

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429719795?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

LEXICRUNCH:
AN EXPERT SYSTEM FOR WORD MORPHOLOGY

Andrew R. Golding

M. Phi 1.
University of Edinburgh

1984

Contents

Abstract
Acknowledgement

Chapter 1: Introduction 1

1.1. The structure of words 1

1.2. The need for a computational model of morphology 1

1.3. Producing rules automatically 2
1:4: Overview of the program 3
1.5. Thesis outline 4

Chapter 2: Previous work in computational morphology 5

2.1. The morphemic model 5
2.1.1. Alternation 5
2.1.2. Meta-graphemes 7

2.2. Kay's algorithmic formulation 8
2.2.1. Representing alternations 8
2.2.2. Compiling rules into finite-state transducers 9
2.2.3. Generation 11

2.2.4. Recognition 11

2.3. Koskenniemi's Two-level morphology 13
2.3.1. Enhancements to the Kay framework 13
2.3.2. Rule notation 14
2.3.3. Two-level rules for Finnish 16

2.3.3.1. Vowel harmony 16
2.3:3:2. Consonant gradation 17
2.3:3:3. "Non-natural" alternation 20

Chapter 3: The Lexicrunch rule formalism 21

3.1. Describing morphological changes 21
3.1.1. The problem with word-internal changes 21
3.1.2. Morphological processes 24

3.2. Defining rule domains 24
3.2.1. The problem with meta-graphemes 25
3.2.2. The problem with continuation classes 26
3.2.3. Characterizing domains via properties 28

3.3. The structure of rules in Lexicrunch 29
3.3.1. Changes 30
3:3:2 The decision tree 32
3.3.3- Inclusions 35
33.4. Form-class rules 35
3.3.5. Rule ordering 36

Chapter 4: The Design or Lexicrunch 38

4.1. Generation 38
4.1.1. The overall algorithm for generation 38
4.1.2. Classifying a word 38
4.1.3. Applying changes 39
4.1.4. Generation example 39

4.2. Recognition 40
4.2.1. The overall algorithm for recognition 40
4.2.2. Unapplying a rule 41
4.2.3 Recognition example 42

4.3. Data entry 42
4.3.1. Input routines 43
4.3.2 Learning new forms 44
4.3.3. Inventing morphological processes 44

4.4. Rule compression 46
4.4.1. Constructing a set of morphological processes 47

4.4.1_.1. Calculating the domain of the rule 47
4.4.1.2. Restating morphological processes 48
4.4.1.3. Cross-classifying words 50
4.4.1.4. Simplification 52
4.4.1.5 Filtering out insignificant classes 54
4.4.1.6. Devising tests 56
4.4.1.7. Calculating attribute vectors 58

4.4.2. Building the decision tree 58
4.4.2.1. ID3 58
4.4.2.2. IN 61

4.4.2.2.1. Providing for exceptions 61
4.4.2.2.2. A relevance check 62
4.4.2.2.3. Ambiguous word classifications 69

4.4.3. Tidying up 71

Chapter 5: Performance or Lexicrunch 73

5.1. Examples 73
5.1.1. English data 75
5.1.2. Finnish data 76
5.1.3. French data 79

5.2. Weaknesses 81
5.2.1. Spelling is but a dim reflection of pronunciation 81
5.2.2. Words with a multiplicity of forms 83
5.2.3. Characterizing words that undergo no change 84
5.2.4. Problems with IN 85

5.2.4.1. Conjunctive "halfway houses" 85
5.2.4.2. Disjunction versus random effects 87
5.2.4.3. Lexicrunch's aversion to disjunction 89
5.2.4.4. Fragmentation due to irrelevant tests 89

5.2.5. Redundancy at the rule level 92
5.2.5.1. Disjoining conditions 92
5.2.5.2. Unifying morphological processes 93
5.2.5.3. Isolating the components of rules 94
5.2.5.4. Shared decision trees 95

5.3. Evaluation 96

Chapter 6: Conclusion 98

Appendix A: English example 100
Appendix B: Finnish example 105
Appendix C: Extended Finnish example 107
Appendix D: French example 113

Bibliography 117

Abstract

Natural language programs typically store words like pig and
pigs as independent entries in their dictionaries, thus neglecting
the obvious morphological relationship between them. Lexicrunch
tries to induce such relationships from examples of root forms of
words and the corresponding inflected forms.

The program collates ,he examples into classes according to
the difference between the inflected form and its root -- e.g. the
classes for the plural noun inflection in English might include
"root forms to which an -s is added" pig, apple, etc.) and "root
forms which take -es" (fox, box, etc. . It then characterizes
each class using a modified version of Quinlan's ID3 procedure.

The resulting rule will be along the lines of, "If a noun
ends in -x, form its plural by adding -es; otherwise, add -s."
The program then needs to store only root forms in its dictionary;
it can reconstruct plurals on demand by applying its rule. It
thereby eliminates redundancy and compacts the lexicon.
Lexicrunch's formalism for representing morphological rules wag
influenced by the Two-level model of Koskenniemi.

The program was tested on the past tense inflection in
English, the first person singular present indicative of Finnish,
and the past participle in French. It appeared to pick up most of
the regularities in the data successfully. However, a meta-level
extension to the program is indicated to enable it to capture
regularities across its rules.

Chapter 1

Introduction

I.I. The structure of words

The word 13 a rather peculiar level of semantic abstraction.

Words are certainly not the "atoms" of meaning, as many multi-word

phrases constitute indivisible chunks. Sweet potato, for example,

is a semantically simple entity -- namely, a yam -- and is by no

means a "potato which is sweet." Moreover, clitic words, such as

the French je, do not even occur in isolation [Matthews 1974,

p.168].

On the other hand, widespread structural and semantic

regularities within words suggest the existence of a finer type of

granule, the morpheme. For instance, in thicker, taller, and

stronger, the suffix -er appears to carry the independent force of

"more."

1.2. The need for a computational model of morphology

Despite the strangeness of the concept, the word is

undeniably an integral unit of language. it is the word, and not

some simpler component, tnat is Specially demarcated in the

written form of most languages. A computer program that processes

natural language must therefore have some facility for contending

with words. To date, the typical approach has been merely to

enumerate every word; only a handful of regular forms are

systematically derived from their morphological constituents

LWinograd 1983, p.545; Ritcn:e and ?*.ilman 1984, p.1; KosKenniemi

- 2 -

1983a, p.12j.

As the interest in natural language programs grows, it is

becoming increasingly apparent that a principled scheme for

representing the morphology of words is needed. Such a system

would contain a dictionary of morphemes, along with rules for

reconstructing words from them. This design would have the

obvious virtue of compactness, as it would eliminate a great deal

of redundancy. Additionally, it would offer the other classical

advantages gained by expressing logical dependencies explicitly:

it would facilitate modifications such as spelling changes, and it

would potentially be able to predict new words by extrapolating

from its rules.

1.3. Producing rules automatically

One practical trouble with such a formalism is creating the

desired set of rules in the first place. Even if the native

speaker has rules in his head, he normally uses them just to

calculate results -- the task of verbalizing the rules themselves

is unnatural and difficult. The only alternative is to induce

rules of word construction from actual linguistic data. The

analysis process demands considerable linguistic expertise,

though, and the corpora are generally of formidable proportions.

This is wnere the work reported here comes in. The

Lexicrunch program is designed to automate the laborious business

of abstracting morphological rules from examples. It is then able

to use its rules to generate and recognize words in the given

corpus as required.

3

1.4. Overview of the program

Lexicrunch is divided into four main modules: word

generation, word recognition, data entry, and rule compression.

The first two perform the standara morpnologicai operations

of converting back and forth between words and ordered sequences

of morphemes. One word can correspond to several morpheme

sequences, but the reverse is not true.

The last two modules are the "meat" of the program: they

construct morpnological rules from a corpus of examples. The work

is split between two modules because the rule-building algorithm

is by nature a batch operation, but it is convenient to enter

examples incrementally. The batch part of the processing is

performed by the rule-compression module; the data-entry module

takes care of updating the rule for each example given.

The typical way to build a rule is to type root forms of

words and the corresponding inflected forms into the data entry

module. For the English plural noun inflection, for example, we

would enter pairs like pig/pigs, fox/foxes, etc. The data-entry

routines then do the minimal amount of work necessary to express

the list of examples as a rule in Lexicrunch notation. The

routines are relatively fast, but their rules tend to be bulky and

naive.

Alternatively, the user can Dias the program toward a

particular formulation by typing in rules directly in Lexicrunch

notation. The program compiles such rules into its internal

representation. The rule compiler is peripheral to the central

- 10 -

after reading both completely, it ends up in a final state. [Kay

1983, p.100]

A finite-state transducer for the Y rule above might look

like:

State 0 is the initial state, and 0 and 1 are final. The label

"Consonants" is short for the twenty-one pairs b:b, c:c, ..., z:z;

"Vowels" represents the five vowel pairs. Most of the time, the

machine matches normal letters (state 0). If it hits a Y on the

input tape and an i on the output tape, it makes sure that a vowel

follows (state 2). It also checks that there is a consonant, not

a vowel after a Y:y pair (state 1). In this manner, the

transducer verifies that the desired relationship is maintained

between its tapes.

Kaplan and Kay have designed a general procedure for

constructing a finite-state transducer from an ordered list of

context-sensitive rules. The method involves deriving one

transducer for each individual rule, and then merging all the

transducers into one large machine, essentially by taking the

cross-product of their sets of states. [Kay 1983, p.102]

Chapter 2

Previous work in computational morphology

2.1. The morphemic model

Much of the research in computational morphology has its

linguistic roots in the morphemic model. Since computational

linguistics has generally addressed orthographic phenomena, we

will give a graphological account of the model, rather than the

more traditional phonological one. The two accounts can be

reconciled in light of the indifference between representing words

as strings of phonetic symbols or letters of the alphabet.

The central tenet of the morphemic model is that the morpheme

is the fundamental unit of grammar; everything else is built up by

concatenation. For example, raised would be broken down as RAISE

+ PAST PARTICIPLE, where RAISE is realized as raise- and

PAST PARTICIPLE as -d. Similarly, have raised would be HAVE +

(RAISE + PAST PARTICIPLE), and so on, up to the level of the

sentence and beyond. The crucial feature of this approach is that

it analyzes words in just the same way as it does clauses and

other higher-level structures. LMatthews 1974, p.78]

2.1.1. Alternation

in the example above, PAST PARTICIPLE was realized as -d.

This, of course, is not the only possibility -- in walked, e.g.,

it comes out as -ed. The fragments -d and -ed are said to be

* Following Matthews L1974j, we will designate morphemes by
writing abstract labels for tnem entirely in upper case.

alternative realizations or allomorphs of the PAST PARTICIPLE

morpheme. The morphemic model specifies two sorts of conditions

under which a particular allomorph is selected for a given word.

[Matthews 1974, p.85;

In the case of graphologically conditioned alternation, the

choice of allomorph is governed by the grapnemic environment

[Matthews 1974, p.92j. The -d/-ed distinction above falls into

this category, as the morpheme is written as -d for verbs ending

in e; after other final letters it is realized as -ed.

Grammatically conditioned changes, in contrast, are triggered

by the presence of certain morphemes [Matthews 1974, p.92]. A

case in point is the deletion of terminal n in Finnish nouns

before a possessive suffix, as in

taloon + -si taloosi

("to the house") ("thy") ("to thy house").

There is no apparent graphological rationale for the change, as

the sequence nsi can and does crop up in other Finnish words, such

as kynsi- ("to scratch," stem form. [Koskenniemi 1983a, p.78]

It frequently happens that the morphemes that control a

grammatically conditioned alternation are lexical morphemes; in

such cases, we say that the alternation is lexically restricted

[Matthews 1974, p.92]. For instance, altnough final f's of

English nouns usually change to v's before the PLURAL morpheme --

e.g. elf becomes elves, loaf, loaves, and thief, thieves -- the

pathological example oaf nas oafs as its plural. We therefore

posit a lexical restriction wnereby the alternation is triggered

- 7 -

by the morphemes ELF, LOAF, and THIEF, but not JPF.

2.1.2. Meta-graphemes

Aside from the regular complement of letters in the alphabet,

many linguists include meta-graphemic characters in their

specifications of morphemes. Meta-graphemes are special symbols

that stand for more than one possible grapheme; the choice is made

by realization rules. Meta-graphemes are conventionally denoted

by capital letters.

Meta-graphemes come in two varieties. The first,

orphographemes, are intended to be "specially marked" instances

of a particular grapheme [Matthews 1974, p.211j. They are used to

specify which morphemes activate a grammatically conditioned

alternation. Take the y in berry. In some sense, it is not an

ordinary y, because it has the power to change to an I if a vowel

follows. We can capture this by introducing a morphographeme Y

and an associated rule:

Y is realized as an I before vowels, and as a

elsewhere.
y

We then identify the morphemes that trigger the rule by our

distribution of the Y morphographeme; that is, we write berrY,

flY, and dairy, but valley and toy.

A closely allied species of meta-grapheme is the

archigrapheme. An arcnigrapheme can be tnought of as the common

denominator of the graphemes it represents. The cnoice among the

graphemes should be graphologically conditioned LMatthews 1974,

p.204j. in English, e.g., the nasal grapheme of the negative

prefix in-/ia- inherits the feature of the following consonant

Thus it is expressed as n before the alveolar consonants d and t,

as in indefinite and intolerable, but it assimilates to m before

the bilabial consonants b and p in imbalance and impartial. It is

convenient to unify the two forms of the prefix by replacing their

nasals with a nasal archigrapheme, say N. We then need only

provide rules for realizing N as the relevant grapheme.

2.2. Kay's algorithmic formulation

Kay [1983) has recently proposed an elegant and efficient way

to implement the morphemic model algorithmically. The primitive

operation in his system is, not surprisingly, concatenation. Thus

a form like replayed is derived from three morphemes:

re- + play + -ed.

[Kay 1983, p.101J

2.2.1. Representing alternations

Alternations are formulated as ordered lists of context-

sensitive rules. This works especially well for graphologically

conditioned changes, since the graphemic environment that triggers

the change becomes the "context." To illustrate, the rule above

for Y is straightforwardly written as

Y -* i / Vowel

Y i y

* This example is due to Jonn Phillips.

9

LKay 1983, p.1021-

Kay makes grammatically conditioned rules look graphological

by tagging the morphemes that activate the change. In the example

above of it Ielet:on in Finn_43n, we would all the

possessive suffixes, e.g. by prepending a $ onto them, yielding

$si, etc. This allows us to express the deletion in terms of

context:

n 4 0 / $

$ 4 0

where 0 stands for the empty string. [Koskenniemi 1983a, p.78]

2.2.2. Compiling rules into finite-state transducers

The traditional interpretation of a rule like

a 4 B / Y 6

is that a, if flanked by Y and 6, is rewritten as B. Kay's

perspective differs in that he views the rule as a correspondence

between a in the input string and d in the output string. He

shows how a simple finite-state transducer can be used to verify

such a correspondence. LKay 1983, p.100]

A finite-state transducer is the same as an ordinary finite-
state machine, except that it scans two tapes instead of one.

Accordingly, its transitions are labelled ,rith pairs of

characters, one for eacn tape. One cnaracter in the pair can be

E, meaning that the corresponding tape is not read on that

transition. The transducer is said to accept a pair of tapes if,

after reading both completely, it ends up in a final state. LKay

1983, p.1CO

A finite-state transducer for the Y rule above might look

like:

State 0 is the initial state, and 0 and 1 are final. The label

"Consonants" is short for the twenty-one pairs b:b, c:c, ..., z:z;

"Vowels" represents the five vowel pairs. Most of the time, the

machine matches normal letters (state 0). If it hits a Y on the

input tape and an i on the output tape, it makes sure that a vowel

follows (state 2). It also checks that there is a consonant, not

a vowel after a Y:y pair (state 1). In this manner, the

transducer verifies that the desired relationsnip is maintained

between its tapes.

Kaplan and Kay have designed a general procedure for

constructing a finite-state transducer from an ordered list of

context-sensitive rules. The method involves deriving one

transducer for each individual rule, and then merging all the

transducers into one large machine, essentially by taking the

cross-product of their sets of states. [Kay 1983, p.1021

- 11 -

2.2.3. Generation

Once we have the transducer for a set of rules, it is an easy

matter to generate inflected forms from lexical entries. First we

string together the given prefixes, root, ana suffixes -- this

gives us the input tape for the transducer. Since the output tape

is not available, we guess the characters on it

nondeterministically. The transducer tells us when we guess

incorrectly. [Kay 1983, p.102]

Prima facie, this "trial and error" method may seem

inefficient, but in practice there are very few reasonable guesses

at each step: most guesses will result in character pairs for

which there is no transition in the transducer. A more serious

drawback is that the number of states in the transducer grows

exponentially with the number of context-sensitive rules, and

hence can get out of control. One way to take the edge off the

explosion is to split the rule set into clusters, build a

transducer for each, and cascade the transducers -- the output of

the first serves as the input to the second, etc. Unfortunately,

the resulting succession of machines is much less time-efficient

than a single large transducer. LKarttunen 1983, pp.174-5j

2.2.4. Recognition

The technique for recovering the prefixes, root, and suffixes

from which a word is derived is totally analogous to the inverse

process of generation. The only difference is that this time the

output tape is provided and .re have to guess the input. tKay

1983, p.1021

- 12 -

Altnough the same formal mechanism suffices for both

recognition and generation, there is an important asymmetry

between them: and that is that recognition is inherently more

ambiguous. Even the simple automaton above accepts several

possicle iexicai strings for, e.g., myriad -- myriad, myriad,

myriad, and mYrYad -- but a given lexical string will have only

one corresponding output form. The situation improves if we

discard nonsense results from the recognition procedure, by

allowing it to return only those root forms that are listed in our

dictionary. [Kay 1983, p.103' i

The root dictionary is stored in tree form, as illustrated by

the dictionary below of the words flat, f1Y, for, foray, my, and

myriad.

It can be thought of as a sort of transition network, with its
root node as the initial state, and the endings of entries as

final states. We can use it to constrain our guesses during

recognition by traversing it in parallel with the transducer,

feeding it the characters as we guess them. It will prevent us

from guessing sequences of characters tnat do not form real words.`

Note that in the general case we will require a linked chain of

lexicons -- one or more for prefixes, one for roots, and one or

- 13 -

more for suffixes. [Kay 1983, p.104]

2.3. Koskenniemi's Two-level morphology

The Kay framework was further developed by Koskenniemi in his

Two-level morpnology. Koskenniemi implemented the model in

Pascal, and demonstrated that it could handle the full spectrum of

constructions of Finnish inflectional morphology [Koskenniemi

1983a]. Additional support for the model comes from the KIMMO

project, in which it was successfully applied to toy grammars of

English [Karttunen and Wittenburg 1983j, French [Lun 1983],

Japanese [Alan 1983, and Rumanian [Khan 1983j.

2.3.1. Enhancements to the Kay framework

A significant hitch in Kay's framework was that for

substantial rule sets, the automata turn out to be either

prohibitively large or, if they are in series, slow. Koskenniemi

overcomes this predicament by ordering the transducers in

parallel. Each machine enforces its own particular context-

sensitive rule between the lexical string and the inflected form.

If any machine fails, the pair of tapes is rejected. The parallel

configuration does away with intermediate stages in the analysis

and synthesis processes. We are left with only two levels (hence

the name of the model): the lexical level and the final inflected

product or so-called surface level. [Koskenniemi 1983a, p.151

Koskenniemi's other contribution was nis implementation of

Kay's idea of structuring the dictionary as a networK of mini-

lexicons. This entails partitioning the lexical entries by

- 14 -

"morphological function." For instance, all root morphemes would

go in one lexicon; in French, the present tense -er verb endings

-e, -es, -ons, -ez, and -ent would be grouped together; etc.

Also, each lexical entry contains a continuation class, a list of

mini-lexicons whose members can legally follow the entry. The

continuation class for French verbs would include mini-lexicons

for present tense endings, past tense endings, imperfect endings,

and so on. In this way, we can specify which sequences of

morphemes are allowed. LKoskenniemi 1983a, p.29,

2.3.2. Rule notation

Koskenniemi adopts a powerful, terse notation for expressing

his Two-level rules. For our purposes, though, a simplified

variation will do.

Characters are expressed as dotted pairs of the lexical

version of the character and the surface version. Hence (Y.i) is

a pair which is a Y in the lexical level, but corresponds to an i

in the inflected form. The pair can be abbreviated as a single

symbol if the lexical and surface characters are identical -- e.g.

y is synonymous with (y.y). {Koskenniemi 1983a, PP.31-21

Symbols for sets of characters are permitted in lieu of

single characters, though the interpretation is not the obvious

one. Say V = {a, e, i, o, u;. (V.V), or simply V, does not

necessarily represent all twenty-five possible vowel pairs; it

stands only for those that appear explicitly in other rules. Thus

if (a.u) is never mentioned in any rule, it is not inciidec in the

interpretation of V. The symbol - is a predefined set consisting

- 15 -

of all cnaracters in the alphaoet. The complement of a set is

indicated by putting a minus sign in front of it. Thus (-.v)

refers to all explicitly appearing character pairs tnat are

realized as vowels at the surface level; (=.-v) stands for all

such pairs that are realized as surface non-vowels. LKoskenniemi

1983a, PP-31-2]

In our Two-level notation, one way to write the first part of

our earlier rule for Y is

(Y.i) <-> (..V)

where V - {a, e, i, o, u}.

The rule is interpreted as follows: lexical Y corresponds to

surface i if and only if tnere is a vowel after the i in the

surface string.

in general, the left-hand side of a Two-level rule specifies

a correspondence between a lexical form and a surface form. The

right-hand side gives the environment of the correspondence. The

left and right contexts are regular expressions of character

pairs, and can include optional parts, enclosed in square

brackets, as well as Kleene closures, indicated by an asterisk

superscript. [Koskenniemi 1983a, PP.33-4J

Most rules, like the one above, stipulate that a lexical

character is realizea in a certain .ray if and only if it is

surrounded by the given context. Alternatively, only if rules,

identified by the -> operator, state that a lexical character can

be realized as a particular surface form only in the given

environment. Lastly, if rules, written with a <_, mean that if

- 16 -

the lexical character occurs in the specified context, then its

surface counterpart has to be the character given. LKoskenniemi

1983a, PP-36-7j

2.3.3. Two-ievel rues for Finnish

Because of its rich morphology, Finnish provides an excellent

testbed for programs that recognize or generate word-forms. Below

we give examples of how Koskenniemi uses his Two-level formalism

to describe representative phenomena in the language.

2.3.3.1. Vowel harmony

There are three types of vowels in Finnish: harmonizing front

(g, 8, y), harmonizing back (a, o, u), and neutral (i, e). We say

that Finnish has vowel harmony because harmonizing front and back

vowels cannot mix in a word. The vowels of suffixes must

therefore conform to the frontness or backness of the root to

which they are added. Neutral roots taKe front vowels.

[Koskenniemi 1983a, p.76;

KosKenniemi represents vowels in suffixes by archigraphemes:

A for a/g, 0 fcr o/8, and U for u/y. His rules for vowel harmony

are then:

- 17 -

A.a) -> '-.Vb'
G*

A.gl -> ii

G*

3.o1 -> l-.Vbj G* 3.t) _> >ft G*

;AA, -> -.Vf G

i-.Vt1 G
*

[U.u' -> -.Vb) G (U.yj (J.y)

where Vb - {a, o, u
Vf - {a, 6, yt
G - the set of harmonically indifferent letters;

i.e. consonants and neutral vowels
1/ - the beginning-of-word marker

The first column of rules guarantees that A, 0, and U will be

expressed as back vowels only if the stem contains a back vowel;

the second column checks that the archigraphemes turn into front

vowels for neutral stems; and the third column ensures front

vowels for front stems. [Koskenniemi 1983a, p.76]

2.3.3.2. Consonant gradation

The term consonant gradation refers to the alternation in

Finnish words of certain pairs of consonant clusters. One member

of each pair is said to be strong, and the other, weak. Listed

with the strong grade of the pair first, the alternations are

pp p p v mp mm

tt ` t t ` d it 11 rt _ rr nt ` nn
kk - k k ` O/v nk ng.

[Lehtinen 1967, p.5231

To predict consonant gradation in general, we need two pieces

of information: i1; which instances of the consonant groups above

are subject to gradation, and (2) when gradation takes place,

which grade is selected.

The rule for i1; is that a consonant group can alternate if

- 18 -

it comes right before the last vowei(sj of a stem, or sometimes a

suffix of the stem. 3radation is clocked if the consonant group

is preceded by s or t. Thus the nk in Helsinki- "Helsinki," stem

form) alternates between nk in Helsinkiin of Helsinki") and ng

in Helsingissg ("in Helsinki"); but the t in posti- "mail," stem

form) remains t in postia ("mail," partitive singular), postin

of mail"), etc., as it follows an s. [Lehtinen 1967, p.5231

As for (2), the strong consonant grade occurs roughly in open

and/or long syllables, the weak grade in short closed syllables.

There are several classes of exceptions, however -- e.g. nouns

with the plural -i- have the same consonant grade as the singular,

regardless of syllable length. Despite their complexity, the

exception classes are more or less well-defined. LLehtinen 1967,

pp523-51

Koskenniemi copes with (1) by flagging all gradable

consonants with the morphographemes K, P, and T. For example, he

spells katto- ("roof," stem form) as katTo-, indicating that only

the last T is mutable. He prefers this technique to a more rule-

oriented one because rules like the one given above often fail for

neologisms and foreign names. [Koskenniemi 1983a, pp.78-9j

For (2), Koskenniemi can afford to ignore consonant gradation

when the strong grade is chosen, since it is just as if gradation

did not happen at all. The problem is thereby reduced to

detecting when the weak grade is called for. Unfortunately, the

"short closed syllable" rule above is unweildy to implement,

particularly because of its exceptions. Thus Koskenniemi inserts

a $;norphograpneme in all endings which effectively proauce short

- 19 -

closed syllables at the end of the stem. Basically, $ is a

*

grammatical trigger for the weak grade . It follows that

(K.kj <- -$ j <- - -$ tT.tj <- - -$.

That is, if the trigger for the weak grade is aosent, we must have

**
the strong grade. Similarly, if there is an inhibitory s the

strong grade prevails:

(K.k) <- s s (T.t) <- s

And if the trigger is present, but not the inhibitor, then the

strong grade is prevented:

(K.-k) <- -s $ (P.-p) <- -s $ (T.-t) <- -s $.

(Koskenniemi 1983a, p.81J

The way Koskenniemi set up his morphographemes, however,

there are actually multiple weak grades. P, for instance, can be

realized as 0, v, or m. Thus we have the following rulest:

(P.v) -> V [C1}

(P.m) -> V m

(P.0) -> V 'C1) p

where V - {a, e, i, o, u, y, g, 6}
Cl - jr, 1}.

These give the environments that distinguish which weak grade is

at issue. Note the contextual v and p, which we incorporated

* Koskenniemi's actual trigger is somewhat more complicated,
but for reasons that need not concern us here.
** Koskenniemi does not give analogous rules for inhibitory
t, probably because it is quite rare.
f Again, one of the rules is slightly simplified to avoid
irrelevant tecnnical detail.

- 20 -

directly in the formulation above as sp and pp. Koskenniemi gives

analogous rules for disambiguating K and T. L.KosKennzemi 1983a,

PP-79-80i

2.3.3.3. "Non-natural" alternation

Usually, the inflected forms of a Finnish noun are readily

derived from its stem by suffixation. There exist many noun

classes, however, for which this is not the case. These classes

are said to exhibit "non-natural" alternation patterns. The nouns

in these classes typically have a characteristic pattern at the

end of their stems. [Koskenniemi 1983a, p.53;

One such class is made up of all Finnish nouns ending in

-nen, e.g. hevonen V"horse"). The singular stem for these nouns

is constructed by replacing the -nen ending with -se, e.g.

hevose- ("horse," stem form). This nen-se alternation is both

common and productive in Finnish. [Koskenniemi 1983a, p.55]

Koskenniemi deals with the nen-se alternation by stripping

the -nen from each lexical entry, yielding, e.g., hevo. The words

are then given a continuation class which points to a special

mini-lexicon of suffixes. One suffix restores the -nen ending for

the appropriate inflected forms, and another gives the -se ending.

The alternation is thus handled entirely in the lexicon.

[Koskenniemi 1983a, p.55j

Chapter 3

The Lezicrunch rule formalise

3.1. Describing morphological cnarges

The first-order approximation that words are assembled by

stringing together prefixes, a root, and suffixes goes a long way

in accounting for morphological data, as attested to by the

success of Koskenniemi's program. It starts to falter, however,

when we try to represent changes that occur inside words. Below

we discuss the difficulties that arise and a possible cure for

them.

3.1.1. The problem with word-internal changes

Finnish is a relatively well-behaved language in that most of

its morphological changes can be explained coherently as

affixations. A possible counterexample, though, is the nen-se

alternation of section 2.3.3.3. Koskenniemi only got away with

treating nen as a "default suffix" because all the words at issue

had a common termination. He could not have done so had the

change occurred "deeper" in the words.

Englisn is a nastier case. Consider the verb drive and its

past tense drove. Using the tactic above, we would store dr as

the lexical entry, -ive as a present tense suffix, and -ove as the

past tense suffix. in like manner, the past tense suffix for

arise would be -ose, that for write, -ote, and that for ride,

-ode.

- 22 -

This approach amounts to barely more than memorizing each

past tense form. in fact, Karttunen prefers to do Just that in

his Two-level grammar of English; e.g., he lists sleep and slept

as separate entries in the lexicon, despite the existence of the

similar verbs creep, keep, sweep, weep, feel, and kneel.

LKarttunen and Wittenburg 1983, p.226.

One other option for representing the drive/drove alternation

is to introduce a meta-grapheme I, grammatically conditioned to

appear as i in the present tense and o in the past -- nence drIve,

arIse, etc.

Technically adequate though this solution may be, it goes

against the very raison d'8tre of all morphology programs: to

capture systematic regularities in word structure. There are two

regularities at issue in the drive example. The first is that

there is a rule for identifying which words undergo the given

change -- this point is taken up in section 3.2.1. The second is

that the vowel mutation does not occur at a random position within

a word: it consistently takes place at the third-to-last letter.

Yet by carefully planting an I at the site of the change in every

case, we are "building in" the rule about the antepenultimate

letter in a rather ad hoc and underhanded fashion.

One might argue, in defense of the meta-grapheme solution,

that it is nevertheless acceptable to "memorize" the answer, as

the classes of Englisn words that undergo internal change are

unproductive and small.

The claim of unproductivity was addressed in Berko's

-23-

psychological experiment L19581 in which she presented children

and adults with nonsense words, and asked for their inflected

forms. She concludes that:

Whereas the children all used regular patterns in
forming the past tense, we found that for adults strong
pasts of the form rang and clung are productive. Since
virtually all English verbs that are in the present of
an -ing form mare their pasts irregularly, this seems a
likely supposition. Adults make *gling and *bing into
*glang and *bang in the past... The productivity of the
-ang and -ung forms proves that new forms are not

necessarily assimilated to the largest productive class.
IBerko 1958, pp.175-6J

Thus rules for word-internal changes appear to have at least some

validity for English, and are not "pure fiction."

As for the smallness claim, it seems expedient to note all
regularities in the database, as long as the resulting rule takes

up less space than did its data.

While the problems of word-internal change are serious in

English, they simply get out of control in Arabic. Arabic verbs

have discontinuous stems, e.g. k-t-b 't"m"ite"j. Their inflected

forms are produced by inserting vowels in the interstices -- for

example, the perfective of k-t-b is katab, and its imperfective

stem is -ktib 1Matthews 1974, p.131J. To describe this

relationship with our current model, we would have to resort to

pairs of meta-graphemes -- e.g. kXtYb -- as well as complex

contextual rules for realizing tnem appropriately. Such examples

appear to defy our paradigm that inflections are "essentially

affixations," witn a few scattered contextual "side effects"

thrown in.

- 24 -

3.1.2. Morpnological processes

Koskenniemi himself admits that word-internal changes

cnalienge the morphemic model:

Only restricted infixation and reduplication can ce
handled adequately with the present system. Some

extensions or revisions will be necessary for an

adequate description of languages possessing extensive
infixation or reduplication. LKoskenniemi 1983a, p.27j

The difficulty has also been acknowledged in the linguistic

literature. There the proposal for morphological processes has

been raised. tMatthews 1974, p.120j

A morphological process is a general operation which

transforms a word into an inflected form. Using this more

powerful notion, we can conveniently explain the change from drive

to drove as one of replacing the i with an o -- the same process

works for arise, write, and ride. Note that we do not insert

special markers in each word to indicate .rhich letter alternates.

Concomitant with the utility of our new machinery, nowever,

is a Pandora's box of representational issues. in particular,

what exactly should morphological processes be allowed to do? If
concatenation is not efficacious, wnat ought to be the primitive

operation? Due to a recent neglect of morphological theory,

linguists have little to say in this regard Matthews 1974,

p.120;.

3.2. Defining rule domains

The s,ortcoming of {osKenniemi's method of defining rule

- 25 -

domains is, in a nutshell, that

in the Two-level lexicon, regularities are explicitly
marked in the word entries. Some markings are expressed
as morphopnonemes L34C in the representation, some as
continuation classes. LKoscenniemi 1983a, pp.128-9;

Adding a word to Koskenniemi's dictionary tnerefore involves

embellishing it witn a variety of special flags that indicate

which alternations it undergoes, and selecting or creating a

continuation class that specifies which suffixes it takes.

Koskenniemi is willing to enumerate all of this information

because the task of building lexical entries is for him a one-shot

deal performed by an expert "external component" -- namely,

Koskenniemi himself [Koskenniemi 1983a, p.129J. We will be

concerned with eliminating redundant lexical markers, substituting

rules when possible.

3.2.1. The problem with meta-graphemes

Let us return for a moment to tie drive/drove example of

section 3.1.1. We said tnat the most likely means of representing

the alternation was to introduce an I meta-grapheme into the

lexical entries of affected words. Tnis effectively lists the

words in the alternation class, thereby neglecting the trend that

*

tney all end in /rai/ * consonant. While this rule is not perfect

-- e.g. it spuriously inclades arrive -- it still explains the

data more compactly than a list would. Note also tnat even though

the I meta-grapheme does not iengtnen entries directly, it uses yip

a new symbol, which may raise the number of bits neeced per

* Phonemes .rill oe enclosed in slashes.

-26-

character.

3.2.2. The problem witn continuation classes

Morphemes in different mini-lexicons only fit together in

sequences permitted by their continuation classes LKoskenniemi

1983a, pp.43-4j. Thus the distribution of continuation classes

determines the domain of "rules of concatenation." Again, since

continuation classes are individually specified for each word,

these domains are enumerated by brute force.

The basic job of continuation classes is to define formal

categories, e.g. the set of words that take verb endings (namely,

verbs). Here it is reasonable to list the domain, since there is

presumably no more concise rule to do the equivalent. Various

other uses of continuation classes are less well justified,

though; a case in point is the nen-se alternation of section

2.3.3.3, in which nouns ending in nen were enumerated, instead of

being selected by the obvious rule.

Apart from listing domains, continuation classes introduce

redundancy into the representation in a few other :days.

Following Karttunen, we will diagram the connections between

mini-lexicons as a directed graph, where morphemes "flow" along

the arcs. Boxes represent mini-lexicons; circles stand for

continuation classes. LKarttunen 1)83, p.180,

Schematically, a language in which nouns take a number suffix

only, and verbs take person followed by tense would be:

- 27 -

Now suppose that there are two sorts of tense endings, A and B,

and the cnoice depends on the verb stem. We would tnen have to

split the Verb continuation class into VerbA and VerbB, which

would lead eventually to the TenseA and TenseB mini-lexicons,

respectively. The consequence is that all mini-lexicons

intervening between Stem and Tense would have to be duplicated so

as to "remember" which type of verb stem they are propagating.

Long-range dependencies, as between Tense and Stem, always result

in this sort of waste. [Karttunen 1983, p.1801

Prefixes also present special problems for the Two-level

framework. If a suffix is allowed only after certain stems, the

continuation class of those stems can be suitably modified; but

this trick does not work for idiosyncratic prefixes. Take the re-

prefix in English. Using continuation classes, the only way to

indicate that it goes before particular verbs is to establish a

purpose-built mini-lexicon of just those verbs, and to give that

mini-lexicon as the continuation class of re-. The verbs must be

enumerated afresh for ais-, as the two sets do not coincide

exactly -- e.g. reappear but *misappear.

It is of course preposterous to construct a new mini-lexicon

for every prefix. What Karttunen did in his Two-level grammar of

English was to give the root lexicon per se as the continuation

class for un- -- tnus his grammar overgenerates, accepting

- 28 -

*urAouse, *unwent, etc. Karttunen proposes extensions to the

Koskenniemi framework to enable it to deal with prefixes more

gracefully. [Karttunen 1983, pp.221-3d

3.2.3. Characterizing domains via properties

The principal cause for concern in Koskenniemi's use of

morphographemes and continuation classes to define rule domains

was that it was just like listing the words in the domain. The

remedy is to characterize domains by the properties of their

members.

The morphemic model recognizes two types of properties that

may help describe domains.

For graphologically conditioned alternations, the graphemic

environment of the change may be handy. Going back to the -d/-ed

example of section 2.1.1, we could formulate our rule as:

rule 1: Form the past tense of a verb by adding -d.
domain: verbs ending in e.

rule 2: Form the past tense of a verb by adding -ed.
domain: verbs ending in a letter other than e.

Likewise, we should look at the surrounding morphemes in

grammatically conditioned alternations. The Finnish rule of n

deletion from section 2.1.1 can then be stated as:

rule: Delete the final n of the stem of a noun.

domain: nouns with a possessive suffix after their stem.

There are certainly other kinds of properties that may be of

interest as well. Consider the English -er inflection which

- 29 -

produces teacher from teach, actor from act, and sailor from sail.

While no apparent grapnoiogical or grammatical property springs to

mind to explain the er/or alternation, it is still largely

predictable by etymological criteria. In fact, the -or ending is

applied mostly to words ahlcn were borrowed directly from Latin;

-er words came through Frencn, etc. Jespersen 1946, pp.224-5].

3.3. The structure of rules in Lexicrunch

Two concerns with Koskenniemi's rule formalism have motivated

the design of rules in Lexicrunch. The first was the inability of

the Two-level model to represent word-internal changes

satisfactorily. This is overcome in Lexicrunch by describing

inflections in more general terms as morphological processes.

Second, Koskenniemi defines domains of rules by enumerating them

with meta-graphemes or continuation classes. In Lexicrunch we

instead use properties of the words in the domain.

Words are derived, in the Lexicrunch framework, by applying

an ordered sequence of rules to a stern, where each rule

corresponds to a morpheme. For example,

DOG + PLURAL + dogs
MAN + PLURAL 4 men
MAN + PLURAL + GENITIVE + men's.

The morphemic model is like a special case of this, in which the

only sort of rules allowed are ruses of concatenation. :n this

section we describe the internal format of Lexicrunch rules, as

well as inter-rule relationships.

-30-

3.3.1. Changes

The essential component of a Lexicrunch rule is the

morphological process which performs the appropriate graphological

transformation. 'lacking a theoretical groundwork, we will start

with as general-purpose a transformation as possible: string

substitution. Affixation is a special case, when the string

replaced is 0.

We must then specify where in the word the string

substitution happens. In drive, it was enough to say that "the i"

changes, but in the Arabic k-t-b we would have to talk about

inserting vowels between the first or last two letters. rye will

assume that it is always feasible to describe the positions of

strings within words, since native speakers manage to do so -- not

that we will try to copy their method.

Lexicrunch, ratner arbitrarily, has four ways of identifying

change sites: positive/negative offsets, and first/last

occurrences of strings. All expressions refer to the left edge of

the substring that is replaced. For instance, the a in mailman

that changes to an e in the plural can be referenced by five

expressions:

mailman (the dot marks the change site)

3

u

5

+5 a positive offset
-2 ,a negative offset)
+an the first occurrence of a strip J

-a the last occurrence of a string)
-an ithe last occurrence of a string).

As an example of suffixation, consider the addition of -s to frog:

31

frog-

1) +4
2) -0.

These expressions for change sites are called afields, short for

"active fields."

A complete description of a morphological process is given as

a list of zero or more changes, each consisting of four

components:

oldstring -- the substring to be replaced

oldfield -- an afield specifying where the oldstring is
located in the untransformed word

newstring -- the substring that does the replacing

newfield -- an afield specifying where the newstring is

located in the transformed word to facilitate the undoing of

the Change).

A few examples should make the notation transparent:

for frog/frogs:
0 @ -0 <-> s @ -1
i.e. change a nil at the end of the word to an s

for drive/drove:
1 @ -i <-> o a -o
i.e. replace the last I with an o

for sleep/slept:
e @ -2 <-> 0 @ -2
0 @ -0 <-> t @ -1
i.e. delete the e two from the end, and add a t suffix.

Whether this rendition of morphological processes is

universal, in the sense that it can capture with a single formula

the transformation for all words "of the same type," is a moot

point. The philosophy of the design is that it can always be

extended to identify internal positions of words in new and useful

- 32

ways. If, say, one wishes to talk about a change at the nth

syllable, one could envisage a fifth type of afield with the

relevant interpretation. in some cases, such extensions would

require additional information in lexical entries.

Thus Lexicrunch is more a "linguist's workbench" for

experimenting witn different types of rules than a definitive

answer to the enigmas of morphology. In practice, its simple

devices suffice for most exercises. in the worst case, it can

decompose rules that are beyond its expressive power into more

manageable bits. Take the English rule of doubling the final

consonant of certain verbs in the past tense, as in rib/ribbed,

bar/barred, pin/pinned. Lexicrunch cannot express the rule in its

full generality -- it would need three sub-rules:

for rib/ribbed:
0 @ -0 <-> bed @ -3

for bar/barred:
0 @ -0 <-> red @ -3

for pin/pinned:
0 @ -0 <-> ned @ -3.

3.3.2. The decision tree

Naturally, one morphological process is not enough to

represent a rule lice PLURAL. Rules must contain numbered lists

of processes -- e.g. for PLURAL:

1. 0 @ -0 <-> s @ -1
2. 0 <-> es @ -2
3. a -2 <-> e @ -2.

Process 1 would handle words such as dog and bird; 2 would take

- 33 -

care of fox, witch, etc.; and 3, .an, woman, doorman, etc. To

choose which process to apply to a given word, Lexicrunch has a

decision tree.

The decision tree has a process number at each of its leaf

nodes. An internal node contains a property or test to apply to

words; coming out of the node are a Y-branch for words that have

the property, and an N-branch for words that do not. A sample

decision tree for the PLURAL rule above could be:

ends in -man?

process 3 ends in -ch?

process 2

process 2 process 1.

To classify a word, we start at the root of the decision tree,

applying tests and taking the pertinent outgoing branch, until we

reach a leaf node. Henceforth, we will braw decision trees as

if-then-else statements as below:

if "ends in -man" then 3

elseif "ends in -ch" tnen 2

elsei° "ends in -x" then 2

else 1.

the current version of Lexicrunch, only graphological

properties are considered. Grammatical properties 1iKe the one

34

above for n deletion can be incorporated into the relevant rules

directly -- i.e. we would 'nave:

rule: Form the possessive of a noun by deleting final n
from the stem and appending a possessive suffix.

Lexical restrictions are bandied by the "Inclusion" facility

described in the next section.

Again, we are not claiming that this range of properties is

all-encompassing. The intent is that as the need arises for new

kinds of properties, they can be incorporated readily into the

existing framework.

The graphological properties or tests in Lexicrunch have the

following three components:

teststring -- a string of letters to test for

position -- an afield which, together with the offset,
describes where in the word to look

offset -- an afield which is added to the position to give a
location in the word.

Thus the test ch a -0-2 means "ends in -ch"; it would select words

like beach and match. The test ng a -i+l, or "has an ng right

after its last i," Picks ring, sing, and ingot, but not triangle,

frog, or ingrain. One way ;tnough not the only one; to express

our example above is then:

if man @ -2-1 then 3
elseif cn @ -2+0 then 2
elseif x @ -1.0 then 2

else 1.

- 35 -

3.3.3. inclusions

When Lexicrunch has trouble finding the right property to

characterize a domain, it can always resort to memorizing words.

The decision tree above, for instance, is not at all

comprehensive, as it :nisclassifies sucn words as Roman -- the

plural should be Romans, not *Romen. To correct for this, we can

explicitly store Roman as a member of the domain of process 1. In

the notation, words which are specially included under a process

are written in curly brackets following its list of cnanges --

i.e. we get

1. 0 @ -0 <-> s @

{Roman}
2. 0 @ -0 <-> es @ -2
3. a @ -2 <-> e @ -2.

Now when we classify a word, we first check whether it is an

inclusion of any process. If not, we proceed with the decision

tree as usual.

3.3.4. Form-class rules

Unlike other morpnemes, stems do not have their own private

rules. Rather, all the stems in one form class are listed

together in a common rule. We will write form-class rules as

demonstrated below:

RULE: noun
{dog bird fox witch an woman,

doorman Roman'.

One might protest that (aj storing words as lists :Hakes the

look-up procedure for them inefficient, and {b it is redundant to

- 36 -

make multiple entries for words in more than one form class.

In response to aj, the notation does not preclude the use

of, e.g., lexical trees. As for (bj, we snould bear in mind that,

say, duck qua "to lower one's head" and duck qua the fowl will

require separate semantic entries anyway -- the repetition of the

lexeme itself seems negligible. Even in the less extreme example

of telephone, the meaning of the verb is not trivial to deduce

from the meaning of the noun.

3.3.5. Rule ordering

Rules are organized as a directed network: rule A can only be

applied directly after rule B if there is an arc from B to A. The

network connections are specified by the list of predecessors for

each rule. Form-class rules never have any predecessors.

In Lexicrunch notation, our complete PLURAL example would now

be:

RULE: noun

{dog bird fox witch man woman,

doorman Roman}

RULE: plural > noun

1. 0 @ -0 <-> s @ -1
Roman}

2. 0 @ -0 <-> es @ -2
3. a @ -2 <-> e @ -2

if man @ -2-1 then 3

elseif ch @ -2+0 then 2

elseif x @ -1*0 tnen 2

else 1.

The "greater than" symbol indicates a rule's predecessor list.

;he list can contain more than one element; e.g. if we added a

-37-

GENITIVE rule to the example, it might begin with

RULE: genitive > noun plural,

as GENITIVE can be applied directly to nouns -- e.g. dog's -- or

it can follow the ?LURAL morpheme -- e.g. dogs'.

Chapter 4

The Design of Lexicrunch

4.1. Generation

Given a stem, optionally its form class, and an ordered list

of rules to apply to the stem, the generation routine produces the

appropriate inflected form.

4.1.1. The overall algorithm for generation

Should the form class of the stem be omitted, the program

first tries to work it out. It considers only those form classes

that contain the stem, and that can legally precede the first rule

to be applied. If the form class is not thereby determined

uniquely, the generation task fails.

Then, for each successive rule in the list of rules to apply,

we perform the indicated transformation on the word. The

resulting form becomes the input for the next iteration.

To apply a rule to a :word we kaj determine which of that

rule's morphological processes is relevant for the given word, and

bj apply tnat process to the word. Procedures a) and (b) are

described in sections 4.1.2 and 4.1.3.

4.1.2. Classifying a word

Here we are given a word and a rule, and we want to decide

which of the rule's morphological processes should be applied to

the word.

-39-

The first step is to check whether the word is listed

explicitly as an inclusion to a morphological process; if so, we

return that process. Otherwise, we classify the word using the

decision tree and the following algorithm

F

procedure CLASSIFY sword, dn(>dej:

if dnode is a leaf node then
return the process number at dnode

elseif word has the property at dnode tnen
return CLASS.FYtword, Y-child' of dnodej

else
return CLASSIFY word, Y-child of dnode)

The dnode in the initial call to CLASSIFY is the root node of the

decision tree.

4.1.3. Applying changes

Once we know which morphological process to use on a word, it
remains only to effect its list of changes. This is

straightforward: for each change, we delete the oldstring at the

oidfield, and insert the newstring in its place.

4.1.4. Generation example

Suppose the problem is to generate SING PAST, where the

rule set includes

* We will write algorithms in the Pidgin ALGOL of Aho, Hop-
croft, and 'Jli:nan ;1974, pp.33-9.

-40-

RULE: verb
jjump bake singe sing ring ping

RULE: past > verb
t . 0 @ -0 <-> ed @ -2

Iping!
2. 0 @ -0 <-> d @ -1
3. 1@-3<->a@-3

if e @ -1+0 then 2
elseif ng @ -3+1 then 3

else 1.

Lexicrunch figures out that SING is a verb, since PAST can only

follow verbs. It then applies PAST to SING. SING is not noted as

an inclusion -- hence we run the CLASSIFY algorithm, which returns

process 3. There is one change to effect:

-3 <-> a @ -3
sing sang

and so the program generates sang. For PING, we would get pinged,

as this word is explicitly mentioned under the first morphological

process.

4.2. Recognition

Recognition is just the opposite of generation: we are given

an inflected form, and must recover the stem, form class, and

sequence of rules from which it was derived. For words that have

more than one derivation, we must return all the possibilities.

4.2.1. The overall algorithm for recognition

The idea of the recognition algorithm is to guess the rules

that were applied to the stem, and to "unapply" tnem, in reverse

- 41 -

order.

We start by nondeterministically picking the last rule that

was applied to the stem, and unapplying it -- section 4.2.2

explains unapplication. Our guess for the next rule is

constrained by the fact that it must be a legal predecessor of the

last rule.

The procedure repeats until we reach a form class rule.

4.2.2. Unapplying a rule

In unapplying a rule to a word, we do not know which

morphological process of the rule to use. There :nay even be

several correct choices. In Frencn, e.g., pu is the past

participle of two verbs, pouvoir and pattre.

Thus the algorithm for unapplying a rule Is to try

uneffecting the changes of every :morphological process. A change

is uneffected by replacing the newstring at the newfieid with the

oldstring.

As is, however, this algorithm overgenerates. It would say

that one result of unapplying PAST from section 4.1.4; to singed

is SING, by uneffecting process 1. This answer is spurious

because SING would be classified under process 3, not 1. Such

errors are prevented by checking that "de-inflected forms" like

SING are classified as assumed.

- 42 -

4.2.3. Recognition example

Referring again to the rule in section 4.1.4, we would

analyze jumped as follows: say there are just two rules, PAST and

VERB. The last rule in the derivation cannot be VERB, because

jumped is not listed in the VERB form class rule. Hence we

proceed to unapply PAST. This gives:

0 @ -0 <-> ed @ -2
1. jumped 41 Jump

0 @ -0 <-> d @ -1
2. Jumped Jumpe

i @ -3 <-> a @ -3
3 jumped 41 (not applicable)

Morphological process 3 cannot be unapplied because there is no a

to mutate; hence there are two candidate "unpasts": jump, produced

by process 1, and Jumpe, produced by process 2. Jump and j umpe

would be classified under processes 1 and 2 respectively, and so

both are acceptable de-inflected forms.

The only predecessor of PAST is VERB. Jump is indeed listed

as a verb, and so this derivation Bath is JUMP/VERB + PAST. On

the other hand, jumpe is not a verb, and hence does not lead to a

second solution.

4.3. Data entry

The normal way to present a corpus of data to Lexicrunch is

via the set of input routines discussed below. They perform a

first pass of analysis on the examples -- just enough to express

them in the Lexicrunch rile notation. Further analysis is carried

-43-

out by the rule compression module ;see section 4.4).

4.3.1. Input routines

There are three input routines. One lets the user establish

new form classes; another enters stems into the form classes; and

the third is for building predecessor links between rules.

Since the rules in Lexicrunch are arranged as a directed

graph, we can think of words as flowing from form classes to other

rules, being transformed at each step. Thus In adding a stem to a

form class, we are pumping a new word into the network at the

source. The new word can ramify through all existing channels to

produce new forms. For example, in the following network:

PLURAL

E
NGUN

GEN IVE

the addition of the noun frog gives rise to FROG + PLURAL and

FROG + GENITIVE. Likewise, building a link between rules creates

a new word-production route. if we added a GENITIVE > PLURAL link

above, we would permit for the first time all constructions of the

form NOUN + PLURAL + GENITIVE.

Whenever the input routines detect that a new form can be

generated, they call another routine (see the next section) which

prompts the user for the form in question, and enters his answer

into the rule database.

- 44 -

4.3.2. Learning new forms

The task of the routine tnat learns new forms is to ascertain

how to apply a given rule to a given word, and to modify the

database accordingly.

First it guesses the answer by applying the existing rule to

the word (as in section 4.1). It refrains from guessing if there

is no decision tree for the rule , or if the tree chooses an

inapplicable rule -- for instance, it says to change

a @ -2 <-> e @ -2 for lemon.

The program displays its guess, and if it is right, no update

to the rule set is necessary. Otherwise, it asks for the correct

inflected form.

It proceeds to test whether any of the rule's extant

morphological processes gives the desired answer. If one does, it
stores the given word as an inclusion under that process. In the

absence of such a process, it has to invent one, and list the word

under it.

4.3.3. inventing morphological processes

There are, in general, a large number of morphological

processes that produce a specified result for a word. To make

read into reread, e.g., we could invoke any of these processes:

A new rule wi i not have a decision tree until it is

compressed ;see section 4.4 ;.

-45-

p1. 0 @ +0 <-> re @ +0

p2. 0 @ -4 <-> re -6

P3. 0 @ +2 <-> re @ +2

p4. 0 @ +1 <-> er @ +1

p5. r @ +0 <-> rer a +0

p6. read @ +0 <-> reread @ +0.

To separate the wheat from the chaff we can appeal to a

simplicity criterion. We will define the complexity of a process

to be the total number of characters it inserts or deletes. P1

through p4 therefore each have complexity 2, whereas p5 has 4, and

p6, 10. We will dismiss p5 and p6 from consideration because of

their higher complexity.

There is no obvious principle that will select a "best"

process from among p1 through p4. It is only when we see other

examples of the change -- e.g. type/retype -- that we can discard

P3 and p4. P2 would be invalidated by write/rewrite. Since the

input routines only have one example to work with ,they pick one

of the minimum-complexity processes arbitrarily; their mistakes

are rectified later (see section 4.4.1).

The algorithm in Lexicrunch for finding a minimum process is

based on techniques from compiler theory for "string-to-string

repair" [Backhouse 1979, pp.189-218]. In essence, we scan along

the word and result strings simultaneously, trying to match

characters as we go. If two corresponding characters differ, we

nondeterministically insert or delete a letter to make them the

same.

- 46 -

In the Pidgin ALGOL statement of the algorithm below, we

refer to the letters in a string as string[0], string[1], etc. --
strings are assumed to end with a nil. Pointers to strings are

passed as integer indices. The procedure returns a minimum list

of one-character insertions and deletions, which can easily be

spliced into contiguous runs. The initial call would be

MINPROCESS(word, 0, result, Oj.

procedure MINPROCESS sword, wp, result, rp):

if word[wp] and result[rp] are nil then
return nil

elseif word wp] s result[rp] then
/* match a cnaracter */

return MINPROCESS (word, wp+1, result, rp+1)
else

if result[rp] is not nil then
/* try inserting a character
insert-solution the concatenation of

(a @ wp <-> result[rp] @ rp) and
MINPROCESS(word, wp, result, rp+1)

if word[wp] is not nil then
/* try deleting a character
delete-solution the concatenation of

(word[wp] e3 wp <-> 0 @ rp) and

MINPROCESS(word, wp+1, result, rp)

return the shorter of insert-solution
and delete-solution

4.4. Rule compression

The compression routines sift through a rule, exploiting its

regularities to re-organize it. They restate :morphological

processes in as general a form as they can, build a decision tree

for classifying words by the process they undergo, and finally

they tidy up any lingering artifacts of the compression process.

- 47 -

4.4.1. Constructing a set of morphological processes

The input routines are rather haphazard about the

morphological processes they invoke to explain inflections. Here

we will aim for the most general formulation.

The construction of classes -- morphological processes and

their domains -- can be broken down into seven steps, as detailed

below.

4.4.1.1. Calculating the domain of the rule

The first step of compression is to figure out the domain of

the given rule, i.e. the set of words the rule acts upon. This is

accomplished by taking the union of the ranges of all predecessors

of the rule. The range of a form class rule is just its list of

words. Otherwise the range is calculated from the domain by

applying the rule to each word.

We then list each word in the domain as an inclusion of the

class to which it belongs. This gives us a complete tabulation of

which words are handled by wnich morphological processes.

To illustrate, say we start out with the following rule set:

- 48 -

RULE: noun
{newt tulip apple elbow fox tax box prefix ox switch}

RULE: plural > noun
1. 0 @ +4 <-> s @ +4

{newt}
2. 0 @ +5 <-> s @ +5
3. 0 @ -0 <-> es @ -2

{switch}
4. 0 @ -0 <-> en @ -2

{ox}

if x @ -1+0 then 3

else 2.

The domain of PLURAL is just the set of words in the noun form

class. After listing the words as inclusions, the classes of

PLURAL are:

1. 0 @ +4 <-> s @ +4
{newt}

2. 0@+5<->s@+5
{tulip apple elbow}

3. 0 @ -0 <-> es @ -2
{fox tax box prefix switch}

4. 0 @ -0 <-> en @ -2
{ox}.

4.4.1.2. Restating morphological processes

To find the most general formulation of a morphological

process, we try expressing its afields in several alternative

ways. Each change of a process is varied independently.

Since afields can be written in four different ways, there

are in principle at least sixteen ways to express a change -- one

for each choice of its oldfield and newfield. The twelve

variations in which the oldfield and newfield are given different

types, however, are nighly unlikely candidates for "most general

formulation." If, e.g., the oldfield -s best expressed as a

-49-

negative offset, then we will usually be able to write the

newfield as a negative offset calculated by

newfield - oldfield + `length of oldstring)
- (length of newstring).

It is doubtful that we could benefit by writing the newfield

instead as a positive offset or a first/last occurrence of a

string. Related arguments militate against mixing other types of

afields within a change. Hybrid cnanges may still conceivably

have their uses, but too rarely to justify the vast overhead of

computing them for every change.

We are left with four variations on changes. The first is to

express the oldfield and newfield as positive offsets -- several

formulas may result. For the process

i @ -3 <-> ou @ -4
{wind grind find bind},

e.g., we would get two possibilities:

1. 1 @ +1 <-> ou @ +1

{wind find bind}

2. i @ +2 <-> ou @ +2
{grindf.

Second, we try writing the afields as negative offsets, maybe

producing multiple answers. Next, if neither the oldstring nor

the newstring is nil, we nave

oldstring @ +oldstring <-> newstring @ +newstring

for whichever words fit this pattern. Finally, we can do the same

with last occurrences of strings. There :nay again be other

- 50 -

options, such as

i @ -ind <-> ou @ -ound

for our example, but these yield little marginal utility compared

to their cost. We will limit ourselves to the aforementioned

types, to keep the number of possibilities in check.

Continuing the example of section 4.4.1.1, there will be nine

classes after varying the afields:

1. 0 @ +4 <-> s @ +4
{newt}

la. 0 @ -0 <-> s @ -1
{newt}

2. 0@+5 <->s@+5
{tulip apple elbow}

2a. 0 @ -0 <-> s @ -1
{tulip apple elbow}

3. 0 @ -0 <-> es @ -2
{fox tax box prefix switch}

3a. 0 @ +3 <-> es @ +3
{fox tax box}

3b. 0 @ +6 <-> es @ +6
.

{prefix switch}
4. 0 @ -0 <-> en @ -2

{ox}
4a. 0 @ +2 <-> en @ +2

{ox}.

4.4.1.3. Cross-classifying words

The classes as they stand are incomplete, in that some are

missing words which they rightfully deserve. In the example

above, class la should include tulip, apple, and elbow, since

0 @ -0 <-> s @ -1 correctly predicts their plurals; also, class 2a

should contain newt. This is because classes la and 2a are not

independent: they derive from classes 1 and 2, which both consist

of words whose plurals are formed by adding -s.

To restore consistency, we must cross-classify words under

the appropriate classes outside their family,. where. a family is a

group of classes that derive from the same original class, here

denoted with the same initial integer.

Cross-classification entails comparing every pair of classe

in different families. The morphological process of the firs

class is applied to the words in the second: those words that are

handled properly are added to the first class. The procedure is

repeated for the process of the second class and the words of the

first.

Many times,, however, it is silly to compare two clo--G-,

there is no hope that the process of one will work for the words

of the other. One necessary condition for success is that both

processes insert and delete the same characters. Lexicrunch

therefore computes two hash values for each process. The first is

the sum of the ascii characters deleted; the second, that of those

inserted. Pairs of processes with unequal hash values are not

compared.

After cross-classification, our running example becomes:

-52-

1. 0 @ +4 <-> s @ +4
{newt}

la. 0 @ -0 <-> s @ -1
{newt tulip apple elbow}

2. 0@+5<->s@+5
{tulip apple elbow}

2a. 0 @ -0 <-> s @ -1
{tulip apple elbow newt}

3. 0 @ -0 <-> es @ -2
{fox tax box prefix switch}

3a. 0@+3 <->es@+3
{fox tax box}

3b. 0@+6 <-> es @+6
{prefix switch}

4. 0@-0 <->en@-2
{ox}

4a. 0 @ +2 <-> en @ +2
{ox}.

4.4.1.4. Simplification

Some of the classes in the cross-classified rule are clearly

redundant. Class 1, for instance, can be disposed of, as its

word, newt -- along with others -- is dealt with adequately by

class la.

We will say that class x subsumes class y if the domain of y

is contained in the domain of x; x is a more general case of y.

In such cases, we can get rid of y scot-free.

The program simplifies the rule by comparing pairs of

classes: if one class is subsumed by the other, it is deleted. If

the domains are equal, it is inconsequential which process we get

rid of. As a matter of esthetics, the program decides which

process is "better," and it eliminates the other one. Basically,

the program prefers processes with "better" afields and fewer

changes. Numerical afields are "better" than first/last

occurrence afields, simply because they are easier to calculate;

- 53 -

between two numerical afields, the one of lower magnitude is

preferred; and if both afields are of the first/last occurrence

type, the one with the longer string is selected, as it is "more

specific." As with cross-classification, the program does not

bother comparing two classes with different hash values, as there

would be no chance for subsumption.

Following cross-classification, a given word may well be in

multiple classes. At the end of the day, though, we ought to

decide which of these classes is best, and assign the word to that

one only. Simplification is a substantial first step towards this

goal, but it does not do away with ambiguous classification

entirely. If, say, we are dealing with the past tense rule for

English verbs, we could still have these classes after

simplification:

1. a@-2 <->0@-1
{breed feed}

2. a@+3 <->0@+3
{breed bite}.

Breed is in both classes, but we have no principled way of picking

the "right" one at this stage. Later we will be able to assign it
to class 1, on the grounds that this allows the natural

characterization of words in class 1 as those that end in -eed;

there would be no parallel rule had we put breed in 2.

Returning to our ongoing example, the simplification process

would remove the following classes:

-54-

1 -- subsumed by 1.a

2 -- subsumed by la
2a same'as la, but one of the two must go
3a -- subsumed-by 3
3b -- subsumed by 3

4a -- same as 4, but 4 is preferred because its oldfield
is of smaller magnitude.

We are left with just three classes:

la. 0 @ -0 <-> s @ -1
{newt tulip apple elbow}

3. 0 @ -0 <-> es @ -2
{fox tax box prefix switch}

4. 0 @ -0 <-> en @ -2
{ox}.

4.4.1.5. Filtering out insignificant classes

At this point, we are essentially finished constructing the

set of classes. This step and the remaining ones merely pave the

way for the building of the decision tree.,

Since we are creating the decision tree to delineate domains

via properties, it makes sense to first throw away those classes

that are simply too small to have an interesting characterization.

In our example, class 4, which contains only ox, is just such a

class. Ox is a special case -- there is probably no other English

word in its class -- and thus there is hardly a basis for

extrapolating a rule that defines which nouns take -en in the

plural.

It is not clear, of course, where to draw the line between

these paltry classes and normal ones. Moreover, this issue of

judging when a trend is "significant" recurs frequently in

Lexicrunch. We resolve the problem somewhat crudely by decreeing

- 55 -

that m is a "significant" proportion of n if and only if

SIGNIF(m ,n), where

procedure SIGNIF (m, n):

if (m > 3) and (m > 10 percent of n) then
return true

else
return false

The values of the parameters in the function -- "3" and

"10 percent" -- were arrived at empirically. Decreasing them

would make SIGNIF return "true" more often, and so the program

would "cut fewer corners" and run correspondingly slower. If we

raised the values, the program would do less work, but its answers

would be of a coarser grain. The metric could no doubt be

improved by the introduction of more sophisticated statistical

methods, but it appears sufficient for the present purposes.

We therefore take to be insignificant those classes of size n

where SIGNIF(n, n) is false, i.e. classes such that even if all

their members have a certain property, the trend is still not

significant. These amount to classes with fewer than four

members.

The program withdraws the insignificant classes from

consideration -- their words will turn up as explicit inclusions

of the rule. If a word is in both significant and insignificant

classes, we strike it from the insignificant ones to simplify

bookkeeping. This way it retains the opportunity to be classified

by the decision tree, and sustains no real loss.

By weeding out insignificant classes, we unclutter our sample

- 56 -

rule by one additional class, yielding:

la. 0 @ -0 <-> s @ -1
{newt tulip apple elbow}

3. 0 @ -0 <-> es @ -2
{fox tax box prefix switch}

4.4.1.6. Devising tests

In order to build a decision tree, we will need some idea of

what properties typify the words in each domain of our rule. In

this step of the compression procedure, we will comb through the

domains, attempting to spot characteristic trends. Specifically,

we will look for common strings of letters occurring on either

side of a change site -- i.e. the graphological environment of the

change (as discussed in section 3.3.2).

Again we must invoke the notion of a "significant" trend, so

as to distinguish between useful tests and noise. A "significant"

trend is one that holds for m out of a domain of .n words, where

SIGNIF(m, n) (see section 4.4.1.5).

The program searches for trends in a given domain by

examining each change of the morphological process in turn. It
begins by looking at the first letter of each word to the right of

the oldfield of the change. If any letter occurs in a significant

proportion of the words, the program goes on to look for a

significant following letter. It continues in this manner,

finding strings of any length that start to the right of the

change site and that turn up in a significant proportion of words.

The whole process is repeated for strings that end on the left-

hand side of the change site. Finally, if the oldstring of the

- 57 -

change is not nil, the program proposes the very property of

having the oldstring at the oldfield.

Consider the class from the English past tense rule for

verbs:

ea@-3<->o@-3
0@-0 <->e@-1
{swear steal break speak wear tear bear}.

We look first at the change ea @ -3 <-> o @ -3. To the right of

this site, we get r's, k's, and an 1, but only the r is

significant, being 4 for 7. There are no more letters after the

r, and so one property of the class is r @ -3+2. We then turn our

attention to the left of the change site. The letters are w, t,

r, p, and b, but none is significant. Then, since the oldstring

is non-nil, we add the property ea @ -3+0.

Having exhausted that change, we try 0 @ -0 <-> e @ -1.

There are no strings to the right of the change, but to the left

are, as above, four occurrences of the letter r. Of those four

words, all have a preceding a; before that they all have an e.

Beyond this there are no significant letters. Thus our third test

is ear @ -0-3. This time the oldstring is nil, and so we cannot

milk any further properties out of the change.

Note that the properties proposed by our algorithm are not

always helpful. In the example above, ear @ -0-3 was probably the

only germane test, though ea @ -3+0 and r @ -3+2 could be

conjoined to give the same effect. The idea is that these are

meant as candidate tests, to be incorporated into the decision

tree as the tree-building routine sees fit.

- 58 -

Writing the tests for each domain in parentheses, the running

example, after characterization, becomes:

la. 0 @ -0 <-> s @ -1

{newt tulip apple elbow}

3. 0 @ -0 <-> es @ -2
x @ -0-1)
fox tax box prefix switch}

4.4.1.7. Calculating attribute vectors

The last preparatory step before building the decision tree

is to calculate which properties each word has. This information

will be accessed many times during tree construction.

4.4.2. Building the decision tree

The tree-building routine in Lexicrunch, ID4, is modelled

after Quinlan's classification program, ID3 [Quinlan 1979], which

is in turn an extension of Hunt et al.'s concept learning system,

CLS [Hunt et al. 19661. The Lexicrunch routine incorporates

several enhancements to Quinlan's algorithm.

4.4.2.1. ID3

ID3 takes as input a training set, a partition of the

training set into classes, and a list of properties that can be

used to characterize each class. From these data, it builds a

decision tree which assigns each object in the training set to its

proper class. Though Quinlan allows multi-valued properties, we

will assume, in the description that follows, that properties are

- 59 -

two-valued, as they are in Lexicrunch -- i.e. an object either has

a property or it does not. [Cohen and Feigenbaum 1982, p.4071

The basic ID3 algorithm is:

procedure ID3 (set, partition, properties):

if all elements of set are in the same class then
return a leaf node containing that class

else
prop F a property in properties

which is chosen by some heuristic
setY 4- the elements of set that have prop
setN 4- the elements of set that do not have prop
return a tree whose root contains the property prop,

whose Y-child is
ID3(setY, partition, properties - prop),
and whose N-child is
ID3(setN, partition, properties - prop).

Quinlan also provides a mechanism for sampling the corpus

iteratively, in case the whole thing does not fit in core at once.

[Cohen and Feigenbaum 1982, pp.407-8]

The heuristic that picks a property to split on should select

the test with the greatest discriminatory power -- i.e. it should

partition the data as close as possible to class boundaries.

[Cohen and Feigenbaum 1982, p.408]

Let us represent the classes pictorially by amorphous shapes,

and a property by a line through these shapes. The objects on the

shaded side of the line have the property; the objects on the

other side do not. Then, for example, test T in

* The heuristic is discussed below.

-b0-

is an excellent property to split on, as it allows us to define

class B as "those objects with property T." Test U, on the other

hand, probably does not help distinguish among the classes.

Quinlan selects properties to split on using an information-

theoretic measure, the entropy heuristic. The entropy of a corpus

with respect to test T is defined as

entropy[T} = [pTclog, pTc `lTclog, gTel classes c

where

pTc
a proportion of objects in class c that

have property T

QTc " proportion of objects in class c that
do not have property T

log'x - 0 for x - 0; else log'x - log2j

Roughly speaking, entropy[T] is the number of binary tests needed

in addition to T to discriminate among the classes [O'Keefe 1983,

p.480J. The entropy heuristic is to choose the test T with the

lowest entropy(T). [Cohen and Feigenbaum 19821

} We can change the oase of the logarithm (to numbers
greater than 1) if we wish, as this just multiplies the en-
tropies by a constant, but does not affect comparisons
between entropy values.

- 61 -

4.4.2.2. IN

To render ID3 suitable for Lexicrunch, several extensions are

indicated. Although the modifications were designed with word

morphology in mind, they bear on the classification task in

general.

4.4.2.2.1. Providing for exceptions

Implicit in ID3 is the assumption that the given list of

properties will always be adequate for explaining why a given

object is in the class it is in. If this assumption were

violated, there would come a point in the algorithm when a corpus

could not be analyzed into its constituent classes -- the program

would "break."

In Lexicrunch, we cannot justify the assumption of

"omniscient properties." Sometimes the tests needed to

discriminate among classes lie beyond the program's grasp, such as

in the case of the rule of section 3.2.3 that words borrowed

directly from Latin take -or. In addition, some morphological

distinctions may simply be totally arbitrary, and not expressible

in terms of abstract properties. For instance, what property of

ox, etymological or otherwise, explains why it takes an -en

plural, but fox and ax do not?

We therefore need an "escape hatch" to resort to when our

properties fail us. If we run out of properties in ID4, we simply

approximate the current corpus by a leaf node containing the

largest class. Words in minority classes are memorized as

- 62 -

inclusions.

The revised algorithm is shown below. It returns two-part

structures written as X (Y>, where X is the decision tree and Y

the list of inclusions. An assignment of the form

<A I B> 4- X I Y> means A (- X and B 4- Y.

procedure ID3.5 (set, partition, properties):

if (all elements of set are in the same class)
or (properties is nil) then

else

class F the class in set with the most members
Inc E- a list of all objects not in class
return <a leaf node containing class

I
inc>

prop F a property in properties
which is chosen by some heuristic

setY F the elements of set that have prop
setN F the elements of set that do not have prop
<treeY incY> F ID3.5(setY, partition,

properties - prop)
<treeN

I
incN> F ID3.5(setN, partition,

properties - prop)
return <a tree whose root contains the property prop,

whose Y-child is treeY, and whose N-child is

treeN I the concatenation of incY and incN>

4.4.2.2.2. A relevance check

Our motivation for building a decision tree in the first

place was to represent as compactly as we could a partition of

objects into classes. It follows that tests in our tree that take

up more storage than the examples they account for are

counterproductive and irrelevant. Such tests nevertheless manage

to find their way into our decision trees in two circumstances.

The first is when our heuristic for picking a test to split

on backfires. Consider a hypothetical partition of English words

into two classes, A and B, defined in terms of properties p and q

- 63 -

by

A = objects with both p and q, or neither
B = objects with p or q, but not both.

Let us say that there is a third property, r, which tests whether

a word has an even number of letters. Assuming that all three

properties bisect A and B approximately, the entropy heuristic

will rate them more or less equally. Just to be perverse, suppose

r comes out on top Then the program will build a tree along the

lines of

has r?

Here r is the quintessential irrelevant test: splitting on it

contributes absolutely nothing to the task of discriminating

between A and B. This is shown by the fact that the Y-subtree and

N-subtree of the r node are identical -- we must apply the same

classification function to words regardless of whether they have

r.

The second situation that invites irrelevant tests is when

the program simply does not have the property needed to tell

certain classes apart. It then tends to claw and scratch its way

This will happen if p and q split A and B into more equal
halves than r does.

- 64 -

toward class definitions by applying numerous inappropriate tests.

For instance, say we are faced with these classes:

1 . i @ -i <-> a @ -a
{sink ring sing spring drink}

2. 1 @ -i <-> u @ -u
{string cling fling sting stick slink}

and the available tests are nk @ -i+1 and ng @ -1+1. These tests

are certainly not sufficient to separate the classes -- indeed it

is not clear that any test could do so -- but as long as the

program has properties at its disposal, it will persist in growing

its tree. It might come up with:

nk @ -i+1 ?

2 2

inclusions: ring, sing, spring, slink.

This solution requires a 5-node decision tree and 4 inclusions to

remember 11 examples. Surely we would have been better off

building a leaf node right at the start -- then there would be 1

node in the tree and 5 inclusions, as below.

2

inclusions: sink, ring, sing, spring, drink

Another reason for halting early in examples like that above is

that "improving the fit of a rule to the training set (beyond a

certain point) can make it perform worse on the rest of the

- 65 -

population" (O'Keefe 1983, p.1179].

The customary cure for irrelevant tests -- at least those

that arise in the second situation -- is to appeal to a stopping

rule that says when classification has gone far enough (see, e.g.,

Sturt [1981]). The stopping rule evaluates the potential

property-to-split-on using some heuristic; if the property fails,

we build a leaf node. An example of a heuristic is to check that

the entropy of the property is below a certain threshold.

One trouble with stopping rules is that defects in their

heuristics tend to have drastic consequences. Sometimes it is

necessary to split on a superficially "bad" property, as in the

case of inherently disjunctive classes, when each individual

property fits the class poorly. If the stopping rule vetoes the

split, the decision subtree cannot be built. Stopping rules also

magnify flaws in the property-selecting heuristic. Where the poor

choice of a proper.ty led to redundant subtrees before (as in the

example above with properties p, q, and r), once we have a

stopping rule, the subtrees may not be created at all.

Corlett [1983] suggests a more robust remedy for irrelevant

tests. He first "decompiles" the decision tree into a list of

classification rules. There will be one rule for each root-to-

leaf path in the tree: it will be of the form

if an object has the properties corresponding

to Y-branches on the path, and it lacks those

corresponding to N-branches then the object

is in the class given by the leaf node.

The next step is to go through each classification rule and try to

- 66 -

drop each of its conditions in turn. Unless the deletion of a

condition would cause the rule to misclassify,

[Corlett 1983, pp.139-401

it is discarded.

Applying Corlett's method to our p, q, and r example, we get

eight classification rules:

if r and p and q then A

if r and p and not q then B

if r and not p and q then B

if r and not p and not q then A

if not r and p and q then A

if not r and p and not q then B

if not r and not p and q then B

if not r and not p and not q then A

The r condition from the first four rules and the not r condition

from the last four can be deleted with impunity. The eight rules

then collapse into the correct four.

Corlett actually addresses a more general problem than the

one we stated: he deletes a test from only those rules in which it

is extraneous, rather than in "all or none" of them. But

Corlett's algorithm suffers from the concomitant problem that its

output is a list, not a tree of rules: lists are far less

efficient at classification. Moreover, he fails to throw away

irrelevant tests that arise in our second situation, as long as

they cover at least one example.

In Lexicrunch, a test is deemed irrelevant if its Y-child and

N-child "compute the same function"; for if this is the case, then

we may as well divert all the data to one of the subtrees -- it is

redundant to have both. The way we tell whether one subtree alone

suffices is to measure how it performs on the examples normally

- 67 -

handled by the other subtree. If it does not require

significantly more inclusions than the other subtree for any

class, then it can be said to subsume the function of the other

subtree. We may then eliminate the other subtree, as well as the

parent node.

With this relevance check installed, our classification

algorithm becomes:

- 68 -

procedure'ID4 (set, partition, properties):

if (all elements of set are in the same class
or (properties is nil) then

else

class, +- the class in set with the most members ,n,-'

prop F a property in properties
which is chosen by some heuristic

setY F the elements of set that have prop
setN F the elements of set that do not have pron
<treeY incY> F ID4(setY, partition,

properties - prop)
<treeN incN> F ID4(setN partition,

properties - prop)

inc F a list of all objects not in class F-,..._._....
return <a leaf node containing class I inc>

KAkf

errY f inclusions produced by classifying setN
using treeY

errN F inclusions produced by classifying setY
using treeN

if for all classes c, not SIGNIF(no. of class c
objects in errY - no. of class c objects
in incY, no. of objects in class cJ then

/* Y-subtree subsumes. N-subtree */
return <treeY

I .concatenation of incY
and errY>

elseif for all classes c, not SIGNIF(no. of class c
objects in errN - no. of class c objects
in incN, no. of objects in class ci then

else

/* N-subtree subsumes Y-subtree */

return <treeN
I

concatenation of incN
and errN>

/* neither subtree subsumes the other
return <a tree whose root contains the

property prop, whose Y-child is
treeY, and whose N-child is treeN
the Concatenation of incY and incN>

For the first example above, with properties p, q, and r, ID4

deletes the r test, because its Y-subtree and N-subtree behave

exactly the same way. The whole tree is replaced by the

Y-subtree.

- 69 -

In the second example, the ng test will be excised, since its

subtrees are identical. This leaves the tree

nk @ -i+1 ?

The analysis for the nk test is as follows:

setY = sink drink slink}
setN = ring sing spring string cling fling sting stick}
in f = slink}
incN = ring sing spring}
errY = string cling fling sting stick}
errN = sink drink}

inclusions setY setN
class 1 class 2 class 1 class 2

treeY 0 1 0 5

treeN 3 0 2 0.

The Y-subtree does not subsume the N-subtree because the N-subtree

is better for the class 2 data of setN, i.e. SIGNIF(5 - 0, 6).

However, the N-subtree does subsume the Y-subtree, as it does not

do significantly worse for class 1 -- not SIGNIF(3 - 0, 5) -- nor

for class 2 -- not SIGNIF(O - 1, 6). Thus we end up with the

decision tree

2.

4.4.2.2.3. Ambiguous word classifications

The classification problem in Lexicrunch is a departure from

Quinlan's specification in that we are not given a strict

- 70 -

partition of words into classes: some words may be listed in

multiple classes. The example given in section 4.4.1.4 was of

breed in

1. a@-2<->0@-1
{breed feed}

2. e @ +3 <-> 0 @ +3
{breed bite}

Let us consider how ID4 would cope with such an ambiguous

classification.

Since ID4 classifies words by their properties, not by which

classes) they are in, we can forget for the moment that words are

assigned to classes at all. Given the words breed, feed, and

bite, and appropriate properties, ID4 might group the words as

follows:

d @ -2+1 ?

{breed, feed} {bite}.

Now if we endeavor to account for "class structure," we will

observe that all the copies of a word will aggregate together at

the same leaf node, as there is no possible test that could split

them up. Hence we can redraw the diagram above as

d @ -2+1 ?

1. {breed feed} 2. {bite'

2. {breed}.

- 71 -

The rule for breed is thus computed normally. The only special

provision we need to make is to cancel spare copies of a word at a

leaf node if one of the copies is in the chosen class -- e.g. if

we associate class 1 with the left leaf node above, we must strike

breed from class 2, rather than listing it as an inclusion. If

none of the copies of the word is in the chosen class, we will

list it as an inclusion in all of its classes, and resolve the

ambiguity later (see section !.)4.3).

4.4.3 Tidying up

Inclusions to our rule come from two sources: the ones

returned by ID!, and those set aside earlier in rule compression

in "insignificant classes." There may be words of either sort

that are listed as inclusions in more than one class. We now

assign them to just one of their classes-

We could make the assignments arbitrarily; but with the right

arrangements, we may be able to get rid of a few classes. The

task is to select as few classes as possible which still contain

one copy of every word.

This is known as the minimum set cover problem.

Unfortunately, it is NP-complete [Aho, Hopcroft, and Ullman 1974,

p.378]. We will have to settle for a greedy heuristic. We start

by taking "forced" classes, i.e. those referenced in the decision

tree, and those that contain unique occurrences of elements. Then

at each iteration, we pick the class that gives us the largest

number of new elements. Ambiguously classified words are assigned

to the first of their class that we select. Hopefully we will not

have to select every claQQ-

Chapter 5

Performance of Lexicrunch

5.1. Examples

Lexicrunch was tested on three main examples: the past tense

of verbs in English, the first person singular present indicative

in Finnish, and the past participle in French. The rules produced

by the program, after data entry and compression, are given in the

appendices in verbose form.

The program displays rules in verbose form when trace mode is

turned on during compression. Our rule from chapter 4 for the

plural inflection could be written in verbose form as follows:

Decision tree:

if x @ -0-1 then [2.1]
2. {fox tax box prefix}

else [1.1J
1. newt tulip apple elbow}
2. switch}

Rule-defined classes:

1. 0 @ -0 <-> s @ -1
[1.1]: newt tulip apple elbow

2. 0 @ -0 <-> es @ -2
[2.1]: fox tax box prefix
Inclusions: switch[1.1]

Inclusion classes:

3 0@-0<->en@-2
Inclusions: ox

The decision tree is printed first. Its leaf nodes are

specified slightly differently than usual: instead of just

supplying the index of a morphological process, we write the

- 74 -

index, a dot, and a small integer which identifies the leaf node,

all enclosed in square brackets. Thus in the first line of the

decision tree above, we have the leaf node [2.1], which references

process 2. If there were subsequent leaf nodes containing process

2, they would be expressed as [2.2], [2.31, etc. Appearing after

each leaf node is a tabulation of the words in significant classes

which the node must handle. Node [1.1], for example, must handle

newt, tulip, apple, and elbow from class 1, and switch from class

2.

Following the decision tree are the rule-defined classes,

i.e. those classes referenced in the decision tree at least once.

For each class, the domain is explicitly enumerated. First its

rules in the decision tree are given, identified by their leaf

nodes, along with the list of words they contribute to the class.

Then come the words which are memorized as inclusions. Each word

is accompanied by the leaf node that would misclassify it were it
not listed as an inclusion. To illustrate, class 2 above is a

rule-defined class with one rule in the decision tree, namely

if x @ -0-1 then [2.1]. This rule contributes the words fox, tax,

box, and prefix to the class. Switch is stored as an inclusion

because it would otherwise be classified by the else [1.1] rule.

Finally, we have the inclusion classes. They have no rules

in the decision tree; their domains are merely lists of

inclusions. Words in the inclusion lists from insignificant

classes are not printed with a corresponding leaf node. In our

example, class 3 is the only inclusion class. It covers just one

word, ox. Since ox is originally from an insignificant class, it

- 75 -

does not have a following leaf node.

5.1.1. English data

The English data consist of 127 verbs and their past tenses.

An attempt was made to include at least four verbs from each

irregular class, and a few more for the larger regular classes.

The data and the rough class definitions come from Quirk and

Greenbaum [1973, pp.26-35] and Strang [1962, pp.129-33].

Lexicrunch arrived at 14 rule-defined classes and 35

inclusion classes for the English example (see appendix A). Its

rules for the regular classes are sensible; e.g. for class 1 we

have, "Add -ed to a verb by default or if it ends in -ay." It is

more difficult to judge other rules, such as, "Change the last i

to an ou in verbs which have an nd after their last i," as grammar

books rarely lay out such patterns. Pragmatically, the rules are

sound, as they account for 84 words, memorizing only 17 of them.

Three of the inclusions are -ng verbs whose i changes to an a, not

a u. These are forgivable, as there is no obvious test that

distinguishes the two sorts of -ng verbs. It also seems

reasonable to memorize words like hold, as they bear little

resemblance to other words of their class -- in this case, blow,

grow, and throw.

The inclusion classes handle 43 examples, a suspiciously

large number. But 39 of them -- words like go and buy -- are in

classes containing at most two words. Such words are arguably

"true anomalies" which must be learned by rote; it just happens

that these are common in English. The remaining 4 words of the 43

-76-

-- split, beat, cut, and hurt -- are listed together in the class

in which the past tense is the same as the present. This class

could have been characterized approximately as "words that end in

-t"; the reason that Lexicrunch missed this rule is discussed in

section 5.2.3.

Rule compression for this example took approximately six

minutes of CPU time, with the program running in compiled mode on

the departmental VAX 11/750.

5.1.2. Finnish data

Inflected forms of Finnish verbs are derived from verb stems,

abstract grammatical entities which do not exist in the language

per se. Since our data are taken from Whitney [1956], we observe

his convention of treating all stems as vowel stems, rather than

saying that certain verbs have both a vowel and a consonant stem.

To distinguish stems from "normal" words, we write them with a

final hyphen [Whitney 1956, p.vi]. Note also that A and 8 are

distinct letters in the Finnish alphabet [Whitney 1956, p.13J.

They were represented as special characters in the Lexicrunch

data, but appear normally here for the sake of readability.

The first person singular present indicative is derived quite

regularly from the verb stem by (a) the addition of -n, and (b)

any relevant consonant gradation in the stem (see section 2.3.3.2)

[Whitney 1956, p.27]. Thus we should expect twelve classes in our

rule: one for stems that do not change, and eleven for the eleven

types of gradation. This is indeed what the program gets (see

appendix B).

- 77 -

A correct rule for predicting which words are in, say, the

it - 11 gradation class, is to check for the -ltV- ending, where V

stands for any vowel. The relevant properties in Lexicrunch are

1 @ -3-1 and t @ -3-0. We do not need to verify that the word has

a hyphen as its last letter or a vowel before that, since all

stems do. In fact, the program uses just the 1 property, because

this works for most words -- it only misclassifies alka-. The

program shies away from the conjunction of two properties because

that would only explain one additional word.

The rule that a preceding s or t inhibits consonant gradation

is partially expressed by leaf nodes [1.1] and [1.2], which state

that stems in -sty- and -sta- belong in the non-gradating class.

Words with related endings, e.g. -tka- in jatka-, are not numerous

enough to warrant rules of their own, and thus are listed as

inclusions.

There are also two rules in the decision tree that pick out

stems in -ata- and -Atg-. These handle the so-called amalgamating

verbs, which drop their t in the present tense. They are

characterized more completely by a short (orthographically single)

vowel plus a -ta- or -tg- ending. [Whitney 1956, p.28]

All together, the program requires 15 inclusions for a corpus

of 81 words. The inclusions are distributed in little bunches,

and so it would not be worthwhile to introduce rules to explain

them.

A larger dataset would present Lexicrunch's rule with

counterexamples, as several of its formulas are cheap extensional

- 78 -

equivalents. To see if additional data would indeed force the

program to be more exact, an example with all 711 verbs from

Whitney [19561 was run (see appendix C).

The program got the same twelve classes, but modified its

decision tree. Where it used 1 @ -3-1 to delineate the It - 11

class before, it now resorts to the proper conjunction,

(1 @ -3-1) and (t @ -3+0),

as the extra condition is needed to handle six non-gradating

counterexamples. It induces several unintuitive rules as well,

e.g. that verbs in -ty- or -tu- do not gradate, but the rules

cannot be faulted on practical grounds, as they produce very few

inclusions.

Lexicrunch's solution incorporates 55 inclusions. As before,

most of them can be accounted for by the fact that there are very

few of any one kind. The first three inclusions to class 1, for

example -- kynsi-, pakinoi-, and luennoi- -- are memorized because

they are the only words in the corpus that have n @ -3-1, yet do

not go in the nt - nn class. The program could conjoin another

property, as it did for the It - 11 class, if the additional rule

were, by its definition, justified.

One might intuitively expect the program to assign -stA-

verbs to class 1 via a rule; instead, it stores all 12 as

inclusions. The justification is that these 12 words are

insignificant out of the 311 words in class 1, and thus they do

not merit a special rule.

- 79 -

Class u, the t - d gradation, also appears to have a hefty

number of inclusions. Most of them originate from rule [3.2] --

that is, the program has difficulty distinguishing them from the

amalgamating verbs of class 3. In order for it to tell them apart

properly, it would need rules saying that verbs with long vowels,

i.e. in -VVtV-, are in class u; other verbs ending in -ta- or -ta-

are in class 3. It would take a tremendous number of words to

encourage Lexicrunch to build these rules.

The program compressed the shorter Finnish rule in 4.5

minutes of CPU time; the larger rule took 54 minutes.

5.1.3. French data

Le Nouveau Bescherelle [1966] sets out 82 paradigms for

French verbs, along with rules which define their domains -- e.g.

paradigm 57 illustrates how to conjugate verbs which end in

-eindre, using the model of peindre. With respect to past

participles, these reduce to 34+ different paradigms.

To test Lexicrunch on the French data, four or more words (if

available) from each of the 34 classes were entered -- 129 words

in all. A note on the spelling of the words: the French acute

accent ('), cedilla(,), circumflex(-), and umlaut(-,) are true

accents, not parts of letters. These were accordingly represented

as special characters following the letter they modify.

The program's rule (see appendix D) matches that in the

Bescherelle quite closely. It has the same 34 classes, and the

definitions are very nearly identical. As usual, when the program

- 80 -

could get away with underspecifying a class, it did so. Thus the

class of -er verbs is characterized by e @ -1-1. Still, this

approximation makes no errors for the corpus given. Moreover, a

few classifications agreed exactly with Bescherelle's; the test

for the -clure verbs was

(re @ -2+0) and (clu @ -2-3).

Sometimes tests in the tree could be underspecified because

all competing words had already been drawn off. This was the case

for the rule for the -enir verbs,

(ten @ -2-3) or (ven @ -2-3).

All the -enir verbs are indeed derived from venir or tenir; the

only problem with Lexicrunch's rule is that it does not mention

the -ir ending. The rule works, nevertheless, because by the time

the rule is given in the tree, only -ir verbs are left.

The exceptions in the program's rule also coincide with those

given by Bescherelle. For example, rire and sourire appear as

inclusions in class 13. Bescherelle does no better, listing them

by themselves in paradigm 79. A few of the other inclusions, like

absoudre, dissoudre, and re'soudre in class 29, are given in

Bescherelle by a rule -- "ends in -soudre" -- but since the book

provides only these three examples in the domain, Lexicrunch

treats them as noise to be memorized.

The program's rule accounts for the 129 words using 32

inclusions. Because the rule is so close to the accepted

formulation, it should work, practically unchanged, for all 8,000

- 81 -

verbs in the Bescherelle.

The rule was compressed in six minutes of CPU time.

5.2. Weaknesses

Lexicrunch suffers from a number of weaknesses, several of

which were brought out in the test runs of section 5.1. These are

described below, along with outlines of remedies.

5.2.1. Spelling is but a dim reflection of pronunciation

Since speech precedes writing both phylogenetically and

ontogenetically, one might expect rules of word construction to be

stated most naturally in terms of pronunciation. Orthography is a

"second order effect," which was no doubt designed to map

straightforwardly onto pronunciation, but falls short of the mark

because of dialectical variation, language borrowing, and so

forth.

This spells trouble for programs like Lexicrunch, as their

vocabulary for expressing changes is orthographic. Sometimes it
is beneficial to ignore phonetics -- then, e.g., we do not have to

distinguish between the /d/ past tense morpheme in raised and the

/t/ in raced. Just as often, though, it confuses the issue to

deal with spelling. This is demonstrated by the English rule for

forming the past tense by shortening /i/ to /e/; it is realized in

three different orthographic ways in speed/sped, lead/led, and

read/read.

- 82 -

Lexicrunch could capture such trends directly if we were to

run it on phonetic rather than graphemic representations of words.

We are usually more interested, however, in recognizing and

producing normal written words than phonetic transcriptions.

We can retain our graphemic representations but also take

advantage of certain phonetic regularities by making a few

extensions to the program. First, we would supply a phonetic

transcription for each word, as well as the correspondence between

phonemes and graphemes. Then we would modify the test-devising

routine (see section 4.4.1.6 to take into account the phonetic

environment of a change.

For data such as

r i s e

/r/ /ai/ /z/

d r i v e

/d/ /r/ /ai/ /v/

etc.

we could then construct the past tense rule

if /r/ @ -3-1 then
if /ai/ @ -3+0 then 1

1. i @ -3 <-> o @ -3.

This would be more correct than the orthographic test ri 8 -3-1

because it excludes words like grill.

We would have to alter the recognition module (see section

4.2) as well. Currently, in unapplying a rule, the program

guesses which morphological process to uneffect, and then verifies

- 83 -

that it chose the right one. But now it may not know whether it

made the right choice until it reaches a lexical entry, with the

requisite phonological information. Thus the routine will have to

delay its verification of certain guesses until the end.

For example, in recognizing drove and *gro11, the routine

would uneffect process 1 above, yielding drive and grill. So far,

it cannot tell whether these forms have /r/ @ -3-1 or /al/ @ -3+0.

It would then look up the words in the VERB rule, and find that

drive does indeed have the appropriate Ir/ and /ai/, and hence

should take process 1. Grill lacks the /ai/, and so it was wrong

to apply process 1.

5.2.2. Words with a multiplicity of forms

In the overview of the program (section 1.4), we assumed,

with Kay [1983, p.94,1O2], that a morphological rule applied to a

word gives only one result. Occasionally, however, there will be

several answers.

In some cases, the multiplicity of forms corresponds to a

multiplicity of meanings. Hang, for example, has the past tense

hung in the sense of "suspended," but hanged for "executed." We

could enforce the meaning difference by writing the words as hangl

and hang2, but this is a bit cumbersome and contrived. It would

not even work for examples like appendix, whose plurals --

appendixes and appendices -- are not separable on semantic

grounds.

A more attractive way to protect the program from

-84-

multiplicity would be to hide it within special "compound"

classes. For instance, we would put appendix, along with similar

words, in just one such class, which we might represent as

1. 0 @ -0 <-> es @ -2
OR

x @ -1 <-> ces @ -3
{appendix helix matrix radix}.

We would also have to update the generation routine to return a

list of all possible answers.

5.2.3. Characterizing words that undergo no change

The routine that devises tests (see section 4.4.1.6) clearly

cannot characterize any arbitrary class of words. A flagrant

example of its inadequacy arises in the English data of appendix

A, where the program fails to come up with any properties for the

class

17. --
{split beat cut hurt}

The problem is that the test-devising routine only looks for

common strings around change sites; but the class above has no

change sites -- it consists of words whose past tense is the same

as the present. Nevertheless, a reasonable characterization

exists; namely, t @ -0-1. The dental ending makes sense if we

hypothesize a derivation like

split + -t + *split-t + split,

where the past tense -t is that in burnt, learnt, etc. [Matthews

1974, p.122J.

-85-

The analysis above suggests that the change in our class is

not null, but invisible, and it occurs at the end of the word.

Lexicrunch, however, has no way of knowing this. We could make up

for the program's ignorance by having it search for common strings

at various places in the word -- including the beginning and the

end -- whenever the class has a null list of changes.

5.2.4. Problems with IN

The IN algorithm is responsible for several of the program's

performance problems. Some of them have to do with aspects of the

implementation; others are more fundamental in that they challenge

the use of decision trees.

5.2.4.1. Conjunctive "halfway houses"

Ordinary classes are easily teased apart with a decision

tree, providing the apposite tests are available. As the tests

are applied in turn, the associated classes "peel off" from the

pack. Say there are three classes, A, B, and C, defined by

A = objects which have p

B = objects not in A which have r
C = objects not in A which do not have r

One decision tree to make the proper class assignments would be

- 86 -

has p?

Now, however, suppose that A is given by

A = objects which have p and q.

To isolate A, we then need to apply tests p and q successively,

i.e.

has p?

But as far as classes B and C are concerned, the intermediate test

node for q is irrelevant. The decision subtree for B and C is the

same, regardless of where in the p and q path it diverges from.

In general, a conjunction of n properties will necessitate n

copies of the subtree that distinguishes among the remaining

classes. To avoid this redundancy, we could "shrink" the

conjunctive succession of properties down to one node. For the

example above, we would be left with

- 87 -

has p and q?

This procedure is just like our relevance check (see section

4.4.2.2.2, except that we are conflating not a node's Y- and

N-subtrees, but rather its N-subtree and the N-subtree of its

Y-sub tree.

But the iceberg extends still farther. Redundant subtrees

can sprout arbitrarily far apart in the decision tree. If, for

example, we defined A by

A - objects which have both p and q, or neither,

then the not p and q and p and not q subtrees would be the same.

We should really compare every pair of subtrees to see if they

compute the same function; and this could be prohibitively

expensive. Moreover, the topology of the tree prevents the

"shrinking" together of widespread nodes. We would have to

replace the two subtrees with one common one, and install "links"

from the roots of the original subtrees to the new subtree. The

resulting structure would only be a decision tree in a very loose

sense.

5.2.4.2. Disjunction versus random effects

To restrain Lexicrunch from characterizing wayward classes of

- 88 -

English words by

(a @ -0-1) or (b @ -0-1) or ... or (z @

we imposed the restriction that each disjunct cover at least a out

of the n words in its class, where SIGNIF(m,n). Properties true

of fewer examples are not recognized by the test-devising routine.

By the definition of SIGNIF (see section 4.4.1.5), this means

that properties with 10 percent or less coverage will never be

detected. However, some such properties are still "useful," e.g.

stA @ -1-3 in class 1 of the Finnish example in appendix C.

To fix this, we could loosen the restriction on properties.

If we are considering appending a character c onto the teststring

s, we could insist only that in, the number of words with a c, is

significant compared to n, the number of words with the string s,

as opposed to the number of words in the whole class. Then, for

instance, the -stA- property above would be accepted, so long as a

significant proportion of the words in class 1 ended in A, a

significant proportion of words in -11 had a preceding t, and a

significant proportion of -t8 words had an s before that. The

tests above for -a, -b, etc. should be judged irrelevant, but for

reasons discussed in section 5.2.4.4, the later ones will not be.

We might also try to distinguish more precisely between

"true" disjuncts and random effects by refining the SIGNIF

function using principles of statistics, but this is beyond the

scope of this paper.

-89-

5.2.4.3. Lexicrunch's aversion to disjunction

The entropy heuristic (see section 4.4.2.1) favors tests that

split the corpus near class boundaries. It follows that

disjunctive properties which cleave a class into halves will not

be highly regarded. Consider the situation in the diagram:

q

The formula p or q characterizes A quite well. Nevertheless, of

p, q, and r, it is the last that will be chosen, because it cuts

closer to class boundaries than the others. After that, p and q

may not be incorporated into the decision tree if they do not

explain enough of the outstanding words.

The only certain way to avoid such unfortunate choices of

properties is to "look ahead" to see whether a given test will

ultimately lead to a clean, effective characterization. This,

however, entails building the rest of the decision tree every time

we evaluate a test. It is not clear how to improve the test-

selection heuristic without incurring this massive cost.

5.2.4.4. Fragmentation due to irrelevant tests

Irrelevant tests should logically never be put in the

decision tree. In Lexicrunch, however, it is convenient to build

-90-

the whole tree first, including irrelevant test nodes, and to

expunge the unwanted tests afterwards. The temporary irrelevant

tests tend to break up the classes into incoherent bits, resulting

in two deleterious effects.

First, while a whole class may manifest a certain trend

clearly, its parts, after fragmentation, may be too small to

deserve to be individually characterized. Thus the original trend

is lost. Take the following classes from the plural rule for

English nouns:

1. fox sphinx tax mix roach sash kiss}
2. clock bird tart cheesecake}

and suppose that we have two properties to choose from, x @ -0-1

and the bizarre f @ +0+0. The program will split on the latter,

as it slices closer to class boundaries; it will later be thrown

out as irrelevant. Meanwhile, we get the tree

f @ +0+0?

1. {fox} 1. sphinx tax mix roach sash kiss}
2. clock bird tart cheesecake}.

The Y-subtree is finished. At the N-subtree, we can apply

x @ -0-1, but now it only explains three words, and so it too will

be considered irrelevant. If we had applied it to the original

class 1, it would have been judged worthwhile.

The second problem is the flip-side of the first: tests that

cover only a tiny proportion of the words in a class may

mistakenly be taken as significant for a fragment of the class.

- 91 -

This circumstance was alluded to in section 5.2.4.2 when we tried
to characterize a class of English words by applying 26 irrelevant

tests to it:

(a @ -0-1) or (b @ -0-1) or ... or (z @ -0-1).

The first tests we used would correctly be identified as

irrelevant, since they would presumably cover an insignificant

fraction of the words in the class. These early tests would cull
progressively more words out of the class, though, until
eventually some of the later tests above would explain a

reasonable fraction of the remainder. Such tests would not have

stood a chance had they been applied ahead of the other irrelevant

tests.

ID4 could be modified to eliminate the side effects caused by

irrelevant tests. Instead of picking the one best property to

split on, we would rank the properties from best to worst. We

would then split on a property and complete the decision tree. If
the property proved irrelevant, we would iterate for the next

property. Irrelevant tests would thus not affect the construction

of the rest of the tree.

This solution smacks of the nondeterminism we were worried

about at the end of section 5.2.4.3 -- although here we only have

to "look ahead" when we hit an irrelevant test, which should be

relatively seldom. But it is still likely that the resulting

algorithm would be insufferably slow.

- 92 -

5.2.5. Redundancy at the rule level

While Lexicrunch is reasonably adept at purging redundancies

from morphological data, new ones emerge in its rules. These

suggest that the program should be extended to capture

regularities across rules with meta-rules. We could continue in

this manner, with a meta-meta-level, ad infinitum.

5.2.5.1. Disjoining conditions

Given enough English past tenses, the program would

eventually derive a rule including a set of highly similar tests:

if ay @ -0-2 then 1 if ey @ -0-2 then 1 if iy @ -0-2 then 1 if oy @ -0-2 then 1 if uy @ -0-2 then 1

1. 0 @ -0 <-> ed @ -2.

Since these tests differ only in one grapheme of their

teststrings, it would make sense to replace that grapheme by a

variable. We could then condense the five tests into one:

if Vy @ -0-2 then 1

where V E {a, e, i, Of u}.

It pays to merge rules of the form

if p then changel
if q then changel into if p or q then changel

if the disjunction can be expressed moderately compactly. It
certainly seems reasonable to combine rules when their tests have

the same position and offset, as in the example above. One could

- 93 -

envisage a routine that would "factor out" variables by comparing

the two teststrings with a string-to-string repair algorithm like

that in section 4.3.3. Recurring variables like the one for

vowels would only have to be stored once, resulting in additional

space savings.

5.2.5.2. Unifying morphological processes

Lexicrunch may also produce series of related morphological

processes, which can profitably be combined if we introduce a new

notational mechanism. Consider the changes for consonant doubling

in the rule for English past tenses:

0 @ -0 <-> bed @ -3
0 @ -0 <-> red @ -3
0 @ -0 <-> ned @ -3

These are identical, except for one grapheme in their newstrings.

They can be summarized by a single more general expression:

0 @ -0 <-> Xed @ -3
where X @ -1.

The "X @ -1" means that X stands for the last character of the

uninflected word. Had X appeared in the oldstring of the change,

it would refer to the last character of the inflected word.

A routine to assimilate pairs of changes could look for

variables in the same way as the routine sketched in section

5.2.5.1. To figure out an afield that describes where a variable

is located, we could simply try all possibilities, as the search

space is not that large.

-94-

5.2.5.3. Isolating the components of rules

The third person plural present indicative in Finnish is

formed by adding -vat to the verb stem [Whitney 1956, p.27]. The

vowel in this suffix must harmonize with the stem, and so it

sometimes appears as A. The stem is also susceptible to consonant

gradation.

Lexicrunch would nominally create 24 classes for this rule,

each one performing one type of gradation -- there are 12 choices

-- and adding one of the two realizations of the suffix -- 2

choices. If, however, we were to analyze the rule into two steps,

consonant gradation and vowel harmony, we would need a total of

just 14 classes. This wasteful "cross-product effect" will result

whenever two or more independent alternations take place within a

rule.

Tell-tale evidence of the cross-product effect is when there

are pairs of rules of the form

if p and q then changel, change2
if p and r then changel, change3.

The repeated portion should be extracted, giving two sub-rules:

if p then changel if q then change2
if r then change3.

It would be feasible but decidedly non-trivial to write an

algorithm to decompose rules in this way.

Once a rule has been broken down into independent components,

it can be replaced by "sub-rule calls" to them. The same sub-

-95-

rule, e.g. that of consonant gradation, could be called by many

morphological rules.

5.2.5.4. Shared decision trees

The various inflections on a given part of speech in a

language often partition the words in similar ways. Take the

first person singular and first person plural for French verbs.

The former splits verbs into an -er class and an -ir class, among

others -- these take the -e and -is endings, respectively. The

latter also distinguishes those classes, suffixing them with -ons

and -issons. Grammar texts pick up on this homogeneity by using

the same set of verb categories for every inflection.

[Bescherelle 1966, p.24]

Lexicrunch would produce two essentially isomorphic decision

trees for these French rules. It could therefore economize on

storage by recognizing the redundancy and throwing one copy away.

One tree may make distinctions that are absent in the other; these

would have to be preserved in the resulting tree. Pairs of trees

with many partially overlapping classes should not be merged, as

their combination would be unacceptably bulky.

Two rules that have had their trees merged would use the same

numbering scheme for their classes, and would have pointers to a

common tree. We might also wish to put inclusions in the shared

area if they are classified the same way for both rules.

- 96 -

5.3. Evaluation

By and large, the troubles cited above are not severe, 'and

can be resolved adequately by the methods sketched. A few,

however, are more serious "matters for further investigation."

Computational linguists have in the past put up with the fact

that rules of orthography tend to be messier than their

phonological counterparts. In any case, we showed how Lexicrunch

could be made to describe at least the domains of rules in

phonological terms.

The introduction of "compound" classes would enable the

program to cope with our second problem, that of words which give

more than one answer when a transformation is applied.

The next problem we looked at was that of characterizing

words that undergo no observable change. Here it was sufficient

to do a "blanket search" for properties; a guided search would

necessitate deep linguistic analysis.

The difficulties with IN can be ignored to the extent that

they arise infrequently, and they introduce redundancy, not

inaccuracy into rules. Some of them, however, point up

significant flaws in the algorithm. In particular, the repetition

of subtrees (see section 5.2.4.1) implies that the decision tree

may be an inappropriate representation; a decision "graph," or

merely an ordered list of leaf nodes might be better.

Lexicrunch's problems with disjunctive rules and, to a lesser

degree, irrelevant tests, indicate inherent limitations on ID4's

abilities. There is thus room for improvement in the area of

- 97 -

classification algorithms.

The most pressing problem with Lexicrunch is redundancy at

the level of its rules. This springs up when there are similar

sets of tests, morphological processes, or decision trees, or when

there are rules with isolable components. The program needs a

meta-level if it is to achieve a reasonable standard of

compression when presented with many rules of a language. A rough

design of such an extension was given in section 5.2.5.

Chapter 6

Conclusion

The Lexicrunch program abstracts morphological rules from

sets of examples. Its primary goal is to compact the data; this
it does by capturing many instances of a recurring pattern with a

single specification of it.

The linguistic contribution of the work reported here is the

Lexicrunch formalism for morphological rules. Its chief merit is

its extensibility, deriving from the fully general notions of

morphological processes and property-defined domains. The

particular implementation can always be adapted within the basic

framework to handle new types of alternations.

The program induces a rule by (1) splitting the given corpus

of words into classes according to the morphological process they

undergo, and then (2) characterizing each class of words by their

properties. Step 2 is performed by the IN program module, which

is based on Quinlan's ID3 procedure. The enhancements to ID3

constitute the other main contribution of this work. They were as

follows: to make a provision for exceptions to classification

rules; to implement a filter that rejects irrelevant properties;

and to let words be assigned initially to more than one class.

The program was tested on examples from English, Finnish, and

French: it appeared to pick up most of the significant trends in

the data.

Several extensions could be made to the program. The most

important would be a meta-level which would enable the program to

- 99 -

recognize regularities in its rules, as it already does for its
data.

Appendix A
English example

Decision tree:

if ak @ -1-2 then [12.1]
2. bake}
12. take mistake forsake shake}

elseif w @ -0+1 then [13.1]
13. {blow grow know throw}

elseif nd @ -i+1 then [5.1]
5. {wind grind find bind}

elseif ay @ -0-2 then [1.1]
1. {pray stay spray-play relay}

elseif y @ -1+0 then [4.1]
1. {toy}
4. {hurry cry pry carry dally}

elseif nk @ -i+1 then [6.1]
6. {drink shrink sink stink}

elseif d @ -1+0 then if e @ -2+0 then [9.1]
9. {bleed breed feed speed}

else [16.1
1. end
13. hold}
16. build bend lend s end}

elseif e @ -2+0 then [14.11
14. {creep sleep swee feel}

elseif p @ -0-1 then [3.1]
1. jump}
3. strip hop strap map}

elseif i @ -i+0 then
if ng @ -3+1 then [11.1

6. spring sing ring
11. sting string fling cling}

else 17.11

5. fight}
6. sit give}
7. drive arise write stride ride win}
10. bite hide}
11. stick}
17. split}

elseif e @ -0-1 then [2.1]
2. hate name race manage}
15. lose}

elseif ear @ -0-3 then [8.1]
2. hear}
8. bear swear tear wear}

else [1.2]
1. clean touch wash work call walk rest}
8. steal break s eak}
17. beat cut hurt}

- 101 -

Rule-defined classes:

1. 0 0 -0 <-> ed @ -2
1.1 : pray stay spray play relay
1.2j: clean touch wash work call walk rest

Inclusions: toy(4.1) end[16.1] jump[3.1]

2. 0 0 -0 <-> d @ -1
[2.1]: hate name race manage
Inclusions: bake[12.1] like[7.1] hear[8.1]

3. 0 @ -0 <-> ped @ -3
[3.1]: strip hop strap map

4. -1 <-> ied @ -3
y[4.1]: hurry cry pry carry dally

5. i@ -i <->ou@-ou
[5.1]: wind grind find bind
Inclusions: fight[7.1]

6. i @ - i < - > a @ - a
[6.1]: drink shrink sink stink
Inclusions: spring[11.1] sing[11.1] ring[11.1]
give[7.1]

7. i @ -i <-> o @ -o

[7.1]: drive arise write stride ride win

8. ea @ -3 <-> o 0 -3
0 0 -0 <-> e @ -1
[8.1]: bear swear tear wear
Inclusions: steal[1.2] break[1.2] speak[l.2]

9. a@-2 <->0@-1
[9.1]: bleed breed feed speed

11. i @ -3 <-> u @ -3
[11.1]: sting string fling cling
Inclusions: stick[7.1]

12. a@-3 <->oo@-3
e @ -1 <-> 0 @ -0
[12.1]: take mistake forsake shake

13. o @ -o <-> e @ -e
[13.1]: blow grow know throw
Inclusions: hold[16.1]

14. e @ -2 <-> 0 @ -2
0 @ -0 <-> t @ -1
[14.1]: creep sleep sweep feel

sit[7.1 II

16. d @ -1 <-> t @ -1
[16.1]: build bend lend spend

- 102 -

Inclusion classes:

10. e @ +3 <-> 0 @ +3
Inclusions: bite[7.1] hide[7.1]

15. a@+3 <->0@+3
0 @ -0 <-> t @ -1
Inclusions: lose[2.1]

17.
Inclusions: split[7.1] beat[1.2] cut[1.2] hurt[1.2J

18. 0 @ -0 <-> ted @ -3
Inclusions: permit

19. 0 @ -0 <-> red @ -3
Inclusions: bar

20. e @ +1 <-> o @ +1

Inclusions: get

21 . e @ -1 <-> 0 @ -0
Inclusions: slide

22. ea @ +1 <-> o @ +1

Inclusions: weave

23. ee @ +2 <-> o @ +2
Inclusions: freeze

24. o @ +3 <-> 0 @ +3
Inclusions: choose shoot

25. a@-a<->e@-e
Inclusions: draw fall

26. a @ +1 <-> u @ +1

Inclusions: hang

27. u @ +1 <-> a @ +1

Inclusions: run

28. ay @ -2 <-> ew @ -2
Inclusions: slay

29. o @ +1 <-> a @ +1

Inclusions: come

30. e @ +0 <-> 0 @ +0
0 @ -0 <-> e @ -1
Inclusions: eat

31. ie @ +1 <-> ay @ +1

Inclusions: lie

- 103 -

32. ee @ +1 <-> aw @ +1

Inclusions: see

33. i @-3 <->uc@-3
e@-1 <->0@-0
Inclusions: strike

34. Y @ -1 <-> id @ -2
Inclusions: say lay

35. el @ +1 <-> o @ +1

0 @ -0 <-> d @ -1
Inclusions: sell tell

36. o @ +1 <-> id @ +1

Inclusions: do

37. be @ +0 <-> was @ +0

Inclusions: be

38. 0 @ +1 <-> o @ +1

y @ -1 <-> ght @ -3
Inclusions: buy

39. tc @ +2 <-> ug @ +2

0 @ -0 <-> t @ -1
Inclusions: catch

40. in @ +2 <-> ou @ +2

0 @ -0 <-> ht @ -2
Inclusions: bring

41. ave @ +2 <-> ft @ +2

Inclusions: leave

42. an @ +2 <-> oo @ +2
Inclusions: stand

43. e @ +1 <-> 0 @ +1

c @ -2 <-> ug @ -4
0 @ -0 <-> t @ -1
Inclusions: teach

44. eek @ +1 <-> ought @ +1

Inclusions: seek

45. ink @ +2 <-> ought @ +2

Inclusions: think

46. k @ -2 <-> d @ -2
Inclusions: make

47. ve @ -2 <-> d @ -1
Inclusions: have

48. go @ +0 <-> went @ +0
Inclusions: go

49. y @ -1 <-> ew @ -2
Inclusions: fly

Appendix B
Finnish example

Decision tree:

if p @ -3+0 then [8.1]
8. {raapi- vilpy- so i- kylpe- uupu-}

elseif n @ -3-1 then [3.1j
3. {myantg- kokoontu- synty- tunte- kggnty- anta-}

elseif 1 @ -3-1 then [5.1]
5. {puhalta- uskalta- viheltg- kieltg- ylty-}
6. alka-}

elseif r @ -3-1 then [4.1]
4. takertu- siirty- murta- kerto- ymmgrtg-}
6. kirku-}

elseif k' -3+0 then [6.1]

1. {jatka- kgtke- kisko- laske-}
6. nukku- leikki- rikko- haukku- liikku- luke- mglki-

ngky- aiko-}
elseif gtg @ -1-3 then [2.1]

2. {mggrgtg- vgrjgtg- pelkgtg- hergtg-}
elseif t @ -3+0 then

if sty @ -1-3 then [1.1]
1. {sivisty- hgmmgsty- ilmesty- edisty-}

elseif sta @ -1-3 then 11.21
1. {harrasta- loista- nosta- osta- purista-}

elseif ata @ -1-3 then [2.2]
2. {kelpata- huomata- seurata- pelata- saarnata-}

elseif t @ -3-1 then [2.3]

2. {ko utta- peittg- puuttu- moitti- petty-}
else [7.1]

1. pistg-}
2. hgvitg-}
7. huuta- kiirehti- tahto- avautu- pysghty- tietg-}

else [1.3]
1. {ui- seiso- ammu- ole- mene- saa- tule-}

Rule-defined classes:

1. - @ -1 <-> n @ -1
1.1 : sivisty- hAmmgsty- ilmesty- edisty-
1.2 : harrasta- loista- nosta- osta- purista-
1.3 : ui- seiso- ammu- ole- mene- saa- tule-

Inclusions: jatka-[6.1] kgtke-[6.1] kisko-[6.1] laske-,
[6.1] pistg-[7.1]

2. t @ -3 <-> 0 0 -2
@ -1 <-> n @ -1

2.1 : mggrgtg- vgrjgtg- pelkgtg- hergtg-
2.2 : kelpata- huomata- seurata- pelata- saarnata-
2.3 : koputta- peittg- puuttu- moitti- petty-

Inclusions: hgvitg-[7.1]

3. t@-3 <->n@-3
- @ -1 <-> n @ -1
[3.1]: mydntg- kokoontu- synty- tunte- kRAnty- anta-

-106-

4. t @ -3 <-> r @ -3
- @ -1 <-> n @ -1
[4 . 1] : takertu- siirty- murta- kerto- ymmArtA-

5. t @ - 3 < - > 1 @ - 3
- @ -1 <-> n @ -1
[5.1]: puhalta- uskalta- viheltA- kieltA- ylty-

6. k@-3<->00-2
- @ -1 <-> n @ -1
[6.1]: nukku- leikki- rikko- haukku- liikku- luke-

mAAki- nAky- aiko-
Inclusions: alka-[5.1] kirku-[4.1]

7. t@-3<->d@-3
- @ -1 <-> n @ -1
[7.1]: huuta- kiirehti- tahto- avautu- pysAhty- tietA-

8. p @ -3 <-> v @ -3
- @ -1 <-> n @ -1
[8.1]: raapi- viipy- sopi- kylpe- uupu-

Inclusion classes:

9. k@-3<->g@-3
- @ -1 <-> n @ -1
Inclusions: tinki-

10. p@+2 <->m@+2
- @ -1 <-> n @ -1
Inclusions: ampu-

11. k @ -3 <-> j @ -3
- @ -1 <-> n @ -1
Inclusions: sulke- kulke-

12. p@+2<->00+2
-@-1 <->n@-1
Inclusions: oppi- loppu- leppy-

Appendix C
Extended Finnish Example

Decision tree:

if p @ -3+0 then [7.1]
7. {luopu- leipo- uupu- hiipi- kylpe- vaipu- sopi-

saapu- repi- viipy- raapi-}
elseif n @ -3-1 then [6.1]

1. kynsi- pakinoi- luennoi-}
6. }anta- kAAnty- rakenta- tunte- synty- kiinty- kyntg-

lentg- tybntg- kanta- kokoontu- myt3ntg- kggntg- ,

paranta- Agntg- hgmmenty- sekaantu- vghenty- tyhjenty-
vggntg- nggnt - asenta-}

elseif k @ -3+0 then 12.1]
1. {kgtke- koske- tutki- koske- itke- laske- usko-

atku- kisko- jatka-}
2. juhku- pyrki- purka- puke- loiko- koke- halko- tako-

ruokki- pyyhki- hehku- aiko- kirku- hankki- vglkky-
liikku- haukku- alka- rikko- leikki- teke- ngke- nAky-
nukku- mAAki- luke- hake-}

elseif r @ -3-1 then [5.11
1. {ympgrt3i- kgrsi- epgrt3i-}
5. visertg- ymmgrtg- kerto- kiertg- kumarta- kumartu-

murta- saarta- siirty- sorta- takertu- piirtg- sinertg-
uurta-}

elseif 1 @ -3-1 then
if t @ -3+0 then [8.1]

8. {puhalta- uskalta- viheltg- kieltg- sukelta-
vaelta- ylty- kiiltg-}

else [1.1]
1. {Iyb- luo- tulvi- salli- valvo- solmi-}

elseif yty @ -1-3 then [4.1]
4. {heittgyty- jgrjestgyty- kergyty- kiteyty- kgyttgyty-

kieltgyty- pistgyty- selviyty- tyyty- l3yty-}

elseif sta @ -1-3 then [1.2]

1. {puhdista- varasta- sisusta- pelasta- korista-
kiinnosta- aavista- tarkasta- muodosta- tunnusta-
omista- reunusta- perusta- koukista- ripusta- painosta-
luista- karista- kuulosta- kalasta- pudista- muista-
matkusta- kirkasta- ratsasta- paista- valmista-
rakasta- purista- osta- harrasta- nosta- loista-j

elseif t @ -3-1 then
if t @ -3+0 then [3.1]

3. {vaikutta- totutta- raoitta- pakotta- yllgttg-
voitta- viivyttg- varoitta- tarkoitta- sijoitta-
mytShgstyttg- tuotta- saavutta- rauhoitta- noudatta-
nauratta- lAAhgttg- liitty- ilahdutta- upotta- ,

sytyttg- pystyttg- pettg- nybkgyttg- liikutta- ,

vgittg- vahingoitta- suoritta- saatta- jgnnittg-

jgnnitty- vapautta- vakuutta- raivostutta- peitty-

lgmmittg- kunnioitta- kauhistutta- hggmbttg- vglittg-
selvittg- nybkkgyttg- muistutta- yrittg- luotta- ,

lepuutta- kehittg- hyt3dyttg- harjoitta- tyynnyttg-

tukahdutta- tomutta- sghkt3ttg- suuttu- poltta- ,

lahjoitta- kylvettg- kehoitta- katta- hgvittg- ,

- 108 -

harmitta- vgsyttg- taivutta- syyttg- petty- moitti-
kohotta- kengittg- jyskyttg- joudutta- ilmoitta- ,

huvitta- tottu- painatta- nimittg- muuttu- koetta-
keittg- iljettg- arvelutta- toimitta- selittg-
levittg- kuljetta- kannatta- kammotta- janotta-
inhotta- esittg- erotta- ehdotta- asetta- sytttg-
sammutta- puuttu- llhettg- lopetta- lohdutta- ,

johdatta- aloitta- vgrisyttg- virvoitta- sailyttg-
ruskotta- osoitta- muutta- menettg- kirjoitta-
kiinnittg- keskeyttg- hgmmgstyttg- huomautta-
toivotta- tarttu- sattu- riittg- patty- nayttg-
kolkutta- kiittg- jutta- irroitta- hengittg- heittg-

asettu- tuijotta- sidotta- pudotta- nautti- kayttg-
viettg- otta- toteutta- soitta- paatta- odotta- ,

mietti- laitta- hergttg- autta- taytta- peittg- ,

opetta- koputta- koitta-}
else [1.3]

1. {viitsi- hallitse- vangitse- patentoi- havaitse-

harkitse- kutsu- etsi- hairitse- vallitse- valitse-

tuo- tarvitse- merkitse- katso-}

elseif t @ -3+0 then
if u @ -3-1 then [4.2]

3. {haluta-}
4. huuta- avautu- istuutu- nouta- palautu- pukeutu-

tunkeutu- souta- ilmoittautu- kuto- naulautu- joutu-

toteutu- laittautu- paneutu- riutu- mukautu- sopeutu-

suhtautu- uhrautu- laskeutu- hautautu- ojentautu-

sulkeutu- purkautu- sulautu- painautu-}

elseif h @ -3-1 then [4.3]

4. {tohti- pohti- leimahta- lajahta- jyrghtg- tipahta-

tervehti- johtu- kuihtu- paahta- kiihty- ryhty-

hypghtg- haihtu- ehti- vgrghtg- mahta- huolehti-

purjehti- kaannahta- perehty- istahta- vaihta- ,

purskahta- huoahta- erehty- vivahta- seisahtu- lAhte-

katsahta- johta- huudahta- unohta- naurahta- vglghtg-
tapahtu- pysahty- tahto- kiirehti-}

elseif y- @ -3+1 then [1.4]

1. {edisty- ilmesty- hammasty- sivisty- rypisty-
mythasty- kyyristy- allisty- kyllasty- henggsty-
menesty-}

4. {jaaty-}

elseif u- @ -3+1 then [1.5]

1. Ipunastu- pahastu- alistu- pelastu- valistu-

rakastu- kummastu- kiinnostu- huolestu- harmistu-

tutustu- muodostu- valmistu- ihastu- sairastu-

suostu- muistu- kastu- maistu- poistu- kuvastu-

onnistu- astu- istu-}
4. {koitu- kaatu- katu-

else [3.2]
1. {niista- paallysta- yhdista- rytstg- kestg- siisti- ,

veista- r piste- esta- virkistA- pyydysta- piste-
j arj esta-I

3. {tilata- hakkata- varata- uhkata- sieppata- takata- ,

selvitg- punata- kuiskata- katketa- kampata- uppota-

kiusata- suuntata- salata- kehrata- nydkkata- kuvata-

kohtata- lepata- korvata- erota- rupeta- kultata- ,

- 109 -

kokota- kiipetg- huokata- halketa- viittata- vajota- ,

tarjota- poikketa- nojata- laahata- hyppata- osata-
lykkgtg- kergtg- arvata- lupata- kohota- katota-
kaipata- tuhlata- siunata- paiskata- lakkata- ,

kuivata- korjata- tapata- siivota- vertata- vastata- ,

sahata- putota- palata- pakkata- naulata- maalata- ,
maalata- kelpata- hgvitg- huomata- leikkata- seurata-
vgrjgtg- pelksta- pelata- avata- saarnata- makata-
herata-}

4. {ssata- nito- hoita- sietg- kiitg- kaata- vaati-
sito- pyytg- ldytg- kyte- pits- vetg- tieta-}

else [1.6]

1. {riitele- lampene- 11mmittele- louhi- lavertele-
hangoittele- valu- tarjoile- saannSstele- lapaise-
kohtele- istuskele- vaittele- suunittele- palele-
onnittele- nuole- lepaile- kykene- kastele- jyrise-
juhli- haukottele- epaile- aukene- suosi- suo- sivele-
rankaise- otaksu- lekottele- kysele- kirpaise- kipaise-

julkaise- hyvaksy- piirtele- painu- niele- mutise- ,

menettele- kilpaile- huoli- tottele- pakene- narise-
vilise- vanhene- unelmoi- rohkaise- paina- lupaile-

kuvittele- katkaise- vahene- lyhene- liho- kuori- ,

hupene- hio- harvene- vieri- sally- sure- puhele- osu-

kuiva- ilmaise- vasy- valkene- valaise- urheile- ,

tiedustele- saali- seulo- salamoi- rukoile- nytkAhtele- ,

lyhene- kuljeksi- korjaile- kalastele- hyraile- ,

hoitele- alene- tytskentele- suurene- selkene- rohkene- ,

lueskele- halvene- aukaise- arvele- arvaile- voi- veny- ,

vapise- vaikene- tupakoi- toimi- supattele- sipaise-

pysy- pese- oikaise- lausu- kulu- kikattele- ,

keskustele- jaksa- varjele- tuoksu- suojele- pure-

palvele- maksa- ldrpdttele- luule- kuule- kalise-

haari- aja- tavoittele- tanssi- suutele- surise-

samoile- paase- nayttele- matkustele- luistele-
lakaise- kitise- juokse- hiljene- visertele- vilkaise- ,

toivo- puhaltele- pimene- pane- mumise- mietiskele- ,

kumartele- kaiva- jaa- juttele- ihmettele- tarkastele- ,

myy- kuole- vie- sula- suhise- solise- risteile- ,

nielaise- kuohu- kohise- kimaltele- katsele- aterioi- ,

asu- viljele- ui- kay- krvele- kysy- kuuntele- kuulu- ,

kasva- hymyile- tule- syd- soutele- soi- seiso- sano- ,

saa- repaise- puhu- pala- opiskele- nouse- naura- mene-
laula- juo- ela- ammu- ajattele- ole-}

Rule-defined classes:

1. - @ -1 <-> n @ -1
[1.1]: lya- luo- tulvi- salli- valvo- solmi-

[1.2: puhdista- varasta- sisusta- pelasta- korista-

kiinnosta- aavista- tarkasta- muodosta- tunnusta- ,

omista- reunusta- perusta- koukista- ripusta- painosta-

luista- karista- kuulosta- kalasta- pudista- muista-

matkusta- kirkasta- ratsasta- paista- valmista-

rakasta- purista- osta- harrasta- nosta- loista-

[1.3]: viitsi- hallitse- vangitse- patentoi- havaitse-

harkitse- kutsu- etsi- hairitse- vallitse- valitse- ,

- 110 -

tuo- tarvitse- merkitse- katso-
[1.4]: edisty- ilmesty- hgmmgsty- sivisty- rypisty-
mytlhgsty- kyyristy- gllisty- kyllgsty- henggsty-
menesty-

[1.5]: punastu- pahastu- alistu- pelastu- valistu-
rakastu- kummastu- kiinnostu- huolestu- harmistu-
tutustu- muodostu- valmistu- ihastu- sairastu- suostu-
muistu- kastu- maistu- poistu- kuvastu- onnistu- astu-
istu-

[1.6]: riitele- lgmpene- 11mmittele- louhi- lavertele-
hangoittele- valu- tarjoile- sggnntlstele- 1gplise-
kohtele- istuskele- vgittele- suunittele- palele-
onnittele- nuole- lepgile- kykene- kastele- jyrise-
juhli- haukottele- epgile- aukene- suosi- suo- sivele-
rankaise- otaksu- lekottele- kysele- kirpaise- kipaise-
julkaise- hyvgksy- piirtele- painu- niele- mutise- ,

menettele- kilpaile- huoli- tottele- pakene- narise-
vilise- vanhene- unelmoi- rohkaise- paina- lupaile-
kuvittele- katkaise- vghene- lyhene- liho- kuori- ,

hupene- hio- harvene- vieri- sgily- sure- puhele- osu-
kuiva- ilmaise- vgsy- valkene- valaise- urheile- ,

tiedustele- sggli- seulo- salamoi- rukoile- nytkghtele- ,

lyhene- kuljeksi- korjaile- kalastele- hyrgile- ,

hoitele- alene- tytlskentele- suurene- selkene- rohkene- ,

lueskele- hAlvene- aukaise- arvele- arvaile- voi- veny- ,

vapise- vaikene- tupakoi- toimi- supattele- sipaise-
pysy- pese- oikaise- lausu- kulu- kikattele- ,

keskustele- jaksa- varjele- tuoksu- suojele- pure-

palvele- maksa- 16rp6ttele- luule- kuule- kalise-

hAAri- aja- tavoittele- tanssi- suutele- surise-
samoile- pggse- ngyttele- matkustele- luistele-
lakaise- kitise- juokse- hiljene- visertele- vilkaise-

toivo- puhaltele- pimene- pane- mumise- mietiskele- ,

kumartele- kaiva- jgg- juttele- ihmettele- tarkastele-

myy- kuole- vie- sula- suhise- solise- risteile- ,

nielaise- kuohu- kohise- kimaltele- katsele- aterioi- ,

asu- viljele- ui- kgy- kgvele- kysy- kuuntele- kuulu- ,

kasva- hymyile- tule- sy5- soutele- soi- seiso- sano- ,

saa- repgise- puhu- pala- opiskele- nouse- naura- mene-

laula- juo- elk- ammu- ajattele- ole-

Inclusions: kynsi-[6.1] pakinoi-[6.1] luennoi-[6.1]

kgtke-[2.1] koske-[2.1] tutki-[2.1] koske-[2.1] itke-,

[2.1] laake-[2.1] usko-[2.1] jatku-[2.1] kisk0-[2.1]

,jatka-[2.1] ympgr6i-[5.1] kgrsi-[5.1] epgr6i-[5.1]
niistg-[3.2] p!gllyst&- 3.2] yhdistg-[3.2] ry5stg- 3.2]

kestg-[3.2] siisti-[.2j veistg-[3.2] r pistg-[.2]

estg-[3.2 virkistg-3[3.2] pyydystg-[3.2j pistg-L3.21

jgrjestg-L3.21

2. k @ -3 <-> 0 @ -2
- @ -1 <-> n @ -1
[2.1]: uhku- pyrki- purka- puke- loiko- koke- halko-

tako- ruokki- pyyhki- hehku- aiko- kirku- hankki-
vglkky- liikku- haukku- alka- rikko- leikki- teke-
ngke- ngky- nukku- mggki- luke- hake-

- 111 -

3. t@-3<->0@-2
- @ -1 <-> n @ -1
[3.1]: vaikutta- totutta- raoitta- pakotta- yllgttl- ,

voitta- viivyttg- varoitta- tarkoitta- sijoitta- ,

mydhAstyttg- tuotta- saavutta- rauhoitta- noudatta- ,

nauratta- 1AAhgttg- liitty- ilahdutta- upotta- sytyttg-
pystyttg- petty- ny6kgytt&- liikutta- vgittg- ,

vahingoitta- suoritta- saatta- jynnitty- jynnitty- ,

vapautta- vakuutta- raivostutta- peitty- 1ymmittA- ,

kunnioitta- kauhistutta- hggm8ttg- vylitty- selvitty-
nydkkyytty- muistutta- yritty- luotta- lepuutta- ,

kehitty- hyddytty- harjoitta- tyynnytty- tukahdutta-
tomutta- syhkdtty- suuttu- poltta- lahjoitta- kylvetty-
kehoitta- katta- hyvitty- harmitta- vysytty- taivutta- ,

syytty- petty- moitti- kohotta- kengitty- jyskytty- ,

joudutta- ilmoitta- huvitta- tottu- painatta- nimitty- ,

muuttu- koetta- keitty- iljetty- arvelutta- toimitta- ,

selitty- levitty- kuljetta- kannatta- kammotta- ,

janotta- inhotta- esitty- erotta- ehdotta- asetta-
sydtty- sammutta- puuttu- lyhetty- lopetta- lohdutta- ,

johdatta- aloitta- vyrisytty- virvoitta- syilytty-
ruskotta- osoitta- muutta- menetty- kirjoitta- ,

kiinnitty- keskeytty- hymmystytty- huomautta- toivotta-
tarttu- sattu- riitty- pAAtty- nyytty- kolkutta- ,

kiitty- jAttA- irroitta- hengitty- heitty- asettu-
tuijotta- sidotta- pudotta- nautti- kyytty- vietty-
otta- toteutta- soitta- pyytty- odotta- mietti- laitta-
hergttg- autta- tyytty- peitty- opetta- koputta- koitta-

[3.2]: tilata- hakkata- varata- uhkata- sieppata- ,

takata- selvity- punata- kuiskata- katketa- kampata- ,

uppota- kiusata- suuntata- salata- kehrgtg- ny8kkyty- ,

kuvata- kohtata- lepAtA- korvata- erota- rupeta- ,

kultata- kokota- kiipety- huokata- halketa- viittata- ,

vajota- tarjota- poikketa- nojata- laahata- hyppyty- ,

osata- lykkyty- kergtg- arvata- lupata- kohota- katota-
kaipata- tuhlata- siunata- paiskata- lakkata- kuivata-
korjata- tapata- siivota- vertata- vastata- sahata- ,

putota- palata- pakkata- naulata- mAAryty- maalata- ,

kelpata- hAvitA- huomata- leikkata- seurata- vgrjgtg-

pelkyty- pelata- avata- saarnata- makata- hergtg-

Inclusions: haluta-[4.2]

4. t @ -3 <-> d @ -3
- @ -1 <-> n @ -1
[4.1]: heittyyty- jyrjestyyty- keryyty- kiteyty-

ky ttyyty- kieltyyty- pistyyty- selviyty- tyyty- l yty-
[4.2j: huuta- avautu- istuutu- nouta- palautu- pukeutu-
tunkeutu- souta- ilmoittautu- kuto- naulautu- joutu-
toteutu- laittautu- paneutu- riutu- mukautu- sopeutu-
suhtautu- uhrautu- laskeutu- hautautu- ojentautu- ,

sulkeutu- purkautu- sulautu- painautu-
[4.3]: tohti- pohti- leimahta- lAjAhtA- jyryhty-

tipahta- tervehti- johtu- kuihtu- paahta- kiihty- ,

ryhty- hypyhty- haihtu- ehti- vArAhtA- mahta- huolehti-
purjehti- kyynnyhty- perehty- istahta- vaihta-
purskahta- huoahta- erehty- vivahta- seisahtu- lghte-

- 112 -

katsahta- johta- huudahta- unohta- naurahta- valahta-
tapahtu- pysAhty- tahto- kiirehti-

Inclusions: jggty-[1.4] koitu-[1.5j kaatu-[1.5] katu-,
[1.5] seats-[3.2] nito-[3.2] hoita-[3.2] sietg-[3.2] ,

kiita-[3.2] kaata-[3.2] vaati-[3.2 sito-[3.2 py ta-,
[3.2] ldyta-[3.2] kyte-[3.2] pits-3.2] vets-3.2J
tieta-[3.2]

5. t @ -3 <-> r @ -3
- @ -1 <-> n @ -1
[5.1]: viserta- ymmarta- kerto- kierta- kumarta-
kumartu- murta- saarta- siirty- sorta- takertu- piirta-
sinerta- uurta-

6. t@-3 <->n@-3
- @ -1 <-> n @ -1
[6.1]: anta- kaanty- rakenta- tunte- synty- kiinty-
kynta- lenta- tydnta- kanta- kokoontu- mytlnta- kaanta-
paranta- aanta- hammenty- sekaantu- vAhenty- tyhjenty-
vaanta- nAAnty- asenta-

7. p @ -3 <-> v @ -3
- @ -1 <-> n @ -1
[7.1]: luopu- leipo- uupu- hiipi- kylpe- vaipu- sopi-
saapu- repi- viipy- raapi-

8. t @ - 3 < - > 1 @ - 3
-@-1 <->n@-1
[8.1]: puhalta- uskalta- vihelta- kielta- sukelta-
vaelta- ylty- kiilta-

Inclusion classes:

9. p@+2 <->0@+2
- @ -1 <-> n @ -1
Inclusions: oppi- loppu- leppy-

10. k @ -3 <-> j @ -3
- @ -1 <-> n @ -1
Inclusions: kulke- sulke-

11. p @ +2 <-> m @ +2
@ -1 <-> n @ -1

Inclusions: ampu-

12. k@-3 <->8@-3
- @ -1 <-> n @ -1
Inclusions: tinki-

Appendix D

French Example

Decision tree:

if croi^ @ -3-5 then [12.1]
12. {recroi"'tre de'croi"tre accroi"tre croi"tre}

elseif ai"'tre @ -6+0 then [11.1j
11. {connai"tre reconnai"tre parai"tre }pparai"'tre

disparai"'tre transparai"tre pai"tre
elseif re @ -2+0 then if in @ -3-2 then [9.1]

8. vaincre}
9. peindre atteindre ceindre feindre geindre teindre

joindre oindre poindre craindre}
elseif clu @ -2-3 then [13.1]

13. {reclure occlure inclure exclure conclure}
elseif i @ -2-1 then [10.1]

10. {traire dire e'crire confire suffire cuire
conduire produire re'duire se'duire construire luire
nuire}

13. {rire sourire}
else [8.1]

8. {rendre pendre tendre vendre perdre mordre battre}
elseif oir @ -3+0 then if c @ -5-1 then [6.1]

6. {perOevoir de'cevoir concevoir apercevoir recevoir}
else 17.11

7. {choir vouloir valoir falloir pourvoir revoir voir}
elseif que'ri @ -1-6 then [4.1]

4. {reque'rir reconque'rir que'rir enque'rir conque'rir
acque'rir}

elseif e @ -1-1 then [1.1]
1. {abaisser ble'ser coudoyer de'sirer entonner ha"bler

nettoyer rainer rosser terrorises}
elseif ouvrir @ -0-6 then [5.1]

5. {rouvrir entrouvrir ouvrir de'couvrir couvrir}
elseif ten @ -2-3 then [3.1]

3. {tenir contenir retenir de'tenir}
elseif ven @ -2-3 then [3.2]

3. {revenir obvenir devenir venir}
else [2.1]

2. {terrir rosir rajeunir nordir hai"r envahir
de'sobe'ir cre'pir blettir abasourdir}

3. secourir courir ve"tir}
5. souffrir offrir}

Rule-defined classes:

1. r @ -1 <-> ' @ -1
[1.1]: abaisser ble'ser coudoyer de'sirer entonner

ha"'bler nettoyer rainer rosser terroriser

2. r @ -1 <-> 0 @ -0
[2.1]: terrir rosir rajeunir nordir hai"r

de'sobe'ir cre'pir blettir abasourdir
envahir

- 114 -

3. it @ -2 <-> u @ -1
3.1 : tenir contenir retenir de'tenir
3.21: revenir obvenir devenir venir

Inclusions: secourir[2.1] courir[2.1] ve"tir[2.1]
+. e'r @ -5 <-> 0 @ -2

r @ -1 <-> s @ -1
[4.1]: reque'rir reconque'rir que'rir enque'rir

conque'rir acque'rir

5. ri @ -3 <-> e @ -3
0 @ -0 <-> t @ -1
[5.1j: rouvrir entrouvrlr ouvrir de'couvrir couvrir
Inclusions: souffrir[2.1] offrir[2.1]

6. evoir @ -5 <-> u @ -2
[6.1]: percevoir de'cevoir concevoir apercevoir recevoir

7. oir @ -3 <-> u @ -1
[7.1]: choir vouloir valoir falloir pourvoir revoir voir

8. re @ -2 <-> u @ -1
[8.1]: rendre pendre tendre vendre perdre mordre battre
Inclusions: vaincre[9.1j

9. dre @ -3 <-> t @ -1

[9.1]: peindre atteindre ceindre feindre geindre teindre
joindre oindre poindre craindre

10. re @ -2 <-> t @ -1
[10.1]: traire dire e'crire confire suffire cuire

conduire produire re'duire se'duire construire luire
nuire

11. ai"tre @ -6 <-> u @ -1
[11.1]: connai"tre reconnai"tre parai^tre apparai^tre

disparai^tre transparai^tre pai^tre

12. of @ -6 <-> u @ -2
tre @ -3 <-> 0 @ -0
[12.1]: recroi"tre de'croi^tre accroi"tre croi"tre

13. re @ -2 <-> 0 @ -0
[13.1]: reclure occlure inclure exclure conclure
Inclusions: rire[10.1] sourire[10.1]

Inclusion classes:

14. avoir @ +0 <-> eu @ +0
Inclusions: avoir

15. ^ @ +1 <-> ' @ +1

r @ -2 <-> 0 @ -2
0 @ -0 <-> ' @ -1
Inclusions: e"tre

- 115 -

16. u @ +2 <-> 0 @ +2 it @ -2 <-> t @ -1
Inclusions: mourir

17. avoir @ +1 <-> u @ +1

Inclusions: savoir

18. evoir @ +1 <-> u" @ +1

Inclusions: devoir

19. o @ +1 <-> 0 @ +1
voir @ +3 <-> 0 @ +2
Inclusions: pouvoir

20. o @ +1 <-> 0 @ +1
voir @ +3 <-> " @ +2
Inclusions: mouvoir

21. e @ +2 <-> 0 @ +2
voir @ -4 <-> 0 @ -0
Inclusions: pleuvoir

22. eo @ -4 <-> 0 @ -2
r @ -1 <-> s @ -1
Inclusions: asseoir surseoir

23. endre @ +2 <-> is @ +2
Inclusions: prendre

24. ettre @ +1 <-> is @ +1

Inclusions: mettre

25. aire @ +2 <-> u @ +2
Inclusions: plaire

26. ai"tr @ +1 <-> 0 @ +1
0 @ -0 <-> '

@ -1
Inclusions: nai'tre

27. oire @ +2 <-> u @ +2
Inclusions: croire

28. re @ -2 <-> s @ -1

Inclusions: clore

29. dre @ -3 <-> s @ -1

Inclusions: absoudre dissoudre re'soudre

30. dre @ -3 <-> su @ -2
Inclusions: coudre

31. dre @ -3 <-> lu @ -2
Inclusions: moudre

32. re @ -2 <-> i @ -1
Inclusions: suivre

33. ivr @ +1 <-> 0 @ +1

0 @ -0 <-> 'cu @ -3
Inclusions: vivre

34 ire @ +1 <-> u @ +1
Inclusions: lire

Bibliography

Aho, A., Hopcroft, J., and Ullman, J. The Design and Analysis of
Computer Algorithms. Massachusetts: Addison-Wesley Publishing
Company, 1974.

Alam, Yukiko Sasaki. "A Two-level Mor hological Analysis of
Japanese," Texas Linguistic Forum, 22(1983), 229-252.

Backhouse, Roland C. Syntax of Programming Languages: Theory and
Practice. London: Prentice-Hall International, 1979.

Berko, Jean. "The Child's Learning of English Morphology," Word:
Journal of the Linguistic Circle of New York, 14(1958), 150-177.

Bundy, Silver, and Plummer. "An Analytical Comparison of Some
Rule Learning Programs." Department of Artificial Intelligence,
Edinburgh University, Research Paper no. 215, 1984.

Cohen, P.R. and Feigenbaum, E.A. (editors). Handbook of
Artificial Intelligence, volume 3. London: Pitman Books Limited,
1982.

Corlett, R.A. "Explaining Induced Decision Trees," in Expert
Systems, 1983. Pp. 136-42.

Hunt,. Marin, and Stone. Experiments in Induction. New York:
Academic Press, 1966.

Jespersen, Otto. A Modern English Grammar on Historical
Principles. Part VI: Morphology. London: George Allen and Unwin
Limited, 1946.

Karttunen, Lauri. "KIMMO: A General Morphological Processor,"
Texas Linguistic Forum, 22(1983), 165-86.

Karttunen, L. and Wittenburg, K. "A Two-level Analysis of
English," Texas Linguistic Forum, 22(1983), 217-228.

Kay, M. "When Meta-rules are not Meta-rules," in Automatic
Natural Language Parsing, eds. Karen Sparck Jones and Yorick
Wilks. Chichester: Ellis Harwood Limited, 1983. Pp. 94-116.

- 118 -

Khan, Robert. "A Two-level Mor hological Analysis of Rumanian,"
Texas Linguistic Forum, 22(1983J, 253-270.

Koskenniemi, Kimmo. Two-level Morphology: A General Computational
Model for Word-form Recognition and Production. Department of
General Linguistics, University of Helsinki, publication no. 11,
1983a.

Koskenniemi, Kimmo. "Two-level Model for Morphological Analysis,"
in Proceedings of the Eighth International Joint Conference on
Artificial Intelligence, 1983b, volume 2. Pp. 683-5.

Lehtinen, Meri. The Basic Course in Finnish. Indiana: Indiana
University Press, 1967.

Lun, S. "A Two-level Morphological Analysis of French," Texas
Linguistic Forum, 22(1983), 271-8.

Matthews, P.H. Morphology: An Introduction to the Theory of
Word-structure. Cambridge: Cambridge University Press, 1974.

Le Nouveau Bescherelle: L'Art de Conjuguer. Paris: Libraire
Hatier, 1966.

O'Keefe, Richard. "AS165 as a Learning Program," in The Mecho
Notebook, volume 2. Department of Artificial Intelligence,
Edinburgh University, unpublished. Note 156, 4 December 1982.

O'Keefe, Richard. "Concept Formation from Very Large Training
Sets," in Proceedings of the Eighth International Joint Conference
on Artificial Intelligence, 1983, volume 1. Pp. 479-81.

Quinlan, J. R. "Discovering Rules by Induction from Large
Collections of Examples," in Expert Systems in the
Micro-electronic Age, ed. D. Michie. Edinburgh: Edinburgh
University Press, 1979. Pp. 168-201.

Quirk, R. and Greenbaum, S. A University Grammar of English.
London: Longman Group Limited, 1973.

Ritchie, G.D. and Pulman, S.G. "A Dictionary and Morphological
Analyser for English Language Processing Systems." Unpublished

research proposal, Edinburgh University, 1983.

- 119 -

Stein, Jess (editor). The Random House College Dictionary:
Revised Edition. New York: Random House, Inc., 1975.

Strang, Barbara. Modern English Structure. London: Edward Arnold
Publishers Limited, 1962.

Sturt, E. "An Algorithm to Construct a Discriminant Function in
Fortran for Categorical Data," Applied Statistics, 30(1981), 313-
25.

Whitney, Arthur H. Finnish. Suffolk: Hodder and Stoughton (Teach
Yourself Books), 1956.

Winograd, Terry. Language as a Cognitive Process. Volume 1:
Syntax. California: Addison-Wesley Publishing Company, 1983.

	PhD coversheet April 2012.pdf
	EDI-INF-MPHIL-84-003

