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Summary

A theory of fractional integration is developed for

certain spaces FP u of testing-functions and the corresponding
3

generalised functions F! g Some properties of the spaces are
2

first developed and some elementary mappings discussed . There is

a close examination of the operators Ir";] * and Kn:;1 % defined by

X 2
~M7=ng X
-1. -1
In];a o) (x) = E-l-x;—-—-,— (xm-un w1 'Lz.mmﬂzl ¢(u) du
x - I(a) 0
a X! [® . m ool _-nn-Dasa-1
k%% () = [T o) a
x I «) ”
and their mapping properties relative to F y are derived . The
]

operators are extended to F;} " using adjoints and corresponding
3

results obtained .

Three applications are given . The operator
2

= a 2v + 1 d
L, = = o e =
dx x ax

is discussed and certain connections with fractional integration
established . A generalised Hankel transform is developed on FI'D i
]
and siniler cconnections with fractional integration obtained .

Finally, certain integral operators involving hypergeometric fun-

ctions are studied , a typical operator being

: \ * c=-1
( H1(a,b,6) ¢ )(X) = fo %— F( a,b,c,1- %) ¢(t) dt

BExistence and uniqueness thcorems are established for various

integral equations in F! .
PsH
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ERRATA

Page 11, Line 14, For ' y,' read ' yg' .
Page 13, Line 9, should begin ' By completenzss of Lp, cees !
Page 14, Line 12. For ‘6k¢n(x1}  read 5K¢n(x) '

do. Lines 25 and 26, shoulic end

Y= 5k¢n =Xk IP = | Sk‘f’n - Yk lp > 0, aeas !
Page 16, Line 6. Read ' ... x{¢(x)}¥ remains bounded as x = O+
QE g6 P g
Page 17 Last line. For ! 1'..(2l ' read ! I-cl 1
Page 25 2nd and 3rd last lines . Read

g yiﬂ () + (kefpl Jy() < yﬁ_’l_’; (¢ + (kelul ) E¥ (9) .

Page 25, Line 15. Lower limit in the second integral is 0 .

Page 27, Last line . Read

=mn-ma X
I‘q;la d (X) = Ex"""" [ *escce
x I a) J

0
Page 35, line 2 ,'Since multiplicatim .... ' sentence should read

' Since %)- is an entire function of a , we need only prove that

T, is analytic with respect to a on Ii'p - for Re a>0 "' ,
?

Page 35, Line 16, For u,n , @ 1read Re u ,Re n , Re a .

Page 35 last two lines and Foge 36 first three should read

1 o 3 aT
b (=

- 4 1 - ———
on:+h¢J Ta¢ . da> ¢ )
O<t<t

k
M sup lfh(1"tm)| yg ( IR:l(T?"‘ﬁ) s Rea =€ kag.__%l ) > 0
x dx
as h-=>0 where ¢(x) = + ¢(x)

Page 44, Line 17. For 'Re i < %’, read 'Re ( p+ma ) <

Q=

Page 55, Line 6, TFor ' F ' read ' P !
£ P, H+1 Py =1

Page 67 , Lines 1,4,5. For '(&+1) o =), (8+1) #(a) 'read
P8y (2 )  [(841) g)(a)

Page 68, Line 11. For '(6)' read '(5)' .
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CHAPTER 1

INTRODUCTION

81,1 Background and Sunnmary

Let ¢(x) be a conplex-valued function defined for
0 < x < », Under fairly nild restrictions on ¢, an nth order in-

definite integral of ¢ is given by

x
n _ A jﬂ o R 3
Te® = 13y O(xt) ¢(t) at (1)
(n=1,2,3...) This formula is sometines ascribed to Cauchy.
We can use (1) to motivate the definition of a fractional integral
of ¢ ; namely, for any complex number a, with Re a > 0 ( to en-

sure convergence ), we define Ia¢ by

1% = wa fo (=) ¢(v) as (2)

Ia¢ is often called the Rienann-Liouville integral of order «
of the function ¢. Sinilarly, we are led to consider the operator

K* defined for Re @ > O by

K'9(x) = ﬁ;; f (-2 )*7 g(t) at (3)

k"¢ is often called the Weyl integral of order « of ¢ ( with
origin e ),

It is well known that fractional integration is an
inportant tool in many areas of analysis, for exanple in connect=-
ion with ordinary and partial differential equations. Likewise
the theory of generalised functions or distributions plays an

inportant role in analysis,a notable instance again being the



theory of differential equations. Lt would therefore seeu worth-
while to attenpt to connect these two concepts by developing a
theory of fractional integratim for generalised functions, In
this thesis, we develop such a theory and indicate some applic-
ations of it., Our theory is nore general than that in [8] and
distinct from that in [7].

In attenpting to define a fractional integral of a
generalised function, two approaches suggest ‘themselves, The first
is based on the theory of convolution of distributions as describ-

ed in [11]. Let £(x) be a locally integrable function on 0 < X < ®

extended to the real line by settihg f(x) = 0 {xe0) 4
Then writing
xa—1
(x) ~ o) ( x50 )
Py =
0 ( x< 0 )
(2) becones e
1%(%) = f p,( =t ) £(t) at
- 0
or
% = p_ *f (4)

(01

where ¢ dsnotes convolution., When Re a > 0, P, is locally int-
egraile and hence P, and f generate regular distributions with
supports in the half-open interval [ 0,® ), Then interpreting *
as distributional convolution, (4) defines I*f as a distribution,
With this nmotivaticn we could use (4) to define I°f for any dist-
ribution £ with support in [ 0, ),

However, it is also necessary to consider certain ex-
tensions and modifications of I* and K%, For exanple, we shall be

concerned with operators, first studied extensivedy Ly Kober (48]



of the forn

In;ff = xN %% (x) " (5)

K 2? % = TEK¥ 2T %2 (%) (8)
x!and x 7% arc not snooth ( infinitely differentiable ) funct-

ions so that (5) and (6) are neaningless for distributions.
¢ z ; n
Further complications avise when we integrate with respect to X

rather than x cb+eining
Ne, _ 0 _-ng-na [ x n_my o=t sl
IXD £ = Fn)¥ f ( Bu) Ty £(u) au (7)
0

and analogous uperators -Knéan These turn out %e have important
applicaticns in connuctionx%ith singular differential operators,
integral squaticns and integral transforns. ( Some references are
given in [8]). In order to define these operators for generalised
functions we will pursue a second wrprosch based on adjoint oper-
ators,
Under certain restrictions on &, ¢,
= w0
fo I%(x) ¢(x) ax fo £(x) K%(x) ax (8)

(2%, ¢) = (£,K%) (9)

"

or

(3) was preved by Love and Young in their paper on fractional
integration by parts [20]. If S ,T arc spaces of functions
such that X* is a continuous linear napopipg of 8 inte T , we
can use (@) %o define 1% as a2 continuous linear napping of T!
into S8Y' where §',T' are the spaces of generalised functions
correspending o 8 , T . (3) shows that 1% ond K% are adjoints
) - T | R : 1
and sinilarly 17 "and K’m are adjoinis , whare 7' = n + 1 - =

s |
X X
Thueg the first task is to Javise suitable classes of testing funct-



s

ions on which the operators can meamingfuily bLe defined,

In Chapter 2 we introduce such classes denoted by
FPsH' The elements of FP;# are snocoth functions defined for
0 < x < » , which satisfy certain integrability conditions involv-
ing the Lp norms, The motivation for the choice of testing funct-
jans is provided by Kober's work in [13] on I;,a and K;’a. The
corresponding spaces FE:H of generalieed tunctions are then intro=-
duced. The ranainder of the chapter is devoted to the proof of
sone elementary facts about F ol and Fé,“ together with a discuss=
ion of some elementary mnappings defined on them ., In particular

the spaces are so constructed that the operation of multiplication

A’ - .. -
by x for any complex A i3 an’ isonorphisn of F£,M onto Fﬁ,u—h 3

thus obviating one of the major snags of the first approach.
Throughout this chapter we follow cleusely the treatment in Chapter
1 of Zenmanian [25] .

In Chapter 3 we iniroduce the operators I”;“ and K"E’la
The case n = 1 has been thoroughly investigated by ;dber in ?15]

By a simple change of variable we can easily obtain the correspond- .

ing mapping properties of the operators relative to the spaces FP u
2

Further, an argument involving analytic continuation enables us to
remove the restriction Re a > 0, although for Re a < 0, we will
have operators of fractional differentiation rather than integrat-
ion, We then define the owerators on Fé,u using adjoints. Although
the spaces FE,“ are prinarily geared to the ' homogeneous ' operat-
ors I?éaénd.nga, results concerning lﬁm and Kém are obtained

be x

incidentally. A sinilar programme was carried through in [8] but

the spaces under consideration here are nuch riore general.



flthough the spaces FL’“ were designed with fraction—
al integration in mind, nany other operators ean meaningfully be
defined on them, In the remaining chapters we consider some cof
these operators with special rcference to their connection with
fractional integration,

In Chapter 4 we consider the singular differential
cperator Lv defined by

2

ne(x) = 2 . Awxl de (10)
ax b'd ax

If we replace v by 2n =1 amd x by T = VXi +eeeet Xi

we obtain the haplacian cf a spherically symmetric function ¢

of n space variables Xiy.esesXne Lu is also connected with
axially symnetric potentials and differential equations such as
the Buler - Poisson - Darboux equaticon [6]. There are various
connections between Lv and fractional intcgration with respect
to xg, which have been stuldied by, for exanple,Erdélyi [5] and
Lions [15] anmd [16]. We establish two of these relations, both
for FP,# and F%,#' Again our results are norc general than those
in [8].

In Chapter 5 we develop a generalised Hankel trans-
form. A Hankel transfornm for generalised functions has been de-
veloped in [25] by Zenanian. There he introduces certain spaces
of generalised functions which are tailor-nmade for the Henkel
transforn and he is able to develcp quite an extensive theory
culninating in an operational calculus for a class of different-
ial equaticns. Our generalised functicns are, not surprisingly,
less anenable tc the Hankel transforn, Nevertheless, they can be

used to bring out the connection between Hankel transforms and
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fractional intogration which have bren studied, for ordiney
functions, by Kober and Erdélyi in [13] and [14].

We begin by developing the Hankel transforn on Fp,O
but scon specialise to FZ,O where nuch more can be proved. Kober
[13] established connections between I)’” and K" and the Hankel
transforn in Triconi's form, By a simple change of variable, we
transcribe these tc produce relations between IE;aand K;%a and

<

the Hankel transform in its usual form for L2. These we then

establish on F ard finally, by taking adjoints, we obtain

2,0’

the corresponding theory on Fé Analytic continuation is again
2

¢
involved and this entails a fair anount of analysis invelving
asynptotic expansions.

It shculd be mentioned at this stage that a similar
theory can be developed for the K <{ransforn on Fﬁ,o using,for
exanple, results of Okikiclu [22]. Zemanian [25] has also devel-
oped a generalised K transform by considering specially~-devised

testing-functicn spaces., However,using Fé it is possible to

s C
establish again the connscticns between K transforms and fract-
icnal integration such as have been exanined , for ordinary fun-
ctions, by Erdélyi [4] and others. Nevertheless, because of the
sinilarity with the Hankel transforn we shall not discuss the

K transform theory here,

Instead in Chapter 6, we consider a cocnpletely diff-
erent application of cur thecry, nanely to some hypergeometric
integral equations. Connections between the hypergeonmetric funct-
ion 3Fi(a,h,c,z ) anl fractienal integratien arc legion; sce [2],
[3]. It is not surprising therefore that operators invclving

2F4( a,b,c,z )-are closely linked with fracticnal integration



also. Such coperators lave beon studied bv e.g. Higgins {12] and
notably by Love [17] el [12]. Many other anthors have stulied
particular cases of these operators, 4L list of references for
these can be fownd 3in 17] or [18].

Typical of Love's operators is

rx
. " (e Y61 ]
(B, a,b,0 )9} (%) = f A-;-(’i—-;c- ¥( a,b,0,1- De(t)at (1)
[+
0

where we write F( a,b,e,2 ) = oT4( a,b,c,z } . We obtain an
expression for H'I( a,bye ) in ;tems of operators of the form

Ig’a and hence derive the mapping properties of H1( a,b,c ) rel-
ative’ tc the ppaces B Ty We show In paiticular that under rest-

g

rictions con the paraneters, H_l( a,b,c ) is invertible end

[ H, ( a,b,e ) J—‘i = Ifl( ~a,b-g,=c ) x (12)

We nextv consider ,( a,b,e ) which i3 given exce
‘o next 14 *‘3( b,c ) which i3 given by (11) pt that

Ls

~r +
4 v i N ; ;
F( a,b,c,1~ % ) is replaced by F( a,b,c,1- -}"-;- ). We proceed as
v

for H1( asby,c ) end note thet

£,( a,be ) = x> i,( a,0-byc ) x & (13)
Finally, we dizcuss the operators H5( a,b,0 ) and Hﬂ( a,b,c )
- T

which are, in fach, the adjoints of Hg( a,b,c ) and H,I( a,b,c )
respectively, ond cen therefore be expressed in terms of the

oty Pl ¢
operators K%,

.

Hoving obteinzd the properties of the four operators

on .'E'P y W2 taxe adjoints tc prove thne correspending results
2

for P! o In particular, we chtain exishence and uniqueness
J.)I'"

theorenz for the intvegral eaquaitions
B, ( abue,) £ 0= g (14)

wheve f ani g awe generelised luactions and i = 1,2.3,44



§1.2 Conventions and Notation

At this stage we make certain conventions which will
be adhered to throughout the thedis. Generalised functions will
be denoted by letters such as f,g etc. while testing-functions
will be deunoted by Greek letters such as ¢,y ete. The value
assigned to a testing-function ¢ by a functicnel f will be
denoted by ( £, 2 ).

We snzili be concerned with conplex-valued functions
¢ of a positive real varisble x . ( 0, o ) will denote the
open interval { x : 0 < x< » }. ¢ is called snooth if it is
infiaitely differentieble at each point x € ( 0, ). The set
of all smooth functions on ( 0, ) will be denoted by 8

For each p, 1< p < %, Lp denctes the set of ( measurable )

functions ¢ o ( 0, ) for which

oo " il

- i 4 =

L, =X (0] ex )p <

0

LP will denate the corresponding space of eduivalence slasses

of such functions wihich Aiffer on & sét of neasure zere. Sinil-

arly, L” denotes the set of ( neasursble - ) functions & for

which l(blao , the essential supsenun ¢f ¢ over ( 0, ) is finite ,
i [ 3 . E L. -

L denoies tie curvesponding space of equivalence classes. The

nunbers p and g will elways Le connected by the relation

i .1 .
P q

and unless otherwise sbubed, 1 g pg @,

§émé rémaikis are in ordef concerning thé numbering
system edopteds Lermas,; thecrens; corollaries etc. in any one
chapter are rufibéred 1t 2 continuvous sequence. A statement in

a chapter about Thdcreid 2 refers to Theorem 2 of that chapter



while Theoren 2 of Chapter 2 will be referred to in chapter

3 as Theoren 2.2 . Sinilar remarks apply tc numbered formulae.

§1.5 Standard results

Finally in this intrcductory chapter we qucte sone
standard thecrems which will be used frequently in the following
chapters., These results fall into two groups. The first contains
results concerning dual spaces and acdjoint operators, The tern-
inology is that of Zemanian [25] Chapter 1 vhere the prcofs

nay also be found on the pages indicated.

Theorenn 1
I” V is a conplete couatably nultinormed space,
then its dual V' is also conplete,

Proof on pp. 21-3 of [25].

Theoren 2

Tf U and V are countably multincvrmed spaces and T is
" a continuous linear mapping of U into V, then the adjoint
operator T* is a continuous linear mapping cf V' into U'.
If T is an isonorphism of U onto V, then T* is an iso-
morphisn of V' onto U' and

(r')yt = ()

Proof on pp. 28-9.

The other results concern the legality of different-
iating under the integral sign. Here we refer to Luxemburg [21].
Thecren &

Let f£(x,t) Dbe defined for all t in an interval I



40

and A < x < B, and let f(x,t) be integrable over T for all
A< x< B, If f(x,t) 1is a differentiable function of x for
all A < x < B,(one-sided at the end-pcints) almost everywhere
in I, then

[
Fx) = j £( x,t ) at

z
is differentiable for all A< x< B ( one-sided at the end-

points ) and

F'(x) = f %ﬁ( x,t ) at
I

provided there exists an integrable functicn g‘(t) such that
| = (nt)| < &)
| ox : -

alnost everywhere on I and for A< x < B.

This is Corollary 19.1, p, 174 of [21]. On exanin-
ing the proof of the latter, we scc that a sinilar theoren will
hold when x is replaced by a complex variable z and the
inequalities involving x are replaced by ccrresponding inequal-

ities iavclving Re #. This generalisaticn will also be required.
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CHAPTER 2

h F da !
The Spaces Bl an ol

§2.1 The testing=function spaces Fp

For each p, 1< p< o, we define FP to be the
set of those smooth functions ¢ such that, for each non- neg=-

K a5
ative integer k, x —-E- e L, i.e.
- dx

D
w K af

Foo= [¢:0¢ Clend 32 ¢ L (k=01,2..0] (1)

P : s P

With the usual pointwise operations of addition of functions and
nultiplication of a functien by a complex nunber, FP becones a

conplex linear space,

For ¢ ¢ B, and k= 0,1,20000, dofine yll; by

k
kdo
L ‘ — 1
Using the propertics of ] ]P’ we see that, for esach k, Ylk is a

seninorn on FP s while Yo is a norm, Hence the collection

i = [ Wt 0,480 ] (3)
is a countable multinorm [25] and with the topology generated by
Hp, FP beccnes a countably nultinormed spaces

We require a notion of sequential convergence as follows.
A sequence { ¢p } converges to ¢. in FP ( or in the topology
of FP ) if and ¢nly if

1520000 )

i

(i) Pn er (n

(ii) ¢ e E,

and (iii) for each }i € I.-IP, yﬁ(qﬁn-g’a) +0 asn > o,

Clearly, convergence in Fn inplies convergence in Lp.SiI:lilarly,



{ ¢n ] is called a fundamental sequence ( or a Cauchy sequence )
in Fp if and only if

(1) ¢n € F, (n-= (- TO—

(ii) for each yﬁ €M, given € >0, 3N, sueh that

p(¢n- < e (nn>nN)

As usual, it is easy to prove that if { ¢, } converges to ¢ in
FP, then { ¢p ] is a fundamental sequence in EP' It 1s not immed-
iately obvious whether the converse is true i.e, whether FP is
ccnplete, However, we mll now prove, with the help of an easy lenna,
that FP is complete,

Define an operator & on FP by

(8¢) (x) % % = x ¢'(x)

[t}

d
or & = X Iz (4)
Lemma 1

¢ ¢ F, if anl only if ¢ € C and 5k¢eLp(k=0-.1,--)

Proof : We have only to show that

_ k
ak¢ eL ( k=0,1,2,.. ) <= xk-‘l-—ﬁ- €L ( k=0,1,2... )
£ k a5 o, 9% g
a3 When k =0, x - =¢= 6¢ e L
= P
dx . =
For k = 1,2,... we can prove by induction that
k
= 51-—-}% =8 (8 =1) eevee (8 =-k+1) ¢ (%)
o ;
K a* 2, 3 I
s0 that x “—¢ is a lincar coubination of 8¢, 8°¢, 8¢ vu... 5.
dx
and thus ¢ Lpn

<= We can prove by induction that 8k¢ is a linear combinaticn

k
of ¢, x %ﬁ .....xk g—% and thus belongs to Lp'
i dx

Thus we nay write

FP= [ gf): q_-'JE'Gw and Ekqb € Lp(k=03132°°" )i (5)



Theoren 2

FP is conplete, 1 < p < .

Proof': The proof is closely related to that given in Zemanian

[25] pp. 253-4.

Let | ¢n | b2 o fudaeniad sequence in ¥ . Theu, by

k Eop

definition of the seminorms K X clxk is a fundamental sequence
inLP, for each k = 0,1,2,400
=> 5k¢n is a fundanental sequence in I;_P for' k = 051,8iuws
By ccnpletcness of ;[_.ij e Skct';n o, Y in :LP as n =« , We show
that 3 %o € It‘13 HE VR Skx;, aeee on ( 0,0) (k=0,1,2.0 )
Let x, be a fixed point in ( 0, ), x a variable
point in ( 0, ), Virite D = %37 and let D! donote the

integration operaior

%
D"‘] = j{r ...Ited‘t
x
!l
For any snocth function Q{:{) on ( 0,0 ),
- "
»py(x) = 4(x) - x) (6)
Now recall that 8§ = =P , Tet us write &“1 = Tj“1x-1. Also, let
% :!:-31 = 1 . where we assune first that 1 < p < o,
~1 Jrad --»i -1 1‘ w
| 5 & ( =0 ) o= E ) ( Pm—Pn ) |

= -
= !_,! v &0 (gm0 ) () at |

-
_‘).

-

l.f | 14 at lncii ljﬁlskm(%_%)(t) ® o %
=

(by Holder's inequality applied to the interval with end-points
x, and x )

X g L k8
&H | & 1%at !é (j [ S - dn ) (t)‘ dt)p

X 1 a



Let  denote an arbitrary open interval whose olosure is compact

X
in(O,w).Since%}é Oon(O,w),f i‘%|th is a bounded

x
snooth functicn on (. Hence 1

-1 k+1
| 878 (gm=tn ) | < wy> (du=¢n)
on Q for some constant M. Since { ¢, } is a fundamental seg~

uence in Fp’ { 6-1 8k+1¢ } is a fundamental sequence in the sup

norn and hence 1 k+1¢n is uniformly convergent on Q as n -+ o,

Now, from (8),

5188, (0 = 7V ' 58,0 = p7p 5a(x)

= 3k¢n(x) = 5k¢n(x1)
or 8k¢n (x) = 1 k+1g5n( X) ot 3k¢n(x1) (7)
As n = o, Bkgbn(x) converges in L, = 8k¢n(x1) converges in
LP(_.Q) . Hence Bk¢n(x1) tends to a linit as n -+ = , Since § =t k+1¢n

is unif'ormly convergent on (i, we can now conclude fron (‘7) that
Skqbn converges uniformly on G as n -+ «, The uniform linit, yp
say, of Skc,sn is a continuous function on ( C,e ). From (7),
xn(® = 5@+ xnlx,) (8)
Using (8), we couclude tuat %n is a snooth function and that
xn = 8yo. Now since yx is the L, linit of 558 and i s the
uniform linit of b‘k¢n ounevery & as n <> o, xk(x) = ¢k(x) a.e.
on ( O,w) Hence; fTor k = 0;1;24664 5
| 8% 1, = Tl = ol

Thus ¥, is smooth, SkXQ € Lp for each k = 0,1,2... 3 so by
Lema 1 , %o € Fpn Further for each k, |

I ak( $n = %o ) !P = | 50 - akXo IP = | 5k¢n = Xn |P

=1 - l, =+ 0 as noe
from which it easily follows that { ¢n } converges to %o in F

P
as n -+ «, This completes the prcof for the case 1 < p < o,



The cases p = 1 and p = « are sinilar except that in
the application of Htlder's Inequality , one of the integrals is

replaced by a suprenun over the interval with end-points x and Xye

Sunnarising, we now have
Thooren 3
For 1< pX Fp is a conplete countably multinorned

space ( and hence a Fréchet space ) .

By an argunment sinilar to that used in Theorem 2, we
can show that if | ¢5 } converges to zero in FP as n = o, then,
for each ncn-negative integer k, | Dk¢ﬂ } converges tc zero uni-
fornly on every compact subset of ( 0,0 ) as n=+e, (D = g‘;)
It follows that, for each p, 1 < p < «, FP is a testing-function
space in the sense of Zemanian [25] p. 39 and we will call the
elements of Fp testing—fhnétions.

In §2,3 we shall compare the spaces Fp with other
inportant testing- function spaces. For the moment, we conclude
this section by proving a lenna which will be used frequently in

the sequel,

Lemnma 4 4
o € FP = xs ¢(x) is bounded on ( 0,» ) (1<pge)
Proof : Suppose first that 1 < p < o,

Choose a,b with 0 < a < b < «, Integrating by parts,
we. have

b b
fa‘ @ (D) lax = 2 xR - 2 f (401 ax  (9)

¢ € FP =  x¢'(x) eLp. AMso | o&(x) ]P_1 eLq, since
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o

v [
f0|¢(xJ D90 = | 0 Pax < e

0

e
Hence, by Htlder's Inoqualityf x5t (x) | &(x) }pq dx is
absolutely convergent so that the? left~hand side of (9) is bounded
as a = 0+ or b -, Similarly, since ¢ € LP, the integral on
the right-hand side of (9) remains bounded as a = 0+ or b - o,
It follows that x | ¢(x) 1® renains bounded as a = 0+ or b = «,
The result follews in this case,

i The result is trivial in the case p = «, since then

x P&(x) = ¢(x) is essentially bounded and hence bcunded on ( 0,).

This completes the proof,
It follows, in particular, that if ¢ ¢ Fp’ Tsp<e,

then ¢(x) =0 as x = o,

§2.2 The generalised- fu.nc:tion spaces F]‘;

In this section we consider functiocnals on FP, i.e.
nappings fron FP into the complex numbers,

4 functional on FP is linear if

(£, arpr + 2202 ) = ar( £, ¢ ) + ag( £, ¢3 )

for all complex numbers as;03 and ¢1,02 1in FP. f is (sequentially)
continuous if whenever ¢, = ¢ in FP, ( £f,6n) > ( £,0) asn >,
We note that a linear functional is continuous if and oply if
( f56n ) >0 asn > whenever § ¢y ] converges to zero in FP.
The set of all continuous linear functionals on FP is called the
dual of Fp and will be denoted by F;). The elenents of FI; are gener-
alised functions ( in the sense of Zemanian [25] ) .

Given f,g € F:‘o we define a functional f + g on FP by
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(f+g0¢) = (£f,¢) + (g ¢) (¢£FP)
It is easy to see that, in fact, f + g € F;). Similarly, given
& complex number a« and f € F;}, we can define an elemept of
of F} by
(af, ¢) =0a £, ¢) (qser)
With these definitions of addition and scalar nultiplication, FI'J
becomes a ( complex ) linear space,
Wie assign to Fﬁ, the topology of weak convergence. A
sequence | i‘n ! converges o f in F; if and only if
(1) £ € ¥ €% 108 )

P
i) £ « B
(i1) }
and (iii) for each & ¢ Fos ( £, o) (£,0) as
n » ©, in the sense of complex numbers. Sinmilarly, | fn } is a
fundanental sequence in Fia if and only if
(i) fn € F;) ( n=1,2,5.o-'l )
(ii) for each & ¢ Fp, {( £ ¢ ) } is a Cauchy

sequence of ccmplex numbers., Theorem 1.1 inmediately gives

Theoren 5

Fll’ is complete for 1 < p< o,

SJertain elements of i’s‘; can be identified with convent-
ional functions; in particular, let f ¢ Lq' We can define a funct-
jonal ¥ by -

(% ¢) = f £(x) ¢ (x) ax (oe F,) (10
The integral exists by Hotlg.er's Inequality., f is clearly linear.
Further since convergence in FP => convergence in Lp it follows

easily. that ¥ is continuous; i.e. + € I*‘i) Tdentifying functions

which differ on a set of measure zero, we can therefore imbed Lq
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in FI'D by means of (10).

Generalised functions with an integral representation
of the form (10) are called regular; those which have no such re-
presentation are called singular, An example of a singular element
of F]:J (1<ps< ) is provided by 5, (a>0) a translated
delta-function, defined by

(8,¢) = ¢(a) (¢e B,)
We shall use regular functionals to motivate the definition of

various operators on E‘l‘J in the sequel.

82,3 Relationship of Fﬁ’ to D ana &

It is interesting to compare the spaces FI') with
Iother spaces of generalised functions on ( 0,e ), in particular
with distributions and distributicns with compact support.

Let © be the linear space of all complex-valued smooth
functions ¢ defined on ( 0,» ) whose support is a compact subset
of ( 0, ). A sequence { ¢, } converges in B to ¢ if and
only if

(1) o5 ¢ D (n=1,2,3000000 )

(1) ¢ e D

(1ii) all the ¢p and ¢ have their supports inside

¢ o fixed conpdet subset of ( .0, ) ( the subset .-
being independen‘l; of n)
and  (iv) for k = 0,1,2.... , Dk¢,, > Dk;:» unifornly on (0,e)
The space of continuous linear functionals on < is denoted by 3)'
ard the elements of 35’ are called distributions on ( O,f:) or

sinply distributions.
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Let & Dbe the linear space of all smooth complex-
valued functions ¢ defined on ( 0, ). A sequence { ¢q }

converges in & to ¢ if and only if

(1) ¢n e ¢ (8= 158805005 )
(i1) ¢ ¢ ¥
and (iii) for k = 0,1,2.e.s , nkq!;,. > Dkqb uniformly

on each compact subset of ( 0, ) .
The space of continuous linear functionals on & is denoted
vy & .

It is clear that & < & . Furthermore, if {¢n}
converges to ¢ in &, then {¢,] converges tc ¢ in § . It
follews that E' & @I « It can be proved that E’ consists of
those elements cf a)‘ which have compact support ( in the sense of
distributions ) and hence the elements of £ ‘ are called distrib-
utions with compact support.

From the definition of the spaces FP, it is clear
that Decr &
for each p, 1 < p < «. FPurther, both inclusions are 'strict; for

the first, we note that the function ¢ given by

—r
a3

$(x) = e (0<x<w)
belongs to FP for each p, but not to ) , Wwhile for the second,
we note that the function ¢ given by

‘i[’(x) = X (0<x<o)
belongs to ¢ but not to any of the Fp spaces. However, since
D is dense in € , [25] p. 37, it follows immediately that
FP is dense in € .

It is easy t¢ prove that if { ¢p } converges to ¢

in € , then { ¢, } converges to ¢ in Fp. For, the supports
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of ¢n,$ are all contained in the closed interval [ a,b ] for
somé 0 < a<b < » so that

1
(f fﬁ%(%—¢)Pu)P

0

b 3
k P P
(f X (gn-9) ax)
a dx

yr(¢n=9)

u

k sup d

k 2
< b SE I S5(¢én=p) | (b-a)b
dx

-> 0 as n > oo,

It follows that any element of FI'” when restricted tc @, is a
member of &’ so that FL < D

On the other hand, suppose | ¢n } converges to ¢ in
FP- We proved in Lemma 2 that Skqbn converges uniformly on any
conpact subset Q of ( 0, ) and hence Dkqbn converges uniform-
1y on such an Q. Hence § ¢, } converges to a limit in £ and
clearly this limit is ¢. Thus

Convergence in F =- Convergence in ¢

P
and hence & "o F;). We therefore have

Theoren 6

For 1<pg> , E'cm‘;}c@

$2.,4  The cs F and F!
& + S P Lt Py i

In order to obtain meaningful definitions of various
operationd such as multiplicatien by powers of x and different-
iation , we must introduce a generalisation of the FP and F;)

spaces ,



—91 -

For any complex nuitber g and 1 < p < ®», we define

—

F b
N L

FP:# = {6 :exn) = Fex) where ¢ € FP }

With the usual pointwise operations of addition and scaler nulti-

plication, FP u becones a ( conplex ) linear space,
3

p,H
For k = 0,1,2.... , define Vi on Fp,u by
sH e P ,
P ) = yi(¢) (11)
where ¢ (%) = % ¢(x) e FP i and vy ﬁ is given by (2).
L . G

Each yﬁ’” is a seninorm on Fp i and yg’p is a norn, so that
»

the collection

; L DyH . _
mp’p = | Yy : k=0,1,2.0 } (12)

is a countable nmultinorm and with the topology generated by HP ”
I ’

FP u becones a countably nultinormed space. Convergent and fund-
3

anental sequences are defined analogcusly to those for Fp.
Fron the definition of the seninorms, it is clear

that nultiplication by < is an isomorphism of FP onte FP u’

The following result is then immediate,

Thecren 7
For each p and 1< pg >, FP i is a conplete
. - ]
countably nultinormed space and hence a Fréchet space.

0ff course F is sinply our original Fp anc

P, 0

we shall continue to write

I = F o

P50 P
Suppose { ¢p } converges to zero in FP " with
3
on(x) = xyo(x). Then [yn ] converges to zero in FP as n > o,

Hence by the remarks following Theorem 3, for k = 0,1,2404.



=,

{ Dkwn } converges to zerowsiformly on each ccmpact subset of (0,e)
as n+®, It follows that Dk¢n ! converges unifornly to zero on
each coempact subset of ( 0,0 ) as n =+ », Hence for each p and

U, Fp is a testing-function space in the sensc of Zemanian [25]
El

p. 39.

Analogously to the Fé spaces, we can construct Fé u
]

the space of continucus linear functionals on Fp u The elenments
3

of P! i will also be called generslised functions. With the tep~-

Py

ology of weak convargence ( pointwise coovergenoe ) wue have by

Theoren 1.1,

Theoren 8

For each complex p and 1 2 p < =, F; “'is complete .,
3

249 Operato on F
§2,5 Operators i

We now consider some operators on FP « The termin-
»

ology used will be that of [25], Chapter 1.
. A
For any conplex nunber A, we define the operator x

on F b
PyH d

(%) @ = 2 o) (0<x<=)
No confusion will arise from using the sane symbol for the funct-
ion xh and the operation of multiplying by this function. We
have alreaiy renarked that, for any u, ' is an isomorphisnm of

FP onto FP " ; arnd the inverse operator is x-“. It now follows
E
at once that, for any A,u xh is an isomorphism of FP i onto
3
" -A
F with inverse x .,
 JOET

Next, we consider again the operator & defined

by (4), te.  (8) (0 = x 3
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Let ¢ ¢ FP e have

k k
xk.d (5(:)) =Xkd (X"q-"'é)
k k dx
¢x dx
; Skt k
= xL ( x<&—?42 + k-g---é )
. k+1 k
dx dx
L] k
= xk+1 {:—?n%’ + kxk Q—-—;‘E (15)
ax™t ax
k dk
Hence x == ( 85) ¢ L ( k=0,1,2... ) i.6. 8¢ ¢ F_so
PEC P P
that & naps FP into FP. § is linear, Also from (13),
P 3 14
yP (8) < v (@) + kv (9 (14)

so that & is continuous at 0. Hence & is a continuous linear

napping of FP into I‘-‘P. If 1< p< o, §is one-to-one, since

& _ - g2 _ " -
xge = 0 = =X = 0 =>¢ = c, aconstant on ( 0,0 ),

But ¢ ¢ Lp = ¢ = 0, If p=w, & is not one~to-one,
since all constant functions are nmapped to zero. It can also be
proved, e.g. using the theory of fractional integration developed
in Chapter & , that 8 1s onto if 1 < p < «» , but not if p=e,

Now suppose ¢ € F ’ ‘?’(X) = x!i (ﬁ'(i‘(), ¢ €F .
PsH 2

8 (x) = x%;(xpv‘!(x)) = 2 (g + xg—ﬁ)

d
Nov. by the ab —— = 5
ov. by the above, e/:eFP >x&xer> 8¢ Fp,.u’ o}
8§ nmnaps Fp " into F . Linearity is again clear. For contin=-
] L
uity, we have
u a
y 2 (8) =y 2wy “‘E%) =y (w +8p)
+1
sy (o) + (x+ful) v (9 by (14)
4 .
=R () 4 (e w u] ) YR )
Hence & is a continuous linear nmapping of F into F

ey s Py
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for all pu and 1 < p < «, As before, we can obtain other results
using the theory  of Chapter 3 ( Sce § 3.6') - - .

We define the operator &' by

¢ () = L (x9 () (15)
Since g—x(xrﬁ(x)) £ xg'-?; + q&(x) , -We may write

8! = 8 + I

where I is the identity.operator, It follows that &' is a cont-

inuous linec a in of T into F .
8 RERL PR =$ PsH PyH
Finally, we have the differentiation operator D
defined by bp (%) = % . Sirise

Do (x) i 8¢ (x)

1}

it follows from the above that D is a continuous linear mapping
of F into P i
. PyH Py b=
For reference ovurposes, we gather together the

results of this section in the following theoremn,

Theorem 9
Let p be any complex number, and let 1 < p < o,
(1) £ 18 an isomorphism of _  onto F with inverse x

PyH Py A+i

(ii) & is a continuous linear napping of F into Fp
] 3

{autconorphisn of FP if 15pc< w )

(iii) &' is a continuous linear napping of FP ,ul into F
2

Pyl

(iv) D is a continuous linear mapping of F into F
Py Py pu=1

Other operators on FP i will be dealt with as
3

they arise .
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$2.6 Operators on F!
- Py L

In this section, we define operators on Fé corr-
>

esponding to those of the previous section, The definitions are
notivated by consideration of regular functionals.

For regular functionals, proceeding formally,

( x}'f, ¢ ) = fo M(x) ¢(x) ax = fo £(x) x)tqb(x) dx

or ( fo, ) = (£, xh¢ ) (16)

The right-hand side is meaningful if f € Fé,u and ¢ € FP:#“A .

We use (16) to define fo for any A and f ¢ F! and denote
3

the mapping so ¢btained by x)". In fact, x‘h'f is a continuous lin-

A

ear functional on Fp i an® by Theorcns 9 and 1.2, x is an
o =
isomorphisn o. F' onto F! with inverse x
Pau Py H=A
Les ¢ e , f eF' be regular with caapact
DyH PyH

support, Formally, we have

f; se(x) ¢ (x) ax = f'm x #'(x) ¢(x) ax

> =3

= [ xf(x)¢ (x) ; ; - j; £(x) %} ( x ¢(x) ) ax

The integrated terms vanish to give

(g, 8) = (£, -8') (17)

We use (17) to define & on F! y 88 the adjcint of =~8!, As

2

before, 8 is a continuous linear mapping of F! into F! by
PsH Py
Theorems 9 and 1.2 .

Sinilarly, we define &' o¢n Fé by
’

(&g,¢) = (2 -23) (18)
where f e F! and ¢ ¢ T
PyH PyH

napping of F! into F! :
e PyH Py

. §8' is a continucus linear



Pinally, we define the differentiation operator

D on F by

Py H
(p£,¢) = (£, -D¢) (19)
vwhere f ¢ F! and ¢ € F « D is a continuous linear
Py Psu+l
A ppi > il ) into F! .
REPREIE O Tp,m Py U+1

We therefore have the following theoren,

Theorem 10

Let A,u be conplex numbers, 1 < p g = .

7, ; ; ‘
i is an isomcrphism of F! cnto F! with
&) =" e HESE PsH Dol =A
inverse x
(ii) 8 is a continuous linear napping of F'  into F!
PyH PyH
(iii)8' is a continuous linear napping of F! into F!
PsH Py M
(iv) D is a continuous linear napping of "F' _.into F!
o4 P,H+1

It should always be clear from the context whether
the operators xh, 3, ', D are being applied to testing-fundétions

or generalised functions,



CHAPTER

s im

Fractional Integration in FI) ~and F%
b 2

§3.1 Introduction,

For Re a > 0, and a suitable functicn ¢ , we
define I'¢ , a fractional integral of order @ of ¢ (sonetimes

called the Riemann- Liouville integral of order a ) by

% (x) = -I—.?(a- fo ( x-u )(x—'l ¢(u) du (1)

It is possib]:e to modify the operator 1% in two stages. Firstly,
we may integrate with respoct to x* (m > O ) rather than x by

means of the operator Iam defined by

X
I ¢ () = gy fo ) Eg) @ (2)
P

R SR . u . A )
so that 1; is just I again. On the other hand, there are
' homogeneous ' operators 17 % sntroduced and discussed by Kober

and Erdélyi in [13] ard [14] defined by

IT’)’ agb (y; = x % Ia % qb(x)

el it o0 4

X
?[c‘“{'?r’)'f (xu)*"a ¢(u) au  (3)
0

il

where 7 1is any conplex number, Finally, combining these two

i - TR i
steps, we obtain the operator I ?;_1 cefined by

o ~ON=0a n
I:; (x) Sl pib ol
w o w ik

"

|I il =7 x
-iﬁimrj . f -(}Lm_um) a-1um??+m'°-'1

=

&Y L Oﬁ;.' J

¢(u) au (4)
0

/m
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; . 2 . ’ a
In %his chapver, we develop the theory of In’ and

m

x
x> ¢ (defined below ) for our spaces F and F! . We will, of
xm PyH s H

course, obtein incidentally properties of the ' inhomogeneous '
o a
operatore I and K i
1 m
X x
We begin by generalising a theorem of Kober concern-

ing fractional integrals of functions in LP.

83,2 Action of I"”%on 1
—= o =2

Kober [13] has proved the following theorem.

Theorem ‘i

Let 1<p<o, + == =1, Then In’a(as

¢
= 1]
defined by (5) ) is a continuous linear mapping of Lp into Lp

provided Re n > = -é =
Using this, we can prove the following extension,

Thecrem 2,

: 2O
If mRen+ m> % s Ingl is a continuous linear
mapping of L_ dato I_ (1 <2p< ),
¥ D -
Proof': Suppose first tha® 1 < p < o . Using (3) and (4),%
we can show that
- (Bl )
mD o n G A
x (%) (=% = 1% D (5)
where - w1 1
e one B2 e g(®) = x TP g(x") L

Now by a change of variable ws can easily show that

o] =N

1"

Lol, = =% ol (6)
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Hence ¢ € LPB Sinilarly we have

- (B 1 1
mp M, m R
‘ x 122 o x7 ) l = m I 7% (7)
' % P x p
From (5) anl (7), we now have
? YR _ n',a
n I;I¢| -IIx’q&| (8)
X P P

1
New if mRe n +m > %, Re n > E%_ -1 = Ren'> Hs

Hence by Theorem 1, I K, independent of ¢ ¢ LP, such that

L]
2% | x|y (9)
' ‘P P
Combining (6), (8) ana (9) gives
1% ¢ < K l ¢ |
X P P

where K is independent of ¢ ¢ Lp. The result follows.
It remains to consider the case p = «, Proceeding

as before,we obtain

1
(@) (x") = 1% ¢ () (10)
= 1
where ¢(x) = & ( x & ) . Clearly | ¥ |w = I ¢ lm » and also
1
iy (@ » Ny
@Ee)ED | = |k |

Since we are mew gssuming that Re 1 > - 1, we can now complete

the proof using Theorem 1 as above,

83,3 Action of 7% ad ¥K”%on F and F
= =0 D

% PsH —

Since FP is a subspace of Lp’ we know fronm
Theorem 2 that if mRe 7 + @ > =, 1% naps P into
X

Lp. We will now show that, in fact, wunder the same restriction
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on 1, Iﬂ’3 ¢ maps Fp into FP. This involves justifying diff-
e
erentiation under the integrel sign for which we use Theorem 1.3,
We recall the definition of the operator & given

by equation ( Z.4 ) and the fact that & is a continuous linear

mapping of F_ = into FP. ( Theorem 2.9 (ii) ) .

Theorem 3,
let ¢ ¢eF, 1<p<w, mRen+m > %,Rea)ﬂ.
D g e
Then
(1) In;lag?: e C
x
(ii) For each k = 0,1,244.0 P

1% (0 = I 8% (a)

}C X

(ii1) Por each k = 0531420000 5

e k

xk d ( L a@(x) Y s 1@ ( xk d¢ )
k n m k
dx X X dx

(iv) I??;\a is a continuous linear mapping of FP into Fp.
'3
Proof':
(:L) We hev= 5
o m —arena mmya-1 nnm~1
Izﬁ’l ¢ (x) = T * : ‘[g () ¢(u) du

1
m [ m yoa-1 , mn4m=1
o R t o(xt) dt .
(o) 0

We apply Theorem 1.3 with I = ( 0,1 ), and with

0<A<Z<B<w (A<B) . Also we take

1 LPTHE =1

£ ( x,t) =m(1“tm)a“ o(xt)

Now by Lemma 2.4 ,
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1
for some coustant ¢ 1 & xt) l < C‘I (xt) ~ 5 for x and

1’

t in the above intervals. Hence,

1

where 1
n P c

Co T TR} 1

1
=> ff(x,t)cw, since Rea > 0 and mRen-i-m>%._
0

-1 LB+ -1

Now £ ( %t ) R—) ( 1-t7)° "Ext)c;be(xt) and

since &8¢ € FP , W& have as before that
I fx( x,t) I < C5 ( 1__tI.1 )a-1 tmnm—1_

for some constant 05' The right-hand side is integrable over

( 0,1 ). Hence by Theoren 1,3, IT?;]CE¢ is differentiable and
be

a n, & s _ 7?3

LM% @) = T 8 () (11)
s X

Since 3 nmaps FP into Fp, we can proceed fioum (11) to show

that I"’?z’jl‘;‘L ¢ is infinitely differentiable.
X

(ii) PFrom (11) we have

@ _ o
s§I2%¢ = I"T 8

X X
Again, since & € ,'.Et‘P, we may use induction to prove the result,
(iii) we have that for k = 051 250w4. 5
k

= i‘._l..c = 8(81) vuues ( 5-k+1)

dx
The right-hand side is a polyncmial in &, say P(8) . Clearly,
from ( ii),

p(s) T% s = 1% P (8) ¢
X X

so that the result follows.



(iv) We have shown in (i) that I?éa¢ is smooth. Also, by (iii)

xX
k k
Lo (%) = 1 (xF%2)
k m i m k
ax X b'd dx
k
> B (1h%) = | 1 (£52)
k m m k
x x dx P

By Theorem 2, there is a constant Kk independent of ¢,

such that
Iﬂ;a ( = EEE ) ‘ < Kk' & EE%
X dx P : dx 'p
.~ .Hence, we have for k = 0,1,2.40a ,
‘ ¥ (1) < & ¥ (9 (12)
x

(12) shows that Inéa is a continuous mapping of Fp into
x
FP. As linearity is obvious, the proof is complete.

We next extend Theorem 3 +to the spaces FP e
b J

Theorem 4

Let 1<p<®, Rea>0a. Then Inj;aisacontin-—

P
uous linear mapping of F into F provided that
PoH ‘ P H
Re (mn+p) + n > -11;
Proof : Iet ¢ P, &(x) = x* ¢(x), with ¢ ¢ F.
D, U P
Mya _ ma H
2% golx) = 1B ( 2pl) )

X X

u

1
O] j; (16" ) et g(at) 2107 e

1
= x* T‘%—cc),/ { gt yrtgnminel  aes Y ae
0
s Th% () - A ph+E, @
> J_mgb(x = I " m v (%) (13)

X X
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New ¢ € FP and by hypothesis,

mRe(n+§)+m =Re(mn+u)+m>-1-
&
Hence, by Theorem 3, Inr:m’a ¢ € Fp. Further we can write (15)
X

in the form

Inr’ﬁa #(x) = Inm+ ﬁ 2% x TH (%)
x x

Using Theorem 3 again and also Theorem 2.9 (i), we see that
Inl’l'la, being the composition of three continuous linear mappings ,

X

is itself a continuous linear mapping of F into F .
P, H PsH

Theorem 5
Let Re @ > 0, Re 8> 0, Re (mn + ) +m >-11;,
qSEFP”.Then

3
n+a B o, _ 1M o4B
I I? ¢ (x) = 17 ¢ (x)
X > d X
Proof : Note first that both sides belong teo Fp " by Theoren 4.
]
n+a LB .70
I . s o} (x)

xs couse  (18)

X t
_._m --mn—ma—mﬁf n_ myp-1 m—1 1 [ n _mya=1 mn+m=1
= T(H)* . (x=t)7 't 'dt (a) ) (t7=u u #(u) du

We wish to interchange the order of integration in (14). To this
end, we note that also

na , B .na
i Ix‘,“ ¢ (%)

X
11
’ "1 L= - o M
= Trma)rf;g),( f (1-tP)PTTgpmmasn=t g mye-t mmest o tn) at au
0

The double integral converges absolutely since Re a > 0, Re B > 0,
1
1 i -
Re (on+p)+n >o and | 9(y) | « uy*HF B ocycw)
for some constant M by Lemma 2.4 .Thus, by Fubini's Theoren,

we may interchange the order of integration in (14-) to get
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-nn-ne-nf x

x
mﬁ“) T B) e VR f O G O L SN
0 u

On putting

the t-integral becomes

1
(xm_um)a+ﬁ-1[ ( 4-z )p-1za~1 iz = I‘Pg cxiiﬁ!?! ( SR )a+ﬁ-‘l
0

Finally,

-an-ne-nf X

In+a,ﬂ b & Hx) = ZE— X =u") e el ¢(u) du
n n T(a+f )
X X
0
= In[’n %+ ¢(x) as required
£

All results sc far concerning Inr;la have been proved
b

under the hypothesis Re @ > 0, We now show that this restriction

can be removed by the prccess of analytic centinuation,

Definition For each o« in some domain D of the chmplex plane

let Ta be an operator on F .We shall say that Ta is analytic

]

with respect to @ in D if there exists an operater Ea on F

aa PyH
such that for each fixed ¢ in FP i 2 0 < x < o,
3
1 X - T ¢ ar
g [Tno® - T ¢x)] - Fag(x) » o0

in the topolegy of FP . as h - 0 in any manner ( h being complex )
3

Theorem &
On Fp 9 I’?;I“ is analytic with respect to a for
¥y
X
Re a@ > 0, provided that Re ( mp+u ) +m > % é

Proof: We fix 7 with Re (mn+u ) + m >% and fix q&erp.
,O
o

I’_(_a-j Ta¢ where

4

Wie have Ini; “qs
X
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1

(T, D) = fo (1=t )% ST g(xt) as (15)

Since multiplication by -ITI(;E) is easily seen to be an analytic cper-

ator on FP i in the sense of the above definition, and since the
]

composition of twc analytic operators is analytic, we need only

prove that Ta is analytic with respect to a on Fp i for Rea > 0.

3

Differentiating (15) formally with respect to a gives
1

oT o | nn4mn=-1

(52 9)(x) = f (1=t )% 1og ( 1-t" ) £°7 ¢(xt) dt
0 oT

With this expression feor 3%

gl @ - 1, 801 - Fas

1
) f £y, § 4= ) i 1 JECE 1 SRR ) (16)
0
xh 1
where i‘h(x) ={—-—;T-—-—logx}x€ and 0 < €< Re «

We show below that as h - 0, in any manner,

aup 42 _ sup
Ost<1 Ifh( IR = Ogx< ’fh(x)l = 0 .

It then follows from (16) that
sH ] - T
Yg ( h ( Ta+h¢ Ta¢ ) 3a" ¢ ]

sup |

; 0y a;e
ot | Bl 38 Y| w g (IR gl ) = 0

L
X
as h - 0 ia any manner. Proceeding as in Theoren 3, we may differ-

entiate under the integral sign in (16) tc deduce that for each

k = 1’2,5aano 3

k QE_ [ (0 7o) -2
x X B ah® = Tof _73'&&('5]

1
= [0 £ (1-t") ( T ) Rl o s R O LTI T T



Yo

where xpx;((x) = xk {-1—% so that «yk € FP. Hence,

dx
PsH 1 _ _ aT
yk l-'h(Tcz+h¢ Ta¢) aa“¢]
2
Sup _4B N+ M, 0=€-

The result woculd then fcllow.

Thus it only remains to prove that 02;21 |fh(x)|+ 0
as h -0 in any manner,
xh-1 €
|fh(x)| = |-—h—— - log x | x
h-—‘l 1
Now |-x—-h—-1ogx| =]Elexp(hlogx)-1-—hlogx]|
|4 ¥ (hloex) ¢ 1 ¥ Inl® | 1ogx|
e ‘nt ||
n=2 nt n=2 n!

3 (- ]n| 10g x)°

= 5] : ( since log x < 0)
1“.:‘:2 n.:
i X—|h| -y . i
= = s £ - log x } , reversing a previous step
- x—lhl - - kel 3 )
We have that Ifh (D] < lgh (x)| . We prove that 02221 lgh(x)l

-+ 0 as h - 0 in any mammer, Sirce is a real function invol-

€n
ving only |h| , we may use calculus to locate turning values.
Suppose as e may that 0 < |h| < €. Then gh(x) - 0as x - 0+

and gh(x) > Q0as xz-»1- ,

. &1 x - 1 _~lnl -1 4, €
gh(x) = €x { TRr— * log x} +{ - x x}x
:(|§I-1)(x||~1)x€_1 +ex_1logx
In 0.4 % & ¥ =l A0 = &, (x) = 0 when
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Then 1log x_lhl = & :_ h { x__lhl -1 }
~|h
or  log y = S“;l“L { ¥y~ 1 }

From the convexity of log y and its derivatives at y =1, it
. . N
is easily seen that Iy, -1 as h = 0. Hence

sup sup x_lhl
| =

=
O<x<i Igh(x)l = 0<xgt

~|T1T-—— +logx| x¢

< 1 Ixh-l%rl -i_ﬁl-!%(yh-'l)l

1 €=\ h 1
= {H~1) L g TEre? = slap-t) + Oasdbso,

This finally completes the proof of Theorem 6,
We also note in passing that a similar argument

proves the following result.

Theorem 7
On F , and with fixed & , Rea > 0, In;a is

Py %
analytic with respect to 7 provided Re ( mn+p ) + m >

gl

We shall mainly be concerned with analytic contin-
uation of Inéa with respect to @ for which we use the following
x
lemma,

Lemma 8

Let Re ¢ >0, o €F_ , Re (mnsp ) +m > 1 . Then
Py i P

+
SIn;a 1¢ = Inaa+18¢ =nI”% - (wn+ ma+ m) In,a+1¢ (17)
m m
b'd x X 7o
Proof : That 511;a+1¢ = IT;Q+18¢ follows from Theorem 3 (ii).
X x
Now, we have %; Iﬂ,ﬁ+1¢ (x)

%
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x
d (_m ~m7)=Da-m f- m_.m ya mnHn-1 3 a4
ops { m) X . ( x -t ) t 95(?) i

-m7-ma-mn-1

= ( mpsmatm ) x R G

d
I = I , where

1

:
(x) =T j; St )% T g(t) a

Using Theorem 1.3 , we can differentiate under the integral

sign to obtain

x
d m m-1jﬂ m ,m ya-1  mn+m=1
o = - t
ax I(x) TTET mx ! ( x -t ) t ¢(t) d

d 1, a+1
> 23 (2% ¢ )

~mnN-ne-n

-1
= - ( mn+masa ) x ke

o) fo ( $(t) at

- X
~QN-ne I o _ .o ya -1 nnao-1
+ mXx W fo ( x %) t o(t) dt
=> fSIT;'l_:1 ¢ = - ( nn+mam ) Inr’laﬂqﬁ + D Inéa ¢

X X X

a+1

as required,

We can arrange the formula of Lemma 8 to give

m Inéa Hx) = ( mmmo+m ) In£a+1 HMx) + I?;a+16¢(x) (18)
- x x

For fixed x and nwith Re ( mn+g ) +m > % , the right-hand side

of (18) is, by Theorem 6, an analytic function of @ on Fp v
]

provided Re a > -1, We can therefore use (18) to extend the

definition of Inéa, in the first instance to =1 < Re a £ 0, and
X
hence, step by step , to the whole « -plane. The extended operator

on FP i is an entire function of a .
3

By sufficiently many applications of (18) together

with the result of Theorem 4, we have
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Theorem 9
Let 1< p < « . For any complex number o and

Re ( m'nq-u) + m > % 5 Ir};a is a continuous linear mapping of FP p
3
b'd

into F .
s H

We shall shortly prove much more about the mapping

properties of In};a under these conditions,
*

Putting ¢ =0 in (18) we have for Re (mn+u) + m > %

n1%¢(x) = (amn) 1% ¢x) + 1™ s6(x)
X X X

0.8
> n1%0 ¢(x) = mx‘m’*“f T (amin) @) +u G2 ] au

x 0
x
= mx_mn-mf &y (¢ (u) el ) du
0 du

1}

mx T [ g(u) 1Y

= mx , since Re(mn+p)m>l

P
n ¢(x)

¢(x) (19)

I

> 170 ¢(x)
X

so that Inéo is the identity operator on FP " in this case.
x >

Next, we can use aralytic continuation with respect
to a and £ to remove the restrictions Re @ > 0 ard Re 8> 0
in Theorem 5. However, we must insert the extra condition

Re (mn +ma + ) + m > %
which was redundant before. We therefore have
Theorem 10

Let Re ( mm+p ) +m > %, Re ( mn+ma+p ) +m>%
¢ €F « Then

PsH

7? a,ﬁ Tl,a 3 ﬁ

I7RRIRT gx) = 17 O e(x) (20)
X X X
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This immediately leads to the following very important result,

Corcllary 11

Let Re(mn+p)+m>%,.‘&e ( mn+ma+y ) +m>%.

Then IM% is an automorphism of F and
o PyH
e =1 _  _n+a,-a
C 2™ 3 = X0 (21)
% x

Prcof : We know,from Theorem 9, that under the given conditions

1% ana  1T%7% are continucus linear nappings of F into
xm xm PsH
itself. Let ¢ € Fp R Taking B = - a in (20) gives
3
I’?“'O‘s"a In,a 9’3 | Ifho ¢ _ Qb b (19)
" il - n - y
b4 bd x

Replacing n by n + @, aby -« and Bby a in (20) gives

My M+, _ +THa,0 _
Im Im’ ¢ -.Im’ ¢ = ¢
X X X

The result follows at once,
e derive next some results , similar to that of
Lemma 8, which will be used in the sequel. We assume ¢ €

1 PsH
and that Re (mn+p ) +m > 5

a+1 1
1 e = 1 e
X X

o o
m —m7=md—m m m ¢ m -1
o) * n f (% = u® )% S g (w) au

0
m =Mm7n-ma-m m 1m0
o o) A S D R e O

- [0 ¢(u) % [ (x"=u" )% "™ ] gy}

¥

_ Bl -mn-mo-m m o ya~1 [n+m mn-1

= By X f ( x - ) W g0) W au
0



T .
X
_ ( S ) T(E_.n) " —m7-ma-m [ ( x1\:1_1~1m a ur|:zr;+n:.—'t ¢>(u) du
0
=12y =51t o w™H %o (o) I g (22)

X X X X

{fith &' defined as before by

o o(x) = () = 8 + ¢(x

(17) and (22) immediately give

5t In;a+1¢ = T P gy m I % - ( mpsmasm=1 ) Inﬁla+1¢ (28)

m
X X x X

nyo+l o 7, a+1 n+l, e N, a+1

iz 8¢ =8I ¢ = mI' q&-—(mnm—-‘l)Im ¢ (24)

X x X x

Wwe conclude this section by stating the mapping.

properties of the ' inhomogeneous ' operators Iam as given by
b4
(2). From (4) we see that for Re a > 0,

o - me _0,
I, #x) = x oy Iam Mx) = x I ;] #(x) (25)
X x x

It follows from Theorem 2.9 (:L) and Theorem 4 that Iam is
X

a continuous linear mapping cf F into T rovided
PIADE 8 e p,uma P

Re g +m > %. The right-hand side of (25) is, by Theorem 6,
an analytic function of a for fixed x and ¢ . We can use (25)

to define Iam for Re a <0 on FP i provided only Repy +m > % .
b »
Using the properties of Ioéla , we can deduce the following
X
theorem,

Theorem 12

Let Re p +m > — . Then Imm is a continuous
X

. I’ is the identity
X

TSN

linear mapping of F irto
RhRe D, H D, WD

operator on F 5 1f, further, Re (m + ma + pu) ->
s :

¥

g
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a ; - ; :
T is an isomorphism with inverse

m
* { 22 Y & 2° (26)
Ixm B xm
1 3

If P-m-Reu < min ( 0,2 Rea ,mBef ) ¢ ¢ Fp,,u
a B _ Lakf B .o
I, ¥ ¢=3%es T T4 (27)
X x x x X

(27) is sometimes called the first index law for the operators

Iam . The second index law for Iz will be discussed in Chapter

X N
6 where it arises in comnection with hypergeometric integral

operatoers.,

83,4 Action of x”% on F and F
i? P e

For Re a > 0, and a suitable function ¢ , we define

Ka¢5 sometimes called the Weyl integral of order a of ¢ by
-]
0 3 1 a=1
K" ¢lx) = 7—;[ (u=x )™ ¢(u) du (28)
Ia <

As in the case of I°, wo hove the operators K“m and K—’?;l“‘
X x
defined by

K g H(x) = Tr%ay j- ( umﬂxm ah1upr1¢(u)du (29)
x x

ol - -
K;I; #(x) s K% x 21 TRE (%)
x

i

[--}

nn
mx
Pza; x

(up_xp )a—1u—mnﬂma+m-

1¢>(u)d_u
(30)

T f (4 )ty at
1

]

As is to be expected, the development of the theory of Kﬂéa

X

on F_ ; is similar to that of I"’;“. We shall state the results
3
X



without giving the full details of the proofs,
Using Theorem 4.3 end results of Kober [13]

we can prove

Theorem 13
Let 1<pgs=». Knsla is a continuous linear map-

X
1
ping of FP 5 into itself provided Re a >0, Re ( mp=p ) > ~ ; .
]

s

i : 1
Proof : Kober proved.that Ki’a mapa. Ii-li*-:i.nto itself if Ren > = -5

and Rea > 0, By a change of variable , we can show that K??I,na
p.o
maps FP into Lp if Rea > 0, Re mp > = % « Theorem 1.3 com-

pletes the procf for pu =0, A little manipulation then proves

the general case,

As in the case of I %, we can remove the rest-
X
riction Rea > 0 by means of analytic continuation ., Let 7 be

fixed with Re ( mp-p ) > - %. Then, on F_  K™%(x) is , for

Pt
x
cach fixed x and ¢, an analytic function of a .(We can act-
ually prove a stronger result involving convergence in the top-

ology of FP , o8 in Theorem 6.) Under the hypotheses of
]

Theorem 13, integration by parts gives

K"é“‘” 5 = 8 K’?;“”ga = (opma ) KP%g o0 x™% (31)
m n
X X bd X

which is an analogue of (1?). Rearranging gives

= {néa #(x) = ( nnsna) I{nﬁ’laﬂ(ﬁ(x) - Kqéaﬂ 8¢ (x) (32)
x b4 X

For fixed x and ¢, we can use (32) to extend Kﬁaﬂ ¢(x) to an
.entire function of o« , We can then drop the res:riction Rea >0.
in Theorem 13,

Putting @ = 0 in (32) shows that

% = g (35)
g |



for ¢ € Fp 4 provided Re ( mp-p ) > - % . If, in addition,
k]
Re ( mn +na =p ) > = % , We can prove by interchanging the order

of integration that

My ona,f oy a+B
X2 KRy d= KD ¢ (34)
X x x

This leads to the following theoren.

Theoren 14

g . ; ;
Let 1<spg>. ingl is a continuous linear

X
1
napping of FP i into itself provided Re ( nn- p) > - 5 + If,
k]
in addition, Re ( mn+mo- p) > - % , Kn:ja is an automorphism of
X
F with inverse XI%™% |
3
x

If ¢ € FP " and Re ( mn~p ) > - ‘;' , the following
3

results analogous to (22), (25), (24) hold.

5 Kn];aﬂ B & Kﬂéa‘i-‘l 8¢ = mn I{n;]m1¢ - i Kﬁ‘;"a a ¢ (35)
X X X x

sx2 ™ ¢ = k"™ sg = (anet) kP - % (26)
X X X x

K’?;l"‘*"a'¢ = S.KTII;M‘l ¢ = (anwmart) Knl;la“sb -mKn;la ¢ (37)

X X X X

Finally, we mention some properties of Kam on
X
F. .« From (30), for any 7, Rea > 0, Repc% and ¢ € F

Pspr Py i’
Kam i (x) = Kan 5 ma ma ¢(x) o K{Jéaxma #(%) (38)
X X b

For each fixed x and ¢, the right-hand side of (38) is an
analytic function of « and we may use (38) to extend the def-

inition of K“m tc Re a < 0.
b4

. @
Proceeding as for I n * We can prove
X
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Theorem 15

If Re ( p+na) < % ) Kmm is a continuous linear
X
1 a i
mapping of F into F JIf also Re p<=, K is an
PR bsH P, H420 p’ XP

isomorphism of F onto F and
Py H P, pHQ
o -1 -a
GE ) = K
bd %

If % -Repy > max(nRea,nReB,nRe (asf) ) , ¢ ¢F

PyH
a _ of a a
KmKﬁm ¢ =K ¢ = KﬁmKu¢ (39)
X X X X X

(39) is the first index law for the operators Kam .
x

The second index law will be discussed in Chapter 6 .,

83.5 The action of 17%ana k7% on ® _
x x Ps K

We are now ready to develop the theory of fractional

integration on the spaces Fl') ’ of generalised functions . The
2

definitions of In];a and Kn;]a are motivated by considering regular
x X
functionals .

Let ¢ € F and let f ¢ F! " be a regular function-

Py U P»

al .Proceeding formally , with Re a > 0 , we have

(1h2,9¢) = fo 1% (x) ¢ (x) ax
X X

il

[--} X
f $(x) ax ?11(1;)_ K-mn—maj ( x - )a-'i e f£(u) du
0 0

]

<o oo
-1 m myo-1 -mn-ma
f £(u) du 'ﬁm a o f (x=-u ) Sl H(x) dx
0 8 u

L, 4
= (2 ,x°%¢)
X
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1 ; :
where n' =n+ 1 - il With this motivation , we define I??I’;I
X
on F! i for any a by
E

n+-1— .1

( %2, ¢) = (£, X7 58’ % ) (40)
X X

where ¢ € F " and f is any member of F;) o By Theorem 14 ,

1 pl_‘" E]
Kn;1— o’ % is a continuous linear mapping of FP u into itself
x ]
provided that Re { m ( n+1- -:; ) -ul > - % , that is , provided
Re(mn-—;.t)+m>-:1,whemasusua1%+%l = 1 . Hence , by

Theoren 1.2 , we find that Int’la is a continuous linear mapping
X

of F! into itself under the same condition .
3

Using (40) and (34) , we can immediately deduece

the following theoren analcgous to Theorem 10 .

Theorem 16
Let Re(mn—u)+m>%,Re(mn+ma-p)+m?-:—l

fe ™ . Then
P> u 5 8
n+a n,Q - N, 0+
E e ? II; f = Il;1 f (41)
X x x

Analogous to (19), we have,for f ¢ F]‘p i and
3
1
Re (mnp-¢ ) +m > = that

n,0
Ix[’n £ = f (4,2-)

This follows by replacing n by n + 1 -% in (33) and taking
adjoints ., From Theorem 16 or from the general theory of adjoints

it also follows that , if Re ( mn-g ) + m > -é ,» Re ( mp4ma—yu ) +m

1 =
- is an automorphism of F! with inverse I %Y
q % PsH 'xu
have therefore proved the following theoren .

> . We

2

s Qa
I Il
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Theorem 17

Let 1<pge., Iﬂ;ﬂ“ is a continuous linear map-
X
1 :
ing of F' into F! rovided Re (mp-p ) +m > =, If , in
PIE S Tp,u pyp T 3 q ?

& . .
addition , Re ( mn+ma-p ) + m > lq , IT}; is an automorphisn of
x

® with inverse I % ~¢
PsH XP

Comparing Theorem 17 with Theoren 9 and
Corollary 11 , we see that the restrictions on 7 amd a are
obtained by replacing u by -y and p by q . This is to be

expected from consideration of Holder's Inequality. If ¢ € F

3

PsH -

f £(x) ¢(x) ax
0

will converge if f(x) = Z P g(x) with g e Lq ; in particular,

o b il Sl which is imbedded in F! .
qs—H PsH

We note in passing

Theorenm 18

For Re(m?}—-p)+m>-& " (Inl:laf,qﬁ)isan
&

analytic function of a for cach fixed f € F! and ¢ € F
PsH PsH

This follows easily fron the remark made after
Theoren 13 +that, for fixed n satisfying the hypotheses of the

theoren, Kr}ga ¢ is,for fixed ¢, an analytic function of a and
x

g -« . G :
K t linit in the topology of F . We can
dc B ¢ exists as a i opolo i
prove sinilarly that, for fixed a, ( In];a f , ¢ ) is en analytic

x

function of 7 .in the half-plane Re n > %(Re’.—u-#- 3—1 -m ) e
We recall from Chapter 2 that the adjoint of
8' is =8 , Replacing n by n + 1 - -% in (51)? (55), ({56)

and (37) and taking adjoints, we obtain the following results



analogous to (17), (22), (23) and (24), valid for f ¢ F!

PsH
with Re ( np=p ) +m > % X
1
820 e u M w 0T ( mn+masm ) 3 Mg (43)
m m m m
X - x 5 x
1
* s 251 ® £ - 1% L (g ) T2 ™2 (40)

X X X X

' ' 1
s e o 1M s'e - n1™% - (opmawm-t ) T2 (25)
P X x x
ny a4l ¢! s o 1, a Ny o1
ik 88 =812 & - f-(nq—m-‘?)lm £ (46)
X X .4 X

€eF f e . By consideration of reg-
ot 2 Py’ PsH o &

2

ular functionols, we are led to define K% on FL by
X
P
( % ,¢) = (£,1*a*%) (47)
X X
) L
We know from Theorem 4 that the operator I n B * is a
X

continuous linear mapping of Fp , into itself provided that
3

Re { o ( n-1+ é )+ u} +n> % , i.e. if Re ( mptp ) > - é .

3 Fa a ., § : :
Hence, under this condition, KT; is a continuous linear mapping
5%

of F; ” into itself , Proceeding sinilarly, we obtain
b

Theorem 19
For 1< p< o , KT&G is a continuous linear map-

bs
ping of F£ g into itself provided Re ( mn+u ) > - % v If, An
3 .

$51 8 1
addition, Re ( mnp+ma+u ) > - E - Kyéa is an automorphism of Fé
X 2
« In this case also , for f € F!
b P»

7 3 . a, =0
and its inverse is Kn; =

2

Mya  THaf _ n, a+fB
A Al O f (48)

X X X



Ko

Again the restrictions on the paramcters are obtain-
ed from those in Theorem 14 by replacing u by - p and p by
qe

Replacing n by n -1 + % in (17), (22), (23)
and (24) gives the following results analogous to (31), (35),

1
(36) ana (37) wvalid for f € F{) . with Re ( mmep ) > = =

L

kP s o &% ¢ - (onpeme) KP*r - k™% (49)
m m m m
X X x x
8 1{“;1“*11’ 5 K”;a“”a £f = np K”I;_“” f - m K’ﬁ““f (50)
X x X X
' T atl 7, a+1 ! 7, a+1 n+l,a
8§ K f = K §f = (nong+t ) K f-nk f (51)
] I m m
X X X X
AT 1 ;
K”I;l"‘-”s £ = sK”*e - (mpmart ) KPM*e _nx™%  (52)
| i m m
X e b'd x :
We conclude this section with a brief discussion
of the operators Iam and K% on Fé w Proceeding flormally
' b'd x ?

we have , for a regular functional £,

o na _0
( I, 2+9) = (2 22%2,¢) by (25)
X X
= ( Ioglaf,xmqp) by (2.16)
x
1= 3 a no
= ( £,K,0° x¢) by (40)
X
Hence, we define Ian for any complex nunber @ on Fﬁ 2 by
x 3
1
] R —
(% f ,6) = (£, k)"m%F% ) (55)
X X
e [ # , x§—1 Ka xrm+1¢ )
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the definition being meaningful if ¢ € FP gma * Using the theory
;]
of Kn!;a together with Theoren 1.2 , we can easily prove
x

Theoren 20

Imm is a continuous linear napping of FI'D u into
x 2

P! img Provided that Re (m-u) > in . If, in addition ,
3

a

1
Re m+0o— > - I is an isomorphism of F! onto F!
( + u ) ’ m P Pyl D, p-ma

q
X
with inverse I o . If }1- m+Re p < min (O,m Reat , m Ref ),
2 _

o B _ a+p _ B a
Iy Fg £ =358 a TT .8 (54)
X X x X X

for f € F! »
P

o
Similarly we are led to define K o °° B! by

x Psu
1
ma - -
(x%£,¢) = (£,2%1 " *n2%g ) (s5)
x X
_ (f , xm—-‘i Iam x—-m+1 é )
X
whare f ¢ Fp 5 and ¢ € FP o We then have the following
3 3
theorem .

Theorem 21

K is a continuous linear mapping of F;) 2 intu
>

m
s
B g Provided that Re ((ma-p ) < -}1 . If, in addition,
1 a
Re(«=p) < = K is an discmorphism of F! onto F!
e g, % PyH Pyp-na
g ol Dl
=1 -a
( X0 )7 = K_
X X .

If J(i + Re u> max(m-Rea,mRe_ﬁ,mRe(mﬁ)),feFI')u
»

© ¥ e - K";ﬁf = Kﬁm 3 (56)
X X X X X



Although we have developed the theory of I  and

X
K* on F! , » We shall mainly be concerned in the sequel with
x 3
the homogeneous operators Inéa and Knéa to which the spaces are

b's X
best suited .

.6 Further properties of 8 and &' on F and F!
2 PR D, i Dy -

The theory developed in the previous sections can
be used to obtain further information about & and &' which were
firét discussed in Chapter 2 .

Let ¢ € I“'p’p w;i:h Re u > Jf; . We may put m =1,

q:-"la.nd @

0 in (17) to obtain

-1,1 -1,1 _ - o
§I_ "¢ I,78% = I’ ¢= ¢ by (19)

Thus, if Re u > %, 8 is an automorphism of FP 5 and

b

-1 _ o=1,1
8 = I_ (57)
This in turn inplies that on F with Re u > -;—) 3
3
_ 20,-1
8 = I (58)

We could also have obtained these results using (22)

Suppose on the other hand that ¢ ¢ F o with

Ps

Reu<%.wenowput n=1,n=a=0 in (31) to get
0,1 _ 0,1 3 0,0 _
B> 8% = 8K’ ¢ = - K’ ¢ = -9 by (33)
So, if Re u < % » 8 is an automorphism of FP and
b ]
-1 0,1
d = =K
Ky (59)

-1,1

or 6 = - Kx

As regards the liniting case Re p = -% , we have

(60)
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already seen in &.5 that with p =0, p =« , 8 is not invertible
on F °
PsH
A sinilar procedure can be carried out for & ' using

(23) or (24) when Re u > % and (36) or (37) when Re pu < % . We

have the following theorenm ,

Theorem 22

(1) Let Re u> % . Then & and &' are automorphisms of F: = and

Pyl
s s eyt .
(ii) Let Re u < % « Then & and &' are automorphisms of F i
b ]
-1 - - 0,1 - _1 o - —1’1
and § - K, 3 (s1) = -K_

Taking adjoints, or using (43)-(46) and (49)-(52),

we obtain the corresponding results for Fé e
E

Theorem 23

(i) Let Re p< - % « Then & and &' are automorphisms of F!

; : P, H
and A s ()71 2 e
X X
(ii) Let Re u > -1q . Then § and §' are automorphisms of F{J i
3
-1 0,1 -1 -1,1
and ) = o~ B ;0 (8Y)7 = - K

Let ¢ € FP iy We can use (58) to prove by inducgion
]

that ,(for n = 0,1,2.5e. ), provided Re g =-n > - % =

n

-n i [}

I () = £ (61)
dx

Sinilarly, for ¢ € F  with Re 4 < -% and n = 0,1,2 000 ,

]

-n n dng

K, ¢ (@) = ()" == (62)

dx

as night be expected.

There ere ainilar results for .Fé "
3



CHAPTER 4

Fractional Integration and  Singular _Differential Operators

§4.1 The singular differential operator L,

/e consider the operator L, defined for suitable

functions ¢ and any complex number v by

2
Lv¢ (X) - d (é) . 2y + 1 g(‘f_) c,]j
dx x dx

Such an operator arises naturally in many situations. For example,
if v= 3n -1 and we replace x by r, L” becomes the Laplac~
ian for spherically symmetric functions on R" ., Other referencas
are given in the introduction .

It has long been known that there is a close con-

nection between the operator Lv and operators of fractional

integration, particularly theose of the form Inéa and Kﬂéa « The
X x

connection was explored in [8] for a certain space of testing -
functions and extended to the corresponding space of generalised
functions. In this chapter , we establish similar results for the
spaces F and F' o

PoH PyH
Wie recall frem Chapter 2 that the operator

_ d
D - dx
is a continuous linear mapping of F into F for eve
s Py H Dy p=1 "

complex number u , and 1< p< o . Also 'i is an isomorphism

of F onto F . We therefore have
PyH P, u-1

Theorem 1

Let 1< p< =, For each complex p and v,
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L,, is a centinuous linear mapping of T into F g *
PsH Py U=

It is clear that, for each fixed ¢ € FP " and
2

0<x<o, L ¢(x) is an entire function of v with derivative

2 gogtsy = 2@

v T x dx

In fact, since for any complex h ,

® oo

1 - - d¢
h [ Lv+h¢ Lv¢ ] dx

vanishes identically for 0 < x < «, we can immediately deduce

Theorem 2
Let ¢ ¢ Fp g For each fixed x , Lv¢(x) is an
L ]

9
entire function of v and furthermore , the derivative s Lv¢

exists as a limit in the topology of T
P, H=2

Further mapping properties of Lv are derived below.

It is easy to prove that, feor any suitable function ¢,

92¢ + 2v & (2)
2

|

x2 Lv¢ (x) g

Gth - 2w 8¢ (3)

il

x L x ¢(x)
where 8 , 8' are defined as in Chapter 2 .,
We next define L on F! « Let €F and
’ v PsH ¢ P H+2
let f be a twice-differentiable function such that f and Luf

generate regular functionals , Prcceeding formally,

(Lf,¢) = (x°(s%cv2ver),s) by (2
2 ) -2
= ( (8 +2v8)f, x % ) by (2.16)
2 -2
= (£, (8°-208)x %¢) by (2.12)
= (£, xL_ x ¢) by (3)
$ €T = %L ¥ @ & P s0 that the right-hand

Py K42 -V P, U
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side is wmeaningful if f ¢ P! » Thig, we define L on F! by
Dy H v P> K

(L, 8) = (£, xL_ %9 ) (4)

where ¢ € F . Since x L_v X is a continuous linear map-

P, H+2

ing of F into F we have b Theorem 1.2 that L is
EeXE Py U+2 p,u’ RSN T v

a continuous linear napping of F! into F! . Now, by Theoren
1 REER P, H Py H+2 o

ad .
2, = L-u X ¢ exists as a linit in the topology of FP,H*7 .

Hence, wWe have that -g; xL_, ¥ ' ¢ exists as a limit in the topo-

logy of FP T We have therefore prored
3

Theoren 3

Let 1 < p < « . For each complex u and v, Lu is

a continuous linear mapping of F' into F! « Further, for
ERE08 P> H Py H+2 ’
each fixsd ¢ € Fp 442 2 ( va , ¢ ) is an entire function of v,
3 o

$4.2 Connections between I and fractional integration

In this section, we esbablish some relations con FP u
»

involving Lv and the homegeneous operators of fractional integ-

ration , We then obtain the corvesponding results for F'
% 2

Theorem 4

(1) Let ¢ € F , Re ( 2vap ) > 2 , 1 < p < « Then
PsH P -
U,a _ Vpc
1 2 Lv ¢ VN + 2 ¢ (5)
X 2
(ii) Let ¢ € F , Re ( 2v-u ) > = 1, 1< p< o, Then
Py M pr =
Vv, - gV
L,K% ¢ =XKo'n_, ¢ (e)

X X
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Proof : (i) Under the given restrictions on the parameters ,
both sides of (5) belong to Fp 2 Using (2) we have
3
Vv, _ Vya =2 2
I, L,¢= I} x ( 8 +2v 8) ¢
x %
s x 2 Iv-;,a (8 + 2v ) 8¢
%
where we use the definition of Ivéa for Re a > 0 and analytic
%

continuation for Re @ < 0 . Then , using (3.22),

v,

% Lo¢
X
= x2[ 21" 8- (2v-242) 1% %0 + av 1”51’“ 56 ]
X X X
-2 1
= 2x° 13" &
X

On the other hand, using (2) amd (5.17)

v

5
Lv+r:!.' 1 2
x

* ¢ = x—2 ( 842v+2a )8 Ivéa ¢
x

1

x 2 ( 8+2v+2a ) 172% &g

£,

= X2 021" 8p - ((2vezar2:2 ) TV5% + ( 2vaza ) 1% ]
X % 3
w B 2 Iv%a 1 56
X

The result follows .
(ii) The proof of this part is sinilar and uses (3.31) and (3,35)
The details are omitted .

Equations (5) ard (8) give perhaps the neatest
relations between the differential operators Lv and fractional
integration on F i . We now prove the corresponding results on

Py

F! =
PsH
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Theorem - 5

1 1
et felpu > 12Ps® 554y =T
(1) IfRe ( 2v-p ) > é ,
VG i vy a
Iy L, f L Is f (7)
X X
(ii) If Re ( 2v 4u ) > - % "
.'v’a — 'rrvsa
L,6 Ky £ = XKy L f (8)
X X

Proof : By Theorem 3 and Theorem 3,17, both sides of (7) be-

Let ¢ ¢ T

long to TF!
& P, Dy 42

u+2 °

1]

q
(23 L8, ) (g, £5% ) by (3.40)
. X

i
( £y =L TR ) vy (4
X

il

= { 2, 25 K2 ¢ )

X

: T s Ny i g
using thes definition of K 2~ for Re a > 0, and analytic contin-
xn_)
vation etherwise . On the other hand ,

1
v, _ VS, O -1
( L\.'-{-Ct Ixz £ 2 d) ) e K £ o I\yz X L_v__a X ¢ )
~ o -1
2 { $45 % h,xz L_v_a x ¢ )
Thus, we have only to show that
. KV @ x-? & = MG 5 x-—‘l ¢
: ,l.-v xz = X ..y2 -t
or L Bty s g2% g < ¢
-y XZ }_2 -y-a

: -1 _
But, since x ¢ ¢ the result follows from Theorem

Fp,u+? ’

4 (ii) with y replaced by p+t anl ¢ by :{_1¢ %
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The proof of (6), is similar . Once again, we see
that the restricticns on the parameters in Theorem & are obtain-

ed from those in Theorem 4 by replacing pu by - pand p by q.

§4.3 _Further properties of L

v—

We recall from (3.57) that if Re M > % , 8§ dis an

automorphism of F and
PyH " vi 9
5 & g (9)
Now , from (2) , we have
L, = x2( 52 + 2v 8 )
and in particular L, = X2 52, It follows that, if
1 X ) .
Re p > = L is an isomorphism of F onto F and
Heg* Yo g Ps 1 Py H=2
-1 ~1,1 ~1,1 2
L, = I,7 I, x (10)

If alsc Re ( 2wap ) > % , ve may ot o =~y in (5) to get
P

R V. - Vyop
7 L,¢ = I I ¢
b x
for ¢ ¢ FP,“ . Since we are also assuming Re uy > % s We may,
by Corellary 3.11, apply | I”é’“ 371 4o both sides to obtain
O, v +Vs=y
: % X

It folluws that in this case LU is invertible on FP i and
° 3

1

- 2 y
L, & Iy &

i
—

11,1 I1,1 Iu,~v ¢ (11)

for ()
4 Py H-2
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If, on the other hand;, Ré p < % , Wwe have from (3.59)

that 8 is again an automorphism of Fb and
P
- 0.
& = o (12)
so again L0 is invertible on F y and
2
L51 - K0f1 K0?1 xz
< &

Putting v= 0 and replacing

aby - ain (6), we obtain for ¢ €

)
PoH
Oy=c,  _0,-0
LyK3 ¢= &) L ¢
x X
Restoring v 1in place of a,
0,"'” s 0,"”
L0 K5 "¢ = K.z L, ¢
: X p
If alsc, Re ( v+ ) < % s we may, by Theorem 3,14, apply
( Kpéﬁv)"1 to both sides to obtain
x
VY 0=y
. = i 3 L 3
Lv P X g 0 X 5 ¢
x X
Again, Lu is inverhible arnd for ¢ € EP,#—Z
1,:1 g o= 5 k0 0T g A2y (13)
- 4 >'s 4 X

We have therefore proved

Theorem B

i
v

(i) If min ( Re p, Re (

Svap ) ) > % » L, is an isomorphism

of F onto F and for g P the ti
P, K D, - be Fpuea equasion
L,¢ = g
has & urique solution ¢ in F_ y given by (11)
s
(ii) If max ( Re p , Re ( 2v4p ) ) <~% > L, is an isomorphisn
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of F onto T o and for % e F ' the equation
g Pyl P, k2 ¥ psu-2 * :

L, ¢ = ¢

v

has a unique sclution ¢ in FP i given by (13) .
>

Similarly, taking adjoints , or proceeding via (4)?

(7) and (8), we can obtain the corresponding results for F£ u

Theorem 7
(1) If min ( =Re u, Re ( 2v=p ) ) > % » L, is an isomorph-

and for g e P!

ism of F? cnto F!
- I P ps 2 ?

Ps

A the equation
3 !J+l- < .

va=g

has a unique solution f in FL " given by
<2 :

2 1,v I1,1 133 V,=V

il o
xx x @ x X

(ii) If mex ( ~Re g, Re ( 2u-u ) ) < % 3 Lv is an isomorph=

ism of F! onte F! aad feor g € F!

Ps M D, u+2 D, 142 the equation

va = g
has a unique soluticn f in.'E; . given by
bt |
5 =Yg ¥ 0,1 _0,1 _d,~p 2
f = X, K’ K7 Xy x g

o b ar 2
. e - L



CHAPTER 5

Fractional Integration and the Hankel Transform

$£5.1 Introduction

In this chapter, we ccnsider the connection bet-
ween the homogeneous operators of fractional integration and the
Hankel transform. In its usual form for Lp ( as opposed to Tri-
cCai's form which we shall consider later ) the Hankel transform

of order v is defined on Lp by
n

(1, ) = 222D [ 2 ) 6(e) et (1)
' : 0

for any complex number v . Here, l.,i.m (@) denotes the limit in

the Lq norm , % +-j-q = 1 as usual, and Jv is the Bessel fuhct=

ion of the first kind and order v . We require the following

result,

Theorem 1

1 1
Le‘b1<p£2,Rev>—2 q,gbeLp.Then
H$ exists alnost everywhere on ( 0, ) and H, is a contin-

uous lincar mapping of Lp into Lq.

Since FP c Lp, it follows that Hv maps Fp
into I‘q , under the hypotheses of Theorem 1. We will show that,
in fact, Hv is a contimious linear mapping of Fp into Fq'

If the function ¢(x) vanishes for x sufficient-
ly large, then

(Hp ) (x) = fo Vxt 7 (xt) ¢(t) at (2)

the integral actually being over a finite interval, (2) is easier



o

to handle than (1) from the point of view of differentiation.
Thus, to show that, for any ¢ € FP » Hv¢ is smooth, we do not
use (1) . Instead, we first approximate to ¢ by a sequence {¢n}
in FP, each ¢,(x) vanishing for x sufficiently large so that
we may use (2); we then use Theorem 1.3 to differentiate under
the integral sign and finally use the continuity of Hv on Lp.
The details follow in Secction 2.

There appears to be no easy way to deal with Hv
on the spaces Fp,“ with p £ 0. Okikiolu [ 22 ] has proved

some results for operators of the form

n = c

(J¢)x) = 1:io (2 fo (xt)2™ 7, (xt) ¢(t) at

and we could use these to obtain some results flor elements ¢(x)

in FP B which vanish for x sufficiently large., But the limit
2

in mean prevents us dealing with general elements of FP u and
-]

we shall not pursue this. Thus, all our results in this chapter

will be for the spaces Fp .

$5.2 The Hankel Transform on F
P

As indicated above, we begin by approximating to
an arbitrary function ¢ € FP. We assume throughout this secticn

that 1 < p < &,

Lemma 2
For any ¢ € Fp , there exists a sequence { ¢n }
of elements of FP, each vanishing for x sufficiently large,

such that ¢, converges to ¢ in the topology of FP .
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Proof : Let Ay be an arbitrary smooth function such that
1 0<x<1
M(x) =
0 x> 2

and for each positive integer n define A by

Mx) = M(32)

Clearly An is smooth for each n and
1 0<x<n

An(x) =
Given ¢ € Fp, define ¢ by

$n(x) = M(x)  ¢(x)

i %) th

Clearly ¢n(x) = 0 for x > 2n . Also, since Ap ,the k
derivative of Ap, is bounded on ( 0, ) for each k = 0,1,2.4. ,
it follows easily that fer each k

Kk
k a

x = ¢n(x) e L,
dx

so that ¢, € FP. We show that ¢ converges t@ ¢ in Fp as
n->w,
We must show that for each k = 0,1,2,..4

yﬁ ( ¢=¢n ) converges to zero as n = «, with yIp{ given by (2.2).

° k
f | xk'd—'z (¢~¢n) lp dx
0 dx.

[ vo(e-¢n) 3P

u

2n K
d k.d
fl T(¢-¢n)lpax+£11x—%lpdx
n dx dx
k
¢ € Fp => xk d‘—E € ]:.P so that the second integral on the
dx

right tends to zero as n - « , We now consider the first integral.

k k
xkg_k T e kakI( 1=-2a(x) ) ¢(x) }
dx. dx
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k
© l k-
N 1___ o Kla) 3 k—-ld_%b; k
10 ax: ( : ax [L)
k-1
o ¥ LB 5w +Zx—-(mn(x))“j—‘é()(s)
dx dx x

e are concerned with the value of the right-hand side for

n<xg< 2n .

X
[1-2(x)] € 1+ ] Mm@ = 1+ | M(E)|
__ sup _ sup x ) _—
= pexeon 1@ € 1+ 20 MO = 1w pep M)
= MO say
where MO is a constant , independent of n , Also, for 1 > 1,
1 1
1l d 1a 1 4 =
_'I("Aﬂ("))='x-—1'?tn(x)=—x~—-Ia,(;)
dx dx ax
1
1 1 M, x
= =X Hl 7L1 (E)
sup | x; Qi_ (1 - 2% ) l _ sup |( x ) (1) X )'
n<x<an dx} f n<x<2n n
s | £ Afl)(t) | = M, sa
1<t<2 1 Y

where again Ml is a constant, independent of n ., It follows
from (3) that

klﬂ. ¢|

k
| 2SR Ut ) | &« Ol | =
g;k : l=0hl dx

Now the right-hand side belongs to Lp so that

2n
k 4.
j' | x Q—E (¢=¢n ) |P ax = o0 as n > o
n dx

Hence yﬁ ( d=¢n ) + 0 asn <+ofar each Kk = 0,1,2¢s000 »
i,e. ¢n converges to ¢ in FP as required
#e use our sequence {¢p} again in the next

lemna,
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Lenma 3

If ¢ ¢ Fp, ¢n 1is constructed as in Lemna 2,

1 1
and Re v>-2--a,then

n

rpchill) L 7,(xt) 9(t) at =" i"“w(‘ﬂ f vt J5(at)on(t) at’
0

Proof : Note first that the integral on the right- side is over

a finite interval , namely ( 0,2n ), for each fixed n. Write

n
[ vxt Jv(xt) #(t) at

il’n(x) =
0
2n
xn(x) = Vit 7 (xt)gn(t) at
0
We must show that
l.i.m (q) ¥n = 1l,i. (q) Xn
In =» o n—> o
2n ;
bn = xn = f Vit 3 (xt)gn(t) at
n

1}

l{;i;m (a) f VE 7 (xt)u(6) it

Hv (Wn )

where wa(t) = qb,-,(t) (n <t<2n ) and = 0 otherwise.

Hence by Theorem 1, on
| #n= %0 |, sK|_f |¢n(t|pdt] (4)

vhere K, is a constant , independent of n and ¢ , Also, pro-

1
ceeding as in tiae proof of Lemma 2, we have
; , § o 8
Len(®) | < 1 a0)] 28, | M) = | o(¢)]

where M ié, independent of n. Hence, from (4) with K_2

= K1M,wehave
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on oy}
|¢n")£n |q g I%Lf: |¢(t) lp dt_'p -+ 0 as n >« ,
n

since ¢ ¢ Lp . This completes the proof .

Lemma 3 tells us that

Ho¢ = 1l.i.n (q) H (5)

n = v
So far we only know that for each n, Hv ¢n € I..q by Theorem 1,
That each Hv¢n actually belongs to Fq will be a consequence

of the next lemma,

Lemnma 4
Let ¢ € FP and suppose ¢(x) =0 fa x suff-

iciently large. Also, let Re v > = % e % .Then Hv g € Fq .

Proof : Let ¢(x) =0 for x > A . We are able to use the

forn (2) for Hy¢ so that

(Hy) (=)

i

A
/ Vxt Ju(xt) ¢(t) at
0

Ax
f Va7 () g( 2) 2
0 1%

For fixed x > 0, choose B : 0 < B < Ax . Let

B

(x) - fo VB g (w e 2) 2
Ax

I,(x) = fB Va g (u) ﬁ)%

By Lemma 2.4, for some constant N,

i 1
1 -— S
VG 3 (u) w(%)-}clsﬁmz*m” Peg™t® ¥

Since ;% * Rey = %' > =1 by hypothesisy we can use Theérem
1.5 'to deduce that I, is Qifferentisble am
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wa( ) f -

B
§I,(x) = - [OJE () (841 ) ¥( -JU-;) %

As regards Iz, the integrand is continuous and hence

standard theorem ( e.g., Widder [24].p.353 ) I, is different-

iable and since (&+1) ¢(4a) = 0, we obtain
Ax
u y du
512(3:) =—L¢3Jv(u) (8+1) ¢(;);-

Consequently, Hv¢ is differentiable and

B ¢ = - H, (5 +1)y

Since ¢ € F_ = ( 8+1 )y ¢ FP by Theorem 2.9, we moy

P

proceed by induction te prove that Huw is smooth and

1 ¢ = (-0SH (81)<y ¢
k
by Theorem 1. Since xk -d—-E Hu ¢ is a linear combination

ax

of B BHE 5  exeene s skﬂve,tf , it follows that H g € F_

as required .,

To reach our goal vsing (5), we need one more

lenmma,

Lemna 8

fWith ¢, ¢p defined as in Lemma 2, the function

l.i.m (g

: 1
A Hu ¢n  belongs to Fq provided Rev > = =4y

Proof : Let us write ¢p = Hv ¢n o Then, by Theoren 1,

1¢n'¢m |q€ I{%olqbn“%lp

for some constant K. dindependent of n, n and ¢ , Similarly,

0

using (6)y Tor % = 1,2,3.v4s » 3 constants Kk such that

|87 G =) 1< K | (801) (¢n = )|,

It now follows that

(6)
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W

k N 1
k d 1d
R AUREDN I Cp | = =5 (¢n =) |

d 1=0 dx

for some constants Gl 3 lees

Y2 (4o = ¥m) sgklgcm-%d (7)

Now since { ¢p} converges to ¢ in FP by Lemna 2 , { ¢n} is a
fundanental sequence in Fp . (7) now implies that { ¢p } is a
fund;méntal sequence in Fq . By conpleteness, 3 ¢ € Fq such

that ¢ converges to ¢ in Fq . But, since convergence in Fq

inplies convergence in L , it follows that
q

y = Lim(d 1. (g Hogn 7

n - o ‘'n > o
The lemma is proved .

From (6) we ncw have

Corollary 6

;= : Sl
¢ € BP => Hv¢ € Fq provided Rey > > ‘

Q ;
That Hv is a linear mapping is obvious, We now

prove

Lemna 7

If Rev > = % . . Hv is a continuOus mapping

q
of Fp into Fq .
Procf : We have with the previous notation

k k k

8 Hv $n = (-1) Hv (8 41 )" ¢n
Passing to the 1linit and using the fact that § is continuous
on FP s ¥ and Hb is continuous on Lp’

qQ
s ¥ H ¢ = (-1)k H, ( 8+ ). o
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k x 1
> £8wm e = L oo ( LE2)
ax 1=0 dx
for some constants Cl . Hence, by Theorem 1, for some constants
Dl s i
yi(Hg) <« L ¥ (9)
1=0

The result follows .

We summarise our results in a theorem ,

Theoren 8

1 1
If 17<p<2, Rev>-~- 3 = g Hv is a cont

inuous linear mapping of Fp into Fq .

Although we have estahlished Theorem 8 for
1<p< 2, we shall , in fact , be primarily concerned with
the case p=2. For 1< p< 2, a characterisation of the
range of Hv in Lq_ is not kncwn so that the question of inver-
sion cannot be dealt with. However, when p = 2 , nuch nmore is
known . Indeed, if Re v > -1 , Hv naps Lz into L2 and is

both one-to-one and onto with inverse Hv-1 = Hv . Combining

this with Theoren 8 , we immediately obtain

Theoren 9

If Rev > =1, Hu is an automorphism of F2
-1

and H = H
v v
2°3
§6.3 Asynptetic expansicn of —5v
av

In Section 4 we will censider further the action
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of H, on F2 . However, in order to perform an analytic con-
tinuation , we nust derive asynptotic expansions for the deriv-
atives of the Bessel function Jv with respect to v . Thj.s
section is devoted to these derivations .

We shall follow closely the methods in [10],
Chapter 7 , That is to say, we first obtain asymptotic expansions
for derivatives with respect to VvV of Kv , the modified Bessel
function of the third kind and order v , and then proceed via the

Hankel functions .

From [10], p.23 , we have that ,if Re v > - % ,
i N1
e T k-3
I\V(X)= _é_z LZJM)—(Zx)m+RM](8)
n=0 v+2-m)

whereg

T (2078 7 ~t =14 el (g, HbyyE, g
3”(.) (u-1)1 I‘Cw*g*-l‘)./. : dt,/o o™ s ) ‘f ( )

Let vo be fixed , Re v > -5 and let 0 < € < Re vo+%. We can

choose M such that Rev- % -l < 0 whenever | v=vo | < €. Then
uty v ut\Rey -5 =l
’(1 = (1+ 55 s 1
Y s &
. |R]1.(X)i < - (2]() . f ttRev 2+M (1 )M 1
‘ (u=1) 1| FCuag=l) | "0 0
(2x) -M

= i

< C (M, e) xH

| =M sup I( Rev 45 41 )
where c(M,e) = 2 |V‘”ol€€ TGRS

It now follows easily from (8) that for any M > 1, 3 C(M,¢ )

independent of x such that for | v-v, | €¢ x 314,
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| RM(x)l < c(M ,¢) £

By differentiating (9) and proceeding as above, we can deduce

sinilarly that, for each k = 0,1,2.... , 3 a constent C(M,e,k)

such that
—1 (x)] < c(y,ek) x ¥
av
where again C(M,€,k) is independent of v,x for | v-v, | €

and x 2 1 . Using Hankel's symbol

(vn) = £ jot Patsd).. (% (a)P)]

N(v+dta+m)

n! (v + 2 -mn )

we obtain
1 -
alﬁ{ (x) = %.. 2 j: Zb (u,m)(2x) o 4 RM kj (10)
av 3v s
=M
where ] RM,k(x) | < c(u,e,k) x (11)
unifornly for l V=V I < € and x 2 1,
Suppose now that Re vo < & . Then vg = = Mg
with Re o > - % . Also, Ku (x) = K—u (x) so that
k k
3 k 9
K& = (1) = E&E  (p=-v)
v au

By applying the previous case with v,v, replaced by Uy Ho
we can deduce that (10) and (11) hold for any vo and suffic-
iently small €.
For our purposes, it will be sufficient to take
i = 1 and we shall write R for remainder terms such that , for
¢ sufficiently small
|R] < € (k) x for | v=vo | s € and x > 1

; ; : o ; (1)
We now progeed via Hankel functions, The Hankel functioen Hv
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of the first kind and order v satisfies

(1) (x) = il ~ivm K ( ix) (12)

ko 1 -
=> Q—r H (x) = 21 glvw Z: ( x ) (—Zin )k . alK (=ix)
&5 v
o 1=0
k 1.
__2i Zive  wm g dx ek k-1 @
= wi=sig (= (1 )(—zin) ['a-i'(vo)+R]
1=0 ¥
Since ( v,0 ) = 1, we have
k L3
&P 8 Ak ddledyned Nk
Lom @ = ()2 [ (unFar)
dv

In particular , for k = 2, we have

2 1 2
d S 2 vz i(x—pvo- —)
-z B {x) = (E? e [-- +R]  (13)
av
The second Hankel function H (x) of order v satisfies
(2) 13
H (x) = %f ey K (ix) (14)

Hence replacing i by =i throughout we obtain

2 2
(3) L d(xtvr-. =
Cx® = (Z)E,AEdmD T xy (19)
av
, . , (1 (2) _
Finally, since J, (x) = 5[ H, (x) + H, (x) ], adding
(13) and (15) gives
5° 2 &
— (x) = (*=)2 cos ( x=pvm- ) [- - +R ]
TX
av
3
32 m § 4 m
= Vx -3 Jv (x) = - ( 3 )¢ cos ( x-zvm- Z') + R

dv

We have thus proved

Lemnma 10

For any vo and € > 0 sufficiently small,

frt 62 T '% T
vx -5 J (x) = = ( = ) ¢ cos ( x—svm- T ) + R
v v v

where | Rv(xﬂl g er1 ’ uniformlylin Izv—vo | €€, x2z21.
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Here C depends cnly on € | ¥ follows that for any compact
subéét K of the complex plane, 3 C ( depending on K ) such
that |

| Rn (x) | S C x

uniformly for v € Kand x 21

§5.4 Analyticity of the Hankel Transform on Fy .

We are now ready to-.discuss the analyticity of
H, on F2 « Throughout this section, ' l.i.n ' will denote the

linit in the L2 norn, By definition,

H ¢ (x) = Lot fo VXt 3, (xt) ¢ (¢) at

n > o©

Assuning x and ¢ fixed, we may regard Hv #(x) as a function
of v . Recalling that Jv is an entire function of v , we may
diffeerentiate formally to obtain

S H e = 17 f VE i) () ab

av n - o
G 0

We will show that, for fixed ¢ , %;— H¢ exists as a linit

in the topology of P, whenever Rey > -1 .,

2
We first consider the operator Tv defined by

n
5 2
T o(x) = 1'3;"‘-‘ f & L3y (xt) &t) at  (16)
v o, av?

so that T &(x) is obtained by differentiating H, &(x) forn-

ally twice with respect to v .

Lemma 11

Let "vg.be fixed with Re ¥p> =1 . For € suffic-
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iently snall, there exists a constant X , independent of v such
that
| o8l < x|l (¢¢ F,)

whenever .|v-v, | < €

Proof : We follow closely the method of Bochner [1] pp,227-8.

As in Lemma 10, we may write
3

2 -
iz g-;i @) =-(F)%cos (ybvr- 7) +R ()  (17)
We also write 3
'2" n

. (%) = i"i’i ( -g) f cos(xt—svm- -"'—‘I) o (t) at

: 0

1

bg,, (¥ = f" R, (xt)¢ (t) at

0

. n
vy , (0 = 12 ]1 R, (xt) ¢ (¢) at

X

Let us consider first ¢ , (x) . We have
2 1

lvg, @1 < F"I R (xt)] | ¢(t) | at
0

1
= d
fo EXCIEEIIE

1 1. ®
If Re vo> -3 , we choose € : Re vq - 2¢ >~ 35 , Now, there

exists a constant M1 such that
2 1
I v _a__.;v (5) <yt Re v € (18)
dy
unifornly for 0 < yxg 1 and | v=-vo | < € \ But if lvevglsg

Re ( % Pyv-% ) > Re (% +vo = 2¢ ) > 0 so that

g M1

T a2
|5 2 )
av

unifornly for 0<y <1 and | v=v, | s € ., Further, since
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cos ((y - vmw —‘g ) is unifornly bounded on this set , 3 M,

such that

|2, W < n,
unifornly for O0<y< 1 and I V=vgo I < € . Hence, in this
case , y

ENCIRE NPT HEE JE AR

Now ¢(x) € F2 => (Iis1|¢| )(x) € FZ by Theoren 3.5 .

M

, 1
= |ty Bl <y | 2 @ 1RGO,

I8

0,1

M, | (12 | |,

| < K |l
by Theorem 3,5 , where K1 is independent of ¢ and of v in
| v=vo | s €. |

Suppese , on the other hand , that -1 < Re v < -5,
We now choose € : =1< Re v = 2¢ , As in (18) , 3N, suwh
that

azJ

vy = ) | < ¥y
av

2
z + Re v - ¢

unifornly for 0 <y <1 and | v=vo | s ¢ s Thus , if | vev, |se

- 22 g _
| V¥ 5;—%” GY] = M g® TR IE-E
v

1

%+ Re vo=2
M, fo y THRe TR (@) | &

/N

= | 4, &

M

/
/

Since % + Re v, =2¢ > % , we can use Theoren 3,3 as before to

1 =+ Re vy-2¢€ ,1 1
5 = (I3 el 5)
deduce that 3 K2 such that
7SV PR I S N

where K2 is independent of ¢ and of v in V=vp | € €,



- B

S0 in either case , there is a constant 62 , independent of

¢ in F2 ; such that

| g,y g S 1ol (1) 2,
unifornly in | v-vo, | € € , for € snall enough .

Suppose € fixed in accordance with the above,
e now consider ¢1 5 Since

»
cos ( K‘b-%v?f“'g) = cos xt cos (Zvm +E) + sin xt sin (%—vn+-£),

3 n
= o 10.-
451’“(3‘() = —(%)2003(%w+£)ni2 f cos xt &(t) dat
0

1
Py
[SIE]
o

pojCA

n
sin (Zvm + % ) i’ifa j‘ sin xt o(t) at
0

Now cos (Zvm + jE ) and sin (Zy7 *+ -E ) arc bounded on | v-v, |sxe,
Hence Theorem 1 applied te the Fourier sine and cosine trans-~

forns shows that 3 01 , independent of ¢ in FZ such that

R P N (20)

IMnally , feor ¢5 y > e note that by Lemma 10
2

3 M4 such that

M
| ®, (5] s ¢

unifiornly in | V=Vq | £ € . ¢5 v (x) exists as an inproper
3

integral and o

v, & 1 o< [y TR, GR)] g (2)] at
b’d

f |2, D¢ &)X
1

L f1 I 1s(Dlay

"

L (xr" lel) (1)
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We may now apply Theorem 3,13 to deduce that

0,1
|5, 1y = Mg T XM8l [, < gl 0y (21)

where C is independent of ¢ and of v in | V=Vo I < €.,

3
- Finally, since
T ¢ (x) = ¢y (2 + 4y ,v(x) + 45, (%)

the result follows from (19), (20) and (21) .
We now prove

Theorem 12
Let Re v > -1, ¢ € F, o Then

Hu+h¢ 3 Hv(‘b _ . H ¢
av v

h

converges to zero in the topology of F, as h - 0 in any manner.

2
In particular, for each fixed x, H $(x) is an analytic funct-

ion of vy .,

. 1 — : - E—
Proof : = [ erh & H ¢ ] 5 F o)

e v

l.i.m

n <> c

fnv?rb“ 203,00 - 3,(xt)] = 53 (xt)} o(t) at
0

For |h| sufficiently small, we may apply a local mean value the-

orem for complex variables [23] to deduce that
1 d
h [ B¢~ H ¢ } - > Be = hl,¢
where v' = v + 6h, |6] <1, and T, is given by (16). The *
theorem will be proved if we show that, for k = 0,1,2.444 ,
yﬁ (h T, ¢ ) =+ 0 as h-0 in any manner .

But
k

2 2
e (n1,¢) = |nl Y2 (1,8) = |n| | x“ﬁ T

vl
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By arguments analogous to those for Hi , we can justify differ-
entiating Tv,¢ under the integral sign with respect to x to

deduce that , for some constants co,c1 3 esee °k ’

k k
HEg (1,8) = (T o 89)
® 1=0

Then applying Lemma 11 , we obtain

k k
k d - 2
x S== (T ,6) ], ¢ y;(¢)
dx? v 2 1%b al .

where the constants d, are independent of v in ] y=y! | £ €,

1
for € sufficiently small. Hence, if |h| is sufficiently small,

k
2 2
ve (BT, 9¢) < |n 12; a,v,(¢) > 0 as-h~>0

and the result follows .

We shall require Theorem 12 in the next section .

§5.5 Connections between H and fractionnl integration in Fz_
VvV

In [13], Kober established connections between the
Hankel transform in Tricomi's form and the operators Iz’a and
Kz’a . In this section we translate these into corresponding res-
ults for H, and the operators Iqéa and Knéa applied to funct-

x X
ions in L2 "

Let ¢ € L2 and Re v > -1, 15 T the Hankel trans-
form of order v in Tricomi's form is defined by
n
[ l.i.m —
R, ¢ ) =n,,mf0Jv(2\fxb)¢(t)at (22)

By standard results Ji‘,is a continuous linear mapping of L2 into

'Lz when Re w > =1, Kober proved the following theorem .
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Theorem 13

Let Re ¢ > 0, Re v > =1, ¢ eLz.‘I‘hen

1 1
. zV, & o ZV, G
(3) Ix “L v ¢ B I}v+2a Ix ¢
k| 1
. Ev,a = 2V, a
(i1) jl vy K0 ¢ = K le+2a ¢
We deduce
Theorem 14
Let Re a > 0, Re v > =1, ¢6L2.Then
v : a v L 7!
. 2¥Y =T st 2V = 7 %
(1) 19 7% BH ¢ = H , I5 4 é (23)
X %
ZV + = a v +‘l a
(ii) H, K22 4°7¢ = K, T4’ H e (24)
% %

Proof : (i) Let ¢ €L, . Then +t ¢ (%tz) € L, also and by a

2

change of variable it is easy to show that

2

Ly, a 1. 2 — Ly - 1 a 1.2
(12775 ¢ )Gx) . B L, R H, ( Vx ¢ (2x7) )
V&, \ (1 2 -% v - i sG ¢ 1 2
Bpaza I~ #7&) = x%H o Ty & (Vx ¢ (zx7) )

Hence, by Theorem 13(i) ,

1 3

1 1
I TE % n (VR UED) ) = B, T 7T R WD) ) (26)

2 vi2a T2
x x
-1 —_—
Now, given % € Los let ¢ (x) = (2x)” 4 ¢ ( v2x ). Then ¢ € L2
— 2
and Vx ¢ (3x7) = ¢(x) ; so, by (25),
Ly - % v-21.a
2y ™ arl - 2V = o
Ixz 4 H, ¢ (x) = H oo Ixz 4.°% &(x)

as required ., (24) follows similarly from Theorem 13(ii)
Theorem 14 will hold in particular when ¢ € Fz.
However, for fixed ¢ and x , provided Re v > -1, and also

Re ( v+3a ) > =1, both sides of (23) are analytic functims of v
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by Theorem 12 and results in Chapter 3 . Similarly for (24),
Hence we may remove the restriction Re a > 0 and substitute

Re ( v+2a¢ ) > =1 to obtain the following theoren.

The orem 15

Let ¢ € Fy , ke v > =1, Re ( v+2a ) > =1. Then

1
- Ev . 3 a —
(1) Ixz 4 Hv ¥ = 420 g ¢ ¥
v - a % + = ,0
2 < 2 - ]
(ii) H I{xz 4 $p = sz 4 — .

We can use these results to express Hv in terms
of the Fourier sine end cosine transforms Hy and H 4 . Suppose
2 2

that the hypotheses of Theoren 15 are satisfied . We may then

I:r?” =T ?a

invert g 4 by Corollary 3.11 to get
X
L0 %G -a 1y -3
.  2Y -7 e 2V T 7 s
Hv ¢ = 5 4 Hv+2a I 2 4 Lo}
x X
If w420 = % and Re v > -1,
) L ma o wl Fy el
H ¢ s T0¥°T g 1¢ 7> (2 4)¢ (28)
v x2 = x2

On the other hand , from (ii) with v replaced by v-2a,

1 1 1
_ g2+ 7 s ZVh T~ ,Q
H ¢ = K5 W4 Ho oK g & ¢
X X
if Re v > -1, Re ( v-2a ) > =1 , In particular, if v-2a = —3,

Re v > =1,

A5 Gk o ol Lo 3 L g
H ¢ = K, *%° (zv+ 7 )-H_Ji k%2 Y1 4 (27)
P X

Thus, knowledge of the Fourier sine and cosine transforms and the
operators Inéa and Knéa is sufficient to study H o F, when

X X 2
Re v > -1,
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§5.,6 The Hankel transform an Fé_

We come now to the definition of H‘J on Fé . AS
usual, the definition is motivated from consideration of regular

functionals. Let f € L2 and ¢ ¢ F_, vanish for sufficiently

2
large values of the argument so that va and Hv¢ are given by

integrals . Proceeding fornally, we have

f:q: Vxt 7 (xt) £(t) at ) #(x) ax

1

(H,£,¢)

[ £(t) dtf ﬁJv(tx) #(x) dax
0 0

= ( £, Hv ¢ )
Hence, for arbitrary f ¢ Fé , we define Hv f by
(B £,9 ) = (£, H ¢) (28)
for ¢ € F2 . By Theorems 9 and 12 and Theorem 1.2 we

obtain immediately

Thecren 16
For Re v > -1, Hv is an automorphism of F'2 and
Further, Hv is analytic on F) in the sense that , for fixed f

€ Py, and ¢ €F,, (va,rp)isananalyticfunctionof v

The connection with fractional integration is

exhibited by

Theoren 17

Let f T}, Re v > =1, Re ( y+2a ) > =1, Then

=

s S S
(1) 12;’ g »¥ B, £ = H . A (29)
X

H
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| 1 . |
(i1) H K *Z°% ¢ = K2;+4’a H oy T (30)

The theorem is immediate on taking adjoints in Theorem 15 .
We can use (29) and (30) to prove the follow-

ing results , analogous to (26) and (27), valid for f € F!

2!
and Re v > -1,
A 1 N N . |
H £ = 19:2Y =7 g, I%; 1 A2 4)1‘ (31)
X K x
$o o X . o9 < DO, |
H f =K§;+4’ (5”*4)3_%1{0’2”*4:? (32)
v X.J x2

§5.7 Comparison of the spaces F;_end J-("J

To end this chapter, we compare our spaces Fi)
with the spaces )'(L on which Zemanian develops his generalised
Hankel transform in [25]

For any complex number u . }(,u is the space of
all smooth functions ¢ on ( 0, ) such that, for each pair of

non-negative integers m and k,

su m o, =ik =p-x
Yok (B = o | ¥ D) T gx)] < =
(D= %Tc ) . With the topology generated by the semi-norms y ©

m,k
¥ " is a complete countably multinormed space .

Proceeding as in the proof of Lemma 5,2-1 , on

p. 130 of [25] , we can show that, if 1 <p< «, Re u> =5 -

H cr .
P

u

=

The inclusion is strict as is seen by considering y0“1 (™),
]

which is infinite for every u
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It is not hard to show that the identity mapping
is continuous from }(H to Fp « Thus, if ¢n = 0 in )’(.”, as
n-+w , ¢+ 0 in FP also as n -+ o , It follows at once that
1 1
FP < X )
for Re u > -% - % « e therefore have a smaller class of general-
ised functions than Zemanian ., This is hardly surprising since the
spaces -H:;J were constructed with the Hankel transform specific-
ally in mind , whereas the spaces Fi were canstructed for an
investigation cof fractional integration . Nor are our spaces as
flexible as }{{J. Nevertheless they do serve to bring out the

connection between Hu and fractional integration .



CHAPTER 6

§6.1_ Introduction

In this chapter, we return to the spaces FP;N
to discuss four hypergeometric integral operators studied in [17]
and [18] by Love , and we extend the operators to the generalised
function spaces F',,u .

For any complex numbers a, b, ¢ with ¢ A 0,-1,
=0y eeves 5 04 for |z| < 1, Gauss's hypergeometrie function

F( a,b,c,z ) is defined by

F( a,b,c,z2 ) = i e‘u—ﬁﬂn EE (1)

n=0 (c)n n!

where (a)o =1, (a). = a( a+1 ) ceess (a4n=1) = Ilam
n
I‘(a)
for n> 1 . Similarly for (b)n and (c)n . PFor fixed a, b, ¢
(c#A0, =1, =2, ve.s ), the power serics in (1) converges absol-

utely for |z| < 1 ., For brevity, we shall write

F*( a,b,c,z ) = ?E'E)' F( a,b,c,z ) (2)

For |z| < 1, we have, in the first instance for c # 0,-1,-2,.e.0 ,

® n
F*( a,b,c,z ) = Zq M 2. (3)
=\

I'(c+n) n!
However, since the reciprocal of the gamma function is entire, the
right-hand side is meaningful for any c¢ , Indeed, (3) shows that,
for fixed z , |z| < 1, F*( a,b,c,z ) is an entire function of a,
b and c¢ .,
We can extend F*( a,b,c,z ) to the half-plane
Re z < 5, by means of Kummer's formula ,[9],
z

*( a,b,c,z ) = ( 1-z )" F¥( a.,c-b,c,;':_-:‘-) (4)
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where we use the principal brench of ( 1-z ) ° ., For each fixed z
with Re z < % , the extended function I*( a,b,c,z ) is an entire
functim of a, b, ¢ . lWe note also that
F*( a,b,c,z ) = F*( b,a,c,z ) (5)
The first integral operator which we consider is
H, ( a,b,c ) defined for any complex numbers a, b and c¢ with

Re ¢ > 0 and for suitable functions ¢ by

X
( 1y(a,b,0) ¢ )(x) = f (x=t)°7"F*(a,b,0,1- ¥ )g(t) at (6)
0
1

= xcf ( 1=v )0—1 F*( a,b,c, 1 - -1) ¢ ( xv) av (7)
0 v

In order to discuss the mapping properties of H,} ( a,b,c ) on Fp u?
3
we first discuss the behaviour of F*( a,b,c, 1 -% ) as v - O+ .
Provided b = a 1is not an integer, we have, by

(9], p. 109,

F( a,b,c, 1 - '1')

a. T(b-a I'(a
=V Foma) 7(5) Fla,c=b,a=b+1,v) + Vv —(i—y%—)F(c -a,b,b-a+1,v)
a, . b
- s _[vFac—b a-b+l,v) _ ch—abb-a.Hx_r% 1 (8)
sin(b-a)7 ¢ T(c-a)I(b)I{a-b+1 INc-b)I(a)l'(b-a+l

so that, in this case, as v = 0+.,
Fe( abe, 1-1) = o(yPi(Rea Reb),y (g

However, if b-a 1is an integer, we must use a limiting argument in

(8). Let b = a + h. Then the right-hand side of (8) becomes
T v { Fla,c~-a~-h,1-h,v _ vh Flec-a,a+h,1+h,Vv } (10)
sin hw ¢ I(c-a)I(a+h) I(1-h) I(c=a=h)I(a)(1+h

For fixed a, ¢, v, the expression { ] is an analytic function
of h ., By expanding in powers of h amnl letting h - 0, we can

prove that , as v » 0+ ,
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Re

F*( a,a,c, 1 "'.:,') = 0 ( v alog V) (11)

Suppose now that b = a+nm, where n is a positive integer. Putting
b = a+n+h in the'right-hand side of (8) gives
!-12m ™ 1 F(a,c-a~m=h, 1-m=h,v) _ vm+hF c-a,a+n+h,m+h+1,v }
sin h7w c-a) I a+m+h) I'( 1-m~h) fzc-a—m—hjfiaifim+h+1i
n

_ §—1!m A { Ti; (a)“ (c—a—m—h)ﬂ_ ¥

sin ht  n=0 I(1-m-hin)I{c-&)(assih) n!

n-+m

* i (a)u‘l-m ﬁc-a-m--h) T 4
n=0 I'(e-a)Il(a+n+h)T(1-h+n) (n+m)!

[=-]

- Z: (c-a) (a+m+h) yimeh ]
n=0 I(c-a-m-h)I(a)(m+h+1+n) n!

Letting h - 0, the terms in the finite sum all vanish, while those
in the two i1.finite sums cancel in pairs and, proceeding as before,
we deduce (11) again in this case. A similar argument holds if
m is negative., Hence , for any a,b,c and 8-> 0, we have that ,

as v > 0+,

)=0(vmin(Rea,Reb)-3)(12)

PYIR

F*( a,b,c, 1 -
By studying the partial derivatives of F*( a,b,c 1 = % ) with

respect to a,b and ¢, we can prove similarly

Lemma 1
Let a, b, ¢ be any complex nqmbers and let
8 > 0 , Then there exists a constant M such that, for 0 < v < 1,
| pe( a’b’c’1_%)| . Mvmin(Rea,Reb)-a

min ( Re a, Re D) = 3

1 .
I -a'g F*( a,b,c,1 - ; )I g Mv
l g? P ( a,b,c,1 _-:; )l s v min; {. Kas a5 Be b = g

vmin(Rea,Reb)-—s

d
| -55-1?1‘( a,b,cy1 = < M

4=
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8.2 The action ef H1__£_ a,b,c ) on

F
Py H
We are now ready to discuss the action of H1(a,b,c}

as defined by (8) or (7) on functions of FP .

s H

Theorem 2
Let a,b be any complex numbers, Re ¢ > 0 and
o € F with =-Re u - & < min ( Re a, Re b) . Then
b, q
(1) H, ( ayb,c ) ¢ exists and is continuous on ( 0, )
(ii) For each fixed x, 0 < x < @, ( H1(a,b,c)¢0(x) is an entire
function of a and b ard an analytic function of ¢ for Re ¢ > 0O,

Proof : (i) Ve have, from (7),

1
( H,(a,b,0)p)(x) = x° , ( 1=v )" mr(a,b,c,1 - % Yo(xv) av  (13)

By Lemma 1 and Lemma 2.4, for 0 < v< 11, 8 > 0, 3 M, dependent

on &, such that
1

| (1=-v)®" Fx(a,b,c,1 - %) #(x)| ¢ HO-MF ¢ " V)P H 73
,min (Re &, Re b) ~ 8

Under the given restrictions, the right~hand side is an integrable
function of v over ( 0,1 ) for & sufficiently small. Hence,
the integral on the right of (13) converges uniformly on compact
subsets of ( 0, ). Hence, H, ( a,b,c )¢ is continuous .
(ii) To prove analyticity with respect to a,b,c, it is merely
necessary to justify differentiation under the integral sign. For
example

S5l (107" Bx(a,b,0,1-2 )g(xn) ] = (1-9)°7" Lpn(a,b,001- D¢ (x)

+ (1-v)°Nog (1=v) F*(a,b,c,1- -:; ) ¢(xv)
The hypotheses of the complex form of Theorem 1.3 cofl be satis—-

fied using Lemma 1 and the result follows. Similarly for a,b.
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We shall, in fact, be able to prove much more about H1(a,b,c)¢
shortly. To this end, we next establish a connection between the

operator H1(a,b,c) and fractional integration .

Lemma 3
1
Let eF - Re - = < min Re Re
@ pyp ’ U 3 ( 13 s 1?)

Re @ > 0, Re B » 0. Then

1% 18P oo TR eupon, B, aeB) TP g (14)
Proof : Iz’a Ii’ﬁ ¢ (x)

%

* -8 [
ey fo (=2 0" au S fo (wt)? £5 g(t) at

We nay justify inverting the order cof integration by means of

Fubini's Theorem so that
x x
I;?“ Ii’ﬂ ¢(x)='fT%5if?Dj; £%6(t) at j; (o) Mt By,

On putting u = -;—E% , the inner integral becomes

1
( x-t )BT gTEP f (1= ) P ae w1 201y
4]

= I‘lat {Iiﬁﬂj) ( x-t )a+ﬁ-1 tn-éqﬁ F(&"’ﬁ"ﬂ ’ ﬁ 3 a"'ﬁ 3 : %C)

using Formula (10) , p.59 of [9] .Thus, finally
-l

x
Mo 16R oy [y x )P
I, 0 0 = e . (x=t) 777 F(&4B-1,8, 048, 1- £ )t T(t)at

= X TOH (epon, B, wB )T g(x)

as required .,

£

It now follows that for ¢ € FP
»
Hy (g+p-n, B ,at8 )¢ = x™ 1% 18 P71 ()

providedl Re a > 0, Re B > 0 and - Re(u+B-n) - -é < min( Re &, Re 7)

and hence we obtain
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Corcllary 4

1 :
Let qSeFP,u,—Rep-E<mm(Re a, Re b ),

Rec>Reb >0 ., Then for any 7,

(H(a,b,0)g)(x) = xMO 1o pmad,b b=n oy (15)

The fact that the right side is independent of p is seen by writ-

ing it in the form

no=b x&n~c+b Igrb e Iz xq+a4b ib-n & (5)

X

Iz;b x & Ii xé o) (x) (18)

Using the theory of Chapter 3 , we can continue the
right zide 5nf'(15) analytically with respect to b +to remove the
restriction Re ¢ > Re b > 0 . We then use (15) to define H1(a,b,c)
on F provided only that -Rep-—%_<min(Rea, Re b ). By

Py
Theoren 2(ii) and uniqueness of analytic continuation, the new

definition coincides with the old when Re ¢ > 0,

We now use results in Chapter 3 to derive more
properties of H1(a,b,c) on FP u From (15) we see at once that

2
1
if - Re u - E < min (Rea,Reb ), H1(a,b,c) is a continuous
linear mapping of F into F . If, in addition, we have
SRNE p,H PsH+c ? ?

- Re p —-& < min ( Re c, Re ( a+d ) ), H1(a,b,c) is invertible

and,for any n and ¢ € Fp,p+c §

1]

([,(a,0,0)] 0 Jx) = &0 1™ gTHOmD5De TeRy ) (47)

xn—b-a Iz,—b Iz+c—b-a,b—cxfn—c+a+b #()

x & H1 ( -a, b=c , ~c ) x> w(x) (18)

from (15)
We gather our results together in the form of a

theorem ,



~90s

Theorem 5
H1 ( a,b,c ) is a continuous linear mapping of
F into F provided - Re p - il < min( Re a, Re b ). If
Py P, ptc q
in addition - Re pu --% < min (Re c, Re (a+b ) ) , H1 ( a,b,c )

is an isomorphism of F onto T with inverse given b
B F PsH P, H+C 8 ¥

(17). Further, for ¢ € FP, 6 4 (18) holds .

An interesting point emerges at this stage. From
(5) it follows that for any a, b, c and - Re u - -:i < nin(Re a,Re b)

( H1( a,b,c )¢ )(x) = H1( b,a,c )¢ )(x)

for all ¢ € F . Then from (16) we have for ¢ ¢ F :
P’u P»u’

c-b -8, b a c-a -b & .B
Ix b 4 Ix x o(x) = Ix o Ix x  ¢(x)

the restriction Re ¢ > Re b > 0 being removed by analytic contin-

uation . Thus,.if = Re, p.- é;pg »pin, (:0, Re (a=b+) );.@%f.Fﬁ o
’

wc=b ‘=a. _b a=b c-a =b a
I x I x H(x) = I, x I, &(x)

Taking ¢ =b , we can use (3.25) and the fact that = Re p —'é <0
to deduce that
-a .b _a-b b-a =b _a

x I, x Hx) = I, x I,

$(x)

Finally, writing a2 =-a, f=b and y = a-b we obtain

Tleoren 6
1 .
Let ¢ € FP:H s —Re p - E.< nin ( 0, Re y ) 5
a+ f+y=0. Then

x% Iﬁ  ox) = 1Y xF % ox)  (19)
(19) is a form of the second index law for fractional integrals
which has been discussed by Erdélyi [7] and Love [19] .

( The first index law for I.; is (3.27) with m =1 )
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8.3 Other hypergeometric integral operators on F

Psld

TWe now consider three more hypergeometric integral
operaters closely related to H1 ( a,b,c )
For any complex numbers a, b and Re ¢ > 0 and

for suitable functions ¢ , we define Hz'( a,b,c ) ¢ by

(Hy Cabye )e)(x) = fo (x=t)°"1 F*(a,b,c,1 - -:3: Ye(t)at (20)

Proceeding as in [12], p.195, we deduce that
H1( a,c-b,ec ) x > &(x) = x > H, ( a,b,e ) o(x)
=  Hy (ab,c) ¢ (x) = x* H, ( a,c-b,c) x o ¢(x) (21)
Since.the right-hand side is meaningful for Re c < 0 , we can
use (21) to extend the definition of H, ( aybyc ) o Let ¢ ¢ FP:N'
Then, provided - Repy - é < nin ( 0, Re ( c=b-a ) ), we have
that ( H, ( a,b,ec )o)(x) is’for each fixed x and ¢ an analy-

tic function of a, b, ¢ , and maps F into F « e see
PyH Ps 4o

from Theorem 5 that under the same conditions
ea -
([H(-a b, < )7 )(x) = x* H(aede) x° ¢(x) (22)
for ¢ € Fp so that in this case

s H

-1
H, (abye ) " = [ H, (-a, -b, =c) ] on FP,“

We can express H, ( a,b,ec ) in terms of fractional integrals by

means of Theorem 5 . We gather the results together in

Theorem 7
Let - Re u - % < min ( 0, Re ( c-b-a ) ). Then
H2 ( a,b,c ) is a continucus linear mapping of Fp,u into Fp,u+c

and, far any 7,
( Hyla,b,0) §)(x) = x™aH gD Ha07C,00D 00™ g  (g9)

If, in addition, - Re u - % < min ( Re ( c-a ), Re ( c=b ) ),
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H a,b,c ) is an isomorphism of F onto F and for
3 { Bl . P, H Psptc ,

v e Fp,u+c )

{ B0 mgdye )i PR BIRDR P IRD SR ) )

In this case, the integral equation
Hz(a,b,c)qb = ¢

has,for each €er a unique solution € F iven b
s e ¥ D, ptc q o) P,!Jg y

(24) . Also, on Fp,,u+c
[ H2( a,b,c )]—1

[ Hy( a,b,0 )]

(]

x> Hg( —a,b-c,~c) x

{l

H1( ~a,=b,=C )

[t}

-1
and on FP,# Hz( a,b,c ) [ H1( ~a,=b,=c )]

Qur other two operators are the adjoints of !
H, ( a,b,c ) and Hz( a,b,c ) and are discussed by Love in [18].
For complex numbers a,b,c with Re ¢ > 0, we define HS( a,b,c )

and H4( asb,c ) by

( Hy( ab,e )¢ ) (x)

i

f (t-x)°7" 72( a,b,0, 1- £ )g(t) at (25)

(8,0 2,550 )¢ )(x) f (60" P a,b,0, 1- 2 )e(t) at (26)

We can treat H4( a,b,c ) in a similar fashion to
N 1 .
H,l(a,b,c).Let gﬁerP’“,Rep-Ec min ( Re £, Re ) and

Re a> 0, Re 8> 0 . Then by interchanging the order of integration

we can prove that

k2P K% = TP H, (epms B, ) X% () (27)

from which we deduce that if Re p - % < min ( Re(a-c), Re(b-c) ),
Rea >Re b > 0,

(H( abye ) @)(x) = 277 gIFOPD 0D 0D () (2g)
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Now, under the given restricticns, for fixed x and ¢ , we can
show that ( H4( a,b,c )¢ )(x) 1is an analytic function of a, b,

¢ « Further the right-hand side of (28) can be continued analyt-
ically wusing the theory of Chapter & . We can therefore extend

the definition of H,( a,b,c ) using (28), the new and old defin-
itions coineiding, by analytic continuation , when Re ¢ > 0.

Hé( a,b,c ) when thus extended is a continuous linear mapping of

into F provided only Re.p - % < éin( Re(a=c),Re(b=c)).

F
Pl Py p4C
Proceeding as before we can derive the following results .

Theorem 8

Let Re g - % < mnin ( Re (a-c), Re (b=c) ) .

-

Then H4( a,b,c ) is a continuous linear mapping of F into

Ps H

Foe o endfor 9 e o, Hy( a,b,c ) ¢ is given by (28).
3 F

If, in addition, Re u =

Ll P

< min ( 0, Re (a+b-c) ), H,( a,b,c )

is an isomorphism of F ontc F and for ¢ € F ’
DyH b, p+c P, p+C

[(Ey( a0 N7y 1(2) = 2O PO gL () (20)
, -1 -
or [ {(#,( ab,e)) ¢ 1(x) = xH(-a,b-c,~0) x = ¢ (x) (30)
In this case,the integral eguation
H’i—( a,b,0 )':5 = ¢ ( g T )

Py pt+c

has a unique solution ¢ € Fp " given by (29) .
3

From (28), we deduce that
(8, ( 8,0 ) )(x) = x* Ki 0 K;"b S (%) (31)
Since, using (5) again, Hg( a,b,c ) ¢ = H4( b,a,c ) & , we
deduce that if Re u - % < nin ( Re (.a%¢c):, Re ( d=c ) ) and

F
Qe pspt ?



e 7.

a b -a _c=b b _a ~b c-a

x K x K plx) = x K, x K o (%)
e~b b _=a _C-b ; _ a _=b c=-a

= X K, x I\.x ¢ (x) = K. x K 9 (x)

21
Taking ¢ =Db and using the theory of Kx developed in Chapter

3, we deduce that if Re p - % < nin{( 0,Re (ab) ),

a=b _b _=-a a ~b _b=
x K, x ¢ (x) = K x I{xaqs(x)

Writing @ = -a, P=b and y = a=b, we obtain

Theoren 9

1 .
ILet ¢ ¢ FP,H , Re p - 3 < min (0, Rey),

@+ B8 +y=0, Then

2 Ki x &(x) I{;a x-ﬁ g~ a(x) (32)

X

which is a form of the second index law for the operators Kz .

( The first index law is (3.39) ,

Finally, we consider Hﬁ( a,b,e ). For Re ¢ > 0,
we nmay use (25) and (26) and prcceed as in [18], pp. 1073-4,

to prove that for suitable functicns ¢ ,

( HZ)( a,b,c )o)(x) = e H4_( a,c=b,c) x (%) (83)
We may use (33) to extend the definition of H,( ab,c ) to
Reeg0,If ¢e¢ FP u and Re H - % < mnin( -Re c,—Re(a+b) ),
2

( H5( a,b,c ) ¢)(x) is, far fixed x and ¢ ,an analytic funct-

ion of a, b and ¢, From (33) and Theoren 8, we deduce

Theoremn 10
Let Re u - % < nin( -Rec, =Re (a+b ) ) .

Then HS( a,b,c ) is a continuous-linear napping of FP u inte
3

F and, for €T and
D, 40 s ® < S8

( H5( a.,b, G)¢) (}C) o xc-a.--b—n Kz+a+b‘“0 sc=b K-:i’b x'r}+&+b (‘5( K) (54)



B

If, in addition, Re # == < nin( -Re a, =Re b ), He( a;b,c )

Lol B

is an isomorphism of F onto F and, for el
# Py U Ps H+C ? ¢ Pyp+c

[ (85 ab,0 )74 1(x)

x—n—a—b Kz:ob,—b Kz+a,,b—c xn+3+b—c ¢(x)(55)

]

x HS( —a,b=c,-c ) x> ¥(x)

L}

( H4( _a,"'bs"'c )ib) (JC)
In this case, the integral equation
H5( a’lb,c )¢ = 4’

has, for each ¢ ¢ F s & unique solution ¢ € Fp - given
2

P, ptc
by (35) .

§6.4 Hypergeonetric Integral Operators on F% i
]

We are now ready tc discuss the operators Hi(a,b,c)

i=1,2,3,4 on F! -

(1=1,284) o B
e begin again with H1(a,b,c) . Assuaing that f

arnd H1(a,b,c)f generate regular functionals, we have, proceeding

fornally,

( H,I(a:,b,c)f s @ )

]

5(x) dx - x=t) " 1p(a,b,c,1- F) £(t)at
j; a(x)a f; (=) 'F*(a 1-3) 2(

i

]; £(t)at j; (x=t)°"TF*(a,b,c,1- %) #(x)ax

or ( Hy(ab,e)f, ¢) = (£, H(ab,e)¢) (36)

By Theorem 8, the right-hand side is meaningful if f ¢ F! ’

2

e eFPll"'G and Re ﬂ—% < nin ( Re a, Re b ). In this case,
2

we use (36) to define H1(a,b,c)i‘ for f€ FI') uo By Theoren °
3

T u By H1(a,b,c)f € F£ g ond teking adjoints in Theoren 8
3

we obtain
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Theoren 11

Let Re y - %_ < nin ( Re a, Re b ) . Then

H1( a,b,c ) is a continuous linear mapping of Fé’“ into
' and, for f € I
i PyH=C : PyH
Hy(a,bye ) = PR I;’c-b Izm-b’b g (37)

for any complex 7 , If , further ,Re p - % < oin (Re c,Re(a+d) ),

H b,c is an isonmorphisn of F! onto T! and, for
1(31 ,c) 5 pals Dy Dy H=C ’ g
€ !
pPsH-c ’
[H1(a,b,c)]f1 % o xn-b Iz+a,—b I£+c_b’b_c xp-o-n " (38)
-1 - .
or [ H1(a,b,c) ] g =2 % H1(—a,b—c,-c) x> g (39)

In this case, the integral equation
H-}(a‘,bsc) f = g
has, for each € ! a unique solution f € F! iven b
’ g psi=c °’ 4 pyu 8 *
(38).

Fron consideration of regular functionals, we are

led to the following definitions of Hz(a,b,c) 4 H5(a,b,e) and

Hy(a,b,e) for f e By @ 9e€F, o
((Hylab,e) £, ¢) = (£, Hy(abye) ¢) (40)
( Hy(a,b,e) £, 9) = (£, Hya,b,c) ¢ ) (41)
( Hyla,dye) £, ¢) = (£, H(eb,c) ¢) (42)

By taking adjoints in Theorens 10, 7 and 5 we obtain the follow-

ing results.

Theorem 12

Let Re g =-= < mnin ( 0, Re (c=a=b) ) , Then

1
P
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Hz(a,b,c) is a continuous linear mapping of T into Fé,p—c

a, fo £ e B!
e A Ps H

2

Hz(a,b,c) £ xn+a+b Iz,b Iz+a4b-c,c—b xc-a—-'b—n P <45)

for any conmplex n , If, further, Re u - % < min (Re(c-a),Relesh)) |

Hz(a.,b,c) is an isonorphism of F! onto F! and, for g
s U Pspu-c
€ I
P, pu-c 2
[Hz('é;'ﬁ',f:) e 2P0 I:?:a’b"c Irb’"b e (44)

x* Hz(-a,b-c,-c) i g

-1
Also, [Hz(&,b,C)] g

]

H1( =a,=D,=C ) &
In this case, the integral equation
Hz(asbsc) £ = g
has, for each g € F! s & unique solution f € F! given

D p—C PsH
by (44),

?hédfenﬁ 13

Iet = Re p ”}1 < nin ( =Re ¢, - Re (La+ ) ).

Then Hs(a,b,c) is a continuwous linear mapping of Fé,u into
Fé’“_c ard for f ¢ F;,p » ant any complex 7,

Hs(a,b,c) £ xpwa—b-n K£+aéb—c,c-b Kg’b xn+a4b £ (45)
If, further, - Re pu - % < nin( -Rea, —Re b ), Hg(a,b,c)
is an isomorphisn of FL,M onto F;,p-c and for g ¢ Fé’”_c s

]

[ #,(a,b,0) 17" ol K£+h’—b K2+a’b-° § 8Om0 g (486)

o B Hg ( -a,b-c,-c ) x* g
In this case, the integral equation

5(:’) g (g P:P"C)

has 2 unique solution f € Fﬁ i given by (486) |,
3
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Theoren 14

34(a,b,c) is a continucus linear napping of F]'? u
]

into F¢ provided =DRe p = L % nin( Re (a=c) , Re (b-c) ),
PyH=C q
and for f € FE) T anl any conplex 7,
9
Hy(a,b,0)f = 371 g Bb oeb mo-h 4 (47)
p'q X
If also - Re p —-& < nin ( 0, Re (a+b=c) ), H4(a,b,c) is an
i hi of F! onto F! and for € F!
isomnorphisn Lo omEe B g Y i
[ H4(a,b, 3) ]-18 x—n—c-i-b K:w-b,b—c Kz-a-a,—b xn—b i (48)

a -a
= X H:L( -a,b=c,~c ) X g = H3( -a,=b,~C ) g
In this case, the integral equation

- 1'
H‘L(a:bsc)f = g (. g € PP,IJ"O )
has a unique solution f € F]; " given by (48) .
2

: a
Lastly, we have the second index laws for Ix s

Ki on F;} i obtained by taking adjoints in Theorens 6 and 9 .
2

Theoren 15

(i) Let f e F!
]

Lo Re M —-11)-< nin ( 0, Re y:), o+ B + ¥y = 6..Then

a B Yy . Y =f o eU i
x I ¥ £ =L x°" I_ f (49)

(1) Tet £ € Ff  , Re u--;-<nin(0,1‘te v), o+ 8.4y = 0. Then
¥

xyKﬁxaf
x

i

£ P Yo (50)
X X

Once again, we note that the restrictions on the
paraneters in Theorens 11-15 are obtained from those in the
corresponding results for Fp u by interchanging M and =-p ,

3

p and q .,
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