programming and specification lan-
guage, without adding anything new to them.

COLD-K [Jonkers, 19891 The specification language COLD-K has a param-
eterisation mechanism studied by Feijs [1989]. It is based on A-calculus ex-
tended with a conditional fi -reduction rule, called it:

(Ax 	R.M)N— M[N/x] 	provided N R

The term R acts as a so-called parameter restriction. The relation is defined
on terms of the calculus, extending reflexivity and assumptions pointwise to
A-terms. The proof system for M 	N includes a contravariant rule for
A-terms. This gives a calculus of higher-order parameterisation which has
similarities with the type-level of higher-order subtyping calculi mentioned
in the last chapter (see Section 4.3.2), and hence with AASL+. The conditional
rule for fl-conversion corresponds to the usual check that an argument type
A ::~ B in the rule for applying type operators (Ao(:!~; B. M)A. A term can-
not be written in the (full) type systems studied here unless it satisfies the
parameter restriction.

To limit the terms that can be written in the COLD-K A-calculus, Feijs
gives a Curry type-assignment system, starting from an algebra of constants
over a single sort and a pre-order on the sort. A model is constructed by
extending the algebra with a "top" element of its domain, and interpreting
Curry typed terms as functions, in the usual way.

This is close to the ideas behind rough typing and SBOs in ASL+, except
that Feijs begins from a single type 0 for all specifications, rather than types
P(E) for each '12 A single type for all specifications gives a more general
notion of parameter: one can write functionals operating on specifications
of arbitrary signature, for example. Arguably, such flexibility is not so useful
when programming and specifying in-the-large, because we want modules

12 He mentions the possibility for other sorts, but the suggestion is that these would be
used for syntactic purposes: parameterised renamings and the like.

ASL+ 	 - 	 186

to have fixed input and output interfaces to comrninicate requirements be-
tween separate parts of the development (the interfaces should be fixed, but
arguments which are more general than the interfaces should be allowed).
But this is a point of methodology rather than a criticism of the language.

Compared with ASL+, COLD-K has no H-abstraction (and no level of pro-
grams).

Cengarle and Wirsing [1994] A similar specification language with higher-
order parameterisation based on A-calculus was introduced by Cengarle and
Wirsing and studied in detail in Cengarle's thesis [1994]. The basic calcu-
lus is similar to COLD-K's A-calculus, but instead of conditional /3-reduction,
Cengarle provides her language with a formal system for deriving a set of
requirements which must be satisfied for any particular parameter. She also
distinguishes a type of specifications 1 from the type of signatures 0, and al-
lows parameterised signatures as well as parameterised specifications. Later,
parameterised requirements enter the picture.

A crucial part of Cengarle's language is the use of the function Sig(—)
as part of the object language, rather than a meta-language entity (this idea
is suggested in Wirsing [1990]). It means that the body of a parameterised
specification can compute the desired output signature based on the signa-
ture of its parameter, which may vary. This is a flexible technique, but still
requires the user to explicitly construct combinations of signatures - for a
high-level language, we might prefer that pushouts or amalgamations were
constructed automatically.

Apart from these differences, ASL+ stands apart from Cengarle's lan-
guage because it includes H-specifications and parameterisation on programs,
as well as parameterised specifications, and is given a model-theoretic se-
mantics rather than a presentation-level semantics (see the discussion in
Chapter 1 on page 18).

5.12 Summary

This chapter described the idea behind ASL+ as a generic construction for
building a modular programming and specification language from an arbi-
trary institution. An abstract version of ASL+ was defined which was in-
tended to realise this goal, based on modifications to the original work by
Sannella et al. [1992].

The abstract version of ASL+ was defined using AASL+, an extension of
the type systems A<{} and A Power of the previous chapters. The definition
of AASL+ began with a rough type-checking system and a semantics based on

ASL+ 	 - 	- 	 - 	187

the definitions given for A Power• The "full" type system, called the satisfaction
system, was based on a consequence relation -- for proving satisfaction for
simple specifications and programs built with PBOs and SBOs. All the results
proved for Apower in Chapter 4 also hold for AASL+.

To define ASL+ itself, specific PBOs and SBOs were defined, for construct-
ing programs and specifications based on an arbitrary institution. The syntax
and semantics of these operators is based on Sannella and Tarlecki [1988a,b].
Then a proof system defining 	was sketched, demonstrating some old
rules from Farrés-Casals [1992] and some new (but unexciting) rules; further
research is needed here.

This abstract description of ASL+ can serve only as a kernel language;
examples such as those in Chapter 2 need translation to be fully formalized.
This is because of two problems described in Section 5.8: the context problem
and the sharing problem. These problems are related, in fact, since we wish
to find a useful form of context and at the same time explain sharing between
the context and the body of parameterised program or specification.

These problems were explained and explored in the later part of this
chapter. The exploration motivated a design decision. In Section 5.10 I de-
scribed the idea of including symbolic type expressions in the signatures
of an institution, so that the names of the signature can really be used as
program-level identifiers, as in the examples in Chapter 2. This idea is taken
up in Chapter 6.

6 The Institution FPC

This chapter defines an institution FPC, complete with a syntax for sig-
natures and algebras. It is based on a small functional prograrmning
language together with a suitable program logic. The functional lan-
guage is FPC, which has partial recursive functions and recursive types.
The program logic is a version of Higher Order Logic, extended with
constructs for reasoning about the types of FPC.

In the next chapter, the institution FPC is used to define ASL+FPC, a
concrete version of ASL+.

6.1 Overview 188
6.2 The Language FPC 191

6.3 Fixed Point Semantics of FPC 197

6.4 A Logic for FPC 203

6.5 Semantics of LFPC 205

6.6 A Proof System for LFPC 207

6.7 The Institution FPC 209

6.8 Syntax for FPC Signatures and Algebras 211

6.9 Discussion and Related Work 218

6.10 Summary 222

6.1 Overview

T HE LANGUAGE ASL+ was conceived as a construction to build a modular
specification and programming language from a core-level programming

language and a corresponding program logic. The construction is supposed
to work for any programming language and program logic with an institu-
tional semantics.

Institution-independent generalities are all very well, but to illustrate the
use of ASL+, we present examples using specific instances. A good way to

The Institution FPC - 	189

be encouraged that generalities work is to carefully examine particular in-
stances, spelling out low-level details it is tempting to omit.

This chapter and the following one present my attempt to examine one
particular instance of ASL+. Rather than use a programming language con-
trived from the simplest institution EQ., I shall use a language which more
closely resembles a modern functional programming language such as Stan-
dard ML, together with a suitable logic for writing specifications. It should be
able to formalize the examples earlier in the thesis completely. This means
in the core language, dealing with higher-order types, and both recursive
functions and recursive types; in the module language, it means handling
sharing and the propagation of type equalities.

As a picture, the syntax fits together like this:

The programming language is built upon FPC, a minimal A-calculus with re-
cursive types. Programs are groups of declarations of FPC types and terms.
Signatures are the "types" of programs; declarations of type names and value
names with types. The program logic, dubbed LFPC, is a version of Higher
Order Logic (HOL) extended with LCF-like constructs for reasoning about the
types of FPC. Terms of FPC are also terms in LFPC. The propositions of LFPC,
together with the syntax for signatures and the SBUs of ASL, give a specifi-
cation language. Combining the programming and specification languages
and adding the ASL+ A-calculus for higher-order modules, we finally arrive
at ASL+FPC

The Institution FPC 	190

For each piece of the syntax, there is a corresponding semantics:

The typed A-calculus FPC has a standard CPO model .iM in a category which
allows the solution of recursive domain equations. The FPC signatures and
algebras are the denotations of signature expressions and programs in the
programming language. The logic LFPC has a set-theoretic model £ which
interprets the predicate on an FPC type as the CPO order relation on its
domain in N. (The type itself is modelled as the underlying set of the do-
main.) Formulae from LFPC are combined with algebras and signatures in
the institution for FPC, FPC. Finally we can give a semantics for ASL+FPC,
in a similar form to the semantics defined in earlier chapters.

This chapter contains the "core" language part of this construction, which
defines the institution FPC and the syntax for signatures and algebras. Sec-
tion 6.2 introduces the syntax for FPC; Section 6.3 defines its semantics.
Section 6.4 introduces the syntax for LFPC, and Section 6.5 defines its se-
mantics. Section 6.6 sketches a proof system for the logic. The institution
FPC is defined in Section 6.7, and a syntax for programs and signatures
follows in Section 6.8. More details of FPC appear in Appendix A, including
definitions of standard types and a presentation of the LFPC proof system.

Section 6.9 discusses the design of ITTC and compares it with related
work. Section 6.10 concludes with a summary. The study of the module
calculus proper begins in Chapter 7.

The Institution FPC 	- 	 191

6.2 The Language FPC

The language FPC (Fixed Point Calculus) is an extension of the simply-typed
lambda calculus with product types, s x t, sum types s + t, and recursive
types pa.t [Plotkin, 1985, Gunter, 19921.

With these type constructors no base types are necessary because famil-
iar datatypes can be built-up beginning from the empty type pci.a. For each
function type s -) p, we can define a fixed point operator so that we can pro-
gram with recursive functions. The expressiveness of FPC is well-known; for
reference, Appendix A has some more details of how the familiar datatypes
and fixed point operators can be defined.

In practice, of course, the full type expressions for familiar datatypes are
too cumbersome to write out every time, and we need to declare type defini-
tions for abbreviation. For the same reason, we need to declare terms, such
as the fixed point operator. Declarations are added at the level of programs
(rather than expressions); to allow for them we add type and term constants
to the language of expressions.

This section reviews the syntax of FPC. The presentation given here dif-
fers from those cited above, because it is factored by a signature to specify
type and term constants.

6.2.1 FPC types and signatures

Let TyVar and TyConst be disjoint countable sets, the type variables and
the type constants. I use a,... to range over TyVar and c, ci,... to range
over TyConst. The set of FPC types, ranged over by t, is generated by the
grammar:

t ::= c I a I t—)t I txt I t+t I pa.t

The free and bound variables of a type are defined as usual, and o-convertible
types are considered syntactically identical. Substitution of the type s for the
type variable a in the type t is written [s/alt.

Given a subset Ty 	TyConst, we write ProgTypes(Ty) for the set of
closed types containing constants only from Ty.

The syntax of FPC is parameterised on a notion of signature, which is
equipped with sharing equations for type constants.' Let TmConst be an-
other countable set, the term constants. I use v,... to range over TmConst.
Occasionally I use v, v' to range over TyConst u TmConst.

1J place of the usual algebraic terminology of "sorts" and "operators," I will oten speak
of "type constants" and "term constants".

The Institution FPC
	

192

Definition 6.1 (FPC Signatures).
An FPC signature ' is a triple (Ty, SIrS, Tm) where

Ty 	TyConst is a set of type constants,

shr : Ty -. Fin (Prog Types (Ty)) is an assignment of finite sets of
types to type constants,

Tm : TmConst - ProgTypes (TyE) is a partial assignment of types to
term constants. 	 o

The set of type constants Ty determines the set of .1-types, Pro gTypes
For simplicity, signatures do not allow overloading, so a partial function TmX

gives the types of term constants; the set of term constants defined by I is
Dom(Tm).

The component sW expresses sharing between types, or type definitions
so a type constant can abbreviate a complicated type-expression. (See Sec-
tion 5.10 for motivation behind adding type equations to signatures.)

The equations given by ShE are asymmetric. In principle the sharing equa-
tions of a signature should be unifiable and have a solution as a set of type
assignments for the type constants of the signature, in other words, there
should be a partial function from TYX to ProgTypes(TyX). Instead, at this
stage a function into Fin(ProgTypes(T)) allows signatures to be put to-
gether easily. No restrictions are put on sW to prevent inconsistent equali-
ties between types; none are necessary for the following definitions to make
sense, and such "monster" signatures are prevented in the concrete syntax.
However, inconsistent sharing equations can arise when type-checking the
module language (see the discussion on page 258).

Definition 6.2 (Type equality generated by a signature).
A signature 1 = (Ty,Sh, TmX) gives rise to an equality relation on types,
written =, which is defined to be the least equivalence relation generated by
the set { c = t I t c= SW (c), c E ryE } and compatible with the type formers.

(Notice that =E does not identify a recursive type with its unfolding the
equality is intended to identify types which have the same elements, but a
recursive type and its unfolding are only isomorphic in the syntax of terms
considered below.)

2Tffls is the fearsome terminology used in SML.

The Institution FPC
	

193

Definition 6.1 defines a rather syntactic form of signature; we would ex-
pect the two signatures

Sig 	 Sig
type c 	 type c
type d 	 type ci
sharing c = d 	 sharing d = c

end 	 end

to be essentially equivalent? Signatures use SIr, rather than the equality
relation =_v directly, because it allows a practical implementation to recover
syntactic representations of signatures. (Researchers criticized the 1990 def-
inition of SML [Milner et al., 19901 for not allowing this.) Semantically we
consider signatures modulo an equivalence relation, given in Definition 6.9.

Notation 6.3. Let X = (Ty,':, Shr, Tm) be a signature. I will use several
shorthand notations:

Notation

Pro gTypes (2)
CEX
C := t E 2
VEX
V :tEX

Meaning

Pro gTypes (T),-")
cETy
t E Sh5 (c)
V E Dom(Tm')
Tmr(v) = t

Xu{c} 	(Tu{ c }, SW, TmX)

Xu{c:=t}
Xu{v:t} 	(T, SW' Tm[v—t])
0 	 ({ },{ },{ })

In the last case 0 is the empty signature.

This notation is used for triples (Ty, Sb, Tm) which are not necessarily proper
signatures, perhaps because the domain of Sh is not Ty, or because part of
the range of Sb or Tm lies outside Pro gTypes (Ty). To draw attention to this,
we may call such a triple a pre-signature. All the notations above make sense
for pre-signatures.

62.2 FPC terms and type-checking

Let Tm Var be a countable set of term variables, disjoint from TmConst. I
shall use x, y,... to range over Tm Var. The set of FPC terms is given by the
grammar:

3The syntax used here is defined formally in Section 6.8.2.

The Institution FPC 	 194

e ::= V I x
I fun(x:t).e I ee
I (e, e) I 	fst(e) I 	snd(e)
I init+t (e) I inrt ~t (e)

case e of inl(x) => e orinr(x) => e
I intropat(e) I elim(e)

The free and bound variables of a term are defined as usual oz-convertible
terms are identified. Substitution for terms is written e[f/x].

Given a signature £, the set of 1-terms, ProgTerms(), is the set of closed
terms which contain only term constants v E I and types in Pro gTypes (s).

FPC is a typed language, and only typable terms are assigned a meaning
in the semantics. A term is typed with respect to a signaturef and a context
G of assumptions x : t about the types of free variables. As usual, typing
contexts must not contain repeated declarations for the same variable. The
typing judgement for FPC is:

G >' e : t "term e has type t in context G, in signature f "

It is defined in Figure 6.1.

Typing in FPC has some good properties.

Proposition 6.4 (FPC typing has good properties).
(Closure).
If G >1 e: t, thenFV(e) Dom(G) and E ProgTypes().
Moreover, if a term constant v appears in e, then v E .

(Type unicity).
If G >1 e : s and G c e : t then s =z t.

Proof Standard. 	 0

Using Proposition 6.4(1), if >r e : t, then e E ProgTerms(Z).

6.2.3 Changing signature

A signature morphism is a consistent renaming of the type and term con-
stants in a signature, which preserves sharing.

Definition 6.5 (FPC Signature Morphisms).
A signature morphism u : - I' is a pair (Ty', Tm°) where

Ty:Ty' - Ty

The Institution JPC
	

195

V :t Cl
G > v : t

t E ProgTypes(~J)

G,x:t,G' >1 x:t

G,x:s > e : t

G >E fun (x: s). e : s -) t

G > 	e1 :s -) t 	G > f e2 : s
G > 	e1 e2 : t

G'-e1 :s 	G>e2:t

G >1 (el, e2) :sxt

G 	e : s x t
G >1 fst(e) : s

G 	e: s x t
G >1 snd(e) : t

G 	e1 : s
G >1 in1 +t(ei) : s + t

G > e2 : t

G >1 inrs+t(e2) : s + t

G > 	e: s1 + s2
G,x:s1 > V e.
G,y:s2 >1 e2 :t

G
of inl(x) =' e 	

: t case e
or inr(y)

G r 	e: [pci.t/ci]t

G > intropa.t(e) :pci.t

G > e : pa.t
G > 	elim(e) : [pci.t/ci]t

G>e:s S=t
G >1 e : t

Figure 6.1: FPC type-checking

The Institution JTC
	

196

Tm° : Dom(Trn) - Dom(Tm')

are functions such that

c:=tE I => o-(c)='o(t)

v:tE f == 	Tn'(o(v))='a(t)

for all c, v e Y. As usual, o also stands for the homomorphic extension of
Ty' to types or for the extension of Tm° and Ty' to terms. 	 o

A signature morphism a : I - " translates 1 types and terms to Y" types
and terms, preserving the type equality of E. The translation also preserves
typing; the next proposition establishes this. If G is a context, 0- (G) is the
context obtained by replacing each declaration x : t j in G with x: a(t1).

Proposition 6.6 (FPC typing is preserved by signature change).
Let a : - £' be a signature morphism.

t E ProgTypes() = 	a(t) E ProgTypes(2').

s =E t 	==> 	o- (s) =' o- (t).

G >1 e : t 	==> 	o- (G) >
Z '

o- (e) : o- (t).

e E ProgTerms() = a(e) E ProgTerms(X').

Proof

1. Immediate from definition of signature morphism.

By induction on the generation of the equality s = t. In the base
case where c := t E E, it follows immediately from the definition that
a(c) =j' a(t).

Easy induction on the derivation of C >1 e : t.

Immediate from part 3. 	 0

The Institution FPC
	 '97

A special case of signature morphism is the inclusion between a signature
2 and a richer one 2' having more constants or equalities.

Definition 6.7 (FPC subsignatures and inclusions).
A signature 2 is a subsignature of 2', written 2 c 2', if

TyTy,

c := t e 2 => c =' t, and

v:tE2

When 5 5', there is a canonical signature morphism t j,z, : S - 5', the
inclusion of S in 5', composed of the evident inclusions.

Example 6.8. Define three signatures by:

El def

Sig
type c
val v: (c x boo!)

x(c x boo!)
end

=def

Sig
type c
type ci
sharing ci = c x boo!
val v : ci x ci

end

23 =def

Sig
type c
type ci
val v: (c x boo!) x ci

end

Then 5 c 12 and 23 2:2 but Si and 53 are unrelated. 	 X

The subsignature relation is reflexive and transitive. It generates an equiv-
alence relation on signatures which is the intended equality between signa-
tures. Signature morphisms also have a intended equality.

Definition 6.9 (FPC signature and signature morphism equality).
Let 5,5' be signatures. Then S = 5' iff S 9 5' A 5' 9 5.

Suppose o, cr2 : S -1'. Then i = a2 iff

VcEX.c11(c) =' U2 (C) 	A 	Vv eS.o-1 (v) =o2(v).

6.3 Fixed Point Semantics of FPC

This section recalls the standard domain construction in Gunter and Scott
[1990], which gives FPC types a fixed-point semantics using a universal do-
main U. Then an environment model is defined for FPC.

The Institution JTC

6.3.1 Universal domain

A universal domain can give a semantics for recursive types, using the fixed
point theorem for CPOs to solve recursive domain equations. To define the
semantics ofFPC, it is enough to rely on abstract properties of the universal
domain without worrying about its concrete construction.

The definitions in this section are standard.

CPOs. A cpo D is a partially ordered set in which every directed subset has
a least upper bound. The underlying set of D is written as IDI. A pointed cpo,
or cppo, is a cpo which has a least element. The lift of a cpo D is the cppo
D1 whose underlying set is D u { ± } for i 0 D, and whose partial order is
that of D extended by making ± least. I write up : D -b D1 for the injection
function. Given a cppo D we can form the cpo D1 which has the least element
removed. A function f : D - F between cpos is continuous if it is monotone
and preserves least upper bounds of directed subsets.

CPO constructions. The Cartesian product of two cpos D and E is D x E
which has the set of all pairs (d, e) with d E D, e E E as underlying set,
ordered componentwise. If D and E are pointed, their smash product is the
cppo D®E, which is defined as (DI xE). The function smash :DxE - D®E
is defined by

(d, e) ifd*i and e*±,
smash(d,e) = 1 ---D®E otherwise.

I write the projection functions (strict on D (& E) as fst and snd.
The disjoint union of cpos D and F is the cpo D i±) F which has as under-

lying set { (Dx {O}) u (E x { 1 }) }, where (d, 0) EDE (d, 0) if ED d', and
similarly for elements from E. If D and F are cppos, their coalesced sum is
the cppo D E, defined as (D I w E1) 1. The functions ml : D - D ED F and
inr:E - D ED Fare defined by:

((d, 0) ifci 	_L, ((e,1) if * I, inl(d) =
	'DE otherwise. 	inr(e) = -

'DE otherwise.

For every pair of functions f : D -. F and g : F - F, where F is a cppo, the
sum eliminator If gj : D ED F - F is defined by:

If (d) ifx=(d,O),
g] (x) = 	g(e) ifx= (e,1),

1 IF otherwise.

198

The Institution FPC 	 199

The continuous function space of two cpos D and E is [D -. E], the cpo
of continuous functions from D to E ordered pointwise. Given a continuous
function f: [D - E], strict is the element of ED1 -. E1 J defined by:

c 1E 	ifx=±D ,
strict(f)(d) = 	

f(x) otherwise.

We assume some category Dom whose objects are domains, which are
cpos of some kind, and whose morphisms are continuous functions. The
precise details of Dom are not important to the construction; it is enough
to know that it is closed under the above domain constructors and that it
possesses a universal domain, 'U, in the following sense. Given a domain D,
we say that E is a sub-domain of D, written E i D, if I El c I DI and there is a
morphismp :D - E such that p o p = p and p(x) ED x for each x ED. We
require that 'U has a isomorphic copy of every domain D as a subdomain,
and that the collection of all subdomains of 'U also forms a domain; thus
there is a special subdomam PU < 'U which is isomorphic to the domain of
subdomains of U. Let p stand for the isomorphism, so p(D) 	p(E) if
D <E for D,E i U.

To solve domain equations, 'U should have continuous functions corre-
sponding to the domain constructors. A continuous function R : PU - PU
represents a domain constructor F : Dom -. Dom if F(D) p'(R((p(D1)))
where D D1 i U. For FPC, we need continuous functions on PU as follows:

U_) which represents (D, E) - [D -. El l ;

U>< which represents the smash product;

U+ which represents the coalesced sum.

From now on, we assume a fixed category Dom with a universal domain 'U
satisfying these properties.

6.3.2 Interpretation of FPC

The interpretation of types 1vfl{t]j is defined relative to a type environment
t which is a partial function that assigns pointed domains4 to type variables
and type constants.

4precisely, elements p(D) of PU corresponding to pointed domains D.

The Institution FPC
	 200

Definition 6.10 (Interpretation of FPC types).
Let t be a type expression and t a type environment which is defined on the
free variables and type constants in t. The interpretation of t is defined by
induction on its structure:

LMDlciIll1 =

Jv! {c]11 = t(c)

Jv!s —) t1t =

1v1s x t]]1 =

J'4llIS + t11 =

MllIpci.till1 = fix(D - JVLEtIllL[a -. D]
	 I

To interpret terms we need both a type environment t and a (term) envi-
ronment p, which is a partial function from Tm Var U TmConst to elements
of domains. The two environments must be consistent with the signature
and context. Because types occurring in well-typed terms are always closed,
the type environment only needs to be defined on type constants from the
signature.

Definition 6.11 (FPC Environments for signatures and contexts).
Let 2 be a signature.

The type environment t is a 2-type environment if Dom(t) = TyZ and

c:=tEX => t(c)=JvLt 1,

for all c E TyConst.

The term environment p is a (G,2, t)-FPC environment if Dom (p) =
TW U Dom(G) and

v:tE2 => p(v)EJvllljt]11,

x : t E G => p(x) E J%'101 ,

for all v E TmConst and x E Tm Var.
If G is the empty context, we speak of a (2, L)-FPC environment.

Given a 2-type environment i, Definition 6.10 assigns a semantic domain
J%1{t]J 1 to every type t E ProgTypes(2). Alpha-convertible types have the
same denotation, as do any pair of types equal in 2.

The-Institution FPC
	

201

Fact 6.12. If t is a 1-type environment, then s =z t implies lvi I[sjfl = L71uIt].

Given a 1-type environment t and a (G, I, t)-FPC environment p, Defi-
nition 6.13 below assigns a meaning lvfl{G >1 e: tJj1 to terms e such that
G 	e : t. The interpretation of e is an element of a domain D in Dom with
D 	.Mj[tj. For clarity, we elide the isomorphisms between domains D and
elements of PU in the definition.

Definition 6.13 (Intepretation of FPC terms).
Suppose G 	e : t. Let t be a _Y-type environment and p be a (G, _Y, L)-FPC
environment. The interpretation of e in L, p is defined by induction on the
typing derivation:

1vijG >f v : t], = p(v)

1viG >zX: tj tP = p(x)

1v1G > fun (x : s). e : s —) t 1 = up(strict(f)) where f is defined by

	

f(cl) = _MG, : S 	e : t(p[x - d])

for all ci e jv1s

jv1G > el e2 : 	= 1v1G >E el : s —) 	(LMG 	e2 : s]I)

14G r (el, e2) : s x Otp =

smash(-'MG > e : 	> e2 : t])

1vIG 	fst(e) : s]11, = fst(lvflG > e: s x t L p)

1vlG > snd(e) : th1 = snd(.MG >E e: S X t 1)

1v1G > in1 +t (ei) : s + t], = inI(LMG r 	e1 :

jv1G I 	inr + (e2) : s + t 1 = inr(li4G 	e2 : t 1)

• 'Al hIG > case e ofinl(x) = e1 orinr(y) => e2 : t 	=

[f, g]CW!G > e : s1 + S2I L p)
where f and g are defined by:

	

f(ct) = lvi G,x : S1 	e1 : tL(p[x - ci])

g(e) = lvi G,y :s2 >1 e2 : tL(p[y - e])

for all ci E 	e E lvi s2

The Institution FPC 	 202

Jv1G >1 intropat (e) : pcl.th,, = JvlG >E e: [pcl.t/a]t

JvfljG > ' elim(e) : [pa.t/ajtiflLP = .MEIIG > e: pa.tjfl,

JvIE[G >E e : tj 1, = Jv1G > e : s]1, 	(where s = t).

Alpha-convertible terms have the same denotation. Because typing deriva-
tions for any statement G >1 e : t differ only in the places that the type
equality rule appears, and this rule is ignored in the interpretation function
(last case above), the interpretation of C >r e : t is independent of the typing
derivation used to define it. Furthermore, by the unicity of FPC typing, the
choice of type t cannot affect the interpretation of e. By these observations
we have the following fact.

Fact 6.14. The interpretation of any typable term e in context G is unique,
for a given choice of environments t, p.

Section 6.7 extends this fine-grained semantics of types and terms to a
notion of algebra for FPC. To end this section, we show that the interpreta-
tion of types and terms is unaffected by the choice of names for constants.

Definition 6.15 (Environment reducts).
Let o- : Z -. 2" be a signature morphism. Suppose L is a '-type environment
and p is a (o- (G),X', t)-FPC environment. We define the reduct of L by a,
written t and the reduct of p by a, written p by:

ç L(o- (c)) 	for all ce',
undefined otherwise.

tI(a) = t(a)

p(a(v)) 	for ally E,
p0-(v)

= L undefined otherwise.
pJ(x) = p(x)

for all c, a, v, x. It follows directly that t i is a s-type environment and p I
is a (G, f, tI3-)-FPC environment. 	 E

Proposition 6.16 (FPC meaning is preserved by signature change).
Let a : - X' be a signature morphism. Suppose t is a '-type environment
and p is a (a (G), E', t) -FPC environment. Then

• 	ME[t L 	= Ma(t)1fl1

MG > e : t1 = 1a(G) 	' a(e) :

Proof By induction on the definition of .M!{—, using Proposition 6.6. 	11

The Institution FPC
	

203

T E LogTypes()

G,Z:T,G' > z:T

	

Ge:t 	Ge':t
G > e g e' :prop

G,Z:T >r h:T'

G >- Az:T. h: T - T'

	

G>Xh :T 	G>h':T
G > h = h': prop

Gh:T — T' 	G - h':T
G >1 h (h') : T'

G > h:prop 	G 	h': prop

G >1 h = h' : prop

G,Z:T >1 h: prop

G 	cz:T.h:T

Figure 6.2: LFPC type-checking

6.4 A Logic for FPC

This section extends a higher-order logic with terms from FPC and with con-
structs from LCF [Paulson, 19871 for expressing properties of the domains
of FPC expressions. I call the logic LFPC. Formulae of the logic will be used
as sentences in the institution FPC.

6.4.1 Syntax of LFPC

We use a formulation of Higher-Order Logic similar to that described by Gor-
don and Melham [1993], which takes equality, implication and Hubert's ep-
silon as the primitive logical constructs. Other connectives are definable in
terms of these. The extension is minimal: FPC types are added as base types
of the logic and FPC terms are added to the terms of the logic. The cpo order
relation is added to express the properties of domains.

Given an FPC signature 1, the set LogTypes (') of types of LFPC, ranged
over by T, is given by the grammar:

T ::= t I prop I T - T

where t c ProgTypes(1). The type equality induced by a signature extends
to LFPC types in the obvious way.

Notice that the "logical" function type s - t is distinct from the function
type s -) t in FPC; the latter denotes a cpo of continuous functions, but

The Institution FPC
	

204

the former denotes a full set-theoretic function space. Both are needed; ab-
straction in the programming language can only be over terms of program
type, but A-abstraction is used in the logic to define the connectives and
quantifiers, and to construct predicates. Moreover, non-continuous or non-
monotonic functions can be useful for writing specifications [Broy et al.,
1993b].

Unlike the usual formulation of HOL, there is no infinite type t of individ-
uals. This is because FPC already has a rich class of types, including types
such as nat =def pcl.unit + ci which denote countably infinite collections.
(However, every FPC type has a bottom element; to get rid of it mechanisms
of type definition would be useful in the logic, allowing one to define sub-
sets, for example [Gordon and Melham, 1993]. And if the type system were
extended with subtyping for such subset definitions, it might alleviate some
of the well-known drudgery of LCF-style reasoning with i.)

Let LogVar be a countable set of variables ranged over by z. We assume
Log Var D Tm Var, so that we can abstract over terms of the programming
language inside the logic, but not vice-versa. The set of terms of LFPC, ranged
over by h, is given by:

h ::= Az:T. h I h(h) I z I h = h I h => h I ez:T. h
I e I ee

where e ranges over terms of FPC. Notice that application in the logic is writ-
ten with parentheses, whereas application in FPC is written by juxtaposition.
The usual logical connectives can be defined with the primitives above; def-
initions are given for reference in Section A.3 on page 271. I will use the
derived forms there without further comment.

The set LogTerms(E) is defined to be the subset of closed terms with
types in LogTypes () and term constants in f.

Terms of LFPC are type-checked with the rules in Figure 6.2. The rules
extend the definition given in Figure 6.1 on page 195, and the type-checking
assertion is written in the same way, as G 	h : T. Contexts may now
include declarations of logical variables, z : T, which are ignored in the typing
and semantics of program terms.

A formula is a term with type prop. I shall use p to range over logi-
cal terms which are (intended to be) formulae, and cl to range over sets of
formulae.

Remark 6.17. Adding program terms to the logic makes them into "first-
class citizens" that can be passed to predicates, etc. But strictly speaking,
they don't need to be added: with quantification over program types, which
we certainly want for specification, we can express any program term e via
the c-operator as cx:t. (x E e A e x), relying on anti-symmetry for .

The Institution JTC
	

205

Here is the extension of Proposition 6.4 to typing in LFPC.

Proposition 6.18 (LFPC typing has good properties).
(Closure).
If G > h: T, then FV(h) g Dom(G) and E LogTypes(Z).
Moreover, if a term constant v appears in e, then v E 1.

(Type unicity).
IfG >E h:T and G > h: T' then T= -r'.

Proof Standard. 	 0

A signature morphism a : f - " extends to a translation from LogTerms (X)
to LogTerms(') terms, again written as a. This translation preserves the
typing of terms.

Proposition 6.19 (LFPC typing is preserved by signature change).
If a :1 - X' is a signature morphism and >1 h: T, then o- (G) -' o- (h)
o- (-r).

Proof Easy induction on the derivation of G >1 h: t. 	 11

6.5 Semantics of LFPC

The semantics for LFPC is a standard set-theoretic interpretation for higher-
order logic (see Gordon and Meiham [1993], for example). Each type denotes
a non-empty set; the set of truth values is a two element set and an arrow
type is interpreted as a set of total functions. Types t of the programming
language are interpreted as the underlying set of the cppo ME[t].

Definition 6.20 (Interpretation of LFPC types).
Suppose T E LogTypes (X) and i is a 1-type environment. The interpretation
Of T is given by structural induction:

£prop]J = {ff,tt}

£It]IL = Jtlt[t]l

L~T - T] = £{TIL -

To interpret logic terms, we need an extended form of term environment
which maps variables in Log Var to the domains defined above.

The Institution fTC 	 206

Definition 6.21 (LFPC environments).
Let t be a 1-type environment and G an LFPC context. An environment p
is a (G,', t)-LFPC environment if it maps logic variables z : T declared in G
to elements of the set £IIITL, and behaves like a (G, _Y, L)-FPC environment
otherwise.

The interpretation of terms is straightforward. To interpret the choice
operator E we assume a choice function which, given any non-empty subset
of a type, picks an arbitrary element of that subset. This is used in the
final clause of the definition below. Terms from the programming language
FPC are interpreted as elements of domains, and 	is interpreted as the
approximation relation on the domains.

Definition 6.22 (Interpretation of LFPC terms).
Suppose G > h: T. Let t be a 2'-type environment and p be a (G,2', L)-LFPC
environment. We define the interpretation of h in i, p by induction on the
typing derivation:

£IG > E Z: Ttp = p(z)

£G r 	e: t]11, = Jv!G 	e: tl L (pITmVar)

IJG >1 e 	e2 : propl,, =

tt 	if 1v!G > e : tjo Jv1G > e2 : t]] tp

L if otherwise

£IG >1 h=h':roI=

ç tt if £IG >1 h: UIlltp = QG 	h' : TIfl LP

R if otherwise

f TG >1 h=h':propILP=

tt if p = tt and p' = tt, or if p = if
L if otherwise

where p = £ EIIG >1 h: propIll and p' = LEG 	h':

LEG >1 Az:T. h: T -. T']ltp = the function f where:

f (m) = LEG,z : T 	h: T' Lp[Z m]

for all m E LETL

LEG >1 h(h) : 	= LEG >1 h: T - T' tp (LEG >1 h' : T)

TheInstitution FPC
	

207

£jG > cz:T.h:Tfl1 =

çany mEW 	ifW*ø,
anymE1[{T]] otherwise.

where

W={mECl{T 1 I £G,z:T > h:prop]1p[zm]=tt} El

The next proposition establishes the satisfaction condition of the institu-
tion based on LFPC.

Proposition 6.23 (LFPC meaning is preserved by signature change).
Let a : - ' be a signature morphism. Suppose t is a X'-type environment
and p is a (a (G), i",) -LFPC environment. Then

£G > h: TtlpI = £ a(G) 	' a(h) :

Proof By induction on the definition of £j—, using Proposition 6.16 for
the case of FPC terms embedded in LFPC.

6.6 A Proof System for LFPC

To reason formally about programs in FPC we need a proof system for LFPC.
A suitable system consists of axioms and rules for higher-order logic, aug-
mented with an axiomatization of the domain theory used in the fixed-point
semantics of FPC expressions. Here we mention some of the axioms for FPC.
A putative full proof system is presented for reference in Section A.4 on
page 273.

The proof system derives sequents with the form:

iP F-' (p [G]

where is an FPC signature and G is a LFPC context; p is a X-formulae and
cI a set of X formulae k, each with free variables in G. The context [G] is
omitted if it is empty.

First there must be axiom schemes for reflexivity, transitivity, antisym-
metry and monotonicity of , the latter is:

F- Vf :s —) t.Vx,y :s.x y ==> f E f

Here s and t range over types of FPC, and s -) t is (or rather, denotes) the
continuous function space.

The Institution FPC 	 - 	 208

The existence of a least fixed point operator is guaranteed by the seman-
tics of the recursive types, and there are FPC terms which correspond to such
operators. To use this in the logic, we need to define a canonical fixed point
operator. It's also useful to have a canonical bottom element of each FPC
type.

FIXS,t 	def 	fun (f : (s -) t) -) (s -) t)).
(fun (x : r). fun (y : s). f (elim(x) x) y)
(intror (fun (x : r). fun (y : s).f (elim(x) x) y))

where r pa.a -) (s -) t)

def 	FIXS,S (fun (f : s -) s).f)

Now the properties of FIX can be expressed with axioms, for example:

FE V f : (s -) t) -) (s -) t).FIX5,t f = f(FIXf)

Further axioms are needed. To summarize, we need to have:

axioms characterising FPC types as CPOs;

the rule of fixed point induction;

axioms for products, sums and function types, including definedness,
strictness, distinctness and evaluation properties;

axioms which characterise the recursive type constructors intro and
elim as witnessing the isomorphism pal [pa.t/a]t.

Together, these axioms and rules are enough to derive a large body of theo-
rems about recursively defined datatypes, including principles of structural
induction. This exercise has been undertaken in several places [see e.g., Paul-
son, 1987].

The crucial property of the formal system is of course that it is sound
with respect to the semantics. The theorem is stated without proof.

Theorem 6.24 (Hi' is sound).
Let bea-type environment and be (G,1,t)-LFPC environment.
Suppose { p1 . . . Wn } HE p [G]. Then

£EIIG >E pi:prop]1=tt

£IG >1 (p,,: ProPIflLP = tt

implies
ProP]ILP = tt.

The Institution JTC 	 209

6.7 The Institution FPC

Now we put together the definitions of previous sections to form the insti-
tution FPC. This is straightforward, with the exception that there seems
to be no good definition of homomorphism known for algebras with higher-
order carriers. Instead we use a discrete model category; anyway, it seems
that higher-order logic can capture most uses made of homomorphisms by
model-theoretic constructions.

6.7.1 Signatures, sign C

FPC signatures were defined in Definition 6.1 on page 192 and signature
morphisms were defined in Definition 6.5.

We consider semantic FPC signatures and semantic FPC signature mor-
phisms as equivalence classes of FPC signatures and signature morphisms,
with respect to the equalities defined in Definition 6.9. (An equivalent alter-
native would be to definea semantic signatures as triples (Ty, =, Tnr)).

As a corollary of Proposition 6.6 and Proposition 6.19, equal signatures
have the same sets of types, equality relation and sets of program and logic
terms. Moreover, if X = ', then Ty-7 = Ty5 and Dom(TmX) = Dom(Trn'),
and it is easy to show that a signature morphism with domain (or codomain)
X also has domain (codomain) i". This justifies using equivalence classes of
signatures as objects. However, we shall abuse notation by not distinguish-
ing signatures and signature morphisms from the equivalence classes they
represent.

Given a signature 1, the identity signature morphism id : . - 	is the
equivalence class of the inclusion t. Given signature morphisms o :
2:1 and 02 : 	- 2, their composition o ; o2 is the equivalence class of the
componentwise composition (Ty°' ; Ty °, Tm°1 ; Tin"), for some choice of
representatives; it is readily shown to be a signature morphism from 2 0 to
X. Composition is clearly associative.

Thus semantic signatures and signature morphisms form a category, which
FPC we call Sign.

6.7.2 Sentences, Sen'

Terms in the logic LFPC were defined in Section 6.4.1 on page 203. A term 'p
is a -formula if > tp : prop. The set of 1-sentences is defined by:

Sen(E) =def { 'p 	'p : prop }

The Institution J'TC
	

210

Given a signature morphism o : E - i", we define SenC(a) to be the
extension of o to LFPC 1-terms. By Proposition 6.19, the translation of a
Z-formula is a '-formula.

It is straightforward to show that Sen 	: SignC -p Set is indeed a
functor.

67.3 Models, ModYTC

The denotational semantics for FPC terms given in Section 6.3.2 extends to
give a notion of algebra for FPC. An FPC algebra interprets type constants
as domains from Dom and term constants as elements of the appropriate
domains.

Definition 6.25 (FPC Algebras).
Let 	be a signature. A _Y -algebra A is a pair (ILA, PA) where

tA is a X-type environment, and

PA is a (E, LA)-FPC environment.

An equivalent view of a E-algebra A is as

a Ty-indexed set { IAI }cET of domains in Dom such that c := t E
implies J AI, = 	t]L for all c, and

for each v : t E X, an element A, E Jv1tJ

where t is the type-variable environment defined by t(c) = AI for all c E

Ty-v . We use these two views of algebras interchangeably. Notice that there
are no "empty sorts" in this framework.

Definition 6.26 (Reduct of an algebra).
Let o : X -. ' be a signature morphism and A' = (LA', PA') be a '-algebra.
The o-reduct of A' is the s-algebra A'j , =def (LA' o, PA' cr)

For every signature X, the collection of s-algebras forms a discrete cate-
gory denoted Mod(). For a signature morphism u : 1 - i", M0dYT((a)

is the reduct function - - of Definition 6.26, which maps algebras in Mod-' (i")
to algebras in Mod 	(1). It is straightforward to show functorality of
MOdYTC.

211 The Institution FPC

6.7.4 Satisfaction, JPC

We define the satisfaction relation between 1-algebras A = (LA, PA) and for-
mulae cp by:

YFC A =,. 	iff 	LEE v- 'p : propiflLAPA = tt

Lemma 6.27 (Satisfaction lemma for FTC).
Let be a '-a1gebra and a- : E - " a signature morphism. Then

Al, Jpc
 'p 	1ff 	A JTC 0

- ((P)

Proof Follows directly from Proposition 6.23. 	 El

Combining the previous definitions, we get an institution.

Definition 6.28 (The institution FPC).
The institution ITC = def

(SignYTC , Sen C, Mod1, YPC) 	 D

68 Syntax for FPC Signatures and Algebras

FPC is a bare language of expressions. To construct programs in FPC we need
a way of naming and packaging together groups of types and terms. To write
specifications, we need a way of packaging axioms together with names of
types and terms.

ASL+ provides a language for building specifications using the institution-
independent operators of ASL, so all we need at this point is a syntax for
writing programs (which denote algebras), a syntax for writing signatures,
and a syntax for signature morphisms. Caring about a feasible program
and specification language rather than abstract results, we use syntax for
finite signatures, and syntax for algebras of finite signature expressible using
FPC. (This is in contrast with the ASL syntax defined by Wirsing [1986], for
example.) A signature I is finite just in case Ty is finite, SW (c) is finite for
all c E T),-7 and Dom(Tnr) is finite.

The main definitions begin in Section 6.8.2. First we consider a moti-
vation behind them: the desire to work in a context. This was mentioned in
Sections 2.1.5 and 5.8.

The Institution FPC 	 212

6.8.1 Working in a context

Semantically, signatures are always closed, in the sense that all type con-
stants referred to are declared in the signature. This is implicit in the def-
inition of FPC signature. However, when writing real programs or specifi-
cations, we often work in an environment of already-defined types, func-
tions, programs and specifications, perhaps taken from standard libraries.
When writing parameterised programs and specifications, or using separate
compilation of program parts, we have a context of declared programs and
specifications; the context corresponds to the formal parameters or mod-
ule interface. The difference between an environment and a context is that
the bindings for the values in an environment are known. Any environment
has an underlying context, given by the types which can be inferred for its
bindings. Ideally, we should be able to do type-checking with just a context
containing typing assumptions; this is in FPC because signatures contain
enough information to express sharing.

When writing signatures and algebras, a context is simply an FPC signa-
ture. This is because the "core" language FPC knows nothing about the mod-
ule language; once we move to ASL+ in Chapter 7, a context will also contain
components corresponding to specifications, parameterised programs, etc.,
which have more complex types.

Working in a context, we can relax the closure restriction on syntactic
expressions, and use signatures which may not themselves be closed, but
are closed when they are added to the context. This is formalized with a
signature extension, which is a special kind of inclusion in which only new
type constants and term constants are added.

Definition 6.29 (Signature extension).
is an extension of X if both Z and X are signatures, and

Z,t, c

sill I Tyc = ShScD

• 	TmEIDom(Tzc) = TmSC tx

If E is an extension of 2, we think of 2 as a signature-in-context. An
algebra-in-context is then given by a function f Mod (2) - Mod (1) which
expands any 2-algebra A to a 2-algebra f(A), so that f(A)I f,t, = A, and
the context part of the algebra is not affected. (Sannella and Tarlecki [1988b]
call such a function f a persistent constructor).

Because of the syntactic equality = (rather than =) in the second and
third clauses of Definition 6.29, the notion of signature extension is not sta-
ble under semantical signature equality. We want this because declaring

The Institution TC

new terms in a context should not change the context in any way: most
importantly, it should not introduce new sharing in the context.5 Otherwise
we could get inconsistencies: there might be an algebra in Mod() which
could not be expanded to an algebra in Mod (1). Inconsistency ought to be
limited to the specification part of the calculus, as far as possible.

Definition 6.30 (Signature morphism in context).
Given two extensions —11, 12 of 	a signature morphism in con text 	be-
tween them is defined to be an FPC signature morphism o : El - 2 such
that 	

id
> ctx

Lif 	 L2

0

In words, the action of ci on 	is the identity.

In the next section, signatures in context are built by the union of a sig-
nature for the context X with a pre-signature. Signature morphisms in
context are built using the union of the identity signature morphism icI,
with a pre-signature morphism, which is a pair of maps defined on the type
and term constants declared in a pre-signature.

Notation 6.31.
1. Let i and 2 be pre-signatures. The pre-signature 1l U 12 is the "se-

quential" union of _11 with E2, defined by

U 1 =def (Ty' U T2,Sh12,TmX12)

where

I Shy' (c) cc Zi A c It 12
Shn12 (c) = Shx? (c) c 0 11 A c E 12

[Sh 	(c) u Sh2 (c) c A c C

I Tm(v) veJ2
Tm 12 (v) = - Tm' (v) v E

undefined otherwise

for all ce TYr1 u Ty52 and e TmConst.

51t would be possible to relax Definition 6.29 to state just that the sharing in f < is
unchanged, but allowing it to be expressed differently, so giving a definition stable under
signature equality. But we would not expect this in the syntax.

The Institution FPC 	 -- 	 214

We write Xt extu £ if —Yct, u £ is a signature extension of'.

We write o- : [2:J'1 £2 if fax 9extu £i, £ctx 9extu £2, and

U 	def (Ty° U IdT),XCX , Tm'1 U Dom(TmCtX))

is a signature morphism in contextXCb(betweenFctx U If, andf ctx U £2.

The union operation £i U £2 can be defined in terms of the notation in Nota-
tion 6.3 for adding components piecemeal. If Xi and £2 are signatures, then
—Yl U £2 is also a signature, possibly updating points of TmE1 from Tm2. (Of
course, it could be a monster signature having inconsistent type equations,
hence an empty class of models.)

6.8.2 Syntax and type-checking

Syntactic signature expressions are finite sequences of declarations of type
constants, typed term constants, and sharing equations between type con-
stants and type expressions. Syntactic signature morphisms are sequences
of renamings.

Syntactic algebra expressions (programs) are sequences of assignments
of types to type names and terms to typed term names v : t. The type
decoration is added so that every syntactical algebra can be easily associated
with a unique syntactical signature. (In some examples the type decoration
is omitted, but it should be clear what the intended decoration is.)

The grammar for signatures, signature morphisms, and algebras is:

S ::= sigsdec* end
sdec ::= type c I val v : t I sharing c = t

s ::= [renam*]
renam ::= c — c I v — v

P ::= aig pclec* end
pdec ::= typec=t I valv:t=e

In examples, sequences are written by juxtaposition.

The rules for type-checking use pre-signatures throughout. A more ab-
stract treatment might use signature extensions rather than pre-signatures;
because we have a concrete institution with pre-signatures, we can use "par-
tial" objects rather than morphisms between "full" objects, making the rules
easier to read. Pre-signatures are also used in the presentation of ASL+FPC
in Chapter 7.

The judgement forms are:

The Institution J'TC

£crx 	0

sdecs =* ' 	c Gym u)
ctxPP.sdecs type c == X u { c }

	

f ctx Po. sdecs => Z 	v (X u X) 	t E ProgTypes(E u)
Xcrx 	sdecs val v : t => 1 u { v : t }

	

2:ctx mo. sdecs ==> X 	t e ProgTypes (Ect, U) 	c E Ty

	

Ictx o. sdecs sharing c = t 	If u { c := t }

sdecs =

	

Ictx 	sig sdecs end =

'ctx 	extu ' 	 ctx 	extu '

{ ri } denotes functions (Tyr, Tmfl 	Ty° =
def

Tyr U dTy _ Dom(Tyr)

Dom(Tyr) Ty! 	 Tm° def Tm' U idprrz
Dom(Tmr) c Tm 	 o: [] -

	

'ctx 	[ri ... rJ

Figure 6.3: Type-checking signatures and renamings

£ctx 0. S == X 	Inf,tx, S has pre-signature
ECX 0. P ' 	 In E, P has pre-signature f

'ctx 11. s = E - 	In Zctx, s is a renaming from to '

The first two of these are type inference judgements, since the pre-signature
X is determined by the syntactic signature S or the program P. A renaming,
on the other hand, does not determine its source or destination signature
uniquely.

The rules for type-checking are defined in Figures 6.3 and 6.4. No re-
binding of names is allowed in either signatures or algebras.

The rule for adding sharing c = t to a signature ensures that c is a
type constant declared in the signature, rather than in the context, so the
declaration type c must appear earlier in the signature. This motivates the
abbreviation:

	

type c = t 	=def 	type c sharing c = t

215

The Institution JTC
	 216

Ectx 	0

pdecs => 	c (—Yct, u) 	t E ProgTypes(uf)
pdecs type c = t => Z u { c := t }

e : t
pdecs 	2L 	v it ('Ect, U) 	t ProgTypes(U ')

Zct, o. pdecs val V : t = e = 	U { v : t }

Zctx pdecs
aig pdecs end =

Figure 6A: Type-checking algebras

which was used heavily in the examples in Chapter 2.
In the rule for checking signature morphisms, the renamings must denote

a pair of functions from a subset of the type and term constants in the
part of the source signature f which extends the context Zct, The rest of
the mapping is set as the identity on f, and the result must be a signature
morphism from £ to the target signature E'. In practice this means that a
renaming doesn't need to mention every name in a signature; omitted names
are mapped to themselves.

The side-conditions in the rules for adding type constant declarations to
signatures and algebras ensure that the resulting signature is an extension
of the context. This is stated in the proposition below.

Proposition 6.32 (Typing yields signature extensions).
Let Ect, be an FPC signature.

If either 	S ==> Z or 	P ==> E then X is unique, and
'ctx extu X.

IfXc(-,< 	[r . . . rj 	 then fctx extu f and 'crx extu "•

Proof Easy. 	 U

When writing syntax for renamings, it is useful not to have to write syn-
tax also for the source and target signatures. If the source signature is given,
then a unique target signature can be constructed as the image of the renam-
ing. This is used in Chapter 7.

The Institution FPC 	217

Lemma 6.33 (Signature morphism targets).
Given a source signature X, if there is a target signature ' such that £
s = 	- i", then there is a unique target signature s(s), such that s(X)
E' for any other targets'.

Proof Define s(s) as the image of' under a, written o- (1):

cr(') def (o(Ty'),SW;o,Tm';a)

where o is the pair of functions (Ty', Tm°) determined by s as in the rule
in Figure 6.3. 	 El

Because signatures were designed to be close to the syntax, we can re-
cover syntactic representations of finite signatures.

Proposition 6.34 (Signatures representations can be recovered).
extu 2' and Z is finite, then given orderings on TyConst and TmConst,

we can recover a unique syntactic representation Syntax(X) such thatY
Syntax(X) =' 1.

Proof The given orderings can be extended to type expressions in some
canonical way. Then we can recover a signature expression Syntax(2) with
the form:

Sig
type C1
sharing c1 = t1,1
valv1 : t

end

listing all the types, then the sharing equations, then the value declarations
of the signature. 	 o

It won't be used here, but Syntax(X) would be useful in practical implemen-
tations, for reporting inferred types to the user15

6.8.3 Semantics of signatures, morphisms, and algebras

Definition 6.35 (Interpretation of syntactic signatures).
The interpretation of a signature expression S in a context Zcu is defined
to be the signature in context f ct, extu given by the typing judgement
.ctx 0. s=zE.

6A good implementation would attempt to order the declarations as they were input
by the user, rather than re-ordering them into a canonical form. For this, FPC signatures
should be defined in a less algebraic and more type-theoretic style, even closer to the
syntax, i.e., as lists of declarations - see comments in Section 8.2.

The Institution J'TC 	 218

Definition 6.36 (Interpretation of syntactic signature morphisms).
The interpretation of a signature morphism expression s in a context
where 	s => 	-. X', is defined to be the signature morphism in
context o : [L<]' -. £' determined by s.

Definition 6.37 (Interpretation of syntactic algebras).
The interpretation of an algebra expression P well-typed in a context Xct, is
defined to be the functor fp : Mod (I) - Mod (Z U) given by

fp(A)=T2

where the interpretation TX 	P 	
(1A , PA)

is defined using induc-
tion on the typing derivation of 	pdecs => , with P aig pdecs end:

=z

• P[fct, op. pdecs type c = t 	U { C := t 11 (LA, PA)
= (LAIC 	 PA)

PI{XCX 	pdecs vat : t = e = 	u {v : t}]l(LAOA)

= (LA, PA[V -. 	>1 e: ttA, PA 	
o

6.9 Discussion and Related Work

This section begins with a comparison to the related work, in Sections 6.9.1
and 6.9.2, and then discusses some points of the design of the institution
JTC and its syntax, in Section 6.9.3.

There is not much, if anything, in the literature which aims for the same
breadth as the work begun here: putting together a programming language,
specification language, program logic, and higher-order module system. How-
ever there are comparisons between the institution JPC and some other
work. The next two subsections discuss some related logics and specifica-
tion languages.

6.9.1 Related logics

The idea of embedding an LCF-style logic in a higher-order logic has occurred
to several researchers over the last few years. Here I want to mention three
other projects. The first two, HOL-CPO and HOLCF, are implementations of
logics; the third, Aw, is more theoretical and also considers a program-
ming language. None of them is oriented towards design of a specification
language.

The Institution JTC 	 - 	 219

HOL-CPO Sten Agerhoim [1994a, 1994b] has implemented the logic of LCF
in the HOL theorem prover [Gordon and Melham, 1993], by definitional
extension. This has the benefits of being able to formalise admissibility
within the logic (see comments in Section 6.9.3). A cpo is formalized as
a pair of a predicate, describing a subset of a HOL type, and an order
relation on the type.

HOLCF Regensburger [1994] has implemented another axiomatisation of
LCF by extension of Isabelle/HOL, the implementation of the HOL logic
inside the Isabelle theorem prover [Paulson, 1994]. His axiomatisation
is more sophisticated than Agerhoim's, making use of Isabelle's order-
sorted polymorphism to define a type class for cpos, so a cpo is simply
a type of the logic equipped with some special operations and proper-
ties.

Aw 	Poll [1994] describes the hand-in-hand construction of a family of pro-
gramming languages and corresponding programming logics, each with
higher-order polymorphism. He uses the concise framework of Pure
Type Systems [Barendregt, 1992] to describe the systems, formulating
the dependencies to prevent logical operations appearing in programs.
The final system is Aw, which is a programming language with re-
cursive types and a fixed-point operator tied together with an LCF-like
extension to a higher-order logic.

The rule-structure of the PTS defining Aw allows program terms as
subterms in the logic, but terms of the logic (of program type) cannot
occur in program terms. For us, LFPC makes the distinction by making
the program types a subset of the logical types. Poll's approach sacri-
fices flexibility: he is cannot write a function mapping a chain (encoded
as a predicate) to its LUB, for example, because the type of such a func-
tion is disallowed in the framework [Poll, 1994, p.95]. LFPC does not
suffer from this drawback.

A major difference to Poll's treatment is that while LFPC is a logic for
FPC with a call-by-value operational semantics, Aw must allow an ar-
bitrary beta-reduction order in its programming language, because the
same type-theoretic framework, which does not distinguish reduction
order, is used for writing both programs and specifications.7

7This criticism applies equally to other type-theoretic approaches which model program
computation using the reduction of the type theory.

The Institution JTC 	220

6.9.2 Related specification languages

The specification language based on JTC appears as part of ASL+FPC in the
next chapter, but we are almost there: the parts of the syntax defined in
Section 6.8 provide the institution-dependent syntax needed for ASL expres-
sions - see Section 1.2. Here is a quick mention of some related specification
languages.

EML [Kahrs et al., 19941 was mentioned in Section 1.4. The module param-
eterisation of ASL+ was invented to capture and generalise that of [ML.

The language FPC can be seen as a restricted fragment of the core-
level language of SML, containing the power of recursive functions and
non-parameterised datatype declarations, but without polymorphism,
exceptions, or assignment. Attempts towards giving EML an algebraic
semantics are unfinished as yet [Sannella and Tarlecki, 1986, 1989].

SPECTRUM Manfred Broy's group in Munich has developed a specification
language with an institutional semantics, having higher-order functions
and order-sorted polymorphism [Broy et al., 1993a,b]. The logic of
SPECTRUM is 3-valued. It does not have a module language, but the
order-sorted polymorphism compensates to some extent [Grosu and
Nazareth, 19941.

Metasoft Tarlecki [1992] describes a module system for the Metasoft speci-
fication language which includes the idea of having "symbolic type ex-
pressions" in signatures, also one of the innovations in FTC.

This idea was re-invented lately, in studies of type systems for the SML

module system which add "manifest types" to signatures [Leroy, 1994,
Harper and Lillibridge, 1994]. These type systems are discussed more
in the next chapter.

Hofmann and Sannella Hofmann and Sannella [1996] define the basic com-
ponents of an institution closely related to FTC. They do not provide
a syntax for signatures and algebras, however; their motivation is to
study behavioural equivalence in a higher-order setting.

6.9.3 Remarks on language design

Here are a few remarks about the design of FTC, continuing some compar-
isons to the related work.

The Institution JTC____

Stratification of levels

Syntactical signatures and algebras are similar to record types and values.
Why not simply add these to FPC? There are two reasons.

First, algebra expressions allow bindings of identifiers to types as well as
to values, so they are more than ordinary record types. This could be accom-
modated by a richer notion, such as sigma-types (dependent products), ex-
istential types, or dependent records [Luo, 1993, Mitchell and Plotkin, 1988,
Nordstrom et at, 19901. But the underlying type-system would have to be
changed; we would no longer be in the world of simple types and we would
have to consider a more complicated program semantics.

The second reason concerns a tacit aspect of ASL+: it imposes a stratifi-
cation of design levels in programming and specification. The programming
language is not expected to incorporate modules as values which can be
computed with. Modules appear at a higher level, so the modular structure
of a program is essentially something static that doesn't change during the
course of its execution. (This can be contrasted with object-oriented pro-
grams, where objects are in some sense modules, and may be created and
destroyed dynamically while a program executes.) Of course, the modular
structure of a specification is also static.

From an engineering point of view, this stratification of levels may be
desirable. The strategy is exemplified for programming languages by SML
and explained by MacQueen [19911. Using richer type-theoretic constructs
for modules would lose the stratification.

Having said it may be desirable, the separation of levels here is somewhat
extreme: it causes difficulty in Chapter 7, because the core-level language has
no reference to the module-level context.

Embedding syntax or semantics

Both of the logics HOL-CPO and HOLCF mentioned in Section 6.9.1 are for-
malizations of the semantics of LCF. In these theories, the term FIX(f) is
defined to be Li f 1 (i). Classical rules of LCF like fixed point induction can
then be derived

In contrast, the approach in this chapter is an direct embedding of the
syntax of FPC inside the logic, adding axioms to HOL which reflect the LFPC

8For recursive types, neither HOL-CPO and HOLCF have an axiomatization, and the
solution of recursive domain equations within the logic itself is not possible. As in LCF,
the axiomatisation must be extended when recursively-defined types are added (typically,
tools are written to help with this).

The Institution J'TC 	 222

semantics, just as LCF adds axioms to first order logic. However, the ax-
iomatization here goes beyond LCF, for example because we can express the
semantic property of admissibility. This is claimed to be one of the major
advantages of HOL-CPO and HOLCF. In the first-order world of LCF, admis-
sibility had to be hard-coded as an incomplete set of syntactic tests and
heuristics [Paulson, 1987].

Whilst an embedding of the semantics is theoretically heart-warming, it
seems more feasible for practical development tools to assert axioms directly
from real programs, rather than using a translation to reconstruct logically
equivalent models and terms inside the theorem prover. Embedding only
the syntax reflects this more direct approach, where we reason directly with
the syntax of programs. And because the syntax of FPC is not an object of
discourse in the logic, this doesn't result in contraditions: it is safe to assert
that pred(succ(0)) = 0, for example.

Internal and external program logics

The logic LFPC is used to reason about programs written in FPC, which is a
separate language (although arbitrary FPC expressions are allowed in LFPC).
This is an example of the so-called external approach, like Erik Poll's system
Aw mentioned in Section 6.9.1. In fact, FPC is more separated than Aw,
which has the advantages mentioned before.

Some researchers argue that for program development, an internal ap-
proach is preferable, where a single language encompasses both programs
and specifications. In type theory, for example, programs arise as a special
case of proofs. The advantage is that a program and its correctness proof
are synthesized together, so there is no duplication of work (writing a loop,
then using an inductive proof, etc.). The disadvantage is that the structure of
programs and proofs is forced to be the same, and there is a need to extract
programs from proofs somehow (and then a need to optimise them, since
the simplest proofs rarely correspond with the most efficient programs).

Erik Poll discusses more about the internal and external approaches in
his thesis [Poll, 1994]. It's worth saying that although FPC uses the exter-
nal approach, nothing in ASL+ forces this: one could instead begin from an
institution in which sentences are propositions in a constructive type theory.

6.10 Summary

This chapter described the construction of an institution FPC for ASL+,
based on FPC as a programming language, described in Section 6.2, and HOL

The Institution FPC
	

223

extended with LCF as a program logic, described in Section 6.4.

When I began this project, I imagined that I would easily find a definition
in the literature for an institution similar to FPC. It was surprising to dis-
cover that similar attempts are few and far between; most work in algebraic
specification is restricted to first-order languages, for which the semantic ba-
sis is better understood. So the work on FPC was started as an exercise in
pushing the definitions through to examine how the institution-independent
framework deals with a concrete instance of ASL+, based on a realistic set-
ting - something like a subset of Standard ML. Perhaps this is the first time
that this exercise has been carried out for a language like FPC.

The construction of FPC has been fully formalized, finishing with a syn-
tax for writing signatures, signature morphisms, and algebras in Section 6.8.
These parts of the syntax are not required by the definition of institution,
but they are required to build a syntax for a programming language and a
specification language based on one. (In particular, we could get a complete
syntax for ASL expressions in FPC— see Section 1.2.)

An unusual feature was the use of type equations in the definition of
FPC signature, Definition 6.1. As outlined in Chapter 5, this allows sharing
to be accommodated directly in an institutional semantics, without needing
to introduce special mappings from program-level identifiers to semantical
names. The set of sentences Sen1 (f) consists exactly of the well-typed
propositions in f.

One of the lessons of this exercise is the importance of type-checking, as a
necessary step from semantic foundations towards practical applications us-
ing concrete syntax. Type-checking rules were given for each core-language
part of the syntax picture shown in the introduction. The lesson will be rein-
forced, which completes the picture by studying type-checking in the module
language ASL+FPC.

7 ASL+ based on FPC

This chapter describes an instance of ASL+ called ASL+FPC, based on
the institution FPC defined in Chapter 6. The language ASL+FPC tack-
les the context and sharing problems described in Chapter 5. Using
some of the concrete details of FPC, the result is a language with a
better notion of context and a more powerful rough type system which
can express type propagation across module boundaries. The examples
in Chapter 2 work directly in ASL+FPC.

This is an experimental first-step towards an expressive type system,
rather than a robust and final solution.

7.1 Modules for FPC 224
7.2 Syntax 225
7.3 Design for Modules in FPC 237
7.4 Semantics 250
7.5 Satisfaction System for ASL+FPC 254
7.6 Discussion 256
7.7 Summary 261

7.1 Modules for FPC

W ITH A PARTICULAR INSTITUTION to hand, we can learn from the specifics
before generalising to an abstract setting. In this chapter I shall design

a version of ASL+ based on the formulation of TC In Chapter 6. It is dubbed
ASL+FPC.

The language ASL+FPC tackles the problems which the abstract version
of ASL+ in Chapter 5 was criticised for. The new language has a built-in no-
tion of context, given by a dot-notation renaming mechanism. It can explain
the propagation of type identity in the rough type-checking system, because
rough types may contain identifiers (inside signatures), and the arrow type
is changed to a dependent product. The examples given in Chapter 2 work
directly in ASL+FPC.

ASL+ bused on FPC 	- 	 225

In fact only a few places in this chapter do rely on the specifics of FPC,
but studying the details in a concrete setting has helped to understand the
problems. Most of the time spent here has been syntactic skullduggery:
designing a language in which the ASL+ constructs are transformed from
heavily-typed semantical constructions into lightweight syntax, which works
for real examples. Some of the particular problems involved, and several of
the devices used to solve them, are original, because ASL+ has new parame-
terisation constructions not present in other languages. But I also draw on
recent research into type systems for programming language modules [in-
cluding: Leroy, 1994, 1995, 1996a,b, Courant, 1997a] and learnt much from
discussions with a colleague at Edinburgh who is writing a thesis on a related
topic [Russo, 19971.

The type system given here is not the end of the story, by any means; it
has some bad features and some features missing, which are discussed in
the final sections. I think it is an experimental step in the right direction.

The chapter begins with the syntax and rough type-checking systems for
ASL+FPC, in Section 7.2. The definitions given here may appear ad hoc,
so I have included a commentary on how the design was reached, as an
interlude in Section 7.3; it may help to refer to it while reading Section 7.2.
The commentary also includes some mention of related module systems.
Returning to the definitions, roughly-typable terms are given a set-theoretic
semantics in Section 7.4, and some early ideas for a type-system for proving
satisfaction are given in Section 7.5. Some of the difficulties with the system
are revealed in Section 7.6, which also mentions some related work. Finally,
Section 7.7 summarizes.

7.2 Syntax

The syntax and rough type-checking for ASL+FPC begins in Section 7.2.1.
Before then, I give some auxiliary definitions. Throughout this chapter, £
ranges over pre-signatures of FPC, and all talk of (semantic) "signatures" will
refer pre-signatures unless stated. Pre-signatures were already used in the
type-checking rules for algebras and signatures in Section 6.8.2.

Operations on signatures

The syntax uses a new set of variables ModVar, the module variables, ranged
over by X, Y, Z,.... We treat the dot operator as a special "prefix" name
constructor operator on the type and term constants of FPC:

ASL-i- based on JTC
	

226

ModVar x TyConst - TyConst
ModVar x TmConst - TmConst

such that X.v v and whenever X.v Y.v' then X Y and v v', for
all X, Y e Mod Var and for all type or term constants v, V. In other words,
the prefix of a constant by an algebra variable yields a new constant, and
two syntactically equal "dotted constants" must have been constructed from
equal components. The idea is that in an implementation, the dot is a special
character which is not normally allowed in names of identifiers.

Definition 7.1 (Dot renamings with respect to a signature).
The dotting operation extends to types and terms over a signature. We
define

X.t 	=d,f 	t[X.c,.../c J
XE.e 	=def 	e[X.v,.../v]
XE.h =d,f

where the above notation indicates the simultaneous prefixing of all
constants c, v E _1 (v ranges over both type and term constants). Con-
stants not in I are not affected.

The dotting operation extends to give a renaming operation on signa-
tures by prefixing all the names:

def ({X-C I ce'},
{c-.{X.t I c:=tEX} 	cEfl,
{X.v—X.t I v:tE2L'})

0

It is easy to see that the extension of the dotting operation to signatures is
an isomorphic renaming, such that the types and terms over the renamed
signature are disjoint with those over the original. Definition 7.1 also makes
sense for pre-signatures.

As well as the full-blown dot renaming of a signature, we require a slightly
different operation which adds extra sharing equations to a signature.

Definition 7.2 (Strengthening of a signature).
Given a pre-signature I and a variable X c ModVar, we define the strength-
ening of Z by X, written Z/X, to be the signature (Ty, Sh, Trn) where the
new sharing component Sh is defined for c E Ty by:

Sh (c) = Sh-Y(c) U {X.c}.

This operation is used when projecting a variable from the context. When
X : 	appears in the context, we can use X to denote a 1-algebra, knowing
that for every type c in X, the equation c = X.c holds.

ASL+ based onTC 	 227

Definition 7.3 (Sharing-only subsignature).
We write 11 sh 2 if

El c

Ty' = TY72

Tm' = Tm 2

If i 9,h X2, then Z2 only differs from El in having more sharing.

Substitution and reduction

The use of substitution in the rough type-checking system is restricted to
renaming one variable for another. Constants X.v are renamed to constants
Y.v throughout an expression, for example.

Applications are only allowed to have variables as operands, so the only
kind of fl-redex which appears is:

(AX:A. M) Y —$ M[Y/X]

and the reduct is simply the renaming of X by Y in M. Reduction involves
replacement in algebra expressions, signature expressions, and formulae; as
usual, we may need to rename to avoid clashes. We omit the full definition,
which would be given by induction over the structure of terms shown in the
next section.

7.2.1 Syntax and rough type-checking

The pre-contexts and pre-terms of ASL+FPC are formed from the grammar:

F ::= 	I F,SP I F,X:A I F,X=M

M, SP, A,B ::= X I P I S
I 	impose p on SF
I 	derive from SF by s : S
I 	translate SP by s
I 	enrich SF with SP
I AX:A.M I MX
I 	TIX:A.B I Spec (A)
I [X=M]M:A

ASL+basedonjTC 	 228

Variables X, Y, Z,... are taken from the set Mod Var. Recall that S ranges
over signature expressions of FPC, P over algebra expressions, and s over
signature morphism expressions. These were defined in Section 6.8. The
variable cp ranges over terms of LFPC, as defined in Section 6.4.1. Since the
logic LFPC has conjunction and the truth value T, a finite set of formulae cP
can be replaced with a single formula 'p in linpose

The meta-variables SP, A,B,M,N and variants will all be used to range
over the set of pre-terms. The intuition is that SP stands for terms which
turn out to denote "base" specifications (collections of FPC algebras), whilst
A, B stand for arbitrary collections and M, N for arbitrary terms.

As well as allowing declaration and bindings of variables, contexts can
be directly extended by base specification expressions. This is to allow the
specification of "pervasive" datatypes of the language which are visible ev-
erywhere, such as BOOLEAN. As usual, a pre-context cannot contain repeated
declarations of the same variable.

In contrast with the abstract formulation of ASL+ in Chapter 5, I have
included a specific subset of the specification building operators of ASL, as
well as the context-sensitive syntax for signatures and algebras from FPC. We
use a primitive enrich operator instead of considering enrich to be defined
via translate and union. Unions, along with the other ASL operators, are
left for future treatment. (Alternatively, it might be better to consider a
small group of higher-level constructs - see discussion in Section 7.6.1 on
page 258.)

The pre-terms of the A-calculus fragment are as in ASL+, except that ap-
plication MX is only to variables, and singleton types are omitted. The pre-
term [X = M]N : A is a local binding construct; X is bound (to M) in N, but
is not bound in M or A.

Rough types and rough contexts

The syntax is:

T ::=ZYI lrrX:A.T I P(T)
F ::= () I 	I F,X:T

where £ ranges over pre-signatures. As usual, we may write A - T for
HX:A. T when X does not appear bound in T.

Rough types which differ only in the choice of bound variables are con-
sidered identical. Substitution on terms was explained at the start of this

'This is a minor simplification to avoid cluttering the presentation; a real specification
language would prefer to keep axioms separate, and also to name them.

ASL+ based on FPC
	

229

section; substitution and renaming for rough types is defined similarly. No-
tice that this involves substitution or renaming inside semantic signatures
E, and that the notion of bound and free module variables is extended to
consider the variables appearing in signatures.

Unlike the rough typing systems considered before which used "full" con-
texts, we now have a separate syntax for rough contexts. This is simply for
convenience because rough typing is more complicated than before. I use F
to range over both rough contexts and "full" contexts, but it should be clear
which is intended; when they are used close by, FR is used for the rough
context.

Rough typing judgements

There are five judgement forms:

F 	sig ZF 	 Er is the underlying FPC signature of F
F 	T 	 T is a well-formed rough type in F

F 	 F is a rough typing context
F 	T :!~ T' 	 Tisa subtype ofT'
F P, M => T 	 M has rough type T

These judgements are defined in Figures 7.1-7.4. In all cases, F is a rough
context. The rules in each figure are described below.

Formation rules (Figure 7.1).
The first four rules in this table construct the underlying FPC signature of a
context. This is done by combining the pre-signatures for the pervasive parts
of the context, together with the dot-renamed components X.X for variables
X which range over -a1gebras Module variables which have non-signature
types do not contribute to the FPC signature of the context, since there is no
way to use them directly in any FPC type or term.

The three rules for forming rough types are straightforward. In the case
of a pre-signature, we must check that it is an extension of the signature of
the context. Formation of contexts is standard.

Sublyping rules (Figure 7.2).
The subtyping rules lift the sharing-only subsignature relation to a relation
on rough types. The rule for H-rough types is the usual contravariant rule;
for power rough types, the relation is covariant. Semantically this captures
an inclusion on the domains interpreting rough types.

2Tjs is a sort of "flattening" operation, since FPC does not have "nested algebras" akin
to nested modules in programming languages.

ASL+ based on JTPC 	 230

Programs and ASL terms (Figure 7.3).
The rules for rough typing ASL terms, including FPC signatures and alge-
bras, involve some signature calculation. The first two rules, introducing
signatures and programs into the system, are straightforward; they invoke
the type-checking system for the core-level from Section 6.8. The rule for
impose is also straightforward; it invokes the type-checking rules for LFPC
in Section 6.4.1 to be sure that 'p is a well-typed proposition.

The rules for derive and translate use syntax for signature morphisms,
which allows some polymorphism. The argument of derive from - by s : S
or of translate - by s can have any signature which fits suitably with s,
according to the type-checking rules in Figure 6.3 on page 215. The result
signature of derive has to be given, but the result of translate is inferred, as
the smallest image s(s) of s, defined in Lemma 6.33 on page 217? The ideas
behind these rules are explained more in Section 7.3.6.

The rule for enrich is similar to a rule for the dependent sum in type
theory: just as x occurs bound in B in the term Ex:A. B, so all the symbols
of SF occur bound in SF' in the term enrich SP with SF'. The non-symmetry
in enrich isn't shown by its usual definition in terms of translate and union
(see page 12), but here the directly-defined semantics of enrich SP with SP'
shows the dependency: models of the result are extensions of models of SP.

ASL+ terms (Figure 7.4).
The rough type of a variable X which has signature type I is the strength-
ened version of E which reflects the sharing of X with the context, since it
denotes a projection on the X.-named part of the underlying environment.

Functions can only be applied to variables. To use the application rule it
may be necessary to rename the bound variable of the TI-type of the function
to match the operand The application rule is the crucial places for allowing
propagation of type identities: the use of subtyping here allows the actual
parameter to have a richer type with more sharing equations than the type of
the formal parameter A. Propagation of the type identities occurs because
after application any mention of X.c in the result type T' will refer to a
variable declared in the context, possibly having more sharing equations,
rather than the bound variable of the H-type.

The rule for a binding [X = M]N : A allows N to be typed in the rough
context extended by the typing of M, but the rough type of A has to be

3This means that translate can only be used with surjective signature morphisms. But
we can express translation along inclusions translate SP by X 	' using an enrich-
ment enrich SP with S, where S = Syntcix(X' -

4A couple of people have mentioned that this renaming idea seems like a cunning and
potentially useful trick; probably it has been used elsewhere in A-calculi implementations,
but I don't know where.

ASL+ based onjPC 	 - 	 231

valid in the context F, so the dependency on X must be removed. The type
in the extended context should be a subtype of the type of A. This rule
is restricted to algebras or specifications in the body N, but the restriction
could perhaps be lifted at the cost of extra complication (to define projection
and weakening operations on environments).

The other rules in Figure 7.4 are much the same as rough typing rules
seen for A Power in Section 4.5, except that A- and H-terms now have depen-
dent rough types.

72.2 Expected properties of rough typing

Detailed proofs for this section have not yet been completed, so the state-
ments below should be regarded as conjectures at this time.

Proposition 7.4 (Formation).
Suppose one of 	T, F T :5 T', or F P,. M => T. Then there is a
subderivation of ip. F.

If F, then for some Er, F ==> Sig Er and Er E=- Sign'.

If 	M = T,F 10. T :!~ T' or 10. T' :5~ T then 	T.

Proof Induction on derivations.

Proposition 7.5 (Bound narrowing).
LetF1 F,X:T1,F' and F2 F,X:T 2,F' with 	T :5; T1. Then

If F1 	sig IF, then there is Er., such that F2 : s ig Er2 and Er1 9,h Er2.

If F, o. J then F2 po. J, where J represents a (type or context) formation
or subtyping judgement.

If F, o. M ==> 01 then there is 02 such that F2 o,. M = 02 and
F2 	02 < 01.

Proof By induction on derivations, using properties of the union operator
on signatures. 	 0

Theorem 7.6 (Closure under reduction).
If 	op. M1 	Ti and M1 -. M2, then F o,. M2 => T2 for some T2 such that
F T2 T1.

Proof Using Proposition 7.5. 	 0

ASL+basedonPC 	 232

F Sig 'F
F,2 =sig 1U'

F => Sig I-
F,X:2' => Sig

	

F =>Sig IF 	T is not a signature
F,X:T =>Sig IF

F 	F => Sig IF 	IF extu

FA=P(T) F,X:TT'

	

F 	1TX :A. T'

F 10- T
F P(T)

Figure 7.1: Formation rules of ASL+FPC

ASL+basedonjTC 	 233

IF 9extu 1, IF extu

'F 	F 	sig IF 	('FU")sh (IF UX)

F.E :!~'

	

F PP. A => Ti 	F T2 < Ti

	

F o. A2 = T2 	F,X:T2 T ~ T-

F P,. TrX:A1.T ~ TrX:A2.T

	

F 	T < T'

F P,. P(T) :!~ P(-r')

Figure 72: Subtyping rules for rough types of ASL+FPC

No. FsigXF IFSX

F Po. S = P(1)

F sig r 	Ir 10 PX

F No. SP - P(1) 	F ==>Sig IF 	>ZFU-y (P :prop
F o,. impose 'p on SP => P(X)

,ctx s=
F 11 SPPC—Y') 	Fsigr

F o. derive from SP by s : S - P(')

FSP=P(X) 	F =>Sig IF 	1rSXS(1)

F o,. translate SP by s => P(s('))

FSP=P(J) 	F,X SP' ==P(2")

F 	enrich SPwith SP' => P('u")

Figure 7.3: Rough typing programs and ASL terms

ASL+ based on FPC 	- 	 234

pF F(X)

o F 	F(X) T 	T non-signature

FX=T

FA==P(T) 	F,X:T 10- M=T'
F oo. AX:A. M =:> TrX : A.T'

FM='1rX:A.T' 	FX=='T0
FA==P(T) 	 FTO:5T

FMX T'

F A => P(T) 	F,X:T B => P(T')
F HX:A.B = P(7rX:A.T')

F P ,. A => P(T)
F o,. Spec(A) => P(P(T))

F o. A => P(T)
F io. M => TM 	 31. T.EZ V TP(')
F I X:TMN=TN 	F,X:TM 10 TNT

F io. [X=M]N:A => T

Figure 7.4: Rough typing ASL+ terms

ASL+ based on FPC
	

235

F => FR FRSP=P()
F, SP =

F = FR FRA=P(T)
F,X:A ==> FR,X:T

F => FR FRM=T
F,X=M ==> FR,X:T

Figure 7.5: Rough typing full contexts

Theorem 7.7 (Strong normalization).
If F o. M ==> T then M is $ -strongly normalizing.

Proof The limitation on the kinds of f3-redices that can appear means that
a $-reduction reduces the number of redices in a term. Theorem 7.6 says
that the result of reducing is a typable term, so reduction terminates. 	n

7.2.3 Using rough typing

Now I shall give an example of rough typing to demonstrate that it solves the
two problems described in Section 5.8 - there is a useful notion of context,
and desired propagation of type identities takes place.

To perform rough type-checking with respect to a "full" context, we must
first extract a rough context from the full one. A full context type-checks to
a rough context, written

F => FR

by the rules shown in Figure 7.5. A practical implementation would probably
store rough types along with the full terms in a single environment, rather
than having two separate notions of context.

Now let's build up a rough context by type-checking a full one according
to the rules in Figure 7.5. Actually, we only need the first and last of them.
The first declaration is

ELT =sig

ASL+ based on FPC
	

236

type elt
end

Let the denotation of this expression be IELT, so we have the rough typing:

() Po. ELT = PCIrjT).

Now we declare a functor for building lists over some 	y-algebra:

List =AE1t : ELT aig
type elt = Elt.elt
type list = liSte]t
val ni 1:list=

end

(IiStel t is a complex type-expression in FPC which expresses the type of lists
over the type el t). This has the rough typing

11 o. List => HE1t:ELT.,FLIsT[Elt.elt]

where F1 	ELT : P(ET), writing the inferred signature of the algebra as
LIsT[Ei t. el t] to indicate the dependency on El t. This signature contains

the equation el t = El t. el t.
Now let's apply the Li st functor to an algebra, declaring

Nat =alg
type elt = nat

end

Let F2 be the rough context which extends F1 with the declaration of List
with its rough typing above, and F3 the context which extends F2 with the
declaration of Nat with the type 	T[nat] - this is the inferred type for Nat
which expresses the equality between el t and nat.

Now we can derive:

F3 io. List Nat => XLIST[Nat.elt]

so if we extend the full context by the declaration

ListNat =List(Nat)

we have a corresponding rough context F4 which declares Li stNat with the
rough type above. Then in the underlying FPC signature IF, we can prove
the equation Li stNat. el t = nat. So the identity of the argument type has
been successfully propagated to the result, and this solves the fundamental
problem posed in Section 5.8.2.

ASL+ based onTC 	 237

7.3 Design for Modules in FPC

In the following subsections, I discuss some of the issues in the design of
ASL+FPC, to explain how the definitions in Section 7.2 were reached. This
also explores the language a little bit further than the short example above.
But readers uninterested in this entertaining interlude may skip to the se-
mantics of the language, in Section 7.4 on page 250.

Constructing the institution FPC in the previous chapter was straight-
forward. Now we wish to add the higher-order module constructions and
specification building operators of ASL+. Ideally, this should be a modular
construction itself; we want to use the institution J'TC (or another core-
language) without modification, so we can be sure that properties of FPC
are not disturbed by adding ASL+ "on top".

The idea that adding a module system to a language should be a mod-
ular construction itself has been promoted for the SML and EML module
languages by Sannella [Sannella and Tarlecki, 1986, Sannella and Wallen,
1992], and followed by Leroy In an implementation of one of his type sys-
tems [Leroy, 1996a].

In practice, the restriction that the core-language cannot be modified to
add modules is too harsh. One small change is to add dot notation to the
language to access module components.

7.3.1 Dot notation and contexts

There is a problem to confront immediately. Inside an FPC program, there is
no way to refer to other programs - this is a serious difficulty for modular
programming! For the abstract version of ASL+ in Chapter 5, I postulated
program building operators which allow the extension of one program by
some more declarations, for example. Here I shall take a more direct ap-
proach, using clot notation to project components from a module-language
expression. For example, we could write F(P).c to stand for the type com-
ponent c of the module F(P) and then use this within type expressions in
another module. But expressions like F(P) cannot occur in FPC programs,
because that would imply a circularity: the need to define FPC at the same
time as ASL+FPC.

How can we break this circularity? The syntax and semantics of FPC
types are defined with respect to a fixed signature. The signature does not
mention names of variables used in the module-language, or their types. And
the semantics of algebras provides no way of accessing environments for the
module language.

ASL+ based on FPC
	

238

A simplistic solution is to treat the use of dot-notation as a construction
on names only, so that if c E TyConst, X is a module-level variable, then X.c
is a new type constant. Since the syntax for algebras and signatures in Sec-
tion 6.8.2 was presumptuously factored by a notion of context, this approach
looks promising: we can build up a signature for the context which names
all of the module expressions we need to use, using the dot notation to re-
name their signatures and put them together. Semantically, these syntactic
operations construct a colimit in the category of signatures.

The difficulty with this simplistic solution is that the expression X.c is
just a name in FPC, and not amenable to substitution; F(P).c still has no
meaning, unless we enlarge TyConst to include the whole syntax. That,
apart from being unaesthetic, is not really feasible, since there is a context-
sensitive equality on module language expressions. To prove as many type
equalities as possible, we should be able to use F(P) = F(P') to deduce
F(P).c = F(P).c, so the module-level context is important. Again, it could
not be accommodated without changing the definition of FPC signature.

Accepting that we cannot substitute module-level expressions into FPC
types and terms, my solution is to push the simple variable-renaming ap-
proach as far as possible. Instead of writing a program:

aig
type c = F(P).d x nat

end

we must use a local binding to write:

local
X = F(P)

in
aig

type c = X.d x nat
end

end

The local binding is part of the module language. One might imagine a syn-
tactic translation which automatically lifts the use of module expressions
outside core-level programs in this way, although in many cases it should
not be too uncomfortable to write the long-hand directly. (This form is al-
ready a requirement in SML, for example.)

The difference with the abstract approach of PBOs and SBOs in Chapter 5
is that a connection is now made between the core-language context (FPC
signature) and the module-level context: we can build the former directly
from the latter, by picking out all the components which denote algebras.

ASL+ based onTC 	 239

7.3.2 Hiding the bound names

There is a question about the local-binding approach suggested above: what
signature does the overall algebra expression have?

The algebra is defined in a context X U X.,Fx which includes the whole
signature of F(P). The signature X,N is the signature of the current context,
Ix is the pre-signature of F(P), and X.Xx is a renamed copy of Ix obtained
by prefixing all the component names by X. Outside the scope of the binding,
though, we must remove mention of X from the signature.

Suppose the signature _Yx of F(P) is (the denotation of):

Sig
type d = nat

end

Then we can remove mention of X by replacing X.d by nat, to get for the
whole expression the signature:

Sig
type c = natx nat

end

The type-checker takes advantage of the type equation in the signature of
F(P) to propagate the type equality and deduce that c = nat x nat in the
result.

However, this is not possible in general, since there may be no type equa-
tion for d in the signature Xx. One could simply remove the sharing equation
for c from the signature, but there would still be a difficulty if X.c appeared
in the type of a value rather than a sharing equation.

What we need is a general way to remove or hide the X part of the context
in the result. One way is to make a closure restriction, to force the user to
declare all the types used in a signature within that signature (this is the
approach taken in several languages, including COLD-K [Jonkers, 1989] for
example). This is useless unless we have some way to refer to the context, so
at least sharing equations must contain open terms. But then the problem
remains.

Another way to remove the parameter X is to automatically expand the
signature with an extra type when the possibility of a signature without a
name for a type arises. (Both this possibility and the last are part-way steps
towards pushout parameterisation when the whole parameter is explicitly
copied to the result; but we want to include something less than the whole
parameter, and also find a syntactic method for handling identifiers.)

ASL+ based on JTC
	

240

Following a syntactic approach and identifying program-level names with
the names in the semantic signature, adding extra types to the signature
leads to the tricky question of finding program-level identifiers for the extra
types. In SML, the extra types do not need program-level identifiers: there is
a distinction between names in semantic and syntactic signatures, and a se-
mantic signature may have bound names for which there is no corresponding
program-level identifier. Signatures with bound names occur in the elabora-
tion of programs, but have no direct program-level syntax. With the limited
module system of SML, this is not so much of a problem,5 but with higher-
order modules, it becomes useful to write signatures with bound names.

Instead of adding extra program identifiers, one of Leroy's module typing
systems [Leroy, 19951 takes the opposite approach, by attempting to auto-
matically remove dependencies and by deleting sharing equations. When
this fails and a value occurs which has a type that cannot be expressed syn-
tactically, that value is deleted from the result signature.

FPC signatures do not have hidden parts so my approach avoids bound
names in signatures, like the syntactic module type systems for program-
ming due to Leroy and others. Rather than use one of the slightly distasteful
methods above to do this, I instead burden the user, and require the local
construct to have a signature valid in the context without X. So we must
write something like this:

local
X = F(P)

in
aig

type c = X.d x nat

end: sig
type c

end
end

In this case the user has given the permission for the equation about the
identity of c to be removed. Another possibility would be to introduce a new
type ci in the result algebra: then the user could express that c is equal to
ci x nat.

In the formal syntax in Section 7.2, local is written more briefly as [X =
M]N : A, and the signature is generalised to any specification term. Using

5except that some compilers invent strange type names like ? . t, and then give even
stranger error messages like Type error: ?.t does not match ?.t!

6although perhaps they should; some proof methods for specifications with hidden
parts rely on information about the structure of the signature [Farrés-Casals, 1992, for
example].

ASL+ based onjTC 	 241

a specification term has no difference for rough typing, but it is useful in
the satisfaction system, to serve as a place to put axioms exported from the
body, for example.

7.3.3 Making rough types dependent

In Chapter 5, I described the problem with using an arrow type of the form
= 	2 for the type of a parameterised program: it doesn't express any

relationship between i and 12. This means that the type-checker cannot
deduce propagation of types from argument to result, and therefore cannot
know when certain types which should be regarded as equal are in fact equal.
This makes the notion of an environment or context unworkable, since there
is no way to relate the results of building modular programs to their inputs.

The solution I have adopted is to introduce dependent products into
rough types:

T ::= ZY I TrX : T.T I P(T)

We have dependent types here because module-level variables X can occur
(necessarily) free in the names of a pre-signature 2.

For example, let:

2 =sig 	 2cvtX.c] =sig
type c 	 type c

end 	 sharing c = X.c
val v : c

end

(strictly, there should be semantic braces around the syntax of the signatures
above). I call the second signature 2cv[x.c] to informally indicate the free
name X.c inside which shares with the type c. By this convention, the same
signature without the sharing equation would be called Zcv . The signature
might have other names X.ci, X.e appearing inside too; all these would be
taken to be bound by the same module variable X.

The rough type irX : 2c.2v[xc] describes a choice program which returns
some element of its argument type. Suppose F is such a program, and we
have an argument structure P = aig type c = nat end, then the expected
argument and result signatures of F would be:

I:cn =sig 	 2v[nat] =sig
type c = nat 	 type c

end 	 sharing c = flat
Va! v : C

end

ASL+ based on J'TC
	

242

(again, missing semantic braces).

The application of F is typed by the rule:

F => i-rX : 'c 2'v[X c] 	P 	. 	 'cn
F(P) 	('V[X.C])[nat/X.c1

the inferred signature fcn expresses that c shares with flat. This sharing gets
propagated to the result signature (CV[X.C])[nat/X.c] which is equal to the
signature 'cv[nat] shown above.

So far so good; but we have the same difficulty as before with arguments
for which no concrete (sharing) type is known, when the type c is abstract.
Such arguments occur if there is some mechanism for providing abstraction
in the module language (for example, by restricting the signature for P to one
which conceals the implementation of c); or in any case, via specifications -
instead of an explicit algebra, the argument could be a variable Y assumed
to satisfy some specification.

Suppose the argument is a term M, where M.c is an abstract type for one
of these reasons. Then we cannot substitute M.c for X.c in the signature
If M is a non-variable, then neither can we substitute M itself for X, since we
cannot write M.c inside FPC types. We could try solving this problem in the
same way as for ASL+ terms in Section 7.3.1 above, by introducing a local
binding for X around the rough type. This would lead to a further revised
syntax for rough types,

T ::= Z I TUX: T.T I P(T) I [X = MIT

However, this would give a system with true term dependency (previously the
dependency was just on names), and it is tricky to define an effective way of
deciding when two such types are equal: a type-checking procedure would
have to consider permutation of bindings around signature rough types, as
well as term equality.

Instead I chose a pragmatic and approximate solution: restrict the appli-
cation of parameterised programs to terms which we can always substitute
into the body of a rough type. In this case, we can rename inside rough
types, so we can have applications with the form FX. This is the only kind
of application that is allowed in ASL+FPC, although other kinds of applica-
tion could be added. For example, we could allow application to an algebra
expression P without hidden type identities, because we can always give a
type to FP by substituting the type definitions of P. (See also the discussion
in Section 7.6.1 on page 257.)

The restriction on applications may seem limiting, but in practice one
usually works with an environment of bindings to variables anyway, so the
restriction is that the operand is something defined in the environment or a

ASL+ based onTC 	 ____ 	 243

parameter declared in the context. Since there is a notation for declaring lo-
ca[bindings, this does not mean an ever-increasing environment. And using
local bindings, the problem of removing the dependency on the operand has
been passed on to the programmer.

To understand what happens with the F(P) example above when P is a
variable defined in the environment, see the example in Section 7.2.3.

73.4 Dependency between parameters

The rough types shown in the last section allow basic parameter-result shar-
ing to be handled, but the scheme is unsound for some cases of higher-order
parameterisation, because dependency between parameters is lost. (By "un-
sound" I mean that some terms are roughly-typable and yet do not appear in
the satisfaction system; of course, we expect this because the satisfaction
systems checks logical consequences, which can eliminate some roughly-
typable terms. But we'd like the gap between the two type systems to be
as small as possible, so we can eliminate the largest possible set of wrong
terms.)

Here is an example of dependency between parameters. Consider a vari-
ation of the example before, where we have an ASL+ specification:

CHOICEFUN =def FIX :!~- (spec
type C
axiom 3x: c. x *

end).
HY:X X . Sig

type c = Y.c
Va! v : C

end

this has the rough type:

TrX: P(X). irY : 	
. 'vIY.cI

which expresses that it is the type of functions mapping Z, -specifications
to functions from Yc-algebras m to an algebra with a chosen element from
ImI. This rough type has lost the dependency of the parameter Y upon the
parameter X. If we apply a function F : CHOICEFUN to a specification for
which some concrete implementation of c is given,7

G =def F (spec type c = nat end)

7Notice that the argument to F is valid because the axiom Ix : c.x * _Lc is satisfied
once c = nat, although we wouldn't expect rough typing to detect this.

ASL+ based on jPC 	 - 	 244

by the usual application rule, the rough type of G is

TrY : c•v[Y.c]

However, G should only be applicable to -algebras in which c = nat, rather
than any -algebra. The rough type of G ought to be:

TTY : ' 'ctnat} 1v[Y.c]

The problem is that specification parameters, which can be substituted
with specifications having more sharing than their types require, may appear
inside parameter specifications for algebras. With rough types of the form
T -X: P(T).TrY : T'.T" any dependency ofT' onXhasbeenlost. This problem
is unique to the specification setting, and does not appear in the modular
programming type systems studied by Leroy and others.

One fix could be to extend dot notation to allow projection on specifica-
tion expressions, as well as algebra expressions. The rationale behind this
is if a specification SP has a fixed implementation of some type c, which is
expressed in its signature as sharing equation c = nat, for example, then
any program P satisfying SP must have P.c = nat. In the example above,
the rough type of G might be written TTY : Xc x.ci.Eviy.ci. However, dot nota-
tion on specification expressions in other cases is not well-defined, because
different models of a loose specification SP can implement c with different
concrete types. So it is hard to see how to add it.

The solution to this problem I chose for ASL+FPC is to allow re-calculation
of the rough type of the parameter, so that rough types become

T ::= 	I 1TX:A.T I P(T)

where A is an ASL+ term. Now the rule for application must perform some
substitution inside full terms A as well as in rough types 8, but whenever
we need to compare rough types, we compare TrX : A.T and irX : A'.T' by
comparing the rough types of A and A'.

In the case above, the rough type of CHOICEFUN becomes:

Spec (sig type c axiom Ix: c.x * _Lc end).TrY : X. v jy.c

and then the rough type of G would be

TrY : sig type c = flat end.fiy.i.

So now G is only applicable to algebras in which c = nat, as required.

8for type-checking, perhaps substitution of type expressions would be enough.

ASL+ based onjTC 	 245

7.35 Type abstraction and hiding

In module systems for programming languages, type abstraction is achieved
by hiding type identities. For example, if we define a stack module:

P =def aig
type stack = list ,at
val empty =

end

Then giving this module the signature

S = def Sig

type stack
val empty: stack

end

prevents access to the underlying representation of stack, apart from through
the interface functions. This is because the type-checker conceals the iden-
tity of stack, so elements of stack aren't amenable to the usual operations
on lISt natO

There are different choices of how abstraction is introduced. If we have a
"signature constraint" operation on modules as part of the language, then

P:S

is a module like P except with the identity of stack hidden.
With a generative semantics for this construct, each time the expression

appears a fresh and distinct stack type would be generated, and so we would
have that P : S * P : S. With an applicative semantics, we would consider
all abstract types generated in the same way to be equal, so P : S = P : S.
The argument in favour of a generative semantics is that it avoids "acciden-
tal" identification of types: if two abstract types happen to have the same
implementation, they should not necessarily be considered equal, only types
generated at the same point in the program should be considered equal. The
argument against a generative semantics is that it is harder to reason about
than an applicative semantics, because it does not admit the principle of sub-
stitution of equals-for-equals. For this reason, the treatment of ASL+ follows
an applicative approach.

Semantically, the applicative interpretation for the constraint operation
above is simply to apply the reduct functor -_Ys : Mod(Ep) - Mod (1s) to P,

ASL+ based on JTC 	 246

where fp is the inferred signature for P which reveals the implementation
of stack and 2:s is the constraining signature which hides it. There is no
constraint operation like this in ASL+FPC because it can be simulated using
the binding construct, which has a constraining signature as explained in
Section 7.3.2.

Coming to ASL-style specifications, on the other hand, type abstraction
means more than just hiding type identities via the reduct functor. For ex-
ample, the specification

derive from {P} by t : - fp

has just one model, {P]j E Mod(s). Although the identity of stack has been
hidden in the signature of this specification, its class of models is unchanged
by the derive operation. Instead, to give a specification of algebras which im-
plement the stack operations, we would have to use the abstract operation
of ASL. In fact, a more high-level specification language would probably in-
terpret the ":" constraint operator appearing before specifications as a com-
bination of derive and abstract.

This example of the difference between type abstraction in programming
and specification (at least, in terms of the ASL+ semantics) raises questions
over how to type-check the derive and translate operations. This we inves-
tigate next.

7.3.6 Handling renaming

The crux for propagating sharing properly is to allow the result signature
of a parameterised program or specification to vary according the argument
signature. Since parameterisation is understood in the syntax via substitu-
tion, we want to capture this variation in signature by a more liberal form
of substitution, which allows a variable to substituted by a variable having a
more refined type.

The refinement on types allowed is an "increase in sharing", so that if
£ c 	', but ' only differs from Z in having more sharing equations, then we
may substitute a£'-algebra for a X-algebra. Semantically in FTC, we have an
inclusion between Mod(') and Mod (1) in this case, which makes it easier
to deal with. (Easier, that is, than the more flexible case that X' also contains
additional sorts and operations over X; comments about this alternative are
made later.)

Using rough types we want express, as accurately as possible, the prop-
agation behaviour of terms in the module language. For variables, we use
the idea of strengthening the type from the context, to reflect that it shares

ASL+ based onjTC 	 247

with the context The typing rules for explicitly given algebras simply copy
the type expressions into the signature (this happens in the type-checking
rules in Section 6.8.2). We briefly considered functions above. What's left to
look at is the operators of ASL. Here we examine the renaming and hiding
operators translate and derive.

Renaming with translate

The usual rule for rough typing translate is:

0. SF => P(i) 	a : 11 - 12

translate SP by cr => P('2)

In the semantics, we think of translate being interpreted by a family of oper-
ators I11,2; this was the abstract understanding of SBOs used in Chapter 5.

However, any model of translate SF by o- has a o--reduct in SF, which
implies that whenever c =.f, t, then it is safe to assume o- (c) =Z2 0- (t). This
would result in a more powerful rough type-checking system, since more
terms with no denotation will be eliminated by rough typing.

For example, we expect that

F P,. translate sig type c = nat end by [c -. ci] 	- Jd

	

=> 	PC[d = nat])

	

where 1c and 	each declare one unspecified type, and d[d = nat] is the
denotation of sig type ci = nat end.

Because signatures are allowed to vary, and because a function can be
applied to a term with a more refined type than its apparent domain, Sig (SP)
may have more sharing than the fixed domain 2:1 of the signature morphism
o-. So the sharing equation c = t actually appears in a super-signature of .
Generalising, we get a rule like this:

SF => (X I 	2 	i sh i 	'2 =
translate SP by a => P ()

where a * (f) denotes the signature (TyX2, Sh, Tm2) with the sharing equa-
tions Sh defined by

Sh(c) =Shi2(c)u{o(ti)ci.u(c) =c1 A c1 =t1 E}.

The signature 12 has the (extra) sharing equations propagated from by a.
This constructs a pushout in Sign.

9See Definition 7.2. This terminology is due to Leroy [1994] and doesn't relate to the
usual type-theoretic notion of "strengthening" a context by removing variables.

ASL+ based on JTC 	248

But there is an easier institution-dependent way to arrive at the same
result. Suppose instead that the translate specification is built using the
syntax for a signature morphism. This is just a set of renamings, so the
same syntax can denote many morphisms between similar signatures. In
particular, given a source signature , the target signature determined by
a renaming s (2:) will contain exactly the sharing equations required above.
This results in a rule for translate which is more realistic and more readable:

SP == P(s) 	0. s
translate SP by s = P(s(2L'))

It relies on the "natural polymorphism" of the syntax.

Hiding with derive

The derive operator is used to construct specifications with hidden parts. In
many institutions, hiding is necessary to express certain specifications. With
FPC, we could perhaps do without hiding of operators, since we can write
formulae which are existentially-quantified on terms of any order. But there
is no way to write formulae which are existentially quantified upon types.

The usual rule for typing derive is this:

SP = P('2) 	0- : I1 - 2

derive from SP by a => P (Xi)

Let's consider whether any type equalities should be propagated between 12
and fl, particularly in case the argument specification SP has a supersigna-
ture of £2 with more sharing. We expect the typing of derive to hide names
as usual. The question of whether derive should conceal type identities was
mentioned in Section 7.3.5. Concealing type identities in programs makes
good sense because it is how type abstraction is achieved, but in specifica-
tions type abstraction is achieved with the abstract operator (which I won't
consider here).

It would be possible to allow derive to propagate some type identities:
those which can still be expressed in the result signature, for example. But
this would be a half-solution. Again, I stick with the original scheme; to begin
with, it is questionable whether we want the raw derive operator for arbitrary
signature morphisms in the language - see the discussion on page 258.

In the end, the rule above is modified only to use concrete syntax for
signature morphisms. As before, compared to a rule containing a fixed se-
mantic signature morphism, this allows specifications over supersignatures
Of £2 as arguments:

F 	SP = P(12) X 	S 	 s 	- £2

derive from SP by s : S => P (11)

ASL+ based on JTC
	

249

Because the destination of a signature morphism cannot uniquely determine
its source, we must also give the syntax for a signature as part of the derive
construct. (A common and convenient addition would be to use an operator
hide to hide some specified sorts and constants from a signature.)

7.3.7 Redundancy of singletons

Because FPC has type equations built into signatures, a choice motivated in
Chapter 5, the prototypical use of singleton types to construct specifications
from algebras is redundant. The specification

{X}

where X denotes a X-algebra, can be expanded into this specification in the
context declaring X:

Spec
type c
sharing c1 = X.c1
Val v1 : t1
axiom v1 = X.v1

end

(the subscripting suggests several statements of each form, according to the
types and values in X). Rather than explaining dot notation via singleton
types as suggested by Sannella et al. [1990] (see Section 2.1.5), expressions
like this now have a direct semantics, because we the underlying context is
available explicitly as an algebra.

Type sharing equations are more expressive than singleton types with re-
namings. For example, suppose we have a signature for types with a default
value:

= def Sig
type C

val v : C

end

Then we can write the specification of a parameterised program which makes
products of the f, type as

PRODFUN =def LIX :sig
type c
val v : C

end. spec

ASL+ based onJTC
	

250

type c = X.c x X.c
val v : c

axiom v = (X.v,X.v)
end

Now if Prod: PRODFUN, then Prod has the rough type

TrX:L.Lu{c:= X.c x X.c },

which allows the type-checker to know that the result of a Prod(P) is a ,-
algebra whose type c is equal to P.c x P.c. Using the singleton construct in
place of sharing equations, this could not be expressed, because there is no
(ordinary) signature morphism which can express the equation c = X.c xX.c.

Because the primary reason for singleton types is no longer necessary,
they are not included in the syntax of ASL+FPC.

7.4 Semantics

A set-theoretic semantics of the rough typing judgements is given in Defini-
tion 7.8 below. For simplicity, sets are used to interpret specifications, rather
than PERs as in previous chapters. This means that the satisfaction system
will not be sound for a contravariant rule for H, and it must use the simpler
equal-domains rule shown in Section 4.9.2.

The interpretation is a partial definition, because function applications
can be undefined if the operand does not meet the semantic requirements
of the function parameter. In fact, even if rough types were used as the
parameters, the interpretation of a term might not be a well-defined element
of the interpretation of its rough type; a rough type can be empty, because
signatures can contain inconsistent sharing equations. This is in contrast to
the semantics based on rough typing in Chapter 5, where rough types always
have non-error elements, so if there are only rough types in parameters (or if
all PBOs and SBOs are total), then roughly typed terms always have a defined
(non-c) interpretation. For simplicity, I do not formalize 0 in this semantics.

As before, a full soundness proof must wait for the satisfaction system,
although soundness for rough typing, modulo definedness, is proved as a
property of the definition below in Proposition 7.10.

The semantics exploits the fact that in JPC, if £ 	", then whenever
m E Mod(Y"), then m e Mod(f) too. This means, for example, that no co-
ercion is needed to interpret the variable rule, although the signature of the
obvious extension of Alg(y) is - u X rather than - U XIX. The semantic
inclusion means that no coercion functions are needed to interpret syntactic

251 ASL+ based on TC 	 -

subtyping, and so no interpretation of the subtyping judgement is given be-
low. If arbitrary subsignatures were allowed in the rough subtyping relation,
this issue (and some others) would have to be tackled, see Section 7.6.1 for
discussion.

	

The interpretation of the judgement F 	sig X- is a function for extract-
ing the underlying algebra of an environment. Applied to an environment y,
this function is written AlgT (y) where y is in the interpretation of the context
F. The interpretation of the context F is written .ME[Fill y. The interpreta-
tion of well-formed rough types is constructed beginning from .ME[F
which is the set of algebras from Mod(1 u .1) which extend the algebra
given by Alg(y). Finally the interpretation of a term JtlE[F 	M = 	is
an element of JvflIF 	when defined.

Definition 7.8 (Interpretation of rough typing judgements).
The interpretation of each rough typing judgement is defined by induction
over its derivation. Each clause in the definitions below corresponds to a
rule in Figures 7.1-7.4. Meta-variables introduced wildly below correspond
to ones appearing in the premises of the rules.
Algebra of an environment:

Alg(>(*) = (0,0) (the unique object of Mod (0))

Alg'((y,m))=m

c
A Id" T((y,Im)) 	m 	if 	1, = 	

Aid (y) if T is anon-signature.

Interpretation of rough contexts:

•

F, I I = {(y,m) yLM F, mEJv!F

lF,X:T={(y,m)
	y e JAIT o,. F, m E 1F 	T,

}

Interpretation of rough types:

mI r = Aid (y)}

LME{F 	TrX:A.T'II 	 T'I(y, m)

J'vlE{F o. P(T)]1 = Pow(JvlE{F 	TL)

Interpretation of ASL terms:

ASL+ based on JTC
	

252

S => P(flJI =

{mEMod(i-u) I mizr =A!c/(y)}

MIF o. P 	= 	 Aij(y)

JVflIF . impose p on SP => P(1), =

{mEJ1F P.. SP = P(fl, 	m 	p}

• -m IF derive from SP by s : S => P(X), =

{ miff I mEJVlF SP

where a is the denotation of Zr o. S 	X

• Ni IF translate SP by s 	 =

{mE Mod (i-us()) 1 miff E JVJF 1, SP

where a is the denotation of ZF 	s => I - s(fl.

ME[F o. enrich SPwith SP' ==> P(XUf')I=

E J%1[F SP = P2')], A

I 	 }
mEMod(IrUXU') m E 	 SP'

Interpretation of ASL+ terms:

LMEIIF P. X : 	= (tx,Px) given by

j-(c) 	c E IF,
1 =def 	t1(X.c) CE.

where (IF, PH = Aid (y).

Jv!F P.. X ==> Ty = YF(X)

I

P1(V) 	VEj-,
px(V) def p1(X.v) v

-%1IF o. AX:A.M = rrX : A.T']I = the function given by

f(m) =J1 IF, X:T M => Ti(y, m)

form ELMF A => P(T)]I.

MIF MX - T', =

.MIF o,. M => TrX : A.T']1 (J.1IF op. X 	: To)

JvflIF 	TIX:A.B =' P(TrX:A.T')]J=

TImEJF o. APi-yflJVflIF 	B 	P(T')Ifl(y,m)

ASL+ based onjTC 	 253

.M{F o,. Spec(A) => P(P(T))]1 = Pow(JvljF 	A = P(T)]1)

JvflF o,. [X = M]N : A => Tj = RT (k) where

k = def JVIEIIF,X:TM Po. N = TN]l(y,m)

where m = MEIIF o,. M = Tmiyl and

(kI XF u 	 if
RT(k)= 	{a 	Ek} if TP(X)

where F => Sig F• 	 0

We shall use the full contexts in the next section; these have an obvious
interpretation using the definition above, by induction on a derivation of
F == FR.

Definition 7.9 (Interpretation of contexts).
The interpretation of a context F such that F = FR for some FR is given
by:

'MO ==

rMIIiF,SP == 	FR, fl =

	

{ (y, m) 	yEJ1F = FRL mEJv1Tr, o. SP =>

11IF,X:A = FR,X:T]I=

	

{ (y, m) 	yEMF = FR I, mEJv!FR A 	P(Tfl1 }

LMIF,X = M = FR,X:TJ1=

	

{ (y, m) 	yEJt1F = FRL m=JvlFR 0, M => T}

Proposition 7.10 (Rough soundness).
Suppose mo. M => T. Then] MIflEJ'fl[TIllwheneverbothare defined,

for all y E .MI[F]1, whenever JVflJIFJI is defined.

Proof (Sketch). By induction on the typing derivation for M and formation

	

derivation for T. 	 0

ASL+ based on JTC
	

254

7.5 Satisfaction System for ASL+FPC

Now we have an improved rough typing system which puts modules together
in a context. We want to extend these changes to the satisfaction system.
Here I shall just sketch a few of the rules a satisfaction system might contain.
The rules would be similar to those presented for the abstract version of
ASL+, in Sections 5.5 and 5.6.

There are four judgements used in the satisfaction system:

> F 	 F is a well-formed context
F> M: A 	 M satisfies A
F > M = N 	M and N are equal in context F
F;M H p 	 cp holds inM
F I— cp 	 p holds mF

The first three judgements are as usual, except that equality judgement is
not relative to a type here, because we have a set-theoretic semantics. The
last two judgements prove properties of terms M or of the context F. In
the first case, the property p holds for the term M, which must denote an
algebra or a set of algebras. In the second case, p holds for the underlying
algebra of the context F.

These new judgements allow combinations of properties to be proved for
the context and for terms, and then used in rules which are certain kinds of
"cut". As with the system presented in Chapter 5, there is no general logical
rule of cut, since the satisfaction judgement is not a consequence relation
which allows deduction from arbitrary premises. Instead properties of the
context or terms can be used in key places. For example, a possible rule for
impose would be:

F ==> FR
FR => sig -'F 	 F H Pr

F>M:SP 	FRM=X 	F; M i- q9m 	q r A (Pm Hp

F > M : impose p on SP

To show that M satisfies impose p on SP, we must show that it satisfies SF
and additionally that it satisfies p. The logical satisfaction is proved in the
signature which extends the signature of the context by the signature of M.
To prove it, we may use any properties of the context and of M itself.

Properties of a term M can be derived in two ways. If M is an explicit
program F, then we can assert an equality which comes from a declaration
inside P:

Va! V : t = e appears in P
F;P F— v = e

ASL+ based onlTC 	 255

If on the other hand, M can be shown to satisfy or refine an impose specifi-
cation already, we can assert the axiom directly:

F > M : impose p on SP F> SP: Spec (impose p on SP')
F;MHq 	 F;SPHq

For ASL specifications, these rules rely on the presence of rules for reasoning
about the equality of specification terms and proving refinements, to obtain a
specification with impose as the outermost constructor.'° Suitable rules can
be formed by modifying those given in Wirsing [1990], Farrés-Casals [19921,
for example.

For specifications built using parameterised terms, for example when
M = F X, we must find a TI-type of the form TIY:A.impose (p on SP for
F. This can arise from a generic proof for F, which relies on proving first
F : TIY:A. impose p on SP and then X : A. Or it can arise from a slightly dif-
ferent information flow: find an A such that X: A and A is chosen to express
enough information about X so that F : TIY:A. impose p on SP can be de-
rived. Both these techniques are possible, in particular because of the gener-
alised A-rule which we adopt (called (A-NARROW) in Section 3.3.1 on page 54):

F>A':Spec(A) F,X:A'>M:B' F,X:A>M:B
F> AX:A.M : TIX:A'.B'

(Because we do not have the contravariant rule here, the use of this rule
allows unrelated types to be derived for the same A-term.)

Properties of the context are proved by renaming properties of terms
inside the context. There are three rules to deal with the three different
kinds of declaration a context may contain.

F> SP: Spec (impose tp on SP')
FE F1,X: SP, F 	FR 	SP ==> Spec (1)

FHXp

FF1,X=M, F1' 	F;M I- p 	FR o. M == Spec (1)
F Xy.

F 	F1, SP, F1' 	F> SP: Spec (impose (p on SP')
Fi-q

Other rules for dealing with assertions allow properties tp to be combined,
and the trivial derivation of T from any context or term.

'°An alternative strategy would be to extend the definition of F; M F- p to allow theo-
rem proving by decomposing the structure of M itself, as suggested for ASL by Sarinella
and Tarlecki [1988a].

ASL+basedonTC 	 256

As well as these new rules, we have rules similar to the ones seen before
1111 APower and A< for the higher-order type constructors. To prove equalities,
we also need congruence rules for the ASL terms, to admit equality relations
on the syntactic representations of signatures and algebras, for example.

The rules suggested here are provisional; more work is needed to study
their formal properties and suitability for the task. More rules are proba-
bly needed, and strategies for proof search should be studied in practice
one would wish for cunning ways to control the search space for proving
consequences, as suggested by Sannella and Burstall [1983].

We end by stating without proof the desired agreement and soundness
properties of the satisfaction system.

Theorem 7.11 (Agreement with rough typing).
If > F then for some FR, F == FR.

1fF > M : A then for some T, FR M => T and FR o. A == P(T),
where = FR.

Theorem 7.12 (Soundness).
Suppose > F and let y E J%1F = FR L

1fF > M : A, then J%4M1fl E %M Y'

IfF>M=Nand for some A,FM:AandFN:A, then
JvjIM], = JvflIN]I.

If F;M I— cp then for some E,FR M => E or FR M = P(s) and
Jv{M] =FPc U.p.

if I— p then y14::Pc .

In the second case, actually, the existence of A ought to follow from F > M =
N by a meta-theorem of the satisfaction system.

7.6 Discussion

This section discusses some shortcomings and desirable improvements for
the work here, and mentions some related work. The chapter is summarised
in Section 7.7.

ASL+ based on FPC 	 257

7.6.1 Shortcomings and improvements

The rough typing system presented here is only a first-step towards a more
expressive type system, rather than a robust and final solution. Several prob-
lems with it remain, and there are some highly-desirable extensions. These
are discussed below.

Propagation with higher-order modules

The examples in Chapter 2 made little use of higher-order modules: most
of the modules used as parameters were ground terms. The type system
presented here has some problems dealing with the expected propagation of
sharing in more general cases.

The typical example" is the parameterised program App] yFun which
takes a parameterised program F as an argument and applies it to a second
argument X. The application App] yFun(F) should behave just as F itself.

App] yFun =d,f A F: sig type c end - sig type c end.
AX: sig type c end. F(X)

We have the rough typing:

() 	Appl yFun = TrF: sig type c end sig type c end.
'rrX : sig type c end. sig type c end.

Now App] yFun can be applied to a module which has a more refined type
which expresses some sharing, for example,

Id =d,f AX: sigtypec end. algtype c =X.cend

with

() P,. Id ==> irX: sig type c end. 1x.j.

But the rough type of App] yFun (Id) is

() o. App] yFun (Id) 	rrX: sig type c end.f.

which has lost the sharing expressed by Id.
Leroy's syntactic solution to this [Leroy, 19951 is to introduce a new kind

of name: as well as allowing names X.c, he considers X(Y).c to be a new
name. Then the types of applications like App] yFun above can be strength-
ened in the same way that variable types are, to express the sharing in the

11see Leroy [1995]

ASL+ based on J'TC
	

258

result as type c = F(X).c. (This means that the left hand sides of applica-
tion terms have to be restricted too, although the right hand sides can now
be applications of variables as well as just variables).

At this stage it is getting painful to maintain the restriction of not permit-
ting module-level expressions inside core-level expressions. In retrospect, a
better module language might be obtained by properly mixing the syntax;
see the discussion in Section 8.2.

Better rough typing

The rough typing system does not guarantee that inconsistent signatures
cannot arise during type-checking. One simple example is when derive is
used to hide a type identity:

F =def AX: (derive from (spec type c = bool end) by [c -. c]: Xe). SP

Now the parameterised specification F is only applicable to classes of models
in which c is implemented by boo!, but this information has been hidden in
the rough type of its parameter, which is fc. Because we are allowed to pass
parameters with more sharing, we can now write something like

F (spec type c = nat end)

which is obviously wrong and would not be a term in the satisfaction system.
But it is roughly typable. Other examples are possible which rely on the use
of the binding construct, because that too can hide type-sharing.

What can we do to fix such problems? One approach may be to restrict
the language: it isn't clear that having the full generality of the ASL operators
available in a high-level language is right, and perhaps with more restrictive
higher-level constructs such inconsistencies could be avoided. In the case
above, a derive operation would not be allowed alone - instead we would
have a combination of derive followed by abstract, which would allow dif-
ferent implementations of the type c once its identity was hidden.

Alternatively, the framework itself may be considered to be at fault. We
have no distinction here between free names in signatures and "rigid" (or
bound) names. Rigid names are those which have some fixed, but unknown,
interpretation. This distinction is made in the SML stamp-based semantics,
but the type-theoretic treatments of modular programming [Leroy, 1994,
Harper and Lillibridge, 19941 manage to avoid it and treat types as I have
done here: either "manifest" (with known sharing equations) or "abstract"
(no known sharing equations, and free). The deep reason is that for mod-
ular programming, parameter signatures are fixed and there is no way to

ASL+ based on FPC 	 - 	 259

introduce rigid names in parameters. In ASL+ parameter signatures can vary
because we have variables ranging over specifications which can be instanti-
ated with specifications of a super-signature; and because of expressions like
those above. This also explains why other studies have found parameterised
signatures (and even parameterised renamings) to be useful.

Passing parameters with more components

In real languages for modular programming, one is usually allowed to sub-
stitute an algebra over any super-signature, so that extra components of the
parameter are forgotten automatically. This is a richer form of subtyping
than the one adopted here, but it is harder to cope with in the syntax and
semantics, since it calls for the use of coercion functions (built up from the
reduct functors), to "cut-down" an algebra to the right size, by forgetting ex-
tra components. To do this we would need to define an interpretation of the
subtyping judgement as a coercion function, but more crucially, prove some
kind of coherence property which relates the interpretation of the substitu-
tion of a coerced-term with the coercion of the substitution. See the remarks
in Section 4.6 for similar discussion.

There is a further difficulty raised by allowing parameters with more com-
ponents. The new components might obscure other declarations: in other
words, it becomes possible to re-bind the same name. This is tricky to tackle;
whilst names in signatures behave like bound variables, they cannot be re-
named. Some form of distinction is needed between the names of the type
and term constants in the signature, and the identifiers used in types and
terms. This has been addressed in a couple of ways in the recent treatments
of type-theoretic module systems (see for example Leroy [1994], Harper and
Lillibridge [19941).

Despite these difficulties, I believe that a proper treatment of modular
programming and specification should allow this kind of subtyping.

Nested sub-algebras

In most module languages there is a facility for declaring a sub-module nested
within another module. This is not allowed here; there are a couple of rea-
sons why it is difficult to add.

The first reason concerns the mix of languages mentioned before: at the
moment there is a strict separation between the core language FPC and the
modular extension to ASL+. So the rules for writing syntactic signature and
algebra expressions only have an FPC signature for a context, rather than

ASL+ based onjTC - 	 - 	 260

a full ASL+FPC context. This precludes directly including something like
mod L = M in an algebra, for example.

Instead we might try to extend the "variable-only" treatment, and allow
the rules for signatures and algebras to understand the fact that some names
have a special construction which indicates they denote components of a
module. Then we might write mod L = X, for example.

However, in both cases there is a more serious problem to be addressed:
again, the problem mentioned above of re-binding names. In this case, a
nested module could have the same name as a module in the context -
forcing it to be different seems rather too strong at this point.

The renaming by flattening approach to adding nested sub-algebras ex-
tends the treatment of signatures as contexts to signatures declared over
those contexts. In other words, we would have extensions like £UX.2' 9 extu

11 u Y.. At this point, it becomes questionable whether flattening is right.
In real implementations, the modular structure is retained: the dot-notation
corresponds to a look-up operation rather than a fixed projection defined
ahead of time based on a global renaming. Although it is tempting to ex-
plain nested sub-algebras by the flattening approach, I believe a better un-
derstanding would be gained by treating nested signatures properly. This
would mean altering the underlying institution once again and not using

PC itself directly.

16.2 Related work on syntactic module type systems

Leroy, and Harper and Lillibridge independently, introduced the idea of sig-
natures with explicit type-sharing equations to give a type-theoretic version
of the SML module system which could explain the forms of type abstrac-
tion and propagation in SML [Harper and Lillibridge, 1994, Leroy, 1994]. The
intention was to get an accurate and type-theoretic description which cap-
tures the operational description of the SML semantics Milner et al. [1990],
and also repair problems with it such as the lack of support for separate
compilation. Leroy [1995] later extended his work to consider higher-order
modules.

The rough type system here follows some of these researchers' ideas,
although it began life from the conception of adding type equations to alge-
braic signatures to explain sharing and fix the institutional semantics. Sim-
ilar ideas for type equations in signatures were used by Tarlecki [1992]. I
have aimed for a type system which relates directly to the abstract syntax of
the module language; even some of Leroy's systems require extra stages of
translation.

ASL+ based onTC 	 - 	 261

Many of the restrictions in the type system presented here arise from
the inability to substitute module-level expressions into core-level expres-
sions: the strict separation of the syntax of FPC from ASL+. This is why we
introduce local bindings, which are not present in other systems. (In com-
pensation, other systems have the possibility of nested modules, which can
be hidden by a signature constraint operation.)

Leroy [1996b] makes restrictions on what kind of applications are allowed
and where they may appear, similar to the restrictions made here because of
the substitution problem. Leroy's motivation instead is to capture a gener-
ative semantics in which substitution is not a valid operation. A name-level
understanding of type equality seems essential for dealing with a generative
semantics.

Some recent work on module systems by Courant [1997a,b] attempts to
remove these restrictions from Leroy's systems by introducing generation
of type names at a different stage, when structure declarations are made
(X = F(M)) instead of when functors are applied (F(M)); expressions then
retain an applicative semantics, but declarations have to be treated specially.
This idea might work well with the treatment of contexts here.

7.7 Summary

This chapter described an instance of ASL+ based on the institution JTC de-
fined in Chapter 6. I introduced a new rough typing system for the language.
This has two major improvements over the previous rough typing system for
the abstract version of ASL+ in Chapter 5.

The first improvement given by the new type system is that it allows pro-
grams and specifications in-context to be dealt with, giving a formal treat-
ment of dot notation for renaming the parameters in the bodies of abstrac-
tions, for example. Before this point, the dot notation was explained in an
informal way by appealing to some translation on the source language in-
volving singleton types (see the example in Section 2.1.5). This translation
is less general than the present treatment which allows sharing equations
which express sharing between parts of types.

The second improvement given by the new type system is that it explains
the propagation of type information from the argument to the result in a
parameterised program. This means that parameterised programs do not
denote a single function between model classes over two fixed signatures
-'arg Xres, but rather a family of functions indexed by signatures rg such
that Earg 	rg' from the model class of 	to the model class of a sig-
nature Xres[rg] which may depend on the sharing equations in -rg This is

ASL+ based on JTC 	 262

closer to the situation in real programming languages and pushout parame-
terisation.

I gave a semantics for the language based on this new type system, which
is an original step beyond the purely syntactic treatments of the work on
programming languages. I agree with the arguments given by Leroy [1994],
Harper and Lillibridge [1994] that there should be closer connection between
the syntax and semantics than is evident in the operational explanations of
type-checking (such as in the 1990 S M L semantics Milner et al. [19901) and ex-
planations which are more type-theoretical are needed. However, the model-
theoretic semantics is still paramount in the theory of algebraic specification,
so it is important to connect the two sides. This poses some new challenges.

The rough typing system given here still has drawbacks, described in the
previous section. It is an experimental first-step towards an expressive type
system, rather than a robust and final solution. There is much scope for
further research.

8 Conclusions

8.1 Summary 	 263
8.2 	Future directions 	 264
8.3 Finally 	 268

8.1 Summary

T HE OBJECTIVE of this thesis was to study techniques and foundations for
the modular development of large programs and specifications, using

the language ASL+ which was introduced in the closing sections of Sannella
et al. [1992].

The work began with two fundamental studies of type systems which are
fragments of ASL+.

The first study was of the system A<{} , which combines subtyping with
singleton types, introduced in Chapter 3. This was one of only a few stud-
ies of dependently-typed subtyping systems in the literature when it was first
published [Aspinall, 1995a]. Since then more has been done and the research
area is quite active, driven by a desire to add subtyping and similar con-
structs to theorem provers based on type theory [Aspinall and Compagnoni,
1996, Betarte and Tasistro, 1996, 1997, Bailey, 1996, Chen and Longo, 1996,
Chen, 1997].

The second study was of the system 'Power, introduced in Chapter 4. This
appears to be the first in-depth study of power types in the literature. It
forms the core of ASL+, and has a rough typing system which is decidable
and approximates typing in the full system.

In Chapter 5, I gave a formalization of ASL+ based on the type systems
given before. This involves special notions of consequence relations for
proof systems of the underlying institution.

My goal was to capture ASL+ as an institution-independent generic lan-
guage, which captures parameterisation as it is used in real specification

Conclusions
	 264

and programming languages. In particular, I wanted to completely formalize
the example of Chapter 2 and other similar examples. To get a useful lan-
guage, we should just have to instantiate to a given institution and use the
type-checking rules of ASL+, and not a complex translation and duplicated
type-checking rules for higher-order modules in the source language. The
original proposal of ASL+ falls short of this goal for technical reasons to do
with type-checking, explained in Chapter S.

With a view to solving these problems and formalizing the examples fully,
in Chapter 6, I gave a complete description of an institution based on FPC,
a minimal functional programming language with recursive types. The logic
of the institution is an LCF-style extension to Higher-Order Logic.

In Chapter 7, I introduced a new rough typing system for ASL+FPC, a
version of ASL+ based on FPC. This system successfully captures the type-
checking requirements of the examples in Chapter 2. However, there are
similar examples involving use of higher-order parameterisation, for which
the type-checking system of ASL+FPC is not sufficient.

It seems quite difficult to design a good type-checking system for ASL+
which deals properly with putting signatures together. In retrospect the dif-
ficulty isn't surprising; for the case of programming languages alone, re-
search is still highly active into finding good understandings of higher-order
module systems the goal being to find understandings which are less op-
erational and more type-theoretic [Leroy, 1994, 1995, 1996b,a, Harper and
Lillibridge, 1994]. And for ASL+ we want to explain not only the process of
type-checking, but also the model-theoretic semantics of the language.

The goal to find a suitable type-checking system is important because in a
typical institution, the semantics of ASL+ is strongly typed, so type-checking
is an absolute precursor to defining the semantics. It must also be a precur-
sor to serious investigation of the proof system for proving satisfaction of
a specification by a program, or refinement of specifications. The work here
still leaves questions to be answered.

8.2 Future directions

Examples of program development

To begin with, further examples of formal development should be under-
taken in languages like ASL+. The new forms of structuring programs with
higher-order module languages are only now being explored, as such lan-
guages become available in prototype. ASL+ allows specifications to be struc-
tured in similar ways, and also allows study of the transition between speci-

Conclusions 	 - 	 265

fication structure and program structure, via TI-specifications. The impor-
tance of being able to specify program structure has been recognised in the
on-going Common Framework Initiative [CoFI, 1997] into defining a paradig-
matic algebraic specification language; the emerging language CASL provides
architectural specifications which are akin to first-order 17 -specifications with
several arguments [CoFI Task Group on Language Design, 19971. An impor-
tant issue to look at is the possible development steps used in refining ar-
chitectural specifications, comparing with the implementation relations used
for parameterised specifications. These points were touched upon in Chap-
ter 2, but more needs to be done.

Meta-theory of complex type systems

On the type theory side, the fundamental studies of Chapter 3 and Chapter 4
left some questions to be answered, particularly over the meta-theory of
A Power- However, it is less clear whether A Power itself is necessary as a basis
for ASL+, since the variety of parameterisation mechanisms possible in Ap wer
have hardly been exploited in the ASL+ examples studied to date. So far, we
have used algebras parameterised on algebras, specifications parameterised
on specifications and specifications parameterised on algebras. As a type
system, modelling specifications with types, this parameterisation structure
is described by the corner of Barendregt's A-cube known as APw [Barendregt,
1992]. For ASL+ we need a subtyping variant of APw which provides bounded
abstraction and quantification. The particular system needed has not been
studied in the literature yet, although work on extending other corners of
the cube with subtyping comes close [Aspinall and Compagnoni, 1996, Chen,
1997, Compagnoni and Goguen, 19971.

PER semantics for (higher-order) observational equivalence

The abstract formulation of ASL+ studied in Chapter 5 introduced the idea
of modelling specifications by relations on algebras rather than classes of al-
gebras. This arose for the same reason that a types-as-sets semantics needs
to be generalised to cope with the stratified equational theory of subtyping
systems. As mentioned in Section 5.4.5, it would be interesting to see if a
PER semantics for specifications is useful: integrating a relation of obser-
vational equivalence as part of the semantic denotation, rather than closing
up the class of models under such an equivalence. There are connections
with type systems for record subtyping, because of the obvious relationship
between (dependent) record types and signatures in typical institutions (see
the comments in Section 6.9.3). The new breed of type systems for modular

Conclusions 	- 	 - 	 266

programming pursues these ideas [Leroy, 1995, Harper and Lihibridge, 1994,
Courant, 1997a].

Type theory like institutions

The motivation behind this new breed of type systems for modular pro-
gramming is to come up with type-checking rules for module composition,
which work at (or very close to) the level of the source language syntax.
Re-examining ASL+FPC with this idea in mind, the starting point of FPC sig-
nature in Definition 6.1 seems like an odd half-way house; probably FPC
signatures and signature morphisms should be defined as in the abstract
syntax of Section 6.8.2. Then the category sign'' would be similar to a cat-
egory of contexts as in the semantics of dependent types [Hofmann, 1997,
Pitts, 1996]. Semantic signatures with a different order of declarations are
isomorphic rather than identical.

A morphism between contexts in type theory semantics corresponds to
a substitution; this is somewhat richer than renaming, and is like a derived
signature morphism in the usual algebraic setting. Using a richer form of
morphism between signatures allows a type constant in one signature to be
mapped to a type expression over another signature. This means that shar-
ing equations, which were added to signatures, could be removed again, and
expressed with signature morphisms instead. But these are early thoughts,
and derived signature morphisms are known to break some desirable alge-
braic properties.

This type-theoretic view is more finitary than the classical definitions for
many-sorted algebras, but for the case of real programs and specifications,
there seems to be nothing wrong in such limitations.

Type systems and proof search

An important research goal is to study mechanisms of proof search in struc-
tured specifications and programs. For the abstract version of ASL+ studied
in Chapter 5, we want ways of reducing satisfaction judgements between
higher-order objects to sets of proof obligations to be proved in the under-
lying proof systems. For the concrete version of ASL+ studied in Chapter 7,
we want strategies for proof search in the satisfaction system. In both cases,
there are parallels with the design of algorithmic versions of the type sys-
tems in question. But with specifications things seem more difficult: if we
wish to prove a property p of an application of a parameterised program
F(M), it is unrealistic to suppose that there is a "canonical" TI-specification
TIX:SP. SF' for F which always provides enough information to deduce p in

Conclusions 	 267

a schematic way. Some peculiar properties of M not assumed in SP may be
required. In this case, we would need rules like the generalised A-rule con-
sidered in Chapter 3, so that F can be given other 17-types which make use of
particular properties of the actual argument M. We might want to combine
such types together; this is an obvious application for intersection types (see
also the example in Section 2.2.6).

An improved abstract ASL+

Another future task is to describe the construction of the module language
of Chapter 7, or an improved version of it, in an abstract and institution-
independent way. Some extra assumptions will be needed. The syntax and
type-checking judgements of the core-language in Section 6.8 were described
in a way suitable for abstraction, by relating pre-signatures to a class of sig-
nature inclusions, the signature extensions. (The definitions work just as
well if we work with syntax for signatures throughout, as suggested above;
inclusion between signatures can then be defined inductively over the length
of the subsignature.) Moving to an abstract setting, we might postulate a
special class of inclusions corresponding to extensions, and axiomatize the
dot-notation renamings in terms of these. Related abstractions were intro-
duced by Sannella and Tarlecki [1986], who defined the notion of institution
with syntax. And there are several places already where the category Sign
of an institution has been equipped with a system of inclusions, notably in
Goguen [1991].

Mixing languages

Whilst the renaming approach of handling dot-notation described in Sec-
tion 7.3.1 seems simple in outline, it turns out to be complicated in detail
and has serious defects. I believe that a more satisfactory solution would
be achieved by intimately combining the syntax and semantics of the mod-
ule language with those of the core language, reflecting that the two lan-
guage grammars are mutually-defined once we add modules and dot nota-
tion. Because the notion of core-level type-equality becomes dependent on
the module-level context, this construction shows its true colours to be a
simultaneous definition, rather than a construction which takes a core-level
language and "adds modules on top", as some of the module-language folk-
lore seems to suggest.

A similar thing happens when putting institutions together: to get proper
"mixing" of the institutions, one has to use presentations of the syntax
known as parchments [Goguen and Burstall, 1986]. The syntax of parch-
ments can be combined to give the expected results [Tarlecki, 1996]. A sim-

Conclusions

ilar point is made for the combination of logical encodings, described by
Harper et al. [19941.

There might be ways of building ASL+ in an abstract way, following these
ideas. In likelihood we would need to deal with contexts explicitly so re-
cent ideas of context institutions and context parchments [Pawlowski, 19961
might be applicable. The parchment and institution theories do not apply
directly, because they work with the sentences of institutions rather than
syntax for signatures and models. But one can define institutions in which
the sentences are programs, for example (see the comments in Section 5.10).
Of course, once such an abstract construction was conceived, we would be
obliged to persuade everyone that it does the right thing! So it would be
worth revisiting the specific case of ASL+FPC defined in this manner.

8.3 Finally

I believe that the study in this thesis provides progress towards rigorous
methods of programming and specification in-the-large. I have forged some
new connections between parameterisation mechanisms used in specifica-
tion languages and forms of parameterisation used in advanced type sys-
tems, and the work has lead to contributions in both areas. I have made
preliminary investigations into new language designs, for solving some prob-
lems with existing languages.

Apart from specification and programming languages, advanced type sys-
tems with subtyping and module facilities have another important applica-
tion: to automated proof assistants. One day we may see these proof assis-
tants themselves form a basis for practical formal program development in
a language with some features of ASL+. This is one of the ultimate aims of
this research.

A More about FPC

This appendix provides some more details about the formulation of
the language FPC given in Chapter 6, and used as the core-language of
ASL+FPC in Chapter 7. It also contains some details of a provisional
satisfaction system for ASL+FPC.

Al A Pervasive Environment for FPC 269

A.2 Operational Semantics of FPC 271

A.3 Derived Connectives of LFPC 271

A.4 A Proof System for LFPC 273

Ad A Pervasive Environment for FPC

FPC is expressive enough to describe most of the common datatypes used
in programming. Here we describe a collection of common types and opera-
tions on them, which might be part of a "pervasive environment" or standard
library for a real programming language.

We take the view that the expressions written below are definitions in the
meta-language. Some types and terms are parameterised by types, which is
impossible in FPC itself since type functions cannot be expressed. We freely
use subscripts, bracketed terms and "niixfix" notation on the left hand side
to indicate where such parameters are resolved in the meta-language.

Empty and unit types

void =def pa.ci
unit 	=def void - void
unity 	def fun (x: void).x

More about J'TC
	

270

Boolean type

bool 	 def

true 	 def

false 	 def

if b then e1 else e2 =def

unit + unit
m1b001 (unity)
rnrb00, (unity)
case b of inl(x) => e1 orinr(y) =

Option type

optiont 	def 	+ unit
somet(e) =def ifllopton(e)
nonet 	=def inr010 (unity)

Fixed point operator

FIX, 	def 	fun (f: (s - t) - (s - t)).
(fun (x : r). fun (y : s).f (elim(x) x) y)
(intror (fun (x :r). fun (y :s).f (elirn(x) x) y))

where r pa.ci - (s - t)

is 	=def FIXs,s (fun (f:s—s).f)

funrec f (x : s) : t. e 	def FJX5,t (fun (f : s - t). fun (x : s). e)

Natural numbers type

nat = def 	pcLunit+a
0 = def 	intronat(irilunit+nat(unity))
succ(e) def 	intronat(inrunjt+nat(e))
pred(e) = def 	case elim(e) ofinl(x) => 0 orinr(y) = y
zero?(e) =def 	case elim(e) of inl(x) => true orinr(y) => false
itert =def 	fun (z : t).

fun (s : t - t).
funrec iter' (n: nat) : t.

if zero?(n) then z else s (iter' (pred(n)))

Clearly we can define other familiar functions on the datatypes, as well
as other datatypes such as !IStt.

More about J'TC 	 271

A.2 	Operational Semantics of FPC

The operational semantics of FPC expressions are shown in Figure A.1 on the
next page. The rules axiomatise an evaluation relation on expressions e, in-
dependent of typing. If e t r we say that e evaluates to value r. The values,
r, are the subset of the closed expressions e definable in the grammar:

r 	::= v I x I fun (x:t).e I (r, r)
I ifllt+2 (Y) I inr t1+t2 (r) I intro (r)

The rule for function application makes this a call-by-value operational se-
mantics (and the denotational semantics given in Chapter 6 corresponds
with this).

The following proposition summarizes two standard properties of the
operational semantics of FPC.

Proposition A.! (Operational semantics of FPC).
(Closure of typing under evaluation relation).

IfG>E e: t and er, then Gr:talso.

(Soundness and Adequacy wrt den otational semantics in Definition 6.13
on page 201).

(a)Ife 4 r then Jvllel 1 p=Jvllrlp;ife 4 then JvlIIel LP =±

(b) If Jvle LP = .Mle'] 	and e l r, then e' 4 r also.

for suitable environments t, p.

Proof See Gunter [1992]. 	 El

A.3 Derived Connectives of LFPC

Higher-order logic extended with FPC was defined in Section 6.4. Only a
few primitive connectives are needed and then the truth values, conjunction,
disjunction and quantifiers can all be defined. Here are suitable definitions
using the primitives of LFPC:

More about JTC
	

272

fun (x:t).e 4 fun (x:t).e

fun (x:t).e' 	e2 4 r' 	e'[r'/x] 	r
e1 e2 U r

e1 r1 	e2 1r2
(el, e2) 4 (ri,r2)

e 4 (r1, r2)
fst(e) J

e Jj (r1, r2)
snd(e) 4 r2

J r1
init1+t2 (ei) JJ init1't2 (r1)

e2
inrt1+t2 (e2) 4 inr 1+2 (r)

e 4 inl(r1) 	e1[r1/x] 4 r

	

case e of inl(x) => e 1 orinr(y) => e2 	r

e 4 inr(r2) 	e2[r2/y] 4 r
case e ofinl(x) => e1 orinr(y) => e2 4 r

e r
intro(e) 4 intro(r)

e 4 intropa. t(r)

elimpat (e) 4 r

Figure A.1: Call-by-value operational semantics of FPC

More about JTC 	 273

T =def (Ap:prop. p) = (Ap:prop. p)
VT =def AP:T - prop.P = Az:T.T

def AP:T - prop.P (Ez:T.P z)
F = def Vp: prop. p

def Ap:prop.p =' F
A =def Ap1 ,p2:prop.Vp: prop. (p1 z= 	(p2 = 	p))

- P
V def Ap1 , p2:prop. V 	: prop. (p1 = p) =

(P2 = p) = p
h1 * h2 def (h 	= h2)

We have used V : T.P in place of VT (Az:T.P). We also write Vy, z : T.P to
abbreviate V : T. V : T. F, and so on for more than two variables. Similarly
for 1. We also use the usual infix notation for A and V.

The familiar rules for these connectives are derivable from those given in
the next section.

A.4 A Proof System for LFPC

Here we present a bare proof system for LFPC, consisting of structural rules
for the primitive connectives of the logic and axioms for the 	operator.
Some axioms for were already mentioned in Section 6.6 on page 207.

The rules can be formulated in a multitude of ways (see for example Gor-
don and Melham [1993], Lambek and Scott [1986]); here we give a simple for-
mulation which avoids dependency between the primitive connectives. This
results in some redundancy, for example, the cut rule may be derived from
the implication rules.

Recall that the proof system derives sequents with the form:

tP H-' (p [G]

wheref is an FPC signature and G is a LFPC context, describing the constants
and free variables of the formula cp and the set of formulae cP. The context
[G] is often omitted for brevity; in most rules, the context is fixed.

Structural axioms and rules

G 	cp : prop
q2Hcp[G]

More about JTC 	 274

P i—s p [G] 	G 	qY : prop

p' F- p [G]

cPF-qJ 	pHp'

HP GcG'

4 	p [G']

G >1 h:T 	0 H p [G,z:T,G']

cP[h/z] E p[h/z] [G,G']

Equality axioms and rules

G v h: T
F-i' h = h [G]

G >1 h l , h 2 :T 	G,Z:T 	(p: prop
hi = h 2, p[hi/z] H tp[h2 /z] [G]

G 	p1,p2 :prop 	 F- q 2 [G] 	P, (p 2 F-s cp [C]

'Pi = P2

G,z:Th:T' 	G>h':T

i-' (Az:r.h)h' = h[h'/z] [G]

G 	f : T - T'

F-s Az:T.fz = f [G]

G,Z:T > h l , h 2 :T'

h 1 = 	- Az:T. h1 = Az:T. h 2 [G, z: T]

F-s Vx:prop.x=T V x=F

Implication rules

More about JTC
	

275

,cPi F-i' 'P2
	 F- 'Pl==p2 	cPH(PI

'Pi => 'P2
	 H- cP2

Choice axiom

G,Z:T 	p:prop

'P H p[Ez:T.'p/z] [G,z:T]

Order relation

I— Vx:t.xx

HVx,y,z:t.xy A yz==xz

H Vx,y:t.xy A yx=x=y

H Vf:s -) t.Vx,y:s.xy = fxfy

F— s Vx: t. it x

H Vf: (s -) t) -) (s -) t)FIX,f = f(FJX5,tf)

FPC types are CPOs

Sets in HOL Sets in HOL are represented as predicates; rather than a single
type of sets, we have setT def T - prop. Much useful derived notation can
be defined, including:

xES 	 = def S(x)
VxES.P(x) def VXT.S(X)P(X)

IX E S-P(x) =def 	x : T.S(x) A P(x)
S-5' 	=def Af:T — T'. Vx E S.f(x) e T
pow(S) 	= def AT:T - prop. Vx : T.x e T =' x E S

By convention, S : setT. Some type information will be omitted for clarity.
The following definitions are a direct translation of the standard definitions
from Section 6.3.

276 More about J'TC

UB(j,S) 	 =def Vx E S.x j
LUB(j, S) 	 =def 'c/x E S. UB(x, S) = jE x

def 	 LUB(j, S)

Injective(f,S) =def Vx ES. Vy E S.x * y = f(x) * f(y)
Onto(f, 5, S') 	=def Vy E 5'. 3X E S. f(x) = y
Finite(S) 	=def Vf ES S. Injective(f) ==> Onto(f)
Directed(S) 	=dd

VT E pow(S). Finite(T) ==> Rj ES. UB(j,S)

Complete(S) 	=def

VT E pow(S). Di rected(S) => 2j E S. LUB(j, S)

Here is the single axiom which characterises FPC types as CPOs. The term
Ax:t. T represents the underlying set of the domain which interprets t.

- Comp]ete(Ax:t.T)

Fixed Point Induction

Suppose P is a predicate over some FPC type, P : t - prop.

Admissible(P) =def

Directed(S) VS E pow(Ax:t.T). 	
(=— S.P(x)) => P(S)

The rule of fixed point induction is:

1 F— P(10
1 i—s Admissible(P) 	P - Vx:t.P(x) =P(fx)

P H-i' P(FJXf)

Axioms for functions

	

G 	e: s

H- 	-L s-)t e = It [G]

	

G > 	e: s -) t

e Is = it [G]

G,x:se:t 	Ge':s

- 	e' * i = (fun (x : s). e) e' = (Ax:s. e)e' [G]

More about JT C
	

277

Axioms for products and sums

The axioms characterising the product and sum constructors correspond
directly to the definition of the semantics in Definition 6.13. As usual with
LCF, there is a proliferation of axioms concerning definedness and strictness,
as well as the uniqueness and "evaluation" axioms.

In the axioms below, it is assumed that G >1 e1 : s, G >Z e2 : t and
G >1 p : s x t. All the axioms also have context G.

H ' (fst(p),snd(p)) = p

1-1 e1 * -'-i A e2 * ' 	(e1 ,e2)

1--1 e1 = i s V e2 = it 	(e1 ,e2) =

H1 fst(i) = 	 H1 fst((e1,e2)) = e1

H1 snd(i_5) = it 	 F-1 snd((e1,e2)) = e2

In the axioms below, it also assumed that G, x : s >1 fi : u and G, y
t >1 f2 : U.

H1 in15+ (ei) * inrS+(e2)

H1 e1 * ±5 => in15+ (e1) * 'S+t

1--1 e2 # -L t 	inlS+(e2) * 15+t

H1 e1 = -Ls 	in1+(e1) =

H-1 e2 = 	=> inlS+t(e2) = J-S+

H1 e * -i - + 	(case e of inl(x) => fi orinr(y) f2) * i

H1 case js+t of inl(x) => fi orinr(y) = f2 =

H-1 case inls+t (e1) ofinl(x) > fi orinr(y) => f2 = f [el /x]

H1 case inrs+t (e2) ofinl(x) = fi orinr(y) = f2 = f2[e2/y]

More about-FTC 	 278

Axioms for recursive types

The term constructors are characterised as isomorphisms.

E intro.t(I[pa.t/a]t) = J-pa.t

G > e: [pci.t/ci]t
I_I elim(intropa.t (e)) = e

G > e: pci.t
i-s intropa.t (elim(e)) = e

Bibliography
S. Agerhoim. A HOL Basis for Reasoning about Functional Programs. PhD the-

sis, BRICS, Department of Computer Science, University of Aarhus, 1994a.

S. Agerhoim. LCF examples in HOL. The Computer Journal, 38(2), 1994b.

D. Aspinall. Subtyping with singleton types. In Proc. Computer Science
Logic, CSL'94, Kazimierz, Poland, Lecture Notes in Computer Science 933.
Springer-Verlag, 1995a.

D. Aspinall. Types, subtypes, and ASL+. In Recent Trends in Data Type Speci-
fication, Lecture Notes in Computer Science 906. Springer-Verlag, 1995b.

D. Aspinall and A. Compagnoni. Subtyping dependent types. In E. Clarke,
editor, Proceedings, Eleventh Annual IEEE Symposium on Logic in Computer
Science, pages 86-97, New Brunswick, New Jersey, 1996. IEEE Computer
Society Press.

A. Avron. Simple consequence relations. Information and Computation, 92:
105-139,1991.

A. Avron. Axiomatic systems, deduction and implication. J. Logic Computa-
tion, 2(1):51-98, 1992.

A. Avron, F. Honsell, I. A. Mason, and R. Pollack. Using typed lambda cal-
culus to implement formal systems on a machine. Journal of Automated
Reasoning, 9:309-354, 1992.

A. Bailey. LEGO with implicit coercions (draft). Technical report, Department
of Computer Science, University of Manchester, April 1996.

H. Barendregt. Lambda calculi with types. In Handbook of Logic in Computer
Science. Oxford University Press, 1992.

J. Bergstra, J. Heering, and P. Klint. Module algebra. Journal of the ACM, 37
(2):335-372, April 1990.

G. Betarte and A. Tasistro. Formalisation of systems of algebras using de-
pendent record types and subtyping: an example. In Proceedings of the
7th Nordic Workshop on Programming Theory, Report 86 PMG, Goteborg,
Sweden, 1996.

Bibliography 	 280

G. Betarte and A. Tasistro. Extension of Martin-Löf's type theory with record
types and subtyping. In Proceedings of 25 Years of Constructive Type The-
ory. Oxford University Press, 1997.

V. Breazu-Tannen, T. Coquand, C. A. Gunter, and A. Scedrov. Inheritance as
implicit coercion. Information and Computation, 93:172-221, 1991.

M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hussmann, D. Nazareth, F. Regens-
burger, 0. Slotosch, and K. Stolen. The Requirement and Design Specifi-
cation Language SPECTRUM. An Informal Introduction. Version 1.0. Part I.
Technical Report TUM-193 11, Institut für Informatik, Technische Univer-
sität MUnchen, May 1993a.

M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hussmann, D. Nazareth, F. Regens-
burger, 0. Slotosch, and K. StOlen. The Requirement and Design Specifi-
cation Language SPECTRUM. An Informal Introduction. Version 1.0. Part II.
Technical Report TTJM-193 12, Institut für Informatik, Technische Univer-
sität MUnchen, May 1993b.

K. Bruce and J. C. Mitchell. PER models of subtyping, recursive types and
higher-order polymorphism. In Proceedings, Nineteenth ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 316-
327, Albuquerque, New Mexico, January 19-22, 1992. ACM Press.

B. Bruce and G. Longo. A modest model of records, inheritance and
bounded quantification. Information and Computation, 87:196-240, 1990.

R. M. Burstall. Programming with modules as typed functional programming.
In Proc. International Conference on Fifth Generation Computing Systems,
ICOT, Tokyo, 1984.

R. M. Burstall and J. A. Goguen. The semantics of CLEAR, a specificiation
language. In Proceedings of Advanced Course on Abstract Software Speci-
fications, volume 86 of Lecture Notes in Computer Science, pages 292-232.
Springer-Verlag, 1980.

R. M. Burstall and J. H. McKinna. Deliverables: an approach to program de-
velopment in Constructions. Technical Report ECS-LFCS-91-133, LFCS,
Department of Computer Science, University of Edinburgh, 1991.

Cardelli. Structural subtyping and the notion of power type. In Conference
Record of the Fifteenth Annual ACM Symposium on Principles of Program-
ming Languages, pages 70-79, San Diego, California, January 13-15, 1988.
ACM SIGACT-SIGPLAN, ACM Press.

L. Cardelli. Notes about F:. Unpublished manuscript, Oct. 1990.

Bibliography 	 281

L. Cardelli and G. Longo. A semantic basis for Quest. Journal of Functional
Programming, 1(4):417-458, 1991.

Cardelli, S. Martini, J. C. Mitchell, and A. Scedrov. An extension of Sys-
tem F with subtyping. In T. Ito and A. R. Meyer, editors, International
Conference on Theoretical Aspects of Computer Software, Sendai, Japan,
September 1991, Lecture Notes in Computer Science 526. Springer-Verlag,
1992.

V. Cengarle. Formal Specifications with Higher-Order Parameterisa-
tion. PhD thesis, Institut für Informatik, Ludwig-Maximilians-Universitat
München, 1994.

M. V. Cengarle and M. Wirsing. A calculus of parameterization for algebraic
specifications. Technical Report 94/198, Department of Computer Science,
Monsahs University, 1994.

G. Chen. Subtyping calculus of constructions. In Proceedings of 22nd Inter-
national Symposium, MFCS '97, volume Lecture Notes in Computer Science
1295, pages 189-198. Springer-Verlag, 1997.

G. Chen and G. Longo. Subtyping parametric and dependent types. Technical
report, Département de Mathématiques et d'Informatique, Ecole Normale
Supérieure, Paris, December 1996.

CoFI. The Common Framework Initiative for Algebraic Specification and
Development - Rationale. Available by FTP or on the WWW as http:
//www.brics.dk/Projects/CoFI/Documents/Rationale/, May 1997.

CoFI Task Group on Language Design. 	CASL - The CoFI Alge-
braic Specification Language - Rationale. Available by FTP or on
the WWW as http://www.brics.dk/Projects/CoFI/Documents/CASL/
Rationale!, May 1997.

A. Compagnoni and H. Goguen. Typed operational semantics for higher or-
der subtyping. Technical Report ECS-LFCS-97-361, LFCS, Department of
Computer Science, University of Edinburgh, July 1997.

A. B. Compagnoni. Higher-Order Subtyping with Intersection Types. PhD
thesis, Nijmegen Catholic University, 1995.

A. B. Compagnoni and B. C. Pierce. Intersection types and multiple inheri-
tance. Mathematical Structures in Computer Science, 1996.

J. Courant. An applicative module calculus. In Proceedings TAPSOFT '97,
pages 622-636. Springer-Verlag LNCS 1214, October 1997a.

Bibliography 	 282

J. Courant. A module calculus for Pure Type Systems. In P. Groote and
J. R. Hindley, editors, Typed Lambda Calculi and Applications TLCA '97.
Springer-Verlag LNCS 1210, 1997b.

P.-L. Curien and G. Ghelli. Coherence of subsumption, minimum typing and
type-checking in F.<. Mathematical Structures in Computer Science, 2:55-
91,1992.

L. Dami. Functions, records and compatibility in the Lambda N calculus. In
0. Nierstrasz and D. Tsichritzis, editors, Object-Oriented Software Compo-
sition, pages 153-174. Prentice Hall, 1995.

N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen,
editor, Formal Models and Semantics - Handbook of Theoretical Computer
Science, volume B, chapter 6. Elsevier, 1990.

J. Farrés-Casals. Verification in ASL and related Specification Languages. PhD
thesis, Edinburgh University, 1992.

L. Feijs. The calculus ATr. In M. Wirsing and J. Bergstra, editors, Algebraic
Methods: Theory, Tools and Applications, Lecture Notes in Computer Sci-
ence 394, pages 307-328. Springer-Verlag, 1989.

J. S. Fitzgerald and C. B. Jones. Modularizing the formal description of a
database system. In Proceedings VDM'90 Conference, Kiel, Lecture Notes
in Computer Science 428, pages 189-210. Springer-Verlag, 1990.

P. Gardner. Representing Logics in Type Theory. PhD thesis, Department of
Computer Science, University of Edinburgh, 1992.

H. Geuvers. Logics and Type Systems. PhD thesis, Nijmegen Catholic Univer-
sity, 1993.

H. Geuvers and M.-J. Nederhof. Modular proof of strong normalization for
the calculus of constructions. Journal of Functional Programming, 1(2):
155-189, Apr. 1991.

H. Geuvers and B. Werner. On the Church-Rosser property for expressive type
systems and its consequences for their metatheoretic study. In Proceed-
ings, Ninth Annual IEEE Symposium on Logic in Computer Science, pages
320-329, Paris, France, 4-7 July 1994. IEEE Computer Society Press.

G. Ghelli. Proof Theoretic Studies about a Minimal Type System Integrating In-
clusion and Parametric Polymorphism. PhD thesis, Universitâ di Pisa, March
1990. Technical report TD-6/90, Dipartimento di Informatica, Università
di Pisa.

Bibliography 	 - 	 283

H. Goguen. A Typed Operational Semantics for Type Theory. PhD thesis,
Department of Computer Science, University of Edinburgh, 1994.

J. A. Goguen. Types as theories. In M. Reed, A. W. Roscoe, and R. F. Wachter,
editors, Topology and Category Theory in Computer Science, pages 357-
390. Oxford, 1991.

J. A. Goguen and R. M. Burstall. A study in the foundations of program-
ming methodology: Specifications, institutions, charters and parchments.
In D. H. Pitts, editor, Proc. Workshop on Category Theory and Computer
Programming, Lecture Notes in Computer Science 240. Springer-Verlag,
1986.

J. A. Goguen and R. M. Burstall. Institutions: abstract model theory for speci-
fication and programming. Journal of the ACM, 39:95-146, 1992.

M. J. C. Gordon and T. F. Meiham. Introduction to HOL. Cambridge University
Press, 1993.

T. G. Griffin. Notational definition—a formal account. In Proceedings, Third
Annual Symposium on Logic in Computer Science, pages 372-383, Edin-
burgh, Scotland, 5-8 July 1988. IEEE Computer Society.

R. Grosu and D. Nazareth. Towards a New Way of Parameterization. In Pro-
ceedings of the Third Maghrebian Conference on Software Engineering and
Artificial Intelligence, pages 383-392, 1994.

C. A. Gunter. Semantics of Programming Languages. MIT Press, 1992.

C. A. Gunter and J. C. Mitchell. Theoretical Aspects of Object-Oriented Pro-
gramming: Types, Semantics, and Language Design. MIT Press, 1994.

C. A. Gunter and D. S. Scott. Semantic domains. In J. van Leeuwen, editor,
Formal Models and Semantics - Handbook of Theoretical Computer Science,
volume B, chapter 12. Elsevier, 1990.

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. JACM,
40(1):143-184, 1993.

R. Harper and M. Lillibridge. A type-theoretic approach to higher-order
modules with sharing. In Conference Record of the 21st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL'94),
pages 123-137, Portland, Oregon, January 17-21, 1994. ACM Press.

R. Harper and R. Pollack. Type checking with universes. Theoretical Com-
puter Science, 89:107-136, 1991.

Bibliography
	 284

R. Harper, D. Sannella, and A. Tarlecki. Logic representation in LF. In Pro-
ceedings of the 3rd Summer Conference on Category Theory and Computer
Science, pages 250-272. Springer-Verlag, 1989.

Harper, D. Sannella, and A. Tarlecki. Structured presentations and logic
representations. Annals of Pure and Applied Logic, 67:113-160, 1994.

Hayashi. Singleton, union and intersection types for program extraction.
Information and Computation, 109, 1994.

J. Hindley and J. Seldin, editors. Introduction to Lambda-Calculus and Com-
binators. London, 1987.

M. Hofmann. Syntax and semantics of dependent types. In P. Dybjer and
A. Pitts, editors, Semantics of Logics of Computation, chapter 3. Cambridge
University Press, 1997.

M. Hofmann and D. Sannella. On behavioural abstraction and behavioural
satisfaction in higher-order logic. Theoretical Computer Science, 167:3-45,
1996.

B. Jacobs and T. Melham. Translating dependent type theory into higher or-
der logic. In M. Bezem and J.F.Groote, editors, Typed Lambda Calculi and
Applications, International Conference, March 1993, Utrecht, The Nether-
lands, volume 664, pages 209-229. Springer-Verlag, 1993.

H. B. M. Jonkers. An introduction to COLD-K. In M. Wirsing and J. Bergstra,
editors, Algebraic Methods: Theory, Tools and Applications, Lecture Notes
in Computer Science 394, pages 139-205. Springer-Verlag, 1989.

S. Kahrs, D. Sannella, and A. Tarlecki. The definition of Extended ML. Techni-
cal Report ECS-LFCS-94-300, LFCS, Department of Computer Science, Uni-
versity of Edinburgh, August 1994.

B. Krieg-BrUckner and D. Sannella. Structuring specifications in-the-large and
in-the-small: Higher-order functions, dependent types and inheritance in
SPECTRAL. In Proc. Colloq. on Combining Paradigms for Software Devel-
opment. Intl. Joint Conf. on Theory and Practice of Software Development
(TAPSOFT'91), Lecture Notes in Computer Science 494, pages 103-120.
Springer, 1991.

J. Lambek and P. J. Scott. Introduction to higher order categorical logic. Num-
ber 7 in Cambridge Studies in Advanced Mathematics. Cambridge Univer-
sity Press, 1986. First paperback edition (with corrections) 1988.

Bibliography 	 285

B. Lampson and R. Burstall. A kernel language for abstract data types and
modules. In G. Kahn, D. B. MacQueen, and G. D. Plotkin, editors, Semantics
of Data Types, Lecture Notes in Computer Science 173, pages 1-50, Sophia-
Antipolis, France, June 1984. Springer-Verlag.

B. Lampson and R. Burstall. Pebble, a kernel language for modules and
abstract data types. Information and Computation, 76:278-346, Febru-
ary/March 1988. An earlier version appeared as [Lampson and Burstall,
1984].

X. Leroy. Manifest types, modules, and separate compilation. In Confer-
ence Record of the 21st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL'94), pages 109-122, Portland, Oregon,
January 17-21, 1994. ACM Press.

X. Leroy. Applicative functors and fully transparent higher-order modules.
In Conference Record of the 22nd ACM SIGPL4N-SIGACT Symposium on
Principles of Programming Languages (POPL'95), pages 142-153, San Fran-
cisco, California, January 22-25, 1995. ACM Press.

X. Leroy. A modular module system. Research report 2866, INRIA, Apr.
1996a.

X. Leroy. A syntactic theory of type generativity and sharing. Journal of
Functional Programming, 6(5):667-698, 1996b.

J. Levy, J. Agusti, F. Esteva, and P. Garcia. An ideal model for an extended
A-calculus with refinement. LFCS ECS-LFCS-91-188, Edinburgh University,
November 1991.

G. Longo, K. Milsted, and S. Soloviev. A logic of subtyping (extended ab-
stract). In Proceedings, Tenth Annual IEEE Symposium on Logic in Com-
puter Science, pages 292-299, San Diego, California, 26-29 June 1995. IEEE
Computer Society Press.

Z. Luo. Program specification and data refinement in type theory. Mathemat-
ical Structures in Computer Science, 3(3), 1993.

Z. Luo. Computation and Reasoning: A Type Theory for Computer Science.
Number 11 in International Series of Monographs on Computer Science.
Oxford University Press, 1994.

Z. Luo. Coercive subtyping in type theory. In Proc. Computer Science Logic,
CSL'96, Utrecht, 1996.

Bibliography 	- 	 286

D. MacQueen. Using dependent types to express modular structure. In Pro-
ceedings, Thirteenth Annual ACM Symposium on Principles of Program-
ming Languages, pages 277-286, St. Petersburg Beach, Florida, January
13-15, 1986. ACM SIGACT-SIGPLAN, ACM Press.

D. MacQueen. A higher-order type system for functional programming. In
D. A. Turner, editor, Research Topics in Functional Programming, chap-
ter 13, pages 353-367. Addison-Wesley, 1991.

A. Mason. Hoare's Logic in the LF. Technical Report ECS-LFCS-87-32, LFCS,
Department of Computer Science, University of Edinburgh, June 1987.

Meseguer. General logics. In H.-D. Ebbinghaus et al., editors, Logic Collo-
quium '87, pages 275-329. Elsevier, 1989.

R. Meyer. What is a model of the lambda calculus? Information and
Control, 52:87-122, 1982.

R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press,
1990.

J. C. Mitchell. Type systems for programming languages. In J. van Leeuwen,
editor, Formal Models and Semantics - Handbook of Theoretical Computer
Science, volume B, chapter 8, pages 365-458. Elsevier, 1990.

J. C. Mitchell. Foundations for Programming Languages. MIT Press, 1996.

J. C. Mitchell and G. D. Plotkin. Abstract types have existential type. ACM
Transactions on Programming Languages and Systems, 10(3):470-502, July
1988.

P. D. Mosses. Unified algebras and modules. In Conference Record of
the Sixteenth Annual ACM Symposium on Principles of Programming Lan-
guages, pages 329-343, Austin, Texas, January 11-13, 1989. ACM SIGACT-
SIGPLAN, ACM Press.

Nordstrom, K. Petersson, and J. M. Smith. Programming in Martin-Lors
Type Theory An Introduction. Oxford University Press, 1990.

P. Odifreddi, editor. Logic and Computer Science. Academic Press, 1990.

D. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053-1058, December 1972.

L. C. Paulson. Logic and Computation. Cambridge Tracts in Theoretical Com-
puter Science 2. Cambridge University Press, 1987.

Bibliography 	 287

L. C. Paulson. ML for the Working Programmer. Cambridge University Press,
1991.

L. C. Paulson. Isabelle - A Generic Theorem Prover. Lecture Notes in Com-
puter Science 828. Springer-Verlag, 1994.

W. Pawlowski. Context institutions. In M. Haveraaen, 0. Owe, and O.-J. Dahl,
editors, Recent Trends in Data Type Specifications. 11th Workshop on Speci-
fication of Abstract Data Types joint with the 8th general COMPASS work-
shop, pages 436-457. Springer-Verlag, 1996.

Pfenning. Refinement types for logical frameworks. In Informal Proceed-
ings of the 1993 Workshop on Types for Proofs and Programs, pages 315-
328, May 1993.

B. C. Pierce. Programming with Intersection Types and Bounded Polymor-
phism. PhD thesis, Carnegie Mellon University, December 1991. Available
as School of Computer Science technical report CMU-CS-91-205.

B. C. Pierce. Bounded quantification is undecidable. In Proceedings, Nine-
teenth ACM SIGPIAN-SIGACT Symposium on Principles of Programming
Languages, pages 305-315, Albuquerque, New Mexico, January 19-22,
1992. ACM Press.

B. C. Pierce. Bounded quantification is undecidable. Information and Compu-
tation, 112(1), July 1994.

B. C. Pierce and R. Pollack. Higher-order subtyping. Draft notes. Department
of Computer Science, University of Edinburgh, 1992.

B. C. Pierce and D. N. Turner. Simple type-theoretic foundations for object-
oriented programming. Journal of Functional Programming, 4(2):207-247,
Apr. 1994.

A. M. Pitts. Categorical logic. In Handbook of Logic in Computer Science,
volume 6. OUP, 1996.

Plotkin. Denotational semantics with partial functions. Lecture at C.S.L.I.
Summer School, 1985.

Poll. A Programming Logic Based on Type Theory. PhD thesis, Eindhoven
Technical University, 1994.

Regensburger. HOLCF: A conservative extension of HOL with LCF. PhD
thesis, Technische Umversität MUnchen, 1994.

Bibliography 	 288

Reus and T. Streicher. Lifting the laws of module algebra to deliverables.
Technical Report 9203, Ludwig-Maximiians-Universin, Munchen, August
1992.

V. Russo. Types for program modules. PhD thesis, University of Edinburgh,
1997. Forthcoming.

Sannella and R. M. Burstall. Structured theories in LCF. In Proceedings of
the 8th Colloquium on Trees in Algebra and Programming, Mar. 1983.

D. Sannella, S. Sokolowski, and A. Tarlecki. Toward formal development of
programs from algebraic specifications: Parameterisation revisited. Tech-
nical Report 6/90, FB Informatik, Universität Bremen, April 1990.

D. Sannella, S. Sokolowski, and A. Tarlecki. Toward formal development of
programs from algebraic specifications: Parameterisation revisited. Acta
Informatica, 29:689-736, 1992.

D. Sannella and A. Tarlecki. Extended ML: An institution-independent frame-
work for formal program development. In D. H. Pitts, editor, Proc. Work-
shop on Category Theory and Computer Programming, Lecture Notes in
Computer Science 240, pages 364-389. Springer-Verlag, 1986.

D. Sannella and A. Tarlecki. Specifications in an arbitrary institution. Infor-
mation and Computation, 76(2/3):165-210, 1988a.

D. Sannella and A. Tarlecki. Toward formal development of programs from
algebraic specifications: implementation revisited. Acta Informatica, 25:
233-281, 1988b.

D. Sannella and A. Tarlecki. Toward formal development of ML programs:
foundations and methodology. Technical Report ECS-LFCS-89-71, Labora-
tory for Foundations of Computer Science, University of Edinburgh, 1989.
Full version of abstract that appeared in Proc. TAPSOFT '89, Barcelona.
Springer LNCS 352, 375-389.

D. Sannella and A. Tarlecki. A kernel specification formalism with higher-
order parameterisation. In H. Ehrig et al., editors, Recent Trends in Data
Type Specification, Lecture Notes in Computer Science 534, pages 274-296.
Springer-Verlag, 1991.

D. Sannella and A. Tarlecki. Toward formal development of programs from
algebraic specifications: Model-theoretic foundations. In 19th Interna-
tional Colloquium on Automata, Languages and Programming, volume
623, pages 656-671. Springer LNCS, 1992.

Bibliography 	 289

D. Sannella and A. Tarlecki. Essential concepts of algebraic specification and
program development. Formal Aspects of Computing, 1997.

D. Sannella and L. Wallen. A calculus for the construction of modular Prolog
programs. Journal of Logic Programming, 12:147-177, 1992.

D. Sannella and M. Wirsing. Implementation of parameterised specifications.
In Proc. 9th ICALP, Aarhus, volume Lecture Notes in Computer Science 140,
pages 473-488. Springer-Verlag, 1982.

D. Sannella and M. Wirsing. A kernel language for algebraic specification
and implementation. In Proceedings of International Conference on Foun-
dations of Computation Theory, Borgholm, Sweden, Lecture Notes in Com-
puter Science 158. Springer-Verlag, 1983.

A. Scedrov. A guide to polymorphic types. In Odifreddi [1990].

0. Schoett. Data Abstraction and the Correctness of Modular Programming.
PhD thesis, Department of Computer Science, The University of Edinburgh,
February 1987.

P. Severi and E. Poll. Pure Type Systems with Definitions. In Logical Foun-
dations of Computer Science, LFCS'94, Lecture Notes in Computer Science
813, pages 316-328. Springer-Verlag, 1994.

Sokolowski. Parametricity in algebraic specifications: A case study. Tech-
nical report, Institute of Computer Science, Polish Academy of Sciences,
Gdañsk, 1989.

M. Spivey. Richer types for Z. Formal Aspects of Computing, 8:565-584, 1996.

M. Steffen and B. Pierce. Higher-order subtyping. In IFIP Working Conference
on Programming Concepts, Methods and Calculi (PROCOMET), June 1994.

Streicher. Semantics of Type Theory. Springer-Verlag, 1991.

T. Streicher and M. Wirsing. Dependent types considered necessary for speci-
fication languages. In H. Ehrig et al., editors, Recent Trends in Data Type
Specification, Lecture Notes in Computer Science 534. Springer-Verlag,
1991.

A. Tarlecki. Modules for a model-oriented specification language: a proposal
for MetaSoft. In Proc. 4th European Symposium on Programming ESOP'92,
Lecture Notes in Computer Science 582, pages 452-472. Springer-Verlag,
1992.

Bibliography 	 - 	 - 	 290

A. Tarlecki. Moving between logical systems. In M. Haveraaen, 0. Owe, and 0.-
J. Dahl, editors, Recent Trends in Data Type Specifications. 11th Workshop
on Specification of Abstract Data Types joint with the 8th general COMPASS
workshop, pages 478-502. Springer-Verlag, 1996.

A. S. Troelstra. On the syntax of Martin-Löf's type theories. Theoretical Com-
puter Science, 51:1-26, 1987.

M. Wirsing. Structured algebraic specifications: A kernel language. Theoreti-
cal Computer Science, 42:123-249, 1986.

M. Wirsing. Algebraic specification. In J. van Leeuwen, editor, Formal Mod-
els and Semantics - Handbook of Theoretical Computer Science, volume B,
chapter 13. Elsevier, 1990.

M. Wirsing. Proofs in structured specifications. Technical Report MIP-9008,
Universität Passau, 1991.

Index
	 291

Index
3-valued logic, 220

a-union, 148
abstract, 12, 146, 150, 246
admissibility, 219, 222
admissible rules, 98
algebraic semantics, 220
algebras, 2

FPC, 210
many-sorted, 6

algorithmic complexity, 6
architectural specifications, 265
ASL, 10
ASL+, 19
ASL+FPC, 189
ATT, 78
ATTT, 47, 78

base term, 132
behavioural equivalence, 220
fl-conversion, 51
fl-reduction, 18

conditional, 185
fl-reduction, 51
bound narrowing, 231

for A Power, 100
for A<, 57

bounded quantification, 53

canonical term, 132
Church-Rosser property, 107
coercion, 114
coherence, 114
COLD-K, 185, 239
consequence relation, 9

for AASL+, 152
constructor

implementation, 38
persistent, 172, 212

constructors, 167
containment semantics, 114
context, 140
contravariant rule, 38, 53, 90, 114,

136, 229, 250, 255
core-level, 19, 188, 221
cpo, 198
CPO model, 190

deduction relation, 10
deliverables, 185
denotational semantics, 18
dependent products, 221
dependent records, 221
dependent types, 51, 64, 70, 241
derivable rules, 98
derive, 11, 146, 179
diamond import, 177
dot notation, 30, 140, 237

ELF+, 95-97
EML, 3, 183, 184, 220, 237
entailment system, 10
environment, 18, 67
equal domains rule, 136
equational logic, 6, 8
exception conditions, 6
existential types, 221
extend, 148
Extended ML, see EML
external, 222
external equality, 116

first-order logic, 7
Fixed Point Calculus, see FPC
fixed point induction, 208
F(V, 92
F ° , 92, 135, 136
FPC, 191-203

Index
	 292

FPC
signature expressions, 211
signature morphism, 194
specification expressions, 211

FPC
signature extension, 212

F<, 78
functor, 3
functor specifications, 3

F-environment, 119
F-term, 90
F-type, 90
generation principle, 58, 102

higher-order functions, 6
higher-order logic, see HOL
higher-order subtyping, 92
HOL, 189, 209, 221, 222
HOL-CPO, 218, 219, 221, 222
HOLCF, 218, 219, 221, 222
homomorphism, 209
HOPER model, 93
horizontal composition, 2

impose, 11, 146
institution, 6

TQ,8
JOC, 7
FPC, 211
with syntax, 267

institution independent, 10, 139
institutional semantics, 8, 140, 174,

175, 182, 183, 220, 223, 260
internal, 222
intersection types, 44
iso-close, 11

kernel language, 10

Lambda Cube, 113
lambda model, 67
AASL+

applicative structure, 143

environment model, 144
Aw, 218, 219, 222
A Power

applicative structure, 117
environment model, 121
interpretation, 119

LCF, 189, 203, 204, 218, 219, 221-
223

LF, 94-97, 113, 135, 136
LFPC, 203-208
logic, 10
Logic for FPC, see LFPC
Logic of Computable Functions, see

LCF
Logical Framework, see LF

manifest types, 220
Metasoft, 220
methods, 85
minimal, 11, 146
model

of reduction, 118
theory, 6

model-theoretic approach, 2
modular programming, 5
module-level, 19
monster, 192

names
ML, 176

non-informative, 47
non-singleton minimal type, 65

object-oriented programs, 221
observationally equivalent wrt cP via

0, 14
order-sorted polymorphism, 219, 220

parameter restriction, 185
partial definition, 69, 120, 250
partial equivalence relation, 116
power

kinds, 86
types, 84

Index 	 - 	 293

pre-context, 87 semantic presentation, 106
pre-terms over IC, 86 semantic requirements, 20
presentation-level semantics, 18 semantics
product types, 191 AASL+, 143
program A< {}, 67

development, 3 ASL, 14
parameterised, 3 ASL+FPC, 250-254

program development, 8, 77 coercion, 114
program refinement, 118 dependent types, 266
programming FPC, 197

in-the-large, 5 FPC operational, 271
proof search, 5 ?tpower , 113-125
pushout parameterisation, 18 model-level, 2

operational, 18
quotient, 148 sentences

recursive types, 191 FPC, 209

reduct, 148 set-theoretic model, 190

refine, 1 sharing, 36, 140, 175, 176

refinement, 1,5 argument-result, 179

refinement types, 95, 135 by parameterisation, 36, 180
regularity, 151 constraints, 36
related environments, 126 equations, 175, 191, 192, 214

renaming, 56, 99 in the parameter, 177

restrict, 148 parameter-result, 178

restriction, 7 sharing equations, 217

rough soundness, 253 cr-expansion, 7

rough type-checking, 5 o--minimal, 14
ASL+FPC, 227-236 sigma-types, 221

AASL+, 142-143 signature

Apower, 107113 FPC, 192

sentences in 	152 FPC, 209

rough types FPC, 191

ASL+FPC, 228 monster, 192

?tPower, 108 syntax in FPC, 211
signature morphism

satisfaction, 1, 5 FPC, 209
ASL+FPC, 254 derived, 266
condition, 7 singleton types, 46
AASL+, 153 SML, 3, 19, 175, 177-180, 183, 192,
relation, 7 193, 220, 221, 237, 238, 240,
system, 4 258, 260, 262

satisfy, 1 soundness
saturated set, 133

Index
	 294

13-reduction, 18
LFPC, 208

specification
17-, 3
architectural, 265
hierarchical, 183
in-the-large, 5
inconsistent, 2
model of, 2
parameterised, 3
parameterised program, 3
requirements, 4

specification building operators, 10
ASL+, 146

SPECTRAL, 36, 184
SPECTRUM, 220
stability, 151
Standard ML, see SML

stratified
design levels, 221
equality, 43, 46, 116

strong normalization, 132, 134, 143,
235

structural proof system, 169
subject reduction, 18, 64, 102, 231
substitution

for A Power, 100
for A<{} , 57
simultaneous, 56, 99

subsumption, 46, 85
subtype, 5, 90
subtyping

higher-order, 39
sum types, 191
syntactic presentation, 106
syntax

FPC, 193
AASL+, 141
A power, 86
A<{} , 50

System F, 78, 91

type correctness, 100, 158
type-checking, 4

dynamic, 182
FPC terms, 193
static, 107, 182, 183

typed operational semantics, 104
types

power, 84
product, 191
recursive, 191
singleton, 46
sum, 191

types-as-specifications, 5

union, 11, 146
universal domain, 198

vertical composition, 2

weak-head reduction, 132
wide-spectrum, 3, 184

Z, 136

translate, 11, 146

