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Abstract 

The dynamics of a dilute suspension of colloids diffusing in a simple liquid are 

well understood and are characterised by the Stokes-Einstein equation. However 

the validity of this equation for describing diffusion through a polymer solution 

has been questioned. In this work on a well characterised model system, the 

motion of dilute poly(methylmethacrylate) spheres diffusing through a solution 

of flexible polystyrene polymers has been studied. Dynamic light scattering was 

used to measure the self-diffusion of the spheres and the diffusion coefficient for 

this motion was found to exhibit time dependence. At short times the colloid 

moves faster than expected from a simple 'polymer solution as a continuum' 

assumption whereas at longer times this assumption appears valid. 

This behaviour can be explained within a Smoluchowski formulation in terms of 

the diffusional modes of the colloid-polymer mixture. At short times the domi-

nant diffusional mode is of a colloid 'trapped' in a cage of polymers interacting 

only through hydrodynamics. At longer times the cage structure of the polymer 

relaxes and direct interactions between the species become significant. A hydro-

dynamic factor H(Q) is defined as ratio of the short time diffusion coefficient 

of the colloids in a polymer solution Ds  to its infinite dilution limit D. This 

quantity is compared to its value in a system of concentrated hard spheres and 

it is found that the hydrodynamic interaction for a colloid with polymers is less 

than with other colloids. 

v 



Solutions with polymer concentrations up to half the overlap concentration were 

investigated: the ratio of short to long time diffusion DS/DL  was found to in-

crease with the concentration. The effect of changing the quality of the solvent 

from theta to good was also investigated and no qualitative difference was found 

between the two. 

In these experiments it was found that the effect of scattering from the polymer 

was more significant than originally expected. In particular, the presence of cross 

scattering, in which the electric field scattered from the colloid is correlated with 

that from the polymer, can be as high as 30%, despite the polymer scattering 

being only a few percent. A method for calculating, and measuring, the magni-

tude of the cross scattering has been described, and an experimental methodology 

proposed that obtains only the scattering from the colloids. 
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Chapter 1 

Introduction 

One of the basic assumptions in the calculation of many of the static properties 

of colloid-polymer mixtures is the 'polymer solution as a continuum' assumption, 

in which the degrees of freedom of the polymer are integrated out and replaced 

with some mean field property, e.g. an osmotic pressure [1]. In a calculation 

of the dynamic properties of colloids in polymer solutions, this approximation 

would replace the degrees of freedom of the polymers by a macroscopic viscosity. 

The colloids would then diffuse through a continuum with a viscosity equal to 

that of the polymer solution. The accuracy of this model has been investigated 

experimentally [2-14], and its validity challenged. There are reports of the colloid 

diffusing faster than expected [10, 13,14], slower than expected [9-12], and even 

some polymer-concentration-dependent behaviour [5]. 

The aim of this work was to investigate the dynamics of colloids suspended in a 

polymer solution. Of particular interest is the accuracy of the 'polymer solution as 

a continuum' assumption for describing these dynamics. Should this assumption 

fail, it was my aim to provide an alternative model. Apart from the intrinsic 

interest in verifying the accuracy of a well established model of diffusion when 

two macroscopic species are present instead of one, this model can be regarded 

as fundamental in several other aspects. The Asakura Oosawa model [15] treats 

1 
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the colloids as hard spheres and the polymers as freely interpenetrable coils. The 

centre of the polymer coil is, however, excluded from a region around the colloid. 

If we define the interaction radius p,, for these species as the separation at which 

the inter-coil potential becomes infinite, then for the polymer-polymer inter-coil 

potential p = 0, for the colloid-colloid inter-particle potential Pc = 2R, where 

R is the radius of the colloids, and for the colloid-polymer particle-coil potential 

Px = (R + R) where R is the radius of gyration of the polymers. This system 

is therefore an example of a non-additive hard sphere mixture, defined as 

P12 0 Pu + P22 

2 
(1.1) 

Self-diffusion has been measured in a concentrated system of colloids, which is es-

sentially a special case of tracer diffusion through an additive hard sphere mixture, 

and a model proposed to explain the observed behaviour [16]. It is interesting 

to see how well this model works when a significant amount of non-additivity is 

introduced to the system. 

Colloid-polymer mixtures are known to show a wide range of phase behaviour [1]. 

There is currently considerable interest in the dynamics of both the phases and 

phase transitions for colloid-polymer mixtures [17, 18]. This study focuses on the 

colloid dynamics in the simplest phase and may well provide a basis for models 

of these more complex systems. 

In this chapter I will provide a brief reminder of the colloid and polymer state 

and introduce the specific system under study. 

1.1 Colloids 

A colloidal suspension is a dispersion of microscopic particles in a liquid [19]. 

These particles may be regarded as colloids if they have radii, R; in the range 

mm < R ç  500mm, though these are not absolute limits [20]. The lower limit 
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comes from the requirement that the particles are significantly larger than the 

molecules of the suspending medium and the upper limit from the requirement 

that the particles' Brownian motion can keep them in suspension against gravity. 

This definition means that the colloidal suspension is in essence a thermodynamic 

system [21]. The typical relaxation time for a fluid material TR  may be considered 

as the time taken for a particle in that fluid to diffuse its own radius 

TR R
2 	

(1.2) 

where D is an appropriate self-diffusion coefficient of a particle. For the suspend-

ing medium this is typically of the order of 10 11s whereas for the suspended 

particles (often just called 'the colloid') it is typically 10_2s  [20]. Thus the sus-

pending medium may be considered a continuum for all measurements on the 

colloidal timescale. 

1.2 Polymers 

A polymer is a large number of chemically-bonded units (known as monomers) 

which do not dissociate under experimental conditions. The links between the 

monomers are covalent and commonly these monomers are organic and identical 

(hornopolymers). A polymer molecule is formed when the condition required to 

add one monomeric unit to a system is almost independent of its size. If one has 

a polymer consisting of n monomeric units of (A), then the energy required to 

go from (A) -* (A) +1  is the same as the energy required to go from (A) +1  -+ 

(A) +2  [22]. This criterion leads to polymers consisting of at least several hundred, 

but more commonly several thousand, monomeric units. 

In this work the only types of polymers considered are linear polymers, which have 

a carbon backbone and consist of a long single chain of mononmers. When placed 

in solution, the segments along the polymer chain can come into close proximity to 
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(a) 
	

(b) 
	

(c) 

Figure 1.1: The topolgy of the three different concentration regimes for a polymer 

solution: (a) shows the dilute regime in which the polymers coils do not touch, (b) 

the overlap regime where the coils fill all space and (c) shows the semi-dilute regime 

in which there is significant overlap between polymers. 

other segments further along the chain. The solvent mediated interaction of these 

segments controls the spatial size of the polymer coil [22]. For example, if it is 

energetically unfavourable for the polymer segments to be near each other, the coil 

swells and becomes highly solvated (a typical coil contains a large volume fraction 

of solvent). This solvent mediated segment-segment interaction is temperature 

dependent and the size of the coil changes as the solvent temperature changes. 

At a certain temperature, known as the theta temperature, the attractive and 

repulsive forces between segments cancel and the coil can be described by a simple 

(non-self avoiding) random walk. Solvents for polymers are therefore classified 

into 'good', 'theta' and 'poor' [22]. 

As the concentration of a polymer solution is increased from zero, three different 

concentration regimes are seen: dilute, overlap and semi-dilute [23]. Figure 1.1 

shows the topology of these regimes in more detail. The dilute regime refers to 

a system in which the polymer coils do not overlap, each polymer occupying a 

spherical region of radius R9. In this regime the polymer-polymer interaction is 

minimal. As the concentration increases further, at some overlap concentration 

c the polymer fills all available space. This occurs at roughly 

*_ 3M 

- 4NA7R31  
(1.3) 

where Mw  is the molecular weight, Rg  the radius of gyration and NA Avogadro's 

number. At even higher concentrations, individual polymer segments from dif- 
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ferent chains come into close proximity and it is no longer sensible to refer to a 

particular polymer coil. 

1.3 Our system 

Poly(methylmethacrylate) spheres in either cis-decalin or trans-decalin and linear 

polystyrene form a well established model system on which much work has been 

performed [20]. 

1.3.1 The colloid 

PMMA spheres are well known in the field of colloid physics and are widely used 

in the research carried out at the University of Edinburgh and elsewhere. These 

spheres consist of an essentially solid core of poly(methylmethacrylate) with a 

mono-layer of poly- 1 2-hydroxystearic acid (PHSA) grafted to the surface [24] 

(see figure 1.2). Typically this grafted layer is of the order of 10-15nm thick with 

-100-500nm 

P.M.M.A Sphere 	/ 

P.H.S.A. Shell. . 
-1O-l5nm 

Figure 1.2: Schematic of colloidal sphere. The PMMA core is highly coiled and the 

PHSA brush is at a higher density than shown, covering nearly 100% of the surface. 
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a very high surface coverage (approaching 100%). The particles are suspended in 

any of cis-decalin, trans-decalin, or dodecane. These liquids are poor solvents for 

the PMMA which ensures low solvation of the core (see section 1.2), but good 

solvents for PHSA hairs which therefore adopt an extended structure. As two 

spheres are brought together, the PHSA layers either interpenetrate or compress. 

Both interpenetration and compression of the hairs are highly thermodynamically 

unfavourable and the result is an almost hard sphere interparticle potential [25]. 

The exact form of the inter particle repulsion has not been measured precisely, but 

preliminary work by Cairns et al. [26] indicated that it is strong and short ranged. 

Segre et al. [16] performed measurements on the diffusion of these spheres, the 

property of the most relevance to the work presented here, and found that the 

short-time diffusion coefficient as a function of volume fraction agreed very well 

with both theory and simulation for hard spheres. Several other authors [27,28] 

have considered the problem using different approaches and so far there is no 

evidence for any other than hard-sphere behaviour. 

Light scattering is a useful tool for the study of colloidal properties. While there 

have been significant advances in obtaining useful data from multiply scattering 

systems, for the majority of techniques discussed in this thesis it is useful for the 

refractive index difference between the particles and solvent to be small. Table 

1.1 gives the refractive indices of the more common used materials found in this 

work. 

1.3.2 The polymer 

The polymer used is linear Polystyrene of high molecular weight (of the order 

of millions of atomic mass units) which does not interact chemically with either 

PMMA or PHSA. The concentrations investigated were below the overlap con-

centration, though this was more governed by the presence of phase boundaries 

than through any deliberate decision. If we define the size ratio () of the system 
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Species Refractive Index 

PMMA 1.484 (a) 

PHSA 1.51 (b) 

Particles 1.495 - 1.505 (c) 

polystyrene 1.59 - 1.60 (a) 

cis-decalin 1.481 (d) 

trans-decalin 1.4695 (d) 

tetralin 1.5413 (d) 

dodecane 1.4216 (d) 

Table 1.1: Refractive indices of polymers and solvents. (a) indicates that the measure-

ment was made at 25°C at a wavelength of 589nm [29], (b) indicates the measure-

ment was made by myself using a Abbe refractometer at 25°C, (c) indicates the value 

was found by myself by refractive index matching and (d) indicates the measurement 

was made with the d-band of sodium light at a temperature of 25°C [30]. 

as the ratio of polymer radius of gyration to colloid radius, then all experiments 

were performed around e - 0.3. This ratio was chosen to allow for easy detection 

of the effect of the polymer relaxation on the dynamics of the colloid: 

The polymer relaxes roughly two orders of magnitude faster than the colloid - a 

timescale easily accessible by dynamic light scattering. 

1.4 Colloid-polymer mixtures 

The addition of enough free polymer to an otherwise stable colloidal suspension 

causes phase separation. The earliest explanation for this phase separation was 

due to Asakura and Oosawa [15], who treated the colloids as hard spheres and 

the polymers as freely interpenetrable coils. The centre of the polymer coil is, 
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Depletion 
Zone 

.* 

Overlapping depletion zones 

Figure 1.3: Polymers are excluded from a region around the colloid. When two of 

these regions overlap there is an unbalanced osmotic pressure on the colloids resulting 

in a net attraction between them. 

however, excluded from a region around the colloid (the depletion zone). If, 

through thermal motions, two depletion zones overlap then the free volume (vol-

ume accessible to the polymers) increases as does the entropy of the polymers 

(see figure 1.3). At high concentrations of either component this effect leads to 

phase separation into colloid rich and colloid poor phases. A colloid-polymer 

mixture may therefore show 'crystal', 'liquid'-like or 'gas'-like phases [1]. If too 

much polymer is added then the strong forces between the colloids result in a 

temporary non-equilibrium structure known as a gel [31]. 

1.5 Evolution of work 

For clarity, the layout of this thesis does not follow a historical route. In partic-

ular, much time was spent attempting to overcome the problems associated with 

cross-scattering, which can lead to spurious results in light scattering experiments. 

While I have discussed some of the routes taken to overcome these problems, the 

majority of the experimental chapter is concerned with the methodology and re-

sults of the final set of experiments in which cross-scattering had been minimised. 
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In this section I will give a brief, historically accurate, perspective on the work. 

My initial aim was to attempt to adapt existing theories of diffusion to create 

a model for the diffusion of colloids in a colloid-polymer mixture. I worked on 

the governing equations obtained by Prof. W. C. K. Poon and Dr. P. Warren for 

a Cahn-Hilliard model of diffusion in a colloid-polymer mixture. My work has 

explained these results in terms of physical concepts. In addition I have included 

the effects of hydrodynamic interactions for a limited range of colloid and polymer 

concentrations. It became clear that this model was restricted both by the clumsy 

way in which hydrodynamics had to be included, and by the inability to solve 

the equations away from the low scattering vector limit. The Smoluchowski 

formalisation overcomes both these problems, but is considerably harder to solve 

and a quantitative solution for diffusion in a colloid-polymer mixture is not likely 

to be found in the immediate future. Nevertheless I made several qualitative 

predictions based on previous work on concentrated systems of hard-spheres. 

To test these predictions I performed experiments on a well-characterised model 

system. These showed that the diffusion coefficient of the colloids was, as pre-

dicted, a function of time but did not appear to take the form expected from the 

Smoluchowski fomalisation. In addition, the data showed an unphysical depen-

dence on the scattering vector. 

To find the origin of this unphysical result, I looked carefully at some of the as-

sumptions made in the light scattering experiment. To obtain the dynamic struc-

ture factor of the colloid alone, I had assumed that cross scattering (in which the 

light scattered from a colloid is correlated with that from a polymer) was negligi-

ble, and that the data needed to be corrected for the scattering from the polymer 

alone. This assumption was found to have no physical basis. I worked on trying 

to find the magnitude of this cross-scattering and arrived at a relatively simple 

method for estimating its magnitude. The results obtained by my method com-

pared favourably with those obtained by a more complicated treatment recently 
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published by Dr. A. Louis et al. [32] Simultaneously I managed to find a way to 

measure this magnitude experimentally. Both theory and experiment showed the 

cross-scattering was likely to be significant in my previous experiments and I had 

to consider several methods to reduce it. 

In neutron scattering it is common to use contrast variation to obtain scatter-

ing from one species only. For light scattering, contrast variation would involve 

changing the refractive index of either the solvent or one of the species. Tetralin 

was identified as having a suitable refractive index but previous work carried out 

in this department and elsewhere indicated that PMMA particles may swell when 

placed in tetralin. I decided to investigate whether this swelling was significant 

in our system. Through detailed light scattering experiments, it became clear 

that not only did the particles swell in tetralin, but there was also some compli-

cated rearrangement of the tetralin within the particle that continued for several 

weeks. Tetralin clearly could not be used as a solvent. No other solvent or poly-

mer could be found that would reduce cross-scattering, was safe to use and could 

be obtained in sufficient quantities. 

Instead of using contrast variation, I attempted to measure the magnitude and 

form of the cross-scattering directly, with a view to then being able to correct 

the data previously obtained. I devised an experimental method for obtaining 

the form of the cross-scattering based on the scattering properties of the colloids. 

Unfortunately noise in the data and the size distribution of the colloid samples 

prevented an accurate measurement. 

I then devised a new experimental methodology that allowed use of the scat-

tering vector dependence as a check on whether cross-scattering was significant 

in the experiment. By changing the solvent and only considering data obtained 

at certain scattering vectors and colloid concentrations, the magnitude of the 

cross-scattering was reduced and shown to be negligible. Unfortunately multiple-

scattering now became significant. The experiments had to be repeated using 
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two colour dynamic light scattering, which effectively removes multiple scatter-

ing. The majority of the work using two colour dynamic light scattering was 

performed in conjunction with Dr. A. MoussaId. Finally I obtained data in which 

both cross-scattering and multiple scattering were negligible and which could be 

analysed to see whether the theoretical predictions were being followed. 

1.6 	Layout of thesis 

Dynamic light scattering is a well established technique. However, as those who 

regularly work with it will know, it is extremely sensitive to alignment and stray 

light. The building of a reliable and accurate experimental set-up was funda-

mental to this work and a summary of the apparatus used, together with the,, 

experimental limitations of the equipment, are given in Chapter 2. A detailed. 

description of the analysis techniques used is included here. Also included in 

Chapter 2 are the basic experimental techniques used to prepare and characterise 

the samples and a study designed to both illustrate the usefulness of light scat-

tering techniques and to investigate the suitability of using tetralin as a solvent 

in this work. 

Chapter 3 provides the theoretical background to diffusion in colloid-polymer 

mixtures. After summarising the basic thermodynamics of the system, an in 

depth study into a Cahn-Hilliard treatment of diffusion in this system is pre-

sented. The Cahn-Hilliard method was originally developed to explain a form 

of phase separation known as 'spinodal decomposition', but has been adapted 

to explain diffusion in non-phase separating samples. Initial work on this the-

ory has been performed by Prof. W. C. K. Poon1  and Dr. P. Warren', though 

their results are currently unpublished. Here their work is reviewed and new 

'Department of Physics and Astronomy, University of Edinburgh 
'Unilever Research, Port Sunlight 
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results presented. Using these results, a physical explanation for the diffusion in 

colloid-polymer mixtures at low scattering vectors is provided. Furthermore, a 

new model is presented which includes the effects of hydrodynamic interactions. 

The limitations of this model are also discussed. 

Included in Chapter 3 is a summary of another theory of diffusion - the Smolu-

chowski model. This model is expected to have considerably more relevance to 

my work as it includes hydrodynamic interactions in a much more natural way. 

Both the model and the experimental work supporting it are reviewed and, based 

on this, a model for diffusion in this system proposed. 

Chapter 4 contains the experimental investigation. Calculations carried out in 

collaboration with Dr. A. Louis and Prof. J. -P. Hansen' revealed that the scat-

tering from the polymer introduces large errors into the measurements. Several 

new experimental directions were extensively investigated to overcome this prob-

lem. Eventually a methodology was found in which these complications could be 

minimised. The accuracy of this method was checked by use of the two colour 

dynamic light scattering equipment in collaboration with Dr. A. Moussaid4 . 

Chapter 5 contains a detailed, though not exhaustive, review of the current liter-

ature on colloids diffusing through polymer mixtures. Its late positioning in this 

thesis is because several of the authors appear to have had difficulties similar to 

those found by myself and reported in Chapter 4. 

The last chapter contains the main conclusions of this thesis and presents sug 

gestions for further work. 

This work has been discussed with, and guided by, Prof. P. N. Pusey5  and 

Prof. W. C. K. Poon. 

'Department of Chemistry, University of Cambridge 

'Department of Physics and Astronomy, University of Edinburgh 
5Department of Physics and Astronomy, University of Edinburgh 



Chapter 2 

Experimental techniques 

This chapter summarises the basic experimental procedures used to obtain and 

charcterise the samples. It also contains an overview of light scattering tech-

niques, including the experimental apparatus designed and used in this work and 

a summary of the main analysis techniques used in dynamic light scattering. 

Also reported are the results of a study of some practical interest to those using 

PMMA particles, namely the effect of using tetralin as solvent. 

2.1 Colloid stock preparation 

2.1.1 Washing the colloid 

The colloids were synthesised in the Department of Physics and Astronomy at the 

University of Edinburgh by Dr. A. Schofield. When supplied they are dispersed in 

dodecane, which is not an ideal solvent for the relevant experiments. The refrac-

tive index of dodecane differs strongly from the particles (see table 1.1) making 

multiple scattering effects important when using light scattering methods. To re-

duce multiple scattering, cis-decahydronapthalene (or cis-decalin for short) and 

13 
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trans-decahydronapthalene (or trans-decalin) are used as solvents. The dodecane 

must therefore be replaced with either of these solvents and there is a standard 

procedure used to do this. The colloids are placed in either a glass or plastic 

cylindrical cell and centrifuged at high angular velocity. The colloids are denser 

than the solvent and move towards the base of the container. On settling the 

colloids adopt a random close packed structure at the bottom of the cell. The 

time taken for all the colloids to be part of this structure is dependent on the 

angular velocity chosen. The effective weight W of a particle is 

W = irR(p - p8)w2r, 	 (2.1) 

where R is the radius of the colloid, Pc  the average density of the colloid, Ps  the 

density of the solvent, w the angular velocity and r the perpendicular distance of 

the colloid from the axis of the centrifuge which for the centrifuge used is 10cm. 

The upper limit to the centrifuge speed is given by the mechanical strength of the 

cells. In this centrifuge, glass is only capable of withstanding approximately 3000 

revolutions per minute, whereas plastic can withstand over 10,000 revolutions per 

minute, which is the maximum attainable angular velocity. It is therefore roughly 

10 times quicker to use a plastic container than a glass one. It is worth noting 

that at 20°C an isolated particle of radius 175nm will sediment about 0.5mm per 

day in cis-decalin under the earth's gravity. 

After complete sedimentation is achieved, the supernatant dodecane can be re-

moved and replaced with the desired solvent. The colloid is then redispersed 

using a mechanical shaker. The volume fraction of a close packed system of hard 

spheres is q5rcp > 0.64, with the exact value being dependent on the polydisper-

sity' [33] and the slight compressibility of the particles. When the particles are 

redispersed, the solvent that was trapped in the sediment is freed. If we define 

a purity fraction' pf as the ratio of the initial solvent (dodecane) to the total 

'Real colloids have a distribution of sizes. The polydispersity is defined to be the standard 

deviation of the distribution normalised by the mean value. 
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amount of solvent (dodecane and either cis-decalin or trans-decalin), after one 

wash we find that 

Pf 	
(1-0 rcp)( 

1 	rcpC 	
(2.2) 

where (is the ratio of the sediment volume to the total volume. Taking crcp 

0.66 (which assumes a polydispersity of about 5%) and ( = 0.4 gives a purity 

fraction of 18%. The whole process is repeated until the purity reaches an accept-

able level. The number of washes required to approach a purity level of 0.01% 

is calculated from pl = 10-4, i.e. n = 6. Typically the wash is repeated seven 

times. To verify the purity after seven washes the refractive index of the dis-

carded solvent is measured using an Abbe refractometer and compared to that of 

pure solvent. No difference was ever found to the level of accuracy of this device 

(0.05%). 

2.1.2 Finding the volume fraction 

It is perhaps suprising that one of the main experimental difficulties in working 

with PMMA colloids is the accurate determination of volume fraction. There are 

several methods available, but each makes an assumption about the system or 

particle which may be invalid. 

One method is to find the mass fraction of the colloid and convert it to a volume 

fraction. The mass fraction may be found by drying a weighed amount of colloid 

and solvent in a vacuum oven at 50°C until all the solvent has evaporated. In 

practice one takes mass measurements every day until there is no additional 

weight change on further drying, which typically occurs after three days. To 

convert the mass fraction thus obtained to a volume fraction, the density of both 

particle and solvent must be known. Whilst the latter can be measured easily 

(see section 2.2.1), finding the density of the core-shell composite particle is not 

trivial. The PMMA core may be porous and have a different effective density to 
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the bulk material. In addition the PHSA layer is usually solvated to an unknown 

degree, affecting the density of the composite particle. If the volume fraction 

of  of a particular suspension were known in advance (by, for example, one of 

the methods discussed later in this section), then a single measurement of mass 

fraction provides the scaling constant. 

Psmc  

= p3mg  + pcms  
MC  

- m+fim 

where 

PC 

PS 

so 

(2.3) 

Having determined the scaling constant, this method may be used to determine 

subsequent volume fractions. This tends not to be a very popular method for 

two reasons: the scaling constant is different for different prepartions, and once 

the volume fraction has been determined, the sample must be redispersed to be 

used in experiments, which can be difficult. 

Other methods attempt to measure the volume fraction directly. As mentioned in 

section 2.1.1, on prolonged centrifuging the colloid adopts a close packed structure 

at the bottom of the cell. Tithe volume fraction of this sediment is known, then 

an easy way to determine the total volume fraction is to centrifuge the sample in a 

cell with a homogeneous cross-section. By measuring the heights of the sediment 

and solvent, the volume fraction may be determined 

hRcp 
= 	RCP- 	 (2.4) 

h 0  

is the volume fraction of the suspension and c'RCP  that of the random close 

packed sediment, which for monodisperse hard spheres is known to be 0.64. For 
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Figure 2.1: After centrifuging the sample cell contains a solid' region of random 
close packed colloids and a supernatant fluid. Measurement of the respective heights 
allows calculation of the volume fraction. 

the definition of the other terms see figure 2.1. Schaertl and Sillescu [33] inves-

tigated the effect of polydispersity on this packing using computer simulation. 

They found that 5% polydispersity changes the volume fraction of random close 

packing to 0.66, whereas 10% increases it to 0.67. The error introduced by rea-

sonable amounts of polydispersity is thus not large; however there are additional 

problems with this method. High speed centrifuging may well compress the par-

ticles, though if this deformation were not permanent it could be accounted for 

by measuring heights over a period of time. Transmission electron micrographs 

taken on colloidal suspensions that had been centrifuged at 3000 rpm and then 

redispersed revealed no significant shape polydispersity [21]. Furthermore I in-

vestigated the effect of centrifuge speed on the height of sediment by spinning 

down a sample at low speed until the sediment was formed, and then centrifuging 

again at much higher speeds (without redispersion). No height change was noted. 

The most significant error in using this method to determine volume fraction is 

the uncertainty in the form of packing. Small particles (which achieve a lower 

sedimentation velocity) may have time to rearrange themselves into a structure 

with more efficient packing. It is known that the most efficient form of packing for 

hard spheres is a crystal with a volume fraction of 0.74, significantly more than 

that for random close packing. Even a mondisperse, non-compressing system of 



18 	 CHAPTER 2. EXPERIMENTAL TECHNIQUES 

Volume 
Crystal 

(%) 

: Non-equilibrium 
Fluid 	Fluid-  

Crystal Crystal 
	(glass) 

100 

0.494 	0.545 	0.58 

(frecec) 	(melt) 

Figure 2.2: The phase diagram for hard spheres as a function of volume fraction /. 

hard spheres may have sediment with a volume fraction in the range 0.64 < 0 < 
0.74. 

Another method for determination of the volume fraction is to exploit the phase 

diagram of the hard sphere system. Hoover and Ree [34] performed computer 

simulations on a monodisperse system and found that hard spheres undergo a 

'freezing' transition at a volume fraction of 0.494 (of) and a 'melting' transition 

at a volume fraction of 0.545 (qm).  Between these volume fractions the system 

shows two coexisting regions, crystal and fluid (figure 2.2). This was seen exper-

imentally by Pusey and van Megen [28]; however when they scaled their volume 

fractions to obtain freezing at o f, the melting transition was found at cbm  = 0.536. 

Paulin and Ackerson also measured the phase diagram for PMMA spheres in a 

mixture of cis-decalin and tetralin. On scaling the freezing transition, they found 

the melting volume fraction to be 0.552 [35]. The reason for these discrepancies 

is very likely the effect of polydispersity. Two authors have attempted to calcu-

late the phase diagram for polydisperse hard spheres based on density functional 

theory [36,37], but find different predictions and do not reproduce accurately the 

computer results for the monodisperse system. Polydispersity certainly affects 

crystallisation and there are various predictions for the critical polydispersity at 

which crystals cannot form. Experimentally it is found that in our system poly-

dispersity greater than about 10% results in no crystallisation [20]. 
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It is clear that for a fairly monodisperse system, taking the freezing transition 

at that predicted for hard spheres will not result in an error more than about 

3%, and this is the best marker we have for calibrating a system. The aim is to 

put the colloid within the coexistence region and use figure 2.2 to determine the 

volume fraction. Experimentally we use a cell with a homogeneous cross-section 

and by assuming the spun-down sediment has a volume fraction of 0.64, we add 

or remove supernatant until the nominal volume fraction is 0.52 (using equation 

2.4). If no crystals form, we can be sure that the volume fraction is greater than 

0.545, since the estimate of 0.64 is a lower bound for the volume fraction of the 

sediment. More solvent is then gradually added until the system is brought into 

the coexistence region. When the crystals appear they nucleate throughout the 

sample and then sediment under gravity where they start to compress. Paulin 

and Ackerson [35] suggest a method for extrapolating the height of the various 

interfaces to zero time to obtain the initial height of crystals correctly. This can 

then be compared to figure 2.2 to obtain the volume fraction of the sample. 

It is good practice to keep the stock solution, from which all dilutions are made, 

within the coexistence region so that it is easy to see if the volume fraction 

changes due to evaporation or handling. Evaporation is reduced considerably by 

using a tightly fitting cap which is then sealed with teflon tape. In a well sealed 

cell, evaporation typically changes the total mass by about 1% per month. In 

my experiments no samples were kept for longer than a month so the effect of 

evaporation can be neglected. 

Having obtained the stock solution, it is necessary to dilute to appropriate con-

centrations. This is done according to the equation 

rn33133 
qfl 

Mss + Pd 

- 	 rri38ç33 
(2.5) 

MSS + (&fi + (1 - çb)) md 

where 

Pss = &sPc + (1 - &s)Pd. 
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The subscript ss refers to stock solution and d refers to the added solvent. Once 

more we need the value fi, which can be obtained from equation 2.3. 

Using these various methods one can obtain clean colloid in a suitable solvent 

at known volume fraction. The last characteristic required for this work is the 

particle's radius. This can be obtained by light scattering and discussion of how 

this is obtained will be left to later sections. 

2.2 	Polymer stock preparation 

For the purposes of this thesis, the polymer solution is characterised by its con-

centration, coil radius and viscosity. The polymer used is of very high molecular 

weight and can easily break if placed under high shear (for example by shak-

ing vigorously). With this proviso in mind, the characterisation of the polymer 

solution is considerably more straightforward than that of the colloid. 

2.2.1 Concentration and density 

The polymer is obtained in powder form and is made into solution by dissolving 

a known mass in a known mass of solvent. The mixture is then tumbled slowly 

until fully homogenised. Any undissolved polymer can be seen as a glassy 'blob' 

within the solution. The concentration c is given by the mass of the polymer 

divided by the volume of the solvent (which relies on a value for the density of 

the solvent Pd - see below). The polymers contribute negligibly to the volume of 

the solvent, but the density of the solution pp, becomes 

Pps = Pd + Cp . 	 (2.6) 

It will become important in later sections to know the density of the polymer 

solution accurately. Densities can be measured experimentally by the following 
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Figure 2.3: Schematic for measuring the density of solutions. 

method. A cell with constant area (square based) is filled with increasing amounts 

of solvent. Each time the mass of the cell and solvent is measured. The height 

of the base of the meniscus is also measured using a travelling microscope (figure 

2.3). A plot of height h against total mass MT  has as its slope the density Pd 

multiplied by the average cross-section of the cell Aceii: 

mT = hPdAcell + mcell . 	 (2.7) 

The cross-sectional area is found by performing this experiment with a solvent of 

known density. Using this method we could measure density differences down to 

as little as 2mgcm 3. Typical results are shown in figure 2.4, and we noticed no 

deviation from equation 2.6. 

It is often convenient to write the polymer concentration in terms of the overlap 

concentration, defined in Chapter 1, to give an 'effective polymer volume fraction' 

and this will turn out to be a useful quantity in later chapters. 

2.2.2 Polymer radius 

In order to find the overlap concentration, we need the radius of the polymer coil 

(equation 1.3). This is controlled by the molecular weight MW  of the polymer and 

the temperature T of the solution. Berry [38] performed a comprehensive study 

on the behaviour of linear polystyrene in decalin (both cis-decalin and trans- 
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Polymer Solution 

Trans-Decalin 
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0 	 1 	 2 	 3 

Height / cm 

Figure 2.4: Typical results for density measurements. The circles are results for trans-

decalin, and the dashed line is the linear regression best fit. The squares represent 

measurements on a polymer solution of concentration 18.2mgcm 3  with the solid 

line being the linear regression best fit. Using this method, we can detect density 

differences down to as little as 1%. 

decalin). His results were consistent with the assumption that the expansion of 

the radius above the theta temperature To is a function of a single variable, the 

Fixmari parameter z. For decalin solutions of linear polystyrene, the Fixman 

parameter is given by 

i 	i 
z = 0.00975M 

i 
 [1 - . T9-j . 	 (2.8) 

Having calculated this parameter, the expansion of the coil (R) I (R)0  can then 

be read off figure 12 in reference [38]. In the same paper Berry showed that, at 

the theta point, the radius of gyration (in nm) is given by 

Rg 	= 0.0276/ü. 	 (2.9) 

A knowledge of the theta temperature and the molecular weight is therefore all 

that is needed to obtain the radius at any temperature above the theta point. 

Theta temperatures may be obtained from the Polymer Handbook (12.5°C for cis-

decalin, 20.4'C for trans-decalin) [29]. When the polymer is supplied, it comes 

with a data sheet providing the weight-averaged molecular mass Mw and the 
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ratio of moments which is this mass divided by the number averaged molecular 

mass M. For my polymers, this ratio was less than 1.05 which indicates a 

polydispersity of about 5%. Following Berry I have used MW  to calculate the 

radii. 

2.2.3 Viscosity 

Polymer solutions of high molecular weight or concentration show a type of non-

Newtonian behaviour known as shear thinning. The polymer coils orientate them-

selves along flow lines where they interfere less with the flow of solvent. Thus 

the apparent viscosity decreases. On the other hand the coils also are deformed 

by the flow (in polymer solutions this is synonymous with elongation in the flow 

direction) causing the particles to interact more with the liquid and to increase 

the viscosity. The two partially cancel, but the orientation effect dominates and 

the viscosity decreases [39]. The onset of shear thinning is expected at Pe 	1, 

where Pe is the Peclet number which characterises the amount of distortion of 

structures in shear flow [17]. It is given by 

F- 
2D 
	 (2.10) 

where 'y  is the shear rate, and R, D the radius and diffusion coefficient of the 

polymer coil respectively. For a typical polymer used in my experiments this 

gives the onset of shear thinning at a shear rate of 'y  50s 1  

For the case of a colloid diffusing in a polymer solution, the motion of both species 

is driven by the thermal energy of the suspending fluid. For size ratios smaller 

than 1 (i.e. a larger colloid), equation 1.2 results in a more intense thermal motion 

for the polymers than the colloid. Consequently the shear stress acting upon the 

polymers is weak and slowly changing as compared to the polymer diffusion [7] 

and shear thinning is not likely to be significant in the colloid-polymer mixture. 
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Figure 2.5: A schematic illustration of the Ubbelohde viscometer. Figure (a) shows 

the actual viscometer and (b) shows the holder which is designed to keep the vis-

cometer at constant temperature, free from vibrations and vertical. 

The viscosity of the polymer solutions was measured with an Ubbelohde viscome-

ter. The measuring principle is based on the Poiseuille equation relating the 

volume flow V of a liquid through a capillary with radius a and length I to the 

viscosity of the liquid 77 and the pressure difference LP between the ends of the 

capillary that is causing the flow: 

The pressure difference is caused by gravity. A schematic of the apparatus is 

shown in figure 2.5a. The polymer solution is introduced through the filling tube. 

It is then sucked up through the capillary to the measuring bulb. The fluid is 

then allowed to flow under the action of gravity through the capillary and the flow 

time t is measured between the moments the miniscus passes the two markers. 

The pressure difference is given by hpg which is substituted into equation 2.11 to 

give 

t = K77   , 	 (2.12) 
P 

where K is a constant dependent on the particular apparatus and is determined 

by a measurement on a known solvent. In the above treatment I have neglected 
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the correction for the kinetic energy gained by the fluid as it leaves the tube which 

for a well designed viscometer is negligible. 

The flow field for Poiseuille flow is well known (see for example [40]). The maxi- 

mum shear rate of the fluid is given by 

LPa 
'Ymax = 277  

(2.13) 

This results in typical shear rates of 0.05s 1, ensuring that shear thinning will 

not be detected. 

The precision of an Ubbelohde viscometer is remarkable. Typical efflux times 

of 400s are measured with a stop watch to an accuracy of ±0.1s. To obtain 

this level of precision, the measuring environment needs to be strictly controlled; 

for example viscosity is a strong function of temperature with a fluctuation of 

1K leading to an error of about 2%. Furthermore, the Ubbelohde needs to be 

kept vertical (to within half a degree) and vibration free. Commercial holders 

are available at not inconsiderable costs, but the apparatus in figure 2.5b shows 

a home-made alternative. The viscometer is held within a glass tube and pro-

tected against vibrations by a tight fitting base plate and cap. Water from a 

temperature-controlled bath is circulated within the glass holder maintaining the 

temperature to within 0.1K (as measured by a thermistor). Circulation rates 

are kept low to avoid turbulence. A plumb line is included within the tube and 

alignment is made possible by use of a ball hinge at the wall. This has the added 

advantage of suspending the viscometer away from further sources of vibrations. 

Typical measurements on the concentration dependence of polystyrene in trars-

decalin at 28.6°C are shown in figure 2.6. A Carrimed cone and plate rheometer 

was also used on these samples. This rheometer is considerably less accurate than 

the Ubbelohde for these low viscosities, but has the advantage of an adjustable 

shear rate. It was used primarily to verify that shear thinning was not observed. 

More details of this kind of rheometer can be found in the literature (e.g. [40]). 
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Figure 2.6: Concentration dependence of viscosity for polystyrene (2 million molecular 
weight) in trans-decalin. Squares represent the data obtained by the Ubbelohde 
viscometer with the curve being a quartic best fit, triangles are data obtained from a 
carrimed rheometer. 

2.3 	Light scattering 

Light scattering is an immensely useful tool for studying colloids. Almost all 

visible objects scatter light [41]; the optical appearance of coloured objects (such 

as leaves and flowers) come from strong scattering combined with significant 

absorption bands in the visible spectrum. The blue colour of the sky (in every-

where except Edinburgh where it is more usually grey) is a result of the strong 

dependence on wavelength of the scattering from the atmosphere. Light scat-

tering reveals information about the structure and dynamics of systems. The 

advances in removing low order multiple scattering (by, for example, using two 

colour dynamic light scattering) and obtaining useful information from heavily 

multiply-scattering systems (through diffusive wave spectroscopy) [41] open up 

the application of these techniques to stronger scatterers and more concentrated 

systems. However, in this work I shall mainly be considering systems where 
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multiple scattering is not significant. The theory behind light scattering is well 

understood and may be found in many texts (e.g. [20,421). Here I will review the 

basic principles. 

2.3.1 Fundamentals 

Light with an electric field amplitude E0  linearly polarised along the x axis is 

incident along z. This electric field induces a dipole moment inside the particle, 

which in turn radiates an electromagnetic dipole field. If the linear size of the 

scatterer R is significantly smaller than the wavelength of the light .A Maxwell's 

equations can be solved to give the following relation between the intensity of the 

scattered light I, the distance from the scatterer r, and 0 - the angle between 

the scattering direction r and the direction of polarisation x: 

16ir4a2E 	2 13 
= 	r2)4 	

sin 	. 	 (2.14) 

c is the polarisability of the scatterer. We have assumed in this derivation that 

the scattering is elastic - i.e. there is no energy absorbed or emitted by the 

scatterer. If we consider only scattering within the plane perpendicular x, then 

from equation 2.14 we see that the light is scattered equally in all directions. 

An extended object for which the Rayleigh limit (R << \) does not hold can 

be treated as a series of small volume elements each scattering as above. The 

total scattered field is expressed as the coherent sum of the fields scattered from 

volume elements located at r2. As long as the incident plane wave front is not 

distorted by the presence of the other volume elements (the Rayleigh-Gans-Debye 

criterion), the phase factor between any two volume elements is simply e_q(nj_1j) 

(see figure 2.7). Q is the scattering vector defined as the difference between the 

scattered and incident wave vectors (see figure 2.7). Since the scattering is elastic 
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Figure 2.7: The phase difference between two scattering volume is given by the scalar 

product of the scattering vector Q and their radial separation, r3 - rk. 

k, = k and the magnitude of the scattering vector is given by 

Q4S sin
(1)  

, 	 (2.15) 

where AO is the in vacuo wavelength of the incident light and 0 the angle between 

the incident and scattered wavevectors. 

If the extended object is homogeneous (and infinite) then the scattering from 

each small volume is identical and the total scattered electric field averages to 

zero (f e_iQ.(nj_nj) = 0). If there are optical inhomogeneities within the medium, 

cancellation does not occur. Consider such an inhomogeneity: using the theory 

of polarisation of dielectrics, we can relate the contribution to the total scattering 

from this inhomogeneity to the excess dielectric constant (Lie = q 
- €o) of this 

region [39]. If JE, is the contribution to the total scattering from a scattering 

volume v at r3 then it is related to the excess dielectric constant of that volume 

A Ej by 

8E52 
= 7iVSL€jEO iQ.r3 	 (2.16) 

AO 	1' 

Integrating these contributions, we find that the total electric field is the Fourier 

transform of the excess dielectric constant. To obtain useful results for a system 

of colloidal particles we must now make some approximations. Firstly we assume 

that the suspending solvent contains insignificant inhomogeneities and so the 

excess polarisability in the system is entirely due to the particle. This is not nec-

essarily true and must be checked experimentally in each case, particularly when 
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solvent mixtures are involved as these can give large compositional fluctuations. 

Further, we will only consider the light detection in the far field which allows use 

of the Fraunhofer approximation. The Rayleigh-Gans-Debye criterion (RGD) for 

this system places the following restriction on the radius of the particles R, the 

wavevector of the incident light k, and the ratio of the refractive indices of object 

and solvent n,/n, 

kR 	—1 <<1. 	 (2.17) 
ns 

In this work this is realised by choosing a solvent of a similar refactive index to 

the scattering object. 

The total dielectric constant CT  of a system of particles and solvent is, to a 

good approximation, simply the volume average of the dielectric constants of the 

particles e and solvent € [43]. 

IET = 	+ (1— 	 (2.18) 

where 4P is the total volume fraction of the scatterers, not the scattering particles.2  

Thus the excess polarisability is given by 

- 	dET MWd€T 
(2.19) 

where c is the concentration (mass/volume) of the particles, 14 the scattering 

volume of a particle and Mw the molecular weight of the particle. For most 

substances the dielectric constant is related to the refractive index n by (see 

e.g. [39]) 

c = n2  , 	 (2.20) 

leading to an expression for excess polarisibility of 

M dnT 
= 2 	 , 	 (2.21) 

NAVP dc 
2This distinction is necessary as a polymer coil is not a solid entity. 
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where nT is the total refractive index. In the limit of small refractive index 

differences, this expression may be expanded to give 

& = 2n8(n - ri3) = 2ri3 5ri. 	 (2.22) 

The excess dielectric constant in equation 2.16 is therefore related to the refractive 

index difference between the solvent and the particle at position r3  (öri(r)) by a 

system specific constant, so that the total magnitude of the scattered light E in 

the far field is: 

E3(Q,t) = 	öri(ri(t))e 1i(t)  , 	 (2.23) 
3 

where we have neglected the prefactors for clarity. In general the inhomogeneities 

may move relative to the background medium, hence the inclusion of the time 

dependence in equation 2.23. 

2.3.2 The form factor 

Let us first consider the case of a single, orientationally symmetric, solid particle. 

The sum in equation 2.23 is now only over scatterers within one particle. Going 

to the continuum limit we find: 

E., (Q)= fvr n(r)eiQrdV, 	 (2.24) 

where the integral is over the volume of the particle V. This quantity (which is in 

general a complex quantity) is known as the scattering amplitude of the particle, 

and is usually written b(Q). For a solid, isotropic particle we can drop the tem-

poral dependence of equation 2.23. The scattering amplitude for a homogeneous 

sphere of refractive index n, and radius R, is found by performing the integral to 

give 

sin 	- QRcosQR 
b(Q, R) = 4R3(n - n) ( 

	(QR)3 	) . 
	(2.25) 
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Figure 2.8: Theoretical form factor for a homogeneous sphere. 

A more useful quantity to consider is the form factor which is the normalised 

intensity scattered by a single particle, defined as 

lb (Q, 	2  
P(Q,R) 

= "' 	
, 	 (2.26) 

Ib(0, R)12  

which for a homogeneous sphere has the form 

9 (sinQR_ QR cos QR'\ 2  
P(QR) 

= 	(QR)3 	
. 	 (2.27) 

This is plotted in figure 2.8. The minima occur whenever QR = tan QR, which 

has solutions at Q 1 R = 4.493, 7.725, 10.904..... 

The form factor of a random walk polymer can be obtained by assuming that 

the separation of scatterers along the chain has a Gaussian distribution. For a 

polymer with radius of gyration R9  the form factor is given by [44] 

	

P(QR9) 
= (Q2R2)2 

(Q2 R2 -1+ eQ2 ) 	 (2.28) 

2.3.3 The structure factor 

As the concentration is increased we have to consider correlations between the 

light scattered from different particles. It is convenient to rewrite the position 
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Figure 2.9: Schematic showing redefintion of r in the calculation of the structure 

factor for a spherical particle. 

of the j'th scatterer relative to the centre of the particle it is contained in, i.e. 

r3  (t) = R (t) + r where R (t) is the position at time t of the center of the particle 

containing the j'th scatterer and r is the position of the scatterer relative to that 

sphere (see figure 2.9). The sum in equation 2.23 now becomes separable: 

E(Q,t) = E6n(r j)eiQ-r j (t)  
3 

= i 
j k 

= 	b(Q, Rk )ezQR1t) , 	 (2.29) 
k 

where b(Q, Rk)  is the scattering amplitude of the k'th particle. The time-averaged 

intensity  < 1(Q) > is related to the electric field by 

<1(Q)> = < E*(Q, t)E(Q, t) >  

=b* (Q, R) b(Q, Rk)e_i 	t)—Q5(t))) . 	(2.30) 

If we now assume that all the particles are identical, then this can be rewritten 

as 

<1(Q) >= NIb(0,R)2P(Q,R)S(Q), 	 (2.31) 

3A11 systems considered will be ergodic, for which the time-average and ensemble average 

are equal. 
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with the structure factor S(Q) being defined as 

1 NN 

	

S(Q) = 	(eiQ 	t)_R(t))) 	 (2.32) 
j=1 k=1 

The structure function is a useful quantity as it gives information in reciprocal 

space on the relative positions of the particles [45]. It is related to the radial 

distribution function which gives similar information in real space. To show this 

relation we now split the double sum into two parts j = k and j k. 

S(Q)= 	exp iQ. (R(t) - R(t))) + 	exp iQ. (R(t) R(t))) 
j=k 

= 1 
+ ( f f e5(r - R(t))6(i - R(t))drdi) 

= 1 + f f 	 R(t))8( - R(t))) drd. 	(2.33) 

We define g(r - i), the radial distribution function as: 

g(r - i) = (8(r - R(t))8(i - R(t))) /V 2  , 	 (2.34) 

with V the total accessible volume. Equation 2.33 becomes: 

S(Q) = 1 + (N— 
1)ff 

eg(r - f)drd 

= 

	

1+ 	f g (r) e'Q "r dr, 

where we have assumed N to be large and g(r - i) to have radial symmetry. This 

equation is more usually written to show the straight-through beam at zero angle 

explicitly: 

S(Q) =1+ f (g(r) - 1)e rdr  + 8(Q). 

2.3.4 Measuring particle radii 

In the dilute limit g(r) -+ 1, as therefore does S(Q). When this occurs the 

Q-dependence of equation 2.31 is entirely contained within P(Q). We would 
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Figure 2.10: To find the form factor the solution is diluted until the position of the 

minima do not change on further dilution. Identifying the 1st minimum as QmlinR, = 

4.493 gives a radius of 313nm, whereas the Pusey-van Megen method gives a mean 

radius of 310nm and a polydispersity of 11%. 

expect a plot of intensity against angle for such a system to show minima at 

= 4.493, 7.725, 10.904,... (see section 2.3.2). This can be exploited to 

determine the radius of spherical colloidal particles. The intensity as a function 

of angle is measured using static light scattering, which is a well documented 

technique (see e.g. [21]). The dilute limit is reached when the position of the 

intensity minimum does not change on further dilution of the solution. The 

radius is then given by Rc  = 4.493/Q ir,  (see figure 2.10). 

This method of determining the radius makes two critical assumptions - that the 

particles are homogeneous, and identical. Neither assumption is likely to be cor-

rect. As discussed in chapter 1, the particles have a 'core-shell' structure. The 

relative sizes of the core and the shell can be found by fitting the form factor 

obtained to that calculated for such a structure, having as free parameters the 

total radius and the size of either the core or shell. Dingenouts and Ballauff [46] 

have suggested another method for finding the radius of the particle. They con-

sidered a spherically symmetric particle with radial variations in refractive index, 



2.3. LIGHT SCATTERING 
	

35 

nc 

r 

Figure 2.11: Refractive index profile for a radially optically inhomogeneous sphere. 

an example of which is sketched in figure 2.11. By rewriting the refractive index 

at radius r as riT(r) = n + An(r) where the first term is a fixed reference value, 

equation 2.24 now includes a term containing information about the internal op-

tical structure of the particle: 

sin 	4ir 
b(Q,R) = 4R(n -71 ) 

 ( 	

r 
R 

(QR)3 	) + 
	rn(r) sin Qr dr. 

(2.35) 

The second term is independent of the refractive index of the solvent and only 

reveals information on the internal structure of the particle. We exploit the 

dependencies of the two terms on ri8  by varying this refractive index (usually 

by addition of small amounts of a similar solvent with a close refractive index 

e.g. tetralin added to cis-decalin) and finding the iso-scattering point where the 

resultant form factors cross. The intensity at this point is a constant and repre-

sents the scattering from the internal structure only. When this occurs the first 

term of equation 2.35 is zero i.e. we are at the minimum in the form factor. This 

occurs at QR = tan QR. Thus the radius of the particle can once more be 

found. Figure 2.12 is taken from reference [21] to illustrate the method. 

The assumption of identical particles is also likely to be wrong. The method 

by which these particles are synthesised results in a polydisperse sample - a 

range of particle sizes are present. The effect of polydispersity can be taken into 
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Figure 2.12: Form factors showing crossing point for a sample in which solvent re-
fractive index n is varied. This procedure enables the radius Rcross  to be determined 

to be 4.4934/Qcross = 299 ± 2nm, which agrees with the fitted form factor value of 

R ff  = 300nm. Reproduced from [21]. 

account in two ways. The more accurate method is to calculate the theoretical 

form factor for a particular size distribution and refractive index profile of the 

particles and fit it to the experimental result. The free parameters for such a fit 

are the polydispersity, shape of distribution, core and shell thickness. In practice 

this is a very time consuming method [47]. A simpler method of measuring the 

polydispersity was developed by Pusey and van Megen [48]. They neglected the 

effect of any optical inhomogeneities in the particles and expanded the analytic 

expression for the intensity around the first minimum. They found that a small 

enough polydispersity a can be estimated from the relative heights of the first 

minimum 1,1.in  and secondary maximum I: 

57337! 	- 15, 	 (2.36) 
mm 

and the mean radius is now given by 

= 4.4934 (i - 2) /Qmin 	 (2.37) 

The validity of some of the assumptions made in this method have been challenged 

[49] though it is expected that for polydispersities less than about 5% it should 

give reliable results. 

As neither the radius, nor the polydispersity are crucial parameters in my work, I 
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Figure 2.13: Intensity fluctuations due to moving scatterers. It is the temporal cor-

relation of these fluctuations that are of interest. 

used the Pusey-van Megen for obtaining both. Since the particles used crystallise, 

the polydispersity is unlikely to be too high (see section 2.1.2). 

2.3.5 Dynamic structure factor 

Previously we have considered the time averaged intensity; however there is con-

siderable information to be gained from the time dependence of the intensity. 

The intensity at a particular time is given by 

I(Q, t) 
= 	

b(Q, R)b(Q, Rk )e_i(Q.ri(t)_Q.rk(t)) 	 (2.38) 
\j k 	 1' 

(see equation 2.30) - essentially a sum over the phases of the scattered electric 

fields. As the scatterers move, these phases change and the total intensity fluc-

tuates about some mean value (see figure 2.13). The time correlation of these 

intensity fluctuations evidently contains information on the dynamics of the sys-

tem. This is the basis of dynamic light scattering. 

Consider the simplest example of a dilute  suspension of identical, hard spheres. 

The electric field scattered by this system at some scattering vector Q and time 

t is E(Q, t). Since the motion of the colloids is essentially random, the electric 

4llere dilute means that the typical inter-particle spacing is such that the spatial correlations 

maybe ignored. 
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Figure 2.14: The electric field is essentially a random walk in two dimensions. 

field can be represented by a two dimensional random walk of N steps, where N 

is the number of spheres (see figure 2.14). As N—+ oo the probability distribution 

P(E) becomes Gausssian [50]. Thus the probability distribution of the intensity 

P(I = E 1 2 ) is exponential in I: 

1_j 
P(I) = 	e <'> 

<I> 
(2.39) 

Consider the statistics of such a system. Clearly the ensemble averaged electric 

field <E(Q,t) > is zero. The average intensity is given by 

(I(Q, t)) = e_ini(t)_Q(t) 

= 
(j=k 

i) + i (,_i •ri(t))) (e_z(t) 
jj4k 

where the prefactors have been dropped as all the relevant quantities will turn 

out to be normalised. Next we consider the time correlation of the intensity 

(I(Q, t)I(Q, t + 'r)) = (I(Q, 0)I(Q, r))  if ergodic: 

(I(Q, 0)I(Q, r)) = 
j k I n 

=N 	+ 	(e_i i(0)_Q ni(T ) (ez(Q 1 k(0 )_Q 1 k(T))) 

j=k,I=m 3 k 

j=m,k=I 

= 	N2  +N 2  (e 0)_Q 17- ) 2  

= <1(Q) >2 
+ I (E(Q, 0)E*(Q , '7 )) 1 2 	 (2.40) 
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We now define g(2) (Q, i-) as the normalised intensity correlation function and the 

dynamic structure function f(Q, 'r) as the normalised electric field correlation 

function, so that 

g(2) (Q, r) = 1 + f 2  (Q, i) , 	 (2.41) 

the so-called Seigert relation [43]. 

2.16 Dynamic light scattering 

When viewed on a screen in the far field, the intensity variation of the scattered 

light manifests itself as an assembly of bright and dark regions known as speckles. 

The bright regions correspond to partly constructive interference of the scatterers, 

and the dark regions are where the interference is destructive. The aim of dynamic 

light scattering is to measure the intensity variation of this pattern with time. 

Ideally we would like to consider the intensity at one point only. Consider an 

infinitely small pinhole: at zero time delay the dynamic structure factor becomes 

(E (Q, O)E*(Q,  0)) /1(Q) = 1. Thus the intensity correlation function evaluates 

as 2. For a pinhole of finite size we are taking a part-ensemble average as well as 

a time average and this manifests itself as a drop in this value (though it must 

always be greater than 1). This effect is often referred to as the dynamic contrast 

of the system. Including this contrast in the Seigert relation gives 

9(2)(Q, r) = 1 + 0f 2(Q, r). 	 (2.42) 

For the maximum contrast (and therefore the maximum useable data) /3 needs to 

approach unity. This is achieved by detecting at most a single speckle [51]. The 

linear size of a speckle lspeckle  depends on the scattering volume V8, the distance 

between the detector and the scattering volume 1d,  the wavevector of the incident 

radiation k and the detection angle 0 [43]: 

lspeckle = 2ir 
1 V /3 

id 	 (2.43) 
ksin0 
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Good resolution is therefore achieved by using a small detection pinhole and 

a small scattering volume. The size of the scattering volume is controlled by 

imaging the centre of the sample onto an adjustable slit, and detecting in the far 

field from this slit. These are marked in figure 2.15 - the focusing lens is lens F, the 

detection pinhole is pinhole D and the scattering volume slit is slit S. Competing 

with the desire for a small pinhole and a small scattering volume is the need for 

a detectable photon flux. A photomultiplier tube has a 'dark count', a random 

output voltage even in the absence of light due to thermionic emission from the 

photo-cathode, and the detected signal needs to be significantly above this value. 

Any random noise has the effect of reducing the value 8. To increase the signal 

to noise ratio, the laser beam is tightly focused (lens I) onto the middle of the 

cell. Since the cell and bath are both curved, there is an additional focusing 

effect from these. Noise from stray light is also a significant problem for light 

scattering. The laser beam is 'cleaned' using pinhole C, stray light is further 

removed by pinhole E and the light shield. Reflections from the cell surfaces are 

reduced by immersing the cell in a bath containing a tetralin-decalin mixture, 

arranged to have a refractive index similar to glass (ngiass 	1.5). Both the cell 

and the bath are made from high quality glass to minimise stray reflections. A 

neutral density beam stop is placed within the bath on the back wall to remove 

the reflection from the glass/air interface. Further, we only make measurements 

in the range (0+. . . ir) on one side and a piece of black anodised aluminium is 

placed in the bath covering the other half to remove the scattering to that side. 

With these precautions we can regularly obtain a value for 3 of 0.96. 

2.3.7 Detection and correlation 

The detection system for a light scattering experiment consists of two parts: the 

photomultiplier tube (PMT) and a pulse amplifier discriminator. Their aim is to 

equate a single photon incident at the detection pinhole with a pulse that can be 
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Figure 2.15: Schematic showing dynamic light scattering apparatus. The laser beam 

is cleaned by a pinhole and steered by two mirrors. It is focused by lens I onto the 

centre of a cell. The middle of the cell is imaged (at some angle 9) by lens F onto 

slit S, the size of which controls the effective scattering volume. The photomultiplier 

tube is in the far field from slit S and has a fixed radius pinhole D which controls the 

part of the speckle pattern sampled. The photomultiplier tube is connected to a pulse 

amplifier discriminater and a correlator, the output of which is fed into a computer. 

The sample cell is contained within an index matching solvent bath and contains a 

beamstop, a piece of black anodised aluminium to remove scattering to one side, and 

a thermistor probe (kept behind the aluminium to remove reflections). Pinhole C and 

E are added to minimise any stray light. 
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Figure 2.16: Characterisation of the dead time of the PMT. Within the range studied 
the transmitted laser power and the measured count rate were linearly dependent, 
implying that dead time effects can be neglected. 

used by a correlator. The exact workings of a PMT can be found in a wide variety 

of texts (e.g. [52]) and here I mention only a few experimental considerations. All 

photomultipliers have an inherent dead time 'rD  which is the time for the electron 

cascade to travel through the tube. Another photon arriving in this time will not 

be detected. Clearly the number of missed photons will be higher the greater the 

incident flux. A simple treatment assumes that if the incident flux is n then the 

number missed in the dead time is WTD.  The relationship. between the measured 

flux n and the incident flux is therefore 

Ti 
TIC = 

	

	. 	 (2.44) 
1 + flTD 

The incident flux at the pinhole can be found (to within a factor) by measurement 

of the transmitted laser intensity. The detected count rate at the PMT was found 

to be a linear function of this intensity within the range of count rates studied (to 

800kHz - see figure 2.16) implying a dead time of much smaller than g' "-f  lps. 

The effect of the dead time can therefore be neglected for correlations as low as 
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Figure 2.17: PMT-produced pulses and TTL pulses. The PAD converts between the 

two. 
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The output from the photomultiplier is small, short, negative pulses whereas we 

require TTL pulses for the correlator (figure 2.17). A pulse-amplifier discrim-

inator (PAD) is used to convert between the two. Photomultiplier tubes often 

produce afterpulses caused by a positive ion that was generated during an electron 

cascade returning to the cathode (or early dynode) initiating a second electron 

pulse [52]. It is important that the PAD does not detect these pulses or an arti-

ficial correlation will be seen. The coupling between the PAD and the correlator 

must also be matched to avoid reflected pulses. After spending much time at-

tempting to build a suitable PAD, it was decided to buy one specifically built for 

our application. 

The output from the PAD is fed into a correlator, a device capable of obtaining the 

correlation function of an electronic signal. A schematic is shown in figure 2.18. 

The correlator contains a shift register and the total number of pulses arriving in a 

period is passed down the register. In addition it possesses a 'correlation function 

memory' (channel) which keeps a running total of the correlation between any 

two registers, i.e. the first channel contains Em, n(t)n(t i ) where M is the total 

number of sample times. In general 

<I(0)I(mT) >= j 	n(t)n(t_). 	 (2.45) 
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Counters (memory) 

Figure 2.18: Schematic of a correlator. 

Often logarithmically spaced channels are used. The correlator used in this work 

has 250 channels which allows correlations on scales from 10 7  - 103 seconds. 

2.3.8 Temperature control 

Diffusion is dependent on temperature so it is necessary to know the temperature 

within the sample cell. Further, it is highly desirable to be able to adjust this 

temperature; we know, for example, that the size of the polymer is temperature 

dependent. Temperature control in my DLS apparatus is maintained by circu-

lating water through the metal holder (see figure 2.20a). By heating the holder 

from above and below we partially eliminate convective effects within the sol-

vent bath. However the bath has a thin coupling layer of silicone oil on its base 

providing better thermal contact from below, so it is inevitable that convection 

cannot be neglected completely. Whilst convection within the solvent bath will 

not significantly affect the results, convection within the cell can easily corrupt 

the data. To reduce this effect, the cell is immersed within the solvent to above 

the level of the sample, but large temperature differences between the bath and 

the environment should still be avoided. Experimentally we find no unexpected 

temperature effects within the range 15 - 30°C. The sample should however be 

given at least three minutes to equilibrate before measurements are taken. Having 
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Figure 2.19: Plot of measured radius against incident laser power for a well charac-

terised test sample. Thermal lensing was seen to occur at 50mW, though the data 

remains uncorrupted at intensities up to 200mW. 

reached equilibrium the temperature of the sample is within 0.1°C of the bath' 

and the latter is recorded by a thermistor. 

Convection can also be caused within the sample by thermal lensing. As the 

laser passes through the sample it heats it, changing the local refractive index. 

Experimentally this is seen as a widening of the straight through beam when the 

laser is first incident. To test the importance of this effect, measurements were 

made on a well characterised test sample at varying laser powers up to 200mW. 

At laser powers above 50mW, thermal lensing was seen to occur; however, as the 

results in figure 2.19 show, this did not affect the results obtained. Nevertheless, 

the laser power was kept as low as possible, and always under 80mW. 

'This is found by several measurments over time of the temperature within a test sample 

cell using a thermistor. 
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Figure 2.20: Schematic of cell holder and alignment procedure. a) A paper point is 

placed just touching a metal 'mushroom', the position of the holder is adjusted using 

the two micrometer screws gauges until the paper remains in contact at all angles.b) 

A pinhole is slide along the detection arm in the beam stop position to check the 

vertical alignment of the beam. 

2.3.9 Angular range 

Dynamic light scattering should be able to measure the dynamic structure func-

tion over a wide range of angles (theoretically from just greater than zero degrees 

to just less than one hundred and eighty); the dependence on angle can be used 

to obtain information even on a dilute system (e.g. polydispersity [48]). However 

to obtain reliable data over a range of angles requires precise alignment of the 

apparatus. The alignment procedure is mainly concerned with ensuring the cen-

tres of the cell, the solvent bath and the rotation arm are coaxial. The alignment 

takes roughly one day to complete according to the following procedure: 

The rotation arm is centred on the cell holder - A metal 'mushroom' is 

placed in the position of the cell and a paper pointer attached to the rotation 

arm (see figure 2.20a). The whole holder array is mounted on a moveable 

plate whose position is controlled by two perpendicular screw gauges and it 

is moved until the paper pointer registers no deflection when the rotation 

arm is moved throughout its entire range. 

The solvent bath is centred on the cell holder - The solvent bath is placed 
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within the holder and locked into place by three sets of screws. A similar 

procedure to above is used to check that the solvent bath is coaxial with 

the rotation arm. 

The laser is centred on the cell holder - The mushroom is replaced with 

a metal pin and the laser steered by adjustable mirrors until hitting the 

pin. Lens I is added to focus the beam onto the pin. The deviation from 

horizontal is measured by placing a pinhole at various distances on the far 

side (figure 2.20b). 

The detection arm is aligned - A strongly scattering sample is placed in the 

equipment and the rotation arm swung away from zero degrees. Lens F is 

placed on the detection arm and the light focused on slit S. This slit should 

be at the centre of the focused image at all angles, which can be used as 

	

a good check of the previous steps. The PMT is added and the detection 	' 

pinhole centred on the scattered beam. 

The detection pinhole is optimised - On the PMT used the detection pinhole 

was a fixed size. The length between the pinhole and slit S is adjusted until 

the best intercept is seen (here we use a typical sample). This optimisation 

is a balance between minimising the amount of speckle and maximising 

the amount of light received. For each angle and sample the incident flux 

changes. Rather than move the pinhole each time, the PMT is fixed in 

position and the width of slit S changed to increase (or decrease) the size 

of the scattering volume. Measurements show that, as expected, this only 

changes the intercept /3 and not the shape of the dynamic structure factor. 

The 'quality' of the alignment can be checked by two methods; obtaining a high 

intercept and, more importantly, checking the Q2-dependence of a dilute sample. 

The exact details of this dependence will be discussed later, but for 'standard' 

samples the diffusion coefficient obtained at all angles should be the same. Figure 
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Figure 2.21: Test of alignment of DLS apparatus. The equipment is found to give 

consistant results within the range 30° - 1400. The accuracy of a single measurement 

within this range is roughly 1%. 

2.21 shows typical results and indicates the usuable angular range, and accuracy, 

of the equipment. It is found that for an accuracy of 1% a single measurement of at 

least 3 minutes is needed, though for weakly scattering samples this can increase 

up to several hours. For samples with a low scattered intensity, better results 

are obtained by averaging multiple runs than from one long run. The alignment 

is checked by this method every month and is found to remain constant over a 

period of up to four months. 

2.3.10 Multiple scattering 

Dynamic light scattering gives useful data only if the sample is relatively trans-

parent. For more concentrated samples, or samples with a poor index match, 

multiply-scattered light contibutes to the intensity received at the pinhole. The 
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Figure 2.22: Scattering vector diagram for two colour dynamic light scattering. For 

every angle 0 there corresponds an angle a such that the intermediate scattering 

wavevectors QGreen  and QBlue  are equal. Reproduced from [51]. 

relations between this intensity and the properties of the medium are complex [51]. 

Two colour dynamic light scattering was developed to overcome this problem by 

selecting only singly-scattered light for correlation. This technique is described 

in detail in [51]. The basic idea is to illuminate the sample with two laser beams 

(green and blue) and to arrange two detectors so that the scattering vector for 

each beam-detector pair is identical (figure 2.22). The cross-correlation of the 

two beams is then recorded. For singly-scattering light the electric field of the 

scattered light at time t is proportional to the amplitude of the Qth  spatial Fourier 

component of the refractive index variation in the medium (equation 2.23). If we 

have the same scattering vector for both beams then the auto-correlation of each 

as well as the cross-correlation should be identical. 

However the same is not true of multiply-scattered light. As figure 2.23 shows, 

although the total scattering vectors are the same in each case, the intermediate 

scattering vectors are in general different. Thus the detectors are probing dif-

ferent Fourier components of the refractive index profile of the sample. It can 

be shown that different spatial Fourier components are statistically independent 
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Figure 2.23: Scattering vector diagram for a double scattering event. Although the 

total intermediate scattering wavevectors are equal (QGreen = QBlue), their retrospec-

tive components differ resulting in uncorrelated signals between the two detectors. 

Reproduced from [51]. 

and undergo uncorrelated temporal fluctuations, so the cross-correlation of the 

doubly scattered light both with itself and with the singly-scattered light is in-

dependent of time and contributes only to the 'baseline'. Higher order scattering 

is also removed from correlation by a similar principle. 

We can derive this quantitatively if we define the total electric field of the scat-

tered blue/green light as EB/G(Q, t), and that of singly/multiply-scattered light 

as 	(Q, t) where Q is the total scattering vector. The quantity we measure 

(or hope to measure) in dynamic light scattering in this terminology is 

f(Q,r) = (E,G(Q,t)EBIG(Q,t)) . 	 (2.46) 

The cross correlation of the singly-scattered light becomes 

=1+ 	 )]2 	 (2.47) 

The additional factor 	comes from the incomplete overlap of the scattering 
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Figure 2.24: Scattering and overlap volumes in two colour dynamic light scattering. 
Each pinhole receives light only from between the broken lines connecting to it. The 
medium shaded areas either (I) scatter from only one laser or (ii) are viewed by only 
one detector. The darkest region is illuminated by both laser beams and seen by 
both detectors. The areas marked 'multiple' are sampled by the PMTs but are not 
directly in the incident beams so light detected from these areas has been multiply-
scattered. The drawing is not to scale, in particular the overlap region is much larger. 
Reproduced from [51]. 

volumes of blue and green light (figure 2.24). In autocorrelation, light is received 

from either grey region whereas for cross correlation light is only received from 

the overlap of these two regions. 0, has the form 

	

= 	('b) ('i) 	
(2.48) 

where (i 3O ) is the intensity of light scattered from the overlap volume. 

When the cross correlation of the total scattered light g (Q, r) is considered one 

finds a similar form: 

g)(Q,y) = 1 + 2 Q2 2 [f(Q,T)] 2 , 	 ( 2.49) msPov /  

where 

=
ms 	

(I) (1) 	 (2.50) 
('B) (Ia) 

'-1 

-- 2 
/ 
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gives the intensity of singly-scattered light to total scattered light. Consider a 

dilute sample: far from the form factor minimum there should be little multiply- 

scattered light and so 	1. A measurement of the intercept of the cross 

correlation function gives a value for 002 which is typically about 0.5-0.6. Re-

peating the experiment for the sample of interest allows calculation of fi for 

that sample (if it lies within the experimentally accessible range of 0.01 to 1). 

From equation 2.50 we have that 

132 32 21concentrated 

02 	Lmsov 
o21 

ms 	
1RovF' J

2 P2ldilute 
1l-'  

1( jsin1e)] 2  

, 	 (2.51) 
IG 

where the approximation is due to the )c scattering causing slight differences 

between the intensities of the blue and green light. Using TCDLS we can obtain 

both the magnitude of the multiple scattering and the correlation function of the 

singly-scattered light. 

2.3.11 TCDLS - experimental setup 

To achieve the requirement that the 'detector to input' scattering vector is the 

same for both green and blue light, the apparatus shown in figure 2.25 is used. 

The blue and green laser beams enter the sample separated by an angle 2a, which 

is generally of the order of 10,  and are then detected in directions also separated 

by 2a. If the midpoint angle is 0 (see figure) then the requirement for identical 

Q is that 
sin() 	sin(

AG 	AB 

) 
(2.52) 

- 
and 

(AG 

AG—AB\ 	9
tan a = 

	

	itan - . (2.53) 
+tB) 2 

A mirrored prism is used to reflect the lasers onto a lens. As the prism is moved 

along the direction shown in figure 2.25 the beams change their linear separation 
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Figure 2.25: Schematic of two colour dynamic light scattering apparatus. LPM and 
DPM are moveable prisms and Li, L2 and L3 are lenses. 

on the lens and therefore their angle separation at the sample. Another prism is 

used on the detection arm. Alignment of the TCDLS apparatus is difficult and a 

complete alignment takes several weeks [53]. 

2.4 	Interpreting dynamic light scattering data 

The aim of dynamic light scattering is to relate the dynamic structure function 

to some property of the medium. The interpretation of the data obtained by this 

method is not a trivial affair; in general one must consider interactions between 

particles due to both the inter-particle potential and hydrodynamic forces carried 

through the suspending fluid. Consider first a dilute system of spherical colloids 

with negligible hydrodynamic interactions. Each particle only interacts with the 

suspending fluid. This interaction can be broken into two parts: a rapidly vary- 

ing force due to the random collisions of solvent molecules on the colloid and a 
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systematic frictional force on the colloid due to its motions. For large particles 

(with respect to the solvent molecules) this systematic force may be calculated 

assuming the suspending medium to be a continuum (see for example [54]). For 

low Reynolds numbers it is found to be directly proportional to the velocity of 

the Brownian particle, and the constant of proportionality is called the friction 

coefficient. For a sphere with stick boundary conditions the friction coefficient is 

given by (o  = 67r77R where 77 is the viscosity of the suspending medium and R the 

radius of the colloid. 

The characteristic timescale for Brownian motion is given by TB = M/Co where M 

is the mass of the colloid. At times short compared to this time the motion of the 

colloid is ballistic, whereas for times long compared to this time the momentum 

coordinate of the colloid is in equilibrium with the solvent [43]. For a typical 

colloid the Brownian time is approximately 10 9s whereas with dynamic light 

scattering we typically probe timescales on the order of microseconds. Thus only 

the diffusive motion of the Brownian particles should be detected. 

At times long compared to the Brownian time regime the particle's motion de-

scribes a random walk in three dimensions. The diffusion coefficient D0  for non-

interacting particles is defined by 

< Lr(t) >= 6Dot, 	 (2.54) 

where < Lr2(t) > is the mean square displacement after time t. The dynamic 

structure function may now be written as 

f(Q,r) = 

= 
f e iQ.Arp  (Ar)d'(Ar) , 	 (2.55) 

where P(r) is the probability that a particle will be displaced by a distance Ar 

in a time t. Since z,r is a Gaussian quantity this integral becomes 

Q2<tr2(t)> 

f(Q, 7-) = e 	6 	 (2.56) 
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and substituting in equation 2.54 gives 

	

f(Q, T) = e_Q2D0t. 	 (2.57) 

The diffusion coefficient for a dilute system is given by the Stokes-Einstein equa-

tion 
kBT kBT 

(2.58)  
- 	 o 	6iriR 

where kB is Boltzmann's constant and T the temperature. This forms the basis 

of yet another method for characterising the radii of particles. A log-linear graph 

of the dynamic structure factor against time has a slope of Q2D0  from which the 

radius can be calculated. This is the hydrodynamic radius, which characterises 

the drag on the particle. 

2.4.1 Method of cumulants 

As mentioned in section 2.3.4, all real colloids are polydisperse implying a range 

of diffusion coefficients present in the sample. In a dilute sample the dynamic 

structure factor is a sum of exponentials weighted by the scattering intensity of 

each species. 

f(Q, T) f 
dFG(F)e_FT . 	 (2.59) 

F = Q2D is the decay constant. Ideally to obtain the distribution G(F) we 

would measure the dynamic structure factor and apply a Laplace inversion. In 

general though even small amounts of noise in the measurement convert to large 

uncertainty in the distribution [55]. Another method for determining information 

about the system is based on expanding the exponential in equation 2.59 about 

the mean value F defined as 

	

= 
f dFG(F)F. 	 (2.60) 

Thus 

CrT = e_I'Te_('_I')T 
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= e_rT (1_(F_)T+ (F_)2T2 - (F—)3r3  
2! 	3! 	

+...) (2.61)  

and the equation 2.59 becomes 

ln[f(Q, r) = 1 - r7- + 	(112) (t) - 	(113)  (t'r), 	(2.62) 

where 

f (]p - tG(F)dF 	 (2.63) rn 	]Fn
are the normalised moments about the mean of G(F) and are known as the 

cumulants of the expansion. Of particular interest is the second cumulant which 

gives information on the variance of the diffusion coefficient. 

This expansion is exact if all terms in the expansion are kept; however it is rather 

laborious to fit all orders and for narrow, symmetric distributions it is found that 

three-term analysis is sufficient to describe the data over a wide range. The two 

chosen end points of the fit can affect the value of the cumulants obtained and 

the following procedure is observed to minimise any effect of noise. 

Find the first data point for ,which the decay is evident above noise (tstart). 

For a logarithmic correlator of the type used in these experiments, the 

initial channels are close together (10 6s) and the correlation function will 

not have decayed significantly between channels (see inset in figure 2.26). 

Now apply a linear, quadratic and cubic fit to all the remaining data points 

to obtain the cumulants. 

Fit to successively less and less points by changing the final endpoint (tend), 

e.g. if the original fit was over channels 7-120, then the successive fits might 

be 7-100, 7-80 and so on (figure 2.26). The linear fit has less parameters so 

will be the most stable as the number of data points is reduced. 

The last step is labour intensive and is usually left to a computer to do. A plot 

of the parameters obtained provides information on the system. Consider the 

following cases: 
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Figure 2.26: Method for obtaining low order cumulants. When fitting the data, two 

end-points must be chosen for the fit. The lower (tstart) is selected as the point where 

the magnitude of the decay is greater then noise (see inset). The upper point (tend) 

is initially taken as the last data point available and then progressively stepped to 

shorter times. 

Monodisperse data (figure 2.27). The linear fit should provide a first cu-

mulant that does not vary as the number of fitting points is changed. The 

second and third cumulants obtained by higher order fits should be zero. 

Polydisperse data (figure 2.28). The first cumulant obtained from the linear 

fit will vary as the number of fitting points is reduced whereas that obtained 

from the quadratic and cubic fits should be constant. The second cumulant 

from these fits should now be constant over the range. 

This procedure works very well for non-interacting systems. In an interacting 

system the diffusion coefficient may well be a function of time. In this case the 

method can still be used, but the cumulants should be extrapolated to their value 

at tstart. By varying tstart  the cumulants can be found as a function of time. This 

technique is known as a stepped cumulant fit. 
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Figure 2.27: Cumulants for monodisperse spheres. The circles represent the dynamic 

structure factor, the triangles are the first cumulants from a linear fit which do not vary 
significantly whatever value for tend is used. The average value is used to calculate 

the line that runs through the circles. The inset contains the normalised second 

cumulant obtained from a quadratic fit. Its average value is close to zero implying 

little polydispersity. The second cumulant is significantly more susceptible to noise 

than the first cumulant obtained from a linear fit. 
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Figure 2.28: Cumulants for polydisperse spheres. The circles represent the first cu-

mulant of a linear fit which are directly proportional to tend.  The triangles are the 
first cumulant of the second order fit and do no show any dependence on tend.  The 
decay constant for this sample is 225s'. The normalised second cumulant is (inset) 

0.04. The data (not shown) is clearly well described by its first two cumulants. 
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2.5 The swelling of PMMA particles by tetralin 

As mentioned in section 2.1 PMMA spheres are usually synthesised in dodecane 

and then placed in cis-decalin for experimental use. The refractive index match, 

while good, is sometimes not enough for some purposes. At volume fractions of 

>1% the suspension starts to look milky, implying significant multiple scattering 

is occuring. For this reason tetralin is often added to the solvent to contrast 

match the colloid and suspensions with volume fractions up to 50% can appear 

transparent. It is known that the tetralin can be absorbed into the PMMA spheres 

(tetralin is a good solvent for PMMA), but there is suprisingly little published 

work on the effect of this absorbtion. Manoharan heated PMMA particles to 

80°C in mixtures of various compositions and used DLS to study the radius of 

the particle after 2.5 hours. He found that the particles swell by as much as 70% 	... 

in pure tetralin [56], though saw no noticeable swelling at the index match ratio 

of roughly 1/3 tetralin. Martelozzo studied the apparent shift in the melting 

volume fraction as the solvent was changed from pure cis-decalin to an index 

matching cis-decalin/tetralin mixture. She found that the radius increased by 

1% over a period of several weeks [57]. In my study I decided to measure the 

effect of tetralin on the PMMA over short times (minutes and hours as opposed 

to months and years) using both static and dynamic light scattering. 

2.5.1 Experimental procedure 

Three sets of PMMA spheres were characterised in cis-decalin by both static and 

dynamic light scattering (see table 2.1). To study the short time dynamics of the 

swelling, a drop of the colloid in cis-decalin was added to a volume of tetralin 

(' 2cm3) and shaken rapidly. Lavery et al. [58] found that mixing solvents in 

this manner can lead to an effect in which the PMMA sphere becomes 'coated' in 

a thin layer of the original solvent. This layer changes the boundary conditions 
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Name DLS SLS 

P4 ll2nm - 

P5 144nm 134nm 

P6 175nm 166nm 

Table 2.1: Radii of three sets of PMMA latices characterised by static (SLS) and 

dynamic (DLS) light scattering. The two methods measure different radii; SLS mea-

sures the scattering radius and DLS measures the hydrodynamic radius. P4 shows no 

form factor minimum within the angular range accessible by SLS so its radius cannot 

be determined by this method. 

between the spheres and the solvent which modifies the Stokes-Einstein relation 

(equation 2.58). 

kBT 
Dcoated 

_ 
- 	

, 	 (2.64) 

where a is a number between 4 and 6. This is seen as an increase in the diffusion 

coefficient measured by dynamic light scattering which, if not accounted for in 

this way, could be mistakenly interpreted as a decrease in the particle's radius. 

The coating appears to form instantly on the mixing of the solvents, and desorbs 

from the particle over a period of several weeks. In our system, measurements of 

the radius immediately after mixing showed no variation from their values in cis-

decalin, indicating that the Lavery effect was not significant in this work. To avoid 

any concentration-dependent effects, the initial volume fractions of the particles 

in tetralin were ensured to be the same for each of the three sets of particles 

used. Furthermore, for each set of particles two volume fractions were used - 

dilute ( 	0.01%) and concentrated (o 0.1%). The refractive index difference 

between the particles and tetralin is high (at least initially, as the tetralin enters 

the particles the difference decreases) so for the concentrated samples the effect 

of multiple scattering cannot be ignored. 
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Figure 2.29: Change in radius DR of PMMA spheres by tetralin as measured by DLS. 
The results for concentrated (black squares) and dilute (white circles) show similar 
behaviour. These results were obtained from measurements on P6, though both P4 
and P5 showed similar behaviour. 

2.5.2 Results - dynamic light scattering 

Dynamic light scattering was performed at an angle of 50 degrees (corresponding 

to a scattering vector of Q = 15.9 x 106m') at five minute intervals for 17 hours. 

The results were interpreted using a cumulant analysis and it was found that a 

linear fit to the data was appropriate (i.e. polydispersity was not significant). As 

figure 2.29 shows both the concentrated and dilute samples gave similar results. 

All sets of particles showed an increase in radius with time and a final radius Rfinal 

was reached typically 10% larger than the original radius (figure 2.29). The time 

taken for Rfinal  to be reached (tfinal) varied from sample to sample. A summary 

of the radius change and the time taken to reach it is shown in table 2.2. 

Experiments were then performed on a daily basis for a period of 12 days. No 

further swelling was seen. 
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Sample Rfinal/Rstart - 1 
I 	

tfinal 

P4 10% 16.7 hours 

P5 6% 5 hours 

P6 10% 10 hours 

Table 2.2: The swelling of PMMA spheres in tetralin as measured by dynamic light 

scattering. Rfinal/Rstart is the ratio of final to original radii. tfiflal  is the time taken 

for the final radius to be reached which varies considerably from sample to sample. 

2.5.3 Results - static light scattering 

Static light scattering was performed on the sample over the range: 5.4 x 106m' < 

Q < 3.8 x 107m 1. One angular sweep took roughly 90s. Successive angular 

sweeps occured at five minute intervals for a period of 7 hours. The results are 

considerably harder to interpret than those from dynamic light scattering. P4 is 

the smallest particle and its radius cannot be found by SLS as the form factor 

minimum cannot be seen within this Q-range. The time evolution of the form fac-

tor on addition of tetralin is shown in figure 2.30. The intensity of scattered light 

decreases with time, from which we can infer that tetralin is entering the particle 

reducing the refractive index difference between it and the solvent. Figure 2.31 

shows the evolution of the form factor for P6. The form factor minimum moves 

from Q = 	 to higher Q and simultaneously the minimum is smeared 

out. The form factor continues to evolve throughout the experiment. Work on P5 

in both concentrated and dilute solutions showed similar behaviour. Additional 

experiments monitored the form factor over a 12 day period and further evolution 

was seen throughout this period. 

As the tetralin soaks into the particles it changes the refractive index profile and 

a core-shell structure is likely to occur in which the tetralin has only reached a 

radius r8  after time t. Some progress in understanding this profile may be made 

if we assume a two step function - figure 2.32. This model neglects the existence 
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Figure 2.30: The static structure factors for P4 in tetralin (represented by small black 
and white symbols) are shown at 25 minute intervals. The reduction in intensity is 

due to the tetralin entering the particles and reducing the refractive index difference. 

Also shown is the form factor for P4 in cis-decalin (white circle), and the intensity 
scattered by the solvents (black lines, no symbols). 
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Figure 2.31: The static structure factors for P6 in tetralin (represented by small black 

and white symbols) show a minimum that moves to higher Q. This minimum is also 

smeared out and at times greater than about 125 minutes cannot easily be seen. 
Also shown is the form factor for P6 in cis-decalin (black circles), and the intensity 
scattered by the solvents (black lines, no symbols). 
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OR 

Figure 2.32: Core-shell refractive index profile for a particle in tetralin. R is the initial 

radius and An, the initial (and core) refractive index difference between the particle 

and the solvent. When placed in tetralin, the particle swells and has a final radius of 

AR. The tetralin enters the swollen particle to a depth 5R. The refractive index 

difference of the shell with the solvent is related to that of the core and the solvent 

by /9Ln. 

of the PHSA shell and assumes that as the tetralin penetrates the particle it 

both swells it and decreases its refractive index. The refractive index profile of 

the particle is thus characterised by three parameters: /3 - the ratio of refractive 

index difference between the core and the solvent to the refractive index difference 

between the shell and the solvent, S - the ratio of core radius to initial radius, 

and A - the ratio of total final radius to initial radius. The form factor for such 

a particle is given by 

[(1 - /3)53(sin(z6) - zS cos(zS)) + /3A3(sin(zA) - zA cos(zA))]2  - 
P(z) - 	

z6((1 - /3)53 + /3A3)2 	
(2.65) 

Consider first a particle which does not swell, i.e. A = 1. For a fixed core 

radius/shell radius ratio, i.e. S =constant, decreasing /3 moves the minimum 

of the form factor to higher Q (figure 2.33). In essence, more of the scattering 

is coming from the core of the particle, and the scattering radius appears to 

decrease. If instead we fix /3, and decrease 5, then the minimum of the form 

factor moves to higher Q until the experimentally determined value of S = 0.64. 

After this the minimum moves to lower Q again, with S = 0 corresponding to a 

minimum of QRj  = 4.49 where R is the initial radius (figure 2.34). Physically, 

this value of 0.64 indicates when the scattering from a shell of outer radius R 
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Figure 2.33: Effect of reducing the contrast between the shell and solvent in a core-

shell model. The core/shell size ratio is fixed. The minimum moves to higher QR. 
For explanation of terms see text. 

and inner radius äR is equal to the scattering from a solid sphere of radius 6R, 

i.e. the scattering from the core and shell are equal. For 6 > 0.64 scattering from 

the core dominates and when 6 < 0.64 scattering from the shell dominates'. 

The case of fixing fi and reducing 6 is equivalent to assuming that the amount of 

tetralin is constant throughout the shell, but that its range of penetration may 

vary. By fixing 6 and allowing 3 to vary we assume the tetralin concentration 

in the shell varies, but its progression into the particle is limited. In practice 

both scenarios are unlikely, the tetralin concentration is likely to have a smoothly 

varying profile that, in time, penetrates right to the centre of the particle. 

We, now consider the case of a swelling particle. The absolute magnitude of the 

swelling is known from DLS and we can use this information and figure 2.31 to 

obtain information on the magnitude of /9 and 6. Specifically, as the particle swells 

the form factor minimum would be expected to move to lower Q. Experimentally 

'As the inner radius of a shell approaches zero, the minimum of its form factor moves to 

higher Q. 
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Figure 2.34: Effect of reducing the core size between the shell and solvent in a core-

shell model. The contrast between the core and shell is fixed. The minimum moves to 

higher Q until the experimentally determined value of QR4  = 0.64. Further increasing 
8 moves the minimum to smaller Q until the limit of QRj  = 4.49 is reached at 8 = 0. 
For explanation of terms see text. 
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Figure 2.35: Plot of the maximum value of 3 for each 8 that results in a form factor 

minimum greater than QR.. = 4.49. A is fixed at 1.1 - the result obtained by DLS. 

See text for explanation of terms. 
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this is not observed, indicating that the total swollen core-shell refractive index 

profile still results in a Q,,,1, > 4.49. Figure 2.35 shows the maximum value of /3 

for each value of 8 that allow this to occur, when ) = 1.1 as obtained by DLS. 

The refractive index of the shell is always reduced by at least 42%, indicating that 

at least this volume of the shell is taken up with tetralin. The PMMA particle is 

thus rather permeable to tetralin. 

2.5.4 Conclusions 

Static light scattering experiments conclusively show that tetralin is entering the 

PMMA particles, seen as a reduction in scattering intensity with time at low 

Q. DLS reveals that the particles swell by about 10% over a period of 5 to 20 

hours. Using this value and assuming a core-shell model, we have shown that the 

shifting of the form factor minimum obtained in SLS to higher Q indicates that 

the shell is roughly 50% by volume tetralin. The smearing out of the form factor 

indicates a heterogeneity in the scattering from the particles. This could be a 

size polydispersity (unlikely considering the DLS data was well described by the 

first cumulant only) or a refractive index profile polydispersity. 

Whilst no further swelling is seen by DLS over a period of 12 days, the refractive 

index profile continues to change (seen as an evolution in the form factor). This 

changing profile could be due to the further absorption of tetralin without swelling 

or a rearrangement of the tetralin already contained within the particle. It is 

suprising that no further swelling occurs. It is conceivable that it is the PHSA 

layer which prevents further swelling, being able to only bear a certain amount 

of strain, or that it is energetically unfavourable for the PMMA coils themselves 

to expand beyond some fixed radius. 

Another suprise is the relatively small amount of swelling in an index-matching 

solution of tetralin and cis-decalin. If a linear relation were assumed then a radial 
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increase of about 3% would be expected. Manoharan found that the relationship 

between swelling and tetralin volume fraction was not linear for his particles [56], 

and it would be interesting to perform measurements in this system at several 

other tetralin concentrations. 

The suitability of a core-shell model for the particle in tetralin could certainly 

be questioned. It seems more likely that a smoothly varying profile would occur; 

however the model used here provides useful insights into the system with only 

a few parameters. 



Chapter 3 

Theoretical treatment of diffusion 

3.1 Introduction 

In a non-interacting system of colloids the diffusion follows the Stokes-Einstein 

relation (equation 2.58). The presence of interactions due to either the inter-

particle potential, hydrodynamics or both can cause very different behaviour. In 

this chapter I will discuss some theoretical ideas relating to the diffusion of colloids 

through polymer solutions. After giving an overview of the thermodynamics of 

the system, I will discuss two different descriptions of diffusion: the Cahn-Hilliard 

theory, which is based on a phenomenological approach, and the Srnoluchowski 

approach which follows the evolution of the particle spatial probability function. 

Poon and Warren [59] used a Cahn-Hilliard approach to find the governing equa-

tions for diffusion in a colloid-polymer mixture obeying the Asakura Oosawa 

potentials. In this chapter I will discuss these equations in terms of a new diffu-

sional mode analysis and will show how this treatment yields an intuitive physical 

picture of the diffusion. I will also make predictions for the form of the dynamic 

structure factor obtained at low Q. Further, I have attempted to include the 

effects of hydrodynamic interactions into these equations, with some success. 
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Hydrodynamics are included in a much more natural way in the Smoluchowski 

equation. Unfortunately this equation has not yet been solved for the system 

under study, but here I make several qualitative predictions on the basis of theo-

ries previously derived for systems of hard spheres that have been confirmed by 

experiment. 

3.2 Statistical mechanics of colloid-polymer mix-

tures 

3.2.1 Thermodynamic concepts 

Statistical Mechanics' concerns itself with predicting the macroscopic behaviour 

of systems with very many particles. In a large enough system, variables such as 

pressure, temperature and energy may be defined as 'constant' when the system 

is in a state of thermal equilibrium. Here 'constant' means either unchanging in 

time, or with fluctuations small compared to the mean value. For a single species 

there are only three independent state variables on which all the others depend. 

In a particular experiment we must choose to fix one from each of temperature 

and energy, pressure and volume, chemical potential and number of particles. In 

statistical mechanics, the choice of the fixed variables defines an ensemble. For a 

one component system table 3.1 gives the definitions of the common enèembles. 

A particular macrostate of a system usually corresponds to very many microstates 

(complete atomistic specifications). The probability of a specific microstate occur-

ing can be formulated (but sadly rarely calculated) in terms of its thermodynamic 

variables. For example, the probability of a particle being in an energy state E 

'For a good introduction to statistical physics see, for example, Mandl [60]. 
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Name 	}_Fixed Variables Fluctuating Variables 

Microcanonical E, V, N None 

Canonical T, V, N E 

Grand Canonical T, V, u E, N 

Table 3.1: Definition of statistical mechanical ensembles. E is the energy, T the 

temperature, N the number of particles, V the volume and ,. the chemical potential. 

is, within the canonical ensemble 

eEj 

pi= 	' 	 (3.1) 
Z 

where 0 = 1/kBT and Z is the normalising factor given by 

Z = 	, 	 (3.2) 

called the partition function. The partition function itself contains useful infor-

mation on the system. For each ensemble there is an associated 'free energy' 

or potential which is minimised by the system. For the canonical ensemble the 

appropriate potential is the Helmholtz free energy F(T, V, N), whereas for the 

grand canonical ensemble it is the grand potential (T, V, ii). These ensembles 

have an associated partition function from which they may be calculated, e.g. 

F=—kBT1nZ. 	 (3.3) 

3.2.2 Perfect gas 

A perfect gas is one in which the constituents do not interact with each other. 

Polymer solutions are often treated as perfect gas - an approximation which is 

expected to have some validity at the theta temperature. This approximation is 

particularly useful as the perfect gas has a partition function that can be evaluated 
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precisely [60]. Consider a single particle with a translational kinetic energy c. 

The partition function for this particle is 

= 	exp(—fie) . 	 (3.4) 

According to classical mechanics the translational centre-of-mass energy is related 

to its momentum p by 
12 

2m 

Classically the momentum may assume any value, but according to quantum 

mechanics a particle confined in a box can only have discrete values for its mo-

mentum. For a volume V the density of states f(p) within the range p to p + dp 

is given by 

	

f(p)dp = Y4P2dp 	 (3.6) 

where h is Planck's constant. The partition function for the single particle now 

becomes 

00 

Z1  = 10 f(p)exp(_/3f(p))dp 

TI  (27rtnkBT"\ 2  

h2 ) 

V = 	' 	 (3.7) 
AT  

where AT = \/(h2/27rmkBT) is the thermal length. For indistinguishable parti-

cles, the N-particle partition function is therefore 

	

ZN = 1 (V)N . 
	 (3.8) 

Having obtained the partition function, the Helmholtz free energy can be calcu-

lated according to equation 3.3: 

li 
F = —kBTln 	

(V)Nj 

= NkBT 
1 

	

ln 
(N4) 
	 (3.9) 

(3.5) 



3.2. STATISTICAL MECHANICS OF COLLOID-POLYMER MIXTURES 73 

where we have used Stirling's approximation for large N. From the Helmholtz free 

energy we can obtain the equation of state of a perfect gas: 

(aF ) 
P = - 
	

(3.10) 

p 	
(3.11) 

where p is the number density. 

3.2.3 Hard spheres 

A collection of hard spheres is arguably the paradigmatic non-ideal system [21]. 

The particles have infinite repulsion when touching and no interaction when their 

separation is greater than their diameter. Even with this simple potential, an 

exact solution for the equation of state is, as yet, unavailable. On the other 

hand, considerable progress has been made in obtaining the lower order terms 

in the virial expansion which expresses the equation of state as a power series 

expansion in the density of the fluid. The first three virial coefficients (B2_ 4 ) 

may be obtained exactly, and Ree and Hoover [61] numerically computed B5, B6  

and B7. Carnahan and Starling derived a very useful heuristic equation of state 

based on Ree and Hoover's result [62]. They obtained an expression for B, the 

n'th virial coefficient, which allowed the virial expansion to be summed giving 

op - 1+0+ 02  - 01 
(3.12) 

P 	(l—q)3  

is the volume fraction. This equation of state agrees remarkably well with 

simulation results obtained by Hoover and Ree [34] and with recent experimental 

measurements by Phan and colleagues [27] over the whole fluid range. Using this 

result and equation 3.10 we can obtain the excess Helmholtz free energy for a 

hard-sphere fluid: 
0(4 -30) 

(3.13) 
N - ( i—q)2 
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3.2.4 Colloid-polymer mixtures 

Having obtained the equation of state for both ideal polymer solutions and hard 

sphere colloids, we now turn our attention to the properties of the mixture. In 

the Asakura Oosawa model [15] defined in Chapter 1, the relevant potentials are 

given by: 

U(r) 	J 0 r>2R 

100 

U(r) = J 0 r>R(1+) 

1 00 r<R(1+) 

Upp 	= 0 V r 

where R is the radius of the colloid and the size ratio. Following the paper 

by Warren et al. [63], the thermodynamic potentials for such a system may be 

obtained within a mean field approximation. Let the colloids be at Fi  where 

i = 1 ... N, and be referred to collectively as 	= {}. Similarly the polymers 

are at , where i = 1 . . . N, and are referred to collectively as Fp = {}. Working 

in the canonical ensemble the partition function is expressed as 

Z = 	e 
microstates 

- z)zl) f d3ice/3Ucc 	d3r - 	 x f 	, 	(3.14) 
p 

where Z$'), ZJ ' are the partition functions of a perfect gas of colloids and poly-

mers respectively. To deal with the colloid-polymer interaction we introduce the 

void function 

= Ili O[I 	- 	I —R(1 +)] , 	 (3.15) 

where 

lo x<0 
0(x) = 	 (3.16) 

1  x>0 
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The void function is zero if a polymer lies within the depleted region of any colloid 

centre (r < R(1 +e)) and is unity otherwise. This clearly depends on the position 

of all the colloid particles which we assume to be fixed. This allows us to define 

a free volume fraction a(i) as: 

c(r) 
= 1 J 

w  (d3i?. 	 (3.17) 

	

We can now rewrite 	= H,. (i; i), so 

d3i 	, 
< f 

£-fn 

	

Z = 	
f ,PNe 	 p 

d3i, 
= ZZ') 

f 	
e_flc(i?)NP . 	 (3.18) 

Consider a reservoir of pure polymer in osmotic equilibrium with the colloid-

polymer mixture. Polymers may now be exchanged between the system and the 

reservoir. This could be actualised by connecting the system via a membrane with 

holes of radius rm  where R < rm  <R. By so fixing the chemical potential j of 

the polymers we are choosing to work in a semi-grand ensemble. The partition 

function for this ensemble is given by: 

00 

CPPZ(N) 
N=O 

00  1 
= Z' [dTCe_$Ucc 	

-k-i () 	exp(8Np) 
J 	 N,=O P 

= Z'' (drC_/3U 	I V 
J VN 	

exp J 	exP(PP)] , 	 (3.19) 
Lp 

where we have used equation 3.8 for the ideal part of the polymer partition 

function. For convenience we define the polymer activity as 

(3.20) 

so that equation 3.19 becomes 

d3  
= Z' 

f 
_ 	I3U exp [Va(i)a] . 	 (3.21) 
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To progress in solving this equation, it is necessary to use a mean field approach, 

replacing c() by its average value in the unperturbed (hard sphere) system, i.e. 

a() —p (a() =a). 	 (3.22) 

The semi-grand potential associated with this partition function is then given by 

= —kBT1n 

= —kBTlnZ — kBTlnf£e' —VkBTac, 	(3.23) 

,(id) 
c F(ex) 

C 

where 	is the free energy of a perfect gas of colloids, given by equation 3.9 

and 	is the excess free energy of the hard-sphere colloids, given by 3.13. 

The above treatment assumed the presence of a polymer reservoir. Experimen-

tally it is much more likely that no reservoir will be present. In this case the 

chemical potential of the polymers is not fixed and we must work in the canon-

ical ensemble. Using the same mean field approximation as in the semi-grand 

ensemble, equation 3.18 becomes 

Z(id)Z(id)  Z = J 
VTCe_/5UCCcE(I;)Np . 	 (3.24) 

Nc 

The appropriate thermodynamic potential is the Helmholtz free energy. By the 

separability of the partition function this can be written 

FT0T = F' + F 	k fiTlnf 	e(q)' 

= F + F' - /CBTNP  in c(q) , 	 (3.25) 

where F represents the total free energy of a system of colloidal spheres. Using 

equation 3.9, we can combine the final two terms in equation 3.25 so that the 

total free energy is given by: 

FT0T - [In (\ - 	____
kBTV 
	

a ) 	] + 
	 (3.26) 
kBTV  

The depletion effect is accounted for by the increase in the polymer number 

density in the free volume. 
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Both equation 3.23 and 3.26 use a mean field approximation in which the free 

volume in a system with added polymer is replaced by that in a system with 

no polymer added. A closed-form expression for this quantity can be obtained 

through scaled particle theory results for hard-sphere mixtures [1,64]: 

	

a = (1 - q) exp [_A-y - By2  - C'y3
1 

, 	 (3.27) 

in which 'y = q/(l - 	= 3 + 32  + 3,B = 4•52 + 33  and C = 33 

Simulations performed by Meijer and Frenkel have shown that this expression is 

reasonably accurate even for dense fluid phases [65]. 

3.3 Cahn-Hilliard theory 

The Cahn-Hilliard theory was created to explain spinodal decomposition in terms 

of thermodynamic arguments 2  Spinodal decomposition refers to a type of fluid 

phase separation in which density fluctuations of some spatial wavelengths grow 

leading to a lowering of the free energy. In the Cahn-Hilliard approach the vol-

ume is divided into small elements which are internally in equilibrium. These 

volume elements are sufficiently large to contain many colloidal particles with 

negligible spatial correlations. On the other hand the volume elements should be 

small compared to the wavelengths of the density fluctuations that are unstable. 

Furthermore the relaxation time of fluctuations whose wavelengths are of a size 

comparable to the linear dimension of the volume element should be much less 

than the rate of demixing due to the unstable fluctuations [43]. This allows a 

thermodynamic description of each volume element. If these assumptions are met 

then the Helmholtz free energy takes a Landau-Ginzburg form: 

	

F[p(r)} = f d{K(Vp(f))2 + f()}. 
	 (3.28) 

For a good summary of Cahn-Hilliard theory see Dhont [43] 
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p(r is the number density at , K is a measure of the interfacial energy between 

high and low density regions and f(p) is the local free energy density of a volume 

element. 

Conservation of number of colloid particles leads to a continuity equation. 

Op _ 

	

— —v j , 	 (3.29) at 

where j(i t) is the number density flux which is assumed to be linearly propor-

tional to the thermodynamic driving force - the gradient of the chemical potential 

	

j() = —MV jt, 	 (3.30) 

where M is a mobility coefficient, assumed p-independent. The chemical potential 

is given by the functional derivative of the free energy with respect to density (see 

for example [43]): 

= 	 (3.31) 
JPM 

Working in one dimension, combining equations 3.28, 3.29, 3.30 and 3.31 we 

obtain the Cahn-Hilliard equation: 

	

Op 	O 	

)

2of\
at 	OX2= M— ( —K ~ 

Ox2 Op 	
(3.32) 

We wish to consider fluctuations in density, öp(x, t) = p(x, t) - fi  where p is the 

average density. This fluctuation in density may be expanded in terms of its 

Fourier components 

6p(x, t) = 	àp(Q, t)eiQx, 	 (3.33) 

where the sum is over wavevectors contained within the first Brillioun Zone. 

Fourier transforming equation 3.32 and expanding around the mean density gives 

the equation of motion for the Q-th component of the density fluctuation: 

Oöp(Q, t) 
= —MQ2[KQ2 + f'](Q, t) at 	 , 	 (3.34) 
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where f' is the value of 82  f/Op2  evaluated at fi. This has a solution 

8p(Q, t) = 'p(Q, O)e2t , 	 (3.35) 

where 

D(Q) = M(KQ2 + ft;'). 	 (3.36) 

The condition for density fluctuations to grow is clearly f' <0, in which case all 

fluctuations with wavevectors in the range 0 < Q < Q = (—f'/K)1/2  grow with 

time. The fastest growing fluctuation has wavelength Qm = Qj2. 

In the case of the free energy depending on two order parameters, F[pi  (x), P2(x)1, 

equation 3.30 becomes: 

j1() = — MiViti 

	

32( = —M2Vp2 . 	 (3.37) 

where 91, P2  are the functional derivatives of the free energy with respect to Pi, P2 

respectively. Working through a similar treatment to before leads to an equation 

of motion for each species: 

O8p1(Q,t) = —M
1Q2[K1Q2  + f'11]p1(Q,t) - M1Q2 f' 12  

at 	
42(Q,t) 

842(Q,t)= —M2Q2[K2Q2  + f'22]6p2(Q,t) - M2Q2 f' 21 p1(Q,t). (3.38) 
at 

In these equations f112 = 02f lap,  Dp2  evaluated at (thy p2) and similarly. 

Cahn-Hilliard theory gives the equations of motion of density fluctuations of a 

particular wavelength. It contains a local free energy term and an interfacial 

energy term. The exact calculation of the latter is difficult. Dhont showed [66] 

that for a single species, the parameter K takes the form 

K=-1fo 
dr 

27r 	5dV(r) (ge(r) 	1_dgeq (r)\ 
15 	r dr 	

+ 	
d,o ) ' 
	(3.39) 

in which V(r) is the inter-particle pair potential and ge(r)  the equilibrium pair- 

correlation function for a homogeneous system. For a colloid-polymer mixture 
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at reasonable densities, a closed form for the pair-correlation is unavailable and, 

for this reason, only the Q —p 0 limit will be discussed. This is also the limit 

in which the instability first sets in. It should also be mentioned that while the 

implicit assumption of small gradients in number density in equations 3.30 and 

3.37 is unlikely to be valid for points at or beyond the spinodal line, this treatment 

should be valid for decaying density fluctuations. 

We now apply the Cahn-Hilliard treatment to diffusion in colloid-polymer mix-

tures. 

3.3.1 One species diffusion 

The simplest case to consider is a colloid-polymer mixture attached to a polymer 

reservoir. The chemical potential of the polymer is thus fixed and the density 

fluctuations of the colloid may be adequately described by the one-body Cahn-

Hilliard equation with the correct inter-particle potential3. Combining equations 

3.9, 3.13, 3.23 and 3.34 gives 

I 	/ 1 	2(4 - 	2 - a"l = MCQ2  v, 
at 	 L \& + (1 - 	

- VcPP j 6p(Q, t) , 	(3.40) 

where we have used the 'natural' units for the free energy - kBT. vc  is the volume 

of a single colloidal sphere, 	is the mean colloid volume fraction, gp  the mean 

polymer number density and a prime denotes differentiation with respect to cb. 

The identity ca = p, has also been used. In the absence of polymer and at 

low colloid volume fractions we would expect to recover free diffusion of a single 

species. Equations 3.36 and 3.40 thus allow us to rewrite the mobility constant 

in terms of the free diffusion coefficient of the colloid D: 

C VC 

	 (3.41) 

31n the Q -* 0 limit, only infinite wavelength density fluctuations are considered. Thus we 

may neglect the local Brownian motions of the polymers. 
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Figure 3.1: Colloid diffusion coefficient as a function of polymer reservoir concen-

tration (in C°). As polymer is added the density fluctuations die away more slowly 

until the spinodal point is reached. At polymer concentrations higher than this point, 

phase separation occurs. Data is shown for a colloid volume fraction of 0.2 and a size 

ratio of 0.4. 

The change in the diffusion constant due to the presence of the polymer and the 

finite size of the colloidal particle AD is given by 

AD = Deff(Q + 0) - D,0 =  (2 (4 	1 

D° (1—) --) . 
	(3.42) 

is the size ratio and ç is the mean effective volume fraction of polymers given 

by c/co.  This equation represents the change in the diffusion coefficient due to 

interactions with other colloidal particles (figure 3.1). The hard sphere interaction 

causes the density fluctuations to relax quicker whereas the depletion interaction 

causes the density fluctuations to relax slower than those for a non-interacting 

system. At some polymer concentration the depletion interaction will balance the 

natural tendency for the fluctuations to decay away. This is the spinodal point. 

At higher polymer concentrations the density fluctuations grow and the system 

phase separates. 

By a simple consideration of the dynamics of a colloid-polymer mixture, we have 

found the condition for spinodal decomposition (at zero Q) - that the second 

derivative of the free energy density is zero. This condition is equivalent to the 

thermodynamic definition of the spinodal point [43], namely that the osmotic 
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pressure of the system does not change as the number density increases. 

drI  =fTOT 

	

= 0 	 (3.43) 
dp 	dp2  

3.3.2 Two species diffusion 

In a system where no reservoir is present, gradients in both the colloid and the 

polymer potential exist and will drive diffusion. Equation 3.38 shows that a 

density fluctuation in one species drives diffusion in the other. Working in the 

Q —+ 0 limit, equation 3.38 and 3.41 combine to give an equation of motion for 

the two species: 

at 
R-=—Q2 D 	 (3.44) 

where the vector 1 is 

= (ot 	
(345) 

\ öp,,(Q,t) ) 

and D is a 2 x 2 matrix involving the second derivatives of the free energy: 

f)o"pp 	
' 	 (3.46) 

D- D f D — ( D

°pf' D°,5f' 

where flcP =  19
2 f/a5 evaluated at ()5, 	and so on. Substituting in the 

free energy (equation 3.26) gives: 

IHS 	3 	- -- 	
— D 	

(3.47) ( Dq [ " — 	
& 2\1 

D= 	
— D- 

 

D ) 

fHs is the free energy density of a system of hard spheres. This matrix may 

be diagonalised to provide two uncorrelated diffusional modes which are linear 

combinations of & and pp: 

= Sp+ax5p 

8P2 = 5p+bx6p, 	 (3.48) 
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which diffuse according to 

= A+Q26p1  

= A_Q28p2  , 	 (3.49) 

where X+, A_ are the eigenvalues and JPj, 6p2  the eigenvectors of D. The spinodal 

point occurs when one of the eigenvalues is zero i.e. when 

q5 (at/ 12cx\l 
R = DPDCqC LfHS - 	- --)j - 

DCD& (-"\ = 0, 	(3.50) 

which is satisfied by fA11  S =as obtained by the semi-grand canonical en-

semble. Since the spinodal is a thermodynamic quantity it is independent of the 

ensemble used to calculate it 

At zero polymer concentration both ensembles give Deff = 	 As polymer 

is added (within the canonical ensemble), the eigenvalues obtained by solving 

equation 3.48 are related by 

(Il 	12\ 1 	2 

	

(A— A)2  = 	 [fHS — 	
— --) j 

+ D} — 4R (3.51) 

	

= 	[A(&) + B()}2  + C(&) Op  + D(&), 	(3.52) 

where A, B, C, D are functions independent of q. These eigenvectors represent 

diffusion coefficients for each mode and as such must be real. Therefore the 

RHS of equation 3.52 must be positive for all Op, i.e. the quadratic is entirely 

contained within the upper quadrants (see figure 3.2) having at most one distinct 

root. Equivalently, it must take the form q5 + acb + b where (a < 2V'). By 

expansion of the equation 3.51 it is easy to show that this root may only occur 

at q1, = 0 (and then only if D = Dq5fs). Thus within the positive quadrant 

the quadratic must be monotonically increasing with Op. This means that the 

eigenvalues on the LHS of equation 3.52 diverge as the polymer concentration is 

increased. 
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Figure 3.2: The quadratic given in equation 3.51 must be entirely contained within the 

upper quadrants (shaded area). The exact form is monotonically increasing through-

out the positive quadrant with the zero polymer concentration value being dependent 

on the relative values of D and 	78 

This results in a 'fast' mode and a 'slow' mode (see figure 3.3). The composition 

of these modes can be found by solving the eigenvector equation and it is found 

significant quantities of each species are present in each mode (figure 3.4). The 

physical interpretation of these modes is difficult. Pusey [67] considered a system 

of similar, yet distinguishable, hard spheres and showed that the two diffusive 

modes of this system may be thought of as a 'condensation' mode, for which the 

fluctuations are in the total density, and a 'demixing' mode, in which the fluc-

tuations are in species density (figure 3.5). In our formalisation, a condensation 

mode would correspond to a = 1 and, since the decay involves relatively small 

motions of the bulk, would be the fast mode. Demixing corresponds to b = —1 

this mode will take longer to decay as it involves relatively large scale motions 

of single particles. It is not easy to create an intuitive picture for the decays 

in a colloid-polymer mixture as condensation and demixing occur in both diffu-

sive modes but, as expected, the fast mode remains dominated by condensation 

(figure 3.6). 
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Figure 3.3: The eigenvalues of equation 3.49 with a size ratio of 0.4 and a colloid 

volume fraction of 0.2. These are the diffusion coefficients of the diffusive modes. As 

polymer is added the eigenvalues diverge resulting in a 'fast' and 'slow' mode. The 

predicted spinodal point agrees with that obtained from the semi-grand canonical 

ensemble. 
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Figure 3.4: a (solid line) and b (dotted line) values of the eigenmodes as described in 

equation 3.48 with a size ratio of 0.4 and a colloid volume fraction of 0.2. a = b = 0 

would imply the diffusion modes were pure polymer and colloid. In this system the 

modes contain a significant proportion of both species. 
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Fluctuations in total density 

Fluctuations in species density 

Figure 3.5: Condensation and demixing modes in a system of similar yet distin-

guishable hard spheres. In the upper diagram the fluctuations are in total density 

(corresponding to a = 1 or b = 1). This mode decays by relatively small movements 

of the bulk. The lower mode contains fluctuations in species density (a = —1 or 

b = —1) and decays by relatively large motions of single particles. This mode can 

therefore be identified as a slow' mode. 
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Figure 3.6: Condensation (dashed line) and demixing (solid line) amplitudes in the 

spinodally active mode. The spinodal decomposition is driven by demixing - a natural 

consequence of the slower timescale for this type of relaxation. The size ratio is 0.4 

and the colloid volume fraction 0.1. 
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The divergence of the eigenvalues has the unusual consequence that only one mode 

becomes spinodally active. This implies that spinodal decomposition, which only 

occurs in the slow mode, is dominated by demixing. It is worth mentioning 

that this result is only true as Q —+ 0 and is not valid for a quench into the 

spinodal region, since this leads to spinodal decomposition that is dominated by 

the spatial wavelength Q = (—f'/K)'/2/2. At these wavelengths the interfacial 

energy between the high and low density regions becomes significant. 

3.3.3 Dynamic structure factor 

The solution of equation 3.44 may be written as 

= 	+ A2e_)Q2t , 	 (3.53) 

where A1 , A2  are vector constants. Multiplying by öp(t = 0) à'p°  and ensemble 

averaging gives 

(

Opp6p') ) 	a 
= B1 (1 ) CA- + B2 ( 

b 
 ) e_2t, 	(3.54) (4:4:) 

where a, b are given by equation 3.48. Either of the eigenmodes could be the 

spinodally active mode, so either )'a = )+ and )'b = 	or vice versa. The 

constants B1 , B2  are such that 

(6p6p) = B1 +bB2  

(bp6p) = aB1 +B2 . 

Recalling the definition of the dynamic structure factor we may rewrite equation 
oo 	oo 

3.54 in terms of the ratio t' = 

(PP) - 1 - b_+Q2t 	b — ab_AQ2 	
(3.55) f(Q,t) = e 	+ 

(p°p°) - 1—ab 	1—ab 
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Figure 3.7: Colloid dynamic structure factor predicted by a 2 species Cahn-Hilliard 

treatment. The polymer concentrations (in c*)  are 0 (solid line), 0.05 (dotted line), 

0.1 (dashed line). The size ratio is 0.4 and the colloid volume fraction 0.2. The 

dynamic structure factor is the weighted sum of two exponentials. 

may be easily calculated in terms of the free energy from the fluctuation theory 

result [68]: 

- 	

._4 	' 
- 	' pPc Pp  - 	

(356) 

where F is the total free energy. Rewriting a and b in terms of the eigenvalues, 

equation 3.55 becomes 

f(Q, t) = Ae2t + (1 - A)e Q2 t , 	 (3.57) 

with 

A— 	 (358) 

The dynamic structure factor is piecewise exponential, representing the motion 

of the colloid in the various modes. An example of this expected form is shown 

in figure 3.7. If we were to apply the method of cumulants to obtain a diffusion 

coefficient, then we would find a time dependence D(t). The initial diffusion 

coefficient would be measured as 

D(t) = 	f(Q,t) 
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If D 	HS - qp (cV"\l 
	

(3.59) 

Interestingly this is the diffusion coefficient of colloids in the previous system 

where a polymer reservoir is attached. The initial diffusion coefficient is indepen-

dent of the presence of the reservoir. At zero time the polymer chemical potential 

gradient is identical in the closed and open system and only changes in the former 

as the system evolves. 

3.3.4 Hydrodynamics 

The Cahn-Hilliard approach does not lend itself easily to the inclusion of hydro-

dynamic interactions. Only in the simplest case of single species diffusion can 

any real progress be made. However, in a colloid-polymer mixture there is the 

additional problem of hydrodynamic interactions between the diffusing colloid 

and the quasi-stationary polymer'. If the polymer concentration is sufficiently 

low, we may neglect these interactions and consider only the hydrodynamics be-

tween the colloids. Felderhof [69] considered the case of one species of spherically 

symmetric particles in a homogeneous background solvent with only two-body 

interactions. He found that the effective diffusion coefficient Deff  is related to the 

pure diffusion coefficient D0  by 

D=Do[1+q(Cv+Co+CD+CS+C4], 	 (3.60) 

where C, Co, CD,  C, CA are the Virial, Oseen, Dipole, Short-Range and Angular 

coefficients respectively. These are complicated integrals given in terms of the 

unperturbed radial distribution function g0(r) of the particles, where 

go(r) = exp(-3U(r12)) 
	

(3.61) 

4Since we are working in the Q -p 0 limit, we may once more neglect the Brownian motion 

of the polymers. 
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and U(r12) is the inter-particle potential. The Felderhof expansion is therefore 

only valid to the lowest order in density. In his treatment, the Virial coefficient 

is given by 

Cv = - f [go  (r) - 1]dr, 	 (3.62) 

which we identify as the double derivative of the free energy in equation 3.36. 

However the Cahn-Hilliard analysis given earlier uses the exact radial distribu-

tion function in equation 3.62. At low colloid and polymer concentrations, the 

approximation of g(r) by go(r) is valid and the two methods may be compared. 

The effect of the polymers is to modify the form of the inter-particle potential. 

The polymer degrees of freedom may be integrated out to give an effective pair 

potential between the colloids [70]: 

00 	 r>2R 

U(r) = _fIpVov  2R <r < 2R(1 +) 
	

(3.63) 

0 
	

r > 2R(1+) 

where Hp = nkbT/c is the osmotic pressure of the polymer and 

v0  [1 3r 
11 r 

- 	
]vc(1 +e)3 	(3.64) 

is the volume of overlap. Substituting this potential into equation 3.61 and using 

equation 3.60, we obtain 

AD 	
Deff (Q —* 0) _D0  

D0  

f 	2(1+) 	 3x 	1 	
31 

x \ I 
= &A+f 	exPcI1+ 4()+_()j 2 	L 

X [3x_3x2_ 152 x + 27 j-x + 75 X-5]  dx 
} , 
	(3.65) 

4  

where x = 

A = 1+8(1+)3_6(1+)2+ 75 (1+ 	4 +(1+ 	3_ 15  (1+)-1, (3.66) 
256 	64 	8 

and 
(i)3 op  

c— 
e3 a 

(3.67) 
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Figure 3.8: The change in diffusion coefficient as a function of polymer concentration 

(in c*).  The lines represent the results from the Cahn-Hilliard treatment and the 

symbols from the Felderhof treatment (with hydrodynamics). Three colloid volume 

fractions are shown: 0.1, 0.05 and 0.01, and the size ratio is 0.4. 

These equations are solved by numerical integration and figure 3.8 compares this 

result with the one obtained without hydrodynamics (equation 3.42). Even at 

zero polymer concentration, the effect of the hydrodynamic interactions between 

hard-sphere colloids significantly damps out the increase in diffusion from the 

inter-particle interactions. 

These results show the importance of hydrodynamics in the diffusion of colloid in 

a colloid-polymer mixture. However the numerical results should be treated with 

suspicion at anything other than the lowest polymer and colloid concentrations. 

Hydrodynamic interactions in pure colloidal systems are significant at volume 

fractions above cH  =0.005 [20]. Assuming the colloid-polymer hydrodynamic 

coupling is of a similar order to colloid-colloid hydrodynamic coupling, hydrody-

namic interactions between the colloid and polymer may only be ignored if the 

polymer concentration is below OH.  The colloid volume fraction is limited by 

the approximation of the unperturbed radial distribution function, which breaks 

down in colloidal systems at a volume fraction of about l7rdf  =0.01 [43]. Signifi- 

0.1 

0.01 
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cant deviation from this value is not expected when polymer is added whilst the 

effective polymer volume fraction remains lower than its hydrodynamic bound, 

OH. This gives a relatively narrow range of colloid and effective polymer volume 

fractions for which this treatment is valid. 

3.4 The Smoluchowski equation 

In the previous section I showed how inter-particle potentials lead to a non-singly 

exponential dynamic structure factor. Neither the short nor long time diffusion 

coefficient is expected to obey the Stokes-Einstein equation. The Cahn-Hilliard 

approach makes several assumptions about the system and introduces several 

phenomological constants (e. g. the square gradient constant which we avoided 

by working in the Q —* 0 limit). A better starting point for formulating the 

dynamics of colloidal systems is the Smoluchowski equation, which requires no 

free energy functional. In addition this equation is a much more natural starting 

point for the inclusion of the second type of interactions in a colloidal system - 

hydrodynamics. 

The most basic equation for the dynamical behaviour of a suspension is the Li-

ouville equation which is the exact 6N-dimensional analogue of the usual 3D 

equation of continuity for an incompressible fluid [71]. It describes the dy-

namics of both the Brownian particles and the molecules of the suspending 

medium in terms of the probability density in phase space f(N)(rN, pN; t) where 

f(N)(rN, pN;  t)drNdpN is the probability of finding the system at time t in a 

microscopic state represented by a phase point lying within drNdpN, 

8f (N) - 

at 	
- {H,f(N)} , 	 (3.68) 

where the { ... } represent Poisson brackets and H is the Hamiltonian for the 

system. This equation is far too complex to solve precisely so we use the fact that 
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the solvent molecules relax much quicker than the Brownian particles to integrate 

out their degrees of freedom. This leaves a description that is only valid on 

timescales t > 	- the Fokker-Planck equation. The degrees of freedom of the 

solvent are replaced by additional interactions between the Brownian particles, 

known as hydrodynamic forces. 

Ff' 	 (3.69) 

with (ij  being a friction tensor that in general depends on the positions of all of 

the Brownian particles. Having neglected the momenta of the solvent molecules, 

the momentum density of the Brownian particles is not a conserved quantity. 

The momentum coordinates of the Brownian particles are relaxed to thermal 

equilibrium faster than their position coordinates due to the frequent collisions 

with the solvent molecules. The typical relaxation time for the momentum is given 

by m = M/(0  10s [71]. In this time the particle has not moved significantly. 

For times t>> Tm we can integrate out the momenta of the Brownian particles in 

equation 3.68 to leave the probability distribution P(rN;  t) of the macroparticles' 

positions. This is the famous Smoluchowski equation (for a derivation of this 

equation see [20]): 

t) = 	. Djj(rN). (v + 	V jU(rN)) P(rN;  t), 	(3.70) 
i,j= 1 	 BT 

where U(rN)  is the energy related to inter-particle potentials of the configuration 

rN ,  and D3(rv)  is the diffusion tensor given by the reciprocal of (ij 

1N 

	

Vi =DjjFj 	 (3.71) 
B' 

In equilibrium, the left hand side can be set to zero and the distribution now 

satisifies 

(v3  + 	 Peq  = 0, 	 (3.72) 
BT 

i.e. 

Peq 
 e' 	

(3.73) 
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where = l/kBT - the result given in equation 3.1. Equation 3.70 can also be 

written in terms of an operator 0 as 

	

_P(rN; t) = OP(r N ;  t), 	 (3.74) 
at 

where 

o = 	D(r). (v + - VjU(r')) 	 (375) 
i,j=1 	 B 

The advantage of writing it in this form is that the formal solution is given by 

	

P(rN ; t) = P(r";0)e°  , 	 (3.76) 

in which the exponential represents an expansion in powers of Or. 

We now consider the time dependence of a correlation function 

(f1[rV(0)]f2[r(r)]) 	(fi (0)f2(r)) = f dr N f 
drNf1[rN(0)]f2[r(r)]P(r, r;  r, 0), 

(3.77) 

where P(rN,  r;  r, 0) is the probability that the particles are in positions r 1  at 

time 0 and positions r   at the later time T. We may rewrite this in terms of the 

conditional probability P(r N,r 	0) which we define by 

P(rN,  r;  r, 0) = P(rN,  r r, 0)P(r) , 	 (3.78) 

where P(r) is the probability that the particles adopt the position 	which 

is simply the equilibrium distribution given in equation 3.73. The conditional 

probability satisfies the Smoluchowski equation with the initial condition that 

P(r N, 0 1 r',0) = c (rN —re') . 	 (3.79) 

Using equations 3.73, 3.76, 3.77, 3.78, 3.79 we obtain 

(fl(0)f2(r)) = 	f  dr'f drNfi[rh]f2[rexp [-i3U(r)] e0T6(rN - r). 

(3.80) 
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The integral may be performed over r  to give (see [20] for details) 

(fl(0)f2('r)) = (fl(0)e6Tf2(0)) , 	 (3.81) 

where O is the adjoint operator given by 

N 

O = 	(v3 + --VU(rN)) .Djj(rN) 
. V. 	(3.82) 

i,j=1 	
kBT 

Once more the exponential represents a power series: 

(fl (0)12(T)) = (fl (0)12 (0)) + T (fl (0)Of2(0)) + T2 (f1(0)66f2(0))... (3.83) 

34.1 Mean square displacement and dynamic structure factor 

We may use equation 3.81 to find the mean square displacement of colloids both 

with and without hydrodynamic forces. The derivation involves much tedious 

algebra and can be found in the work by Tough et al [72]. Only the main results 

will be quoted here. 

In one dimension the mean square displacement is given by 

(r(T)) = 	[7-i (T) - rj (0)]2) . 

2(r2)_2(r(0)r(T)) 	 (3.84) 

Substituting Ii = 12 = r into equation 3.83 and using the results from [72] gives 

(/r (T)) 	 2 N N 

[ 

~Djj 
1,2U 
	/ôDk DD \1 

+ O(i- 
2

) 
j=1 k=1 	Orôrk 	/ 	a 	ôrk 1] 

(3.85) 

which in the absence of hydrodynamics takes the simpler form 

(r? (T)) 	kBT T 2 kBT/t92U\ 
2 	=r--__-__\_

2 (2 	r2-)+O(T3). 	(3.86) 

is the friction coefficient in the absence of hydrodynamic interactions given 

in section 2.4. In the absence of particle interactions (U = 0), equation 3.86 
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simplifies to the Stokes Einstein equation for 1-dimension (c.f. equation 2.54): 

(Lr('r)) = 2D0r. 	 (3.87) 

A similar process may be undertaken to find the dynamic structure factor. In 

this case the appropriate substitutions are 

fi =  = , 	 (3.88) 

and the solution is 

1_Q2T N 
f(Q,r) = 1 S(Q)N = 	 > +0(T2) 	(3.89) 

j,k=1 

D0 2 
= 1— 

S(Q) 	
+ 0(i2) , 	 (3.90) 

with and without hydrodynamic interactions respectively. 8(Q) is the static 

structure factor introduced in section 2.3.3. 

8(Q) = 	(e 	a(t)_r(t))) . 	 (3.91) 
j=1 k=1 

The term of order r2  is non-trivial and contains derivatives of both U and D3k. 

This results in a dynamic structor factor which is significantly non-exponential 

and, were cumulant analysis applied, it would reveal a diffusion coefficient that 

was a function of time D(T). Of particular interest is the short time diffusion 

coefficient. As T—p 0 the first cumulant is given by 

df(Q,T) - Q21 N 
<DjkeiQi_> 	(3.92) 

d'i- 	- S(Q)N 3  

- D0Q2 	
(3.93) 

- 8(Q)' 

with and without hydrodynamics respectively. Note that 'r —* 0 also includes 

the proviso 'r >> TM. From these equations we can define a hydrodynamic factor 

H(Q) such that 

DS — 

	

- D H(Q) 
	

(3.94) effDo 
H(Q) 
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Figure 3.9: TCDLS correlation functions in f(Q, r) against the normalised decay time 

D0Q27-  for a concentrated system of hard spheres. Short time diffusion is marked 

by the dashed line. The peak of the static structure factor is at QR = 3.47. The 

correlation function is clearly not a single exponential. Reproduced from [16]. 

with 
N 

H(Q) = ND0 	
< Djke2Qi' > 
	

(3.95) 

and DS is the effective short time diffusion coefficient. 

Segrè et al. used two colour dynamic light scattering to study a concentrated (up 

to & = 0.494) system of PMMA colloids [16]. They found that the dynamic 

structure factor was significantly non-exponential with the diffusion slowing with 

time (see figure 3.9). Consider the definition of the dynamic structure factor 

given by equations 2.40 and 2.41. For a concentrated system this is equivalent to 

1 NN 
f(Q,i-) = (eiQ'i(0)_T)) 

N 	
) 

S(Q) j=1 k=1 
1 = NS(Q) > (eiQ(l'i(o)_ni(T))) + 	

1 

j=k 	 NS(Q) ji4k 

(3.96) 

These terms are referred to as self- and distinct-diffusion respectively. In the 

absence of interactions, positions of different particles are uncorrelated and the 
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Figure 3.10: Normalised short-time self-diffusion coefficients Ds/D0.  Closed circles 

represent TCDLS experiments on particles of PM MA, the open circles represent LBE 

simulations, the dashed line the theoretical predictions of Beenakker and Mazur and 

the solid lines the theoretical predictions of Tokuyama and Oppenheim. Reproduced 

from [16]. 

cross terms vanish. When this occurs, f(Q, T) essentially represents the diffusion 

of a single particle and, since this condition also results in S(Q) = 1, it takes 

the form of f(Q, i-) derived in equation 2.57. Alternatively, in the limit of taking 

measurements at high Q, small variations in the relative particle positions r3 - rk 

cause large variations in the phase factor Q (r3—rk) and the cross-terms once more 

vanish in the ensemble average. Segrè et al. note that by taking measurements 

at a scattering-vector where 8(Q) = 1 (which occurs either side of the main 

peak in 8(Q)), the cross-terms in equation 3.91 cancel. While this does not 

guarantee their absence in equation 3.96, he notes that previous work at this 

scattering vector gives a reasonable description of the self motions. He thus 

measures the short time self diffusion coefficient and compares it to both the 

theory of Beenaker and Mazur [73] and simulations based on the fluctuating 

lattice Boltzmann equation. The agreement is suprisingly good over the whole 

range of volume fractions studied (figure 3.10). 



3.4. THE SMOLUCHOWSKI EQUATION 

100 

0.1 0.2 0.3 0.4 0.5 
Vobme Fraction 

Figure 3.11: Viscosity and inverse structural relaxation rate versus the volume fraction 

of suspensions of PMMA spheres. The open circles are the values of 17/7o  and the 
filled circles represent Do/DL(Qm ). The size of the symbols represents the estimated 

uncertainty in both measurements. Reproduced from [74]. 

Segrè et al. also studied the long time diffusion coefficient D'-' [74]. He found that 

the longer time decays are roughly exponential and fit them with f(Q, large r) = 

exp[_DL(Q)Q2i ].  From this, and from viscosity studies, he obtained the identity 

D0  
(3.97) DL (Qm) -770 

where DL(Qm) represents the long time diffusion coefficient at wavevector Qm, 

corresponding to the peak in the structure factor (see figure 3.11). This diffusion 

coefficient does not represent self-diffusion. i is the low-shear-rate viscosity of 

the suspension. D0  and 77o represent the low concentration diffusion coefficient 

and viscosity respectively. This implies that the long time diffusion at the peak of 

the structure factor follows the Stokes-Einstein relation. Segrè notes that there 

is no theory explaining this identity. 

3.4.2 Relevance to colloid-polymer mixtures 

Currently the Smoluchowski equation has not been solved for a colloid-polymer 

mixture. However we may make some tentative predictions based on the above 
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Figure 3.12: Illustration of diffusive modes in a concentrated system of hard spheres. 

At short times the dominant mode is the self-diffusion of a colloid (black circle) 

within a cage of other colloids (shaded circles). The only colloid-colloid interactions 

are hydrodynamic (an example of this interaction is represented by the dotted lines). 

At longer times the dominant mode is the structural relaxation of the cage. 

treatment. The dynamics of systems of concentrated colloids are often explained 

in terms of a cage model. At short times the dominant diffusional mode is that 

of self-diffusion within a 'cage' of other colloids. The timescale is such that the 

diffusion of a single colloid has not yet been slowed down by direct interactions 

with other colloids, and the reduction in the short time diffusion coefficient is 

entirely due to hydrodynamic interactions. The dominant mechanism at longer 

times is the structural rearrangement of the cage. This is similar in many ways 

to the diffusive modes of a Cahn-Hilliard system. Figure 3.12 shows a schematic 

of this behaviour. The position of the peak of the structure factor represents (in 

reciprocal space) the spatial size of the cage, and its relaxation is governed by 

both direct interactions and hydrodynamic effects. 

Consider a system of dilute colloids in a polymer solution at concentrations be-

low c. At short times the dominant diffusional mode is self-diffusion of a single 

colloid. On this timescale the diffusion of the colloid will not have been slowed 
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by direct interactions and we would expect a reduction in the diffusion coeffi-

cient from its value in the pure solvent. The reduction would be entirely due 

to hydrodynamic considerations. The flow of fluid around a polymer coil is ex-

tremely complex due to its irregular shape. Experimentally it is found that a 

single polymer coil acts as though hydrodynamically impermeable - there is a 

strong cooperative effect in the central parts of the coil, and the liquid moves 

with the segments [39]. There is, to my knowledge, no calculation similar to that 

of Beenakker and Mazur [73] for the hydrodynamic reflections from a cage of 

polymers. A size ratio < 1 might imply that the polymer cage is hydrodynam-

ically weaker than a colloid cage, as might the somewhat flexible nature of the 

coils. 

At longer times there should be at least two cooperative relaxations, similar to 

the modes in the Cahn-Hilliard theory. If we ensure that the number of colloids 

is significantly less than that of the polymer, at least one of these modes should 

simply be the relaxation of the polymer cage. On this timescale direct interactions 

between the colloid and polymer should be important and it seems likely that, at 

times long compared to this relaxation of the polymer cage, the colloid effectively 

sees the polymer solution as a continuum. In this case the Stokes-Einstein relation 

would be expected to hold, though with a viscosity i = 17polymer. We might 

compare this to the long time relaxation in the system of concentrated colloids, 

though in our case the structure factor for the colloids in the colloid-polymer 

mixture is essentially unity throughout. 

Based on the Smoluchowski equation, one might expect the following behaviour 

of the colloids in a dilute colloid/less dilute polymer mixture. 

A dynamic structure factor that is significantly non-exponential 

. A short time diffusion coefficient' that is less than the value in pure solvent 

5Since dilute, all colloid motion considered is self-diffusion 
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and with a reduction factor (D5/D0) of a similar order to that of the short 

time self-diffusion in a suspension of colloids at the same total number 

density. 

. An exponential long time diffusion coefficient that scales with the viscosity 

of the solution. 

3.5 Conclusions 

In this chapter I have discussed how both direct and solvent-mediated interactions 

modify the diffusion of the colloid in a colloid-polymer mixture. The Cahn-

Hilliard approach gives an insight into the way thermodynamic interactions affect 

the diffusion. In a closed system it is not possible to assign a separate free 

energy to the polymer and the colloid, and the chemical potentials couple - a 

gradient in the chemical potential of one species leads to diffusion in the other. 

This coupling changes the diffusional modes from pure colloid and pure polymer 

to a complicated mixture of condensation and demixing. Within this model, 

spinodal decomposition is driven by demixing. These modes lead to a double-

exponential form of the colloid dynamic structure factor with the initial slope 

independent of the presence of a reservoir. In a system with a reservoir, the 

reduction in diffusion coefficient due to the depletion interaction is damped out 

by hydrodynamic interactions. 

While the Cahn-Hilliard gives useful insights into the system, it is the Smolu-

chowski formulation that gives an exact equation for the dynamics of the system. 

Unfortunately this is currently unsolved for a system of dilute colloids and poly-

mers, however we can make some useful predictions based on both experimental 

and theoretical results in concentrated systems of hard spheres. We would expect 

a significantly non-exponential dynamic structure factor with the reduction in the 

short-time diffusion coefficient only due to hydrodynamic interactions with the 
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polymer. At long times it would not be suprising if the Stokes-Einstein equation 

were to hold but with the viscosity replaced by that of the polymer solution. 



Chapter 4 

Experimental investigation 

4.1 Introduction 

In this chapter I will present results from preliminary dynamic light scattering 

experiments performed on a model system over a range of scattering vectors 

and polymer concentrations. Assuming that the cross-scattering (in which the 

electric field scattered from one species is correlated with that from the other) 

is negligible, the colloid dynamic structure factor may be obtained from these 

experiments. It was found that these dynamic structure factors did not take the 

simple exponential form given in equation 2.57. In addition, the mean square 

displacement of the colloid with time < Lr2(t) >, as obtained by equation 2.56, 

appeared to depend on the scattering vector it was measured at. It is proposed 

that this unphysical result is due to the incorrect assumption of negligible cross-

scattering in the analysis of the dynamic light scattering data. 

A novel method for both calculating and estimating experimentally the magni-

tude of the cross scattering was developed for this work. Several methods were 

considered for reducing its magnitude. Contrast variation, in which the refractive 

index of the polymer or solvent is changed, was considered but the most suitable 

105 
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solvent, tetralin, was found to swell the particles'. No other solvent/polymer 

pairs could be found that would reduce the cross-scattering, were safe to use and 

could be obtained in sufficient quantities for both light scattering and rhelogocial 

measurements. 

Since I was able to calculate the magnitude of the cross-scattering, a measure-

ment of its form would, in general, allow a correction for its effect to be made. 

A new experimental procedure was proposed to measure this form but the pres-

ence of noise and the polydispersity of the colloidal samples made an accurate 

measurement impossible. 

Instead, a new methodology was derived in which effect of cross-scattering was 

minimised by eliminating data corrupted by cross-scattering from the analysis. 

The procedure made use of the scattering vector dependence of the diffusion 

coefficient to identify this data. Once the dynamic structure factor of the colloid 

alone was obtained, it could be analysed according to the theories put forward 

in the previous chapters. This analysis, and the results obtained from it, are 

discussed towards the end of this chapter. 

For clarity, this chapter has not been written from a historical perspective and 

the emphasis is placed upon those experiments in which the problems associated 

with cross-scattering had been minimised. 

4.2 Preliminary measurements 

A large number of dynamic light scattering experiments were performed on colloid-

polymer mixtures at various compositions and size ratios. Throughout these ex-

periments it was assumed that cross-scattering was negligible, so that the total 

dynamic structure factor measured at the correlator fT(Q,  ) could be written as 

'The results of these experiments can be found in Chapter 2. 
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the weighted sums of the colloid and polymer dynamic structure factors (assum-

ing, as usual, that we may neglect the scattering from the solvent): 

1TIT(Q, 7-) = If(Q, r) + If (Q, i-), 	 (4.1) 

where 

IT = 1p + 1C - 	 (4.2) 

I, represents the intensity scattered from component a and the subscripts T, c, p 

refer to total, colloid and polymer respectively. 

To obtain the dynamic structure factor of the colloid alone, the following proce-

dure was followed: 

. DLS was performed on the mixture of colloids and polymers to obtain 17-

and fT(Q,7-). 

The mixture was then centrifuged at high angular velocity. The colloids are 

denser then the solvent and move to the bottom of the cell forming a close-

packed sediment. The polymers are more closely density matched with the 

solvent and do not sediment under the conditions used here2. Measurements 

of the transmitted intensity were made through the supernatant fluid at 

regular periods (usually daily) until no change was seen over a period of two 

days. When this occurs all the colloids are contained within the sediment. 

The DLS experiment was repeated on the supernatant to obtain I and 

f(Q, T). Assuming there is no change in the polymer static or dynamic 

structure factor on removal of the dilute colloid then I = I and f (Q, r) = 

f(Q,r). 

2Thjs has been confirmed by experiment: a polymer solution was centrifuged at high angular 

velocity for one week and the transmitted laser intensity through the top of the sample measured 

daily. No change in this intensity was seen throughout the period. 
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Figure 4.1: Mean square displacement against time for 150nm colloids diffusing in 

a solution of linear polystyrene in cis-decalin. The colloid volume fraction is 0.005 

and the effective polymer volume fraction 0.54. The size ratio is 0.87. Data ob-
tained at 300, 500, 700 , 900  is represented by squares, diamonds, triangles and circles 
respectively. 

Before every measurement of intensity, the intensity of a test sample was measured 

so that any variation in the intensity of the laser beam before and after the sample 

was centrifuged could be accounted for. 

From equations 4.1 and 4.2, f(Q ) may be now calculated. Using equation 2.56, 

reproduced here for convenience, the mean square displacement of the colloid with 

time may be obtained': 

Q 2 <Lr 2 (t)> 

f(Q r) = e 	6 	 (4.3) 

Typical results obtained at four angles are shown in figure 4.1. Results obtained at 

different angles are not co-linear. This would seem to imply that the mean square 

displacement is a function of the angle used to measure it. Since we are in the 

dilute colloid limit, all diffusion measured is self-diffusion and, assuming we are 

3Strictly speaking this equation is an approximation. Its validity for describing the motion 

of a dilute colloid in a polymer solution is discussed later. It will be shown that it is expected 

to hold for all the experiments in this chapter. 
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far from the form-factor minimum so that polydispersity effects are negligible, 

the diffusion coefficient obtained at all angles should be the same. Figure 4.1 

cannot be a true, physical representation of the diffusion of the colloid. 

It seems logical that the results in figure 4.1 do not represent the self-diffusion 

of the colloid. If cross-scattering were not negligible then the data would in fact 

represent the weighted sum of the cross and colloid dynamic structure factors. 

To proceed further it is necessary to find the magnitude of the cross-scattering 

in this system to verify whether it is the assumption that it is negligible that is 

causing these apparently unphysical results. 

4.3 Cross scattering 

If a light scattering experiment is performed on a suspension containing two 

scattering species, then the intensity of scattered light may be split into three 

distinct terms4  - a 'pure' scattering from each species in which the electric field 

from each species is correlated with itself, and cross scattering from the correlation 

of the electric field scattered by the first species with that from the second. Each 

of the three partial intensities has an associated dynamical part, representing how 

the intensity is correlated in time. Thus a typical binary system is characterised 

by six unknown parameters. 

4.3.1 Static light scattering 

Consider equation 2.23. For two species (1, 2) the electric field scattered at time 

t and scattering vector Q becomes 

ES (Q, t) = 	ön(rj)eiQni(t) + i: 6n(rk)eiQ(t) , 	 (4.4) 
jel 	 ke2 

4Assuming again that the scattering from the solvent is negligible. 
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where rk(t)  is the position of the k'th scatterer at time t and the other terms retain 

their meaning from equation 2.23. The ensemble averaged intensity becomes 

IT = (8nexPiQ.(ri —rk))+2K>28nl8n2exPzQ. (r — rk)) 
jel kel 	 iel je2 

purel 	 cross 

+ 
 (

6nexPiQ. (r - rk)) . (4.5) 
ie2 je2 

pure2 

Each of these terms may be addressed independently. The pure terms are rewrit-

ten as in section 2.3.3 and to obtain 

- Na b*  (i + 
N. 

 f (goo, (r) - 1)eiQrdr) , 	 (4.6) -  
where the ba 	ba (Q) and so on. g(r) represents the self-radial distribution 

function of species a, with number N, and particle volume Va. It is proportional 

to the probability that, if we fix a particle of species a at r = 0, another particle 

of the same species is found at position r. 

An expression for the cross scattering' is developed using a similar argument to 

that used to obtain equation 4.6. We rewrite the position of the j'th scatterer 

as r3(t) = R(t) + rs where R(t) is the position at time t of the center of the 

sphere containing the j'th scatterer and r is the position of the scatterer relative 

to that sphere (see figure 2.9): 

I 	= 6n8n 	expiQ. (r - Fk)) 
\jel ke2 

= 8n16n2 expiQ. (R  —R)expiQ. (r _r)) 
\jel ke2 tel me2 

= bb2 (YexPiQ. (R - R)) 
jel ke2 

- - b*ib N1N2 fdr(g12(r) - 1)e
2v  

where 912  (r) is defined as (6(r - Rfl6( - R)) /V2  with jEl and k2. In this 

case there is no j = k cancellation as for the pure terms. 

'Strictly speaking this means 'scattering associated with the cross term'. 

(4.7) 
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4.3.2 Obtaining the static structure factors - the approximate 

radial distribution function route 

The integrals in equations 4.6 and 4.7 may be evaluated on selection of suitable 

radial distribution functions. For a system of dilute colloid in a polymer solution, 

we may assume that the colloids are far enough separated that they do not interact 

via the depletion potential. The self-radial distribution function for the colloid 

may therefore be written as 

r <2R 
gcc(r) 	

0 

{ 	

(4.8) 
1 r > 2R = ac 

with R the radius of a colloidal particle. Physically this means that all colloid-

colloid separations with no overlap are equally likely. Performing the Fourier 

transform gives the integral of equation 4.6 as: 

	

f 
(g (r) - 1)erdr - 	(sin Qa, - Qa cos Qo) . 	(4.9) - - 4ir 

Thus bracketed term in equation 4.6 becomes 

24 
(QaJ(sinQa—QacosQa) , 	 (4.10) -  

where ç is the colloid volume fraction. 

In this system, the simplest approximation to the cross-radial distribution func-

tion takes the form 

{ 
gcp  (r) = 	 (4.11) 

1 r > 

allowing us to rewrite equation 4.7 as 

I 	= bbp"j_ rNP f dr(gc(r) - 1)eiQr 

= bbP NCNPSCP  , 	 (4.12) 
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where 

S 	= 	47r (sin Qcr, - Qo cos Qo) 

= 	
+ )3  (sin Qa - 	cos Qa) . (4.13) 

Op  is the volume fraction of polymer. 

Finally we need an expression for the polymer self-radial distribution function. 

Although the polymer is assumed to act as an ideal gas, the presence of the 

colloid limits the possible spatial configurations of the polymer centres of mass. 

Warren et al. [63] have suggested, and confirmed by simulations, that a suitable 

form might be 

gpp(r) = ie_n/, 	 (4.14) 
a 

where a is the free volume factor. Performing the Fourier transform gives 

f (g,,,(r 	 R) - 1)eiQrdr = 8ir 
( 	

(4.15) 
- i) (1 + (QR)2)2 ' 

so the bracketed term of equation 4.6 becomes 

spp l+6 ' \ 
	1 

= —(--ii 	 (4.16) 
1 (1 + (QR)2)2  

4.3.3 Obtaining the static structure factors - the intuitive 

route 

The previous method for obtaining the structure factor required a 'guess' of the 

radial distribution function, and the accuracy depends on how well we have mod-

elled reality. Another method for obtaining the structure factors, with fewer 

sources of uncertainty, works by relating each of the partial structure factors to 

the colloid self-structure factor. This may be formulated in terms of an 'intuitive' 

method, developed by me, or by using integral equations, as formulated by Louis 

et al. 
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Figure 4.2: Schematic showing the recalculation of the polymer scattering. The 
system acts like a homogeneous gas of polymers (small circles) with the scattering 
from the polymers that would be within the depleted region (large circles) subtracted. 

Consider the polymer-polymer scattering. We can rewrite the total electric field 

scattered by the polymers as that from a homogenous system of polymers Eh 

minus that from the polymer present within the depleted region Ed (see figure 

4.2). The depleted region is the volume from which the centre of mass of a 

polymer is excluded, i.e. a sphere of radius Rc(1 + ) centred on the colloid. 

EP  = Eh — Ed 

= (E;(Q).E(Q)) 

= 	((E* (Q) -E(Q)). (Eh  (Q) - Ed  (Q))) 

=8n(r)6n(r) exp iQ. (r - rk)) 
jeh kEh 

- 
2(jed 

n(ri)6n(rk)expjQ. (r — rk)) 
keh 

+ 
 (

8n(ri)8n(rk)exPiQ.(ri _rk)) . 	(4.17) 
jEd ked 

The first part is trivial to solve - it is the scattering from a homogenous system 

of polymers (which are ideal gas-like). By substituting g(r) = 1 V r into equation 

4.6 we may write this term as Nbb. 
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.................. 
Depletion Zone 

Figure 4.3: Schematic illustrating the redefinition of the position r of the j'th scat-
terer. Rd is the vector to the centre of mass of the colloid, rd the vector connecting 
the centre of the colloid and that of the polymer and r the position of the scatterer 
relative to the centre of the polymer 

The second term relates the correlation of the polymer in a depleted region with 

an ideal gas of polymers. Again g(r) = 1 everywhere, but there are significantly 

fewer terms in the sum in equation 4.17. The depleted regions contain N(1 - a) 

polymers. Again assuming that the depletion zones do not overlap, the total 

number of polymers in a single depleted region may be written N -- where Vd is 

the volume of a single depleted region. Thus the second term of equation 4.17 

may be written as 2Nb;b. Note that for a dilute colloid 	<< 1. 

The final term of equation 4.17 expresses the correlation of a polymer within 

a single depleted region with other polymers within its own and other depleted 

regions. We rewrite the position of the j'th scatterer r3  as R + r + rip  where 

Rd is the vector to the centre of a depleted region (which is also the centre of the 

colloidal sphere), rd is the vector to the centre of the polymer within the depleted 

region, and r is the vector to the polymer scattering volume (see figure 4.3). As 

before we can break up the sum as these three vectors are uncorrelated: 

'dd = K8m(rj)8n(rexPiQ. (r - rk)) 
jEd kEd 



4.3. CROSS SCATTERING 	 115 

/ Nd N(d) 
>ecpiQ. (R—R) exp iQ. (r—r)expiQ. (r —ri) 

j,k 1,m n,q 
bp

k  
/ Nd N(d) 

= 	 exp iQ.(R— Rd) exp iQ.(r—r) 
j,k 1,m 

The sum over ii, q was solved in the usual way to obtain the polymer form factor. 

The sum over 1, m correlates the positions of a polymer within a single depleted 

region with other polymers within the same depleted region. The polymers may 

be anywhere in the depleted region, but there are only 	within each region. 

This sum therefore gives the form factor of a sphere of radius Rd = R + R i.e. 
2/Nd 

'dd = b;bB Bd (N 5
V

) 	
exp iQ. (R - RJd ) ) 

N2N 
= b;bP/3I3d 1/2  S 	 (4.18) 

where 

Bd = - fdfdOfddr exp  (jQr  cos  O), 	 (4.19) 
Vd 

Od = BdVd and the sum over i and j is identified as the structure factor of the 

colloids - S = NL exp iQ . (R - Ri)). Equation 4.17 thus becomes: 

I = Nbb ( _2 +PPPCdVd 	*fidScc) 	 (4.20). 

where Pc, p, are the number densities of the colloids and polymers respectively. 

The relationship between the cross-term and the colloid term is derived in a 

similar fashion. Using the same convention as in the previous section we obtain: 

Ep  = Eh -Ed 	 (4.21) 

=I = 2(E(Q).E(Q)) 

= 	2 (E.(Eh(Q) - Ed (Q))) 

= 2 	E 6n(r)Sn(rk) exp iQ. (r1  - ri)) 
jec keh 

- 
 (

Ej:Jn(rj)6n(rk)expiQ-(rj—rk)) 
jec kd 

(4.22) 



116 	 CHAPTER 4. EXPERIMENTAL INVESTIGATION 

Here E refers to the electric field scattered by the colloids. Once more we treat 

each term individually. The first represents the correlation between the colloids 

and an ideal gas of polymers. The radial distribution function for such a system 

is given by gcp(r) = 1 V r and so using equation 4.7 we set this term to zero. The 

second term represents the correlation between a polymer within the depleted 

region and the colloids (which are themselves centred on the depleted region). 

We rewrite the position of the colloid scatterer as r3 = R + r (figure 2.9) and 

that of the polymer scatterer as Fk = R k + r k+ r (figure 4.3). Noting that 

Rd 	R3, we obtain: 
Nd N (d) 

	

I 	00 

I 	= —2on6nc ç 	>expiQ .(RI. ....R)expiQ .rexpiQ .(r — r) 
j,k I m,n 

/ Na N(d) 

= 	—2bb( 	j2 expiQ.(R—R kd )expiQ.r 

	

j,k 	I 

= (4.23) 

Using equation 4.5, 4.20 and 4.23 we can now write down the total scattering 

from a colloid-polymer mixture: 

IT = N b*b S - NC ppbbp fldSC + Nb;b(1 + C c C CC 

= 	(P.~ (Q) - 2\/Pc(Q)PP(Q)pp/3d(Q) + Pp (Q)1 1 
+ PPcI3 (Q)fid(Q)]) N' C "CC 

(4.24) 

where P(Q) = b (Q)b(Q) represents the scattering power of the colloids respec-

tively, P(Q) = b;(Q)b(Q) represents the scattering power of the polymers and 

the Q dependence has been explicitly written in. Using these equations we only 

need estimate one structure factor, from which the others may be derived. 

4.3.4 Obtaining the static structure factors - the integral equa-

tion route 

A similar result to that obtained by the intuitive method may be derived using 

integral equations. The binary mixture is characterised by three total and three 
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direct correlation functions, h3k(r) = g3k(r) - 1 and c3k(r)  respectively. Ornstein 

and Zernike formulated a way of relating these quantities in reciprocal space [75]: 

h3k(Q) = Cjk(Q) + >plêjj(Q)uIlk(Q) . 	 (4.25) 

Percus and Yevick suggested a form for the direct correlation function for short 

range interactions (see [45]): 

ck(r) = [1 - exp(/3U3k(r))19k(r) , 	 (4.26) 

where Ujk(r) is interparticle potential for species j and k. In the Asakura Oosawa 

model the pair correlation functions are: 

gjk = 0 r < Rik , 	 (4.27) 

where Ri,, = R for the colloids, R(1 + ) for the cross-term and 0 for the 

polymers. Under these criteria the second and third equations of 4.25 become: 

S(Q) = \/ijhl2(Q) = 

SPp 	= 1 + p2h22(Q) = 1 + p1p2 çp(Q)Sec(Q) , 	(4.28) 

where ê(Q) is the Fourier transform of c(r) which, from the Percus-Yevick 

closure relation, must take the form 

c(r) = 0 r > O•2; = R(1 +e) . 	 (4.29) 

We may compare the Ornstein- Zernike result (equation 4.28) with that obtained 

by the intuitive method (equation 4.24). /3(r), which is a step function, is clearly 

the low density limit of c(r), which can take any form for r < R(1 + ). Figure 

4.4 compares the two quantities. The exact form of c(r) and therefore the 

partial structure factors can be found by solving the first of the Ornstein- Zernike 

relations. Louis et al. [32] found that no analytic result existed, but solved the 

equations numerically to obtain the three partial structure factors. 
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Figure 4.4: Schematic of c(r) and /3(r). Both are confined to be zero at distances 
greater than R(1 -   -), but the direct correlation function may be non-unity at lower 
distances. /3 is the low density limit of c,. 

4.3.5 Obtaining the static structure factors - comparison of 

results 

The results from the three methods are shown in figure 4.5 for a typical colloid 

volume fraction and polymer concentration used in my experiments. For the 

intuitive approach I used Sa', as given by equation 4.10, as the partial structure 

factor from which the others were calculated. S, calculated this way gives a value 

within 5% of the 'exact' value calculated by Louis. This in turn leads to a 5% 

error in the magnitude of S as calculated by the intuitive approach compared to 

the Louis result. The value obtained by Fourier transforming gcp  is within 1% of 

the 'exact' result, implying that our model for gcp  is close to reality. This model 

assumed that there was no correlation between the positions of the polymer and 

colloid except that the polymer cannot enter the depleted region. Long range 

correlations therefore do not exist between the colloid and the polymer. 

The error in S as obtained by the radial distribution function route is large: 

the deviation from unity is more than 350% greater than both the intuitive and 

integral equation approach. The form of gpp  is thus poor. In their paper [63], 
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Figure 4.5: Comparison of three methods for finding the partial structure factors of a 

colloid-polymer mixture. The squares represent the results obtained by Fourier trans-

forming estimates for the radial distribution function. The circles are the cross and 

polymer structure factors obtained by relating these quantities to the colloid structure 

factor, and the lines represent the 'exact' result found by solving the Ornstein-Zernike 

relation within a Percus-Yevick approximation. 

Warren et al. found from simulations that gpp  is expected to decay from 1/cr to 

1, and has a finite, negative slope at r = 0. The actual form of gpp given is an 

approximation that fits these constraints. From this work it is clear that this 

approximation is not a good one. The intuitive and integral equation methods 

agree within 5%. 

The close agreement between my and Louis's values imply that the direct cor-

relation function c does not significantly differ from the /3-factor introduced in 

my work. Equation 4.24 appears to be an accurate way of describing the total 

scattering, at least at these low colloid volume fractions. 

4.4 Dynamic structure factor 

The total dynamic structure factor scattered from a colloid-polymer mixture 

fT(Q, ) may be expressed in terms of the partial dynamic structure factors 
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weighted by the relative intensities: 

ITIT(Q,T) = (E(0)ET(T)) = ((E(o) +E(0)) (E(r) +Ep('r))) 

= (E(0)E(T)) + 2 (E(0)E(7-)) + (E(o)E(T)) 

	

= If(Q, T) + 2If(Q, T) + If (Q, T) , 	 (4.30) 

where 'a  is the intensity scattered by component c, the magnitude of which was 

given in the previous section. In general the measured dynamic structure factor 

contains contributions from both the polymer, colloid and cross dynamic struc-

ture factors. The relative weights of these contributions are given by the partial 

intensities (I,/IT ). These may be obtained either experimentally or theoretically 

using equation 4.24. The weight of the cross scattering W compared to that of 

the colloid is given by  

TIT 	
P(Q) 

- \I 5 f PpPd ) 
N'c I 

and that of the polymer is 

= Pp  (Q) 
WP 

	

	
r__ 

+ pppc/ 3 (Q)d(Q)]. 	 (4.32) 
Pe  (Q)'' CC 

These equations represent the total scattering of the polymer and cross terms 

compared to the colloid, so the full expression for the scattering power must be 

used. A polymer coil of radius of gyration R contains significantly fewer scatterers 

than a colloid of the same radius. Using equations 2.16, 2.21 and 2.22, we obtain 

the following form for the scattering power of a colloid and polymer: 

	

10  47r2n (dn\2 -P(QR
9) 	 (4.33) = A4  dc  N 

- 	- 10 4ir2nön2v PC  (Q) 	 P(QR) , 	 (4.34) 
T2 	A0 

where 10  is the input intensity, r the distance from the scattering volume to the 

detector, A0  the wavelength of laser light, ri  the solvent refractive index, v the 

volume of the colloid and the other symbols take their meaning from equations 
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2.21 and 2.22. Pc, P are the normalised form factors derived in equations 2.27 

and 2.28. Values of dn/dc can be found in the literature for common polymers 

and solvents [29]. 

Another method for obtaining the relative magnitude of the cross and polymer 

scattering is by experiment; though the simplest method, described here, does 

make some incorrect assumptions which must be accounted for. The total in-

tensity IT of a colloid-polymer mixture is measured over a range of angles. The 

sample cell is then centrifuged until the colloids have sedimented and do not con-

tribute to the scattering (see section 4.2). The intensity measured through the 

supernatant I now represents 1/S. To make any further progress we assume 

(incorrectly) that the intensity scattered by the colloids alone is given by 

Ic = IT - IacSpp. 	 (4.35) 

The relative weight of the polymer scattering is then given by 

W -- 
IacSpp 	

(4.36) 
IT - IacSpp 

Rewriting the intensity of the cross scattering (equation 4.12) as 

Ix = 2/Ic(Q)Ip(Q) 	
Scp(Q) 

(4.37) 

the relative weight of the cross scattering can be written as 

Ix  = 2/(I 	IacSpp)IacSpp 	
Scp(Q) 

(4.38) 
£CC(Q)Spp(Q) 

We thus need two measurements of intensities and an estimate for 	S p  and Spp  

for which we use the results of section 4.3.3. Equation 4.35 clearly overestimates 

the value of I and the magnitude of the cross and polymer scattering are both 

underestimated by Wx. It is interesting to note that, from equation 4.37 and 

figure 4.5, I is negative for QR < 4.49/(1 + ). The concept of a negative 

intensity is clearly a difficult one, but the intensity of the cross scattering is not a 
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Figure 4.6: Plot of the relative magnitude of the cross scattering (III) against QR 
for a polymer concentration of 0.44c*.  The line represents the theoretical result of 

equation 4.31 and the symbols are the experimental results at colloid volume fractions 

of 0.09% (circles), 0.23% (triangles) and 0.69% (squares). The size ratio is 0.261. 

measurable intensity separate from those of the colloid and polymer. It is a quirk 

of the manner in which we have chosen to divide up the total intensity that gives 

this apparently unphysical result. 

Figure 4.6 shows the theoretical and experimental magnitude of the cross-term 

for a high effective polymer volume fraction (c/c* = 0.44) and three different 

colloid volume fractions. The two methods give similar results, and the experi-

mental results confirm that the magnitude of the cross-term is independent of the 

colloid volume fraction. As Q is increased, the magnitude of the cross-term falls 

(until QR(1 + ) = 4.49) whereas the magnitude of the polymer term increases 

(figure 4.7). The relative magnitude of the polymer term is, as expected, highly 

dependent on the colloid volume fraction. 

4.5 	Obtaining the colloid dynamic structure factor 

The data from a dynamic light scattering experiment contains information on 

three partial intensities coupled with three partial dynamic structure factors. To 
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Figure 4.7: Plot of the relative magnitude of the polymer scattering (Ill) against 
QR for a polymer concentration of 0.44c*.  The lines represents the theoretical 

result of equation 4.32 or three colloid volume fractions, and the symbols are the 

experimental results at colloid volume fractions of 0.09% (circles), 0.23% (triangles) 
and 0.69% (squares). The size ratio is 0.261. 

obtain information about the scattering from one species only (colloid, polymer, 

cross) we must have some prior knowledge about the other two terms. Either we 

must know (or be able to measure) their form and magnitude, or we must know 

that two of the three partial intensities are sufficiently small as to be neglected. 

In practice the former option is difficult since both f(Q 'r) and f(Q r) are 

unknown. It is therefore desirable to be able to minimise the partial intensity of 

any two of the colloid, polymer and cross scattering so that the data represents 

the dynamic structure factor of a single species. Experimentally this may be 

performed in several ways. 

4.5.1 Contrast variation 

The magnitude of the scattering from a particular species is dependent on re-

fractive index difference between that species and the background solvent. By 

changing the refractive index of the solvent n3 , we can adjust the relative scat- 
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Solvent ni  T0/°C] 

Dodecane 1.4216 ? 

Cyclohexane 1.4267 34.5 

Tetralin 1.5413 ? 

cis-decalin 1.4810 12.5 

trans-decalin 1.4695 20.4 

Table 4.1: Good solvents for polystyrene and PHSA and bad solvents for PMMA, 

together with their refractive index ni  and their theta temperature To. A question 

mark (?) indicates no experimental data on the theta point. Data from [29]. 

tering. The dependencies are: 

x (n - 

I 	cx I (n - 	- n) 

4, cx (n n5)2 
	

(4.39) 

where ri7,, n represent the refractive index of the polymer and colloid respectively. 

If there were a solvent such that (rip  - n8 ) = 0 then both the polymer and cross 

scattering would vanish as desired. 

The refractive index of a solvent may be changed by either mixing with another 

solvent or by changing the solvent. For both methods, the resulting solvent would 

have to be a good solvent for polystyrene (and ideally have an experimentally 

accessible theta temperature 10°C< To <40°C) and for PHSA, and a poor solvent 

for PMMA. As can be imagined this places some severe restraints on the choice of 

solvent. Table 4.1 lists the more common solvents that satisfy these conditions, 

along with their theta temperature for polystyrene. The solvent suitable for index 

matching the polymer is tetralin but, as shown in Chapter 2, this solvent enters 

the PMMA particles, swelling them and changing their refractive index profile. 

The exact timescale for this behaviour seems to be different for each particle and 

the subsequent internal rearrangement of tetralin is complicated. This makes 
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using tetralin as the solvent extremely challenging. 

Instead of trying to remove the scattering from one species, we could increase 

the scattering from the other; for example if trans-decalin is used instead of 

cis-decalin then the magnitude of the colloid scattering increases by a factor of 

2.6, whereas that from the polymer only by 1.2 (and the cross-term therefore 

increases by a factor 1.8). We must, however, be careful that the refractive index 

difference is not so large that multiple scattering becomes significant even at 

these low concentrations. This condition effectively excludes both dodecane and 

cyclohexane from consideration. 	 - 

An alternative to changing the solvent is to use a mixture of solvents. Indeed, 

intensity measurements on a binary mixture suspended in three different sol-

vent mixtures with different refractive indices would allow a calculation of the 

constants of proportionality in equations 4.39. The technique of using a 'con-

trast series' is common in neutron scattering. However, in our case changing the 

composition of the mixture would change the theta temperature for polystyrene 

and therefore its size. This could be accounted for by performing the intensity 

measurements at different solvent temperatures, so that the Fixman parameter 

remains constant. Unfortunately there is little information in the literature on 

the theta point of mixtures of suitable solvents. 

Clearly the only suitable solvents for this system are cis-decalin or trans-decalin, 

with the latter favoured when we wish to increase the scattering from the colloid. 

Since changing the solvent is not particularly easy, another option to consider 

is to use a polymer with a more suitable refractive index. There is only one 

polymer currently available that has a suitable refractive index and for which 

cis-decalin is a good solvent (within the experimentally accessible temperature 

range) - poly (butadiene). For the majority of the time spent on this research this 

was unavailable at sufficiently high molecular weights. 
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Another option to consider is to change both the polymer and the solvent. This 

opens up the possibilities for a close refractive index match between solvent and 

polymer and an accessible theta temperature; however the new solvent would 

also have to be a good solvent for PHSA and a poor solvent for PMMA so that 

the colloids retain their hard-sphere inter-particle potential. No such solvents are 

readily available. 

4.5.2 Scattering vector dependence 

The scattering power of the colloids is Q-dependent (equation 4.34) and shows 

a minimum at the experimentally accessible value of Qm jnRc  = 4.49. As Qmjn S 

approached, the colloid term becomes small twice as quickly as the cross-term 

(which contains a fP(QR) dependence). This property can be exploited to ob-

tain measurements of the cross dynamic structure factor. As Qmjn  is approached, 

the colloid term becomes negligible. When this occurs equation 4.30 becomes: 

Itft(Q, i-) = If(Q, r) + If(Q, r) . 	 (4.40) 

The intensity and dynamic structure factor of the polymer can then be measured 

by centrifuging the mixture until all the colloid has sedimented and performing 

DLS on the supernatant. Thus f(Q r) can be calculated. In practice many 

measurements are made as Qmin  is approached until ItfT(Q, T) - If(Q, ) no 

longer changes. At this point the scattering by the colloid may be neglected. 

This experiment was performed on colloids of radius 175nm in cis-decalin (not 

trans-decalin, as we wished to minimise the colloid scattering). These show a 

form factor minimum at 90.3°. The polymer had a radius of gyration at 20.0°C 

of 86.5nm. Figure 4.8 shows plots of Qf(Q,r) + (1 - Q)f(Q,7-), where 	= 

I/(I + Ii), against Q2'r for various angles. The data at different angles seem 

to roughly have the same slope and there is no obvious trend on increasing the 
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Figure 4.8: Plot of Qf(Q, r)-1-(1—o)f(Q, r), where o = I/(I+I), against Q2T for 

various angles. The colloid volume fraction is 0.11% and the polymer concentration 

is 0.327c*.  

detection angle. Since we are measuring near the minimum of the particle form 

factor, noise from background scattering is not negligible. 

This data represents the weighted sum of the colloid and the cross dynamic 

structure factor. A form for the cross dynamic structure factor is not known, 

but as a first guess one might assume that it decays as a simple exponential with 

a diffusion coefficient that is the average of the polymer and colloid diffusion 

coefficients in the pure solvent, i.e. (D + D)/2. In this example, this would 

result in a cross dynamic structure factor that decayed roughly 1.5 times as fast as 

that of the colloid. As the relative proportions of the colloid and cross scattering 

change, this difference in diffusion coefficients should result in a trend in the first 

cumulant. Assuming that the form factor of the colloid is given by the ideal form 

of equation 2.27, the scattering from the colloid should decrease over the range 

800  to 900  (QR = 4.07 to 4.47) by 32%. The scattering from the cross term 

therefore decreases by 16%. This results in a change in the first cumulant of 

£ii = gD+(1—pf)D 
F, 	Pi Dc  + (1 - 

= 	0.64 + 1.94v + 1.26v2  
0.64 + 1.86v + 1.26v2 ' 
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where v is the ratio of cross to colloid scattering at 800.  For ii < 0.1 the change 

in the first cumulant due to the increased cross scattering roughly equals u. In 

this experiment the first cumulants obtained at all angles lie randomly within the 

range (3.0 ± 0.2) x iO-' m2s 1, implying that ii is less than 6%. 

This treatment assumes an ideal form for the colloid form factor; however, real 

colloidal suspensions are never monodisperse and the scattering never goes iden-

tically to zero as the form factor minimum is approached (see, for example, figure 

2.10). The colloid scattering might not decrease as much as predicted by the sim-

ple treatment given above and the change in the weighting of the cross dynamic 

structure factor given in equation 4.30 might be too small to allow detection of a 

trend in the first cumulant. Another factor to consider is the noise in the data: 

as the colloid scattering is reduced the intensity of the polymer term dominates 

over that of the cross-term. Table 4.2 shows the relative magnitudes of IT and 

I as the minimum is approached. The absolute error in f(Q r) due to noise in 

fT(Q, ), f, (Q, r), IT and I is therefore large. The dominant source of noise in 

these quantities is scattering from the solvent ('solvent/IT - 0.1). It is possible 

that the change in the first cumulants is not evident above the noise. 

Work on different mixtures of colloids and polymers did not give significantly 

different results and it became obvious that a reliable measurement of f.,;  (Q, ) 

could not be made by this method. 

4.5.3 Increasing the number of colloids 

Based on equations 4.6 and 4.12 one might assume that as the number density 

of colloids is increased, the ratio of cross-scattering to colloid-scattering would 

be reduced by a factor of 	where N0  is the number of colloids. However 

this does not take into account the dependence of S on colloid number density. 

The correct form is given in equation 4.31. Suprisingly the ratio of cross to 
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Angle 'p/IT 

80 0.568 

83 0.565 

85 0.650 

87 0.723 

90 0.784 

92 0.848 

Table 4.2: Relative magnitudes of polymer to total scattering as the colloid form 

factor minimum is approached. 4 denotes the polymer intensity and IT the total 

intensity scattered. 

colloid scattering is independent of the number of colloids present, as can be seen 

experimentally in figure 4.6. This counter-intuitive result stems from the lack of' 

a (i = j) term in the cross static structure factor (equation 4.7). Physically, the 

static structure factor of the colloids contains a correlation between light scattered 

in a single colloid with light scattered from that same colloid, and similarly for 

the polymer. While the shape information is contained within the form factor,  

P(QR), the magnitude of this scattered light is independent of the presence of 

other colloids. The higher the total number of colloids, the higher this 'self' 

scattering is. This is the origin of the N dependence of the colloid scattering. 

For the cross scattering, there is no 'self' scattering and the first order term in the 

static structure factor is between a colloid and the nearest polymer. This clearly 

will be dependent on both the number of colloids and the number of polymers. 

This explains the NN dependence of the cross scattering. Since the colloid and 

cross scattering both have the same dependence on N, increasing the number of 

colloids makes no difference to the magnitude of the relative scattering. 

The same is not true for the ratio of polymer to colloid scattering which decreases 

like C + 1/Ne, where C is a constant, as the colloid number density is increased. 
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The constant comes from the higher order correlations between the positions of 

polymers due to the presence of the colloids. 

4.5.4 Anew methodology 

In this work, I would like to obtain the dynamic structure factor of the colloid 

alone. Since the dynamics of the cross scattering cannot be easily measured 

it is necessary to minimise the magnitude of this scattering until negligible. For 

simplicity the magnitude of the polymer scattering is also reduced until negligible. 

This is done by increasing the colloid volume fraction until further addition of 

colloid results in no change in the measured dynamic structure factor. Adding 

colloid has no effect on the magnitude of the cross scattering, and this is minimised 

by using trans-decalin as the solvent and choosing a suitable range of scattering 

vectors for the measurements. 

There is a very neat way of exploiting the Q-dependence of f(Q, r) to check 

whether the polymer or cross scattering is significant. As the colloid is dilute, 

f(Q, T) represents self-diffusion and should take the form derived in equation 

2.56, though with a diffusion coefficient that may be time dependent. The scat-

tering vector dependence is given by: 

lnf(Q,r) cx -Q2 . 	 (4.42) 

Strictly speaking this is an approximation. van Megen and Underwood [76] in-

vestigated the deviation from Gaussian behaviour using concentrated systems of 

hard spheres. They defined the deviation from Gaussian behaviour by a factor 

a2 (t)  given by 

f(Q, r) = exp (—Q2w(t)) [i + 
02(t)(Q2w(t))

2+...] 	
(4.43) 

2 

They found that for colloid volume fractions lower than 01  = 0.266, a2 (t) was 

effectively zero but increased to 0.15 for Ou  = 0.361. In these experiments the 



4.5. OBTAINING THE COLLOID DYNAMIC STRUCTURE FACTOR 131 

colloid volume fraction is lower than qbut the total volume fraction of colloids 

and polymers may be greater than ou. The accuracy of the Gaussian approx-

imation in such a system is unknown. As will be shown in section 4.7.3 this 

approximation appears valid for polymer concentrations up to 0.5c*. 

If the total dynamic structure factor fT(Q, r) represents colloid diffusion only 

it should show Q2-scaling. If, on the other hand, fT(Q, ) is a weighted sum 

of the dynamic structure factor of more than one species (colloid and cross or 

polymer) then this proportionality will not hold. We incorporate this result into 

the previous experimental method - the colloid concentration is increased until 

this Q2  dependence is seen, at which point the total structure factor represents 

only the colloid-term. Any persistant deviation from Q2-scaling must be due to 

the cross scattering. Figure 4.6 showed that the magnitude of the cross-term 

falls as Q is increased (within a certain range). It is likely that, for a particular 

experiment, there will be a range of Q for which the total dynamic structure 

factor scales with Q2, and it is within this range that the cross-term may be 

neglected. 

This method forms the basis of my experimental technique for obtaining the 

dynamic structure factor of the colloid in a colloid-polymer mixture. The range 

of polymer concentration for which we may perform this experiment is limited by 

the presence of phase boundaries. At high polymer concentrations, the depletion 

force induces phase separation in even dilute suspensions of colloids. If this occurs 

before the polymer scattering is negligible with respect to the colloid scattering, 

then this method cannot be used to obtain the colloid dynamic structure factor. 
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Figure 4.9: Plot of viscosity of polymer solutions in trans-decalin at 20.4°C (circles) 
and 28.6°C (squares) against concentration. Lines have been added to guide the eye. 
Typical errors in the measurement of the viscosity are 0.01%. 

4.6 Results obtained by DLS and TCDLS 

4.6.1 Sample description 

The colloid was characterised by both DLS and SLS to give a radius of 150 ± 3nm 

and a polydispersity less than 6%. Two stock solution were made up in cis-decalin 

at volume fractions differing by a factor of about 10. 

The polymer was linear polystyrene with a molecular weight of 1.95 x 106  AMU 

as measured by the suppliers, suspended in trans-decalin. The theta point for 

this system is To  = 20.4°C (R = 39.2nm, c = 12.9mgcm 3) and measure-

ments were performed at this temperature and also at 28.6°C (R = 42.8nm, 

c = 9.84mgcm 3). The viscosity of these solutions were measured at both tem-

peratures using the Ubbelohde viscometer and the results are shown in figure 4.9. 

The colloid was added dropwise to ig of polymer solution and shaken well. No 

more than 4 drops of either stock solution were added in total, typically resulting 

in an increase of total mass of about 6%. Using this method, volume fractions 
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Figure 4.10: Part of the phase diagram for a colloid-polymer mixture with a size ratio 
of 0.285. Circles represent fluid, squares are fluid/crystal coexistence and diamonds 
are gels. The lines are added to guide the eye. 

could be explored as low as 0.04% up to 0.9%. Since the colloid starts in a different 

solvent, there is a slight refractive index change on mixing but this amounted to 

less than 0.05% and as such is negligible. The viscosity of the polymer might also 

be expected to change on addition of the colloid due to both a diluting effect, 

and changing the quality of the solvent. The former effect is easily accounted for 

by a simple recalculation, whereas the magnitude of the latter effect can only be 

found by experiment. The change due to the solvent quality was found to cause 

a maximum difference of 0.62% in the viscosity. 

The relevant part of the phase diagram for the mixture at 28.6'C is shown in 

figure 4.10 and at this temperature (and the theta temperature) phase transitions 

limited the range of polymer concentrations that could be investigated by this 

technique to 0 < c/c* < 0.5. The phase separation is hard to characterise 

(e.g. fluid-crystal, gel etc.) as only a small amount of the sedimented phase exists. 

Several times the presence of a phase boundary could only be detected by studying 

the transmission of the sample. When phase separation occured, the transmission 

decreased noticeably over a period of 2-6 hours after mixing due to the increased 
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Figure 4.11: Plot of (Lr2(t)) = —61nfT(Q,'i)/Q2  against time for four different 

colloid volume fractions and at four different angles. 300,  50°, 70° and 900  are repre-

sented by circles, triangles, squares and diamonds respectively with lines to guide the 

eye. The effective polymer volume fraction is 0.35, and the size ratio 0.285. 

scattering at small angles of the aggregates, and then increased to a higher value 

than initially. 

Dynamic light scattering was performed on the mixtures with polymer concentra-

tions within the above range at four angles, 30°, 50°, 70° and 90°, corresponding 

to QR = 1.40, 2.29, 3.11 and 3.84. From equation 4.31 the relative weight of the 

cross scattering should decrease by a factor of roughly 4 over this range. 

4.6.2 Form of results 

The mean square displacement as a function of time was obtained from the mea-

sured dynamic structure factor using equation 2.56. It should be noted that unless 

the measured dynamic structure factor represents self-diffusion of the colloid, then 

< Lr2(t) > as obtained by this method has no physical meaning. Figure 4.11 

shows a typical set of results for four different colloid volume fractions. At low 
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colloid volume fractions (figure 4.11a) the data obtained at lower angles decay 

slower than those obtained at higher angles' As the colloid volume fraction is 

increased the positive deviation is lost and data from all angles scales with Q2  

(figure 4.11b). This is as expected if the cross and polymer terms are now negli-

gible. However, when the volume fraction is increased still further, the scaling is 

broken and negative deviation is seen (figure 4.11c,d). The origin of the deviation 

cannot be due to scattering from either the cross-term (which remains constant 

as the colloid volume fraction is increased), nor the polymer-term (which should 

decrease as the colloid volume fraction increases). It must therefore be related 

to some other aspect of dynamic light scattering from higher volume fraction 

mixtures. 

Although the absolute volume fraction is low, the contrast between the solvent 

and the colloid is high and multiple scattering effects may be significant. Segrè I 
et al. [51] found that multiple scattering can cause the correlation functions to 

decay quicker (for QR < 3.3) or slower (for QR> 3.3) than expected. This would 

explain the negative deviation seen in figures 4.11c,d. To confirm this hypothesis, 

experiments were performed using TCDLS which effectively suppresses the effect 

of multiple scattering and the results are shown in figure 4.12. At the lower 

two concentrations (figures 4.12a,b) the result obtained by TCDLS is in good 

agreement with that obtained by DLS indicating that multiple scattering is not 

significant. At higher concentrations (figures 4.12c,d) however, negative deviation 

is seen in the DLS result, whereas Q2-scaling is not broken in the TCDLS data. 

This is good evidence that the breaking of Q2-scaling is due to multiple scattering. 

It is preferable to perform experiments on simple DLS as opposed to TCDLS 

for two reasons: firstly the TCDLS set-up is extremely time-consuming to align 

6From the slowest decaying to the faster, decaying the order is 300,500 , 700,900. This will 

be referred to as a 'positive deviation from Q2-scaling'. The reverse order will be referred to as 

a 'negative deviation'. 
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Figure 4.12: Plot of (Lr 2(t)) = —61nfy(Q,)/Q2  as obtained by DLS (points) and 

TCDLS (lines) against time for four different colloid volume fractions and at three 

different angles. The circles, triangles and squares represent DLS results obtained at 

300, 50° and 70° respectively. The effective polymer volume fraction is 0.30, and the 

size ratio 0.261. The inset of figured is a log-log representation of the TCDLS result. 

As can be seen, the Q2-scaling occurs over all timescales. 

and needs frequent, minor adjustment. Secondly, there is much competition for 

experimental time on the equipment. From figure 4.11 it would appear that 

Q'-scaling is reached at a lower colloid volume fraction than multiple scattering 

becomes significant. It is however conceivable that there is a cancelling effect 

between multiple scattering, leading to a negative deviation, and polymer scat-

tering, leading to a positive deviation, that causes the Q2-scaling seen in figure 

4.1 lb. Several experiments on samples showing Q2-scaling by DLS were repeated 

on TCDLS to remove the effect of multiple scattering. No difference between the 

two methods was observed implying that neither polymer nor multiple scattering 

is significant when Q2-scaling first appears. 

At the highest polymer concentrations studied, although the results at 50°, 70° 

and 90° showed Q2-scaling, the dynamic structure factor obtained at 30° did not 

fit onto the Q2-scaling master curve, decaying slightly too slowly. This is likely 
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Figure 4.13: Plot of the colloid diffusion coefficient (as obtained by cumulant analysis) 

as a function of time for three different volume fractions of polymer. The symbols 

represent the data, with diamonds representing diffusion in pure solvent and circles, 

squares and triangles representing diffusion in polymer concentrations of 0.15, 0.20.,. 

0.42 respectively (measured in terms of the overlap concentration). Measurements 

were made at 20.4°C. The lines indicate the Stokes-Einstein result with the viscosity.; 

set as that measured for the polymer solution. The error in this measurement is about 

4%, the magnitude of which is shown by the dotted line for the pure solvent. Also 

marked on the plot is the relaxation time of a single polymer coil tr(polymer). 

to be due to the increased magnitude of the cross-term at this angle and the dat 

was excluded from the analysis. 

I have presented a method for obtaining the colloid dynamic structure factor from 

a colloid polymer mixture by DLS. The colloid volume fraction is increased until 

Q2-scaling is first seen. At this point the contribution from both the polymer and 

cross-terms may be ignored, and the effect of multiple scattering can be neglected. 

4.6.3 Short and long time behaviour 

The dynamic structure factor of the colloids was analysed by both a continuous 

numerical differential and a stepped series of cumulant fits to obtain the diffusion 
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Figure 4.14: Plot of the colloid diffusion coefficient (as obtained by cumulant analysis) 

as a function of time for four different volume fractions of polymer. The symbols 

represent the data, with triangles, circles, squares and diamonds representing diffusion 

in polymer concentrations of 0.05, 0.21, 0.35 and 0.54 respectively (measured in 

terms of the overlap concentration). Measurements were made at 28.6°C. The lines 

indicate the Stokes-Einstein result with the viscosity set as that measured for the 

polymer solution. The uppermost line is the Stokes-Einstein result with the viscosity 

set to be that of the pure solvent. The error in the lines is about 4%. Also marked 

on the plot is the relaxation time of a single polymer coil tr(polymer). 

coefficient as a function of time, both methods giving identical results. Figure 

4.13 shows the results for three different polymer concentrations. The relaxation 

time of a single polymer in trans-decalin at the theta point is tr(polymer) 	0.6 

ms (equation 1.2). At times long compared to this time the colloid diffusion 

coefficient approaches that predicted from the Stokes-Einstein equation, with a 

viscosity equal to that of the polymer solution i i.e. 

D(t> tr(polymer)) 
- kT 

	
(4.44) 

6 -ijR 

At short times the diffusion coefficient is higher and the initial diffusion D(t —* 

0) is slightly below free diffusion in the solvent. This would seem to support the 

hypothesis that at short times the diffusion of the colloid is slowed only by weak 
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Figure 4.15: A plot showing the noise present in the short time diffusion coefficient. 

The true value is obtained by extrapolating through the noise to zero time. The 

symbols represent the data, with squares representing diffusion in pure solvent and 

circles and triangles representing diffusion in polymer concentrations of 0.15 and 0.20 

respectively (measured in terms of the overlap concentration). The lines indicate the, 

Stokes-Einstein result with the viscosity set as that measured for the polymer solution.. 

The error in this measurement is about 4%. 

hydrodynamic interactions with a cage of polymers i.e. 

D(t —p0) 	
kBT 

D(0) = H(c) 	 (4.45), 
6irij8 R 

where H(c) is a hydrodynamic factor associated with the cage of polymers. 

The results shown in figure 4.14 were obtained at a slightly higher temperature 

(28.6°C instead of 20.4°C), which has the effect of changing the solvent quality 

from theta to good. There is no qualitative difference between the two sets 

of results: the diffusion slows as time increases approaching a value given by 

equation 4.44. Clearly the long time behaviour is not affected by any change in 

the static structure factor of the polymers, nor by the change in the size ratio of 

the mixture as we leave the theta point. 

These plots show substantial noise at short times due to the fitting process, (see 
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figure 4.15). At short times, f(Q, r) has not decayed significantly and the results 

obtained by the differentiation routine are acutely sensitive to small amounts of 

noise in the data. The short time diffusion coefficient is obtained by extrapolating 

through the noise to the zero time diffusion coefficient. 

4.7 	Discussion of results 

4.7.1 Hydrodynamic factor for a polymer cage 

The form of the colloid dynamic structure factor is as predicted in Chapter 3. 

At long times, the diffusion coefficient is given by a continuum description of 

the polymer solution whereas, at shorter times, the colloid diffuses faster. The 

hydrodynamic factor for a system of hard spheres has been determined both 

theoretically and experimentally [16]. It is interesting to see how this factor 

changes when the caging colloids are effectively replaced with polymer coils. 

Polymer coils are known to be hydrodynamically impermeable, i.e. no solvent 

passes through the coils [39]. The hydrodynamic interaction is characterised 

by a hydrodynamic radius which, in the Zimm model, is related to the radius 

of gyration by Rg  = 1.51RH . We may therefore convert the effective polymer 

volume fraction, given in terms of c*,  into an effective hydrodynamic volume 

fraction - c/c. The hydrodynamic factor associated with a cage of polymers 

at a particular effective hydrodynamic volume fraction can be compared to that 

associated with a cage of hard spheres (figure 4.16). 

The hydrodynamic drag appears less for the cage of polymers than for the colloids. 

The dotted line in figure 4.16 represents the linear best fit through all sets of data 

points. It does not appear that the hydrodynamic factor is dependent on the size 

ratio between the colloid and polymer, at least for these two experiments. To a 
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Figure 4.16: Plot showing the hydrodynamic factor for the short time self-diffusion of 
colloids within a polymer cage. The circles represent the results for a theta solvent 

and the squares are results for a good solvent. The effective polymer volume fraction 

is calculated using the hydrodynamic radius of gyration. The triangle is the result 

obtained from diffusion through PBD (see section 4.7.3). The dotted line represents 

a linear best fit line through all the data points. The solid line represents the results 

for a concentrated system of hard spheres, reproduced from [16]. 

first approximation H(q) may be considered linear in colloid or polymer volume' 

fraction: 

H(q)=1—aq. 	 (4.46) 

For the colloid the factor a is approximately 2.0, whereas for the polymer it is ,  

approximately 1.2. Since changing the size of the caging particles appears not to 

affect H(c), the difference between the hydrodynamic factors of the polymer and 

colloid cages is likely to be the structure of the cage constituents. As the con-

centration is increased, polymers in the free volume do not significantly change 

their structure from an ideal gas. Suspensions of colloids, on the other hand, de-

velop a preferred spacing, seen as a strong peak in their static structure function, 

eventually leading to crystal formation upon crossing the phase boundary. 

There must also be another qualitative difference between the hydrodynamics of 

the two cages. As the polymer concentration is increased overlap occurs (at an ef- 

fective hydrodynamic volume fraction of 0.296). The hydrodynamics retardation 



142 	 CHAPTER 4. EXPERIMENTAL INVESTIGATION 

of a polymer mesh might differ strongly from a cage of free polymer coils. 

It would seem that the quantity H(c) might be calculable if one assumes that 

the polymers act as hard spheres at a size ratio of 1, and the structure of the cage 

constituents is allowed to vary. Such a study is beyond the scope of this thesis, 

but might reveal some physical insights into the hydrodynamics of a colloidal 

cage. 

4.7.2 Errors 

In this chapter I have proposed an experimental method for obtaining the colloid 

dynamic structure factor from a colloid-polymer mixture. The relative magnitude 

of the polymer scattering is roughly inversely propotional to the colloid volume 

fraction and, by increasing the latter, the polymer term in the dynamic light 

scattering equation may be neglected. The magnitude of the polymer scattering 

is strongly Q-dependent, and data obtained at higher Q values will contain the 

largest proportion of polymer scattering. Data should not be taken close to 

QR = 4.49 at which point the form factor of the colloid term has a minimum. 

The removal of the cross scattering is more difficult and, while certain measures 

can be taken to minimise it, we are perhaps fortunate that it can be reduced to 

a negligible level in this system. The relative magnitude of the cross-term falls 

with increasing Q, until QRc(1 + ) = 4.49, and it is desirable to take data near 

this point. 

The magnitudes of the cross and polymer scattering are further reduced by only 

accepting data that scales with Q2  over a range of Q. When this occurs the total 

dynamic structure factor fT(Q, T) represents diffusion due to the colloid alone. 

The relative magnitude of the cross and polymer scattering when scaling occurs 

may be estimated by the following procedure. The data obtained at 900  contains 
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the largest proportion of polymer scattering and so is the last to collapse on the 

Q2-scaling master curve (figure 4.11b). The magnitude of the polymer scattering 

when it finally does collapse is, by theory and experiment, 7%7  Similarly the 

data at 300  contains the largest proportion of cross scattering. As the effective 

polymer volume fraction is increased, we find that the data at this angle no longer 

collapses onto the master curve. The calculated magnitude of the cross-term at 

the point when first it fails to collapse is around 8%. 

These two terms lead to an error in the measured value of D(t) for the colloid, 

though the magnitude of this error is dependent on the exact form of f(Q, r). 

A first estimate would assume that both take the dependence 

fa(Q,) = e_2T 	 (4.47) 

with Da  the diffusion coefficient of either the polymer and cross species. Figure 

4.17 shows the Q-dependence, and the concentration dependence, of the polymer 

scattering. Data obtained at the higher angles (50° and above) and over a range 

of concentrations fall roughly on the same line, however equation 4.47 manifestly 

does not hold. The deviation at 30° is probably due to dust in the sample 

which would be expected to scatter more at small angles. The further lack of 

a Q-dependence is due to the relatively low values of QR investigated (up to 

QR = 1.2) meaning that light scattering is revealing information on the whole 

coil and not a portion of it [77] 

The non-exponentiality of fp(Q, ) is not suprising: the polymer concentration 

is high enough for the Stokes-Einstein equation to be invalid and interactions 

between polymers are likely. An investigation into the exact form of the diffusion 

coefficient for a system of polymers is beyond the scope of this work; however, 

the departure from in f(Q, T) = —Q2Dt may be safely neglected for calculation 

of the error in D(t). The data is fit with D = (3.9 ± 0.1) x 10 12m2s 1 . 

7This result is based on two measurements at polymer concentrations of O.lc*  and  0.44c*. 
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Figure 4.17: The dynamic structure factor of various concentrations of polymer so-

lutions. The symbols represent plots at QR = 3.8 and concentrations of 0.05c* 

(squares), 0.11c*  (triangles),  0.21c*  (circles) and 0.35c*  (diamonds). The lines are 

data obtained at different scattering vectors corresponding to QR = 1.4, 2.3, 4.1, 3.8. 

All but the data obtained at QRc  = 1.4 (marked) lie roughly on the same line. 

The largest error in D(t) due to cross and polymer scattering will be as t -+ 0, 

since the higher diffusion coefficient of the polymer implies that both f(Q, r) 

decay quicker than f, (Q, ) (by a factor of approximately 4 and 2 respectively). 

The error in D(0) is given by 

D(0) _____ _____ 

D(o) 	D(o) +PD(0) 
Dp 	 (4.48) 

where 	is the relative magnitude of the cross and polymer scattering. Substi- 

tuting in p. = 0.08, pp  = 0.07 and D = (D + D)/2 gives a typical maximum 

error of 44%, large enough to account for the deviation of D(t) from the Stokes-

Einstein equation! In reality the error is not this large as we have failed to take 

into account that when the cross-scattering is at its maximum accepted value, the 

polymer scattering is small, and vice versa. Furthermore, the partial intensity of 

the cross scattering is negative for scattering vectors lower than Q = R/(1 + ) 

so that the cross and polymer terms in the full dynamic structure factor equation 

have different signs. This leads to some cancellation in the systematic error of 
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D(0). The total error due to neglect of the cross and polymer scattering therefore 

fluctuates between roughly —iD/D(0) at the lower angles and DID(0) at 

the higher angles. This means that the errors in the data at different angles may 

be taken as random, and averaging this data results in a typical maximum error 

of 6%. 

4.7.3 Experiments on poly(butadiene) 

At the end of this work, a small amount of high molecular weight 1,4-poly(butadiene) 

was kindly donated to me by J. Allgaier8. The refractive index of PBD is 1.51 [29] 

making it practically invisible in cis-decalin. The cross-scattering is therefore ex-

pected to be minimal. An experiment could now be performed to confirm that 

cross-scattering was correctly removed in the previous experiments. 

The polymer was characterised at 20°C in cyclohexane as measurements in cis-

decalin are difficult due to the close contrast match. The molecular mass was 

856 x io AMU, obtained by a Zimm plot, and its nominal radius of gyration 

Rg  = 51.8nm [78]. The closeness of the radius in cyclohexane to that in cis-

decalin depends strongly on the difference in the theta temperature between the 

two solvents. The colloid used was 175nm giving a size ratio of = 0.296. This is 

similar to size ratios used in polystrene polymer / PMMA colloids used previously. 

Measurements were performed using both DLS and TCDLS at three scattering 

angles: 30°, 50° and 70°. The form factor of the colloid exhibits a minimum at an 

angle of 90.3° and the effect of background scattering became significant at angles 

greater than about 80°. The polymer concentration was fixed at 0.50c*  and three 

colloid volume fractions were used: & = 0.01%, & = 0.4%, & = 0.9%. At these 

volume fractions the structure factor for the colloids should be essentially unity, 

and multiple scattering is not expected to be significant. 

8Forschungzentrum Jülich, Germany 
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Figure 4.18: Data obtained by DLS on trace quantities of colloid diffusing through 

a solution of poly (butadiene). The concentration of the PBD is roughly 0.5c*,  and 

results obtained for three colloid concentrations 	= 0.01%, 0.4%, 0.9%) and three 

angles (0 = 300, 500 , 70°) are shown. Data obtained at all angles and all concentra-

tions are coincident implying that cross and polymer scattering are negligible. 

The polymer is not expected to scatter much due to the close contrast match 

between it and the solvent. The dark count for this experiment was 0.077kHz, 

the scattering from cis-decalin was 0.10kHz and the scattering from the polymer 

solution 0.15kHz at all angles. Assuming additivity of intensities, the polymer 

scattering is roughly 0.05kHz. At 70° the scattering from the most dilute colloid 

was 2kHz, some 40 times more. The sample with the highest concentration 

of colloid scattered roughly 10 times more than this. Thus cross and polymer 

scattering are not expected to be significant in this experiment. 

Figure 4.18 shows the DLS results obtained at all angles and all concentrations. 

There is no concentration dependence implying that, as expected, polymer scat-

tering is negligible. Data from all angles give the same < Lr 2(t) >, calculated 

using equation 2.56, implying that cross scattering, which from figure 4.6 is ex-

pected to show Q-dependence, is also negligible. TCDLS on these samples re-

vealed that at these low colloid concentrations multiple scattering effects are not 
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Figure 4.19: Plot showing the diffusion coefficient of colloid in a solution of 

poly(butadiene) as a function of time. The polymer concentration is roughly 0. 5c* 

and results obtained from three colloid concentrations have been averaged. Results 

obtained at each angle are shown separately. The diffusion coefficient for 175nm, 

diffusing through pure cis-decalin is 3.63 x 10 13m2s 1 . 

significant. 

A cumulant analysis on the data showed that the data did not fit a single expo-

nential and a continuous numerical differential approach was used, the results of 

which are shown in figure 4.19. The diffusion coefficient is clearly a function of 

time. At short times the diffusion coefficient Ds  is lower than that expected for a 

colloid diffusing through pure cis-decalin (D0  = 3.63 x 10 13m2s 1), and at long 

times the diffusion coefficient approaches some final value DL.  

Since possessing only a minimal amount of PBD, viscosity measurements could 

not be undertaken with the Ubbelohde viscometer and only a single measurement 

on a Carrimed rheometer was possible. This gave a final viscosity of 5.7 + 0.1 

cP, though the Carrimed is known to give results as much as 10% in error. The 

expected final diffusion coefficient is thus (2.2 ± 0.2) x 10 13m2s' which agrees 

with the value of D' obtained earlier. 

3.2e-13 

3.0e- 13 

2.8e-13 

2.6e-13 

2,4e-13 

2.2e-13 



148 	 CHAPTER 4. EXPERIMENTAL INVESTIGATION 

These results confirm those presented earlier in this chapter. At long times the 

colloid sees the polymer solution as a continuum and the Stokes-Einstein equation 

may be used. At shorter times the colloid diffuses faster, though is slowed by 

hydrodynamic interactions with a cage of polymers. The hydrodynamic factor 

for this system is shown in figure 4.16. The slight difference between this point 

and the best fit line is likely to be due to the difference in the theta temperatures 

between cis-decalin and cyclohexane, leading to an incorrect value for the effective 

hydrodynamic volume fraction. 

This experiment confirms that the cross and polymer scattering were correctly 

removed in the previous set of experiments. The presence of Q2-scaling implies 

that the Gaussian approximation (equation 4.42) made throughout this chapter 

is valid, at least for polymer concentrations up to 0.5c*.  Furthermore, this exper-

iment shows that the colloid diffusion is indifferent to the exact chemical details 

of the polymer, as might be expected. 

4.8 Conclusions 

In this chapter I have detailed an experimental investigation into the self-diffusion 

of colloids though a polymer solution. Results from initial experiments showed 

an unphysical scaling with scattering vector which was identified to be due to 

the neglect of cross-scattering in the data analysis. A novel method for obtaining 

the magnitude of this cross-scattering both theoretically and experimentally has 

been proposed. A methodology was suggested that would measure the form of 

the cross-scattering, though both experimental noise and polydispersity in the 

colloidal samples made an accurate measurement difficult. 

A new methodology was then proposed to measure the diffusion coefficient of the 

colloid alone. It used the dependence of the dynamic structure factor on scatter- 
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ing vector to identify data significantly corrupted by cross-scattering. This data 

could then be removed from the analysis. Contrast variation was also used to 

minimise the cross and polymer scattering, though this led to multiple scattering 

effects becoming significant. Experiments using two colour dynamic light scat-

tering effectively removed this multiple scattering and data was thus obtained 

that represented the diffusion of the colloids alone. A further experiment using 

poly (butadiene), which is nearly iso-refractive with cis-decalin confirmed that 

both the polymer and cross-scattering had been correctly removed in the previ-

ous experiments. 

The data was analysed according to both a stepped cumulant and continual 

differential analysis. The diffusion coefficient was shown to be a function of time 

and at long times the 'polymer solution as a continuum' assumption appeared 

valid. In this regime the Stokes-Einstein equation could be used to find the, 

diffusion coefficient. At shorter times, the diffusion was slowed by hydrodynamic,. 

interactions with a cage of polymers. This hydrodynamic slowing was less than 

for diffusion in a concentrated system of hard spheres. It was proposed that this 

was due to the differing structures of the caging particles. 

The size ratio of the caging polymers to the colloid was changed by a modest 

change in the solvent temperature. No difference was observed in the magnitude 

of the hydrodynamic factor between the two cases. Using poly(butadiene) in-

stead of polystyrene also resulted in no change in the colloid diffusion coefficient, 

implying that the diffusion is insensitive to the exact chemical composition of the 

polymer. 



Chapter 5 

Literature review 

5.1 Introduction 

The study of the diffusion of trace quantities of colloid through a polymer solution 

is not a new topic. However, despite considerable effort, no clear model has 

emerged and much of the literature appears contradictory. In this chapter I 

will provide a summary of the work and address the apparent disparities. In 

particular, attention will be paid to results which support or contradict those 

presented in the previous chapter. 

One of the main aims of previous work has been to investigate the behaviour 

of the colloid diffusion coefficient as a function of polymer concentration [2-8] 

with particular attention being paid to polymer concentrations above that where 

overlap occurs. The colloid diffusion coefficient is invariably obtained by dynamic 

light scattering, with a variety of analysis techniques being used to fit the data. 

Any time dependence of the colloid diffusion coefficient is usually neglected, an 

assumption equivalent to treating the polymer solution as a continuum. The 

accuracy of this assumption has been discussed by Won et al. [5]. They note 

that for this to be valid the colloid should have moved many times its own radius 
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during the time scale of the measurement, and that motion of the colloid on 

a length scale of the radius of the polymer R may result in deviations from 

the Stokes-Einstein equation. Ye and Tong [6] also comment on the polymer as 

a continuum assumption, stating that 'when the relevant length scale becomes 

comparable to or smaller than 61, the polymer solution cannot be treated as a 

continuum any more and its local viscosity 77, may change with the length scale 

at which it is probed'. 

The importance of the relative size of the colloid and a mesh of polymers at 

concentrations above c has been confirmed by experiments on the sedimentation 

of trace colloids through a polymer network [6]. It was found that as the mesh size 

of the network was decreased, the effective local viscosity for a sedimenting colloid 

increased. While our experiments are performed below the overlap concentration, 

it is expected that the relative size of the colloid and cage of polymers will affect 

the observed behaviour. Working from a similar premise as Ye et al. [6], Donath 

et at. [7] calculated the magnitude of the local viscosity change for a polymer 

cage by solving the Stokes-Einstein equation for a two step viscosity profile, i.e. 

77 = 77d for R < r < R + R and r,i = 77p  for r > R + R, where R, R are 

the radii of the colloid and polymer respectively. They have reasoned that such 

a profile must always exist due to the depletion layer surrounding the colloid in 

which the momomer segment density is less than in the bulk. Furthermore, they 

have argued that the monomer segment density within the depletion zone takes 

some time to reach its equilibrium distribution and should the colloid diffusion 

be sufficiently fast then this distribution may not be reached. 

Were the Stokes-Einstein equation to hold, then we would expect the quantity 

Di7, where D is the diffusion coefficient of the tracer spheres and i7 the viscosity 

of the polymer solution, to be constant. Won [5] defines a positive deviation from 

Stokes-Einstein as Di7/D0 r13  > 1, where D0  and 1s  refer to the diffusion coefficient 

'The correlation length of the polymer network 
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and viscosity in the zero polymer concentration limit. Negative deviation is thus 

when Di1/D0i18  < 1. Both positive deviations from [10, 13,14], negative deviations 

from [9-12] and adherence [4,12,79-81] to the Stokes-Einstein relation have been 

reported. Won et al. [5] report a study in which they find an increasing positive 

deviation for polymer concentrations up to approximately twice c' but then a 

return to Stokes-Einstein behaviour. 

There have been complications in previous studies that have led to the large 

spread of reported behaviour. Several studies used polystrene colloids diffusing 

through aqueous (hydroxypropyl)cellulose (HPC) [12, 82-85]. Russo et al. [12] 

showed that the HPC adsorbed onto the surface of the polystrene latex caus-

ing bridging fiocculations. They demonstrated that the addition of a small 

amount of surfactant suppressed this adsorption. Phillies et al. [3] studied the 

polystyrene/HPC/surfactant/water system but note: 'It should be recognised 

that (hydroxypropyl)cellulose/water is a relatively complicated chemical systeri, 

whose properties may be significantly sensitive to the presence of small amounts 

of surfactant.' Streletzky and Phillies [2] have also studied this system using dy-

namic light scattering. They found that the dynamic structure factor could not 

be fitted with a single exponential so instead they fit their data with the following 

functional forms 

f(Q,) = exp(—Or) 

= A1  exp(-01r) + (1 - A1) exp(—Oi- ) 

= A1  exp(—Oji-f) + (1 - A f ) exp(—Or) 

= A1  exp(—01 1) + (1 - A1) exp(—Oi-) 

where 0,0 f ,3,Of ,A f  are fitting parameters. The choice of fitting function was 

determined by its stability. They correctly state that these forms '..(do not) 

necessarily follow directly from a correct physical model'. It is therefore difficult 

to ascribe any physical meaning to these fits, or the results obtained from them. 
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Several other studies have used water as the dispersing fluid for charge stabilised 

spheres diffusing through hydrophilic polymer solutions, including poly(ethylene 

oxide) [9, 86], poly(acrylic acid) [10, 11, 14, 81, 82] and polylysine [79]. These 

systems are not ideal for a study of the validity of the Stokes-Einstein equation 

due to the complicated nature of the interactions between the various components. 

The idea that the diffusion coefficient of the colloid may have an explicit time-

dependence which could be measured in a light scattering experiment was first 

discussed by Donath et al. [8]. They suggest that '..in the range of the dynamical 

reduction of the depletion effect, the fluctuations of the diffusion coefficient of 

the particle, due to the polymer interaction, become important. This would 

certainly introduce a change of the shape of the autocorrelation function in light 

scattering experiments.' Before this work, no author has ever claimed to see a 

time dependence in the colloid diffusion coefficient in a colloid-polymer mixture, 

and no attempt has been made to measure such a dependence. 

In this thesis, I have shown that the diffusion coefficient can be strongly time 

dependent with the long time behaviour following the Stokes-Einstein equation. 

Neglecting this time-dependence could lead to an incorrect diffusion coefficient 

being obtained, and this is perhaps another reason for spread of reported results. 

In the rest of this chapter I will limit myself to discussions of the literature 

on 'model' systems, consisting of uncharged, spherical colloids diffusing through 

non-adsorbing polymer solutions in a non-aqueous solvent. 

5.2 Polystyrene spheres and linear polystyrene in 

DMF 

Onyenemezu et al. studied cross-linked polystyrene spheres of radius R = 0.19 ± 

0.02im diffusing through large molecular weight linear polystyrene suspended in 
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Figure 5.1: Dynamic structure factors for polystyrene spheres diffusing through linear 

polystrene in DMF at 450,600  and 90°. The polymer concentration was 0.00117g/ml 

PS1100K and the colloid concentration was approximately iO g/ml. Reproduced 

from [4]. 

N,N-dimethylformamide (DMF) [4]. This system is not expected to be charged 

and DMF is a good solvent for polystyrene at 25° C, indicating that absorption 

of the polymer onto the spheres is unlikely. 

The system was studied using dynamic light scattering at polymer concentrations 

up to approximately 5c*  and at two size ratios: e = 0.09 and 0.206. Typical 

results are shown in figure 5.1. The diffusion coefficient was calculated using 

data obtained by a second order cumulant fit. They found that the data at 

450 (QRC  = 2.27) was well described by a single exponential decay, though at 

higher angles (QRC  = 2.96,4.19) there was some curvature. The data showing 

curvature was fitted using a CONTIN analysis which is a constrained inverse 

Laplace transform routine, used frequently in the literature (for example [87]). 

Figure 5.2 shows the comparison between the CONTIN results and the cumulant 

fit. Although similar, there are differences of up to a factor of two between results 

obtained at different angles. The average diffusion coefficient was found to obey 

the Stokes-Einstein equation (figure 5.3). 

The authors suggest that the curvature in the dynamic structure factors is caused 
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Figure 5.2: Comparison of diffusion coefficients determined from cumulant fit (large 

open circles) with those deduced from CONTIN analysis (all other symbols) in the 

presence of PS1100K in DMF. At each linear polystyrene concentration there were 

multiple runs at 450,600  and 90°. Reproduced from [4]. 

by scattering from the polymer and note that the magnitude of the polymer 

scattering is 'order of magnitudes lower' than the colloid. It is possible to calculate 

the relative magnitude of the polymer to the colloid scattering. Since both are 

made from polystyrene, the scattering power of each species is identical and the 

relative intensities depend only on the molecular weight M, the concentration c 

and the shape of each species. Using equations 2.21 and 4.33 and assuming no 

correlation in the positions of the colloids or the polymers, we obtain: 

- cMP(Q) 

IC  - cMP(Q) 
(5.1) 

where I/I is the relative intensity of polymer to colloid scattering, P(Q) the 

form factor and the subscript p, c refer to polymer and colloid respectively. For 

the samples used to obtain figure 5.1, this results in a ratio of 0.02, 0.06 and 3 at 

angles of 45°, 60° and 90° respectively. The high value at 90° is due to the form 

factor minimum of the colloid at 0 = 98.5°. 

While for most angles the ratio of polymer to colloid scattering is low, the ratio 

of cross scattering to colloid scattering is given by I/I = 2Ji7S, where I 

have assumed that the colloid and polymer structure factor are approximately 
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Figure 5.3: Test of Stokes-Einstein equation as a function of the reduced concen-

tration. The points represent two different polymers. Theoretically Dr = (1.1 + 
0.1) x 108cPcm2s 1, whereas experimentally Drj = ( 1.26 ± 0.17) x 108cPcm2 s 1 . 
Reproduced from [4]. 

unity. The magnitude of S p  - the cross structure factor, is hard to estimate, 

but certainly values up to 0.5 are not unusual. This puts an upper bound on 

the magnitude of the cross-scattering of 15%, 25% and 170% at angles of 450, 

60° and 90° respectively. I would suggest that the curvature seen in the dynamic 
6. 

structure factors is due to either polymer or cross scattering. This is supported 

by the lack of Q2-scaling as seen in figure 5.2. Intepretation of data obtained in 

this experiment is therefore difficult and it is perhaps surprising that the average 

of the CONTIN obtained diffusion coefficients with those obtained by cumulant 

analysis does appear to follow the Stokes-Einstein equation. 

5.3 A return to Stokes-Einstein behaviour 

As discussed earlier, positive deviation from Stokes-Einstein (D7j/D077 5  > 1), neg-

ative deviation and adherence have all been reported, but mainly in complicated 

systems. Won et al. [5] report a study on a 'model' system, namely cross-linked 

polystyrene latex spheres diffusing through poly(vinyl methyl ether) (PVME) 
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Figure 5.4: Product of the sphere diffusivity and the solution viscosity normalised by 

the corresponding values at infinite dilution, as a function of polymer concentration. 

The dashed line corresponds to the Stokes-Einstein equation. Reproduced from [5]. 

dissolved in toluene. They found an increasing positive deviation for polymer 

concentrations up to approximately twice c' but then a return to Stokes-Einstein 

behaviour (figure 5.4). 

The system under study is not expected to be charged, nor is absorption of 

the PVME onto the colloid expected. The light scattering data was fitted with 

a second order cumulant fit and the diffusion coefficients obtained scaled well 

with Q2. The second cumulant was typically 0.1, though increased to 0.2 as the 

polymer concentration increased. The data was also analysed using the CONTIN 

transformation which consistently gave a diffusion coefficient 25% larger than that 

from cumulant analysis. 

PVME is nearly isorefractive with toluene and Won et al. performed static light 

scattering on the spheres, both with and without polymer present, and found no 

difference in the intensity. It is therefore unlikely that cross or polymer scattering 

was significant in this experiment. However, the high value of the second cumu- 

lant reveals that the correlation function is not a single exponential. Consider a 
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dynamic structure factor given by the weighted sum of two exponentials: 

I (Q i-) = aie'17 + a2ef2T . 	 (5.2) 

The cumulants for such a system are given by: 

jr 
= air, +a2F2  

P2 - 	(F1 —F2 )2  
- a1a2 	f2 	' 	 (5.3) 

where p2/t2  is the second cumulant. For the experiments in the previous chapter, 

an estimate for these values might be a2  = 0.5 and F2 	0.75 1"1  which gives a 

second cumulant of 0.02. The second cumulant obtained by Won et al. could 

therefore indicate a time-dependent diffusion coefficient. 

The diffusion coefficient obtained by cumulant analysis is the short time diffusion 

coefficient which, although slowed somewhat by hydrodynamic interactions with 

the cage of polymers, would still give a ratio Di7 that was higher than expected by 

the Stokes-Einstein. It is therefore tenable that the positive deviation observed 

by Won et al. is the faster local diffusion within the cage of polymers. As the 

polymer concentration increases, the size of the cage decreases until the colloid 

is effectively trapped in a mesh of polymers. When this occurs, local diffusion 

within a cage cannot occur and we might expect the dynamic structure factor to 

return to a single exponential. The return to Stokes-Einstein, as seen by Won et 

al. is an indication that this is occuring. 

5.4 Sedimentation and light scattering 

Sedimentation experiments can provide useful insights into the behaviour of a 

colloidal probe in a polymer solution as the rate of sedimentation depends on the 

solution viscosity. Sedimentation is typically measured over minutes and hours 

and so provides information on the long-time motion of the colloid. In a dilute 
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suspension the sedimentation viscosity Vsed is given by: 

Vsed 
= 

2R8pg 	
(5.4) 

where R is the radius of the colloid, 5p is the density difference between the 

colloid and solvent, g is the acceleration due to gravity and qp  is the viscosity of 

the polymer solution. 

Ye et al. [6] studied a system of calcium carbonate colloids with an adsorbed 

monolayer of a randomly branched calcium alkylbenzenesulfonate surfactant dif-

fusing through either hydrogenated polyisoprene (PIP) or its end-functionalised 

derivative amine-PIP, both suspended in decane. Decane is a good solvent for 

both the colloids and the polymers. The amine-PIP is known to absorb onto the 

colloid surface within one month. 

Equation 5.4 was tested by measurements on the colloid with the end-absorbed 

amine PIP and complete adherence was found up to approximately 6c*.  The ratio 

of the sedimentation velocity at polymer concentration c with its value at infinite 

dilution, Vsed(Cp)/Vsed(0),  therefore equates to the viscosity ratio 17p/io between 

the polymer solution viscosity 77p  and its infinite dilution limit io. Light scattering 

measurements were also performed on this system and Q2-scaling was seen at all 

polymer concentrations. The diffusion coefficient was extracted using a second 

order cumulant analysis. An identity was found between the ratio D(c)/D(0) 

of the diffusion coefficient at some polymer concentration c,, compared with the 

infinite dilution limit and Vsed(Cp)/Vsed(0),  indicating that the Stokes-Einstein 

equation was obeyed (figure 5.5). 

The lack of a Q2-dependent diffusion coefficient indicates that cross or polymer 

scattering was probably not significant in this experiment. The apparent adher-

ence to the Stokes-Einstein equation can be explained in terms of the relative 

sizes of the colloid and polymer cage. Each colloid has on average one amine-PIP 

chain absorbed onto it. The first measurement made by Ye at al. is at a polymer 
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Figure 5.5: Measured F = T/p/10 as a function of polymer concentration for col-

bid diffusing in amine-PIP solutions. The squares are obtained from sedimentation 

measurements, the circles from light scattering measurements with a second order 

cumulant fit and the triangles from light scattering measurements with a triple expo-

nential fit. The solid curve shows the viscosity of the polymer solution. The deviation 

of the circles at higher polymer concentrations is probably due to the increased frac-

tion of polymer scattering. Reproduced from [6]. 

concentration of roughly 0.5c*.  At this point the centres of the polymer chains are 

roughly 1.26R9  apart, where R9  is the radius of gyration of the polymer. The size 

ratio in this system is 1.6, meaning that the colloid/polymer structure is roughly 

1.631? in radius. As in the previous section, the colloid/polymer structure is 

effectively trapped within a mesh of polymer, and even at short times direct in-

teractions are significant. As before, the Stokes-Einstein equation is obeyed for 

such a system. 

5.5 Effect of depletion on the Stokes friction coef-

ficient 

An interesting approach to the problem of colloids diffusing in polymer solutions 

is provided by Donath et al. [7, 8]. When determining the static properties of 
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Figure 5.6: Schematic showing available polymer conformations close to (r < R + 

R) and far from (r > R + R) a colloid, where R is the radius of the colloid and 

R the radius of gyration of the polymer. There are considerably fewer configurations 

available to the polymer when close, making it entropically less favourable than the 

latter arrangement. 

a colloid-polymer mixture, the effect of the polymer is often integrated out and 

replaced with an effective colloidal inter-particle potential. On average it is en-

tropically unfavourable for a polymer centre of mass to come within R + R 

of the colloid centre of mass, as the number of conformations available to it is 

severly reduced (see figure 5.6). As a result the local polymer segment density 

within this zone is reduced compared to the bulk. It is entropically favourable 

for two such depleted regions to overlap, as it increases the volume available to 

the polymers. 

Donath et al. considered the effect of this depletion zone on the diffusion of a 

colloid. They treated the polymer solution as a continuum, but with a viscosity 

dependent on the distance from the centre of mass of the colloid i(T) = 

By solving the Navier-Stokes equation for such a profile they found that the 

Stokes-Einstein equation should be modified to 

kBT DC = 	, 	 (5.5) 
air 

where 

(1+2- 

K= 1f — 
( 1 

17p 	j;: - 
i) dr, 	 (5.6) 
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viscosity ratio 

Figure 5.7: Friction coefficient as a function of the viscosity ratio rj,/r o . The solid 

lines are theoretical plots according to a single step profile with a characteristic thick-

ness of depletion layer A = lOnm. Particle radii are lOOnm and 50 rim. The solid 

points are experimental results from dynamic light scattering on liposomes from L-a-

lecithin, containing 20% phosphatidylserine in 10mM KCl electrolyte solution. The 

dextran solutions with the appropriate concentrations were prepared and some lipo-

some stock solution was added for a good scatter signal. Triangular points correspond 

to liposomes prepared with a nucleopore filter of 50nm pore size. The square points 

represent liposomes prepared with lOOnm pore size. Error bars are the standard 

deviations. Reproduced from [7]. 

and the other symbols take their usual meanings. The two limits for a are clearly 

4 (K -+ oc) corresponding to complete slip, and 6 (K - 0) corresponding to 

stick boundary conditions. 

Clearly a model is needed for f(r) and, based on previous work on electrophoretic 

measurements on charged liposomes diffusing through aqueous dextran [88], Do-

nath et al. suggest a double step and an exponential profile. Light scattering 

measurements are also reported and the measured diffusion coefficient is found 

to decrease with increasing polymer concentration, though not according to the 

predicted theoretical form (figure 5.7). 

The model put forward in this thesis shares similar ideas to that of Donath et 

al. They predict a different local viscosity from the bulk viscosity, though not 

that the colloid can sample both. The motion described is of a'meta-particle' 
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consisting of a colloid and a fixed depletion zone. In our model, this would be 

equivalent to the 'cage' of polymers remaining at fixed distances from the colloid. 

In reality, however, as the colloid diffuses the depletion zone does not necessarily 

move with it. This issue has been addressed by Donath et al. [8]. They formulated 

the problem in terms of the time taken for the polymer segment density in the 

depletion zone to equal the equilibrium distribution, Td.  If the time taken for the 

colloid to diffuse over a distance equal to the depletion layer thickness is smaller 

than this equilibrium time, then the depletion zone is not considered to be fixed 

to the particle. 

In order to estimate 'rd they predict that it is equal to the time necessary to 

'measure' the entropy of the polymer layer in a hydrodynamically homogeneous 

region at the particle interface. The latter quantity is bound by the decay time of 

the individual polymer molecule correlation function Torr (i.e. the characteristic 

time taken for a single polymer to explore its own configurations) and the time Tent 

taken for a molecule to diffuse over a sufficiently large number of configurations 

in the available configuration space. Thus in a linear approximation one could 

write 

n—i 
= Tent - (Tent - Tcorr) 

	

	 (5.7) 
n + ncrit -  1 

where n is the number of molecules in the hydrodynamically homogeneous region 

of the depletion layer and nuit  a parameter characterising the relative weight of 

Tcorr, in the calculation of 'rd. 

Having estimated Td,  the magnitude of the depletion effect is calculated from 

Td 
(5.8) 

Td + Tc } 

in which s = 1 indicates a stationary colloid and E = 0 indicates no depletion 

layer. The authors found 'rd by Brownian dynamics simulations, and thence 

calculated the magnitude of e for various size ratios. They found that increasing 

the polymer concentration led to an increase in the depletion effect. 
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Whilst the exact physical meaning of Tent and its relation to 'rd is not immediately 

obvious, the results obtained by Donath et al. appear to be predictions for the 

long-time diffusion of the colloid. They find that the Stokes-Einstein equation 

should not necessarily be obeyed. Unfortunately the rather approximate nature of 

their calculations make direct comparison with our system problematic; however 

it is clear that their model echos that put forward in this thesis: the colloid diffuses 

faster than the polymer cage can rearrange itself, and so the colloid samples a 

range of viscosities. 

5.6 Conclusions 

A study has been made of the current literature on colloid diffusing through 

polymer solutions. The main topic of interest has been the validity of the Stokes-

Einstein equation as the polymer concentration is increased. Many studies used 

chemically and physically complicated systems to test this equation and, as a 

result, their conclusions are difficult to interpret. Work performed on 'model' 

systems provides many contradictory results with both adherence and concentra-

tion dependent deviation seen. The origins of these contradictions would appear 

to be twofold - the neglect of cross and polymer scattering has led to incorrect 

data being obtained, and the neglect of any time-dependence has led to incorrect 

data analysis. 

While a time-dependence of the colloid diffusion coefficient has been predicted 

before, no in depth study has been made into this phenomemon. Although some 

studies show evidence of time-dependence in the data, others do not. The latter 

have been explained in terms of the size ratio of the diffusing and polymer cage. 

There is no study that conclusively contradicts the results put forward in this 

paper. 
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The validity of the Stokes-Einstein equation for describing the long-time diffusion 

coefficient has been challenged and while the relation appeared to be obeyed in 

this study, further work is needed to establish whether this is always the case. 



Chapter 6 

Conclusions 

This work was prompted by a simple question: is the Stokes-Einstein equation 

followed for colloids diffusing in a polymer solution? Answering this question re-

quired a detailed look at the theory behind diffusion in colloid-polymer mixtures, 

a critical analysis of the literature and a suprisingly complicated experimental 

investigation. In this section I will draw together these different strands and try 

to present a final picture of the nature of the diffusion and the complications 

involved in finding this out. While it is my belief that the answers presented 

in this thesis are complete, the field of colloid-polymer diffusion is by no means 

a closed book and there are several avenues of investigation that would provide 

useful information on this field. 

6.1 Summary of results 

The Stokes-Einstein equation is the governing equation for colloids of infinite 

dilution diffusing through a continuum. A polymer has a similar size and re-

laxation timescale as the colloids and therefore a polymer solution cannot be 

treated as a continuum. I have shown, using a simple Cahn-Hilliard treatment, 
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that interactions between particles mean that the diffusion in a colloid-polymer 

mixture cannot be treated as N particles diffusing independently; density fluc-

tuations decay through collective diffusional modes, one mode being present for 

each species with a fixed number density. In a closed system the two modes 

are condensation dominated, in which fluctuations are in the total density, and 

demixing dominated, in which the fluctuations are in species density. 

Including hydrodynamics into the Cahn-Hilliard treatment is difficult and a dif-

ferent formalisation is required. The accuracy of the Smoluchowski formalisation 

for describing diffusion in a concentrated systems of hard spheres is well estab-

lished and I have shown how parallels may be drawn between this system and a 

system of dilute colloid diffusing in a polymer solution. It was predicted that the 

dominant diffusional mode at short times would be self-diffusion of the colloid 

within a cage of polymers. The motion is hindered by hydrodynamic interactions 

with the polymers. At long times the dominant mode is the relaxation of the 

cage structure and the diffusion of the colloid over longer distances. 

An experimental investigation made use of dynamic light scattering to measure 

the diffusion coefficient as a function of time. The theoretical predictions were 

confirmed. The hydrodynamic drag provided by the cage of polymers was found 

to be slightly less than that from a cage of colloids. This was explained in terms 

of the structural differences between the two systems. A colloidal cage has a well 

defined inter-particle spacing, whereas a polymer cage is effectively a 'snapshot' 

of an ideal gas. At long times the diffusion followed that predicted by Stokes-

Einstein equation for motion through a solvent with a viscosity equal to that of 

the polymer solution. 

The key parameters in this theory are the size ratio of the species and the 

timescale of the polymer relaxation. The behaviour should be indifferent to the 

exact chemical details of the polymer and colloid. This was confirmed by mea-

surements using two different polymers. No quantitative difference between the 
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two was found. 

If the solvent quality is changed then the size ratio also varies. The effect of a 

modest change in size ratio (10%) was investigated but no qualitative difference 

found. 

6.1.1 Complications 

The measurement of the diffusion coefficient of the colloids in a colloid-polymer 

mixture is not a trivial affair, as witnessed by the wide variety of contradictory 

results in the literature. The neglect of cross scattering, in which the light scat-

tered by -a polymer is correlated with that from a colloid, can lead to incorrect 

data analysis. In this work I have given a method for calculating the magnitude 

of the cross scattering based on a simple model for the static structure factorf 

a colloid-polymer system. An attempt to measure the cross dynamic structure 

factor was made, but with limited success. 

Cross scattering is experimentally challenging to remove. The magnitude of the 

cross scattering is independent of the number of colloids in the system and can 

only be detected by the comparison of results obtained at different scattering 

angles: if Q2-scaling is seen then the cross scattering is negligible. The easiest 

way to reduce cross scattering is to change the refractive index of the solvent to 

contrast match the polymer. 

A further complication found in the literature is the use of systems with complex 

interactions. This was resolved in these experiments by using a well characterised 

model system in a non-aqueous solvent. 
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6.2 Suggestions for further work 

Apart from the dynamics of more concentrated mixtures of colloids and polymer, 

there are several more aspects of the diffusion of dilute colloids through polymer 

solutions that could be investigated. So far only concentrations up to about 

half the overlap concentration have been studied. As the polymer concentration 

increases the size of the cage decreases. It would be very interesting to see what 

happens as the cage size approaches the size of the colloid. It is possible that a 

return to Stokes-Einstein behaviour would be seen for long and short timescales. 

As the polymer concentration is increased beyond the overlap concentration, an 

extended network, or mesh, is formed. The diffusion of dilute colloid in such a 

mesh is not a trivial affair, due to the viscoelastic behaviour of the mesh. At 

short times the mesh would appear elastic, whereas at longer times the polymer 

network has a chance to break and reform. There are theories suggesting that two 

viscous modes are possible, depending on whether the solvent moves relative to 

the polymer mesh or not. The importance of these modes could be investigated 

by dynamic light scattering. 

For both of these studies, new methodologies will have to be invented to cope 

with the increased scattering from the polymers and to prevent phase separation 

but the results should give another aspect on this fascinating topic. 
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