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Abstract

Most embedded devices are based on heterogeneous Multiprocessor System on Chips

(MPSoCs). These contain a variety of processors like CPUs, micro-controllers, DSPs,

GPUs and specialised accelerators. The heterogeneity of these systems helps in achiev-

ing good performance and energy efficiency but makes programming inherently diffi-

cult. There is no single programming language or runtime to program such platforms.

This thesis makes three contributions to these problems. First, it presents a frame-

work that allows code in Single Program Multiple Data (SPMD) form to be mapped

to a heterogeneous platform. The mapping space is explored, and it is shown that the

best mapping depends on the metric used.

Next, a compiler framework is presented which bridges the gap between the high

-level programming model of OpenMP and the heterogeneous resources of MPSoCs.

It takes OpenMP programs and generates code which runs on all processors. It delivers

programming ease while exploiting heterogeneous resources.

Finally, a compiler-based approach to runtime power management for heteroge-

neous cores is presented. Given an externally provided budget, the approach generates

heterogeneous, partitioned code that attempts to give the best performance within that

budget.
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Lay Summary

The world is witnessing an ever increasing demand for computational resources. The

industry has responded by building huge centralised data-centers and increasing com-

putational capabilities of embedded devices. To improve performance, these platforms

also adopted multicore architectures where there are many processors of the same kind.

Power is often a limiting factor in both these cases. Computer architects have long

realised this and have added specialised processors for a particular kind of task. The

presence of specialised processors improves the power efficiency but makes it very dif-

ficult to create software for these platforms. It is not clear how to partition work among

all the processors, unlike homogeneous multicores, where work could be divided uni-

formly. Also, programming languages and libraries previously used for programming

homogeneous multicore processors become ineffective in the presence of heteroge-

neous specialised processors. Finally, due to thermal effects, all the processors cannot

be powered on simultaneously.

This thesis looks at how OpenMP, a programming language extension typically

used for programming homogeneous multicore processors, can be used for heteroge-

neous processors and examines how work can be partitioned among the heterogeneous

processors. It also presents methods for achieving good performance in the presence

of power budgets.
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Chapter 1

Introduction

Ever since the birth of microprocessors, there has been a demand for more computation

speed. Historically, this demand has been met by improvements in computer architec-

ture design and clock frequency. Some of the improvements in computer architecture

seen over the years include pipelining, branch prediction, superscalar processors, out

of order execution, speculative execution, etc. The first Intel 4004 microprocessor re-

leased in 1971 had a clock frequency of 740 kHz. Thirty years later, the Intel Pentium

4 had clock frequencies more than 2 GHz. These improvements were possible due to

advancements in process technology and miniaturisation of transistors which ensured

that more and more transistors could be packed on a chip. For e.g., the Intel 4004 was

built with 10µm technology and had around 2,300 transistors while the Intel Pentium 4

was built with 180nm and had around 42 million transistors. The increase in transistor

count happened approximately in line with Moore’s law[84] which predicted a dou-

bling in the number of transistors every year. At the same time, Dennard’s scaling [44]

predicted that the power density will remain constant as the transistor size reduces.

Hence, Dennard’s scaling and Moore’s law allowed uni-processors to exponentially

improve the performance in an energy efficient manner.

However, this well-scripted success story for uni-processors began to break down

at the beginning of this century. The difference in the clock frequency of the memory

and processor increased and soon memory speed became the bottleneck. Improve-

ments in performance from Instruction Level Parallelism diminished as not enough

parallel instruction could be found in a single thread. Increasing frequency led to

high power consumption and heat generation. Figure 1.1 shows that the exponential

increase in frequency and power has tapered off around 2005 indicating a transition.

Hence, at the turn of this century, the processor industry witnessed a major transition

from uni-processors to multicore processors. The processor designers concentrated
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Figure 1.1: Note the flattening of the curves beginning around 2005.

on obtaining improved performance by increasing the number of cores. Multicore

processors are well suited for data-parallel applications and parallel workloads. Re-

searchers suggested adding multiple cores to a system and processors with even a

thousand cores[68] have been discussed. In the industry also there has been a pro-

liferation of homogeneous multicores. The high-performance Intel Xeon Processor

E7-8880 v3 has 18 cores.

But the success with homogeneous multicores also seems to be short-lived. As

process technology improved, Dennard’s scaling broke down which caused a huge

increase in power densities. It is no more possible to switch on all the transistors si-

multaneously without causing thermal safety issues. Thus, due to power and thermal

limitations, not all portions of the chip can be switched ON at the same time. The

portions that cannot be powered ON are called Dark Silicon. When only a subset of

the cores can be active at the same time, it is better to have cores of different types than

the same type. The presence of heterogeneous cores provides opportunities to match a

task with the most efficient core for that task and thus leads to better usage of the power

budget. Hence, Dark silicon leads us to heterogeneous multicore processors. Hetero-

geneous processors differ from homogeneous processors in that the cores are all not of

the same type. The difference among cores can be in the ISA or micro-architecture.

Research[64] has shown that heterogeneous multicores are better when considering

energy delay trade-offs. A multi-core heterogeneous architecture can support a range

of execution characteristics not possible in a single-core processor. It is beneficial for

workloads with different characteristics. By having processing units with different

characteristics, computation can be mapped to specialised devices that perform a spe-

cific type of task more efficiently than other devices. Thus, heterogeneous computing
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systems can deliver better energy-delay trade-offs [64], [66]. Recently, with the rise of

GPGPU (general-purpose computing on GPUs), heterogeneous computing has become

more mainstream. An example for a commercial heterogeneous multicore processor

is big.LITTLE[18]. It consists of a big (Cortex A15) and a small (Cortex A7) proces-

sor. The embedded systems world has also adopted heterogeneous systems. OMAP[6]

from TI, Snapdragon[13] from Qualcomm and Tegra[14] from NVIDIA are examples

of popular heterogeneous multicores in the mobile embedded systems market.

Heterogeneous processors are found in both the general purpose as well as the em-

bedded space. The design of embedded Multiprocessor System on Chips (MPSoCs)

has been largely application driven with specialised units such as ASICs and DSPs

targeting media decoding or digital signal applications. Embedded applications de-

velopers are typically expert programmers, where the cost of porting and tuning can

be amortised across many shipped devices. Because of this, the programming mod-

els supported by MPSoCs typically tend to be application driven and change from

one platform or generation to the next. The design of general-purpose heterogeneous

many-cores has been, by contrast, more conservative. Large scale parallelism is sup-

ported, but there is considerably less diversity amongst cores. Same-ISA different scale

systems such as big.LITTLE or GPU accelerator approaches have dominated. The rea-

son is that general-purpose programmers require higher-level programming interfaces

as the systems are less domain specific. The relative cost of programming is higher

and cannot be amortised over many shipped devices

Energy and power have been the driving force behind the gradual convergence of

two communities: embedded and general-purpose computing. Both have moved to

parallel platforms containing specialised processors. The embedded community were

early adopters of such platforms called MPSoCs as they provided cost-effective per-

formance and are energy efficient. The general-purpose community has only recently

adopted such platforms, now described as heterogeneous many-cores, as they provide

high performance within acceptable power densities. The embedded world has led

in system diversity, and it is likely that tomorrow’s general-purpose heterogeneous

many-core platforms will resemble the MPSoCs of today. This thesis is concerned

with connecting these two worlds: the high-level mapping approaches supported in the

general-purpose world with MPSoCs. This has the potential to provide today’s MP-

SOC programmers with a portable programming environment and allow the general-

purpose programming of tomorrow’s heterogeneous many-cores.

Though there are advantages for heterogeneous multicores, they are very difficult
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to program. The difficulty arises due to lack of high-level programming models, multi-

ple address space, lack of cache coherence and the fact that cores have different ISAs.

Hence, it remains to be seen whether running programs on heterogeneous processors

provides performance or energy improvements. To obtain benefits from multicores, the

programs have to be parallelised. Parallelising a program to achieve performance ben-

efits on multicore processors is a difficult task, and there are several papers dedicated

to this task. This thesis deals with the relatively simpler case of data-parallel programs.

In particular, this thesis considers data-parallel OpenMP[42] programs. Since the par-

allelism is already explicitly provided by the OpenMP programs, the most important

task is to map the parallelism to the heterogeneous cores.

The next section presents the problems that have to be solved to map data-parallel

programs to heterogeneous multicores processors.

1.1 Problems

The following sections present problems to be solved for effectively using heteroge-

neous multicore processors for data-parallel programs.

1.1.1 Partitioning

The programs are data-parallel. Hence, mapping involves partitioning the work among

the processors. So, the first question to answer is how to partition the data-parallel pro-

grams such that performance and energy benefits can be obtained. If the target archi-

tecture is homogeneous multicores, then a uniform partitioning is desirable. However,

with heterogeneous multicores, it is not clear how to partition a program. For best run-

time performance it is obvious that work has to be partitioned among the processors

but what is not clear is the amount of work to be assigned to each processor. The het-

erogeneous processors can have different clock frequencies, ISAs, different strengths

in processing and different memory configuration.

For energy, the folklore [130] is that running the fastest is best for energy. Since

heterogeneous multicores provide opportunities for energy-delay trade-offs, it is not

clear whether this property still holds. Is it best to run everything on the fastest proces-

sor, or is it best to choose the partition giving the best runtime, or is it best to run on

the most efficient processor.

To evaluate partitioning, a runtime framework has to be built to overcome the ob-

stacles posed by heterogeneous processors. Since the address spaces of processors

are different, pointers are not portable. The runtime framework has to perform some

address translation so that all the processors can work on different partitions of an ar-
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ray. If the caches are not coherent, then the runtime should provide API to flush or

invalidate caches so that processors read the updated values.

1.1.2 Compiler Framework

Once the partitioning problem is solved, the next task is to develop a compiler frame-

work to automatically map data-parallel OpenMP programs to heterogeneous proces-

sors. OpenMP is a popular high-level parallel programming model and is widely sup-

ported on parallel hardware. Programmers only need to express parallelism without

concern as to the mapping and scheduling of work to the underlying platform. Due to

the wide availability of OpenMP libraries, it also offers some degree of performance

portability. OpenMP, however, is not directly supported on heterogeneous systems,

due to lack of coherent shared memory and multiple operating systems. Exploiting

heterogeneity is avoided, and only the CPUs are utilised by the OpenMP runtime. The

standard method of accessing non-CPU cores is to use them as accelerators accessed

via platform specific libraries. This style of programming requires the application to

be first split into separate tasks that fit the library API. The main CPU then acts as a

coordinator using a Master/Slave programming model. Although this approach means

that the programmer does not have to deal with different operating systems and man-

age memory coherence, it is highly system specific and may introduce excessive data

traffic. Furthermore, it requires the programmer to perform platform-specific low-

level partitioning of work into parallel activities. While this approach may work for

specialised applications, it is not suitable for general data-parallel programs.

1.1.3 Power Budget

Power is a first class constraint in modern processor design. It is the driving force

behind the shift to multi-cores in today’s computing systems. Ever-higher clock fre-

quency scaling is unsustainable due to power-density and thermal limitations [105].

Parallel programming on multiple cores has the potential for increased performance

without increased power. Power is also the reason for increased processor heterogene-

ity. Dark silicon [45] suggests that as it will not be possible to simultaneously power-up

all the cores on a chip, cores should be specialised to best utilise the available power.

Simple heterogeneous GPU based systems are now common-place. More chal-

lenging heterogeneous platforms are likely to become more prevalent in the future like

TI OMAP4430 [6] and Samsung Exynos 5422 [3] platforms which contain heteroge-

neous CPUs, heterogeneous GPUs and DSP cores. The non-CPU processors in these

platforms are generally used for offloading to improve power efficiency/performance.
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These processors have different micro-architecture, memory hierarchy and/or Operat-

ing Systems. There is no single programming language, library or runtime to program

these platforms. Hence, these are highly challenging to program but offer the potential

for excellent power and performance.

Given that, it is not possible to run all cores at their maximum clock rate frequently

for long periods; runtime power-management is needed to keep within the thermal

constraints[105]. Such power management is the responsibility of the operating sys-

tem or hardware which uses DVFS or power gating to reduce power at the expense

of performance. This approach works well with homogeneous multi-cores or single-

ISA heterogeneous cores as there is no need to modify the binaries. However, if, due

to dark silicon [45] there are diverse cores each with their own ISA and specialised

behaviour, there is no straightforward approach to using the right cores based on pro-

gram suitability and available power budget. The task is to select the cores and the

hardware settings that meet the budget and give the best performance and then allocate

the appropriate amount of work to each core.

1.2 Contributions

This thesis presents the following contributions.

1. Develops a framework for manually mapping data parallel programs to OMAP4,

a highly heterogeneous systems. It presents a detailed energy measurement

methodology. It explores a partitioning design space and shows its dependency

on optimisation goal: energy vs time. A straightforward partitioning approach

is presented and evaluated. It is shown that improvements can be obtained by

partitioning programs for heterogeneous systems.

2. Develops a Clang/LLVM based compiler approach to map OpenMP programs

to MPSoCs. This compiler framework bridges the gap between the high-level

programming model of OpenMP and the heterogeneous resources of MPSoCs.

It takes OpenMP programs and generates code which runs on all the proces-

sors. It delivers programming ease while exploiting heterogeneous resources.

The compiler is based on a Single Program Multiple Data model where data lay-

out is explicitly determined, allowing reasoning about memory coherence and

synchronisation placement. This compiler approach achieves significant perfor-

mance improvements over existing approaches on the TI OMAP4.

3. Develops a compiler-based approach to runtime power-management for hetero-
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geneous cores. Given an externally provided power budget, it generates hetero-

geneous, partitioned code that attempts to give the best performance within that

budget. At runtime, it selects parameters determining the workload on each core.

A number of different selection policies that combine program and system infor-

mation are presented. This approach is applied to parallel OpenMP benchmarks

on the OMAP 4430 and Exynos 5422 platforms.

1.3 Thesis Organisation

The thesis is organised as follows.

Chapter 2 presents the background necessary to understand the work presented in

this thesis. This chapter presents an introduction to Multiprocessors and then

discusses details, examples and challenges of heterogeneous multicores. Com-

piler issues in heterogeneous multicores are presented next. And finally, details

of the measurements and benchmarks used in the experiments in the thesis are

discussed.

Chapter 3 presents a survey of related work. Work related to mapping parallelism,

Programming and Compilers for heterogeneous programming and Energy mea-

surements are discussed.

Chapter 4 presents a design space exploration in the partitioning of data-parallel pro-

grams for heterogeneous multicore processors. Through the exploration, it is

shown that the best partitioning varies with optimisation criteria and bench-

marks. A straightforward method for partitioning programs is also presented.

Chapter 5 presents a compiler framework for mapping data-parallel programs to het-

erogeneous MPSoCs. It is shown that smart insertion of cache flushes is neces-

sary to attain good performance in a non-cache coherent heterogeneous multi-

core processor.

Chapter 6 explores issues in code generation for heterogeneous processors in the

presence of a power budget. Typically, the OS or hardware changes the volt-

age/frequency using DVFS to meet the power budget. Heterogeneity provides

another dimension for meeting the power budget. This work presents an ap-

proach for code generation in the presence of a power budget for heterogeneous

multicore processors.
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Chapter 7 concludes this thesis and presents the main contributions. The chapter

also includes a critical analysis of the solutions presented as well as discusses

possible future work.

1.4 Summary

This Chapter provided an introduction to the work presented in this thesis. The Chap-

ter provided a brief overview of the problems in mapping parallelism to heterogeneous

multicores and also summarised the contributions of this thesis. Finally, it also pro-

vided the organisation of the Chapters of this thesis.

The next Chapter provides background reading for understanding the work pre-

sented in this thesis.



Chapter 2

Background

This chapter presents the technical background necessary to understand the material

presented in this thesis. The first Section 2.1 introduces multiprocessors. Section

2.2 covers heterogeneous multiprocessors which is the focus of this thesis. Parallel

programming frameworks which can be used for programming multiprocessors are

introduced in Section 2.3. Compiler issues relevant to heterogeneous processors are

described in Section 2.5. Section 2.6 describes issues in runtime and power mea-

surements. Finally, Section 2.7 briefly discusses the various benchmarks used in the

experiments presented in this thesis.

2.1 Multiprocessors

There is always a demand for increased computation speed from processors. Micropro-

cessor architects have traditionally met this requirement by increasing processor fre-

quency, improvements in memory hierarchy (like caching), pipelining, compilers/pro-

cessors exploiting instruction level parallelism, etc. However, there has been greatly

diminished gains in processor performance because of limited instruction level paral-

lelism, difference in speeds of the memory and processor, and an exponential increase

in power consumption for every small increase in frequency. Due to the diminishing

returns, processors makers have adopted a different approach to improving a comput-

ers performance by adding extra processors. A multiprocessor is a processor which

contains more than one processor core.

These multiprocessors can directly address and access all the memory in the sys-

tem. However, depending on the location/speed of memory access, the Multiproces-

sors are generally categorised into two types. In Uniform Memory Access (UMA)
machines, all processors require the same time to access any memory location. The

multicore systems used on the desktops/workstations and the MPSoCs used in em-

9
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bedded systems fall under this category. In Non Uniform Memory Access (NUMA)
machines, a processor can access the memory associated with it quickly, but to access

memory associated with another processor it requires to wait for more time. In this

thesis, the focus is on UMA machines.

Depending on the kind of processors involved, Multiprocessors can also be cate-

gorised into two, Homogeneous and Heterogeneous. If all the processors in a mul-

tiprocessor are of the same kind, then it is a homogeneous processor. Otherwise, it is

a heterogeneous multiprocessor. Most of the processors in desktops and workstations

are homogeneous.

2.2 Heterogeneous Systems

The term Heterogeneous Systems encompasses a wide variety of processor systems.

The term is commonly used to define multiprocessor systems where the processors

have different capabilities and architecture. Heterogeneous processors provide better

power-performance trade-offs. This is advantageous when a program has sections of

code with different characteristics or if the workload consists of programs with differ-

ent characteristics. Heterogeneous systems can be classified into two types based on

ISA viz. single ISA and multiple ISA.

2.2.1 Single ISA

Single ISA heterogeneous systems are systems which have processors with a single-

ISA but different micro-architecture. e.g., big.LITTLE processors from ARM.

2.2.2 Multiple ISA

Multiple ISA heterogeneous systems are systems which have processors with different

ISAs. There are mainly two types of Multiple ISA systems that are commonly seen,

CPU-GPU systems and MPSoCs. e.g., Intel IvyBridge and Samsung Exynos.

CPU-GPU Systems

The most common heterogeneous systems are CPU-GPU systems. CPU-GPU sys-

tems, as the name suggests, are heterogeneous systems with a multicore CPU and a

GPU. Traditionally, the GPUs were used for graphics processing. But over the years,

the GPUs were found to be suitable for programming data-parallel applications. These

GPUs are composed of a number of Stream Processors/Shader cores. Each core has

many hardware threads with a single program counter and works as a Single Instruc-

tion Multiple Data (SIMD) machine. CPU-GPU systems can either be discrete or
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integrated. In discrete systems (Figure 2.1a), GPUs sit on an external card which is

connected to the CPU through the PCI bus. Recently, the GPUs have been integrated

(Figure 2.1b) on the same chip like in Intel Ivy Bridge, AMD Fusion and many Embed-

ded MPSoCs like Samsung Exynos. Generally, the CPU is used for computing code

with control, and the GPU is used to compute code which has lot of data-parallelism.

DDR Memory

Shared CacheShared Cache

Main Memory

Shared Cache

Multicore CPU discrete GPU

(a) discrete

Shared Cache

Main Memory

Multicore CPU GPU

(b) integrated

Figure 2.1: GPU

MPSoCs

Multiprocessor System on Chip (MPSoC) is a VLSI system that integrates all of the

systems required to run an application on a single chip. It contains several processors

that are specialised for various purposes. MPSoCs are widely used in the embedded

systems world particularly in cellphones, network and signal processing, and multi-

media. MPSoCs started off as homogeneous systems, but later, due to performance

and power requirements, these became heterogeneous. A survey of the history of MP-

SoCs can be found in [124]. In this section two MPSoCs, viz. OMAP and Exynos are

discussed in detail.

The TI OMAP4430[7] is a typical mobile application MPSoC consisting of var-

ious subsystems including general purpose processors, a programmable multimedia

engine plus graphics and image accelerators. Figure 2.2 shows the components of the

OMAP4430 relevant to this thesis. A dual core ARM Cortex-A9 provides general

purpose computing. Both processors share a common L2 cache and address space.

There are two smaller ARM Cortex-M3s available for smaller and lower power tasks.

Both share a common L1 cache and are responsible for controlling the graphics and

image accelerators. There is also distinct programmable multimedia engine based on a

TI mini-C64X+ DSP. The PowerVR GPU cannot be currently programmed, since the
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Figure 2.2: OMAP4 block diagram

OpenCL driver is not publicly available, and is not considered in our study.

The Exynos 5422[3] is a Samsung platform consisting of 4 ARM Cortex A15 big

CPUs, 4 ARM Cortex A7 big little CPUs and 1 Mali T628 MP6 GPU. The Mali T628

consists of 2 devices: one with 4 shader cores, the other with 2. Also, there are 20

DVFS levels available on the A15s, 15 on the A7s and 6 on the Mali. A program can

run on any combination of the processors. Figure 2.3 shows the components of Exynos

platform relevant to this thesis.

Cache Coherent Interconnect

L2 Cache L2 Cache

big A15 CPU LITTLE A9 CPU

Main Memory

L2

MALI GPU

L2

Figure 2.3: Exynos block diagram
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2.3 Parallel Programming Models

Parallel programming models are abstractions for modelling parallelism in applica-

tions. There are various kinds of parallel programming models like data-parallel model,

task parallel model, stream parallel model, pipeline parallel model etc. This thesis fo-

cuses on data-parallel model.

2.3.1 Data Parallel Model

In data-parallel model, the same operation is performed on different sections of an

array at the same time. This kind of parallelism is normally found in array based

programs with corresponding parallel loops. These are programs where individual

elements of an array/data structure can be independently computed. Such programs

are widely found in embedded systems applications.

The focus of this thesis is data-parallel programs. There are many ways to imple-

ment data-parallelism. Two methods, fork-join and SPMD are discussed in the next

two paragraphs. These two methods are pictorially represented in Figure 2.4.

fork-join

In the fork-join model, execution starts as a single master thread and on reaching a

parallel region, threads of execution are forked off and later these threads join at a point

and sequential execution resumes. By default, the number of threads forked is equal to

the number of available processors. However, systems implementing fork-join model

typically provide features to control the number of threads. The number of threads are

not fixed for the whole program and can vary for different parallel regions. Fork-join

model provides ease of programming since it is necessary to only specify the parallel

regions. Fork-join does not require the data/work to be partitioned in advance. Work

partitioning is implicit in the fork-join model, and typically it is the job of the runtime

to partition work among the available processors. Since partitioning is performed by

the runtime, the work distribution can adapt to the workload. However, presence of a

runtime for partitioning and forking and joining of threads introduces overheads which

can negatively impact system performance. eg. OpenMP.

SPMD

The Single Program Multiple Data (SPMD) model of parallelism is well known and

used in a variety of settings. In SPMD, parallel tasks run the same program but operate

on independent sections of an array. It is a data-centric approach where data is first

partitioned and scheduled to processors. Computation is then partitioned and sched-
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Figure 2.4: Programming Models

uled in accordance with this data allocation. Nearly all schemes use an owner-compute

or local-write rule where the code executed on a processor is restricted to write to just

local data. Unlike the fork-join model, there is no master thread. At program start

itself, all the threads start running in parallel. The number of threads correspond to

the number of processing elements and are fixed throughout the execution of a pro-

gram. Synchronisation is not associated with the beginning or end of parallel loops

but whether or not there is a cross-processor data dependence i.e., data written on one

processor is read on a different processor. Barriers are inserted to honour such depen-

dences. e.g., Unified Parallel C (UPC) is an extension of the C language which uses

the SPMD model.

2.4 Parallel Programming Frameworks

To take advantage of the multiprocessors, a parallel programming framework should

be used. A parallel programming framework implements one or more of the parallel

programming model described in the previous section. The frameworks are usually

implemented as language extensions and libraries on top of existing programming lan-

guages like C/C++, Fortran, etc. In this section, we take a look at some relevant parallel

programming API/libraries, pthreads, OpenMP and OpenCL.

2.4.1 POSIX threads

POSIX threads (or pthreads)[85] is a portable standard for threads. pthreads API is

available for many operating systems like Linux, FreeBSD and MacOS. The API

provides functions for creating and manipulating threads. Threads are created using

pthread create and pthread join is used to wait for termination of threads. The API

also provides for mutual exclusion and synchronisation between threads. There are

also functions for signalling and waiting on condition variables. An example for vec-

tor addition using pthreads is given in Listing 2.1. The function vector add is executed

by each thread.
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s t r u c t t h r e a d p a r a m s {
i n t s t a r t i n d x ;

i n t e n d i n d x ;

} ;

void ∗ v e c t o r a d d ( void ∗ t )

{
s t r u c t t h r e a d p a r a m s ∗ t p = ( s t r u c t t h r e a d p a r a m s ∗ ) t ;

i n t i ;

f o r ( i = t p s−>s t a r t i n d x ; i<t p s−>e n d i n d x ; i ++) {
C[ i ] = A[ i ] + B[ i ] ;

}
re turn NULL ;

}

void v e c t o r a d d t h r e a d s ( )

{
p t h r e a d t t h r e a d [NUM THREADS] ;

t h r e a d p a r a m s t p [NUM THREADS] ;

i n t u n i t s i z e = N/NUM THREADS ;

i n t c u r s t a r t = 0 ;

f o r ( i n t i =0 ; i < NUM THREADS ; i ++) {
t p [ i ]−> s t a r t i n d x = c u r s t a r t ;

t p [ i ]−> s t a r t i n d x = c u r s t a r t + u n i t s i z e ;

p t h r e a d c r e a t e (& t h r e a d [ i ] , NULL, v e c t o r a d d ,

( void ∗)& t p [ i ] ) ;

c u r s t a r t += u n i t s i z e ;

}
f o r ( i n t i =0 ; i < NUM THREADS ; i ++) {

p t h r e a d j o i n ( t h r e a d [ i ] , NULL) ;

}
}

Listing 2.1: pthread vector addition

2.4.2 OpenMP

OpenMP[42] is a widely used high-level shared memory pragma based programming

language. The popularity of OpenMP is due to its ease of use and wide availability.

OpenMP consists of a set of compiler directives in the form of comment like pragmas.

These are used to mark parallel loops and tasks. There are also directives for specifying

scheduling of work, declaration of both shared and private variables and critical sec-

tions. OpenMP supports the fork-join programming model. In this model, a program

starts as a single master thread. When an OpenMP parallel construct is reached a team

of threads is forked. These threads co-operatively perform the work in parallel. At the

end of the construct all the threads join and only the master thread continues. Rather

than creating and destroying threads at the start and end of parallel regions, most im-

plementations have a pool of threads available which are used and synchronised as
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needed. An example for OpenMP vector addition is given in Listing 2.2.

# d e f i n e N 100

void v e c t o r a d d ( )

{
i n t i ;

# pragma omp p a r a l l e l f o r
f o r ( i = 0 ; i < N; i ++)

{
C[ i ] = A[ i ] + B[ i ] ;

}

re turn 0 ;

}

Listing 2.2: OpenMP vector addition

2.4.3 OpenCL

OpenCL is a programming framework for heterogeneous devices. It has gained a lot of

popularity for programming GPU devices. In the OpenCL hardware architecture, there

is a host which controls various Compute Devices. The Compute Device is composed

of many Compute Units, and each Compute Unit is further composed of Processing

Elements.

The code that runs on the host is called the host code and that which runs on the

device is called kernel code. The host code is responsible for setting up the OpenCL

environment, command queues, buffers and launching the kernel. The OpenCL buffers

are different from the memory that can be accessed by the host device. So the data

from the memory has to be copied to the device buffer before computation can begin

and copied back after computation. If the copy overhead has to be overcome then the

flag CL MEM USE HOST PTR has to be used when creating OpenCL buffers. The

host code performs all these operations using OpenCL API. Command queues have

to be created for each compute device. These queues can then be used for submitting

OpenCL kernels for execution on the compute devices. The OpenCL kernels execute

in parallel on the Processing Elements.

/ / f i l e : v e c t o r a d d . c l

k e r n e l void v e c t o r a d d ( g l o b a l i n t ∗ A,

g l o b a l i n t ∗ B ,

g l o b a l i n t ∗ C)

{
i n t i = g e t g l o b a l i d ( 0 ) ;

C[ i ] = A[ i ] + B[ i ] ;

re turn 0 ;

}
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i n t main ( i n t argc , char∗ a rgv [ ] )

{
c l i n t e r r ;

/ / Cr ea t e OpenCL queue , c o n t e x t , program e t c

c l k e r n e l = c l C r e a t e K e r n e l ( program , ” v e c t o r a d d ” ,& e r r ) ;

/ / S i z e , i n b y t e s , o f each v e c t o r

s i z e t b y t e s = N∗ s i z e o f ( i n t ) ;

s i z e t g l o b a l S i z e = N ;

/ / Dev ice i n p u t and o u t p u t b u f f e r s

cl mem dA = c l C r e a t e B u f f e r ( c o n t e x t , CL MEM READ ONLY, b y t e s , NULL,NULL) ;

cl mem dB = c l C r e a t e B u f f e r ( c o n t e x t , CL MEM READ ONLY, b y t e s , NULL,NULL) ;

cl mem dC = c l C r e a t e B u f f e r ( c o n t e x t , CL MEM WRITE ONLY, b y t e s , NULL,NULL) ;

/ / Copy t h e c o n t e n t s o f a r r a y s A and B t o d e v i c e memory

e r r = c l E n q u e u e W r i t e B u f f e r ( queue , dA , CL TRUE , 0 , b y t e s , A, 0 ,NULL,NULL) ;

e r r |= c l E n q u e u e W r i t e B u f f e r ( queue , dB , CL TRUE , 0 , b y t e s , B , 0 ,NULL,NULL) ;

/ / S e t k e r n e l argument s

e r r = c l S e t K e r n e l A r g ( k e r n e l , 0 , s i z e o f ( cl mem ) ,&dA ) ;

e r r |= c l S e t K e r n e l A r g ( k e r n e l , 1 , s i z e o f ( cl mem ) ,&dB ) ;

e r r |= c l S e t K e r n e l A r g ( k e r n e l , 2 , s i z e o f ( cl mem ) ,&dC ) ;

/ / E x e c u t e t h e v e c t o r a d d k e r n e l

e r r = clEnqueueNDRangeKernel ( queue , k e r n e l , 1 ,NULL,& g l o b a l S i z e , NULL, 0 ,NULL,NULL) ;

/ / Wait f o r k e r n e l t o f i n i s h e x e c u t i o n

c l F i n i s h ( queue ) ;

/ / Copy r e s u l t s from t h e d e v i c e

c lE n q ue u eR e a dB u f f e r ( queue , dC , CL TRUE , 0 , b y t e s , C , 0 ,NULL,NULL) ;

/ / r e l e a s e OpenCL r e s o u r c e s

c lRe leaseMemObjec t ( dA ) ;

c lRe leaseMemObjec t ( dB ) ;

c lRe leaseMemObjec t ( dC ) ;

/ / Free k e r n e l , queue , c o n t e x t , program e t c

re turn 0 ;

}

Listing 2.3: OpenCL vector addition

A single unit of the OpenCL kernel is called a work-item. Work-items are arranged in

an n-dimensional space, and the number of dimensions and the number of work-items

in each dimension is specified in the launch command. An example for OpenCL vector

addition is given in Listing 2.3. Here vector add is the kernel that gets executed on each

processing element. API calls for obtaining the platform and device IDs, creating and

destroying the context, creating and destroying the program and building the program
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are omitted for brevity.

2.4.4 Comparison

Table 2.1 compares the characteristics of pthreads, OpenMP and OpenCL parallel pro-

gramming frameworks. For all these frameworks the parallelism has to be explicitly

specified. While partitioning is explicit for OpenMP, it is implicit for pthreads and

OpenCL. OpenCL follows the SPMD model whereas pthreads and OpenMP follows

the fork-join model.

pthreads OpenMP OpenCL

Parallelism Explicit Explicit Explicit

Partitioning Explicit Implicit Explicit

Model fork-join fork-join SPMD

Table 2.1: Characteristics

2.5 Compiler

Computers are programmed using high-level programming languages. Using program-

ming languages helps raise the abstraction level and makes the programmer more pro-

ductive. Compilers help hide the details of the microarchitecture of the computer and

translate the code in a high-level language to machine code. The Compiler ensures

that the code generated is correct and the code generated matches the behaviour of the

high-level source code. In multiprocessor systems, the compiler converts the code in a

parallel programming framework and maps it to the various processors. The following

subsections discuss the role of compilers in various kinds of processors.

2.5.1 Uniprocessors

In traditional single processor systems, besides correctness, it is the job of the compiler

to optimise the generated code. The optimisation criteria is generally performance, but

in embedded systems it can be size of the generated code or energy consumption.

2.5.2 Homogeneous Multiprocessors

Compiler generates code which works along with a runtime to run threads on different

processors. Since all the processors are identical, the processors run the same code on

all the processors. Since the performance of all the processors are identical, work can

be uniformly partitioned and allocated to each of the processors.
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2.5.3 Heterogeneous Multiprocessors

Heterogeneous multiprocessors bring new challenges of its own. And the challenges

vary depending on the kind of heterogeneity involved. Since the processors behave

differently, code cannot be uniformly partitioned for all the processors. The other op-

tion is to use dynamic partitioning. But dynamic partitioning has increased overhead.

This might also introduce additional complications for insertion of barriers and cache

flushes in non-cache coherent architectures. The following paragraphs discuss issues

that a compiler for heterogeneous processors has to deal with.

ISA

If the ISA is the same as in big.Little Processors, then the same binary can run on all

the processors. If the ISA is different as in OMAP Processors, then different binaries

are required. This issue is overcome by using a source to source translator to convert

the code into intermediate form and then using separate compilers for each processor.

Cache coherency

If the caches are not coherent, then, a processor will not be able to read the values

updated by another processor. Hence, if there are inter-processor dependencies in the

code, it is the job of the compiler to insert flushes so that the processors read the

updated values.

Address space

If address space is not the same for all the processors, then pointers are not portable.

Hence, support is required from the runtime to convert the address so that all processors

have access to the same arrays/memory locations.

2.5.4 Clang/LLVM

LLVM [4] is a compiler framework. Clang is the frontend which does all the type

checking and converts the input code into intermediate format. The LLVM optimiser

then does optimisations on this IR and then a backend converts the optimised IR to

machine code.

2.6 Measurements

The experiments in this thesis mainly measure two quantities, runtime and power. This

section dives briefly into the measurement of runtime and power.
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2.6.1 Runtime

Runtime is measured separately for each core and the entire system. Runtime is mea-

sured by using the gettimeofday system call. Calls are made to this function before

and after the execution, and the runtime is the difference of the times. All the runtime

measurements are made on the CPU side. System calls form part of any communica-

tion between the processors. Hence, the runtime of these calls has to be included in

our runtime measurement. An API function which measures the system time as well

as user time is required. For these reasons, the gettimeofday API function is used.

This function is called before forking off the threads and after the threads join. The

difference in time between these two calls is the execution time.

2.6.2 Energy

Energy is the sum of power over time. Measuring power and hence energy is highly

non-trivial. This section describes in detail the methodology used to accurately mea-

sure power and discusses how it should be accounted for.

Power consumption is found by measuring the current consumed by the processor

and multiplying by the supply voltage. The current consumption cannot be directly

measured from the whole board supply since it is very noisy and hence is not accurate

enough to distinguish between partition decisions. Also, the individual consumption

of each processor has to be measured. Hence, each processor’s power consumption is

separately measured. The power consumed by the memory has to be measured. To

measure the current, a resistor is found in the path of these power rails and the voltage

drop across the resistor is measured and divided by the resistance. This method is

described in detail by Jos [115].

Power variation

The method described gives a good insight into the power consumption. However

in programs with phases, synchronisation and heterogeneous loops, the power con-

sumption varies during the execution of an application. Hence, the voltage has to be

continuously monitored. For this purpose, an oscilloscope is used, and readings are

taken every millisecond. Figure 4.7a shows the pandaboard with probes attached to

one pair of pins to take energy measurements. Figure 4.7b shows the oscilloscope with

a measurement of the processor to which the probes are attached in Figure 4.7a. The

resistance is measured using a digital multimeter. For our experiments, a Tektronix

MSO4104 oscilloscope and Agilent 34410A digital Multimeter is used. Figure 4.7d
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shows a voltage reading from the oscilloscope in the regular sampling mode for the

CPU when running the floydwarshall benchmark on the pandaboard. As can be seen,

there is significant noise in the measurement. This can be overcome using either post-

filtering using software or using the High Resolution measurement mode of the os-

cilloscope. Figure 4.7e shows the same measurement after filtering. All the rails are

measured separately and summed up to find the total power/energy consumption.

2.7 Benchmarks

Benchmark Short Name Arrays Suite

Matrix Multiplication mxm A[1024][1024], B[1024][1024], DSPstone

matm C[1024][1024]

Dotproduct dotp A[4194304], B[4194304] DSPstone

Edgedetect edge image buffer1[2048][2048], UTDSP

image buffer2[2048][2048],

image buffer3[2048][2048]

Histogram hist image[4096][4096] UTDSP

Doitgen dgen A[64][64][64], sum[64][64][64] Polybench

Regdetect regd diff[64][64][2048], Polybench

sum diff[64][64][2048],

mean[64][64], path[64][64]

FloydWarshall flwl path[512][512] Polybench

Table 2.2: Benchmarks

The benchmarks that are used in this thesis are data-parallel benchmarks taken from

DSPstone[113], UTDSP[70] and Polybench [92]. These benchmarks are parallelised

by annotating with OpenMP pragmas and then used for our experiments. Table 2.2

shows the name of the benchmark, short name used in the diagrams, the size and name

of the arrays partitioned and the benchmark suite it belongs to.

Matrix Multiplication and Dotproduct are from the DSPStone benchmark. Matrix

Multiplication multiplies two matrices and stores the result in a third matrix. Dot-

product multiples two vectors and stores the result in a third vector. Dotproduct has a

reduction. Edgedetect and Histogram are from the UTDSP benchmark suite. Edgede-

tect is an edge detection algorithm for images; it has a few convolutions and application

of a threshold. Histogram computes the histogram of an image and uses the histogram
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to make a grayscale mapping and finally uses the mapping to create the output im-

age. Doitgen, Regdetect and FloydWarshall are from the Polybench suite. Doitgen is

a multiresolution analysis kernel, and it contains some matrix operations. Regdetect is

a regularity detection algorithm for 2D images. FloydWarshall is the all-pair shortest

path algorithm.

2.8 Summary

This Chapter presented the necessary background for understanding the work pre-

sented in this thesis. The next Chapter presents a survey and commentary of published

work related to the work in this thesis.
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Related Work

There is a large amount of related work in various areas associated with mapping par-

allelism for heterogeneous systems. A survey and discussion of the related work are

presented in this Chapter. Section 3.1 presents a survey of work in heterogeneous

multicore architecture. Related work in the area of Programming Languages for het-

erogeneous multicores is presented in Section 3.2. Section 3.3 presents related work

in mapping parallelism. Section 3.4 presents an overview of work related to memory

management issues. Finally, Section 3.5 presents an overview of work related to power

and energy.

3.1 Heterogeneity

Multicore processors have now become ubiquitous in desktops and workstations. At

the same time, these processors consume a lot of power. For e.g., Intel Core i7-5960X

Extreme Edition based on Haswell-E Micro-architecture using 22 nm technology at

3 GHz with 8 Cores consumes around 140 W. Research in the last decade has advo-

cated using heterogeneous multicores to get better power efficiency. Heterogeneous

multicores are also widely seen in the Industry. In this section, prior research on

heterogeneous multicore architectures is surveyed. Heterogeneous processors can be

broadly classified into two categories, single ISA and multiple ISA. As the name sug-

gests, the cores in a multiple ISA heterogeneous multiprocessor have different ISA

while that on a single ISA heterogeneous multiprocessor have the same ISA. Venkat

et.al[118] advocate heterogeneous-ISA multiprocessors by showing that they are more

efficient. Single-ISA heterogeneous architectures are easier to program, and the run-

time scheduling is also simplified because the same binary can be scheduled on differ-

ent processors.

23
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3.1.1 Single ISA heterogeneity

Different applications have different resource requirements. Using the same processor

architecture for different applications does not seem to be optimal. Even different

sections of a single application have different resource requirements. Based on this

argument, Kumar et.al[65] advocated single ISA heterogeneous processors for power

efficiency. Single ISA heterogeneous processors are composed of cores which have

the same ISA but different micro-architectural features or parameters. Single ISA

Heterogeneity can be accomplished primarily by two methods. i) Varying the hardware

on-board. For e.g., varying the issue-width, size of caches, reorder buffer, register file,

etc. ii) Varying the frequency of the cores by DVFS. Lukefahr et.al[80] showed that

using heterogeneous cores is better than DVFS.

While designing heterogeneous single ISA processors, there are many questions

to answer. The space for a design space exploration is large, and it is not possible

to exhaustively search. Metrics are also needed to measure and compare the various

hardware configurations. Tomusk et.al[108] argues that choosing heterogeneous cores

is a difficult task since the optimality of cores varies with programs. Various metrics

( flexibility, non-uniformity, gap overhead, set overhead and generality) for evaluating

heterogeneous processors are presented in [110] and [109].

3.1.2 Multiple ISA heterogeneity

Multiple ISA heterogeneity has been widely investigated, and there exist many pro-

posals to implement heterogeneity. One such way is to add specialised cores to the

system. Traditionally, microprocessors were designed with a goal to achieve the best

performance for 90% of the workloads. This makes these processors less energy

efficient. 10x10[32] is a heterogeneous architecture which splits the workload into

10 different categories and design specialised cores for each of these 10 categories.

GreenDroid[49] is a heterogeneous architecture where a processor is augmented with

several cores specific to the applications.

Many research groups have explored multiple ISA heterogeneity by creating a het-

erogeneous system by combining more than one type of processors. Pangaea[125] is a

heterogeneous chip multiprocessor with tightly coupled IA32 CPU cores and nonIA32

GPU cores. Marisabel et.al[53] explores the design space of a heterogeneous mix

of server-class Xeon processors and mobile-class Atom processors and finds an opti-

mal balance that achieves performance and energy-efficiency. Guo et.al[55] presents

a heterogeneous architecture combining a LEON3 host processor and a Data Parallel
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Coprocessor (DPC). Twin Peaks[128] is a hardware-software co-designed heteroge-

neous multicore virtual machine which is an architecture with a wide in-order core and

a narrow out of order core. Chung et.al[36] reports greater energy efficiency by com-

bining traditional processors with unconventional cores like custom logic, FPGAs, or

GPGPUs.

Another approach is to create heterogeneity by having a shared reconfigurable logic

along with uniform cores. ReMAP[122] is a reconfigurable heterogeneous multicore

architecture. In this architecture, a multicore is augmented with some reconfigurable

logic. This reconfigurable logic is shared by all the cores. The cores can be separately

augmented with additional functionality using this shared reconfigurable logic. The

reconfigurable logic can also be used for inter-core communication and synchronisa-

tion.

The industry has also widely adopted heterogeneous multicore processors. Cell[62]

was an early example of a heterogeneous multicore architecture which contained two

types of processors, the Power Processing Element (PPE) and the Synergistic Process-

ing Element (SPE). The PPE acts as a controller for the SPEs. A common kind of

heterogeneity that is found is CPU-GPU systems such as Intel Ivy Bridge and AMD

Fusion. An extreme example of heterogeneity is Xilinx Ultrascale MPSoC[15] which

has ARM Cortex-53 cores, ARM Mali GPU, ARM Cortex R5 micro-controllers and

programmable logic. The Embedded systems community has been the champions

of Heterogeneous Processors. OMAP[6] from TI, Snapdragon[13] from Qualcomm,

Exynos[3] from Samsung and Tegra[14] from NVIDIA are popular examples.

This thesis focuses on compiler approaches for using heterogeneous systems. In

this work, TI OMAP and Samsung Exynos are used for experiments.

3.1.3 Prototyping Heterogeneity

A framework for quickly prototyping heterogeneous computers is presented in [33].

Bakker et.al [20] presents a study where the Intel Single Chip Cloud Computer can

be used for modelling a heterogeneous MPSoC and making power and runtime mea-

surements. Fabscalar[35] is a toolset for composing heterogeneous RTL cores in a

canonical superscalar template. HaDes[112] is an efficient approach for synthesis of

dark silicon heterogeneous chip multiprocessors. The HaDes system determines the

number of cores of each type such that the power and area budgets are met, and per-

formance is maximised.
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3.2 Programming Languages

There are many programming frameworks and APIs for heterogeneous systems. This

section surveys a few of these.

Cuda[2] and OpenCL[10] are APIs for CPU-GPU systems and use a master/slave

accelerator model. These languages have special features to express task and data-

parallelism. C++ Accelerated Massive Parallelism (AMP)[50] from Microsoft is a

new C++ language feature and an STL like library for writing programs that execute

efficiently on data-parallel hardware like GPUs. Open Accelerators (OpenACC)[9]

developed by a consortium of Cray, CAPS, Nvidia, and PGI is an API for parallel

computing for heterogeneous CPU/GPU systems. The code is annotated with prag-

mas/compiler directives to identify parallel regions of code that should be accelerated.

A study[41] shows that even though languages like C++ AMP and OpenACC raise

the abstraction level, they do not yet offer enough flexibility to extract the required

performance.

Cell-Ss[21] exploits task level parallelism and requires source annotations as input,

for identifying parallelism. OmpSs[8] is a programming model that supports asyn-

chronous parallelism and heterogeneity. OmpSs is designed by combining features

from OpenMP and the StarSs[90] Model. MAPS[103] is a compiler framework for

programming MPSoCs using the streaming programming Model. It provides exten-

sions to the C language for supporting Process Networks. Multicore Asynchronous

Runtime Environment (MARE)[5, 96] from Qualcomm is a C++ API for parallel pro-

gramming. It provides features for taking advantage of the full power (use all pro-

cessors) of a heterogeneous system. The API provides features for creating tasks and

setting dependencies between them. OpenCL code which can be run on GPUs can be

wrapped in a task.

OptiML[29] is a Domain Specific Language (DSL) for machine learning which can

be used to program heterogeneous systems. With this DSL, the domain knowledge can

be used to express implicit parallelism.

This thesis chooses OpenMP as the source language. OpenMP is a widely used

parallel API for programming shared memory multiprocessors. It is also a very easy

to use API. OpenMP cannot be directly used on heterogeneous multicore processors.

In this thesis, OpenMP is converted to SPMD form to run on heterogeneous multicore

processors.
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3.2.1 Compiler

Compilers and runtimes for heterogeneous processors have to perform additional work.

There are two main issues that have to be considered by the compiler. i) Often the

parallelism present is not suitable for execution on a heterogeneous processor. Hence,

it has to be transformed to a form that is suitable. In the work presented in this thesis,

an OpenMP data-parallel program is converted to SPMD form. ii) Some heterogeneous

processors do not have a cache coherent system. For these systems, it is the job of the

compiler to handle coherency in software.

3.2.2 OpenMP to SPMD

Liu et.al[78] presents a method for the translation of OpenMP Code into SPMD style

with Array Privatisation. The translation is performed for use on High Performance

Computing with uniform cores and a shared coherent address space. SPMD code

consists of a set of threads that synchronise at barriers. To improve performance, the

number of barriers has to be minimised. Prior work[111], [87] discusses techniques

for reducing the number of barriers. This thesis builds on techniques presented in these

papers for synchronisation and cache coherence.

3.3 Mapping Parallelism

Mapping parallelism present in a program to the underlying hardware architecture is a

challenging task. The best mapping varies with architecture and is also dependent on

program properties. Parallelism mapping can be broadly categorised into partitioning

and scheduling.

3.3.1 Partitioning

Bodin et.al[23] and Agarwal et.al[17] present theoretical frameworks for automatically

partitioning parallel loops to minimise cache coherency traffic on shared-memory mul-

tiprocessors. Michel et.al [48] uses ILP to partition software for energy efficiency.

MAPS[72] deals with programming for MPSoCs. The MAPS system extracts par-

allelism from sequential applications by partitioning and generates tasks for parallel

execution on MPSoCs. Ravi.et.al[95] looks at offloading some work to be executed on

a co-processor. In one of the techniques they discuss, sub-offload, they partition a loop

for execution on a co-processor for better performance.
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CPU-GPU Systems

Grewe et.al[52] presents a machine learning based method for partitioning programs

between CPUs and GPUs. A two level predictor is employed where the first predictor

decides whether the program has to be partitioned and the second predictor decides

the ratio of partitioning. Qilin[79], constructs linear performance models at runtime.

These performance models are sensitive to the size of the tasks also. The model is con-

structed by running a portion of the program on the CPU and the GPU. Jiang et.al.[60]

and Shirahata et.al[104] runs tasks on both the CPU and the GPU to compute the in-

dividual runtime the first time a task is run. The observed runtimes are then used to

proportionally partition the work between the CPU and the GPU. Mitra et.al[93] also

partitions programs based on linear performance models and individual runtimes. In

addition, they also calculate the degradation in performance of the CPU when run-

ning in parallel with the GPU and vice-versa. The work presented in this thesis also

uses individual throughput(derived from runtime) of the processors to calculate the

partitioning. Our work differs from the others in the following ways. 1) Rather than

computing partitions on a per-kernel basis we partition the whole program. 2) The

presence of inter-processor communication introduces overheads and hence affects the

partitioning. We capture this aspect in our partitioning formula. 3) Our partitioning

method is generalised for a set of heterogeneous processors and is not restricted to

CPU-GPU systems.

3.3.2 Scheduling Tasks

Prior work has explored runtime scheduling of tasks compared to compile time par-

titioning. Bower et.al[24] advocates tackling the heterogeneity at the OS scheduler

level. Most other proposals involve a runtime.

Judit et.al[91] presents a Self Adaptive framework for choosing different versions

of code at runtime for heterogeneous processors. In work presented in [106], phase

transition points are marked and the application is switched to another core at these

transition points for better performance. Kwon et.al [69] discusses issues in virtual-

isation on heterogeneous systems and presents a hypervisor scheduler which is het-

erogeneity aware and achieves improvement in performance. Whare-map[82] presents

scheduling techniques for scheduling applications in a heterogeneous warehouse. The

presented technique solves the mapping problem by formulating as an optimisation

problem. The optimisation process uses profiling information.

Cong et.al[38] discusses energy efficient scheduling techniques for heterogeneous
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multicore architectures. They develop a regression model to predict the energy con-

sumption of each processor and use it along with code instrumentation and static anal-

ysis to perform scheduling at runtime. ACCESS[61] is a smart scheduling method

for asymmetric cache CMPs. Applications with a small working set size and those

which are streaming do not need a large size cache. Higher energy efficiency can be

achieved by scheduling such applications on the cores with the smaller cache, switch-

ing off larger caches on lighter loads and running the processor at a lower voltage since

the smaller cache can be operated at a lower voltage. Twin Peaks[128] dynamically

chooses either a wide in-order machine or a narrow out of order machine for execution

to achieve higher energy efficiency. The scheduling algorithm uses current and histori-

cal performance data. Raghunathan et.al[94] presents results which show that the best

cores to choose vary with the job arrival rate.

This thesis deals with partitioning of data-parallel programs, and the focus is on

minimising runtime, energy and meeting a power budget. Dynamic scheduling based

approaches suffer from overheads particularly on cache incoherent systems and sys-

tems with multiple address spaces.

3.4 Memory Management

The main issues in memory management for heterogeneous systems are multiple ad-

dress spaces and handling non-cache coherent systems.

3.4.1 Multiple Address Spaces

Gelado et.al[47] suggests maintaining shared logical memory space for CPUs to access

objects in the accelerator physical memory but not vice-versa. This method has the

disadvantage that pointers from CPUs cannot be passed to the GPUs. Heterogeneous

Systems Architecture (HSA)[98] is a standard developed for seamless integration of

CPUs, GPUs and hardware accelerators. Traditionally, CPUs and GPUs have different

address spaces, but in HSA-compatible systems, the GPUs can access the CPU virtual

addresses. This enables passing of pointers between CPUs and GPUs. It also pro-

vides for optional coherence between the CPU and GPU through acquire and release

instructions.

This thesis overcomes multiple address spaces issue by allocating memory in con-

tiguous memory and appropriately mapping to each processor. The details of the

method are discussed in Section 5.7.
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3.4.2 Cache Coherence

Igor et.al[107] provides a survey of software cache coherence mechanisms and sug-

gests a classification. Veidenbaum[117] gave a formal definition and proof about

the necessary conditions for cache incoherence. Lynn et.al[34] proposes compiler di-

rected cache coherence with additional but minimal hardware support for task parallel

programs. Hock-Beng et.al[75] proposes compiler directed cache coherence through

prefetching. Dynamic Binary Translators frequently cache the translations, but when

the limit is reached some translations have to be selectively flushed. Guha et.al[54]

discuss selective flushing in this scenario. Reflex[76] and K2[77] are two systems for

heterogeneous processors which perform cache coherence with the help of Operating

System. They are more concerned with light-weight sensing applications and do not

consider the mapping of user data-parallel programs.

This thesis assumes no additional hardware support and employs a simple but ef-

fective cache-flush policy. The compiler inserts system calls to flush the caches.

3.5 Power/Energy

This section takes a look at related work in the area of Power and Energy.

3.5.1 Power

First, Dark silicon issue is introduced. Dark Silicon leads to power constraints/budgets

in the future, related work in power constraints are discussed next. The final paragraph

discusses related work in Power Measurement.

Dark Silicon

The increase in power-densities has led to thermal safety issues in processor chips.

Hence, all portions of a chip cannot be simultaneously powered on. The portions

which cannot be powered on are called Dark Silicon. Dark silicon [45] suggests that

as it will not be possible to simultaneously power-up all the cores on a chip, cores

should be specialised to best utilise the available power. Shafique et.al[101] surveys

challenges posed by dark silicon in hardware/software co-design.

Power Constraints

Yihia et.al[56] recommends a compiler based approach for meeting power constraints

in superscalar processors. The compiler inserts instructions to provide hints to the

hardware about high and low power code regions.

Prior work[59][81] for homogeneous multi-cores and GPUs[71] have looked at
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meeting power constraints using DVFS. Machine Learning methods[19] have been

used for selecting hardware configurations. This method predicts which processor to

use, either CPU or GPU and the DVFS setting for it. It does not partition the workload

across the processors. The Core-type policy presented in Chapter 6 is similar to this

policy.

Wang et.al[121] partitions power and workload across CPU-GPU OpenCL based

systems. They use a dynamic online method to determine the most efficient partition-

ing for the power budget. However, multiple executions are needed at runtime to find

the optimal partitioning for a budget, while the work presented in this thesis runs the

program once on each processor offline in the Profile-directed approach. They have

also restricted their study to a single budget for maximising the throughput, whereas

this thesis performs a detailed study over the entire power budget range.

Li.et.al[74] has suggested methods for optimising power consumption given per-

formance constraints. This thesis concentrates on maximising the performance given

power constraints.

Pagani et.al[88] argues that using a single power budget can result in performance

losses. They advocate a budget called Thermal Safe Power (TSP) which varies based

on the number of cores active. The work in this thesis provides the ability to change

the power budget.

The presence of power budget emphasises the need for power measurement and

control. Accurate power measurement methods are also needed to measure energy and

efficiency. Related work in this area is presented next.

Power Measurement

Intel[99] provides a framework called RAPL for making power measurements. AMD

provides APM (Advanced Power Management) for monitoring and measuring power.

PAPI[123] is a framework for measuring power and performance. Various power man-

agement techniques are detailed in [22]. [16] describes tools and techniques for power

measurement. Kambadur et.al[63] experiments with various techniques for power re-

duction across the stack. Energy Management Techniques in modern mobile handsets

are surveyed in [114]. An empirical model for a low power mobile platform is pre-

sented in [119]. A case study for energy efficiency and performance in heterogeneous

processors is presented in [83]. [46] analyses chip power and performance for various

generations of architecture and a big set of benchmarks.

The power measurement method used in this thesis is described in Section 2.6.2.
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3.5.2 Energy Efficiency

The next two paragraphs discuss related work in the area of two techniques for energy

efficiency, i.e., heterogeneity and DVFS. The final paragraph of this section talks about

energy performance trade-offs.

Heterogeneity

Research[28][30] has also been conducted for mapping applications to heterogeneous

MPSoCs for energy efficiency. These work do not consider DVFS levels of proces-

sors. Chandramohan et.al[31] partitions programs based on throughput and energy

efficiency of processors. This work does not consider power budgets when partition-

ing programs.

Much research in heterogeneous processors has focused on CPU-GPU systems.

Wang et.al[120] distributes work across CPU-GPU system to maximise power ef-

ficiency. Paul et.al[89] presents a coordinated approach for maximising power/en-

ergy efficiency in CPU-GPU heterogeneous systems. These work focus on improving

the energy/performance efficiency but do not take into consideration a power budget.

Prakash et.al[93] presents a work for energy minimisation in heterogeneous cores with

OpenCL. They also target the Exynos 5422 platform but uses OpenCL on both the

CPU and the GPU. Using OpenCL on the CPU introduces overhead which our method

avoids by using the Hybrid SPMD model. In this thesis, pthreads are used on the CPUs

and OpenCL on the GPUs.

Kundu et.al[67] discusses how performance/energy can be improved by partition-

ing work between an ARM processor and DSP. Experiments are performed using

OMAP3 SoC on a beagleboard for a single application. The work presented in this

thesis has looked at applications with and without synchronisation, and also the vari-

ability in the best partitions.

Reflex [76] performs simple tasks on low-power micro-controllers. To simplify

programming they use a Distributed Shared Memory. They report code simplification

and power consumption improvements on an OMAP4 SoC and a custom platform for

sensing applications. This thesis differs in the use of static partitioning, barriers for

improving programmability and use of data-parallel programs.

The work in [26] considers single-ISA AMP processors and shows improvement

in performance and energy using synergies between the heterogeneous processors and

virtual machine service. The work presented in this thesis differs, it uses multiple-ISA

architecture and considers static partitioning of data-parallel programs.
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Some work has considered offloading code sections belonging to a particular do-

main to the remote co-processor for efficiency. For e.g., the research work in [102]

offloaded machine learning to the DSP co-processor. This thesis treats all processors

as first class and partitions work among these processors to attain the best performance,

efficiency and meet power budgets.

DVFS

DVFS techniques are popular for obtaining good power/energy efficiency. Analytical[126],

Compiler[127], Control-theoretic[116] and Online [40] methods have been proposed

for utilising DVFS. Pack & cap[37] selects DVFS and thread groups using logistic re-

gression. All these methods target homogeneous cores only. Ionnau et.al[58] proposes

a method for DVFS power management where frequency and voltage are switched at

runtime according to phases.

In this thesis, DVFS is used along with heterogeneity for energy efficiency and for

meeting the power budget.

Energy Performance trade-off

Yuki et.al [130] states that for most machines of today, running as fast as possible is

best regarding energy and this observation holds for all machines where the dynamic

energy is comparable to the static energy. This work was conducted for homogeneous

processors. This is similar to our observation also, when measuring energy with a large

amount of idle energy. However, if the idle energy is much lower than dynamic en-

ergy and there are heterogeneous processors, then heterogeneity can be used to obtain

energy efficiency.

3.6 Summary

This Chapter presented a survey and discussion of the related work.

The next Chapter begins the core of this thesis and presents the first contribution.

It details a design space exploration in the mapping of Data-parallel programs to het-

erogeneous MPSoCs.





Chapter 4

Partitioning Data-parallel Programs for Het-
erogeneous MPSoCs

This Chapter presents a design space exploration in the partitioning of data-parallel

programs for the OMAP4 SoC. Straightforward techniques for partitioning data-parallel

programs for performance and energy are also presented.

Section 4.1 introduces the work in this Chapter. Section 4.2 presents the motiva-

tion for the work. Section 4.3 presents the programming model and some background.

Section 4.4 describes the partitioning policies. Section 4.5 and Section 4.6 provides

metrics used for experiments and the setup. Section 4.7 and Section 4.8 present exper-

imental results. Finally, Section 4.9 concludes the Chapter.

4.1 Introduction

Many of the embedded systems available today are based on MPSoCs. The processors

employed are diverse and consist of devices such as CPUs, DSPs, micro controllers and

GPUs. The OMAP[6] from TI, Snapdragon[13] from Qualcomm and Tegra[14] from

NVIDIA are examples of popular MPSoCs in the mobile embedded systems market.

In general-purpose computing, there has also been a recent cautious move to het-

erogeneous many-core systems where diversity is currently less extreme. Typically,

GPGPUs are used as programmable accelerators and there is variation in CPU micro-

architecture while maintaining the same ISA e.g., ARM’s big.LITTLE [18].

In fact, energy and power have been the driving force behind this gradual conver-

gence of the two communities. The embedded world has lead in system diversity and

it is likely that tomorrow’s general-purpose heterogeneous many-core platforms will

resemble the MPSoCs of today.

The design of embedded MPSoCs has been largely application driven with spe-

cialised units such as ASICs and DSPs targeting media decoding or digital signal

35
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applications. Embedded applications developers have traditionally been expert pro-

grammers where the cost of porting and tuning can be amortised across many shipped

devices. Because of this, the programming models supported by MPSoCs typically

tend to be application driven and change from one platform or generation to the next.

As embedded MPSoCs become used for different purposes than they were initially de-

signed for and enter the mainstream, the complexity of programming them becomes an

increasingly important issue. Future platforms will have higher levels of parallelism

and will contain more specialised cores. What we would like is to ease the program-

ming burden needed to exploit increasing levels of diversity.

This Chapter proposes the use of an SPMD model of computation for data-parallel

programs and explores the mapping of such applications to the highly heterogeneous

TI OMAP platform. This platform has different memory domains, has multiple op-

erating systems, specialised processors with different ISAs and local compilers and

rudimentary systems software support. It is a difficult programming target.

We first develop a framework that allows an SPMD compiler model to map down

to such a hardware platform. We then explore the mapping space and show that the

best mapping depends on the metric involved. By using a highly accurate energy mea-

surement, we show that the best mapping varies depending on whether time or energy

is the optimisation goal. It also depends on the level of code optimisation available

and whether power gating is available. It is frequently believed [76] that running the

fastest is best for energy. Since heterogeneous multicores provide opportunities for

energy-delay tradeoffs, we show in fact that this property no longer holds. We develop

a partitioning approach that, when applied to a set of benchmarks, gives, on average,

a 2.2x speedup over sequential execution time and reduces energy consumption by

1.45x.

This Chapter makes the following contributions:

• Develops a framework to map data parallel programs to the OMAP platform.

• Provides a detailed energy evaluation methodology.

• Explores a partitioning design space and shows its dependency on optimisation

goal: energy vs time.

• Develops and evaluates a partitioning approach that is within 10% of the best

across benchmarks and optimisation criteria.
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f o r ( i n t k =0; k<N; k ++)

{
# pragma omp p a r a l l e l f o r

f o r ( i n t i =0 ; i<N; i ++)

f o r ( i n t j =0 ; j<N; j ++)

p a t h [ i ] [ j ]= p a t h [ i ] [ j ]< p a t h [ i ] [ k ]+ p a t h [ k ] [ j ] ?

p a t h [ i ] [ j ] : p a t h [ i ] [ k ]+ p a t h [ k ] [ j ] ;

}

(a) OpenMP FloydWarshall

f o r ( i n t k =0; k<N; k ++)

{
c a l l b a r r i e r ( 1 ) ;

f o r ( i n t i = s t a r t i n d x ; i<e n d i n d x ; i ++)

f o r ( i n t j =0 ; j<N; j ++)

p a t h [ i ] [ j ]= p a t h [ i ] [ j ]< p a t h [ i ] [ k ]+ p a t h [ k ] [ j ] ?

p a t h [ i ] [ j ] : p a t h [ i ] [ k ]+ p a t h [ k ] [ j ] ;

}

(b) SPMD FloydWarshall

Figure 4.1: Programming Model
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4.2 Motivation

MPSoCs have the potential for high performance but are hard programming targets.

Consider Figure 4.1a which shows a simple data parallel program, floydwarshall, which

we wish to map to the OMAP4430 platform shown in Figure 4.5, a typical MPSoC

platform. The processors have ifferent ISAs, do not share a common address space

and even support different operating systems.

Currently, due to programming complexity, programmers are discouraged from

exploiting the full potential of the platform; instead run the program on the A9 core or

possibly the DSP.

We, however, are interested in using all of the processing elements based on a

data partitioning approach. In Figure 4.1a, the floydwarshall program has a parallel

middle loop which is equivalent to partitioning the path array on the first index, e.g.,

by rows. Applying this partitioning to the original program gives the code as shown in

Figure 4.1b.

This is the local code that each processor will run. The local loop bounds of i

are restricted so that only local data is written to. This means that the cores run the

same code with different start indxp and end indxp depending on the amount of data

allocated to them. Here p ∈ {A91,A92,M31,M32,DSP}. A barrier synchronisation

is inserted in line 3 due to the cross processor flow dependence from path[k][j] to

path[i][j].

Once we have generated the local programs, the key issue is determining the amount

of data to be allocated to each processor and hence its workload. Figure 4.2 and Fig-

ure 4.3 show the runtime and energy for various partitioning policies relative to se-

quential execution on the A9. A naive partitioning approach, hom, partitions data

uniformly across all cores, freq partitions across cores in proportion to their clock fre-

quency, iter is the partitioning scheme developed in this Chapter and best is the best

partitioning found by exhaustive search. The best policy is not realistic but provides a

useful upper-bound on performance.

4.2.1 Time

If the programmer were to select the DSP or even the M3, then this will lead to slow-

down relative to the A9. In Figure 4.2, the DSP is 5x times slower than just running

the code on the A9. Surprisingly, running on the M3 is faster than the DSP but still

4x times slower than on the A9. If we now consider data partitioning across all pro-

cessors, then hom gives the worst performance, 2x times slower than the A9. The freq
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approach is a little better but still slower. Our iter scheme is able to nearly achieve the

2x speedup available from exhaustive search, the best scheme.

4.2.2 Energy

If we now look at energy, a different pattern emerges. The programmer selecting the

DSP as their target results in worse energy efficiency than the A9. On the other hand,

the M3 would give 2x improvement, though this is at the cost of much slower execu-

tion, The hom and freq policies continue to give poor outcomes with 2x as much energy

used as the A9 baselines. Our approach, however, achieves the same level of energy

efficiency as the M3 and best schemes i.e., 2x less energy than the baseline. Thus,

our approach is able to achieve significant improvements regardless of the metric of

interest.

Figure 4.2: Execution time speedup relative to sequential execution on the A9. The M3

and DSP alone are significantly slower. Equal partitioning, hom and frequency based

partitioning perform poorly. Selecting the right partition gives 2x speedup

Figure 4.3: Energy relative to sequential execution on the A9. The M3 alone is sig-

nificantly more energy efficient than the A9. The DSP alone is less efficient. Equal

partitioning, hom and frequency based partitioning perform poorly. Selecting the right

partition gives 2x improved energy performance

This example shows that, even when we overcome the difficulties of different pro-

cessors and operating systems, determining the right partitioning is a difficult task for

heterogeneous systems. Methods used in homogeneous systems such as uniform par-
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titioning are ineffective. The next sections describe the SPMD model in more detail

and describe how this can be mapped to the challenging OMAP platform.

4.3 Programming Model

In this Section, we describe how data parallel programs can be partitioned and mapped

using an SPMD model of computation. This is followed by a description of the OMAP

programming model and how we can map an SPMD model on to it.

4.3.1 Data Parallelism and SPMD

Data Parallelism

Throughout this Chapter, we focus on data parallel programs. These are programs

where individual elements of a data structure can be independently computed. They

are normally found in array based programs with corresponding parallel loops. Such

programs are frequently found in embedded applications. We are not concerned in how

the data parallelism is determined. This can either be performed by the programmer

who inserts a parallel pragma or determined by automatic parallelisation. Instead, we

focus on how this potential parallelism can be mapped to a heterogeneous system.

Input
Program

Partition

compiler: gcccompiler: tms470 compiler: cl6x

A9-
binary

M3-
binary

DSP-
binary

A9M3 DSP

rpmsg rpmsg

barrier barrier

Spinlock, Mailbox, Memory Spinlock, Mailbox, Memory

Figure 4.4: Partitioning a program

SPMD

The SPMD (single program, multiple data) model of parallelism is well known and

used in a variety of settings. Unified Parallel C (UPC)[27], Co-Array Fortran[86], and

Titanium[129] are a few examples. It consists of a set of parallel tasks which can be
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either processes or threads, that run the same program but operate on independent sec-

tions of an array. The array is partitioned across processors such that each processor

works on a separate array section. We consider the case when each task is implemented

as a separate thread. The set of threads is fixed throughout the entire program execu-

tion and typically corresponds to the number of processing elements. The threads are

forked off at the start of execution and only join at the end, unlike traditional fork/join

parallelism. Synchronisation is inserted whenever there is a cross-processor depen-

dence, which is achieved by the use of barriers.

Data Partitioning

The key issue is how to partition the data. This can be broken into 2 separate stages (i)

which dimensions of the data to partition, (ii) how many elements of each dimension

to allocate processor. The first stage has been considered by many researchers [17]. In

this Chapter, we restrict ourselves to just 1 dimensional partitioning. We consider each

dimension in turn and determine the most parallel dimension, i.e., partitioning along

this dimension incurs the least amount of synchronisation. If there is more than one

candidate, we select row partitioning as rows are contiguous in ’C’. The second stage

depends on the performance and energy consumptions of the processor. We consider a

number of different policies in Section 4.4.

Computation Partitioning

Once the data is partitioned, we need to determine the computation to be performed by

each processor. We use the local write rule, each thread only writes to its local data,

placing a constraint on the thread’s local loop bounds. Figure 4.1b shows an example

of such loop bounds. One important consequence of this mapping rule is that there are

no remote-writes, and all output dependences are by definition within a processor.

Synchronisation

Synchronisation is needed whenever there is cross-processor dependence i.e., the source

of the dependence is in a different thread to the sink. As there are no output-dependences,

only flow and anti-dependences need be considered. Furthermore, if a read access is

aligned on a partition to a write access, it is guaranteed to be local. In Figure 4.1b, the

read of path[i][k] is local as it has the same reference on the partitioned first dimension

[i], i.e., it is aligned. The reference path[k][j] is remote as it has a different reference
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[k] on the partitioned dimension. Once we have the cross-processor dependence graph,

barriers are inserted at the highest lexical level that covers the dependence. For more

details on optimising barrier placement see [87].

4.3.2 The OMAP model

Hardware

The TI OMAP4430[7] is a typical mobile applications MPSoC consisting of various

subsystems including general purpose processors, a programmable multimedia en-

gine plus graphics and image accelerators. Figure 4.5 shows the components of the

Main Memory

Linux
TI SYS/BIOS TI SYS/BIOS

A9 A9

M3 M3 TI C64X+ DSPCache Cache

Cache Cache Cache

System Bus

In
te

rc
on

ne
ct

Mailbox

Figure 4.5: OMAP4 block diagram

OMAP4430 relevant to this Chapter. A dual core ARM Cortex-A9 provides general

purpose computing. Both processors share a common L2 cache and address space.

There are two smaller ARM Cortex-M3s available for smaller and lower power tasks.

Both share a common L1 cache and are responsible for controlling the graphics and

image accelerators. There is also distinct programmable multimedia engine based on a

TI mini-C64X+ DSP. The PowerVR GPU cannot be currently programmed, and is not

considered in our study.

Operating System

The ARM Cortex-A9 cores are configured to run as a Symmetric Multiprocessing sys-

tem with Ubuntu Linux as the Operating System. In contrast, the M3s and DSPs run

a TI RTOS called SYS/BIOS. The M3s are configured to run the RTOS in SMP fash-

ion and hence the RTOS is also called SMP/BIOS. Programming the OMAP requires

managing not only different address spaces but different operating systems.
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The communication between the remote processors (M3s and DSP) and the A9s is

managed using an Inter Processor Communication Protocol (IPC) called Syslink. This

IPC framework was developed by TI to offload processor-intensive tasks to hardware

accelerators/remote processors. The new version of Syslink is called Remote Processor

Messaging (RPMsg)[1]. RPMsg works by sending and receiving messages through

shared memory. The notification of messages is performed via a Mailbox interrupt

mechanism.

Mapping applications to the OMAP therefore, currently, requires decomposing

programs into tasks that fit the IPC model.

4.3.3 Mapping SPMD programs to OMAP

Figure 4.4 summarises the partitioning and mapping of an SPMD program onto the

OMAP architecture. Each local program is compiled by the processor’s host compiler.

The resulting binaries are executed by each processor which synchronises via a spin-

lock library. There are four main issues to consider, i) thread management ii) data

partitioning iii) sharing memory and iv) synchronisation, each of which is described

below.

Threads

We use the pthread library for parallel programming which offers a fine control over

parallelism. One thread is created for each A9 core, one thread for the M3 and another

for the DSP. There are in fact two M3 cores; this is handled in the M3 SYSBIOS

where we create two threads for computation. The threads for M3 and DSP call remote

procedure calls with addresses of the partitioned arrays as arguments. These remote

procedure calls activate the remote processors, and they perform their computation.

Shared memory

The addresses of the processors are by default distinct. We use dmabuf[100] and some

special properties of graphics memory addresses to overcome this. Memory is allo-

cated in the Linux kernel side by creating a GEM buffer object. This can be memory

mapped and used from the user space. Using the dmabuf API, physical addresses

corresponding to this memory are obtained and propagated to the DSP or M3 using

RPMsg/Syslink. This address will be in the tiler/dmm region which is setup with 1:1

physical to virtual mapping, so this can be used as the virtual address on the M3/DSP

side.
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Synchronisation

Synchronisation is performed using barriers. For implementing barriers, there are two

requirements: 1) Mutual Exclusion 2) A common state variable to count the number

of processors which reached the barrier. In OMAP, mutual exclusion is achieved using

a hardware spinlock. On the A9 CPU side, we built a linux kernel driver to access the

hardware spinlock and provided a user space interface. On the M3 and DSP side, the

SYSBIOS RTOS provides access to the OMAP spinlock. The common state variable is

implemented by using uncached shared memory. The barrier is made reverse sensing

so that it can repeatedly be used.

A9 and M3 have two cores and hence besides the interprocessor barrier described

in the previous paragraph, intraprocessor barriers are also implemented. Since, the A9

processor runs pthreads; pthread barriers are used. For the M3 processor, the barrier is

constructed using semaphores provided by the RTOS and global variables.

4.3.4 Code Generation

Code Partition

Code M3, DSP

Code for A9

Cross
compile
for M3,

DSP

Compile
for A9

scp
firmware
to /lib/-

firmware
dir in
pand-
aboard

reload
modules

runtime

run code

energy

edp,
edsq.p

Figure 4.6: Code generation and runtime

Once the partitioning is decided, code is generated for the A9, M3 and DSP proces-

sors. We compile with gcc for A9s. The A9 code initiates the threads for all the pro-

cessors. For the M3 and DSP a cross compilation is done using tools available as part

of TI Code Composer Studio. Details of the compilers used are in Table 4.1. For these

remote processors, the program is compiled along with the SYSBIOS operating sys-

tem and made into binary firmware called tesla-dsp.xe64T and ducati-m3-core0.xem3.

These binaries are placed in the directory /lib/firmware/ on the Linux machine. Some

modules are reloaded to boot this firmware on the M3 and DSP processors. During

this process, some shared memory location is agreed upon for exchanging messages
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between A9 and the remote processors (M3, DSP) for the Syslink protocol. When the

program is run, connections are opened to the A9 and M3 processors and the threads

for M3 and DSP make remote procedure calls to execute the code on those processors.

Processor Cortex A9 Cortex M3 C64X+ DSP

Vendor ARM ARM TI

Frequency 1GHz 200 MHz 466 MHz

Compiler gcc 4.6.3 CCS tms470 CCS cl6x

OS Ubuntu 12.04-3 SMP/BIOS SYS/BIOS

Table 4.1: Frequency and Compiler details

Runtime

At runtime each program performs the following steps: 1) Allocate buffers for the ar-

rays that have to be partitioned in the program with dmabuf. 2) Open connection to

remote processors with Syslink. 3) Attach the allocated buffers to the remote proces-

sors and find physical addresses for these buffers so that they can be passed on to the

remote processors. 4) Create threads for A9, M3 and DSP. While the A9 threads do

the work locally, M3 and DSP threads will use Syslink to make remote procedure calls

so that the work will be done on the remote processors. The remote procedures do

cache synchronisation before and after execution. 5) Wait for threads to join. 6) De-

tach buffers from the remote processors. 7) Close connection to the remote processors

with Syslink. 8) Deallocate the buffers.

Figure 4.6 shows the complete code-generation and runtime workflow of our ap-

proach.

4.4 Partitioning Policies

In this section we look at four partitioning policies that are used in our experiments.

Partitioning policies divide the data among all the cores for processing. The intuition

behind these partitioning policies are provided. We also give the formulas that are

used to compute the size of the partitions. In these formulas part is the function which

computes the size of partition of a core.

1. hom This is the partitioning we would have intuitively used on a homogeneous

multicore processor. Partitioning is uniformly performed for all the cores. We
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Figure 4.7: Board and Oscilloscope

have 5 cores in the OMAP4430 SoC viz. two A9s, two M3s and one DSP. So if

the data-size is size then we assign all the cores the same partition as follows.

part(a9) = part(m3) = part(dsp) =
size
5

(4.1)

2. freq This method tries to capture the heterogeneity by using the clock frequency

of the cores to guide the partitioning decision. The clock frequencies of each

processor is given in Table 4.1. Each core is assigned a partition which is in

proportion to its frequency compared to the others. Hence in this partitioning

method the A9 cores always gets the largest share followed by the DSP and

the M3 cores. The intuition behind this method is that faster clock frequencies

leads to faster execution and hence lower runtime and energy. The partitions

for each core is made as per the following formula. In the formula, proc ∈
A91,A92,M31,M32,DSP, core freq is the frequency of core, and 2866 is the

sum of the frequencies of all the cores.

part(core) = (size)∗ core f req
2866

(4.2)

3. unip We know that certain types of programs are better suited to some processors

than others. With the unip policy, we run the program sequentially on each

core separately and use the information gained from that to guide the partition

decision. The information gained is different for runtime and one of the energy

cases. For runtime, we first determine the throughput of each core defined as
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the ratio of the amount of computation to the time taken for each core. This

is roughly analogous to FLOPS. Once we have found each core’s throughput, a

simple way to partition is to assign data partitions to each core in proportion to its

throughput . If m is the throughput of M3 relative to A9 and n is the throughput

of DSP relative to the A9 and size is the size of the total work to be partitioned,

the partitions for the A9, M3 and DSP are given by the following formula.

part(a9) =
size

2+2∗m+n
part(m3) = m∗ partition(a9)

part(dsp) = n∗ partition(a9) (4.3)

Using this partitioning each core will roughly finish at the same time, reducing

load imbalance and execution time. This approach comes at the cost of a single

run per processor.

When considering idle energy, we employ the same method as for runtime since

running faster will ideally lead to lower idle power consumption. When there

is no idle power then running fast is no longer important. In this method, we

allocate all the work to the most efficient processor, the one which consumes the

least energy for 1 unit of work.

4. iter This is the policy we propose in this Chapter. It is a simple extension to the

unip policy. We first use unip to determine a starting partition. We then evaluate

this partition on each processor in turn. This will give a new throughput value,

as execution time is not always linear with respect to the amount of work. This

approach is applied iteratively till the best solution is found. It was experimen-

tally observed that for all the benchmarks, the best solution can be arrived at

with a maximum of 3 iterations. Due to the three iterations, this method is more

expensive than unip.

5. best This is the best partitioning policy which gives the best possible partition-

ing for various optimising criteria. This policy is implemented by performing a

design space exploration for runtime, energy and EDP. Since an exhaustive ex-

ploration of all the partitions for all the benchmarks will have too many points to

measure, we sample at discrete points which are multiples of a fixed quantity that

varies with benchmarks. This provides a useful upper bound for our evaluation.
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4.5 Metrics

We are particularly interested in how mapping is effected by different metrics such as

time and energy and how to accurately measure these.

4.5.1 Energy

Energy is the sum of power over time. Measuring power and hence energy is non-

trivial. This section describes in detail the methodology used to accurately measure

power and discusses how it should be accounted for.

Power consumption is found by measuring the current consumed by the processor

and multiplying by the supply voltage. The OMAP system is mounted on the Pand-

aboard, which is driven by a supply voltage of 4.2V. However, we cannot measure

the current consumption directly from the whole board supply since it is very noisy

and hence is not accurate enough to distinguish between partition decisions. Also, we

would like to know the individual consumption of each processor. Hence, we measure

each processor’s power consumption separately. We also have to measure the power

consumed by memory. For this, we concentrate on five power rails that supply power

i.e., VCORE1 for the A9, VCORE2 for the DSP, VCORE3 for the M3, V1V29 for

memory interface and VMEM for the memory. To measure the current, we find a

resistor in the path of these power rails and measure the voltage drop across the resis-

tor and divide by the resistance. Since the resistors are attached to the board and are

very small, pins are soldered to the resistors so that readings can be taken easily. This

method is described in detail by Jos [115].

This approach gives a good insight into the power consumption. However in pro-

grams with phases, synchronisation and heterogeneous loops the power consumption

varies during the execution of an application. Hence, we need to continuously monitor

the voltage. For this purpose an oscilloscope is used, and readings are taken every mil-

lisecond. Figure 4.7a shows the pandaboard with probes attached to one pair of pins

to take energy measurements. Figure 4.7b shows the oscilloscope with a measurement

of the processor to which the probes are attached in Figure 4.7a. The resistance is

measured using a digital multimeter. For our experiments, a Tektronix MSO4104 os-

cilloscope and Agilent 34410A digital Multimeter is used. Figure 4.7d shows a voltage

reading from the oscilloscope in the regular sampling mode for the A9 processor when

running the floydwarshall benchmark. As can be seen, there is significant noise in the

measurement. This can be overcome using either post-filtering by software or the High

Resolution measurement mode of the oscilloscope. Figure 4.7e shows the same mea-
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surement after filtering. All the rails are measured separately and summed up to find

the total power/energy consumption. We measure energy consumption in two different

ways, viz. with and without idle energy.

4.5.2 Two energy measures

In this section, first idle energy is defined and then the two different energy measures

are introduced.

Idle Energy

Even when the processor is not performing any work, it consumes some energy, this

energy is referred to as the idle energy. This energy can be measured when the pro-

cessor is not performing any work using the measurement method described earlier in

this section.

With idle energy

This is the energy that is obtained directly during measurement when the processor is

performing some work. The energy measured is composed of two quantities, i) the

idle energy and ii) the dynamic energy. If there is no idle energy, energy consumption

could be minimised by assigning the entire work to the processor which is most energy

efficient. When idle energy measure is considered, there are two factors to optimise, i)

minimise the runtime to reduce the idle energy consumption ii) allocate more work on

the most energy efficient processor to reduce dynamic energy consumption.

Without idle energy

This is computed by first obtaining with idle energy measure and then removing the

idle energy consumption. Using this energy measurement is important because the

idle energy of a processor is not just the static energy but also the energy consumed by

other parts of the board. Measuring without idle energy can give a fairer reflection of

each component’s energy contribution. For example, VCORE3 (M3’s power supply)

provides power not only to the M3 but also to GPIO, UART, L3 interconnect, etc.

Hence, the M3 has a higher idle power allocated to it than other processors and hence

there is a dissipation of energy even when the system is idle but switched ON. This will

result in an unfair comparison since other processors have a lower idle energy allocated

to them as they have less additional devices on their power rails. Figure 4.7c shows

the energy consumption of the M3 processor with and without idle energy when the
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floydwarshall benchmark is run entirely on the M3 processor. The dashed line is with

idle energy, and the solid line is without idle energy. In both cases, the processor starts

in the idle state, and when the program starts running, we see a transition to a higher

state of energy consumption. In the without idle energy case, we can see that when the

processor is in the idle state, the idle energy is almost zero. But in the with idle energy

case, there is almost 0.3milliWatt power dissipation extra.

Which energy metric to use?

As we are physically unable to account for energy used by additional devices on some

individual power lines, we present results for both with and without idle energy in the

remainder of this Chapter.

4.5.3 Runtime and EDP

Runtime is measured separately for each core and for the entire system. Runtime is

measured by using the gettimeofday system call. Calls are made to this function before

and after the execution and the runtime is the difference of the times. All the runtime

measurements are made on the A9 side. EDP is measured by computing the product

of Runtime and Energy.

4.6 Experimental Setup

Here we briefly describe the benchmarks used throughout the evaluation. Details of

the hardware platform have been provided in Section 4.3.2

4.6.1 Benchmarks

The benchmarks that are used for experiments were presented in Table 2.2. The Table

shows the name of the benchmark, short name used in the diagrams, the suite it be-

longs to and the default size of the arrays that are partitioned in these benchmarks. The

benchmarks are taken from DSPstone[113], UTDSP[70] and polybench[92]. Bench-

marks are parallelised and then used for experiments. All the benchmarks used are

integer based. While ARM Cortex-A9 CPU supports floating point, Cortex M3 micro-

controller does not support floating points and the TI C64x+ DSP supports fixed point

only. Hence in the latter two cases, floating point is emulated.

4.7 Matrix Multiplication Case Study

In this section, we study one benchmark, Matrix Multiplication (mxm), in detail be-

fore presenting the results for all benchmarks in Section 4.8. We first compare the
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Figure 4.8: Unoptimised Matrix Multiplication Benchmark: runtime, energy, edp without

idle energy
performance of mxm on each distinct processor before evaluating partitioning across

processors.

4.7.1 Individual Processor

Figures 4.8 to 4.10 show the performance of mxm for runtime, energy and EDP for

varying scenarios, in each case N=1024

 0

 50

 100

 150

 200

 250

 0  200  400  600  800  1000

se
c

m3
a9

dsp

(a) Runtime Opti

 0

 10

 20

 30

 40

 50

 60

 0  200  400  600  800  1000

m
ill

iJ
o

u
le

s

a9
dsp
m3

(b) Energy wo.static

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0  200  400  600  800  1000

m
ill

iJ
o

u
le

 s
ec

a9
m3

dsp

(c) EDP wo.static

Figure 4.9: Optimised Matrix Multiplication Benchmark: runtime, energy, edp without

idle energy

Default optimisation level

Initially, we use the default compiler flags for each processor’s compiler: O2 for gcc

and O3 for the TI compilers. The results are shown in Figure 4.8(a). Here the A9

is clearly the fastest processor followed, surprisingly, by the M3 and then the DSP.

For energy without idle power, the relative performance changes. The M3 is the best

processor followed by the DSP and then the A9 as shown in Figure 4.8b. Regarding

EDP, the M3 is the best processor followed by the A9 and DSP as shown in Figure 4.8c.

This shows that processors behave differently for different optimising criteria. While
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Figure 4.10: Optimised Matrix Multiplication Benchmark: runtime, energy, edp with idle

energy

the A9 is the fastest, and it is also the worst for energy.

Effect of Optimisations

The runtime performance of the DSP is surprising since it should perform well for

mxm. The compile logs indicated that the loop was not software pipelined due to

memory dependences. The compiler thinks that pointers to array parameters can alias

and generated a conservative schedule. We, therefore, added the restrict keyword to

these pointers which significantly improved the performance of the DSP. No significant

improvement was observed with the M3 or A9 since they lack the hardware to gain

from this information. Figure 4.9a shows the performance after optimisation. Now the

DSP is the fastest followed by the A9 and M3. For energy (without idle), the DSP

and M3 are very similar while the A9 is inefficient as can be seen from Figure 4.9b.

Overall for EDP, DSP is now the best processor rather than the worst followed by M3

and A9 as shown in Figure 4.9c.

This shows that the best processor performance depends on backend compiler op-

timisations.

With Idle Energy

The above results do not consider idle energy and focus only on a processor’s dynamic

energy consumption. In reality, processors dissipate energy even when they are idle

and this has to be factored in during measurement. Figure 4.10 shows the results

including idle energy. Here we find that the M3 has a significantly larger amount

of idle energy than before. The DSP has the least energy followed by the M3 and

A9 as shown in Figure 4.10b. Runtime is unaffected by how we calculate energy, so

overall for EDP, the DSP is the best processor followed by the M3 and A9 as shown in
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Figure 4.11: Matmul exploration: Best partitions give more than double runtime and

energy (with idle) performance relative to just using A9. If idle energy is discarded the

improvement is more than 8 fold.

Figure 4.10c.

This shows that when determining which processor is the best for energy, it also

depends on how energy is measured. If only dynamic energy is considered, then the

M3 and DSP are competitive, but if idle energy is also considered then the DSP is the

best by a large margin.

4.7.2 Partitioning

This section considers the platform performance when mxm is partitioned across all

cores. It first explores the design space of different partition sizes and then explores

the power-runtime trade-off when partitioning.

Exploration

The results of a detailed exploration results are graphically given in Figure 4.11 for the

input size N=1024 and DSP enabled backend optimisations. In each graph, the x-axis
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denotes the amount of data allocated to DSP and each curve represents the amount of

data allocated to the M3. The y-axis represents runtime, energy with idle power and

energy without idle power respectively. In Figure 4.11a, we see the best runtime of

48.92s is achieved when half the data (512 rows) is allocated to the DSP and the M3

has 192 rows allocated to it. The A9 has the remaining 320 rows allocated to it. If

all the data were to be allocated to the A9, i.e. M3=DSP=0, then the 2 threads of the

A9 would take 131s - more than twice as long. In the case of energy with idle power,

we see a similarly shaped trade-off graph. Again, the DSP has 512 rows allocated to

it. This time, the best energy result of 63 mJ is obtained when the M3 has slightly

more work allocated to it, 256 rows. Allocating all work to the A9 would increase the

energy usage more than double to 170 mJ. In the case of without idle energy we see a

different trend. As we do not account for increasing idle energy, we see a monotonic

behaviour. The best partition is when the DSP has the most work allocated to it, 640

rows, the remainder being allocated to the M3. No work is scheduled to the A9 as it is

too energy hungry. This results in just 6 mJ compared to massive 55 mJ if the default

approach of allocating to the A9 is employed.

Power Runtime Tradeoff

Figure 4.12a shows the tradeoff between power and runtime, an important consider-

ation in thermally constrained mobile devices. The figure shows considerable oscil-

lations between 0.6-0.76milliWatt and 0.1-0.2milliWatt. The 0.6-0.76milliWatt range

represents those configurations which use the A9 processor and those in the range 0.1-

0.2 mW have the A9 switched off. From this figure, we can see that power and runtime

are not simply correlated. If there are power constraints, we should avoid configu-

rations with high power consumption. Figure 4.12b shows the tradeoff-curve Pareto

frontier. When allowing increased runtime, we keep the best power configuration seen

so far. When the runtime is around 65 seconds, there is a configuration which has only

the M3 and DSP running and hence results in a low power state of around 0.1mW. The

next lowest, around the 95 second mark, is when the DSP is used alone. Finally, the

configuration with the lowest power consumption is when the M3 alone is used result-

ing in a runtime of around 200 seconds. This graph gives us the best configuration for

power for a given runtime budget.

4.8 Partitioning Policy Results

This section evaluates the various partitioning policies described in Section 4.4 across

the benchmark suite for different optimisation criteria.
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Figure 4.13: Results of partitioning policies for runtime: All policies except hom give

performance improvements. iter is the best policy with 2.2x speedup just short of the

2.3x achievable by exhaustive search of best. unip is competitive with iter on most

benchmarks.

4.8.1 Runtime

Figure 4.13 shows the runtime performance of the partitioning decisions as speedups

over sequential execution on the A9. The uniform allocation policy hom performs uni-

formly poor across all benchmarks. It slows down dotp the least but gives an average

slowdown of 0.7. The frequency based approach freq is better again, performing rela-

tively well on dotp. However, it slows down on flwl and has an average speedup of just

1.5x. The other schemes that require runs on each processor perform better. The unip

policy gives an average 2.1x speedup across benchmarks and is competitive with our

iter approach, particularly on edge. Overall, iter is the best policy with 2.2x speedup

just short of the 2.3x achievable by trying all partitions. It performs particularly well

relative to the other policies on regd.
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Figure 4.14: Results of partitioning policies for metric energy with idle. unip gives a

slowdown on regd and is not competitive for flwl compared to iter. On average unip

gives an overall energy improvement of 1.3x compared to 1.45x of the iter scheme.

iter approaches the efficiency of the best policy. hom and freq policies are inefficient

compared to the sequential execution on A9.

Figure 4.15: Results of partitioning policies for metric energy without idle. iter leads to

almost a 3-fold energy improvement on average over sequential execution on A9 and

is within 8% of best. Partitions of hom leads to degradations in all cases. On average

freq gives no improvement at all.

4.8.2 Energy

Here we examine energy usage with and without idle for each policy, across the bench-

marks.

With Idle

When there is idle power, it is often best for the processors to run as fast as possible.

Figure 4.14 shows the results for each policy.

The hom and freq policies give the same partition decisions here as when optimis-

ing for runtime. The hom policy is uniformly poor with an average 0.4x the energy effi-

ciency of running sequentially on the A9. Compared to runtime performance, the hom

policy performs, on average, even worse for energy. Overall, it is slightly less efficient

than running sequentially on the A9. Both unip and iter approach the performance of
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Figure 4.16: Partitioning overview of all benchmarks for runtime, energy with and with-

out idle. Partitioning is different for each benchmark. A9 gets the major share for

runtime in all benchmarks except matm. But for energy without idle, A9 gets no share

at all due to its high dynamic energy. The partitioning is similar for metrics runtime and

energy with idle.

the best exhaustive scheme. However, unip again performs badly on regd leading to

on overall energy improvement of 1.3x compared to 1.45x of the iter scheme.

Without Idle

When there is no idle power to consider, then, running fast is no longer important. Fig-

ure 4.15 shows the results for partitioning policies for metric energy without idle. As

we can see from the figure, the results are poor for hom and freq. This happens because

these policies allocate a significant amount of computation to the A9 processor which

consumes a large amount of dynamic energy. Both unip and iter have almost identi-

cal performance; 0nly 0 to 8 percentage worse off than the best partition found by an

exhaustive search best. On average, this leads to almost a 3-fold energy improvement

over sequential execution over the A9.

4.8.3 Analysis of Results

In this section, we examine the partitioning decisions that lead to best performance.

The best partitions for each metric for runtime is plotted in Figure 4.16a. As can

be seen from the figure, the best partitions are different for different benchmarks. In

percentage terms, the data partition size on A9 varies from around 33% to 84%; the

M3 has between 6% to 21% of the data allocated to it while the data allocated to the

DSP varies from 9% to 45%.

Benchmarks such as mxm and dgen have three or more loop nests where there

is little or no synchronisation. There is also significant instruction level parallelism,
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and hence, the DSP performs well, resulting in a large computation allocation to the

DSP. There is less parallelism available in benchmarks such as flwl, regd and hist due

to dependences requiring synchronisation. The M3 receives the most data on the dotp

benchmark. This is probably due to the other processors being less able to exploit either

their better memory hierarchy or internal parallelism. It is the program’s properties that

dictate the partition size that should be allocated to each processor.

The best partitions for energy with idle are plotted in Figure 4.16b. As we can see,

the with-idle partitioning is similar to the runtime partitioning with small changes in

the contribution of M3.

The best partitions for energy without idle are plotted in Figure 4.16c. The par-

titions are completely different from the others. The A9 is excluded due to its high

dynamic energy. While the entire data is allocated to the M3 for regd, hist and flwl

benchmarks, it is completely allocated to the DSP for dgen. For the other benchmarks,

it is a mix of M3 and DSP. While there is no idle energy considered, there is energy

expended in the memory system and splitting between the M3 and DSP helps these

benchmarks to run faster and hence result in lower memory energy consumption.

This shows that the best partitioning for each benchmark and each criterion is dif-

ferent. There is no one size fits all solution for all benchmarks/criteria and hence all

the fixed partitioning policies fail to give satisfactory performance.

4.9 Summary

This Chapter presented a framework for partitioning data parallel programs for het-

erogeneous processors that address access to shared resources and synchronisation.

It describes a method for accurately measuring runtime and energy consumption of

programs and used this to evaluate different partitioning policies. We show from our

design space exploration that the best partitions change with optimisation, benchmarks

and optimisation criteria. This Chapter presented a simple partitioning approach that is

within 10% of the best partitioning scheme across all optimisation criteria. On average,

we achieve a 2.2x speedup and a 1.45X energy improvement.

This Chapter has shown that partitioning provides benefits in a heterogeneous plat-

form like OMAP4. The next Chapter presents a Compiler Framework for automating

the partitioning of data-parallel programs for heterogeneous multiprocessors.
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Compiler Framework

This Chapter presents a Compiler Framework for automatically partitioning data-parallel

programs for Heterogeneous MPSoCs.

Section 5.1 introduces the work in this Chapter. Section 5.2 presents the motiva-

tion for the work. Section 5.3 presents the target architecture. Section 5.4 presents the

programming model and Section 5.5 presents usage of the SPMD Model as an interme-

diate form. Section 5.6 describes the compiler algorithm. Section 5.7 and Section 5.8

describes implementation details of shared memory and the compiler. Section 5.9 de-

scribes the experimental setup and Section 5.10 presents experimental results. Finally,

Section 5.11 concludes the Chapter.

5.1 Introduction

We continue to witness an ever-increasing use of embedded devices. The majority

of these embedded devices are based on heterogeneous MPSoCs. Nvidia Tegra[14],

Qualcomm Snapdragon [13], Samsung Exynos[3] and TI OMAP [6] are well-known

examples of popular heterogeneous MPSoCs. These MPSoCs contain a variety of pro-

cessors like CPUs, micro-controllers, DSPs and specialised accelerators. The hetero-

geneity of these systems helps in achieving good performance and energy efficiency.

The micro-controllers are used to control sensors, while the specialised accelerators

are targeted at graphics, image or video processing. This specialisation comes at a pro-

gramming price. These processors have different instruction set architectures (ISA),

clock frequencies and operating systems. Additionally, these systems do not support

cache coherent shared memory. Programming heterogeneous devices is therefore in-

herently difficult, and shared memory programming used in general purpose comput-

ing cannot be directly used.

The standard way of accessing non-CPU cores is to use them as accelerators ac-

59
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cessed via platform specific libraries. This style of programming requires the applica-

tion to be first split into separate tasks that fit the library API. The main CPU then acts

as a coordinator using a Master/Slave programming model. Although this approach

means that the programmer does not have to deal with different operating systems and

manage memory coherence, it is highly system specific and may introduce excessive

data traffic. Furthermore, it requires the programmer to perform platform-specific low-

level partitioning of work into parallel activities. While this approach may work for

specialised applications, we show in Section 5.10 that it is not suitable for data parallel

programs and leads to poor performance.

OpenMP[42] is a popular high-level parallel programming model and is widely

supported on parallel hardware. Programmers need only express parallelism without

concern as to the mapping and scheduling of work to the underlying platform. Due to

the wide availability of OpenMP libraries, it also offers some degree of performance

portability. OpenMP, however, is not directly supported on heterogeneous systems,

due to lack of coherent shared memory and multiple operating systems. Exploiting

heterogeneity is avoided, and only the CPUs are utilised by the OpenMP runtime.

In this Chapter, we present a compiler framework which bridges the gap between

the high-level programming model of OpenMP and the heterogeneous resources of

MPSoCs. It takes OpenMP programs and generates code which runs on all the pro-

cessors. It delivers programming ease while exploiting heterogeneous resources. Our

compiler is based on a Single Program Multiple Data model where data layout is ex-

plicitly determined and allows reasoning about memory coherence and synchronisation

placement.

We apply our compiler to a set of benchmarks and evaluate its performance on the

TI OMAP4 architecture. We compare it against using the existing OpenMP imple-

mentation available on the dual A9 CPUs and the Syslink interface provided by TI for

the accelerators. We examine the impact of compiler-directed smart synchronisation

placement and cache flushing. Across the benchmarks, on average, it gives a 2.75x

speedup over using the low-level Syslink library approach. Furthermore, it gives a

speedup of 1.38x and an improved energy efficiency of 1.4x over using the default

OpenMP implementation on the 2 A9 cores alone.

This Chapter makes the following contributions:

• Presents a Clang/LLVM based compiler approach to map OpenMP programs to

MPSoCs.
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# pragma omp p a r a l l e l f o r

f o r ( i =0 ; i<N; i ++)

f o r ( j =0 ; j<N; j ++)

f o r ( k =0; k<N; k ++)

C[ i ] [ j ]+=A[ i ] [ k ]∗B[ k ] [ j ] ;

(a) OpenMP MatrixMultiplication

f o r ( i = s t a r t i n d x ; i<e n d i n d x ; i ++)

f o r ( j =0 ; j<N; j ++)

f o r ( k =0; k<N; k ++)

C[ i ] [ j ]+=A[ i ] [ k ]∗B[ k ] [ j ] ;

(b) SPMD MatrixMultiplication

(c) Speedup MatrixMultiplication (d) Speedup FloydWarshall

Figure 5.1: Motivational Example

• Demonstrates the importance of smart cache flushing for obtaining good perfor-

mance.

• Presents significant performance improvements over existing approaches on the

TI OMAP4.

5.2 Motivation

This section illustrates the programming complexity and performance available when

using existing approaches and our scheme.

Consider the program in Figure 5.1a. It shows a simple matrix multiplication ex-

ample with an OpenMP pragma denoting that the outer loop may be parallelised. If

this program is executed on the TI OMAP 4 (Figure 5.2), it achieves a speedup of 1.9x

relative to sequential execution as shown in Figure 5.1c under the name A9-2T. The

current OpenMP implementation is restricted to the 2 A9 cores and hence speedup is

limited.

To utilise all the OMAP cores, the programmer currently has to use the Syslink pro-

gramming model as shown in Listing 5.1. While this achieves good speedup -around

4.9x as shown in Figure 5.1c, it is clear that this is at the cost of significant coding

complexity. The function fxn performs the actual matrix multiplication computation.

Each processor’s threads are created in function syslinkfxn. All the threads execute the

function compute.
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void fxn ( b u f f e r ∗ b u f f e r s , i n t s t a r t i n d x , i n t e n d i n d x )

{
i n t (∗ r e s t r i c t A) [ 1 0 2 4 ] = g e t a d d r e s s ( b u f f e r s [ 0 ] ) ;

i n t (∗ r e s t r i c t B) [ 1 0 2 4 ] = g e t a d d r e s s ( b u f f e r s [ 1 ] ) ;

i n t (∗ r e s t r i c t C) [ 1 0 2 4 ] = g e t a d d r e s s ( b u f f e r s [ 2 ] ) ;

i n t i , j , k ;

f o r ( i = s t a r t i n d x ; i < e n d i n d x ; i ++)

f o r ( j = 0 ; j < SIZE ; j ++)

f o r ( k = 0 ; k < SIZE ; k ++)

C[ i ] [ j ] += A[ i ] [ k ] ∗ B[ k ] [ j ] ;

}

void r e m o t e c o m p u t e s t u b ( void ∗ msg )

{
i f ( msg−>fd == DSP) {

fxn ( msg−>b u f f e r s , msg−>s t a r t i n d x , msg−>e n d i n d x ) ;

} e l s e {
f o r e a c h c o r e c i n (M3−1, M3−2)

T a s k c r e a t e ( t a s k d e s c ( c ) , fxn , message ( c ) ) ;

f o r e a c h c o r e c i n (M3−1, M3−2)

Even t pend ( t a s k d e s c ( c ) ) ;

}
}

void compute ( void ∗ msg )

{
i f ( msg−>fd == M3 | | msg−>fd == DSP) {

rpmsg remote compu te ( msg−>fd , msg ) ;

} e l s e {
fxn ( msg−>b u f f e r s , msg−>s t a r t i n d x , msg−>e n d i n d x ) ;

}
}

void s y s l i n k f x n ( b u f f e r ∗ b u f f e r s )

{
f o r e a c h p r o c e s s o r p i n ( A9−1, A9−2, M3, DSP)

p t h r e a d c r e a t e ( t h r e a d d e s c ( p ) , compute , message ( p ) ) ;

f o r e a c h p r o c e s s o r p i n ( A9−1, A9−2, M3, DSP)

p t h r e a d j o i n ( t h r e a d d e s c ( p ) ) ;

}

i n t main ( )

{
b u f f e r ∗ b u f f e r s = a l l o c m e m o r y f o r a r r a y s ( ) ;

c o m p u t e s t a r t a n d e n d i n d i c e s ( ) ;

s y s l i n k f x n ( b u f f e r s ) ;

re turn 0 ;

}

Listing 5.1: Matrix multiplication using Syslink
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The threads corresponding to M3 and DSP make remote procedure calls (RPCs)

with the function rpmsg remote compute. This will invoke the stub function remote compute stub

on those processors.

Each of these steps has to be repeated for each parallel loop that is encountered

in a program. Furthermore, this programming complexity is not always worthwhile.

Applying the same approach to a different program floydwarshall gives a speedup

of nearly 2x when using OpenMP but a significant slowdown when using Syslink due

to excessive data movement overhead as shown in Figure 5.1d.

Our approach is to use the SPMD model of computation to partition data and

computation across the different cores. Given the original OpenMP program in Fig-

ure 5.1a, our compiler first generates the code as shown in Figure 5.1b which is then

mapped down to the Syslink implementation. The resulting performance is shown in

Figure 5.1c and Figure 5.1d where it outperforms both approaches. We, therefore,

maintain the ease of programming in OpenMP and harness the resources of the hetero-

geneous platform

5.3 Target Architecture and Runtime

For our experiments, we use the PandaBoard[12]. PandaBoard is a low-cost single-

board computer. It has the 4th generation Open Multimedia Applications Platform

(OMAP) SoC.
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Figure 5.2: OMAP4

Hardware Specifically we use the OMAP4430[7] MPSoC. OMAP4 has 2 ARM

A9s, 2 ARM M3s, 1 mini-C64X+ DSP and 1 Imagination GPU besides other accel-
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erators. The GPU is not programmable and hence we do not include the GPU as part

of this study. The A9s are meant for general purpose computing, the M3s as micro-

controllers, and the DSP to make the Image and Video sub-system programmable. The

A9s have their own L1 cache of size 32KB but share the L2 cache of size 1MB. The

M3s share their L1 cache of size 32KB. The DSP has two levels of cache with L1

cache size of 32KB and L2 cache size of 128 KB. All these processors have their own

separate address spaces. The A9 runs at a frequency of 1GHz, M3 at a frequency of

200MHz, and the DSP at 466MHz. It has an LPDDR2 memory running at 400MHz.

There are also Hardware Mailboxes and Spinlocks.

Runtime These processors also have different operating systems running on them.

The A9s have Ubuntu Linux running on them in Symmetric Multiprocessing (SMP)

fashion. The M3s and DSP have a proprietary RTOS from TI called SYS/BIOS as their

OS. Again the M3s run the SYS/BIOS in SMP fashion. By default, the programs run

only on the A9 processors. To run tasks on the remote processors (M3s and DSP) an

Inter Processor Communication Protocol called Syslink is provided. The latest version

of Syslink is called Remote Processor Messaging (RPMsg)[1]. This is based on a

Remote Procedure Call (RPC) mechanism. RPMsg is built using shared memory and

Hardware Mailboxes are used for notification of messages. RPMsg is built into the

Linux kernel and SYS/BIOS for providing Inter-processor Communication. Hardware

Spinlocks are used for synchronisation between the various processors.

Figure 5.2 shows the relevant portions of the hardware and software present in the

OMAP4 SoC.

5.4 Programming models

In this section, we describe three models, OpenMP, Syslink and SPMD that can be

used for programming the OMAP MPSoC. OpenMP is a high-level approach that is

currently restricted to the dual A9. The low-level Syslink model allows access to all

accelerators at significant programming complexity. The SPMD model allows explicit

consideration of memory layout but requires compiler support to match heterogeneous

architectures.

5.4.1 OpenMP

OpenMP is a widely used high-level shared memory pragma based programming lan-

guage. The popularity of OpenMP is due to its ease of use and wide availability.

OpenMP consists of a set of compiler directives in the form of comment like prag-

mas. These are used to mark parallel loops and tasks. There are also directives for
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specifying scheduling of work, declaration of both shared and private variables and

critical sections. OpenMP supports the fork-join programming model. In this model,

a program starts as a single master thread. When an OpenMP parallel construct is

reached, a team of threads is forked. These threads co-cooperatively perform the work

in parallel. At the end of the construct, all the threads join and only the master thread

continues. Rather than creating and destroying threads at the start and end of parallel

regions, most implementations have a pool of threads available which are used and

synchronised as needed.

While popular, OpenMP has some issues that make it ill-suited to MPSoC architec-

tures. Firstly, it assumes a single coherent address space and a single operating system.

For this reason, it is only available on the dual A9s of the OMAP architecture. More

subtly, it is a control-centric parallelisation approach rather than data-centric. Schedul-

ing of parallel loops does not take into consideration data movement impact on other

processors and other parts of the program. This has the side effect of increasing syn-

chronisation and memory coherence overhead. To overcome this, programmers have

to add affinity scheduling pragmas and no barrier directives.

5.4.2 Syslink Model

Syslink is a low-level API based model which uses pthreads and the IPC mechanism

provided by TI to perform computation on all the processors. For each parallel loop in

a program, threads are created using the pthread library to be run on each processor.

Each thread is also given a message which contains the address of the global arrays

and the start and end indices of the computation it needs to perform. These start and

end indices are computed at runtime. The threads corresponding to M3 and DSP make

RPC calls which invokes a stub function on those processors. If the stub is invoked

for the DSP, then the function to compute is called. If the stub is invoked by the M3,

then two Tasks are created, each of which calls the function to compute. The threads

corresponding to the two A9 cores will directly call the function to compute.

The Syslink Model suffers the overhead of thread creation and RPC calls for each

parallel loop. Also, since the computation partition is decided arbitrarily at runtime,

there is no guarantee about the dependencies among these partitions, and hence, cache

flushes have to be inserted before and after every parallel loop. Additionally, manual

conversion of programs from OpenMP to Syslink Model is complex and tedious as is

evident from the Syslink Matrix Multiplication example in Listing 5.1.

In Chapter 4, the inter-processor communication mechanism is called Syslink/RPMsg.
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In this Chapter, Syslink Model refers to a programming model which uses the inter-

processor communication mechanism Syslink/RPMsg without any optimisation.

5.4.3 SPMD

The Single Program Multiple Data (SPMD) model of parallelism is well known and

used in a variety of settings. For e.g., Unified Parallel C (UPC)[27] is an extension of

the C language which uses the SPMD model. In SPMD, parallel tasks run the same

program but operate on independent sections of an array. It is a data-centric approach

in which data is first partitioned and scheduled to processors. Computation is then

partitioned and scheduled in accordance with this data allocation. Nearly all schemes

use an owner-compute or local-write rule [97] where the code executed on a processor

is restricted to write to just local data.

Unlike the fork-join model, there is no master thread. At program start itself, all the

threads start running in parallel. The number of threads that correspond to the number

of processing elements is fixed throughout the execution of a program. Synchronisa-

tion is not associated with the beginning or end of parallel loops but with whether or

not there is a cross-processor data dependence i.e., data written on one processor is

read on a different processor. Barriers are inserted to honour such dependences.

The key benefit of SPMD for MPSoCs is that data layout is known. It forms a

natural bridging model between high-level OpenMP and low-level Syslink.

5.4.4 Example

Figure 5.3a shows a sequential program with two loops, loop0 and loop1. This program

runs on one core of the A9. Figure 5.3b shows an OpenMP program which runs on

two A9s. As can be seen, the parallel loops are split into two and runs on both cores,

while the sequential part runs only on one core. Figure 5.3c shows the Syslink Model.

In this, the parallel loops run on all the cores of the processors, while the sequential

portion runs on only one core of the A9. Figure 5.3d shows the SPMD Model. In this

the parallel and sequential portions run on all the cores. Synchronisation is done using

barriers. Barriers are placed at the start and the end of the program and points of cross

processor dependencies.

5.5 SPMD as a bridging model

Our goal is to both allow programmers to continue to use OpenMP as a high level

programming language and exploit the heterogeneous accelerators. In effect, we want

to port OpenMP to MPSoCs. We achieve this by using SPMD as a bridging model;
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Figure 5.3: OpenMP and SPMD

first we map OpenMP to SPMD and then map SPMD to MPSoC.

5.5.1 Mapping OpenMP to SPMD

The SPMD model assumes that data is first partitioned across the processors and then

local computation is derived using the local-write rule. A good data partition will be

one that exposes parallelism without introducing excessive overheads. In our approach

we, therefore, interpret OpenMP parallel loop pragmas as defining which dimensions

of an array may be executed in parallel on a loop by loop basis. This information is

collected for the whole program and used to determine a global data partitioning. The

key point is that OpenMP pragmas are used for analysis to drive to global data parti-

tioning rather than as directives on how to schedule loops. Once the data partitioning

is determined, the exact amount to be scheduled to each processor must be calculated

before generating the local code for each processor.

5.5.2 Mapping SPMD to MPSoC

Once we have determined the local programs for each processor, these must be allo-

cated, compiled by the host compiler and executed. The details of how this is achieved

are described in Section 5.6.5.The SPMD model assumes a single coherent address
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space. We achieve this by allocating memory in a single contiguous Linux mem-

ory space and map these to the M3 and DSP memory spaces as described in Sec-

tion 5.7. Coherence need only be enforced at synchronisation points. We, therefore,

flush cached data to main memory at each barrier synchronisation point. As this is

an expensive operation, we try to minimise the number of synchronisation points and

flush only data that is out-of date.

5.6 Compiler Algorithm

This section describes the different compiler stages involved in mapping OpenMP to

Algorithm 1 CompileforMPSoC
1: Determine data partition dimension.

2: Determine data bounds per processor.

3: Determine Computation partition.

4: Determine barrier synchronisation points.

5: Determine data to be flushed.

6: for all processor p: p ∈ A9,M3,DSP do
7: Generate node code for each processor p.

8: end for

MPSoCs. The overall algorithm is shown in Algorithm 1.

5.6.1 Data partition

As the SPMD model is data-centric, determining the overall data partitioning is a crit-

ical global decision. We consider all arrays are aligned to a common index domain

[73], and it is necessary to determine which indices should be partitioned. Due to the

relatively low number of cores within an MPSoC, we currently restrict partitioning to

just one index or dimension. Using the OpenMP pragmas, we consider which dimen-

sions can be executed in parallel for the most computationally expensive sections of

the program. Such sections are determined statically based on loop nest depth. If there

are more than one dimension which can be executed in parallel, then we choose the

index which causes the maximum number of elements to work in parallel.

False Sharing Partitioning of arrays has to avoid false sharing at the cache line

level. By default, C language defines arrays to be stored in row-wise format. As

column elements are not consecutively stored, if we partition by columns, we might

inadvertently write incorrect data to other elements in the cache line. To avoid this

problem we only partition on the first dimension i.e., rows. In cases where the best
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index to partition on is the 2nd or higher dimension, we simply apply global index

reordering on all arrays, so that partitioned dimension is innermost.

5.6.2 Data bounds per processor

In the second step, we determine the amount of elements from the selected dimen-

sion to allocate to each processor. We use the iter partitioning method presented in

Chapter 4.4 for this purpose. It uses an iterative profiling based method. The program

is run with a reduced data set on each of the processors, and the profile data is col-

lected. From this profile data, the throughput of each processor is calculated and the

data partition assigned is proportional to its throughput.

5.6.3 Computation Partitioning

After data partitioning, the work scheduled to each processor has to be determined.

The local write rule, where each thread writes only to local data, places a constraint on

the loop bounds. Figure 5.1b shows an example of such loop bounds. The local write

rule ensures that there are no remote-writes, and all output dependences are within a

thread by definition. This information is profitably used in determining synchronisa-

tion placement.

Scalars

While arrays are partitioned across the processor space, scalars need different treat-

ment. By default, all scalar variables are privatised. This means, all reference to

scalars are local and do not incur any cross-processor dependences.

Reductions

Reductions require special treatment. Each processor performs a reduction on its local

data and writes the result to a local element of a shared reduction array. After synchro-

nisation, each thread accesses the remote elements of the shared reduction array and

performs a final reduction locally.

Synchronisation

Whenever there is a cross-processor dependence data, synchronisation is necessary.

Ideally, we wish to place the minimal number of synchronisations to cover all de-

pendences. We first construct a cross processor dependence graph from the standard

dependence graph. All output dependences and scalar dependences are removed as

they are guaranteed to be local. Next, any read access that has the same subscript on

the partitioned index as its corresponding write access is guaranteed to refer to local
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data due to global data partitioning. Any dependences associated with such a read

can also be eliminated. Given this reduced cross-processor data dependence, we place

barriers to cut all dependences based on the algorithm given in [111], which places

synchronisation directives at the highest lexical level that covers the dependence.

5.6.4 Cache Flush

Placing synchronisation directives ensure the correctness of a program in cache coher-

ent systems. But in systems where caches are not hardware coherent, the compiler is

responsible for inserting cache flushes around barriers. These flushes are necessary so

that, if a memory location is updated by a processor and read later by another proces-

sor, then the latter should read the updated value. In a trivial translation, flushes are

inserted for all the memories, which correspond to the global arrays, before and after

every parallel loop. But this is very conservative and can lead to slowdowns. We only

need to flush the memories corresponding to arrays that were updated and which are

involved in cross processor dependencies. We use the dependence analysis mentioned

in Section 5.6.3 for barriers to finding these memories and the locations in the program

to insert the flushes. An array section analysis is necessary to determine the exact sec-

tions of the array to be flushed. Array section analysis is a well-researched topic, and

more details can be found in [25, 57, 39].

5.6.5 Code Generation

Once we have the local programs for each processor, these have to be mapped down

to the Syslink model. In particular, we need to consider how parallel threads and

synchronisation are supported.

Threads

Threads are implemented using pthreads in the A9 cores. We create two threads for

the A9, and one each for the M3 and the DSP. pthread create, and pthread join is used

for thread creation and joining. The thread for M3 makes an RPC call to get the work

done on the remote processors. In M3, the threads are created using Sysbios tasks

and events. Task create and Event post, Event pend are used for thread creation and

joining in the M3 processor. We run only a single thread on the DSP. The final code

executed has the same structure as the Syslink code shown in Listing 5.1, except that

the fxn function is replaced with the generated SPMD code, which is arbitrarily long

containing synchronisations and cache flushes.
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Synchronisation

Synchronisation is implemented using barriers. Inter-processor barrier synchronisation

is implemented using shared memory and hardware spinlocks. Synchronisation is also

needed among threads running on the same processor but different cores as in the A9

and M3. Local synchronisation in A9 is performed using pthread barrier while on the

M3 it is performed using barriers created using semaphores and memory.

5.7 Shared Memory on an MPSoC

One of our key requirements is having a single address space.

In our scheme, Memory is allocated in a contiguous area from the Linux kernel.

On the A9 side, this area is memory mapped to the user-space. We obtain the physical

address corresponding to this area which is sent to the M3 and DSP using rpmsg. The

memory map table of M3 and DSP, for the range of addresses corresponding to this

contiguous area, is set up such that the physical address is equal to the virtual address.

Hence, the physical address on the A9 side can be directly used on the M3 and DSP.
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Figure 5.4: Our Model

On the A9, shared array declaration of arrays is replaced with memory allocation

from the contiguous memory. System calls like malloc are used for this allocation.

On the M3 and DSP, these allocations are not needed. The addresses of these global

arrays and the start and end indices which denote the partition corresponding to the

remote processors are sent by rpmsg. We replace the declaration of these arrays with a

type-casting from the physical addresses received through rpmsg.

This approach is shown in Figure 5.4. The Figure shows a memory consisting of 8

locations. The coloured/darkened area is the contiguous area reserved for our purpose.

The Memory Management Unit (MMU) of A9 shows the translation from virtual to
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Benchmark Short Name Par. Loops

Matrix mxm 1

Multiplication

Dotproduct dotp 2

Edgedetect edge 4

Histogram hist 3

Doitgen dgen 3

Regdetect regd 4

FloydWarshall flwl 1

Table 5.1: Benchmarks

physical address for these locations, e.g., 1→5, 2→6. Whereas the MMU of M3 and

DSP shows a 1:1 mapping for these addresses, e.g., 5→5, 6→6. The MMU of the DSP

and M3 are programmed when the corresponding firmware is loaded. Let us assume

that the virtual address of the array A is 1. By making a system call, the physical

address is found to be 5. We make an RPMsg call to perform work on the remote

processor. The index of the function that we want to call as well as the physical address

of the array A(5) is passed as an argument. At the remote processor, the physical

address is typecast to the array A and the remote processor can now work on the array

A.

5.8 Compiler Implementation

In this section, we explain in brief our compilation Framework. Figure 5.5 shows the

framework. We use data-parallel OpenMP programs as input. The input program is

fed to a src-to-src translator. A source to source translation is performed to convert

it into an SPMD type program. Then we partition the code for all the processors and

code is generated for each of the processors. The generated code contains barriers for

synchronisation and rpmsg calls to get work done on the remote processors. Then we

use specific compilers to make the binaries for all these processors.

5.8.1 Source to Source Translation

We use Clang/LLVM to do source to source translation of OpenMP data-parallel pro-

grams to the SPMD form. We use the OpenMP Clang frontend [11] open sourced
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Figure 5.5: Compiler Flow

by Intel to perform the source to source translation. This tool annotates the clang

AST with OpenMP pragmas. Once the AST is constructed and annotated by this tool

we traverse the AST and perform the required translation. Callbacks are inserted for

the OpenMP Pragmas and these callback functions get called when the pragmas are

reached during traversal. We use the Rewriter framework in Clang/LLVM for source

to source translation. The simplest way to translate is whenever we see an OpenMP

parallel for pragma, we replace the start and end indices of the loop associated with

the pragma with two variables start indx, end indx. When this replacement is done

the start indx and end indx have to be propagated to the function parameters as well

as to the sites where this function is called.

Compilation

Table 5.2 shows all the details of the platform used. We use the gcc compiler to compile

for the A9 processor on the pandaboard. The board runs the Ubuntu Linux OS. For

M3 and DSP, the programs are cross-compiled remotely using proprietary TI compilers

tms470 and cl6x compiler to generate firmware. These compilers come as part of the

TI Code Composer Studio (CCS). These firmware are then copied to the pandaboard

and put in /lib/firmware. When some kernel modules are inserted, this firmware is

loaded onto the remote processors.
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Optimisations

We use the highest optimisation levels as default for all the processors. This is O2

for the A9, and O3 for the DSP and M3 processors. Many of the benchmarks that we

have tried can potentially benefit from memory access optimisations, but that is not the

focus of our work.

Platforms like the DSP are extremely sensitive to memory aliasing and dependence

issues, hence, if there are more than one parameters to a function which are arrays,

then we should qualify them with restrict if the parameters are not expected to alias.

Use of restrict also can give marginal benefits on the A9 and M3 processors. There are

also benefits for the DSP when using the pragma MUST ITERATE which gives bounds

for the loops.

Processors like the M3 have limited cache. There can be thrashing when two

threads run simultaneously and fetch and operate on a lot of data from the memory.

So sometimes it is better just to have one thread working on the data.

Processor Cortex A9 Cortex M3 C64X+ DSP

Vendor ARM ARM TI

Clock 1 GHz 200 MHz 466 MHz

L1 Cache 32 KB 32 KB 32 KB

L2 Cache 1 MB - 128 KB

Memory LPDDR2 400 MHz

OS Ubuntu 12.04-3 SMP/BIOS SYS/BIOS

Compiler gcc 4.6.3 CCS tms470 CCS cl6x

Table 5.2: Platform details

RPMsg

RPMsg is a way of performing Inter-processor communication in the TI OMAP sys-

tem. RPMsg is implemented in the Linux kernel on the A9 side and sysbios on the

M3 and DSP side. User applications in the A9 side make system calls to invoke RPC

calls to get work done on the remote processors. An RPC call contains the id of the

function to be invoked on the remote processor, the physical addresses of the arrays,

and the location of the partition via start indx and end indx. The RPMsg messages are

passed using the virtio framework. This framework has circular linkedlists for sending

and receiving messages. After sending a message, the recipient processor is notified by



5.9. Setup 75

Figure 5.6: Results for Syslink compared to A9-2T. Results are normalised to sequential

execution on A9. The Syslink implementation gives significant improvement for mxm,

but performs poorly for dotp, regd, flwl and hist. While A9-2T has an average speedup

of 1.59x, Syslink has a slowdown of 0.8x.

sending a message to the mailbox. On receiving a notification of a message, a server

like thread is called which checks the message. This server invokes a thread to run the

function whose id is contained in the RPC call.

5.9 Setup

In this section, we describe the experimental setup. We briefly describe the benchmarks

that we use and the method for measuring runtime in this section.

5.9.1 Benchmarks

We use a few data-parallel benchmarks from DSPstone[113], UTDSP[70] and polybench[92]

for experiments. These benchmarks are parallelised by annotating them with OpenMP

pragmas. From the DSPstone suite, we have Matrix Multiplication and Dotproduct.

Dotproduct has a reduction. From UTDSP we have Edgedetect and Histogram. From

Polybench we have Doitgen, Regdetect and FloydWarshall. Doitgen contains some

matrix operations, and Regdetect is a regularity detection algorithm for 2D images.

Barriers are needed for synchronisation in all benchmarks except Matrix Multiplica-

tion and Doitgen. Table 5.1 lists all the benchmarks, the short names used for these in

the Chapter and the number of parallel loops in these benchmarks.

5.9.2 Measurement

System calls form part of the Syslink framework. We have to include the runtime of

these calls in our runtime measurement. Hence, we need an API function which mea-

sures the system time as well as user time. For these reasons, we use the gettimeofday
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API function. This function is called before forking off the threads and after the threads

join. The difference in time between these two calls is the execution time. We take the

measurement 10 times and report the median value as the result.

5.10 Experiments

This section investigates the performance of OpenMP, Syslink and our approach and

includes an investigation of the impact of barrier synchronisation and cache flushing.

This is followed by an evaluation of the energy used by the best 2 schemes and the

resulting Energy-Delay-Delay, EDD, product. Finally, we perform a simple limit study

to see whether further communication optimisation can improve performance.

5.10.1 Syslink and OpenMP Model

Figure 5.6 shows the results for the Syslink Model compared to the OpenMP default

model (A9-2T) that just uses the two A9 cores. On the y-axis, we have the Speedup

over sequential execution on the A9. Syslink achieves better speedup than A9-2T for

the mxm and dgen benchmarks. In edge, the Syslink model is worse than running on

A9 with two threads but better than sequential execution. For other benchmarks viz.

dotp, regd, flwl, and hist, the Syslink model is worse compared to running sequentially

on the A9. On average, while A9-2T had a speedup of 1.59x, the Syslink model has a

slowdown of 0.8x. In trying to improve the performance by using the other processors,

we have ended up degrading in performance in five out of the seven benchmarks.

5.10.2 Our SPMD approach

In this section, we evaluate our SPMD based approach. In particular, we examine the

performance achieved using a naive ”flush all data” at a barrier approach vs. a smart

”flush only data written to”. Figure 5.7 shows the speedups achieved with and without

flush optimisations. F-ALL is the default scheme where all data is flushed at a barrier.

It should be noted that F-ALL is not the same as Syslink. The primary difference is

that F-ALL runs in SPMD style whereas Syslink runs in fork-join style. F-OPT refers

to code with flushes optimised. As can be seen, with naive cache flushing our scheme

achieves poor performance. In only two benchmarks, mxm and dgen do we see any

speedup as the amount of data flushed is small relative to the total computation. In

all other cases, it leads to slow-down, 0.78x and performs on average worse than the

default OpenMP A9-2T scheme. Applying optimised flushing has a significant impact

on program performance. In all cases except mxm, it significantly improves over the

naive scheme. Furthermore, it outperforms the OpenMP A9-2T approach in all cases



5.10. Experiments 77

Figure 5.7: Results for our SPMD based compiler model with and without Flush Op-

timisations. Results are normalised to sequential execution on the A9. Without flush

optimisations, the SPMD model is slower than A9-2T. With flush optimisations, it is

faster than A9-2T and achieves an average speedup of 2.12x.

Figure 5.8: Results for SPMD Model with and without Barrier Optimisations. Results

are normalised to sequential execution on the A9. Without barrier optimisations, only

dotp is slower than A9-2T. With barrier optimisations, a speedup of 2.20x is achieved

which is not significantly higher than without Barrier Optimisations.

except dotp giving an average speedup of 2.12x.

5.10.3 SPMD Barrier optimisations

In this section, we compare the impact of smart barrier placement within our model.

Figure 5.8 shows the results with and without barrier optimisations. B-ALL refers to

a naive scheme where barriers are placed whenever we encounter an OpenMP parallel

pragma. B-OPT refers to the case where barriers are placed solely based on cross-

processor dependence analysis. In most cases we see little improvement in overheads

in smart placement. This is because there is only a maximum of five threads which are

synchronising at the barrier. Only in the case of dotp benchmark do we see an im-

provement. Removing the barrier allows better load balancing and reduces execution

time. On average, the SPMD programs with barrier optimisation achieves a speedup
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Figure 5.9: Results for SPMD Model compared with Syslink and A9-2T. Results are

normalised to sequential execution on the A9. On average, the SPMD model delivers a

speedup of 2.20x, Syslink delivers a slowdown of 0.8x, and A9-2T delivers a speedup

of 1.59x.

of 2.20x compared to 2.12x without optimisations.

5.10.4 Comparison Summary

In this section, we summarise our results so far, comparing the optimised SPMD model

with A9-2T and Syslink. Figure 5.9 shows the results for the SPMD and Syslink

model. As can be seen, the Syslink mode is worse compared to SPMD model in

all benchmarks. The runtime is comparable in only one benchmark, ie mxm. The

improvements in performance over Syslink comes primarily due to compiler directed

optimal cache flushing. Across all benchmarks, the SPMD model is better than A9-2T.

On average, the SPMD model gives a speedup of 2.20x, Syslink a slowdown of 0.8x,

and A9-2T a speedup of 1.59x. In other words, the SPMD model gives a speedup of

2.75x over Syslink and 1.38x over A9-2T.

5.10.5 Energy and EDD

One of the benefits that a heterogeneous multicore system offers is power- performance

trade offs. In the target architecture, the M3 and DSP are low power processors. Al-

locating work to the M3 and DSP not only improves performance but also improves

energy efficiency. In this section, we quantify the energy and hence EDD benefits. We

compare against the best performing OpenMP approach. We did not evaluate Syslink

as it gives, on average, a slowdown and hence would have excessive energy consump-

tion. We measure Power by monitoring the current flowing into each of the processors

and the memory and multiplying it by the supply voltage. We use the method described

by Jos[115]. Energy is measured by measuring the instantaneous power over the entire

duration of a program execution using an Oscilloscope.
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Figure 5.10: Energy of SPMD normalised to A9-2T. On average, SPMD model achieves

an energy efficiency of 1.39x over A9-2T. The largest improvement is for mxm

Figure 5.10 shows the energy efficiency of the SPMD model compared to A9-2T.

We get the maximum efficiency improvement in mxm of around 2.62x. This improve-

ment is because around 60% of the work is now done by the M3 and DSP processors

for mxm in the SPMD mode. This is followed by dgen, dotp and regd. We achieve an

improvement of around 1.14 for flwl, histo and edge. In general, the improvement in

efficiency is proportional to the amount of work that is done by the low power M3 and

DSP processors. On average, with the SPMD mode we get an improvement in energy

of 1.4x when compared to A9-2T.

Finally, Figure 5.11 shows the fraction of EDD of SPMD when compared to A9-

2T. For flwl and histo, SPMD has around 0.8x the EDD compared to A9-2T, for regd

around 0.67x, for edge and dotp around 0.6x, for dgen around 0.16x and mxm just

around 0.04x. On average, the SPMD mode needs only 0.37x the EDD of A9-2T.

Figure 5.11: SPMD EDD normalised to EDD of A9-2T. On average, the SPMD Mode

needs only 0.37x the EDD of A9-2T.
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5.10.6 Limit Study

In this section, we report the results of a study on the performance limit possible with

SPMD. Here, we remove all the barriers and flushes from the SPMD program and com-

pare the performance with the optimised SPMD program. It should be noted that this

performance will not be achievable since removing all the barriers and cache flushes

will result in incorrect results. Figure 5.12 shows the results of this study. The maxi-

mum possible performance improvement is in flwl of 1.13x. In benchmarks like mxm

and dgen, there is no possible improvement. On average, the possible improvement is

1.05x. From this, we can conclude that there is little room for improvement in further

Figure 5.12: Performance Limit: Runtime of SPMD without barriers and flushes nor-

malised to optimised SPMD. On average there is a possibility of improving the perfor-

mance by 1.05x only. The maximum possible improvement is for flwl

barrier/flush implementation. To achieve further performance improvement, we should

concentrate on optimisations of individual processors.

5.11 Summary

We have presented an LLVM-based compiler approach for compiling data-parallel

OpenMP programs to heterogeneous embedded systems. We have shown that by using

the SPMD model of compilation we can obtain better performance than the existing

Syslink model. Smart insertion of cache flushes is important for achieving good perfor-

mance. On average, our approach achieves a 2.75x speedup over Syslink. Furthermore,

it delivers a speedup of 1.38x and an improved energy efficiency of 1.4x over using the

2 A9 cores alone. All these improvements are achieved without the user having to

make any code changes.

The previous and current Chapters demonstrated the advantages of partitioning

data-parallel programs for heterogeneous processors and described a compiler frame-

work for automation. One of the big challenges of the future is Dark Silicon where
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all the cores cannot be active at the same time due to power budgets. The next Chap-

ter explores code generation for heterogeneous processors in the presence of a power

budget.





Chapter 6

Power Constrained Code Generation

This Chapter presents a compiler based method for code generation for heterogeneous

processors in the presence of a power budget.

Section 6.1 introduces the work in this Chapter. Section 6.2 presents the motivation

for the work. Section 6.3 presents our approach and Section 6.4 discusses the details

of code generation. Section 6.5 describes the power constrained model. Section 6.6

describes the experimental setup and Section 6.7 presents experimental results. Finally,

Section 6.8 concludes the Chapter.

6.1 Introduction

Power is a first class constraint in modern processor design. It is the driving force

behind the shift to multi-cores in today’s computing systems. Ever-higher clock fre-

quency scaling is unsustainable due to power-density and thermal limitations [105].

Parallel programming on multiple cores has the potential for increased performance

without increased power. Power is also the reason for increased processor heterogene-

ity. Dark silicon [45] suggests that since we will be unable to simultaneously power-up

all the cores on a chip, cores should be specialised to best utilise the available power.

Simple heterogeneous GPU based systems are now common-place. In this Chap-

ter, we are interested in investigating more challenging heterogeneous platforms that

are likely to become more prevalent in the future. In particular, we examine the TI

OMAP4430 [6] and Samsung Exynos 5422 [3] platforms which contain heteroge-

neous CPUs, heterogeneous GPUs and DSP cores. The non-CPU processors in these

platforms are generally used for offloading for power-efficiency/performance. These

processors have different micro-architecture, memory hierarchy and/or Operating Sys-

tems. There is no single programming language, library or runtime to program these

platforms. Hence, these are highly challenging to program but offer the potential for

83
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excellent power and performance.

Given that, it is frequently not possible to run all cores at their maximum clock

rate for long periods, runtime power-management is needed to keep within the thermal

constraints[105]. Such power management is the responsibility of the operating system

or hardware which uses DVFS or power gating to reduce power at the expense of

performance.

Such approaches work well with homogeneous multi-cores or single-ISA hetero-

geneous cores as there is no need to modify the binaries. However, if, due to dark

silicon [45] we have more diverse cores each with their own ISA and specialised be-

haviour, there is no straightforward approach to using the right cores based on program

suitability and available power budget. It is not possible to migrate code compiled for

a DSP ISA to a CPU ISA. Even if it were possible, given that some cores will be more

power-efficient for certain applications and not others, it is not clear which core(s) to

migrate to. In future, we will see an ever-increasing number of cores available for a

newly scheduled application, but only a subset may be used due to a limited power

budget. Here we need to select from the cores those that give the best performance and

allocate the appropriate amount of work to each.

Previous approaches have focused on CPU/GPU power-based allocation of work

rather than examining more general heterogeneous multi-cores. In [19] they build a

model to select where to run a program, either on a CPU or a GPU based on power.

Work presented in [121] uses an online search of the kernel partition parameter space.

Although it extends work on kernel partitioning to consider power, this is at the expense

of additional execution every time a kernel is run.

This Chapter presents a compiler-based approach to runtime power-management

for heterogeneous cores. Given an externally provided power budget, it generates het-

erogeneous, partitioned code that attempts to give the best performance within that

budget. At runtime, it selects parameters determining the workload on each core. We

consider a number of different selection policies that combine program and system

information.

We applied this approach to parallel OpenMP benchmarks on the OMAP 4430 and

Exynos 5422 platforms. We evaluated a number of parameter selection policies and

compared against an idealised perfect DVFS scheme. Such a scheme always picks the

best voltage and frequency that ensures the program stays just within the power budget.

It represents the best that could be realistically achieved by DVFS approach and is a

strong baseline to compare against. We performed a partitioning Oracle study which
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Figure 6.1: OMAP Power/Performance pareto: Using all the processors gives better

pareto points than using the CPU only with DVFS. This is particularly true with a low

power budget where there is significant 3.3x speedup for Doitgen

shows that the best parameter selection gives an average 1.55X and 1.30X speedup

across all programs and power budgets. Determining the right parameters is however

challenging and we show that a Naive scheme that ignores program-structure and just

uses average power values, in fact, performs worse than the idealised DVFS.

Using our Profile-directed analytic model we achieve on average a 1.37X and

1.15X speedup averaged across power budgets, showing that power constrained hetero-

geneous code generation is an effective technique for managing future heterogeneous

systems.

The rest of the Chapter is organised as follows: the next section presents a simple

example demonstrating that partitioning for heterogeneous processors gives better per-

formance for a power budget than relying just on DVFS. This is followed by a brief

overview of our approach, code generation and the various power modelling policies

proposed. Next, we present the experimental setup which is followed by the experi-

mental results, related work and conclusion.

6.2 Motivation

When an application is to be scheduled, it must not exceed the maximum available

power. The standard way to manage varying power availability is to change frequency

and voltage. This has the effect of reducing power consumption at the expense of

slowing the processor and hence the application. To illustrate the effect of frequency/-

voltage scaling, consider Figure 6.1a. It shows the power-runtime trade-off points for

the parallel OpenMP Doitgen benchmark from Polybench on the OMAP4 platform.
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The details of OMAP architecture are given in Table 6.1.

The OMAP4 has three processor types that can be programmed: a DVFS-capable

ARM Cortes 2xA9 CPU, an ARM Cortex 2xM3 and a TI DSP. It also has a GPU, but

this is not programmable with current, publicly available APIs.

The OpenMP implementation utilises the 2 A9 cores which run at frequencies vary-

ing from 300MHz to 1GHz. The 4 frequency levels form a power/ performance Pareto

curve highlighted by the yellow line. Given a power budget, the frequency can be

scaled to trade off performance for power savings.

If the other processors are available, and we can generate code for them, it is possi-

ble to improve performance across the power spectrum. The power and performance of

the DSP are denoted by the red circle. It provides an excellent power/runtime trade-off.

The M3 denoted by the blue diamond provides the lowest power at severely increased

runtime. In isolation, they do not provide the flexibility of the DVFS on the A9s.

However, we can generate partitioned code for each core and share the work across

the processors. If we can determine the ideal amount of much work for each core at

the appropriate frequency/voltage scale, we obtain the new power/performance Pareto

curve shown in black.

Power/Performance

It is clear that across the power spectrum, correctly utilising the cores gives a con-

siderable performance improvement on both platforms. If we pick three representa-

tive power budgets of low (0.3W), medium (0.7W) and high (1.1W), we obtain the

speedups shown in Figure 6.1b where we obtain a speedup of 3.32x for low, 1.65x for

medium and 1.85x for high over using the default Cortex cores alone with ideal DVFS.

We have shown that using heterogeneous processors gives significant improvement

over idealised DVFS alone for a given power budget. To attain this performance im-

provement, there are two key challenges to overcome: (i) generating partitioned code

for such a heterogeneous system and (ii) determining the correct amount of work to

allocate to each core. The next section describes our overall approach.

6.3 Our Approach

We assume that we are provided with a power-budget at runtime and must generate

and execute code that is as fast as possible but does not exceed this power budget.

We achieve this by a 2-stage process: (i) compile-time generation of parametrised

heterogeneous code; (ii) runtime selection of code parameters.
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Figure 6.2: Compiler Flow. We apply a source to source transformation that partitions

the original OpenMP program based on a hybrid SPMD model. It outputs a program

for each of the heterogeneous processors which are then compiled by the local node

compiler to produce an executable

6.3.1 Compile-time

In this work, we restrict our attention to a subset of OpenMP programs with prag-

mas denoting parallel loops. Our goal is to take such high-level platform independent

programs and generate code that runs on the heterogeneous cores. Partitioning and

OpenCL generation is performed using an LLVM-based source to source compiler

[30][51]. We then rely on the local compiler for each core to generate the local bina-

ries. This is shown in Figure 6.2. The local programs are parametrised by parameters

lo and hi which denote the partition and hence the amount of data/work allocated to

each processor. These values are set at runtime.

6.3.2 Runtime

Once we have the parametrised programs for each core, we determine the parameter

values so as to give the best performance within a power budget. In our approach, as

shown in Figure 6.3, we have a runtime library which is provided with four inputs.

i) a power budget, ii) the cores available and possibly iii) static information on the

SPMD programs, iv) the individual runtime and power of the program on each of the

processors. The runtime decides the DVFS setting and the lo and hi values for these

processors based on a policy. When the binary for the program starts executing, it

makes calls to the runtime which assigns the partition values and also sets the DVFS

value of the CPU. In section 6.5.3 we examine policies that use some or all of these



88 Chapter 6. Power Constrained Code Generation

Runtime

Proc1, Proc2,
Proc3,

Proc4 binary

Individual-

Processor
Power, Runtime

External
Power Budget

Available
Processors

#Proc1

DV FSProc1

#Proc2

DV FSProc2

#Proc3

DV FSProc3
#Proc4

DV FSProc4

Figure 6.3: Runtime: At runtime we determine the amount of data and work allocated

to each of the processors as well as the DVFS level it should run at. This decision is

based on the processors available and the available budget; both externally determined.

Depending on the policy, we may also have static or profile information on the program

OMAP 4430 Exynos 5422

Name Proc1 Proc2 Proc3 Proc1 Proc2 Proc3 Proc4

Processor Arm A9 Arm M3 µC TI DSP Arm A15 Arm A7 Mali-T628 GPU Mali-T628 GPU

Cores 2 2 1 4 4 4 2

Threads 1 1 1 1 1 - -

Clock 1000MHz 200MHz 466MHz 2000MHz 1400MHz 600MHz 600MHz

DVFS Levels 4 1 1 19 13 6

Memory LPDDR2 LPDDR3

OS Android SMP/BIOS SYS/BIOS Linux Linux - -

Table 6.1: Target MPSoC details

inputs.

The next section describes how we partition the code to generate parametrised code

based on a hybrid SPMD model.

6.4 Code generation

In this section, we describe the steps required in code generation. We use a hybrid

SPMD model targeting simple OpenMP programs. Depending on the platform, we

insert memory flushes to manage memory coherence.

6.4.1 OpenMP

OpenMP is a large pragma-based, shared-memory language that can describe various

types of parallelism (e.g., loop, task) and the scheduling of that parallelism to pro-

cessors. We consider only parallel loop pragmas denoting which loop iterators may

be executed concurrently to infer data parallelism and to determine how to partition

data and loop iterations across the cores. We ignore any scheduling information as our
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runtime policies determine this.

Data Parallelism

We restrict our attention to data parallel programs. These are programs where individ-

ual elements of a data structure can be independently computed. They are normally

found in array based programs with corresponding parallel loops. Such programs are

frequently found in applications and can easily scale. We use information from the

OpenMP pragmas and data dependence analysis to determine those array index di-

mensions that may be exploited in parallel.

We are not concerned in how the data parallelism is determined. This can either

be performed by the programmer who inserts a parallel pragma or determined by au-

tomatic parallelisation. Instead, we focus on how this potential parallelism can be

mapped to a heterogeneous system
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Figure 6.4: Hybrid SPMD. Each processor has an allocated thread allocated which

coordinates with other processors via barrier synchronisation. Also, processor 0 has an

additional thread that explicitly manages the GPU

6.4.2 Hybrid SPMD

The SPMD (single program, multiple data) model of computation is well-known[43].

Independent tasks execute the same program but operate on independent sections of

an array. The array is partitioned across processors such that each processor works on

a separate array section synchronising via barriers whenever there is a cross-processor

dependence. This model is useful for heterogeneous systems as the same code can
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be used for each core. Also, it can be easily mapped to systems that do not have a

hardware-based cache-coherent single address space. As we know what data is allo-

cated to each core, we can generate code to manage it.

GPUs add complexity as they are programmed using OpenCL which operates in a

master-slave manner, whereas SPMD has cooperative execution and synchronisation.

OpenCL barriers can only synchronise with OpenCL threads and cannot be used for

inter-processor synchronisation. We use a hybrid programming model (see figure 6.4)

where the non-GPU cores run in SPMD and we run an additional thread on the CPU.

The job of this thread is to make calls to the GPU in master-slave mode. As can be seen

in figure 6.4, the calls to the GPU happen after the idle threads hit the shared barrier

and waits until the call returns from the GPU before calling the barrier.

Local Program

Once the data is partitioned, we need to determine the local code to be executed by

each core. Each core is restricted to writing to its local data, placing a constraint

on the local code’s loop bounds. Naive synchronisation would place barriers around

each parallel loops. However, in our implementation, synchronisation is only needed

whenever there is cross-core dependence. We use the pthread library to run threads on

the cores.

For OpenCL code generation, we use a modified version of [51] which converts

omp parallel loops, i.e. loops that are annotated with omp for or omp for reduction,

into ocl kernels. Each parallel omp loop is translated to a separate kernel using the ocl

APIs where each iterator is replaced by a global work-item ID. As the Exynos has

shared memory, we do not need to copy data to and from the GPU.

6.4.3 Memory Management

The single address space assumed by the SPMD model needs further treatment in

heterogeneous cores before emitting code.

Coherence

Barriers ensure the correctness of an SPMD program in cache coherent systems. In

systems where caches are not coherent, i.e. OMAP4 and the GPU of Exynos, the com-

piler is responsible, for inserting cache flushes. These are necessary when a memory

location is updated by a core and read later by another. We use dependence analysis to

determine the cache lines to flush at barrier synchronisation.
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Shared memory across cores

Ensuring shared memory on heterogeneous cores is platform specific. On the OMAP4,

memory is allocated in a contiguous area from the Linux kernel. On the A9 side, this

area is mapped to the user-space. The physical address corresponding to this area is

sent to the M3 and DSP. The memory map table of M3 and DSP for the range of

addresses corresponding to this contiguous area is set up such that the physical address

is equal to the virtual address ensuring a single address space across cores. On the

Exynos, all devices have access to shared memory, and no further support is needed.

Memory for the arrays is allocated using the OpenCL function clCreateBuffer. The

flag CL MEM ALLOC HOST PTR is used to create buffers that are host accessible.

This memory can be mapped and used by the A15/A7 processors.

6.5 Power Constrained Model

In this section, we describe the overall objective of minimising time subject to power.

We simplify this into 2-stages: core selection and then partitioning. We exploit power

invariance across partitions to simplify the core configurations to consider. We then

describe three selection and partitioning policies.

6.5.1 Objective

We wish to minimise parallel execution time, T , subject to a power budget, Pb i.e

minT |P≤ Pb

where P is the power used in its execution. Assuming we have n cores, parallel

execution time is dominated by the slowest core

T = max(T1 . . . ,Tn)

where Ti denotes the execution time on available core, i, while power is the sum of

each component: core, memory, interconnect used i.e.

P =
n

∑
i=1

(Pi)

where Pi denotes the power of each available component. Time is minimised when all

processors selected for execution finish at the same time with no load imbalance

T1 = T2 = · · ·= Tn
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The time taken for each core i will depend on the program p and the amount of

work allocated to it. If the total amount of work is w, then ∑i wi = w where wi is the

amount of work per core. As we are dealing with data parallel programs, the amount

of work is a simple function of the data size, N.

The objective, then of any policy is to find the set of cores, C, that fit in the power

budget and determine the amount of work wi per core to minimise time.

6.5.2 Selecting a configuration

From the information in Table 6.1, we can see that there are several different ways

in which a parallel program can execute on the OMAP/Exynos platform. For e.g.,

the Exynos platform has 4 BIG A15s with 19 DVFS levels, 4 LITTLE A7s with 13

DVFS levels, 2 Mali GPUs with 7 DVFS levels. This platform has around 100,000

configurations and these configurations have different power consumption values.

Our first task is to find the best configuration (set of cores+DVFS values), that

meets the power budget, on which a parallel program can execute.

Partitioning

Once the configuration has been chosen, we have to divide the work among the proces-

sors in this configuration. Since the processors are heterogeneous, the work allocated

to each processor will be different. Also, partitioning is likely to vary across programs.

The various methods used for partitioning are described in the next section.

6.5.3 Policies

This section describes the policies for power constrained code generation used in this

work. The policies vary in the amount of information required to make a decision. We

present three policies: Naive, Static and Profile-directed.

Intuition

Before describing the policies in detail, the rationale behind the policies is given in this

section. Given a program and a power budget, a policy chooses a hardware configu-

ration and a partitioning. This is a difficult problem firstly due to the availability of

a lot of hardware configurations and secondly because different programs consume a

different amount of power and take a different amount of runtime. To begin with, in the

Naive policy, we use the average values of the given set of benchmarks. This policy is

naive in the sense that it only uses average information and does not use any program

specific information. We can see later on in the Results section that using this policy

leads to mediocre results. For the next policy, we add some additional program spe-
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Policy Configuration Partitioning

Naive Average Power Average

Static Average Power Average + properties

Profile-directed Individual Power Throughput + properties

Oracle Best Best

Table 6.2: Policies: Configuration and Partitioning methods

cific information. In the Static policy, we use the average values of the benchmarks for

computing the power consumption of a configuration, but use program specific static

information for partitioning. Though the Static policy outperforms the Naive policy it

still gives poor results. To improve the results, we use program specific information

to determine the hardware configuration and partitioning in the Profile-directed policy

and this gives us acceptable results. Table 6.2 summarises the method of selecting the

configuration and partitioning for the policies discussed.

Naive

This scheme uses no static or dynamic analysis. By definition, it is applicable to all

programs and is the partitioning equivalent of DVFS in that it requires no compiler or

program knowledge. Any compiler-based scheme must outperform this approach to

be worth considering.

The Naive scheme is based on average power values and average throughput for a

number of benchmarks. It assumes the power used by a core, Pi is the average power

seen on m programs p j:

Pi =
m

∑
j=1

Pi(p j)/m

The relative throughput or rate, Ri of a core i is the average time for the slowest

core s versus core i averaged over m programs i.e.

Ri =
m

∑
j=1

Ts(p j)/
m

∑
j=1

Ti(p j)

The Naive policy searches each of the configurations based on its power approxi-

mation to find the configuration which does not exceed the power budget Pb:

min T (Ck)|P(Ck)≤ Pb
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i.e. find the configuration that minimises the runtime and satisfies the power bud-

get.

Once the configuration has been selected, we partition the data, Ni for each core i

based on the approximate throughput rates

Ni =
NRi

∑
n
j=1 R j

Profile-directed

In this approach, we require the execution time and power of the target program on

each of the cores. The cost of the profile runs can be amortised over future uses at any

power level and data size.

Rather than estimating the power for each core, we have the actual value Pi. Simi-

larly as we have times, we can more accurately estimate the work rate:

Ri = Ts/Ti

and determine the core configuration and data partition as before. Also, we use

static analysis to alter work allocation based on the observation that synchronisation

and cache flushing is more expensive on a slower processor. We redistribute work from

the slower processor to the other faster cores. This gives the new work allocation

Ni =
NRi

∑
n
j=1 R j

+ k1(Nbarriers)

where Nbarriers is the normalised number of barriers and cache flushes. The param-

eter k1 defines whether work is added or taken away from a core.

k1 = Ri/∑
n
j=1 R j×K if Ri > Rs, in other words, add extra work to the fastest core

proportional to its relative speed and remove this amount of work evenly from the

remaining n−1 cores, i.e. k1 =−(Ri/∑
n
j=1 R j×K)/(n−1)

K represents the relative additional cost of barriers and flushes. and is found em-

pirically and in our experiments is 10 for the OMAP and 8 for Exynos. i.e. flushes and

barriers are 10 (8) times more expensive on the slower cores.

Static only policy

While sequential profile runs may be acceptable in some settings where a particular

job is to be executed many times over the life of a device, there are occasions when

profiling runs are too expensive. This policy tries to improve on the Naive policy by

using just static analysis without profiling runs.
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Like the Naive scheme, it uses average power over micro-benchmarks to determine

the power of each core:

Pi =
m

∑
j=1

Pi(p j)/m

Similarly, it bases the partitioning of work based on average throughput or rate,

Ri =
m

∑
j=1

Ts(p j)/
m

∑
j=1

Ti(p j)

but also, the number of barrier and cache flushes are used to modify work allocation

similar to the Profile-directed scheme i.e.:

Ni =
NRi

∑
n
j=1 R j

+ k1(Nbarriers)

We compare our two proposed polices: Profile-directed and Static analysis against

DVFS and the Naive partitioning scheme in Section 6.7. We also compare against an

Oracle - an exhaustive evaluation of all possible processors and partitions plus two

other policy variations.

6.6 Setup

In this section, we describe the setup for our experiments: the benchmarks and platform

used; how power is measured and the policies evaluated.

6.6.1 Benchmarks

We use data-parallel benchmarks from embedded suites. They are OpenMP versions of

benchmarks discussed in Section 2.7. These benchmarks are from the DSPstone[113],

UTDSP[70] and Polybench[92] benchmark suites.

6.6.2 Platforms

We target the TI OMAP4430 and Samsung Exynos 5422 MPSoCs in this Chapter. For

our experiments we use the OMAP4430 found on a pandaboard and the Exynos 5422

found on an Odroid XU3 board. These MPSoCs are typical heterogeneous multi-core

containing different ISA cores with varying power/performance trade-offs. The details

of these platforms are presented in Table 6.1. Power measurement on the Exynos is

easy as it has accurate hardware counters. On the OMAP it is found by measuring the

current consumed by the processor and multiplying by the supply voltage. The OMAP

system is mounted on the Panda board which is driven by a supply voltage of 4.2V. We

can accurately measure individual power lines for each processor and memory.
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6.6.3 Policies evaluated

Section 5 described the main selection and partitioning policies evaluated in this Chap-

ter i.e. Naive, Profile-directed and Static. For the purpose of our evaluation we consider

other possible schemes.

Idealised DVFS

This is the idealised baseline with which we compare all other schemes. Neither plat-

form actually performs DVFS and instead runs at maximum power. To evaluate how

DVFS would behave, we assume ideal behaviour i.e., it chooses the voltage and fre-

quency level that gives the maximum performance without exceeding the power bud-

get. OpenMP runs by default on all A15/A7s on Exynos and the 2xA9 cores on OMAP.

Idealised DVFS selects the core frequency that meets the power budget. Only a single

run of the program is needed for this approach. For the OMAP we assume the OS can

lower the voltage/frequency of the A9 CPUs to meet the power budget. On the Exynos

platform, there are A15 and A7 cores which can be separately scaled. For this plat-

form, we assume the OS changes the voltage/frequency of each processor in lock-step

until there are no more levels left on the A7 to scale. Then on, only the A15 is scaled.

Oracle

On the OMAP, this policy is an exhaustive search of all possible core selection and

work partitions which find the configuration that gives the minimum time within a

power budget. It gives an upper-bound on performance. On the OMAP we can ex-

haustively enumerate all options. However on the Exynos, there are simply too many

configurations so we sample 3000 points from the space.

Core-type

This policy does not consider partitioning but chooses either the big A15 or LITTLE

A7 cores on the Exynos or the 2xA9, 2xM3 or DSP on OMAP as the core type to run

an application. It is intended to mimic a big.LITTLE-like runtime scheduler that can

select the different heterogeneous cores that satisfy a power budget without altering

the code via partitioning. It assumes that a binary for each core type is available.

Table 6.3 lists the policies evaluated and the work required.
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Policy Exynos Work OMAP Work

Oracle 6881280 16384

Profile Guided 40 6

Core-type 40 6

DVFS 1 1

Static 0 0

Naive 0 0

Table 6.3: Policies: Overhead/Work required

6.6.4 Methodology

For the purpose of this experiment, we assume all the cores on both platforms are

available at the time of runtime scheduling but the amount of power available varies.

This evaluates all policies over the widest possible configuration space. The selected

configuration+partitioning of a policy may exceed the power budget. We assume that

hardware or the operating system will step in and downgrade the configuration to a

lower one which meets the power budget.

6.7 Results

In this section, we first evaluate our two proposed policies Profile-directed and Static

against a DVFS baseline and an Oracle. Next we evaluate them against alternative

policies Naive and Core-type. This is followed by a summary of all schemes.

6.7.1 Comparison against DVFS and Oracle

Figure 6.5 compares the speedups obtained for the Profile-directed and Static policies

relative to the DVFS baseline on both platforms. We also show the upper-bound of

available performance i.e. Oracle. Speedup is shown on a per-program basis and is

averaged across the entire power range.

OMAP

Figure 6.5a presents the results for OMAP. The Oracle policy gives on average a

speedup of 1.55 across the benchmarks. The Profile-directed policy gives a speedup

of 1.37 or 67% of the Oracle policy. The Static policy performs significantly worse. It

achieves just a speedup of 1.07 or only 12% of the Oracle. With only static information

available, the Static policy makes poor partitioning decisions. The amount of improve-

ment varies across the benchmarks. There is significant improvement available on

matm, 2.8x, which the Profile-directed scheme can largely find. For two benchmarks,

flyd and regd, where there is less improvement available, the Profile-directed scheme

is only able to obtain low speedups while the Static scheme slows down relative to the
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(a) OMAP: Oracle, Profile-directed and Static Policies gives speedups of

1.55, 1.37 and 1.07 respectively over the DVFS policy. Profile-directed

policy provides 67% of the speedup of Oracle, but the Static policy is only

able to achieve 12%.

(b) Exynos: Oracle, Profile-directed and Static Policies gives speedups of

1.30, 1.15 and 0.97 respectively over the DVFS policy. Profile-directed

policy provides 52% of the speedup of Oracle. The static policy is unable

to achieve a speedup on average.

Figure 6.5: Speedups of Oracle, Profile-directed and Static Policies.
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DVFS baseline. In one case, edge, the Static approach outperforms Profile-directed.

This is due to a suboptimal core selection rather than partitioning decision.

Exynos

Figure 6.5b presents the results for Exynos. The Oracle policy achieves on average a

speedup of 1.30 across the benchmarks. The Profile-directed policy achieves a speedup

of 1.15 which is around 52% of the speedup obtained by the Oracle. The other policies

are unable to achieve a speedup. The Static policy is only able to obtain a slowdown

of 0.97. Like with OMAP, there is significant improvement available for matm, 1.86x,

which the Profile-directed scheme can largely find. regd is the only benchmark where

the Profile-directed policy is slower than DVFS. This happens because the best config-

uration is without the GPU and the best partitioning is surprisingly one which assigns

a larger partition to the LITTLE A7 cores than the A15 cores. Single thread perfor-

mance for this benchmark is better for the BIG A15 core and hence Profile-directed

policy assigns a larger partition size to the A15. The Static policy achieves speedups

only for dotp, flyd and matmul. The Static policy achieves a higher speedup than

Profile-directed policy for the flyd benchmark. This happens due to poor partitioning

decision by the Profile-directed policy caused due to the difference in sequential and

parallel behaviour of the flyd benchmark.

Analysis across the power range

Figure 6.6a and Figure 6.6b shows the speedup of the three policies obtained over the

entire power range. Each line denotes speedup averaged across all benchmarks. All

the policies (except Static for Exynos) obtain high speedups in the lower ranges of

power over the DVFS policy. This is because low-power GPU/M3 and DSP proces-

sors perform well in this power range. For OMAP, at the higher power ranges the

Profile directed policy is competitive with the Oracle policy. Here the most powerful

configuration is always chosen, and usage of profile information provides good parti-

tioning decisions. For Exynos, the Profile directed policy achieves speedups but is not

able to achieve the speedups of the Oracle policy. For both platforms, the Static policy

consistently under performs when compared to the Oracle.

6.7.2 Comparison to Naive and Core selection

While our Profile-directed scheme performs better than Oracle, it may be the case that

simpler heuristics perform well. Here we evaluate against the two other policies, Naive

and Core-type, which are schemes not requiring any program knowledge.
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speedup of Oracle in the higher power ranges. The
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power range. The speedups obtained by Profile-

directed policy is consistently lower than that obtained

by the Oracle. The Static policy performs poorly and

is only able to provide a speedup at the highest power

levels.

Figure 6.6: Whole power range speedup comparison of Profile-directed, Oracle and

Static policy.
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(a) OMAP4: On average the Profile-directed policy is the best policy. The Core-type policy can

achieve small speedups in all the benchmarks and is slightly better than the Static policy and provides

a speedup of 1.1 on average. The Naive policy is the worst and gives a slowdown even-though it

achieves a speedup in four of the benchmarks.

(b) Exynos: Only the Profile-directed policy can achieve a speedup. The Naive policy can achieve

speedups in two benchmarks, but on average it only achieves a slowdown. The Core-type policy is

not able to achieve a speedup over DVFS in any of the benchmarks. On average the Core-type policy

is slightly better than the Static policy.

Figure 6.7: Speedup of Profile-directed, Static, Core-type and Naive policy over DVFS.

Figure 6.7a compares the speedups obtained for the Profile-directed, Static, Naive

and Core-type policy for the OMAP platform. On average the Profile-directed policy

remains the best policy. The Naive policy performs poorly, particularly on the flyd,

hist and regd benchmarks and gives a slowdown. The Core-type policy is slightly

better than the Static policy and provides a speedup of 1.1. The Naive policy performs

poorly, particularly on the flyd, hist and regd benchmarks and gives a slowdown.

Thus, while the Oracle shows there is significant performance available when using

core selection and partitioning, if this is done blindly without program knowledge,

then performance is worse than relying on DVFS alone. The Core-type scheme shows

that using heterogeneity (DSP and M3) to meet power budgets is better than DVFS for

runtime performance.
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low power range. The Naive policy performs poorly

and sometimes does not even have half the speed of the

DVFS policy.
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(b) Exynos: The Core-type, Static policies are unable to

achieve speedups and is only able to match DVFS at the

higher power levels. The Naive policy performs poorly

in the entire power range.

Figure 6.8: Whole power range comparison of Core-type and Naive policy.
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Figure 6.7b compares the speedups obtained for the Profile-directed, Static, Naive

and Core-type policy for the Exynos platform. On average the Profile-directed policy

remains the best policy. Other policies Static, Naive and Core-type are unable to obtain

a speedup. Only the Profile-directed policy can achieve a speedup. The Naive policy

can achieve speedups in two benchmarks, but on average it only achieves a slowdown.

The Core-type policy is not able to achieve a speedup over DVFS in any of the bench-

marks. On average the Core-type policy is slightly better than the Static policy

Analysis across the power range

Figure 6.8a and Figure 6.8b shows the speedup of Static, Profile-directed, Naive and

Core-type policy across the entire power range. For OMAP, the Core-type policy per-

forms well in the low power range, as it can select the M3 and DSP, unlike DVFS.

However, it is slightly worse than the Static policy in the middle power ranges. At

high power values, it performs better than the Static policy. For both platforms, except

in the low power range, the Naive policy performs poorly. This is due to poor partition-

ing decisions. For Exynos, all policies work better at higher power values. At higher

power values, all the cores can be activated, and there is no loss of performance due to

poor configuration selection.

6.7.3 Speedup Summary

To summarise the interaction between power range, performance and policy, we se-

lected 3 power values, low, middle and high (from Figure 6.1a)) and summarised the

performance of each policy across the benchmarks. Figure 6.9 shows the average

speedup obtained.

OMAP

We can see that the Oracle provides high speedup at low power, 1.8x, but other policies

are not able to match this. As we have seen before, at high power values the Profile-

directed policy is competitive with the Oracle. The Static policy performs best at the

middle power value. The Naive policy is poor in all settings reinforcing the need to

consider program information in partitioning decisions. At low power values the Core-

type policy can make use of the low-power M3 and DSP processors and hence obtains

good speedups. But at higher and middle power values it performs similarly to DVFS

and loses any advantage.

Exynos
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(a) OMAP4: The Profile-directed policy achieves similar

speedups at all power levels. The Static policy achieves mod-

erate speedups in the middle power level. The Core-type policy

performs well at low power levels, but badly at medium and high

power levels.

(b) Exynos: The Profile-directed policy achieves similar

speedups at all power levels. The Static, Core-type poli-

cies performs poorly but can match DVFS at middle and high

power levels.

Figure 6.9: Speedups at low, mid and high power levels
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For Exynos, the low, middle and high power values are 2, 6 and 10 W. From the

results for the Oracle policy, we can see that the largest speedups are available at

low power. The Profile-directed policy performs uniformly across all three power

levels. The other policies perform better at the higher power levels. Choosing the

hardware configuration becomes easy at the higher power levels. Since the power

required for all the cores is available, all policies will pickup all the cores with their

highest DVFS values. Hence, there is not much chance for Over/Undershooting. The

lack of speedup at high power values is due to poor partitioning decisions of the Naive

and Static policies. The Core-type policy meets the power budget by varying the type

and number of A15/A7 cores. At low power values, the power hungry A15 cores

cannot be used. Hence, this policy meets the budget by varying the number of the

small A7 cores. This limits its ability to exploit the parallelism in the benchmarks and

hence is not competitive with other policies. At the highest power levels, the Core-type

policy can activate all the cores and achieve the performance of the DVFS policy.

6.7.4 Over/Under Shooting

A good policy should try to find the fastest configuration that meets the budget. Select-

ing configurations which do not use all the available power (undershooting) or which

exceeds the budget (overshooting) will lead to sub-optimal performance.

Undershooting: If a policy selects configurations that are much lower than the power

budget then the system is under-performing, since the system could have used the ex-

tra power available to choose a configuration that is faster. Hence, when a policy is

undershooting, it is choosing configurations that are slower than the best possible ones

and this leads to a loss of speedup.

Overshooting: The power budget imposes a hard limit on the power consumption. If

a policy selects configurations that exceed the power budget, this configuration cannot

be allowed to run. The OS intervenes and selects a lower power configuration by using

DVFS. The OS intervention is a runtime overhead, and the lower power configuration

(which is very likely non-optimal) is slower than the best possible configuration. These

two factors lead to a loss of speedup.

Figure 6.10a and Figure 6.10b shows the summary of undershooting and over-

shooting for the Static and Profile-directed policies. In these Figures, the x-axis shows

the range of overshooting/undershooting. The x-axis value is positive for overshooting

and negative for undershooting. A good policy will have most of its values around zero

and a bad policy will have more values away from zero. On the y-axis, we have the
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similar but the extent of overshooting is more for the Stat-

ic/Naive policy.

Figure 6.10: Overshooting vs. Undershooting.

number of points which exhibited that particular value of overshooting or undershoot-

ing. For both platforms, we can see that most of the values are clustered around zero.

But the Static policy has higher undershooting and overshooting for the OMAP and

Exynos platforms respectively. This is one reason for the poor performance of Static

policy. For e.g., the Static policy has the worst undershooting value of -0.35 while

Profile-directed policy has the worst value of -0.12 for the OMAP platform.

6.8 Summary

Processor platforms of the future will be heterogeneous, composed of different kinds

of processors and accelerators like the MPSoCs of today. While these platforms offer

excellent power and performance trade-offs, they will be very difficult to program.

Due to dark silicon effects, all the processors on a platform cannot be turned ON at the

same time. Hence, we will have to choose a set of processors based on a power budget.
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This Chapter has presented a compiler-based approach for improving program per-

formance on heterogeneous multi-cores in the presence of a power budget. Our ap-

proach is based on determining the best hardware configuration from the cores avail-

able and partitioning the work across processors based on a data parallel code gener-

ation scheme. We evaluate a number of policies and show that our Profile-directed

approach obtains a speedup of 1.37X and 1.15X over traditional DVFS.

This chapter ends the final contribution of the thesis. Next Chapter will conclude

and present ideas for future work.





Chapter 7

Conclusion

Future processor platforms are likely to contain many cores. Due to power limitation,

all these cores cannot be switched ON at the same time. Hence multicore designs will

be heterogeneous with cores specialised to better utilise the available power. Prior

research has shown that heterogeneous processors are better than homogeneous ones

when considering power-performance trade-offs. Recent research has demonstrated

the advantages of multiple ISA heterogeneity over single ISA. This thesis has investi-

gated issues in mapping data-parallel programs to multiple ISA heterogeneous proces-

sor systems. Results of a detailed design space exploration were presented in Chap-

ter 4. The results confirm that partitioning programs for multiple ISA heterogeneous

processors is beneficial. Chapter 5 presented a compiler approach for automating the

partitioning of data-parallel programs. Chapter 6 presented a compiler based method

to generate code that meets power budgets for multiple ISA heterogeneous systems.

This chapter has the following structure. Section 7.1 presents the contributions of

this thesis. A critical analysis of the work in this thesis is presented in Section 7.2.

Finally, Section 7.3 presents ideas for future work.

7.1 Contributions

7.1.1 Partitioning

A design space exploration in the partitioning of data-parallel programs for heteroge-

neous processors is presented in Chapter 4. To perform the design space exploration,

a framework for running programs in parallel on the OMAP4 framework is presented.

The Chapter also describes a method for measuring the energy consumption of pro-

grams. A simple method for partitioning programs for runtime and energy is presented.

The partitioning approach is within 10% of the best partitioning schemes across all op-

timisation criteria. On average, a 2.2x speedup and a 1.45X energy improvement are

109
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achieved over sequential execution on the ARM A9 CPU.

7.1.2 Compiler Framework

A compiler based approach for mapping data-parallel OpenMP programs to hetero-

geneous embedded systems is presented in Chapter 5. OpenMP source programs are

taken as input and using a source to source translator (based on Clang), the programs

are converted to SPMD format. The target used is OMAP4 by Texas Instruments.

Texas Instruments provides a library for programming heterogeneous processors called

Syslink/RPMsg. It is shown that using the SPMD model of compilation offers bet-

ter performance than the existing Syslink model. On average, the SPMD approach

achieves a 2.75x speedup over Syslink. Experiments show that smart insertion of cache

flushes is important for achieving good performance. A speedup of 1.38x and an im-

proved energy efficiency of 1.4x are achieved over using the CPU cores alone. All

these improvements are achieved without the user having to make any code changes.

7.1.3 Power Budget

Dark silicon effects are predicted to be a major issue in the future. This will cause

processors to have power budgets. Typically, the role of meeting power budgets is

left to the Operating System or hardware by using Dynamic Voltage and Frequency

(DVFS) scaling. Heterogeneity presents a new dimension for meeting power budgets.

Chapter 6 presents a compiler-based approach for achieving good performance on het-

erogeneous multi-cores in the presence of a power budget. The approach is based on

determining the best hardware configuration from the cores available and partitioning

the work across processors based on a data parallel code generation scheme. Experi-

ments are performed on two platforms, OMAP4 and Exynos. Some policies are evalu-

ated, and it is shown that the Profile-directed approach obtains a speedup of 1.37X and

1.15X over traditional DVFS.

7.2 Critical Analysis

This section presents a critical analysis of the work presented in this thesis. Sec-

tion 7.2.1 discusses issues that are common to the entire work presented in this thesis.

Section 7.2.2, Section 7.2.3 and Section 7.2.4 presents a critical analysis and draw-

backs of the work in Chapter 4, Chapter 5 and Chapter 6.
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7.2.1 Common Issues

All the benchmarks used for experiments in this thesis are simple, regular data-parallel

benchmarks. While the approach described works for regular array based programs,

it is unlikely to work for real world programs with dynamic memory allocation and

pointers. This thesis focuses on data-parallel programs and excludes other forms of

parallelism like stream and task based parallelism. The work presented in this thesis

supports only a single benchmark at a time. If more than one benchmark is active

at the same time, then, the computed partitions are not balanced anymore, and this

can lead to poor results. The partitioning work presented requires knowledge of the

hardware since the partitioning values are determined by running the program on each

of the processors. The SIMD units on the ARM processors and the vector units of the

GPUs are not used. Data-parallel benchmarks can be vectorised and hence it might

perform better on the ARM Neon vector unit and the vector GPU. The SIMD units are

likely to consume more power since they use the processor pipeline, but will end up

using lesser energy since the code gets executed faster. Vectorised code is unlikely to

use more power since the GPU executes scalar code on one of the units in the vector.

Considering the vector units would have opened a new dimension for the design space

exploration and would have led to a more holistic study.

7.2.2 Partitioning

The iter method for partitioning used in this work (Chapter 4) does not take advantage

of any static information. It runs the benchmark on each processor to compute the par-

titioning. This task has to be repeated for each benchmark and also might be necessary

if data size changes. Using static features in addition to this method can reduce the

need to perform these runs for each benchmark and each platform. Oracle values are

found by exhaustive search at a coarse level granularity. For e.g., if the size of the array

to be partitioned is 1024, then the array is divided into 16 units of 64 size, and runtime

and energy values are computed for each partition value at this granularity. This pro-

cess of finding Oracle value is not feasible when the number of processors increases or

at higher granularities. Though heterogeneity is considered for energy measurement,

DVFS values are not considered. The framework is very OMAP specific. It is not clear

whether the method can extend to other platforms. While the SPMD model is easily

portable to other platforms, the approach for accessing memory from remote proces-

sors without copying is platform specific. A single partitioning is used for all the loops

in a benchmark. The loops themselves can have different characteristics and hence
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have different performance. This means loop specific partitioning values are possibly

better.

7.2.3 Compiler Framework

The method described (in Chapter 5) uses a source to source translation. Sometimes,

all the optimisation opportunities are not available at the early stages of the compiler.

Better optimisation and performance can be achieved if the translation is performed

at a lower level in the compiler. The SPMD based approach described in this work

does not directly extend to GPUs. This is subsequently handled in Chapter 6. Only

row wise partitioning is supported. By default, programming languages like C support

row major form. Hence, for supporting row partitioning, the only necessary condition

is that arrays should be located in physically contiguous locations. Cache flushing

is simplified in this case since partitions are located in contiguous locations. If the

parallelism demands a column based partitioning, then successive columns are not in

contiguous locations and cache flushing can be costly. The data size of the benchmarks

is not varied. It is not clear whether the results hold true when data size changes,

particularly the degradations observed for Syslink.

7.2.4 Power Budget

Though the Profile-directed method presented in Chapter 6 performs better than DVFS;

it is not competitive with Oracle. For e.g., Only 67% of the performance of the Oracle

has been achieved for OMAP, and only 52% of the performance of the Oracle has

been achieved for Exynos. The Oracle values are computed by using a local search of

neighbouring points of all the other methods. This method has all the disadvantages of

using local searches, like getting stuck at local minima. The implementation considers

changes in DVFS values to be instantaneous, but in reality, this is not so. A good

implementation should factor in the delay due to DVFS.

7.3 Future work

Future work is summarised in this section.

7.3.1 Scale

Only a limited scale work has been performed in this thesis. The current benchmarks

used are small and they are mostly data-parallel. It will be interesting to see whether

similar techniques can be used for complex programs. Future work can also consider

mapping other forms of parallelism such as tasks and streams to heterogeneous plat-
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forms. It will also be interesting to see this framework extended to other platforms like

Snapdragon from Qualcomm, Tegra from Nvidia, etc.

Task Parallelism

Task parallelism can only be supported by having a runtime for scheduling tasks to

the heterogeneous processors. Task-parallel systems should have support for creating

and specifying dependence between tasks, and the ability to schedule task graphs to

processors. OpenMP version 4.0 supports task parallelism, but the existing runtimes

are for homogeneous systems. The runtime system will have to be extended to sup-

port heterogeneous systems. The following additional capabilities are required. 1) In

homogeneous systems, the runtime can schedule a task to any of the free cores or pro-

cessors. In a heterogeneous system, the runtime has to decide which processor can

execute the given task the fastest or at the highest energy efficiency. Such a decision

system can be created by using machine learning techniques. 2) The lack of cache

coherency in some of the heterogeneous systems requires that in addition to the se-

quencing of dependent tasks if the dependence is caused due to arrays then the caches

have to be flushed and invalidated. Techniques presented in this thesis can be extended

to handle cache flushes and invalidations.

7.3.2 Partitioning

The partitioning methods presented are either static or dynamic. Static methods suffer

from performance issues and are not able to handle load imbalance issues due to other

workloads running or due to inherent load imbalance issues. Dynamic or profile based

methods suffer overhead at runtime. It remains to be seen whether machine learning

techniques can be used to improve the static methods. One requirement for machine

learning is a large number of benchmarks. Only a few data-parallel benchmarks were

available. Since the DSP and M3 processors on OMAP did not support floating point

in hardware, partitioning experiments used only integer benchmarks. Future platforms

are unlikely to have these drawbacks, and more benchmarks can be used on these

platforms to build a machine learning model.

Handling Load Imbalance

Some programs have inherent load imbalance issues. Load imbalance can also arise

due to other workloads running on the system. These kinds of programs are handled

poorly by the work described in this thesis. This problem can be solved by finely

partitioning tasks and mapping to each processor with work-stealing queues. In these
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kinds of systems, if due to load imbalance a processor is idle while another processor

is loaded then the idle processor can steal tasks from the loaded processor’s queues.

However, work-stealing queues are difficult to implement for the kind of systems that

are targeted in this thesis. This is primarily due to three reasons. i) Lack of cache

coherence. ii) Heterogeneity and presence of multiple binaries. iii) Multiple address

spaces. If caches are not coherent, the process of probing and deqeueing the task from

another processor’s queue will be runtime heavy. Since the processors are heteroge-

neous, there exist different binaries for each processor. For enqeueing the stolen task,

a different binary version of the task might have to be fetched from memory. Since the

address spaces of processors are different, the addresses of the arrays in the task might

have to be converted to enable the task to work on the new processor. Systems like

HSA[98] already support cache-coherent heterogeneous systems with single address

space. This is likely to be the direction that the industry is going to take, and hence,

problems (i) and (iii) will be automatically solved. Problem (iii) can be solved by using

a common language interface like OpenCL.

7.3.3 Oracle Computation

Oracle values are currently obtained by performing an exhaustive design space explo-

ration. Heterogeneous processors like OMAP4 have limited hardware configurations

and hence it is possible to perform an exhaustive design space exploration. New MP-

SoCs and heterogeneous processors have a lot of hardware configurations (number of

cores and DVFS values). As the number of hardware configurations increase, it be-

comes difficult to compute the Oracle (best obtainable) values. A faster method is

needed to compute the Oracle values.

7.3.4 Multiple Programs

The work in this thesis has focused on partitioning a single program to run across all

the processors. However, in most systems, multiple programs are active at the same

time. It will be interesting to see how multiple programs are handled. This is difficult

because partition values cannot be changed at runtime and when other programs are

running, the partition values are no longer optimal. It will also be interesting to see

how power budgets are met when there is more than one application running.

7.3.5 Mobile Devices

MPSoCs are widely used in mobile devices. Mobile devices have a lot of interactive

applications and few background applications. It will be interesting to concentrate on
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these kinds of workloads and study how the energy usage can be optimised. Other

interesting cases would be to decide the hardware configuration based on the power

supply. For e.g., if using battery power then use low power hardware configuration, if

connected to the supply then use high power hardware configuration etc.

7.4 Summary

Future general purpose multicore processors will be heterogeneous. This presents a lot

of challenges as well as opportunities for creating smart software to map parallelism

and workloads to the best processor capable of execution. This thesis explored the

partition of data-parallel programs for runtime and energy. It was shown that parti-

tioning data-parallel programs is beneficial for heterogeneous processors. A compiler

framework for automatic partitioning was also presented. The thesis also demonstrated

that compiler techniques can be used to meet a power budget by choosing a hardware

configuration and partitioning data-parallel programs for that configuration.

The Chapter presented a summary of the contributions as well as a critical analysis

of the contributions. Ideas for future work were also presented. This Chapter concludes

the thesis.





Appendix A

Experiments with Snapdragon Platform

During this study, partitioning experiments were performed on other platforms as well.

In this Chapter, details of the experiments using the Snapdragon Platform are dis-

cussed.

A.1 Snapdragon

The Dragonboard development kit based on the Snapdragon 800 processor (APQ 8074)

was used to perform partitioning experiments.

A.1.1 Hardware

Snapdragon has four Krait CPU cores, a Hexagon DSP and an Adreno GPU. The Krait

400 CPU has 4 cores and a maximum clock frequency of 2.7 GHz. The Hexagon

QDSP6V5A DSP has 3 threads and a maximum clock frequency of 600MHz. The

Adreno 330 GPU has 128 shader cores and runs at 450 MHz.

A.1.2 Runtime

The Dragonboard runs the Android Operating System on the CPU. Qualcomm’s RTOS

runs on the Hexagon DSP. Since the processors have their own Operating Systems

and address spaces, a mechanism is needed to pass around pointers so that all the

processors can work on the same arrays. Contiguous physical memory is allocated

using the ION memory allocator on Android. This memory is then memory mapped

to the CPU virtual address space. The Hexagon DSP is programmed through an SDK

provided by Qualcomm. This SDK provides an IDL (Interface Description Language)

for specifying the parameters to functions that are to be executed on the DSP. This

IDL provides a provision for specifying the parameter as in, out or inout. The runtime

inserts functions to flush the caches depending on the type of the parameters. For e.g.,

if the parameter is inout, then caches for that parameter are flushed before and after the

117
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function is executed. For the GPU, buffers are created from the host memory pointer

using the CL MEM USE HOST PT R and CL MEM EXT HOST PT R QCOM flags

in clCreateBuffer function.

A.1.3 Programming Model

A Hybrid SPMD model as described in Chapter 6 is used for running code in parallel

across all the processors. pthreads are used on the CPU; custom threads are used on

the Hexagon DSP, and OpenCL is used for the CPU.

A.2 Experiments

Figure A.1: Speedup over execution on the CPU with 4 threads

Partitioning experiments were performed for six benchmarks taken from the poly-

bench benchmark suite. As Figure A.1 shows, on average, these benchmarks achieve

a speedup of 1.4 over parallel execution on the CPU. These benchmarks are purely

data-parallel without any synchronisation. Benchmarks like flwl and hist (not shown

here) etc. with synchronisation did not perform well on this platform, and it was not

able to achieve significant speedups. Speedups could not be achieved due to the lack of

fine control over cache flushing and also in the mismatch in performance of the CPU

and DSP/GPU. The A15 based CPU performs exceptionally well on these benchmarks

and hence it makes it less desirable to partition the programs for heterogeneous execu-

tion. Power could not be measured on this platform since the board did not offer such

a feature. It was also not possible to measure power using the Oscilloscope method

described in Chapter 4 since the resistors were in an inaccessible position.
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A.3 Summary

Partitioning experiments demonstrate that speedups can be obtained on the Snapdragon

platform for pure data-parallel programs. For benchmarks with inter-processor depen-

dence, speedups could not be attained.





Appendix B

Bug fix in Linux Kernel

It was not straightforward to get all the processors running on the OMAP4 board. There

was a bug in the Linux Kernel, which needed to be fixed. Programs were crashing with

a SIGBUS error (”Command terminated by signal 7”). The crash was subsequently

isolated to the case where more than one threads are running on the CPU, and the

remote processors are also used. When all the processors have to work on the same

buffer, memory (GEM buffer) was allocated in the graphics memory region. After

allocating this memory, the memory has to be mapped to the CPU’s virtual memory.

The mapping and creation of page table entries happen on demand. Consider the case

when there are two threads working on the CPU. When the first thread accesses a

location, a fault is generated, and the OS tries to map that page. Before this request

gets completed the second thread also accesses the location, and a fault is generated,

and the OS tries to map that page. Now the OS realises that the mapping is already

being performed on behalf of the first thread and returns EBUSY. But this EBUSY case

was not properly handled in the fault handler code of the OMAP driver and returns a

SIGBUS error and the application crashes.

The bug fix listing is given below.

Date : Sun , 20 Oct 2013 1 2 : 0 7 : 4 2 −0400 [ 1 0 / 2 0 / 2 0 1 3 0 5 : 0 7 : 4 2 PM GMT]

From : Rob C l a r k <robdc l a rk@gmai l . com

To : d r i−d e v e l @ l i s t s . f r e e d e s k t o p . o rg

Cc : Ki ran <s1064296@sms . ed . ac . uk>

S u b j e c t : [PATCH] drm / omap : EBUSY s t a t u s h a n d l i n g i n o m a p g e m f a u l t ( )

S u b s e q u e n t t h r e a d s r e t u r n i n g EBUSY from v m i n s e r t p f n ( ) was n o t

h a n d l e d c o r r e c t l y . As a r e s u l t c o n c u r r e n t a c c e s s from new t h r e a d s

t o mmapped d a t a c au se d SIGBUS .

See e 7 9 e 0 f e 3

Signed−o f f−by : Rob C l a r k <robdc l a rk@gmai l . com>

−−−
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d r i v e r s / gpu / drm / omapdrm / omap gem . c | 5 +++++

1 f i l e changed , 5 i n s e r t i o n s ( + )

d i f f −−g i t a / d r i v e r s / gpu / drm / omapdrm / omap gem . c b / d r i v e r s / gpu / drm / omapdrm / omap gem . c

i n d e x 533 f6eb . . 4 3 5 c6b1 100644

−−− a / d r i v e r s / gpu / drm / omapdrm / omap gem . c

+++ b / d r i v e r s / gpu / drm / omapdrm / omap gem . c

@@ −542 ,6 +542 ,11 @@ f a i l :

case 0 :

case −ERESTARTSYS :

case −EINTR :

+ case −EBUSY:

+ /∗
+ ∗ EBUSY i s ok : t h i s j u s t means t h a t a n o t h e r t h r e a d

+ ∗ a l r e a d y d i d t h e j o b .

+ ∗ /

re turn VM FAULT NOPAGE;

case −ENOMEM:

re turn VM FAULT OOM;

−−
1 . 8 . 3 . 1

Listing B.1: Kernel bug fix
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[103] Weihua Sheng, Stefan Schürmans, Maximilian Odendahl, Mark Bertsch, Vi-

taliy Volevach, Rainer Leupers, and Gerd Ascheid. A compiler infrastructure

for embedded heterogeneous mpsocs. In Proceedings of the 2013 International

Workshop on Programming Models and Applications for Multicores and Many-

cores, PMAM ’13, pages 1–10, New York, NY, USA, 2013. ACM.

[104] Koichi Shirahata, Hitoshi Sato, and Satoshi Matsuoka. Hybrid map task

scheduling for gpu-based heterogeneous clusters. In Proceedings of the 2010

IEEE Second International Conference on Cloud Computing Technology and

Science, CLOUDCOM ’10, pages 733–740, Washington, DC, USA, 2010. IEEE

Computer Society.

[105] Kevin Skadron, Mircea R. Stan, Wei Huang, Sivakumar Velusamy, Karthik

Sankaranarayanan, and David Tarjan. Temperature-aware microarchitecture. In

Proceedings of the 30th Annual International Symposium on Computer Archi-

tecture, ISCA ’03, pages 2–13, New York, NY, USA, 2003. ACM.

[106] Tyler Sondag and Hridesh Rajan. Phase-based tuning for better utilization of

performance-asymmetric multicore processors. In Proceedings of the 9th An-

nual IEEE/ACM International Symposium on Code Generation and Optimiza-

tion, CGO ’11, pages 11–20, Washington, DC, USA, 2011. IEEE Computer

Society.

[107] I. Tartalja and V. Milutinovic. Classifying software-based cache coherence so-

lutions. Software, IEEE, 14(3):90–101, May 1997.

[108] E. Tomusk, C. Dubach, and M. O’Boyle. Diversity: A design goal for hetero-

geneous processors. Computer Architecture Letters, PP(99):1–1, 2015.

[109] Erik Tomusk, Christophe Dubach, and Michael O’Boyle. Measuring flexibility

in single-isa heterogeneous processors. In Proceedings of the 23rd International

Conference on Parallel Architectures and Compilation, PACT ’14, pages 495–

496, New York, NY, USA, 2014. ACM.

[110] Erik Tomusk, Christophe Dubach, and Michael O’boyle. Four metrics to eval-

uate heterogeneous multicores. ACM Trans. Archit. Code Optim., 12(4):37:1–

37:25, November 2015.



136 Bibliography

[111] Chau-Wen Tseng. Compiler optimizations for eliminating barrier synchroniza-

tion. In Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, PPOPP ’95, pages 144–155, New York, NY,

USA, 1995. ACM.

[112] Y. Turakhia, B. Raghunathan, S. Garg, and D. Marculescu. Hades: Architec-

tural synthesis for heterogeneous dark silicon chip multi-processors. In Design

Automation Conference (DAC), 2013 50th ACM/EDAC/IEEE, pages 1–7, May

2013.

[113] C. Schlager V. Zivojnovic, J. Martinez and H. Meyr. Dspstone: A dsp-oriented

benchmarking methodology. In Proceedings of the International Conference on

Signal Processing Applications and Technology, 1984.

[114] N. Vallina-Rodriguez and J. Crowcroft. Energy management techniques in mod-

ern mobile handsets. Communications Surveys Tutorials, IEEE, 15(1):179–198,

First 2013.

[115] Jos van Eijndhoven. Power measurement in omap4. http://goo.gl/TH2Y5R,

2011.

[116] Ankush Varma, Brinda Ganesh, Mainak Sen, Suchismita Roy Choudhury, Lak-

shmi Srinivasan, and Bruce Jacob. A control-theoretic approach to dynamic

voltage scheduling. In Proceedings of the 2003 International Conference on

Compilers, Architecture and Synthesis for Embedded Systems, CASES ’03,

pages 255–266, New York, NY, USA, 2003. ACM.

[117] Alexander V. Veidenbaum. A compiler-assisted cache coherence solution for

multiprcessors. In International Conference on Parallel Processing, ICPP’86,

University Park, PA, USA, August 1986., pages 1029–1036, 1986.

[118] Ashish Venkat and Dean M. Tullsen. Harnessing isa diversity: Design of a

heterogeneous-isa chip multiprocessor. In Proceeding of the 41st Annual In-

ternational Symposium on Computer Architecuture, ISCA ’14, pages 121–132,

Piscataway, NJ, USA, 2014. IEEE Press.

[119] Magudilu Vijayaraj and Thejasvi Magudilu. An empirical power model of a low

power mobile platform. 2013.

http://goo.gl/TH2Y5R


Bibliography 137

[120] Guibin Wang and Xiaoguang Ren. Power-efficient work distribution method

for cpu-gpu heterogeneous system. In Parallel and Distributed Processing with

Applications (ISPA), 2010 International Symposium on, pages 122–129, Sept

2010.

[121] Hao Wang, Vijay Sathish, Ripudaman Singh, Michael J. Schulte, and Nam Sung

Kim. Workload and power budget partitioning for single-chip heterogeneous

processors. In Proceedings of the 21st International Conference on Parallel Ar-

chitectures and Compilation Techniques, PACT ’12, pages 401–410, New York,

NY, USA, 2012. ACM.

[122] Matthew A. Watkins and David H. Albonesi. Remap: A reconfigurable het-

erogeneous multicore architecture. In Proceedings of the 2010 43rd Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO ’43, pages

497–508, Washington, DC, USA, 2010. IEEE Computer Society.

[123] V.M. Weaver, M. Johnson, K. Kasichayanula, J. Ralph, P. Luszczek, D. Terpstra,

and S. Moore. Measuring energy and power with papi. In Parallel Processing

Workshops (ICPPW), 2012 41st International Conference on, pages 262–268,

Sept 2012.

[124] W. Wolf, A.A. Jerraya, and G. Martin. Multiprocessor system-on-chip (mpsoc)

technology. Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, 27(10):1701–1713, Oct 2008.

[125] Henry Wong, Anne Bracy, Ethan Schuchman, Tor M. Aamodt, Jamison D.

Collins, Perry H. Wang, Gautham Chinya, Ankur Khandelwal Groen, Hong

Jiang, and Hong Wang. Pangaea: A tightly-coupled ia32 heterogeneous chip

multiprocessor. In Proceedings of the 17th International Conference on Par-

allel Architectures and Compilation Techniques, PACT ’08, pages 52–61, New

York, NY, USA, 2008. ACM.

[126] Qiang Wu, Philo Juang, Margaret Martonosi, and Douglas W. Clark. Formal

online methods for voltage/frequency control in multiple clock domain micro-

processors. In Proceedings of the 11th International Conference on Architec-

tural Support for Programming Languages and Operating Systems, ASPLOS

XI, pages 248–259, New York, NY, USA, 2004. ACM.



138 Bibliography

[127] Qiang Wu, Margaret Martonosi, Douglas W. Clark, Vijay Janapa Reddi, Dan

Connors, Youfeng Wu, Jin Lee, and David Brooks. Dynamic-compiler-driven

control for microprocessor energy and performance. IEEE Micro, 26(1):119–

129, January 2006.

[128] Youfeng Wu, Shiliang Hu, Edson Borin, and Cheng Wang. A hw/sw co-

designed heterogeneous multi-core virtual machine for energy-efficient general

purpose computing. In Proceedings of the 9th Annual IEEE/ACM International

Symposium on Code Generation and Optimization, CGO ’11, pages 236–245,

Washington, DC, USA, 2011. IEEE Computer Society.

[129] Kathy Yelick, Luigi Semenzato, Geoff Pike, Carleton Miyamoto, Ben Liblit,

Arvind Krishnamurthy, Paul Hilfinger, Susan Graham, David Gay, Phil Colella,

and Alex Aiken. Titanium: a high-performance java dialect. Concurrency:

Practice and Experience, 10(11-13):825–836, 1998.

[130] Tomofumi Yuki and Sanjay Rajopadhye. Folklore confirmed: Compiling for

speed = compiling for energy. In Calin Cascaval and Pablo Montesinos, edi-

tors, Languages and Compilers for Parallel Computing, volume 8664 of Lecture

Notes in Computer Science, pages 169–184. Springer International Publishing,

2014.


	cover sheet
	kiran_s1064296_phd_thesis
	Introduction
	Problems
	Partitioning
	Compiler Framework
	Power Budget

	Contributions
	Thesis Organisation
	Summary

	Background
	Multiprocessors
	Heterogeneous Systems
	Single ISA
	Multiple ISA

	Parallel Programming Models
	Data Parallel Model

	Parallel Programming Frameworks
	POSIX threads
	OpenMP
	OpenCL
	Comparison

	Compiler
	Uniprocessors
	Homogeneous Multiprocessors
	Heterogeneous Multiprocessors
	Clang/LLVM

	Measurements
	Runtime
	Energy

	Benchmarks
	Summary

	Related Work
	Heterogeneity
	Single ISA heterogeneity
	Multiple ISA heterogeneity
	Prototyping Heterogeneity

	Programming Languages
	Compiler
	OpenMP to SPMD

	Mapping Parallelism
	Partitioning
	Scheduling Tasks

	Memory Management
	Multiple Address Spaces
	Cache Coherence

	Power/Energy
	Power
	Energy Efficiency

	Summary

	Partitioning Data-parallel Programs for Heterogeneous MPSoCs
	Introduction
	Motivation
	Time
	Energy

	Programming Model
	Data Parallelism and SPMD
	The OMAP model
	Mapping SPMD programs to OMAP
	Code Generation

	Partitioning Policies
	Metrics
	Energy
	Two energy measures
	Runtime and EDP

	Experimental Setup
	Benchmarks

	Matrix Multiplication Case Study
	Individual Processor
	Partitioning

	Partitioning Policy Results
	Runtime
	Energy
	Analysis of Results

	Summary

	Compiler Framework
	Introduction
	Motivation
	Target Architecture and Runtime
	Programming models
	OpenMP
	Syslink Model
	SPMD
	Example

	SPMD as a bridging model
	Mapping OpenMP to SPMD
	Mapping SPMD to MPSoC

	Compiler Algorithm
	Data partition
	Data bounds per processor
	Computation Partitioning
	Cache Flush
	Code Generation

	Shared Memory on an MPSoC
	Compiler Implementation
	Source to Source Translation

	Setup
	Benchmarks
	Measurement

	Experiments
	Syslink and OpenMP Model
	Our SPMD approach
	SPMD Barrier optimisations
	Comparison Summary
	Energy and EDD
	Limit Study

	Summary

	Power Constrained Code Generation
	Introduction
	Motivation
	Our Approach
	Compile-time
	Runtime

	Code generation
	OpenMP
	Hybrid SPMD
	Memory Management

	Power Constrained Model
	Objective 
	Selecting a configuration
	Policies

	Setup
	Benchmarks
	Platforms
	Policies evaluated
	Methodology

	Results
	Comparison against DVFS and Oracle
	Comparison to Naive and Core selection
	Speedup Summary
	Over/Under Shooting

	Summary

	Conclusion
	Contributions
	Partitioning
	Compiler Framework
	Power Budget

	Critical Analysis
	Common Issues
	Partitioning
	Compiler Framework
	Power Budget

	Future work
	Scale
	Partitioning
	Oracle Computation
	Multiple Programs
	Mobile Devices

	Summary

	Experiments with Snapdragon Platform
	Snapdragon
	Hardware
	Runtime
	Programming Model

	Experiments
	Summary

	Bug fix in Linux Kernel
	Bibliography


