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Abstract

Synthetic aperture radar (SAR) was first invented in the early 1950s as the remote surveillance
instruments to produce high resolution 2D images of the illuminated scene with weather-
independent, day-or-night performance. Compared to the Real Aperture Radar (RAR), SAR is
synthesising a large virtual aperture by moving a small antenna along the platform path. Typical
SAR imaging systems are designed with the basic assumption of a static scene, and moving targets
are widely known to induce displacements and defocusing in the formed images. While the
capabilities of detection, states estimation and imaging for moving targets with SAR are highly
desired in both civilian and military applications, the Ground Moving Target Indication (GMTI)
techniques can be integrated into SAR systems to realise these challenging missions. The state-of-
the-art SAR-based GMTI is often associated with multi-channel systems to improve the detection
capabilities compared to the single-channel ones. Motivated by the fact that the SAR imaging
is essentially solving an optimisation problem, we investigate the practicality to reformulate
the GMTI process into the optimisation form. Furthermore, the moving target sparsities and
underlying similarities between the conventional GMTI processing and sparse reconstruction
algorithms drive us to consider the compressed sensing theory in SAR/GMTI applications.

This thesis aims to establish an end-to-end SAR/GMTI processing framework regularised by
target sparsities based on multi-channel SAR models. We have explained the mathematical model
of the SAR system and its key properties in details. The common GMTI mechanism and basics
of the compressed sensing theory are also introduced in this thesis. The practical implementation
of the proposed framework is provided in this work. The developed model is capable of realising
various SAR/GMTI tasks including SAR image formation, moving target detection, target state
estimation and moving target imaging. We also consider two essential components, i.e. the data
pre-processing and elevation map, in this work. The effectiveness of the proposed framework is
demonstrated through both simulations and real data.

Given that our focus in this thesis is on the development of a complete sparsity-aided
SAR/GMTI framework, the contributions of this thesis can be summarised as follows. First, the
effects of SAR channel balancing techniques and elevation information in SAR/GMTI applications
are analysed in details. We have adapted these essential components to the developed framework
for data pre-processing, system specification estimation and better SAR/GMTI accuracies.
Although the purpose is on enhancing the proposed sparsity-based SAR/GMTI framework, the
exploitation of the DEM in other SAR/GMTI algorithms may be of independent interest.

Secondly, we have designed a novel sparsity-aided framework which integrates the
SAR/GMTI missions, i.e. SAR imaging, moving target and background decomposition, and
target state estimation, into optimisation problems. A practical implementation of the proposed
framework with a two stage process and theoretically/experimentally proven algorithms are
proposed in this work. The key novelty on utilising optimisations and target sparsities is explained
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in details.

Finally, a practical algorithm for moving target imaging and state estimation is developed
to accurately estimate the full target parameters and form target images with relocation and
refocusing capabilities. Compared to the previous processing steps for practical applications, the
designed algorithm consistently relies on the exploitation of target sparsities which forms the final
processing stage of the whole pipeline. All the developed components contribute coherently to
establish a complete sparsity driven SAR/GMTI processing framework.
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Introduction

1.1 Research Problem

Synthetic aperture radar (SAR) was invented as an imaging technique which enabled high

resolution image formation under any weather conditions. Practical SAR systems include airborne

SAR and satellite SAR which produce much better image resolution compared to what the real-

aperture radar can achieve. SAR mainly benefits from the advanced signal processing techniques,

which allow the SAR system to equip much smaller antennas than the ones with real-aperture

radar systems. The conventional real-aperture radars require a single large antenna with narrow

beamwidth for the high resolution. On the contrary, SAR is mounted with the antennas of small

sizes which is obviously beneficial to practical applications. To still provide high resolution with

such small antennas, SAR is acquiring samples along a specific flight path and synthesizing a large

virtual aperture. The synthesized large aperture can thus produce a very narrow beamwidth. The

state-of-the-art SAR theory suggests that the image azimuth resolution of SAR can be half the

antennas size, regardless of the range distances [2] [3]. However, such high image resolution

comes along with high system complexity and how the observed scene behaves during the

monitoring process. In general, the finer SAR image resolution requires the platform to move

a longer path. If the observed region contains dynamic parts during the flight, those parts of

the SAR image will be blurred correspondingly. Therefore, SAR is mainly an imaging tool for

stationary ground reflectors.

The all-weather and high resolution imaging capabilities are obviously gaining favour

from the military applications in modern battlefield surveillance. As the military community

is particularly interested in detecting and tracking moving targets in the monitored scene, the

Ground Moving Target Indication (GMTI) techniques have drawn significant attention to filter

out static reflectors and reveal the moving objects. While the SAR and GMTI were historically

implemented via different architectures, one attractive exploration was to integrate the SAR and

GMTI algorithms into a single framework and benefit from both their features.
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Furthermore, a number of investigations have shown that multi-channel SAR systems have

significant advantages in SAR-based GMTI. Motivated by the fact that the moving targets are

approximately sparse in monitored scene, in this thesis, we aim to link the state-of-the-art

compressed sensing theory with the multi-channel SAR-based GMTI applications, and explore

the most appropriate framework of sparsity-aided SAR/GMTI.

1.2 Thesis Statement

This thesis investigates the practicality of implementing GMTI missions with multi-channel SAR

utilising the sparse concepts. The proposed SAR/GMTI framework is designed by considering

the state-of-the-art GMTI methods, i.e. Displaced Phase Centre Antenna (DPCA) and Along

Track Interferometry (ATI). Note that DPCA and ATI are subtractive methods on formed SAR

images, and the conventional SAR image formation is essentially approximating the solution of an

optimisation problem. We are thus motivated to design an optimisation framework for SAR-based

GMTI and also exploit the sparse information. Furthermore, some other practical components in

SAR/GMTI processing have to be considered, such as the data pre-processing to balance different

SAR channels and the utilisation of the DEM information when significant elevation variations

exist. All these aspects are investigated in this thesis to establish an end-to-end sparity-driven

framework for SAR/GMTI, which is capable of simultaneously forming high resolution images of

the observed scene, utilising the elevation information, separating moving targets from the static

background, forming moving target images and estimating moving target states.

The proposed framework has achieved experimentally proved performance with the AFRL

GOTCHA GMTI challenge dataset [4]. To briefly explain the SAR/GMTI problem to be addressed

in this thesis, in Chapter 2 we present the detailed specifications of the SAR scenario, in which a

controlled vehicle is moving along a mountainous path and the task is to indicate this target via

processing the SAR data. In Chapter 3, we leverage the multi-channel information and elevation

map to improve the accuracies and SAR imaging. In chapter 4 and 5, we investigate the appropriate

methods to indicate the moving targets while preserving high resolution SAR images, and show

that the estimated states are fairly accurate compared to the ground truth.
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1.3 Main Contributions

This thesis proposes an end-to-end SAR/GMTI processing framework regularised by sparsities

based on multi-channel SAR systems. Motivated by the optimisation equivalence of SAR image

formation, we explore the practicality for the optimisation modelling for SAR-based GMTI.

Furthermore, we are inspired by the similarities between conventional GMTI methods and sparse

reconstruction algorithms to leverage the target sparsities in SAR/GMTI. This thesis reflects

our investigations in sparsity driven SAR/GMTI applications and the practical challenges we

encountered. We propose a number of implementation algorithms to tackle individual problems

and finally integrate the explorations into the complete SAR/GMTI framework.

The main contributions of this thesis are:

1. The SAR channel balancing techniques are analysed and the utilisation of elevation

information in SAR/GMTI applications is investigated. Specifically, the channel balancing

corresponds to the pre-processing method for the raw data to retrieve the same signal

responses for static scatterers among different channels, and the elevation data can serve

as the axillary information to improve the SAR/GMTI performance. These are the two

essential parts in practical SAR/GMTI that have been adapted to the developed framework to

pre-process SAR data, estimate system specifications and improve SAR/GMTI accuracies.

The exploitation of the elevation in other SAR/GMTI approaches may be of independent

interest, though the purpose is on enhancing the proposed sparsity driven SAR/GMTI

framework. Our related investiagations are published in [5].

2. The novel sparsity driven framework has been developed to integrate the SAR/GMTI

tasks, i.e. SAR imaging, target/background separation, and target state estimation,

into optimisation formulations. All the developed components contribute coherently

to establish this complete sparsity-aided SAR/GMTI processing framework. The

practical implementation of the proposed framework with a two stage process and

theoretically/experimentally proven algorithms are developed in this thesis. The key novelty

on structuring optimisations with further target sparsities is explained in details. Our

related investiagations are published in [6]. A more complete work has been submitted to

related academic journals. Future publications with the complete SAR/GMTI processing

framework are obviously in our vision. The idea of using sparsities in indication and

decomposition tasks have shown its advantages in various signal processing modalities. For
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example, in the defence related domain, the chemical spectral decomposition can benefit

from the signal sparsities, and the effectiveness can be significantly improved. We have

related publications in [7] [8] [9].

3. The practical algorithm for moving target imaging and state estimation is developed to

accurately estimate the full target parameters and form target images with relocation and

refocusing capabilities. This investigation serves as the final stage of the SAR/GMTI

framework pipeline. While the designed method is implemented after the moving target

and background decomposition for practical considerations, it preserves the consistency by

exploiting the target sparsities. Our related investiagations are published in [10].

1.4 Thesis Organisation

In Chapter 2, we start with the introduction to Radar systems. The background of Radar and SAR

are discussed in details. We then present the SAR signal models along with its processing pipeline,

and the received signal model is formulated in this chapter which is used in the remainder of the

thesis. Furthermore, we present the basics of sparsity and Compressed Sensing (CS) theory and

related applications in this chapter. By establishing a link between SAR/GMTI and CS, we explore

the detailed implementation to design a novel SAR-based GMTI framework in this thesis. We

next introduce the state-of-the-art GMTI techniques in the SAR/GMTI community, and explain

our motivation of designing the sparsity-aided SAR/GMTI framework. The descriptions of the

real data used in this thesis are also discussed in this chapter.

In Chapter 3, we investigate several essential parts in the SAR/GMTI processing, i.e. the

channel balancing and DEM processing. We present in detail how the SAR channels are

different in the signal models and how they can be balanced for the subsequent processing. The

incorporation of the elevation map into the SAR applications is also discussed in this chapter.

Particularly, we incorporate the DEM into the SAR forward and backward operators, and present

both DEM-aided Moving Target Imaging. The performance of the channel balancing and DEM

processing are analysed in the experiments with the AFRL GMTI challenge dataset.

In chapter 4, we focus on the SAR-based moving target detections. We present the proposed

sparsity-driven GMTI model with its motivation. The differences between the proposed method

and conventional methods are analysed. A practical implementation of the proposed model

is designed which breaks the framework into a two-stage processing pipeline considering the
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difficulties in solving the problem directly. The first stage to separate moving targets from the

background is explored in this chapter. We validate the effectiveness of the proposed method

through both real SAR data and simulations.

In chapter 5, following the extracted moving targets as described in chapter 4, we design the

novel sparsity-aided methods for the moving target state estimation and image formation. The

proposed model establishes an optimisation problem to utilise the sparse prior information which

is consistent with the method described in Chapter 4. The experiments with both real data and

simulations are demonstrated in this Chapter.

In Chapter 6, we conclude the outcomes of this thesis and summarise the future research.
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Background on SAR and CS

2.1 Introduction

Radar served as the vital military system for “RAdio Detection And Ranging” during World War

II [11]. Its early developments mainly focused on the defence monitoring with ground-based

devices. The range to the targets can be estimated based on the round-trip time of the transmitted

signal, while the angular position of the target is determined via directive antennas. Although

this revolutionary technology was initially invented for target detection purposes, it was soon

extended with advanced platforms and sophisticated imaging features after the war. In the early

1950s, Synthetic Aperture Radar (SAR) sensors were first introduced as the remote surveillance

instruments to provide high resolution 2D images of the monitored region with all-weather, day-

or-night capability [12]. Unlike the Real Aperture Radar (RAR) which requires an impractically

large antenna to achieve acceptable cross-range resolution, SAR is synthesising a large virtual

antenna by moving a small antenna along the platform path [13]. In 1978, the National Aeronautics

and Space Administration (NASA) launched the well known SEASAT remote sensing satellite

which was the first spaceborne SAR system for earth surface imaging [14]. The developments of

SAR were then significantly driven by the success of SEASAT. In the same year, SAR started to

be equipped with the state-of-the-art digital processors [15]. Following that, the digital signal

processing techniques quickly demonstrated the enormous strength in SAR processing [16].

For the past few decades, both airborne and spaceborne SAR applications have been on the

rapid growth trajectories, which were significantly empowered by the emerging SAR processing

algirthms. Nowadays, the trend in SAR developments is strongly associated with the advanced

SAR-based applications (such as target indication, automatic target recognition [17] [18]) and

modalities (such as polarimetry and interferometry [19] [20] [21]).

The indication of moving targets had raised significant interest since Radar systems started

to be placed in service especially for battlefield reconnaissance applications. The developments in

SAR enabled the high resolution image formation of the monitored region which straightforwardly
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led the community to put efforts into investigating SAR-based moving target detection approaches.

Some early developments included the detection of ships and the guidance of fire control systems

[22]. Within this context, the related applications, such as target detection, state estimation,

tracking, and classification, have received remarkable explorations for both military and civilian

purposes in the past decades [23] [24] [25]. Some common difficulties for SAR-based GMTI tasks

are that the moving targets encounter velocity-induced defocusing and azimuth displacements in

the SAR images, and the Doppler frequency shifts of moving targets are very likely to be mixed

in the endo-clutter (mainlobe clutter) spectra, i.e. the Doppler band with non-negligible clutter

energy. Recently, some striking projects in multi-channel SAR systems led to the potential in

advanced target indication abilities [26] [27]. These state-of-the-art SAR platforms significantly

mitigated these difficulties in SAR-based GMTI missions. Based on the multi-channel SAR

platforms, various clutter suppression algorithms have been proposed to cope with the Ground

Moving Targets Indication (GMTI) challenges, e.g. the widely used Displaced Phase Centre

Antenna (DPCA), Along Track Interferometry (ATI) and Space-time Adaptive Processing (STAP)

[28] [29] [30] [31]. In particular, the DPCA and ATI are the subtractive algorithms which exploit

the idea to reveal the moving targets through the differences between different SAR channels.

STAP is essentially a filtering method which estimates a weight matrix in the spatial-temporal

domain to maximise the Signal-to-Interference-plus-Noise Ratio (SINR) and finds the targets via

the statistical test strategies. Note that the adaptive weights are interference covariance matrix

dependent which can not be easily estimated, and it induces massive computational complexities

to compute the weights for all cells with SAR [32].

It has shown an increasing demand for innovative signal processing algorithms from the

industry. In 1949, Shannon’s pioneering work [33] asserted that a signal could be exactly

recovered with uniformly spaced samples as long as the sampling rate was at least twice the

highest frequency contained in the original signal. This sampling rate was then termed the

Nyquist rate/frequency. This sampling theorem became one of the most important principles

in the modern signal processing, and it initialised the trend of digital signal processing systems.

However, some tough problems stemming from practical applications remain: the Nyquist rate can

be too high, most signals are not band-limited, and it may be impossible to acquire samples at the

ideal rate, etc. Compressed sensing is an emerging technique which enables the reconstruction

of high resolution signals from undersampled measurements, and it is widely known for the

potential to break the Nyquist-Shannon sampling theorem [34]. A major breakthrough in its theory

came around 2005 when researchers proved that, by exploiting the sparsities, the original signals
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could be reconstructed with just a small amount of samples under certain conditions [35] [36].

Given that signal sparsities exist in particular systems, CS can thus be explored in a number of

sensing modalities. During the past decade, CS attracted significant attention all around the world,

and it has already made notable impact on a number of applications, such as Radar [37], the

single-pixel camera [38], environmental monitoring [39], compressive imaging architectures [40],

MRI [41] [42] and compressive sensor networks [43]. As only a small number of moving targets

exist in the monitored region of a SAR system, the GMTI tasks of finding the ‘sparse’ targets

coincide with the core idea of CS. Therefore, we are motivated to focus on the exploitation of

sparsity in SAR-based GMTI applications. In this chapter, we will review the backgrounds of

SAR basics and the sparse reconstruction theory.

2.2 Synthetic Aperture Radar

2.2.1 SAR Basics

In this section we will go through the fundamental properties of a SAR system and establish

the mathematical model for SAR signals. We start by presenting the underlying SAR geometry.

Then the spatial resolution of SAR is analysed as this property obviously plays a vital role in

GMTI applications. We next give an insight into how the range resolution can be refined with

the pulse compression technique which is beneficial to GMTI. Then the received signal can be

modelled through the dechirping and deskewing procedures. Finally the received phase history

can be reformulated in the range frequency and azimuth time domain as a 2-D complex matrix,

and the forward projection process can be rewritten into the matrix-vector form.

Conventional SAR systems can work in three different modes, i.e. stripmap, spotlight, and

scan. Particularly the stripmap mode (Fig. 2.3) has fixed beam direction and the Radar footprint

follows the SAR swath. The spotlight mode steers the beam direction to consistently focus on the

same region with time. The scan mode behaves like the mix of stripmap and spotlight to observe

multiple subswaths by steering the antenna. In Fig. 2.1 a typical multi-channel SAR system which

operates in the spotlight mode is depicted, and the observed scene contains a number of moving

targets. Multiple radar channels provide rich information to improve the overall all SAR/GMTI

performance and the spotlight mode can significantly improve the imaging resolution which is

beneficial to the GMTI applications. A terrain map that contains elevation information on the z

direction is associated with the illuminated region. In this thesis we are particularly interested in
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the effects of the elevation information in SAR/GMTI. Multiple radar channels are mounted on

an airborne platform, and they are equally spaced along the flight path with a distance d. We thus

have multiple received phase histories with this system.

In the rest of the thesis, bold letters denote vectors and matrices and non-bold ones denote

scalars. Specifically, the non-bold term is the norm of the bold one with the same name. Let

vt = (v(x), v(y), v(z)) be the velocity vector of a moving target in the scene, whereas v(r) and

v(az) denote its corresponding radial and azimuth velocity respectively. τn represents the slow

(azimuth) time of the transmitted pulses where n = {1, 2, ..., N} is the pulse number. We denote

r
(t)
i (τn) (the norm of r(t)i (τn)) as the distance between this target and the i−th antenna. Similarly

r
(o)
i (τn) is the distance from the scene center to the i−th channel. The differential range is thus

r
(t)
i (τn) − r(o)i (τn). The platform velocity vp is assumed to be a constant within a short enough

sub-aperture.

O

x

y

Platform track

d

target

z

Terrain map

Observed scene

Figure 2.1: The geometry of a typical multi-channel SAR system in the spotlight mode. A number
of moving targets are present and the observed scene is associated with a digital elevation map.
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Spatial Resolution

SAR is widely known to produce high resolution images by moving the small antenna along

the flight path to synthesise a large virtual aperture. Following the depicted geometry in Fig.

2.1, in this section, we discuss the spatial resolution of a SAR system in details. The physical

resolution in azimuth and range directions reflect the capability of the SAR system to discriminate

reflectors. Specifically, the geometric resolution represents the minimum separation to resolve two

different targets, and this property is crucial as it is strongly associated with the target indication

accuracies. From this perspective, the SAR-based GMTI frameworks are overall bounded by the

spatial resolution.

We first consider the spatial resolution in the range direction. As shown in Fig. 2.2, two

nearby targets are away from the antenna with the distances R1 and R2 respectively. Therefore,

to resolve the two targets, the difference on the round-trip echo times of the two targets cannot be

less than the effective pulse duration:

Platform track

Figure 2.2: The SAR system with two nearby targets that are away from the platform with
distances R1 and R2 respectively.

10



Background on SAR and CS

|2R1 − 2R2|
c

>= τ (2.1)

where τ is the pulse duration. Given that B = 1/τ is the transmitted pulse bandwidth, the range

resolution ∆r is the minimum |R1 −R2| in (2.1) which can be expressed as:

∆r =
cτ

2
(2.2)

Note that ∆r represents the spatial resolution in the range direction, and the resolution within the

ground plane can be estimated by projecting the range resolution to the ground considering the

incidence angle. We can conclude that the range resolution can be improved by decreasing the

pulse duration τ . The τ cannot be too small to generate large enough transmitted energy. As

will be shown in the next section, in pulse compression systems, the range resolution ∆r can be

improved by increasing the bandwidth which makes the very high resolution possible.

Let λ be the wavelength of the transmitted pulses and L be the antenna size, we consider the

azimuth resolution of the radar system. For a real aperture Side-Looking Airborne Radar (SLAR),

the radar beam covers the angle λ/L in the azimuth direction [44], and different targets cannot be

located in the same beam to be resolvable. Therefore, we can derive the azimuth resolution of this

system as:

∆az = Rs
λ

L
(2.3)

where RS denotes the slant range, i.e. the range between the phase center (antenna) and the target.

It can be seen from (2.3) that better azimuth resolution can be achieved by increasing the antenna

sizeL. However, in practice, L has to be very large to induce fine azimuth resolution. For example,

the antenna length has to be at least 240 m to achieve the 1 m azimuth resolution with the X-band

signal (λ = 0.03m) and 8 km distance to the target. Therefore, the azimuth resolution is not fine

enough for distinguishing different targets in practical SAR/GMTI.

This difficulty can be overcame by utilising SAR with the small antenna to synthesise a large

virtual aperture. We take a SAR system in the conventional stripmap mode depicted in Fig. 2.3

as an example to give an insight into the azimuth resolution of SAR systems. The antenna and

pointing direction are fixed while the platform moves along a path. The monitored region is thus
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shaped like a strip pattern on the ground. It can be seen from Fig. 2.3 that a large virtual aperture

Platform track

Synthetic Aperture Length

Azimuth Beamwidth

Slant Range

Figure 2.3: The SAR system in stripmap mode.

can be synthesised with the moving platform. However, the synthesised aperture dimension is

limited as the synthetic aperture length cannot be larger than the azimuth length of the footprint

Rsλ/L to keep the target in the monitored range. Given that the beam width of SAR is half that

of the real antenna [45], the azimuth resolution can be derived as:

∆az = Rs
λ

2Lsyn
= Rs

λ

(2λRs/L)
=
L

2
(2.4)

where Lsyn denotes the maximum synthetic aperture length Rsλ/L based on Fig. 2.3.

This expression (2.4) proves that smaller antenna can lead to finer resolution within the

stripmap SAR. Compared to the conclusion we drew from (2.3), this stands as an opposite

conclusion. Practically even larger synthetic aperture (finer azimuth resolution) can be generated

by switching the SAR working mode to spotlight (Fig. 2.1) for which the beam direction is steered

to focus on the same region. The spotlight mode thus further increases the azimuth resolution by

sacrificing the monitoring coverage. Given the decent spatial resolution that spotlight SAR can

achieve, this mode is a suitable setting for SAR-based GMTI missions.
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Pulse Compression and Refined Range Resolution

In this section we describe how the pulse compression technique is used in SAR systems to

significantly improve the range resolution. We start by introducing the motivation of pulse

compression techniques with which the Radar propagates the chirp signal, i.e. the linear frequency

modulated (LFM) Radar signal. Recalling that the range resolution of a SAR system is directly

associated with the pulse duration τ , to guarantee the fine enough range resolution for the SAR

processing and further GMTI tasks, the transmitted pulse duration is thus limited. However, a

SAR system often requires a long transmitted pulse to generate large enough transmitted energy

(considering the requirement on SNR). This contradiction is preventing the SAR system from

achieving fine range resolution.

Within this context, pulse compression techniques are employed to meet this challenge. In

typical SAR systems, the widely used LFM signal can ensure fine range resolution while retaining

narrow pulses. It is working by transmitting a coded long pulse with large time-bandwidth product

and compressing the signal during the processing. The effective pulse length after processing can

be very small to have fine range resolution. The coding process is also called chirping in the SAR

processing.

The transmitted LFM signal is defined as:

s1(t) = rect(
t

τl
) exp

(
j2π(f0t+

K

2
t2)

)
(2.5)

where rect(t) is a rectangular window function that is 0 out of [−1/2, 1/2], τl is the LFM pulse

duration, f0 denotes the carrier frequency in Hz, K represents the linear chirp frequency rate in

Hz/s.

It can be seen from (2.5) that the instantaneous frequency of s1(t) with time is:

fins(t) =
d{2π(f0t+

K

2
t2)}

2πdt
= f0 +Kt

(2.6)

which means that the frequencies of the original signal have been linearly modulated as depicted

in Fig. 2.4. The pulse bandwidth of the LFM signal is the frequency span B = Kτl.

The compression step can be demonstrated by processing the returned data using the matched

filtering technique [46]. For a target with the range distance r, the reflected signal from the target
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t (s)

f (Hz)

0

Figure 2.4: The instant frequency of the LFM pulse.

regardless of its reflectivity can be written as:

s2(t) = s1

(
t− 2r

c

)
= rect

(
t− 2r/c

τl

)
exp

(
j2π(f0(t−

2r

c
) +

K

2
(t− 2r

c
)2)

) (2.7)

which is the delayed version of (2.5).

After removing the carrier frequency f0, the received signal (2.7) can be expressed as:

srece(t) = rect

(
t− 2r/c

τl

)
exp

(
−j4πf0(

r

c
)
)

exp

(
jπK(t− 2r

c
)2)

)
(2.8)

To give an insight into the range resolution after processing, the range compression of (2.8)

can be done in the temporal or frequency domain. Particularly this processing can be realised

either as convolution in the time domain or as multiplication in the frequency domain. Here we

first derive this processing in the time domain with details as a showcase. The reference signal

sref (t) to be convolved with (2.8) is defined as:

sref (t) = rect(
t

τl
) exp

(
−jπKt2

)
(2.9)
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and the resulting signal after the convolution can be derived as:

scompressed(t) =

∫
exp

(
−j4πf0(

r

c
)
)

exp

(
jπK(t− s− 2r

c
)2
)

exp
(
−jπKs2

)
rect

(
t− s− 2r/c

τl

)
rect

(
s

τl

)
ds

= exp
(
−j4πf0(

r

c
)
)

exp

(
jπK(t− 2r

c
)2
)∫

exp

(
−jπ2Ks(t− 2r

c
))

)
rect

(
t− s− 2r/c

τl

)
rect

(
s

τl

)
ds

= exp
(
−j4πf0(

r

c
)
)∫

exp

(
−jπ2K(s− (t− 2r

c
)/2)(t− 2r

c
))

)
rect

(
t− s− 2r/c

τl

)
rect

(
s

τl

)
ds

(2.10)

Based on the rectangular window functions, we have that:

−τl
2
≤s ≤ τl

2

t− 2r

c
− τl

2
≤s ≤ t− 2r

c
+
τl
2

(2.11)

From the second formula in (2.11) we have that s − τl
2
≤ t − 2r

c
≤ s +

τl
2

. Then we can

easily have −τl ≤ t−
2r

c
≤ τl which is essentially a window function rect(

t− 2r/c

2τl
).

Combining the two formulas in (2.11) gives us:

−τl
2

+
|t− 2r/c|+ t− 2r/c

2
≤s ≤ τl

2
+
t− 2r/c− |t− 2r/c|

2
(2.12)

By considering the t − 2r/c term, (2.12) can be represented as the window function

rect(
s− (t− 2r/c)/2

τl − (|t− 2r/c|)
).

Now the equation (2.10) becomes:

scompressed(t) = exp
(
−j4πf0(

r

c
)
)∫

exp

(
−jπ2K(s− (t− 2r

c
)/2)(t− 2r

c
))

)
rect

(
t− 2r/c

2τl

)
rect

(
s− (t− 2r/c)/2

τl − (|t− 2r/c|)

)
ds

(2.13)

Since the equation (2.13) is in the form of the Fourier transform of the a rectangular window,
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scompressed(t) can be rewritten as:

scompressed(t) = exp
(
−j4πf0(

r

c
)
)

sinc

(
Kτl(t−

2r

c
)

)
(2.14)

where the sinc function is in the normalised form (sinc(x) =
sin(πx)

πx
). Note that the target

is compressed on the t-axis in (2.14), and t is thus linearly dependent to the target range. The

processed signal scompressed(t) represents the range compressed data. The effective pulse length

of scompressed(t) is
1

Kτl
=

1

B
based on the -3 dB point of this sinc function, and |t− 2r/c| � τl

holds.

With this effective pulse length, considering (2.2), the range resolution of the SAR system

using this pulse compression is

∆r =
c

2Kτl
=

c

2B
(2.15)

We can conclude that the range resolution is proportional to 1/B, and the range resolution can

thus be improved by increasing B = Kτl. It can be seen from (2.14) that a point target is imaged

as a pattern, and this sinc function is known as the ideal SAR Point Spread Function (PSF).

In practice, one important property of a real Radar system is the Time-Bandwidth Product

(TBP) Bτl. The TBP is coded to be very large which leads to a very large compression ratio, i.e.

the ratio of the original pulse length τl to the effective pulse length after compression. To explain

this, we can derive that the compression ratio of the original pulse length τl over the compressed

pulse length 1/(Kτl) as:

τl/(
1

Kτl
) = Kτ2l = Bτl (2.16)

which equals to the TBP. This ratio exactly measures the capability of the SAR system to improve

the range resolution. Therefore the linear frequency modulation significantly improves the SAR

range resolution which is beneficial to both SAR imaging and GMTI.

Note that the fast-time variable t in the compressed signal (2.14) corresponds to the range

variable of the target. The range imaging has been effected in (2.14), and the variable substitution

r′ 7→ t− 2r(o)/c can be used to get the expression:

scompressed(r′) = exp
(
−j4πf0(

r

c
)
)

sinc

(
Kτl(r

′ − 2u

c
)

)
(2.17)
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where r′ is the scaled range variable, r(o) denotes the distance from the scene origin to the

platform, and u = r − r(o) represents the differential range variable that can help calibrate the

phase of the spectrum. It can be seen that this equation (2.17) stands for the range imaging of this

target.

Range Signal Model in the Frequency Domain

By Fourier transforming (2.17) based on the scaled range variable r′ and compensating the

constant complex term (the detailed method is described in the signal modelling section), we

can formulate the generic normal form of the processed signal in the frequency domain as:

snorm(fr) = exp
(
−j4πfr

u

c

)
(2.18)

which represents the fast-time signal of a point scatterer in the frequency domain, and fr is the

range frequency after phase calibration.

We now consider the range processing in the frequency domain. The convolution of srece(r′)

and sref (r′) is equivalent to the multiplication of srece(fr) and sref (fr), where fr denotes

the range frequency, srece(fr) is the Fourier transformed srece(r′), and sref (fr) is the Fourier

transformed sref (r′). The practical implementation of this convolution is usually realised in the

frequency domain. To explain this, let σf (fr) be the frequency-dependent reflectivity of the target,

based on (2.7), the received signal in the frequency domain can be written as:

s3(fr) = σf (fr)F
{
s2(r

′)
}

= σf (fr)F
{
s1(r

′ − 2u

c
)
}

= σf (fr)s1(fr) exp
(
−j4πfr

u

c

) (2.19)

where s1(t) is the transmitted LFM signal, u = r − r(o), and F represents the Fourier transform.

After cancelling out s1(fr) with the inverse filter, the processed signal in the frequency

domain can be modelled as:

s3(fr) = σf (fr) exp
(
−j4πfr

u

c

)
(2.20)

which is consistent with the generic normal form in (2.18). The range compression can be
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subsequently realised by performing the inverse Fourier transform on this preprocessed signal.

Therefore, we can conclude that the range imaging can be achieved through the Fourier transform,

filtering, and the inverse Fourier transform [47].

SAR Signal Modelling

In practice, the engineers usually process SAR tasks by considering the system model (2.20) in

the frequency domain. It can be concluded from (2.15) that fine SAR resolution calls for a very

large bandwidth, and it brings a significant burden on the A/D converters. A practical solution to

reduce the data rates starts by processing the time representation with the deramping technique.

In this section, we first introduce the deramping method based on the received signal (2.8) and

present the typical processing procedures. In particular, we deramp the received signal, introduce

the target reflectivity, remove the undesirable phase, consider the azimuth sampling, discretize the

data, and finally identify the SAR signal model which is consistent with (2.20).

Given the received signal (2.8), the deramping process is converting the linear frequency

modulated signal to a flat frequency signal. Particularly, the received signal srece(t) is mixed with

the complex conjugated waveform of the the transmitted ramp (calibrated by the scene origin):

sderamp(t) = srece(t) exp

(
−jπK(t− 2r(o)

c
)2

)

= rect

(
t− 2r/c

τl

)
exp

(
−j4πf0(

r

c
)
)

exp

(
jπK

4(r2 − r(o)2)
c2

)
exp

(
−j4πKut

c

)
(2.21)

which is known as the deramped signal in time domain [48].

It can be seen that the instantaneous frequency of the deramped signal is −2Ku/c and the

signal is a single-tone sinusoid that has a flat frequency spectrum. Therefore, the instantaneous

frequency indicates the range distance of the reflector. The bandwidth of the signal is reduced after

deramping and the sampling rate can now be lower. By further considering the target reflectivity

σ0, based on (2.21), the deramped signal (2.21) can be rewritten as:

s4(t) = σ0rect

(
t− 2r/c

τl

)
exp

(
−j4πKut

c

)
exp

(
−j4πf0(

r

c
)
)

exp

(
jπK

4(r2 − r(o)2)
c2

). (2.22)
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In (2.22), the phase term exp (−j4πf0r/c) exp
(
jπK4(r2 − r(o)2)/c2

)
is undesired which

is termed the Residual Video Phase (RVP). This term can be approximated in the other domain.

Specifically, by performing the inverse Fourier transform along t based on (2.22), we have that:

s5(rderamp) = A0PSF

(
rderamp −

2Ku

c

)
exp

(
j

4πrderampr

c

)
exp

(
−j4πf0(

r

c
)
)

exp

(
jπK

4(r2 − r(o)2)
c2

) (2.23)

where A0 denotes a nominal complex constant (scaled target reflectivity), and PSF is the point

spread function in the frequency domain for pulse compression (the Fourier transform of the rect

window which is a sinc function).

As the PSF is a sinc function and its symmetrical center is 2Ku/c, the RVP term can thus be

compensated with the approximation rderamp ≈ 2K(r − r(o))/c. After removing the RVP term,

(2.23) becomes:

s5(rderamp) ≈ A0PSF

(
rderamp −

2Ku

c

)
exp

(
j

4πrderampr

c

)
(2.24)

which stands for the range imaging of this target. Based on the discussions in the last section, we

can conclude that the multiplication by the deramping term is equivalent to the Fourier transform

and data filtering, and a subsequent inverse Fourier transform will induce the range compressed

target image.

By comparing (2.24) to the aforementioned range imaging equation (2.17), the variable

substitution r′ 7→ rderamp/K can be used to achieve the consistency. The signal (2.24) can then

be rewritten as:

s5(r
′) ≈ A0PSF

(
K(r′ − 2u

c
)

)
exp

(
j

4πKr′r

c

)
(2.25)

in which u = r − r(o) is the differential range. This expression is consistent with the format of

(2.17).

To derive the similar representation like (2.20), we can Fourier transform (2.25) to have:

s6(fr) = σf (fr)rect

(
fr − 2Kr/c

Kτl

)
exp

(
−j4πfru

c

)
(2.26)

where σf (fr) accounts for the frequency-dependent reflectivity of the target, and the the window
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function can be deskewed with r ≈ r(o) at the scene center [49].

Furthermore, if the duration of the chip is large enough, the window function in (2.26) can be

taken as a constant and we have the updated system model as:

s6(fr) = σf (fr) exp

(
−j4πfru

c

)
(2.27)

which can be directly used as the entries in the (2.20).

If we make the stop-and-go assumption which assumes that the platform is static within the

round-trip of the transmitted signal, the system model (2.27) can be expressed with the azimuth

time. The phase history is the collection of the received data which can be represented as:

sph(fr, τ) = σf (fr)wa (τ) exp

(
−j4πfru(τ)

c

)
(2.28)

where wa(τ) denotes the antenna pattern and energy loss with azimuth time τ , and u(τ) denotes

the differential range (target-antenna distance minus origin-antenna distance) with τ .

Therefore, the SAR signal model can be simplified in the range frequency and azimuth time

domain as:

s2d(fr, τ) = A(fr, τ) exp

(
−j 4πfru(τ)

c

)
(2.29)

where A(fr, τ) denotes the nominal frequency-dependent target reflectivity with (fr, τ) and it

represents the target signature.

After the discretization process, the SAR phase history can be formulated as:

s2d(fk, τn) = A(fk, τn) exp

(
−j 4πfku(τn)

c

)
(2.30)

where {fk|k = 1, 2, ...,K} denotes the range frequencies, and {τn|n = 1, 2, ..., N} is the discrete

slow time with pulse number n.

Based on (2.30), under the multi-channel SAR system as in Fig. 2.1, we consider the signal

model of a target with the generic frequency-dependent reflectivity σ(fk, τn) (associated with the

Radar Cross Section, antenna gain and beam pattern). The received signal for the i−th antenna of
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this target is a K ×N complex matrix which can be modelled as:

Yi(fk, τn) = σ(fk, τn) exp

(
−j4πfkui(τn)

c

)
(2.31)

where ui(τn) represents the differential range r(t)i (τn)− r(o)i (τn) with which the signal phases are

calibrated so that the scene origin has zero phase (for scene origin ui(τn) = r
(t)
i (τn)− r(o)i (τn) =

0) [50].

In (2.31), the frequency-dependent reflectivities σ(fk, τn) can be assumed to be constant for

isotropic scatterers [51]. Given that Xc ∈ CM×L is the collection of the reflectivities from all

targets (both static and moving) in the scene with the constant antenna gain for the channels, with

the Born approximation that the scatterings are driven by the incident beam [52], the received

phase history can be assembled by accumulating the reflected signals from all reflectors:

Yi(fk, τn) =
M∑

m=1

L∑
l=1

Xc(m, l) exp

(
−j4πfkumli(τn)

c

)
(2.32)

where umli(τn) represents the differential range with respect to the reflector at (m, l). The signal

model (2.32) can be rewritten in the matrix-vector form as:

Yi = ΦF (Xc) (2.33)

where Yi ∈ CK×N is the 2-D phase history for the i−th channel and ΦF denotes the forward

operator that projects the reflectivities to the phase history.

The classical SAR imaging approaches originate from the attempt to approximate the pseudo

inverse of the forward projection operator [53]. More generally, for small sub-apertures the

distance measure umli(τn) can incorporate velocities. To avoid ambiguities, we denote ΦV
F and Φ0

F

as the forward operators for all targets with the velocity map described by V = (V(x),V(y),V(z))

and the static scene respectively. The ΦV
B and Φ0

B are the inverse operators of ΦV
F and Φ0

F which

project from the received signals to reflectivities. Further details of the velocity-coded operators

will be discussed in Chapter 5.
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2.3 Sparsity and Compressed Sensing

Sparse representation, which is closely associated with the compressed sensing theory, emerged

with the demand in signal processing field to deal with increasingly complicated sensing systems

and large amounts of data. For a long time sensors played a vital role in pervasive sensing

and processing systems, especially in the battlefield surveillance and intelligence gathering. The

importance of signal processing is due to its tremendous impact on the full data processing chain

of extracting, processing, and interpreting the raw data. Shannons classical theory [33] reported

that if the sampling rate was at least twice the highest frequency of the original signal, the signal

could be recovered. Numerous advanced signal processing algorithms were than developed which

significantly stimulated the development of modern sensing systems, and large expenditures had

been made to facilitate the development of persistent and efficient sensing. However, the large

amount of resource consumption and increasingly sophisticated algorithms, in terms of resource-

limited sensor nodes and massive data stream, bring new challenges in the modern sensing

systems. This has led in recent years to the exploration of a number of new techniques to efficiently

acquire and process the data.

With respect to dealing with massive data processing, we often make use of sparse

representation techniques to compress the data, such as the well-known JPEG and MP3 standards

[54] which can be traced as far back as 1990s. In the early 2000’s Vetterli, Marziliano and Blu

proposed the rate of innovation with which a signal coded by k parameters can be reconstructed

with only 2k samples [55]. Subsequently, Candès, Romberg, Tao and Donoho made the founding

contributions in compressed sensing theory around 2005 [36] [35] [56]. The revolutionary CS

theory proposes to directly acquire the data in the compressed form instead of conventionally first

sampling the signal at a high rate and then compressing the data. It therefore establishes a new

efficient sensing mechanism. Compressed sensing impressed the industry with the potential to

break the Nyquist theorem. It then attracted significant attention all around the world and related

applications were developed rapidly. Generally the capability of CS in the signal reconstruction

enables a number of innovative explorations in various applications, such as single-pixel camera,

Radar, and MRI. More recently, Candès extended the techniques to the field of super resolution

[57] in 2012. Main theoretical contributions in this area so far focused on how to reconstruct the

original signal, how many measurements are needed and how to realise the sensing schemes.
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2.3.1 Compressed Sensing Basics

Observation Model and Signal Sparsity

Compressed sensing is directly related to solving inverse problems in linear sensing systems,

i.e. the signal reconstruction task with acquired samples. Particularly, suppose that the signal

of interest is x ∈ RN , the observation model can be formulated as:

y = Φx (2.34)

where y ∈ RM represents the vector of samples, M denotes the number of samples, and

Φ ∈ RM×N (M � N for typical undersampling) is the sensing matrix which projects from

the signal to samples. The signal reconstruction task is to implement the inverse projection and

estimate the signal x based on the samples y. Specifically compressed sensing is leveraging the

prior information of the signal x to reduce the required number of samplesM in the reconstruction.

The required M can be much lower than the classical Nyquist-Shannon sampling rate.

Figure 2.5: The observation model.

The underlying signal sparsity is the prior information used in CS that can be interpreted

based on the decomposition of x. Given a dictionary matrix D ∈ RN×N , the signal x lives in the

span of the dictionary elements (x =
N∑
i=1

Disi) where N stands for the number of the dictionary

atoms and {Di ∈ RN |i = 1, 2, ..., N} is the basis of x. The equivalent matrix form of this

expression is:

x = Ds (2.35)

where s is the weight vector. With this model the signal x is said to be k-sparse under this basis
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if s contains only k non-zero entries (k � N ). The equation (2.35) with the k-sparse s stands for

the sparse representation of the signal x. As only a small dimension k of information is valid,

this property of sparse representation is widely exploited in signal compression applications.

For example, the JPEG image format keeps only the largest coefficients under specific basis

functions [54].

With (2.35), the observation model (2.34) can be rewritten as:

y = ΦDs = As (2.36)

where A = ΦD ∈ RM×N is the projection matrix.

The overall observation model can be visualised in Fig. 2.5 in which the signal x is

decomposed based on a dictionary D.

CS Properties

The projections between y, x and s lead to significant dimension reduction in the measurements

which are depicted in Fig. 2.6. It can be seen that there exist indefinite solutions for this

underdetermined system. Compressed sensing theory proves that, if x is approximately sparse

under specific basis, the signal can be recovered under certain conditions on A.

Measuring Process

Approximation with basis

Figure 2.6: The projections between y, x and s

The Restricted Isometry Property (RIP) [58] was introduced to identify sufficient conditions

for which the matrix matrix A allows accurate sparse reconstruction. It is defined as:
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Definition 1 If there exists a constant δk ∈ (0, 1) such that

(1− δk)‖s‖2 6 ‖As‖2 6 (1 + δk)‖s‖2 (2.37)

holds for all k-sparse s, then the matrix A follows the RIP condition of order k.

The RIP condition allows the matrix A to project s while approximately preserving the

Euclidean distance of pairs of points. Suppose we have two different k/2-sparse vectors s1 and

s2, the measurements y1 and y2 must be different to be able to distinguish them. This means

that any s1 − s2 cannot live in the nullspace of A. As s1 − s2 can be k-sparse, this essentially

prevents k-sparse s from living in the nullspace of A. In general the smaller δk leads to better

signal reconstruction. It has been shown that, if A obeys the RIP with the appropriate δk, there

exist a number of algorithms to reconstruct the sparse signal from noisy measurements [59]. The

design of A is thus crucial in sparse reconstruction problems. Although it is difficult to verify the

RIP condition for matrices, it has been shown that random Gaussian, Bernoulli, and partial Fourier

matrices obey the RIP with high probabilities [60].

A more practical recovery guarantee criteria for the matrix design is based on the coherence

[61] [62] [63]. The coherence of a matrix A is defined as:

Definition 2 The mutual coherence of a matrix is the maximised cross-correlations between the

columns Ai, Aj of A.

µ(A) = max
1≤i,j≤N

|AH
i Aj |

‖Ai‖2‖Aj‖2
(2.38)

Particulary µ(A) is lower bounded by
√

(N −M)/M/(N − 1) with N > M [64]. This lower

bound is known as the Welch bound that can be approximated with M−1/2 [65]. The mutual

coherence is widely used in compressed sensing field as a measure to reflect the tractability of

the signal reconstruction problem. In general the lower mutual coherence leads to less required

number of signal measurements.

It has been shown in [66] [67] that exact reconstruction can be realised with a number of

reconstruction algorithms when

k <
µ−1(A) + 1

2
(2.39)
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which reflects the crucial role of mutual incoherence in compressed sensing problems.

We have presented some important features on the projection matrix A in compressed

sensing. In addition, it has been shown in a number of investigations that the k-sparse signal

can be reconstructed with only a constant times of the sparsity level [68] [69], i.e. M = αk where

α > 1 is a constant. For example, in [70] [59] the authors presents a lower bound of M :

Theorem 1 If M ×N matrix A satisfies the the RIP of order 2k with δk ∈ (0,
1

2
], then

M > Ck log

(
N

k

)
(2.40)

where C =
1

2
log(
√

24 + 1) ≈ 0.28.

From the information theory perspective, these investigations assert that αk measurements

are enough to preserve all the information in x.

Reconstruction Methods

Based on the aforementioned signal acquisition process and CS properties, the signal

reconstruction for (2.36) can be realised via an optimisation problem:

ŝ = argmin
s
‖s‖0 s.t. y = As (2.41)

in which ‖ · ‖0 is the L0 pseudo-norm operator that counts the non-zero elements. Specifically the

Lp pseudo-norm of a vector s is defined as:

‖s‖p =

(
N∑
i=1

|si|p
)1/p

(2.42)

where p > 1. The infinite norm ‖s‖∞ is defined as the largest absolute value of the elements.

Furthermore, if the sparsity level is constrained to be k, the approximation of s can be realised

through:

ŝ = argmin
s
‖y− As‖2 s.t. ‖s‖0 6 k (2.43)

As practical observation systems contain non-negligible noise, the model (2.36) can be rewritten
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as:

y = As + n (2.44)

where n denotes the noise and it obeys the constraint:

‖n‖2 6 ε (2.45)

The natural model to reconstruct the signal with the presence of the noise then becomes:

ŝ = argmin
s
‖s‖0 s.t. ‖y− As‖2 6 ε (2.46)

With the well-known Lagrange multiplier method, (2.46) can be reformulated as:

ŝ = argmin
s
‖y− As‖2 + λ‖s‖0 (2.47)

where the λ is the Lagrange multiplier parameter to control the tradeoff between data fidelity and

signal sparsity.

As these L0 regularised optimisations are non-convex and computationally NP-hard, solving

them directly becomes intractable. On the contrary, the L1 pseudo-norm optimization problem

is more tractable and it has an analytical solution. The use of L1 pseudo-norm can be traced

back to the LASSO method in statistics [71] [72]. With sufficient signal sparsity, a number of

literatures have shown that by employing the convex relaxation of L0-minimisation, i.e. the

L1-minimisation, the same performance can be achieved [73] [74]. The L1 pseudo-norm thus

represents a practical measure for signal sparsity in various of applications.

Therefore, two practical optimisation models for solving the sparse approximation problem

can be derived:

ŝ = argmin
s
‖s‖1 s.t. ‖y− As‖2 6 ε (2.48)

and

ŝ = argmin
s
‖y− As‖2 s.t. ‖s‖1 6 ε̃ (2.49)
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where ε denotes the noise level, and ε̃ is controlling the sparsity level.

Again with the Lagrange multiplier, (2.49) can be rewritten as the basis pursuit denoising

(BPDN) problem:

ŝ = argmin
s
‖y− As‖2 + λ̃‖s‖1 (2.50)

where λ̃ is the positive parameter to be tuned.

The history of greedy algorithms can be traced back to several decades ago [75]. The

greedy strategies in general compute a local solution in each step and eventually output an

approximated global solution. There exist a number of algorithms with the greedy mechnism

to reconstruct sparse signals with the aforementioned sensing systems. [76] [77] [78]. These

algorithms are normally designed in iterative forms. Widely used algorithms include the matching

pursuit (MP) [76] and orthogonal matching pursuit (OMP) [77]. The matching pursuit selects a

specific atom from the dictionary to best match the updated residual in each iteration, while the

orthogonal matching pursuit orthogonalises the residual and selected atoms during each iteration.

A number of research efforts have been made to further improve the MP and OMP [79]. For

example the regularised OMP (ROMP) reconstructs sparse signals with noisy measurements

under RIP [80], and the compressive sampling matching pursuit (CoSaMP) algorithm employs the

pruning approach into the iterative updates [81]. Other variants include the stage-wise orthogonal

matching pursuit (StOMP) [82] to implement the algorithm with three stages, i.e. threholding,

selecting and projecting, and sparsity adaptive matching pursuit (SAMP) [83] which is motivated

by the EM algorithm to alternatively update the sparsity and support. Another widely used greedy

algorithm is Iterative Hard Thresholding (IHT) [78] which implements the gradient descent with

a thresholding operation iteratively:

sn+1 = T (sn + AH(y− Asn), ϕ) (2.51)

which is designed to solve (2.47). The T (a, b) operator is the hard-thresholding operator which

sets all the elements in a below b (in magnitudes) to zeros, ϕ is the constant for thresholding, and

sn represents the estimated s at n-th iteration. Here the thresholding operations are sparsifying the

estimated variable s.

Note that if the projection matrix A in IHT is the SAR forward operator, the estimated

sn+1 with iterative gradient descent is the SAR image. Within this context, the thresholding
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operation is sparsifying the estimated SAR image. This feature establishes the strong links

between optimisation, SAR imaging and compressed sensing which inspires us to investigate the

practicality of employing sparsity in SAR/GMTI.

2.3.2 Connections between SAR-based GMTI and CS

With compressed sensing there exists the potential to extract crucial information by exploiting

the signal sparsities in a variety of sophisticated sensing modalities. For example, the fact that a

chemical mixture only consists of a finite number of components can be exploited in the chemical

composition analysis [7]. Both qualitative and quantitative chemical analysis can benefit from

these additional sparse regularisations. In a number of Radar applications, the signal of interest

is normally sparse in the range direction. Therefore, the reflected signals can be taken as sparse

in the range dimension. Obviously the range surveillance radars can benefit from this feature.

Furthermore, the sparsities can be applied to the high resolution imaging radars especially the

observed region only consists of few main scatterers.

Particularly Synthetic Aperture Radar (SAR) imaging systems are based on the assumption

of a static scene and thus moving targets get blurred and dislocated in the image. GMTI (Ground

Moving Target Indication) is of great value especially in military environments. Given that there

are a limited number of moving targets in the observed scene, this sparsity can be explored to

help distinguish the moving targets from stationary clutters. We note that the CS reconstruction

models are in optimisation forms and SAR image formation is essentially solving an optimisation

problem. If we consider the GMTI problems in the image domain, the target detection can be

realised via a sparsity-regularised optimisation model.

In addition, the motion parameters of the moving targets can be estimated by introducing the

target sparsities. The blurred and displaced targets can be relocated and refocused with correct

motion parameters which correspond to the sparsest configuration. We are therefore motivated

to explore SAR/GMTI by designing a single optimisation framework which integrates all the

conventional SAR/GMTI processing stages with sparsities. The utilisation of sparsity aims to

address the need of modern battlefield intelligence and improve the SAR/GMTI performance.

The proposed framework in this thesis consists of data pre-processing, incorporation of DEM,

target detection, SAR image formation, target imaging and target state estimation which forms

a complete pipeline with sparsity. The sparse representations are thus incorporated in signal

processing techniques to model SAR/GMTI problems from a unique perspective. We also review
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the state-of-the-art sparsity-driven SAR/GMTI approach in section 2.6.2.

2.4 GMTI Techniques

In SAR/GMTI applications, a number of well-known methods have been established. For

example, the moving reflectors can be marked through identifying the target signatures in the

exo-clutter regions [84], i.e. the area outside the mainlobe clutter. Therefore, single-channel

SAR systems are capable of detecting the moving targets in this class. Some other single channel

systems are directly exploiting the target reflectivities, e.g. moving targets can be detected through

identifying the significant reflectivities against the water in maritime scenarios [85] [86], while

another group of researchers have focused on the exploitation of change detection methods in

SAR/GMTI [87] [88].

However, for the moving targets buried in the endo-clutter, clutter suppression approaches

are required for discriminating the targets from the background. Typical methods include the

widely used multi-channel approaches including Displaced Phase Center Antenna (DPCA), Along

Track Interferometry (ATI) and Space-time Adaptive Processing (STAP) [89] [90]. In particular,

DPCA suppresses the clutter based on magnitudes of different channels in the image domain, ATI

reveals moving targets via the interference phases between different radar channels, and STAP is a

computational expensive filtering technique based on adaptive weights. These methods have been

proven to give acceptable performance in various of SAR/GMTI scenarios. Recently, a number

of developments in SAR/GMTI aimed to extend these techniques to achieve better performance.

The latest developments include the extended/generalised DPCA algorithm (EDPCA) to enhance

the conventional algorithms [91], the hybrid techniques that use DPCA and ATI [92] [93], and the

sparsity based approaches [6] [94].

Furthermore, the GMTI techniques for SAR monitoring applications can be divided with

two major classes, i.e. the methods that reveals moving targets in the image domain (SAR-based

GMTI) and the approaches that indicates dynamic objects utilising the raw data (raw-data-based

GMTI). The DPCA and ATI methods fall into the SAR-based GMTI class, and the STAP algorithm

falls into the raw-data-based class. The SAR/GMTI framework developed in this thesis aims to

establish an end-to-end framework to detect the moving targets in the SAR images, and it closely

relates to the conventional SAR-based DPCA and ATI algorithms.
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2.4.1 Space-Time Adaptive Processing

Space-Time Adaptive Processing (STAP) is an adaptive array processing algorithm for target

indication. It combines the radar signals from different channels to establish a multidimensional

filter, and suppresses the interference (e.g. clutter , jammers) and noises to reveal moving targets.

Particularly the STAP theory aims to maximise the Signal-to-Interference and Noise Ratio (SINR)

at the processor outputs, and the mechanism of STAP is depicted in Fig. 2.7.

Let N be the number of pulses, I be the number of SAR channels, and K be the number of

range bins, the adaptive weights can be estimated for each range gate and the detection processor

gives the scalar output:

z = wHYin (2.52)

where Yin represents theNI-by-1 space-time data which is vectorized, and w is the weight vector.

Note that the weight vectors are estimated based on different target states which essentially

establish a filter bank for the target detection. The STAP processor output z can be subsequently

fed into the Constant False Alarm Rate (CFAR) [95] detectors to be compared with specific

thresholds. This procedure needs to be implemented for each cell of interest which makes the

STAP algorithm in general computationally intensive .

Figure 2.7: The STAP processing pipeline.

Here we consider one simple ideal case with multiple antennas and one pulse as an example
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to briefly explain the spatial processing in STAP. We first define Sst as the steering vector to

encode the phase differences between different channels and its elements are in the form of

exp

(
2π〈vp

vp
,

r(t)i

r
(t)
i

〉(i− 1)d/λ

)
. With this steering vector, for one interference source, the SAR

data Yin can be expressed with the sum of signal, interference and noise:

Yin = YsSst + YintSst + Yno (2.53)

where Ys is the nominal target signal, Yno is the noise vector, and the nominal interference signal

vector contained in Yin is YintSst. The power of noise in z = wHYin can then be derived as:

Pno = E{|wHYno|2} = E{wHYnoYH
now} = wHRnow (2.54)

where Rno = E{YnoYH
no} is the noise covariance matrix. Similarly, we can have Rint =

Y 2
intE{SstSH

st} as the interference covariance matrix, and R = Rno + Rint as the interference-

and-noise covariance matrix.

Since R is positive definite because of the noises in receivers, R1/2 is real [96]. If we define

waux as R1/2w, the Signal-to-Interference and Noise Ratio (SINR) can be derived as:

|wHYsSst|2

wHRw
= Ps

|wHR1/2R−1/2Sst|2

wHR1/2R1/2w
= Ps

|wH
auxR−1/2Sst|2

‖waux‖2
(2.55)

where Ps is the nominal constant for signal power.

Maximising (2.55) leads to

waux = ρR−1/2Sst (2.56)

where ρ is a constant, and this result is equivalent to:

w = ρR−1Sst (2.57)

Therefore, the SINR at processor output z is maximised with this estimated weight vector w.

Here the inverse of the interference-and-noise covariance matrix R−1 is essentially performing

the clutter suppression, and the steering vector Sst is compensating the channel differences. The

target can then be detected after the clutter cancellation. In practice, the interference-and-noise

covariance matrix R can be estimated empirically as shown in [97]. This argument (2.57) is

applicable to the cases of multiple pulses and interference sources with adaptive strategies [96].

There exist a variety of extensions and variants for the STAP algorithm [30]. Practically the STAP
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algorithm calculates the weights for every element and it is widely known to be hampered by the

expensive computational load.

While the DPCA and ATI algorithms are subtractive methods that indicate moving targets

through the differences between SAR channels in the image domain, the STAP mechanism is a

raw-data-based method as described above. The proposed SAR/GMTI framework follows the

route of DPCA and ATI to model the moving targets among SAR images. In this section we do

not further more details of STAP.

2.4.2 DPCA and ATI

The widely used DPCA and ATI algorithms (image-based approaches) are typical subtractive

GMTI methods which exploit the differences between SAR channels to detect moving targets and

suppress the clutter. In particular we will see, DPCA is noise-limited since the noise can corrupt

the differential image between different channels and ATI is clutter-limited since the clutter will

contaminate the image phases if its energy is comparable to the moving targets. Recently, a hybrid

DPCA/ATI algorithm was proposed to benefit from both DPCA and ATI, and it was demonstrated

to achieve better GMTI accuracy than DPCA or ATI alone [93].

Let the ΦV
B and Φ0

B be the inverse operators of ΦV
F and Φ0

F which project the received signals

to reflectivities, and Ỹi be the pre-processed phase histories of the i−th channel (antenna gains

have been equalised) where Ỹ2 can be taken as the time-shifted version of Y2, i.e. Ỹ2(fk, τn) =

Y2(fk, τn + ∆) regardless of the antenna gains. For the i-th channel, the SAR image formation

can be realised via Xi = Φ0
B(Ỹi), where the backward projection operator Φ0

B is the Hermitian

transpose of Φ0
F in the sense of matrices.

As the channel spacing d in the SAR system is along the platform track, the received echo

of the aft-antenna (the antenna behind the fore-antenna) can be viewed as the delayed received

signal of the fore-antenna, if the observed region does not change over time. We can illustratively

assume that r(c)1 (τn) = r(c)2 (τn + ∆) where r(c)i (τn) denotes the location of the i − th antenna at

time τn and ∆ = d/vp represents the time delay between the neighbouring channels. Here τn + ∆

may not correspond to an exact pulse time. Then the differential range of the second channel at

azimuth time τn + ∆ can be written as

u2(τn + ∆)=r
(t)
2 (τn + ∆)− r(o)2 (τn + ∆)

=‖r(c)2 (τn + ∆)− rt(τn + ∆)‖ − ‖r(c)2 (τn + ∆)‖
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=‖r(c)1 (τn)− rt(τn + ∆)‖ − ‖r(c)1 (τn)‖ (2.58)

where rt is the instantaneous position vector of the target.

If the targets are isotropic and their reflectivities keep the same over time, the phased histories

of the 1st and 2nd channels for the target can be formulated based on (2.31) as:

Y1(fk, τn) = A1σ×

exp

(
−j4πfk(‖r(c)1 (τn)− rt(τn)‖ − ‖r(c)1 (τn)‖)

c

)
(2.59)

Y2(fk, τn+∆) = A2σ×

exp

(
−j4πfk(‖r(c)1 (τn)−rt(τn+∆)‖−‖r(c)1 (τn)‖)

c

)
(2.60)

After the pre-processing stage, the antenna gains A1 and A2 are equalised. Thus the DPCA

algorithm using only first two channels can reveal the targets via:

X1(m, l)− X2(m, l)

=Φ0
B(Ỹ1)− Φ0

B(Ỹ2)

=
K∑
k=1

N∑
n=1

Ỹ1(fk,τn)exp

(
j4πfk∆Rmln

c

)(
1−Ỹ2(fk, τn)

Ỹ1(fk, τn)

)

=
K∑
k=1

N∑
n=1

Ỹ1(fk,τn)exp

(
j4πfk∆Rmln

c

)(
1−exp

(
−j4πfk(♦Rmln)

c

))
(2.61)

where ♦Rmln=‖r(c)1 (τn)−rml(τn + ∆)‖−‖r(c)1 (τn)−rml(τn)‖, which is associated with the phase

difference between Ỹ2(fk, τn) and Ỹ1(fk, τn).

At azimuth time τn, the position of the target, which was initially located at (xm, yl), is

denoted as rml(τn). ♦Rmln can then be approximated by v(r)ml∆ where v(r)ml is the radial velocity of

this target. Also exp(−j4πfk♦Rmln/c) can be approximated with a constant if the target remains

in the same range resolution cell during the time interval ∆ [98]. The equation (2.61) can then be

rewritten as:

X1(m, l)−X2(m, l) ≈ X1(m, l)

(
1−exp

(
−
j4πf0(v

(r)
ml∆)

c

))
(2.62)
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where f0 is denoted as the centre frequency of the transmitted signal chirps.

The DPCA algorithm is calculating (2.62) followed by a thresholding operation. It can be

seen from (2.62) that the magnitudes of the DPCA results are controlled by the radial velocities

v
(r)
ml . If v(r)ml = 0 we have X1(m, l)−X2(m, l) ≈ 0. Therefore, the DPCA results can indicate the

moving targets based on their radial velocities. Note that the DPCA expressions have ambiguities

on the results for the velocities due to the periodic complex exponential. For example, different

v
(r)
ml can result in the same exp(−

j4πf0(v
(r)
ml∆)

c
). The different radial velocities which lead to the

same results in (2.62) are termed as the blind velocities in the DPCA algorithm.

Similarly the ATI algorithm is marking moving targets through the phases of different

channels. The phase terms are well known to encode the target radial velocities which can be

thresholded to reveal the moving targets. The ATI algorithm can be formulated as:

X1(m, l)× X∗2(m, l) ≈ |X1(m, l)|2 exp

(
j4πf0♦Rmln

c

)
≈ |X1(m, l)|2 exp

(
j4πf0(v

(r)
ml∆)

c

)
(2.63)

It can be seen that the phase of (2.63) is a function of the radial velocity v(r)ml which is zero for

stationary targets (v(r)ml = 0). Based on the phases in (2.63), the radial velocity map of the scene

V(r) can be estimated.

Overall, the DPCA results are approximately the velocity-scaled reflectivities of the moving

targets. DPCA and ATI are utilising different information to realise SAR/GMTI but they do share

the similarities. The clutter suppression techniques such as DPCA and ATI enable us to filter out

stationary targets. They are followed by detectors such as CFAR detectors [95] to shreshold the

outputs. These threshold operations are similar to the operations in CS reconstruction methods

which inspires the sparsity-driven SAR/GMTI. Furthermore, it is shown in (2.63) that the target

radial velocities {v(r)ml |m = 1, 2, ...,M ; l = 1, 2, ..., L} can be directly estimated based on the

phases of ATI results.

2.4.3 Hybrid DPCA/ATI

The hybrid DPCA/ATI algorithm is designed to integrate the DPCA and ATI algorithms for the

multi-channel SAR/GMTI tasks, and its effectiveness against conventional DPCA and ATI has

been demonstrated in [93]. In particular, for a three-channel SAR system, the hybrid DPCA/ATI
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algorithm first implements the DPCA algorithm pair-wise for the 1st/2nd channel and 2nd/3rd

channel respectively, and retrieves two DPCA results. A subsequent stage which applies the ATI

algorithm to the two DPCA results is then employed, and the phase of the ATI result is thresholded

to reveal moving targets. The hybrid DPCA/ATI algorithm is supposed to benefit from both DPCA

and ATI algorithms and enhance the overall SAR/GMTI performance.

The mathematical model of the hybrid DPCA/ATI algorithm for three channels can be

formulated as:

(X1(m, l)− X2(m, l))× (X2(m, l)− X3(m, l))
∗

≈|X1(m, l)

(
1−exp

(
−
j4πf0(v

(r)
ml∆)

c

))
|
2

exp

(
j4πf0(v

(r)
ml∆)

c

)
(2.64)

It can be seen that the phase of (2.64) is a periodic function of the target radial velocity v(r)ml . Similar

to ATI, the radial velocities {v(r)ml |m = 1, 2, ...,M ; l = 1, 2, ..., L} can be estimated based on the

phases of (2.64) whthin a periodic interval to avoid the blind velocities, and the radial velocity map

for the whole scene can be approximated. The hybrid DPCA/ATI can incorporate the advantages

of both DPCA and ATI, and thus significantly improve the clutter suppression performance. As

long as the channel balancing in the pre-processing is good enough and the signal is not governed

by the noise, this hybrid method is capable of detecting the moving targets and estimating their

radial velocities. It has been proved that this method can achieve better GMTI performance than

DPCA and ATI in multiple scenarios [92]).

2.5 Channel Balancing for Multi-channel SAR

It can be seen from section 2.4 that a pre-processing stage is required for subtractive SAR/GMTI

algorithms to retrieve the same responses for the static reflectors between different SAR channels.

In particular, as discussed in section 2.4.2, the pre-processed phase histories Ỹi for the i-th channel

can be approximated with a small azimuth time shift and a scaling constant on the amplitudes.

Therefore, the time shift corresponds to a linear phase shift via Fourier transforms. The existing

linear fitting algorithms [99] [100] are approximating a linear phase term to compensate the

channel imbalances. The two-dimensioinal balancing algorithm [101] is capable of estimating

more complicated calibration terms with iterations.

In this section, we review a recent channel balancing algorithm [102] which equalises

36



Background on SAR and CS

the channel imbalances in the image domain. For simplicity, we denote Xraw
i as phase

histories for the i-th channel without channel balancing and consider two SAR channels.

Therefore, Xraw
i (m, l) stands for the reflectivity of the pixel (m, l). We denote Hraw as the

calibration matrix in the image domain so that the calibrated 2-nd channel reflectivity of (m, l)

is Xcal
2 (m, l) = Xraw

2 (m, l)Hraw(m, l). It is obvious that Xraw
1 = Xcal

2 if Hraw(m, l) =

Xraw
1 (m, l)/Xraw

2 (m, l), and all the differences between the two channels are eliminated. To

only cancel the differences for the background, we can assume that the background reflectivity of

a pixel can be approximated with the average value within a window centered on the pixel.

Let 2Nwin + 1 be the window size, w(m, l) be the weight of (m, l) within the window, and

∠ be the operator to extract the phases. The calibration can be realised via:

|Hraw(m, l)| =

1

(Nall −N zero)

Nwin∑
k1=−Nwin

Nwin∑
k2=−Nwin

w(k1, k2)|
Xraw

1 (m+ k1, l + k2)

Xraw
2 (m+ k1, l + k2)

| (2.65)

∠Hraw(m, l) =

∠

 1

(Nall −N zero)

Nwin∑
k1=−Nwin

Nwin∑
k1=−Nwin

w(k1, k2) exp(j∠(
Xraw

1 (m+ k1, l + k2)

Xraw
2 (m+ k1, l + k2)

))

 (2.66)

where |Hraw(m, l)| and ∠Hraw(m, l) are the amplitudes and phases of Hraw(m, l) respectively,

Nall = (2Nwin + 1)2 is the number of pixels in the window, N zero is the number of zeroes in the

window.

Note that the moving target may be significant in the central pixel (m, l). A practical window

function is to set the weight coefficients around pixel (m, l) to zeroes. The performance of this

image-based channel balancing method significantly depends on the design of the window function

and the signatures of moving targets. In Chapter 3, we will present the detailed channel calibration

used in this thesis.

2.6 Target State Estimation Algorithms

It is widely known that the moving targets will be displaced and blurred in the formed SAR

images [103] [94] [84]. In many scenarios we want to go beyond the simple ground moving target
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indication and estimate the target states. There have been a number of investigations on the effects

of moving objects [104] [103] and algorithms for motion parameter estimation [104] [91] [18].

For example, [104] analyses how the target shape varies with motion parameters and how different

motion types perform in the SAR images. In [105] the constant movement, acceleration, vibration

and rotation of moving targets are studied. Recalling that GMTI algorithms can be divided into

two classes, i.e. the SAR-based methods and raw-data-based methods. Some conventional GMTI

algorithms such as DPCA and ATI are SAR-based methods to indicate moving targets in the image

domain and they are not capable of estimating the full moving target states. The EDPCA [91] and

ISTAP [18] algorithms are two state-of-the-art GMTI approaches which are capable of cancelling

the clutter, and they share the same idea to approximate the motion parameters by maximising

the target SNR. Some recent developments in SAR/GMTI involve the exploitation of sparsity.

In [94], the sparse reconstruction is applied to the SAR image pixel-wise for the estimation of

radial velocities. Particularly, the sparsities are encoded in the veclocities by assuming that each

pixel is associated with no more than two radial velocities. In [106], the moving target imaging is

compensated by the phase errors, while the sparsities are reflected in the reflectivities and phase

errors.

2.6.1 Effects of Moving Targets in SAR

Target Displacement

The moving targets will be defocused and displaced mainly along the azimuth direction in the

SAR images. Based on the geometry of the multi-channel SAR system, we first present the

displacement effects of moving targets along with a target relocation mechanism in this section.

For a stationary target, its Doppler frequency shift depends on the relative velocity between

the target and the platform:

fd = 2vp〈
vp
vp
,

r(t)1

r
(t)
1

〉/λ0 (2.67)

where vp is the platform velocity, vp denotes the platform velocity, r(t)1 stands for the vector

from the 1st channel to target, and λ0 represents the central wavelength of the transmitted

signal. Let α be the angle between the platform velocity and the vector to the reflector, we have
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cos(α) = 〈vp
vp
,

r(t)1

r
(t)
1

〉. Therefore, the azimuth position of the reflector can be estimated via:

α = arccos (λ0fd/(2vp)) (2.68)

Similar to (2.67), a moving target with radial velocity v(r) will induce the change in Doppler

frequency δfd:

δfd = 2v(r)/λ0 (2.69)

Differentiating (2.67) gives the change in azimuth position:

δα = − λ0δfd
2vp sin(α)

(2.70)

which stands for the azimuth displacement of the target in the SAR image. By considering (2.69)

we have that:

δα = − v(r)

vp sin(α)
(2.71)

Therefore, (2.71) quantifies the azimuth displacement of a moving target in the SAR image which

is depicted in Fig. 2.8. Given vp, α and the radial velocity v(r), the moving target can be relocated

to the correct position in the SAR image by simply shifting the entire target pattern with −δα.

This gives a brief insight into how the target radial velocity impacts the azimuth displacement in

the SAR image, and the moving target location can thus be corrected with this model.

Target Blurring

We have analysed how the azimuth position of the moving target changes with the target radial

velocity v(r). In this section, we give an insight into the blurring effect of a moving target in the

SAR image.

As the phase of the received signal depends on the round-trip distance of the transmitted

signal:

Θ(t) =
2π

λ0
2r

(t)
1

=
4π

λ0
r
(t)
1 (2.72)
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  !

Displacement

Figure 2.8: The azimuth displacement of a moving target in SAR.

where 2π/λ0 is the wavenumber, and r(t)1 denotes the distance between the target and 1st channel.

Similar to the definition of v(r), we denote a(r) as the acceleration rate of the moving target

in radial direction. By employing the Taylor expansion, we can approximate r(t)1 with:

r
(t)
1 ≈ r

(0)
1 + v(r)t+

1

2
a(r)t2 (2.73)

Therefore, besides the doppler frequency shift introduced by the platform, the doppler

frequency shift component introduced by the moving target can be formulated as:

δfd =
1

2π

dΘ(t)

dt
≈ 2(v(r) + a(r)t)/λ0 (2.74)

By comparing (2.74) to (2.69), (2.74) has an additional term 2a(r)t/λ0 in the Doppler

frequency change δfd that varies with the time t. Note that the azimuth displacement of the

target is proportional to the change in δfd based on (2.70). Therefore, the varying δfd leads to

the varying azimuth position of the target. The synthetic aperture time t interacts with a(r) to

control the change in δfd which induces the blurring along the azimuth direction. The blurring of
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a moving target in the SAR image can then be quantified with a(r). The Doppler frequency shift

stretches by:

δf ′d =
2a(r)

λ0
T (2.75)

where T is the time interval of the synthetic aperture.

Considering (2.70), we have that the azimuth angle α stretches by:

δα′ =
a(r)T

vp sin(α)
(2.76)

where δα′ accounts for the azimuth blurring length of the moving target.

It is shown in (2.76) that the length of blurring is proportional to a(r). It is also discussed in

[103] that the blurring will increase with the smaller SAR azimuth resolution and high observation

squinted angles.

2.6.2 SAR-based GMTI with Sparsity

While there have been a number of investigations about the sparsity in SAR [94] [107], this field

is still in its infancy to be explored. Particularly, [107] is a novel method that searches for the

sparsest solution in the target location-velocity space for a single-channel SAR system, and its

searching space is limited on a rough grid considering the RIP condition of sparse reconstructions.

In this subsection, we review the state-of-the-art investigation on using the compressed sensing

algorithms to detect moving targets and estimate the radial velocities via multi-channel SAR

systems [108] [109] [110]. This novel method is essentially utilising the sparsity in target radial

velocities pixel-wise. To be specific, it is well known that the SAR images of one moving target

will have a phase difference (4π/c)f0v
(r)(d/vp) between two neighbouring channels, in which

f0 denotes the central frequency of the transmitted signal, vp is the platform velocity, v(r) is the

radial velocity of the target, d denotes the spatial distance between the antennas. Therefore, an

explicit model can be established to describe the differences of SAR images between different

Radar channels with the v(r) and d.

If we assume that there are Nv radial velocity components for the individual SAR pixel, for

the radar channel which has the distance dc from the platform center, the individual SAR pixel
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Xdc(m, l) at (m, l) with this channel can be expressed as the sum of the Nv components:

Xdc(m, l) =

Nv∑
nv=1

A(nv,m, l) exp

(
−j 4π

c
f0v

(r)
nv

dc
vp

)
(2.77)

where Xdc(m, l) is the (m, l) pixel of the formed SAR image for this channel based on pre-

processed data, v(r)nv is the nv-th radial velocity component of the pixel (m, l), and A(nv,m, l)

represents the corresponding amplitude of the nv-th radial velocity component with respect to the

(m, l) pixel.

Note that most SAR pixels are associated with no more than two radial velocity components,

i.e. static objects (0 m/s) and a moving target. Therefore, the sparsity in the model (2.77) is

reflected in the number of velocity components of individual SAR pixels. By further considering

the multi-channel SAR system, (2.77) can be reformulated into the generic form for the i-th

channel:

Xi(m, l) =

Nv∑
nv=1

A(nv,m, l) exp

(
−j 4π

c
f0v

(r)
nv

(i− 1)d

vp

)
(2.78)

in which we assume that the SAR antennas are evenly spaced with the distance d.

Based on (2.78), if we focus on the (m, l) pixel and concatenate the samples from all I

channels Xvec(m, l) = [X1(m, l),X2(m, l), ...,XI(m, l)]T ∈ CI×1, Xvec(m, l) can be modelled

with matrices as:

Xvec(m, l) = ΘAvec (2.79)

in which the (i, nv)-th entry of Θ ∈ CI×Nv is exp(−j 4π

c
f0v

(r)
nv

(i− 1)d

vp
), and Avec =

[A(nv,m, l),A(nv,m, l), ...,A(nv,m, l)]
T ∈ CNv×1 represents the amplitudes of the radial

velocity components at (m, l) which is a sparse vector.

The equation (2.79) stands for a typical sparse approximation model which can be solved

via a variety of sparse reconstruction algorithms, and the sparse vector Avec can be reconstructed.

By identifying the non-zero entries of Avec, the moving targets at (m, l) can be detected and the

corresponding radial velocities can be selected. We resolve (2.79) repetitively for each SAR pixel

to indicate the moving targets for the whole scene, and the corresponding map of radial velocities

can be produced. This process is visualised in Fig. 2.9.

This algorithm essentially establishes a sparse reconstruction model to produce a map of

target radial velocities. From this perspective, it is similar to the ATI algorithm. This method

does not estimate full target states, and the defocusing and relocation of the moving targets are not
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Figure 2.9: The flowchart of the described algorithm in this subsection to estimate the radial
velocity map with sparsities.

investigated.

2.6.3 Extended DPCA

The Extended DPCA (EDPCA) [91] is a state-of-the-art GMTI algorithm which is capable of

estimating the full target state. The algorithm is motivated to generalise the DPCA algorithm with

two channels to multiple channels. The described process in [91] shares significant similarities

with the STAP algorithm in range-Doppler domain [97]. In this subsection we briefly explain the

core idea of this method. Further details are not included.

The core idea of this algorithm is to utilise all the information from different channels and

realise the SAR compression with different ϑt (ϑt is the motion parameters of a moving target).

Note that the responses from static objects are eliminated before the moving target detection. As

presented in Chapter 2, the clutter suppression can be realised with the inverse of the clutter-

plus-noise covariance matrix. The target state ϑt can thus be estimated by maximising the target

responses. It is shown in [91] that the generalised likelihood ratio tests (GLRT) on SAR images

focused with ϑt corresponds to the EDPCA criterion which is defined as:

δEDPCA(r, T, ϑt) =
|PH

vec(ϑt)R−1(ϑt)Zvec(r, T, ϑt)|2

PH
vec(ϑt)R−1(ϑt)Pvec(ϑt)

(2.80)

43



Background on SAR and CS

In particular, the data are compressed with ϑt, and any SAR algorithms can be used. The SAR

compressed signal vector Zvec(r, T, ϑt) in the image domain is associated with the (r, T ) pixel,

where r denotes the range and T is the slow-time variable. The clutter-plus-noise covariance

matrix R(ϑt) can be estimated from the raw data [97] [91], and the clutter is eliminated with

its inverse R−1(ϑt). Then different SAR channel are coherently added with the steering vector

PH
vec(ϑt). The steering vector compensates the phase difference between different SAR channels.

By adopting the definitions in this thesis, we will show in Chapter 4 that Pvec(ϑt) can be

approximated by vectorizing the proposed phase correction matrix P, and its entries are the

well known ATI phases. The denominator in (2.80) is employed for the normalisation of the

δEDPCA(r, T, ϑt). With the compensation between different channels and clutter cancellation,

it can be seen that maximising (2.80) is essentially maximising the target responses. Finally the

EDPCA criterion δEDPCA(r, T, ϑt) is compared with a constant using the CFAR detector for each

cell (r, T ) and target state ϑt. The ISTAP method shares the same idea to maximise the GLRT

with the clutter cancellation in the Doppler domain [18].

2.7 AFRL GOTCHA GMTI Challenge Dataset

In this section we introduce the AFRL GOTCHA GMTI challenge dataset [4] in details. The

effectiveness of the proposed sparsity driven SAR/GMTI framework in the thesis is demonstrated

through this dataset. This dataset contains a collection of Matlab files which corresponds to two

observation passes with HH polarization three-channel airborne spotlight SAR. The two passes

operates above the same urban region for 71 seconds each. While the mission pass is designed with

a controlled moving vehicle (GPS device mounted), the reference pass is implemented without this

vehicle. Therefore, this dataset raises the SAR/GMTI challenge to detect and track this moving

target within the 71 seconds monitoring scenario, and form high resolution SAR images. In this

thesis, we focus on the mission pass as a typical multi-channel SAR-based GMTI task, and the

performance of the proposed SAR/GMTI framework can be demonstrated through the the target

ground truth (based on the GPS) and other SAR/GMTI algorithms.

In general, the dataset contains three types of files, i.e. the raw data files, the SAR auxiliary

files and the target auxiliary files. The raw data files are the received phase histories of the SAR

channels, the SAR auxiliary files correspond to the SAR system specifications, and the target

auxiliary files represent the retrieved information from the portable GPS device. The key system

parameters are listed in Table 2.1.
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The received phase histories are range gated to mitigate the pressure on saving such a large

dataset. The original 5400 range bins are thus trimmed into 384 available range bins which are

centred around the target. The offsets of the range bins are provided in the dataset [4]. The 5400-

by-154180 phase histories can thus be established by filling the unavailable entries with zeroes,

and the formed images are in “slices” with the sub-apertures.

Table 2.1: The system parameters in the AFRL GOTCHA GMTI challenge dataset.

platform start point (m) (6675.4, 2938.8, 7259.4)

platform end point (m) (5716.6, -4435.1, 7240.6)

first pulse number 907249

last pulse number 1061428

number of pulses 154180

platform time-of-day 63590-63661

observation duration (s) 71

channel number 3

PRF (Hz) 2171.6

central frequency (Hz) 9.6G

bandwidth (Hz) 640M

phase history size (5400, 154180)

range gating 384

moving target GPS start point (m) (7.08, -154.9, 7.8)

moving target GPS end point (m) (-363.7, 201.5, -10.2)

moving target GPS time-of-day 63575-63676

moving target GPS time offset -0.9

The airborne SAR system is in the spotlight mode and three channels are mounted on the

platform. The system operates in X-band and the signal model can follow the stop-and-go

assumption. The controlled vehicle carries a portable GPS device. It first waits for the signal

light at a cross, and then accelerates through a downhill road. It finally starts to slow down and

turns right at the end of the road. As can be seen from the moving target GPS start and end point

in Table 2.1, the monitored scene is associated with non-negligible elevation variations. The GPS

configuration follows the right-handed Cartesian coordinate which provides the target velocity

magnitude and velocity direction in x-y plane.

The raw data comes from an X-band SAR system with three channels and a number of

moving vehicles in a non-homogeneous urban environment. The ground truth data of one vehicle

is provided. Its path is along a mountainous road which has significant elevation variations. In

45



Background on SAR and CS

particular, the transmitted chirp is centred at 9.6 GHz, the phase history is collected over a 71

second interval, and the PRF fPRF is 2.1716 kHz. The original data was range-gated from 5400

range samples to 384 bins to decrease the required storage. In [4] the detailed information of

the range gating is presented. To preprocess the data, we implement the inverse operation of the

the range gating and replace the unknown range gates with zeroes. The phase history after this

process is denoted as Yi ∈ C5400×200 for the i−th channel. We then apply the channel balancing

technique pair-wise as analysed in Chapter 3 and denote the calibrated phase histories as Ỹi.

Unfortunately the AFRL data set does not have all the information we require. Firstly, we

do not have any available DEM information. To tackle this issue, we retrieve the coarse DEM

data from the United States Geological Survey (USGS) seamless data set [111] (roughly 30

meters resolution). We interpolate the retrieved map on the imaging x-y grid to get the estimated

elevations. The method to estimate the calibrated elevation map can be found in section 3.4.1

which is also published in [5]. We apply the DEM to all SAR processing in the experiments.

Secondly, the antenna spacings between channels are unknown in the original data set.

Here we estimate the spacings from the raw data. Consider the discrete signals with normalised

frequencies, we will introduce the detailed approach to estimate the distance between two channels

in section 3.3.2. The three antennas are equally spaced by d = 0.238m.

Thirdly, the given ground truth information for the moving vehicle only covers its velocities

in the x and y directions. Especially with this data set the monitored region has a non-flat terrain

which results in nontrivial velocity components in the z direction. We calibrate the target velocities

with a novel method which is presented with details in section 4.4.2.

Furthermore, it can be seen from Table 2.1 that the moving target GPS provides a longer time

duration than the platform observation duration. Practically the platform time and moving target

GPS time need to be aligned in the SAR/GMTI tasks. The details of the alignment between the

target time and platform time are explained in section 5.4.2.

2.8 Conclusion

In this Chapter we have reviewed the mathematical models of SAR systems. Particularly we have

analysed the resolution of Radar systems and presented how the SAR systems help improve the

resolution. The improved imaging resolution plays a vital role in GMTI applications as targets

cannot be well distinguished under low resolution conditions. Furthermore, we introduce the SAR
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signal models in details including the pulse compression, dechirping and the approximation of

RVP. We then give a brief introduction to the state-of-art GMTI algorithms used in the practical

applications. We discuss about the different classes of SAR/GMTI techniques and further analyse

their motivations. As the framework proposed in this thesis follows the route of the well known

DPCA and ATI, and it aims to leverage the sparsity to establish an optimisation model, we aim

to construct an end-to-end framework for SAR-based GMTI in this thesis. The basics of the

emerging compressed sensing field are also discussed in this chapter. Specifically we present

the origination of CS and its limitations. The key CS properties and the widely used sparse

approximation methods are also introduced in this chapter. Finally we link the CS theory to the

SAR/GMTI applications and explain in detail about our motivation along with the huge potential

of sparsity in SAR-based GMTI processing.
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3.1 Introduction

Indicating moving targets among varied scenarios for battlefield reconnaissance is of particular

interest to surveillance applications. Note that our focus for SAR/GMTI in this work is on the

exploitation of sparsity in SAR-based GMTI applications, and we are motivated by the subtractive

algorithms DPCA and ATI. Therefore, for these methods, an important challenge is to understand

the differences between SAR channels.

Another challenge arises in the SAR/GMTI processing to mitigate the inaccuracies caused by

elevations in the observed area. The effectiveness of conventional approaches has been proven for

homogeneous environments (such as vegetated areas). However, the non-homogeneous terrains,

such as mountains with large elevation variations and urban areas with significant buildings, are

hampering the SAR/GMTI frameworks from many facets: SAR image formation, moving target

imaging and state estimation [112]. The injection of the DEM information in SAR/GMTI can

help calibrate the SAR images for the monitored region, form the SAR image of moving targets

and estimate the target states. Within this work the elevation data is integrated into the proposed

SAR/GMTI processing framework.

In this chapter, we present two crucial components in our proposed SAR/GMTI framework,

i.e. the pre-processing of phase histories and the exploitation of DEM. We first introduce the

general model of multi-channel SAR signals and discuss about the channel balancing methods

used for the pre-processing. The calibrations on the phase histories aim to retrieve identical

responses from static reflectors for different channels which are crucial in subtractive GMTI

methods. Based on the channel balancing approach, The analysis on SAR channel spacing is

also included. Secondly, the utilisation of DEM in SAR applications is investigated. The DEM

information is integrated into the SAR forward/backward operators which can then be used for

the GMTI algorithms. Finally we demonstrate the channel balancing effects in SAR/GMTI tasks

48



SAR Pre-processing and DEM-aided SAR

through the AFRL GOTCHA GMTI challenge data. The exploitation of elevation in SAR/GMTI

is also presented via this real dataset.

3.2 Signal Modelling for Multi-channel SAR

Based on the SAR/GMTI geometry as depicted in Chapter 2, we consider a standard multi-channel

SAR system in the spotlight mode with a number of moving targets in the observed scene. A terrain

map is associated with the monitored region. The phase centres of antennas are equally spaced

with a distance d along the flight path of the platform. Let the azimuth time (slow time) of the

transmitted pulses be τn where n = {1, 2, ..., N} is the pulse number; rt(τn) be the instantaneous

spatial position of one target at τn; r(t)i (τn) and r(o)i (τn) denote the distance from the target to

the i−th antenna and the distance from the scene origin to the corresponding antenna position

respectively. Within a short sub-aperture, we can assume that the platform velocity is a constant

vp.

The signal model (2.32) can be extended by considering the antenna gain gi for the i-th SAR

channel. If we assume the reflectivity of the target at rt(τn) is a constant σ, the discrete received

phase histories from the i−th channel after the dechirping process (the scene origin is calibrated

to have zero phase) and discretization can be formulated as a K ×N complex matrix:

Yi(fk, τn) = giσ exp

(
−j4πfkui(τn)

c

)
(3.1)

where {fk|k = 1, 2, ...,K} denotes the range frequencies, c is the speed of light, and ui(τn)

represents the differential range r(t)i (τn)− r(o)i (τn).

Given that X ∈ CM×L is the collection of the nominal reflectivities from all targets (both

static and moving) in the scene with antenna gains, similar to (2.32), the received phase history

can be assembled by accumulating the reflected signals from all reflectors:

Yi(fk, τn) =

M∑
m=1

L∑
l=1

X(m, l) exp

(
−j4πfkumli(τn)

c

)
(3.2)

Here umli(τn) = r
(m,l)
i (τn) − r(o)i (τn) represents the differential range with respect to the

reflector at (m, l), in which r(m,l)
i (τn) denotes the distance between the cell (m, l) and platform.

The equivalent matrix-vector form of the signal model (3.2) is Yi = ΦF (X). Note that the X is
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associated with the antenna gains gi, and these gains need to be equalised via channel balancing

techniques to reconstruct the reflectivities and form SAR images. The details of channel balancing

can be found in the next section.

Within this signal model, r(t)i (τn) is the term to indicate how the distance from the antenna

to the target varies with time, and it depends on three components, i.e. the platform velocity vp,

the target velocity vt and the channel positions.

Let

r
(t1)
i (τn) = −〈vp,

r(t)i

r
(t)
i

〉τn

r
(t2)
i (τn) = 〈vt,

r(t)i

r
(t)
i

〉τn

r
(t3)
i (τn) = 〈vp

vp
,

r(t)i

r
(t)
i

〉(i− 1)d

(3.3)

where the r(t1)i (τn), r(t2)i (τn) and r(t3)i (τn) account for the variations on r(t)i (τn) induced by the

platform velocity, target velocity and channel number respectively.

For a short sub-aperture, the varying range between the target and platform r
(t)
i (τn) can be

approximated in the form:

r
(t)
i (τn) ≈ r(t)1 (0) + r

(t1)
1 (τn) + r

(t2)
1 (τn) + r

(t3)
i (τn) (3.4)

where the constant r(t)1 (0) corresponds to the distance from the first channel at the initial

position of the sub-aperture to the target. Similarly we can decompose the r(o)i (τn) into three

components with an additional constant, and thus implement an expansion on (3.1) given that

ui(τn) = r
(t)
i (τn) − r(o)i (τn). It can be seen from (3.3) and (3.4) that r(t3)i (τn) is the dominating

channel number related term to be calibrated. These formulations offer us further insight into how

different radar channels and the target-platform relative movement function in the signal model,

and can be exploited to pre-process SAR data.
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3.3 Channel Balancing

3.3.1 Channel Imbalance Calibration

In this section we discuss the pre-processing of the received phase histories based on the

aforementioned multi-channel SAR scenario. The task is to implement a channel calibration

to acquire the same responses for static reflectors among different channels. An adaptive 2-D

channel balancing technique was introduced to tackle this problem in [113]. We adapt this method

to mitigate the channel imbalance in the SAR-based GMTI tasks.

Consider the phase terms in (3.1), (3.3) and (3.4), the relative movement between the platform

and target will introduce a channel related calibration term to the Doppler transformed signal:

exp

(
−j 4π

λ
〈vp
vp
,

r(t)i

r
(t)
i

〉(i− 1)d

)
= exp

(
−j2π2vp

λ
〈vp
vp
,

r(t)i

r
(t)
i

〉(i− 1)d

vp

)

= exp

(
−jω (i− 1)d

vp

) (3.5)

where λ is the corresponding wavelength and ω = 4π
vp
λ
〈vp
vp
,

r(t)i

r
(t)
i

〉 is the widely known angular

Doppler frequency.

In this section, we adopt the simplified model in Doppler domain (Doppler transformed signal

along the azimuth time direction) as reported in [113] to briefly explain the differences between

channels. If we put aside the moving targets, we have two channel related facets which influence

the Doppler frequency domain signal, i.e. the antenna characteristics gi and the channel spacing

d. The signals in the Doppler domain of the first two channels can be approximated with the

equations:

Ŷ1(ω) ∼= A(ω)D1(ω)

Ŷ2(ω) ∼= A(ω)D2(ω) exp(−j d
vp
ω)

(3.6)

where A(ω) is the nominal factor that denotes the complex Doppler dependencies (encoding the

varying distance between the platform and the target), Di is the antenna pattern vector with the

Doppler frequency ω for the i−th channel, d is the baseline between two channels and vp is the

platform velocity.
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Furthermore, we consider the signals with the range frequencies and extend the equations

(3.6) to the Doppler and range frequency domain. The phase histories can be expressed with [113]:

Ŷ1(ω,Ω) ∼= A(ω)Q1(Ω)D1(ω)

Ŷ2(ω,Ω) ∼= A(ω)Q2(Ω)D2(ω) exp(−j d
vp
ω)

(3.7)

where Qi is the channel-dependent term (antenna transfer function) for the i−th channel with the

range frequency Ω.

In the multi-channel SAR settings, based on (3.7), the Fourier transformed signal in the

continuous Doppler and range frequency domain (ω,Ω) can be formulated as the following generic

form for the i−th channel [113]:

Ŷi(ω,Ω) ∼= A(ω)Qi(Ω)Di(ω) exp(−j (i− 1)d

vp
ω) (3.8)

which is the Fourier transformed Yi as described in the Chapter 2. This approximation holds when

the observed scene is dominated by the stationary background as the motion parameters will be

reflected in the varying range between the target and platform.

From (3.8) it is shown that the Doppler related terms are approximately independent to the

range frequency related terms [113]. Therefore, the phase histories can be calibrated with two

functions in azimuth and range directions, e.g. the Haz(ω) and Hrg(Ω) in (3.9), to acquire the

same responses from static reflectors for a pair of channels. The calibration functions for the i−th

and k−th channels can be formulated as:

Haz(ω) =
Di(ω)

Dk(ω)
ej(k−i)ωd/vp

Hrg(Ω) =
Qi(Ω)

Qk(Ω)

(3.9)

For the i−th and k−th SAR channels, the phase history for the k−th channel can then be

balanced via Ŷk�H where H(ω,Ω) = Haz(ω)Hrg(Ω). We therefore have the channel balancing

matrix H as a rank one matrix. The balanced phase histories can be transformed back to the

(fk, τn) domain via an inverse Fourier transform, and we denote the pre-processed phase histories

of the k−th channel as Ỹk = F−1(Ŷk � H). Therefore, the channel balancing can be performed

pair-wise. The channel balancing step plays a vital role in subtractive GMTI algorithms such as

DPCA and ATI which pick up moving targets through the coherent differences between channels.
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Inaccurate calibrations will lead to imperfect subtractions and increase the false alarm rates. In

practice H can be estimated via:

min
H

1

2
‖Ŷi − Ŷk �H‖2F

s.t. H(ω,Ω) = Haz(ω)Hrg(Ω)

(3.10)

A viable solution is presented in [113] to tackle (3.10):

Haz(ω) =

∫
Ŷ ∗k (ω,Ω)Ŷi(ω,Ω) dΩ∫
|Ŷk(ω,Ω)|2 dΩ

Hrg(Ω) =

∫
Ŷ ∗k (ω,Ω)Ŷi(ω,Ω) dω∫
|Ŷk(ω,Ω)|2 dω

(3.11)

With the equations (3.11), Ŷk can be calibrated via Ŷk � H. This calibration can be

implemented iteratively by feeding the updated Ŷk into (3.11) again. We keep updating the channel

balancing matrix H until it does not change significantly. Practically the calibration is realised

efficiently within few estimations. Note that more azimuth samples lead to refined accuracy in

estimating Hrg(Ω). However, applying this method to the SAR data directly often encounters

large azimuth sidelobes. In practice, high fidelity will be preserved only for the azimuth samples

in low frequencies as Haz(ω) has significant attenuation in amplitudes with azimuth frequencies.

This effect can be visualised in the experimental results of this chapter. The problem can be solved

by employing a large sub-aperture to calibrate the channel imbalances, and applying a small subset

to implement GMTI each time for rapid responses. In this thesis we estimate Haz(ω) and Hrg(Ω)

over sub-apertures, and only utilise a number of low frequency samples in Haz(ω).

3.3.2 Channel Spacing Estimation

Besides the channel imbalance calibration, another challenges arises in practical SAR/GMTI

applications to estimate the spacing between different channels. Particularly, this channel spacing

information is not available in the AFRL GOTCHA GMTI challenge dataset [4]. It can be seen

from (3.9) that the phases of Haz(ω) has a significant linear phase component with ω (can be

visualised in the section of experimental results), and the linear slope Saz is proportional to the

channel spacing d. Therefore, based on the estimated Haz in (3.11), d/vp can be approximated.

Consider the discrete signals with normalised frequencies, if the platform velocity vp is known,
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we can estimate the distance between two channels d via:

d =
SazNDvp
2πfPRF

(3.12)

where ND denotes the number of azimuth samples. This formulation can be used to approximate

the SAR system specification d in SAR/GMTI applications which is crucial in the estimation of

moving target states. For example, it is widely known that the radial velocity of a moving target

v(r) can be approximated via:

v(r) = −Pt
vpc

4πdf0
(3.13)

where Pt is the phased difference in the SAR image domain between the neighbouring channels

which are spatially spaced by d, vp is the platform velocity, and f0 is the central range frequency.

3.4 DEM-aided SAR

3.4.1 DEM Extraction

The compatible DEM information has to be extracted in order to match the configurations of

specific SAR-based GMTI applications. Therefore, a calibration step is necessary before the

exploitation of the DEM in SAR/GMTI processings. Generally the rough DEM data of a regular

grid can be retrieved from available DEM sources, and the dataset is usually in the lla (latitude,

longitude, altitude) model. This rough DEM model is first translated into meters and we denote

the retrieved DEM as (Xcoarse,Ycoarse,Ecoarse) where (Xcoarse ∈ RNd ,Ycoarse ∈ RNd) denotes

a grid on the xy-plane, Nd is the dimension of the grid elements, and Ecoarse ∈ RNd are the

corresponding elevation values.

The task is to find a reference point (Xref , Yref , Eref ) for (Xcoarse,Ycoarse,Ecoarse) so that

the complete DEM can be estimated with a shift (Xcoarse−Xref ,Ycoarse−Yref ,Ecoarse−Eref )

followed by the interpolation on the desired grid (xm, yl). The complete DEM is thus Gml =

(xm, yl, zml) where m = {1, 2, ...,M}, l = {1, 2, ..., L}.

Let us assume that we hold the ground truth GPS information for parts of the terrain map

(Xt,Yt,Et), where (Xt ∈ RNd ,Yt ∈ RNd) contains the xy positioning information and Et ∈ RNd

are the corresponding z coordinates. The reference point (Xref , Yref , Eref ) can then be estimated
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based on these ground truth data. In particular, we search for the reference point with which the

reflectors (Xt,Yt,Et) best matches the DEM. Therefore, the estimation of the reference point can

be realised via an optimisation problem:

min
Xref ,Yref ,Eref

1

2
‖Et − Γ(Xcoarse −Xref ,Ycoarse − Yref ,Ecoarse − Eref ,Xt,Yt)‖22 (3.14)

where the operator Γ(Xraw,Yraw,Zraw,Xnew,Ynew) linearly interpolates the surface (Xraw ∈

RNd ,Yraw ∈ RNd ,Zraw ∈ RNd) at the query points (Xnew ∈ RNd ,Ynew ∈ RNd), and returns the

estimated elevation values. Simply speaking, this optimisation is finding the (Xref , Yref , Eref ) to

best match (Xcoarse −Xref ,Ycoarse − Yref ,Ecoarse − Eref ) with (Xt,Yt,Et).

This optimisation problem (3.14) has limited feasible space and the estimations can be

explicitly realised via a local exhaustive search in a specific region. We simply select the

(Xref , Yref , Eref ) that gives the best match. After the Xref , Yref , Eref have been computed,

we subsequently establish the complete DEM Gml = (xm, yl, zml) through:

zml = Γ(Xcoarse −Xref ,Ycoarse − Yref ,Ecoarse − Eref , xm, yl) (3.15)

3.4.2 DEM-aided Moving Target Imaging

In this section we aim to integrate the DEM into the SAR imaging algorithm. Particularly

our investigation focuses on how the DEM interacts with the widely used back-projection SAR

imaging. Given the pre-processed phase histories Ỹi(fk, τn), the standard back-projection imaging

algorithm [51] without DEM works with the equation:

X̀i(m, l)=

K∑
k=1

N∑
n=1

Ỹi(fk, τn) exp

(
j4πfk∆R̀mln

c

)
(3.16)

in which the differential ranges ∆R̀mln are formulated as:

∆R̀mln = ‖r(τn)− G̀ml‖2 − R0(τn) (3.17)

where r(τn) refers to the platform position at τn (equivalent to the first channel position here as

the phase histories have been calibrated based on this channel), G̀ml = (xm, yl, 0) denotes the

conventional 2D imaging grid without DEM, and R0(τn) = ‖r(τn)− rref‖ is the distance as

a function of azimuth time between the platform and a reference point rref (usually the scene
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center).

Within this thesis we employ a fast back projection approach with three levels of recursions

and decimation in image [1] for the SAR imaging operator Φ0
B which is an accurate and efficient

approximation of (3.16). With the 5400 × 400 phase history and 4000 × 3000 SAR image, we

compare the complexities of the forward and backward operators with an Intel Xeon 2.00GHz

×32 machine and Linux Matlab working environment. The results can be found in Table 3.1.

Table 3.1: The complexities of the efficient SAR operators [1] in Elapsed Time (s).

Forward (re-projection) Backward (back-projection)

Basic with single-thread (s) 4353 3730

Basic with multi-thread (s) 49 32

Decimation in Image

with multi-thread (s)
27 22

Decimation in Phase History

with multi-thread (s)
15.5 12.7

It can be seen from Table 3.1 that the acceleration from single-thread to multi-thread is

remarkable. With the multi-thread configuration, the fast back projection algorithms furthers the

efficiency significantly. Moreover, we implement the decimation-in-image algorithm because it

brings higher image quality than the decimation in phase history one. This efficient operator has

achieved significant acceleration in the processing which is crucial for a variety of SAR/GMTI

applications. Through this thesis, we have adapted all the proposed SAR/GMTI operators to be

consistent with this efficient approach to benefit from the significant acceleration.

By injecting the DEM information to the standard back-projection imaging approach (3.16),

we can implement an extension to set up the DEM-aided back-projection:

Xi(m, l)=

K∑
k=1

N∑
n=1

Ỹi(fk, τn) exp

(
j4πfk∆Rmln

c

)
(3.18)

where ∆Rmln are the DEM-augmented differential ranges:

∆Rmln = ‖r(τn)−Gml‖2 − R0(τn) (3.19)

in which Gml = (xm, yl, zml) is the estimated DEM with the aforementioned method.

The DEM-aided back-projection can be further extended by considering the moving

56



SAR Pre-processing and DEM-aided SAR

reflectors. Given the global M-by-L-by-3 velocity map Vml = (V(x)
ml ,V

(y)
ml ,V

(z)
ml ) which

corresponds to the grid of the monitored region, the equation (3.18) can be extended to the DEM-

aided back-projection with the full velocity map:

X̆i(m, l)=

K∑
k=1

N∑
n=1

Ỹi(fk, τn) exp

(
j4πfk(‖r(τn)−Gml − Vmlτn‖ − R0(τn))

c

)
(3.20)

Note that the differential ranges in equations (3.16) and (3.18) have similar structures and they

can be naturally embedded in the fast SAR imaging mechanism [1] for efficient implementation.

However, the equation (3.20) is introducing the term Vmlτn which is the function of the physical

locations (m, l) and azimuth time τn. It is widely known that a moving target at (m, l) will

be detected at a different location in SAR/GMTI. In this way the true location of this target is

unknown. Before we can employ the back-projection in (3.20), the velocities have to be correctly

associated with the physical locations. Practically, it is challenging to establish the exact mappings

between them (the target locations change in the SAR images as a function of their velocities).

Furthermore, we aim to benefit from the significant acceleration of the fast back projection

algorithm [1] and tend to develop the DEM-aided back-projection with target velocities in a

consistent way. Although in general it is not possible to extend the fast back-projection to include

arbitrary velocities, for the specific case where we have a single velocity vector, e.g. when we are

imaging a single moving target, then the fast back-projection can be modified to incorporate this.

For these reasons, we simplify the DEM-aided back-projection with the full velocity map to

the image formation of one moving target. We denote the phase history of the single moving target

as Yt(fk, τn) which corresponds to a small subsection of the data that only contains this moving

target. Let the velocity vector of this target be vt = (v(x), v(y), v(z)), the DEM-aided moving

target imaging can be formulated as:

Xt(m, l)=

K∑
k=1

N∑
n=1

Yt(fk, τn) exp

(
j4πfk(‖r(τn)−Gml − vtτn‖ − R0(τn))

c

)
(3.21)

When we have the velocity vector vt of this single target, r(τn) can be merged with vtτn as a

function of the azimuth time τn. This mathematical structure (3.21) enables the image formation

to be consistent with the fast algorithms [51] [1].

When we only have the estimated radial velocity of the target instead of having its full
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velocity vector, a variant of the equation (3.21) can be formulated :

Xt(m, l)=
K∑
k=1

N∑
n=1

Yt(fk, τn) exp

(
j4πfk∆R′mln

c

)
(3.22)

in which the enhanced differential ranges ∆R′mln is approximated with:

∆R′mln
∼= ‖r(τn)−Gml‖+ v(r)τn − R0(τn)

= ‖r(τn)−Gml‖ − R′0(τn)
(3.23)

where R′0(τn) = R0(τn) − v(r)τn, and v(r) stands for the radial velocity with which the target

moves away from the platform. This approximation is valid under the assumption that the first

term in the differential range represents the varying distance between the platform and the (m, l)

cell.

In this thesis the moving target imaging is realised with (3.21) and (3.22). It can be seen that

the target velocity can be naturally embedded in the fast SAR imaging mechanism [1] by fixing

the differential ranges with pre-calculated constant vectors. The enhanced imaging operator Φvt
B

using the single target velocity vector and the DEM is realised via (3.21), while Φvt
F is realised via

its Hermitian transposes.

3.5 Experimental Results

3.5.1 Channel Balancing using Real Data

We now focus on the AFRL GOTCHA GMTI challenge dataset to demonstrate the performance

of this channel balancing method. We start from the pulse number 96017 and extract the

phase histories with different number of azimuth pulses (400, 800, 1500, 2000, 3000, and 5000

respectively). The amplitudes and phases of the calibration matrices are shown in Fig. 3.1 and

Fig. 3.2.

It can be seen from (3.9) that the phases of the azimuth calibration function change with ω

linearly. This feature can be used to estimate the channel spacing as discussed in section 3.3.2.

This linearity is clearly depicted in the right column of Fig. 3.1. Moreover, with more azimuth

samples, the azimuth calibration does not change significantly as shown in Fig. 3.1. However,

more azimuth pulses can smooth the range calibration function as shown in Fig. 3.2. This is

58



SAR Pre-processing and DEM-aided SAR

0 100 200 300 400
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 100 200 300 400
−5

0

5

10

15

20

25

30

Better linearity
in the middle. 

400 azimuth pulses.

azimuth frequency

amplitudes

azimuth frequency

unwrapped phase

(a)

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 200 400 600 800
−5

0

5

10

15

20

25

30
800 azimuth pulses.

azimuth frequency

  

azimuth frequency

unwrapped phaseamplitudes

(b)

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 500 1000 1500
−5

0

5

10

15

20

25

30
1500 azimuth pulses.

azimuth frequency azimuth frequency

unwrapped phaseamplitudes

(c)

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 500 1000 1500 2000
−5

0

5

10

15

20

25

30
2000 azimuth pulses.

azimuth frequency azimuth frequency

unwrapped phaseamplitudes

(d)

0 1000 2000 3000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 1000 2000 3000
−5

0

5

10

15

20

25

30
3000 azimuth pulses.

azimuth frequency azimuth frequency

unwrapped phaseamplitudes

(e)

0 2000 4000 6000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 2000 4000 6000
−5

0

5

10

15

20

25

30
5000 azimuth pulses.

azimuth frequency azimuth frequency

unwrapped phaseamplitudes

(f)

Figure 3.1: The amplitudes and phases of the rank-1 calibration matrix in azimuth direction with
a) 400 b) 800 c) 1500 d) 2000 e) 3000 f) 5000 azimuth pulses respectively.
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Figure 3.2: The amplitudes and phases of the rank-1 calibration matrix in range direction with a)
400 b) 800 c) 1500 d) 2000 e) 3000 f) 5000 azimuth pulses respectively.
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Figure 3.3: I. Differential image of the first two channels using 400 azimuth samples but calibrated
with 400 and 800 azimuth samples. The sidelobes of the reflectors along the azimuth direction are
significantly mitigated by calibrating with more azimuth samples.
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Figure 3.3: II. Differential image of the first two channels using 400 azimuth samples but
calibrated with 1500 and 2000 azimuth samples. The sidelobes of the reflectors along the azimuth
direction are significantly mitigated by calibrating with more azimuth samples.
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Figure 3.3: III. Differential image of the first two channels using 400 azimuth samples but
calibrated with 3000 and 5000 azimuth samples. The sidelobes of the reflectors along the azimuth
direction are significantly mitigated by calibrating with more azimuth samples.
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Figure 3.4: The comparison between differential image of first two channels and the first channel
image using 400 azimuth samples. (calibrated with 20000 samples)
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further validated through Fig. 3.3.

In Fig. 3.3, from I to III, the differential images of the first two channels are visualised

with increasing number of azimuth samples for channel calibration. As expected, the sidelobes

of the reflectors along the azimuth direction are significantly mitigated by calibrating with more

azimuth samples, and the improvements are less significant in the range direction. Moreover, it

is well known that conventional DPCA results (differential SAR images) tends to predict moving

targets for strong discrete structures such as buildings because of their imbalanced magnitudes

between different channels [98]. To demonstrate this effect, we compare the differential image of

the first two channels to the formed SAR image of the first channel using 400 azimuth samples but

calibrated with 20000 azimuth samples. The comparison is visualised in Fig. 3.4. Note that this

comparison is done via the direct implementation of the channel balancing just to show the effects

of azimuth pulse numbers and strong discrete reflectors.

It can be seen from Fig. 3.1 that magnitudes in the sidelobes of the calibration matrices

have strong degradations, and a viable solution is to only calibrate the low frequencies. The

direct implementation of this channel balancing approach thus encounters large azimuth sidelobes.

Furthermore, it is shown in Fig. 3.1 that the linearity of the phases of azimuth calibration function

is better in the middle part. This issue can be solved by employing a large sub-aperture dataset

to calibrate the channels, and applying a small subset to implement GMTI each time for rapid

responses. In practice, for the subsequent processing of this dataset, we employ the channel

balancing approach with 8000 azimuth pulses and preserve the calibration functions only for

the 800 samples in the middle which achieves better calibrations. In addition, this calibration

matrix is used along with (3.12) in the pair-wise estimation to estimate the channel spacings of

the three channels in this dataset. Our estimations show that the three antennas are equally spaced

by d = 0.238m, and this result coincides with the similar spacing estimates for the same data

in [114].

In general, we expect to detect the moving targets based on the channel differences. It can

be seen from Fig. 3.4 that most unexpected strong responses correspond to the imperfect channel

balancing on strong static buildings (not isotropic). Especially in urban environment, based on

the line-of-sight, strong reflections only happen for the sides and corners of the buildings which

meet the wave-front of the transmitted signals. In this scenario, further criteria are required to

distinguish the moving targets.

The conventional ATI method presents that a moving target will induce a phase difference
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between different channels, which is proportional to its radial velocity. A straightforward criterion

to be used here is to eliminate those reflectors which have small phase deviations between

channels. By employing both amplitude and phase differences we aim to better locate the moving

targets and reduce the false alarm rates. A number of recent developments in SAR-based GMTI

applications are investigating the proper strategies to incorporate both amplitudes and phase

information [100] [98] [92] [93] which are explained in Chapter 2. However, these methods all

first require the accurate calibrations between different SAR channels.

3.5.2 DEM-aided SAR using Real Data

DEM Calibration

As the DEM is absent in the original AFRL GOTCHA GMTI challenge dataset, we have to extract

the proper DEM data for the experiments. A coarse DEM on a regular 80 × 60 grid with latitude

and longtitude resolution of 0.0240 and 0.0250 respectively, i.e. latitude 39.771 to 39.795 and

longitude -84.1 to -84.075, was obtained from the United States Geological Survery (USGS)

seamless dataset (rougly 30 meters resolution) [111]. The coarse DEM coverage was initially

chosen to be larger than the observed scene of our SAR system for further processing, and the data

is in lla (latitude, longtitude, altitude) model. Based on the geometry, it is about 85.45 m for 0.001

degree longitude and 111.2 m for 0.001 degree latitude at that region. We translated the DEM data

into meters and show it in Fig. 3.5.

Since the monitored region does not match the retrieved DEM (Xcoarse,Ycoarse,Ecoarse)

at this stage, we have to find a reference point (Xref , Yref , Eref ) so that the elevation map can

be estimated by shifting the (Xcoarse,Ycoarse,Ecoarse) based on this point (Xref , Yref , Eref ),

and then interpolating on the imaging grid (xm, yl). Given that we have the ground truth

GPS information of one moving target (Xt,Yt,Et), where (Xt,Yt) contains its xy positioning

information and Et are the corresponding z coordinates, and they form a path on the terrain surface,

we can adopt the method aforementioned in section 3.4.1 to estimate the calibrated elevation map,

and then interpolate the map on our imaging x-y grid (xm, yl) to get zml. This approach is also

published in [5].

The interpolated DEM shifted with the reference point is shown in Fig. 3.6. As shown in the

DEM, the monitored region has significant elevation variations. The elevation variation can be as

large as 30 meters. We also depict the calibrated DEM along with the path of a moving target in
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Figure 3.5: The DEM with four times interpolations on both dimensions.

Figure 3.6: The estimated DEM which is associated with the imaging grid.
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Figure 3.7: The DEM after calibration and the target path. The target path (black circles) match
the DEM surface very well.

Figure 3.8: The DEM after calibration and the target path. The vehicle goes down a long slope
and slows down to turn right. Then it goes across a ’bump’.
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(a)

(b)

Figure 3.9: a) The extracted terrain map. The black circles show the target trajectory. b)
The corresponding Google map of this scene. Here we show a roughly extracted map and the
coordinates may have small inconsistencies with our formed SAR images.

69



SAR Pre-processing and DEM-aided SAR

Fig. 3.7 and Fig. 3.8 from different view angles. It can be seen that the target path matches very

well on the surface of extracted DEM. The target path in black circles disappear visually for some

segments because that the path is below the estimated DEM surface and the camera is in top-down

perspective. The target path corresponds to a slope and a “bump”. Furthermore, we compare the

reconstructed SAR images without and with the DEM. A further Google map of the monitored

region is provides for the visual comparison. The results can be found in Fig. 3.9.
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Figure 3.10: The formed high resolution SAR image with the proposed SAR/GMTI framework.
The elevation information is utilised. The red path indicates the moving target, and it matches the
road very well.

To better explain the illuminated area, we first briefly show the formed high resolution SAR

image of the whole scene via Fig. 3.10. This monitored scene is an urban region with significant

elevation variations. Based on the ground truth data, the scene is overlaid with the target trajectory

illustrated by the red path. With fewer sub-apertures, in Fig. 3.11 and Fig. 3.12, we present the

SAR images of the monitored scene without and with the DEM information respectively. They

are synthesized using range-gated images generated with (3.18). Here the image quality can be
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Figure 3.11: The synthesised SAR image of the observed region using the accelerated SAR image
formation without DEM correction. The red path indicates a moving target.

Figure 3.12: The synthesised SAR image of the observed region using the accelerated SAR image
formation with DEM correction. The red path indicates a moving target.

71



SAR Pre-processing and DEM-aided SAR

Observed scene without the DEM
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Figure 3.13: a) and b) The reconstructed SAR image in dB using the range-gated data to show the
GMTI scene without and with the DEM respectively. The red path stands for the target trajectory
based on the ground truth data.
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degraded due to the missing data as described in Chapter 2. It can be seen from Fig. 3.11 that the

target path has significant deviations from the road without the DEM data.

To be compared with Fig. 3.11, in Fig. 3.12, we show the formed high resolution image

with the proposed SAR/GMTI framework using the extracted DEM information. It can be

seen from Fig. 3.12 that the target path matches the road very well. The proposed framework

is capable of simultaneously maintaining such high resolution image formation and indicating

moving targets. The estimated target states are also very close to the ground truth as will be shown

in the experimental results, and the details will be presented through this thesis.

The zoomed-in scenario of Fig. 3.11 and Fig. 3.12 is demonstrated in Fig. 3.13 using

seamless sub-apertures. The estimated DEM is employed during the imaging process in Fig.

3.13.b. It can be seen that there can be a displacement of 10 to 20 meters between the road and

the target path along the x direction if we do not apply the DEM. It is even demonstrated in Fig.

3.13.b that the moving vehicle is driving by the right side of the road. Also it is shown in Fig. 3.9.a

that the observed region has significant elevation variations. We show the corresponding Google

map in Fig. 3.9.b. It can be concluded from this figure that the target path is much better aligned

with the road in the formed SAR images with the DEM information.

3.6 Summary

In this chapter we addressed two crucial facets in SAR-based GMTI application, i.e. the

calibrations between different SAR channels and the exploitation of DEM in SAR/GMTI. We

have presented practical channel balancing methods. The effects of the azimuth pulse numbers

and strong reflectors are analysed. We also introduce the estimation of channel spacing based on

the channel balancing. Furthermore, we present the exploitation of the DEM in SAR-based GMTI

applications. Specifically we consider the DEM extraction and DEM-aided moving target imaging

in this chapter. We demonstrate the performance of these approaches through the AFRL GOTCHA

GMTI challenge dataset. We also discuss about some necessary calibrations with respect to this

dataset.
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Moving Targets and Background Decomposition

4.1 Introduction

Consider a typical airborne SAR scheme, a number of moving vehicles usually exist in the

observed scene. The Ground Moving Target Indication (GMTI) techniques can be combined

with the SAR imaging approaches discussed in Chapter 3 to pick up moving targets within the

formed images. These GMTI methods provide the capabilities of detecting the moving targets

within a complex background which are of value for both civil and military applications. The

targets can be analysed and their states including the physical positions and velocities can be

estimated in the post-processing stages with other advanced signal processing techniques. Given

that the background consists of man-made structures, static reflectors, vegetation, moving objects

and speckle noise, marking the moving targets especially those buried in the clutter interference

is challenging. Furthermore, the basic SAR mechanism assumes a stationary scene, and a moving

target will induce displacement and blurring in the formed images.

A multi-channel SAR system gives additional features for GMTI applications compared to

single-channel methods. For single-channel approaches, slowly moving targets will result in

detection difficulties since their Doppler frequency shifts fall into the endo-clutter spectra, i.e.

the Doppler band with non-negligible clutter energy (mainlobe clutter). The multi-channel SAR

configuration has better detection capabilities, and it has smaller minimum detectable velocity

(MDV) compared to the single-channel mode [93]. It is worth mentioning that conventional multi-

channel approaches (such as DPCA,ATI, and STAP) have been proven to work properly under

homogeneous clutter. However, for non-homogeneous terrains, such as mountains with large

terrain variations and urban regions with strong building scatterers, the aforementioned methods

may miss the detections and advanced techniques are needed to be employed [112].

In this chapter we introduce a sparsity based framework for multi-channel SAR-based

GMTI applications. A fundamental additive model is assumed, (4.1), such that the SAR image
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X ∈ CM×L can be decomposed into the background image (static reflectors) Xs and the dynamic

image Xd (moving targets) which is assumed to be sparse.

X = Xs + Xd (4.1)

By leveraging the sparsities of Xd, i.e. the moving targets are sparse in the monitored scene,

the GMTI task can be formulated as a sparsity regularised optimisation problem to separate Xd

from Xs, and estimate the moving target states, i.e. their locations, reflectivities and velocities.

Unlike conventional clutter suppression methods such as DPCA and ATI which are mainly based

on detecting the moving targets, the presented framework is capable of decoupling the moving

target signal and the strong background clutter, and it provides further potential to implement

subsequent automatic target recognition (ATR) [17], or even inverse SAR [115] on the extracted

moving targets. In addition, the proposed framework is sufficiently versatile to incorporate the

DEM which further improves the moving target relocation accuracy, especially when significant

elevation variations exist.

Consider the typical SAR-based GMTI tasks of image formation, target indication, and state

estimation, the conventional SAR/GMTI systems typically realise these tasks in multiple stages.

The proposed sparsity based framework aims to integrate these GMTI goals into an optimisation

problem regularised by target sparsities, and it serves as a generic model for tackling these

problems which can also incorporate other SAR imaging algorithms. The proposed model thus

forms an end-to-end SAR/GMTI framework. Although the integrated model can be established,

solving the optimisation problem in practice within one processing stage is very challenging as

the target locations change as a function of their estimated velocities. Therefore a practical

solution is to employ a compromise and break the problem into a two stage process where

we first utilise target sparsities to separate the blurred and misplaced moving targets from the

static background scene and subsequently relocate and refocus individual moving targets, again

exploiting the sparsity constraint. While the two stage process sacrifices a degree of sparsity (the

blurred targets are less sparse than the correctly focused ones), it results in a simpler more tractable

problem. We also consider the incorporation of the DEM information throughout the framework

and provide solid experimental results via the real AFRL GOTCHA GMTI challenge data. In

this Chapter we focus on the moving targets and background separation which can be compared

with conventional GMTI algorithms such as DPCA/ATI, and the second stage is subsequently

investigated in Chapter 5.
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4.2 Moving Targets and Background Decomposition

In this section we introduce the model of the proposed SAR/GMTI framework, and present a

practical algorithm for target/background separation and radial velocity estimation. We start by

employing the variable splitting approach to the SAR image domain, and denote Xs ∈ CM×L

and Xd ∈ CM×L as the static background and moving (misplaced and blurred targets) target

reflectivities for the first channel respectively. As there are limited number of moving targets in

the observed scene, Xd can be regularised with sparse constraints. Motivated by the fact that

the formed images of one moving target between neighbouring channels have a phase difference

(4π/c)f0v
(r)(d/vp) which encodes the target radial velocity (f0 is the central frequency of the

transmitted signal). We can then introduce a phase correction matrix that enables us to describe

the dynamic image in the other channels, and specifically Xd can be assumed to be sparse given

that there are typically few spatially localized moving targets in the observed scene (Xd is assumed

to have at most s non-zero entries). Therefore, it is possible to set up a novel sparse-regularised

optimization problem for SAR/GMTI tasks, and further auxiliary information (such as the DEM)

can be involved in this framework.

Given the pre-processed phase histories Ỹi and calibrated DEM, the moving targets and

background decoupling model is described as:

min
Xs,Xd,P

1

2

∑
i

‖Ỹi − Φ0
F (Xs + Xd � Pi−1)‖2F

s.t. ‖Xd‖0 ≤ s

supp(Xd) = supp(P-1)

|Pml| = 1, m = 1, . . . ,M, l = 1, . . . , L

(4.2)

where P ∈ CM×L is the phase correction matrix on Xd which has element-wise magnitude 1

entries (e.g. the stationary reflectors off the support of Xd have zero phase shifts Pml = exp (j0) =

1), the moving target reflectivities in Xd are assumed to be s−sparse, and supp(Xd) stands for the

support set of Xd indicating the non-zeros in Xd.

As shown above the radial velocity of the target is encoded in the phase of P. Xd and P-1

have the same support on the pixels which form the moving targets, and P-1 is thus s−sparse as
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well. We assume that the channel phase centers are equally spaced and define Pi as:

Pi = P� . . .� P︸ ︷︷ ︸
i

(4.3)

where i > 0 and P0 = 1.

By leveraging the sparsity of the moving targets and maintaining the data fitting fidelity, the

presented model (4.2) retrieves the formed images for both moving targets Xd and background

Xs, and simultaneously estimates a phase correction matrix P. Practically P leads to the direct

estimation of the radial velocities of the moving targets (similar to the argument in ATI).

Note that Xd corresponds to the misplaced and blurred moving targets without considering

velocity components. A variant of (4.2) can be formulated by considering full target velocity

vectors, and the state estimation of moving targets is thus simultaneously realised in this

processing stage. However, the target locations change as a function of their estimated velocities,

and we do not have the computational effective forward/backward projection operators [1] to

simultaneously image all moving targets. This difficulty drives us to put aside the full target

velocity vectors in (4.2) and employ the moving target state estimation in the subsequent

processing which we will revisit in Chapter 5. The complete processing pipeline of the proposed

SAR/GMTI framework is depicted in Fig. 4.1.

Phase 

histories Pre-processing
Moving targets and 

Background Decomposition

Sparsity

Moving targets

Background

Moving Target Imaging and

Target State Estimation

Target states

Refined moving target image

(refocused and relocated)

DEM

Figure 4.1: The complete processing pipeline of the proposed SAR/GMTI framework.

Since (4.2) is a challenging non-convex optimisation problem, we first reformulate it for

a more practical implementation. To simplify tackling this non-convex optimisation, we first

introduce the intermediate variables dX1 = Xd�P−Xd = Xd� (P − 1) and X1 = Xs + Xd.

These let us to establish good initialisations with DPCA and ATI algorithms. Particularly dX1

can be taken as the differences between the SAR images of the 2−nd and 1−st channels, and

X1 corresponds to the reconstructed SAR image based on the first channel. Therefore dX1 and

X1 can be initialised with the DPCA and back-projection algorithms. Now we have the bijective
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(both injective and surjective) mapping [116] from the variable set {Xs,Xd,P} to {X1,dX1,P}.

We then propose an alternating update mechanism on X1, P and dX1 that alternately updates one

of them at a time while keeping the others fixed. With I radar channels (4.2) can be rewritten as:

min
X1,dX1,P

1

2
‖Ỹ1 − Φ0

F (X1)‖2F+

1

2

I∑
i=2

‖Ỹi − Φ0
F (X1 +

i−1∑
j=1

dX1 � Pj−1)‖2F

s.t. ‖P-1‖0 ≤ s

supp(dX1) = supp(P-1)

|Pml| = 1, m = 1, . . . ,M, l = 1, . . . , L

(4.4)

Since we have ‖Xd‖0 = ‖P− 1‖0 = ‖dX1‖0 and equal supports, the sparsity constraint can be

introduced to assume that P-1 has no more then s non-zeros.

While we have proposed a more simpler model which only estimates the differential SAR

images between channels [10], this evolved model is more complete. Our earlier efforts into

approximating the model (4.4) can be found in [6], and the brief idea was leveraging the sparse

approximation theory, intermediate variables, and heuristic updates with iterations. However,

the heuristic updates do not have the theoretic performance guarantee. To have a more rigorous

implementation, we have developed a new algorithm which uses a different intermediate variable

set, gradient descent updates and the backtracking mechanism (we re-estimate the variables for an

iteration whenever the objective value is not decreased) [117]. We next present the details of the

algorithm.

The detailed implementation of the proposed decomposition method can be found in

Algorithm 4.2.1. Through the iterations, X1 is updated along the negative gradient direction,

the phase correction matrix P is updated with gradient decent methods followed by an element-

wise projection onto the the unit ball and thresholding operations [118] on P-1 (the cost function

is non-increasing with appropriate step sizes as shown in [119]), and dX1 is computed using

gradient decent methods while its support is limited by supp(dX1) = supp(P-1). Throughout

the algorithm, the final support of dX1 and P-1 are achieved by iteratively thresholding P-1.

As the magnitudes of P-1 are bounded between 0 and 2, and Xd has no upper bound for its

magnitudes, one advantage of thresholding P-1 is to prevent the elements of Xd from having

excessive magnitudes, when we estimate Xd based on P-1.

78



Moving Targets and Background Decomposition

To achieve accurate approximations within a few iterations, we initialise dX1 with the DPCA

algorithm using the first two channels, X1 using the back-projection algorithm on the first channel,

and P with N
(

Φ0
B(Ỹ3 − Ỹ2)� Φ0

B(Ỹ2 − Ỹ1)
)

respectively, where N is the normalisation

operator (N (P) = P� |P|) to preserve the phases and P indicates the conjugated P. |k stands for

the corresponding variable in the k−th iteration. γ1, Γ2 and γ3 are the step sizes in the gradient

descent directions. T (a, b) is the hard-thresholding operator which sets all the elements in a below

b (in magnitudes) to zeros, and ψ is a threshold value which can be tuned to threshold Xd for the

visualisation purpose. The value of ψ is driven by the level of noise in the data, and in practice it

can be 0 or a small value (e.g. < 0.5%‖Xd‖F ) for subsequent processing.

For the three-channel case, we approximate the step sizes with γ1 = ‖Ỹ1‖2F /‖Φ0
B(Ỹ1)‖2F ,

Γ2 = ‖Ỹ1‖2F /‖Φ0
B(Ỹ1)‖2F � |dX1|2 and γ3 = ‖Ỹ1‖2F /‖Φ0

B(Ỹ1)‖2F /2 based on the spectral

norm argument given in [120] (the upper bounds of the step sizes are given in [120]). Note

that these step sizes play crucial positions in the gradient descent methods. Although these step

sizes work well in practice to decrease the objective function, to rigorously guarantee the non-

increasing of the cost function, we can employ the following backtracking mechanism at the end

of each iteration. Let f(X1,dX1,P) be the objective function in (4.4). Whenever we find that

f(X1|k+1,dX1|k+1,P|k+1) > f(X1|k,dX1|k,P|k) at the end of each iteration, we restart the

k−th iteration with a halved γ1, Γ2 and γ3.

Similarly we employ the backtracking mechanism for updating P because of the complicated

constraints on it, i.e. in (4.5) we estimate P|k+1 with the weighted combination of the new estimate

and previous estimate P|k, and P|k+1 is re-estimated with halved λ if f(X1|k+1,dX1|k,P|k+1) >

f(X1|k+1,dX1|k,P|k).

The update equations for P and dX1 are defined as followings:

Pml|k+1=


λ×N

(
Pml|k+0.5

)
+ (1− λ)× Pml|k |N

(
Pml|k+0.5

)
− 1| > ϕ

1 otherwise
(4.5)

dX1
ml|k+1=


dX1

ml|k+0.5 Pml|k+1 6= 1

0 otherwise
(4.6)

where λ (default value is 1) is used for the backtracking mechanism. ϕ is an application-based

constant for controlling the sparsity of moving targets.
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Algorithm 4.2.1: : Iterative algorithm for approximating the solution of (4.4).

1: {Initialisation} k ← 1; X1|k ← γ1Φ
0
B(Ỹ1); P|k ← N

(
Φ0
B(Ỹ3 − Ỹ2)� Φ0

B(Ỹ2 − Ỹ1)
)

;

dX1|k ← γ1Φ
0
B(Ỹ2 − Ỹ1); Xd ← 0

2: while k < K do
3: {Updating X1} X1|k+1 ← X1|k −

γ1
3
×

Φ0
B

(
Φ0
F

(
I × X1|k+

I−1∑
i=1

(i× dX1|k � PI−1−i|k)

)
−

I∑
i=1

Ỹi

)
4: {Updating P} P|k+0.5 ← P|k − Γ2�

I∑
i=3

(
Φ0
B

(
Φ0
F

(
X1|k+1+

i−1∑
j=1

dX1|k � Pj−1|k)

)
− Ỹi

)
�

(
i∑

j=3
(j − 2)dX1|k � Pj−3|k

))
5: P|k+1 from (4.5)
6: {Updating dX1} dX1|k+0.5 ← dX1|k − γ3×

I∑
i=2

(
Φ0
B

(
Φ0
F

(
X1|k+1+

i−1∑
j=1

dX1|k � Pj−1|k+1)

)
− Ỹi

)
�

(
i∑

j=2
Pj−2|k+1

))
7: dX1|k+1 from (4.6)
8: k ← k + 1
9: end while

10: {Output} P← P|K ; Xd ← T
(
dX1|K�(P− 1), ψ

)
on supp(dX1|K); Xs ← X1|K − Xd

Furthermore, by comparing (4.2) to the EDPCA (2.80), we can summarise the key features

(similarities and differences) of them as follows. Firstly, both approaches require the suppression

of clutter. While the proposed method is cancelling the clutter with the channel balancing and

decomposition model, the EDPCA is cancelling the clutter via the inverse of the clutter-plus-noise

covariance matrix. Secondly, both methods are coherently processing the multi-channel data.

While the proposed framework encodes the channel differences in the phase correction matrix P,

the EDPCA algorithm is compensating the channel differences via the steering vector PH
vec(ϑt).

Thirdly, both models attempt to maximise the target responses. While the proposed framework

is estimating the motion parameters by exploiting the target sparsities, the EDPCA algorithm is

realising the estimations via the SAR compression with different target states ϑt. Finally, both

methods are implementing the target indication in the image domain. It can be seen from these

features that, various SAR/GMTI algorithms are essentially utilising the similar information and

employing similar procedures though they are modelling the GMTI tasks in different ways. The

proposed framework is different from others with the exploitation of sparsity and optimisations.
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4.3 Required Number of Channels

It is worth mentioning that at least three channels are required to complete the task of decoupling

the moving targets and the background. With less channels the feasible set (assuming exact data

fidelity) would be the whole space and therefore there would not be enough constraints to identify

the sparse moving targets. Consider a simple three-channel SAR system with a single moving

target at position (m, l), we denote Xi (i = {1, 2, 3}) as the reconstructed reflectivities for the

i−th channel. Therefore we have the equations:

X1(m, l) = Xs(m, l) + r

X2(m, l) = Xs(m, l) + rq

X3(m, l) = Xs(m, l) + rq2

(4.7)

where r ∈ C is the reflectivity of the target, and q ∈ C is the phase correction of the target between

channels which lies on the unit ball.

Based on the observations Xi, (4.7) would be enough to retrieve the three unknowns Xs(m, l),

r and q. However, if we are given only the first two channels (the first two equations in (4.7)), we

can still estimate r and q as long as r � Xs(m, l) (this is essentially the ATI assumption) via:

r = X1(m, l)

Xs(m, l) = 0

q = X2(m, l)/X1(m, l)

(4.8)

However, when Xs(m, l) is not negligible, (4.8) is inaccurate and we have ambiguities in

estimating Xs(m, l), r and q. Therefore q and the radial velocity of the target can not be accurately

estimated when the target is mixed with significant clutter energy. These scenarios are common

especially in urban environments.
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4.4 Experimental Results

4.4.1 Experiments using Simulations

In this section we first consider a simulated scenario to demonstrate the effectiveness of the

proposed model. Within standard Cartesian coordinates, the platform carries a three-channel SAR

system in spotlight mode, and the first antenna (fore-antenna) linearly moves from (7000, -25,

7000) m to (7000, 25, 7000) m with velocity vp = 200 m/s. The channels are evenly spaced on the

platform track with 0.1 m. The pulse repetition frequency (PRF) is 2000 Hz, the central frequency

of the transmitted signal is 10 GHz to simulate an X-band Radar, and the range frequency step

size is 800 kHz. The monitored region consists of two moving targets which move from (0, 0, 0)

m with (2, 26, 0) m/s and from (-50, 50, 0) m with (-3, -16 , 0) m/s respectively. The key system

parameters are summarised in Table 4.1.
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Figure 4.2: The formed image in dB based on the first channel data with the fast back-projection
algorithm. The horizontal and vertical axes correspond to range and cross-range directions
respectively.

We have obtained the phase histories as 313 × 500 matrices, and the discrete grid to be

considered here is 512×512 which corresponds to -100 m∼100 m in x direction and -100 m∼100

m in y direction. Static targets are distributed on this grid and one stronger static target is located at

(50, 0, 0) m. ATI is well known to be hampered by the scenarios where moving targets and clutter

are mixed together. Relatively stronger amplitudes and random phases are given to the static clutter
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in a rectangular region on purpose to be mixed with one moving target in the image domain and

test the performance of the decomposition. Also we add Gaussian random noises (approximately

13 dB SNR) to the raw data. Thus this simulated scenario forms a typical challenging GMTI task

which can be visualised in Fig. 4.2. It can be seen that the moving target at (0, 0, 0) m is shifted

to the top and mixed with the rectangle, the other moving target at (-50, 50, 0) m is shifted to the

bottom, and both of them are defocused along the azimuth direction.

Table 4.1: The system parameters of the simulated scenario

platform start point (m) (7000, -25, 7000)

platform end point (m) (7000, 25, 7000)

platform velocity (m/s) 200

channel number 3

channel space (m) 0.1

PRF (Hz) 2000

central frequency (Hz) 10G

range frequency resolution (Hz) 800k

1st moving target start point (m) (0, 0, 0)

1st moving target velocity (m/s) (2, 26, 0)

2nd moving target start point (m) (-50, 50, 0)

2nd moving target velocity (m/s) (-3, -16 , 0)

phase history size (313, 500)

SAR image size (512, 512)

Observed range in x direction (m) (-100, 100)

Observed range in y direction (m) (-100, 100)

static target location (m) (50, 0, 0)

SNR of raw data (dB) 13

We first calibrate the raw phase histories with multiplications in the Fourier domain to realise

the delay in time domain. Then the three balanced data sets Ỹ1, Ỹ2 and Ỹ3 are processed with

the presented moving targets and background decomposition model. Since SAR applications are

essentially high volume data processings, as shown in Algorithm 4.2.1, we start with the presented

initialisation to retrieve acceptable results within few iterations, and set ϕ to 0.005.

The comparisons of the decompositions with different iteration numbers (1, 2, 5, 10) are

shown in Figure. 4.3. It can be seen that with proper initialisations we can have the acceptable

decomposition performance within few iterations. With iterations, the two moving targets are

significantly better removed from the background images and the static target is significantly better
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Figure 4.3: The decoupled SAR images displayed in dB using the proposed approach. a) c) e) g)
The background images with 1, 2, 5 and 10 iterations respectively. b) d) f) h) The SAR images of
the moving objects with 1, 2, 5 and 10 iterations respectively.
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removed from the images of moving targets. Here the rectangle is well separated from the moving

target with 10 iterations. With conventional methods the whole support of the moving targets is

cropped, and the amplitudes and phases will not be accurately estimated.

meters
-100 -50 0 50

m
et

er
s

   -100

  -50

0

 50

-10

-5

0

5

10

Figure 4.4: The estimated velocity map in x direction which correspond to the estimated P after
10 iterations with proper initialisations.

The estimated phase correction matrix P is transferred to the velocities in x direction via

vx =
√

2(c/(4π))∠P(vp/(f0d)), where ∠ is an operator to extract the phases, and the estimated

vx is shown in Figure. 4.4 (only valid on the support of the two moving targets). We take

the local mean values of vx as the estimations for the target velocities and get -2.94 m/s and

2.06 m/s which are close to the ground truths. Here the standard ATI on the first two channels,

i.e. ∠P = −∠(Φ0
B(Ỹ1) � (Φ0

B(Ỹ2))
∗), gives the velocity estimations as -2.87 m/s and 1.5 m/s

(local mean values). The ATI results remain consistent for the -3 m/s target but have significant

deviations for the target which is mixed with the rectangular clutter.

4.4.2 Experiments using Real Data

In this section, the proposed decomposition framework as described in Algorithm 4.2.1 is

implemented to decouple the moving targets and background for the AFRL GOTCHA GMTI

challenge. As discussed in Chapter 2, we need to calibrate the ground truth velocities of

the moving target for this dataset. Based on the positions of the target in the ground truth,

we differentiate its corresponding coordinates to estimate its velocities in the z direction v(z).
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Specifically, with the DEM we estimate v(z) based on the differences in z direction and smooth

the velocity vector with a five tap moving average filter. The radial velocities of the moving target

are are shown in Fig. 4.5. Particularly the blue line indicates the given velocity elements, the

red line is estimated completely based on the differentiation of the positions, and the green line

is approximated with the given xy velocity components and GPS-based z velocity. We take the

green line as the baseline of the radial velocities in the experiments.
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Figure 4.5: The comparison of the estimated radial velocities (m/s) of the target with time based
on blue (the given velocity in xy), red (the differences of the GPS) and green (the given velocity
in xy and differences of the gps in z direction).

We then directly estimate the radial velocities from P for all image pixels within nine sub-

apertures (centered at the 25−th, 30−th, 35−th, 40−th, 45−th, 50−th, 55−th, 60−th and 65−th

second respectively). As we have estimated the velocity map for the whole image, the estimated

velocities can vary from pixel to pixel and the accuracies of relocations are very sensitive to the

estimated radial velocities. In this section we focus on the moving target for which we have the

ground truth with a 15-by-15 window centered on the target in Xd, and extract its phase history

with Yd1 = Φ0
F (Xd1). To have a single velocity estimation v(r) for this target, we need to integrate

these pixel-wise velocities. By assuming that the pixels with large magnitudes in Xd1 are likely

to be the targets, we employ the weighted average within the window to estimate a single radial

velocity, using weights proportional to the pixel magnitudes. The pixels which have significant
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deviations (larger than 2 m/s) from the estimated velocities are removed.

DPCA result of the 1st and 2nd channel
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Figure 4.6: The DPCA image between the 1-st and 2-nd channel centered at the target.

With the estimated v(r), we apply the moving target imaging approach (3.22) to Yd1 to

localise the relocated target. A hybrid DPCA/ATI method (using pair-wise DPCA and passing

the results to ATI) is used as the baseline which was shown to outperform the pure ATI and

DPCA [92]. (Note that, for a fair comparison, we employed the fast imaging operators [1] instead

of the Doppler processing described in [92].)

A typical decomposition at the 50−th second is shown in Fig. 4.6 and 4.7. It can be seen

that the proposed method decoupled the main energy of the target and the background (here the

ψ in Algorithm 4.2.1 is 0.35%‖Xd‖F to threshold Xd for visualisation purpose). Note that we

consistently set ϕ = 0.5 to control the sparsity of moving targets in Algorithm 4.2.1, regardless

of the sparsity of the scenarios among different snapshots, and this threshold controls how we

retrieve the support of Xd which leads to the balance of the energy allocation between Xs and Xd.

Practically ϕ can be lowered to achieve a better decomposition for this sub-aperture.

In Fig. 4.8 we show how the cost function varies with iterations in the processing of this

snapshot, demonstrating the non-increasing property. It is worth mentioning that empirically in all

our experiments the Algorithm 4.2.1 works without triggering the backtracking mechanism in our

experiments.
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Figure 4.7: a) The background image centered at the target. b) The SAR image of the moving
target.

88



Moving Targets and Background Decomposition

iteration number

0 5 10 15

o
b

je
c
ti
v
e

 v
a

lu
e

×10 4

0.5

1

1.5

2

2.5

3

3.5

4

4.5
The objective function over iterations

Figure 4.8: The objective function of (4.4) with iterations.
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We processed the nine sub-apertures, and compared the estimated radial velocities to the

ground truth in Fig. 4.9. Here we employed 3 and 15 iterations in Algorithm 4.2.1 respectively

to compare the performance. Each sub-aperture contains 400 azimuth samples (roughly 0.18

seconds). In Fig. 4.9 the proposed method has better accuracy in estimating radial velocities

compared to the hybrid DPCA/ATI. With 15 iterations we received a smaller error on the

radial velocity estimation. The proposed decomposition method gives better performance on the

target/clutter decomposition with more iterations.

Note that at the 55−th second, the scenario is challenging for conventional SAR-based GMTI

techniques. Firstly, this sub-aperture corresponds to the moment that the target is mixed with a

strong static clutter (buildings). It significantly hampered the correct estimation. Secondly, at this

moment the vehicle is moving away from the antenna with 6.84 m/s. As the pixel-wise radial

velocities are estimated based on the phase of P, the phase wrapping leads to an estimation cycle

on the radial velocities (the cycle is 6.6 m/s for this sub-aperture). The ground truth is very close

to the cycle value which means that it is easily confused with zero velocities and the thresholding

operations in (4.5) is likely to threshold certain components of the target which increases the

estimation errors.

4.5 Summary

In this chapter we consider the typical SAR-based GMTI challenge with a multi-channel SAR

system. We first introduce the conventional GMTI methods DPCA and ATI. A state-of-the-art

method hybrid DPCA/ATI is also presented to be the baseline for comparison in this thesis. We

further discuss about how we are inspired by the DPCA/ATI and sparsity to design the SAR/GMTI

framework. We have proposed a novel sparsity-aided framework to decompose SAR data into

dynamic and static portions which correspond to the moving targets and clutter/background

respectively. This model is sufficiently versatile to incorporate the DEM information. We give

out the details of the proposed framework and a practical implementation of the model in this

chapter. The limitations of this model are analysed, and the effectiveness of the proposed model

is demonstrated through both simulations and real data (AFRL GOTCHA challenge dataset). We

have shown decent background/targets decompositions and accurate radial velocity estimations in

the experiments.
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5.1 Introduction

With the aforementioned GMTI methods, there still exist a number of problems in the practical

SAR/GMTI processing. First of all, some GMTI approaches such as the conventional DPCA

and ATI algorithms are not developed to realise the full target state estimation though the radial

velocities can be estimated via ATI. Secondly, some methods focus on a specific problem in

the SAR/GMTI application with specific assumptions and thus do not tackle all GMTI tasks.

Furthermore, typical SAR-based GMTI applications often require to process large volume of data,

and they are significantly hampered by the high computational load. While the DPCA and ATI

algorithms can be implemented with efficient computations, other statistical test algorithms which

calculate weights for each cell and parameter combination are still too computational intensive.

Lastly, the recent sparsity-aided GMTI investigations such as [94] [108] focus on the narrow

aspects in SAR/GMTI which are not comparable to the conventional whole SAR/GMTI processing

chain. Also some latest sparsity driven methods such as [106] encounter difficulties in practical

implementations (e.g. can be over-complicated and dealing with simplified scenarios), and they

are currently limited to simulations.

By investigating the sparsity driven SAR/GMTI framework in this thesis, we have made

attempts to resolve some key problems of the existing methods aforementioned. Following the

developed SAR/GMTI models in the Chapter 4, in this chapter, we first analyse the role of DEM

in target state estimation. Next, by exploiting the target sparsities, we introduce the sparsity-aided

moving target imaging and target state estimation. We implement this algorithm as the final stage

of the complete pipeline to benefit from the extracted moving targets using the previous stage and

thus significantly decrease the complexity of the target state estimation model. This processing

mechanism to estimate target states within a separated stage can thus be directly compared

with conventional SAR/GMTI target state estimation algorithms. As it is not straightforward

to simulate an elevation map, we directly demonstrate the effectiveness of the DEM-aided target
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state estimation approach through real data. The proposed sparsity-aided target state estimation

and imaging methods are demonstrated via both simulations and the AFRL GOTCHA SAR/GMTI

challenge dataset.

5.2 DEM-aided Target State Estimation

In this section we focus on the role of DEM in moving target state estimation. We will introduce

the sparsity-aided target state estimation in the next section. There has been a number of

investigations in estimating the states of moving target. For example, it is well known that the

radial velocities of moving targets correspond to the phase differences between SAR images from

different channels in ATI [121] [122], and the azimuth velocities can be estimated through a

bank of filters [123]. It was suggested in [124] that the azimuth velocities of moving targets

can be analysed with a Fractional Fourier transform in the time-frequency domain. In [10] it was

reported that the estimated velocities can be selected by best focusing the targets to give sharp

image patterns and also maintaining the data fidelity.

The utilisation of DEM also give us a direct estimation on the v(z)t in vt by differentiating the

elevations, which provides us a further constraint on the velocity estimations. It can also be used

as an auxiliary criterion to help calibrate the velocities estimated by other methods. The targets are

assumed to follow the surface of the DEM and its trajectory is constrained to a 2D surface in 3D

space. In particular, for far-field observation, the target velocity components obey the geometrical

restriction Υ which can be defined as:

v(r) ≈ −〈v(x), r(o)1

r
(o)
1

〉 − 〈v(y), r(o)1

r
(o)
1

〉 − 〈v(z), r(o)1

r
(o)
1

〉 (5.1)

where negative v(r) means that the target is moving away from the platform. As v(z) is in general

not too large in most scenarios, with not too large sub-apertures (i.e. not too large observation

duration), we can approximate it by differentiating the coordinates of the relocated target at

different frames.

Given the estimated v(r) and (5.1), v(x) is a function of v(y). This spatial constraint can thus

be described via:

vt = Υ(v(z), v(r)) (5.2)
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=

((
−v(r) − 〈v(y), r(o)1
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1
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(o)
1

〉

)
/〈v

(x)

v(x)
,

r(o)1

r
(o)
1

〉, v(y), v(z)
)

(5.3)

where Υ represents the geometrical constraint operator defined by the DEM and platform

positions.

In addition, when the targets are moving on roads in urban environments, the geometrical

information of the road could be used in combination with the DEM to estimate the target states

in three directions (v
(x)
t , v

(y)
t , v

(z)
t ). The effects of DEM in the estimation of moving target states

are demonstrated through the section of experimental results.

5.3 Sparsity-aided Target State Estimation and Imaging with DEM

In this section, we introduce the sparsity driven target state estimation and imaging algorithm

within the proposed SAR/GMTI framework in details. By comparing to the method in Section

5.3.1, the proposed algorithm is utilising the sparsity from a different way. Specifically, we

will show that, the method in Section 5.3.1 is considering a pixel-wise sparse approximation

problem, and the proposed framework is considering the local imaging around a target, and we

are processing one moving target at a time. While the method in Section 5.3.1 is exploiting the

sparsity in radial velocity components, and the proposed algorithm is exploiting the sparsity in the

SAR images of moving targets. Furthermore, we have separated out the zero velocity component

from the dynamic part and hence it is reasonable to assume that in each cell there is likely to be

only a single target.

The task of estimating the target states requires us to consider the problem in a higher

dimensional parameter space instead of the conventional physical coordinates space (x-y-z

space). Therefore, by combining the full velocity map of the whole observed scene V with

the physical space, we can generate an extended SAR processing space, and estimate the target

states (positions, velocities, etc.) that correspond to the sparsest configuration in the space. As

illustrated in Fig. 5.1, the moving target imaging task is equivalent to a search problem in a higher

dimensional space. We are able to solve this since the at the correct velocity the target should be

better focused, and therefore sparser in the extended space.

Based on this motivation, the moving target state estimation can be naturally realised within

the proposed sparsity-regularised SAR/GMTI framework. As explained in Chapter 4, the more

complete framework of the sparsity regularised model (4.2) can be derived to simultaneously
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different V

Figure 5.1: The high dimensional space for the moving target imaging and estimation. The target
states correspond with the sparsified image of this target.

realise all SAR/GMTI tasks including SAR imaging, target detection, target state estimation, and

moving target imaging with relocation and refocusing:

min
Xs,Xd,P,V

1

2

∑
i

‖Ỹi − ΦV
F (Xs + Xd � Pi−1)‖2F

s.t. ‖Xd‖0 ≤ s

supp(Xd) = supp(P-1)

P = exp

(
−j 4π

c
f0V(r) d

vp

)
V = Υ(V(z),V(r))

(5.4)

where ΦV
F denotes the DEM-aided forward-projection operator with the full velocity map, the

constraint on P is an element-by-element function, and Υ is the geometrical restriction that

constrains the velocity components in different directions (5.3).

However, it can be seen from (5.4) that the model corresponds to a very large search space

with a complex and non-separable constraint set. It is very challenging to directly solve this

problem with such a large feasible set and multiple variables. Furthermore, as explained in Chapter

3 and 4, the target locations (the support of Xd) change as a function of the target velocities and

we do not have the efficient implementation for the projection operator ΦV
F with full velocity map

V. As the compromise, we are able to present the efficient projection operator for one moving

target with its velocity vector vt (3.21) which is also consistent with the efficient algorithm in [1].

Considering these difficulties in the practical implementation, we thus break this complete model
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(5.4) into a two stage process where we first resolve (4.2) without the full target velocities (as

described in Chapter 4) and then focus on the target state estimation.

Given the estimated reflectivities of the decoupled moving targets Xd, we now extend the

analysis to selected targets in order to estimate their full states and enhance the target image

formation with relocation and refocusing. Here we consider the integration of target velocities

and the DEM into the SAR imaging of the moving target. The SAR image formation with the

DEM can be realised via (3.20). Let us focus on a single moving target of interest and use a

local rectangular window to capture its reflectivities Xd1. We denote the target velocity vector as

vt = (v(x), v(y), v(z)) and the measurements associated solely with the imaging contribution of the

target as Yd1 = Φ0
F (Xd1). The image formation of this moving target with the DEM and known

velocities can be formulated as (3.21).

In this work the moving target imaging is realised with (3.21) and (3.22). It can be seen that

the target velocity can be naturally embedded in the fast SAR imaging mechanism [1] by fixing the

range histories with pre-calculated constant vectors. Therefore, the velocity estimation problem

can be tackled by utilising the efficient projection operators and target sparsities:

vt = argmin
v†

‖Θv†(Yd1)‖1

s.t. v† = Υ(v(z), v(r))

supp(Θv†(Yd1)) = κ

(5.5)

where Θv† is the approximated velocity compensated backward operator for the moving target,

κ is the support set (a 10-by-10 window in this work) of the relocated target centered at the

stongest pixel, and the target velocity obeys the geometrical constraint, v† = Υ(v(z), v(r)), which

represents the spatial constraint defined by the DEM and platform positions. v(r) can be estimated

directly from P, and v(z) can be estimated by differentiating the DEM based on target positions

between neighbouring sub-apertures.

It can be seen from (5.5) that we are considering locally in a neighbourhood of the target

position and the goal is to adapt the velocity components to refine the image. Given the estimated

v(r) and v(z), we can have v(x) as a function of v(y) and this optimisation problem becomes a

simple one dimensional line search problem. Thus we are essentially employing the exhaustive

search for v†. Here Θv† is calculated with the LSQR algorithm [125] to approximate the pseudo-

inverse of the velocity compensated forward operator. In particular the LSQR algorithm is
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employing the developed fast projection operators with iterations to improve the data fidelity. We

form the moving target image Θv†(Yd1) for each target velocity vector v† as measured in (5.5),

and then select the v† through the L1 pseudo-norm on the reconstructed image. Note that the

DEM may have limited accuracy, but the estimated v(z) can still be used as an auxiliary parameter

in (5.5). Finally Θv†(Yd1) is the formed SAR image of the moving target with relocation and

refocusing.

5.4 Experimental Results

5.4.1 Experiments using Simulations

In this section we first consider the simulated scenario as presented in Chapter 4. By retrieving

the states of the two moving targets and forming their SAR images, the aim is to demonstrate the

effectiveness of the sparsity-aided target state estimation through this simulated scenario. Note that

we choose the 10-iteration results from the previous processing stage to estimate the background

image Xs, dynamic image Xd and the phase correction matrix P. The estimated velocities in x

direction for the two targets are 2.06 m/s and -2.94 m/s respectively as described in Chapter 4.

The reflectivities of the two moving targets are then extracted by focusing the detected moving

targets with 30-by-30 rectangular windows, and the phase histories of the targets are estimated via

Yd1 = Φ0
F (Xd1). Given that this simulation contains no elevation information (v(z) == 0), based

on the estimated v(x) and (5.5), we line search for the velocity in y direction v(y) with 0.5 m/s

searching intervals in this work.

In particular, the target image Θv†(Yd1) for each v† is formed using two iterations of LSQR

to obtain a least squared match between Yd1 and the forwarded image. We limit the support of

each moving target with a 25-by-25 window centered at the strongest pixel. The velocities are

estimated to minimise the objective function of (5.5). For this simulated scenario, we show the

results with the proposed approach in Fig. 5.2 and Fig. 5.3. It can be seen from Table 5.1 that

the estimated velocities in y direction for the two targets are 27.5 m/s and -15.5 m/s respectively

which are very close to the ground truth (26 m/s and -16 m/s). With less clutter mixed with the

second target, we achieved relatively better estimation accuracy on this target.

With the estimated target velocities, we now apply the moving target imaging method to the

two moving targets. In Fig. 5.4 and 5.5, we compare the original SAR images of the moving targets

96



Moving Target Imaging and State Estimation

velocity in y direction (m/s)
25 26 27 28 29 30

ob
je

ct
iv

e 
va

lu
e

15.56

15.58

15.6

15.62

15.64

15.66

15.68

15.7

Figure 5.2: Objective values with respect to different v(y) for the 1st target.
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Figure 5.3: Objective values with respect to different v(y) for the 2nd target.
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Table 5.1: The estimated velocity components of the simulated scenario

ground truth velocity for the 1st moving target (m/s) (2, 26, 0)

estimated velocity for the 1st moving target (m/s) (2.06, 27.5, 0)

ground truth velocity for the 2nd moving target (m/s) (-3, -16, 0)

estimated velocity for the 2nd moving target (m/s) (-2.94, -15.5, 0)

to the formed images after employing the proposed state estimation and imaging algorithm. It can

be seen from the sidelobes that the formed SAR images of the moving targets have significant

visual improvements in terms of both focusing effects and physical locations. The reason that the

image formation of the second moving target achieves better performance is very likely to be due

to the clutter mixed with the first target.

5.4.2 Experiments using Real Data

In this section, we first employ the approach described in Section 5.4 with the AFRL GOTCHA

GMTI challenge dataset to analyse the role of DEM in target state estimation. Next, by utilising

the target sparsities, we demonstrate the effectiveness of the sparsity-aided target state estimation

within the proposed SAR/GMTI framework through the AFRL GOTCHA GMTI challenge

dataset.

DEM-aided Moving Target Analysis

In this subsection, based on the calibrated DEM, we demonstrate the image formation and state

estimation of the moving target from the AFRL GOTCHA GMTI challenge dataset with the

aforementioned method.

For this dataset, the ground truth GPS data of the target is not aligned with the raw phase

histories, and we have to find out a shift value ∆ for the raw data to match the GPS of the target.

We extract two tracks (pulse number 94001 to 108000 and pulse number 144001 to 148000) among

the whole path to realise the calibration. With different shift values, we employ the green line in

Fig. 4.5 and relocate the target, and search for the optimal match between the ground truth target

path and relocated target path. For example, given that the PRF is 2171.6 Hz and we employ 400

azimuth samples for each sub-aperture, the sub-aperture centred at Tp corresponds to the azimuth

time Tp/2171.6 + ∆. For ∆ = 17 we first show the moving target relocation results without the

DEM using the 46-th second data (0.2 seconds sub-aperture) in Fig. 5.6 where the relocated target
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Figure 5.4: a) The original image of the 1st moving target. b) The relocated and refocused image
of the 1st moving target.
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The original image of the 2nd moving target.
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Figure 5.5: a) The original image of the 2nd moving target. b) The relocated and refocused image
of the 2nd moving target.
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is overlaid to the gray background SAR image.

Figure 5.6: Overlaid background (black and white) and relocated moving targets (coloured)
without the DEM. Significant deviation of the coloured target from the road can be found in the
image.

It can be seen from the zoomed-in image of Fig. 5.6 (the road is coloured) that he

estimated target location is not far from the ground truth. However, the moving target should

be running on the road below the estimated location. The significant deviation is likely due to the

image formation distortions which are caused by the missing of DEM (digital elevation model)

information.

We now present the target relocation results with the DEM of the two sub-apertures in Fig.

5.7 (the targets are extracted based on the ground truth). It can be seen that the targets are very

well relocated with the extracted DEM.

The DEM can be further exploited in the estimation of moving targets velocities. We take

another example to show the DEM-aided moving target state estimation performance. Given the

estimated DEM and pre-processed phase histories, we focus on the processing of the GOTCHA

data from azimuth number 144001 to 146000. The data is divided into five sub-apertures and each

sub-aperture contains 400 azimuth samples.

We employ the presented GMTI technique [6] and estimate the radial velocities of the moving
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Figure 5.7: The ground truth path of the target is marked in red. The relocated tracks of the two
selected sub-apertures are marked in green.

targets for the five sub-apertures. Here other GMTI techniques which are able to give estimations

on radial velocities can also be used. Note that our purpose here is to justify the effects of the

DEM. As we have estimated the velocity map for the whole image, the estimated velocities can

vary from pixel to pixel and the accuracies of relocations are very sensitive to the estimated radial

velocities. Instead of giving a single estimation on the radial velocity, we consider a small 30×30

window around the target for which we have the ground truth. In this way we have 900 possible

radial velocities of this target.

Since the target is likely to move slowly in the z direction, v(z)t can be estimated by

differentiating the positions of the moving target. It gives us an additional constraint on the

velocities to help estimate the full state of the target. Particularly in the urban environment, the

moving target is likely to move on the roads. The direction of the road gives us another restriction

on the velocity estimates. Furthermore, the velocity estimates can be calibrated by allowing errors

in radial velocity estimates, i.e. relocating the moving target to the intersection of the road and its

possible locations. Calibrated relocated positions of the target are associated with the calibrated

radial velocity estimates which improve the accuracy of the estimated target radial velocity. We

could also include other priors such as the inability for a vehicle to suddenly change direction or

velocity.
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In this experiment, suppose that the target is moving on the road, we first select the radial

velocity estimate within the 30 × 30 window (empirical window size based on the specific

application) to relocate the moving target to the road. Next, based on the road direction in the

formed image, we can leverage this equation:

v
(y)
t = 14.1× v(x)t

(5.6)

where the constant 14.1 represents the road direction measured from the SAR image.

Then its velocity in z direction v(z)t can be estimated by differentiating its relocated positions.

The accuracy on estimating v(z)t is thus limited by the accuracy of the DEM. Specifically, the

(v
(x)
t , v

(y)
t , v

(z)
t ) and v(r)t follow this restriction (5.1).

Based on the geometrical restriction (5.1) and road information (5.6), we can estimate the

target velocities (v
(x)
t , v

(y)
t , v

(z)
t ). We compare our estimates to the ground truth and show the

results in Table 5.2. It can be seen that the estimates on the target velocities match the ground

truth with high accuracies. In practice, the geometrical information and DEM can be used as

the auxiliary restrictions on other velocity estimation approaches to give SAR/GMTI applications

better robustness.

Table 5.2: Comparisons between the ground truth and estimates.

sub-aperture number 1 2 3 4 5

estimated v(x)t (m/s) 0.88 0.9 0.94 0.95 1.0

ground truth v(x)t (m/s) 0.99 1.03 1.07 1.1 1.14

estimated v(y)t (m/s) 12.4 12.72 13.2 13.4 14.1

ground truth v(y)t (m/s) 12.9 13.1 13.3 13.5 13.7

estimated v(z)t (m/s) 0.1 0.12 0.2 0.17 0.38

ground truth v(z)t (m/s) 0.32 0.28 0.25 0.21 0.2

The results have shown the performance of using DEM and road prior information without

sparsity in the target state estimation. Obviously the role of DEM in SAR/GMTI applications are

crucial especially in the environments with significant elevation variations. The details about the

target state estimation in combination with the exploitation of sparsity can be found in section 5.5

and related experiments are shown in the next subsection.
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Sparsity-aided Moving Target Analysis

For the AFRL GOTCHA GMTI dataset, we have focused on the moving target with the 15-by-15

window centered at the target, extracted the phase history of this target Yd1, and estimated its

radial velocity. Now we estimate its full velocity vector vt and further image the target based

on the estimated vt. The model (5.5) is first introduced to estimate the vt. In particular, for far-

field observation, the target velocity components obey the geometrical restriction Υ which can be

transformed into (5.1).

The retrieved 15-iteration results of the extracted moving targets are used here for the moving

target state estimation and imaging. As v(z) is in general not too large in most scenarios, we can

approximate it by differentiating the coordinates of the relocated target at different frames. Given

the estimated v(r) and (5.1), v(x) is a function of v(y). The estimation of the velocity components

can then be solved via the exhaustive search. In (5.5), we simply traverse v(y) from 0 m/s to line

search for our estimations. The target image Θvt(Yd1) for each velocity vector vt is formed via

two iterations of LSQR to obtain good data fidelity, and its support is bounded with a 10-by-10

window centered at the strongest pixel of the target. By searching for the minimised ‖Θvt(Yd1)‖1,

we find the estimated vt that gives the sparsest image.
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Figure 5.8: The comparisons of the target velocity components with the ground truth.

The positions of the target are tracked at nine sub-apertures with the moving target imaging
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method and the estimated target velocities. We compare the estimated target velocities to the

ground truth in x, y and z directions respectively, and show the estimated velocity components in

Fig. 5.8. It can be seen from Fig. 5.8 that the velocity components in the z direction is generally not

too large, and they can be roughly estimated by differentiating the physical coordinates. Although

direct differentiation has limited accuracy, the estimation on v(z) matches the ground truth in

most scenarios. The estimates on v(x) and v(y) rely on the proposed method and the insertion of

geophysical information. We also achieved good matches against the ground truth. We compare

the target locations after relocations to the results using hybrid DPCA/ATI algorithm and show

their performance in Fig. 5.9. The proposed method has shown better accuracy in localising

moving targets with 15 iterations compared to the hybrid DPCA/ATI.
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Figure 5.9: The comparisons of the target relocations with the proposed approach and hybrid
DPCA/ATI.

Furthermore, the relocated and refocused target image of the 50−th second is visualised in

Fig. 5.10. As can be seen from this figure, the pixels of the moving target in Fig. 5.10 a) are

refocused and relocated in in Fig. 5.10 b). Significant imaging improvements have been achieved

for this moving target.

Note that the target state estimation methods in the state-of-the-art algorithms EDPCA [91]

and ISTAP [18] are maximising the generalised likelihood ratio tests (GLRT) for image pixels.

They are essentially searching for the motion parameters to best focus the moving targets pixel-

wise in the image domain. We adopt this idea to maximise the target response on the relocated
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Figure 5.10: a) The SAR image of the extracted moving target in Chapter 4. b) The SAR image
of the moving target after relocation and refocusing.
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target spot, and search for the target state that gives the maximised energy. The results are

presented in Fig. 5.11 for comparisons.
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Figure 5.11: The comparisons on the absolute estimation errors of target velocity components.

It is shown in Fig. 5.11 that the proposed sparsity-aided algorithm has achieved better

estimation accuracies in estimating the motion parameters of moving targets v(x) and v(y) than

the maximised GLRT method. The proposed state estimation has further practical potential to be

combined with the previous processing stage as they are both exploiting the target sparsities.

5.5 Summary

In this chapter we have investigated the utilisation of sparsities in moving target state estimation,

target refocusing, and target relocations for practical multi-channel SAR-based GMTI application.

We first explain the effects of moving targets in SAR/GMTI with details. Next, the recent

developments in moving target state estimation and imaging are presented in this chapter.

Particularly, one of the latest investigations in compressed sensing based GMTI is presented

and the state-of-the-art EDPCA algorithm is briefly introduced. We then present the proposed

novel algorithm for moving target state estimation and imaging. Within the proposed SAR/GMTI

processing framework, for practical considerations, this algorithm is implemented as the final

stage of the complete pipeline to accurately estimate target states, and form moving target images.
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Furthermore, the DEM information can be flexibly incorporated into the processing. It is shown

through simulations that the proposed methods have realised decent target states estimations

and imaging. By comparing the proposed method to the state-of-the-art algorithms, we further

demonstrate the effectiveness of the model through the real AFRL GOTCHA GMTI dataset on

these challenging GMTI tasks.
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6

Conclusions and Future Work

6.1 Conclusions

Within this thesis we have investigated the SAR-based GMTI approaches by utilising target

sparsities. We are motivated by the state-of-the-art compressed sensing theory and conventional

SAR/GMTI methods to design an end-to-end SAR-based GMTI framework which is capable

of simultaneously forming high resolution SAR images, separating moving targets from the

background, estimating target states, and forming moving target images. The utilisation of the

DEM information is also incorporated into the proposed framework. The developed methods aim

at tackling typical SAR/GMTI missions such as the AFRL GOTCHA GMTI challenges [4] to

indicate a controlled moving vehicle (GPS device mounted) in a mountainous region using the

acquired SAR data. The experiments in this thesis is limited to the single real dataset, i.e. the

AFRL GOTCHA GMTI challenge dataset, and numerical simulations.

Conventional SAR imaging algorithms, such as the matched filtering and back-projection

algorithms [51] [126], are essentially approximating the solution of an optimisation problem to

achieve the best data-fitting. In general, the SAR/GMTI algorithms can be classified into two

classes, i.e. the raw-data-based algorithms such as STAP and the image-based algorithms such

as DPCA and ATI. Particularly, DPCA and ATI are widely used subtractive methods to compare

the differences between SAR channels in the image domain, and they are closely related to the

SAR image formation algorithms. Within this context, there exists the potential to reformulate the

GMTI algorithms into optimisation tasks. This motivation is presented in Chapter 2. In Chapter 2,

we analyse the Radar system features, such as the resolution and pulse compression, and present

the mathematical signal model of SAR systems. The commonly used GMTI algorithms including

STAP, DPCA, ATI, and hybrid DPCA/ATI are briefly introduced. We also explain the similarities

and differences between different GMTI methods and the proposed SAR/GMTI methods within

Chapter 2.
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Compressed sensing is a revolutionary signal acquiring technique which had a breakthrough

in its theory around 2005 [36]. It has been proved that, with significantly under-sampled projection

data, the original signal can be reconstructed with high probabilities if the signal has inherent

sparse prior information. The achieved sampling rate can be lower than the well-known Nyquist-

Shannon sampling rate. Based on the theoretic foundations, a number of sparse approximation

algorithms have been developed in this field. These approaches can be extended to the applications

that aim to reconstruct the signals using sparse structures. Note that the SAR moving targets

are approximately sparse in the observed scene. Furthermore, the conventional DPCA approach

followed by a thresholding process is very similar to the iterative procedures in greedy CS

algorithms. We are thus motivated to utilise the sparse information in SAR/GMTI applications.

Considering the SAR-based GMTI applications, some essential parts have to be investigated.

Firstly, the multi-channel SAR systems can reveal moving targets through the differences between

different channels. As the received signal of the aft-antenna can be viewed as the delayed received

signal of the fore-antenna, only moving targets will induce significant differences through the

subtractions. We thus need to calibrate the phase histories before the GMTI process to produce

the same responses between different channels for stationary reflectors. This channel balancing is

analysed in Chapter 3. Secondly, the SAR-based GMTI process will have significant estimation

errors when the observed scene contains large elevation variations. We investigated the utilisation

of the DEM information in Chapter 3. The DEM-aided moving target imaging is also presented.

We demonstrate the effects of channel balancing and DEM in details with real data in Chapter 3.

By considering the SAR image formation from the optimisation perspective and leveraging

multi-channel models, we can establish a sparsity-regularised model for simultaneous SAR

imaging and moving target indication. In Chapter 4, we have explained the proposed model.

However, solving this optimisation problem within one processing stage is very challenging as

the target locations change as a function of their estimated velocities. Therefore a practical

solution is designed to break the problem into a two stage process where we first utilise target

sparsities to separate the blurred and misplaced moving targets from the static background scene

and subsequently relocate and refocus individual moving targets, again exploiting the sparsity

constraint. While the two stage process sacrifices a degree of sparsity (the blurred targets are

less sparse than the correctly focused ones) but results in a simpler more tractable problem. This

two-stage implementation architecture is also more comparable to the conventional SAR/GMTI

processing chain. In Chapter 4, the practical implementation for target detection is discussed in

details. The performance of the proposed model is also analysed. We demonstrate the effectiveness
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of the proposed method through comprehensive experiments including simulations and real data

tests.

Following the moving target extraction described in Chapter 4, we again utilise the target

sparsities in Chapter 5 for moving target imaging and moving target state estimation. The proposed

method focuses on individual moving targets to employ the moving target analysis. We compare

its performance to that of the state-of-the-art algorithms EDPCA [91] and ISTAP [18]. The

estimation of targets states has achieved high estimation accuracy based on the ground truth.

The DEM information can be leveraged to enhance this process, and the DEM-aided target state

estimation is explained in Chapter 5. We therefore establish a complete SAR/GMTI framework for

separating moving targets from the background, estimating the states of the targets, and relocating

and refocusing the targets under multi-channel SAR scenarios.

Overall, the proposed framework is motivated by integrating SAR/GMTI tasks into an

sparsity regularised optimisation problem. The proposed methods are able to implement

decompositions of moving targets and the background instead of simple targets detection. The

extracted targets can be imaged and their motion parameters can be estimated. We also

consider pre-processing and the DEM information in this framework. In practice, a two

stage process is designed to resolve the framework considering the difficulties in computational

load and forward/backward operators. Throughout this thesis, a number of experiments have

been conducted based on the AFRL GOTCHA GMTI challenge dataset [4] to demonstrate the

developed algorithms. The numerical simulations are also provided to prove the effectiveness

of these approaches. Note that the real data tests of this thesis are limited to the single AFRL

GOTCHA GMTI dataset. In the future, other real datasets can be used to further justify the

proposed methods.

6.2 Future Work

We have proposed a complete SAR/GMTI processing framework by utilising moving target

sparsities in this thesis. Based on the practical problems we noticed in the implementations, we

hereby list six future research directions.

First of all, the channel balancing technique employed in this thesis is a very efficient

algorithm for practical applications. We have analysed its performance in Chapter 3. However, this

fast balancing technique is based on the fact that static reflectors are dominating in the observed
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scene. Although it provides well balancing performance for the whole region, the balancing effects

for specific targets are not optimal. Especially the imperfect channel balancing on strong static

buildings will lead to the false alarms in the subsequent GMTI processing. How to better calibrate

the strong reflectors in the pre-processing step is an open challenge to be investigated in the future.

The behaviours of different types of objects in the pre-processing are also of our interest.

Secondly, SAR algorithms are associated with huge volume data processing. Typical

SAR forward/backward operators are often computational intensive. The proposed SAR/GMTI

framework requires multiple times of these operators in each iteration. The overall computational

load is high though efficient algorithms have been leveraged to significantly accelerate the

processings. Furthermore, we do not have the efficient SAR forward/backward operators for the

SAR image formation with a global velocity map. To conclude, more efficient SAR operators and

fast operators with the global velocity map are of interest to us in the future research.

Thirdly, we break the practical implementation of the end-to-end SAR/GMTI framework

into a two stage processing. We first utilise target sparsities to separate the blurred and displaced

moving targets from the static background scene and subsequently relocate and refocus individual

moving targets, again exploiting the sparsity constraint. This is partially driven by the second

future research direction as we have difficulties in designing efficient SAR operators. The target

locations change as a function of their estimated velocities, and the SAR imaging with a global

velocity map is very computational expensive. Another reason for two processing stages is that

this pipeline is consistent with the conventional SAR/GMTI to first detect the moving targets, and

then estimate their states. As both the two stages are essentially exploiting the target sparsities,

there exist the potential to combine them into one processing step if efficient implementation can

be designed.

Fourth, the target states estimation in this thesis is associated with the velocity components in

x, y and z directions, i.e. the first order terms among the target motion parameters. In practice, the

targets often have complicated movements and higher order motion terms need to be estimated.

For example, a typical uniform acceleration will induce a constant change rate in velocities.

Therefore, in this thesis, we are employing a simplified motion model of the moving targets,

and the accuracies of target states estimation are limited. Further investigations can be done

in the future to incorporate more complicated target movements into the proposed SAR/GMTI

framework.

And fifth, the design of the proposed SAR/GMTI framework is based on a typical scenario
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with moving targets in the scene, and typical tasks include target detections and target states

estimation. There exists the potential to exploit the change detection methods [87] with different

sub-apertures to aid the SAR/GMTI algorithms. Furthermore, in a number of SAR/GMTI

scenarios, the SAR observation missions are implemented without moving targets to provide the

reference data. The acquired reference data is essentially monitoring a background, and it can

then be used in the change detection algorithms to be compared with the data that contains moving

targets.

Lastly, SAR systems are typically complicated system engineering works. The SAR-based

GMTI is associated with various considerations such as the blind velocities in radial velocity

estimations (the complex exponential functions are periodic), the too strong background and

target patterns (target often consists of multiple pixels). The SAR/GMTI estimation accuracy

is thus limited by multiple factors. There have been a number of investigations in tackling these

issues. The systematic solution of these problems to be combined with the proposed SAR/GMTI

framework is of interest to us in the future.
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[40] Antoine Liutkus, David Martina, Sébastien Popoff, Gilles Chardon, Ori Katz, Geoffroy

Lerosey, Sylvain Gigan, Laurent Daudet, and Igor Carron. Imaging with nature:

Compressive imaging using a multiply scattering medium. Scientific reports, 4, 2014.

[41] Michael Lustig, David Donoho, and John M. Pauly. Sparse MRI: The application of

compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine, 58(6):1182–

1195, 2007.

[42] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly. Compressed Sensing MRI. Signal

Processing Magazine, IEEE, 25(2):72–82, March 2008.

[43] J. Wang, S. Tang, Baocai Yin, and Xiang-Yang Li. Data gathering in wireless sensor

networks through intelligent compressive sensing. In 2012 Proceedings IEEE INFOCOM,

pages 603–611, March 2012.

[44] Yee Kit Chan and Voon Chet Koo. An introduction to synthetic aperture radar (SAR).

Progress In Electromagnetics Research B, 2:27–60, 2008.

117



Bibliography

[45] Geomatics Consulting Thomas P. Ager — Tomager LLC and VA Training, Lansdowne. An

introduction to synthetic aperture radar imaging. Oceanography, 26, June 2013.

[46] G. Turin. An introduction to matched filters. IRE Transactions on Information Theory,

6(3):311–329, June 1960.

[47] G. Franceschetti and R. Lanari. Synthetic Aperture Radar Processing. Electronic

Engineering Systems. Taylor & Francis, 1999.

[48] M. Soumekh. Synthetic Aperture Radar Signal Processing with MATLAB Algorithms.

Wiley, 1999.

[49] W.G. Carrara, R.S. Goodman, and R.M. Majewski. Spotlight Synthetic Aperture Radar:

Signal Processing Algorithms. Artech House signal processing library. Artech House, 1995.

[50] B. D. Rigling and R. L. Moses. Taylor expansion of the differential range for monostatic

SAR. IEEE Transactions on Aerospace and Electronic Systems, 41(1):60–64, Jan 2005.

[51] LeRoy A. Gorham and Linda J. Moore. SAR image formation toolbox for MATLAB. In

Edmund G. Zelnio and Frederick D. Garber, editors, Proc. of SPIE, volume 7699, page

769906. SPIE, 2010.

[52] Max Born. Zur quantenmechanik der stoßvorgänge. Zeitschrift für Physik, 37(12):863–867,

Dec 1926.

[53] C. Oliver and S. Quegan. Understanding Synthetic Aperture Radar Images. SciTech radar

and defense series. SciTech Publ., 2004.

[54] David S. Taubman and Michael W. Marcellin. JPEG2000 : image compression

fundamentals, standards, and practice. Kluwer Academic Publishers, Boston, 2002.

[55] Martin Vetterli, Pina Marziliano, and Thierry Blu. Sampling signals with finite rate of

innovation. IEEE Transactions on Signal Processing, 50(6):1417–1428, 2002.

[56] Emmanuel J. Candès and Terence Tao. Near-optimal signal recovery from random

projections: Universal encoding strategies? IEEE Transactions on Information Theory,

52(12):5406–5425, 2006.

[57] Emmanuel J. Candès and Carlos Fernandez-Granda. Towards a mathematical theory of

super-resolution. CoRR, abs/1203.5871, 2012.

118



Bibliography

[58] Emmanuel J. Candès and Terence Tao. Decoding by linear programming. IEEE Trans.

Information Theory, 51(12):4203–4215, 2005.

[59] Mark A. Davenport, Marco F. Duarte, Yonina C. Eldar, and Gitta Kutyniok. Introduction to

compressed sensing. Cambridge University Press, 2012.

[60] Fan Yang, Shengqian Wang, and Chengzhi Deng. Compressive sensing of image

reconstruction using multi-wavelet transforms. In 2010 IEEE International Conference

on Intelligent Computing and Intelligent Systems, volume 1, pages 702–705, Oct 2010.

[61] David L. Donoho, Michael Elad, and Vladimir N. Temlyakov. Stable recovery of sparse

overcomplete representations in the presence of noise. IEEE TRANS. INFORM. THEORY,

52(1):6–18, 2006.

[62] Joel A. Tropp. Just relax: Convex programming methods for subset selection and sparse

approximation. Technical report, 2004.

[63] Emmanuel J. Candès, Yonina C. Eldar, Deanna Needell, and Paige Randall. Compressed

sensing with coherent and redundant dictionaries. Applied and Computational Harmonic

Analysis, 31(1):59 – 73, 2011.

[64] L. Welch. Lower bounds on the maximum cross correlation of signals (corresp.). IEEE

Trans. Inf. Theor., 20(3):397–399, September 2006.

[65] M. F. Duarte and Y. C. Eldar. Structured compressed sensing: From theory to applications.

IEEE Transactions on Signal Processing, 59(9):4053–4085, Sept 2011.

[66] J. A. Tropp. Greed is good: algorithmic results for sparse approximation. IEEE

Transactions on Information Theory, 50(10):2231–2242, Oct 2004.

[67] L. Carin, D. Liu, and B. Guo. Coherence, compressive sensing, and random sensor arrays.

IEEE Antennas and Propagation Magazine, 53(4):28–39, Aug 2011.

[68] Emmanuel J. Candès, Justin Romberg, and Terence Tao. Robust uncertainty principles:

Exact signal reconstruction from highly incomplete frequency information, 2006.

[69] M. F. Duarte, M. A. Davenport, M. B. Wakin, and R. G. Baraniuk. Sparse signal detection

from incoherent projections. In 2006 IEEE International Conference on Acoustics Speech

and Signal Processing Proceedings, volume 3, pages III–III, May 2006.

[70] Mark A Davenport. Random observations on random observations: Sparse signal

119



Bibliography

acquisition and processing. Rice University, 2010.

[71] Robert Tibshirani. Regression shrinkage and selection via the LASSO. Journal of the Royal

Statistical Society, Series B, 58:267–288, 1994.

[72] Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regression.

Annals of Statistics, 32:407–499, 2004.

[73] David L. Donoho. For most large underdetermined systems of linear equations the minimal

l1-norm solution is also the sparsest solution. Comm. Pure Appl. Math, 59:797–829, 2004.

[74] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma. Robust face recognition via

sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence,

31(2):210–227, Feb 2009.

[75] M. Elad. Sparse and redundant representations: From theory to applications in signal and

image processing. Springer, 2010.

[76] Joel A. Tropp and Anna C. Gilbert. Signal recovery from random measurements via

orthogonal matching pursuit. IEEE TRANS. INFORM. THEORY, 53:4655–4666, 2007.

[77] Y. C. Pati, R. Rezaiifar, Y. C. Pati R. Rezaiifar, and P. S. Krishnaprasad. Orthogonal

matching pursuit: Recursive function approximation with applications to wavelet

decomposition. In Proceedings of the 27 th Annual Asilomar Conference on Signals,

Systems, and Computers, pages 40–44, 1993.

[78] Thomas Blumensath and Mike E. Davies. Iterative hard thresholding for compressed

sensing. CoRR, abs/0805.0510, 2008.

[79] Z. Zhang, Y. Xu, J. Yang, X. Li, and D. Zhang. A survey of sparse representation:

Algorithms and applications. IEEE Access, 3:490–530, 2015.

[80] D. Needell and R. Vershynin. Signal recovery from incomplete and inaccurate

measurements via regularized orthogonal matching pursuit. IEEE Journal of Selected

Topics in Signal Processing, 4(2):310–316, April 2010.

[81] Deanna Needell and Joel A Tropp. Cosamp: Iterative signal recovery from incomplete and

inaccurate samples. Applied and Computational Harmonic Analysis, 26(3):301–321, 2009.

[82] David L. Donoho, Yaakov Tsaig, Iddo Drori, and Jean luc Starck. Sparse solution of

underdetermined linear equations by stagewise orthogonal matching pursuit. Technical

120



Bibliography

report, 2006.

[83] T. T. Do, L. Gan, N. Nguyen, and T. D. Tran. Sparsity adaptive matching pursuit algorithm

for practical compressed sensing. In 2008 42nd Asilomar Conference on Signals, Systems

and Computers, pages 581–587, Oct 2008.

[84] R. K. Hersey and E. Culpepper. Radar processing architecture for simultaneous SAR,

GMTI, ATR, and tracking. In 2016 IEEE Radar Conference (RadarConf), pages 1–5, May

2016.

[85] K. Eldhuset. An automatic ship and ship wake detection system for spaceborne SAR images

in coastal regions. IEEE Transactions on Geoscience and Remote Sensing, 34(4):1010–

1019, Jul 1996.

[86] S. Brusch, S. Lehner, T. Fritz, M. Soccorsi, A. Soloviev, and B. van Schie. Ship surveillance

with terraSAR-X. IEEE Transactions on Geoscience and Remote Sensing, 49(3):1092–

1103, March 2011.

[87] D. Pastina, G. Battistello, and A. Aprile. Change detection based GMTI on single channel

SAR images. In 7th European Conference on Synthetic Aperture Radar, pages 1–4, June

2008.

[88] M. Preiss and N.J.S. Stacy. Coherent change detection: Theoretical description and

experimental results. Defence Science and Technology Organisation (DSTO), Edinburgh,

Australia, Tech. Rep. DSTO-TR-1851, 2006.

[89] Shen Chiu and Chuck Livingstone. A comparison of displaced phase centre antenna and

along-track interferometry techniques for RADARSAT-2 ground moving target indication.

Canadian Journal of Remote Sensing, 31(1):37–51, 2005.

[90] I. Sikaneta and C. Gierull. Ground moving target detection for along-track interferometric

SAR data. In Aerospace Conference, 2004. Proceedings. 2004 IEEE, volume 4, pages

2227–2235 Vol.4, March 2004.

[91] D. Cerutti-Maori and I. Sikaneta. A generalization of DPCA processing for multichannel

SAR/GMTI radars. IEEE Transactions on Geoscience and Remote Sensing, 51(1):560–572,

Jan 2013.

[92] Ross W. Deming, Scott MacIntosh, and Matthew Best. Three-channel processing for

improved geo-location performance in SAR-based GMTI interferometry. Proc. SPIE,

121



Bibliography

8394:83940F–83940F–17, 2012.

[93] Ross Deming, Matthew Best, and Sean Farrell. Simultaneous SAR and GMTI using

ATI/DPCA. Proc. SPIE, 9093:90930U–90930U–19, 2014.

[94] Ludger Prunte. GMTI from multichannel SAR images using compressed sensing. In

Synthetic Aperture Radar, 2012. EUSAR. 9th European Conference on, pages 199–202,

April 2012.

[95] H. M. Finn. Adaptive detection mode with threshold control as a function of spatially

sampled clutter-level estimates. RCA Review, 29(2):414–464, 1968.

[96] M.C. Budge and S.R. German. Basic Radar Analysis. Artech House Radar Library. Artech

House, 2015.

[97] J. H. G. Ender. Space-time processing for multichannel synthetic aperture radar. Electronics

Communication Engineering Journal, 11(1):29–38, Feb 1999.

[98] Ross W. Deming. Along-track interferometry for simultaneous SAR and GMTI: application

to gotcha challenge data. Proc. SPIE, 8051:80510P–80510P–18, 2011.

[99] Deng Haitao and Zhang Changyao. A real-time signal processing method for air-born three-

channels GMTI. In 2007 1st Asian and Pacific Conference on Synthetic Aperture Radar,

pages 262–265, Nov 2007.

[100] Z. Hongbo, Y. Shaohua, and C. Demin. A signal processing method for airborne three-

channel SAR-GMTI. In 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar,

pages 210–213, Oct 2009.

[101] J. H. G. Ender, P. Berens, A. R. Brenner, L. Rossing, and U. Skupin. Multi-channel

SAR/MTI system development at FGAN: from AER to PAMIR. In IEEE International

Geoscience and Remote Sensing Symposium, volume 3, pages 1697–1701 vol.3, June 2002.

[102] Z. Huang, J. Xu, S. Peng, and Z. Wang. A new channel balancing algorithm in image

domain for multichannel sar-gmti system. In IET International Radar Conference 2015,

pages 1–5, Oct 2015.

[103] Sune R. J. Axelsson. Position correction of moving targets in SAR imagery. Proc. SPIE,

5236:80–92, 2004.

[104] D. A. Garren. Smear signature morphology of surface targets with arbitrary motion in

122



Bibliography

spotlight synthetic aperture radar imagery. IET Radar, Sonar Navigation, 8(5):435–448,

June 2014.

[105] Daniel Nuesch Maurice Ruegg, Erich Meier. Constant motion, acceleration, vibration, and

rotation of objects in SAR data. In Proc.SPIE, volume 5980, 2005.

[106] N. Ozben Onhon and M. Cetin. SAR moving target imaging using group sparsity. In Signal

Processing Conference (EUSIPCO), 2013 Proceedings of the 21st European, pages 1–5,

Sept 2013.

[107] A. H. Oveis and M. A. Sebt. High resolution ground moving target indication by synthetic

aperture radar using compressed sensing. In 2017 Iranian Conference on Electrical

Engineering (ICEE), pages 1674–1679, May 2017.

[108] L. Pruente. Off-grid compressed sensing for GMTI using SAR images. In CoSeRa, 2013.

[109] L. Pruente. Compressed sensing for removing moving target artifacts and reducing noise

in SAR images. In Proceedings of EUSAR 2016: 11th European Conference on Synthetic

Aperture Radar, pages 1–6, June 2016.

[110] L. Pruente. Application of compressed sensing to SAR/GMTI-data. In 8th European

Conference on Synthetic Aperture Radar, pages 1–4, June 2010.

[111] ZONUMS. USGS seamless elevation data sets. NASA EOSDIS Land Processes DAAC,

USGS Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota,

2010.

[112] B. Liu, K. Yin, Y. Li, F. Shen, and Z. Bao. An improvement in multichannel SAR-GMTI

detection in heterogeneous environments. IEEE Transactions on Geoscience and Remote

Sensing, 53(2):810–827, Feb 2015.

[113] C.H. Gierull. Digital channel balancing of along-track interferometric SAR data. In

Technical Memorandum DRDC Ottawa TM 2003-024. Defence R&D, Ottawa, Canada,

March 2003.

[114] Bin Guo, Duc Vu, Luzhou Xu, Ming Xue, and Jian Li. Ground moving target indication via

multichannel airborne SAR. IEEE T. Geoscience and Remote Sensing, 49(10):3753–3764,

2011.

[115] Y. Li, R. Wu, M. Xing, and Z. Bao. Inverse synthetic aperture radar imaging of ship target

123



Bibliography

with complex motion. IET Radar, Sonar Navigation, 2(6):395–403, December 2008.

[116] C. Clapham, J. Nicholson, and J.R. Nicholson. The Concise Oxford Dictionary of

Mathematics. Oxford Paperback Reference. OUP Oxford, 2014.

[117] Solomon W. Golomb and Leonard D. Baumert. Backtrack programming. J. ACM,

12(4):516–524, Oct 1965.

[118] Thomas Blumensath and Mike E. Davies. Iterative hard thresholding for compressed

sensing. Applied and Computational Harmonic Analysis, 27(3):265 – 274, 2009.

[119] Thomas Blumensath and Mike E Davies. Iterative Thresholding for Sparse Approximations.

Journal of Fourier Analysis and Applications, 14(5-6):629–654, December 2008.

[120] A. Beck and M. Teboulle. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear

Inverse Problems. SIAM Journal on Imaging Sciences, 2(1):183–202, March 2009.

[121] Richard M Goldstein and HA Zebker. Interferometric radar measurement of ocean surface

currents. 1987.

[122] A. Budillon, V. Pascazio, and G. Schirinzi. Amplitude/phase approach for target velocity

estimation in AT-InSAR systems. In 2008 IEEE Radar Conference, pages 1–5, May 2008.

[123] G Palubinskas, F Meyer, H Runge, P Reinartz, R Scheiber, and R Bamler. Estimation

of along-track velocity of road vehicles in SAR data. In Remote Sensing, pages 59820T–

59820T. International Society for Optics and Photonics, 2005.

[124] Shen Chiu. Application of fractional Fourier transform to moving target indication

via along-track interferometry. EURASIP Journal on Advances in Signal Processing,

2005(20):1–11, 2005.

[125] Christopher C. Paige and Michael A. Saunders. LSQR: An algorithm for sparse linear

equations and sparse least squares. ACM Trans. Math. Software, pages 43–71, 1982.

[126] L. Rosenberg and D. Gray. Multichannel SAR imaging with backprojection. In Proceedings

of the 2004 Intelligent Sensors, Sensor Networks and Information Processing Conference,

2004., pages 265–270, Dec 2004.

124


	cover sheet
	Sparsity_Driven_Ground_Moving_Target_Indication_in_Synthetic_Aperture_Radar

