
 
 
 
 
 
 
 
 
 
 
 

 
 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

 

This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 



The role of small regulatory
RNA networks in controlling 

adaptive responses in 
Escherichia coli

Ira Iosub

Thesis submitted for the degree of
Doctor of Philosophy

The University of Edinbugh,
October, 2017



DECLARATION

I declare that this thesis was composed by myself and that the work contained therein 

is my own, except where explicitly stated otherwise.The work has not been submitted 

for any other degree or professional qualification.

Ira Iosub,

October, 2017



I

ACKNOWLEDGEMENTS

I am grateful to many people for the support I got throughout  the years of my PhD. 

Most of all, I would like to thank my supervisor, Sander Granneman. I could not have 
gotten  here without your relentless support, encouragement, and inspiring passion 
for science that you are so eager to share!  Thank you for being understanding, and 
for  giving me the chance to grow and find a productive rhythm. Thank you for being 
so much more optimistic than I am, and that after every chat we had I felt more con-
fident. Under your mentoring I have become a better scientist, and  a better person, 
and for that I will be forever grateful. 
I look forward to the next few exciting months of continuing the research and to the 
discussions we will have about it! 

I would also like to thank the current and past members of the Granneman lab team.
Stuart! I was and still am so happy you joined the team! Thank you for being a great, 
caring friend and amazing co-worker!  Thanks for all the chats we had, scientific or 
not! And of course, thank you for helping out with experimental work. 
Thank you Elena for being a true friend I’ve made since I started my PhD studies. 
Thank you for being there, for always listening, for the good advice, for sometimes 
knowing better than myself what is good for me. You are missed. 
Thank you Ralph and Rob for the training you have given me in my first few months 
in the lab. Ralph, everything I have learnt from you has become something I feel se-
cure on - thank you for being a great teacher.  Rob, thank you for encouraging me to 
challenge ‘accepted views’.
I am grateful to David Tollervey, Bill Earnshaw and Atlanta Cook for being my thesis 
committee and watching over me these years. Thank you for the valuable advice and 
for exposing me to diverse scientific angles I could view my research from. I also 
thank my collaborator, Gabriela Viero, for the polysome profiling experiments and Jai 
Tree for providing strains and constructs, and for the discussions about the data. I am 
grateful to the Wellcome Trust for funding my PhD.  Would also like to thank the stu-
dents I supervised, Julia Nieken and Lutfi Othman for the work they contributed and 
for having me as their supervisor. 
I am grateful to my family for always helping in every way that they could. Thank you, 
Alejandro for entering my life.  Maria, Oz and Aiste, thank you for your friendship, for 
meeting up and for the lovely chats.  



II

LAY SUMMARY

Bacteria are unicellular organisms with exquisite ability to rapidly adapt to changes in 

the environment. This ability relies on their capacity to precisely tailor their response to 

different environmental stress factors. At a cellular level, this response represents the 

capacity of the bacteria to “know” which bits from their genetic information/information 

encoded in their genomes would be most effective in their stress coping strategy. 

We used E.coli, a model bacterial organism, to further investigate how bacteria “know” 

what genetic information to use and how it regulates its use. The genetic information 

is represented by molecules called messenger RNA (mRNA). Imagine the mRNA as 

a string in a violin. As one would obtain the ideal note by rough and/or fine tuning 

the violin, so the bacterial cell regulates its mRNAs through rough and fine tuning 

factors.  Although it is known that the fine-tuning is fundamental for cell survival, 

it is still largely unknown how it takes place. Key players are the small regulatory 

RNAs, which directly interact with mRNAs and decide their fate. For a violin string, 

not only the tuning, but also the timing is essential to ‘sound right’, as it is for effective 

responses in bacteria. Bacteria coordinate multiple responses simultaneously, and 

both the amplitude of tuning and the timing are tightly interconnected between these 

responses. We have shown here that these circuits are more interconnected, and 

richer in fine-tuning factors and ways of tuning than previously considered. I have 

shown in detail for a new small RNA, how it could act to help cells control a stress-

response, while optimising the uptake of specific nutrients from the environment. 
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ABSTRACT

Microorganisms are exposed to constantly changing environments, and consequently 

have evolved mechanisms to rapidly adapt their physiology upon stress imposition. 

These adaptive responses are coordinated through the rewiring of gene expression 

via complex networks that control the transcriptional program and the activity of post-

transcriptional regulators. Although transcription factors primarily determine which 

genes are expressed, post-transcriptional regulation has a major role in fine-tuning 

the dynamics of gene expression. 

Post-transcriptional control is exerted by RNA-binding proteins and small regulatory 

RNAs (sRNAs) that bind to mRNA targets and modulate their synthesis, degradation 

and translation efficiency. In Escherichia coli, sRNAs associated with an RNA 

chaperone, Hfq, are key post-transcriptional regulators, yet the functions of most of 

these sRNAs are still unknown. The first step in understanding the roles of sRNAs 

in regulating gene expression is to identify their targets. To generate transcriptome-

wide maps of Hfq-mediated sRNA-mRNA binding, we applied CLASH (cross-linking, 

ligation and sequencing of hybrids), a method that combines in vivo capture of RNA-

RNA interactions, high-throughput sequencing and computational analyses, in E. coli. 

We uncovered thousands of dynamic growth-stage dependent association of Hfq to 

sRNAs and mRNAs. The latter confirmed known sRNA-target pairs and identified 

additional targets for known sRNAs, as well as novel sRNAs in various genomic 

features along with their targets. These data significantly expand our knowledge of 

the sRNA-target interaction networks in E.coli. In particular, the Hfq CLASH data 

indicated 3’-UTRs of mRNAs as major reservoirs of sRNAs, and the utilization of 

these may be more common than anticipated.  Our findings also provide mechanistic 

insights that ensue from the identification of tens of sRNA-sRNA interactions that 

point to extensive sponging activity among regulatory RNAs: many sRNAs appear to 

be able to interact and repress the functions of other base-pairing sRNAs. 
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We validated and highlighted the biological significance of some of the CLASH 

results by characterizing a 3’-UTR derived sRNA, MdoR (mal-dependent OMP 

repressor). This sRNA emerges by processing of the last transcript of malEFG 

polycistron, encoding components of maltose transport system. We found MdoR 

directly downregulates several major porins, whilst derepressing the maltose-specific 

porin LamB via destabilization of its inhibitor, MicA, likely by a sponging mechanism. 

Physiologically, MdoR contributes to the remodelling of envelope composition and 

links nutrient sensing to envelope stress responses during maltose assimilation. 

MdoR is a clear example of how cells integrate circuitry through multiple networks as 

part of their adaptive responses and how the CLASH methodology can help expand 

our understanding of sRNA-based regulation. 
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1.	 Introduction

1.1.	 Adaptive responses in microorganisms

Cellular stress constitutes a variety of processes triggered by sudden or sustained 

shifts from the usual cellular conditios and homeostasis. Cells respond to stress 

by counteracting the perturbation, repairing the damage and protecting the cell. 

Microorganisms are constantly exposed to a wide range of environmental changes. In 

their natural environments, organisms are often challenged with nutrient deprivation, 

temperature shifts, pH changes and other stress-inducing factors (Fig. 1.1). To 

survive, cells have evolved mechanisms to respond to these conditions by adapting 

their physiology. Among microorganisms, bacteria display remarkably fast adaptive 

responses and resilience to stress imposition, that not only provide a competitive 

advantage, but that also might define the difference between survival and death. In 

the case of pathogens, fast acclimation to the new host is a determining factor of 

success, and manifests itself by host invasion and persistence, survival in nutrient-

poor conditions, increased expression of virulence factors, and evasion of host defence 

systems.  Additionally, in response to antibiotics, bacteria trigger the activation of 

intrinsic antibiotic resistance mechanisms, including expression of efflux pumps. In 

a number of bacterial species, it has been established that virulence and antibiotic 

resistance mechanisms are intimately connected with stress responses (Flint et al., 

2016; Geiger et al., 2012). 

• Nutrient deprivation
• Osmotic stress
• Acid stress
• Oxidative stress
• Temperature shifts
• Dessication
• Nitrosative stress
• Cell envelope stress
• UV radiation
• Population density

• Physiological 
  adaptation
• General resistance 
   to stress

gene expression
changes

• Pathogen-host interaction
• Exposure to antibiotics

• Immune system evasion
• Increased virulence
• Biofilm formation
• Intrinsic antibiotic 
  resistance
• Sporulation

Fig. 1.1: Stress-inducing agents (left) and the main mechanism and physiological 
consequences of adaptive responses in bacteria; the text in purple and purple arrows 
indicate components often encountered in pathogens.
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Stress-adaptive responses are coordinated by changes in gene expression. Bacteria 

employ complex strategies to attune gene expression with the physiological needs 

dictated by external and internal signals. Gene regulation is wired through gene 

regulatory networks that receive environmental signals and define the amplitude and 

timing of the responses, by integrating multiple inputs and outputs of the signalling 

(Sections 1.9-1.10). Stress-related gene expression programs are characterized by 

specific transcriptional and post-transcriptional mechanisms that need to be balanced 

with growth-related gene expression programs, to facilitate efficient adaptation to 

changing environments. Transcription primarily dictates which genes are expressed, 

but post-transcriptional regulation is key in shaping the dynamics of gene expression 

changes (Sections 1.2 and 1.10). 

The post-transcriptional control component that will be the focus of this work is small 

RNA-mediated regulation (Section 1.3). Small non-coding RNAs are a diverse class 

of post-transcriptional regulators that affect many aspects of bacterial physiology, 

especially in relation to adaptation to stress. The central organism of this work is 

Escherichia coli, a Gram-negative gamma proteobacterium belonging to the 

Enterobacteriacea family and the most extensively studied bacterial model system. 

This makes E. coli an ideal organism for unravelling novel regulatory mechanisms or 

components, and facilitates the integration of new findings in the broader context of 

its physiology, to contribute to a global view of gene expression control. However, I 

will often refer and make parallels to studies performed in Salmonella, not only due to 

their  similarity in the core genome and resemblance in post-transcriptional regulons, 

but also because many studies performed in this organism contributed immensely to 

the current knowledge of enterobacterial gene expression regulation. Noteworthy, the 

processes described in any bacterial species, regardless of their similarity in the core 

genomes, may have very different implications even for members of the same species, 

especially when the pan-genome is taken into account. The pan-genome includes the 

core genome (present in all representatives), accessory genome (present in several 

strains and even genes unique to single strains (Mira et al., 2010). This variable set 

of genes is acquired by lateral transfer between strains or even isolates from different 
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species (Mira et al., 2010).  The pan-genome becomes even more important when 

studying the regulation of adaptive responses, because it is, in fact, an adaptive 

genome, that includes key genes for survival in defined environments, virulence and 

antibiotic resistance (Mira et al., 2010). These types of genes are under tight postr-

transcriptional control, thus the rewiring of gene expression for different strains within 

the same species and the pathways involved can differ significantly.

Ultimately, the scope of the work presented in this thesis (Chapters 3-4) is to contribute 

to a better understanding of small RNA-mediated regulation and small RNA networks, 

by providing insights into small RNA-mediated regulation dynamics and maps of 

small-RNA-target interactions (Chapter 3) and detailed characterization of a case 

in which two small RNA pathways are linked to provide a robust response to the 

growth conditions (Chapter 4). This Chapter will introduce in detail the key concepts 

for understanding the work discussed in the following Chapters, but also provide a 

framework by briefly introducing related concepts.

1.2.	 Regulatory strategies to coordinate gene expression in response to 

changing environments

Transcription of genomic information into messenger RNA (mRNA) and translation 

of mRNAs into proteins are the main layers of gene expression (Figure 1.2 A). 

Transcription primarily determines which genes are synthesised, however, additional 

post-transcriptional control at multiple levels is needed for shaping gene expression 

profiles. Due to the fundamental need to adjust gene expression in response to both 

intracellular and extracellular cues, both processes are subject to tight regulation. 

This section will overview the central players and strategies in the regulation of both 

processes in bacteria, with an emphasis on the post-transcriptional control and some 

of the advantages it poses during adaptive responses. 

The role of the transcriptional program in coordinating gene expression

The control of expression of stress-related genes is initiated at the transcription level 
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(Fig. 1.2 B), a highly-controlled process. In prokaryotes, most genes are organized 

in operons, sets of adjacent functionally related genes that are co-transcribed. This 

architecture allows coordinated transcriptional activation in response to cellular needs, 

with a substantial metabolic gain (Sneppen et al., 2010).Transcription is carried out 

by the RNA polymerase (RNAP) holoenzyme (Fig. 1.2 B). Transcription in bacteria 

requires sigma factor proteins (σ). The sigma factor is a subunit that associates 

with core RNAP to form the active holoenzyme (Ishihama, 2000; Paget., 2015) by 

providing the specificity for binding of RNAP to the promoter sequences of genes 

and allowing transcription initiation (Fig. 1.2 B). E. coli has seven sigma subunits, 

hence a total of seven functionally differentiated RNAP species, each recognizing 

a specific set of promoters (Ishihama, 2010; Maeda et al., 2000). Each sigma factor 

activates transcription of a defined set of stress-specific genes (e.g. σE for envelope 

stress; σ32 for heat-shock). The RNAP core is limiting and at relatively constant levels 

throughout growth, thus the identity of associated sigma factors is a major determinant 

of the pattern of gene expression, and sigma factors have been reported to compete 

DNA mRNA Protein
transcription translation

post-transcriptional level

decay

5’- -3’

A

B

RNAP core enzyme

σ
factor

PROMOTER

RNAP holoenzyme

σ

σ

Fig. 1.3: (A) An abbreviated pathway of gene expression in bacteria. The grey 
shaded area indicates the post-transcriptional level of control; the dashed line 
indicates the link between the translation rate and decay (see text for details). (B) 
Transcription initiation requires sigma factors.The association of a sigma factor with 
the RNA Polymerase core enzyme provides the specificity of the RNAP binding to 
promoter sequences.
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for binding to RNAP (Ishihama, 2010; Maeda et al., 2000).  In conditions of stress, 

σ70-RNAP (house-keeping holoenzyme) is outcompeted by RNAP associated with 

alternative sigma factors that transcribe stress-responsive genes. 

The activity of RNAP is further modulated by transcription factors (TFs: ~300 in 

E.coli; Ishihama, 2014). TFs bind target DNA sequences, typically at sites near 

promoters, interact with promoter-bound RNAP and alter its activity and specificity. 

Thus, transcription factors can act as either activators or repressors.TFs contain 

one domain that functions as a signal sensor by ligand-binding or protein-protein 

interactions. Typically, the ligand is a physio-chemical signal or metabolite that carries 

the internal or environmental information (Martinez-Antonio et al., 2006; Balleza et al., 

2009). The second domain of a TF is the responsive element, that directly interacts 

with DNA. Some TFs are part of two- or three-component systems (sensor and 

response regulators) that work as a unit. The topology of TFs allows rapid changes in 

transcription in response to specific environmental cues (Mascher et al., 2006; Ulrich 

et al., 2005). 

Transcription elongation and termination are also highly-regulated steps. Transcription 

elongation can be regulated by RNAP pausing, that can cause attenuation or anti-

termination (Washburn and Gottesman, 2015). In bacteria, transcription termination 

either requires the Rho factor, or is controlled by intrinsic terminator structures (Rho-

independent terminators). Premature termination or its prevention are additional 

modes of gene expression regulation (Sedlyarova et al., 2016; Peters et al., 2013). 

Additionally, chromosome organization and DNA-binding proteins that associate 

with DNA at non-specific sequences can control transcriptional activity epigenetically 

(Travers and Muskhelishvili, 2005). 

Post-translational regulation: a major determinant of gene expression profiles 

mRNA fate and protein output are further controlled by post-transcriptional 
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mechanisms, a mode of regulation heavily employed in stress-responses.  In a wide 

range of organisms, global mRNA steady-states do not correlate well with protein 

levels, indicating a dominant role for post-transcriptional regulatory processes (Csardi 

et al., 2015; Schwanhausser et al., 2011; Maier et al., 2009; Picard, 2009). Post-

transcriptional regulators include regulatory RNAs (riboregulators) or RNA binding 

proteins (RBPs) that modulate transcript stability and translation efficiency (Fig. 

1.2). Most frequently, mRNA degradation and translation are regulated at their rate-

limiting step, initiation. In many cases, cis- and trans-acting elements act in tandem 

to control gene expression (Van Assche et al., 2015). However, since in prokaryotes, 

transcription and translation are coupled, post-transcriptional regulators do in some 

cases influence RNA synthesis.  

It has been increasingly recognized that post-transcriptional regulation of bacterial 

gene expression plays a key role in adaptive responses. Post-transcriptional control 

poses advantages in conditions that require rapid adaptation (detailed in Section 1.10) 

- compared to transcriptional regulation, this type of regulation does not require the 

relatively more resourceful synthesis of transcription factors.  Moreover, many post-

transcriptional regulators are short-lived or can be rapidly and transiently inactivated 

(e.g. by sponging; Section 1.6) or stabilized when needed, ensuring a controlled 

duration and amplitude of the response.

Additionally, whereas generally transcription factors regulate sets of functionally-

related genes, post-transcriptional control can control the expression of a single gene 

or multiple unrelated genes, thereby allowing crosstalk and integration of different 

pathways (Section 1.9). However, it is the combined effect of transcriptional and post-

transcriptional circuits that ultimately define cellular response curves. 

Determinants of transcript stability

RNA processing and degradation have critical roles on the shaping of gene expression 

profiles. In order to understand how post-transcriptional regulators (Section 1.3) affect 
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mRNA degradation rates, we first have to inspect closer how transcript half-lives are 

modulated.

Compared to rRNAs and tRNAs, which are long-lived and functional for more 

generations, mRNA molecules are characterised by metabolic instability. Typical 

mRNA half-lives range from 1-2 minutes, although some mRNAs can have half-lives 

of up to 10-15 minutes (e.g. ompA; Hansen et al., 1994). Although mRNA half-life is 

uniquely and intrinsically determined by its primary sequence and secondary structure, 

controlled cellular processes such as translation rate (hence ribosome occupancy) 

and the binding of RBPs and other RNAs can significantly alter the fate of mRNAs

(Radhakrisshnan and Green, 2016; Hui et al., 2014; Mackie, 2013; Joyce and 

Dreyfus, 1998; Wagner et al., 1994). The instability of mRNAs allows modulation 

of the amplitude and duration of the changes in gene expression in response to 

environmental changes to attain homeostasis.

In prokaryotes, controlled decay is monitored by endo- and exoribonucleases and 

the factors that recruit them (Hui et al.,2014; Bandyra et al.,2013). The key step in 

the major pathway of degradation of transcripts in E. coli is an initial cleavage by an 

endoribonuclease, usually RNase E (Carpousis et al., 2007; Section 1.5), followed by 

complete degradation by 3’-exoribonucleases and oligoribonucleases. This is aided 

by numerous other enzymes, such as RNA helicases and poly(A) polymerase (PAP) 

(Bandyra et al., 2013; Mackie et al., 2013; Lisitsky and Schuster., 1999). However, the 

RNA decay pathways are not universal as the same transcript can be turned over by 

different pathways depending on the growth conditions or during stress. 

Consequences of regulating mRNA degradation on gene expression

Post-transcriptional regulation accounts for the fine-tuning of gene expression, 

and can greatly influence the kinetics of a response. This is clearly reflected by the 

effects of regulation on transcript stability. Controlled RNA decay (Hui et al., 2014; 

Mackie et al., 2013) has been shown to be determinant for the post-transcriptional 
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modulation of gene expression not only during growth, but also during adaptation to 

new environments (Arraiano et al., 2010). The steady-state abundance of a certain 

message is determined by the rates of transcription and degradation, therefore 

fine-tuning the balance between mRNA production and degradation can define 

transcriptome kinetics, in a condition-specific manner. For instance, models describing 

mRNA fate after the imposition of acute stress (Shalem et al., 2008) revealed that the 

concomitant increase in both transcription and degradation rates results in a more 

immediate increase in mRNA abundance (the half-maximal steady-state is reached 

faster), and is followed by a decrease in steady states. This ensures a much faster 

and transient response than by only switching transcription on and off (Fig. 1.3). This 

type of dynamics is advantageous in the regulation of stress-responsive genes, as 

it is not only rapid, but also reversible, hence it allows optimized activity of gene 

products during each phase of the response: shock, adaptation and recovery. Multiple 

studies reported the control of the stability of stress-responsive mRNAs (Molin et al., 

2009; Garcia-Martinez et al., 2004), suggesting that most of these messages have 

a dynamic range of half-lives depending on the conditions (Dressaire et al., 2013; 

Selinger et al., 2003).  

Regulation of translation as an additional layer of post-transcriptional control 

Whereas the regulation of transcript levels is determinant in the number of mRNAs 

that can be potentially translated into proteins, it is the translation rate that ultimately 

Fig. 1.4: The effects of activating both transcription and RNA decay on the kinetic profile 
of total RNA levels. The curves with a dashed line represent the dynamics of the response 
whereby only the transcription of a gene is induced, with no degradation. In both scenarios, 
the same steady state level of the RNA is achieved, but the activation of both transcription 
and decay allows that steady state to be reached sooner, resulting in faster responses. 
Figure courtesy of Nacho Molina. 
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determines which proteins are expressed. Left unregulated, translation manifests as 

an amplification of transcriptional activity, i.e. a mRNA can be perpetually translated, 

and the output is dependent on translation rate and mRNA half-life. It is not surprising 

that this level of gene expression is tightly regulated at all steps (initiation, elongation, 

termination) and requires a large number of factors. The assembly of the protein 

synthesis machinery occurs during translation initiation, a process that brings 

together mRNA, initiator transfer RNA, and the ribosome into the 30S initiation 

complex (Simonetti et al., 2009; Kozak, 1999). The bacterial mRNA ribosome binding 

site (RBS) typically contains a polypurine stretch known as the Shine-Dalgarno (SD) 

sequence, located typically 4-5 nt upstream the start codon of mRNAs. SD sequence 

is required for the interaction between mRNA and the 30S ribosomal subunit, which 

is key for initiation of protein synthesis (Shine and Dalgarno, 1974; Chen et al., 

1994). Translation initiation is the rate-limiting step in protein-synthesis, and is under 

tight post-transcriptional control (Duval et al., 2015). Since formation of the initiation 

complex is highly dependent on RNA-RNA interactions, the recruitment of the small 

ribosomal subunit can be modulated by mRNA secondary structure rearrangements, 

antisense RNA binding, or RBPs (Section 1.5). 

1.3.	 Trans-acting small RNAs - a major class of riboregulators with prevalent 

roles in gene expression

The past few decades of research have established that the versatility of RNA expands 

beyond that as an information-carrying and structural molecule. This property ensues 

from its ability to form complex, yet flexible secondary structures and its ability to 

interact with other macromolecules (e.g RPBs), and mimic other nucleic acids. RNA-

mediated regulation is a widespread phenomenon in all organisms. In bacteria, 

riboregulators are a structurally and functionally heterogeneous group of molecules 

that act in cis- or in trans- and that modulate gene expression or protein activity. 

These are typically non-coding RNAs, although some riboregulators may also encode 

for small proteins (Gimpel and Brantl, 2016; Wadler and Vanderpool, 2007). 

This section will introduce the riboregulators that respond to environmental changes, 
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and not regulatory RNAs with house-keeping functions.  The most extensive class of 

regulators, small non-coding RNAs (sRNAs) has the most prevalent effect in post-

transcriptional networks, and will be the emphasis of this section. 

RNA regulators that are part of the RNAs they regulate

In cis RNA regulators are structurally a part of the RNA they regulate, and are 

represented in bacteria by RNA thermosensors (Kortmann and Narberhaus, 2012) and 

riboswitches (Henkin, 2008), which sense and respond to temperature changes and 

nutrient availability, respectively. Their leader sequences fold into secondary structures 

(e.g. inhibitory hairpins that occlude the RBS in the case of RNA thermosensors) that 

undergo conformational changes upon temperature shifts or small-ligand binding, 

resulting in changes in expression of the downstream gene.

Small non-coding RNAs

The largest class of riboregulators, the small RNAs (sRNAs) act by base-pairing 

with other RNAs, most frequently mRNAs. These riboregulators help cells adjust to 

environmental changes by modulating expression of key proteins. sRNAs can be 

Cis-encoded sRNA Trans-encoded sRNA

perfect base-pairing limited base-pairing

A B

Hfq

Fig. 1.5: Comparison between cis-encoded sRNAs and trans-encoded sRNAs. 
ORF indicates the open reading frame, arrows indicate transcriptional start sites 
(A) Cis-encoded sRNAs are encoded opposite their target mRNAs and have 
perfect complementarity with their target RNAs.  (B) Trans-encoded sRNAs are 
transcribed from genomic loci separate from those encoding their target RNAs 
and have only partial complementarity, thus base-pairing is assisted by Hfq 
protein (purple). Figure adapted and modified from Prasse et al., 2013.
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encoded either in cis, on the opposite DNA strand of the target, or trans, at a distinct 

locus in the genome relative to the targets (Fig. 1.3). Both types are produced as 

discrete RNAs that can base-pair with independently-transcribed targets.

Cis-encoded antisense RNAs

Cis-encoded sRNAs exhibit extended complementarity with their targets (Brantl, 

2007) (Fig. 1.4 A), and interfere with their translation, induce premature transcription 

termination or promote their degradation (Georg and Hess, 2011; Thomason and Storz, 

2010; Brantl, 2007). Cis-encoded antisense sRNAs are typically encoded in plasmids, 

transposons and phages, and more rarely within the bacterial chromosome (Brantl, 

2007; Kawano et al., 2005). Two antisense sRNAs have roles in the repression of 

expression of toxic proteins (e.g. OhsC in E. coli; Fozo et al., 2008) or the uncoupling 

of expression of genes within the same operon (Tramonti et al., 2008). However, the 

perfect complementarity required for this type of regulation implies that the targets are 

unique, or in a limited number. Some cis-encoded sRNAs may act as dual regulators 

that also regulate mRNAs encoded in trans, similar to classical trans-encoded sRNAs 

(Thomason and Storz, 2010; Mandin and Gottesman, 2010; Jäger et al., 2012; 

Melamed et al., 2016).

Trans-encoded sRNAs

Trans-encoded sRNAs are the most abundant and diverse class of riboregulators, 

and together with the activity of TFs they shape gene expression profiles in response 

to specific extracellular and intracellular stimuli (Section 1.10). These sRNAs operate 

through varied regulatory mechanisms, that involve base-pairing with target RNAs 

and binding to regulatory proteins (Storz et al., 2011; Waters and Storz, 2009). This 

class of sRNAs and their roles in enterobacteria will be the focus of this work. 

Compared to cis-encoded sRNAs, trans-encoded sRNAs have limited and imperfect 

base-pairing interactions with their RNA targets (Fig. 1.4 B). They are short transcripts, 



12

typically 50-300 nt long, that regulate RNA targets encoded at distinct genomic sites 

(Waters and Storz, 2009). 

Trans-encoded sRNAs are synthesized under very specific growth conditions and are 

a central class of regulators with roles in various cellular processes: stress responses, 

adaptation to new environments, nutrient utilization, quorum sensing, biofilm formation, 

virulence and drug resistance in prokaryotes (Papenfort and Vogel., 2014; Mika and 

Hengge, 2014; Holmquist et al., 2010; Chao and Vogel, 2016; Romby et al., 2006; 

Gottesman and Storz, 2011; Waters and Storz, 2009, Michaux et al., 2004). 

In E.coli, many trans-encoded base-pairing sRNAs are part of regulons induced under 

specific stress conditions, such as envelope stress (σE-induced MicA, RybB, MicL; 

Guo et al., 2014; Rhodius et al., 2005; Section 4.1), iron deprivation (RyhB; Benjamin 

and Massé, 2014; Massé et al., 2005), glucose-phosphate stress (SgrS; Vanderpool, 

2007), amino acid availability (GcvB; Sharma et al., 2007), oxidative stress (OxyS; 

Gonzalez-Flecha and Demple, 1999), glucose availability (Spot 42 - Spf; CyaR; 

DeLay and Gottesman, 2009; Görke and Vogel; 2008; Beisel and Storz, 2011), low 

temperature (DsrA; Repoila and Gottesman., 2001), osmotic stress (MicF; RprA; 

Majdalani et al., 2002) and entry into stationary phase. 

Functionally, the limited requirement for base-pairing has pervasive consequences: a 

trans-encoded sRNA can regulate multiple targets, a single transcript can be regulated 

by several sRNAs and a single sRNA can regulate the same target by more than 

one mechanism (Brobovskyy and Vanderpool, 2016; Repoila and Darfeuille, 2009; 

Prévost et al., 2011). The sRNA-mediated regulation of multiple targets is subject 

to competition between targets, as dictated by their affinity for binding and copy-

number, sRNA expression level, and Hfq availability (Hussein and Lim, 2011; Moon 

and Gottesman, 2011; Wagner, 2013). The regulatory implications of all the above 

are important: these factors allow the complex integration of sRNAs in regulatory 

networks, thus cells are able to coordinate responses to multiple input signals 

(Section 1.9). Moreover, not only some sRNAs directly regulate the expression of 
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many targets (e.g. GcvB; RyhB; Masse et al., 2005) and some directly regulate TFs 

or sigma factors (e.g. DsrA, MicL, MicF, MicA; Mika and Hengge, 2014; Melamed et 

al., 2016; Majdalani et al., 1998), but also the regulatory effects propagate through 

interconnected pathways (Section 1.9)

1.4.	 Regulatory mechanisms employed by trans-base-pairing sRNAs

Mechanistically, base-pairing sRNAs are similar to the eukaryotic microRNAs (miRNAs; 

Bartel et al., 2009) in their ability to control target stability and translation efficiency 

(Wagner and Romby, 2015; Storz et al., 2011; Waters and Storz, 2009). However, 

sRNAs are a much more heterogeneous group, that differs in origin/biogenesis 

(Section 1.7) and the sites and details of base-pairing with cognate targets. Bacterial 

sRNAs are generally not constitutively processed (with a few exceptions; e.g ArcZ 

and RprA sRNAs; Mandin and Gottesman, 2010, Papenfort et al., 2009, Papenfort et 

al., 2015; Chao et al., 2017) and base-pair in most cases with the 5’-end of mRNAs, 

rather than with the 3’-UTRs (Gottesman, 2005). However, sRNAs can base-pair at 

virtually any feature of a transcript and can employ various mechanisms and non-

canonical modes of regulation. This section will expand on the mechanisms employed 

by sRNAs to exert their regulatory function. 

General aspects of sRNA-mRNA base-pairing 

The sRNA  seed region    required   for base-pairing is typically conserved in 

enterobacteria, located in single-stranded regions (Peer and Margalit, 2011), 

encompasses ~6-12 nucleotides (Papenfort et al., 2010; Balbontin et al., 2010) and in 

some cases, is sufficient for regulatory function (Papenfort et al., 2010; Pfeiffer et al., 

2009). Despite the limited size of the pairing region, the sRNAs specifically recognise 

their targets. Base-pairing is often mediated by the RNA chaperone proteins Hfq (Fig. 

1.4) and ProQ (Smirnov al., 2017) that stabilize the sRNA, and facilitate molecular 

contacts with the target RNA (Vogel and Luisi, 2011; Kawamoto et al., 2006; Zhang et 

al., 2002; Moller et al., 2002; Sledjeski et al., 2001; Section 1.5). ProQ may chaperone 



14

RNAs that are defined by a high degree of structure (Smirnov et al., 2017). 

Most sRNAs negatively regulate their targets (De Lay et al., 2013), but many examples 

of positive regulation have been reported (Papenfort and Vanderpool, 2015; Fröhlich 

et al., 2013; McCullen et al., 2010; Soper et al., 2010; Majdalani et al., 1998). The 

sRNA-target base pairing modulates mRNA synthesis, stability and/or translational 

efficiency, resulting in either an increase or decrease in protein synthesis. Notably, an 

sRNA can have an inhibitory effect on a mRNA, and an activating role on a different 

mRNA (e.g. RyhB- Prevost et al., 2007). Usually, the same seed sequence within 

sRNAs is used for target interactions, suggesting that the molecular information 

determining the regulatory effect (positive or negative) is partially embedded in the 

target mRNA (Papenfort and Vanderpool, 2015). Mechanistically, there are many 

variations to the canonical translational inhibition mechanism, that include transcript 

stabilization, modulation of premature termination, and sRNA sponging (Section 1.6). 

Post-transcriptional mechanisms of negative regulation by sRNAs

As negative regulators, sRNAs most frequently inhibit translation (De Lay et al., 2013; 

Desnoyers et al., 2013). Initial studies suggested that most sRNAs base-pair to target 

mRNAs at regions at or near the RBS (-20 to +15 nt from start codon, often referred 

to as the start codon window) to block ribosome binding (Fig. 1.5A) (Altuvia et al. 

1998). The region on mRNAs that can be targeted to inhibit translation initiation has 

been since been extended (Holmqvist et al., 2010; Bouvier et al., 2008; Papenfort et 

al., 2010; Bobrovskyy and Vanderpool, 2016). New mechanisms of interference with 

translation, such as interference with translation coupling between adjacent ORFs 

(Vecerek et al., 2007), targeting of translation enhancer elements (Sharma et al., 

2007), repression by binding far upstream in the 5’-UTR of targets (Holmqvist et al., 

2010; Papenfort et al., 2010), or repression via targeting translation-activating stem 

loops within mRNAs coding sequence (Jagodnik et al., 2017) keep being discovered. 

In most cases, translational repression of a target mRNA is coupled to target 

degradation (Fig. 1.5A), either caused by reduced ribosome occupancy (Wagner, 
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2009) or by recruitment of RNase E (Ikeda et al., 2011; Prévost et al., 2011; Aiba, 

2007; Morita et al., 2005; Massé et al., 2003). Although target degradation has been 

often observed upon sRNA expression, translation repression is sufficient to achieve 

gene silencing whilst degradation renders the repression irreversible (Desnoyers et 

al., 2013; Morita et al., 2006).

RBSmRNA
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Fig. 1.6: Canonical post-transcriptional mechanisms employed by trans-encoded 
sRNAs in enterobacteria to regulate target expression. (A) An sRNA associated with 
Hfq may occlude the ribosome-binding site (RBS) of a target mRNA, thus blocking 30S 
ribosomal subunit binding and inhibiting translation. This mode of repression is often 
followed by degradation of the target mRNA, or coupled degradation of sRNA and 
mRNA, usually by RNase E. (B) sRNAs associated with Hfq can activate translation 
by melting inhibitory secondary structures that hinder ribosome access to the RBS. 
(C) Hfq associated with an sRNA can also occlude RNase E recognition sites, thus 
protecting the target RNA from degradation. 
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Some sRNAs can also actively direct the transcript for cleavage and degradation, 

without translational inhibition (Papenfort et al., 2010; Pfeiffer et al., 2009), this type 

can occur at variable locations within mRNAs, including deep within coding sequences 

or even intergenic regions (RyhB-iscSUA mRNA; Desnoyers et al., 2009). 

As a consequence of negative regulation, sRNAs and their targets can both be 

degraded (Overgaard et al., 2009; Masse et al., 2003; Moll et al., 2003) or only 

one of them is degraded, allowing sRNA recycling. However, these two modes are 

interchangeable depending on the mRNA target (Overgaard et al., 2009; Figueroa-

Bossi et al., 2009), suggesting that the fate of the sRNA is dictated by the details of 

the sRNA-target duplex, such as secondary structure or identity of their 5’-termini 

(Section 1.7). 

Post-transcriptional mechanisms of positive regulation by sRNAs

In sRNA-mediated positive regulation, pairing increases translation and/or protects 

target mRNA from degradation (Papenfort and Vanderpool, 2015; McCullent et al., 

2010; Fröhlich et al., 2013; Fröhlich and Vogel., 2009; Urban and Vogel., 2008). 

To directly activate translation, sRNAs employ an anti-antisense mechanism, whereby 

they base-pair at the 5’-UTR of target mRNA to disrupt an intrinsic inhibitory structure 

that sequesters the RBS and the start codon (Fig. 1.5 B) (Prévost et al.,2007; Majdalani 

et al., 1998). Binding of the sRNA leads to the restructuring of the mRNA, freeing the 

RBS, which allows translation initiation. 

Some sRNAs activate gene expression by blocking RNase E cleavage sites, thereby 

altering processing and increasing target mRNA stability (Fig. 1.5 C) (Fröhlich et al., 

2013; Opdyke et al., 2004). 

Transcriptional control exerted by trans-encoded sRNAs

By modifying ribosome access or inducing degradation of their targets, sRNAs 

regulate the coupling between transcription and translation. 
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However, sRNA activity also directly or indirectly alters transcription initiation, 

elongation and termination by various mechanisms. Transcription initiation can be 

regulated by the 6S sRNA that associates with RNAP (Wassarman et al., 2007). 

Transcription elongation and the co-transcriptional regulation of translation may be 

controlled by sRNAs as part of ribonucleoprotein complexes that also include RNAP 

(Van Nues et al., 2015). The 5’-UTRs of transcripts are commonly subject to Rho-

dependent termination in E.coli (Sedlyarova et al., 2016) and sRNAs have been 

shown to regulate premature termination either directly, or indirectly.  

The first role for sRNAs in the control of transcription termination was established for 

the indirect transcriptional attenuation by the ChiX sRNA in Salmonella: ChiX base-

pairs with the leader sequence of its target, chiP, repressing translation initiation co-

transcriptionally. The resulting uncoupling of transcription from translation promotes 

Rho-dependent termination of the nascent mRNA (Bossi et al., 2012). 

However, the first evidence of direct involvement of sRNAs in Rho-mediated 

termination was only recently described (Sedlyarova et al., 2016). Genes can be 

activated by a sRNA-mediated anti-termination mechanism whereby sRNAs anneal 

to the 5’-UTRs to inhibit premature Rho-dependent termination by sterically blocking 

Rho translocation along the mRNA strand (Sedlyarova et al., 2016).

Some sRNAs can also act as anti-silencers. A well documented example is DsrA, 

which counteracts transcriptional silencing of rcsA by the nucleoid-associated H-NS 

protein (Sledjeski and Gottesman, 1995). DsrA was proposed to prevent H-NS binding 

to promoters, or to interfere with the silencing activity of H-NS by preventing it from 

forming a chromatin-like silenced conformation (Sledjeski and Gottesman, 1995). 

Examples of sRNAs that modulate the activity of proteins

Other sRNAs act as sponges that sequester RNA-binding proteins (Fig. 1.5). One 

such protein is CsrA, a global post-transcriptional regulator that binds to specific 

motifs in the 5’-UTRs of target mRNAs to regulate carbon metabolism, biofilm 
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formation and motility (Romeo et al., 2013). CsrA consists of a dimer that contains 

two RNA-binding pockets with high affinity for GGA motifs within loops of short hairpin 

structures (Schubert et al., 2007; Dubey et al., 2005). The CsrA-mediated regulation 

is antagonized by the action of two Hfq-independent sRNAs, CsrB and CsrC (Liu et 

al., 1997; Weilbacher et al., 2003), and one Hfq-associated sRNA, McaS (Jørgensen 

et al., 2013). CsrB/CsrC and McaS contain the CsrA recognition sequence in multiple 

copies, thus, by a mimicry mechanism, they act as direct competitors for CsrA target 

mRNAs (Fig. 1.6 A).Intriguingly, McaS was found to associated with other RBPs, 

including Hfq, ProQ and RNAP, suggesting that sRNAs can act as scaffolds onto 

which various proteins can assemble to perform various regulatory roles on the sRNA 

target (Van Nues et al, 2015).

The 6S sRNA was shown to inhibit transcription by directly binding to σ70-associated 

RNAP (Fig. 1.6 B).  By mimicking the DNA conformation of open promoters, the 6S 

RNA locates in the active site of RNAP and blocks access to promoters (Wassarman, 

2007). This interaction results in the inhibition of transcription from a subset of σ70 

promoters (Neusser et al, 2008; Cavanagh et al., 2010) and activates transcription 

A B

housekeeping
RNAP

6S RNA

No translation

30 S Translation
CsrA

RBS RBS

Fig. 1.2: sRNAs modulate the activity of a repressor. (A) CsrA protein downregulates its target 
genes (e.g. pga) by blocking the SD sequence, thus repressing translation. CsrB/C and McaS 
bind CsrA to sequester it and derepress its target genes. Addiitionally, McaS also acts as a 
base-pairing sRNA aided by Hfq, providing a link between the CsrA and Hfq regulons;. Figure 
adapted from Papenfort and Vanderpool, 2015. (B) 6S sRNA expression can sequester RNAP. 
Figure adapted from Faucher and Schuman, 2011.
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from alternative sigma factor promoters, partly by influencing the competition between 

the cognate RNAP holoenzymes. Since 6S expression increases during the stationary 

phase of growth, it affects mainly the balance between the σS (stationary-phase σ 

factor) and housekeeping RNAP holoenzymes (Wassarman, 2007; Trotochaud and 

Wassarman, 2005). 

In a regulatory cascade contributing to control sugar metabolism, GlmY mimics the 

structure of another sRNA, GlmZ, to titrate away the adaptor protein YhbJ that is 

required in RNase E mediated inactivation of GlmZ (Reichenbach et al., 2008; Urban 

and Vogel, 2008). Consequently, GlmZ is protected from the cleavage of the site that 

regulates its target, glmS (Gorke and Vogel, 2008; Kalamorz et al., 2007). 

Considering the many examples and mechanisms of sRNA-mediated regulation that 

have been described, it is becoming clear that interaction and competition between 

sRNAs, mRNAs, RBPs and ribosomes, as well as the folding of RNA species involved 

all define the efficiency and outcome of the regulation. How many RBPs are involved 

and how this interplay dictates sRNA-mediated regulation is still not well understood.

 

1.5.	 RNA binding proteins with central roles in sRNA-mediated regulation 

The flexibility of the cell response to environmental changes requires a rigorous 

coordination between sRNAs and protein regulators. Apart from the proteins that are 

targeted/sequestered by sRNAs, a number of RBPs are directly involved in sRNA 

mediated regulation in Gram-negative bacteria. Most notable are the Hfq protein, 

RNase E and ProQ (Smirnov et al., 2017; Smirnov et al., 2016). In many Gram-

positives or the role of Hfq in sRNA function is accessory (Rochat et al., 2012; Bohn 

et al., 2007)., but in enterobacteria it is usually required for sRNA regulation.

This section will introduce the main mechanisms employed by the prokaryote 

degradation machinery and RNA chaperone Hfq to assist sRNAs in their regulatory 

activity. 
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Hfq: role in sRNA-mRNA base-paring

In Gram-negative bacteria Hfq plays a major role in trans-encoded sRNA-mediated 

regulation stabilizes sRNAs by protecting them from ribonucleases and facilitates 

sRNA-target annealing (Gottesman and Storz, 2011; Vogel and Luisi, 2011; Brennan 

and Link, 2007). 

Hfq deletion has pleiotropic effects on Gram-negative bacterial physiology, including 

general stress response pathways and virulence. In enterobacteria, lack of Hfq alters 

the expression of approximately a fifth of all genes. Although these dramatic outcomes 

can be partially caused by indirect effects or other impaired sRNA-independent 

regulatory functions that require Hfq (Mohanty et al., 2004), they are at least partly 

attributed to its essential role in sRNA function (Chao and Vogel 2010; Guisbert et al. 

2007).

Hfq is a ring-shaped homohexamer with multiple RNA-binding faces: distal, proximal, 

and lateral (the rim) (Vogel and Luisi, 2011; Sauer, 2013). The proximal and distal 

faces of Hfq specifically bind sRNA and mRNA targets, respectively, to increase 

the local concentration of RNA pairs, whilst the rim has been proposed to promote 

annealing (Panja et al., 2013). There is evidence that there is greater flexibility in the 

interactions of Hfq with sRNA and mRNAs, and that the mode of binding has regulatory 

consequences (Schu et al., 2015). Despite the degenerate recognition sequences 

and heterogeneity sRNA species, how Hfq preferentially binds the pairing sRNAs and 

their mRNA targets is still unknown.  The detailed mechanism by which Hfq employs 

its chaperone activity to promote sRNA-target regulation also remains unclear. It has 

been reported that Hfq assists base-pairing by increasing annealing rates (Hwang et 

al., 2011; Fender et al., 2010), by stabilizing the formed duplex (Soper et al., 2010) or 

by inducing secondary structure rearrangements to promote the pairing (Maki et al., 

2010). The degree of involvement of Hfq in facilitating direct contacts between sRNAs 

and their targets is likely dependent on the sRNA-mRNA pair (Storz et al., 2011). 
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The rapid (minute-scale) sRNA-mediated responses in vivo do not appear to be in 

agreement with the measured low dissociation constants and long half-lives of Hfq-

RNA complexes (Fender et al., 2010). To solve this paradox, a widely-accepted model 

proposes that sRNAs and mRNAs actively cycle on and off Hfq (Fig. 1.7), to allow 

sufficient RNA encounters within short time-frames (Fender et al., 2010). The cycling 

involves rapid sequential binding and release of RNAs on individual Hfq monomers, 

that is dependent on the concentration of the RNA species, and greatly affected by 

competitor RNAs (Wagner., 2013; Fender et al., 2010). The competitor 

RNA transiently associates with Hfq-RNA complexes, the RNAs exchange binding 

sites, until one of them dissociates. This mode of binding allows efficient use of the 

Hfq pool, which is limiting. Consistent with this model, RNAs have been reported 

to compete for Hfq, and that an abundant sRNA can indirectly impair the regulation 

of others (Moon and Gottesman, 2011; Hussein and Lim, 2011). Therefore, sRNA-

mediated regulation is greatly dependent on the intracellular levels and availability 

of sRNAs and their targets, copy-number of interacting proteins, as well as the 

kinetic parameters of the interactions (Storz et al., 2011). The importance of Hfq RNA 

exchange on the global effects of sRNA-mediated regulation as well as its impact on 

patterns of multi-target regulation are increasingly being recognized. For example, 

cycling of RNAs on Hfq can impact sRNA-mediated multi-target regulation. The 

sRNA

competitor
sRNA

Intermediate binding states

Fig. 1.7: Simplified representation of dynamic sRNA cycling on Hfq: Hfq-bound RNAs are 
continuously and reversibly (double arrows) displaced by competitor RNAs. Entry of competitor 
sRNA starts with association of one subunit, followed by dynamic exchange of binding sites 
across the surface of the hexamer (the intermediate binding states) until the resident RNA is 
displaced. Figure reproduced/re-drawn from Fender et al., 2010.
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hierarchy of target effects is defined by sRNA-target association (Fei et al., 2015), but 

also the Hfq occupancy of the involved sRNAs. Since the latter is most dependent on 

the competition for Hfq, the cycling kinetics could affect the global pattern of target 

RNA expression upon sRNA induction (Wagner, 2013). 

RNase E and its intimate links with sRNAs

			 

In E.coli, the endonuclease RNase E has a central role in controlling intracellular levels 

of all transcript classes, as it is responsible for the degradation and/or processing of 

mRNAs and stable RNAs. Together with polynucleotide phosphorylase (PNPase), 

RNA helicase B (RhlB), enolase and other proteins (Carpousis, 2007; Bandyra et al., 

2013) it forms a complex that is referred to as the RNA degradosome. RNase E is 

responsible for the initial endonucleolytic cleavage that triggers complete degradation 

of most mRNAs (Clarke et al., 2014). RNase E is also involved in the turnover of 

sRNAs that are not bound by Hfq and sRNA-target interactions mediated by Hfq 

(Bandyra et al., 2012; Moll et al., 2003; Masse et al., 2003).

Moreover, many RNAs are synthesised as precursors that must be processed to their 

mature forms to be functional – and the decay of mRNAs and and RNA maturation 

have overlapping steps (Deutscher, 2006). RNase E is essential in the maturation of 

stable RNAs: tRNAs (Liz and Deutscher, 2002) and rRNAs  (Li et al., 1999), but is 

also involved in the processing of sRNAs and mRNAs to yield shorter, stable species 

(Section 1.7). RNase E has little sequence specificity, but until recently was broadly 

defined as having a preference for single-stranded A/U-rich regions (Carpousis, 

2007). A RNase E cleavage signature has only recently been more precisely defined: 

recognition sites tend to be located in single-standed regions, two nucleotides 

upstream of a U ribonucleotide (Chao et al., 2017). 

The endonuclease activity of RNase E is strongly potentiated by accessible 

5’-monophosphate termini (5’-P) on the substrate (Jiang and Belasco, 2004). Thus 

most newly transcribed RNAs bearing 5’-triphosphate groups are not targeted by 



23

RNase E. The sRNAs, however, mostly have a single 5’-phosphate group. Therefore, 

by base-pairing with their targets, sRNAs can provide “specificity” by guiding RNase 

E to its cleavage site within the sRNA target.  (Bandyra et al., 2012). 

RNase E not only contributes to the degradation of sRNAs and their targets (Fig.1.5A) 

but also assists sRNA-mediated regulation by processing a few sRNAs to yield an 

active form. For example, endonucleolytic cleavage of the ArcZ sRNA exposes the 

seed sequence (Papenfort et al., 2009). RNase E is also required for processing of the 

6S sRNA, which involves both endo- and exonucleolytic activity: the 5’ processing of 

precursor ssrS is mediated by RNase E, whereas for the exoribonucleolytic trimming 

for 3’ processing RNases T and PH are most important (Zhongwei et al., 1998, Chae 

et al., 2011). Alternatively, RNase E cleavage of mRNAs has also been shown to 

generate sRNAs that originate from the UTRs (Section 1.7). 

Although RNase E is a key player in the sRNA-mediated post-transcriptional 

regulation, other RNAses are also involved (Guo et al., 2014; Opdyke et al., 2011). 

How the other RNases and RBPs interact with sRNAs and modulate their activity is 

still poorly understood. 

1.6.	 Regulating the regulator: bacterial RNA sponges antagonize sRNAs

RNA sponges are regulatory species that directly control the activity of other 

riboregulators, and have been described in eukaryotes as antagonists of miRNAs 

(Salmena et al., 2011; Hansen et al., 2013). In prokaryotes RNA sponges generally 

antagonize the activity of sRNAs (Azam and Vanderpool, 2015; Myiakoshi et al., 2015; 

Lalaouna et al., 2015; Tree et al., 2014; Figueroa-Bossi et al., 2009) by base-pairing, 

followed by repression of its activity. RNA sponges can constitute virtually any RNA 

class: mRNAs, tRNAs or non-coding RNAs. 

The first described RNA sponge in E.coli and Salmonella was shown to be derived 

from a mRNA and to control the activity of ChiX, an abundant sRNA (Figueroa-Bossi 
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et al., 2009) (Fig.1.8 A). In the absence of chitosugars, the ChiX sRNA represses the 

expression of chiP, encoding the chitoporin responsible for chitosugar uptake. In the 

presence of chitosugars, the chb mRNA encoding products for chitosugar metabolism 

is processed, generating a sponge that base-pairs with ChiX and destabilizes it. 

Reduced levels of ChiX result in derepression of chiP and net increase in chitoporin 

synthesis (Plumbridge et al., 2014; Figueroa-Bossi et al., 2009; Overgaard et al.,2009). 

Similarly, the RprA sRNA is sponged by csgD mRNA (Mika et al., 2012). The 3′ -UTR 

region of pspG acts as a sponge of the Spf sRNA (Melamed et al., 2016). 

Sponges derived from tRNA precursors control the activity of RybB and RyhB 

sRNAs, and possibly also MicF (Lalaouna et al., 2015). These sponges are stable 

intermediates of tRNA processing, originating from the internal transcribed spacers 

(ITS) and external transcribed spacers (ETS) of tRNA operons. For instance, the 3′ 

ETS of the glyW-cysT-leuZ base-pairs with RybB and RyhB sRNAs, reducing their 

effective concentration. Lalaouna et al proposed that this activity is necessary to 

adjust the sRNA activity to the growth conditions. Specifically, under non-inducing 

conditions, the transcriptional repression by Fur is not sufficient to abolish RybB 

chBCARFG mRNA

chiP mRNA

A B

Fig. 1.8: Examples of sRNA sponges in bacteria that promote mRNA crosstalk. Cross-talk 
is indicated by dashed arrows. (A) The chb sponge originates from the chBCARFG parental 
RNA degrades ChiX, allowing cross-talk between chitosugar transport and metabolism 
genes. (B) The sponge RNA SroC, processed from a GcvB target, base-pairs with GcvB 
and degrades it, causing derepression of its targetome, including the precursor mRNA of 
SroC. SroC mediates cross-talk between GcvB targets. Image adapted from (Azam and 
Vanderopool, 2015)
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synthesis.  3′ETSleuZ , consequently, could act as a sponge on the excess sRNA to 

adsorb transcriptional noise in RyhB expression (Lalaouna et al., 2015).  

In enterohemorrhagic E.coli, bacteriophage-encoded sRNAs (e.g. AgvB) have been 

reported to act as sponges that inhibit sRNA activity (Tree et al, 2014). Interestingly, 

AgvB targets the GcvB sRNA, but does not facilitate its degradation.

SroC was the first bacterial sponge in which a sponge-mediated cross-talk was 

demonstrated to affect multiple mRNAs within a single regulon (Myiakoshi et al., 

2015b). SroC originates from the polycistronic gltIJKL mRNA encoding the glutamate/

aspartate ABC transporter. GcvB sRNA inhibits translation initiation of the gltIJKL 

mRNA by base-paring to the 5’-UTR of gltI (Sharma et al., 2007). However, a region 

between gltI and gltJ produces SroC that base-pairs with GcvB and promotes its 

degradation. Destabilization of GcvB causes derepression of its targetome, including 

the parental mRNA of SroC. Interestingly, in this case, the sRNA is regulated by a 

sponge released from one of its cognate mRNA targets. Physiologically, SroC enables 

activation of many transcripts of the amino acid transport and metabolism pathway, 

and promtes bacterial growth when peptides are the sole carbon and nitrogen source. 

SroC was later shown to directly interact with and down-regulate the levels of 

another sRNA, MgrR, relieving the MgrR-mediated repression of eptB, encoding a 

lipo-polysaccharide (LPS)-modifying enzyme (Acuna et al., 2016). SroC base-pairs 

with MgrR in the region encompassing the seed sequence for interaction with the 

eptB mRNA and antagonizes its regulatory effects on gene expression and LPS 

modification. 

To date, only a number of RNAs that act as sponges have been described in bacteria, 

however, it is becoming clear that they are an emerging group. For instance, RNase E 

CLASH (Section 1.8) performed in enterohemorrhagic E.coli uncovered ~150 unique 

sRNA-sRNA interactions (Waters et al., 2017), suggesting that this mode of control 

of sRNA activity is widespread and that more sponges are yet to be discovered. 

Interestingly, all sponges characterized thus far employ the “repression of a repressor” 
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mechanism, resulting in the activation of the target genes of the sRNA regulator 

(Azam and Vanderpool, 2015) and most originate by processing from precursors. The 

efficiency by which the sponge controls expression of sRNA and its targets depends 

on a number of parameters, including the relative expression of the sRNA, target 

mRNA and sponge and the binding affinity intrinsic to each interaction (Myiakoshi et 

al., 2015b). In conclusion, sponge RNAs provide an additional level of control that 

allows cells to exploit the cross-talk between physically unlinked genes and to fine 

tune post-transcriptional circuitry.

1.7.	 Features and biogenesis of base-pairing sRNAs 

A full understanding of sRNA-mediated networks necessitates knowledge of their 

number and identity. Additionally, to unravel sRNA modes of action, details of their 

abundance, structure, biogenesis and turnover are required.

Features of typical trans-encoded sRNAs 

sRNAs vary significantly in length (50-300 nt), sequence and secondary structure 

(Storz et al., 2011). Typical functional sRNAs have a modular structure (Fig. 1.9). that 

encompasses at least one seed sequence for base-pairing with targets (Guillier and 

Gottesman, 2008; Papenfort et al., 2010; Balbontin et al., 2010; Pfeiffer et al., 2009), 

a binding site for Hfq and a Rho-independent terminator that consists of a GG-rich 

stem-loop followed by a poly-U track (Otaka et al., 2011). 

Due to the lack of defining common features, many sRNAs are likely to remain 

undiscovered in screens that search for classical properties. Transcriptome-wide 

approaches, including bioinformatic predictions, microarrays and deep-sequencing 

experiments led to the identification of hundreds of candidate sRNAs (Argaman et al, 

2001; Sharma and Vogel., 2009; Wassarman et al., 2001; Vogel et al, 2003; Raghavan 

et al, 2011). Computational predictions are conventionally based on sequence 

conservation, structural homology, and presence of common features such as Rho-
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independent terminators and independent promoters (Peer and Margalit, 2011). 

Proven interaction with Hfq in transcriptome-wide studies (Zhang et al, 2003; Sitka 

et al, 2008; Chao et al., 2012; Tree et al., 2014) may further confirm whether a given 

ORF is a functional sRNA. However, most studies looked for sRNAs in unannotated 

genomic regions, particularly intergenic regions (IGRs).

 3’-UTRs of transcripts as a source of sRNAs 

Some of the key features of sRNAs are also shared by some protein-coding RNAs, 

namely sequence conservation and presence of Rho-independent terminators (Sauer 

et al., 2011). Intriguingly, recent studies have identified stable 3’-UTR fragments of 

mRNAs that had the same functional and structural features of sRNAs (Vogel et al., 

2003; Zhang et al., 2003). Because of their proximity to mRNA reading frames these 

sRNA candidates probably remained undetected in standard IGR-based screens. 

A

B

Fig. 1.9: Typical features of Hfq-associated sRNAs  
(A) Modular structure of sRNAs: Most sRNAs are 
synthesisd as primary transcripts with a 5’-PPP 
group at their 5’-end. and contain a seed sequence 
for base-pairing with target mRNAs (blue), Hfq-
binding regions and a Rho-independent terminator. 
Hfq-binding sites are near the Rho-independent 
terminator regions.  (B) A schematic representation 
that shows that typically, functional sRNAs are well-
conserved and that the seed sequence of a sRNA is 
typically most conserved region among homologs. 
Image adapted from Myiakoshi et al,, 2015a.



28

These 3’UTR fragments were also enriched in Hfq pull-down experiments (Chao et 

al., 2012; Tree et al., 2014), suggesting they could represent functional Hfq-associated 

sRNAs.

Based on their biogenesis, 3’-UTR overlapping sRNAs were classified as either type I 

or type II (Chao et al., 2012; Myiakoshi et al., 2015a). Type I sRNAs (Fig. 1.10 A) are 

transcribed from independent promoters within mRNAs. Notable examples are DapZ 

(partially overlapping dapB mRNA; Chao et al., 2012) and MicL (overlapping cutC; 

Guo et al., 2014).  

Type II sRNAs lack an independent promoter and originate by processing of the 

parental mRNA (Fig. 1.10 B). Thus, in this case the sRNA level is strictly dependent 

on the synthesis of the parent RNA (Chao et al., 2012). In most cases, RNase E 

is the endoribonuclease responsible for releasing the sRNA  (Mackie et al., 2013; 

Clarke et al., 2014). An early discovered example of type II sRNA is DicF, derived 

from a polycistronic prophage mRNA that encodes a protein involved in cell-division. 

The importance of type II sRNAs has increased with the characterization of sRNAs 

with established roles in bacterial physiology. SroC is released by RNase E-mediated 

A B

Fig. 1.10: Alternative sRNA biogenesis pathways from the 
3’-UTRs of mRNAs. (A) A sRNA can be independently 
transcribed from an internal promoter (red) within the 
mRNA gene, and bears a characteristic 5’-PPP end. (B) 
sRNAs can be processed by ribonucleases (yellow) from 
parental mRNAs, and bear a 5’-P ends; CDS indicates 
mRNA coding sequence. Image adapted from Myiakoshi 
et al,, 2015a.
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processing of the first cistron of the gltIJKL polycistron and regulates amino acid 

pathways. CpxQ is similarly cleaved from the 3’-UTR of cpxP mRNA and is involved 

in envelope stress responses (Chao and Vogel, 2016). GadF is processed from the 

3’-UTR of gadE and regulates acid-stress responses (Melamed et al., 2016). A ProQ-

associated sRNA, RaiZ that represses in trans the mRNA of histone-like protein HUα, 

is also released by processing (Smirnov et al., 2017).

Type I sRNAs have a 5′-triphosphate (5′ -PPP), whereas type II sRNAs possess a 

5’-mono phosphate (5’-P) as a result of endonucleolytic cleavage of the parent RNAs 

(Chao et al., 2012; Myiakoshi et al., 2015a). As mentioned above, 5’-mono phosphates 

provide a regulatory advantage as they promote target cleavage by RNase E (Bandyra 

et al., 2012). The propensity for RNase E-mediated degradation may also explain why 

5’-P bearing sRNAs are not readily detected in vivo. 

Global studies, such as mapping of 5’-processed transcripts by 5’-end dependent 

exonuclease treatment followed by RNA-seq (Thomason et al., 2015), RILseq 

(Melamed et al., 2016), RNase E CLASH (Waters et al.,2017) and TIER-seq (Chao 

et al., 2017) not only revealed a large number of 3’-UTR-derived candidate sRNAs, 

but also identified other transcript classes that can serve as resevoirs for sRNAs 

(Lalaouna et al., 2016). This is not surprising, given that RNase E not only degrades 

mRNAs (Hui et al., 2014), but is also involved in rRNA and tRNA processing (Apirion, 

1978; Kime et al., 2014). Collectively, these observations strongly argue that RNA 

processing to yield regulatory molecules is a prevalent event.

 

The detailed characterization of more sRNAs from 3’ regions of transcripts is bound to 

reveal more non-canonical mechanisms of sRNA regulation. For example, most RNA 

sponges that antagonize sRNAs are generated by processing/degradation (Lalaouna 

et al., 2015; Myiakoshi et al., 2015b), and the specific features of this type of sRNAs 

may be correlated with specific regulatory mechanisms. 
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1.8.	 Unravelling the roles of sRNAs: targetome-identification based 

approaches

To date, over 200 sRNAs have been identified in E. coli and Salmonella, but most 

of these regulatory molecules have unassigned functions. Discerning sRNA-target 

interactions is essential for understanding the roles of sRNAs in the cellular networks.

To gain a global understanding of the sRNA-mediated reshaping of gene expression, 

the field has embarked in a quest to unravel the sRNA-target interaction networks.

 Two recent technological developments have contributed significantly to our current 

systems-level knowledge of sRNA regulatory networks: RNA immunoprecipitation 

and  CRAC/CLASH. Both are discussed below. 

Transcriptome-wide maps of Hfq binding  

RNA immunoprecipitation studies using antibodies against Hfq (RIP-seq) have 

produced the first maps of Hfq binding across the transcriptome in E.coli and Salmonella 

(Chao et al, 2012; Zhang et al., 2013; Bilusic et al., 2014). These studies indicated 

interactions of Hfq with hundreds of sRNAs and thousands of mRNAs, identified new 

sRNAs and provided insights into how Hfq facilitates sRNA-mRNA interactions. These 

methodologies have been improved by incorporation of UV cross-linking (CLIP-seq; 

Holmquist et al., 2016), enabling the identification of direct RNA targets and increased 

stringency in the purification of Hfq-RNA complexes (Hfq CRAC; Tree et al., 2014). 

These studies defined more precisely the patterns of Hfq-RNA target recognition, and 

enabled improved predictions of sRNA-target interactions (Holmquist et al., 2016). 

 

Transcriptome-wide computational prediction of sRNA targets

The targets of a sRNA can be predicted computationally by sequence based analyses 

– however, the degenerate patterns of base-pairing and lack of conservation of primary 

or secondary structures of targets have made accurate predictions challenging. To 

increase the stringency of in silico prediction algorithms, the requirement for a minimum 
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number of contiguous nucleotides to be involved in the interactions and predicted 

accessibility of the seed sequences have been incorporated (Peer and Margalit, 

2011).  Some of the most performant global sRNA-target prediction programs have 

included phylogenetic conservation of mRNA seed sequences to increase likelihood 

of discovering functional targets (e.g. CopraRNA; Wright et al., 2013). Even with these 

improvements, computational prediction methods are prone to both false-positives 

and false-negatives. Noteworthy, these methodologies should be revised as more 

regulatory mechanisms of sRNA action are being described. An obvious example is 

the discovery of sRNA sponges: available prediction tools report only the mRNA class 

of transcripts as potential targets, and all sRNAs and tRNAs are by default filtered 

out. Additionally, the sRNA-sRNA duplexes usually encompass short interacting 

sequences that may not be considered significant by current algorithms. Therefore, 

parameter adjustment in such screens becomes paramount and more challenging 

than ever, and must be accompanied by laborious benchmarking.

In vivo capture of sRNA-RNA interactomes

Given these caveats, recently developed in vitro and in vivo methods aimed to capture 

sRNA-target interactions. To capture the targets of individual sRNAs, an aptamer 

tagged sRNA can be expressed in vivo and used as a bait to purify interacting RNAs, 

which are subsequently sequenced (Imig et al., 2015; Lalaouna et al., 2015). This 

approach, referred to as MAPS, was the first to detect interactions between sRNAs and 

spacer regions from tRNA precursors (Section 1.6; Lalaouna et al., 2015). With GRIL-

seq an RNA ligase is expressed to ligate sRNA-mRNA duplexes in vivo to improve the 

capture of shorter duplexes (Han et al., 2016).  Although these approaches contributed 

to the identification of sRNA target suites for a number of sRNAs, thus enriching sRNA 

networks, they are limited to the investigation of a single sRNA at a time.

To obtain a truly global snapshot of sRNA networks in vivo, two recently published 

studies experimentally profiled transcriptome-wide sRNA-mRNA interactions in 

bacteria: RIl-seq (Melamed et al., 2016) and CLASH (Waters et al., 2017) (Fig. 1.11 



32

A). Both rely on proximity-based ligation of base-paired RNAs (Helwak et al., 2013), 

but differ in the experimental and computational approaches used for the detection 

of interacting RNAs (Hör and Vogel., 2017). Both approaches used Hfq or RNase 
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Fig. 1.11: Overview and brief comparison of CLASH and RIL-seq methodologies for capturing 
RNA-RNA interactions. (A) The critical steps of each method are numbered. Both methods 
employ in vivo UV crosslinking to stabilize RBP-RNA interactions. In CLASH, the RBP used 
as a bait for capturing RNA-RNA interactions is dual-affinity tagged (His6-TEV-3XFLAG) to 
allow stringent purification of RBP-RNA complexes. If the RBP binds RNA duplexes, these can 
be ligated into a hybrid RNA molecule using T4 RNA ligase. In RIL-seq, the RBP of interest 
is FLAG-tagged and purified under non-stringent conditions, and the RNA ends of RNAs in 
duplexes are ligated together. In both protocols, the high-throughput sequencing of hybrid RNAs 
yields chimeric reads that can be mapped to sRNA-target interactions using pipelines and 
statistical filters specific to each method. (B) The type of information that can be obtained by 
mapping intermolecular RNA interactions in vivo by using either method. CLASH was applied in 
enterhemorragic E.coli using RNase E as a bait, while RIL-seq was applied in E.coli using Hfq 
as a bait, to capture sRNA-target RNA interactions. The network shown represents RNA-target 
interactions uncovered by RIL-seq (Melamed et al., 2016) and is reproduced from Nitzan et al., 
2017.
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E as baits, proteins central to sRNA-mediated regulation, for isolating sRNA-target 

duplexes. These technologies yield single (95-99%) and chimeric reads (1-5%) that 

contain the sequences of the base-paired RNA fragments that were ligated to each 

other (Fig.1.11) (Kudla et al., 2011; Waters et al., 2017; Melamed et al., 2016).

The CLASH (UV-crosslinking, ligation and sequencing of hybrids) methodology is 

based on the CRAC protocol (Granneman et al, 2009). In CRAC (cross-linking and 

analysis of cDNAs), an improved CLIP method, the target protein has a tandem affinity 

tag that allows higher specificity purification of RBP-RNA complexes using stringent 

conditions (Granneman et al, 2009). CLASH originally was basically a bioinformatics 

data analysis pipeline that allowed direct identification of RNA-RNA duplexes in CRAC 

data, which are occasionally recovered by chance (Kudla et al., 2011). Later versions 

of CLASH incorporated new experimental steps, including a separate RNA-RNA 

ligation step, to enhance the generation and recovery of chimeric reads (Helwak et al., 

2013). For the first time, RNA-RNA interactions could be detected directly, by-passing 

computational predictions (Helwak and Tollervey, 2014). CLASH was employed to 

characterise RNA-RNA interactions in yeast, and the human miRNA interactome 

(Kudla et al., 2011; Helwak et al., 2013). Waters et al. implemented this method in E. 

coli to capture RNA-RNA duplexes bound to RNase E (Waters et al., 2017).

Briefly, CLASH involves tagging the protein of interest with a dual affinity tag (HTF: 

HIS6-TEV-3xFLAG or HTTP: HIS6-TEV-2x PROTA). The cells are then UV-irradiated 

to forge covalent bonds (“crosslink”) between the bait protein and the bound RNA. 

Subsequently, the protein of interest is purified under very stringent and denaturing 

conditions to ensure that only RNAs that are covalently attached to the proteins 

are purified (Fig. 1.11 A). A fraction of the RNA molecules covalently bound to the 

protein represent RNA-duplexes, which are then joined together by RNA ligation into 

a single chimeric RNA fragment (Kudla et al., 2011; Helwak et al., 2013). The chimeric 

reads are then extracted from the sequencing data using established bioinformatics 

approaches (Travis et al., 2014). In silico folding of the fragments of the chimeric 

reads makes it possible to determine how the two RNA fragments form a duplex.
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 Performing CLASH in bacteria is certainly not trivial: An initial attempt to apply CLASH 

in enterohemorrhagic E.coli using HTF-tagged Hfq as a bait yielded an unexpectedly 

low recovery of chimeric reads (Tree et al., 2014; Waters et al., 2017; Hor and Vogel., 

2017). Switching the bait to RNase E led to a much higher recovery of hybrid reads 

(Waters et al., 2017).

RIL-seq is in principle similar to CLASH (Fig. 1.11 A), but uses a single epitope tag 

(such as FLAG) to purify Hfq and associated sRNA-RNA duplexes, and non-denaturing 

or semi-denaturing conditions to purify these duplexes (Melamed et al., 2016). The 

authors postulate that non-stringent purification conditions preserve the integrity of the 

Hfq hexamer, thus maintaining it as a scaffold onto which RNA-RNA interactions are 

also better preserved during capture. Therefore, compared to CLASH, RIL-seq should 

also enrich weaker and transient interactions. However, since Hfq is associated with 

many RNAs in vivo (e.g. rRNA, tRNA) even non-specifically, low stringency purification 

implies a higher risk of capturing spurious RNA-RNA interactions. To tackle this, the 

accompanying bioinformatics pipeline adds stringency to the method by filtering 

chimeric reads for statistical enrichment (Melamed et al., 2016).

 

Interestingly, despite their major differences, RIL-seq and CLASH recover a roughly 

similar count of sRNA-mRNA hybrids in comparable growth conditions (Waters et al., 

2017). For both datasets, a significant proportion of the hybrids overlap the seeds of 

known sRNA-target pairs, thus they are likely to represent true sRNA-target interactions. 

Known sRNA-mRNA interactions were recovered by both methods – for RIL-seq the 

overlap was 56 % for all growth conditions studied (Hör and Vogel., 2017). Moreover, 

similar sRNA seed regions and motifs were identified for abundant, well described 

sRNAs (e.g. ArcZ, MgrR, GcvB, CyaR) (Hor and Vogel., 2017). Corroborated and 

accompanied by several experimental validations, these observations indicate that 

both methods can reliably detect sRNA-RNA interactions in vivo. Each dataset has 

significantly expanded the established networks for the conditions and organisms they 

were applied in, and revealed major rewiring of networks between growth conditions 

(Melamed et al., 2016).  
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 Besides providing sRNA interactome maps in E. coli (Fig. 1.11 B), RIL-seq and CLASH 

provided key mechanistic insights into sRNA and RNase E mechanisms of action 

(Waters et al., 2017) and sRNA-mRNA pairs cycling on Hfq (Melamed et al., 2016). 

Notably, both methods challenge established views of sRNA-mediated regulation. 

First, the recovery of sRNA-sRNA interactions suggests that sRNA sponges are more 

prevalent than previously anticipated (Waters et al., 2017; Melamed et al., 2016). The 

recovery of hybrids between 3’-UTRs and 5’-UTRs of distinct mRNAs indicates more 

3’-UTRs may contain novel sRNAs (Melamed et al., 2016). Moreover, cis-encoded 

sRNAs can also have trans-encoded targets (e.g. GadY, ArrS; Melamed et al., 2016). 

Both studies indicate that the classical view that Hfq-dependent sRNAs mainly act 

in the start codon window of their mRNA targets to inhibit translation may have more 

exceptions than previously considered, as hundreds of mRNAs appeared to be 

targeted outside this region (Hör and Vogel., 2007). RIL-seq and CLASH using a 

single protein as a bait do not have the power to establish on their own whether sRNAs 

negatively or positively regulate their targets. However, comparison of Hfq CRAC 

data (Tree et al., 2014) with RNase E CLASH data (Waters et al., 2017) revealed 

coincidences of RNase E and Hfq sites that support a model whereby RNase E is 

recruited immediately downstream of the Hfq binding site and cleaves the target, 

triggering its degradation (Waters et al., 2017). Similarly, comparison of the RIL-seq 

data with multiple available transcriptome and ribosome profiling datasets allowed 

the authors to make inferences on the consequences of sRNA-mRNA base-pairing, 

the strength of the interactions and their association with Hfq (Melamed et al., 2016).

 An even more recent report (Liu et al., 2017) employed a modified CLASH protocol that 

aimed to remove the requirement for RBPs as baits for RNA-RNA duplex purification. 

Instead, the method employs aminomethyltrioxsalen treatment coupled irradiation 

at 365 nm to generate inter-strands adducts between juxtaposed uridine bases, to 

lock the interactions. After statistical filtering, only 29 transcript pairs were significant 

interactions, and only a few of these were sRNA-mRNA interactions. Conceptually, this 

approach has potential, however, the authors acknowledge that there are important 

technical problems to be overcome (Liu et al., 2017).
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 The application of RIL-seq and RNAse E CLASH in E. coli constitutes a major advance 

in unravelling sRNA networks, as they are the first studies that simultaneously capture 

the Hfq-mediated interactome for all sRNAs. Although, globally, both methodologies 

revealed common trends, a thorough comparison between the two datasets was not 

performed. Additionally, in either dataset, due to biases (e.g. ligation biases, spurious 

RNA-RNA interactions, intrinsic nature of RNA-RNA base-pairing), true biological 

interactions can still be over- or underrepresented, in spite of careful experimental 

considerations and statistical filtering (Melamed et al., 2016). This leaves the open 

question whether the frequency of recovered hybrids for each sRNA or mRNA is 

truly reflective of their regulatory activity, which can be at least partially addressed by 

optimizing the quantitative robustness of such methodologies.

1.9.	 Unravelling the roles of sRNAs in regulatory networks

While regulators and targets for many base-pairs have been identified and validated, 

and an outstanding number of interactions have been recently uncovered (Melamed 

et al., 2016; Waters et al., 2017), little is known about how sRNAs participate in these 

regulatory networks to help cells respond to environmental changes.

Network motifs have been extensively described for transcriptional networks, but 

given the numerous roles in metabolic and stress response pathways and the 

multifaceted nature of sRNA-mediated regulation, we need to incorporate sRNA post-

transcriptional networks into regulatory circuits to gain a complete understanding 

of gene expression changes during adaptive responses. Indeed, the importance of 

sRNAs in regulatory networks has been increasingly recognized (Nitzan et al., 2017; 

Beisel and Storz, 2010). 

sRNAs in network motifs

TFs and sRNAs control target genes and affect regulatory networks both locally and 

globally by employing regulatory circuits - defined connected patterns of regulators and 
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targets. Network motifs are circuits that are recurrent and widely utilized in networks 

(Milo et al., 2002). Due to the differences in TF-based regulation and sRNAs-based 

regulation, it is advantageous for the cell to integrate both in mixed network motifs 

to ensure coordinated and rapidly fine-tune the kinetics of responses (Section 1.10). 

Some of the most common mixed network motifs are the single input module (SIM), 

dense overlapping regulon (DOR), feedforward loop (FFL) and feedback loop. SIMs 

have a minimal architecture, in which a single regulator regulates the expression of 

multiple genes. Most sRNAs in SIMs repress multiple genes in response to changes 

in the environment (Fig. 1.12 A). By employing SIMs, cells can coordinate positive 

or negative regulation of multiple genes and introduce hierarchical ordering within 

networks, presumably dictated by how favourable a regulator-target interaction is 

(Beisel and Storz, 2010; Levine et al., 2007; Section 1.10). Either the TF or sRNA can 

be at the top layer. A canonical example of such circuitry is the Fur-repressed RyhB 

regulon. RyhB becomes activated by low-iron conditions and downregulates many 

transcripts coding for iron-utilizing proteins (Masse et al., 2005). A DOR combines 

multiple overlapping SIM - each responding to a different signal (Beisel and Storz, 

2010), thus DORs are particularly suited for integration of simultaneous multiple 

signals. Simple DORs can involve circuitry from multiple sRNAs to a transcriptional 

regulator. In more complex DORs multiple TFs that regulate multiple sRNAs affect 

overlapping targets, as exemplified by outer membrane porin (OMP) regulation (Fig. 

1.12 B)  (Vogel., 2009).

Mixed FFLs and feedback loops: more complex integration of sRNAs in 

regulatory circuits 

Understanding the architecture of FFLs is important, as they are essential building 

blocks of complex networks (Milo et al., 2002). Given three genes, A, B and C, a 

feedforward loop (FFL) is a network motif where A regulates expression of B and 

A and B co-regulate expression of C (Alon, 2007).  Each FFL has therefore two 

regulatory arms for the regulation of C, namely, a direct arm, where A regulates C 

and an indirect arm, where A regulates C via B. A coherent FFL is defined as a FFL 
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in which both arms work in concert/ together to achieve a regulatory effect (e.g. they 

are both activating C). In an incoherent FFL, both arms work in opposition to activate 

or repress C (each arm leads to a different outcome). Since each of the three edges 

of FFLs can represent either activation or repression, there are eight combinations 

defining FFL types (Mangan and Alon, 2003; Nitzan et al., 2017).  Moreover, FFLs 

can display different logic gates for their targets’ dual regulation: ‘AND’ logic, where 

both arms are required for regulation of C, or ‘OR’ logic, where one arm is sufficient 

(Beisel and Storz, 2010). When C is instead a set of multiple genes, a FFL is known 

as a multi-output FFL.FFLs are a main building block of transcriptional networks in E. 

coli (Alon, 2007). 

sRNAs expression is controlled by TFs and σ factors but TFs are also known to be 

controlled by sRNAs. Therefore, mixed FFLs consisting of TFs and sRNAs are common 

A

B

SIM

DOM

Fig. 1.12: Examples of single-input module (SIM) and dense-
overlapping module (DOM) involving sRNAs in enterobacteria. 
Nodes in pink indicate sRNAs, nodes in blue indicate transcription 
regulators, nodes in orange indicate target genes (A) RybB 
downregulates the expression of many genes involved in 
iron metabolism in response to iron depletion. (B) Major porin 
expression regulation is tightly regulated in response to various 
environmental conditions by many sRNAs: one sRNA can 
downregulate multiple porins and non-porin targets and the same 
target can be downregulated by multiple sRNAs. Image adapted 
from Shimoni et al., 2007.
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and can have two configurations: an sRNA can occupy the top layer, regulating the 

target both directly and indirectly through a TF. Alternatively, a TF can occupy the top 

node, regulating the target both directly and indirectly via a sRNA. 

FFLs and their combination into more complex networks are exemplified by the 

regulation of the balance between ompC and ompF expression during osmotic stress 

(Nitzan et al., 2017). The switch between ompC and ompF expression is controlled 

by two coupled FFLs with a common regulator, OmpR (TF) at the top (Fig. 1.13 A). 

During osmotic stress, the OmpR-MicF-ompF module downregulates ompF and 

prevents its transcriptional leakage (OmpR represses ompF and activates MicF that 

also represses the target) (Ramani et al., 1994), whereas the second FFL, OmpR-

MicC-ompC leads to delayed OmpC synthesis (MicC represses ompC and OmpR 

represses MicC while activating ompC) (Chen et al., 2004). 

Feedback loops are closed loops in which a regulator controls the expression of its 

FFLs Negative feedback loops

A B

Fig. 1.13: Mixed regulatory circuits involving transcriptional 
regulation and post-transcriptional regulation by sRNAs. (A) 
Coherent feed-forward loops (FFLs). In response to osmotic 
stress, the OmpR transcription factor activates production of 
MicF sRNA, which represses OmpF protein synthesis (indirect 
arm). OmpR also directly represses ompF transcription (direct 
arm). At the same time, OmpR inhibits transcription of MicC 
sRNA, which inhibits translation of ompC. OmpR also activates 
directly the ompC transcription. The coupling of these two 
FFLs regulates the balance in OmpC and OmpF expression. 
(B) Negative feedback-loops: Fur represses transcription of 
RyhB sRNA, which in turn inhibits Fur synthesis. σE sigma 
factor (RpoE) activates RybB sRNA transcription, which in turn 
negatively regulates RpoE synthesis.  Image adapted from 
Shimoni et al., 2007.
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own gene. Positive feedback loops (the loop enhances sensitivity to the input signal) 

can amplify the signal and slow down the regulatory response (Maeda and Sano, 

2006), whereas negative feedback loops can speed up a regulatory response and 

alter the relationship between signal and regulated genes (Beisel and Storz, 2010). 

All examples of feedback loops involving sRNAs are negative feedback loops, where 

a TF regulates a sRNA, which in turn regulates the TF. sRNAs must employ mixed 

FFLs to to feedback on their own transcription. 

A positive-negative configuration, in which one regulation is positive whilst the other 

is negative, can induce a non-steady-state behaviour characterized by oscillatory 

expression dynamics. (Liu et al., 2011). A simple example of positive-negative 

configuration (Fig. 1.13 B) is the module σE-RybB, in which σE activates transcription 

of the sRNA gene rybB and RybB in turn represses σE synthesis via a homeostatic 

loop (Thompson et al., 2007).

A negative-negative configuration in which the TF and sRNA repress each other (e.g. 

Fur-RyhB) can induce two alternative internal states in response to different stimuli 

(bistabilty) (Nitzan et al., 2017; Liu et al., 2011). 

These scenarios can greatly affect gene expression kinetics, and with bistability and 

oscillations, the post-transcriptional repression is more robust than by transcriptional 

repression alone (Liu et al., 2011). 

1.10.	Advantages of sRNA-mediated regulation

Although here I presented only a few selected examples, these types of regulatory 

network motifs are controlling every pathway and adaptive response in bacteria. The 

inclusion of sRNAs in gene expression control circuits is advantageous due to the 

inherent properties of sRNA-mediated regulation. With respect to the binary nature of 

the effect on gene expression (on or off), TFs and sRNAs may at a first glance seem 

redundant. However, based on the regulatory modes and the dynamics of responses 
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they endow, TFs and sRNAs are very distinct. The unique features of regulation by 

sRNAs, uncovered by quantitative studies, allow it to complement transcriptional 

regulation, and may explain the widespread physiological role of sRNAs in stress 

responses (Levine and Hwa, 2008).

Some conventional advantages of sRNA-mediated regulation include additional 

layers of control, reduced resource requirements, faster responses and unique 

regulatory features (Beisel and Storz, 2010). Quantitative effects of TFs and sRNA 

on their targets have been best described for negative regulation. Although TFs have 

a more dramatic effect on changes in gene expression than sRNAs (Hussein and 

Lim, 2012), regulation by sRNAs is faster than by TFs (Shimoni et al., 2007). It has 

been rationalised that fast-regulation by sRNAs stems from the fact that sRNAs act 

directly on the existing pool of transcripts with a decreased time-delay, and from 

the fact that compared to TFs, sRNA expression bypasses the need for translation 

(Shimoni et al., 2007). Conversely, TFs only alter the synthesis of future mRNAs. 

Thus, although a TF represses transcription of a target, each previous transcription 

event is still amplified by translation, because existing target mRNAs keep being 

translated (until they naturally decay) (Obzudak et al. 2002). sRNAs, on the other 

hand, can directly destabilize the transcript or inhibit translation, producing a faster 

(as well as additive) effect on expression of the target. It was also proposed that the 

dynamics of target expression are determined to a significantly greater extent by the 

steady states, clearance rates, and response curves of the regulators (Hussein and 

Lim, 2012). Either way, the consensus is that changes in sRNA expression lead to 

changes in target gene expression with a minimal delay (Nitzan et al., 2017), and 

indeed, compared to TFs, sRNAs have higher clearance rates (Hussein and Lim, 

2012). This renders sRNAs particularly important in regulation of stress responses, 

which require rapid alterations in gene expression. 

Although TF-mediated regulation is primarily determined by their binding to cognate 

DNA sequences, the major determinant in sRNA-mediated regulation is the expression 

level of the sRNA. Basically, the more target RNAs for a given sRNA are expressed, 
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the more sRNA molecules are expected to be in a duplex, hence unavailable to other 

targets, and vice-versa. Consequently, the sizes of free sRNA and free mRNA pools 

for a given sRNA-target pair are inversely correlated (Nitzan et al., 2017). This renders 

a role for weak sRNA targets in buffering the expression noise of a few preferential 

targets of a particular sRNA (Jost et al., 2013). 

Moreover, sRNAs have been shown to establish gene expression thresholds for their 

targets, that are dependent on the transcription rate of the sRNA, reflective of changes 

in the external conditions. Given a sRNA with a unique target, if the transcription rate 

of the target RNA is lower than that of sRNA repressor, then most of the targets will 

pair with the sRNA, resulting in effective sRNA-mediated repression. Conversely, if the 

target is transcribed at higher rates than the sRNA, most sRNAs will base-pair with the 

target, but excess mRNAs can still be translated into protein. Consequently, the level 

of expressed protein will be linearly proportional to the difference between the two 

transcription rates, a behaviour known as the threshold-linear response (Levine and 

Hwa, 2008) (Fig. 1.14B). Below this dynamically defined threshold, sRNAs suppress 

random fluctuations and buffer translational noise and transient signals. Above the 

threshold, the effect of sRNA on target expression is negligible (Levine and Hwa, 

2008). When expressed simultaneously, different target RNAs of the same sRNA 

regulon will compete for association with the sRNA. The outcome will depend on 

the relative levels of the targets and their affinities for interaction (Nitzan et al., 2017; 

Levine and Hwa, 2008). This scenario is complicated by the fact that sRNA-target 

RNA binding not only lead to target down-regulation, but also can lead to coupled 

degradation, thus depleting the regulator (Levine et al., 2007). This is illustrated by 

the activity of RNA sponges (Section 1.6). The competition of different mRNAs for 

an sRNA can be viewed as a sRNA-mediated crosstalk between mRNAs, a target-

centric view (Bossi and Figueroa-Bossi, 2016), similar to the competing endogenous 

RNA hypothesis for miRNA regulation in eukaryotes (Salmena et al., 2011). Moreover, 

competition for Hfq (Section 1. 5) and other RBPs also has to be taken into account 

when estimating mutual effects of sRNAs in regulatory networks (Bossi and Figueroa-
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Bossi, 2016).

Finally, the combination of TF- and sRNA-mediated regulation endows regulatory 

circuits with distinct dynamic properties and help reduce leakiness (Beisel and Storz, 

2010). There are still factors that are absent in our current interpretation of sRNA 

regulatory networks. For instance, the recent enrichment with sRNA-mRNA interactions 

data is not sufficient to reveal the directionality and functionality of regulatory circuits, 

in absence of information on the outcome of pairing. Another challenge is the inclusion 

of effects rendered by RBPs and their dynamics of binding to RNA on the topology of 

sRNA networks. 
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Fig. 1.14: Kinetic and quantitative considerations of sRNA mediated regulation. (A) Regulation 
by sRNAs is effective faster than that by TFs. Repression of a single gene expressed as 
level of target expression (y-axis) versus time (x-axis) (B) The threshold-linear response. 
The expression of target gene is effectively repressed as long as its transcription rate is 
lower than that of regulator sRNA. Below the threshold (indicated by arrow) at which sRNA 
transcription rate is equal to that of the target, sRNAs supress fluctuations and transient 
signals. Above the threshold, the effect of sRNA is minimal. Figure reproduced from Nitzan 
et al., 2017
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2.	 Materials and methods

2.1.	 Bacterial strains and culture conditions

An overview of the bacterial strains used in this study is provided in Table 2.1. 

The E. coli MG1655 or TOP10 strains served as parental strains. The E. coli K12 

strain used for CLASH experiments, MG1655 hfq::HTF, was kindly provided by Jai 

Tree (Peter Doherty Institute, Melbourne). Hfq was chromosomally tagged in an 

MG1655 background with the dual-affinity tag HTF (containing His6, a TEV protease 

cleavage site, and a 3xFLAG) by allelic exchange using the pTOF series of vectors 

(Tree et al., 2014; Merlin et al, 2002). This strain was tested for normal Hfq-mediated 

regulation (Tree et al, 2014). 

Cells were grown in Luria-Bertani medium (LB) at 37°C under aerobic conditions with 

agitation at 200 rpm. The media were supplemented with antibiotics where required 

(Table 2.1) at the following concentrations: ampicillin - 100 µg/ml, chloramphenicol - 

25 µg/ml, kanamycin - 50 µg/ml.

Table 2.1: E. coli strains used in study
Strain Genotype Reference

E.coli K12 MG1655 F-  lambda-  rph-1 Blattner et al., 1997
E.coli K12 MG1655 

hfq::HTF MG1655 hfq::HTF Tree et al., 2014

N3431
Hfr(PO1) lacZ43(Fs) 
λ- rne-3071(ts) relA1 

spoT1 thiE1
Babitzke et al, 1991

DH5α

fhuA2 lac(del)
U169 phoA glnV44 
80'ΦlacZ(del)M15 

gyrA96 recA1 relA1 
endA1 thi-1hsdR17

Taylor et al., 1993

TOP10

F- mcrA Δ( mrr-hs-
dRMS-mcrBC) 
Φ80lacZΔM15 
Δ lacX74 recA1 

araD139 Δ( 
araleu)7697 galU 
galK rpsL (StrR) 

endA1 nupG

Invitrogen
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2.2.	 Construction of mRNA-superfolder GFP fusions

Table 2.2 lists all the plasmids, Table 2.3 all gene fragments, Tables 2.4 and 2.5 

all primers used for cloning procedures in this work, respectively. To construct 

constitutively expressed, in-frame mRNA-sfGFP fusions for the fluorescence reporter 

studies, the 5’-UTR, start codon and first ~5 codons of target genes were cloned under 

the control of PLtetO-1 promoter in a pXG10-SF backbone as previously described 

(Urban and Vogel, 2007; Urban and Vogel, 2009;  Corcoran et al, 2012). In cases 

where a membrane localisation signal was present, the respective sequence was 

excluded from the fusion design (e.g, OmpC). Derivatives of the target–GFP fusion 

plasmids harbouring seed mutations (SM) were generated using mutated gene-

fragments (IDT) (Table 2.3).

For backbone preparation, 4 µg of pXG10-SF (4.7 kb) was digested with 0.9U NheI 

and 0.7U NsiI restriction enzymes (NEB) at 37ºC for 3 hours to remove the lacZ insert, 

and subsequently dephosphorylated with 1U rSAP (NEB) for 1 hour. After resolving 

the samples on a 1% agarose gel, the 4.1 kb band was gel-purified using the MinElute 

gel-extraction kit (Qiagen) according to manufacturer’s instructions.

Table 2.2: . Plasmids used in study

Plasmid Description Comment Origin, 
marker Reference

pXG-0

PLtetO-1 
luciferase 

expression 
vector

Cell autoflu-
orescence 

control for GFP 
reporter studies

pSC101*, 
CmR

Urban and Vogel, 
2007

pXG-1
PLtetO-1 GFP 

expression 
vector

Full-length GFP 
control for GFP 
reporter studies

pSC101*, 
CmR

Urban and Vogel, 
2007

pxG10-SF

PLtetO-1 su-
perfolder GFP 
fusion vector; 

lacZ insert

backbone for 
sfGFP plasmids

pSC101*, 
CmR

Corcoran et al, 
2012

pXG10SF::
ompC

sfGFP report-
er plasmid 

containing the 
ompC 5’UTR 
plus 12 amino 

acids

Constitutive* 
expression of 
OmpC-sfGFP

pSC101*, 
CmR This study
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pXG10SF::
ompCSM

sfGFP report-
er plasmid 
containing

Constitutive* 
expression of 
OmpCSM-sf-

GFP

pSC101*, 
CmR This study

pXG10SF::
ompA

sfGFP report-
er plasmid 
containing

Constitutive* 
expression of 
OmpA-sfGFP

pSC101*, 
CmR This study

pXG10SF::
ompASM

sfGFP report-
er plasmid 
containing

Constitutive* 
expression of 
OmpASM-sf-

GFP

pSC101*, 
CmR This study

pXG10SF::tsx
sfGFP report-

er plasmid 
containing

Constitutive* 
expression of 

Tsx-sfGFP

pSC101*, 
CmR This study

pXG10SF::tsx-
SM

sfGFP report-
er plasmid 
containing

Constitutive* 
expression of 
TsxSM-sfGFP

pSC101*, 
CmR This study

pXG10SF::
rpoE

sfGFP report-
er plasmid 
containing 

the full-length 
rpoE gene

Constitutive* 
expression of 
RpoE-sfGFP

pSC101*, 
CmR This study

pBAD+1

pBADmycHis 
A expression 
vector with 
MCS re-

moved from 
+1 to termi-

nator

Control for 
overexpression 

studies

pBR322, 
AmpR Tree et al, 2014

pBAD+1::MicC
MicC cloned 
at the +1 site 
of pBAD+1

Inducible 
expression of 

MicC 

pBR322, 
AmpR This study

pBAD+1::RybB
RybB cloned 
at the +1 site 
of pBAD+1

Inducible 
expression of 

RybB 

pBR322, 
AmpR This study

pBAD+1::MdoR
MdoR cloned 
at the +1 site 
of pBAD+1

Inducible 
expression of 

MdoR 

pBR322, 
AmpR This study

pBAD+1::
MdoRSM

MdoRSM 
cloned at the 

+1 site of 
pBAD+1

Inducible 
expression of 

MdoRSM

pBR322, 
AmpR This study

pJET1.2/blunt

cloning vector 
with MCS 

for blunt-end 
PCR products

- pBR322, 
AmpR Thermo Fisher

pJET1.2::malG

pJET1.2 with 
full-length 

malG cloned 
in the MCS

Plasmid for 
MdoR prim-
er extension 

ladder

pBR322, 
AmpR This study
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Table 2.3: Synthetic gene fragments cloned into pXG10-SF-derived backbone 

to generate mRNA-sfGFP fusions
Gene 

fragment Sequence (5' → 3')

OmpCSM gtttttATGCATTGCCGACTGATTAATGAGGGTTAATCACATACGTCAC-
CGTATTTTAAGCAAATAAAGGCATATAACAGAGGGTTAATAACat-
gAAAGTTAAAGTACTGTCCCTCCTGGTCCCAGCTAGCaaaaac

OmpA tgacATGCATACATCGCCAGGGGTGCTCGGCATAAGCCGAAGA-
TATCGGTAGAGTTAATATTGAGCAGATCCCCCGGTGAAGGAT-
TTAACCGTGTTATCTCGTTGGAGATATTCATGGCGTATTTTGGATGA-
TAACGAGGCGCAAAAAATGAAAAAGACAGCTATCGCGATTGCAGT-
GGCACTGGCTGGTTTCGCTGCTAGCgtca

OmpASM tgacATGCATACATCGCCAGGGGTGCTCGGCATAAGCCGAAGA-
TATCGGTAGAGTTAATATTGAGCAGATCCCCCGGTGAAGGAT-
TTAACCGTGTTATCTCGTTGGAGATATTCATGGCGTATTTTGGAT-
GATAACGAGGCGCAAAAAATGAAAAAGACAGCTATCGCGATACGT-
CACCGTGACGGCTGGTTTCGCTGCTAGCgtca

Tsx tgacATGCATATCACCTGGATTGATAGTAAAAGTTTGCAACAAG-
GGCGAAAGTCAGTACAATCCCCGCCCGAATGTGTGTAAACGT-
GAACGCAATCGATTACGTAAATGATAGAACTGTGAAACGAAACATAT-
TTTTGTGAGCAATGATTTTTATAATAGGCTCCTCTGTATACGAAATAT-
TTAGAAACGCAATTTGCGCCTTTTTCACTCCCGCAAGGGAT-
TTTCAAACAGTGGCATACATATGAAAAAAACATTACTGGCAGCTAG-
Cgtca

TsxSM tgacATGCATATCACCTGGATTGATAGTAAAAGTTTGCAACAAG-
GGCGAAAGTCAGTACAATCCCCGCCCGAATGTGTGTAAACGT-
GAACGCAATCGATTACGTAAATGATAGAACTGTGAAACGAAACATAT-
TTTTGTGAGCAATGATTTTTATAATAGGCTCCTCTGTATACGAAATAT-
TTAGAAACGCAATTTGCGCCTTTTTCACTCCCGCAAGGGAT-
TTTCATTGTCACCGTATGATATGAAAAAAACATTACTGGCAGCTAG-
Cgtca

RpoE tgacATGCATGCAGTTAAATGGGCATTTCTACACAGATAATGCGATGT-
TCAGATTCTGTAGACTTATAATGATAGATAATGATCCGTCTACAGCAT-
GACAAACAAAAACAGATGCGTTACGGAACTTTACAAAAACGAGA-
CACTCTAACCCTTTGCTTGCTCAAATTGCAGCTAATGGAGTGGCGT-
TTCGATAGCGCGTGGAAATTTGGTTTGGGGAGACTTTACCTCG-
GATGAGCGAGCAGTTAACGGACCAGGTCCTGGTTGAACGGGTC-
CAGAAGGGAGATCAGAAAGCCTTTAACTTACTGGTAGTGCGCTAT-
CAGCATAAAGTGGCGAGTCTGGTTTCCCGCTATGTGCCGTCGGGT-
GATGTTCCCGATGTGGTACAAGAAGCTTTTATTAAAGCCTATCGTG-
CGCTGGATTCGTTCCGGGGAGATAGCGCTTTTTATACATGGCTG-
TATCGGATTGCTGTAAATACAGCGAAAAATTACCTGGTTGCT-
CAGGGGCGTCGTCCACCTTCCAGTGATGTGGATGCCATT-
GAAGCTGAAAACTTCGAAAGTGGCGGCGCGTTGAAAGAAAT-
TTCGAACCCTGAGAACTTAATGTTGTCAGAAGAACTGAGACAGA-
TAGTTTTCCGAACTATTGAGTCCCTCCCGGAAGATTTACGCATGG-
CAATAACCTTGCGGGAGCTGGATGGCCTGAGCTATGCTAGCgtca
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Table 2.4: Oligonucleotides used for the cloning procedures

# Oligonucleotide Sequence (5' → 3') Purpose

672 ompC_NsiI_JVO-0428 G T T T T T A T G C A T T G C -
CGACTGATTAATGAGG

PCR primers to amplify 
ompC for ligation into 

pXG10SF = pOmpC::gfp

673 ompC_NheI_JVO-0429 GTTTTTGCTAGCTGGGAC-
CAGGAGG

PCR primers to amplify 
ompC for ligation into 

pXG10SF = pOmpC::gfp

675 p-ZE-CAT TGGGATATATCAACGGTG-
GT

sequencing primer for ver-
ification of ligation of PCR 

product into pXG10SF 

681 ompC_pcr_rev GCCGTAGTTACGACCGTA
PCR primers to check in-
sertion of ompC by colony 

PCR

682 ompC_pcr_fwd CGCCATTCCGCAATAATCT-
TA

PCR primers to check in-
sertion of ompC by colony 

PCR

683 Ec_malG_fwd GCTGCTGATTAAACCGCT-
GAC

PCR primer  for malG lad-
der for primer extension

684 Ec_malG_rev CCGTGACTCAGAGCACGAA PCR primer  for malG lad-
der for primer extension

710 pBAD+1_XbaI_fwd AAAAATCTAGATTTGCCT-
GGCGGCAGTAGCG

reverse primer to generate 
empty pBAD+1 

711 pBAD+1_5P_rev 5P-TATGGAGAAACAGTAGA-
GAG

fwd primer to generate 
empty pBAD+1 

712 MdoR_pBAD_short A A A G AT G T T G T T C T G C -
CAATG

rev primer for inverse 
PCR - pBAD+1

713 seq_pxg10SF_insert_
fwd

GAAAGTTGGAACCTCT-
TACGTG

fwd sequencing primer 
to check insertion into 
pXG10-SF backbone

715 sequencing_pBAD+1_
fwd ATGCCATAGCATTTTTATCC

fwd sequencing rimer 
to check insertion into 

pBAD+1 backbone

716 sequencing_pBAD+1_
rev

CGCTACTGCCGCCAGG-
CAAA

rev sequencing rimer 
to check insertion into 

pBAD+1 backbone

To prepare the insert, the target region of mRNA of interest was either amplified 

by PCR from E. coli genomic DNA (for OmpC) using primers with NsiI and NheI 

restriction sites (Table 2.4), or synthesised as gene fragments flanked by NsiI and 

NheI recognition sites at 5’- and 3’ end, respectively (IDT; Table 2.3). 10-20 ng of PCR 

product or gene fragment was digested with NheI and NsiI in a 16 µl reaction for 1 

hour at 37ºC and purified with a DNA Clean and Concentrator  kit (Zymo Research) 
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according to kit instructions, then eluted in 8 µl DEPC water. For each mRNA-sfGFP 

fusion a small-scale ligation reaction (5 µl) using 12 ng of digested backbone and 

insert in a 3:1 insert:backbone molar ratio and 100 U T4 DNA Ligase (NEB)  was 

incubated either for 3h at room temperature or 16°C overnight. The ligation reaction 

was transformed in TOP10 competent cells (Invitrogen, Table 2.1) by the heat-shock 

method and transformants were selected on chloramphenicol. Transformants were 

screened by restriction digest analysis and verified by Sanger sequencing (Edinburgh 

Genomics).

2.3.	 Construction of sRNA expression plasmids

For plasmid-borne over-expression of constructs, the sRNA gene of interest was cloned 

at the transcriptional +1 site under Para control by amplifying the pBAD+1 plasmid 

(Table 2.4) by inverse PCR. The pBAD+1 template is derived from pBADmycHis A 

(Tree et al., 2014).  The sRNA genes were synthesized as ultramers (IDT), which 

served as the forward primers (Table 2.5). To introduce mutations in the seed sequence 

of sRNAs (SM), the synthetic ultramer contained the desired mutation, namely the 

complement of the seed sequence. The reverse primer (oligo 712; Table 2.4) bears a 

monophosphorylated 5’-end to allow blunt-end ligation. 

Table 2.5: Ultramers used for cloning sRNAs in pBAD+1 backbone; to be used 

with reverse oligo 712

Ultramer Sequence (5' → 3')

pBAD+1+MdoR
AAAGATGTTGTTCTGCCAATGTTATGCCGCTGCACCCTCAACT-
TACGTTATCCCAACTTGTGACTGTTATTCGGCGCTCCACGGAG-
CGCCTTTTTTTTTTGCCTGGCGGCAGTAGCG

pBAD+1+MdoR SM
AAAGATGTTGTTCTGCCAATGAATACGGCGACGTCCCTCAACT-
TACGTTATCCCAACTTGTGACTGTTATTCGGCGCTCCACGGAG-
CGCCTTTTTTTTTTGCCTGGCGGCAGTAGCG

pBAD+1+RybB
GCCACTGCTTTTCTTTGATGTCCCCATTTTGTGGAGCCCAT-
CAACCCCGCCATTTCGGTTCAAGGTTGATGGGTTTTTTGT-
TTTGCCTGGCGGCAGTAGCG

pBAD+1+MicC

GTTATATGCCTTTATTGTCACAGATTTTATTTTCTGTTG-
GGCCATTGCATTGCCACTGATTTTCCAACATATAAAAAGA-
CAAGCCCGAACAGTCGTCCGGGCTTTTTTTTTTGCCTGGCGG-
CAGTAGCG
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The PCR cycling conditions were as recommended the polymerase manufacturer, 

with the exception that the annealing time was 3 min, and the annealing temperature 

was 50°C (Q5 DNA polymerase, NEB; with High GC buffer where necessary).The 

PCR reaction was digested with 10U DpnI (NEB) for 1h at 37ºC, then 5% of the PCR 

reaction was visualised by gel-electrophoresis for detection of the product. The rest of 

the PCR reaction was purified by ethanol precipitation. 

The sRNA-pBAD linear PCR product was circularized by self-ligation. The blunt-

end ligation was performed as above, using 20 ng PCR product and 300U T4 

DNA ligase. Ligations were transformed in DH5α competent cells for propagation. 

Positive transformants (selected on ampicillin) were screened by sequencing. The 

control plasmid pBAD+1 was constructed similarly by self-ligation of the PCR product 

generated from oligonucleotides 710 and 711 (Table 2.4). 

2.4.	 E. coli electroporation

The pBAD::sRNA and sfGFP plasmids constructed as in Section 2.2 (Plasmids 

pBAD::MdoR, pBAD+1, pBAD::MdoRSM, pBAD::rybB ;Table 2.2) were transformed in 

E.coli by electroporation. Cells were cultured in LB at 37ºC to OD600 of 2.0 and diluted 

1:100 in fresh LB, and further grown to OD600 0.3-0.4. Cultures (5 ml per electroporation) 

were centrifuged at 4ºC for 5 min at 3.5 krpm, then resuspended in 10-15 ml ice-cold 

10% glycerol and centrifuged 10 min at 3.5 krpm. This step was repeated for a total of 

three washes. After the final wash, residual glycerol was removed and the cell pellet 

was resuspended in 10% glycerol to concentrate the cells 100-fold. 75 µl of this cell 

suspension were added to ice-cold, 0.2 cm cuvettes (Biorad) containing 10-20 ng 

plasmid and pulsed in a BioRad cell-pulser with the following settings: 200 ohm, 25 

uF, 2.5 kV. Immediately after electroporation the cells were added to 1 ml warm LB 

and recovered for one hour at 37ºC with shaking at 300 rpm. Transformants were 

selected on antibiotics. 
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2.5.	 Radiolabeling of oligonucleotide probes

DNA oligonucleotides (Table 2.6) were labeled with 32P gamma-ATP with 10U T4 PNK 

(NEB) in 1XPNK buffer and 10 mM DTT at 37 °C. The reaction was purified using mini 

Quick Spin columns (Roche) to remove un-incorporated label as per manufacturer’s 

instructions, yielding a final concentration of 1 µM 32P-end-labeled probe. 

2.6.	 Northern Blot analysis

Cell pellets were resuspended in 100 µl GTC-Phenol and lysed by vortexing the cells 

for 5 min with 100 µl of acid-washed glass beads (425-600 µM diameter; Sigma). Total 

RNA was extracted from lysates by GTC-Phenol extraction (Tollervey et al, 1987).

Table 2.6: Oligonucleotides used for RNA probing
# Oligonucleotide Sequence (5' → 3') Purpose

641 anti-malG14 GCGGCATAACATTGGCAGAAC Northern probe for 
MdoR

643 JVO-0322 5S CTACGGCGTTTCACTTCTGAGT-
TC

Northern probe for 
5S rRNA

644 anti-INT_0_2492 GGCAACGAAGGGTTCTACT
Northern probe for 
intergenic sRNA 

candidate

645 anti-INT_0_1913 GAAGACAGGCTTCGGGGTCA
Northern probe for 
intergenic sRNA 

candidate

646 anti-INT_0_1420 GGTGATGGCGTTCATAGCA
Northern probe for 
intergenic sRNA 

candidate

647 anti-INT_0_3041 GCCAGTCAGTTGCTTAACTGA
Northern probe for 
intergenic sRNA 

candidate

667 ompC3 GCCACTGCATACTGATAACCCTC
Northern probe for 
ompC; anneals to 

ompC 5'-UTR

670 micC_NB-
JVO-1369

CAGTGGCAATGCAATGGCCCAA-
CAG

Northern probe for 
MicC

678 malG_pe GTGGAGCGCCGAATAACA
Oligo PE for 5'end 
mapping of MdoR /

malG



52

703 revSF GAATTGGGACAACTCCAGTG

Check GFP-fused 
constructs by se-

quencing and PCR 
(pxg10SF)

728 NB probe RybB_
JVO-1205 GTTGATGGGCTCCACAA Northern probe for 

RybB

791 anti-malG14_
MdoR_seed_mut CGCCGTATTCATTGGCAGAAC Northern probe for 

MdoR SM

792 anti-RaiZ CACGACGTGCTTCGCC Northern probe for 
RaiZ homologue

For large RNA fragments, 10 µg of total RNA was resolved on a 1.25% BPTE- gel (pH 

7) and transferred to a nylon membrane (HyBond N+, GEHealthcare) by capillarity. For 

short RNA fragments, 10 µg total RNA was separated on a 8% polyacrylamide TBE-

Urea gel and transferred to a nylon membrane by electroblotting for four hours at 50 

V. All membranes were UV-crosslinked in a Stratalinker at intensity 1200. Membranes 

were pre-hybridised in 10 ml of UltraHyb Oligo Hyb (Ambion) for one hour and probed 

with 32P end-labeled DNA oligo for 12-18 hours in a hybridization oven at 42ºC. The 

sequences of the probes used for Northern blot detection are detailed in Table 2.6. 

Membranes were washed two times in 2xSSC with 0.5% SDS solution for 10 minutes, 

and visualized with a Phosphor imaging screen and FujiFilm FLA-5100 Scanner (IP-S 

mode). For detection of very abundant RNA species (5S rRNA) an autoradiography 

film GE Healtchcare) was used for exposure.

2.7.	 Primer extension analysis

One microgram total RNA was reverse-transcribed using SuperScript III reverse 

transcriptase (Invitrogen) using 32P-radiolabelled oligonucleotides as primers (Table 

2.6). Primers were added to the RNA and annealing was performed by heating the 

sample at 85ºC for three minutes and then snap chilling them on ice. The reverse-

transcription (RT) was performed for one hour at 45ºC, followed by Exonuclease I and 

RNaseIf (NEB)  (0.5 µl each) treatment for 30 minutes at 37ºC. Reactions were stopped 

by mixing with an equal volume of 2XRNA loading dye (NEB), 2 minutes incubation 

at 95 ºC and snap chill.  The sequencing ladders were prepared with Sequenase v2.0 

(USB/Affymetrix) according to specified instructions using as a template a plasmid 
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with the sequence that needs to be mapped. Samples were resolved on 6% PAA/8M 

TBE-urea gels and visualized using the FLA5100 phosphoimager system.

2.8.	 Pulse over-expression studies

Overnight MG1655 cultures containing pBAD::sRNA and empty pBAD+1 control 

plasmids were re-inoculated in fresh LB-ampicillin medium at a starting OD600 of 

0.05, and grown aerobically at 37ºC to OD600 0.4. The cultures were then rapidly 

transferred to a shaking water bath pre-warmed to 37ºC. Cultures were supplemented 

with 0.2%(w/v) L-arabinose to induce transcription from the pBAD promoter, and cells 

were rapidly collected by filtration and flash-frozen in liquid nitrogen at different time-

points after induction and stored at -80ºC. RNA was extracted from three biological 

replicate time-series, followed by RNASeq library preparation and next generation 

sequencing.(Section 2.14) and analysis of differentially expressed genes (DeSeq2 - 

Section 2.15). 

For pBAD::RybB and pBAD::MdoRSM, two independent L-arabinose induction 

experiments (each accompanied by repeats of pBAD+1 control induction) were 

followed by RT-qPCR quantification of differentially expressed genes.

2.9.	 Western Blot analysis

Two OD600 units of E.coli cells were pelleted by centrifugation and resuspended in 50 

µl TN150 buffer and lysed for 10 min at 95 ºC, then incubated for 5 minutes at 37ºC. 

Lysates were treated with 2 U Turbo DNase (Ambion) for 30 minutes at 37ºC. The 

protein content of the lysates was quantified by nanodrop (NanoDrop1000). A lysate 

volume containing 80 µg of protein was denatured for 10 minutes at 65ºC in 20 µl 

1X LDS loading buffer (NuPAGE) and resolved on 4-12% gradient polyacrylamide 

gels (NuPAGE) alongside a broad-range protein standard (NEB, P7712). The 

proteins were transferred to nitrocellulose membranes using the iBlot (Invitrogen) and 

program 8. The membranes were blocked for one hour in blocking solution (5% non-
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fat milk in PBST (1X phosphate saline buffer, 0.1% Tween-20). Antibody probing was 

performed in blocking solution as described below. Where necessary, after two five-

minute washes in PBST, membranes were blotted with secondary antibodies.  Finally, 

after three 10-minute PBST washes, the membranes were rinsed once with 1xPBS 

and proteins were visualised using Pearce enhanced chemiluminescence (ECL, 

ThermoFisher) according to manufacturer’s instructions. 	

Antibody					     Usage

anti-ompC (Biorbyt; Rabbit)			   1:1000		 overnight, 4 ºC

anti-GFP (Roche; Mouse)			   1:5000		 1h, Room Temperature

anti-GroEL(Abcam; Rabbit)			   1:300,000	  2h, Room Temperature

Goat anti-Rabbit				    1:5,000	 1h, Room Temperature

Rabbit anti-Mouse				    1:10,000	 1h, Room Temperature

	

2.10.	Transient inactivation of RNase E

The E.coli rne-3071 TS (Table 2.1) and parental MG1655 strains were grown in LB 

medium at 30ºC to an OD600 of 1.5, then shifted to 43ºC for 30 min to inactivate RNase 

E. Cells were harvested by rapid filtration (0.45 µM filters, Merck Millipore) and flash-

frozen in liquid nitrogen. 

2.11.	RT-qPCR

Total RNA was extracted with the guanidium thiocyanate method as previously 

described (Tollervey et al., 1987). 12.5 ug RNA was treated with 2U Turbo DNase 

(Ambion) for 1 hour at 37ºC in a 10 µl reaction in the presence of 2U SuperaseIn 

RNase inhibitor (Ambion). The DNase was inactivated by 10 minutes incubation at 

75ºC. Reverse transcription (RT) was performed in a single reaction for all target genes 

of interest using a mix of gene-specific RT primers (Table 2.7) at 3.5 µM concentration 

each. After addition of 2.5 μl RT primers mix, the RNA and primers were denatured at 

70ºC for 3 min, then snap chilled and incubated on ice for 5 min.
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RT was performed for 1h at 55ºC with SuperScript III (Invitrogen) using 5 µl of RNA-

RT primers mix in 10 µl final volume (100U Superscript III, 2.5 mM DTT, 1xFS Buffer, 

0.75 mM dNTPs) in the presence of 1U RNasin (Promega).  A no reverse transcriptase 

(-RT) control, in which Superscript III was replaced with water was performed for all 

RTs. RT was followed by treatment with 5U RNase H for 30 min at 37ºC to remove the 

RNA from the RNA-cDNA duplexes. The cDNA was diluted 10-fold with DEPC water 

and stored at -20ºC. 

Table 2.7: Oligonucleotides used for RT-qPCR analysis*
# Oligonucleotide Sequence (5' → 3')

779 gfpSF RT 2 GCGTCTTGTAGGTCCCGTCAT 
780 recA RT GCCGTAGAAGTTGATACCTTCGCC 
781 rybB RT ACAAAAAACCCATCAACCTTGAACCG
782 GFPsf_F TTCCATGGCCAACACTTGTCA
783 GFPsf_R TAACCTTCGGGCATGGCACT
784 recA 1 F_qPCR GTATCGGCGCGGTGAAAGAG
785 recA 1 R_qPCR TTAAACGGCGCAGCGATTTT
786 MdoR 1 FpPCR TTATGCCGCTGCACCCTCAA
787 MdoR 1 RpPCR TGGAGCGCCGAATAACAGTCA
788 MdoR SM F qPCR AATACGGCGACGTCCCTCAA
789 rybB 1 F qPCR TTTGATGTCCCCATTTTGTGGAG
790 rybB 1 R qPCR ACCCATCAACCTTGAACCGAAA
806 ompC RT GTCAGTGTTACGGTAGGTCGCG
807 rseA RT CGCCTGCTCAAACTGAAGCTG T
808 ryeA RT GACCACCACGCTTTTTATTGACCA T
804 ryeA1F_qPCR GGAGAGAGCCGTGCGCTAAA
805 ryeA1R_qPCR CTGGAAAACCTGGCGTCGTC
810 rseA_R_qPCR TCAGAGTGGAGTCGGCGTTG
811 ompA_R_qPCR TGCGCCTCGTTATCATCCAA
815 ompA RT CCAGGTGTTATCTTTCGGAGCGG
816 rpoE RT GGAACGAATCCAGCGCACGATA

817 rpoE_R_qPCR GACGGCACATAGCGGGAAAC

818 ompC _F_qPCR TGGCATTCGCAGGTCTGAAA
819 ompC _F_qPCR CCACCGAATTCTGGCAGTACG
820 rpoE_F_qPCR CGGGTCCAGAAGGGAGATCA
821 ompA_F_qPCR AGCAGATCCCCCGGTGAAG
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Quantitative PCR was performed using the Brilliant III UltraFast SYBR Green 

QPCR Master Mix (Agilent): 3 µl of cDNA was mixed with 7 µl of qPCR master mix 

containing the PCR primers listed in Table 2.7 (final concentration 300 nM) according 

to manufacturer’s instructions. The PCR was run on a LightCycler 480 (Roche) with 

the program parameters recommended by Agilent: pre-incubation: 95ºC-5s; 45 cycles 

amplification with single acquisition mode: 95ºC-5s, 60ºC-10s; and melting curve: 

65ºC-60s, 95ºC(0.11 ramp rate with 5 acquisitions per ºC, continuous). The following 

analyses were performed with the IDEAS2.0 software, both with default settings: 

Absolute Quantification/Fit Points for Cp determination and Melt Curve Genotyping to 

verify the specificity of the PCR. To calculate the fold-change relative to the control, 

the 2^ddCp method was employed, using recA as the reference gene, because it 

was stably expressed in the tested conditions. Negative controls such as -RT or no 

template control were used throughout, and the qPCR for all samples was performed 

in technical triplicate for each plate. Experiments were performed for minimum two 

biological replicates, and the mean and standard error of the mean were computed. 

Samples with technical triplicate standard deviations of Cp larger than 0.3 were 

discarded from the analysis.

2.12.	 GFP reporters of sRNA-mediated regulation

A two-plasmid system was used to express each sRNA, and mRNA-sfGFP fusions 

(Section 2.3). The two types of plasmids were co-transformed in E. coli TOP10 cells 

by electroporation (Section 2.4) and cells were maintained on dual selection with 

ampicillin and chloramphenicol. In TOP10 cells, the mRNA-sfGFP constructs are 

constitutively expressed, whereas sRNA expression requires L-arabinose induction. 

The expression of sfGFP-fused targets in the presence or absence of sRNAs was 

quantified at the protein level, by plate reader experiments and at the RNA level, by 

RT-qPCR (Section 2.11). 

For the plate reader experiments, a single colony of bacterial strain harbouring a 

sRNA-target-sfGFP combination was inoculated in a 96-well Flat Bottom Transparent 
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Polystyrene plate (Fisher Scientific) with lid (Thermo Scientific)  and cultured overnight 

at 37ºC in 100 µl LB supplemented with antibiotics and 0.2% L-arabinose to induce 

expression of sRNAs from the Para promoter.

Next day, each overnight inoculum was diluted 1:100 by serial dilution, in triplicate, 

in LB with freshly prepared 0.2% L-arabinose to a final volume of 100 µl. Cultures 

were grown in a 96-well plate in an Infinite 200 Pro plate reader (Tecan) controlled 

by i-control software (Tecan) for 192 cycles at 37ºC with 1 min orbital shaking (4 

mm amplitude) every 5th minute. To monitor optical density over time, the following 

parameters were used: wavelength 600 nm, bandwidth 9 nm. Fluorescence was 

monitored with excitation wavelength 480 nm, bandwidth 9 nm and emission 

wavelength 520 nm, bandwidth 20 nm. Measurements were recorded at 5 minute 

intervals, by top reading. Raw data was processed using custom python scripts that 

I wrote  following guidance from previous reports (Urban and Vogel, 2007). First, the 

range of linearity of increase of fluorescence with OD600 was identified for all individual 

triplicates. Only the OD600 range common to all triplicates was considered for further 

analysis. For each set of triplicates, the mean fluorescence was calculated at each 

OD600. To correct for background and cell autofluorescence, the fluorescence mean 

of a strain with plasmid pXG-0 was subtracted from all strains with GFP plasmids at 

the equivalent OD600 (Table 2.2). Ultimately, a curve was generated for each sample 

plotting the background-corrected fluorescence (GFP) versus OD600. The experiments 

were performed for three biological replicates, and mean values and standard error of 

the means calculated for each strain.

To quantify the effect of sRNA expression on GFP reporters at the RNA level, the 

sRNAs were pulse-overexpressed as described above (Section 2.6) by inducing 

sRNA transcription for 20 minutes with 0.2% L-arabinose. RT-qPCR (Section 2.11) 

was performed to detect the GFP region of the mRNA-sfGFP fusion and pXG-1.

2.13.	Preparation of CLASH libraries

E. coli expressing the chromosomal Hfq-HTF were grown overnight in LB at 37°C 
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with shaking (200 rpm.), diluted to starter OD600 0.05 in fresh LB, and re-grown with 

shaking at 37°C in 750 ml LB. A volume of culture equivalent to 80 OD600 per ml  

was removed at the following time-points (OD600): 0.4, 0.8, 1.2, 1.8, 2.4, 3.0 and 4.0, 

respectively, and immediately subjected to UV (254 nm) irradiation for 22s in the Vari-

X-linker (Van Nues et al, 2017). The cells were harvested by rapid filtration  with 0.45 

µM nitrocellulose filters (Merck Millipore) and flash-frozen in liquid nitrogen. Cells were 

resuspended from filters by three washes with ~15 ml ice-cold phosphate-buffered 

saline (PBS), and centrifuged for 10 min at 4000 rpm at 4 C. 

During the optimization of CLASH for E. coli, Sander Granneman and myself 

generated five CLASH libraries. The last two showed very high read complexity and 

were used for further analysis. Cell pellets were lysed by bead-beating in 1 volume 

per weight TN150 buffer (50 mM Tris pH 8.0, 150 mM NaCl, 0.1% NP-40, 5 mM 

β-mercaptoethanol) in the presence of protease inhibitors (Roche), and 3 volumes 

0.1 mm Zirconia beads (Thistle Scientific; 0.1 mm diameter), by performing 5 cycles 

of 1 minute vortexing followed by 1 minute incubation on ice. One additional volume 

of TN150 buffer were added and chromosomal DNA was removed with RQ1 DNase I 

treatment (Promega) for 30 min on ice. Two-additional volumes of TN150 were added 

and mixed with the lysates by vortexing. The lysates were centrifuged for 20 minutes 

at 4000 rpm at 4ºC and subsequently clarified by a second centrifugation step at 13.4 

krpm, for 20 min at 4ºC.

The Hfq-HTF-RNA complex purification and library preparation was essentially 

performed as described (Granneman et al, 2009). Cell lysates were incubated with 

50 µl of pre-equilibrated M2 anti-FLAG beads (Sigma) for 2  hours at 4°C. The anti-

FLAG beads were washed three times 10 min with 1 ml TN1000 (50 mM Tris pH 7.5, 

0.1% NP-40, 5 mM β-mercaptoethanol, 1 M NaCl) and rinsed three times with TN150 

without protease inhibitors (50 mM Tris pH 7.5, 0.1% NP-40, 5 mM β-mercaptoethanol, 

150 mM NaCl). For TEV cleavage, the beads were resuspended in 250 µl of TN150 

buffer without protease inhibitors, and incubated at room temperature for 2 hours, 

with rotation with 10 µl of home-made recombinant GST-TEV protease. The TEV 
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eluates were then incubated with a 1:50 dilution preparation of RNaceIt (RNase A 

and T1 mixture; Agilent) for exactly 5 minutes at 37ºC, after which they were mixed 

with 0.4g GuHCl (Sigma). The samples were then transferred to 100 µl Nickel-NTA 

agarose beads (Qiagen), equilibrated with wash buffer 1 (6 M GuHcl, 0.1% NP-40, 

300 mM NaCl, 50 mM Tris pH 7.8, 10 mM Imidazole, 5 mM beta-mercaptoethanol). 

Binding was performed at 4ºC overnight with rotation. The next day, the beads were 

transferred to Pierce SnapCap spin columns (Thermo Fisher), washed 3 times with 

wash buffer 1 and 3 times with 1xPNK buffer (10 mM MgCl2, 50mM Tris pH 7.8, 

0.1% NP-40, 5 mM beta-mercaptoethanol). The washes were followed by on-column 

TSAP incubation (Thermosensitive alkaline phosphatase, Promega)  treatment for 

1 h at 37ºC with 8 U of phosphatase in 60 µl of 1xPNK, in the presence of  80U 

RNasin (Promega).  The beads were washed once with 500 µl wash buffer 1 and 

three times with 500 µl 1xPNK buffer. To add 3’-linkers (App-PE - Table 2.8), the 

Nickel-NTA beads were incubated in 80 µl 3’-linker ligation mix with (1 X PNK buffer, 

1 mM 3’-adapter, 10% PEG8000, 30U Truncated T4 RNA ligase 2 K227Q (NEB), 

60U RNasin). The samples were incubated for 4 hours at 25ºC. The 5’-ends of bound 

RNAs were radiolabeled with 30U T4 PNK (NEB) and 3 µl 32P-γATP (Perkin Elmer) in 

1xPNK buffer for 40 min at 37ºC, after which 100 mM cold ATP (Roche) was added 

to a final concentration of 1 mM, and the incubation prolonged for another 20 min to 

complete 5’-end phosphorylation. The resin was washed three times with 500 µl wash 

buffer 1 and three times with equal volume of 1xPNK buffer. For on-bead 5’-linker 

ligation, the beads were incubated 16h at 16ºC in 1xPNK buffer with 40U T4 RNA 

ligase I (NEB), and 1 µl 100 µM L5 adapter (Table 2.8), in the presence of 1mM ATP 

and 60U RNasin (Promega). The Nickel-NTA beads were washed three times with 

wash buffer 1 and three times with buffer 2 (50 mM Tris–HCl pH 7.8, 50 mM NaCl, 10 

mM imidazole, 0.1% NP-40, 5 mM β-mercaptoethanol). 

The protein-RNA complexes were eluted in two steps in new tubes with 200 μl of elution 

buffer (wash buffer 2 with 250 mM imidazole). The protein-RNA complexes were Tri-

chloro acetic acid (TCA) precipitated on ice by adding TCA to a final concentration of 

20%, followed by a 20-minute centrifugation at 4ºC at 13.4 krpm. Pellets were washed 
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with 800 µl acetone, and air dried for a few minutes in the hood. The protein pellet 

was resuspended and incubated at 65ºC in 20 µl 1x NuPage loading buffer (Novex), 

resolved on 4–12% NuPAGE gels, and visualised by autoradiography. The cross-

linked proteins-RNA were cut from the gel incubated with 160 µg of Proteinase K 

(Roche) in 600 µl wash buffer 2 supplemented with 1% SDS and 5 mM EDTA at 55ºC 

for 2-3 hours with mixing. The RNA was subsequently extracted by phenol-chloroform 

extraction and ethanol precipitated. The RNA pellet was directly resuspended in 

RT buffer and was transcribed in a single reaction with the SuperScript III system 

(Invitrogen) according to manufacturer’s instructions using the PE_reverse oligo as 

primer (Table 2.8). The cDNA was purified with the DNA Clean and Concentrator 5 

kit (Zymo Research) and eluted in 11 µl DEPC water. Half of the cDNA (5 µl) was 

amplified by PCR using Pfu Polymerase (Promega) with the cycling conditions (95°C 

for 2 min; 20-24 cycles: 95°C for 20s, 52°C for 30s and 72°C for 1 min; final extension 

of 72°C for 5 min). The PCR primers are listed in Table 2.8. PCR products were 

treated with 40U Exonuclease 1 (NEB) for 1 h at 37ºC to remove free oligonucleotide 

and purified by ethanol precipitation/ or the DNA Clean and Concentrator 5 kit (Zymo 

Research). Libraries were resolved on a 2% MetaPhor agarose (Lonza) gel and 

175-300bp fragments were gel-extracted with the MinElute kit (Qiagen) according 

to manufacturer’s instructions.  All libraries were quantified on a 2100 Bionalyzer 

using the High-Sensitivity DNA assay. Individual libraries were pooled based on 

concentration and barcode sequence identity. Paired-end sequencing (75 bp) was 

performed by Edinburgh Genomics on a Illumina HiSeq 4000 platform. 

2.14.	RNAseq library generation

E. coli MG1655 was cultured and harvested as described (Section 2. 13).  Total RNA 

was extracted using the Guanidium thiocyanate phenol method (Tollervey et al, 1988). 

RNA integrity was assessed with the Prokaryote Total RNA Nano assay on a 2100 

Bioanalyzer (Agilent). Contaminating genomic DNA was removed by incubating 10 

µg of total RNA with 2U Turbo DNase (Ambion) in a 50 µl final volume for 30 minutes 

at 37ºC in the presence of 10 U SuperaseIn RNase Inhibitor (Ambion). RNA was 
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subsequently phenol-chloroform extracted and precipitated using 2.5V of 96% ethanol 

at -80ºC for 20 minutes. After washing the pellet with 70% ethanol, it was briefly air-

dried and resuspended in 10 µl of DEPC-treated water. Ribosomal RNA was removed 

with the Ribo-Zero rRNA Removal Kit (Gram-Negative Bacteria) (Illumina) according 

to manufacturer’s instructions. Successful rRNA depletion was verified on the 2100 

Bioanalyzer  as indicated by the disappearance of 16S and 23S rRNA species.

The RNA was fragmented by incubation for 5 min at 95ºC in the presence of Superscript 

III buffer (Invitrogen) followed by a five minute incubation on ice. Reverse-transcription 

(RT) was performed with Superscript III (Invitrogen) in 20 µl reactions according to 

manufacturer’s procedures using 250 ng of ribosomal RNA depleted RNA and 2.5 

μM random hexamers (oligo 73, Table 2.8). After the RT, the RNA and unannealed 

primers were degraded using 20U of Exonuclease I (NEB) and 50U RNaseIf (NEB) 

and the cDNA was purified with the DNA Clean & Concentrator 5 kit (Zymo Research) 

as per manufacturer’s procedures. Ligation of the 5’ adapter (oligo 39, Table 2.8) to 

the cDNA was performed using CircLigase II (EpiCentre) for 6 hours at 60ºC, followed 

by a 10 minute incubation at 80ºC to inactivate the enzyme. The cDNA was purified 

with the DNA Clean & Concentrator 5 kit (Zymo Research).

Half of the cDNA library was PCR amplified using Pfu polymerase (Promega) using 

the P5 forward PCR oligonucleotide and barcoded BC reverse oligonucleotides  (200 

nM; Table 2.8; 95°C for 2 min, 95°C for 20s, 52°C for 30s and 72°C for 1 min, and a 

final extension of 72°C for 5 min. 20 cycles of amplification). 

PCR products were treated with Exonuclease 1 (NEB; 40U) for 1 h at 37ºC and 

purified by ethanol precipitation. Libraries were resolved on a 2% MetaPhor agarose 

(Lonza) gel  200-500 bp fragments were gel-extracted using the MinElute kit (Qiagen) 

according to manufacturer’s instructions.  All libraries were quantified on a 2100 

Bionalyzer using the High-Sensitivity DNA assay. Individual libraries were pooled in 

equimolar amounts. Paired-end sequencing (75 bp) was performed by Edinburgh 

Genomics on a Illumina HiSeq 4000 platform. 



62

Table 2.8: Oligonucleotides used for library preparation
CLASH L5 5’ adapters:
BARCODE SET A    

L5Aa 5'-invddT-ACACrGrArCrGrCrUrCrUrUrCrCrGrArUrCrUrN-
rNrNrUrArArGrCrN-OH-3'

L5Ab 5'-invddT-ACACrGrArCrGrCrUrCrUrUrCrCrGrArUrCrUrN-
rNrNrArUrUrArGrCrN-OH-3'

L5Ac 5'-invddT-ACACrGrArCrGrCrUrCrUrUrCrCrGrArUrCrUrN-
rNrNrGrCrGrCrArGrCrN-OH-3'

L5Ad 5'-invddT-ACACrGrArCrGrCrUrCrUrUrCrCrGrArUrCrUrN-
rNrNrCrGrCrUrUrArGrCrN-OH-3'

BARCODE SET B    

L5Ba 5'-invddT-ACACrGrArCrGrCrUrCrUrUrCrCrGrArUrCrUrN-
rNrNrArGrArGrCrN-OH-3'

L5Bb 5'-invddT-ACACrGrArCrGrCrUrCrUrUrCrCrGrArUrCrUrN-
rNrNrGrUrGrArGrCrN-OH-3'

L5Bc 5'-invddT-ACACrGrArCrGrCrUrCrUrUrCrCrGrArUrCrUrN-
rNrNrCrArCrUrArGrCrN-OH-3'

L5Bd 5'-invddT-ACACrGrArCrGrCrUrCrUrUrCrCrGrArUrCrUrN-
rNrNrUrCrUrCrUrArGrCrN-OH-3'

BARCODE SET C    

L5Ca 5'-invddT-ACACrGrArCrGrCrUrCrUrUrCrCrGrArUrCrUrN-
rNrNrCrUrArGrCrN-OH-3'

L5Cb 5'-invddT-ACACrGrArCrGrCrUrCrUrUrCrCrGrArUrCrUrN-
rNrNrUrGrGrArGrCrN-OH-3'

L5Cc 5'-invddT-ACACrGrArCrGrCrUrCrUrUrCrCrGrArUrCrUrN-
rNrNrArCrUrCrArGrCrN-OH-3'

L5Cd 5'-invddT-ACACrGrArCrGrCrUrCrUrUrCrCrGrArUrCrUrN-
rNrNrGrArCrUrUrArGrCrN-OH-3'

BARCODE SET D

L5Da 5'-invddT-ACACrGrArCrGrCrUrCrUrUrCrCrGrArUrCrUrN-
rNrNrCrGrUrGrArUrN-OH-3'

L5Db 5'-invddT-ACACrGrArCrGrCrUrCrUrUrCrCrGrArUrCrUrN-
rNrNrGrCrArCrUrArN-OH-3'

L5Dc 5'-invddT-ACACrGrArCrGrCrUrCrUrUrCrCrGrArUrCrUrN-
rNrNrUrArGrUrGrCrN-OH-3'

L5Dd 5'-invddT-ACACrGrArCrGrCrUrCrUrUrCrCrGrArUrCrUrN-
rNrNrArUrCrArCrGrN-OH-3'

BARCODE SET E

L5Ea 5'-invddT-ACACrGrArCrGrCrUrCrUrUrCrCrGrArUrCrUrN-
rNrNrCrArCrUrGrUrN-OH-3'

L5Eb 5'-invddT-ACACrGrArCrGrCrUrCrUrUrCrCrGrArUrCrUrN-
rNrNrGrUrGrArCrArN-OH-3'

L5Ec 5'-invddT-ACACrGrArCrGrCrUrCrUrUrCrCrGrArUrCrUrN-
rNrNrUrGrUrCrArCrN-OH-3'

L5Ed 5'-invddT-ACACrGrArCrGrCrUrCrUrUrCrCrGrArUrCrUrN-
rNrNrArCrArGrUrGrN-OH-3'

RNAseq 5’-adapter:
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P5_phospho_adapter (39): 5’P-AGATCGGAAGAGCGTCGTGTAGGG-3SpC3

CLASH 3’ adapters:
App_PE: 5’App-NAGATCGGAAGAGCACACGTCTG-ddC 3’
PCR oligonucleotides:

P5 (Forward) 5’-AATGATACGGCGACCACCGAGATCTACACTCT-
TTCCCTACACGACGCTCTTCCGATCT-3’

P3 (Reverse; BC1-BC6) 5’-CAAGCAGAAGACGGCATACGAGAT(BC 6nt barcode)
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3’

BC1 5’-CAAGCAGAAGACGGCATACGAGATCGTGATGT-
GACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3’

BC2 5’-CAAGCAGAAGACGGCATACGAGATACATCGGTGACT-
GGAGTTCAGACGTGTGCTCTTCCGATCT-3’

BC3 5’-CAAGCAGAAGACGGCATACGAGATGCCTAAGT-
GACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3’

BC4 5’-CAAGCAGAAGACGGCATACGAGATTGGTCAGT-
GACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3’

BC5 5’-CAAGCAGAAGACGGCATACGAGATCACTGTGT-
GACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3’

BC6 5’-CAAGCAGAAGACGGCATACGAGATATTGGCGTGACT-
GGAGTTCAGACGTGTGCTCTTCCGATCT-3’

RT oligonucleotides:
PE_reverse (CLASH) 5’-CAGACGTGTGCTCTTCCGATCT-3’
PE_solexa_hexamer (RNA-
seq; 73) 5’-CGTGTGCTCTTCCGATCTNNNNNN-3’

2.15.	Bioinformatics analyses

	  					   

Pre-processing of the raw sequencing data

Raw sequencing reads were processed using a pipeline developed by Sander 

Granneman, which uses tools from the pyCRAC package (Webb et al., 2014). The 

entire pipeline is available at https://bitbucket.org/sgrann/). The CRAC_pipeline_

PE.py pipeline first demultiplexes the data using pyBarcodeFilter.py and the in-read 

barcode sequences found in the L5 5’ adapters. Flexbar then trims the reads to 

remove 3’-adapter sequences and poor quality nucleotides (Phred score <23). Using 

the random nucleotide information present in the L5 5’-adaptor sequences, the reads 

were collapsed to remove potential PCR duplicates. The reads were then mapped 

to the Escherichia coli MG1655 genome with Novoalign (www.novocraft.com). To 
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determine which genes the reads overlapped with we generated an annotation file 

in the Gene Transfer Format (GTF). This file contains the start and end positions of 

each gene on the chromosome as well as what genomic features (i.e. sRNA, protein-

coding, tRNA) it belongs to. To generate this file, we used the Rockhopper software 

(Tjaden, 2005) that took E. coli RNA-seq data generated by Christel Sirocchi, a 

minimal GTF file obtained from ENSEMBL (without UTR information). The resulting 

GTF file contained information not only on the coding sequences, but also complete 

5’ and 3’ UTR coordinates. PyReadCounters then used the novoalign output file and 

the GTF file to count the total number of unique cDNAs that mapped to each gene. 

Normalization steps

To normalise the read count data and to correct for differences in library depth between 

time-points, we calculated Transcripts Per Million reads (TPM) for each gene. Briefly, 

for each time-point the raw counts for each gene was first divided by the gene length 

and then divided by the sum of all the values for the genes in that time-point to 

normalize for differences in library depth. Subsequently, only genes with a minimum 

of 5 TPM in all datasets compared were used. The TPM values for each OD600 studied 

were divided by the TPM values of the first sample (OD600 0.4). Thus, the fold-change 

starts at 1 for all samples in the OD600 series. These ratios were then log2-normalized. 

The log2-normalized fold-changes were used to compare RNAseq and Hfq-crosslinking 

profiles among samples, and to perform k-means clustering with the python sklearn.

cluster.KMeans class. 

Hfq-binding coverage plots

The pyBinCollector tool was used to generate Hfq cross-linking distribution plots 

over genomic features. First, PyCalculateFDRs.py (Webb et al, 2014) was used to 

identify the significantly enriched Hfq-binding peaks (min. 10 reads, minimum 20 nt 

intervals). Next, pyBinCollector was used to normalize gene lengths by dividing their 

sequences into 100 bins, and calculate nucleotide densities for each bin.  To generate 
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the distribution profile for all genes individually, we normalized the total number of 

read clusters (assemblies of overlapping cDNA sequences) covering each nucleotide 

position by the total number of clusters that cover the gene, 

Motif searches were performed with pyMotif.py using the significantly enriched Hfq-

binding peaks. The 4-8 nucleotide k-mers with Z-scores above a set threshold were 

used for making the motif logo with the k-mer probability logo tool (Wu and Bartel., 

2017) with the -ranked option (http://kplogo.wi.mit.edu/).

Analysis of hybrid reads

Chimeric reads were identified using the hyb package using default settings (Travis 

et al., 2014). To apply this single-end specific pipeline to our paired-end sequencing r

data, we joined forward and reverse reads using FLASH, which merges overlapping 

reads into a single contig. These were then analysed using hyb. The -anti option 

for the hyb pipeline was used to be able to use a genomic E. coli hyb database, 

rather than a transcript database. Uniquely annotated hybrids (.ua.hyb) were used 

in subsequent analyses. To visualise the hybrids in the genome browser, the .ua.hyb 

output files were converted to the GTF format. 

To generate distribution plots for the genes to which the chimeric reads mapped, 

the parts of the chimeras were clustered with pyClusterReads.py and bedtools 

(intersectBed) was used to remove clusters that map to multiple regions. To produce 

the coverage plots with pyBinCollector, each cluster was counted only once, and the 

number of reads belonging to each cluster was ignored. 

Differential expression analyses

For the differential expression analyses DESeq2 was used (Love et al.,2014). 

Three MdoR pulse-overexpression datasets were compared to three pBAD Control 

overexpression datasets. Only differentially expressed genes were selected that had 
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an adjusted p-value of 0.05 or lower were considered significant.

Multiple sequence alignments and conservation analyses

The homologous sequences of MdoR in other entrobacteria were retrieved by BLAST. 

JalView was used for the multiple sequence alignments, using the MAFFT algorithm 

(Waterhouse et al., 2009). The distance tree was generated based on percentage 

identity of the input sequences. To predict MdoR targets in three bacterial species, 

CopraRNA was used at default parameters (Wright et al., 2014). 
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3.	 Global analyses of Hfq-associated RNA 

interactions

3.1.	 Introduction

In E. coli, hundreds of sRNAs have been discovered, but only a few have been 

characterized (Gottesman and Storz., 2011). The initial step in unravelling the roles of 

sRNAs is to capture their targets, for which many computational and in vivo methods 

have been developed (Section 1.8).

A main aim of this study was to uncover novel Hfq-mediated sRNA-target RNA 

interactions for the first time, at a global scale, using CLASH (Section 1.8; Helwak 

and Tollervey, 2014). However, during the course of this study, two similar approaches 

were adapted in E. coli - RIL-seq, that captures Hfq-associated RNA-RNA interactions 

(Melamed et al., 2016), and RNase E CLASH (Waters et al., 2017), that captures 

RNAse E - associated RNA-RNA interactions. 

Nonetheless, the experimental design of the Hfq-CLASH experiment presented here 

is unique compared to the other studies, and aimed to cover a continuum of growth 

stages - to monitor the dynamics of Hfq binding to sRNAs and mRNAs, but also 

to increase the chances of recovery of sRNA-mRNA interactions representative for 

many conditions of growth. 

Noteworthy, previous attempts to perform CLASH on Hfq have identified very few 

hybrids (~0.001% of mapped reads) (Waters et al., 2017). The frequency of hybrid 

reads recovery was much improved in RNase E CLASH. It was proposed that this 

was due to the transiency of Hfq association with sRNA-target RNA pairs – i.e sRNA-

mRNA duplexes formation is coupled with the immediate dissociation of the RNAs 

from Hfq (Tree et al., 2014) and rapid transfer to RNase E (Waters et al., 2017). 
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Here I show that the CLASH protocol can be successfully applied on Hfq. The 

optimizations that were introduced during my PhD (i.e. shorter incubation times and 

controlling the RNAse digestion step more carefully) increased the overall recovery of 

chimeras over a 1000-fold.

The results presented in this Chapter showed that the Hfq binding to individual sRNAs 

and mRNAs is dynamic, growth-dependent. Moreover, analyses of the duplexes 

chaperoned by Hfq revealed complex sRNA networks and provided more examples of 

non-canonical mechanisms employed by sRNAs: sRNA-sRNA interactions and sRNA 

biogenesis from mRNAs. Many of the findings had little overlap with interactions 

uncovered by RIL-seq, thus they greatly expand the current knowledge of sRNA 

circuits.

3.2.	 Growth-dependent dynamics of Hfq-RNA interactions

To capture the dynamics of Hfq binding to sRNAs and mRNAs and to determine its 

correlation with changes in RNA levels during growth, and to identify the spectrum of 

sRNA-target interactions with roles during growth, CLASH (Section 1.8) was applied 

in E. coli cells harvested at different cell densities as measured by OD600 (Fig. 3.1 A). 

Seven time-points were analysed: OD600 0.4, 0.8, 1.2, 1.8, 2.4, 3 and 4 (Fig. 3.1 B). 

These OD600   are representative of the main growth phases: exponential and stationary, 

but also include the transitions between them. The autoradiogram in Fig 3.1 C shows 

that Hfq cross-linking to RNA at each OD600 was comparable. The CLASH data was 

accompanied by RNAseq data collected under the same conditions, that provides 

information on the total RNA levels at each condition. 

The sequencing of the RNAs bound by Hfq generated two types of reads. The single 

reads were used to generate Hfq-binding maps across the transcriptome. The chimeric 

reads, generated by ligation of RNA-ends of Hfq-bound duplexes, generally represent 

RNA-RNA interactions. 
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The HTF-tagged Hfq allowed purification of Hfq-bound RNAs in highly stringent 

conditions (Section 1.8). To detect which transcript classes associate most strongly 

with Hfq at each OD600, I generated distribution plots of the transcripts crosslinked 

by Hfq, shown as percentage of total cDNAs per transcript class recovered in each 

growth condition (Fig. 3.2). The cDNAs represent non-duplicate reads (i.e. multiple 

reads with the same chromosomal mapping coordinates are considered a single 

cDNA and are counted only once; details in Section 2.15). The sum of all cDNA counts 

for all transcript classes at each OD600 was set to 100%, and the proportion of each 

transcript class was calculated as a percentage of the total. 
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Fig. 3.1: Experimental set-up of the Hfq CLASH experiment at different growth conditions in 
E.coli. (A) Overview of the critical experimental steps for obtaining the Hfq CLASH data and 
RNAseq data. The cells were grown and crosslinked and harvested at different cell-densities, and 
the tagged Hfq-RNA complexes were purified in stringent conditions. Hfq binds to sRNA-target 
RNA duplexes, and the RNA ends found in proximity can be ligated together and sequenced 
after removal of the protein. The single reads can be used to map Hfq-RNA interactions, whereas 
the chimeric reads can be traced to sRNA-target interactions. (B) The growth curve of the culture 
used for the Hfq CLASH experiment, with OD600 at which cells were crosslinked indicated by 
circles. The same OD600 were sampled for generating RNA-seq data. (C) Autoradiogram showing 
the Hfq-RNA complexes purified during CLASH for each OD600
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The relative distribution of transcript classes among Hfq-crosslinked cDNAs showed 

that at most optical densities tested, sRNAs were the most enriched transcript class. 

This was not surprising, given the essential role of Hfq in stabilizing sRNAs and 

mediating their interaction with target mRNAs (Vogel and Luisi, 2011). The highest 

proportion of Hfq crosslinking to sRNAs was detected at OD600 1.8 (~40% of all cDNAs), 
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Fig. 3.2: Pie charts showing the distribution of Hfq-crosslinking over genomic transcript classes at 
different stages of growth in E. coli . The growth stage is indicated as OD600 above each plot; data are 
representative of one CLASH experiment per OD600.
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followed by a drop and stabilization of the percentage at OD600 2.4 - 4 (~35%). The 

sRNA class was least represented at OD600 0.4. 

A relatively high percentage of all cDNAs mapped to tRNAs and rRNAs (on average 

for all OD600 ~20%). However, the Hfq crosslinking to these transcripts also shows a 

dynamic behaviour: both tRNA and rRNAs appear to associate less with Hfq as the 

cells grew to higher densities. This is not unexpected, since higher cell densities leads 

to reduced growth rates and lower ribosome production rates. The proportion of Hfq 

crosslinking to protein coding transcripts (mRNA) was roughly equal across all growth 

conditions prior to OD600 of 2.4, after which the percentage peaks at OD600 2.4, and 

as for sRNAs, stabilizes at high OD600. I conclude that the Hfq CLASH data revealed 

subtle growth-stage-dependent differences in the RNA species associated with Hfq. 

3.3.	 Growth-stage resolved snapshots of Hfq binding to sRNAs

To gain better insight into sRNA association with Hfq, I analysed in more detail the 

relative Hfq-crosslinking among the known sRNAs (Fig. 3.3). For this, I normalized 

the cDNAs as TPM (transcripts per million) to correct for sequencing depth and gene 

length among samples (see section 2.15). Then, I summed the TPM values for all 

sRNAs at each OD600, and set it to 100%. The “Other” category represents sRNAs that 

had TPM values lower than 2% of the sum of TPMS. This individual sRNA profiling of 

Hfq binding further clarifies that in E. coli there are cell density-dependent changes 

in Hfq-sRNA binding, as observed in studies in Salmonella (Chao et al., 2012). Many 

sRNAs were bound by Hfq in all growth-stages. Several sRNAs associate with Hfq 

more strongly than others, in a condition-specific manner. For example, Spf (Spot42 

sRNA) is the most highly cross-linked sRNA at OD600 0.4, but shows a dramatic 

decrease in association with Hfq at later time-points. This binding profile is consistent 

with the Spf documented role in catabolite repression (Beisel and Storz, 2011), which, 

during growth in LB, becomes less pronounced at high OD600 (Sezonov et al., 2007).  

GcvB, an sRNA involved in amino acid metabolism, shows a decrease with OD600.  

Both examples confirm the growth-dependency of sRNA association 
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with Hfq reported in Salmonella (Chao and Vogel, 2012). GlmZ is another sRNA that 

shows a decreasing trend in Hfq association, a pattern consistent with its expression 

profile (Argaman et al., 2001). Conversely, some sRNAs show increased binding to 

Hfq with OD600 (ArrS, SdsR; OmrA/B - slight increase). A gradual, yet large increase 

in Hfq binding to ArrS was observed - consistent with the fact that its transcription is 

activated in stationary phase and is σS-dependent (Aiso et al., 2014). However, ArrS 

is a cis-encoded sRNA, a class typically characterized by a lack of requirement of Hfq 

for function, so it is intriguing that ArrS crosslinks so well to Hfq. Some sRNAs show 

minor fluctuations or relatively constant association with Hfq (ChiX, DsrA, MicA and 

RybB). Only several sRNAs showed an increase in the percentage of binding to Hfq, 

followed by a decrease. One example is CyaR, whose transcription is dependent 

on cAMP levels (De Lay ad Gottesman, 2009). Noteworthy, this type of analysis of 
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Hfq association is not necessarily a representation of growth-dependent Hfq binding 

to individual sRNAs, or not even their expression levels - rather, it indicates which 

sRNAs associate more strongly with Hfq relative to others in vivo, possibly providing 

a snapshot of the dynamics of competition between sRNAs for Hfq. In many cases, 

however, these effects are influenced by the expression level of the sRNAs. 

To analyze Hfq binding to individual sRNAs and to understand how this compares to 

their RNA levels, I generated 10 clusters that represent different patterns of growth-

dependent Hfq binding to all transcripts. The clusters were generated by K-means 

clustering using TPM normalized Hfq CLASH data (Fig. 3.5). Briefly, for data 

normalization, for each gene I calculated the log2-fold change in TPM values relative 

to the first OD600 = 0.4 time-point. Consequently, the starting point for all clusters is set 

at 0 (= log2 [Fold change OD600 0.4 relative to OD600 0.4]).  Similarly, I generated 10 

clusters representing the patterns in total RNA levels using the RNA-seq data. 

Fig. 3.4 zooms in the sRNAs belonging to each cluster. Cluster 0 (Fig. 3.5 and Fig. 

3.4, left) contains gene whose average profile shows no dramatic changes in relative 

expression with OD600 (less than 2-fold differences). A notable example belonging to 

this cluster is ArcZ, that shows very little change in Hfq binding relative to OD600 0.4, 

consistent with the data in Fig. 3.3. Interestingly, this pattern of Hfq binding did not 

always correlate with changes in the sRNA levels. With respect to ArcZ expression, 

this sRNA belongs to the RNA steady-state cluster 8, a cluster that contains sRNAs 

whose expression levels show an increase in RNA levels after OD600 2.4. A similar 

case is DsrA. MicA (Hfq binding cluster 0) displays the highest fold-change relative to 

OD600 0.4, at OD600 2.4, but the expression level fold-change steadily increases with 

OD600 and peaks at OD600 4 (RNA steady-state cluster 3). Another example is Spf, that 

belongs to Hfq binding cluster 8. This sRNA shows a decrease in Hfq cross-linking 

relative to OD600 0.4 (e.g. cross-linking at OD600 4.0 is reduced relative to OD600 0.4), 

but the RNA levels at OD600 of 4.0 are comparable to Spf levels at OD600 0.4 (RNA 

steady-state cluster 5).
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The Hfq-binding cluster 3 average profile is characterized by a dramatic increase 

in Hfq cross-linking relative to OD600 0.4 (more than 8-fold) at OD600 1.8, followed 

by a stabilization in the levels of Hfq binding. Interestingly, CsrB and CsrC sRNAs 

belong to this cluster, and overall, they seem to be among the sRNAs that show the 

largest increase in Hfq binding relative to OD600 0.4 (8-10-fold). Whereas for CsrB, this 

change in Hfq cross-linking roughly recapitulates the sRNA steady-state levels (RNA 

steady state cluster 2), CsrC shows a slightly different expression profile, belonging 

to RNA steady state cluster 3. 

ArrS (Hfq-binding cluster 2 and RNA steady-state cluster 7) is an example that 

illustrates some consistency in the patterns of expression and Hfq binding - i.e. the 

increased Hfq cross-linking can be partly explained by the high expression and fold-

change increase in the expression of this sRNA relative to OD600 0.4. However, the 

fold-change in RNA levels is more pronounced than the increase in Hfq binding. I 

speculate that this difference illustrates its role as a dual sRNA - a cis-encoded sRNA 

that can also act as a trans-encoded sRNA. The pool of ArrS that do not bind Hfq may 

act as cis-encoded sRNAs. Corroborating on the latter hypothesis, hybrids that support 

ArrS interaction with mRNAs (and even sRNAs) were uncovered in the CLASH data 

(Section 3.6, 3.8). An example that illustrates a relatively good correlation between 

changes in RNA expression and Hfq binding is CyaR (Hfq binding cluster 6 vs. RNA 

steady-state cluster 3).

Overall, the comparison of the two types of sRNA clusters shows that in many cases, 

the increase in Hfq binding to sRNAs does not always recapitulate changes in sRNA 

expression levels. I investigated the correlation more closely in Section 3. 5.

3.4.	 Growth-stage resolved snapshots of Hfq binding to mRNAs

Following the binning of all transcripts with similar Hfq binding profiles into 10 clusters 

(Section 3.3 and Fig. 3.5), I performed a gene ontology (GO) term and KEGG pathways 

enrichment analysis of the protein-coding genes belonging to each cluster (Fig. 3.6). 
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Fig. 3.5: Profiles of growth-dependent Hfq binding in E.coli. Hfq crosslinking profiles for 
protein-coding genes from one CLASH dataset were generated by k-means clustering 
using python packages (Sklearn.cluster - Kmeans). Profiles of individual genes (grey 
lines) were used to generate the average profile for each cluster (black lines). The 
number of genes belonging to each cluster (n) is indicated at the top left of each graph; 
the y-axis indicates log2-fold change of TPM of each sampled OD600 relative to time-
point 0 (OD600 0.4); the y-axis indicates the analyzed growth-stages (OD600). Data are 
representative of one biological replicate for each OD600.
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Cluster 0, which includes genes that show no dramatic fold-changes in Hfq binding 

relative to OD600 0.4 (Fig. 3.5 and Fig. 3.6 A), was enriched in many biological process 

GO terms - however, none of these GO terms were statistically significantly over-

represented, and all seem to be processes necessary for the general maintenance 
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Fig. 3.6: The biological roles of protein-coding genes belonging to each Hfq-binding profile cluster 
indicated by GO (gene ontology)  terms (A-C) and KEGG-pathways (D) enrichment analysis.. Hfq-
crosslinking profiles were generated by k-means clustering as in Fig. 3.5; the dark thick line indicates 
the average profile for each cluster.; the enrichment analysis was performed using STRING (Szklarczyk 
et al., 2015). (A-C) on the right of each graph, the pie charts show the distribution of enriched GO  
(FDR <0.01 in A; FDR < 0.03 in B-C). (D) Enriched KEGG pathways are indicated at the right of each 
graph; the number of genes in each term are indicated in brackets.
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of the cell (e.g. regulation of primary metabolic process, RNA processing and 

metabolism, regulation of translation). These observations hint to the fact that Hfq 

may ‘constitutively’ regulate these processes throughout growth. 

Two of the most interesting clusters are 8 and 9 (Fig. 3.5). Although they include 

a small number of genes (90 and 64, respectively), they do show clearly defined 

expression profiles, with few outliers. Cluster 9 (Fig. 3.6B) shows a steady increase 

in Hfq binding with cell-density (higher slope until OD600 1.8) and is enriched in genes 

encoding proteins that respond to acidic-condition induced stress. Conversely, cluster 

8 (Fig. 3.6C) is characterized by a steady decrease in Hfq binding fold-changes 

relative to OD600 0.4 and  is enriched in genes involved in glycerol metabolism. 

The other clusters that showed GO-term enrichment covered a wide spectrum of 

biological functions - for simplicity, the enrichment of the KEGG pathways is discussed 

here (Fig. 3.6 D). Clusters 4 and 7, that both include genes with profiles that show 

slight decrease in Hfq binding, are both involved in ribosome pathways, whereas 

cluster 6, that shows a slight increase in Hfq binding during growth, includes genes 

with roles in beta-lactam resistance. 

To understand what role Hfq may have in the regulation of the genes within clusters, 

I focused on clusters 8 and 9 (Fig. 3.7). First, I analysed the RNA steady-state levels 

of the genes in clusters 8 and 9. The average profile of the RNA expression levels is 

roughly similar to the Hfq-binding average profile; however, many genes deviated 

from the average profile of the RNA levels (Fig. 3.7A). I cannot conclude whether 

reduced Hfq binding to these genes is a consequence of reduced RNA steady states, 

or vice-versa. In the absence of transcriptional activity data for these genes, it is very 

difficult to make predictions on the effect of Hfq binding based on RNAseq and Hfq 

CLASH data alone. However, analysing the distribution of Hfq binding to these genes 

may help uncover the mechanism employed by Hfq to regulate these genes. To make 

the distribution plots, I selected the genes from each cluster and divided their length 

in 100 bins, then the hit density in each bin was calculated (Fig. 3.7 B) - for each 
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cluster, I generated distribution plots for the OD600 with maximal fold-change in Hfq-

binding relative to OD600 0.4 (ie OD600 4.0 for cluster 9 and OD600 0.8 for cluster 8). Hfq 

binding to 5’-UTRs of mRNAs may preclude the 30S ribosomal subunit association 

with the SD sequence (Section 1.4; Bouvier et al., 2008) or activate translation, 

whereas interactions further downstream (CDS and 3’-UTR) may impede translation 

by RNase E recruitment and degradation of the transcript (Pfeiffer et al., 2009; Bandyra 

et al., 2012). Although Hfq-binding was somewhat enriched at the 5’-ends of transcripts 

in both clusters, clearly, Hfq binding to the coding sequences and 3’ ends (including 3’ 

UTRs) of the mRNAs occurred. Thus most likely these transcripts are not regulated 

by Hfq in similar ways. A recently described mechanism (Sedlyarova et al., 2016) of 

sRNA action involves prevention of premature termination by sRNAs by preventing 

Rho recruitment to 5’-UTRs, and the authors postulated that the phenomenon could 

be widespread. To test whether this could be the case for the genes in clusters 8 and 

9, I calculated the average length of the 5’-UTRs of these genes: cluster 8 had an 

average 5’-UTR of 77 nucleotides, whereas cluster 9 5’-UTRs had an average length 
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Fig. 3.7: Characterization of Cluster 8 and 9 transcripts. (A) The RNA levels of the genes 
from Clusters 8 and 9. The black line indicates the average profile of expression, but is 
not representative for all genes, i.e. the genes are not part of a defined cluster describing 
RNA expression. (B) Transcriptome-wide coverage plots of Hfq binding. The gene lengths 
were normalized by dividing them into 100 bins (x-axis), and the fraction of hits in each bin 
was calculated (y-axis).
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of 50 nucleotides. Given that Rho typically requires at least 80 nucleotides of relatively 

unfolded RNA sequences to bind (Sedlyarova et al., 2016), it is unlikely that many the 

transcripts in these clusters are transcriptionally attenuated in the absence of sRNA-

mediated regulation. 

I am now in the process of looking for chimeras that mapped to 5’ UTRs of genes in 

these clusters. I expect that this will help me to better predict how Hfq may regulate 

the expression of these genes.

3.5.	 Comparison of transcriptome-wide changes in Hfq-binding to changes in 

RNA levels during growth

The analysis of Hfq-binding profiles and comparison of the RNA level fold-changes of 

the corresponding genes for both sRNAs (Fig. 3.4) and mRNAs (Fig. 3.5 vs Fig. 3.7 A) 

revealed that in some cases, the changes in Hfq binding appear to not be correlated 

with the changes in RNA levels. To dissect how well the Hfq CLASH data correlates 

with changes in RNA steady-states, and to check if the correlation globally changes 

during growth, I compared the changes in Hfq binding to the changes in total RNA 

levels for all transcripts (RNA-seq data), at each OD600. As for the cluster analyses, I 

normalized the data by calculating the log2 (TPM Fold-change relative to OD600 0.4). 

Only the genes that were present in both datasets were used to build the correlation. 

A quick overview of the plots showing the changes in RNA levels versus changes in 

Hfq cross-linking, and the Pearson correlation coefficient associated with each (r) 

(Fig. 3.8) , shows that the correlation between Hfq-binding fold-changes and RNA 

steady-state fold-changes is quite poor at lower cell density (OD600 0.8: r = 0.38), 

but gradually becomes positive as the cells approach stationary phase (OD600 3.0 r 

=0.75). These dynamics are intriguing, but I cannot fully explain this observation. 

A starting point, however, is to analyse the outliers. In the following analyses, I defined 

highly-crosslinked RNAs and highly-expressed RNAs as those that show a log2 

fold-change relative to OD600 0.4 higher than 2 (i.e at least a four-fold change), an 
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arbitrary but very stringent threshold. First, I selected those mRNAs that are highly-

crosslinked for three representative conditions: OD600 0.8 for exponential phase of 

growth, OD600 1.8 for transition between exponential phase and stationary phase of 

growth, and OD600 3.0 for entry into stationary phase. I intersected the sets to see 

which mRNAs are highly bound to Hfq in all growth conditions, and to see which of the 

mRNAs crosslink in a condition-specific manner (Fig. 3.9 A). There were 53 mRNAs 

most-strongly associated with Hfq in all conditions, and these were enriched in GO-

Fig. 3.8: Comparison of changes in Hfq binding to changes in RNA levels. Scatter plots comparing 
the Hfq binding (x-axis) to RNA levels (y-axis) for the indicated OD600, for all transcripts. Small RNAs 
are indicated in red. For each OD600, from  0.8 to 4.0, the TPM values at each time-point were divided 
by the OD600 0.4 data, and the resulting ratios were log2-normalized. Data are representative of one 
biological replicate for each OD600. The top 5 highest-crosslinked transcripts are annotated. The 
Pearson coefficient (r), calculated for all transcripts is indicated on each plot.
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terms related to amino acid metabolism (14 genes). The biggest overlap was between 

mRNAs highly-crosslinked at OD600 1.8 and OD600 3.0, suggesting that these mRNAs 

already start being regulated by Hfq at the transitions during growth stages and the 

regulation is maintained as the cells reach stationary phase. A GO-term analysis of 

the transcripts highly-bound by Hfq at OD600 3.0 revealed that most of these RNAs are 

involved in responses to stress (53 genes), which is not unexpected as cells undergo 

major changes in gene expression while they transition to stationary phase, a stage 

of growth characterised by increased resilience to stress. Further analyses of the 

transcripts that are strongly bound to Hfq in only one condition will be performed and 

I expect them to reveal more insights into the growth stage-specific association of 

mRNAs to Hfq. 

A

C

mRNAs

15

102

23

39

3

209
53

OD600 0.8
OD600 1.8

OD600 3.0

B

sRNAs

AgrA
RyfD

ArrS
GlmY 
SokB

RyjA
SibC

CsrB

OD600 2.4 OD600 1.8

OD600 3.0

CsrC

58 246198

high RNA
high crosslinked

mRNAs

Fig. 3.9: Overview of highly-cross-linked RNAs. The threshold for high cross-
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data. (A) Venn diagram showing the intersection between highly-crosslinked 
mRNAs in three different growth conditions. (OD600). (B) Venn diagram that 
shows the intersection between highly expressed mRNAs and highly-cross-
linked mRNAs for combined/reunited datasets at all OD600. The threshold for 
high expression was set at log2 Fold-change >2 (four-fold change). (C ) Venn 
diagram showing the intersection between highly-crosslinked sRNAs in three 
different growth conditions. The names of the sRNAs are indicated on their 
corresponding set.
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One simple way to spot outliers among the highly Hfq-crosslinked mRNAs is to check 

if the high crosslinking is correlated with high expression, and investigate those RNAs. 

To get an initial overview of this, I reunited the highly-crosslinked mRNA genes of all 

three conditions (OD600 0.8, 1.8 and 3.0) and compared the resulting set of genes 

with a similarly generated set containing the highly-expressed mRNA genes in the 

corresponding growth stages (Fig. 3.9 B). Although roughly 200 of these RNAs are 

both highly expressed and cross-linked (note: the dynamics could still be different!), 

250 more mRNAs are more highly cross-linked than expressed.  Further approaches 

involve modifying the stringency of the parameters (four-fold may be too stringent), 

and investigate the following: which RNAs are highly cross-linked but show no change 

in RNA expression level; which individual mRNAs are changing their correlation 

throughout growth. I am currently exploring these avenues and for interesting mRNAs 

I will check if there are any RNA-RNA interactions that could partly explain the changes 

in correlation.

3.6.	 Changes in Hfq-binding to sRNAs may reveal unconventional roles for 

some  sRNAs

I next asked how well the Hfq-crosslinking sRNA data correlated with changes in 

sRNA steady-state levels (Fig. 3.10). The trend of correlation improvement with OD600 

is preserved - however, it appears that globally, the changes in sRNA crosslinking 

relative to OD600 0.4 are more poorly correlated to sRNA levels, compared to the whole 

transcriptome (Fig. 3.8). Some sRNAs, such as Tff and SokB are close to the trendline 

in all growth conditions (Fig. 3.10). However, other sRNAs deviate from the trend. 

The most striking example is ArrS, an RNA that is very highly-expressed throughout 

growth relative to OD600 0.4, but the increase in Hfq cross-linking is comparatively low 

(except OD600 2.4) (also see Section 3.3). Conversely, AgrA is a sRNA that shows a 

decrease in expression relative to OD600 0.4 (although expression starts increasing 

after OD600 4.0), but the Hfq binding increases (especially from OD600 1.8 to OD600 

2.4). What these two sRNAs have in common is that they are typically known as cis-

encoded sRNAs.
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Further, I investigated which sRNAs are very highly-crosslinked to Hfq relative to OD600 

0.4, in three conditions that encompass the transition to and entry into stationary 
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data, and the resulting ratios were log2-normalized. Data are representative of one biological 
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coefficient (r) calculated for sRNAs only, is indicated on each plot.
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phase (OD600 2.4 to 4.0) (Fig. 3.9 C). Interestingly, the sRNAs with high-fold changes 

in cross-linking relative to OD600 0.4 in all tested conditions are CsrB and CsrC, sRNAs 

conventionally known for their Hfq-independent function in sequestering the CsrA 

protein (Section 1.4; Romeo et al., 1998). 

To dissect the Hfq binding to CsrB, I determined the read density profile across the 

CsrB transcript, defined by the total number of times each nucleotide within reads 

was mapped to CsrB. Additionally, since deletions within sequences may be indicative 

of the actual site of cross-linking (Granneman et al., 2009), I counted the deletions 

occurring at each nucleotide position. I performed these analyses for the conditions 

in which CsrB was most highly bound to Hfq relative to OD600 0.4, namely at OD600 

3.0 and 4.0. These two conditions can also be viewed as independent replicates 

to support crosslinking sites, i.e. finding the same position mutated at both optical 

densities could confirm that the deletions are not sequencing mistakes (Fig. 3.11A). 

The positions of the deletions were superimposed on the CsrB predicted secondary 

structure (Fig. 3.11 B). CsrB has ~18 CsrA binding sites (Liu et al., 1997). Although 

not all putative sRNA binding sites contained deletions indicating Hfq binding, at least 

seven crosslinked to Hfq, and often the crosslinking sites occurred within or near the 

GGA binding motif found in the loops. This partial overlap with CsrA binding (Holmqvist 

et al., 2016) may either implicate a role for Hfq in masking CsrA binding sites, or Hfq 

may bind to CsrB to mediate CsrB-mRNA base-pairing interactions. 

3.7.	 Maps of Hfq binding sites across protein-coding genes

The analyses presented so far mainly focused on the quantitative aspect of Hfq 

binding to sRNAs and mRNAs. This section will explore the distribution of Hfq binding 

sites across all protein-coding genes. 

To identify where Hfq preferentially binds to mRNAs, I generated heat maps that show 

the distribution of Hfq binding sites across all the transcript coding sequences flanked 

by UTRs of a set length of 200 nt (Fig. 3.12A). The number of genes and the patterns 
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of Hfq binding site distribution did not differ dramatically among late exponential phase 

(OD600 0.8), transition to stationary phase (OD600 1.8) and entry into stationary phase 

(OD600 3.0). Since the 5’-UTR of one gene may overlap with the 3’-UTR of a nearby 

gene, thus resulting in possible redundant Hfq binding, I have removed those genes 

with overlapping UTRs from the analysis. Moreover, I analysed only those transcripts 

with enriched Hfq binding (FDR intervals, minimum 20 nt length) and used the UTR-

lengths from the Rockhopper GTF annotation file (Fig. 3.12 B). Even with this more 

stringent approach, the profile of binding sites across the protein-coding transcriptome 

is preserved. Although Hfq binding was found in all mRNA features (5’-UTRs, coding 

sequences, and 3’-UTRs) (Fig. 3.12 A), most Hfq sites mapped to 5’-UTR and 3’-UTR 

mRNA regions. The enrichment of Hfq binding to the 5’-UTRs of mRNAs is consistent 

with the many regulatory roles Hfq performs at this site, many involving sRNA base-

pairing (Section 1.4), but also direct Hfq-binding without an sRNA to inhibit translation 

(Ellis et al., 2015). Similarly, at 3’-UTRs, Hfq may have multiple roles, such as sRNA-

mediated stabilisation of transcripts (e.g. gadY; Frohlich and Vogel, 2009; Papenfort 

and Vanderpool, 2015), promotion of degradation (Morita et al, 2005). However, an 

emerging role of Hfq that would explain 3’-UTR binding enrichment is to stabilize 

sRNAs that overlap the ORFs of mRNAs (Section 1.7). 

Next, I used the FDR intervals to search for a consensus motif for Hfq-binding to 

mRNAs (Fig. 3.12C). The most enriched K-mer included polyU stretches, that 

resemble the polyU tracts characteristic to Rho-independent terminators (Wilson 

and von Hippel, 1995). Many bacterial transcripts terminate with such terminators, 

and the finding this motif is consistent with the observed Hfq-enrichment at the 3’-

UTRs of mRNAs. These findings confirm the motif uncovered in CLIP-seq studies in 

Salmonella (Holmqvist et al., 2016), but do not cross-validate the motif proposed from 

Hfq CRAC experiments in enterohemorrhagic E.coli (Tree et al., 2014). 
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Fig. 3.12: Transcriptome-wide maps of Hfq binding to protein-coding genes. (A) Heatmaps showing 
the distribution of Hfq binding sites across all protein-coding genes at each OD600: The genes 
are sorted by length (x-axis); the darker a nucleotide is, the more Hfq is bound to it; the cDNAs 
were flattened into clusters and a set UTR length of 200 bp was used for heatmap generation. 
(B) A more stringent selection of the genes used to generate the distribution of Hfq binding to 
the transcriptome: all genes with overlapping 5’ or 3’-UTRs were removed from the analysis to 
avoid ‘duplicate’ counting; for all remaining cDNAs, FDR intervals of minimum 20 bases were 
considered for distribution plotting. The interval length (with UTR flanks as in the .gtf annotation 
file) for each gene was normalized over 100 bins as in Fig. 3.7. (C) Hfq binding motifs search in 
protein-coding genes: significant k-mers (4-8 nt in length) were identified using pyMotif tool of the 
pyCRAC package (Webb et al., 2014) and the motif logo was generated using all k-mers with a 
Z-score > 3, with kpLogo (Wu and Bartel., 2017).
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3.8.	 Overview of the RNA-RNA interactions uncovered by CLASH 

To analyse the RNA-RNA interactions captured by Hfq CLASH, I combined the data for 

all OD600 into one large dataset, comprising two CLASH experiments. The distribution 

of combinations of transcript classes found in all discovered chimeric reads indicates 

sRNA-mRNA interactions as the most frequent Hfq-mediated interaction type (~40%) 

(Fig. 3.13A). However, a large number of hybrid parts mapped to sRNA - intergenic 

regions and protein-coding -protein coding interactions. 

To obtain an overview of the interactions recovered by Hfq CLASH compared to 

the RIL-seq data (Section 1.8), I flattened all chimeric reads into interactions, i.e an 

RNA-RNA pair was only counted once even if it was represented by many chimeric 

reads in any orientation (i.e RNA1-RNA2 and RNA2-RNA1 were counted as one 

interaction). At this moment, I do not have a completely working pipeline to select 

enriched interactions from the CLASH data, and adaptation of approaches used by 

other groups posed challenges. Since this part of the work is in progress, for the time 

being I set a threshold of minimum two unique hybrids to consider an interaction 

possible.  The RIL-seq data was retrieved from the supplemental information provided 

with the publication (Melamed et al., 2016) and includes significant interactions for 

the comparable growth conditions tested (exponential phase of growth and stationary 

phase). The chimeras containing protein-coding genes in at least one part of the read 

were compared for Hfq CLASH and RIL-seq. For both datasets, due to annotation 

differences, intergenic regions and insertion elements were removed from the 

analyses.

The comparison shows that although performed in the same organism, and some 

growth conditions somewhat overlapped, only very few interactions are captured by 

both approaches, roughly a 13% ratio from all interactions of each dataset. Even 

without statistical filtering, the distribution profiles of chimera parts across protein-

coding genes can be a good indication of how specific the sRNA-mRNA capture was 

using CLASH. To generate distribution profiles for chimera parts, clusters containing 
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only the chimera parts that uniquely mapped to single genes were considered and 

were counted only once. The genomic sequence was divided in 100 bins and the hit 

density in each bin was calculated as before (Fig. 3.12 B). The distribution across 

all protein-coding genes (Fig. 3.14 A, left) shows that most chimera parts map to the 

5’-UTRs and some enrichment was also found in 3’-UTRs of mRNAs. This pattern is 

consistent with Hfq binding sites distribution (Fig. 3.12 A-B). Next, to check whether 

there are any chimeric reads parts overlapping the AUG codon region, I have similarly 

considered only the mRNA clusters that uniquely mapped to single genes, and counted 

them only once, but generated bins from the 5’-end of coding-sequence coordinates 

(Fig. 3.14 A, right). The resulting distribution shows that chimera parts are enriched in 

the AUG codon window, consistent with the canonical mode of translation inhibition 

by sRNAs.

1504 1520195

Hfq CLASH RIL-seq

Chimeric reads that map to protein-coding 
genes (mRNA-mRNA; sRNA-mRNA)

A

B

Fig. 3.13: Brief overview of the interactions captured by Hfq CLASH. (A) Intermolecular transcript 
combinations found in interactions captured by Hfq CLASH. Combination count of all uniquely 
annotated hybrids on genomic features. Note: a single interaction can be represented by many 
unique chimeras. (B) Comparison between Hfq CLASH data cumulative for all OD600 and RIL-
seq data (Melamed et al., 2016). cumulative for all growth conditions: The Venn diagram shows 
the  overlap between Hfq CLASH interaction pairs (minimum two chimeras per interaction) 
and RIL-seq significantly-enriched interactions. Each interaction is counted only once in each 
dataset, regardless of how many hybrids support the interaction. Due to annotation differences, 
intergenic regions and insertion elements were removed from the comparative analyses.
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Next, to distinguish between the motifs enriched in 5’-UTR of protein coding-genes 

and 3’-UTR regions, I generated clusters uniquely mapping to these regions and 

searched for enriched K-mers (Fig. 3.14B). The significantly enriched K-mers point 

to distinct motifs characteristic to 5’-UTR and 3’-UTR regions. As for Hfq, the 3’-UTR-

containing chimera consensus motif is enriched in polyU tails, whereas the A-rich 

5’-UTR motif is more consistent with the (ARN)n motif proposed for Hfq by previous 

studies (Tree et al., 2014). 
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Fig. 3.14: Analysis of the clusters of chimeras with parts that map to protein-coding genes. (A) 
Distribution of clusters that uniquely map to protein-coding genes. The parts of the chimeras 
were collapsed into clusters; distribution plots were generated by removing the  clusters that 
map to multiple genes and (using bedtools), and the remaining clusters were counted only 
once. The distribution plot over protein-coding genes was generated by dividing each gene 
in 100 bins and calculating the hit density (y-axis); For the distribution plot around the AUG, 
the gene length was normalized in 601 bins (x-axis) 5’-end overlap (-300) before the start of 
the coding sequence, and 300 bins downstream AUG (+300); the bins corresponding to the 
start codon are indicated in pink.  (B) Enriched motifs in chimeras that uniquely overlap the 
5’-UTRs and 3’-UTR; the logo was made as in Fig. 3.12 using K-mers with a Z-score > 2. The 
top K-mers after the pyMotif tool  search are shown below each logo.
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3.9.	 Hfq CLASH rediscovers known sRNA interactions and uncovers novel 

partners for model sRNAs

To test the robustness of the Hfq CLASH methodology in uncovering true intermolecular 

RNA interactions, I compared the Hfq CLASH data with sets of known, experimentally 

validated sRNA-mRNA pairs.

I performed a detailed analysis of the hybrid reads recovered in the Hfq CLASH data 

with the model sRNA ChiX. ChiX is an abundant sRNA at all stages of growth (Fig. 

3.2) that was shown to downregulate the expression of chiP by binding to its SD 

sequence to prevent translation initiation (Fig. 3.15A) (Bossi et al., 2009; Overgaard, 

2009; Plumbridge et al., 2014). The parts of ChiX-chiP chimeras in the CLASH data 

that mapped to chiP support the described mechanism of repression - all chimera 

parts that support the interaction mapped to the correct genomic location (5’-UTR and 

start codon region) of chiP. Moreover, the hybrid structure predicted by RNACofold 

using the sequences found within the chimeras (Fig. 3.15C), further confirmed that 

the base-pairing of ChiX to the SD region of chiP is responsible for repression.

I have also objectively re-discovered in the CLASH data the interaction between ChiX 

and chbBC, an mRNA encoded within the chbBCARFG operon. chBC RNA can act as 

both a decoy and target of ChiX regulation (Plumbridge et al., 2014). In the absence of 

chitosugars, ChiX was shown to downregulate the expression of chbC by binding to the 

intercistronic region between chbB and chbC. Consistent with this mode of regulation, 

the CLASH hybrid reads contained ChiX chimeras whose cognate halves mapped to 

chbBC at the exact proposed location (Plumbridge et al., 2014). Additionally, I found 

in the Hfq CLASH data some novel ChiX targets. The CLASH data contains ~900 

hybrid reads with parts that mapped to ChiX (Fig. 3.15 B, top panel; Fig. 3.16 A). The 

interactions supported by at least 5 unique chimeras place ChiX in a network that 

includes a roughly equal number of ChiX-mRNA and ChiX-sRNA interactions (Fig. 

3.16A). I have dissected two examples of these hybrids 
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to verify if these are de bona fide interactions. The analysis of the hybrids of ChiX 

with a new mRNA target, mreC, shows that the genomic mapping of the ChiX-mreC 

chimeras overlaps the 5’-UTR and first few codons of mreC mRNA (Fig. 3.16 B). At 

a first glance, this points to a canonical mode of translational repression executed by 

ChiX. This regulatory mode is further supported by the favourable duplex structure 

predicted in silico (Fig. 3.16 C), which suggests that ChiX base-pairing to mreC 

may block access to the AUG start codon and a few nucleotides downstream, an 

interference that typically results in inhibition of translation (Section 1.4). 
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Fig. 3.15: Example of re-discovery of known sRNA-mRNA interactions by Hfq CLASH. (A) Diagram 
of known ChiX sRNA-mediated regulation. ChiX is an abundant sRNA that down-regulates chiP 
expression by occluding the Shine-Dalgarno (SD) sequence. In the absence of chitosugars, ChiX 
also represses chbC by base-pairing to a intercistronic region between chbB and chbC. Image 
adapted from Plumbridge et al., 2014. (B) Genome-browser plot showing the location and peaks of 
hybrid reads for ChiX (the counts on the y-axis correspond to all ChiX-containing hybrids recovered 
by Hfq CLASH); below plots for two of its known targets, chiP and chbC are shown (the hybrid read 
count are specific to ChiX-chiP and ChiX-chbC  hybrids, respectively. (C) Prediction of the base-
pairing between ChiX and chiP, using the RNA sequences recovered by Hfq CLASH and RNACofold 
(Lorenz et al., 2011). The SD sequence within the chiP mRNA is highlighted.
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Intriguingly, ChiX also appears to base-pair with sRNAs. Abundant hybrids were found 

in support of ChiX-Spf and ChiX-ArrS interaction (Fig. 3.16 B). I analysed the ChiX-

ArrS interaction in more detail, because ArrS, known as a cis-encoded sRNA was 

found to bind Hfq (Fig. 3.9). The interaction is supported by a very high number of 

unique chimeric reads (81). Interestingly, the predicted duplex structure between the 

two sRNAs masks the ChiX-binding site predicted to base-pair with mreC, whereas 
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in the Hfq CLASH data; drawn with Cytoscape (Shannon et al.,2003). (B) Genome browser plots 
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the ChiX seed for chiP interaction remains available (Fig. 3.16C). This suggests that 

the ArrS sRNA could specifically pair with ChiX to de-repress mreC expression.

3.10.	sRNA-sRNA interactions are abundant in E. coli

The capture of multiple ChiX-sRNA interactions by Hfq CLASH motivated me to 

search for more sRNA-sRNA hybrid reads in the CLASH data. First, I selected the 

sRNA-sRNA interactions supported by at least two hybrid reads in the Hfq CLASH 

data and intersected the sets of interactions with available RNase E CLASH (Waters 

et al., 2017) and RIL-seq (Melamed et al., 2016) datasets (Fig. 3.17). I retrieved these 

data from the respective publications, with no additional filtering. However, for the 

analyses, I only considered the validated sRNAs that are transcribed from independent 

promoters, and are expressed in all E.coli species considered. I excluded 3’-UTR-

derived sRNAs from the analysis because it was not possible to discriminate whether 

an sRNA-3’UTR duplex reflects sponging activity or sRNA-mediated regulation at 3’-

UTRs mRNAs. I speculate that such duplex formation may also be a pathway for 

releasing sRNAs from the parent mRNAs. By considering strictly the sRNAs that do not 

overlap mRNAs, I could filter for sponge-sRNA interactions. Therefore, I specifically 

selected these sRNAs from all datasets to make the comparison. The biggest overlap 

was between sRNA-sRNA pairs identified in the Hfq CLASH data and RNase E 

CLASH data performed in EHEC E. coli. These sRNA-sRNA interactions are most 

likely true interactions (especially since the RNase E CLASH data was statistically 

filtered; Waters et al., 2017), but given the differences in growth conditions (virulence 

inducing conditions for EHEC E.coli and growth transitions for E.coli MG1655), these 

interactions may have roles in a wide range of physiological conditions. However, 

the pools of sRNA-sRNA interactions recovered in association with RNase E are 

expected to be different, because RNase E associated pairs only constitute a subset 

of all sRNA-sRNA interactions that specifically result in degradation of (at least one 

of) the sRNAs. The sRNA-sRNA interactions captured with Hfq, but not with RNase E 

are most likely growth-condition specific interactions. 
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Interestingly, among the sRNA-sRNA interactions that associate with both Hfq and 

RNase E is a ChiX-CsrB interaction (Fig. 3.17), which suggests that one of the two 

sRNAs may direct the other to be degraded by RNase E, or only traps it in a complex.

A very low number of sRNA-sRNA pairs were uncovered by both Hfq CLASH and 

RIL-seq (3), even though both methods used Hfq as a bait for RNA-RNA isolation and 

some of the growth conditions were, in theory, comparable (i.e. exponential growth 

and stationary phase). However, cross-validation renders these interactions as highly 

likely to be occurring in vivo. Among these interactions is the GvcB-MgrR interaction, 

which links lipopolysaccharide composition to amino acid metabolism. 
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Fig. 3.17: Comparison of three datasets that mapped RNA-RNA interactions 
in E.coli: sRNA-sRNA interactions recovery. The Venn diagram shows the 
intersection of sets of sRNA-sRNA interactions independently identified by 
RIL-seq, RNase E CLASH and Hfq CLASH. The search for sRNA-sRNA 
hybrids was performed for known sRNAs, and did not include sRNAs 
derived/processed from parental mRNAs. The RIL-seq and RNase E CLASH 
interactions were retrieved from the tables of significant interactions provided 
with the publications (Melamed et al., 2016; Waters et al., 2017) without any 
additional filtering. The Hfq CLASH sRNA-sRNA interactions considered 
were those with a hybrid count of minimum two.
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interactions captured by Hfq CLASH (drawn using Cytoscape; Shannon et al., 2003). sRNA-sRNA 
interaction sets were obtained as described in Fig. 3.17. The nodes in green (CsrB) and red (Spf) 
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corresponding in silico predicted structure (RNACofold; Lorenz et al., 2011) for each interaction is 
shown, together with the free energy of binding (kcal/mol)
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Next, I analysed in more detail the sRNA-sRNA interactions within the Hfq CLASH 

data (Fig. 3.18 A). The network of all sRNA-sRNA interactions represented by at least 

two unique chimeras illustrates that some sRNAs are hubs in this sRNA dominated 

circuitry: ChiX, ArrS and GcvB are such sRNAs, and this correlates with the fact that 

they are some of the strongest Hfq-crosslinked sRNAs (Fig. 3.3). 

Since CsrB has not been previously described as an Hfq-dependent sRNA, I focused 

more on its association with other RNAs (Fig. 3.18 B). First, I analysed the chimeric 

reads that support CsrB-Spf interactions. Although the interaction (supported by 7 

unique hybrids) is predicted to encompass only 5 base-pairs, all of them are contiguous 

GC pairs, which renders it a stable duplex structure. The GGA containing loops within 

CsrB are still exposed, suggesting it is more likely that CsrB binding to Spf may not be 

directly involved in CsrA binding to CsrB, but rather, CsrB sponges Spf. 

Next, I analysed the interaction between CsrB and CpxQ, a recently discovered 3’-

UTR derived sRNA (Chao and Vogel, 2016). The complementarity region as indicated 

by the predicted structure is unusually extended and GC-rich and would readily result 

in inactivation of CpxQ. For both Spf and CpxQ, however, it must be experimentally 

established that CsrB acts as the sponge. 

3.11.	3’-UTRs of mRNAs are reservoirs of small RNAs

The enrichment of Hfq binding to the 3’-UTRs of genes and the identification of a 

poly-U motif in mRNAs within chimeras with parts that map to the 3’-UTRs, suggests 

that Rho-independent terminator-containing mRNA regions are extensively involved 

in Hfq-mediated RNA-RNA interactions. Since a few isolated studies characterised 

discrete sRNAs that overlap the 3’-UTRs of mRNAs (Guo et al., 2014; Myiakoshi et 

al., 2015a), and global studies generated lists of potential mRNAs that may contain 

sRNAs in their 3’-UTRs (Chao et al., 2017), it has become increasingly recognized 

that sRNA biogenesis from 3’-UTRs is a widespread phenomenon (Section 1.7). 
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Given that 5’-UTRs are usually more often targeted during sRNA-mediated regulation, 

I speculate that many hybrid reads containing 3’-UTRs of mRNAs, especially those 

within mRNA-mRNA chimeric reads, actually involve a 3’-UTR derived sRNA. To 

further investigate this hypothesis, I selected all hybrids in the Hfq CLASH data 

that contain at least one part of the chimeric read that mapped to 3’-UTRs. I then 

intersected this set of 450 chimeras with the set of chimeras containing 3’-UTR 

fragments from the RIL-seq data (Fig. 3.19 A). As for all comparative analyses, I 

only considered the interactions with at least two hybrid counts in the CLASH data. 

Although many 3’-UTR-containing hybrid reads are not shared by both datasets, 53 
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a 3’-UTR in the Hfq CLASH and RIL-seq datasets. The RIL-seq RNA-RNA interaction set 
was obtained as described in Fig. 3.17, and filtered for the 3’-UTR annotation on either 
orientation of the RNA-RNA pairs. Differences in annotation between the two datasets 
were not accounted for, e.g.. if in the CLASH dataset a certain region is annotated as 
3’-UTR, but in the RIL-seq data it is annotated as an intergenic region (IGR or IGT), this 
region will be underrepresented in the RIL-seq data used for set intersection and Venn 
diagram plotting. (B) The names of genes that are part of chimeras, and also uniquely map 
to 3’-UTRs, were selected from the CLASH data and RIL-seq data. Both were intersected 
with the set of mRNAs that were predicted by TIER-seq studies (Chao et al., 2017) to 
harbour sRNAs in their 3’-UTRs, that get released by RNase E processing.
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pairs are identical, indicating that they may be bona fide interactions - and that at least 

some of them may contain 3’-UTR-derived sRNAs. 

To further investigate which mRNA 3’-UTRs are more likely to be sRNAs, I extracted 

the gene names of all mRNAs whose 3’-UTRs were involved in hybrids - this also 

includes 3’UTR-3’UTR chimeric reads, so for these interactions it is hard to establish 

which 3’-UTR is the regulator. However, more clear cases in which 3’-UTR derived 

fragments form chimeras with the 5’-UTR of other mRNAs can streamline regulator 

identification. 

One approach that can help restrict the lists of 3’-UTR derived candidate sRNAs, 

besides cross-validation with the RIL-seq data, is the intersection with the sets of mRNAs 

predicted to contain sRNAs that are released by RNase E processing, uncovered by 

TIER-seq in Salmonella (Chao et al., 2017) (Fig. 3.19 B). Although performed in a 

different bacterial species,  E. coli and Salmonella are  related and share many post-

transcriptional regulators, so the insights gained from comparing these datasets may 

well apply to both organisms. The results of the analysis comparing the CLASH data, 

RIL-seq data and TIER-seq data revealed that only 5 mRNA 3’-UTRs are uncovered in 

all datasets - however these are very likely candidates for 3’-UTR -release as sRNAs. 

The Hfq CLASH and RIL-seq datasets may include 3’-UTR-overlapping sRNAs that 

either are transcribed from independent promoters, and sRNAs that may require a 

different RNase to be released from the parental mRNAs. 

I analysed in more detail two 3’-UTR-overlapping candidate sRNAs that were 

uncovered in both datasets. One of them is the cpxP 3’-UTR (Fig. 3.20 A). Indeed, the 

3’-UTR of this mRNAs was shown to accumulate as a sRNA upon RNase E-mediated 

processing and this stable fragment acts as a functional sRNA (Chao and Vogel., 

2016). Although this sRNA was identified in both CLASH and RIL-seq datasets in a 

large number of chimeric reads, most of the CpxQ targets captured by each method 

do not overlap, suggesting again that these two datasets are complementary. Either 

method greatly increased the set of targets for this sRNA, and shown are two examples 

that link this sRNA to control of expression 
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of components of carbohydrate transport systems (ptsI) and glucose oxidation (gcd). 

CpxQ appears to employ two different mechanisms for regulating these targets, as it 

binds to gcd mRNA at a site in the 5’-UTR, and to ptsI mRNA in the coding sequence, 

but both base-pairing events may be followed by RNase E processing promoted by 

the 5’-P end of CpxQ. 

An uncharacterized 3’-UTR that may be released by RNase E processing originates 

from malG (Fig. 3.20 B). As for CpxQ, the targets do not completely overlap between 

the CLASH and RIL-seq datasets. The malG 3’-UTR-containing chimeras were most 

abundant with two mRNAs encoding major porins, ompC and ompA, to which malG 

base-pairs deep within the 5’-UTR, possibly causing their degradation promoted by 

the processed 5’-end of this sRNA. This 3’-UTR was also found in chimeras with 

a cis-encoded sRNA, OhsC, suggesting that either malG controls its expression by 

sponging, or vice-versa. The most abundant and favourable interactions (with ompC 

and ompA) appear to be utilizing roughly the same region of MdoR for base-pairing 

(Fig.3.20 B), indicative that the corresponding site on the sRNA may be a main, 

functional seed. Similarly, the targeted mRNAs base-pairing regions mapped  to the 

5’-UTRs (ompC, ompA). Thus, these data indicate that MdoR is a classical trans-

acting in E.coli that could mediate RNA decay by recruiting Hfq and RNase E (Pfeiffer 

et al., 2009), cause translational inhibition (Bouvier et al., 2008) or affect premature 

terminate transcription of these mRNAs (Sedlyarova, 2016). 

Finally, I analysed a 3’-UTR derived candidate sRNA that was captured by Hfq CLASH 

only (Fig. 3.21). The 3’-UTR of ahpF, coding for a hydroperoxide reductase shown to 

be also involved in resistance to aminoglycoside antibiotics (Ling et al., 2012). Its 3’-

UTR was found in chimeric reads with a few other mRNAs (Fig. 3.21 A), among them 

recC (involved in stress-induced mutagenesis; Al et al., 2012) and aroE. For both, the 

chimeric reads map to the coding sequences, although for aroE (involved in aromatic 

amino acid biosynthesis) the binding region extends into its 3’-UTR and encompasses 

a long region of complementarity.
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3.12.	Validation of novel sRNAs by Northern blot

Following the analysis of Rho-independent terminator-containing intergenic regions 

found closely downstream the coding sequence of some mRNAs, and some of the 

hybrid reads containing 3’-UTRs of coding genes, I validated a few candidate sRNAs 

by Northern Blot (Fig. 3.22). Both the OD600-dependent Hfq binding and RNA steady-

state profiles revealed that the dynamics of expression are defined throughout growth 

and can vary significantly from one sRNA to another. For instance, INT-0-1913 shows 

a gradual increase in expression with OD600, whereas INT-0-2492, now referred to as 

GadF (Melamed et al., 2016), is highly expressed mainly at high OD600 (Fig. 3.22). The 

dynamic expression profiles of these sRNAs indicated that they may have a role in 

regulating adaptation to various growth stages.  Strikingly, one of the candidate 
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sRNAs, here referred to as MdoR (mal-dependent OMP repressor) is very transiently 

expressed at OD600 1.8, i.e., at the transition from the exponential phase to the 

stationary phase of growth. This is one of the main reasons why I chose to study the 

function of MdoR in greater detail (described in Chapter 4). 

In silico predictions of the MdoR-ompC, MdoR-ompA duplex structures (RNACofold; 

Lorenz et al., 2011) revealed that MdoR can form extensive and highly energetically 

favourable base-pairing interactions with these targets (Fig. 3.22 D). The most striking 

hybrid structure was the one between MdoR and ompC 5’-UTR, encompassing a 

region of 24 bp - such extensive duplex structures are not typically found in trans-

encoded sRNA regulation in E.coli. Consistent with my CLASH data, the RIL-seq 

approach (Melamed et. al, 2016) also uncovered hybrids between ompC and the 3’-

UTR of malG. 

3.13.	Discussion

The analyses performed in this Chapter uncover many exciting prospects of sRNA-

mediated regulation and sRNA networks in bacteria. Many of the insights ensue from 

the fact that we profiled these interactions in multiple conditions of growth, rather than 

in a single condition.

Transcript classes bound by Hfq and involved in RNA-RNA interactions 

I have found that all transcript classes can associate with Hfq and form intermolecular 

chimeras (Fig. 3.2; Fig. 3.13 A). 

The distribution of cDNA reads among transcript classes (Section 3.2) was a 

first indication that Hfq binding to RNAs is correlated with growth. The pattern of 

distribution was similar to the distribution of transcript classes uncovered by Hfq 

CRAC in enterohemorrhagic E. coli (Tree et al., 2014). The association of sRNAs 

and mRNAs is present at all optical densities tested, indicating that all growth 
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phases require sRNA-mediated regulation. Consistent with this, the largest fraction 

of hybrid reads recovered in the Hfq CLASH data were sRNA-mRNA interactions 

(Fig. 3.13 A). An increase in Hfq cross-linking to sRNAs and mRNAs with OD600 can 

be partially explained by the increase in sRNA-mediated regulation associated with 

stress responses triggered as cells transition from exponential stage of growth to the 

stationary phase of growth (Rau et al., 2015). 

Some sRNAs are known to be induced at the stationary phase of growth or to regulate 

the expression of RpoS, the general stress (stationary phase) sigma factor (Gottesman 

and Storz, 2011). Interestingly, the growth stages dominated by Hfq binding to sRNAs 

(OD600 1.8-2.4) was at the transition between the exponential and stationary phases 

of growth. The sRNAs occupying Hfq at these OD600 may have specific expression 

patterns and may play important regulatory roles during growth, e.g shifting metabolic 

strategies, membrane composition changes etc. Other transcript classes were also 

bound by Hfq, most notably tRNAs and rRNAs - this observation is not surprising, 

given the proposed roles for Hfq in tRNA modification (Lee and Feig., 2008) and the 

discovery of tRNA sponges (Lalaouna et al.,2015). We also uncovered tRNA-tRNA 

hybrids (~ 7% of all hybrids) and rRNA-rRNA hybrids. However, these transcripts 

show a decline in association with Hfq as the cell density increases. The concomitant 

increase of Hfq binding to sRNAs and mRNAs, corroborated with the fact that the Hfq 

protein pool is limited (Moon and Gottesman, 2011), suggests that sRNA-mRNA pairs 

binding to Hfq may be prioritized over Hfq association with rRNA and tRNAs as the 

cells start reaching stationary phase. I speculate that the decrease in Hfq binding to 

rRNA and tRNA may render more Hfq hexamers available for sRNAs and mRNAs or 

sRNAs and mRNAs out-compete these transcripts for Hfq binding. 

The growth-dependent patterns of Hfq association with sRNAs may reveal 

atypical roles for  sRNAs

The analyses I performed to obtain growth stage-resolved snapshots of Hfq-

association with sRNAs (Section 3.3, 3.4 and 3.6) and how well it correlates with 
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changes in total RNA levels revealed that globally, these two are not always positively 

correlated. The positive correlation improves as the cells approach stationary phase 

(from OD600 2.4). Individual sRNAs that deviate from linearity are ArrS and AgrA (Fig. 

3.6). Intriguingly, these are known as cis-encoded sRNAs (Aiso et al., 2014; Weel-

Sneve et al., 2013), that should not require Hfq for their function. Therefore, the poor 

correlation of association of Hfq to these transcripts may occur because they perform 

Hfq-independent functions. However, I observed in my CLASH data a large number 

of chimeras with ArrS, many of them reflecting ArrS-sRNA interactions (Fig. 3.16 

C, Fig. 3.18 A). One of these was with ChiX (Fig. 3.15). Corroborated, these data 

strongly suggest that ArrS can act as a sponge sRNA. Since under the tested growth 

conditions ArrS expression was induced at higher OD600, possibly connected to the 

decrease in intracellular pH (Aiso et al., 2014), these interactions may help coordinate 

multiple pathways with the acid-response. 

Two other interesting sRNAs are CrsB and CsrC. The Hfq-binding changes for these 

transcripts follow a slightly different profile than that of the change in the RNA levels. 

However, simply finding them associated with Hfq is striking, because these sRNAs 

are known exclusively for their role in sequestering the CsrA protein (Romeo et al., 

1998, Liu et al., 1997).  Strikingly, we found that Hfq binds roughly one third of the 

CsrA binding sites on CsrB (Fig. 3.11). One possibility is that CsrA and Hfq compete 

for binding to these sites, and their rates of association with CsrB are determined by 

their intracellular levels, availability and binding affinities. CsrB would then regulate not 

only the relative levels of free CsrA and sequestered CsrA, but also the relative pools 

of free Hfq and sequestered Hfq. The balancing of this sponging activity could overall 

fine-tune the intracellular levels of free CsrA and Hfq (Fig. 3.23 A). To elaborate on the 

scenario that Hfq could directly interfere with CsrB – CsrA binding, I integrated this 

hypothetical regulation with the known direct link between the two master regulators. 

CsrA is known to repress hfq translation (Baker et al., 2007). Therefore, by sponging 

CsrA, CsrB indirectly activates Hfq expression (Fig. 3.23 B). Additionally, Hfq could 

prevent CsrB-mediated repression of CsrA activity – thus forming a negative feed-

back loop that fine-tunes Hfq expression (Fig. 3.23 B). Noteworthy, this loop would 
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have consequences on all CsrA targets expression.  Another possibility is that CsrB 

is involved in Hfq-mediated RNA-RNA interactions. The latter is supported by the 

discovery of a large number of CsrB-sRNA interactions (Fig. 3.18). I am particularly 

intrigued by the CsrB and Spf sRNA interaction. These sRNAs have antagonistic 

roles: Spf plays a main role in catabolite repression by repressing genes involved 

in central and secondary metabolism and the consumption of non-preferred carbon 

sources. CsrB inhibits the activity of CsrA, a global regulator that represses glycogen 

synthesis and catabolism, gluconeogenesis and biofilm formation (Romeo et al, 

1998). Therefore, CsrB indirectly activates stationary phase processes. I cannot 

discriminate whether CsrB or Spf acts as the sponge, but given that the CsrA binding 

sites are still exposed upon Spf hybridization, I postulate that CsrB binds Spf and 

inhibits its function. By sponging Spf, CsrB may help relieve catabolite repression. 

This additional layer of control may be required because, although Spf binding to Hfq 

decreases towards the stationary phase, it is still one of the more abundantly bound 

sRNAs even in stationary phase (Fig. 2.2). 

Either scenario directly connects the CsrA and Hfq regulons, which is currently known 

to be linked only by the CsrA-mediated repression of Hfq synthesis (Baker et al., 

2007), and the McaS sRNA (Jørgensen et al., 2013; Holmqvist and Vogel., 2013). 

Additional regulatory circuits that involve sRNA-sRNA interactions

The Hfq CLASH independently identified known sRNA-target interactions (Fig. 3.14) 

and uncovered many new targets for known sRNAs (Fig. 3.15; Fig. 3.20). Throughout 

all sections of this Chapter I have presented isolated cases of potential sRNA mediated 

regulation. Many of these circuits involve sRNA-sRNA interactions, which seem to be 

widespread (Fig. 3.18). Sponge-sRNA interactions have been previously described 

(Myiakoshi et al., 2015b; Figueroa-Bossi et al., 2009; Lalaouna et al. ,2015), but most 

sponges originate as RNA processing products. This led to the view that RNA sponges 

mediate mRNA-mRNA cross-talk, the communication between the mRNA species 

releasing the sRNA, and the mRNA targets of the supressed sRNA. The interactions 

found in the Hfq CLASH data show a new layer of sponging activity, 
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whereby independently transcribed sRNAs control each other. This type of regulation 

has several implications: first, the expression of the sponge is not dependent on the 

expression of a parental RNA - it can be rapidly transcribed when needed. Second, 

since most of these sRNAs do not possess mature 5’-ends, the interaction need not 

be followed by RNase E mediated degradation and it is therefore possibly reversible. 

From the data I cannot determine which sRNA is the main regulator for each interaction, 

but one possibility is that the regulatory outcome is dependent on the relative levels 
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the sponge, it could form a negative feed-back loop to keep GcvB under control. If GcvB 
acts as the sponge, it could repress MgrR to adsorb trnascriptional noise from PhoP, in 
an incoherent FFL. 
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of the two sRNAs, similar to the linear-threshold model described for sRNA-mRNA 

pairs (Section 1.10). Moreover, since the expression of sRNAs is characterized by 

transcriptional noise, sRNA-sRNA interactions may help reduce it.  

In one example (Fig. 3.15) I propose that ArrS might base-pair with ChiX to occlude the 

seed sequence for its interaction with mreC. This binding would not affect regulation 

of the  chiP target, for which ChiX utilizes a different seed sequence (Fig. 3.15). Since 

ChiX is predicted to base-pair with mreC in the start codon region, it is likely that ChiX 

inhibits translation of mreC mRNA. Thus, ArrS might derepress mreC, and possibly 

other targets for which ChiX utilizes the same region for pairing (Fig. 3.24 C). It is 

possible that under different growth conditions, and depending on the stoichiometry 

between the two species, ChiX could sponge ArrS to repress acid-responses. Although 

ChiX is detectable during all growth phases (Fig. 2.2), it was found to be upregulated 

by low pH under specific conditions (Hayes et al., 2006). Since ArrS is involved in 

cell responses that tackle acid stress, the interaction between the two is likely not 

coincidental, and in this hypothetical model, the sponge would link acid-responses to 

cell shape determination (Fig. 3.23 C).

The MgrR-GcvB (Fig. 3.17) interactions may provide a crosstalk between amino acid 

metabolism regulatory pathways and lipopolysaccharide composition regulation. 

Various links between these two sRNAs have been reported, including that GcvB was 

shown to activate expression of PhoPQ regulon, part of which is MgrR (Moon and 

Gottesman, 2009; Coomaert et al., 2013). In line with this, GcvB could potentially act 

as a sponge to buffer transcriptional noise of MgrR, in an incoherent FFL (Fig. 3.23 

D). Alternatively, MgrR could act as a sponge to feedback on GcvB sRNA activity. In 

this case, the RNA species that acts as the sponge is determinant of the network motif 

employed between these regulators (Fig. 3.23 D). 

Moreover, the SroC sRNA derived from a GcvB target was shown to act as sponge for 

both MgrR and SroC (Acuña et al., 2016). These observations suggest that the MgrR 

and GcvB regulons are intimately connected at multiple levels. 



111

The sRNA-sRNA interactions examples briefly discussed here, although still awaiting 

experimental validation, already indicate possible circuits and strategies the cells 

could use to integrate multiple adaptive responses. The discovery of so many sRNA-

sRNA interactions reflects a direct crosstalk between sRNA regulons, an avenue 

worth exploring in more detail.

New 3’-UTR-derived sRNAs captured by CLASH

In the Hfq CLASH data, we identified ~150 mRNAs with 3’-UTRs within chimeric reads, 

and the consensus motif of these fragments indicates overlap with Rho-independent 

terminators (Fig. 3.14B). The GO-term enrichment analysis of mRNAs with 3’-UTRs 

within chimeras did not indicate any enrichment, which suggests that mRNAs that can 

give rise to sRNAs can be involved in virtually any cellular pathway. 

The intersection of our 3’-UTR chimera dataset with the TIER-seq data (Chao et al., 

2017), selects those 3’-UTRs that can release sRNAs by RNase E processing. Of 

these sRNAs, we detected by Northern Blot a sRNA derived from the 3’-UTR of malG, 

which base-pairs with RNAs of ompC, ompA, and ohsC, among other targets (Fig. 

3.20 B; Section 3.11). This sRNA (MdoR; Fig. 3.22) was characterized in detail in 

Chapter 4.

Comparison between Hfq CLASH and RIL-seq

Throughout my analyses, I compared the sets of target interactions recovered by 

multiple datasets, most often between Hfq CLASH and RIL-seq (Melamed et al., 

2016).

These methods are conceptually similar (Section 1.8), and the RNA-RNA interaction 

datasets were captured in association with Hfq for both. Each dataset covered multiple 

growth conditions. Both my CLASH and the RILseq studies had data on exponential 

and stationary phase, but the actual cell densities (OD600) were different. 
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Ideally, a thorough comparison between the data generated by both methods 

should involve the application of the same bioinformatic pipelines to both datasets, 

however, running the RIL-seq pipeline proved to be quite challenging. As a result, 

I used arbitrary thresholds: each interaction had to be supported by at least two 

unique hybrid reads in the CLASH data and these were compared those with the 

significant RNA-RNA interactions reported by Melamed et al., 2016. Setting this low-

stringency count threshold for the CLASH data was backed by the following rationale. 

First, the high-stringency conditions for purification, and the higher temperatures 

used in the CLASH protocol (Section 1.8; Section 2.13), ensure that only the more 

stable duplexes are recovered. Secondly, the first CLASH experiment I performed 

using the published protocol (Helwak and Tollervey, 2014) revealed few RNA-RNA 

intermolecular interactions. However, it contained two unique chimeras of the malG 

3’-UTR - ompC 5’-UTR interaction, which I successfully validated (Chapter 4). 

My bioinformatics analysis showed that there was surprisingly little overlap between 

the Hfq RIL-seq and CLASH data (Fig. 3.14, Fig. 3.17). This was especially surprising 

considering that I did not use very stringent criteria for selecting chimeras from our 

CLASH data. Regardless, those RNA-RNA interactions recovered from both datasets 

are very likely bona fide interactions that the lab will experimentally validate.

The poor overlap between the datasets can be explained by the differences in growth 

conditions. For example, the CLASH data included interactions characteristic to more 

growth-stage conditions (7 different OD600), thus it is more likely to include more 

RNA-RNA duplexes formed during growth transitions from exponential to stationary 

phase, a phase of growth not analysed by RIL-seq. More differences in the sets 

of interactions could ensue from the fact that the optical densities sampled for the 

exponential and stationary phases of growth for RIL-seq were different from CLASH. 

These aspects can be explored further, by comparing the datasets for each condition 

separately. However, the experimental conditions employed by each method can 

introduce biases towards the capture of certain types of hybrids (Section 1.8). In 

CLASH, the stringency in interaction capture is introduced experimentally, by dual-

affinity purification of Hfq-RNA complexes under completely denaturing conditions 
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(6M GuHCl). Our bacterial CLASH protocol also employs higher ligation temperatures 

(37ºC). Combined, these parameters should enrich for long duplexes, whereas short 

duplexes are expected to be lost. Consistent with this, the MdoR-ompC interaction 

identified here is unusually stable and can be reproduced in vitro in the absence of 

Hfq (Stuart McKellar, unpublished data).

The RIL-seq protocol however, maintains the integrity of the hexamer during purification 

(Melamed et al., 2016), at the cost of capturing more spurious and transient RNA-

RNA interactions. These are then removed in silico with sophisticated statistical filters 

(one-sided Fisher’s exact test on those pairs with at least 10 hybrid reads) (Melamed 

et al., 2016; Waters et al., 2017). 

The question arises, at which stage it is best to introduce the stringency to obtain an 

accurate representation of the in vivo RNA-RNA interactions. I speculate the sooner 

in the experimental design the stringency is introduced, the more likely the output will 

be a more accurate representation of the in vivo scenario, as it is very hard to mimic 

the cellular conditions using statistical tests. Regardless, both approaches have 

been shown to work well in capturing RNA-RNA interactions, and most validations of 

independent observations from these data, confirmed that the methods are robust. 

However, both methods could be improved from a quantitative point of view - given 

the different strategies (and biases) for hybrid capture. Even for identical sRNA-mRNA 

pairs common to both datasets we expect a different number of hybrids supporting the 

interactions. Thus, is the relative number of hybrids for an interaction reflective of the 

occurrence of the interaction within cells?

Future directions

The data presented in this Chapter emphasises the importance of performing kinetic 

studies, as they may uncover patterns and outliers that may point to new regulatory 

mechanisms and rewiring of gene expression through new nodes within networks.  I 

have identified a few exciting sRNA-mediated interactions, that show that non-canonical 
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modes of regulation may be more common than previously thought.  However, the 

observations made here have to be experimentally proven to be considered valid.  

In addition, the biological role of the interactions should be assessed. To this end, 

I characterised in detail one of the findings introduced in this section, in Chapter 4. 

Other interactions will be validated by other students in the lab.

With respect to the analysis of hybrids, my first priority is to perform a more adequate 

statistical analysis of my Hfq CLASH data to remove false-positive interactions. 

Moreover, an informative approach for elucidating the roles of sRNA interactions in 

the CLASH data would be to check at which specific growth condition (OD600) the 

RNAs form a duplex. 
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4.	 A novel 3’-UTR derived small RNA controls 

extracytoplasmic stress responses during 

maltodextrin utilization in E. coli

4.1.	 Introduction

As introduced in Chapter 1, microorganisms have outstanding abilities to monitor 

and adapt to their environments. Under stress conditions, microorganisms rely on 

signal transduction systems and complex adaptive networks to sense environmental 

stress and to control the coordinated expression of genes involved in cellular defense 

mechanisms. This chapter explores further the regulation of one of the major stress 

responses in E. coli, the envelope stress response. 

The E. coli cell envelope is a vital barrier at the forefront of interaction with its milieu: it 

protects cells from environmental insults, mediates information exchange and allows 

selective, bidirectional movement of molecules. The cell envelope is composed of an 

asymmetric outer membrane (OM) and an inner membrane (IM) that are separated by 

an aqueous peptidoglycan-containing periplasmic space (Silhavy et al., 2010). OM is 

rich in  β-barrel proteins (OMPs such as OmpC, OmpA, OmpF; Nikaido et al., 2003) 

and lipoproteins (e.g. Lpp), which are some of the most stable and abundant bacterial 

proteins. The correct integration of these proteins into the membrane requires a 

sophisticated assembly machinery that includes many chaperones and proteases 

(e.g. Skp, DegP; Sklar et al., 2007). Given the complexity of envelope biogenesis, it is 

not surprising that the synthesis and assembly of OM components is tightly regulated 

(Ruiz et al., 2006).

 

Envelope biogenesis control is attained by both transcriptional and post-transcriptional 

mechanisms involving extracytoplasmic-stress (ESR) pathways that respond to any 

alterations in membrane composition (Fig.4.1; Fig.4.2). 
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The alternative sigma factor σE (encoded by rpoE) and two-component systems 

like CpxR/A, Rcs, PhoPQ, EnvZ/OmpR, that respond to IM stress and elevated pH, 

peptidoglycan stress, lipopolysaccharide imbalances and osmotic stress, respectively 

(Raivio, 2014; Laubacher and Ades, 2008), control transcription of a plethora of genes 

with extracytoplasmic functions. As shown in Fig 4.1, most of these regulons deploy 

sRNAs that can either amplify the signal or dampen it. Indeed, sRNAs can act in 

negative feedback loops, such as the negative feedback provided by OmrA/B to OmpR 

or the sRNAs of the σE regulon (MicL, MicA, RybB) that counteract deleterious effects 

of σE expression (Fig. 4.1) (Klein and Raina, 2017; Gogol et al., 2011). Moreover, two-

component system components are targeted by sRNAs from distinct pathways, as 

exemplified by Cpx that is targeted by CyaR and RprA (Vogt et al., 2014) and MicA-

mediated repression of PhoP (Coomaert et al., 2010). 
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Fig. 4.1: A network of envelope stress-responsive and porin-controlling sRNAs, 
encompassing known and candidate interactions; the key components involved in σE and 
OMP regulation and other nodes  relevant to this study are included
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Evidently, the non-coding arms of envelope-related pathways not only diminish stress, 

but also communicate with other signal transduction systems (Klein and Raina, 2017; 

Grabowicz and Silhavy, 2017), allowing cells to integrate multiple responses, with 

profound effects on the re-wiring of gene expression.

Lack of σE is lethal to E. coli (De Las Peñas, 1997).  The rpoE gene is part of the 

rpoErseABC operon that has multiple alternative promoters, located upstream rpoE 

and upstream rseA (encoding for the σE anti-sigma factor), respectively. Promoter 

choice mediates the balance between positive autoregulation and RseA-mediated 

negative feedback loop. σE-mediated responses restore membrane homeostasis 

upon stress imposition, and are induced by any changes in envelope composition, 

as signalled by misfolded OMPs, heat-shock, exposure to ethanol, pH changes, or 

nutrient shifts (Rowley et al., 2006; Kenyon et al., 2005).  The molecular details of 

σE activation are depicted in Fig. 4.2:  σE is activated by a proteolytic cascade that 

degrades the anti-sigma factor RseA and releases σE to the cytoplasm, where it 
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Fig. 4.2: A survey of the σE activating factors and proteolysis steps that release membrane-anchored 
σE into the cytosol to allow transcription of extracytoplasmic stress-responsive genes and sRNAs 
- MicA, RybB, MicL; OM: outer membrane, IM: inner membrane, ESR: extracytoplasmic stress 
response;   σE activity is regulated by the degradation rate of its negative regulator, RseA, which 
holds  σE inactive in the inner membrane; in the canonical mode of σE activation, degradation of RseA 
is initiated by DegS, and requires RseB displacement. RseP and ClpXP proteases further degrade  
RseA, leading to the release of active σE.
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increases transcription of target genes. RseB binds RseA and inhibits DegS activity. 

RseB displacement allows DegS to cleave RseA that is subsequently cleaved by the 

protease RseP and a cytoplasmic portion of RseA is finally degraded by the ClpXP 

protease to release σE (Ades et al, 1999; Alba and Gross, 2004; Chaba et al, 2011). 

Activation of σE induces expression of roughly 100 genes, including genes involved 

in membrane repair and three sRNAs (MicA, RybB, MicL) that together downregulate 

synthesis of abundant porins, dozens of non-porin targets and Lpp (Mutalik et al., 

2009; Rhodius et al. 2005; Papenfort et al., 2006; Udeqwu and Wagner, 2007). 

OMPs have been described as one of the strongest ESR signals (Rowley et al, 2006). 

Even minor changes in expression and folding of these proteins can trigger σE activation 

(Fig. 4.2). Any factor that affects OMP synthesis can therefore indirectly trigger σE-

mediated ESRs. Transcription of OMPs depends on specific cellular conditions, 

such as during osmoregulation or metabolic changes (e.g. OmpC repression by Lrp) 

(Ferrario et al., 1995; De La Cruz and Calva, 2010; Pratt et al, 1997).  

The ompC mRNA is highly abundant and unusually stable (Emory and Belasco, 1990). 

However, its translation is post-transcriptionally controlled by several sRNAs, enabling 

fine-tuning of gene expression (Nikaido et al, 2003; Guillier et al., 2006). For instance, 

the strong σE-dependent MicA and RybB lower OMP synthesis (Fig. 4.1): MicA 

destabilizes both ompA and lamB (Udekwu et al., 2005, Rasmussen et al, 2005; Bossi 

and Figueroa-Bossi, 2009; Figueroa-Bossi et al., 2006; Gogol et. al, 2011), whereas 

RybB downregulates OmpC, OmpA, OmpW, and OmpF (Johansen et al, 2006; Gogol 

et. al, 2011; Papenfort et al., 2010). This repression prevents further accumulation of 

OMPs when the production of assembly factors is not sufficient to cope with folding 

pressures encountered during stress. This has been described as a homeostatic loop 

that alleviates envelope stress, and ultimately negatively regulates σE (Thompson et 

al., 2007). Further, MicC-mediated regulation inhibits OmpC synthesis by preventing 

translation initiation (Chen et al, 2004). Thus, a diverse repertoire of environmental 

stimuli assisted by a corresponding suite of sRNAs contribute to changes in porin 

expression, and subsequently can induce σE.

The envelope is also the route for nutrient intake, and its composition allows selective 
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passage of nutrients. Depending on the availability of the substrates, E.coli can 

switch between the expression of lower-affinity (e.g. general porins) and high-affinity 

transport systems for a given nutrient, as was described for glucose (Ferenci, 1996). 

Nutrient transport systems include components in all compartments of the envelope 

(Nikaido, 1994). It follows that the changes in expression of transport system proteins 

in response to nutrient sensing remodels the architecture of the envelope, which may 

trigger extracytoplasmic stress responses (ESRs). 

The work I presented in Chapter 3 uncovered a possible novel Hfq-mediated post-

transcriptional control of key components and regulators of envelope composition in 

E.coli. Here I describe a detailed characterization of some of these predicted interactions, 

which led me to uncover a novel regulatory link between nutrient availability sensing 

and ESRs. Among the many novel sRNA-target interactions identified by CLASH 

(Chapter 3), I discovered a new non-coding RNA, which I refer to here as MdoR (Fig. 

3.20 B; Fig. 3.22). The data presented in this Chapter indicated that MdoR regulates 

the expression of general porins and σE regulon members in E. coli in response to 

intensification of maltodextrin assimilation. Here I propose that MdoR is processed 

from the malEFG transcript encoding IM and periplasmic components of the maltose-

specific transport system (Section 4.8). Here I demonstrate that MdoR base-pairing 

with mRNA (and sRNA) targets directly represses OmpC expression, and indirectly 

promotes LamB synthesis, thereby controlling the expression of the OM component 

of the maltose-specific transport system. Mechanistically, LamB activation is likely a 

result of MdoR-sponging of the MicA repressor. I postulate that MdoR also indirectly 

suppresses σE activation triggered by changes in OM composition. I hypothesize that 

MdoR is therefore implicated in the reorganization of the envelope to facilitate higher 

efficiency maltodextrin uptake from the environment, while mitigating the deleterious 

effects of σE activation. 

4.2.	 MdoR is a novel trans-acting sRNA derived from the 3’UTR  of malG

One of the most interesting sRNAs discovered in the CLASH data was MdoR, whose 
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expression was very transient and peaked at late exponential phase (Fig. 3.22). I 

envisioned that the particularly transient expression of this sRNA may be correlated 

with a role in the adaptive responses triggered during transition from exponential to 

stationary phases of growth. In this chapter I describe the detailed characterisation of 

MdoR, with the final aim of elucidating its functional role.

MdoR overlaps the 3’-UTR of malG, the last gene of malEFG operon, which encodes 

three subunits of the maltose ABC transporter including the maltose-binding protein 

(Nikaido, 1994). A first hint that malG may harbour a small RNA was uncovered 

by Hfq immunoprecipitation experiments in Salmonella that showed significant 

Hfq enrichment at the 3’-UTR of malG (Chao et al, 2012). The findings were later 

complemented by transcriptome-wide RNase E cleavage site mapping in Salmonella, 

which indicated that in the absence of active RNase E, a fragment of the malG 3’-UTR 

fails to accumulate (Chao et al, 2017; Fig. 3.19 B). However, none of these studies 

followed up with experiments to identify whether the 3’-UTR of malG indeed contains 

a discrete, stable sRNA. To our knowledge, this is the first report that validates and 

describes this particular sRNA in detail, and the first to discover it in E.coli. 

Corroborated, the results in Chapter 3 strongly suggest that MdoR is a bona-fide 

trans-acting sRNA that contains at least one potentially functional seed sequence. 

Its expression profile suggests that MdoR is mostly active at a specific growth phase 

transition, and the interaction with its targets is likely facilitated by Hfq. Support for the 

functionality of MdoR is given by the identification of many chimeric reads of MdoR 

with a number of genes (Fig. 3.20 B)

Prior to performing any functional studies of MdoR, I mapped the 5’-end of MdoR by 

primer extension (Fig 4.3 A).  This revealed that MdoR is a 104 nt long RNA (Fig 4.5C). 

MdoR includes the entire malG 3’-UTR and a few nucleotides upstream of the stop 

codon (also see pointed arrow in Fig 4.3 B, C; Fig. 4.4 A). The predicted secondary 

structure of full-length MdoR suggested that the GC-rich Rho-independent terminator 

is contributing the most to the stability of the structure ( ΔG = -16 kcal/mol). The sRNA 
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seed is predicted as part of weak alternative secondary structures that could become 

exposed by RNA rearrangements that could be chaperoned by Hfq. The CLASH 

data showed that Hfq binding was greatly enriched at the GC-rich stem of the Rho-

independent terminator of MdoR (Fig 3.22 C). Thus, like the majority of E.coli trans-

encoded sRNAs, MdoR is likely to be stabilized by Hfq binding at the Rho-independent 

terminator that it shares with malG, and Hfq may be required for the base-pairing and 

regulation of its targets.

No potential promoter sequence was identified anywhere within the upstream malG 

coding sequence, a first indication that MdoR may not emerge as an independent 

transcript, but could accumulate as a by-product of malG or malEFG transcript 
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122

ribonucleolytic processing, a more recently described mechanism for sRNA biogenesis 

(Myiakoshi et al. 2015a). The latter hypothesis was tested and is discussed in Section 

4.4.

4.3.	 MdoR contains conserved and variable regions

Since sequence conservation among bacterial species is often indication of preservation 

of function, I performed a conservation analysis of MdoR and of the corresponding 

base-pairing regions of some of its targets (Fig 4.4 A; Fig 4.4 B). The alignments and 

distance tree based on percentage-identity revealed that the full-sequence of MdoR 

is not perfectly conserved among enteric bacteria, especially when a broader range 

of species are considered (Fig 4.4 C). Many E.coli sRNAs are very well conserved 

(e.g. MicC; Chen et al., 2004), however, functional sRNAs that do not display robust 

sequence conservation have been reported (Skippington and Ragan, 2012). It is 

possible that MdoR, like these sRNAs, is of a more recent evolutionary origin. 

MdoR homologs of analysed species appear to be more highly conserved at the 

regions that are involved in the predicted base-pairing (sequences below the black 

lines in Fig. 4.4 A) as well as in the Rho-independent terminator region.

In E.coli,  MdoR base-pairs with ompC utilising two different sites: a shorter base-

pairing region separated by a short bulge structure from a downstream, more extended 

interacting region (sequence in the red panel in Fig. 4.4 A with the sequence in the 

green panel in B ). However, given the higher conservation, GC content and more-

extended length of the more downstream base-pairing site (second red box in Fig 4.4 

A), I predict that this region primarily contributes to the interaction between MdoR and 

ompC, whereas the variable regions may help to further stabilize the interaction. 
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4.4.	 RNase E is responsible for both biogenesis and turnover of MdoR

Next, I asked how MdoR is generated. In bacteria, sRNAs that overlap with 3’-UTRs 

of mRNA transcripts generally emerge by one of two mechanisms (Section 1.7). An 

sRNA can either be transcribed from an internal promoter that overlaps a coding gene 

(parallel transcriptional output) or by processing of a mRNA precursor that is in most 

cases mediated by endoribonuclease E (RNase E) (Chao et al., 2012; Chao et al, 
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2017; Myiakoshi et al., 2015). Since I could not find an internal promoter for MdoR 

within the malG coding sequence, I hypothesised that MdoR is generated by decay 

of the malG or the entire malEFG operon transcript. Because MdoR is bound by Hfq 

at the strong Rho-independent terminator, it half-life is likely much longer than other 

parts of the malG transcript. This is highly reminiscent to what was described for other 

3’-UTR-derived sRNAs, such as CpxQ (Chao and Vogel, 2016), and RaiZ (Smirnov 

et al, 2017) in Salmonella. 

A close inspection of the Northern blot data of the malG 3’-UTR revealed that the full-

length malG and malEFG transcripts roughly follow the same expression profile as 

MdoR (Fig 4.5 B): both peak at OD600 of 1.8 and disappear at OD600 of 2.4, whereas 

a small fraction of MdoR remains stable at OD600 2.4, perhaps due to stabilisation 

by Hfq (Fig 4.5). Additionally, I identified shorter malG 3’-UTR-containing fragments 

of intermediate length between malG and MdoR that are most likely degradation 

intermediates. The presence of these intermediate species suggests that the malEFG 

transcript is undergoing serial ribonucleolytic cleavage steps that ultimately degrade 

malG, except its 3’-UTR, which is protected by Hfq. Hfq binding occludes RNase 

E cleavage sites (Moll et al., 2003), thus stabilizing the 3’-UTR containing 104 nt 

fragment that constitutes MdoR. 

In order to test whether the identified intermediates (Fig. 4.5 A) and MdoR are 

degradation products, I assessed the phosphorylation state of their 5’-termini. As 

mentioned (Section 1.7), primary transcripts bear a 5’-triphosphate (5’-PPP) at the 

5’-end, whereas processed transcripts have a characteristic 5’-monophosphate end 

(5’-P). To determine which type of 5’ terminus MdoR has, I treated total RNA extracted 

from cells at OD600 1.2 and 1.8, conditions in which MdoR is most abundant, with 

Terminator 5’-Phosphate Dependent Exonuclease (5’-P Exo). This exonuclease 

only degrades RNA species with mono-phosphate 5’-ends. I hypothesised  that 

if MdoR is a degradation product, it should have a monophosphorylated 5’-

end, making it susceptible to 5’-P exo degradation. Consistent with this idea 5’-P 



125

A

0.
4

0.
8

1.
2

1.
8

2.
4

4.
0

3.
0

OD600

23S rRNA

MdoR

malG

malEFG

RybB

5S
rRNA

 - + - +
OD600 1.81.2

5’-P Exo

33
°C

rneTS

43
°C

33
°C

43
°C

wild-type

MdoR

5S
rRNA

C

B

MdoR

RaiZ

LANE 1 2 3 4

LANE 1 2 3 4
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Exo treatment showed that MdoR was completely degraded in the presence of the 

enzyme (Fig. 4.5 B, lanes 2 and 4), indicating that MdoR indeed bears a 5’- mono 

phosphate. As a negative control, I analysed RybB, sRNA that is generated by an 

independent promoter (Papenfort et al, 2006; Johansen et al, 2006). As this sRNA 

has a 5’-PPP, it should be a poor substrate for the nuclease. Indeed, RybB levels 

were unaffected by the treatment with 5’-P Exo. RaiZ, a sRNA known to be generated 

by RNAse E processing, thus with a 5’-P, was degraded in the presence of 5’-P Exo. 

Notably, not only MdoR was degraded by 5’-P Exo, but also malG and the degradation 

intermediates (Fig 4.5 A and B; horizontal bars), supporting a mechanism by which 

the full-length polycistronic RNA is undergoing decay that is initiated at a site in the 

upstream malEFG region. At this point, however, the ribonuclease responsible for 

these processing events in E.coli is unknown. In most described cases involving 

sRNA biogenesis from 3’-UTR, the ribonuclease responsible for the turnover of mRNA 

precursors is RNase E (Myiakoshi et al, 2015a; Chao et al, 2017). 

In order to test whether MdoR is generated via RNase E degradation of the malEFG 

transcript, I used a temperature-sensitive RNAse E E.coli strain (rneTS) (Apirion, 1978). 

This strain expresses an RNase E mutant (rne3071 ts allele) that causes inactivation 

of RNase E upon shift to high-temperatures (43-44°C) (Fig. 4.5 C). At 33°C rneTS 

strain has normal RNase E activity. I rationalised that if RNase E is the ribonuclease 

required for MdoR biogenesis, temperature inactivation of RNase E in the rneTS strain 

should prevent accumulation of MdoR. Therefore, I expected lower levels of MdoR 

in the rneTS strain at 43°C (lane 4) compared to 33°C (lane 3), whereas in a wild-type 

strain MdoR levels should be similar at both temperatures. 

Surprisingly, the levels of MdoR dropped at 43°C (Fig. 4.7 C, lane 2) even in the wild-

type strain (E. coli MG1655). However, in the heat-shocked rneTS strain, MdoR was 

stabilized. This suggests that normally heat-shock triggers the degradation of MdoR. 

Given that MdoR is degraded ‘by default’ even in a wild-type background at 43°C, 
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the expectations for the changes in MdoR expression in a mutant RNase E strain still 

needs to be confirmed. Therefore, if RNase E mediates both MdoR generation and 

turnover, I expect that after the programmed inactivation of RNase E, MdoR levels 

should be approximately the same as before the shift (rneTS at 33°C), with the steady 

state at 33 C determined by the in vivo rates of biogenesis and degradation.

I speculate the RNase responsible for MdoR turnover is RNase E. This is supported 

by the behaviour of the rneTS strain upon heat shock: MdoR is stabilized at 43°C (Fig. 

4.7C, lane 4) due to the impaired mutant RNase E ability to cleave its substrates. The 

temperature-shift RNase E inactivation is informative with respect to the fate of MdoR, 

however, it cannot provide definite evidence that RNase E is also the key player that 

releases MdoR from its malEFG precursor, especially that a slight increase in MdoR 

levels in the rneTS mutant was observed at 43°C (Fig. 4.4 C). 

Nonetheless, if RNase E is indeed involved in MdoR accumulation, the slight increase 

in MdoR levels at 43°C in the rneTS strain may offer insights into the dynamics of 

MdoR generation and turnover in a wild-type phenotype background (both rneTS at 

33°C and MG1655) - namely, shortly after biogenesis, a small fraction of the MdoR 

pool is degraded by RNase E. This could be due to the fact not all malG 3’-UTRs are 

bound by Hfq. 

Noteworthy, I have reasons to believe that our rneTS strain (obtained from CGSC, The 

Coli Genetic Stock Center) may not work entirely as was observed in other studies 

(Guo et al, 2014; personal communication with Jai Tree). For instance, a notable 

accumulation of 9S rRNA, the 5S precursor, could not be identifed after 30 minutes 

of heat-shock. However, studies performed in a Salmonella rneTS strain (Chao et al, 

2017) suggested that the malG 3’-UTR release from its precursor does require RNase 

E. MdoR 5’-end is indeed located in a predicted single-stranded region containing two 

adenosines (Fig. 4.3 C; Fig. 4.4 A).
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4.5.	 MdoR is predicted to interact with its targets using two seed regions

I have thus far established that MdoR is a trans-acting sRNA that emerges from a 

longer coding transcript by ribonucleolytic processing (Section 4.4). This section is 

the first of a number that delve into the functionality and physiological relevance of 

MdoR. The obvious first step into unravelling the biological significance of any sRNA 

is to identify its targets. 

The CLASH data showed that MdoR interacts with a few mRNA targets in E.coli 

(Section 4.2). The majority of these interactions were supported by many (>= 5) 

hybrids, and were also found in replicate experiments. Therefore, I consider these 

to be real MdoR targets. To substantiate these results, I employed a bioinformatic 

prediction of its targetome. In recent years, computational predictions of sRNA-

mRNA interactions on the genomic scale have proven to be immensely useful in the 

characterization of new sRNA species. Indeed, bioinformatic prediction analyses pose 

clear advantages. Besides the low-cost and the high-throughput of the methodology, 

the advantages expand to a purely biologically-relevant reasoning. Specifically, 

computational predictions may reveal additional targets of a sRNA that cannot be 

identified by experimental approaches simply due to the limitations posed by the nature 

of experimental work: only a limited number of growth conditions can be employed 

and analysed at a time. From our experience, the patterns of sRNA expression are 

very fine-tuned to the growth conditions: not only it is extremely challenging to find 

the condition at which a sRNA is maximally expressed, but it is even more difficult 

to identify the conditions during which a sRNA is regulating a particular subset of its 

targets.  This is where computational predictions of sRNA-mRNA do fill a gap in the 

characterization of a novel sRNA: they identify favourable sRNA-mRNA interactions 

in a virtually infinite number of possible conditions. 

For MdoR target prediction, I employed one of the most advanced tools available for 

transcriptome-wide sRNA-mRNA computational mapping, CopraRNA (Comparative 

prediction algorithm for small RNA targets, Wright et al, 2014; Wright et al., 2013). 
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Three homologous MdoR sequences (E.coli, Enterobacter, Shigella) were analyzed 

with CopraRNA. MdoR is predicted to have 45 targets with a combined CopraRNA 

p-value below 0.01, set by the developers as the highest-confidence detection threshold 

(Wright et al, 2013).  Table 4.1 shows the top 25 CopraRNA predicted targets. MdoR 

is predicted to interact with targets that cover a broad spectrum of cellular functions, 

ranging from sugar-uptake systems, enzymatic reactions, transport to cell division 

regulation. The CopraRNA prediction pipeline automatically incorporates post-

processing methods, such as functional enrichment analysis. However, the functional 

enrichment analysis using a recommended threshold of DAVID enrichment score > 

1.3 (Huang et al., 2009) showed no significant clusters among MdoR predicted targets 

with p <0.01. 

Table 4.1: Top CopraRNA hits* in E.coli, Shigella dysenteriae and Enterobacter 

cloacae

Rank Gene name Annotation
Hybridiza-

tion Energy 
(kcal/mol)

Position 
mRNA

Position 
ncRNA

1 caiC
putative croton-
obetaine/carni-
tine-CoA ligase

-53.1 168 -- 226 3 -- 71

2 ppc phosphoenolpyru-
vate carboxylase -44.74 157 -- 216 4 -- 65

3 ptsI

PEP-protein phos-
photransferase 
of PTS system 

(enzyme I)

-37.75 179 -- 223 4 -- 66

4 zraR

DNA-binding re-
sponse regulator 
in two-component 
regulatory system

-39.8 70 -- 107 6 -- 41

5 mraZ
RsmH 

methytransferase 
inhibitor

-54.7 155 -- 220 4 -- 66

6 trpR
transcriptional 

repressor  trypto-
phan-binding

-35.8 225 -- 246 4 -- 33

7 mntH
manganese/diva-
lent cation trans-

porter
-33.8 192 -- 232 27 -- 65

8 yggL DUF469 family 
protein -41.7 160 -- 206 25 -- 65
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9 rplW
50S ribosomal 
subunit protein 

L23
-38.9 182 -- 220 3 -- 44

10 rseA anti-σE factor -36.6 176 -- 216 7 -- 54

11 ampD murein amidase -36.8 83 -- 116 2 -- 37

12 yeaH UPF0229 family 
protein -46.1 165 -- 226 3 -- 70

13 ligT 2'-5' RNA ligase -33.4 84 -- 126 6 -- 46

14 yghD

putative mem-
brane-anchored 

secretion pathway 
M-type protein

-42.5 155 -- 191 12 -- 39

15 yidB DUF937 family 
protein -35.5 253 -- 295 24 -- 71

16 yoaH UPF0181 family 
protein -32.73 264 -- 293 26 -- 72

17 norV
anaerobic nitric 
oxide reductase 
flavorubredoxin

-31.6 219 -- 258 32 -- 71

18 yhbE
EamA family IM 
putative trans-

porter
-39.5 190 -- 225 14 -- 54

19 yodD uncharacterized 
protein -51.67 177 -- 251 4 -- 72

20 ompC outer membrane 
porin protein C -37.23 135 -- 186 7 -- 40

*Predicted targets with CopraRNA pval <0.01 and FDR <= 0.5

CopraRNA prediction analysis cross-validates some of the targets identified by CLASH 

(minimum hybrid count = 2). As many as 6 overlapping targets (ompC, ptsH, ptsI, elaB, 

ftsI, murE) were identified in both datasets when CopraRNA predicted targets with p 

values below 0.05 were considered (Fig. 4.8 C). Both methods consistently indicate 

that MdoR is base-pairing with ompC in the same regions of its 5’-UTR, providing 

additional support that MdoR-ompC mRNA interaction is phylogenetically conserved.

The combined density plot of the relative frequency of MdoR nucleotide position in 

the predicted MdoR-mRNA interactions with p <0.01 (Fig. 4.6 A) indicates that MdoR 

may be utilizing two interacting domains for target recognition, a ‘primary’ seed and 

a ‘secondary’ seed.  Both regions are predicted to base-pair with the top CopraRNA 

hits simultaneously, rather than alternatively, suggesting they have an additive effect 
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in supporting the interaction. In all cases, predicted-base pairing interactions never 

involved regions overlapping the Rho-independent terminator of MdoR, supporting the

idea that its secondary structure must remain intact to allow Hfq binding to stabilize 

MdoR and facilitate duplex formation. The pattern of seed utilization may be divergent 

among distinct organisms, as observed for caiC and ppc: in E.coli the secondary 

interaction domain appears not to be required for recognition. Additionally, both seed 
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Fig. 4.6: Interaction regions within MdoR and top target mRNAs predicted by CopraRNA. (A, 
B) Density plots showing the relative frequency of a specific sRNA (A) or mRNA (B) nucleotide 
position in all predicted sRNA-mRNA interactions with a p-value < 0.01 in all considered homologs. 
The vertical lines indicate local maxima; the aligned regions of the homologs are shown in grey, 
whereas the interacting regions are shown in arbitrary colors; only the top 20 representative 
clusters members (Table 2)  are shown in the aligned regions, with the gene names indicated on 
the right.
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regions roughly encompass the entire length of MdoR, except its terminator, suggesting 

that in many cases, the entire MdoR sequence may be required for full regulatory 

function. It should not be excluded that the two seeds may be utilized by MdoR

independently for interacting with other targets. A clear example is ptsH, for which the 

hybrids captured by CLASH point to the secondary seed as the sole interacting region 

(Fig. 4. 4 A).

The density plot of the relative frequency of target nucleotide position in the top 

CopraRNA-predicted MdoR-mRNA interactions (Fig. 4.8B) suggests that MdoR is 

likely to act as a de bona-fide trans-acting sRNA. Most predicted mRNA targets (e.g

ptsI, yggL, norV) are bound by MdoR in the +/- 50 bp window relative to the start 

codon in all considered homologs. This is consistent with a canonical mode of sRNA-

mediated regulation involving control of ribosome accessibility (Vogel and Luisi, 2011; 

Bouvier et al., 2008). The second most frequent interacting region within the targets 

is located more upstream, deep in the 5’-UTR (e.g. zraR, ampD, ligT), where the 

most commonly described sRNA-mediated regulation involves the control of mRNA 

stability/transcription termination.  Within target mRNAs, the MdoR-interacting region 

appears to alternate between upstream 5’-UTR localization in one species relative to 

the others, indicating that different organisms may employ different modes of regulatory 

control. Indeed, it has been proposed that homologous sRNAs from different species 

may employ the same regulation and sequence, but display differential preferences 

with respect to target mRNA sequences (Davis et al., 2005).

Although the CopraRNA prediction analysis is very informative with respect to the 

assessment of regulatory potential of MdoR and may offer quick insights into its 

functional or even physiological role, the findings should be experimentally validated. 

Several predicted MdoR targets were already confirmed by CLASH. However, neither 

methodology is exhaustive, so additional in vivo screens for MdoR targets were 

performed (Section 4.6), followed by validations (Section 4.7). 
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4.6.	 MdoR regulates expression of outer membrane porins and key members 

of the σE regulon 

In order to corroborate the CLASH data and the CopraRNA predictions, I pulse-

overexpressed MdoR using a plasmid containing an arabinose-inducible promoter. I 

then extracted total RNA, removed riboamal RNA (see methods chapter), generated 

RNAseq libraries and performed a differential expression analysis (DESeq2, Love et 

al., 2014) on three biological replicates. The assay was set-up in a manner that would 

prompt minimal alterations to the system. To achieve this, the chromosomal copy 

of MdoR was not disrupted. I also aimed to attain maximal MdoR over-expression 

levels with minimal duration of induction, because a short induction time is crucial to 

avoid indirect regulatory effects. Additionally, an OD600 of 0.4 was set as the induction 

starting point for two main reasons. First, MdoR is endogenously expressed at this 

OD600, thus increasing the chances of capturing the in vivo target repertoire relevant 

to a condition during which MdoR is normally active. Secondly, the level of MdoR at 

this OD600 is relatively low, such that the degree of competition of endogenous MdoR 

with the over-expressed MdoR variant is also kept at a minimum. However, one pitfall 

of plasmid-borne overexpression of MdoR is that the over-expressed variant (primary 

transcripts) will bear 5’ triphosphates, instead of monophosphates (see Section 4.4). 

This may have important regulatory consequences, as outlined below. 

Initially I performed a time-course experiment to optimise MdoR induction conditions.  

Ultimately MdoR expression was induced for a total of 15 minutes, a sufficiently-short 

amount of time to avoid major indirect effects (Fig. 4.7 A). As a control, I induced 

overexpression for the same amount of time from an empty plasmid (referred to as 

pBAD control). The differential expression analysis (DeSeq2, Fig. 4.7 B) identified 20 

transcripts that were significantly enriched in the pBAD control data compared to the 

MdoR overexpression data. These transcripts are therefore very likely downregulated 

by MdoR (Fig. 4.7 B, Table 4.2), whereas only two are upregulated. The majority of 

mRNAs downregulated by MdoR are encoding for membrane-associated proteins.
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Fig. 4.7: MdoR pulse over-expression studies in in wild-type E.coli. (A) Time-course for MdoR 
overexpression conditions optimization; MdoR was induced with L-arabinose from pBAD::MdoR, 
whereas the pBAD Control served as an empty-plasmid control not expressing a sRNA; the 
15-minute induction time was optimal and used for pulse-overexpression followed by RNA-seq 
library prep (bioanalyzer gel of the pooled libraries is shown) and differential expression analyses. 
(B) Differential expression analysis of the pBAD Control and pBAD::MdoR induced overexpression 
data (DESeq2 with data from three replicates): the red points with a pink halo indicate the transcripts 
differentially expressed in the data; transcripts with a log2 fold change > 0  were enriched in the 
Control data; those with a log2 fold change < 0  were enriched in the MdoR overexpression data; 
arrows indicate the most highly expressed transcripts in the pBAD Control data relative to the 
MdoR overexpression data - red font indicates sRNAs. (C) The three most-enriched transcripts in 
the pBAD Control data relative to the MdoR overexpression data; the y-axis indicates normalized 
expression (FPKM); error bars indicate standard deviations from three biological replicates.
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Table 4.2: Significantly* enriched transcripts in the pBAD control data 
relative to MdoR overexpression data

Rank Gene log2(Fold 
change) Gene product Comments

1 ompC 2.26 outer membrane porin C regulated by σE 
sRNAs

2 micA 1.14 σE dependent sRNA regulates OmpA 
and LamB

3 ygiM 1.12 inner membrane protein part of σE regulon

4 ompA 1.12 outer membrane porin A MicA target

5 tsx 1.02 nucleoside-specific channel
regulated by σE 

sRNAs; OM locali-
zation

6 ptsH 1.01 phosphorelay protein of the 
PTS -

7 bioB 0.94 biotin synthase -

8 rseA 0.91 anti-sigma factor for σE part of σE regulon

9 chiA 0.89 endochitinase -

10 nagE 0.89 N-acetylglucosamine 
permease

N-terminus in the 
membrane 

11 ryeA 0.79 sRNA role in biofilm for-
mation

12 rpoE 0.71 σE part of σE regulon

13 yddA 0.69 predicted ABC transporter IM localization

14 chaA 0.66 Na+/K+:H+ antiporter IM localization

15 wzzB 0.61 regulator of length of 
O-antigen part of σE regulon

16 sixA 0.61 phosphohistidine phos-
phatase part of σE regulon

17 msrB 0.55 methionine sulfoxide reduc-
tase B

oxidative stress 
protection

18 ftsZ 0.46 cell-division protein part of σE regulon

19 yjhD -0.56 surface adhesin E-like
protein -

* DeSeq 2 adjusted p value < 0.05
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In agreement, functional enrichment analyses (STRING, Szklarczyk et al., 2015) 

revealed that there was one significant pathway enrichment observed in the set of 

downregulated mRNAs, namely Cellular component GO:0046930, pore-complex 

(FDR <0.01).  Additionally, there is a noticeable overlap between MdoR-downregulated 

genes and members of the σE regulon, including the rpoE gene itself (Rhodius et al, 

2005; Table 4.3). The transcripts significantly downregulated by MdoR over-expression 

also included some without envelope related functions, most notably enzymes. By far 

the most highly downregulated mRNA during MdoR over-expression was ompC (~ 

five-fold change), supporting the idea it is a direct MdoR target. Corroborated with the 

CLASH data and CopraRNA predictions, this ultimately sets ompC apart as the MdoR 

target detected by all global identification approaches employed in this study, using 

the most stringent criteria. The accumulated evidence strongly suggests that MdoR 

base-pairs with ompC 5’-UTR in vivo, leading to its downregulation. 

Considering the overlap between MdoR candidate targets and σE-regulated genes 

(Table 4.2), I questioned whether MdoR overexpression might have led to indirect 

repression of the σE regulon. Since the rpoE levels were not massively reduced 

(1.6-fold-change) upon MdoR over-expression, it seems more likely that the very strong 

repression of OmpC  and other porins (OmpA, Tsx) synthesis led to an indirect relief 

of the σE response, as was proposed for other OMP-regulating sRNAs (e.g. RybB and 

MicA; Gogol et al., 2011; Thompson et al., 2007). MdoR over-expression also reduced 

the transcripts encoding for the σE anti-sigma factor, RseA. Since both are part of the 

same transcription unit, together with rseB and rseC, it is possible MdoR base-pairs 

to only one region of rpoErseABC polycistronic mRNA and destabilizes it. Although 

rseA was also a CopraRNA predicted target, the CLASH data did not indicate a region 

with strong Hfq cross-linking within this transcript, suggesting no trans-acting sRNA 

binding.Taken together, these observations indicate that MdoR indirectly represses 

expression of rpoE. Intriguingly, two of the targets that were significantly reduced 

upon MdoR over-expression were sRNAs (Table 4.2). The MicA sRNA (Fig. 4.7 B and 

C), was the second most repressed gene (~ 2.2-fold-change in the DESeq 2 data). 

This is a second line of evidence that MdoR is potentially capable of regulating other
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names of transcripts with at least 2 unique hybrid reads.
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sRNAs, in addition to the CLASH data that indicated OhsC, another sRNA, as a target  

(Chapter 3). Direct base-pairing between MdoR and MicA still awaits validation, yet we 

are inclined to hypothesise that the downregulation is direct (see discussion below). 

To validate some of the RNA-seq data, I performed quantitative RT-PCR.  These 

experiments confirmed that MdoR over-expression reduces the levels of ompC, rseA, 

rpoE mRNAs and ryeA RNA) (Fig. 4.8 B). 

The experiments included a control with a MdoR seed mutant (MdoR SM; see Fig.4.8 

A for the design), in which the region predicted by CLASH and in silico folding to 

contribute the most to the interactions was mutated to its complement.

Pulse-overexpression of MdoR SM was no longer able to down-regulate these 

transcripts (Fig. 4.8 B).

It is important to note that MdoR and the σE –controlled RybB have overlapping 

target sequences in ompC. Therefore, I also tested whether RybB over-expression 

had any effect on the expression of MdoR candidate targets. As expected, a 15 min 

pulse-overexpression of RybB reduced both ompC and rpoE levels, but not rseA and 

RyeA, providing evidence that although these two sRNAs may have some targets in 

common, they are definitely not redundant. 

As previously mentioned, the overexpressed MdoR variant lacks a 5’-monophosphate. 

The regulatory potential of an sRNA bearing a 5’-monophosphate (5’-P) is much more 

pronounced than its triphosphate equivalent due to preferential 5’-P-assisted cleavage 

by RNase E (Mackie, 1998). Thus, it is likely that MdoR works by a mechanism in which 

MdoR base-pairing to its target recruits RNase E and is followed by ribonucleolytic 

cleavage of target (and sRNA).  If endogenous 5’-P MdoR indeed employs this mode 

of target regulation in vivo, I expect to have missed a number of targets or under-

estimated the regulatory effect of MdoR in our pulse-expression analyses.   

To conclude, MdoR pulse-overexpression caused significant downregulation of only 
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a handful of targets, indicating a very specific, targeted response; if any indirect 

effects were caused in spite of the short overexpression time, they are probably the 

outcome of very fast-acting indirect pathways. The immediacy of MdoR-triggered 

downregulation of some RNAs in E. coli (e.g. MicA) under such conditions may be at 

least as relevant in physiological terms as the proven direct base-pairing interactions 

(see Section 4.10). 

Overall, I have employed three distinct methods for the identification of MdoR 

regulated-genes in E. coli (summarized in Fig. 4.8 C). All three point to ompC and ptsH 

as direct MdoR targets, whereas ompA is the only target common to both CLASH and 

pulse-overexpression analyses (Fig. 4.8 C). These methodologies are based on very 

different criteria, and although in some cases they cross-validate each other, they 

should/could be thought of as complementary methodologies. 

Towards the scope of this work I will focus the biological interpretation on a select 

portion of the in vivo data, which, thus far indicate that MdoR downregulates expression 

of a select number of porins, indirectly represses σE and may direct sRNA turnover/

activity. 

4.7.	 MdoR directly represses OmpC and OmpA expression

To demonstrate direct target regulation in vivo, I employed a well-established reporter 

system where a sRNA is co-expressed with a fusion of the target 5’- mRNA region 

to superfolder green fluorescent protein (sfGFP) (Urban and Vogel, 2007; Urban and 

Vogel, 2009; Corcoran et al., 2012) (Fig. 4.9 A).  Fusions for OmpC, OmpA, Tsx, σE 

and mutant variants for OmpC and OmpA were constructed, but only OmpC, OmpA 

and OmpC seed mutant (OmpC SM, Fig. 4.9 B) produced stable fusions that could be 

analysed. A decrease in florescence relative to the control indicates downregulation, 

whereas an increase in fluorescence indicates upregulation. Fluorescence 

measurements of the translational fusions confirmed that ompC and ompA are
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controlled by MdoR, whereas the GFP expression alone remained unaffected (Fig. 

4.9 C. 
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Fig. 4.9: GFP-reporter validation of OmpC and OmpA targeting by MdoR. (A) Plasmids used for 
the reporter assay; In E.coli TOP10 cells, low-copy plasmids constitutively overexpress target 5’-
UTRs fused to sfGFP and high-copy plasmids overexpress the full-length sRNAs upon induction 
with L-arabinose. (B) Construct design for OmpC: the panel indicates the base-pairing region within 
the MdoR-ompC duplex that was mutated; in seed mutants (SM), each seed region sequence was 
mutated to its complement. (C) Plate reader in vivo fluorescence measurements  of sfGFP fusions 
for OmpC (top) and OmpA (bottom), each with a full-length GFP Control (right), in the presence 
of sRNAs; the ‘no sRNA’ expressing strains contain the empty pBAD control plasmid; the y-axis 
indicates fluorescence units (F.U.); experiments were performed in technical triplicates; the means 
and SEM of three biological replicates are reported. (D) qRT-PCR measurements of  ompC and 
ompC SM-sfGFP reporters; overexpression of sRNAs was induced for 20 minutes; the ‘no sRNA’ 
control was used as the reference for fold-change calculation; experiments were performed in 
technical triplicates; the error bars indicate SEM of two biological replicates.
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As positive controls, I included RybB and MicC overexpression studies. MicC 

downregulates ompC expression at the translational level (MicC, Chen et al., 2004), 

whereas RybB destabilizes ompC and ompA mRNAs (Papenfort et al., 2010; Gogol 

et al., 2011). The results confirmed the native regulation exerted by either sRNA. 

In addition, The MdoR seed mutant  was unable to regulate either OmpC or OmpA 

fusions. 

Since fluorescence measurements of translational fusions cannot discriminate whether 

OmpC downregulation is caused by direct RNase E-mediated transcript destabilization 

or by translational inhibition, I also measured the reporter by quantitative RT-PCR 

(using sfGFP-specific primers) after only 20-minute sRNA induction (Fig. 4.9 D). As 

expected, reduced levels of ompC-sfGFP levels were observed in the presence of 

MdoR, but not that of MdoR SM.  Next, I introduced compensatory mutations into the 

ompC 5’-UTR (ompC SM) to restore base-pairing with the MdoR SM mutant (Fig. 4.9 

A). This partially restored MdoR-dependent regulation (Fig 4.9 D). MdoR wt partially 

suppressed the OmpC-GFP SM mutant. 

Taken together, these results and the CLASH data strongly suggest that MdoR directly 

base-pairs with ompC 5’-UTR resulting in post-transcriptional repression of OmpC 

synthesis. These results place MdoR in the relatively large family of sRNAs that control 

porin expression in E.coli (Section 4.1), but MdoR has a number of distinguishing 

targets and features. 

4.8.	 MdoR expression is dictated by maltose utilization needs in E.coli

The following sections will delve deeper into the physiological relevance of MdoR. 

Besides target identification and validation, I aimed to gain a better understanding of 

the factors that control MdoR expression. I established that MdoR is processed from 

the malEFG mRNA precursor (Fig. 4.4), and proposed a model by which MdoR is 

generated constitutively by RNase E processing from a fraction of the malEFG pool 
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of precursors. While Section 4.4 focused on gaining molecular mechanistic insights of 

MdoR biogenesis, this section will deal with the biological context of MdoR expression.

First, MdoR is derived from a housekeeping sigma factor (σ70) dependent operon. 

MalEFG has no promoter sequence for σE, hence, unlike RybB and MicA, two 

major porin-downregulating sRNAs,  MdoR is not induced directly by σE. Since the 

expression profile of MdoR is dependent on and roughly recapitulates that of malEFG, 
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(OD600). (B) Feed-forward loop that leads to MdoR accumulation; MalT needs to be bound to the 
inducer to activate transcription of downstream genes. (C) RNA steady-states as in (A) for genes 
required to assimilate various substrates, indicated above panels.



143

I rationalised that conditions that induce malEFG expression would by default lead 

to a proportional increase in MdoR expression. Therefore, elucidating the pattern of 

malEFG expression during E.coli growth in LB would directly provide an explanation for 

the emergence of MdoR. In E.coli, malEFG encodes for the translocating component of 

the MalEFGK2 ABC-transporter (malF and malG) and for the maltose-binding protein 

(malE), which enable the high-affinity transport of maltose and maltodextrins (α-1,4-

linked oligosaccharides up to seven glucose units) from the periplasmic space to the 

cytoplasm (Boos and Shuman, 1998; Dippel and Boos, 2005). The maltose regulon 

also includes the LamB maltoporin in the outer membrane and maltose/maltodextrin 

catabolizing enzymes, allowing E. coli to feed on these substrates.

Under the growth conditions employed in this study, malEFG expression slowly 

increased from OD600 0.4, until it peaked at around OD600 of 1.8, after which it dropped 

to almost undetectable levels (Fig. 4.5 A). During my search for the factors causing 

this particular pattern of expression, I questioned whether E.coli might be utilizing 

maltose/maltodextrins most intensely at the transition between exponential and 

stationary phases of growth (OD600 1.8). However, the mal regulon can be induced by 

other physiological conditions, such as during osmotic stress (Boos and Schuman, , 

1998). In those conditions the post-transcriptional regulation of malEFG may be very 

different, and MdoR may not even be generated. 

In order to confirm that MdoR accumulates during maltodextrin utilization and to 

understand why its expression peaks at OD600 1.8, I researched more closely the 

broader context of carbon-source (C-source) utilization by E.coli in LB. LB is a complex 

media, with very low glucose content (less than 100 uM, Sezonov et al., 2007), and 

other mixtures of sugars up to 0.16 % total carbohydrate content (Baev et al., 2005). 

Chemical analysis of complex media is not reliable with respect to the availability of 

nutrients, especially that many growth substrates in these media are oligomeric, and 

the extent of polymerization determines availability. As the tools to directly measure 

maltodextrin influx are not available, I used the growth-curve gene expression data 

(RNA-seq; Chapter 3) as readout of substrate utilization in E.coli (Fig. 4.10 A and 
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C), an approach also employed in previous studies (Baev et al, 2005). Glucose, the 

preferred carbon source is rapidly depleted from the medium by the time cultures 

reach OD600 of ~0.3 (Sezonov et al, 2007). At densities lower than 0.3, catabolite 

repression systems are active, so malEFG expression is expected to be low (Boos 

and Shuman, 1998). 

When cell densities reach levels higher than OD600 of 0.4, Crp-cAMP is active and 

E. coli cells are already sensing and scavenging other carbon sources. The RNA 

steady-states suggest that at OD600 0.4, E. coli is assimilating a few alternative carbon 

sources in parallel, among them glycerol, maltose/maltodextrins, D-mannose, ribose 

etc. (Fig. 4.10 C). Only for a few of them I noticed a sequential induction indicative of 

preferential utilization at a given time (e.g glycerol at OD600 0.8 and maltodextrins at 

OD600 1.8). 

As shown in Fig. 4.10 A, the RNA-seq data indicates that both maltodextrin transport 

systems and maltodextrin-metabolizing enzymes have almost identical expression 

profiles, as they all peak at OD600 1.8, consistent with a highest-intensity maltodextrin 

assimilation stage in E. coli.  The sustained increase of lamB and malEFG expression 

correlates with an increased need for transporters as maltodextrins are being depleted 

from the medium. 

Maltodextrin metabolism intensifies with elevated maltodextrin influx, as indicated by 

increased expression of mal regulon enzyme-encoding genes, such as malQ and 

malP (Fig. 4.10 A). This rewiring of gene expression is achieved by both transcriptional 

and post-transcriptional regulation. The genes of the mal regulon are under direct 

transcriptional control by Crp and MalT; MalT requires both the presence of maltotriose 

inducer (Richet et al., 1989; Raibaud et al.,1987) and Crp for activity, thus the mal 

regulon is controlled by a coherent FFL (Section 1.9) (Fig. 4.10 B). 

The drop in malEFG steady-states after OD600 1.8 can be explained by the complete 

depletion of maltodextrins from the environment at this cell density: in the absence 
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of exogenously-sourced maltotriose inducer, mal regulon genes are no longer 

transcribed. I observed that only the enzyme-encoding part of the mal regulon is 

briefly induced around OD600 3.0. This is likely caused by formation of endogenous 

MalT inducers as intermediates of alternative carbon source metabolism (Schlegel et 

al., 2002) - the fact that this induction was not coupled with an increase in lamB and 

malEFG levels provides clear evidence that there is no maltodextrin intake at that 

stage of growth. 

It is becoming clear that MdoR, directly derived from the malEFG mRNA, also peaks 

in conditions of intense maltodextrin assimilation and starts disappearing after OD600 

1.8. MdoR is still detectable at very low levels at OD600 2.4 (Fig. 3.22) likely because 

it is stabilised by Hfq. I did not find many MdoR chimeric reads in the OD600 1.8 

samples, suggesting that MdoR is largely inactive in conditions of no maltose intake. 

Shortly after, MdoR is likely degraded as Hfq re-localizes to other RNAs required for 
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adaptation to a new environmental/metabolic context. The above observations were 

summed to reconstruct a time-course of intracellular events occurring with respect to 

maltose utilization, maltodextrin-transporter synthesis, and MdoR emergence under 

our growth conditions (Fig. 4.11). 

Now that I have attained a better grasp of the environmental cues that regulate MdoR 

emergence and disappearance, namely presence and utilization of maltodextrins, my 

next aim is to define its role in these conditions. 

4.9.	 MdoR contributes to the complex regulation of σE and OM composition 

during growth

The data discussed so far led me to the hypothesis that MdoR expression during 

late exponential phase results in down-regulation of a number of porin transcripts 

and sRNAs such as MicA. To test this, I analysed the levels of MdoR targets in the 

RNA-seq timecourse data. In the case of MicA, a sudden drop in steady-state at 

OD600 1.8 relative to OD600 1.2 is noticeable (Fig.4.12 A), so there is a chance that this 

decrease, coincident with the time-point of maximal MdoR expression, is controlled 

by this sRNA. At OD600 2.4 (coincident with the disappearance of MdoR), sustained 

MicA increase with cell density is resumed. This pattern of expression is not observed 

in the other σE-dependent sRNAs, RybB and MicL (Fig. 4.12 A, D), suggesting that 

MicA specifically is targeted and repressed at OD600 1.8. However, this needs to be 

confirmed by a biological replicate of the RNA-seq experiments. I do not have yet a 

biological replicate, so it is not possible to discern whether the decrease is biologically 

relevant or noise. 

The pattern of ompC expression is much more difficult to interpret, especially that 

both its mRNA stability and translation efficiency are subject to post-transcriptional 

regulation.  I noticed a modest decrease in ompC RNA levels in my Northern blot 

analyses (Fig. 4.12 C and E), but the RNAseq data did not confirm this result. Further, 

OD600-dependent OmpC protein levels are largely inconsistent with mRNA levels (not 
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unexpected), but also do not show a sustained, inversely correlated decrease with 

MdoR increase (Fig. 4.12 D).  Noteworthy, the observed OmpC expression profile is 

also not correlated with the expression profile of RybB (same for OmpA and MicA - 

Fig. 4.12 A and B).
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4.10.	Discussion

The work described in this chapter revealed a number exciting prospects with respect 

to post-transcriptional regulation mechanisms and network circuitry involved in 

adaptive responses of E.coli. 

The major discovery was the identification of MdoR, a novel riboregulator derived 

from the polycistronic malEFG precursor, that controls envelope composition and σE-

mediated ESRs in response to nutrient availability.  The characterization of MdoR 

adds a new node to the known, already complex network revolving around σE and 

OMPs (Fig. 4.1 versus Fig. 4.17). 

MdoR biogenesis

It is unclear what factors trigger the first cleavage event, or at which site, but one 

possibility is the following: the malEFG operon is transcribed as a single primary 

transcript that is subsequently cleaved to uncouple its expression. This would 

allow differential post-transcriptional regulation of each product of the operon. This 

mode of regulation is common for ABC transporter operons, and is dictated by the 

gene order.  Typically the gene product at the first position in the operon is made 

in much higher ratio relative to the other components (Belasco and Chen, 1988). 

In this case, MalE (encoded by malE), the periplasmic maltose-binding protein 

responsible high-affinity maltose transport has been reported to associate in multiple 

copies with the transmembrane complex (encoded by malF and malG). Indeed, I 

observed that even if the expression profile of all individual genes in the malEFG 

polycistronic transcript are similar (RNA-seq data in Fig 4.12A), malE is expressed 

at much higher levels (6-fold higher levels) than malF or malG. Henceforth, the 

degradation cascade might be initiated by the processing of malEFG produced from 

a single promoter, to yield a pool of independent transcripts: the distal gene malE 

may be clipped off and selectively stabilized (by protection from 3′-5′ exonucleases). 
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The rest of the transcript is more likely to be turned over, however, the 3’-UTR of malG 

is protected from degradation by Hfq. Indeed the selective stabilization of the

 malE cistron was previously reported, and is caused by the intercistronic stem 

loop found at the 3’-end of the stable malE (Newbury et al., 1987). It later was 

shown that maturation of the malE message requires both the activity of the 

degradosome (including RNase E), that cleaves the malEFG precursor and 

exonucleolytic cleavage of the 3’-stabilizing element (Khemici and Carpousis, 2004).

It is unclear whether the temperature shift causes MdoR to undergo targeted/regulated 

degradation or whether the degradation is due to increased RNase activity at higher 

temperatures. In both scenarios, the mechanism likely involves the displacement 

of Hfq from the Rho-independent terminator of MdoR to allow access for RNases. 

This is a reasonable speculation as, in conditions of heat-shock a few other stress-

responsive sRNAs, such as RybB, are highly expressed. Hfq might relocate to 

prioritise the stabilisation and facilitate regulation by these sRNAs, thus rendering 

MdoR susceptible to RNases. In the absence of Hfq, MdoR is potentially very rapidly 

degraded due to its mature 5’P-end, a high-affinity substrate for RNase E (Mackie, 

     P

Hfq
dissociation

?

+ stress
e.g. heat-shock

degradation

3’-UTR

MalT
 σ70

malE malF malG

MdoR

RNase E      P

malEFG
Hfq

PPP

X

malE malGmalF
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of MdoR during stress (i.e. heat-shock), possibly  involving Hfq dissociation from its 
terminator.
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1998).

By summing up all the above observations, I formulate the following model for MdoR 

biogenesis and decay: a pool of the malEFG transcripts is constitutively degraded by 

RNase E, leaving behind 5’-P ends that promote further rounds of cleavage that affect 

malG (Fig. 4.5 A; Fig. 4.13). MalG 3’-UTRs binding Hfq are protected from RNase 

E-mediated decay, whereas in the absence of Hfq these fragments are susceptible 

to degradation. Upon imposition of stress, such as heat-shock, or potentially any 

other stress that requires a substantial rewiring of gene expression involving sRNA 

activity, Hfq dissociates from MdoR and re-locates to the stress-responsive sRNAs. 

Under these circumstances, MdoR is destabilised (Fig. 4.13; Fig. 4.5 C). Therefore, 

RNase E seems to be involved in both biogenesis and turnover of MdoR as part 

of two functionally distinct pathways by virtue of their temporal independence. The 

physiological cues that dictate the accumulation and disappearance of MdoR 

throughout/during standard growth were discussed in Section 4.8. 

Approaches used for MdoR target identification

It is worth mentioning that during the characterization of MdoR, a combination of 

global analyses and validation approaches were employed. MdoR provides a case-

study for a robust comparison of several sRNA targetome capture approaches (Fig. 

4.8 C).  Each methodology used for MdoR target prediction has its specifics, hence 

yields different datasets, but they did cross-validate each other for some genes. In 

retrospect, none of them failed to reveal OmpC as a target for MdoR - both in vivo 

approaches (CLASH and pulse-overexpression studies) revealing it as the number 

one mRNA target of MdoR under our growth conditions. CLASH performed so well, 

that the potential base-pairing interactions of MdoR with its targets could immediately 

be accurately defined, which enhanced downstream seed mutation analyses. 

Although not exhaustive, CLASH is the only approach that captured direct sRNA-

mRNA interactions in vivo, and is the most informative with respect to seed sequence 

determination (see Chapter 3). Not only the CLASH data revealed both ompC and 
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ompA as targets, but also accurately defined the main seed sequence of MdoR - 

mutating the CLASH-predicted sequence of MdoR was sufficient to disrupt the 

regulatory function of this sRNA (Fig. 4.8).

CopraRNA uncovered that MdoR may be functional in other bacterial species (Section 

4.5). I acknowledge that the methodology is prone to both false-positives and false-

negatives and should be followed by experimental validations, but it is very informative 

with respect to the regulatory potential of a sRNA. Another limitation of this approach 

is that it will not report sRNA-sRNA interactions. Last, but not least, the computational 

prediction uncovers additional information about MdoR that is not determinable in 

our experimental conditions, including in non-model organisms. For example, many 

enzymes and other membrane-associated protein encoding mRNAs have been 

uncovered as putative MdoR targets. One reason these were not captured by either 

CLASH or overexpression studies may be that this study was limited to growth in LB.  

The pulse-overexpression studies complement the CLASH data with information on the 

regulatory pathways that MdoR might be controlling/contributing to, a clear example 

of which is the σE network. only the pulse-overexpression experiment revealed a key 

player in our model, MicA as a MdoR target

Moreover, the CLASH data may favour long RNA-RNA base-pairing interactions as 

the enzymatic steps were performed at 37ºC, which may explain why we did not 

recover MicA-MdoR hybrids. Shorter bp interactions may be uncovered if we reduce 

the temperature for these steps.

This brings us to the point that there is no absolute approach to uncover the targetome 

of a sRNA. To unravel the role of MdoR to the extent thus far, I had to employ a suite of 

methods and extract the most relevant information to bring me to the proposed model. 

However, to complete the study, a few more key questions need to be answered 

(Section 4.12).
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Possible regulatory effects of MdoR on its targets

The decrease in ompC RNA levels may either be the result of targeted RNase 

E-mediated decay, or destabilization because of translational inhibition. The exact 

mechanism remains to be elucidated and we are currently concentrating our efforts 

on performing in vitro binding and toeprinting assays to test whether MdoR directly 

interferes with ompC translation.

There are two alternative explanations for the incomplete shutoff of MdoR-mediated 

regulation of ompC SM (Section 4.7): I either mutated too many bases within the 

ompC sequence, which resulted in a change in the secondary structure that inhibits 

efficient MdoR regulation. Alternatively, both interacting regions within ompC mRNA 

may be required for full-regulatory effect of MdoR (only the more extensive region was 

mutated; Fig. 4.9 B). 

Table 4.3: Genes with non-significant changes in expression upon 
MdoR overexpression in the DESeq2 data

Gene log2(Fold change)
DESeq2 adjusted p 

value
rybB 0.47 0.64
lamB -0.24 0.72

Given that MicA is a σE-controlled sRNA, one route of indirect downregulation of MicA 

in the presence of MdoR would be via σE: MicA and RybB have the strongest σE 

promoters second only to the rpoE gene itself (Mutalik et al, 2009), so changes in σE 

levels could indirectly lead to changes in both MicA and RybB expression. Although 

rpoE mRNA levels were significantly decreased upon MdoR overexpression, if MicA 

down-regulation was indeed an indirect consequence of σE down-regulation, I would 

have expected that the fold-change in MicA levels would be less dramatic than that of 

rpoE, and perhaps similar to that of RybB (RybB was down-regulated in our dataset, 

but not at significant levels; Table 4.3). The differential expression data do not support 

this scenario. MicA levels were affected to a higher degree than could be explained 

by σE-mediated repression alone. It follows that MdoR either directly regulates MicA, 
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or indirectly downregulates it by other, unknown regulatory link, in addition to the 

σE-dependent pathways. The short time of MdoR induction supports the former 

hypothesis rather than the latter, and the confirmation of MdoR-MicA direct base-

pairing is an immediate future aim of this study. 

MdoR functionally links nutrient utilization to envelope-stress responses

I have established that MdoR is expressed at the transition between the exponential 

and stationary phases of growth in response to nutrient sensing. MdoR induction is 

dictated by the potency of exogenous maltodextrin assimilation in E. coli. 
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I inferred that MdoR must have a function that would ultimately facilitate maltose 

uptake-related functions. This hypothesis motivated me to revisit the repertoire of 

direct and candidate targets of MdoR as revealed by CLASH and pulse-overexpression 

studies (Sections 3.11, 3.12 and 4.6). The most relevant candidate targets of MdoR 

that would support a role for MdoR during maltose utilization are MicA and rpoE, and 

the validated direct targets, ompC and ompA. These findings helped reconstruct a 

network that uncovers the rewiring of gene expression through two regulons, Mal and 

σE in response to nutrient sensing (Fig. 4.14 B). I will first discuss how the individual 

MdoR-components interaction contribute to the regulatory network, and move on to 

integrate them into a model. 

As introduced in Fig. 4.2, MicA directly represses LamB expression in E. coli and 

thereby negatively regulates maltodextrin uptake (Bossi and Figueroa-Bossi, 2007). 

It follows that when cells feed on maltodextrin, MicA expression should be kept in 

check. MicA is a σE-dependent sRNA, whereas MdoR expression is not promoted 

by this σ factor, and is strikingly different from that of other σE-dependent sRNAs 

(Fig. 4.12 A, D). MicA was the second-most down-regulated target in the pulse-

overexpression studies data and I hypothesize that MdoR directly base-pairs with 

MicA sRNA, resulting in sponging (Fig. 4.14 A, B). Although recently the sponging 

regulation by a 3’-UTR processed sRNAs was reported (Section 1.7; Myiakoshi et 

al., 2015b), a molecular understanding of the underlying mechanism is still lacking. It 

has been shown that RNase E and Hfq are both required, but the timing of the events 

was not described. It is not known whether both Hfq proteins corresponding to the 

interacting sRNAs are required for facilitating direct contacts, or only one Hfq protein 

remains associated with the regulating sRNA. At least one of the Hfq proteins has to 

be displaced to allow 

degradation that is most likely mediated by RNase E assisted by the 5’-P of MdoR 

(Fig. 4.14 B). The regulatory outcome of the interaction is likely the degradation of both 

MicA and MdoR, resulting in LamB derepression.Even in absence of direct regulation, 

the DESeq2 data suggests that MdoR has such repressor potency on MicA (Fig. 4.9 B, 

C), to the extent that it could indirectly protect lamB from MicA-triggered degradation. 
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Indeed, I observed a minor (~20%), albeit not statistically significant, increase in lamB 

mRNA upon MdoR over-expression (Table 4.2). Given that sRNA overexpression was 

induced for only 15 minutes, the time window studied may not be enough to see 

dramatic changes in lamB levels. Towards this direction, I plan to induce MdoR over-

expression over a longer time-course and quantify lamB expression. 

I deem the MdoR-triggered repression of σE as relevant to the physiological context of 

membrane composition changes in accordance to metabolic decisions, in this case, 

the boost in maltodextrin assimilation. Any perturbations in membrane composition 

are sensed and trigger σE activation, which directly results in stress-responsive high 

production of rpoE and MicA, the two genes with the strongest σE promoters (Mutalik et 

al, 2009). By repressing σE, MdoR may not only negatively regulate MicA specifically, 

but also indirectly prevent its accumulation.  Therefore, MdoR may dampen/alleviate 

a σE-mediated response that would otherwise lower LamB synthesis. This additional 

fine-tuning of  σE expression becomes even more important if MdoR indeed acts as 

a sponge on MicA - as this regulation mode would most likely result in concomitant 

turnover of both MicA and MdoR, leading to removal of a fraction of the regulator. 

The σE repression observed during MdoR overexpression is likely an indirect effect 

of reduced OMP synthesis (OmpC, OmpA, Tsx).  OmpC is a major non-specific porin 

that allows the passage of multiple substrates, including maltose - albeit at significantly 

lower diffusion rates than LamB. This makes OmpC a poor choice of maltodextrin 

transporter when the external concentration drops below a certain threshold. During 

maltodextrin assimilation, there is a gradual switch between expression of non-specific 

maltose porins (low rate of maltose diffusion) to the expression of the 100-fold more 

efficient maltose-specific porin, LamB (Szmelcman and Hofnung, 1975; Szmelcman 

et al., 1976). Since MdoR expression peaks at OD600 1.8, just before the exhaustion 

of LB maltodextrin content (concomitant with the peak in lamB expression; Fig. 4.12  

A; Fig. 4.13), I propose that it directly opposes OmpC synthesis as a response to 

the increased need for maltose-specific transport systems. At the same time, ompC, 

ompA and tsx are very abundant transcripts and the synthesis and assembly of their 
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products require an overwhelming fraction of a cell’s chaperones and assembly factors 

(Section 4.1). Consequently, the reduction in OMP synthesis mediated by MdoR would 

render more of these factors available for the correct folding and integration into the 

membrane for maltose-specific transport system components, such as LamB. By 

triggering these changes in outer membrane protein expression, MdoR activity itself 

may contribute to the membrane modifications that could induce the aforementioned 

σE activation. However, as already mentioned, MdoR mitigates the ESR induced by 

σE activity by repressing rpoE expression. 
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Noteworthy, the MdoR-mediated repression of σE via OMP synthesis repression 

appears as the single-most effective way of increasing LamB synthesis and facilitate its 

correct assembly into the OM. OmpC and OmpA repression is necessary to decrease 

competition for folding factors in favour of the newly synthesized LamB, whose

expression is indirectly promoted by MdoR by removal of MicA repression. In principle, 

cells could tackle the increased need for envelope assembly complexes by boosting 

σE activation and expression to produce more of these factors. However, activating σE 

at an inappropriate time can have deleterious effects. Furthermore, in this particular 

case, σE activation could defeat the purpose of MdoR-mediated downregulation of 

MicA. 

The proposed model is that MdoR is a non-coding component of the maltose-specific 

transport system of E.coli, that functionally helps shift the balance between synthesis 

of lower-efficiency and higher-efficiency maltodextrin uptake systems in favor of that 

of maltose-specific porins, while dampening σE controlled ESRs (Fig. 4.15 A). 

Strictly with respect to maltose utilization, MdoR activity has two important 

consequences that ultimately result in the net more efficient maltose assimilation. 

First, MdoR contributes to the coordinated expression of IM, and OM-components 

of the maltose transport system (Fig. 4.15 A). During maltose utilization at very low 

exogenous concentrations, it may be unproductive to downregulate the OM maltoporin 

(via MicA) while increasing IM transporters levels (the coding arm of malEFG). This 

is reasonable assumption, as the two have co-dependent functions and MalE, the 

periplasmic maltose-binding protein responsible for affinity has physical links to both 

(Shuman, 1982). In this scenario, MicA repression by MdoR would allow the crosstalk 

between two physically unlinked genes, but that are physiologically linked. Secondly, 

MdoR contributes to the amplification of the signal of the MalT feed-forward loop (Fig. 

4.10 B): more efficient maltodextrin intake due to elevated LamB levels leads to the 

production of more MalT inducers, thereby activating transcription of the entire Mal 

regulon. Overall, it becomes clear that all extracytoplasmic components of the maltose 

transport system are not only genetically and physically linked, but also connected 

post-transcriptionally. In conclusion, MdoR is a small RNA that regulates membrane 
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composition and ESRs in response to nutrient availability sensing. 

Physiological MdoR induction effect on the levels of its targets 

The results in Section 4.9 motivates me to question how much these sRNAs actually 

contribute to porin regulation in vivo; clearly, the endogenous levels of these sRNAs

 are not sufficient to completely shut down OMP synthesis under our growth conditions 

(Fig. 4. 12). However, even a slight decrease in OmpC and OmpA translation may 

result in a phenotypically-relevant effect due to their high stability and abundance, as 

was proposed for MicL sRNA effect on the synthesis of Lpp, the most abundant 

lipoprotein (Guo et al., 2014). In line with this rationale, even a small reduction in OMP 

synthesis caused by MdoR expression may relieve enough pressure on the OMP 
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assembly machinery to re-direct folding factors to LamB (e.g. SecA, Sec complex, 

SurA, Skp, YaeI etc; Ureta et al., 2007). Moreover, the mere concomitant presence of 

an sRNA and its target inside the cell at a given point does not automatically imply the 

two RNAs are interacting at that particular point - as pointed earlier, it is very difficult 

to find the growth conditions at which a regulator and its target interact.  Finally, there 

may be other, unidentified sRNAs and other RBPs that regulate OMP expression 

(Chapter 3).  Given the complexity of porin regulation and the large number of 

transcriptional and post-transcriptional regulators involved (Section 4.1, Fig. 4.1), I 

cannot point to a single sRNA as the sole responsible regulator for the observed 

OmpC levels during growth. Nevertheless, I intend to gain more insights into the 

mechanism by which MdoR represses OmpC synthesis (Sections 4. 6; Section 4.7)

Throughout growth, rpoE and rseA displayed a similar expression pattern as the 

σE-dependent sRNA MicL, and most likely MdoR activity alone cannot explain the 

observed profile (Fig.4.12). As it is the case for OMPs, σE expression may be regulated 

by other post-transcriptional regulators, some of them unknown (Chapter 3). Indeed, it 

was previously shown that cells lacking Hfq dramatically induce the σE-mediated ESR 

(Figueroa-Bossi et al., 2006, Guisbert et al, 2007) - and I believe this observation is 

not only an effect of  destabilization of MicA and RybB as it was initially proposed. To 

our knowledge, MdoR is the first sRNA shown to repress σE, that is not produced by σE 

itself. Downregulation of σE expression (Fig. 4.16) is wired via the homeostatic negative 

loop caused by MdoR-mediated repression of the OMP synthesis -  this already 

indicates a temporally-defined ‘division of labour’ among the sRNAs that control rpoE 

expression. It was initially apparent that this division was OD600-dependent: MdoR 

could repress OMPs and  σE at earlier stages of growth, whereas at later stages of 

growth  σE  was mainly regulated by negative feedback from RybB and MicA, also via 

OMP repression - a model consistent with the expression profiles of these sRNAs ( 

Fig 4.12 A, D).  It was not known, however, what environmental factor accounts for 

σE repression by each of the two mechanisms. It later became clear that maltodextrin 

availability sensing was the main MdoR-inducing factor (Section 4.8).  
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In conditions of severe stress (e.g. heat-shock) that require activation of σE for cell-

survival, MdoR is degraded by a mechanism that may involve re-localization of Hfq 

and RNAse E-mediated decay (Section 4.4). Thus, the MdoR inhibitory effect on σE is 

relieved, allowing increased σE expression that allows expression of stress-responsive 

genes. Under these conditions, σE expression is fine-tuned via a negative feedback-

loop by the small RNAs that are part of its own regulon: MicA, RybB and MicL.

A model for MdoR-mediated regulation

MdoR is placed in a strategic position at the interface between the MalT and σE 

regulons, that connects nutrient sensing and stress adaptation in E. coli (Fig. 4.17). 

These findings uncover insights into how σE network is regulated in response to 

nutrient availability, an exciting avenue that was not explored as extensively as the σE-
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affinity components of maltose-specific transport (MalE and LamB). This results in higher diffusion 
rates of maltodextrins inside the cell.
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monitored maintenance of envelope integrity during stress. MdoR specifically responds 

to maltodextrin sensing, and its expression peaks with increased necessity for high-

affinity maltodextrin transporters when this carbon source becomes limited, but is 

still available (Section 4.8). The activity of MdoR results in decreased expression of 

general, non-specific porins (OmpC, OmpA) and derepression of LamB (maltose-

specific porin) synthesis. Thus, physiologically, the activation of MdoR results in 

improved utilization and sensing of maltodextrin substrates (Section 4.9). These 

regulatory events are linked to σE  repression, and that maintains the directionality/

consistency of MdoR-mediated regulation and posits a functional link between the 

Mal and σE regulons (Fig. 4.18). 

Moreover, these regulatory outcomes ensue from mechanisms with a degree of novelty. 

Although the repression of OmpC and OmpA is most likely caused by canonical, 

Hfq-facilitated base-pairing to their 5’-UTR resulting in transcript destabilization 

(Section 4.7), LamB derepression is indirect and ensues from a more atypical mode 

of regulation. MicA sRNA is known to target lamB mRNA to reduce LamB synthesis. 

MdoR had a remarkably strong (and immediate) repressing effect on MicA expression 

(Section 4.6), and I propose that MdoR directly base-pairs with MicA, leading to its 

destabilization and subsequent MicA-targetome (including LamB) derepression 

(Section 4.9). If that is the case, LamB net upregulation would be a consequence of 

sponging, by a mechanism similar to that described for SroC (Miyakoshi et al., 2015) 

and chb mRNA (Figueroa-Bossi et al., 2009). Indeed, the 5’-end of MdoR bears a 

monophosphate that would facilitate RNase E recruitment and degradation of both 

sRNAs. Thus, MdoR mediates communication between the physically unlinked, yet 

functionally linked, malEFG and and lamB mRNAs, by controlling MicA turnover. It 

is not known at this point whether the link between σE regulon, MicA and MdoR is 

bidirectional, namely, if either σE or MicA can, in specific conditions regulate malEFG/

MdoR expression. It is striking, however, that during heat-shock, a strong σE-inducing 

condition, MdoR was degraded (Section 4.4) - this would result in  σE derepression. 

This possibility should be further explored, as it would uncover two different regulatory 

inputs that regulate the balance between the two sRNAs (regulator becomes the 
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regulated, possibly MicA or another component of the MicA regulon could directly or 

indirectly degrade MdoR).

Interestingly, according to the model, RNase E is likely involved in a total of three 

distinct events revolving around MdoR. First, RNase E processes a polycistronic 

parental RNA to produce the active form of MdoR. The mechanistic details of MdoR 

biogenesis place this sRNA in the recently-growing list of Type II 3’-UTR derived 

sRNAs that are stabilized by Hfq (Chao et al., 2012). Second, RNase E seems to be 

involved in the turnover of MdoR during stress conditions (Section 4.4). Third, RNase 

E is the main candidate ribonuclease that would facilitate MdoR-sponging of MicA. 

I have uncovered a previously-unsuspected physiological connection between 

maltodextrin utilization (controlled by MdoR) and envelope stress (via MicA and σE). 

MdoR - mediated regulation combines a plethora of network circuitry modes: direct 

repression of general porins and homeostatic feedback to σE, crosstalk between 

malEFG and lamB, and coherent feed-forward looping to MalT. Moreover, by its 

repression of MicA, MdoR has the potential to regulate the entire MicA regulon, an 

avenue I have not explored yet. I speculate however, that the effect of MdoR on other 

targets of MicA may be correlated with its ability to compete with those targets for 

MicA base-pairing, ability fine-tuned by MdoR production rate, relative expression 

levels but also thermodynamic requirements for binding. 

Noteworthy, MdoR possesses features that were only recently described and 

considered at the time “non-canonical” - this vision needs to be updated as more 

riboregulators with such features are being described. If its sponge activity is proven, 

MdoR would be another 3’-UTR-derived sRNA that acts as a sponge - and I speculate 

there is a correlation between the biogenesis mode of sRNAs and their mode of 

regulation. 

The work on MdoR characterization advances the field not only by its discovery as a 

novel riboregulator, but contributes to our understanding of RNA-based circuits and 
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integration of input signals, as exemplified in this work by the integration of σE and Mal 

regulon responses.

Future plans

The immediate future directions that will follow up this thesis will focus on accumulating 

experimental evidence to support the proposed model (Fig. 4.19) and to gain more 

mechanistic insights into MdoR-mediated regulation. 

First, I plan to induce overexpression of MdoR for a longer time-course and monitor 

changes in lamB mRNA - this experiment would provide indirect evidence that MdoR 

is responsible for net LamB upregulation, possibly by MicA sponging. To prove the 

latter, the direct base-pairing of MdoR with MicA has to be validated by in vitro binding 

assays, in the presence of Hfq or alternatively the co-expression of both sRNAs from 

plasmids combined with mutational analyses of the interacting regions. These studies 

could be followed by demonstration of Hfq and RNase E-dependency of the sponging 

in vivo. 

To further dissect the direct repression of OmpC by MdoR, we are currently employing 

EMSA, which could be followed by both secondary structure probing and toeprinting 

experiments. Additionally, I will test the requirement of Hfq for the interaction in 

Hfq knock-out strains. In order to obtain a more comprehensive understanding of 

MdoR effect on the translation of multiple protein-coding targets, together with our 

collaborator, Gabriella Viero we are currently performing polysome-profiling analyses 

in MdoR pulse-overexpression conditions, which will be followed up by quantitative 

RT-PCR of individual targets. Last, but not least, experiments that confirm MdoR 

expression during maltodextrin sensing/utilization conditions, time-course shifts 

from no-maltodextrin containing media to maltodextrin-containing media followed by 

Northern Blot/RT-qPCR will reveal the pattern of MdoR expression in more defined 

growth conditions. Anti-MalE Western blotting will be indicative of the intensity of 

maltose utilization at each time-point. 
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5.	 Concluding remarks

Recent years have witnessed outstanding progress in our understanding of how post-

transcriptional regulation works: state of the art techniques and pipelines for data 

analyses have been developed and launched us into a revolution of RNA networks 

interpretation. 

Although we (think we) have a good idea which and how many sRNAs these networks 

comprise, to unravel their function, a good representation of their targets is needed. 

Most of our understanding of sRNA networks derived from characterization of 

individual sRNAs and subsets of their targets. Recently, by adopting methodologies 

for direct mapping of RNA-RNA interactions in vivo from eukaryotes, comprehensive 

networks of sRNA-target RNA interactions were generated in E.coli (Section 1.8). 

The intermolecular RNA interactions identified in association with Hfq and RNase E 

significantly expanded the complexity of sRNA networks (Fig. 1.9). However, these 

data reflect interactions for a defined set of growth conditions, so the interactions 

uncovered are not universal. For example, three growth conditions were investigated 

by RIL-seq: exponential growth phase, stationary growth phase and low-iron 

conditions, but only a subset of the uncovered interactions were discovered in all 

growth conditions (Melamed et al., 2016). Moreover, using RNase E as a bait to 

capture RNA-RNA interactions reveals only the sets of RNA-RNA pairs where RNase 

E is required for regulation, and this method was applied only in virulence-inducing 

conditions, in a pathogenic E.coli strain  (Waters et al., 2017)

Summary of the main findings 

In this work, I presented new data that uncovers the dynamics of Hfq binding to sRNAs 

and mRNAs, and cumulates the intermolecular RNA-RNA interactions occurring during 

standard growth in E.coli. I investigated a time-course that reflects the transitions 

between the exponential and stationary phases of growth. 
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In Chapter 3, I performed a set of bioinformatic analyses that highlighted growth 

stage-dependent trends in Hfq binding to RNAs, and a collection of several intriguing 

examples of Hfq-mediated regulation. Notably, these findings had little overlap with the 

RIL-seq data, probably caused by both the differences in growth conditions studied, 

and the experimental steps. The validation of most of my findings is needed, but the 

predictions and speculations I made about them present exciting prospects worth 

investigating. 

The global analyses I present are in good agreement with published reports, with 

respect to both the Hfq-recognition sites, and motifs found within chimeras.

However, compared to other studies, my experimental design as a time-course offered 

me the opportunity to study changes in Hfq binding from a kinetic perspective, and to 

compare these with the changes in total RNA levels. This analysis was the starting 

point from which I selected potentially interesting examples of atypical sRNAs. Some 

of these case-studies suggest that cis-acting sRNAs could be also trans-acting 

sRNAs, and even act as sponges that may control the activity of other sRNA (Section 

3.8). Moreover, an sRNA conventionally known to sponge proteins - CsrB, might also 

act as a sponge for sRNAs. Both examples, if proven correct, would illustrate how 

cells exploit the versatility of (single) RNA regulators to ‘multi-task’. I propose this 

strategy would allow cells to coordinate multiple responses, increase the robustness 

of a response, or prevent the overshoot of an adaptive response - all with a low 

metabolic cost.  

The analysis of a model sRNA, ChiX, revealed that this sRNA, detectable at all growth-

stages, can be involved in multiple sRNA-sRNA interactions (Section 3. 7). Although 

it cannot be concluded from the CLASH data which sRNA acts as the sponge within 

the interactions, conjectures can be made. In the illustrated example (Fig. 3.14),  I 

propose that another sRNA, ArrS, may trap ChiX in a duplex, to prevent ChiX-mediated 

regulation of a mRNA targets, but not another. This is a base-pairing pattern that 

suggests an additional parameter that dictates which targets from an sRNA regulon 
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are affected by the sponging activity, besides the relative expression of the interacting 

species and the thermodynamic details of the interaction. Further investigation of the 

sRNA seeds occluded by such interactions, and analysis of their equivalent on cognate 

mRNAs, would help delineate the regulatory potential of sRNA sponges.  Compared 

to the RIL-seq data, Hfq CLASH data uncovered many interactions between sRNAs. 

This finding is intriguing because it implicates direct cross-talk between regulons of 

independently-transcribed sRNAs. As opposed to most described sponges in the 

literature, which are processed sRNAs, the interactions between sRNAs that are 

primary transcripts would allow a different type of post-transcriptional tuning, more 

likely to be characterised by reversibility. One example I investigated more closely is 

the interaction between MgrR and GcvB - it suggests that the two sRNA pathways, 

known to be indirectly linked (Section 3.8) - may also be directly linked, possibly with 

GcvB forming an incoherent feedforward loop to regulate MgrR expression. It would 

be interesting to see how many cases of this type of regulation there really are. 

Mechanistically, both CLASH and RIL-seq uncovered that 3’-UTRs of mRNAs are 

a common source of sRNAs - however, the parental mRNA species predicted, and 

the intermolecular interactions identified are very different (Section 3.9). Some of 

these sRNAs may require RNase E to be released from their precursors (Chao et al., 

2017). One such transcript is the 3’-UTR of malG. The hybrids uncovered by CLASH 

suggested that this RNA fragment might be involved in the regulation of major porins 

in E. coli (OmpC, OmpA). The expression profile of this sRNA is very different from 

that of other porin-regulating sRNAs, RybB and MicA (Fig. 3.22), and is distinguishable 

by a spike in its level at the transition between exponential and stationary phases of 

growth. To unravel the role of this sRNA and to understand why it base-pairs with 

porin mRNAs at this particular growth stage, I characterised it in detail. 

Chapter 4 dealt with the experimental characterization of the novel malG 3’-UTR-

derived sRNA, which I named MdoR. MdoR is generated by processing from the last 

gene of a maltose operon that encodes the inner-membrane maltose transporter. I 

validated experimentally the in vivo interaction of MdoR with ompC 5’-UTR. The seed 
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sequence predicted by CLASH streamlined the validation, as it precisely mapped 

where MdoR base-pairs with these targets. The expression pattern of MdoR already 

suggested that this sRNA is not redundant with RybB and MicA. Consequently, to 

unravel its complete set of targets and to uncover what pathways MdoR is part of, I 

performed pulse-overexpression studies (Section 4.5). The short time-scale of these 

experiments strongly suggests that the differentially expressed genes are direct MdoR 

targets. Besides reconfirming ompC and ompA as targets, I observed a very strong 

downregulation of MicA upon MdoR overexpression. MicA is an envelope-stress 

responsive sRNA known to repress expression of lamB - encoding the outer-membrane 

porin for maltodextrin uptake. I propose that MdoR could act on MicA to derepress 

LamB. Corroborating this finding with the research I made on understanding when 

maltodextrins are utilized throughout growth (Section 4.7), helped me develop the 

following model: to enhance maltodextrin utilization, MdoR represses the non-coding 

arm of an envelope stress response that otherwise suppresses the expression of the 

maltodextrin porin. At the same time, MdoR reduces the expression of general porins, 

possibly to increase availability of porin assembly factors. Physiologically, this results 

in more efficient maltodextrin uptake - as MdoR fine-tunes a stress-response pathway 

in response to nutrient availability. Moreover, MdoR illustrates how characterization 

of a piece of data from a CLASH dataset can lead to a better understanding of the 

pathways that build the regulatory networks in bacteria. 

Broader implications for the field

The application of both CLASH and RIL-seq in bacteria have the potential to revolutionize 

how we view the rewiring of gene expression through regulatory networks. 

They are powerful tools that consistently hint at the idea that mechanisms previously 

considered non-canonical, are in fact, common. Not only is the bacterial genome 

much richer in regulators, but also, even the known regulators could employ more 

diverse roles than envisioned. Mechanisms that were described for only one RNA 

class, could be performed by another class. The latter is to a certain degree intuitive, 
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as they are all the same type of macromolecule, with unifying features - RNAs of 

any kind, by design, are prone to interact with both RBPs and other nucleic acids. 

It does make sense that microorganisms would exploit this property - even more so 

when conditions are not optimal (and the resources limited), such as during stress. 

The efficiency of the regulatory strategies is also reflected by how even degradation 

products are used as regulatory molecules. 

This study also brings forward the importance of having accompanying datasets 

when performing transcriptome-wide studies. For instance, employing RNA-seq 

in parallel with CLASH can reveal insights into how well the binding of a protein 

to RNA is correlated with their steady states, but could also provide a snapshot of 

the expression levels of RNAs involved in an interaction. The latter would augment 

predictive models of the outcome of RNA-RNA base-pairing. Alternatively, performing 

Hfq CLASH in parallel with RNase E CLASH (or other RBPs) could help unravel 

the dynamics and the involvement of these proteins in RNA-mediated regulation. 

Last, but not least, RNA-seq data can be used as a readout of the state the cells are 

in - crucial for integrating any findings into the broader physiological context of the 

studied organism. 

A next challenge for the field is to integrate these novel RNA networks with those 

of protein regulators and study correlations with proteomics data. This is currently 

not possible as RNA-RNA interaction mapping methods cannot directly detect the 

directionality or the effect (activating or repressing) of the regulation. Predictions can 

prove helpful in this direction - but ultimately, the gold-standard for understanding 

an interaction is its experimental characterization. However, these large datasets 

are an astounding resource for finding interesting/prioritising which interactions to 

investigate (as I attempted to illustrate in Chapter 3).
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