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Acoustic-Articulatory Modelling with
the Trajectory HMM

Le Zhang, Steve Renals,Member, IEEE,

Abstract—In this letter, we introduce an HMM-based inversion
system to recovery articulatory movements from speech acoustics.
Trajectory HMMs are used as generative models for modelling
articulatory data. Experiments on the MOCHA-TIMIT corpus
indicate that the jointly trained acoustic-articulatory m odels are
more accurate (lower RMS error) than the separately trained
ones, and that trajectory HMM training results in greater
accuracy compared with conventional maximum likelihood HMM
training. Moreover, the system has the ability to synthesise
articulatory movements directly from a textual representation.

Index Terms—Trajectory HMM, Articulatory Inversion,
MOCHA-TIMIT

I. I NTRODUCTION

H IDDEN Markov models (HMMs) are the standard ap-
proach to speech recognition, where the underlying task

is to maximise the discrimination between similar phones
or words. Speech synthesis models, on the other hand, use
different techniques such as unit selection (e.g., [1]) to make
the synthesised speech sound as natural as possible. This
suggests that different modelling approaches may be required
for recognition and synthesis; however Tokuda et al [2] have
shown that the trajectory HMM formulation may be success-
fully applied to speech synthesis [3].

The task in which we are particularly interested is the
recovery of articulatory information (the movement of human
articulators) from speech acoustics, sometimes called articula-
tory inversion. The inversion of articulatory data involves both
synthesis and recognition: we start with the acoustic signal
and pose the recovery of the missing articulatory information
as a synthesis problem. Conversely, the recovered articulatory
information can have a complementary role in the modelling
of pronunciation and acoustic variability in speech recognition.

Previous attempts to recover articulatory movement from the
speech signal involved building a mapping from the acoustic
domain to the articulatory domain, either manually or con-
structed automatically from parallel data [4], [5], [6], [7], [8],
[9], [10], [11], [12]. Variations of neural networks [5], [13],
[6], [11] have become popular in the latter category. Often
the inversion system is built separately from the recognition
framework, particularly because the slowly varying natureof
articulation may be best modelled in a different way to speech
acoustics which change more rapidly, and are noisier.
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Our system, based on the trajectory HMM, differs from oth-
ers in the sense that both recognition (acoustic) and synthesis
(articulatory) models are constructed in the same framework,
and are jointly modelled using a two-stream HMM.

The trajectory HMM extends the conventional HMM frame-
work, and many established HMM building techniques can
be reused. Moreover, in the inversion stage only the HMM
state sequence is needed, so it is possible to synthesise
articulator movement from a textual representation with-
out the speech signal. We have evaluated the framework
on a speaker-dependent articulatory-speech parallel corpus,
MOCHA-TIMIT.

II. T RAJECTORYHMM

Temporal derivative features, or delta features, are well
known to improve the accuracy of HMM-based speech recog-
nition systems [14]. However, the simple incorporation of delta
features in an HMM leads to an inconsistent generative model
[15]. These inconsistencies may be resolved by performing
a per-utterance normalisation, leading to the trajectory HMM
[16].

Let c denote the static observation vector sequence, and
let o denote the sequence of observation vectors augmented
with delta features. Then the likelihood of observing the static
observation vector sequence given the HMM state sequence
q and the model parametersλ is obtained by normalising
the likelihood of obtaining the augmented observation vector
sequence:

p(c | q, λ) =
1

Zq

p(o | q, λ) (1)

whereZq is a normalisation term that depends on the state
sequence:

Zq =

∫
p(o | q, λ)dc. (2)

The model parameters include the Gaussian mean and variance
components and can be updated using gradient-based methods.

Unlike the step-wise mean output of a conventional HMM,
the mean output fromp(c | q, λ) is a smoothed trajectory, and
can be used as a proper generative model, as in parametric
speech synthesis. It is possible to train the trajectory HMMto
maximise the generative model likelihoodp(c | q, λ). This has
considerably higher complexity than conventional maximum
likelihood training for HMMs, and is rarely done for HMM-
based speech synthesis systems [3].
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III. A COUSTIC-ARTICULATORY MODELLING FOR

ARTICULATORY INVERSION

Our system starts with parallel articulatory-speech data
where the movement of articulators has been recorded us-
ing an electromagnetic articulography (EMA) machine. The
challenge of the task is that different articulator configurations
(vocal-tract shapes) can produce the same sound, which means
the mapping from speech to articulatory domain is not unique
[4], [17], and that the acoustic signal is less smooth and varies
faster, compared with articulator movements.

Instead of seeking a direct mapping between the acoustic
and articulatory signals, our methodology centres around the
idea of jointly optimising a single model for acoustic and
articulatory information. The model has two parts, both using
the same multi-state phone-level HMMs: an articulatory syn-
thesis model which (given an HMM state sequence) generates
a smoothed mean trajectory (1); and an alignment model
which derives the state sequence for synthesis from an unseen
utterance. We carried out training on the parallel data by
creating a two-stream HMM where one stream is modelled
by an articulatory HMM with single Gaussian output densities,
and the other is the standard Gaussian mixture acoustic HMM.
After that, the parameters of the articulatory stream are up-
dated using trajectory HMM maximum likelihood estimation
[16]. In this paper we choose to update Gaussian mean
components only, as updating Gaussian variances was found
to be both time-consuming and less effective.

For inversion we first derive a representative HMM state
alignment from the acoustic channel. Then the parameter
generation algorithm [2] is executed to produce the smoothed
mean trajectory from (1) in the articulatory domain. One fea-
ture of the system is the flexibility in obtaining the HMM state
alignment at the inversion stage. Depending on the available
resources, it can be the state sequence returned by an HMM
decoder, the forced alignment derived from phone labels, or
the synthesised state sequence from a textual representation,
using a suitable duration model. An overview of the acoustic-
articulatory model is illustrated in figure 1.

Delta features, which play a central role in trajectory HMM
systems, are obtained from the regression coefficients that
represent the temporal slope of each feature [14]. In the HTK
system1, delta coefficients are computed from the previous and
next two frames. The delta-delta coefficients are computed in
the same way using the previous and next two deltas, meaning
that the whole window covers nine frames. In the HTS HMM-
based speech synthesis system2 a simpler three frame window
is employed, using a quadratic regression for delta-deltas. We
experimented with both kinds of windows, and found that
choice of window has an impact on the articulatory inversion
task. We will refer to the three-frame dynamic window (as
used in HTS) asdw3, and the nine-frame window (as used in
HTK) one asdw9.

1http://htk.eng.cam.ac.uk/
2http://hts.sp.nitech.ac.jp/
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Fig. 1. Overview of the articulatory-acoustic modelling system. Using two-
stream combined training results in greater accuracy compared with the
separately trained ones.

IV. EXPERIMENTS

The MOCHA-TIMIT corpus3 is a speaker-dependent
recording of TIMIT sentences with articulatory information
captured using EMA, along with the acoustic signal. It in-
cludes one male speaker (msak0) and one female speaker
(fsew0), each uttering 460 TIMIT sentences. Electromagnetic
receiver coils are attached to 7 articulators in both x and y-
coordinates during recording, providing a total 14 channels of
articulatory information sampled at 500 Hz. The female data
(fsew0) is used in this paper.

In preparing the experiment, we down-sampled the EMA
data to 100 Hz to match the 10 ms frame-rate of the acoustic
features, which are the usual 12th-order MFCCs with log-
energy plus their delta and delta-deltas. All delta features are
computed using the three-framedw3window unless mentioned
otherwise. A mean-filtering normalisation is performed to
compensate some EMA measure errors introduced in the
recording stage [18]. We set aside the utterances whose record-
ing number ends with 2 for validation (46 utterances), those
ending with 6 for test (46 utterances) and the remaining 368
utterances for training. The phone set consists of 45 phones
including silence. The inversion performance will be reported
as average RMS (root mean square) error compared with the
recorded articulatory data.

Similar to building an HMM-based speech recognition
system, we refined our inversion models incrementally. Both
the (articulatory) synthesis model and the (acoustic) alignment
model started from a single component Gaussian, three-state,
left-to-right monophone model trained using HTK. Depending
on the training scheme used, three synthesis models were built:

• hmm.A: baseline HMM trained on the articulatory data
only, using HTK.

• trj.A: trajectory HMM, built from the baseline HMM,
with the Gaussian mean components updated using the
forced alignment provided by hmm.A.

3http://www.cstr.ed.ac.uk/research/projects/artic/mocha.html
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• trj.C: jointly trained two-stream trajectory HMM, with
updated Gaussian mean components for the articulatory
stream. A default stream weight of 1.0 is used for both
streams.

Since a trajectory HMM equivalent of the Baum-Welch
algorithm has not been discovered, it is prohibitively expensive
to estimate trajectory HMMs with multi-component Gaussian
mixture densities. Thus our articulatory synthesis component
is limited to single component Gaussian densities (1mix). In
deriving the alignment for training, however, there is no such
restriction. We can therefore get more accurate alignment by
using more mixture components. In our experiments, Gaussian
mixture densities with four (4mix) and eight (8mix) compo-
nents were used to derive the HMM alignment.

To carry out the inversion, again an HMM alignment is
required for each testing utterance. Different strategiescan be
employed to maximise resource usage. For utterances with
only acoustic data, we choose to use the alignment returned
by decoding speech directly using a phoneloop grammar (S-
Decode). If we have access to phone labels then a better
alignment can be obtained by running the decoder in forced
alignment mode (S-Align). In addition, we give the result
based on the forced alignment of the recorded articulatory data
(A-Align). Although this information will not be availablein
real inversion tasks, it nevertheless gives us an indication of
the “topline” performance using single Gaussian densitiesin
the articulatory synthesis model.

A unique feature of the inversion system is the ability to
perform synthesis with only phone label information. The re-
quired HMM state alignment for synthesis can be constructed
from a state duration model. Using the HTS system, we built
a monophone duration model from the training data. A state
sequence was then synthesised using the duration model and
the provided test labels and the mean trajectory was then
generated.

The inversion results on test data in terms of average RMS
error (mm) over the 14 channels are presented in Table I. The
RMS error obtained when synthesising from the phone labels
is shown in Table I as trj.dur. We also list results obtained
using the same data set employing a multi-layer perceptron
(MLP) [11] and a trajectory mixture-density network (TMDN)
[19]. We conducted paired one-tailt-tests between the results
obtained using the same number of mixture components
and decoding/alignment approach (i.e. within each column in
Table I). The differences between the obtained results are all
significant at thep < 0.05 level, except where marked with†.

Compared to the result from baseline model hmm.A, the
two trajectory models (trj.A and trj.C), achieve a significantly
lower RMS error in the different inversion configurations. This
demonstrates the effectiveness of trajectory training. Moreover,
in table I we find that the jointly trained model (trj.C) results
in significantly lower RMS errors than trj.A, in which the
articulatory stream and speech stream are trained separately.
Hence training a model jointly on the acoustic and articu-
latory streams results in a reduced RMS error. Furthermore,
increasing the number of mixture components in the acoustic
alignment model consistently reduces the RMS error, despite
the fact that the final synthesis stage uses a single Gaussian

TABLE I
RMS ERROR(MM ) OF ARTICULATORY INVERSION ON TEST DATA

Model S-Decode S-Align A-Align
1mix 4mix 8mix 1mix 4mix 8mix 1mix

hmm.A 1.936 1.901 1.876 1.842 1.814 1.804 1.679
trj.A 1.923† 1.811 1.756 1.715 1.656 1.624 1.386
trj.C 1.887 1.756 1.705 1.630 1.633† 1.580 1.477
trj.dur 2.339
MLP 1.62
TMDN 1.40

model.
Comparing the different alignment methods, it can be seen

that the method based on forced alignment with phone labels
(S-Align) results in significantly (p < 0.05) lower errors than
the alignment obtained from direct decoding (S-Decode). The
final column of Table I gives an upper bound on performance
using a single Gaussian monophone model aligning to the
recorded articulatory data (A-Align). The fact that trj.C per-
forms worse than trj.A in this condition is because when the
actual articulatory data is provided, the addition of acoustic
information lowers the alignment accuracy.

The recovered trajectory for the movement of upper lip in
thex direction for the first utterance in the test set is displayed
in Figure 2, where the trained trajectory HMM (trj.dw3) is
observed to give a better fit to the data than the baseline HMM
(hmm.dw3).

We also investigated the effect of the delta coefficient
regression window for this task. Using thedw3 window for
delta coefficient estimation, the best inversion result is an RMS
error of 1.876 mm for the baseline HMM, and 1.580/1.705 mm
for a trained trajectory HMM using an alignment derived from
the S-Align/S-Decode conditions respectively, both employing
an 8-component mixture model for alignment. Although not
shown here, thedw9 window results in slightly lower RMS
errors thandw3. Among 21 results in the first three rows of
Table I, we find only 8 cases where the difference between
dw3 anddw9 is statistically significant at the 0.025 level of a
two-tail pairedt-test. And in only 2 instances doesdw9 have
a lower RMS error thandw3. Figure 2 shows the recovered
trajectories using the two windows, and it is clear that thedw3
window results in a smoother estimated trajectory, compared
to dw9.

The lowest inversion error from the the speech signal alone
is 1.705 mm, which compares well with an error of 1.62 mm
obtained when using an MLP for direct acoustic-articulatory
mapping [11], especially since in this approach the articulatory
trajectory is generated using single Gaussian densities. More
recently, the TMDN approach [19] has resulted in a decreased
RMS error of 1.40 mm on this data set.

V. D ISCUSSION

Recent interest in the use of HMM-based systems for speech
synthesis, and the development of the trajectory HMM, has
resulted in a resurgence of interest in the development of
unified models for speech recognition and synthesis with a
principled statistical basis. In this work we use a common gen-
erative model for acoustic-articulatory data that—with appro-
priate marginalisation—can be used for both recognition and
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Fig. 2. Recovered trajectory for the movement of Upper Lip in x coordinate (ul x) of test utterance fsew0006. The trained trajectory HMM (trj.dw3)
shows a closer fit to the data than the baseline HMM (hmm.dw3), with state alignment derived from a 8-mixture jointly trained 2-stream HMM. The light
gray trajectory of (trj.dw9) shows the noisy effect of using 9-frame dynamic window.

synthesis of acoustic and articulatory signals. Our experiments
in this paper confirm that training such a model jointly (trj.C)
results in more accurate generation of articulatory trajectories,
compared with separately trained models (trj.A).

Despite its theoretical attractions, the trajectory HMM has
a major limitation at the current time. In the absence of a
“trajectory HMM Baum-Welch” algorithm, training models
with multiple component mixtures is prohibitively expensive.
Thus, in this work, the articulatory synthesis model was
limited to trajectory HMMs with single Gaussian densities.In
the HTS speech synthesis system, this limitation is implicitly
addressed through the use of detailed context. In this work we
have used monophone models, and it is clear that the use of
context-dependent models is worth investigating.

Although there are significant technical challenges related
to trajectory HMM training, there are several advantages to
pursuing the trajectory HMM as a unified model for synthesis
and recognition. The fact that existing software frameworks for
HMMs may be reused provides a platform for experimenta-
tion, and a principled, efficient way to initialise models (using
conventional HMM parameter estimation). In the articulatory-
acoustic modelling case, the use of duration modelling ap-
proaches developed in HMM-based speech synthesis enables
articulatory movement to be generated without the need for
acoustics, and it is also possible to apply speaker adaptation
approaches used successfully in recognition and synthesis.
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[17] C. Qin and M. A. Carreira-Perpiñán, “An empirical investigation of the
nonuniqueness in the acoustic-to-articulatory mapping,”in Proceedings
of INTERSPEECH 2007, 2007, pp. 74–77.

[18] K. Richmond, “Estimating articulatory parameters from the acoustic
speech signal,” Ph.D. dissertation, The Centre for Speech Technology
Research, Edinburgh University, 2002.

[19] ——, “Trajectory mixture density networks with multiple mixtures for
acoustic-articulatory inversion,”In Proc. NOLISP 2007 (In Press), 2007.


