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Abstract 

Natural language programs typically store words like pig and 
pigs as independent entries in their dictionaries, thus neglecting 
the obvious morphological relationship between them. Lexicrunch 
tries to induce such relationships from examples of root forms of 
words and the corresponding inflected forms. 

The program collates ,he examples into classes according to 
the difference between the inflected form and its root -- e.g. the 
classes for the plural noun inflection in English might include 
"root forms to which an -s is added" pig, apple, etc.) and "root 
forms which take -es" (fox, box, etc. . It then characterizes 
each class using a modified version of Quinlan's ID3 procedure. 

The resulting rule will be along the lines of, "If a noun 
ends in -x, form its plural by adding -es; otherwise, add -s." 
The program then needs to store only root forms in its dictionary; 
it can reconstruct plurals on demand by applying its rule. It 
thereby eliminates redundancy and compacts the lexicon. 
Lexicrunch's formalism for representing morphological rules wag 
influenced by the Two-level model of Koskenniemi. 

The program was tested on the past tense inflection in 
English, the first person singular present indicative of Finnish, 
and the past participle in French. It appeared to pick up most of 
the regularities in the data successfully. However, a meta-level 
extension to the program is indicated to enable it to capture 
regularities across its rules. 



Chapter 1 

Introduction 

I.I. The structure of words 

The word 13 a rather peculiar level of semantic abstraction. 

Words are certainly not the "atoms" of meaning, as many multi-word 

phrases constitute indivisible chunks. Sweet potato, for example, 

is a semantically simple entity -- namely, a yam -- and is by no 

means a "potato which is sweet." Moreover, clitic words, such as 

the French je, do not even occur in isolation [Matthews 1974, 

p.168]. 

On the other hand, widespread structural and semantic 

regularities within words suggest the existence of a finer type of 

granule, the morpheme. For instance, in thicker, taller, and 

stronger, the suffix -er appears to carry the independent force of 

"more." 

1.2. The need for a computational model of morphology 

Despite the strangeness of the concept, the word is 

undeniably an integral unit of language. it is the word, and not 

some simpler component, tnat is Specially demarcated in the 

written form of most languages. A computer program that processes 

natural language must therefore have some facility for contending 

with words. To date, the typical approach has been merely to 

enumerate every word; only a handful of regular forms are 

systematically derived from their morphological constituents 

LWinograd 1983, p.545; Ritcn:e and ?*.ilman 1984, p.1; KosKenniemi 
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1983a, p.12j. 

As the interest in natural language programs grows, it is 

becoming increasingly apparent that a principled scheme for 

representing the morphology of words is needed. Such a system 

would contain a dictionary of morphemes, along with rules for 

reconstructing words from them. This design would have the 

obvious virtue of compactness, as it would eliminate a great deal 

of redundancy. Additionally, it would offer the other classical 

advantages gained by expressing logical dependencies explicitly: 

it would facilitate modifications such as spelling changes, and it 

would potentially be able to predict new words by extrapolating 

from its rules. 

1.3. Producing rules automatically 

One practical trouble with such a formalism is creating the 

desired set of rules in the first place. Even if the native 

speaker has rules in his head, he normally uses them just to 

calculate results -- the task of verbalizing the rules themselves 

is unnatural and difficult. The only alternative is to induce 

rules of word construction from actual linguistic data. The 

analysis process demands considerable linguistic expertise, 

though, and the corpora are generally of formidable proportions. 

This is wnere the work reported here comes in. The 

Lexicrunch program is designed to automate the laborious business 

of abstracting morphological rules from examples. It is then able 

to use its rules to generate and recognize words in the given 

corpus as required. 
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1.4. Overview of the program 

Lexicrunch is divided into four main modules: word 

generation, word recognition, data entry, and rule compression. 

The first two perform the standara morpnologicai operations 

of converting back and forth between words and ordered sequences 

of morphemes. One word can correspond to several morpheme 

sequences, but the reverse is not true. 

The last two modules are the "meat" of the program: they 

construct morpnological rules from a corpus of examples. The work 

is split between two modules because the rule-building algorithm 

is by nature a batch operation, but it is convenient to enter 

examples incrementally. The batch part of the processing is 

performed by the rule-compression module; the data-entry module 

takes care of updating the rule for each example given. 

The typical way to build a rule is to type root forms of 

words and the corresponding inflected forms into the data entry 

module. For the English plural noun inflection, for example, we 

would enter pairs like pig/pigs, fox/foxes, etc. The data-entry 

routines then do the minimal amount of work necessary to express 

the list of examples as a rule in Lexicrunch notation. The 

routines are relatively fast, but their rules tend to be bulky and 

naive. 

Alternatively, the user can Dias the program toward a 

particular formulation by typing in rules directly in Lexicrunch 

notation. The program compiles such rules into its internal 

representation. The rule compiler is peripheral to the central 
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after reading both completely, it ends up in a final state. [Kay 

1983, p.100] 

A finite-state transducer for the Y rule above might look 

like: 

State 0 is the initial state, and 0 and 1 are final. The label 

"Consonants" is short for the twenty-one pairs b:b, c:c, ..., z:z; 

"Vowels" represents the five vowel pairs. Most of the time, the 

machine matches normal letters (state 0). If it hits a Y on the 

input tape and an i on the output tape, it makes sure that a vowel 

follows (state 2). It also checks that there is a consonant, not 

a vowel after a Y:y pair (state 1). In this manner, the 

transducer verifies that the desired relationship is maintained 

between its tapes. 

Kaplan and Kay have designed a general procedure for 

constructing a finite-state transducer from an ordered list of 

context-sensitive rules. The method involves deriving one 

transducer for each individual rule, and then merging all the 

transducers into one large machine, essentially by taking the 

cross-product of their sets of states. [Kay 1983, p.102] 



Chapter 2 

Previous work in computational morphology 

2.1. The morphemic model 

Much of the research in computational morphology has its 

linguistic roots in the morphemic model. Since computational 

linguistics has generally addressed orthographic phenomena, we 

will give a graphological account of the model, rather than the 

more traditional phonological one. The two accounts can be 

reconciled in light of the indifference between representing words 

as strings of phonetic symbols or letters of the alphabet. 

The central tenet of the morphemic model is that the morpheme 

is the fundamental unit of grammar; everything else is built up by 

concatenation. For example, raised would be broken down as RAISE 

+ PAST PARTICIPLE, where RAISE is realized as raise- and 

PAST PARTICIPLE as -d. Similarly, have raised would be HAVE + 

(RAISE + PAST PARTICIPLE), and so on, up to the level of the 

sentence and beyond. The crucial feature of this approach is that 

it analyzes words in just the same way as it does clauses and 

other higher-level structures. LMatthews 1974, p.78] 

2.1.1. Alternation 

in the example above, PAST PARTICIPLE was realized as -d. 

This, of course, is not the only possibility -- in walked, e.g., 

it comes out as -ed. The fragments -d and -ed are said to be 

* Following Matthews L1974j, we will designate morphemes by 
writing abstract labels for tnem entirely in upper case. 



alternative realizations or allomorphs of the PAST PARTICIPLE 

morpheme. The morphemic model specifies two sorts of conditions 

under which a particular allomorph is selected for a given word. 

[Matthews 1974, p.85; 

In the case of graphologically conditioned alternation, the 

choice of allomorph is governed by the grapnemic environment 

[Matthews 1974, p.92j. The -d/-ed distinction above falls into 

this category, as the morpheme is written as -d for verbs ending 

in e; after other final letters it is realized as -ed. 

Grammatically conditioned changes, in contrast, are triggered 

by the presence of certain morphemes [Matthews 1974, p.92]. A 

case in point is the deletion of terminal n in Finnish nouns 

before a possessive suffix, as in 

taloon + -si taloosi 

("to the house") ("thy") ("to thy house"). 

There is no apparent graphological rationale for the change, as 

the sequence nsi can and does crop up in other Finnish words, such 

as kynsi- ("to scratch," stem form. [Koskenniemi 1983a, p.78] 

It frequently happens that the morphemes that control a 

grammatically conditioned alternation are lexical morphemes; in 

such cases, we say that the alternation is lexically restricted 

[Matthews 1974, p.92]. For instance, altnough final f's of 

English nouns usually change to v's before the PLURAL morpheme -- 

e.g. elf becomes elves, loaf, loaves, and thief, thieves -- the 

pathological example oaf nas oafs as its plural. We therefore 

posit a lexical restriction wnereby the alternation is triggered 
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by the morphemes ELF, LOAF, and THIEF, but not JPF. 

2.1.2. Meta-graphemes 

Aside from the regular complement of letters in the alphabet, 

many linguists include meta-graphemic characters in their 

specifications of morphemes. Meta-graphemes are special symbols 

that stand for more than one possible grapheme; the choice is made 

by realization rules. Meta-graphemes are conventionally denoted 

by capital letters. 

Meta-graphemes come in two varieties. The first, 

orphographemes, are intended to be "specially marked" instances 

of a particular grapheme [Matthews 1974, p.211j. They are used to 

specify which morphemes activate a grammatically conditioned 

alternation. Take the y in berry. In some sense, it is not an 

ordinary y, because it has the power to change to an I if a vowel 

follows. We can capture this by introducing a morphographeme Y 

and an associated rule: 

Y is realized as an I before vowels, and as a 

elsewhere. 
y 

We then identify the morphemes that trigger the rule by our 

distribution of the Y morphographeme; that is, we write berrY, 

flY, and dairy, but valley and toy. 

A closely allied species of meta-grapheme is the 

archigrapheme. An arcnigrapheme can be tnought of as the common 

denominator of the graphemes it represents. The cnoice among the 

graphemes should be graphologically conditioned LMatthews 1974, 



p.204j. in English, e.g., the nasal grapheme of the negative 

prefix in-/ia- inherits the feature of the following consonant 

Thus it is expressed as n before the alveolar consonants d and t, 

as in indefinite and intolerable, but it assimilates to m before 

the bilabial consonants b and p in imbalance and impartial. It is 

convenient to unify the two forms of the prefix by replacing their 

nasals with a nasal archigrapheme, say N. We then need only 

provide rules for realizing N as the relevant grapheme. 

2.2. Kay's algorithmic formulation 

Kay [1983) has recently proposed an elegant and efficient way 

to implement the morphemic model algorithmically. The primitive 

operation in his system is, not surprisingly, concatenation. Thus 

a form like replayed is derived from three morphemes: 

re- + play + -ed. 

[Kay 1983, p.101J 

2.2.1. Representing alternations 

Alternations are formulated as ordered lists of context- 

sensitive rules. This works especially well for graphologically 

conditioned changes, since the graphemic environment that triggers 

the change becomes the "context." To illustrate, the rule above 

for Y is straightforwardly written as 

Y -* i / Vowel 

Y i y 

* This example is due to Jonn Phillips. 
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LKay 1983, p.1021- 

Kay makes grammatically conditioned rules look graphological 

by tagging the morphemes that activate the change. In the example 

above of it Ielet:on in Finn_43n, we would all the 

possessive suffixes, e.g. by prepending a $ onto them, yielding 

$si, etc. This allows us to express the deletion in terms of 

context: 

n 4 0 / $ 

$ 4 0 

where 0 stands for the empty string. [Koskenniemi 1983a, p.78] 

2.2.2. Compiling rules into finite-state transducers 

The traditional interpretation of a rule like 

a 4 B / Y 6 

is that a, if flanked by Y and 6, is rewritten as B. Kay's 

perspective differs in that he views the rule as a correspondence 

between a in the input string and d in the output string. He 

shows how a simple finite-state transducer can be used to verify 

such a correspondence. LKay 1983, p.100] 

A finite-state transducer is the same as an ordinary finite- 
state machine, except that it scans two tapes instead of one. 

Accordingly, its transitions are labelled ,rith pairs of 

characters, one for eacn tape. One cnaracter in the pair can be 

E, meaning that the corresponding tape is not read on that 

transition. The transducer is said to accept a pair of tapes if, 



after reading both completely, it ends up in a final state. LKay 

1983, p.1CO 

A finite-state transducer for the Y rule above might look 

like: 

State 0 is the initial state, and 0 and 1 are final. The label 

"Consonants" is short for the twenty-one pairs b:b, c:c, ..., z:z; 

"Vowels" represents the five vowel pairs. Most of the time, the 

machine matches normal letters (state 0). If it hits a Y on the 

input tape and an i on the output tape, it makes sure that a vowel 

follows (state 2). It also checks that there is a consonant, not 

a vowel after a Y:y pair (state 1). In this manner, the 

transducer verifies that the desired relationsnip is maintained 

between its tapes. 

Kaplan and Kay have designed a general procedure for 

constructing a finite-state transducer from an ordered list of 

context-sensitive rules. The method involves deriving one 

transducer for each individual rule, and then merging all the 

transducers into one large machine, essentially by taking the 

cross-product of their sets of states. [Kay 1983, p.1021 
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2.2.3. Generation 

Once we have the transducer for a set of rules, it is an easy 

matter to generate inflected forms from lexical entries. First we 

string together the given prefixes, root, ana suffixes -- this 

gives us the input tape for the transducer. Since the output tape 

is not available, we guess the characters on it 

nondeterministically. The transducer tells us when we guess 

incorrectly. [Kay 1983, p.102] 

Prima facie, this "trial and error" method may seem 

inefficient, but in practice there are very few reasonable guesses 

at each step: most guesses will result in character pairs for 

which there is no transition in the transducer. A more serious 

drawback is that the number of states in the transducer grows 

exponentially with the number of context-sensitive rules, and 

hence can get out of control. One way to take the edge off the 

explosion is to split the rule set into clusters, build a 

transducer for each, and cascade the transducers -- the output of 

the first serves as the input to the second, etc. Unfortunately, 

the resulting succession of machines is much less time-efficient 

than a single large transducer. LKarttunen 1983, pp.174-5j 

2.2.4. Recognition 

The technique for recovering the prefixes, root, and suffixes 

from which a word is derived is totally analogous to the inverse 

process of generation. The only difference is that this time the 

output tape is provided and .re have to guess the input. tKay 

1983, p.1021 
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Altnough the same formal mechanism suffices for both 

recognition and generation, there is an important asymmetry 

between them: and that is that recognition is inherently more 

ambiguous. Even the simple automaton above accepts several 

possicle iexicai strings for, e.g., myriad -- myriad, myriad, 

myriad, and mYrYad -- but a given lexical string will have only 

one corresponding output form. The situation improves if we 

discard nonsense results from the recognition procedure, by 

allowing it to return only those root forms that are listed in our 

dictionary. [Kay 1983, p.103' i 

The root dictionary is stored in tree form, as illustrated by 

the dictionary below of the words flat, f1Y, for, foray, my, and 

myriad. 

It can be thought of as a sort of transition network, with its 
root node as the initial state, and the endings of entries as 

final states. We can use it to constrain our guesses during 

recognition by traversing it in parallel with the transducer, 

feeding it the characters as we guess them. It will prevent us 

from guessing sequences of characters tnat do not form real words.` 

Note that in the general case we will require a linked chain of 

lexicons -- one or more for prefixes, one for roots, and one or 
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more for suffixes. [Kay 1983, p.104] 

2.3. Koskenniemi's Two-level morphology 

The Kay framework was further developed by Koskenniemi in his 

Two-level morpnology. Koskenniemi implemented the model in 

Pascal, and demonstrated that it could handle the full spectrum of 

constructions of Finnish inflectional morphology [Koskenniemi 

1983a]. Additional support for the model comes from the KIMMO 

project, in which it was successfully applied to toy grammars of 

English [Karttunen and Wittenburg 1983j, French [Lun 1983], 

Japanese [Alan 1983, and Rumanian [Khan 1983j. 

2.3.1. Enhancements to the Kay framework 

A significant hitch in Kay's framework was that for 

substantial rule sets, the automata turn out to be either 

prohibitively large or, if they are in series, slow. Koskenniemi 

overcomes this predicament by ordering the transducers in 

parallel. Each machine enforces its own particular context- 

sensitive rule between the lexical string and the inflected form. 

If any machine fails, the pair of tapes is rejected. The parallel 

configuration does away with intermediate stages in the analysis 

and synthesis processes. We are left with only two levels (hence 

the name of the model): the lexical level and the final inflected 

product or so-called surface level. [Koskenniemi 1983a, p.151 

Koskenniemi's other contribution was nis implementation of 

Kay's idea of structuring the dictionary as a networK of mini- 

lexicons. This entails partitioning the lexical entries by 
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"morphological function." For instance, all root morphemes would 

go in one lexicon; in French, the present tense -er verb endings 

-e, -es, -ons, -ez, and -ent would be grouped together; etc. 

Also, each lexical entry contains a continuation class, a list of 

mini-lexicons whose members can legally follow the entry. The 

continuation class for French verbs would include mini-lexicons 

for present tense endings, past tense endings, imperfect endings, 

and so on. In this way, we can specify which sequences of 

morphemes are allowed. LKoskenniemi 1983a, p.29, 

2.3.2. Rule notation 

Koskenniemi adopts a powerful, terse notation for expressing 

his Two-level rules. For our purposes, though, a simplified 

variation will do. 

Characters are expressed as dotted pairs of the lexical 

version of the character and the surface version. Hence (Y.i) is 

a pair which is a Y in the lexical level, but corresponds to an i 

in the inflected form. The pair can be abbreviated as a single 

symbol if the lexical and surface characters are identical -- e.g. 

y is synonymous with (y.y). {Koskenniemi 1983a, PP.31-21 

Symbols for sets of characters are permitted in lieu of 

single characters, though the interpretation is not the obvious 

one. Say V = {a, e, i, o, u;. (V.V), or simply V, does not 

necessarily represent all twenty-five possible vowel pairs; it 

stands only for those that appear explicitly in other rules. Thus 

if (a.u) is never mentioned in any rule, it is not inciidec in the 

interpretation of V. The symbol - is a predefined set consisting 
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of all cnaracters in the alphaoet. The complement of a set is 

indicated by putting a minus sign in front of it. Thus (-.v) 

refers to all explicitly appearing character pairs tnat are 

realized as vowels at the surface level; (=.-v) stands for all 

such pairs that are realized as surface non-vowels. LKoskenniemi 

1983a, PP-31-2] 

In our Two-level notation, one way to write the first part of 

our earlier rule for Y is 

(Y.i) <-> (..V) 

where V - {a, e, i, o, u}. 

The rule is interpreted as follows: lexical Y corresponds to 

surface i if and only if tnere is a vowel after the i in the 

surface string. 

in general, the left-hand side of a Two-level rule specifies 

a correspondence between a lexical form and a surface form. The 

right-hand side gives the environment of the correspondence. The 

left and right contexts are regular expressions of character 

pairs, and can include optional parts, enclosed in square 

brackets, as well as Kleene closures, indicated by an asterisk 

superscript. [Koskenniemi 1983a, PP.33-4J 

Most rules, like the one above, stipulate that a lexical 

character is realizea in a certain .ray if and only if it is 

surrounded by the given context. Alternatively, only if rules, 

identified by the -> operator, state that a lexical character can 

be realized as a particular surface form only in the given 

environment. Lastly, if rules, written with a <_, mean that if 
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the lexical character occurs in the specified context, then its 

surface counterpart has to be the character given. LKoskenniemi 

1983a, PP-36-7j 

2.3.3. Two-ievel rues for Finnish 

Because of its rich morphology, Finnish provides an excellent 

testbed for programs that recognize or generate word-forms. Below 

we give examples of how Koskenniemi uses his Two-level formalism 

to describe representative phenomena in the language. 

2.3.3.1. Vowel harmony 

There are three types of vowels in Finnish: harmonizing front 

(g, 8, y), harmonizing back (a, o, u), and neutral (i, e). We say 

that Finnish has vowel harmony because harmonizing front and back 

vowels cannot mix in a word. The vowels of suffixes must 

therefore conform to the frontness or backness of the root to 

which they are added. Neutral roots taKe front vowels. 

[Koskenniemi 1983a, p.76; 

KosKenniemi represents vowels in suffixes by archigraphemes: 

A for a/g, 0 fcr o/8, and U for u/y. His rules for vowel harmony 

are then: 
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A.a) -> '-.Vb' 
G* 

A.gl -> ii 

G* 

3.o1 -> l-.Vbj G* 3.t) _> >ft G* 

;AA, -> -.Vf G 

i-.Vt1 G 
* 

[U.u' -> -.Vb) G (U.yj (J.y) 

where Vb - {a, o, u 
Vf - {a, 6, yt 
G - the set of harmonically indifferent letters; 

i.e. consonants and neutral vowels 
1/ - the beginning-of-word marker 

The first column of rules guarantees that A, 0, and U will be 

expressed as back vowels only if the stem contains a back vowel; 

the second column checks that the archigraphemes turn into front 

vowels for neutral stems; and the third column ensures front 

vowels for front stems. [Koskenniemi 1983a, p.76] 

2.3.3.2. Consonant gradation 

The term consonant gradation refers to the alternation in 

Finnish words of certain pairs of consonant clusters. One member 

of each pair is said to be strong, and the other, weak. Listed 

with the strong grade of the pair first, the alternations are 

pp p p v mp mm 

tt ` t t ` d it 11 rt _ rr nt ` nn 
kk - k k ` O/v nk ng. 

[Lehtinen 1967, p.5231 

To predict consonant gradation in general, we need two pieces 

of information: i1; which instances of the consonant groups above 

are subject to gradation, and (2) when gradation takes place, 

which grade is selected. 

The rule for i1; is that a consonant group can alternate if 
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it comes right before the last vowei(sj of a stem, or sometimes a 

suffix of the stem. 3radation is clocked if the consonant group 

is preceded by s or t. Thus the nk in Helsinki- "Helsinki," stem 

form) alternates between nk in Helsinkiin of Helsinki") and ng 

in Helsingissg ("in Helsinki"); but the t in posti- "mail," stem 

form) remains t in postia ("mail," partitive singular), postin 

of mail"), etc., as it follows an s. [Lehtinen 1967, p.5231 

As for (2), the strong consonant grade occurs roughly in open 

and/or long syllables, the weak grade in short closed syllables. 

There are several classes of exceptions, however -- e.g. nouns 

with the plural -i- have the same consonant grade as the singular, 

regardless of syllable length. Despite their complexity, the 

exception classes are more or less well-defined. LLehtinen 1967, 

pp523-51 

Koskenniemi copes with (1) by flagging all gradable 

consonants with the morphographemes K, P, and T. For example, he 

spells katto- ("roof," stem form) as katTo-, indicating that only 

the last T is mutable. He prefers this technique to a more rule- 

oriented one because rules like the one given above often fail for 

neologisms and foreign names. [Koskenniemi 1983a, pp.78-9j 

For (2), Koskenniemi can afford to ignore consonant gradation 

when the strong grade is chosen, since it is just as if gradation 

did not happen at all. The problem is thereby reduced to 

detecting when the weak grade is called for. Unfortunately, the 

"short closed syllable" rule above is unweildy to implement, 

particularly because of its exceptions. Thus Koskenniemi inserts 

a $ ;norphograpneme in all endings which effectively proauce short 
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closed syllables at the end of the stem. Basically, $ is a 

* 

grammatical trigger for the weak grade . It follows that 

(K.kj <- -$ j <- - -$ tT.tj <- - -$. 

That is, if the trigger for the weak grade is aosent, we must have 

** 
the strong grade. Similarly, if there is an inhibitory s the 

strong grade prevails: 

(K.k) <- s s (T.t) <- s 

And if the trigger is present, but not the inhibitor, then the 

strong grade is prevented: 

(K.-k) <- -s $ (P.-p) <- -s $ (T.-t) <- -s $. 

(Koskenniemi 1983a, p.81J 

The way Koskenniemi set up his morphographemes, however, 

there are actually multiple weak grades. P, for instance, can be 

realized as 0, v, or m. Thus we have the following rulest: 

(P.v) -> V [C1} 

(P.m) -> V m 

(P.0) -> V 'C1) p 

where V - {a, e, i, o, u, y, g, 6} 
Cl - jr, 1}. 

These give the environments that distinguish which weak grade is 

at issue. Note the contextual v and p, which we incorporated 

* Koskenniemi's actual trigger is somewhat more complicated, 
but for reasons that need not concern us here. 
** Koskenniemi does not give analogous rules for inhibitory 
t, probably because it is quite rare. 
f Again, one of the rules is slightly simplified to avoid 
irrelevant tecnnical detail. 
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directly in the formulation above as sp and pp. Koskenniemi gives 

analogous rules for disambiguating K and T. L.KosKennzemi 1983a, 

PP-79-80i 

2.3.3.3. "Non-natural" alternation 

Usually, the inflected forms of a Finnish noun are readily 

derived from its stem by suffixation. There exist many noun 

classes, however, for which this is not the case. These classes 

are said to exhibit "non-natural" alternation patterns. The nouns 

in these classes typically have a characteristic pattern at the 

end of their stems. [Koskenniemi 1983a, p.53; 

One such class is made up of all Finnish nouns ending in 

-nen, e.g. hevonen V"horse"). The singular stem for these nouns 

is constructed by replacing the -nen ending with -se, e.g. 

hevose- ("horse," stem form). This nen-se alternation is both 

common and productive in Finnish. [Koskenniemi 1983a, p.55] 

Koskenniemi deals with the nen-se alternation by stripping 

the -nen from each lexical entry, yielding, e.g., hevo. The words 

are then given a continuation class which points to a special 

mini-lexicon of suffixes. One suffix restores the -nen ending for 

the appropriate inflected forms, and another gives the -se ending. 

The alternation is thus handled entirely in the lexicon. 

[Koskenniemi 1983a, p.55j 



Chapter 3 

The Lezicrunch rule formalise 

3.1. Describing morphological cnarges 

The first-order approximation that words are assembled by 

stringing together prefixes, a root, and suffixes goes a long way 

in accounting for morphological data, as attested to by the 

success of Koskenniemi's program. It starts to falter, however, 

when we try to represent changes that occur inside words. Below 

we discuss the difficulties that arise and a possible cure for 

them. 

3.1.1. The problem with word-internal changes 

Finnish is a relatively well-behaved language in that most of 

its morphological changes can be explained coherently as 

affixations. A possible counterexample, though, is the nen-se 

alternation of section 2.3.3.3. Koskenniemi only got away with 

treating nen as a "default suffix" because all the words at issue 

had a common termination. He could not have done so had the 

change occurred "deeper" in the words. 

Englisn is a nastier case. Consider the verb drive and its 

past tense drove. Using the tactic above, we would store dr as 

the lexical entry, -ive as a present tense suffix, and -ove as the 

past tense suffix. in like manner, the past tense suffix for 

arise would be -ose, that for write, -ote, and that for ride, 

-ode. 
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This approach amounts to barely more than memorizing each 

past tense form. in fact, Karttunen prefers to do Just that in 

his Two-level grammar of English; e.g., he lists sleep and slept 

as separate entries in the lexicon, despite the existence of the 

similar verbs creep, keep, sweep, weep, feel, and kneel. 

LKarttunen and Wittenburg 1983, p.226. 

One other option for representing the drive/drove alternation 

is to introduce a meta-grapheme I, grammatically conditioned to 

appear as i in the present tense and o in the past -- nence drIve, 

arIse, etc. 

Technically adequate though this solution may be, it goes 

against the very raison d'8tre of all morphology programs: to 

capture systematic regularities in word structure. There are two 

regularities at issue in the drive example. The first is that 

there is a rule for identifying which words undergo the given 

change -- this point is taken up in section 3.2.1. The second is 

that the vowel mutation does not occur at a random position within 

a word: it consistently takes place at the third-to-last letter. 

Yet by carefully planting an I at the site of the change in every 

case, we are "building in" the rule about the antepenultimate 

letter in a rather ad hoc and underhanded fashion. 

One might argue, in defense of the meta-grapheme solution, 

that it is nevertheless acceptable to "memorize" the answer, as 

the classes of Englisn words that undergo internal change are 

unproductive and small. 

The claim of unproductivity was addressed in Berko's 
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psychological experiment L19581 in which she presented children 

and adults with nonsense words, and asked for their inflected 

forms. She concludes that: 

Whereas the children all used regular patterns in 
forming the past tense, we found that for adults strong 
pasts of the form rang and clung are productive. Since 
virtually all English verbs that are in the present of 
an -ing form mare their pasts irregularly, this seems a 
likely supposition. Adults make *gling and *bing into 
*glang and *bang in the past... The productivity of the 
-ang and -ung forms proves that new forms are not 

necessarily assimilated to the largest productive class. 
IBerko 1958, pp.175-6J 

Thus rules for word-internal changes appear to have at least some 

validity for English, and are not "pure fiction." 

As for the smallness claim, it seems expedient to note all 
regularities in the database, as long as the resulting rule takes 

up less space than did its data. 

While the problems of word-internal change are serious in 

English, they simply get out of control in Arabic. Arabic verbs 

have discontinuous stems, e.g. k-t-b 't"m"ite"j. Their inflected 

forms are produced by inserting vowels in the interstices -- for 

example, the perfective of k-t-b is katab, and its imperfective 

stem is -ktib 1Matthews 1974, p.131J. To describe this 

relationship with our current model, we would have to resort to 

pairs of meta-graphemes -- e.g. kXtYb -- as well as complex 

contextual rules for realizing tnem appropriately. Such examples 

appear to defy our paradigm that inflections are "essentially 

affixations," witn a few scattered contextual "side effects" 

thrown in. 
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3.1.2. Morpnological processes 

Koskenniemi himself admits that word-internal changes 

cnalienge the morphemic model: 

Only restricted infixation and reduplication can ce 
handled adequately with the present system. Some 

extensions or revisions will be necessary for an 

adequate description of languages possessing extensive 
infixation or reduplication. LKoskenniemi 1983a, p.27j 

The difficulty has also been acknowledged in the linguistic 

literature. There the proposal for morphological processes has 

been raised. tMatthews 1974, p.120j 

A morphological process is a general operation which 

transforms a word into an inflected form. Using this more 

powerful notion, we can conveniently explain the change from drive 

to drove as one of replacing the i with an o -- the same process 

works for arise, write, and ride. Note that we do not insert 

special markers in each word to indicate .rhich letter alternates. 

Concomitant with the utility of our new machinery, nowever, 

is a Pandora's box of representational issues. in particular, 

what exactly should morphological processes be allowed to do? If 
concatenation is not efficacious, wnat ought to be the primitive 

operation? Due to a recent neglect of morphological theory, 

linguists have little to say in this regard Matthews 1974, 

p.120;. 

3.2. Defining rule domains 

The s,ortcoming of {osKenniemi's method of defining rule 
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domains is, in a nutshell, that 

in the Two-level lexicon, regularities are explicitly 
marked in the word entries. Some markings are expressed 
as morphopnonemes L34C in the representation, some as 
continuation classes. LKoscenniemi 1983a, pp.128-9; 

Adding a word to Koskenniemi's dictionary tnerefore involves 

embellishing it witn a variety of special flags that indicate 

which alternations it undergoes, and selecting or creating a 

continuation class that specifies which suffixes it takes. 

Koskenniemi is willing to enumerate all of this information 

because the task of building lexical entries is for him a one-shot 

deal performed by an expert "external component" -- namely, 

Koskenniemi himself [Koskenniemi 1983a, p.129J. We will be 

concerned with eliminating redundant lexical markers, substituting 

rules when possible. 

3.2.1. The problem with meta-graphemes 

Let us return for a moment to tie drive/drove example of 

section 3.1.1. We said tnat the most likely means of representing 

the alternation was to introduce an I meta-grapheme into the 

lexical entries of affected words. Tnis effectively lists the 

words in the alternation class, thereby neglecting the trend that 

* 

tney all end in /rai/ * consonant. While this rule is not perfect 

-- e.g. it spuriously inclades arrive -- it still explains the 

data more compactly than a list would. Note also tnat even though 

the I meta-grapheme does not iengtnen entries directly, it uses yip 

a new symbol, which may raise the number of bits neeced per 

* Phonemes .rill oe enclosed in slashes. 
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character. 

3.2.2. The problem witn continuation classes 

Morphemes in different mini-lexicons only fit together in 

sequences permitted by their continuation classes LKoskenniemi 

1983a, pp.43-4j. Thus the distribution of continuation classes 

determines the domain of "rules of concatenation." Again, since 

continuation classes are individually specified for each word, 

these domains are enumerated by brute force. 

The basic job of continuation classes is to define formal 

categories, e.g. the set of words that take verb endings (namely, 

verbs). Here it is reasonable to list the domain, since there is 

presumably no more concise rule to do the equivalent. Various 

other uses of continuation classes are less well justified, 

though; a case in point is the nen-se alternation of section 

2.3.3.3, in which nouns ending in nen were enumerated, instead of 

being selected by the obvious rule. 

Apart from listing domains, continuation classes introduce 

redundancy into the representation in a few other :days. 

Following Karttunen, we will diagram the connections between 

mini-lexicons as a directed graph, where morphemes "flow" along 

the arcs. Boxes represent mini-lexicons; circles stand for 

continuation classes. LKarttunen 1)83, p.180, 

Schematically, a language in which nouns take a number suffix 

only, and verbs take person followed by tense would be: 
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Now suppose that there are two sorts of tense endings, A and B, 

and the cnoice depends on the verb stem. We would tnen have to 

split the Verb continuation class into VerbA and VerbB, which 

would lead eventually to the TenseA and TenseB mini-lexicons, 

respectively. The consequence is that all mini-lexicons 

intervening between Stem and Tense would have to be duplicated so 

as to "remember" which type of verb stem they are propagating. 

Long-range dependencies, as between Tense and Stem, always result 

in this sort of waste. [Karttunen 1983, p.1801 

Prefixes also present special problems for the Two-level 

framework. If a suffix is allowed only after certain stems, the 

continuation class of those stems can be suitably modified; but 

this trick does not work for idiosyncratic prefixes. Take the re- 

prefix in English. Using continuation classes, the only way to 

indicate that it goes before particular verbs is to establish a 

purpose-built mini-lexicon of just those verbs, and to give that 

mini-lexicon as the continuation class of re-. The verbs must be 

enumerated afresh for ais-, as the two sets do not coincide 

exactly -- e.g. reappear but *misappear. 

It is of course preposterous to construct a new mini-lexicon 

for every prefix. What Karttunen did in his Two-level grammar of 

English was to give the root lexicon per se as the continuation 

class for un- -- tnus his grammar overgenerates, accepting 
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*urAouse, *unwent, etc. Karttunen proposes extensions to the 

Koskenniemi framework to enable it to deal with prefixes more 

gracefully. [Karttunen 1983, pp.221-3d 

3.2.3. Characterizing domains via properties 

The principal cause for concern in Koskenniemi's use of 

morphographemes and continuation classes to define rule domains 

was that it was just like listing the words in the domain. The 

remedy is to characterize domains by the properties of their 

members. 

The morphemic model recognizes two types of properties that 

may help describe domains. 

For graphologically conditioned alternations, the graphemic 

environment of the change may be handy. Going back to the -d/-ed 

example of section 2.1.1, we could formulate our rule as: 

rule 1: Form the past tense of a verb by adding -d. 
domain: verbs ending in e. 

rule 2: Form the past tense of a verb by adding -ed. 
domain: verbs ending in a letter other than e. 

Likewise, we should look at the surrounding morphemes in 

grammatically conditioned alternations. The Finnish rule of n 

deletion from section 2.1.1 can then be stated as: 

rule: Delete the final n of the stem of a noun. 

domain: nouns with a possessive suffix after their stem. 

There are certainly other kinds of properties that may be of 

interest as well. Consider the English -er inflection which 
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produces teacher from teach, actor from act, and sailor from sail. 

While no apparent grapnoiogical or grammatical property springs to 

mind to explain the er/or alternation, it is still largely 

predictable by etymological criteria. In fact, the -or ending is 

applied mostly to words ahlcn were borrowed directly from Latin; 

-er words came through Frencn, etc. Jespersen 1946, pp.224-5]. 

3.3. The structure of rules in Lexicrunch 

Two concerns with Koskenniemi's rule formalism have motivated 

the design of rules in Lexicrunch. The first was the inability of 

the Two-level model to represent word-internal changes 

satisfactorily. This is overcome in Lexicrunch by describing 

inflections in more general terms as morphological processes. 

Second, Koskenniemi defines domains of rules by enumerating them 

with meta-graphemes or continuation classes. In Lexicrunch we 

instead use properties of the words in the domain. 

Words are derived, in the Lexicrunch framework, by applying 

an ordered sequence of rules to a stern, where each rule 

corresponds to a morpheme. For example, 

DOG + PLURAL + dogs 
MAN + PLURAL 4 men 
MAN + PLURAL + GENITIVE + men's. 

The morphemic model is like a special case of this, in which the 

only sort of rules allowed are ruses of concatenation. :n this 

section we describe the internal format of Lexicrunch rules, as 

well as inter-rule relationships. 
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3.3.1. Changes 

The essential component of a Lexicrunch rule is the 

morphological process which performs the appropriate graphological 

transformation. 'lacking a theoretical groundwork, we will start 

with as general-purpose a transformation as possible: string 

substitution. Affixation is a special case, when the string 

replaced is 0. 

We must then specify where in the word the string 

substitution happens. In drive, it was enough to say that "the i" 

changes, but in the Arabic k-t-b we would have to talk about 

inserting vowels between the first or last two letters. rye will 

assume that it is always feasible to describe the positions of 

strings within words, since native speakers manage to do so -- not 

that we will try to copy their method. 

Lexicrunch, ratner arbitrarily, has four ways of identifying 

change sites: positive/negative offsets, and first/last 

occurrences of strings. All expressions refer to the left edge of 

the substring that is replaced. For instance, the a in mailman 

that changes to an e in the plural can be referenced by five 

expressions: 

mailman (the dot marks the change site) 

3 

u 

5 

+5 a positive offset 
-2 ,a negative offset) 
+an the first occurrence of a strip J 

-a the last occurrence of a string) 
-an ithe last occurrence of a string). 

As an example of suffixation, consider the addition of -s to frog: 
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frog- 

1) +4 
2) -0. 

These expressions for change sites are called afields, short for 

"active fields." 

A complete description of a morphological process is given as 

a list of zero or more changes, each consisting of four 

components: 

oldstring -- the substring to be replaced 

oldfield -- an afield specifying where the oldstring is 
located in the untransformed word 

newstring -- the substring that does the replacing 

newfield -- an afield specifying where the newstring is 

located in the transformed word to facilitate the undoing of 

the Change). 

A few examples should make the notation transparent: 

for frog/frogs: 
0 @ -0 <-> s @ -1 
i.e. change a nil at the end of the word to an s 

for drive/drove: 
1 @ -i <-> o a -o 
i.e. replace the last I with an o 

for sleep/slept: 
e @ -2 <-> 0 @ -2 
0 @ -0 <-> t @ -1 
i.e. delete the e two from the end, and add a t suffix. 

Whether this rendition of morphological processes is 

universal, in the sense that it can capture with a single formula 

the transformation for all words "of the same type," is a moot 

point. The philosophy of the design is that it can always be 

extended to identify internal positions of words in new and useful 
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ways. If, say, one wishes to talk about a change at the nth 

syllable, one could envisage a fifth type of afield with the 

relevant interpretation. in some cases, such extensions would 

require additional information in lexical entries. 

Thus Lexicrunch is more a "linguist's workbench" for 

experimenting witn different types of rules than a definitive 

answer to the enigmas of morphology. In practice, its simple 

devices suffice for most exercises. in the worst case, it can 

decompose rules that are beyond its expressive power into more 

manageable bits. Take the English rule of doubling the final 

consonant of certain verbs in the past tense, as in rib/ribbed, 

bar/barred, pin/pinned. Lexicrunch cannot express the rule in its 

full generality -- it would need three sub-rules: 

for rib/ribbed: 
0 @ -0 <-> bed @ -3 

for bar/barred: 
0 @ -0 <-> red @ -3 

for pin/pinned: 
0 @ -0 <-> ned @ -3. 

3.3.2. The decision tree 

Naturally, one morphological process is not enough to 

represent a rule lice PLURAL. Rules must contain numbered lists 

of processes -- e.g. for PLURAL: 

1. 0 @ -0 <-> s @ -1 
2. 0 <-> es @ -2 
3. a -2 <-> e @ -2. 

Process 1 would handle words such as dog and bird; 2 would take 
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care of fox, witch, etc.; and 3, .an, woman, doorman, etc. To 

choose which process to apply to a given word, Lexicrunch has a 

decision tree. 

The decision tree has a process number at each of its leaf 

nodes. An internal node contains a property or test to apply to 

words; coming out of the node are a Y-branch for words that have 

the property, and an N-branch for words that do not. A sample 

decision tree for the PLURAL rule above could be: 

ends in -man? 

process 3 ends in -ch? 

process 2 

process 2 process 1. 

To classify a word, we start at the root of the decision tree, 

applying tests and taking the pertinent outgoing branch, until we 

reach a leaf node. Henceforth, we will braw decision trees as 

if-then-else statements as below: 

if "ends in -man" then 3 

elseif "ends in -ch" tnen 2 

elsei° "ends in -x" then 2 

else 1. 

the current version of Lexicrunch, only graphological 

properties are considered. Grammatical properties 1iKe the one 
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above for n deletion can be incorporated into the relevant rules 

directly -- i.e. we would 'nave: 

rule: Form the possessive of a noun by deleting final n 
from the stem and appending a possessive suffix. 

Lexical restrictions are bandied by the "Inclusion" facility 

described in the next section. 

Again, we are not claiming that this range of properties is 

all-encompassing. The intent is that as the need arises for new 

kinds of properties, they can be incorporated readily into the 

existing framework. 

The graphological properties or tests in Lexicrunch have the 

following three components: 

teststring -- a string of letters to test for 

position -- an afield which, together with the offset, 
describes where in the word to look 

offset -- an afield which is added to the position to give a 
location in the word. 

Thus the test ch a -0-2 means "ends in -ch"; it would select words 

like beach and match. The test ng a -i+l, or "has an ng right 

after its last i," Picks ring, sing, and ingot, but not triangle, 

frog, or ingrain. One way ;tnough not the only one; to express 

our example above is then: 

if man @ -2-1 then 3 
elseif cn @ -2+0 then 2 
elseif x @ -1.0 then 2 

else 1. 
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3.3.3. inclusions 

When Lexicrunch has trouble finding the right property to 

characterize a domain, it can always resort to memorizing words. 

The decision tree above, for instance, is not at all 

comprehensive, as it :nisclassifies sucn words as Roman -- the 

plural should be Romans, not *Romen. To correct for this, we can 

explicitly store Roman as a member of the domain of process 1. In 

the notation, words which are specially included under a process 

are written in curly brackets following its list of cnanges -- 

i.e. we get 

1. 0 @ -0 <-> s @ 

{Roman} 
2. 0 @ -0 <-> es @ -2 
3. a @ -2 <-> e @ -2. 

Now when we classify a word, we first check whether it is an 

inclusion of any process. If not, we proceed with the decision 

tree as usual. 

3.3.4. Form-class rules 

Unlike other morpnemes, stems do not have their own private 

rules. Rather, all the stems in one form class are listed 

together in a common rule. We will write form-class rules as 

demonstrated below: 

RULE: noun 
{dog bird fox witch an woman, 

doorman Roman'. 

One might protest that (aj storing words as lists :Hakes the 

look-up procedure for them inefficient, and {b it is redundant to 
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make multiple entries for words in more than one form class. 

In response to aj, the notation does not preclude the use 

of, e.g., lexical trees. As for (bj, we snould bear in mind that, 

say, duck qua "to lower one's head" and duck qua the fowl will 

require separate semantic entries anyway -- the repetition of the 

lexeme itself seems negligible. Even in the less extreme example 

of telephone, the meaning of the verb is not trivial to deduce 

from the meaning of the noun. 

3.3.5. Rule ordering 

Rules are organized as a directed network: rule A can only be 

applied directly after rule B if there is an arc from B to A. The 

network connections are specified by the list of predecessors for 

each rule. Form-class rules never have any predecessors. 

In Lexicrunch notation, our complete PLURAL example would now 

be: 

RULE: noun 

{dog bird fox witch man woman, 

doorman Roman} 

RULE: plural > noun 

1. 0 @ -0 <-> s @ -1 
Roman} 

2. 0 @ -0 <-> es @ -2 
3. a @ -2 <-> e @ -2 

if man @ -2-1 then 3 

elseif ch @ -2+0 then 2 

elseif x @ -1*0 tnen 2 

else 1. 

The "greater than" symbol indicates a rule's predecessor list. 

;he list can contain more than one element; e.g. if we added a 
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GENITIVE rule to the example, it might begin with 

RULE: genitive > noun plural, 

as GENITIVE can be applied directly to nouns -- e.g. dog's -- or 

it can follow the ?LURAL morpheme -- e.g. dogs'. 



Chapter 4 

The Design of Lexicrunch 

4.1. Generation 

Given a stem, optionally its form class, and an ordered list 

of rules to apply to the stem, the generation routine produces the 

appropriate inflected form. 

4.1.1. The overall algorithm for generation 

Should the form class of the stem be omitted, the program 

first tries to work it out. It considers only those form classes 

that contain the stem, and that can legally precede the first rule 

to be applied. If the form class is not thereby determined 

uniquely, the generation task fails. 

Then, for each successive rule in the list of rules to apply, 

we perform the indicated transformation on the word. The 

resulting form becomes the input for the next iteration. 

To apply a rule to a :word we kaj determine which of that 

rule's morphological processes is relevant for the given word, and 

bj apply tnat process to the word. Procedures a) and (b) are 

described in sections 4.1.2 and 4.1.3. 

4.1.2. Classifying a word 

Here we are given a word and a rule, and we want to decide 

which of the rule's morphological processes should be applied to 

the word. 
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The first step is to check whether the word is listed 

explicitly as an inclusion to a morphological process; if so, we 

return that process. Otherwise, we classify the word using the 

decision tree and the following algorithm 

F 

procedure CLASSIFY sword, dn(>dej: 

if dnode is a leaf node then 
return the process number at dnode 

elseif word has the property at dnode tnen 
return CLASS.FYtword, Y-child' of dnodej 

else 
return CLASSIFY word, Y-child of dnode) 

The dnode in the initial call to CLASSIFY is the root node of the 

decision tree. 

4.1.3. Applying changes 

Once we know which morphological process to use on a word, it 
remains only to effect its list of changes. This is 

straightforward: for each change, we delete the oldstring at the 

oidfield, and insert the newstring in its place. 

4.1.4. Generation example 

Suppose the problem is to generate SING PAST, where the 

rule set includes 

* We will write algorithms in the Pidgin ALGOL of Aho, Hop- 
croft, and 'Jli:nan ;1974, pp.33-9. 
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RULE: verb 
jjump bake singe sing ring ping 

RULE: past > verb 
t . 0 @ -0 <-> ed @ -2 

Iping! 
2. 0 @ -0 <-> d @ -1 
3. 1@-3<->a@-3 

if e @ -1+0 then 2 
elseif ng @ -3+1 then 3 

else 1. 

Lexicrunch figures out that SING is a verb, since PAST can only 

follow verbs. It then applies PAST to SING. SING is not noted as 

an inclusion -- hence we run the CLASSIFY algorithm, which returns 

process 3. There is one change to effect: 

-3 <-> a @ -3 
sing sang 

and so the program generates sang. For PING, we would get pinged, 

as this word is explicitly mentioned under the first morphological 

process. 

4.2. Recognition 

Recognition is just the opposite of generation: we are given 

an inflected form, and must recover the stem, form class, and 

sequence of rules from which it was derived. For words that have 

more than one derivation, we must return all the possibilities. 

4.2.1. The overall algorithm for recognition 

The idea of the recognition algorithm is to guess the rules 

that were applied to the stem, and to "unapply" tnem, in reverse 
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order. 

We start by nondeterministically picking the last rule that 

was applied to the stem, and unapplying it -- section 4.2.2 

explains unapplication. Our guess for the next rule is 

constrained by the fact that it must be a legal predecessor of the 

last rule. 

The procedure repeats until we reach a form class rule. 

4.2.2. Unapplying a rule 

In unapplying a rule to a word, we do not know which 

morphological process of the rule to use. There :nay even be 

several correct choices. In Frencn, e.g., pu is the past 

participle of two verbs, pouvoir and pattre. 

Thus the algorithm for unapplying a rule Is to try 

uneffecting the changes of every :morphological process. A change 

is uneffected by replacing the newstring at the newfieid with the 

oldstring. 

As is, however, this algorithm overgenerates. It would say 

that one result of unapplying PAST from section 4.1.4; to singed 

is SING, by uneffecting process 1. This answer is spurious 

because SING would be classified under process 3, not 1. Such 

errors are prevented by checking that "de-inflected forms" like 

SING are classified as assumed. 
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4.2.3. Recognition example 

Referring again to the rule in section 4.1.4, we would 

analyze jumped as follows: say there are just two rules, PAST and 

VERB. The last rule in the derivation cannot be VERB, because 

jumped is not listed in the VERB form class rule. Hence we 

proceed to unapply PAST. This gives: 

0 @ -0 <-> ed @ -2 
1. jumped 41 Jump 

0 @ -0 <-> d @ -1 
2. Jumped Jumpe 

i @ -3 <-> a @ -3 
3 jumped 41 (not applicable) 

Morphological process 3 cannot be unapplied because there is no a 

to mutate; hence there are two candidate "unpasts": jump, produced 

by process 1, and Jumpe, produced by process 2. Jump and j umpe 

would be classified under processes 1 and 2 respectively, and so 

both are acceptable de-inflected forms. 

The only predecessor of PAST is VERB. Jump is indeed listed 

as a verb, and so this derivation Bath is JUMP/VERB + PAST. On 

the other hand, jumpe is not a verb, and hence does not lead to a 

second solution. 

4.3. Data entry 

The normal way to present a corpus of data to Lexicrunch is 

via the set of input routines discussed below. They perform a 

first pass of analysis on the examples -- just enough to express 

them in the Lexicrunch rile notation. Further analysis is carried 
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out by the rule compression module ;see section 4.4). 

4.3.1. Input routines 

There are three input routines. One lets the user establish 

new form classes; another enters stems into the form classes; and 

the third is for building predecessor links between rules. 

Since the rules in Lexicrunch are arranged as a directed 

graph, we can think of words as flowing from form classes to other 

rules, being transformed at each step. Thus In adding a stem to a 

form class, we are pumping a new word into the network at the 

source. The new word can ramify through all existing channels to 

produce new forms. For example, in the following network: 

PLURAL 

E 
NGUN 

GEN IVE 

the addition of the noun frog gives rise to FROG + PLURAL and 

FROG + GENITIVE. Likewise, building a link between rules creates 

a new word-production route. if we added a GENITIVE > PLURAL link 

above, we would permit for the first time all constructions of the 

form NOUN + PLURAL + GENITIVE. 

Whenever the input routines detect that a new form can be 

generated, they call another routine (see the next section) which 

prompts the user for the form in question, and enters his answer 

into the rule database. 
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4.3.2. Learning new forms 

The task of the routine tnat learns new forms is to ascertain 

how to apply a given rule to a given word, and to modify the 

database accordingly. 

First it guesses the answer by applying the existing rule to 

the word (as in section 4.1). It refrains from guessing if there 

is no decision tree for the rule , or if the tree chooses an 

inapplicable rule -- for instance, it says to change 

a @ -2 <-> e @ -2 for lemon. 

The program displays its guess, and if it is right, no update 

to the rule set is necessary. Otherwise, it asks for the correct 

inflected form. 

It proceeds to test whether any of the rule's extant 

morphological processes gives the desired answer. If one does, it 
stores the given word as an inclusion under that process. In the 

absence of such a process, it has to invent one, and list the word 

under it. 

4.3.3. inventing morphological processes 

There are, in general, a large number of morphological 

processes that produce a specified result for a word. To make 

read into reread, e.g., we could invoke any of these processes: 

A new rule wi i not have a decision tree until it is 

compressed ;see section 4.4 ;. 
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p1. 0 @ +0 <-> re @ +0 

p2. 0 @ -4 <-> re -6 

P3. 0 @ +2 <-> re @ +2 

p4. 0 @ +1 <-> er @ +1 

p5. r @ +0 <-> rer a +0 

p6. read @ +0 <-> reread @ +0. 

To separate the wheat from the chaff we can appeal to a 

simplicity criterion. We will define the complexity of a process 

to be the total number of characters it inserts or deletes. P1 

through p4 therefore each have complexity 2, whereas p5 has 4, and 

p6, 10. We will dismiss p5 and p6 from consideration because of 

their higher complexity. 

There is no obvious principle that will select a "best" 

process from among p1 through p4. It is only when we see other 

examples of the change -- e.g. type/retype -- that we can discard 

P3 and p4. P2 would be invalidated by write/rewrite. Since the 

input routines only have one example to work with ,they pick one 

of the minimum-complexity processes arbitrarily; their mistakes 

are rectified later (see section 4.4.1). 

The algorithm in Lexicrunch for finding a minimum process is 

based on techniques from compiler theory for "string-to-string 

repair" [Backhouse 1979, pp.189-218]. In essence, we scan along 

the word and result strings simultaneously, trying to match 

characters as we go. If two corresponding characters differ, we 

nondeterministically insert or delete a letter to make them the 

same. 



- 46 - 

In the Pidgin ALGOL statement of the algorithm below, we 

refer to the letters in a string as string[0], string[1], etc. -- 
strings are assumed to end with a nil. Pointers to strings are 

passed as integer indices. The procedure returns a minimum list 

of one-character insertions and deletions, which can easily be 

spliced into contiguous runs. The initial call would be 

MINPROCESS(word, 0, result, Oj. 

procedure MINPROCESS sword, wp, result, rp): 

if word[wp] and result[rp] are nil then 
return nil 

elseif word wp] s result[rp] then 
/* match a cnaracter */ 

return MINPROCESS (word, wp+1, result, rp+1) 
else 

if result[rp] is not nil then 
/* try inserting a character 
insert-solution the concatenation of 

(a @ wp <-> result[rp] @ rp) and 
MINPROCESS(word, wp, result, rp+1) 

if word[wp] is not nil then 
/* try deleting a character 
delete-solution the concatenation of 

(word[wp] e3 wp <-> 0 @ rp) and 

MINPROCESS(word, wp+1, result, rp) 

return the shorter of insert-solution 
and delete-solution 

4.4. Rule compression 

The compression routines sift through a rule, exploiting its 

regularities to re-organize it. They restate :morphological 

processes in as general a form as they can, build a decision tree 

for classifying words by the process they undergo, and finally 

they tidy up any lingering artifacts of the compression process. 
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4.4.1. Constructing a set of morphological processes 

The input routines are rather haphazard about the 

morphological processes they invoke to explain inflections. Here 

we will aim for the most general formulation. 

The construction of classes -- morphological processes and 

their domains -- can be broken down into seven steps, as detailed 

below. 

4.4.1.1. Calculating the domain of the rule 

The first step of compression is to figure out the domain of 

the given rule, i.e. the set of words the rule acts upon. This is 

accomplished by taking the union of the ranges of all predecessors 

of the rule. The range of a form class rule is just its list of 

words. Otherwise the range is calculated from the domain by 

applying the rule to each word. 

We then list each word in the domain as an inclusion of the 

class to which it belongs. This gives us a complete tabulation of 

which words are handled by wnich morphological processes. 

To illustrate, say we start out with the following rule set: 
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RULE: noun 
{newt tulip apple elbow fox tax box prefix ox switch} 

RULE: plural > noun 
1. 0 @ +4 <-> s @ +4 

{newt} 
2. 0 @ +5 <-> s @ +5 
3. 0 @ -0 <-> es @ -2 

{switch} 
4. 0 @ -0 <-> en @ -2 

{ox} 

if x @ -1+0 then 3 

else 2. 

The domain of PLURAL is just the set of words in the noun form 

class. After listing the words as inclusions, the classes of 

PLURAL are: 

1. 0 @ +4 <-> s @ +4 
{newt} 

2. 0@+5<->s@+5 
{tulip apple elbow} 

3. 0 @ -0 <-> es @ -2 
{fox tax box prefix switch} 

4. 0 @ -0 <-> en @ -2 
{ox}. 

4.4.1.2. Restating morphological processes 

To find the most general formulation of a morphological 

process, we try expressing its afields in several alternative 

ways. Each change of a process is varied independently. 

Since afields can be written in four different ways, there 

are in principle at least sixteen ways to express a change -- one 

for each choice of its oldfield and newfield. The twelve 

variations in which the oldfield and newfield are given different 

types, however, are nighly unlikely candidates for "most general 

formulation." If, e.g., the oldfield -s best expressed as a 
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negative offset, then we will usually be able to write the 

newfield as a negative offset calculated by 

newfield - oldfield + `length of oldstring) 
- (length of newstring). 

It is doubtful that we could benefit by writing the newfield 

instead as a positive offset or a first/last occurrence of a 

string. Related arguments militate against mixing other types of 

afields within a change. Hybrid cnanges may still conceivably 

have their uses, but too rarely to justify the vast overhead of 

computing them for every change. 

We are left with four variations on changes. The first is to 

express the oldfield and newfield as positive offsets -- several 

formulas may result. For the process 

i @ -3 <-> ou @ -4 
{wind grind find bind}, 

e.g., we would get two possibilities: 

1. 1 @ +1 <-> ou @ +1 

{wind find bind} 

2. i @ +2 <-> ou @ +2 
{grindf. 

Second, we try writing the afields as negative offsets, maybe 

producing multiple answers. Next, if neither the oldstring nor 

the newstring is nil, we nave 

oldstring @ +oldstring <-> newstring @ +newstring 

for whichever words fit this pattern. Finally, we can do the same 

with last occurrences of strings. There :nay again be other 
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options, such as 

i @ -ind <-> ou @ -ound 

for our example, but these yield little marginal utility compared 

to their cost. We will limit ourselves to the aforementioned 

types, to keep the number of possibilities in check. 

Continuing the example of section 4.4.1.1, there will be nine 

classes after varying the afields: 

1. 0 @ +4 <-> s @ +4 
{newt} 

la. 0 @ -0 <-> s @ -1 
{newt} 

2. 0@+5 <->s@+5 
{tulip apple elbow} 

2a. 0 @ -0 <-> s @ -1 
{tulip apple elbow} 

3. 0 @ -0 <-> es @ -2 
{fox tax box prefix switch} 

3a. 0 @ +3 <-> es @ +3 
{fox tax box} 

3b. 0 @ +6 <-> es @ +6 
. 

{prefix switch} 
4. 0 @ -0 <-> en @ -2 

{ox} 
4a. 0 @ +2 <-> en @ +2 

{ox}. 

4.4.1.3. Cross-classifying words 

The classes as they stand are incomplete, in that some are 

missing words which they rightfully deserve. In the example 

above, class la should include tulip, apple, and elbow, since 

0 @ -0 <-> s @ -1 correctly predicts their plurals; also, class 2a 

should contain newt. This is because classes la and 2a are not 

independent: they derive from classes 1 and 2, which both consist 

of words whose plurals are formed by adding -s. 



To restore consistency, we must cross-classify words under 

the appropriate classes outside their family,. where. a family is a 

group of classes that derive from the same original class, here 

denoted with the same initial integer. 

Cross-classification entails comparing every pair of classe 

in different families. The morphological process of the firs 

class is applied to the words in the second: those words that are 

handled properly are added to the first class. The procedure is 

repeated for the process of the second class and the words of the 

first. 

Many times,, however, it is silly to compare two clo--G-, 

there is no hope that the process of one will work for the words 

of the other. One necessary condition for success is that both 

processes insert and delete the same characters. Lexicrunch 

therefore computes two hash values for each process. The first is 

the sum of the ascii characters deleted; the second, that of those 

inserted. Pairs of processes with unequal hash values are not 

compared. 

After cross-classification, our running example becomes: 
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1. 0 @ +4 <-> s @ +4 
{newt} 

la. 0 @ -0 <-> s @ -1 
{newt tulip apple elbow} 

2. 0@+5<->s@+5 
{tulip apple elbow} 

2a. 0 @ -0 <-> s @ -1 
{tulip apple elbow newt} 

3. 0 @ -0 <-> es @ -2 
{fox tax box prefix switch} 

3a. 0@+3 <->es@+3 
{fox tax box} 

3b. 0@+6 <-> es @+6 
{prefix switch} 

4. 0@-0 <->en@-2 
{ox} 

4a. 0 @ +2 <-> en @ +2 
{ox}. 

4.4.1.4. Simplification 

Some of the classes in the cross-classified rule are clearly 

redundant. Class 1, for instance, can be disposed of, as its 

word, newt -- along with others -- is dealt with adequately by 

class la. 

We will say that class x subsumes class y if the domain of y 

is contained in the domain of x; x is a more general case of y. 

In such cases, we can get rid of y scot-free. 

The program simplifies the rule by comparing pairs of 

classes: if one class is subsumed by the other, it is deleted. If 

the domains are equal, it is inconsequential which process we get 

rid of. As a matter of esthetics, the program decides which 

process is "better," and it eliminates the other one. Basically, 

the program prefers processes with "better" afields and fewer 

changes. Numerical afields are "better" than first/last 

occurrence afields, simply because they are easier to calculate; 
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between two numerical afields, the one of lower magnitude is 

preferred; and if both afields are of the first/last occurrence 

type, the one with the longer string is selected, as it is "more 

specific." As with cross-classification, the program does not 

bother comparing two classes with different hash values, as there 

would be no chance for subsumption. 

Following cross-classification, a given word may well be in 

multiple classes. At the end of the day, though, we ought to 

decide which of these classes is best, and assign the word to that 

one only. Simplification is a substantial first step towards this 

goal, but it does not do away with ambiguous classification 

entirely. If, say, we are dealing with the past tense rule for 

English verbs, we could still have these classes after 

simplification: 

1. a@-2 <->0@-1 
{breed feed} 

2. a@+3 <->0@+3 
{breed bite}. 

Breed is in both classes, but we have no principled way of picking 

the "right" one at this stage. Later we will be able to assign it 
to class 1, on the grounds that this allows the natural 

characterization of words in class 1 as those that end in -eed; 

there would be no parallel rule had we put breed in 2. 

Returning to our ongoing example, the simplification process 

would remove the following classes: 
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1 -- subsumed by 1.a 

2 -- subsumed by la 
2a same'as la, but one of the two must go 
3a -- subsumed-by 3 
3b -- subsumed by 3 

4a -- same as 4, but 4 is preferred because its oldfield 
is of smaller magnitude. 

We are left with just three classes: 

la. 0 @ -0 <-> s @ -1 
{newt tulip apple elbow} 

3. 0 @ -0 <-> es @ -2 
{fox tax box prefix switch} 

4. 0 @ -0 <-> en @ -2 
{ox}. 

4.4.1.5. Filtering out insignificant classes 

At this point, we are essentially finished constructing the 

set of classes. This step and the remaining ones merely pave the 

way for the building of the decision tree., 

Since we are creating the decision tree to delineate domains 

via properties, it makes sense to first throw away those classes 

that are simply too small to have an interesting characterization. 

In our example, class 4, which contains only ox, is just such a 

class. Ox is a special case -- there is probably no other English 

word in its class -- and thus there is hardly a basis for 

extrapolating a rule that defines which nouns take -en in the 

plural. 

It is not clear, of course, where to draw the line between 

these paltry classes and normal ones. Moreover, this issue of 

judging when a trend is "significant" recurs frequently in 

Lexicrunch. We resolve the problem somewhat crudely by decreeing 
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that m is a "significant" proportion of n if and only if 

SIGNIF(m ,n), where 

procedure SIGNIF (m, n): 

if (m > 3) and (m > 10 percent of n) then 
return true 

else 
return false 

The values of the parameters in the function -- "3" and 

"10 percent" -- were arrived at empirically. Decreasing them 

would make SIGNIF return "true" more often, and so the program 

would "cut fewer corners" and run correspondingly slower. If we 

raised the values, the program would do less work, but its answers 

would be of a coarser grain. The metric could no doubt be 

improved by the introduction of more sophisticated statistical 

methods, but it appears sufficient for the present purposes. 

We therefore take to be insignificant those classes of size n 

where SIGNIF(n, n) is false, i.e. classes such that even if all 

their members have a certain property, the trend is still not 

significant. These amount to classes with fewer than four 

members. 

The program withdraws the insignificant classes from 

consideration -- their words will turn up as explicit inclusions 

of the rule. If a word is in both significant and insignificant 

classes, we strike it from the insignificant ones to simplify 

bookkeeping. This way it retains the opportunity to be classified 

by the decision tree, and sustains no real loss. 

By weeding out insignificant classes, we unclutter our sample 
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rule by one additional class, yielding: 

la. 0 @ -0 <-> s @ -1 
{newt tulip apple elbow} 

3. 0 @ -0 <-> es @ -2 
{fox tax box prefix switch} 

4.4.1.6. Devising tests 

In order to build a decision tree, we will need some idea of 

what properties typify the words in each domain of our rule. In 

this step of the compression procedure, we will comb through the 

domains, attempting to spot characteristic trends. Specifically, 

we will look for common strings of letters occurring on either 

side of a change site -- i.e. the graphological environment of the 

change (as discussed in section 3.3.2). 

Again we must invoke the notion of a "significant" trend, so 

as to distinguish between useful tests and noise. A "significant" 

trend is one that holds for m out of a domain of .n words, where 

SIGNIF(m, n) (see section 4.4.1.5). 

The program searches for trends in a given domain by 

examining each change of the morphological process in turn. It 
begins by looking at the first letter of each word to the right of 

the oldfield of the change. If any letter occurs in a significant 

proportion of the words, the program goes on to look for a 

significant following letter. It continues in this manner, 

finding strings of any length that start to the right of the 

change site and that turn up in a significant proportion of words. 

The whole process is repeated for strings that end on the left- 

hand side of the change site. Finally, if the oldstring of the 
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change is not nil, the program proposes the very property of 

having the oldstring at the oldfield. 

Consider the class from the English past tense rule for 

verbs: 

ea@-3<->o@-3 
0@-0 <->e@-1 
{swear steal break speak wear tear bear}. 

We look first at the change ea @ -3 <-> o @ -3. To the right of 

this site, we get r's, k's, and an 1, but only the r is 

significant, being 4 for 7. There are no more letters after the 

r, and so one property of the class is r @ -3+2. We then turn our 

attention to the left of the change site. The letters are w, t, 

r, p, and b, but none is significant. Then, since the oldstring 

is non-nil, we add the property ea @ -3+0. 

Having exhausted that change, we try 0 @ -0 <-> e @ -1. 

There are no strings to the right of the change, but to the left 

are, as above, four occurrences of the letter r. Of those four 

words, all have a preceding a; before that they all have an e. 

Beyond this there are no significant letters. Thus our third test 

is ear @ -0-3. This time the oldstring is nil, and so we cannot 

milk any further properties out of the change. 

Note that the properties proposed by our algorithm are not 

always helpful. In the example above, ear @ -0-3 was probably the 

only germane test, though ea @ -3+0 and r @ -3+2 could be 

conjoined to give the same effect. The idea is that these are 

meant as candidate tests, to be incorporated into the decision 

tree as the tree-building routine sees fit. 
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Writing the tests for each domain in parentheses, the running 

example, after characterization, becomes: 

la. 0 @ -0 <-> s @ -1 

{newt tulip apple elbow} 

3. 0 @ -0 <-> es @ -2 
x @ -0-1) 
fox tax box prefix switch} 

4.4.1.7. Calculating attribute vectors 

The last preparatory step before building the decision tree 

is to calculate which properties each word has. This information 

will be accessed many times during tree construction. 

4.4.2. Building the decision tree 

The tree-building routine in Lexicrunch, ID4, is modelled 

after Quinlan's classification program, ID3 [Quinlan 1979], which 

is in turn an extension of Hunt et al.'s concept learning system, 

CLS [Hunt et al. 19661. The Lexicrunch routine incorporates 

several enhancements to Quinlan's algorithm. 

4.4.2.1. ID3 

ID3 takes as input a training set, a partition of the 

training set into classes, and a list of properties that can be 

used to characterize each class. From these data, it builds a 

decision tree which assigns each object in the training set to its 

proper class. Though Quinlan allows multi-valued properties, we 

will assume, in the description that follows, that properties are 
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two-valued, as they are in Lexicrunch -- i.e. an object either has 

a property or it does not. [Cohen and Feigenbaum 1982, p.4071 

The basic ID3 algorithm is: 

procedure ID3 (set, partition, properties): 

if all elements of set are in the same class then 
return a leaf node containing that class 

else 
prop F a property in properties 

which is chosen by some heuristic 
setY 4- the elements of set that have prop 
setN 4- the elements of set that do not have prop 
return a tree whose root contains the property prop, 

whose Y-child is 
ID3(setY, partition, properties - prop), 
and whose N-child is 
ID3(setN, partition, properties - prop). 

Quinlan also provides a mechanism for sampling the corpus 

iteratively, in case the whole thing does not fit in core at once. 

[Cohen and Feigenbaum 1982, pp.407-8] 

The heuristic that picks a property to split on should select 

the test with the greatest discriminatory power -- i.e. it should 

partition the data as close as possible to class boundaries. 

[Cohen and Feigenbaum 1982, p.408] 

Let us represent the classes pictorially by amorphous shapes, 

and a property by a line through these shapes. The objects on the 

shaded side of the line have the property; the objects on the 

other side do not. Then, for example, test T in 

* The heuristic is discussed below. 
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is an excellent property to split on, as it allows us to define 

class B as "those objects with property T." Test U, on the other 

hand, probably does not help distinguish among the classes. 

Quinlan selects properties to split on using an information- 

theoretic measure, the entropy heuristic. The entropy of a corpus 

with respect to test T is defined as 

entropy[T} = [ pTclog, pTc `lTclog, gTel classes c 

where 

pTc 
a proportion of objects in class c that 

have property T 

QTc " proportion of objects in class c that 
do not have property T 

log'x - 0 for x - 0; else log'x - log2j 

Roughly speaking, entropy[T] is the number of binary tests needed 

in addition to T to discriminate among the classes [O'Keefe 1983, 

p.480J. The entropy heuristic is to choose the test T with the 

lowest entropy(T). [Cohen and Feigenbaum 19821 

} We can change the oase of the logarithm (to numbers 
greater than 1) if we wish, as this just multiplies the en- 
tropies by a constant, but does not affect comparisons 
between entropy values. 
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4.4.2.2. IN 

To render ID3 suitable for Lexicrunch, several extensions are 

indicated. Although the modifications were designed with word 

morphology in mind, they bear on the classification task in 

general. 

4.4.2.2.1. Providing for exceptions 

Implicit in ID3 is the assumption that the given list of 

properties will always be adequate for explaining why a given 

object is in the class it is in. If this assumption were 

violated, there would come a point in the algorithm when a corpus 

could not be analyzed into its constituent classes -- the program 

would "break." 

In Lexicrunch, we cannot justify the assumption of 

"omniscient properties." Sometimes the tests needed to 

discriminate among classes lie beyond the program's grasp, such as 

in the case of the rule of section 3.2.3 that words borrowed 

directly from Latin take -or. In addition, some morphological 

distinctions may simply be totally arbitrary, and not expressible 

in terms of abstract properties. For instance, what property of 

ox, etymological or otherwise, explains why it takes an -en 

plural, but fox and ax do not? 

We therefore need an "escape hatch" to resort to when our 

properties fail us. If we run out of properties in ID4, we simply 

approximate the current corpus by a leaf node containing the 

largest class. Words in minority classes are memorized as 
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inclusions. 

The revised algorithm is shown below. It returns two-part 

structures written as X ( Y>, where X is the decision tree and Y 

the list of inclusions. An assignment of the form 

<A I B> 4- X I Y> means A (- X and B 4- Y. 

procedure ID3.5 (set, partition, properties): 

if (all elements of set are in the same class) 
or (properties is nil) then 

else 

class F the class in set with the most members 
Inc E- a list of all objects not in class 
return <a leaf node containing class 

I 
inc> 

prop F a property in properties 
which is chosen by some heuristic 

setY F the elements of set that have prop 
setN F the elements of set that do not have prop 
<treeY incY> F ID3.5(setY, partition, 

properties - prop) 
<treeN 

I 
incN> F ID3.5(setN, partition, 

properties - prop) 
return <a tree whose root contains the property prop, 

whose Y-child is treeY, and whose N-child is 

treeN I the concatenation of incY and incN> 

4.4.2.2.2. A relevance check 

Our motivation for building a decision tree in the first 

place was to represent as compactly as we could a partition of 

objects into classes. It follows that tests in our tree that take 

up more storage than the examples they account for are 

counterproductive and irrelevant. Such tests nevertheless manage 

to find their way into our decision trees in two circumstances. 

The first is when our heuristic for picking a test to split 

on backfires. Consider a hypothetical partition of English words 

into two classes, A and B, defined in terms of properties p and q 
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by 

A = objects with both p and q, or neither 
B = objects with p or q, but not both. 

Let us say that there is a third property, r, which tests whether 

a word has an even number of letters. Assuming that all three 

properties bisect A and B approximately, the entropy heuristic 

will rate them more or less equally. Just to be perverse, suppose 

r comes out on top Then the program will build a tree along the 

lines of 

has r? 

Here r is the quintessential irrelevant test: splitting on it 

contributes absolutely nothing to the task of discriminating 

between A and B. This is shown by the fact that the Y-subtree and 

N-subtree of the r node are identical -- we must apply the same 

classification function to words regardless of whether they have 

r. 

The second situation that invites irrelevant tests is when 

the program simply does not have the property needed to tell 

certain classes apart. It then tends to claw and scratch its way 

This will happen if p and q split A and B into more equal 
halves than r does. 
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toward class definitions by applying numerous inappropriate tests. 

For instance, say we are faced with these classes: 

1 . i @ -i <-> a @ -a 
{sink ring sing spring drink} 

2. 1 @ -i <-> u @ -u 
{string cling fling sting stick slink} 

and the available tests are nk @ -i+1 and ng @ -1+1. These tests 

are certainly not sufficient to separate the classes -- indeed it 

is not clear that any test could do so -- but as long as the 

program has properties at its disposal, it will persist in growing 

its tree. It might come up with: 

nk @ -i+1 ? 

2 2 

inclusions: ring, sing, spring, slink. 

This solution requires a 5-node decision tree and 4 inclusions to 

remember 11 examples. Surely we would have been better off 

building a leaf node right at the start -- then there would be 1 

node in the tree and 5 inclusions, as below. 

2 

inclusions: sink, ring, sing, spring, drink 

Another reason for halting early in examples like that above is 

that "improving the fit of a rule to the training set (beyond a 

certain point) can make it perform worse on the rest of the 
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population" (O'Keefe 1983, p.1179]. 

The customary cure for irrelevant tests -- at least those 

that arise in the second situation -- is to appeal to a stopping 

rule that says when classification has gone far enough (see, e.g., 

Sturt [1981]). The stopping rule evaluates the potential 

property-to-split-on using some heuristic; if the property fails, 

we build a leaf node. An example of a heuristic is to check that 

the entropy of the property is below a certain threshold. 

One trouble with stopping rules is that defects in their 

heuristics tend to have drastic consequences. Sometimes it is 

necessary to split on a superficially "bad" property, as in the 

case of inherently disjunctive classes, when each individual 

property fits the class poorly. If the stopping rule vetoes the 

split, the decision subtree cannot be built. Stopping rules also 

magnify flaws in the property-selecting heuristic. Where the poor 

choice of a proper.ty led to redundant subtrees before (as in the 

example above with properties p, q, and r), once we have a 

stopping rule, the subtrees may not be created at all. 

Corlett [1983] suggests a more robust remedy for irrelevant 

tests. He first "decompiles" the decision tree into a list of 

classification rules. There will be one rule for each root-to- 

leaf path in the tree: it will be of the form 

if an object has the properties corresponding 

to Y-branches on the path, and it lacks those 

corresponding to N-branches then the object 

is in the class given by the leaf node. 

The next step is to go through each classification rule and try to 
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drop each of its conditions in turn. Unless the deletion of a 

condition would cause the rule to misclassify, 

[Corlett 1983, pp.139-401 

it is discarded. 

Applying Corlett's method to our p, q, and r example, we get 

eight classification rules: 

if r and p and q then A 

if r and p and not q then B 

if r and not p and q then B 

if r and not p and not q then A 

if not r and p and q then A 

if not r and p and not q then B 

if not r and not p and q then B 

if not r and not p and not q then A 

The r condition from the first four rules and the not r condition 

from the last four can be deleted with impunity. The eight rules 

then collapse into the correct four. 

Corlett actually addresses a more general problem than the 

one we stated: he deletes a test from only those rules in which it 

is extraneous, rather than in "all or none" of them. But 

Corlett's algorithm suffers from the concomitant problem that its 

output is a list, not a tree of rules: lists are far less 

efficient at classification. Moreover, he fails to throw away 

irrelevant tests that arise in our second situation, as long as 

they cover at least one example. 

In Lexicrunch, a test is deemed irrelevant if its Y-child and 

N-child "compute the same function"; for if this is the case, then 

we may as well divert all the data to one of the subtrees -- it is 

redundant to have both. The way we tell whether one subtree alone 

suffices is to measure how it performs on the examples normally 
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handled by the other subtree. If it does not require 

significantly more inclusions than the other subtree for any 

class, then it can be said to subsume the function of the other 

subtree. We may then eliminate the other subtree, as well as the 

parent node. 

With this relevance check installed, our classification 

algorithm becomes: 
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procedure'ID4 (set, partition, properties): 

if (all elements of set are in the same class 
or (properties is nil) then 

else 

class, +- the class in set with the most members ,n,-' 

prop F a property in properties 
which is chosen by some heuristic 

setY F the elements of set that have prop 
setN F the elements of set that do not have pron 
<treeY incY> F ID4(setY, partition, 

properties - prop) 
<treeN incN> F ID4(setN partition, 

properties - prop) 

inc F a list of all objects not in class F-,..._._.... 
return <a leaf node containing class I inc> 

KAkf 

errY f inclusions produced by classifying setN 
using treeY 

errN F inclusions produced by classifying setY 
using treeN 

if for all classes c, not SIGNIF(no. of class c 
objects in errY - no. of class c objects 
in incY, no. of objects in class cJ then 

/* Y-subtree subsumes. N-subtree */ 
return <treeY 

I .concatenation of incY 
and errY> 

elseif for all classes c, not SIGNIF(no. of class c 
objects in errN - no. of class c objects 
in incN, no. of objects in class ci then 

else 

/* N-subtree subsumes Y-subtree */ 

return <treeN 
I 

concatenation of incN 
and errN> 

/* neither subtree subsumes the other 
return <a tree whose root contains the 

property prop, whose Y-child is 
treeY, and whose N-child is treeN 
the Concatenation of incY and incN> 

For the first example above, with properties p, q, and r, ID4 

deletes the r test, because its Y-subtree and N-subtree behave 

exactly the same way. The whole tree is replaced by the 

Y-subtree. 
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In the second example, the ng test will be excised, since its 

subtrees are identical. This leaves the tree 

nk @ -i+1 ? 

The analysis for the nk test is as follows: 

setY = sink drink slink} 
setN = ring sing spring string cling fling sting stick} 
in f = slink} 
incN = ring sing spring} 
errY = string cling fling sting stick} 
errN = sink drink} 

inclusions setY setN 
class 1 class 2 class 1 class 2 

treeY 0 1 0 5 

treeN 3 0 2 0. 

The Y-subtree does not subsume the N-subtree because the N-subtree 

is better for the class 2 data of setN, i.e. SIGNIF(5 - 0, 6). 

However, the N-subtree does subsume the Y-subtree, as it does not 

do significantly worse for class 1 -- not SIGNIF(3 - 0, 5) -- nor 

for class 2 -- not SIGNIF(O - 1, 6). Thus we end up with the 

decision tree 

2. 

4.4.2.2.3. Ambiguous word classifications 

The classification problem in Lexicrunch is a departure from 

Quinlan's specification in that we are not given a strict 
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partition of words into classes: some words may be listed in 

multiple classes. The example given in section 4.4.1.4 was of 

breed in 

1. a@-2<->0@-1 
{breed feed} 

2. e @ +3 <-> 0 @ +3 
{breed bite} 

Let us consider how ID4 would cope with such an ambiguous 

classification. 

Since ID4 classifies words by their properties, not by which 

classes) they are in, we can forget for the moment that words are 

assigned to classes at all. Given the words breed, feed, and 

bite, and appropriate properties, ID4 might group the words as 

follows: 

d @ -2+1 ? 

{breed, feed} {bite}. 

Now if we endeavor to account for "class structure," we will 

observe that all the copies of a word will aggregate together at 

the same leaf node, as there is no possible test that could split 

them up. Hence we can redraw the diagram above as 

d @ -2+1 ? 

1. {breed feed} 2. {bite' 

2. {breed}. 
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The rule for breed is thus computed normally. The only special 

provision we need to make is to cancel spare copies of a word at a 

leaf node if one of the copies is in the chosen class -- e.g. if 

we associate class 1 with the left leaf node above, we must strike 

breed from class 2, rather than listing it as an inclusion. If 

none of the copies of the word is in the chosen class, we will 

list it as an inclusion in all of its classes, and resolve the 

ambiguity later (see section !.)4.3). 

4.4.3 Tidying up 

Inclusions to our rule come from two sources: the ones 

returned by ID!, and those set aside earlier in rule compression 

in "insignificant classes." There may be words of either sort 

that are listed as inclusions in more than one class. We now 

assign them to just one of their classes- 

We could make the assignments arbitrarily; but with the right 

arrangements, we may be able to get rid of a few classes. The 

task is to select as few classes as possible which still contain 

one copy of every word. 

This is known as the minimum set cover problem. 

Unfortunately, it is NP-complete [Aho, Hopcroft, and Ullman 1974, 

p.378]. We will have to settle for a greedy heuristic. We start 

by taking "forced" classes, i.e. those referenced in the decision 

tree, and those that contain unique occurrences of elements. Then 

at each iteration, we pick the class that gives us the largest 

number of new elements. Ambiguously classified words are assigned 

to the first of their class that we select. Hopefully we will not 
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Chapter 5 

Performance of Lexicrunch 

5.1. Examples 

Lexicrunch was tested on three main examples: the past tense 

of verbs in English, the first person singular present indicative 

in Finnish, and the past participle in French. The rules produced 

by the program, after data entry and compression, are given in the 

appendices in verbose form. 

The program displays rules in verbose form when trace mode is 

turned on during compression. Our rule from chapter 4 for the 

plural inflection could be written in verbose form as follows: 

Decision tree: 

if x @ -0-1 then [2.1] 
2. {fox tax box prefix} 

else [1.1J 
1. newt tulip apple elbow} 
2. switch} 

Rule-defined classes: 

1. 0 @ -0 <-> s @ -1 
[1.1]: newt tulip apple elbow 

2. 0 @ -0 <-> es @ -2 
[2.1]: fox tax box prefix 
Inclusions: switch[1.1] 

Inclusion classes: 

3 0@-0<->en@-2 
Inclusions: ox 

The decision tree is printed first. Its leaf nodes are 

specified slightly differently than usual: instead of just 

supplying the index of a morphological process, we write the 
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index, a dot, and a small integer which identifies the leaf node, 

all enclosed in square brackets. Thus in the first line of the 

decision tree above, we have the leaf node [2.1], which references 

process 2. If there were subsequent leaf nodes containing process 

2, they would be expressed as [2.2], [2.31, etc. Appearing after 

each leaf node is a tabulation of the words in significant classes 

which the node must handle. Node [1.1], for example, must handle 

newt, tulip, apple, and elbow from class 1, and switch from class 

2. 

Following the decision tree are the rule-defined classes, 

i.e. those classes referenced in the decision tree at least once. 

For each class, the domain is explicitly enumerated. First its 

rules in the decision tree are given, identified by their leaf 

nodes, along with the list of words they contribute to the class. 

Then come the words which are memorized as inclusions. Each word 

is accompanied by the leaf node that would misclassify it were it 
not listed as an inclusion. To illustrate, class 2 above is a 

rule-defined class with one rule in the decision tree, namely 

if x @ -0-1 then [2.1]. This rule contributes the words fox, tax, 

box, and prefix to the class. Switch is stored as an inclusion 

because it would otherwise be classified by the else [1.1] rule. 

Finally, we have the inclusion classes. They have no rules 

in the decision tree; their domains are merely lists of 

inclusions. Words in the inclusion lists from insignificant 

classes are not printed with a corresponding leaf node. In our 

example, class 3 is the only inclusion class. It covers just one 

word, ox. Since ox is originally from an insignificant class, it 
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does not have a following leaf node. 

5.1.1. English data 

The English data consist of 127 verbs and their past tenses. 

An attempt was made to include at least four verbs from each 

irregular class, and a few more for the larger regular classes. 

The data and the rough class definitions come from Quirk and 

Greenbaum [1973, pp.26-35] and Strang [1962, pp.129-33]. 

Lexicrunch arrived at 14 rule-defined classes and 35 

inclusion classes for the English example (see appendix A). Its 

rules for the regular classes are sensible; e.g. for class 1 we 

have, "Add -ed to a verb by default or if it ends in -ay." It is 

more difficult to judge other rules, such as, "Change the last i 

to an ou in verbs which have an nd after their last i," as grammar 

books rarely lay out such patterns. Pragmatically, the rules are 

sound, as they account for 84 words, memorizing only 17 of them. 

Three of the inclusions are -ng verbs whose i changes to an a, not 

a u. These are forgivable, as there is no obvious test that 

distinguishes the two sorts of -ng verbs. It also seems 

reasonable to memorize words like hold, as they bear little 

resemblance to other words of their class -- in this case, blow, 

grow, and throw. 

The inclusion classes handle 43 examples, a suspiciously 

large number. But 39 of them -- words like go and buy -- are in 

classes containing at most two words. Such words are arguably 

"true anomalies" which must be learned by rote; it just happens 

that these are common in English. The remaining 4 words of the 43 
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-- split, beat, cut, and hurt -- are listed together in the class 

in which the past tense is the same as the present. This class 

could have been characterized approximately as "words that end in 

-t"; the reason that Lexicrunch missed this rule is discussed in 

section 5.2.3. 

Rule compression for this example took approximately six 

minutes of CPU time, with the program running in compiled mode on 

the departmental VAX 11/750. 

5.1.2. Finnish data 

Inflected forms of Finnish verbs are derived from verb stems, 

abstract grammatical entities which do not exist in the language 

per se. Since our data are taken from Whitney [1956], we observe 

his convention of treating all stems as vowel stems, rather than 

saying that certain verbs have both a vowel and a consonant stem. 

To distinguish stems from "normal" words, we write them with a 

final hyphen [Whitney 1956, p.vi]. Note also that A and 8 are 

distinct letters in the Finnish alphabet [Whitney 1956, p.13J. 

They were represented as special characters in the Lexicrunch 

data, but appear normally here for the sake of readability. 

The first person singular present indicative is derived quite 

regularly from the verb stem by (a) the addition of -n, and (b) 

any relevant consonant gradation in the stem (see section 2.3.3.2) 

[Whitney 1956, p.27]. Thus we should expect twelve classes in our 

rule: one for stems that do not change, and eleven for the eleven 

types of gradation. This is indeed what the program gets (see 

appendix B). 
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A correct rule for predicting which words are in, say, the 

it - 11 gradation class, is to check for the -ltV- ending, where V 

stands for any vowel. The relevant properties in Lexicrunch are 

1 @ -3-1 and t @ -3-0. We do not need to verify that the word has 

a hyphen as its last letter or a vowel before that, since all 

stems do. In fact, the program uses just the 1 property, because 

this works for most words -- it only misclassifies alka-. The 

program shies away from the conjunction of two properties because 

that would only explain one additional word. 

The rule that a preceding s or t inhibits consonant gradation 

is partially expressed by leaf nodes [1.1] and [1.2], which state 

that stems in -sty- and -sta- belong in the non-gradating class. 

Words with related endings, e.g. -tka- in jatka-, are not numerous 

enough to warrant rules of their own, and thus are listed as 

inclusions. 

There are also two rules in the decision tree that pick out 

stems in -ata- and -Atg-. These handle the so-called amalgamating 

verbs, which drop their t in the present tense. They are 

characterized more completely by a short (orthographically single) 

vowel plus a -ta- or -tg- ending. [Whitney 1956, p.28] 

All together, the program requires 15 inclusions for a corpus 

of 81 words. The inclusions are distributed in little bunches, 

and so it would not be worthwhile to introduce rules to explain 

them. 

A larger dataset would present Lexicrunch's rule with 

counterexamples, as several of its formulas are cheap extensional 
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equivalents. To see if additional data would indeed force the 

program to be more exact, an example with all 711 verbs from 

Whitney [19561 was run (see appendix C). 

The program got the same twelve classes, but modified its 

decision tree. Where it used 1 @ -3-1 to delineate the It - 11 

class before, it now resorts to the proper conjunction, 

(1 @ -3-1) and (t @ -3+0), 

as the extra condition is needed to handle six non-gradating 

counterexamples. It induces several unintuitive rules as well, 

e.g. that verbs in -ty- or -tu- do not gradate, but the rules 

cannot be faulted on practical grounds, as they produce very few 

inclusions. 

Lexicrunch's solution incorporates 55 inclusions. As before, 

most of them can be accounted for by the fact that there are very 

few of any one kind. The first three inclusions to class 1, for 

example -- kynsi-, pakinoi-, and luennoi- -- are memorized because 

they are the only words in the corpus that have n @ -3-1, yet do 

not go in the nt - nn class. The program could conjoin another 

property, as it did for the It - 11 class, if the additional rule 

were, by its definition, justified. 

One might intuitively expect the program to assign -stA- 

verbs to class 1 via a rule; instead, it stores all 12 as 

inclusions. The justification is that these 12 words are 

insignificant out of the 311 words in class 1, and thus they do 

not merit a special rule. 
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Class u, the t - d gradation, also appears to have a hefty 

number of inclusions. Most of them originate from rule [3.2] -- 

that is, the program has difficulty distinguishing them from the 

amalgamating verbs of class 3. In order for it to tell them apart 

properly, it would need rules saying that verbs with long vowels, 

i.e. in -VVtV-, are in class u; other verbs ending in -ta- or -ta- 

are in class 3. It would take a tremendous number of words to 

encourage Lexicrunch to build these rules. 

The program compressed the shorter Finnish rule in 4.5 

minutes of CPU time; the larger rule took 54 minutes. 

5.1.3. French data 

Le Nouveau Bescherelle [1966] sets out 82 paradigms for 

French verbs, along with rules which define their domains -- e.g. 

paradigm 57 illustrates how to conjugate verbs which end in 

-eindre, using the model of peindre. With respect to past 

participles, these reduce to 34+ different paradigms. 

To test Lexicrunch on the French data, four or more words (if 

available) from each of the 34 classes were entered -- 129 words 

in all. A note on the spelling of the words: the French acute 

accent ('), cedilla(,), circumflex(-), and umlaut(-,) are true 

accents, not parts of letters. These were accordingly represented 

as special characters following the letter they modify. 

The program's rule (see appendix D) matches that in the 

Bescherelle quite closely. It has the same 34 classes, and the 

definitions are very nearly identical. As usual, when the program 
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could get away with underspecifying a class, it did so. Thus the 

class of -er verbs is characterized by e @ -1-1. Still, this 

approximation makes no errors for the corpus given. Moreover, a 

few classifications agreed exactly with Bescherelle's; the test 

for the -clure verbs was 

(re @ -2+0) and (clu @ -2-3). 

Sometimes tests in the tree could be underspecified because 

all competing words had already been drawn off. This was the case 

for the rule for the -enir verbs, 

(ten @ -2-3) or (ven @ -2-3). 

All the -enir verbs are indeed derived from venir or tenir; the 

only problem with Lexicrunch's rule is that it does not mention 

the -ir ending. The rule works, nevertheless, because by the time 

the rule is given in the tree, only -ir verbs are left. 

The exceptions in the program's rule also coincide with those 

given by Bescherelle. For example, rire and sourire appear as 

inclusions in class 13. Bescherelle does no better, listing them 

by themselves in paradigm 79. A few of the other inclusions, like 

absoudre, dissoudre, and re'soudre in class 29, are given in 

Bescherelle by a rule -- "ends in -soudre" -- but since the book 

provides only these three examples in the domain, Lexicrunch 

treats them as noise to be memorized. 

The program's rule accounts for the 129 words using 32 

inclusions. Because the rule is so close to the accepted 

formulation, it should work, practically unchanged, for all 8,000 
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verbs in the Bescherelle. 

The rule was compressed in six minutes of CPU time. 

5.2. Weaknesses 

Lexicrunch suffers from a number of weaknesses, several of 

which were brought out in the test runs of section 5.1. These are 

described below, along with outlines of remedies. 

5.2.1. Spelling is but a dim reflection of pronunciation 

Since speech precedes writing both phylogenetically and 

ontogenetically, one might expect rules of word construction to be 

stated most naturally in terms of pronunciation. Orthography is a 

"second order effect," which was no doubt designed to map 

straightforwardly onto pronunciation, but falls short of the mark 

because of dialectical variation, language borrowing, and so 

forth. 

This spells trouble for programs like Lexicrunch, as their 

vocabulary for expressing changes is orthographic. Sometimes it 
is beneficial to ignore phonetics -- then, e.g., we do not have to 

distinguish between the /d/ past tense morpheme in raised and the 

/t/ in raced. Just as often, though, it confuses the issue to 

deal with spelling. This is demonstrated by the English rule for 

forming the past tense by shortening /i/ to /e/; it is realized in 

three different orthographic ways in speed/sped, lead/led, and 

read/read. 
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Lexicrunch could capture such trends directly if we were to 

run it on phonetic rather than graphemic representations of words. 

We are usually more interested, however, in recognizing and 

producing normal written words than phonetic transcriptions. 

We can retain our graphemic representations but also take 

advantage of certain phonetic regularities by making a few 

extensions to the program. First, we would supply a phonetic 

transcription for each word, as well as the correspondence between 

phonemes and graphemes. Then we would modify the test-devising 

routine (see section 4.4.1.6 to take into account the phonetic 

environment of a change. 

For data such as 

r i s e 

/r/ /ai/ /z/ 

d r i v e 

/d/ /r/ /ai/ /v/ 

etc. 

we could then construct the past tense rule 

if /r/ @ -3-1 then 
if /ai/ @ -3+0 then 1 

1. i @ -3 <-> o @ -3. 

This would be more correct than the orthographic test ri 8 -3-1 

because it excludes words like grill. 

We would have to alter the recognition module (see section 

4.2) as well. Currently, in unapplying a rule, the program 

guesses which morphological process to uneffect, and then verifies 
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that it chose the right one. But now it may not know whether it 

made the right choice until it reaches a lexical entry, with the 

requisite phonological information. Thus the routine will have to 

delay its verification of certain guesses until the end. 

For example, in recognizing drove and *gro11, the routine 

would uneffect process 1 above, yielding drive and grill. So far, 

it cannot tell whether these forms have /r/ @ -3-1 or /al/ @ -3+0. 

It would then look up the words in the VERB rule, and find that 

drive does indeed have the appropriate Ir/ and /ai/, and hence 

should take process 1. Grill lacks the /ai/, and so it was wrong 

to apply process 1. 

5.2.2. Words with a multiplicity of forms 

In the overview of the program (section 1.4), we assumed, 

with Kay [1983, p.94,1O2], that a morphological rule applied to a 

word gives only one result. Occasionally, however, there will be 

several answers. 

In some cases, the multiplicity of forms corresponds to a 

multiplicity of meanings. Hang, for example, has the past tense 

hung in the sense of "suspended," but hanged for "executed." We 

could enforce the meaning difference by writing the words as hangl 

and hang2, but this is a bit cumbersome and contrived. It would 

not even work for examples like appendix, whose plurals -- 

appendixes and appendices -- are not separable on semantic 

grounds. 

A more attractive way to protect the program from 
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multiplicity would be to hide it within special "compound" 

classes. For instance, we would put appendix, along with similar 

words, in just one such class, which we might represent as 

1. 0 @ -0 <-> es @ -2 
OR 

x @ -1 <-> ces @ -3 
{appendix helix matrix radix}. 

We would also have to update the generation routine to return a 

list of all possible answers. 

5.2.3. Characterizing words that undergo no change 

The routine that devises tests (see section 4.4.1.6) clearly 

cannot characterize any arbitrary class of words. A flagrant 

example of its inadequacy arises in the English data of appendix 

A, where the program fails to come up with any properties for the 

class 

17. -- 
{split beat cut hurt} 

The problem is that the test-devising routine only looks for 

common strings around change sites; but the class above has no 

change sites -- it consists of words whose past tense is the same 

as the present. Nevertheless, a reasonable characterization 

exists; namely, t @ -0-1. The dental ending makes sense if we 

hypothesize a derivation like 

split + -t + *split-t + split, 

where the past tense -t is that in burnt, learnt, etc. [Matthews 

1974, p.122J. 
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The analysis above suggests that the change in our class is 

not null, but invisible, and it occurs at the end of the word. 

Lexicrunch, however, has no way of knowing this. We could make up 

for the program's ignorance by having it search for common strings 

at various places in the word -- including the beginning and the 

end -- whenever the class has a null list of changes. 

5.2.4. Problems with IN 

The IN algorithm is responsible for several of the program's 

performance problems. Some of them have to do with aspects of the 

implementation; others are more fundamental in that they challenge 

the use of decision trees. 

5.2.4.1. Conjunctive "halfway houses" 

Ordinary classes are easily teased apart with a decision 

tree, providing the apposite tests are available. As the tests 

are applied in turn, the associated classes "peel off" from the 

pack. Say there are three classes, A, B, and C, defined by 

A = objects which have p 

B = objects not in A which have r 
C = objects not in A which do not have r 

One decision tree to make the proper class assignments would be 
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has p? 

Now, however, suppose that A is given by 

A = objects which have p and q. 

To isolate A, we then need to apply tests p and q successively, 

i.e. 

has p? 

But as far as classes B and C are concerned, the intermediate test 

node for q is irrelevant. The decision subtree for B and C is the 

same, regardless of where in the p and q path it diverges from. 

In general, a conjunction of n properties will necessitate n 

copies of the subtree that distinguishes among the remaining 

classes. To avoid this redundancy, we could "shrink" the 

conjunctive succession of properties down to one node. For the 

example above, we would be left with 
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has p and q? 

This procedure is just like our relevance check (see section 

4.4.2.2.2, except that we are conflating not a node's Y- and 

N-subtrees, but rather its N-subtree and the N-subtree of its 

Y-sub tree. 

But the iceberg extends still farther. Redundant subtrees 

can sprout arbitrarily far apart in the decision tree. If, for 

example, we defined A by 

A - objects which have both p and q, or neither, 

then the not p and q and p and not q subtrees would be the same. 

We should really compare every pair of subtrees to see if they 

compute the same function; and this could be prohibitively 

expensive. Moreover, the topology of the tree prevents the 

"shrinking" together of widespread nodes. We would have to 

replace the two subtrees with one common one, and install "links" 

from the roots of the original subtrees to the new subtree. The 

resulting structure would only be a decision tree in a very loose 

sense. 

5.2.4.2. Disjunction versus random effects 

To restrain Lexicrunch from characterizing wayward classes of 
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English words by 

(a @ -0-1) or (b @ -0-1) or ... or (z @ 

we imposed the restriction that each disjunct cover at least a out 

of the n words in its class, where SIGNIF(m,n). Properties true 

of fewer examples are not recognized by the test-devising routine. 

By the definition of SIGNIF (see section 4.4.1.5), this means 

that properties with 10 percent or less coverage will never be 

detected. However, some such properties are still "useful," e.g. 

stA @ -1-3 in class 1 of the Finnish example in appendix C. 

To fix this, we could loosen the restriction on properties. 

If we are considering appending a character c onto the teststring 

s, we could insist only that in, the number of words with a c, is 

significant compared to n, the number of words with the string s, 

as opposed to the number of words in the whole class. Then, for 

instance, the -stA- property above would be accepted, so long as a 

significant proportion of the words in class 1 ended in A, a 

significant proportion of words in -11 had a preceding t, and a 

significant proportion of -t8 words had an s before that. The 

tests above for -a, -b, etc. should be judged irrelevant, but for 

reasons discussed in section 5.2.4.4, the later ones will not be. 

We might also try to distinguish more precisely between 

"true" disjuncts and random effects by refining the SIGNIF 

function using principles of statistics, but this is beyond the 

scope of this paper. 
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5.2.4.3. Lexicrunch's aversion to disjunction 

The entropy heuristic (see section 4.4.2.1) favors tests that 

split the corpus near class boundaries. It follows that 

disjunctive properties which cleave a class into halves will not 

be highly regarded. Consider the situation in the diagram: 

q 

The formula p or q characterizes A quite well. Nevertheless, of 

p, q, and r, it is the last that will be chosen, because it cuts 

closer to class boundaries than the others. After that, p and q 

may not be incorporated into the decision tree if they do not 

explain enough of the outstanding words. 

The only certain way to avoid such unfortunate choices of 

properties is to "look ahead" to see whether a given test will 

ultimately lead to a clean, effective characterization. This, 

however, entails building the rest of the decision tree every time 

we evaluate a test. It is not clear how to improve the test- 

selection heuristic without incurring this massive cost. 

5.2.4.4. Fragmentation due to irrelevant tests 

Irrelevant tests should logically never be put in the 

decision tree. In Lexicrunch, however, it is convenient to build 
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the whole tree first, including irrelevant test nodes, and to 

expunge the unwanted tests afterwards. The temporary irrelevant 

tests tend to break up the classes into incoherent bits, resulting 

in two deleterious effects. 

First, while a whole class may manifest a certain trend 

clearly, its parts, after fragmentation, may be too small to 

deserve to be individually characterized. Thus the original trend 

is lost. Take the following classes from the plural rule for 

English nouns: 

1. fox sphinx tax mix roach sash kiss} 
2. clock bird tart cheesecake} 

and suppose that we have two properties to choose from, x @ -0-1 

and the bizarre f @ +0+0. The program will split on the latter, 

as it slices closer to class boundaries; it will later be thrown 

out as irrelevant. Meanwhile, we get the tree 

f @ +0+0? 

1. {fox} 1. sphinx tax mix roach sash kiss} 
2. clock bird tart cheesecake}. 

The Y-subtree is finished. At the N-subtree, we can apply 

x @ -0-1, but now it only explains three words, and so it too will 

be considered irrelevant. If we had applied it to the original 

class 1, it would have been judged worthwhile. 

The second problem is the flip-side of the first: tests that 

cover only a tiny proportion of the words in a class may 

mistakenly be taken as significant for a fragment of the class. 
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This circumstance was alluded to in section 5.2.4.2 when we tried 
to characterize a class of English words by applying 26 irrelevant 

tests to it: 

(a @ -0-1 ) or (b @ -0-1 ) or ... or (z @ -0-1). 

The first tests we used would correctly be identified as 

irrelevant, since they would presumably cover an insignificant 

fraction of the words in the class. These early tests would cull 
progressively more words out of the class, though, until 
eventually some of the later tests above would explain a 

reasonable fraction of the remainder. Such tests would not have 

stood a chance had they been applied ahead of the other irrelevant 

tests. 

ID4 could be modified to eliminate the side effects caused by 

irrelevant tests. Instead of picking the one best property to 

split on, we would rank the properties from best to worst. We 

would then split on a property and complete the decision tree. If 
the property proved irrelevant, we would iterate for the next 

property. Irrelevant tests would thus not affect the construction 

of the rest of the tree. 

This solution smacks of the nondeterminism we were worried 

about at the end of section 5.2.4.3 -- although here we only have 

to "look ahead" when we hit an irrelevant test, which should be 

relatively seldom. But it is still likely that the resulting 

algorithm would be insufferably slow. 
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5.2.5. Redundancy at the rule level 

While Lexicrunch is reasonably adept at purging redundancies 

from morphological data, new ones emerge in its rules. These 

suggest that the program should be extended to capture 

regularities across rules with meta-rules. We could continue in 

this manner, with a meta-meta-level, ad infinitum. 

5.2.5.1. Disjoining conditions 

Given enough English past tenses, the program would 

eventually derive a rule including a set of highly similar tests: 

if ay @ -0-2 then 1 if ey @ -0-2 then 1 if iy @ -0-2 then 1 if oy @ -0-2 then 1 if uy @ -0-2 then 1 

1. 0 @ -0 <-> ed @ -2. 

Since these tests differ only in one grapheme of their 

teststrings, it would make sense to replace that grapheme by a 

variable. We could then condense the five tests into one: 

if Vy @ -0-2 then 1 

where V E {a, e, i, Of u}. 

It pays to merge rules of the form 

if p then changel 
if q then changel into if p or q then changel 

if the disjunction can be expressed moderately compactly. It 
certainly seems reasonable to combine rules when their tests have 

the same position and offset, as in the example above. One could 



- 93 - 

envisage a routine that would "factor out" variables by comparing 

the two teststrings with a string-to-string repair algorithm like 

that in section 4.3.3. Recurring variables like the one for 

vowels would only have to be stored once, resulting in additional 

space savings. 

5.2.5.2. Unifying morphological processes 

Lexicrunch may also produce series of related morphological 

processes, which can profitably be combined if we introduce a new 

notational mechanism. Consider the changes for consonant doubling 

in the rule for English past tenses: 

0 @ -0 <-> bed @ -3 
0 @ -0 <-> red @ -3 
0 @ -0 <-> ned @ -3 

These are identical, except for one grapheme in their newstrings. 

They can be summarized by a single more general expression: 

0 @ -0 <-> Xed @ -3 
where X @ -1. 

The "X @ -1" means that X stands for the last character of the 

uninflected word. Had X appeared in the oldstring of the change, 

it would refer to the last character of the inflected word. 

A routine to assimilate pairs of changes could look for 

variables in the same way as the routine sketched in section 

5.2.5.1. To figure out an afield that describes where a variable 

is located, we could simply try all possibilities, as the search 

space is not that large. 
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5.2.5.3. Isolating the components of rules 

The third person plural present indicative in Finnish is 

formed by adding -vat to the verb stem [Whitney 1956, p.27]. The 

vowel in this suffix must harmonize with the stem, and so it 

sometimes appears as A. The stem is also susceptible to consonant 

gradation. 

Lexicrunch would nominally create 24 classes for this rule, 

each one performing one type of gradation -- there are 12 choices 

-- and adding one of the two realizations of the suffix -- 2 

choices. If, however, we were to analyze the rule into two steps, 

consonant gradation and vowel harmony, we would need a total of 

just 14 classes. This wasteful "cross-product effect" will result 

whenever two or more independent alternations take place within a 

rule. 

Tell-tale evidence of the cross-product effect is when there 

are pairs of rules of the form 

if p and q then changel, change2 
if p and r then changel, change3. 

The repeated portion should be extracted, giving two sub-rules: 

if p then changel if q then change2 
if r then change3. 

It would be feasible but decidedly non-trivial to write an 

algorithm to decompose rules in this way. 

Once a rule has been broken down into independent components, 

it can be replaced by "sub-rule calls" to them. The same sub- 
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rule, e.g. that of consonant gradation, could be called by many 

morphological rules. 

5.2.5.4. Shared decision trees 

The various inflections on a given part of speech in a 

language often partition the words in similar ways. Take the 

first person singular and first person plural for French verbs. 

The former splits verbs into an -er class and an -ir class, among 

others -- these take the -e and -is endings, respectively. The 

latter also distinguishes those classes, suffixing them with -ons 

and -issons. Grammar texts pick up on this homogeneity by using 

the same set of verb categories for every inflection. 

[Bescherelle 1966, p.24] 

Lexicrunch would produce two essentially isomorphic decision 

trees for these French rules. It could therefore economize on 

storage by recognizing the redundancy and throwing one copy away. 

One tree may make distinctions that are absent in the other; these 

would have to be preserved in the resulting tree. Pairs of trees 

with many partially overlapping classes should not be merged, as 

their combination would be unacceptably bulky. 

Two rules that have had their trees merged would use the same 

numbering scheme for their classes, and would have pointers to a 

common tree. We might also wish to put inclusions in the shared 

area if they are classified the same way for both rules. 
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5.3. Evaluation 

By and large, the troubles cited above are not severe, 'and 

can be resolved adequately by the methods sketched. A few, 

however, are more serious "matters for further investigation." 

Computational linguists have in the past put up with the fact 

that rules of orthography tend to be messier than their 

phonological counterparts. In any case, we showed how Lexicrunch 

could be made to describe at least the domains of rules in 

phonological terms. 

The introduction of "compound" classes would enable the 

program to cope with our second problem, that of words which give 

more than one answer when a transformation is applied. 

The next problem we looked at was that of characterizing 

words that undergo no observable change. Here it was sufficient 

to do a "blanket search" for properties; a guided search would 

necessitate deep linguistic analysis. 

The difficulties with IN can be ignored to the extent that 

they arise infrequently, and they introduce redundancy, not 

inaccuracy into rules. Some of them, however, point up 

significant flaws in the algorithm. In particular, the repetition 

of subtrees (see section 5.2.4.1) implies that the decision tree 

may be an inappropriate representation; a decision "graph," or 

merely an ordered list of leaf nodes might be better. 

Lexicrunch's problems with disjunctive rules and, to a lesser 

degree, irrelevant tests, indicate inherent limitations on ID4's 

abilities. There is thus room for improvement in the area of 
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classification algorithms. 

The most pressing problem with Lexicrunch is redundancy at 

the level of its rules. This springs up when there are similar 

sets of tests, morphological processes, or decision trees, or when 

there are rules with isolable components. The program needs a 

meta-level if it is to achieve a reasonable standard of 

compression when presented with many rules of a language. A rough 

design of such an extension was given in section 5.2.5. 



Chapter 6 

Conclusion 

The Lexicrunch program abstracts morphological rules from 

sets of examples. Its primary goal is to compact the data; this 
it does by capturing many instances of a recurring pattern with a 

single specification of it. 

The linguistic contribution of the work reported here is the 

Lexicrunch formalism for morphological rules. Its chief merit is 

its extensibility, deriving from the fully general notions of 

morphological processes and property-defined domains. The 

particular implementation can always be adapted within the basic 

framework to handle new types of alternations. 

The program induces a rule by (1) splitting the given corpus 

of words into classes according to the morphological process they 

undergo, and then (2) characterizing each class of words by their 

properties. Step 2 is performed by the IN program module, which 

is based on Quinlan's ID3 procedure. The enhancements to ID3 

constitute the other main contribution of this work. They were as 

follows: to make a provision for exceptions to classification 

rules; to implement a filter that rejects irrelevant properties; 

and to let words be assigned initially to more than one class. 

The program was tested on examples from English, Finnish, and 

French: it appeared to pick up most of the significant trends in 

the data. 

Several extensions could be made to the program. The most 

important would be a meta-level which would enable the program to 
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recognize regularities in its rules, as it already does for its 
data. 



Appendix A 
English example 

Decision tree: 

if ak @ -1-2 then [12.1] 
2. bake} 
12. take mistake forsake shake} 

elseif w @ -0+1 then [13.1] 
13. {blow grow know throw} 

elseif nd @ -i+1 then [5.1] 
5. {wind grind find bind} 

elseif ay @ -0-2 then [1.1] 
1. {pray stay spray-play relay} 

elseif y @ -1+0 then [4.1] 
1. {toy} 
4. {hurry cry pry carry dally} 

elseif nk @ -i+1 then [6.1] 
6. {drink shrink sink stink} 

elseif d @ -1+0 then if e @ -2+0 then [9.1] 
9. {bleed breed feed speed} 

else [16.1 
1. end 
13. hold} 
16. build bend lend s end} 

elseif e @ -2+0 then [14.11 
14. {creep sleep swee feel} 

elseif p @ -0-1 then [3.1] 
1. jump} 
3. strip hop strap map} 

elseif i @ -i+0 then 
if ng @ -3+1 then [11.1 

6. spring sing ring 
11. sting string fling cling} 

else 17.11 

5. fight} 
6. sit give} 
7. drive arise write stride ride win} 
10. bite hide} 
11. stick} 
17. split} 

elseif e @ -0-1 then [2.1] 
2. hate name race manage} 
15. lose} 

elseif ear @ -0-3 then [8.1] 
2. hear} 
8. bear swear tear wear} 

else [1.2] 
1. clean touch wash work call walk rest} 
8. steal break s eak} 
17. beat cut hurt} 
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Rule-defined classes: 

1. 0 0 -0 <-> ed @ -2 
1.1 : pray stay spray play relay 
1.2j: clean touch wash work call walk rest 

Inclusions: toy(4.1) end[16.1] jump[3.1] 

2. 0 0 -0 <-> d @ -1 
[2.1]: hate name race manage 
Inclusions: bake[12.1] like[7.1] hear[8.1] 

3. 0 @ -0 <-> ped @ -3 
[3.1]: strip hop strap map 

4. -1 <-> ied @ -3 
y[4.1]: hurry cry pry carry dally 

5. i@ -i <->ou@-ou 
[5.1]: wind grind find bind 
Inclusions: fight[7.1] 

6. i @ - i < - > a @ - a 
[6.1]: drink shrink sink stink 
Inclusions: spring[11.1] sing[11.1] ring[11.1] 
give[7.1] 

7. i @ -i <-> o @ -o 

[7.1]: drive arise write stride ride win 

8. ea @ -3 <-> o 0 -3 
0 0 -0 <-> e @ -1 
[8.1]: bear swear tear wear 
Inclusions: steal[1.2] break[1.2] speak[l.2] 

9. a@-2 <->0@-1 
[9.1]: bleed breed feed speed 

11. i @ -3 <-> u @ -3 
[11.1]: sting string fling cling 
Inclusions: stick[7.1] 

12. a@-3 <->oo@-3 
e @ -1 <-> 0 @ -0 
[12.1]: take mistake forsake shake 

13. o @ -o <-> e @ -e 
[13.1]: blow grow know throw 
Inclusions: hold[16.1] 

14. e @ -2 <-> 0 @ -2 
0 @ -0 <-> t @ -1 
[14.1]: creep sleep sweep feel 

sit[7.1 II 

16. d @ -1 <-> t @ -1 
[16.1]: build bend lend spend 
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Inclusion classes: 

10. e @ +3 <-> 0 @ +3 
Inclusions: bite[7.1] hide[7.1] 

15. a@+3 <->0@+3 
0 @ -0 <-> t @ -1 
Inclusions: lose[2.1] 

17. 
Inclusions: split[7.1] beat[1.2] cut[1.2] hurt[1.2J 

18. 0 @ -0 <-> ted @ -3 
Inclusions: permit 

19. 0 @ -0 <-> red @ -3 
Inclusions: bar 

20. e @ +1 <-> o @ +1 

Inclusions: get 

21 . e @ -1 <-> 0 @ -0 
Inclusions: slide 

22. ea @ +1 <-> o @ +1 

Inclusions: weave 

23. ee @ +2 <-> o @ +2 
Inclusions: freeze 

24. o @ +3 <-> 0 @ +3 
Inclusions: choose shoot 

25. a@-a<->e@-e 
Inclusions: draw fall 

26. a @ +1 <-> u @ +1 

Inclusions: hang 

27. u @ +1 <-> a @ +1 

Inclusions: run 

28. ay @ -2 <-> ew @ -2 
Inclusions: slay 

29. o @ +1 <-> a @ +1 

Inclusions: come 

30. e @ +0 <-> 0 @ +0 
0 @ -0 <-> e @ -1 
Inclusions: eat 

31. ie @ +1 <-> ay @ +1 

Inclusions: lie 
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32. ee @ +1 <-> aw @ +1 

Inclusions: see 

33. i @-3 <->uc@-3 
e@-1 <->0@-0 
Inclusions: strike 

34. Y @ -1 <-> id @ -2 
Inclusions: say lay 

35. el @ +1 <-> o @ +1 

0 @ -0 <-> d @ -1 
Inclusions: sell tell 

36. o @ +1 <-> id @ +1 

Inclusions: do 

37. be @ +0 <-> was @ +0 

Inclusions: be 

38. 0 @ +1 <-> o @ +1 

y @ -1 <-> ght @ -3 
Inclusions: buy 

39. tc @ +2 <-> ug @ +2 

0 @ -0 <-> t @ -1 
Inclusions: catch 

40. in @ +2 <-> ou @ +2 

0 @ -0 <-> ht @ -2 
Inclusions: bring 

41. ave @ +2 <-> ft @ +2 

Inclusions: leave 

42. an @ +2 <-> oo @ +2 
Inclusions: stand 

43. e @ +1 <-> 0 @ +1 

c @ -2 <-> ug @ -4 
0 @ -0 <-> t @ -1 
Inclusions: teach 

44. eek @ +1 <-> ought @ +1 

Inclusions: seek 

45. ink @ +2 <-> ought @ +2 

Inclusions: think 

46. k @ -2 <-> d @ -2 
Inclusions: make 

47. ve @ -2 <-> d @ -1 
Inclusions: have 



48. go @ +0 <-> went @ +0 
Inclusions: go 

49. y @ -1 <-> ew @ -2 
Inclusions: fly 



Appendix B 
Finnish example 

Decision tree: 

if p @ -3+0 then [8.1] 
8. {raapi- vilpy- so i- kylpe- uupu-} 

elseif n @ -3-1 then [3.1j 
3. {myantg- kokoontu- synty- tunte- kggnty- anta-} 

elseif 1 @ -3-1 then [5.1] 
5. {puhalta- uskalta- viheltg- kieltg- ylty-} 
6. alka-} 

elseif r @ -3-1 then [4.1] 
4. takertu- siirty- murta- kerto- ymmgrtg-} 
6. kirku-} 

elseif k' -3+0 then [6.1] 

1. {jatka- kgtke- kisko- laske-} 
6. nukku- leikki- rikko- haukku- liikku- luke- mglki- 

ngky- aiko-} 
elseif gtg @ -1-3 then [2.1] 

2. {mggrgtg- vgrjgtg- pelkgtg- hergtg-} 
elseif t @ -3+0 then 

if sty @ -1-3 then [1.1] 
1. {sivisty- hgmmgsty- ilmesty- edisty-} 

elseif sta @ -1-3 then 11.21 
1. {harrasta- loista- nosta- osta- purista-} 

elseif ata @ -1-3 then [2.2] 
2. {kelpata- huomata- seurata- pelata- saarnata-} 

elseif t @ -3-1 then [2.3] 

2. {ko utta- peittg- puuttu- moitti- petty-} 
else [7.1] 

1. pistg-} 
2. hgvitg-} 
7. huuta- kiirehti- tahto- avautu- pysghty- tietg-} 

else [1.3] 
1. {ui- seiso- ammu- ole- mene- saa- tule-} 

Rule-defined classes: 

1. - @ -1 <-> n @ -1 
1.1 : sivisty- hAmmgsty- ilmesty- edisty- 
1.2 : harrasta- loista- nosta- osta- purista- 
1.3 : ui- seiso- ammu- ole- mene- saa- tule- 

Inclusions: jatka-[6.1] kgtke-[6.1] kisko-[6.1] laske-, 
[6.1] pistg-[7.1] 

2. t @ -3 <-> 0 0 -2 
@ -1 <-> n @ -1 

2.1 : mggrgtg- vgrjgtg- pelkgtg- hergtg- 
2.2 : kelpata- huomata- seurata- pelata- saarnata- 
2.3 : koputta- peittg- puuttu- moitti- petty- 

Inclusions: hgvitg-[7.1] 

3. t@-3 <->n@-3 
- @ -1 <-> n @ -1 
[3.1]: mydntg- kokoontu- synty- tunte- kRAnty- anta- 
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4. t @ -3 <-> r @ -3 
- @ -1 <-> n @ -1 
[ 4 . 1 ] : takertu- siirty- murta- kerto- ymmArtA- 

5. t @ - 3 < - > 1 @ - 3 
- @ -1 <-> n @ -1 
[5.1]: puhalta- uskalta- viheltA- kieltA- ylty- 

6. k@-3<->00-2 
- @ -1 <-> n @ -1 
[6.1]: nukku- leikki- rikko- haukku- liikku- luke- 

mAAki- nAky- aiko- 
Inclusions: alka-[5.1] kirku-[4.1] 

7. t@-3<->d@-3 
- @ -1 <-> n @ -1 
[7.1]: huuta- kiirehti- tahto- avautu- pysAhty- tietA- 

8. p @ -3 <-> v @ -3 
- @ -1 <-> n @ -1 
[8.1]: raapi- viipy- sopi- kylpe- uupu- 

Inclusion classes: 

9. k@-3<->g@-3 
- @ -1 <-> n @ -1 
Inclusions: tinki- 

10. p@+2 <->m@+2 
- @ -1 <-> n @ -1 
Inclusions: ampu- 

11. k @ -3 <-> j @ -3 
- @ -1 <-> n @ -1 
Inclusions: sulke- kulke- 

12. p@+2<->00+2 
-@-1 <->n@-1 
Inclusions: oppi- loppu- leppy- 



Appendix C 
Extended Finnish Example 

Decision tree: 

if p @ -3+0 then [7.1] 
7. {luopu- leipo- uupu- hiipi- kylpe- vaipu- sopi- 

saapu- repi- viipy- raapi-} 
elseif n @ -3-1 then [6.1] 

1. kynsi- pakinoi- luennoi-} 
6. }anta- kAAnty- rakenta- tunte- synty- kiinty- kyntg- 

lentg- tybntg- kanta- kokoontu- myt3ntg- kggntg- , 

paranta- Agntg- hgmmenty- sekaantu- vghenty- tyhjenty- 
vggntg- nggnt - asenta-} 

elseif k @ -3+0 then 12.1] 
1. {kgtke- koske- tutki- koske- itke- laske- usko- 

atku- kisko- jatka-} 
2. juhku- pyrki- purka- puke- loiko- koke- halko- tako- 

ruokki- pyyhki- hehku- aiko- kirku- hankki- vglkky- 
liikku- haukku- alka- rikko- leikki- teke- ngke- nAky- 
nukku- mAAki- luke- hake-} 

elseif r @ -3-1 then [5.11 
1. {ympgrt3i- kgrsi- epgrt3i-} 
5. visertg- ymmgrtg- kerto- kiertg- kumarta- kumartu- 

murta- saarta- siirty- sorta- takertu- piirtg- sinertg- 
uurta-} 

elseif 1 @ -3-1 then 
if t @ -3+0 then [8.1] 

8. {puhalta- uskalta- viheltg- kieltg- sukelta- 
vaelta- ylty- kiiltg-} 

else [1.1] 
1. {Iyb- luo- tulvi- salli- valvo- solmi-} 

elseif yty @ -1-3 then [4.1] 
4. {heittgyty- jgrjestgyty- kergyty- kiteyty- kgyttgyty- 

kieltgyty- pistgyty- selviyty- tyyty- l3yty-} 

elseif sta @ -1-3 then [1.2] 

1. {puhdista- varasta- sisusta- pelasta- korista- 
kiinnosta- aavista- tarkasta- muodosta- tunnusta- 
omista- reunusta- perusta- koukista- ripusta- painosta- 
luista- karista- kuulosta- kalasta- pudista- muista- 
matkusta- kirkasta- ratsasta- paista- valmista- 
rakasta- purista- osta- harrasta- nosta- loista-j 

elseif t @ -3-1 then 
if t @ -3+0 then [3.1] 

3. {vaikutta- totutta- raoitta- pakotta- yllgttg- 
voitta- viivyttg- varoitta- tarkoitta- sijoitta- 
mytShgstyttg- tuotta- saavutta- rauhoitta- noudatta- 
nauratta- lAAhgttg- liitty- ilahdutta- upotta- , 

sytyttg- pystyttg- pettg- nybkgyttg- liikutta- , 

vgittg- vahingoitta- suoritta- saatta- jgnnittg- 

jgnnitty- vapautta- vakuutta- raivostutta- peitty- 

lgmmittg- kunnioitta- kauhistutta- hggmbttg- vglittg- 
selvittg- nybkkgyttg- muistutta- yrittg- luotta- , 

lepuutta- kehittg- hyt3dyttg- harjoitta- tyynnyttg- 

tukahdutta- tomutta- sghkt3ttg- suuttu- poltta- , 

lahjoitta- kylvettg- kehoitta- katta- hgvittg- , 
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harmitta- vgsyttg- taivutta- syyttg- petty- moitti- 
kohotta- kengittg- jyskyttg- joudutta- ilmoitta- , 

huvitta- tottu- painatta- nimittg- muuttu- koetta- 
keittg- iljettg- arvelutta- toimitta- selittg- 
levittg- kuljetta- kannatta- kammotta- janotta- 
inhotta- esittg- erotta- ehdotta- asetta- sytttg- 
sammutta- puuttu- llhettg- lopetta- lohdutta- , 

johdatta- aloitta- vgrisyttg- virvoitta- sailyttg- 
ruskotta- osoitta- muutta- menettg- kirjoitta- 
kiinnittg- keskeyttg- hgmmgstyttg- huomautta- 
toivotta- tarttu- sattu- riittg- patty- nayttg- 
kolkutta- kiittg- jutta- irroitta- hengittg- heittg- 

asettu- tuijotta- sidotta- pudotta- nautti- kayttg- 
viettg- otta- toteutta- soitta- paatta- odotta- , 

mietti- laitta- hergttg- autta- taytta- peittg- , 

opetta- koputta- koitta-} 
else [1.3] 

1. {viitsi- hallitse- vangitse- patentoi- havaitse- 

harkitse- kutsu- etsi- hairitse- vallitse- valitse- 

tuo- tarvitse- merkitse- katso-} 

elseif t @ -3+0 then 
if u @ -3-1 then [4.2] 

3. {haluta-} 
4. huuta- avautu- istuutu- nouta- palautu- pukeutu- 

tunkeutu- souta- ilmoittautu- kuto- naulautu- joutu- 

toteutu- laittautu- paneutu- riutu- mukautu- sopeutu- 

suhtautu- uhrautu- laskeutu- hautautu- ojentautu- 

sulkeutu- purkautu- sulautu- painautu-} 

elseif h @ -3-1 then [4.3] 

4. {tohti- pohti- leimahta- lajahta- jyrghtg- tipahta- 

tervehti- johtu- kuihtu- paahta- kiihty- ryhty- 

hypghtg- haihtu- ehti- vgrghtg- mahta- huolehti- 

purjehti- kaannahta- perehty- istahta- vaihta- , 

purskahta- huoahta- erehty- vivahta- seisahtu- lAhte- 

katsahta- johta- huudahta- unohta- naurahta- vglghtg- 
tapahtu- pysahty- tahto- kiirehti-} 

elseif y- @ -3+1 then [1.4] 

1. {edisty- ilmesty- hammasty- sivisty- rypisty- 
mythasty- kyyristy- allisty- kyllasty- henggsty- 
menesty-} 

4. {jaaty-} 

elseif u- @ -3+1 then [1.5] 

1. Ipunastu- pahastu- alistu- pelastu- valistu- 

rakastu- kummastu- kiinnostu- huolestu- harmistu- 

tutustu- muodostu- valmistu- ihastu- sairastu- 

suostu- muistu- kastu- maistu- poistu- kuvastu- 

onnistu- astu- istu-} 
4. {koitu- kaatu- katu- 

else [3.2] 
1. {niista- paallysta- yhdista- rytstg- kestg- siisti- , 

veista- r piste- esta- virkistA- pyydysta- piste- 
j arj esta-I 

3. {tilata- hakkata- varata- uhkata- sieppata- takata- , 

selvitg- punata- kuiskata- katketa- kampata- uppota- 

kiusata- suuntata- salata- kehrata- nydkkata- kuvata- 

kohtata- lepata- korvata- erota- rupeta- kultata- , 
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kokota- kiipetg- huokata- halketa- viittata- vajota- , 

tarjota- poikketa- nojata- laahata- hyppata- osata- 
lykkgtg- kergtg- arvata- lupata- kohota- katota- 
kaipata- tuhlata- siunata- paiskata- lakkata- , 

kuivata- korjata- tapata- siivota- vertata- vastata- , 

sahata- putota- palata- pakkata- naulata- maalata- , 
maalata- kelpata- hgvitg- huomata- leikkata- seurata- 
vgrjgtg- pelksta- pelata- avata- saarnata- makata- 
herata-} 

4. {ssata- nito- hoita- sietg- kiitg- kaata- vaati- 
sito- pyytg- ldytg- kyte- pits- vetg- tieta-} 

else [1.6] 

1. {riitele- lampene- 11mmittele- louhi- lavertele- 
hangoittele- valu- tarjoile- saannSstele- lapaise- 
kohtele- istuskele- vaittele- suunittele- palele- 
onnittele- nuole- lepaile- kykene- kastele- jyrise- 
juhli- haukottele- epaile- aukene- suosi- suo- sivele- 
rankaise- otaksu- lekottele- kysele- kirpaise- kipaise- 

julkaise- hyvaksy- piirtele- painu- niele- mutise- , 

menettele- kilpaile- huoli- tottele- pakene- narise- 
vilise- vanhene- unelmoi- rohkaise- paina- lupaile- 

kuvittele- katkaise- vahene- lyhene- liho- kuori- , 

hupene- hio- harvene- vieri- sally- sure- puhele- osu- 

kuiva- ilmaise- vasy- valkene- valaise- urheile- , 

tiedustele- saali- seulo- salamoi- rukoile- nytkAhtele- , 

lyhene- kuljeksi- korjaile- kalastele- hyraile- , 

hoitele- alene- tytskentele- suurene- selkene- rohkene- , 

lueskele- halvene- aukaise- arvele- arvaile- voi- veny- , 

vapise- vaikene- tupakoi- toimi- supattele- sipaise- 

pysy- pese- oikaise- lausu- kulu- kikattele- , 

keskustele- jaksa- varjele- tuoksu- suojele- pure- 

palvele- maksa- ldrpdttele- luule- kuule- kalise- 

haari- aja- tavoittele- tanssi- suutele- surise- 

samoile- paase- nayttele- matkustele- luistele- 
lakaise- kitise- juokse- hiljene- visertele- vilkaise- , 

toivo- puhaltele- pimene- pane- mumise- mietiskele- , 

kumartele- kaiva- jaa- juttele- ihmettele- tarkastele- , 

myy- kuole- vie- sula- suhise- solise- risteile- , 

nielaise- kuohu- kohise- kimaltele- katsele- aterioi- , 

asu- viljele- ui- kay- krvele- kysy- kuuntele- kuulu- , 

kasva- hymyile- tule- syd- soutele- soi- seiso- sano- , 

saa- repaise- puhu- pala- opiskele- nouse- naura- mene- 
laula- juo- ela- ammu- ajattele- ole-} 

Rule-defined classes: 

1. - @ -1 <-> n @ -1 
[1.1]: lya- luo- tulvi- salli- valvo- solmi- 

[1.2: puhdista- varasta- sisusta- pelasta- korista- 

kiinnosta- aavista- tarkasta- muodosta- tunnusta- , 

omista- reunusta- perusta- koukista- ripusta- painosta- 

luista- karista- kuulosta- kalasta- pudista- muista- 

matkusta- kirkasta- ratsasta- paista- valmista- 

rakasta- purista- osta- harrasta- nosta- loista- 

[1.3]: viitsi- hallitse- vangitse- patentoi- havaitse- 

harkitse- kutsu- etsi- hairitse- vallitse- valitse- , 
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tuo- tarvitse- merkitse- katso- 
[1.4]: edisty- ilmesty- hgmmgsty- sivisty- rypisty- 
mytlhgsty- kyyristy- gllisty- kyllgsty- henggsty- 
menesty- 

[1.5]: punastu- pahastu- alistu- pelastu- valistu- 
rakastu- kummastu- kiinnostu- huolestu- harmistu- 
tutustu- muodostu- valmistu- ihastu- sairastu- suostu- 
muistu- kastu- maistu- poistu- kuvastu- onnistu- astu- 
istu- 

[1.6]: riitele- lgmpene- 11mmittele- louhi- lavertele- 
hangoittele- valu- tarjoile- sggnntlstele- 1gplise- 
kohtele- istuskele- vgittele- suunittele- palele- 
onnittele- nuole- lepgile- kykene- kastele- jyrise- 
juhli- haukottele- epgile- aukene- suosi- suo- sivele- 
rankaise- otaksu- lekottele- kysele- kirpaise- kipaise- 
julkaise- hyvgksy- piirtele- painu- niele- mutise- , 

menettele- kilpaile- huoli- tottele- pakene- narise- 
vilise- vanhene- unelmoi- rohkaise- paina- lupaile- 
kuvittele- katkaise- vghene- lyhene- liho- kuori- , 

hupene- hio- harvene- vieri- sgily- sure- puhele- osu- 
kuiva- ilmaise- vgsy- valkene- valaise- urheile- , 

tiedustele- sggli- seulo- salamoi- rukoile- nytkghtele- , 

lyhene- kuljeksi- korjaile- kalastele- hyrgile- , 

hoitele- alene- tytlskentele- suurene- selkene- rohkene- , 

lueskele- hAlvene- aukaise- arvele- arvaile- voi- veny- , 

vapise- vaikene- tupakoi- toimi- supattele- sipaise- 
pysy- pese- oikaise- lausu- kulu- kikattele- , 

keskustele- jaksa- varjele- tuoksu- suojele- pure- 

palvele- maksa- 16rp6ttele- luule- kuule- kalise- 

hAAri- aja- tavoittele- tanssi- suutele- surise- 
samoile- pggse- ngyttele- matkustele- luistele- 
lakaise- kitise- juokse- hiljene- visertele- vilkaise- 

toivo- puhaltele- pimene- pane- mumise- mietiskele- , 

kumartele- kaiva- jgg- juttele- ihmettele- tarkastele- 

myy- kuole- vie- sula- suhise- solise- risteile- , 

nielaise- kuohu- kohise- kimaltele- katsele- aterioi- , 

asu- viljele- ui- kgy- kgvele- kysy- kuuntele- kuulu- , 

kasva- hymyile- tule- sy5- soutele- soi- seiso- sano- , 

saa- repgise- puhu- pala- opiskele- nouse- naura- mene- 

laula- juo- elk- ammu- ajattele- ole- 

Inclusions: kynsi-[6.1] pakinoi-[6.1] luennoi-[6.1] 

kgtke-[2.1] koske-[2.1] tutki-[2.1] koske-[2.1] itke-, 

[2.1] laake-[2.1] usko-[2.1] jatku-[2.1] kisk0-[2.1] 

,jatka-[2.1] ympgr6i-[5.1] kgrsi-[5.1] epgr6i-[5.1] 
niistg-[3.2] p!gllyst&- 3.2] yhdistg-[3.2] ry5stg- 3.2] 

kestg-[3.2] siisti-[ .2j veistg-[3.2] r pistg-[ .2] 

estg-[3.2 virkistg-3[3.2] pyydystg-[3.2j pistg-L3.21 

jgrjestg-L3.21 

2. k @ -3 <-> 0 @ -2 
- @ -1 <-> n @ -1 
[2.1]: uhku- pyrki- purka- puke- loiko- koke- halko- 

tako- ruokki- pyyhki- hehku- aiko- kirku- hankki- 
vglkky- liikku- haukku- alka- rikko- leikki- teke- 
ngke- ngky- nukku- mggki- luke- hake- 
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3. t@-3<->0@-2 
- @ -1 <-> n @ -1 
[3.1]: vaikutta- totutta- raoitta- pakotta- yllgttl- , 

voitta- viivyttg- varoitta- tarkoitta- sijoitta- , 

mydhAstyttg- tuotta- saavutta- rauhoitta- noudatta- , 

nauratta- 1AAhgttg- liitty- ilahdutta- upotta- sytyttg- 
pystyttg- petty- ny6kgytt&- liikutta- vgittg- , 

vahingoitta- suoritta- saatta- jynnitty- jynnitty- , 

vapautta- vakuutta- raivostutta- peitty- 1ymmittA- , 

kunnioitta- kauhistutta- hggm8ttg- vylitty- selvitty- 
nydkkyytty- muistutta- yritty- luotta- lepuutta- , 

kehitty- hyddytty- harjoitta- tyynnytty- tukahdutta- 
tomutta- syhkdtty- suuttu- poltta- lahjoitta- kylvetty- 
kehoitta- katta- hyvitty- harmitta- vysytty- taivutta- , 

syytty- petty- moitti- kohotta- kengitty- jyskytty- , 

joudutta- ilmoitta- huvitta- tottu- painatta- nimitty- , 

muuttu- koetta- keitty- iljetty- arvelutta- toimitta- , 

selitty- levitty- kuljetta- kannatta- kammotta- , 

janotta- inhotta- esitty- erotta- ehdotta- asetta- 
sydtty- sammutta- puuttu- lyhetty- lopetta- lohdutta- , 

johdatta- aloitta- vyrisytty- virvoitta- syilytty- 
ruskotta- osoitta- muutta- menetty- kirjoitta- , 

kiinnitty- keskeytty- hymmystytty- huomautta- toivotta- 
tarttu- sattu- riitty- pAAtty- nyytty- kolkutta- , 

kiitty- jAttA- irroitta- hengitty- heitty- asettu- 
tuijotta- sidotta- pudotta- nautti- kyytty- vietty- 
otta- toteutta- soitta- pyytty- odotta- mietti- laitta- 
hergttg- autta- tyytty- peitty- opetta- koputta- koitta- 

[3.2]: tilata- hakkata- varata- uhkata- sieppata- , 

takata- selvity- punata- kuiskata- katketa- kampata- , 

uppota- kiusata- suuntata- salata- kehrgtg- ny8kkyty- , 

kuvata- kohtata- lepAtA- korvata- erota- rupeta- , 

kultata- kokota- kiipety- huokata- halketa- viittata- , 

vajota- tarjota- poikketa- nojata- laahata- hyppyty- , 

osata- lykkyty- kergtg- arvata- lupata- kohota- katota- 
kaipata- tuhlata- siunata- paiskata- lakkata- kuivata- 
korjata- tapata- siivota- vertata- vastata- sahata- , 

putota- palata- pakkata- naulata- mAAryty- maalata- , 

kelpata- hAvitA- huomata- leikkata- seurata- vgrjgtg- 

pelkyty- pelata- avata- saarnata- makata- hergtg- 

Inclusions: haluta-[4.2] 

4. t @ -3 <-> d @ -3 
- @ -1 <-> n @ -1 
[4.1]: heittyyty- jyrjestyyty- keryyty- kiteyty- 

ky ttyyty- kieltyyty- pistyyty- selviyty- tyyty- l yty- 
[4.2j: huuta- avautu- istuutu- nouta- palautu- pukeutu- 
tunkeutu- souta- ilmoittautu- kuto- naulautu- joutu- 
toteutu- laittautu- paneutu- riutu- mukautu- sopeutu- 
suhtautu- uhrautu- laskeutu- hautautu- ojentautu- , 

sulkeutu- purkautu- sulautu- painautu- 
[4.3]: tohti- pohti- leimahta- lAjAhtA- jyryhty- 

tipahta- tervehti- johtu- kuihtu- paahta- kiihty- , 

ryhty- hypyhty- haihtu- ehti- vArAhtA- mahta- huolehti- 
purjehti- kyynnyhty- perehty- istahta- vaihta- 
purskahta- huoahta- erehty- vivahta- seisahtu- lghte- 
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katsahta- johta- huudahta- unohta- naurahta- valahta- 
tapahtu- pysAhty- tahto- kiirehti- 

Inclusions: jggty-[1.4] koitu-[1.5j kaatu-[1.5] katu-, 
[1.5] seats-[3.2] nito-[3.2] hoita-[3.2] sietg-[3.2] , 

kiita-[3.2] kaata-[3.2] vaati-[3.2 sito-[3.2 py ta-, 
[3.2] ldyta-[3.2] kyte-[3.2] pits-3.2] vets-3.2J 
tieta-[3.2] 

5. t @ -3 <-> r @ -3 
- @ -1 <-> n @ -1 
[5.1]: viserta- ymmarta- kerto- kierta- kumarta- 
kumartu- murta- saarta- siirty- sorta- takertu- piirta- 
sinerta- uurta- 

6. t@-3 <->n@-3 
- @ -1 <-> n @ -1 
[6.1]: anta- kaanty- rakenta- tunte- synty- kiinty- 
kynta- lenta- tydnta- kanta- kokoontu- mytlnta- kaanta- 
paranta- aanta- hammenty- sekaantu- vAhenty- tyhjenty- 
vaanta- nAAnty- asenta- 

7. p @ -3 <-> v @ -3 
- @ -1 <-> n @ -1 
[7.1]: luopu- leipo- uupu- hiipi- kylpe- vaipu- sopi- 
saapu- repi- viipy- raapi- 

8. t @ - 3 < - > 1 @ - 3 
-@-1 <->n@-1 
[8.1]: puhalta- uskalta- vihelta- kielta- sukelta- 
vaelta- ylty- kiilta- 

Inclusion classes: 

9. p@+2 <->0@+2 
- @ -1 <-> n @ -1 
Inclusions: oppi- loppu- leppy- 

10. k @ -3 <-> j @ -3 
- @ -1 <-> n @ -1 
Inclusions: kulke- sulke- 

11. p @ +2 <-> m @ +2 
@ -1 <-> n @ -1 

Inclusions: ampu- 

12. k@-3 <->8@-3 
- @ -1 <-> n @ -1 
Inclusions: tinki- 



Appendix D 

French Example 

Decision tree: 

if croi^ @ -3-5 then [12.1] 
12. {recroi"'tre de'croi"tre accroi"tre croi"tre} 

elseif ai"'tre @ -6+0 then [11.1j 
11. {connai"tre reconnai"tre parai"tre }pparai"'tre 

disparai"'tre transparai"tre pai"tre 
elseif re @ -2+0 then if in @ -3-2 then [9.1] 

8. vaincre} 
9. peindre atteindre ceindre feindre geindre teindre 

joindre oindre poindre craindre} 
elseif clu @ -2-3 then [13.1] 

13. {reclure occlure inclure exclure conclure} 
elseif i @ -2-1 then [10.1] 

10. {traire dire e'crire confire suffire cuire 
conduire produire re'duire se'duire construire luire 
nuire} 

13. {rire sourire} 
else [8.1] 

8. {rendre pendre tendre vendre perdre mordre battre} 
elseif oir @ -3+0 then if c @ -5-1 then [6.1] 

6. {perOevoir de'cevoir concevoir apercevoir recevoir} 
else 17.11 

7. {choir vouloir valoir falloir pourvoir revoir voir} 
elseif que'ri @ -1-6 then [4.1] 

4. {reque'rir reconque'rir que'rir enque'rir conque'rir 
acque'rir} 

elseif e @ -1-1 then [1.1] 
1. {abaisser ble'ser coudoyer de'sirer entonner ha"bler 

nettoyer rainer rosser terrorises} 
elseif ouvrir @ -0-6 then [5.1] 

5. {rouvrir entrouvrir ouvrir de'couvrir couvrir} 
elseif ten @ -2-3 then [3.1] 

3. {tenir contenir retenir de'tenir} 
elseif ven @ -2-3 then [3.2] 

3. {revenir obvenir devenir venir} 
else [2.1] 

2. {terrir rosir rajeunir nordir hai"r envahir 
de'sobe'ir cre'pir blettir abasourdir} 

3. secourir courir ve"tir} 
5. souffrir offrir} 

Rule-defined classes: 

1. r @ -1 <-> ' @ -1 
[1.1]: abaisser ble'ser coudoyer de'sirer entonner 

ha"'bler nettoyer rainer rosser terroriser 

2. r @ -1 <-> 0 @ -0 
[2.1]: terrir rosir rajeunir nordir hai"r 

de'sobe'ir cre'pir blettir abasourdir 
envahir 
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3. it @ -2 <-> u @ -1 
3.1 : tenir contenir retenir de'tenir 
3.21: revenir obvenir devenir venir 

Inclusions: secourir[2.1] courir[2.1] ve"tir[2.1] 
+. e'r @ -5 <-> 0 @ -2 

r @ -1 <-> s @ -1 
[4.1]: reque'rir reconque'rir que'rir enque'rir 

conque'rir acque'rir 

5. ri @ -3 <-> e @ -3 
0 @ -0 <-> t @ -1 
[5.1j: rouvrir entrouvrlr ouvrir de'couvrir couvrir 
Inclusions: souffrir[2.1] offrir[2.1] 

6. evoir @ -5 <-> u @ -2 
[6.1]: percevoir de'cevoir concevoir apercevoir recevoir 

7. oir @ -3 <-> u @ -1 
[7.1]: choir vouloir valoir falloir pourvoir revoir voir 

8. re @ -2 <-> u @ -1 
[8.1]: rendre pendre tendre vendre perdre mordre battre 
Inclusions: vaincre[9.1j 

9. dre @ -3 <-> t @ -1 

[9.1]: peindre atteindre ceindre feindre geindre teindre 
joindre oindre poindre craindre 

10. re @ -2 <-> t @ -1 
[10.1]: traire dire e'crire confire suffire cuire 

conduire produire re'duire se'duire construire luire 
nuire 

11. ai"tre @ -6 <-> u @ -1 
[11.1]: connai"tre reconnai"tre parai^tre apparai^tre 

disparai^tre transparai^tre pai^tre 

12. of @ -6 <-> u @ -2 
tre @ -3 <-> 0 @ -0 
[12.1]: recroi"tre de'croi^tre accroi"tre croi"tre 

13. re @ -2 <-> 0 @ -0 
[13.1]: reclure occlure inclure exclure conclure 
Inclusions: rire[10.1] sourire[10.1] 

Inclusion classes: 

14. avoir @ +0 <-> eu @ +0 
Inclusions: avoir 

15. ^ @ +1 <-> ' @ +1 

r @ -2 <-> 0 @ -2 
0 @ -0 <-> ' @ -1 
Inclusions: e"tre 
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16. u @ +2 <-> 0 @ +2 it @ -2 <-> t @ -1 
Inclusions: mourir 

17. avoir @ +1 <-> u @ +1 

Inclusions: savoir 

18. evoir @ +1 <-> u" @ +1 

Inclusions: devoir 

19. o @ +1 <-> 0 @ +1 
voir @ +3 <-> 0 @ +2 
Inclusions: pouvoir 

20. o @ +1 <-> 0 @ +1 
voir @ +3 <-> " @ +2 
Inclusions: mouvoir 

21. e @ +2 <-> 0 @ +2 
voir @ -4 <-> 0 @ -0 
Inclusions: pleuvoir 

22. eo @ -4 <-> 0 @ -2 
r @ -1 <-> s @ -1 
Inclusions: asseoir surseoir 

23. endre @ +2 <-> is @ +2 
Inclusions: prendre 

24. ettre @ +1 <-> is @ +1 

Inclusions: mettre 

25. aire @ +2 <-> u @ +2 
Inclusions: plaire 

26. ai"tr @ +1 <-> 0 @ +1 
0 @ -0 <-> ' 

@ -1 
Inclusions: nai'tre 

27. oire @ +2 <-> u @ +2 
Inclusions: croire 

28. re @ -2 <-> s @ -1 

Inclusions: clore 

29. dre @ -3 <-> s @ -1 

Inclusions: absoudre dissoudre re'soudre 

30. dre @ -3 <-> su @ -2 
Inclusions: coudre 

31. dre @ -3 <-> lu @ -2 
Inclusions: moudre 

32. re @ -2 <-> i @ -1 
Inclusions: suivre 



33. ivr @ +1 <-> 0 @ +1 

0 @ -0 <-> 'cu @ -3 
Inclusions: vivre 

34 ire @ +1 <-> u @ +1 
Inclusions: lire 
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