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Abstract

Statistical mechanics has been applied to a wide range of systems in physics, biology,

medicine and even anthropology. This theory has been recently used to model the

complex biochemical processes of gene expression and regulation. In particular, genetic

networks offer a large number of interesting phenomena, such as multistability and

oscillatory behaviour, that can be modelled with statistical mechanics tools.

In the first part of this thesis we introduce gene regulation, genetic switches, and the

colonization of a spatially structured media. We also introduce statistical mechanics

and some of its useful tools, such as the master equation and mean-field theories. We

present simple examples that are both pedagogical and also set the basis for the study

of more complicated scenarios.

In the second part we consider the exclusive genetic switch, a fundamental example

of genetic networks. In this system, two proteins compete to regulate each other’s

dynamics. We characterize the switch by solving the stationary state in different limits

of the protein binding and unbinding rates. We perform a study of the bistability

of the system by examining its probability distribution, and by applying information

theory techniques. We then present several versions of a mean field theory that offers

further information about the switch. Finally, we compute the stationary probability

distribution with an exact perturbative approach in the unbinding parameter, obtaining

a valid result for a wide range of parameters values. The techniques used for this

calculation are successfully applied to other switches.

The topic studied in the third part of the thesis is the propagation of a trait inside

an expanding population. This trait may represent resistance to an antibiotic or being

infected with a certain virus. Although our model accounts for different examples in

the genetic context, it is also very useful for the general study of a trait propagating in a

population. We compute the speed of expansion and the stationary population densities

for the invasion of an established and an expanding population, finding non-trivial
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criteria for speed selection and interesting speed transitions. The obtained formulae

for the different wave speeds show excellent agreement with the results provided by

simulations. Moreover, we are able to obtain the value of the speeds through a

detailed analysis of the populations, and establish the requirements for our equations

to present speed transitions. We finally apply our model to the propagation in a

position-dependent fitness landscape. In this situation, the growth rate or the maximum

concentration depends on the position. The amplitudes and speeds of the waves are

again successfully predicted in every case.
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help with numerical problems, and Jesús Sánchez-Dehesa for helping me understand
information measures in a more thorough way.

Apart from the PhD, my life in Edinburgh has been full of other activities. These years
would have not be the same without the warmth of Edinburgh Tango Society or the
excitement of being in Edinburgh Movie Productions Society.

I would also like to thank my parents and my family, who have supported me from
Spain, and my friends at both sides of the sea.

Last but not least, I would like to thank the University of Edinburgh for the Studentship
that got me to Edinburgh, and that made me live so many wonderful experiences.

v



vi



Contents

Abstract i

Declaration iii

Acknowledgements v

Contents vii

List of Figures xiii

List of Tables xxi

I Introduction to nonequilibrium statistical mechanics of biological
systems 1

1 Introduction 3

1.1 Gene expression and regulation.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Colonization of a spatially structured medium .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Statistical Mechanics and Methods 9

2.1 Statistical Mechanics ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Master equation ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 An example: The birth-death process... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Detailed balance... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

vii



2.2.3 Simulation of master equations: The Gillespie algorithm .... . . . . . . . 15

2.3 Perturbation theory .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Mean field theory and the role of fluctuations... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 The 1D Ising model .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Information Theory... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.1 Introduction.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.2 Shannon entropy .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.3 Fisher information ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 The Fisher-KPP equation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

II Genetic switches 31

3 Characterization of the exclusive genetic switch 35

3.1 Introduction ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Model Definition .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Master equation ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.2 Non-mathematical model: the mob model... . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.3 Simulation results ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.4 Solution in the limit u, b→ 0 ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.5 Solution in the limit u, b→∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Nature of bistability ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Information theory... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.1 Spreading measures. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.2 Fisher information... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Mean Field Theory .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5.1 Rate equations. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

viii



3.5.2 Basic mean field theory ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.3 Refined mean field theory. ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6 Summary .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Perturbative study of the probability distribution of the exclusive
genetic switch 73

4.1 Formal solution.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Perturbative approach outline ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Zeroth order ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 General Formulation... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.1 Green functions and the method of characteristics... . . . . . . . . . . . . . . . . 79

4.5 Green function for the operator L0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.6 Green function for the operator L1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.7 First and second order results.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.8 Discussion and summary... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.9 Discussion of other genetic switches... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.9.1 The non-exclusive switch... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.9.2 Self-regulating gene .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

III Expanding waves of population 101

5 Phenomenological study of coupled Fisher-KPP waves 107

5.1 Coupled Fisher-KPP equations ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 Simulation scheme .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2.1 Stability of the equations ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2.2 Boundary conditions... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.3 First simulation scheme: fully explicit method .... . . . . . . . . . . . . . . . . . . . 113

ix



5.2.4 Refined simulation scheme: the split operator method .... . . . . . . . . . . 114

5.3 Clarification of speeds and notation... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4 Invasion of a trait into an existing population... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.5 Invasion of the trait into an expanding population ... . . . . . . . . . . . . . . . . . . . . . . . . 120

5.5.1 Features of the trait wave... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.5.2 Calculation of the speed vf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.5.3 Speed transition ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.6 Invasion of a partially filled domain.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.7 Summary .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6 Analytical study of coupled Fisher-KPP waves 135

6.1 Introduction ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.2 General requirements for a speed transition ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.3 Analytical study of the trait population wave ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.3.1 Study of the population far behind the kink .... . . . . . . . . . . . . . . . . . . . . . . 138

6.3.2 Study of the population just behind the kink.... . . . . . . . . . . . . . . . . . . . . . 138

6.3.3 Study of the population in front of the kink. Computation of the
speed vtip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.4 Matching the solutions ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.4.1 Computation of the frequency a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.4.2 Use of the frequency a for the solution behind the kink... . . . . . . . . . . 149

6.5 Analysis of expanding populations with different growth rates α. . . . . . . . . . . 150

6.5.1 Theoretical prediction .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.5.2 Results from simulations ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.6 Summary .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

x



7 Expanding populations in spatially heterogeneous environments 155

7.1 Introduction ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.1.1 General notes on the simulations ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.2 Simulations of a single population in a spatially-varying fitness landscape 157

7.2.1 Simulations for a position-depedent growth rate α = α(x) ... . . . . . . 158

7.2.2 Simulations for spatially varying carrying capacity K = K(x) .. . . . 169

7.3 Simulations of an evolving population in a spatially varying fitness
landscape... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.3.1 Evolution by mutations ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.3.2 Reversible mutation... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.3.3 A population undergoing horizontal transmission in a spatially
varying fitness landscape... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.4 Summary and non-mathematical model. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

IV Conclusions 185

8 Conclusions 187

A Analytical methods for the exclusive switch systems of linear PDEs 191

B Preliminary analytical study of the Fisher-KPP equation with a
fitness landscape 195

B.1 Equation for a position-dependent growth rate α = α(x)... . . . . . . . . . . . . . . . . . 195

B.2 Equation for a position-dependent carrying capacity K = K(x) .. . . . . . . . . . 196

Bibliography 201

xi



xii



List of Figures

1.1 Illustration of gene expression. . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Illustration of a genetic network. The proteins may interact with DNA,
changing which genes are expressed at a given time. . . . . . . . . . . . 6

2.1 Graphical illustration of equation (2.32). For the upper panel βJ = 0.8,
and there are three solutions to the equation. For the lower panel, βJ =
0.4, and the only solution is m = 0. . . . . . . . . . . . . . . . . . . . . . 22

2.2 Shannon entropy for a coin experiment, with probability p of getting head. 25

3.1 The exclusive genetic switch at state S = 0. No protein is bound to the
promoter site and both types of proteins are produced. . . . . . . . . . . 36

3.2 The exclusive genetic switch at state S = 1. A protein X1 is bound to
the promoter site. Only proteins X1 are produced. . . . . . . . . . . . . 36

3.3 The exclusive genetic switch at state S = 2. A protein X2 is bound to
the promoter site. Only proteins X2 are produced. . . . . . . . . . . . . 37

3.4 Stationary state probability distribution for E. Coli values (3.6). . . . . 43

3.5 Contour plot for the probability distribution P (N1, N2) obtained from
a Gillespie algorithm simulation. A Transition from a two peak regime
to a one peak regime occurs as the unbinding parameter u increases.
g, b and d are kept equal to the standard E. coli values (3.6). The line
separating the two darkest regions in the first picture has a value of 0.005
and every line represents the same increase in the probability value. In
the rest of the pictures, the line separating the two darkest regions has
a value of 0.002 and every line represents the same amount of increase,
as the colour gets clearer. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Evolution of the two contributions to P1(N1, N2) defined in (3.24)—rA
for N1 > N2 and rB for N1 < N2—as u increases. . . . . . . . . . . . . . 51

xiii



3.7 Contour plots for the probability distribution P1(N1, N2), for different
values of u. As u increases, the peak of the distribution moves towards
the diagonal N1 = N2, but the distribution is not completely symmetric
as long as u is finite. Also, the probability mass of the distribution
decays as u increases, and is transferred to the symmetrical distribution
P0(N1, N2). In the pictures, the probability of the points that separates
the darkest region, and also the value separation between successive lines
is 5× 10−5,10−3,10−3 and 2.5× 10−4, respectively. . . . . . . . . . . . . 52

3.8 Covariance for the probability distribution of the exclusive genetic
switch. g, b and d are kept equal to the E.Coli values (3.6), and u
varies from exponentially form 10−4 to 105. . . . . . . . . . . . . . . . . 53

3.9 Shannon entropy for the probability distribution of the exclusive genetic
switch. g, b and d are kept equal to the E.Coli values, and u varies
from exponentially form 10−4 to 105. There is a local maximum around
u = 0.017, but it is also followed by a local minimum, so this should not
be taken as evidence of phase transition. . . . . . . . . . . . . . . . . . . 54

3.10 Renyi entropies for α = 2, 4, 6 for the probability distribution of the
exclusive genetic switch. g, b and d are kept equal to the E.Coli values,
and u varies from exponentially form 10−4 to 105. The behaviour is very
similar to the one observed in the Shannon entropy. . . . . . . . . . . . 55

3.11 Shannon entropy for the probability distribution of the exclusive genetic
switch. b and d are kept equal to the E.Coli values, and u varies from
exponentially form 10−4 to 105. Different values of g are selected to show
the change in the Shannon entropy profile. . . . . . . . . . . . . . . . . . 55

3.12 〈|N1 −N2|〉 as a function of u for (3.6) values. . . . . . . . . . . . . . . . 56

3.13 ∆F as a function of the size of the system. . . . . . . . . . . . . . . . . 57

3.14 Logarithm of the Fisher information for the probability distribution of
the exclusive genetic switch. g, b and d are kept equal to the E.Coli
values (3.6), and u varies exponentially from 10−4 to 105. A maximum
and a minimum are observed in the same point as in the Shannon entropy. 58

4.1 Comparison between the analytical first order and the simulation
distributions for different values of the parameters a) E. coli values
(3.6). The probability distributions have the same shape and the
order of magnitude is well reproduced in almost every point. b)
g = 0.015, u = 0.0005, d = 0.005, b = 0.1 The order of magnitude is
again well reproduced. In this case, the two peaks get closer to the
origin as the ratio g/d is smaller. c) E. coli values with u = 0.05. The
approximation at first order is no longer accurate as the value of u is no
longer small compared to the rest of the parameters of the model. . . . 90

xiv



4.2 Comparison between the analytical probability distributions P (N∗1 , N2)
where N∗1 is fixed and chosen to correspond to slices with largest
probability mass. The agreement in slice N1 = 0 is good for both
figures a) and c). There is some quantitative difference in b), which
corresponds to the E. coli values in slices with less probability mass.
This is improved with second order calculations, as can be seen in figure
4.3. In d) the difference is clear, since the first order approximation is
no longer accurate, as discussed in figure 4.1. The error in the values is
negligible and, in all the cases, is smaller than the size of the used symbols. 91

4.3 Comparison between the probability slices P (1, N2) and P (2, N2) from
second order analytical calculations and simulations, for E. coli values.
The second order is clearly enough to get accurate results. . . . . . . . . 92

4.4 The non-exclusive genetic switch. In this case two promoter sites are
situated between the genes. . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5 The self-regulating gene, considering the dynamics of both proteins and
mRNA molecules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1 In the invasion of an existing population, the total population does not
move, as it fills the whole space. The trait population invades the total
population at a constant speed vs, that is the same for every part of the
wave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2 In the invasion of an expanding population both the trait and the total
population move. The total population moves at the standar Fisher-
KPP wave speed u = 2

√
αKD. The trait population speed depends on

the region of the wave: its front moves at vf , the kink moves with the
total population at u and the tip moves at vtip, such that vf < vtip < u. 117

5.3 In the first simulation, the initial condition is a small concentration of
trait individuals in a completely saturated environment of non trait-
carrying individuals. Values of the parameters are given by equation
(5.36). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4 The trait population moves at a constant speed vs, which is translated
into a proportional advance of the front with time. The points correpond
to simulation data and the line corresponds to the theoretical prediction,
given by (5.34). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5 The shape of the wavefront is maintained as the propagation at vs takes
place. The snapshots correspond to different moments at the time region
represented by the square in figure 5.4. . . . . . . . . . . . . . . . . . . . 120

5.6 In this simulation, both populations are set in the leftmost part of the
system. Values of the parameters are given by equation (5.36). . . . . . 121

xv



5.7 The trait population advances at a constant speed vf for a certain
amount of time, and suddenly the speeds changes to vs. The points
correpond to simulation data. The first line corresponds to a linear fit
whose slope vf we will determine later. The second line is the theoretical
prediction given by (5.34). . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.8 The trait front moves vf , but we shall see that this speed is not constant
on the whole wave. The snapshots correspond to different moments at
the time region represented by the square in figure 5.7. . . . . . . . . . . 122

5.9 (a) Expansion of a trait and non-trait population in an initially empty
system. (b) Zommed picture of the system close in the kink area. Notice
the different scale in the vertical axis. The full curve corresponds to the
tip of the trait wave, while the dotted curve corresponds to the non-trait
front. (c) Zoomed picture of the system in the tip area (in front of the
kink). The solid curve corresponds to the trait wave and the dashed one
to the non-trait wave. The densities are plotted on a logarithmic scale.
Values of the parameters are given by equation (5.36). . . . . . . . . . . 124

5.10 Comparison of theoretical prediction for vtip with simulation results. The
parameters are changed, one at a time, starting from the reference given
by (5.36). The analytical predictions from table 1 are plotted as solid
lines, and the points are simulation results. In the top right panel,
note that the differences between the simulation data and the theoretical
prediction are very small, and only look significant because of the very
small scale used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.11 Comparison of theoretical prediction for vf with simulation results. The
parameters are changed, one at a time, starting from the reference given
by (5.36). The analytical predictions from equation (5.41) are plotted
as solid lines, and the points are simulation results. The blue lines
correspond (except on the bottom left panel) to the speed u of the non-
trait population, while the purple lines correpond to the speed vs of the
trait population in the invasion of an existing population (see 5.4). . . . 128

5.12 Illustration of the speeding up transition. The left panel shows the initial
condition for simulations: non-trait density NB = K for x < d and
NB = 0 for x > d. For the trait population: NA = K − β/γ for x = 0,
NA = 0 for x > 0. The right panel shows the evolution of the trait front
with time. Values of the parameters are given by equation (5.36). . . . . 131

5.13 Transition time against size of non-resistant tail. The points are data
from simulations, while the straight line comes from a linear fit. . . . . . 132

5.14 Different changes of the speed as the populations expand. . . . . . . . . 133

xvi



6.1 Solutions for the profile in front of the kink. Both functions are finite
and decreasing as long as β > a. The values chosen to plot these
functions are D = α = K = 1, γ = 0.1, β = 0.08, t = 0. NA

F,+(zR)
and NA

F,−(zR) stands for the positive and negative index Bessel function
from (6.48). The frequency a is computed from equation (6.57). Note
that the functions are different and linearly independent, even if their
plots look very alike. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.2 Solutions for the profile behind the kink. The values chosen to plot
these functions are D = α = K = 1, γ = 0.1, β = 0.08, t = 0 in the
first case, and D = α = K = 1, γ = 0.4, β = 0.2, t = 0 in the second
case. NB

A,+(zL) and NB
A,−(zL) stands for the positive and negative index

modified Bessel function from (6.47). The frequency a is computed from
equation (6.57). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.3 Speed transitions for different αA, with αB = 1. The rest of the
parameters are kept to their usual values: D = K = 1, α = 0.1, β = 0.08.
The straight lines in this case do not come from a theoretical prediction,
but from a linear fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.1 Evolution of the population in a step 1→ 0 fitness profile. The expansion
starts as a Fisher-KPP wave until the population hits the boundary.
Then, only diffusion operates, constrained by the boundary conditions. . 159

7.2 Step 1→ 0 with an infinite system. The population diffuses towards the
right, with a constant source of population at x = 0, where N(0, t) = K.
Points correspond to simulation data. Lines correspond to theoretical
predictions given by (7.6) at t = 1000 (black) and t = 3000 (green). . . . 160

7.3 Step 1→ −1 function for the growth rate α(x). . . . . . . . . . . . . . . 160

7.4 Step 1→ −1. The population stops at the barrier and forms a stationary
profile that can be computed analytically. The blue points correspond
to simulation data, while the black line correspond to the theoretical
prediction given by (7.20) and (7.21). . . . . . . . . . . . . . . . . . . . . 164

7.5 Descending linear profile for the growth coefficient of the population. . . 164

7.6 Expansion in a linear descending profile for α(x). As the population
advances, the general shape of the wave is conserved, but the speed of
the front decreases as α(x) does. The changes in the profile can be better
appreciated in the next figure. . . . . . . . . . . . . . . . . . . . . . . . . 165

7.7 Profiles of the expanding population in a linear descending profile for
α(x). The profiles at different times are moved in order to compare
them. We are able to appreciate that the profile becomes less steep as
the speed of the wave front decreases. . . . . . . . . . . . . . . . . . . . 166

7.8 xf/
√
DK versus

√
α shows how the speed relation v = 2

√
DαK holds

with a linearly changing α(x), for different values of D. . . . . . . . . . 166

xvii



7.9 α(x) for a step concentration of antibiotics that has diffused. The values
of the parameters are

√
4Dt = 50.0, Ah = 0.001, αmax = 1.0. . . . . . . 168

7.10 Bacteria expansion for α(x) computed for antibiotic concentration. The
speed of the front decreases as the populations move into regions with
smaller α(x). Parameters:

√
4Dt = 50.0, Ah = 0.001, αmax = 1.0. . . . . 169

7.11 Density stationary profile for K(x) set as a step 1→ 0. The population
stops at the boundary of the step, setting a decaying profile whose
expression can be computed analytically, obtaining perfect agreement
with the simulations. Points correspond to simulation data and the line
corresponds to the theoretical prediction given by (7.27) with x0 = 200. 170

7.12 Expansion of the population for a linear descending K(x). The
concentration reaches saturation at all points, making the propagation
of the front smaller as time passes. . . . . . . . . . . . . . . . . . . . . . 171

7.13 Speed relation for the expansion with a linear descending K(x). The
regression straight line has a very good agreement with the simulation
results, and a slope of 2.05 ± 0.01, as expected from theoretical
predictions, all despite the difficulty for measuring the speed. . . . . . . 172

7.14 Evolution of the population for a quadratic profile for K(x) and D = 100.
The rest of the parameters are set to the standard values. In this case,
diffusion happens very quickly, and then the population growth, reaching
an equilibrium profile that mimics the saturation one. In the legends,
t stands for time iterations, rather than real time, which has less neat
values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.15 Two populations evolution for a mutation rate ω = 10−6. The non-trait
individuals expands until the step boundary, stopping around t = 1000
and keeping its profile more or less constant. Then, the trait population
becomes more relevant, since it can diffuse better to the right hand side
region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.16 Speed evolution for ω = 10−6. Waiting time τ = (16± 5)s. . . . . . . . . 175

7.17 Speed evolution for different values of ω. The waiting time increases as
ω decreases. The image has been zoomed around the waiting region. . . 176

7.18 Expansion with reversible mutation. Values are D = 1, αmax = 1,K =
1, γ = 0.1, β = 0.08. The expansion at the left hand side is not pictured
for the sake of clarity, but it happens with the amplitudes computed, at
the levels shown in the left hand side of the graph. . . . . . . . . . . . . 177

7.19 Expansion of the two populations in the horizontal gene transfer model
in a step 1→ −1 for αB(x). D = K = 1, γ = 0.1, β = 0.08. t = 1400. . 180

xviii



7.20 Waiting time in the horizontal gene transfer model for different values
of β. The rest of the parameters in the simulation are kept at the same
values. Points with their associated error represent simulation data,
while the straight lines join the points to illustrate the evolution of the
graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

B.1 Solution for the special case K(x) = W (x;C, κ1, κ2). . . . . . . . . . . . 199

xix



xx



List of Tables

3.1 Value of u for the transition from a bimodal to a unimodal probability
distribution. Only one of the parameters g, b, d is changed each time,
taking the E.Coli values as a reference (3.6). . . . . . . . . . . . . . . . 50

3.2 Results from different quantities from simulations and mean field theory
approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Expression for different speeds. The column Type indicates which
population (trait or total) moves at a certain speed. The column Region
of the wave moving at this speed indicates which part of the mentioned
population moves at that speed. We must remember that in the invasion
of an expanding population, different regions of the trait population move
at different speeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

xxi



xxii



Part I

Introduction to nonequilibrium

statistical mechanics of biological

systems

1



2



Chapter 1

Introduction

The great advance of science in the past centuries has incredibly increased our

knowledge about nature. At the same time, this advance results in the specialization

of scientists. Physics, for example, has increasingly separated in specialized areas

such as electrodynamics, statistical mechanics or quantum physics, some of which only

appeared during the last century. As a consequence, it is nowadays necessary for every

scientist to focus on an area of research and to go deep into it in order to produce

some progress in the field. However, in order to go forward, it sometimes helps to go

sideways, and to look at another areas of research, establishing new connections with

other disciplines. Bioelectronics, quantum computing or medical imaging are good

examples of these connections.

Among the most fruitful collaborations of the past centuries is the interface of physics

and biology. Physical modelling has been splendidly successful in the study of inert

matter. Nevertheless, systems that are alive pose a great deal of new challenges, where

even the smallest of the details cannot be neglected.

Physical models can be quite limited and simple compared to the rich phenomenology of

biology, but this simplicity must be well understood. Among the virtues of physics is its

ability to predict the behaviour of a system by just including the essential characteristics

in the model. These models are called toy models and are a useful tool to deal with

some very complicated systems.

Actually, this does not happen only in biophysics. Statistical mechanics already

simplifies the study of inert matter. For example, the famous equation for an ideal

gas PV = NKT can be obtained by assuming its molecules follow classical dynamics.
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Despite the fact that gas molecules behave as quantum particles, it is only necessary

to include the essential in our model, that is, that particles do not interact with each

other, in order to get the same equation as in the quantum case. The large number of

components plays a fundamental role, resulting in both equations being the same. This

means that our models are somehow limited, but still can be very valuable in order to

understand a system.

One of the challenges that has caught the attention of physicists is the understanding

of gene expression. To know how genetic information can be translated into a certain

behaviour is something that goes beyond strict science. It is a main interest for society

and it has been the study of all kind of disciplines, from sociology to criminology. Our

job as physicists is to provide quantitative understanding of simple processes, and to

provide a solid basis for the study of complex phenomena, such as human behaviour.

The topic of gene expression is introduced in section 1.1.

Another topic of no less importance is the propagation of diseases and their resistance

to antibiotics. Human and animal health are factors that influence our everyday life,

and the understanding of them forces whole countries to make decisions that might

affect millions of people.

As we know, diseases that mutate pose even a bigger threat to life, and all

understanding we may gather about them will be undoubtedly useful in order to face

them. Propagation of diseases (and other properties) and resistance to antibiotics are

presented as the general problem of the propagation of a population in a spatially

structured medium, in section 1.2.

1.1 Gene expression and regulation

Here we present a brief overview of the process of gene expression and the regulation

mechanisms in genetic networks. Inside cells, DNA is stored in chromosomes, and it

contains the necessary information to generate different kinds of proteins. The basic

units of DNA are called nucleotides and, as is well known, the nucleotides in human

cells can be of four types: adenine (A), guanine (G), thymine (T) and cytosine (C).

A fragment of a chromosome that encodes for a certain protein is normally called a

gene. Also, a gene is usually divided into nucleotide trios (e.g. ACT, CGA, etc.) called

codons. A codon encodes for the production of a single amino acid, from which the

proteins are formed.
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Figure 1.1 Illustration of gene expression.

The sequence of codons inside the gene determines the production of proteins (chains of

amino acids). The behaviour of the cell, which depends on the eventual concentration

of proteins, is therefore controlled by the order of the codons. The process by which

genetic information is used to generate proteins is called gene expression, and can be

divided into two main phases:

� Transcription is the phase in which genetic information is copied into a molecule of

messenger RNA (mRNA). The process is effected by the enzyme complex RNA

polymerase. Once this process is finished, mRNA stores the same sequence of

codons that was present in the gene.

� Translation is the process by which the information carried inside the mRNA

molecule is used to produce an amino acid chain. This process is effected by

ribosomes, that generate amino acids by following the sequence of codons. Finally,

ribosomes also link together these amino acids in order to form a protein.

So far, we have described the cycle of gene expression for a single gene. When different

genes are connected to each other through the interaction with their and other proteins

and molecules of RNA, we have a genetic network [3–5]. This network is a complex

system in which the genes eventually expressed and the protein dynamics depends not

only on one gene, but on several components (figure 1.2).

Proteins can sometimes bind to its producing gene or to another one, and interact

with them, thereby enhancing or stopping the expression of this gene [6]. These
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Figure 1.2 Illustration of a genetic network. The proteins may interact with DNA,
changing which genes are expressed at a given time.

proteins receive the name of transcription factors: activators, if they switch on the

gene; repressors, if they switch it off. Directly or indirectly, they may regulate the

concentration of other proteins or of their own type.

This poses an interesting situation: if some of the genes are switched on and off,

then the genetic information that is expressed in the system might be difficult to

predict. Moreover, it may change with time. It has been shown in experiments that the

same genotype (initial genetic configuration) can result in different phenotypes (actual

behaviour of the cells) [7]. The challenge of statistical mechanics and biophysics is then

to predict the outcome of these systems and to understand how regulation works.

Among the most widely studied genetic networks are genetic switches, which are simple

combinations of genes that can be turned on and off by proteins. For example the virus

bacteriophage λ [8] consists of two genes that are alternatively expressed. This kind of

switch will be comprehensively studied in chapters 3 and 4.

Despite the relevance of genetic switches, analytical solutions are very limited [9–12],

even for simple systems, and often simulations are the only alternative [13]. This is the

reason why we present an analytical study of the exclusive genetic switch and extend

our techniques to other switches of interest in chapter 4.
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1.2 Colonization of a spatially structured medium

In the study of genetic switches described above, we compute concentrations of several

species of proteins in a given cell. This is an example of population dynamics study,

where the evolution of different kinds of individuals are studied quantitatively. However,

movement of the proteins towards other cells is not considered. The situation where

the spreading of a population is taken into account is another example of population

dynamics and has become a relevant topic in recent years. The colonization of a certain

space by a population that actively uses the resources in it constitutes an especially

interesting example.

In the colonization of a medium, the population expands and also reproduces by using

the available resources. When two or more types of individuals are present in the

population, interesting phenomena arise due to interactions among subpopulations and

competition for space and resources.

Especially important is the case of the spreading of a disease. The better this kind of

problem is understood, the more effective measures can be taken to prevent uncontrolled

spreading. To model the propagation of a disease two subpopulations [14] or more [15]

can be established. Most of the models for this problem include infected individuals

that carry the disease, and susceptible individuals that may contract it. This kind of

problem will be studied in detail in chapters 5 and 6.

A similar problem is the study of different variations of a disease, that is, the study of

different mutations that bacteria or viruses might carry. In this case, it is usual to set

a certain concentration of antibiotics [16] that results in different expansion rates for

susceptible and resistant bacteria. This scenario will be studied in detail in chapter 7.

The case of two populations spreading and interacting with each other and a medium

can also refer to the propagation of people, cars, or even technology and information

[17]. All these kind of problems obey at a general level the same type of equations, as

they all involve diffusion of the elements across a medium, consumption of resources

and changes from one type of individual to another one.

The growth of a population in a medium is limited by the number of individuals a

certain area can sustain. This is called the carrying capacity K, and it poses a limit

up to which a population can grow. If we assume a form of growth N(K −N) (called

logistic growth [18, 19]) and we include diffusion, the equation we obtain to model a
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population N(x, t) that expands in one dimension with co-ordinate x is:

∂N(x, t)
∂t

= D
∂2N

∂x2
+ αN(K −N) (1.1)

where D and α are the diffusion and growth rates, respectively, and t represents time.

It is worth noting that equation (1.1) does not include a noise term. This model

is essentially different to our approach to genetic switches, where noise is taken into

account in the calculations. The colonization of a spatially structured medium is a

problem that is indeed subject to noise, because of the finite size of the populations

and the stochastic nature of the processes of growth, diffusion and reaction. Therefore

our model should be understood as a starting point, from which more sophisticated

models that incorporate noise may be built.

Equation (1.1) is often referred to as the Fisher-KPP equation [20, 21] and is a basic tool

of mathematical and physical biology [22]. It has been used to model many problems

in biology [22], medicine [23] and even anthropology [17, 24]. Originally proposed in

1937 by Fisher [20] to model the expansion of an advantageous genetic mutation, and

by Kolmogorov, Petrovsky and Piskunov [21] to model reaction-diffusion dynamics, it

was later used by Skellam to model the colonization of a medium by a population [25].

The Fisher-KPP equation has become one of the pillars of biological modelling [22, 26–

29]. Fields where this equation has been applied include statistical mechanics [30, 31],

population genetics [16, 32, 33] and computer science [34–37]. In fact, the Fisher-KPP

equation has become a relevant mathematical subject by itself, and its properties have

been thoroughly discussed [14, 38–44]. Some publications have also carried a thorough

study of the possible generalizations of the Fisher-KPP equation [45–48].

The Fisher-KPP equation is the starting point of the population dynamics study

performed in Part III of this thesis. We will use it to model the complex phenomena

that take place during the propagation of an evolving population. This population is

composed of individuals that may or may not carry a certain trait. This trait can be

being infected with a disease, resistance to an antibiotic or any of the examples that

have just been described. As a result, the two subpopulations obey different dynamics.

For all these reasons, we introduce Fisher-KPP equation in section 2.6.

Throughout this chapter we have presented the biological systems that will be studied

in this thesis. Gene expression and regulation will be studied in part II in the exclusive

genetic switch and other similar systems. Propagation of populations in a structured

medium and the modelling of it through Fisher equation will be studied in part III.
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Chapter 2

Statistical Mechanics and Methods

In this chapter we present Statistical Mechanics and different mathematical tools that

this discipline offers. Master equations offer an effective way to model systems with

fluctuations, such as the genetic switches studied in part II. In order to characterize

the solutions of master equations, different techniques, such as mean field theory,

perturbation theory and information measures are introduced.

Finally, we study the properties of the Fisher-KPP equation, that presents wave

solutions. These waves are useful to characterize the expanding and interacting

populations from part III. The speed selection criterion, which constitutes one of the

main pillars of the study of this equation, will be fundamental to understand the results

of our research.

2.1 Statistical Mechanics

Statistical Mechanics is a branch of physics that allows us to predict global properties of

a system by starting from the behaviour of its individual components. These elements

need not be atoms, as in the historical development, but any kind of entities, such

as cars, cells, people, as long as they obey some basic properties that make them

amenable to study by the statistical methods of this theory. This makes the range of

application of Statistical Mechanics immense. From quantum systems [49] to crowds

dynamics [50, 51] and traffic jams [52, 53], Statistical Mechanics’ tools have been proved

incredibly useful to model collective phenomena.

One of the virtues of Statistical Mechanics is its ability to predict emergent phenomena,
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that is, behaviours that cannot be trivially deduced from the individual dynamics of

each component of the system. It is the large number of entities, and the large number

of interactions between them, that produce such behaviours. This is often synthesized

in the expression More is different [54], referring to the fact that is the number of

components that makes the difference.

The approach of Statistical Mechanics is essentially probabilistic. The way this

theory connects individual and global phenomena is by accounting for all possible

configurations and evolutions of the microscopic elements, associating a certain

probability to every possible event. Then, it uses statistical tools in order to average

all these possible configurations in an appropriate way. The obtained result is basically

the most probable result that emerges from the microscopic dynamics. However, this

result is normally far more probable than any other, up to the point that stochastic

microscopic dynamics result in deterministic macroscopic laws. Here deterministic must

be understood as the most probable (by far) emergent behaviour.

Traditionally this theory has been applied to systems in equilibrium, that is, systems

that obey detailed balance. This property will be described in section 2.2.2, and it

basically involves every pair of transition rates from one state to another to be the

same. In these systems, there are several equivalent ways to proceed, depending on the

details of the system. For example, if the temperature T is well defined, we may write

the Boltzmann distribution [49], that associates a probability exp[−βH(p)] to every

state p, where H is the Hamiltonian of the system, that accounts for the energy; and

β is 1/kBT , kB being the Boltzmann constant. Through the average of the Boltzmann

distribution in all possible configurations we are able to obtain a partition function that

contains global information about the system. From these functions, thermodynamic

quantities such as the entropy or the enthalpy can be computed [49].

Nevertheless, the majority of the systems in nature are not found to be in equilibrium

[55]. In this case, we are unable to compute a partition function, and new tools are

needed. For these systems, we are normally forced to work on a model by model basis,

studying their dynamics and working out the possible behaviours. Moreover, sometimes

the number of elements is quite small, so stochasticity plays a major role.

Systems out of equilibrium are studied in this thesis, and for this reason we present

in this chapter different techniques from non-equilibrium statistical mechanics that

will result useful in future chapters. In section 2.2 we introduce master equations,

that allow one to deal with stochastic effects, along with an example and a simulation

method for them. In section 2.3 we present perturbation methods, and how they may
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be applied to find approximate solutions to some problems. In section 2.4 we present

mean field theory and its role in the study of systems with fluctuations, along with a

simple example. Finally, in section 2.5 we introduce Information theory and explain

how it can be used to model probability distributions.

2.2 Master equation

Let us assume a system with a discrete number of states n = 0, 1, 2 . . . and let us

consider a generic state which we label n at time t+ ∆t (∆t→ 0). The probability of

being at the state n at this time is the probability of being at n at time t and staying

there until t + ∆t, plus the probability of being at a different state m at time t and

making a transition to n during the time [t, t + ∆t]. We may write this equation as

follows:

P (n, t+ ∆t) = P (n, t)P (n→ n) +
∑
m6=n

P (m, t)P (m→ n). (2.1)

We now write P (m → n) = Tmn∆t, where Tmn are the transition rates. Also, if we

rewrite the probability of staying at state n as one minus the probability of moving to

any other state (1−
∑

m 6=n P (n→ m)), we get:

P (n, t+ ∆t) = P (n, t)

1−
∑
m6=n

Tnm∆t

+
∑
m 6=n

P (m, t)Tmn∆t (2.2)

whence, rearranging and taking the limit ∆t→ 0, we obtain:

∂P (n, t)
∂t

=
∑
m6=n

P (m, t)Tmn −
∑
m 6=n

P (n, t)Tnm. (2.3)

This is the master equation for a discrete number of states [56], and it measures the

change in the probability of being at every state by adding together the probabilities

of moving into the state and out of it.

It is usual to assume that, when a transition happens from the state n2 at time t2 to the

state n1 at time t1 (with t1 > t2, which is a customary notation [56]), the probability

for this event depends only on these states and times and not on the previous history

of the system, that is:

P (n1, t1|n2, t2;n3, t3...) = P (n1, t1|n2, t2) (2.4)
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All the processes that respect (2.4) are called Markov processes [56]. The reactions in

the genetic switches studied in chapters 3 and 4 are not only Markov processes, but

also have time-independent rates, that is:

P (n1, t1|n2, t2) = P (n1|n2) (2.5)

2.2.1 An example: The birth-death process

In order to understand better what a master equation is and how we can solve it, we

present here the case of a birth-death process, that is easily solvable for its stationary

state. In this system, there is a certain number of individuals n, that may change in

time due only to two different processes:

� Birth, at a rate g (dimensions of t−1), independently of the number of individuals

of the system. Although it is usual to assume that the birth rate depends on the

number of individuals (see e.g. [56]), we here assume a constant rate g, having

in mind the application of these calculations to the genetic switches in chapters

3 and 4. In these switches, generation of proteins is a process that depends on

the structure of genes and the processing of genetic information (see 1.1), rather

than on the amount of proteins in the system.

This means that, in an amount of time ∆t, there is a probability g∆t for the

number of individuals to change from n to n + 1. If we consider the probability

P (n, t+ ∆t), there is a contribution to it that can be written as g∆tP (n− 1, t),

that is, the probability of the system to have n− 1 individuals at t, and generate

one more in the interval of time [t, t + ∆t]. Equivalently there is a probability

that, by creating a new individual, the system exits the state n and moves into the

state n+ 1. This is represented by a change −g∆tP (n, t) which is the probability

of being at state n at time t and generate a new individual in the interval of time

[t, t+ ∆t].

� Death, at a rate d (dimensions of t−1) per individual. This means that, in an

amount of time ∆t, there is a probability d∆t for every individual in the system

to degenerate. For the probability P (n, t+ ∆t), this is translated as a gain term

d∆t(n+ 1)P (n+ 1, t), which is the sum of the probabilities of each individual to

degenerate. Analogously, if the system is at the state n at time t, the n individuals

can degenerate with probability d∆t, originating a term of loss of probability that

can be written as −d∆tnP (n, t).

12



If we include all these considerations in a single equation, we find:

P (n, t+∆t) = P (n, t)+g∆tP (n−1, t)−g∆tP (n, t)+d∆t(n+1)P (n+1, t)−dnP (n, t)

(2.6)

that can be written in the form of a master equation as:

∂P (n, t)
∂t

= g [P (n− 1, t)− P (n, t)] + d [(n+ 1)P (n+ 1, t)− nP (n, t)] . (2.7)

We will now solve this equation for its stationary state, that is, we will make
∂P (n, t)
∂t

=

0, ∀n, in order to find the probabilities of finding n individuals at the system after a

very long time.

To solve a master equation, the technique of generating functions is often used. It

consists of computing a new function K(z, t) where the elements P (n, t) act as the

coefficients of the series expansion of K(z, t) [57]. That means that we change the

variable n to the variable z through the relation:

K(z, t) =
∞∑
n=0

znP (n, t). (2.8)

The use of this technique is that the infinite number of discrete equations from the

master equation are transformed into a single partial differential equation for K(z, t).

If this equation can be solved, then (2.8) can be inverted to find P (n, t) as:

P (n, t) =
1
n!
∂nK(z, t)
∂zn

∣∣∣∣∣
z=0

. (2.9)

For the master equation of a birth-death process, we will show in detail how every term

can be transformed and how the generating function equation can be found. We will

use similar transformations in chapter 4.

The first term of the master equation, that is, P (n−1) (without including the constants

at this point, and removing the time dependence as we are computing the stationary
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state) can be summed as follows:

∞∑
n=0

znP (n− 1) =
∞∑
n=1

znP (n− 1)

=
∞∑
n=0

zn+1P (n)

= z

∞∑
n=0

znP (n) = zK(z) (2.10)

where in the first equality we have removed the term n = 0 from the sum, as P (−1) = 0.

The other g term in the equation can be summed in the same way as the generating

function itself, while the d terms can be transformed as:

∞∑
n=0

zn(n+ 1)P (n+ 1) =
∞∑

n=−1

zn(n+ 1)P (n+ 1)

=
∞∑
n=0

zn−1nP (n)

=
∂K(z)
∂z

∞∑
n=0

nznP (n) = z

∞∑
n=0

zn−1nP (n)

= z
∂K(z)
∂z

and putting all the terms together, we obtain the equation for the generating function

as:

0 = g(z − 1)K(z) + d(1− z)∂K(z)
∂z

. (2.11)

We now use the normalization of probabilities, that can be translated into K(1) =∑∞
n=0 P (n) = 1. Then, the solution of this equation can be written as

K(z) = exp
(g
d

(z − 1)
)

= exp
(
−g
d

) ∞∑
n=0

1
n!

(g
d
z
)n
, (2.12)

from which we can read off the probabilities straight away as

P (n) =
exp

(
− g
d

)
n!

(g
d

)n
, (2.13)

which is a Poisson distribution with mean g/d.
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2.2.2 Detailed balance

Detailed balance [56] is a fundamental concept in equilibrium statistical mechanics. It

is normally expressed through an equation for probability distributions P (n) as:

P (n)Tnm = P (m)Tmn ∀m,n. (2.14)

This equation has an important meaning: the probability for the system to change from

state n to m is the same as the probability to change from m to n, for every pair of

states m and n. All the probability mass moving from one state to the other is balanced

among every couple of states in the system. As (2.14) guarantees the reversibility of

every reaction in the system, this condition defines equilibrium.

In the birth-death process we have described in subsection 2.2.1, the transitions can

happen between states n and n + 1 or between n and n − 1, that is, states with

consecutive numbers of proteins. To check that detail balance holds in the stationary

state, we impose condition (2.14) and show that it reduces to an equation that is always

true:

P (n+ 1)Tn+1,n = P (n)Tn,n+1 (2.15)
exp [−g/d]

(n+ 1)!

(g
d

)n+1
d(n+ 1) =

exp [−g/d]
n!

(g
d

)n
g (2.16)

exp [−g/d]
n!

gn+1

dn
=

exp [−g/d]
n!

gn+1

dn
. (2.17)

This holds for every value of n, so all the birth and death processes are balanced.

However, detailed balance does not always hold for systems in a stationary state. In

fact, non-equilibrium stationary states such as the ones studied in chapters 3 and 4 do

not obey this property. In this case, there are currents of probability between different

states, that is, the probability for the system to change from n to m is different to the

probability to change from m to n [58]. For example, symmetry breaking can take place

in non-equilibrium systems under different conditions where detailed balance does not

hold [59, 60].

2.2.3 Simulation of master equations: The Gillespie algorithm

It is rare to find a system of master equations that can be solved by using generating

functions. Although these are a useful tool, and they sometimes provide a partial

solution of the problem, we are sometimes forced to find help in numerical techniques.
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The most used algorithm to solve master equations is called the Gillespie algorithm

[61], and it was popularized by Daniel Gillespie around 1976 [61, 62]. The virtues of

this algorithm are its simplicity and its low computational cost, as it only needs the

generation of two random numbers. This subsection follows the line of explanation

from [63].

The Gillespie algorithm samples the solution of a master equation. The algorithm is

exact, as it does not perform any approximation to solve the master equation, and the

equation itself naturally incorporates fluctuations [61]. Furthermore, there is no need

to approximate an infinitesimal time δt by a finite time ∆t [61].

Let us assume that the possible reactions in the system happen with certain rates ai(t),

i = 1, ..., n, where n is the total number of reactions. In the previous example of the

birth-death process these rates will be simply a1(t) = g, a2(t) = dN(t). We define the

total rate a0 as [63]:

a0 =
n∑
i=1

ai. (2.18)

We assume that the possible reactions involve a maximum number of two species in

the system, i.e., the probability of three individuals to meet (of three-body reactions

to happen) is negligible compared to the probability of interaction between pairs [63].

Assuming the last reaction in the system happened at time t, we would like to compute

the probability of any reaction to happen after a time τ , that is, to happen between

the times t + τ and t + τ + δt. We may split this probability into two, by writing

P (τ) = P (nothing happens up to time τ) x P (A reaction happens between t + τ and

t+ τ + δt) [63]. The probability of none of the reactions to happen in a given time δt

is simply 1 − a0δt. Hence, the probability of a reaction to happen is a0δt. If we now

divide the interval τ in n subintervals such that τ = nδt, with n → ∞, we can write

the probability P (τ) as:

P (τ) = (1− a0δt)
τ
δt a0δt

= lim
n→∞

(
1− a0

τ

n

)n
a0δt

= exp (−a0τ)a0δt. (2.19)

That means that in the simulation, the time should be extracted from this exponential

distribution. As can be seen, we are not approximating an infinitesimal time δt by a

finite time interval ∆t.

The way to sample this distribution is by considering that if x is a uniformly distributed
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random number in [0, 1] (lots of numerical routines provide this, see e.g. [64]), then

y = −1
r

log(x) is distributed randomly with the distribution p(y) = r exp (−ry)[63].

The way of proving this is by assuming conservation of probability in the change of

variable [63], that is |p(x)dx| = |p(y)dy|, and hence:

p(y) = p(x)
∣∣∣∣dxdy

∣∣∣∣ = r exp (−ry). (2.20)

For our case, we only need to generate a random number x and then compute τ as:

τ = − log(x)
a0

.

There is, however, one final note to this sampling. As random number generators

often provide numbers in the interval [0, 1[, that is, they include 0, but not 1, we can

transform the expression a bit to avoid problems with the singularity log(0). If x is

a random number in [0, 1[, then 1 − x is a random number in ]0, 1], and therefore the

most convenient way to write our equation for the time sampling is:

τ = − log(1− x)
a0

. (2.21)

The second part of the Gillespie algorithm consists of determining which one of the

reactions happens at time t + τ . As the rates of the reactions provide the probability

per unit time for them to happen, the probability of a reaction to happen provided one

of the reactions is happening can be written as:

Pi =
ai
a0
. (2.22)

These probabilities will take the following values in the birth-death process:

Pg =
g

g + dn(t)
, Pd =

dn(t)
g + dn(t)

. (2.23)

The way to compute this numerically is to obtain a random number r in the interval

[0, 1[. If r < P1, then reaction 1 happens; if P1 < r < P1 +P2, then reaction 2 happens,

and so on.

Finally, we update the value of the time by summing τ to the former value, and update

the concentrations by including the results of the reaction that has just happened. For

example, in the birth-death process, birth will make us update the number of particles

from n to n+ 1, while death will change n to n− 1.
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The Gillespie algorithm can be summarized in these simple steps [63]:

1. Find the time τ of the next reaction to happen by sampling the probability

distribution p(τ) = exp (−a0τ)a0.

2. Find the reaction j that happens next by generating a random number r, and

finding j such that
∑j−1

n=0 Pn < r <
∑j

n=0 Pn.

3. Update the value of t to t+ τ , the values of ai(t), and hence the values of Pi(t).

Go back to 1.

2.3 Perturbation theory

There are plenty of problems in physics that cannot be solved exactly, and others in

which the solution is so complicated that it does not contribute to our knowledge of

the problem. In some cases, we can perform an approximation that makes the equation

or the solution more understandable. However, this approximation might be too crude

and might not provide us with a thorough solution to the problem. In those cases, we

may use perturbation theory, which is a series of techniques that connects the simple

approximation with solutions that are closer to the exact one. The way to do this is to

make successive corrections to the approximate solution by making the equation more

and more exact.

These corrections to the equations are normally modelled through a parameter ε. An

usual way to present the problem is to write:

F (A(x)) = g(x) (2.24)

F (A(x)) ' g0(x) + ε(g(x)− g0(x)) (2.25)

where F (A(x)) = g(x) is the initial problem (with F being a generic operation on

the function A(x)), and where we know the solution to the problem F (A(x)) = g0(x).

Hence, when ε = 0 we have the simplified problem, while for ε = 1 we have the exact

problem [65].

If the response from our solution A(x) to a small ε perturbation is itself small, the

perturbation is of regular type [66]. In this case, the exact solution admits a series

expansion in terms of ε that can be written as:

A = A0 + εA1 + ε2A2 . . . (2.26)
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The more terms we compute, the closer our solution is to the exact one. In the case

that the effect of the perturbation is not small, this is of singular type [66].

It is usual to keep one or two terms in the expansion (2.26), as hopefully those terms

will give us some insight into the whole problem. If we need to keep higher order terms,

the application of perturbation theory might not pay off and other approaches might

need to be found.

When the magnitude we wish to find is a probability distribution function, additional

considerations must be applied. The most important condition is that the distribution

must be normalized for every value of ε. Therefore, if we write the perturbative solution

for a discrete probability distribution P (N) as

P (N) = P 0(N) + εP 1(N) + ε2P 2(N) . . . (2.27)

then the following normalization applies:∑
N

P 0(N) = 1

∑
N

P 1(N) = 0

∑
N

P 2(N) = 0

. . .

(2.28)

These considerations will be used in chapter 4.

2.4 Mean field theory and the role of fluctuations

In general it is difficult to model the interaction between n bodies that move in a system.

A mean field theory tries to approach this problem by averaging the spatial effects and

describe the whole problem as the interaction of one particle in an appropriate mean

field. As a consequence, spatial correlations arising from the different location of the

particles are neglected by this equation.

This approximation works better in certain conditions. When the system is all “well

stirred” and we actually observe it at a large scale, the small spatial correlations become

less important, and hence the mean field theory works better [67]. It also works better

in higher dimensions, becoming exact in infinitely many dimensions [67], since in this

situation we may assume all the particles are close to each other.
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However, mean field theory is not only applicable to diffusive systems with n bodies. In

general, a mean field theory is a technique that neglects the correlations of the system

up to a certain level [68]. For example, it appears naturally in the analysis of probability

distributions, where the moments of the distribution are approximated up to a certain

order, and higher correlations are ignored. This will be the case of the application of

mean field theory to the exclusive genetic switch studied in chapter 3. A great number

of other applications of mean field theories can be found in [69].

Of course, there will be some cases in which the mean field approximation will not

be appropriate and the inclusion of noise is a must. This can be included by an

explicit noise term in the diffusion equation or working with the master equation, that

incorporates fluctuations. As described in [67], we can distinguish three cases in terms

of how important the noise is in the study of a system :

� The noise does not affect the system at a macroscopic level, and therefore

predictions from mean field theory are appropriate to describe the system.

� Noise plays a fundamental role at a big scale, and hence the actual behaviour of

the system differs notably from the one predicted by the mean field theory.

� The noise plays a limited role, meaning that the behaviour of the system can

be characterized appropriately if some corrections are added to the mean field

description.

We shall see that in chapter 3 that the genetic switch belongs in the second category,

and that the prediction of a mean field theory will not be, in general, enough to predict

the behaviour of this system.

2.4.1 The 1D Ising model

As an illustration, we now present a simple example where a mean field theory can

be applied. Ising model was first studied by Ernst Ising in 1924 [70] and it is one of

the most widely studied systems in statistical mechanics. It consists of a lattice of N

spins in which every particle interacts with its nearest neighbours. Each spin has the

possible values si = ±1 for i = 1, . . . N . The Hamiltonian for the system may then be

written as:

H = −J
∑
〈i,j〉

sisj = −J
∑
i

si
∑
j∈n.n.

sj , (2.29)
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where J is the constant of interaction between spins and both 〈i, j〉 and
∑

j∈n.n. denote

interaction among nearest neighbours.

In one dimension, the number of neighbours of a given spin is 2, while the mean value of

the spin, called magnetization, may be written as m. This means that our Hamiltonian

(2.29) can be approximated as:

H ' −2Jm
∑
i

si. (2.30)

This allows us to separate the problem into N equal Hamiltonians, and to compute the

partition function for only one spin. By summing the Boltzmann distribution (section

2.1) in the two possible states of the spin, that is, si = ±1, we obtain:

Z = exp[−2βJm] + exp[2βJm] = 2 cosh(2βJm). (2.31)

We may compute the magnetization per spin as:

m =

∑
si
si exp[2βJmsi]
Z

=
exp[2βJm]− exp[−2βJm]
exp[−2βJm] + exp[2βJm]

= tanh(2βJm). (2.32)

This is a transcendental equation for m that may be solved numerically. Depending on

the value of the parameters and the temperature, the equation has one solution (see

figure 2.1, upper panel) or three solutions (figure 2.1, lower panel). To find out in which

situation the system has three solutions, we can expand the hyperbolic tangent around

m = 0:

m ∼ (2βJ)m− (2βJ)3

3
m3 . . . (2.33)

In order for this expression to be equal to the left hand side of 2.32 at more than one

point (see figure 2.1) we need 2βJ > 1. This implies that there is a critical temperature

Tc that separates regimes with one or three solution for the magnetization m. By using

the condition 2βJ = 1, this temperature can be written as:

Tc =
2J
kB
. (2.34)

Hence for values T < Tc the system exhibits symmetry broken solutions with a non-zero

magnetization.

However, the exact solution for the Ising model in one dimension shows that symmetry

broken solutions only exist when T = 0, and therefore our mean field theory is
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Figure 2.1 Graphical illustration of equation (2.32). For the upper panel βJ = 0.8, and
there are three solutions to the equation. For the lower panel, βJ = 0.4, and
the only solution is m = 0.

artificially creating symmetry broken solutions for a finite T . As we have stated before,

mean field theories works better for a high number of dimensions [67], and are exact in

infinitely many of them. As a result, using mean field theory for this one dimensional

model is not appropriate. However, this example illustrates how a mean field theory

works and how it can create spurious solutions.
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2.5 Information Theory

2.5.1 Introduction

Information theory is an interdisciplinary science that deals with problems of several

areas of knowledge, such as mathematics, physics and communication theory [71–73].

Its purpose is to study data sets and characterize their features in the most efficient way

possible. For example, information theory looks for the optimum data compression and

transmission rate in the context of communication theory [71]. Meanwhile, in the area

of physics, information tools help us to gain insight into some properties of probability

distributions, no matter if they are related to the compression or transmission of data.

For example, they may be used to characterize probability distributions in quantum

mechanical problems [74].

Curiously enough, information measures are sometimes impossible to measure. For

example, in simple quantum mechanical systems like an infinite well, information

quantities are different in position and momentum spaces [74], i.e. they are not

observables, and hence, they are sensitive to a change in the representation. This means

that these information measures cannot be checked in an experiment in this system.

However, they still can help us to understand how the probability distributions behave

in every representation space. For these reasons, we always should be careful with

information results, especially if they do not have an intuitive meaning. Sometimes it

is difficult to tell if the results happen for a physical reason or because of a mathematical

construction.

There are some basic statistical measures that are sometimes used in information theory.

For example, the covariance, that helps us measure the spreading of a probability

distribution, is defined as:

Cov(P (N1, N2)) = 〈N1N2〉 − 〈N1〉 〈N2〉 (2.35)

where 〈N1〉 =
∑

N1.N2
P (N1, N2)N1 is the average in the distribution, and analogous

definitions apply to the other averages. Below we introduce more sophisticated

information measures.
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2.5.2 Shannon entropy

Shannon entropy was first introduced by Claude E. Shannon in his famous paper A

Mathematical Theory of Communication [75], where this quantity was applied to model

the transmission of messages in a certain channel, and the possible errors in it. Shannon

entropy is therefore a measure of the uncertainty in the final message (or outcome of a

process in general). Broadly speaking, the bigger the value of the Shannon entropy is,

the more uncertainty we have about the outcome of a process.

The expression of the Shannon entropy is actually connected to the thermodynamic

entropy, and it has its same expression in the context of statistical mechanics [72]:

H(p) = −
n∑
i=1

pi log2(pi) (2.36)

where the base 2 in the logarithm is a convention in information theory and it only

affects the result in a constant, since log2(pi) log(2) = log(pi).

Shannon entropy has multiple uses in statistics. For example, in the Bayesian context,

it allows us to calculate the most appropriate probability distribution for a certain

information, i.e. for a given known information, the probability distribution that

we should establish is the one that makes full use of that information, but does not

introduce any additional bias in the system [76].

Let us consider a simple case in order to illustrate the meaning of Shannon entropy.

A certain coin is made such that the probability of obtaining heads is p and, hence,

the one of obtaining tails is 1 − p. The probability distribution of this example is

characterized by the parameter p only, and the Shannon entropy may be written as:

H(p) = −p log2(p)− (1− p) log2(1− p). (2.37)

Plotting this function, we obtain the result shown in figure 1.2. The entropy reaches a

maximum at the value p = 0.5 where the uncertainty is maximum. Meanwhile, for the

values p = 0 and p = 1, the entropy is zero, as these are two determined cases where

the result is, respectively, tails and heads.

In general, Shannon entropy reaches a maximum when the uncertainty is maximum,

that is, the bigger the Shannon entropy, the more equiprobable are the possible

outcomes in an experiment, and the more uncertainty we have about the final result.

Graphically speaking, the bigger the Shannon entropy, the more spread the probability
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Figure 2.2 Shannon entropy for a coin experiment, with probability p of getting head.

distribution will be.

Other measures that are able to account for the spreading of probability distributions

are the Renyi entropies, that have a similar meaning to the Shannon entropy. They are

defined as [77]:

Rα(p) =
1

1− α
log2

(
n∑
i=1

p(n)α
)
. (2.38)

where α > 0 and α 6= 1. These entropies are obtained by slightly relaxing the conditions

under which Shannon entropy is obtained [77], and as a consequence, they still account

for the spreading of the probability distribution and have a zero value when all the

probability is concentrated in one event. It is worth noting that limα→1Rα(p) = H(p)

[77].

2.5.3 Fisher information

To introduce the Fisher information we start by defining the score of a random variable

X with respect to a parameter θ. This quantity is defined as [71]:

V =
∂

∂θ
log f(X, θ) (2.39)

where f(X, θ) is the distribution of the random variable X for a specific value of θ.
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The score measures how the parameter θ affects the behaviour of the random variable

X. The Fisher information plays a similar role, and is simply defined as the mean of

the square of the score [71], that is:

I(θ) =

〈[
∂

∂θ
log f(X; θ)

]2
〉

=
∫
f(X; θ)

[
∂

∂θ
log f(X; θ)

]2

dX (2.40)

where <> denotes average in X, making the Fisher information depend on θ.

The quantity θ does not necessarily have to be a parameter. It can also be a random

variable involved in the problem [71], or even the original variable itself. In quantum

systems, this quantity is often used to characterize probability density distributions

[74, 78]. For example, for a probability distribution in the position space:

I(ρ) =

〈(
d

dx
log ρ(x)

)2
〉
. (2.41)

This now sheds some new light on the interpretation of Fisher information, since the

quantity (2.41) is now accounting for the derivative of the function, i.e, it provides us

with information about the local behaviour of the distribution. As Shannon entropy

is related to the global spreading of a distribution, this means Shannon and Fisher

information measure complementary aspects of it.

In order to understand the meaning of Fisher information, let us present a simple

example studied in [74]. If we consider the infinite quantum well in one dimension, the

stationary solutions to the Schrödinger equation can be written as

ψn(x) =
1√
a

sin
[πn

2a
(x− a)

]
, (2.42)

where a is the width of the well and n is the index of the solutions.

Computing the Fisher information for these probability distributions, we obtain the

result [74]

In =
π2n2

a2
. (2.43)

As can be seen, Fisher information grows as the probability distribution presents

more and more oscillations. Since this quantity measures the gradient (always with

a positive sign) of the function, it helps us to characterize the oscillatory behaviour of

the sinusoidal functions [74].

It is also important to note that in this system In = 8En, i.e., the Fisher information
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is proportional to the energy of the different states. In general, Fisher information

controls the possible values of the energy in quantum systems [74].

As Shannon entropy plays an analogous role to thermodynamic entropy and Fisher

information play an analogous role to the energy of the system, one might expect a

general connection between these two quantities. There is a general relation, known as

the de Bruijn’s identity [71], that accounts for this connection:

∂

∂t
He(X +

√
tZ)

∣∣∣∣∣
t=0

=
1
2
I(X) (2.44)

where He is the Shannon entropy in base e, and Z is an independent normally

distributed random variable.

Although Shannon and Fisher measures are complementary, sometimes they are not

connected in an obvious way. For example, in some cases Fisher information can change

with a given parameter while the Shannon entropy remains constant [74]. For this

reason, it is advisable to use both quantities to characterize a probability distribution.

For our calculations in chapter 3 we shall use the quantum version (2.41) of the Fisher

information for a discrete distribution, that is, we discretize (2.41) as:

I(p) =
n−1∑
i=1

(
logP (i+ 1)− logP (i)

)2

P (i). (2.45)

This is indeed a choice based on equation (2.41), as the discretization of Fisher

information can be approached in many different ways [79].

2.6 The Fisher-KPP equation

We now present the properties of the Fisher-KPP equation, introduced in section 1.2.

One of the main features of this equation is that it admits travelling wave solutions,

with a determined speed. Let us illustrate the speed selection criterion [22, 38, 80, 81].

If we linearise (1.1) for small N , that is, at the tip of the wave, we obtain:

∂N

∂t
= D

∂2N

∂x2
+ αKN. (2.46)

The following calculation follows the lines of [38]. We start by performing the change of

variable N(x, t) = exp[αKt]φ(x, t) in order to reduce (2.46) to a standard heat equation
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[82, 83], that is:
∂φ

∂t
= D

∂2φ

∂x2
(2.47)

whose basic solution can be written as [84, 85]:

φ(x, t) =
1√

4πDt
exp

[
− x2

4Dt

]
(2.48)

The solution to different problems of this equation can be solved by using the

convolution of this function with the initial or the boundary conditions.

In our case, we assume we have an initial condition to arrive at the following expressions

for φ and N :

φ =
∫

dy
exp[− (x−y)2

4Dt ]
√

4πDt
φ(y, 0) (2.49)

N =
∫

dy
exp[− (x−y)2

4Dt ]
√

4πDt
exp[αKt]N(y, 0) (2.50)

In order to understand how the speed selection works, we substitute the initial condition

N(y, 0) = θ(y) exp[−λy]. After performing the integration by completing the square of

the exponent, we obtain:

N =
1
2

exp[−λ(x− v(λ)t)]
[
1 + erf

(
x− 2Dλt√

4Dt

)]
, (2.51)

with v(λ) = Dλ +
αK

λ
, and the error function has been introduced as erf(x) ≡

2√
π

∫ x
0 e
−y2dy [86]. This function reaches (for positive λ) its minimum at λ∗ =(

αK

D

)1/2

, where it takes the value v(λ) ≡ v∗ = 2
√
αKD.

We now may consider two different asymptotic behaviours [38]:

If x� 2Dλt ⇒ erf→ 1, u→ exp[−λ(x− v(λ)t)] (2.52)

If x� 2Dλt ⇒ erf→ −1 +
exp[−z2]√

πz
, u→ exp

[
−λ∗(x− v∗t)− (x− v∗t)2

4Dt

]
.

(2.53)

where in the second equation we have performed the following manipulation in the

exponent:

αKt− x2

4Dt
= −

(
αK

D

)1/2

(x− 2
√
αKDt)− (x− 2

√
αKDt)2

4Dt
(2.54)
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These two asymptotic regions are separated by x = 2λt, where the speed is necessarily

vc = 2λ. And this means there are three velocities: v(λ), v∗ and vc = 2λ. Depending

on the initial condition, that is, depending on the value of λ, we can differentiate two

situations:

If λ > λ∗ ⇒ v∗ < v(λ) < vc (2.55)

If λ < λ∗ ⇒ vc < v∗ < v(λ). (2.56)

Therefore in the first case, that is, if the initial condition is steep enough, the leading

edge is lost, as the cross over region overtakes the conserved λ regime, making the

initial condition irrelevant, and being the propagation dominated by v∗. If λ < 1, then

v(λ) dominates the propagation and determines the speed of the wave.

In the simulations that will be set throughout this thesis, we use step functions as

initial conditions, which correspond to the limit λ→∞. This is a steep enough initial

profile that in the case of a single Fisher-KPP wave, the density will evolve into a wave

that propagates with a speed that asymptotically tends to v∗ = 2
√
DαK.

Throughout this chapter we have introduced Statistical Mechanics and some of its

general applications. We have discussed how this theory can be applied to model

collective behaviour in systems with many individuals, and which useful conclusions we

may draw by applying Statistical Mechanics techniques. Several tools, such as mean

field theory or information theory have been introduced, along with simple examples

where these can be applied. These examples and techniques will become very useful

in order to understand the systems studied in part II of this thesis. Finally, we have

also introduced Fisher-KPP equation and explained the speed selection criterion of its

solutions. We will make use of this equation to model the interaction of expanding

populations in part III.
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Part II

Genetic switches
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Introduction

Nowadays genetic networks constitute one of the main focus of study of biophysics. The

understanding of how the information contained in the genes can affect the behaviour of

cells and whole individuals is one of the main challenges presented in these systems (see

section 1.1 for a brief overview). Genetic networks work in a similar way to real electric

circuits where signals (in this case concentration of proteins or other components) can

be amplified, reduced or transmitted [87]. Among the most widely studied genetic

networks are genetic switches: simple networks of genes (usually just two of them)

that turn each other off and on, thereby stopping the production of certain proteins or

activating the production of others.

Experiments performed with genetic switches [88] have revealed all kind of oscillatory

behaviours. One of the main phenomena of this type is bistability, where the switch

alternates between two long-lived states. Among the different examples of genetic

networks, some of the most relevant are toggle switches composed of pairs of genes

turning each other off, that is, interrupting the production of each other’s protein [89].

These switches can actually be synthesized [88] and also play the role of models for

oscillatory behaviours [87, 90–92]. An appropriate use of these switches in a more

complex network can help to stabilize the concentration of some products [93] or may

accelerate some of the reactions in the system [94].

Simulations have been able to reproduce a good deal of the phenomena occurring

in these switches [13]. Gillespie algorithms, described in section 2.2.3, have been

thoroughly used to gain insight into all kind of behaviours. However, analytical

solutions are very very limited, even for simplest cases. Some recent papers have

developed some solutions [9, 10], but most of them have focused on systems with only

one gene [9, 11, 12].

For this reason, we present in this part of the thesis the first exact analytical solution,

as far as we are aware, to one of the key models in this area: the exclusive genetic

switch. This is a simple system with two genes and therefore two species of proteins.

However, its dynamics is complex enough to exhibit bistability. Also the way this

bistability occurs depends strongly on the parameters of the model. A complementary

approximative approach has been developed in [95].

In chapter 3 we present the exclusive switch and some approximate methods, such as

mean field theory, to gain understanding into the behaviour of the switch. In chapter

4, we present an exact perturbative solution to the stationary probability distribution
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of the switch and compare results with simulations, obtaining very good agreement for

a wide range of values of the parameters. Finally, we extend the techniques developed

in this chapter to other switches of interest. Most of the work presented in chapters 3

and 4, along with some content of this introduction, has been reported in [1].
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Chapter 3

Characterization of the exclusive

genetic switch

3.1 Introduction

Among the most widely studied genetic switches, the exclusive switch stands out as a

simple model that exhibits many features characteristic of these systems. It was first

introduced by Warren and ten Wolde [87] in 2004, and it has also received the name of

exclusive switch without cooperative binding [90].

The switch is composed of two genes, labeled 1 and 2, able to generate proteins of type

X1, X2, respectively (figure 3.1). It includes a promoter site situated between the genes

where only one protein of any of the types can bind. The effect of the binding is to

turn off the opposite gene, that is, if a protein X1 binds, it inhibits the activity of gene

2, and vice versa. As a result, when a protein X1 is bound, the expression of gene 2

is stopped, that is, proteins X2 are not generated during this time (figure 3.2). If the

promoter site is free both types of proteins can be produced (figure 3.1).

The promoter actually comprises two small promoter sites that are very close together.

Proteins X2 can bind to the first one, which is close to gene 1, thereby switching it

off; while proteins X1 switch off gene 2 by binding to the second promoter site. The

particularity of this system is that the promoter sites are so close together that, once

one protein of any type has bound, it does not leave space for other proteins to bind

to the other promoter site. Therefore, we model this as a common promoter site where

there is room only for one protein [8].
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Figure 3.1 The exclusive genetic switch at state S = 0. No protein is bound to the
promoter site and both types of proteins are produced.

Figure 3.2 The exclusive genetic switch at state S = 1. A protein X1 is bound to the
promoter site. Only proteins X1 are produced.
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Figure 3.3 The exclusive genetic switch at state S = 2. A protein X2 is bound to the
promoter site. Only proteins X2 are produced.

When a protein X1 binds to the promoter site, the dynamics of this species is not

affected, so the concentration of proteins X1 is just regulated by birth and death

processes (figure 3.2). In the meantime, as gene 2 is switched off, proteins X2 are no

longer produced, and the concentration of them decreases as a result of degeneration.

However, this situation is not irreversible. At some point, the bound protein unbinds,

and then proteins X2 may bind to the promoter (figure 3.3). This causes a situation of

alternation, when normally one of the proteins is much more abundant than the other.

In the context of statistical mechanics, the exclusive genetic switch is a nonequilibrium

system [4], as different reactions do not obey detailed balance (section 2.2.2). For

example, if a protein X1 is bound to the promoter site, proteins X2 can degenerate,

but they cannot be generated again. In the context of gene regulation (see section 1.1),

the switch is a genetic network model that captures the important feature of oscillatory

behaviour.

The exclusive switch is a very relevant model for systems such as bacterial virus phage

λ [6, 8, 90]. In this case, once the virus invades the cell, the two genes named cI and

cro generate different types of proteins that are able to switch off the activity of the

other gene. When cI is on, the state of the switch is referred to as lysogenic growth;

when cro is on, it is referred to as lytic growth [8]. Understanding the dynamics of this

process through the results here presented helps us to predict the behaviour of both

the phage λ and the bacterium it invades.

This chapter is organised as follows. In section 3.2 we introduce the model,

both mathematically and with a non-mathematical analogy. We also present some
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simulations of the system, and find the probability distribution in several limits for the

parameters values. In section 3.3 we explain how bistability is effected by the system,

and how the form of probability distributions might be related to symmetry breaking.

In section 3.4, we use information theory techniques in order to gain some insight into

the bistability of the system. In section 3.5 we develop several versions of a mean field

theory and compare with the predictions from simulations. Finally, in section 3.6 we

present a summary of our results.

3.2 Model Definition

The state of the switch is characterized by three quantities: the concentrations of free

proteins X1, X2, that will be called N1, N2, respectively, and the state S of the switch.

S can take three different values: 0 if the promoter site is free, i.e., there are no proteins

bound to it; 1, if a protein X1 is bound; and 2 if a protein X2 is bound. In order to

account for the concentrations of proteins in the system, we must be aware that N1, N2

refer to the free number of proteins, and therefore if a protein e.g. X1 binds to the

switch, the concentration will change from N1 to N1 − 1.

The possible reactions that may happen in the system are classified into four types.

First, proteins can be generated at a rate g as long as the promoter site is not occupied

by a protein of the opposite type, that is, proteins X1 can only be generated while the

switch is in states S = 0, 1; and proteins X2 when the switch is in states S = 0, 2.

Second, proteins may leave the system or degenerate, at a certain rate d per protein.

Bound proteins do not degenerate in this model. Third, if S = 0 the switch is free,

and both types of proteins can bind to it at a rate b per protein, thereby reducing

the number of free proteins in 1. Finally, if S = 1, 2 the protein that is bound to the

promoter site may unbind from it at a rate u, changing the state of the switch back to

S = 0, and increasing in 1 the number of free proteins.

Accounting for the three variables in the system, we consider three joint probability

distributions PS(N1, N2) = P (N1, N2, S) for the different states of the switch, such that

the total probability distribution can be written as:

P (N1, N2) = P0(N1, N2) + P1(N1, N2) + P2(N1, N2), (3.1)
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and therefore:

∑
N1,N2

P0(N1, N2) + P1(N1, N2) + P2(N1, N2) = 1 (3.2)

3.2.1 Master equation

The temporal evolution of the three joint probability distributions is given by a system

of master equations, that can be written as (section 2.2):

∂P0(N1, N2)
∂t

= g[P0(N1 − 1, N2) + P0(N1, N2 − 1)− 2P0(N1, N2)]

+ d[(N1 + 1)P0(N1 + 1, N2) + (N2 + 1)P0(N1, N2 + 1)

−(N1 +N2)P0(N1, N2)]− b(N1 +N2)P0(N1, N2)

+ u[P1(N1 − 1, N2) + P2(N1, N2 − 1)] (3.3)
∂P1(N1, N2)

∂t
= g[P1(N1 − 1, N2)− P1(N1, N2)]

+ d[(N1 + 1)P1(N1 + 1, N2) + (N2 + 1)P1(N1, N2 + 1)

−(N1 +N2)P1(N1, N2)]

+ b(N1 + 1)P0(N1 + 1, N2)− uP1(N1, N2) (3.4)
∂P2(N1, N2)

∂t
= g[P2(N1, N2 − 1)− P2(N1, N2)]

+ d[(N1 + 1)P2(N1 + 1, N2) + (N2 + 1)P2(N1, N2 + 1)

−(N1 +N2)P2(N1, N2)]

+ b(N2 + 1)P0(N1, N2 + 1)− uP2(N1, N2) (3.5)

Having a closer look at (3.3), the terms in it can be described as:

�

∂P0(N1, N2)
∂t

is the usual term for temporal evolution in a master equation

(section 2.2).

� The first term at the right-hand side represents generation, g being the birth rate

when a gene is not turned off. Both kind of proteins can be synthesized when the

switch is in the state 0, so there are two gain terms into the state (N1, N2). At

the same time, there are two exit terms from this state, and that is the reason

why we include a factor 2 in −2P0(N1, N2), because a protein X1 or a protein

X2 can be generated. In the other two equations, generation of only one kind of

protein is allowed, so two of the described terms are not present.

� The second term corresponds to degeneration, d being the degeneration rate per
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protein. Again, both kind of proteins may decay, so there are two gain terms

coming from states (N1 + 1, N2), (N1, N2 + 1) and two loss terms. Degeneration

works exactly in the same way for the three equations, as it happens independently

from the state of the switch.

� The third term corresponds to binding of proteins into the promoter site of the

switch, with b being the binding rate per protein. In this case, there is only a

loss term, as the system can only exit states S = 0 by the binding of proteins.

In the other two equations, this term is positive because the system can change

from S = 0 to S = 1, 2 after proteins of type 1 and 2 bind, respectively.

� Analogously, the unbinding provides a gain term in the first equation, since the

unbinding of a protein results in a state with S = 0. u is the unbinding rate,

and the states from which the switch can change into (N1, N2) with S = 0 are

(N1 − 1, N2, S = 1) and (N1, N2 − 1, S = 2). In the other two equations the

unbinding process provides a loss term. We must not forget that (N1, N2) are the

numbers of free proteins in the system.

Finally we should point out that the whole system of equations (3.3-3.5) is fully

symmetric with respect to species 1 and 2, meaning that P2(N1, N2) = P1(N2, N1) as

long as the initial condition is symmetric in the variables (N1, N2). As we will normally

be interested in the stationary joint probability distributions, that is, with their partial

derivatives equal to zero, we will be able to assume that P ss2 (N1, N2) = P ss1 (N2, N1)

and to work only with the first two equations.

3.2.2 Non-mathematical model: the mob model.

The mob model is an analogy of the genetic switch in terms of gangsters. It has proved

very successful to communicate my research to lay people, but it also has been very

useful to explain my model in seminars to colleagues from outside the field. It is just

an illustration and, of course, it is less accurate than the mathematical formulation,

but it provides a simple and powerful analogy. It was also published in [96].

Consider a dangerous neighbourhood, full of crimes and illegal activities around the

corner. Two gangs fight in the neighbourhood, disturbing the public peace and trying

to gain control of gambling and illegal commercial sectors. In this context, normally

one of the gangs is the most powerful in the neighbourhood, and that power is normally

represented by the boss of the gang, a position that can be held by only one person at

a time.
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Looking at the number of people in the two gangs, the possible processes that happen

in the neighbourhood may be classified into four groups:

� Gangsters from both sides may be eliminated in different ways. They may try

to talk to the police in search of protection, they might keep some money for

themselves, and they might offend another gangster. They could even die a

natural death.

� Youngsters in the neighbourhood and gangsters from other cities might join the

criminal activities. No matter how young they are or how bad their knowledge

about the city is, new gangsters will tend to join the gang in power, following

their desires of money and power.

� Unfortunately, even the most powerful bosses can be betrayed and shot in cold

blood. As a result, we have to consider the possibility of the boss leaving his

position, and leaving it empty for a small time. . .

� . . . but after a few civilized discussions and a few murders a new boss will rise,

and will take control of the neighbourhood. This new boss may be from any of

the two gangs, though, and he will be followed by new gangsters from then on.

Then, the number of gangsters N1 in the first gang will increase as long as the boss is

from that gang. The same will happen with N2 for the second gang. Deaths will cause

these numbers to decrease, and the position of boss might change throughout the years.

The question is: looking at the neighbourhood at a given time, what is the probability

of finding N1 gangsters from the first gang, and N2 from the second?

Now substitute gangs by genes, gangsters by proteins, boss by protein at the promoter

site, eliminated by degenerated, join a gang by generate a protein, and boss fall/rise

by unbinding/binding, and we obtain a non-mathematical model for the dynamics of

the exclusive genetic switch.

3.2.3 Simulation results

In order to simulate the exclusive switch, we perform a stochastic Gillespie simulation

([61, 97]) of the system. Different reactions of generation, degeneration, binding and

unbinding occur according to master equations (3.3-3.5). As we mentioned in section

2.2.3 the Gillespie algorithm computes when the next reaction is going to happen, and

which reaction is the one that happens.
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The basis to compute this time and probability of occurrence is by using rates g,b,u,d

and associating a certain probability to every single reaction. For example the rate for

generation of protein 1 is g(1−M2) where M2 = 0, 1 is the number of bound proteins

of type 2, as generation of proteins 1 is only allowed as long as there are no proteins 2

bound to the switch.

The main quantity of interest for our case is the stationary probability distribution

in (N1, N2), that is, the total probability (P (N1, N2) = P0(N1, N2) + P1(N1, N2) +

P2(N1, N2)) of finding the N1 proteins of type 1 and N2 proteins of type 2 after a

long time. The way to compute this is by accumulating the time spent at every

state (N1, N2), and then divide by the total time. In this way, the probability is

computed as a frequency at which every state is visited. The error is estimated as the

standard deviation of the probabilities after several runs of the simulation. (Another

valid approach would consist of solving the master equation numerically by using e.g.

the method of finite state projection [98].)

Since we are interested in computing the probabilites in the stationary state, it is

necessary to run the simulation for some time before we perform any measure, so the

results are not affected by the initial condition. In order to make sure that we are

in this regime, we allow the program to run for a time that is two or three orders of

magnitude larger than the time scale for the different reactions. We also monitor the

state of the switch and ensure that it has undergone several transitions between states

with different values of S.

Finally, there are two ways in which we can check that the total simulation time is

appropriate to obtain accurate results. First, we observe that the error of the results

reduces significantly, up to the point that it is not visible in our plots. Second, we check

that the symmetry condition P (N1, N2) = P (N2, N1) holds for every value of N1 and

N2.

We must remember that this model is inspired by the behaviour of the virus phage λ.

The rates of different reactions are related to the cell it invades, as it uses the structure

of that cell to generate their proteins, and the medium in which these proteins move is

the cell itself. We will take a bacterium Escherichia coli as a reference, whose typical

values for the parameters are (in s−1) [3, 8, 90]:

g = 0.05, d = 0.005, b = 0.1, u = 0.005. (3.6)

The stationary probability distribution for this case can be seen in figure 3.4. The

distribution shows two peaks around which the probability is concentrated. However,
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Figure 3.4 Stationary state probability distribution for E. Coli values (3.6).

this only happens for a certain range of values. For example, if we increase the

parameter u, making the switch less relevant (as proteins spend less time bound),

these two peaks merge into one, as can be seen in figure 3.5. This transition will be

discussed in detail in section 3.3.

The typical behaviour of the exclusive switch is the one observed in figures 3.5. Other

changes in the parameters change the probability distribution only quantitatively, but

the general shape of the distribution remains unchanged. In this chapter we characterize

how the different reactions in the system result in this kind of probability distributions.

In order to understand some basic features of the switch, we start by solving some limit

cases below.

3.2.4 Solution in the limit u, b→ 0

First, we consider the switch in the limit u, b→ 0 with the binding constant

k =
b

u
(3.7)

held fixed. In this situation generation and degeneration happen much faster that

binding or unbinding events. Therefore the proteins will reach their stationary level
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Figure 3.5 Contour plot for the probability distribution P (N1, N2) obtained from a
Gillespie algorithm simulation. A Transition from a two peak regime to
a one peak regime occurs as the unbinding parameter u increases. g, b and
d are kept equal to the standard E. coli values (3.6). The line separating
the two darkest regions in the first picture has a value of 0.005 and every
line represents the same increase in the probability value. In the rest of the
pictures, the line separating the two darkest regions has a value of 0.002 and
every line represents the same amount of increase, as the colour gets clearer.

long before the state S of the switch changes. For example, if S = 1, N2 decays quickly

to zero, while N1 is given by Poissonian statistics for a birth-death process, as discussed

in section 2.2.1. As a consequence, the probability distribution in two variables takes

the expression:

P1(N1, N2) = r1
1
N1!

(g
d

)N1

exp
(
−g
d

)
δN2,0 (3.8)

where r1 is the probability of the switch being in state S = 1, that is, r1 =∑∞
N1,N2=0 P1(N1, N2). Analogously, in state 2 the number of proteins N2 is given by

the formula:

P2(N1, N2) = r2
1
N2!

(g
d

)N2

exp
(
−g
d

)
δN1,0 (3.9)

and in state 0 both N1 and N2 follow Poissonian distributions, as in this case both

species do not interact with each other.

P0(N1, N2) = r0
1

N1!N2!

(g
d

)N1+N2

exp
(
−2g
d

)
. (3.10)
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In order to compute the probabilities r0,r1,r2 we consider the master equation for

r1, that can be obtained from summing (3.4) over the variables N1, N2. A quick

look at the equation reveals that, performing such operation, the terms in g and d

cancel, since the gain and loss terms contribute in the same way. However, the binding

and unbinding terms, where a reaction implies a change in the state S of the switch,

contribute respectively with:

b

∞∑
N1,N2=0

N1P0(N1, N2) ≡ b 〈N1〉0 , −u
∞∑

N1,N2=0

P1(N1, N2) = −ur1 (3.11)

where 〈N1〉0 can be defined as the average value of N1 given that the switch is in state

S = 0, times the probability for the switch to be in state S = 0.

Then, the master equation for r1 can be written as:

ṙ1 = −ur1 + b 〈N1〉0 (3.12)

In the stationary state we have 〈N1〉0 = r0g/d, as u, b → 0, and the concentration

of protein X1 has enough time to reach its average value g/d, given by the Poisson

distribution. Therefore (3.12) is transformed into:

0 = −ur1 +
bg

d
r0 . (3.13)

A similar equation holds for r2. Then, taking into account the normalization of the

whole probability distribution (r0 + r1 + r2 = 1):

r0 =
1

1 + 2kg/d
r1 = r2 =

kg/d

1 + 2kg/d
. (3.14)

This means the system can be in three long-lived states: a state with S = 1 and only

with proteins X1; a state with S = 2 and only with proteins X2; and a state S = 0 with

both species of proteins at a similar concentration given by the Poisson distribution.

When k → ∞ (binding becoming much more relevant than unbinding) the symmetric

state S = 0 has zero weight (r0 → 0) and the system is either in the S = 1 state or the

S = 2 state. However, the transition from the S = 1 state to the S = 2 involves the

system passing through S = 0 for a short period of time.
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3.2.5 Solution in the limit u, b→∞

In this limit unbinding and binding events happen much faster than reactions of

generation and degeneration. This is not only a theoretical limit, but it is also relevant

physically, as in some switches binding and unbinding phenomena happen at a faster

time scale than the rest of reactions [92].

Our approach consists of first studying the quick changes in the system, that is, the

changes in the state S of the switch as a result of the fast binding/unbinding processes.

We compute the values for r0, r1 and r2 as a function of the numbers of proteins N1

and N2, i.e., we compute the time spent at every switch S given that the number of

proteins is fixed. Finally, once we have the complete expressions for rS(N1, N2), we are

able to study the slow variations of N1 and N2 and compute the stationary value of

these numbers of proteins.

For the sake of clarity N1 and N2 now account not only for the free proteins, but also

for the ones that might be bound. We perform this change because the large number

of binding/unbinding events that happen in a short time do not change the number

of proteins. Therefore, for a given value of (N1, N2), we can balance the reactions of

binding and unbinding, as in the limit u, b → ∞ the concentration of proteins stays

stable during many reactions of binding/unbinding. For example, the total unbinding

rate for proteins X1 is equal to the unbiding rate of the switch u times the average

number of bound proteins r1. The total binding rate can be written as the switch

binding rate b times the protein concentration N1 times the time the switch is free r0.

Following this explanation, we find:

ur1(N1, N2) = bN1r0(N1, N2), ur2(N1, N2) = bN2r0(N1, N2) (3.15)

that can be solved to obtain

r0 = [1 + k(N1 +N2)]−1 , r1 = kN1r0, r2 = kN2r0 (3.16)

where k has been defined in equation (3.7).

We can now build a master equation for the total probability P (N1, N2), considering

only generation and degeneration processes. However, the activity or inactivity of the

switch must be considered through the introduction of rS(N1, N2). For example, for a

generation of a protein X1, we must write g[1−r2(N1−1, N2)]P (N1−1, N2), since these

proteins are not synthesized when S = 2. Also, we must remember that bound proteins
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cannot degenerate, so the death terms will take the form −d[N1−r1(N1, N2)]P (N1, N2).

Putting all this together:

∂P (N1, N2)
∂t

= g[1− r2(N1 − 1, N2)]P (N1 − 1, N2)− d[N1 − r1(N1, N2)]P (N1, N2)

−g[1− r2(N1, N2)P (N1, N2)]

+d[N1 + 1− r1(N1 + 1, N2)]P (N1 + 1, N2)

+g[1− r1(N1, N2 − 1)]P (N1, N2 − 1)− d[N2 − r2(N1, N2)]P (N1, N2)

−g[1− r1(N1, N2)]P (N1, N2)

+d[N2 + 1− r2(N1, N2 + 1)]P (N1, N2 + 1). (3.17)

As generation and degeneration of proteins X1 and X2 are balanced individually, that

is, the rates of these reactions are the same in both ways, the system obeys detailed

balance (section 2.2.2). For the generation/degeneration of X1 we are able to write:

P (N1, N2) = P (N1 − 1, N2)
g

d

[1− r2(N1 − 1, N2)]
[N1 − r1(N1, N2)]

(3.18)

= P (N1 − 1, N2)
g

d

[1 + k(N1 − 1)]
[1 + k(N1 +N2 − 1)]

1
N1

[1 + k(N1 +N2)]
[1 + k(N1 +N2 − 1)]

with a similar equation holding for the generation/degeneration of X2. If we iterate

these equations, lowering successively the numbers (N1, N2), we obtain:

P (N1, N2) =
(g
d

)N1 (1 + k(N1 +N2))
(1 + kN2)

1
N1!

N1−1∏
n1=0

(1 + kn1)
1 + k(N2 + n1)

P (0, N2)

=
(g
d

)N1+N2 (1 + k(N1 +N2))
N1!N2!

∏N1−1
n1=0 (1 + kn1)

∏N2−1
n2=0 (1 + kn2)∏N1+N2−1

n=0 (1 + kn)
P (0, 0)

(3.19)

where P (0, 0) can be determined by normalization of the sum of probabilities to one.

Equation (3.19) gives us the probability distribution for this limit. From it, we can find

the maximum of the distribution at the points where the (discrete) derivatives are zero,

that is, P (N1 + 1, N2) = P (N1, N2) and P (N1, N2 + 1) = P (N1, N2). These conditions

yield the equations:

g

d

1
(N1 + 1)

(1 + kN1)
(1 + k(N1 +N2))

(1 + k(N1 +N2 + 1))
(1 + k(N1 +N2))

= 1

g

d

1
(N2 + 1)

(1 + kN2)
(1 + k(N1 +N2))

(1 + k(N1 +N2 + 1))
(1 + k(N1 +N2))

= 1 (3.20)

from which N1 = N2 = N/2. Therefore we can write a single equation for N in the
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following way:
g

d

1(
N
2 + 1

) (1 + kN2
)

(1 + kN)
(1 + k(N + 1))

(1 + kN)
= 1. (3.21)

The limit for large N for this expression is

g

d

(2 + kN)
N(1 + kN)

' 1, (3.22)

that can be transformed into the following quadratic:

kN2 +
[
1− kg

d

]
N − 2

g

d
= 0. (3.23)

This equation has a single positive root. Therefore, in the limit u, b → ∞ the switch

reaches a symmetric state where the maximum of the distribution N is given by (3.23).

This result coincides with the one obtained in [13]. In this paper they followed a rate

equation approach that will be described in section 3.5.1.

3.3 Nature of bistability

Genetic switches may exhibit bistability where there are two possible dynamically stable

long-lived states, that is, two possible values of S for the switch. There has been

considerable interest in how bistability may be maintained and how it is effected by the

stochastic fluctuations of the reactions in the system [93, 99, 100]. In particular the

switching time between the two states has been measured and numerical techniques

have been devised to study the switching time within theoretical models [10, 13, 90,

101, 102].

The bistability exhibited in the Exclusive Switch could be thought of as symmetry

breaking where, although the microscopic dynamics is symmetric between the two

proteins, the stationary state comprises two possible long-lived dynamical states in

which the symmetry is broken and one protein dominates. However, in order to

claim that spontaneous symmetry breaking occurs one should demonstrate that the

characteristic time to switch between the two symmetry broken states diverges in the

thermodynamic limit. This question will be studied in section 3.4. In this section we

will establish how the dynamics of the switch leads to the symmetry breaking in the

probability distribution.

In the exclusive genetic switch there is a clear symmetry between the two proteins

species X1 and X2, since they undergo the same microscopic reactions. However, at
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any given time the system is typically dominated by one of the proteins. The reason

for this is that, once a protein, e.g. X1, binds to the promoter site, proteins X2 start

disappearing, while the number of X1 fluctuates around a steady value. That means

that when the bound protein unbinds (as it will do eventually due to the stochasticity

of the system), it is much more probable for proteins X1 to bind to the promoter site

again, since there are more of them. At the same time it is more difficult for proteins

X2 to bind to the promoter site. However, proteins X2 will not disappear permanently

from the system (there is no absorbing state), and will be produced again the moment

the bound protein X1 unbinds. Thus, with a small probability, proteins X2 will be able

to bind again to the promoter site, and become the dominant species, as proteins X1

start to degenerate. This means that there are two long-lived symmetry-related states,

in which one species is much more abundant than the other.

With regard to the probability distribution P (N1, N2), this bistability is translated

into two peaks, concentrated around the axes, i.e., where one of the protein numbers

is almost zero. This has been illustrated in figure 3.4 for u = 0.005. However, this

bistability depends strongly on the value of the parameters: the bigger the value of u,

the more irrelevant is the switch state for the dynamics of the protein, and the less

important is the bistability we have described. For example in figure 3.5, when g, b and

d are kept constant and u is increased, the peaks move together and eventually merge

at the value of u = 0.145 ± 0.005 (see table 1 for the value u at which the transition

happens, for other values of g, b, d). Thus there is an apparent transition from a

distribution with two symmetry-related peaks to a distribution with one symmetric

peak.

We wish to study the nature of this transition i.e. is there an underlying transition

at a finite value of u where the system changes from bistable behaviour to symmetric

behaviour, or is the transition simply due to two peaks coming closer together and no

longer being resolved?

Although the whole probability distribution is always symmetric, distributions P1 and

P2 will be a priori asymmetric, since they describe the probability of the number of

proteins when a protein 1 or 2 are bound, which are not symmetric situations. Let us

now define rA and rB as the probability masses of P1 on either sides of the diagonal
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Values of g, b, d u transition value Values of g, b, d u transition value
E.coli 0.145± 0.005 d = 10−3 0.14± 0.02
g = 0.015 0.345± 0.005 d = 0.01 0.295± 0.005
g = 0.1 0.175± 0.005 b = 0.01 (4.85± 0.05)· 10−2

g = 0.5 0.30± 0.02 b = 1.0 1.15± 0.05
d = 5· 10−4 0.14± 0.02 b = 3.0 3.2± 0.2

Table 3.1 Value of u for the transition from a bimodal to a unimodal probability
distribution. Only one of the parameters g, b, d is changed each time, taking
the E.Coli values as a reference (3.6).

N1 = N2:

rA =
∑

N1>N2

P1(N1, N2) +
1
2

∑
N1=N2

P1(N1, N2)

rB =
∑

N1<N2

P1(N1, N2) +
1
2

∑
N1=N2

P1(N1, N2). (3.24)

We can now study how rA, rB change with u, and whether there is a clear transition

between the situation in which they are different, and the one in which they are equal

to each other (if there is any). Figure 3.6 shows that these two quantities approach

each other in a continuous way, and they are equal only when u → ∞, that is, when

the only possible state of the switch is S = 0 and the switch has no longer any effect

on the protein dynamics. Therefore, the probability distributions P1, P2 and hence rA,

rB tend to zero, all the probability being concentrated in the distribution P0(N1, N2),

which is always symmetric.

The marginal distribution P1 appears to deform continuously into a symmetric

distribution when u → ∞. We conclude that (at least for these parameter values)

P1(N1, N2) remains asymmetric for u <∞, and as a consequence so does P2, and there

is no transition to a symmetric state in this marginal distribution. As figure 3.7 shows,

P1 has only one peak for different values of u, and even if it becomes smaller as u

increases, it does not become symmetric at any point.

We deduce that, even though P (N1, N2) appears to become unimodal at some finite

value of u (see figure 3.5), there is no transition between symmetric and asymmetric

regimes, since P1 and P2 always remain asymmetric. Thus, the bistability of the switch

is always present, with the asymmetry in distributions P1, P2 decreasing as the switch

state becomes less important, that is, as u increases. There are some limitations in our

prediction because of the impossibility of reaching the limit u→∞ in the simulations.

However, these simulations do not suggest that a situation where P1 and P2 are equal

and non-zero exists.
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Figure 3.6 Evolution of the two contributions to P1(N1, N2) defined in (3.24)—rA for
N1 > N2 and rB for N1 < N2—as u increases.

These are the conclusions that we can grasp by studying the probability concentrated in

the peaks of the distribution. In section 3.4 we continue this study by using information

measures.

3.4 Information theory

3.4.1 Spreading measures.

In order to characterize the stationary probability distributions of the genetic switch,

we compute different information and spreading measures on these distributions. We

may start with the covariance, that was defined in section 2.5.1 as:

Cov(P (N1, N2)) = 〈N1N2〉 − 〈N1〉 〈N2〉 (3.25)

Keeping the parameters g, b, d equal to the standard E. Coli values (3.6), and changing

u, we obtain figure 3.8. The plot presents no discontinuities or irregularities, and it

clearly shows how the peaks are first separated and close to the axes, with:

〈N1N2〉 = 0→ Cov(P (N1, N2)) = −〈N1〉 〈N2〉 (3.26)
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Figure 3.7 Contour plots for the probability distribution P1(N1, N2), for different values
of u. As u increases, the peak of the distribution moves towards the
diagonal N1 = N2, but the distribution is not completely symmetric as long
as u is finite. Also, the probability mass of the distribution decays as u
increases, and is transferred to the symmetrical distribution P0(N1, N2). In
the pictures, the probability of the points that separates the darkest region,
and also the value separation between successive lines is 5× 10−5,10−3,10−3

and 2.5× 10−4, respectively.

and how, when the peaks get together, the correlation between N1 and N2 disappears,

as the switch is no longer relevant and every protein species follows a Poisson dynamics

(section 3.2.4), leading to:

〈N1N2〉 = 〈N1〉 〈N2〉 ⇒ Cov(P (N1, N2)) = 0. (3.27)

It is expected that Shannon and Renyi entropies will behave in a similar way to the

covariance, as they are also spreading measures. These quantities were defined in

section 2.5.2. Let us recall their definitions:

H(p) = −
n∑
i=1

pi log2(pi) (3.28)

Rα(p) =
1

1− α
log

(
n∑
i=1

p(n)α
)

(3.29)

However, plotting these quantities (figures 3.9, 3.10), we observe a local maximum
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Figure 3.8 Covariance for the probability distribution of the exclusive genetic switch.
g, b and d are kept equal to the E.Coli values (3.6), and u varies from
exponentially form 10−4 to 105.

around u = 0.17. This is not exactly where the transition is (graphically speaking we

can observe it around u = 0.145), but it seems close enough to wonder if this value

has particular significance. In this system the Shannon entropy is precisely playing

the role of the entropy, and any strange behaviour of it should be studied. However,

this maximum does not seem relevant, for the simple reason that there is a minimum

afterwards, where clearly the probability distribution is already single-peaked. This

seems to be a consequence of how the two peaked-distributions come together and of

the logarithmic term included in the entropy (as these local maximum and minimum

are not present in the covariance plot). Shannon and Renyi entropies would normally

grow continuously as the distributions come far from the axis and spread around

the probability space. However, the peaks merging decreases the spreading partially,

causing the entropy to increase for a bit before the two peaks merge completely.

In order to check these assumptions, we plot different graphics for the Shannon entropy

as a function of u for different values of g (which implies a different size of the system).

As can be seen in figure 3.11, Shannon entropy has a smooth distribution in u when

g is small, but as g increases, the distribution changes and a new local maximum and

minimum appear. As a result, this maximum value cannot be in general an evidence of

a transition (even if it is only a geometrical transition), because this transition happens

independently of the system size. This means that Shannon or Renyi entropies are

53



-10 -5 0 5
Log(u)

5

6

7

8

H
(P

(N
1,N

2))

Figure 3.9 Shannon entropy for the probability distribution of the exclusive genetic
switch. g, b and d are kept equal to the E.Coli values, and u varies from
exponentially form 10−4 to 105. There is a local maximum around u = 0.017,
but it is also followed by a local minimum, so this should not be taken as
evidence of phase transition.

not characterizing the system in an appropriate way. For these reasons, the covariance

stands as the best spreading measure to characterize the distributions of the exclusive

switch.

It could also be thought that the local maximum of the Shannon entropy reflects a

singularity in the limit of infinite size of the system, as it is more and more pronounced

as the size of the system increases (figure 3.11). This statement will be justified below

as we perform a further study of information measures.

Another fact that supports the importance of the covariance is that it behaves similarly

to 〈|N1 −N2|〉. The analysis of the exclusive switch presented in [87] suggests that this

variable is important to understand the barrier that separates the two bistable states.

Following these lines, we use 〈|N1 −N2|〉 to characterize the barrier that separates one

stable state from the other. In figure 3.12 we observe, as in the covariance graph, two

flat regions in the limits u → 0 and u → ∞. The difference (∆F ) between these two

levels may be considered as a dimensionless energy necessary to perform the transition

between two regimes: the bistable and the monostable one. This is key to determining

if the system undergoes true symmetry breaking.

In an equilibrium system the switching time may be estimated by the Arrhenius law
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Figure 3.10 Renyi entropies for α = 2, 4, 6 for the probability distribution of the
exclusive genetic switch. g, b and d are kept equal to the E.Coli values,
and u varies from exponentially form 10−4 to 105. The behaviour is very
similar to the one observed in the Shannon entropy.
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Figure 3.11 Shannon entropy for the probability distribution of the exclusive genetic
switch. b and d are kept equal to the E.Coli values, and u varies from
exponentially form 10−4 to 105. Different values of g are selected to show
the change in the Shannon entropy profile.
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Figure 3.12 〈|N1 −N2|〉 as a function of u for (3.6) values.

τ ∼ exp(β∆F ) [103] where the free energy barrier ∆F is extensive in the system size

L. Thus for the thermodynamic limit, L → ∞, the system will remain in one of

the symmetry-broken states and the symmetry will be spontaneously broken. For a

nonequilibrium system on the other hand the free energy or indeed the stationary state

is not known a priori and one is required to construct the stationary state on a model by

model basis. Furthermore, Arrhenius law does not necessarily hold in a nonequilibrium

system. We use it in this case as an assumption to work with, but other authors have

studied the switching time of the exclusive switch in different ways [13].

In our case we have defined the free energy barrier as:

∆F = 〈|N1 −N2|〉u→0 − 〈|N1 −N2|〉u→∞ . (3.30)

Moreover for the exclusive Switch that we consider there is no system size L with

which to take the thermodynamic limit; instead the average protein number, that is

g/d, plays the role of an effective system size. If we compute ∆F as a function g

when d is kept constant, thereby increasing the system size, we obtain the straight line

observed in figure 3.13. This means that the switching time τ diverges exponentially

with the system size, but it only takes an infinite value as the size of the system is

infinite, too. Therefore, only in this limit is there true symmetry breaking. This is a

similar conclusion to the one we have found in the study of Shannon entropy, that is,

the symmetry breaking only occurs in the infinite size limit.
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Figure 3.13 ∆F as a function of the size of the system.

We must emphasize that there is only evidence of possible symmetry breaking in the

infinite size limit if we assume that Arrhenius law holds. Our aim is to check if a

variation in the parameter u changes the nature of the switch (from monostable to

bistable), but it is not clear if this happens, even in the infinite size limit, as an

Arrhenius law dependence for the switching time is not fully justified.

In addition, if we compare this system to a prime example of symmetry breaking, such

as the Ising model in two dimensions [49], there is one fundamental difference. In the

Ising model the infinite size limit is relevant, as it represents a macroscopic magnetic

system. However, in the genetic switch the small size is the most relevant one and it is

indeed the observed size in nature.

3.4.2 Fisher information.

We now apply Fisher information to the probability distributions. This quantity was

defined in section 2.5.3 and it was defined for a discrete probability distribution:

I(p) =
n−1∑
i=1

(
logP (i+ 1)− logP (i)

)2

P (i). (3.31)

Since the system contains two symmetric variables, we will use one of them to construct

the Fisher information, e.g. N1. Then, we may define the Fisher information for the
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Figure 3.14 Logarithm of the Fisher information for the probability distribution of the
exclusive genetic switch. g, b and d are kept equal to the E.Coli values
(3.6), and u varies exponentially from 10−4 to 105. A maximum and a
minimum are observed in the same point as in the Shannon entropy.

genetic switch as:

I(p) =
∞∑

N1,N2=0

(
logP (N1 + 1)− logP (N1)

)2

P (N1, N2) (3.32)

The results, again for the E.Coli values (3.6) and varying u are plotted in figure 3.14.

In order to understand this picture, we must take into account that equation (3.32) is

accounting for the gradient in the N1 direction. As u→ 0, the probability distribution

presents two peaks that are close to the axes. Particularly, the peak in the N2 axis

presents a big variation from N1 = 0 to N1 = 1 because the probability is mostly

concentrated in the value N1 = 0 (see figure 3.4). This is the reason why the Fisher

information is large as u → 0. On the other hand, the peak in the axis N1 presents a

slowly varying gradient, following the curve of the distribution.

For a bigger value of u, the peak from the axis N2 spreads and merges with the peak

from the axis N1. On the one hand, the peak coming from the axis N2 spreads to bigger

values of N1, making the gradient less significant in this case (see figure 3.5). On the

other hand, the peak from the axis N1 spreads to bigger values of N2, but it does

not change the value of the Fisher information significantly, as we are measuring the

variation in N1. This is the reason why the Fisher information decreases as u→∞. As
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we know from section 3.3, the limit for the probability distribution is a double Poisson

distribution, and the value of the information reached in this distribution is the one

observed in figure 3.14.

There is another interesting feature that can be observed. The plot of the Fisher

information has the same extreme points (inverted) as the Shannon entropy plot.

Moreover, these extreme points are only visible for big values of g, as happened in the

Shannon entropy representation (figure 3.11). As can be seen in figure 3.14, the Fisher

information reaches a local minimum, followed by a local maximum. The explanation

for this comes from the particular shape of the probability distribution in the genetic

switch. In the limit of u → 0, the probability is highly concentrated (low Shannon

entropy) and as a consequence the slope is very large (high Fisher information), in the

limit u → ∞ the stationary Poisson distributions make the entropies go to a constant

value. But in the transition from one limit to the other, the probability distribution

becomes less concentrated and, at the same time, the slope gets smaller.

Considering the connection between Shannon entropy-Fisher information with thermo-

dynamic entropy-energy, if u was a free parameter, the dynamics of the system will take

it to u→∞ (no switch) where the entropy is maximum and the energy is minimum.

In this section probability distributions from the exclusive genetic switch have been

characterized by using statistical techniques and information measures. In the

transition of the switch from a two-peak distribution to a single-peak distribution, the

covariance seems the best quantity to characterize the system, and more sophisticated

information measures do not capture the transition as well as the covariance does.

Shannon entropy and Fisher information also give important information about the

system, and about how the transition occurs. However, evidence of symmetry breaking

is very limited and only appears in the infinite size limit. Moreover, this infinite size

limit is not that relevant for the exclusive switch, as the system is observed in small

sizes in nature.

3.5 Mean Field Theory

As we have described above, the exclusive genetic switch does not present symmetry

breaking for a finite value of its parameters. However, mean field theory sometimes

predicts symmetry breaking for systems that actually do not exhibit this feature (as

seen in subsection 2.4.1). Our aim is to find out if mean field theory could predict

symmetry breaking for the genetic switch in this artificial way, and if this prediction
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might somehow account for the bistability of the system. That is, we know that the

exclusive switch does not present symmetry breaking, but maybe an artificial prediction

of symmetry breaking by a mean field theory might reflect appropriately the bistability

of the system.

Mean field theory techniques, described in section 2.4, are now applied to the exclusive

genetic switch. In this case, the correlations that are ignored are the ones between

the number of proteins, that is, we approximate some values of the moments of

the probability distribution
〈
N i

1N
j
2

〉
, where i and j is the order of the moment

approximated.

There are three different mean field approaches in our study. The first one is a rate

equations study where we only look at the mean concentration of proteins in the system

(subsection 3.5.1). The second one consists of approximating all the second order

moments of the probability distributions. This is done in subsection 3.5.2, where we also

compare our predictions with simulation results. Finally, the third approach consists of

a more sophisticated approximation in which only some of the second order moments

are approximated, and we use higher moments equations. This third method, described

in section 3.5.3, turns out to be too complex to be compared properly with simulation

results.

3.5.1 Rate equations.

In this subsection, we follow the lines of the calculation presented in [13]. This first

approach consists of using equations for the concentrations of both proteins. The

concentrations of free proteins of type 1 and 2 in the cell are denoted by [N1], [N2],

while r1, r2 take the definitions stated in subsection 3.2.4 . Taking into account the

four possible reactions in the system, the rate equations can be written as:

[Ṅ1] = g(1− r2)− d[N1]− b[N1](1− r1 − r2) + ur1

[Ṅ2] = g(1− r1)− d[N2]− b[N2](1− r1 − r2) + ur2

[ṙ1] = b[N1](1− r1 − r2)− ur1

[ṙ2] = b[N2](1− r1 − r2)− ur2.

(3.33)

Assuming a stationary value just for the concentration of the bound proteins, we can
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eliminate r1, r2 from the last two equations and plug them into the first two to have:

[Ṅ1] =
g

1 + k[N2]
1+k[N1]

− d[N1]

[Ṅ2] =
g

1 + k[N1]
1+k[N2]

− d[N2]
(3.34)

where k = b/u, as in subsection 3.2.4. This last step of making [ṙ1] = [ṙ2] = 0

is equivalent to assuming very fast binding and unbinding processes (u, b → ∞).

Therefore, the final result of this calculation is the same as the one obtained in 3.2.5.

If we go now to the completely steady state solution and assume constant concentrations

in the switch, we arrive at the equations:

0 = g + (kg − d)[N1]− kd[N1]([N1] + [N2])

0 = g + (kg − d)[N2]− kd[N2]([N1] + [N2]).
(3.35)

Taking the difference of these two equations, we find:

(kg − d− kd([N1] + [N2]))([N1]− [N2]) = 0, (3.36)

which implies either that:

[N1] = [N2] =
(kg − d) +

√
(kg + d)2 + 4kgd
4kd

(3.37)

or

g = 0⇒ [N1] = [N2] = 0 or [N1] + [N2] = −1
k
. (3.38)

As can be seen, the first solution is the only one which makes sense, because the other

one restricts the variable g to zero. In the second case, the only physically relevant

solution is that both concentrations vanish, as a result of the lack of generation of

proteins. Note that the average protein concentration is, as we have anticipated, the

solution to equation (3.23), obtained in the limit u, b→∞.

Summing up, there is only one solution for the steady state according to the rate

equations. Since they do not take into account stochasticity, they cannot support the

experimental observation of bistability. This is the reason why we develop a more

accurate mean field theory below.
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3.5.2 Basic mean field theory

Exact Moment Equations

This and the next two subsections follow the lines of calculation of our paper [1].

We start from the exact master equations (3.3–3.5) for the evolution of probabilities

PS(N1, N2). The zeroth moments of Ni are the probabilities rS i.e.

rS =
∞∑

N1=0,N2=0

PS(N1, N2) for S = 0, 1, 2 . (3.39)

We now define the first moments of 〈Ni〉S of Ni as follows

〈Ni〉S =
∞∑

N1=0,N2=0

NiPS(N1, N2) for i = 1, 2 S = 0, 1, 2 (3.40)

and the second moments

〈NiNj〉S =
∞∑

N1=0,N2=0

NiNjPS(N1, N2) for i, j = 1, 2 S = 0, 1, 2 . (3.41)

Summing (3.3) in (N1, N2) and then summing it after multiplying by N1 give the

equations:

∂r0
∂t

= −b(〈N1〉0 + 〈N2〉0) + u[r1 + r2] (3.42)

∂ 〈N1〉0
∂t

= gr0 − d 〈N1〉0 − b[〈N1N1〉0 + 〈N1N2〉0] + u[〈N1〉1 + 〈N1〉2 + r1].

(3.43)

These sums have been performed in the same way as in equation 3.11.

Note that the physical meaning of e.g. 〈Ni〉S is the probability of being in switch state

S (rS) multiplied by the mean number of type i, given that the switch is in state S

(〈Ni|S = 0〉, for S = 0). Let us see this mathematically:

〈Ni〉0 =
∞∑

N1,N2=0

NiP0(N1, N2)

=
∞∑

M1,M2=0

P0(M1,M2)
∞∑

N1,N2=0

Ni
P0(N1, N2)∑∞

M1,M2=0 P0(M1,M2)
= r0 〈Ni|S = 0〉 .
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Similarly, summing (3.4) gives

∂r1
∂t

= +b 〈N1〉0 − ur1 (3.44)

∂ 〈N1〉1
∂t

= gr1 − d 〈N1〉1 + b 〈N1(N1 − 1)〉0 − u 〈N1〉1 (3.45)

∂ 〈N2〉1
∂t

= −d 〈N2〉1 + b 〈N1N2〉0 − u 〈N2〉1 . (3.46)

We now invoke symmetry between switch state 1 and 2 :

r1 = r2 = (1− r0)/2 〈N1〉0 = 〈N2〉0 〈N1〉1 = 〈N2〉2 〈N1〉2 = 〈N2〉1 . (3.47)

Then the exact steady-state versions of equations (3.42–3.46) read

r1 =
b

u
〈N1〉0 r0 = 1− 2r1 (3.48)

b[〈N1N1〉0 + 〈N1N2〉0] = gr0 − d 〈N1〉0 + u[〈N1〉1 + 〈N1〉2 + r1] (3.49)

b 〈N1N1〉0 = −gr1 + (d+ u) 〈N1〉1 + b 〈N1〉0 (3.50)

b 〈N1N2〉0 = (d+ u) 〈N2〉1 . (3.51)

Note that if we sum (3.50) with (3.51) and substract (3.49), we obtain the exact relation

d(〈N1〉0 + 〈N1〉1 + 〈N1〉2) = g(1− r1) = g(1− r2) (3.52)

which simply gives the overall birth/death balance for N1. Also note that (3.49-3.51)

give exact relations between the second and the first moments. In order to actually

evaluate these quantities one would have to consider equations for higher moments,

leading to an infinite system of equations.

Mean Field Approximation

We now make a mean-field approximation that expresses second moments in terms of

first moments:

〈N1N1〉0 =
〈N1〉0 〈N1〉0

r0
+ 〈N1〉0 (3.53)

〈N1N2〉0 =
〈N1〉0 〈N2〉0

r0
=

(〈N1〉0)2

r0
. (3.54)

Note that a symmetry condition from (3.47) has been explicitly used in the last equation

of (3.54). The first relation (3.53) comes from the assumption that N1 has a Poisson

distribution when the switch is in the 0 state. In this type of distribution variance
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is equal to the mean, and this translates into the second moment being equal to the

square of the mean plus the mean itself. However, there is an important factor r0,

which comes from the fact that 〈N1N1〉0 /r0 is the mean square value of N1 given that

the switch is in the 0 state and 〈N1〉0 /r0 is the mean value of N1 given that the switch

is in the 0 state. Basically equation 3.53 and 3.54 has been obtained after simplifying

a factor 1/r0. The Poisson approximation is in fact exact in the limit where u,b tend

to zero (see section 3.2.4).

The second relation (3.54) is a simple factorization scheme which ignores correlations

between the values of N1 and N2 when the switch state is 0.

Using this approximation scheme, (3.50) becomes

〈N1〉1 =
b

d+ u

(〈N1〉0)2

r0
+

gr1
d+ u

=
br0
d+ u

[(
〈N1〉0
r0

)2

+
g

u

(
〈N1〉0
r0

)]
(3.55)

and (3.51) becomes

〈N1〉2 =
br0
d+ u

(
〈N1〉0
r0

)2

. (3.56)

Using expressions (3.55) and (3.56) in (3.49), combined with the previous approxima-

tions (3.53) and (3.54), yields the following quadratic equation for 〈N1〉0 /r0:

2bd
d+ u

(
〈N1〉0
r0

)2

+
[
d− bg

d+ u

](
〈N1〉0
r0

)
− g = 0 . (3.57)

One must take the positive root of this quadratic which yields

〈N1〉0
r0

=
1

4bd

[
bg − d(d+ u) +

(
(d(d+ u)− bg)2 + 8bdg(d+ u)

)1/2]
. (3.58)

Then using (3.71) one obtains

r0 =
[
1 +

2b
u

〈N1〉0
r0

]−1

(3.59)

〈N1〉0 =
(
〈N1〉0
r0

)[
1 +

2b
u

〈N1〉0
r0

]−1

. (3.60)

One may check the limits of sections 3.2.4, 3.2.5 from the quadratic (3.57). In the limit

b,u → 0 with k = b/u one obtains 〈N1〉0 /r0 = g/d and r0 =
[
1 +

2kg
d

]−1

in agreement

with section 3.2.4 where it is shown that N1 follows a Poisson distribution with mean

g/d when the switch is in state S = 1 or S = 0.
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E. coli MFT u=0.05 MFT
r0 (4.9186± 0.0007)· 10−3 4.92705· 10−3 (4.5263± 0.0008)· 10−2 4.54635· 10−2

〈N1〉0 (2.489± 0.005)· 10−2 2.48768· 10−2 0.23862± 0.00014 0.238634
〈N1〉1 4.942± 0.008 3.74372 4.113± 0.003 2.71128
〈N1〉2 (5.908± 0.007)· 10−2 1.25604 0.8734± 0.0005 2.2774

u = 50, b = 1000 MFT u = 5· 10−8, b = 10−6 MFT
r0 (4.941± 0.004)· 10−3 4.95073· 10−3 (2.48± 0.03)· 10−3 2.49872· 10−3

〈N1〉0 (2.55± 0.06)· 10−2 2.48762· 10−2 (2.477± 0.024)· 10−2 2.49375· 10−2

〈N1〉1 9.89± 0.11 2.50019 4.92± 0.05 4.98751
〈N1〉2 0.227± 0.013 2.49969 (5.012± 0.007)· 10−5 4.97754· 10−5

Table 3.2 Results from different quantities from simulations and mean field theory
approach.

In the limit b,u →∞ with k = b/u fixed the quadratic (3.57) reduces to

(
〈N1〉0
r0

)2

2kd+
〈N1〉0
r0

(d− kg)− g = 0 . (3.61)

This quadratic for 〈N1〉0 /r0 is the same as the quadratic (3.23) for the value of N = 2N1

that maximises P (N1, N2) in the exact solution of section 3.2.5.

Comparison to simulation results

The mean field theory we have developed can be compared with simulations results

by studying the zeroth and first order moments of the probability distributions, i.e.,

r0, 〈N1〉0 , 〈N1〉1 , 〈N1〉2. (The probabilities r1 and r2 may automatically be obtained

from r0, since r1 = r2 =
1− r0

2
.)

Different values of the mentioned quantities are given in table 2, where the parameters

of the models have different values. The reference for this table is the set of E. coli

values (3.6), and only the parameters that are changed are written. For the simulations

performed, r0 is always in good agreement with the mean field theory approximation,

and so are r1 and r2. Also, 〈N1〉0 is in quite good agreement, too.

We note that 〈N1〉1 and 〈N1〉2 are different in the mean field theory, which is an

improvement over simpler approximations where they have the same value. However,

the values of 〈N1〉1 and 〈N1〉2 are rather different from the simulations, and this comes

from ignoring higher correlations of the numbers of proteins and the state of the switch.

Only when u, b → 0 are the values in close agreement with the simulation values, as

expected in this limit where the mean field theory is exact.

Mean field theory can, in principle, be improved by considering higher order moments
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and correlations. However, the algebra soon gets quite complicated, as we shall see

below.

3.5.3 Refined mean field theory.

We start again by summing the master equations, but in this case we do not invoke

symmetry between switch states 1 and 2 since we are seeking a symmetry broken

solution. Summing (3.3) gives

∂r0
∂t

= −b(〈N1〉0 + 〈N2〉0) + u[r1 + r2] (3.62)

∂ 〈N1〉0
∂t

= gr0 − d 〈N1〉0 − b[〈N1N1〉0 + 〈N1N2〉0] + u[〈N1〉1 + 〈N1〉2 + r1]

(3.63)
∂ 〈N2〉0
∂t

= gr0 − d 〈N2〉0 − b[〈N2N2〉0 + 〈N1N2〉0] + u[〈N2〉1 + 〈N2〉2 + r2].

(3.64)

Similarly, summing (3.4) gives

∂r1
∂t

= +b 〈N1〉0 − ur1 (3.65)

∂ 〈N1〉1
∂t

= gr1 − d 〈N1〉1 + b 〈N1(N1 − 1)〉0 − u 〈N1〉1 (3.66)

∂ 〈N2〉1
∂t

= −d 〈N2〉1 + b 〈N1N2〉0 − u 〈N2〉1 (3.67)

and similarly, summing the analogous equation for P2(N1, N2) gives

∂r2
∂t

= +b 〈N2〉0 − ur2 (3.68)

∂ 〈N2〉2
∂t

= gr2 − d 〈N2〉2 + b 〈N2(N2 − 1)〉0 − u 〈N2〉2 (3.69)

∂ 〈N1〉2
∂t

= −d 〈N1〉2 + b 〈N1N2〉0 − u 〈N1〉2 . (3.70)
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The exact steady-state equations read

r1 =
b

u
〈N1〉0 r2 =

b

u
〈N2〉0 r0 = 1− r1 − r2 (3.71)

b[〈N1N1〉0 + 〈N1N2〉0] = gr0 − d 〈N1〉0 + u[〈N1〉1 + 〈N1〉2 + r1] (3.72)

b[〈N2N2〉0 + 〈N1N2〉0] = gr0 − d 〈N2〉0 + u[〈N2〉1 + 〈N2〉2 + r2] (3.73)

b 〈N1N1〉0 = −gr1 + (d+ u) 〈N1〉1 + b 〈N1〉0 (3.74)

b 〈N2N2〉0 = −gr2 + (d+ u) 〈N2〉2 + b 〈N2〉0 (3.75)

b 〈N1N2〉0 = (d+ u) 〈N2〉1 (3.76)

b 〈N1N2〉0 = (d+ u) 〈N1〉2 . (3.77)

We thus have 9 equations in the 12 unknowns r0,r1,r2, 〈N1〉1, 〈N1〉2, 〈N1〉0 〈N2〉1,

〈N2〉2, 〈N2〉0, 〈N1N1〉0, 〈N1N2〉0, 〈N2N2〉0.

Mean Field Approximation

As we have stated in section 3.4, there is no symmetry breaking for the genetic switch.

However, we wish to find out if a mean field approximation is able to predict symmetry

breaking as a way to account for the bistability of the system, even if there is no true

symmetry breaking in it. With that purpose, let us define subphases where the switch is

predominantly in state 1 and where the switch is predominantly in state 2. To describe

these subphases we wish to find a mean field theory that gives solutions with r1 6= r2

i.e two symmetry related solutions r1 > 1/2, r2 < 1/2 and r2 > 1/2, r1 < 1/2.

In order to do this it appears necessary not to approximate 〈N1N2〉0, since in our

previous mean field approach, doing this always led to symmetric solutions r1 = r2.

This is the main difference with respect to our basic mean field theory from subsection

3.5.2. Not approximating 〈N1N2〉0 will allow us to write equations involving higher

moments of the probability distribution, and therefore obtain more accuracy in our

predictions.

Let us make the approximations

〈N1N1〉0 =
〈N1〉0 〈N1〉0

r0
+ 〈N1〉0 (3.78)

〈N2N2〉0 =
〈N2〉0 〈N2〉0

r0
+ 〈N2〉0 . (3.79)

These again come from the assumption that Ni have a Poisson distribution when the

switch is in the 0 state.
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With approximations (3.78,3.79) we are left with 9 equations for 10 unknowns so we

need an additional equation.

Consider the exact equation

∂ 〈N1N2〉0
∂t

= g [〈N1〉0 + 〈N2〉0]− 2d 〈N1N2〉0 − b 〈(N1 +N2)N1N2〉0
+u [〈(N1 + 1)N2〉1 + 〈(N2 + 1)N1〉2] . (3.80)

Let us make the approximations

〈N1N2〉1 =
〈N1〉1 〈N2〉1

r1
(3.81)

〈N1N2〉2 =
〈N1〉2 〈N2〉2

r2
(3.82)

〈(N1 +N2)N1N2〉0 =
[
2 +
〈N1 +N2〉0

r0

]
〈N1N2〉0 . (3.83)

Approximation (3.83) is chosen so that it is exact in the limit b,u → 0 when the

distributions of N1, N2 become independent and Poisson in the switch state 0. In fact,

(3.83) can be simplified to (3.53) in this limit. It is worth noting that (3.83) involves

the approximation of third order moments of the distribution, and that we keep as an

unknown the second order moment 〈N1N2〉0. This allows us to perform a more exact

calculation than in the previous mean field approach from subsection 3.5.2.

Then the steady-state version of (3.80) becomes(
2d+ 2b+ b

〈N1 +N2〉0
r0

)
〈N1N2〉0 = g [〈N2〉0 + 〈N1〉0]

+u
[
〈N2〉1

(
1 +
〈N1〉1
r1

)
+ 〈N1〉2

(
1 +
〈N2〉2
r2

)]
. (3.84)

We now have a closed set of equations (3.71–3.77) and (3.84).

The strategy is to express all quantities in terms of r1 and r2, then see if there are

symmetry broken solutions for r1 and r2. We first eliminate 〈N1〉0 and 〈N2〉0 from

(3.71)

〈N1〉0 =
ur1
b

〈N2〉0 =
ur2
b

(3.85)
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Next use (3.74) and (3.75) to obtain

〈N1〉1 =
b

d+ u

〈N1〉20
r0

+
r1g

d+ u

=
r21
r0

u2

b(d+ u)
+

r1g

d+ u

〈N2〉2 =
r22
r0

u2

b(d+ u)
+

r2g

d+ u

Then (3.72), (3.73), in combination with (3.76) and (3.77), give

〈N1〉2 = − b
d

〈N1〉20
r0

+
g

d
r0 −

(b+ d)
d

〈N1〉0 +
u

d
〈N1〉1 +

u

d
r1

= −r
2
1

r0

u2

bd
+
g

d
r0 − r1

u(b+ d)
bd

+
r21
r0

u3

db(d+ u)
+ r1

ug

d(d+ u)
+ r1

u

d

= −r
2
1

r0

u2

b(d+ u)
+
g

d
r0 − r1

u

b
+ r1

ug

d(d+ u)
(3.86)

〈N2〉1 = −r
2
2

r0

u2

b(d+ u)
+
g

d
r0 − r2

u

b
+ r2

ug

d(d+ u)
(3.87)

Now note that (3.76) and (3.77) imply that 〈N2〉1 = 〈N1〉2. Thus (3.86, 3.87) give

−r
2
1

r0

u2

b(d+ u)
+ r1u

(
g

d(d+ u)
− 1
b

)
= −r

2
2

r0

u2

b(d+ u)
+ r2u

(
g

d(d+ u)
− 1
b

)
which yields either r1 = r2 or

r1 + r2
r0

=
1
u

[
gb

d
− d− u

]
(3.88)

This implies using r0 = 1− r1 − r2 that

r1 + r2 = 1− u

gb/d− d
(3.89)

To ensure 0 < r1 + r2 < 1 we require

gb > (u+ d)d (3.90)
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Finally (3.84) yields another relation between r1 and r2 using(
2d+ 2b+ u

(r1 + r0)
r0

)
d+ u

b
〈N2〉1

=
gu

b
(r1 + r2) + u

[
〈N2〉1

(
1 +
〈N1〉1
r1

)
+ 〈N1〉2

(
1 +
〈N2〉2
r2

)]
⇒

(
2(d+ b)(d+ u)

b
+
u(d+ u)

b

(r1 + r2)
r0

− 2u

− u3

b(d+ u)
(r1 + r2)

r0
− 2ug
d+ u

)
〈N2〉1 =

gu

b
(r1 + r2)

Now (
2(d+ b)(d+ u)

b
+

(d+ u)
b

[
gb

d
− d− u

]
− 2u

− u2

b(d+ u)

[
gb

d
− d− u

]
− 2ug
d+ u

)
〈N2〉1

=
(

(d+ u)
b

[
gb

d
+ d+ 2b− u

]
+ 2d− u2g

(d+ u)d
+
u2

b
− 2ug
d+ u

)
〈N2〉1

=
(
g(d+ u)

d
+
d2 − u2

b
+ 2d− u2g

(d+ u)d
+
u2

b
− 2ug
d+ u

)
〈N2〉1

=
(
d2

b
+ 2d+

dg

(d+ u)

)
〈N2〉1

So finally we obtain

〈N2〉1 = gu

[
1− du

gb−d2

]
d2 + 2db+ dgb

(d+u)

. (3.91)

This should be equal to rhs of (3.87). Thus, inserting the expressions for r1 + r2 and

r0 = 1− (r1 + r2) we obtain a quadratic for r2

−r22
(gb− d2)u
db(d+ u)

+ r2u

[
g

d(d+ u)
− 1
b

]
+

ug

bg − d2
= gu

[
1− du

gb−d2

]
d2 + 2db+ dgb

(d+u)

. (3.92)

For this quadratic to have two positive roots (corresponding to two symmetry-broken

solutions) sketching the quadratic (3.92) shows that it is necessary that the value at

r2 = 0 is negative but that the derivative is positive:[
g

d(d+ u)
− 1
b

]
> 0 (3.93)

ug

bg − d2
− gu

[
1− du

gb−d2

]
d2 + 2db+ dgb

(d+u)

< 0. (3.94)
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The first inequality is equivalent to (3.90) and the last inequality reduces to

bg >
d+ u

u

[
2d2 + 2db+ du

]
(3.95)

which is a stronger condition than (3.90).

There is also a third condition in order to obtain two positive roots in the quadratic

equation (3.92). The maximum value of the quadratic expression has to be bigger than

zero in order to produce two distinct intersections with the r2 axis. In that case, two

solutions can be obtained from this equation as long as the conditions are respected,

and the symmetric solution is also included in principle. However, the results are very

difficult to interpret or to compare with the simulations.

The two values of r1 and r2 obtained through (3.92) involve two regimes in the system,

where the symmetry is broken towards one of the states S of the switch. However, it

is difficult to understand what these two values mean, or how to measure them in the

simulation. For example, for r1, we could consider the first value as the probability

mass
∑∞

N1,N2=0 P1(N1, N2) when the switch is in the state 1 and the majority of the

proteins are of type N1 (we define this as r11). This means that the symmetry is broken

and N1 proteins are more abundant in the system. This would correspond to subphase

1 of the system. On the other hand, the second value of r1 (that we shall call r21)

corresponds to
∑∞

N1,N2=0 P1(N1, N2) when the switch is in state S = 1 and system is

dominated by proteins N2. This probability mass could be thought as the frequency

at which states S = 1 are visited when N2 � N1, e.g., when there are quick changes

in the state of the switch without a significant change in the number of proteins. This

would correspond to subphase 2 of the system.

As we could expect, these quantities are difficult to measure in the simulations, because

there is no orthodox way in which we can differentiate the two symmetry-broken

regimes. Our problem is to know, during a simulation, in which subphase the switch

is. If S = 1 and N1 � N2 (subphase 1) we can consider that at this moment the

switch is in subphase 1, and the time spent in this state will be added to compute r11.

Equivalently, if S = 1 and N2 � N1 (subphase 2), then the time spent at this state

will contribute to r21. The first problem is to deal with states where the values of N1

and N2 are comparable.

The second and most important problem is that subphase 2 is very rare to find in the

simulation. Quick changes in the state of the switch may happen when the protein

numbers N1 and N2 are similar, that is, where the probability of binding for both

species is similar, but it is difficult to find situations in which the state of the switch
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changes several times when the number of proteins are very different. This means that

the value of r21 is going to have a very large error. Also, the way we have defined

subphases is not very precise and it might not reflect well the bistability of the system.

There is one final consideration that supports our statement about the difficulty

to measure r21. Because of the considerations we have made, we may expect that

distribution P1(N1, N2) presents its main peak at N2 = 0 and also a little peak

around N1 = 0 (coming from the quick changes we have mentioned, with this peak

corresponding to subphase 2). However, as the contour plots of P1 show (figure 3.7),

this secondary peak is not observed in the simulations. Again, the value of r21 is very

small (if non-zero) and subjected to a large error.

In conclusion, this mean refined mean field theory is more accurate than the previous

one, but still does not help us to capture the bistability of the switch in a comprehensible

way. That is why we develop a perturbative analytical approach in chapter 4.

3.6 Summary

In this chapter we have introduced a model for the exclusive genetic switch and have

learned through simulations how this system behaves. The probability distributions

present two peaks for standard E.Coli values (3.6) but these two peaks may merge into

one as the unbinding rate of the switch increases. We have solved the equations for

the switch in the limits of very small and very big unbinding rates. In the first case,

we have shown that the proteins number corresponding to the bound protein follows a

Poisson distribution, while the other protein number decays to zero. In the second case,

both probability distributions become Poissonian, as the switch does not influence the

dynamics of the proteins significantly. It is then important to remember that as long

as a protein type is not affected by the switch, then its probability distribution will be

Poissonian.

We then have focused on the bistability of the switch, gaining insight into how it is

effected by the binding/unbinding processes. We have performed an in-depth study of

bistability through information and mean field theories. Information theory shows that

covariance or the free energy are the most appropriate quantities to characterize the

exclusive switch. Also, it suggests that bistability does not correspond to symmetry

breaking as long as the size system is finite. Finally, mean field theories are unable to

model bistability in an accurate way, but help us to understand how the correlations

between the state of the switch and the protein concentrations affect this property.
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Chapter 4

Perturbative study of the

probability distribution of the

exclusive genetic switch

In this chapter we compute analytically the stationary probability distributions for the

exclusive genetic switch. The distributions give us all the information about the long-

term behaviour of the system and help us to understand the bistability that the switch

exhibits.

The way to do this calculation is by setting a perturbative scheme in the unbinding

rate u that allows us to establish an order hierarchy in the master equations of the

system. From that point, we use several mathematical tools in order to compute the

probability distributions and evaluate the first two orders of the u expansion, obtaining

excellent agreement when we compare with the simulations.

The rate u is chosen as a perturbation parameter because it allows us to perform our

calculations in an effective and neat way. Moreover, the u → 0 regime has a clear

biological interpretation, as this is the case in which one of the genes is switched off

and the whole system is occupied by proteins generated by the other gene. Finally, u

is also one of the smallest parameters in the standard set of E. coli values (3.6), and

as a result, it is appropriate to perform a pertubative expansion in it.

The structure of the chapter is as follows. In section 4.1 we introduce the problem and

find the generating function equations for it. In section 4.2 we present the outline for

the perturbative expansion and the reason why the parameter u is chosen. In section
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4.3, we compute the zeroth order of the expansion and compare with previous results.

In section 4.4 we present the general formulation of the problem and the recursive way

of obtaining different orders for the expansion of the probability distributions. We also

introduce the mathematical tools necessary to solve the problem. In sections 4.5, 4.6

we compute the Green functions for different states of the switch, that will be key to

find the final solution to our problem. In section 4.7, we compute first and second order

results of the expansion and compare with the simulations. Finally, in section 4.8, we

discuss and summarize the results of the chapter.

4.1 Formal solution

We begin by considering the formal solution of the master equation system:

∂P0(N1, N2)
∂t

= g[P0(N1 − 1, N2) + P0(N1, N2 − 1)− 2P0(N1, N2)]

+ d[(N1 + 1)P0(N1 + 1, N2) + (N2 + 1)P0(N1, N2 + 1)

−(N1 +N2)P0(N1, N2)]− b(N1 +N2)P0(N1, N2)

+ u[P1(N1 − 1, N2) + P2(N1, N2 − 1)] (4.1)
∂P1(N1, N2)

∂t
= g[P1(N1 − 1, N2)− P1(N1, N2)]

+ d[(N1 + 1)P1(N1 + 1, N2) + (N2 + 1)P1(N1, N2 + 1)

−(N1 +N2)P1(N1, N2)]

+ b(N1 + 1)P0(N1 + 1, N2)− uP1(N1, N2) (4.2)
∂P2(N1, N2)

∂t
= g[P2(N1, N2 − 1)− P2(N1, N2)]

+ d[(N1 + 1)P2(N1 + 1, N2) + (N2 + 1)P2(N1, N2 + 1)

−(N1 +N2)P2(N1, N2)]

+ b(N2 + 1)P0(N1, N2 + 1)− uP2(N1, N2). (4.3)

To transform the system of equations into a system of partial differential equations, we

take the generating function (section 2.2.1) of the probability distributions:

KS(z1, z2) =
∞∑

N1=0

∞∑
N2=0

zN1
1 zN2

2 PS(N1, N2) (4.4)
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where S = 0, 1, 2. In this way we obtain a system of linear partial differential equations

with non-constant coefficients:

g(z1 + z2 − 2)K0 + [d− (d+ b)z1]
∂K0

∂z1
+ [d− (d+ b)z2]

∂K0

∂z2
+uz1K1 + uz2K2 = 0 (4.5)

[g(z1 − 1)− u]K1 + d(1− z1)
∂K1

∂z1
+ d(1− z2)

∂K1

∂z2
+ b

∂K0

∂z1
= 0 (4.6)

[g(z2 − 1)− u]K2 + d(1− z1)
∂K2

∂z1
+ d(1− z2)

∂K2

∂z2
+ b

∂K0

∂z2
= 0 (4.7)

where the right-hand side terms have been set to 0, since the stationary probabilities

PS(N1, N2) are the main quantities to be determined in this chapter.

The second and the third equation of the system work in a completely analogous way,

because of the symmetry of species 1 and 2, so it will be enough to deal with the first

two equations. We also note the symmetries K2(z1, z2) = K1(z2, z1) and K0(z1, z2) =

K0(z2, z1).

In appendix A we give a formal solution to the system (4.5–4.7). However, in practice

it is not clear how to actually compute e.g. probability distributions from this solution.

In order to do this we develop instead a perturbative approach.

4.2 Perturbative approach outline

We now develop a perturbative approach to the problem of finding the exact stationary

state distribution. To do so we require a suitable small parameter of the model which

we choose to be u, the unbinding parameter. In the u → 0 limit, the exact solution

is simple: if, for example, one protein of type 1 is bound, the proteins of this kind

will obey the usual Poisson distribution regulated by death and birth terms, while the

number of proteins of type 2 will just decay to 0 (section 3.2.4). These results will be

reproduced inside the perturbative scheme in section 4.3.

The limit u→ 0 is the starting point for a perturbative solution, wherein the probability

distribution will be expanded in a power series of u:

PS =
∞∑
n=0

unP
(n)
S . (4.8)

Owing to the symmetry of the system P2(N1, N2) = P1(N2, N1) we need only consider

P0 and P1. In the limit u → 0 we assume u � g, b, d so we can neglect terms of the
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form gP1(N1, N2) or b(N1 + 1)P0(N1 + 1, N2) with respect to terms like uP1(N,N2).

Writing out the expansion explicitly we have

P1 = P
(0)
1 + uP

(1)
1 . . .

P0 = uP
(1)
0 + u2P

(2)
0 . . . (4.9)

Note that the constant term P
(0)
0 = 0 since P0 = 0 in the limit of no unbinding, i.e.

the state of the switch S = 0 does not happen when proteins do not unbind at a finite

rate.

This approach also makes sense when the typical E. coli values for the parameters are

considered (3.6). Let us recall these values:

g = 0.05, d = 0.005, b = 0.1, u = 0.005. (4.10)

Then u is, along with d, the smallest of the parameters. Although this might suggest

that we cannot consider u� d in the equations, we must remember that setting u→ 0

is only an initial approximation to find the probability distribution and that succesive

corrections provide more accurate results.

4.3 Zeroth order

In the zeroth order of the u expansion of the stationary master equation (4.2) (with

l.h.s. set to zero in order to compute stationary probability distributions) we find

0 = g[P 0
1 (N1 − 1, N2)− P 0

1 (N1, N2)] + d[(N1 + 1)P 0
1 (N1 + 1, N2)

+(N2 + 1)P 0
1 (N1, N2 + 1)− (N1 +N2)P 0

1 (N1, N2)] . (4.11)

We define the generating function

K
(0)
1 (z1, z2) =

∞∑
N1=0

∞∑
N2=0

zN1
1 zN2

2 P
(0)
1 (N1, N2), (4.12)

which obeys

0 = g(z1 − 1)K(0)
1 + d(1− z1)

∂K
(0)
1

∂z1
+ d(1− z2)

∂K
(0)
1

∂z2
, (4.13)
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the solution of which is independent of z2

K
(0)
1 = c1 exp

(g
d
z1

)
, (4.14)

where c1 is a constant to be determined. Analogously K(0)
2 (z2) = c2 exp

(g
d
z2

)
.

If we evaluate the generating function (4.12) in (z1 = 1, z2 = 1) and apply normalization

of probability distributions, we obtain an equivalent normalization for the generating

functions, that is:

K
(0)
1 (1) +K

(0)
2 (1) = 1. (4.15)

If we combine this condition with the symmetry consideration c1 = c2 (due to the

symmetry of both types of proteins in the system) we arrive at:

K
(0)
1 =

1
2

exp
(
−g
d

)
exp

(g
d
z1

)
. (4.16)

Expanding as a power series in z1, z2 (as we did in section 2.2.1) yields

P
(0)
1 (N1, N2) =

1
2

exp
(
− g
d

)
N1!

(g
d

)N1

δN2,0 . (4.17)

This is a Poisson distribution for N1 with mean g/d, with N2 fixed to be zero. The

normalisation factor 1/2 is so that P (0)(N1, N2) = P
(0)
1 (N1, N2) + P

(0)
2 (N1, N2) is

normalized to unity.

4.4 General Formulation

We substitute the expansion (4.8) into the stationary master system (4.1–4.3) with

time derivatives set equal to zero. Arranging orders of u the equations may be written

as

LSP (n)
S (N1, N2) = −f (n)

S (N1, N2) (4.18)
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for S = 0, 1 where the action of the linear operators LS is

L0P
(n)
0 (N1, N2) = g[P (n)

0 (N1 − 1, N2) + P
(n)
0 (N1, N2 − 1)− 2P (n)

0 (N1, N2)]

+d
[
(N1 + 1)P (n)

0 (N1 + 1, N2) + (N2 + 1)P (n)
0 (N1, N2 + 1)

−(N1 +N2)P (n)
0 (N1, N2)

]
− b(N1 +N2)P (n)

0 (N1, N2) (4.19)

L1P
(n)
1 (N1, N2) = g[P (n)

1 (N1 − 1, N2)− P (n)
1 (N1, N2)]

+d
[
(N1 + 1)P (n)

1 (N1 + 1, N2) + (N2 + 1)P (n)
1 (N1, N2 + 1)

−(N1 +N2)P (n)
1 (N1, N2)

]
(4.20)

and the inhomogeneous terms are

f
(n)
0 (N1, N2) = P

(n−1)
1 (N1 − 1, N2) + P

(n−1)
2 (N1, N2 − 1) (4.21)

f
(n)
1 (N1, N2) = −P (n−1)

1 + b(N1 + 1)P (n)
0 (N1 + 1, N2) . (4.22)

Let us note that through equations (4.21,4.22) we are establishing a hierarchical system

of equations for different P (n)
i . This is due to the term of unbinding (proportional to

u) in the master equations (4.1-4.3). This u adds a power to the series expansion of the

probability distributions, allowing P (n)
i to be present in the same equations as P (n−1)

i .

In particular, we can first determine the zeroth order P (0)
1 (N1, N2) and P (0)

2 (N1, N2) =

P
(0)
1 (N2, N1) as functions of the parameters of the model, as we did in section 4.3.

Then, owing to the form of the equation (4.21), f (1)
0 is determined. This allows us to

solve for P (1)
0 which in turn determines f (1)

1 and allows us to solve for P (1)
1 . Continuing

in this fashion the rest of the probabilities will be found following the structure:

P
(0)
1 → P

(1)
0 → P

(1)
1 → P

(2)
0 → P

(2)
1 · · · (4.23)

In general, P (n)
0 will be found before P (n)

1 .

We note that for each switch state S the same linear operator LS appears at all orders n.

This means that the homogeneous parts of the equations are independent of the order

(with only the inhomogeneous term on the right hand side varying between orders) and

that they only have to be solved once.

Before going into the general formulation of the problem, we present a little reminder

about Green functions and the method of characteristics for partial differential

equations. These tools will be key to find the different terms in the perturbative
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expansion.

4.4.1 Green functions and the method of characteristics

Green functions

Green functions [104, 105] are auxiliary functions that helps us to solve non-

homogeneous differential equations. For example, let us assume a differential equation

with a differential operator L such that:

Lx(n) = f(n) (4.24)

x(n) being the unknown function and f(n) the non-homogenous function. In order to

connect with the calculations of this chapter, we assume n is a discrete variable.

We define the Green’s function Q(n, n0) as function of n and a new variable n0 whose

result after applying the differential operator L gives a Dirac delta function (a Kronecker

delta function in the discrete case), that is:

LQ(n, n0) = δn,n0 (4.25)

The use of this construction resides in the fact that, once we sum this function in n0

along with f(n), we obtain:

∑
n0

LQ(n, n0)f(n0) =
∑
n0

δn,n0f(n0) = f(n) (4.26)

However, L only acts on the original variable n, and that allows us to take it out of the

n0 sum:

L
∑
n0

Q(n, n0)f(n0) = f(n) (4.27)

Comparing this to our initial problem makes us realize that the initial unknown function

can be written with help of the Green function as:

x(n) =
∑
n0

Q(n, n0)f(n0) (4.28)

so the problem is now reduced to two steps: first, finding the Green function, and then

performing the sum.
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The method of characteristics for PDEs

The method of characteristics [82, 83, 106] is now presented for a quasilinear partial

differential equation of two variables. This is the simplest standard case, and it is also

the one we find in our calculations of the probability distributions of the genetic switch.

The problem is defined by the equation:

a(z1, z2, u)
∂u

∂z1
+ b(z1, z2, u)

∂u

∂z2
− c(z1, z2, u) = 0 (4.29)

and the initial condition

Γ(r) =

(
z1(s = 0, r), z2(s = 0, r), u(s = 0, r)

)
(4.30)

where s is a time-like parameter and r describes the variation in space as we move

along the initial condition.

Studying equation (4.29), we can observe that the vector field a, b, c is perpendicular

to n(z1, z2, z) =
(
∂u

∂z1
,
∂u

∂z2
,−1

)
, where n(z1, z2, z) is a vector normal to the surface

u(z1, z2) = z, that is, to the surface of the solution.

This is equivalent to saying that the vector field (a, b, c) is tangent to the solution

surface at every point. This condition can be written by making the differential lengths

along the curve proportional to the components of the field, that is:

∂z1
∂s

= a(z1, z2, u) (4.31)

∂z2
∂s

= b(z1, z2, u) (4.32)

∂u

∂s
= c(z1, z2, u) (4.33)

that must be integrated by using the initial conditions (z1(0), z2(0), z(0) = z1(s =

0, r), z2(s = 0, r), u0(s = 0, r)).

The idea behind the method is to realize that the solution must be a combination

of characteristic curves of the field (a, b, c) defined by the equation. As long as the

functions in the problem are well-behaved, and as long as the initial condition is a

derivable function that is not itself a characteristic curve, there is a single characteristic

curve that goes through every point of the initial condition. If we are able to identify

these curves, the solution to our problem will just be the set formed by them.
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To solve a problem with this method, we first set the characteristic system (4.31-4.33)

and solve it for the initial condition (4.30). The first two equations give z1(s, r) and

z2(s, r), that is, the variables of our problem in terms of the variables (s, r) from the

characteristic curves and the initial condition, respectively. Inverting these equations,

we get to s(z1, z2), r(z1, z2), and finally, we can substitute these equations in (4.33), to

find u as a function of (z1, z2). In particular, we find u(s(z1, z2), r(z1, z2)). This will be

the final solution to our problem.

4.5 Green function for the operator L0

Having laid out the general perturbation scheme in section 4.4 and established the

zeroth order (n = 0) solution, we now outline how equations (4.18) can be solved.

Let us define a Green Function Q0(N1, N2|N0
1 , N

0
2 ) for the operator L0 through

L0Q0(N1, N2|N0
1 , N

0
2 ) = −δN1,N0

1
δN2,N0

2
(4.34)

so that the solution of (4.18) may be written

P
(n)
0 (N1, N2) =

∑
N0

1 ,N
0
2

f
(n)
0 (N0

1 , N
0
2 )Q0(N1, N2|N0

1 , N
0
2 ) . (4.35)

We define a generating function

K0(z1, z2|N0
1 , N

0
2 ) =

∞∑
N1=0

∞∑
N2=0

zN1
1 zN2

2 Q0(N1, N2|N0
1 , N

0
2 ) (4.36)

the equation for which is obtained by summing (4.34)

a(z1)
∂K0

∂z1
+ a(z2)

∂K0

∂z2
+ g(z1 + z2 − 2)K0 = −zN

0
1

1 z
N0

2
2 (4.37)

with a(zi) = d− (d+ b)zi.

In order to solve (4.37) we use the method of characteristics (see 4.4.1). The
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characteristic equations are

dz1
ds

= a(z1) (4.38)

dz2
ds

= a(z2) (4.39)

dK0

ds
= −g(z1 + z2 − 2)K0 − z

N0
1

1 z
N0

2
2 (4.40)

where s is a time-like parameter and (4.38,4.39) define characteristic curves along which

the partial differential equation (4.37) reduces to the ordinary differential equation

(4.40). Solving (4.38, 4.39) yields the curves

z1 =
d

d+ b
+Av z2 =

d

d+ b
+Bv (4.41)

where

v = e−(d+b)s (4.42)

and A,B are two constants to be fixed.

Equation (4.40) can be rewritten as an ordinary differential equation in v. By

substituting z1 and z2 from equation 4.41 and multiplying by the integrating factor

exp−(g(A+B)v/(d+ b))v
2gb
d+b , we can write this equation as:

d

dv

[
K0(v)v

2gb

(d+b)2 e−
g(A+B)
(d+b)

v
]

=
1

d+ b
v

2gb

(d+b)2
−1

e−
g(A+B)
(d+b)

v
(

d

d+ b
+Av

)N0
1
(

d

d+ b
+Bv

)N0
2

.

(4.43)

To integrate (4.43) we choose an end-point of the integration as v = 1 and set this to

correspond to an arbitrary point in the z1–z2 plane. This fixes the two constants A,B

as

A = z1 −
d

d+ b
, B = z2 −

d

d+ b
. (4.44)

Thus integrating between the limits v = 0, 1 in both sides of (4.43) we obtain

K0(z1, z2) =
1

d+ b

∫ 1

0
dv v

2gb

(d+b)2
−1

exp
{
− g

d+ b

(
2d
d+ b

− z1 − z2
)

(1− v)
}

×
(

d

d+ b
(1− v) + vz1

)N0
1
(

d

d+ b
(1− v) + vz2

)N0
2

. (4.45)

We now expand as a power series in z1, z2. In order to explain this expansion, we take

the terms depending only on z1, as the functions in z1 and z2 are completely separated.

82



The contribution in z1, without integral or constants, can be written as:

exp
(

g

d+ b
z1(1− v)

)(
d

d+ b
(1− v) + vz1

)N0
1

=
∞∑
p=0

(
g

d+ b

)p
(1− v)p

zp1
p!

N0
1∑

m1=0

(
N0

1

m1

)(
d

d+ b

)m1

(1− v)m1vN
0
1−m1z

N0
1−m1

1 .

We now relabel the second sum by defining N1 = N0
1 + p − m1, so our sum can be

rewritten as:

∞∑
p=0

N0
1 +p∑

N1=p

(
g

d+ b

)p
(1− v)p

zp1
p!

(
N0

1

N0
1 + p−N1

)(
d

d+ b
(1− v)

)N0
1 +p−N1

vN1−pzN1
1 .

The combinatorial number
(

N0
1

N0
1 + p−N1

)
can be written as

(
N0

1

N1 − p

)
. Furthermore,

because of this combinatorial number, we can extend the sum in N1 to infinity, as we

will only be adding zero terms. Finally we can change the order of the sums, taking

into account that
∑∞

p=0

∑∞
N1=p =

∑∞
N1=0

∑N1
p=0:

∞∑
N1=0

N1∑
p=0

1
p!

(
g

d+ b

)p( N0
1

N1 − p

)(
d

d+ b
(1− v)

)N0
1−N1+p

zN1
1 .

This means that we have found an expansion from the generating function in terms of

powers of z1 and z2 (with an analogous manipulation), so we can read off the Green

function Q0(N1, N2|N0
1 , N

0
2 ) from (4.36) as:

Q0(N1, N2|N0
1 , N

0
2 ) =

e
− 2gd

(d+b)2

d+ b

N1∑
p=0

1
p!

(
g

d+ b

)p( N0
1

N1 − p

)(
d

d+ b

)N0
1−N1+p

(4.46)

×
N2∑
r=0

1
r!

(
g

d+ b

)r ( N0
2

N2 − r

)(
d

d+ b

)N0
2−N2+r

×I

(
2gb

(d+ b)2
+N1−p+N2−r,

N0
1 +N0

2−N1−N2+2p+2r+1;
2gd

(d+ b)2

)

where I(α, β;x) is defined as the integral

I(α, β;x) =
∫ 1

0
dv vα−1(1− v)β−1exv =

Γ(α)Γ(β)
Γ(α+ β) 1F1(α, α+ β;x) , (4.47)

83



where Γ(z) is the Euler Gamma function and is defined as [86]:

Γ(z) =
∫ ∞

0
exp (−t)tz−1dt, Re(z) > 0, (4.48)

1F1(a, b; z) is the confluent hypergeometric function [107], defined either by (4.47) or

by its series expansion:

1F1(a, b; z) =
∞∑
n=0

(a)n
(b)n

zn

n!
(4.49)

and (a)n is the Pochhammer symbol, defined as (a)n = a(a− 1) . . . (a− n+ 1).

4.6 Green function for the operator L1

If we define a Green function for the operator L1 through

L1Q1(N1, N2|N0
1 , N

0
2 ) = −δN1,N0

1
δN2,N0

2
, (4.50)

this equation only has a solution when N2 6= 0. To see this we note that summing

the left hand side of (4.50) over all N1,N2 yields zero i.e. the operator conserves

probability. Therefore one cannot solve (4.50) or indeed (4.18) for an arbitrary right

hand side; one requires that the sum of the right hand side of (4.18) over all N1,N2

yields zero. However, since the null space of the operator L1 is concentrated on N2 = 0

(i.e. the stationary state in (4.17) is proportional to δN2,0) we can find a solution of

(4.50) for N2 > 0.

It is simplest to proceed by considering the solution P1 for an arbitrary right hand side

−h(N1, N2)

L1P1(N1, N2) = −h(N1, N2) (4.51)

that satisfies
∞∑

N1=0

∞∑
N2=0

h(N1, N2) = 0 . (4.52)

We define generating functions

K1(z1, z2) =
∞∑

N1=0

∞∑
N2=0

zN1
1 zN2

2 P1(N1, N2) (4.53)

H(z1, z2) =
∞∑

N1=0

∞∑
N2=0

zN1
1 zN2

2 h(N1, N2) (4.54)
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then summing (4.51) yields

d(1− z1)
∂K0

∂z1
+ d(1− z2)

∂K0

∂z2
+ g(z1 − 1)K0 = −H(z1, z2) . (4.55)

In order to solve (4.55) we again use the method of characteristics. The characteristic

equations are this time

dz1
ds

= d(1− z1) (4.56)

dz2
ds

= d(1− z2) (4.57)

dK1

ds
= −g(z1 − 1)K1 −H(z1, z2) . (4.58)

Solving the first two equations yields

z1 = 1 +Av z2 = 1 +Bv (4.59)

where now

v = e−ds (4.60)

and A, B are constants to be fixed. After multiplying by the integrating factor e−A
g
d
v

and changing to variable v, we obtain:

d
dv

[
K1e−A

g
d
v
]

=
H(z1, z2)

dv
e−A

g
d
v. (4.61)

We choose the integration to be from v = 0 to v = 1 where v = 0 corresponds to

z1 = z2 = 1 and v = 1 corresponds to an arbitrary point in the z1–z2 plane which

implies A = z1 − 1 and B = z2 − 1. We then obtain the solution of (4.61)

K1(z1, z2) = K1(1, 1)e(z1−1) g
d +

1
d

∫ 1

0
dv

e(z1−1) g
d
(1−v)

v
H(1 + (z1 − 1)v, 1 + (z2 − 1)v) .

(4.62)

Expanding as a power series in z1,z2 implies

P1(N1, N2) = K(1, 1)e−g/d
(g/d)N1

N1!
δN2,0

+ e−g/d
∞∑
p=0

∞∑
q=0

h(p, q)
d

(
q

N2

) N1∑
r=0

(g
d

)r 1
r!

(
p

N1 − r

)
×I(N1 +N2 − r, p+ q −N1 −N2 + 2r + 1; g/d) . (4.63)

where we have used similar transformations to the ones required to obtain (4.46), and

where it is key to rewrite 1+(z1−1)v as (1−v)+z1v before performing the expansion.
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As discussed above, for N2 > 0 we can define the Green function (4.50) by means of

which the solution of (4.51) may be written

P1(N1, N2) =
∑
N0

1 ,N
0
2

Q1(N1, N2|N0
1 , N

0
2 )h(N0

1 , N
0
2 ) . (4.64)

Then we can read off the Green function from (4.63) as

Q1(N1, N2|N0
1 , N

0
2 ) = e−g/d

1
d

(
N0

2

N2

) N1∑
r=0

(g
d

)r 1
r!

(
N0

1

N1 − r

)
(4.65)

×I(N1 +N2 − r,N0
1 +N0

2 −N1 −N2 + 2r + 1; g/d)

For N2 = 0 the solution (4.63) reads

P1(N1, 0) = K(1, 1)e−g/d
(g/d)N1

N1!

+ e−g/d
∞∑
p=0

∞∑
q=0

h(p, q)
d

N1∑
r=0

(g
d

)r 1
r!

(
p

N1 − r

)
×I(N1 − r, p+ q −N1 + 2r + 1; g/d) . (4.66)

Some care is required with the r = N1 term of the sum in (4.66) since the integral

I(0, β;x) does not converge. However the property (4.52) of the function h implies that

the coefficient of the offending integral is zero. To see this one can write the r = N1

term of (4.66) as

e−g/d
∞∑
p=0

∞∑
q=0

h(p, q)
d

(g
d

)N1 1
N1!

I(0, p+q+N1+1; g/d)

=
∞∑
p=0

∞∑
q=0

h(p, q)
d

(g
d

)N1 1
N1!

∫ 1

0
dv e−

g
d
(1−v)v−1(1− v)p+q+N1

=
∞∑
p=0

∞∑
q=0

h(p, q)
d

(g
d

)N1 1
N1!

p+q∑
s=1

(−1)se−
g
d

(
p+ q

s

)
I(s,N1 + 1; g/d). (4.67)

In the final equality, the binomial expansion of (1− v)p+q has been used with the term

s = 0 not present since its coefficient vanishes due to (4.52). All the integrals in (4.67)

then converge.
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4.7 First and second order results

The first-order contribution to the stationary probability P (1)
0 (N1, N2) is given by:

P
(1)
0 (N1, N2) =

∑
N0

1 ,N
0
2

f
(1)
0 (N0

1 , N
0
2 )Q0(N1, N2|N0

1 , N
0
2 ) (4.68)

with

f
(1)
0 (N0

1 , N
0
2 ) =

1
2

exp
(
−g
d

)[(g
d

)N0
1−1 δN0

2 ,0

(N0
1 − 1)!

+
(g
d

)N0
2−1 δN0

1 ,0

(N0
2 − 1)!

]
. (4.69)

Although Q0(N1, N2|N0
1 , N

0
2 ) is expressed in terms of known integrals in (4.46), it is

advisable to go back to the explicit expression of the integrals (4.47) to evaluate the

sums appearing in (4.68) more easily. In that way, P (1)
0 (N1, N2) can be written as:

P
(1)
0 (N1, N2) =

1
2

e
− g
d
− 2gd

(d+b)2

d+ b

∞∑
N0

1 =0

(g
d

)N0
1−1 1

(N0
1 − 1)!

N1∑
p=0

1
p!

(
g

d+ b

)p( N0
1

N1 − p

)

×
(

d

d+ b

)N0
1−N1+p 1

N2!

(
g

d+ b

)N2

×
∫ 1

0
dv v

2gb

(d+b)2
+N1−p−1

(1− v)N
0
1−N1+N2+2pe

2gd

(d+b)2
v

+ symm (4.70)

where the label symm refers to the fact that there will be another term equal to the

written one, apart from a switch in the variables N0
1 and N0

2 .

Now defining:

c(v) ≡ v
gb

(d+b)2 e
− gd

(d+b)2
(1−v)

, m ≡ N1 − p, r(v) ≡ d

d+ b

1− v
v

, s(v) ≡ g

d+ b
(1− v)

(4.71)

we arrive at the expression (for convenience we will drop the dependence of the previous

functions on v):

P
(1)
0 (N1, N2) =

∫ 1

0

dv

v(d+ b)

∞∑
N0

1 =0

1
2

exp
(
−g
d

)(g
d

)N0
1−1 c2

(N0
1 − 1)!

(4.72)

N1∑
m=0

(
N0

1

m

)
rN

0
1−mvN

0
1 × 1

(N1 −m)!
sN1−m sN2

(N2)!
+ symm(4.73)

Separating the parts of the expression that can be summed, the following simplification
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can be obtained by changing the order of the sums appropriately:

∞∑
N0

1 =0

(g
d

)N0
1−1 1

(N0
1 − 1)!

vN
0
1

N1∑
m=0

(
N0

1

m

)
rN

0
1−msN1−m

(N1 −m)!
(4.74)

=
(g
d

)−1
N1∑
m=0

sN1−m

(N1 −m)!

∞∑
N0

1 =m

(
N0

1

m

)
rN

0
1−m

(N0
1 − 1)!

ωN
0
1 (4.75)

=
(g
d

)−1
N1∑
m=0

sN1−m

(N1 −m)!m!

∞∑
n=0

(n+m)
n!

rnωn+m (4.76)

=
(g
d

)−1
N1∑
m=0

sN1−m

(N1 −m)!m!
ωm

∞∑
n=0

(
(rω)n

(n− 1)!
+
m(rω)n

n!

)
(4.77)

=
(g
d

)−1
N1∑
m=0

sN1−m

(N1 −m)!m!
ωm(s+m)es (4.78)

where ω = vg/d. Note that this sum could be simplified further, but that the

simplification will not allow us to perform the integration over v in a closed form.

In this and following equations, we will try to obtain the simplest expressions globally,

knowing that simplifying one part can lead to further complications in another.

Plugging this sum into the P
(1)
0 equation and writing all the explicit forms of the

functions, we obtain the result:

P
(1)
0 (N1, N2) =

1
2

exp
(
g(b− d)
(d+ b)2

− g

d

)(g
d

)−1 1
d+ b

1
N2!

(
g

d+ b

)N2

(4.79)

N1∑
m=0

(
g

d+ b

)N1−m (g
d

)m 1
(N1 −m)!m![

g

d+ b
I

(
2gb

(d+ b)2
+m,N2 +N1 −m+ 2;

g(d− b)
(d+ b)2

)

+mI
(

2gb
(d+ b)2

+m,N2 +N1 −m+ 1;
g(d− b)
(d+ b)2

)]
+ symm.

Once we have P (1)
0 , we can plug this result into the P (1)

1 equation which becomes for

N2 > 0

P
(1)
1 (N1, N2) =

∑
N0

1 ,N
0
2

f
(1)
1 (N0

1 , N
0
2 )Q1(N1, N2|N0

1 , N
0
2 ) (4.80)

where f (1)
1 (N1, N2) = −P (0)

1 (N1, N2) + b(N1 + 1)P (1)
0 (N1 + 1, N2).

88



We consider separately the two terms of f (1)
1 . The first one is

−P (0)
1 (N0

1 , N
0
2 ) = −1

2
exp

(
− g
d

)
N0

1 !

(g
d

)N0
1
δN0

2 ,0
. (4.81)

Since the calculation with the Green function (see section 4.6) is only for N2 6= 0 this

term does not contribute and the only contribution comes from the second term in

f
(1)
1 involving P

(1)
0 . The resulting expression, obtained by substituting h = b(N1 +

1)P (1)
0 (N1 + 1, N2) in (4.63) with P

(1)
0 given by (4.79), is

P
(1)
1 (N1, N2) =

b

2g
exp

(
g(b− d)
(d+ b)2

− 2g
d

) ∞∑
N0

1 =0

∞∑
N0

2 =0

(N0
1 + 1)

{
1

(d+ b)
1
N0

2 !
(4.82)

×
(

g

d+ b

)N0
2
N0

1 +1∑
m=0

(
g

d+ b

)N0
1 +1−m (g

d

)m 1
(N0

1 + 1−m)!m!

×

[
g

d+ b
I

(
2gb

(d+ b)2
+m,N0

2 +N0
1 −m+ 3;

g(d− b)
(d+ b)2

)

+mI
(

2gb
(d+ b)2

+m,N0
2 +N0

1 −m+ 2;
g(d− b)
(d+ b)2

)]

+symm(N0
1 + 1, N0

2 )

}(
N0

2

N2

) N1∑
r=0

(g
d

)r 1
r!

(
N0

1

N1 − r

)
I(N1 +N2 − r,N0

1 +N0
2 −N1 −N2 + 2r + 1; g/d)

Where the symmetric term in this case corresponds to the term inside the curly brackets,

exchanging the places of N0
1 + 1 and N0

2 coming from the symmetric term in P 0
0 . For

N2 = 0 we obtain the result shown in (4.66) and cannot be simplified further.

Equations (4.66), (4.79) and (4.82) are the main results of this section and give closed

form expressions for the first-order contributions to the stationary probabilities. The

normalization constant K(1, 1) appearing in (4.66) is obtained from the condition:

∞∑
N1=0

∞∑
N2=0

[
P

(1)
0 (N1, N2) + P

(1)
1 (N1, N2) + P

(1)
2 (N1, N2)

]
= 0 . (4.83)

Therefore, what we do is to evaluate the sums in equations (4.79) and (4.82) numerically.

Then, taking into account the normalization condition (4.83), we compute all the

probabilities P 1
1 (N1, 0) from equation (4.66) with different trial values of K(1, 1). The

moment this trial value K(1, 1) gives us a sum of probabilities that is inside the interval

1± 10−5, we keep that value, and compute the probabilities P 1
1 (N1, 0).

89



Once the values of the probabilities P (1)
i (N1, N2) have been obtained numerically, they

are multiplied by the unbinding parameter u and added to the zeroth order probabilities.

In that way, the probability distributions Pi(N1, N2) can be computed and plotted up

to the first order of the expansion. Figure 4.1 shows the probability distributions for

different values. The agreement is visually good in the first two examples: typical E.

coli values (3.6) and another interesting case, with smaller g. The order of magnitude

is well reproduced in almost every point of the probability distribution. However, the

approximation does not work accurately if the value of the unbinding parameter u is of

the order or bigger than the other parameters, as we see in the third row of figure 4.1.

a) E. coli values.

b) g = 0.015, u = 0.0005, d = 0.005, b = 0.1.

c) E. coli values with u = 0.05.

Figure 4.1 Comparison between the analytical first order and the simulation
distributions for different values of the parameters a) E. coli values (3.6).
The probability distributions have the same shape and the order of magnitude
is well reproduced in almost every point. b) g = 0.015, u = 0.0005, d =
0.005, b = 0.1 The order of magnitude is again well reproduced. In this case,
the two peaks get closer to the origin as the ratio g/d is smaller. c) E. coli
values with u = 0.05. The approximation at first order is no longer accurate
as the value of u is no longer small compared to the rest of the parameters
of the model.
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Although the first two examples of figure 4.1 seem visually in good agreement with

the simulations, the best way to check this is to plot different slices of the probability

distribution, that is the probability distribution of N2 where N1 is held constant (figure

4.2). We choose the values of N1 to correspond to the slices with large probability mass,

i.e. N1 = 0, 1, 2 for E. coli values. Figure 4.2 shows that along the slice with greatest

probability mass (N1 = 0) the analytical and simulation plots show good agreement.

For N1 > 0, there is reasonable agreement for the E. coli values (figure 4.2 b)), whereas

for larger u the agreement is not so good (figure 4.2 d)).
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a) E. coli values. Slice N1 = 0.
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b) E. coli values. Slices N1 = 1, 2.
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c) g = 0.015, u = 0.0005, d =
0.005, b = 0.1. Slice N1 = 0.
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d) E. coli values with u = 0.05.
Slice N1 = 1.

Figure 4.2 Comparison between the analytical probability distributions P (N∗
1 , N2) where

N∗
1 is fixed and chosen to correspond to slices with largest probability mass.

The agreement in slice N1 = 0 is good for both figures a) and c). There is
some quantitative difference in b), which corresponds to the E. coli values
in slices with less probability mass. This is improved with second order
calculations, as can be seen in figure 4.3. In d) the difference is clear, since
the first order approximation is no longer accurate, as discussed in figure
4.1. The error in the values is negligible and, in all the cases, is smaller
than the size of the used symbols.
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Figure 4.3 Comparison between the probability slices P (1, N2) and P (2, N2) from second
order analytical calculations and simulations, for E. coli values. The second
order is clearly enough to get accurate results.

Since the proposed method is general, calculations can be performed up to any necessary

order to get better results. The formulas are the obtained by iterating the procedure

of the Green functions described in section 4.4. For example, in the case of E. coli in

axes N1 = 1, N1 = 2 is enough to compute the second order to have very good results

(figure 4.3). In general, the method can be iterated as many times as required, and the

more orders are computed, the better the agreement is.

4.8 Discussion and summary

During this chapter we have obtained an exact perturbative analytical solution for the

stationary probability distribution of the exclusive genetic switch. The distributions

are expanded in a series in the unbinding rate of the switch u and the solution are build

starting from the zeroth order, that corresponds to the situation of no switching. In

that case, both species obey a Poisson distribution, as seen in chapter 3.

We have formulated our solution by using two Green functions that we have determined

analytically. Once they have been obtained, it is only a matter of including

inhomogeneous terms and summing them with Green functions in order to obtain the

different terms of the expansion of the probability distribution.
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Both the analytical evaluation of the probabilities and the simulations for the exclusive

switch are very fast for the usual E. coli values and similar sets of parameters, and

we can obtain great accuracy with both methods. This offers a great opportunity to

compare results and to study the dependence of the solution in different parameters of

the model.

For standard E.Coli values we have computed the first orders of these probability

distributions, showing good agreement with simulation results. Moreover, we have

seen that for these values a expansion up to second order is enough to find excellent

agreement with simulation results.

The methods used during this chapter could be used to model systems that obey similar

dynamics, and particularly, they could be used to extend our analytical knowledge

about other genetic switches. We discuss these systems below.

4.9 Discussion of other genetic switches

The exclusive genetic switch is a simple model that, however, has a rich phenomenology,

and presents some of the key features from genetic switches. Nevertheless, there are

some other switches that are useful to model some biological systems, and whose

study can benefit from the techniques developed in this chapter. We now present

two further examples of genetic switches, and present a preliminary study about how

these techniques can be used to compute the stationary probability distribution.

4.9.1 The non-exclusive switch

This switch has been the topic of study of many papers [4, 13, 87] and it was importantly

synthesized in 2000 [88]. Moreover, six years later it was discovered in naturally

occurring systems [108], becoming one of the most relevant switches in the current

literature.

This switch is very similar to the exclusive switch (figure 4.4), with the sole difference

that there are two promoter sites, each of them specific for one kind of protein. At

gene 1 there is a promoter site where proteins X2 can bind, and therefore inhibit gene

1. Analogously, proteins X1 can bind to the promoter site of gene 2, switching it off.

We can now distinguish 4 different basic configurations:
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Figure 4.4 The non-exclusive genetic switch. In this case two promoter sites are situated
between the genes.

� 00 when none of the promoter sites are occupied. In this situation both genes

can be produced.

� 01 when only the second promoter site is occupied by a protein of type 1. In this

situation only proteins of type 1 are produced.

� 10 when only the first promoter site is occupied by a protein of type 2. In this

situation only proteins of type 2 are produced.

� 11 when both promoter sites are occupied, and therefore there is no production

of any protein in the system. Only protein death happens until one of the bound

proteins unbind.
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As a result of these considerations, master equations can be written as:

∂P00(N1, N2)
∂t

= g [P00(N1 − 1, N2) + P00(N1, N2 − 1)− 2P00(N1, N2)]

d[(N1 + 1)P00(N1 + 1, N2) + (N2 + 1)P00(N1, N2 + 1)

−(N1 +N2)P00(N1, N2)]

−b(N1 +N2)P00(N1, N2) + u [P01(N1 − 1, N2) + P10(N1, N2 − 1)]

(4.84)
∂P01(N1, N2)

∂t
= g [P01(N1 − 1, N2)− P01(N1, N2)]

d[(N1 + 1)P01(N1 + 1, N2) + (N2 + 1)P01(N1, N2 + 1)

−(N1 +N2)P01(N1, N2)]

b[(N1 + 1)P00(N1 + 1, N2)−N2P01(N1, N2)]

+u[P11(N1, N2 − 1)− P01(N1, N2)] (4.85)
∂P10(N1, N2)

∂t
= g [P10(N1, N2 − 1)− P10(N1, N2)]

d[(N1 + 1)P10(N1 + 1, N2) + (N2 + 1)P10(N1, N2 + 1)

−(N1 +N2)P10(N1, N2)]

b[(N2 + 1)P00(N1, N2 + 1)−N1P10(N1, N2)]

+u[P11(N1 − 1, N2)− P10(N1, N2)] (4.86)
∂P11(N1, N2)

∂t
= d[(N1 + 1)P11(N1 + 1, N2) + (N2 + 1)P11(N1, N2 + 1)

−(N1 +N2)P11(N1, N2)]

b [(N2 + 1)P01(N1, N2 + 1) + (N1 + 1)P10(N1 + 1, N2)]

−2uP11(N1, N2). (4.87)

If we now apply the perturbative expansion in the unbinding parameter u, as we did

in section 4.2, the following expansion applies for the probabilities:

P00 = uP
(1)
00 + u2P

(2)
00 . . . (4.88)

Pi = P
(0)
i + uP

(1)
i . . . (4.89)

where i stands for 10, 01 or 11.

Following the general formulation presented in section 4.4, we can write the system’s

master equation as

LSP (n)
S (N1, N2) = −f (n)

S (N1, N2), (4.90)
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in which the linear operators are

L00P
(n)
00 = g

[
P

(n)
00 (N1 − 1, N2) + P

(n)
00 (N1, N2 − 1)− 2P (n)

00 (N1, N2)
]

+d

[
(N1 + 1)P (n)

00 (N1 + 1, N2) + (N2 + 1)P (n)
00 (N1, N2 + 1)

−(N1 +N2)P (n)
00 (N1, N2)

]
− b(N1 +N2)P (n)

00 (N1, N2) (4.91)

L01P
(n)
01 = g

[
P

(n)
01 (N1 − 1, N2)− P (n)

01 (N1, N2)
]

+d

[
(N1 + 1)P (n)

01 (N1 + 1, N2) + (N2 + 1)P (n)
01 (N1, N2 + 1)

−(N1 +N2)P (n)
01 (N1, N2)

]
− bN2P

(n)
01 (N1, N2) (4.92)

L11P
(n)
11 = d

[
(N1 + 1)P (n)

11 (N1 + 1, N2) + (N2 + 1)P (n)
11 (N1, N2 + 1)

−(N1 +N2)P (n)
11 (N1, N2)

]
, (4.93)

and the inhomogeneous terms are

f
(n)
00 (N1, N2) = P

(n−1)
01 (N1 − 1, N2) + P

(n−1)
10 (N1, N2 − 1) (4.94)

f
(n)
01 (N1, N2) = b(N1 + 1)P (n)

00 (N1 + 1, N2) + P
(n−1)
11 (N1, N2 − 1)− P (n−1)

01 (N1, N2)

(4.95)

f
(n)
11 (N1, N2) = b

[
(N2 + 1)P (n)

01 (N1, N2 + 1) + (N1 + 1)P (n)
10 (N1 + 1, N2)

]
−2P (n−1)

11 (N1, N2), (4.96)

plus an analogous term for P (n)
10 and f

(n)
10 .

We can see that the system still conserves the recursive structure that was so useful in

the study of the exclusive genetic switch. In this case, we may start by computing P (0)
01

(and P (0)
10 ), then P (0)

11 , which depends on these probabilities, then P (1)
00 and finally P (1)

01 ,

completing the cycle.

The next step consists of computing the Green functions for the system, as we have

done in section 4.5, that is, we must solve the equations:

LSQS(N1, N2|N0
1 , N

0
2 ) = −δN1,N0

1
δN2,N0

2
. (4.97)

As an illustration, we can see that the equation for S = (00). Taking the generating
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function of the Q00 we obtain:

a(z1)
∂K00

∂z1
+ a(z2)

∂K00

∂z2
+ g(z1 + z2 − 2)K00 = −zN

0
1

1 z
N0

2
2 (4.98)

which is the same as (4.37), and that means the Green function is the same as the one

obtained in section 4.5, that is, the one given by equation (4.46). The remaining Green

functions may be computed in an analogous way.

4.9.2 Self-regulating gene

In this case, we consider a simpler switch, but at the same time, we make a more realistic

model of it. In previous examples, the processes of transcription and translation (see

section 1.1) have been grouped into a single process that we have named generation.

We now consider these two processes separately.

The self-regulating gene has been studied in many cases [12, 97] and it is a fundamental

model to understand gene regulation, as E.Coli bacteria transcription factors follow this

dynamics in over 40% of the systems [94]. The analytical solution has been obtained in

[12] for this system when transcription and translation of the genetic information are

grouped into a single process.

However, it is also relevant to study the switch when transcription and translation are

separated, and we take into account the dynamics of the mRNA molecules. This system

is the one we study in this section (see figure 4.5). The expression of gene 1 is separated

explicitly into the steps of transcription and translation. This is done as described in

section 1.1 through molecules of mRNA. This means in this case we have to consider

not only the number of proteins but also the number of mRNA molecules. Also, the

generation of mRNA and the generation of proteins happen at different rates.

The reactions that take place in this system are the following:

� Binding of a protein to the switch at a rate b per protein, provided the switch is

free.

� Unbinding of the bound protein at a rate u, provided the switch is occupied.

� Generation of mRNA at a rate h, provided the switch is on.

� Translation of the mRNA into a protein at a rate g per mRNA molecule. This

process still happens even if the gene has been switched off.
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Figure 4.5 The self-regulating gene, considering the dynamics of both proteins and
mRNA molecules.

� Death of proteins at a rate d per protein.

� Death of mRNA at a rate d2 per mRNA molecule.

We shall give the name 0 to the state of the switch when there is no protein bound (the

switch is on), and 1 to the off-state, when there is a protein bound. Letting N be the

number of free proteins and M the number of mRNA molecules, we find the following

master equations:

∂P0(N,M)
∂t

= gM [P0(N − 1,M)− P0(N,M)] + h [P0(N,M − 1)− P0(N,M)]

d [(N + 1)P0(N + 1,M)−NP0(N,M)]

+d2 [(M + 1)P0(N,M + 1)−MP0(N,M)]

−bNP0(N,M) + uP1(N − 1,M) (4.99)
∂P1(N,M)

∂t
= gM [P1(N − 1,M)− P1(N,M)]

d [(N + 1)P1(N + 1,M)−NP1(N,M)]

+d2 [(M + 1)P1(N,M + 1)−MP1(N,M)]

+b(N + 1)P0(N + 1,M)− uP1(N,M). (4.100)
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In this case there are two Green functions, that can be written as

L0P
(n)
0 = gM

[
P

(n)
0 (N − 1,M)− P (n)

0 (N,M)
]

+ h
[
P

(n)
0 (N,M − 1)− P (n)

0 (N,M)
]

+d
[
(N + 1)P (n)

0 (N + 1,M)−NP (n)
0 (N,M)

]
+d2

[
(M + 1)P (n)

0 (N,M + 1)−MP
(n)
0 (N,M)

]
−bNP (n)

0 (N,M) (4.101)

L1P
(n)
1 = gM

[
P

(n)
1 (N − 1,M)− P (n)

1 (N,M)
]

+d
[
(N + 1)P (n)

1 (N + 1,M)−NP (n)
1 (N,M)

]
+d2

[
(M + 1)P (n)

1 (N,M + 1)−MP
(n)
1 (N,M)

]
, (4.102)

and the inhomogeneous terms are

f
(n)
0 = P

(n−1)
1 (N − 1,M) (4.103)

f
(n)
1 = −P (n−1)

1 (N,M) + b(N + 1,M)P (n)
0 (N + 1,M). (4.104)

Once again P
(0)
0 (N1, N2) = 0,∀N1, N2 and the first probability to compute is P 0

1 . The

rest of the cycle goes as:

P 0
1 → P 1

0 → P 1
1 → P 2

0 . . . (4.105)

At this point, one must use the Green functions method described in section 4.4.

In this section and in 4.9.1 we have shown how the dynamics of different switches can

be modelled through the techniques developed for the exclusive genetic switch. We

have seen how the perturbative structure of our calculation is applicable to the master

equations and how a hierarchy of recursive equations appears. Although time has not

permitted us to compute all the Green functions, we have shown that in principle the

approach we have developed is applicable to different types of genetic switches.
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Part III

Expanding waves of population
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Introduction

We have seen in section 1.2 that colonization of a spatially structured medium is

an important topic in biology, epidemiology or even anthropology. Phenomena as

important as the spreading of a disease in a territory or the evolution of it and its

resistance to an antibiotic can be modelled by using mathematical tools, such as Fisher-

KPP equations (section 2.6). All these problems are studied in the part III of this thesis.

The model scenario is an evolving population of bacteria, in which some of the

individuals may be resistant to a certain antibiotic [109]. The possible mutations in a

population allow bacteria to become resistant to this antibiotic or to increase its growth

rate in regions where the concentration of this product is higher. In a more general

way, a mutation may confer the individual a certain advantage.

However, instead of considering spontaneous mutation, we model the transformation

to the resistant type through contact with other individuals, i.e., the resistance to

an antiobiotic can be transferred from one bacterium to the others by horizontal

gene transfer [17, 110–115]. Horizontally transmitted traits are often carried in small

pieces of genetic material, called the plasmid, that makes individuals resistant to the

antibiotic, and that can be transferred among individuals of the same generation. This

is therefore different to the situation in which genetic information is tranferred to the

offspring cells. That is the reason is why it is called horizontal instead of vertical,

as the latter would refer to the vertical line among generations when the genealogical

evolution of the population is plotted.

Propagation of a genetic trait through horizontal gene transfer can be detrimental to

the population, for example if it is a disease [113, 116]. However, this mechanism can

be very beneficial in some scenarios, e.g. when horizontal gene transfer is used as a

way to control an invading population [114, 117, 118].

On the other hand, the plasmid can be lost, especially when the copy number in every

cell is very small. When reproduction takes place, the copies of the plasmid are shared

in a random way among the offspring bacteria. This means that all the copies of the

plasmid may end up in only one or two of them, making the rest susceptible to the

antibiotic again. This process, by which plasmid might be lost during replication, is

called gene excision and is modelled through a term that accounts for the transition

from resistant to susceptible bacteria.

More generally, the model we consider can be used to study not only susceptible and
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resistant bacteria, but all kind of populations in which individuals have a trait that

makes them different from the rest and obey a different dynamics due to this trait.

Our equations are related to models from a number of papers on coupled reaction-

diffusion systems [40, 41, 119–123], epidemiology [14] or several biophysical applications

[124, 125]. Some of the phenomena observed in our system are common to the ones

reported in these papers.

Here we study the general behaviour of an evolving population in which some of

the individuals have a trait. Both individuals with and without the trait experience

diffusion and logistic growth. The trait is passed from one type to the other when

an individual with the trait meets an individual without the trait, in a similar way to

horizontal gene transfer. At the same time, the trait can be lost at a constant rate,

analogously to the gene excision mechanism.

We first study the processes of exchange among the two populations. During chapters 5

and 6, we focus on the simultaneous propagation and interaction of the two populations,

which offers new and exciting results, that can be explained with help of Fisher-KPP

waves theory. As discussed in 1.2, we do not include a noise term in our equations,

even when it plays an important role in the evolution of the populations. Our model

is a first study of the problem that can be refined by taking fluctuations into account.

As both populations undergo logistic growth (typical of the Fisher-KPP equation),

our challenge is that of studying coupled Fisher-KPP equations. Although this is, as

far as we are aware, one the first studies of this topic, related sets of equations have

been studied by other researchers. For example, some works have considered similar

equations in a reaction-diffusion system [40, 41], where the coupling between equations

models the exchange mechanism between the two populations in a similar way to our

coupling terms.

Logistic growth is not normally introduced explicitly in both equations, and that seems

to be a fundamental difference with respect to our study [40, 41, 121, 124, 126–131].

For example in [14], the set of equations considered for a epidemiological study is the

same as ours, but both equations lack logistic growth. In other cases, a form of logistic

growth is considered but there are no exchange terms between the populations [28, 132].

In some cases, only one of the species is considered to diffuse in the system [129], but

normally the dynamics of both populations is taken into account. Nevertheless, the

speed for both populations is normally considered to be the same. This constitutes the

main difference with respect to our simulation. In some studies, most of them very

recent [133–135], two non-trivial speeds are observed. These papers approach more
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complex problems, with different diffusion coefficients, in a more mathematical way.

Our approach set the basis to understand the speed selection in Fisher-KPP equations,

and may be useful in order to understand the other models.

In chapter 7 we introduce a selection mechanism for the population, allowing only the

individuals with the trait to grow and expand in certain areas of the system. As a result,

individuals with no trait are unable to propagate in these areas. This results in new

population densities and speeds, and again, all of them can be explained analytically,

with perfect agreement with the simulations.

The structure of the part III is as follows. In chapter 5, we present a model for the

simultaneous propagation and interaction of an evolving population with individuals

that have a trait and individuals that do not. We present the simulation scheme that

we have used for this model plus the results from the simulations. We describe how

the populations evolve and how fast the trait spreads in the expanding population,

giving a heuristic explanation of the transitions in the speed of advance of the trait

which we observe. In chapter 6 we present an in-depth mathematical study of the

speed transitions plus an analysis of the population densities front, together with the

general requirements for the speed transitions and the application to more complex

cases. In chapter 7, we consider a population spreading in a spatially heterogeneous

fitness landscape. We also study the influence of saturation effects, that is, of changing

the maximum allowed population density in the system. And finally, we study the case

of a population containing individuals with and without the trait, which evolves in a

spatially heterogeneous landscape.
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Chapter 5

Phenomenological study of coupled

Fisher-KPP waves

5.1 Coupled Fisher-KPP equations

As presented in the introduction of this part, the problem we study in this chapter is

the one of a global population in which two types of individuals exist: those carrying

a certain trait, and those not carrying it. We will call the densities of these two

subpopulations NA and NB, respectively. The individuals in the system undergo

diffusion, logistic growth and can also change their type, from trait-carrying to not

trait-carrying, and vice versa.

Diffusion is modelled by the usual diffusion or heat equation [84], where a first derivative

in time
∂Ni

∂t
is equated with a second derivative in space

∂2Ni

∂x2
, where i = A,B for

trait and no trait population densities, respectively.

The Fisher-KPP equation (see section 2.6) is built from the diffusion equation by adding

a growth term, in the general form αNi(K − Ni), where K is the maximum in the

population density, also called carrying capacity, and α is the growth rate. The purpose

of this term is to include growth in the from NiK where the density is small (Ni �
K) but to prevent further growth when the density is equal to the carrying capacity,

therefore limiting the size of the system. For a single species, the Fisher-KPP equation

(section 2.6) can then be written as:

∂Ni

∂t
= D

∂2Ni

∂x2
+ αNi(K −Ni). (5.1)
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For our model we shall use two Fisher-KPP equations for the trait and the non-trait

populations. Apart from the terms of logistic growth and diffusion, there are two

additional coupling terms:

Trait:
∂NA

∂t
= D

∂2NA

∂x2
+ αNA (K − (NA +NB)) + γNBNA − βNA (5.2)

No trait:
∂NB

∂t
= D

∂2NB

∂x2
+ αNB (K − (NA +NB))− γNBNA + βNA. (5.3)

The first coupling term γNANB, analogous to the horizontal gene transfer mentioned

in the introduction of part III, accounts for the transition from non trait-carrying

individual to trait-carrying individual. As the trait is passed along when different

types of individuals meet, the term representing this process must be proportional to

both concentrations. We shall call this coefficient of proportionality γ.

The second coupling term in (5.2-5.3) accounts for the transition from trait-carrying

individual to non trait-carrying individual, and it will be assumed to be proportional

to the density of the trait-carrying population, since no contact or interaction is needed

for the trait to be lost. The rate at which this process happens is called β.

Material from this chapter, along with some content of the introduction of part III

and sections 1.2 and 2.6, have been submitted for publication in reference [2]. In this

first chapter about coupled Fisher-KPP waves, we will start by presenting the general

scheme for the simulations in section 5.2. In section 5.4 we discuss the situation in

which a population of trait-carrying individuals invades an already saturated space

with non trait-carrying individuals, and we study the speed of the propagation of the

population density waves formed in the system. In section 5.5 we present the situation

of a trait-carrying and non trait-carrying population expanding together, where we find

new results about selection of speeds in Fisher-KPP waves, and also transitions among

different speeds. We also provide a simple analytical explanation for these transitions.

In section 5.6 we present a variation of the experiment simulated in the previous section,

where new speed values and speed transitions arise.

5.2 Simulation scheme

We need to simulate equations (5.2, 5.3) in a simple yet effective way. This section

follows the exposition of Numerical Recipes [64], along with its recommendations and

different methods.

Our system (5.2, 5.3) consists of two partial differential equations, and we will integrate
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it numerically using a finite difference scheme [64]. This means that the system is

described as a lattice of discrete points in space, with the index i = −N,−N + 1, ....N

marking the different positions. In addition, time will be discretized with an index

l = 0, ...nt, where nt is the number of time iterations, that will be introduced in the

program. The actual position and time will be obtained as i∆x and l∆t, respectively,

∆x and ∆t being the difference in position and time between two consecutive points.

If we approximate the value of a function f at the point x+ ∆x by a Taylor expansion,

we may write [64]:

f(x+ ∆x) = f(x) + f ′(x)∆x+
f ′′(x)

2!
(∆x)2 . . . (5.4)

If we now keep only the first order, assuming ∆x is small enough to keep an appropriate

precision in our approximation, we can write the first derivative as:

f ′(x) =
f(x+ ∆x)− f(x)

∆x
. (5.5)

Now, computing the second derivative as f ′
(
x+

∆x
2

)
− f ′

(
x− ∆x

2

)
, we obtain:

f ′′(x) =
f(x+ ∆x) + f(x−∆x)− 2f(x)

(∆x)2
. (5.6)

These are standard results [64] that we will use to compute the derivatives in our

differential equations.

5.2.1 Stability of the equations

Before establishing the boundary conditions for the simulation, it is necessary to study

the possible stationary solutions to equations (5.2)-(5.3). The stationary densities

can be computed by assuming no evolution in time (stationary) and no diffusion

(homogeneous) in these equations. For this study, it is more convenient to consider

the total population NT = NA + NB instead of NB. The equation for NT can be

obtained by summing (5.2)-(5.3), that is:

∂NT

∂t
= D

∂2NT

∂x2
+ αNT (K −NT ) . (5.7)

Working with equations (5.2),(5.7), and assuming stationary homogeneous solutions,
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we obtain:

0 = αN∗A (K −N∗T ) + γN∗A(N∗T −N∗A)− βN∗A (5.8)

0 = αN∗T (K −N∗T ), (5.9)

where the superscript ∗ denotes stationary state. From (5.9), we get either N∗T = 0 (that

is, N∗A = N∗B = 0, as densities are assumed to be positive) or N∗T = K. Substituting

this last condition in (5.8), we arrive at:

−γN∗A(N∗T −N∗A) + βN∗A = 0,→ N∗A = 0, or N∗A = K − β

γ
. (5.10)

The three possible stationary homogeneous solutions are:

(N∗T , N
∗
A) = (0, 0) (N∗T , N

∗
A) = (K, 0) (N∗T , N

∗
A) =

(
K,K − β

γ

)
. (5.11)

In order to predict which one of the solutions will appear in the simulations, we must

study their stability.

To perform the stability analysis, we consider equations (5.2, 5.7) without diffusion (as

diffusion does not affect the number of individuals of the system, it just spreads them)

and considering a perturbation to the stationary solutions, such that:

NT −N∗T = εT , NA −N∗A = εA (5.12)

where both εT and εA are close to zero.

For the first solution (N∗T , N
∗
A) = (0, 0), we obtain:

∂εT
∂t

= αKεT +O(ε2) (5.13)

∂εA
∂t

= αKεA − βεA +O(ε2) (5.14)

where O(ε2) is the general label for terms that include ε2A, ε2T and εAεT .

To study the stability of our solutions we consider the system (5.2,5.7) written in

matricial form, that is (
∂εT
∂t
∂εA
∂t

)
= M

(
εT

εA

)
(5.15)

where M is the stability matrix, that in our first example is given by the coefficients in

equations (5.13,5.14).
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A system of equations is considered stable if M has two negative eigenvalues. It has a

saddle point if only one of the eigenvalues is negative. Finally, it is considered unstable

if both eigenvalues are positive. This comes from the fact that negative eigenvalues

reduce the effect of the perturbation, while positive eigenvalues make it grow. For our

equations, the eigenvalues will correspond simply to M11 and M22, as we are lucky

enough to find M12 = 0 in all cases.

In equations (5.13) and (5.14), the eigenvalues are αK (always positive) and αK − β.

This first fixed point must be unstable, since negative densities would be unphysical.

Therefore we will assume β < αK from now on. This is the first condition for our

parameters.

For the second solution (N∗T , N
∗
A) = (K, 0) we have:

∂εT
∂t

= −αKεT +O(ε2) (5.16)

∂εA
∂t

= −βεA + γKεA +O(ε2). (5.17)

In this case, the eigenvalue coming from (5.16) is positive, while that coming from

(5.17) is negative as long as β < γK. We will assume this condition holds in order to

observe a non-zero value for NA, that is, with this assumption the solution (K, 0) is a

saddle point.

Finally, for (N∗T , N
∗
A) = (K,K − β/γ), we shall write for NA the whole substitution

εT = NT −N∗T and εA = NA −N∗A to observe the cancellation of different terms:

∂εT
∂t

= −αKεT +O(ε2) (5.18)

∂εA
∂t

= −α
(
K − β

γ
+ εA

)
εT − β

(
K − β

γ
+ εA

)
+γ
(
K − β

γ
+ εA

)(
K + εT −K +

β

γ
− εA

)
= −(α− γ)

(
K − β

γ

)
εT − (γK − β)εA +O(ε2). (5.19)

Taking into account our previous assumptions that γK > β, (5.18) and (5.19) are

stable.

There is a final condition on the parameters that will come from our analysis of

equations later (see 5.5.2): α > γ. This means that all our conditions on the parameters

may be summarized as:

αK > γK > β. (5.20)
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5.2.2 Boundary conditions

The concentrations NA and NB (called A and B in this section for the sake of simplicity)

will then be defined as arrays Ali and Bl
i that take different values at the lattice

point i and the instant of time l. The boundary conditions that are chosen for both

concentrations are:

Al−N = N∗A Bl
−N = N∗B (5.21)

AlN = 0 Bl
N = 0 (5.22)

where N∗A and N∗B have been computed above.

Preliminary simulations of (5.2, 5.3) revealed that the populations evolve as waves

whose amplitudes are determined by the stationary state densities of the system. This

means that these amplitudes propagate to the right hand side of the system, eventually

forming flat profiles after a long time, once the front of the waves have passed.

These considerations are important in order to establish the boundary conditions at

the leftmost part of the system (equation 5.21). It is convenient to set the boundary

conditions at the left hand side to the steady state densities. If we do not do so, then

the boundary effects will be much more noticeable, since the flats profile will suddenly

increase or decrease to match the boundary conditions.

The second boundary condition (5.22) comes from the fact that both populations start

at the left hand region of the system and the concentration in the rest of the system is

0. Although we work with a finite lattice, we are trying to simulate the propagation of

waves in a infinite system, so this means we make sure none of the populations reaches

the right hand side of the system, that is, there is a certain distance between the tip of

the waves and the boundary. Having said that, our experience tells us that if one of the

populations does reach the boundary, the behaviour of the other remains unchanged.

Another possibility is to set no flux boundary conditions [136], in contrast to the fixed

boundary conditions (5.21), (5.22). In this case, we set:

Al−N = Al−N+1 Bl
−N = Bl

−N+1 (5.23)

AlN = AlN−1 Bl
N = Bl

N−1. (5.24)

The concentrations at the boundary are updated by making the concentrations equal

to their neighbours’ value, once the points not in the boundary have been updated.

We have not used these boundary conditions as often as the previous ones, but the
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simulations performed with them do not show different results from the ones performed

with fixed boundary conditions.

5.2.3 First simulation scheme: fully explicit method

Since our system is a reaction-diffusion one, it seems reasonable to try a simulation

scheme similar to that used for a diffusion problem, which is a standard partial differ-

ential equation. In this study of the simulation schemes, following the considerations

made by [64], we start with the simplest diffusion problem, that is:

∂u

∂t
= D

∂2u

∂x2
. (5.25)

Since the time derivative is of first order and the position derivative is of second order,

the discretization according to finite differences can be written as follows [64]:

∂u

∂t
=

un+1
i − uni

∆t
(5.26)

∂2u

∂x2
=

uni+1 + uni−1 − 2uni
(∆x)2

. (5.27)

This equation can be easily treated, since un+1
i depends linearly on unj , therefore all

the concentrations can be updated by a simple operation that uses the previous values.

This method is called fully explicit.

However, there are some restrictions with respect to the values ∆t and ∆x that can be

used [64]. To keep the algorithm stable, we must maintain the stability condition:

2D∆t
(∆x)2

≤ 1. (5.28)

For our system, the equations (5.2),(5.3) for the trait and non-trait populations in the

fully explicit method can be written as:

Bn+1
i −Bn

i

∆t
=

Bn
i+1 +Bn

i−1 − 2Bn
i

∆x2
+ αBn

i (K −Bn
i −Ani )− γAni Bn

i + βAin

(5.29)
An+1
i −Ani

∆t
=

Ani+1 +Ani−1 − 2Ani
∆x2

+ αAni (K −Bn
i −Ani ) + γAni B

n
i − βAin.

(5.30)
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This algorithm is reasonably fast in practice and it does provide us with very useful

results. It is enough, in principle, to produce all the results that we will discuss in

section 5.5. Nevertheless, in order to be more thorough, we also try another more

sophisticated method to simulate the equations.

The inclusion of logistic growth and other terms in the equations pose some stability

constraints, that is, the ∆t we choose must be small enough to keep the algorithm

stable. However, the condition for this stability is not as easy to write analytically as

the one for a simple diffusion problem, since it also involves K, α, β and γ. This means

that we have to be careful with the simulations and check their stability by hand, as

we do not know beforehand which values make it stable.

5.2.4 Refined simulation scheme: the split operator method

The method we now introduce is called the split operator method or operator splitting

[64], and consists of separating the two type of processes of the operator, that is,

diffusion happens first, and the rest of the processes, i.e. growth and population

coupling, happen later. First, to integrate the diffusion operator we may use the Crank-

Nicolson method [64] combined with a linear equations system algorithm. This method

is a refined way to model diffusion, as it is stable for any size of ∆t and provides more

accurate results than the fully explicit method [64]. The discretization under this

scheme for our diffusion equations is written as:

An+1
i −Ani

∆t
=
D

2

[
Ani+1 +Ani−1 − 2Ani +An+1

i+1 +An+1
i−1 − 2An+1

i

(∆x)2

]
, (5.31)

and in this case we are required to solve a system of linear equations to find the

concentrations An+1
i . Finally, with the concentration updated for the different points

of the lattice after diffusion, we let the system evolve for the same amount of time ∆t,

using a fully explicit method for the three remaining terms, that is, the growth and the

exchange processes.

The reason why we do not use a Crank-Nicolson scheme for the whole problem is the

non-linearity of the reaction terms. If we used this method, we would also require

to solve a system of non-linear equations, which involves a lot of computation time

(the same happens with the so-called fully implicit simulation scheme [64]). Therefore,

the split operator method is the best compromise between accuracy and speed, and it

provides stable results for a reasonably small ∆t. It is also to be remarked that this

method gives the same speed results for the trait and non-trait population as the fully
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explicit method.

Another similar method to the split operator one is to compute both processes at the

same time but only evaluate the diffusion term in a Crank-Nicolson way, while the

others are evaluated in a fully explicit way. We checked these two methods yield the

same results.

Following the split operator scheme, the structure of the program we use is the following:

1. The values of the parameters are set and the initial concentrations of the

populations are established.

2. Populations undergo diffusion during ∆t. This process is simulated with a Crank-

Nicolson scheme. At this point a system of linear equations will be solved by using

the subroutine Tridag from [64].

3. Starting from the state of the system reached at the end of step 2, populations

undergo logistic growth, horizontal gene transfer and gene excision during ∆t.

These processes are modelled with a fully explicit scheme.

4. The points at which some reference concentrations exist are recorded.

5. Back to 2.

The populations profiles are written in a file every certain number of iterations. The

points at which reference concentrations e.g K, 0.5K are reached are recorded. This

keeps track of different amplitudes of the wave and of the motion of it. That way, we can

compute the speed (every certain number of iterations) as the difference in position of

these points over the time elapsed. Since the evolution in the lattice is discrete, several

time steps are needed in order to find a continuous speed. The less often we measure

the speed, the softer the curve is, but the less information we have.

It is important to measure the speed at different points in the wave profile because this

seems to be the key to fully understand our problem. In a standard propagating wave

in a stationary regime, the speed of all the parts of the profile should be the same and

the choice should not matter. However, at some point, the waves we will observe will

not be standard waves strictly speaking, as it will turn out that different parts of the

profile are moving at different speeds.

Throughout the chapters of this part of the thesis, we use double precision quantities in

all the simulations. This gives our simulation a great accuracy, so the error is normally
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not plotted because it will be insignificant and not visible in a figure. One of the

sources of noise in our simulations is the machine precision with which we compute the

population densities, but the rounding error caused by it is considered to be negligible

compared to the final results.

Another source of error comes from the finite discretization of time and position. To

deal with this difficulty, we performed preliminary simulations in order to identify the

critical values of ∆x, ∆t at which the results of the simulation converged to a fixed

value - i.e. we find the point at which decreasing the values of ∆x and ∆t further

does not change significantly the obtained results. Therefore we may assume that the

influence of the discretization is small, and that setting ∆x and ∆t smaller than the

critical values, the error in our results is also very small. Finally, as we have stated

before, a simulation in which noise is explicitly included in the equations is beyond the

scope of this thesis.

5.3 Clarification of speeds and notation

Before presenting the results from our simulations, we name and explain the different

speeds that appear in them. It is important to notice that we perform two types

of experiments. In section 5.4, we start with a small trait population NA in an

environment that is already full of non-trait individuals NB. In this situation, the

total population NT = NA +NB does not move, as all the space is already saturated.

The trait population moves inside the total population at a speed vs (s for saturated

experiment). The speed vs is the same for all the regions of the trait population, from

the front to the tip. An illustration of this experiment is shown in figure 5.1. Real

pictures from simulations will be shown later.

In section 5.5 we start with a small concentrations for both the trait and the non-

trait population. The non-trait population (and therefore, the total population) moves

faster than the trait population at the typical Fisher-KPP wave speed u = 2
√
αKD.

This speed is again the same for all amplitudes in the total wave. However, the trait

population speed depends on the region where this is measured. First, the front moves

at speed vf (f for faster than the speed in the previous experiment vs). Second, the

trait population presents a kink at the level of the total population, and this kink

moves together with the total population at the speed u. Finally, the tip moves at an

intermediate speed vtip. Therefore, the relation of speeds is:

vs < vf < vtip < u (5.32)
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Figure 5.1 In the invasion of an existing population, the total population does not move,
as it fills the whole space. The trait population invades the total population
at a constant speed vs, that is the same for every part of the wave.

Figure 5.2 In the invasion of an expanding population both the trait and the total
population move. The total population moves at the standar Fisher-KPP
wave speed u = 2

√
αKD. The trait population speed depends on the region

of the wave: its front moves at vf , the kink moves with the total population
at u and the tip moves at vtip, such that vf < vtip < u.
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Speed Expression Type Region of the wave moving at this speed
u 2

√
DαK Total Whole wave, during the invasion of an expanding population

vtip 2
√
D(αK − β) Trait Tip, during the invasion of an expanding population

vf See (5.41) Trait Front, during the invasion of an expanding population
vs 2

√
D(γK − β) Trait Whole wave, during the invasion of an existing population

Table 5.1 Expression for different speeds. The column Type indicates which population
(trait or total) moves at a certain speed. The column Region of the wave
moving at this speed indicates which part of the mentioned population moves
at that speed. We must remember that in the invasion of an expanding
population, different regions of the trait population move at different speeds.

An illustration of this experiment is shown in figure 5.2. A summary of the speed values

and the region of the wave that moves at those speeds is shown in table 5.1.

5.4 Invasion of a trait into an existing population

As an especially simple case to study, we simulate equations (5.2,5.3) when the whole

space is entirely occupied by non trait-carrying individuals and a small amount of trait-

carrying individuals start at the left hand side (xmin) of the system (see figure 5.3).

This type of initial condition has been extensively used before in simulations of coupled

waves [41, 114, 126, 137], and it allows us to study some features of the system in a

simplified way, as only the trait population is moving.

After a transitory regime in which the wave is formed, the trait population advances at

a constant speed vs, smaller than the usual Fisher-KPP wave speed u (figure 5.4). It

is important to remark that the shape of the wave is maintained and as a consequence

the speed at every point of the wavefront is the same (figure 5.5).

This first scenario we have studied in the simulations is easily treatable analytically as

long as we use the fact that the whole population is saturated and therefore there is no

logistic growth for any of the populations. Since the non trait-carrying population is

not moving, we only need to study the trait one. In this case, the equation of the trait

population remains as:

∂NA

∂t
= D

∂2NA

∂x2
+ γNA

(
K − β

γ
−NA

)
(5.33)

whose solution is a standard Fisher-KPP wave with amplitude N∗A = K − β
γ and a

prediction for the speed is therefore

vs = 2
√
D(γK − β). (5.34)
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Figure 5.3 In the first simulation, the initial condition is a small concentration of
trait individuals in a completely saturated environment of non trait-carrying
individuals. Values of the parameters are given by equation (5.36).

t/100000

x/
10

00
0 v

s

0

4

1
Figure 5.4 The trait population moves at a constant speed vs, which is translated into

a proportional advance of the front with time. The points correpond to
simulation data and the line corresponds to the theoretical prediction, given
by (5.34).
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Figure 5.5 The shape of the wavefront is maintained as the propagation at vs takes

place. The snapshots correspond to different moments at the time region
represented by the square in figure 5.4.

This prediction is compared with results from the simulations in figure 5.4. The

agreement is very good also when different parameters are changed. This result has

also been obtained in previous studies of coupled (non-Fisher-KPP) waves [41].

5.5 Invasion of the trait into an expanding population

We now turn to the problem of the simultaneous propagation of the trait-carrying and

non trait-carrying populations. We set initial concentrations of both individuals to

their stationary-state levels, from the left boundary of the system to a point nearby

(see figure 5.6).

From now on, we will refer to the region where the change in the density is more

noticeable as the front of the wave. That is, the front is where the density changes

from a level close to saturation to a level close to zero. It is to be noted that, for the

usual parameters of the simulations, the fronts of both the trait and the total population

are very well defined, that is, they are quite steep, and the change from maximal to

close to zero density happens over a small region.

As observed in the simulations (figures 5.7, 5.8), the total population expands as a wave

moving with speed u and the trait population spreads later as a secondary wave, or
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Figure 5.6 In this simulation, both populations are set in the leftmost part of the system.
Values of the parameters are given by equation (5.36).

“trait wave”. At early times, the step initial conditions relax into a smoother profile.

As this happens, the tips of both waves diffuse much faster than the fronts, which are

basically changing shape and barely moving. This means the tips gain advantage with

respect to the fronts. Once the profiles have relaxed into its travelling form, the speeds

of the fronts also find their stationary value, that we discuss below.

After a bit of time, the trait wave spreads behind the wave of expansion of the

total population. The reason for this resides in the exchange terms. At the edge

of the population, the concentration of both species is small, e.g., both populations

are proportional to ε, with ε → 0. However, the transition rate from trait to non-

trait individuals is proportional to the trait population density only (∼ ε), while

the transition rate of the opposite reaction is proportional to both densities (∼ ε2).

That means that the exchange processes shift the density in favour of the non-trait

population.

The propagation of the trait is driven by direct contact among individuals who have and

do not have the trait. Therefore one could think that the speed for the trait population

is given by vs (as in the previous scenario), as the non-trait population is far in front of

the trait population. However we observe in our simulations that for very long times,

the speed changes to this value vs (figure 5.7). However, at intermediate times, the

speed of the trait wave takes a certain value vf greater than vs (figure 5.7). We must

thus understand which are the mechanisms underlying the expansion that result in this
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Figure 5.7 The trait population advances at a constant speed vf for a certain amount

of time, and suddenly the speeds changes to vs. The points correpond to
simulation data. The first line corresponds to a linear fit whose slope vf we
will determine later. The second line is the theoretical prediction given by
(5.34).
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Figure 5.8 The trait front moves vf , but we shall see that this speed is not constant on

the whole wave. The snapshots correspond to different moments at the time
region represented by the square in figure 5.7.
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speed vf for the trait population.

All these phenomena have been observed for a wide range of values for the parameters.

However, as we have mentioned in subsection 5.2.1 the condition

αK > γK > β (5.35)

must be satisfied. The first inequality will be justified in 5.5.2. For most of our

simulations we have used a standard set of values that seemed appropriate to observe

these phenomena clearly in the graphs, that is, the changes in the speeds and the values

of the densities were easliy identifiable in the figures. These values are:

D = 1
[
l2

t

]
, α = 1

[
t−1N−1

]
, K = 1 [N ] , γ = 0.1

[
t−1N−1

]
β = 0.08

[
t−1
]

(5.36)

The units of them depend on the units selected for the space and time, but the

dimensionality has been written in brackets, with l representing length, N number

of proteins, and t time. Unless we state otherwise, the graphs and results we present

are for this set of values.

5.5.1 Features of the trait wave

The front of the trait wave moves at vf at intermediate times. However, that does not

mean the whole wave is moving at that speed. Actually, as we examine the tip of the

wave it moves at a different speed. This forces us to study the propagation of every

region of the wave in order to determine the speed of these regions and to understand

the global behaviour of the propagation. Figure 5.9 shows different parts of the profile

NA(x, t) at an intermediate time t, where we can observe three main features.

1. The front

The front of the trait wave moves at speed vf . This speed will be determined in

subsection 5.5.2.

2. The kink

We must not forget that the expansions of the trait population and the non-trait

population occur simultaneously. The main effect of the non-trait wave on the trait

one is a small “kink” that appears at the level of the front of the non-trait population

(Figure 5.9b). This kink observed in the simulations is the effect of the fast decrease

of the non-trait population density at the non-trait front. The kink and the non-trait
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Figure 5.9 (a) Expansion of a trait and non-trait population in an initially empty
system. (b) Zommed picture of the system close in the kink area. Notice
the different scale in the vertical axis. The full curve corresponds to the tip
of the trait wave, while the dotted curve corresponds to the non-trait front.
(c) Zoomed picture of the system in the tip area (in front of the kink). The
solid curve corresponds to the trait wave and the dashed one to the non-
trait wave. The densities are plotted on a logarithmic scale. Values of the
parameters are given by equation (5.36).

front therefore travel together at the speed of the non-trait wave, that is, u = 2
√
αDK.

3. The tip

The tip of the trait wave is the region with smallest amplitudes and therefore the limits

are somehow arbitrary. We shall refer to the tip as the region in front of the kink, and

therefore in front of the non-trait front. This is certainly a meaningful choice since, as

we will see below, all the points in this region move at the speed vtip, that is found

to be faster than the speed of the front vf . In order to track this speed we will select

the position at which NA = 10−323, which is the limit imposed by our double precision

simulations.

124



To put it all in a nutshell, the expansion of the trait population happens in the following

way: the kink in the middle travels at the faster speed possible u, the tip and everything

that is in front of the kink travel at vtip (vtip < u), while the front and everything that

lies behind the kink travels at vf (vf < vtip < u). Basically, the kink, which travels

at the fastest of the speeds, separates two regimes with different speeds that will be

studied and computed in the next section. It is important to state that the speed

depends on the amplitude or density where it is measured, that is, it is not constant in

the whole trait wave, as happened in the non-trait wave.

In order to determine vtip we must consider that both population densities are small at

this region, that is NA, NB � K, and also, as the non-trait wave travels in front of the

trait wave, NA � NT . This means that equation (5.2) can be linearized, by neglecting

terms that include N2
A and NANT , obtaining:

∂NA

∂t
= D

∂2NA

∂x2
+NA(αK − β). (5.37)

As the amplitude of NA(x) is small, we propose an exponentially decaying ansatz

NA(x) ∼ exp [−λ2(x− vtipt)], that moves at the speed vtip and where λ2 = vtip/(2D).

As explained before (see section 2.6), we substitute the ansatz into equation (5.37) to

obtain a value for the speed vtip = 2
√
D(αK − β). When this analytical prediction is

compared with simulation results, we obtain excellent agreement (figure 5.10). Table

5.1 provides a summary of all the speeds in the trait and non-trait wave. Let us recall

that vtip > vf > vs.

5.5.2 Calculation of the speed vf

The speed vf is determined by the interaction between the trait and the non-trait

population. The key point of this interaction is the presence of the kink, that separates

different regimes in the trait wave, and the kink is indeed the point we must use as

a reference to compute the speed vf . The kink moves at speed u, and therefore the

position we must use as a reference is x∗ = ut.

We first define a coordinate zR = x − ut (figure 5.9) that accounts for the distance

in front of the kink, and which will be useful to describe the region of the wave that

moves at vtip. From our previous analysis of equation (5.37), the population density

at the tip of the trait wave can be written as NA(x) ∼ exp [−vtip(x− vtipt)/(2D)]. For

our new coordinate zR, this expression takes the form NA(zR, t) ∼ exp[−vtip(zR + (u−
vtip)t)/(2D)].
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Figure 5.10 Comparison of theoretical prediction for vtip with simulation results. The
parameters are changed, one at a time, starting from the reference given
by (5.36). The analytical predictions from table 1 are plotted as solid lines,
and the points are simulation results. In the top right panel, note that the
differences between the simulation data and the theoretical prediction are
very small, and only look significant because of the very small scale used.

Simulations have shown that the region behind the kink moves at a certain vf . In

order to perform a similar analysis to the one in front of the kink, we must assume that

the concentration NA close to the kink is small. This has been checked in simulations

for a wide range of values. Due to this condition, it is then appropriate to write

an exponential increase of the density behind the kink. Therefore one must write

NA(zL, t) ∼ exp[−at+ bzL], where zL = ut− x is the distance from the kink to a given

point x behind it, and a are b are parameters to be determined. This expression for the

profile also allows one to write the speed as vf = u− a/b. Because of their dimensions

of t−1 and x−1 we will call a and b frequency and wavenumber, respectively.

The trait density function is continuous at every point, in particular at the kink.

This means that our asymptotic expressions must coincide at zR = zL = 0.
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Imposing this condition, only the temporal exponentials are left, and as a result

a = vtip(u−vtip)/(2D) = 2
√
αK(αK − β)−2(αK−β). The wavenumber b is obtained

by linearizing equation (5.2) . We may neglect again quadratic terms in N2
A and assume

that, as we are behind the non-trait front, the total density is close to the carrying

capacity (NT ≈ K). Then:

∂NA

∂t
= D

∂2NA

∂x2
+NA(γK − β). (5.38)

If this equation represented a single population NA, then the usual Fisher-KPP analysis

(section 2.6) would tell us that it admits wave solutions with speeds ≥ vs. However,

this is the equation of the trait population behind the kink, and what happens in front

of the kink still influences this region. We must then carry on with our exponential

ansatz NA(zL, t) and substitute into equation (5.38). This allows us to compute the

wavenumber b as a function of the frequency a and other known parameters of the

model:

b =
u±

√
(u)2 − 4D(a+ γK − β)

2D
. (5.39)

To obtain a physical solution for b, the inside of the root must be positive. Rearranging,

this condition can be written as:

(α− γ)K > a− β. (5.40)

We shall see in the next chapter (equation (6.58)) that β > a. This means that it is

sufficient for us to assume α > γ, which is a stronger condition than (5.40). This is the

second condition that we had anticipated in (5.35). It must be said that this condition

is sufficient and not necessary, i.e., there are some values of the parameters with γ > α

that still provide a positive sign for the inside of the root. However, the necessary

condition is much more complex to write and to keep track of, and it is very similar to

the simpler α > γ. This is the reason why our simulations fulfil this simpler condition.

Also, equation (5.39) gives us two solutions for the wavenumber b. However, the positive

sign must be discarded, as it provides a speed larger than vtip. Keeping the minus sign

solution, and rewriting a and b in terms of the original parameters of the model, our

expression for vf = u− a/b takes the form:

vf = 2
√
αDK −

2
√
D
(
β − αK +

√
αK(αK − β)

)
√
αK −

√
(3α− γ)K − β − 2

√
αK(αK − β)

. (5.41)
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Let us remark on the importance of equation (5.41). This expression predicts

analytically the speed of the trait front for the case when both the trait and non-trait

populations are expanding. The method to obtain it includes not only Fisher-KPP

wave techniques but also analysis of the waves at different densities. The relevance of

this formula is confirmed when we obtain very good agreement with simulation results

(figure 5.11).

Eq. (5.41) is a key result of this chapter. It provides an analytical prediction for

the speed of a trait wave in an expanding population. This constitutes a new speed

selection principle for coupled F-KPP waves. Figure 5.11 shows that the prediction

(5.41) is indeed in excellent agreement with our simulation results.

0.2 0.4 0.6 0.8 1
γ

0

0.5

1

1.5

2

v f

u
v

s

0 0.02 0.04 0.06 0.08 0.1
β

0

0.4

0.8

1.2

1.6

2.0

v f
u
v

s

2 4 6 8 10
D,α

0.2

0.4

0.6

0.8

1

1.2

1.4

v f

D
α

2 4 6 8 10
K

1

2

3

4

5

6

v f

u
v

s

Figure 5.11 Comparison of theoretical prediction for vf with simulation results. The
parameters are changed, one at a time, starting from the reference given
by (5.36). The analytical predictions from equation (5.41) are plotted as
solid lines, and the points are simulation results. The blue lines correspond
(except on the bottom left panel) to the speed u of the non-trait population,
while the purple lines correpond to the speed vs of the trait population in
the invasion of an existing population (see 5.4).

As can be seen from (5.41), all five parameters D,K,α, β, γ determine vf . For the case
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of the expansion of the trait in an existing population (section 5.5) α was missing in the

expression of vs (equation 5.34), as the logistic growth did not play a role in that case.

In this new scenario both the growth of the populations and the interactions between

them play an important role in determining the speed of the trait front.

To understand equation 5.41 better, we may consider some limits of this expression:

� If β → 0 then the trait is never lost, so A type individuals cannot become B type

again and the trait propagates over the whole population. This might be the

scenario in which some kind of beneficial technology is transmitted as a trait and

is never lost once is gained [17]. Taking the limit β → 0 in 5.41, we obtain vf → u.

Moreover, we also obtain vtip → u. This means we have a single speed for the

trait wave. This makes sense because the density of the non-trait population has

the value N∗B =
β

γ
. Therefore, for β → 0, the trait population expands without

interacting with another population, and naturally its speed is given simply by

u.

� If β � αK (and γK is somewhere between these two values), we may expand

(5.41) up to first order in β/αK. In that case, we obtain:

vf
u
' 1− β

2γK

[
1 +

√
1− γ

α

]
(5.42)

In this case, the speed is more or less close to u depending on the value of γK

with respect to β and αK. This limit corresponds to the situation where the

logistic growth is much more relevant than the trait loss. Therefore, in order to

find the speed of the trait propagation, we also need to know the rate at which

the trait is transmitted. Note that if β � γK, then we go back to the first limit.

While if γK � αK, then this limit coincides with the one presented below.

� αK →∞ is the limit where logistic growth is much more relevant than the other

processes. In this case, vs, vtip, u diverge as
√
K, and vf → u

(
1− β

γK

)
. This

means that the logistic growth rate αK plays a fundamental role in the system,

as it makes all the speeds diverge with it.

� If β ' γK ' αK, then vtip, vf , vs → 0. In this case the trait population density

is close to zero. Let us recall that the stationary density for it is given by N∗A =

K − β

γ
. Therefore, if β ' γK, the speed of every region of the trait wave must

tend to zero, as there will be no propagation of the trait wave in this scenario.

As we stated in (5.20), we always impose γK > β, and the present limit breaks

that condition.
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It is worth noting that in order for our formula (5.41) to give a zero value for vf
we also need the condition β ' αK on top of β ' γK. If we only have the latter

condition, (5.41) still provides a non-zero value for vf . Nonetheless, this value

will correspond to the propagation of a wave with zero density (as β ' γK), and

it would not have a physical meaning.

Expresion (5.41) can also be written in terms of speeds u, vtip and vs, rather than in

terms of the parameters of the model. In this case:

vf = u− vtip(u− vtip)

u−
√

(u− vtip)2 + v2
tip − v2

s

, (5.43)

where the interaction of the population tips is reflected in the u − vtip terms, and the

interaction of the trait kink with the non-trait front is modelled through the presence

of vs.

5.5.3 Speed transition

As can be seen in figure 5.7, the trait front changes its speed from vf to vs at a certain

point. Similar changes in speed have been observed before [14] due to the dynamics of

the system. In our case, the reason behind this transition is that the propagation of

the two populations decouples because of the difference in speed.

A thorough study of the simulations show that the speed transition takes place when

the non-trait front overcomes the trait tip (being the tip the minimum density that can

be resolved in our simulations). At this point, the trait wave only “sees” an environment

full of non-trait individuals, as it did in the case of the expansion inside an existing

population. Therefore, what happens in front of the non-trait front does not affect the

trait population anymore. The speed for the trait expansion becomes then vs, as was

computed in Eq. (5.34). The kink itself disappears when this happens, and the wave

has a convex profile all the way. As a consequence, the profile of the wave does not

change any more, i.e., the population advances with a single speed.

We could describe the whole scenario in the following way: as long as the total

population front is in front of the trait population, the speed for the latter is vs.

However, as long as the tip of the trait population is in front of the total population

front, this region of the profile moves at vtip and, as a result, pulls the rest of the

function to a larger speed than vs, that is, vf .

130



5.6 Invasion of a partially filled domain
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Figure 5.12 Illustration of the speeding up transition. The left panel shows the initial
condition for simulations: non-trait density NB = K for x < d and NB = 0
for x > d. For the trait population: NA = K − β/γ for x = 0, NA = 0
for x > 0. The right panel shows the evolution of the trait front with time.
Values of the parameters are given by equation (5.36).

A particularly interesting behaviour arises if we set an intermediate initial condition

compared to the two previous scenarios. We know that when the trait and non-trait

population are set at the same level, the initial speed of the former is vf ; if the whole

environment is full of non-trait individuals, it is vs. But what happens if we set the

non-trait population only up to a certain point? This scenario is represented in figure

5.12. As can be seen in the right panel, the expansion of the trait population begins at

vs, then it speeds up to vf and finally goes back to vs.

At the beginning of the expansion, as the trait wave is forming, its tip only sees a

completely saturated environment with non-trait individuals and, as is expected, the

speed is the same as in the invasion of an existing population. However, once the trait

tip has overcome the non-trait front, a kink is developed and the trait tip starts moving

at vtip. Then, the population behind the kink starts moving at vf .

This change of speed propagates from right to left. First, it is necessary that the trait

wave tip overtakes the front of the total population, so it can travel at vtip. Then, it

pulls the population through the kink to the speed vf . At this point, the speeding up

propagates from the kink towards the region behind it.

This is only a transitory effect which is a consequence of the initial condition, but it

allows us to keep the trait population at a smaller speed for longer, which might be

important to prevent infections, if we remember that the trait can be resistance to a
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Figure 5.13 Transition time against size of non-resistant tail. The points are data from
simulations, while the straight line comes from a linear fit.

certain antibiotic. Of course, we must remember that in the very long time, once the

non trait-carrying front has overtaken the trait wave tip, all the trait population goes

back to the speed vs.

If we plot the transition time τ , that is, the time it takes the trait population to speed

up to vf with respect to the size of the extra tail of non-trait population, we obtain

the result from figure 5.13. As we see, the graph is a straight line, so the time the trait

population gets delayed scales linearly with the size of the tail we set. This result is

very useful if we want to set an initial condition that delays the trait population for a

certain time.

5.7 Summary

Throughout this chapter we have studied the expansion of two populations in which

individuals may or may not carry a certain trait. Our equations (5.2, 5.3) admit

solutions of travelling waves whose speed and densities can be computed analytically,

obtaining excellent agreement with the simulation results. The situations of an existing

and expanding population have been compared and analyzed. In order to summarize

the different changes of speed, let us present one final example.

Figure 5.14 depicts all the speed changes for the trait invasion of a partially-occupied
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domain. First of all, the non-trait population travels at a constant speed, in front of the

trait population. If we look at the limit of the resolution in our simulations (10−323),

this part of the trait wave travels at a constant speed vtip and then changes to vs, once

the populations have become decoupled.

Every point between the very tip of the wave and the kink of the trait population

(whose location coincides with the non-trait front) travels at the speed vtip. Once the

kink catches up, that is, overtakes a given trait density, the speed of this point decreases

to vf . Finally, once the whole wave has been overtaken by the total population, so there

is no kink anymore, the speed of this region decreases to vs.

For the front of the trait population (in the invasion of a partially filled domain), the

speed is initially vs, and then, once the tip of the trait population has overcome the

total front, and there has been time to propagate this information towards the kink,

the speed increases to vf . Finally, once the kink has disappeared, the trait front, as the

rest of the wave, goes back to vs. It is important to notice that the changes take some

time to propagate in the population (as is expected), so the tip of the trait wave is the

first part to decrease its speed to vs, followed by the small concentrations, followed by

the front and larger amplitudes of the wave.
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Chapter 6

Analytical study of coupled

Fisher-KPP waves

6.1 Introduction

In this chapter we present an in-depth analytical study of the system presented in

chapter 5. We aim to understand the requirements to observe different speed values and

speed transitions in the expansion of a trait in a population, as well as the consequences

of these transitions. This study helps us to gain insight into how the coupling of the

population affects the speed of the expanding waves, and to generalize the problem to

more interesting and realistic situations.

The structure of this chapter is as follows. In section 6.2 we present the general

requirements to observe a speed transition in coupled Fisher-KPP equations, and

explain why the model of chapter 5 is the simplest one where speed transitions can

be observed. In sections 6.3 and 6.4 we perform a full analytical calculation on the

trait wave and connect the shape of the wave profiles to the speeds obtained in the

previous chapter. In section 6.5 we study a general scenario where the growth rates

for the trait and the non-trait population are different, and determine what changes

this causes in the speed selection. Finally, in section 6.6 we present a summary of the

results of the chapter.
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6.2 General requirements for a speed transition

As in the previous chapter, our starting point is a coupled system of equations with

two populations NB and NA. They both undergo diffusion and logistic growth, and a

function f(NB, NA) models the exchange between them:

∂NB

∂t
= D

∂2NB

∂x2
+ αNB(K −NA −NB) + f(NA, NB) (6.1)

∂NA

∂t
= D

∂2NA

∂x2
+ αNA(K −NA −NB)− f(NA, NB), (6.2)

where D is the diffusion coefficient, α the growth rate, K the saturation concentration,

x position and t time, respectively. In comparison to the previous chapter, we now use

a general coupling term.

f(NB, NA) is the exchange function and may be expanded as a power series f(NB, NA) =∑
k,l aklN

k
AN

l
B. We assume this function models the exchange between populations and

is not another form of growth. For the A population, and considering the minus sign

that goes with the function f in equation (6.2), this translates into ak0 > 0, ∀k, that

is we may only include terms −NA,−N2
A . . . in this equation. For the B population,

and considering the plus sign that goes with f in equation (6.1), we get a0l < 0,∀l,
that is, we may only include terms −NB,−N2

B . . . in this equation. Also, in order

not to introduce any constant in the equation that is independent from the population

densities, we must assume a00 = 0

The sum of the two equations leads to a standard Fisher-KPP equation for the total

concentration NT = NB +NA:

∂NT

∂t
= D

∂2NT

∂x2
+ αNT (K −NT ). (6.3)

Therefore, in the long time regime and according to standard results, the speed of the

total population will reach the value u = 2
√
αDK as long as the initial data profile is

steep enough [22, 38] (see section 2.6).

Since the speed of the population depends on the tip of it [22], the equations can be

linearized in this region where both concentrations are small, in order to determine the

speed of the whole wave. Doing so, only the linear terms of f(NA, NB) will contribute
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to the speed. For example, if we set the system of equations:

∂NB

∂t
= D

∂2NB

∂x2
+ αNB(K −NA −NB) + βNA − γNB (6.4)

∂NA

∂t
= D

∂2NA

∂x2
+ αNA(K −NA −NB)− βNA + γNB, (6.5)

as long as β and γ are both non-zero, the speed of the two populations is the same. This

is because both terms are still relevant in the linear regime, and there is a continuous

rate of transition from one population to the other, making both populations evolve

together at the same speed. This result has been checked with simulations.

In order to produce a different speed in one of the populations we need to break the

symmetric structure and make one of the linear terms equal to 0, for example:

∂NB

∂t
= D

∂2NB

∂x2
+ αNB(K −NA −NB) + βNA (6.6)

∂NA

∂t
= D

∂2NA

∂x2
+ αNA(K −NA −NB)− βNA. (6.7)

However, this exchange term in only one direction will lead to the extinction of the

population NA so we introduce a second order term that will not a priori change the

speed but that will balance the population densities:

∂NB

∂t
= D

∂2NB

∂x2
+ αNB(K −NA −NB) + βNA − γNANB (6.8)

∂NA

∂t
= D

∂2NA

∂x2
+ αNA(K −NA −NB)− βNA + γNANB. (6.9)

These are certainly the equations we have used throughout chapter 5; our analysis here

shows that this is the simplest model in which we may observe changes of speed for

the wave for the trait population. We will then focus on it in our analytical study,

in order to understand better the propagation of the waves and the speed transitions.

However, it is important to note that if we include further powersNk
AN

l
B in the exchange

function, the values of the speed will not change. This has been checked in simulations

by including further terms of second, third, and fourth order, with no difference in

the measured values of the speed. These new terms will just modify the profile of the

functions, but will not affect their speed since, as we have said, it is only the linear

terms that play a role in determining the trait speed value.
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6.3 Analytical study of the trait population wave

6.3.1 Study of the population far behind the kink

Our starting point is the system of equations (6.8-6.9). Focusing on the trait population

far behind the kink, it is a good assumption to write NT = NA + NB = K. In that

case, the first equation changes into

∂NA

∂t
= D

∂2NA

∂x2
+NAγ

(
K − β

γ
−NA

)
, (6.10)

which is a Fisher-KPP equation whose solution is a propagating wave with amplitude

K − β

γ
and speed vs = 2

√
D(αK − γ).

This is the speed of a trait population invading an existing population of non trait-

carrying individuals, as has been obtained in section 5.4 and it is the regime observed

far away from the trait wavefront.

6.3.2 Study of the population just behind the kink

We aim to study the dynamics of the trait population. We know that the total

population will expand as a Fisher-KPP wave with speed u = 2
√
αDK, from a simple

sum of equations (6.8-6.9), as has been shown in equation (6.3). This will constitute

the first wave, but we also want to know how the expansion of trait-carrying individuals

in an environment already (almost) full of non-trait individuals occurs.

We start with the equation for the trait population:

∂NA

∂t
= D

∂2NA

∂x2
+ αNA(K −NT ) + γNA(NT −NA)− βNA (6.11)

where NT = NA +NB is the total population.

We must remember (see chapter 5) that the kink appears close to the total population

wavefront. This means that behind the kink, the total population density is still close to

the carrying capacity K at this point, before descending in the wavefront. However, as

we are close to the kink, we may write the total concentration as the carrying capacity

minus a small correction, that is:

NT = K − ε(zL) = K −Ae−µzL (6.12)
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where zL = ut− x and A = K/2 as long as our origin for zL is at the half maximum of

the concentration. This exponential decay is appropriate for a Fisher-KPP wave.

Our equation now turns into:

∂NA

∂t
= D

∂2NA

∂x2
+NA (γK − β + (α− γ)ε(zL))− γN2

A. (6.13)

We transform the equation by studying it in the non-trait wave comoving frame, that

is, we change the variable x to zL:

NA(x, t) = ÑA(zL) (6.14)

∂NA

∂t
=

∂ÑA

∂zL

dzL
dt

+
∂ÑA

∂t
(6.15)

∂NA

∂x
= −∂ÑA

∂zL
⇒ ∂2NA

∂x2
=
∂2ÑA

∂z2
L

. (6.16)

Hence:
∂ÑA

∂t
+ u

∂ÑA

∂zL
= D

∂2ÑA

∂z2
L

+ ÑA

(
B + Ce−µzL

)
− γÑ2

A (6.17)

where B = γK − β and C = A(α− γ).

At this point, we can check that our analysis is right by setting C = 0 and recovering

the usual Fisher-KPP wave result. For that purpose, we neglect the quadratic term

and write ÑA = A0e
λ1(zL−vt), whence:

−λ1v + uλ1 = Dλ2
1 +B (6.18)

λ1 =
−(v − u)± ((v − u)2 − 4DB)1/2

2D
, (6.19)

and this gives a minimum speed of v = u ± 2
√
DB = u ± vs, which is the usual

Fisher-KPP result with vs = 2
√
D(γK − β), as long as the minus sign is chosen.

To simplify the problem, we can write ÑA = e−atg(zL), where a is a parameter to be

fixed. As stated in chapter 5, a is given the name of frequency because of its dimensions.

From this, we have:

∂ÑA

∂zL
= e−atg′(zL),

∂2ÑA

∂z2
L

= e−atg′′(zL),
∂ÑA

∂t
= −aÑA (6.20)

which leads to the equation:

−ag(zL) + ug′(zL) = Dg′′(zL) + (B + Ce−µzL)g(zL). (6.21)
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Dropping the dependence on zL, we rearrange (6.21) into

g′′ − u

D
g′ +

[
C

D
e−µzL +

(a+B)
D

]
g = 0. (6.22)

Now we perform the change of variable s = e−µzL to get:

d

dzL
=

ds

dzL

d

ds
= −µs d

ds
(6.23)

d2

dz2
L

= −µs d
ds

[
−µs d

ds

]
= µ2

[
s
d

ds
+ s2

d2

ds2

]
(6.24)

resulting in:

µ2
[
sg′ + s2g′′

]
+ µ

u

D
sg′ +

[
C

D
s+

a+B

D

]
g = 0 (6.25)

g′′ +
1
s

[
1 +

u

Dµ

]
g′ +

[
a+B + Cs

Dµ2s2

]
g = 0. (6.26)

We define three constants that appear in (6.26):

c1 ≡ 1 +
u

Dµ
, c2 ≡

a+B

Dµ2
, c3 ≡

C

Dµ2
, (6.27)

which means that our equation can be written as:

g′′ +
c1
s
g′ +

c2 + c3s

s2
g = 0 (6.28)

This is a “generalized equation of hypergeometric type” [86], for which a suitable change

of variable can be found (see e.g. the method developed in [86] to obtain this change

of variable). In our case we can write the change as g(s) = s
1−c1

2 φ(s). From this:

g′ =
1− c1

2
s
−1−c1

2 φ+ s
1−c1

2 φ′; g′′ = (1− c1)s
−1−c1

2 φ′− 1− c1
2

1 + c1
2

s
−c1−3

2 φ+ s
1−c1

2 φ′′

(6.29)

and plugging it into the equation (6.28) we obtain

φ′′ +
1
s
φ′ +

[
c3
s
−

((
1− c1

2

)2

− c2

)
1
s2

]
φ = 0. (6.30)

Following the notation of [138], this is a type of Bessel equation (this can be also called

a Lommel equation [86]), whose general expression is:

y′′[x]− 2α− 1
x

y′[x] +
(
β2γ2x2γ−2 +

α2 − n2γ2

x2

)
y[x] = 0 (6.31)
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The solution to this equation is given by:

y[x] =

 xα[C0Jn(βxγ) +D0Yn(βxγ)], integer n

xα[C0Jn(βxγ) +D0J−n(βxγ)], non-integer n
(6.32)

where Jn(x) and Yn(x) are Bessel functions of first and second kind, and A0 and B0

are integration constants.

For our notation (6.30), we have α = 0, γ = 1/2, n2 = (1 − c1)2 − 4c2 and β = 2
√
c3.

The general solution is therefore (assuming n is not integer):

φ[s] = C0Jn(2
√
c3s) +D0J−n(2

√
c3s). (6.33)

Undoing the change of variable yields:

g[s] = s
1−c1

2 φ[s] = s
1−c1

2 [C0Jn(2
√
c3s) +D0J−n(2

√
c3s)] . (6.34)

Finally, remembering that s = e−µz, we get:

ÑA(z, t) = A0e
−at− (1−c1)

2
µzJn(2

√
c3e
−µz

2 ) +B0e
−at− (1−c1)

2
µzJ−n(2

√
c3e
−µz

2 ) (6.35)

where:

c1 = 1 +
u

Dµ
, c2 =

a+B

Dµ2
=
a+ γK − β

Dµ2
(6.36)

c3 =
C

Dµ2
, C = A(α− γ) (6.37)

µ =
√

2− 1
2D

u, u = 2
√
αDK, (6.38)

and A0, B0 and a are still to be fixed. This is the general solution for the population

behind the kink, whose details are presented in the next paragraph. This will be our

approximation for the population density behind the kink, and it will be matched to

the density in front of the kink in the next section.
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Details of the solution

In the solution ÑA(z, t), the maximum value of the argument of the Bessel functions is

simply the coefficient that goes with the exponential, i.e.:

Max = 2

√
C

Dµ2
= 2

√√√√ A(α− γ)

D (
√

2−1)2

4
4αDK
D2

=
2√

2− 1

√
A(α− γ)
αK

. (6.39)

On the other hand, the index of the functions n takes the value:

n = 2

√(
1− c1

2

)2

− c2

= 2

√(
u

2Dµ

)2

− a+ γK − β
Dµ2

= 2

√√√√(√αDK
Dµ

)2

− a+ γK − β
Dµ2

= 2

√
(α− γ)K − a+ β

Dµ2
=

2√
2− 1

√
(α− γ)K − a+ β

αK
.

This means that for given parameters of the model, there is a value

a∗ = (α− γ)K + β (6.40)

for which the index of the Bessel functions becomes imaginary. This value, however,

will not be reached as we shall see in subsection 6.4.1.

6.3.3 Study of the population in front of the kink. Computation of the

speed vtip

The solution that has been found in the previous section applies when the total

population, i.e. the sum of the trait and non-trait population concentrations, is close

to the saturation level. However, when we examine the simulations we find that this

assumption is true only for a section of the trait population, and certainly not for the

tip in general. As we know from chapter 5, the tip of the trait population precedes the

front of the non-trait wave for a period of time, inducing a kink in the trait population

at the front of the non-trait wave. This kink separates two convex functions, with two

different speeds.

This means that the solution we have found is valid for the region behind the kink,

but the solution in front of the kink remains yet to be found. With that purpose, we
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study again the trait population differential equation, but with different conditions.

The starting point is again the equation for the trait population:

∂NA

∂t
= D

∂2NA

∂x2
+ αNA(K −NA −NB) + γNANB − βNA. (6.41)

In front of the kink, and in the situation where the trait population is in front of the

non-trait population front, the conditions we can use are:

NB > NA, NA, NB ' 0, NA � NANB > N2
A. (6.42)

The first approximation is to neglect all the terms except the ones in NA. In that

situation we end up with the simple equation:

∂NA

∂t
= D

∂2NA

∂x2
+NA(αK − β), (6.43)

whose solution is a wave with speed vtip ≡ 2
√
D(αK − β), as has been obtained in

section 5.5.

In order to have a more accurate solution that we could match to the one obtained

behind the kink, we must include more terms in our equation. The next ones should

be those that include the product NBNA, following the hierarchy of inequalities from

equation (6.42). In that case, we have:

∂NA

∂t
= D

∂2NA

∂x2
+NA(αK − β)−NBNA(α− γ). (6.44)

This is a very suitable equation to propose, since it includes all the terms except

the one in N2
A. If we included that term, we would have to solve a Fisher-KPP-like

equation whose analytical solution is not known in general. Also, if we write the

non-trait population as a Fisher-KPP wave of speed u (which is true, as checked in

the simulations), and particularly its tail as the exponential e−λzR (where zR is now

zR = x− ut) we will end up with:

∂NA

∂t
= D

∂2NA

∂x2
+B′NA + C ′e−λzRNA, (6.45)

where B′ = αK − β, C ′ = F (γ − α) < 0, λ = u/2D and F is the value of the non-trait

population when zR = 0. This equation is exactly the same as the one obtained behind

the kink apart from the negative sign C ′ that shall be taken into account.

The method from the previous section could be used mutatis mutandis to solve this
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equation. The ansatz for the population will be ÑA = e−a
′tg(zR), where a′ is a new

frequency. The change of variable s2 = e−λzR will be applied and in the end the

argument of the Bessel function will be imaginary, or equivalently, the solution to our

problem will be written in terms of modified Bessel functions:

ÑA(zR, t) = e−a
′t−λzR

[
A0I

2

q
β−a′
αK

(
2

√
F (α− γ)
Dλ2

e−
λzR

2

)

+B0I−2

q
β−a′
αK

(
2

√
F (α− γ)
Dλ2

e−
λzR

2

)]
. (6.46)

6.4 Matching the solutions

Two different behaviours, with corresponding different speeds, can be observed in the

trait population. Both behaviours are represented by a decaying convex function, whose

tips will determine the speed of the whole function, and they are separated by a kink.

The expressions we have found for the trait population behind (B) and in front of (F)

the kink are:

ÑB
A = e−at−

(1−c1)
2

µzL

[
C0Jn

(
2
√
c3e
−µzL

2

)
+D0J−n

(
2
√
c3e
−µzL

2

)]
(6.47)

ÑF
A = e−a

′t−λzR

[
A0I

2

q
β−a′
αK

(
2

√
F (α− γ)
Dλ2

e−
λzR

2

)

+B0I−2

q
β−a′
αK

(
2

√
F (α− γ)
Dλ2

e−
λzR

2

)]
. (6.48)

There are in principle 8 constants that must be fixed somehow: the reference

concentrations A and F , the coefficients of the functions A0, B0, C0, D0, and the

frequencies a, a′. First of all, there are two of them (A and F ) that can be chosen,

since they come from choosing one specific reference for the concentrations. We can

choose A as 0.5K, considering the concentration of non-trait population is 0.5K where

the reference for zR, zL is chosen. For the same reason we may choose F = 0.5K, too,

but that will mean that we match the two solutions at the point where NB = 0.5K and

that might not be true because maybe there is a more appropriate point, that can be

extracted from the simulations results. Moreover, it turns out that these amplitudes

are key to determine the speed of the populations. It is then advisable to keep them
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as unknown constants during our development.

If we match the solutions at the kink, that is, at zL = zR, the temporal dependence

of the functions behind and in front of the kink must be the same in order to assure

continuity. This results in the equality of the frequencies, i.e. a = a′.

Before jumping into matching of the solutions, a preliminary study of the Bessel

functions might help to discard some of the constants. In principle, the two possible

functions in front of the kink (6.48) are valid, i.e. they are finite at z = 0, and have no

singularity as long as the index is real, that is, as long as β > a (see figure 6.1). They

are also decreasing, showing agreement with the results from simulations performed in

chapter 5.
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Figure 6.1 Solutions for the profile in front of the kink. Both functions are finite and
decreasing as long as β > a. The values chosen to plot these functions are
D = α = K = 1, γ = 0.1, β = 0.08, t = 0. NA

F,+(zR) and NA
F,−(zR)

stands for the positive and negative index Bessel function from (6.48). The
frequency a is computed from equation (6.57). Note that the functions are
different and linearly independent, even if their plots look very alike.

When we plot the solutions behind the kink, it is seen that the Bessel function with
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positive index starts with a kink and then becomes convex for small values of a (figure

6.2, upper panel), which is very appropriate to match the solutions found in the

simulations. On the contrary, the Bessel function of negative index does not present

any kink. Moreover, for some values of a, it decreases with z (figure 6.2, lower panel),

which is not convenient. As a consequence, it looks like the Bessel function with positive

index might be the only adequate solution. However, it all depends critically on the

value of a, that still has to be obtained.
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Figure 6.2 Solutions for the profile behind the kink. The values chosen to plot these
functions are D = α = K = 1, γ = 0.1, β = 0.08, t = 0 in the first
case, and D = α = K = 1, γ = 0.4, β = 0.2, t = 0 in the second case.
NB

A,+(zL) and NB
A,−(zL) stands for the positive and negative index modified

Bessel function from (6.47). The frequency a is computed from equation
(6.57).

Once we substitute the value of a obtained in the following sections back in the solution

behind the kink, we see that for many values of the parameters the Bessel function with

negative order is indeed decreasing with z. This is not a rigorous proof that this function

should be discarded, because its coefficient could be very small, only slightly modifying

the Bessel function of positive index.

These are not definite proofs to discard the negative order Bessel functions behind the
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kink, but we shall do this because it does not seem possible to compute the speed

without doing so. Also, this assumption will eventually lead to a result for the speed

that agrees with the simulations and our previous results. Summing up, we will make

D0 = 0, which is the coefficient for the Bessel function of negative index behind the

kink.

6.4.1 Computation of the frequency a

The strategy to compute the value of the frequency a is to assume that the solution we

have found in front of the kink in terms of Bessel functions reduces to an exponential

of the form:

ÑF
A ∼ e−λ2(x−vtipt) (6.49)

in the limit z = x − vtipt → ∞, where λ2 =
vtip
2D

, vtip = 2
√
D(αK − β) and the

exponential form comes from the Fisher-KPP equation analysis.

In order to do that, we use the series expansion of the modified Bessel function [86]:

In(x) =
∞∑
m=0

1
m!Γ(m+ α+ 1)

(x
2

)2m+n
. (6.50)

Since the argument of the Bessel functions is in both cases proportional to e−
λz
2

(equation (6.48)), the leading term in the expansion of the function is the one of the

smallest index, and hence:

ÑF
A ∼ A0(e−λz)

n
2
+1 +B0(e−λz)−

n
2
+1 ∼ (e−λz)−

n
2
+1 (6.51)

where we have already included the exponential that precedes the Bessel functions.

The last equality depends on the fact that 1− n

2
> 0, which is always true since:

n

2
=

√
β − a
αK

. (6.52)

This root can be always evaluated recalling β > a (we will check this once we have

obtained the expression for a). Then, 1− n

2
> 0 considering the conditions αK > β.

As a result, the trait population can be written as a function of x and t in the following

way:

ÑF
A ∼ e−at−λ(x−ut)(1−n

2
) = e−t(a−uλ(1−n

2
))−xλ(1−n

2
). (6.53)
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ÑF
A has been written before in equation (6.49), and this means this new expression

(6.53) must coincide with it, i.e., the terms corresponding to the exponential parts of

time and position must be equal in both cases:

u
(

1− n

2

)
= vtip (6.54)

u2
(

1− n

2

)
− 2Da = v2

tip. (6.55)

Rearranging equation (6.54) and substituting the original parameters of the model we

find

a2 + 4(αK − β)a− 4αKβ + 4β2 = 0, (6.56)

whose solution is

a = 2
[
(β − αK)±

√
αK(αK − β)

]
. (6.57)

The same solution is found if we solve (6.55), showing that our analysis is consistent.

Since αK > αK−β, then
√
αK(αK − β) > αK−β. This means that the plus solution

for a is positive, while the minus one is negative. We have assumed that a is positive

for physical considerations, so we will discard the negative answer. However, we have

to check that positive solution still fulfills β > a, a condition that we have required in

equation (6.52):

β − a = 2αK −
(

2
√
αK(αK − β) + β

)
. (6.58)

The issue now is to check that the following inequality holds:

2αK >
(

2
√
αK(αK − β) + β

)
(6.59)

which is true since it reduces to

β4 + 8β3αK > 0. (6.60)

Hence β > a and the index of our Bessel function are real, as required in (6.52). Let

us recall here that the value a∗ for which the Bessel index of the functions behind the

kink became imaginary was a∗ = (α− γ)K + β (equation (6.40)). Then, as β > a and

α > γ, the value of a∗ is never reached.

Having obtained an expression for a in the solution in front of the kink, we use the

continuity of the function at zL = zR = 0 to demand that the expression of a behind

the kink should be the same. This will allow us to find the speed of the wave behind

the kink.
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6.4.2 Use of the frequency a for the solution behind the kink

As we have mentioned in the introduction of section 6.4, we use only the Bessel function

of positive index for the function behind the kink. This means that we can write our

solution as:

ÑB
A (z, t) = C0e

−at− (1−c1)µz
2 Jn

(
2
√
c3e
−µz

2

)
. (6.61)

Now, we will take the argument of the Bessel function to be small, i.e, we consider z

to be large and hence e−
µz
2 to be small. Assuming a large value for z is equivalent to

the exponential approximation we have used in section 5.5, that is, this exponential

approximation is only valid for z large. After all, we are assuming that the trait

population density at the kink is small, which is quite appropriate from all the results

observed in the simulations. This means we are allowed to approximate the Bessel

function by the first term of its series expansion (same as equation (6.50), just with a

factor (−1)k [86]), leading to:

ÑB
A (z, t) ∼ e−at−

(1−c1)
2

µz−µn
2
z. (6.62)

Hence the speed of the z coordinate, computed as the quotient of dz and dt, is

vz =
a

µ
[
c1−1

2 − n
2

] (6.63)

and the speed in the x system is just vf = u− vz.

If we now rewrite vf in terms of the original parameters of the model, we obtain:

vf = 2
√
αDK −

2
√
D
(
β − αK +

√
αK(αK − β)

)
√
αK −

√
(3α− γ)K − β − 2

√
αK(αK − β)

(6.64)

which is exactly the same expression obtained for vf in section 5.5. This confirms that

the analytical prediction of the speed agrees perfectly with the simulation, and that

this in-depth analysis confirms the positive results obtained in the previous chapter.

Notice that in (6.63), the denominator plays the role of (and it has an identical an

expression to) the wavenumber defined in 5.5.2.
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6.5 Analysis of expanding populations with different growth

rates α

Throughout the last two chapters, we have used the same value for the logistic growth

rate α for both the trait and the non-trait population. However, this is rarely the

case [16] and these values can be different depending on the population type. Some

unexpected results happen when we run the simulations for different growth rates for the

two populations, while some of the results still agree with our theoretical predictions.

We shall call these growth rates αA and αB from now on.

6.5.1 Theoretical prediction

The calculation of the speed of the trait population in a scenario with different growth

rates works in an analogous way to the one performed in sections 6.3 and 6.4. We

summarize here the steps necessary to find a prediction for the new speed, that depends

on the new growth rates αA and αB.

First of all, when the saturation state is reached, that is, when NT = K and the profiles

are flat, both equations (5.2,5.3) reduce to:

γNANB − βNA = 0. (6.65)

This means that the stationary state densities are the same as in the same growth rate

scenario, which makes sense as those do not depend on the values of αA or αB.

Contrarily to the previous scenario, the two equations cannot be summed in this case

to get a total Fisher-KPP wave any more. However, if we look at the NB equation, we

find:
∂NB

∂t
= D

∂2NB

∂x2
+ αBNB(K −NB −NA) + βNA − γNANB. (6.66)

At low concentrations we get NBNA, N
2
B � NB but also respecting the conditions

α > γ > β/K we always have NB � NA, so we are left in a first approximation with:

∂NB

∂t
= D

∂2NB

∂x2
+ αBNBK. (6.67)

This means that the speed of the non-trait population, obtained by linearizing equation

(6.67) is, as before, u = 2
√
αBDK.
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The next step is to compute vtip. For this, we follow exactly the same equations as in

subsection 6.3.3. The only change that is made in these equation is the use of different

α for the two population, so vtip may still be written as:

v′tip = 2
√
D(αAK − β). (6.68)

From here, as we have done in subsection 6.4.1, we compute a value for a, and it takes

a similar expression to (6.57), that is:

a′ = 2
[
(β − αAK)±

√
αAK(αAK − β)

]
. (6.69)

On the other hand, as we have done in subsection 6.3.2, we may use equation (6.13)

with the new value for αA to determine the index of the Bessel function just behind the

kink. As we have seen in subsection 6.4.2, the final speed depends on a and the index

of the Bessel function. With analogous expressions for the case with different αA, our

final speed can be written in an analogous way to (6.64), that is:

v′f = 2
√
αADK −

2
√
D
(
β − αAK +

√
αAK(αAK − β)

)
√
αAK −

√
(3αA − γ)K − β − 2

√
αAK(αAK − β)

. (6.70)

6.5.2 Results from simulations

First of all, we checked through simulations that the stationary state densities for

the populations do not change and the non-trait population still travels at the usual

Fisher-KPP wave speed v = 2
√
DαBK.

The evolution of the trait population front for different values of αA and a fixed value

αB = 1 are shown in figure 6.3, where in this case the solid lines represent linear fits to

the simulation data. There are two important aspects about the evolution of the front

that must be discussed. First of all, it can be seen how a 10% difference in the growth

rates (αA = 0.9αB or αA = 1.1αB) makes the front of the trait population travels at

a constant speed. Specifically, for αA ∼ 0.9αB the transition in the kink (from vtip to

vf ) is still observable, but the one from vf to vs is lost, as both values happen to be

very close together. On the other hand, when αA ∼ 1.1αB, vf approaches the speed of

the non-trait population u, and there is only one speed in the system.

The second aspect to discuss is the quantitative agreement of the initail speed with the
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Figure 6.3 Speed transitions for different αA, with αB = 1. The rest of the parameters
are kept to their usual values: D = K = 1, α = 0.1, β = 0.08. The straight
lines in this case do not come from a theoretical prediction, but from a linear
fit.

prediction for vf given by (6.70). In this case, the simulation results for this quantity,

given by the slopes of figure 6.3, do not agree with the prediction given by (6.70) the

moment the difference in the growth rates reaches 3% (that is, αA = 0.97αB or αA =

1.03αB). This quantitative difference and the fact that the transitions disappear as we

vary the growth coefficients further suggest that to observe the rich phenomenology of

speed transition we have observed throughout these chapters, αA must be close to αB.

To put it all in a nutshell:

� If |αA − αB| < 0.03αB, then all the speed transitions are clearly observed, and

(6.70) predicts the speed of the trait front succesfully.

� If |αA − αB| ∼ 0.03αB, then the speed transitions are still observed, but the

prediction given (6.70) is no longer accurate.

� If |αA − αB| ∼ 0.1αB, then the speed transitions in the trait front are lost.
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6.6 Summary

This chapter has focused on the understanding on the speed transitions for the trait

population observed in chapter 5 and on the requirements to observe them. We have

stated the general form for the equations to produce speed transitions, and have shown

that our initial equations (5.2, 5.3) are the simplest ones to observe them. On the other

hand, we have seen that the logistic growth parameters in the equations have to be very

similar to each other in order to observe the rich phenomenology of speed transitions.

We also have computed approximated population densities analytically and have

used the evolution of the waves profile in order to rigorously obtain values for the

different speeds. Let us remember that the calculation consists of finding analytical

approximations for the solution behind the kink and in front of the kink, that can be

written as (neglecting the Bessel function of negative order behind the kink in (6.47)):

ÑB
A = e−at−

(1−c1)
2

µzL
[
C0Jc1+2c4−1

(√
c3e
−µzL

2

)]
(6.71)

ÑF
A = e−a

′t−λzR

[
A0I

2

q
β−a′
αK

(
2

√
F (α− γ)
Dλ2

e−
λzR

2

)

+B0I−2

q
β−a′
αK

(
2

√
F (α− γ)
Dλ2

e−
λzR

2

)]
. (6.72)

The matching of them at the kink, which comes from assuming continuity of the

population density at this point, gives a = a′. The value of a′ can be easily computed,

and once we have it, the speed behind the kink (vf ) can be obtained as (equation

(6.63)):

vf = u− a

µ
[
c1−1

2 − α
2

] . (6.73)

Writing all the quantities in terms of the initial parameters of the model, the expression

for the speed is (6.64):

vf = 2
√
αDK −

2
√
D
(
β − αK +

√
αK(αK − β)

)
√
αK −

√
(3α− γ)K − β − 2

√
αK(αK − β)

. (6.74)

This confirms all the results obtained in chapter 5.

Finally, we have studied the case of different growth rates for both populations, gaining

insight in how changing these values affects the transition in the speed. If the growth
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rates are very similar to each other, our predictions are similar to simulation results,

while they differ from them in case the rates are significantly different from each other.

This suggests that other theoretical approaches, beyond the scope of this study, would

be needed in these regimes.
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Chapter 7

Expanding populations in spatially

heterogeneous environments

7.1 Introduction

So far, we have studied the propagation of an evolving population in which individuals

of one subpopulation have a certain trait. In this chapter we consider further the case

where the trait gives a certain advantage to individuals that carry it. This is in contrast

to chapters 5 and 6, where carrying a trait did not endow any advantage.

Real examples of the scenario of an advantageous trait include e.g. the spread of

farming techniques in Neolithic human populations [17] or bacteria acquiring resistance

to a certain antibiotic [16]. The trait might also be detrimental rather than beneficial,

but in this chapter we will assume that the trait confers individuals who carry it a

certain advantage.

The way to model the advantage conferred by the trait is to introduce a way of selection,

that is, a change in the medium that favours one type of individuals against others

[16]. This way we set a fitness landscape [139–143] where at different positions x the

possibility to grow is much larger for individuals who carry a trait.

The fitness difference can be introduced by making αB a function of the position αB(x),

while making αA a constant, that is, the trait population is not affected by the fitness

barrier, only the non-trait population is. This will lead to new phenomena such as

interruption of the propagation or slowing down of the non-trait wave, due to the

fitness barrier.
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This chapter is organized as follows. In section 7.2 we present simulations for

one population, with different fitness profiles α(x). In this section we also present

simulations for a spatially-dependent carrying capacity K(x). This is another way to

model position-dependent fitness, in this case by varying the maximum value (carrying

capacity) that the population density can reach. We will be able to determine stationary

state concentrations and speeds analytically, obtaining perfect agreement with the

simulations. In section 7.3, we present different scenarios of α(x) for an evolving

population that contains two types of individuals. We observe a rich phenomenology of

propagating speeds and different profiles in these simulations, and again, we are able to

determine several properties analytically. In section 7.4 we present some conclusions on

the chapter, and we introduce a non-mathematical model that explains, in an analogous

way and without equations, all the phenomenology observed in the last three chapters.

7.1.1 General notes on the simulations

In order to simulate the fitness difference for the trait and the non-trait population, we

must modify our original equations (5.2, 5.3). The equation for the trait population may

remain unchanged, as logistic growth is an appropriate model for a population that can

grow in a medium with the only limitation of space (that is, there is a maximum allowed

density K). We are then forced to change the equation for the non-trait population.

In this case, we need to model death for the trait population in an environment that

is only favourable to the trait individuals. We also should suppress the logistic growth

term for this population.

A simple way to model death is to assume there is a loss of individuals proportional to

the density. Therefore we shall write the death term as −αB(x)KN . Note that we are

using αB(x) for convenience, that is, when αB(x) is negative, this quantity represents

the death rate rather than the growth rate. In this way, if αB(x) > 0, then the non-

trait population will grow logistically as αB(x)NB(K −NT ); while if αB(x) < 0, it will

disappear with rate −αB(x)KN . Also note that we include the carrying capacity K in

this term in order to maintain the dimensionality of αB, that is, t−1N−1.
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Our new equations can be written as:

∂NA

∂t
= D

∂2NA

∂x2
+ αmaxNA (K − (NA +NB))− f(NA, NB) (7.1)

∂NB

∂t
= D

∂2NB

∂x2
+ f(NA, NB) + θ(αB(x))αB(x)NB

(
K − (NA +NB)

)

+

(
1− θ(αB(x))

)
αB(x)KN, (7.2)

where αmax is the constant growth rate for the trait population and f(NA, NB) models

the exchange among the trait and non-trait population.

Equation (7.2) with NB = 0, that is, a position-dependent fitness equation for a single

population, does not admit travelling wave solutions in the same way a single Fisher-

KPP equation does (section 2.6). This is illustrated in appendix B. However, we

can still perform simulations for this system, as we did in chapter 5, and compute

some quantities analytically. In order to perform the simulations we will use the same

split operator scheme. As we described above, we start with simulations of a single

population.

7.2 Simulations of a single population in a spatially-varying

fitness landscape

Let us emphasize the fact that we start our simulations with only one population.

This allows us to study the effect of a fitness landscape on the Fisher-KPP equation

in a simple situation, and will allow us to understand better the evolution of two

coexpanding populations later, where more complicated phenomena appear. It also

allows us to test the good behaviour of our simulations when a spatially varying growth

rate is introduced.

Similar scenarios have been studied in a more mathematical and theoretical way in

several papers, e.g. [38, 144, 145]. Other basic problems have been studied in the

literature, e.g. in [146] the authors solve equations very similar to the ones presented

in the subsection named Step function 1 → −1 fitness landscape. For simplicity, we

will use N for the total population and α for the growth rate, without any subscript.
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7.2.1 Simulations for a position-depedent growth rate α = α(x)

Step function 1→ 0 fitness landscape

As a first example of a growth coefficient that depends on the position, we first set α

as a step function, which is maximal (α = 1) in the left hand region, and zero in the

right hand side. In this case the population can only grow on the left hand side of the

step. The expansion from the leftmost part of the system happens as a Fisher-KPP

wave, as is expected, until the population reaches the step. Once this has happened,

the expansion reduces to a basic diffusion problem, as diffusion is the only remaining

process.

With all these conditions, we still can consider two possible scenarios. In the first

one, the system is finite, and the population density is set to zero at the right-hand

boundary xmax, i.e. N(xmax) = 0. That means that the diffusion, which is the only

process that happens after the barrier, is limited by this boundary condition. As seen

in figure 7.1, the expansion of the population begins as a Fisher-KPP wave, with speed

v = 2
√
αDK. Once the population hits the barrier, then the diffusion starts towards

the right hand side. The boundary conditions for the diffusion are N(0) = K (left hand

side of the barrier), and N(xmax) = 0. The stationary solution for this problem is just

a straight line (since
∂2N

∂x2
= 0) that crosses the two specified points. This is confirmed

in the simulation (figure 7.1).

The second possible scenario is not to restrict the system to a finite extent (i.e., to set

a very large lattice in the simulation). In that situation, the population just diffuses

in the right hand side without any boundary condition, apart from N(0) = K. This

problem can be modelled mathematically as a diffusion problem on the interval [0,∞[

with no initial condition and a constant boundary condition [84]:

∂N

∂t
= D

∂2N

∂x2
(7.3)

N(x, 0) = 0, ∀x > 0 (7.4)

N(0, t) = K, (7.5)

whose solution is:

N(x, t) =
∫ t

0
dτ

x√
4πD(t− τ)3

exp
(
− x2

4D(t− τ)

)
K (7.6)

Note that in this case we integrate starting at t = 0, which is the point at which our
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Figure 7.1 Evolution of the population in a step 1 → 0 fitness profile. The expansion
starts as a Fisher-KPP wave until the population hits the boundary. Then,
only diffusion operates, constrained by the boundary conditions.

simulation starts. Sometimes the integration is performed in the interval ]−∞, t] [84].

If we simulate this system and compare the result with the analytical prediction, we

obtain perfect agreement, as can be seen in figure 7.2.

Step function 1→ −1 fitness landscape

We now approach a similar problem to the previous one, but which has drastic

consequences on the stationary profile of the population. In this case, we set α(x) = 1

at the left hand side of the system, and α(x) = −1 at the right hand side (figure

7.3). This means that individuals not only cannot grow, but are actually killed on the

right-hand side of the step. Therefore, equation (7.2) can be separated into:

∂N

∂t
= D

∂2N

∂x2
+ αN(K −N), x < 0 (7.7)

∂N

∂t
= D

∂2N

∂x2
− αKN, x > 0 (7.8)

with α = 1.

We know from our previous simulations that the population will expand as a Fisher-

KPP wave when α is positive. Then, when the population hits the barrier at x = 0,
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Figure 7.2 Step 1 → 0 with an infinite system. The population diffuses towards the
right, with a constant source of population at x = 0, where N(0, t) =
K. Points correspond to simulation data. Lines correspond to theoretical
predictions given by (7.6) at t = 1000 (black) and t = 3000 (green).
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Figure 7.3 Step 1→ −1 function for the growth rate α(x).
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the death term acts on the population and the logistic growth is no longer present. In

these circumstances, diffusion is limited by the death term, and makes the population

density decrease. This confines the population stationary profile to a certain distance

from the barrier, from which the population cannot go any further. This is checked

within the simulations. Note that there is a difference with respect to the step 1 → 0

scenario. Now it is not important if there is a boundary at the right hand side, because

the death term will automatically confine the population to a certain extent. This

extent is, however, dependent on the precision of the simulations.

To find the stationary profile analytically, we set the terms ∂N/∂t = 0 (as stated before,

a similar problem is studied in [146]). Then, the second equation is a simple harmonic

equation, whose solution can be written as:

N(x) = N0 exp
(
−
√
α/Dx

)
+N1 exp

(√
α/Dx

)
. (7.9)

Since the second term will diverge as x → ∞, we can discard it for physical reasons,

as the population will be always finite. Then, we are only left with the first term, the

coefficient N0 being the value of the population density at x = 0.

To solve the stationary case of (7.7) at the left hand side, we follow the method explained

in [147], adapted to our equation. The first step is to multiply by the first spatial

derivative ∂N/∂x. In this example we will consider the carrying capacity K equal to

unity, for the sake of simplicity. For a general K, the procedure is analogous, but the

algebra becomes more complicated.

We shall now perform the first integration of (7.7). C will be a generic label for different

constants:

0 = D
∂2N

∂x2

∂N

∂x
+ αN(1−N)

∂N

∂x

C =
D

2

(
∂N

∂x

)2

+ α
N2

2
− αN

3

3
. (7.10)

Then rearranging we obtain:

∂N

∂x
= −

√
2
D

√
C − αN

2

2
+ α

N3

3
. (7.11)

Note that we have chosen the negative sign when we take the square root, because the

population will be almost saturated at the left hand side, while it will decay after the

barrier towards the right hand side, with a strictly negative derivative.
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We are able to determine the value of C in the last equation by using boundary

conditions, that is:

x→ −∞, N → 1,
∂N

∂x
→ 0 (7.12)

which translates into:

0 = −
√

2
D

√
C − α

2
+
α

3
⇒ C =

α

2
− α

3
(7.13)

That means that our equation can be rewritten as:

∂N

∂x
= −

√
2
D

√
α

2
(1−N2) +

α

3
(N3 − 1). (7.14)

This is a good point to match the derivatives at both sides of the barrier, that is,

to match both expressions at x = 0 in order to determine N0. The derivative of the

function at the right hand side will simply be −N0

√
α
D exp

(
−
√
α/Dx

)
. Therefore,

matching both derivatives at x = 0:

−N0

√
α

D
= −

√
2
D

√
α

2
(1−N2

0 ) +
α

3
(N3

0 − 1)

⇒ 0 = 2N3
0 − 6N2

0 + 1 (7.15)

whose solutions can be found numerically. The only positive and smaller than 1 solution

takes the value N0 = 0.442125.

In order to solve the equation at the left hand side, we still need to rearrange it a bit:

∂N

∂x
= −

√
α

3D
(3− 3N2 + 2N3 − 2)

= −
√

α

3D
(1−N)

√
1 + 2N (7.16)

where 1 − N will always be positive since N ∈ [0, 1]. This allows us to perform the

second integration, in a definite way, from N0 to a general N , that is:∫ N

N0

du

(1− u)
√

1 + 2u
= −

√
α

3D
x. (7.17)

In order to integrate the left hand side we perform a change of variable:

v =
√

1 + 2u, du = vdv. (7.18)
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The integral in (7.17) can be performed in the following way:∫ v

v0

2dv
3− v2

=
2
3

∫ v

v0

dv

1− ( v√
3
)2

=
2√
3

arctanh
[
v√
3

] ∣∣∣∣∣
v

v0

=
2√
3

arctanh

[√
1 + 2u

3

] ∣∣∣∣∣
N

N0

.

Therefore (7.17) becomes

2√
3

[
arctanh

(√
1 + 2N

3

)
− arctanh

(√
1 + 2N0

3

)]
= −

√
α

3D
x, (7.19)

from which the final solution to our problem may be written as:

N(x) =
3
2

tanh2

[
−1

2

√
α

D
x+ arctanh

(√
1 + 2N0

3

)]
− 1

2
, x < 0 (7.20)

N(x) = N0 exp
(
−
√
α

D
x

)
, x > 0. (7.21)

If we now compare this stationary profile with the simulations, we obtain perfect

agreement with them, as we can see in figure 7.4.

Decreasing linear growth coefficient. Speed of waves.

To model more accurately real scenarios, where environmental conditions change

continuously, a growth rate that continuously changes with position is now introduced.

We set a simple decreasing linear profile for α(x) (figure 7.5), which is both simple

and customary when a position-dependent growth rate is introduced [145]. When the

simulation is run, a solution that looks like a wave appears. We must remember (see

appendix B) that there is no Fisher-KPP wave solution for this case, that is, we cannot

find a function N(x−ct), that propagates keeping its shape. Still the propagation wave

keeps approximately its shape, at least for the parameters selected for these simulations

(figure 7.6). As can be seen from the same figure, the speed of the front changes with

time, as a smaller α(x) delays the expansion of the population.

There are two processes in this expansion of the population. On the one hand, the

shape of the profile changes, i.e., the population does not behave as a true Fisher-KPP

wave. On the other hand, the speed of the wave front decreases as the population gets
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Figure 7.4 Step 1 → −1. The population stops at the barrier and forms a stationary
profile that can be computed analytically. The blue points correspond to
simulation data, while the black line correspond to the theoretical prediction
given by (7.20) and (7.21).

-10000 -5000 0 5000 10000
x

0

0.2

0.4

0.6

0.8

1

α(
x)

Figure 7.5 Descending linear profile for the growth coefficient of the population.
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Figure 7.6 Expansion in a linear descending profile for α(x). As the population
advances, the general shape of the wave is conserved, but the speed of the front
decreases as α(x) does. The changes in the profile can be better appreciated
in the next figure.

to a region with a smaller α(x).

The changes in the population profile can be appreciated visually in the different

pictures, especially when we superpose the wave profiles at different spatial positions

(figure 7.7). The principal changes occur in the tip and the wake of the wave, while

the central region seems to keep its shape. Generally, the profile becomes less steep as

both α(x) and the speed decrease.

We now focus on the speed of the wave. In order to keep a consistent measure of this

quantity, we select the half maximum of the population density as a reference, as this

is the region of the wave that is least affected by the changes in the profile. Once we

measure the position x(t) of the front at a given time, we are able to compute the value

of the growth rate at that point, that is α(x(t)). In this way, we obtain pairs of values

α, v(α).

Now, since the speed formula for Fisher-KPP waves is simply v = 2
√
DαK, we may

investigate whether this relation still holds or not when α varies with x. In order to do

this we plot, for different values of D, the values of xf/
√
DK (xf being the position of

the wave front) as a function of
√
α. All the curves should go into straight lines with

slope 2 if the relation holds. The results are showed in figure 7.8, and the curves are

indeed seen to collapse onto a straight line.
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Figure 7.7 Profiles of the expanding population in a linear descending profile for α(x).
The profiles at different times are moved in order to compare them. We are
able to appreciate that the profile becomes less steep as the speed of the wave
front decreases.
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Figure 7.8 xf/
√
DK versus

√
α shows how the speed relation v = 2

√
DαK holds with

a linearly changing α(x), for different values of D.
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This means that the formula for a Fisher-KPP wave speed still holds even if the

wavefront changes slightly. We have also tried setting different decreasing growth

profiles, for example, of the form 1−tanh(x), and the results we obtain are qualitatively

similar, and the relation v =
√

2Dα always holds. This result is somehow expected from

previous studies [38].

A “realistic” fitness landscape for a bacterial colony exposed to antibiotics

We now consider a realistic profile for the growth coefficient α(x). The models we have

presented so far could model the expansion of a bacterial population in a structured

media, where α(x) depends on the concentration of antibiotics. To start with a simple

situation, we assume that antibiotics are initially concentrated in a region of space,

that is, its concentration can be represented by a step function. This leads to a

growth coefficient α(x) which, as a function of the concentration of antibiotics, is also

a step function. However, after the initial antibiotics profile is set, the antibiotics start

diffusing across the system. This process can be modelled by a simple diffusion equation

for the antibiotic concentration A:

∂A

∂t
= D

∂2A

∂x2
(7.22)

where A is the concentration of antibiotics.

The solution again can be written as the convolution of the initial condition[84, 85]:

A(t, x) =
∫ ∞
−∞

1√
4πDt

e−
(x−y)2

4Dt A0(y)dy (7.23)

where A0(y) is the initial condition. For the antibiotics problem, the initial condition

will be a step function, which results in the solution:

A(t, x) =
∫ ∞

0

1√
4πDt

e−
(x−y)2

4Dt dy

=
1
2

[
1 + erf

(
x√
4Dt

)] (7.24)

where simple changes of variables have been applied to perform the integration, and

the error function has been introduced as erf(x) ≡ 2√
π

∫ x
0 e
−y2dy [86].

For our simulations, we will use the concentration of antibiotics coming from the

solution of a step function, that is, the concentration found in (7.24), which is a function

of time. Once the profile of the antibiotics is known, the remaining problem consists
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Figure 7.9 α(x) for a step concentration of antibiotics that has diffused. The values of
the parameters are

√
4Dt = 50.0, Ah = 0.001, αmax = 1.0.

of finding how the growth coefficient α depends on the concentration A(x). The usual

biological expression for these cases is to set a dependence where there is a maximum

but finite value of α for no antibiotics, with α decreasing to zero as the concentration

of antibiotics grows. In a simple way, this can be written as:

α(A) =
αmaxAh
Ah +A

, (7.25)

where Ah is the value of A at which α is half maximum. This is the basic formula

that will be used in the simulation, together with expression (7.24) for A(t, x). The

resulting profile α(x) for some specific values of the parameters is plotted in figure 7.9.

The results of the simulations with this growth profile are quite similar to those obtained

with step function fitness profiles. The population expands as a wave-like front until the

region where α(x) decreases as a step. At that point, diffusion is the main phenomenon,

and it causes the profile to stretch, becoming less steep. It is interesting to see how the

speed evolves with time, as the front expands. We can see how the speed decreases as

the population moves into regions with smaller α(x), as shown in figure 7.10.
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Figure 7.10 Bacteria expansion for α(x) computed for antibiotic concentration. The
speed of the front decreases as the populations move into regions with
smaller α(x). Parameters:

√
4Dt = 50.0, Ah = 0.001, αmax = 1.0.

7.2.2 Simulations for spatially varying carrying capacity K = K(x)

Up to now we have focused on the case where the growth rate α was position-dependent.

We now consider the alternative scenario: where the growth rate is constant but the

carrying capacity varies in space.

Step function 1→ 0 for carrying capacity K(x).

The first scenario we try for this case is again a step function 1→ 0, this time for K(x).

In the right hand side of the system we have N(x) = 0, since, by definition N(x) ≤
K(x),∀x. Note that we could have used the Fisher-KPP equation with K(x) = 0, but

that will result in the following equation for the right hand side:

0 = D
∂2N

∂x2
− αN2. (7.26)

This equation is very similar to the one obtained for the case of α(x) = −1 (equation

(7.8)) and in a similar way, some individuals will go to the right hand side, where the

diffusion and death terms compete with each other. Having individuals in the right

hand side will cause a violation of the condition N(x) ≤ K(x). This assertion is indeed

confirmed by simulations. For this reason, we will set N(x) = 0 at the right hand side.
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Figure 7.11 Density stationary profile for K(x) set as a step 1 → 0. The population
stops at the boundary of the step, setting a decaying profile whose
expression can be computed analytically, obtaining perfect agreement with
the simulations. Points correspond to simulation data and the line
corresponds to the theoretical prediction given by (7.27) with x0 = 200.

Thus the problem reduces to a Fisher-KPP equation with a boundary condition. Even

if this is not very interesting as a case of position-dependent saturation profile, it is still

useful as a study of the boundary conditions. From our previous results, we know that

the population will spread until the boundary, and it will then be stopped, forming

a stationary profile that we can compute. In this case, we will only need to apply

equation (7.20) with N0 = 0. Then, the solution will be written, for x < x0 (being x0

the rightmost point of our lattice) as:

N(x) =
3
2

tanh2

[
−1

2

√
α

D
(x− x0) + arctanh

(√
1
3

)]
− 1

2
(7.27)

This boundary condition, however, will cause a discontinuity in the first derivative.

Comparing this prediction with the simulation results, we again obtain perfect

agreement, as can be seen in figure 7.11.
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Figure 7.12 Expansion of the population for a linear descending K(x). The
concentration reaches saturation at all points, making the propagation of
the front smaller as time passes.

Linearly decreasing carrying capacity K(x).

If a linear descending saturation profile is set, we will expect to reach saturation at

every point, since N(x) = K(x),∀x according to the theoretical prediction (appendix

B). This clearly happens this way, as can be seen in figure 7.12. An initial condition at

the leftmost part of the system spreads bounded by the saturation profile.

The speed is quite difficult to define in this case, because the propagation of the front

is bounded by the linear saturation profile. This means N(x) = K(x) up to a point

when the population density suddenly decreases, becoming different from K(x). This

point at the beginning is at the leftmost part of the system, i.e., the front, decreasing

from K to 0 is different from the saturation profile.

However, as the propagation occurs, N(x) becomes equal to K(x) in a larger region of

the system. Therefore the amplitude of the front is smaller and smaller (the pictures of

the front at different times are the almost vertical lines in figure 7.12). This is the part

of the wave we want to keep track of. In order to do that, we measure the difference

between N(x) and K(x) at all points, starting from the left. The point where this

difference is significant (let us say, larger than K(x)/2) is defined as the front, and

we record its position at the current time. After some time iterations, we repeat the

process, and that is how we keep track of our decreasing front.
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Figure 7.13 Speed relation for the expansion with a linear descending K(x). The
regression straight line has a very good agreement with the simulation
results, and a slope of 2.05± 0.01, as expected from theoretical predictions,
all despite the difficulty for measuring the speed.

By computing the derivative of the front with respect to time we obtain the speed. The

results for the speed from the simulation are plotted in figure 7.13 and, as is reasonable

to expect, the relation v = 2
√
αDK still holds. Nevertheless, the difficulty to keep

track of the front makes the results a bit noisy.

Quadratically varying carrying capacity K(x).

In principle, we could use any function to write the profile of K(x), as long as is

continuous and larger than or equal to zero at every point. Different functions might

model different environmental scenarios. However, if the function is too complicated,

there will be no known analytical solution (as seen in appendix B). For example, if we

set a quadratic profile for K(x), the profile gets close to the saturation profile, following

its shape, but not having exactly the same values. We have observed that if the diffusion

coefficient D is small, then the growth term becomes more relevant, and the stationary

profile is very similar to the saturation one. For a larger diffusion coefficient (see figure

7.14), diffusion happens quickly and then the growth happens up to a point where

the density reaches an equilibrium profile, different from the saturation one. Mixed

phenomena of diffusion and growth are expected for different profile functions and for

different values of the parameters.
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Figure 7.14 Evolution of the population for a quadratic profile for K(x) and D = 100.
The rest of the parameters are set to the standard values. In this case,
diffusion happens very quickly, and then the population growth, reaching an
equilibrium profile that mimics the saturation one. In the legends, t stands
for time iterations, rather than real time, which has less neat values.

7.3 Simulations of an evolving population in a spatially

varying fitness landscape

Having studied how one population of individuals expands in a system with different

growth profiles, it is of interest to study the case of a population containing two coupled

subpopulations. As seen in the introduction of part III, the two populations can refer

to individuals susceptible to a disease, or infected by it; or bacteria resistant and

susceptible to the action of an antibiotic.

In general, one of the populations will be called the non-trait population, and it will

be affected by the fitness landscape, hence having a spatially varying growth function

αB(x) for different x. The other population will be called the trait population, and

its growth coefficient will be constant in space, independently of the concentration of

antibiotics. More complicated models, where the fitness also affects the trait population

could be used [16].

In the systems studied in this section, the two populations undergo diffusion and logistic

growth together, as we have seen earlier in this chapter. Also, there will be exchange

terms among the two populations very similar to the ones studied in chapters 5 and
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6. However, we shall begin with very simple models of interaction between the two

populations, in order to understand the role that a position-dependent fitness plays.

7.3.1 Evolution by mutations

In this simple model, we will assume that the non trait-carrying individuals can obtain

the trait by mutation - i.e. that they obtain the trait at a given constant rate ω.

Therefore, equations (7.1, 7.2) for the trait and the non-trait population take the form:

∂NA

∂t
= D

∂2NA

∂x2
+ αmaxNA[K − (NB +NA)] + ωNB

∂NB

∂t
= D

∂2NB

∂x2
+ αB(x)NB[K − (NB +NA)]− ωNB.

(7.28)

with αmax = 1 throughout this chapter.

In order to observe clearly how the populations respond to the presence of a fitness

profile, we will set a step function 1→ −1 for αB(x), where the change from 1 (αmax to

−1 (−αmax) happens at x = 0. For equations (7.28), the behaviour of the system will

depend on how large the mutation rate ω is. For example, setting ω = 10−6 we get the

most typical behaviour of the system (that only changes if ω is really large). First, the

non trait-carrying individuals (which are the only ones at the beginning) expand until

the boundary, at x = 0. Then, the profile of this population stays stationary since they

cannot get further in a short time. Finally, the small population of trait individuals

that has started to grow inside the non-trait one, starts diffusing faster in this region,

and generates a new wave that expands to the right hand side region of the system

(figure 7.15).

Considering both the trait and the non-trait populations together, the total population

will expand as a Fisher-KPP wave initially, since the sum of the two equations gives a

regular Fisher-KPP equation for the total population. When the population hits the

fitness step, there will be a delay in its advance, because only individuals carrying the

trait can grow to the right of the step. However, after a short time, the trait-carrying

individuals produced by mutations in the non-trait population will reach the right hand

side of the system and colonize the rest of it, forming a new Fisher-KPP wave, with

the usual speed v = 2
√
αmaxDK. How the speed evolves is illustrated in figure 7.16.

The speed of the total population is v = 2
√
αmaxDK, then it decreases in the barrier,

and then it returns to its previous value.
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Figure 7.15 Two populations evolution for a mutation rate ω = 10−6. The non-trait
individuals expands until the step boundary, stopping around t = 1000 and
keeping its profile more or less constant. Then, the trait population becomes
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Figure 7.16 Speed evolution for ω = 10−6. Waiting time τ = (16± 5)s.
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Figure 7.17 Speed evolution for different values of ω. The waiting time increases as ω
decreases. The image has been zoomed around the waiting region.

We can define the waiting time τ as the time period in which the front of the population

is paused at the fitness boundary. This can be observed in figure 7.16 as a flat piece

between the two large regions where the speed is the usual one. It is interesting to see

how the waiting time depends on ω. The dependence can be seen in figure 7.17. We can

see how the speed of the front is the same for any value of ω up to the moment when

the population reaches the barrier. Then, the waiting time, in which the expansion is

stopped until the trait population reaches the barrier, is larger the smaller the value of

ω, being insignificant when ω ∼ 0.01.

7.3.2 Reversible mutation

We now consider the possibility of trait individuals changing back into non-trait

individuals through a process of back mutation. This translates into the incorporation

of a new term with coefficient β in the equations of evolution which accounts for this

new mutation:

∂NB

∂t
= D

∂2NB

∂x2
+ αB(x)NB[K − (NB +NA)]− γNB + βNA

∂NA

∂t
= D

∂2NA

∂x2
+ αmaxNA[K − (NB +NA)] + γNB − βNA.

(7.29)

This seemingly small change to the equations results in new types of behaviour. When
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Figure 7.18 Expansion with reversible mutation. Values are D = 1, αmax = 1,K =
1, γ = 0.1, β = 0.08. The expansion at the left hand side is not pictured
for the sake of clarity, but it happens with the amplitudes computed, at the
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simulations of this system are performed for small values of γ and β, the evolution

happens roughly in the same way as if the reversible mutation did not exist. Again, we

observe the expansion of the whole population as a Fisher-KPP wave, the wave being

mainly formed by non-trait individuals. Once the population hits the barrier, there is

a small delay until the trait population catches up, and then the trait alone colonizes

the right hand side of the system.

However, if we take larger values of γ and β the system behaves in quite different way.

To understand this, we note that equations (7.29) are actually very similar to (5.2, 5.3),

for the case of the horizontally transmitted trait. The term γNB is different from the

γNBNA used before (this kind of term will be used in the next subsection), and this

means, according to section 6.2 that, at the left hand side of the system, when we set a

step 1→ −1 for αB(x), the expansion of both populations will take place at the same

speed, equal to the usual Fisher-KPP speed value 2
√
αmaxDK. This is confirmed in

the simulations.

The amplitudes of the waves are different in this case, but they can be computed in a

similar way to before. Assuming no diffusion in the stationary state (flat profiles), only
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the exchange terms remain, from which, in any of the two equations:

−γN ss
B + βN ss

A = 0→ −γN ss
B + β(K −N ss

B ) = 0 (7.30)

⇒ N ss
B = K

β

γ + β
, N ss

A = K
γ

γ + β
. (7.31)

These stationary densities in the right hand side of the system are verified in the

simulations (see figure 7.18).

As the expansion of both populations happen simultaneously, there is no delay at the

barrier this time, i.e., the trait individuals can start their propagation in the right hand

side area without a waiting time. However, because of the backwards mutation, there

is a new effect in this case. In the right hand side, some non-trait individuals appear

as a result of the backwards mutation. It is a small concentration that is maintained

through this process and whose value depends on the balance between mutation, death

and back mutation (figure 7.18). If we perform the same stationary analysis for the

right hand side, we now have two different equations. In this case, there is no reason to

assume saturation (i.e. to assume N ss,2
B +N ss,2

A = K), and this is certainly not observed

in the simulations. So, for a step profile of αB(x) with values αmax and −αmax the

equations can be written as:

αmaxN
ss,2
A (K −N ss,2

B −N ss,2
A ) + γN ss,2

B − βN ss,2
A = 0 (7.32)

−αmaxKN ss,2
B − γN ss,2

B + βN ss,2
A = 0, (7.33)

whose non-zero solution is

N ss,2
A = K

αmaxK + γ − β
αmaxK + γ + β

, N ss,2
B =

βK

αmaxK + γ

(αmaxK + γ − β)
(αmaxK + γ + β)

. (7.34)

As we have said, saturation is not reached in this case. This prediction for the stationary

values in the right hand side of the system again agrees perfectly with the simulation

results.

An example of the evolution of the system is illustrated in figure 7.18, where we have

plotted only the expansion in the right hand side for the sake of clarity. The expansion in

the left hand side happens with amplitudes N ss
B , N

ss
A as described, while the expansion

in the right hand side happens with amplitudes N ss,2
B , N ss,2

A . It is worth noting that

the non-trait population only reaches the right hand side of the system because of the

trait population and the backwards mutation. If it were on its own, this population

would not be able to propagate in a medium with a negative αB(x). This happens at

the expense of the amplitude of the trait population, while the speed of both of them
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is still the usual Fisher-KPP speed.

7.3.3 A population undergoing horizontal transmission in a spatially

varying fitness landscape

We now introduce the term of direct contact transfer, which changes the way non-

trait individuals turn into the trait type. In this case, we consider that the trait is

transferred through contact between trait and non-trait individuals. This is translated

into a multiplicative term that can be incorporated in the equations in the following

way:

∂NB

∂t
= D

∂2NB

∂x2
+ αB(x)NB[K − (NB +NA)]− γNBNA + βNA

∂NA

∂t
= D

∂2NA

∂x2
+ αmaxNA[K − (NB +NA)] + γNBNA − βNA.

(7.35)

These equations (apart from the position-dependent αB(x)) are the same as the ones

studied in the last couple of chapters. That means we can expect to see the behaviour

described there until the populations hit the barrier. That is, the expansion of the two

waves happens with the non-trait population travelling at a faster speed than the trait

one. Finally, once the trait population catches up, it invades the right-hand side part

of the system at the usual Fisher-KPP wave speed.

As in the previous case, the two populations expand in the right hand side together,

at the usual speed, and with amplitudes that again can be computed by using the

equations in a stationary non-diffusive regime:

αmaxN
ss,2
A (K −N ss,2

B −N ss,2
A ) + γN ss,2

B N ss,2
A − βN ss,2

A = 0 (7.36)

−αmaxKN ss,2
B − γN ss,2

B N ss,2
A + βN ss,2

A = 0. (7.37)

In this case we can eliminate N ss,2
B = βN ss,2

A /(αmaxK + γN ss,2
A ) to obtain:

N ss,2
A =

γK − αmaxK − β ±
√
β2 + 2β(αmax − 3γ)K + ((γ + αmax)K)2

2γ

N ss,2
B =

β(2γ − αmax)− αmax
(

(αmax + γ)K ∓
√
β2 + 2β(αmax − 3γ)K + ((γ + αmax)K)2

)
2γ(γ − αmax)

.

(7.38)

Again, these concentrations are in perfect agreement with the results from the

simulations (see figure 7.19). In this case, we keep both signs for the solutions, because
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Figure 7.19 Expansion of the two populations in the horizontal gene transfer model in
a step 1→ −1 for αB(x). D = K = 1, γ = 0.1, β = 0.08. t = 1400.

although the first option (plus in N ss,2
A and minus in N ss,2

B ) is normally the one that

gives positive values for most of the parameters, there are some situations (e. g.

γK > β > αmaxK) where the correct solution is the one with the other signs. Generally,

however, and considering we normally assume αmaxK > γK > β from (5.20), we will

stick to the first solution.

The expansion of the population in the right hand side can be observed in figure 7.19.

Once the expansion up to the barrier happens, both populations expand together in the

right hand side. Also, because of the higher level of trait individuals at the right hand

side, there is a wave towards the left, of amplitude N ss,2
A that reaches the stationary

value at the same time that the initial trait population reaches the value from the

left hand side. This secondary wave travels at vs, according to the simulations, which

makes perfect sense considering the trait population invades a saturated population of

non-trait individuals.

If we look at the expansion of the total population in figure 7.19, there is some delay

in the expansion due to the fact that the non-trait population cannot invade the right

hand side of the system, and the trait population has still to catch up. This is a

similar effect to that observed in the simple mutation model and can be observed, for

different values of β in figure 7.20. As can be seen, the waiting time increases almost

linearly with β, although the waiting time values, that are estimated graphically, have

a considerable error. While it makes sense that the waiting time increases with β
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Figure 7.20 Waiting time in the horizontal gene transfer model for different values of
β. The rest of the parameters in the simulation are kept at the same
values. Points with their associated error represent simulation data, while
the straight lines join the points to illustrate the evolution of the graph.

(because as β increases vs is smaller), more simulations would be necessary to gain

insight into this dependence.

7.4 Summary and non-mathematical model.

Throughout this chapter we have studied the propagation of an evolving population

and its interaction with a fitness barrier. The propagation in a free space, where there

is no fitness selection, happens as in previous chapters. Nevertheless, the moment the

population reaches the fitness barrier, only the individuals with a trait are able to go

further, while the non-trait individuals stop at the boundary. We have also seen how

in some cases, when the trait individuals can lose its trait, the expansion of the trait

population across the barrier is accompanied by a small wave of non-trait-carrying

individuals.

All the effects observed in the simulations, along with all the amplitudes of the waves

and all the speeds have been predicted analytically, obtaining excellent agreement with

the simulations. We have also explained how the interactions with boundary conditions

and different carrying capacities work, which is useful in order to understand better

all these phenomena. In the rest of this section, we present a non-mathematical model

181



that summarizes Part III of the thesis, and that explains all these processes with an

epic tale and without equations.

Non-mathematical model: The story of Rigilusburgh warriors

In the old city of Rigilusburgh, as the legend says, the finest warriors were trained day

and night to protect the city. Among them, and as always, there were cowardly and

brave soldiers. The braves dreamt of future battles where they would fight with honour,

while the cowards were quite happy to stay around, showing off and pretending that

they were eager to go to war. Braves were calm by nature and did not need anyone

to tell them what to do, but some insecure cowards came around, and the courage of

the braves was such, and the energy of their speech was such, that the cowards became

brave just by listening to them. However, the braves lived a solitary tough life, and

sometimes that was too much to bear. Over-weighed by worries and inexistent battle,

they became cowards themselves, and came back to find refuge in the crowd.

One day, because of the prosperity of the city, the soldiers were forced to expand and

colonize new territories. They all started together, the braves and the cowards, but at

the very front of the army, where there were not that many warriors, the braves found

themselves alone, some of them becoming cowards, the others finding it difficult to

convince cowards. This allowed the cowards to gain advantage. However, close to the

front there were still some brave soldiers who tried to call for the ones who were behind

him, and made them speed up a bit, because they still could see the new territory, free

of human activity, free of cowards.

Regrettably, at some point, the cowards took so much advantage, that the foremost

brave soldier could not see the new territory any more, it was all full of cowards. That

was a sad day. There was no point in trying to call the others to find a land he could

not see. At that point, he decided to slow down and regroup with the other braves in

order not to disappear completely. From that moment on, the braves advanced slowly

inside the mass of cowards, trying to convince as many of them as possible, and trying

not to become cowards themselves.

Suddenly, the danger came, the enemy gates were reached, and then all the cowards

that had thought too much of themselves died easily at their enemies’ hands. They

called for the braves, they begged for them to come, but they were far behind, and the

Rigilsburgh soldiers died, and the city knew nothing about them.

It was only after some time that the braves slowly caught up and finally found the
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enemy. All their coward friends were piled up at the gates while the enemies laughed

from above. That offense ought to be avenged, and it would be indeed. They were

brave soldiers from Rigilsburgh after all. They grouped, they fought, they took their

bows and arrows, their shields and swords, and the heads of the enemies were rolling

down the walls before the night came. The brave soldiers took the wall and saw what

laid in front of them. A land infested with enemies, a land for the braves to conquer,

and endless battle to fight.

As the braves defeated the enemy, a few cowards joined them after the wall, but most

of the territory was still dangerous, and the bodies at the wall put most of them off, so

it was only a few of them that were not coward enough to join the brave, and waited

there for the moment to become brave themselves, to live in this land of endless battle.

This story of the Rigilsburgh warriors illustrates the third part of the thesis. The

cowards are the non-trait population, while the braves are the trait population. The

cowards becoming braves correspond to the horizontal transfer of section 7.3.3, and it

requires a brave and a coward soldier to meet. The braves becoming cowards correspond

to the loss of the trait, and it is proportional to the brave population, and does not need

interaction with the cowards. The motion of the warriors correspond to the diffusion

terms in the equations, while the logistic growth corresponds to the use of the resources

in the new territory.

At the tip of the wave, since the loss of the trait is stronger than direct contact among

populations, the cowards win advantage. However, there are some brave soldiers in

front of the coward front, and that is why they pull the rest of the brave population,

calling for them. However, the moment they are overcome by the cowards front, they

slow down and all the brave (trait) population goes at the same (slower) speed (vs).

This is the free propagation of the two populations described in chapters 5 and 6.

Initially, some of the individuals in the trait are moving at vtip in front of the kink, i.e.,

in front of the non-trait population front. After a while, this front overcomes the trait

wave tip, and all the individuals with a trait moves at a smaller speed.

Finally, when a fitness barrier/the enemy is reached, it is only the braves who can

continue, and now expand at a much larger speed, happy to fight and live in the new

environment, free of cowards. However, there are some cowards who still join them in

a small quantity. This has been described in the last sections of this chapter: the trait

population moves at the maximum speed v = 2
√
αmaxDK in the new territory, but

because of the trait-loss term, there is a small population of non-trait individuals that

travels with them.
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Part IV

Conclusions
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Chapter 8

Conclusions

From the small size of the genetic switch to the macroscopic scale of a population

expansion, we have described how gene competition plays a fundamental role in different

processes. From the synthesis of proteins through gene expression, to the growth of

an individual in an evolving environment, information carried by genes affects many

phenomena observed in nature. Remarkable behaviours such as bistability in the

generation of proteins or transitions in the value of the speed of a whole population

result from competition among different genes.

The main models we have presented in this thesis, that is, the exclusive switch and the

system of coupled Fisher-KPP equations, are both very general. Despite their apparent

simplicity, they have the virtue of accounting for a large amount of phenomena. On

the one hand, we have shown how the techniques used to compute the probability

distribution of the exclusive genetic switch are useful in order to characterize other

systems of similar nature. On the other hand, our findings for the speed of coupled

Fisher-KPP equations are valid not only for our case but for all systems that incorporate

the same linear terms. Moreover, the speed selection criteria we have come across will

be useful to study more refined sets of equations, e.g. with different diffusion coefficients

[133–135].

In the second part of this thesis we have mainly studied the exclusive genetic switch.

We have developed, as far as we are aware, the first analytical exact solution for its

stationary probability distribution. The perturbative series that we have computed

characterizes the probability distribution of the switch in an accurate way. For standard

E. coli values and also for many others, we have observed that our solution reproduces

the probability distribution in an appropriate manner, not only qualitatively but also
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quantitatively. The methodology we have developed could be used to characterize other

relevant switches, such as the non-exclusive switch or the self-regulating gene. Let us

observe that in the latter case, the system is formed by only one gene, but in this case

we also consider the population of mRNA molecules, apart from the proteins. This

means our formalism is valid for a range of systems that do not need to be identical to

a genetic switch.

We have also found some interesting limit solutions for the switch, and understood

how some extreme values for the parameters influence the protein dynamics. When

certain values are reached, the switch virtually disappear, as it no longer plays a role in

the dynamics of the system. We have learned how the switch can be studied through

simulations and how different mean field theories can be applied to it. These theories

reveal how important the correlations in the system are, as their predictions differ from

the simulation results.

One of the most relevant facts in the study of the exclusive genetic switch is that

its bistability can also be characterized with the use of information theory. Measures

such as the covariance, the Shannon entropy and the Fisher information help us to gain

insight into different properties of the probability distributions, and into how bistability

may or may not be related to symmetry breaking. Information theory is starting to be

applied to biophysics systems [148] and it is opening new ways of studying them. This

useful application of the theory to genetic switches will hopefully encourage further

studies of this discipline.

Throughout the third part of the thesis, we have studied a model for coupled Fisher-

KPP waves. The speed selection criterion found in these chapters is one of our main

contributions to the theory of Fisher-KPP waves and the propagation of populations.

In this case the speed reached by the waves does not depend only on the steepness of the

initial condition, as it does in single Fisher-KPP waves, but also on the mechanisms

of interaction among the two populations. Through the study of different regions

of the waves of expansion, we have elucidated how the coupling leads to different

speeds, and moreover, how the speed changes in time and how it depends on the initial

condition. The colonization of an established and of an expanding population also

present distinctions that can be understood through our calculations. It is important

to realize that the setting of different initial conditions help us to control in an essential

way the eventual behaviour of the system.

The observed speed transitions and the obtained formulae for the speeds are hopefully

the beginning of the explanation for more entangled phenomena in which the interaction
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of populations determine the speed in a non-trivial way. We have illustrated the

speed transitions through simple calculations but also through a detailed study of the

population densities and the propagation of waves. We hope that these achievements

motivate other researchers not only to perform further analytical calculations on other

systems, but also to build experiments where these changes may be observed, in order

to see how our predictions may compare to experimental data.

We have also seen how setting a fitness landscape for different populations has a

dramatic effect in the propagation of them. In this case, the competition for resources

and the interaction among populations is again fundamental. For example, we have

determined how non-trait carriers would disappear in a medium where they cannot

grow if they expand as an isolated population, but how they could survive if another

population that interacts with them propagates at the same time, even if they both are

actively competing for resources.

The study of the propagation of two populations in a free medium (that is, without

a fitness landscape) constitutes a basis for the study of more complicated scenarios.

For situations in which a fitness profile is included, the speeds of propagation and the

stationary population densities can be understood with our methods, which help us to

characterize the rich phenomenology in these systems. This could also be the starting

point for the study of more realistic scenarios [16] in which the individuals interact with

the fitness landscape in a more complex way.

We hope we have shed some light on the understanding of gene competition, and how

it affects the behaviour of different systems. We also hope that our findings help

researchers not only from physics, but also from biology and medicine to gain some

understanding of phenomena such as genetic bistability, propagation of diseases, or

spreading of a beneficial genetic trait. As we mentioned before, to go forwards in

science often involves to look at other areas of knowledge in order to understand other

people’s findings. Hopefully this work will be one of the many contributions that help

others to go forwards.
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Appendix A

Analytical methods for the exclusive

switch systems of linear PDEs

In this appendix we present a formal approach to the computation of the stationary

probability distribution of the exclusive genetic switch. This method is explained in

[82], whose lines we follow in our solution, and generally helps us to solve or simplify

a system of linear first-order partial differential equations, where the coefficients need

not be constants. This calculation has been reported before in our publication [1].

First, we write our equation for the generating functions of the probability distributions

as a three-component vector ~K(z1, z2). Therefore, equation (4.5-4.7) can be written as:

A(z1, z2)
∂ ~K(z1, z2)

∂z1
+B(z1, z2)

∂ ~K(z1, z2)
∂z2

= C(z1, z2) ~K(z1, z2) + ~d(z1, z2) (A.1)

where A,B and C are 3× 3 matrices, and ~d and ~K are column matrices. The general

requirement to solve the system is that detA(z1, z2) 6= 0 or detB(z1, z2) 6= 0 [82].
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For our case the expression of the matrices is:

A(z1, z2) =


d− (d+ b)z1 0 0

b d(1− z1) 0

0 0 d(1− z1)



B(z1, z2) =


d− (d+ b)z2 0 0

0 d(1− z2) 0

b 0 d(1− z2)



C(z1, z2) =


−g(z1 + z2 − 2) −uz1 −uz2

0 −[g(z1 − 1)− u] 0

0 0 −[g(z2 − 1)− u]



d(z1, z2) =


0

0

0

 (A.2)

Notice that ours is a particular case of the possible examples this method can potentially

deal with. For our case the matrix ~d is zero, and A and B only depend on z1, z2,

respectively.

The requirement detA(z1, z2) 6= 0 or detB(z1, z2) 6= 0 is fulfilled almost in every point.

We are then allowed to invert the matrix B and multiply by its inverse B−1 [82]. The

matrix A is then transformed into:

A′ = B−1A =


d−(d+b)z1
d−(d+b)z2

0 0
b

d(1−z2)
(1−z1)
1−z2 0

−b[d−(d+b)z1]
d(1−z2)(d−(d+b)z2) 0 (1−z1)

1−z2

 (A.3)

whose eigenvalues, written as columns in a 3x3-matrix R are:

R =


0 0 −d(z1−z2)

d(z1−1)+bz1

0 1 d−(d+b)z2
d−(d+b)z1

1 0 1

 (A.4)

This system can be transformed by applying elementary matrix operations [82]:

C ′ = B−1C; ~K = R(z1, z2)~v (A.5)

The method then states [82] that the components of v obey the following system of
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equations:
dvi
dz2

=
2∑
j=0

ĉijvj (A.6)

where ĉij are the components of the matrix C ′ after performing the transformation

with the matrix R, that is: Ĉ = R−1C ′R.

As can be seen from the last equation, derivative terms have become uncoupled. As

a result, even if this system cannot be solved analytically, it is easier to deal with it

computationally [82]. The problem in its final formulation can be written as the system

of equations:

dv0
dz2

=
[

(g + u)z1 − gz2
d(z1 − z2)

]
v0 +

[
uz1(z1 − 1)

d(z1 − z2)(z2 − 1)

]
v1

+
[
−dg(z1 − 1)2 + b[d− (g + u)z1 + gz1z2]

d(z2 − 1)[d(z1 − 1) + bz1]

]
v2

on
dz1
dz2

=
1− z1
1− z2

dv1
dz2

=
[

uz2
d(z2 − z1)

]
v0 +

[
(z1 − 1)[−gz1 + (g + u)z2]

d(z2 − z1)(z2 − 1)

]
v1

+
[
dg(z2 − 1)2 + b[−d+ (g + u)z2 − gz1z2]

d(z2 − 1)[d(z1 − 1) + bz1]

]
v2

on
dz1
dz2

=
1− z1
1− z2

dv2
dz2

=
[

uz1
d(z2 − z1)

+
u

d− (d+ b)z2

]
v0 +

[
uz1[d(z1 − 1) + bz1]

d(z1 − z2)(d− (b+ d)z2)

]
v1

+
[
−u+ g(z1 + z2 − 2)

[d(z2 − 1) + bz2

]
v2

on
dz1
dz2

=
d− (d+ b)z1
d− (d+ b)z2

(A.7)

where e.g. “on dz1/dz2 = (1− z1)/(1− z2)” means that the first equation holds on the

curve z1 = z1(z2) that is obtained by solving the second differential equation.

Although the method here presented in principle solves exactly the system of partial

linear differential equations, the actual integration of equations (A.7) looks like a

formidable task.

193



194



Appendix B

Preliminary analytical study of the

Fisher-KPP equation with a fitness

landscape

B.1 Equation for a position-dependent growth rate α = α(x)

To model the case of a fitness barrier we now address the case where α depends on x.

Consider a Fisher-KPP equation where the growth term depends on x:

∂u

∂t
= α(x)u(K − u) +

∂2u

∂x2
(B.1)

Similarly to the case of constant α [22], we could try to find a form of the solution

U(z), where z would be in general z = z(x, t).

The main advantage of the procedure we have used to study Fisher-KPP equation

(section 2.6)is that it can be easily expressed as a function of a single variable z = x−ct
[22]. For the current equation B.1, if we write the general substitution z = z(x, t) we

find U(z):
∂U

∂z

∂z

∂t
= α(x)U(K − U) +

∂U

∂z

∂2z

∂x2
+
∂2U

∂z2

(
∂z

∂x

)2

. (B.2)

We would like α(x), which depends on x and not on z, to cancel with the other factors,

in order to write an equation that only depends on the variable z, i.e., in order to obtain
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an ordinary differential equation. This implies:

∂z

∂t
= k1α(x) (B.3)

∂2z

∂x2
= k2α(x) (B.4)(

∂z

∂x

)2

= k3α(x) (B.5)

where k1, k2, k3 are just constants of proportionality.

Starting with the first condition B.3, considering we cannot set k1 = 0, (because if
∂z

∂t
= 0, how could we write

∂U

∂t
?), we have:

∂z

∂t
= k1α(x)⇒ z = k1α(x)t+ f(x) (B.6)

Combining this with the second condition B.5:

∂z

∂x
= k1α

′(x)t+ f ′(x) =
√
k3α(x) (B.7)

And now, considering the right hand side term does not depend on time:

α′(x) = 0, f ′(x) =
√
k3α(x) = constant (B.8)

where again, we have taken into account that
∂z

∂x
6= 0. This means that the

simplification of the equation into an ordinary differential equation in z would only

work if α(x) is a constant, which is just the regular case. Also, from conditions B.3,

B.5 the change of variable z must fulfill
∂z

∂x
,
∂z

∂t
= constant, so it must be written as:

z = k1t+ k2x (B.9)

which is again the usual substitution (section 2.6), up to a multiplying constant. This

means that for a space-dependent growth rate we cannot reduce the equation to a single

variable, at least following the standard method described in section 2.6.

B.2 Equation for a position-dependent carrying capacity

K = K(x)

We now consider the case where the growth rate α is constant but the maximal

population density is space-dependent. The problem then consists of solving the logistic
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equation where the saturation concentration depends on the position, that is:

∂N

∂t
= αN(K(x)−N) +D

∂2N

∂x2
(B.10)

If we try again to find a function N(z) that represents a travelling wave [22], where

z = z(x, t) we get:

∂N

∂z

∂z

∂t
= αN(K(x)−N) +

∂N

∂z

∂2z

∂x2
+
∂2N

∂z2

(
∂z

∂x

)2

(B.11)

Fisher-KPP wave analysis cannot be applied here in the same way it is done for the

constant parameters case. We could never write the term αN(K(x) − N) as a pure

function of z, since if we divide by K(x) to simplify the first term, the second will

include it then. Basically the variables x and z will always be mixed in the terms. An

alternative to achieve the simplifications of the Fisher-KPP equation, that is, to cancel

the terms in the x and t so we end up with an equation which is neatly written just

in terms of z, is to write N = K(x)f(z), so there is a common factor of K(x) in the

logistic term. This would lead to:

∂N

∂z
= f(z)

∂K

∂x

∂x

∂z
+K

∂f(z)
∂z

∂2N

∂z2
= 2

∂f(z)
∂z

∂K

∂x

∂x

∂z
+ f(z)

[
∂2K

∂x2

(
∂x

∂z

)2

+
∂K

∂x

∂2x

∂z2

]
+K

∂2f(z)
∂z2

(B.12)

If we now try to make all the coefficients proportional to each other, in order to eliminate

x, we will quickly find inconsistencies. Using some of the terms we will find that the

z must depend linearly on t and quadratically on x, that is, z = ax2/2 + bx + αt +

c. However, when we impose the condition
∂2z

∂x2
∝
(
∂z

∂x

)2

, our z will not respect

this condition, and therefore we cannot cancel the terms in a simple way. Thus no

simplification similar to the one used in the standard Fisher-KPP equation is possible.

However, this does not mean that there is no other technique by which the equation

could be studied.

For example, we can study the stationary state in special cases. The equation for the

stationary state is:

0 = αN(K(x)−N) +D
∂2N

∂x2
(B.13)

is non-linear, and programs like Mathematica are not able to solve it, even in simple

cases such as K(x) = ax + b. However, this is a case that we can solve easily, simply
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by observing that

K(x) = ax+ b⇒ N ss = 0, or N ss = ax+ b (B.14)

We do not discard the possibility that there are other solutions of the stationary

equation B.13 in this linear case.

Another case in which we can find a solution comes from a closer look at the equation.

If we multiply out the first term, we get:

0 = αNK(x)− αN2 +D
∂2N

∂x2
(B.15)

Let us make the ansatz that N(x) = AK(x). We then find that the first two terms are

proportional to N2, and the third one will also be ∝ N2 if
∂2N

∂x2
= CN2, where C is

a constant. Solving the resulting differential equation with Mathematica, we get as a

solution:

K(x) =
(
C

6

) 1
3

WP

[
C

1
3 (x+ κ1)

6
1
3

, 0, κ2

]
≡W (x;C, κ1, κ2) (B.16)

where WP (z, ω1, ω2) is a Weierstrass Elliptic Function, which is an elliptic function of

second order with a double pole in z = 0 [149]. Its expression depends on periods 2ω1

and 2ω2 and can be written as [150]:

WP (z, ω1, ω2) =
1
z2

+
∞∑

m,n=−∞

[
1

(z − 2mω1 − 2nω2)2
− 1

(2mω1 + 2nω2)2

]
(B.17)

where
∑

is extended to all the terms that have a non-zero denominator.

With the specific profile of K(x) given by B.16 the result for N(x) is:

0 = αA(K(x))2 − αA2(K(x))2 +DAC(K(x))2

⇒ A = 0, or A = α+DC

⇒ N(x) = 0, or N(x) = (α+DC)W (x;C, κ1, κ2)

(B.18)

The steady state solution will then have the form of figure B.1.

Taking another look at the stationary state equation, we can see that it is quite similar

to the Riccati equation [151]:

dy

dx
− a(x)y2 − b(x)y − c(x) = 0 (B.19)
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Figure B.1 Solution for the special case K(x) = W (x;C, κ1, κ2).
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This can be turned into a linear differential equation [151] and solved in general. The

difference here is the second derivative and it seems that we cannot do the same kind of

transformation, regrettably. Maybe with some ingenious change of variable this could

be done, however.

There is another kind of equation called the generalized Riccati equation [152], which

includes a second derivative term, but the form of our functions is not the same as

the one stated in this generalized equation. Having no more information about the

analytical solution of this equation, we proceed instead with simulations.
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