

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429719977?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Natural Language Generation as Neural

Sequence Learning and Beyond

Xingxing Zhang

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

School of Informatics

University of Edinburgh

2017

Abstract

Natural Language Generation (NLG) is the task of generating natural language (e.g.,

English sentences) from machine readable input. In the past few years, deep neural net-

works have received great attention from the natural language processing community

due to impressive performance across different tasks. This thesis addresses NLG prob-

lems with deep neural networks from two different modeling views. Under the first

view, natural language sentences are modelled as sequences of words, which greatly

simplifies their representation and allows us to apply classic sequence modelling neu-

ral networks (i.e., recurrent neural networks) to various NLG tasks. Under the second

view, natural language sentences are modelled as dependency trees, which are more ex-

pressive and allow to capture linguistic generalisations leading to neural models which

operate on tree structures.

Specifically, this thesis develops several novel neural models for natural language

generation. Contrary to many existing models which aim to generate a single sentence,

we propose a novel hierarchical recurrent neural network architecture to represent and

generate multiple sentences. Beyond the hierarchical recurrent structure, we also pro-

pose a means to model context dynamically during generation. We apply this model to

the task of Chinese poetry generation and show that it outperforms competitive poetry

generation systems.

Neural based natural language generation models usually work well when there is

a lot of training data. When the training data is not sufficient, prior knowledge for the

task at hand becomes very important. To this end, we propose a deep reinforcement

learning framework to inject prior knowledge into neural based NLG models and apply

it to sentence simplification. Experimental results show promising performance using

our reinforcement learning framework.

Both poetry generation and sentence simplification are tackled with models follow-

ing the sequence learning view, where sentences are treated as word sequences. In this

thesis, we also explore how to generate natural language sentences as tree structures.

We propose a neural model, which combines the advantages of syntactic structure and

recurrent neural networks. More concretely, our model defines the probability of a

sentence by estimating the generation probability of its dependency tree. At each time

step, a node is generated based on the representation of the generated subtree. We

show experimentally that this model achieves good performance in language modeling

and can also generate dependency trees.

iii

Acknowledgements

Time flies. When I started to write this part, I realized I am very close to the finishing

line of my PhD. The four years of PhD study in Edinburgh was a wonderful, happy

and rewarding experience.

First and foremost I would like to thank my PhD supervisor, Mirella Lapata. I feel

very fortunate to be her student. What I learned most from her is to think big and think

critically in research. She is passionate and serious about research, which definitely

influenced me a lot. She cares about how research is presented and constantly gave me

feedbacks on writing and presentations, which makes me believe that doing research

and presenting research properly are equally important. I would also like to thanks her

for giving me enough freedom to work on what I am interested and dragging me back

to the right track when I was going too wild. During my PhD, I had good times and

bad times. She always encourages me and was being supportive. Everytime we were

able to turn disappointments into even bigger excitements.

I would also like to thank my second supervisor, Adam Lopez for helpful discus-

sions and brilliant feedback (especially on language modeling and dependency pars-

ing). Thanks to Iain Murray for feedback to my first year review. Many thanks to my

thesis examiners: Stephen Clark and Shay Cohen, whose insightful comments during

the viva definitely improved this thesis. Many thanks to Bonnie Webber, Frank Keller,

Sharon Goldwater, Rico Sennrich, Jianpeng Cheng, Li Dong and other members of

ProbModels for helpful advice and comments to my research. Special thanks to my

coauthors, Jianpeng Cheng and Liang Lu, from whom I learned so much.

I am thankful to my office mates: Li Dong, Jianpeng Cheng, Nicolas Collignon,

Pablo León-Villagrá and John Torr. Thanks for creating such a great research envi-

ronment and I benefit a lot from the daily discussions on research papers and other

staff.

Finally, my deepest thanks to my parents for their love and support for so many

years!

iv

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Xingxing Zhang)

v

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Natural Language Generation . 2

1.3 The Architecture of Pipelined NLG Systems 3

1.3.1 Content Planning . 5

1.3.2 Sentence Planning . 6

1.3.3 Surface Realization . 7

1.4 The Architecture of Data-driven NLG Systems 9

1.5 The Architecture of Neural NLG Systems 9

1.5.1 Representation . 11

1.5.2 Sequence Generation . 11

1.6 Thesis Contributions . 14

1.7 Thesis Outline . 15

2 Background 19

2.1 Neural Network Language Models 20

2.2 Recurrent Neural Network Language Models 21

2.2.1 Simple Recurrent Neural Networks 22

2.2.2 Long Short-Term Memory Networks 22

2.2.3 Generation with a Language Model 23

2.3 RNN Encoder Decoder Models . 24

2.4 Summary . 26

3 Generating Multiple Sentences in Sequence based Generation 27

3.1 Introduction . 28

3.2 Related Work . 30

3.3 The Poem Generator . 31

vii

3.3.1 Convolutional Sentence Model (CSM) 33

3.3.2 Recurrent Context Model (RCM) 35

3.3.3 Recurrent Generation Model (RGM) 36

3.3.4 Training . 37

3.3.5 Decoding . 38

3.4 Experimental Design . 38

3.4.1 Data . 38

3.4.2 Perplexity Evaluation . 39

3.4.3 BLEU-based Evaluation . 39

3.4.4 Human Evaluation . 40

3.5 Results . 40

3.6 Conclusions . 43

4 Adding Prior Knowledge to Sequence based Generation 45
4.1 Introduction . 46

4.2 Neural Encoder-Decoder Model . 47

4.3 Reinforcement Learning for Sentence Simplification 49

4.3.1 Reward . 50

4.3.2 The REINFORCE Algorithm 53

4.3.3 Learning . 54

4.4 Lexical Simplification . 54

4.5 Experimental Setup . 55

4.5.1 Datasets . 55

4.5.2 Training Details . 56

4.5.3 Evaluation . 57

4.5.4 Comparison Systems . 57

4.6 Results . 58

4.7 Conclusions . 63

5 Beyond Sequence Learning: Structure based Generation 65
5.1 Introduction . 66

5.2 Tree Long Short-Term Memory Networks 68

5.2.1 Dependency Path . 68

5.2.2 Sentence Probability . 69

5.2.3 Tree LSTMs . 71

5.2.4 Left Dependent Tree LSTMs 73

viii

5.2.5 Model Training . 75

5.3 Experiments . 75

5.3.1 Training Details . 76

5.3.2 Microsoft Sentence Completion Challenge 76

5.3.3 Dependency Parsing . 79

5.3.4 Tree Generation . 80

5.4 Conclusions . 81

6 More on Structure based Generation 83
6.1 Introduction . 83

6.2 Related Work . 85

6.2.1 Graph-based Parsing . 85

6.2.2 Transition-based Parsing . 85

6.2.3 Neural Network-based Features 86

6.3 Dependency Parsing as Head Selection 87

6.3.1 Word Representation . 87

6.3.2 Head Selection . 89

6.3.3 Maximum Spanning Tree Algorithms 90

6.4 Parsing Experiments . 92

6.4.1 Datasets . 92

6.4.2 Training Details . 92

6.4.3 Results . 93

6.5 Dependency Language Modeling Experiments 98

6.6 Conclusions . 99

7 Conclusions and Future Work 101
7.1 Conclusions . 101

7.2 Future Work . 102

Bibliography 105

ix

Chapter 1

Introduction

1.1 Motivation

There is a large amount of information available on the internet and it is still growing

every day. Information is rendered in text but also images, video, databases, numbers

and so on. To fulfill our information needs, we usually type several keywords to a

search engine. Most search engine techniques are based on keyword matching and

will often return relevant documents to the query (mostly in text format). Users’ needs

however are becoming increasingly muti-modal. For example, a user may search for “a

cute cat” and he or she expect an image of “a cute cat” rather than a text description1.

In this case, natural language generation technology can be used to transform images

into text, and the generated text can be used for indexing in a search engine.

Besides being used in search engines, natural language generation technology can

also be used as an authoring aid. A routine job for weather reporters is to write weather

forecasts based on a weather database, which is time consuming and boring. We can

use natural language generation methods to produce weather reports automatically

(Goldberg et al., 1994). Similarly, natural language generation technology can also

be used in automatic financial report writing. Natural language generation technology

can even be used in creative composition tasks. For example, poem composition is

a difficult task for most people. However, recent advances have shown that natural

language generation can be used to compose poems by providing some keywords or

sentences (He et al., 2012; Zhang and Lapata, 2014). The generated text may not be

perfect and may need human post-editing, but it can facilitate the creative processing

of poem writing.

1Google can return you cute cat images on 17 May, 2017.

1

2 Chapter 1. Introduction

Many people read news every day. But unfortunately most news articles are long

and repetitive. Natural language generation technology (more specifically automatic

summarization technology) can produce shorter versions of news articles. Besides,

many sentences in a news article are very formal and long. Children and second lan-

guage learners may not understand them easily. Natural language generation can also

be used here to convert complex sentences into simpler ones (this technique is called

sentence simplification).

We can see from the above examples that natural language generation is an impor-

tant and useful task. In the next section, we formally define natural language genera-

tion.

1.2 Natural Language Generation

Natural Language Generation (NLG) is the task of generating natural language (e.g., En-

glish sentences) from machine readable input. A NLG system uses its knowledge of

language and the specific (target) domain to transform system input into human under-

standable text. Early NLG systems typically operate on non-linguistic representations,

which are easier for computers to understand and manipulate compared to natural lan-

guage. For example, the FOG system (Goldberg et al., 1994) generates weather for-

casts from a weather database, which contains numerical weather simulations produced

by a supercomputer. The IDAS system (Reiter et al., 1995) produces hyper-text help

messages for complex machinery from a machinery knowledge base.

Linguistic inputs can be also used as NLG system inputs. In this setting, linguis-

tic input is first mapped into computer readable representations and then a “standard”

NLG model can generate language according to these representations. This extension

with linguistic inputs is quite interesting, since linguistic inputs are often much eas-

ier for users to provide compared to machine readable inputs. As a result, it enables

researchers to do more challenging tasks such as generating stories (McIntyre and La-

pata, 2009) or poems (He et al., 2012; Zhang and Lapata, 2014) using user provided

keywords. It is also possible to use a sentence as the input for a NLG system. For

example, sentence compression is the task of generating a shorter sentence for an in-

put (long) sentence. For instance, Cohn and Lapata (2009) first transform the input

sentence into a tree structure (which is easier for computers to understand) and then

use a tree to tree transduction method to generate the compressed sentence. Sentence

simplification is another example of using a sentence as input, which aims to rewrite a

1.3. The Architecture of Pipelined NLG Systems 3

sentence into its simpler version. Woodsend and Lapata (2011) extracts syntactic and

lexical simplification rules using quasi-synchronous grammar and during generation

sentences are reranked with linear integer programming.

Recent advances in representation learning have enabled computers to learn image

representations very well with deep Convolutional Neural Networks (CNN; Krizhevsky

et al. 2012; Simonyan and Zisserman 2015). In the task of object recognition, models

based on CNN even surpass human performance (He et al., 2015, 2016). As a result,

researchers can successfully generate text descriptions from images or video clips with

features learned by deep CNNs (Vinyals et al., 2015; Venugopalan et al., 2015).

Although researchers keep advancing natural language processing and understand-

ing, computer vision and representation learning in the past decades, the task of NLG

remains the same, i.e., to generate high quality human readable language. Indeed, these

advances enable an NLG system to generate from more diverse input. Despite taking

in different input, most NLG systems share similar architectures. The first architecture

we discuss in this thesis is a pipeline based architecture. It usually contains a con-

tent planning module, a sentence planning module, and a surface realization module.

Note in some literature such as Reiter and Dale (2000), content planning is also called

document planning and sentence planning is also called microplanning. We will also

analyse the advantages and disadvantages of using this architecture. Later, due to the

advances in deep learning, the pipelined architecture can be simplified into two mod-

ules: the representation module and the generation module. In the following, we will

introduce these two architectures in detail.

1.3 The Architecture of Pipelined NLG Systems

Most early NLG systems follow a pipeline architecture (Goldberg et al., 1994; Reiter

et al., 1995). Typically, there are three modules in this architecture: Content Plan-

ning, Sentence Planning and Surface Realization (Reiter and Dale, 1997). The content

planning module focuses on what to say, while the sentence planning and surface real-

ization modules are responsible for how to say. As shown in Figure 1.1, each module

takes the output of the previous module as its input.

4 Chapter 1. Introduction

Knowledge Source:
Wind Direction Northeast

Min Speed 6
Max Speed 9

.

Content Planning

Discourse Trees:

Sentence Planning Abstract Sentences:

Surface Realization

northeast wind 6 to 9 mph

Figure 1.1: Architecture for a pipelined natural language generation system. The input

is a knowledge source and the output is generated natural languge text. There are

three modules inside this pipeline: context planning, sentence planning and surface

realization.

1.3. The Architecture of Pipelined NLG Systems 5

Sequence

Sequence

Sky Cover Temperature

Narrative Sequence

Wind Direction Wind Speed

Increasing clouds, with a low around 40. Northeast wind 6
to 9 mph.

Figure 1.2: A tree-structured document plan produced by a document planner (Hovy,

1993). Internal nodes correspond to RST relationships, while leaf nodes refer to parts

of the input.

1.3.1 Content Planning

The Content Planning module determines which parts of the input (e.g., database)

should be communicated in the final generated text. It is possible that the provided

input information is redundant, and the content planning module needs to figure out

which parts to include. For example, a hypothetical weather reporting system typically

has access to weather data spanning an entire year. Faced with the task of generating

a report for last week, it should determine which data is relevant and produce a high-

level summary highlighting one or two typical days. This process is also called content

determination (Reiter and Dale, 2000).

When multiple parts of the input are selected, there might be an additional process

called document planning. Since in the generated text information is not presented in a

random order, the content planner also needs to organize selected parts of the input in

a logical and coherent manner. Note that sometimes document planning is omitted for

simplicity (Angeli et al., 2010). The selected content produced by the content planner

is usually presented in a tree structure. Figure 1.2 shows an example output of the

content planning module. It is a tree structure, where internal nodes denote discourse

information using Rhetorical structure theory (RST) structures (Mann and Thompson,

1988) and leaf nodes correspond to parts of the input chosen by a content determination

process (Hovy, 1993).

6 Chapter 1. Introduction



TYPE: ABSTRACTSYNTAX

HEAD: |TO |

CONJ1



TYPE: ABSTRACTSYNTAX

HEAD: |WIND |

SUBJECT:

REFERRING: NP

OBJECT:
[

DIRECTION: NORTHEAST
]


MODIFIER:

REFERRING: NP

OBJECT:
[

SPEED: 6
]




CONJ2



TYPE: ABSTRACTSYNTAX

HEAD: |WIND |

SUBJECT:

REFERRING: NP

OBJECT:
[

DIRECTION: NORTHEAST
]


MODIFIER:

REFERRING: NP

OBJECT:
[

SPEED: 9
]





Figure 1.3: The abstract sentence representation of Northeast wind 6 to 9 mph in an

Attribute Value Matrix (AVM). It is produced by a sentence planner in (Reiter and Dale,

2000).

1.3.2 Sentence Planning

The second module is Sentence Planning. In this module, the selected information pro-

duced by the content planner is grouped into different sentences, which is also called

sentence aggregation. Note that the grouping of information may not be necessary,

since the sentence planner can simply choose to present each piece of information

in a single sentence. Then the lexicalization component chooses appropriate words or

phrases to express the content selected by the content planner eariler. Sometimes gram-

mar rules will be also applied during lexicalization (McIntyre and Lapata, 2009). After

that, there is an optional process called referring expression generation, in which the

domain entities are replaced. For example, in the weather report domain, the following

sentence

1.3. The Architecture of Pipelined NLG Systems 7



HEAD: NONE

TENSE: NONE

SUBJ:



HEAD: |WIND |

NUMBER: SG

CLASS: COMMON NOUN

ATTR:

HEAD: |NORTHEAST |

CLASS: ADJECTIVE





ATTR



HEAD: |MPH |

COORD:



HEAD: |TO |

SUBJ1:

HEAD: |6 |

CLASS: CARDINAL


SUBJ2:

HEAD: |9 |

CLASS: CARDINAL








Figure 1.4: The Deep-Syntactic Structure representation of Northeast wind 6 to 9 mph

in an Attribute Value Matrix (AVM). This representation is also the input for RealPro

surface realizer (Lavoie and Rambow, 1997).

The temperature in LOC today is between TMP1 and TMP2.

where slots LOC, TMP1 and TMP2 will be filled with database records or their vari-

ants (according to the context). After all the above processes, we get abstract sentence

representations. Figure 1.3 shows an example of the abstract sentence representation

in abstract syntactic structure. Notable representations also include the Sentence Plan-

ning Language (Kasper, 1989), Functional Descriptions (Elhadad and Robin, 1996)

and Deep-Syntactic Structure (Melčuk, 1988) (“DSyntS” for short). Figure 1.4 shows

another example of abstract sentence representation in Deep-Syntactic Structures.

1.3.3 Surface Realization

The surface realization module transforms abstract sentence representations into syn-

tactically and morphologically correct sentences. Compared to Content Planning and

Sentence Planning, this module is more mature and there exist some off-the-shelf sur-

8 Chapter 1. Introduction

The family has the baby

The family has the baby. The baby is to seat the lady at

the back. The baby sees the lady in the family. The family

marries a lady for the triumph. The family quickly wishes

the lady vanishes.

The giant guards the child

The giant guards the child. The child rescues the son from

the power. The child begs the son for a pardon. The giant

cries that the son laughs the happiness out of death. The

child hears if the happiness tells a story.

Table 1.1: Two stories generated by the story generator in McIntyre and Lapata (2009).

The system input is in italic.

face realizers such as PENMAN (Bateman, 1997), SURGE (Elhadad and Robin, 1996)

and RealPro (Lavoie and Rambow, 1997). Figure 1.4 shows an example sentence pro-

duced by the RealPro realizer, which takes Deep-Syntactic Structured abstract sentence

representations as input.

Now we will use an example to go through this pipeline. McIntyre and Lapata

(2009) proposed a story generator by taking a user provided sentence or entities as

input. Firstly, an event chain of the input entities (or entities in the input sentence) are

extracted from a story corpus using a model which is similar to the one in Chambers

and Jurafsky (2008). The event chain is in a graph structure (similar to a discourse

tree). Each node in this graph is a (verb, relation) tuple. This corresponds to the

content planning process described above. In the step of sentence planning, (verb, re-

lation) tuples are mapped to grammar rules using lexicons (Korhonen et al., 2006) and

dictionaries (Grishman et al., 1994). Then additional information expressing mood,

agreement and argument roles is added to the grammar structures and these are trans-

formed to a format compatible with the surface realizer. In surface realization, RealPro

(Lavoie and Rambow, 1997) is used to produce candidate stories. Finally, the stories

are ranked with a coherence model and an interestingness model. Table 1.1 shows two

generated stories.

1.4. The Architecture of Data-driven NLG Systems 9

1.4 The Architecture of Data-driven NLG Systems

In the pipelined architecture, a NLG system is divided into well defined modules:

content planning, sentence planning and surface realization. One advantage of this ar-

chitecture is that some components may be reused across tasks. From a software engi-

neering perspective, it is also easier to debug and maintain this architecture. However,

a content planning module usually involves many manually engineered rules based on

the analysis of a domain specific corpus. Similarly, sentence planning and surface real-

ization modules also need significant engineering effort. Therefore, a system designed

for one domain can not be easily used for another new domain. For example, the Real-

Pro surface realizer (Lavoie and Rambow, 1997) relies on several linguistic knowledge

bases and a great deal of grammar rules. RealPro only supports English and enabling

RealPro to support other languages (e.g., French) would need significant effort.

The limitations of pipelined systems have led to the development of data-driven

methods. Individual NLG components, even end-to-end systems can be learned auto-

matically only using parallel training data. The architecture of data-driven systems is

similar to that of pipelined systems discussed in Section 1.3 (they still have three mod-

ules). Compared to traditional systems, data-driven systems are domain independent,

largely reducing the manual engineering effort required for developing NLG systems.

Barzilay and Lapata (2005) learn a content selection module with a collective classi-

fication model. Duboue and McKeown (2002) propose a data-driven content planner

using evolutionary algorithms. There are also automatically learned sentence planers

(Barzilay and Lapata, 2006) and surface realizers (Knight and Hatzivassiloglou, 1995;

Lu and Ng, 2011). The content planner, sentence planner and surface realizer can even

be learned jointly as an end-to-end system (Angeli et al., 2010; Kim and Mooney,

2010; Konstas and Lapata, 2012).

In the next section, we introduce Neural NLG systems, which can also be viewed

as end-to-end data-driven NLG models, but the classsic three-module architecture is

further simplified.

1.5 The Architecture of Neural NLG Systems

Recently, an alternative architecture for NLG models has been gaining increasing at-

tention. This architecture is shown in Figure 1.5. The input of the NLG model is firstly

mapped into a vector space using a representation neural network and then the vector

10 Chapter 1. Introduction

Knowledge Source

Representation
(Neural Network)

Continous Representation

Generation
(Neural Netwrok)

Generated Text

Figure 1.5: Architecture for a neural network based natural language generation sys-

tem. The input is a knowledge source and the output is natural language text as in the

pipelined architecture in Figure 1.1, but there are two modules inside this architecture

(instead of three): a representation module (which is a neural network) and a generation

module (which is usually a recurrent nerual network, since sentences can be viewed as

a sequence of words). Note that these two modules can be trained jointly with gradient

descent algorithms.

1.5. The Architecture of Neural NLG Systems 11

is decoded into text using a genertation neural network. We explain these two modules

in more detail in the following section.

1.5.1 Representation

Thanks to the recent advances in representation and deep learning, computers can en-

code many different contents into a continuous vector space. For example, word2vec

(Mikolov et al., 2013b) is a powerful model for mapping words into dense vectors,

where similar words are close to each other in vector space. Sentences can also be rep-

resented as continous vector representations using recursive neural networks (Socher

et al., 2011b), convolutional neural networks (Kim, 2014) and recurrent neural net-

works (Palangi et al., 2016). Even images (Krizhevsky et al., 2012) and knowledge

bases (Bordes et al., 2011) can be encoded into vector spaces. As mentioned in the

beginning of this chapter, a NLG system can take several different kinds of input, but

now we can use neural networks to first map all these inputs into a vector (or several

vectors). Then NLG is reduced to a problem of generating text from a vector (or sev-

eral vectors). So the first module in a neural network based NLG system is simply a

representation module.

1.5.2 Sequence Generation

Given the vector or vectors produced by the representation module, the sequence gen-

eration module is responsible for transforming vectors into text. A sentence or a couple

of sentences can be viewed as a sequence of words (including punctuation). There is

a special kind of neural network called recurrent neural network (RNN), which is de-

signed for sequence prediction or generation. In natural language processing, perhaps

the first successful application of (simple) RNNs is in language modeling (Mikolov

et al., 2010). Later, Kalchbrenner and Blunsom (2013) applied (simple) RNNs to ma-

chine translation by adding source sentence representations (learned by a convolutional

neural network) to RNNs. But simple RNNs are not strong enough to generate reason-

able sentences and were used mostly for reranking. With the introduction of gated

recurrent units and long short-term memory networks, the quality of the generated text

improved dramatically (Cho et al., 2014; Sutskever et al., 2014). Recurrent neural net-

works especially long short-term memory networks completely revolutionized natural

language generation and actually almost all recently proposed neural network based

NLG models are based on recurrent neural networks. Specifically, in a neural natural

12 Chapter 1. Introduction

Figure 1.6: An example of image-caption pair in flickr8k dataset. The five descriptions

for this image are 1. A child in a pink dress is climbing up a set of stairs in an entry way.

2. A girl going into a wooden building. 3. A little girl climbing into a wooden playhouse.

4. A little girl climbing the stairs to her playhouse. 5. A little girl in a pink dress going

into a wooden cabin.

language generation system, a recurrent neural network will predict one word at time

by taking all previously generated words and the representation produced by the rep-

resentation module into account. The generator stops until a special token indicating

the end of sentence (or document) is produced. One can view the sequence genera-

tion module as a combination of the content planning, sentence planning and surface

realization modules in the pipelined architecture.

As in Section 1.3, we will also use examples to go through this architecture. Vinyals

et al. (2015) proposed a model following the architecture in Figure 1.5 for caption gen-

eration. Caption generation aims to generate a text description for a given image. An

example image from the Flickr8k dataset (Hodosh et al., 2013) is shown in Figure 1.6

and one of its five gold standard captions is A child in a pink dress is climbing up a

1.5. The Architecture of Neural NLG Systems 13

Figure 1.7: An example of infobox to text generation. The description for this infobox

is Ludwig van Beethoven (baptised 17 December 1770[1] – 26 March 1827) was a

German composer and pianist.

set of stairs in an entry way (other gold captions are shown in Figure 1.6). In their

model, a 22-layer convoluational neural network (Szegedy et al., 2015) is used to map

images into vectors (so their representation module is a very deep convolutional neu-

ral network). Their sequence generation module is a long short-term memory network

(Hochreiter and Schmidhuber, 1997), which is initialized with the image feature vector

learned by the representation module. In their initial attempt, they did not update the

representation module to avoid overfitting to the image caption dataset. Note the size

of the dataset used to train the deep convolutional neural network is much larger than

the size of the image caption dataset. But in later work (Vinyals et al., 2017), they

found that careful tunning of these two parts can lead to even better performance.

14 Chapter 1. Introduction

Another example of a neural NLG model generates descriptions for Wikipedia in-

foboxes in the biography domain (Lebret et al., 2016), where the infobox for a person

is given, and a model is expected to generate a description for it (see Figure 1.7). In

their model, a infobox (or a table in general) is mapped to continuous vector space with

embedding matrices of field names and field values (i.e., words). Then, conditioned

on the representation of the infobox, they use a feed-forward neural ngram language

model to generate the description. They also observe that some of the generated words

are from actually copied from the infobox. For example, composer and pianist ap-

pear both in the infobox and the description. Therefore, a copy operation is explicitly

modeled by augmenting the output word vocabulary with all words in the infobox as

well.

1.6 Thesis Contributions

There are at least three advantages for the neural NLG architecture. Firstly, deep neural

networks are usually more expressive than many shallow models and therefore often

lead to better performance. Furthermore, the representation and the sequence gen-

eration modules can be trained jointly in an end-to-end fashion (that is another nice

property of neural networks). This means that if you have a parallel corpus for the

input and corresponding natural language output, then you can train your NLG model

with it. All you need to do is design an appropriate neural module for the input repre-

sentation and another neural module to map the representations into word sequences.

The training loss for the whole generation module is directly learned from the output.

Therefore, there is no need to train the representation module and generation mod-

ules separately with different loss functions. Lastly, it is easier to do transfer learning

in neural networks, which means that one task (with less training data) can benefit

from another task (with much more training data) by parameter sharing. For example,

in many NLP neural models, the word embedding matrices can usually be initialized

with pre-trained embeddings such as word2vec (Mikolov et al., 2013b) or Glove (Pen-

nington et al., 2014) vectors, where these word vectors are trained on large amounts of

unlabeled data. This initialization usually leads to better performance. Therefore, the

models proposed in this thesis are all based on the neural NLG architecture due to the

flexibility and powerfulness of neural networks.

Hierarchical Recurrent Generation Model. Most neural based generation mod-

els aim to generate a single sentence as the output, which is a better representation

1.7. Thesis Outline 15

network for the neural language generation architecture. In this thesis, we propose

a hierarchical recurrent neural network architecture to model and generate multiple

sentences. Most recurrent neural network based generation models rely on static con-

text during generation, we propose a way to make the context dynamic. Intuitively, in

different generate stage, the context needed should be different.

Deep Reinforcement Learning Generation Model. Neural based NLG models

are very powerful, when there is a lot of good-quality data. However, there are many

NLG sub-tasks for which data is sparse or noisy. When the training data is not suffi-

cient or noisy, prior knowledge for the task becomes important. How to model this kind

of prior knowledge effectively is very important for generating good output. Therefore,

we propose a deep reinforcement learning framework for this kind of generation tasks

and model task specific prior knowledge as rewards, which is a better training method

for the neural language generation architecture.

Tree Structured Neural Generation Model. Most existing neural NLG work

uses sequence models (i.e., recurrent neural networks) as the generation module. In

a sequence based model, a sentence is viewed as a sequence of words. However, in

computational linguistics, sentences can also be represented in a tree structure such as

dependency trees or constituency trees. In a linear sentence of length N, the longest

dependency for a word is at length N−1, while by using the tree structure, the longest

dependency length can be reduced to rougely log(N). By reducing the dependency

length, we can probably train the model better. We propose a neural language generator

(a better generation network) called top-down tree long short-term memory network,

which generates dependency trees rather than linear structured sentences. The final

sentences can be generated using in-order traversal of dependency trees.

1.7 Thesis Outline

In this chapter, we have introduced the task of Natural Language Generation, two

popular natural language generation architectures and my contribution to neural based

natural language generation models. The reminder of this thesis is structured as fol-

lows:

• Chapter 2. In Chapter 2, we introduce the very basics of a neural network based

natural language generation model, namely (recurrent) neural network based lan-

guage models. We first introduce language modeling, then present the details

16 Chapter 1. Introduction

of a feed-forward neural language model (Bengio et al., 2003) and finally we

introduce recurrent neural networks based language models including simple re-

current neural network language models and long short-term memory network

language models. Next, we discuss context sensitive language modelling (which

is almost a neural language generation model), sequence to sequence learning

(Sutskever et al., 2014) and the attention mechanism (Bahdanau et al., 2015).

• Chapter 3. In Chapter 3, we introduce our hierarchical recurrent neural network

model, which is designed to generate multiple sentences. The model is tested in

Chinese poetry generation (specifically quatrain generation). In a quatrain, there

are four sentences and each sentence has five or seven words. Given several key-

words, the first sentence of a quatrain is generated with a template based method

(He et al., 2012). Subsequent sentences are generated with a hierarchical recur-

rent neural network. To make the generator more robust, during decoding, the

neural network is interpolated with an ngram language model and several ma-

chine translation features. The proposed model outperforms a statistical machine

translation based poetry generator (He et al., 2012) and a summarization based

poetry generator (Yan et al., 2013).

• Chapter 4. In Chapter 4, we introduce our deep reinforcement learning based

generation model. As mentioned earlier, this model can incorporate task spe-

cific prior knowledge for a neural based language generation model. Sentence

Simplification is used as a test bed for this model, a challenging task, for which

relatively little training data is available. Sentence Simplification aims to rewrite

a complex sentence into a simpler one. This is a typical sequence to sequence

learning task and therefore the RNN encoder-decoder model is used as a start-

ing point. However, the RNN encoder-decoder does not solve the simplification

problem very well. The output is quite boring, i.e., it always repeats the com-

plex sentence or only makes a few trivial changes. Simplified sentences should

be simpler, meaning preserving and grammatical. If we can model these three

properties well, we can naturally solve the repetition curse (repeating the com-

plex sentence will not make the output simpler!). We choose the reinforcement

learning framework, since it can naturally incorporate non-differentiable objec-

tives (we simply model these objectives as rewards). Our reinforcement learning

based model outperforms several strong simplification systems (Wubben et al.,

2012; Narayan and Gardent, 2014; Xu et al., 2016).

1.7. Thesis Outline 17

• Chapter 5. Most neural language generation models view sentences as se-

quences of words and use sequence models (e.g., long short-term memory net-

works) to generate the target sentences. Despite superior performance in many

applications, neural language generation models essentially predict sequences

of words. Many NLP tasks, however, exploit syntactic information operating

over tree structures (e.g., dependency or constituent trees). In this chapter we

develop a novel neural network model which combines the advantages of the

LSTM architecture and syntactic structure. Our model estimates the probability

of a sentence by estimating the generation probability of its dependency tree. In-

stead of explicitly encoding tree structure as a set of features, we use four LSTM

networks to model four types of dependency edges which altogether specify how

the tree is built. At each time step, one LSTM is activated which predicts the next

word conditioned on the sub-tree generated so far. To learn the representations of

the conditioned sub-tree, we force the four LSTMs to share their hidden layers.

Application of our model to the MSR sentence completion challenge achieves

results beyond the current state of the art. Our model is also capable of generat-

ing trees just by sampling from a trained model and can be seamlessly integrated

with text generation applications.

• Chapter 6. This chapter focuses on dependency parsing. Although not the main

focus of this thesis, better dependency parsing performance can potentially boost

the performance of dependency tree based models (e.g., the top-down TreeL-

STM described in Chapter 5). Conventional graph-based dependency parsers

guarantee a tree structure both during training and inference. Instead, we for-

malize dependency parsing as the problem of independently selecting the head

of each word in a sentence. Our model which we call DENSE (as shorthand for

Dependency Neural Selection) produces a distribution over possible heads for

each word using features obtained from a bidirectional recurrent neural network.

Without enforcing structural constraints during training, DENSE generates (at

inference time) trees for the overwhelming majority of sentences, while non-tree

outputs can be adjusted with a maximum spanning tree algorithm. We evaluate

DENSE on four languages (English, Chinese, Czech, and German) with varying

degrees of non-projectivity. Despite the simplicity of the approach, our parsers

are on par with the state of the art. We also applied this parser to the TreeLSTM

models proposed in Chapter 5 and improved their performance.

18 Chapter 1. Introduction

• Chapter 7. In chapter 7, we conclude this thesis and discuss directions for future

research.

Some of the work presented here has been previously published in Zhang and La-

pata (2014) (Chapter 3), Zhang and Lapata (2017) (Chapter 4), Zhang et al. (2016)

(Chapter 5) and Zhang et al. (2017) (Chapter 6).

Chapter 2

Background

As introduced in Chapter 1, there are two modules in a neural based natural language

generation system, namely the representation module and the generation module. Both

of them are neural networks. The representation neural network transforms system in-

put into continuous vectors and the generation neural network generates one or more

sentences based on the vectors produced by the representation network. Since incor-

porating the vectors learned by the representation network is trivial (simply treating

them as additional input for the generation network), we will first introduce the gener-

ation network, a neural language model. Then, we will discuss how the representation

network interacts with the generation network.

We will introduce the background knowledge for neural network based natural lan-

guage generation, which covers Neural Network Language Models, Recurrent Neu-

ral Networks and Encoder-Decoder Models. A language model (LM) can be used to

predict the next word given its preceding context. Traditional language models em-

ploy count based methods coupled with smoothing techniques (Katz, 1987; Kneser

and Ney, 1995) to estimate the current word given its history. However, it is difficult

to jointly model other content (e.g., images or audio), which is not count based, in

a language model. Bengio et al. (2003) introduced a neural network based language

model, where words are mapped into continuous space. Indeed, after introducing neu-

ral networks into language modeling, they are able to build a much better language

model especially when a lot of training data is available. But this is far from the

most interesting part. Neural networks are capable of mapping words or other con-

tent (such as video and images) into a continuous space (i.e., a vector) and different

neural networks can be connected to each other simply by stacking and they can even

be trained jointly in an end to end fashion. For example, Kiros et al. (2014) intro-

19

20 Chapter 2. Background

duced a conditional neural network language model by taking image features learned

by a seven layer convolution neural network (Krizhevsky et al., 2012) into account.

The model is capable of generating descriptions for given images. In fact, most re-

cent text generation models are conditional language models! Among all these neural

language models, long short-term memory network language models (Hochreiter and

Schmidhuber, 1997; Sundermeyer et al., 2012) are usually more powerful. In natural

language processing, conditional language models that are conditioned on another sen-

tence are particularly popular, because many tasks such as machine translation and text

rewriting can be modeled this way. Cho et al. (2014) and Sutskever et al. (2014) pro-

posed RNN Encoder-Decoder models for this class of problems and later an important

variant called Attention-based Encoder-Decoder Model (Bahdanau et al., 2015) was

developed, which makes Encoder-Decoder models much more powerful. Although

encoder-decoder models (and their attention-based variants) were initially proposed to

predict a sequence with the decoder network based on another sequence learned by

the encoder network, the encoder network can also encode non-sequential data such

as image patches or even database records. In the remainder of this chaper, we will

introduce the models mentioned above in more detail.

2.1 Neural Network Language Models

A language model is used to estimate the probability of a sentence. Usually, the prob-

ability is decomposed into probabilities of all words given preceding words in the

sentence S = (w0 = BOS,w1,w2, . . . ,wN = EOS)1:

P(S) =
N

∏
i=1

P(wi|w0:i−1) (2.1)

However, estimating the term P(wi|w0:i−1) directly is difficult, as the context of wi

(i.e., w0:i−1) can be very long. To simplify this problem, a Markov assumption can be

applied and we can assume that wi is only related to the previous n− 1 words, which

is the ngram model. Therefore, P(S) (the probability of S) becomes:

P(S) =
N

∏
i=1

P(wi|wi−n+1:i−1) (2.2)

Note that the “i− n+ 1” in wi−n+1:i−1 may be smaller than 0 (e.g., i = 1 and n = 3).

A common solution for this is simply viewing wi(i ≤ 0) as a BOS token (Bengio
1As a convention in language modeling, we assume every sentence starts with an additional BOS

(Begin Of Sentence) token and ends with an EOS (End Of Sentence) token.

2.2. Recurrent Neural Network Language Models 21

et al., 2003). Bengio et al. (2003) use a feed-forward neural network to estimate

P(wi|wi−n+1:i−1). The preceding n− 1 words wi−n+1:i−1 are mapped to a continu-

ous space with a word embedding matrix We ∈ Rd×|V | (|V | is the vocabulary size and

d is the word embedding dimension):

h0 =


We e(wi−n+1)

. . .

We e(wi−1)

 (2.3)

Where e(w) is a one hot vector for word w. Then, usually there are one or more hidden

layers to add more abstractions to h0 (here for simplicity we assume there is only one

hidden layer):

h1 = f (Wh0 h0 +bh0) (2.4)

Where Wh0 ∈ Rd×(n−1)d and f is an activation function such as tanh or ReLU (Glorot

et al., 2011). To reduce over-fitting, one can also apply Dropout (Srivastava et al.,

2014) after the hidden activation function. With the context at hand, the probability

distribution of the next word is:

P(wi|wi−n+1:i−1) = softmax(Wo h1 +bo) (2.5)

where Wo ∈ R|V |×d . Usually, the model is trained by minimizing the negative log-

likelihood of the training data with stochastic gradient descent. At this point, a lan-

guage model can only leverage fixed length context. In the next part, we will introduce

how to overcome this limitation.

2.2 Recurrent Neural Network Language Models

Recurrent Neural Networks (RNNs) can in theory take unlimited context into account.

In language modeling, RNNs can estimate the probability of a word given any number

(rather than a limited number) of preceding words (i.e., P(wi|wi−n+1:i−1)). Like in a

feed-forward neural network, the preceding words are encoded into a vector, then a

softmax function is used to estimate the probability distribution for the next word (see

Equation 2.5). Next, we will introduce the two most popular RNN architectures: the

Elman RNN (Elman, 1990), which is also called Simple Recurrent Neural Network

and the Long Short-Term Memory Network (Hochreiter and Schmidhuber, 1997).

22 Chapter 2. Background

2.2.1 Simple Recurrent Neural Networks

Similar to the neural network language model described earlier, a word embedding

matrix We is used to map words to continuous vectors. Note that the original RNN

language model described in Mikolov et al. (2010) has no word embedding matrix,

but we still include the word embedding matrix as most work does (Cho et al., 2014;

Sutskever et al., 2014). Suppose we have seen the first t words w1,w2, . . . ,wt and we

are trying to estimate the probability distribution for the next word wt+1. We use t to

refer to time steps as a convention in RNNs. We assume ht is the hidden state for time

step t ∈ [0,N]. h0 is usually initialized to either 0 or a∗1 (where a is a small value such

as 0.1). The computation for time step t ≥ 1 is as follows (we ignore all bias terms for

simplicity):

xt = We e(wt) (2.6)

ht = f (Wih xt +Whh ht−1) (2.7)

P(wt+1|w1:t) = softmax(Who ht) (2.8)

The main difference between a feed-forward neural network is that the RNN has a

notion of memory due to ht . f is usually a hyperbolic tangent (tanh) or sigmoid (σ)

function. f can also be a rectified linear unit (ReLU) function (Glorot et al., 2011), but

the recurrent matrix Whh needs to be initialized as an identity matrix (Le et al., 2015).

RNNs are usually trained with back propagation through time (BPTT) (Rumelhart

et al., 1988; Werbos, 1988). Training RNNs can be difficult due to the exploding and

vanishing gradient problems (Bengio et al., 1994).

2.2.2 Long Short-Term Memory Networks

Long Short-Term Memory Networks (LSTMs; Hochreiter and Schmidhuber 1997) are

a special kind of RNN designed for solving the vanishing gradient problem in regular

RNNs. The biggest difference between a simple RNN lies in the computation of the

hidden state ht (see the computation in RNNs in Equation 2.7), where gating mecha-

nisms are introduced. In addition to the hidden state ht , in each time step, a memory

cell ct is also introduced. h0 and c0 are all initialized to 0. At time step t, we firstly

compute the information update ut :

ut = tanh(Wux xt +Wuh ht−1) (2.9)

2.2. Recurrent Neural Network Language Models 23

Then an input gate it is introduced to control how much information in ut will flow into

the new memory cell ct and a forget gate ft is introduced to control how much informa-

tion in the previous memory cell ct−1 should be remembered (rather than forgotten):

it = σ(Wix xt +Wih ht−1) (2.10)

ft = σ(W f x xt +W f h ht−1) (2.11)

ct = it�ut + ft� ct−1 (2.12)

where σ is a sigmoid function. Finally, yet another gate, the output gate ot is also

introduced to determine which part of the memory cell ct should flow into the hidden

state ht :

ot = σ(Wox xt +Woh ht−1) (2.13)

ht = ot� tanh(ct) (2.14)

In the context of language modeling, we can simply put a softmax layer on the top

of ht , as shown in Equation (2.8).

Although training RNNs is difficult due to the exploding and vanishing gradient

problems (Bengio et al., 1994), the vanishing gradient problem can be alleviated by

using LSTMs and the exploding gradient problem can be alleviated by rescaling the

gradients g = ηg
|g| when the norm exceeds a threshold η (e.g., η = 5) (Pascanu et al.,

2013).

There are also other kinds of neural language models based on Gated Recurrent

Units (GRUs; Cho et al. 2014) and Memory Networks (Sukhbaatar et al., 2015). A

GRU unit can be viewed as a simpler version of the LSTM unit, where there are only

two gates and no memory cells. The Memory Network is similar to a feed-forward

neural network, but it has additional addressing and attention mechanisms. We refer

the interested readers to Cho et al. (2014); Chung et al. (2014); Sukhbaatar et al. (2015)

for more details.

2.2.3 Generation with a Language Model

Given a neural language model, a sentence can be generated by sampling from the

distribution of the LM until an EOS2 token is produced. As mentioned earlier, a neural

language model can be conditioned on other modules (Kiros et al., 2014; Vinyals et al.,

2015; Mei et al., 2016) and generate sentences according to this conditioning context.

2EOS is a shorthand for End Of Sentence.

24 Chapter 2. Background

hX
1 hX

2 hX
3

h1 h2

x1 x2 x3 y1 y2

y2 y3

Figure 2.1: RNN Encoder-Decoder Model (without Attention Mechanism).

For example, neural language models can be used to generate image descriptions by

conditioning on image features (Kiros et al., 2014; Vinyals et al., 2015); they can also

be used in concept to text generation by conditioning on database records (Mei et al.,

2016).

2.3 RNN Encoder Decoder Models

Many NLP tasks can be framed as text-to-text generation tasks (e.g., machine trans-

lation, text rewriting, dialog generation), where the input is text and the output is

also text. Text-to-text tasks can be conceptualized as conditional language modeling

where output text is conditioned on some input text. The RNN encoder-decoder model

(Kalchbrenner and Blunsom, 2013; Cho et al., 2014; Sutskever et al., 2014) is proposed

to solve this kind of problem. Specifically, an encoder, which is a recurrent neural net-

work, encodes the input sentence into a list of hidden states. Then, a decoder, which

is another recurrent neural network (language model), generates the output sentence

based on the hidden states learned from the encoder.

The original encoder-decoder model was initially applied in machine translation

without however outperforming more traditional translation models (Durrani et al.,

2014; Sutskever et al., 2014) until the attention model was introduced (Bahdanau et al.,

2015; Jean et al., 2015). We will first discuss the basic encoder-decoder architecture

and then go to its attention-based extension.

Suppose we have a sentence pair (X ,Y) where X =(x1, . . . ,x|X |) and Y =(y1, . . . ,y|Y |).

The task is to use X to predict Y . We use an LSTM Encoder to transform X to

2.3. RNN Encoder Decoder Models 25

hX
1 hX

2 hX
3 hX

4 hX
5

X = x1 x2 x3 x4 x5

c2

α21
α22 α23 α24

α25

h0 h1 h2

Y = y1 y2 y3

Figure 2.2: RNN Encoder-Decoder Model with Attention Mechanism.

(hX
1 , . . . ,h

X
|X |) (sometimes the encoder is a bidirectional LSTM3). The decoder is an

LSTM language model. In a vanilla encoder-decoder model, we can simply use hX
|X |

to initialize the decoder LSTM (see Figure 2.1). This setup assumes a single vector

(i.e., hX
|X |) can encode the whole source sentence. However, it is difficult in practice to

do so (Sutskever et al., 2014; Bahdanau et al., 2015). In the attention-based encoder-

decoder model, the model assumes that at different steps of the generation, the decoder

should focus on different parts of the input, while how much each part of the input

should be focused upon is determined by the attention mechanism (Bahdanau et al.,

2015). Specifically, as shown in Figure 2.2, at each time step t, in addition to the word

embedding of yt , we also give a dynamic context vector ct to the LSTM (note we use

LSTM(·) to summarize Equation (2.9) to Equation (2.14)):

ht = LSTM([WD
e e(yt);ct],ht−1) (2.15)

where WD
e is the decoder word embeding matrix, e(yt) is the one-hot encoding of word

3The bidirectional LSTM (Schuster and Paliwal, 1997) encoder has two LSTMs (a forward
LSTM and a backward LSTM). The forward LSTM encodes X into a list of forward hidden states
(
−→
hX

1 ,
−→
hX

2 , . . . ,
−→
hX
|X |). Similarly, the backward LSTM encodes X into (

←−
hX

1 ,
←−
hX

2 , . . . ,
←−
hX
|X |). The final hidden

states for X is (hX
1 , . . . ,h

X
|X |), where hX

t is the concatenation of
−→
hX

t and
←−
hX

t .

26 Chapter 2. Background

yt , ct is dynamically constructed as follows:

ct =
|X |

∑
i=1

αti hX
i (2.16)

αti =
exp(eti)

∑i exp(eti)
(2.17)

eti = v> tanh(Uht−1 +WhX
i) (2.18)

where αti is the attention score.

As in Equation 2.8, the final word distribution for yt+1 is:

P(yt+1|y1:t ,X) = softmax(Who ht) (2.19)

Although the encoder-decoder model (and its attention variant) described above

was initially proposed to predict a sequence based on another sequence, the encoder

network can also encode non-sequential data such as image patches (Xu et al., 2015a),

video frames (Venugopalan et al., 2015) or even database records (Mei et al., 2016).

2.4 Summary

In this chapter, we introduced the basis of neural language generation models, namely

conditional language models. The most popular conditional language models are re-

current neural network language models. We also introduced the encoder-decoder

framework and the attention mechanism, which were initially proposed in the con-

text of neural machine translation, but have been used in natural language generation.

Most neural network based natural language generation models aim to generate a sin-

gle sentence. In the next chapter, we will introduced a model for multiple sentence

generation.

Chapter 3

Generating Multiple Sentences in

Sequence based Generation

Most neural network based natural language generation models aim to generate a single

sentence. To generate multiple sentences, we propose a hierarchical neural generation

model. The proposed hierarchical model is composed of two recurrent neural networks

stacked in a hierarchical structure. Unlike a non-hierarchical recurrent network (which

only handles word level recurrence), our model can handle not only the word level

recurrence (the generation within a sentence) but also the sentence level recurrence (the

context compression for all previous sentences). We assume the hierarchical model can

memorize generated words/sentences better than its non-hierarchical counterpart, since

it is conditioned on larger context and the sentence level recurrent network can enforce

sentence coherence. We apply this model to the task of Chinese poetry generation.

We use Chinese poems rather than English poems as our test bed because we believe

Chinese poems are easier to generate (it has only four lines).

The neural based language generation architecture we introduced in chapter 1 has

two main components: the representation network and the generation network. What

we propose in this chapter is actually a better representation network.

The neural network generator jointly performs content selection (“what to say”)

and surface realization (“how to say”) by learning representations of individual char-

acters, and their combinations into one or more lines as well as how these mutually

reinforce and constrain each other. Poem lines are generated incrementally by taking

into account the entire history of what has been generated so far rather than the limited

horizon imposed by the previous line or lexical n-grams. Experimental results show

that our model outperforms competitive Chinese poetry generation systems using both

27

28 Chapter 3. Generating Multiple Sentences in Sequence based Generation

相思

Missing You

红豆生南国， (* Z P P Z)

Red berries born in the warm southland.

春来发几枝枝枝？ (P P Z Z P)

How many branches flush in the spring?

愿 君多采撷， (* P P Z Z)

Take home an armful, for my sake,

此物最相思思思。 (* Z Z P P)

As a symbol of our love.

Table 3.1: An example of a 5-char quatrain exhibiting one of the most popular tonal pat-

terns. The tone of each character is shown at the end of each line (within parentheses);

P and Z are shorthands for Ping and Ze tones, respectively; * indicates that the tone is

not fixed and can be either. Rhyming characters are shown in boldface.

automatic and manual evaluation methods.1

3.1 Introduction

Classical poems are a significant part of China’s cultural heritage. Their popularity

manifests itself in many aspects of everyday life, e.g., as a means of expressing per-

sonal emotion, political views, or communicating messages at festive occasions as well

as funerals. Amongst the many different types of classical Chinese poetry, quatrain and

regulated verse are perhaps the best-known ones. Both types of poem must meet a set

of structural, phonological, and semantic requirements, rendering their composition a

formidable task left to the very best scholars.

An example of a quatrain is shown in Table 3.1. Quatrains have four lines, each

five or seven characters long. Throughout this chapter, we will use “character” and

“word” interchangeably2. Characters in turn follow specific phonological patterns,

within each line and across lines. For instance, the final characters in the second, fourth

1Our code is available at https://github.com/XingxingZhang/rnnpg.
2In ancient Chinese, each character has its own meaning and it is almost a word in modern Chinese

(or other languages). There are 6773 different characters in our training set (see details in Section 3.4.1).

3.1. Introduction 29

and (optionally) first line must rhyme, whereas there are no rhyming constraints for

the third line. Moreover, poems must follow a prescribed tonal pattern. In traditional

Chinese, every character has one tone, Ping (level tone) or Ze (downward tone). The

poem in Table 3.1 exemplifies one of the most popular tonal patterns (Wang, 2002).

Besides adhering to the above formal criteria, poems must exhibit concise and accurate

use of language, engage the reader/hearer, stimulate their imagination, and bring out

their feelings.

In this chapter we are concerned with generating traditional Chinese poems auto-

matically. Although computers are no substitute for poetic creativity, they can analyze

very large online text repositories of poems, extract statistical patterns, maintain them

in memory and use them to generate many possible variants. Furthermore, while ama-

teur poets may struggle to remember and apply formal tonal and structural constraints,

it is relatively straightforward for the machine to check whether a candidate poem con-

forms to these requirements. Poetry generation has received a fair amount of attention

over the past years (see the discussion in Section 3.2), with dozens of computational

systems written to produce poems of varying sophistication. Beyond the long-term

goal of building an autonomous intelligent system capable of creating meaningful po-

ems, there are potential short-term applications for computer generated poetry in the

ever growing industry of electronic entertainment and interactive fiction as well as in

education. An assistive environment for poem composition could allow teachers and

students to create poems subject to their requirements, and enhance their writing expe-

rience.

We propose a model for Chinese poem generation based on recurrent neural net-

works. Our generator jointly performs content selection (“what to say”) and surface

realization (“how to say”). Given a large collection of poems, we learn representations

of individual characters, and their combinations into one or more lines as well as how

these mutually reinforce and constrain each other. Our model generates lines in a poem

probabilistically: it estimates the probability of the current line given the probability of

all previously generated lines. We use a recurrent neural network to learn the represen-

tations of the lines generated so far which in turn serve as input to a recurrent language

model (Mikolov et al., 2010, 2011b,a) which generates the current line. In contrast to

previous approaches (Greene et al., 2010; Jiang and Zhou, 2008), our generator makes

no Markov assumptions about the dependencies of the words within a line and across

lines.

We evaluate our approach on the task of quatrain generation (see Table 3.1 for

30 Chapter 3. Generating Multiple Sentences in Sequence based Generation

a human-written example). Experimental results show that our model outperforms

competitive Chinese poetry generation systems using both automatic and manual eval-

uation methods.

3.2 Related Work

Automated poetry generation has been a popular research topic over the past decades

(see Colton et al. (2012) and the references therein). Most approaches employ tem-

plates to construct poems according to a set of constraints (e.g., rhyme, meter, stress,

word frequency) in combination with corpus-based and lexicographic resources. For

example, the Haiku poem generator presented in Wu et al. (2009) and Tosa et al. (2008)

produces poems by expanding user queries with rules extracted from a corpus and ad-

ditional lexical resources. Netzer et al. (2009) generate Haiku with Word Association

Norms, Agirrezabal et al. (2013) compose Basque poems using patterns based on parts

of speech and WordNet (Fellbaum, 1998), and Oliveira (2012) presents a generation

algorithm for Portuguese which leverages semantic and grammar templates.

A second line of research uses genetic algorithms for poem generation (Manurung,

2003; Manurung et al., 2012; Zhou et al., 2010). Manurung et al. (2012) argue that

at a basic level all (machine-generated) poems must satisfy the constraints of gram-

maticality (i.e., a poem must syntactically well-formed), meaningfulness (i.e., a poem

must convey a message that is meaningful under some interpretation) and poeticness

(i.e., a poem must exhibit features that distinguishes it from non-poetic text, e.g., me-

ter). Their model generates several candidate poems and then uses stochastic search to

find those which are grammatical, meaningful, and poetic.

A third line of research draws inspiration from statistical machine translation (SMT)

and related text-generation applications such as summarization. Greene et al. (2010)

infer meters (stressed/unstressed syllable sequences) from a corpus of poetic texts

which they subsequently use for generation together with a cascade of weighted finite-

state transducers interpolated with IBM Model 1. Jiang and Zhou (2008) generate

Chinese couplets (two line poems) using a phrase-based SMT approach which trans-

lates the first line to the second line. He et al. (2012) extend this algorithm to generate

four-line quatrains by sequentially translating the current line from the previous one.

Yan et al. (2013) generate Chinese quatrains based on a query-focused summarization

framework. Their system takes a few keywords as input and retrieves the most rele-

vant poems from a corpus collection. The retrieved poems are segmented into their

3.3. The Poem Generator 31

春(spring)

琵琶(lute)

醉(drunk)

Keywords
ShiXueHanYing

spring

lute drunk

暖 风 迟 日 醉

莺 百 啭 莺 声

...

Candidate lines

Line 1Line 2Line 3Line 4

First line

generation

Next line

generation

Figure 3.1: Poem generation with keywords spring, lute, and drunk. The keywords are

expanded into phrases using a poetic taxonomy. Phrases are then used to generate

the first line. Following lines are generated by taking into account the representations

of all previously generated lines.

constituent terms which are then grouped into clusters. Poems are generated by itera-

tively selecting terms from clusters subject to phonological, structural, and coherence

constraints.

Our approach departs from previous work in two important respects. Firstly, we

model the tasks of surface realization and content selection jointly using recurrent neu-

ral networks. Structural, semantic, and coherence constraints are captured naturally in

our framework, through learning the representations of individual characters and their

combinations. Secondly, generation proceeds by taking into account multi-sentential

context rather than the immediately preceding sentence. Our work joins others in us-

ing continuous representations to express the meaning of words and phrases (Socher

et al., 2012; Mikolov et al., 2013b) and how these may be combined in a language

modeling context (Mikolov and Zweig, 2012). More recently, continuous translation

models based on recurrent neural networks have been proposed as a means to map

a sentence from the source language to sentences in the target language (Auli et al.,

2013; Kalchbrenner and Blunsom, 2013). These models are evaluated on the task of

rescoring n-best lists of translations. We use neural networks more directly to perform

the actual poem generation task.

3.3 The Poem Generator

As common in previous work (Yan et al., 2013; He et al., 2012) we assume that our

generator operates in an interactive context. Specifically, the user supplies keywords

32 Chapter 3. Generating Multiple Sentences in Sequence based Generation

(e.g., spring, lute, drunk) highlighting the main concepts around which the poem will

revolve. As illustrated in Figure 3.1, our generator expands these keywords into a

set of related phrases. We assume the keywords are restricted to those attested in the

ShiXueHanYing poetic phrase taxonomy (He et al., 2012; Yan et al., 2013). The latter

contains 1,016 manual clusters of phrases (Liu, 1735); each cluster is labeled with

a keyword id describing general poem-worthy topics. The generator creates the first

line of the poem based on these keywords. Subsequent lines are generated based on

all previously generated lines, subject to phonological (e.g., admissible tonal patterns)

and structural constraints (e.g., whether the quatrain is five or seven characters long).

To create the first line, we select all phrases corresponding to the user’s keywords

and generate all possible combinations satisfying the tonal pattern constraints. We use

a language model to rank the generated candidates and select the best-ranked one as the

first line in the poem. In implementation, we employ a character-based recurrent neural

network language model (Mikolov et al., 2010) interpolated with a Kneser-Ney trigram

and find the n-best candidates with a beam search style stack decoder (see Section 3.3.5

for details). Therefore, once the input keywords are given, the generation of the first

line is deterministic3. We then generate the second line based on the first one, the

third line based on the first two lines, and so on. Our generation model computes the

probability of line Si+1 = w1,w2, . . . ,wm, given all previously generated lines S1:i(i ≥
1) as:

P(Si+1|S1:i) =
m−1

∏
j=1

P(w j+1|w1: j,S1:i) (3.1)

Equation (3.1), decomposes P(Si+1|S1:i) as the product of the probability of each

character w j in the current line given all previously generated characters w1: j−1 and

lines S1:i. This means that P(Si+1|S1:i) is sensitive to previously generated content and

currently generated characters.

The estimation of the term P(w j+1|w1: j,S1:i) lies at the heart of our model. We

learn representations for S1:i, the context generated so far, using a recurrent neural

network whose output serves as input to a second recurrent neural network used to es-

timate P(w j+1|w1: j,S1:i). Figure 3.2 illustrates the generation process for the (j+1)th

character w j+1 in the (i+1)th line Si+1. First, lines S1:i are converted into vectors v1:i

with a convolutional sentence model (CSM; described in Section 3.3.1). Next, a re-

current context model (RCM; see Section 3.3.2) takes v1:i as input and outputs u j
i , the

3However, it is also possible to introduce randomness into first line generations. Instead of doing
beam search during decoding, we can sample a character at each step.

3.3. The Poem Generator 33

vi

u j
i

hi

hi−1

RCM

1-of-N encoding of

w j=(0,. . . ,1,. . . ,0)

r j
r j−1

P(w j+1|w1: j,S1:i)

RGM

Figure 3.2: Generation of the (j+ 1)th character w j+1 in the (i+ 1)th line Si+1. The

recurrent context model (RCM) takes i lines as input (represented by vectors v1, . . . ,vi)

and creates context vectors for the recurrent generation model (RGM). The RGM esti-

mates the probability P(w j+1|w1: j,S1:i).

representation needed for generating w j+1 ∈ Si+1. Finally, u1
i ,u

2
i , . . . ,u

j
i and the first j

characters w1: j in line Si+1 serve as input to a recurrent generation model (RGM)

which estimates P(w j+1 = k|w1: j,S1:i) with k ∈ V , the probability distribution of the

(j+1)th character over all characters in the vocabulary V . More formally, to estimate

P(w j+1|w1: j,S1:i) in Equation (3.1), we apply the following procedure:

vi = CSM(Si) (3.2a)

u j
i = RCM(v1:i, j) (3.2b)

P(w j+1|w1: j,S1:i) = RGM(w1: j+1,u
1: j
i) (3.2c)

We obtain the probability of the (i+ 1)th sentence P(Si+1|S1:i), by running the RGM

in (3.2c) above m− 1 times (see also Equation (3.1)). In the following, we describe

how the different components of our model are obtained.

3.3.1 Convolutional Sentence Model (CSM)

The CSM converts a poem line into a vector. In principle, any model that produces

vector-based representations of phrases or sentences could be used (Mitchell and La-

34 Chapter 3. Generating Multiple Sentences in Sequence based Generation

遥 看 瀑 布 挂 前 川

Far off I watch the waterfall plunge to the

long river.

C1,2

C2,2

C3,3

C4,3

Figure 3.3: Convolutional sentence model for 7-char quatrain. The first layer has seven

vectors, one for each character. Two neighboring vectors are merged to one vector in

the second layer with weight matrix C1,2. In other layers, either two or three neighboring

vectors are merged.

pata, 2010; Socher et al., 2012). We opted for the convolutional sentence model pro-

posed in Kalchbrenner and Blunsom (2013) as it is n-gram based and does not make

use of any parsing, POS-tagging or segmentation tools which are not available for

Chinese poems. Their model computes a continuous representation for a sentence by

sequentially merging neighboring vectors (see Figure 3.3).

Let V denote the character vocabulary in our corpus; L ∈ Rq×|V | denotes a charac-

ter embedding matrix whose columns correspond to character vectors (q represents

the hidden unit size). Such vectors can be initialized randomly or obtained via a

training procedure (Mikolov et al., 2013b). Let w denote a character with index k;

e(w) ∈ R|V |×1 is a vector with zero in all positions except e(w)k = 1; T l ∈ Rq×Nl
is

the sentence representation in the lth layer, where Nl is the number of columns in the

lth layer (Nl = 1 in the top layer); Cl,nl ∈ Rq×nl
is an array of weight matrices which

compress neighboring nl columns in the lth layer to one column in the (l +1)th layer.

Given a sentence S = w1,w2, . . . ,wm, the first layer is represented as:

T 1 = [L · e(w1),L · e(w2), . . . ,L · e(wm)]

N1 = m
(3.3)

3.3. The Poem Generator 35

The (l +1)th layer is then computed as follows:

T l+1
:, j = σ(

nl

∑
i=1

T l
:, j+i−1�Cl,nl

:,i)

Nl+1 = Nl−nl +1

1≤ j ≤ Nl+1

(3.4)

where T l is the representation of the previous layer l, Cl,nl
a weight matrix4,� element-

wise vector product, and σ a non-linear function. We compress two neighboring vec-

tors in the first two layers and three neighboring vectors in the remaining layers (i.e.,

n1 = n2 = 2,n3 = n4 = 3). Specifically, for quatrains with seven characters, we use

C1,2, C2,2, C3,3, C4,3 to merge vectors in each layer (see Figure 3.3); and for quatrains

with five characters we use C1,2, C2,2, C3,3.

3.3.2 Recurrent Context Model (RCM)

The RCM takes as input the vectors representing the i lines generated so far and re-

duces them to a single context vector which is then used to generate the next character

(see Figure 3.2). We compress the i previous lines to one vector (the hidden layer)

and then decode the compressed vector to different character positions in the current

line. The output layer consists thus of several vectors (one for each position) connected

together. This way, different aspects of the context modulate the generation of differ-

ent characters. Note that RCM tries to produce dynamic context vectors for different

positions and this dynamic context can also be created with the attention mechanism

(Bahdanau et al., 2015)5.

Let v1, . . . ,vi (vi ∈ Rq×1) denote the vectors of the previous i lines (they are ob-

tained by the CSM; see Section 3.3.1); hi ∈ Rq×1 is their compressed representation

(hidden layer) which is obtained with matrix M ∈ Rq×2q; matrix U j decodes hi to

u j
i ∈ Rq×1 in the (i+1)th line. The computation of the RCM proceeds as follows:

h0 = 000

hi = σ(M ·

[
vi

hi−1

]
)

u j
i = σ(U j ·hi) 1≤ j ≤ m−1

(3.5)

4In some literatures, Cl,nl
is also called the kernel matrix.

5When we were doing this project, the attention mechanism (Bahdanau et al., 2015) has not yet been
invented.

36 Chapter 3. Generating Multiple Sentences in Sequence based Generation

where σ is a non-linear function such as sigmoid and m the line length. Advanta-

geously, lines in classical Chinese poems have a fixed length of five or seven charac-

ters. Therefore, the output layer of the recurrent context model only needs two weight

matrices (one for each length) and the number of parameters still remains tractable.

3.3.3 Recurrent Generation Model (RGM)

As shown in Figure 3.2, the RGM estimates the probability distribution of the next

character (over the entire vocabulary) by taking into account the context vector pro-

vided by the RCM and the 1-of-N encoding of the previous character. The RGM is

essentially a recurrent neural network language model (Mikolov et al., 2010) with an

auxiliary input layer, i.e., the context vector from the RCM. Similar strategies for en-

coding additional information have been adopted in related language modeling and ma-

chine translation work (Mikolov and Zweig, 2012; Kalchbrenner and Blunsom, 2013;

Auli et al., 2013).

Let Si+1 = w1,w2, . . . ,wm denote the line to be generated. The RGM must es-

timate P(w j+1|w1: j,S1:i), however, since the first i lines have been encoded in the

context vector u j
i , we compute P(w j+1|w1: j,u

j
i) instead. Therefore, the probability

P(Si+1|S1:i) becomes:

P(Si+1|S1:i) =
m−1

∏
j=1

P(w j+1|w1: j,u
j
i) (3.6)

Let |V | denote the size of the character vocabulary. The RGM is specified by a number

of matrices. Matrix H ∈Rq×q (where q represents the hidden unit size) transforms the

context vector to a hidden representation; matrix X ∈ Rq×|V | transforms a character to

a hidden representation, matrix R ∈Rq×q implements the recurrent transformation and

matrix Y ∈ R|V |×q decodes the hidden representation to weights for all words in the

vocabulary. Let w denote a character with index k in V ; e(w) ∈ R|V |×1 represents a

vector with zero in all positions except e(w)k = 1, r j is the hidden layer of the RGM at

step j, and y j+1 the output of the RGM, again at step j. The RGM proceeds as follows:

r0 = 000 (3.7a)

r j = σ(R · r j−1 +X · e(w j)+H ·u j
i) (3.7b)

y j+1 = Y · r j (3.7c)

where σ is a nonlinear function (e.g., sigmoid).

3.3. The Poem Generator 37

The probability of the (j+1)th word given the previous j words and the previous

i lines is estimated by a softmax function:

P(w j+1 = k|w1: j,u
j
i) =

exp(y j+1,k)

∑
|V |
k=1 exp(y j+1,k)

(3.8)

We obtain P(Si+1|S1:i) by multiplying all the terms in the right hand-side of Equa-

tion (3.6).

3.3.4 Training

The objective for training is minimizing the cross entropy errors6 of the predicted

character distribution and the actual character distribution in our corpus. An l2 regular-

ization term is also added to the objective. The model is trained with back propagation

through time (Rumelhart et al., 1988; Werbos, 1988) with sentence length being the

time step. The objective is minimized by stochastic gradient descent. During train-

ing, the cross entropy error in the output layer of the RGM is back propagated to its

hidden and input layers, then to the RCM and finally to the CSM. The same number

of hidden units (q = 200) is used throughout (i.e., in the RGM, RCM, and CSM). In

our experiments all parameters were initialized randomly, with the exception of the

word embedding matrix in the CSM which was initialized with word2vec embeddings

(Mikolov et al., 2013b) obtained from our poem corpus (see Section 3.4 for details on

the data we used). The initialization with word2vec vectors helps our model reduce the

perplexity from 96 to 93 (see perplexity results in Table 3.3).

To speed up training, we employed word-classing (Mikolov et al., 2011b). To

compute the probability of a character, we estimate the probability of its class and

then multiply it by the probability of the character conditioned on the class. In our

experiments we used 82 (square root of |V |) classes which we obtained by applying

hierarchical clustering on character embeddings. This strategy outperformed better

known frequency-based classing methods (Zweig and Makarychev, 2013) on our task.

Simple recurrent neural networks are successful at language modeling (Mikolov

et al., 2010), but not that successful at generating words or characters (Kalchbrenner

and Blunsom, 2013)7. Kalchbrenner and Blunsom (2013) employed recurrent neural

networks for machine translation, but their models were used in reranking of cdec

6The “cross entropy error” is also called negative log-likelihood (NLL).
7Later, many researchers found long short-term memory networks (Hochreiter and Schmidhuber,

1997) are better options for sequence or language generation (Sutskever et al., 2014; Vinyals et al.,
2015; Venugopalan et al., 2015).

38 Chapter 3. Generating Multiple Sentences in Sequence based Generation

(Dyer et al., 2010) top 1000 candidate translations. Statistical machine translation

models (Jiang and Zhou, 2008; He et al., 2012) have been particularly successful at

generating poems (especially short poems like couplets). To enhance the generation

capability of our model, we thus interpolate our model with three machine translation

features (i.e., inverted phrase translation model feature, inverted lexical weight feature

and a Kneser-Ney trigram language model). Therefore, during the generation decod-

ing, we have four features (three SMT features and our model probability output) in

total for the stack decoder (Koehn et al., 2003). At the time when we were doing our

project (2013 to 2014), integrating a neural network with a statistical machine trans-

lation model is a very effective way to improve performance for machine translation

(Gao et al., 2014; Devlin et al., 2014).

Throughout our experiments, we use the RNNLM toolkit to train the character-

based recurrent neural network language model (Mikolov et al., 2010). Kneser-Ney

n-grams were trained with KenLM (Heafield, 2011).

3.3.5 Decoding

Our decoder is a stack decoder similar to Koehn et al. (2003). In addition, it imple-

ments the tonal pattern and rhyming constraints necessary for generating well-formed

Chinese quatrains. Once the first line in a poem is generated, its tonal pattern is de-

termined. During decoding, phrases violating this pattern are ignored. As discussed

in Section 3.1, the final characters of the second and the fourth lines must rhyme. We

thus remove during decoding fourth lines whose final characters do not rhyme with the

second line. Finally, we use MERT training (Och, 2003)8 to learn feature weights for

the decoder.

3.4 Experimental Design

3.4.1 Data

We created a corpus of classical Chinese poems by collating several online resources:

Tang Poems, Song Poems, Song Ci, Ming Poems, Qing Poems, and Tai Poems. The

corpus consists of 284,899 poems in total. 78,859 of these are quatrains and were

8Minimum Error Rate Training (MERT) is an automatic way to tune feature weights for statistical
machine translation systems on a development set.

3.4. Experimental Design 39

Poems Lines Characters

QTRAIN 74,809 299,236 2,004,460

QVALID 2,000 8,000 48,000

QTEST 2,050 8,200 49,200

POEMLM 280,849 2,711,034 15,624,283

Table 3.2: Dataset partitions of our poem corpus.

used for training and evaluating our model.9 Table 3.2 shows the different partitions

of this dataset (POEMLM) into training (QTRAIN)10, validation (QVALID) and testing

(QTEST). Half of the poems in QVALID and QTEST are 5-char quatrains and the

other half are 7-char quatrains. All poems except QVALID and QTEST were used for

training the character-based language models (see row POEMLM in Table 3.2). We

also trained word2vec embeddings on POEMLM. In our experiments, we generated

quatrains following the eight most popular tonal patterns according to Wang (2002).

3.4.2 Perplexity Evaluation

Evaluation of machine-generated poetry is a notoriously difficult task. Our evaluation

studies were designed to assess Manurung et al.’s (2012) criteria of grammaticality,

meaningfulness, and poeticness. As a sanity check, we first measured the perplexity of

our model with respect to the goldstandard. Intuitively, a better model should assign

larger probability (and therefore lower perplexity) to goldstandard poems.

3.4.3 BLEU-based Evaluation

We also used BLEU to evaluate our model’s ability to generate the second, third and

fourth line given previous goldstandard lines. A problematic aspect of this evaluation

is the need for multiple human-authored references (for a partially generated poem)

which we only have one11. We obtain references automatically following the method

proposed in He et al. (2012). The main idea is that if two lines share a similar topic, the

lines following them can be each other’s references. Let A and B denote two adjacent

lines in a poem, with B following A. Similarly, let line B′ follow line A′ in another

9The data used in our experiments can be downloaded from http://homepages.inf.ed.ac.uk/
mlap/index.php?page=resources.

10Singleton characters in QTRAIN (6,773 in total) were replaced by <R> to reduce data sparsity.
11If we use only one reference, all systems will get nearly zero BLEU scores.

40 Chapter 3. Generating Multiple Sentences in Sequence based Generation

poem. If lines A and A′ share some keywords in the same cluster in the Shixuehanying

taxonomy, then B and B′ can be used as references for both A and A′. We use this

algorithm on the Tang Poems section of our corpus to build references for poems in

the QVALID and QTEST data sets. As a convention in machine translation community,

poems in QVALID (with auto-generated references) were used for MERT training and

poems in QTEST (with auto-generated references) were used for BLEU evaluation.

3.4.4 Human Evaluation

Finally, we also evaluated the generated poems by eliciting human judgments. Specif-

ically, we invited 30 experts12 on Chinese poetry to assess the output of our generator

(and comparison systems). These experts were asked to rate the poems using a 1–

5 scale on four dimensions: fluency (is the poem grammatical and syntactically well-

formed?), coherence (is the poem thematically and logically structured?), meaningful-

ness (does the poem convey a meaningful message to the reader? does the poem reflect

the meaning of input keywords?) and poeticness (does the text display the features of

a poem?). We also asked our participants to evaluate system outputs by ranking the

generated poems relative to each other as a way of determining overall poem quality

(Callison-Burch et al., 2012).

Participants rated the output of our model and three comparison systems. These in-

cluded He et al.’s (2012) SMT-based model (SMT), Yan et al.’s (2013) summarization-

based system (SUM), and a random baseline which creates poems by randomly select-

ing phrases from the ShiXueHanYing taxonomy given some keywords as input. We

also included human written poems whose content matched the input keywords. All

systems were provided with the same keywords (i.e., the same cluster names in the

ShiXueHanYing taxonomy). In order to compare all models on equal footing, we ran-

domly sampled 30 sets of keywords (with three keywords in each set) and generated 30

quatrains for each system according to two lengths, namely 5-char and 7-char. Overall,

we obtained ratings for 300 (5×30×2) poems.

3.5 Results

The results of our perplexity evaluation are summarized in Table 3.3. We compare

our RNN-based poem generator (RNNPG) against Mikolov’s (Mikolov et al., 2010)
1227 participants were professional or amateur poets and three were Chinese literature students who

had taken at least one class on Chinese poetry composition.

3.5. Results 41

Models Perplexity

KN5 172

RNNLM 145

RNNPG 93

Table 3.3: Perplexities for different models.

Models
1→ 2 2→ 3 3→ 4 Average

5-char 7-char 5-char 7-char 5-char 7-char 5-char 7-char

SMT 0.0559 0.0906 0.0410 0.1837 0.0547 0.1804 0.0505 0.1516

RNNPG 0.0561 0.1868 0.0515 0.2102 0.0572 0.1800 0.0549 0.1923

Table 3.4: BLEU-2 scores on 5-char and 7-char quatrains. Given i goldstandard lines,

BLEU-2 scores are computed for the next (i+1)th lines.

recurrent neural network language model (RNNLM) and a 5-gram language model

with Kneser-Ney smoothing (KN5). All models were trained on QTRAIN and tuned

on QVALID. The perplexities were computed on QTEST. Note that the RNNPG esti-

mates the probability of a poem line given at least one previous line. Therefore, the

probability of a quatrain assigned by the RNNPG is the probability of the last three

lines. For a fair comparison, RNNLM and KN5 only leverage the last three lines of

each poem during training, validation and testing. The results in Table 3.3 indicate that

the generation ability of the RNNPG is better than KN5 and RNNLM. Note that this

perplexity-style evaluation is not possible for models which cannot produce probabili-

ties for gold standard poems. For this reason, other related poem generators (Yan et al.,

2013; He et al., 2012) are not included in the table.

The results of our evaluation using BLEU-2 are summarized in Table 3.4. Here,

we compare our system against the SMT-based poem generation model of He et al.

(2012).13 Their system is a linear combination of two translation models (one with

five features and another one with six). Our model uses three of their features, namely

the inverted phrase translation model feature, the lexical weight feature, and a Kneser-

Ney trigram feature. Unfortunately, it is not possible to evaluate Yan et al.’s (2013)

summarization-based system with BLEU, as it creates poems as a whole and there

13Our re-implementation of their system delivered very similar scores to He et al. (2012). For ex-
ample, we obtained an average BLEU-1 of 0.167 for 5-char quatrains and 0.428 for 7-char quatrains
compared to their reported scores of 0.141 and 0.380, respectively.

42 Chapter 3. Generating Multiple Sentences in Sequence based Generation

Models
Fluency Coherence Meaning Poeticness Rank

5-char 7-char 5-char 7-char 5-char 7-char 5-char 7-char 5-char 7-char

Random 2.52 2.18 2.22 2.16 2.02 1.93 1.77 1.71 0.31 0.26

SUM 1.97 1.91 2.08 2.33 1.84 1.98 1.66 1.73 0.25 0.22

SMT 2.81 3.01 2.47 2.76 2.33 2.73 2.08 2.36 0.43 0.53

RNNPG 4.01** 3.44* 3.18** 3.12* 3.20** 3.02 2.80** 2.68* 0.73** 0.64*

Human 4.31+ 4.19++ 3.81++ 4.00++ 3.61+ 3.91++ 3.29++ 3.49++ 0.79 0.84++

Table 3.5: Mean ratings elicited by humans on 5-char and 7-char quatrains. Diacritics **

(p < 0.01) and * (p < 0.05) indicate our model (RNNPG) is significantly better than all

other systems except Human. Diacritics ++ (p < 0.01) and + (p < 0.05) indicate Human

is significantly better than all other systems.

白鹭窥鱼立, 满怀风月一枝春,

Egrets stood, peeping fishes. Budding branches are full of romance.

青山照水开. 未见梅花亦可人.

Water was still, reflecting mountains. Plum blossoms are invisible but adorable.

夜来风不动, 不为东风无此客,

The wind went down by nightfall, With the east wind comes Spring.

明月见楼台. 世间何处是前身.

as the moon came up by the tower. Where on earth do I come from?

Table 3.6: Example output produced by our model (RNNPG).

is no obvious way to generate next lines with their algorithm. The BLEU scores in

Table 3.4 indicate that, given the same context lines, the RNNPG is better than SMT

at generating what to say next. BLEU scores should be, however, viewed with some

degree of caution. Aside from being an approximation of human judgment (Callison-

Burch et al., 2012), BLEU might be unnecessarily conservative for poem composition

which by its very nature is a creative endeavor.

The results of our human evaluation study are shown in Table 3.5. Each column

reports mean ratings for a different dimension (e.g., fluency, coherence). Ratings for

5-char and 7-char quatrains are shown separately. The last column reports rank scores

for each system (Callison-Burch et al., 2012). In a ranked list of N items (N = 5 here),

the score of the ith ranked item is (N−i)
(N−1) . The numerator indicates how many times a

systems won in pairwise comparisons, while the denominator normalizes the score.

With respect to 5-char quatrains, RNNPG is significantly better than Random,

3.6. Conclusions 43

SUM and SMT on fluency, coherence, meaningfulness, poeticness and ranking scores

(using a t-test). On all dimensions, human-authored poems are rated as significantly

better than machine-generated ones, with the exception of overall ranking. Here, the

difference between RNNPG and Human is not significant. We obtain similar results

with 7-char quatrains. In general, RNNPG seems to perform better on the shorter po-

ems. The mean ratings are higher and the improvements over other systems are larger.

Also notice that the score margins between the human- and machine-written poems

become larger for 7-char quatrains. This indicates that the composition of 7-char qua-

trains is more difficult compared to 5-char quatrains. Table 3.6 shows two example

poems (5-char and 7-char) produced by our model which received high scores with

respect to poeticness.

Although the RNNPG model used in both BLEU an human evaluation includes

additional statistical machine translation features, it outperforms a statistical machine

translation model in both evaluations. This indicates the RNNPG probability feature

is very important for producing good poems.

Interestingly, poems generated by SUM14 are given ratings similar to Random. In

fact SUM is slightly worse (although not significantly) than Random on all dimensions,

with the exception of coherence. In the human study reported in Yan et al. (2013), SUM

is slightly better than SMT. There are several reasons for this discrepancy. We used

a more balanced experimental design: all systems generated poems from the same

keywords which were randomly chosen. We used a larger dataset to train the SMT

model compared to Yan et al. (284,899 poems vs 61,960). The Random baseline is

not a straw-man; it selects phrases from a taxonomy of meaningful clusters edited by

humans and closely related to the input keywords.

3.6 Conclusions

In this chapter we have presented a model for Chinese poem generation based on re-

current neural networks. Our model jointly performs content selection and surface

realization by learning representations of individual characters and their combinations

within and across poem lines. Previous work on poetry generation has mostly lever-

aged contextual information of limited length (e.g., one sentence). In contrast, we

introduced two recurrent neural networks (the recurrent context model and recurrent

14We made a good-faith effort to re-implement their poem generation system. We are grateful to Rui
Yan for his help and technical advice.

44 Chapter 3. Generating Multiple Sentences in Sequence based Generation

generation model) which naturally capture multi-sentential content.

Experimental results show that our model yields high-quality poems compared to

the state of the art. Perhaps unsurprisingly, our human evaluation study revealed that

machine-generated poems lag behind human-generated ones. It is worth bearing in

mind that poetry composition is a formidable task for humans, let alone machines. And

that the poems against which our output was compared have been written by some of

the most famous poets in Chinese history!

To our knowledge, the work described in this chapter is one of the first few work

to introduce recurrent neural networks (or neural networks) to natural language gen-

eration and the first work to introduce neural networks in poetry generation. We also

noticed in recent years there are poetry generation work extending our model with long

short-term memory networks and attention mechanism (Yan, 2016; Wang et al., 2016).

Avenues for future work are many and varied. Generate poems across different

languages and genres (e.g., English sonnets or Japanese Haiku) would be a possible

direction.

Chapter 4

Adding Prior Knowledge to Sequence

based Generation

Neural based NLG models are very powerful, when there is a lot of high-quality data.

However, there are many NLG tasks for which data is sparse or noisy. When the train-

ing data is not sufficient or noisy, prior knowledge for the task becomes important. In

some cases, people have an expectation for a task, but maybe because of the training

data or limitations of current machine learning models, the trained models do not be-

have as we expected. In these circumstances, modeling task specific prior knowledge

is also important. How to model this kind of prior knowledge effectively is very im-

portant for generating good output. In this chapter, we explore the deep reinforcement

learning framework for modeling prior knowledge and task specific constraints and

test the framework on sentence simplification.

The neural based language generation architecture we introduced in chapter 1 has

two main components: the representation network and the generation network. In this

chapter, we actually propose a better way to train these neural networks.

Sentence simplification aims to make sentences easier to read and understand.

Most recent approaches draw on insights from machine translation to learn simplifica-

tion rewrites from monolingual corpora of complex and simple sentences. We address

the simplification problem with an encoder-decoder model coupled with a deep re-

inforcement learning framework. Our model, which we call DRESS (as shorthand for

Deep REinforcement Sentence Simplification), explores the space of possible simplifi-

cations while learning to optimize a reward function that encourages outputs which are

simple, fluent, and preserve the meaning of the input. Experiments on three datasets

45

46 Chapter 4. Adding Prior Knowledge to Sequence based Generation

demonstrate that our model outperforms competitive simplification systems.1

4.1 Introduction

The main goal of sentence simplification is to reduce the linguistic complexity of text,

while still retaining its original information and meaning. The simplification task has

been the subject of several modeling efforts in recent years due to its relevance for NLP

applications and individuals alike (Siddharthan, 2014; Shardlow, 2014). For instance, a

simplification component could be used as a preprocessing step to improve the perfor-

mance of parsers (Chandrasekar et al., 1996), summarizers (Beigman Klebanov et al.,

2004), and semantic role labelers (Vickrey and Koller, 2008; Woodsend and Lapata,

2014). Automatic simplification would also benefit people with low-literacy skills

(Watanabe et al., 2009), such as children and non-native speakers as well as individu-

als with autism (Evans et al., 2014), aphasia (Carroll et al., 1999), or dyslexia (Rello

et al., 2013).

The most prevalent rewrite operations which give rise to simplified text include

substituting rare words with more common words or phrases, rendering syntactically

complex structures simpler, and deleting elements of the original text (Siddharthan,

2014). Earlier work focused on individual aspects of the simplification problem. For

example, several systems performed syntactic simplification only, using rules aimed at

sentence splitting (Carroll et al., 1999; Chandrasekar et al., 1996; Vickrey and Koller,

2008; Siddharthan, 2004) while others turned to lexical simplification by substituting

difficult words with more common WordNet synonyms or paraphrases (Devlin, 1999;

Inui et al., 2003; Kaji et al., 2002).

Recent approaches view the simplification process more holistically as a mono-

lingual text-to-text generation task borrowing ideas from statistical machine transla-

tion. Simplification rewrites are learned automatically from examples of complex-

simple sentences extracted from online resources such as the ordinary and simple En-

glish Wikipedia. For example, Zhu et al. (2010) draw inspiration from syntax-based

translation and propose a model similar to Yamada and Knight (2001) which addi-

tionally performs simplification-specific rewrite operations (e.g., sentence splitting).

Woodsend and Lapata (2011) formulate simplification in the framework of Quasi-

synchronous grammar (Smith and Eisner, 2006) and use integer linear programming to

score the candidate translations/simplifications. Wubben et al. (2012) propose a two-

1Our code and data are publicly available at https://github.com/XingxingZhang/dress.

4.2. Neural Encoder-Decoder Model 47

stage model: initially, a standard phrase-based machine translation (PBMT) model is

trained on complex-simple sentence pairs. During inference, the K-best outputs of the

PBMT model are reranked according to their dis-similarity to the (complex) input sen-

tence. The hybrid model developed in Narayan and Gardent (2014) also operates in

two phases. Initially, a probabilistic model performs sentence splitting and deletion

operations over discourse representation structures assigned by Boxer (Curran et al.,

2007). The resulting sentences are further simplified by a model similar to Wubben

et al. (2012). Xu et al. (2016) train a syntax-based machine translation model on a

large scale paraphrase dataset (Ganitkevitch et al., 2013) using simplification-specific

objective functions and features to encourage simpler output.

In this paper we propose a simplification model which draws on insights from

neural machine translation (Bahdanau et al., 2015; Sutskever et al., 2014). Central

to this approach is an encoder-decoder architecture implemented by recurrent neural

networks. The encoder reads the source sequence into a list of continuous-space repre-

sentations from which the decoder generates the target sequence. Although our model

uses the encoder-decoder architecture as its backbone, it must also meet constraints

imposed by the simplification task itself, i.e., the predicted output must be simpler, pre-

serve the meaning of the input, and be grammatical. To incorporate this knowledge, the

model is trained in a reinforcement learning framework (Williams, 1992): it explores

the space of possible simplifications while learning to maximize an expected reward

function that encourages outputs which meet simplification-specific constraints. Re-

inforcement learning has been previously applied to extractive summarization (Ryang

and Abekawa, 2012), information extraction (Narasimhan et al., 2016), dialogue gen-

eration (Li et al., 2016), machine translation, and image caption generation (Ranzato

et al., 2016).

We evaluate our system on three publicly available datasets collated automatically

from Wikipedia (Zhu et al., 2010; Woodsend and Lapata, 2011) and human-authored

news articles (Xu et al., 2015b). We experimentally show that the reinforcement learn-

ing framework is the key to successful generation of simplified text bringing significant

improvements over strong simplification models across datasets.

4.2 Neural Encoder-Decoder Model

We will first define a basic encoder-decoder model for sentence simplification and then

explain how to embed it in a reinforcement learning framework. Given a (complex)

48 Chapter 4. Adding Prior Knowledge to Sequence based Generation

source sentence X = (x1,x2, . . . ,x|X |), our model learns to predict its simplified target

Y = (y1,y2, . . . ,y|Y |). Inferring the target Y given the source X is a typical sequence

to sequence learning problem, which can be modeled with attention-based encoder-

decoder models (Bahdanau et al., 2015; Luong et al., 2015b). Sentence simplification

is slightly different from related sequence transduction tasks (e.g., compression) in

that it can involve splitting operations. For example, a long source sentence (In 1883,

Faur married Marie Fremiet, with whom he had two sons.) can be simplified as two

sentences (In 1883, Faur married Marie Fremiet. They had two sons.). Nevertheless,

we still view the target as a sequence, i.e., two or more sequences concatenated with

full stops.

The encoder-decoder model has two parts (see left hand side in Figure 4.1). The en-

coder transforms the source sentence X into a sequence of hidden states (hS
1,h

S
2, . . . ,h

S
|X |)

with a Long Short-Term Memory Network (LSTM; Hochreiter and Schmidhuber 1997),

while the decoder uses another LSTM to generate one word yt+1 at a time in the sim-

plified target Y . Generation is conditioned on all previously generated words y1:t and a

dynamically created context vector ct , which encodes the source sentence:

P(Y |X) =
|Y |

∏
t=1

P(yt |y1:t−1,X) (4.1)

P(yt+1|y1:t ,X) = softmax(g(hT
t ,ct)) (4.2)

where g(·) is a one-hidden-layer neural network with the following parametrization:

g(hT
t ,ct) = Wo tanh(UhhT

t +Whct) (4.3)

where Wo ∈ R|V |×d , Uh ∈ Rd×d , and Wh ∈ Rd×d; |V | is the output vocabulary size

and d the hidden unit size. hT
t is the hidden state of the decoder LSTM which summa-

rizes y1:t , i.e., what has been generated so far:

hT
t = LSTM(yt ,hT

t−1) (4.4)

The dynamic context vector ct is the weighted sum of the hidden states of the source

sentence:

ct =
|X |

∑
i=1

αtihS
i (4.5)

whose weights αti are determined by an attention mechanism:

αti =
exp(hT

t ···hS
i)

∑i exp(hT
t ···hS

i)
(4.6)

4.3. Reinforcement Learning for Sentence Simplification 49

X = x1 x2 x3 x4 x5

Ŷ = ŷ1 ŷ2 ŷ3
Get Action Seq. Ŷ

Update Agent

Simplicity

Model

Relevance

Model

Grammar

Model

REINFORCE algorithm

ŶX ŶX Ŷ Y

Figure 4.1: Deep reinforcement learning simplification model. X is the complex sen-

tence, Y the reference (simple) sentence and Ŷ the action sequence (simplification)

produced by the encoder-decoder model.

where ··· is the dot product between two vectors. We use the dot product here mainly for

efficiency reasons; alternative ways to compute attention scores have been proposed in

the literature and we refer the interested reader to Luong et al. (2015b). The model

sketched above is usually trained by minimizing the negative log-likelihood of the

training source-target pairs.

4.3 Reinforcement Learning for Sentence Simplification

In this section we present DRESS, our Deep REinforcement Sentence Simplification

model. Despite successful application in numerous sequence transduction tasks (Jean

et al., 2015; Chopra et al., 2016; Xu et al., 2015a), a vanilla encoder-decoder model

is not ideal for sentence simplification. Although a number of rewrite operations

(e.g., copying, deletion, substitution, word reordering) can be used to simplify text,

copying is by far the most common. We empirically found that 73% of the target

words are copied from the source in the Newsela dataset. This number further in-

creases to 83% when considering Wikipedia-based datasets (we provide details on

these datasets in Section 4.5.1). As a result, a generic encoder-decoder model learns

to copy all too well at the expense of other rewrite operations, often parroting back the

source or making only a few trivial changes.

To encourage a wider variety of rewrite operations while remaining fluent and faith-

ful to the meaning of the source, we employ a reinforcement learning framework (see

Figure 4.1). We view the encoder-decoder model as an agent which first reads the

source sentence X ; then at each step, it takes an action ŷt ∈ V (where V is the output

50 Chapter 4. Adding Prior Knowledge to Sequence based Generation

vocabulary) according to a policy PRL(ŷt |ŷ1:t−1,X) (see Equation (4.2)). The agent

continues to take actions until it produces an End Of Sentence (EOS) token yielding

the action sequence Ŷ = (ŷ1, ŷ2, . . . , ŷ|Ŷ |), which is also the simplified output of our

model. A reward r is then received and the REINFORCE algorithm (Williams, 1992)

is used to update the agent2. In the following, we first introduce our reward and then

present the details of the REINFORCE algorithm.

4.3.1 Reward

The reward r(Ŷ) for system output Ŷ is the weighted sum of the three components

aimed at capturing key aspects of the target output, namely simplicity, relevance, and

fluency:

r(Ŷ) = λ
S rS +λ

R rR +λ
F rF (4.7)

where λS,λR,λF ∈ [0,1]; r(Ŷ) is a shorthand for r(X ,Y,Ŷ) where X is the source, Y

the reference (or target), and Ŷ the system output. rS, rR, and rF are shorthands for

simplicity rS(X ,Y,Ŷ), relevance rR(X ,Ŷ), and fluency rF(Ŷ). We provide details for

each reward summand below.

4.3.1.1 Simplicity

To encourage the model to apply a wide range of simplification operations, we use

SARI (Xu et al., 2016), a recently proposed metric which compares System output

Against References and against the Input sentence. SARI is the arithmetic average of

n-gram precision and recall of three rewrite operations: addition (add), copying (keep),

and deletion (del). It rewards addition operations where system output was not in the

input but occurred in the references. Analogously, it rewards words retained/deleted in

both the system output and the references. Specifically, SARI is defined as follows:

SARI = d1 Fadd +d2 Fkeep +d3 Pdel (4.8)

where d1 = d2 = d3 =
1
3 and

Poperation =
1
k ∑

n=[1,2,...,k]
popteration(n) (4.9)

2In some reinforcement environments (e.g., Atari games), an agent can receive an immediate reward
after each action. But here our reward is delayed and our agent only receive rewards after the action that
produces an EOS token.

4.3. Reinforcement Learning for Sentence Simplification 51

Roperation =
1
k ∑

n=[1,2,...,k]
ropteration(n) (4.10)

Foperation =
2×Poperation×Roperation

Poperation +Roperation
(4.11)

operation ∈ [del,keep,add] (4.12)

As in BLEU, k is the highest ngram order and is set to 4.

The ngram precision and recall of the addition operation (padd(n) and radd(n)) are

defined as follows:

padd(n) =
∑g∈Ŷ min(max(0,#g(Ŷ)−#g(X)),#g(Y))

∑g∈Ŷ max(0,#g(Ŷ)−#g(X))
(4.13)

radd(n) =
∑g∈Ŷ min(max(0,#g(Ŷ)−#g(X)),#g(Y))

∑g∈Ŷ max(0,#g(Y)−#g(X))
(4.14)

where n is the ngram order and #g(·) is the occurrence of ngrams g in a given set.

The ngram precision and recall of the copy operation (pkeep(n) and rkeep(n)) are

defined as follows:

pkeep(n) =
∑g∈X min(min(#g(X),#g(Ŷ)),min(#g(X),#g(Y)))

∑g∈X min(#g(X),#g(Ŷ))
(4.15)

rkeep(n) =
∑g∈X min(min(#g(X),#g(Ŷ)),min(#g(X),#g(Y)))

∑g∈X min(#g(X),#g(Y))
(4.16)

The ngram precision of the deletion operation (pdel(n)) is defined as follows:

pdel(n) =
∑g∈X min(max(#g(X)−#g(Ŷ),0)),max(#g(X)−#g(Y),0))

∑g∈X max(#g(X)−#g(Ŷ),0)
(4.17)

Note that SARI scores are not symmetric. For example, assume the original sen-

tence is “About 95 species are currently accepted .”, the reference is “95 species are

now accepted .” and the system output is “About 95 you now get in .”. SARI(X ,Ŷ ,Y) =

33.52 and SARI(X ,Ŷ ,Y) = 33.47.

In experimental evaluation Xu et al. (2016) demonstrate that SARI correlates well

with human judgments of simplicity, whilst correctly rewarding systems that both

make changes and simplify the input.

One caveat with using SARI as a reward is the fact that it relies on the availabil-

ity of multiple references which are rare for sentence simplification. Xu et al. (2016)

provide eight references for 2,350 sentences, but these are primarily for system tuning

and evaluation rather than training. The majority of existing simplification datasets

52 Chapter 4. Adding Prior Knowledge to Sequence based Generation

(see Section 4.5.1 for details) have a single reference for each source sentence. More-

over, they are unavoidably noisy as they are mostly constructed automatically, e.g., by

aligning sentences from the ordinary and simple English Wikipedias. When relying

solely on a single reference, SARI will try to reward accidental n-grams that should

never have occurred in it. To counter the effect of noise, we apply SARI(X ,Ŷ ,Y) in

the expected direction, with X as the source, Ŷ the system output, and Y the reference

as well as in the reverse direction with Y as the system output and Ŷ as the reference.

Assuming our system can produce reasonably good simplifications, by swapping the

output and the reference, reverse SARI can be used to estimate how good a reference

is with respect to the system output. Our first reward is therefore the weighted sum of

SARI and reverse SARI:

rS=β SARI(X ,Ŷ ,Y)+(1−β)SARI(X ,Y,Ŷ) (4.18)

4.3.1.2 Relevance

While the simplicity-based reward rS tries to encourage the model to make changes,

the relevance reward rR ensures that the generated sentences preserve the meaning of

the source. We use a LSTM sentence encoder to convert the source X and the predicted

target Ŷ into two vectors qX and qŶ (both qX and qŶ are last hidden states of a LSTM

sentence encoder). The relevance reward rR is simply the cosine similarity between

these two vectors:

rR = cos(qX ,qŶ) =
qX ···qŶ
||qX || ||qŶ ||

(4.19)

We use a sequence auto-encoder (SAE; Dai and Le 2015) to train the LSTM sen-

tence encoder on both the complex and simple sentences. Specifically, the SAE uses

sentence X = (x1, . . . ,x|X |) to infer itself via an encoder-decoder model (without an

attention mechanism). Firstly, an encoder LSTM converts X into a sequence of hid-

den states (h1, . . . ,h|X |). Then, we use h|X | to initialize the hidden state of the decoder

LSTM and recover/generate X one word at a time.

4.3.1.3 Fluency

Xu et al. (2016) observe that SARI correlates less with fluency compared to other

metrics such as BLEU (Papineni et al., 2002). The fluency reward rF models the

well-formedness of the generated sentences explicitly. It is the normalized sentence

4.3. Reinforcement Learning for Sentence Simplification 53

probability assigned by an LSTM language model trained on simple sentences:

rF = exp

 1
|Ŷ |

|Ŷ |

∑
i=1

logPLM(ŷi|ŷ0:i−1)

 (4.20)

We take an exponential outside to ensure that rF ∈ [0,1] as is the case with rS and rR.

Note that we did not use FKGL (Flesch-Kincaid Grade Level) or BLEU as our re-

ward, although we used them in evaluation. There are several reasons for this. FKGL

only measures the simplicity of output sentences and totally ignores their relevance to

original sentences. But SARI takes both into account. Apart from the three rewards

we introduced earlier, we also additional tried FKGL as part of our reward, but we did

not observe extra performance gain. BLEU is not a good evaluation metric for simpli-

fication and it conflicts with SARI. Xu et al. (2016) shows that the original complex

sentences yield highest BLEU (but very low human evaluation scores) compared to

other simplification systems.

4.3.2 The REINFORCE Algorithm

The goal of the REINFORCE algorithm is to find an agent that maximizes the expected

reward. The training loss for one sequence is its negative expected reward:

L(θ) =−E(ŷ1,...,ŷ|Ŷ |)∼PRL(·|X)[r(ŷ1, . . ., ŷ|Ŷ |)] (4.21)

where PRL is our policy, i.e., the distribution produced by the encoder-decoder model

(see Equation(4.2)) and r(·) is the reward function of an action sequence Ŷ =(ŷ1, . . . , ŷ|Ŷ |),

i.e., a generated simplification. Unfortunately, computing the expectation term is pro-

hibitive, since there is an infinite number of possible action sequences. In practice, we

approximate this expectation with a single sample from the distribution of PLR(·|X).

We refer to Williams (1992) for the full derivation of the gradients. The gradient of

L(θ) is:
∇L(θ)≈

∑
|Ŷ |
t=1 ∇ logPRL(ŷt |ŷ1:t−1,X)[r(ŷ1:|Ŷ |)−bt]

To reduce the variance of gradients, we also introduce a baseline linear regression

model bt to estimate the expected future reward at time t (Ranzato et al., 2016). bt takes

the concatenation of hT
t and ct as input and outputs a real value as the expected reward.

The parameters of the regressor are trained by minimizing mean squared error. We do

not back-propagate this error to hT
t or ct during training (Ranzato et al., 2016).

54 Chapter 4. Adding Prior Knowledge to Sequence based Generation

4.3.3 Learning

Presented in its original form, the REINFORCE algorithm starts learning with a ran-

dom policy. This assumption can make model training challenging for generation tasks

like ours with large vocabularies (i.e., action spaces). We address this issue by pre-

training our agent (i.e., the encoder-decoder model) with a negative log-likelihood

objective (see Section 4.2), making sure it can produce reasonable simplifications,

thereby starting off with a policy which is better than random. We follow prior work

(Ranzato et al., 2016) in adopting a curriculum learning strategy. In the beginning of

training, we give little freedom to our agent allowing it to predict the last few words for

each target sentence. For every target sequence, we use negative log-likelihood to train

the first L (initially, L = 24) tokens and apply the reinforcement learning algorithm to

the (L+ 1)th tokens onwards. Every two epochs, we set L = L−3 and the training

terminates when L is 0.

4.4 Lexical Simplification

Lexical substitution, the replacement of complex words with simpler alternatives, is an

integral part of sentence simplification (Specia et al., 2012). The model presented so

far learns lexical substitution and other rewrite operations jointly. In some cases, words

are predicted because they seem natural in the their context, but are poor substitutes for

the content of the complex sentence. To counter this, we learn lexical simplifications

explicitly and integrate them with our reinforcement learning-based model.

We use an pre-trained encoder-decoder model (which is trained on a parallel cor-

pus of complex and simple sentences) to obtain probabilistic word alignments, aka

attention scores (see αt in Equation (4.6)). Let X = (x1,x2, . . . ,x|X |) denote a source

sentence and Y = (y1,y2, . . . ,y|Y |) a target sentence. We convert X into |X | hidden

states (v1,v2, . . . ,v|X |) with an LSTM. Note that vt ∈ Rd×1 corresponds to the context

dependent representation of xt . Let αt denote the alignment scores αt1,αt2, . . . ,αt|X |.

The lexical simplification probability of yt given the source sentence and the alignment

scores is:

PLS(yt |X ,αt) = softmax(Wl st) (4.22)

where Wl ∈ R|V |×d and st represents the source:

st =
|X |

∑
i=1

αtivi (4.23)

4.5. Experimental Setup 55

The lexical simplification model on its own encourages lexical substitutions, with-

out taking into account what has been generated so far (i.e., y1:t−1) and as a result

fluency could be compromised. A straightforward solution is to integrate lexical sim-

plification with our reinforcement learning trained model (Section 4.3) using linear

interpolation, where η ∈ [0,1]:

P(yt |y1:t−1,X) =(1−η)PRL(yt |y1:t−1,X)

+ηPLS(yt |X ,αt)
(4.24)

4.5 Experimental Setup

In this section we present our experimental setup for assessing the performance of the

simplification model described above. We give details on our datasets, model training,

evaluation protocol, and the systems used for comparison.

4.5.1 Datasets

We conducted experiments on three simplification datasets. WikiSmall Zhu et al.

(2010) is a parallel corpus which has been extensively used as a benchmark for eval-

uating text simplification systems (Wubben et al., 2012; Woodsend and Lapata, 2011;

Narayan and Gardent, 2014; Zhu et al., 2010). It contains automatically aligned com-

plex and simple sentences from the ordinary and simple English Wikipedias. The test

set consists of 100 complex-simple sentence pairs. The training set contains 89,042

sentence pairs (after removing duplicates and test sentences). We randomly sampled

205 pairs for development and used the remaining sentences for training.

We also constructed WikiLarge, a larger Wikipedia corpus by combining previ-

ously created simplification corpora. Specifically, we aggregated the aligned sentence

pairs in Kauchak (2013), the aligned and revision sentence pairs in Woodsend and

Lapata (2011), and Zhu’s (2010) WikiSmall dataset described above. We used the

development and test sets created in Xu et al. (2016). These are complex sentences

taken from WikiSmall paired with simplifications provided by Amazon Mechanical

Turk workers. The dataset contains 8 (reference) simplifications for 2,359 sentences

partitioned into 2,000 for development and 359 for testing. After removing duplicates

and sentences in development and test sets, the resulting training set contains 296,402

sentence pairs.

Our third dataset is Newsela, a corpus collated by Xu et al. (2015b) who argue

56 Chapter 4. Adding Prior Knowledge to Sequence based Generation

that Wikipedia-based resources are suboptimal due to the automatic sentence align-

ment which unavoidably introduces errors, and their uniform writing style which leads

to systems that generalize poorly. Newsela3 consists of 1,130 news articles, each re-

written four times by professional editors for children at different grade levels (0 is

the most complex level and 4 is simplest). Xu et al. (2015b) provide multiple aligned

complex-simple pairs within each article. We removed sentence pairs corresponding

to levels 0–1, 1–2, and 2–3, since they were too similar to each other. The first 1,070

documents were used for training (94,208 sentence pairs), the next 30 documents for

development (1,129 sentence pairs) and the last 30 documents for testing (1,076 sen-

tence pairs).4 We are not aware of any published results on this dataset.

4.5.2 Training Details

We trained our models on an Nvidia GPU card. We used the same hyper-parameters

across datasets. We first trained an encoder-decoder model, and then performed rein-

forcement learning training (Section 4.3), and trained the lexical simplification model

(Section 4.4). Encoder-decoder parameters were uniformly initialized to [−0.1,0.1].

We used Adam (Kingma and Ba, 2014) to optimize the model with learning rate 0.001;

the first momentum coefficient was set to 0.9 and the second momentum coefficient

to 0.999. The gradient was rescaled when the norm exceeded 5 (Pascanu et al., 2013).

Both encoder and decoder LSTMs have two layers with 256 hidden neurons in each

layer. We regularized all LSTMs with a dropout rate of 0.2 (Zaremba et al., 2014). We

initialized the encoder and decoder word embedding matrices with 300 dimensional

Glove vectors (Pennington et al., 2014).

During reinforcement training, we used plain stochastic gradient descent with a

learning rate of 0.01. We set β = 0.1, λS = 1, λR = 0.25 and λF = 0.5.5 Training

details for the lexical simplification model are identical to the encoder-decoder model

except that word embedding matrices were randomly initialized. The weight of the

lexical simplification model was set to η = 0.1.

To reduce vocabulary size, named entities were tagged with the Stanford CoreNLP

(Manning et al., 2014) and anonymized with a NE@N token, where NE∈ {PER,LOC,

ORG,MISC} and N indicates NE@N is the N-th distinct NE typed entity. For exam-

3https://newsela.com
4If a sentence has multiple references in the development or test set, we use the reference with

highest simplicity level.
5Weights were tuned on the development set of the Newsela dataset and kept fixed for the other two

datasets.

4.5. Experimental Setup 57

ple, “John and Bob are . . . ” becomes “PER@1 and PER@2 are . . . ”. At test time,

we de-anonymize NE@N tokens in the output by looking them up in their source sen-

tences. Note that the de-anonymization may fail, but the chance is small (around 2% of

the time on the Newsela development set). We replaced words occurring three times

or less in the training set with UNK. At test time, when our models predict UNK, we

adopt the UNK replacement method proposed in Jean et al. (2015) (i.e., we replace

UNK with the word in the complex sentence which is assigned the largest attention

score).

4.5.3 Evaluation

Following previous work (Woodsend and Lapata, 2011; Xu et al., 2016) we evalu-

ated system output automatically adopting metrics widely used in the simplification

literature. Specifically, we used BLEU6 (Papineni et al., 2002) to assess the degree to

which generated simplifications differed from gold standard references and the Flesch-

Kincaid Grade Level index (FKGL; Kincaid et al. 1975) to measure the readability of

the output (lower FKGL7 implies simpler output). In addition, we used SARI (Xu

et al., 2016), which evaluates the quality of the output by comparing it against the

source and reference simplifications.8 As a convention in machine translation com-

munity, BLEU, FKGL, and SARI are all measured at corpus level9. Because average

of scores at sentence level may bias to shorter sentences. We also evaluated system

output by eliciting human judgments via Amazon’s Mechanical Turk. Specifically

(self-reported) native English speakers were asked to rate simplifications on three di-

mensions: Fluency (is the output grammatical and well formed?), Adequacy (to what

extent is the meaning expressed in the original sentence preserved in the output?) and

Simplicity (is the output simpler than the original sentence?). All ratings were obtained

using a five point Likert scale.

4.5.4 Comparison Systems

We compared our model against several systems previously proposed in the litera-

ture. These include PBMT-R, a monolingual phrase-based machine translation system

6With the default mtevalv13a.pl settings.
7FKGL implementation at http://goo.gl/OHP7k3.
8We used he implementation of SARI in Xu et al. (2016).
9We have to use sentence level SARI during training because reward is measured for each sequence.

58 Chapter 4. Adding Prior Knowledge to Sequence based Generation

with a reranking post-processing step10 (Wubben et al., 2012) and Hybrid, a model

which first performs sentence splitting and deletion operations over discourse repre-

sentation structures and then further simplifies sentences with PBMT-R (Narayan and

Gardent, 2014). Hybrid11 is state of the art on the WikiSmall dataset. Comparisons

with SBMT-SARI, a syntax-based translation model trained on PPDB (Ganitkevitch

et al., 2013) and tuned with SARI (Xu et al., 2016), are problematic due to the size

of PPDB which is considerably larger than any of the datasets used in this work (it

contains 106 million sentence pairs with 2 billion words). Nevertheless, we compare12

against SBMT-SARI, but only models trained on Wikilarge, our largest dataset.

4.6 Results

Since Newsela contains high quality simplifications created by professional editors,

we performed the bulk of our experiments on this dataset. Specifically, we set out

to answer two questions: (a) which neural model performs best and (b) how do neu-

ral models which are resource lean and do not have access to linguistic annotations

fare against more traditional systems. We therefore compared the basic attention-

based encoder-decoder model (EncDecA), with the deep reinforcement learning model

(DRESS; Section 4.3), and a linear combination of DRESS and the lexical simplifica-

tion model (DRESS-LS; Section 4.4). Neural models were further compared against

two strong baselines, PBMT-R and Hybrid. Table 4.4 shows example output of all

models on the Newsela dataset.

The top block in Table 4.1 summarizes the results of our automatic evaluation. As

can be seen, all neural models obtain higher BLEU, lower FKGL and higher SARI

compared to PBMT-R. Hybrid has the lowest FKGL and highest SARI. Compared to

EncDecA, DRESS scores lower on FKGL and higher on SARI, which indicates that

the model has indeed learned to optimize the reward function which includes SARI.

Integrating lexical simplification (DRESS-LS) yields better BLEU, but slightly worse

FKGL and SARI.

The results of our human evaluation are presented in the top block of Table 4.2. We

elicited judgments for 100 randomly sampled test sentences. Aside from comparing

system output (PBMT-R, Hybrid, EncDecA, DRESS, and DRESS-LS), we also elicited

10We made a good-faith effort to re-implement their system following closely the details in Wubben
et al. (2012).

11We are grateful to Shashi Narayan for running his system on our three datasets.
12The output of SBMT-SARI is publicly available.

4.6. Results 59

Newsela BLEU FKGL SARI

PBMT-R 18.19 7.59 15.77

Hybrid 14.46 4.01 30.00

EncDecA 21.70 5.11 24.12

DRESS 23.21 4.13 27.37

DRESS-LS 24.30 4.21 26.63

WikiSmall BLEU FKGL SARI

PBMT-R 46.31 11.42 15.97

Hybrid 53.94 9.20 30.46

EncDecA 47.93 11.35 13.61

DRESS 34.53 7.48 27.48

DRESS-LS 36.32 7.55 27.24

WikiLarge BLEU FKGL SARI

PBMT-R 81.11 8.33 38.56

Hybrid 48.97 4.56 31.40

SBMT-SARI 73.08 7.29 39.96

EncDecA 88.85 8.41 35.66

DRESS 77.18 6.58 37.08

DRESS-LS 80.12 6.62 37.27

Table 4.1: Automatic evaluation on Newsela, WikiSmall, and WikiLarge test sets.

ratings for the gold standard Reference as an upper bound. We report results for Flu-

ency, Adequacy, and Simplicity individually and in combination (All is the average

rating of the three dimensions). As can be seen, DRESS and DRESS-LS outperform

PBMT-R and Hybrid on Fluency, Simplicity, and overall. The fact that neural mod-

els (EncDecA, DRESS and DRESS-LS) fare well on Fluency, is perhaps not surprising

given the recent success of LSTMs in language modeling and neural machine transla-

tion (Zaremba et al., 2014; Jean et al., 2015).

Neural models obtain worse ratings on Adequacy but are closest to the human ref-

erences on this dimension. DRESS-LS (and DRESS) are significantly better (p < 0.01)

on Simplicity than EncDecA, PBMT-R, and Hybrid which indicates that our reinforce-

ment learning based model is effective at creating simpler output. Combined ratings

(All) for DRESS-LS are significantly different compared to the other models but not

to DRESS and the Reference. Nevertheless, integration of the lexical simplification

60 Chapter 4. Adding Prior Knowledge to Sequence based Generation

Newsela Fluency Adequacy Simplicity All

PBMT-R 3.56 3.58∗∗ 2.09∗∗ 3.08∗∗

Hybrid 2.70∗∗ 2.51∗∗ 2.99 2.73∗∗

EncDecA 3.63 2.99 2.56∗∗ 3.06∗∗

DRESS 3.65 2.94 3.10 3.23

DRESS-LS 3.71 3.07 3.04 3.28

Reference 3.90 2.81∗∗ 3.42∗∗ 3.38

WikiSmall Fluency Adequacy Simplicity All

PBMT-R 3.91 3.74∗∗ 2.80∗∗ 3.48∗

Hybrid 3.26∗∗ 3.42 2.82∗∗ 3.17∗∗

DRESS-LS 3.92 3.36 3.55 3.61

Reference 3.74∗ 3.34 3.13∗∗ 3.41∗∗

WikiLarge Fluency Adequacy Simplicity All

PBMT-R 3.68 3.63∗ 2.70∗∗ 3.34∗

Hybrid 2.60∗∗ 2.42∗∗ 3.52 2.85∗∗

SBMT-SARI 3.34∗∗ 3.51∗ 2.77∗∗ 3.21∗∗

DRESS-LS 3.70 3.28 3.42 3.46

Reference 3.79 3.72∗∗ 2.86∗∗ 3.46

Table 4.2: Mean ratings elicited by humans on Newsela, WikiSmall, and WikiLarge test

sets. Ratings significantly different from DRESS-LS are marked with * (p < 0.05) and

** (p < 0.01). Significance tests were performed using a student t-test.

model boosts performance as ratings increase almost across the board (Simplicity is

slightly worse). Returning to our original questions, we find that neural models are

more fluent than comparison systems, while performing non-trivial rewrite operations

(see the SARI scores in Table 4.1) which yield simpler output (see the Simplicity col-

umn in Table 4.2). Based on our judgment elicitation study, neural models trained with

reinforcement learning perform best, with DRESS-LS having a slight advantage.

We further analyzed model performance by computing various statistics on the sim-

plified output. We measured average sentence length and the degree to which DRESS

and comparison systems perform rewriting operations. We approximated the latter

with Translation Error Rate (TER; Snover et al. 2006), a measure commonly used to

automatically evaluate the quality of machine translation output. We used TER to com-

pute the (average) number of edits required to change an original complex sentence to

4.6. Results 61

Models Len TER Ins Del Sub Shft

PBMT-R 23.1 0.13 0.68 0.68 1.50 0.09

Hybrid 12.4 0.90 0.01 10.19 0.12 0.41

EncDecA 17.0 0.36 0.13 5.96 1.69 0.09

DRESS 14.2 0.46 0.07 8.53 1.37 0.11

DRESS-LS 14.4 0.44 0.07 8.38 1.11 0.09

Reference 12.7 0.67 0.40 10.26 3.44 0.73

Table 4.3: Output length (average number of tokens), TER scores and number of edits

by type (Insertions, Deletions, Substitutions, Shi fts) on the Newsela test set. Higher

TER means that more rewriting operations are performed.

simpler output. We also report the number of edits by type, i.e., the number of inser-

tions, substitutions, deletions, and shifts needed (on average) to convert complex to

simple sentences.

As shown in Table 4.3, Hybrid obtains the highest TER, followed by our models

(DRESS and DRESS-LS), which indicates that they actively perform rewriting. Per-

haps Hybrid is too aggressive when simplifying a sentence, it obtains low Fluency and

Adequacy scores in human evaluation (Table 4.2). There is a strong correlation be-

tween sentence length and number of deletion operations (i.e., more deleteions lead

to shorter sentences) and PBMT-R performs very few deletions. Overall, reinforce-

ment learning encourages deletion (see DRESS and DRESS-LS), while performing a

reasonable amount of additional operations (e.g., substitutions and shifts) compared to

EncDecA and PBMT-R.

The middle blocks in Tables 4.1 and 4.2 report results on the WikiSmall dataset.

FKGL and SARI follow a similar pattern as on Newsela. BLEU scores for PBMT-R,

Hybrid, and EncDecA are much higher compared to DRESS and DRESS-LS. Hybrid

obtains best BLEU and SARI scores, while DRESS and DRESS-LS do very well on

FKGL. In human evaluation, we elicited judgments on the entire WikiSmall test set

(100 sentences). We compared DRESS-LS, with PBMT-R, Hybrid, and gold standard

Reference simplifications. As human experiments are time consuming and expensive,

we did not include other neural models besides DRESS-LS based on our Newsela study

which showed that EncDecA is inferior to variants trained with reinforcement learn-

ing and that DRESS-LS is the better performing model (however, we do compare all

models in Table 4.1). DRESS-LS is significantly better on Simplicity than PBMT-R,

Hybrid, and the Reference. It performs on par with PBMT-R on Fluency and worse

62 Chapter 4. Adding Prior Knowledge to Sequence based Generation

on Adequacy (but still closer to the human Reference than PBMT-R or Hybrid). When

combining all ratings (All in Table 4.2), DRESS-LS is significantly better than PBMT-

R, Hybrid, and the Reference.

The bottom blocks in Tables 4.1 and 4.2 report results on Wikilarge. We compared

our models with PBMT-R, Hybrid, and SBMT-SARI (Xu et al., 2016). The FKGL

follows a similar pattern as in the previous datasets. PBMT-R and our models are

best in terms of BLEU while SBMT-SARI outperforms all other systems on SARI.13

Because there are 8 references for each complex sentence in the test set, BLEU scores

are much higher compared to Newsela and WikiSmall. In human evaluation, we again

elicited judgments for 100 randomly sampled test sentences. We randomly selected

one of the 8 references as the Reference upper bound. On Simplicity, DRESS-LS

is significantly better than all comparison systems, except Hybrid. On Adequacy, it is

better than Hybrid but significantly worse than other comparison systems. On Fluency,

it is on par with PBMT-R14 but better than Hybrid and SBMT-SARI. On All dimension

DRESS-LS significantly outperforms all comparison systems.

The reward we used is a weighted sum of three different rewards: simplicity re-

ward, relevance reward and fluency reward (see Equation 4.7). From their relative

weights (see Section 4.5.2), we can see the most important reward is the simplicity

reward, which has the highest weight. In addition to the simplicity reward, introduc-

ing fluency and relevance reward lead to small changes in BLEU, SARI and FKGL

metrics. However, we do observe their positive impact to system outputs. By adding

the fluency reward, we observe some system outputs with grammar mistakes are cor-

rected. For example, “She said the FFA ’s public speak team pushed her beyond her .”

becomes “She said the FFA ’s public speak team pushed her .”. “Sierra McKenzie , a

fourth-year student , told her team , acceptable your stuff .” becomes “Sierra McKen-

zie , a fourth-year student , told her team , Remember your stuff .”. By adding the

relevance reward, some severely shorten sentences are fixed. For example, the original

sentence is “Not only is Dewey their teacher , she ’s also occasionally their ride home

or the source of a meal .”. Without the relevance reward, the output is “She ’s also

sometimes their ride home .” and with the relevance reward, it becomes “She ’s also

sometimes their ride home or the source of a meal .”.

13BLEU and SARI scores reported in Xu et al. (2016) are 72.36 and 37.91, and measured at sentence-
level.

14We used more data to train PBMT-R and maybe that is why PBMT-R performs better than Xu et al.
(2016) reported.

4.7. Conclusions 63

4.7 Conclusions

We developed a reinforcement learning-based text simplification model, which can

jointly model simplicity, grammaticality, and semantic fidelity to the input. We also

proposed a lexical simplification component that further boosts performance. Overall,

we find that reinforcement learning offers a great means to inject prior knowledge to

the simplification task achieving good results across three datasets. In the future, we

would like to explicitly model sentence splitting and simplify entire documents (rather

than individual sentences). Beyond sentence simplification, the reinforcement learning

framework presented here is potentially applicable to generation tasks such as sentence

compression (Chopra et al., 2016), generation of programming code (Ling et al., 2016),

or poems (Zhang and Lapata, 2014).

64 Chapter 4. Adding Prior Knowledge to Sequence based Generation

Complex There’s just one major hitch: the primary purpose of education is to develop

citizens with a wide variety of skills.

Reference The purpose of education is to develop a wide range of skills.

PBMT-R It’s just one major hitch: the purpose of education is to make people with a

wide variety of skills.

Hybrid one hitch the purpose is to develop citizens.

EncDecA The key of education is to develop people with a wide variety of skills.

DRESS There’s just one major hitch: the main goal of education is to develop people
with lots of skills.

DRESS-LS There’s just one major hitch: the main goal of education is to develop citizens

with lots of skills.

Complex “They were so burdened by the past they couldn’t think about the future,” said

Barnet, 62, who was president of Columbia Records, the No.1 record label in

the United States, before joining Capitol.

Reference Capitol was stuck in the past. It could not think about the future, Barnett said.

PBMT-R “They were so affected by the past they couldn’t think about the future,”

said Barnett, 62, was president of Columbia Records, before joining Capitol

building.

Hybrid ‘They were so burdened by the past they couldn’t think about the future,” said

Barnett, 62, who was Columbia Records, president of the No.1 record label

in the united states, before joining Capitol.

EncDecA “They were so burdened by the past they couldn’t think about the future,” said

Barnett, who was president of Columbia Records, the No.1 record labels in

the United States.

DRESS “They were so sicker by the past they couldn’t think about the future,” said

Barnett, who was president of Columbia Records.

DRESS-LS “They were so burdened by the past they couldn’t think about the future,” said

Barnett, who was president of Columbia Records.

Table 4.4: System output for two sentences (Newsela development set). Substitutions

are shown in bold.

Chapter 5

Beyond Sequence Learning: Structure

based Generation

Most existing neural NLG work uses sequence models (i.e., recurrent neural networks)

as the generation module. In such a model, a sentence is viewed as a sequence of

words. However, in computational linguistics, sentences can also be represented in a

tree structure such as dependency trees or constituency trees. In a linear sentence of

length N, the longest dependency for a word is at length N−1, while by using the tree

structure, the longest dependency length can be reduced to rougely log(N). By reduc-

ing the dependency length, we can probably train our model better. In this chapter, we

propose a neural language generator called top-down tree long short-term memory net-

work, which generates dependency trees rather than linear structured sentences. The

final sentences can be generated using in-order traversal of dependency trees.

The neural based language generation architecture we introduced in chapter 1 has

two main components: the representation network and the generation network. The

model we proposed in this chapter is essentially a better generation network.

Long Short-Term Memory (LSTM) networks, a type of recurrent neural network

with a more complex computational unit, have been successfully applied to a variety

of sequence modeling tasks. In this paper we develop Tree Long Short-Term Memory

(TREELSTM), a neural network model based on LSTM, which is designed to predict a

tree rather than a linear sequence. TREELSTM defines the probability of a sentence by

estimating the generation probability of its dependency tree. At each time step, a node

is generated based on the representation of the generated sub-tree. We further enhance

the modeling power of TREELSTM by explicitly representing the correlations between

left and right dependents. Application of our model to the MSR sentence completion

65

66 Chapter 5. Beyond Sequence Learning: Structure based Generation

challenge achieves results beyond the current state of the art. We also report results on

dependency parsing reranking achieving competitive performance.

5.1 Introduction

Neural language models have been gaining increasing attention as a competitive alter-

native to n-grams. The main idea is to represent each word using a real-valued feature

vector capturing the contexts in which it occurs. The conditional probability of the

next word is then modeled as a smooth function of the feature vectors of the preceding

words and the next word. In essence, similar representations are learned for words

found in similar contexts resulting in similar predictions for the next word. Previous

approaches have mainly employed feed-forward (Bengio et al., 2003; Mnih and Hin-

ton, 2007) and recurrent neural networks (Mikolov et al., 2010; Mikolov, 2012) in

order to map the feature vectors of the context words to the distribution for the next

word. Recently, RNNs with Long Short-Term Memory (LSTM) units (Hochreiter and

Schmidhuber, 1997; Hochreiter, 1998) have emerged as a popular architecture due to

their strong ability to capture long-term dependencies. LSTMs have been successfully

applied to a variety of tasks ranging from machine translation (Sutskever et al., 2014),

to speech recognition (Graves et al., 2013), and image description generation (Vinyals

et al., 2015).

Despite superior performance in many applications, neural language models es-

sentially predict sequences of words. Many NLP tasks, however, exploit syntactic

information operating over tree structures (e.g., dependency or constituent trees). In

this paper we develop a novel neural network model which combines the advantages

of the LSTM architecture and syntactic structure. Our model estimates the probability

of a sentence by estimating the generation probability of its dependency tree. Instead

of explicitly encoding tree structure as a set of features, we use four LSTM networks to

model four types of dependency edges which altogether specify how the tree is built.

At each time step, one LSTM is activated which predicts the next word conditioned on

the sub-tree generated so far. To learn the representations of the conditioned sub-tree,

we force the four LSTMs to share their hidden layers. Our model is also capable of

generating trees just by sampling from a trained model and can be seamlessly inte-

grated with text generation applications.

Our approach is related to but ultimately different from recursive neural networks

(Pollack, 1990) a class of models which operate on structured inputs. Given a (binary)

5.1. Introduction 67

parse tree, they recursively generate parent representations in a bottom-up fashion, by

combining tokens to produce representations for phrases, and eventually the whole

sentence. The learned representations can be then used in classification tasks such

as sentiment analysis (Socher et al., 2011b) and paraphrase detection (Socher et al.,

2011a). Tai et al. (2015) learn distributed representations over syntactic trees by gener-

alizing the LSTM architecture to tree-structured network topologies. The key feature

of our model is not so much that it can learn semantic representations of phrases or

sentences, but its ability to predict tree structure and estimate its probability.

Syntactic language models have a long history in NLP dating back to Chelba and

Jelinek (2000) (see also Roark (2001) and Charniak (2001)). These models differ

in how grammar structures in a parsing tree are used when predicting the next word.

Other work develops dependency-based language models for specific applications such

as machine translation (Shen et al., 2008; Zhang, 2009; Sennrich, 2015), speech recog-

nition (Chelba et al., 1997) or sentence completion (Gubbins and Vlachos, 2013). All

instances of these models apply Markov assumptions on the dependency tree, and

adopt standard n-gram smoothing methods for reliable parameter estimation. Emami

et al. (2003) and Sennrich (2015) estimate the parameters of a structured language

model using feed-forward neural networks (Bengio et al., 2003). Mirowski and Vla-

chos (2015) re-implement the model of Gubbins and Vlachos (2013) with RNNs. They

view sentences as sequences of words over a dependency tree. While they ignore the

edge types, we model them explicitly.

Our model shares with other structured-based language models the ability to take

dependency information into account. It differs in the following respects: (a) it does

not artificially restrict the depth of the dependencies it considers and can thus be viewed

as an infinite order dependency language model; (b) it not only estimates the probabil-

ity of a string given its tree structure but is also capable of generating dependency trees

with additional classifiers; (c) finally, contrary to previous dependency-based language

models which encode syntactic information as features, our model takes tree struc-

ture into account more directly via representing different types of dependency edges

explicitly using LSTMs. Therefore, there is no need to manually determine which

dependency tree features should be used or how large the feature embeddings should

be.

We evaluate our model on the MSR sentence completion challenge, a benchmark

language modeling dataset. Our results outperform the best published results on this

dataset. Since our model is a general tree estimator, we also use it to rerank the top K

68 Chapter 5. Beyond Sequence Learning: Structure based Generation

w0

w1wk−1wkwn LEFT

NX-LEFT

Figure 5.1: LEFT and NX-LEFT edges. Dotted line between w1 and wk−1 (also be-

tween wk and wn) indicate that there may be ≥ 0 nodes inbetween.

dependency trees from the (second order) MST Pasrser and obtain performance on par

with recently proposed dependency parsers.

5.2 Tree Long Short-Term Memory Networks

We seek to estimate the probability of a sentence by estimating the generation proba-

bility of its dependency tree. Syntactic information in our model is represented in the

form of dependency paths. In the following, we first describe our definition of depen-

dency path and based on it explain how the probability of a sentence is estimated.

5.2.1 Dependency Path

Generally speaking, a dependency path is the path between ROOT and w consisting of

the nodes on the path and the edges connecting them. To represent dependency paths,

we introduce four types of edges which essentially define the “shape” of a dependency

tree. Let w0 denote a node in a tree and w1,w2, . . . ,wn its left dependents. As shown

in Figure 5.1, LEFT edge is the edge between w0 and its first left dependent denoted

as (w0,w1). Let wk (with 1 < k ≤ n) denote a non-first left dependent of w0. The

edge from wk−1 to wk is a NX-LEFT edge (NX stands for NEXT), where wk−1 is the

right adjacent sibling of wk. Note that the NX-LEFT edge (wk−1,wk) replaces edge

(w0,wk) (illustrated with a dashed line in Figure 5.1) in the original dependency tree.

The modification allows information to flow from w0 to wk through w1, . . . ,wk−1 rather

than directly from w0 to wk. RIGHT and NX-RIGHT edges are defined analogously for

right dependents.

Given these four types of edges, dependency paths (denoted as D(w)) can be de-

fined as follows bearing in mind that the first right dependent of ROOT is its only

dependent and that wp denotes the parent of w. We use (. . .) to denote a sequence,

where () is an empty sequence and ‖ is an operator for concatenating two sequences.

5.2. Tree Long Short-Term Memory Networks 69

(1) if w is ROOT, then D(w) = ()

(2) if w is a left dependent of wp

(a) if w is the first left dependent, then D(w) = D(wp)‖(〈wp,LEFT〉)

(b) if w is not the first left dependent and ws is its right adjacent sibling, then

D(w) = D(ws)‖(〈ws,NX-LEFT〉)

(3) if w is a right dependent of wp

(a) if w is the first right dependent, then D(w) = D(wp)‖(〈wp,RIGHT〉)

(b) if w is not the first right dependent and ws is its left adjacent sibling, then

D(w) = D(ws)‖(〈ws,NX-RIGHT〉)

A dependency tree can be represented by the set of its dependency paths which in turn

can be used to reconstruct the original tree.1

Dependency paths for the first two levels of the tree in Figure 5.2 are as follows (ig-

noring for the moment the subscripts which we explain in the next section). D(sold) =

(〈ROOT,RIGHT〉) (see definitions (1) and (3a)), D(year)=D(sold)‖(〈sold,LEFT〉) (see (2a)),

D(manufacturer)=D(year)‖(〈year,NX-LEFT〉) (see (2b)), D(cars)=D(sold)‖(〈sold,RIGHT〉)
(see (3a)), D(in) = D(cars)‖(〈cars,NX-RIGHT〉) (according to (3b)).

5.2.2 Sentence Probability

In this section, we estimate the probability of sentence S given its corresponding tree

scaffolding T , P(S|T). T is a “scaffolding” tree structure with nodes waiting to be

filled with words. For example, the scaffolding tree structure of the sentence The lux-

ury auto manufacturer last year sold 1,214 cars in the U.S. is shown in Figure 5.3 (its

dependency tree is shown in Figure 5.2). We view the probability computation of a

sentence given its scaffolding tree as a generation process and when the generation

process is done, we get a dependency tree. Specifically, we assume dependency trees

are constructed top-down, in a breadth-first manner. Generation starts at the ROOT

node. For each node at each level, first its left dependents are generated from closest to

farthest and then the right dependents (again from closest to farthest). The same pro-

cess is applied to the next node at the same level or a node at the next level. Figure 5.2

shows the breadth-first traversal of a dependency tree.

1Throughout this paper we assume all dependency trees are projective.

70 Chapter 5. Beyond Sequence Learning: Structure based Generation

ROOT

sold1

manufacturer3

The9 luxury8 auto7

year2

last6

cars4

1,21410

in5

U.S.11

the12

Figure 5.2: Dependency tree of the sentence The luxury auto manufacturer last year

sold 1,214 cars in the U.S. Subscripts indicate breadth-first traversal. ROOT has only

one dependent (i.e., sold) which we view as its first right dependent.

ROOT

w1

w3

w9 w8 w7

w2

w6

w4

w10

w5

w11

w12

Figure 5.3: Tree scaffolding of the sentence The luxury auto manufacturer last year sold

1,214 cars in the U.S. Subscripts indicate breadth-first traversal. wi(1≤ i≤ 12) can be

any word in the vocabulary.

Under the assumption that each word w in a dependency tree is only conditioned

on its dependency path, the probability of a sentence S given its dependency tree T is:

P(S|T) = ∏
w∈BFS(T)\ROOT

P(w|D(w)) (5.1)

where D(w) is the dependency path of w. Note that each word w is visited according

to its breadth-first search order (BFS(T)) and the probability of ROOT is ignored since

every tree has one. The role of ROOT in a dependency tree is the same as the begin of

sentence token (BOS) in a sentence. When computing P(S|T) (or P(S)), the probabil-

ity of ROOT (or BOS) is ignored (we assume it always exists), but is used to predict

other words. We explain in the next section how TREELSTM estimates P(w|D(w)).

5.2. Tree Long Short-Term Memory Networks 71

w0

w1w2w3 w4 w5 w6

Generated by four LSTMs with tied We and tied Who

w0

w1w2w3

w0w1w2

w4 w5 w6

w0 w4 w5

G
EN-L

GEN-NX-LGEN-NX-L

GEN-R

GEN-NX-R GEN-NX-R

Figure 5.4: Generation process of left (w1,w2,w3) and right (w4,w5,w6) dependents

of tree node wo (top) using four LSTMs (GEN-L, GEN-R, GEN-NX-L and GEN-NX-

R). The model can handle an arbitrary number of dependents due to GEN-NX-L and

GEN-NX-R.

5.2.3 Tree LSTMs

A dependency path D(w) is subtree which we denote as a sequence of 〈word, edge-

type〉 tuples. Our innovation is to learn the representation of D(w) using four LSTMs.

The four LSTMs (GEN-L, GEN-R, GEN-NX-L and GEN-NX-R) are used to represent

the four types of edges (LEFT, RIGHT, NX-LEFT and NX-RIGHT) introduced earlier.

GEN, NX, L and R are shorthands for GENERATE, NEXT, LEFT and RIGHT. At

each time step, an LSTM is chosen according to an edge-type; then the LSTM takes

a word as input and predicts/generates its dependent or sibling. This process can be

also viewed as adding an edge and a node to a tree. Specifically, LSTMs GEN-L

and GEN-R are used to generate the first left and right dependent of a node (w1 and

w4 in Figure 5.4). So, these two LSTMs are responsible for going deeper in a tree.

While GEN-NX-L and GEN-NX-R generate the remaining left/right dependents and

therefore go wider in a tree. As shown in Figure 5.4, w2 and w3 are generated by

GEN-NX-L, whereas w5 and w6 are generated by GEN-NX-R. Note that the model can

handle any number of left or right dependents by applying GEN-NX-L or GEN-NX-R

multiple times.

We assume time steps correspond to the steps taken by the breadth-first traversal of

72 Chapter 5. Beyond Sequence Learning: Structure based Generation

the dependency tree and the sentence has length n. At time step t (1≤ t ≤ n), let 〈wt ′,zt〉
denote the last tuple in D(wt). Subscripts t and t ′ denote the breadth-first search order

of wt and wt ′ , respectively. zt ∈ {LEFT,RIGHT,NX-LEFT,NX-RIGHT} is the edge

type (see the definitions in Section 5.2.1). Let We ∈Rs×|V | denote the word embedding

matrix and Who ∈ R|V |×d the output matrix of our model, where |V | is the vocabulary

size, s the word embedding size and d the hidden unit size. We use tied We and tied

Who for the four LSTMs to reduce the number of parameters in our model. Without

tying Who, the training and inference will be significantly slower, since one mini-batch

may be split up into four (thus influencing parallelization). We also observe on a small

scale dataset, tying Who can lead to slightly better performance. The four LSTMs also

share their hidden states. The hidden states updated by one LSTM can be used as input

hidden states for other LSTMs. Let H ∈ Rd×(n+1) denote the shared hidden states of

all time steps and e(wt) the one-hot vector of wt . Then, H[:, t] represents D(wt) at time

step t, and the computation2 is:

xt = We · e(wt ′) (5.2a)

ht = LSTMzt (xt ,H[:, t ′]) (5.2b)

H[:, t] = ht (5.2c)

yt = Who ·ht (5.2d)

where the initial hidden state H[:,0] is initialized to a vector of small values such

as 0.01. According to Equation (5.2b), the model selects an LSTM based on edge

type zt . We describe the details of LSTMzt in the next paragraph. The probability of wt

given its dependency path D(wt) is estimated by a softmax function:

P(wt |D(wt)) =
exp(yt,wt)

∑
|V |
k′=1 exp(yt,k′)

(5.3)

We must point out that although we use four jointly trained LSTMs to encode the

hidden states, the training and inference complexity of our model is no different from

a regular LSTM, since at each time step only one LSTM is working.

We implement LSTMz in Equation (5.2b) using a deep LSTM (to simplify notation,

from now on we write z instead of zt). The inputs at time step t are xt and ht ′ (the hidden

state of an earlier time step t ′) and the output is ht (the hidden state of current time step).

Let L denote the layer number of LSTMz and ĥl
t the internal hidden state of the l-th

layer of the LSTMz at time step t, where xt is ĥ0
t and ht ′ is ĥL

t ′ . The LSTM architecture

2We ignore all bias terms for notational simplicity.

5.2. Tree Long Short-Term Memory Networks 73

introduces multiplicative gates and memory cells ĉl
t (at l-th layer) in order to address

the vanishing gradient problem which makes it difficult for the standard RNN model

to learn long-distance correlations in a sequence. Here, ĉl
t is a linear combination of

the current input signal ut and an earlier memory cell ĉl
t ′ . How much input information

ut will flow into ĉl
t is controlled by input gate it and how much of the earlier memory

cell ĉl
t ′ will be forgotten is controlled by forget gate ft . This process is computed as

follows:

ut = tanh(Wz,l
ux · ĥl−1

t +Wz,l
uh · ĥ

l
t ′) (5.4a)

it = σ(Wz,l
ix · ĥ

l−1
t +Wz,l

ih · ĥ
l
t ′) (5.4b)

ft = σ(Wz,l
f x · ĥ

l−1
t +Wz,l

f h · ĥ
l
t ′) (5.4c)

ĉl
t = ft� ĉl

t ′+ it�ut (5.4d)

where Wz,l
ux ∈Rd×d (Wz,l

ux ∈Rd×s when l = 1) and Wz,l
uh ∈R

d×d are weight matrices for

ut , Wz,l
ix and Wz,l

ih are weight matrices for it and Wz,l
f x, and Wz,l

f h are weight matrices for

ft . σ is a sigmoid function and � the element-wise product.

Output gate ot controls how much information of the cell ĉl
t can be seen by other

modules:

ot = σ(Wz,l
ox · ĥl−1

t +Wz,l
oh · ĥ

l
t ′) (5.5a)

ĥl
t = ot� tanh(ĉl

t) (5.5b)

Application of the above process to all layers L, will yield ĥL
t , which is ht . Note that

in implementation, all ĉl
t and ĥl

t (1≤ l ≤ L) at time step t are stored, although we only

care about ĥL
t (ht).

5.2.4 Left Dependent Tree LSTMs

TREELSTM computes P(w|D(w)) based on the dependency path D(w), which ig-

nores the interaction between left and right dependents on the same level. In many

cases, TREELSTM will use a verb to predict its object directly without knowing its

subject. For example, in Figure 5.2, TREELSTM uses 〈ROOT, RIGHT〉 and 〈 sold, RIGHT 〉
to predict cars. This information is unfortunately not specific to cars (many things can

be sold, e.g., chocolates, candy). Considering manufacturer, the left dependent of sold

would help predict cars more accurately.

In order to jointly take left and right dependents into account, we employ yet an-

other LSTM, which goes from the furthest left dependent to the closest left dependent

74 Chapter 5. Beyond Sequence Learning: Structure based Generation

w0

w0w1w2

w4 w5 w6

w0 w4 w5

G
EN-L

GEN-NX-LGEN-NX-L

GEN-R

GEN-NX-R GEN-NX-R

w1w2w3

LD LD

Figure 5.5: Generation of left and right dependents of node w0 according to LDTREEL-

STM.

(LD is a shorthand for left dependent). As shown in Figure 5.5, LD LSTM learns the

representation of all left dependents of a node w0; this representation is then used to

predict the first right dependent of the same node. Non-first right dependents can also

leverage the representation of left dependents, since this information is injected into the

hidden state of the first right dependent and can percolate all the way. Note that in or-

der to retain the generation capability of our model (Section 5.3.4), we only allow right

dependents to leverage left dependents (they are generated before right dependents).

The computation of the LDTREELSTM is almost the same as in TREELSTM ex-

cept when zt = GEN-R. In this case, let vt be the corresponding left dependent se-

quence with length K (vt = (w3,w2,w1) in Figure 5.5). Then, the hidden state (qk) of

vt at each time step k is:

mk = We · e(vt,k) (5.6a)

qk = LSTMLD(mk,qk−1) (5.6b)

where qK is the representation for all left dependents. Then, the computation of the

current hidden state becomes (see Equation (5.2) for the original computation):

rt =

[
We · e(wt ′)

qK

]
(5.7a)

ht = LSTMGEN-R(rt ,H[:, t ′]) (5.7b)

where qK serves as additional input for LSTMGEN-R. All other computational details

are the same as in TreeLSTM (see Section 5.2.3).

5.3. Experiments 75

5.2.5 Model Training

On small scale datasets we employ Negative Log-likelihood (NLL) as our training

objective for both TREELSTM and LDTREELSTM:

LNLL(θ) =− 1
|S | ∑S∈S

logP(S|T) (5.8)

where S is a sentence in the training set S , T is the dependency tree of S and P(S|T) is

defined as in Equation (5.1).

On large scale datasets (e.g., with vocabulary size of 65K), computing the out-

put layer activations and the softmax function with NLL would become prohibitively

expensive. Instead, we employ Noise Contrastive Estimation (NCE; Gutmann and

Hyvärinen (2012), Mnih and Teh (2012)) which treats the normalization term Ẑ in

P̂(w|D(wt)) =
exp(Who[w,:]·ht)

Ẑ
as constant. The intuition behind NCE is to discriminate

between samples from a data distribution P̂(w|D(wt)) and a known noise distribution

Pn(w) via binary logistic regression. Assuming that noise words are k times more fre-

quent than real words in the training set (Mnih and Teh, 2012), then the probability of

a word w being from our model Pd(w,D(wt)) is P̂(w|D(wt))

P̂(w|D(wt))+kPn(w)
. We apply NCE to

large vocabulary models with the following training objective:

LNCE(θ) =− 1
|S | ∑

T∈S

|T |

∑
t=1

(
logPd(wt ,D(wt))

+
k

∑
j=1

log[1−Pd(w̃t, j,D(wt))]

)
where w̃t, j is a word sampled from the noise distribution Pn(w). We use smoothed

unigram frequencies (exponentiating by 0.75) as the noise distribution Pn(w) (Mikolov

et al., 2013b). We initialize ln Ẑ = 9 as suggested in Chen et al. (2015), but instead of

keeping it fixed we also learn Ẑ during training (Vaswani et al., 2013). We set k = 20.

5.3 Experiments

We assess the performance of our model on two tasks: the Microsoft Research (MSR)

sentence completion challenge (Zweig and Burges, 2012), and dependency parsing

reranking. We also demonstrate the tree generation capability of our models with the

help of classifiers predicting scaffolding tree structures. Note that in the first two ex-

periments and the training stage of the third experiment, we all need a dependency

76 Chapter 5. Beyond Sequence Learning: Structure based Generation

parser to first parse the text to be processed (we assume the depedency trees are given),

but during the test stage of experiment three, our models can predict tree structures on

the fly. In the following, we first present details on model training and then present our

results. We implemented our models using the Torch library (Collobert et al., 2011)

and our code is available at https://github.com/XingxingZhang/td-treelstm.

5.3.1 Training Details

We trained our model with back propagation through time (Rumelhart et al., 1988)

on an Nvidia GPU Card with a mini-batch size of 64. The objective (NLL or NCE)

was minimized by stochastic gradient descent. Model parameters were uniformly ini-

tialized in [−0.1,0.1]. We used the NCE objective on the MSR sentence completion

task (due to the large size of this dataset) and the NLL objective on dependency pars-

ing reranking. We used an initial learning rate of 1.0 for all experiments and when

there was no significant improvement in log-likelihood on the validation set (usu-

ally around the 10th epoch), the learning rate was divided by 2 per epoch until con-

vergence (Mikolov et al., 2010). To alleviate the exploding gradients problem, we

rescaled the gradient g when the gradient norm ||g|| > 5 and set g = 5g
||g|| (Pascanu

et al., 2013; Sutskever et al., 2014). Dropout (Srivastava et al., 2014) was applied to

the 2-layer TREELSTM and LDTREELSTM models. The word embedding size was

set to s = d/2 where d is the hidden unit size.

5.3.2 Microsoft Sentence Completion Challenge

The task in the MSR Sentence Completion Challenge (Zweig et al., 2012) is to select

the correct missing word for 1,040 SAT-style test sentences when presented with five

candidate completions. Here is an example:

I have seen on him , and could to it .

a) write b) migrate c) climb d) swear e) contribute

The training set contains 522 novels from the Project Gutenberg which we prepro-

cessed as follows. After removing headers and footers from the files, we tokenized and

parsed the dataset into dependency trees with the Stanford Core NLP toolkit (Manning

et al., 2014). The resulting training set contained 49M words. We converted all words

to lower case and replaced those occurring five times or less with UNK. The resulting

5.3. Experiments 77

vocabulary size was 65,346 words. We randomly sampled 4,000 sentences from the

training set as our validation set.

The literature describes two main approaches to the sentence completion task based

on word vectors and language models. In vector-based approaches, all words in the

sentence and the five candidate words are represented by a vector; the candidate which

has the highest average similarity with the sentence words is selected as the answer.

For language model-based methods, the LM computes the probability of a test sentence

with each of the five candidate words, and picks the candidate completion which gives

the highest probability. Our model belongs to this class of models.

Table 5.1 presents a summary of our results together with previously published

results. The best performing word vector model is IVLBL (Mnih and Kavukcuoglu,

2013) with an accuracy of 55.5, while the best performing single language model is

LBL (Mnih and Teh, 2012) with an accuracy of 54.7. Both approaches are based

on the log-bilinear language model (Mnih and Hinton, 2007). A combination of sev-

eral recurrent neural networks and the skip-gram model holds the state of the art with

an accuracy of 58.9 (Mikolov et al., 2013a). To fairly compare with existing mod-

els, we restrict the layer size of our models to 1. We observe that LDTREELSTM

consistently outperforms TREELSTM, which indicates the importance of modeling

the interaction between left and right dependents. In fact, LDTREELSTM (d = 400)

achieves a new state-of-the-art on this task3, despite being a single model (previous

state-of-the-art (Mikolov et al., 2013a) used a combination of several models). We

also implement LSTM and bidirectional LSTM language models.4 An LSTM with

d = 400 outperforms its smaller counterpart (d = 300), however performance de-

creases with d = 450. The bidirectional LSTM is worse than the LSTM (see Mnih

and Teh (2012) for a similar observation). The best performing LSTM is worse than a

LDTREELSTM (d = 300). The input and output embeddings (We and Who) dominate

the number of parameters in all neural models except for RNNME, depRNN+3gram

and ldepRNN+4gram, which include a ME model that contains 1 billion sparse n-gram

features (Mikolov, 2012; Mirowski and Vlachos, 2015). The number of parameters in

TREELSTM and LDTREELSTM is not much larger compared to LSTM due to the

tied We and Who matrices.

3Now the state-of-the-art is 69.2 achieved by the recurrent memory network (Tran et al., 2016).
4LSTMs and BiLSTMs were also trained with NCE (s = d/2; hyperparameters were tuned on the

development set).

78 Chapter 5. Beyond Sequence Learning: Structure based Generation

Model d |θ| Accuracy

Word Vector based Models

LSA — — 49.0

Skip-gram 640 102M 48.0

IVLBL 600 96.0M 55.5

Language Models

KN5 — — 40.0

UDepNgram — — 48.3

LDepNgram — — 50.0

RNN 300 48.1M 45.0

RNNME 300 1120M 49.3

depRNN+3gram 100 1014M 53.5

ldepRNN+4gram 200 1029M 50.7

LBL 300 48.0M 54.7

LSTM 300 29.9M 55.00

LSTM 400 40.2M 57.02

LSTM 450 45.3M 55.96

Bidirectional LSTM 200 33.2M 48.46

Bidirectional LSTM 300 50.1M 49.90

Bidirectional LSTM 400 67.3M 48.65

Model Combinations

RNNMEs — — 55.4

Skip-gram + RNNMEs — — 58.9

Our Models

TREELSTM 300 31.6M 55.29

LDTREELSTM 300 32.5M 57.79

TREELSTM 400 43.1M 56.73

LDTREELSTM 400 44.7M 60.67

Table 5.1: Model accuracy on the MSR sentence completion task. The results of KN5,

RNNME and RNNMEs are reported in Mikolov (2012), LSA and RNN in Zweig et al.

(2012), UDepNgram and LDepNgram in Gubbins and Vlachos (2013), depRNN+3gram

and depRNN+4gram in Mirowski and Vlachos (2015), LBL in Mnih and Teh (2012),

Skip-gram and Skip-gram+RNNMEs in Mikolov et al. (2013a), and IVLBL in Mnih and

Kavukcuoglu (2013); d is the hidden size and |θ| the number of parameters in a model.

5.3. Experiments 79

Parser
Development Test

UAS LAS UAS LAS

MSTParser-2nd 92.20 88.78 91.63 88.44

TREELSTM 92.51 89.07 91.79 88.53

TREELSTM* 92.64 89.09 91.97 88.69

LDTREELSTM 92.66 89.14 91.99 88.69

NN parser* 92.00 89.70 91.80 89.60

S-LSTM* 93.20 90.90 93.10 90.90

Table 5.2: Performance of TREELSTM and LDTREELSTM on reranking the top de-

pendency trees produced by the 2nd order MSTParser (McDonald and Pereira, 2006).

Results for the NN and S-LSTM parsers are reported in Chen and Manning (2014) and

Dyer et al. (2015), respectively. * indicates that the model is initialized with pre-trained

word vectors.

5.3.3 Dependency Parsing

In this section we demonstrate that our model can be also used for parse reranking.

This is not possible for sequence-based language models since they cannot estimate

the probability a sentence given its (possible) tree structure. A dependency parser

estimates the probability of a tree T given a sentence S, P(T |S), while our model

estimates P(S|T). S is known, therefore

P(T |S) ∝ P(S|T)P(T) (5.9)

We do not have much prior information on T and therefore we assume T is uniformly

distributed among all possible trees. Then, we have

T ∗ = argmax
T

P(T |S) = argmax
T

P(S|T)P(T) = argmax
T

P(S|T) (5.10)

Therefore, we can use our model to rerank dependency parsing. We use our mod-

els to rerank the top K dependency trees produced by the second order MSTParser

(McDonald and Pereira, 2006).5 We follow closely the experimental setup of Chen

and Manning (2014) and Dyer et al. (2015). Specifically, we trained TREELSTM and

LDTREELSTM on Penn Treebank sections 2–21. We used section 22 for development

and section 23 for testing. We adopted the Stanford basic dependency representations

5http://www.seas.upenn.edu/ strctlrn/MSTParser

80 Chapter 5. Beyond Sequence Learning: Structure based Generation

(De Marneffe et al., 2006); part-of-speech tags were predicted with the Stanford Tag-

ger (Toutanova et al., 2003). We trained TREELSTM and LDTREELSTM as language

models (singletons were replaced with UNK) and did not use any POS tags, depen-

dency labels or composition features, whereas these features are used in Chen and

Manning (2014) and Dyer et al. (2015). We tuned d, the number of layers, and K on

the development set.

Table 5.2 reports unlabeled attachment scores (UAS) and labeled attachment scores

(LAS) for the MSTParser, TREELSTM (d = 300, 1 layer, K = 2), and LDTREELSTM

(d = 200, 2 layers, K = 4). We also tried larger K, but did not get better performance.

Probably because our model only see sentences with their gold trees during training

and thus still lack the capability to assign proper probabilities to sentences given trees

with mistakes. We also include the performance of two neural network-based depen-

dency parsers; Chen and Manning (2014) use a neural network classifier to predict the

correct transition (NN parser); Dyer et al. (2015) also implement a transition-based

dependency parser using LSTMs to represent the contents of the stack and buffer in a

continuous space. As can be seen, both TREELSTM and LDTREELSTM outperform

the baseline MSTParser, with LDTREELSTM performing best. We also initialized

the word embedding matrix We with pre-trained GLOVE vectors (Pennington et al.,

2014). We obtained a slight improvement over TREELSTM (TREELSTM* in Ta-

ble 5.2; d = 200, 2 layer, K = 4) but no improvement over LDTREELSTM. Finally,

notice that LDTREELSTM is slightly better than the NN parser in terms of UAS but

worse than the S-LSTM parser. In the future, we would like to extend our model so

that it takes labeled dependency information into account.

5.3.4 Tree Generation

This section demonstrates how to use a trained LDTREELSTM to generate tree sam-

ples. The generation starts at the ROOT node. At each time step t, for each node wt , we

add a new edge and node to the tree. Unfortunately during generation, we do not know

which type of edge to add. We therefore use four binary classifiers (ADD-LEFT, ADD-

RIGHT, ADD-NX-LEFT and ADD-NX-RIGHT) to predict whether we should add a

LEFT, RIGHT, NX-LEFT or NX-RIGHT edge.6 These binary classifiers actually try to

6It is possible to get rid of the four classifiers by adding START/STOP symbols when generating
left and right dependents as in Eisner (1996). We refrained from doing this for computational reasons.
For a sentence with N words, this approach will lead to 2N additional START/STOP symbols (with
one START and one STOP symbol for each word). Consequently, the computational cost and memory
consumption during training will be three times as much rendering our model less scalable.

5.4. Conclusions 81

Profit widened to $ UNK million , from $ 1.37 billion a year earlier .

ROOT

But Mr. O’Kicki said all industry executives certainly do n’t have to focus now .

ROOT

That would postpone a stock activity in the forefront of the monetary policy .

ROOT

Figure 5.6: Generated dependency trees with LDTREELSTM trained on the PTB.

predict the scaffolding tree structure described in Section 5.2.2. Then when a classifier

predicts true, we use the corresponding LSTM to generate a new node by sampling

from the predicted word distribution in Equation (6.5). The four classifiers take the

previous hidden state H[:, t ′] and the output embedding of the current node Who ·e(wt)

as features.7 Specifically, we use a trained LDTREELSTM to go through the training

corpus and generate hidden states and embeddings as input features; the correspond-

ing class labels (true and false) are “read off” the training dependency trees. We use

two-layer rectifier networks (Glorot et al., 2011) as the four classifiers with a hidden

size of 300. We use the same LDTREELSTM model as in Section 5.3.3 to generate

dependency trees. The classifiers were trained using AdaGrad (Duchi et al., 2011) with

a learning rate of 0.01. The accuracies of ADD-LEFT, ADD-RIGHT, ADD-NX-LEFT

and ADD-NX-RIGHT are 94.3%, 92.6%, 93.4% and 96.0%, respectively. Figure 5.6

shows examples of generated trees.

5.4 Conclusions

In this paper we developed TREELSTM (and LDTREELSTM), a neural network model

architecture, which is designed to predict tree structures rather than linear sequences.

7The input embeddings have lower dimensions and therefore result in slightly worse classifiers.

82 Chapter 5. Beyond Sequence Learning: Structure based Generation

Experimental results on the MSR sentence completion task show that LDTREELSTM

is superior to sequential LSTMs. Dependency parsing reranking experiments highlight

our model’s potential for dependency parsing. Finally, the ability of our model to gen-

erate dependency trees holds promise for text generation applications such as sentence

compression and simplification (Filippova et al., 2015). Although our experiments

have focused exclusively on dependency trees, there is nothing inherent in our formu-

lation that disallows its application to other types of tree structure such as constituent

trees or even taxonomies.

Chapter 6

More on Structure based Generation

We have shown in the previous chapter that our dependency tree strucuture based mod-

els (i.e. TREELSTM and LDTREELSTM) can outperform sequence based models.

Both TREELSTM and LDTREELSTM rely on a pretrained dependency parser. This

chapter explores whether better dependency parsers can further improve the perfor-

mance of our tree based models. We first propose a new dependency parser and then

apply it to our TREELSTM and LDTREELSTM models.

Conventional graph-based dependency parsers guarantee a tree structure both dur-

ing training and inference. Instead, we formalize dependency parsing as the problem

of independently selecting the head of each word in a sentence. Our model which we

call DENSE (as shorthand for Dependency Neural Selection) produces a distribution

over possible heads for each word using features obtained from a bidirectional recur-

rent neural network. Without enforcing structural constraints during training, DENSE

generates (at inference time) trees for the overwhelming majority of sentences, while

non-tree outputs can be adjusted with a maximum spanning tree algorithm. We eval-

uate DENSE on four languages (English, Chinese, Czech, and German) with varying

degrees of non-projectivity. Despite the simplicity of the approach, our parsers are on

par with the state of the art.1 We empirically found that better dependency parsers are

indeed helpful for our TREELSTM and LDTREELSTM models.

6.1 Introduction

Dependency parsing plays an important role in many natural language applications,

such as relation extraction (Fundel et al., 2007), machine translation (Carreras and

1Our code is available at http://github.com/XingxingZhang/dense_parser.

83

84 Chapter 6. More on Structure based Generation

Collins, 2009), language modeling (Chelba et al., 1997; Zhang et al., 2016) and on-

tology construction (Snow et al., 2005). Dependency parsers represent syntactic in-

formation as a set of head-dependent relational arcs, typically constrained to form a

tree. Practically all models proposed for dependency parsing in recent years can be

described as graph-based (McDonald et al., 2005a) or transition-based (Yamada and

Matsumoto, 2003; Nivre et al., 2006b).

Graph-based dependency parsers are typically arc-factored, where the score of a

tree is defined as the sum of the scores of all its arcs. An arc is scored with a set of local

features and a linear model, the parameters of which can be effectively learned with on-

line algorithms (Crammer and Singer, 2001, 2003; Freund and Schapire, 1999; Collins,

2002). In order to efficiently find the best scoring tree during training and decoding,

various maximization algorithms have been developed (Eisner, 1996, 2000; McDonald

et al., 2005b). In general, graph-based methods are optimized globally, using features

of single arcs in order to make the learning and inference tractable. Transition-based

algorithms factorize a tree into a set of parsing actions. At each transition state, the

parser scores a candidate action conditioned on the state of the transition system and

the parsing history, and selects high-scoring actions to execute. This score is typically

obtained with a classifier based on non-local features defined over a rich history of

parsing decisions (Yamada and Matsumoto, 2003; Zhang and Nivre, 2011).

Regardless of the algorithm used, most well-known dependency parsers, such as

the MST-Parser (McDonald et al., 2005b) and the MaltPaser (Nivre et al., 2006a), rely

on extensive feature engineering. Feature templates are typically manually designed

and aim at capturing head-dependent relationships which are notoriously sparse and

difficult to estimate. More recently, a few approaches (Chen and Manning, 2014; Pei

et al., 2015; Kiperwasser and Goldberg, 2016) apply neural networks for learning dense

feature representations. The learned features are subsequently used in a conventional

graph- or transition-based parser, or better designed variants (Dyer et al., 2015).

In this work, we propose a simple neural network-based model which learns to

select the head for each word in a sentence without enforcing tree structured output.

Our model which we call DENSE (as shorthand for Dependency Neural Selection)

employs bidirectional recurrent neural networks to learn feature representations for

words in a sentence. These features are subsequently used to predict the head of each

word. Although there is nothing inherent in the model to enforce tree-structured output,

when tested on an English dataset, it is able to generate trees for 95% of the sentences,

87% of which are projective. The remaining non-tree (or non-projective) outputs are

6.2. Related Work 85

post-processed with the Chu-Liu-Edmond (or Eisner) algorithm. DENSE uses the

head selection procedure to estimate arc weights during training. During testing, it

essentially reduces to a standard graph-based parser when it fails to produce tree (or

projective) output.

We evaluate our model on benchmark dependency parsing corpora, representing

four languages (English, Chinese, Czech, and German) with varying degrees of non-

projectivity. Despite the simplicity of our approach, experiments show that the result-

ing parsers are on par with the state of the art.

6.2 Related Work

6.2.1 Graph-based Parsing

Graph-based dependency parsers employ a model for scoring possible dependency

graphs for a given sentence. The graphs are typically factored into their component

arcs and the score of a tree is defined as the sum of its arcs. This factorization enables

tractable search for the highest scoring graph structure which is commonly formulated

as the search for the maximum spanning tree (MST). The Chu-Liu-Edmonds algorithm

(Chu and Liu, 1965; Edmonds, 1967; McDonald et al., 2005b) is often used to extract

the MST in the case of non-projective trees, and the Eisner algorithm (Eisner, 1996,

2000) in the case of projective trees. During training, weight parameters of the scoring

function can be learned with margin-based algorithms (Crammer and Singer, 2001,

2003) or the structured perceptron (Freund and Schapire, 1999; Collins, 2002). Beyond

basic first-order models, the literature offers a few examples of higher-order models

involving sibling and grand parent relations (Carreras, 2007; Koo et al., 2010; Zhang

and McDonald, 2012). Although more expressive, such models render both training

and inference more challenging.

6.2.2 Transition-based Parsing

As the term implies, transition-based parsers conceptualize the process of transform-

ing a sentence into a dependency tree as a sequence of transitions. A transition system

typically includes a stack for storing partially processed tokens, a buffer containing

the remaining input, and a set of arcs containing all dependencies between tokens that

have been added so far (Nivre, 2003; Nivre et al., 2006b). A dependency tree is con-

structed by manipulating the stack and buffer, and appending arcs with predetermined

86 Chapter 6. More on Structure based Generation

operations. Most popular parsers employ an arc-standard (Yamada and Matsumoto,

2003; Nivre, 2004) or arc-eager transition system (Nivre, 2008). Extensions of the

latter include the use of non-local training methods to avoid greedy error propagation

(Zhang and Clark, 2008; Huang and Sagae, 2010; Zhang and Nivre, 2011; Goldberg

and Nivre, 2012).

6.2.3 Neural Network-based Features

Neural network representations have a long history in syntactic parsing (Mayberry

and Miikkulainen, 1999; Henderson, 2004; Titov and Henderson, 2007). Recent work

uses neural networks in lieu of the linear classifiers typically employed in conven-

tional transition- or graph-based dependency parsers. For example, Chen and Man-

ning (2014) use a feed forward neural network to learn features for a transition-based

parser, whereas Pei et al. (2015) do the same for a graph-based parser. Lei et al. (2014)

apply tensor decomposition to obtain word embeddings in their syntactic roles, which

they subsequently use in a graph-based parser. Dyer et al. (2015) redesign compo-

nents of a transition-based system where the buffer, stack, and action sequences are

modeled separately with stack long short-term memory networks. The hidden states

of these LSTMs are concatenated and used as features to a final transition classifier.

Kiperwasser and Goldberg (2016) use bidirectional LSTMs to extract features for a

transition- and graph-based parser, whereas Cross and Huang (2016) build a greedy

arc-standard parser using similar features.

In our work, we formalize dependency parsing as the task of finding for each word

in a sentence its most probable head. Both head selection and the features it is based

on are learned using neural networks. The idea of modeling child-parent relations in-

dependently dates back to Hall (2007) who use an edge-factored model to generate

k-best parse trees which are subsequently reranked using a model based on rich global

features. Later Smith (2010) show that a head selection variant of their loopy be-

lief propagation parser performs worse than a model which incorporates tree structure

constraints. Our parser is conceptually simpler: we rely on head selection to do most

of the work and decode the best tree directly without using a reranker. In common

with recent neural network-based dependency parsers, we aim to alleviate the need for

hand-crafting feature combinations. Beyond feature learning, we further show that it

is possible to simplify the training of a graph-based dependency parser in the context

of bidirectional recurrent neural networks.

6.3. Dependency Parsing as Head Selection 87

ROOT kids love candy

Phead(ROOT|love,S)

Phead(kids|love,S)
Phead(candy|love,S)

Figure 6.1: DENSE estimates the probability a word being the head of another word

based on bidirectional LSTM representations for the two words. Phead(ROOT|love,S) is

the probability of ROOT being the head of love (dotted arcs denote candidate heads;

the solid arc is the goldstandard).

6.3 Dependency Parsing as Head Selection

In this section we present our parsing model, DENSE, which tries to predict the head of

each word in a sentence. Specifically, the model takes as input a sentence of length N

and outputs N 〈head, dependent〉 arcs. We describe the model focusing on unlabeled

dependencies and then discuss how it can be straightforwardly extended to the labeled

setting. We begin by explaining how words are represented in our model and then

give details on how DENSE makes predictions based on these learned representations.

Since there is no guarantee that the outputs of DENSE are trees (although they mostly

are), we also discuss how to extend DENSE in order to enforce projective and non-

projective tree outputs. Throughout this chapter, lowercase boldface letters denote

vectors (e.g., v or vi), uppercase boldface letters denote matrices (e.g., M or Mb), and

lowercase letters denote scalars (e.g., w or wi).

6.3.1 Word Representation

Let S = (w0,w1, . . . ,wN) denote a sentence of length N; following common practice in

the dependency parsing literature (Kübler et al., 2009), we add an artificial ROOT to-

ken represented by w0. Analogously, let A = (a0,a1, . . . ,aN) denote the representation

88 Chapter 6. More on Structure based Generation

of sentence S, with ai representing word wi (0 ≤ i ≤ N). Besides encoding infor-

mation about each wi in isolation (e.g., its lexical meaning or POS tag), ai must also

encode wi’s positional information within the sentence. Such information has been

shown to be important in dependency parsing (McDonald et al., 2005a). For example,

in the following sentence:

ROOT a dog is chasing a cat

the head of the first a is dog, whereas the head of the second a is cat. Without consid-

ering positional information, a model cannot easily decide which a (nearer or farther)

to assign to dog.

Long short-term memory networks (Hochreiter and Schmidhuber, 1997; LSTMs),

a type of recurrent neural network with a more complex computational unit, have

proven effective at capturing long-term dependencies. In our case LSTMs allow to

represent each word on its own and within a sequence leveraging long-range contex-

tual information. As shown in Figure 6.1, we first use a forward LSTM (LSTMF) to

read the sentence from left to right and then a backward LSTM (LSTMB) to read the

sentence from right to left, so that the entire sentence serves as context for each word:2

hF
i ,c

F
i = LSTMF(xi,hF

i−1,c
F
i−1) (6.1)

hB
i ,c

B
i = LSTMB(xi,hB

i+1,c
B
i+1) (6.2)

where xi is the feature vector of word wi, hF
i ∈ Rd and cF

i ∈ Rd are the hidden states

and memory cells for the ith word wi in LSTMF and d is the hidden unit size. hF
i is

also the representation for w0:i (wi and its left neighboring words) and cF
i is an internal

state maintained by LSTMF . hB
i ∈ Rd and cB

i ∈ Rd are the hidden states and memory

cells for the backward LSTMB. Each token wi is represented by xi, the concatenation

of two vectors corresponding to wi’s lexical and POS tag embeddings:

xi = [We · e(wi);Wt · e(ti)] (6.3)

where e(wi) and e(ti) are one-hot vector representations of token wi and its POS tag ti;

We ∈ Rs×|V | and Wt ∈ Rq×|T | are the word and POS tag embedding matrices, where

|V | is the vocabulary size, s is the word embedding size, |T | is the POS tag set size,

2For more detail on LSTM networks, see e.g., Graves (2012) or Goldberg (2016).

6.3. Dependency Parsing as Head Selection 89

and q the tag embedding size. The hidden states of the forward and backward LSTMs

are concatenated to obtain ai, the final representation of wi:

ai = [hF
i ;hB

i] i ∈ [0,N] (6.4)

Note that bidirectional LSTMs are one of many possible ways of representing

word wi. Alternative representations include embeddings obtained from feed-forward

neural networks (Chen and Manning, 2014; Pei et al., 2015), character-based embed-

dings (Ballesteros et al., 2015), and more conventional features such as those intro-

duced in McDonald et al. (2005a).

6.3.2 Head Selection

We now move on to discuss our formalization of dependency parsing as head selec-

tion. We begin with unlabeled dependencies and then explain how the model can be

extended to predict labeled ones.

In a dependency tree, a head can have multiple dependents, whereas a depen-

dent can have only one head. Based on this fact, dependency parsing can be for-

malized as follows. Given a sentence S = (w0,w1, . . . ,wN), we aim to find for each

word wi ∈ {w1,w2, . . . ,wn} the most probable head w j ∈ {w0,w1, . . . ,wN}. For ex-

ample, in Figure 6.1, to find the head for the token love, we calculate probabilities

Phead(ROOT|love,S), Phead(kids|love,S), and Phead(candy|love,S), and select the high-

est. More formally, we estimate the probability of token w j being the head of token wi

in sentence S as:

Phead(w j|wi,S) =
exp(g(a j,ai))

∑
N
k=0 exp(g(ak,ai))

(6.5)

where ai and a j are vector-based representations of wi and w j, respectively (described

in Section 6.3.1); g(a j,ai) is a neural network with a single hidden layer that computes

the associative score between representations ai and a j:

g(a j,ai) = v>a · tanh(Ua ·a j +Wa ·ai) (6.6)

where va ∈R2d , Ua ∈R2d×2d , and Wa ∈R2d×2d are weight matrices of g. Note that the

candidate head w j can be the ROOT, while the dependent wi cannot. Equations (6.5)

and (6.6) compute the probability of adding an arc between two words, in a fashion

similar to the neural attention mechanism in sequence-to-sequence models (Bahdanau

et al., 2015).

90 Chapter 6. More on Structure based Generation

We train our model by minimizing the negative log likelihood of the gold standard

〈head, dependent〉 arcs in all training sentences:

J(θ) =− 1
|T | ∑

S∈T

NS

∑
i=1

logPhead(h(wi)|wi,S) (6.7)

where T is the training set, h(wi) is wi’s gold standard head3 within sentence S, and

NS the number of words in S (excluding ROOT). During inference, for each word

wi (i ∈ [1,NS]) in S, we greedily choose the most likely head w j (j ∈ [0,NS]):

w j = argmax
w j: j∈[0,NS]

Phead(w j|wi,S) (6.8)

Note that the prediction for each word wi is made independently of the other words in

the sentence.

Given our greedy inference method, there is no guarantee that predicted 〈head,

dependent〉 arcs form a tree (maybe there are cycles). However, we empirically ob-

served that most outputs during inference are indeed trees. For instance, on an English

dataset, 95% of the arcs predicted on the development set are trees, and 87% of them

are projective, whereas on a Chinese dataset, 87% of the arcs form trees, 73% of which

are projective. This indicates that although the model does not explicitly model tree

structure during training, it is able to figure out from the data (which consists of trees)

that it should predict them.

So far we have focused on unlabeled dependencies, however it is relatively straight-

forward to extend DENSE to produce labeled dependencies. We basically train an

additional classifier to predict labels for the arcs which have been already identified.

The classifier takes as input features [ai;a j;xi;x j] representing properties of the arc

〈w j,wi〉. These consist of ai and a j, the LSTM-based representations for wi and w j

(see Equation (6.4)), and their word and part-of-speech embeddings, xi and x j (see

Equation (6.3)). Specifically, we use a trained DENSE model to go through the train-

ing corpus and generate features and corresponding dependency labels as training data.

We employ a two-layer rectifier network (Glorot et al., 2011) for the classification task.

6.3.3 Maximum Spanning Tree Algorithms

As mentioned earlier, greedy inference may not produce well-formed trees. In this

case, the output of DENSE can be adjusted with a maximum spanning tree algorithm.

3Note that h(wi) can be ROOT.

6.3. Dependency Parsing as Head Selection 91

We use the Chu-Liu-Edmonds algorithm (Chu and Liu, 1965; Edmonds, 1967) for

building non-projective trees and the Eisner (Eisner, 1996) algorithm for projective

ones.

Following McDonald et al. (2005a), we view a sentence S=(w0 = ROOT,w1, . . . ,wN)

as a graph GS = 〈VS,ES〉 with the sentence words and the dummy root symbol as ver-

tices and a directed edge between every pair of distinct words and from the root symbol

to every word. The directed graph GS is defined as:

VS = {w0 = ROOT,w1, . . . ,wN}

ES = {〈i, j〉 : i 6= j,〈i, j〉 ∈ [0,N]× [1,N]}

s(i, j) = Phead(wi|w j,S) 〈i, j〉 ∈ ES

where s(i, j) is the weight of edge 〈i, j〉 and Phead(wi|w j,S) is known. The problem of

dependency parsing now boils down to finding the tree with the highest score which is

equivalent to finding a MST in GS (McDonald et al., 2005b).

Non-projective Parsing To build a non-projective parser, we solve the MST problem

with the Chu-Liu-Edmonds algorithm (Chu and Liu, 1965; Edmonds, 1967). The al-

gorithm selects for each vertex (excluding ROOT) the in-coming edge with the highest

weight. If a tree results, it must be the maximum spanning tree and the algorithm ter-

minates. Otherwise, there must be a cycle which the algorithm identifies, contracts

into a single vertex and recalculates edge weights going into and out of the cycle. The

greedy inference strategy described in Equation (6.8) is essentially a sub-procedure in

the Chu-Liu-Edmonds algorithm with the algorithm terminating after the first iteration.

In implementation, we only run the Chu-Liu-Edmonds algorithm through graphs with

cycles, i.e., non-tree outputs.

Projective Parsing For projective parsing, we solve the MST problem with the Eisner

(Eisner, 1996) algorithm. The time complexity of the Eisner algorithm is O(N3), while

checking if a tree is projective can be done reasonably faster, with a O(N logN) algo-

rithm. Therefore, we only apply the Eisner algorithm to the non-projective output

of our greedy inference strategy. Finally, it should be noted that the training of our

model does not rely on the Chu-Liu-Edmonds or Eisner algorithm, or any other graph-

based algorithm. MST algorithms are only used at test time to correct non-tree outputs

which are a minority; DENSE acquires underlying tree structure constraints from the

data without an explicit learning algorithm.

92 Chapter 6. More on Structure based Generation

6.4 Parsing Experiments

We evaluated our parser in a projective and non-projective setting. In the following,

we describe the datasets we used and provide training details for our models. We also

present comparisons against multiple previous systems and analyze the parser’s output.

6.4.1 Datasets

In the projective setting, we assessed the performance of our parser on the English

Penn Treebank (PTB) and the Chinese Treebank 5.1 (CTB). Our experimental setup

closely follows Chen and Manning (2014) and Dyer et al. (2015).

For English, we adopted the Stanford basic dependencies (SD) representation (De Marn-

effe et al., 2006).4 We follow the standard splits of PTB, sections 2–21 were used for

training, section 22 for development, and section 23 for testing. POS tags were as-

signed using the Stanford tagger (Toutanova et al., 2003) with an accuracy of 97.3%.

For Chinese, we follow the same split of CTB5 introduced in Zhang and Clark (2008).

In particular, we used sections 001–815, 1001–1136 for training, sections 886–931,

1148–1151 for development, and sections 816–885, 1137–1147 for testing. The origi-

nal constituency trees in CTB were converted to dependency trees with the Penn2Malt

tool.5 We used gold segmentation and gold POS tags as in Chen and Manning (2014)

and Dyer et al. (2015).

In the non-projective setting, we assessed the performance of our parser on Czech

and German, the largest non-projective datasets released as part of the CoNLL 2006

multilingual dependency parsing shared task6. Since there is no official development

set in either dataset, we used the last 374/367 sentences in the Czech/German training

set as development data.7 Projective statistics of the four datasets are summarized in

Table 6.1.

6.4.2 Training Details

We trained our models on an Nvidia GPU card; training takes one to two hours. Model

parameters were uniformly initialized to [−0.1,0.1]. We used Adam (Kingma and

4We obtained SD representations using the Stanford parser v.3.3.0.
5http://stp.lingfil.uu.se/˜nivre/research/Penn2Malt.html
6The reason we choose the largest two datasets is because our model, which is based on LSTMs,

might be data hungry. Vania et al. (2017) applies a similar model as ours (the main difference is they
use character embeddings) to other non-projective languages and get pretty good results.

7We make the number of sentences in the development and test sets comparable.

6.4. Parsing Experiments 93

Dataset # Sentences (%) Projective

English 39,832 99.9

Chinese 16,091 100.0

Czech 72,319 76.9

German 38,845 72.2

Table 6.1: Projective statistics on four datasets. Number of sentences and percentage

of projective trees are calculated on the training set.

Ba, 2014) to optimize our models with hyper-parameters recommended by the authors

(i.e., learning rate 0.001, first momentum coefficient 0.9, and second momentum co-

efficient 0.999). To alleviate the exploding gradient problem, we rescaled the gradient

when its norm exceeded 5 (Pascanu et al., 2013). Dropout (Srivastava et al., 2014)

was applied to our model with the strategy recommended in the literature (Zaremba

et al., 2014; Semeniuta et al., 2016). On all datasets, we used two-layer LSTMs and

set d = s = 300, where d is the hidden unit size and s is the word embedding size.

As in previous neural dependency parsing work (Chen and Manning, 2014; Dyer

et al., 2015), we used pre-trained word vectors to initialize our word embedding ma-

trix We. For the PTB experiments, we used 300 dimensional pre-trained GloVe8 vec-

tors (Pennington et al., 2014). For the CTB experiments, we trained 300 dimensional

GloVe vectors on the Chinese Gigaword corpus which we segmented with the Stanford

Chinese Segmenter (Tseng et al., 2005). For Czech and German, we did not use pre-

trained word vectors. The POS tag embedding size was set to q = 30 in the English

experiments, q = 50 in the Chinese experiments and q = 40 in both Czech and German

experiments.

6.4.3 Results

For both English and Chinese experiments, we report unlabeled (UAS) and labeled at-

tachment scores (LAS) on the development and test sets; following Chen and Manning

(2014) punctuation is excluded from the evaluation.

Experimental results on PTB are shown in Table 6.2. We compared our model

with several recent papers following the same evaluation protocol and experimental

settings. The first block in the table contains mostly graph-based parsers which do

not use neural networks: Bohnet10 (Bohnet, 2010), Martins13 (Martins et al., 2013),
8http://nlp.stanford.edu/projects/glove/

94 Chapter 6. More on Structure based Generation

Dev Test

Parser UAS LAS UAS LAS

Bohnet10 — — 92.88 90.71

Martins13 — — 92.89 90.55

Z&M14 — — 93.22 91.02

Z&N11 — — 93.00 90.95

C&M14 92.00 89.70 91.80 89.60

Dyer15 93.20 90.90 93.10 90.90

Weiss15 — — 93.99 92.05

Andor16 — — 94.61 92.79
K&G16 graph — — 93.10 91.00

K&G16 trans — — 93.90 91.90

DENSE-Pei 90.77 88.35 90.39 88.05

DENSE-Pei+E 91.39 88.94 91.00 88.61

DENSE 94.17 91.82 94.02 91.84

DENSE+E 94.30 91.95 94.10 91.90

Table 6.2: Results on English dataset (PTB with Stanford Dependencies). +E: we post-

process non-projective output with the Eisner algorithm.

and Z&M14 (Zhang and McDonald, 2014). Z&N11 (Zhang and Nivre, 2011) is a

transition-based parser with non-local features. Accuracy results for all four parsers

are reported in Weiss et al. (2015).

The second block in Table 6.2 presents results obtained from neural network-based

parsers. C&M14 (Chen and Manning, 2014) is a transition-based parser using features

learned with a feed forward neural network. Although very fast, its performance is

inferior compared to graph-based parsers or strong non-neural transition based parsers

(e.g., Z&N11). Dyer15 (Dyer et al., 2015) uses (stack) LSTMs to model the states of

the buffer, the stack, and the action sequence of a transition system. Weiss15 (Weiss

et al., 2015) is another transition-based parser, with a more elaborate training proce-

dure. Features are learned with a neural network model similar to C&M14, but much

larger with two layers. The hidden states of the neural network are then used to train a

structured perceptron for better beam search decoding. Andor16 (Andor et al., 2016)

is similar to Weiss15, but uses a globally normalized training algorithm instead.

Unlike all models above, DENSE does not use any kind of transition- or graph-

6.4. Parsing Experiments 95

Dev Test

Parser UAS LAS UAS LAS

Z&N11 — — 86.00 84.40

Z&M14 — — 87.96 86.34

C&M14 84.00 82.40 83.90 82.40

Dyer15 87.20 85.90 87.20 85.70

K&G16 graph — — 86.60 85.10

K&G16 trans — — 87.60 86.10

DENSE-Pei 82.50 80.74 82.38 80.55

DENSE-Pei+E 83.40 81.63 83.46 81.65

DENSE 87.27 85.73 87.63 85.94

DENSE+E 87.35 85.85 87.84 86.15

Table 6.3: Results on Chinese dataset (CTB). +E: we post-process non-projective out-

puts with the Eisner algorithm.

PTB CTB

Parser Dev Test Dev Test

C&M14 43.35 40.93 32.75 32.20

Dyer15 51.94 50.70 39.72 37.23
DENSE 51.24 49.34 34.74 33.66

DENSE+E 52.47 50.79 36.49 35.13

Table 6.4: UEM results on PTB and CTB.

based algorithm during training and inference. Nonetheless, it obtains a UAS of 94.02%.

Around 95% of the model’s outputs after inference are trees, 87% of which are pro-

jective. When we post-process the remaining 13% of non-projective outputs with the

Eisner algorithm (DENSE+E), we obtain a slight improvement on UAS (94.10%).

Kiperwasser and Goldberg (2016) extract features from bidirectional LSTMs and

feed them to a graph- (K&G16 graph) and transition-based parser (K&G16 trans).

Their LSTMs are jointly trained with the parser objective. DENSE yields very similar

performance to their transition-based parser while it outperforms K&G16 graph. A key

difference between DENSE and K&G16 lies in the training objective. The objective of

DENSE is log-likelihood based without tree structure constraints (the model is trained

to produce a distribution over possible heads for each word, where each head selec-

96 Chapter 6. More on Structure based Generation

a. b.

11 14 17 20 23 26 28 32 38 118
PTB sentence length

89

90

91

92

93

94

95

96

U
A

S
 (

%
)

C&M14
DeNSe+E
Dyer15

5 9 14 18 22 26 30 37 49 116
PTB sentence length

80

81

82

83

84

85

86

87

88

89

90

91

92

93

U
A

S
 (

%
)

C&M14
DeNSe+E
Dyer15

CTBCTB

Figure 6.2: UAS against sentence length on PTB and CTB (development set). Sen-

tences are sorted by length in ascending order and divided equally into 10 bins. The

horizontal axis is the length of the last sentence in each bin.

tion is independent), while K&G16 employ a max-margin objective with tree structure

constraints. Although our probabilistic objective is non-structured, it is perhaps easier

to train compared to a margin-based one.

We also assessed the importance of the bidirectional LSTM on its own by replacing

our LSTM-based features with those obtained from a feed-forward network. Specif-

ically, we used the 1-order-atomic features introduced in Pei et al. (2015) which rep-

resent POS-tags, modifiers, heads, and their relative positions. As can be seen in

Table 6.2 (DENSE-Pei), these features are less effective compared to LSTM-based

ones and the contribution of the MST algorithm (Eisner) during decoding is more

pronounced (DENSE-Pei+E). We observe similar trends in the Chinese, German, and

Czech datasets (see Tables 6.3 and 6.5).

Results on CTB follow a similar pattern. As shown in Table 6.3, DENSE outper-

forms all previous neural models (see the test set columns) on UAS and LAS. DENSE

performs competitively with Z&M14, a non-neural model with a complex high order

decoding algorithm involving cube pruning and strategies for encouraging diversity.

Post-processing the output of the parser with the Eisner algorithm generally improves

performance (by 0.21%; see last row in Table 6.3). Again we observe that 1-order-

atomic features (Pei et al., 2015) are inferior compared to the LSTM. Table 6.4 reports

unlabeled sentence level exact match (UEM) in Table 6.4 for English and Chinese.

Interestingly, even when using the greedy inference strategy, DENSE yields a UEM

comparable to Dyer15 on PTB. Finally, in Figure 6.2 we analyze the performance of

6.4. Parsing Experiments 97

Czech German

Parser UAS LAS UAS LAS

MST-1st 86.18 — 89.54 —

MST-2nd 87.30 — 90.14 —

Turbo-1st 87.66 — 90.52 —

Turbo-3rd 90.32 — 92.41 —

RBG-1st 87.90 — 90.24 —

RBG-3rd 90.50 — 91.97 —

DENSE-Pei 86.00 77.92 89.42 86.48

DENSE-Pei+CLE 86.52 78.42 89.52 86.58

DENSE 89.60 81.70 92.15 89.58

DENSE+CLE 89.68 81.72 92.19 89.60

Table 6.5: Non-projective results on the CoNLL 2006 dataset. +CLE: we post-process

non-tree outputs with the Chu-Liu-Edmonds algorithm.

our parser on sentences of different length. On both PTB and CTB, DENSE has an

advantage on long sentences compared to C&M14 and Dyer15.

For Czech and German, we closely follow the evaluation setup of CoNLL 2006.

We report both UAS and LAS, although most previous work has focused on UAS.

Our results are summarized in Table 6.5. We compare DENSE against three non-

projective graph-based dependency parsers: the MST parser (McDonald et al., 2005a),

the Turbo parser (Martins et al., 2013), and the RBG parser (Lei et al., 2014). We

show the performance of these parsers in the first order setting (e.g., MST-1st) and in

higher order settings (e.g., Turbo-3rd). The results of MST-1st, MST-2nd, RBG-1st

and RBG-3rd are reported in Lei et al. (2014) and the results of Turbo-1st and Turbo-

3rd are reported in Martins et al. (2013). We show results for our parser with greedy

inference (see DENSE in the table) and when we use the Chu-Liu-Edmonds algorithm

to post-process non-tree outputs (DENSE+CLE).

As can been seen, DENSE outperforms all other first (and second) order parsers

on both German and Czech. As in the projective experiments, we observe slight a

improvement (on both UAS and LAS) when using a MST algorithm. On German,

DENSE is comparable with the best third-order parser (Turbo-3rd), while on Czech it

lags behind Turbo-3rd and RBG-3rd. This is not surprising considering that DENSE is

a first-order parser and only uses words and POS tags as features. Comparison systems

98 Chapter 6. More on Structure based Generation

Before MST After MST

Dataset #Sent Tree Proj Tree Proj

PTB 1,700 95.1 86.6 100.0 100.0

CTB 803 87.0 73.1 100.0 100.0

Czech 374 87.7 65.5 100.0 72.7

German 367 96.7 67.3 100.0 68.1

Table 6.6: Percentage of trees and projective trees on the development set before and

after DENSE uses a MST algorithm. On PTB and CTB, we use the Eisner algorithm

and on Czech and German, we use the Chu-Liu-Edmonds algorithm.

use a plethora of hand-crafted features and more sophisticated high-order decoding

algorithms. Finally, note that a version of DENSE with features in Pei et al. (2015) is

consistently worse (see the second block in Table 6.5).

Our experimental results demonstrate that using a MST algorithm during inference

can slightly improve the model’s performance. We further examined the extent to

which the MST algorithm is necessary for producing dependency trees. Table 6.6

shows the percentage of trees before and after the application of the MST algorithm

across the four languages. In the majority of cases DENSE outputs trees (ranging from

87.0% to 96.7%) and a significant proportion of them are projective (ranging from

65.5% to 86.6%). Therefore, only a small proportion of outputs (14.0% on average)

need to be post-processed with the Eisner or Chu-Liu-Edmonds algorithm.

6.5 Dependency Language Modeling Experiments

We have shown that on PTB, the DENSE parser performs well. In this section, we

would like to assess the performance of our parser on downstream tasks. Specifically,

we apply it to dependency language models and see if language modeling performance

can be improved on the MSR Sentence Completion Challenge, which was used in

Chapter 5 to assess the performance our tree based language models (TREELSTM

AND LDTREELSTM).

The task in the MSR Sentence Completion Challenge (Zweig et al., 2012) is to

select the correct missing word for 1,040 SAT-style test sentences when presented with

five candidate completions. The training set contains 522 novels from the Project

Gutenberg which we preprocessed as follows. After removing headers and footers

6.6. Conclusions 99

Model PPL Accuracy

TREELSTM + C&M14 67.84 56.73

TREELSTM + DENSE 64.90 57.69

LDTREELSTM + C&M14 57.24 60.67

LDTREELSTM + DENSE 56.17 59.13

Table 6.7: Model accuracies on the MSR sentence completion task. TREELSTM +

C&M14 and LDTREELSTM + C&M14 use the C&M14 parser (Chen and Man-

ning, 2014). As their names indicate, TREELSTM + DENSE and LDTREELSTM +

DENSE use the DENSE dependency parser.

from the files, we tokenized the dataset with the Stanford Core NLP toolkit (Manning

et al., 2014). Sentences are parsed into dependency trees with the C&M14 parser (Chen

and Manning, 2014) and with our DENSE parser, respectively. We therefore obtained

two preprocessed versions of the MSR dataset. Following the settings in Zhang et al.

(2016), we converted all words to lower case and replaced those occurring five times

or less with UNK. The resulting vocabulary size was 65,346 words. We randomly

sampled 4,000 sentences from the training set as our validation set.

As shown in Table 6.7, with a better parser, both TREELSTM and LDTREELSTM

obtain lower perplexities (see TREELSTM + DENSE and LDTREELSTM + DENSE

rows). With DENSE, TREELSTM improves the final accuracy of sentence comple-

tions over C&M14. However, this is not the case for LDTREELSTM. This is perhaps

due to the fact that LDTREELSTM is more robust to parsing errors. Compared to

TREELSTM, in addition to parent nodes, right dependents also rely on left dependents.

Therefore, when a parse assigns a wrong parent to a right dependent, TREELSTM is

not likely to make a correct prediction, while LDTREELSTM may still make a correct

prediction based on its left dependents (maybe some of its left dependents are parsed

correctly).

6.6 Conclusions

In this work we presented DENSE, a neural dependency parser which we train without

a transition system or graph-based algorithm. Experimental results show that DENSE

achieves competitive performance across four different languages and can seamlessly

transfer from a projective to a non-projective parser simply by changing the post-

100 Chapter 6. More on Structure based Generation

processing MST algorithm during inference. We also found DENSE can improve tree

structured based language models such as Zhang et al. (2016). In the future, we plan

to increase the coverage of our parser by using tri-training techniques (Li et al., 2014)

and multi-task learning (Luong et al., 2015a).

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In 1990s and early 2000s, most natural language generation models adopted a pipelined

architecture. This architecture typically involved three modules, namely content plan-

ning, sentence planning and surface realization. With the recent resurgence of deep

neural networks and their applications to natural language processing, natural language

generation (especially single sentence generation) models have been greatly simplified.

Neural based generation models usually have two neural networks: the Representation

network for learning the input representations and the Generation network for gen-

erating natural language sentences by using the learned representations. These two

networks are usually trained jointly. In this thesis, we focus on natural language gen-

eration problems, which we model by developing neural network models which adopt

two different views: sequence learning and tree structured learning.

In sequence based generation models, sentences are viewed as sequences of words.

Recurrent neural networks, which are designed for sequence predictions, are naturally

employed in these models. However, most recurrent network based generation models

are targeting at generating single sentences. A hierarchical recurrent model is proposed

in Chapter 3, which is a better Representation network. It is designed to generation

paragraph level text. Specifically, a word level recurrent neural network is used to

generate the current sentence and a sentence level recurrent neural network is used to

model sentences which have been generated before. The model is applied to the task

of Chinese poetry generation and is shown to outperform non-hierarchical recurrent

neural networks in terms of perplexity and it is also superior to a statistical machine

translation based model (He et al., 2012) and a summarization based (Yan et al., 2013)

101

102 Chapter 7. Conclusions and Future Work

poetry generator.

Most neural based generation models are data-driven and rely heavily on end to

end training. However, end to end training can be a double edged sword. On the

one hand, it greatly simplifies the training process in a fully data-driven setting. At

the same time, it is difficult to incorporate task-specific constraints. Therefore, in

Chapter 4, we proposed a deep reinforcement learning based framework to model task

specific prior knowledge. In essence, we proposed a better training method for neu-

ral language generation models. The framework was applied to the task of sentence

simplification, which aims to produce a simplified form for a complex sentence. We

used the sequence to sequence with attention model as a base model and modelled

prior knowledge of this task (i.e. the simplified sentences should be simplier, mean-

ing preserving and grammatical) as different rewards in a deep reinforcement learning

framework. Moreover, since lexical simplification is quite important, we designed a

neural lexical simplification model, which further boosts the performance. Experi-

mentally, we demonstrated the reinforcement learning framework is key to producing

simpler sentences. This framework can also be used in other generation tasks such as

summarization or concept-to-text generation.

Generating sentences as sequences of words is a great simplification for natural

language generation tasks. This simplification makes NLG tasks easier, since there are

many existing sequence prediction models (e.g. Recurrent Neural Networks) can be

used. However, is generating a sentence as a sequence of words the only way (or the

best way) to generate a sentence? Chapter 5 tries to answer this question by propos-

ing a tree structured generation model called top-down tree long short-term memory

network, which is actually a better Generation network. It generates dependency trees

rather than linear structure sentences. We empirically demonstrate that this model out-

performs LSTMs in the context of language modeling (MSR sentence completion chal-

lenge) and it can also generate sentences in the form of dependency trees. However,

generating (dependency) trees is difficult. Chapter 6 tries to explore whether better

dependency parsing can improve the tree structured model we proposed in Chapter 5

and the answer is yes.

7.2 Future Work

Avenues for future work are many and varied. The poetry generation model we pro-

posed in this thesis is targets the multiple sentence generation problem. It may also be

7.2. Future Work 103

used in potential tasks such as writing an essay or news article given text descriptions

(e.g., keywords) or article structures. However, these tasks are challenging and even

hierarchical recurrent neural networks may not handle them well. It will be interesting

to model discourse structure explicitly in hierarchical recurrent neural networks.

Sequence to sequence model with attention (Bahdanau et al., 2015) becomes a very

strong baseline in machine translation and many (single sentence) generation tasks.

However, tree representations in NLP still have advantages as we have demonstrated in

chapter 6. Therefore, a sequence-to-tree or tree-to-tree model for machine translation

and natural language generation should be explored. However, generating trees is not

easy (since structure constraints need to be taken into account) and the resulting model

may generate ill-formed trees because of lacking global constraints. We can leverage

reinforcement learning to integrate global constraints during training. We may also

put the sequence (or tree) to tree model in a generative adversarial network (GAN)

framework (Goodfellow et al., 2014), where the sequence (or tree) to tree model is the

generator, while a dependency parser can be used as a discriminator. This tree-to-tree

model is likely to work on the sentence simplification task, where simplification rules

apply on the syntactic level going beyond mere word substitution.

Text rewriting tasks (e.g. sentence simplification or sentence compression) are a

special class of generation problems, where the generated sentence should always pre-

serve the meaning of the original sentence. Many existing models treat these problems

as a standard sequence to sequence learning problem or variants (e.g. coupled with

reinforcement learning in Chapter 4). However, the meaning preservation constraint

can be modelled from another prospective. For example, this constraint can be cap-

tured in an auto-encoding framework (Hinton and Salakhutdinov, 2006; Kingma and

Ba, 2014). Besides using a simplification (or compression) model to produce a simpler

(or shorter) sentence, we can also use the sentence produced by the rewriting model

to recover the original sentence. This model can be trained by minimizing the recon-

struction error. The auto-encoding framework can be used in a semi-supervised setting

(Miao and Blunsom, 2016) or even a unsupervised setting.

Bibliography

Agirrezabal, M., Arrieta, B., Astigarraga, A., and Hulden, M. (2013). POS-Tag Based

Poetry Generation with WordNet. In Proceedings of the 14th European Workshop

on Natural Language Generation, pages 162–166, Sofia, Bulgaria.

Andor, D., Alberti, C., Weiss, D., Severyn, A., Presta, A., Ganchev, K., Petrov, S.,

and Collins, M. (2016). Globally normalized transition-based neural networks. In

Proceedings of the 54th Annual Meeting of the Association for Computational Lin-

guistics (Volume 1: Long Papers), pages 2442–2452, Berlin, Germany.

Angeli, G., Liang, P., and Klein, D. (2010). A simple domain-independent probabilis-

tic approach to generation. In Proceedings of the 2010 Conference on Empirical

Methods in Natural Language Processing, pages 502–512. Association for Compu-

tational Linguistics.

Auli, M., Galley, M., Quirk, C., and Zweig, G. (2013). Joint Language and Translation

Modeling with Recurrent Neural Networks. In Proceedings of the 2013 Conference

on Empirical Methods in Natural Language Processing, pages 1044–1054, Seattle,

Washington, USA.

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by jointly

learning to align and translate. In ICLR 2015.

Ballesteros, M., Dyer, C., and Smith, N. A. (2015). Improved transition-based parsing

by modeling characters instead of words with LSTMs. In Proceedings of the 2015

Conference on Empirical Methods in Natural Language Processing, pages 349–359,

Lisbon, Portugal.

Barzilay, R. and Lapata, M. (2005). Collective content selection for concept-to-text

generation. In Proceedings of the conference on Human Language Technology and

Empirical Methods in Natural Language Processing, pages 331–338. Association

for Computational Linguistics.

105

106 Bibliography

Barzilay, R. and Lapata, M. (2006). Aggregation via set partitioning for natural lan-

guage generation. In Proceedings of the main conference on Human Language Tech-

nology Conference of the North American Chapter of the Association of Computa-

tional Linguistics, pages 359–366. Association for Computational Linguistics.

Bateman, J. A. (1997). Enabling technology for multilingual natural language genera-

tion: the kpml development environment. Natural Language Engineering, 3(1):15–

55.

Beigman Klebanov, B., Knight, K., and Marcu, D. (2004). Text simplification for

information-seeking applications. In Proceedings of ODBASE, volume 3290 of Lec-

ture Notes in Computer Science, pages 735–747, Agia Napa, Cyprus. Springer.

Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C. (2003). A neural probabilistic

language model. The Journal of Machine Learning Research, 3:1137–1155.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with

gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166.

Bohnet, B. (2010). Top accuracy and fast dependency parsing is not a contradiction.

In Proceedings of the 23rd International Conference on Computational Linguistics

(Coling 2010), pages 89–97, Beijing, China.

Bordes, A., Weston, J., Collobert, R., and Bengio, Y. (2011). Learning structured

embeddings of knowledge bases. In Conference on artificial intelligence, number

EPFL-CONF-192344.

Callison-Burch, C., Koehn, P., Monz, C., Post, M., Soricut, R., and Specia, L. (2012).

Findings of the 2012 Workshop on Statistical Machine Translation. In Proceedings

of the 7th Workshop on Statistical Machine Translation, pages 10–51, Montréal,

Canada.

Carreras, X. (2007). Experiments with a higher-order projective dependency parser.

In Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL 2007, pages

957–961, Prague, Czech Republic.

Carreras, X. and Collins, M. (2009). Non-projective parsing for statistical machine

translation. In Proceedings of the 2009 Conference on Empirical Methods in Natural

Language Processing, pages 200–209, Singapore.

Bibliography 107

Carroll, J., Minnen, G., Pearce, D., Canning, Y., Devlin, S., and Tait, J. (1999). Sim-

plifying text for language-impaired readers. In Proceedings of the 9th EACL, pages

269–270, Bergen, Norway.

Chambers, N. and Jurafsky, D. (2008). Unsupervised learning of narrative event chains.

In ACL, volume 94305, pages 789–797. Citeseer.

Chandrasekar, R., Doran, C., and Srinivas, B. (1996). Motivations and methods for text

simplification. In Proceedings of the 16th COLING, pages 1041–1044, Copenhagen,

Denmark.

Charniak, E. (2001). Immediate-head parsing for language models. In Proceedings

of the 39th Annual Meeting on Association for Computational Linguistics, pages

124–131. Association for Computational Linguistics.

Chelba, C., Engle, D., Jelinek, F., Jimenez, V., Khudanpur, S., Mangu, L., Printz, H.,

Ristad, E., Rosenfeld, R., Stolcke, A., et al. (1997). Structure and performance of a

dependency language model. In EUROSPEECH. Citeseer.

Chelba, C. and Jelinek, F. (2000). Structured language modeling. Computer Speech

and Language, 14(4):283–332.

Chen, D. and Manning, C. (2014). A fast and accurate dependency parser using neural

networks. In Proceedings of the 2014 Conference on Empirical Methods in Natu-

ral Language Processing (EMNLP), pages 740–750, Doha, Qatar. Association for

Computational Linguistics.

Chen, X., Liu, X., Gales, M., and Woodland, P. (2015). Recurrent neural network lan-

guage model training with noise contrastive estimation for speech recognition. In In

40th IEEE International Conference on Accoustics, Speech and Signal Processing,

pages 5401–5405, Brisbane, Australia.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,

and Bengio, Y. (2014). Learning phrase representations using rnn encoder–decoder

for statistical machine translation. In Proceedings of the 2014 Conference on Empir-

ical Methods in Natural Language Processing (EMNLP), pages 1724–1734, Doha,

Qatar. Association for Computational Linguistics.

Chopra, S., Auli, M., and Rush, A. M. (2016). Abstractive sentence summarization

with attentive recurrent neural networks. In Proceedings of the 2016 Conference

108 Bibliography

of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, pages 93–98, San Diego, California.

Chu, Y.-J. and Liu, T.-H. (1965). On shortest arborescence of a directed graph. Scientia

Sinica, 14(10):1396.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evaluation of gated

recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.

Cohn, T. and Lapata, M. (2009). Sentence compression as tree transduction. Journal

of Artificial Intelligence Research, 34:637–674.

Collins, M. (2002). Discriminative training methods for hidden markov models: The-

ory and experiments with perceptron algorithms. In Proceedings of the 2002 Con-

ference on Empirical Methods in Natural Language Processing, pages 1–8.

Collobert, R., Kavukcuoglu, K., and Farabet, C. (2011). Torch7: A matlab-like envi-

ronment for machine learning. In BigLearn, NIPS Workshop, number EPFL-CONF-

192376.

Colton, S., Goodwin, J., and Veale, T. (2012). Full-FACE Poetry Generation. In

Proceedings of the International Conference on Computational Creativity, pages

95–102, Dublin, Ireland.

Crammer, K. and Singer, Y. (2001). On the algorithmic implementation of multiclass

kernel-based vector machines. Journal of Machine Learning Research, 2:265–292.

Crammer, K. and Singer, Y. (2003). Ultraconservative online algorithms for multiclass

problems. Journal of Machine Learning Research, 3:951–991.

Cross, J. and Huang, L. (2016). Incremental parsing with minimal features using bi-

directional LSTM. In Proceedings of the 54th Annual Meeting of the Association

for Computational Linguistics (Volume 2: Short Papers), pages 32–37, Berlin, Ger-

many.

Curran, J., Clark, S., and Bos, J. (2007). Linguistically motivated large-scale NLP with

C&C and Boxer. In Proceedings of the 45th Annual Meeting of the Association for

Computational Linguistics Companion Volume Proceedings of the Demo and Poster

Sessions, pages 33–36, Prague, Czech Republic.

Bibliography 109

Dai, A. M. and Le, Q. V. (2015). Semi-supervised sequence learning. In Advances in

Neural Information Processing Systems, pages 3079–3087.

De Marneffe, M.-C., MacCartney, B., Manning, C. D., et al. (2006). Generating typed

dependency parses from phrase structure parses. In Proceedings of LREC, volume 6,

pages 449–454.

Devlin, J., Zbib, R., Huang, Z., Lamar, T., Schwartz, R., and Makhoul, J. (2014).

Fast and robust neural network joint models for statistical machine translation. In

Proceedings of the 52nd Annual Meeting of the Association for Computational Lin-

guistics (Volume 1: Long Papers), pages 1370–1380. Association for Computational

Linguistics.

Devlin, S. (1999). Simplifying Natural Language for Aphasic Readers. PhD thesis,

University of Sunderland.

Duboue, P. A. and McKeown, K. R. (2002). Content planner construction via evo-

lutionary algorithms and a corpus-based fitness function. In Proceedings of INLG

2002, pages 89–96.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online

learning and stochastic optimization. The Journal of Machine Learning Research,

12:2121–2159.

Durrani, N., Haddow, B., Koehn, P., and Heafield, K. (2014). Edinburgh’s phrase-based

machine translation systems for WMT-14. In Proceedings of the Ninth Workshop

on Statistical Machine Translation, pages 97–104. Association for Computational

Linguistics Baltimore, MD, USA.

Dyer, C., Ballesteros, M., Ling, W., Matthews, A., and Smith, N. A. (2015). Transition-

based dependency parsing with stack long short-term memory. In Proceedings of the

53rd Annual Meeting of the Association for Computational Linguistics and the 7th

International Joint Conference on Natural Language Processing (Volume 1: Long

Papers), pages 334–343, Beijing, China. Association for Computational Linguistics.

Dyer, C., Weese, J., Setiawan, H., Lopez, A., Ture, F., Eidelman, V., Ganitkevitch,

J., Blunsom, P., and Resnik, P. (2010). cdec: A decoder, alignment, and learning

framework for finite-state and context-free translation models. In Proceedings of

110 Bibliography

the ACL 2010 System Demonstrations, pages 7–12. Association for Computational

Linguistics.

Edmonds, J. (1967). Optimum branchings. Journal of Research of the National Bureau

of Standards B, 71(4):233–240.

Eisner, J. (2000). Bilexical grammars and their cubic-time parsing algorithms. In

Advances in probabilistic and other parsing technologies, pages 29–61. Springer.

Eisner, J. M. (1996). Three new probabilistic models for dependency parsing: An

exploration. In Proceedings of the 16th conference on Computational linguistics-

Volume 1, pages 340–345. Association for Computational Linguistics.

Elhadad, M. and Robin, J. (1996). An overview of surge: A reusable comprehensive

syntactic realization component. Technical report, Technical Report 96-03, Ben

Gurion University, Dept. of Computer Science, Beer Sheva, Israel.

Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2):179–211.

Emami, A., Xu, P., and Jelinek, F. (2003). Using a connectionist model in a syntactical

based language model. In Proceedings of the IEEE International Conference on

Acoustics, Speech, and Signal Processing, pages 372–375, Hong Kong, China.

Evans, R., asan, C. O., and Dornescu, I. (2014). An evaluation of syntactic simplifica-

tion rules for people with autism. In Proceedings of the 3rd Workshop on Predicting

and Improving Text Readability for Target Reader Populations (PITR), pages 131–

140, Gothenburg, Sweden.

Fellbaum, C., editor (1998). WordNet: An Electronic Database. MIT Press, Cam-

bridge, MA.

Filippova, K., Alfonseca, E., Colmenares, C. A., Kaiser, L., and Vinyals, O. (2015).

Sentence compression by deletion with LSTMs. In EMNLP, pages 360–368.

Freund, Y. and Schapire, R. E. (1999). Large margin classification using the perceptron

algorithm. Machine learning, 37(3):277–296.

Fundel, K., Küffner, R., and Zimmer, R. (2007). Relation extraction using dependency

parse trees. Bioinformatics, 23(3):365–371.

Bibliography 111

Ganitkevitch, J., Van Durme, B., and Callison-Burch, C. (2013). PPDB: The para-

phrase database. In Proceedings of NAACL-HLT, pages 758–764, Atlanta, Georgia.

Association for Computational Linguistics.

Gao, J., He, X., Yih, W.-t., and Deng, L. (2014). Learning continuous phrase rep-

resentations for translation modeling. In Proceedings of the 52nd Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers), pages

699–709. Association for Computational Linguistics.

Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier neural networks.

In International Conference on Artificial Intelligence and Statistics, pages 315–323.

Goldberg, E., Driedger, N., and Kittredge, R. I. (1994). Using natural-language pro-

cessing to produce weather forecasts. IEEE Expert, 9(2):45–53.

Goldberg, Y. (2016). A primer on neural network models for natural language process-

ing. Journal of Artificial Intelligence Research, 57:345–420.

Goldberg, Y. and Nivre, J. (2012). A dynamic oracle for arc-eager dependency parsing.

In Proceedings of COLING 2012, pages 959–976, Mumbai, India.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Advances in

neural information processing systems, pages 2672–2680.

Graves, A. (2012). Supervised Sequence Labelling with Recurrent Neural Networks.

Studies in Computational Intelligence. Springer.

Graves, A., Mohamed, A.-r., and Hinton, G. (2013). Speech recognition with deep

recurrent neural networks. In Acoustics, Speech and Signal Processing (ICASSP),

2013 IEEE International Conference on, pages 6645–6649. IEEE.

Greene, E., Bodrumlu, T., and Knight, K. (2010). Automatic Analysis of Rhythmic

Poetry with Applications to Generation and Translation. In Proceedings of the 2010

Conference on Empirical Methods in Natural Language Processing, pages 524–533,

Cambridge, MA.

Grishman, R., Macleod, C., and Meyers, A. (1994). Comlex syntax: Building a

computational lexicon. In Proceedings of the 15th conference on Computational

linguistics-Volume 1, pages 268–272. Association for Computational Linguistics.

112 Bibliography

Gubbins, J. and Vlachos, A. (2013). Dependency language models for sentence com-

pletion. In EMNLP, pages 1405–1410, Seattle, Washington, USA. Association for

Computational Linguistics.

Gutmann, M. U. and Hyvärinen, A. (2012). Noise-contrastive estimation of unnormal-

ized statistical models, with applications to natural image statistics. The Journal of

Machine Learning Research, 13(1):307–361.

Hall, K. (2007). K-best spanning tree parsing. In Proceedings of the 45th Annual

Meeting of the Association of Computational Linguistics, pages 392–399, Prague,

Czech Republic.

He, J., Zhou, M., and Jiang, L. (2012). Generating Chinese Classical Poems with Sta-

tistical Machine Translation Models. In Proceedings of the 26th AAAI Conference

on Artificial Intelligence, pages 1650–1656, Toronto, Canada.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification. In Proceedings of the IEEE

international conference on computer vision, pages 1026–1034.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image

recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 770–778.

Heafield, K. (2011). KenLM: Faster and Smaller Language Model Queries. In Pro-

ceedings of the EMNLP 2011 Sixth Workshop on Statistical Machine Translation,

pages 187–197, Edinburgh, Scotland, United Kingdom.

Henderson, J. (2004). Discriminative training of a neural network statistical parser. In

Proceedings of the 42nd Meeting of the Association for Computational Linguistics

(ACL’04), Main Volume, pages 95–102, Barcelona, Spain.

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data

with neural networks. science, 313(5786):504–507.

Hochreiter, S. (1998). Vanishing gradient problem during learning recurrent neural

nets and problem solutions. International Journal of Uncertainty, Fuzziness and

Knowledge-based Systems, 6(2):107–116.

Bibliography 113

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural compu-

tation, 9(8):1735–1780.

Hodosh, M., Young, P., and Hockenmaier, J. (2013). Framing image description as a

ranking task: Data, models and evaluation metrics. Journal of Artificial Intelligence

Research, 47:853–899.

Hovy, E. H. (1993). Automated discourse generation using discourse structure rela-

tions. Artificial intelligence, 63(1):341–385.

Huang, L. and Sagae, K. (2010). Dynamic programming for linear-time incremental

parsing. In Proceedings of the 48th Annual Meeting of the Association for Compu-

tational Linguistics, pages 1077–1086, Uppsala, Sweden.

Inui, K., Fujita, A., Takahashi, T., Iida, R., and Iwakura, T. (2003). Text simplification

for reading assistance: A project note. In Proceedings of the Second International

Workshop on Paraphrasing, pages 9–16, Sapporo, Japan. Association for Computa-

tional Linguistics.

Jean, S., Firat, O., Cho, K., Memisevic, R., and Bengio, Y. (2015). Montreal neural

machine translation systems for WMT15. In Proceedings of the Tenth Workshop on

Statistical Machine Translation, pages 134–140.

Jiang, L. and Zhou, M. (2008). Generating Chinese Couplets using a Statistical MT

Approach. In Proceedings of the 22nd International Conference on Computational

Linguistics, pages 377–384, Manchester, UK.

Kaji, N., Kawahara, D., Kurohashi, S., and Sato, S. (2002). Verb paraphrase based on

case frame alignment. In Proceedings of 40th Annual Meeting of the Association for

Computational Linguistics, pages 215–222, Philadelphia, Pennsylvania, USA.

Kalchbrenner, N. and Blunsom, P. (2013). Recurrent Continuous Translation Models.

In Proceedings of the 2013 Conference on Empirical Methods in Natural Language

Processing, pages 1700–1709, Seattle, Washington.

Kasper, R. T. (1989). A flexible interface for linking applications to penman’s sentence

generator. In Proceedings of the workshop on Speech and Natural Language, pages

153–158. Association for Computational Linguistics.

114 Bibliography

Katz, S. (1987). Estimation of probabilities from sparse data for the language model

component of a speech recognizer. IEEE transactions on acoustics, speech, and

signal processing, 35(3):400–401.

Kauchak, D. (2013). Improving text simplification language modeling using unsim-

plified text data. In Proceedings of the 51st Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), pages 1537–1546, Sofia, Bul-

garia. Association for Computational Linguistics.

Kim, J. and Mooney, R. J. (2010). Generative alignment and semantic parsing for

learning from ambiguous supervision. In Proceedings of the 23rd International

Conference on Computational Linguistics: Posters, pages 543–551. Association for

Computational Linguistics.

Kim, Y. (2014). Convolutional neural networks for sentence classification. In Proceed-

ings of the 2014 Conference on Empirical Methods in Natural Language Processing

(EMNLP), pages 1746–1751. Association for Computational Linguistics.

Kincaid, J. P., Fishburne Jr, R. P., Rogers, R. L., and Chissom, B. S. (1975). Derivation

of new readability formulas (automated readability index, fog count and flesch read-

ing ease formula) for navy enlisted personnel. Technical report, DTIC Document.

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980.

Kiperwasser, E. and Goldberg, Y. (2016). Simple and accurate dependency parsing

using bidirectional LSTM feature representations. Transactions of the Association

for Computational Linguistics, 4:313–327.

Kiros, R., Salakhutdinov, R., and Zemel, R. S. (2014). Multimodal neural language

models. In ICML, volume 14, pages 595–603.

Kneser, R. and Ney, H. (1995). Improved backing-off for m-gram language modeling.

In Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995 International

Conference on, volume 1, pages 181–184. IEEE.

Knight, K. and Hatzivassiloglou, V. (1995). Two-level, many-paths generation. In Pro-

ceedings of the 33rd annual meeting on Association for Computational Linguistics,

pages 252–260. Association for Computational Linguistics.

Bibliography 115

Koehn, P., Och, F. J., and Marcu, D. (2003). Statistical Phrase-based Translation. In

Proceedings of the 2003 Conference of the North American Chapter of the Asso-

ciation for Computational Linguistics on Human Language Technology-Volume 1,

pages 48–54, Edmonton, Canada.

Konstas, I. and Lapata, M. (2012). Concept-to-text generation via discriminative

reranking. In Proceedings of the 50th Annual Meeting of the Association for Com-

putational Linguistics (Volume 1: Long Papers), pages 369–378, Jeju Island, Korea.

Association for Computational Linguistics.

Koo, T., Rush, A. M., Collins, M., Jaakkola, T., and Sontag, D. (2010). Dual decom-

position for parsing with non-projective head automata. In Proceedings of the 2010

Conference on Empirical Methods in Natural Language Processing, pages 1288–

1298, Cambridge, MA.

Korhonen, A., Krymolowski, Y., and Briscoe, T. (2006). A large subcategorization

lexicon for natural language processing applications. In Proceedings of LREC, vol-

ume 6.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with

deep convolutional neural networks. In Advances in neural information processing

systems, pages 1097–1105.

Kübler, S., McDonald, R., Nivre, J., and Hirst, G. (2009). Dependency Parsing. Mor-

gan and Claypool Publishers.

Lavoie, B. and Rambow, O. (1997). A fast and portable realizer for text generation sys-

tems. In Proceedings of the fifth conference on Applied natural language processing,

pages 265–268. Association for Computational Linguistics.

Le, Q. V., Jaitly, N., and Hinton, G. E. (2015). A simple way to initialize recurrent

networks of rectified linear units. arXiv preprint arXiv:1504.00941.

Lebret, R., Grangier, D., and Auli, M. (2016). Neural text generation from structured

data with application to the biography domain. In Proceedings of the 2016 Con-

ference on Empirical Methods in Natural Language Processing, pages 1203–1213.

Association for Computational Linguistics.

Lei, T., Xin, Y., Zhang, Y., Barzilay, R., and Jaakkola, T. (2014). Low-rank tensors for

scoring dependency structures. In Proceedings of the 52nd Annual Meeting of the

116 Bibliography

Association for Computational Linguistics (Volume 1: Long Papers), pages 1381–

1391, Baltimore, Maryland.

Li, J., Monroe, W., Ritter, A., Jurafsky, D., Galley, M., and Gao, J. (2016). Deep rein-

forcement learning for dialogue generation. In Proceedings of the 2016 Conference

on Empirical Methods in Natural Language Processing, pages 1192–1202, Austin,

Texas. Association for Computational Linguistics.

Li, Z., Zhang, M., and Chen, W. (2014). Ambiguity-aware ensemble training for semi-

supervised dependency parsing. In Proceedings of the 52nd Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), pages 457–

467, Baltimore, Maryland.

Ling, W., Blunsom, P., Grefenstette, E., Hermann, K. M., Kočiský, T., Wang, F., and

Senior, A. (2016). Latent predictor networks for code generation. In Proceedings of

the 54th Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), pages 599–609, Berlin, Germany.

Liu, W. (1735). ShiXueHanYing.

Lu, W. and Ng, H. T. (2011). A probabilistic forest-to-string model for language gener-

ation from typed lambda calculus expressions. In Proceedings of the Conference on

Empirical Methods in Natural Language Processing, pages 1611–1622. Association

for Computational Linguistics.

Luong, M.-T., Le, Q. V., Sutskever, I., Vinyals, O., and Kaiser, L. (2015a). Multi-task

sequence to sequence learning. In Proceedings of the 4th International Conference

on Learning Representations, San Juan, Puerto Rico.

Luong, T., Pham, H., and Manning, C. D. (2015b). Effective approaches to attention-

based neural machine translation. In Proceedings of the 2015 Conference on Empir-

ical Methods in Natural Language Processing, pages 1412–1421, Lisbon, Portugal.

Association for Computational Linguistics.

Mann, W. C. and Thompson, S. A. (1988). Rhetorical structure theory: Toward a

functional theory of text organization. Text-Interdisciplinary Journal for the Study

of Discourse, 8(3):243–281.

Bibliography 117

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S. J., and McClosky, D.

(2014). The Stanford CoreNLP natural language processing toolkit. In Association

for Computational Linguistics (ACL) System Demonstrations, pages 55–60.

Manurung, R. (2003). An Evolutionary Algorithm Approach to Poetry Generation.

PhD thesis, University of Edinburgh.

Manurung, R., Ritchie, G., and Thompson, H. (2012). Using Genetic Algorithms to

Create Meaningful Poetic Text. Journal of Experimental & Theoretical Artificial

Intelligence, 24(1):43–64.

Martins, A., Almeida, M., and Smith, N. A. (2013). Turning on the turbo: Fast third-

order non-projective turbo parsers. In Proceedings of the 51st Annual Meeting of the

Association for Computational Linguistics (Volume 2: Short Papers), pages 617–

622, Sofia, Bulgaria.

Mayberry, M. R. and Miikkulainen, R. (1999). SardSrn: A neural network shift-reduce

parser. In In Proceedings of the 16th International Joint Conference on Artificial

Intelligence, pages 820–825, Stockholm, Sweden.

McDonald, R., Crammer, K., and Pereira, F. (2005a). Online large-margin training of

dependency parsers. In Proceedings of the 43rd Annual Meeting of the Association

for Computational Linguistics, pages 91–98, Ann Arbor, Michigan.

McDonald, R., Pereira, F., Ribarov, K., and Hajic, J. (2005b). Non-projective depen-

dency parsing using spanning tree algorithms. In Proceedings of Human Language

Technology Conference and Conference on Empirical Methods in Natural Language

Processing, pages 523–530, Vancouver, British Columbia, Canada.

McDonald, R. T. and Pereira, F. C. (2006). Online learning of approximate dependency

parsing algorithms. In EACL.

McIntyre, N. and Lapata, M. (2009). Learning to tell tales: A data-driven approach

to story generation. In Proceedings of the Joint Conference of the 47th Annual

Meeting of the ACL and the 4th International Joint Conference on Natural Language

Processing of the AFNLP, pages 217–225, Singapore.

Mei, H., Bansal, M., and Walter, M. R. (2016). What to talk about and how? selective

generation using LSTMs with coarse-to-fine alignment. In Proceedings of the 2016

118 Bibliography

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, pages 720–730, San Diego, California.

Association for Computational Linguistics.

Melčuk, I. A. (1988). Dependency syntax: theory and practice. SUNY press.

Miao, Y. and Blunsom, P. (2016). Language as a latent variable: Discrete generative

models for sentence compression. In Proceedings of the 2016 Conference on Em-

pirical Methods in Natural Language Processing, pages 319–328, Austin, Texas.

Association for Computational Linguistics.

Mikolov, T. (2012). Statistical Language Models based on Neural Networks. PhD

thesis, Brno University of Technology.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estimation of word

representations in vector space. In Proceedings of the 2013 International Conference

on Learning Representations, Scottsdale, Arizona, USA.

Mikolov, T., Deoras, A., Povey, D., Burget, L., and Cernocky, J. (2011a). Strategies for

Training Large Scale Neural Network Language Models. In Proceedings of ASRU

2011, pages 196–201, Hilton Waikoloa Village, Big Island, Hawaii, US.

Mikolov, T., Karafiát, M., Burget, L., Cernockỳ, J., and Khudanpur, S. (2010). Recur-

rent Neural Network based Language Model. In Proceedings of INTERSPEECH,

pages 1045–1048, Makuhari, Japan.

Mikolov, T., Kombrink, S., Burget, L., Cernocky, J., and Khudanpur, S. (2011b). Ex-

tensions of Recurrent Neural Network Language Model. In Proceedings of the 2011

IEEE International Conference on Acoustics, Speech and Signal Processing, pages

5528–5531, Prague, Czech Republic.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b). Distributed

Representations of Words and Phrases and their Compositionality. In Advances in

Neural Information Processing Systems, pages 3111–3119, Lake Tahoe, Nevada,

United States.

Mikolov, T. and Zweig, G. (2012). Context Dependent Recurrent Neural Network

Language Model. In Proceedings of 2012 IEEE Workshop on Spoken Language

Technology, pages 234–239, Miami, Florida.

Bibliography 119

Mirowski, P. and Vlachos, A. (2015). Dependency recurrent neural language models

for sentence completion. In ACL, pages 511–517, Beijing, China. Association for

Computational Linguistics.

Mitchell, J. and Lapata, M. (2010). Composition in Distributional Models of Seman-

tics. Cognitive Science, 34(8):1388–1439.

Mnih, A. and Hinton, G. (2007). Three new graphical models for statistical language

modelling. In Proceedings of the 24th International Conference on Machine Learn-

ing, pages 641–648.

Mnih, A. and Kavukcuoglu, K. (2013). Learning word embeddings efficiently with

noise-contrastive estimation. In Advances in Neural Information Processing Systems

26, pages 2265–2273.

Mnih, A. and Teh, Y. W. (2012). A fast and simple algorithm for training neural

probabilistic language models. In Proceedings of the 29th International Conference

on Machine Learning, pages 1751–1758, Edinburgh, Scotland.

Narasimhan, K., Yala, A., and Barzilay, R. (2016). Improving information extraction

by acquiring external evidence with reinforcement learning. In Proceedings of the

2016 Conference on Empirical Methods in Natural Language Processing, pages

2355–2365, Austin, Texas. Association for Computational Linguistics.

Narayan, S. and Gardent, C. (2014). Hybrid simplification using deep semantics and

machine translation. In Proceedings of the 52nd Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers), pages 435–445, Baltimore,

Maryland. Association for Computational Linguistics.

Netzer, Y., Gabay, D., Goldberg, Y., and Elhadad, M. (2009). Gaiku: Generating Haiku

with Word Associations Norms. In Proceedings of the Workshop on Computational

Approaches to Linguistic Creativity, pages 32–39, Boulder, Colorado.

Nivre, J. (2003). An efficient algorithm for projective dependency parsing. In Proceed-

ings of the 8th International Workshop on Parsing Technologies, pages 149–160,

Nancy, France.

Nivre, J. (2004). Incrementality in deterministic dependency parsing. In Keller, F.,

Clark, S., Crocker, M., and Steedman, M., editors, Proceedings of the ACL Work-

120 Bibliography

shop Incremental Parsing: Bringing Engineering and Cognition Together, pages

50–57, Barcelona, Spain.

Nivre, J. (2008). Algorithms for deterministic incremental dependency parsing. Com-

putational Linguistics, 34(4):513–553.

Nivre, J., Hall, J., and Nilsson, J. (2006a). Maltparser: A data-driven parser-generator

for dependency parsing. In Proceedings of LREC, volume 6, Genoa, Italy.

Nivre, J., Hall, J., Nilsson, J., Eryiǧit, G., and Marinov, S. (2006b). Labeled pseudo-

projective dependency parsing with support vector machines. In Proceedings of the

Tenth Conference on Computational Natural Language Learning (CoNLL-X), pages

221–225, New York City.

Och, F. J. (2003). Minimum error rate training in statistical machine translation. In

Proceedings of the 41st Annual Meeting of the Association for Computational Lin-

guistics, pages 160–167, Sapporo, Japan. Association for Computational Linguis-

tics.

Oliveira, H. G. (2012). PoeTryMe: a Versatile Platform for Poetry Generation. Com-

putational Creativity, Concept Invention, and General Intelligence, 1:21.

Palangi, H., Deng, L., Shen, Y., Gao, J., He, X., Chen, J., Song, X., and Ward, R.

(2016). Deep sentence embedding using long short-term memory networks: Anal-

ysis and application to information retrieval. IEEE/ACM Transactions on Audio,

Speech and Language Processing (TASLP), 24(4):694–707.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method for auto-

matic evaluation of machine translation. In Proceedings of the 40th annual meeting

on association for computational linguistics, pages 311–318. Association for Com-

putational Linguistics.

Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the difficulty of training recurrent

neural networks. ICML (3), 28:1310–1318.

Pei, W., Ge, T., and Chang, B. (2015). An effective neural network model for graph-

based dependency parsing. In Proceedings of the 53rd Annual Meeting of the Asso-

ciation for Computational Linguistics and the 7th International Joint Conference on

Natural Language Processing (Volume 1: Long Papers), pages 313–322, Beijing,

China. Association for Computational Linguistics.

Bibliography 121

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word

representation. In EMNLP, volume 14, pages 1532–43.

Pollack, J. B. (1990). Recursive distributed representations. Artificial Intelligence,

1–2(46):77–105.

Ranzato, M., Chopra, S., Auli, M., and Zaremba, W. (2016). Sequence level training

with recurrent neural networks. ICLR, San Juan, Puerto Rico.

Reiter, E. and Dale, R. (1997). Building applied natural language generation systems.

Natural Language Engineering, 3(01):57–87.

Reiter, E. and Dale, R. (2000). Building Natural Language Generation Systems. Cam-

bridge University Press, New York, NY, USA.

Reiter, E., Mellish, C., and Levine, J. (1995). Automatic generation of technical doc-

umentation. Applied Artificial Intelligence an International Journal, 9(3):259–287.

Rello, L., Bayarri, C., Górriz, A., Baeza-Yates, R., Gupta, S., Kanvinde, G., Saggion,

H., Bott, S., Carlini, R., and Topac, V. (2013). Dyswebxia 2.0!: More accessi-

ble text for people with dyslexia. In Proceedings of the 10th International Cross-

Disciplinary Conference on Web Accessibility, pages –, Brazil.

Roark, B. (2001). Probabilistic top-down parsing and language modeling. Computa-

tional linguistics, 27(2):249–276.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1988). Learning representations

by back-propagating errors. Cognitive modeling, 5(3):1.

Ryang, S. and Abekawa, T. (2012). Framework of automatic text summarization using

reinforcement learning. In Proceedings of the 2012 Joint Conference on Empirical

Methods in Natural Language Processing and Computational Natural Language

Learning, pages 256–265, Jeju Island, Korea. Association for Computational Lin-

guistics.

Schuster, M. and Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE

Transactions on Signal Processing, 45(11):2673–2681.

Semeniuta, S., Severyn, A., and Barth, E. (2016). Recurrent dropout without mem-

ory loss. In Proceedings of COLING 2016, the 26th International Conference on

Computational Linguistics: Technical Papers, pages 1757–1766, Osaka, Japan.

122 Bibliography

Sennrich, R. (2015). Modelling and optimizing on syntactic n-grams for statistical

machine translation. Transactions of the Association for Computational Linguistics,

3:169–182.

Shardlow, M. (2014). A survey of automated text simplification. International Journal

of Advanced Computer Science and Applications, pages 581–701. Special Issue on

Natural Language Processing.

Shen, L., Xu, J., and Weischedel, R. (2008). A new string-to-dependency machine

translation algorithm with a target dependency language model. In Proceedings of

ACL-08: HLT, pages 577–585, Columbus, Ohio, USA.

Siddharthan, A. (2004). Syntactic simplification and text cohesion. Research on Lan-

guage and Computation, 4(1):77–109.

Siddharthan, A. (2014). A survey of research on text simplification. International

Journal of Applied Linguistics, 165(2):259–298.

Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for large-

scale image recognition. ICLR.

Smith, D. A. (2010). Efficient inference for trees and alignments: modeling monolin-

gual and bilingual syntax with hard and soft constraints and latent variables. Johns

Hopkins University.

Smith, D. A. and Eisner, J. (2006). Quasi-synchronous grammars: Alignment by soft

projection of syntactic dependencies. In Proceedings of the Workshop on Statistical

Machine Translation, pages 23–30. Association for Computational Linguistics.

Snover, M., Dorr, B., Schwartz, R., Micciulla, L., and Makhoul, J. (2006). A study of

translation edit rate with targeted human annotation. In Proceedings of association

for machine translation in the Americas, volume 200.

Snow, R., Jurafsky, D., and Ng, A. Y. (2005). Learning syntactic patterns for automatic

hypernym discovery. In Advances in Neural Information Processing Systems 17,

pages 1297–1304, Vancouver, British Columbia.

Socher, R., Huang, E. H., Pennington, J., Manning, C. D., and Ng, A. (2011a). Dy-

namic pooling and unfolding recursive autoencoders for paraphrase detection. In

Advances in Neural Information Processing Systems, pages 801–809.

Bibliography 123

Socher, R., Huval, B., Manning, C. D., and Ng, A. Y. (2012). Semantic composition-

ality through recursive matrix-vector spaces. In Proceedings of the 2012 Joint Con-

ference on Empirical Methods in Natural Language Processing and Computational

Natural Language Learning, pages 1201–1211, Jeju Island, Korea. Association for

Computational Linguistics.

Socher, R., Pennington, J., Huang, E. H., Ng, A. Y., and Manning, C. D. (2011b).

Semi-supervised recursive autoencoders for predicting sentiment distributions. In

Proceedings of the 2011 Conference on Empirical Methods in Natural Language

Processing, pages 151–161, Edinburgh, Scotland, UK.

Specia, L., Jauhar, S. K., and Mihalcea, R. (2012). Semeval-2012 task 1: English

lexical simplification. In In Proceedings of *SEM 2012, pages 347–355, Montréal,

Canada.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.

(2014). Dropout: a simple way to prevent neural networks from overfitting. Journal

of Machine Learning Research, 15(1):1929–1958.

Sukhbaatar, S., Weston, J., Fergus, R., et al. (2015). End-to-end memory networks. In

Advances in neural information processing systems, pages 2440–2448.

Sundermeyer, M., Schlüter, R., and Ney, H. (2012). LSTM neural networks for lan-

guage modeling. In Interspeech, pages 194–197.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with

neural networks. In Advances in Neural Information Processing Systems, pages

3104–3112.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-

houcke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

1–9.

Tai, K. S., Socher, R., and Manning, C. D. (2015). Improved semantic representa-

tions from tree-structured long short-term memory networks. In Proceedings of the

53rd Annual Meeting of the Association for Computational Linguistics and the 7th

International Joint Conference on Natural Language Processing (Volume 1: Long

124 Bibliography

Papers), pages 1556–1566, Beijing, China. Association for Computational Linguis-

tics.

Titov, I. and Henderson, J. (2007). Constituent parsing with incremental sigmoid be-

lief networks. In Proceedings of the 45th Annual Meeting of the Association of

Computational Linguistics, pages 632–639, Prague, Czech Republic.

Tosa, N., Obara, H., and Minoh, M. (2008). Hitch Haiku: An Interactive Supporting

System for Composing Haiku Poem How I Learned to Love the Bomb: Defcon and

the Ethics of Computer Games. In Proceedings of the 7th International Conference

on Entertainment Computing, pages 209–216, Pittsburgh, PA.

Toutanova, K., Klein, D., Manning, C. D., and Singer, Y. (2003). Feature-rich part-

of-speech tagging with a cyclic dependency network. In Proceedings of the 2003

Conference of the North American Chapter of the Association for Computational

Linguistics on Human Language Technology-Volume 1, pages 173–180. Association

for Computational Linguistics.

Tran, K., Bisazza, A., and Monz, C. (2016). Recurrent memory networks for language

modeling. In Proceedings of the 2016 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies,

pages 321–331. Association for Computational Linguistics.

Tseng, H., Chang, P., Andrew, G., Jurafsky, D., and Manning, C. (2005). A conditional

random field word segmenter for Sighan bakeoff 2005. In Proceedings of the 4th

SIGHAN workshop on Chinese language Processing, pages 168–171, Jeju Island,

Korea.

Vania, C., Zhang, X., and Lopez, A. (2017). Uparse: the edinburgh system for the conll

2017 ud shared task. Proceedings of the CoNLL 2017 Shared Task: Multilingual

Parsing from Raw Text to Universal Dependencies, pages 100–110.

Vaswani, A., Zhao, Y., Fossum, V., and Chiang, D. (2013). Decoding with large-

scale neural language models improves translation. In Proceedings of the 2013

Conference on Empirical Methods in Natural Language Processing, pages 1387–

1392, Seattle, Washington, USA.

Venugopalan, S., Xu, H., Donahue, J., Rohrbach, M., Mooney, R., and Saenko, K.

(2015). Translating videos to natural language using deep recurrent neural net-

works. In Proceedings of the 2015 Conference of the North American Chapter of the

Bibliography 125

Association for Computational Linguistics: Human Language Technologies, pages

1494–1504, Denver, Colorado. Association for Computational Linguistics.

Vickrey, D. and Koller, D. (2008). Sentence simplification for semantic role labeling.

In Proceedings of ACL-08: HLT, pages 344–352, Columbus, OH.

Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2015). Show and tell: A neural im-

age caption generator. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3156–3164.

Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2017). Show and tell: Lessons

learned from the 2015 mscoco image captioning challenge. IEEE transactions on

pattern analysis and machine intelligence, 39(4):652–663.

Wang, L. (2002). A Summary of Rhyming Constraints of Chinese Poems (Shi Ci Ge Lv

Gai Yao). Beijing Press, 2002.

Wang, Q., Luo, T., Wang, D., and Xing, C. (2016). Chinese song iambics generation

with neural attention-based model. arXiv preprint arXiv:1604.06274.

Watanabe, W. M., Junior, A. C., de Uzẽda, V. R., de Mattos Fortes, R. P., Pardo,

T. A. S., and Aluı́sio, S. M. (2009). Facilita: reading assistance for low-literacy

readers. In Proceedings of the 27th ACM International Conference on Design of

Communication, Bloomington, IN.

Weiss, D., Alberti, C., Collins, M., and Petrov, S. (2015). Structured training for

neural network transition-based parsing. In Proceedings of the 53rd Annual Meeting

of the Association for Computational Linguistics and the 7th International Joint

Conference on Natural Language Processing (Volume 1: Long Papers), pages 323–

333, Beijing, China.

Werbos, P. J. (1988). Generalization of backpropagation with application to a recurrent

gas market model. Neural networks, 1(4):339–356.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning. Machine learning, 8(3-4):229–256.

Woodsend, K. and Lapata, M. (2011). Learning to simplify sentences with quasi-

synchronous grammar and integer programming. In Proceedings of the 2011 Con-

ference on Empirical Methods in Natural Language Processing, pages 409–420,

Edinburgh, Scotland, UK. Association for Computational Linguistics.

126 Bibliography

Woodsend, K. and Lapata, M. (2014). Text rewriting improves semantic role labeling.

Journal of Artificial Intelligence Research, 51:133–164.

Wu, X., Tosa, N., and Nakatsu, R. (2009). New Hitch Haiku: An Interactive Renku

Poem Composition Supporting Tool Applied for Sightseeing Navigation System.

In Proceedings of the 8th International Conference on Entertainment Computing,

pages 191–196, Paris, France.

Wubben, S., Van Den Bosch, A., and Krahmer, E. (2012). Sentence simplification

by monolingual machine translation. In Proceedings of the 50th Annual Meeting

of the Association for Computational Linguistics: Long Papers-Volume 1, pages

1015–1024. Association for Computational Linguistics.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A. C., Salakhutdinov, R., Zemel, R. S.,

and Bengio, Y. (2015a). Show, attend and tell: Neural image caption generation

with visual attention. In ICML, volume 14, pages 77–81.

Xu, W., Callison-Burch, C., and Napoles, C. (2015b). Problems in current text simpli-

fication research: New data can help. Transactions of the Association for Computa-

tional Linguistics, 3:283–297.

Xu, W., Napoles, C., Pavlick, E., Chen, Q., and Callison-Burch, C. (2016). Optimizing

statistical machine translation for text simplification. Transactions of the Association

for Computational Linguistics, 4:401–415.

Yamada, H. and Matsumoto, Y. (2003). Statistical dependency analysis with support

vector machines. In Proceedings of the 8th Workshop on Parsing Technologies,

pages 195–206, Nancy, France.

Yamada, K. and Knight, K. (2001). A syntax-based statistical translation model. In

Proceedings of the 39th Annual Meeting on Association for Computational Linguis-

tics, pages 523–530. Association for Computational Linguistics.

Yan, R. (2016). i, poet: Automatic poetry composition through recurrent neural net-

works with iterative polishing schema. In IJCAI, pages 2238–2244.

Yan, R., Jiang, H., Lapata, M., Lin, S.-D., Lv, X., and Li, X. (2013). I, Poet: Au-

tomatic Chinese Poetry Composition Through a Generative Summarization Frame-

work Under Constrained Optimization. In Proceedings of the 23rd International

Joint Conference on Artificial Intelligence, pages 2197–2203, Beijing, China.

Bibliography 127

Zaremba, W., Sutskever, I., and Vinyals, O. (2014). Recurrent neural network regular-

ization. arXiv preprint arXiv:1409.2329.

Zhang, H. and McDonald, R. (2012). Generalized higher-order dependency parsing

with cube pruning. In Proceedings of the 2012 Joint Conference on Empirical

Methods in Natural Language Processing and Computational Natural Language

Learning, pages 320–331, Jeju Island, Korea.

Zhang, H. and McDonald, R. (2014). Enforcing structural diversity in cube-pruned

dependency parsing. In Proceedings of the 52nd Annual Meeting of the Association

for Computational Linguistics (Volume 2: Short Papers), pages 656–661, Baltimore,

Maryland.

Zhang, X., Cheng, J., and Lapata, M. (2017). Dependency parsing as head selection.

In Proceedings of the 15th Conference of the European Chapter of the Association

for Computational Linguistics: Volume 1, Long Papers, pages 665–676, Valencia,

Spain. Association for Computational Linguistics.

Zhang, X. and Lapata, M. (2014). Chinese poetry generation with recurrent neural

networks. In Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP), pages 670–680, Doha, Qatar.

Zhang, X. and Lapata, M. (2017). Sentence simplification with deep reinforcement

learning. In Proceedings of the 2017 Conference on Empirical Methods in Natural

Language Processing (EMNLP), Copenhagen, Denmark.

Zhang, X., Lu, L., and Lapata, M. (2016). Top-down tree long short-term memory

networks. In Proceedings of the 2016 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies,

pages 310–320, San Diego, California.

Zhang, Y. (2009). Structured language models for statistical machine translation. PhD

thesis, Johns Hopkins University.

Zhang, Y. and Clark, S. (2008). A tale of two parsers: Investigating and combining

graph-based and transition-based dependency parsing. In Proceedings of the 2008

Conference on Empirical Methods in Natural Language Processing, pages 562–571,

Honolulu, Hawaii.

128 Bibliography

Zhang, Y. and Nivre, J. (2011). Transition-based dependency parsing with rich non-

local features. In Proceedings of the 49th Annual Meeting of the Association for

Computational Linguistics: Human Language Technologies, pages 188–193, Port-

land, Oregon, USA.

Zhou, C.-L., You, W., and Ding, X. (2010). Genetic Algorithm and its Implementation

of Automatic Generation of Chinese SongCi. Journal of Software, pages 427–437.

Zhu, Z., Bernhard, D., and Gurevych, I. (2010). A monolingual tree-based translation

model for sentence simplification. In Proceedings of the 23rd international confer-

ence on computational linguistics, pages 1353–1361. Association for Computational

Linguistics.

Zweig, G. and Burges, C. J. (2012). A challenge set for advancing language modeling.

In Proceedings of the NAACL-HLT 2012 Workshop: Will We Ever Really Replace

the N-gram Model? On the Future of Language Modeling for HLT, pages 29–36,

Montréal, Canada.

Zweig, G. and Makarychev, K. (2013). Speed Regularization and Optimality in Word

Classing. In Proceedings of the 2014 IEEE International Conference on Acoustics,

Speech, and Signal Processing, pages 8237–8241, Florence, Italy.

Zweig, G., Platt, J. C., Meek, C., Burges, C. J., Yessenalina, A., and Liu, Q. (2012).

Computational approaches to sentence completion. In Proceedings of the 50th

Annual Meeting of the Association for Computational Linguistics: Long Papers-

Volume 1, pages 601–610. Association for Computational Linguistics.

	cover sheet
	infthesis_template

