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CHAPTER I 

Introduction 

Historical Sketch 

The first successful attempts of which 

there is record, to make use of a helical 

structure as an aerial,appear to have been made 

soon after 1930 when patents were taken out by 

Chireux in the United States and Franklin(2) 

in this country. In both cases at least part 

of the radiation was in the Broadside direction, 

and as will be seen later, because the pattern 

bandwidth was therefore necessarily small these 

aerials found little application. 

A new type of helical aerial radiating in 

the End -Fire direction was first proposed and 

investigated by Kraus(3) at Ohio State University 

(Claims to prior discovery are also made by 

ï,íarston whose reports, however, were not 

available until three years after the first 

publication by Kraus). In this case the 

conception arose from the use of the travelling - 

wave tube, and Kraus's main contribution was in 

realising and putting into practice the idea that 

the circumferential dimension of the helix used 

there might profitably be increased until it was 

of the order of one wavelength, in order to make 

the helix a linear end -fire array. His first 

attempts were immediately successful and over the 

years 19L17 -1950 he was responsible for the 

detailed investigation of its properties that 

followed/ 
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followed4'5,e'7,8,9. As a result a clear general 

picture of the aerial's operation was built up 

in terms of travelling waves along the helical 

conductor. This enabled the radiation pattern 

to be predicted for a given length of aerial, an : 

explained the essentially non -reactive nature of 

the terminal impedance. 

Nevertheless even at the end of these 

investigations it is clear that while sufficient 

information was available to design a helical 

aerial, one was left with no idea of what was 

responsible for its limitations of bandwidth 

for certain degrees of pitch angle or what would 

be the effect oh bandwidth, axial ratio or 

impedance of minor alterations in the aerial 

structure. Similarly there were no means other 

than experimental of determining what effect, 

if any, would be produced by the presence of a 

centrally conducting mast or by encapsulation of 

the aerial in dielectric. What had been achieve 

was the building of a valuable superstructure 

of theory on the basis of many experimental 

results, but the theory was not, per se, capable 

of extrapolating beyond the evidence on which it 

was formed. It may perhaps be argued that the 

theory available did predict for simple helices 

the continuance of increased directivity patterns 

with moderate increases in aerial length. 

Nevertheless, it will be shown later that this is 

accompanied by a previously unknown decrease of 

aerial/ 

e, 
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aerial bandwidth, so that even in this case it 

could give rise to misleading information. 

These criticisms of the state of knowledge 

regarding the helical aerial from 1951 onwards 

are in no way intended as criticism of the work 

carried out by Kraus and his associates. Indeed 

their contributions are of permanent scientific 

as well as engineering value and it is not 

surprising that even the contributions of some 

significance10,11,12 which have been made since 

that time have added relatively little to the 

knowledge for which Kraus has been responsible. 

A third type of helical aerial has been 

proposed by Wheeler. This produced Broadside 

radiation by using a current which is uniform 

and in -phase throughout the whole length of the 

aerial. Consequently if it is to be used without 

the insertion of phase -shifting devices and end 

loading, its dimensions must be small compared with 

a wavelength, and its radiation resistance will 

accordingly be low. 

Outline of New Approach 

The approach which has been adopted by the 

author in the following pages is applicable to the 

first two types of helical aerial mentioned above 

The theory of the t.__ird kind is straightforward 

by comparison and has been adequately treated 

by Wheeler 3 and Kraus19. 
Main interest centres on the End -fire tipe 

which has found by far the greater application 

and/ 



and which has presented the greater number of 

problems. It consists in treating the aerial as 

an infinitely long waveguide which allows the 

propagation of surface waves, the phase velocity 

of which can be determined from the characteristi 

equation. The initial justification for this 

approach is that the helical aerial is 

essentially a travelling wave aerial. The 

initial problem then was to find how the 

calculated values of phase velocity agreed with 

these which were previously available from 

experiment. This had previously been attempted 

for a pitch angle of 10° by Sensiper14 but he 

unfortunately made the mistake of comparing the 

theoretical results for the infinite helix 

with the experimental results for one particular 

helix approximately 1.5 wavelengths long, of 

pitch angle 13 °. Apart from the difference in 

pitch angles the.unnoticed error consisted in 

assuming that the experimental values of phase 

velocity were independent of axial length. In 

fact one of the outstanding characteristics of 

the helical aerial, as judged from its radiation 

patterns,-is that the phase velocity increases 

with axial length so as always to satisfy the 

increased directivity condition of Hansen and 

Woodyard15. This discovery was first made by 

T. E. Tice at Ohio State University before 1950. 

When therefore this correction is made to -u he 

comparison/ 
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comparison of phase velocities, the agreement 

becomes outstandingly good instead of being 

merely approximate. 

On the basis of this agreement it is 

immediately clear that the same method of 

approach i.e. treating the helix as an infinite 

wave -guide can then in principle be applied to 

other related and important practical problems 

such as a helix with a coaxial cylinder inside, 

two coaxial helices, a helix Wound on a dielectr 

tube or encapsulated in a dielectric. In all 

these cases the validity of any solution 

obtained can be expected to hold as it does in 

the case of the simple helix, provided no furthe 

approximations are involved, and the original 

approximations are not violated by the presence 

of the additional material. Later chapters 

consider these problems in mathematical detail. 

There is, however, one particular case when 

an approximation involved in the original soluéi 

is violated to some extent. This arises in the 

case of the cross -wound helix consisting of two 

helical wires wound in opposite directions, and 

the same diameter. A solution to this problem 

which arose in the design of travelling -wave 

tubes, but which has an obvious application to 

aerials, which will be considered later, was 

obtained by Chodorow and Chu16, In this case 

the agreement with experiment is less good 

though/ 
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though still useful. 

It will be noted that the parameter of 

phase velocity arises naturally in the waveguide 

approach, and it cannot be emphasized sufficienti 

that even in a practical finite aerial this is 

not only the most important parameter, but indee 

the only one which need be considered. Until th 

fact is realised even the simple helical aerial 

appears to present an insuperable number of 

variables e.g. helix diameter, pitch angle, 

axial length and conductor diameter, each of 

which has to be varied for every possible 

variation of the other three. The situation 

becomes even more complicated in some 

practical cases. Since the phase velocity, 

however, is a function of all of these variables, 

and is directly related to the radiation pattern 

of the aerial, it greatly simplifies an 

understanding of the problem if this single 

parameter alone is considered. The same 

simplification can also be used profitably in the 

case of the Yagi aeriall7 and is implicitly used 

in the treatment of dielectric aerials18. 

y 
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CHAPTER II 

The Simple Helix 

Wave Propagation Along an Infinite Helical 

Conductor. 

This problem has been studied in the past 

primarily for its application to helices in 

travelling -wave tubes20'14, by means of two 

different physical models. One model known as 

the Sheath Helix consists of a sheet of metal o 

width equal to the required helical pitch wound 

a helix which is assumed to be conducting only 

in the helical direction. It will be seen from 

the boundary conditions given later that this 

model neglects the important periodicity of the 

helix. The other and better model, known as the 

Tape Helix consists of a uniform helix wound 

with a tape of finite width and zero thickness, 

assumed to be perfectly conducting in all 

directions. The two models are illustrated in 

Figure2,l. which is taken from Reference -i, 

s 



Figure 2.1. The sheath model and tape model helices. The sheath model is 
considered to conduct only in a direction making an angle ti, with a plane 
perpendicular to the axis. 



2.1. The Sheath Helix 

In this section a brief summary of the 

treatment developed by Sensiper14 which is also 

given by Watkins21, will be considered. This is 
more general than the original approach 

Pierce20 which although adequate for tr 
wave tubes is not suitable for helical 
because of the angular variation of the 

there. 
The scalar wave equations to be satisfied 

are 

and 

of 

avelling 
aerials, 
fields 

'V.L I-1 r> 

_C) 

- 
where E , HZ denote the axial components of 

electric and magnetic fields, and k is the free 
space phase constant. When written in 

cylindrical coordinates these give 

r ("Y -4- -"a j +- 
-"a 

` z and ÿ " 11 .' y2 2°f` Z - z-Ra= _ '.i.t+ 

Assuming a solution of form 11® f 
-- 6L -es - - 2. 2 

where ß is the axial phase constant and m must 

be integral since the fields are to be single 
valued, there results 

D1 

For aerial operation a slow wave solution is 
desired to satisfy the condition of increased 
directivity, so that an appropriate choice is22 

5 
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where .Am, Bm, Cm, Dm are constants and y2= p2-112 

Outside the helix the Im functions are not 

suitable since their values become infinite as 

Y tends to infinity. Likewise inside the 

helix the K,,,,functions must be discarded as 

these become infinite as Y tends to zero, 

Hence the desired solutions , 
E Z = A, 

w` `s z. 
z ^ Ì m. Km Z( Y e e¡ 

ika 7. (1Y)-e- 

1-1 2.4t e,-M 
t¡Z5\ 

where -0- denotes the radius 
superscripts i and e refer 
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<ptY< -- _ 

O G.Y Zcx. 12_1, 

c_ -- .2. t, i3 

of the helix, and th 
to regions internal 

and external to the helical surface respectively 
From these the remaining field quantities follow 
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,tzs )3_0 '46,7t 

H ,y"`" ï E 
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The boundary conditions at the surface y =. 

require that the tangential electric fields 

outside and inside the helix are continuous in 

the e and 7- directions, and must be equated 

to zero along the direction of the helical 

winding, together with the requirement that the 

tangential magnetic field along the helical 

conductor is continuous. Fbrrnally the conditions 

are: 
I._ Z 

E ® - f_ 
z cot 4/ 

42 fi 118 4st`r 

__ 2_,i,23 

where (.10 is the pitch angle of the helix. 

Substituting the appropriate expressions for the 

fields in these equations and using the fact tha 

a non -trivial solution will exist only if the 

determinant is zero gives 

iT`` L 1 
tdtoei) 

c) 

-ititeASi 0. 

4E- ,,A -1<) 

_ 

This leads quite simply to the characteristic 

equation 

- 

1 
14., IX0., Yri (XQ-) (12":"2" 

Y,(,,ick) 14 mlí°) a, ce-4/ 
--- -- ea . L .i 7 

= 0 2.i,26 
t, 



2.2. The Tape Helix 

This more exact representation of a physical 

helix was first dealt with by Sensiper14 who was 

concerned primarily with its application to 

travelling -wave tubes. The tape width is S 

and the pitch of the helix is denoted by , 

Making use of Floquet's Theore.«21 the axial 

dependence of the fields, which must satisfy 

their periodic nature, can be written as 4t 

where given by 

áii m 2 , j 

and where m can have any integral value includin 

zero. Since the angular dependence of the field 

can be written as -2 as in the sheath helix 

case, the differential equation to be satisfied 

for the radial dependence f(r) is 

by 

The solution to this equation for Ez is 

z Z.(Y),--0 7;1 1.14-1t min KY. M -r+. 1r , n 

where the superscripts refer to the internal 

and external regions as before and 

2 = 

U1w ' /61,0, s. 2.4 

A further application of Floquet's Theorem to 

the angular coordinate instead of the axial 

coordinate enables this solution to be 

simplified. Let Z.= 2.'1 Ì and 4-110 

where ¢i is the angle through which the helix 

must be rotated after a translation cf z to 

make/ 
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make it coincide with itself. i.e. q 
Substituting these values in Equation 2.2.3., 

Ez becomes 

r, -- 
U 

tZi ° ~' L" / 
-(E= E lr - - s 7Y Y1 1 1K ) 

- vl 7r.T'KJ 

M/ hi rfk.l -Yv i4 ri 

Since the above translation and rotation have 

resulted in the helix coinciding with its 

original position, Equation 2.2.5. must be of 

the same form as Equation 2.2.3. If this is to 

be true 2or all z, then (m -n) = O. Accordingly 

Equation 2.2.3. can be written as 

Similarly 

H z 

». 
reL, 

lisa..,) 

. 7 
i 

The boundary conditions for the tape helix requ 

continuity of the tangential electric field and 

a total surface current density equal to the 

discontinuity in tangential magnetic field. 

Formally these conditions are that where r = a, 

where 

and NZ 

S 

,2, 2. !O 

z. 11 

--F7 
-e. . 

:2 . 12 

--a 

sa3 

.nsi; 
-I- 

.2. .3 
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In equations 2.2.12 and 2.2.13 

and azw, are the total surface current 

densities associated with the mth space or 

Hartree harmonics, i.e. the component of the 

total wave travelling with phase constant m . 

The solution to the tape helix problem 

follows from the application of Equations 2.2.8 

through 2.2.11 to the formal expressions for 

Ez and Hz in Equations 2.2.6 and 2.2.7, together 

with the expressions for the other field 

quantities which can be derived from these. Th 

are not written out explicitly here since they 

may be derived very simply by comparison with 

equations 2.1.14. through 2.1.21. 

Since however this procedure involves 

difficulties with the solution of the resulting 

determinant, the following further approximation 

are introduced at this stage: - 

(a) The current is assumed to flow only along the 

tape, and does not vary in amplitude or 

phase across its width. 

(b) Since (a) is an approximation ,the tangential 

electric field can not be zero everywhere 

along the tape surface and so it is 

arbitrarily equated to zero along the 

centreline of the tape. 

Mathematically, denoting the directions along 

and perpendicular to the tape by the subscripts 

o. - 

11/ 
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14 

__. 2. 14 
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3.r, 
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where 

To apply approximation 

E11-pr.' 

2, a. I 
2.17 

Tim 

(b) requires the use of 

9) __2.2.1E3 

where Ezm and Elm are found from the Boundary 

Conditions in the following way 

-- hn. K . ( -r.a 
\ 

(4. 
Ca.1 .,. -- 1 ,,,, 

CC) Mcy) 
` 

lc) 

yy,.- 
A,. Km`Sr^`', - ;,. k,r (1, 

4l 1S"li 

. ° 

r^ca., ._ m--' á 1% 1,,a ÍLI,( 

vvs 

I_. ..) 

?Sr- 
cL 

¡¡,,,,ca.) 13.y, Kvy,l,"~c. w. .ml 
Then using 

cxm) 

.- 

_- 

.r m _2- vr, lZ.Sfy.G 
î 

[- Çw 

. j w TM .J. 

v. 

)5 14'`' 

c _ 

W,aL) 

)<1! (15*a) 

-711()s,,°-) 

8 

=i 

2. 2. 1r1. 

2. 2....2.0. 
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Simplifying the determinants gives 

and 
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Then from Equation 2.2.18 after some simplification: 
g; "7 

gg 

, c C Jt u 2 ^- 
f 

- 

` 1 7 .- ax 
. $ =- E W,r- u m 

1 

2 t,o1. kif 
'.'``a ( zZ 

-I e'''''' 61- z ' i m. iái-0.) ÍC,,Y,,.,`' 
f r.,, « 
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E Er 
Ì r^ y i t 
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Gd- 
%TL 

Z L 
2 

2 
+ ` JTi()s..o-) K c' ) 

?lam 

jz J4" 
44 

/J - :2,1,32 íJ 

Setting this expression equal to zero along the 

centre line of the tape at = 'fi z 
and using Equation 2.2.17 gives finally 

Là , e2 .- ? -,, c*kr l+ti p,. á e tjol p,0) ^J 

Cíekr 1<ti.., 6s,r4) 
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CHAPTER III 

The Simple Helical Aerial 

A comparison will be macle in this chapter 

between the numerical values of phase velocity 

calculated for the infinite helix and the values 

of phase velocity corresponding to the Hansen - 

Woodyard condition, which it is known from 

experiment are always satisfied for the simple 

helical aerial 19. If the phase velocity exceeds 

that for the Hansen - Woodyard condition the 

width of the main lobe will be increased, while 

if it is lower the sidelobe level will be 

increased. Consideration will be given to two 

widely different values of pitch angle, to assess 

better the applicability of the theory to 

practical aerials. 

3.1. The Bandwidth of a Medium -Pitch Helical 

Aerial. 

A pitch angle of = 1.3° has been 

chosen here for two reasons, 

(a) accurate experimental values of phase 

velocityfbr this pitch angle and for a 

specific length of 1.6k are available,9 "9 

and (b) it is known that an angle of about this 

size gives the largest bandwidth for a 

helix 1.6X,, long19. 

In predicting the bandwidth of such an 

aerial use will be made of the Array Factor 

:s. 

)4V-4,- 

where 
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i. -- _ 3J . 9 (9.) 

with ß the free -space phase constant, a the 

phase change between successive elements, d them 

distance apart and ci the angle measured from the 

line of the array. 

This may conveniently 

4 

, 
f 

be 

rewritten as 

f - f i C 
x 

,n- coo `Y - LA_ - a 
/G 

where CX is the circumference in free space 

wavelengths of the imaginary cylinder on which 

the helix is wound, L., is the corresponding 

length of one turn, and v is the phase velocity 

along the conductor. 

Figure 3.1.1. illustrates the array factor 

for an array of 50 isotropic elements. Only the 

part of this pattern to the right of the point 

-0 is traced out; this point is a function 

of the phase velocity v along the conductor. 

Point A represents the point . 42= 0 for 

the Hansen - Woodyard phase condition, and point 

B is the point qp =00 where the sidelobe 

level has increased to 45% of the main beam. 

This sidelobe level will be arbitrarily taken to 

represent the upper allowable frequency of 

operation for the aerial. 

It will be noted that in moving from A to B 

tip' has increased from 3.6° (= 5Ó) to 

4.6 °( = 0.080 radians). Substituting these 

values in Equation 3.1.1. and taking Cx = 1.0, 

enables/ 
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enables the two corresponding values of v to be 

calculated. The percentage change in y as A 

moves along the array factor curve to B is only 

0.22,:;. Use will be made of this result later. 

Conversely, if v as a function of Cx, is 

known accurately, the value of Cx for which the 

sidelobe level will be equal to any percentage 

of the main beam can be calculated from the 

same equation. 

In solving the characteristic equation the 

normal range of -(--C ))from 0.7 to 1.3 has been 

used. Values of the phase velocity over this 

range are shown in Figure 3.1.2., where it must 

be remembered that it is the phase velocity 

along the conductor which is plotted. This is 

related to the fundamental axial phase velocity 

by the equation 

vaxial v 
conductor - sin 3.1.2. 

Superimposed on the same graph is the 

Hansen -Woodyard condition for an infinitely long 

array, which also represents the in -phase fid d 

condition for a finite array. It is noteworthy 

that over the region 0.74( 47-0 -4. 1.0 the two 

curves coincide within the thickness of te 

curve, although a) is alwaysslightly below b). 

This result encourages one to utilise the 

solution for the infinite helix in connection 

with the finite helical aerial problem. 

However/ 
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However, in order to estimate the upper 

frequency limit of the finite helix, the 

theoretical solution must be compared with the 

Hansen -Woodyard curve for the finite helix. 

Figure 3.1.3. compares the theoretical solution 

with the Hansen -Woodyard condition for 50 turns 

Using the point where the divergence of the two 

curves becomes significant, an estimate for the 

upper frequency limit is that Cx is ti 1.1. 

This can be evaluated more accurately using 

Equation 3.1.1. i.e. 

n 

It is noted that Lx = C sec /1 , so that for 

= 13o there are two unknowns, Cx and v. 

Using the relationship between v and Cx 

resulting from the theoretical solution, the 

desired solution of Equation3ól.1 is obtained. 

For the case considered here the solution is 

C = 1.10, confirming the previous estimate of 

the same value. 

This result has been obtained using only 

the array factor for 50 turns, and the 

calculated phase velocity for the infinite heli. 

In the same way, using the array factors for 

3, 5, 10, 15 L.5 turns, and the calculated 

phase velocity for the infinite helix, the 

upper frequency limit Cx can be computed for 

each of these numbers of turns. The results of 

these computations are shown in Figure 3.1.4. 

as/ 
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as curve (a). For comparison the experimental 

results for 3< n4;..50 turns using the aerial 

shown in Figure 3.1.5. are shown as curve (b). 

The agreement in the variation with number 

of turns is satisfying, although the calculated 

absolute values are necessarily high. This 

follows since the phase velocities used 

correspond to those for the infinite helix, 

which are known to be greater than the ones 

applying to a finite helix. 

In order to complete the picture of the 

variation of bandwidth with the length of the 

aerial, it is necessary also to consider the 

variation, if any, of the lower frequency limit. 

The physics of the situation in this case is 

quite different from the limitation at the 

upper end. There the pattern break -up is due 

to the phase velocity not increasing rapidly 

enough with frequency, but at the lower end the 

pattern begins to become useful only with the 

effective launching of a new transmission mode. 

For a 13° pitch angle this occurs at 0.77Cx for 

an infinite helix. Measured values of 

approximately 0.75Cx for helices as short as 

0.7 wavelength suggest that this frequency 

remains substantially constant with length. 

Hence in Figure 3.1.4.. it is suggested that 

the ordinate of upper frequency limit essentia ly 

determines the ratio of upper to lower frequen y 

limits with a scale conversion factor 

of/ 
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of 0.77 or 1.3. This result corrects the 

earlier, universally held idea that the useful 

frequency range of a helical aerial centres 

about the frequency corresponding to Cx = 1.0. 

According to the results reported here, however, 

it should rather be considered as existing above 

CA = 0.77 for the 13o pitch angle case. The 

value of 0.77C.ß is a fixed lower limit while the 

upper limit varies with length. 

In obtaining the experimental results for 

Figure 3.1.4. (b) it was necessary to take 

patterns of11-161Ect, and Axial Ratio for 

3 L n L 50 turns. A selction of these 

patterns is shown in Figures 3.1.6. through 

3.1.10. The most important of these are the 

ones for large n, since it is believed that 

these represent the patterns of the longest 

helices which have as yet been tested. In all 

cases it can be seen that both the patterns and¡ 

the axial ratios are good. 

The variation of half -power beamwidth with 

length of the aerial is shown in Figure 3.1.11 

for the E6 and F_ , patterns. These curves are 

based on the experimental measurements shown in 

the previous figures, and agree closely with 

the values which may be predicted from Hansen - 

Woodyard conditions. The constant frequency to 

which the curves are applicable is 0.92Cw. 

At still higher frequencies corresponding 

to/ 
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E8 pattern for 50 turn, 
13 ° helix; f =8 Kmc /s. 

E pattern for 50 turn, 
Igo helix; f =8 Kinds. 

Polarization pattern for 50 turn, 
13° helix; f = 8 Kmc /s. 
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En pattern for 40 turn, 
131D helix; f =8 Kn-ìc/s. 

E$ pattern for 40 turn, 
13 helix; f =8 Kmc / s . 

Polarization pattern for 40 turn, 
13° helix; f = 8 Kmc /s. 
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E0 pattern for 30 turn, 
13° helix; f =8 Kmc /s. 

E pattern for 30 turn, 
13° helix; f =8 Kmc /s. 

Polarization pattern for 30 turn, 
13° helix; f = 8 'Kmc /s, 



FIG 3.1.9 

E0 pattern for 20 turn, 
13° helix; f =8 Kmc /s. 

Eo pattern for 20 turn, 
13° helix; f =8 Kmc /s. 

Polarization pattern for 20 turn, 
13° helix; f = 8 Kmc /s, 



FIG 3.1.1 O 

E8 pattern for 10 turn, 
13° helix; f =8 Kmc /s. 

Eo pattern for 10 turn, 
13° helix; f =8 Kmc /s. 

Polarization pattern for 10 turn, 
13° helix; f = 8 Kmc /s. 
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to the extreme upper bandwidth, the larger 

sidelobes are accompanied by a smaller half - 

power bendwidth which is plotted in Figure 3.1. 2. 

This occurs as the result of a reduction in 

phase velocity so that the array factor is 

shifted further into the imaginary region. 

In figures 3.1.13 and 3.1.14 the measured 

variation of axial ratio with length of the 

aerial is shown for the frequencies used in 

Figures 3.1.11 and 3.1.12. 

3.2. The Bandwidth of a Narrow -Pitch Helical 

Aerial 

Previous information19 available on this 

subject indicated that at a pitch angle of less 

than about 5° the bandwidth of the helical 

aerial decreased to zero. Examination of the 

approach used by the author suggested that not 

only was this an unlikely result, but that the 

frequency of operation of such a narrow -pitch 

aerial should be looked for at the lower end of 

the normal band and not at its centre. 

Specifically for a 181 turn helix of 1.8° pitch 

angle, the upper frequency limit was estimated 

to be 0.87CX, for the same criterion of 

sidelobe level as was used in the medium -pitch 

case. 

An experimental model constructed to 

verify this theory gave good patterns and a 

good axial ratio, with an upper frequency limit 

of/ 
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of about 0.81CX, compared with l.1Ch for a 

13 pitch helix of the same total length. 

Three of the patterns obtained are shown in 

Figure 3.2.1. It will be noted that the 

agreement with theory is of the same order as 

for the medium -pitch aerial, as far as the 

upper frequency limit is concerned. 

It was found experimentally that the 

patterns obtained with helical aerials of 

length two wavelengths or less, were not in 

general very satisfactory. It appears that it 

may be more difficult to excite the surface 

wave on a short narrow -pitch helix than on a 

medium-pitch helix of the same length. This 

may be due to the axial phase velocity being 

less for 91 = 1.8° than for (4) = 13 °, so that 

a greater length of helix is necessary to 

bring about this reduction of velocity. Some 

evidence exists which suggests that the over-al- 

length necessary may be reduced by starting off 

the helical winding with a medium -pitch turn 

before proceeding with the remainder of the 

narrow pitch. 

No claim that the narrow pitch helix is 

superior to the medium -pitch helix in radiation 

pattern seems to be proper, nor is it expected 

that there will be any advantage in impedance 

characteristics. Nevertheless the elimination 

of this gap in the lower pitch -angle range is 

satisfying/ 
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E0 pattern for 181 turn, 
1,8° helix; f =8 Kmc /s. 

Eco pattern for 181 turn, 
1.8° helix; f =8 Kmc /s. 

Polarization pattern for 181 turn, 
1.8° helix, f = 8 Kmc /s. 
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satisfying, since from a theoretical viewpoint 

there was no valid reason for it to exist. 

It is now believed that a satisfactory pattern 

may be obtained for any pitch angle up to the 

value where the deterioration is due to the 

pattern of the array factor. This occurs at 

approximately 20 °. 

3.3. Estimation of Bandwidth of Helical Aerial 

Using Approximate Graphical Solution. 

The solution to the characteristic equatio 

for the infinite helix with &J) = 13° has been 

given as curve (a) in Figures 3.1.2. and 3.1.3. 

An alternative way of presenting the same 

information is to show the solution on the same 

graph as the pass -band region, as illustrated i 

Figure 3.3.1 . This has an advantage in that 

it shows clearly the degree of approximation 

in an approximate graphical solution suggested 

by Sensiperi4 which takes the form of the two 

straight lines AB and BC. AB lies along the 

edge of the forbidden region m = -1, and BC 

is that portion of the line = . ^^ -9) 

that lies between the m = -1 and m = -2 

forbidden regions. 

It will be seen that the approximate 

graphical solution always gives a value of 

phase velocity along the axis of the aerial 

which is too high. Nevertheless it offers 

a quick method of estimating the upper 

frequency/ 
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frequency limit along BC, the solution obtained 

being shown as curve (c) in Figure 3.1.4. along 

with the more exact computed value and the 

experimental value. It should be mentioned, 

perhaps, that this approximation involves only 

a few minutes work, compared with the several 

days of computation required by the other method. 

3.4. Radiation Pattern 'Testing of Helical Aeriaji 

The conditions to be fulfilled in the 

testing of microwave aerials consisting of 

vertical apertures have been given by Cutler, 

King and Kock30. As it is not self- evident 

however, that the requirements for accurate 

radiation pattern recording are the same for a 

horizontal linear array as for a vertical 

aperture, it is desirable to consider this case 

explicitly. 

The distance requirements for a given small 

variation of phase across the 'aperture' of the 

aerial are of course the same. The effect of 

the ground reflected wave can be considered as 

follows: 
AI A2 A3 

_®' r_ -0 TA( 

d 

Fig. 3.4.1. 



- 27 - 

Let the aerial under test be considered 
the transmitting aerial, which will be assumed 

to consist of n isotropic sources A1, A2 

Anein the form of a linear array. Let the 

spacing between these sources be d', and the heights 

above ground of the receiving and transmitting 

aerials be hl and It will be assumed that 
the phase shift at the ground reflection is 180. 

Assuming that the field at the receiving aerial 
due to the direct ray from source Al is E sin wt 

then the field due to the ground reflected ray 

can be written approximately as 

E1 E , (u - tac d ` ., - i 

where (3 is the phase shift per unit length and 

dl is the ground distance between the receiving 

aerial and source Al, as shown in Fig 3.4- M. 

The total field due to source Al is then 

Similarly if the field due to the direct ray 

from source A2 is E sin (wt _ 9) ) where 

= a, c.c, .- X3.4 -.3 

in the usual notation, then the field due to 

the ground reflected ray can be written 

approximately as 
t2. jk3 

^ - (di 1.- d ecp<Q 

The total field due to source A2 is thus 

3.4,4- 

E ..9..e. ,ä r 13 ' 3 ,aa,.,t-t -y, ..1,.._. Í ' 3 )__ - 3 .4 .5 
.a.,, -;- -a.. <:k..cp j a-, f-ci!``p.ó 

If d' cos 4) ccoXCG di this can be written as 

and (-P-3 
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tz. z2. E Pt"2- doz,(LA-P V4~` ^ 
f Roi 

i - 
Hence to this approximation Etl and Et2 are 

equal in magnitude and separated in phase by 

the same angle ' which is the phase difference 

between the direct rays. Consequently the 

radiation pattern for the two sources Al and 

A2 as a function of q% is the same for the 

total fields as it is for the direct rays. The 

presence of ground reflections therefore does 

not cause error in the radiation pattern. This 

result may readily be extended to include all n 

sources, provided 

nd' coscÿcc << dl 3.4.7. 
and 

It will be noted that he variation of 

field strength with height for any source, due 

to the interference between direct and ground 
ßh ri.. 

reflected rays, is of the form sin - 
-d n 

1 
Since in its operation as a receiving aerial the 

height will normally be adjusted for maximum 
ßh h, 

signal, corresponding to dl n equal to 
1 

(2n +1)2, n = 0, 1, 2, , it is worthwhile 

noting that if the height is optimum in this 

sense for element Al, it will also be optimum 

for all the elements A2, A3 A provided 

2nd'c SLdl 3.14.8.. 

and ( -?w": -P-,) <c ñ 3 The factor 2 arises since the aerial will 

normally rotate about its ground plane for the 

end -fire helix, making the total length of 

operation in a radiation pattern test equal to 

2nd'. 

Care/ 
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Care has to be taken in the testing of the 

helical aerial when the second aerial used in the 

radiation pattern test is fed by means of a 

coaxial cable. If this is the case it is 

essential to make use of a balance -to- balance 

converting device to prevent currents from 

flowing on the outside of the coaxial cable. If 

these are allowed to flow then either the E or 
1 

fthe pattern will be a combination of the two 
patterns, and the axial ratio measurement will 

also be in error. 

3.5. Input Impedance of Helical Aerial 

The viewpoint adopted by the author in this 

study of the helical aerial is that the only 

characteristic of this type of aerial per se is 

its radiation pattern. The impedance is not a 

characteristic of the aerial but of the 

particular means adopted for launching the wave 

along it. The same argument applies likewise to 

all end -fire travelling wave aerials such as the 

Yagi-Uda aerial or the dielectric rod aerial, 

in so far as reflection from the far end does not! 

reach as far back as the feed Doint. 

In the case of the Yagi-Uda aerial the 

impedance is normally taken to be that associate 

with a dipole -plus -reflector type of launching 

device, but it must be umderstood that this is 

only a convention. The essential feature of the 

Yagi -Uda aerial is its array of director element 

and/ 



- 30 - 

and these may be equally well excited by a 

waveguide as by a dipole- plus -reflector launching 

device. 

Similarly, the impedance of a helical aerial 

is generally understood to be that associated wit 

a plane reflector type of launching mechanism. 

This,however, is surely not the only way in which 

the desired surface wave can be launched, though 

it is a very good one. It is of course true that 

there is a unique impedance associated with the 

forward travelling wave on a helical aerial, but 

it is quite wrong to confuse this, as has been 

done by Watkins21, with the input impedance of 

the aerial. This will be discussed in the next 

section. 

3.5.1. Impedance of Simple Tape Helix 

It is necessary to calculate the average 

power Way in the forward travelling wave along 

the helix21:14 a¡ 

R.,t (i-7: E 1-14 Y t-s4 - , , 

= 

J 0 

e 
S m) n o 

ym } \ - Nync%}ti - 

For m 4,,,i `,K Ng,. d = o 
Eb 

so that Equation 3.5.2. becomes 

(Ey.,r,, _ Es, ii,r.r _ - 3,54 nr 
7r, o 

From the modified forms of Equations 1.14 to 1.21. 

which are applicable to the tape helix, and from 

Equations 2.29 and 2.30 which express the constans 

A and Bm in terms of the surface current density, 
there/ 
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there follows after some simplification, 

l ytin. 

ti 

J./J 0 ,,4. 1' 

L 

p ,,-c, 
fl,,,CI p a s 

4. 

K ,,. (y..a) ( 1,,," - -) te.,- LICot 7) 14 ) 

. t w i 4,41 y..(,ry1 (i ii-m. -IL 3 , 5. S 

E- , - .fr-a-t) 
)4,,,,63,,,,y-4,4,-)4,,,,63,,,)4,,,,63,,,,y-4,4,--1) á -,za 

X Tra-¡- " 4' lm (m Y ) 

ctiY1 

1rp--a cct Í.,ti.`,.TL,,,,`l.?5..YiÍ 

l 1 rt - h. .,r, 4 u* 
ke 

j 1<46 
4L) . L. ,r.(WY) y 

cC`Y Klv (*^) i w l`Sn.Y V' ̀ { ii,., 

The expressions for Erie Eßne , Hame and Hrme are 

identical with Equations 3.5.5. to 3.5.8. with 

the modified Bessel Functions Iß.1 and I inter- 

changed. Re- writing Equation 3.5.L4.. in terms 

of the internal and external regions of the 

helix there results 

\Ñr 

s. 

3.5.7 

: y12 ii l''di - 
Performing the necessary integrations with 

respect to r gives finally 11 
z s 

r Ìliü O7 
Wir0. 

..a 

i- 14,,,i L¡xri.J ( 

1 
K..(x,r.)) ,+,.J 

Z Z t2 // 2 c1 C í, 
i K,rlrv`il,r. (.a. 1w 

1 

, ?ï t 2 ,,,.a- [Ths---m K,,,r,,a. .Z,..(?,a) 0. 
i 

( -f- ZÇ.,-a) 14,-4 .-4)11 
111,,,a) i<TMbX, n) / 

.,., 
1,,..,,,. 

. 2 ,s l Z 2 ,, c:-'s i- -iz w, i 1 - - 3. ,5 . i 0 , - 
where 
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. z. 
,r. 

2_ ,, ci. - 
axially 

Since it is the -1 space harmonic /which is 

responsible for the end -fire helical aerial 

operation, and since the ratio of the power 

carried by this harmonic to the power carried by 

any other harmonic approaches infinity21 when 

it is so operating, the above equation may be 

re-written as 
z ` 2, o- 

tw cx ° 

_l 7 

2. 
Y -1 

[jj. -1(-1"' , °C` 

(¡ 

-3 3- 
{. -1 l- +°`)j 1 

K_+t-i) -i4 
.... -z.2 c,- i k -+ 1-10.i.%l( -1 °`1 i¡l -1- i ,.1 r 

^- / -t Q. i0. éC-i iA) -° l..i) -i 
(.1-1(V1') 

'1---)6(-14.) K-i( 

c -- z 
(/ 

z 

L:: ` ! 

5.11 

Substituting for the total current I along the 

helical tape, and using the numerical values 

previously obtained in Section 3.1., the curve 

for input resistance as a function of Cx is 

finally obtained as shown in Fig. 3.5.1. 

It is immediately evident as might have been 

predicted that these calculated values are quite 

different from the measured values5,19 of input 

impedance for the helical aerial. The measured 

values must necessarily be dependent on the 

proximity of the ground plane to the first turn 

of the helix, and the correct approach if 

theoretical/ 
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theoretical results are desired would seem to 

be that used by Schelkunoff. 

Nevertheless although the waveguide approach 

is not suitable for the calculation of input 

impedance, it does indicate that at the lower end 

of the pattern bandwidth when the desired mode 

has begun to propagate, the input impedance 

changes from being highly reactive to being 

almost non -reactive. Hence the pattern bandwidth 

is not completely separable from the impedance 

bandwidth as is maintained by Reynolds32. 

However, at the upper end of the aerial's 

useful frequency band they are completely 

separate. There the pattern breaks up because 

the phase velocity along the conductor does not 

increase sufficiently rapidly with frequency, 

while the input impedance shows no marked change 

because the travelling wave continues to be 

propagated until the influence of a new mode 

becomes marked at a much higher frequency. 
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3.6. Effect of Ground Plane on Radiation Pattern 

In all the theoretical work which has been 
19,39,4 

carried out on radiation from helical aerials 

it has been assumed that the effect of the groun 

plane on the radiation pattern is negligible. 

Since the backward radiation from the helical 

conductor is small it is of course plausible to 

assume that the currents flowing in the ground 

plane are likewise small, and that there is 

therefore justification for this simplification. 

The following approximate analysis was undertake 

when experiments showed that under either of the 

two following conditions 

(a) the ground plane consisted of radial 

conductors only 

(b) the ground plane diameter was many 

wavelengths, 

the radiation pattern was profoundly affected. 

Referring to Figure 3.6.1., a travelling 

wave of current of constant amplitude is 

assumed to flow, 

I = Ioe-jßs 3.6.1. 

where s is the distance measured along the 

conductor. 

Since the phase constant í3 along the 

conductor is related to the free space phase 

constant k by a reduction factor p, and s is 

proportional to the angle u and the length of 

1 turn L, this equation may be written 

4 
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Also referring to Figure 3.6.1. 

... Ni .Vrr 

3.C.,ß 

(0.3 

- -- 3 G.4- 

,. 3, 

where the subscript 1 refers to the physical 

helix, of which S is the pitch. 

The x component of vector potential is 

Similarly 

pt -4 ° r 

and 

K 
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Then expanding in Bessel Function form and 

simplifying 
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where S 
(".., 

is the Kronecker Delta 

Similarly 

and 

QL 
{T_i'7')) C 

7t=C 

For the image helix 

_i(141 ' 14iti-r. 
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Re- writing this in the same way as for the 

original helix gives 

-- 

Since further 
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where the subscript 2 refers to the image helix, 

then 

alC-i. 
--2. 

Similar expressions hold for Ay2 and Az2 

Using Equations 3.6.10 (a) and (b) and further 

defining 

!-t - { L c ÿ' - S crz } _ _ 3 . G. 2.0 
z iT` j, 

.0%.:.6?40;,.` 

f- , -u Cai`E), 

gives 
(- 142-1 -ÿ ... 

At 

-fx-i- -141-1-1%. a 

( 

(-i,i-ii-n) :`- (-i+ -1-4-,..) xx 

-- Ì+ +-1 -4- r - - 

ALI 

It is possible to simplify the analysis at this 

stage by restricting it to the case where LP 

is a small angle, so that eon 24 '21''1. The 

other extreme case where y ^' 9o`° is of no 

interest since in this case the helix approaches 

a straight wire, for which it is known there is 

no axial radiation. 

Using this approximation Makes H1 equal to 

H2. Then for an integral number of turns with 

u2 = -u, = N T, where N = 1,2,3 

Equations 3. e7.-9become for H=1 
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Similarly Equation 3.6.21 becomes 
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Also 

n fi Ab, 

From the rectangular components of vector 

potential the magnetic field components f-h, ) B 

and N3 in the radiation field may be derived, 

since 
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where 

Ay S ..etc. ¢' 

R9 

+ A , ,Ok.. 

I,( cc:flcoc + A 

A ti) _ -A x Qw + A 

Carrying through the algebra gives 

H y ;tata ^ RI 
1 

7 
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This analysis shows the presence of both 

circumferential and radial currents far out in 

the plane of the ground screen, and it is 

reasonable to presume that these will also flow 

close in to the helix. The assumption has been 

made of a travelling wave of current on the aeri 

and if the ground screen does not permit the 

flow of circumferential currents, it would 

appear that subject to the approximation 

raa / the travelling wave cannot be supported. 

Although this approximation appears to the 

author to be a very severe one, it is interestin 

that experiment supports the deduction that no 

travelling wave is launched when the ground 

plane consists of radial conductors alone. 

Figures 3.6.2. and 3.6.3. show the E 

and E radiation patterns for this case. These 
1 approximate 

are in/accordance with the patterns for a 

circular loop of the same dimensions, carrying 

a standing wave of c urrent41. 

When the ground plane allows both radial and 

circumferential currents to flow, then because 

of the phase factor -- - these must flow in the 

same sense at diametrically opposite points. 

l 
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(a) (b) 
Radial Currents Circumferential Currents 

F I G 3 . 6.4 

The radiation from both these sets of currents 

must necessarily interfere with the radiation 

from the helical conductor along the axis of the 

aerial. But it is clear that while at some 

frequencies the two radiations will be in phase, 

at other frequencies they may be in anti -phase, 

or in phase quadrature. Figures 3.6.5. to 

5.5.7. are included to illustrate the effect 

of this vector addition, for a ground plane 10 

wavelengths square. 

The advantage of the small ground plane 

appears to be that while these currents continue 

to flow, they do so only over a small area, 

from which the radiation does not affect the 

field due to the helical conductor. Figure 

3.6.8.shows for comparison a field pattern for 

and identical helix with a ground plane 1 

wavelength square. 
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3. 1. Comparison Between "ape Helix and She :. th 

Helix Results 

Tbenumerical resin Ls which have been derived 

from the waveguide approach in preceding sections 

of this Chapter, have been based on the ':_ape Helix 

model. In calculating the transmission phase 

velocity for this model either the fundamental 

wave assumed to be travelling along the helical 

conductor can be used, or the -1 space harmonic 

travelling axially. Both these approaches give 

identical results as will now be shown. 

Let the phase shift between adjacent elements 

in the linear array be denoted by a with the 

subscript O or -1, according as the fundamental 

or the - l space harmonic is being considered. 

Then 

ao = 
kD 

2c 3. í.1. 

where L is the length of 1 helical turn and Ao is 

the fundamental wavelength. Denoting the axial 

velocity of the fundamental by vo, the conductor 

phase velocity for the fundamental is -. °- so tha 

e - vS a Ì 3, 7 .:2 C5,-) 

_ .3.7,a. (&) 

where d is the spacing between turns. 

Similarly oC -1 - -2Ti 
dA - 7 .3 

V -i 
where v_1 is the axial phase velocity of the -_I. 

space harmonic. This is related to the fundamental 

axial phase velocity vo by the equation: 



P " - - tio - . 
so that a eventually simplifies to 

ti3 : 7 4- 

.2.1i _ .37. 5 
which is the same as Equation 3.7.2.(b) apart from 

a difference of 29; which is not significant. 

Both ways of looking at the phase shift 

between adjacent elements are valid. The approach 

using the -1 space harmonic considers an axial wav 

along the helix, while the fundamental mode approach 

is based on the wave following the helical conductor 

It should be noted explicitly however that while 

the conductor phase velocity (fundamental) increas s 

with frequency, the axial phase velocity 

( -1 space harmonic) decreases. This follows since 

in the region of interest c ±(p > lock. so that 

ß -la is negative and hence v 
-1 

is negative. 

Considerable confusion is therefore possible unless) 

the direction to which the phase velocity refers 

given. 

It is of interest to compare the numerical 

values of say axial phase velocity derived from th 

Tape Helix model with the corresponding values 

derived from the Sheath Model. The computation in 

this case is much simpler and the results are 

shown for the -1 mode in Figure 3.7.1., along with 

those for the -1 space harmonic of the Tape Helix. 

Using these results for the Sheath Helix, the 

upper frequency limit of an aerial of this kind cari 
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be calculated as was done in Section 3.1. for the 

Tape Helix. The variation of this limit with 

aerial length is shown in Figure 3.7.2. along with 

the corresponding result for the Tape Helix, and 

the experimentally determined variation. It can 

be seen that both models give accuracies of the 

same order, but it should be remembered that uhe 

Sheath Helix model cannot give any estimate of the 

lower frequency limit of this end -fire aerial. The 

Tape Helix model does, but at the expense of greater 

complexity. 

Note on Publication of Results 

Sections1 to 3 of this Chapter are included 

in a paper entitles! "Bandwidth of the Uniform 

Helical antenna" by T.S.M. Maclean and R. G. 

Kouyoumjian, presented at U.R.S.I. Symposium on 

E.. Theory, June 1959, and to be published in 

Trans. I.R.E. 1959. 
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CHAPTER IV 

Modulated Helical Aerial 

A study of the modulated helical aerial was ; 

begun with the object of applying linear array 

theory to its operation. It is well known24 

that the optimum pattern which can be obtained 

from such an array is produced by a Tchebycheff 

source distribution along its axis. This entails¡ 

three modifications when applied to a singly 

fed end -fire array like the helical aerial, 

1. The amplitude distribution is no longer 

uniform. 

2. The phase shift between successive elements is 

greater than that required for satisfying the 

Hansen -Woodyard condition 

3. The radiation from turns connecting the 

adjacent elements has to be superimposed on 

the Tchebycheff pattern, or alternatively the 

Tchebycheff source distribution has to be 

modified to take account of them. 

A study of the effect of these modifications 

has been made, and it is shown that they 

considerably restrict the possibility of 

obtaining increased directivity. An incidental 

outcome of the study, however, is that it is 

comparatively easy to obtain a pattern with 

reduced sidelobe level. 

4.1. Amplitude Distribution of Sources Along 

Helical Axis. 

The Tchebycheff source distribution for a 



-145 - 

linear array is a function of the sidelobe level 

with respect to the main beam, and this ratio 

will be denoted by R ( >1). For the case 

considered here of an element spacing of 

0.182/A0 at the operating frequency - 

corresponding to Cx = 1.0 for a pitch angle of 

13° - the distribution along a 6 element array 

for various values of R is given by:- 

R CURRENT AMPLITUDE DISTRIBUTION PaASe 
3HbFT el 

3 1 
13.417 ío23¢ (0.234 3.6)7 I 111.ß' 

IO 1 3.11.2. (0G14 6'6 I6 377. 1 113.1° 

35 1 3.91.5' 7 )36 7.13(o 3975' 1 )6$160 

I 4.311 $247 $A-41 4.311 
' j 

)5. 110 

14001 I 

7 

4s b`7 8.139 s 739 4..54.'7 1 142.5 1 

The Array Factors for the cases R = 3 and R = 10 

are shown in Figure 4.1.1. and for comparison 

the Array Factor for the Hansen -Woodyard 

condition is shown superimposed. It is clear 

that a considerable improvement in directivity 

and side -lobe level over the Hansen -Woodyard 

case is possible, by means of the additional 

degree of freedom available. The exact amount of 

improvement in directivity is necessarily fixed 

by the allowable side -lobe level and conversely. 

However, it must be remembered that the sharper 

the beam width which is desired, the smaller 

is the tolerance which can be allowed in the 

individual sources24. 

In applying the above theory to the case of 

the/ 
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the helical aerial it must be remembered that 
there is no possibility of tailoring the 

amplitudes to the exact values shown in the 

table. The current amplitudes which can be 

obtained in this case by multiple coiling of the 

terms will not be known to anything approaching 

this degree of accuracy, and one can only as a 

first approximation estimate the current to the 

nearest integral value. For example, for LI. turns 
wound as closely together as possible, it may be 

assumed that the current "element" is ¿ times the 

amplitude of a single turn wound with the same 

pitch angle. 

In order to estimate the effect of this 
departure from the correct Tchebycheff distri bu-Uion 

the Array Factor for a linear array of ó elements 

with an amplitude distribution of 1- Li- 7- 7- Lt. -1, 

and the correct phase shift between elements for 

R = lO, has been plotted in Fig. 4.1.2. where the 

curve is marked A. It will be seen that the Half - 

Power beamwidth is only slightly less than in 

Fig. 4.1.1., but the sidelobe level has been 

increased by a factor of 3. Nevertheless this 
represents a considerable improvement over the 

Hansen -Woodyard case for both directivity and 

sidelobes. 
A second amplitude deviation from the 

Tchebycheff distribution has still to be 

considered. This arises from the radiation of the 

medium pitch turn connecting the main radiating 
r1 amF?nts/ 
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elements. If it should prove possible to 

suppress this radiation, no problem arises, but 

since this is at least doubtful, the deviation 

must be considered. In Figure 4.1.2. the curve 

marked B shows the new Array Factor when these 

linking turns are taken into account. It is 

clear that their influence destroys the 

improvement previously obtained, although the 

next section will show how this can be compensated 

for to some extent. It should be mentioned 

however that an approximation is involved in the 

application of Curve B in Figure 4.1.2. to the 

case of the helical aerial, since a direct 

application of it presupposes a constant unit 

pattern for each individual element. This is 

not the case here since the additional elements 

now being considered are of a different pitch 

angle from the original ones. Nevertheless it 

would appear that the diagram is of considerable{ 
1 

use. 

4.2. Phase Distribution Along Helical Axis 

For the 6 element array with a spacing of 

0.1824CX. as considered in the previous section, 

the Hansen -Woodyard condition requires a phase 

shift of 101° between sources. As in the case 

of the amplitude distribution the Tchebycheff 

phase difference between sources is a function 

of R the ratio of main beam to sidelobe level, 

as shown in the preceding table. 

From/ 



From this table it can be seen that in all 

cases the wave travelling along the helical 

conductor must be slowed down to a value 

substantially below the phase velocity required 

for the Hansen -Woodyard condition. In order to 

determine how much difference this makes to the 

Array Factor, Figure 4.2.1. shows for an amplitude 

distribution of 1- 4- 7 -7 -4 -1 what effect slowing 

the wave down from the Hansen -Woodyard value to 

the Tchebycheff value for R = 10, has on the 

pattern, Figure 4.2.2. shows the same variation 

for an amplitude distribution of 1- 3- 6-6 -3 -1 

In, figure 4.2.3. the result is shown for 

1- 4- 7 -7 -4 -1 distribution when the linking turns 

are taken into account. It can be seen that a 

value of 140° gives a slightly narrower beam and 

substantially lower sidelobes than the Hansen - 

Woodyard Array Factor. It may also be estimated 

that a phase shift of about 145° would be the 

most which could be tolerated for sidelobes no 

larger than those of the Hansen-Woodyard case. 

4.3. Position Variation of Elements Along 

Helical Axis.43 

The improvement in the directivity of a 

Hansen -Woodyard type of pattern over the 

conventional end -fire pattern results from a 

control of phase along the line of the array. 

The still further improvement of the Tchebycheff 

pattern results from a second degree of freedom 

being/ 



A
 

FI
G

 
4.

2.
1 

o 
A

=
 

14
 

7 
7 

4 
I 

W
IT

H
 

17
3 

-7
 

P
H

A
S

E
 

S
H

IF
T

 
B

E
T

W
E

E
N

 
E

LE
M

E
N

T
S

 

B
=

 
I 

4 
7 

7 
4 

I 
W

IT
H

 
16

0 

C
=

 
I 

w
 

7 
7 

4 
I 

W
IT

H
 

14
0 

D
=

 
14

 7
 

7 
4 

I 
W

IT
H

 
12

0 
" 

E
=

 
I 

4 
7 

7 
4 

I 
W

IT
H

 
10

1 
o 

(H
-W

1 

u 

ft
 

)1
 

SI
N

G
 

-I
 



A
=

 
13

 6
 

63
 

I 
W

IT
H

 
17

3.
7 

P
H

A
S

E
 

F
 

I 
G

 
4.

2.
2 

S
H

IF
T

 
B

E
T

W
E

E
N

 

B
=

 
1 

3 
6 

6 
3 

l 
W

IT
H

 
16

0°
 o 

II 
n 

n 

C
- 

1 
3 

6 
6 

3 
1 

W
IT

H
 

14
0 

n 
It 

n 

D
m

 
1 

E
=

1 

3 3 

6 6 

6 6 

3 3 

1 1 

W
IT

H
 

1 
20

° 

W
IT

H
 

10
10

 

n 
n 0 

it it 

0-
1-

10
1)

 

E
LE

M
E

N
T

S
 

I -
0 

A
R

R
A

Y
 

F
A

C
T

O
R

 

- 
0-

5 

S
IN

 
9 

O
 

+
1 

-0
 -5

 



FI
G

 
4.

2.
3 

A
R

R
A

Y
 

F
A

C
T

O
R

S
 

F
O

R
 

14
 7

 
7 

4 
I 

P
LU

S
 

LI
N

K
IN

G
 

T
U

R
N

S
 

W
IT

H
 

P
H

A
S

E
 

S
H

IF
T

S
 

A
=

 1
73

.7
, 

13
=

16
O

, 

C
 =

i4
Ó

 
D

 
=

I2
O

° 

E
 
: 

I 
O

 I 

A
 

A
R

R
A

Y
 

F
A

C
T

O
R

 



- 4g- 

being avaialable, in the form of amplitude as 

well as phase. While it is true that the 

introduction of any more variables cannot produce 

any improvement in the Tchebycheff pattern, it 

may be that for cases such as the helix where thel 

necessary source distribution cannot be exactly 

obtained, that control of the position of the 

radiating elements along the line of the array 

may be beneficial. An attempt has therefore been 

made to achieve this by making use of the apparent 

aperture distribution, and by algebraic 

equalisation of the radiation patterns. 

4.3.1. AJparent Aperture Distribution 

If the linear array is regarded as an end - 

fire aperture of which the field amplitude and 

phase is known at 6 discrete points along the 

aperture, then an assumed fictitious aperture 

distribution may be sketched in as shown in 

Figure 4.3.1. It is known that this generalisation 

of the field at a point to represent the field in 

its immediate vicinity is applicable to the 

conventional end -fire array of uniform 

amplitude. It is not easy to judge however if 

its application to the non -uniform aperture 

would be of any value. The purpose of such an 

attempt is to replace the non -integral Tchebycheff 

current distribution of say 1- 3.772- 6.616 -6.616- 

3.772 -1, by an integral distribution of say 

1- 4.- 7 -7 -4 -1 at the points along the aperture 

where/ 
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where these ordinates appear in the field 

distribution, with appropriate values of phase 

chosen as well. Such an attempt has been made 

and has been found not go give results of any 

value, but it does not seem to the author that 

this result could necessarily have been foreseen. 

Lß.3.2. Algebraic Equalisation of Radiation 

Patterns 

For the sake of simplicity a 6- element_ source 

distribution which is symmetrical in both 

amplitude and position about the centre line of 

the array is assumed. The distances between 

symmetrically positioned elements are denoted by 

dl, d2 and d3, while the corresponding Array 

Factor phase angles are y 1, (4) 2 and kp 

For a uniformly spaced Tchebycheff 

distribution with $7= 10 and d = 0.1824.X, the 

space pattern is given by 

E = 6.616 cos ` + 3.772 cos + cos - -4 

For equalisation of the patterns of the 

uniformly spaced and non -uniformly spaced sources 

we have 

G, i 1 -Ì72c.;3 Ei + 4- 63`ß0- 
_.áß,3Z 

The left side of Equation 4. 3, 2. is known 

completely in terms of the angle CP measured from 

the line of the array. It is desired to choose 

the phase angles tJ 4) and % in such a way 

as/ 



as to make the equality valid when integral 

values of E1, E2 and E3 are used. In addition it 

would be desirable if possible to make the 

lengths of the two arrays equal so that 

T2z _ ._.¢.,3.3 

It will further be assumed here that the 

integral values of E are El = 7, E2 = L. and 

l = 1. 

The space pattern corresponding 60 the left 

side of Equation 4.3tcan be written in terms of 

the sources as 
M .ß 42-"- Cl; 

F (4) = vv-"e- - - `i- . 3 : 4- 
»m=0 

where Am is the complex current of element m, and 

dm is the spacing between the symmetrically 

positioned sources carrying this current. 

By using as the complement of cp this 

can be re-written as 
ft. a 

F(9) :E m -e-15 

° i n J M 
,1 

r3:L, 

-,.ice 
which by comparison with the Fourier Series 

expansion of the space pattern 
-r o0 

F (fl 
, - 3.1 

gives 
(:) ,. x(P--a.-) _W.- - _ 4,3. z 

Since the Tourier (Joefficients fn can thus 

be evaluated for the known complex currents 

and distances dm in the Tchebycheff Array, the 

problem of synthesising the new array reduces to 

finding/ 



finding the corresponding values of m and dm 
there. Thus 

xGcu, ,î 13'124 i- 2X,3.772 fir) 

A -Í-- 2 ( 2"T 4.3 . `1 

vv 

= Ì4-'(o$ 

L = aX6^(01(0 712. =k L 
'3 t2x3 J72 ,Tz(i ly+ î3( /¡ 2$ 

3 

Similarly 

Lt- - ß' 38 i - O X7 127 

and 

Thus 

i t4_ (n$ 

n JhCE- 

_. ¢. 3. 
3- 

. -4..3. 

for the new array 

= ax/ P'4) -2X4. ab 2Z) 2o( 2t (o.5)- - 
P f-KS( Pk) t --2 j2( i6)- -4.3-i-5 

il 

i2. 

- 

2.X-7 

x"? .T¿+ ( i ) --Tif (.2 6.)- _ 4- 3. I(' 

- .2 r Jt- 2 x 4 S 2 + 3 ,Tt, 2 g s` , - . 3 r1 

It is found that even when Equations 

and 4 -.3..17 are neglected because they represent 

smaller contributions to the total field, it is 

not possible to find values of d1 and d2 which 

satisfy the remaining two equations. Hence it is 

unlikely that position variation of the inner 
elements can compensate for the change in currents 

from non -integral to integral values, when the 

total length of the arrays is kept contant. 

Further analysis without this restriction could 

of course be made, but has not been thought 

worthwhile here. 
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4.4. Experimental Results 

The preceding sections have shown how much 

easier it is to obtain reduced sidelooe level 

with a modulated helix of the type discussed, 

than to obtain increased directivity. Experimental 

confirmation of the reduced sidelobes is given in 

Figures 4.4.1 - 4.4.3., where at the freouency 

corresponding approximately to 0.79Cx good 

patterns and axial ratio are obtained. It is 

of interest and significance that the narrow 

band of acceptable radiation pattern and axial 

ratio is the same band as that of the narrowest 

pitch turns used in the winding. In this 

connection it must be remembered that as outlined' 

in Chapter III lower pitch angles can be used 

than was previously thought possible. 

Since this type of aerial was completely new 

it seemed desirable to obtain confirmation of 

the travelling wave nature of the fields along 

the helix by measurement of the conductor current 

distribution, as well as of the radiation pattern 

The helix shown in Figure 4.4.4. was used for 

these tests, in which the current was measured byH 

means of a loop probe connected to a crystal 

detector, type 1N23B, followed by a high -gain 

tuned A.F. amplifier. 

The construction of the loop probe presented 

two difficulties which do not appear to be 

mentioned in the literature. Both these 

difficulites/ 



FIG 4.4.1 PATTERN FOR MODULATED HELIX O9X LONG 



FIG 4.4.2 E, PATTE RN FOR MODULATED HELIX 0.9À LONG 



F I G 4.4.3 P O L A R I S A T I O N PATTERN FOR MODULATED HELIX 

O.9 A LONG 





1" difficulties had their origin in the use of 32 

outside diameter coaxial cable. It was 

necessary to use this in order to ensure that 

the loop was not affected by the magnetic field 

of the closely spaced turns adjacent to the turn 

in which it was desired to measure the current. 

The conductor diameter used for the turns was 

(a) 

FIG 4.4.5 

( 6) 

The first difficulty arose in the use of a 

normal 65 - Watt soldering iron in the making of 

soldered connection A. Even though the heat was 

only instantaneously applied at this junction, 

invariably produced a short -circuit between the 1 

inner and outer of the narrow diameter coaxial 

cable. Since the outer conductor was a copper 
1 

tube there was no visible evidence of the damage.1 

Use of a 20 -Watt soldering iron overcame this 

difficulty. 

The second difficulty lay in the connection 

1" between the 
32 

diameter coaxial cable and the 

normal " diameter cable -type RG58U. Unless a 

truly coaxial correction is made, in which there ¡ 

is no possibility of currents flowing on the 

outside/ 



outside of the coaxial cable gaining access to 

the crystal load, it will be found that current 

readings can be obtained anywhere in the aerial 

vicinity, and not only in close proximity to the 

aerial conductor. In Figure 4.4.5(b) the 

difficult outer connection is effected by the 

wrapping of aluminium foil tightly round both 

cables. 

The results of some of the current measurements 

are shown in Figures 4.4.6. to 4.4.8. In 

Figure 4.4.6. a typical standing wave of current 

is shown for a frequency below that of the 

desired radiating mode. Figure 4.4.7. represent 

the current distribution in the narrow frequency 

band corresponding to a good pattern. It will be 

noted here that the standing wave is still 

substantial by comparison with the diagrams given 

by Marsh9 for the uniform helix. In Figure 4.4.8 

at a frequency above the useful band, the 

fluctuations are smaller in amplitude, but the 

phase velocity is no longer suitable for the 

desired mode of radiation. The current 

measurements in all cases were taken at a 

constant output by means of a calibrated 

attenuator on the signal generator. 
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CHAPTER V 

Wave Propagation Along Helical Conductor in 

Presence of Centrally Conducting Cylinder. 

The effect of a conducting cylinder placed 

along the axis of a helical aerial has been 

studied experimentally in the past for both 

End -Fire and Broadside radiation. In the former! 

case it is known33 that no adverse effects result 

from the presence of a cylinder of diameter up 

to at least 5. In the latter-34 the only 

published results available have been for a 

mast of diameter about and the bandwidth 

of the aerial was less than 1 %. It is clear 

that a single analysis should cover both cases, 

and in the following pages a solution is given 

for both the Sheath and Tape Helices. Previous 

work on this subject includes a treatment 

applicable only to the travelling -wave tube 

by Mathers and Kino35 for the Sheath Helix, 

and a solution for the Tape Helix inverse 

problem of a conducting cylinder outside and 

coaxial with the helix, by Stark36. 

5.1. Sheath Helix Solution 

F1G 5,1 

The wave equation solutions in this case 

are/ 



are necessarily of the same form as 

Equations 2.1.7 and 2.1.8. i.e. . 
EZ= [A,.,i,.(5) -C,..k(1)1 -e...-21/ - 

pZ 

4,.e 
2 

JC,.,,. s,I) -f-1. , Kti,.( ), 0 5. 
1 2 

It is convenient, however, to write these in 

such a way that they necessarily satisfy the 

boundary conditions for E z and Hz_ at the 

surface of the conducting cylinder, viz., 

Ez © o -d =a - ` , I..3 

14.z 0 at. -1 - 
where the superscript i indicates the region 

internal to the helical surface (a < r . b). 

Superscript e will denote the external region 

(r > b). 

A form which does satisfy these conditions, 

is, 

{ z - , 

.T 7 -.[ ,..(, 

-- 
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1.,-()V() , ` S. i 
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-) 
. e. K..(,-) 
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Similarly 
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141-.A`~) 

- Í3,r, Li-n41) 14..(1si) s,! 441 _ , 9 II-) 
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BIN- 

Pm ' , . 9&) 
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± mj_2íi) Kr.()Sa-) (x°-) S, i; ib 
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E, -= c yn 4. ,,A (Is -e) 

ïìz = ,7, 

_ -- 5", ifl 

The other field quantities can then be 

immediately written down, 

where m,,. 

E 4.- °C 

where G,n:,r`. 

E y 
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Ii If 

lsV1-60`l - WMA m 

N40-1( 
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Prom 5.1.22. 

11-11.1s0.) -- (y-0-1-1,- 

From 5.1.23 

(I ) - 7v >a, e , apZ 

Fr om 5.1.2L. 

k,..(x-12)12 -°`- s i 
o7 

M G).Kly- ( /2-1)S-`-) cst41 1?),: "y: 
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. 

Hence 

_ 
e-'3 

From Equations 5.1.26, 27, 29, 
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Fields of Sheath Helix With Central Conducting 

Cylinder 
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Characteristic Equation for 

Central Conducting Cylinder 

From Equation 5.1.25 

Sheath Helix With 

ty] 
(/ g1 , x a-) 

e<,Giv G"" 

-Yv.iGC*4) c-,v , )a)Lxy-Q - 
C ,s^-"° CV 'er )1S°4 
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5.1.1. numerical Results for End- 'ire Aerial 

Some numerical results from Equation 5.1.45 

are plotted for the -1 mode in Figure 5.1.2. with 

different ratios of central conductor to helix 

radius. The ratio = 0.05 has been chosen as 

being representative of a mast used for support 

purposes. It is seen that the axial phase velocity 

variation with frequency is only slightly different 

from the case with no central mast, as far as u:p_:r 

frequency limit is concerned. The sheath helix 

approach, it will be remembered, gives no 

information about the lower frequency limit of t. 
end -fire aerial, since the forbidden regions do 

not enter into its solution. 

The slight increase in axial phase velocity 

which does exist will cause an increase of upper 

frequency limit which calculation shows to be of 

the order of 2 -L. For the detection of this 

small increase a very carefully controlled 

experiment would have to be performed, and it is 

not surprising that this increase has not been 

observed. It is the author's opinion that with 

s»itable equipment it should however be observable. 

Increase of the conducting mast diameter 

raises the axial phase velocity still furth,,3r as 

shown for the case b = 0.9 in the same diagram. 

This ratio has been chosen because it is close to 

the experimental value of 0.871 used for the 

Broadside Helical Aerial by Smith,34 and avoids 
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the interpolation in tables necessary with that 

value. ;hen b tends to unity the phase velocity 

will apprach the free space value as for the sing 

wire transmission line. 
22, 4.2. 

e 

5.1.2. i'umerical Results for Broadside Aerial 

The Broadside Helical Aerial as described by 

Smi th34 of Cornell University operates at a 

frequency corresponding to k,:e 1.91. when the ratio 

b is 0.871 and the Pitch angle is 150. she C 
bandwidth of the aerial was found experimentally 

to be . 1,.. The explanation for choosing a 

circumferential length of approximately two 

wavelengths is given as a mechanical one, that 

the supportingmast necessary could not have a 

sufficiently large diameter if one wavelength per 

turn were used. It will be shown here that there 

is a much more fundamental reason, namely that it 

is not untilY C ̂ - 2 that the necessary phase 

conditions for broadside radiation become possibl-. 

In designing a helical aerial for broadside 

radiation it might seem desirable to avoid a mode 

which would also radiate in the axial direction. 

This suggests avoiding a field variation of the 

form e-", since such a wave travelling axially 

along the helix could be responsible for the 

radiation of a circularly polarised plane wave as 

in the case of the end -fire aerial. Any field 

variation of form e- 
juhle, m = 1, could be 

expected to be superior in this resuect. 

Conseouently, for the aerial described above 



it would appear at first sight that m = 2 had 

been chosen. The calculated values of phase 

`.'' 

velocity for this case with 
7 

= 13 
0 

are shown 

in Fig. 5.1.3. for the two raGios = 0 and 

b= 0.9. In order to locate the frequency of 

operation of such an aerial it is necessary to 

superimpose the phase variation with frequency fo- 

the broadside condition. This may be done as 

follows:- 

The axial phase velocity v may be written as 

v= 5.1.41. 

where w is the angular frequency and (3 is the 

axial phase shift per unit length. 

For broadside radiation the gray element 

currents must all be in phase, so that 

(3 - 
2P t 5.1.48. 

where n is an integer:;?.- 0, and p is the helical 

pitch. The value n = 0 however, implies infinite 

phase velocity in this case, and so may be 

excluded. For n = 1, which represents the highest 

finite axial phase velocity, iAqua pion 5.1.47 

may be written 

v = tp 5.1.49 

which in earn gives 

= C7 (p 5.1.50 

Fort") = 13° this does not intersect the curve 

a 
for 

b 
= 0.9 within the range Cx C 2.65 which has 

been plotted. While this range could readily be 

extended it is suggested that this is not the 

desired solution.. If the -1 mode solution from 
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Figure 5.1.2. is extended however as shown in 

figure 5.1.3. it is seen th;.0 a solution is opt' iced 

for CSC.: 1.96. It must be rememoered that this 

theoretical solution is applicable to the pinch 

angle of 15° which has been used throughout ;ith 

a ratio b = ü.9, while the experimental result 

of 1. 
_o a 

ÿ4 is for a pì Bch angle of 15 with . - 

_o 
0.871. However, changing the angle to 15° ma_ :-es 

the agreement even better, so tn..at there can be 

little doubt but that this is the correct 

solution. It may be noted Chat no information 

is available about radiation from this aerial in 

the axial direction, uhough the arguments 

previously advanced would suggest that this does 

take place. It is interestin. that Reference i 

as cited by Lraus 
19 

shows this pronounced axial 

radiation for a helical aerial of similar true 

withouththe coaxial conducting cylinder. 

It has been mentioned previously chat the 

bandwidth of the Broadside Helical Aerial des- 

cribed by Smith has been foand to be less than 1 

The graphical constriction used in Figure 5.1.3. 

shows clearly why this bandwidth is so much less 

than that of the End-Fire Ae1al. There the 

necessary phase condition is a horizontal 

straight line for the axial phase velocity, 

while the theoretical solution begins by being 

horizontal and then diverges from this line. 

Here however the slope of the phase condition is 

positive, while that of the theoretical solution 



is negative. Consequently dhere is a rapid 

divergence from the required phase condition for 

a small change of frequency. 

Quantitatively, for a frequency change of lr 

the phase velocity divergence can be estimated 

from the figure to be approximately V, correep- 

onding to a phase shift of 7.2° between adjacent 

terms. The main beam of the aerial will therefore 

be swung away from the broadside position by an 

angle O = sin -1 2 , where p is the helical 

pitch and a is the phase shift between sources. 

This gives a value of 2.5° for 1, frequency 

change, and the beam shift is proportional to 

frequency for angles such that the sine of the 

I angle can be replaced by its radian measure. 

Hence the agreement with experiment can be 

regarded as satisfactory though an exact 

comparison is not possible, since the criterion 

for determining bandwidth used by Smith is not 

given in his paper. 
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5.2. Tape Helix Solution 

Equations 5.1.1. to 5.1.21 for the Sheath 

Helix solution are also applicable to the 

solution for the tape helix when the subscript 

m is added to the field quantities on the left 

side of these equations, and to y and (3 on the 

right side. 

Boundary Conditions at r = b 
L A. 

Ez. _Gz `. - ..s- -2 i 

.6. 

E® Ee. __ s", a. 

L 
R 

Nz °- F4 z = a& s , A , 3 

-ti ti á . :2 4- 
H -- 4i s s 

<._) z - 

From Eqùation 5.2.1. 

Pm , 
C 

i<miX.mj) 
,. Gn.W. ('Xvv..40s mP) 

From Equation 5.2.2. 

[..t (a,_ ,,.ß: 
.. l ,.. . 

D,. k,.. ( (,,,,.(&) 

From Equation 5.2.3. 

- -s . a 

From Equation 5.2.4. 

C ,,, k, >~ ) - .,-,. K,. (,r. -) - 
0: 

6S---fer) 

= m 
Substituting for Bm in Equation 5.2.8. from 

Equation 5.2.7. gives 

5, .7...1 

__ - ó 

- 
_ h?, t, 

-G»fn(3zr.°'4M4) 
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From Equations 5.2.5, to 5.2.7. 

D 

Theíh 

, %ti..V ,K `ó r., , tiv.) 
-r.: y, l 1' ,, -Q y,0. 

- -s,a.i© 

® 

i< 
D K,,; , (w,.. ̂ s) ,,.,ry (X.Y. CT .Ci.) - 

- - / ) + ._- rY /+ 
1 1 

From Equation 5.2.9 
[1(:-(4- ii2W":". 
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2 I,w}(ywY) Vrti,n.M(MY,+` 
SJ / Z 

K ti, (..)S 

since ,..,, ,,,G) = 

From Equations 5.2.9. and 5.2.11. 

G CVw.y 
- , ti,., c,Y,m v 

).r.,;:12 `3 

simplifies to - - 

_ 
</ 

`,,. (X-.") G,-.r (w-^-erió--10 6- N E. K«.( ,,,.a 

which further simplifies to - )'' 
- 1 , - E 1 : .i?' i4,+° (5,..) 14(t*- -) G,..' tiv.° Cx7.-V /i mJ - lw Ls,,,, k*+l*j 
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and 
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results/ 
case of the simple tape helix, here 
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results .z 
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5.2.2. Solution of Characteristic Louation for 

Tape Helix with Coaxial Conducting Cylinder 

Although Equation 5.2.25 is of similar form 

to the characteristic equation of the Simple 

Helix it is unfortunately much less amenable to 

computation. A procedure is available as shown 

by Sensiper14 and ''. ati_i ns21 for makin Eo uat ion 

2.2.33 more rapidly convergent, by means of 

suitable approximations for the products 

and ..i,! L15 ,,. 2 K,1(6 ., k 9, 
No similar approximations are known to the author 

1 for the more comlicated Junctions that abpear in 

Equation 5.2.25. Arrangements have accordingly 

been made to have the computations carried o by 

the digital computer a6 Ohio State Jniveraity. 

Although these exact results are not yet 

available it is possible to estimate the 

solution when is small, as follows. 

Consider the case when b is 0.05 and the 

Pitch angle () is 130. It is known from the 

Sheath Helix solution that the phase velocity v 

will be increased by the presence of the coaxial 

conducting cylinder. However, at the low 

frequency end when Cx ^./ 0.8 the existing 

solution for no conducting cylinder is so close 

to the edge of the forbidden region (see 

Figure :3., I ) that the new solution cannot be 

significantly different from it though it is 

always above the first one. To the scale on 
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which the graph is drawn however the two solueion6 

cannot be separated. 

At the upper frequency limit it is not 

possible to estimate the solution so easily or 

accurately. However, a comparison of the most 

significant term in each of the two series for 

E equal to and 0.05 shows that they differ by 

only 1.25%, Since a change in the value of v of 

only 0.5% produces a change of the order of 50% iñ 

this same term for b equal to zero, it is 

reasonable to assume that the change of v is again 

negligible. Consequently as mentioned in the 

discussion on the Sheath Helix, it is not 

, surprising that no change in the bandwidth of the 

aerial has been observed. It is not at this 

stage possible to discuss whether such a change 

should be observeable, as was done with the 

Sheath Helix. 

No numerical results for the case of 

equal to 0.9 are available, but it should be 

noted that the solutions for the Sheath and 'tape 

Helices can be expected to converge when b tends 

to unity. This may be responsible for the good 

agreement which was obtained with the Sheath Heli 

for 
b 

equal to 0.9. The calculations to be 

performed on the digital computer will include 

this ratio, so as to complete this aspect of the 

investigation. 
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CHAPTER VI 

Wave Propagation Along Tape Helix Wound on 

Dielectric Tube. 

It is frequently necessary in model tests 

on helical aerials to wind the helical conductor 

on a dielectric former in order to provide it 

with mechanical support. The following analysis 

has been undertaken to obtain a formal solution 

to this problem so that the effect of the former 

on the bandwidth may be calculated. It will be 

seen, however, that the solution presents severe 

computational difficulties. 
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denotes the second region and is not the 

symbol for the square of a field. Also the 

symbols which are primed denote propagation in 

the dielectric medium. 
2 
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In order to simplify the evaluation of the 

forthcoming determinants, the 

abbreviations will be used, 

-7.- C. 

i< ' 

)," 

following 

"24= K.. 
v--er 

-tr 

Ltr 

14-1r! (411-'0 

+ 3 



 Then Arn 3 = 

t 

.5 o o 0 

and D2 = 

o o 

t 

D2 

D1 
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D 
Similarly Bm3 = 

1 

where D3 = 

0 o C O L .& 

C G ` k 1 

C o .A k- O O 

o o 

C -C- 

O O C jr S 

D ß 
C --u- 1....)-- .c... 

o S Y S o o ° 0 

"r ---.)4.. _1 oC A o 0 

Reduction of these determinants follows in the 

usual way25. Details of the manipulations will 

be omitted however as the work involved is 

straightforward, though laborious. After much 

algebra they simplify to, 

Cwt. 
i 77..? 

,11.14)jC 
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Ct$.-G 

(zsf . 
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The evaluation of these determinants in 

terms of the modified Bessel Functions does not 

lead to a solution which can be described as 

simple. This is to be expected since even for th6 

simplßr case of wave propagation along a dielectric 

tube without any helix, the results obtained by 

Astrahan26 are of considerable complexity. 

In order to obtain a solution which can 

conveniently;/ 
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conveniently be written on one page, it is 

desirable to introduce further notation as 

Let 

follows: 
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- IJ ri J! 
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and since E has to be equated to zero 

along the centre line of the tape, these results 

for the characteristic equation:- 
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It is desirable to check the solution for th 

case i.e. Ei-o when the dielectric disappears 

to leave the simple helix alone. In this case 

from Equation 6.1.)1)1 , 64-- 6-7%. °"°'..--(3 

Hence the characterstic equation becomes 

t141, (,..Q°)( - `ve) Le. y o A13-i -1A- ,y) 

yy 
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m(x,w í:e.-1 íY 2 zli Cv 1 p(y\, l 
4S14^. 
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This readily simplifies to 
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from which by equating the numerator to zero 

a 
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This checks with Equation2,2.33 
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CHAPTER VII 

Wave Propagation Along Two Coaxial Sheath Helices 

This problem has been studied for the case 

of travelling -wave tubes by Wade 7 and the 
treatment here merely extends his analysis so 

that it may be of use to the problem of two 

coaxial helical aerials. Some experimental work 

on the aerial aspect has been carried out by 

Ko28 at Ohio State University, but his results u 
to the present have been restricted to one 

particular length of aerial. It is clear from 

these results which showed effective use of only 

the inner aerial that some mathematical analysis 

is necessary for their interpretation. More 

experimental work is also necessary, particularly 

for varying lengths of aerial, to find out 

whether energy transfer of the kind one would 

expect from coupled -mode theory takes place. 

Only the formal solution of the problem is given 

here. 

F G 7, B 
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Since Equations 7,1.27 to 7.1.34 will be solved 

by the use of determinants it 

use the following 

is desirable to 

abbreviations, 

6s* - .c-1 

4k-t. cct ti;2_ 
( 

47P (,s 
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7= 714- 
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' Z'he determinantal solution then becomes 
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This determinant may be reduced in the normal 

way25. Details of the reduction will not be given 

however, as the working is straightforward. The 

following third order determinant results 
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The substitution of the modified Bessel 

Functions from Equations 7.1.43 in Equation 

7.1.4.7, gives finally for the characteristic 

equation after further simplification 

44. ^ (s 4-) (.s t ( i 5 ) 
'6 4- 

.1- o 14-46 ,,() 14-46 ), ,! N K,Ave")[i- 
Nfrs2 

xia. 
z - i - -- 

K,(15.a):E42 KwlrOD - -;e4. 

Jzpp 2 

\ ÿ - CaM 1 . <-001 --rro... (. Kt+.( " ) m,,,. C 
N 

y 

Particular Cases of Characteristic Equation 

Case (i) No Angular Variation of Fields 

As a check on Equation 7.1.48 consider the 

form the equation takes when the fields do not 

vary with angle G , i.e. the type of 

propagation associated with the helices used in 

travelling -wave tubes. For this case m = 0 and 

the characteristic equation becomes 

2à ' ̀f'G -- ( ,i a) ` I ZS ) Gl i (-iL` 1 Y 
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-Ì-' .r als-co K° 

This is identical with the equation obtained 

by Wade.27 
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Case (ii) Reduction to Simple helix When Outer 

Radius Tends to Infinity 

The following asymptotic expressions for 

the modified Bessel Functions are required:- 
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i.e. 

+ P--4*7-4.1 q I 1,-1,1(v) - 14,40)0 - 
)5 2- 

- 14_ 

This gives 

-45 ̀I) g--,A'S6-) "1-3- ±)).- ( L 1 

( leA)2-(1.11'c'eki)c-- 1)1 

- 

so that 

6V-) i<1,-1-(X"-) 

=0 

- 7,1.53 

- 1. 1 6-11- 

This is identical with Equation 2.1.27 



-96-r 

CHAPTER VIII 

Wave Propagation Along Sheath Helix Encapsulated 

in Dielectric 

FIC 8.1 

Experiments by Jones 11 have indicated 

that operation of the helical aerial is not in 

general adversely affected by encapsulation in 

low loss dielectrics. An exact analysis even 

of the sheath helix enca.isulaced in a dielectric 

would be extremely difficult. The approximn.tion 

is accordingly made here that the dielectric 

outside the helix extends to infinity. This 

reduces the number of boundary conditions from 

twelve to eight, making the evaluation of the 

determinant more manageable. A similar 

approximation has been made by Olving29 in his 

treatment of the helix for travelling -wave tubes 

It should perhaps be stated explicitly that 

the encapsulation referred to here allows the 

presence of a hollow coaxial tube as shown-in 

Figv.re 8.1., in order to make the treatment 

fairly general. 
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In Equations 8.1.7. to 8.1.18 the prime on the 

propagation constant y indicates that it is the 

dielectric medium which is being considered. 

Boundary Conditions 
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It is convenient to introduce the following 

abbreviations, in order to make the determinant 

more easily handled, 

Let 

! 

If 
c 7' 

NIC 

L1 
Zf 

çl 

st,r E etk y 

141(64). 



The determinantal solution then becomes, 
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This determinant may be reduced in the usual 

way 5 to the following third order one, 
t(-)24-1X(1yö-/ (c1,-el) 

x t-s ) - ;E(t31.0- a-tXn-pc-61) (04- 

_ ,a( . - S ) .A- 
( An- ) 

o 

from which after substitution of the modified 

Bessel Functions, and considerable simplification 

there results for the characteristic equation, 
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Reduction to Simple Helix When =6.4 

For E. 
1 
=E0, y1 = y and Equation 8.1.46 becomes 

- z-- (.+Y 2 
14-214-2(60 1.."(s4,.,., 
14--N4 X k) tt.à..,,*) ,,.i,. ¡ z-w.%a,-w...o2j ö .l 

This simplifies readily to 

- L x.=- 

ó 2-, lj2z py t Ter-Llv K,wly-er) 

which is identical with Equation .2.¡,-2,1 

---8+.47 

- - - S. ï 4-s 



.CHAPTER IX 

Some Related End -Fire Travelling -Wave Aerials 

9.1.1. Multiwire Helices 

Propagation of electromagnetic waves along 

multiwire helices has been considered by both 

Sensiper14 and Watkins21. It is clear that the 

theoretical solutions obtained will be dependent 

on the relative phases of the currents flowing in 

the different wires at a cross -section of constan 

z. This is in turn dependent on the feeding 

arrangements to the different wires. Since the 

groundplane type of feed provides an excellent 

launching mechanism for the unidirectional end - 

fire aerial it seems desirable to retain this in 

any new type of aerial employing helical wires. 

In order also to eliminate frequency -sensitive 

phase shifting devices at the feed so as not to 

reduce the intrinsic bandwidth of the aerial it 

then becomes necessary to feed all the wires in 

phase. 

Consideration of the simplest type of 

multiwire helix - the bifilar - shows that when 

both wires fed in phase are wound in the sane 

direction there is zero radiation along the axis 

of the aerial. However, if the two wires, fed 

in phase, are wound in opposite directions there 

will be a maximum of radiation along the axis as 

for the single wire helix. Hence a new type of 

aerial, the Contra Wound Bifilar Helix is 

proposed/ 
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proposed. 

9.1.2. The Contra -Wound Bifilar Helix 

This is a linearly polarised aerial, since t 

resultant wave is composed of two equal circul rl 

or elliptically polarised waves rotating in 

opposite directions. It should be noted that if 

this type of aerial were to be used for the 

reception of a circularly polaris& wave, the 

single helix which could support this type of 

polarisation would re- radiate part of the 

"ava.lable" received energy through the other 

helix. Hence it is not an aerial which c.n 

receive linearly or circularly polarised signals 

equally efficiently - it is simply a linearly 

polarised aerial. 

Analytically this may be shown as follows. 

Referring to Figure 3 -br and denoting the helix 

shown there by the numeral 1, and the contra - 

wound helix by the numeral 2, the following 

equations hold, 

Helix 1 Helix 2 

- ._ 9 . r . i , , 4 

Q. ,at/.'' r Cf , i . -0. / +- x-+ ¿1. 

'211. 
M. 

Then using the same notation as in Chapter III, 

Section fo the rectangular components of 

vector potential can be written as folio-. ;s for 

Helix 1, 
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For Helix 2 the corresponding equations are 
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The integrals in these equations can be 

evaluated in terms of Bessel Functions39, and for 

the particular case of H equal to unity and N 

integral turns the equations become, 

Ay_ - Ñ 1 i .. Lr 2.Z) -e. -j- J o2, -ca.' 

[ -ej (z) zJ 
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t NS 's - .e J; 

a' talk 
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and 

,cx K N 1 ..ej 4) Li z) ,42.20) - q . j . f lo 

= K nl 

Kai 
4 az.) 

R 

The two components E and E of radiation field 

can then be derived from the equations relating 
n A A 

unit vectors & and cP to unit vectors x, y 

n 
and z as follows, 

6 - x ,caast) c., eQ +1- - 

::%() 

Carrying out the summations of the vector 

potentials there results, 

C'8 coL 
2NKi .71 (2 ) Le-Z. 44. 

z 

( 

2-14 1<i7 i (-2-) Let 

- - - 9 fr`9 

Along the axis of the helices, i.e. for e = Co, 

these equations reduce to 

E8 aN k ti - cp 

F cp - j4 N ii i cP 

4.4) 

9.i.e2i 

- _ 9 i a2 

showing that the aerial is linearly polarised in 

this direction. 

It was mentioned in Chapter I that a 

theoretical solution to the problem of wave 

propagation along contra wound helices had been 

given by Chodorow and Chu16. Numerical calculatials 
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have been carried out by these authors for a 

pitch angle of 10° and from their graphs it is 

a simple matter to compute the phase velocity 

along the helical conductor as a function of 

frequency. his has been done in Pig. 9.1.1. 

In order to estimate how useful an aerial 

this contra -wound helix may be, it is necessary 

to compare it with the graph of the phase 

velocity which is required to satisfy the Hansen 

Vioodyard condition for an infinitely long aerial 

When this is done it is found that the two graph 

are coincident within the thickness of the curve 

over the range from an estimated C.x eoual to 

0.88 up to slightly over Cx equal to 1.20. This 

rather astonishing result would tend to suggest 

that if the condition of increased directivity 

were satisfied for this finite helix as for the 

single -Finite helix, the bandwidth would be 

independent of aerial length. It is not 

surprising to learn therefore that the above 

estimated bandwidth does not hold in practice. 

Up to the Present the maximum useful value of 

CX has been found to be 1.03, even for a short 

helix of 3 turns. Figures 9.1.2. and 9.1.3. sho 

an experimental plot of pattern and axial ratio. 

It should be noted that it is not too 

surprising to find the agreement between theory 

and experiment for the contra -ground helix less 

good than for the single helix. It is much _:-o^e 

difficult to âeprOxima te L_?- boun_1. 

over the rhombus formed by 

;r 
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FiG 9. 1.2 

RADIATION PATTERN FOR 3 -TURN CONTRA -WOUND HELIX 



FIG 9,x.3 

POLARISATION PATTERN FOR 3 -TURN CONTRA -WOUND HELIX 
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wires than over the rectangle formed by ch ,min` °le 

helix. 

:;evertheless this aerial offers an 

alternative tO the zig-zag ñer1 -..1 37 as a llnïc -ly , 

arized development of the single helix. A 

complete investigation of it has not been made, 

but the preliminary results are sufficien u to 

justify further measurements. From elementary 

considerations the input impedance with a ,cromad 

plane type of launching device would seem to be 

a suivable value for feeding direct from a coaxial 

cable. 

9.2. Ya=;i -Uda Aerial 

The current distribution along the Yai -üda 
1 

aerial has been measured by Ehrensheck ana roehle . 

'heir results bear a striking resemblance to the 

distribution along the helical aerial as measured 

by arsh' . In both cases there is a rand 

diminution of current near the feed point which 1 

levels out quickly to ac almost constant value' 

the remainder of the aerial length. Since the 

radiation patterns for both aerials can be derive 

from the Aerial Array eactor satisfying the 

Hansen-`,`; oodyard condition, provided the fluele 

elements n is greater than about 4, it is n^ ..rc.l 

to try to find out why the bandwidth of the 

helical aerial is so much greater than that of the 

Yagi -Uda aerial. 

It is claimed by Reynold.s32 that the pattern 

bandwidth of the Yagi -Uda aerial, and also of the 



- 110 - 

dielectric rod, parallel plate, and c.orru ac;d 

surface aerials is inherently large and ery _l:_;l 

to that of the helix, and that where a low 

bandwidth exists it is due to inadeouate launchin 

of the gravelling wave. He has performed 

experiments to suyaoort his claim on a Yagi -U '_a 

aerial 10X long, where the launching has been 

carried out by a V aerial instead of the nor__sl 1 

dipole. The results shoTn, covering a ban !t_.: 

of 2:1, are claimed to support his theory. 

The following objections to this interesting 

theory are raised: - 

(a) Although the radiation uatterns of both the 

helical and Yagi -Uda aerials are derivable 

from the same formula, this has no relevance 

to the frequency range over which the formula 

is applicable. This frequency range is a 

function solely of the phase velocity along 

the aerial. 

(b) The frequency variation of the phase velocitL.. 

referred to in (a) has not been shown to be 

the same for the two aerials. It is now knov 

from Chapter III how the pattern bandwidth of 

the helical aerial can be predicted from the 

theoretical phase velocity of the infinite 

helix. The corresï onding phase velocity for 

the Yagi -Uda aerial consisting of conducting 

strips is not yet available. It is true t n..t 

if the strips are replaced by cylindrical rod 

the phase velocity variation with frequency is 

known from work carried out by errachAi and 1 



Levis -38, but these results show that the phase 

velocity depends markedly on rod diameter. In th 

case of the tape helix there is very littl ouch 

dependence on tape width. Conse, uentîy it __ti not 

possible yet to make an accura6e comparison 

between the two cases. 

(c) 
' he inherently large pattern bandwidth ratio 

of these end -fire aerials is assumed by 3e,,.nolc:s 

to be 2:1 for any length of aerial. This rat` o 

has unfortunately been associated with the helix 

almost from the time of its invention. In the 

author's submission it has never been substantiat 

and a much more realistic figure is 1.7 for short 

helices and a much lower value for long helices, 

tending to 1.0 as the length approaches infinity. 

(d) The experimental results which Leynolds uses 

to support his claim can hardly be said to do so. 

Applying the same criterion of sidelobe level 

to his results, as has been used in Chapter III 

gives an acceptable bandwidth ratio of about 1.1 

instead of the 2.J which is claimed. 

Nevertheless the theory which he has ?ßu6 

forward, though wrong in detail, is sufficiently 

nteresting to justify a more comoleLe investi ion 

d comparison between the different types o ^.E i'ic'. 

i n the end -fire travellin_ wave category. `thee; is 

:Lich to do both in anlysis and computation before 

final comparison can be made. 

d, 
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r'-_y ÿ,R X 

Conclusions 

_. '2 he theory of electromagnetic wave propagation 

along an infinite to trelic l conductor using 

(a) the Sheath Helix model and 

CO the ._'ape Helix model 

has been applied to the helical aerial. a 

result the following predictions have beer_ made 

for she first time, for any pitch angle 

(i) the upper frequency limit of the Endfire 

Helical Aerial by means of the Sheath Helix 

Model 

(ii) the upper and lower frequency limits of the 

Indfire Helical Aerial by means of the 'ape 

Helix ^odel. 

(iii) the upper and lower frequency limits of the 

Broadside Helical Aerial with Coaxial 

Conducting_ linder using the 3hea.th Helix 

Yodel. 

2. As a result of the above theoretical invest - 

igations it has been piedieted and confined 

experimentally that the upper frequency limit 

of the helical aerial is not independent of 

length as had previously been reported. she form 

of this variation can be computed and the 

theoretical values agree with experiment to an 

accuracy of ' 1 be t ter than 1V 
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3. The prediction has been further made and 

confirmed that what was previously believed to be 

a lower limit of pitch angle of 5° for the .; ndl'_.re 

Helical Aerial does not in fact exist. SaticIcto6y 

experiments have been carried out with pitch 

angles as lo',: as 1.8 °, which was the lowest 

physically possible at the frequency of operation 

used. It is believed now that there is no lower 

limit of pitch angle. 

4. It has been predicted and confirmed that the 

free space circumferential length C equal to 

unity is not the centre frequency of operation of 

the helical aerial in general. It is the centre 

frequency only for short aerials using a mediu:í_ 

helical pitch angle. for low pitch angle helices 

C7 equal to uniti is well above the upper frequency 

limit of the aerial, and for long helices this 

may also be the case even for a medium pitch angle 

5. It has been found that it is not always ooLsibl 

to neglect the effect of the ground screen on the 

radiation pattern of the helix. Specifically 

when the ground screen is 

(a) several wavelengths in diameter 

or Co) constructed of n radial wires 

the pattern is profoundly affected, adversely. 

Experiment has been limited to n 8. 
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6. A Tchebycheff type of current distribution has 

been proposed for the helical aerial. It has beer 

shown theoretically, using the assumption of a 

constant amplitude travelling wave, that the 

prospect of increased directivity from this 

distribution is severely restricted because of th4 

linking up turns necessary. Reduced side -lobe 

level has been obtained however, in agreement wit 

the above simplified theory, over the small 

frequency range determined by the narrow pitch 

turns. The measured current distribution shows 

large fluctuations by comparison with the simple 

uniform helix. 

7. General theoretical solutions which in 

principle enaole the ::base velocity to be 

calculated, and hence the frequency limits of the 

aerial to be predicted, have been obtained for 

the first time for each of the following cases: - 

i) The Sheath and Tape Helix with a Coaxial 

Conducting Cylinder 

(ii) The Tape Helix wound on a dielectric tube 

(iii) The Sheath Helix embedded in a dielectric 

medium, with a hollow coaxial tube. 

(iv) Two Coaxial Sheath Helices. 

Calculations have been carried out only in Case (i 

for the Sheath Helix and approximate calculation 

for the Tape Helix. 
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b. What is believed to be a new type of helical 

aerial - he linearly polarised Conga- '.ound 

Helix is proposed. Some measurements have been 

made, and the traveiling,: -wave analysis for taie 

simple helix has been extended to include this 

case. 

9. A critical review has been made of the 

theory that all End -Fire lravellin - lave aeri Jas 

intrinsically Jossess the same cattern hand:,L.d h. 
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