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INTRODUCTION,

The interest in the frequency spectirum of the thermal
vibrations in a crystal arose chiefly in connection with the
problem of the specific heat of crystals at low temperatures,
Debye's theory of the specific heat, however, has been so
successful that the actual determination of the frequency
spectrum according to Born and v, ,Karmen (1912) has been
pushed into the background, But recent investigations,
especially those of Blackman (1938, 1935, 1937) have shown
that appreciable deviations from Debye's theory should occur
acoofding to the correct atomistic treatment, These devia-
tions appear to be most pronouneed near the absolute zero of
temperature, It, therefore, seemed desirable to calculate
the exact frequency spectrum of a crystal,

The first attempt to calculate the frequency spectrum of
a crystel was made By Born end v,Kafmen in their original
paper, They assumed only quasi-elastic forces between
neighbouring particles, Later cealculations have been made
for ionic lattices, assuming“&eal forces in the crystal, The
cheif difficulty in that calculation has always been the long
range of the Coulomb force which makes a direct summation
over all lattice points impossible,

Born and Thompson (1934) suggested a way of transforming
these sums into more rapidly convergent expressions using a
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method developed by Ewald (1921), and Thompson (1935) has given
the final formulae for the coupling coefficients due to the
Coulomb force in the equation of motion, but in his paper a
slight mistake occurred in the definition of the coefficients
eand so far no numerical results of these calculations have
been published, Broch (1937) has given formulae for the case
of an one dimensional lattice making use of HEpstein's Zeta
functions; Herzfeld and Lyddane (1938) have used an extension
of Madelung's method (1918) and they have given some numerical
results; Dbut their formulae are rather complicated so that
cne caanot expect to compute the whole frequency spectrum by
this method, lioreover, the problem of the thermal oscilla-
tions of an ionic lattice is not a purely electrostatic probleﬁ
and this point has not been made sufficiently clear by Herzfeld
and Lyddane, This applies especially to the case of the
residual rays and the qmuestion whether the potential, from
vhich the coupling coefficients are obtained, satisfies the
Laplace equation or Foisson's equation$,

In this paper we have used Lwald's method mentioned above,
but interpreted and extended by him in a recent paper (1938).
By this method one obtains comparatively simple and quickly
convergent expressions for the coupling coefficients in the
equation of motion which allow & numerical calculzation to an

arbitrary degree of accuracy, Because of the good convergence
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it has not been too laborious to compute numerical wvalues for

48 different modes of vibration,

H

n Sections II, III we give the derivation of these
expressions by treating the problem as an electirostatic
problem, neglecting the retardation; but the proper way of
solving our problem is, to find a solution of laxwell's
equation for the electromagnetic field in the crystal, This
will be done in Section IV, From this field the force
exerted on a particle and the coupling coefficients can be
obtained (Section V), We shall see that in this proper
treatment the case of infinitely long waves plays a special
role and must be ccnsidered separately, In all the other
cases this treatment leads to the same result as the eledtro-
gstatic deriveaetion, If we define a potential function from
which the coupling coefficients are obtained as second deriva-
tives, this potential satisfies in general Laplace's equationg
but in the special case of infinitely long weves it satisfies
Poisson's equation,

In Section VI the coupling coefficients for the Na Cl
lattice are given and in Section VII the contribution due to
the repulsive forces is calculateéd,

In Section VIII the equations for the coupling coefficients
are checked by deriving from them formulae for the elastic
constants,

Finally /



Finally, in Section IX the ccefficients have been
celculated and in Section X the frequencies for 17 modes of

vibrations, and the spectrum has been discussed,



T The Lattice Potential and the Coupling Coefficients

We use the notation of Born's 'Atomtheorie des festen
Zustands' (1923) and repeat here some of its main points,

The lattice is given Dy the lattice vectors @, &:,Q;
which determine the cell of volume U ., The cell contains §
particles, their position being given by the basis vectors
Yo (k= f-...§). The equilibrium position of a particle )
is given by the wvector

e 4
(1,0) }0/,‘€= ﬂe-ﬁ-ﬁ/,( , 2 = f;‘gf-!-'f:.g;-l-fsgs
where £ stands for the three arbitrary integers af.,fz(fg

The distance vector between two lattice points (u,f)’(hffﬂ
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These vectors depend only on the difference AL-{' and can there-

"ﬁe’f
fore be written Y yw

¢
We consider small independent displacements K¢ of each
particle from its equilibrium position
¢ £ £ £

(1.2) wue v (&g, Uky | Uicy)

so that the vector between the displaced particles is given by

LL o L-41 < £
(133) r“Kf = rka +&“ _g“!
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We consider only central forces, The potential CPum(.-‘Yy
between a particle of kind K and a particle of kind k'’ is only
a function of the distance [Y]| between them, The total
potential energy of the lattice is

(
aa) Pt g S Punlivio
Here the dash indicates that the terms .(sl” K=k’ should be
omitted,

This sum, of course, diverges for an infinite lattice,
For a finite piece of the crystal the surface layers play a
different part from the interior, but these surface effects
are energetically small compared with the contribution of the
volume and can be neglected except where they are a subject

of special study, Then the energy density

(1.5) - &Lu& @ (VN = number of cells)

remains finite,

We expand the energy in the neighbourhood of the equili-
e : ; : 4 4
orium position in powers of the displacements Kk and obtain

(neglecting surface effects)

1.6 PP+ D+t

where
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Here we have used the fact that the potential energy a.nd

|-

its derivatives in equilibrium depend only on the difference

[-{' so that one can introduce the notation

o
¢K£k' x Cpuw.f (I Pxxl)

T 9
1.8 (D, =[5 Q] .2,
(Qeidey = [ Broy Puscl?)]z. €

The transformation performed in (1,7) uses the fact that

(1.9) (‘Pké"“)x &t ((D“:ﬁ)x

and

(1.10) ((pui" ((P "‘)xy

One can now simplify the expressioan of @z (1.7) by
defining the originally undefined quantities (o:p,?',‘hy by the
equation

— ¢
(] a2 e (‘Puu')x,’

K
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and optains

(1.12) ONERRS S IR (G ) w;xuw.;

Ki! gL »y

Wow in the equilibrium @, vanishes, or with (1,7)

(1.13) ;27 o (9], =0 ( Ron b2, oo

The second order terms lead to the equation of motion

o L J ~ O
(L,14) My g, + 3:?5,= g ng ‘%' .3 Z (‘pmc /x’ L(,(.- =0

Here the dot denotes differentiation with regardé to time and
mig is the mass of the particles of type K .
Congilder now one of the independent normal modes of

vibration with frequency « and wave vector £ , where 4s [/

A
The displacements of the particles are then given by
y Siwt omi (4,5
(1.15) ux = Y < <
Inserting this value into (1,14) we find
: o/
wi (£ Ix) P ’ o ¢
2 f - t“'-ff 2"&(& )
U e 2 X!
(1,16) W Mmyg Ak, + % -$ ¢Ku/,\.,‘, =
¢ =

or maltiplying by L

{1
(L.17) (0" g Uy # f; % f‘f‘f,} "LK';{ 20
where
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27 y IKI=Y
é' {¢KK')"‘] ¢ N L K

k K'

(1.18) Ek\']

n

is independent of £ Therefore with (1,9):
. o £
; KK'y . < i (4 I“;“)
(119) [yl = 9 (Pee),y < '

and from (1,11) follows the relation

6L R T e I ¥

If the potential energy consists of different parts, for
instance one corresponding to the Coulomb force (index () and
one corresponding to repulsiys forces (index R), the coeffici-
ents of the equation of motion are the sum of the correspond-

ing contributions, i.e,
K K! _CrkK! R KKt
(1.21) [E53az Ly 1 e ST S8

The equations (1,17) hold for an infinite lattice as the
coefficients (1,18) converge if the force deceeases rapidly
enough, The choice of the wave vectors-ﬁ is restricted Dby
the bounding conditions af the surface, Since for a large
crystal the bounding conditions do not affect the frequencies
(ef, Born, 1923, P,592) we use the arbitrary bounding condition
of the 'cyclical lattice', by postulating that the displace-
ments ve periodic in a volume having the same shape as the
elementary cell and containing n3:N cells, This leads to

the /



the conditions

) m(#,a)= prn (#£,a2) = s n(£,a;)-p, ( p: (begers )
They are satisfied if

(1.23) @ = 4 é. + /ész_;; + K3 és

where the §; are the reciprocal lattice vectors defined by

(1.24) (&, '.f.';) = J::,'

and

. Ry (PyPoyps = 00,2+ 2] )



IE. The Coupling Coefficients for Coulomb Interaction,

We consider an ionic lattice, as for example the Na Cl
lattice:, Then the main contribution to the interaction is
due to the Coulomb forces of the ions, the potential of which

we write
(2.0) Y (1) = Lo b £(¥) =

Here 4¢ 1is the charge of the K th type of ion at the lattice
points )?'Kf .
In this section we shall assume that we are allowed to

treat the problem of thermal oscillations as an electrostatic

problem,

Using the notation

Il wag
(2.1) Jxoy © 1{*1

the second derivation of the potential energy of a particle kK

in the zero cell due to a particle k! in the cell £ is given

by

(2.2} (&f.fx),‘,, = oli g (Fs)

and those due to a particle K in the cell £
(2,.3) (50:“)*\' = &:' {xq (a")

Therefore the contribution of the Coulomb force to the coupling

coefficients /



coefficients (1,19) is

. (4, Yok
(2.4) s [5y] = ewix §/*.,(rx.ﬂ o i)

:
When we come to the coefficients [ﬁ:] it must be remember-

ed that the zero term (#*9.90) in the sum is defined

by (1,11); this term is not equal to & fry(0) which is

infinite, It will be denoted by kaﬁ)xy

s thus we get

. v [t ’.é' _.! ©
@) L35 - o g [§halir-s9) A o] ipl),

For a wave vector é =0 the coupling coefficients (2.4)

and (2,5) are

5 :‘J R:0

8 St )
(2.6) Egne

KK £ -
[*'{] ko é (‘f"" )xy a 25’(3)“"‘}.\’1 o+ (?uot()xy
Therefore, the zero term (%&LLY defined by (1,11) can be

expressed by (¢f-(1.20))
/ '
(fuichy * "5*.‘[::]"“0 = O ko

(ke = 3 (ie).y

t
This formula holds for any/fofce and any lattige. But for

(227)

Coulomb forces and a lattice of cubical symmetry it can easily

be /

(a) We shall drop the index C in the sections Il, III, IV as
in those sections no other coefficien}s are considered,
Also, we shall drop the index o in ¥yix since no
mistake can occur,



be shown that the zero term vanishes, for it represents the
force exerted on the particle (k¢) if it is displaced by a
small amount, all other particles being kept at their equili-
brium positions, This is evident from (1,14) if we put all
g:::O except ,gf . This force is then derived

from the electrostatic potential due to all other charges and

satigfies Laplace's equation

d¥,
Agq= FLooHL H -0
Furthermore, it possesses cubiccl symmetry with the position
xf’ of the particle (§/{) as centre of symmetry, Therefore
g _ Ly oy, Far vy =l
dx* = dyr 7 Zpr R
Further, we conclude irom the cubical symmeiry that at the
2
centre of symmetry d-ﬁ’ = - ‘é;%?

d.wh'
and'therefore

oft L Yol A A {
dfiy - alﬁ;t . di&x e (R ("

Thus there is no Coulomb force for small displacements and
, @ Iy -] i b | -
(?*%kg vanishes, i.e, L§$J = [KK
We now introduce the function

. £, =
(2.8) § ,z’(,f-@",)e”‘(é'g‘/’ SR 1 e e

end in the same way a function

2.9) /
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(2.9) 5 fy (=87 < ke F;“f (x) = £ ny,»)
We shall-express the coefficients (2.,4) and (2.,5) by means
of these functions and then show that it is possible to find
a very rapidly convergent representation of the sums (2,8)
and (2,9).

If that is possible, it is permissable to exchange
summation and differentiation in (2,9) so that

z
(2,10) F;f 5 (;}5;&\, 5
Ve £

Furthermore, since “wa -a’f = ’!bk/ o (T 0y, 2]

and 'f(y) =l?‘}f (2,0), we can write (2,4) using (2,9) @)

2ire (:,k_,r,x'xﬂ_a?

v

(2.11) [’i’:”'] £y Lk }) oy (1vix ) €

~md (£, Yx!) A :
(2,5) becomes

e: &'mo EFx;{ (y)- {xy”’)_{r

Y =2

(2.12)  [X&]

F?;)Emy; therefore, be considered as a kind of potential

function from which the coupling coefficients are obtained,

(a) Thompson (1935) has not defined the coefficients L[4&J
correctly, He leaves out the exponential function
MF{'Z’TE['&,’_(K“')." cofo (2011)-
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ITI, The Ewald-Transformation,

A method of transformation of lattice sums into quickly
convergent expressions has been developed by Ewald (1921, 1938),
In applying this method we shall use the notation of the
reciprocal lattice,

This lattice is described by the lattice vectors &6,,4:,4;

so that any lattice point is given Dby

(3.0) ;(}4‘ = 4 ,t_;, + Az ét + s bs L-/«)‘ integers)

Here the 4 are defined by the equation (1,24) which has the

solution
~ 1
(3.1) 4 = 5 [@x8] , &=t lasxad ;. & -3 [axa:)

Any arbitrary radius vector in the reciprocal lattice is given

by

(3.2) A= Tk

Where the #; are not necessarily integers,
In general we understand by a lattice sum of a function

ihjthe expression:
£

(3,570 Rl encnd FLY18

This sum hes obviously the periodicity of the lattice and we

can develop it into a Fourier series

(3.4) /
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(3.4)  § flx-a9) = I F ot

with the Fourier coefficients FA

If we have a sum

¢
—’k : . £ Zis ('éf‘_‘ /
(3.5, F=tul= 5 flrss
we can write this in the form
; £
. 5 - me (4 & -v )
= 2wl (4, 1) o EelAe A=y )
(3.6) F*y) = ¢ ! 9 f(r-a
Therefore, F% is a periodic function which is modulated by
ztifﬁ'r)
a wave £ : We can then write the sum as a

Fourier series (cf, Bwald, 1938)

zri(/_f.. ,‘_t_('—_t}

(3.7 S 4 (r-ae sifoFiftee

A
The Fourier coefficients f~ are given by

. (4 ;
= A 7 Sk (£, @-x) -20i (4:,Y)
(3.8) Fi = ZJ—n. 1f r-a ol s

dv: de dﬁ’z 0(',\’3

wnere the integration extends over one cell, The lattice sum
over all these integrals is, of course, identical with the
. ; . /é £
integral over the whole of space; observing that (_; 'f_f_)

is always an integer, we obtain for (3,8)

=i - i (St y)
(3.9) Wl i,//(r) Y i ol v

where the integration now extends over the whole of space,

L/
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If now we represent ffrl‘ny a Fourier integral

7 = 27 (4,Y)
(3.10) f(r) = /f(é) £ ol v, Ay = A4, dbyuly,

then

= = -zr‘:(‘éyf)
(3.2 (1ipl4)e //(1’) ¢ o U

Comparing this expression with (3.9) we see that the Fourier
e - 4 : ! . :
coefficients F,; can be expressed in terms of the Fourier

transformed f{f) of 7;(1’) )

3a2)  Fet e g ¢ (£ +4£)

- £
Substituting this wvalue for F in (3,7) we obtain the follow-

ing Fourier development for the lattice sum (3.5)

(3.13) F*r) < § f( r_aﬁz"'ﬁ('éf-@() . L S Gty ilbity
i - £ o T o 4 b

Following Ewald's method, we apply this result to the function
L
= gl Wi
¥) Foar

(3.14) %(_) 4
where & is a parameter, The importance of this function is
that the integration over the parameter £ gives us exactly
Vi Lo o o (Y - ..’.
the potential funcition f ) v

oo

(3.15) /i(r.)o(é wk e B ol w1t s P

&

The Fourier transforme(3,11) of #(Y) is given by

(3.16) /
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X -ty omi (&, y)
(3.16) §8) = & [e X
_ et - (éxy 4 ir#)*
i ,‘J%.L 2 /L &) At
..l;é.z'

= 25 Lo
= 3
Inserting f(_t-g‘) and ?(éﬁ_@)from (3.14) and (3,16) respective-
1y into (3,13) we obtain
= 2 et v -2 %5 2Fi (fé,atlj
Far) - % S ¢ %

0

£
(3.17) |
Lo o 1 k) s i (St 4 x)
o g T L

This formula is identical with that obtained by Ewald by means
of the transformation of Theta functions (ef, Born, 1923, p,765).

If now we integrate F‘Z’_t_") over the parameter £ , we

obtain with (3,15) the potential function F‘(j_") defined Dby

(2e8%.
o9

(3.18) /l—:‘(_r;) ds = F*(y)

&
Now the sum in the first representation of T (3:17)

converges rapidly for large values of & , but not for small

values, The sum in the second expression in (3,17) converges
rapidly for small values of £ , but not for large ones,

Following Lwald, we divide the integration into two parts

f = / § f and take as integrand in the first integral
o

o E =y
the second representation of F# . 4u (3,17) and in the second

integral the first one, We obtain

(3.19) /




15
/Z ] (é‘f’é) .,!-Zhl('é‘f'& Y)

-z

Eolr) =
(3.19) oo if(r.g()z.,.zn'(‘é,«é{/ e

5 =
ﬁf§ﬂ

The first term in (3,19) can be integrated directly, the

-]

m

second term may be expressed by means of the Gauss function

X _fz
_2 %
(3.20) G(x) - o €« G ()
Then 5 Lit e _A2 Bly-a’
e Ely-a") . af[—" / - /3%
2 £ A3
%!d’”& o /!r—e‘i Y‘;" 1v-ad”
(3.2L) joac G(E'I'Q'(v (ﬁ:z’[-.‘éc’
o ket chedl

Thus we finally obtain Fy)

- L S E) 420 (b £y

4(") ii'U‘n, (@)LL & ) e )

(3.22) o = ; ¢

= c;_(fsi;,;-gﬂ,_v bl o)
¢ ly -&°|

We can choose £ in such a way that the two series in (3.22)
converge rapidly, so that the interchange of differentiation
and summation in (2,9), (2,10) is justified,

Inserting this representation of F%xy) in (2,11) and (2.12)
the coupling coefficients are obtained in a rapidly convergent
form,

For K'#K we find

- 5 Wit (44 b,) ~E by -mmils, Y
e L hlets s

+EfS[ Wfﬂnﬁ»[);f_@h + (E W eIvsel)- W' Emdil),
where / & T - Y&a|

L Yk “.:‘ :m(ﬁ.‘fﬂ)‘f
(—l £

Yik')*

(3.23)
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where
| '6(&'} / o ()W It i J"
(3.24) ?.‘V(x) ’ H{" (X) = o4t w&) = ;—3‘
For k*kx we use for /(Y) (2,12) the integral representation

(3,14) and split it also into two integrals with the dividing

voint £E , We obtain easily

ki) dy o

0 -t %y [Pl {0

=2 s 2 :
(3.25’) = “ L e / Z / “%’a(é&f’é}f]ﬁc{é‘fé!rj
V=0 Sxdy Lo 7 (birk ) F
" f-e(E!r-eﬁ LY W
e -9 Zz {ﬁf?’, ;ﬂ i

The last term cﬁ{tcels the zero term of the second sum, We

shall indicate its subtraction by an accent on the summation
sign,
Developing the integrand of O(Efr)) into a power series in

Yy , we find easily that

G(Ey) -4 3
(3.26) Yw ( ) IV )"_ J‘;‘r
So we obtain
(4] + € -4 5 lurbolliyrly)  Elhrt]
£ (ba )
(3.27) " E S [y lent) By 4 Y (EY- yeat)ete ﬂm&a’
% 7 1aY
B3y
For a wave vector ﬁ 40|0) we observe that there is a

divergence in the poteatial function F* (¥Y) (3.22) for
z_Cj,f,_ = (0,0, 0) . We shall see in section IV that this diver-

gence /
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divergence is due to the electrostatic derivation of the
coupling coefficientsy it disappears in the correct electro-

dynamic treatment, to which we shall turn in the next two

gections,
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IV, The Llectromagnetic Field,

In the introduction we pointed out that the electrostatic
derivation of the coupling coefficients needs Justification,
because the vibrations of ions is in general accompanied by
an electromagnetic field, e must, therefore, start from
llaxwell's equations and find the proper solution of these
equations for our problem, This has been done by Born (1923,
p,760; see also Born and Goeppert-liayer, 1933, P,770). He
has calculated the electromagnetic field of the crystal by a
superposition of spherical waves arising from the vibrating
point charges, (This corresponds to the introduction of the
'optical' potentials instead of the electrostatic potentials
(ef, Ewald, 1921), We shall give here the derivation as far
as8 1s necessary for our purposes, From the glectromagnetic
field the forces acting on any particle and therefore the
coupling coefficients will be obtained,

We shall gee that the coupling coefficients will again be
expressible as the second derivatives of a potential function,
to which we can apply the same transformetion used in the
preceding section, As a matter of fact, we shall find that
in general the potentials are the same so that we can use the
results of the preceding section without modification, Only

in the case of infinitely long waves a slight modification

will be necessary; this can be applied immediately by comparing

the /
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the electromagnetic formula with the representation (3,23),
(3.27) of the electrostatic values with £ =0 ., We shall
gsee that this mndifica?ion will remove the divergent term in
the potential function (3.22),

The case of infinitely long waves (é:fqaaﬂ has already
been treated by Born (1923, ».728,773). It leads to the
frequency of the residual rays,

It may be surprising at first sight that the case of
infinite waves has to be treated separately and cannot be
obtained as a limiting case of long waves, The reason for
this can easily be. seen, Starting from a finite crystal
with n¥=N cells and a finite wave length, one has to do

with a double limit: N="0® and A=® . MNow for finite

wave lengths and a finite crystal we have in general

Yo £ A <<n% (vo lathu wrotont )

Here we must proceed clearly first to the limit N —>eo.
For infinite wave lengths on the other hand, we must first
put A =e and then proceed to the limit N-—ew . If,
however, we reverse the order of the limit we obtain obviously
those very long waves which are of the order of the dimensions
of the whole crystal, but not the infinite waves proper,

We shall now proceed to the calculation of the electro-

magnetic field, This field can be represented by the field

of /
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of vibratomg dipoles plus an electrostatic field, We assume
a fixed charge -4 at the lattice points and a charge +e4
displaced oy an amount wi given by (1,1l5)
i, FEE axtE )

The dipole has, therefore, the moment enggf i However,
we have to compensate the charge —¢k Dby another fixed charge
+ex at the lattice points rf A These fixed charges give
rise to an electrostatic potential which is identical with the
electrostatic potential of the lattice alt rest, In Section II
we have seen that for lattices of cubical symmetry and for
small displacements theés potential does not give rise to a
force, For lattices of other types this electrostatic poten-
tial supplies the zero term (gai)xy (4. 7)) as is obvious
from the discussion of this term in Section II, Restricting
the calculation to cubical lattices we may disregard this term,

The electromagnetic field can be described by the Hertz
vector

Ll wwi (£,Y)

(4.0) FE S e,

which is the sum of Hertz's solutions for the various vibrating
dipoles, The vector 3 is a function of space, It has been

determined by Born (1923, P,761); he finds
(4-.1) é = g Px S(!-!’,‘) | px = € @K

where /
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where § is the Fourier series
i (4,y)

l - ——
L) $ ”“% (ba+A) - 45

apal Wo
/ko o Ae - :-1‘:‘
Mo is the wave length in vacuum corresponding to the
frequency Wy .

We separate the zero term of the series (4,2) which

represents the mean value of the electromagnetic field

§ =8+
1
— . _!- ] . [} n/éz
(4.3) 5 © TVa aéz-.&as J FUQ “1_’
i i (ba,y)
j = i'Lu Z' ¢
_ A (-é_-ﬁ'!"g.,;-&a"

Ao
where we have introduced the refractive index 1% 7 * 1
The Hertz vector corresponding to the mean electromagnetic

field is, according to (4.1), (4,0) given by

; H/z/,éi

by » B gD

where ;
ot zn(’égZJ

(4.5)

[ may ve interpreted as the moment per unit volunme,

From the Hertz vector (4.4) we obtain the mean electro-

megnetic field vectors

(4.6) /



— B foxed 0"%
' w s FoED s e :
_g_' = 3rael dev z gt T4 T by S l/:”“”lg (@,ﬁ)_’
z J
i _ Ay
(4.6) E = -é Cwerl -‘ﬁ = 4Hu ;::“:1 ($ % /)
Ak = 14 §

-

fere § 1is a unit vector in the directiop of propagation of
the wave,

These are the same formulae as those which one obtains as
a solution of llaxwell's equations for a plane wave by putting
i3= H end splitting up ) into E+47 /) as has been

pointed out by Born (1933, ».776).

In order to discuss the formulae (4,6) we must consider

the magnitude of = ’E‘, = %f 3 this will enable us

to differentiate between the two distinet cases K30 and 4 +0,
The frequency of the fastest vibrations occurring in

-/

B :
fe€ and the corresponding

crystals is of the order ~ [0
smallest wave length °° = -’2-0 AL 0°3 (e . This is very
large compared with the lattice distance (-~ fﬂ'fcm).:?or the
thermal vibrations of the crystal one can consider the wave
length A as very small compared with the length Ao of the
light wave of the same freguency in wcuo, We can put therefore
Meed . The only exception is A=0 3 in this case n
vanishes since z"; $+ 0 (cf, 4.2; wo #0)

Therefore, in the case 4A=0 (4,6) becomes

{4 70 E- = -4 D y t’_ 20 =0 f 4o not neglected

and /
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and in the case £ 40

(4,8) ‘E:'- = - ZHF_& (D;_S) ) H =0 - é.y(?’ /éo neglected

The solution (4,0) for the IHertz vector is not necessarily
the correct solution of our provlem, We have assumed that the
motion of the dipoles is given by (1,15) without enquiring into
the reaction forces, which are due to the emission of radiation,
Only,if we can show that no radiation is emitted by the crystal,
the solution (4,0), (4,1), (4.2) is correct, We can see,
however, that this is the case for all values of 4 except 4=0
In these cases (k%0 ) the total moment of the crystal must
vanish since all the dipoles in the crystal vibrate with a
difference of phase which is not invariant against a translation
of the lattice vector, It can be seen at onee (cf, Born
1933, P,643) from the expression for the total moment itself

' ; o3 ¢
B §>: B‘: ; §Z e.‘g“( =(-Lwt§ s LG(ﬁ,!ﬁ)séz.t(’é,g

L

This sum is zero for all values of & except 4 =0 .

We shall now show that our solution for the Hertz vector
corresponds to this fact, The optical properties of crystals
have been carefully investigated by Ewald (e¢f, Born, 1923,
P.774). Consider a crystal which is bounded on one side by
a plane perpendicular to the vector f; , 80 that

(x, 4) 0 ingide the oryital
(4.10)
The /

(‘_’,é:) <D oulside 4L cn’:i‘a!



The Hertz vector for such a 'half crystal' has been found by
Bwald, It is

(n) _ =o) )
(4.11) = £V + £

god) _ Z@

i (in) (out) A 5
where Z and  Z are the Hertz vectors inside and

outside the erystal, Iere the vectors 2V’ (f=612) are
determined with the help of equations (4,0), (4,1) by the
functions S given by

; i (4, Y)

(°) / andes— o d g
5 T §va ; (é& *:é)i-_iob
p willy, &)+ (Y% é"*"Z: (l’:és)]

(422) (0 - H F
4,12 = — —=r
$ Va %ﬁ" 65 (qna) (1=2771)
= i[£, 4 1,1( f 3
LR R o g ré:)f?zfr‘éﬂ
3 T O Ui

In §® we recognise the expression (4,2) for the infinite
lattice,

The constants K, h: in (4,12) are the two solutions of

the equation

(4'-13) (Z;é: +(zé, +’Z’§3 +'é )L=f£oz

These are given by

o [ () 2 Ve 4419)) ]

i 2 t[l'él 1'fr.éz ""'é

(4,14)

We consider first the case when either A or 4 or both are

different /
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different from zero, Writing é as

b=k bir bl +4y 4

- il = _‘! 3 3 /
where 3 LA £ 5 (ef, Section VI ), we see that %

cannot be parallel to £s , so that
1
(9:6) < 94

Since 4o < 18]l it follows that #¢ in (4.14) may be
neglected, so that the sguare root is imaginary and %2 are
conjugate complex, In this case we have to use for 74 the
solution with positive imaginary part, and for s+ the solution
with negative imaginary part, If we insert such complex
solution in (4.,12) it follows with (4.,10) that 8" ana S
decrease exponentially with the distance from the surface,
They represent only smell surface effects and may be neglected,

We now turn to the zero terms of the series <" and @

(1. ¢, Ondizl }. Then the solution (4,14) reduces to
(4.15)  Moi = g [-(6,4) 2 A (63,60 + 65 (A £ox £, = 4,-0

If k30 , 8o that ko< K , We may neglect 4o agein and
the solutions N4 are again conjugate complex 6 if £ is not
parallelito 43 . In thd¥ case we obtain again exponentially
decreasing expressions, The only exception is when /é is

parallel to /é;, 2 In this case we obtain from (4,15)

—h ks _
(Ez) . My ® 1?6’_14. frv, (6, )= 143]i%)

and /
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and
(437) M- %s° 24 £ &

Inserting these values in (4,12) we obtain with (4.0), (4.1)

T (”
the Hertz vectors Z ) gm corresponding to the zero terms
ot {1, §@

Z'ﬂ . 5‘: e_‘,ut Mem(.r,éa)' . Z & emm‘ £-40)
3l o (|~ ¢ btahpe, K
o 2o c"'“’t T ki wi(vy Até
= Ux 143l éa(.’-em‘.“"‘%ﬂ ; px £ *,= o)
Since ’é.o((’k, %o <L [65]  and (ﬁ"é;}ﬁd , it follows
thet (e, 4s) << L We obtain to the first order in 4o
201 ¢ £ -mrf—zﬁmé‘.’ 2x
= T8 (6] e Ly
(4,19) Za, s -ftdta-z”i(xf&J _:2{'
" _}.:‘3’ o | - 227 &b

In this case we obtain indeed an outgoing radiation field,
But the effeect of this field is negligible, This may be
seen either by calculating the force from Z'w or by calcula-
frowe 29

ting the energy flow of the outgoing ra.clla.tlon,(and comparing
it with the energy of the oscillator, If we calculate this
by means of (4,6) we obtain only values of the magnitude !'%:’
which can be neglected,

The field of the crystal is, therefore, completely
determined by 50’) (4,12) or (4,2) which gives the right

solution /
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solution for our problem for é $0.

We have now only to consider the case r£=a We obtain

for the zero term of the Hertz vectors _Zm, Z% once more
—

the expression (4,18) and need only put =0 . But in

this case in the exponential function of the

s
(&3
denominater cannot be neglected, Expanding this exXponential

we find, instead of (4.,19)
-iwlt  awi(y,4o)

i 4 £
z{” z Zl’a 4" ; Ex
(4,20) o ‘ i -g-wfz‘fri'(!lgﬂ) .
2 = Im ’J’& % f?-“

Z("} represents again an outgoing wave, but the amplitude
contains z";,, and therefore it cannot be neglected, How=-
ever, this case of infinitely long waves, i,e, long waves
compared with the dimensions of the whole crystal has alregdy
been treated by Born (1933, p,777). He shows that in this
case one has to omit the zero term in the Fourier series (4.,2)
which gives rise only to the mean liaxwell field - 47 2

(of. 4.7) ome that fhim Hi modifutol capresiion (4.2) ¢ i

Hae n'}/td' vl i ou 0{ v Pr‘l}‘a’(vtvf fﬂﬁ /3 =0
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i The Coupling Coefficients of the Blectromagnetic Inter-

action,

We can now write down the Fertz vector for all states of
vibrations of the crystal, cf, (4,0), (4.1), (4.2). Since 4o
is small compared to the vectors of the reciprocal lattice, ko
may be neglected in (4,2) except for the zero term 4 =(400)
As long as k$0 | 4o may be neglected also in the zero term,
&s we have just shown, For 4=0 on the other hand the zero
term rust be omitted, Therefore we find for S

', )_f zzn'(fff,r)
5,95 0.5 e oy STy

where the dash indicated that for é =0 , the zero term /_f;=0
must be omitted,

In evaluating the field acting on the dipole (K, ¢) we
must subtract the field of the dipole itself, The moment of

the dipole is .
-i’w Z‘ e (/.ép ’_’*‘ )

£
]".'[2.&{ £

{
BK '-'eub_‘

and therefore its Hertz vector

{ -t'{Jt by (:‘_z_lz.‘f} /
N T i

The forece on the particle (k,¢) is then determined by the

Hertz vector

or /
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or from (4,0), (4. l) and (5, 0)

o 4% iwt ik wi (£, 7-vd
5 2 ce & 2}3&'{5(?’-%«)4 T e |
ly=xd)
Since § is periodic in the lattice (ef, 5,0), we introduce
the potential functioné
27 (6444, )

4 wi(%£,Y) 7, ! 2
SU Ll = \S(f)c = Tia Z. (bi+4)*

4
Vi = Y - L

and obtain for the Hertz vector (5,3)

T 7 { ik 4 (4,
racd -1 t£ ¥ (éfﬁ‘)I Pk 1}/ (_l;’-)_’:) +‘§Kg«- z/"?r—r%"‘ )

(5.5) K. Rug

The electromagnetic field vectors can now be obtained from (4.4)
The magnetic field gives only a second order

contribution to the force and may be neglected, The electric

* ; { <
= div Bov tovl, Z
= YQC[ Lv _]‘ 2 K
EIC’( 3 o) < o
. i 2
(5-0) -:‘wt 2wl (ﬁ;f“(){z ng %J" 2{/ (Y‘Yg()
o %5 o Y &/, 4y, iR
i 1 ZPx ‘)x !// (r-vi )
KK Y 07 :
According to (5,4) the terms due to the gvad ohiv Z¢ _l,,_w Z
obtein factors (ﬁg-f’ﬁ) '((}‘fﬁ)y whereas the last term in
(5.6) has the factor E-:- Ui*ho . It can therefore be

neglected, Putting Y = r,f and rmultiplying with the charge
24 we obtain the force on the particle (¥, €) , Ve insert

this /
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this expression in the equation of motion and cancel the
. , L7

factor p{-iwtf-eap {2milk,u)f | we find with

Px = €k (:,(K

(5.7) kW Uiy *Z ‘J U, =0
4 =25t (£, Yiex)
k] = et yg,,, (%) ¢ o
(5.8) —
H
[1:': = Ly q}x\, {0)
where the indices Xy denote again differentiation,

Comparing this expression with (2.1/),(2/2) we see that
the coupling coefficients are identical witkh those derived in
Section II%Z, except that the function F&(.!’) mst be replaced
oy Q)*(y_‘; h In order to compare these two functions, we take
the parameter £ in (3.22) . equal toeo , Then

F* is given by
azr:(‘éac-r- 1Y)

5.9) PR i 2 Ty

This is identicel with the expression (5.4) for Y*(¥) with
the exception of the case A&=0 , In this case the divergent

zero term in F"‘ ig omitted in l//*-

Whiy) = F ‘(rJ kg
e (R,Y
(5'3'0) l,/’(r) = Ma (F r)- 7w, '&"";;-.—) ¥ i £=0.

Thus fov h30 Hu hechotleht olemvafion <\ J'u,,h'/-uo(.

FA ig defined as a sum of potentials of point charges,

Therefore it satisfies Laplace's equation

(Badd) /



g 8

= 4 #f
(5.11) AF® = A Y* =0 L hx0
This was to be expected since we neglected 4o 5 LaC, hLOE
effect of the retardation, With (5,8) we get the relation

(5,1.2) KK'] [‘Kk'] +.Llu(f = ; [';:IJ -

(ef, Born, 1923, p,728)

For %=0% on the other hand (5,10) gives

(5.13) AY° - (DEE i M2 W ko

,,g,-w

(5.14) Z [T b &

This holds also for k'= K if one substitutes l?o for l{/o
n (5,13). The potential 1’/" satisfies, therefore,

Poisson's equation, which may be interpreted as the existance
of a uniform charge distribution of amount =] per unit cell,

In the case of cubical symmetry it follows that

= gt UT
(8], vttt TG B

(5416)
KK/

5 XX L. =0
xyd &zo %y 4.,

Then we obtain the coupling force

» S ! ' = Z[}"
(5.17) an= > .l.{/[m 1-‘% K é'fx {/{,‘x L /D“ &

K

which /
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which is the well known expression for the Lorentz-Lorenz
force,

The question whether the sum S i is equal to o
or to &dw%ﬁ has Dbeen discussed oeforeJ but had not been
cleared in a satisfactory way. Hertzfeld and Lyddam (1938)
assume that for infinite waves it is equal tot&&rgi but that
for all other wave lengths one:has to displace the uniform

charge distribution =l this would give risé to surface

e

charges which just compensate the term %i so that the
above sum is equal to zero, This argument leads to the
correct result, which we have obtained above without any such
assumptions; but it appears rather artificial, since the

displaced uniform charge =]/ has no immediate physical

significance,
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The Coupling Coefficients of the Nall-Lattice,

In the case of Hall we have two different particles
in the celi (§22 ). But as far as symmetry is concerned, it
may be reggrded as a simple lattice, i,e, the Na-sites are
entirely egiivalent to the Cl-sites, Therefore, to any lattice
vector xmi- there corresponds another one of the same magnitude
and in opposite direction, The same is true for the reciprocal
lattice, For this reason the coupling coefficients are all
real, as may be seen from (1,19)5 in this sum all imaginary

terms cancel so that

¢ L
sle Sl s 25 (£, Yew)
(6.0) ; y ‘6
KKT - ] 2% e E'
[x\’ é ( (P“K),(’ “n (
and since Yux' ¥ ~ Yu'w

KK K'K
6.1 = ]
( * ) x'\,] XY
From (5.8) it can be seen that the coefficients are entirely

symmetrical in X anﬁ.y so that

e.2) [3Y] - [§4]

Furthermore, the NaCl lattice is entirely symmetrical in Ta

and C1/
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and Cl1 (if we neglect the repulsive forces between all but

nearest neighbours); therefore
I b e 57
(6.3)  [xy] = [54]

The cell vectors of the NaCl lattice gre

QA =Tp(0,1, .')
E Yar 5= Wava Yol f,f)
(6.4) Q1 = wol{by0, 1)
Ve = ZY‘,J
as; '-'Yo(lr’!o)

where Yo is the distance between nearest neighbours or the
lattice constant and V2 the volume of the cell, A lattice
vector is therefore of the form

e g{.-. Y (f,_-f(;,l{”(’,’f;-f-&) = Yp(&,fy,[z) A DA = Loy

#
Here ,f,; (,!,(3 cover all integer numbers, Therefore, fxf;,(, cover
all sets of integers feor which /x'f'('ff’(z = ;fx is even, and

my my My cover all sets of integers for which gmr is odd,

The reciprocal vectors are given by (3.,1), With (6,4)

we obtain
A 1.'%@ (ol bt]
(6.6) 4. - = = )
bs= L (1, 1,7

so that a vector in the reciprocal lattice is given by

(6.7)/
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o (A +4s ki, hythi ~ha, Airda-dy)

(6.7)
= ilvro( Ax ﬁ‘l ' ’43) f 4*147;‘3 all ol or bl e

where Jx, »fu,,l;; cover all sets of integers which are either

all odd or all even,

(3.23) (3.2
The sums,{representlng the coupling coefficients may

now be written dimensionless by writing % for the parameter
5 o

E in (5.11) and substituting for the wave vector £

(6.8) ko= kbt hibisk g - .E!frp (?x.q/'!;‘ft)
G s Ak, gyehirhioks, gos btk
Uﬁc-f s 2 o

(6.g) @ Lnl= o) Hy

Lhc"ll = E’w({) +Hay (< !;- CJ:,

I- X’

whera
— (x 1 4 = -3 1/
_% /“M i e ) mﬁ{:ﬁ*f‘(!’f‘{z)

Tk STITIL
o5 () hrtgy) - (4+4)"
5) ('4) ‘Ilhr‘z (,£+1)1

Hay 4) - zéﬂ [-f(m) &y +j(‘") ] cnF(g,m)

(6.10)
~Lm?t
s iz £ L)
Ll > | o ik JmLJ
T X, ;
AT LAY S SN vl (m)
= e Jé L2
9(’“1 vir < ¥ Vi g s $ T

Yo/



Yomy = 1= 4 [ H g
; vk
m o= [ml = (miemy+mt)*

These equations only hold for 4& + (0, 0,0)

For some wave vectors é we can reduce the calculation
appreciably by c_onsidering the cubic symmetry,

1.) 9+*4y=9, . This case is symmetrical in x,y,2

Therefore, we conclude from (5,13) that

c e _frux'y _ ¢ K
(6.11) [l;:' TLyyl o l;.t =0 Gr =94 74,

2,) q2*0 (ov g5 = |, f vt p- 3éq)?
In this case in ﬁ’u@) the two terms 4.,&,49 and /(:.’/;-,,"Jf,
just cancel and f“({;):o, Putting £=gp, thenm ]"(us.-x; 2180
| vanishes (the coupling coefficients are, of course, independent

of & ), Therefore

S i S e N K
{6.12) ~l] - [.xtj i [\,aJ ' [',?.J =0
&£ : :
3,) Consider two wave vectors /which differ only in the

sign of the 2- component, If we put in this case £20 so that

b,
we obtain only a contribution from Hy' 'it follows that

R ulgr ; [;; gl 4' D = ‘%I

=9y

(6 L e i I
. [11-]&"]42]4‘! L ST ’ Jén Gy -

Whereas/




36a

1.) This can also be seen by considering the function

Hxz only (g=0) ., Tor X#%t we find developing
2 F(f.".’?) = L T(gemx + Gy ny +?’?m9)

All other terms arising from the developement of <7 (g )
cancel becguse of symmetry ( vrnx mip Rrieme {he 282 0¢ porilran

o U mrabév—t. balces )
We see at once from (6,10)a that for @=L 9,=0)
Flxz2 =0 and therefore

w1Le] s [33) 2 Lyzl=0 tor gp+d (v g, p)

It is not surprising that these bracket coefficients
vanish, For, in the reciprocal lattice the point given by
the position vechor 9’;‘-“131,’9 (92 =1 is symmetrically situated
with respect to all lattice points, If @w 9y O the
symmetry in the 2- diregtion is not destroyed, and?will be

seen from (=) that the coefficients in question

X

vanish on account of this symmetry.
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whereas all other coefficients are the same for both wave
vectors,

4,) Consider two wave vectors £,£2' which are identical
apart from an interchange of the components of 9»,9y, Taking

again &+ we see that

T, 5 e S TR

oL i ) ! ! e .:
L;ﬁ]ﬁ ’[_ix A ;ﬁ]# ; [x; &' 4 ?r
72 =9,

(6.14)

all the other coefficients being equal,

From the condition of the cyclic lattice (1,23),(125) it
follows that &, 4, #; Tange from 0 to | . In order to obtain
a fair survey of the coefficients as functions of the wave
vector, we divide this range into tenths and consider the vector

components

(6,16) hi = P ; (P, Po,Ps b t"f‘”)

In order to make full use of the symmetriy properties
of the coefficients it is more convenient to consider the
region of allowed wave vectors in the ¢» Gy, 9z -space,

Since the reciprocal lattice is of the bodycentered tType
this region is of the form of an octohedron with its vertices

cut off/
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cut off (ef, for example, Sommerfeld and Bethe, Handbuch der
Physik, 1933,Vol XXIV,2 p,402, fig,27). The boundaries are

given by the eguations
: = + - + :.'+ :*
(6.16) Gr 29y t 4 =1} | Gu=21 g =t gt

In view of the synmetrgw properties just considered we may
regirict the calculation to positive values of 9:,%,,?; o 4
other coefficients may then be obtained from (6,13), Further-
more, #£ in view of (6.,14) we can restrict the caloulation to
sets of numbers such that ¢+29y2 ¢, . Thus we need only
consider values of i such that

0 < Qb.‘.’q’é@* €.l

G« 'Pq/q f'?!.— = %

If we introduce as in (6,15) whole numbers Px, Py ;P2

(6.17)

we obtain corresponding to (6,7)
(6.18)  Px= PatPa-pry Py> Prtpmfe 4 PooPPacps

and we have to calculate the coupling coefficients for all
sets of whole number P‘;P\*[p* wnich are either all odd or all

even and satisfy the conditions
02 Prgfys fx < 10

(6ol(§) P“+p'l +P!' < ’5'

There are/



VII, The Repulsive Forces,

Apart from the Coulomb forces, there are other forces
present in an ionic lattice, mainly the repulsive forces
which prevent the lattice from collapsing, Let us collect
all those other forces in a potential U(v), and since these
forces decrease very rapidly with the distance we need
consider only the interaction between nearest neighbours,
Ik the Nall lattice each ion is surrounded by 6 nearest

neignhbours so that the energy per cell is given by

(o) e 4 bvln)

where « is the lMadelung constant and ¥, the distance between
nearest neighbours,

Wef shall need the first two derivatives of v(z), These
can be obtained from the condition of equilibrium and the

compressibility., We put for abbreviation

;(at v(v) M oy

Avr Y=Yo ire*

(7.1) v ¢ A
2( ol vt Y=o 5 Zf.’

Then the condition of equilibrium is

Ao/ = A€t L 342
Yo 0 Yot = Z?a" B

so that

(7. 2/
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The compressibility is given by

ok ﬁ,z "(z@';/z e i1 dlfap I [“Z_z 2

/
A sl L &< I'4
K FVa odve® 1o ol vo? 1€Y0 Yol +3-3' o3 A ]
so that (v¢=2rf}
( ) A . 12 Yoq Y
7.3 =+

/2. 7
With ¢=4.8 40"“’ p_J,u,/ a= | '7476/ K= 4./6 /D Mz/dl,a,)"‘,:z.cﬂ“f 20 J’““

the values of A and B are

boend - A 5 o s

We now proceed to calculate that part of the coupling
coefficients which is due to the repulsive forces. This part

is given by (1,21),(1,19)

e e ¢ ik v
sy [ S (v i

Consider first the case K'#k ; we have to sum (7.,5) over the

6 nearest neighbours given by the vectors
Yo (LIl O 0)
ey - vl e
Yo (0, 0 't!)
The differentiation in (7.5) yields with the definition (7,1)

Cr 2



42
R 12 ) g% u( lf J > e é’ r“i)
(7-7) [’f\}] = 5% :’h é (A [Ylt) g 5 ( xy XJ"L ) ]

The sum over the vectors (7.6) gives

b R i R va o -
(7.8)  “[ig] =0 ) D&l 8 = Aotidire + Blon tmhyro +an 1 byrs)
X%y
In the case K'sk only the zero term in (7.5) remains,

all other . terms representing interaction between distant ions,
| Rety 4
(7»9) _[h’] ® (U"")x\’

Thls expression is independent of 4  and can therefore be

calculated from (2,7)
Ry Rri2 ’
' ['x‘]] ¢ [ay-]ﬁ-'o b
so that

(7.0) “[L1] =0 B[] - (A+e8)

XY !
If we introduce forzé_ the dimensionless vectorj_f given by

(6.8, (7.8} g . (7.10) may be written:
S At [ e

{7 13) ?:L” : -(A+ZB) ! g,:ﬂ[:Q Awrfkfﬁ(mrg.rrmrze)



43

VIII, The flastic Costants,

Born (1923) has shown that the coupling coefficiemts
in the equation of motion are connected with the elastic

constants,

The latter are defined by (Born,1923,p.547)

(3,0) f*“i ;‘T] = S /¢m)“ XK“: Y““'

The elastic constants in the usual notation are related

to the bracket symbols (8,0) as follows

Cxxxx]l =
Ry Rl i
Eaxzzld =y

[x\, Xy ] = Cyy
Foomthe cubic symmetry of the NalCl lattice it follows
that x4y and 2 in (3,0) can be interchanged so that we get

CinzCy3 and the Cauchy relatvion
(8,2) Cip = Cuy

We find exactly the expressions (8,0) if we develop
the coupling coefficients (1,19) into a power series of the
inverse wave lengthj;,with Irk=2r$ where $ is a unit vector

we find

(8.3)/



e

(8.3) el IO L P - R E R b [ e

where

4
[x\, J(a} }S {&K“‘)“‘f
(3.4) [w]m ‘3 (3,50%) (e Y
f ) s '
[i:‘](z} ='-:-';§ (.S,IK'{‘)Z ((p‘f:‘)ﬂ % Eg% x“"‘"“f‘ (@:“Y -

Comparing (8.3) with (8.C) one notices that

8.5) v Z S8 DyFel = 2[RV

We now calculate c[;f](z, by developing the expressions
(6.9),(6.10) for the coupling coefficient® of the NaCl lattice,

We find the result:

[0 = 2 {Tade) + T
. { [ﬁ 7 (- 5[(;(m)+3fm) won |
(8.6) +s[(,f(f)+3lf) )A‘JJ

+S~,z[% ‘:Z/{'\r (%) - S f({(m)-pj(m) mx)m.,*_]
+3 ({0 +900 ) 4] ]
t5; [Tr ,'?:,{#4) $ [ ftmyt5lm) maxty o]

where
* 3 [(41) ¢ 310 £2) 2] ]j
(8.7) 1Y 5%l '—?l Y 4 “ g
SRR TR AT U, Ly

+Orm’i]' % "'E‘::/z*z( J




S B e Yl KK'
fﬁh4l(4}’(y one oblacps fo, Ja)

Z [k\', Q@) [ [MI](;; 5 [x\,](z)}

{3.8)

e : -L = mrlml ' ‘z

- s O § Iy 3050 4
where
(850l e “z&fgfnxz* sy 2 (,4,2, {‘u);:{-‘:}

Comparing (8,6),(8.8) with (8,5) we find that part of

the elastic constants which is due to the Coulomb forces:

CC':. & l:’f xxx] = £ [# L%(J.} 5m,‘({(m)’+3[u) -—")-!-5 v &(g)ﬂ(«(} .:t)f
(9300 % ToryyT = v BENO Sz sion %)

Cun = DY) 7 B TR -5a0) T 4 § 900

That part of the elastic constants which is due to
the repulsive forces can be calculated in the same way, From

(7.8),(7.10) we find

E 0y 2 Dl Tetlef £ st 5

(8,11)
w “Ix Ja)’
so that
2 R i R
R £ 294 £ b =0
(8,12 Co & ¥ T Cz s MY 2 ) g

The Cauchy/
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The Cauchy relation need, of course, not be satisfied
for the individual contributions of the Coulomb and repulsive
forces, but only for the sum, if we take into account the
condition of equilibriumn,

The numerical calculation gives

‘cuz -2.56 -E..." . RC": s.ﬂq z"“,,:u ’ C" = 2"*3 E‘,’,‘H

Lyot
8,1 3 LR 2 . 2
( 3) CC’Z. = l-l?(? 2'%01’ } C”_S - ,5:3 ie';:‘,‘ i C,; - .6?; :_r."
< " s 0
Cun = 686 S s Cy= O ¢ Cyu> <696 ‘Z-:;;u

The value ¢, calculated by lladelung's method has besn
given by Born (1920)s he finds the value -1.35 ﬁ-:,,, Since
we have confined our numerical calculations to an accuracy
of ,% the two values agree with each other,

In the following table we cbmpa.re our results with the

1)
experimental vglues, The units are

thesvel:  exp  mZy, 108
Ci 4, bb 4.95 (psl;.a’- paste f.j,u,)
i 28 Y vor2.814.10°% o0
Chy .28 .28

It should be noted that the only experimental parameter entering
the calculation of ¢,, is the lattice constant. Since we obteain
good agreement for this value it is not surprising thatdq, is
also én good agreement; for, in the calculation of ¢, we have

also used the experimental value for the compressibility,

1) The u!’crfmr.,;hf valueg have beea calenla teet ffam the Jastic modu (g
Ag givaw in fanelslt=Biyngtein, M58, 3.Lop. i3, vol L pIH - d1: Kag nat heow

o ea Suveik wothin 0% ervey  gothat g, linot very wfefal fov comparion

—
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IX, Numericel Results for the Coupling Coefficients.

For the purpose of numericel calculation of the couplimg
coefficients we have chosen the adjustable parameter £ in
equation (6,10) equal to | ., We neglected &ll terms smaller
than _l% of the largest term in each series, Since the series
in question converge rgpidly this gives an accuracy of LZ’-zzg

We have calculated all coefficients independently from
each other so that the equations (5,12) could be used to check
the results. These equations were satisfied in each case within

% . The only exeptions arep(6.6.0) andp(6.6,2), In these
eases the final coefficients ere the differences between two
nearly equal guantities and therefore the error is larger than
1% ; but the error in the total coefficients, including the
repulsive forces, is again not larger than |7 so that it is
not worth while to increase the accuracy of the electric part,

Apart from this, each coefficient has been checked
independently either by celculating the coefficients belonging
to the wave vector—(i%x,?Y;-Qé) which involves a different
order in the evaluation of the terms of the series or by
repeating the calculation with e different value of £ , Each
coefficient has therefore bahcalculated twice . by means of

numeric:ally/
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numerically different series, The agreement in each case was
within [% .

The results are given in the following $able (Table I)
which contains that part of the coupling coefficients which
is dule to fc.he Coulomb force, The values are given in units
of -fh and depend therefore only on the lattice structure,
but net on the volume., In the first column the wave vector of
the mode of vibration is given in units ofm Frt the numbers
describing the wave vector are identical with the components
Px, Py , P2 introduced in (6.,19)., Table II contains the total
coupling coefficients for NaCl, obtained by suunming the
contributions of the Coulomb force and the repulsive force
(ef.(1.21) ). The latter contrivution, of course, depends on
the properties of the Na and Cl ions, The coefficients are
given agein in units of -g: 2

Since the coefficients a[ﬁ:?"o.’fwcf,(?_@) the bracket
symbols fm,] [x-,J are already the total coefficients and therefore

1e!Ia and Table I1I represent the whole set of the COEffiCle%B

for the eguation of motion,
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< C I'e <
S L ) 4 S 14 L 9
30 5 0 1) - o705 #1594 « 478 +10,981 0 10981
i 4 0 -1~g§2 +1¢640  + smﬁi 124166 =2¢313 = 93856
i 2 2 ~20938  +1+468  +1:468  +13+448 -6+725 - 64725
10 2 0 =3+606  +1+96L +1-628 +144214 =64071 - B8.142
10 0 O =4+330  #2:160  +2+4160 +15+043 =7s520 = 74520
9 g é - -zég +1o45§ - -71; +10.530 0 ; -10+530
9 -1+5 + +79 + +79 +11+513 . 75¢ - 5750
g 3 I -2:699  +1+663 + 987 +12-560 :5-439 = 3-4%3
A =44047 424022  +24022 +14+430 =7:214 = 7.214
8 6 @ + 2059  +1+195  -1:298 + 84549  +3.003 -11.548
B 2 =1e47L  +1e142 + 339  +10+375 =2+375 = 8.003
8 4 0 -1-9@5 +14450 4 535  +114079 =l+692 = 9.391
g 2 2 -3:184 #1595  +1e595  +124524  $64263 = 64263
8 2 ¢ ~3+911  +2031  +1+332 +13:402 <5633 = 74779
8 0 © -4.732 +2-36§ +2-3§6 +1§.38g .73193 - 74193
e + +79 + 79 ~1.582 + 575 +547 =11+513
L-5.3 - 0286 + «§ - +286 + 6.g§8 g > - 6:338
7.5 I - +894 4 846 + 4062 + 8+148 +1.342 = 9+479
7/ =1:859 4 +932 4+ 4932  + 9281  =44642 - 4+642
5 S | =3:049  +Le527  +Lle526  +10:970 =3+368 - 74605
7,0 A | =44699  +2+4350 +#24350 +13+021  =6e512 - 6s5R2
6 €& 2 + +140 4+ 4140 - -234 + 44312 +4+312 - §5.615
6 6 0 # WG ok 0T - 022 + 5:004 +5.004 = 94997
6 4 4 - o552k 0279 4+ s279 4+ 44933  =2+470 = 2+470
6 & 2 “1+594 + «621  + 4976  + 74120 - +548 =~ 64566
5 & 0 -2+:090 + +684 +1+428 4 3+025 + 192 - 8,201
g5 2 2 =3:594  +1.803 +1.803 + 94933  -4+964 = 44904
6 2 0 whe563  +2:066  +2+500  +11+200 =4.360 - 6+344
6 0 0 5e782  +2+891L  +2+8B9L  +124683 64344 - 64344

o 0 o) 0 ¢] 0
g g g - +228 - +228 + «450 + 24379 +2¢379 - 4 6]:
B 5 3 - +600 = ¢600 +1+214 + 34929 +3+92 - 704
B3 =1+659 + 4836 + «836 + 5252  =2.62 - 2462
5 3.1 =3:050 + +840 24224 + 74467 -1e198 - 64267
bk il —5e526 42764 +2.764  +10.591  =5.299 = 5+299
4 4 4 0 0 0 0 0 0 :
L & o = o751 = o751  +1.502 4 2351 +2.351 = 4702
4 4 @ =1¢220 -1:220 +2¢455 4+ 34406 +3+406 =~ 64799
& 2 2 =3+115  +Le5F6L #1561  + 5+892  -2.945 = 2:945
4 2 0 —44642  +1+414 +3.228 + 7:850 -2:137 = 5.717
£ 0 © =6:987 +3s512 +3¢512 +10+623 =5+313 - 5e313
5 3 3 0 0 0 0 0 0
5 3 & -1+352 =1.352 +2+706 + 24407 +2+407 = 4.813
BEsl R 54377 +2.684 +2+684 + 7.282 -3+641 - 3.641
L 0 0 0 0 0 0
9 9 g -1+893 -1.893 +3.796 + 2.421 +2.421 - 44320
> 0 0 ~84013  +3:997 +3:997 + 8:994  =4:491 =~ 4.491
BT 3 ¢ 0 © 0 0 0
0 0 © = - - - - )

1) The vector 10.$.0 is really not a vector within our choice, Ve have, how-
ever, considered it since it is one of the corner points of our phese Sece,

e = e

e




Table Ia(cont,) Ko
Ta 1 " Us " !
nopoP (R [es [Y3e [9ks [SIhe [51%
=105 0 0] 0 0 0 0 0
00 4 O 0 0 0 0 0 0
6. 2 2 0 0 -1.038 0 0 = #3335
e 2 0 0 0 0 0 0 0
10 O @ 0 0 0 0 0 0
g 51 X -1.009 = +322 -1.009 + 438 0 - +438
g 3, 3 - o856 = 856 =24099 # #251 + 251 = +856
gatdy 1 = #8383 = 335 = +762 ¥ <450 + 4120 = #2067
g B X - #356 = 4356 = «281 4 +197 # +197 - +083
6 0 -1+796 0 + +803 0 0
8 & 2 =1+946  =1.201 =1+815 4 810 + 238 - +570
3 4 0 —1-983 v | 0 +1+050 0 0
8 28 2 =1+288  ~1+288  =Ll+077 + 634 4+ 634 - «244
8 2.0 - =le344 0 0 + +793 ¢ 0
g 6 0 o) 0 0+ 0 0
% 20099 = o854 = 2854 + 856 - +253 - 4253
? hr 3 24872  =24368 =24810 + +742 0 - 0742
7 5k -2¢868 = #3870 =1s068 +1+423 + +07 - 229
77 3 3 =26422  =24422 < =2:190 4+ 918 + 91 - +308
73 .34 ¥ =24620 = 2974 = 4829 414522 4+ 4434 - +051
7 o AR =1+¢093  =1+093 = 320 4+ +688 + 688 + .006
67 €l 2 =Sel 770  =Ee937. =ks937 115293 = 4172 = %172
&. 65 0O -3:234 0 +1+697 0 o]
6. & & =3+299  =3.299  -3.205 + +694 + 694 - 203
6 4. 2 =30606 =20145 ~1.588 #1.866 + .603 + 116
65 44 10 ~-3+806 0 C +2+346 0 0
by 2. 2 -2:546  =2¢546  =Le291 41,532 +#1+532 + 242
6. 2 0 -2+772 0 0 14911 0 0
6 0 0 0 : 0 : 0 wib 0 o 0
5 5 -3+615 -3+ 61 =361 0 0 0
g N 3 -3-83% -2~98€ -2¢980 +1+506 + «¢436 + +436
b B 1 =4+202 <1174 -1.174 +2-§10 + «276 + +276
5 3 3 -3582  -3.582 -2:642  +1.853 +1.853 4 794
58 33 4 -4s273 -1.546 -1.098 +2.9§4 #2911  + 4439
bt 41 X -1.9ég -1+96 - 401 +1+483  +1e483 - +236
4 4 4 -3+66 ~3+668  -3+668  +1+336 41330 +1330
4 4 2 ~4¢560  =2¢590  ~24590  42.932 +1.259 +1.259
EL &40 -5+688 0 ¥3+695 O
£ 9. D =3+720 =3+720 -2+034 +#2:760 424760 41270
£ 220 ~4e464 O 0 +3:637 O 0
4 0 0 0 0 o 0 0 0
3% 363 . «=3¢810 =3s810. «3¢810 $251L  F248L1L 42 BIL
333 1 54363 -1:872 <1+872 #4359 +1¢398 +1.396
JB LY 1 ~3e283  -3e243 -1:111 +2:869 +2+869 + +937
28 290 9 -3+986  -34986 =3:986  +3+421  +3.421  +3.421
2e 20 0 =6.038 0 0 +54531 0 0
22 0R 0 0 0 0 0 C )
T0 T =£eE32 ~4e232 «44132 $3:993 +34993 +3.993
Q1 0. O 0 0 0 0 0 0
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Table II 51
poPy P 0% (3512 [s92 (o [Regmt peogw
3 rt

10 §.0 -=8:635  =6+256 -3 635 - +364 0 + «364
100 & 0 - 94662 60210 =7:669 + 461 + +833 +1.129
0 2 2 =10+783  =6e382  -6+382 41.383 41.734 +1.734
0 2 0 114456 5889  -64212  +1. 2927  +24165 #2261
100 ‘@ © ~12.180 =5+690  ~5469C  +2+533 424660 +2+660
9 5 1 - 8:564 -6+397 564 = 260 0 + 4260
9 3 3 433 - .ogs =7 055 + 2461l + 4649 + 649
g 3 1 -10 49  =6+187  -6+863 +1.385  +1:545 +1.632
e i Tex -11+897  -5828  -5.828 42532 . +2. 268  +2.468
8 6.0 - 7791 -6 6ﬁg =0e148 = 4492 - 4366 = «066
8 4 2 - 9+321  -6+70 =7:511  + -632 + o77L . + «816
8 4 O - 9:825  -6:400 7. 319 +1e318  +1.232 +1.372
G 282 -11-034 —ade 255 ~6+255 424403 +1-9£3 +1+973
g 2 0 =11+761 =51 -r-966 +3¢059 420330 +2.401
8 0m0Q -12+583 -ﬁ-484 =5+484  +34820 +2.764  +2.764
U - g Okﬁ -7 055 -9»432 - 2649 - 20649 - 461
7  5iw3 =.8+136 =7:279 -8.136 + s165 0 - +169
2B T - Qo744 -7+004 =7:788  +1.056 + 919 4+ +888
e S I - 9:709  =6:918  -6+918 +1.927 +1:342 +1.342
R S =10:899  =6+323  =6+324 +3¢193 +2:193 +2.077
7 1 1 124549 5500  =5¢500  +4.821  +2. $747 #2747
2 2 > 2 7-g10 STe, . SBelofhy .h;3 b (sEB3) 1 i » 4l
: C =1 703" =7.833 <8 14068 HIA0537 V@ «GO3
6 4 4 - 34402 -;.231 % %1 +1.067 + .676 + +676
6 4 2 = Qo444 270229  =6e074 424672 24015 +1.670
6 4 0 - 90940  =7:166  ~6+422 +3-354 +¢. +1+979
6 2 2 =1le444  =64047  =6.047 +4.902 ég +24689
o 2190 =124413  =5.784  =5.350  +5.947 +3 07L +2.753
& 8 ¢ -13 «632 -4-9K9 =4+959 #7207 | #3:031 | ' #3.031
I g 850 =7 8fo =7+3850 0 a*) 0

5 5 3 078 8,078  -7.400 +1.694 +1.694  +1.223
5 5 1 - 84450 =8¢450 -6+636 +2.821  +2.821 +1.837
5 3 3 - 9.509 -7:014 —~ +7.014 +3.882 +24671 @ +2.671
EG 2 . 104900  ~7:010 =5.026 +5683 +3.678 +2.730
LA <13¢376 =5:086 -5.0806 #6+375 43275  +3.275
4 4 4 - Z-8ﬁ0 850  =7¢850 42426 424426 424426
4 4 2 - 8.601 6&1 =60348 444195 444195  +2.014
4 & © - 94070 =90 -5+395  +5+027  +#5.027 - +2.661
4 2 2 ~10:965  =Ge2 9 =64289. ut@sls3  £3¢900 ;435900
S - S ) 12492 <6436 =4+622  +3. 889 +44574 +3.k6%
4 0 0 -14.837  -4+338 44338 +ll. 439 $3+342 43#342
2 3193 - 7+850  =7.850  -7:850 +4.61 +4-Q1g +4+614
23 I - P02 ~0.202 -Hel44 +6+59 +64598  +3+499
S T S -13.227 -5.166  =5:166 +11. oro $4.248  +#4.048
1 SR - 7+850 -7:850  =7+850 464351 +#6+351 +6 3&1
226 - 94743 =9e743  =4+054 48, Hh() +53550

5 0 0 15.863 -3.853 -3.853 $14:900 +3+582

1 s e 4 - 7:850 =7:850 =7.850 47.466 +7+466

0 0 o - - - -




X, Bvaluation of the Frequencics,

In the case of Nall ($=2) the equations of motion

for any given wave vector é constitute a system of 6

homogeneous equations for the amplitudes gf of the vibration,

For g hontriviel solution the determinant of the system

mist vanish, This gives us the secular equation for the

frequencies:

SREAE
s, 1430
{ayd iy

(LU

el £320A

Here we have normalized the matrixzx in such a way that

(9.0) | :
R
el 154
B T

(9.1) &l B

and/

T KK
2

]
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P

(9.2) A=W

The matrix belonging to the determinant (9.0) is symmetric

since

Kl o IRk

AN } i Y X i
as follows from (6.1),(6.2),

In a large number of cases the determinant (Q0) can
gasily be split up into a product of three determinants, We

shall now consider these cases,

1,) 9=(9x0 0 Vi In this case we have (cf.(6.12)16-llp
' ‘ KK') Ke' ) _ K] =
(EE ), O L3 (] -

We introduce for abbreviaticn the notation

o val st wlis b o

(9.3)
a's Pl et e fad

The determinant caen then be written as the product

e
a-fl < a'-'\ C 0
(9.4) ’ ENH ey , 3

end/
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and we get the solutions

/{f 2’)3 ] el [ a+& 4 V("Ezfﬁ— L-(aﬁ—c")]

|,1=(w""  Ua z W
(9.5) 2 A — = -
ol [ G

By inspection of the equation of motion one finds
easily that the first two of these frequencies correspond to
longitudinal waves, The second two give itransverse waves, They
have to be counted twice since the corresponding determinant
in (9.4) is squared, giving the two independent directions of
rolarizgtion of the transverse waves,

The numericel results for these wave vectors are
contained in Tsble III, In the first column the wave vectors
gre given expressed by P‘:Pv P2 as in Tables I, II, the
frequencies are given in units of /0 ¢ 6954 . The next
two columns give the frequencies of the %féﬁ%ﬁ%%ééjwaves,
the last two columns the frequencies of theé%qqgi?g@;pg}ﬁmnes,
The first of these pairs represents always the'optical!
frequency (+sign of the root), the other one those of the
élastic' branch (-sign).

2) For a wave vector (lo,gj,ﬁ) we find also because of
(6.12), that the determinant splits up into three, The
numericel values of the frecuencies for this case are given

in Table IV, The vibrations are in the xy and z direction,

Table III/



Table III.
{ 4 ¥ ” E
P Py P2 w, W, Gias s 0" s as
2 Q 0 5.87 1.02 2:88 54
4 0 O 5e44 1.90 2:94 1.03
& O 0 4.87 2.59 3:01 1.42
g @ © 4.38 2.99 3:07 1-69
0 © @ 4.20 3.10 3:09 1.78
Table IV.
X X y y ? ®
P" P‘f P! ‘d| w:, h)s wb ‘V’I Wy
10 20 ¢ 4+:03 3.06 3+05 1.96 13 201
10 4 0 3:63 2:90 2.95 228 3.28 2.52
10 5 © 3:43 2.7 2,90 235

In the case (10,9y,0)
Only in the case (10,§,0) we have because of the symmetiry

KK' ' I
Jm,"{! B t2 10,8,0 (C{ Tab[( L/)

Kk K'
X X

i geneval
e havelthree different determinants.

only two Qdifferent deferminants,cbuit the frguencies |

The/

-]
.10 %ec

are to be

counted twice,
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The frguencies for the cases (/0.5.0 ), (0.0.09, (§.5.5%

@nd (- 0-0 }Jhave already been calculated by Herzfeld and

Lyddane, Their values for the electric part of the coefficients

agree with ours, but there is & difference in the constanss

A @nd® which are due to the repulsive forces, Theg authors

cbtain for A 10 606 13:1.073 . (7.4). This is due to the
fact that they use the repulsive potenyial of Born and Mayer's
(1932) for the calculation of these constants, thus neglecting

the London forces,

3.) Gu=gy < ?% ‘ We have the following identities:
a=fad = b taat | s Lt tgids 40
(9.7)  b=1 55k = |

The secular determinant gives

aslel -4 ctle a-d-1  C-¢€
- - 04
c+lg ﬁ“’-{'l c=£ f"1f'i

We obtain again two longitudinal and twice two transversal

waves with the freguencies:

15wl & [ 4l /(B (pr7) ]
(9.9) 1,:. =[w,;;) = 9- [“_[5+1/°"+ﬂ}z {/; J’d ﬂ]

d:as+ld ' za-d

The/ /59,@' fz{ {3*" :5-.{
J/:(_*zt j Tl~-¢




The numerical results are given ih Table V.

3.) ‘;’:%‘ lik-,o 3 ‘ We have the identities:
o= (] :,l,i Q= {22f
g (P b~ 43
(9.10) i 55 4
iﬁ‘*iﬁ,l ¢ e

4t

_Jr2 = Iz
*’{*‘]t y € {“‘I}
All other coefficients venish, The secular equation is

asol =\ e a-d-1  c-e -1
9,30 Icu £+{~,\H c-e ﬁ-{-ll/

We obtain two longitudinal and four transverse waves with

the frequencies

el [P e way) | o W L
(9.12) 13 ()" - ei[dj 1/("—!;) (“'/"J'!)J 232?{1 -

’ls‘i -'( "")"’: §_, % z v a_tl;) (a(r El _]

The direction of polesrization of the transversal waves is the

Z-axis (‘"HJ and.:‘the diagonals in the xy-plane (LJ,;) respectively,

lhe numerical 1es1..lts are collected in Table VI,

Table V/
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Table v,'

(4 £ ty
Pr Py Pe Wi W2 W W, y /0"3 sec
1 G T 5:94 .84 2.84 .51
20 ST Be7L L.67 2+ 77 «Q
s h+33 2.48 2465 1e42
4 L A 4486 3e22 2.50 1.77
E §F 5 452  3.64 2+40 1.93

Table VI,

¢ / I ty ty tv 0

oy Pe Wi ws Wi W, We W J
g2 2 0 Fe78 1.35 2.75 086 2.91  +79
L A 0 5.09 2439 249 1.65 3:03 1.69
& &6 0 405 2489 2.54 1.96 3:31 2.58



-

- We have plotted the frequencies for the intervals P.’{"’""'a)-l’:("""""}

p:(0.00)-p=(5.55) (Tebles VII sndc VIII), For the limiting

case (0.0.0) we obtain two values, one for iongitudinal waves (%
- A 5 2

given by L{A+ZB)+§’J‘—;=éq{mld one for transverse wa.ves:[h)ﬁ)—gﬂ’ ;jh-‘l.d’}

Since the constants A and B enter we obvtain slightly swaller

. values of the limiting frequencies than Herzfeld and Lyddane

have found (ef.p.56).

Herzfeld and Lyddane gssumed that these limiting
frequencieé are the frequencies of the residual rays(Rest-
strahlen)' and obtain in this way two different frequencies
for longitudinal and transverse waves, We cannot agree with
that assumption, One obtains two different values only by
taking the electrostatic representation of the coefficients
(3.23),(3.27) and proceeding to the limit £ =0  But in
thes 1imiting case the effect of the retardation represented
by the appearesnce of the reciprocal wave length in vacuo

ko in our formmla (4.20) can not be neglected,
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Table VII,

i —_ &af,

= tyanyy.
6:Q2
6- ) =
235
50

L
7P
Pa.py.f2

Px £ F\r :'P}
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Tgble VIII,

: Ll
i f‘f'
w, Io‘3 Jee —— "d‘kf_
A —  fvausr
6-02

w
i O

s L
Coe

o
o Vi 0O

N
-

l_J
bS8

vp

0.0,0 2,0.0 4,0,0 6,0,0 8.0,0, 10.0.0
fx.0. 0




I am very much indebted to Professor I, Born who
suggested this problem to me for his advice on many occasions,

I have alsc much plegsure in thanking Dr K, Fuchs for

many suggestions,

The numerical results were obtained with the help of a
Multido calculation machine, I wish to thank Professor W, Oliver

who kindly allowed me the use of this machine,
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