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Novel polynucleating, di- and tri-acidic ligands have been

designed to increase the molar and mass transport efficiencies

for the recovery of base metals by solvent extraction.

Solvent extraction provides highly efficient concentration and

separation operations in extractive hydrometallurgy.1 Major new

plants to recover zinc have opened recently2 and ca. 20% of the

global production of copper is achieved using phenolic oxime

extractants3 (e.g. L
1H, Fig. 1) in an acid leach–solvent

extraction–electrowinning flowsheet (Scheme 1). The latter gives

an excellent materials balance for recovery from oxidic ores

because the leach, extractant and electrolyte solutions are recycled,

and the process can be adapted to work efficiently with wide

variation of compositions of pregnant leach solutions.1,4

Whilst the flowsheet outlined in Scheme 1 is very efficient in

terms of the overall materials balance, there is scope to

improve the throughput by increasing the transport efficiency

in the solvent extraction step. The mass of copper transferred

to the water-immiscible solvent in the extraction stage is

limited by the 1 : 2 stoichiometry required to generate a

neutral, organic soluble, complex from the monoanionic phe-

nolic oxime reagents. We recognized that the molar ratio of

copper to extractant could be improved if polynucleating

ligands capable of existing as di- or tri-anions after deprotona-

tion were designed. Some systems developed to achieve this are

shown in Fig. 1. A key design feature is that the anionic donor

atoms, X� or W� in Fig. 1, are able to bridge two Cu(II) atoms

in planar complexes.

Studies of the pH-dependence of Cu(II) extraction into

chloroform solutions using the ligands (Fig. 2) show that the

metal to ligand stoichiometry can be increased from 1 : 2 to

2 : 2 or 3 : 2, corresponding to 100, 200 and 300% Cu-loading

for ligands L
1H, L2H2 to L

4H2 or L
5H3, respectively. The

loading curves (Fig. 2) for L
3H2 and L

5H3 show plateaux

which indicate that stepwise loading is possible, e.g. in

Fig. 1 Functionalization of the conventional type of extractant L1H

to generate di- and tri-acidic reagents L2H2–L
6H3 which can form

di- and tri-nuclear Cu(II) complexes (B and C).

Scheme 1 Materials balance for the recovery of copper from oxidic
ores.
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addition to forming species with a stoichiometry consistent

with the desired trinuclear complex, [Cu3(L
5)2], at pH 4 5 the

ligand L5H3 also forms species corresponding to mono- or

dinuclear complexes, [Cu(L5H2)2] and [Cu2(L
5H)2], at pH

values of ca. 2.2 or 3.8, respectively.

The Cu-uptake by chloroform solutions of L2–4H2 can be

followed by monitoring X-band EPR spectra. The intensity of

the signal increases (A in Fig. 3) until the Cu-loading corre-

sponds to a metal to ligand stoichiometry of 1 : 2. Further

loading is accompanied by a decrease in signal intensity (B in

Fig. 3) and at 2 : 2 stoichiometry there is almost no signal.

Antiferromagnetic coupling between the two copper centres in

the dinuclear complexes could account for these changes.

There is some ambiguity as to the structure of the dinuclear

complexes, and in particular which of the oxygen atoms in

L2–4H2 or L
5–6H3 form bridges between the two Cu atoms. An

analogue of L2H2, with t-Bu and Me groups replacing the

heptyl and nonyl substituents, gives a complex (Fig. 4)z which
is similar to several reported in the CSD5 in which the

phenolate oxygen atom of the salicylaldimine component

bridges the two copper centres. In contrast, in the dinuclear

complex (Fig. 5)z formed by L
6H3, it is another type of

phenolate oxygen atom which forms the bridges and much

more irregular NO3
2� donor sets are presented to the copper

atoms by the ligands.

Whilst the new di- and tri-acidic extractants increase the

molar transport efficiency two or three fold, it is the mass

transport which is of greater practical significance. Based on

the molecular weights shown in Table 1, it can be seen that

Fig. 2 Cu-loading by CHCl3 solutions of L
1H ( ), L2H2 ( ), L3H2

( ), L4H2 (&) and L5H3 ( ) as a function of pH. Loadings of 100,

200 and 300% correspond to Cu : 2L, 2Cu : 2L and 3Cu : 2L molar

ratios.

Fig. 3 EPR spectra of CHCl3 solutions of L
2H2 as Cu-loading

increases from 0–100% (curves A) and from 100–200% (curves B).

Fig. 4 Dinuclear copper complex of a structural analogue of L2H2.

Fig. 5 Crystal structure of dinuclear copper complex of L6H3.
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between 1.36 to 2.47 fold improvements relative to the com-

mercial extractant 5-nonylsalicylaldoxime (L1H) result from

using the reagents L2H2 to L5H3.

Exploiting the improved transport efficiency of these new

reagents will only be possible if they have high solubility in the

hydrocarbon solvents used industrially and are stable to

hydrolysis and show selectivity for Cu-loading in the low pH

ranges used in commercial circuits. Nevertheless, the work

described in this communication has shown that substantial

increases in mass transport efficiency are possible by designing

multi-loading extractants which incorporate into the ligand

super structure several acidic groups which can function in a

metal–metal bridging mode.

The authors thank Cytec Industries Inc. and EPSRC for

funding.

Notes and references

z Crystal data for [Cu2L2]�2CHCl3 (Fig. 4):
Data were collected on a 3 circle Bruker Smart Apex CCD diffrac-
tometer with graphite-monochromated Mo-Ka radiation (l =
0.71073 Å) equipped with an Oxford Cryosystems low temperature
device operating at 150 K. The crystal was indexed using the Bruker
Smart software6 and found to be triclinic with a = 5.9794(3), b =
9.9352(5), c = 15.3792(9) Å, and a = 98.853(4), b = 94.933(4), g =
103.343(4)1. From initial indexing a data collection strategy was
refined which aimed to collect fully complete data to a resolution of
531 in 2y in as short a time as possible. In total 8149 reflections were
collected and from these the space group was determined to be P�1.
Absorption correction was performed using a multi-scan method by
applying the SADABS7 program to the data. The data were merged
according to the crystal system in SHELX8 which gave 3052 unique
reflections with a merging R-factor of 0.0442. The initial solution was
determined by direct methods with the SHELXS8 program. All heavy
atoms were refined anisotropically and hydrogen atoms were placed
geometrically and allowed to ride on their host atom. Full matrix least
squares refinement was carried out against F2 producing a final
conventional R-factor of 0.0957 based on 2750 reflections.

Crystal data for [Cu2(L
6H)2] (Fig. 5):

Data were collected on a 3 circle Bruker Smart Apex CCD diffrac-
tometer with graphite-monochromated Mo-Ka radiation (l =
0.71073 Å) and equipped with an Oxford Cryosystems low tempera-
ture device operating at 150 K. The crystal was indexed using the
Cell_now indexing program9 and found to be triclinic with a =
6.8829(7), b = 9.6493(10), c = 12.3771(12) Å and a = 88.498(6),
b = 83.850(6), g = 83.339(6)1. The crystal was also twinned and the
twin law obtained after global cell refinement was (�0.99434�0.00064
�0.02085), (0.00755 �0.99936 �0.01644), (�0.43677 �0.05385
0.99478). From initial indexing a data collection strategy was refined
which aimed to collect fully complete data to a resolution of 531 in 2y
in as short a time as possible. In total 3802 reflections were collected
and from these the space group was determined to be P�1. Absorption
correction was performed using a multi-scan method by applying the
TWINABS10 program to the data. The initial solution was determined
by direct methods with the SHELXS8 program. All heavy atoms were
refined anisotropically and hydrogen atoms were placed geometrically
and allowed to ride on their host atom. Full matrix least squares
refinement was carried out against F2 producing a final conventional
R-factor of 0.0865 based on 3091 reflections.
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Table 1 Comparison of the mass transport efficiencies L2–4H2, and
L5H3 with the commercial extractant, 5-nonylsalicylaldoxime (L1H)

Reagent Mr

Stoichiometry
(Cu : L)

Cu Transport

g per kg
reagent

Relative
to L

1H

L1H 263 1 : 2 121 1.00
L
2H2 388 2 : 2 164 1.36

L
3H2 433 2 : 2 147 1.21

L
4H2 325 2 : 2 195 1.62

L5H3 320 3 : 2 298 2.47
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