A THEORY OF FRACTIONAT INIEGRATION
FOR GENERALISED FUNCTIONS
WITH APPLICATIONS
by
Adam C. McBride , B.Sc.

Thesis submitted for the degree of
Doctor of Philosophy
of the
University of Edinburgh
April , 1971 .

Summary

A theory of fractional integration is developed for certain spaces $F_{p, \mu}$ of testing-functions and the corresponding generalised functions $\mathrm{F}_{\mathrm{p}, \mu}^{\prime}$. Some properties of the spaces are first developed and some elementary mappings discussed. There is a close examination of the operators $\mathrm{I}_{\mathrm{m}}^{\eta, \alpha}$ and $\mathrm{K}_{\mathrm{m}}^{\eta, \alpha}$ defined by

$$
\begin{aligned}
& I_{x^{m}}^{\eta, \alpha} \phi(x)=\frac{m x^{-m \eta-m \alpha}}{\Gamma(\alpha)} \int_{0}^{x}\left(x^{m}-u^{m}\right)^{\alpha-1} u^{m \eta+m-1} \phi(u) d u \\
& K_{x^{m}}^{\eta, \alpha} \phi(x)=\frac{m x^{m \eta}}{\Gamma(\alpha)} \int_{x}^{\infty}\left(u^{m}-x^{m}\right)^{\alpha-1} u^{-m \eta-m \alpha+m-1} \phi(u) d u
\end{aligned}
$$

and their mapping properties relative to $F_{p, \mu}$ are derived. The operators are extended to $\mathrm{F}_{\mathrm{p}, \mu}^{\prime}$ using adjoints and corresponding results obtained .

$$
\begin{aligned}
& \text { Three applications are given . The operator } \\
& L_{\nu} \equiv \frac{d^{2}}{d x^{2}}+\frac{2 \nu+1}{x} \frac{d}{d x}
\end{aligned}
$$

is discussed and certain connections with fractional integration established. A generalised Hankel transform is developed on $\mathrm{F}_{\mathrm{p}, \mu}^{\prime}$, and sinilar connections with fractional integration obtained. Finally, certain integral operators involving hypergeometric functions are studied, a typical operator being

$$
\left(H_{1}(a, b ; c) \phi\right)(x)=\int_{0}^{x} \frac{(x-t)^{c-1}}{\Gamma(c)} F\left(a, b, c, 1-\frac{x}{t}\right) \phi(t) d t
$$

Existence and uniqueness theorems are established for various integral equations in $\mathrm{F}_{\mathrm{p}, \mu}^{\prime}$ •

Acknowledgements

I wish to express ny sincere thanks to my supervisor, Professor A. Erdélyi for his friendly help and encouragenent during the course of this research and for his careful scrutiny of the manuscript .

I also wish to express my gratitude to the Carnegie Trust for the Universities of Scotland for the award of a Scholarship for ny period of study .

Contents

Sunary ii
Acknowledgements iii
1 Introduction 1
2 The spaces $\mathrm{F}_{\mathrm{p}, \mu}$ and $\mathrm{F}_{\mathrm{p}, \mu}^{\prime}$ 11
3 Fractional Integration in $F_{p, \mu}$ and $F_{p, \mu}^{\prime}$ 27
4 Fracticnal Integration and Singular Differential 53
Operators
5 Fractional Integration and the Hankel Transforn 61
6 Hypergeometric Integral Equations 84
References 99

ERRATA

Page 11, Line 14. For ' γ_{0}^{\prime} read ' γ_{0}^{p},
Page 13, Line 9, should begin ' By completeness of $L^{\text {p }}, \ldots$.
Page 14, Line 12. For : $\delta^{k} \phi_{n}\left(x_{1}\right)$: read $: \delta^{\mathrm{k}} \phi_{n}(x)$ '
do. Lines 25 and 26 , should end

$$
'=\left|\delta^{k} \phi_{\mathrm{n}} \cdots \chi_{k}\right|_{\mathrm{p}}=\left|\delta^{k} \phi_{\mathrm{n}}-\psi_{k}\right|_{p} \rightarrow 0, \ldots{ }^{\prime}
$$

Page 16, Line 6. Read : ... $x\left\{\phi\left(x^{\prime}\right)\right\}^{p}$ remains bounded as $x \rightarrow 0_{+}$ or $x \rightarrow \infty$ 。'

Page 17 Last line. For ' L_{q} ' read ' $\mathrm{L}^{\text {' }}$.
Page 23 and and 3rd last lines. Reach
' $\leqslant \gamma_{k+1}^{\mathrm{p}}(\psi)+(\mathrm{k}+|\mu|) y_{\mathrm{k}}^{\mathrm{P}}(\psi) \leqslant \gamma_{\mathrm{k}+1}^{\mathrm{p} \mu}(\dot{\phi})+(\mathrm{k}+|\mu|){ }_{\mathrm{k}}^{\mathrm{F}_{5} \mu}(\phi)$ '.
Page 25, Line 15. Lower limit in the second integral is 0 .
Page 27, Last line . Read

$$
I_{\mathrm{x}}^{\eta, \alpha} \phi(\mathrm{x})=\frac{\mathrm{mx}}{\Gamma(\alpha)} \int_{0}^{\mathrm{m} \eta-\mathrm{m} \alpha} \mathrm{x}^{\mathrm{x}} \ldots \ldots
$$

Page 35, line 2 .'Since multiplication' sentence should read ' Since $\frac{m}{\Gamma(\alpha)}$ is an entire function of α, we need only prove that T_{α} is analytic with respect to α on $F_{p, \mu}$ for $\operatorname{Re} \alpha>0^{\prime}$. Page 35, Line 16. For μ, η, α read $\operatorname{Re} \mu$, $\operatorname{Re} \eta, \operatorname{Re} \alpha$.

Page 35 last two lines and Figs 36 first three should read
${ }^{1} \gamma_{\mathrm{k}}^{\mathrm{p}, \mu}\left(\frac{1}{\mathrm{~h}}\left[\mathrm{~T}_{\alpha+\mathrm{h}}{ }^{\phi}-\mathrm{T}_{\alpha} \phi\right]-\frac{\partial \mathrm{T}}{\partial \alpha} \alpha \phi\right)$
$\leqslant \sup _{0 \leq t \leq 1}\left|f_{h}\left(1-t^{m}\right)\right| \gamma_{0}^{p}\left(I_{x^{m}}^{\operatorname{Re}\left(\eta+\frac{\mu}{m}\right)}, \operatorname{Re} \alpha-\epsilon\left|x^{k} \frac{d^{k} \psi}{d x^{k}}\right|\right) \rightarrow 0$
as $h \rightarrow 0$ where $\phi(x)=x^{\mu} \psi(x)$
Page 44, Line 17. For ' $\operatorname{Re} \mu<\frac{1}{\mathrm{p}}$ ', $\operatorname{read}{ }^{\prime} \operatorname{Re}(\mu+m \alpha)<\frac{1}{\mathrm{p}}$ '.
Page 55, Line 6. For ' $F_{p, \mu+1}$ ' read ' $F_{p, \mu-1}$ '
Page 67 , Lines $1,4,5$. For ' $(\delta+1) \psi\left(\frac{u}{x}\right),(\delta+1) \psi(A)$ 'read , $[(\delta+1) \psi]\left(\frac{u}{x}\right) \quad[(\delta+1) \psi](A) \quad$ '
Page 68, Line 11. For '(6)' read '(5)'.

ERRATA（continued）

Page 64，Line ${ }_{5}$ should read,$\leqslant \sum H_{2}\binom{k}{i}\left|x^{k-1} \frac{d^{k-1} \phi}{d x^{k-1}}\right|$＇．
Page 70，fifth from bottoin．

$$
\text { For ' }(N-1) \text { ! , eau in! ' }
$$

Page ${ }^{\prime} 73$ ，Line 6_{0} for F_{p}＇read ${ }^{\prime} \mathrm{F}_{2}$＇。
Page 75，Kine 13．Real ：$-1<\operatorname{Re} \nu_{0} \leqslant-\frac{1}{2}$ 。
Line 1७。 For $:\left|\psi_{2, \%}(\mathrm{x})\right|_{2}$ ：read

$$
\int_{0}^{1}\left|\sqrt{y} \frac{\partial^{2} J}{\partial \nu^{2}} \nu(y)\right|\left|\phi\left(\frac{y}{x}\right)\right| \frac{d y}{x}
$$

urine 21 For ${ }^{\prime} \frac{1}{2}+\operatorname{Re} \nu_{0}-2 \epsilon>\frac{1}{2}$＇reads．$\frac{1}{2}+\operatorname{Re} \nu_{0}-2 \epsilon>-\frac{1}{2}$＇
Page 76，Line 13 reaủs ：$\left|\psi_{1, \nu}\right|_{2} \leqslant C_{1}|\phi|_{2}$ ：
Page 79 Last line ．Read＇analytic functions of α＇
Page 84．Title of Chapter ：
＇Hypergeometric Integral Equations＇
Page 87，Line 8．For＇entire＇read＇analytic＇．

INTRODUCTTION

1.1. Background and Sunmary

Let $\phi(x)$ be a conplex-valued function defined for $0<x<\infty$. Under fairly mild restrictions on ϕ, an $n^{\text {th }}$ order indefinite integral of ϕ is given by

$$
\begin{equation*}
I^{n} \phi(x)=\frac{1}{\Gamma(n)} \int_{0}^{x}(x-t)^{n-1} \phi(t) d t \tag{1}
\end{equation*}
$$

($\mathrm{n}=1,2,3 \ldots$) This formula is sometines ascribed to Cauchy. We can use (1) to notivate the definition of a fractional integral of ϕ; namely, for any complex nurber α, with Re $\alpha>0$ (to ensure convergence), we define $I^{\alpha} \phi$ by

$$
\begin{equation*}
I^{\alpha} \phi(x)=\frac{1}{\Gamma(\alpha)} \int_{0}^{x}(x-t)^{\alpha-1} \phi(t) d t \tag{2}
\end{equation*}
$$

$I^{\alpha} \phi$ is often called the Riemann-Liouville integral of order α of the function ϕ. Sinilarly, we are led to consider the operator K^{α} defined for $\operatorname{Re} \alpha>0$ by

$$
\begin{equation*}
K^{\alpha} \phi(x)=\frac{1}{\Gamma(\alpha)} \int_{x}^{\infty}(t-x)^{\alpha-1} \phi(t) d t \tag{3}
\end{equation*}
$$

$\mathrm{K}^{\alpha} \phi$ is often called the Weyl integral of order α of ϕ (with origin ∞)。

It is well known that fractional integration is an important tool in many areas of analysis, for exanple in connection with ordinary and partial differential equations. Likewise the theory of generalised functions or distributions plays an important role in analysispa notable instance again being the
theory of differential equations. It would therefore seen wrorthwhile to attempt to connect these two concepts by developing a theory of fractional integration for generalised functions. In this thesis, we develop such a theory and indicate sone applications of it. Our theory is more general than that in [8] and distinct fron that in [7].

In attempting to define a fractional integral of a generalised function, two approaches suggest thenselves. The first is based on the theory of convolution of distributions as described in [11]. Iet $f(x)$ be a locally integrable function on $0 \leq x<\infty$ extended to the real line by setting $f(x)=0 \quad(x<0)$. Then writing

$$
p_{\alpha}(x)=\begin{array}{cc}
\frac{x^{\alpha-1}}{\Gamma(\alpha)} & (x>0) \\
0 & (x \leq 0)
\end{array}
$$

(2) becomes

$$
I^{\alpha} f(x)=\int_{-\infty}^{\infty} p_{\alpha}(x-t) f(t) d t
$$

or

$$
\begin{equation*}
I^{\alpha}{ }_{f}=p_{\alpha}^{*} f \tag{4}
\end{equation*}
$$

where e donotes convolution. When $\operatorname{Re} \alpha>0, \mathrm{p}_{\alpha}$ is locally integrable and hence p_{α} and f generate regular distributions with supports in the half-open interval $[0, \infty)$. Then interpreting * as distributional convolution, (4) defines $I^{\alpha} f$ as a distribution. With this notivation we could use (4) to define $I^{\alpha} f$ for any distribution f with support in $[0, \infty)$ 。

However, it is also necessary to consider certain extensions and nodifications of I^{α} and K^{α}. For example, we shall be concerned with operators, first studied extensivody Dy Kober [13],
of the form

$$
\begin{align*}
& I_{x}^{\eta_{s} \alpha_{f}}=x^{-\eta-\alpha} x^{\alpha} x^{\eta} I^{2}(x) \tag{5}\\
& \mathrm{K}_{\mathrm{x}}^{\eta_{2} \alpha} \mathrm{f}=\mathrm{x}^{\eta} \mathrm{K}^{\alpha} \mathrm{x}^{-\eta^{-\eta}} \mathrm{f}(\mathrm{x}) \tag{6}
\end{align*}
$$

x^{η} and $x^{-\eta-\alpha}$ exc not snooth (infinitely differentiable) functions so that (5) and (6) are neaningless for distributions. Further complications arise when we integrate with respect to x^{n} rather than x cttoming

$$
I_{x^{n}}^{\eta_{0} \alpha_{0}}=\frac{n}{\Gamma(a)^{x^{-a \eta} \eta-n \alpha}} \int_{0}^{x}\left(x^{n}-u^{m}\right)^{u-1} u^{n} 1 / d-1-1 f(u) d u(7)
$$

and analogous operetors $\mathrm{K}_{\mathrm{x}}^{\eta}{ }_{\mathrm{n}}$, . These tuxn out te have important applications in connection with singular differential operators, integral aquations and integral transforms. (Some references are given in [8]). In order to define these operators for generalised functions we will pursue a second arprozch based on adjoint operators.

Under cortain restrictions on P, ϕ,

$$
\begin{equation*}
\int_{0}^{\infty} I^{\alpha} f(x) \phi(x) d x=\int_{0}^{\infty} f(x) K^{\alpha} \dot{\phi}(x) d x \tag{8}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\bar{I}_{2}^{\alpha}, \phi\right)=\left(\mathbf{f}, \mathbf{K}^{\alpha} \phi\right) \tag{9}
\end{equation*}
$$

(3) was proved by Love and Young in their paper on fractional integration by parts [20]. If S, T are spaces of functions such that K^{α} is a continuous linear napoing of S into T, we can use (9) to define I^{α} as a continuous linear mapping of T into S^{\prime} where $S^{\prime}, T^{\text {P }}$ are the spaces of genoralised functions corresponding to \mathbf{S}, T. (3) shows that I^{α} and K^{α} are adjoints and sinilerly $\pi_{x^{j}}^{i, \alpha}$ and $x_{x^{m}}^{\eta!\alpha}$ are adjoinis, where $\eta^{\prime}=\eta+1-\frac{1}{\mathrm{~m}}$ Thus the first task is to Jovise suitiabie classes of testing funct-
ions on which the operators can neamingiuily ve defined.
In Chapter 2 we introduce such classes denoted by $F_{p_{g} \mu^{\text {e }}}$ The elements of $F_{p, \mu}$ are smooth functions defined for $0 \leqslant x<\infty$, which satisfy certain integrability conditions involving the I^{p} norms. The notivation for the choice of testing functions is proviaded by Kober's work in [13] on $I_{x}^{\eta, \alpha}$ and $K_{x}^{\eta, \alpha}$. The corresponding spaces $F_{p, \mu}^{\prime}$ of generalised functions are then introduced. The ramainder of the chapter is devoted to the proof of some elementary facts about $\mathrm{F}_{\mathrm{p}, \mu}$ and $\mathrm{F}_{\mathrm{p}, \mu}^{\mathrm{g}}$ together with a discussion of some elementary nappings defined on then. In particular the spaces are so constructed that the operation of multiplication by x^{λ} for any complex λ is an isonorphisn of $F_{p, \mu}^{\prime}$ onto $F_{p, \mu-\lambda}^{\prime}$, thus obviating one of the major snags of the first approach. Throughout this chapter we follow clesely the treatnent in Chapter 1 of Zemanian [25].

In Chapter 3 we introduce the operators $I_{\mathrm{x}}^{\eta, \alpha}$ and $\mathrm{K}_{\mathrm{m}}^{\eta, \alpha}$ The case $n=1$ has been thoroughly investigated by Kober in [13] By a simple change of variable we can easily obtain the corresponding napping propertias of the operators relative to the spaces $F_{p, \mu}$ Further, en argurient involving analytic continuation enables us to remove the restriction $\operatorname{Re} \alpha>0$, although for $\operatorname{Re} \alpha<0$, we will have operators of fractional differentiation rather than integration. We then define the operators on $\mathrm{F}_{\mathrm{p}, \mu}^{\prime}$, using adjoints. Although the spaces $\mathrm{F}_{\mathrm{p}, \mu}^{\mathrm{g}}$, are primarily geared to the ' honogeneous ' operat-
 inciciencally. A similar prograne was carrieä through in [8] but the spaces under consideration here are nuch nore general.

Although the spaces $\mathrm{F}_{\mathrm{p}, \mu}^{\prime}$, were designed with fractional integration in mind, many other operators can neaningfully be defined on then. In the remaining chapters we consider some of these operators with special roference to their connection with fractional integration.

In Chapter 4 we consider the singular differential operator L_{ν} defined by

$$
\begin{equation*}
I_{\nu} \phi(x)=\frac{d^{2} \phi}{d x^{2}}+\frac{2 \nu+1}{x} \frac{d \phi}{d x} \tag{10}
\end{equation*}
$$

If we replace v by $\frac{1}{2} n-1$ and x by $r=\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}$ we obtain the Laplacian of a spherically symetric function ϕ of n space variables $x_{1}, \ldots, x_{n}, L_{\nu}$ is also connected with axially symetric potentials and differential equations such as the Euler - Poisson - Darboux equation [6]. There are various connections between L_{ν} and fractional integration with respect to x^{2}, which have been studied by, for exanple,Erdélyi [5] and Lions [15] and [16]. We establish two of these relations, both for $F_{p, \mu}$ and $F_{p, \mu^{*}}^{\prime}$. Again our results are noro general than those in [8].

In Chapter 5 we develop a generalised Hankel transform. Λ Hankel transforn for generalised functions has been developed in [25] by Zenanian. There he introduces certain spaces of generalised functions which are tailor-made for the Hankel transform and he is able to develop quite an extensive theory culninating in an operational calculus for a class of differential equations. Our generalised functions are, not surprisingly, less anenable te the Hankel transforn. Nevertheless, they can be used to bring out the connection botween Hankel transforms and
fractional intogration which have been studied, for ordinavy functions, by Kober and Erdélyi in [13] and [14].

We begin by developing the Hankel transform on $F_{p, 0}$ but soon specialise to $\mathrm{F}_{2,0}$ where nuch more can be proved. Kober [13] established connections between $I_{x}^{\eta, \alpha}$ and $K_{x}^{\eta, \alpha}$ and the Hankel transforn in Tricomi's forn. By a simple change of variable, we transcribe these to produce relations between $\mathrm{I}_{\mathrm{x}^{2}}^{\eta, \alpha}$ and $\mathrm{K}_{\mathrm{x}^{2}}^{\eta, \alpha}$ and the Hankel transform in its usual form for L_{2}. These we then establish on $\mathrm{F}_{2,0}$, and finally, by taking adjoints, we obtain the corresponding theory on $F_{2,0}^{\prime}$ Analytic continuation is again involved and this entails a fair anount of analysis involving asymptotic expansions.

It should be mentioned at this stage that a sinilar theory can be developed for the K transform on $F_{p, 0}^{\prime}$ using, for example, results of Okikiolu [22]. Zemanian [25] has also developed a generalised K transform by considering specially-devised testing-function spaces. However, using $F_{p, C}$ it is possible to establish again the connections between K transforms and fractional iniegration such as have been exanined, for ordinary functions, by Erdélyi [4] and others. Nevertheless, because of the similarity with the Hankel transforn we shall not discuss the K transforn theory here.

Instead in Chapter 6, we consider a completely different application of our theory, nanely to some hypergeometric integral equations. Connections between the hypergeonetric function ${ }_{2} F_{1}(a, h, c, z)$ and fractionol intogration aro legion; soe [2], [3]. It is not surprising therefore that operators involving ${ }_{2} F_{1}(a, b, c, z)$ are closely linked with fractional integration
also. Such operators lave beea studied by e.g. Higgins [12] and notably by Love [17] arı. [10]. Many other onthors have stualied particular cases of these operators. A I.ist of xeferences ior these can be found in $[17]$ or $[18]$.

Typical of Love's operators is
where we mixite $F(a, b, e, z)={ }_{2} F_{1}(a, b, c, z)$. We obtain an expression $\operatorname{for} H_{1}(a, b, c)$ in terms of operators of the form $I_{x}^{\eta, \alpha}$ and hence derive the mapping properties of $H_{1}(a, b, c)$ relative to the epaces $I_{p_{g} \mu}$. We show An particular that under restrictions on the paraneters, $H_{1}(a, b, c)$ is invertible and

$$
\begin{equation*}
\left[\mathrm{H}_{1}\left(a, b_{0}, c\right)\right]^{-1}=x^{-a} \mathrm{E}_{1}(-a, b-c,-c) x^{a} \tag{12}
\end{equation*}
$$

We nexi consider $\tilde{F}_{-2}(a, b, c)$ which is given by (11) except that $F\left(a, b, c, 1-\frac{\pi}{t}\right)$ is replaced by $F\left(a, b, c, 1-\frac{t}{x}\right)$. We proceed as for $H_{1}(a, b, c)$ and note that

$$
\begin{equation*}
H_{2}(a, b, c)=x^{a} H_{1}(a, c-b, c) x^{-a} \tag{13}
\end{equation*}
$$

Finelity, we dizcuss the operators $H_{3}(a, b, c)$ and $H_{4}(a, b, c)$ Which are, in qeot, the adjoints of $\mathrm{H}_{2}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ and $\mathrm{H}_{1}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ respectively, and con therefore be empresied. in tems of the operators $K^{i 7, \alpha}$ 。
z
Hoving obtained the properties of the four operators on $F_{p, \mu}$, we take adjoints to prove the correspending results for F: $\sum_{\eta, 1}$. Li particular, we cheain existence and uniqueress theorems for the integral equations

$$
\begin{equation*}
H_{i}(a, b, c,) \mathrm{i}^{\prime}=g \tag{14}
\end{equation*}
$$

whore f ani g are generolised sumetions and $i=1,2,3,46$
\$1.2 Conventions and Notation
At this stage we make certain conventions which will be adhereu to throughout the thesis. Generalised functions will be fenoted by letters such as f, g etc. while testing-functions will be denoted by Greek lettens such as ϕ, ψ etc. The value assi-gned to a testing-function ϕ by a functional f will be Cenoter by (\vec{x}, ψ)。

We shsil bo concerned with complex-valued functions ϕ of a positive real. variable $x .(0, \infty)$ will denote the open interval $\{x: 0<x<\infty\}$ 。 ρ is called snooth if it is infinitely differertiable at each point $x \in(0, \infty)$. The set of all smooth functions on ($0, \infty$) will be denoted by C^{∞}. For each $p, 1 \leq p \leq \infty, r_{p}$ denotes the set of (measurable) functions ψ on $(0, \infty)$ fece whieh

$$
|\dot{\gamma}|_{p}=\left(\int_{0}^{\infty}|\dot{p}(x)|^{p} d x\right)^{\frac{1}{p}}<\infty
$$

L^{p} will denate the corresponating space of equivalence slasses of such functions minich differ on a set of neasure zero. Siailarly, L_{x} denntes the set of (neasurable.) functions ϕ for which $|\oint|_{\infty}$, the easential supremum of ϕ over ($0, \infty$) is finite . L^{∞} denotes the curreaponding space of equivalence classes. The numbers f and o vill always be connected by the relation

$$
\frac{1}{p} \div \frac{1}{q}=1
$$

and unless othermise stet'ede $1 \leq p \leq \infty$.
Some remanis are in order concerning the numbering systen dapted. Lemas, theorens; corollaries etc. in any one chepter are ruifibered in a continuous sequence. A statement in a ohapter about Theciei 2 refers to Theorem 2 of that chapter
while Theoren 2 of Chapter 2 will be referred to in chapter 3 as Theoren 2.2 . Similar remarks apply to numbered formulae.

§1.3 Standard results

Finally in this introductory chapter we quote some standard theorens which will be used frequently in the following chapters. These results fall into two groups. The first contains results concerning dual spaces and adjoint operators. The terminology is that of Zemanian [25] Chapter 1 where the proofs may also be found on the pages indicated.

Theoren 1

I. V is a complete countably multinomed space, then its dual $\mathrm{V}{ }^{\boldsymbol{\prime}}$ is also complete.

Proof on pp. 21-3 of [25].

Theorem 2

If U and V are countably multinormed spaces and T is a continuous linear napping of U into V , then the adjoint operator T^{*} is a continuous linear mapping of V^{\prime} into U^{\prime}. If T is an isonorphism of U onto V, then T^{*} is an isomorphism of V^{\prime} onto U^{\prime} and

$$
\begin{aligned}
& \left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*} \\
& \text { Proof on pp. 28-9. }
\end{aligned}
$$

The other results concern the legality of differentiating under the integral sign. Here we refer to Luxemburg [21]. Theoren 3

Let $f(x, t)$ be defined for all t in an interval I
and $\Lambda \leq x \leq B$, and let $f(x, t)$ be integrable over I for al. $A \leq x \leq B$. If $f(x, t)$ is a differentiable function of x for all $A \leq x \leq B_{y}$ (one-sided at the end-pcints) alnost everywhere in I, ihen

$$
F(x)=\int_{I} f(x, t) d t
$$

is differentiable for all $A \leq x \leq B$ (one-sided at the endpoints) and

$$
F^{\prime}(x)=\int_{I} \frac{\partial f}{\partial x}(x, t) d t
$$

provided there exists an integrable function $g(t)$ such that

$$
\left|\frac{\partial_{i}^{\circ}}{\partial x}(x, t)\right| \leq g(t)
$$

alnost everywhere on I and for $A \leq x \leq B$.

$$
\text { This is Corollaxy 19.1, p. } 174 \text { of [21]. On examin- }
$$ ing the proof of the latter, we seo that a sinilar theorem will hold when x is replaced by a complex variable z and the inequalities involving x are replaced by corresponding inequalities involving Re z, This Generalisation will also be required.

CHAPTER 2

The Spaces $\mathrm{F}_{\mathrm{p}, \mu}$ and $\mathrm{F}_{\mathrm{p}, \mu}^{\prime}$

§2.1 The testing-function spaces F_{p}

For each $p, 1 \leq P \leq \infty$, we define F_{p} to be the set of those smooth functions ϕ such that, for each non- negative integer $k, x^{k} \frac{d^{k}}{d x^{k}} \in L_{p}$, i.e.

$$
\begin{equation*}
F_{p}=\left\{\phi: \phi \in C^{\infty} \text { and } x^{k} \frac{d^{k} \phi}{d x^{k}} \in I_{p}(k=0,1,2, \ldots)\right\} \tag{1}
\end{equation*}
$$

With the usual pointwise operations of addition of functions and multiplication of a function by a complex nurber, F_{p} becomes a complex linear space。

$$
\begin{align*}
& \text { For } \phi \in F_{p} \text { and } k=0,1,20000 \text {, derine }, \frac{p}{k} \text { by } \\
& \gamma_{k}^{p}(\phi)=\left.1 x^{k} \frac{d^{k} \phi}{d x^{k}}\right|_{p} \tag{2}
\end{align*}
$$

Using the properties of $\left|\left.\right|_{p}\right.$, we see that, for oach k, γ_{k}^{p} is a seminorm on F_{P}, while γ_{0} is a nom. Hence the collection

$$
\begin{equation*}
M_{p}=\left\{\quad y_{k}^{p}: k=0,1,2 \ldots\right\} \tag{3}
\end{equation*}
$$

is a countable multinorm [25] and with the topology generated by h_{p}, F_{p} becones a countably multinorned space。

We require a notion of sequential convergence as follows. A sequence $\left\{\phi_{n}\right\}$ converges to δ in F_{p} (or in the topology of F_{p}) if and orly if
(i) of $\in F_{p} \quad(n=1,2 \ldots)$
(ii) $\phi \in F_{p}$
and (iii) for each $\gamma_{k}^{p} \in \mathbb{H}_{p}, \gamma_{k}^{p}\left(\phi_{n}-\delta\right) \rightarrow 0$ as $n \rightarrow \infty_{0}$ Clearly, convergence in F_{p} inplies convergence in I_{p}. Sinilarly,
\{ $\left.\phi_{n}\right\}$ is called a fundamental sequence (or a Cauchy sequence) in F_{p} if and only if
(i) $\phi_{n} \in F_{p} \quad(n=1,2, \ldots \ldots)$
(ii) for each $\gamma_{k}^{p} \in M_{p}$, given $\epsilon>0$, $\exists N_{k}$ such that $\gamma_{k}^{p}\left(\phi_{m}-\phi_{n}\right)<\epsilon \quad\left(n, n>N_{k}\right)$

As usual, it is easy to prove that if $\left\{\phi_{\mathrm{n}}\right\}$ converges to ϕ in F_{p}, then $\left\{\phi_{n}\right\}$ is a fundamental sequence in F_{p}. It is not incedlately obvious whether the converse is true i.e. Whether F_{p} is complete. However, we will now prove, with the help of an easy lena, that F_{p} is complete 。

$$
\begin{align*}
& \text { Define an operator } \delta \text { on } F_{p} \text { by } \\
& \qquad \begin{array}{c}
(\delta \phi)(\mathrm{x})=\mathrm{x} \frac{\mathrm{~d} \phi}{\mathrm{dx}}=\mathrm{x} \phi^{\prime}(\mathrm{x}) \\
\delta=\mathrm{x} \frac{\mathrm{~d}}{\mathrm{dx}}
\end{array}
\end{align*}
$$

or

Lerraa 1

$$
\phi \in F_{p} \text { if and only if } \phi \in C^{\infty} \text { and } \delta^{k} \phi \in L_{p}(k=0,1, \ldots)
$$

Proof: We have only to show that

$$
\delta^{k} \phi \in L_{p}(k=0,1,2, \ldots) \Leftrightarrow x^{k} \frac{d^{k} \phi}{d x^{k}} \in L_{p}(k=0,1,2 \ldots)
$$

\Rightarrow When $k=0, \quad x^{k} \frac{d^{k} \phi}{d x^{k}}=\dot{\phi}=\delta^{0} \phi \in \mathcal{I}_{\mathrm{p}} \mathrm{p}$
For $\mathrm{k}=1,2, \ldots$ we can prove by induction that

$$
\mathrm{x}^{\mathrm{k}} \frac{\mathrm{~d}^{\mathrm{k}} \phi}{\mathrm{dx}}=\delta(\delta-1) \ldots \ldots(\delta-\mathrm{k}+1) \phi(\mathrm{x})
$$

so that $x^{k} \frac{d^{k} \phi}{d x^{k}}$ is a linear combination of $\delta \delta, \delta^{2} \phi, \delta^{3} \phi \ldots \ldots \delta^{k} \phi$. and thus $\epsilon \mathrm{I}_{\mathrm{p}}$ 。
$\leq=$ We can prove by induction that $\delta^{\mathrm{k}} \%$ is a linear combination of $\phi, x \frac{d \phi}{d x}, \ldots \ldots x^{k} \frac{d^{k} \phi}{d x^{k}}$ and thus belongs to L_{p}.

Thus we may write

$$
\begin{equation*}
F_{p}=\left\{\phi: \phi \in C^{\infty} \text { and } \delta^{k} \phi \in L_{p}(k=0,1,2 \ldots)\right\} \tag{5}
\end{equation*}
$$

Theorem 2

$$
F_{p} \text { is complete, } 1 \leq p \leq \infty
$$

Proof: The proof is closely related to that given in Zemanian [25] pp. 253-4.
 definition of the seminorms $\gamma_{k}^{p}, x^{k} \frac{d^{k} \phi_{n}}{d x^{k}}$ is a fundamental sequence in L_{p}, for each $k=0,1,2, \ldots$.
$\Rightarrow \delta^{k} \phi_{n}$ is a fundamental sequence in L_{p} for $k=0,1,2 \ldots$. By completeness of $I_{\mathrm{p}} \ddot{\exists} \psi_{\mathrm{k}}: \delta^{k}$ 纺 $\rightarrow \psi_{k}$ in L_{p} as $n \rightarrow \infty$. We show that $\exists \chi_{0} \in \mathrm{~F}_{\mathrm{p}}: \psi_{\mathrm{k}}=\delta^{\mathrm{k}} \chi_{0} \quad$ a.e. on $(0, \infty) \quad(\mathrm{k}=0,1,2 \ldots)$

Let x_{1} be a fixed point in ($0, \infty$), x a variable point in $(0, \infty)$. Write $D \equiv \frac{d}{d x}$ and let D^{-1} donote the integration operator

$$
D^{-1}=\int_{x_{1}}^{x} \ldots \ldots . d t
$$

For any smooth function $\zeta(x)$ on ($0, \infty)$,

$$
\begin{equation*}
D^{-1} D \zeta(x)=\zeta(x)-\zeta\left(x_{1}\right) \tag{6}
\end{equation*}
$$

Now recall that $\delta \equiv x i$. Tet us write $\delta^{-1}=J^{-1} x^{-1}$. Also, let $\frac{1}{p} \because \frac{1}{q}=1$: where we assume first that $1<p<\infty$.
$\left|\delta^{-1} \delta^{k+1}\left(\phi_{n}-\dot{o}_{n}\right)\right|=\left|D^{-1} x^{-1} \delta^{k+1}\left(\phi_{m}-\phi_{n}\right)\right|$
$=1 \int_{z_{1}}^{z} \hat{i}^{z} \delta^{k+1}\left(\phi_{m}-\phi_{n}\right)$ (i) dit |
$\leqslant\left.\left.\left.\left|\int_{x_{1}}^{x}\right| \frac{1}{t}\right|^{q} d t| |^{\frac{1}{q}}\left|\int_{x_{1}}^{x}\right| \delta^{k \cdot 1}\left(\phi_{m}-\delta_{n}\right)(t)\right|^{p} d t\right|^{\frac{1}{p}}$
(by Holder's inequality applied to the interval with end-points x_{1} and x)
$\leqslant\left.\left|\int_{x_{1}}^{x}\right| \frac{1}{t}\right|^{q} d \cdot t \left\lvert\, \frac{1}{c}\left(\int_{0}^{\infty}\left|\delta^{k+1}\left(\phi_{m}-\phi_{n}\right)(t)\right|^{p} d t\right)^{\frac{1}{p}}\right.$

Let Ω denote an arbitrary open interval whose olosure is compact in $(0, \infty)$. Since $\frac{1}{t} \nLeftarrow 0$ on $(0, \infty), \int_{x_{1}}^{x}\left|\frac{1}{t}\right|^{q} d t$ is a bounded smooth function on Ω. Hence

$$
\left|\delta^{-1} \delta^{k+1}\left(\phi_{m}-\phi_{n}\right)\right| \leqslant M y_{k+1}^{p}\left(\phi_{m}-\phi_{n}\right)
$$

on Ω for some constant M. Since $\left\{\phi_{n}\right\}$ is a fundamental sequence in $F_{p},\left\{\delta^{-1} \delta^{k+1} \phi_{n}\right\}$ is a fundarental sequence in the sup nom and hence $\delta^{-1} \delta^{k+1} \phi_{n}$ is uniformly convergent on Ω as $n \rightarrow \infty$.

Now, from (6),
$\delta^{-1} \delta^{k+1} \phi_{n}(x)=D^{-1} x^{-1} x D \delta^{k} \phi_{n}(x)=D^{-1} D \delta^{k} \phi_{n}(x)$ $=\delta^{k} \phi_{n}(x)-\delta^{k} \phi_{n}\left(x_{1}\right)$
or $\delta^{k} \phi_{n}(x)=\delta^{-1} \delta^{k+1} \phi_{n}(x)+\delta^{k} \delta_{n}\left(x_{1}\right)$
A.s $n \rightarrow \infty, \delta^{k} \phi_{n}(x)$ converges in $L_{p} \Rightarrow \delta^{k} \phi_{n}\left(x_{1}\right)$ converges in $L_{p}(\Omega)$. Hence $\delta^{k} \phi_{n}\left(x_{1}\right)$ tends to a linit as $n \rightarrow \infty$. Since $\delta^{-1} \delta^{k+1} \phi_{n}$ is uniformly convergent on Ω, we can now conclude from (7) that $\delta^{k} \phi_{n}$ converges uniformly on Ω as $n \rightarrow \infty$. The unifora linit, χ_{n} say, or $\delta^{k} \delta_{n}$ is a continuous function on ($0, \infty$). From (7),

$$
\begin{equation*}
x_{n}(x)=s^{-1} x_{n+1}(x)+x_{n}\left(x_{1}\right) \tag{8}
\end{equation*}
$$

Using (8), we conclude that zn is a snooth function and that $x_{n}=\delta^{n} \chi_{0}$. Now since ψ_{k} is the L_{p} linit of $\delta^{k} \phi_{n}$ and χ_{k} is the uniform limit of $\delta^{k} \phi_{n}$ on everj s_{i} as $n \rightarrow \infty, \chi_{k}(x)=\psi_{k}(x)$ a.e. on ($0, \infty$) Hence, for $k=0,1,2 \ldots$,

$$
\left|\delta^{k} \chi_{\rho}\right|_{p}=\left|x_{k}\right|_{p}=\left|\psi_{k}\right|_{p}<\infty
$$

Thus χ_{0} is smooth, $\delta^{k} x_{0} \in L_{p}$ for each $k=0,1,2 \ldots$; so by Lemma 1 , $X_{0} \in \pi_{p}$. Further for each k,
$\left|\delta^{k}\left(\phi_{n}-\chi_{0}\right)\right|_{p}=\left|\delta^{k} \delta_{n}-\delta^{k} \chi_{0}\right|_{p}=\left|\delta^{k} \phi_{n}-x_{n}\right|_{p}$
$=\left|\delta^{k} \dot{\phi}_{n}-\psi_{n}\right|_{p} \rightarrow 0$ as $n \rightarrow \infty$,
from which it easily follows that $\left\{\delta_{n}\right\}$ converges to χ_{0} in F_{p} as $n \rightarrow \infty$. This completes the proof for the case $1<p<\infty$.

The cases $p=1$ and $p=\infty$ are sinilar except that in the application of Holder's Inequality, one of the integrals is replaced by a suprenum over the interval with end-points x and x_{1}.

Sumarising, we now have
Thooren 3
For $1 \leq p \leq \infty, F_{p}$ is a complete countably multinpmed space (and hence a Fréchet space) .

By an argument similar to that used in Theorem 2, we can show that if $\left\{\phi_{n}\right\}$ converges to zero in F_{p} as $n \rightarrow \infty$, then, for each ncn-negative integer $k,\left\{D^{k} \phi_{n}\right\}$ converges to zero uniformy on every compact subset of $(0, \infty)$ as $n \rightarrow \infty$. ($\left.D \equiv \frac{d}{d x}\right)$ It follows that, for each $p, 1 \leq p \leq \infty, F_{p}$ is a testing-function space in the sense of Zemanian [25] P. 39 and we will call the elements of F_{p} testing-functions.

In $\$ 2.3$ we shall compare the spaces F_{p} with other important testing- function spaces. For the monent, we conclude this section by proving a lemm which will be used frequently in the sequel.

Lemma 4

$$
\phi \in F_{p} \Rightarrow x^{\frac{1}{p}} \phi(x) \text { is bounded on }(0, \infty)(1 \leq p \leq \infty)
$$

Proof : Suppose first that $1 \leq p<\infty_{\text {. }}$
Choose a, b with $0<\mathrm{a}<\mathrm{b}<\infty_{\text {. Integrating by parts, }}$
we have

$$
\begin{align*}
& \int_{a}^{b} x \rho^{\prime}(x)\{\phi(x)\}^{p-1} d x=\frac{1}{p}\left[x\{\phi(x)\}^{p}\right]_{a}^{b}-\frac{1}{p} \int_{a}^{b}\{\rho(x)\}^{p} d x \tag{9}\\
& \phi \in F_{p} \Rightarrow x \phi^{\prime}(x) \in L_{p} \cdot \text { slso }\{\phi(x)\}^{p-1} \in L_{q} \text {, since }
\end{align*}
$$

$\int_{0}^{\infty}|\phi(x)|^{(p-1) q} d x=\int_{0}^{\infty}|\phi(x)|^{p} d x<\infty$
Hence, by Holder's Incquality $\int_{0}^{\infty} x \phi^{\prime}(x)\{\phi(x)\}^{p-1} d x$ is absolutely convergent so that the left-hand side of (9) is bounded as $a \rightarrow 0+$ or $b \rightarrow \infty$. Similarly, since $\delta \in I_{p}$, the integral on the right-hand side of (9) remains bounded as $a \rightarrow 0_{+}$or $b \rightarrow \infty$. It follows that $x\{\phi(x)\}^{p}$ remains bounded as $a \rightarrow 0+$ or $b \rightarrow \infty$. The result follows in this case.
\quad The result is trivial in the case $p=\infty$, since then
$x^{\frac{1}{p}} \phi(x)=\phi(x)$ is essentially bounded and hence bcunded on $(0, \infty)$.

This completes the proof.
It follows, in particular, that if $\phi \in F_{p}, 1 \leq p<\infty$, then $\phi(x) \rightarrow 0$ as $x \rightarrow \infty$ 。
§2.2 The generalised-function spaces $F_{p}^{\text {p }}$
In this section we consider functionals on F_{p}, i.e.
mappings from F_{p} into the conplex numbers.
A functional on F_{p} is linear if

$$
\left(f, \alpha_{1} \phi_{1}+\alpha_{2} \phi_{2}\right)=\alpha_{1}\left(f, \phi_{1}\right)+\alpha_{2}\left(f, \phi_{2}\right)
$$

for all complex numbers α_{1}, α_{2} and ϕ_{1}, ϕ_{2} in $F_{p} \cdot f$ is (sequontially)
continuous if whenever $\phi_{n} \rightarrow \delta$ in $F_{p},\left(f_{g} \delta_{n}\right) \rightarrow(f, \phi)$ as $n \rightarrow \infty$. We note that a linear functional is continuous if and only if $\left(f, \phi_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ whenever $\left.\hat{q}_{n}\right\}$ converges to zero in F_{p}. The set of all continuous linear functionals on F_{p} is called the dual of F_{p} and will be denoted by F_{p}^{\prime}. The elenents of F_{p}^{\prime} are generaliṣed functions (in the sense of Zemanian [25]).

Given $f, g \in F_{p}^{:}$we define a functional $f+g$ on F_{p} by

$$
(f+g, \phi)=(f, \phi)+(g, \phi) \quad\left(\phi \in F_{p}\right)
$$

It is easy to see that, in fact, $f+g \in F_{p}^{\prime}$. Similarly, given a complex number α and $f \in F_{p}^{\prime}$, we can define an element af of F_{p}^{\prime} by

$$
(\alpha f, \phi)=\alpha(f, \phi) \quad\left(\phi \in F_{p}\right)
$$

With these definitions of addition and scalar multiplication, $\mathrm{F}_{\mathrm{p}}^{\prime}$ becomes a (complex) linear space.

We assign to F_{p}^{\prime} the topology of weak convergence. A sequence $\left\{f_{n}\right\}$ converges to f in F_{p}^{\prime} if and only if

$$
\begin{array}{ll}
\text { (i) } f_{n} \in F_{p}^{\prime} & (n=1,2,3 \ldots . .) \\
\text { (ii) } f \in F_{p}^{\prime} \\
\text { and } & \text { (iii) for each } \phi \in F_{p}, \\
\text { an } & \left(f_{n}, \dot{\phi}\right) \rightarrow(f, \phi) \text { as }
\end{array}
$$ $n \rightarrow \infty$, in the sense of complex numbers. Similarly, $\left\{f_{n}\right\}$ is a fundamental sequence in F_{p}^{\prime} if and only if

$$
\begin{array}{ll}
\text { (i) } f_{n} \in F_{p}^{3} & (n=1,2,3 \ldots . .) \\
\text { (ii) for each } \phi \in F_{p}, & \left\{\left(f_{n}, \phi\right)\right\} \text { is a Cauchy }
\end{array}
$$ sequence of complex numbers. Theorem 1.1 inmediately gives

Theorem 5

$$
F_{p}^{\prime} \text { is complete for } 1 \leq p \leq \infty \text {. }
$$

Certain elements of F_{p}^{q} can be identified with conventional functions; in particular, let $f \in I_{q}$. We can define a functronal \tilde{x} by

$$
\begin{equation*}
(\tilde{f}, \delta)=\int_{0}^{\infty} f(x) \delta(x) d x \quad\left(\phi \in F_{p}\right) \tag{1.0}
\end{equation*}
$$

The integral exists by Holder's Inequality. $\tilde{\mathrm{f}}$ is clearly linear. Further since convergence in $F_{p} \Rightarrow$ convergence in L_{p} it follows easily that \tilde{f} is continuous; i.e. $\tilde{f} \in F_{p}^{\prime}$ Identifying functions which differ on a set of measure zero, we can therefore imbed L_{q}
in F_{p}^{\prime} by means of (10).
Generalised functions with an inteeral representation of the form (10) are called regular; those which have no such representation are called singular. An example of a singular element of $\mathrm{F}_{\mathrm{p}}^{\prime}(1 \leq \mathrm{p} \leq \infty)$ is provided by $\delta_{a}(\mathrm{a}>0)$ a translated delta-function, defined by

$$
\left(\delta_{a}, \phi\right)=\phi(a) \quad\left(\phi \in F_{p}\right)
$$

We shall use regular functionals to notivate the definition of various operators on $\mathrm{F}_{\mathrm{p}}^{\prime}$ in the sequel.
§2.3 Relationship of F_{p}^{\prime} to \mathcal{D}^{\prime} and E^{\prime}
It is interesting to compare the spaces F_{p}^{\prime} with other spaces of generalised functions on ($0, \infty$), in particular with distributions and distributions with conpact support.

Let be the linear space of all complex-valued smooth functions ϕ defined on ($0, \infty$) whose supporit is a compact subset of $(0, \infty)$. A sequence $\left\{\right.$ in $\left._{n}\right\}$ converges in D to ϕ if and only if
(i) $\delta_{n} \in\left({ }^{2}\right) \quad(n=1,2,3 \ldots \ldots)$
(ii) $\delta \in \mathscr{D}$
(iii) all the on and of have their supports inside

- a fixod conpact suliset of ($0, \infty$) (the subset .: being independent of n)
and (iv) for $k=0,1,2 \ldots, D^{k}$ भ $_{n} \rightarrow D^{k}$; uniformly on $(0, \infty)$ The space of continuous linear functionals on D_{D} is denoted by D^{\prime} and the elements of ' \mathbb{D}^{\prime} are called distributions on ($0, \infty$) or simply distributions.

Let ${ }_{E}$ be the linear space of all smooth complexvalued functions ϕ defined on $(0, \infty)$. Λ sequence $\left\{\phi_{n}\right\}$ converges in \bar{G} to ϕ if and only if
(i) $\phi_{\mathrm{n}} \in \boldsymbol{\xi} \quad(\mathrm{n}=1,2,3, \ldots)$
(ii) $\phi \in$ غ
and (iii) for $k=0,1,2 \ldots, D^{k} \phi_{n} \rightarrow D^{k}{ }_{\phi}$ uniformly on each compact subset of ($0, \infty$).

The space of continuous linear functionals on \mathcal{E} is denoted by ξ^{\prime}.

It is clear that $\mathscr{Q} \subset \mathcal{E}$. Furthermore, if $\left\{\phi_{n}\right\}$ converges to ϕ in \mathscr{D}, then $\left\{\phi_{n}\right\}$ converges to ϕ in ξ. It follows that $\xi^{\prime} \subset D^{\prime}$. It can be proved that ξ^{\prime} consists of those elements of D^{\prime} which have compact support (in the sense of distributions) and hence the elements of ${ }^{\prime}$ ' are called distributions with compact support.

From the definition of the spaces F_{p}, it is clear that

$$
\text { D } \subset P_{p} \subset \mathcal{E}
$$

for each $p, 1 \leq p \leq \infty$. Further, both inclusions are strict; for the first, we note that the function ϕ given by

$$
\phi(x)=e^{-x} \quad(0<x<\infty)
$$

belongs to F_{p} for each p, but not to , while for the second, we note that the function ψ given by

$$
\psi(x)=x \quad(0<x<\infty)
$$

belongs to \mathscr{E} but not to any of the F_{p} spaces. However, since D is dense in ${ }^{\circ}$, [25] p. 37, it follows immediately that F_{p} is dense in \hat{E}.

It is easy to prove that if $\left\{\phi_{\mathrm{n}}\right\}$ converges to ϕ in \mathcal{A}, then $\left\{\phi_{n}\right\}$ converges to ϕ in F_{p}. For, the supports
of ϕ_{n}, ϕ are all contained in the closed interval $[\mathrm{a}, \mathrm{b}]$ for some $0<\mathrm{a}<\mathrm{b}<\infty$, so that

$$
\begin{aligned}
& 0<a<b<\infty, \text { so that } \\
& y_{k}^{p}\left(\phi_{n}-\phi\right)=\left(\int_{0}^{\infty}\left|x^{k} \frac{d^{k}}{d x^{k}}\left(\phi_{n}-\phi\right)\right|^{p} d x\right)^{\frac{1}{p}} \\
&=\left(\int_{a}^{b}\left|x^{k} \frac{d^{k}}{d x^{k}}\left(\phi_{n}-\phi\right)\right|^{p} d x\right)^{\frac{1}{p}} \\
& \leqslant b^{k} \sup _{a \leqslant x \leqslant b}\left|\frac{d^{k}}{d x^{k}}\left(\phi_{n}-\phi\right)\right|(b-a)^{\frac{1}{p}} \\
& \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

It follows that any element of F_{p}^{\prime}, when restricted to S, is a member of \mathscr{D}^{\prime} so that $F_{p}^{\prime} \subset \mathfrak{W}^{\prime}$

On the other hand, suppose $\left\{\phi_{\mathrm{n}}\right\}$ converges to ϕ in F_{p}. We proved in Lemma 2 that $\delta^{k} \phi_{n}$ converges uniformly on any compact subset Ω of $(0, \infty)$ and hence $D^{k} \phi_{n}$ converges uniformFy. on such an Ω 。Hence $\left\{\phi_{n}\right\}$ converges to a limit in E and clearly this limit is ϕ. Thus

$$
\text { Convergence in } F_{p} \Rightarrow \text { Convergence in } \varepsilon
$$

and hence $E^{\prime} \subset F_{p}^{\prime}$. We therefore have

Theorem 6

$$
\text { For } 1 \leq p \leq \infty, \quad e^{\prime} \subset F_{p}^{\prime} \subset D^{\prime}
$$

\$2, 4 The spaces F_{p}, μ and F_{p}^{\prime}, μ
In order to obtain meaningful definitions of various operations such as multiplication by powers of x and differentCation, we must introduce a generalisation of the F_{p} and F_{p}^{\prime} spaces.

For any complex number μ and $1 \leq p \leq \infty$, wo define
$F_{p, \mu}$ by

$$
F_{p, \mu}=\left\{\phi: \delta(x)=x^{\mu} \psi(x) \text { where } \psi \in F_{p}\right\}
$$

With the usual pointwise operations of addition and scalar multiplication, $F_{p, \mu}$ becomes a (complex) linear space.

$$
\begin{align*}
& \text { For } k=0,1,2 \ldots \text {, define } \gamma_{k}^{p, \mu} \text { on } F_{p, \mu} \text { by } \\
& \gamma_{k}^{p, \mu}(\phi)=\gamma_{k}^{p}(\psi) \tag{11}
\end{align*}
$$

where $\phi(x)=x^{\mu} \psi(x) \in F_{p, \mu}$ and $y \frac{p}{k}$ is given by (2). Each $y_{k}^{p, \mu}$ is a seminomm on $F_{p, \mu}$ and $y_{0}^{p, \mu}$ is a norm, so that the collection

$$
\begin{equation*}
\text { R }_{p, \mu}=\left\{\gamma_{k}^{p, \mu}: k=0,1,2 \ldots\right\} \tag{12}
\end{equation*}
$$

is a countable multinorm and with the topology generated by M, μ^{p} $F_{p, \mu}$ becomes a countably multinormed space. Convergent and fundmental sequences are defined analogously to those for F_{p}.

From the definition of the seminorms, it is clear that multiplication by x^{μ} is an isomorphism of F_{p} onto $F_{p, \mu}$. The following result is then immediate.

Theorem 7

For each μ and $1 \leq p \leq \infty, F_{p, \mu}$ is a complete countably multinormed space and hence a Fréchet space.

$$
\text { Of course } F_{p, 0} \text { is simply our original } F_{p} \text { and }
$$ we shall continue to write

$$
\begin{aligned}
& F_{p, 0} \equiv F_{p} \\
& \text { Suppose }\left\{\delta_{n}\right\} \text { converges to zero in } F_{p, \mu} \text { with } \\
& \phi_{n}(x)=x^{\mu} \psi_{n}(x) \text {. Then }\left\{\psi_{n}\right\} \text { converges to zero in } F_{p} \text { as } n \rightarrow \infty .
\end{aligned}
$$ Hence by the remarks following Theorem 3 , for $k=0,1,2 \ldots$,

$\left\{D^{k} \psi_{n}\right\}$ converges to zero uiformly on each compact subset of $(0, \infty)$ as $n \rightarrow \infty$. It follows that $\left\{D^{k} \phi_{n}\right\}$ converges uniformly to zero on each compact subset of $(0, \infty)$ as $n \rightarrow \infty$. Hence for each p and $\mu, F_{p, \mu}$ is a testing-function space in the senso of Zemanian [25] p. 39.

Analogously to the F_{p}^{\prime} spaces, we can construct $F_{p, \mu}^{\prime}$ the space of continuous linear functionals on $F_{p, \mu^{*}}$. The elements of $F_{p, \mu}^{\prime}$ will also be called generalised functions. With the topology of weak convargence (pointwise copvergence) we have by Theorem 1.1,

Theorem 8
For each complex μ and $1 \leq \mathrm{p} \leq \infty, \mathrm{F}_{\mathrm{p}, \mu}^{\mathrm{t}}$ is oompleto.
§2.5 Operators on F, μ
We now consider some operators on $F_{p, \mu}$. The terminology used will be that of [25], Chapter 1.

For any complex number λ, we define the operator x^{λ}
on $F_{p, \mu}$ by

$$
\left(x^{\lambda} \phi\right)(x)=x^{\lambda} \phi(x) \quad(0<x<\infty)
$$

No confusion will arise from using the same symbol for the function x^{λ} and the operation of multiplying by this function. We hạve already remarked that, for any μ, x^{μ} is an isomorphisn of F_{p} onto $\mathrm{F}_{\mathrm{p}, \mu}$; and the inverse operator is $\mathrm{x}^{-\mu}$. It now follows at once that, for any $\lambda, \mu x^{\lambda}$ is an isomorphism of $F_{p, \mu}$ onto $F_{p, \lambda+\mu}$ with inverse $x^{-\lambda}$.

Next, we consider again the operator δ defined
by (4), i.e. $(\delta \delta)(x)=x \frac{d \phi}{d x}$.

Let $\oint \in F_{p}$.We have

$$
\begin{align*}
x^{k} \frac{d^{k}}{d x^{k}}(\delta \dot{\rho}) & =x^{k} \frac{d^{k}}{d x^{k}}\left(x \frac{d \delta}{d x}\right) \\
& =x^{k}\left(x \frac{d^{k+1} \dot{\delta}}{d x^{k+1}}+k \frac{d^{k} \phi}{d x^{k}}\right) \\
& =x^{k+1} \frac{d^{k+1} s}{d x^{k+1}}+k x^{k} \frac{d^{k} \dot{g}}{d x^{k}} \tag{13}
\end{align*}
$$

Hence $x^{k} \frac{d^{k}}{d x^{k}}(\delta \dot{\rho}) \in L_{p}(k=0,1,2 \ldots)$ i.e. $\delta \phi \in F_{p}$ so that δ waps F_{p} into F_{p}. δ is linear. Also from (13),

$$
\begin{equation*}
\gamma_{k}^{p}(\delta \phi) \leqslant \gamma_{k+1}^{\mathrm{p}}(\phi)+k \gamma_{\mathrm{k}}^{\mathrm{p}}(\phi) \tag{14}
\end{equation*}
$$

so that δ is continuous at 0 . Hence δ is a continuous linear napping of F_{p} into F_{p}. If $1 \leq p<\infty$, δ is one-to-one, since

$$
x \frac{d \phi}{d x}=0 \Rightarrow \frac{d \phi}{d x}=0 \Rightarrow \phi=c, \text { a constant on }(0, \infty) .
$$

But $\phi \in L_{p} \Rightarrow c=0$. If $p=\infty, \delta$ is not one-to-one, since all constant functions are napped to zero. It can also be proved, e.g. using the theory of fractional integration developed in Chapter 3 , that δ is onto if $1 \leq p<\infty$, but not if $p=\infty$.

$$
\text { Now suppose } \phi \in \mathrm{F}_{\mathrm{p}, \mu}, \quad \phi(\mathrm{x})=\mathrm{x}^{\mu} \psi(\mathrm{x}), \psi \in \mathrm{F}_{\mathrm{p}}
$$

$$
\delta \phi(x)=x \frac{d}{\partial x}\left(x^{\mu} \psi(x)\right)=x^{\mu}\left(\mu \psi+x \frac{d \psi}{d x}\right)
$$

Now: by the above, $\psi \in F_{p} \Rightarrow x \frac{d \psi}{d x} \in F_{p} \Rightarrow \delta \phi \in F_{p, \mu}$, so δ maps $F_{p, \mu}$ into $F_{p, \mu}$. Linearity is again clear. For continuity, we have

$$
\begin{align*}
\gamma_{\mathrm{k}}^{\mathrm{p}, \mu}(\delta \phi) & =\gamma_{\mathrm{k}}^{\mathrm{p}}\left(\mu \psi+\mathrm{x} \frac{\mathrm{~d} \psi}{\mathrm{dx}}\right)=\gamma{ }_{\mathrm{k}}^{\mathrm{p}}(\mu \psi+\delta \psi) \\
& \leqslant \gamma_{\mathrm{k}}^{\mathrm{p}+1}(\psi)+(\mathrm{k}+|\mu|) \gamma_{\mathrm{k}}^{\mathrm{p}}(\psi) \tag{14}\\
& =\gamma_{\mathrm{k}}^{\mathrm{p}+1, \mu}(\phi)+(\mathrm{k}+|\mu|) \gamma_{\mathrm{k}}^{\mathrm{p}, \mu}(\phi)
\end{align*}
$$

Hence δ is a continuous linear mapping of $F_{p, \mu}$ into $F_{p, \mu}$
for all μ and $1 \leq p \leq \infty$. As before, we can obtain other results using the theory of Chapter 3 (See § 3.6)

We define the operator δ^{\prime} by

$$
\begin{equation*}
\delta^{\prime} \phi(x)=\frac{d}{d x}(x \phi(x)) \tag{15}
\end{equation*}
$$

Since $\frac{d}{d x}(x \phi(x))=x \frac{d \phi}{d x}+\phi(x)$, we may write

$$
\delta^{\prime}=\delta+I
$$

where I is the identity operator. It follows that δ ' is a continuous linear mapping of $F_{p, \mu}$ into $F_{p, \mu}$.

Finally, we have the differentiation operator D
defined by

$$
\begin{aligned}
& D \phi(x)=\frac{d \phi}{d x} \cdot \quad \text { Since } \\
& D \phi(x)=x^{-1} \delta \phi(x)
\end{aligned}
$$

it follows from the above that D is a continuous linear mapping of $\mathrm{F}_{\mathrm{p}, \mu}$ into $\mathrm{F}_{\mathrm{p}, \mu \mu-1}$.

For reference ourposes, we gather together the results of this section in the following theorem.

Theorem 9
Let μ be any complex number, and let $1 \leq p \leq \infty$,
(i) x^{λ} is an isomorphism of $F_{p, \mu}$ onto $F_{p, \lambda+\mu}$ with inverse $x^{-\lambda}$
(ii) δ is a continuous linear mapping of $F_{p, \mu}$ into $F_{p, \mu}$
(outomorphism of F_{p} if $1 \leq p<\infty$)
(iii) δ^{\prime} is a continuous linear mapping of $F_{p, \mu}$ into $F_{p, \mu}$ (iv) D is a continuous linear mapping of $F_{p, \mu}$ into $F_{p, \mu-1}$

Other operators on $F_{p, \mu}$ will be dealt with as they arise .

§2.6 Operators on $F_{p, 1}^{\prime}$

In this section, we define operators on $\mathrm{F}_{\mathrm{p}, \mu}^{\prime}$ corresponding to those of the previous section. The definitions are motivated by consideration of regular functionais.

> For regular functionals, proceeding formally,

$$
\begin{gather*}
\left(x^{\lambda} f, \phi\right)=\int_{0}^{\infty} x^{\lambda} f(x) \phi(x) d x=\int_{0}^{\infty} f(x) x^{\lambda} \phi(x) d x \\
\text { or } \quad\left(x^{\lambda} f, \phi\right)=\left(f, x^{\lambda} \phi\right) \tag{16}
\end{gather*}
$$

The right-hand side is neaningful if $f \in \mathbb{F}_{\underline{p}, \mu}^{\prime}$ and $\phi \in F_{p, \mu-\lambda}$. We use (16) to define $x \lambda_{f}$ for any λ and $f \in F_{p, \mu}^{\prime}$ and denote the mapping so obtained by x^{λ}. In fact, $x^{\lambda} f$ is a continuous linear functional on $F_{p, \mu-\lambda}$ and by Theorens 9 and 1.2, x^{λ} is an isomorphisn $O_{\perp} F_{p, \mu}^{\prime}$ onto $F_{p, \mu-\lambda}^{\prime}$ with inverse $x^{-\lambda}$

$$
\text { Let } \phi \in F_{p, \mu}, f \in F_{p, \mu}^{\prime} \text { be regular with coapact }
$$

support. Formally, we have

$$
\begin{aligned}
& \int_{0}^{\infty} \delta f(x) \phi(x) d x=\int_{0}^{\infty} x f^{\prime}(x) \phi(x) d x \\
& =[x f(x) \phi(x)]_{0}^{\infty}-\int_{0}^{\infty} f(x) \frac{d}{d x}(x \phi(x)) d x
\end{aligned}
$$

The integrated temas venish to give

$$
\begin{equation*}
(\delta f, \phi)=\left(f,-\delta^{\prime} \phi\right) \tag{17}
\end{equation*}
$$

We use (17) to define δ on $F_{p, \mu}^{\prime}$ as the adjcint of $-\delta!$. As before, δ is a continuous linear mapping of $\mathrm{F}_{\mathrm{p}, \mu}^{\mathrm{p}}$, into $\mathrm{F}_{\mathrm{p}, \mu}^{\mathrm{p}}$ by Theorems 9 and 1.2.

$$
\begin{align*}
& \text { Sinilarly, we define } \delta^{\prime} \text { on } F_{p, \mu}^{\prime} \text { by } \\
& \left(\delta^{\prime} f, \phi\right)=(f,-\delta \phi) \tag{18}
\end{align*}
$$

where $f \in F_{p, \mu}^{\prime}$ and $\phi \in F_{p, \mu}$. δ^{\prime} is a continucus linear mapping of $\mathrm{F}_{\mathrm{p}, \mu}^{\mathrm{t}}$ into $\mathrm{F}_{\mathrm{p}, \mu}^{\prime}$.

Finally, we define the differentiation operator

D on $\mathrm{F}_{\mathrm{p}, \mu}^{\prime}$ by

$$
\begin{equation*}
(D f, \phi)=(f,-D \phi) \tag{19}
\end{equation*}
$$

where $f \in F_{p, \mu}^{\prime}$ and $\phi \in F_{p, \mu+1} \cdot D$ is a continuous linear napping of $\mathrm{F}_{\mathrm{p}, \mu}^{\prime}$ into $\mathrm{F}_{\mathrm{p}, \mu+1}^{\prime}$ -

We therefore have the following theorem.

Theorem 10

Let λ, μ be complex numbers, $1 \leq \mathrm{p} \leq \infty$.
(i) x^{λ} is an isomorphism of $F_{p, \mu}^{\prime}$ onto $F_{p, \mu-\lambda}^{\prime}$ with inverse $x^{-\lambda}$
(ii) δ is a continuous linear mapping of $\mathrm{F}_{\mathrm{p}, \mu}^{\prime}$ into $\mathrm{F}_{\mathrm{p}, \mu}^{\prime}$
(iii) δ^{\prime} is a continuous linear mapping of $\mathrm{F}_{\mathrm{p}, \mu}^{\prime}$ into $\mathrm{F}_{\mathrm{p}, \mu}^{\prime}$
(iv) D is a continuous linear napping of : $F_{p, \mu}^{\prime} \mu^{\prime}$ into $F_{p, \mu+1}^{\prime}$

It should always be clear from the context whether
the operators $x^{\lambda}, \delta, \delta^{\prime}, D$ are being applied to testing-funations or generalised functions.

Fractional Integration in $F p, \mu$ and $\mathrm{F}_{\mathrm{p}, \mu}^{\prime}$

§3.1 Introduction.

For $\operatorname{Re} \alpha>0$, and a suitable function ϕ, we
define $I^{\alpha} \phi$, a fractional integral of order α of ϕ (sonetines called the Riemann- Liouville integral of order α) by

$$
\begin{equation*}
I^{\alpha} \phi(\mathrm{x})=\frac{1}{\Gamma(\alpha)} \int_{0}^{\mathrm{x}}(\mathrm{x}-\mathrm{u})^{\alpha-1} \phi(\mathrm{u}) d u \tag{1}
\end{equation*}
$$

It is possible to nodify the operator I^{α} in two stages. Firstly, we may integrate with respect to $\mathrm{x}^{\mathrm{m}}(\mathrm{m}>0)$ rather than x by means of the operator $\mathrm{J}_{\mathrm{x}}^{\alpha} \mathrm{m}^{\alpha}$ defined by

$$
\begin{equation*}
I_{x^{m}}^{\alpha} \phi(x)=\frac{m}{\Gamma(\alpha)} \int_{0}^{x}\left(x^{m}-u^{m}\right)^{\alpha-1} u^{m-1} \phi(u) d u \tag{2}
\end{equation*}
$$

so that I_{x}^{α} is just I^{α} again. On the other hand, there are ' honogeneous ' operators $I^{7, \alpha}$ introduced and discussed by Kober and Erdélyi in [15] arec [14] defined by

$$
\begin{align*}
I^{\eta, \alpha} \phi(x) & =x^{-\eta-\alpha} I^{\alpha} x^{\eta} \phi(x) \\
& =\frac{x^{-\eta-\alpha}}{I(\alpha)} \int_{0}^{x}(x-u)^{\alpha-1} u^{\eta} \phi(u) d u \tag{3}
\end{align*}
$$

where η is any complex number. Finally, combining the se two steps, we obtain the operator $\pi_{x^{n}}^{\eta, \alpha}$ defined by

$$
\begin{align*}
& I_{\mathrm{I}_{\mathrm{n}}}^{\eta_{9} \alpha} \phi(\mathrm{x})=\mathrm{x}^{-\mathrm{n} \eta-\mathrm{n} \alpha} \mathrm{I}_{\mathrm{n}}^{\alpha} \mathrm{x}^{\mathrm{m} \eta} \phi(\mathrm{x}) \\
& =\frac{x^{-m \eta-m \alpha}}{I(\alpha)} \int_{0}^{x}\left(x^{m}-u^{m}\right)^{\alpha-1} u^{m \eta+m-1} \phi(u) d u \tag{4}
\end{align*}
$$

In this chapter, we develop the theory of $I^{\eta}{ }^{\eta}{ }^{\eta}$ and $\mathrm{K}_{\mathrm{m}}^{\eta, \alpha}$ (defined below) for our spaces $\mathrm{F}_{\mathrm{p}, \mu}$ and $\mathrm{F}_{\mathrm{p}, \mu}^{\mathrm{m}}$. We will, of course, obtain incidentally properties of the ' inhomogeneous ' operators $\quad I_{X^{11}}^{\alpha}$ and $K_{X_{m}}^{\alpha}$.

We begin by generalising a theorem of Kober concerning fractional integrals of functions in I_{p}.

S3.2 Action of $I_{x}^{\eta_{s}^{\alpha} \text { on } y_{p}}$
Kober [13] has proved the following theorem.

Theorem io

$$
\text { Let } 1 \leq p \leq \infty, \frac{1}{p}+\frac{1}{q}=1 \text {. Then } I^{\eta, \alpha} \text { (as }
$$

defined by (3)) is a continuous linear mapping of L_{p} into L_{p} provided $\operatorname{Re} \eta>-\frac{1}{q}$ 。

Using this, we can prove the following extension.

Theorem 2.
If $\mathrm{mRe} \eta+\mathrm{m}>\frac{1}{\mathrm{p}}, \mathrm{X}_{\mathrm{m}}^{\eta_{\gamma}^{\alpha}}$ is a continuous linear
mapping of T_{p} into $I_{p}(1 \leq p \leq \infty)_{\text {. }}^{x}$
Proof: Suppose first that $1 \leq p<c$ 。 Using (3) and (4), t we can show that

$$
\begin{equation*}
x^{-\left(\frac{m \sim 1}{m p}\right.}\left(I_{x^{m}}^{\eta_{s} \alpha_{p}}\right)\left(x^{\frac{1}{\square}}\right)=I_{x}^{\eta^{\prime}, \alpha_{\psi}(x)} \tag{5}
\end{equation*}
$$

where

$$
\eta^{\prime}=\eta+\frac{\mathrm{n}-1}{\mathrm{mp}} \text { and } \psi(\mathrm{x})=\mathrm{x}^{-\left(\frac{\mathrm{n}-1}{\mathrm{mp}}\right)} \phi\left(\mathrm{x}^{\frac{1}{\mathrm{n}}}\right) \quad \therefore
$$

Now by a change of variable we cen easily show that

$$
\begin{equation*}
|\psi|_{p}=\operatorname{in}^{\frac{1}{p}}|\phi|_{p} \tag{6}
\end{equation*}
$$

Hence $\psi \in I_{p}$. Sinilarly we havo

$$
\begin{equation*}
\left\lvert\, \mathbf{x}^{-\left(\frac{\mathrm{mp}-1}{\mathrm{mp}}\right)} \underset{\left.\left.\mathrm{I}_{\mathrm{m}}^{\eta, \alpha} \phi\left(\mathrm{x}^{\frac{1}{\mathrm{~m}}}\right)\right|_{\mathrm{p}}=\mathrm{m}^{\frac{1}{\mathrm{p}}}\left|\underset{\mathrm{x}}{\mathrm{I}_{\mathrm{m}}^{\eta, \alpha} \phi}\right|_{\mathrm{p}} \right\rvert\,}{ }\right. \tag{7}
\end{equation*}
$$

From (5) and (7), we now have

$$
\begin{equation*}
m^{\frac{1}{p}}\left|I_{\mathrm{x}}^{\eta, \alpha} \phi\right|_{\mathrm{p}}=\left|I_{\mathrm{x}}^{\eta^{\prime}, \alpha} \psi\right|_{\mathrm{p}} \tag{8}
\end{equation*}
$$

Now if $\operatorname{Re} \eta+m>\frac{1}{\mathrm{p}}$, $\operatorname{Re} \eta>\frac{1}{\mathrm{mp}}-1 \Rightarrow \operatorname{Re} \eta^{\prime}>-\frac{1}{\mathrm{q}}$. Hence by 'iheoren $1, \exists K$, independent of $\psi \in L_{p}$, such that

$$
\begin{equation*}
\left|\cdot I_{\mathrm{x}}^{\mathrm{p}^{\prime}, \alpha^{\alpha}}\right|_{\mathrm{p}} \leqslant K|\psi|_{\mathrm{p}} \tag{9}
\end{equation*}
$$

Combining (6), (8) and (9) gives

$$
\left|\underset{\mathrm{x}}{\mathrm{I}_{\mathrm{m}}^{\eta, \alpha} \phi}\right|_{\mathrm{p}} \leqslant \mathrm{~K}|\phi|_{\mathrm{p}}
$$

where K is independent of $\phi \in L_{p^{\prime}}$. 'he result follows.
It remains to consider the case $p=\infty$. Proceeding as before, we obtain
where $\psi(x)=\phi\left(x^{\frac{1}{m}}\right) \cdot$ ©learly $|\psi|_{\infty}=|\phi|_{\infty}$, and also

$$
\left|\underset{x^{m}}{\left(I^{\eta, \alpha} \phi\right)\left(x^{\frac{1}{2}}\right)}\right|_{\infty}=\left|\underset{x^{m}}{\left(I^{\eta}, \alpha_{\phi}\right)(x)}\right|_{\infty}^{\infty}
$$

Since we are now assuming thet $\operatorname{Re} \eta>-1$, we can now complete the proof using Theoren 1 as above.

Since F_{p} is a subspace of L_{p}, we know from Theorem 2 that if $m \operatorname{Re} \eta+m>\frac{1}{\mathrm{p}}, \underset{\mathrm{x}}{\mathrm{I}} \underset{\mathrm{n}}{\eta, \alpha}$ naps F_{p} into I_{1}. We will now show that, in fact, under the same restriction
on $\eta, I_{\mathrm{K}}^{\eta, u}$ maps F_{m} into F_{p}. This involves justifying differentiation under the integral sign for which we use Theorem 1.3 . We recall the definition of the operator δ given by equation (2.4) and the fact that δ is a continuous linear mapping of F_{p} into F_{p}.(Theorem 2.9 (ii)).

Theorem 3.

$$
\text { Let } \phi \in \mathrm{F}_{\mathrm{p}}, \quad 1 \leq \mathrm{p} \leq \infty, \quad \mathrm{m} \operatorname{Re} \eta+\mathrm{m}>\frac{1}{\mathrm{p}}, \operatorname{Re} \alpha>0
$$

Then
(i) $\mathrm{I}_{\mathrm{x}}^{\eta, \alpha} \phi \quad \in \mathrm{C}^{\infty}$
(ii) For each $k=0,1,2 \ldots$,

$$
\delta^{k} I_{\mathrm{x}}^{\eta_{,} \alpha} \phi(\mathrm{x})=\mathrm{I}_{\mathrm{x}}^{\eta_{,} \alpha_{1}} \delta^{k} \phi(\mathrm{x})
$$

(iix) For each $k=0,1,2 \ldots$,

$$
x^{k} \frac{\dot{d}^{k}}{d x^{k}}\left(I_{m}^{\eta_{m}} \alpha_{\phi(x)}\right)=I_{x^{\eta}}^{\eta, \alpha}\left(x^{k} \frac{d^{k} \phi}{d x^{k}}\right)
$$

(iv) $\quad I_{\mathrm{X}}^{\mathrm{m}, \alpha}$ is a continuous linear mapping of F_{p} into F_{p}.

Proof:

(i) We heve

$$
\begin{aligned}
I_{\mathrm{m}}^{\eta, \alpha} \phi(\mathrm{x}) & =\frac{\mathrm{m}}{\Gamma(\alpha)} \mathrm{x}^{-\mathrm{m} \eta_{i}-\infty \alpha} \int_{0}^{\mathrm{x}}\left(\mathrm{x}^{\left.\mathrm{m}-\mathrm{u}^{\mathrm{m}}\right)^{\alpha-1} \mathrm{u}^{\mathrm{n} \eta+\mathrm{m}-1} \phi(\mathrm{u}) \mathrm{du}}\right. \\
& =\frac{\mathrm{m}}{\Gamma(\alpha)} \int_{0}^{1}\left(1-t^{\mathrm{m}}\right)^{\alpha-1} i^{\mathrm{m} \eta+\mathrm{m}-1} \phi(\mathrm{xt}) d t .
\end{aligned}
$$

We apply Theorem 1.3 with $I=(0,1)$, and with $0<A \leq x \leq B<\infty \quad(A<B)$. Also we take

$$
f(x, t)=\frac{n}{\Gamma(\alpha)}\left(1-t^{m}\right)^{\alpha-1} t^{n \eta+\pi-1} \phi(x t)
$$

Now by Lemma 2,4,
for some constant $c_{1},|\phi(x t)| \leqslant C_{1}(x t)-\frac{1}{p} \quad$ for x and t in the above intervals. Hence,

$$
|f(x, t)| \leqslant C_{2}\left(1-t^{m}\right)^{\alpha-1} t^{m \eta+m-1-\frac{1}{p}}
$$

where

$$
\begin{gathered}
C_{2}=\frac{m}{|\Gamma(\alpha)|^{-\frac{1}{p}} C_{1}} \\
\Rightarrow \int_{0}^{1} f(x, t)<\infty, \text { since } \operatorname{Re} \alpha>0 \text { and } n R e \eta+m>\frac{1}{p} .
\end{gathered}
$$

$$
\text { Now } f_{x}(x, t)=\frac{n}{\Gamma(\alpha)}\left(1-t^{m}\right)^{\alpha-1} t^{m \eta+m-1} x^{-1}(x t) \phi^{\prime}(x t) \quad \text { and }
$$ since $\delta \phi \in F_{p}$, we have as before that

$$
\left|f_{x}(x, t)\right| \leqslant C_{3}\left(1-t^{m}\right)^{\alpha-1} t^{m \eta+m-1-\frac{1}{p}}
$$

for some constant C_{3}. The right-hand side is integrable over (0,1). Hence by Theorem 1.3, $\mathrm{I}_{\mathrm{X}}^{\eta_{,} \alpha}$, is differentiable and

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{I}_{\mathrm{x}}^{\eta, \alpha^{\eta}} \phi(\mathrm{x})\right)=\mathrm{x}_{\mathrm{x}}^{-1} \mathrm{I}_{\mathrm{m}}^{\eta, \alpha} \delta \phi(\mathrm{x}) \tag{11}
\end{equation*}
$$

Since δ maps F_{p} into F_{p}, we can proceed from (11) to show that $\underset{\mathrm{x}}{\mathrm{m}} \mathrm{I}_{\mathrm{m}}^{\eta, \alpha}$ is infinitely differentiable.
(ii) From (11) we have

$$
\delta I_{x^{m}}^{\eta, \alpha} \phi=I_{\mathrm{x}}^{\mathrm{m}^{\eta, \alpha}} \delta \phi
$$

Again, since $\delta \phi \in \mathbb{R}_{\mathrm{p}}$, we may use induction to prove the result. (iii) We have that for $k=0,1,2 \ldots$,

$$
x^{k} \frac{d^{k}}{d x^{k}}=\delta(\delta-1) \ldots \ldots(\delta-k+1)
$$

The right-hand side is a polynomial in δ, say $P(\delta)$. Clearly, from (ii),

$$
\mathrm{P}(\delta) \underset{\mathrm{x}}{\mathrm{I}} \underset{\mathrm{~m}}{\eta, \alpha} \phi=\mathrm{I}_{\mathrm{x}}^{\eta, \alpha} \mathrm{P}(\delta) \phi
$$

so that the result follows.
(iv) We have shown in (i) that $\underset{\mathrm{x}}{\mathrm{I}_{\mathrm{m}}^{\eta, \alpha} \phi}$ is smooth. Also, by (iii)

$$
\begin{aligned}
& x^{k} \frac{d^{k}}{d x^{k}}\left(I_{x}^{\eta, \alpha} \phi\right) \\
\Rightarrow & y_{x}^{\eta}, \alpha \\
y_{k}^{p}\left(I_{m}^{\eta, \alpha} \phi\right) & \left.x^{k} \frac{d^{k} \phi}{d x^{k}}\right) \\
\Rightarrow \quad \mid & \left.I_{m}^{\eta, \alpha}\left(x^{k} \frac{d^{k} \phi}{d x^{k}}\right)\right|_{p}
\end{aligned}
$$

By Theorem 2, there is a constant K_{k} independent of ϕ, such that

$$
\left|I_{x^{m}}^{\eta, \alpha}\left(x^{k} \frac{d^{k} \phi}{d x^{k}}\right)\right|_{p} \leqslant \pi_{k}\left|x^{k} \frac{d^{k} \phi}{d x^{k}}\right|_{p}
$$

\therefore Hence, we have for $k=0,1,2 \ldots$,

$$
\begin{equation*}
y_{k}^{p}\left(\mathrm{I}_{\mathrm{x}}^{\eta, \alpha} \phi\right) \leqslant \mathrm{K}_{\mathrm{k}} \gamma_{\mathrm{k}}^{\mathrm{p}}(\phi) \tag{12}
\end{equation*}
$$

(12) shows that $I_{X^{m}}^{\eta, \alpha}$ is a continuous mapping of F_{p} into F_{p}. As linearity is obvious, the proof is complete.

We next extend Theorem 3 to the spaces $F_{p, \mu^{\circ}}$

Theorem 4
Let $1 \leq \mathrm{p} \leq \infty$, $\operatorname{Re} \alpha>0$. Then $\mathrm{I}_{\mathrm{x}}^{\eta, \alpha}$ is a containuous linear mapping of $F_{p, \mu}$ into $F_{p, \mu}$ provided that

$$
\operatorname{Re}(m \eta+\mu)+m>\frac{1}{p}
$$

Proof: Let $\phi \in F_{p, \mu}, \phi(x)=x^{\mu} \psi(x)$, with $\psi \in F_{p}$.

$$
\begin{align*}
& \mathrm{I}_{\mathrm{x}}^{\eta, \alpha} \phi(\mathrm{x})=\mathrm{I}_{\mathrm{x}}^{\eta, \alpha}\left(\mathrm{x}^{\mu} \psi(\mathrm{x})\right) \\
& =\frac{m}{\Gamma(\alpha)} \int_{0}^{1}\left(1-t^{m}\right)^{\alpha-1}(x t)^{\mu} \psi(x t) t^{m \eta+m-1} d t \\
& =x^{\mu} \frac{m}{\Gamma(\alpha)} \int_{0}^{1}\left(1-t^{m}\right)^{\alpha-1} t^{m \eta+\mu+m-1} \quad \psi(x t) d t \\
& \Rightarrow I_{\mathrm{x}}^{\mathrm{I}_{\mathrm{m}}^{\eta}, \alpha} \phi(\mathrm{x})=\mathrm{x}^{\mu} \mathrm{I}_{\mathrm{x}}^{\eta} \mathrm{m}_{\mathrm{m}}^{\eta}, \alpha^{\mu} \psi(\mathrm{x}) \tag{13}
\end{align*}
$$

Now $\psi \in F_{p}$ and by hypothesis,

$$
m \operatorname{Re}\left(\eta+\frac{\mu}{m}\right)+m=\operatorname{Re}(m \eta+\mu)+m>\frac{1}{p}
$$

Hence, by Theorem 3, $\underset{\mathrm{x}}{\mathrm{m}} \mathrm{m}_{\mathrm{m}}^{\eta} \frac{\mu}{\mu} \psi \in \mathrm{F}_{\mathrm{p}}$. Further we can write (13) in the form

$$
\mathrm{I}_{\mathrm{x}}^{\eta, \alpha} \phi(\mathrm{x})=\mathrm{x}^{\mu} \mathrm{I}_{\mathrm{x}}^{\eta}+\frac{\mu}{\mathrm{m}}, \alpha_{x^{-\mu_{\phi}}(\mathrm{x})}
$$

Using Theorem 3 again and also Theorem 2.9 (i), we see that $I_{\mathrm{x}}^{\eta, \alpha}$, being the composition of three continuous linear mappings , is itself a continuous linear mapping of $F_{p, \mu}$ into $F_{p, \mu}$.

The orem 5

$$
\text { Let } \operatorname{Re} \alpha>0, \operatorname{Re} \beta>0, \operatorname{Re}(\mathrm{~m} \eta+\mu)+\mathrm{m}>\frac{1}{\mathrm{p}}
$$

$\phi \in F_{p, \mu}$. Then

$$
\mathrm{I}_{\mathrm{x}}^{\eta+\alpha}, \beta \mathrm{I}_{\mathrm{m}}^{\eta, \alpha} \phi(\mathrm{x})=\mathrm{I}_{\mathrm{x}}^{\eta, \alpha+\beta} \phi(\mathrm{x})
$$

Proof: Note first that both sides belong to $F_{p, \mu}$ by Theorea 4.
$=\frac{m}{\Gamma(\beta)^{x}} x^{-m \eta-m \alpha-m \beta} \int_{0}^{x}\left(x^{m}-t^{m}\right)^{\beta-1} t^{m-1} d t \frac{n}{\Gamma(\alpha)} \int_{0}^{t}\left(t^{m}-u^{m}\right)^{\alpha-1} u^{m \eta+m-1} \phi(u) d u$
We wish to interchange the oreer of integration in (14). To this end, we note that also

$$
\underset{\mathrm{x}}{\mathrm{I}_{\mathrm{m}}^{\eta \div \alpha}, \beta} \mathrm{I}_{\mathrm{x}}^{\eta, \alpha} \phi(\mathrm{x})
$$

$=\frac{\mathrm{m}}{\Gamma(\alpha) \bar{\Gamma}(\beta)} \int_{0}^{1} \int_{0}^{1}\left(1-t^{m}\right)^{\beta-1} t^{\mathrm{m} \eta+\mathrm{m} \alpha+\mathrm{m}-1}\left(1-u^{\mathrm{m}}\right)^{\alpha-1} u^{\mathrm{m} \eta+\mathrm{m}-1} \phi(x t u) d t d u$
The double integral converges absolutely since $\operatorname{Re} \alpha>0, \mathrm{Re} \beta>0$, $\operatorname{Re}(\mathrm{a} \eta+p)+\mathrm{m}>\frac{1}{\mathrm{p}}$ and $|\phi(\mathrm{y})| \leqslant \mathrm{M} \mathrm{y}^{\operatorname{Re} \mu-\frac{1}{\mathrm{p}}(0<\mathrm{y}<\infty)}$ for some constant M by Lema 2.4 .Thus, by Fubini's Theorem, we may interchange the order of integration in (14) to get
$\frac{\mathrm{mx}}{\Gamma(\alpha) \Gamma^{-n} \eta-\mathrm{n} \alpha-\mathrm{m} \beta} \int_{0}^{\mathrm{x}} \mathrm{u}^{\mathrm{n} \eta+\mathrm{m}-1} \phi(\mathrm{u}) d u \int_{u}^{\mathrm{x}}\left(\mathrm{x}^{\mathrm{m}}-t^{\mathrm{m}}\right)^{\beta-1}\left(t^{\mathrm{n}}-\mathrm{u}^{\mathrm{n}}\right)^{\alpha-1} \mathrm{mt} t^{\mathrm{n}-1} d t$
On putting

$$
z=\frac{t^{n}-u^{m}}{x^{n}-u^{n}}
$$

the t-integral becomes

$$
\left(x^{\mathrm{n}}-u^{\mathrm{n}}\right)^{\alpha+\beta-1} \int_{0}^{1}(1-z)^{\beta-1} z^{\alpha-1} d z=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}\left(x^{\mathrm{n}}-\mathrm{u}^{\mathrm{n}}\right)^{\alpha+\beta-1}
$$

Finally,

$$
\begin{aligned}
\mathrm{I}_{\mathrm{x}}^{\eta+\alpha, \beta} \mathrm{I}_{\mathrm{x}}^{\eta, \alpha} \phi(\mathrm{x}) & =\frac{\mathrm{nx}}{\Gamma(\alpha-\mathrm{n} \eta-\mathrm{m})} \int_{0}^{\mathrm{x}}\left(\mathrm{x}^{\mathrm{n}}-\mathrm{u}^{\mathrm{m}}\right)^{\alpha+\beta-1} \mathrm{u}^{m+\mathrm{m}-1} \phi(\mathrm{u}) d u \\
& =\mathrm{I}_{\mathrm{x}}^{\eta, \alpha+\beta} \phi(\mathrm{x}) \quad \text { as required }
\end{aligned}
$$

All results so far concerning $\underset{x^{m}}{\eta, \alpha}$ have been proved under the hypothesis Re $\alpha>0$. We now show that this restriction can be removed by the process of analytic continuation.

Definition For each α in some domain D of the complex plane let T_{α} be an operator on $F_{p, i l}$. We shall say that T_{α} is analytic with respect to α in D if there exists an operator $\frac{\partial T}{\partial \alpha} \alpha$ on $F_{p, \mu}$ such that for each fixed ϕ in $F_{p, \mu}, 0<x<\infty$,

$$
\frac{1}{h}\left[T_{\alpha+h} \phi(x)-T_{\alpha} \dot{\phi}(\mathrm{x})\right]-\frac{\partial T}{\partial \alpha} \alpha \dot{\phi}(\mathrm{x}) \rightarrow 0
$$

in the topology of $F_{p, \mu}$ as $h \rightarrow 0$ in any manner (h being complex)
Theoren 6
On $\mathrm{F}_{\mathrm{p}, \mu}, \mathrm{I}_{\mathrm{m}}^{\eta, \alpha}$ is analytic with respect to α for $\operatorname{Re} \alpha>0$, provided that ${ }^{x} \operatorname{Re}(m \eta+\mu)+m>\frac{1}{p}$.

Proof: We fix η with $\operatorname{Re}(m \eta+\mu)+m>\frac{1}{\dot{p}}$ and fix $\phi \in F_{p, \mu}$. We have $\mathrm{I}_{\mathrm{x}}^{\eta, \alpha^{\prime}} \phi=\frac{\mathrm{m}}{\Gamma(\alpha)} \mathrm{T}_{\alpha} \phi \quad$ where

$$
\begin{equation*}
\left(\mathrm{T}_{\alpha} \phi\right)(\mathrm{x})=\int_{0}^{1}\left(1-t^{\mathrm{m}}\right)^{\alpha-1} t^{\mathrm{m} \eta+\mathrm{m}-1} \phi(\mathrm{xt}) d t \tag{15}
\end{equation*}
$$

Since multiplication by $\frac{m}{\Gamma(\alpha)}$ is easily seen to be an analytic coperator on $F_{p, \mu}$ in the sense of the above definition, and since the composition of two analytic operators is analytic, we need only prove that T_{α} is analytic with respect to α on $F_{p, \mu}$ for $\operatorname{Re} \alpha>0$. Differentiating (15) formally with respect to α gives

$$
\left(\frac{\partial T}{\partial \alpha} \alpha \phi\right)(x)=\int_{0}^{1}\left(1-t^{m}\right)^{\alpha-1} \log \left(1-t^{m}\right) t^{m \eta+n-1} \phi(x t) d t
$$ With this expression for $\frac{\partial T}{\partial \alpha} \alpha$,

$$
\begin{align*}
& \frac{1}{h}\left[T_{\alpha+h} \phi(x)-T_{\alpha} \phi(x)\right]-\frac{\partial T}{\partial \alpha} \alpha \phi(x) \\
= & \int_{0}^{1} f_{h}\left(1-t^{m}\right)\left(1-t^{n}\right)^{\alpha-\epsilon-1} t^{m \eta+m-1} \phi(x t) d t \tag{16}
\end{align*}
$$

where $f_{h}(x)=\left\{\frac{x^{h}-1}{h}-\log x\right\} x^{\epsilon} \quad$ and $0<\epsilon<\operatorname{Re} \alpha$ We show below that as $h \rightarrow 0$, in any manner,

$$
\sup _{0 \leqslant t \leqslant 1}\left|f_{h}\left(1-t^{\mathrm{n}}\right)\right|=\sup _{0 \leqslant x \leqslant 1}\left|f_{h}(x)\right| \rightarrow 0 .
$$

It then follows from (16) that

$$
\begin{align*}
& \gamma_{\theta}^{\mathrm{p}, \mu}\left[\frac{1}{h}\left(T_{\alpha+h} \phi-T_{\alpha} \phi\right)-\frac{\partial T}{\partial \alpha} \alpha \phi\right] \\
\leqslant & \sup _{0 \leqslant t \leqslant 1}\left|f_{h}\left(1-\dot{t}^{\mathrm{n}}\right) \cdot\right| \gamma{\underset{0}{\mathrm{p}, \mu}\left(\mathrm{I}_{\mathrm{x}}^{\eta, \alpha-\epsilon}|\phi|\right) \rightarrow 0}^{\eta} \mathrm{m} \tag{Re}
\end{align*}
$$

as $h \rightarrow 0$ ins any manner. Proceeding as in Theorem 3, we may differentiate under the integral sign in (16) to deduce that for each $k=1,2,3 \ldots$,

$$
\begin{gathered}
\mathrm{x}^{\mathrm{k}} \frac{\mathrm{~d}^{\mathrm{k}}}{\mathrm{dx} \mathrm{k}}\left[\frac { 1 } { \mathrm { h } } \left(\mathrm{~T}_{\left.\left.\alpha+h^{\phi}-\mathrm{T}_{\alpha} \phi\right)-\frac{\partial \mathrm{T}}{\partial \alpha} \alpha \phi\right]}^{=\int_{0}^{1} f_{h}\left(1-t^{\mathrm{m}}\right)\left(1-t^{m}\right)^{\alpha-\epsilon-1} t^{\mathrm{m} \eta+\mathrm{LL-1}}(x)^{\mu} \chi_{\chi k}(x t) d t}\right.\right.
\end{gathered}
$$

where $\quad x^{\mu} \chi_{k}(x)=x^{k} \frac{d^{2},}{d x^{k}}$ so that $\chi_{k} \in F_{p}$. Hence,

$$
y_{k}^{\mathrm{p}, \mu}\left[\frac{1}{\mathrm{~h}}\left(\mathrm{~T}_{\alpha+\mathrm{h}} \phi-\mathrm{T}_{\alpha} \delta\right)-\frac{\partial T}{\partial \alpha} \alpha \phi\right]
$$

$$
\leqslant \sup _{0 \leqslant t \leqslant 1}\left|f_{h}\left(1-t^{n}\right)\right| \times\left|I_{x_{n}}^{\eta+\frac{\mu}{n}, \alpha-\epsilon}{ }_{\chi k}\right|_{p} \rightarrow 0 \text { as } h \rightarrow 0 .
$$

The result would then follow.
Thus it only remains to prove that $\sup _{0 \leqslant x \leqslant 1}\left|f_{h}(x)\right| \rightarrow 0$
as $h \rightarrow 0$ in any manner.

$$
\left|f_{h}(x)\right|=\left|\frac{x^{h}-1}{h}-\log x\right| x^{\epsilon}
$$

Now $\left|\frac{x^{h}-1}{h}-\log x\right|=\left|\frac{1}{h}\{\exp (h \log x)-1-h \log x\}\right|$ $=\left|\frac{1}{h} \cdot \sum_{n=2}^{\infty} \frac{(n \log x)^{n}}{n!}\right| \leqslant\left|\frac{1}{h}\right| \sum_{n=2}^{\infty} \frac{|h|^{n}|\log x|^{n}}{n!}$ $=\frac{1}{h} \left\lvert\, \sum_{n=2}^{\infty} \frac{(-|h| \log x)^{n}}{n!} \quad($ since $\log x<0)\right.$
$=-\left\{\frac{x^{-|h|}-1}{-|h|}-\log x\right\}$, reversing a previous step
$=\frac{x^{-|h|}-1}{|h|}+\log x \quad=x^{-\epsilon} g_{h}(x)$ say.
We have that $\left|f_{h}(x)\right| \leqslant\left|g_{h}(x)\right|$. We prove that $\sup _{0 \leqslant x \leqslant 1}\left|g_{h}(x)\right|$ $\rightarrow 0$ as $h \rightarrow 0$ in any manner. Since g_{h} is a real function involving only $|h|$, we may use calculus to locate turning values. Suppose as : se may that $0<|\mathrm{h}|<\epsilon$. Then $\mathrm{g}_{\mathrm{h}}(\mathrm{x}) \rightarrow 0$ as $\mathrm{x} \rightarrow \mathrm{O}_{+}$ and $g_{h}(x) \rightarrow 0$ as $x \rightarrow 1$ - .

$$
\begin{aligned}
g_{h}^{\prime}(x) & =\epsilon x^{\epsilon-1}\left\{\frac{x^{-|h|}-1}{|h|}+\log x\right\}+\left\{-x^{-|h|-1}+\frac{1}{x}\right\} x^{\epsilon} \\
& =\left(\left.\left.\right|^{\epsilon} \frac{\epsilon}{h} \right\rvert\,-1\right)\left(x^{-|h|}-1\right) x^{\epsilon-1}+\epsilon x^{\epsilon-1} \log x
\end{aligned}
$$

In $0<x<1, x^{\epsilon-1} \neq 0 \Rightarrow g_{h}^{\prime}(x)=0$ when

$$
\log x=-\frac{\epsilon-|h|}{|h| \epsilon}\left\{x^{-|h|}-1\right\}
$$

Then $\log x^{-|h|}=\frac{\varepsilon-|h|}{\epsilon}\left\{x^{-|h|}-1\right\}$

$$
\text { or } \log y_{h}=\frac{\epsilon-|h|}{\epsilon}\left\{y_{h}-1\right\}
$$

From the convexity of $\log \mathrm{y}$ and its derivatives at $\mathrm{y}=1$, it is easily seen that $y_{h} \rightarrow 1$ as $h \rightarrow 0$. Hence
$\sup _{0 \leqslant x \leqslant 1}\left|g_{h}(x)\right|=\sup _{0 \leqslant x \leqslant 1}\left|\frac{x^{-|h|}-1}{|h|}+\log x\right| x^{\epsilon}$
$\leqslant 1\left|\frac{y_{h}-1}{|h|}-\frac{\epsilon-|h|}{|h| \frac{h}{\epsilon}}\left(y_{h}-1\right)\right|$
$=\left(y_{h}-1\right)\left(\left|\frac{1}{h}\right|-\frac{\epsilon-|h|}{|h| \epsilon}\right)=\frac{1}{\epsilon}\left(y_{h}-1\right) \rightarrow 0$ as $h \rightarrow 0$.
This finally completes the proof of Theorem 6.
We also note in passing that a similar argument proves the following result.

Theorem 7
On $F_{p, \mu}$, and with fixed $a, \operatorname{Re} \alpha>0, I_{x_{m}}^{\eta, \alpha}$ is analytic with respect to η provided $\operatorname{Re}(m \eta+\mu)+\frac{\mathrm{x}}{\mathrm{m}}>\frac{1}{\mathrm{p}}$.

We shall mainly be concerned with analytic containuation of $I_{\mathrm{m}}^{\eta, \alpha}$ with respect to α for which we use the following lemma.

Lemma 8

$$
\begin{align*}
& \text { Let } \operatorname{Re} \alpha>0, \delta \in F_{p, \mu}, \operatorname{Re}(m \eta+\mu)+m>\frac{1}{p} \text {. Then } \\
& \delta I_{\mathrm{x}}^{\eta, \alpha+1} \phi=\mathrm{I}_{\mathrm{m}}^{\eta, \alpha+1} \delta \phi=\mathrm{mI}_{\mathrm{m}}^{\eta, \alpha}, \underset{\mathrm{m}}{\eta}-(\mathrm{m} \eta+\mathrm{m} \alpha+\mathrm{m}) \mathrm{I}_{\mathrm{m}}^{\eta, \alpha+1} \phi \tag{17}\\
& \text { Proof : That } \underset{x^{m}}{\delta I^{\eta, \alpha+1} \phi}=\mathrm{I}_{\mathrm{m}}^{\eta, \alpha+1} \delta \phi \text { follows from Theorem } 3 \text { (ii). } \\
& \text { Now, we have } \quad \frac{d}{d x} I_{x^{m}}^{\eta, \alpha+1} \phi(x)
\end{align*}
$$

$$
\begin{gathered}
=\frac{d}{d x}\left\{\frac{m}{\Gamma(\alpha+1)} x^{-m \eta-m \alpha-m} \int_{0}^{x}\left(x^{m-t^{m}}\right)^{\alpha} t^{m \eta+m-1} \phi(t) d t\right\} \\
=-(m \eta+m \alpha+m) x^{-m \eta-m \alpha-m-1} I \quad x^{-m \eta-m \alpha-m} \frac{d}{d x} I \quad \text {, where } \\
I(x)=\frac{m}{I^{\prime}(\alpha+1)} \int_{0}^{x}\left(x^{\left.m-t^{m}\right)^{\alpha} t^{m \eta+m-1} \phi(t) d t}\right.
\end{gathered}
$$

Using Theorem 1.3 , we can differentiate under the integral

$$
\begin{aligned}
& \text { sign to obtain } \\
& \qquad \frac{d}{d x} I(x)=\frac{m}{\Gamma(\alpha)} m x^{m-1} \int_{0}^{\dot{x}}\left(x^{m}-t^{m}\right)^{\alpha-1} t^{m \eta+m-1} \phi(t) d t
\end{aligned}
$$

$$
\Rightarrow \quad x \frac{d}{d x}\left(I_{x^{m}}^{\eta, \alpha+1} \phi(x)\right)
$$

$$
=-(m \eta+m \alpha+m) x^{-m \eta-m \alpha-m} \frac{m}{\Gamma(\alpha+1)} \int_{0}^{x}\left(x^{m}-t^{m}\right)^{\alpha} t^{m \eta+m-1} \phi(t) d t
$$

$$
+m x^{-m \eta-m \alpha} \frac{m}{\Gamma(\alpha)} \int_{0}^{x}\left(x^{m}-t^{m}\right)^{\alpha-1} t^{m \eta+m-1} \phi(t) d t
$$

$$
\Rightarrow \quad \delta I_{\mathrm{x}}^{\eta, \alpha+1} \phi=-(\mathrm{m} \eta+\mathrm{m} \alpha+\mathrm{m}) \mathrm{I}_{\mathrm{x}}^{\eta, \alpha+1} \phi+\mathrm{m}_{\mathrm{x}}^{\eta, \alpha} \phi
$$

as required.
We can arrange the formula of Lemma 8 to give

$$
\begin{equation*}
\mathrm{m}_{\mathrm{x}}^{\eta, \alpha} \phi(\mathrm{x})=(\mathrm{m} \eta+\mathrm{m} \alpha+\mathrm{m}) \mathrm{I}_{\mathrm{x}}^{\eta, \alpha+1} \phi(\mathrm{x})+\mathrm{I}_{\mathrm{x}}^{\eta, \alpha+1} \delta \phi(\mathrm{x}) \tag{18}
\end{equation*}
$$

For fixed x and η with $\operatorname{Re}(m \eta+\mu)+m>\frac{1}{p}$, the right-hand side of (18) is, by Theorem 6, an analytic function of α on $F_{p, \mu}$ provided Re $\alpha>-1$. We can therefore use (18) to extend the definition of $I_{\mathrm{m}}^{\eta, \alpha}$, in the first instance to $-1<\operatorname{Re} \alpha \leqslant 0$, and hence, step by step, to the whole α-plane. The extended operator on $F_{p, \mu}$ is an entire function of α.

By sufficiently many applications of (18) together
with the result of Theorem 4 , we have

Theorem 9

Let $1 \leq \mathrm{p} \leq \infty$. For any complex number α and $\operatorname{Re}(\mathrm{m} \eta+\mu)+\mathrm{m}>\frac{1}{\mathrm{p}}, \underset{\mathrm{x}}{\mathrm{I}_{\mathrm{m}}^{\eta}, \alpha}$ is a continuous linear mapping of $\mathrm{F}_{\mathrm{p}, \mu}$ into $F_{p, \mu}$.

We shall shortly prove much more about the mapping properties of $\mathrm{I}_{\mathrm{x}}^{\eta, \alpha}$ under these conditions.

$$
\begin{align*}
& \text { Putting } \alpha=0 \text { in (18) we have for } \operatorname{Re}(m \eta+\mu)+m>\frac{1}{p} \\
& \mathrm{mI}_{\mathrm{x}}^{\eta, 0} \phi(\mathrm{x})=(\mathrm{m} \eta+\mathrm{m}) \mathrm{I}_{\mathrm{m}}^{\eta, 1} \phi(\mathrm{x})+\mathrm{I}_{\mathrm{m}}^{\eta, 1} \delta \phi(\mathrm{x}) \\
& \Rightarrow \mathrm{mI}_{\mathrm{x}}^{\eta, 0} \phi(\mathrm{x})=\mathrm{mx} \mathrm{~m}^{-\mathrm{m} \eta-\mathrm{m}} \int_{0}^{\mathrm{x}} \mathrm{u}^{\mathrm{m} \eta+\mathrm{m}-1}\left[(\mathrm{~m} \eta+\mathrm{m}) \phi(\mathrm{u})+\mathrm{u} \frac{\mathrm{~d} \phi}{\mathrm{du}}\right] \mathrm{du} \\
& =m x^{-m \eta-m} \int_{0}^{x} \frac{d}{d u}\left(\phi(u) u^{m \eta+m}\right) d u \\
& =\mathrm{mx}^{-\mathrm{m} \eta-\mathrm{m}}\left[\phi(\mathrm{u}) \mathrm{u}^{\mathrm{m} \eta+\mathrm{m}}\right]_{0}^{\mathrm{x}} \\
& =m x^{-m \eta-m} \phi(x) x^{m \eta+n} \text {, since } \operatorname{Re}(m \eta+\mu)+m>\frac{1}{p} \\
& =\mathrm{m} \phi(\mathrm{x}) \\
& \Rightarrow \quad I_{\mathrm{x}}^{\eta, 0} \phi(\mathrm{x})=\phi(\mathrm{x}) \tag{19}
\end{align*}
$$

so that $\mathrm{I}_{\mathrm{X}}^{\eta, 0}$ is the identity operator on $\mathrm{F}_{\mathrm{p}, \mu}$ in this case.
Next, we can use analytic continuation with respect
to α and β to remove the restrictions $\operatorname{Re} \alpha>0$ and $\operatorname{Re} \beta>0$
in Theorem 5. However, we must insert the extra condition

$$
\operatorname{Re}(m \eta+m \alpha+\mu)+m>\frac{1}{p}
$$

which was redundant before. We therefore have

Theorem 10

$$
\operatorname{Let} \operatorname{Re}(\mathrm{m} \eta+\mu)+m>\frac{1}{\mathrm{p}}, \operatorname{Re}(\mathrm{~m} \eta+\mathrm{m} \alpha+\mu)+m>\frac{1}{\mathrm{p}}
$$

$\phi \in \mathrm{F}_{\mathrm{p}, \mu}$. Then

$$
\begin{equation*}
\mathrm{I}_{\mathrm{x}}^{\eta+\alpha, \beta} \mathrm{I}_{\mathrm{m}}^{\eta, \alpha} \phi(\mathrm{x})=\mathrm{I}_{\mathrm{x}}^{\eta,}{ }_{\mathrm{m}}^{\eta+\beta} \phi(\mathrm{x}) \tag{20}
\end{equation*}
$$

This immediately leads to the following very important result.

Corollary 11

$$
\text { Let } \operatorname{Re}(\mathrm{m} \eta+\mu)+\mathrm{m}>\frac{1}{\mathrm{p}}, \operatorname{Re}(\mathrm{~m} \eta+\mathrm{m} \alpha+\mu)+\mathrm{m}>\frac{1}{\mathrm{p}} .
$$

Then $\mathrm{I}_{\mathrm{m}}^{\eta, \alpha}$ is an automorphism of $\mathrm{F}_{\mathrm{p}, \mu}$ and

$$
\begin{equation*}
\left(\underset{\mathrm{x}}{\left.\mathrm{I}_{\mathrm{m}}^{\eta, \alpha}\right)^{-1}=\mathrm{I}_{\mathrm{x}}^{\eta+\alpha,-\alpha} .}\right. \tag{21}
\end{equation*}
$$

Proof : We know, from Theorem 9, that under the given conditions $\mathrm{I}_{\mathrm{x}}^{\eta, \alpha}$ and $\mathrm{I}_{\mathrm{x}}^{\eta+\alpha,-\alpha}$ are continucus linear mappings of $\mathrm{F}_{\mathrm{p}, \mu}$ into itself. Let $\phi \in \mathrm{F}_{\mathrm{p}, \mu}$. Taking $\beta=-\alpha$ in (20) gives

Replacing η by $\eta+\alpha, \alpha$ by $-\alpha$ and β by α in (20) gives

$$
\underset{\mathrm{x}}{\mathrm{I}_{\mathrm{M}}^{\eta, \alpha} \mathrm{I}_{\mathrm{M}}^{\eta+\alpha,-\alpha} \phi}=\underset{\mathrm{x}}{\mathrm{I}_{\mathrm{m}}^{\eta+\alpha, 0} \phi}=\phi
$$

The result follows at once.
We derive next some results, similar to that of
Lema 8, which will be used in the sequel. We assume $\phi \in F_{p, \mu}$ and that $\operatorname{Re}(m \eta+\mu)+\mathrm{m}>\frac{1}{\mathrm{p}}$.

$$
\begin{gathered}
\delta I_{x^{m}}^{\eta, \alpha+1} \phi \quad=I_{x^{m}}^{\eta, \alpha+1} \delta \phi \\
=\frac{m}{\Gamma(\alpha+1)} x^{-m \eta-m \alpha-m} \int_{0}^{x}\left(x^{m}-u^{m}\right)^{\alpha} u^{m \eta+m-1} u \phi^{\prime}(u) d u \\
=\frac{m}{\Gamma(\alpha+1)} x^{-m \eta-m \alpha-m}\left\{\left[\left(x^{m}-u^{m}\right)^{\alpha} u^{m \eta+m} \phi(u)\right]_{0}^{x}\right. \\
\\
\left.-\int_{0}^{x} \phi(u) \frac{d}{d u}\left[\left(x^{m}-u^{m}\right)^{\alpha} u^{m \eta+m}\right] d u\right\} \\
= \\
m \frac{m}{\Gamma(\alpha)} x^{-m \eta-m \alpha-m} \int_{0}^{x}\left(x^{m}-u^{n}\right)^{\alpha-1} u^{m \eta+m} \phi(u) u^{m-1} d u
\end{gathered}
$$

$$
\begin{align*}
& -(\mathrm{m} \eta+\mathrm{m}) \frac{\mathrm{m}}{\Gamma(\alpha+1)} \mathrm{x}^{-\mathrm{m} \eta-\mathrm{m} \alpha-\mathrm{m}} \int_{0}^{\mathrm{x}}\left(\mathrm{x}^{\mathrm{m}}-\mathrm{u}^{\mathrm{m}}\right)^{\alpha} \mathrm{u}^{\mathrm{m} \eta+\mathrm{m}-1} \phi(\mathrm{u}) \mathrm{du} \\
& \Rightarrow \mathrm{I}_{\mathrm{m}}^{\eta, \alpha+1} \delta \phi=\delta \mathrm{I}_{\mathrm{m}}^{\eta, \alpha+1} \phi=\mathrm{mI}_{\mathrm{m}}^{\eta+1, \alpha} \phi-(\mathrm{m} \mathrm{\eta+m}) \mathrm{I}_{\mathrm{x}}^{\eta, \alpha+1} \phi \tag{22}
\end{align*}
$$

With δ^{\prime} defined as before by

$$
\delta^{\prime} \phi(x)=\frac{d}{d x}(x \phi)=\delta \phi(x)+\phi(x)
$$

(17) and (22) immediately give

$$
\begin{align*}
& \delta^{\prime} \mathrm{I}_{\mathrm{x}^{\eta}}^{\eta, \alpha+1} \phi=\mathrm{I}_{\mathrm{x}}^{\eta, \mathrm{m}^{\alpha+1}} \delta^{\prime} \phi=\mathrm{m}_{\mathrm{x}}^{\eta, \alpha} \mathrm{m}_{\mathrm{m}}^{\eta}-(\mathrm{m} \eta+\mathrm{m} \alpha+\mathrm{m}-1) \mathrm{I}_{\mathrm{m}}^{\eta, \alpha+1} \phi \tag{23}\\
& \mathrm{I}_{\mathrm{x}}^{\eta, \alpha+1} \delta^{\prime} \phi=\delta_{\mathrm{x}}^{\prime} \mathrm{I}_{\mathrm{m}}^{\eta, \alpha+1} \phi=\mathrm{m}_{\mathrm{x}}^{\mathrm{I}_{\mathrm{m}}^{\eta+1}, \alpha} \mathrm{~m}_{\phi-}(\mathrm{m} \eta+\mathrm{m}-1) \mathrm{I}_{\mathrm{x}}^{\eta, \alpha+1} \phi \tag{24}
\end{align*}
$$

> We conclude this section by stating the mapping.
properties of the ' inhomogeneous ' operators $I_{X_{x}^{\alpha}}^{\alpha}$ as given by (2). From (4) we see that for pe $\alpha>0$,

$$
\begin{equation*}
I_{x^{m}}^{\alpha} \phi(x)=x^{m \alpha_{x}-m \alpha} I_{x^{m}}^{\alpha} \phi(x)=x^{m \alpha} I_{x^{m}}^{0, \alpha} \phi(x) \tag{25}
\end{equation*}
$$

It follows from Theorem 2.9 (i) and Theorem 4 that $I_{x^{\alpha}}^{\alpha}$ is a continuous linear mapping of $F_{p, \mu}$ into $F_{p, \mu+m \alpha}$ provided $\operatorname{Re} \mu+m>\frac{1}{p}$. The right-hand side of (25) is, by Theorem 6, an analytic function of α for fixed x and ϕ. We can use (25) to define I_{x}^{α} for $\operatorname{Re} \alpha \leqslant 0$ on $F_{p, \mu}$ provided only $\operatorname{Re} \mu+m>\frac{1}{p}$. Using the properties of $I_{x^{0}}^{0, \alpha}$, we can deduce the following theorem.

Theorem 12

Let $\operatorname{Re} \mu+m>\frac{1}{\mathrm{p}}$. Then $\mathrm{I}_{\mathrm{m}}^{\alpha}$ is a continuous linear mapping of $\mathrm{F}_{\mathrm{p}, \mu}$ into $\mathrm{F}_{\mathrm{p}, \mu+\mathrm{m} \alpha}{ }^{\mathrm{X}} \mathrm{I}_{\mathrm{X}}^{0}{ }_{\mathrm{m}}$ is the identity operator on $F_{p, \mu}$. If, further, $\operatorname{Re}(m+m a+\mu)>\frac{1}{p}$,
I_{X}^{α} is an isomorphisn with inverse

$$
\begin{equation*}
\left(I_{\mathrm{x}}^{\alpha}\right)^{-1}=I_{x^{\mathrm{m}}}^{-\alpha} \tag{26}
\end{equation*}
$$

If $\frac{1}{\mathrm{p}}-\mathrm{m}-\operatorname{Re} \mu<\min (0, \operatorname{me} \alpha, \operatorname{Re} \beta) \quad \phi \in \mathrm{F}_{\mathrm{p}, \mu}$

$$
\begin{equation*}
\mathrm{I}_{\mathrm{x}}^{\alpha} \mathrm{I}_{\mathrm{x}}^{\beta} \phi=\mathrm{I}_{\mathrm{x}}^{\alpha+\beta} \phi=\mathrm{I}_{\mathrm{x}}^{\beta} \mathrm{I}_{\mathrm{x}}^{\mathrm{m}} \phi \tag{27}
\end{equation*}
$$

(27) is sometimes called the first index law for the operators I_{x}^{α}. The second index law for I_{x}^{α} will be discussed in Chapter 6 where it arises in connection with hypergeometric integral operators.
$\frac{\$ 3.4 \text { Action of } \mathrm{K}^{\eta, \alpha} \text { on } \mathrm{F} \text { and } \mathrm{F} \text { Por }}{\mathrm{x}}$

For $\operatorname{Re} \alpha>0$, and a suitable function ϕ, we define $K^{\alpha} \phi$, sometimes called the Weyl integral of order α of ϕ by

$$
\begin{equation*}
\dot{\mathrm{K}}^{\alpha} \phi(\dot{\mathrm{x}})=\frac{i}{\Gamma(\alpha)} \int_{\mathrm{x}}^{\infty}(u-x)^{\alpha-1} \phi(u) d u \tag{28}
\end{equation*}
$$

As in the case of I^{α}, we have the operators K_{x}^{α} and $K_{x}^{\eta, \alpha}, \cdots$ defined by

$$
\begin{align*}
& \mathrm{K}_{\mathrm{x}}^{\alpha} \phi(\mathrm{x})=\frac{\mathrm{m}}{\Gamma(\alpha)} \int_{\mathrm{x}}^{\infty}\left(u^{m}-x^{m}\right)^{\alpha-1} u^{m-1} \phi(u) d u \tag{29}\\
& \mathrm{~K}_{\mathrm{X}_{\mathrm{m}}^{r_{r}, \alpha}}^{r_{\mathrm{m}}} \phi(\mathrm{x})=\mathrm{x}^{\mathrm{m} \eta} \mathrm{~K}_{\mathrm{x}}^{\alpha} \mathrm{x}^{-\mathrm{n} \eta-\mathrm{n} \alpha} \phi(\mathrm{x}) \\
& =\frac{m x^{m \eta}}{\Gamma(\alpha)} \int_{x}^{\infty}\left(u^{m}-x^{m}\right)^{\alpha-1} u^{-m \eta-m \alpha+m-1} \phi(u) d u \\
& =\frac{m}{\Gamma(\alpha)} \int_{1}^{\infty}\left(t^{m}-1\right)^{\alpha-1} t^{-m \eta-m \alpha+m-1} \phi(x t) d t \tag{30}
\end{align*}
$$

As is to be expected, the development of the theory of $\mathrm{K}_{\mathrm{m}}^{\eta, \alpha}$ on $F_{p, \mu}$ is similar to that of $\mathrm{I}_{\mathrm{x}}^{\eta, \alpha}$. We shall state the results
without giving the full details of the proofs.
Using Theorem 1.3 and results of Kober [13]
we can prove

Theorem 13
Let $1 \leq \mathrm{p} \leq \infty \cdot \mathrm{K}_{\mathrm{x}}^{\eta, \alpha}$ is a continuous linear mapping of $F_{p, \mu}$ into itself provided $\operatorname{Re} \alpha>0, \operatorname{Re}(m \eta-\mu)>-\frac{1}{p}$. Proof : Kober proved that $K_{\dot{x}}^{\eta, \alpha}$ maps: L_{p} into itself if Re $\eta>-\frac{1}{p}$ and $\operatorname{Re} \alpha>0$. By a change of variable, we can show that $\mathrm{K}_{\mathrm{m}}^{\eta, \alpha}$ maps F_{p} into L_{p} if $\operatorname{Re} \alpha>0, \operatorname{Re} m \eta>-\frac{1}{p}$. Theorem 1.3 com c pletes the proof for $\mu=0$. A little manipulation then proves the general case.

As in the case of $\mathrm{I}_{\mathrm{m}}^{\eta, \alpha}$, we can remove the restriction $\operatorname{Re} \alpha>0$ by means of analytic continuation. Let η be fixed with $\operatorname{Re}(m \eta-\mu)>-\frac{1}{\mathrm{p}}$. Then, on $\mathrm{F}_{\mathrm{p}, \mu} \mathrm{K}_{\mathrm{x}}^{\eta} \mathrm{m}^{\eta} \phi(\mathrm{x})$ is , for each fixed x and ϕ, an analytic function of α. (We can actually prove a stronger result involving convergence in the topology of $F_{p, \mu}$ as in Theorem 6.) Under the hypotheses of Theorem 13, integration by parts gives
which is an analogue of (17). Rearranging gives

$$
\begin{equation*}
\mathrm{m}_{\mathrm{x}}^{\eta, \alpha} \phi(\mathrm{x})=(\mathrm{m} \eta+\mathrm{m} \alpha) \mathrm{K}_{\mathrm{x}}^{\eta, \alpha+1} \phi(\mathrm{x})-\mathrm{K}_{\mathrm{n}}^{\eta, \alpha+1} \delta \phi(\mathrm{x}) \tag{32}
\end{equation*}
$$

For fixed x and ϕ, we can use (32) to extend $\mathrm{K}_{\mathrm{x}^{\eta}}^{\eta, \alpha} \phi(\mathrm{x})$ to an entire function of α. We can then drop the restriction $\operatorname{Re} \alpha>0$. in Theorem 13.

$$
\begin{align*}
& \text { Putting } \alpha=0 \text { in (32) shows that } \\
& \mathrm{K}_{\mathrm{x}}^{\eta, 0} \phi=\phi \tag{33}
\end{align*}
$$

for $\phi \in F_{p, \mu}$ provided $\operatorname{Re}(\mathrm{m} \eta-\mu)>-\frac{1}{\mathrm{p}}$. If, in addition, $\operatorname{Re}(\mathrm{m} \eta+\mathrm{m} \alpha-\mu)>-\frac{1}{\mathrm{p}}$, we can prove by interchanging the order of integration that

$$
\begin{equation*}
\mathrm{K}_{\mathrm{x}}^{\eta, \alpha} \mathrm{K}_{\mathrm{x}}^{\eta+\alpha, \beta} \phi=\mathrm{K}_{\mathrm{x}}^{\eta, \alpha+\beta} \phi \tag{34}
\end{equation*}
$$

This leads to the following theoren.

Theorem 14

Let $1 \leq \mathrm{p} \leq \infty \cdot \mathrm{K}_{\mathrm{x}^{\mathrm{n}}}^{\eta, \alpha}$ is a continuous linear mapping of $F_{p, \mu}$ into itself provided $\operatorname{Re}(\mathrm{m} \eta-\mu)>-\frac{1}{\mathrm{p}}$. If, in addition, $\operatorname{Re}(m \eta+m \alpha-\mu)>-\frac{1}{\mathrm{p}}, \mathrm{K}_{\mathrm{x}}^{\eta, \alpha}$ is an automorphism of $\mathrm{F}_{\mathrm{p}, \mu}$ with inverse $\quad \mathrm{K}_{\mathrm{m}}^{\eta+\alpha,-\alpha}$.

If $\phi \in F_{p, \mu}$ and $\operatorname{Re}(m \eta-\mu)>-\frac{1}{p}$, the following results analogous to (22), (23), (24) hold.

$$
\begin{align*}
& \delta \mathrm{K}_{\mathrm{x}}^{\eta, \alpha+1} \phi=\underset{\mathrm{K}_{\mathrm{m}}^{\eta, \alpha+1}}{\eta} \delta \phi=\mathrm{m} \eta \mathrm{~K}_{\mathrm{x}}^{\eta, \alpha+1} \phi-\mathrm{m}_{\mathrm{x}}^{\eta+1, \alpha} \phi \tag{35}\\
& \delta^{\prime} \mathrm{K}_{\mathrm{x}}^{\eta, \alpha+1} \phi \equiv \mathrm{~K}_{\mathrm{x}}^{\eta, \alpha+1} \delta^{\prime} \phi=(\mathrm{m} \eta+1) \mathrm{K}_{\mathrm{x}}^{\eta, \alpha+1} \phi-\mathrm{mK}_{\mathrm{m}}^{\eta+1, \alpha} \phi \tag{36}\\
& \mathrm{~K}_{\mathrm{x}}^{\eta, \alpha+1} \delta^{\prime} \phi=\delta^{1} \mathrm{~K}_{\mathrm{x}}^{\eta, \alpha+1} \phi=(\mathrm{m} \eta+\mathrm{m} \alpha+1) \mathrm{K}_{\mathrm{m}}^{\eta, \alpha+1} \phi-\mathrm{mK}_{\mathrm{m}}^{\eta, \alpha} \phi \tag{37}
\end{align*}
$$

Finally, we mention some properties of $\mathrm{K}_{\mathrm{x}^{\mathrm{m}}}^{\alpha}$ on $F_{p, \mu}$. From (30), for any $\eta, \operatorname{Re} \alpha>0, \operatorname{Re} \mu<\frac{1}{p}$ and $\phi \in \mathrm{F}_{\mathrm{p}, \mu}$,

$$
\begin{equation*}
K_{\mathrm{x}}^{\alpha} \phi(\mathrm{x})=\mathrm{K}_{\mathrm{x}}^{\alpha} \mathrm{x}^{-\mathrm{m} \alpha_{\mathrm{x}}^{\mathrm{m} \alpha}} \phi(\mathrm{x})=\mathrm{K}_{\mathrm{x}}^{0, \alpha_{\mathrm{x}}^{\mathrm{m} \alpha} \phi(\mathrm{x})} \tag{38}
\end{equation*}
$$

For each fixed x and ϕ, the right-hand side of (38) is an analytic function of α and we may use (38) to extend the definition of $\mathrm{K}_{\mathrm{x}}^{\alpha}$ to $\operatorname{Re} \alpha \leqslant 0$.

$$
\text { Proceeding as for } I_{x^{m}}^{\alpha} \text {, we can prove }
$$

Theorem 15
If $\operatorname{Re}(\mu+\mathrm{n} \alpha)<\frac{1}{\mathrm{p}}, \mathrm{K}_{\mathrm{x}}^{\alpha}$ is a continuous linear mapping of $F_{p, \mu}$ into $F_{p, \mu+\pi \alpha}$. If also $\operatorname{Re} \mu<\frac{1}{p}, K_{x}^{\alpha}$ is an isomorphism of $\mathrm{F}_{\mathrm{p}, \mu}$ onto $\mathrm{F}_{\mathrm{p}, \mu+\mathrm{m} \alpha}$ and

$$
\left(\mathrm{K}_{\mathrm{x}}^{\alpha}\right)^{-1}=\mathrm{K}_{\mathrm{x}}^{-\alpha}
$$

$$
\begin{align*}
& \text { If } \frac{1}{\mathrm{p}}-\operatorname{Re} \mu>\max (\mathrm{m} \operatorname{Re} \alpha, \mathrm{n} \operatorname{Re} \beta, \mathrm{n} \operatorname{Re}(\alpha+\beta)), \phi \in \mathrm{F}_{\mathrm{p}, \mu} \\
& \mathrm{~K}_{\mathrm{M}}^{\alpha} \mathrm{K}_{\mathrm{x}}^{\beta} \phi=\mathrm{K}_{\mathrm{x}}^{\alpha+\beta} \phi=\mathrm{K}_{\mathrm{x}}^{\beta} \mathrm{K}_{\mathrm{x}}^{\alpha} \phi \tag{39}
\end{align*}
$$

(39) is the first index law for the operators $\mathrm{K}_{\mathrm{x}}^{\alpha}$. The second index law will be discussed in Chapter 6 .
83.5 The action of $I^{\eta, \alpha}$ and $K^{\eta, \alpha}$ on $F_{p}^{\prime}, \mu-$

We are now ready to develop the theory of fractional integration on the spaces $F_{p, \mu}^{\prime}$ of generalised functions. The definitions of $\mathrm{I}_{\mathrm{x}}^{\eta, \alpha}$ and $\underset{\mathrm{m}}{\mathrm{K}_{\mathrm{m}}^{\eta, \alpha}}$ are motivated by considering regular functionals.

Let $\phi \in \mathrm{F}_{\mathrm{p}, \mu}$ and let $\mathrm{f} \in \mathrm{F}_{\mathrm{p}, \mu}^{\prime}$ be a regular functional . Proceeding formally, with $\operatorname{Re} \alpha>0$, we have

$$
\left(\mathrm{I}_{\mathrm{x}}^{\eta, \alpha} \mathrm{f}, \phi\right)=\int_{0}^{\infty} \mathrm{I}_{\mathrm{x}}^{\eta, \alpha} \mathrm{f}(\mathrm{x}) \phi(\mathrm{x}) \mathrm{dx}
$$

$$
=\int_{0}^{\infty} \phi(x) d x \frac{m}{\Gamma(\alpha)} x^{-m \eta-m \alpha} \int_{0}^{x}\left(x^{m}-u^{m}\right)^{\alpha-1} u^{m \eta+m-1} f(u) d u
$$

$$
=\int_{0}^{\infty} f(u) d u \frac{m}{\Gamma(\alpha)} u^{m \eta+m-1} \int_{u}^{\infty}\left(x^{m}-u^{m}\right)^{\alpha-1} x^{-m \eta-m \alpha} \phi(x) d x
$$

$$
=\left(\mathrm{f}, \mathrm{~K}_{\mathrm{x}}^{\eta^{\prime}, \alpha} \phi\right)
$$

where $\eta^{\prime}=\eta+1-\frac{1}{\mathrm{~m}}$. With this motivation, we define $I_{\mathrm{x}}^{\eta, \alpha}$ on $\mathrm{F}_{\mathrm{p}, \mu}^{1}$ for any α by
where $\phi \in F_{p, \mu}$ and f is any member of $F_{p, \mu}^{\prime}$. By Theorem 14 ,
 provided that $\operatorname{Re}\left\{\mathrm{m}\left(\eta+1-\frac{1}{\mathrm{~m}}\right)-\mu\right\}>-\frac{1}{\mathrm{p}}$, that is, provided $\operatorname{Re}(m \eta-\mu)+m>\frac{1}{q}$, where as usual $\frac{1}{p}+\frac{1}{q}=1$. Hence, by The oren 1.2 , we find that $\mathrm{I}_{\mathrm{x}}^{\eta, \alpha}$ is a continuous linear mapping of $F_{p, \mu}^{\prime}$ into itself under the same condition.

Using (40) and (34), we can immediately deduce the following theorem analogous to Theorem 10 .

Theorem 16

$$
\text { Let } \operatorname{Re}(m \eta-\mu)+m>\frac{1}{q}, \operatorname{Re}(m \eta+m \alpha-\mu)+m>\frac{1}{q}
$$

$f \in \mathrm{~F}_{\mathrm{p}, \mu}^{\prime}$. Then

$$
\begin{equation*}
\mathrm{I}_{\mathrm{x}}^{\eta+\alpha, \beta} \mathrm{I}_{\mathrm{m}}^{\eta, \alpha} \mathrm{f}=\mathrm{I}_{\mathrm{m}}^{\eta, \alpha+\beta} \mathrm{f} \tag{41}
\end{equation*}
$$

Analogous to (19), we have, for $f \in F_{p, \mu}^{\prime}$, and $\operatorname{Re}(m \eta-\mu)+m>\frac{1}{q}$, that

This follows by replacing η by $\eta+1-\frac{1}{\mathrm{~m}}$ in (33) and taking adjoint. From Theorem 16 or from the general theory of adjoint it also follows that, if $\operatorname{Re}(m \eta-\mu)+m>\frac{1}{q}, \operatorname{Re}(m \eta+m \alpha-\mu)+m$ $>\frac{1}{\mathrm{q}}, \mathrm{I}_{\mathrm{x}}^{\eta, \alpha}$ is an automorphism of $\mathrm{F}_{\mathrm{p}, \mu}^{\mathrm{m}}$ with inverse ${\underset{\mathrm{x}}{\mathrm{m}}}_{\mathrm{I}^{\eta+\alpha,-\alpha}}$. We have therefore proved the following the oren.

Let $1 \leq \mathrm{p} \leq \infty \cdot \mathrm{I}_{\mathrm{x}}^{\eta, \alpha}$ is a continuous linear napping of $\mathrm{F}_{\mathrm{p}, \mu}^{\prime}$ into $\mathrm{F}_{\mathrm{p}, \mu}^{\prime}$ provided $\operatorname{Re}(\mathrm{m} \eta-\mu)+\mathrm{m}>\frac{1}{\mathrm{q}}$. If , in addition, $\operatorname{Re}(\mathrm{m} \eta+\mathrm{m} \alpha-\mu)+\mathrm{m}>\frac{1}{\mathrm{q}}, \mathrm{I}_{\mathrm{x}}^{\eta, \alpha}$ is an autonorphisn of $\mathrm{F}_{\mathrm{p}, \mu}^{\prime}$, with inverse $\mathrm{I}_{\mathrm{m}}^{\eta+\alpha,-\alpha}$.

Comparing Theoren 17 with Theoren 9 and Corollary 11 , we see that the restrictions on η and α are obtained by replacing μ by $-\mu$ and p by q. This is to be expected from consideration of Holder's Inequality. If $\phi \in \mathrm{F}_{\mathrm{p}, \mu}$,

$$
\int_{0}^{\infty} f(x) \phi(x) d x
$$

will converge if $f(x)=x^{-\mu} g(x)$ with $g \in L_{q}$; in particular, if $f \in F_{q,-\mu}$ which is imbedded in $F_{p, \mu}^{\prime}$. We note in passing

Theoren 18
For $\operatorname{Re}(m \eta-\mu)+m>\frac{1}{q},\left(I_{\mathrm{x}}^{\eta, \alpha} f, \phi\right)$ is an analytic function of α for each fixed $f \in F_{p, \mu}^{\prime}$ and $\phi \in F_{p, \mu}$ This follows easily from the remark made after

The oren 13 that, for fixed η satisfying the hypotheses of the theorem, $\mathrm{K}_{\mathrm{x}}^{\eta, \alpha} \phi$ is, for fixed ϕ, an analytic function of α and $\frac{\partial}{\partial \alpha} \mathrm{K}_{\mathrm{m}}^{\eta, \alpha} \phi$ exists as a limit in the topology of $\mathrm{F}_{\mathrm{p}, \mu}$. We can prove sinilarly that, for fixed $\alpha,\left(I_{m}^{\eta, \alpha} f, \phi\right)$ is an analytic function of η, in the half-plane $\operatorname{Re} \eta \stackrel{x}{>} \frac{1}{m}\left(\operatorname{Ro} \cdot \mu+\frac{1}{q}-m\right)$. .

We recall from Chapter 2 that the adjoint of
δ^{\prime} is $-\delta$. Replacing η by $\eta+1-\frac{1}{\mathrm{~m}}$ in (31), (35), (36) and (37) and taking adjoints, we obtain the following results
analogous to (17), (22), (23) and (24), valid for $f \in F_{p, \mu}^{\prime}$ with $\operatorname{Re}(m \eta-\mu)+m>\frac{1}{q}$.
$\delta \underset{\mathrm{x}}{\mathrm{I}_{\mathrm{m}}^{\eta, \alpha+1} \mathrm{f}}=\underset{\mathrm{x}}{\mathrm{I}_{\mathrm{m}}^{\eta, \alpha+1} \delta \mathrm{f}=\mathrm{mI}_{\mathrm{x}}^{\eta, \alpha_{\mathrm{m}}} \mathrm{f}-(\mathrm{m} \eta+\mathrm{m} \alpha+\mathrm{m}) \mathrm{I}_{\mathrm{m}}^{\eta, \alpha+1} \mathrm{f}}$
$\mathrm{I}_{\mathrm{x}}^{\eta, \alpha+1} \delta \mathrm{f}=\delta \mathrm{I}_{\mathrm{x}}^{\eta, \alpha+1} \mathrm{f}=\mathrm{mI}_{\mathrm{m}}^{\eta+1, \alpha} \mathrm{f}-(\mathrm{m} \eta+\mathrm{m}) \mathrm{I}_{\mathrm{x}}^{\eta, \alpha+1} \mathrm{f}$

Let $\phi \in F_{p, \mu}, f \in F_{p, \mu}^{\prime}$. By consideration of regular functionels, we are led to define $\underset{\mathrm{x}^{n}}{\eta, \alpha}$ on $\mathrm{F}_{\mathrm{p}, \mu}^{\prime}$ by

$$
\begin{equation*}
\left(\mathrm{K}_{\mathrm{x}}^{\eta, \alpha_{\mathrm{f}}}, \phi\right)=\left(\mathrm{f}, \mathrm{I}_{\mathrm{x}}^{\left.\eta-1+\frac{1}{\mathrm{~m}}, \alpha_{\phi}\right)}\right. \tag{47}
\end{equation*}
$$

We know from Theorem 4 that the operator $I_{x^{m}}^{\eta-1+\frac{1}{n}}, \alpha$ is a continuous linear mapping of $\mathrm{F}_{\mathrm{p}, \mu}$ into itself provided that $\operatorname{Re}\left\{\mathrm{n}\left(\eta-1+\frac{1}{\mathrm{n}}\right)+\mu\right\}+\mathrm{n}>\frac{1}{\mathrm{p}}$, i.e. if $\operatorname{Re}(\mathrm{m} \eta+\mu)>-\frac{1}{\mathrm{q}}$. Hence, under this condition, $\mathrm{K}_{\mathrm{X}}^{\eta, \alpha}$ is a continuous linear mapping of $\mathrm{F}_{\mathrm{p}, \mu}^{\prime}$ into itself. Proceeding sinilarly, we obtain

Theorem 19

For $1 \leq \mathrm{p} \leq \infty, \mathrm{K}_{\mathrm{x}}^{\eta, \alpha}$ is a continuous linear mapping of $\mathrm{F}_{\mathrm{p}, \mu}^{\prime}$ into itself provided $\operatorname{Re}(\mathrm{m} \eta+\mu)>-\frac{1}{\mathrm{q}}$. If, in addition, $\operatorname{Re}(m \eta+m \alpha+\mu)>-\frac{1}{q}, K_{x_{m}}^{\eta, \alpha}$ is an automorphism of $\mathrm{F}_{\mathrm{p}, \mu}^{\prime}, \mu$ and its inverse is $\mathrm{K}_{\mathrm{K}}^{\eta+\alpha,-\alpha}$. In this case also, for $\mathrm{f} \in \mathrm{F}_{\mathrm{p}, \mu}^{\prime}$,

$$
\begin{equation*}
\mathrm{K}_{\mathrm{x}}^{\eta, \alpha} \mathrm{K}_{\mathrm{x}}^{\eta+\alpha, \beta} \mathrm{f}=\mathrm{K}_{\mathrm{x}}^{\eta, \alpha+\beta} \mathrm{f} \tag{48}
\end{equation*}
$$

Again the restrictions on the parameters are obtained from those in Theorem 14 by replacing μ by $-\mu$ and p by q.

$$
\text { Replacing } \eta \text { by } \eta-1+\frac{1}{\mathrm{~m}} \text { in (17), (22), (23) }
$$

and (24) gives the following results analogous to (31), (35), (36) and (37) valid for $f \in F_{p, \mu}^{\prime}$ with $\operatorname{Re}(m \eta+\mu)>-\frac{1}{q}$
$\mathrm{K}_{\mathrm{x}}^{\eta, \alpha+1} \delta \mathrm{f}=\mathrm{K}_{\mathrm{x}}^{\eta, \alpha+1} \mathrm{f}=(\mathrm{m} \eta+\mathrm{m} \alpha) \mathrm{K}_{\mathrm{x}}^{\eta, \alpha+1} \mathrm{f}-\mathrm{m}_{\mathrm{x}}^{\eta, \alpha_{\mathrm{f}}}$
$\delta \mathrm{K}_{\mathrm{x}}^{\eta, \alpha+1} \mathrm{f}=\mathrm{K}_{\mathrm{x}}^{\eta, \alpha+1} \delta \mathrm{f}={\mathrm{m} \eta \mathrm{K}_{\mathrm{m}}^{\eta, \alpha+1} \mathrm{f}-\mathrm{mK}_{\mathrm{m}}^{\eta+1, \alpha} \mathrm{f}}_{\mathrm{m}}^{\mathrm{m}}$
$\delta^{\prime} \mathrm{K}_{\mathrm{x}}^{\eta, \alpha+1} \mathrm{f}=\mathrm{K}_{\mathrm{x}}^{\eta, \alpha+1} \delta^{\prime} \mathrm{f}=(\mathrm{m} \eta+1) \mathrm{K}_{\mathrm{x}}^{\eta, \alpha+1} \mathrm{f}-\mathrm{m}_{\mathrm{x}}^{\mathrm{m}} \mathrm{X}_{\mathrm{x}}^{\eta+1, \alpha_{\mathrm{f}}}$
$\mathrm{K}_{\mathrm{x}}^{\eta, \alpha+1} \delta^{\prime} \mathrm{f}=\delta^{\prime} \mathrm{K}_{\mathrm{x}}^{\eta,{ }_{\mathrm{m}}^{\alpha+1} \mathrm{f}}=(\mathrm{m} \eta+\mathrm{m} \alpha+1) \mathrm{K}_{\mathrm{x}}^{\eta, \alpha+1} \mathrm{f}-\mathrm{m}_{\mathrm{x}}^{\eta, \alpha_{\mathrm{f}}}$

We conclude this section with a brief discussion

 of the operators $\mathrm{I}_{\mathrm{x}}^{\alpha}$ and $\mathrm{K}_{\mathrm{x}}^{\alpha}$ on $\mathrm{F}_{\mathrm{p}, \mu}^{\mathrm{t}}$. Proceeding formally we have, for a regular functional f,$$
\begin{align*}
& \left(I_{I^{[}}^{\alpha} f, \phi\right)=\left(x_{x}^{\mathrm{m} \alpha} I_{\mathrm{m}}^{0, \alpha} f, \phi\right) \tag{25}\\
& =\left(I_{x^{0}}^{0, \alpha} f, x^{\mathrm{n} \alpha} \phi\right) \\
& \text { by (2.16) } \\
& =\left(f, K_{x^{1}}^{1-\frac{1}{m}, \alpha_{x}^{n \alpha}} \mathrm{x}_{\phi}^{\mathrm{n}}\right) \\
& \text { by (40) }
\end{align*}
$$

Hence, we define $I_{X^{D}}^{\alpha}$ for any complex nuraber α on $F_{p, \mu}^{\prime}$ by

$$
\begin{align*}
\left(I_{m}^{\alpha} f, \phi\right) & =\left(f, K_{x}^{1-\frac{1}{m}, \alpha} x_{x}^{m \alpha} \phi\right) \tag{53}\\
& =\left(f, x^{m-1} K_{m}^{\alpha} x^{-m+1} \phi\right)
\end{align*}
$$

the definition being meaningful if $\phi \in \mathrm{F}_{\mathrm{p}, \mu-\mathrm{m} \alpha}$. Using the theory of $\underset{\mathrm{K}_{\mathrm{n}}}{\eta, \alpha}$ together with Theorem 1.2 , we can easily prove

Theorem 20

$\mathrm{I}_{\mathrm{x}}^{\alpha}$ is a continuous linear mapping of $\mathrm{F}_{\mathrm{p}, \mu}^{\prime}$ into $\mathrm{F}_{\mathrm{p}, \mu-\mathrm{m} \alpha}^{\prime}$ provided that $\operatorname{Re}(\mathrm{m}-\mu)>\frac{1}{\mathrm{q}}$. If, in addition, $\operatorname{Re}(m+\square \alpha-\mu)>\frac{1}{q}, \quad I_{x^{\prime}}^{\alpha}$ is an isomorphism of $F_{p, \mu}^{\prime}$ onto $F_{p, \mu-m \alpha}^{\prime}$ with inverse $I_{x^{-\alpha}}^{-\alpha}$. If $\frac{1}{q}-m+\operatorname{Re} \mu<\min (0, m \operatorname{Re} \alpha, m \operatorname{Re} \beta)$,
for $f \in F_{p, \mu}^{t}$.

$$
\begin{align*}
& \text { Similarly we are led to define } K_{x_{m}^{\alpha}}^{\alpha} \text { on } F_{p, \mu}^{1} \text { by } \\
&\left(\mathrm{K}_{\mathrm{x}}^{\alpha} \mathrm{f}, \phi\right)=\left(f, \mathrm{x}^{\mathrm{m} \alpha} I_{x^{m}}^{-1}+\frac{1}{\mathrm{~m}}, \alpha_{\phi}\right) \tag{55}\\
&=\left(\mathrm{f}, \mathrm{x}^{\mathrm{m}-1} I_{\mathrm{x}}^{\alpha} \mathrm{x}^{-m+1} \phi\right)
\end{align*}
$$

where $f \in F_{p, \mu}^{:}$and $\phi \in F_{p, \mu-m \phi}$. We then have the following theorem .

Theorem 21

$$
\begin{align*}
& \mathrm{K}_{\mathrm{x}}^{\alpha} \text { is a continuous linear mapping of } \mathrm{F}, \mu \text { into } \\
& F_{p, \mu-m \alpha}^{\prime} \text { provided that } \operatorname{Re}(m \alpha-\mu)<\frac{1}{q} \text {. If, in addition, } \\
& \operatorname{Re}(-\mu)<\frac{1}{q}, K_{\mathrm{x}}^{\alpha} \text { is an isomorphism of } \mathrm{F}_{\mathrm{p}, \mu}^{\prime} \text { onto } \mathrm{F}_{\mathrm{p}, \mu-\mathrm{m} \alpha}^{\prime} \\
& \text { and ... } \\
& \left(\mathrm{K}_{\mathrm{x}}^{\alpha}\right)^{-1}=\mathrm{K}_{\mathrm{x}}^{-\alpha} \\
& \text { If } \frac{1}{q}+\operatorname{Re} \mu>\max (\operatorname{me} \alpha, \mathrm{R} \operatorname{Re} \beta, \mathrm{n} \operatorname{Re}(\alpha+\beta)), f \in \mathrm{~F}_{\mathrm{p}, \mu}^{\prime} \\
& \mathrm{K}_{\mathrm{x}}^{\alpha} \mathrm{K}_{\mathrm{x}}^{\beta} \mathrm{f}=\mathrm{K}_{\mathrm{x}}^{\alpha+\beta} \mathrm{f}=\mathrm{K}_{\mathrm{x}}^{\mathrm{n}} \mathrm{~K}_{\mathrm{x}}^{\mathrm{m}} \mathrm{f} \tag{56}
\end{align*}
$$

Although we have developed the theory of $I_{x_{m}^{\alpha}}^{\alpha}$ and $\mathrm{K}_{\mathrm{x}}^{\alpha}$ on $\mathrm{F}_{\mathrm{p}, \mu}^{\prime}$, we shall mainly be concerned in the sequel with the homogeneous operators $\mathrm{I}_{\mathrm{x}}^{\eta, \alpha}$ and $\mathrm{K}_{\mathrm{x}}^{\eta, \alpha}$ to which the spaces are best suited. .
§3. 6 Further properties of δ and δ^{\prime} on $F_{p, 1}$ and $F_{p, 1-}^{\prime}$

The theory developed in the previous sections can be used to obtain further information about δ and δ^{\prime} which were first discussed in Chapter 2 .

Let $\phi \in \mathrm{F}_{\mathrm{p}, \mu}$ with $\operatorname{Re} \mu>\frac{1}{\mathrm{p}}$. We nay put $\mathrm{m}=1$, $\eta=-1$ and $\alpha=0$ in (17) to obtain

$$
\delta I_{\mathrm{x}}^{-1,1} \phi=I_{\mathrm{x}}^{-1,1} \delta \phi \quad=I_{\mathrm{x}}^{-1,0} \phi=\phi \quad \text { by (19) }
$$

Thus, if $\operatorname{Re} \mu>\frac{1}{p}, \delta$ is an automorphism of $F_{p, \mu}$ and

$$
\begin{equation*}
\delta^{-1}=I_{x}^{-1,1} \tag{57}
\end{equation*}
$$

This in turn implies that on $F_{p, \mu}$ with $\operatorname{Re} \mu>\frac{1}{p}$,

$$
\begin{equation*}
\delta=I_{x}^{0,-1} \tag{58}
\end{equation*}
$$

We could also have obtained these results using (22).
Suppose on the other hand that $\phi \in F_{p, \mu}$ with
Re $\mu<\frac{1}{\mathrm{p}}$. We now put $\mathrm{m}=1, \eta=\alpha=0$ in (31) to get

$$
\mathrm{K}_{\mathrm{X}}^{0,1} \delta \phi=\delta \mathrm{K}_{\mathrm{x}}^{0,1} \phi=-\mathrm{K}_{\mathrm{x}}^{0,0} \phi=-\phi \quad \text { by }(33)
$$

So, if $\operatorname{Re} \mu<\frac{1}{p}, \delta$ is an automorphism of $F_{p, \mu}$ and

$$
\begin{align*}
\delta^{-1} & =-K_{x}^{0,1} \tag{59}\\
\delta & =-K_{x}^{-1,1} \tag{60}
\end{align*}
$$

As regards the liniting case Re $\mu=\frac{1}{p}$, we have

already seen in $\S 2.5$ that with $\mu=0, p=\infty, \delta$ is not invertible on $F_{p, \mu}$.

A sinilar procedure can be carried out for δ ' using (23) or (24) when $\operatorname{Re} \mu>\frac{1}{\mathrm{p}}$ and (36) or (37) when $\operatorname{Re} \mu<\frac{1}{\mathrm{p}}$. We have the following theoren.

Theorem 22

(i) Let $\operatorname{Re} \mu>\frac{1}{\mathrm{p}}$. Then δ and δ^{\prime} are automorphisms of $\mathrm{F}_{\mathrm{p}, \mu}$ and

$$
\delta^{-1}=I_{x}^{-1,1} \quad ; \quad\left(\delta^{\prime}\right)^{-1}=I_{x}^{0,1}
$$

(ii) Let Re $\mu<\frac{1}{p}$. Then δ and δ^{\prime} are automorphisms of $F_{p, \mu}$ and $\quad \delta^{-1}=-\mathrm{K}_{\mathrm{x}}^{0,1} ; \quad\left(\delta^{\prime}\right)^{-1}=-\mathrm{K}_{\mathrm{x}}^{-1,1}$

Taking adjoints, or using (43)-(46) and (49)-(52), we obtain the corresponding results for $\mathrm{F}_{\mathrm{p}, \mu}^{\prime}$.

Theoren 23

(i) Let $\operatorname{Re} \mu<-\frac{1}{q}$. Then δ and δ^{\prime} are automorphisms of $F_{p, \mu}^{\prime}$ and $\delta^{-1}=I_{x}^{-1,1} ; \quad\left(\delta^{\prime}\right)^{-1}=I_{x}^{0,1}$
(ii) Let $\operatorname{Re} \mu>-\frac{1}{q}$. Then δ and δ^{\prime} are automorphisns of $\mathrm{F}_{\mathrm{p}, \mu}^{\prime}$, and $\delta^{-1}=-\mathrm{K}_{\mathrm{x}}^{0,1} ; \quad\left(\delta^{1}\right)^{-1}=-\mathrm{K}_{\mathrm{x}}^{-1,1}$

Let $\phi \in F_{p, \mu}$. We can use (58) to prove by induction that, (for $\mathbf{n}=0,1,2 \ldots$), provided Re $\mu-\mathrm{n}>-\frac{1}{\mathrm{q}}$,

$$
\begin{equation*}
I_{x}^{-n} \phi(x)=\frac{d^{n} \phi}{d x^{n}} \tag{61}
\end{equation*}
$$

Sinilarly, for $\phi \in F_{p, \mu}$ with $\operatorname{Re} \mu<\frac{1}{p}$ and $n=0,1,2 \ldots$,

$$
\begin{equation*}
K_{x}^{-n} \phi(x)=(-1)^{n} \frac{d^{n} \phi}{d x^{n}} \tag{62}
\end{equation*}
$$

as night be expected.

$$
\text { There are sinilar results for } \mathrm{F}_{\mathrm{p}, \mu}^{\prime}
$$

Fractional Integration and Singular Difforential Operators
§4.1 The singular differential operator L_{ν}

We consider the operator L_{ν} deffned for suitable
functions ϕ and any complex number ν by

$$
\begin{equation*}
L_{\nu} \phi(x)=\frac{d^{2} \phi}{d x^{2}}+\frac{2 \nu+1}{x} \frac{d \phi}{d x} \tag{1}
\end{equation*}
$$

Such an operator arises naturally in many situations. For example, if $\nu=\frac{1}{2} n-1$ and we replace x by r, L_{ν} becomes the Laplacian for spherically symmetric functions on R^{n}. Other referencas are giver in the introduction ,

It has long been known that there is a close connection between the operator I_{ν} and operators of fractional integration, particularly those of the iomm $\mathrm{I}_{\mathrm{x}}^{\eta, \alpha}$ and $\mathrm{K}_{\mathrm{x}}^{\eta, \alpha}$. The connection was explored in [8] for a certain space of testing functions and extended to the corresponding space of generalised functions. In this chapter, we establish similar results for the spaces $\mathrm{F}_{\mathrm{p}, \mu}$ and $\mathrm{F}_{\mathrm{p}, \mu}^{\prime}$ 。

We recall from Chapter 2 that the operator

$$
D \equiv \frac{d}{d x}
$$

is a continuous linear mapping of $F_{p, \mu}$ into $F_{p, \mu-1}$ for every complex number μ, and $1 \leq \mathrm{p} \leq \infty$. Also $\frac{1}{\mathrm{x}}$ is an isomorphism of $\mathrm{F}_{\mathrm{p}, \mu}$ onto $\mathrm{F}_{\mathrm{p}, \mu-1}$. We therefore have

Theorem 1

Let $1 \leq p \leq \infty$. For each complex μ and ν,
L_{ν} is a continuous linear mappirg of $F_{p, \mu}$ into $F_{p, \mu-2}$.

It is clear that, for each fixed $\phi \in F_{p, \mu}$ and $0<\mathrm{x}<\infty, \mathrm{L}_{\nu} \phi(\mathrm{x})$ is an entire function of ν with derivative

$$
\frac{\partial}{\partial \nu} L_{\nu} \phi(x)=\frac{2}{x} \frac{\partial \phi}{d x}
$$

In fact, since for any complex h,

$$
\frac{1}{h}\left[L_{\nu+h} \phi-L_{\nu} \phi\right]-\frac{2}{x} \frac{d \phi}{d x}
$$

vanishes identically for $0<x<\infty$, we can inmediately deduce

Theorem 2
Let $\phi \in F_{p, \mu}$. For each fixed $x, L_{\nu} \phi(x)$ is an entire function of ν and furthermore, the derivative $\frac{\partial}{\partial \nu} L_{\nu} \phi$ exists as a limit in the topology of $F_{p, \mu-2}$

Further mapping properties of L_{ν} are derived below. It is easy to prove that, for any suitable function ϕ,

$$
\begin{align*}
& x^{2} \mu_{\nu} \phi(x)=\delta^{2} \phi+2 v \delta \dot{\phi} \tag{2}\\
& x \mu_{\nu} x \phi(x)=\delta^{2} \phi \div 2 \nu \delta^{\prime} \phi \tag{3}
\end{align*}
$$

where δ, δ^{\prime} are defined as in Chapter 2 .
We next define I_{ν} on $F_{p, \mu}^{\prime}$. Let $\phi \in F_{p, \mu+2}$ and let f be a twice-differentiable function such that f and $L_{\nu} f$ generate regular functionals . Proceeding formally,

$$
\begin{array}{rlrl}
\left(L_{\nu} f, \phi\right) & =\left(x^{-2}\left(\delta^{2} f+2 \nu \delta f\right), \phi\right) & \text { by (2) } \\
& =\left(\left(\delta^{2}+2 \nu \delta\right) f, x^{-2} \phi\right) & \text { by (2.16) } \\
& =\left(f,\left(\delta^{2}-2 \nu \delta^{\prime}\right) x^{-2} \phi\right) & \text { by (2.17.) } \\
& =\left(f, x L_{-}, x^{-1} \phi\right) & \text { by (3) } \\
\phi \in F_{p, \mu+2} \Rightarrow x L_{-\nu} x^{-1} \phi \in F_{p, \mu} \text { so that the right-hand }
\end{array}
$$

side is meaningful if $f \in \mathbb{F}_{\mathrm{p}, \mu}^{q}$. Thus, we define L_{ν} on $\mathrm{F}_{\mathrm{p}, \mu}^{\prime}$ by

$$
\begin{equation*}
\left(L_{\nu} f, \phi\right)=\left(f, x L_{-\nu} x^{-1} \phi\right) \tag{4}
\end{equation*}
$$

where $\phi \in \mathrm{F}_{\mathrm{p}, \mu+2}$. Since $\mathrm{xL}_{-\nu} \mathrm{X}^{-1}$ is a continuous linear mapping of $F_{p, \mu+2}$ into $F_{p, \mu}$, we have by Theorem 1.2 that L_{ν} is a continuous linear mapping of $\mathrm{F}_{\mathrm{p}, \mu}^{\prime}$ into $\mathrm{F}_{\mathrm{p}, \mu+2}^{\prime}$. Now, by Theorem 2, $\frac{\partial}{\partial \nu} L_{-\nu} x^{-1} \phi$ exists as a linit in the topology of $F_{p, \mu+1}$. Hence, we have that $\frac{\partial}{\partial \nu} \times I_{-\nu} x^{-1} \phi$ exists as a linit in the topology of $F_{p, \mu}$. We have therefore prored

Theorem 3
Let $1 \leq \mathrm{P} \leq \infty$. For each complex μ and ν, L_{ν} is a continuous linear mapping of $F_{p, \mu}^{\prime}$ into $F_{p, \mu+2}^{\prime}$. Further, for each fixed $\phi \in F_{p, \mu+2},\left(I_{\nu} f, \phi\right)$ is an entire function of ν.

§4.2 Connections between I_{y} and fractional integration

In this section, we establish some relations on $F_{p, \mu}$ involving I_{ν} and the homogeneous operators of fractional integration. We then obtain the corresponding results for $F_{p, \mu}^{\prime}$.

Theorem 4
(i)

$$
\begin{align*}
& \text { Let } \phi \in \mathbb{F}_{\mathrm{p}, \mu} \text {, } \operatorname{Re}(2 \nu+\mu)>\frac{1}{\mathrm{p}}, 1 \leq \mathrm{p} \leq \infty \text {. Then } \\
& \mathrm{I}_{\mathrm{x}^{\nu}}^{\nu}{ }^{\alpha} \mathrm{L}_{\nu} \phi=\mathrm{I}_{\nu+\alpha} \mathrm{I}_{\mathrm{x}}^{\nu_{\rho}^{c}} \phi \tag{5}
\end{align*}
$$

$$
\begin{equation*}
\text { Let } \phi \in F_{p, \mu}, \operatorname{Re}(2 \nu-\mu)>-\frac{1}{p}, 1 \leq p \leq \infty \text {. Then } \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
L_{-\nu} K_{x^{\nu}}^{2} \phi=K_{x^{\nu}}^{2}{ }^{\nu} I_{-\nu-\alpha} \phi \tag{6}
\end{equation*}
$$

Proof: (i) Under the given restrictions on the parameters, both sides of (5) belong to $F_{p, \mu-2}$. Using (2) we have

$$
\begin{aligned}
\mathrm{I}_{\mathrm{x}^{\nu}}^{\nu, \alpha} \mathrm{I}_{\nu} \phi & =\mathrm{I}_{\mathrm{x}^{2}}^{\nu, \alpha} \mathrm{x}^{-2}\left(\delta^{2}+2 \nu \delta\right) \phi \\
& =\mathrm{x}^{-2} \mathrm{I}_{\mathrm{x}}^{\nu-1, \alpha}(\delta+2 \nu) \delta \phi
\end{aligned}
$$

where we use the definition of $\frac{I^{\nu}, \alpha}{x^{2}}$ for $\operatorname{Re} \alpha>0$ and analytic continuation for $\operatorname{Re} \alpha \leqslant 0$. Then, using (3.22),

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{x}}^{\nu, \alpha} \mathrm{L}_{\nu} \phi \\
& =\mathrm{x}^{-2}\left[2 \mathrm{I}_{\mathrm{x}}^{\nu}{ }^{\nu, \alpha-1} \delta \phi-(2 \nu-2+2) \mathrm{I}_{\mathrm{x}}^{\nu-1, \alpha} \delta \phi+2 \nu \mathrm{I}_{\mathrm{x}}^{\nu-1, \alpha} \delta \phi\right] \\
& =2 x^{-2} I^{\nu, \alpha-1} \delta \phi
\end{aligned}
$$

On the other hand, using (2) and (3.17)

$$
\begin{aligned}
& \mathrm{L}_{\nu+\alpha} \underset{\mathrm{X}^{\nu}}{\nu_{s} \alpha} \dot{\phi}=\mathrm{x}^{-2}(\delta+2 \nu+2 \alpha) \delta \mathrm{I}_{\mathrm{x}^{2}}^{\nu, \alpha} \phi \\
& =\mathrm{x}^{-2}(\delta+2 \nu+2 \alpha) \mathrm{I}_{\mathrm{Z}^{\nu}}^{\nu, \alpha^{\alpha}} \delta \phi \\
& =\mathrm{x}^{-2}\left[2 \mathrm{I}_{\mathrm{x}}^{\nu, \alpha-1} \delta \phi-(2 \nu+2 \alpha-2 \div 2) \mathrm{I}_{\mathrm{x}^{\nu}}^{\nu, \alpha \phi} \delta(2 \nu+2 \alpha) \mathrm{I}_{\mathrm{x}}^{\nu, \alpha}{ }^{\alpha} \delta \phi\right] \\
& =2 \mathrm{x}^{-2} \mathrm{I}_{\mathrm{x}}^{\nu, \alpha-1} \delta \phi
\end{aligned}
$$

The result follows 。
(ii) The proof of this part is sinilar and uses (3.31) and (3.35) The details are onitted. .
Equations (5) ard (6) give perhaps the neatest
relations between the differential operators L_{ν} and fractional Integration on $F_{p, \mu}$. We now prove the corresponding results on $\mathrm{F}_{\mathrm{p}, \mu}^{\mathrm{f}}$.

Theorem: 5

$$
\text { Let } f \in F_{p, \mu}^{\prime}, 1 \leq p \leq \infty, \frac{1}{p}+\frac{1}{q}=1
$$

(i) If $\operatorname{Re}(2 \nu-\mu)>\frac{1}{q}$,

$$
\begin{equation*}
\underset{x^{2}}{\nu, \alpha} I_{\nu} f=L_{\nu+\alpha} I_{x}^{\nu, \alpha} f \tag{7}
\end{equation*}
$$

(ii) If $\operatorname{Re}(2 \nu+\mu)>-\frac{1}{q}$,

$$
\begin{equation*}
\mathrm{L}_{-\nu} \underset{\mathrm{x}}{\mathrm{~K}_{2}^{\nu, \alpha} \mathrm{f}}=\mathrm{K}_{\mathrm{x}}^{\nu}{ }^{2} \mathrm{~L}_{-\nu-\alpha} \mathrm{f} \tag{8}
\end{equation*}
$$

Proof : By Theorem 3 and Theorem 3.17, both sides of (7) belong to $F_{p, \mu+2}^{\prime}$. Let $\phi \in F_{p, \mu+2}$ 。

$$
\begin{align*}
\left(\underset{x^{2}}{\nu, \alpha} I_{\nu} f, \phi\right) & =\left(I_{\nu} f, \frac{K_{2}^{\nu+\frac{1}{2}}, \alpha}{x^{2}}\right) \text { by (3.40) } \tag{3.40}\\
& =\left(f, x I_{-\nu} x^{-1} K_{2}^{\nu+\frac{1}{2}, \alpha} x^{2}\right) \text { by (4) } \tag{4}\\
& =\left(f=x I_{-\nu} \frac{K^{\nu}, \alpha}{x^{2}} x^{-1} \phi\right)
\end{align*}
$$

using the definition of $\mathrm{K}_{2}^{y_{9} \alpha} \mathrm{x}^{2}$ for Re $\alpha>0$, and analytic continuation otherwise . On the other hand,

$$
\begin{aligned}
& \left(\mathrm{L}_{\nu+\alpha} \mathrm{I}_{\mathrm{x}}^{\nu}{ }^{\nu} \mathrm{L}_{\mathrm{f}}, \phi\right)=\left(\mathrm{f}, \mathrm{~K}_{\mathrm{x}^{2}{ }^{2}+\frac{1}{2}, \alpha} \times \mathrm{L}_{-\nu-\alpha} \mathrm{x}^{-1} \phi\right) \\
& =\left(f, \mathrm{XK}_{\mathrm{x}^{\nu}}^{2} \mathrm{~L}_{-\nu-\alpha} \mathrm{x}^{-1} \phi\right)
\end{aligned}
$$

Thus, we have only to show that
or $\quad L_{-\nu \nu} K_{x^{\nu}}^{2, \alpha} X^{-1} \phi=K_{x^{\nu}, \alpha}^{L_{-\nu-\alpha}} x^{-1} \phi$
But, since $x^{-1} \phi \in F_{p, \mu+1}$, the result follows from Theorem 4 (ii) with μ replaced by $\mu+1$ and ϕ by $x^{-1} \phi$.

The proof of (8), is sinilar. Once again, we see

 that the restricticns on the parameters in Theorem 5 are obtained from those in Theorem 4 by replacing μ by $-\mu$ and p by q.
\$4.3 Further properties of I_{ν}

We recall from (3.57) that if $\operatorname{Re} \mu>\frac{1}{p}, \delta$ is an automorphism of $F_{p, \mu}$ and

$$
\begin{equation*}
\delta^{-1}=I_{x}^{-1} 1 \tag{9}
\end{equation*}
$$

Now, from (2), we have

$$
I_{\nu}=x^{-2}\left(\delta^{2}+2 \nu \delta\right)
$$

and in particular $\quad I_{0}=x^{-2} \delta^{2}$. It follows that, if $\operatorname{Re} \mu>\frac{1}{\mathrm{P}}, \mathrm{L}_{0}$ is an isomorphism of $\mathrm{F}_{\mathrm{p}, \mu}$ onto $\mathrm{F}_{\mathrm{p}, \mu-2}$ and

$$
\begin{equation*}
I_{0}^{-1}=I_{x}^{-1,1} I_{x}^{-1,1} x^{2} \tag{10}
\end{equation*}
$$

If alsc $\operatorname{Re}(2 v+\mu)>\frac{1}{5}$, we may put $\alpha=-\nu$ in (5) to get

$$
I_{x^{2}}^{\nu,-\nu} I_{\nu} \phi=I_{0} I_{x}^{\nu}{ }_{x}^{(\infty) \nu} \phi
$$

for $\phi \in \mathbb{T}_{\rho, \mu}$. Since Te axe also assuming $\operatorname{Re} \mu>\frac{1}{p}$, we may, by Corollaxy 3.11, appij $\left.\left(I_{x^{2}}^{\nu}\right)^{-\nu}\right)^{-1}$ to both sides to obtain

$$
I_{\nu} \phi=I_{x^{0, \nu}}^{I_{0}} I_{x^{2}}^{\nu,-\nu} \dot{ }
$$

It follows that in this case L_{ν} is invertible on $F_{p, \mu}$ and

$$
\begin{align*}
I_{\nu}^{-1} \psi & =I_{x}^{0, \nu} I_{0}^{-1} I_{x}^{\nu, \cdots \nu} \psi \\
& =I_{x}^{0, \nu} I_{x}^{-1,1} I_{x}^{-1,1} x^{2} I_{x^{2}}^{\nu,-\nu} \psi \\
& =x^{2} I_{2}^{1, \nu} J_{x}^{1,1} I_{x}^{1,1} I_{x,-\nu}^{\nu} \psi \tag{11}
\end{align*}
$$

for $\psi \in F_{p, \mu-2}$.

If, on the other hand, $R \in \mu<\frac{1}{p}$, we have from (3.59)
that δ is again an automorphism of $\mathrm{F}_{\mathrm{p}, \mu}$ and

$$
\begin{equation*}
\delta^{-1}=-K_{x}^{0,1} \tag{12}
\end{equation*}
$$

so again L_{0} is invertible on $F_{p, \mu}$ and

$$
L_{0}^{-1}=K_{x}^{0,1} K_{x}^{0,1} x^{2}
$$

Putting $\nu=0$ and replacing α by $-\alpha$ in (6), we obtain for $\phi \epsilon$ ${ }^{F}{ }_{p, \mu}$

$$
\mathrm{L}_{0} \mathrm{~K}_{\mathrm{x}}^{0}{ }^{0,-\alpha} \phi=\mathrm{X}_{\mathrm{x}^{2}}^{0,-\alpha} \mathrm{L}_{\alpha} \phi
$$

Restoring ν in place of α,

$$
L_{0} K_{x^{2}}^{0,-\nu} \phi=K_{x^{2}}^{0,-\nu} L_{\nu} \phi
$$

If also, $\operatorname{Re}(2 \nu+\mu)<\frac{1}{\mathrm{p}}$, we may, by The orem 3.14, apply $\left(\frac{\mathrm{K}^{0},-\nu}{\mathrm{x}^{2}}\right)^{-1}$ to both sides to obtain

Again, L_{ν} is invertible ans for $\psi \in F_{p, \mu-2}$

We have therefore proved

Theoren 6

(i) If $\min (\operatorname{Re} \mu, \operatorname{Re}(2 v+\mu))>\frac{1}{\mathrm{p}}, \zeta_{\nu}$ is an isomorphism of $F_{p, \mu}$ onto $F_{p, \mu-2}$ and for $\psi \in F_{p, \mu-2}$, the equation

$$
I_{\nu} \phi=\psi
$$

has a urique solution ϕ in $F_{p, \mu}$ given by (11)
(ii) If $\max (\operatorname{Re} \mu, \operatorname{Re}(2 \nu+\mu))<\frac{1}{\mathrm{p}}, \mathrm{L}_{\nu}$ is an isomorphism
of $F_{p, \mu}$ onto $F_{p, \mu-2}$ and for $\psi \in F_{p, \mu-2}$, the equation

$$
L_{\nu} \phi=\psi
$$

has a unique solution ϕ in $F_{p, \mu}$ given by (13). Similarly, taking adjoint , or proceeding via (4),
(7) and (8), we can obtain the corresponding results for $F_{p, \mu}^{\prime}$;

Theorem 7

(i) If $\min (-\operatorname{Re} \mu, \operatorname{Re}(2 \nu-\mu))>\frac{1}{q}, L_{\nu}$ is an isomorphism of $F_{p, \mu}^{\prime}$ onto $F_{p, \mu+2}^{\prime}$ and for $g \in F_{p, \mu+2}^{\prime}$, the equation

$$
L_{\nu} f=g
$$

has a unique solution f in $F_{p, \mu}^{\prime}$ given by

$$
i=x^{2} I_{x}^{1, \nu} I_{x}^{1,1} I_{x}^{1,1} I_{x}^{\nu,-\nu} g
$$

(ii) in $\max (-\operatorname{Re} \mu, \operatorname{Re}(2 y-\mu))<\frac{1}{q}, L_{\nu}$ is an isomorphism of $\mathrm{F}_{\mathrm{p}, \mu}^{\prime}$ onto $\mathrm{F}_{\mathrm{p}, \mu+2}^{\prime}$ and for $\mathrm{g} \in \mathrm{F}_{\mathrm{p}, \mu+2}^{\prime}$, the equation

$$
I_{\nu} f=g
$$

has a unique solution f in $F_{p, \mu}^{q}$ given by

$$
f=\begin{array}{ccccc}
K_{2}^{-\nu, y} & K^{0,1} & \mathrm{~K}^{0,1} & \mathrm{~K}_{2}^{1,-v} & \mathrm{x}^{2} \\
\mathrm{x} & \mathrm{x} & \mathrm{x}^{2}
\end{array}
$$

CHAPTER 5

Fractional Integration and the Hankel Transform

§5.1 Introduction

In this chapter, we consider the connection between the homogeneous operators of fractional integration and the Hankel transform. In its usual form for L_{p} (as opposed to Triconi's form which we shall consider later) the Hankel transform of order ν is defined on L_{p} by

$$
\begin{equation*}
\left(H_{\nu} \phi\right)(x)=\underset{n \rightarrow \infty}{1 . i . m(q)} \int_{0}^{n} \sqrt{x t} J_{\nu}(x t) \phi(t) d t \tag{1}
\end{equation*}
$$

for any complex number v. Here, $1 . i_{\mathrm{m}} \mathrm{m}$ (q) denotes the limit in the I_{q} norm, $\frac{1}{p}+\frac{1}{q}=1$ as usual, and J_{v} is the Bessel functfon of the first kind and order ν, ite require the following result.

Theorem 1
Let $1<p \leq 2$, $\operatorname{Re} \nu>-\frac{1}{2}-\frac{1}{q}, \phi \in L_{p}$. Then $H_{\nu} \phi$ exists almost everywhere on $(0, \infty)$ and H_{ν} is a continuous linear mappirg of L_{p} into L_{q}.

$$
\text { Since } F_{p} \subset L_{p} \text {, it follows that } H_{\nu} \text { maps } F_{p}
$$

into L_{q}, under the hypotheses of Theorem 1. We will show that, in fact, H_{ν} is a contimous linear mapping of F_{p} into F_{q}. If the function $\phi(x)$ vanishes for x sufficient-
ly large, then

$$
\begin{equation*}
\left(H_{\nu} \phi\right)(x)=\int_{0}^{\infty} \sqrt{x t} J_{\nu}(x t) \phi(t) d t \tag{2}
\end{equation*}
$$

the integral actually being over a finite interval. (2) is easier
to handle than (1) from the point of view of differentiation. Thus, to show that, for any $\phi \in F_{p}, H_{\nu} \phi$ is smooth, we do not use (1) . Instead, we first approximate to ϕ by a sequence $\left\{\phi_{n}\right\}$ in F_{p}, each $\phi_{n}(x)$ vanishing for x sufficiently large so that we may use (2); we then use Theorem 1.3 to differentiate under the integral sign and finally use the continuity of H_{ν} on I_{p}. The details follow in Section 2.

There appears to be no easy way to deal with H_{ν} on the spaces $F_{p, \mu}$ with $\mu \neq 0$. Okikiolu $[22]$ has proved some results for operators of the form

$$
\left(v_{\nu}^{\top} \phi\right)(x)=\underset{n \rightarrow \infty}{\lim . m}(q) \int_{0}^{n}(x t)^{\frac{1}{2}-\nu} J_{\nu-\frac{1}{2}}(x t) \phi(t) d t
$$

and we could use these to obtain some results for elements $\phi(x)$ in $F_{p, \dot{\mu}}$ which vanish for x sufficiently large. But the limit in mean prevents us dealing with general elements of $F_{p, \mu}$ and we shall not pursue this. Thus, all our results in this chapter will be for the spaces F_{p}.
\$5.2 The Hankel Transform on T_{p}
As indicated above, we begin by approximating to an arbitrary function $\phi \in F_{p}$. We assume throughout this section that $1<\mathrm{p} \leq 2$.

Lemma 2
For any $\phi \in F_{p}$, there exists a sequence $\left\{\phi_{n}\right\}$ of elements of F_{p}, each vanishing for x sufficiently large, such that ϕ_{n} converges to ϕ in the topology of F_{p}.

Proof : Let λ_{1} be an arbitrary smooth function such that

$$
\lambda_{1}(x)=\begin{array}{lr}
1 & 0<x<1 \\
0 & x \geq 2
\end{array}
$$

and for each positive integer n define λ_{n} by

$$
\lambda_{n}(x)=\lambda_{1}\left(\frac{x}{n}\right)
$$

Clearly λ_{n} is smooth for each n and

$$
\lambda_{n}(x)=\begin{array}{lr}
1 & 0<x<n \\
0 & x \geq 2 n
\end{array}
$$

Given $\phi \in \mathrm{F}_{\mathrm{p}}$, define ϕ_{n} by

$$
\phi_{n}(x)=\lambda_{n}(x) \phi(x)
$$

Clearly $\phi_{n}(x)=0$ for $x \geq 2 n$. Also, since $\lambda_{n}^{(k)}$, the $k^{\text {th }}$ derivative of λ_{n}, is bounded on ($0, \infty$) for each $k=0,1,2 \ldots$, it follows easily that for each k

$$
x^{k} \frac{d^{k}}{d x^{k}} \phi_{n}(x) \quad \in \quad L_{p}
$$

so that $\phi_{n} \in F_{p}$. We show that ϕ_{n} converges ta ϕ in F_{p} as $n \rightarrow \infty$.

$$
\begin{aligned}
& \text { We must show that for each } k=0,1,2 \ldots \text {, } \\
& y_{k}^{p}\left(\phi-\phi_{n}\right) \text { converges to zero as } n \rightarrow \infty \text {, with } y_{k}^{p} \text { given by (2.2). } \\
& \left\{y_{k}^{p}\left(\phi-\phi_{n}\right)\right\}^{p}=\int_{0}^{\infty}\left|x^{k} \frac{d^{k}}{d x^{k}}\left(\phi-\phi_{n}\right)\right|^{p} d x \\
& \\
& =\int_{n}^{2 n}\left|x^{k} \frac{d^{k}}{d x^{k}}\left(\phi-\phi_{n}\right)\right|^{p} d x+\int_{2 n}^{\infty}\left|x^{k} \frac{d^{k} \phi}{d x^{k}}\right| p_{d x}
\end{aligned}
$$

$\phi \in F_{p} \Rightarrow x^{k} \frac{d^{k} \phi}{d x^{k}} \in L_{p}$ so that the second integral on the right tends to zero as $n \rightarrow \infty$. We now consider the first integral.

$$
x^{k} \frac{d^{k}}{d x^{k}}\left(\phi-\phi_{n}\right)=x^{k} \frac{d^{k}}{d x^{k}}\left\{\left(1-\lambda_{n}(x)\right) \phi(x)\right\}
$$

$$
\begin{aligned}
& =\sum_{l=0}^{k} x^{I} \frac{d^{I}}{d x^{I}}\left(1-\lambda_{n}(x)\right) x^{k-1} \frac{d^{k-1} \phi}{d x^{k-1}}\binom{k}{l} \\
& =x^{k} \frac{d^{k} \phi}{d x^{k}}\left(1-\lambda_{n}(x)\right)+\sum_{l=1}^{k} x^{I} \frac{d^{l}}{d x^{I}}\left(1-\lambda_{n}(x)\right) x^{k-1} \frac{d^{k-1} \phi}{d x^{k-1}}\binom{k}{l}(3)
\end{aligned}
$$

We are concerned with the value of the right-hand side for $n \leq x \leq 2 n$.

$$
\begin{aligned}
&\left|1-\lambda_{n}(x)\right| \leq 1+\left|\lambda_{n}(x)\right|=1+\left|\lambda_{1}\left(\frac{x}{n}\right)\right| \\
& \Rightarrow \sup _{n \leq x \leq 2 n}\left|1-\lambda_{n}(x)\right| \leqslant 1+\sup _{n \leq x \leq 2 n}\left|\lambda_{1}\left(\frac{x}{n}\right)\right|=1+\sup _{1 \leq t \leq 2}\left|\lambda_{1}(t)\right| \\
&=M_{0} \text { say }
\end{aligned}
$$

where M_{0} is a constant, independent of n. Also, for $1 \geq 1$,

$$
\begin{aligned}
x^{1} \frac{d^{1}}{d x^{1}}\left(1-\lambda_{n}(x)\right) & =-x^{1} \frac{d^{1}}{d x^{1}} \lambda_{n}(x)=-x^{1} \frac{d^{1}}{d x^{1}} \lambda_{1}\left(\frac{x}{n}\right) \\
& =-x^{1} \frac{1}{n^{1}} \lambda_{1}^{(1)}\left(\frac{x}{n}\right)
\end{aligned}
$$

$$
\Rightarrow \sup _{n \leq x \leq 2 n}\left|x^{1} \frac{d^{1}}{d x^{1}}\left(1-\lambda_{n}(x)\right)\right|=\sup _{n \leq x \leq 2 n}\left|\left(\frac{x}{n}\right)^{1} \lambda_{1}^{(1)}\left(\frac{x}{n}\right)\right|
$$

$$
=\sup _{1 \leq t \leq 2}\left|t^{1} \lambda_{1}^{(1)}(t)\right|=M_{1} \quad \text { say }
$$

where again M_{1} is a constant, independent of n. It follows from (3) that

$$
\left|x^{k} \frac{\mathrm{~d}^{k}}{\mathrm{dx}^{\mathrm{k}}}\left(\phi-\phi_{\mathrm{n}}\right)\right| \leqslant \sum_{1=0}^{\mathrm{k}} \mathrm{M}_{1}\left|\mathrm{x}^{\mathrm{k}-1} \frac{\mathrm{~d}^{\mathrm{k}-1} \phi}{\mathrm{dx} \mathrm{x}^{\mathrm{k}-1}}\right|
$$

Now the right-hand side belongs to I_{p} so that

$$
\int_{n}^{2 n}\left|x^{k} \frac{d^{k}}{d x^{k}}\left(\phi-\phi_{n}\right)\right|^{p} d x \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Hence $\quad \gamma_{k}^{\mathrm{p}}\left(\phi-\phi_{\mathrm{n}}\right) \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$ for each $\mathrm{k}=0,1,2 \ldots \ldots$,
i.e. ϕ_{n} converges to ϕ in F_{p} as required We use our sequence $\left\{\phi_{n}\right\}$ again in the next
lemma.

Lemma 3

If $\phi \in F_{p}, \phi_{n}$ is constructed as in Lemma 2 ,
and $\operatorname{Re} \nu>-\frac{1}{2}-\frac{1}{q}$, then

$$
\underset{n \rightarrow \infty}{\text { 1.i.m }(q)} \int_{0}^{n} \sqrt{x t} J_{\nu}(x t) \phi(t) d t=\underset{n \rightarrow \infty}{\text { 1.i.n }}(q) \int_{0}^{\infty} \sqrt{x t} J_{\nu}(x t) \phi_{n}(t) d t
$$

Proof : Note first that the integral on the right- side is over a finite interval , namely $(0,2 n)$, for each fixed n. Write

$$
\begin{aligned}
& \psi_{n}(x)=\int_{0}^{n} \sqrt{x t} J_{\nu}(x t) \phi(t) d t \\
& \chi_{n}(x)=\int_{0}^{2 n} \sqrt{x t} J_{\nu}(x t) \phi_{n}(t) d t
\end{aligned}
$$

We must show that

$$
\begin{aligned}
& \underset{n \rightarrow \infty}{\text { l.i.m }_{n \rightarrow \infty}(q)} \psi_{n}=\underset{n \rightarrow \infty}{\operatorname{l.i.m~}_{n}(q) x_{n}} \\
& \psi_{n}-x_{n}=\int_{n}^{2 n} \sqrt{x t} J_{\nu}(x t) \phi_{n}(t) d t \\
&=\underset{N \rightarrow \infty}{1 . i_{n} m}(q) \int_{0}^{N} \sqrt{x t} J_{\nu}(x t) \omega_{n}(t) d t \\
&=H_{\nu}\left(\omega_{n}\right)
\end{aligned}
$$

where

$$
\omega_{n}(t)=\phi_{n}(t) \quad(n \leq t \leq 2 n) \quad \text { and }=0 \text { otherwise. }
$$

Hence by Theorem 1,

$$
\begin{align*}
& \text { Theorem 1, } \tag{4}\\
& \left|\psi_{n}-x_{n}\right|_{q} \leqslant K_{1}\left[\int_{n}^{2 n}\left|\phi_{n}(t)\right|^{p} d t\right]^{\frac{1}{p}}
\end{align*}
$$

where K_{1} is a constant, independent of n and ϕ. Also, proseeding as in the proof of Lemma 2, we have

$$
\left|\phi_{n}(t)\right| \leqslant|\phi(t)| \sup _{1 \leq t \leq 2}\left|\lambda_{1}(t)\right|=M|\phi(t)|
$$

where M is independent of n. Hence, from (4) with K_{2} $=K_{1} M$, we have

$$
\left|\psi_{n}-x_{n}\right|_{q} \leqslant K_{2}\left[\int_{n}^{2 n}|\phi(t)|^{p} d t\right]^{\frac{1}{p}} \rightarrow 0 \text { as } n \rightarrow \infty
$$

since $\phi \in L_{p}$. This completes the proof.

$$
\begin{align*}
& \text { Lemma } 3 \text { tells us that } \\
& \mathrm{H}_{\nu} \phi=\underset{\mathrm{n} \rightarrow \infty}{\operatorname{li.m}(\mathrm{q})} \quad \mathrm{H}_{\nu} \phi_{\mathrm{n}} \tag{5}
\end{align*}
$$

So far we only know that for each $n, H_{\nu} \phi_{n} \in L_{q}$ by Theorem 1 . That each $H_{\nu} \phi_{n}$ actually belongs to F_{q} will be a consequence of the next lemma.

Lemme 4

Let $\psi \in F_{p}$ and suppose $\psi(x)=0$ for x sufiiciently large. Also, let $\operatorname{Re} \nu>-\frac{1}{2}-\frac{1}{q}$. Then $H_{\nu} \psi \in F_{q}$. Proof : Let $\psi(x)=0$ for $x \geq A$. We are able to use the form (2) for $H_{\nu} \psi$ so that

$$
\begin{aligned}
\left(H_{\nu} \psi\right)(x) & =\int_{0}^{A} \sqrt{x t} J_{\nu}(x t) \psi(t) d t \\
& =\int_{0}^{A x} \sqrt{u} J_{\nu}(u) \psi\left(\frac{u}{x}\right) \frac{d u}{x}
\end{aligned}
$$

For fixed $x>0$, choose $B: 0<B<A x$. Let

$$
\begin{aligned}
& I_{1}(x)=\int_{0}^{B} \sqrt{u} J_{\nu}(u) \psi\left(\frac{u}{x}\right) \frac{d u}{x} \\
& I_{2}(x)=\int_{B}^{A x} \sqrt{u} J_{\nu}(u) \psi\left(\frac{u}{x}\right) \frac{d u}{x}
\end{aligned}
$$

By Lemma 2.4, for some constant M,

$$
\left|\sqrt{u} J_{\nu}(u) \psi\left(\frac{u}{x}\right) \frac{1}{x}\right| \leqslant M u^{\frac{1}{2}+\operatorname{Re\nu }-\frac{1}{p}} x^{-1}+\frac{1}{p}
$$

Since $\frac{1}{2}+$ Rev $-\frac{1}{1}>-1$ by hypothesis, we can use Theorem 1.3 to deduce that I_{1} is differentiable and

$$
\delta I_{1}(x)=-\int_{0}^{B} \sqrt{u} J_{\nu}(u)(\delta+1) \psi\left(\frac{u}{x}\right) \frac{d u}{x}
$$

As regards I_{2}, the integrand is continuous and hence using a standard theorem (egg. Wider [24] p.353) I_{2} is differenttable and since $(\delta+1) \psi(A)=0$, we obtain

$$
\delta I_{2}(x)=-\int_{B}^{A x} \sqrt{u} J_{\nu}(u)(\delta+1) \psi\left(\frac{u}{x}\right) \frac{d u}{x}
$$

Consequently, $H_{\nu} \psi$ is differentiable and

$$
\delta H_{\nu} \psi=-H_{\nu}(\delta+1) \psi
$$

Since $\psi \in F_{p} \Rightarrow(\delta+1) \psi \in F_{p}$ by Theorem 2.9, we may proceed by induction to prove that $H_{\nu} \psi$ is smooth and

$$
\begin{equation*}
\delta^{k} H_{\nu} \psi=(-1)^{k}{\underset{\nu}{\mathrm{H}}}(\delta+1)^{\mathrm{k}} \psi \quad \in \mathrm{~L}_{\mathrm{q}} \tag{6}
\end{equation*}
$$

by Theorem 1. Since $x^{k} \frac{d^{k}}{d x^{k}} H_{\nu} \psi$ is a linear combination of $\mathrm{H}_{\nu} \psi, \delta H_{\nu} \psi, \ldots \ldots, \delta^{k_{H}} H_{\nu} \psi$, it follows that $H_{\nu} \psi \in \mathrm{F}_{\mathrm{q}}$ as required.

To reach our goal using (5), we need one more
lemma,

Lemma 5
With ϕ, ϕ_{n} defined as in Lemma 2, the function $\underset{n \rightarrow \infty}{\operatorname{lom}_{\mathrm{n} \rightarrow \infty}(q)} \mathrm{H}_{\nu}$ on belongs to F_{q} provided $\operatorname{Rev}>-\frac{1}{2}-\frac{1}{q}$.

Proof: Let us write $\psi_{n}=H_{\nu} \phi_{n}$. Then, by Theoren 1,

$$
\left|\psi_{n}-\psi_{m}\right|_{q} \leqslant K_{o}\left|\phi_{n}-\phi_{m}\right|_{p}
$$

for some constant K_{0} independent of m, n and ϕ. Similarly, using (6), for $k=1,2,3 \ldots \ldots, \exists$ constants K_{k} such that

$$
\left|\delta^{k}\left(\psi_{n}-\psi_{m}\right)\right|_{q} \leqslant K_{k}\left|(\delta+1)^{k}\left(\phi_{n}-\phi_{m}\right)\right|_{p}
$$

It now follows that

$$
\left|x^{k} \frac{d^{k}}{d x^{k}}\left(\psi_{n}-\psi_{m}\right)\right|_{q} \leqslant \sum_{1=0}^{k} c_{1}\left|x^{1} \frac{d^{1}}{d x^{1}}\left(\phi_{n}-\phi_{m}\right)\right|_{p}
$$

for some constants C_{1}; i.e.

$$
\begin{equation*}
\gamma_{k}^{q}\left(\psi_{n}-\psi_{m}\right) \leqslant \sum_{l=0}^{k} c_{1} \gamma_{1}^{p}\left(\phi_{n}-\phi_{m}\right) \tag{7}
\end{equation*}
$$

Now since $\left\{\phi_{n}\right\}$ converges to ϕ in F_{p} by Leman $2,\left\{\phi_{n}\right\}$ is a fundamental sequence in F_{p}. (7) now implies that $\left\{\psi_{n}\right\}$ is a fundariental sequence in F_{q}. By completeness, $\exists \psi \in F_{q}$ such that ψ_{n} converges to ψ in F_{q}. But, since convergence in F_{q} implies convergence in L_{q}, it follows that

$$
\psi=\underset{n \rightarrow \infty}{\operatorname{l.i.m}}(q) \psi_{n}=\underset{n \rightarrow \infty}{\lim _{n \rightarrow \infty}}(q) H_{\nu} \phi_{n} \in F_{q}
$$

Whe lemma is proved.
From (6) we now have

Corollary 6

$$
\begin{aligned}
& \phi \in \mathbb{F}_{\mathrm{p}} \Rightarrow H_{\nu} \phi \in F_{q} \text { provided Rev>}>-\frac{1}{2}-\frac{1}{q}, \\
& \text { That } H_{\nu} \text { is a linear mapping is obvious. We now }
\end{aligned}
$$

prove

Lemma 7

$$
\text { If } \operatorname{Re} \nu>-\frac{1}{2}-\frac{1}{q}, H_{\nu} \text { is a continuous mapping }
$$

of F_{p} into F_{q}.

Proof: We have with the previous notation

$$
\delta^{k} H_{\nu} \phi_{n}=(-1)^{k} H_{\nu}(\delta+1)^{k} \phi_{n}
$$

Passing to the linit and using the fact that δ is continuous

$$
\begin{array}{r}
\text { on } F_{p}, F_{q} \text { and } H_{\nu} \text { is continuous on } L_{p}, \\
\qquad \delta{ }^{k} H_{\nu} \phi=(-1)^{k} H_{\nu}(\delta+1)^{k} \phi
\end{array}
$$

$$
\Rightarrow \quad x^{k} \frac{d^{k}}{d x^{k}} H_{\nu} \phi=\sum_{l=0}^{k} C_{1} H_{\nu}\left(x^{I} \frac{d^{l} \phi}{d x^{I}}\right)
$$

for some constants C_{1}. Hence, by Theorem 1, for some constants D_{1},

$$
y_{k}^{q}\left(H_{\nu} \phi\right) \leqslant \sum_{l=0}^{k} D_{I} y_{l}^{p}(\phi)
$$

The result follows .
We sumarise our results in a theorem.

Theorem 8
If $1<p \leq 2, \operatorname{Re} \nu>-\frac{1}{2}-\frac{1}{q}, H_{\nu} \quad$ is a continuous linear mapping of F_{p} into F_{q}.

Although we have established Theorem 8 for $1<p \leq 2$, we shall, in fact, be primarily concerned with the case $p=2$. For $1<p<2$, a characterisation of the range of H_{ν} in H_{q} is not known so that the question of inversion cannot be dealt with. However, when $p=2$, much nore is known. Indeed, if $\operatorname{Re} \nu>-1, H_{\nu}$ maps L_{2} into L_{2} and is both one-to-one and onto with inverse $H_{\nu}^{-1}=H_{\nu} \cdot$ Combining this with Theoren 8 , we inmediately obtain

Theorem 9
and.

$$
\begin{gathered}
\text { If } \operatorname{Re} \nu>-1, \mathrm{H}_{\nu} \text { is an automorphism of } \mathrm{F}_{2} \\
\mathrm{H}_{\nu}^{-1}=\mathrm{H}_{\nu}
\end{gathered}
$$

§5.3 Asymptotic expansicn of $\frac{\partial^{2} J}{\partial \nu^{2}} \nu$
of H_{ν} on F_{2}. However, in order to perform an analytic continuation, we must derive asymptotic expansions for the derivactives of the Bessel function J_{ν} with respect to ν. This section is devoted to these derivations .

We shall follow closely the methods in [10],
Chapter 7 . That is to say, we first obtain asymptotic expansions for derivatives with respect to ν of K_{ν}, the modified Bessel function of the third kind and order ν, and then proceed via the Hankel functions .

From [10], p. 23 , we have that, if $\operatorname{Re} \nu>-\frac{1}{2}$,

$$
\begin{equation*}
K_{\nu}(x)=\left(\frac{\pi}{8 x}\right)^{\frac{1}{2}} e^{-x}\left[\sum_{n=0}^{N i-1} \frac{\Gamma\left(\nu+\frac{1}{2}+m\right)}{m!\Gamma\left(\nu+\frac{1}{2}-m\right)}(2 x)^{-m}+R_{M I}\right] \tag{8}
\end{equation*}
$$

where
$R_{M}(x)=\frac{(2 x)^{-M I}}{(M-1)!\Gamma\left(\nu+\frac{1}{2}-M\right)} \int_{0}^{\infty} 0_{0}^{-t} t^{\nu-\frac{1}{2}+M} d t \int_{0}^{1}(1-u)^{M-1}\left(1+\frac{u t}{2 x}\right)^{\nu-\frac{1}{2}-M I} d u$
Let ν_{0} be fixed, $\operatorname{Re} \nu_{0}>-\frac{1}{2}$ and let $0<\epsilon<\operatorname{Re} \nu_{0}+\frac{1}{2}$. We can choose M such that $\operatorname{Re} \nu-\frac{1}{2} . .-\mathbb{M}<0$ whenever $\left|\nu-\nu_{0}\right| \leqslant \epsilon$. Then

$$
\begin{aligned}
&\left|\left(1+\frac{u t}{2 x}\right)^{\nu-\frac{1}{2}-M}\right|=\left(1+\frac{u t}{2 x}\right)^{\operatorname{Rov}-\frac{1}{2}-M} \leqslant 1 \\
& \Rightarrow\left|R_{N M}(x)\right| \leqslant \frac{(2 x)^{-\frac{1}{2}}}{(M-1)!\left|\Gamma\left(x+\frac{1}{2}-M\right)\right|} \int_{0}^{\infty} e^{-t} t^{\operatorname{Re} \nu-\frac{1}{2}+M_{1}} d t \int_{0}^{1}(1-u)^{M-1} d u \\
&=\frac{(2 x)^{-M}}{(M-1)!\left|\Gamma\left(\nu+\frac{1}{2}-M I\right)\right|} \Gamma\left(\operatorname{Re} \nu+\frac{1}{2}+M\right) \\
& \leqslant C(M ; \epsilon) x^{-M}
\end{aligned}
$$

where $\quad C(\mathbb{M}, \epsilon)=2^{-M} \sup _{\left|\nu-\nu_{0}\right| \leqslant \epsilon}\left|\frac{\Gamma\left(\operatorname{Re\nu }+\frac{1}{2}+M\right)}{M!\Gamma\left(\operatorname{Re} \nu+\frac{1}{2}-M\right)}\right|$
It now follows easily from (8) that for any $M \geqslant 1$, $\exists C(M, \epsilon)$
independent of x such that for $\left|\nu-\nu_{0}\right| \leqslant \epsilon, \quad x \geqslant 1$,

$$
\left|R_{M}(x)\right| \leqslant C(\mathbb{M}, \epsilon) x^{-M}
$$

By differentiating (9) and proceeding as above, we can deduce similarly that, for each $k=0,1,2 \ldots, \exists$ a constant $C(M, \epsilon, k)$ such that

$$
\left|\frac{\partial^{k} R}{\partial \nu^{k}}(x)\right| \leqslant C(M, \epsilon, k) x^{-M}
$$

where again $C(M, \epsilon, k)$ is independent of ν, x for $\left|\nu-\nu_{0}\right| \leqslant \epsilon$ and $x \geqslant 1$. Using Hankel's symbol

$$
\begin{aligned}
(\nu, m) & =\frac{2^{-2 m}}{m!}\left\{\left(4 \nu^{2}-1^{2}\right)\left(4 \nu^{2}-3^{2}\right) \ldots\left(4 \nu^{2}-(2 m-1)^{2}\right)\right\} \\
& =\frac{\Gamma\left(\nu+\frac{1}{2}+m\right)}{m!\Gamma\left(\nu+\frac{1}{2}-m\right)}
\end{aligned}
$$

we obtain

$$
\frac{\partial^{k} K}{\partial \nu^{k}} \nu(x)=\left(\frac{\pi}{2 x}\right)^{\frac{1}{2}} e^{-x}\left[\sum_{m=0}^{M-1} \frac{\partial^{k}}{\partial \nu^{k}}(\nu, m)(2 x)^{-m}+R_{M, k}\right] \text { (10) }
$$

where

$$
\begin{equation*}
\left|R_{M, k}(x)\right| \leqslant C(M, \epsilon, k) x^{-M} \tag{11}
\end{equation*}
$$

uniformly for $\left|\nu-\nu_{0}\right| \leqslant \epsilon$ and $x \geqslant 1$.
Suppose now that $\operatorname{Re} \nu_{0}<\frac{1}{2}$. Then $\nu_{0}=-\mu_{0}$
with $\operatorname{Re} \mu_{0}>-\frac{1}{2}$. Also, $K_{\nu}(x)=K_{-\nu}(x)$ so that

$$
\frac{\partial^{k}}{\partial \nu^{k}} K_{\nu}(x) \quad(-1)^{k} \frac{\partial^{k}}{\partial \mu^{k}} K_{\mu}(x) \quad(\mu=-\nu)
$$

By applying the previous case with ν, ν_{0} replaced by μ, μ_{0} we can deduce that (10) and (11) hold for any ν_{0} and sufficiently small ϵ.

For our purposes, it will be sufficient to take $\mathrm{H}=1$ and we shall write R for remainder terms such that, for ϵ sufficiently small
$|R| \leqslant C(\epsilon, k) x^{-1}$ for $\left|\nu-\nu_{0}\right| \leqslant \epsilon$ and $x \geqslant 1$. We now proceed via Hanker functions, The Hankel function $H_{\nu}^{(1)}$
of the first kind and order ν satisfies

$$
\begin{gather*}
H_{\nu}^{(1)}(x)=-\frac{2 i}{\pi} e^{-\frac{1}{2} i \nu \pi} K_{\nu}(-i x) \tag{12}\\
\Rightarrow \frac{\partial^{k}}{\partial \nu^{k}} H_{\nu}^{(1)}(x)=-\frac{2 i}{\pi} e^{-\frac{1}{2} i \nu \pi} \sum_{l=0}^{k}\binom{k}{l}\left(-\frac{1}{2} i \pi\right)^{k-1} \frac{\partial^{l} K^{I}}{\partial \nu^{I}}(-i x) \\
=-\frac{2 i}{\pi} e^{-\frac{1}{2} i \nu \pi}\left(\frac{\pi}{-2 i x}\right)^{\frac{1}{2}} e^{i x} \sum_{l=0}^{k}\binom{k}{l}\left(-\frac{1}{2} i \pi\right)^{k-1}\left[\frac{\partial^{l}}{\partial \nu^{I}}(\nu, 0)+R\right]
\end{gather*}
$$

Since $(\nu, 0)=1$, we have

$$
\frac{\partial^{k}}{\partial \nu^{k}} H_{\nu}^{(1)}(x)=\left(\frac{2}{\pi x}\right)^{\frac{1}{2}} e^{i\left(x-\frac{1}{2} \nu \pi-\frac{\pi}{4}\right)}\left[\left(-\frac{1}{2} i \pi\right)^{k}+R\right]
$$

In particular , for $k=2$, we have

$$
\begin{equation*}
\frac{\partial^{2}}{\partial \nu^{2}} H_{\nu}^{(1)}(x)=\left(\frac{2}{\pi x}\right)^{\frac{1}{2}} e^{i\left(x-\frac{1}{2} \nu \pi-\frac{\pi}{4}\right)}\left[-\frac{\pi^{2}}{4}+R\right] \tag{13}
\end{equation*}
$$

The second Hankel function $H_{\nu}^{(2)}(x)$ of order ν satisfies

$$
\begin{equation*}
H_{\nu}^{(2)}(x)=\frac{2 i}{\pi} e^{\frac{1}{2 i} \nu \pi} K_{\nu}(i x) \tag{14}
\end{equation*}
$$

Hence replacing i by $-i$ throughout we obtain

$$
\begin{equation*}
\frac{\partial^{2}}{\partial \nu^{2}} H_{\nu}^{(2)}(x)=\left(\frac{2}{\pi x}\right)^{\frac{1}{2}} e^{-i\left(x-\frac{1}{2} \nu \pi-\frac{\pi}{4}\right)}\left[-\frac{\pi^{2}}{4}+R\right] \tag{15}
\end{equation*}
$$

Finally, since $J_{\nu}(x)=\frac{1}{2}\left[H_{\nu}^{(1)}(x)+H_{\nu}^{(2)}(x)\right]$, adding (13) and (15) gives

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial \nu^{2}} J_{\nu}(x)= \\
&\left.\Rightarrow \quad \sqrt{x} \frac{2}{\pi x}\right)^{\frac{1}{2}} \cos \left(x-\frac{1}{2} \nu \pi-\frac{\pi}{4}\right)\left[-\frac{\pi^{2}}{4}+\mathrm{R}\right] \\
& \Rightarrow J_{\nu}(x)=-\left(\frac{\pi}{2}\right)^{\frac{3}{3}} \cos \left(x-\frac{1}{2} \nu \pi-\frac{\pi}{4}\right)+R
\end{aligned}
$$

We have thus proved

Lemma $\quad 10$

$$
\sqrt{\mathrm{x}} \frac{\partial^{2}}{\partial \nu^{2}} J_{\nu}(\mathrm{x})=-\left(\frac{\pi}{2}\right)^{\frac{3}{2}} \cos \left(\mathrm{x}-\frac{1}{2} \nu \pi-\frac{\pi}{4}\right)+R_{\nu}
$$

where $\left|R_{\nu}(x)\right| \leqslant C x^{-1}$, uniformly in $\left|\nu-\nu_{0}\right| \leqslant \epsilon, \quad x \geqslant 1$.

Here C depends only on ϵ. It follows that for any compact subset K of the complex plane, $\exists C$ (depending on K) such that

$$
\begin{aligned}
& \left|R_{* v}(x)\right| \leqslant C x^{-1} \\
& \text { uniformly for } \nu \in K \text { and } x \geqslant 1
\end{aligned}
$$

§5.4 Analyticity of the Hankel Transform on F - -

We are now ready to discuss the analyticity of H_{ν} on F_{2}. Throughout this section, ' 1.i.m ' will denote the limit in the L_{2} norm. By definition,

Assuming x and ϕ fixed, we may regard $H_{\nu} \phi(\mathrm{x})$ as a function of ν. Recalling that J_{ν} is an entire function of ν, wo nay differentiate formally to obtain

$$
\frac{\partial}{\partial \nu} H_{\nu} \phi(x)=\lim _{n \rightarrow \infty} \int_{0}^{n} \sqrt{x t} \frac{\partial J}{\partial \nu} v \cdot(x t) \quad \phi(t) d t
$$

We will show that, for fixed $\phi, \frac{\partial}{\partial \nu} H_{\nu} \phi$ exists as a limit in the topology of F_{2} whenever $\operatorname{Rev}>-1$.

We first consider the operator T_{ν} defined by
so that $T_{\nu} \phi(x)$ is obtained by differentiating $H_{\nu} \phi(x)$ formally twice with respect to ν.

Lerma 11
Let ν_{0} be fixed with R.e $\nu_{0}>-1$. For ϵ suffic-
iently small, there exists a constant K, independent of ν such that

$$
\left|T_{\nu} \phi\right|_{2} \leqslant K|\phi|_{2} \quad\left(\phi \in F_{2}\right)
$$

whenever $\quad .\left|\nu-\nu_{0}\right| \leqslant \epsilon$

Proof: We follow closely the method of Bochner [1] pp,227-8.

> As in Lemma 10, we may write

$$
\begin{equation*}
\sqrt{y} \frac{\partial^{2} J}{\partial \nu^{2}} \nu(y)=-\left(\frac{\pi}{2}\right)^{\frac{3}{2}} \cos \left(y-\frac{1}{2} \nu \pi-\frac{\pi}{4}\right)+R_{\nu}(y) \tag{17}
\end{equation*}
$$

We also write

$$
\begin{aligned}
& \text { so write } \\
& \psi_{1, \nu}(x)=-\sum_{n \rightarrow \infty}^{1_{0} i . \square}\left(\frac{\pi}{2}\right)^{\frac{3}{2}} \int_{0}^{n} \cos \left(x t-\frac{1}{2} \nu \pi-\frac{\pi}{4}\right) \phi(t) d t \\
& \psi_{2, \nu}(x)=\int_{0}^{\frac{1}{x}} R_{\nu}(x t) \phi(t) d t \\
& \psi_{S, \nu}(x)=\prod_{n \rightarrow \infty}^{1 . i_{n} n} \int_{\frac{1}{x}}^{n} R_{\nu}(x t) \phi(t) d t
\end{aligned}
$$

Let us consider first $\psi_{2, \nu}(x)$. We have

$$
\begin{aligned}
\left|\psi_{2, \nu}(x)\right| & \leqslant \int_{0}^{\frac{1}{x}}\left|R_{\nu}(x t)\right||\phi(t)| d t \\
& =\int_{0}^{1}\left|R_{\nu}(y)\right|\left|\phi\left(\frac{y}{x}\right)\right| \frac{d y}{x}
\end{aligned}
$$

If Re $\nu_{0}>-\frac{1}{2}$, we choose $\epsilon: \operatorname{Re} \nu_{0}-2 \epsilon>-\frac{1}{2}$: Now, there exists a constant M_{1} such that

$$
\begin{equation*}
\left|\sqrt{y} \frac{\partial^{2} J}{\partial \nu^{2}} \nu(y)\right| \leqslant M_{1} y^{\frac{1}{2}+\operatorname{Re} \nu-\epsilon} \tag{18}
\end{equation*}
$$

uniformly for $0<\dot{y} \leq 1$ and $\left|\nu-\nu_{0}\right| \leqslant \epsilon$. But if $\mid \nu\left\langle\nu_{0}\right| \leqslant \xi$ $\operatorname{Re}\left(\frac{1}{2}+\nu-\xi\right) \geqslant \operatorname{Re}\left(\frac{1}{2}+\nu_{0}-2 \epsilon\right)>0$ so that

$$
\left|\sqrt{y} \frac{\partial^{2} J}{\partial \nu^{2}} \nu(y)\right| \leqslant M_{1}
$$

uniformly for $0<y \leq 1$ and $\left|\nu-\nu_{0}\right| \leqslant \epsilon$. Further, since
$\cos \left(\mathrm{y}-\frac{1}{2} \nu \pi-\frac{\pi}{4}\right)$ is uniform y bounded on this set, $\exists \mathrm{M}_{2}$ such that

$$
\left|R_{\nu}(y)\right| \leqslant M_{2}
$$

uniformly for $0<\mathrm{y} \leq 1$ and $\left|\nu-\nu_{0}\right| \leqslant \epsilon$. Hence, in this case ,

$$
\left|\psi_{2, \nu}(x)\right| \leqslant \frac{M_{2}}{x} \int_{0}^{1}\left|\phi\left(\frac{y}{x}\right)\right| d y=\frac{M_{2}}{x} 2\left(I_{x}^{0,1}|\phi|\right)\left(\frac{1}{x}\right)
$$

Now $\phi(x) \in F_{2} \Rightarrow\left(I_{x}^{0,1}|\phi|\right)(x) \in F_{2}$ by Theorem 3.3.

$$
\begin{aligned}
\Rightarrow\left|\psi_{2, v}(x)\right|_{2} & \leqslant M_{2}\left|\frac{1}{x}\left(I_{x}^{0,1}|\phi|\right)\left(\frac{1}{x}\right)\right|_{2} \\
& =M_{2}\left|\left(I_{x}^{0,1}|\phi|\right)(x)\right|_{2} \\
& \leqslant K_{1}|\phi|_{2}
\end{aligned}
$$

by Theorem 3.3 , where K_{1} is independent of ϕ and of ν in $\left|\nu-\nu_{0}\right| \leqslant \epsilon$.

Suppose , on the other hand, that $-1<\operatorname{Re} \nu_{0}<-\frac{1}{2}$. We now choose $\epsilon:-1<\operatorname{Re} \nu_{0}-2 \epsilon$. As in (18) , $\exists M_{3}$ such that

$$
\left|\sqrt{y} \frac{\partial^{2} J}{\partial \nu^{2}} \nu(y)\right| \leqslant M_{3} y^{\frac{1}{2}+\operatorname{Re} \nu-\epsilon}
$$

uniformly for $0<y \leq 1$ and $\left|\nu-\nu_{0}\right| \leqslant \epsilon$. Thus, if $\left|\nu-\nu_{0}\right| \leqslant \epsilon$

$$
\begin{aligned}
\left|\sqrt{y} \frac{\partial^{2} J}{\partial \nu^{2}} \nu(y)\right| & \leqslant M_{3} y^{\frac{1}{2}+\operatorname{Re} \nu_{0}-2 \epsilon} \\
\Rightarrow \quad\left|\psi_{2, \nu}(x)\right|_{2} & \leqslant M_{3} \int_{0}^{1} y^{\frac{1}{2}+\operatorname{Re} \nu_{0}-2 \epsilon}\left|\phi\left(\frac{y}{x}\right)\right| \frac{d y}{x} \\
& =M_{3} \frac{1}{x}\left(I_{x}^{\frac{1}{2}+\operatorname{Re} \nu_{0}-2 \epsilon, 1}|\phi|\right)\left(\frac{1}{x}\right)
\end{aligned}
$$

Since $\frac{1}{2}+\operatorname{Re} \nu_{0}-2 \epsilon>\frac{1}{2}$, we can use Theorem 3.3 as before to deduce that $\exists K_{2}$ such that

$$
\left|\psi_{2, v}\right|_{2} \leqslant K_{2}|\phi|_{2}
$$

where K_{2} is independent of ϕ and of ν in $\left|\nu-\nu_{0}\right| \leqslant \epsilon$.

So in either case, there is a constant C_{2}, independent of ϕ in F_{2}, such that

$$
\begin{equation*}
\left|\psi_{2, \nu}\right|_{2} \leqslant c_{2}|\zeta|_{2} \tag{19}
\end{equation*}
$$

$\operatorname{Rev}_{0}=-\frac{1}{2} ?$
uniformly in $\left|\nu-\nu_{0}\right| \leqslant \epsilon$, for ϵ small enough .
Suppose ϵ fixed in accordance with the above.
We now consider $\psi_{1, \nu}$. Since
$\cos \left(x t-\frac{1}{2} \nu \pi-\frac{\pi}{4}\right)=\cos x t \cos \left(\frac{1}{2} \nu \pi+\frac{\pi}{4}\right)+\sin x t \sin \left(\frac{1}{2} \nu \pi+\frac{\pi}{4}\right)$,
$\psi_{1, \nu}(x)=-\left(\frac{\pi}{2}\right)^{\frac{3}{2}} \cos \left(\frac{1}{2} \nu \pi+\frac{\pi}{4}\right)^{\text {l.i.n }} \underset{n \rightarrow \infty}{n} \int_{0}^{n} \cos x t \phi(t) d t$
$-\left(\frac{\pi}{2}\right) \frac{3}{2} \sin \left(\frac{1}{2} \nu \pi+\frac{\pi}{4}\right) \underset{n \rightarrow \infty}{\text { l.i.n }} \int_{0}^{n} \sin x t \phi(t) d t$
Now $\cos \left(\frac{1}{2} \nu \pi+\frac{\pi}{4}\right)$ and $\sin \left(\frac{1}{2} \nu \pi+\frac{\pi}{4}\right)$ are bounded on $\left|\nu-\nu_{0}\right| \leqslant \epsilon$.
Hence Theorem 1 applied to the Fourier sine and cosine transforms shows that $\exists C_{1}$, independent of δ in F_{2} such that

$$
\begin{equation*}
\left|\psi_{1, v}\right|_{2} \leqslant|\dot{\mid}|_{2} \tag{20}
\end{equation*}
$$

uniformly in $\left|\nu-\nu_{0}\right| \leqslant \epsilon$.
Finally, for $\psi_{3, \nu}$, we note that by Lena 10
ヨ M_{4} such that

$$
\left|R_{\nu}(\mathrm{y})\right| \leqslant \frac{\mathrm{M}_{4}}{\mathrm{y}^{2}}
$$

uniformly in $\left|\nu-\nu_{0}\right| \leqslant \epsilon \cdot \psi_{3, \nu}$ (x) exists as an improper integral and

$$
\begin{aligned}
\left|\psi_{3, \nu}(x)\right| & \leqslant \int_{\frac{1}{x}}^{\infty}\left|R_{\nu}(x t)\right||\phi(t)| d t \\
& =\int_{1}^{\infty}\left|R_{\nu}(y)\right|\left|\phi\left(\frac{y}{x}\right)\right| \frac{d y}{x} \\
& \leqslant \frac{\mathbb{N}_{4}}{x^{4}} \int_{1}^{\infty} \frac{1}{y}\left|\phi\left(\frac{y}{x}\right)\right| d y \\
& \cong \frac{\mathbb{M}_{4}}{x^{4}}\left(K_{x}^{0,1}|\phi|\right)\left(\frac{1}{x}\right)
\end{aligned}
$$

We may now apply Theorem 3.13 to deduce that

$$
\begin{equation*}
\left|\psi_{3, \nu}\right|_{2}=M_{4}\left|K_{x}^{0,1}\right| \phi| |_{2} \leqslant C_{3}|\phi|_{2} \tag{21}
\end{equation*}
$$

where C_{3} is independent of ϕ and of ν in $\left|\nu-\nu_{0}\right| \leqslant \epsilon$. Finally, since

$$
\mathrm{T}_{\nu} \phi(\mathrm{x})=\psi_{1, \nu}(\mathrm{x})+\psi_{2, \nu}(\mathrm{x})+\psi_{3, \nu}(\mathrm{x})
$$

the result follows from (19), (20) and (21).

We now prove

Theorem 12

$$
\begin{aligned}
& \text { Let Re } \nu>-1, \phi \in F_{2} \text {. Then } \\
& \frac{H_{\nu+h} \phi-H_{\nu} \phi}{h}-\frac{\partial}{\partial \nu} H_{\nu} \phi
\end{aligned}
$$

converges to zero in the topology of F_{2} as $\mathrm{h} \rightarrow 0$ in any manner. In particular, for each fixed $x, H_{\nu} \phi(x)$ is an analytic function of ν.

Proof: $\frac{1}{h}\left[H_{\nu * h} \phi-H_{\nu} \phi\right]-\frac{\partial}{\partial \nu} Y_{\nu} \phi$
$=\underset{n \rightarrow \infty}{\text { l.i.m }} \int_{0}^{n} \sqrt{x t}\left\{\frac{1}{h}\left[J_{\nu+h}(x t)-J_{i}(x t)\right]-\frac{\partial}{\partial \nu} J_{\nu}(x t)\right\} \phi(t) d t$
For $|h|$ sufficiently small, we may apply a local mean value theorem for complex variables [23] to deduce that

$$
\frac{1}{h}\left[H_{\nu+h} \phi-H_{\nu} \phi\right]-\frac{\partial}{\partial \nu} H_{\nu} \phi=h T_{\nu} \phi
$$

where $\nu^{\prime}=\nu+\theta h,|\theta|<1$, and T_{ν} is given by (16). The theorem will be proved if we show that, for $k=0,1,2 \ldots$,

$$
y_{k}^{2}\left(h T_{\nu^{\prime}} \phi\right) \rightarrow 0 \text { as } h \rightarrow 0 \text { in any manner. }
$$

But
$y_{k}^{2}\left(h T_{\nu^{\prime}} \phi\right)=|h| \gamma_{k}^{2}\left(T_{\nu^{\prime}} \phi\right)=|h|\left|x^{k} \frac{d^{k}}{d x^{k}} T_{\nu^{\prime}} \phi\right|_{2}$

By arguments analogous to those for H_{ν}, we can justify differentiating T_{ν}, ϕ under the integral sign with respect to x to deduce that, for some constants $c_{0}, c_{1}, \ldots ., c_{k}$,

$$
x^{k} \frac{d^{k}}{d x^{k}}\left(T_{\nu^{\prime}} \phi\right)=T_{\nu^{\prime}}\left(\sum_{l=0}^{k} c_{I} \delta^{l} \phi\right)
$$

Then applying Lemma 11 , we obtain

$$
\left|x^{k} \frac{d^{k}}{d x^{k}}\left(T_{\nu}, \phi\right)\right|_{2} \leqslant \sum_{1=0}^{k} d_{1} \gamma_{1}^{2}(\phi)
$$

where the constants d_{1} are independent of ν in $\left|\nu-\nu^{\prime}\right| \leqslant \epsilon$, for ϵ sufficiently small. Hence, if $|h|$ is sufficiently small,

$$
\gamma_{k}^{2}\left(\mathrm{hT}_{\nu^{\prime}} \phi\right) \leqslant|\mathrm{h}| \sum_{l=0}^{\mathrm{k}} \mathrm{~d}_{1} \gamma_{1}^{2}(\phi) \rightarrow 0 \quad \text { as }: \mathrm{h} \rightarrow 0
$$

and the result follows .
We shall require theorem 12 in the next section.
§5.5 Connections between H_{V} and fractional integration in F_{2}

In [13], Kober established connections between the Hankel transform in Tricomi's form and the operators $I_{x}^{\eta, \alpha}$ and $\mathrm{K}_{\mathrm{x}}^{\eta, \alpha}$. In this section we translate these into corresponding results for H_{ν} and the operators $\mathrm{I}_{\mathrm{x}^{2}}^{\eta, \alpha}$ and $\mathrm{K}_{\mathrm{x}}^{\eta}{ }^{\eta}, \alpha$ applied to functions in L_{2}.

Let $\phi \in \mathrm{L}_{2}$ and $\operatorname{Re} \nu>-1 .\left\{_{\nu}\right.$, the Hankel transform of order ν in Tricomi's form is defined by

$$
\begin{equation*}
\hat{h}_{\nu} \phi(x)={\underset{n}{n \rightarrow \infty},}_{i_{n} m}^{\int_{\nu}^{n}}(2 \sqrt{x t}) \phi(t) d t \tag{22}
\end{equation*}
$$

By standard results \mathfrak{F}_{ν} is a continuous linear mapping of I_{2} into L_{2} when Re $v>-1$. Kober proved the following theorem.

Theorem 13

Let $\operatorname{Re} \alpha>0$, $\operatorname{Re} \nu>-1, \phi \in \mathrm{~L}_{2}$. Then
(i) $I_{x}^{\frac{1}{2} \nu, \alpha^{\prime}} \mathcal{Z}_{\nu} \phi=\mathcal{F}_{\nu+2 \alpha} I_{x}^{\frac{1}{2} \nu, \alpha} \phi$

$$
\begin{equation*}
\left\{_{\nu} K_{x}^{\frac{1}{2} \nu, \alpha} \phi=K_{x}^{\frac{1}{2} \nu, \alpha}\left\{_{\nu+2 \alpha} \phi\right.\right. \tag{ii}
\end{equation*}
$$

We deduce

Theorem 14

$$
\begin{equation*}
\text { Let } \operatorname{Re} \alpha>0, \operatorname{Re} \nu>-1, \phi \in L_{2} \text {. Then } \tag{23}
\end{equation*}
$$

(i) $\quad \underset{\mathrm{x}}{\frac{1}{2} \nu}-\frac{1}{4}, \alpha \mathrm{H}_{\nu} \phi=\mathrm{H}_{\nu+2 \alpha} \underset{\mathrm{x}}{\mathrm{I}_{2}^{\frac{1}{2} \nu}-\frac{1}{4}, \alpha_{\phi}}$

Proof : (i) Let $\psi \in \mathrm{L}_{2}$. Then $\sqrt{t} \psi\left(\frac{1}{2} t^{2}\right) \in \mathrm{L}_{2}$ also and by a change of variable it is easy to show that

$$
\begin{aligned}
& \left(I_{x}^{\frac{1}{2} \nu, \alpha}\left\{_{\nu} \psi\right)\left(\frac{1}{2} x^{2}\right)=x^{-\frac{1}{2}} I_{x^{2}}^{\frac{1}{2} \nu-\frac{1}{4}, \alpha H_{\nu}\left(\sqrt{x} \psi\left(\frac{1}{2} x^{2}\right)\right)}\right. \\
& \left(\left\{_{\nu+2 \alpha} I_{x}^{\frac{1}{2} \nu, \alpha_{\psi}}\right)\left(\frac{1}{2} x^{2}\right)=x^{-\frac{1}{2}} H_{\nu+2 \alpha} I_{x^{2}}^{\frac{1}{2} \nu}-\frac{1}{4}, \alpha\left(\sqrt{x} \psi\left(\frac{1}{2} x^{2}\right)\right)\right.
\end{aligned}
$$

Hence, by Theorem 13(i) ,

$$
\underset{I^{\frac{1}{2} \nu}}{2}-\frac{1}{4}, \alpha H_{\nu}\left(\sqrt{x} \psi\left(\frac{1}{2} x^{2}\right)\right)=H_{\nu+2 \alpha} I_{x}^{\frac{1}{2} \nu}-\frac{1}{4}, \alpha\left(\sqrt{x} \psi\left(\frac{1}{2} x^{2}\right)\right)(25)
$$

Now, given $\phi \in \mathrm{L}_{2}$, let $\psi(\mathrm{x})=(2 \mathrm{x})^{-\frac{1}{4}} \phi(\sqrt{2 \mathrm{x}})$. Then $\psi \in \mathrm{L}_{2}$
and $\sqrt{x} \psi\left(\frac{1}{2} x^{2}\right)=\phi(x)$; so, by (25),

$$
\underset{\mathrm{I}^{\frac{1}{2} \nu}}{2}-\frac{1}{4}, \alpha_{H_{\nu}} \phi(x)=H_{\nu+2 \alpha} I_{x}^{\frac{1}{2} \nu-\frac{1}{4}, \alpha_{x}} \phi(x)
$$

as required . (24) follows similarly from Theorem 13(ii)
Theorem 14 will hold in particular when $\phi \in \mathrm{F}_{2}$.
However, for fixed ϕ and x, provided $\operatorname{Re} \nu>-1$, and also $\operatorname{Re}(\nu+2 \alpha)>-1$, both sides of (23) are analytic functions of ν
by Theorem 12 and results in Chapter 3 . Similarly for (24). Hence we may remove the restriction $\operatorname{Re} \alpha>0$ and substitute $\operatorname{Re}(\nu+2 \alpha)>-1$ to obtain the following theorem.

The orem 15

$$
\text { Let } \phi \in \mathrm{F}_{2}, \operatorname{Re} \nu>-1, \operatorname{Re}(\nu+2 \alpha)>-1 \text {. Then }
$$

(i) $\quad I_{x^{2}}^{\frac{1}{2} \nu}-\frac{1}{4}, \alpha \quad H_{\nu} \phi=H_{\nu+2 \alpha} \underset{x}{I_{2}^{\frac{1}{2} \nu}-\frac{1}{4}}, \alpha_{\phi}$
(ii) $\mathrm{H}_{\nu} \mathrm{K}_{\mathrm{x}}^{\frac{1}{2} \nu}+\frac{1}{4}, \alpha \quad \phi=\underset{\mathrm{K}}{\frac{1}{2} \nu}+\frac{1}{4}, \alpha \mathrm{H}_{\nu+2 \alpha} \phi$

$$
\text { We can use these results to express } H_{\nu} \text { in terms }
$$ of the Fourier sine and cosine transforms $H_{\frac{1}{2}}$ and $H_{-\frac{1}{2}}$. Suppose that the hypotheses of Theoren 15 are sacisfied. We may then

$$
\mathrm{H}_{\nu} \phi=\frac{I^{\frac{1}{2} \nu}{ }_{x}^{2}-\frac{1}{4}+\alpha,-\alpha H_{\nu+2 \alpha} I_{x}^{\frac{1}{2} \nu}-\frac{1}{4}, \alpha}{}
$$

If $\nu+2 \alpha=\frac{1}{2}$ and $\operatorname{Re} \nu>-1$,

On the other hand, from (ii) with ν replaced by $\nu-2 \alpha$,

$$
\mathrm{H}_{\nu} \phi=\frac{\mathrm{K}_{2}^{\frac{1}{2} \nu}}{\mathrm{x}}+\frac{1}{4},-\alpha \mathrm{H}_{\sin } 2 \alpha_{\mathrm{x}} \mathrm{~K}^{\frac{1}{2} \nu+\frac{1}{4}-\alpha, \alpha} \phi
$$

if $\operatorname{Re} \nu>-1, \operatorname{Re}(\nu-2 \alpha)>-1$. In particular, if $\nu-2 \alpha=-\frac{1}{2}$, $\operatorname{Re} \nu>-1$,

$$
\begin{equation*}
\mathrm{H}_{\nu} \phi=\mathrm{K}_{\mathrm{x}}^{\frac{1}{2} \nu}+\frac{1}{4},-\left(\frac{1}{2} v+\frac{1}{4}\right)_{\mathrm{H}_{-\frac{1}{2}} \mathrm{~K}_{\mathrm{x}}^{0}, \frac{1}{2} \nu+\frac{1}{4} \phi} \tag{27}
\end{equation*}
$$

Thus, knowledge of the Fourier sine and cosine transforms and the operators $\mathrm{I}_{\mathrm{x}}^{\eta, \alpha}$ and $\mathrm{K}_{2}^{\eta, \alpha}$ is sufficient to study H_{ν} on F_{2} when $\operatorname{Re} \nu>-1$.

§5.6 The Hankel transform on F_{2}^{\prime}

We come now to the definition of H_{ν} on F_{2}^{\prime}. As usual, the definition is motivated from consideration of regular functional. Let $f \in L_{2}$ and $\phi \in F_{2}$ vanish for sufficiently large: values of the argument so that $H_{\nu} f$ and $H_{\nu} \phi$ are given by integrals . Proceeding formally, we have

$$
\begin{aligned}
\left(H_{\nu} f, \phi\right) & =\int_{0}^{\infty}\left(\int_{0}^{\infty} \sqrt{x t} J_{\nu}(x t) f(t) d t\right) \phi(x) d x \\
& =\int_{0}^{\infty} f(t) d t \int_{0}^{\infty} \sqrt{t x} J_{\nu}(t x) \phi(x) d x \\
& =\left(f, H_{\nu} \phi\right)
\end{aligned}
$$

Hence, for arbitrary $f \in F_{2}^{\prime}$, we define $H_{\nu} f$ by

$$
\begin{equation*}
\left(H_{\nu} f, \phi\right)=\left(f, H_{\nu} \phi\right) \tag{28}
\end{equation*}
$$

for $\phi \in \mathrm{F}_{2}$. By Theorems 9 and 12 and The orem 1.2 we obtain immediately

The orem 16
For $\operatorname{Re} \nu>-1, H_{\nu}$ is an automorphism of F_{2}^{\prime} and $H_{\nu}^{-1}=H_{\nu}$

Further, H_{ν} is analytic on F_{2}^{\prime} in the sense that, for fixed f $\epsilon \mathrm{F}_{2}^{\mathrm{t}}$ and $\phi \in \mathrm{F}_{2},\left(\mathrm{H}_{\nu} \mathrm{f}^{\prime}, \phi\right)$ is an analytic function of ν The connection with fractional integration is
exhibited by

Theorem 17
Let $f \in F_{2}^{\prime}, \operatorname{Re} \nu>-1, \operatorname{Re}(\nu+2 \alpha)>-1$. Then
(i) $\quad I_{2}^{\frac{1}{2} \nu}-\frac{1}{4}, \alpha H_{\nu} \mathrm{f}=H_{\nu+2 \alpha} I_{x}^{\frac{1}{2} \nu}-\frac{1}{4}, \alpha \quad \mathrm{f}$
(ii) $\quad H_{\nu} \underset{x^{2}}{\frac{1}{2} \nu}+\frac{1}{4}, \alpha f=\frac{K^{\frac{1}{2} \nu}}{x^{2}}+\frac{1}{4}, \alpha H_{\nu+2 \alpha} \mathrm{f}$

The theorem is immediate on taking adjoints in Theorem 15 .
We can use (29) and (30) to prove the following results , analogous to (26) and (27), valid for $f \in F_{2}^{\prime}$, and $\operatorname{Re} \nu>-1$.

$$
\begin{align*}
& \mathrm{H}_{\nu} \mathrm{f}=\underset{\mathrm{x}^{2}}{0, \frac{1}{2} \nu}-\frac{1}{4}{\underset{\mathrm{H}}{2}}^{\mathrm{I}_{\mathrm{x}}^{\frac{1}{2} \nu}-\frac{1}{4},-\left(\frac{1}{2} \nu-\frac{1}{4}\right)_{\mathrm{f}}} \tag{31}\\
& \mathrm{H}_{\nu} \mathrm{f}=\underset{\mathrm{K}_{2}^{\frac{1}{2} \nu}}{\mathrm{~K}_{2}}+\frac{1}{4},-\left(\frac{1}{2} \nu+\frac{1}{4}\right) \mathrm{H}_{-\frac{1}{2}} \mathrm{~K}_{\mathrm{x}^{2}}^{0, \frac{1}{2} \nu+\frac{1}{4}} \mathrm{f} \tag{32}
\end{align*}
$$

$\$ 5.7$ Comparison of the spaces $\mathrm{F}_{\mathrm{p}}^{\mathrm{p}}$, and $\mathcal{K}_{\mu}^{\prime}$

To end this chapter, we compare our spaces $\mathrm{F}_{\mathrm{p}}^{\prime}$
with the spaces $)_{\mu}^{\prime}$ on which Zemanian develops his generalised Hankel transform in [25]

For any complex number μ, \mathcal{F}_{μ} is the space of all smooth functions ϕ on ($0, \infty$) such that, for each pair of non-negative integers m and k,

$$
y_{m, k}^{\mu}(\phi)=\sup _{0<x<\infty}\left|x^{m}\left(x^{-1} D\right)^{k} x^{-\mu-\frac{1}{2}} \phi(x)\right|<\infty
$$

($D \equiv \frac{d}{d x}$). With the topology generated by the semi-norms $\gamma_{m, k}^{\mu}$ If μ is a complete countably multinormed space .

Proceeding as in the proof of Lemma 5.2-1, on
p. 130 of $[25]$, we can show that, if $1 \leq \mathrm{p} \leq \infty$, Re $\mu>-\frac{1}{2}-\frac{1}{\mathrm{p}}$,

$$
\mathcal{H}_{\mu} \subset \mathrm{F}_{\mathrm{p}}
$$

The inclusion is strict as is seen by considering $y_{0,1}^{\mu}\left(e^{-x}\right)$, which is infinite for every μ.

It is not hard to show that the identity mapping is continuous from \mathcal{K}_{μ} to F_{p}. Thus, if $\phi_{n} \rightarrow 0$ in \mathcal{C}_{μ}, as $n \rightarrow \infty, \phi_{n} \rightarrow 0$ in F_{p} also as $n \rightarrow \infty$. It follows at once that $\mathrm{Fi}_{\mathrm{p}}^{\prime} \subset \mathcal{H}{ }_{\mu}^{\prime}$
for $\operatorname{Re} \mu>-\frac{1}{2}-\frac{1}{\mathrm{p}}$. We therefore have a smaller class of generalised functions than Zemanian. This is hardly surprising since the spaces $4 \underbrace{\prime}_{\mu}$ were constructed with the Hankel transform specifioally in mind, whereas the spaces F_{p} were constructed for an investigation of fractional integration. Nor are our spaces as flexible as $\mathcal{K}_{\mu}^{\prime}$. Nevertheless they do serve to bring out the connection between H_{ν} and fractional integration.

CHAPTER 6

\$6.1 Introduction

In this chapter, we return to the spaces $F_{p, \mu}$ to discuss four hypergeometric integral operators studied in [17] and [18] by Love, and we extend the operators to the generalised function spaces $\mathrm{F}_{\mathrm{p}, \mu}^{\prime}$.

For any complex numbers a, b, c with $c \neq 0,-1$,
-2,..... , and for $|z|<1$, Gauss's hypergeometric function $F(a, b, c, z)$ is defined by

$$
\begin{equation*}
F(a, b, c, z)=\sum_{n=0}^{\infty} \frac{(a)_{n}-(b)^{(c)}}{(c)_{n}} \frac{z^{n}}{n!} \tag{1}
\end{equation*}
$$

where $\quad(a)_{0}=1, \quad(a)_{n}=a(a+1) \ldots . .(a+n-1)=\frac{\Gamma(a+n)}{\Gamma(a)}$ for $n \geq 1$. Similarly for $(b)_{n}$ and $(c)_{n}$. For fixed a, b, c ($c \neq 0,-1,-2, \ldots$.$) , the power series in (1) converges absol-$ utely for $|z|<1$. For brevity, we shall write

$$
\begin{equation*}
F^{*}(a, b, c, z)=\frac{1}{\Gamma(c)} F(a, b, c, z) \tag{2}
\end{equation*}
$$

For $|z|<1$, we have, in the first instance for $c \neq 0,-1,-2, \ldots$,

$$
\begin{equation*}
F^{*}(a, b, c, z)=\sum_{n=0}^{\infty} \frac{(a)}{\Gamma(c+n)} n \frac{(b)}{n!} \tag{3}
\end{equation*}
$$

However, since the reciprocal of the gamma function is entire, the right-hand side is meaningful for any c. Indeed, (3) shows that, for fixed $z,|z|<1, F^{*}(a, b, c, z)$ is an entire function of a, b and c.

$$
\text { We can extend } F^{*}(a, b, c, z) \text { to the half-plane }
$$

Re $z<\frac{1}{2}$, by means of Kumer's formula, [g],

$$
\begin{equation*}
F^{*}(a, b, c, z)=(1-z)^{-a} F^{*}\left(a, c-b, c, \frac{z}{z-1}\right) \tag{4}
\end{equation*}
$$

where we use the principal branch of $(1-z)^{-a}$. For each fixed z with $\operatorname{Re} z<\frac{1}{2}$, the extended function $F^{*}(a, b, c, z)$ is an entire function of a, b, c. We note also that

$$
\begin{equation*}
F^{*}(a, b, c, z)=F^{*}(b, a, c, z) \tag{5}
\end{equation*}
$$

The first integral operator which we consider is
$H_{1}(a, b, c)$ defined for any complex numbers a, b and c with Re $c>0$ and for suitable functions ϕ by

$$
\begin{align*}
& \left(H_{1}(a, b, c) \phi\right)(x)=\int_{0}^{x}(x-t)^{c-1} F^{*}\left(a, b, c, 1-\frac{x}{t}\right) \phi(t) d t \tag{6}\\
= & x^{c} \int_{0}^{1}(1-v)^{c-1} F^{*}\left(a, b, c, 1-\frac{1}{v}\right) \phi(x v) d v \tag{7}
\end{align*}
$$

In order to discuss the mapping properties of $H_{1}(a, b, c)$ on $F_{p, \mu}$, we first discuss the behaviour of $F^{*}\left(a, b, c, 1-\frac{1}{v}\right)$ as $v \rightarrow 0+$. Provided $\mathrm{b}-\mathrm{a}$ is not an integer, we have, by [9], p. 109,

$$
F\left(a, b, c, 1-\frac{1}{v}\right)
$$

$=v^{a} \frac{\Gamma(b-a)}{\Gamma(c-a) \Gamma(b)} F(a, c-b, a-b+1, v)+v^{b} \frac{\Gamma(a-b)}{\Gamma(c-b) \Gamma(a)} F(c-a, b, b-a+1, v)$
$=\frac{\pi}{\sin (b-a) \pi}\left\{\frac{v^{a} F(a, c-b, a-b+1, v)}{\Gamma(c-a) \Gamma(b) \Gamma(a-b+1)}-\frac{v^{b} F(c-a, b, b-a+1, v)}{\Gamma(c-b) \Gamma(a) \Gamma(b-a+1)}\right\}$
so that, in this case, as $\mathrm{v} \rightarrow 0_{+}$,

$$
\begin{equation*}
F^{*}\left(a, b, c, 1-\frac{1}{v}\right)=0\left(v^{\min (\operatorname{Re} a, \operatorname{Re} b)}\right) \tag{9}
\end{equation*}
$$

However, if $\mathrm{b}-\mathrm{a}$ is an integer, we must use a limiting argument in (8). Let $\mathrm{b}=\mathrm{a}+\mathrm{h}$. Then the right-hand side of (8) becomes
$\frac{\pi v^{a}}{\sin h \pi}\left\{\frac{F(a, c-a-h, 1-h, v)}{\Gamma(c-a) \Gamma(a+h) \Gamma(1-h)}-\frac{v^{h} F(c-a, a+h, 1+h, v)}{\Gamma(c-a-h) \Gamma(a) \Gamma(1+h)}\right\}$
For fixed a, c, v, the expression \{ \} is an analytic function of h. By expanding in powers of h and letting $h \rightarrow 0$, we can prove that , as $\mathrm{v} \rightarrow 0+$,

$$
\begin{equation*}
F^{*}\left(a, a, c, 1-\frac{1}{v}\right)=O\left(v^{\operatorname{Re} a} \log v\right) \tag{11}
\end{equation*}
$$

Suppose now that $b=a+n$, where m is a positive integer. Putting $b=a+m+h$ in the iright-hand side of (8) gives $\frac{(-1)^{m} \pi v^{a}}{\sin h \pi}\left\{\frac{F(a, c-a-m-h, 1-m-h, v)}{\Gamma(c-a) \Gamma(a+m+h) \Gamma(1-m-h)}-\frac{v^{m+h} F(c-a, a+m+h, m+h+1, v)}{\Gamma(c-a-m-h) \Gamma(a) \Gamma(m+h+1)}\right\}$
$=\frac{(-1)^{m} \pi v^{a}}{\sin h \pi}\left\{\sum_{n=0}^{m-1} \frac{(a)(c-a-m-h)}{\Gamma(1-m-h+n) \Gamma(c-a) \Gamma(a+m+h)} \frac{v^{n}}{n!}\right.$ $+\sum_{n=0}^{\infty} \frac{(a)_{n+m} \frac{(c-a-m-n)}{\Gamma(c-a) \Gamma(a+m+h) \Gamma(1-h+n)} \frac{v^{n+m}}{(n+m)!}, ~}{(a+m}$ $\left.-\sum_{n=0}^{\infty} \frac{(c-a)}{\Gamma(c-a-m-h) \Gamma(a) \Gamma(m+h+1+n)} \frac{(a+m+h)}{n!} \frac{v^{n+m+h}}{n!}\right\}$

Letting $h \rightarrow 0$, the terms in the finite sum all vanish, while those in the two isfinite sums cancel in pairs and, proceeding as before, we deduce (11) again in this case. A similar argument holds if m is negative. Hence, for any a, b, c and $\delta>0$, we have that, as $\mathrm{v} \rightarrow \mathrm{O}_{+}$,

$$
\begin{equation*}
F^{*}\left(a, b, c, 1-\frac{1}{v}\right)=0(v \min (\operatorname{Re} a, \operatorname{Re} b)-\delta) \tag{12}
\end{equation*}
$$

By studying the partial derivatives of $F^{*}\left(a, b, c 1-\frac{1}{v}\right)$ with respect to a, b and c, we can prove similarly

Lemma 1
Let a, b, c be any complex numbers and let $\delta>0$. Then there exists a constant M such that, for $0<v<1$,

$$
\begin{aligned}
&\left|F^{*}\left(a, b, c, 1-\frac{1}{v}\right)\right| \leqslant M v^{\min (\operatorname{Re} a, \operatorname{Re} b)-\delta} \\
&\left|\frac{\partial}{\partial a} F^{*}\left(a, b, c, 1-\frac{1}{v}\right)\right| \leqslant M v^{\min (\operatorname{Re} a, \operatorname{Re} b)-\delta} \\
&\left|\frac{\partial}{\partial b} F^{*}\left(a, b, c, 1-\frac{1}{v}\right)\right| \leqslant M v^{\min (\operatorname{Re} a, \operatorname{Re} b)-\delta} \\
&\left|\frac{\partial}{\partial c} F^{*}\left(a, b, c, 1-\frac{1}{v}\right)\right| \leqslant M v^{2} \min (\operatorname{Re} a, \operatorname{Re} b)-\delta
\end{aligned}
$$

§6.2 The action of $H_{1}(\underline{a}, \mathrm{~b}, \mathrm{c})$ on F, μ
We are now ready to discuss the action of $H_{1}(a, b, c)$
as defined by (6) or (7) on functions of $F_{p, \mu}$.

Theorem 2

Let a, b be any complex numbers, Re $c>0$ and $\phi \in F_{p, \mu}$ with $-\operatorname{Re} \mu-\frac{1}{q}<\min (\operatorname{Re} a, \operatorname{Re} b)$. Then (i) $H_{1}(a, b, c) \phi$ exists and is continuous on $(0, \infty)$
(ii) For each fixed $x, 0<x<\infty,\left(H_{1}(a, b, c) \phi\right)(x)$ is an entire function of a and b and an analytic function of c for $\operatorname{Re} c>0$. Proof: (i) We have, from (7),
$\left(H_{1}(a, b, c) \phi\right)(x)=x^{c} \int_{0}^{1}(1-v)^{c-1} F^{*}\left(a, b, c, 1-\frac{1}{v}\right) \phi(x v) d v$
By Lemma 1 and Lemna 2.4, for $0<v<1, \delta>0$, $\exists \mathrm{M}$, dependent on δ, such that

$$
\begin{aligned}
\left|(1-v)^{c-1} F^{*}\left(a, b, c, 1-\frac{1}{v}\right) \phi(x v)\right| \leqslant & M(1-v)^{\operatorname{Re} c-1}(x v)^{\operatorname{Re} \mu-\frac{1}{p}} \\
& \times v^{\min (\operatorname{Re} a, \operatorname{Re} b)-\delta}
\end{aligned}
$$

Under the given restrictions, the right-hand side is an integrable function of v over $(0,1)$ for δ sufficiently small. Hence, the integral on the right of (13) converges uniformly on compact subsets of $(0, \infty)$. Hence, $H_{1}(a, b, c) \phi$ is continuous. (ii) To prove analyticity with respect to a, b, c, it is merely necessary to justify differentiation under the integral sign. For example

$$
\begin{gathered}
\frac{\partial}{\partial c}\left\{(1-v)^{c-1} F^{*}\left(a, b, c, 1-\frac{1}{v}\right) \phi(x v)\right\}=(1-v)^{c-1} \frac{\partial}{\partial c} F^{*}\left(a, b, c, 1-\frac{1}{v}\right) \phi(x v) \\
+(1-v)^{c-1} \log (1-v) F^{*}\left(a, b, c, 1-\frac{1}{v}\right) \phi(x v)
\end{gathered}
$$

The hypotheses of the complex form of Theorem 1.3 can be satisfied using Lemma 1 and the result follows. Similarly for a, b.

We shall, in fact, be able to prove much more about $H_{1}(a, b, c) \phi$ shortly. To this end, we next establish a connection between the operator $H_{1}(a, b, c)$ and fractional integration.

Lemma 3

$$
\text { Let } \phi \in \mathrm{F}_{\mathrm{p}, \mu},-\operatorname{Re} \mu-\frac{1}{\mathrm{q}}<\min (\operatorname{Re} \xi, \operatorname{Re} \eta)
$$

$\operatorname{Re} \alpha>0, \operatorname{Re} \beta>0$. Then

$$
\begin{equation*}
I_{x}^{\eta, \alpha} I_{x}^{\xi, \beta} \phi=x^{-\eta-\alpha} H_{1}(\xi+\beta-\eta, \beta, \alpha+\beta) x^{\eta-\beta} \phi \tag{14}
\end{equation*}
$$

Proof: $\quad I_{x}^{\eta, \alpha} I_{x}^{\xi, \beta} \phi(x)$
$=\frac{x^{-\eta-\alpha}}{\Gamma(\alpha)} \int_{0}^{x}(x-u)^{\alpha-1} u^{\eta} d u \frac{u^{-\xi-\beta}}{\Gamma(\beta)} \int_{0}^{u}(u-t)^{\beta-1} t^{\xi} \phi(t) d t$
We nay justify inverting the order of integration by means of Fubini's Theorem so that
$I_{x}^{\eta, \alpha} I_{x}^{\xi, \beta} \phi(x)=\frac{x^{-\eta-\alpha}}{\Gamma(\alpha) I(\beta)} \int_{0}^{x} t^{\xi} \phi(t) d t \int_{t}^{x}(x-u)^{\alpha-1}(u-t)^{\beta-1} u^{\eta-\xi-\beta} d u$
On putting $w=\frac{u-t}{x-t}$, the inner integral becomes
$(x-t)^{\alpha+\beta-1} t^{\eta-\xi-\beta} \int_{0}^{1}(1-w)^{\alpha-1} w_{w}^{\beta-1}\left[1-w\left(1-\frac{x}{t}\right)\right]^{\eta-\xi-\beta} d w$
$=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}(x-t)^{\alpha+\beta-1} t^{\eta-\xi-\beta} F\left(\xi+\beta-\eta, \beta, \alpha+\beta, 1-\frac{x}{t}\right)$
using Formula (10) , p. 59 of [9].Thus, finally
$I_{x}^{\eta, \alpha} I_{x}^{\xi, \beta} \phi(x)=\frac{x^{-\eta-\alpha}}{\Gamma(\alpha+\beta)} \cdot \int_{0}^{x}(x-t)^{\alpha+\beta-1} F\left(\xi+\beta-\eta, \beta, \alpha+\beta, 1-\frac{x}{t}\right) t^{\eta-\beta_{\phi}} \phi(t) d t$
$=\mathrm{x}^{-\eta-\alpha} \mathrm{H}_{1}(\xi+\beta-\eta, \quad \beta, \alpha+\beta)-,\mathrm{x}^{\eta-\beta} \phi(\mathrm{x})$
as required 。
It now follows that for $\phi \in \mathrm{F}_{\mathrm{p}, \mu}$,
$H_{1}(\xi+\beta-\eta, \beta, \alpha+\beta) \phi=x^{\eta+\alpha} I_{x}^{\eta, \alpha} I_{x}^{\xi, \beta} x^{\beta-\eta} \phi(x)$
provided $\operatorname{Re} \alpha>0$, $\operatorname{Re} \beta>0$ and $-\operatorname{Re}(\mu+\beta-\eta)-\frac{1}{\mathrm{q}}<\min (\operatorname{Re} \xi, \operatorname{Re} \eta)$ and hence we obtain

Corollary 4

$$
\text { Let } \phi \in F_{p, \mu},-\operatorname{Re} \mu-\frac{1}{q}<\min (\operatorname{Re} a, \operatorname{Re} b) \text {, }
$$

$\operatorname{Re} \mathrm{c}>\operatorname{Re} \mathrm{b}>0$. Then for any η,

$$
\begin{equation*}
\left(\mathrm{H}_{1}(\mathrm{a}, \mathrm{~b}, \mathrm{c}) \phi\right)(\mathrm{x})=\mathrm{x}^{\eta+\mathrm{c}-\mathrm{b}} \mathrm{I}_{\mathrm{x}}^{\eta, \mathrm{c}-\mathrm{b}} \mathrm{I}_{\mathrm{x}}^{\eta+\mathrm{a}-\mathrm{b}, \mathrm{~b}} \mathrm{x}^{\mathrm{b}-\eta} \phi(\mathrm{x}) \tag{15}
\end{equation*}
$$

The fact that the right side is independent of η is seen by writing it in the fom

$$
\begin{align*}
& \mathrm{x}^{\eta * o-\mathrm{b}} \mathrm{x}^{-\eta-\mathrm{c}+\mathrm{b}} \mathrm{I}_{\mathrm{x}}^{\mathrm{c}-\mathrm{b}} \mathrm{x}^{\eta} \mathrm{x}^{-\eta-\mathrm{a}} \mathrm{I}_{\mathrm{x}}^{\mathrm{b}} \mathrm{x}^{\eta+\mathrm{a}-\mathrm{b}} \mathrm{x}^{\mathrm{b}-\eta} \phi(\mathrm{x}) \\
= & \mathrm{I}_{\mathrm{x}}^{\mathrm{c}-\mathrm{b}} \mathrm{x}^{-\mathrm{a}} \mathrm{I}_{\mathrm{x}}^{\mathrm{b}} \mathrm{x}^{\mathrm{a}} \phi(\mathrm{x}) \tag{16}
\end{align*}
$$

Using the theory of Chapter 3 , we can continue the right side of (15) analytically with respect to b to remove the restriction $\operatorname{Re} \mathrm{c}>\operatorname{Re} \mathrm{b}>0$. We then use (15) to define $\mathrm{H}_{1}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ on $\mathrm{F}_{\mathrm{p}, \mu}$ provided only that $-\operatorname{Re} \mu-\frac{1}{\mathrm{q}}<\min (\operatorname{Re} \mathrm{a}, \operatorname{Re} \mathrm{b})$. By Theorem 2(ii) and uniqueness of analytic continuation, the new definition coincides with the old when $\operatorname{Re} c>0$.

We now use results in Chapter 3 to derive more properties of $H_{1}(a, b, c)$ on $F_{p, \mu}$. From (15) we see at once that if $-\operatorname{Re} \mu-\frac{1}{q}<\min (\operatorname{Re} a, \operatorname{Re} b), H_{1}(a, b, c)$ is a continuous linear mapping of $F_{p, \mu}$ into $F_{p, \mu+c}$. If, in addition, we have $-\operatorname{Re} \mu-\frac{1}{q}<\min (\operatorname{Re} c, \operatorname{Re}(a+b)), H_{1}(a, b, c)$ is invertible and, for any η and $\psi \in F_{p, \mu_{+} c}$,

$$
\begin{align*}
\left(\left[H_{1}(\mathrm{a}, \mathrm{~b}, \mathrm{c})\right]^{-1} \psi\right)(\mathrm{x}) & =\mathrm{x}^{\eta-\mathrm{b}} \mathrm{I}_{\mathrm{x}}^{\eta+\mathrm{a},-\mathrm{b}} \mathrm{I}_{\mathrm{x}}^{\eta+\mathrm{c}-\mathrm{b}, \mathrm{~b}-\mathrm{c}} \mathrm{x}^{-\eta-\mathrm{c}+\mathrm{b}} \psi(\mathrm{x}) \tag{17}\\
& =\mathrm{x}^{\eta-\mathrm{b}-\mathrm{a}} \mathrm{I}_{\mathrm{x}}^{\eta,-\mathrm{b}} \mathrm{I}_{\mathrm{x}}^{\eta+\mathrm{c}-\mathrm{b}-\mathrm{a}, \mathrm{~b}-\mathrm{c}_{\mathrm{x}}^{-\eta-\mathrm{c}+\mathrm{a}+\mathrm{b}} \psi(\mathrm{x})} \\
& =\mathrm{x}^{-\mathrm{a}} \mathrm{H}_{1}(-\mathrm{a}, \mathrm{~b}-\mathrm{c},-\mathrm{c}) \mathrm{x}^{\mathrm{a}} \psi(\mathrm{x}) \tag{18}
\end{align*}
$$

froin (15)
We gather our results together in the form of a
theorem .

Theorem 5
$\mathrm{H}_{1}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ is a continuous linear mapping of
$\mathrm{F}_{\mathrm{p}, \mu}$ into $\mathrm{F}_{\mathrm{p}, \mu+\mathrm{c}}$ provided $-\operatorname{Re} \mu-\frac{1}{\mathrm{q}}<\min (\operatorname{Re} \mathrm{a}, \operatorname{Re} \mathrm{b})$. If
in addition $-\operatorname{Re} \mu-\frac{1}{\mathrm{q}}<\min (\operatorname{Re} \mathrm{c}, \operatorname{Re}(\mathrm{a}+\mathrm{b})), \mathrm{H}_{1}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ is an isomorphism of $F_{p, \mu}$ onto $F_{p, \mu+c}$ with inverse given by (17). Further, for $\psi \in F_{p, \mu+c}$, (18) holds .

An interesting point emerges at this stage. From
(5) it follows that for any a, b, c and $-\operatorname{Re} \mu-\frac{1}{q}<\min (\operatorname{Re} a, \operatorname{Re} b)$

$$
\left(H_{1}(a, b, c) \phi\right)(x)=\left(H_{1}(b, a, c) \phi\right)(x)
$$

for all $\phi \in F_{p, \mu}$. Then from (16) we have for $\phi \in F_{p, \mu}$,

$$
I_{x}^{c-b} x^{-a} I_{x}^{b} x^{a} \phi(x)=I_{x}^{c-a} x^{-b} I_{x}^{a} x^{b} \phi(x)
$$

the restriction $\operatorname{Re} c>\operatorname{Re} b>0$ being removed by analytic continuation. Thus, if $-\operatorname{Re} \mu=\frac{1}{\mathrm{q}} \cup \leqslant \min (0 ; \operatorname{Re}(\mathrm{a}-\mathrm{b})) ; \phi \in \mathrm{F}_{\mathrm{p}}, \ldots$

$$
I_{x}^{c-b} x^{-a} I_{x}^{b} x^{a-b} \phi(x)=I_{x}^{c-a} x^{-b} I_{x}^{a} \phi(x)
$$

Taking $c=b$, we can use (3.25) and the fact that $-\operatorname{Re} \mu-\frac{1}{q}<0$ to deduce that

$$
x^{-a} I_{x}^{b} x^{a-b} \phi(x)=I_{x}^{b-a} x^{-b} I_{x}^{a} \phi(x)
$$

Finally, writing $\alpha=-\mathrm{a}, \beta=\mathrm{b}$ and $\gamma=\mathrm{a}-\mathrm{b}$ we obtain

The oren 6
Let $\phi \in F_{p, \mu},-\operatorname{Re} \mu-\frac{1}{q}<\min (0, \operatorname{Re} y)$,
$\alpha+\beta+\gamma=0$. Then

$$
\begin{equation*}
\mathrm{x}^{\alpha} \mathrm{I}_{\mathrm{x}}^{\beta} \mathrm{x}^{\gamma} \phi(\mathrm{x})=\mathrm{I}_{\mathrm{x}}^{-\gamma} \mathrm{x}^{-\beta} \mathrm{I}_{\mathrm{x}}^{-\alpha} \phi(\mathrm{x}) \tag{19}
\end{equation*}
$$

(19) is a form of the second index law for fractional integrals which has been discussed by Erdèlyi [7] and Love [19].
(The first index law for I_{x}^{α} is (3.27) with $m=1$)

\$6.3 Other hypergeometric integral operators on $\mathrm{F}_{\mathrm{p}, \mu}$

We now consider three more hypergeometric integral operators closely related to $H_{1}(a, b, c)$

For any complex numbers a, b and $R e c>0$ and for suitable functions ϕ, we define $H_{2}{ }^{\prime}(\mathrm{a}, \mathrm{b}, \mathrm{c})$) ϕ by

$$
\begin{equation*}
\left(H_{2}(a, b, c) \phi\right)(x)=\int_{0}^{x}(x-t)^{c-1} F^{*}\left(a, b, c, 1-\frac{t}{x}\right) \phi(t) d t \tag{20}
\end{equation*}
$$

Proceeding as in [17], p.195, we deduce that

$$
\begin{align*}
& H_{1}(a, c-b, c) x^{-a} \phi(x)=x^{-a} H_{2}(a, b, c) \phi(x) \\
\Rightarrow \quad & H_{2}(a, b, c) \phi(x)=x^{a} H_{1}(a, c-b, c) x^{-a} \phi(x) \tag{21}
\end{align*}
$$

Since the right-hand side is meaningful for $\operatorname{Re} \mathrm{c} \leq 0$, we can use (21) to extend the definition of $H_{2}(a, b, c)$. Let $\delta \in F_{p, \mu^{*}}$ Then, provided $-\operatorname{Re} \mu-\frac{1}{q}<\min (0, \operatorname{Re}(c-b-a))$, we have that $\left(H_{2}(a, b, c) \delta\right)(x)$ is, for each fixed x and ϕ, an analytic function of a, b, c, and maps $F_{p, \mu}$ into $F_{p, \mu+\infty}$. We see from Theorem 5 that under the same conditions

$$
\begin{equation*}
\left(\left[H_{1}(-a,-b,-c)\right]^{-1} \phi\right)(x)=x^{a} H_{1}(a, c-b, c) x^{-a} \phi(x) \tag{22}
\end{equation*}
$$

for $\phi \in F_{p, \mu}$ so that in this case

$$
H_{2}(a, b, c)=\left[H_{1}(-a,-b,-c)\right]^{-1} \text { on } F_{p, \mu}
$$

We can express $H_{2}(a, b, c)$ in terms of fractional integrals by means of Theorem 5 . We gather the results together in

The orem 7
Let $-\operatorname{Re} \mu-\frac{1}{q}<\min (0, \operatorname{Re}(c-b-a))$. Then $H_{2}(a, b, c)$ is a continucus linear mapping of $F_{p, \mu}$ into $F_{p, \mu+c}$ and, for any η,
$\left(H_{2}(\mathrm{a}, \mathrm{b}, \mathrm{c}) \phi\right)(\mathrm{x})=\mathrm{x}^{\eta+\mathrm{a}+\mathrm{b}} \mathrm{I}_{\mathrm{x}}^{\eta, \mathrm{b}} \mathrm{I}_{\mathrm{x}}^{\eta+\mathrm{a}+\mathrm{b}-\mathrm{c}, \mathrm{c}-\mathrm{b}} \mathrm{x}^{\mathrm{c}-\mathrm{b}-\mathrm{a}-\eta} \phi(\mathrm{x})$
If, in addition, $-\operatorname{Re} \mu-\frac{1}{q}<\min (\operatorname{Re}(c-a), \operatorname{Re}(c-b))$,
$\mathrm{H}_{2}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ is an isomorphism of $\mathrm{F}_{\mathrm{p}, \mu}$ onto $\mathrm{F}_{\mathrm{p}, \mu+\mathrm{c}}$, and for $\psi \in F_{p, \mu+c}$,
$\left(\mathrm{H}_{2}(\mathrm{a}, \mathrm{b}, \mathrm{c})^{-1} \psi\right)(\mathrm{x})=\mathrm{x}^{\eta+\mathrm{a}+\mathrm{b}-\mathrm{c}} \mathrm{I}_{\mathrm{x}}^{\eta+\mathrm{a}, \mathrm{b-c}} \mathrm{I}_{\mathrm{x}}^{\eta+\mathrm{b},-\mathrm{b}} \mathrm{x}^{-\eta-\mathrm{a}-\mathrm{b}} \psi(\mathrm{x})$
In this case, the integral equation

$$
H_{2}(a, b, c) \phi=\psi
$$

has, for each $\psi \in F_{p, \mu+c}$, a un:ique solution $\phi \in F_{p, \mu}$ given by (24). Also, on $F_{p, \mu+c}$

$$
\begin{aligned}
{\left[H_{2}(a, b, c)\right]^{-1} } & =x^{a} H_{2}(-a, b-c,-c) x^{-a} \\
{\left[H_{2}(a, b, c)\right]^{-1} } & =H_{1}(-a,-b,-c) \\
H_{2}(a, b, c) & =\left[H_{1}(-a,-b,-c)\right]^{-1}
\end{aligned}
$$

and on $F_{p, \mu}$

Our other two operators are the adjoints of
$H_{1}(a, 3, c)$ and $H_{2}(a, b, c)$ and are discussed by Love in [18]. For complex numbers a, b, c with $\operatorname{Re} c>0$, we define $H_{3}(a, b, c)$ and $H_{4}(a, b, c)$ by

$$
\begin{align*}
& \left(H_{3}(a, b, c) \delta\right)(x)=\int_{x}^{\infty}(t-x)^{c-1} F^{*}\left(a, b, c, 1-\frac{x}{t}\right) \phi(t) d t \tag{25}\\
& \left(H_{4}(a, b, c) \phi\right)(x)=\int_{x}^{\infty}(t-x)^{c-1} F^{*}\left(a, b, c, 1-\frac{t}{x}\right) \phi(t) d t \tag{26}
\end{align*}
$$

We can treat $H_{4}(a, b, c)$ in a similar fashion to
$H_{1}(a, b, c)$. Let $\phi \in F_{p, \mu}$, $\operatorname{Re} \mu-\frac{1}{p}<\min (\operatorname{Re} \xi, \operatorname{Re} \eta)$ and $\operatorname{Re} \alpha>0, \operatorname{Re} \beta>0$. Then by interchanging the order of integration we can prove that

$$
\begin{equation*}
\mathrm{K}_{\mathrm{x}}^{\xi, \beta} \mathrm{K}_{\mathrm{x}}^{\eta, \alpha} \phi=\mathrm{x}^{\eta-\beta} \mathrm{H}_{4}(\xi+\beta-\eta, \beta, \alpha+\beta) \mathrm{x}^{-\eta-\alpha} \phi(\mathrm{x}) \tag{27}
\end{equation*}
$$

from which we deduce that if $\operatorname{Re} \mu-\frac{1}{\mathrm{p}}<\min (\operatorname{Re}(\mathrm{a}-\mathrm{c}), \operatorname{Re}(\mathrm{b}-\mathrm{c}))$, $\operatorname{Re} a>\operatorname{Re} b>0$,

$$
\begin{equation*}
\left(\mathrm{H}_{4}(\mathrm{a}, \mathrm{~b}, \mathrm{c}) \phi\right)(\mathrm{x})=\mathrm{x}^{\mathrm{b}-\eta} \mathrm{K}_{\mathrm{x}}^{\eta+\mathrm{a}-\mathrm{b}, \mathrm{~b}} \mathrm{~K}_{\mathrm{x}}^{\eta, \mathrm{c}-\mathrm{b}} \mathrm{x}^{\eta+\mathrm{c}-\mathrm{b}} \phi(\mathrm{x}) \tag{28}
\end{equation*}
$$

Now, under the given restrictions, for fixed x and δ, we can show that $\left.\left(H_{4}(a, b, c)\right)_{\phi}\right)(x)$ is an analytic function of a, b, c . Further the right-hand side of (28) can be continued analytically using the theory of Chapter 3 . We can therefore extend the definition of $H_{4}(a, b, c)$ using (28), the new and old definitions coinciding, by analytic continuation, when $\operatorname{Rec}>0$. $\mathrm{H}_{4}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ when thus extended is a continuous linear mapping of $F_{p, \mu}$ into $F_{p, \mu+c \cdot}$ provided only $\operatorname{Re}-\mu-\frac{1}{p}<\min (\operatorname{Re}(a-c), \operatorname{Re}(b-c))$. Proceeding as before we can derive the following results .

The orem 8
Let $\operatorname{Re} \mu-\frac{1}{\mathrm{p}}<\min (\operatorname{Re}(a-c)$, $\operatorname{Re}(b-c))$.
Then $H_{4}(a, b, c)$ is a continuous linear mapping of $F_{p, \mu}$ into $F_{p, \mu+c}$, and for $\delta \in F_{p, \mu}, H_{4}(a, b, c) \phi$ is given by (28). If, in addition, $\operatorname{Re} \mu-\frac{1}{\mathrm{p}}<\min (0, \operatorname{Re}(\mathrm{a}+\mathrm{b}-\mathrm{c})), \mathrm{H}_{4}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ is an isomorphism of $F_{p, \mu}$ onto $F_{p, \mu+c}$ and for $\psi \in F_{p, \mu+c}$, $\left[\left(H_{4}(a, b, c)\right)^{-1} \psi\right](x)=\mathrm{x}^{-\eta-\mathrm{c}+\mathrm{b}} \mathrm{K}_{\mathrm{x}}^{\eta+\mathrm{c}-\mathrm{b}, \mathrm{b}-\mathrm{c}} \mathrm{K}_{\mathrm{x}}^{\eta+\mathrm{a},-\mathrm{b}} \mathrm{x}^{\eta-\mathrm{b}} \psi(\mathrm{x}) \quad$ (29)
or $\quad\left[\left(H_{4}(a, b, c)\right)^{-1} \psi\right](x)=x^{a} H_{4}(-a, b-c,-c) x^{-a} \psi(x)$
In this case, the integral equation

$$
\left.\mathrm{H}_{4}(\mathrm{a}, \mathrm{~b}, \mathrm{c})\right\rangle=\psi \quad\left(\psi \in \mathrm{F}_{\mathrm{p}, \mu+\mathrm{c}}\right)
$$

has a unique soiution $\phi \in F_{p, \mu}$ given by (29).

From (28), we deduce that

$$
\begin{equation*}
\left(H_{4}(a, b, c) \phi\right)(x)=x^{a} K_{x}^{b} x^{-a} K_{x}^{c-b} \phi(x) \tag{31}
\end{equation*}
$$

Since, using (5) again, $\mathrm{H}_{4}(\mathrm{a}, \mathrm{b}, \mathrm{c}) \delta=\mathrm{H}_{4}(\mathrm{~b}, \mathrm{a}, \mathrm{c})$) δ, we deduce that if $\operatorname{Re} \mu-\frac{1}{\mathrm{p}}<\min (\operatorname{Re}(a-c): \operatorname{Re}(b-c))$ and $\phi \in F_{p, \mu}$,

$$
\begin{aligned}
& x^{a} K_{x}^{b} x^{-a} K_{x}^{c-b} \phi(x)=x^{b} K_{x}^{a} x^{-b} K_{x}^{c-a} \phi(x) \\
& \Rightarrow x^{a \dot{a}-\mathrm{b}} \mathrm{~K}_{\mathrm{x}}^{\mathrm{b}} \mathrm{x}^{-\mathrm{a}} \mathrm{~K}_{\mathrm{x}}^{\mathrm{c}-\mathrm{b}} \dot{\phi}(\mathrm{x})=\mathrm{K}_{\mathrm{x}}^{\mathrm{a}} \mathrm{x}^{-\mathrm{b}} \mathrm{~K}_{\mathrm{x}}^{\mathrm{c}-\mathrm{a}} \dot{\phi}(\mathrm{x})
\end{aligned}
$$

Taking $c=b$ and using the theory of K_{x}^{α} developed in Chapter 3, we deduce that if $\operatorname{Re} \mu-\frac{1}{\mathrm{p}}<\min (0, \operatorname{Re}(\mathrm{a}-\mathrm{b}))$,

$$
x^{a-b} K_{x}^{b} x^{-a} \phi(x)=K_{x}^{a} x^{-b} K_{x}^{b-a} \phi(x)
$$

Writing $\alpha=-\mathrm{a}, \beta=\mathrm{b}$ and $\gamma=\mathrm{a}-\mathrm{b}$, we obtain

Theoren 9

$$
\text { Let } \phi \in F_{p, \mu}, \operatorname{Re} \mu-\frac{1}{p}<\min (0, \operatorname{Re} \gamma) \text {, }
$$

$\alpha+\beta+\gamma=0$. Then

$$
\begin{equation*}
x^{y} K_{x}^{\beta} x^{\alpha} \quad \phi(x)=K_{x}^{-\alpha} x^{-\beta} K_{x}^{-\gamma} \phi(x) \tag{32}
\end{equation*}
$$

which is a fora of the second index law for the operators K_{x}^{α}.
(The first index law is (3.39).

Finally, we consider $H_{3}(a, b, c)$. For $\mathrm{Re} c>0$, we may use (25) and (26) and proceed as in [18], pp. 1073-4, to prove that for suitable functions $\$$,

$$
\begin{equation*}
\left(H_{3}(a, b, c) \dot{\phi}\right)(x)=x^{-a} H_{4}(a, c-b, c) x^{a} \phi(x) \tag{33}
\end{equation*}
$$

We may use (33) to extend the definition of $H_{4}(a, b, c)$ to $\operatorname{Re} e \leq 0$. If $\oint \in F_{p, \mu}$ and $\operatorname{Re} \mu-\frac{1}{p}<\min (-\operatorname{Re} c,-\operatorname{Re}(a+b))$, $\left(H_{3}(a, b, c)\right.$) (x) is, for fixed x and ϕ, an analytic function of a, b and c. Fron (33) and Theoren 8, we deduce

Theoren 10

$$
\text { Let } \operatorname{Re} \mu-\frac{1}{p}<\min (-\operatorname{Re} c,-\operatorname{Re}(a+b)) \text {. }
$$

Then $H_{3}(a, b, c)$ is a continuous linear mapping of $F_{p, \mu}$ into $F_{p, \mu+c}$ and, for $\phi \in F_{p, \mu}$ and any η,

$$
\begin{equation*}
\left(H_{3}(a, b, c) \delta\right)(x)=x^{c-a-b-\eta} K_{x}^{\eta+a+b-c, c-b} K_{x}^{\eta, b} x^{\eta+a+b} \phi(x) \tag{34}
\end{equation*}
$$

If, in adaition, $\operatorname{Re} \mu-\frac{1}{p}<\min (-\operatorname{Re} a,-\operatorname{Re} b), H_{3}(\varepsilon, b, c)$
is an isomorphism of $F_{p, \mu}$ onto $F_{p, \mu+c}$ and, for $\psi \in F_{p, \mu+c}$,

$$
\begin{aligned}
{\left[\left(H_{3}(\mathrm{a}, \mathrm{~b}, \mathrm{c})\right)^{-1} \psi\right](\mathrm{x}) } & =\mathrm{x}^{-\eta-\mathrm{a}-\mathrm{b}} \mathrm{~K}_{\mathrm{x}}^{\eta+\mathrm{b},-\mathrm{b}} \mathrm{~K}_{\mathrm{x}}^{\eta+\mathrm{a}, \mathrm{~b}-\mathrm{c}} \mathrm{x}^{\eta+\mathrm{a}+\mathrm{b}-\mathrm{c}} \psi(\mathrm{x})(35) \\
& =\mathrm{x}^{-\mathrm{a}} \mathrm{H}_{3}(-\mathrm{a}, \mathrm{~b}-\mathrm{c},-\mathrm{c}) \mathrm{x}^{\mathrm{a}} \psi(\mathrm{x}) \\
& =\left(\mathrm{H}_{4}(-\mathrm{a},-\mathrm{b},-\mathrm{c}) \psi\right)(\mathrm{x})
\end{aligned}
$$

In this case, the integral equation

$$
H_{3}(a, b, c) \phi=\psi
$$

has, for each $\psi \in F_{p, \mu+c}$, a unique solution $\& \in F_{p, \mu}$ given by (35) .

S6.4 Hypergeonetric Integral Operators on $F_{p, \mu}^{\prime}$
We are now ready to discuss the operators $H_{i}(a, b, c)$
$(i=1,2,3,4)$ on $\mathrm{F}_{\mathrm{p}, \mu}^{\prime}$ 。
We begin again with $H_{1}(a, b, c)$. Asswaing that f and $H_{1}(a, b, c) f$ generate regular functionals, we have, proceeding

$$
\begin{aligned}
f \text { formally, } \\
\begin{aligned}
\left(H_{1}(a, b, c) f, \phi\right) & =\int_{0}^{\infty} \phi(x) d x \int_{0}^{x}(x-t)^{c-1} F^{*}\left(a, b, c, 1-\frac{x}{t}\right) f(t) d t \\
& =\int_{0}^{\infty} f(t) d t \int_{t}^{\infty}(x-t)^{c-1} F^{* *}\left(a, b, c, 1-\frac{x}{t}\right) \phi(x) d x
\end{aligned}, ~
\end{aligned}
$$

$$
\begin{equation*}
\text { or }\left(H_{1}(a, b, c) f, \phi\right)=\left(f, H_{4}(a, b, c) \phi\right) \tag{36}
\end{equation*}
$$

By Theorem 8, the right-hand side is meaningful if $f \in F_{p, \mu}^{\prime}$, o $\in F_{p, \mu-c}$ and $\operatorname{Re} \mu-\frac{1}{p}<\min (\operatorname{Re} a, \operatorname{Re} b)$. In this case, we use (36) to define $H_{1}(a, b, c) f$ for $f^{\epsilon} F_{p, \mu}^{\prime}$. By Theoren . 1.2, $H_{1}(a, b, c) f \in \mathrm{~F}_{\mathrm{p}, \mu-\mathrm{c}}^{\prime}$ and taking adjoints in Theoren 8 we obtain

The oren 11

Let Re $\mu-\frac{1}{\mathrm{p}}<\min (\operatorname{Re} a, \operatorname{Re} b)$. Then $\mathrm{H}_{1}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ is a continuous linear mapping of $\mathrm{F}_{\mathrm{p}, \mu}^{\prime}$ into $F_{p, \mu-c}$ and, for $f \in F_{p, \mu}^{\prime}$

$$
\begin{equation*}
H_{1}(a, b, c) \mathbf{f}=x^{\eta+c-b} \mathbf{I}_{\mathbf{x}}^{\eta, c-b} \mathbf{I}_{\mathbf{x}}^{\eta+a-b, b} \mathrm{x}^{b-\eta} \mathbf{f} \tag{37}
\end{equation*}
$$

for any complex η. If , further, $\operatorname{Re} \mu-\frac{1}{p}<\min (\operatorname{Re} c, \operatorname{Re}(a+b))$, $H_{1}(a, b, c)$ is an isomorphisrn of $F_{p, \mu}^{\prime}$ onto $F_{p, \mu-c}^{\prime}$ and, for g $\in \mathrm{F}_{\mathrm{p}, \mu-\mathrm{c}}^{\mathrm{c}}$,

$$
\begin{align*}
& {\left[H_{1}(a, b, c)\right]^{-1} g=x^{\eta-b} I_{x}^{\eta+a,-b} I_{x}^{\eta+c-b, b-c} x^{b-c-\eta} g} \tag{38}\\
& \quad \text { or } \quad\left[H_{1}(a, b, c)\right]^{-1} g=x^{-a} H_{1}(-a, b-c,-c) x^{a} g \tag{39}
\end{align*}
$$

In this case, the integral equation

$$
H_{1}(a, b, c) f=g
$$

has, for each $g \in F_{p, \mu-c}^{\prime}$, a unique solution $f \in F_{p, \mu}^{\prime}$ given by (38).

Fron consideration of regular functionals, we are led to the following definitions of $\mathrm{H}_{2}(\mathrm{a}, \mathrm{b}, \mathrm{c}), \mathrm{H}_{3}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ and $H_{4}(a, b, c)$ for $f \in F_{p, \mu}^{\prime}$ and $\delta \in F_{p, \mu-c}$.

$$
\begin{align*}
& \left(H_{2}(a, b, c) f, \phi\right)=\left(f, H_{3}(a, b, c) \phi\right) \tag{40}\\
& \left(H_{3}(a, b, c) f, \phi\right)=\left(f, H_{2}(a, b, c) \phi\right) \tag{41}\\
& \left(H_{4}(a, b, c) f, \phi\right)=\left(f, H_{1}(a, b, c) \phi\right) \tag{42}
\end{align*}
$$

By taking adjoints in Theorens 10, 7 and 5 we obtain the following results.

Theoren 12

$$
\text { Let } \operatorname{Re} \mu-\frac{1}{\mathrm{p}}<\min (0, \operatorname{Re}(c-a-b)) \text {. Then }
$$

$\mathrm{H}_{2}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ is a continuous linear napping of $\mathrm{F}_{\mathrm{p}, \mu}^{\mathrm{\prime}}$ into $\mathrm{F}_{\mathrm{p}, \mu-\mathrm{c}}^{\mathrm{t}}$ and, for $f \in F_{p, \mu}^{\prime}$,

$$
\begin{equation*}
H_{2}(a, b, c) f=x^{\eta+a+b} I_{x}^{\eta, b} I_{x}^{\eta+a+b-c, c-b} x^{c-a-b-\eta} f \tag{43}
\end{equation*}
$$

for any complex η. If, further, $\operatorname{Re} \mu-\frac{1}{p}<\operatorname{nin}(\operatorname{Re}(c-a), \operatorname{Re}(c=b))$: $H_{2}(a, b, c)$ is an isonorphisn of $F_{p, \mu}^{\prime}$ onto $F_{p, \mu-c}^{\prime}$ and, for g $\epsilon \mathrm{F}_{\mathrm{p}, \mu-\mathrm{c}}^{:}$,

$$
\begin{equation*}
\left[H_{2}(a ; b, c)\right]^{-1} g=x^{a+b-c+\eta} I_{x}^{\eta+a, b-c} I_{x}^{\eta+b,-b} x^{-\eta-a-b} g \tag{44}
\end{equation*}
$$

Also, $\left[\mathrm{H}_{2}(\mathrm{a}, \mathrm{b}, \mathrm{c})\right]^{-1} \mathrm{~g}=\mathrm{x}^{\mathrm{a}} \mathrm{H}_{2}(-\mathrm{a}, \mathrm{b}-\mathrm{c},-\mathrm{c}) \mathrm{x}^{-\mathrm{a}} \mathrm{g}$

$$
=H_{1}(-a,-b,-c) g
$$

In this case, the integral equation

$$
\mathrm{H}_{2}(\mathrm{a}, \mathrm{~b}, \mathrm{c}) \mathrm{f}=\mathrm{g}
$$

has, for each $B \in F_{p, \mu-c}^{\prime}$, a unique solution $f \in F_{p, \mu}^{\prime}$ given by (44)。

The oren 13

$$
\text { Let }-\operatorname{Re} \mu-\frac{1}{q}<\min (-\operatorname{Re} c,-\operatorname{Re}((a+b)) \text {. }
$$

Then $H_{3}(a, b, c)$ is a continuous linear napping of $\mathrm{F}_{\mathrm{p}, \mu}^{\mathrm{s}} \mu$ into $\mathrm{F}_{\mathrm{p}, \mu-\mathrm{c}}^{\mathrm{c}}$ and for $\mathrm{f} \in \mathrm{F}_{\mathrm{p}, \mu}^{\prime}$, , and any complex η,

$$
\begin{equation*}
H_{3}(a, b, c) f=x^{c--a-b-\eta} K_{x}^{\eta+a+b-c, c-b} K_{x}^{\eta, b} x^{\eta+a+b} f^{f} \tag{45}
\end{equation*}
$$

If, further, $-\operatorname{Re} \mu-\frac{1}{q}<\min (-\operatorname{Re} a,-\operatorname{Re} b), H_{3}(a, b, c)$
is an isomorphism of $F_{p, \mu}^{\prime}$ onto $F_{p, \mu-c}^{\prime}$ and for $g \in F_{p, \mu-c}^{\prime}$,

$$
\begin{align*}
{\left[H_{3}(a, b, c)\right]^{-1} g } & =x^{-\eta-a-b} K_{x}^{\eta+b,-b} K_{x}^{\eta+a, b-c} x^{\eta+a+b-c} g \tag{46}\\
& =x^{-a} H_{3}(-a, b-c,-c) x^{a} g
\end{align*}
$$

In this case, the integral equation

$$
H_{3}(a, b, c) f=g \quad\left(g \in F_{p, \mu-c}^{\prime}\right)
$$

has a unique solution $f \in F_{p, \mu}^{\prime}$ given by (46).

The orem 14

$$
\mathrm{H}_{4}(\mathrm{a}, \mathrm{~b}, \mathrm{c}) \text { is a continuous linear napping of } \mathrm{F}_{\mathrm{p}, \mu}^{\mathrm{t}}
$$ into $F_{p, \mu-c}^{s}$ provided $-\operatorname{Re} \mu-\frac{1}{q}<\min (\operatorname{Re}(a-c), \operatorname{Re}(b-c))$, and for $f \in F_{p, \mu}^{\prime}$, and any corplex η,

$$
\begin{equation*}
\mathrm{H}_{4}(\mathrm{a}, \mathrm{~b}, \mathrm{c}) \mathrm{f}=\mathrm{x}^{\mathrm{b}-\eta} \mathrm{K}_{\mathrm{x}}^{\eta+\mathrm{a}-\mathrm{b}, \mathrm{~b}} \mathrm{~K}_{\mathrm{x}}^{\eta, \mathrm{c}-\mathrm{b}} \mathrm{x}^{\eta+\mathrm{c}-\mathrm{b}} \mathrm{f} \tag{47}
\end{equation*}
$$

If also $-\operatorname{Re} \mu-\frac{1}{q}<\min (0, \operatorname{Re}(a+b-c)), H_{4}(a, b, c)$ is an isomorphism of $F_{p, \mu}^{\prime}$ onto $F_{p, \mu-c}^{\prime}$ and for $g \in F_{p, \mu-c}^{\prime}$,

$$
\begin{align*}
& {\left[H_{4}(a, b, c)\right]^{-1} g=x^{-\eta-c+b} K_{x}^{\eta+c-b, b-c} K_{x}^{\eta+a,-b} x^{\eta-b} g} \tag{48}\\
& =x^{a} H_{4}(-a, b-c,-c) x^{-a} g=H_{3}(-a,-b,-c) g
\end{align*}
$$

In this case, the integral equation

$$
H_{4}(a, b, c) f \quad g \quad\left(g \in F_{p, \mu-c}^{\prime}\right)
$$

has a unique solution $f \in F_{p, \mu}^{\prime}$ given by (48) •
Lastly, we have the second index laws for I_{x}^{α},
$\mathrm{K}_{\mathrm{x}}^{\alpha}$ on $\underset{\mathrm{p}, \mu}{\prime}$ obtained by taking adjoints in Theorens 6 and 9.
Theoren 15
(i) Let $f \in \mathbb{F}_{p, \mu}^{\prime}$, $\operatorname{Re} \mu-\frac{1}{p}<\operatorname{nin}(0$, $\operatorname{Re} \gamma), \alpha+\beta+\gamma=0$. Then

$$
\begin{equation*}
x^{\alpha} I_{x}^{\beta} x^{\gamma} f=I_{x}^{-\gamma} x^{-\beta} I_{x}^{-\alpha} f \tag{49}
\end{equation*}
$$

(ii) Let $f \in \mathbb{F}_{p, \mu}^{s}$, $-\operatorname{Re} \mu-\frac{1}{q}<\operatorname{Rin}(0, \operatorname{Re} \gamma), \alpha+\beta+\gamma=0$. Then

$$
\begin{equation*}
x^{\gamma} K_{x}^{\beta} x^{\alpha} f=K_{x}^{-\alpha} x^{-\beta} K_{x}^{-\gamma} f \tag{50}
\end{equation*}
$$

Once again, we note that the restrictions on the paraneters in Theorens 11-15 are obtained from those in the corresponding results for $F_{p, \mu}$ by interchanging μ and $-\mu$, p and q 。

Referenoes

1 S. Bochner, Lectures on Fourier Integrals, Princeton University Press , Princeton, 1959.

2 A. Eráélyi, "Note on the transfornation of Eulerian hypergeometric integrals", Quart. J. Nath. Oxford , 10 (1939), 129-134.

3 A. Erdélyi , "Transformation of hypergeonetric integrals by means of fractional integration by parts ", Quart. J. Math. Oxford , 10 (1939) , 176-189.

4 A. Erdélyi , " On sone functional transfomations " , Rend. Sem. Mat. Univ. Torino , $10(1950-51), 217-234$.

5 A. Erdélyi , "An application of fractional integrals ", J. Analyse Math. 14 (1965) , 113-126.

6 A. Erdellyi, "On the Euler - Poisson - Darboux equation ", J. Analyse Math. 23 (1970), 89-102.

7 A. Erdẻlyi , "Fractional integrals of generalised functions ", to appear in Jo Austral. Math. Soc.

8 A. Erdélyi and A. C. McBride, "Fractional integrals of Cistributions "SINM J.Math. Mnal., 1. (1970), 547-557.

9 A. Ercélyi et al., Higher Transcendental Functions, Vol. 1, McGraw - Hill , New York , 1953 .

10 A. Erdélyi et al., Higher Transcendental Functions, Vol. 2, McGraw - Hill , New York , 1953 .

11 I. M. Gel'fand and G. E. Shilov, Generalised Functions, Vol. 1, Academic Press, New York, 1964

12 T. P. Higgins, "A hypergeometric function transforn " , J. Soc. Indust. Appl. Math., 12 (1964), 601-612.

13
H. Kober , " On fractional integrals and derivatives ", Quart. J. Vath. Oxford , 11 (1940) 193-211.

14 H. Kober and A. Erdëlyi , "Some remarks on Hankel transforms " , Quart. J. Math. Oxford , 11 (1940), 212-221. J. L. Lions , " Opérateurs de Delsarte et problèmes mixtes ", Bull. Soc. Math. France , 84 (1956), 9 - 95 。 J. L. Lions , Equations Différentielles Opérationelles et Problèmes aux Limites , Springer Verlag , 1961

17 E. ReLove , " Some integral equations involving hypergeometric functions " , Proc. Edinburgh Math. Soc. (2) 15 (1967), 169-198.

18 E. R. Love, " Two nore hypergeonetric integral equations ", Proc. Canbriage Philos. Soc., 63 (1967) , 1055-1076. E. R. Love, " Two index laws for fractional integrals and derivatives " , to appear in J. Mustrai. Math. Soc.

20 E. R. Love and L. G. Young, " On fractional integration by parts ${ }^{4}$, Proc, fiondon Hath. Soc, ; (2) 44 (1938), 1-28.

21 W. As J. Juxemburg, Notes on the Theory of Integration, Pasadena, 1960, unpublished .

22 G. O. Okikiolu , " On integral operators with kernels involving Bessel functions ", Proc. Canbridge Philos. Soc., 62 (1966) , $477-484$.

23 J. M. Robertson, "A local nean value theorea for the conplex plane ",Proc. Edinburgh Kath. Soc. (2) 16 (1969) 329-352.

24 D. V. Widder, Advanced Calculus , (2 nd Edition) , Prentice Hall , Eaglewood Cliffs , N. J. , 1965 . A. H. Zenanian , Generalized Integral Transformations , Interscience Publishers, New York , 1968 .

