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THE APPLICATION OF UNITARITY AND DISPERSION RELATIONS TO

DELBRUGK SCATTERING



1, General Interaction of Gamma-rays with Atoms.

Gamma-ray Attenuation with the various atomic constituents

may "be classified in the following manner.

Kinds of Interaction

I Basic interaction with atomic electrons: the electric field

of the gamma-rays exerts an oscillating electric force on the

charge of the atomic electrons and a smaller magnetic torque on

their spin.

II Basic interaction with nuclear particles: similar to I.

III Interaction with the electric field surrounding the charged

nuclei and electrons.

IV Interaction with the meson field surrounding the nucleons.

Each of the above sections may "be further divided according to

whether absorption or scattering takes place.

A. Absorption

B. Elastic ( coherent) scattering

If the atomic system responds as a whole to the photon impact,

its internal energy is not increased and the scattering is elastic.

The effects of the elastic gamma ray interaction with different

parts of the system combine "coherently" (i.e. by addition of the

amplitudes)•

G. Inelastic (incoherent) scattering

If the scattering of a photon causes an atomic particle to

recoil with respect to the others, the internal energy of the
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atomic system, is increased, and the photon energy correspondingly

decreased. The effects of inelastic gamma ray interactions with

different parts of the system comhine "incoherently", (i.e. by

addition of the intensities of the effects).

As the optical theorem and unitarity relate these processes

it is perhaps useful to describe them briefly.

1A. Photoelectric effect

This effect is most important at low energies, and for high Z
-3

materials. The cross-section decreases roughly as w for 00 < 0.5

Mev and like for 0) > 0.5 Mev where co is the energy of the

incoming gamma ray. The ejected electron emerges approximately

sideways to the photon beam for oo << G.5 Mev, but almost in the

forward direction for high energies.

IIIA. Pair Production

Pair production predominates for high photon energies,

especially for high Z„ The threshold is approximately 1 Mev and

the cross-section rises monotonically above this energy until it

levels off near 50 Mev, depending on the atomic number of the

scatterer. An important fact is that the electron and positron

are projected predominantly in the direction of the incident

photon, especially when the photon energy, and hence its momentum,

is very large. Most of the electrons and positrons are confined
Mev

to directions within 0.5 —— radians from the direction of the
CO

incoming photon*
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1B Rayleigh Scattering

Garrma ray scattering at small angles imports only a small recoil

to the scatterer. The recoil is then often ahsorhed hy a whole atom

or molecule, so that the scattering cross-sections of different

electrons combine coherently. This effect is obviously greatest at

low energies. Even for photon energies of above 0.1 Mev Rayleigh

scattering is only less probable than Gompton scattering by one or

two orders of magnitude. This scattering increases with Z.

IIIB Belbruck Scattering

This effect is small in the region 0.5 to 3 Mev where most

experiments have been carried out. A description of experimental

and theoretical results will be given later.

10 Compton Scattering

A gamma ray is scattered inelastically rnd an atomic electron

recoils out of an atom as though it had been initially free. (This

scattering is elastic if one considers the electron as an isolated

particle, and inelastic if the electron is considered as a part of

the whole material). Compton scattering is most important for

gamma rays of 1-5 Mev in high Z-materials. The cross-section

decreases to less than 0.1 barn at 10 Mev. The recoil electron

flies off nearly in the direction of the incident photon.

All the other effects such as the nuclear photoelectric

effect (IIA) and nuclear scattering (IIB) have very small cross-

sections. Mesonic effects (IV) only become appreciable around

150 Mev and then have cross sections of the order of a few milii-

barns.



During experiments performed to measure the Delbriick effect

one thus sees that it occurs coherently with Rayleigh scattering

and scattering from the atomic nucleus,, (We will throughout neglect

any mesonic effects). For not too high energies the scattering

from the nucleus can "be considered as ordinary Thomson classical

scattering and this amplitude is real and known. The amplitudes

for Delhruck and Rayleigh scattering are complex and so the

experimentally measurable cross section is given by:

dcr

dSI

IT) _ CO) (R) . r (0) . T W *
4. |\JL (X + ke. (X ■+ I (X •+ 1 JLW C(

The lack of knowledge of accurate values of these amplitudes makes

it very difficult to analyse experimental data. Rayleigh scatter¬

ing is more important than Delbrtick scattering at the low energies

where most experiments have been carried out. The fact that mono¬

chromatic gamma ray sources are not readily available at higher

energies is unfortunate^as experiments done in the region of
5-10 Mev would have a better chance of confirming the existence of

Delbriick scattering.



-5-

2. Review of Experimental and Theoretical Results

So far we have only discussed, general effects. Let us now "be

more specific and attend to some points in detaile Prom the field

theoretical point of view Delbruck scattering is the elastic

scattering of T-rays via the formation, and subsequent annihilation,

of an intermediate electron-positron state. Thus Delbruck scatter¬

ing may he considered as the first order radiative correction to

Gompton scattering on a nucleus when the nucleus is held fixed and

has infinite mass. The Peynman diagrams for the process are,

/ 2 2 \

going photons (k^ = =0) and q^ and q2 are the three
momenta transfer to the Coulomb field of the nucleus. They have no

fourth component as the scattering is elastic.

A line representing the incoming, virtual, and outgoing

nucleus of momenta K^, and K2 respectively has been added
to Figure 1. When the nucleus has infinite mass and is con¬

sidered as fixed the first diagram transforms into the second where

the crosses denote the action of the external field.

This scattering, according to Figure 2, is a particular case

of the scattering of light by light with two lines not on the mass

shell, and so is part of the fourth order tensor*

jAVULh
However, the general light-light scattering tensor has never been
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computed.

Interest in this process has heen shown for many years.

Delbruck originally proposed this type of scattering in 1935, hut

the computation of the cross-section was so complicated, using old

fashioned perturbation theory, that only rough estimates of the

forward scattering cross-section for high energies and energies

aomparable to 0.5 Mev could be found. (See the work of Kemmer,

1937 and Akhiezer and Pomeranchuk 1938). The effect is of funda¬

mental importance as it is a direct proof of the polarization of

the vacuum surrounding a nuclear charge. As such it is a purely

quantum mechanical effect,and can only be predicted from classical

theory if Maxwell's equations are altered and made non-linear0

That vacuum polarization exists is shown very well by Lamb shift

experiments, and Delhruck scattering would be another good check

on the present day theory of quantum electrodynamics.

Anyone interested in the early experiments and theoretical

work should read the thesis of Toll, 1952, who first used dis¬

persion relations in connection with the optical theorem to find

the forward scattering amplitude. Estimates were also made hy

him of non-forward scattering, using the Weizsacker-Williams

method, but these are rather rough and it is difficult to see

exactly how large the possible errors may be.

An exact calculation of the forward scattering amplitude

for the graph in Pig. II was also made by Rohrlich and Gluckstern

in 1952, by writing down the Feynman integral and evaluating it

directly. They also used the optical theorem together with dis¬

persion relations and found the same answer.



The result can he seen in any text hook on quantum electro¬

dynamics and is reproduced here for completeness:*

(X t") = ctl-r, { ~ ZCfyl-D.tylJ + -7- IQfFty)-
J.'tf 1

1)

Cl ~ a

(X

)'!«)]- I j

(fe? + ) fpf] J
where

C11) -

'A.
^ — cfx

7) 11) -

'A
V

TJ ^ *

C^V

v,^i>

.1 I- *'
lh -• -1 ,/ 6^ —1- a*

x ' Ax

'A j,

et xUJ
.R7

i^j > 0 )

i-*2 >c)

(-*1 £ 0

ei<o

E^f E2» are rela"ked to the complete elliptic functions of
Qri*\

the first and second kind and -^7 r -— .L w

This shows that even in the forward direction, where considerable

simplifications occur, the integrals cannot he carried, out completely.

One therefore expects that several integrals cannot he performed

analytically in the non forward scattering case.
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Any corrections due to sixth-order graphs are expected to he

large on the basis that (Za) is around one third, for high Z„

However, Rohrlich, in 1957? showed that such large corrections only

occur in the imaginary part of the amplitude where it is small com¬

pared to the real part. The overall correction due to sixth-order

graphs is thus less than ten per cent. Note that the theorem due to

Furry excludes all graphs with an odd number of corners.

A calculation was made by Bethe and Rohrlich in 1952 to find

the cross-section for high energies and small angles. They found a

diffraction peak type of behaviour for the differential scattering

cross-section^which has since been checked experimentally by Moffat
and Stringfellow in I960. The latter experiment is the only

exception to the general rule, all others being carried out for gamma

ray erecgies of only a few Mev. Moffat and Stringfellow used 87 Mev

gamma rays and found reasonable agreement with theory.

However, such calculations are not of great importance when

comparison with experimental results in the 1ow energy region have

to be made, because one needs to knov/ the differential scattering

cross-section for intermediate values of the energy and for finite

scattering angles, (say 1-5 Mev and 0-30°). All references to such

experiments, and quite a number have been made in the last ten years,

may be found in the paper of Standing and Jovanovitch 1962. A com¬

plete list of theoretical papers on the subject is given in

App endix II«

The extension of calculations from forward to finite angle

scattering is possible, using unitarity. However, when one realises

that the unitarity condition involves three particle intermediate



-9-

? 7

states (i.e., three three-dimensional integrals over p-, p0 and± ) d

p^ with one four dimensional delta function , in all a five
dimensional integral), and the particles involved have spins, one

sees that any exact calculation would he extremely complicated

and sooner or later involve non-integrahle functions. The fact
—--

that one is working in a fixed, coordinate system with K-^ = = 0
and M = o2> leaves, no freedom, and the three dimensional integral

over p^ is merely replaced by one over q^.
Claesson in 1957 first wrote down the unitarity condition but

left it in rather an impractical form.. Kessler completed this work

in 1958 by evaluating the various traces of the matrices, thereby

giving a five dimensional- representation for the amplitude. He did

not carry out any of the five-dlmensional integrations analytically

but was content to integrate his result numerically for gamma ray

energies of 2.62 Mev. The results were disappointing and. showed

that the real part of the scattering amplitude must be larger than

the imaginary part to explain the experimental curves. This fact

can be predicted from the exact forward scattering values, as the

imaginary part has a threshold, at 1 Mev and only becomes comparable

in magnitud_e to the real part at roughly 10 Mev. This general trend

may be expected to hold, for finite angles also.

Zernik in i960 evaluated numerically the imaginary part at

2.52 and 6.11+ Mev. His results are more accurate than those of

Kessler. Further numerical evaluation using his programme for higher

energies seemed impossible due to the difficulty of using five

dimensional grids of smaller and smaller dimension. With increase of

energy, the intermediate electron positron pair become peaked into
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narrower angles entailing the use of a smaller grid in the computer

programme. Zernik also stated that "the analytical evaluation of

Kessler's integral does not appear to he feasible." Nevertheless

some further integrations must be made if one is to find any more

information from the unitarity plus dispersion relations approach.

The calculations given here show that it is possible to

reduce Kessler's five dimensional integral to a three dimensional

one. This result was found in 1962 before the publication of a

paper by Sannitcov in March 1963. His work goes even further than

the author's and is discussed in Appendix I. A three-dimensional

notation is used here and the work simplified by using a model

which gives the essential mathematical complications without

bringing in spin. The introduction of spin could be taken into

account and the whole of the imaginary part found as a three

dimensional integral, but this would mean a fantastically long and

complicated calculation.

The approach used in most text-books of writing down the

Feynman integral would be even more difficult. The extra separation

of the real and the imaginary part is automatically given by

unitarity and dispersion relations.
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3o The Imaginary Part of the Delbruck Scattering Amplitude

a.) The Unitarity Condition

The elastic unitarity condition relates the imaginary part of

the Delbruck scattering amplitude to the product of the amplitudes

for pair-production and pair-annihilation. Let us use the same

notation as Kessler, except for the replacement of his undashed

and dashed vectors by vectors with suffixes one and two respectively.
2 2 -»2 2

Our metric is given by p =E-p = m and we shall use as Dirac

equation (3 j) +m ) u - C . All three dimensional vectors will be
written with an arrow above them. If the T matrix is connected to

the S matrix by

S = I + L i
then unitarity, i.e. l , becomes, for the T matrix,

itH
II

t

Tl
i +i -1i 2 (1)

1! Th¬ is given, in second order perturbation theory, by the pair

production amplitude described by following graphs,

ft.i ^ hi -> Jn
«+

k jKi
in

which is

I vi

[ Z.U

17
W\

U c, t,
I 1 1

. —■»

11
u

/ ^ \

(Q, + Cq ) v (2)
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where

and.

Qa - 1 - a
b

^ tj.l?, )U. £,) ■+ 1 fa-^i
The pair annihilation cross-section can he found from this by sub¬

stitution, or written down from the following graphs.

fa i nl y !-}k

fa

h'

fa

Thus

- £ f u) - u)

Vl
- l no? 141

n:

W
4* ) x< I?,I 2 2 (3)

where

and

f

u - t>"\ , - h 9, h .

,, a.

Q
i

^ [Ik)jrtz)- a/yft
h.)

Qe. Jo •
.hfvh)

The substitution of (2) and (3) into (l) and evaluation of the traces

is rather long and tedious. One finally arrives at the result of

Kessler, which is split up into two parts, depending on whether the

polarisation vectors of the incident and scattered photons are
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parallel or perpendicular to the plane of scattering. The three

dimensional coordinate systems used are shown below.

Fig. (a)

3 =

Fig. C

If we use the notation that p^ means the j-th component of the
three dimensional vector p^ > then,

(j)V -A i _

lori

where

/ ^ T73
rn d ir, y

I It 1 1 1K, I I 9.1

X = (ill- I?,
—* —)

|n • A ji rh
jv&> j*r&( A M*

ih_£i
)>l4z /

8

~i C-J

e. kl-. E jvi y eijyf. e id'
Ji.-fci |d.

-f-

-+

)1,K |vfy Jh-K

Jh'^l
1 i "i 1

(]v+ Jhi) + iErbi)^' a I +■

+ ■■i Lo ivw (X
jv^i A (v^i jvfe

•«3 Ki -t-
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t 2 (X

-J- Uo X

^
ii Mi4 )v ~ °t" X' hi h'^1 +

(f., WKi)
^ fa< -t hu K-^i~ |"i'60 h-f> - hi K&< ( +

(J*i-)

iji.-l.) hAV I1" _ F^o^/i;
AX jl J.r*i J»,-fc

j^i'fi jot- ft \ f I"'! FjOniX-l- j*l<
f»,-K Jrt-*t A J.rfc, Jl,.*, /

(4)

for the figure (a).

The expression for the amplitude when the polarization

vectors are perpendicular to the plane is just as long and com¬

plicated andv for that reason .it is not reproduced here.

Conservation of energy and momentum is expressed by

fri + fa- K+fa
Now rewrite equation (4) as

CO) , 2 r 3 ,3 i .

a (It)- If
'

li Ti F, E, (</,; (v 7 -
and split off the integrations over the momenta transfer variables
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" '

it,' l?JTw

where

fU

r ■'i r-®d

A(ia.mO* li'c fc+trl>-h)XkUh.tJ').<6)(J tl ^Z-

which is the unitarity condition for photon photon scattering with
2 2

two particles off the mass shellj q^ ^ ^2 ^ -^onS
as we fix q^ and q2, we can then carry out the integrations
over p^ and 1?2.

X is a very complicated expression hut is made up of the

contribution from all channels. The terms can be split off

according to the products of Pp p2 with kp k2 in the
denominator. Let us define channel I by

A. : VV

so that the denominator is the product (ppk^ppk^. The other
terms then arise from the channel II

f\t t
and channel III

a : -Vl- V*.
i

If we define s, t and u variables for these three channels

(see later) then we can limit our calculations to channel I and

find analogous results for channels II and III from crossing
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symmetry. The system of integrations becomes schematically

IW

0- (.u, t) -
I

(7)

with

ij,, /],. JV. (8)
As a ready expression is available for X in three dimensional

space, we shall carry out integrations in three dimensions.

f\ f L-~ ~0S,b

Let

r B f , ^£15
F> —p

K - —r" ' e*= ——

_ M" (if, JF, S( tft+'-e,1)
and use

I

H, ^
these new delta-functions become, as functions of u and v,

6 ( jl^+> - £(l) - o[ -U +V •+ -V-4-I+* - Mo' 2itaV*)
St fit+w-Ei) - ild.+v-2-u vA-k'to-Mo- vc + 2'U0i0)
"b[ ~jit,Zj^z+/Vw ~^i) ~ S[^l-V ~^cH) o(/Vo+V<1~i/-U-it.i*i J
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/HMi.M')" j dud'v <Ul,dv, c[ U V -VeV0).Zl<lo +V*~u'-V-kw').
nz-hi) z«.-»)xj

Introduce the following variables

( — *

\l. = *,+?, *

L - K
ft -1 ~1T

M -

K+M

and complete the Integrations over d^u and du .

■ Pi IIS, ki,,h )"Uvdv. Sfav.-ZZ)
v-f L \^lvl u k'f-V 1<-V l3-+-V0 Li-Vt ~
1 ' ~ ' ' Z ' ' ' z r '

The important terms are now the denominators. Collect together all
the terms with the factor .k^ ^.kg) in the denominator and
define

L

This means that we are only considering channel I.

Then

(\,-
dvto. /3 H-v) S[

^ i ^ .—y Z \
ArJ-b-lM - K -I/1 /

u5 ~(^i±P)(¥)};^ t]

, 4
K+L Tr-f-H y*v V-v ~7 ~s UH3: !±iHo

'
n '

c , U> .^
/ f *7 '
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(Dne delta function fixes the value of f0o , which may be integrated
over immediately. If we next introduce polar and azimuthal angles

© and with respect to the direction K , the value of cos ©

is fixed by the second delta function. The final two integrals

are over the modulus of V and <6 .

,

^ | v'dv ling- tKVVw-Jy
1J i|KlMJ iSikiWwW [d-i'-U

,11 K-ili£i n ie,u ajkz)
,7 [ T< I ' Z • 1 ' " ' ' 3" /

(9)

Obviously the basic integrals we need to know are those over the

denominators. Any terms in the numerator are reducible using

partial fractions, so we put £ = 1 for the time being. The
terms in the numerator only appear when spin is involved, so if
we neglect spin, we are justified in replacing f by unity.'' x

The dimension of juj which comes into the numerator in an exact
calculation is at most four, so, for a complete knowledge of this

integral we need also other integrals involving the components

of V along the vectors K, L and M. These other integrals

can sometimes be reduced by partial fractions but can all be

calculated exactly if enough time and patience is available.
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B) Kinematics
2 2 2 P

Define the invariants as follows, (metric p = E - p = m ),

S c t k,"' i) - ™ ,2 - 2 l<v ([-L l/v •

t - h(iv f'h -- Ui~''(>■ l"f)

u ■ iu/hJnjt- V <*>)
i ~*i

S - I tu %"h

2 2
We now express the products of K, L, M in terms of s, t, q^ , q2
and Wo

Kl -
i

£0 - $

L - i/+ 2cih "+ $.
1

|Vj ,
V —/1

L" -* 2 c( i f S ,

—1 - ;

K L
i -t

- to - lj,

idii
i -,1

= \x-

i Fl r

The final result for the Delbruck scattering amplitude is obviously

only a function of to ana the scattering angle or, alternatively,
3

of w and t. However, before integration over d q^ the ampli-
2 2

tude /\ is a f-unction of s, t, q^ and q2 . Hence the integral
2 2

can be replaced by three integrals over d( q^ ), d( q2 ) and dS„
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Let us fix the value of q2 = k^ + q^ - kg. This leaves q^
as the momentum transfer variable. It is important to note that

1^1 can never vanish, or scattering does not occur. The largest
and smallest values of q^ are given by the maximum and minimum
of the relation,

which depend on the vectors being antiparallel and parallel

respectively.

• r<j,. h+hi k
- j t,1' ) .

/ |^.l^ :f JHffc'j- J. i"■) J i{l-1 • K

Now assume that vt Eg and both are larger than m, We expand
the square roots and solve the resulting quadratic for | qj.

I *}<) r 1 j: . (jj1- i+<ni1

Hence as the modulus of \qt\ must be positive

iJ - < 17,1 $ W +v/T7^ui\ (11)

These upper and lower bounds on fq^j , combined with the fact that
the energy w must be greater than 2m, give restrictions on the

values of S. Let p be the angle between the vectors q^ and
k^. Then



-21-

$, -2 ^%\ and <; y Zffn ,

and so
, -> ^ 0 i

S . • - i,l + 3" If./
'yvu^

1
-S .

/yw^vi
y - 2 I It I 2/ Lf-'yyi (12)

Alternatively if we integrate over the angle p instead of S, the
limits of integration are

_ 1 .< w. $ i - . (13)
3 k! | I

For forward scattering t = 0, and for backward scattering
2

t = -i-4u) . The transition from channel I to channel II does not

alter the t variable but changes s into u. Unfortunately,

the amplitude in the third channel is not simply related to the

amplitudes in channels one or two and will have to be calculated

separately. If we use homogeneous coordinates, the range of s and

t for f:

diagram.

2
t for fixed ui and for channel I is given by the following



$ t k-%\

S - C

S-- -2 CO /?,l~

C) Integration of the Unitarity Condition

The problem in hand is to carry out the integration of

equation (1). Choose the following three dimensional coordinate

system

^ _ |T| ( ccpi? , , 'j*- f )■
K- IKI ( 1 , c . C }"
L - |L I ( <v ' c )•
pi _ I Pi I ( ^ ^ a ).
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where the values of a, 3 and T are easily found to be,

1—i -> I c

k'-L /<
UP C\ - - —

I'OILI

—> —> i i

, l< ivi L- ~ Hz
UP A - — -

UP Y

I Pi Ifil S J uS+Kjl + S

Clu. ( 'jl +1l ~ t ) ~r "2 S t —

Let

C\] - ^ "iN ~ ($ + i*)1
11 I \ t

Qi c - lw<|J .

T Aand £^p ft ■

OA

The projections of 1; along the directions of K L and M are

1'
>

j —
is ■= ^ J'V +k-wl- S

1>. L - "1') ]t>l+u.wL-£ -+ 0, JcoV -n'V - I+IJCJ'1
u>L-S ' ^7} (14)

■uri ■= w Jt'+ifw'-s t A [ufs-ni't-W +2 -

V 22o

u-s o,

t- ) g}Qi - A1 Jul£-V7£ -k-^V1 ^ op
(e/-£) 0,
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The introduction of a new variable

* 'L i 1 r

X - X + 4-W - o

gives

A
r

2 dxdy
<J ^U- S ( ^Hr^ + X.CK'L)) [$ + <j*+v.\]2-M))

with

U X .

V-L
T- T- \

U (Lu ~ 'j, ) X +-
1 <r

U> ~ ^

U, IJ us* <f

UL-S

—I —<

iV|05

where

Now define

U) [ ^ - ?i)
Oj1- f

X + /\ U/ UPtjP

-f J Q?u? ~ A2 ld
D, (A»1-f)

?•

^ I" J - xlf

(15)

0 d X dc{

.. J t/-s [ S+CfWvUL)
(16)

T, --

3 d X d(js

jtS-s [utf (17)
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J
2 CX 0(C(

w'1- S I s + tf. T.(K-L')jf S+ti+zJK-nlJ
(18)

Consider first The integration over is a standard one.

* " off -2tt

/I -t 6 "5° f j /1 ^ ^

■+v ^

( fl!> 6')

•?d

"*5 - 3 b*

f

cfx (>-*)

cV)
Te

where ^ - ^lx>l-S)[ I ~ J
i

and C IX) j.s a quadratic function in x.

C\x) = (to-S)( Wf,*)V + 2fa l~S)i S+tfXtfs)!** +

+ [uj?- f)£-k*« 2- iff r
Wow use

+ r

i

C< X
\ r f n ~ —

JuxVfcx + c ja ^ v

(19)

-k t

•+ 2 O K + <-)
v e

where a, b, and c are the coefficients of x in equation (19).

Substituting the values of a, b, c and I leads to a long com¬

plicated expression. The following values are given for

reference.
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P. 0- ft -ti t .2 Jft lul+t Jz + c - J +w^0]( / + ^ /_ 4*rl j
2ctje H- f 2J& (.flt-GJuc - $(jvL-s)tSi-<}?)l(s+,)!)it#-$ t-vty-c)]^-Ji-^11
The amount of cancellation in this result is surprising. Finally,
we find

J, --

and, similarly,

k-r< lu* I -+ , ' -

I ' /
(20)

4- «

?>

• -+1 r
Cf. «u.«
~r

(21)

which are independent of u.

The evaluation of is considerably more complicated. Use

first

S+CjV V{k-L) = ujz!U£^lhf ^
s 4 c'' . 5.(i<-n ) - i~L.)([q?-s)Qi -A

(&*-*) G,

q 2 q / - /)7 -<+'»» x)l u -A- x ?X ^^ y
Cw'-o a,
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so that the gt integration is of the standard type

d cf

^ )( 1 (.Mi,, Y )
tij ( /l 2 - /I, di)

~t

rtv6j)l~(8,C7)V(/)fCi) J fli1-

C-1 +■ <37 f ) -T-

-t

(A«> -M, )l-(g.cvA(A<W J ct

for /),? > /?, + £,

(22)

The expression for A^ - B^ has already been given in equation
(9). We need now that

K'K~Ci r ( *l(ul(l's)tC{vO +3" * (<fr!)i&l-s)( S^xVf
^U) + (23)

After substitution of all the values of A-,, B-p A2, B2 and C2 in
equation (10) the integrals over x belong to standard types in¬

volving the square root of a quadratic in x in the denominator.

One needs the following results.

1A+CvO Js

d

JLnl 1
1 -j> ^ J -

UIs-fiji-*Kl'1)•+ (xy'X)''-^6JO*J L^»VW) X*-.*)•*-*i'1)
;i(s~ij'-tvf)~, v(nx+,-«^J ji1)
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-f. Aill.s
h'i 2.U'^ + c/t

2 ~2 j{L^\ixu )Ly-fij
l {<)'f>\+nhltn)(f ~ 2*0+3 J("A'***P'-^ff I•

with )h '
£ +i

t
£-J &2-*h>

^ ^
The amount of algehra involved in the substitution of the various

values of A, B, g, h, i, a, p and T into (11) is rather large.

However, many cancellations occur, and the final answer reduces

to

(24)

J = e*
3 QltU

J StIs-km1) -+2^ (j^V) + Ji ^ Jstis-tun*) - +/f~
+2^ (s+ ft) -(f j$t[s-k-Tvj-2w[s+<jj)~v f

with ^ +■ + ft )i S+fti)

(25)

a result which also does not depend explicitly on u.

Suppose for a trial we substitute (23) for A into (5). The

integration over d^q2 is immediate, and we are then left with
three integrations over d^. Take a three dimensional vector
system with k^ as pole vector.
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»—js» ' • ■>

Denote the angles of q^ with respect to and the k^, kg
plane by q and J respectively. Then equation (5) becomes

u°(U)= '
I■VM /k r-pj 7 J 'i x /*< '• (26)19,1 I *,*?«-M J

where we have neglected the spins. The angle p is limited by (13)
i.e.

(^H?)
2* Ift (13)

and the modulus of q^ is restricted to lie between

w ^ lcf«! ^ **+ J ^l~ ^ (11)

Define new variables, to remove the mass of the electron from our

expressions:

_1(y - > X - ^ )
LP

2nt
q r x T +
f kv2 W (27)

Hence (11) and (13) become respectively

i- Ul-1 5 ' y+ J 1

- i s < HQ

(28)

(29)

corresponding to 1 < $ 5 1 (30)

If is the scattering angle
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Cr-J , , aJi> J_
2 «T ~ u7

and from

II
—* 1

I b,+ - h I we find

s" -f i- j t

4 -
p ('dy)l^-W')~ »(***%'-»>)]''

_ d(<ul)

and

d (up ^)

8 (fry* &')

ar
Hence in (26) we replace the *((">$>) and d/ integrations by
integrations over c( £' and d(<£2?) respectively

&%!)« rc"'" 1
7 1

Vvi

rf(«7
^ 2ji J (J, J&fsm.'if,') c,

Written out in full,

OUT)-- f ^ d£
r,.. ' /fc-?r3 * ajr J ^ ,

djl J?c) 2^7"
Q, 4-77

Cn ST07S+U.7 t J<^(s-<)+l5<.'')fS+St) . ST(r-i)-iS+li<V+J
.Si0-i)+(Sf<?')~JsTfj-i)t(r»(f,'/)(It'?7) ST(r-i)-(T»t.r,,j7sT/j-iM?t(r.,i'rf<1V)

jsi(s-i)+(S<'CK7(s+1&') .
/

rf n'(j<)-r-Cs+tp,V// -?,)]*
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where

i - s+£*$?)(i~~t) .< Q2 <C 1 - S" +

and

+• (S" +9vX' 2ji) + J k-tftf-fct-tf) J fiil> I#*).

J )f"-1" ^ 0| ^ 1 .

Any further Integrations are impossible as there are just too many

square roots in (3D« There are now no essential difficulties

involved in finding an exact expression for the imaginary part

from equation (9). One needs to express the vectors shown in

the polarization diagram in terms of the vectors K, L and M,
which is elementary

, . 1 n , 1 —v -..IS).,1 —^
c _ if .a 1 , ^ s + ^+Uu* ,T s) i/"« - u'V —n rTTa L —— N ■

- (Sf/, 9

.vf^T is,,9r

— 5+</t+2w 79 ht yt -2^
s - UVW —r ^k + —L 'V1-

so ih principle we know all the scalar products of k2 p-j_ P2
.—> —' —i

and e2 in terms of the other vectors U , K, L, M .

However, it is obvious that the substitution of these scalar

products into (9) and evaluation of the integrals involved would

be fantastically long so no further work was done in this direction.
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The Real Part of the Delbruck Scattering -Amplitude.

The total amplitude for Delbruck scattering is a function of

k-^ and k2 only. It must be made up of the following invariants

= ft <Y» + ft V •*" C for
However gauge invariance imposes the following restrictions J

- f?2l ($j,) - o.
Thus we find

V»> fr1** )[&■<>)-
where $ is the scattering angle and e^, e0 are the polarization
vectors of the incoming and outgoing photons respectively.

A knowledge of the imaginary part of g(w, cos ) would be
sufficient to yield the real part through one dispersion relation

at fixed momentum transfer. If one wanted to find the real part

of the virtual photon photon scattering amplitude, one integration
would not be sufficient. The amplitude is then a function of

several variables

.and gauge invariance only reduces this number slightly. A separate

dispersion relation would then be required for each independent

coefficient. Unfortunately, this approach cannot be carried out
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analytically as the dispersion integrals would involve functions

like integrated over S with an extra Sf - S in the denomina¬

tor. Such integrals are also not expressible in terms of analytic

functions.

Conclusion

The conclusion of this work is really very small. It is that

the five dimensional integral for the imaginary part of the

Delbruck scattering amplitude allows two further integrations to

be carried out analytically, before it is absolutely necessary to

resort to machine computation. Whether it would be quicker to

carry out the work fully, i.e. obtain a three dimensional integral

representation for the imaginary part, and then integrate

numerically, or to find another computing programme, which allows
one to integrate the five dimensional integral at higher energies

is another question.
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APEENDIX I

A paper appeared by Sannikov in March 1963 in which he also

used the unitarity plus dispersion relations approach. He evaluated

the integrals given previously, using only four dimensional

vectors and has given an expression for the high energy "behaviour

of the imaginary part of the amplitude. This was done by taking

only terms in the numerator which do not involve the mass. The

dispersion relation in 5 can de done analytically under the

assumption that >> , (large angle scattering). He finally

arrived, at expressions for the real and imaginary part of the

amplitude for large angle scattering and found that the real part

of the amplitude is greater than the imaginary part in this region.

This result is interesting but not particularly useful as, at high

energies, it is the forward diffraction peak which can be measured

experimentally. The backward scattering is much smaller and no

experiments have ever been performed to measure it.

The work of Sannikov goes further than that of the author

as he has evaluated more terms in the unitarity condition. How¬

ever, they will all have to be calculated if information is to be

found on the behaviour of the amplitude for intermediate energies

and angles.
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INTRODUCTION

The description of bound states in a relativistic field theory

involves considerable complications not met in the non-relativistic

limit. Bethe and Salpeter derived an equation which has since been

investigated by several authors. Their equation, although being

completely relativistic, suffers from a serious defect, because the

dependence of the amplitude on the relative time coordinate of the

two incoming particles is not understood. Hence the usual procedure

is to work in the instantaneous interaction approximation where this

time difference is put equal to zero. Even in this approximation

the Bethe Salpeter equation has only been solved for certain special

cases, and no complete solution is known.

The calculations reported here are based on the idea of reducing

the four dimensional Bethe Salpeter equation to a simpler equation

which is then applied to pion nucleon scattering. Using the ortho¬

gonality relation for two time Green's functions, which automatically

exclude the relative time coordinate, a three dimensional equation

may be derived.

Two time Green's functions have been used in many body theory

and were first applied to problems in quantum field theory by

A.A, Logunov and A.N. Tavkhelidze (1963). When the author was on

leave of absence from the University of Edinburgh at the Joint

Institute for Nuclear Research in the Soviet Union, the application

of two time Green's function methods to pion nucleon scattering was

suggested to him as an interesting problem by A.A. Logunov and he

then carried out the work reported here.
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Chapter 1 contains the definition of two time Green's functions

and the reduction of the Bethe Salpeter equation to a new three

dimensional equation called the "generalized" Lippmann-Schwinger

equation* Bdwards and Matthews: applied the usual Lippmann-Schwinger

equation to pion nucleon scattering in 1957 > taking for their

potential the Born term scattering amplitude from Ghew-Low theory.

In this fixed source approximation, the integral equation becomes

a system of algebraic equations for the partial wave amplitudes,

and exhibits a resonance in the scattering state where the isotopic

spin and the angular momentum have values of three halves .

However, even after one subtraction has been performed, the integrals

involved require cut-offs. The resonance predicted here is, of

course, the famous three-three resonance of pion nucleon scattering

and occurs at an energy of approximately 190 Mev in the laboratory

system of coordinates,

A drawback against using the usual Lippmann-Schwinger equation

is that it does not satisfy the restriction of unitarity, which is

now recognized to play an important role in strong interaction

physics. That our generalized Lippmann-Sehwinger equation does

satisfy the unitarity condition is shown in the second chapter.

Unitarity is also not satisfied by the equation of Tamm and Dancoff,

so we expect our equation to yield better values, of the phase shifts

than those derived by the above mentioned equation.

What connection is there between our approach and that of

applying dispersion relations? When combined with unitarity,

dispersion relations provide a system of non-linear coupled

integral equations for the partial wave amplitudes of scattering
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processes. Leaving aside the question of uniqueness of their

solution, non-linear equations are technically more difficult to

solve than linear equations. Our new equation, being linear, splits

up into independent linear equations for each of the partial wave

amplitudes and so does not seem to be connected at all with the

dispersion theoretic approach. However, upon solving this system

of equations by the usual determinantal method of Fredholm, one

essentially arrives at a dispersion relation for the denominator

function. This dispersion relation is different to the dispersion

relation for the denominator function, which follows from the

determinantal method of Baker, (applied to pion nucleon scattering

by Bali, Garibotti, Giambiagi and Pignotti in 1961) and the

"bootstrap" philosophy of Chew and Frautschi. Chapter 3 contains

a more detailed discussion of the partial wave decomposition,

while a comparison of the various dispersion relations is left to

the final chapter, Chapter 5.

We must also consider the possible choices of our "potential"

to be used in solving the generalized Lippmann-Schwinger equation.

This potential is identified with certain graphs whose field

theoretical partial wave amplitudes: are calculated in Chapter 1+.

A general fact known to theoreticians working with pion nucleon

scattering is that the crossed nucleon pole is responsible for the

major part of the three-three resonance and it is suspected that the

finer features follow from higher order graphs. We may simulate

the effect of these higher order graphs by adding the contribution

of a spin three halves intermediate particle and, rather than

replacing the cuts in the complex plane of the total energy in the
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centre of mass system by a set of suitably chosen poles, prefer

to solve the equation completely* Unfortunately, at the time of

writing this thesis, the results of the numerical computations are

not available. However, as the author is not involved, in the pro¬

gramming, it is a pity to hold up the submission of this thesis,

when his particular part of the work is completed. A detailed

paper will be published in due course, together with P.S. Isaev,

who kindly checked through these calculations, and undertook the

supervision of the computing work when it was time for the author

to return to the United Kingdom.

If the final results for the position and width of the three-

three resonance are satisfactory it is an easy matter to find the

actual phase shifts for pion nucleon scattering. A slight change of

the isotopic spin indices then allows one to discuss pion, hyperon,

or any meson baryon scattering. Nevertheless, if the results are

encouraging, the author feels that this approach has inherent

difficulties. The presence of a square root seriously complicates

the analytic properties of the scattering amplitude and he suspects

that the scattering amplitude is just not a simple enough function

to satisfy a linear integral equation. In other words, the approach

used here is equivalent to saying that, in certain regions of. the

complex energy plane, the difference between linear and non-linear

effects is small, so that the replacement of a non-linear equation

by a linear one is permissible. In general this is not true.
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i. derivation of a generalized lippmann-schwinger equation prom

the bethe-salpeter equation

We will take as our starting point the Bethe Salpeter equation

in integral form, which is a relativistic equation suitable for

dealing with bound state or scattering problems. The Bethe Salpeter

equation for the propagation kernel of a two particle system

)

+

( f, T (S i/'kO v w'h m) ?•='
(§„,S

is

GOVV *„*) - x, - .j44<Vi £ <V.\; Xf ,/,)
i<(q,xt; ,x; J &l< vh , x,Xi) (1)

where K (x5 j is the sum of all the irreducible graphs
in the particular scattering process, GQ is the free particle
Green's function, T is the time ordering symbol and S is the

asymptotic value of the transition matrix, i.e. S = U (+d9, -oO).
Bethe and Salpeter also define a wave function (x-L, x2) by the
expansion of the two particle Green's function over intermediate
states of total energy momentum four vector p, and quantum number a.

& C G.^ - ^L— *X (-^3/^) X,
b ' /•"
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The main difficulty in dealing with such an equation is that

the " relative time coordinate" x - x is ambiguous. By defining
50 to

two time Green's functions,

Gth ,*'»/»•, X, xa>r„') = £Kr*jo)S(V>«.)
\)

C^3 i^'lo , ^>4 , Ka '/ //» ) , (2)

we eliminate the relative time coordinate,,

The calculations which follow are easier to carry out in momentum

space, so let us define the Fourier transfer of a function F "by

FV)=
(2i) ,

t jl-X
ty) e d j

In momentum space the Fourier transform of equation (l) is

G( h'F; FF) = GJh'b' KM* uhl'h-

&c(hF; J'ij") Klh.h'hh ) £ (h,h; hh) (3)

Employing the integral representation of the delta function,
^
r '<■£ ( xl8~ x<e)

SLX'o)" (S7J ^ ''f
together with the Fourier transform, we replace equation (2) by

GihbJ-u: hhj'.J* J*'*'*'hf; >,S) M.



In future work we need an explicit form for the two time free

particle Green's function. This can be found as follows. The
free particle Green's function

o(fr/fL) o( Sfao'ho] £(£-€') GJfijbo-e/fce)
when substituted into equation (i+), gives

GthfoJ*)- -Ljdefj('o(OA J,jn-t>h 0
ip~) J J

A
-J

However, (jr ( ji( )"2,£ ") known to be the product of the

propagation functions for the pion and the nucleon respectively,
i.e.

'

dt -i lGI h h- ~h)'CSt)> _ A-f

(2-)'
Xeljlio-Q ' y /') d |V?

h,.- f*Jpx yf ■- V 'J
According to the Feynman prescription for handling the poles, a

small imaginary part must be added in the denominators. This

displaces two of the poles into the lower half plane and two

into the upper half plane. A contour integral, taken over a large

semi-circle in the upper half plane of the s plane, gives
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contributions from only two of the poles so we find that

GCf.m. ) -- =^- •——!—
3(If)' .Ifsp'( ) - 'Vl)

"f

+
-II c

~ y-/» + n (5)

Let us now solve the Bethe Salpeter equation by iteration. We

replace G on the right hand side of equation (3) by

Gc + G.K C%+ ■■■•

Now transform the result into the two time formalism by using the

appropriate transform in momentum space, equation (U), yielding

Cr ( hthh*' hi*}10 ) - &(Js'h) ^0 (-h°~h°) &o 1 * ~K) +

dtdt'drdc* j1^ jfd J>g (r0 f j'T'/vO/V > fs /7J\Tc^/vtr )-+ i

120

W's

-+

ho'O'fO GJfi'hK<h?)

which, using the £ -functions in the free time Green's functions

becomes,

dt e't' G. ( f3Ch £) K fb/v f -A, ,0 .A.- »>'.f' A
. &(},}.. Gh.e',) +

(20
/<

(6)
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(7)

The definition of the inverse of the two time Green's function is

-f

I^ (h'K'J1.jo;ish.h*)
- ^Llpf-fao) frtyi'fs.)?2~KJ •

But we can find G-1 from (6) .

Symbolically, write

G " + Go K G c ■+ ' " ■

and Q G 1.

Suppose there exists an expansion in powers of the coupling constant

for G_1, i.e.

Q - f\ ■+ & + C + • - - -

Then

C-' )[ G c + G0 K Gc + J - i.
and equating terms in the same power of the coupling constant

/\ - 5o
B G Go B G o 6-

Hence,

/v - < -v- -j

G - G G GJ< C
••v -1

io-

which, when written out fully, takes the following form.
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I , —> —>

i. K.b - S(js}.) Sf/vh) 6 f /

C (■ J\t J'3<jjGc (]i,K(.4B)[ ftj"fcitcl* c c

'3o-/'/0; (j0Cfy\j>i0)

S(}i-J,Q
where the function V takes into account all higher terms in the

expansion.

Substitute the above expression into (7), giving

dh | ^ (h'h ) S 0v?») lv~M (Xkhj -

so that

- Vf h*,h.h ■ h> h kkk / hfa}" I -
- i») o[jf3'J>i) l) Cfa~~ji) .

^ -1 -V . —J
_

Cr (fv.hh J 1( h h.f.io' Kh}>°)-tu'7 irl) ^/v/i h

+ w'»h- kh,h, <f,1 b,f.{0 ' / I P I,

A similar, but homogeneous equation, is then satisfied by the
Bethe Salpeter wave function ^ ( fa^t+J'sc)

r ~ -t , ->

'"♦J'3o 0*3,/'tk*)' ^)\iC I's "I'b "V ^ fr3J1Ct'h° >J

X -
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Now transform to the centre of mass system of coordinates where

XCfxfttjso) = S(/vK ) S( j^o'U)
W heing the total energy, and

Y (Uh°~hp) ~ArA)\'{hj\h°>h'hj™).
so that equation (8) becomes

Gr (hKM r f°%0YY
O \)

k (h'YYr/ J V/Y,hh*; YY/Y ^ Y~Y ^ ^hY J ?(-/><-)

Jk. ^ (Y"Y ^hhJV( h®, k h; h,.r-Y 9Y J

A final integration of both sides over and s gives us

G. f Y,h) ftft ) ~ f hjs ) fUs J (9a)

or changing the notation slightly

yif) - C-Ju.j)j cftp (9h)

The integration variable obviously cannot be on the energy shell so if

"

V

I i r I-*1 1
then
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w= E + to •- E'+ UJ' «

Equation (9a) is a generalization of the usual Schrodinger

equation, and has an energy dependent potential.

This three dimensional equation for the wave function j6 may

he transformed in the usual way to an equation for the Lippmann

Schwinger amplitude T. Define

cp( jn) = G0( f >^ ) T(f J")
then for p p' equation (9) gives

T(hK'); vcf,'f">+

where all the vectors are three dimensional. It is now permissible
so

to place the vectors p and p" on the energy shelly that this
equation is being used to define one particular extrapolation off

the energy shell. Nevertheless, this is the best approach if we

use a potential chosen from field theory. Suppose we return to
the expression for GQ f equation (5) > and replace this by

r. - El( i , , y. F'- y IL; 5 (w"|jpf* ^(w-f/v J.
assiiming that 1 Pql = I ^2^ *

Define spinors normalized to unity by

so that
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U I J1) f*(jO
Pn

Qrn

C-.j,

^ r)c E ~~ «Y- ji -t M ^

wh ere

w r °l [o~l
0 cr

- r o

are the usual Dirac matrices. If we now turn a "blind eye to the
fact that p' in equation (10) is not actually on the energy

shell, we may replace Ge "by

G = c •jl"1 ^2! ±112c '/''l
rii' ,M: v —/'2. x 11 1 2 ~1'1

I Y F - W
with c some constant. Equation (10) now becomes

•+ C

-+ c

3" fii / ffy "E

y[W)an* u T[}\}")4'
^

V />'V (E'~ J' ~,VI)
which is similar to the non-relativistic Lippmann-Schwinger equation.

The presence of the additional square root means that the volume

element is a relativistic invariant, so we shall refer to equation

(11) as the "generalized" Lippmann Schwinger equation. Obviously,
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if one takes the limit of M ©o , i.e., fixed source

approximation, one term is much smaller than the other so our

equation reduces to the usual Lippmann-Schwinger equation for a

pion moving in a certain nuclear potential.
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2. THE UNITARITY CONDITION FOR PION-NUCLEON SCATTERING

One important restriction on equation (ll) is that it must

satisfy the unitarity condition. The connection between the T

matrix and the S matrix is usually taken to be

A <-(U)
S - 1 T (12)

Unitarity gives j S - t » or

M T T ^ , T
„ au.„F, A1" T' T'

- - .?( I'M ^
• T T - - ' (2^ 7 (h + tirh*'U) M T T f

■ • I'V* 'r- - * I -1 - J-» ■

M VI *>1

For two particle intermediate states, we split this sum up

artificially, into two parts

r * 3 <~k/ ■+-
f T — - iC^*7) I dh v M T T
•—" X - 2 o .3 3 „ M 1f 2 J (A!)(&) 3c3F4 f

3 ' i

i (a«f f il! o >'■> m T" T.~~"" I 1 T*1 ^ 1
^ ^ J ^ W3

The first term can be transformed into a seven dimensional
integral using

and then the four dimensional integral over cf ^ may be carried out



using the four dimensional delta-function. A similar trick is

easily applied to the 2m^ appearing in the denominator of the
second term giving

r 3
_ i

•f1 a f 2

t

2 (2z)

a}, w t 7

3 /—«t ik ■/->» (3r
—i 2 -» 2

and of course q^ = p^ in the centre of mass system. If
insert the intermediate state spinors and use dashed variables

we find,

we

i yn

7'
qn gfE'-ft'-nV 1 U U I

.

•pi -VJI

t

j. J- cIL
"WJ 2 1}

in i i u a r.
f

hi t

'*'in* (13)

Now the imaginary part of the amplitude T, which satisfies

equation (10) i.e.

T(fT) - -+c Jv(fp S(?VT
is found in the following fashion. Assume that Vfjgji j
are real, which is true for elastic scattering, than

and c
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J_.yw T0'.|'")-= c CjpTn i (j,y)+ ft i (yfip'y
■= C V( Rt G0^) J*. I (f1}1") + G0Lfil I Rc I (fry)

- c

and therefore,

't J [ T-**' (yy)■+i (yy) ] ^ p

y)-

- c

J ' lyy)^}/ =

) T« Cjf'J T^'fjcty.
However, from equation (10),

St)^) -c V(/m) CJV] T( i ,y)ij<j = V(yy)

- c V[yy) G, i ip',p")^y -
■V*\

- c U(/m)-cV(/vO MO T(i,y)u\ T*, £0yj i

from which it follows that

c | r'h/,'') 1 y , ' ,i

The imaginary part of the operator GKp* ) is known from equation (ll),

Hence
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I™ i .)•= 2 ri 77 c

2M-4 J I I /. L 4!iL!iVi2.T(wiuwzifji
i/jAK1

which, upon comparison with equation (13), gives

(3.~f
Hence we have a final equation for the scattering amplitude which

satisfies unitarity

T(j-k') = v<>y)+ —~ [ ^'^v)T(yy)Ay

V(h.y) I /

Let us now introduce new spinors 2M u = go multiply the equation

"by w from the left and co from the right, and define

eij.")T(H,»)mp * t{j.p) : styv V(J,,],<■)»!/,> * v(N,»)
then

, . i I I'lH'') -t(!<'!<")

xijd1-) uyjrjA
MM

3, /

v/,'+/"' (n+)
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3. REDUCTION OF THE GENERALIZED LIPPMANN-SCHWINGER EQUATION TO

EQUATIONS FOR THE PARTIAL WAVE AMPLITUDES

In the centre of mass system of coordinates, the spin decom¬

position of the amplitude t(p' , p") depends only on the Pauli

spin vector and the three dimensional vectors p1 and p" . Prom

invariance arguments

t(|.',r)- fn , ic.p»fs {15)

where the carat denotes unit vectors, and Fg and F^. are the
spin flip and non-spin flip amplitudes respectively. In order to
find the decomposition of F^ and Fg into the partial wave
amplitudes

i £5

s- — £ ^£■. 1-"' X,f (16)X e ffl
we must change from the momentum representation of the amplitude

> —■> —i

to a representation hased on the quantum numbers J = € + ■§■ 0" » M,
the magnetic quantum number, and -£» This is done conveniently
in two steps using | 6, m, CJ"representation as intermediary.
Hence

J <C/-v; np.TMf>t <if; Jne//:v;>
• J ^

where, after some algebra, the Clebsch Gordan coefficients are
found to be



<"!•>! I W> -- i c
.Tn) 0

no
2

J-m/

*CT+«J

W Sri H

S
_ Y

fe /'S s ,+1 jjj

(I').

r-~

(?)

~f T-M S $
W Sri

a 3

M-i
(f)

~t ^ £ ,5■2J w sn

H

{})

The addition theorem permits one to sum over M. (The matrix

elements cannot depend on M as there is no privileged direction

in space).

/!*< - -t f

•v / v.

\/ 2 tuT (p") - — I (»*)
t e ' k~ *

4vi - - £

We then find that

ctnl

2 7+1 T>

*7T L W T4'
I t
3,1-i

1>
T~i

1 *> i J

-t
2c

JTti -)+i£ T> L ' 1

- I ?TT-t ' ' T T~' •'3,3-f J"i 7 I?''

Properties of the Legrndre polynomials allow one to alter the

last expression and obtain an expansion of P^ and Pg in terms
of the partial wave amplitudes. (Details of such a decomposition
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are given in text-books so they are not reproduced here). We

finally arrive at the following formulae.

F*' 21 (u«b f -t if
t+i i* e-i.e

? (tot;
(17)

F, * d. I I - f )?W)
e *1'* HM €

TV
is the derivative of (o-odj with respect to cos

Thus, substituting into equation (15) »

1- _

u Z_ ctto f + ?/£ L f+J.t >J,e"
"p (tiod )
e

"> £ iit-i.rU-'1^ '"'hh
)?Wt4'4'

/Ml * /

- d -f v'> P+1, k

-b

fi;
t r

£ iiv i

%)

{ ? -t ir'frf

where

^4.,, C + ? 4i..Le
i

_ "" 1"' D' i

J + - (eF() ? (^) -t'cr.liji le (<*>#),L-e
*ii ft —)>

l ^ -tier- ^ * j* if (Ltr>^'
•+

The operators L ' satisfy the following properties
t

(18)
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J <*ftK L (h|') LA',),") = k-
r

i *
i>: L

t

(19)

dsi,, L^,F]L;[»")= o

and. are thus the required projection operators to find individual

equations for the partial wave amplitudes. Expand t and v in

terms of these operators and substitute into (11+).

L + f L
e e+M 1 f-i,« e

L* + K ) ^"i -e

-t

^ (20\
T( f [_ p ) n [ fk,iikLk -

. -7 / l uj7 )-t N

-+ — .

) I

tfh 1.2-)
• /

71 A J•7'AWifeA *" ^ h dj\ o

»/'lAfd 1; )>'tp )
The orthogonality of L and L~ is now exploited giving

e+M

•+

fc (2u)1 .

1^+4 !~ )■= L [v I-4+ ^ , L ) t

V ( ■+r■ c ^7c ^ I—* ) }y'
J A ( LV" ^9

5 ( "HqtjbM Ll+tA' jlA >'V
*snijj "J yrv( ^+ml f-j
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which upon multiplication by either L and another angular

integration yields.

.fun) ' v + i a.
' IW)

n tt a (fe / . o1 ( |)'+/V| -
-t

+ 11 ^tOR1^) /i'V/I-
(20)

./,,?inni [ lRR-rjtr'l

2
The factor ( 3,-tt ) is irrelevant and could be removed by altering

the definition of the T matrix

Now

so

* • J (,,W"
or

{+{ b« V

L
-h

Therefore

■f - -f''
ft 'ftj.t l+z(tn) J'

t ( /» >/> ' ) R
f-f * ^71 -t

>
(21)

Simpler expressions for a^e found by replacing t and L ^ in
(21) as follows.



a hz(ui)
%/

2M J

(4 1 4 )'■)> + .,4 ? ,, r j:,,), ?'J rj fi ;

( i?t + V^c,

I ? t (ft')i '1 ~0-i')P,'v| t e

(€ +0

r -ft ?e,< )

/? ]
?=

cti

A similar relation holds for -£ so that•' f -

j UH ) = 1 f( (Z1^ ) I *+ Ifrl>' ) T Q)~\tfZ
ft I .1

(22)

which is the usual relation quoted in papers on pion nucleon

scattering.

Equation (ll+) is a system of uncoupled linear integral equations

for the partial wave amplitudes. Dispersion relations lead to a

system of coupled non-linear equations for the partial wave ampli¬

tudes, and, in this respect our equation is easier. It is very

similar to the Lippmann-3chwinger equation as it involves an energy

dependent potential which rnust he taken from perturbation theory.

Before discussing the choice of the potential let us assume that

it is well behaved and so allows us to solve equation (20) by the

determinantal method of Fredholm. Take, for example the equation



.f(j'.F) = wn'*) +Jk(bw)f(y.y)cij>'.
with K a given kernel and p" some parametere For fixed p"
tne Fredholm solution of the above equation is

f ( H'") ~+
D(p .

where the denominator function is

l\ ( /h/h j" ) jfi', jf )

d iy) i< +
K K
K K

and the new kernel is

!-Jj i< f<
K K

Thus, to first order, the solution of the above equation is

klM'yjvfy.yJfy
- IKtyrr

If a resonance appears in a particular scattering state then the

denominator function must have a zero. Before actually solving

our equation for the phase shifts it is enough to test our

equation by finding the position of the first resonance and

comparing it with the experimental position of the three-three

resonance.



The expression for this determinant is

l r . . ,

(27.)D b"> ' I - i rts [—tJhiiMhit

/i,? Vtth'.y) 4'
]for(rW-e<v>)

'

* (1*/

(23)

Let us now transform this equation to be a function of W only
using the following relations

1,1 , k ^ r I Mil /„„ £ . I \ *LtWy, w*- 2[ M z+^) u/+ (n
. df, - 1^'.. ^J i*f-AMyjk/W>yl
2W(E1 M) - C U/ ± M ) - l« 1.

1 7 7

3WE W + ^ 'f
IWu in'-n

To save writing dashes everywhere, let W denote the energy of

the intermediate state, i.e. the integration variable, and x be

the energy of the incoming particle.
otj

I w,/ w"-2(MV)iA (M'-t-V 0<L

(V-x'l [ iiV-(M f.
:.1)oo, 1 - yr,

ft &
M+j*

In general this integral does not converge so, we must carry

out a subtraction and we do so at the point X = M. The solution

is then normalized by defining D (M) = 1. After some algebra
ti
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we find.

T) (W) - 1 - U'-w'X (/"VW

J (ijvtf Vv ^
- ix-wj.'-r.

(24)

.2

Thus the real part of the determinant function has a zero at

resonance while the imaginary part, at this particular energy

value, gives us its width. If is negative in the

particular scattering state then the whole expression is positive,

so no resonance occurs. However, if the potential is positive

for a particular scattering state there will he a zero of

and hence a resonance in the partial wave amplitude.
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5. THE CHOICE OP THE POTENTIAL

( a) The Nucleon Pole

There are actually two possibilities for the choice of the

potential. We may use the exact expression for V, i.e.

-V -1 - -V -(

V - G0 G0 k G0 G0 + (25)

which is a rather complicated function of the spin variables, or

we may solve equation (20) by iteration. The second choice is

simpler and tells us that the Born approximation for the potential

is just the partial wave amplitude for a particular graph. To

lowest order in the pion nucleon coupling constant, the potential

is thus given by the nucleon pole graphs

N ' Cj ' \ /
* i V V ft

V '
\ ' \

h
/' / \ >1'

Pig. 1. Fig. 2.

It is convenient at this point to give definitions of the Dirac

equation, metric and scalar variables to be used. These are,

nation: f » * 3" / ' M^
: £*-}'■

an.

Dirac ec

metric
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so that S'+fc+u- \ 'ZiJ

In the centre of mass system, the invariants become

We shall use a pseudoscalar interaction between the pions and

the nucleons,

pseudovector interaction may be used in principle, but the extra

differentiation increases the power of the terms in the numerator

and makes certain integrals require cut-offs, which are free of

divergences for the corresponding power of the coupling constant

in pseudoscalar theory.

The Feynman rules for Figures 1 and 2 yield,

where the value of is equal to about fourteen. A

15 (ti1 T**
^ A |

uty) (26)

H f I

so if

only B is finite.

The isotopic spin decomposition follows the standard procedure
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S -- >\ 0>l+) + i [r T 1 |3C"'
^ 1 l /! <

T T
1/

fit- 8'-' \ _ T ,f- <f
+ ' or

\ :l ;

and using

r - ~ ( R"'+afi
Vt) /il) _ «

fO- - i ( «*'- RW)
Urt)+ ft"'0 K T T 8,V'

V- V-I ——rx T
. d , i

[iy V s-M u-w

PM - x.
. h - ~t

„Z

(p.*)' u -M1
The connection between and A and B can "be found by

multiplying out the spinors, so that, using two component spinors

normalized to unity

—j— y * [ ftI f\ t |W-M) ^ \ + ^~/v1 / - /q tfbj-fyi) /.? \1 "A 1 1 iTy ^ ( 477 ; iv i

and, when A = 0



w w—-

b -t M U - M

1\AJ k~

8-M w-t M

?y k~v

\ t-)
3W it,

.4,

3/t t

£ _5_ (F +wX^'-f*) a_
'

^7? U/ U-fvi1

f J_ 2
>. —

&V ^ u-M*
3

Hence | . _i^ (g,M)( V-mJ f _5_ p ^ ^
ft ^ {„/ •' ^

~f (£-^)L k + M ) f __J__ p (>j til
(P'J ^ <T ^ H - (V71 fri

NOW use ,, .c . 2 _ 7 '

If1 /
and f /, ^ ^ C,:( txj.

i', X- ?
giving

3 n i/?. ^

j (.) .VM. fMEiyypQ(n 7 (2?)f* 1 Hn^f f frzLy ft' J
"i ll ■>" •

- zeuJ-i- ^r2-- -h n*
v> 21' */'

The expression for j~ is found in a similar fashion and*

it'
gives
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f (W) , V W) - -i Jl IE+MXW-m) / 0 / - s
— 0 V )^7i) S-A?1

2 M,

*> /

i 4\ tv 1 (A) _ I
fin) f 77 K/ .s'iv"/

-Vt

15

, a (n)

(28)

These expressions are the first order approximations for our

potentials O iUO . We must now check whether these potentials

can give rise to a resonance in the three-three scattering state,
2

Take the limit of the partial wave amplitudes for small p e

7

<?,( if) * hfj
But for J » 1

<?.(»* i"-! rr 1 * r

i^| fll *°'
cf.n - ~ ur-> * I Tt~l ~ s -fir

L? i Ll-lEul±Jli:Uf . ofV, Tf"1 '7S; 11 <■ a/
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Substituting these values into the potentials (27) and (28) we find

O 1
\J

^ - JL -Ma X, — —®— , V "» -_S_ . I
ia.MT.naMw r\ p twf1 ^

T"~ 3 -r_ <
'

7 -1 i Jj '~ 2
V h -4I _i_ Ja -U ,-L-
\ ^ 7(2jtrrn fluo-

jl
(l (3t)7;H M" 2 (»'/ hM

Thus only the state with J = ^ and T = ^ is positive,
2

allowing the possibility of a resonance.

Rev/rite this potential as a function of W and the masses

M and p and substitute it in the dispersion relation for D.

It is obviously sufficient to do this for the J = ^ , T = ^
scattering state, where, if we use the abbreviations,

o -- w1*-

jS - 2

^ s - I* * I C^-hT-UW I
.)- JA (&r) 4-7 oc L 1

~ i

V J-. fivW-r']fw][2u}l nt,ju
■<• -r, lt 7 UM 11 ki'y'l-uW
(fr) *T' rx <■ 1

'■V ^in\
j ^

(29)

The resulting formula for D(x) has a pole at the point x = W ,

and the real part of D( x) is the principal value of the integral

at this pole. It is convenient to use the pion mass as the unit ox
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energy, when M _ 6.7. Our problem is now to find the value of

x for which

kDW-1 - fy
«♦ (,2b5

ac

S((VJ) J uJ
J (w

/vlt I

with

\a/6[ ( k/iM)1- i |[ W-7T J

(W'-n'X U/V' - (w-07Jj (wx-(p^tf)[w7- (rt-i?)

(30)

(wl- inti?)(w?- (iYt-<j)
| W - 2 W -WVi7 -X JI /viVI)-2m7~^/2/vI7 J

r

"Y
k

-1 ]( Wi-nl
(IA/VI1)(Ia/V/ -(rf-Oj J fWz-(mi)r)( w2~ (>7-0 \

(^-|)V2w7-wg V2 (

(Vv;in f•)zj( Vv/z -1)V / ^
W^-2Wl-WV/?
pAi -2 m - ivVi2

<2 (iv< ~i)% <?v/-w(> i,

(30a)

has a zero. The known relationship between the total energy in

the centre of mass system and the energy of the incident pion in

the laboratory system

v/\ [mi-) + i u

predicts a value of I 't 8.8 = M + 2.1 for the energy of the

three three resonance. The zero of equation (30) is at present
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being found on an electronic computer at the Joint Institute for

Nuclear Research at Dubna. However, at the time of writing this
thesis the results are not known.

Fortunately the power of W involved in the integrand is

'SJ

(j W/' tw (w'J
J <31>

which converges without the use of a cut—off. Let the position of

the zero be at ■ x = WR, say. The imaginary part of the integral
arises from (W - WR) so that the width of the resonance is
also known as a function of ,

*
, ~ " r J'l (32)1+ (2«) ^ W^j J

and may be expressed in Mev or pion mass units once WD is known.

(b) Isobar Pole: (corrections to the first order contribution).

The nucleon pole in the crossed channel is responsible for the

rough features of the three-three resonance. To improve upon this

it is obviously necessary to take into account higher order con¬

tributions to the potential, which are compatible with elastic

unitarity. One method would be to calculate the potential due to

the exchange of a pion and a nucleon in the scattering channel. A

knowledge of such contributions would require long calculations
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and involve renormalization effects, so it is simpler to consider

the pion and nucleon as a spin three halves isobar of some fixed

mass. The coupling constant of such a "particle" with the

nucleon and the pion is not known but can be roughly estimated

from unitarity.

The spin three halves "particle", which is usually denoted
*

by N , may be described by a spin-vector field \|/ . Properties
M-

of such objects are to be found in the book by Umezawa on Quantum

Field Theory, and are briefly sketched out here. First we need the

field equation, which is satisfied by \|r , and we derive this from

the generalized Dirac equation for spinors of rank three,
t

0
. cp - L 'in A . .

1 s » u m

it . ^
a cp - c m 9 •' 1ru ' u

where /> and are symmetric spinors in all their indices.
The definitions of Q and are

is

Si ST

where

3. = C5-. S , 3 - A3,fS f*i-S (* f ('
jC £ r 1

ctr$ = " 15 K U
vT rs = CT1 ' = -if J«- > s ^ <■ Vs

and the CJt are the Pauli spin matrices with components [o^ ]
K ' *

The r and s labels run over one and two. Now, if we define
the spin vector wave function ty "by
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where 7r
i u-1 cr cp
.1 j<t i

st
u frr i V*r u

the field equations for / and "become

b-v =0, %'^Vy%'0,
which^ in momentum space, are equivalent to

7-/>
/v Vv " ^
Yy% '-C

These restrictions on f reduce the number of independent

components from sixteen to four, so, using the relation that

2s + 1 is equal to the number of linearly independent field

components, it follows that the spin of the particle described by

# is three halves.vh
The mass of the isobar is the same as the mass value of the

resonance which will, be denoted by W„. However, such a particle

is unstable, so its mass must be given a small imaginary part,

v/hich is equivalent to assuming a Breit Wigner resonance form

for the appropriate partial wave.

iZ (33)

(w - W'n ) -f
r

1

The partial wave amplitudes are related to phase shifts by
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f
which gives

^ 0 »

b

-m Je * t ^ ft (3U)
as the unitarity condition. If we substitute equation (33) into

equation (3k), at the resonance value of p., we find the follow¬

ing connection between the full width at half maximum f and

the residue of the pole R.

- ' - (35)1, - ah ^t / * t

Let us now find the partial wave amplitudes for the following

two graphs.

v /

V '7T V X 7T

/

N a
Pig. ii.

The propagator for the IT is not unique as the Green's function
2 2

definition of (k) is ambiguous for k ^ WR . Only the
mass shell value has physical meaning and is connected with the

residue of the pole. The form of the propagator usually employed

in dispersion theoretic calculations is
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OM-V7'v+^Mi)j4_(36)r 1 w« W,'
Next we need to know the form of the coupling between the pion,

nucleon and spin vector fields, which must be of odd parity. Let

us choose

x (yf)
TNN*

e ,M) /
( ?' 3W 7 0^ V',, (37)

This form of the coupling constants, which is in general a function

of W-n, turns out to be convenient. The actual value of Y (tJ_ )
is found from the residue of the partial wave amplitude, which,

through equation (35)» is connected to the width of the resonance.

Isotqpic spin factors have not been included in equation (37) and

are inserted into the equations below. Now we follow essentially

the steps of the preceding paragraph. The amplitude for Figure 3

is

{Vx) C *
u

\Y 0^/Z) d K

a "i ill p, u = u (K+fj P (i) u
2 '

(3/z) (3/1)
from which, after some algebra, A and B can be found. The

0/i) OA) , , __ ,, , ,

amplitudes for A and B are zero. Actually the complete
Ph) (2/i)

erepressions for A and B need not be given as we only
require the value of the three three partial wave amplitude at
W = W , to find the coupling constant.R

This gives
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f -
3 ) i ^ ,?J

i<in\>^

2 W <2 W~ V7^
so by comparison with equation (33), we see that

y(\a/£) i (hp (38)

As usual, the crossed pole contribution is responsible for a

resonance in the three three scattering state. The amplitude for

this wave is

3/i J(W>J
j~ ~ zm*~ ■ I (Stn) Qff) Ke) t -w^-wVl #P Wjb E-tn E*-rt

•+(e-M) Q(fj
(w + iri + Wfi)

^ w«-3n- 1a /

- n
(39)

where

v?
WPw/- 3f/V+/P)

0 t
wi--2(*yj

v-
V'V + \*v/ £

PfL

(Uo)

Hence we find a rather complicated function for the potential as

a function of W, WR and P (Wp).
Let

2 ( M+p)W7+IX
i ..i

* v^- r2[MV^)v^ + (bi-p')K 4"
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p - V.2w- w'd a(M1-iv M v(2

tr - (h'q'jVl

w

';-wrv-2WV;,
~7 . w11 - ?nV- ?wy+ w/w'

(n'"!-1)1- Ia/'K//
then

h"( iv.v^.r
Vi

r (w2 k 3£_ j __i_.

(Wfh) - jA
3u(w-?n~WrJa t^sn u/,Hu

t

0(R(W((Wr^r)

? r^w-ivi)l~ i"1] (2>0"w<?) _ (W-uy
2 \ ^((W^;y) fK-n/y/ y

L
l)\j_c*J l

Q f
t//

(ui)

This potential is an additive small correction to equation (29).

The substitution of this equation into the dispersion integral for

D leads to an even more complicated expression for its real part.

We must now find the zero of the following equation

^ (V-rW^'rllHV^y/ {£YM* 7 r(wc) WeYtw)}
t)1 ^ it (2*)<t J (Wl p)(' wy_ (n'-07J

M+j*

(JW

(U2)

where Y(w) is given by equation (30a), f "by equation (32)
and
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V (W) r
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N? W, \?W -(M-/)

(M?-1) V 2 W - U/V1 iuJ-We) W f
- ' — —— • V

in2-')1- w)w
~ a [

t-

3)(M-i)+ 2(n1-h)W£-WJ>~,2 Wjw. J}|Vf 2fhWpl \j
" ' " '"T" rw

] w31 (w-^11 1W^-flW ][w) ~{iv>-'/I[(K^^y- i 1
■w

7 -j

^ (WW)( wW-iM2-')1)

(n -'ft 2 W?-w'V7 (V-W,2'
t (W'-IMciDI W-(M-I)1) J

W^MV-21VtW^V1
(/V-0 - vv^V/

(jvM)1-*' *2 W -W^ 2( iv' "W^ j W
(w1- (iwf)( W-jM-zJ1]

-a (U3)

Let the position of the new resonance by given by y = WR , then
the new width of the resonance is given by

7

2 1 , ? \7

i>;) - WjiM "(M- ?nww w;YWJ]
if (2b*' 2W„' f W^- («:L0']

(Wt)
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lhe evaluation of the new position of the resonance and its width

is also being carried out at Dubna. Due to the vector coupling

between the spin three halves particle and the pion and nucleon,
an extra power c

now diverges as

2
an extra power of W is added to the numerator so the integral

clw uw2)
, .X
W

at the upper limit of integration. This fact that the integral

converges is important and represents an advantage of this potential

approach over the other methods. Ordinarily, the use of dispersion

relations, the determinantal approach, or Chew-Low theory,, would give

divergent integrals which then require an arbitrary cut-off, i.e.

introduce an additional undetermined parameter. This theory does not

require such a cut off.

The result of this calculation could, of course, be modified

by taking into account the effect of a picn pion interaction.

Graphs for such an interaction would be

% X/ i
/ x f

\

/ \ / _ \

h/ \ b' h
Pig. 5. Pig. 6,

i

in the case of a four point interaction and degenerate into
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S
5 ->

/
i

Fig. 7. i?'ig. 8

if an intermediate vector boson, the p meson, is postulated.

Such diagrams, which are known to have an important effect on the

S-wrave scattering amplitudes, only slightly influence the p-v/ave

amplitudes, so they were not taken into account. Our theory can¬

not predict the mass and width of the p meson from Figures 5

and 6, as the T = 1, J = 1 scattering amplitude in the t

channel is zero. One would have to consider higher order graphs.
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5. COMPARISON OF RESULTS WITH THOSE PREDICTED BY THE

" DETERMINANTAL" METHOD AND "BOOTSTRAPS"

As mentioned in the introduction, the determinantal method

has "been applied to pion nucleon scattering by Bali et al» (l96l).

The three three resonance predicted by them arises from finding

the first zero of the function

where ^\J (W) is given by equation (29)® Effectively, they
derive a double dispersion relation, without cut-offs, for D.

Equation (1+5) is obviously simpler than ( 2l+). Bali et al. predict
a resonance at about 500 Mev in the laboratory system of the in¬

cident pion, which is too high. No one has solved the problem of

finding the zero of equation (1+5) taking into account both the
nucleon and isobar pole so it is not known how much the isobar pole

may decrease the figure of 500 Mev.

The "bootstrap" philosophy current in present day S-matrix

theory was originally proposed by Chew and Frautschi. Forces
arising from the exchange of a particle give rise to a resonance

at approximately the mass value of this particle and so it has,
in a crude way, produced itself. In a recent paper, Abers and
Zemach (IS83) auplieo. such an idea to pion nucleon scattering#
In more detail, the partial wave dispersion relations have right

RtDw- 1 - IX'-w)p.y. I
J (\ f A/» l/Yi(W-M )(V!~ X J

(b5)
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liand cuts from unitarity and left hand cuts from exchange

diagrams,, The left hand cuts are called, the force cuts and may

he associated with our potentials These force cuts are then

supposed to give rise to resonances in the direct channel.

Suppose we solve the partial wave dispersion relations hy the

N/D method, with N the numerator function containing the left

hand cuts and D the denominator function containing the right

hand cuts. Then we find a system of coupled, integral equations

for D and N .

();*) -- i -
V

f u N(w) pCw)dy
-i - — (h6)

(w- m )(. w" f )

)V(w) - fi(w) + r i jytn bm) ctw1"jw- w 1 w'~n 1 (w)

where B(W) is our potential and p(W) is the kinematical

factor in the unitarity condition. One then solves equations

(i|6) and (kl) using for the potential the sum of the contributions
from the exchange of a nucleon, a spin three-halves isobar and

a p meson. For variable values of the masses and coupling
constants a self-consistent solution arises: at a resonance value

of W * 1160 Mev 100 Mev in the laboratory system of theR

incident pion. This value is now too low but more accurate than
that of Bali et al.
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It is difficult to see how the extra factors in equation

{2b) will influence our results as compared to those of Bali

and Abers, but we may tentatively state the following. The

value of the resonance predicted by equation (2b), with potentials

(29) and (Ul) should be nearer to 190 Mev than that predicted by

Bali, as we have taken into account higher order potentials.

We are solving equation (2b) for fixed values of the masses

and coupling constants so probably our result will not be as good

as that of Abers and Zemach, who use several variable parameters

and pick out one self-consistent. value.. The actual results will

be published in due course.
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