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ABSTRACT 

This study is aimed at developing a predictive capability for uncontrolled compartment fires which can be 
“steered” by real-time measurements. This capability is an essential step towards facilitating emergency response 
via systems such as FireGrid, which seek to provide fire and rescue services with information on the possible 
evolution of fire incidents on the scene. The strategy proposed to achieve this is a novel coupled simulation tool, 
based on the Monte-Carlo-based fire model, CRISP, with scenario selection achieved via comparison with 
(pseudo) sensor inputs. Here, some key aspects of such a system are illustrated and discussed in the context of 
the detailed measurements obtained in the full-scale fire test undertaken in a furnished apartment at Dalmarnock. 
The capability of CRISP in reproducing the fire conditions – given knowledge of the approximate heat release 
rate in the fire – was first verified. It is then shown that continuous selection from amongst a multiplicity of 
scenarios generated in Monte-Carlo fashion can be achieved, so that the predictions evolve in a way that closely 
follows the real fire conditions. Whilst the benefits of sensor-steering are already clearly apparent, further 
improvements will be possible by establishing an appropriate feedback loop between the results assessment and 
the parametric space in which new fires are generated, perhaps using Bayesian methods. Nevertheless, true 
predictive capability remains crucially dependent on the sufficient representation in the model of the 
mechanisms of fire growth, and this must be the focus in achieving better forecasting ability.  
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NOMENCLATURE LISTING 

F12 configuration factor(-) Greek 
hF flame height (m) HO2 energy release per kg O2 (kJ/kg) 
Lvap latent heat of vaporisation (kJ/kg) λ radiative loss fraction (-) 
m  pyrolysis rate per unit area (kg/m2/s) σ stoichiometric ratio (-) 
m  pyrolysis rate (kg/s) τ time constant (s) 
Q  heat release rate (kW) Ф plume equivalence ratio (-) 

Q  heat flux at burning surface (kW/m2) Subscripts 

RF rate of flame spread (m/s) act actual 

t time (s) d decay 
T(t) temperature, as function of time (°C) g growth 
Y mass fraction (-) tgt target 

 

INTRODUCTION 

In modern buildings, numerous measurement devices such as temperature sensors, smoke detectors, and 
movement sensors are being installed for thermo-convenience, safety, security, and building management. These 
sensors continuously measure building conditions. The vision of FireGrid [1] is to harness this type of 
information to assist in providing real-time information from the building to emergency responders. But in order 
to extract maximum value from monitored conditions, it is also proposed that the measurements be exploited in 
simulation tools which will attempt to predict the future evolution of the incident, i.e. super-real time. The 
potential benefits could include the prediction of when / if flashover is likely to occur, when / if structural failure 
is likely to occur, whether people are likely to trapped within the building (and where they are likely to be found), 
etc. Such predictions can in principle be used to facilitate an improved response by guiding the intervention of 
the emergency services, and potentially also in management of human egress. It is recognised that this is a highly 
ambitious undertaking and this work explores some of the issues to do with the practical implementation of 
sensor-linked fire models.  
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In lieu of live test data, recorded experimental data has been replayed to generate quasi real-time measurements. 
The data came from well-instrumented fire tests performed in an apartment furnished with realistic contents [2]. 
In other studies, detailed modelling of these tests was performed both a-priori and a-posteriori, predominantly 
using CFD models. The results of the blind modelling in advance of the tests demonstrated the enormous 
challenge of predicting the evolution of conditions in complex realistic scenarios [3]. But the a-posteriori CFD 
modelling results further reinforced the difficulty of obtaining a match to the actual conditions of the test, even 
when the burning behaviours of the individual items involved in the fire had been reasonably well characterised 
[4]. This experience confirmed that without some sort of real-time steering of fire models, the challenge of 
achieving a useful forecast capability is likely to remain unmet. 

In this work the modelling approach is a development of the CRISP egress and risk assessment tool [5, 6]; 
CRISP was chosen as a state-of-the-art simulation tool and also because the longer term aims of the work 
includes egress prediction and code parallelisation, requiring full access to source code.  

 

DALMARNOCK FIRE TESTS 

Fire tests were carried out in an apartment in a 23-storey residential tower in Dalmarnock, Glasgow in July 2006. 
A comprehensive set of data was obtained, on a resolution comparable to the typical output of field models, 
including measurements of gas temperature, heat flux, optical density and gas velocity, together with structural 
monitoring including solid-phase temperatures. Derived properties such as the smoke layer height were extracted 
from the results. Of particular interest here is Fire Test One, an uncontrolled fire which was allowed to reach 
flashover before being extinguished. 

Figure 1 shows an isometric view of the fire apartment. The fire was ignited in the main experimental 
compartment (the living room) where most of the fuel was concentrated. A summary of the major events of the 
fire is included in Table 1 below; the fire conditions are reported in detail elsewhere [7]. 

 

 

Figure 1 – North-west bird’s eye view of the apartment layout. Structural geometry is shown in grey, window 
areas are represented in light grey and doorways in black 

 

For the period up to ~275 seconds after ignition, a rough estimate of the possible heat release rate in the 
Dalmarnock test was obtained from the results of burning an “identical” sofa and bookcase under a furniture 
calorimeter. After the onset of the ventilation-controlled phase of the fire at about 275 seconds, information 
obtained from the bi-directional velocity probes installed in the internal doorways and main external window 
was used to deduce a rough estimate of the HRR, see Figure 2. The calculation, based on the principles of 
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oxygen depletion calorimetry, assumes that all of the oxygen in the inflow air is consumed (23% air, by mass). 
This HRR estimate will tend to be an upper bound, particularly in the early period when fire temperatures are 
lower. Later, any overestimation will be countered by occurrence of some external flaming, which cannot be 
accounted for in the calculated value. The uncertainties in this calculation are hard to quantify precisely, but are 
expected to be relatively large [7]. The approximate ventilation-control limits for the respective opening areas 
are also plotted in Figure 2 for comparison (see Table 1 for the definition of each ventilation case); these became 
progressively larger as the glazing failed, with a generally good correspondence to the measurements considering 
the known uncertainties.  

 

Table 1 –  List of major events observed in Dalmarnock Fire Test One 

Major events observed Time (sec) Ventilation case
Ignition of waste bin beside sofa 0  
Cushions ignite 9  
Bookcase ignites 275  
Fire engulfs bookcase (“flashover”) 300 
Flames project to apartment corridor ceiling  315 
Ignition of paper lamp and paper on table remote from sofa 323 

Case 1 

Kitchen window breakage (by heat) 720 Case 2 
Living room window half breakage (by human intervention) 801 Case 3 

 

flashover

0

1

2

3

4

5

6

7

0 100 200 300 400 500 600 700 800 900
Time from ignition (sec)

H
ea

r 
re

le
as

e 
ra

te
 (

M
W

)

HRR (sofa+bookshelf)
HRR (Dalmarnock test)
T ransit ion line
Vent case 1
Vent case 2
Vent case 3

 

Figure 2 –  Estimated heat release rate of Dalmarnock Fire Test One 

 

CRISP MODELLING OF DALMARNOCK FIRE TEST USING PRIOR KNOWLEDGE 

The purpose of this section of the paper is to demonstrate that it is possible to model the Dalmarnock fire test 
with reasonable accuracy using CRISP, and thus to provide confidence that attempting to find a reasonable 
match from a sufficiently general series of Monte-Carlo simulations will ultimately be successful. The prior 
knowledge takes the form of the heat release rate curve estimated for the Dalmarnock fire, used as an input to the 
CRISP model. 

CRISP is a Monte-Carlo model of entire fire scenarios [5, 6]. The sub-models representing physical 'objects' 
include rooms, doors, windows, detectors and alarms, items of furniture etc, hot smoke layers, and people. The 



randomised aspects include starting conditions such as various windows and doors open or closed, the number, 
type and location of people within the building, the location of the fire and type of burning item.  

The basic structure of CRISP is a two-layer zone model of smoke flow for multiple rooms, coupled with a 
detailed model of human behaviour and movement. All the physical 'objects' are supervised by the Monte-Carlo 
controller, making each one performs for each timestep. The Monte-Carlo controller also handles all the input 
and output, initialisation for each run, and starts each run automatically. Functions are included to generate 
random numbers from any distribution. The calculations for each run are carried out iteratively, with variable 
time intervals to ensure the program's efficiency, accuracy and stability. 

 

Reproduction of the Dalmarnock fire test using zone model in CRISP 

Using the Dalmarnock HRR as input, CRISP has faithfully reproduced the Dalmarnock fire conditions from the 
point of view of average temperature in the compartment. Simple visual inspection of Figure 3 reveals the match 
is a good one; certainly the prediction lies well within the boundary of maximum and minimum temperatures of 
the Dalmarnock test. It is, therefore, fair to assume that CRISP will be able to select a “reasonable” match via 
Monte-Carlo (assuming the CRISP fire model is sufficiently flexible). 
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Figure 3 –  Comparison of room average temperature from Dalmarnock Fire Test One, and CRISP prediction 
using the estimated Dalmarnock heat release rate as input 

 

CRISP MODELLING OF DALMARNOCK FIRE TEST WITHOUT PRIOR KNOWLEDGE 

In reality, buildings will not be fitted with sensors that will directly measure the heat release rate. The objective 
is therefore to infer the behaviour of the fire from what information is available. In this case, we have assumed 
that continuous temperature measurements from the fire compartment are available.  

Rather than using a heat release rate curve as input to the model, we have used a simplified approximation of 
burning item behaviour, described below. The parameters that govern this behaviour are allowed to vary 
stochastically from one run to the next. Monte-Carlo sampling is used to discover the combination of input 
parameter values that provides the best match between the predicted fire temperatures and those measured in the 
Dalmarnock fire test. 



The CRISP fire growth sub-model 

The burning behaviour is calculated as follows: firstly the flame height as a function of heat release rate and 
radius of the flame base is given by Heskestad [8] 

FF RQh 04.2235.0 4.0    (1) 

and the configuration factor for a conical flame is given by Tien et al. [9] 
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If the fraction of the fire’s total heat output that is lost as radiation is , and assuming half of this fraction is 
radiated to the fire compartment and half to the burning surface, then the heat flux at the burning surface is  
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The heat flux may be augmented by radiation from the hot gas layer in the fire compartment. The total heat flux 
then sets the target for pyrolysis rate per unit area (i.e. what would be achieved in a steady-state fire) 

vaptgt LQm    (4) 

where Lvap is the latent heat of vaporisation of the fuel. 

The actual pyrolysis rate per unit area approaches the target by an exponential growth or decay as appropriate, 

with time constants g  and d  respectively, subject to the proviso that the target value is not overshot. When 

sufficient fuel has been consumed, so that the fire enters the “burn out” phase, the target pyrolysis rate is set to 
zero. In this case the HRR will tend to an exponential decay. 

The pyrolysis rate for the whole fire is simply 

2
Fact Rmm    (5) 

The mass entrainment rate of air into the plume is then calculated, and hence the rate of oxygen entrainment 
(kg/s). If the stoichiometric ratio of the fuel is , the plume equivalence ratio is given by 

 2O plume

σm
 




 (6) 

The yields (kg / kg fuel) of various combustion products are a function of the fuel type and the equivalence ratio; 
in particular the oxygen demand (kg/s) is 

    22 OYmdemandO   (7) 

and hence the value of the heat release rate for the next time step is  

   demandOHdttQ O 22
   (8) 

where HO2 is the energy release per kg of O2 consumed. 

It is assumed that the fire radius will increase at a uniform rate FR  (until the maximum radius is reached), 

which if the pyrolysis rate per unit area remained roughly constant, would tend to give an approximately t-
squared fire growth curve. 

By manipulating the equations above it is possible to estimate values for some of the parameters, given a HRR 
curve for the item burning with an unrestricted oxygen supply.  

 

Randomizing input data 

For the purposes of this study, we are currently only varying the parameters of the burning item(s) which 
represent its geometry and material properties. These parameters are listed in Table 2. In previous applications [5, 
6, 10] the randomness had been restricted to the choice of burning item, but for this case we have allowed each 
of the specified parameters to vary randomly. We have assumed the parameters follow a Normal distribution 



(CRISP can also handle Uniform or Log-Normal distributions), with means and standard deviations as given in 
Table 2. 

The input parameters are chosen to be reasonable for a sofa (i.e. it is assumed the first ignited item is known) 
although we allowed a large range of values to reflect the subjectivity of our choices, and also to give CRISP a 
reasonable chance to get a fit without unduly limiting the parameter space.  

We initially tried to fit the Dalmarnock temperature data using a single burning item. However the test 
observations (fairly steady temperature up to 300s, followed by a rapid rise and then fairly steady again) were 
not well represented by this model. A better fit was obtained by allowing a second item to ignite some time after 
the first, with the parameters of the second item sampled from the same PDF’s as the first item. 

We have assumed that the ignition time for the first item in the CRISP simulations is the same as the ignition 
time in the Dalmarnock test. In reality we would not know when ignition had occurred, we would only know 
when detection occurred. The time of ignition of the first item would then also need to be inferred, just like any 
other scenario parameter. 

 

Table 2 –  Item properties used in CRISP 

Parameter PDF 

Maximum radius, max,FR , over which fire may spread (m) N(3, 2) 

Height, itemh of burning surface (m) N(0.5, 0.3) 

Initial fuel load, 0,itemm  (kg) N(200, 100) 

Fuel at onset of burnout, outitemm ,  (kg) N(10, 8) 

Latent heat, vapL  of vaporization/pyrolysis for material (kJ/kg) N(1390, 200) 

Rate of flame spread, FR , across burning surface (m/s) N(0.003, 0.002) 

Exponential growth time constant, g  (s), when acttgt mm    N(3.0, 0.5) 

Exponential decay time constant, d  (s), when acttgt mm     N(75, 10) 

Ignition time for second item (s), if applicable N(300, 200) 

 

The stoichiometric ratio, σ, was taken as 3.64 kg/kg (constant). There are many other factors which could also be 
stochastic, but for the purposes of this paper were kept constant. Please refer to the discussion section for more 
details. 

 

Selection of scenarios to match sensor data 

Assuming that: 

a. The CRISP model has sufficient flexibility, and 

b. The PDF’s for the fire model parameters allow a sufficiently wide range of fire scenarios to be 
simulated, 

then Monte-Carlo sampling will (eventually) uncover combinations of model parameters that lead to a good 
match between calculated scenario consequences and sensor observations. 

In this paper, we are not investigating the process of “steering” the selection of parameter values based on the 
sensor input, although some ideas for future work are covered in the discussion section. Here, instead, we 
concern ourselves with the process of finding which scenario parameters lead to a “good match”. 

The criterion that we have chosen to differentiate between good and poor matches is the standard deviation, s, of 
the difference between observed and computed average hot layer temperatures: 

    



n

i
calcobs niTiTs

1

22 /  (9) 



where i=1,…n is the i.d. no. of the sensor observation, i=n corresponding to the most recent. 

Figure 4 shows the distribution of standard deviations obtained from 2000 Monte-Carlo simulations, half with 
one burning item, the remainder with two items. The latter were capable of giving a better fit with the right 
combination of parameter values. The best value for the standard deviation was 56. By way of comparison, the 
best standard deviation using a single item was 88, and the standard deviation calculated using the Dalmarnock 
HRR curve as input (inspection of Figure 3 shows a very good fit) was 48.  

Figure 4 is interesting because only a small fraction of two-item scenarios give better matches than single-item 
scenarios. The best matches require the second item to be ignited close to the flashover transition. This begs the 
question as to what a realistic distribution of "2nd item ignition time" is. If a greater variation of ignition time had 
been allowed, the good matches would be an even smaller subset, but nevertheless they will eventually appear 
provided enough cases are run. But this involves selection rather than prediction. This highlights the importance 
of being able to predict when the second item ignites and short of more explicit modelling of ignition, requiring 
detailed geometrical information, the probability of 2nd item ignition may be usefully made a function of fire 
load density, fire conditions, etc. 
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Figure 4 – Distribution of standard deviation of temperature difference, for scenarios with 1 or 2 burning items 

 

Figure 5 shows the full range of calculated temperature(time) curves, for the 2000 CRISP simulations (one and 
two items). It is clear that most curves do not match the Dalmarnock T(t) curve very well, although a few do. 
This is not surprising, because we allowed large variances for our PDF’s of parameter values. Ultimately, the 
space in which PDF’s are selected will be refined on an evolving basis so that scenarios most resembling the 
current best match are generated disproportionately, but there are a number of practical issues with this as 
discussed below under “Refinement of a-priori PDF’s”. 

Note that the short-lived “spikes” in T(t) predicted by CRISP are a consequence of the flashover sub-model, 
which we hope to improve in future. However, because they are short-lived, the effect of the spikes on the 
standard deviation is relatively small. 

Figure 6 presents the best-match scenario after two sets of 1000 simulations, one with a single item and the other 
with two items. Both the best single-item and two-item scenarios give a good fit to the steady-state T(t) 
conditions after t=300s. However the single-item scenario struggles to match the growth phase; initially the 
growth rate is too slow, but after t~150s the predicted T(t) exceeds the observed value, in order to reach the final 
peak value reasonable soon after the observed T(t) stabilises. With the two-item scenario, a much better match is 
seen, although the first of the two items is burning out (as evidenced by the decline in T(t) between 150~270s) 
before the second item ignites. 
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Figure 5 – 100 CRISP outputs among 2000 simulations 
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Figure 6 –  Comparison of Dalmarnock fire test data and overall best-fit scenario 

 

Running in “real-time” 

One obvious challenge for FireGrid is the need to simulate a sufficiently large number of scenarios in order to 
identify parameter values giving good matches to the observations. In this paper we have adopted a brute force 
approach. Fortunately, the CRISP model performs simulations much faster than real time. On a laptop PC (2.0 
GHz, 2 GB RAM, under Windows), it was possible to analyse 1000 cases in less then 20 minutes. On an 
individual high performance computing (HPC) processor (2.6 GHz, 2 GB RAM, under linux), the speed of 
execution is nearly identical, but of course the Monte-Carlo approach is ideally suited to the Grid/HPC (it just 
needs to run on as many processors as are available, and collate the results) [11]. 



The other obvious issue is that the sensor data is only available up to a certain point in the fire’s development, 
and therefore any simulation will involve an element of fitting the calculation to the sensor observations up to 
the current real time, plus a predictive element. 
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Figure 7 –  “Real-time” results at four different times 

 

Figure 7 shows the updates of the choice of the current “best” case at four different times. At 30 seconds from 
ignition, the best matched case was scenario #309; however, this scenario predicts a very rapid growth which is 
not supported by the subsequent sensor observations. The choice of best scenario is therefore continually varying 
as more observations become available. At 290 seconds, the sharp increase in temperature causes selection of 
scenario #141 which has a similar temperature increase. At 300 seconds, the temperature starts to peak and 
scenario #714 is selected since it has a bigger temperature jump at around 300 seconds. In spite of the gap 
between the Dalmarnock test and the selected CRISP scenario around the flashover period, this remained the 
best-matched scenario among all the cases even as more sensor data became available later. 

 

DISCUSSION 

Choice of criterion for a “good match” 

The use of standard deviation (of the difference between observed and calculated temperatures, Equation 9) was 
successful in identifying the scenario giving the best fit. It was also clear (by visual inspection) that the best fit 
(see Figure 6 and 7) was indeed a good one. However, it is desirable to have a more robust approach to 



differentiate between a match that is “reasonable” and one that is not, i.e. it is unsatisfactory to say that the best 
X% of runs done are “reasonable”, since it is possible that even the best fit might be rather poor. 

One possible alternative might have been to calculate 2  rather than standard deviation, i.e. 

    
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where i  is the uncertainty in the value of  iTobs . The use of 2  as a criterion is attractive in principle since it 

offers a way to assign a probability for goodness of fit for a given number of degrees of freedom. The reason we 

did not do this initially is that i  is hard to define (should it be the errors in the thermocouple measurements in 

the Dalmarnock test, or based on the range of maximum and minimum temperatures measured, for example), 
and thus any measures of goodness of fit were likely to be entirely spurious. When implemented, this method 
gave very similar selection history results to the use of standard deviation. 

The issue of what constitutes a “match” is also pertinent when / if we choose to use Bayesian inference to 
modify the a-priori PDF’s in the light of sensor data, i.e. giving more weight to parameter values that result in 
calculated temperatures that “match” observations (see below). 

 

Other stochastic factors besides the fire 

There are many other factors within the model that could either be regarded as stochastic, or uncertain, and 
which therefore would strictly need to be randomly sampled as part of the Monte-Carlo process. Some of these 
factors are discussed here. 

Fire location – we have assumed that this is the same room as in the Dalmarnock test, although again this is 
something that would initially be unknown and would need to be inferred from the simulations giving the best 
match to the data. Note that although we only allowed fires to start in one room, we did model the entire 
apartment, in order to get the correct ventilation conditions in the room of fire origin. It would therefore have 
been a simple matter to consider fires starting in other rooms, and to calculate the volume and temperature of 
smoke that they produced in the living room. 

Wall properties (conductivity, density and specific heat, “kρc”) – these were given fixed values, but could have 
been sampled to reflect uncertainty. The wall properties affect the heat transfer, and therefore the smoke 
temperature, particularly when the fire has reached the fully-developed stage. 

Doors and windows – since most of the doors and windows were open to allow enough ventilation in the test, 
and the main compartment window was artificially broken during the test, all parameters related to doors and 
windows were fixed in the simulation. However, in reality it would be unknown whether doors and windows 
were initially open or closed; also the time at which this status changed e.g., due to the actions of building 
occupants, or glass failing during the fire, etc. 

People – none were present in the Dalmarnock test, but in reality there would be unknown numbers, in unknown 
locations, with unknown stochastic capabilities and behaviours. These parameters would all need to be inferred 
from the consequences they have for quantities that are measurable / detectable by the building sensors. For 
example if smoke suddenly starts building up in a previously clear room, it may be because someone has opened 
the door. 

Burning item type – the mean values of the PDF’s for the item parameters were chosen to be reasonably 
representative of a sofa, however a large standard deviation was assigned to introduce plenty of variation 
between fires. An alternative approach could have been to have a number of different item types, each with 
different PDF properties, and then try to infer whether the item was a sofa, armchair, curtains, TV, … etc. 

 

Refinement of a-priori PDF’s 

In our study we follow a straightforward approach to sensor data assimilation that is made possible by the 
efficiency of zone models. There have been more sophisticated methods of data assimilation as used in weather 
forecasting [12]. These rely on more advanced statistical tools such as Kalman Filtering (KF), Ensemble Kalman 
Filtering (EnKF) or 3D/4D Var methods [12]. Furthermore these methods are used in conjunction with more 
computationally intensive CFD-based field models. However an important distinction between fire predictions 
and weather forecasts is that the lead times for fire predictions are of the order of minutes while those for 



weather forecasts are of the order of days. Hence application of sophisticated data assimilation schemes used in 
weather forecasting may not be applicable to fire unless massive computational resources can be found (say 
using the Grid). 

The method that we have used is conceptually simple and capable of providing super real-time forecasts. 
However, there are several improvements that could be made. We have seen that while the standard deviation 
between the selected optimal scenario and the data can be small, the scenario may not be capable of resolving 
critical events like flashover, window breakage, etc. The ‘error norm’ can possibly be defined more 
appropriately such that solutions show better match during critical events. 

A further possible improvement can be found in the scenario generation step. For the current results CRISP kept 
on generating new scenarios independently of the selection process. It is reasonable to expect that once an 
optimal scenario has been selected, the more likely scenarios would have initial parameters that are closer to the 
parameters of the optimal case than the initially allowed distributions. Hence sampling of new scenarios could be 
concentrated on the neighbourhood of the optimal scenarios - leading to a narrowing of possible scenarios (i.e. 
reduction of the variance of the ensemble) as more data becomes available. Implementation of this approach is 
not difficult per se, but the key challenge is in the extra work needed to identify which of the input parameters is 
having most influence on the matching, and therefore requires to be constrained. Initial studies showed that the 

rate of flame spread, FR , is the most critical parameter in the current scenario. A more general solution may be 

the use of Bayesian inference to modify the prior estimates for the input PDF’s in the light of sensor data. 

It must also be recognised that some aspects of fire development will remain fundamentally hard to predict, 
irrespective of selection methodology. Critical here is determination of the major fire transition when the second 
item ignites. Thus, improvements in true predictive capability can only follow a more detailed representation of 
the actual burning items, including ignition prediction and fire growth modelling. 

 

Use of high-performance computing and the Grid 

A highly desirable feature of the entire procedure is that it is very amenable to parallelization. The scenarios are 
evolving independently of each other so the process is ‘embarrassingly parallel’. A small subset of scenarios 
could run in each processor of a high performance computing (HPC) cluster. The selection step could also run 
locally in each processor, only transmitting the “goodness of fit” value to the central processor, thereby reducing 
the amount of communications overhead. As part of ongoing work, we have implemented CRISP on one of our 
HPC clusters and plan to further study its performance [11]. 

 

CONCLUSION 

A modelling framework has been established which provides a predictive capability for uncontrolled 
compartment fires which can be “steered” by real-time measurements. The capability of CRISP in reproducing 
the fire conditions in some full-scale fire tests in a realistic compartment was verified. Generalisation of the fire 
definitions in CRISP was achieved, and two item fires were implemented, so that a multiplicity of scenarios 
could be generated in Monte-Carlo fashion. The model output demonstrated that the predictions can be 
controlled to evolve in a way that closely follows the real fire conditions, particularly when two items are used. 
Further improvements in the predictive capabilities will follow establishment of an appropriate feedback loop 
between the results assessment and the parametric space in which new fires are generated, perhaps using 
Bayesian inference; HPC implementation, which will allow even greater parametric spaces to be efficiently 
explored in real time; and finally, development of improved representations of the mechanisms of fire spread and 
growth. 
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