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Abstract 

This thesis is concerned with the electrochemistry and spectroscopy of redox-active 

late transition metal complexes of the 2,2'-bipyridine ligand (bpy) and their reduction 

products. 

Complexes of general formula [Pt(4,4'-X 2-bpy)L2] (where L is a non redox-active 

ligand and X=NH2, OEt, Me, H, Ph, Cl, CO2Me) undergo two one-electron reductions 

as revealed by -cyclic- - voltammetry. - -The- absorption- spectra -of the -one-electron-

reduction products reveal the first of these reductions to be localised on the bpy ligand 

giving rise to radical anion ligand complexes of Pt(ll). Epr spectra of the reduced, 

seventeen-electron species indicate a significant (Ca. 10%) admixture of metal 5d 

orbitals in the SOMO, in good agreement with EHMO calculations. Both the E 112  

value of the first reduction process and the MLCT v ma,, value vary linearly with the 

Hammett parameter of the substituent X. The second reduction electron spin-pairs 

with the first in the same itK  orbital. The LUMO of [Pd(4,4'-X2-bpy)C12] is Pd 4d 

based and these complexes undergo chemically irreversible two-electron reductions. 

Complexes of the 4,4'-(NO2)2-bpy ligand undergo up to four one-electron reductions. 

Epr spectroscopy of the di-reduction products of [M(4,4'-(NO 2)2-bpy)1-12] (M=Pd, Pt, 

L=Cl ; M=Rh, L2=1,5-cod) shows that spin-triplet species are formed on di-reduction 

and consequently that the LUMO-SLUMO gap is smaller than the spin-pairing energy 

for these complexes. The redox-active orbitals are highly localised on the nitro-groups. 

EHMO calculations are in good agreement. 
. 	 . n [Pt(bpy)2]

2+  undergoes a redox-induced dimesation reaction at room temperature. 

Low-temperature cyclic voltammetry reveals the redox-active orbital to be bpy-based. 

The single-crystal x-ray structures of [Pt(4,4'-(NO 2)2-bpy)C12] and [Au(bpy)C12]BF4  

are reported. 
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Et ethyl 
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gi anisotropic g value 
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py pyridine 
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RR resonance-enhanced Raman 

S solvent 

SCE standard calomel electrode 
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SOMO singly-occupied molecular orbital 

TBA tetrabutylammomum 

THF tetrahydrofuran 

uv ultra-violet 

vis visible 
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Chapter 1. Introduction 

The fascinating electrochemical, photophysical and photoelectrochemical properties of 

transition metal complexes of 2,2'-bipyridine (bpy, figure 1.1) have led to their use as, for 

example, photo sensitisers, photocatalysts and catalysts.' Much of the interesting 

chemistry is related to bpy's ability to stabilise both very high and very low formal 

oxidation states where it acts as a it-donor and it-acceptor respectively.' 

0

~ 

21  
31 0 N 1" 

Figure 1.1 2,2'-Bipyridine 

This thesis is concerned with the redox chemistry and spectroscopy of sixteen-electron, 

square planar d8  bpy complexes of some late transition metals - namely platinum, 

palladium and rhodium - and their redox related species. The sixteen-electron rule 

dictates that the d 8  parent species are relatively stable and such compounds are important 

in, for example, catalysis (Wilkinson's catalyst) and medicinal chemistry (cis-platin). 

Thus, square planar complexes of Rh(I), lr(I), Pd(ll), Pt(H) and Au(ffi) are all common. 2  

By contrast the related seventeen-electron d 9  species are very rare for second and third 

row transition metals due to the large crystal field splitting energy, A (figure 1.2). Indeed 

most formal Pt(I) complexes are diamagnetic binuclear species. 2  

However, it is often possible to stabilise the seventeen-electron species by use of a highly 

electron-withdrawing or conjugated ligand set, thus stabilising the "extra" electron. It is 

then often easier to access the possibly unstable seventeen-electron system by the 

electrochemical one-electron reduction of the stable sixteen-electron precursor. For 

example the bis(maleonitriledithiolate) transition metal complexes can allow isolation of 

1 



up to three different formal oxidation states for one particular metal, where the d 7  and d9  

species can be generated from the d 8  complexes (figure 1.3).38 

E 
-- 

eg 	- 
xy 

t2g ___ 	 -- 	
•••- 	d2 

xz,yz 

Oh 	 D4h 	 D4h 

Figure 1.2 d-orbital manifold splitting in an octahedral, tetragonally distorted and square- 

planar environment. 

NC

::xxx::  
Figure 1.3 [M(mnt) 2]" (d7, MNi, Pd, Pt, Co, Rh ; d9, M=rNi,  Pd, Cu, Au) 

Where a redox-active ligand such as maleonitriledithiolate (mat) or bpy is coordinated to 

a transition metal centre the one-electron reduction products are often characterised by 

one of two extreme descriptions: (i) a d 9  metal complex, i.e. the unpaired electron resides 

at the metal, or (ii) a ligand anion radical complex of a d 8  metal centre, i.e. the unpaired 

electron resides on the ligand set. 9  However, it is usually the case that neither description 

is satisfactory and a delocalised molecular orbital approach is necessary. 

2 



Spectroelectrochemical techniques, i.e. the coupling of an electrochemical technique to a 

spectroscopic method, naturally lend themselves to the characterisation of such species. 

Ultra-violet/visible/near infra-red (uv/vis/nir) 
10  infra-red ir" electron paramagnetic 

resonance (epr), 12  and resonance-Raman (R)3  spectroscopies have all been used in this 

manner. Two examples where a combination of spectroelectrochemical techniques have 

- --been-used-to electronically characterise redox-active stems-areenbelow._ 

(i) The series of redox-related complexes [Ru(bpy) 3] 2 ''°' has been studied via in situ 

uv/vis/nir, RR and epr spectroelectrochemistry. [Ru(bpy) 3]
2+  undergoes three reversible 

one-electron reductions at -1.27, -1.46 and -1.70 V vs. SCE in 0.1M TBABF4IMeCN 

solution as shown by cyclic voltammetry.' 4  The uv/vis/nir spectrum of the fully reduced 

species [Ru(bpy)31 -  characterised it as [Ru 11(bpyT)31 -  due to the similarity of the spectrum 

to that of the ion-pair Na(bpy) (figure 1.4), '0"-'  i.e. the reduction electrons enter the bpy 

71 *  orbitals resulting in a Ru11  complex of coordinated radical anion bpy ligands. It was 

further concluded from the uv/vis/nir spectra of the intermediate species [Ru(bpy) 3] °  

which contained bands characteristic of [Ru(bpy) 3] 2  and [Ru(bpy)31 -  that these 

complexes were best formulated with discrete bpy and bpy ligands, i.e. 

[R0(bpy)2(bpy)} and [Ru 11(bpy)(bpy)2] 0, rather than charge-averaged models. A 

similar series of uv/vis/nir spectra is observed for [Ir(bpy) 3]3210. 16  

Yellowlees et al. have concluded from such studies that the following absorption bands 

are diagnostic for the presence of coordinated bpy: (i) a nir band at Ca. 10 kcm' 

comprising of three peaks (or shoulders), (ii) a doublet visible band at ca. 20 kcm', and 

(iii) an intense near uv band at ca. 25 kcm. 16  

The charge localised model was confirmed by in situ RR spectroelectrochemical studies 

on [Ru(bpy)3] where vibrational modes of both bpy and bpy are observed, characterised 

by the RR spectra of [Ru(bpy) 3]2  and [Ru(bpy)31 -  respectively. 13 

3 
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Figure 1.4. Uv/vis/nir spectra of Na(bpy) and [Ru(bpy) 31 -  

Dc Armond et al. studied the epr spectra of the paramagnetic complexes [Ru(bpy) 3]'°'. 

In each case signals close to g=2.00 were observed confirming ligand-based radicals (a 

metal-based radical would result in a large g-shift from the free electron value of 

&=2.0023). 17,18  The observation of temperature dependent line-broadening due to 

electron-hopping between chelate rings in the solution epr spectra of [Ru(bpy) 3] and 

[Ru(bpy)3]0 
 (no such line-broadening is observed for [Ru(bpy) 3]) supported the charge-

localised model and De Armond was able to estimate energy barriers for the electron-

hopping process from variable temperature epr studies. This was further backed by the 

apparently non-interacting nature of the two added electrons in the epr spectrum of 

[Ru(bpy)3]0 . 
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(ii) The family of complexes [M(mnt)2] (M=Ni, Pd, n1, 2, 3; MPt, Au, n1, 2) have 

been extensively studied by epr spectroelectrochemistry, single-crystal epr spectroscopy 

and, more recently, by ir spectroelectrochemistry. These studies reveal the extent of 

mixing of metal and ligand orbitals in the paramagnetic formally d 7  and d9  complexes 

which have been chemically or electrochemically generated from the diamagnetic d 8  

-complexes-- Table- Li summarises the redox-chemistry-of-these -complexes. 

Table 1.1 Redox potentials of [M(mnt) 2] 

M 	o/a -/2- 	2-13- 

Nib 	
- -0.14 	-1.94 

Pd' 	- +0.04 	-2.17 

Pt b 	- -0.16 	- 

Ad 	+1.51 -0.41 	- 

(a) redox couple, E in V 

(b) vs. Ag/AgC1 in 0. 1M NaC104IMeCN solution, reference 19 

(c) vs. SCE in 0. 1M TBABF41DMSO solution, reference 5 

Geiger et al. reported the epr spectra of the formally d 9  [M(mnt)2] 3  (MNi, Pd) 

complexes generated by the one-electron reduction of [M(mnt) 2] 2 . The epr spectrum of 

90% 61Ni enriched [Ni(nmt)2] 3  in a frozen MeCN solution showed rhombic g 

(91#92#93>9e) and 61Ni (spin, 1=3/2) hyperfine tensors with A 1 -53x10 4  Cm- 1, 

8x10 cm' and A 3=±5. 8x 10 cm' 6  From these parameters the Ni 3d orbital 

contribution to the singly-occupied molecular orbital (SOMO) was calculated to be in the 

range 70-85% depending on the signs of A2  and A3. Thus, assignment as a genuine d 9  

metal complex with little metal-ligand covalency seems reasonable. Both the solution 

and frozen glass spectra of [Pd(mnt) 2]3  showed hyperfine coupling of the unpaired 

105 	 . 	 -4 	-1 
electron to the Pd nucleus m natural abundance (22%, 1=5/2) with A 1 ,=+30x10 cm 

A1 +44x10 cm', A2 +29x10 cm and A3 +26x10 cm '. 6  Calculations from the 

spectra reveal a metal 4d orbital contribution to the SOMO of 45% and it was concluded 

that considerably more covalency existed for the Pd complex than the Ni analogue. 
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Single-crystal epr studies on [Au(mnt) 2]2  concluded a still smaller metal character of 

15% in the SOMO. 5  Thus, this complex is clearly more accurately described as a ligand-

based radical rather than a Au' s  complex. This formulation was supported by ff 

spectroelectrochemical measurements which showed the CN stretch of the mnt ligands to 

red-shift by 12 cm' on reduction of [Au(mnt) 2] to [Au(mnt)2] 2 , i.e. the reduction 

electron is considerably delocalised onto the ir anti-bonding orbitals of the CN 

-- -- 	 - - 

Solution epr spectra of [M(mnt) 21 -  (M=Ni, Pd, Pt) reveal hyperfine coupling of the 

unpaired electron to the metal nuclei in each case with A 1 =4.5 G (M=6 'Ni enriched), 7.7 

G (M=105 Pd) and 82 G (M= 195Pt, 34% natural abundance, I=1/2) . 20  Single-crystal epr 

studies reveal rhombic g (g,#g2>g e>93) and metal hyperfine tensors. 3 '2122  The metal d 

orbital admixtures in the SOMOs of these formally d 7  complexes are calculated to be 24, 

21 and 34% for M=Ni, Pd and Pt respectively, i.e. in each case there is extensive metal-

ligand covalency. These results are supported by ir spectroelectrochemical experiments 

which show the CN stretch of the mnt'ligands to blue-shift by Ca. 15 cm' on oxidation of 

[M(mnt)2]2  to [M(mnt)21 -  in each case. 1 ' 

In this work the redox chemistry and absorption uv/vis spectra of a series of simple 

complexes of general formula [M(4,4'-X 2-bpy)L2] (MPt", Pd's  and Rh') where L is a 

non redox-active ligand have been studied and the spectroscopy (uv/vis/nir, epr) of the 

derived one-electron reduction products studied in order to electronically characterise the 

seventeen-electron species. The effect of systematic variations in both the "trans" ligand 

L (X=H) and the substituent X (LCr) are studied with a view to observing the effect of 

changes in the ligand set on the frontier orbitals of the complex. 



X 
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Figure 1.5. [M(4,4'-X2-bpy)L2] 



Chapter 2. Experimental 

2.1 Syntheses and Chemicals 

CH202  was pretreated with KOH pellets then distilled over P 205  prior to use. N,N'-

dimethylformamide (DMF, hplc grade, Aldrich) was used as supplied. MeCN was 

distilled over CaH2  prior to use. 

Bpy, 4,4'-Me2-bpy and 4,4'-Ph2-bpy (Phphenyl) were commercially available (Aldrich). 

All other ligands were prepared by literature methods. 2327  [Pt(bpy)C12], 28  

[Pt(bpy)(NH3)2](PF6)2,29  [Pt(bpy)(en)](BF4)2,30  [Pt(bpy)(py)2](BF4)2,30  [Pt(bpy)(CN) 2] 

[Pt(4,4 '-Me 2-bpy)C12],3°  [Re(4,4 '-(NO2)2-bpy)(CO)3C1],31  [Pt(bpy)2](BF4)232  and 

[Pd(bpy)C12]33  (en=ethylenediamine, py=pyridine) were all prepared by literature 

methods. A minor change from the literature preparations was the replacement of 

NaC104  by NaBF4 . 

[Pt(bpy)(PMC 3)21(BF4)2 was prepared as follows. l.OM PMe3  in THF solution (2.2 ml, 

2.2x10 3  mol PMe3) was syringed into a N2)  saturated suspension of [Pt(bpy)C1 2] (0.455 

g, 1.08x10 3  mol) in H20 (50 ml) and heated under reflux in an atmosphere of N 2)  with 

stirring until the suspension had all dissolved to give a yellow solution. Addition of 

NaBF4  (0.5 g, excess) yielded an immediate yellow precipitate which was collected, 

washed with H20 and air dried. Recrystaffisation twice from 1120 gave yellow needles of 

the desired product (0.45 g, 62%). C:H:N 28.36%:3.19%:5.15% (predicted 

28.38%:3.88%:4.14%). 31P( 'H) nnir in CD3NO2  : singlet at 6-27.46 ppm with 195pt 

satellites, Jppt=3423 Hz. 31p{  'H) n.mr spectrum recorded on a Bruker WP200SY 

spectrometer. 

Complexes of general formula [Pt(4,4'-X 2-bpy)C12] were prepared by the following 

general procedure. A suspension of the appropriate ligand (1 equivalent) was heated 
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under reflux with stirring in an aqueous solution of K 2[PtCI4 (1 equivalent). The 

resultant precipitate was filtered, washed with H 20, dried in vacuo and recrystaffised 

from a saturated hot DMIF solution. [Pt(4,4'-(NIH 2)2-bpy)C12] decomposed on attempted 

recrystallisation and was used without further purifiction. Reflux times, percentage 

yields and analyses are given in table 2.1. Red {Pt(4,4'-(NO 2)2-bpy)C12] readily absorbs 

moisture from air turning to a dark green/black colour. The moisture uptake may be 

reversed by drying in vacuo at 313K for a few hours. 

Table 2.1 Synthesis conditions and analyses of [Pt(4,4'-X 2-bpy)Cl2] 

X t/minutesa yieldl% colour C H N 

NH2  15 80 yellow 2522b 2.73 11.46 

(26 . 56c 2.23 12.39) 

OEt 75 100 yellow 32.60 3.28 5.67 

(32.95 3.17 5.49) 

Ph 120 60 yellow 46.45 2.96 5.42 

(46.00 2.81 4.88) 

Cl 240 85 yellow 27.23 1.79 7.45 

(24.46 1.23 5.71) 

CO2Me 240 79 yellow 31.18 2.33 5.14 

(31.24 2.25 5.21) 

NO2  300 84 red  - - - 

(a) reflux time, (b) experimental, (c) predicted, (d) anhydrous 

(Pd(4,4'-X2-bpy)C121 (X=CO 2Me, NO2) were made by analogous routes to the Pt 

complexes. Heating the suspensions under reflux for 3 hours gave solids which on 

recrystallisation twice from hot DMF yield yellow needles of the desired product (93%, 

X=CO2Me; 76%, X=NO2). C:H:N X=CO 2Me: 37.50%:2.75%:6.27% (predicted 
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37.40%:2.70%:6.23%); 	X=NO2 : 	27.46%:1.12%:11.63% 	(predicted 

28.36%:1.43%:13.23%). 

[Rh(4,4'-(NO 2)2-bpy)(cod)1C104 (cod=1,5-cyclooctadiene) was prepared by an 

analogous route to [Rh(bpy)(cod)]C104. 34  An excess of 4,4'-(NO 2)2-bpy (200 mg, 

8.13x10-4  mol) was stirred with a suspension of[Rh(cod)Cl]2 u (2.94x10 4 mo1) in MeOH 

-----(-10--ml)-for 1-hour. The-mixture was filtered and NaC10 4 (150 mg) in H20-(10- ml) 

added to the green filtrate to yield a dark microcrystalline solid which was separated by 

filtration, washed with H20 then Et20 and air dried (66%). The product was further 

purified by passage through a sephadex column with CH 2C12/MeCN eluent (1:1 vlv). 

C:H:N 37.41%:3.22%:9.66% (predicted 38.83%:3.27%:10.07%). 

2.2 X-ray Crystallography 

A red block of IPt(4,4'-(NO 2)2-bpy)C121 was grown by slow cooling of a saturated 

MeCN solution. 

Crystal Data: C 10HC12N404Pt, M1  = 512.19, a = 5.4788(17) A, b= 19.253(4) A, c = 

30.115(5) A, V = 3176.6 A3, from the setting angles of 25 centered reflections, 

9.5<8<10.50, Mo-Ka X-radiation, ? = 0.761073 A, orthorhombic, space group Pc21n 

(non-standard setting ofPna2 1 , no. 33), Z = 8 (two independent molecules), D = 2.142 

gcm 3, i(Mo-K) = 92.8 cm', F(000) = 1904. Intensity data (+h, +k, +1) were collected 

to 8max 25°, T = 291 K, over 69 X-ray hours on an Enraf-Nonius CAD4 diffractometèr. 

Of 3286 reflections measured (including 396 systematically absent) 2130 [F>_2.0c(F)] 

were retained for solution and refinement. 

Space group confirmed by ultimately successful refinement. Atomic scattering factors 

from International Tables and SHELX76. 36'37  Structure solution and refinement via 

SHELX76. Other programs used include CALC and SHELXTL/PC. 38'39  Pt atoms 
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located by analysis of the Patterson function, and all other atoms (except H) by iterative 

full-matrix least-squares and AF syntheses. Ghost atoms (Pt(A2) and Pt(B2)) visible at 

Ca. 1 A from the Pt atoms, almost normal to the co-ordination plane. Further refinement 

included tied occupancies, converging at 0.844(5) and 0.156(5) for main and ghost 

atoms respectively. Only disordered Pt atoms located. Following an empirical absorption 

correction 40  (maximum and minimum corrections 1.111 and 0.841 respectively) and 

- inclusion of the weighting-scheme-w' =-[c 2 F)+0.0022 1-iF2], -full-matrix least-squares -

refinement (main Pt and Cl atoms anisotropic; ghost Pt and all other atoms isotropic, H 

atoms in idealised positions (C-H 1.08 A: UH = 0.06 A2)) converged to R = 0.0830, wR 

= 0. 1091 and S = 1.046 for 213 variables and 2130 observed reflections. Several atoms 

of the bipyridyl ligand were unstable under non-constrained refinement. For this reason 

constraints were applied to the lengths of similar bonds between the two independent 

molecules. Specifically, the two C-C (bridge) distances were constrained to within 0.05 

A, as were the eight C-N (ring) distances, the sixteen C-C (ring) distances, the four C-

NO2  distances and the eight N-O distances. Final fractional co-ordinates are listed in 

appendix A and derived molecular parameters in chapter 5. 

Even with the refinement constraints some bond distances and angles clearly appear 

distorted. We suspect this arises, at least in part, from the fact that the array of heavy 

atoms in this non-centrosymmetric lattice is pseudo centrosymmetric, giving rise to 

unstable refinement. In this context it could be instructive to repeat the experiment with 

the Pd analogue (if isomorphous) where this effect could be less. Nevertheless, in the 

present case the molecular stereochemistry is unequivocally established, and some 

interesting packing features are evident, as discussed in appendix A. 

2.3 Extended Hückel Molecular Orbital (EHMO) Calculations 

EHMO calculations used a locally modified version of ICON8 and the weighted Hij 

formula '41,42  and were performed on models of [Pt(bpy)Cl 2], [Pt(bpy)(NH3)2]2 , 
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[Pt(bpy)(CN)2] and [Pt(4,4'-(NO 2)2-bpy)C12] based on crystallographic data. 4345  The 

same Pt(bpy) fragment was used in each case with C-C and C-N bond lengths of 1.37 A, 

Pt-N of 1.99 A and a N-Pt-N bite angle of 800.  Other bond lengths used were: Pt-Cl 

2.31 A, N-O 1.20 A. The molecule lies in the xy plane with the y-axis bisecting the N-

Pt-N angle. The H's for Pt orbitals were initially optimised by charge iteration 

calculations (H 1 -VSIE(Q), where VSIE(Q)=valence state ionisation energy of orbital i 

- --- when-atomhas charge Q) -The full list of-orbital exponents and H 11 's (eV) -used is:H1: 

H11=-13.60, =1.30; C2: H11 -21.40, 1.625, C2 : H11=-11.40, =1.625; N2:  H11=-26.00, 

=1.95, N2 : H11=-13.40, ç=1.95; 02S: H-32.30, ç=2.275, O,: H=-14.80, =2.275; 

C13: H11=-30.00, 2.033, C13 : H=-15.00, =2.033; Pt6: H11=-10.93, =2.554, Pt6 : 

H11=-5.439, =2.554, PtSd: H11=-13.52, c'=6.013, 2=2 . 696,  c'=0.63338, c2=0.55128, 

where c' and c2  are coefficients in the double-c expansion. 

2.4 Electrochemistry and Spectroelecfrochemistry 

Electrochemical studies were performed using a DSL 286-D PC with General Purpose 

Electrochemical System (GPES) Version 3 software connected to an Autolab system 

containing a PSTAT1O potentiostat and data were plotted using Origin Version 3.1 

software. 

Cyclic voltammetry used a standard three electrode configuration with Pt microworking 

and counter electrodes and a AgIAgC1 reference electrode against which the 

ferrocene/ferrocinium couple was measured at +0.55 V. Redox potentials and peak-to-

peak values are reported for a scan rate of 1 OOmVs'. Bulk electrolysis was performed at 

243 K in a compartmentalised H-cell with Pt grid working and counter electrodes, the 

reference electrode was as before. All electrochemical studies were performed on N 2)  

purged DMF, MeCN or CH2C12  solutions. Inert electrolyte, TBABF 4  

(TBA=tetrabutylammonium), was used in 0.5 M concentration in CH2C12  and 0.1 M 

concentration in MeCN and DMF. 
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In situ uv/vis/nir electrogenerations employed the optically transparent electrode cell 

(0Th, figure 2. 1).46  A Pt/Rh gauze working electrode (transparency -40%) is housed in 

a quartz cell such that the spectrometer beam passes through the grid. An extension is 

fitted to the quartz cell to act as a reservoir. The Pt wire counter and AgIAgC1 reference 

electrodes are isolated from the working electrode by sintered flits. The temperature of
1. 

the cell is controlled by passing prechilled N2® over the cell. Unless otherwise stated in 

the text reductions were performed at 243 K as a function of potential with spectra 

recorded every 15 minutes. After each experiment the electrogeneration potential was 

set at 0 V to regenerate the starting material in order to ensure the chemical integrity of 

the system. Uv/vis/nir spectra were recorded on a Perkin-Elmer A,9 spectrophotometer. 

WE 

Light 
Path 

N 2 	 N2 

Figure 2.1 Schematic representation of 0Th cell 
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X-band epr spectra were recorded on a Bruker ER200D-SCR spectrometer. Fluid 

solution spectra used a flat cell. Q-band spectra were recorded on a Varian E112 

spectrometer at 150 K (University of Manchester). Samples for epr study were prepared 

by either bulk electrolysis at 243 K or chemical reduction with an appropriate reducing 

agent under Schienk conditions and transfered to an epr sample tube under N2®. 

Anisotropic  epr spectra were computer simulated using a University of Manchester 

programme. 47  Isotropic epr spectra were simulated using a local programme. 48  
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Chapter 3. (2,2'bipvridine)bis(L)P1atiflum(T)1 [Pt(bpy)Lzl 

3.1 Introduction 

Since their initial synthesis by Morgan and Burstall 28  platinum bipyridyl complexes 

have been of great interest due to their interesting stmctural, 435 '49 '50  absorption and 

emission spectral5 1-57 and electrochemical properties. 58-61 

[Pt(bpy)C12] exhibits dimorphism in the solid state having yellow and red forms. 

Crystal structure determinations reveal both structures to consist of stacks of 

monomeric units. The red form has a "staggered" arrangement of molecules in 

adjacent layers, i.e. there is pseudo two fold symmetry down the stack, with the Pt-Pt 

vector perpendicular to the layer stacking. 44  A Pt-Pt distance of 3.45 A is measured 

for the red form. The essentially monomeric yellow form shows a rotated orientation 

between adjacent molecules (Ca. 1200) and a layer stacking which is no longer 

perpendicular to the Pt-Pt vector, leading to a larger Pt-Pt distance of 4.44 A. 43  Both 

forms dissolve to give yellow solutions with identical absorption spectra. Similar 

structural forms are observed for [Pd(bpy)C1 2]. 49 '50  [Pt(bpy)(CN)2] has a smaller Pt 

Pt distance of 3.33 A and this stronger intermolecular interaction may be partly 

responsible for this compound's poor solubility in all common solvents. 45  

The electronic structure of these compounds has been the subject of much debate. 

Gidney et al. reported the uv/vis absorption spectrum of [Pt(bpy)Cl 2], identifying the 

bands at 323 and 311 nm as singlet-singlet intra-ligand ( '7E -7C * ) transitions and a 

singlet-singlet metal-to-ligand charge transfer transition ('MLCT, d_ic*)  at 370 nm in 

MeOH solution .5.1  Webb and Rossiello noted the presence of weak (es50 M'cm') 

absorption bands at 440, 462 and 500 nm in MeOH solution and suggested their 

origin to be either ligand field (LF) or spin-forbidden triplet charge transfer. 52  They 

also reported a structured emission spectrum originating at Ca. 480 nm in a MeOH 

glass at 77 K which they tentatively assigned as charge-transfer emission from a bpy-

based orbital. Miskowski and Holding, however, failed to reproduce this result, 
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instead finding a broad unstructured emission at 610 am which they assigned as a LF 

emission due to its lack of vibromc structure and non-solvent sensitivity, and 

consequently assign the weak, low-energy absorption bands as LF transitions. 53 '54  

Curiously they assign very similar features in the absorption spectrum of 

[Pt(bpy)(en)](C104)2 at 447 nm in aqueous solution as singlet-triplet ir—it 

transitions, and the emissive excited state as 37titK due to the vibromcally structured 

nature of the emission spectrum (originating at 458 nmin aMeOHfEtOHglassat-77------------

K). Similar structured emissions have been observed for [Pt(bpy)(NH 3)2](PF6)2 , 

[Pt(bpy)(CN)2] and [Pt(5, 5 '-Me2-bpy)(CN)2].
5-5-57  Thus, the lowest-unoccupied 

molecular orbital (LUMO) of [Pt(bpy)L2] was assigned as metal-based for L=Ci but 

bpy 7r*based where L is a nitrogen- or carbon-donor. The anomalous electronic 

structure of [Pt(bpy)C1 2] has been attributed to the weak-field nature of the halide 

ligand compared to the N- or C-donors. 53  

A number of electrochemical studies have been performed to probe further the 

electronic structure of these complexes. 5861  Typically two consecutive one-electron 

reductions are observed which various authors have tentatively assigned as bpy-based 

simply on the value of their reduction potentials and their electrochemical and 

chemical reversibility. 58,59 Braterman et al. have assigned the first reductions to be 

bpy-based and the second reductions as metal-based on the basis of uv/vis/nir and epr 

spectroelectrochemical experiments on [Pt(bpy)(en)](BF4)2, [Pt(bpy)(Py)21(BF4)2 and 

{Pt(bpy)(Ph)2]. Thus they conclude the LUMO to be bpy-based with a metal-based 

orbital at slightly higher energy. 60 '6 ' 

In this chapter we perform a more complete spectroelectrochemical investigation of 

these species and a more detailed analysis of the uv/vis/nir and epr spectra of the 

reduction products of a series of complexes of general formula [Pt(bpy)L 2] where L 

is changed systematically from a it-donor, weak-field ligand (L=Ct) to a ic-acceptor, 

strong-field ligand (LCN). We present strong evidence that the LUMO of 

[Pt(bpy)Cl2] is in fact ligand-based in common with all complexes [Pt(bpy)L 2], and 
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that the two reductive processes seen in the cyclic voltammograms of these species 

are both centered on the bpy ligand. In marked contrast we show that the LUMO of 

[Pd(bpy)C12] is metal-based, i.e. the vacant metal 4d-orbital on the Pd centre is lower 

in energy than the first it orbital on the bpy ligand. 

3.2 EHMO Calculations 

EHMOcalculations -were performed -on idealised- models of [Pt(bpy)Cl 2], - 

[Pt(bpy)(NB3)21 2+ and [Pt(bpy)(CN)2]. The models are detailed in chapter 2. In each 

case the molecule lies in the xy plane with the y axis bisecting the N-Pt-N angle. 

The LUMO of [Pt(bpy)C12] is computed to be of b 2  symmetry with 96% bpy ir 

character (the lowest energy bpy 7r orbital, it(7)) and small Pt 5dy, and óz 

admixtures of 2.0% and 1.7% respectively. These results are in general agreement 

with those of Eisenberg et al. on complexes such as [Pt(bpy)(mnt)]. 62  The major 

contributions to the bpy-based r* LUMO are from the two nitrogen nuclei and the 

C2, 2', 4 and 4' nuclei where the numbering scheme is the same as that for free bpy 

as shown in figure 1.1. Calculations performed for [Pt(bpy)(NH 3 )2] 2  and 

[Pt(bpy)(CN)2] give similar molecular orbital schemes as for [Pt(bpy)C1 2]. Nuclear 

coefficients for the LUMOs [Pt(bpy)C1 2], {Pt(bpy)(NIH3)2] 2  and [Pt(bpy)(CN)2] are 

given in table 3.1. The results show the 5d y, admixture to the primarily ligand-based 

orbital to decrease as L is changed from Cr to CN. Interestingly the calculations 

show the 6z contributions to the LUMO to increase down the series. In no cases 

were there any significant contributions from orbitals based on the L ligands. 

The calculations indicate that the two highest occupied molecular orbitals are very 

close in energy for [Pt(bpy)C1 2], [Pt(bpy)(NH3)2] 2  and [Pt(bpy)(CN) 2}. One is 

predominantly the Pt d2-2 orbital and the other is the highest energy bpy-based 7E 

orbital (7t(6)). This supports the assignment of the uv/vis spectra with internal ic—ir 

bands (7t(6-7)) and an MILCT (d-n(7)) at similar energies. 
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Table 3.1 Nuclear coefficients to LUMO of [Pt(bpy)L2] 

Atom Orbital [Pt(bpy)Cl2  [Pt(bpy)(NH3)2} 2  [Pt(bpy)(CN) 2] 

N1,1' 2Pz 0.129 0.128 0.107 

C2,2' 2Pz 0.130 0.131 0.120 

C3,3' 2Pz 0.003 0.003 0.032 

C4,4' 2Pz 0.117 0.118 0.109 

C5,5' 2Pz 0.046 0.046 0.040 

C6,6' 2Pz 0.055 0.055 0.055 

Pt 5dy, 0.020 0.020 0.012 

6Pz 0.017 0.018 0.042 

c7,7a 2Pz - 
- 0.024 

N3,3a 2Pz - 
- 0.015 

(a) complex VI only, L=CN where C=C7,7' ; N=N3,3' 

3.3 Redox Chemistry 

Cyclic voltammetric studies of [Pt(bpy)C1 2] (I), [Pt(bpy)(NH3)2] 2  (II), 

[Pt(bpy)(en)]2 (In), [Pt(bpy)(py)2] 2  (IV), [Pt(bpy)(PMe 3)2] 2  (V) and 

[Pt(bpy)(CN) 2] (VI) in 0.1 M 1'BABF 4!DMF solution reveal a fully reversible one-

electron (by coulometry at 243 K) reduction at Ca. -1 V vs. Ag/AgC1 (table 3.2, 

figure 3.1). There are no oxidation processes observed prior to the solvent 

breakdown at +2 V for any of the compounds studied. Complexes I-1V and VI 

undergo a second reversible or quasi-reversible reduction at more negative potentials. 

The separation of reductions of 500-700 mV is typical of succesive reductions of 

bipyridyls, i.e. spin pairing of the two added electrons in the same molecular orbital. 

The second reduction of V is irreversible. 
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Figure 3.1 Cyclic voltammogram of [Pt(bpy)Cl2] in 0.1 M TBABJ/DMF at 293 K 

Table 3.2 Redox potentials of[Pt(bpy)L2] in 0.1 M 1'BABF 4/DMF solution at 293 K 

Complex E 1/ V 	E2/ V 

I 
106a(0070)b -1.79(0.110) 

II -0.99(0.060) -1.65(0.080) 

ifi -0.90(0.070) -1.56(0.070) 

lv -0.91(0.060) -1.45(0.070) 

V -0.94(0.060) 448c 

VI -0.94(0.060) -1.61(0.090) 

(a) (Ej-1-E1)/2, (b) (EtE r), (c) anodic peak not observed, cathodic peak quoted 

3.4 UvIVisINir Spectroelectrochemistry 

The electronic spectra of I-VI in DMF solution are dominated by the intense 

intraligand 7t_ir* bands of bpy and a lower energy metal-to-ligand charge transfer (d- 

bpy ic, MILCT) transition, which appears as a shoulder for il-VI but is clearly 
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resolved for I (table 3.3). Extinction coefficients for [Pt(bpy)(CN)2] are not quoted 

in table 3.3 because of the extreme solubility problems associated with this complex. 

Table 3.3 Uv/vis spectra of 1-VI in DMF solution at 293 K 

Complex MLCTI kcm 1  it— ir/ kcm' 

I 

II 

ifi 

IV 

V 

VI 

25 . 7(0 . 45)a 

-29.4(0.33)" 
29•4(0•41 )b 

27.4(0.12)" 
29•4b 

30.8(1.28) 	32.0(1.19) 

-31.1(1.67) - _32.3(t35) 

31.2(2.25) 	32.4(1.86) 

31.1(1.70) 	32.4(1.43) 

30.9(1.24) 	31.8(1.05) 

31.3 	32.6" 

(a) E / 104  M'cm 1 , (b) shoulder 

The spectral changes of I on reduction to T in 0. 1M TBABF 4IDMIF solution at 243 K 

involve the collapse of bands associated with coordinated neutral bpy and the growth 

of bands associated with coordinated radical anion bpy (figure 3.2 and figure 

1.4). 15,16  Thus, the new bands at 11.2, 20.1, 21.6 and 27.9 kcm' are all intraligand 

transitions of coordinated bpy. The band at 23.9 kcm' has not been assigned to an 

internal bpy transition. Braterman et al. tentatively assigned this to a ligand-to-metal 

charge transfer transition for [Pt(bpy)(Ph) 2]
0

'6 ' However, assignment as an MLCT 

band would be consistent with the expected red-shift of this transition on semi-

occupancy of the itK  orbital. 

Complexes fl-VI exhibit similar spectra on reduction and may be assigned as above. 

Typical spectra of the reduced complexes are shown in figure 3.3 and assignments of 

the electronic transitions are given in table 3.4. In the assignments given in table 3.4 

the it(7) orbital is the lowest unoccupied bpy-based orbital of the parent 

complexes, and is the orbital occupied on reduction. Extinction coefficient values are 

quoted in table 3.4 but yield little useful information and are not discussed further. 

The reduced species were found to be unstable at ambient temperatures as witnessed 
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by the absorption spectrum failing to return to that of the parent species on 

reoxidation of the solution. However the reduced species were all indefinitely stable 

at 243 K 

Thus, the uv/vis/nir spectra of r-vi suggest that these species should be formulated 

as [Pt11(bpy)L2] - . 

7.IJ CI 	1/cm 1  

/1 

Figure 3.2 0Th reduction of 1°' in 0.1 M TBABF4/DMF solution at 243 K 
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10000 

(b) 

Figure 3.3 Uv/vis/nir spectra of IV (a) and Yr (b) in 0.1 M TBABF 4/DMF at 243 K 
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Table 3.4 Uv/vis/nir spectra of[Pt(bpy)L2] -  in 0.1 M TBABF4/DMF at 243 K 

Complex Th(78,9)*a n(7- 10)* MLCT ir(67)*/ kcm 

Na(bpy)" 12.0(0. 15)c  17.8(0.62), 18.8(0.62) - 25.9(2.95) 

F 11.2(0.21) 20.1(1.00), 21.6(0.54) 23.9(0.81) 

IT 12.4(0.23) 19.7(0.54), 20.9(0.57) 24.8(0.53) 28.0(1.10) 

lIT 12.4(0.33) 20.5(0.68), 22.0(0.65) 24.8(1.14) 29.3(1.35) 

111 10.7(0.24) 20.4(0.51), 22.0(0.57) 24.9(0.73) 28.4(0.92) 

V 11.4(0.13) 20.6(0.44), 22. 1(0.41) 24.7(0.63) 28.9(0.65) 

yr 11.5 20.5, 22.0 24.9 29.4 

(a) Transitions assigned by comparison with Na(bpy), (b)THF solution, reference 15, 

(c) c / 104  M' 1cm' 

3.5 IEpr Spectroelectrochemistry 

The solution spectra of the one-electron reduction products of IN in DMIF solution 

are as expected for interaction of the unpaired electron with platinum in natural 

abundance ( 195Pt, 34%, spin 1/2). A typical spectrum is shown in figure 3.4. A 

broad singlet resonance is observed with 195pt satellites. The isotropic hyperfine 

coupling constants for F-V are in the range 40 to 55x10 cm' (table 3.5). The 

reduction products can be generated electrochemically or chemically (with excess 

NaBH4) to give rise to identical spectra, i.e. the same reduction product is generated 

regardless of the method of generating the sample. 

The observed isotropic epr signals of F-V show that the coupling of the unpaired 

electron is mainly to the Pt nucleus, with any coupling to ligand nuclei unresolved 

and therefore much smaller in magnitude. Direct admixture of the Pt 6s orbital to the 

singly occupied molecular orbital (SOMO) of b 2  symmetry is forbidden in C, point 

symmetry and consequently the isotropic hyperfine coupling must arise via inner-core 

polarisation and is probably negative in sign. 63  
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3610 

Figure 3.4 Solution epr spectrum of hf in DMF at 293 K 

For yr superhyperfine coupling of the unpaired electron to nuclei of the bpy ligand is 

observed (figure 3.5a).. A good simulation of this isotropic spectrum is possible 

assuming coupling of the unpaired electron to 195p  (Aj =20.5 G (19. lxlO"' cm')), to 

two equivalent '4N nuclei (aj(' 4N)3.4 G (3.2x104  cm')), to two sets of two 

equivalent 1 11 nuclei (ail) 2.8 G (2.6x104  cm) and aI(2) 2.2 G (2. 1x10 4  Cm- 1)) 

with a Lorentzian linewidth of 1.7 G (figure 3.5b). We assign the larger 'H coupling 

to H4 and H4', and the ' 4N coupling to the ring nitrogens of the bpy ligand in 

agreement with the EHMO calculations (see section 3.2). The smaller 'H coupling 
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Figure 3.5 Solution epr spectrum of yr in DMF at 293 K (a) and simulation (b) 
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has not been assigned as the calculations do not favour another pair of 'H nuclei 

EHMO calculations show that the nitrogen atoms of the cyanides should make little 

contribution to the SOMO. Brown et al. assigned the largest 'H couplings in the 

isotropic epr spectra of species such as mer-[M&(CO)(CNBu')3(bpy)] similarly. TM  

The coupling to 195p is -'considerably smaller in Vf than for F to V, hence-we-

suggest that this allows the resolution of the superhyperfine structure in the epr 

spectrum of [Pt(bpy)(CN) 21. - 

Table 3.5 Epr parameters for [Pt(bpy)L 2] 

ga 	
91 92 g2 g3 	Ai (Pt)c A1  A2  A3  

r 	expd 	1.998 	2.038 2.009 1.935 	-54 -56 -95 - 

sime 	- 	 2.038 2.011 1.938 	- -57.4 -80.6 -20.8 

H- 	expd 	1.998 	2.029 2.003 1.936 	-40 -59 -91 - 

sime 	- 	 2.027 2.002 1.936 	- -58.2 -71.2 -31.6 

iii 	expd 	1.998 	2.026 2.009 1.954 	-42 -53 -78 - 

1v 	expd 	1.994 	2.017 2.004 1.960 	-40 -60 -75 - 

sim' 	- 	 2.018 2.004 1.960 	- -56.5 -65.5 -27.5 

V 	expd 	1.999 	2.022 2.016 1.970 	- -56 -65 - 

Yr 	eXPd f 	1.994 	2.013 2.009 1.974 	- -38 -49 - 

sime.f 	19949 	2.014 2.009 1.974 	19. I g  -35.7 -38.5 +27.6 

(a) isotropic data from chemically generated species, DMF solution, (b) anisotropic data from 

electrochemically generated species, O.1M TBABF4JDMF, (c) A / 
104 cm, (d) parameters 

estimated directly from the spectra, (e) parameters from computer simulations, (f) Q-band spectrum, 

(g) from simulations as described in the text. 

On freezing the solutions at 77 K, X-band epr spectra exhibit rhombic g and Pt 

hyperfine tensors (for example, figures 3.6 and 3.7). The high field component of 

each of these spectra (g3) does not show any resolution of the ' 95Pt coupling and the 

values of A3  in table 3.5 are those required to give the best fit between experimental 
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and simulated spectra. Experiments with mixed solvent systems also failed to give 

resolution of this g3 component. Excellent simulations of the X-band spectra of F, H-

and 1V were obtained using the parameters in table 3.5. The magnitude of A 3  has an 

uncertainty of ca. ±5x10 cm'. For F to JY the averaged values of g and A used in 

the simulations are in good agreement with the experimental isotropic values and 

hence A1 , A2  and A3  all have the same sign as each other and as 	The frozen 

solution spectta of V and VF appear -to be axial -at X-band frequency- but- their--- -- ------

rhombicity is clearly shown in the Q-band spectrum of VT (figures 3.8 and 3.9). The 

X-band spectrum of V shows no change between 77 K and 150 K, i.e. the X- and 

Q-band spectra are of the same species. For Yr a good simulation of the Q-band 

spectrum is possible using the parameters in table 3.5 (figure 3.9c). In order that the 

averaged values of A 1 , A2  and A3  are compatible with the observed 	it is 

necessary to have A 3  opposite in sign to A 1 , A2  and 	The physical ramifications 

of this change in sign of A3  are, as yet, unclear. No superhyperfine splittings have 

been resolved in any of the frozen solution spectra, presumably because of the greater 

linewidths of the frozen solution spectra compared to the solution spectra. 

It is interesting to note that the Q-band spectrum of VU at 150 K is best simulated 

with a Gaussian lineshape while the solution spectrum of Yr at 293 K is best 

simulated with a Lorentzian lineshape. We suggest that this is due to the unresolved 

superhyperfine coupling to ligand nuclei in the 150 K spectrum. 

The small shift of gi  from the free-electron value, ge of 2.0023 is suggestive of only a 

small admixture of metal orbitals in the SOMO, and that the reduction electron is 

therefore mainly localised on the bpy ligand. A quantitative estimate of the Pt d 

orbital admixture to the SOMO of [Pt(bpy)L 2] -  can be calculated using Maid's 

equations' (but Rieger's nomenclature 
65) for a 5dy, ground state in C 2V  symmetry 

(equation 1). 

- <A> = Pd[-4/7a2 + 2/3Ag - 5/42(ig + Ag)] 	 (1) 
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Figure 3.6 77 K X-band epr spectra of r electrochemically generated in 0.1 M 

TBABF4/DMIF (a), chemically generated by NaBH4  (b) and simulation using the 

parameters in table 3.5 with Gaussian half linewidths of 10 G, 12 G and 30 G for g, 

g2 and g3 respectively (c) 
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Figure 3.7 77 K X-band epr spectrum of IV in 0.1 M TBABF 4/DMF (a) and 

simulation using the parameters in table 3.5 and Gaussian half linewidths of 9 G, 10 

G and 18 G for g, g2 and g3 respectively (b) 

29 



3100 	 3200 	 3300 	 3400 	 3500 

BI Gauss 

Figure 3.8 77 K X-band epr spectrum of V in 0.1 M TBABF 4!DMF 

Where <A> = (A 1  + A2  + 

Ag1  = gi - ge 

Pd = the electron-nuclear dipolar coupling parameter for 5d electrons 

= +492x104  cm' for ' 95pt66  

a = the linear combination of atomic orbitals coefficient of the 5d orbital 

in the SOMO. i.e. a2  = metal 5dy, admixture to the SOMO. 
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We have assigned our anisotropic spectra to gi, g2, g3, A 1 , A2  and A3  as given in table 

3.5. It is now necessary to assign these to the molecular axes x, y and z. Assigning 

g3 and A3  to gx and A yields meaningless values of a 2  on substituting the parameters 

into equation 1. Taking gi and g2 as gx gives a 2  values of 0.068 and 0.12 respectively 

for f (table 3.6). Rieger has argued that A should be the largest hyperfine term for 

[(1 5-05Ph5)M(CO)2] (M=Co, Rh), which has a 5d ground state in C 2,, symmetry. 61 

-We therefore assign A 2  to A. In C2, symmetry the g and metal hyperfine axes must 

be coincident and therefore we assign g2 to gx. Meaningless values of a 2  are obtained 

if the hyperfine coupling constants are assigned as positive. Thus, there is a 

maximum Pt 5dyz admixture in the SOMO of r of 12%, i.e. the orbital is not 

primarily metal based. There are small but observable changes in a 2  as L is changed. 

Our EHMO calculations show the Pt 6Pz  contribution to the LUMO of [Pt(bpy)L 2] to 

be comparable with the 5dy,. However, there is no comprehensive treatment for fip 

orbital contributions to anisotropic spectra and therefore the the epr spectral results 

cannot be used to describe the full amount of Pt orbital contributions to the SOMO. 

Table 3.6 Pt 5dyz orbital admixtures to the SOMO of [Pt(bpy)L 2] -  

Complex gxgi 	9x=92 9x=93 

F 	0. 068a 	0.12 	- 

if 	0.057 	0.074 - 

IV 	0.051 	0.064 - 

yr 	0.090 	0.093 - 

(a) a2  calculated from equation 1 using parameters in table 3.5 
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Figure 3.9 77 K X-band epr spectrum of VI in 0:1 M TBABF 4/DMF (a), 150 K Q-

band epr spectrum in DMF (b) and simulation using the parameters in table 3.5 with 

Gaussian half linewidths of 12 G, 11 G and 26 G for g, g and g3 respectively (c) 
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3.6 Redox Chemistry of LPd(bpy)C121 

Cyclic voltammetly of [Pd(bpy)C12] in 0. 1M TBABF 4/DMIF solution reveals an 

irreversible reduction at -0.82 V vs. Ag/AgC1 (figure 3.10). Bulk electrolysis shows 

this to be a two-electron process and results in the deposition of a black deposit (Pd 

metal) in the electrolysis cell. The decomposition of the complex on reduction is -  - - 

confirmed by a reduction process at -2.05 V in the cyclic voltammogram 

corresponding to the reduction of free bpy. Thus the LUMO of [Pd(bpy)C1 2] is 

metal-based. This is consistent with the uv/vis spectrum of [Pd(bpy)C121 which 

shows ir—it bands at 31.5 kcni' in DMF solution but no low energy MLCT band. 

.9 
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Figure 3.10 Cyclic voltammogram of [Pd(bpy)Cl2] in 0.1 M TBABF4/DMF at 293 K 

3.7 Conclusions 

The electrochemical and uv/vis/nir spectroelectrochemical results show the first 

reduction of [Pt(bpy)L 2] to be a ligand localised process to yield [Pt"(bpy)L2]. Epr 
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results indicate a significant (Ca. 10%) admixture of Pt 5d orbital in the redox-active 

orbital. There is a good qualitative agreement between the epr and EHMO results. 

It must be stressed that the electronic character of the redox-active LUMO for all the 

complexes studied is very similar. The reduction potentials are close as is the energy 

of the MLCT transition in the reduced complexes. 

By contast to [Pt(bpy)C12], the LUMO of [Pd(bpy)C1 2] is metal-based. This can be 

explained by the lower energy of the empty Pd 4d orbitals compared to Pt 5d. 
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Chapter 4. (4.4'-X2_2,2 1-bipvridine)dich1orop1atinum(LL) [Pt(4,4X2-bpv)C121 

4.1 Introduction 

There has been considerable interest in synthesising derivatives of the 2,2'-bipyridine 

ligand. 23'24 '26'67  By introducing electron-donating or -withdrawing substituents to the 

rings it is possible to tune the photophysical and electrochemical properties of both 

- - - the ligand itself and complexes derived therefrom,-Of particular interest-have- been 

species of general formula [Ru(4,4'-X 2-bpy)3] 2  where X is a strong electron-

acceptor such as CF 3, NO2, PEW, S03H or CN. 14,25,27,68-74 It is proposed that such 

substituents should extend the lifetime of the photoexcited MLCT (d7t*)  state by 

stabilising the coordinated bpy radical anion formed. An electron-donating X group 

would be expected to blue-shift absorption MLCT maxima and related emission 

spectra and shift the E 1 12  values of ligand based reductions to more negative 

potentials while an electron-withdrawing X group would be expected to have the 

reverse effect. For example the cyclic voltammogram of [Ru(4,4'-(CO 2Me)2-

bpy)3](PF6)2  reveals six ligand-based reductions at -0.89, -1.01, -1.19, -1.63, -1.83 

and -2.15 V vs. SCE in 0.1 M TBABF4IMeCN solution rather than the three 

observed at -1.27, -1.46 and -1.70 V for the parent complex [Ru(bpy) 3](PF6)2  within 

the same potential window. 14  Thus the electron-withdrawing effect of the ester 

moieties makes the second reductions of the bpy ligands accessible. 

Various authors have tried to correlate the physical properties of 4,4 1 -disubstituted 

bipyridines with o,, the Hammett parameter of the substituent X (essentially a 

measure of the electron-withdrawing or -donating power of X 75). Connor et al. 

report a linear correlation of u p  with the emission and absorption maxima of 

[Mo(4,4'-X2-bpy)(CO)4] (X=NMe 2, NH2, OMe, CMe3, Me, H, Ph, CO21- , Cl, 

CO2Me, NO2) and the E 1 12  of the first ligand-based reduction (XNMe 2, CMe3 , CI,, 

CO2Me). 76  Worfet al. note similar correlations for [Re(4,4'-X 2-bpy)(CO)3Cl]. 3 ' 
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A few platinum complexes of derivatised bpys have been reported. Miskowski et al. 

reported that [Pt(3,3'-(CO 2Me)2-bpy)C12] has a lowest energy 3MLCT excited 

state .54  They also noted the distorted nature of the ligand set due to the steric 

demands of the 3 and 3' positions. Other reports have noted the uv/vis absorption 

spectra of [Pt(4,4'-X 2-bpy)(CN)2] (X=Me, CO214,, t-Bu) and [M(3,3'-(CO 2Me)2-

bpy)C12] (M=Pd and Pt). 77 '78  

In this chapter we report the synthesis, redox chemistry and spectroelectrochemistry 

(uv/vis/nir, epr) of a series of complexes of general formula [Pt(4,4'-X 2-bpy)C12] 

where X is changed systematically from a powerful electron-donor (X=NH 2) to a 

powerful electron-acceptor (X=NO 2). The choice of 4 and 4' substituents ensures 

that only changes due to electronic (and not steric) factors are observed. We present 

good evidence that the redox orbital is similar in each case, i.e. the lowest 

unoccupied it orbital of the X 2bpy ligand. We also show that the metal-based 

LUMO of [Pd(4,4'-X 2-bpy)C12] is unaffected by substituting X= CO 2Me for X=H. 

The complexes [M(4,4'-(NO2)2-bpy)C12] (M=Pd, Pt) exhibit unique electrochemical 

behaviour and are considered separately in chapter 5. 

4.2 4,4'-X2-2,2 '-Bipyridine Ligands 

All the ligands studied except X=NH 2  (X=OEt, Me, H, Ph, Cl, CO 2Me and NO2) 

undergo reductive processes as shown by cyclic voltammetry (table 4.1). Bpy itself 

(X=H) undergoes a reversible one-electron reduction at -2.05 V vs. AgIAgC1 in 0.1 

M TBABF4IDMF solution. The one-electron reductions of 4,4'-(OEt) 2-bpy and 4,4'-

C12-bpy are completely chemically irreversible showing no anodic peaks at all 

temperatures and scan speeds studied, i.e. the anionic species rapidly decompose. No 

reduction is observed for 4,4'-(NH 2)2-bpy, presumably because the reduction lies at 

more negative potentials than the solvent breakdown limit (Ca. -2.5 V). Table 4.1 

shows that the presence of electron-withdrawing substituents facilitates reduction of 

the ligand i.e. the ligand reduces at more positive potentials, while electron-donating 

substituents have the opposite effect. A second reduction is observed for 4,4'- 
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(CO2Me)2-bpy at a potential 490 mV more negative than the first. This probably 

corresponds to the spin pairing of the second reduction electron with the first, i.e. the 

second reduction electron enters the same it orbital as the first reduction electron. 

Table 4.1 Redox potentials of 4,4'-X2-bpy 

X E 1/V 	E2/V 

OEt 2 . 33a 	- 

Me 213b(0 1 40)c 	- 

H -2.05(0. 100) 	- 

Ph -1.79(0.060) 	- 

Cl L69a 	- 

CO2Me -1.48(0.070) 	-1.97(0.130) 

(a) irreversible, cathodic peak quoted 

(I,) (E1+E)/2, (c) (E-E 1) 

4.3 Synthesis of [Pt(4,4 1-X2-bpy)C121 
The complexes [Pt(4,4'-X2-bpy)Cl2] (X=NH2  (VII), OEt (VIII), Me (LX),Ph (X), H 

(I), Cl (XI), CO2Me (XII) and NO2  (XIII)) were prepared by heating to reflux a 

suspension of the appropriate ligand in an aqueous solution of K 2 [PtCI4]. It is 

interesting to note the variation in reflux times required to attain a reasonable yield 

(Ca. 80%) of the product, varying from 15 minutes for VII to 5 hours for XIII. Thus 

the electron-withdrawing substituent deactivates the free ligand towards coordination 

while an electron-donating substituent activates the ligand. This is reflected in the 

pK. values of the ligands. For example 4,4'-(NO 2)2-bpy has a pKa  value of 0.06 

compared to 4.27 for bpy itsell 69  i.e. it is considerably less basic and is less able to 

donate electron density from the lone pairs of electrons on the ring nitrogens to the 

metal. Full experimental details are given in chapter 2. 
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4.4 Redox Chemistry of [Pt(4,4'-X 2-bpy)C121 

Cyclic voltammetric studies of VIII-XiI in 0.1 M TBABF4/DMF solution at 293 K 

reveal a fully reversible reduction process at potentials from -1.23 to -0.67 V (VIII 

and XU respectively, table 4.2). Coulometric studies at 243 K confirm a one-

electron process in each case. The reduction of VII is irreversible at ambient 

temperatures showing no anodic peak. At 213 K a return wave is observed - 

- - yielding an -E112 of --1.53 -V - along with-an associated daughter peak at -0.11V 

(figure 4.1). Thus the electron transfer process is followed by a rapid chemical 

reaction for Vii. The nature of the daughter product was not investigated further. 

Table 4.2 Redox potentials of [Pt(4,4'-X 2-bpy)C12] 

Complex a pa  E 1/ V E2/ V E 1-E2/ V 

VII -0.66 153b(0140)c - - 

VIII -0.24 -1.23(0.070) -1.86(0.160) 0.630 

IX -0.17 -1.16(0.070) 192d 0.760 

X -0.01 -1.01(0.070) -1.62(0.110) 0.610 

I 0.00 -1.06(0.070) -1.79(0.110) 0.730 

XI 0.23 -0.83(0.080) 156d 0.730 

XU 0.45 -0.67(0.070) -1.25(0.080) 0.580 

(a) Hammett parameter for substituent X, reference 75, (b) (Ef1-E 1)/2, (c) (EfEr) 

(d) anodic peak not observed, cathodic peak quoted 

For all other complexes a second reduction process is observed at potentials 580-760 

mV more negative than the first. This potential separation is associated with the spin 

pairing energy of the two added electrons in the redox-active orbital. The second 

reduction is fully reversible for Xii (figure 4.2), quasi-reversible for VIII and X but 

irreversible for LX and XI. 

The E 112  of the first reduction process varies linearly with the Hammett parameter u p  

of the substituent X (figure 4.3) for all the complexes studied. Such a correlation is 

indicative of a similar reaction mechanism in each case, viz., reduction of the bipyridyl 
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moiety. Thus electron-withdrawing substituents stabilise the LUMO while electron-

donors destabilise the LUMO of [Pt(4,4'-X 2-bpy)C12] compared to [Pt(bpy)C1 2]. 

+ 
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Figure 4.1 Cyclic voltammogram of VII at 213 K in 0.1 M TBABF 4IDMF solution 
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Figure 4.2 Cyclic voltammogram of XII at 293 K in 0.1 M TBABF 4/DMF solution 
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4.5 UvIVisINir Spectroelectrochemistry 

The lowest energy features in the uv/vis spectrum of [Pt(4,4'-X 2-bpy)C12] in DMF 

solution are assigned as MLCT (d7r*)  by comparison with the spectrum of I (table 

4.3). Other higher energy bands are seen which are probably combinations of internal 

ligand ir —it and higher energy MLCT transitions (for example figure 4.4). The Vmax - 

of the M1LCT transition in DMF solution varies linearly with a p  (figure 4.5). This is 

consistent with the observed electrochemical trends. 

-0.2 

-0.4 

-0.6 

-0.8 

-1.0 

-1.2 

-1.4 

-1.6 

-1.8 

NO2 

-1.0 	-0.8 	-0.6 	-0.4 	-0.2 	0.0 	0.2 	0.4 	0.6 	0.8 

ap 

Figure 4.3 E 1  of [Pt(4,4'-X 2-bpy)C12] versus Hammet parameter 
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3600C 	 26031) ' /C1111 

Figure 4.4 Uv/vis spectrum of XII in DMF solution 

Table 4.3 MILCT Vm of [Pt(4,4'-X 2-bpy)C12] in DMF solution 

Complex cy,a  MLCT vma,,/ kcm' 

VII -0.66 
27.6 (019)b 

VIII -0.24 26.2 (0.27) 

IX -0.17 26.0 (0.27) 

X -0.01 25.0 (0.45) 

I 0.00 25.7 (0.45) 

XI 0.23 24.8 (0.15) 

XII 0.45 24.1 (0.54) 

(a) Hammett parameter of substituent X, reference 75, (b) s / 104  M 1cm' 
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2-bpy)C12] 	 - - 
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Figure 4.5 MLCT Vm of [Pt(4,4'-X 2-bpy)C12] versus Hammett parameter (Yp  

It is interesting to note that the equivalent MLCT transition in [Pt(3,3'-(CO 2Me)2-

bpy)C12] is observed at 23.1 kcm 1  in DMF solution (22.5 kcm' in CHC13  or CH202  

solution)54 '78  compared to 24.1 kcm' for [Pt(4,4'-(CO 2Me)2-opy)C12], i.e. the 3,3' 

ligand is a better electron-acceptor than the 4,4' derivative. This is supported by 

electrochemical measurements in 0.1 M TBABF 4/DMF solution which show two 

reversible reductions at -0.56 V(0.070) and -1.21 V(0.070) vs. AgIAgC1. This is 

curious as the buckled nature of the ligand in the 3,3' derivative would be expected 

to decrease the aromaticity of the ligand and consequently make the ligand a poorer 
54 electron- acceptor. 

On reduction of complexes X and XII to X and XII at 243 K uv/vis/nir spectra are 

obtained which are similar to that of r, i.e. the bands expected for the coordinated 

anion radical bpy (for example figure 4.6) and a red-shifted MLCT band are 

observed, and the transitions are assigned similarly. Complex VII was not studied 

due to the irreversibilty of its reduction. Complexes VIII, 1X and Xf show the 

expected transitions in the visible and uv regions of their spectra but the broad near 

28 

27 
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infra-red band is absent above 6000 cm' (table 4.4). This may be due to differences 

in the uv/vis/nir spectra of the reduced forms of the modified X 2bpy ligands. 

However, the uv/vis/nir spectra of the mono-reduced ligands (4,4'-(CO 2MC)2-bpy) 

and (4,4'-Ph2-bpy), generated in an 0Th cell at 243 K, bear little resemblance to the 

spectra of their reduced complexes Xff and X. The other ligands could not be 

studied due to the irreversible nature of their reduction processes as shown by cyclic 

volt ammetly. For a meaningful comparison of the uv/vis/nir spectra of the reduced 

ligands with those of [Pt(4,4'-X 2-bpy)C121, the free ligand in the reduced form, a 

planar molecule, must be forced into a cis-geometry, i.e. the ring nitrogens must he 

on the same side of the C-C bridge. This is the case for the ion-pair Na(bpy) but 

not for the electrochemically reduced species which will adopt a trans-geometry. 

v,/c1T1' 

Figure 4.6 0Th reduction of XI1° ' in 0.1 M TBABF4/DMF at 243 K 
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Table 4.4 Uv/vis/nir spectra of [Pt(4,4'-X 2-bpy)Cl2] -  in 0. 1M TBABF4/DMF at 243 K 

Complex 7t(78,9)* 	7t(710)* MLCT 1t(67)*/  kcm 1  

viir - 	 20.2, 21.8 24.2 28.6 

iX - 	 19.7,21.2 24.0 29.1 

X 8.4 	17.9, 19.2 23 . 4a 27.1 

I 	- 11.2----20.1,21.6 	23.9 	25.9 

XI- 	- 	19.8,21.2 	23.1 	27.6 

XII 	7.2, 8.6 	19.8, 21.3 	22. 2a 	26.4 

(a) shoulder 

The v a., of the MLCT transition in the anionic species varies linearly with o, (figure 

4.5, table 4.3). This supports the assignment of this transition as the Pt d to singly-

occupied X2bpy ir orbital. 

4.6 Epr Specfroelectrochemistry 

Bulk electrochemical reduction of VLll-XJi in 0.1 M TBABF4IDMF solution at 243 

K yields epr active solutions. The room temperature solution epr spectra of VlEff 

and 3C-XU are all similar showing a broad central line with 1951k satellites and can be 

interpreted as for r, that is, coupling of the unpaired electron to the Pt nucleus with 

any superhyperline coupling to ligand nuclei unresolved. Complexes Viii, X and XI 

can be chemically reduced with NaBH4  to give rise to spectra which are identical to 

those generated by electrochemical reduction. Likewise XII can be reduced with 

cobaltocene. Note that cobaltocene is not a powerful enough reducing agent to 

reduce the other compounds. ix decomposes on reduction with NaBH 4  to yield epr 

silent species. 

On cooling to 77 K rhombic X-band epr spectra are obtained similar to that observed 

for r (figure 4.7, table 4.5) and may be treated similarly. Again the high-field 93 195Pt 

coupling is not resolved in any of the spectra. A 3  can be estimated from the 

magnitudes of A, A 1  and A2  (equation 2). The estimated A 3  for 1X assumes a 
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similar isotropic coupling to r. The estimated A3  values are listed in table 4.5 and lie 

in the range 5-25x10 cm. In all cases A3  appears to have the same sign as A 1 , A2  

and AIS,. 

A3 =  3A.-(A1+A2) 	 (2) 

Table 4.5 Epr parameters for jPt(4,4'-X 2-bpy)C121 

Complex 	 91 	
92 	93 	Ac 	A1  A2  A3  

2.00l' 	2.031 	2.010 	1.964 	-44 	-46 -63 (-23) 

IX 	- 	 2.036 	2.011 	1.946 	- 	-53 -85 (-24) 

X 	1.999 	2.040 	2.011 	1.939 	-54 	-55 -93 (-14) 

IF 	1.998 	2.038 	2.009 	1.935 	-54 	-56 -95 (-11) 

XI- 	2.000 	2.042 	2.014 	1.944 	-51 	-52 -96 (-5) 

XU 	1.997 	2.052 	2.010 	1.925 	-60 	-61 -100 (-19) 

(a) isotropic data from chemically generated species in DMF, (b) anisotropic data from 

electrochemically generated species in 0.1 M TBABF 4IDMIF, (c) A / 10-4  cm', 

(d) all parameters estimated directly from spectra 

A1, A2, A3 , gi, 92 and 93 can be assigned to the molecular axes x, y and z as for r. 
Hence, 92 and A2  are assigned to gx and Ax  respectively. The Pt 5d 7  orbital 

admixture to the SOMO of [Pt(4,4'-X 2-bpy)C12] can be calculated using equation 1. 

The dy, orbital is still the only d-orbital of the correct symmetry to mix with the 

ligand ir orbital. Tables 4.5 and 4.6 show that as X changes from an electron-donor 

(VIII) to an electron-acceptor (XIf) the g anisotropy (9-93) and 195  Pt hyperfine 

coupling constants increase. This indicates an increasing metal d-orbita1 admixture 

to the primarily ligand-based SOMO. This is borne out by the calculated a 2  values 

where a2  is the Pt 5d-orbital admixture to the SOMO (in calculating a 2  for r in table 

4.6 the experimental epr data were used as simulations were not available for the 

others in the series. Thus, the a 2  value calculated here is slightly higher than in 

chapter 3). This can be explained simply in molecular orbital terms. As the ligand 7t* 

orbital energy is decreased by adding electron-withdrawing sub stituents there is a 
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better energy match with the filled low-lying 5d y, orbital and hence a more efficient 

orbital overlap. This results in a ligand-based ir orbital with increased metal 

character. 

Table 4.6 Pt 5dyz  orbital admixtures to SOMO of[Pt(4,4'-X 2-bpy)C12] -  

- - 	
- Complex 	- gl -g3 a2 	 - 

VIII 0.067 0.08 

IX 0.090 0.13 

X 0.101 0.15 

T 0.103 0.16 

xr 0.098 0.18 

XII 0.127 0.16 

On electrogenerating the dianionic species X11 2  an epr signal is obtained at 77 K 

identical to that of the monoanion but with greatly reduced intensities. This signal is 

presumably due to residual monoarnon XII, where XU2  is epr silent. Thus, the 

second added electron, corresponding to the second reduction process in the cyclic 

voltammogram, is spin-pairing with the first in the same ir orbital to yield a 

diamagnetic product. This is consistent with the potential separation of the first and 

second reduction. 

4.7 Redox Chemistry of [Pd(4,4'-(CO 2Me)2-bpy)C12] 

[Pd(4,4'-(CO 2Me)2-bpy)Cl2] undergoes a broad, irreversible two-electron (by 

coulometry) reduction at -0.70 V in 0.1 M TBABF 4/DMF solution at 293 K resulting 

in decomposition of the complex. Thus, despite the strong electron-withdrawing 

ester groups the lowest unoccupied ic orbital of the ligand still lies above the 4d 

metal-based LUMO. 
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Figure 4.7 77 K epr spectra of VIII (a) and Xff (b) in 0.1 M TBABF4/DMF 
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4.8 Conclusions 

The redox chemistry of [Pt(4,4'-X 2-bpy)C12] can be explained in terms of two 

electrons entering the same orbital, viz., the lowest unoccupied it orbital of the 

X2bpy ligand. There is one exception where XNH 2. Here a rapid decomposition 

follows the first electron transfer process. We can still assign the redox orbital as bpy 

based on the basis of the E 112  of the reduction process. Systematic variations in the 

substituent X allow us to control the energy of the ic LUMO. 
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Chanter 5. Complexes of 44'-dmifro-2,2 1-bipvridine 

5.1 Introduction 

Few transition metal complexes of 4,4'-(NO 2)2-bpy and its mono-substituted analogue 

have been reported . 31 ' 6972 '76  Basu et al. have concluded from resonance enhanced 

Raman vibrational spectra that there is extensive charge-transfer to the nitro group in the 

MLCT excited-state of [Ru(4-(NO 2)-bpy)3] 2 , ice. the ligand ir orbitaL is high1y 

delocalised onto the nitro group. 70'7 ' They then explain the puzzling lack of 

luminescence of these species as being due to vibrational depopulation of the excited 

state via solvent coupling to the nitro group. However, Cook et al. have reported an 

emission spectrum for [Ru(4,4'-(NO2)2-bpy)3] 2  centered at 700 nm in an EtOHIMeOH 

solution (4:1 v/v) at 293 K, red-shifted compared to the emission at 630 nm observed for 

[Ru(bpy)3] 2  under the same conditions .27,72 

4,4'-(NO2)2-bpy has been reported to undergo two consecutive one-electron reductions 

at -0.80 and -0.91 V vs. SCE . 69  Only one complex of this ligand has been studied 

electrochemically. [Re(4,4'-(NO 2)2-bpy)(CO)3C1] is reported to undergo one ligand-

based reduction process at -0.45 V vs. SCE in MeCN solution .31 

In this chapter we reinvestigate the redox chemistry of [Re(4,4'-(NO 2)2-bpy)(CO) 3C1] 

and of the square-planar, d 8  complexes [M(4,4'-(NO2)2-bpy)L2] (M=Pd, Pt, LCr, n=0; 

M=Rh, L2=1,5-cyclooctathene, n=l). We find the complexed ligand can undergo four 

one-electron reduction processes and support the conclusion that the redox-orbitals are 

highly localised on the nitro groups. 

5.2 Redox Chemistry of 4,4'-(NO 2)2-bpy 

4,4'-(NO2)2-bpy undergoes two quasi-reversible reductions at -0.65 V(0. 100) and -0.79 

V(0. 170) and a third, poorly defined irreversible process at Ca. -1.6 V vs. AgIAgC1 in 0.1 

49 



M TBABF4/DMF solution at 293 K (figure 5.1). The small separation between E 1  and 

E2  of 140 mV is inconsistent with spin pairing of the two added electrons in the same it 

orbital. 

-2.0 	 -1.5 	 -1.0 	 .0.5 	 0.0 

Potential I V 

Figure 5.1 Cyclic voltammogram of 4,4'-(NO2)2-bpy in 0.1 M TBABF 4/DMF at 293 K 

5.3 Synthesis of [M(4,4'-(NO2)2-bpy)1-21" 

[M(4,4'-(NO2)2-bpy)C12] (M= Pd and Pt) were prepared by heating to reflux a 

suspension of the free ligand in an aqueous solution of K 2 [MCI4] for 3 to 4 hours. As 

noted in chapter 4, longer reflux times are required than for the analogous bpy 

complexes. [Rh(4,4'-(NO 2)2-bpy)(cod)]C104 was prepared by stirring a suspension of 

the free ligand with [Rh(cod)C1] 2  for 1 hour at room temperature and addition of 

NaC104. This again requires a longer reaction time than for the analogous bpy complex 
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[Rh(bpy)(cod)]C104 which is prepared by the same route but with stirring for 5 

minutes. 34  Full experimental details are given in chapter 2. 

5.4 Redox Chemistry of [M(4,4'-(NO2)2-bpy)L21 

Cyclic voltammetric studies of [Pt(4,4'-(NO 2)2-bpy)C12] (Xlii) in 0.1 M TBABF4IDM1F 

solution reveals four consecutive one-electron reductions in the 0 to -2 V range (figure 

5.2a, table 5.1). The first two are fully reversible reductions while the third and fourth 

are quasi-reversible and irreversible respectively. This is perhaps unsurprising as the 

molecule carries a large charge of 4- after the fourth reduction. As for the free ligand the 

E 1-E2  separation of 180 mV is too small to be considered a spin-pairing process, i.e. the 

first and second reduction electrons are entering different orbitals. Thus the redox 

chemistry suggests that the LUMO-second LUMO (SLUMO) gap is less than the spin 

pairing energy. The E 1-E3  and E2-E4  separations of 780 and 1050 mV could be 

consistent with spin-pairing processes. 

Figure 4.3 shows that the point for XIII lies off the Hammett curve for E 112  vs. Up. For 

the value of as quoted in the literature, +0.78, the E 112  of the first reduction should 

be more negative (i.e. the reduction should be harder than observed). This indicates an 

extensive localisation of the added charge onto the positively charged nitrogen nuclei of 

the nitro groups, or in other words an extensive delocalisation of the ir' system onto the 

nitro groups. However, the MILCT Vm position of XLII at 23.0 kcm' in DMF solution 

fits well on the Hammett curve for Vm vs. crp  (figure 4.5). 



Ii 

-2.0 	 -1.5 	 -1.0 	 -0.5 	 0.0 

Potential / V 

1 

b 

• 	I 	• 	I 	• 	I 	 I 	• 	I 	• 	I 	• 	 • 	I 	• 

-2.0 	-1.8 	-1.6 	-1.4 	-1.2 	-1.0 	-0.8 	-0.6 	-0.4 	-0.2 	0.0 

Potential / V 

Figure 5.2 Cyclic voltammograms of Xffl (a) and X1V (b) in 0.1 M TBABF4]DMF at 

293 K 
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{Pd(4,4'-(NO2)2-bpy)C12] (XIV) undergoes two reversible one-electron reductions at 

-0.27 and -0.45 V followed by a broad irreversible reduction at -1.06 V (figure 5.2b, 

table 5.1). Thus, by substituting XN0 2  for X=H or CO2Me the LUMO of [Pd(4,4'-

X2-bpy)C12] is changed from metal- to ligand-based. The similarity between the first two 

reduction potentials of XIII and XIV suggests that the change in metal from Pd to Pt 	-- - 

has little effect on the ligand orbital energies. The third reduction of X1V may be the 

metal-based reduction, rather than the third ligand-based reduction. The irreversibility of 

this process and the absence of a fourth reduction in the cyclic voltammogram support 

this hypothesis. 

Complex 

Xm 

XIV 

Xv 

t!d — 

Table 5.1 Redox potentials of [M(4,4'-(NO 2)2-bpy)L2] 

E 1/ V 	E2/ V 	E3/ V 	E41 V 	Solvent 

027a(Ø080)b -0.45(0.080) -1.05(0.100) 

-0.27(0.080) -0.45(0.080) -1.06 

-0.24(0.060) -0.39(0.090) -0.97(0.090) 

-0.16(0.070) -0.35(0.090) -0.84(0.070) 

-0.31(6.070) -0.45(0.070) -0.97(0.100) 

(a) (Eç4E r)/2, (b) (ErE1) 

-1.50(0.170) DMF 

- DMF 

-1.36(0.160) DMF 

-1.11(0.130) CH2C12  

-1.35(0.380) MeCN 
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-1.4 	-1.2 	-1.0 	-0.8 	-0.6 	-0.4 	-0.2 	- 	0.0 

Potential /V 

b 

-1.4 	-1.2 	-1.0 	.0.8 	-0.6 	-0.4 	-0.2 	0.0 

Potential /V 

Ii 
C 

-1.4 	-1.2 	-1.0 	-0.8 	-0.6 	-0.4 	-0.2 	0.0 

Potential / V 
Figure 5.3 Cyclic voltammograms of XV in 0.5 M TBABF4ICH2C12  solution at 293 K 

{Rh(bpy)(cod)]C10 4  undergoes two reversible one-electron reductions at -1.26 and -1.73 

V vs. SCE in 0.1 M [Et4N]C104IMeCN solution. 79  These processes have been assigned 
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as the first two reductions of the bpy ligand on the basis of their epr spectra 

([Rh(bpy)(cod)] is epr silent). [Rh(4,4'-(NO 2)2-bpy)(cod)] (XV) undergoes the same 

four reduction processes as XIII in 0.5 M TBABF4/CH2C12  or 0.1 M TBABF4/DMIF 

solution (figure 5.3). There is a significant shift in E 1  of 80 mV between DMF and 

CH202  solution. This solvatochromic behaviour is also apparent in the uv/vis spectrum 

of XV where the MLCT (d-+(NO2)2bpy lt*) transition shifts from 17.7 kcm' in DMF 

solution to 17.0kcm 'in CH2Cl2 solution.--- - - --- 

Reduced forms of XV are more stable in CH 202  solution than DMF as shown by the 

improved reversibility of the reduction processes in the cyclic voltammogram. Peaks are 

observed at -0.70 and -0.59 V on the return sweep of the cyclic voltammogram which 

correspond to reoxidation of the di-reduced form of the free ligand (figure 5.3a). if the 

switching potential is set just before the third reduction (-0.75 V) then these peaks are 

not observed, i.e. the complex begins to dissociate after the third reduction, liberating the 

di-reduced form of the free ligand (figure 5.3c). 

[Re(4,4'-(NO 2)2-bpy)(CO)3C1] (XVI) is reported to undergo only one ligand-based 

reduction . 3 ' In light of the redox chemistry of W X1V and XV this species was 

reinvestigated. We find that XVI does in fact undergo four reductions at -0.31, -0.45, 

-0.97 and -1.35 V as well as the irreversible Re(lIll) oxidation at +1.65 V (anodic peak) 

in 0.1 M TBABF4IMeCN solution (figure 5.4). The Re(LM) oxidation showed no signs 

of increasing reversibility at low temperatures or at increased scan rates. 
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Figure 5.4 Cyclic voltimmogram of XVI in 0.1 M TBABF 4IMeCN solution at 293 K 

5.5 Crystal structure of [Pt(4,4 1-(NO2)2-bpy)C121 

A single crystal of XIII was grown from MeCN solution. Full experimental details of 

structure determination are given in chapter 2. Table 5.2 lists interatomic distances and 

interbond angles. Figure 5.5 shows a view of one of the independent molecules in the 

unit cell. Despite the refinement problems discussed in chapter 2, the grossly planar 

nature of the molecule is established. A discussion of the intermolecular packing 

interactions and a full list of fractional co-ordinates are given in appendix A. 

Table 5.2 Interatomic distances (A) and interbond angles (°) for XIII 

Pt (A) —C1(1A) 2.322(12) Pt (B) —C1(1B) 2.293(13 
Pt (A) —C1(2A) 2.240(22) Pt (B) —C1(2B) 2.301(1C, 
Pt(A) —N(1A) 2.05( 	3) Pt(B) —N(1B) 1.99( 	3) 
Pt(A) —N(2A) 1.95( 	4) Pt(B) —N(2B) 1.94( 	3) 
N(1A) —C(1A) 136( 	5) N(1B) —C(1B) 1.40( 	5) 
N(1A) —C(5A) 1.41( 	6) N(1B) —C(5B) 145( 	5) 
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C(1A) 	-C(2A) 1.39( 	6.) C(1B) 	-C(2B) 1.39( 	6) 
C(1A) 	-C(6A) 1.51( 	6) C(1B) 	-C(6B) 1.44( 	6) 
C(2A) 	-C(3A) 1.38( 	6) C(2B) 	-C(33) 1.42( 	5) 
C(3A) 	-C(4A) 1.37( 	6) C(3B) 	-C(4B) 1.41( 	6) 
C(3A) 	-N(3A) 1.49( 	5) C(3B) 	-N(3B) 1.47( 	5) 
C(4A) 	-C(5A) 1.40( 	7) C(4B) 	-C(5B) 1.36( 	6) 
N(3A) 	-O(1A) 1.18( 	8) N(3B) 	-O(1B) 1.18( 	5) 
N(3A) 	-0(2A) 1.19( 	6) N(3B) 	-0(2B) 1.15( 	5) 
N(2A) 	-C(6A) 1.43( 	6) N(2B) 	-C(6B) 1.34( 	5) 
N(2A) 	-C(10A) 1.41( 	9) 	. N(28) 	-C(10B) 1.3 4  --( 	5) 
C(6A) 	-C(7A) 1.35( 	6) C(6B) 	-C(7B) 1.37( 	6) 
C(7A) 	-C(8A) 1.38( 	6) C(7B) 	-C(8B) 1.40( 	6) 
C(8A) 	-C(9A) 1.42( 	6) C(8B) 	-C(9B) 1.37( 	6) 
C(8A) 	-N(4A) 1.54( 	7) C(8B) 	-N(4B) 1.53( 	6) 
C(9A) 	-C(10A) 1.41( 	9) C(9B) 	-C(10B) 1.35( 	6) 
N(4A) 	-C(3A) 1.17( 	7) N(4B) 	-0(3B) 1.20( 	6) 
N(4A) 	-0(4A) 1.22( 	7) N(43) 	-0(4B) 1.14( 	6) 

C1(1A)-Pt(A) -C1(2A) 89.8( 	6) C1(1B)-Pt(B) 	-C1(2B) 89.0( 
C1(1A)-Pt(A) -N(1A) 93.4( 	9) C1(1B)-Pt(B) 	-N(1B) 178.3( 
CL(1A)-Pt(A) -N(2A) 176.2(13) C1(1B)-Pt(B) 	-N(2B) 97.7(1C 
C.(2A)-Pt(A) -N(1A) 175.9(10) C1(2B)-Pt(B) 	-N(1B) 92.6( 
C(2A)-Pt(A) -N(2A) 94.0(14) C1(2B)-Pt(B) 	-N(2B) 173.2(1C 
(1A) -Pt(A) -N(2A) 82.8(16) N(1B) 	-Pt(B) 	-N(2B) 80.7(12 

:t(A) -N(1A) -C(1A) 111.8(25) Pt(B) 	-N(1B) 	-C(1B) 112.6(2 
?L(A) -N(1A) -C(5A) 122.9(29) Pt(B) 	-N(1B) 	-C(53) 131.4(2: 
C(12't) -N(1A) -C(5A) 124.9(36) C(1B) 	-N(1B) 	-C(5B) 114.8(2 
:1(1A) -C(1A) -C(2A) 118.9(38) N(1B) 	-C (1B)' -C(2B) 119.8(3' 
?(1A) -C(1A) -C(6A) 117.7(36) N(1B) 	-C(1B) 	-C(6B) 115.8(3: 
(2A) -C(1A) -C(6A) 123.3(38) C(2B) 	-C(1B) 	-C(6B) 124.4(3( 

C(1A) -C(2A) -C(3A) 120.3(40) C(1B) 	-C(2B) 	-C(3B) 120.6(3( 
(2A) -C(3A) -C(4A) 116.4(37) C(2B) 	-C(3B) 	-C(43) 120.5(3( 

C(21\) -C(3A) -N(3A) 122.8(37) C(2B) 	-C(3B) 	-N(3B) 119.1(3: 
C(IA) -C(3A) -N(3A) 119.3(35) C(4B) 	-C(3B) 	-N(3B) 120.3(3 
'(3T) -C(4A) -C(5A) 126.5(40) C(3B) 	-C(4B) 	-C(5B) 113.5(3 
:(1A) -C(5A) -C(4A) 110.2(41) N(1B) 	-C(5B) 	-C(4B) 122.7(3 
C(37) -N(3A) -O(1A) 101.5(46) C(3B) 	-N(3B) 	-O(1B) 107.2(3: 
•.(3A) -N(3A) -0(2A) 120.6(38) C(3B) 	-N(3B) 	-0(2B) 115.2(3' 
O(1A) -N(3A) -0(2A) 132.9(53) O(1B) 	-N(3B) 	-0(2B) 137.5(3 1.  

Lt(A) -N(2A) -C(6A) 116.7(32) Pt(B) 	-N(2B) 	-C(6B) 118.9(2 

Pt() -N(2A) -C(10A) 126.5(44) Pt(B) 	-N(2B) 	-C(10B) 126.5(2 
C(6A) -N(2A) -C(10A) 111.4(48) C(6B) 	-N(2B) 	-C(10B) 113.9(3: 

C(1A) -C(6A) -N(2A) 110.7(37) C(1B) 	-C(6B) 	-N(2B) 111.7(3 
C(1A) -C(6A) -C(7A) 122.9(40) C(1B) 	-C(6B) 	-C(7B) 124.6(3 
1:(2A) -C(6A) -C(7A) 126.3(42) N(2B) 	-C(6B) 	-C(73) 123.5(3 
C(61) -C(7A) -C(8A) 115.3(41) C(63) 	-C(7B) 	-C(8B) 116.3(3 
C(7A) -C(8A) -C(9A) 121.5(41) C(7B) 	-C(8B) 	-C(93) 123.2(3 
C(7A) -C(8A) -N(4A) 117.6(41) C(73) 	-C(8B) 	-N(4B) 115.4(3 
C(9A) -C(8A) -N(4A) 120.5(41) C(9B) 	-C(8B) 	-N(4B) 120.7(3 
C(8) -C(9A) -C(10A) 115.2(48) C(83) 	-C(9B) 	-C(10B) 111.8(3 
N(2A) -C(10A)-C(9A) 115.7(62) N(2B) 	-C(10B)-C(9B) 129.7(3 
C(8A) -N(4A) -0(3A) 111.7(48) C(8B) 	-N(4B) 	-0(33) 116.3(4 
C(8A) -N(4A) -0(4A) 120.7(48) C(8B) 	-N(43) 	-0(4B) 119.5(4 
0(3A) -N(4A) -0(4A) 125.2(55) 0(33) 	-N(43) 	-0(43) 123.9(4 
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Figure 5.5 Crystal structure of Xffl 

5.6 EH1MO Calculations of I vs. XLII 

Figure 5.6 shows energy level schemes of I and Xffl. The energy of the HOMO, an in 

plane d2-2/cY-bonding orbital, is unaffected by the change in ligand set. The LUMO of 

XIII is at -10.65 eV compared to -9.64 eV for I in good agreement with the observation 

that XIII reduces at a potential 0.74 V more positive than I. The LUMO-SLUMO gap 

of XIII is calculated to be 100 meV compared to 670 meV for I This supports the 

small LUMO-SLUMO gap model proposed to explain the unique electrochemistry of 

XLIII. For both I and XIII the SLUMO is the next highest ir orbital on the bpy ligand. 

Nuclear coefficients of the LUMO and SLUMO of XLII are given in table 5. Note that 

N2 and N2' are the nitrogen nuclei of the NO 2  groups. The LUMO and SLUMO of 
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XIII are 65% and 76% localised on the nitro groups respectively and only differ 

significantly in their symmetry (b2 and b 1  respectively). 

Table 5.3 Nuclear coefficients of LUMO and SLUMO of XIII 

Atom Orbital LUMO SLUMO. 

N1,l' 2Pz 0.106 0.061 

C2 ~ 2'1 2Pz 0.038 0.019- - 

C3 9 3' 2Pz 0.028 0.081 

C4,4' 2Pz 0.048 0.030 

C5,5' 2Pz 0.076 0.038 

C6,6' 2Pz 0.036 0.021 

N2,2' 2Pz 0.392 0.456 

01,1' 2Pz 0.130 0.144 

02,2' 2Pz 0.129 0.145 

Pt 5dyz 0.024 - 

5d, - 0.009 

6Pz 0.011 - 

Pt(bpy)C 12 4 E/eV Pt(4,4'-(NO 2  ) 	 1 2 

	

LUMO(7r(7)) 	
-10 

-t--_ 11 	 LUMO(NO2 ) 

	

I HOMO(Ptd) 	 HOMO(Pt d) 

Figure 5.6 Energy level scheme for I and Xliii 
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5.7 Epr SpectroelectrochemiStrY 

The electroreduced monoanion XIII gives solution and frozen glass epr spectra similar 

to others in the [Pt(4,4'-X 2-bpy)C12] series (table 4.5, figure 5.7), i.e. interaction of the 

unpaired electron is only observed with the 'Pt nucleus and not with ligand nuclei. An 

isotropic 195Pt hyperfine coupling constant of A=-43x10 4  cm 1  centered at g=2.006 is 

-observed in 0.1 M TBABF4IDMF solution at room temperature. Rhombic gsnd 'Pt 

hyperfine tensors are observed at 77 K with g,2.042, 9 2 2.016, 93 1.977, A1 =-33x10' 

cm 1  and A2=-60x10' cm 1 . The hyperfine splitting of the high field 93 component (A3) is 

unresolved. A significantly smaller Pt 5d y, orbital admixture of 7% to the SOMO is 

calculated from equation 1 using the parameters estimated directly from the epr 

spectrum. This can be explained by the strong it-accepting influence of the nitro groups. 

On reduction to the dianiomc X1112  an epr spectrum is observed at room temperature 

and at 77 K. This confirms the two added electrons are unpaired, i.e. a spin-triplet state 

species is generated. The solution spectrum in DMF at room temperature exhibits both 

hyperfine coupling to 195  Pt and superhyperfine to ligand nuclei (figure 5.8a) centered at 

g 4,=2.018. This can be succesfully simulated by assuming coupling to 195Pt (29.5 G 

(27.8xi0 cm')), to two equivalent ' 4N nuclei and to two equivalent 'H nuclei (4.4 G 

(4.1x10 4  cm') and 2.8 G (2.8x10" cm') respectively) with a Lorentzian Iinewidth of 

0.75 G (figure 5.8b). We assign the ' 4N coupling to the nitro group mtrogens on the 

basis of the EHMO calculations, but do not attempt to assign the position of the 'H 

nuclei. The EHMO calculations suggest that after the N2 and N2' superhyperfine 

coupling the next largest in magnitude should be to Ni and Ni'. However, a better 

computer simulation of the experimental spectrum is possible using the model detailed 

above, viz., coupling to two nitrogen nuclei and two hydrogen nuclei. Thus the EHMO 

calculations appear to be correct in the gross picture but inaccurate in the minor details. 

60 



giso 2.006 

A150 4 3x 1 O-4cm- 1 

N. 

3350 	 3400 	 3450 	 3500 

Magnetic Field / Gauss 

gi 2.042 Al 33x10-4cm-1 

92 2.016 A2 60x10-4cm-1 

93 1.977 A3 - 

3100 	 3200 	 3300 	 3400 	 3500 

Magnetic Field / Gauss 

Figure 5.7 Solution (a) and frozen glass (b) epr spectra of XI[f in 0.1 M TBABF4/DMF 
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On cooling to 77 K a rhombic signal is observed (figure 5.9) but there are no resolvable 

hyperfine interactions. No features appear in the spectrum typical of a spin-triplet 

system, i.e. there is no observable electron-electron coupling fine structure. This can be 

indicative of a very small zero-field splitting compared to the microwave frequency. 

The large-difference in the linewidth of the solution spectra of XIII (13.3 G) and X1112  

(0.75 G) may be due to an "electron hopping" mechanism. In the monoanion the 

unpaired electron can be thermally excited to the low-lying excited state (the SLUMO of 

the neutral molecule). This hopping between orbitals can contribute to line broadening 

in the observed epr spectrum. In the dianion the low-lying excited state is already 

occupied and hence this hopping mechanism cannot occur. De Armond et al. proposed 

this mechanism to explain the difference in the observed linewidths of the solution epr 

spectra of complexes such as [Fe 11(bpy)2(bpy)] and [Fe 11(bpy)31 - . 17  It would therefore 

be expected that the linewidth of X1If would be temperature dependent while that of 

xm2-  would not. Unfortunately neither species exhibits any significant linewidth 

variation over the temperarure range 293 to 213 K in DMF solution. This may imply 

that the gap between the orbitals is too small for this process to be significantly retarded 

over the temperature range studied. 

The in- and tetra-anionic species proved to be too unstable on an electro synthesis 

timescale to be studied further at any temperature. 

The solution epr spectrum of X1Y at room temperature shows a broad single line at 

g2.010 (linewidth 10.7 G) with no observable '05Pd hyperfine coupling (22% natural 

abundance, 1=5/2). At 77 K the epr spectrum shows a broad asymmetric line with some 

observable structure on the high-field side (figure 5. lOa). This may be coupling to 

rather than 105 Pd. 
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Figure 5.8 Solution epr spectrum of X111 2  in DMF at 293 K (a) and simulation (b) 
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Magnetic Field / C 

Figure 5.9 77 K epr spectrum of X111 2  in 0.1 M TBABF4IDMF 

The solution epr spectrum of dianionic x1V 2  again shows a much smaller intrinsic 

linewidth (Ca. 0.7 G) and superhyperfine coupling to ligand nuclei is observed (figure 

5.11a) centered at g=2.014. 105Pd hyperfine coupling can be observed on both the 

high-field and low-field wings and is estimated to be in the order of 2-3 G. We have, as 

yet, been unable to simulate satisfactorily this spectrum. This may be due to slight 

dissociation of the complex on reduction releasing the reduced form of the ligand thereby 

complicating the spectrum. At 77 K a single featureless asymmetric line is observed 

(figure 5.1lb). 
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Figure 5.10 77 K epr spectra of XIY in DMF (a) and XV in CH 202 (b) 
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Figure 5.11 Solution(a) and frozen glass (b) epr spectra of XW2  in 0.1M TBABF4IDMF 
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Figure 5.12 CH202  solution epr spectrum of XV 2  at 293 K (a) and simulation (b) 
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A similar pattern is observed for the mono- and di-reduced XV. The mono-reduced XV 

has g2.012 in 0.5 M TBABF4ICH2C12  solution and shows a similar 77 K epr spectrum 

to XLY with the same high-field features. This supports the assignment of these as 14N 

coupling rather than metal hyperfine (figure 5. lOb). The solution epr spectrum of XV 2  

shows superhyperfine coupling to ligand nuclei with g2.014 and can be simulated 

assuming coupling to two equivalent 14N nuclei and two equivalent 1H nuclei (3.9 G 

(3.7x104  cm') and 2.5 G (2.4x10' cm 1 ) respectively) with a Lorentzian linewidth of 1.5 

G (figure 5.12a and b). No 
103  Rh hyperfine coupling (100%, 1=1/2) is observed and 

consequently must be smaller in magnitude than the observed linewidth. The model used 

to simulate this spectrum is similar to that used for X111 2  (2N and 2H) and we assign the 

couplings accordingly. 

Thus the epr spectra of the mono- and di-reduced forms of XIII, XIV and XV are 

entirely consistent with the observed redox chemistry and EHMO calculations, viz., a 

very small LUMO-SLUMO gap with the orbitals mainly sited on the nitro groups. 

5.8 UvIVisINir Spectroelectrochemistriy 

The uv/vis spectra of XIII and XIV in DMF solution are similar except for the presence 

of an MZLCT band at 23000 cm' ( c=0.45x 104  M'cm') for XIII (5d 1t *). The analogous 

4d 1r* MLCT transition for XIV would be expected at much higher energy. Higher 

energy bands appear at 29.5 and 32.7 kcm 1  for XIII and 29.6 and 32.1 kcm for XIV 

(figures 5.13 a and b). These are probably a combination of internal ligand ic—irk and 

higher energy MLCT transitions. Both species are yellow in solution. 

On reduction to X1Y a broad band appears at low energy (Ca. 7 kcm') as well as two 

bands at 18.0 and 19.6 kcm 1  (figure 5.14b). The spectrum of XIff is more complicated 

than anticipated possibly due to the presence of residual XIII in solution (figure 5.14a). 
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On di-reduction the broad nir bands blue-shift for both species while the bands at Ca. 20 

kcm' intensify (figure 5.15). The major difference between the spectra of Xffl2  and 

XW2  is the presence of an intense peak at 23.1 kcm' for X1111 2  which is therefore 

assigned as the MLCT transition. We assign the broad nir bands and the visible bands as 

intra-ligand transitions. The mono-anionic species are both pale red, which darkens to a 

deep red on di-reduction. 

5.9 Conclusions 

The anomalous electrochemical behaviour of XIII can be fully explained in terms of a 

molecular orbital scheme with a low-lying LUMO and small LUMO-SLUMO gap where 

both orbitals are highly localised on the nitro groups. Thus di-reduction of Xliii leads to 

the spin-triplet state species X1B2 . The energy of these ligand-based orbitals is little 

perturbed by changing the metal from Pt to Pd as witnessed by the identical redox 

potentials for the first two reduction processes in the cyclic voltammograms of Xliii and 

Xlv. Complex X1V has a ligand-based LUMO in contrast to []Pd(bpy)C1 2] which has a 

metal-based LUMO. 
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Figure 5.14 Uv/vislnir spectra of Xll (a) and XJY (b) in 0. 1M TBABF4/DMF at 243 K 
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Figure 5.13 Uv/vis spectra of XIII (a) and X1V (b) in DMF solution at 293 K 
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Figure 5.15 0Th reduction of XII7''2  (a) and X1V42  (b) in 0. 1M TBABF4JDMIF at 243K 
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Chapter 6. [Bis(2,2'_bipvridine)platinum(Il) 2 
_ 

6.1 Introduction 

There have been a number of studies on transition metal bis-bipyridyl complexes due to 

their interesting structura1 8085  and electronic properties. 538692  The bpy ligands on such 

systems are unable to adopt coplanar positions due to the steric repulsions between the 6 

and 6' hydrogen atoms of the opposing bipyridyl ligands. Thus a distortion away from 

square planar is forced. This distortion can take two forms: (i) a "twist" deformation 

where the bpys retain their planarity but twist away from each other (i.e. a compressed 

tetrahedral geometry), or (ii) a "bow" distortion where the PtN 4  moiety remains planar 

but each bpy buckles (figure 6.1). For example [Pt(bpy)2](NO3)2 adopts the twist form 

while [Pt(bpy)2](tcnq)2 (tcnq=7 , 7, 8 ,8tetracyaflOqUinOd1methanC) adopts the bow form in 

the solid state. 80,8' The solution geometry is not clear. 

N.._i 

Bow 

Pt 

Twist 

Figure 6.1 Distortions of the [Pt(bpy)2] 2  cation 
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The electrochemistry of both [Rh(bpy) 2] and [Pt(bpy)2]2  have been reported. 

[Rh(bpy)2}, generated by the two electron reduction of [Rh(bpy) 3]3 , undergoes two 

consecutive reversible one-electron reductions at -1.46 and -1.67 V vs. SCE in MeCN 

solution. 88  Cãldãraru et al. reported the epr spectrum of the mono-reduced [Rh(bpy) 2]0  

as having a strong axially symmetric signal in the g=2 region and a weak, broad 

asymmetric signal in the g=4 region in an MeCN glass at 77K 89  They assign the former 

-  to the monomeric spin 1/2 -species with the -unpaired electron -delocalised over the entire - 

molecule, and the latter to a small concentration of a spin 1 diineric species. 

Two reports have appeared on the electrochemistry of [Pt(bpy) 2] 2 . The first describes 

an irreversible reduction at -0.97 V followed by two reversible reductions at -1.51 and 

-2.53 V vs. SCE in DMF solution. 9°  The second reports the same irreversible reduction 

at -1.26 V followed by reversible reductions at -1.75 and -1.92 V vs. Ag/AgC1 in the 

same solvent. 91  The first reduction was assigned as a metal-based process simply on the 

irreversibility of the reduction. However, the lowest energy excited state of [Pt(bpy) 2] 2  

has been assigned as ligand centered from its vibromcally structured emission spectrum 

in a butyronitrile glass at 77 K. 53 ' 92  

In this chapter we find both the previous reports on the redox chemistry of [Pt(bpy) 2
] 2  

to be in error. We present strong evidence for a redox induced dimerisation process of 

this species and fully assign the cyclic voltammogram. We conclude the LUMO of this 

complex to be ligand-based. 

6.2 Redox Chemistry and Spectroelectrochemistry 

[Pt(bpy)2] 2  (XVIII) is unique among the [Pt(bpy)L 2] species discussed in chapter 3 in 

that it undergoes a completely irreversible one-electron (by coulometry) reduction at 

-0.60 V vs. Ag/AgCl in 0.1 M TBABF 4IDMF solution at room temperature (figure 6.2a, 

process a). Thus a rapid chemical reaction follows electron transfer. Bulk electrolysis at 
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-0.80 V affords an intense yellow species, "XVII", which exhibits an identical cyclic 

voltammogram to XVIII minus the irreversible reduction at -0.60 V (figure 6.3). "XVII" 

is epr silent and hence the radical species formed by the one-electron reduction of XVII 

are combining to give a diamagnetic product, most likely a dimer (vide infra). Such 

redox-induced dimerisations have been observed for monomeric Pt(II) complexes such 

as [Pt(RNC)4] 2  and cis-[IPt(RNC)2Cl2] (Rfor example 2,4,6_But3_C6H2).9395 

1 1  

-25 	 -2.0 	 -1.5 	 -1.0 	 -0.5 	 0.0 

Potential I V 

(b) 

-2.5 	 -2.0 	 -1.5 	 -1.0 	 -0.5 	 0.0 

Potential / V 

Figure 6.2 Cyclic voltammograms of XVII in 0.1 M TBABF4/DMF at 293 K 
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The uv/vis spectral changes on reduction of XVII to "XVff" in 0.1 M TBABF 4IDMIF 

solution involve the growth of an intense band at 35.8 kcm' which corresponds to the 

expected frequency for free bpy and the collapse of the coordinated bpy it—ic bands to 

approximately half their original intensity (figure 6.4). Thus the redox-induced reaction 

seems to involve coupling of the radical species and loss of bpy which would necessitate 

coordination of solvent at the vacant coordination site if four coordinate geometry at Pt 

is to be maintained. The loss of bpy is supported by a reduction process at ca. -2 Yin - 

the cyclic voltammogram of XVII (figure 6.2b, process g). Free bpy reduces at -2.05 V 

in DMF solution. 

1 

I 	• 	I 	I I 	• 	I 	 I 	• 	I 	 • 	I 	 I 	• 

-2.0 	-1.8 	-1.6 	-1.4 	-1.2 	-1.0 	-0.8 	-0.6 	-0.4 	-0.2 	0.0 

Potential / V 

Figure 6.3 Cyclic voltammogram of "XVff" in 0.1 M TBABF 4IDMF at 293 K 
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4 

Figure 6.4 0Th reduction of XVII -+ "XVff" in 0.1 M TBABF4/DMF at 293 K 

2Cj:. 	 880e 

A 

Figure 6.5 Uv/vis/nir spectrum of di-reduced dimeric species in 0.1 M TBABF 4JDMF 
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The "dimer" produced undergoes two consecutive reversible one-electron reductions at 

-1.15 and -1.26 V (figure 6.2a, processes c and d). Coulometric experiments show these 

two reductions to be a one-electron process in total with respect to the monomeric 

species. This supports the formation of a dimer. The uv/vis/nir spectrum of the dark 

green tn-reduced species generated at -1.40 V in 0.1 M TBABF 4JDMF solution has 

maxima at 11.0, 20.5, 22.0 and 28.0 kcm' all of which can be assigned as internal 

transitions of coordinated bpy (figure 6.5). The epr spectra of this species at 77Kand 

room temperature in DMF solution are consistent with this assignment (figure 6.6). 

g = 2.026 	Al = -40.1G 

92 = 2.015 	A2 = -66.8G 

93 = 1.959 	A3 = - 

Figure 6.6 77K epr spectrum of di-reduced dimeric species in 0.1 M TBABF 4!DMIF 
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The third reduction of the dimer is observed at -1.75 V, most likely the second reduction 

of one of the bpy ligands (figure 6.2, process f). The potential separation of 600 mV 

between processes c and f is consistent with this assignment. The proposed 

electrochemical scheme of XVII at room temperature is shown in scheme 6.1 

[Pt(bpy)2] 2 	[Pt(bpy)2] 	{Pt(bpy)(S)]2 2 	- 

Scheme 6.1 

At 213K the cyclic voltammogram of XVII shows four consecutive one-electron 

reductions at -0.65, -0.98, -1.56 and -1.95 V in 0.1 M TBABF 4/DMIF solution (figure 

6.7b). A return wave is now observed for the first reduction process (figure 6.7a), i.e. 

the chemical reaction following electron-transfer has been sufficiently slowed for the 

genuine mono-reduced XVII to be stable in solution on the cyclic voltammetric 

timescale. The observation of four reductions and the potential separations between the 

first and third and the second and fourth reductions (910 and 970 mV respectively) 

suggest that these processes are the stepwise reductions of the bpy ligands. The poor 

stability of the reduction products on an electro synthesis timescale prevented 

spectroelectrochemical studies on these species. 

The second and third reductions of the monomeric complex are seen in the cyclic 

voltammogram of XVII at room temperature as weak peaks (figure 6.2a, processes b 

and e). 
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Figure 6.7 Cyclic voltammograms of XVII in 0.1 M TBABF4/DMF at 213 K 
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Thus, the first reduction of XVII appears to be bpy based, similar to other [Pt(bpy)L2] 

species studied, yet it leads to a dimerisation reaction. This anomalous behavior may be 

due to the distorted nature of the ligand set. The bpy radical anion wants to be planar to 

allow maximum aromaticity of the ic-system. Thus, on reduction of the bpy ligand the 

desire for the reduced bpy ligand to be planar may provide a strong driving force for the 

loss of bpy and the consequent- coupling of the remaining fragments. At low 

temperatures this dissociation takes place much more slowly. 

Preliminary dimerisation kinetic studies are in agreement with scheme 6.1. Repeating the 

study in the presence of free bpy inhibits the proposed dimerisation reaction. This 

indicates that dissociation of the reduced form of the monomeric complex to release free 

bpy is involved in the rate-determinig step. 

6.3 Conclusions 

[Pt(bpy)2] 2  undergoes a redox-induced dimerisation reaction on reduction at ambient 

temperatures, possibly to form [Pt(bpy)S]2 2  (S=solvent). The LUMO of {Pt(bpy) 2
] 2 
 is 

most likely ligand-based as shown by low-temperature cyclic voltammetry. The 

distorted nature of the ligand set may lead to the dissociation of the mono-reduced 

[Pt(bpy)2]. 
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Conclusions and Discussion 

Cyclic voltammetiy, uv/vis/nir absorption and epr spectroscopies and EHMO 

calculations have been used to characterise the LUMO of [Pt(bpy)L 2]. While the results 

of the experiments are consistent with each other, each technique has its own merits and 

drawbacks. For example, while the uv/vis/nir spectra of [Pt(bpy)L 2] grossly 

characterises the SOMO as a ligand-based ir' orbital, theyoffer no insight into-the extent 

of ligand-metal orbital mixing. Epr spectroscopy affords a more explicit molecular 

orbital picture and a more sensitive probe to minor changes in the ligand set. For 

example, changing L from C1 to CN has little effect on the uv/vis/nir spectrum of 

[Pt(bpy)L2] -  but a significant effect on the epr spectrum. The main limitation of the epr 

experiment is the inability to determine metal p-orbital spin-densities. Work is in 

progress to address this problem by extending the relevant equations for d-orbital spin-

density to include p-orbital admixtures and to estimate empirically the unknown 

parameters from high-level MO calculations. 

It is perhaps surprising that the relatively low level EHMO calculations are in good 

agreement with the experimental results, giving MO schemes which are consistent with 

the observed redox-chemistry (for example, correctly predicting the relative size of the 

LUMO-SLUMO gap for I and XIII) and ligand-based redox-active orbitals. However, 

comparison of epr derived MO coefficients in the SOMO of [Pt(bpy)L 2] -  and the 

theoretically calculated values reveal that the EHMO calculations consistently underplay 

the role of the metal orbitals. Equally, EHMO calculations often wrongly predict the 

distribution of electron-density about the bipyridyl rings as witnessed by the models 

required to simulate epr spectra where superhyperfine coupling to the ligand nuclei has 

been resolved. 
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There is great scope for work on the complexes of 4,4'-(NO 2)2-bpy. Q-band epr spectra 

of X1Y and XV would clarify the nature of the observed high-field features. It is 

unfortunate that there is no observable superhyperfine features in the solution epr 

spectrum of XIff as this would give a clearer picture of the electronic distribution in the 

SOMO without the complication of a second unpaired electron. Electron nuclear double 

resonance (ENDOR) studies may resolve this problem. No electron-electron fine 

structure is observed-in the epr spectra of the spin-triplet species XllhL, X1V2T and XV.-

It may be that the zero-field splittings of these systems are too small to be observed at X-

band frequencies and it is may be possible to resolve the fine structure at S-band 

frequencies. 

More generally, it would be of interest to extend the study of strongly electron-

withdrawing group substituted bipyridyls. For example, 4,4'-(CN) 2-bpy might be 

expected to show similar redox-behaviour to 4,4'-(NO 2)2-bpy but has never been studied 

electrochemically either in the free or complexed form. Equally, the effect of the 

position of the substituents has never been systematically studied and deserves greater 

attention. 
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Appendix A. Structure of [Pt(4,4'-(NO,),bPY)ChI 

[Pt(4,4'-(NO2)2-bpy)C12] dissolves to give yellow solutions yet exists as a red solid in the 

anhydrous form (see chapter 2). Thus, there must be some intermolecular interaction in 

the solid state to give rise to the different colour. This is revealed in the single-crystal 

structure determination. There are three distinct intermolecular interactions in the solid 

state: 

(i) molecule pairs held together by bpyH ... Cl hydrogen bonds (figure A. 1) of 2.62 and 

2.84 A, 

Figure A.! Packing of [Pt(4,4'-(NO 2)2-bpy)Cl2] 
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(ii) a "thagonal" NOO. .NO2  interaction between the 0 atom of one nitro group and the 

N atom of a nitro group on a neighbouring molecule (figure A.2). This interaction is 

characterised by an 0.. .N distance of 2.82 A and is probably electrostatic in nature 

between the N and O, and 

Figure A.2 Packing of [Pt(4,4'-(NO 2)2-bpy)Cl2] 
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(iii) hydrogen bonding between the 0 atoms of one molecule with the bipyridyl H atoms 

of neighbouring molecules (figure A.3) at O ... H distances of 2.36 and 2.50 A. 

Figure A. 3 Packing of [Pt(4,4 '-(NO 2)2-bpy)C12] 

There is no evident stacking of molecules as is observed for [Pt(bpy)C1 2]. The 

separation of the adjacent molecules in the apparent molecular stacks in the a direction is 
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5.45 A (cf. 3.45 A in the red form of [Pt(bpy)C121), the unit cell repeat distance, and is 

too large to be considered a genuine stacking interaction. 

Table A. 1 Fractional atomic co-ordinates for XIII 

x 	 VA 
	 z 

	
Ueq 

Lt (T.) 
ITt (A2) 
Cl (1A) 
Cl (2A) 
N (1A) 
C(1A) 
C (2A) 
C(3A) 
C (4A) 
C (5A) 
N (3A) 
o (1A) 
o (2A) 
N (2A) 
C (CA) 
C (7A) 
C (3A) 
O(9A) 
C (1 OA) 
?(IA) 
O(3A) 
o (4A) 
Pt (B) 
Pt (B2) 
Cl (1B) 
Cl (2B) 
N (1B) 
C(1B) 
C (2B) 
C(3B) 
C (4B) 
C (5B) 
N(3B) 
O(1B) 
o (2B) 
N (2B) 
C(6B) 
C (7B) 
C (8B) 
C(9B) 
C (lOB) 
N (4B) 
o (3B) 
o (4B) 

-0.1522( 3) 
-0.3486(21) 
-0.4738(19) 
-0.262( 3) 
-0.026( 6) 
0.163( 8) 
0.270( 7) 
0.186( 7) 
0.003( 7) 

-0.141(10) 
0.320( 7) 
0.157(12) 
0.524( 7) 
0.121( 7) 
0.256( 7) 
0.440( 8) 
0.505( 9) 
0.380( 7) 
0.144(13) 
0.696(10) 
0.829( 7) 
0.736( 6) 

-0.3377( 4) 
-0.148( 3) 
-0.0268(20) 
-0.2228(22) 
-0.608( 5) 
-0.749( 6) 
-0.946( 7) 
-1.004( 7) 
-0.854( 8) 
-0.710( 7) 
-1.219( 6) 
-1.240( 5) 
-1.313( 7) 
-0.468( 6) 
-0.673( 7) 
-0.783( 6) 
-0.690( 7) 
-0.476( 7) 
-0.395( 7) 
-0.821( 9) 
-1.026( 7) 
-0.730( 4) 

-0.41620( 0) 
-0.4080( 7) 
-0.4124( 8) 
-0.5240(12) 
-0.3196(16) 
-0.2989(21) 
-0.2345(24) 
-0.1927(20) 
-0.2197(20) 
-0.278( 3) 
-0.1298(19) 
-0.093( 4) 
-0.1190(20) 
-0.413( 3) 
-0.3496(24) 
-0.3345(23) 
-0.3874(21) 
-0.4518(21) 
-0.451( 5) 
-0.371( 3) 
-0.3264(23) 
-0.4118(21) 
-0.73171(12) 
-0.7201( 9) 
-0.7316( 7) 
-0.6216( 8) 
-0.7349(15) 
-0.7954(21) 
-0.8053(20) 
-0.7552(18) 
-0.6966(24) 
-0.6816(21) 
-0.7663(16) 
-0.7169(17) 
-0.8196(20) 
-0.8230(16) 
-0.8439(21) 
-0.9067(21) 
-0.9455(21) 
-0.9294(19) 
-0.8656(20) 
-1.0144(23) 
-1.0193(16) 
-1.0548(14) 

-0.46809( 6) 
-0.4688( 4) 
-0.4179( 4) 
-0.4877( 8) 
-0.4505(10) 
-0.4767(14) 
-0.4690(16) 
-0.4349(14) 
-0.4089(14) 
-0.4185(19) 
-0.4196(13) 
-0.409( 3) 
-0.4315(14) 
-0.5093(15) 
-0.5109(17) 
-0.5391(14) 
-0.5679(16) 
-0.5680(15) 
-0.549( 3) 
-0.6037(19) 
-0.5924(14) 
-0.6340(15) 
-0.21651( 7) 
-0.2153( 6) 
-0.1655( 4) 
-0.2377( 7) 
-0.2607( 9) 
-0.2573(15) 
-0.2855(13) 
-0.3187(13) 
-0.3250(16) 
-0.2893(14) 
-0.3470(12) 
-0.3697(12) 
-0.3431(14) 
-0.2030(11) 
-0.2235(14) 
-0.2157(13) 
-0.1804(14) 
-0.1591(14) 
-0.1702(14) 
-0.1714(18) 
-0.1852(11) 
-0.1493(10) 

0.0341 (10) 
0.041( 4) 
0.056( 6) 
0.081 (14) 
0.039( 8) 
0.049 (10) 
0.050(15) 
0.044 (10) 
0.048(10) 
0.084 (18) 
0.050( 9) 
0.18( 3) 
0.085 (12) 
0.069(11) 
0.042 (14) 
0.059(12) 
0.063 (14) 
0.047 (10) 
0.16( 4) 
0.105 (20) 
0.082 (12) 
0.071 (10) 
0.0379(12) 
0.068( 1) 
0.060( 7) 
0.056( 9) 
0.032( 7) 
0.031 (12) 
0.047 (10) 
0.046(11) 
0.066 (13) 
0.046(10) 
0.039( 9) 
.0.054( 9) 
0.077(11) 
0.040( 8) 
0.048 (10) 
0.036(11) 
0.043(10) 
0.051 (11) 
0.051 (11) 
0.086(16) 
0.061( 9) 
0.039( 6) 
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H(2A) 0.4189 -0.2171 -0.4896 0.0600 

H(4A) -0.0331 -0.1934 -0.3778 0.0600 

11(5A) -0.3165 -0.2888 -0.4036 0.0600 

H(7A) 0.5317 -0.2848 -0.5392 0.0600 

H(9A) 0.4600 
-0.0081 

-0.4985 
-0.4776 

-0.5817 
-0.5639 

0.0600 
0.0600 

H(10A) 
H (2B) -1 .0558 -0.851-6 - -0- 2823 ---0-.-0600- 

H(4B) -0.8541 -0.6665 -0.3552 0.0600 

11(53) -0.6708 -0.6278 -0.2822 0.0600 

11(7B) -0.9337 -0.9250 -0.2357 0.0600 

1-1(93) -0.3844 -0.9637 -0.1362 0.0600 

11(10B) -0.2489 -0.8458 -0.1497 0.0600 

Ull U22 U33 U23 U13 U12 

Pt(A) 033( 	1) 034( 	1) 035( 	1)  1) 	-006( 1) 	-012( 1) 

C1(1A) 049( 	6) 065( 	6) 054( 	6)  7) 	009( 5) 	-010(  

Cl (2A) 079(11) 087 (15) 077 (15) 014 (12) 	003 ( 8) 	-030(  

Pt (B) 040 ( 	 1) 037 ( 	 1) 037 ( 	 1) -005( 1) 	005 ( 1) 	000 ( 1) 

CI (1B) 048 ( 	 6) 068 ( 	 7) 065 ( 	 7) -007 ( 8) 	001 ( 
001 ( 

 

C] (2B) 059 ( 	 7) 042 ( 	 8) 066(12) 016 ( 
-004( -019( 5) 
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Appendix B. Structure of 2,2 1 bipvridiflediChlOr0201d(1Th tetrafluoroborate 

[Au(bpy)C12]BF4 was prepared by a modification of the method of Harris and Lockyer. 96  

An aqueous solution of bpy (4.2 mmol in 10 ml) was heated to reflux and an aqueous 

solution of Na[AuCL1I (2 mmol in 10 ml) added to yield an orange solution. Dropwise 

addition of excess HBF4(a q) with stirring precipitated crystals of the target species. 

Recrystallisation from MeOH afforded [Au(bpy)C12]BF4 as well-formed yellow needles 

in Ca. 90% yield. C:H:N 23.53%:1.64%:5.47% (required 23.51%:1.58%:5.48%). 

Uv/vis (MeCN): Vmax 31970 cm' (s 1.28x104  M'cm'). [Au(bpy)C12]BF4 undergoes a 

chemically irreversible two-electron (by coulometry) reduction at +0.52 V in 0.1 M 

TBABF4J'DMF solution at 293 K. Bulk electroreduction at +0.2 V results in 

decolourisation of the working solution and dissociation of the complex to generate free 

bpy, consistent with the formation of a linear d' °  species. 

Crystal Data 

C 10H8AuBC12F4N2 F(000) = 944 

Mr = 510.83 D = 2.495 Mg m 3  

Mono clinic Mo Ka radiation 

P211n A=0.71073A 

a = 6.850(4) A Cell parameters from 25 reflections 

b = 12.852(5) A 8 = 12-13 0  

c = 15.537(5) A = 11.23 mm 

= 96.33(4)°  T = 291 K 

V= 1359.5(10) A3  Needle 

Z=4 0.3x0.07x0.07cm 

Yellow 



Data Collection 

Enraf-Nonius CAD4 diffractometer 

o)-20 scans 

Empirical absorption correction; 40  mm 

and max absorption corrections 0.79 

and 1:67 

2599 measured reflections 

2381 independent reflections 

2041 observed reflections 

[F'2. 0c(P)]  

R, = 0.048 

Umax 250  

k=0-3 15 

- - 1=0-18 

2 standard reflections monitored 

every 500 reflections; no 

intensity decay 

Refinement 

Refinement on F 

R=0.0437 

wR = 0.0592 

S = 1.284 

2041 reflections 

162 parameters 

H atoms not positionally refined 

UH 0.090(16) A2  

W = 1/[02(P) + 0•000804pQ] 

(LVO)max = 0.002 

APmax = 2.34 eA 3  [near F(3) 

and F(4)] 

APmin =-1.34eA3 

Atomic scattering factors from 

Internetional Tables36  and 

SHELX7637  

Bipyridine H atoms were set in idealised positions and allowed to ride on their respective 

carbon atoms, with C-H = 1.08 A. Au, C, Cl, N and B atoms were refined with 

anisotropic displacement parameters whilst F atoms were refined isotropically. A single 

(isotropic) thermal parameter for all H atoms was refined. Structure solution (Patterson 

MI 



and difference Fourier syntheses) and refinement via SI{ELX76. 37  Molecular geometry 

calculations via CALC. 38  

Table B. 1 lists the atomic co-ordinates of [Au(bpy)C1 2]BF4. A view of the cation in a 

direction perpendicular to its approximate molecular plane is given in figure B.!. Table 

B.2 lists interatomic distances and interbond angles. The {AuN 2C12 } fragment of the 

cation is approximately planar (maximum atomic deviation from the least-squares plane 

<0.05 A) and the cation as a whole has near C 2, local symmetry. Whilst the ring of 

N(l') is essentially located in this plane (maximum deviation 0.24 A, C(5')) all the atoms 

in the N(l) ring he to one side of the metal co-ordination plan, with C(3) and C(4) 

exhibiting the maximum elevation (0.38 A). It may be of relevance that H(5) is involved 

in H-bonding to F(2), characterised by CH ... F 2.18 A, C-H...F 1670  and H ... F-B 141 0 . 

F(4) 

F(3) 

Figure B. 1 Structure of [Au(bpy)C12]BF4  
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As fur as we are aware, this represents only the second gold(HI) bpy species to be 

crystallographically characterised. Au-N(1) and Au-N(F) are not significantly different 

from one another, average 2.037(13) A, but do vary significantly from the average value 

in [Au(bpy)(mes)21 +  (mesC6H2Me3-2,4,6), 2.125(6) A. 97  This presumably arises from 

the differing trans influences of Cl and mes. The Au-CI distances in [Au(bpy)Cl2]. are 

identical. 2.252(4) A, and the C(2)C(2') bridge distance iS 1.457(15) A. - - 

In the crystal the closest approach of cations is 6.850 A, i.e. the unit cell repeat in the a 

direction. Clearly this distance does not represent a significant interaction, c.f 3.45 A 

and 4.43 A in the red and yellow forms, respectively, of [Pt(bpy)C1 2]. 43 ' 44  
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Table B. 1 Fractional atomic co-ordinates and equivalent isotropic displacement 

parameters (A2) for [Au(bpy)C1 2]BF4  

x y z Ueq 

Au 0.62915( 	6) 0.37873( 	3) 0.80294 ( 	2) C:0423( -3 
C1(1 1 ) 0.4107( 	5) 0.3801( 	3) 3.90114(20) 0.0665(19 
C1(1) 0.8221( 	6) 0.4842( 	3) 0.89136(22) 0.0777(23 
N(1) 0.8029(14) 0.3785( 	7) 0.7053( 	6) 0.048( 5) 
N(1 1 ) 0.4660(12) 0.2821( 	6) 0.7186( 	5) 0.038( 4) 
C(6 1 ) 03120(16) 0.2297( 	9) 0.7370( 	7) 0.047( 6) 
C(2 1 ) 0.5391(14) 0.2727( 	8) 0.6421( 	6) 0.040( 5) 
C(3 1 ) 0.4421(18) 0.2107( 	9) 0.5776( 	7) 0.053( 7) 
C(4) 0.9914(22) 0.3819(13) 0.5625(10) 0.081(10) 
C(3) 0.8157(18) 0.3297(10) 0.5585( 	8) 0.058( 7) 
C(5 1 ) 0.2104(20) 0.1642(10) 0.6745( 	8) 0.061( 8) 
C(6) 0.9707(19) 0.4311(11) 0.7034( 	9) 0.065( 8) 
C(4 1 ) 0.2813(19) 0.1561( 	9) 0.5954( 	7) 0.055( 7) 
C(2) 0.7200(16) 0.3287( 	9) 0.6318( 	7) 0.047( 6) 
C(5) 1.0706(20) 0.4315(12) 0.6308(11) 0.074( 9) 
F(1) 1.4949(12) 0.7176( 	7) 0.6230( 	5) 0.0833(23 
F(2) 1.4932(15) 0.5480( 	9) 0.6609( 	6) 0.106( 3) 
3 1.6011(18) 0.6305(10) 0.6359( 	8) 0.046( 7) 
F(3) 1.737( 	3) 0.6398 (13) 0.7064 (12) 0.200( 7) 
F(4) 1.6589(24) 0.5979(11) 0.5620(11) 0.165(6) 
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Table B.2 Interatomic distances (A) and mterbond angles (°) for [Au(bpy)C1 2]BF4  

Au -C1(1') 2.252( 	4) C(3') 	-0(4') 1.360(16) 
Au -C1(l) 2.252( 	4) C(4) 	- C(3) 1.374 (20) 
Au - 	N(1) 2.028 (10) C(4) 	- C(5) 1.304 (22) 
Au -N(1 1 ) 2.046( 	8) C(3) 	- C(2) 1.374(17) 

N(1) - 	C(6) 1.337 (17) C(5') 	-C(4') 1.375 (17) 
N(1) - 	 0(2) 1.377(14) 	- 0(6) 	- C(5) 1.381(21) 

N(1') -0(6') 1.309 (14) - B 1.337 (15) 
N(1') -C(2') 1.345(13) - B 1.373(16) 
C(6') -0(5') 1.410(17) B 	-  1.362(23) 
0(2') -0(3') 1.391(15) B 	-  1.322(20) 
0(2') - 	0(2) 1.457(15) 

C1(1 1 ) -  Au -Cl (1) 88.35 (13) 0(2') -0(3') -0(4') 118.8 (10) 
C1(1 1 )- Au - N(1) 174.3( 	3) 0(3) - 0(4) - 0(5) 124.0(15) 
C1(1 1 )- Au -N(1 1 ) 94.70(24) 0(4) - 	0(3) - 0(2) 117.6(12) 
01(1) - 	 Au - N(1) 95.9( 	3) 0(6') -C(5') -C(4') 117.7(11) 
01(1) - 	 Au -N(1 1 ) 176.91(24) N(1) - 	C(6) - C(5) 121.7(13) 

N(1) - 	 Au -N(1 1 ) 81.1( 	4) 0(3') -C(4') -0(5') 121.1(11) 
Au - N(1) - 0(6) 126.4( 	9) N(1) - 	0(2) -C(2') 114.6( 	9) 
Au - N(1) - 	0(2) 113.5( 	7) N(1) - 	0(2) - C(3) 119.5(10) 

0(6) - 	N(1) - 	0(2) 119.5 (10) 0(2') - 	C(2) - 	0(3) 125.8 (10) 
Au -N(1 1 ) -0(6 1 ) 124.6( 	7) C(4) - 0(5) - 0(6) 117.6(14) 
Au -N(1 1 ) -0(2 1 ) 112.9( 	6) F(1) - 	 B - F(2) 112.8(11) 

C(6') -N(1') -C(2') 122.4( 	9) F(1) - 	 B - F(3) 111.0(13) 
N(1') -0(6') -0(5') 120.3(10)  - 	 B - 	F(4) 110.2(12) 
N(1') -0(2') -0(3') 119.6( 	9)  - 	 B - F(3) 100.4(12) 
N(V) -0(2') - 0(2) 117.2( 	9) F(2) - 	 B - F(4) 102.9(12) 
0(3') -C(2') - 0(2) 123.2( 	9) F(3) - 	 B - F(4) 118.9(14) 
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