
SOLVING S~MBOLIC EQUATIONS WITH PRESS

by
Leon Sterling, Alan Bundy, Lawrence Byrd,

Richard O'Keefe, and Bernard Silver
Department of Artificial Intelligence

University of Edinburgh

Abstract

We outline a program, PRESS (PR__olog Equation Solving S_ystem) for solving symbolic,
transcendental, non-differentlal equations. The methods used for solving equations
are described, together with the service facilities. The principal technique,
meta-level inference, appears to have applications in the broader field of symbolic
and algebraic manipulation.

Acknowledgements

This work was supported by SERC grants GR/BI29252 and GR/B/73989 and various
studentships.

Keywords

equation solving, rewrite rules, meta-level inference, logic programming

I. Introduction
The PRESS program was originally developed with two aims in mind. The first aim

was to use the program as a vehicle to explore some ideas about controlling search in
mathematical reasoning using meta-level descriptions and strategies. The other aim
was to serve as the equation solving module for the MECHO project [Bundy et al 79]
designed to solve hlgh-school mechanics problems stated in English. PRESS can solve
the fairly straightforward equations, inequalities, and sets of simultaneous
equations arising from the example mechanics problems taken from textbooks.

Over the last year or so interest has turned more to developing the equation
solving program as a performance program in its own right. The implementation of
several new components has led to a marked improvement in performance. The program
achievements could, we feel, act as a benchmark in elementary equation solving -
something currently lacking in the literature as far as we could determine. The
techniques used may have something to offer the field of symbolic and algebraic
manipulation.

The equations PRESS has been solving are largely taken from English A-level
examination papers. Such examinations are taken by 18 year olds in their final year
of high school, and are used to help decide suitability for university entrance.
Particular papers used are those issued by the Associated Examining Board (A.E.B.),
the University of London, and the University of Oxford. The years range from 1971 to
1979. Currently the program solves 69 out of 83 single equations and 10 out of 14
sets of simultaneous equations. Some typical problems are

42.x+I * 5 x-2 = 61-x (I)

cos(x) + cos(3*x) + cos(5*x) = 0 (2)

3*tan(3*x) - tan(x) + 2 = 0 (3)

log2x + 4*logx2 = 5 (4)

3*sech2(x) + 4*tanh(x) + I = 0 (5)

loge(X+1) + loge(X-1) = 3 (6)

e 3*x - 4*e x + 3*e -x = 0 (7)

(A.E.B. November 1971)

(A.E.B. June 1976)

(Oxford Autumn 1978)

(London January 1978)

(A.E.B. June 1971)

(London June 1977)

110

cosh(x) - 3*sinh(y) : O &

2*sinh(x) + 6*cosh(y) : 5 (A.E.B. June 1973)

PRESS can solve all the above equations and some statistics are given in section 5.
However versions of MACSYMA [Mathlab 77] and REDUCE that we ran could solve none of
the equations. In fact it was hard to guide the REDUCE program to follow our
application of rewrite rules.

PRESS is organised as a collection of interacting methods. Each method conducts a
syntactic analysis of the current equation and, provided various preconditions are
met, then manipulates the equation to achieve a specific syntactic effect. For
instance, the Collection method analyses the equation to see if it contains more than
one occurrence of the unknown. If there are then it tries to reduce the number of
occurrences. The methods try, in turn, to manipulate the equation by applying
particular rewrite rules. If one succeeds then the process is repeated until the
equation is solved or no further methods apply.

PRESS is written in PROLOG, [Clocksin and Mellish 81], a programming language
based on the ideas of logic programming. Hence, the PRESS code can be interpreted as
axioms of a first order mathematical theory and the running of the program can be
interpreted as inference in this theory. The predicates and functions of these
axioms express relationships between expressions of algebra, and the axioms assert
facts and laws about the representation of algebra. For this reason we say that the
PRESS code constitutes the first order, Meta-Theory of Algebra. We call algebra an
object-level theory and the heuristic control information embedded in PRESS a
meta-level theory. As PRESS runs it conducts a process of meta-level inference which
guides the search for a solution to the equation. More details of this technique can
be found in [Bundy and Welham 81].

In the next section, we will give an overview of the scope of the program.
Following that, particular methods will be described. In section 4 the more
important of the meta-level concepts used by the program will be discussed. Some
indication of performance, including a sample solution, will be given in the final
section.

It should be emphasised that our aim was not principally to build a powerful
performance program. Nonetheless the program has desirable features. It performs
well on a wide range of equations.n It has a modular structure, making it easy to
extend the power of the program. It has also been possible for students to do
projects in symbolic integration, differential equations and other areas of symbolic
and algebraic manipulation, using the basic symbolic manipulation components extant
in PRESS.

2. An Overview of the Program

Currently PRESS itself has four different top-level modules: one for solving
single equations, one for sets of simultaneous equations, one for inequalities, and
one for proving identities. The procedure for solving single equations is the
central core of the program. In fact, the other top-level modules are largely
interfaces to the relevant parts of the single equation code. We will concentrate in
this paper on describing the procedure for solving single equations.

The most recent version of the equation solver has 6 major methods implemented:

- Isolation, for solving equations with a single occurrence of the unknown.

- Polysolve, for solving polynomial equations.

- Collection, for reducing the number of occurrences of the unknown in the
equation.

- Attraction, for bringing occurrences of the unknown closer together.

111

- Bomogenlzatlon, a generalized change of unknown method.

- Function Swapping, for transforming equations into ones with more amenable
function symbols.

These are applied in approximately the order of listing, with each significant
transformation of the equation resulting in all the methods being attempted again.
Note that particular rewrite rules are only applied In the context of particular
methods. This avoids the problem of being bogged down in the exhaustive application
of a large rewrite rule set.

PRESS also uses several service modules to aid in algebraic manipulation. There
is a pattern matcher, an expression simplifier split up into two components, tidy and
eval, a package which reasons about intervals, and a package for manipulating
polynomials. These have largely been tailored to the needs of the program and no
claims are made to their generality or efficiency.

3. Program Methods

Most algebraic manipulation packages, such as MACSYMA, REDUCE, and MUMATH, have
some equation solving ability. Typically there are components to handle polynomials,
and equations where there is a single occurrence of the unknown. Thus the first two
methods described, Isolation and Polysolve, have little new to offer, but are
included here for completeness. The remaining methods exploit more interesting
meta-level guidance.

3.1. Isolation

Isolation is a method for solving equations containin G only a single occurrence of
an unknown. That is, Isolation can solve loge(X~-1) = 3, but cannot solve
logo(X+1) + logo(x-l) = 3.

The method consists of 'stripping off' the functions surrounding the single
occurrence of x by applying the inverse function to both sides of the equation. This
process is repeated until x is isolated on one side (the left-hand side) of the
equation, e.g.

logo(X2-1) = 3 ~ x 2 - I : e 3 ~ x 2 = e 3 + I ~ x = ±J(e3 + I).

This stripping off is done by applying a system of rewrite rules to the equation, in
this case the rules:

loguV = W --> U = V W, U - V = W --9 U = V + W and U 2 = W -9 U = ±~

How to apply the rewrite rules is determined with the aid of position information.

3.2. Polysolve

The left-hand side of the equation minus the right-hand side of the equation is
parsed to determine whether it is a polynomial. The definition of a polynomial is
slightly enlarged to include terms of the form x N for negative integers N. If the
relevant expression is a polynomial, control of the solve procedure is passed to the
polynomial solver.

The algorithm handling polynomials recognises linear and quadratic polynomial
equations, which are easily solved by simple formulae. Also zero roots are
recognised and the appropriate power of the unknown is factored out. Simple integer
roots are tested for, and the appropriate linear term ~actore~ out. Disguised linear
and 8uadratic equationg are also solved, for example x" - 4*x = + 3 = 0 is a quadratic
in x ~ with solutions x = = 3 or 1.

Various solutions depending on the polynomial being symmetric or anti-symmetric
have also been implemented.

112

3.3. Collection
This is a method to reduce the number of occurrences of the unknown in an equation

by applying a suitable rewrite rule. For example, consider the expression
log~((x+1)*(x-1)) which has two occurrences of x. The re,rite rule
(U+V)*(U-V) --> U2-V 2 can be applied to the expression to produce logo(X=-1). Note x
occurs only once in this new expression.

A reduction in the number of occurrences of the unknown is often a key step when
solving equations, usually because it enables Isolation. The Collection method tries
to match subterms of the equation with suitable rewrite rules which will reduce the
number of occurrences of the unknown. Most commonly, Collection is a preparatory
step before performing Isolation.

A more detailed description of Collection can be found in [Bundy and Welham 81],
along with fuller descriptions of Attraction and Isolation. Heuristics are given
there to locate the subterm to be rewritten.

3.4. Attraction
This is a method designed to bring occurrences of the unknown closer together.

This might be a useful preparatory step before performing a Collection step.
Closeness of two occurrences of the unknown is determined by considering the number
of arcs lying between them in the expression tree of the equation.

Again rewrite rules encoding an algebraic manipulation step are matched against a
particular expression. The closeness of the occurrences is calculated before and
after the potential manipulation step. If the distance decreases, the rewrite rule
is applied.

Consider the expression logo(X+1) + logo(x-l). The occurrences of x are separated
by six arcs on the expression tree. The rewrite rule loguV + loguW --> Iogu(V*W) can
be used to transform the expression to logg((x+1) (x-l)). The occurrences of x are
separated by four arcs in the new expresslon. Hence the application of the above
rewrite rule is a valid Attraction step.

3.5. Homogenization

This is a very powerful recent addition to the program, whic h has been described
in [Bundy and Silver 81] and [Silver 81]. Given an equation (eX) ~ - 4*e x + 3/e x = 0,
it is standard to introduce a new unknown for e x, y say. This substitution
transforms this equation into a polynomial equation in y which can be solved by the
polynomial solver.

.However if the initial equation appears in the examination papers as
e 3 X _ 4,e x + 3,e-X : 0, it is not at all obvious that the same substitution enables
the equation to be solved. Homogenization, in this case, determines that each of the
exponential terms can be expressed in terms of e x.

More generally, Homogenization parses the equation recording the terms which
contain the unknown. Such terms are classified into four types: logarithmic,
exponential, trigonometric and hyperbolic. If all the terms in the equation are of
the same type, the equation is labelled of the particular type. Otherwise the method
fails. For each equation type it is determined whether each term in the equation can
be rewritten in terms of some reduced term. This rewriting is done and an explicit
change of unknown substitution performed for the reduced term.

After Homogenization, equations are routinely solved by the polynomial solver with
occasionally some prior manipulation by the Function Swapping code.

113

3.6. Function Swapping
When solving equations, often one function symbol is preferable to another. This

may be for several reasons. If the right hand side of the equation equals zero,
multiplication is preferable to addition on the left hand side of the equation, since
this allows us to split the initial equation into two separate equations. Squaring
an expression is preferable to taking the square root, since there are simple rewrite
rules relating to squared expressions. Function Swapping is a collection of methods
which transform an equation according to function symbol preference.

Certain functions are labelled nasty. These are functions which are less fam$1iar
than their inverse, such as the inverse trigonometric functions, e.g. sin-'(x).
Logarithms and square roots are other examples. Modifications of Isolation,
Collection and Attraction are used by Function Swapping to remove nasty functions.
For example, consider the solution of ~5"x-25 _~[~i-~ = 2. The first step^ in the
solution is to isolate one of the square roots to obtain 5"x-25 = (2+~xi~) ~. Note
that Isolation has occurred even though there are occurrences of the unknown
occurring on the right-hand side of the equation. The remaining square root can not
be isolated without reversing the previous step but the r~ght-hand side of the
equation can be expanded, to give 5~x-25 = 4 + 2"~'~ + (~F~rT)=. The square root term
has been brought closer to its inverse operation, squaring. For this reason we call
this step nasty-function attraction. Of course, another square root has been
generated, but this root i~s isolatable, producing a 'nicer' equation. After
cancelling the square and square root, the isolation of the remaining radical
proceeds. This results in a quartic polynomial, which is really a disguised
quadratic polynomial. This polynomial is easily solved, giving the answer to the
problem, and a spurious root.

Another example of Functio.~ ~wapping is the following. Certain problems,
containing terms of the form a ItxJ where a is a constant, are simplified by taking
logs to an appropriate base. This is a case where logarithms are less nasty than
exponentiation, as this type of exponentiation is not the familiar one.

The context often determines which functions are preferred. Consider
cos(x) + cos(3*x) + cos(5*x) = 0. The right hand side of the equation is 0, so
factorization is a possibility. In this situation addition is less useful than
multiplication. PRESS solves this problem by adding cos(x) and cos(5*x). This
replaces one of the additions with a multiplication. The cos(3*x) can then be
factored out, and the other factor produces the other root after a simple application
of Isolation.

3.7. Service Facilities - Simplifier, Evaluator, Matcher and Interval Package
Currently, PRESS does not make extensive use of strong normal form mechanisms,

with two exceptions. A polynomial normal form is used within the polynomial solver.
Collection and Attraction assume the equation is in a weak normal form with terms
containing the unknown on the left-hand side and unknown-free terms on the right-hand
side. However for the most part equations are maintained as "tidied" expressions,
which are not canonical forms.

Tidying is a simplification process which tries to maximise evaluation by bringing
together numeric sub-expressions using the associative and commutative properties of
certain functions. To assist this process, rewrites are also applied which remove
'/' and binary '-' in favour of '*' and '+'; and rules for identity and unit elements
of functions are used. As well as performing evaluation where possible, Tidy applies
a set of simplification rewrite rules to all levels of the expression. Various
methods also make use of intermediate bag representations for associative-commutative
functions.

E v a l u a t i o n i s done by an augmented r a t i o n a l a r i t h m e t i c package w r i t t e n in PROLOG.
The f unc t i ons p rov ided a r e r e l a t l o n a l s , +, - , t / , d i v , mod, ^ (the e x p o n e n t i a t i o n
operator), log, god, entier, abs, sign, numer, denom, and a few tabled values for
some of the trig functions. Rational powers are handled, as are some rational roots.

114

The range of functions provided reflects the range of A-level examination papers.

To apply a rewrite rule to an expression, PRESS uses a matcher that knows about
the commutativity and associativity of addition and multiplication. For example, the
matcher can apply the rule U*W + V*W--Y (U+V)*W to the expression x*y + z*(3*x) to
give (y+3*z)*x.

One method of solving the equation a'sin(x) + b'cos(x) = c is to apply the rewrite
rule sin(U)*cos(V) + cos(U)*sin(V) --Y sin(U+V). This involves a more sophisticated
pattern mateher. Such a matcher has been implemented and is described in [Borning
and Bundy 81], though the simpler matcher is used in most cases.

Perhaps the most exciting use of the more powerful matcher has been to derive the
solution of a simplified form of the general cubic equation from first principles.

The interval package was designed to check conditions of rewrite rules. For
example the Isolation rule U*V = W --> U = W/V has the condition V ~ 0. The package
uses the monotonicity of functions to determine in what interval function values lie.
For example, given the condition x-cos(x) ~ 0 where x is known to lie in the
interval [W/3,~/2), the package determines that the condition holds. The interval
package has also been applied to use semantic information about physical properties
to reject solutions given by the equation solver. A fuller description can be found
in [Bundy 81].

4. Meta-Level Concepts
Proving that a particular value is a solution of an equation can be thought of as

proving a theorem in the theory of algebra. Thus a naive initial approach to
equation solving might be to give an axiomatization of arithmetic, rules for
algebraic manipulation, and ask a theorem prover to prove a particular theorem
corresponding to a given equation. Not surprisingly this unguided approach is
hopeless in the combinatorially explosive search space of possible algebraic
manipulations of an equation.

Our solution is to use meta-level (or syntactic) information about the equation to
be solved to find an appropriate equation solving method and, hence, to guide the
search for a proof. The rest of this section describes the meta-level concepts we
have developed and the way the program uses them.

We distinguished before between information about the expression in general, and
facts about properties of the functions occurring in the expression. Useful
information about expressions is the number of occurrences of the unknown in it, the
argument positions at which they occur, the smallest subterm containing all the
unknowns, the distance between occurrences of the unknown (usually measured by
numbers of arcs in the expression tree). These are the main meta-level properties
used by Isolation, Collection and Attraction.

Explicitly, in the case of Isolation, the method determines the number of
occurrences of the unknown, which must be I. The position of the unknown in the
expression tree is exactly specified and used to help find the appropriate rewrite
rule.

The function properties used are that we have a polynomial, or another special
expression appearing in the equation. Cosine terms in arithmetic progression imply a
certain solution method is possible. All the terms being trigonometric imply only a
restricted class of rewrite rules will apply. There are several such conditions in
the program.

5. Program Algorithm and Performance
While describing the program methods in section 3, we effectively solved two

equations. Let us put these solutions together. Firstly, the full behaviour of the
solve procedure is given. Consider again equation (7) from the examples in the
introduction, repeated here for convenience.

115

e 3*x - 4*e x + 3*e -x = 0

Let us see how PRESS tackles this equation.
tidy, the solve procedure is invoked.

(1)

After an initial syntactic check and

1. Invoke the isolation procedure to solve the equation if there is only a single
occurrence of the unknown. In (i) there are three occurrences of x, the
unknown, so this step fails.

2. Call the polynomial solver if the equation is a polynomial equation. The
presence of the exponential terms precludes the equation from being a
polynomial equation.

3. Check if a simple change of unknown would simplify the equation. In this case
there is no simple change.

4. Try collection by selectively applying rewrite rules. For (i) there is no
easily applicable rule.

5. Try attraction. Again there is no easily applicable rule.

6. Try to homogenize the equation. This succeeds for (i), xl being substituted
for e x. The new equation is

xl 3 + -4"xi + 3"xi -I = 0 . (ii)

7. Equation (ii) is now recursively handled by the solve procedure. This time the
polynomial solver is invoked.

8. The equation is multiplied through by xl to give xl 4 - 4'xi 2 + 3 = 0.

9. This is recognised as essentially a quadratic equation. Another substitution
is made with x2 replacing xl z.

10. This equation is solved, with two solutions x2 = I and x2 = 3.

11. Now the substitution equation xl 2 = x2 is solved for the two values of x2.
Since there is only one occurrence of xl this is done by the isolation
procedure. This gives the solutions xl = ±I and xl = ±~, and completes the
solution invocation begun in step 7.

12. Similarly the equation e x = xl is solved for x by Isolation.

13. The final answers are x = loge~ or x = 0.

Note that the solutions x = loge-1 and x = loge-~Should be rejected by the solution
vetting procedure.

For the second example we just give the sequence of successful methods invoked
when solving the equation, (6) of the list given earlier. Consider the sequence of
equations below. The method at the end of each line indicates the method used to
bring about the equation transformation.

loge(X+1) + loge(X-1) = 3 Attraction

loge((X+1)*(x-1)) = 3 Collection

loge(X2-1) = 3 Isolation

Isolation now solves this equation as in section 3.1.

Thus the solution in both cases is found by cooperation between the methods. The
other major method, Function Swapping, is not needed in either example, but is
routinely applied after Homogenization.

116

The PRESS code occupies 72K of core running on a DEC-tO. The following table
indicates its performance on the example equations given in the introduction.
Equation Time Methods Used

(I) 2200 Function Swapplng,Polysolve
(2) 1905 Function Swapping,Isolation
(3) 6280 Homogenization,Function Swapping,

Polysolve,Isolation
Homogenization,Polysolve,Isolation
Homogenization,Polysolve,Isolation
Attraction,Collection,Isolation
Homogenlzation,Polysolve,Isolation
those given in the introduction. Times are CPU times

(4) I010
(5) 1350
(6) 815
(7) 3580

The numbered equations refer to
given in milliseconds.

REFERENCES

[Borning and Bundy 81]
Borning, A and Bundy, A.
Using matching in algebraic equation solving.
In Schank, R., editor, IJCA!7 , pages pp 466-471. International Joint

Conference on Artificial Intelligence, 1981.
Also available from Edinburgh as DAI Research Paper No. 158.

[Bundy and Silver 81]
Bundy, A. and Silver, B.
Homogenization: Preparing Equations for Change of Unknown.
In Schank, R., editor, IJCAI7. International Joint Conference on

Artificial Intelligence, 1981.
Longer version available from Edinburgh as DAI Research Paper No. 159.

[Bundy and Welham 81]
Bundy, A. and Welham, B.
Using meta-level inference for selective application of multiple

rewrite rules in algebraic manipulation.
Artificial Intellisence 16(2), 1981.

[Bundy et al 79]
Bundy, A., Byrd, L., Luger, G., Mellish, C., Milne, R. and Palmer, M.
Solving Mechanics Problems Using Meta-Level Inference.
In Procs of the sixth. IJCAI, Tokyo, 1979.
Also available from Edinburgh as DAI Research Paper No. 112.

[Bundy 81]
Bundy, A.
A Generalized Interval Package and its use for Semantic Checkin 5.
Working Paper 86, Dept. of Artificial Intelligence, Edinburgh, March,

1981.
[Clocksin and Mellish 81]

Clocksin, W.F. and Melllsh, C.S.
Programming i__nn Prolog.
Springer Verlag, 1981.

[Mathlab 77]
Mathlab Group.
MACSYMA Reference Manual.
Technical Report, MIT, 1977.

[Silver 81]
Silver, B.
The application of Homogenization to simultaneous equations.
Research Paper 166, Dept. of Artificial Intelligence, Edinburgh, 1981.
To appear in Proceedings of CADE-6, 1982 .

