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I]TT OD OT I OIT . 

The interest in the frequency spectrum of the thermal 

vibrations in a crystal arose chiefly in connection with the 

problem_ of the specific heat of crystals at low temperatures, 

ÿebye' s theory of the specific heat, however, has been so 

successful that the actual determination of the frequency 

spectrum according to Born and v.'llarman (1912) has been 

pushed into the background. But recent investigations, 

especially. those of _slackman (1938, 1935, 193 7) have shown 

that appreciable deviations from Debye's theory should occur 

according to the correct atoruistic treatment. These devia- 

tions appear to be most pronouneed _ear the absolute zero of 

temperature. It, therefore, seemed desirable to calculate 

the exact frequency spectrum of a crystal. 

The first attempt to calculate the frequency spectrum of 

a crystal was made iIty Born and v.Karrlian in their original 

paper. They assumed only quasi -elastic forces between 

neighbouring particles. Later calculations have been made 

for ionic lattices, assurlinghereal forces in the crystal. The 

chAif difficulty in that calculation has always been the long 

range of the Joulonrb force which makes a direct summation 

over all lattice points impossible. 

Born and Thompson (1934) suggested a way of transforming 

these stuns into more rapidly convergent expressions using a 

method/ 
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method developed Ewald (1921) and Thompson (1935) has given 

the final formulae for the coupling coefficients due to the 

Coulomb force in the equation of motion, but in his paper a 

slight mistake occurred in the definition of the coefficients 

and so far no numerical results of these calculations have 

been published. Brocl^ (1937) has given formulae for the case 

of an one dimensional onal lattice mating use of Epstein's ¿eta 

functions; Herzfeld and Lyddane (1938) have used an extension 

of l._adelung' s method (1918) and they have given some numerical 

results; but their formulae are rather complicated so that 

one cannot expect to compute the whole frequency spectrum by 

this method. oreover, the problem. of the thermal oscilla- 

tions of an ionic lattice is not a purely electrostatic problem 

and this point has not been made sufficiently clear by Herzfeld 

and Lyddane. This applies especially to the case of the 

residual rays and the question whether the potential, from 

which the coupling coefficients are obtained, satisfies the 

Laplace equation or "Poisson's equations. 

In this paper we have used wald's method mentioned above, 

but interpreted and exLende by him in a recent paper (1938). 

By this method one obtains comparatively simple and quickly 

convergent expressions for the coupling coefficients in the 

equation of motion which allow a numerical calculation to an 

arbitrary Cieree of accuracy. Jecause of the good convergence 
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it has not been too laborious to compute numerical values for 

48 different modes of vibration, 

In sections III III we give the derivation of these 

expressions by treating the problem as an electrostatic 

problem, neglecting the retardation; but the proper way of 

solving our problem is, to find a solution of :._axwell's 

equation for the electromagnetic field in the crystal, 'this 

will be done in Section IV, From this field the force 

exerted on a particle and the coupling coefficients can be 

obtained (Section V), We shall see that in this proper 

treatment the case of infinitely long waves plays a special 

role and must be considered separately, In all the other 

cases this treatrIent leads to the same result as the electro- 

static derivation, If we define a potential function from 

which the coupling coefficients are obtained as second deriva- 

tives, this potential satisfies in general Laplace's equation; 

but in the special case of infinitely long waves it satisfies 

I'oisson's equation, 

In Section VI the coupling coefficients for the ra Cl 

lattice are given and in Sec :ion VII the contribution due to 

the repulsive forces is calculatèd, 

In Section VIII the equations for the coupling coefficients 

are checked by deriving from them formulae for the elastic 

constants, 

Finally 
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'inally, in Section IX the coefficients have been 

calculated and in section the frequencies for 17 rodes of 

vibrations, and the spectrum has been discussed. 



I, The Lattice Potential and the Coupling coefficients 

We use the notation of Bornt s 'Atorntheorie dws festen 

Zustcnds' (1923) and repeat here some of its main points. 

The lattice is given by the lattice vectors ct,,ai.,Q, 

which determine the cell of volume VQ , The cell contains s 

particles, their position being given by the basis vectors 

YK ( k = (- -.. 5) . The equilibrium position of a particle (K, L) 

is given by the vector 

o Q Q e 

(1,0) YK : 4 + K Q Qr +tiQx-za43 

where L stands for the three arbitrary integers -i,,6, es 

The distance vector between two lattice points (k,l)1ckZ 

is: 
o EZ' 

(1,1) Yu : Y'KQ -l = e- QI+ K k -YK, 

These vectors depend only on the difference 1 -V and can there - 

fore be written Y KK, 

F 
We consider small independent displacements kg of each 

particle from its equilibrium position 

(1,2) (u X 
I ( 

uK u l ( Kt/ 

so that the vector between the displaced particles is given by 

411 "i (1.3) rKk, = YKk, + uK 

We / 



We consider only central forces. The potential uK, (!Y() 

between a particle of kind K and a particle of kind k' is only 

a function of the distance (YI between them. The total 

potential energy of the lattice is 

(1,4) L Z 4.,/ ) YKx4 
eei 

Here the dash indicates that the terms -1' K=K' should oe 

omitted. 

This surly of course, diverges for an infinite lattice 

For a finite piece of the crystal the surface layers play a 

different part from the interior, but these surface effects 

are energetically small compared wi th the contriOution of the 

volume and can be neglected except where they are a subject 

of special study. Then the energy density 

(1.5) 

remains finite, 

C. = number of cells) 

We expand the energy in the neighbourhood of the equili- 

brium position in powers of the displacements 1and obtain 

(neglecting surface effects) 

(1.6) cp = , 

where 

?) / 



(1.7) 

cp. 
I 5' 

- Z K' é L' KK' N KK `f' 

fQ 
C/ [A 

J 

// ` TKK'/X ( tLKA,... LCKX 

2.sECú,. (0c-e ax KK`%Xi u-K 
K 

3 

f i y K, -- . , 1C K /Ay (u k x u K ,r.) Cu K l uK'// 
r 

Here we have used the fact that the potential energy and 

its derivatives in equilibrium depend only on the difference 

/ -if so that one can introduce the notation 

ke 411%4K, 'YKKe, 

(1.8) g :K)X " c7X T K` 
L 

C KkXl - L c7X úM T Kw(1),J Y_K e 
The transformation performed in (1.7) uses the fact that 

(1.9) 45K 0X = 
-e (j ( 

" Kk/X 

and 

(1.10) WKk') (a)1 
One can now simplify the expression of 

4)z 
((.1,1 by 

defining the originally undefined quantities 

equation 

(1.11) 

and / 

(PKK,ty by the 



and obtain 

4) 
Q-e P 

C, 

(1 ,12 ) : Z é c 

A, 
K f ié,K LA-A(' I NI 

_. 

in the equilibrium vanishes, or with (1,7) 

(1 ,1.3 ) 0 g l kK' ) r = 

4 

The second order terms lead to the equation of motion 

X 045 ../ - 
¡¡j "1) 

if 
d LIq u k, + JX ' k "k x K, , L l `t !(K -y ttK' = [, 

Y I 

(1,14) 

Here the dot denotes differentiation with regard to time and 

sv-k is the class of the Particles of type K . 

Consider now one of the independent normal modes of 

vibration with frequency t-) and wave vector k where 44.2 / 

The displacement's of the particles are then given by 

wZ` zr; ) ( iYK 
(1 15') 14-K = L 

I.iserting this value into (1,14) we find 

LI 
,p zr,;(4,a/ 641 I)r:( fei) 

1NK K x f ( KK/XY Ull E ' i 

= C 
-2«< (% ° f) 

(1,16) 

or multiplying by . 
wt mk éL 

// // 
I< + L L Cx'J Lk1 

K 



(1.18) J= ¡ 
e-v 

zri l k, rKp r 
S ( KK')xy e 

K ) 

is independent of 1' Therefore with (1.9) : 

f 

(1.19) L 4A-1411.] ' S K K) Zi 1L YK K 
R XÌ 

and from (1.11) follows the relation 

(1.20) 
K' _ O K 

x1 =0 

5 

If the potential energy consists of different parts, for 

instance one corresponding to the Coulomb force (index C) and 

one corresponding to repulsivß forces (index/?), the coeffici- 

, eats of the equation of motion are the sum of the correspond- 

ing contributions, i.e. 

(1.21) CK1 
_ CT Kg, ßKKr 

h,J jL,Xy.1 XMJ 

The equations (1.17) hold for an infinite lattice as the 

coefficients (1.18) converge if the force decreases rapidly 

enough. The choice of the wave vectors - is restricted by 

the bounding conditions at the surface. Since for a large 

crystal the bounding conditions do not affect the frequencies 

(cf. Born, 1923, P.592) we use the arbitrary bounding condition 

of the 'cyclical lattice', by postulating that the displace - 

ments be periodic in a volume having the same shape as the 

elementary cell and containing k13:11/ cells. This leads to 

the / 



the conditions 

(1.22) 

6 

i, : f7, kt ( Qz) ' ¡I= L f43) : p3 ( n; 

They are satisfied if 

(1,23) 4t = 4, 41 + N1 + K3 t33 

where the 4; are the reciprocal lattice vectors defined by 

(124) (a') 44) 

and 

(1,25') ° e;; 1 Z : /=Z 
3 173 H 

/ H 
(p,pz,p3 v,,2-.1,7-1) 
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H. The Coupling coefficients for Coulomb Interaction. 

We consider an ionic lattice, as for example the Iota Cl 

lattice. Then the main contribution to the interaction is 

due to the Coulomb forces of the ions, the potential of which 

we write 

(2.0) J KK (or!) 1(11 i r II 

Here Qu is the charge of the 04 type of ion at the lattice 

points V$4 . 

In this section we shall assume that we are allowed to 

treat the problem of thermal oscillations as an electrostatic 

problem. 

Using the notation 

(2.1) 
v-4 

in Jx Jy " 

the second derivation of the potential energy of a particle lc 

in the zero cell due to a particle 0 in the cell L is given 

by 

(2.2) (o KKXi .10( _ 
QK .10( k/kit ` YKK.P ) 

and those due to a particle K in the cell 

( 2 .3 ) ( y K, ki ¡Al (al) 

Therefore the contribution of the Coulomb force to the coupling 

coefficients 



coefficients (1,19) is 

(2.4) C KK0I c Q1 2fí.k iKK, 
CkyJ _ 

2KQx xYYK'K/ K#K' (a) 

When we come to the coefficients [XM ] it must be remember- 

ed that the zero term ( 
: 0,40 in the sum is defined 

by (1,11); this term is not equal to 42 
/Xy 
4 which is 

infinite, It will be denoted. by 09K0 k) xy 

(2.5) cxÿJ= 
i 

; 
thus we get 

As4 fS/(I1guI)Lar,(,¢./á) y(r)+kr 
K 

D 

For a wave vector ' :ü the coupling coefficients (2,4) 

and (2,5) are 

(2.6) 
L 

K K' j 
xy J 1a 

_ 

Jto Q vK)Xy 

)4y 

X1 fz =0 
5 CifKK 

1 Xc 1 ` YiCtg /Xy + C 

Therefore, the zero term (yKKIXy defined by (1.11) can be 

expressed by (4.0.1 D)) 

( ial - I ER Jkso Ek11J ,0 
(2.7) 1 

rig _ . 
xy o "' e C yKi< »el 

taaL 
This formula holds for anycc 7force and any lattice. But for 

Coulomb forces and a lattice of cubical symmetry it can easily 

be / 

'(a) We shall drop the index C in the sections III III, IV as 
in those sections no other coefficients are considered, 
Also, we shall drop the index o in wK since no 
mistake can occur. 
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be shown that the zero term vanishes, for it represents the 

force exerted on the particle (k,() if it is displaced by a 

small amount, all other particles being kept at their equili- 

brium positions. This is evident from (1.14) if we put all 
(4r 

, 
=0 except cis( This force is then derived 

from the electrostatic potential due to all other charges and 

satisfies Laplace's ecru.. .ion 

} _ D cI z 

Furthermore, it possesses o oic..l symmetry with the position 

174 of the particle (0 as centre of symmetry. Therefore 

d'a cllcr :1 Zci for y - YK 

Further, we conclude .'om the cubical symmetry that at the 

dfcy - x tf centre of symmetry 

and therefore 

y ' t = cX -o 

Thus there is no Joulomb force for small displacements and 

-KU - kK 
6f'KK4x vanishes, i.e. Lkyj 

We now introduce the function 

(2.8) tri (A ac t(Ir -Cej ( _, 

and in the same way a function 

(2.9) / 



(2.9) ¡s,, fi_r-pl z,Tí 

Lo 

1:y 11 (X, y, z; 

We shall express the coefficients (2.4) and (2.5) by means 

of these functions and then shorn that it is possible to find 

a very rapidly convergent representation of the sums (2.b) 

and (2.9). 

If that is possible, it is permissable to exchange 

summation and differentiation in (2.9) so that 

(2,10) 

Furthermore, since l - r-wK -0-41/ = I YK'k l cf. (1.0), (1.1) 

and 1 (V) =Iÿ) (2.0), we can write (2.4) using (2.9) (a) 

(2,11) 
lr?YK'KtC 

j 

L XI -1 K k 1x1 II vKiK ta l) 

(2.5) becomes 

-ut< i, t YKK% 
- Q?Ko C' y IKKl YKK--YKs1 

(2.11) = QK p Fxÿ (L'Ì - Xy ; °J vo 
17 may, therefore, be considered as a kind of potential 

function from which the coups -.ng coefficients are obtained. 

(a) Thompson (1935) has not defined the coefficients L"yJ 
correctly. He leaves out the exponential function t - Zfri( -4_¡ Kk' %i c.f. (2.11). 
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III, The Ewald -Transformation, 

A method of transformation of lattice sums into quickly 

convergent expressions has been developed by Ewald (1921, 1933). 

In applying this method we shall use the notation of the 

reciprocal lattice. 

This lattice is described by the lattice vectors ,,41,43 

so that any lattice point is given by 

(3,0) -hi fiZ + '45 [, 
(-fit integers) 

Here the 4 are defined by the equation (1.24) which has the 

solution 

(3.1) 
pp 

= va C Qs X Q; j s - Vq rá3 Xá 1 N3 = Ln EQ,XazJ 
i ¡ 

Any arbitrary radius vector in the reciprocal lattice is given 

by 

(3.2) 

Where the 12j are not necessarily integers, 

In general we understand by a lattice sum of a function 

,f(r) the expression: 

(3.3) 

This sum has obviously the periodicity of the lattice and we 

can develop it into a Fourier series 

(3.4) / 
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(3.4) 
'2 

c 

f zrZ (G,1Yj 

with the Fourier coefficients Fx 

If we have a sum 

(3.5) r44(r = é 
L (4,ar: 

) 4 

we can write this in the form 

(3 ) 
- Ër1', j z,ri 

7 . F b (y ) ( r -á. 

Therefore, 6`44 is a periodic function which is modulated by 
Sri (4x2 

a wave £ We can then write the sum as a 

Fourier series (cf. wald, 1938) 

(3 7) 
L (r-ai. ziric late- r) 2,7; (4,c,Y 

. Y ° z5 Q 
x 

The -Fourier coefficients F are given by 

Lri(á,ac.e -r) - (G4 ,Yÿ 

a V z t X, a AC 01)(3 

where the integration extends over one cell. The lattice sum 

over all these integrals is. of course, identical with the 

integral over the whole of space; observing that (_4!4 a ) 

is always an integer, we obtain for (3.8) 

7:4 / 
- _zZ (4it 'A, Y) 

Pr) z oL 

(3. F4.4- - Va 

(3.9) ` 

where the integration now extends over the whole of space. 

If / 



If now we represent 1Y) uy a our eT l;i e Tal 

ZI"í (4,Y) 
(3.10) y7( 

then 

(3.11) 7(1') (l ) / z-'" O( U' 

13 

d v4 a' CX o(.G), a(2. 

Comparing this expression with (3.9) we see that the Fourier 

coefficients can be expressed in terms of the Fourier 

transfor,lec( ,i 4) of 10") 

(3.12) /7.4. = 2fa (4 +1) 

Substituting this value for r4 in (3.7) we obtain the follow- 

ing Fourier development for the lattice suri (3.5) 

(3.13) c 
) 

J 

14 zr 4 
Q La 

Following Ewaldts method, we apply this result to the function 
£LY,. 

(3.14) /( _ e 

/here L is a parameter. The importance of this function is 

that the integration over the parameter 4 gives as exactly 

the potential function 

ao _ 

(3.15) f ti( 

J (y) l 

lye 
04* 

L 
re' 

2Yz y) á. ft _ 74 

The Fourier transi orme43.11) of 

(3,16) / 
is given by 
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(3,16) () _ /,"Lsrs- 2;r i. (.G, r) 
uC zr 16 Z 

11 
Z - (fY 4 t ) 2 

L t v( v 
-0,6t 

= Zr Ç ë= 
13 

Inserting /(r-ai)and 5; (fr0+.)from (3.14) and (3,16) respective- 

ly into (3,13) we obtain 

F 4(r) - S Q 

(3.17) 

- £1(r-a-91+lri (-4i Q ti 

(41#4 r) 

This formula is identical with that obtained by Ewald by means 

of the transformation of Theta functions (cf, Born, 1923, p,765), 

If now we integrate F iz(r) over the parameter £ we 

obtain with (3,15) the potential function irtr) defined by 

(2,8). 

(3.i8) J F-4(r) a!£ = F4(r) . 

ITow the sum in the first representation of F4 in (3,17) 

converges rapidly for large values of L but not for small 

values. The sum in the second expression in (3.17) converges 

rapidly for small values of t but not for large ones, 

Following Ewald, we divide the integration into two parts 
-0 E ao 

1-14-f and take as integrand in the first integral 
p 

the second representation of " in (3,17) and in the second 

integral the first one. Je obtain 

(3.19) / 



F a( 

(3.19) 

E / 
15 

Zr G(£ -s (<t) .f1lt (4í A,Y) 
1 r ) - v4 r3 ,C 

o 

L2(r- g.f)2t.2rf -4,,119 f é a E 
F 

The first term in (3,19) can be integrated directly, the 

second term may be expressed by means of the Gauss function 

X 

z- (3,20) GCx z JQ- cob) - ! 

o 

Then 
ís Y 

c ) z -fi3= 
_ 

EiYg ` 
z 2 %d/3 - 

J Ir-ai J lye Y1 

/3 
_ 

L o _ 
O - - 

(3,21) 
- G(ElY-á/J (/3:1.1r-al1 

IY-41--r 
Thus we finally obtain F*lr) 

íZZ (44 ti) f2ri (.6_4 ti/ r) 
(3.22) 

_ ' 
ti h V'ct. / (644)2- c 

I- G(E!Y -ct(l) zZrc(t,u/ 
+ Iv -at/ 

We can choose E in such a way that the two series in (3,22) 

converge rapidly, so that the interchange of differentiation 

and summation in (2,9), (2,10) is justified, 

Inserting this representation of F4zr) in (2.11) and (2,12) 

the coupling coefficients are obtained in a rapidly convergent 

form, 

for K'$ K we find 

(3.23) 

where / 

172 

Ck = 

j(44rti,r )(7 t y) rh',) 
KrJ E K Kf a Z (4tñ )s ,e 

+ E2 
é ELL) '(ErrKK,IjI 4 (E "(EIYxK,!)- 1/Pc EIYKKd)', 

Ì 

I 1'fK'/ 
2 N(/Z)Y'KK 

(YK(')L ^ 
í 



where 

(3,24) 

G(x) 
'C71(x iljcx) : 4)(7Y1 ,164 ) _ 

16 

For KK we use for (le (2,12) the integral representation 

(3,14) and split it also into two integrals with the dividing 

point E . We obtain easily 

(3.25) 

S-oy Fá(Y) 

Ls 
L1-"z (4.G tk)lf li« (1+f t Y) 

Y-o o x J y rua LA. 8 tk j 
f 
- (,(E/r - ,- g.il rl ,a /G>J l -6(, i) 

rl i 
The last term ccels the zero term of the second sum. We 

shall. indicate its subtraction by an accent on the summation 

sign. 

Developing the integrand of 6(Eír0 into a power series in 

y we find easily that 

(3.26) ,4i4. Z G(EYl f 4 -3 Jx ` y " 1 c/y Y-u) 3 

So we obtain 

1 
¡ 

t 2 

CXyJ QK 
¡_.r `xXLyí^y) 'ÉZf, 

.4 ("PA +11)2 
2 

(3.27) + E1 S' jp'(EJa` /) /20 -(E "(E1a1V - 41l (E a el ar ye rrLa-, 
1 

e/ Z Ivc J 

For a wave vector 44 =Moo)) we observe that there is a 

divergence in the potential function FI(y) (3,22) for 

its _ (0, 0, 0) We shall see in section IV that this diver- 

gence / 
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divergence is due to the electrostatic derivation of the 

coupling coefficients; it disappears in the correct electro- 

dynamic treatment, to which we shall turn in the next two 

sections. 
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IV. The Electromagnetic Field, 

In the introduction we pointed out that the electrostatic 

derivation of the coupling coefficients needs justification, 

because the vibrations of ions is in general accompanied by 

an electromagnetic field, We must, therefore, start from 

Maxwell's equations and find the proper solution of these 

equations for our problem. This has been done by Born (1923, 

p,760; see also Born and Goeppert- Mayer, 1933, P.770). He 

has calculated the electromagnetic field of the crystal by a 

superposition of spherical waves arising from the vibrating 

point charges, (This corresponds to the introduction of the 

'optical' potentials instead of the electrostatic potentials 

(cf, Ewald, 1921) , `r 1e shall give here the derivation as far 

as is necessary for our purposes, From the &lectromagnetic 

field the forces acting on any particle and therefore the 

coupling coefficients will be obtained, 

We shall see that the coupling coefficients will again be 

expressible as the second derivatives of a potential function, 

to which we can apply the same transformation used in the 

preceding section, As a matter of fact, we shall find that 

in general the potentials are the same so that we can use the 

results of the preceding section without modification, Only 

in the case of infinitely long waves a slight modification 

will be necessary; this can be applied immediately by comparing 

the / 
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the electromagnetic formula with the representation (3.23), 

(3.27) of the electrostatic values with E =aa We shall 

see that this modification will remove the divergent term in 

the potential function (3.22). 

The case of infinitely long waves Ch= (0,A0) has already 

been treated by Born (1923, p,728,773). It leads to the 

frequency of the residual rays. 

It may be surprising at first sight that the case of 

infinite waves has to be treated separately and cannot be 

obtained as a limiting case of long waves. The reason for 

this can easily be. seen. Starting from a finite crystal 

with H3= N cells and a finite wave length, one has to do 

w.th a double limit: W-'ao and A>0 How for finite 

wave lengths and a finite crystal we have in general 

Ye < A GG l2 Yo Yd Q4:i, u ctriA) V44., t) 
Here we must proceed clearly first to the limit W -,00 

For infinite wave lengths on the other hand, we must first 

put .vo and then proceed to the limit W >o If, 

however, we reverse the order of the limit we obtain obviously 

those very long waves which are of the order of the dimensions 

of the whole crystal, but not the infinite waves proper. 

We shall now proceed to the calculation of the electro- 

magnetic field. This field can be represented by the field 

of / 
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of vibratmnf dipoles plus an electrostatic field, de assume 

a fixed charge -ek at the lattice points and a charge +cK 

displaced by an amount cti4 liven by (1,15) 

4't n7 (4.0",f) 

The dipole has, therefore, the moment eK uk However, 

we have to compensate the charge -QK by anothe_' fixed charge 

at the lattice points These fixed charges give 

rise to an electrostatic potential which is identical with the 

electrostatic potential of the lattice at rest. In Section II 

we have seen that for lattices of cubical symmetry and for 

small displacements this potential does not give rise to a 

force. For lattices of other types this electrostatic poten- 

tial supplies the zero term (( arc ) /Cf (11% as is obvious 

from the discussion of this term in 6ection II, restricting 

the calculation to cubical lattices we may disregard this terme 

The electromagnetic field can be described by the I"%ertz 

vector 

(4,Y) 
(4.0) e . 

which is the sum of hertz's solutions for the various vibrating 

dipoles. The vector is a function of space. 

determined by Born (1923, .761); he finds 

(4.1) 

where ;` 

- 2. rK (y -rK 

It has been 
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where S is the Fourier series 

[ 

( 
4 . 2 ) J 

I1r i ( 4, YÌ 

rva (k 

_ ¿Jo 
ao zrc 

Ao is the wave length in vacuum corresponding to the 

frequency wo. 

';Je separate the zero term of the series (4.2) which 

represents the mean value of the electromagnetic field 

(4.3) . '- ` - 
K%2 

va s_ko= 

21-1 

St 16. 
" 
) 

= roc,. Ct +4) Z- %ó 
where we have introduced the refractive index 

{z .o s ;2 = 1, 
The Hertz vector corres_ ondin'' to the mean electromagnetic 

field is, according to (4.1), (4,0) given by 

(4.4) = r 4L-I 

where 

(4.5) 

4.0t z.ri (41,'L) 

r,, 
e 

may be interpreted as the moment per unit volume. 

From the Hertz vector (4.4) we obtain the mean electro- 

magnetic field vectors 

(4.6) / 



(4.6) 

43:1) 
t 

- ya - 
s = Ñ { r-n=s 0,01 

= 'IF S X 1:2) 
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Here LT is a unit vector in the directiop of propagation of 

the wave. 

These are the same formulae as those which one obtains as 

a solution of :._axwell's equations for a plane wave by putting 

H and splitting up Q into L t tii as has been 

pointed out by Born (1933, p.776) . 

In order to discuss the formulae (4,6) we must consider 

the magnitude of It 2 
A 3 

this will enable us 

to differentiate between she two distinct cases and 4k #0 . 

The frequency of the fastest vibrations occurring in 

crystals is of the order ry 10 `3 . kc and the corresponding 

smallest wave length This 
c 

/l !0'.3 c This is very 

large compared with the lattice di6tnce (^- /0- tc4+)..'or the 

thermal vibrations of the crystal one can consider the wave 

length A as very small compared with the length 'to of the 

light wave of the same frequency inlacuo. We can put therefore 

Ks eQ The only exception is =D ; in this case vt 

vanishes since .e * 0 (cf. 4.2; [Jo * 0 ) 

Therefore, in the case 4 =0 (4.6) becomes 

(4.7) E I" 1-i 3 0 '4 4o not neglected 

and / 



and in the case /1 *0 

f4 8) C = 
-la;s 02,4') H=0 
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i#0/ 40 neglected 

The solution (4.0) for the Hertz vector is not necessarily 

the correct solution of our problem. We have assumed that the 

motion of the dipoles is given by (1,15) without enquiring into 

the reaction forces, which are due to the emission of radiation. 

Only,if we can show that no radiation is emitted by the crystal, 

the solution (4.0), (4.1), (4,2) is correct. We can see, 

however, that this is the case for all values of 4 except 4 =0 

In these cases ( -k +0 ) the total moment of the crystal must 

vanish since all the dipoles in the crystal vibrate with a 

difference of phase which is not invariant against a translation 

of the lattice vector. It can be seen at onee (cf. Born 

1933, x.643) from the expression for the total moment itself 

(4.9) Sz K =S eKuK =' Z.ek e se 
e K 

P 

This sum is zero for all values of 4 except /k =0 

We shall now show that our solution for the Hertz vector 

corresponds to this fact. The optical properties of crystals 

have been carefully investigated by Ewald (cf. Born, 1923, 

p.774). Consider a crystal which is bounded on one side by 

a plane perpendicular to the vector ,43 so that 

(4.10) 

The / 

(Y, !_,3i 

LY,43) <( 

c n j; ate cry 4141 

OKtSl .11-4 cvia( 
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The Hertz vector for such a 'half crystal' has been found by 

Ewald. It is 

(íK) 

(4,11) 
z(oLd) 

(o)+ Gf 

z"' 
where Z(`"/ and Z 

( "4" are the Hertz vectors inside and 

outside the srystal. Isere the vectors ZZW (1= o, I,,¿) 

determined with the help of equations (4.0), (4.1) by the 

functions SdJ given by 

(4,12) 

S(°'- ' - Vo 

(I 

S(2' 

Lrí 44,r) 
2[[ 

4 (71.+)- L 

111í [4 , ( r, 4,) t i 4_) * 7, (Y,G3)) 

= 
Z¿ ".0 e 

Vq 
QiLlex 3s (1,-1,)( 1- ¢ -2Qi71/ % 

L 

Lí. 

vß. is ,s (, -j :) - 

In S00 we recognise the expression (4.2) for the infinite 

lattice. 

The constants 7,, is in (4.12) are the two solutions of 

the equation 

are 

(4.13) (1,i, +642, +743 +4 ) 
L 

=42 

These are given by 

(4,14) 
L 

- ( , L-4. '- * C $ 4 Z(44, 2 ] 
1.4 +4 

We consider first the case when either A or 4 or both are 

different j 
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different from zero. 'Writing as 

4, I, r L 4 43 4, 

where -1 (cf. Section VI ), we see that f 

cannot be parallel to ,43 so that 

L 2 
(-/ } _3j 6 523 

Since ko l4aI it follows that io in (4.14) may be 

neglected, so that the square root is imaginary and 7,, are 

conjugate complex, In this case we have to use for 7, the 

solution with positive imaginary part, and for 02: the solution 

with negative imaginary part. If we insert such complex 

solution in (4,12) it follows with (4.10) that 
e 

and 54» 

decrease exponentially with the distance from the surface, 

They represent only small surface effects and may be neglected, 

We now turn to the zero terms of the series and .3 

(i.e. £( =Q_ :O ). Then the solution (4.14) reduces to 

(4,15) 7,/1 = p: 1--(6,4)± (.4-3/4):t43=(Aó 42iifor 

If 'O so that ,40e4 ,k , we may neglect 4o again and 

the solutions 7ys are again conjugate complex, if /i is not 

parallel.-to 4; In th4i case we obtain again exponentially 

decreasing expressions, The only exception is when íA is 

parallel to ,irk In this case we obtain from (4.15) 

(4.16) = 

and / 

-4 t40 
1431 

(3, dz) = 4;114) 



and 

(4,17) 11,2 ' 3 - - A 
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Inserting these values in (4.12) we obtain with (4.0), (4.1) 

the Hertz vectors 
(Ili corresponding to the zero terms 

of S (I 
/ s (zl 

(4,18) 

2?i (Y, 
LZJ e 

e 
Zr.I (K ?-,°) 

i)4 q I.G31 ho ( J- e 21rí 4-4 0M4a 1 
K 

-277i (r,4o) 
T Q e ̀---_ ¡ S rr i 4/.4°) Va 

I ffll ho ( / -Q IT, i (f1t4o2Lti1 I-K 
1 

Since /kg, <e 4 'zo < A1 and (lt/ it follows 

that (N/414) << We obtain to the first order in -kC 

-ic.lt 1ri(r,4.) 
701 e Q. . lfa 1631 4 C I- e 

(4,19) 

eK 

-14,4 -27"h/rid Z z C 

Z 

) 
2 t Q K_ 

Va 1431 A. l -.ezri 4/Ps/ 

In this case we obtain indeed an outgoing radiation field. 

But the effect of this field is negligible. This may be 

seen either by calculating the force from 
?'° 

or by calcula- 
f4T ,Za' 

tiny, the energy flow of the outgoing radiationland comparing 

it with the energy of the oscillator. If we calculate this 

by means of (4.6) we obtain only values of the magnitude 4. 
16,1 

which can be neglected. 

The field of the crystal is, therefore, completely 

determined by SO (4.12) or (4.2) which gives the right 

solution / 



solution for our problem for k *O. 

We have now only to consider the case 4=0 
for the zero terns of the Hertz vectors zntt zCo once more 
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We obtain 

the expression (4.18) and need only put I =0 But in 

this case 
Í8l 

in the exponential function of the 

denominator cannot be neglected. Expanding this eÈponential 

we find, instead of (4.19) 
t 

-ts.t zir (r, 4 ) 
21rag 1 K 

o K 

(4.20) 

1' = zyvq 

-cWt-27i(Y ko, 
yy 

lox LC PK 

27611 represents again an outgoing wave, but the amplitude 

contains - z and therefore it cannot be neglected. How - 
0 

ever, this case of infinitely long waves, i.e. long waves 

compared with the dimensions of the whole crystal has alreeldy 

been treated by Born (1933, p.777). He shows that in this 

case one has to omit the zero tern in the Fourier series (4.2) 

which gives rise only to the mean i.Iaxwell field - yT /= 

(cf . 4.7) 4 a( f., a f A-4.4 0.4.4 
444 { -( 4477 rc d t / O vc (4' 2) w,., 
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V. The Coupling Coefficients of the Electroma_netic Inter- 

action. 

We can now write down the Hertz vector for all states of 

vibrations of the crystal, cf. (4.0), (4.1), (4.2). Since 40 

is small compared to the vectors of the reciprocal lattice, ko 

may be neglected in (4.2) except for the zero term 4 =(o,v,v,/ 

As long as ,ktO may may be neglected also in the zero term, 

as we have just shown. For Ai=0 on the other hand the zero 

term must be omitted. Therefore we find for S 

ariA,Y) 
(5.0) S = 

e 

lk 

where the dash indicated that for 4. O the zero term 4.k _ 0 

must be omitted. 

In evaluating the field acting on the dipole (K, ¿) we 

must subtract the field of the dipole itself. The moment of 

the dipole is 

Zrí(.4 ,t'ic1) 
4 

? K 12x e e 

and therefore its Hertz vector 

k -iklt 2Ti (4i, 
I, 

e 

1 

(i ,2) LEK _ IN L e IY-0 

The force on the particle 00 is then determined by the 

Hertz vector 

or / 
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or from (4.0), (4.1) and (5.0) 

t* -iwt 1fí( -fYK) 1wí 
o (/ 3) L. k =e z S (Y- VOL V I_ 

IY-Kl 

Since S is periodic in the lattice (cf. 5.0), we introduce 
the potential functions 

I7,1 (4iiY 
It'[ (, i l Q 

S ( y) e n'va ( 4+c t ): 
(5.4) 

44(D r 4itr) 
IY1 

and obtain for the Hertz vector (5.3) 

t 
( ) K 

4` e-iw 
e 

it 4,y) j f (Y -Y) tk K( (r -'-if, 
JJ t 7 

The electromagnetic field vectors can now be obtained from (4.6) 

The magnetic field gives only a second order 

contribution to the force and may be neglected.. The electric 
field is 

c rad - !s LZ 

(5.6) -iwt 21i (í, &) f X 4(yyK) e { Y Js rr -y) 

According to (5.4) the terms due to the 9yacl olio Zej +ksze 

obtain factors (fs, +t)x' (4.4rß)/ whereas the last term i:, X 

' s 
(5.6) has the factor 12"1 _ N71401 It can therefore be 

neglected. Putting y = YK and multiplying with the charge 

2 we obtain the force on the particle (K,1) . We insert 

this / 



30 

this expression in the equation of motion and cancel the 

factor e p {'`wt# &'p { IQ` ? YKi> we find with 

,,K _ ek 

(5.8) 

Z(,iKx f K ÿ L t y I J UK' o 

% 
(tr YMK1 [tip '] : eK eK Tx 4(4 e 

uK : _ 
- (0 

L x K cy 
where the indices denote again differentiation, 

Comparing this expression with (2..!!), (2s2,ß we see that 

the coupling coefficients are identical with those derived in 

Section III, except that the function F tr) must be replaced 

by 4)4(7 In order to compare these two functions, we take 

the parameter E in (3.22) 

F 'k is given by 

(5.9) F y) = va (G4+)2' 

This is identical with the expression (5,4) for Ip4202) with 

equal to op , Then 

the exception of the case 42 =0 In tliis case the divergent 

zero terra in r44 is omitted in Llk. 

iiik (v) F 4(1") S' *0 
z,ri (?c,_Î 

(5.10) 
° (!') - ó ( F kir) iTva ) 

i 
¡,* 4=D. 

ih,u3 f11",/ % /d ZIA CelVt$ algift'c l,y;va-E+'oy C.) Ju,>iip-e al. 

F44 is defined as a sum of potentials of point charges, 

Therefore it satisfies Laplace °s equation 

(5,11) / 
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( 5 .11) /` r _ ;1 

This was to be expected since we neglected 4o i e the 

effect of the retardation, With (5.8) we get the relation 

i KK kK -0 (; ,12) C XX 7 + ÿ ] L ï'J _ Cxx'J 

(cf, Bórn,1923J_,728) 

For ßt204 on the other hand (5.1C) gives 

(5.13) i1 W ° _ o F L' 
+ 

zal?,) 
= 

a 
o 

(5.14) 2 L XxgI -I ,A_o - zkeKi tra 

This holds also for kl= u if one substitutes 

in (5.,13). The potential 
° 

? l o foro 
satisfies, therefore, 

Poisson's equation, which may be interpreted as the existence 

of a uniform charge distribution of amount -1 per unit cell. 

In the case of cubical symmetry it follows that 

r¡'Kke]7 C ek lÑ 
CxX Í 1 = 

QKt yu 
x x 1: o 3 274. 

1 
3 iln 

(5.16) 
C41 

_ 
- 

K 

:= 
cija o 

Then we obtain the coupling force 

(5.17) i`KX " L t xxsó 3u K K eK' VLK 3 x ex 

which / 
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which is the well known expression for the Lorentz -Lorenz 

force, 

The question whether the sum ! E '] is equal 'co O 
K 

or to 4,wil has been discussed before) but had not been Va 

cleared in a satisfactory way, Hertzfeld and Lyddatii (1938) 

assume that for infinite waves it is equal to ¿ i' 
ßv "out that 

for all other wave lengths one has to displace the uniform 

charge distribution -1 
; 

this would give rist to surface 

charges which just compensate the term 4 
Va 

so that the 

above sum is equal to zero. This argument leads to the 

correct result, which we have obtained above without any such 

assumptions; but it appears rather artificial, since the 

displaced uniform charge -1 has no immediate physical 

si£:nifi cance. 
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In the case of ITELC1 we have two different particles 

in the cell (S=2 ) But as far as symmetry is concerned, it 

may be regarded as a simple lattice, i.e. the ITa -sites are 

entirely eq&ivalent to the C1- sites. Therefore, to any lattice 

vector ykx, there corresponds another one of the same magnitude 

and in opposite direction. The same is true for the reciprocal 

lattice. For this reason the coupling coefficients are all 

real, as may be seen from (1.19); in this sum all imaginary 

terms cancel so that 

CKK J c S KK4 co-3 17 (/hf YKK') 

.F) 

[ u 
J - s (0) ) 2 u uX7 cv r, , 

á 

and since YKU, 

(6.1) Pool _ 
[ 

14'101 

- Yu'K 

From (5.8) it can be seen that the coefficients are entirely 

symmetrical in x and y so that 

(6,2) [14,:41'.] 
= 

[1'4 
K'1 ' X 

Furthermore, the NaC1 lattice is entirely symmetrical in Na 

and Cl/ 
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and Cl (if we neglect the repulsive forces between all but . 

nearest neighbours); therefore 

(6.3) Cx = txÿl 

(6.4) 

The cell vectors of the NaCi lattice are 

(X, = Yo(0, , 
I) 

áZ : l) 

a3 
= Yo (i, 

Ys, 
- Y,z = Yo(/, i) 

1.4 T. 2y3 

where Yo is the distance between nearest neighbours or the 

lattice constant and 1.41 the volume of the cell, lattice 

vector is therefore of the form 

6T - Yo (/ i3, 41.4 I, tie) - Yo `1x, -7, -ï/ / ,G, x " .EU`f44 

(6.5) 
_ Y o ( -ezi4tit 4 +/, +I, 41-e f = r o ( h ) Pk* °elCZ 

Here ,1,, .414 cover all integer numbers, 'Therefore, ,41,e1,4 cover 

all sets of integers for which 74,1--lyf'4 _ £4 is even, and 

wt,r vrtyl Wit cover all seta of integers for which 1rtt,tr is odd, 

The reciprocal vectors are given by (3,1), With (6,4) 

we obtain 

(6,6) 

- 2.14 i i) 
11r0 it 

t 

Lr, ( I1 

43 l - ) 
2+;/0 t t 

so that a vector in the reciprocal lattice is given by 

(6,7)/- 
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, 

(6.7) - 
¡( 

+ 3 Lro ` z if h3+4, _ZJ ,4/4-4,-43/ 

/ 
4 '4) ) = Z'o1 X y 

where kx, 

Le,'41, "ht 
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aU oact s r u-f.liv4.., 

cover all sets of integers which are either 

all odd or all even, 

(323),0,,) 
The sums representing the coupling coefficients may 

now be written dimensionless by writing d for the parameter 

C in (5,11) and substituting for the wave vector 4 

(6. 

(6. (3. 

whe{ 

(.c) 

+ / 
= - +, 3 Lo ` X, 

40.43 (py : 1Z3t46,'421, gi. s '4, ÷42. 

va C_r Z 

é= .x,, J - i4(4) - 1-Iky 

-g; (4) + 1-141 

icko 

cro 

ToW 

IT 3 
+ 3£ ny 

-at - + 

co3 r(4X4)t40 

_ki : /.f-` + / Z l 

{-í()' (11) Coa 

_t ;04_ 

.¢. kal t413 

2 - Z +l 
3 

W r e 144= 

= 

t 



1m 

( ) _ I- r e-= 
n 

0 

s 
01, 1 to 1 = ( rrt1+ 1n y 

: 
+ w Z 

These equations only hold for -k (0, 0,0) 
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For some wave vectors A we can reduce the calculation 

appreciably by considering the cubic symmetry. 

.) This case is symmetrical in x,,k 

Therefore, we conclude from (5.13) that 

(6.11) 
C Pkk'1 
L xx.J 

= 
crkwfi 

_ k c K 
L - 0 q* 

2.) qt =0 (01, qt.- I, 4, t,,,4 p. 3ba)') 

In this case in 57a 0P the two terms ,h*,Ay, 4 and 41,4-4r 

just cancel and '4()L-.0. Putting f=66 them 

vanishes (the coupling coefficients are, 

of ¿ ) Therefore 

(6.12) 
4C.1 0 

.C:10 = =0 

course, ..ndependent 

3.) Consider two wave vectorsjwhich differ only in the 

sign of the 3 - component. If we put in this case F =0 so thElt 

we obtain only a contribution from Hai( 'it follows that 

21 L1 
; 

CII, = I I At, - Lk} k- 

(613) 
- -Z, ['yak. _C IJ 

' _ '1 
y y ' ; yi ' 

whereas/ 
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1.) This can also be seen by considering the function 

Hx only l =O) , or k i we find developing 

Ì = 411 1X wcx + t?a y + 

(6,10)a Hxr = -2S 5tk,t) r 14,r1,,rtu. .rgr141 -ni.,,, 
r 

All other terms arising from the developement of c.v,r, lcy,+) 

cancel because of symmetry ( wax wt 2lá 44e I 

0.44 lA 144 ( A 6APE. uGc es 
) 

We see at once from (6,10)a that for (4,46: 

I-In i U and therefore 

Cvl.a.Lfr'k) [Nit./ 
= 

L ,; Z-) ® ior ii/ (uy g._ 

It is not surprising that these bracet coefficients 

vanish, For, in the reciprocal lattice the point given by 

the position vector q° , Q} =1 is symmetrically situated 

with respect to all lattice points, If (p,Qy *0 the 

symmetry in the .- direction is not destroyed, and will be 

seen from S, (f =.o ) that the coefficients in question 

vanish on account of this symmetry. 
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whereas all other coefficients are the same for both wave 

vectors, 

4,) Consider two wave vectors 4,4' which are identical 

apart from an interchange of the components of 1X,Qy, raking 

again taw 
; 

we see that 

[ J xxJ 1i -ryyr,f 
(6.14-) 

1,,-%XA, ; CrfJk 2 [xxJkf 

all the other coefficients being equal, 

From the condition of the cyclic lattice (1.23), (1,25) it 

follows that -fit, 4: 13 range from 0 to 1 , In order to obtain 

a fair survey of the coefficients as functions of the wave 

vector, we divide this range into tenths and consider the vector 

components 

(6,16) 44, p; 
ro 

(e., pa :ktererS) 

In order to make full use of the symetry properties 

of the coefficients it is more convenient to consider the 

region of allowed wave vectors in the QX, 43 y , gr -space, 

Since the reciprocal lattice is of the bodycentered type 

this region is of the form of an octohedron with its vertices 

cut off/ 
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cut off (cf, for example, Sommerfeld and Bethe, Handbuch aer 

Physik, 1933,Vo1, IV,2,p,402, fig.27), The boundaries are 

given by the equations 

(6,16) x.±`pl t _ y3 = t > > Yy =± , W-± 

In view of the symliletrip properties just considered we may 

restrict the calculati o.a to positive values of. Q *, cty,rz All 
other coefficients may then be obtained from (6,13), Further- 

more, in view of (6,14) we can restrict the calculation to 

sets of numbers such that q. apiz 

consider values of g such that 

(6,17) 

Thus we need only 

If we introduce as in (6,15) whole numbers 

we obtain corresponding to (6,7) 

(6,_ ) rk ° Pz + P3 - P, pl s p3 + 1 t (72, L -1/1 -pa 

and we have to calculate the coupling coefficients for all 

sets of whole number p* ryl pt which are either all odd or all 

even and satisfy the conditions 

(6,14) 

There are/ 

D 
PY 

IN 

pX+¡y + IS 
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VII, The Repulsive Forces, 

Apart from the Coulomb forces, there are other forces 

present in an ionic lattice, mainly the repulsive forces 

which prevent the lattice from collapsing, Let us collect 

all those other forces in a potential WY), and since these 

forces decrease very rapidly with the distance we need 

consider only the interaction between nearest neighbours. 

Ih the NaCI lattice each ion is surrounded by 6 nearest 

neighbours so that the energy per cell is given by 

(7.0) 
- d * G V( o) 

where d is the Madelung constant and Yo the distance between 

nearest neighbours. 

WO shall need the first two derivatives of t'(). These 

can be obtained-from the condition of equilibrium and the 

compressibility. We put for abbreviation 

Z ¡ ci Utr,) e y r2 

( a( )r, yo t ro: U 

(7.1) agi)) £2 
A la ro 

Then the condition of equilibrium is 

2_/ 

D _ deZ ,t. 3 g2 
ro Yo Zy2 

so that 

(7.2)/ 



(7.2) ß " 3 

The compressibility is given by 

! _ ! ro i 
K 91a o( ro= 18ro Oi Yo 

so that 

(7.3) A= K+d 

2 

41 

I de2 
Q 

l8n 
r 

i Yp3 + 
,03 / 

(vq=Ir,j) 

With e = 4.8 10'ro Ps.u a. J.74761 K= y/4 /D 
_,: 

'C44.42/011 t. 1K, I: 2.49111 iJ4c4+c 

the values of N and ß are 

( 7. 4 ) A = /0. L3 = - 1.16s 

We now proceed to calculate that part of the coupling 

coefficients which is due to the repulsive forces, This part 

is given by (1.21),(1,19) 

Ku, Q 2771(40Yu ú) 
('7 

.5) rXy]= S(vKK)ye 
e X 

Consider first the case Ki #K i we have to sum (7.5) over the 

6 nearest neighbours given by the vectors 

Yo( ±l, o, 0) 

Yo( V) ti 0) 

Yo (0, 0 , ±1) 

The differentiation in (7.5) yields with the definition (7.1) 

(7.7)/ 

(7,6) 



(7.7) 
REril 

>01J 
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e Z x: c. ( z i Y,x) 
s E-4 ,Z 3 fY '2 

(v,L 

The sum over the vectors (7.6) gives 

R : t1a / ¡ 
(7.8) [ I 

3 O , CN7C, 2z 1í', X Yo + V(W7 z 4yy0 t 2 4 ?r) 
X#' 

In the case Y.'mk only the zero term in (7,5) remains, 

all. other -terms representing interaction between distant ions. 

t7.9) 

This expression is independent of 4 and can therefore be 

calculated from (2,7) 

so that 

(7.10) 

RL XiJ 'CI' =0 

=o Q=R[,N _ -- (A +1 ß) 

If we introduce fork the dimensionless vector ' given by 

(6,8), (7,8) ::. (7.10) may be written: 

(7.11) 

=a[ 21] =0 

24 Rr''] - -(ía+13) cl x é ,4 41,7rly r(ihrp) 
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VIII , The ;lastic Costants 

Born (1923) has shown that the coupling coefficients 

in the equation of motion are connected with the elastic 

constants. 

The latter are defined by (Born,19 ?3,p. 47) 

(8.0) x -'l - - 
C X y .J - zv4 KK, S (4') 

Kfisi yKK, 

The elastic constants in the usual .notation are related 

to the bracket symbols (3.0) as follows 

(8.1) 

[ hxXX] co 

C xx y y ] Cl/ 

[ xx 2B3 = c,3 

[orNi %1 J =Co' 

Foymthe cubic symmetry of the NaCl lattice it follows 

thatxoi and ì in (8,0) can be interchanged so that we get 

Cil =C,3 

(8.2) 

and the Cauchy relation 

= Cay 

'Je find exactly the expressions (3.0) if we develop 

the coupling coefficients (1.19) into a power series of the 

inverse wave length;,with 271221 where S is a unit vector 

we find 

(8.3)/ 



(8.3) 

where 

(3.4) 

t 'J = CX ÿ'Jo LX'J,) f Cx', (2 zi -f- . 

(frKK,X.I 
e 

íQ 21:10(4))0K,xy 

KK1 _ 
NN 1 u - g c,rKK (K'K k 

44 

I - 
, 

SQ 2 Xti S* s1 XK yKI K 

Comparing (8,3) with (8,C) one notices that 

(8,5) -Ilk SXSi['"lx'1]= K,Cÿ1lt1 
*1 

We now calculate CrW.KI by developing the expressions 

(6.9), (6,10) for the coupling coefficients' of the NaC1 lattice, 

We find the result: 

(3.6) 

where 

(8.7) 
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KK 
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4 é [WO t9a) S?;1/ 'XL].1 

+5,4 fi Ì-/tY (4) - Off44)+16") 7/2.) "40 
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4 

Ui(t) 
+7 
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=) 

4'2'23 ]} 
4._-1-41i- 

_ 
L F:(-41±-47/.. 
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y 44 o 
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TZe 

!I 2 9tj 
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r KK'l S.t lQYly ooil,' vbtaí/s f 01" C 
L. Al 4 a 

(3.8) 

where 

k k'1(2) = L ` Z , 1 
k . [ (z 1 + x C27 

(3.9) i7(4) ° 

4 

_ 
Yairsy xt)-Slj(w)z?:14styr.)4.Zr3 

B ,( 

T1/ f/+1Z( 2rZ x; r2'h"424t, H/f 
Comparing (8.6),(8.8) with (8.5) we find that part of 

the elastic constants which is due to the Coulomb forces: 

= [x x h x ] vro {r ¡Tva) w k`X0444416) :2 ,.6 4'')f g a) L) 

(8,10) c yy Sy0 y 2 ",z Z/ c.. Lk%0 ! I = tT l Ay -s +`'I ( .o.rviu)zh,)+Si (/071 %l fAzz)f 

Chai CEX1 9) Ziro jif 7) -.S /6" ) 4",.-7-1:24 

L 

J ̀ C) 
' J 

That part of the elastic constants which is due to 

the repulsive forces can be calculated in the same way. From 

(7.8), (7.10) we find 

.. "1.,(2) s RZ { RXxQ1i + KrXL) f702 
d 

1 SX2 - IS; t2i 

a1 k k'1 , d L h 0-) 

(8,11) 

(8.12) 

so that 

R 

Cu 
dim 

The Cauchy/ 

eZ 

1!RYo Z 
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The Cauchy relation need, of course, not be satisfied 

for the individual contributions of the Coulomb and repulsive 

forces, but only for the sum, if we take into account the 

condition of equilibrium. 

The numerical calculation gives 

`C,* 

(6.13) <<a.,= 

tit 

-1.56 CL 
L oN 

1.278 1rou 

696 ei 
Leo4 

Cif= S. a q 2oN 

,t 
C,i= - .583 

2roN 

c,, = z13 L 
X 

z roN 

Coz; .69S-4'1u 
i 

L 
. coo, .6Q6 Lr u 

o 

The value c41 calculated by T adelung' s method has been 

given by Born (1920) he finds the value ZroN Since 

vie have confined our numerical calculations to an accuracy 

of 1% the two values agree with each other. 

In the following table we compare our results with the 

experimental values. The units are 

theoret 
C 4, b b 

C,s 1,18 

GH 1,18 

Cw,%olijh 

CP+ 4.8 sr."' 4f. j.c, 1 

yo.7.814!D`8oa /J 

It should be noted that the only experimental parameter entering 

the calculation of C44 is the lattice constant. Since we obtain 

good agreement for this value it is not surprising that c is 
also in good agreement; for, in the calculation of c we have 

also used the experimental value for the compressibility. 

1) TA( ¢xperi wool-al values ha[ beew ca(eKlaice from", tue r1orJ}:c' N,vclk,l5 

.N . ,eCtcle(oCt-13ö,-4.sÌeiN, 1935, 3.f-,r.13C+, Yy(.r .7u dt= 1.aS kat beak, 

tti4 lb kot ver .e u ( ,oY co.I,ari ,loh 
m ta dKaaa .,Jtiw 10/v eer Sa ,i 7 
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IX. Numerical Results for. the Coupling Coefficients. 

For the purpose of numerical calculation of the coupling 

coefficients we have chosen the adjustable parameter E in 

equation (6.10) equal to j , 'íe neglected all terms. smaller 

than WY of the largest term in each series.. Since the series. 

in question converge rapidly this gives an accuracy of M Z% 

We have calculated all coefficients independently from 

each other so that the equations (5.12) could be used to check 

the results. These equations were satisfied in each case within 

1% . The only exeptions arep:(6,6,0) andp:(6.6.2). In these 

eases the final coefficients. are the differences between two 

nearly equal quantities and therefore the error is. larger than 

but the error in the total coefficients, including the 

repulsive forces, is again not larger than l% so that it is 

not worth while to increase the accuracy of the electric part. 

Apart from this, each coefficient has been checked 

independently either by calculating the coefficients belonging 

to the wave vector (cVv , y 0-Q1) which involves a different 

order in the evaluation of the terms of the series or by 

repeating the calculation with a different value of £ . Each 

coefficient has therefore be¢1,calculated twice.by means of 

numerically/ 



numerically different series. The agreement in each case was 

within 1,% 

The results are given in the following :able (Table I) 

which contains that part of the coupling coefficients which 

is due to the Coulomb force, The values are given in units 
2. 

of Doi and depend therefore only on the lattice structure, 

but not on the volume. In the first column the wave vector of 

the mode of vibration is given in units of; the numbers 
describing the wave vector are identical with the components 

pxi pti tp} introduced in (6.19). Table II contains the total 

coupling coefficients for NaC1, obtained by summing the 

contributions of the Coulomb force and the repulsive force 

(cf,(1.21) ) The latter contribution, of course, depends on 

the properties of the Na and Cl ions. The coefficients are 
L 

given again in units of Va 

Since the coefficients RT*n,X#Zcf, (7.6) the bracket 

symbols4Gx11 are already the total coefficients and therefore 
xy 

TablelIa and Table II represent the whole set of the coefficie s 

for the eauation of motion. 
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`CXxI é°= 'Cÿh _ 'rKK1 
Lit.! 

v4 
eL CCKKlva xx a yt Crr'1`= 

1) The vector 10.5.0 is really not a vector within our choice. We have,how- 
ever, considered it since it is one of the corner points of our phase slate 
1) The vector 10.5.0 is really not a vector within our choice. We have,how- 
ever, considered it since it is one of the corner points of our phase slate 

725 
lo 2. 0 -3.606 +1.961 +1.638 +14.214 -6.071 - 8.142 
10 o o -4.330 +2.160 +2.160 +15.043 -7.520 - 7.52o 
9 5 1 - .714 +1.453 - .714 +10.530 C -10.530 
9 3 3 -1.583 + .795 + 795 +11.513 -5.758 - 758 
9 3 1 -2.699 +1.663 + .987 +12.860 -4.439 - 473 
9 1 1 -4.047 +2.022 +2.022 +14.430 -7.214 - 7.214 
8 6 o + .059 +1.195 -1.298 + 8.549 +3.003 -11.548 
8 4 2 -1.471 +1.142 + .339 +10.375 -2.375 - 8.003 
8 4 0 -1.95 +1.450 + .535 +11.079 -1.692 - 9.391 
3 2 2 -3.184 +1.595 +1.595 +12.524 ;.6.263 - 6.263 
8 2 0 -3.911 +2.031 +1.882 +13.402 -5.633 - 7.779 
8 o o -4.738 +2.366 +2.366 +14.386 -7-.193 - 7.193 
7 7 1 + .795 + .795 -1.582 + 5.758 +5.758 -11.513 
7 5 3 - .286 + .571 - .286 + 6.838 o - 6.838 
7 5 L - .894 + .846 + .062 + 8.148 +1.342 - 9.479 
7 3 3 -1.859 + .932 + .932 + 9.281 -4.642 - 4.642 
7 3 1 -3.049 +1.527 +1.526 +10.970 -3.368 - 7.605 
7 1 1 -4.699 +2.350 +2.350 +13.021 -6.512 - 6.5/2 
6 6 2 + .140 + .140 - .2 4 + 4.312 +4.312 - , . J15 
6 6 o + .017 + .017 - .0 2 +5.004 +5.004 - 9.997 
6 4- 4 - .552 + .279 + ,_79 + 4.933 -2.470 - 2.470 
6 4 2 1.594 + .621 + .976 + .120 - .548 - 6.566 
6 4- o -2.090 + .684 +1.428 + .025 + .192 _ - 8.201 
6 2 2 -3.594 +1.803 +1.803 + 9.933 -4.964 - 4904 
6 2 0 .-4.563 +2.066 +2.500 +11.200 -4.360 - 6.844 
6 o o -5.782 +2.891 +2.891 +12.683 -6.344 - 6.344 

5 5 5 o o o o c o 

5 5 3 - .228 - .228 + .450 + 2.379 +2.379 - 4.61 
5 5 1 - .60o - .600 +1.214 + 3.929 +3.929 - 7 4 ' 
5 3 3 1.659 + .836 + .836 + 5.252 -2.628 - 2.62 
5 3 1 3050 + .340 +2.224 + 7.467 -1.198 - 6.267 
5 1 1 -5.526 +2.764 +2.764 +10.591 -5.299 5.299 
4 4 4 0 0 0 O 0 O 

4 4 2 - 51 - .751 +1.502 + 2.351 +2.351 - 4.702 
4 4 0 -1.220 -1.220 +2.455 + 3.406 +3.406 - 6.799 
4 2 2 -3.115 +1.561 +1.561 + 5.892 -2.945 - 2.945 
4 2 0 -4.642 +1.414 +3.228 + 7.850 -2.137 - 5.717 
4 0 0 -6.987 +3.512 +3.512 +10.623 -5.313 -- 5.313 
3 3 3 o o o o o o 

3 3 1 -1.352 -1.352 +2.706 + 2.407 +2.407 - 4.813 
3 1 1 -5.377 +2.684 +2.684 + 7.282 -3.641 - 3.641 
2 2 2 0 0 0 0 0 0 

2 2 0 -1.893 -i.893 +3.796 + 2.421 +2.421 - 4.820 
2 o o -8.013 +3.997 +3.997 + 8.994 -4.491 - 4.491 
1 1 1 o o o o o o 

o o o - - - - - - 



Px Py Pt 

o 
10 4 0 
10 2 2 
10 2 0 
10 0 0 

9 5 1 

9 3 1 
9 1 1 
8 6 o 
8 4 2 
8 4 0 
8 2 2 
8 2 0 
8 0 0 
7 7 

7 5 1 
7 3 3 
7 3 1 
7 1 1 
6 6 2 
6 6 0 
6 4 4 
6 4 2 
6 4 0 
6 2 2 
6 2 0 
6 0 a 

5' 
' 

5 % 

5 3 3 

ï 3 1 

5 1 1 
4 4 4 
4 4 2 
4 4 C 
4 2 2 
4 2 0 
4 0 0 
3 3 3 
3 3 1 
3 1 1 
2 2 2 
2 2 C 

2 C 0 
1 1 1 

0 0 

(xy 
K v4 

¢s 

o 
0 
o 
o 
o 

-1.009 
r 

- 8$- 3 

-1.796 
- 

-1.946 
1985 
-1.288 
-1.344 

o 
-2.099 
-2.872 
-2.868 
-2.422 
-2.620 
-1.093 
-3.177 
-3.234 
-3.299 
3.606 
-3.806 
-2.546 
-2 772 

o 
-3.615' 
-3.833 
-4- 202 

-4.273 
-1.9633 
-3.668 
_4.560 
-5.688 
-3.720 
-4.464 

o 
.-3.810 
-5.363 
-3.243 
-3.986 
-6038 
o 

-4.132 
C 

Table Id(cont, ) 

uu krJ éL 

0 

o 
o 

- 
- 86 
- .35'6 

0 
-1 201 

o 
-1.288 

0 
0 

- .854 
-2.368 
- .870 

-2.422 
- .974 
-1.093 
-1 937 

o 
-3.299 
-2.145 
o 

-2.546 
o 

o 
-3.615 
-2.980 
-1.174- 
-3.582 
-1546 

-3.668 
-2.590 

-3.720 
o 
o 

-3.810 
-1.872 
-$243 
-3.986 

o 
o 

-4.132 
0 

Ck1J y s 

U 

o 
-1.038 

o 
o 

-1.009 
-2.099 
- .762 
- .281 

o 
-1.815 

o 
-1.077 

o 
0 

- .854 
-2.810 
-1.068 
-2.190 
- .89 
- 32o 
-1.937 
o 
-3.20 
-1.58 
o 

-1.291 
o 
o 

-3.615 
-2.980 
-1.174 
-2.642 
-1.098 
- .481 
-3.668 
-2.590 

o 
..2.034 
0 

0 
-3.310 
1.872 
-1.111 
-3.986 

o 
o 

-4.132_ 
o 

1'KK'1 iia 
Lxy.4e' 

o 
o 
o 

0 

o 

+ 438 
+ 251 
+ .450 

+ 8ó3 
+ 810 
+1.050 
+ .634 
+ 793 

o 
+ .856 
+ .742 
+1.423 
+ .918 
+1F'22 
+ .688 

+1.293 
+ 1.697 
+ 694 
+1.866 
+2.346 
+1.532 
+1.911 

o 
o 

+1.506 
+2.510 
+1.853 
+2.974 
+1.483 
+133d 
+2.932 
+3.695 
+2. 760 
+3.637 

o 
+2.511 

+2. 869 
+3.421 
+5.531 
o 

+3.993 
o 

5o 

11( K1 va 
JJQa 
o 
o 

0 
O 

o 
+ 251 
+ .120 
+ 197 

o 
.38 

0 

+ .634 
o 
o 

-c253 

-f- .075 
+ .918 
+ .434 
+ .688 
- 172 

0 

+ 693 
o 

+1.532 
o 

o 
o 

+ .276 
+1.853 
+ .911 
+1.483 
+1.330 
+1.259 
C 

+2. 760 
o 
0 

+2.511 
+1.398 
+2.869 
+3.421 
o 

o 

+3.993 
o 

Ua 

y s 

o 
o 

- 393 
C 

o 
- 438 
- .856 

267 
-0.o83 

- 570 
o 

- 244 

- .253 

0 
0 

- 742 
- 229 
- .308 
- 051 
+ .0o6 
- 172 

o 
- 203 
+ .116 
o 

+ 242 
o 

0 
0 

+ .436 
+ 276 
+ 794 
+- 439 
- 236 
+1.330 
+1.259 
o 

+1.270 
o 

o 
+2,511 
+1.393 
.+ 937 
+3.421 

O 

+3.993 
o 



px PI Pa 

10 5 0 
10 4 0 
10 2 2 
10 2 0 
10 o o 

9 5 1 
9 3 3 

1 9 
9 1 1 
8 6 o 

8 4 2 
8 4 0 

8 2 2 

8 2 0 

8 0 0 

7 5 3 

7 5 1 

7 3 1 

É 6 2 
6 6 o 

6 4 4 
6 4 2 
6 4 
6 2 2 
6 2 c 
6 e o 

5 5 5 
5 5 

; 3 3 

5 3 1 
5 1 1 
4 4 4 
4 4 2 
4 4 0 
4 2 2 
4 2 0 
4 0 0 

3 3 3 
3 3 

3 1 1 
2 2 2 
2 2 0 
2 c 0 
1 1 1 
G C 0 

Table II 

C" ", Q 
kX éL 

[VOY:I)a `I i ¢ 
KK L j C 2 J ' EL 

--8.635 
- 9.662 
10.788 
-11. 456 
-12.150 
.8664 
- 9.433 
-10.549 
-11.897 
- 7.791 

-g.825 
-11. 034 
-11.761 
-12.588 
_ 77.055 

- 8.136 
- 8.744 

? 
-10.699 
12.549 

- 

7.710 

-6.256 
-6.210 
-6.382 
-5.889 
-5690 
-6.397 
-7.055 
-6.187 
-5.828 
-6.655 
-6.708 
-6.400 

--;.6.25 
-5.169 
-5.484 

-7.055 
-7.279 

-6.918 
-6.323 
-5.500 
-7.710 

-8.635 
-7.669 
-6.382 
-6.212 

.690 
564 
-7.055 
-6.863 
-5.828 
-9.148 
-7.511 
-7.315 
-6.255 
-5.966 
-5.484 
-9.432 

-7.788 
-6.918 
-6.324 
-5.500 
-8124 

.8 33 
402 

7 8 3 z 
-7511 

- 9.444 -7.229 
- 9.940 -7.166 
-11.444 -6.047 
-12.413 -5.784 
-13.632 
-77.850 
-8.078 

-4959 
7.850 
-$078 

- 8.450 -8.450 
_ 9.509 
_10.900 

-7.014 
-7.018 
-;.086 

138ó .850 
- .6ó1 .601 

- 9.070 -9.070 
-10.965 
-12.492 

-6.289 
-6.436 

14.837 
- 7.850 

-4.338 
-7.850 

- 9.202 -9.202 
-13.227 -5.166 
- 7.850 _.7.850 

- 9.743 
_15.863 

-9.743 
_3.853 

_ 7.850 -7.850 

8 z 2 
-!5 
-6.674 
-6.422 
-6.047 
-5350 
-4.959 
-7.850 
-7.400 
-6.636 

- 77.014 
-5.626 
-5.086 
-7.850 
-6.348 
-5.395 
-6.289 
-4.622 
-4.338 
-7.850 
-5.144 
-5.166 
_7.850 
-4.054 
-3.853 
-7.850 

K K° 2in 
,x,YJ s CkK' zb kK'¡ UQ 

yyJL,L C?EJ QL 

- .364 
+ .461 
+1.383 
+1.927 
+2.533 
- .260 

+ .461 
+1.385 
+2.532 
- .492 
+ .837 
+1.318 
+2.403 
+3.059 
+3.820 
- .649 

+1.066. 
+1.927 
+3.19a 
+4.821 
+ .583 
+1.0 +1.053 
+1.067 
+2.672 
+3.354 
+4.902 
+5947 
+7.207 
0 

+1.694 
+2.821 
+3.882 
+ 683 
+ 375 
+2.426 
+4.195 
+5.027 
+7153 
+8.889 

+11.439 
+4.61 
+6.59 

+11.050 
+6.351 
+8.550 

+14.900 
+7.466 

o 

+ .833 
*1.734 
+2.165 
+2.66o 
0 

+ .649 
+1.54 
+2.46 
- .366 
+- .771 
+1.32 

+27 .380 
+2.764 
- .649 
o 

+ .919 
+1.342 
+2.193 
+2.747 
+ .583 
+1.053 
+ .676 
+2.015 
+2.5'3 
+2.609 
+3.071 
+3.031 
o 

+1.694 
+2.821 
+2.671 
+3.678 
+3.275 
+2.426 
+4195 
+5.027 
+3.989 
+4574 
+3.342 
+4.614 
+6.598 
+4.248 
+6.351 
+8s550 
+3.582 
+7.466 

OIM 

+ .364 
+1.129 
+1.734 
+2.261 
+2.660 
+ .260 
+ .649 
+1.632 
+2.468 
- .066 
-f 816 
+1.372 

+1.973 
+2.401 
+2.764 
- 461 
- .169 
+ .888 
+1.342 
+2.077 
+2.747 
+ .341 
+ .903 
+ .676 
+1.6770 

+1. 
+2.6 89 
+2.753 
+3.031 
o 

+1.223 
+1837 
+2. 671 
+2.730 
+3.275 
+2.426 
+2.814 
+2.661 
+3.989 
+3.161 
+3.342 
+4. 614 
+3.499 
+4.248 
+6351 
+3.4 5 
+3.r 
+7 
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X- Evaluation of the Frequencies 

In the case of î1a01 (s=i) the equations of motion 

for any given wave vectmr 4 constitute a system of 6 

homogeneous equations for the amplitudes uX of the vibration. 

For a hontrivial solution the determinant of the system 

lrrast vanish. This gives us the secular equation for the 

frequencies: 

(9.0) 

(9.1) 

and/ 

{11 
XX 

I 
ir 

z ` 
( xX 

{Y xi .x 
i 

1;14 

ZI 

{{ 

I L 

j 1 Z 

E Z.% 3 

CZL# r JK 

! 2.11 1 L 1 L 

1 ay ( r }E - A 

Here we have normalized the matrix in such a way that 

t< kit 
=- ' LkK'] Al) 

01;1 le x I 
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and 

(9.2) = cA' 

The matrix belonging to the determinant (9.0) is symmetric 

since 

KK,t k/ f K L Al y x 
as follows from (6.1),(6.2). 

In a large number of cases the determinant (9,0) can 

easily be split up into a product of three determinants. We 

shall now consider these cases. 

l.) _ (dfx, Of 0 ) - In this case we have (cf.(6,12).(6.119 

/ 

f 
j KK 1 KK P 1 /i( -_ d 

tiy , ¿y L yr) 

We introduce for abbreviation the notation 

(9.3) 

a = Z 

II 
".= {hh c-- f X} 

ti ' 2 

Q'- {ÿi=f111 
61 r2 

- f yy-, , f 

The determinant can then be written as the product 

a -A c p' -,1 c a-1 C a- G 
L 

(9.4) cl 
O 

and/ 
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and we get the solutions 

Q `1 
el 

af-Q ,,/ aa-4 Z_ /a$-ci) 
( 

w' = va 2 V z ` 

(9' +., fi1L eZ a'2t'' - / a'Z') 
// 

r 
V /L ( va - (a l - GL) j 

By inspection of the equation of motion one finds 

easily that the first two of these frequencies correspond to 

longitudinal waves, The second two give transverse waves. They 

have to be counted twice since the corresponding determinant 

in (9.4) is squared, giving the two independent directions of 

polarization of the transverse waves. 

The numerical results for these wave vectors are 

contained in Table III, In the first column the wave vectors 

are given expressed by I4,pv pt as in Tables I,II, t.e 

13 -1 
frequencies are given in units of lV S¢4 The next 

two columns give the frequencies of the transverses waves, 

the last two columns the frequencies of the; longitudinal i mes 

The first of these pairs represents always the'optical' 

frequency (+sign of the root) the other one those of the 

élastic' branch (- sign). 

21 For a wave vector (14 
, y , O) we find, also because of 

(6.12), that the determinant splits up into three. The 

numerical values of the frequencies for this case are given 

in Table IV. The vibrations are in the x,y and z direction. 

Table III/ 



Px PI Pt 

Table III 

w, 

2 C 0 

4- e o 

6 o 0 

o G 0 

10 C 0 

P Pq Pi 

10 2 0 

10 4 C 

10 5 C 

5.87 

5.44 

4.87 

4.38 

4.20 

w. 
fr 

w, 

1.02 2.88 

1.90 2.94 

2.59 3.01 

2.99 3.07 

3.10 3.09 

Table 1V. 

.54. 

1.03 

1.42 

1.69 

1.73 

- i9 
ID fec 

x 
W Ws cJ 

Y i/ k1 Wz , 'U-,3sec 

4.03 3.06 3.05 1.96. 3.13 2.01 

3.63 2.90 2.95 2..28 3.28 2.52 

3.43 2.75 2.9L 2.35 

In the case (.L0 , 'I'i I a) 

!K 9 M Y4L 

we have three different determinants.. 

Only in the case (10, S, 0) we bave because of the sylaletry 

[k 
KrJ IKKrJ kx a,C(7 

Tahle l/) 

only two t .ff:exè:nt de:GerminantS,but the frquencies are to be 

The counted twice, 



The frjuencies for the cases (10.5.0 ), (iD.p.O'Ì (S.FS), 

land (0. 0.0 )j have already been calculated by Herzfeld and 

Lyddane. Their values for the electric j-art of the coefficients 

agree with ours, but there is a difference in the constants 

A and )3 which are due to the repulsive forces. Theseauthors 

obtain for A : 10. 6061 13: JD73 . cf, (7,4) . This is due to the 

fact that they use the repulsive potential of Born and Layerts 

(1932) for the calculation of these constants, thus neglecting 

the London forces. 

3.) Cfx-()Py 
' 

qt ;le have the following identities: 

_{ # {,M#_, 
AX fi P 4,X 

(9.7) iy` _ f t 1 f h; 
tt 

ki1 - . ylf f r , P ' lA 

The secular determinant gives 

Q41et cfle c'Q 
(9.8) :: 

L e F ' ` b c+ L{ 

Je obtain again two longitudinal and twice two transversal 

waves with the frecyuencies: 

Ai I. .. ('IL)L 
Va E Z wiAjt- `ß j1 J l 

(9.9) vi 
, 

-(L*.i) z - 
a L 

r d 1{ 
` 

Í/ t_ /d1 
/ 

i i L - J 

The/l 

d- a f 2 a( el z ck -e( 

t2¡ 
(, - f2e .( . C'e 



The numerical results are given iìà_Table V. 

4.) gx=ctti 

a=f! ! i 

,4 xt = f.y 

{x= { # ÿy 
(9.10) 

57 

Te have the identities: 

c-th1A1 iyY 
at - f>11 f={*ÿf 

I! 4: f r; 

All other coefficients vanish. The secular equation is 

a+á c+ 11 a-d-1 c-e 
(9.11) 

c+ c 4+¡-,1 c-e . 4-,l E -,1 = D 

We obtain two longitudinal and four transverse waves with 

the frequencies 

f- I 

¡a t 
1L ei rdz (°`,ÌL_ id Z) o(_a+c! _ c+t 

, Z ,, L üa 1 l Z ¡ -r (3%.64-1,u 
- 

VL (9.12 ) 1I= ea rdLtuL ' Y 
(dlt 

t± - I:) _ a , 

R,G 
c.e ! 

Z 

I 
Atá /(a js 

z 
± 1 

Yl i/ - (air ) 

The direction of polarization of the transversal waves is the 

7-axis (w3;ß) and ̀the. diagonals in the x,+ -plane (tJ,,"',respectively . 

The numerical results are collected in Table VI. 

Table V/ 



Table V. 

PZ 

F 

W, w, 

1 '1 7_ ;.94 é4 2.ú4 

2_ 2 2 5.71 L.67 2.77 

3 3 3 5.33 2.48 2.65 

4 4 4 4.86 3.22 2.50 

/ J / 4.52 3.60 2.40 

Table VI. 

.51 

9 

1.42 

1.77 

1.93 

- 13 

lV s ec 

l' ( tv tv f ty 
W r ls Wr 144, 1414 W>, 

gll 5.78 1.35 2.75 .80 2.91 .79 

4 4- o 509 2.39 2.49 1.65 3.03 1.69 

6 6 0 4.05 2.89 2.54 1.96 3.31 2.58 

cis sec, 



5Q i 

`ßîe have plotted the frequencies for the intervals r =(v.vv) 8_(/0.0,0) 

p_(o.o.o)- p (sSS) (Tables VII and VIII). For the limiting 

case (o.0.o) we obtain two values, one for longitudinal waves /0'1, 

iv'zs -` 

given by 0(ßi +28) +s: 04nd one for transverse waves :1lif2i3)-j j 
Lb 

Since the constants /It and_ 5 enter we obtain slightly smaller 

values of the limiting frequencies than Herzfeld and Lyddane 

have found (cf,p.56). 

Herzfeld and Lyddane assumed that these limiting 

frequencies are the frequencies of the residual rays(Rest- 

strahlen) and obtain in this way two different frequencies 

for longitudinal and transverse waves. We cannot agree with 

that assumption. One obtains two different values only by 

taking the electrostatic, representation of the coefficients 

(3.23), (3.27) and proceeding to the limit- k --70 ,But in 

thislimiting case the effect of the retardation represented 

by the appearance of the reciprocal wave length in vacuo 

/o in our formula (4.20) can not be neglected. 



14.io'3 se: ' 
A 

6.ç2 
6.- 

5.5 
.0 

4.5 

4.0 

3.5 

Table VII. 

0.0.0 1.1.1 2.2.2 3.3.3 4.4.4 

P = P,( . (.' 

5.5.5 

oc 

, . 

frdM1Y. 



14, 
,L:r 

A 

6.02 
6 

5.5 

5 s C' 

4.5 

4.0 

3 J 
2386 

2.5 

20 

1., 

1a0 

o 

-r. 

Tobie VIII. 
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- 1O7.47e. 

+r4 is5r. 

we: f 

0.0,0 2,0,0 4.0.0 6.0.0 8.0.0. 10.0.0 
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I am very much indebted to Professor 3ï Born who 

suggested this problem to me for his advice on many occasions. 

I have also Hach pleasure in thanking Dr ILA Fuchs for 

many suggestions. 

The numerical results were obtained with the help of a 

Multido calculation machine. I wish to thank Professor W. Oliver 

who kindly allowed me the us-e of this machine, 
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