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Summary of Thesis

Frequently one is faced with the problem of determining the one or
more best entities in a group presented for study. An example of such a
situation is the choice, from a group of chemical compounds that may be
active against cancer, of those worth further intensive study, or even
adoption for general use, The design of the selection (or screening)
procedure to be used in such a situation has considerable influence on
the efficiency with which the best entities are chosen, The efficiency of
various selection procedures, and the robustness of these procedurcs to a
variety of operating conditions will be studied in this thesis for selection
from both infinite and finite populations.

Part 1 of the thesis describes the problem in detail and gives a few
of the many possible applications. The appropriate notation and terminology
are given in chapter 1.3 and, at the same time, the many assumptions involved
are described. Chapter 1.4 is the literature survey. The first section of
the chapter surveys the field, emphasizing the literature relevant to the
formulation of the problem used in this thesias; the last two sec'ions
describe and discuss two of the many other formulations.

Part 2 of the thesis is concerned with various aspects of selection
from an infinite population. After an introduction to the topic in
chapter 2.1, exact expressions are derived in chapter 2,2 for the mean and
variance of the distribution of the true yield of the selected varieties
after any number of stages of selection from an infinite normal distribution.
Methods for using these expressions and for calculating higher order moments
are then described. The chapter closes with a desceription of an alternative

formulation of the problem that might simplify the analysis. The next chapter



is a detailed study of the influence of various factors on the infinite

gain; emphasis is on the value of the inclusion of all previous results on a
specific variety in the estimation of its true yield. Various methods for
assessing the merit of different screening programs are discussed in the
final section of the chapter, Chapter 2.4 looks briefly at selection schemes
in which acceptance is allowed prior to the final stage of the program. A
complicated scheme in which second stage replication is based on the first
stage results is also discussed. An investigation into the effect on gain of
the presence of interaction is made in the next chapter. Finally, in chapter
2.6, the robustness of the recommended selection scheme to departures from
normality is utulied by selecting from various symmetric, skewed, and bimodal
distributions,

The last part of the thesis is concerned with selection from finite populations.
After a few theoretical considerations and general comme:il: on the importance
of study of the finite case, the simulation technique is described. Chapter 3.4
consists of a comparison, for a variety of selection parameter., of the finite
case with the infinite. The comperison is based on the acceptance (at every
stage) of fixed proportions of the varieties being studied; emphasis is on
the value of history. The next chapter investigates the use of cut-off points
rather than fixed proportions in the definition of the acceptance rules.
Combinations of the two types of acceptance rules are also studied. The
chapter closes with a brief investigation of the value of accepting some

varieties prior to the final stage.



- iii -

Acknowledgements

I would like to express my gratitude to Professor Fimmey for suggesting
the topic and for his encouragement and helpful comments during the writing
of the thesis, Thanks are also due to Dr. R. M, Cormack and other members
of the Department of Statistics for their help; to Professor R. N. Curnow
for a very useful discussion; and to the University of Edinburgh for all
the computer time used in the calculations for the thesis. My especial
thanks go to my wife, Elaine, for her patient help and particularly for

typing the thesis and drawing the diagrems.



- vy -

Contents

Page

Summary of Thesis i
Acknowledgements iii
PART 1., INTRODUCTION 1
1.1 Screening 1

1.2 Some Applications 3

1.3 Terminology - Notation - Assumptions 6

1.4 The Literature 15
1.4.1 General survey 15

1.4.2 External economy 21

1.4+3 Another approach to screening 27

PART 2., THE INFINITE CASE 32
2.1 Introduction 32

2.2 The Derivation and Calculation of the Exaot Moments 36
2.2.1 The derivation of the moments 36

2.2.2 Calculation of the moments 50

2e2.3 Calculation of the cut-off points for given values
of Py 52
2.2.4 More complicated selection schemes 55
2.2.,5 A functional statement of a generalized selection

problem 55

2.3 The Investigation of Selection from a Normal Distribution 58
2.3.1 General comments 58

2.3.2 The influence of V on the gain 60

2.3.,3 The influence of ™ on the gain 63



2.4

2.5

2.6

2.3
24345
2+346
2347

Multiple-stage screening and its effect on gain
The value of the use of historical information
The use of an initial random discard

Other descriptive and comparative techniques

Modified Selection Schemes

2.4.1

2.1{--2

Acceptance prior to the final stage

Variable replication

Two Assumptions Affecting Error Variance

2.5.1
2.5.2

Interaction

Plot size

Non=Normal Parent Distributions

2.6.1

2.6.2

2.6.3
2.61"4‘
2.6.5

General comments

Symmetrical distributions: <the Box and Tiao
family of curves

Skewed distributions: the P=-distribution
Bimodal distributions: the sum of two normals

The two-point distribution

2.7 Concluding Remarks

PART 3., THE FINITF CASE

3.1
3.2
3.3
3.4

Introduction

Theoretical Considerations

Simulation Technique

The Effect of the Use of Historical Information

Jebed

The overall gain and the approach to the infinite

case

Page

7
75
77
83
83
86
93
93
98

101

101

102
106
110
115

120

122
122
124
128
136

136



3.4.2 Variation in the value of history with V and =

3.4¢3 The value of history in multi-stage selection
3.5 Modified Acceptance Rules

3.5¢1 Cut-off points throughout

3.5.2 Intermediate cut-off points with n fixed

3¢5.3 Cut~off point at the final stage only

34544 Final acceptance prior to the final stage

3.6 Concluding Remarks

Bibliography
Appendix 1
Diagrams

Tables

144
143
148
148
155
158
164
164

166
170
173
19



1-1

PART 1, INTRODUCTION

Sereening

A problem often encountered is that of cheosing from a number of
entities presented for study those most suitable for some specific purpose.
Usually one wishes to choose those entities having the largest value of
some quantitative measurement of merit. OSince in most instances the merit
of the individual in question is not measursble exactly but has associated
with it an experimental error, the design of sc-emes for best achieving the
desired result is statistical in nature.

As pointed out by a number of authors (Yates, 195U; Bechhofer, 1S54;
Finney, 1960a, 1964), the traditional tests of significunce are not adequate
to make the decisions thalt are necessary in such problems. Significance
tests have in fact little relevance since, in a screening program, one
generally knows in advance that the items under study are different; all
that is necessary to show significance is very intensive experimentation,
This of course may be very wasteful. .ince the total amount of expcerimentation
is usually limited in some manner beyond the contrcl of the experimenter,
it is necessary to balance the desire to achieve statistical significance
with the desire tc test as many new entities as possible., /An extreme
example of what can happen is the interesting result by Curnow (1959) that,
under certain conditions in 1-stege selection from a normally distributed
population. it never pzys to select from fewer than five individuals. This
agrees with a result of Dunnett (1960) and Finney (1958a). In screening
work there is a real risk of missing & breakthrough by concentrating too
much on certain items and, ac a result, not getting around to testing

others (Dunnett, 1961). ‘hat is really desired then is the most efficient



method of identifying the required number of suitable items without regard

to statistical signif'icance, This is not to belittle the role of experimental
design in screening, On the contrary, blocking, replication, and other

error reducing techniques are of prime importance.

In addition to the design of the experiment, the statistician is
concerned with the nurber of entities that should be studied and the best
use of the resources at the experimenter's disposal. He must advise whether
to perform one large experiment or a series of smnller experiments at
each of which the number of entities is decreased and the replication
increased. This in turn raises the cuestion of how many entities to retain
at each stege and how much replication to use, These questions will be
studied here,

It is not my purpose teo produce a fixcd technigue thet will replace the
intuition of an experienced experimenter, but rather to outline s bread
general approach that will guide him in his work. The robustness of the
suggested approach to certain initial conditions and to the assumption of
an infinite population will also be studied. It is felt that, although the
terminology is drawn from plant breeding, the ideas will be applicable to a

much wider range of problems.



1.2

Jome Applicotions

In order to indicate wherc the results of this thesis may be useful, a
few exanples of fields in which screening of one sort or another has been
performed in the past will be given in this section. 4n indication of the
very wide interest in screening procedures is given by the large number
of different types of journals cited in Pederer's (1963) survey of the
field.

One of the most widely publicized applicaztions of screening procudures
is drug screening. In this field the experimenter is presented with &«
large number of chemical compounds from which he rust choose those active
(or showing the most promise of being active) against some disease,

Davies (1958) gave an example of ser- ening for dru,s active ageinst
tuberculosis. In a later paper (196)), he described the use of screening
in improving the yield of antibiotics. Dunnett (1961) gave an example of
procedures useful in isolating enti-cancer drugs. IHe pointed out that
about 3000 compounds were handled per year in his company's laboratories
and that very few had the desired activity.

A rather different application of screening was given by Nissen-lleyer
(1964). He was concerned with the effective use of tests in those instances
in medical diagnosis where preliminary tests are used to determine those
people who :should undergo more definitive tests that are both more expensive
and more distressing to the person involved., It was Nissen-leyer's desire
to balance the extrs cost and inconvenience with the very important goal
of detecting as many people with the disease in question as possible.

since it is important in medical diagnosis to correctly classify all
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individuals, special care is needed; redical dlagnosis has, however,
many characteristies in common with other types of screening.

Perhaps the most familiar of 8ll screening processes is that which
is performed cn students in our educational system. The large number of
tests, or screening stages,involved, and the fact that it is important
thet each individual be placed in a scholustic environment ap ropriate
to his own particular talent, make this a very complex system. Iinney
(1962b) used a 2-stege model (a modified form of the model used in this
thesis) and some approximate correlations to focus attention on the nature
of the problem and the assumptions (both statistical and educational)
involved. Both the qualitative and quantitative aspects of his paper and
the discussion that followed it are of interest and point to a number of
challenging problems for the statistician.

Crombach and Gleser (1965) considered the related problem of screening
for employment and other purposes by use of psychologicel tests. The
nature of these screening programs differs from educational screening in
that a large series of tests can be given rapidly. /Although the approach
taken by Cronbach and Gleser is very diff'erent from the other examples
cited in this section, the problem is most certainly related.

A major difficulty in the previous two examples is the definition of
what is meant by inherent ability and, subseguently, the calculation of the
megnitude of the correlation between the test results and this ability.
Finoey (1962b) emphesized the caution necessary in such studies,

Although industrial problems are frequently & matter of optimizing on

a continuous sca'e, it is also comron to have to decide on the most



‘esirable of a number of distinct items. The result is a screening problemn.
The sort of thing one meets varies from the choice of the best of a
munber of different formulaticns of soap for marketing, to the choice of the
best individual technigue to give maximum yiel: in some manufacturing
process. The examples of drug screening already mentioned give a good
idea of the sort of problem often met, particularly in the chemicsal industry.
In general, the basic purpcse will be to maximize some aspect of profit.
Afnother rather similar application is the choice of the best (one or
~ore) of & number (usually large) of varieties put forward by a plant
breeder for testing, TFimey (1958b) discussed in detail the sort of
problem one meets in this field., Sprague and Pederer (1951) described the
screening of new verieties of corn. is this thesis is written in terms of
plant selection no more will be said here gbout this particular application.
Obviously, with such a broad spectrum of applications, no one
mathematical theory can hope to be completely adeguate to tiem all. 1In
any specific instance the experience of the exper menter will play a very
important part in modifying the rules appropriately. It is felt, however,
particularly in view of the robustness of the suggested plans to a wide
range of parent distributions, that the guldelincs suggested in this

dissertation will apply to =z wide range of applications.



Terminology = lNotation = fssumptions

As was indicated in the last section, the tcrminology used in this
thesis has, for the main purt, been borrowed from the plant selection
problem as formulited by inney (see, for example, Finrey, 1958a). £

detailed outline of this terminoclogy and the appropriate symbolic notation

will be given in this section. In addition, where appropriate, the assumptions

involved will be indicated and discussed,

The term VARIUTY will be used to refer to a specific entity undergoing
testing. Although originelly intended to refer to one specific strain of
the plant being studied, there is no reason for its not being extended to
represent one formulation of s new drug, one animel, or even one specific
ranufacturing process, It will be assumed that each variety can be
represented by a single property x that does not change over the history
of the variety; we will call this property the TIUZ YI'LiD, The purpose
of the screening program will be assumed to be the selection of the variety
(or varieties) with the rmeximum true yield(s). The modifications necessary
if the minimum yield is desired are very simple. llodifications necessary
for certain other purposes will be suggested at appropriate places in the
nain body of the thesis.

It should perhaps be pointed out here that in the sort of screening
being considered individuality is not regarded as important. 4As long as
we get the required number of good varieties it doe: not matter that we
have discarded other v:rietie: just as good as, or possibly even slightly
better than those closen. Cn the other hand. as has been mentioned earlier,

it is very important when dealing with human beings to categorize each



individuel correctly. Refusing the advantage of higher education to a
genius is not only a loss to the community but also very unfair to the
genius; speaking of being "unfeir" to an individusal veriety of wheat is
to miss the resl purpose of the investigetion.

ieturning to the discussion at hand, it will be assumed that varieties
with such basic faults as susceptibility to discase or insecl infestation
have been discovered and discarded during preliminary investigations
prior to the major screening program being considered here., It will also
be assumed that there is no other prior information on individual varieties.
Under these conditions, yiel: will often be completely determined by a
single characteristic such as the weight per unit arca of the chief product
of the variety. Tiere is, however, no reason why x should not refer
to some overell assessment of the variety derived from a number of
individual characteristics. In an industrial context, the cost of a
catalyst and the increased output resulting from its use would be compounded
to give the "yield" of the catalyst. In instances where many character-
istics are involved it will usually be necessary to use some sort of
index, ‘The use of indices in selection programs was discusscd by Cachran
(1951) and Pinney (176! ). Complications will also arise if a characteristic
of interest is qualitative. In =any case, it will be assumed here that we
can somehow represent the true merit of our varicty by a single value x
called its true yield.

Qur screening process will consist of k (1 < k © ~) sequential

cxperiments called 5T/G”S. In e specific stage i (1 < i < k), the true yield



of each variety iz estimated by the average

r.=X+€,
‘}l 1

of the aectual yield of all replications of that variety in that stage.
iissociated with the wvalue Y3 is the normally and randomly distributed
error €. where

eiNN(U,e;.L) .

This error is assured Lo be independent of both the value of x for the
variety in gquestion and the errors of all the other varieties,

At stage 1 the decision to accept or reject a variety will be based
on an estimate Zy of its true yield x. The variance of z4 is taken to be
“3. In the simplest case, where only information from the most recent

stage is used to estimate x,

&3
=N

I

e
e

and

Hen

~hen a number of stages are involved it will, however, be best to include
all available information from previous stages in any estimate of the

true yield x. If, at stage 1, the weight attached to stage j is aij(j(i)

then
i
Za = N Y
J=1 lJyJ’
and
i -
fT = v 8l .e%;
i73=13579
it is assumed thet, at stage i,
i
S 8as =t

JE171)



‘ny two estimates Zs ond zj of % from two different stuges i and j will
usually be correlated; this correlation will be a function of the weights
u.ed, The use of information from previou: stuges, with appropriate
wveights, will be celled the use of HISTORICAL IIFORMATICN and will be
discussed in more detail in part 2.

The purpose of the screening process will be taken to be the selection

of the most promising n of the HU varieties submitted for study;

=lis

may be termed the selection fraction. ‘'he ”O varieties are considered to

be a random sample from a continuously distributed PARENT PCPULATION with
mean zero (this can be achieved without loss of generality by a linear
location transformetion) and variance o”. In this study we are not concerned
with the order of the n selected varieties.

The selection of the fixed fraction m of the varieties of'ten meets with

criticism as being too rigid. In any theoreticsl comparison such a
restriction is necesszary if different screening procedures are to be
compared on a fTair basis, lNore flexible schemes will be sugsested later,
A practical Justificaticn of this constraint is the fact that there will
often be a limit to the number of varieties desired (or capable of being
handled) in the final phase of selection in which detiiled study is made
and stocks are multiplied for comrmercial use.

The choice of the finsl n varieties is achleved as follows: prior to

experimentation a random sample is made in which 7y varietics are chosen

from the NO originally present; at each subsequent stoge i (1 <1 < k)



an experiment is performed on the Ki varieties present, the N, 4 varieties
i+
with the lurgest estimatcd yields being passed on to tle (i+1)tn stage

for more intensive stud;, and tne renuin.ng (U

g =i , verieties being

1+9”
. ; " A : h i
discarded completely from further stucy. After the ktf stoge we will
have the reqyuired it TE varieties., The values Ji define @ series of
selection fractions

Po # 1, By % 2 B Araerile

i i i 253 ’
where

1?2‘..1}( -

= ] ‘)._3’1

At first glance it may seem strange thet we should randomly reject
(1'FU)NQ varieties prior tc the first experimental stege. Un the other
hend, unless the total amount of experirentation we can do is unlimited,
some balance must be achieved bet .een maxdmizing the probability of there
being an exceptionzlly good iterm in the original poprulation (by having
r% as large as possible) end raximizing the probability of finding the
best variety present (by rore accurate assessment of fewer varieties).
lNormally, of course, the discard will not be completely random in that any

hints of poor performance will be teken into account. This practical

consideration cannot, however, be formuiated rathomatically. [, -1 does,

L=

e

of course, point toc an inefi'iciency in the systen; certainly (1‘?0)30 of
the varieties have been developed by the plant breeders in vain. There is
¢lso the possibility that “J*1 indicating that, tc make most efficient use
of the experimental resources, it would be better to have more vericties

than the Nu with whieh we have been provided. In practice a small
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variation from Py = 1 will be of little value since it will probably
create difficulties in balancing the number of replicates with the number
of varieties,

The decision to accept a fixed number of varieties from each stage
is also questionable. Often it may be preferred to accept all varieties
which yield above a certain fixed value or CUT=0FF point Ny at stage i.
When considering selection from an infinite population this amounts to
accepting a fixed proportion from each stage so there is no difference in
the two approaches, In the finite case, however, differences do arise;
these will be considered in part 3. As has been said before, the rules
are meant to be modified depending on an experienced assessment of the
promise, or lack of promise, of a particular group of varieties.

Another major assumption is that the total area of land available
for experimentation, A, is fixed. Ve will refer to A as our RESOURCES.
These resources must be split up between stages in some manner so we will
consider the proportion

ay = Ai/A "
of the total to be allocated to stage i; Ay (i:1Ai = A) represents the
resources allocated to stage i. The assumption of a fixed value of A is
again restrictive but necessary if it is desired to compare different
systems on a fair basis. In practice an experimenter must often work
within this sort of framework due to a decision which is beyond his
control. In a continuing program there will of'ten be k streams or
COHORTS under test, one at each stage of selection. Under these

circumstances, especially when there is a fixed total area of land
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available, it may be necessary to fix the area of land allotted to each
stage and to fix the number of varieties in each stage. The advantages
of different systems of allocation of resources will be considered in
nart -j °

Having defined the framework of our screening system, it is now

necessary to consider how the error variance eg changes with variations

in Ai and Ni. Since an inerease in the number of wvarieties for a fixed

.ﬂi will mean less experirentation on each variety, we might expect ei

to be a strietly inereasing function of IN.. In the same manier, we might
e

expect ei to be a strictly decreasing function of Ay - If it is further

assumed that all changes in A. and n, affect only replication, and tha

i
the change in replication is spread evenly over all varieties, it seems

reacsonable to write

o .!;J.Ji ,
e, = F-—- (o}

i VO.»Li

V¥ is a dimensionless constant called the VARIANC! PACTOR; it connects the

experimental error with the variance of the parent population. The
constants 4 and HO are included so as to enable us to simplify the

expression to

where

*r

"

- Pl‘ IIIPCD
i 01 i
The constants also servc, when considering a finite number of varieties,

to remind us that the expression is consistent for different overall

schemes only if they start with the same number of verieties, HO’ and the



seme total resources A. This method of celeculating the error variance
was suggested by Finrey (1¢5¢a).

The magnitude of the variunce factor plays a very important role in
a secreening program. [S11 other things being equal, very close determination
of the best n varieties will be possible when a suall V is appropriate;
the choice will, on the other hand, be very nearly random w:wen a large V
is eppropriate. The actuul magnitude of V will be affected by the
efficiency of our experimental design. This aspect of selection will not
be considered here.

In most of the work in this thesis it will be assumed that there is no
veriety by stoge (that is to say variety by year) or variety by experimental
site interaction. This ascumption will be discussed in more detail in
pert 2.

Finally we must decide how we are to compare screening programs using
different values of oy and Pi. Obviously, the merit of any screening
procedure must be based on a comparison of those virieties selected with

hose originally put forward for consideration, OSince the value of an
item will usually be more or less linearly proportional to its yield, we
will take e&s our criterion the mean value of the true yields of the n
selected varieties., In other words, we will atterpt to maximize the GAIN
or expected vaelue of x, ((x), in the selected population. In certain
cases, higher order moments of x may be of interest. In particular, we
may wish to minimize the veriance of x or, in order to increase the chance
of finding a really spectacular variety, we may wish to meke both the

variance and the positive skew ot the selected varieties as large as
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possible. The difficulty of interpretation of higher order moments makes
criteria of this nature extremcly complicated to handle. Yven the variance
(for non-normal distributions) tells us litile about our distribution other
then that it is (or is not) very spread out; it does not tell us how or
vhere the spread tekes place.

Other authors have of course used other criteria; Tavies [1958)
sugrested meximizing the proportion of "good" varieties selected. Iince
Tavies was considering his varieties to be either "good" or "bad", his
criterion is equivalent to ours. That thiz is so can be seen by letting
the proportion of good varietics selected be g and transforming (this can
be done without loss of generality) to let the true yield of the bad
varieties be 0; the true yield of the "good" varieties can be any fixed
value g; *he gain can be seen to be gq. Since g is fixed the meximization
of g will also maximize the goin. If, on the other hand, there are degrees
of "goodness" it would be unusual not to want to take this fact into

account. It is Qifficult to imagine a criterion that will be as widely

epplicable as the meximization of gein so it will be used here,



The Literature

1.4.1 General survey

In 1963 Federer published a very broad survey of work done on statistical

screeming,., ilis peper included an extensive bibliography not only of papers
speecifically concerned with screening, but also with 2 number of associated
subjects such as truncated distributions. _mphasis was placed on the
importance of interchange of ideas between workers in different areas of
application. Tederer also mentioned some experimentel designs useful in
selecticn programs.

L survey of work more directly related to this thesis was given by
Fimney (1964). After o cetailed cescription of the general screening
problem, Sinney discussed, with examples, viriations which are met in
practice, e commented on tie methods used by various other authors in
investigating the screening problem and suggested technigues which might be
useful in extending the theory. Although presented in the terminology of
varietal selection, Finney's basic zpprozch and computations would seem to
epply to a more general class of screening problems,

'he first paper within whose framework the bulk of the work in this
thesis falls is that of Cochran (1951). In his paper, Cochran set as his
objective the maximizetion of the mean value of true yield subject, for the
seke of comparison of different screening plans, to a fixed total outlay
of resources and & fixed average proportion of varieties accepted. Cochran
showed that if thc cumletive distribution function of the regression r(y)
of x on y (using the rotation of this thesis) is assumed to be continuous
and strongly monotone, tiie optimum selection rule is to select all

. - . o N ¥ - . ¥ - .
varieties for which r{(y,>" where ™ is chosen to satisfy the desired
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freguency of selection, Jfissuming a normel perent population, he ecalculuted
exact expresslons Ffor the mean of the selected population after 1-stage
end (using properly weighted historical inforration) 2-stage selection.

e used these expressions to caleculate a flew examples, Although hindered

n his 2-stuge calculotions by the limited nature of tables of the bivariate

=

normal distribution, Cochran found that the specifications for maximum gain

Q,{c:

did not change very much for various valiuves of the ratio « This, and

the fact that maximm gain occurred near P1 = /7, foreshadowed 7inney's
suggested symmetrical specification for optimal selection. Cochran went on
to discuss at some length the use of selection indices in screening programs
and the complications that arise when they are derived from a sample.

The selection problem was attacked in a different manner in a series
of papers which began with Finney's 1956 publication. In this paper,
Finney derived the cumulents for the distribution of the true yield x after
1-stage selection from a normal distribution with normally distributed
error. These cumulants werec expressed in terms of the proportion sclected.
lie also derived the first few terms of the infinite series for each of the
first four moments of x after selection with normal error from 2 general
distribution., These expansions were in terms of the cumuilants of the
distribution of x prior to selection,

In the next paper in the series, FPinney (1958a) gave a detailed
description of his formulation of the problem (the same formulation used in
this thesis) end the essumptions involved. Using the formulee of his 1956

paper, he studied the effect of variation of the parcmeters for 1-stage and

7-stege selection from a normel parent population. In 1-stage selection,
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Finney found that an initial random discard (P <1) could considerably

0 )
increase the exvected rnin, especially for either fairly intensive selection
or a large value of V. Dased on the srall verietion of rain in the optimum

region he found in 2-stage selection schemes, he suggested o general rule

" - - —
of teking

w1

13
I

oy = (m) and

58
k
as the approximate location of maximum gain in a k-stage program.

Finney's generalization in 1961 of his earlier (1956) results enabled
calculation, for any error distribution, of the first four moments after
selection; this was done in terms of the preselection cumulants (assuming
they exist). Two series were derived for each of these moments: ore in
terms of an arbitrary cut-off value T and the other in terms of the proportion
selected. Reveated applications of the appropriate series for the moments
enabled the study of multiple-stege screening., /An investigation of this
sort would, of course, be limited to the first four moments and to the
assumption, at each stage, that higher order moments were of negligible
magnitude.,

Curnow (1960) derived, as functions of the cut-off point ™, exact
expressions for the moments of the distribution of true yield after 1=-stage
selection, with normally distributed measurement error, from certain
specific non-normal distributions. These expressions were given in terms of

tabulated functions. They were useful in that they enabled the robustness
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of' screening programs to the assumption of normality of the parent
population to be tested. Uthey could wlso be used, in conjunction with
Yinney's results, to atle.pt <« study of multi-stagc screening from non-
normal distributions.

Following the notation used by Fimnmey (1956) for the first four
moments after selection, Curnow (1561) geve an expression for the fifth
moment . lie proceeded to use the resulting inerease in accuracy to study
1-stuge and 2-stage selecticn from speeific non-normel distributions, and
Z2-stage and J-stage selectlon from normal distributions. DBecause of the
increasing magnitude oif' higier order moments vwith increasing skew, the
study of non-normal distributions was limited to distributions closely
recsembling the normal. In this region, Curnow found that the symmetriecal
selection scheme suggested by Finney for the normal distribution still
resulted in gains near the maximum, In 2-stage and “-stage selection from
¢ normal parent, finuey's syrretrical scheme also gave results very near
the maximum gain. Curnow pointed out that, in Cochran's example (Cochran,
1951), the use of f{irst stuge information in the second stage did not result
in very large increases in gain.

In addition to a presentation of most of the results of the previous
two papers, Curnow (1959) dirived finite series for the exact cumulants
af'ter 2-stage selection from a normal distribution, A similar method is
used in this thesis to derive exact expressions for the mean and variance
of the distribution of the true yield after k-stage selection, Curnow also
discussed the problems arising in the assessicnt of more than one character

in a screening progran,
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Extension of methods for calculating cumulants after truncation was
made to multi-variate distributions by Finney (1962a, 1963).

The question of how selection programs deduced from infinite population
considerations applied to finite populations was investigated by Finney
(1966). In this paper, by use of order statistics, exact results were
obtained for 1-stage selection with error from finite normal populations.
Multi-stage selection was studied by numerical simulation, Historical
information was not used. Although, as expected, the infinite case
considerably overestimated the gain actually achieved, it appeared to be a
good guide to the sort of variation of gain with operating conditions found
in the finite case, In particular, the symmetrical specifications suggested
by Finney for near-maximum gain in the infinite case also resulted in
near-maximum finite gain. As a result of the work in this paper Finney also
suggested that (with fixed total resources) little would be gained by going
beyond three or four stages.

Davies (1958) presented a slightly different approach to the study of
selection. He suggested that a good approximation to the distribution of
true yield in experiments in the drug industry was a 2-point distribution;
inactivity being represented by zero mean and activity by a positive mean,
Davies suggested criteria based on the maximization of the number of good
drugs in those accepted. The analogy between screening and acceptance
sampling was indicated and use was made of the operating characteristic
curve of acceptance sampling in the comparison of different screening

programs., Davies suggested that multiple-stage screening would be

advantageous,
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In = later vaper, Tavies (196)) studied selection from s distribution
whose shape was derived from past recults. Unner and lower confidence
limits to tho distribution were introduced in order that the dependence of
;s on the distribution shape might be studied., A simulation study of
multi-stape selection from o Tinite population distributed in this non-normal
manner led to optimum screening specificatiins very much in accord with those
suggested by Curnow and Finney Tor normal populcticns. The author felt that
only rerely would it be advrntageous to go beyond 2-stage selection, IHe also
found that the optimum locstion changed very little when a double-exponential
errcr Jistribution was used

Dunnett (1961) elsboratcd on the approach suzrested by Davies (1958).
Craphs were provided which gave the required cut-off points for 2-stage
and Z-stage selecti n from a 2-point distribution for specified values of
» (the probability of accepting a bad drug) and " (the risk of rejecting
e good druz). Equal replicction was assumed at esch stage. Formulae were
provided for calculation of the expected number of stages reguired to

reach a decision, /Although w and ® specify the entire overating character-

e

atic for a 2-point distribution, Dunnett pointed out that their choice
depends solely on a rather erbitrsry personal decision, To get around
this weakness, he suggested a nurber of alternctive criteria based on
economic considerations.

Although possibly valid for a 2-point distribution, it may be dangerous
to base a scheme for selection from a continuous distribution on two points
of the operating choractoristic; these curves often vary considerably between

the two fixed points (Tirney, 196L) and, &s a resu't, there may be
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considereble variation in the nature of the screening achieved,

King (1963, 196L4), using restrictions similar to those used by Finney
and Curnow, investigated conditions that would maximize the "proportion
interesting" (meaning the proportion of varieties with activity above a
certain level) in those varieties accepted from a drug screening program,
Although selecting from distributions considerably removed from those
studied by Finney and Curnow (the 2-point distribution and the negative
exponential), King's conclusions were very similar. The largest discrepancy
was in the allocation of resources, He, too, suggested that the advantage

of using more than three stages would likely be very slight.

1.4.2 External economy

In the previous sections, and indeed throughout this thesis, we are
concerned with what Finney (in the discussion following Crundy, Heely and
Rees, 1956) has termed the "internal economy" of selection. Very briefly,
this term refers to the optimization of a selection program, or any other
procedure, within e fixed framework. Since, in our case, we are attempting
to maximigze the gain for a fixed total amount of experimental resources
our work falls into this category.

An extended scheme in which the objec. is to decide upon the total
experimentation required to maximize the net gain to society, or equivalently
to minimize the net risk to society, has been advocated by a number of
authors., Finney has called this approach the "external economy" of selection,
Many of the authors whose papers were reviewed in the previous section have

considered this broader formulation of the problem. Due to the greater
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The wvalue n, = 0 was taken to indicate that the variety was to be rejected
or accepted immedicl.ly based on 4 and the associated risk.
in inferesting fect erising out of tihe calculation of n, was that a

gmell ameount of adéit’oncl experimentation was nevor advisable. This was
ue to tne fact that o certuin r of infornation was nececessar; to

alter the decision tr.at would have been made with no additional experiment-
ation. The robustress of thc procedure was indicated by the fact that small
changes in n, neer the optimum gltercd the integral risk only slightly. It
is inter sting to note thal the reatio of maximum sccond stage to first
stage replication nz/n1 is roughly of the same crder of magnitude as the
ratios recommended by Vinne; and Curnow in their {ormulation of the
froblem,

11 4

Athough the authors based Llagir decision to accept or reject a

variety on the sign of the mean yield

(1;1:<1+- nzxz)

J'l_I +.."12

they pointed out that other economic factors such as changeover costs could,

vwithout dif'ticulty, be included by replacing x, and %, by Jy = Eqc, and

1
Yo = Xp=¢ respectively throughout their calculations. Presumably the cost
of initial development and tic cost of the first stage of experimentation
could also be included in this manuer., Although Grundy, Healy and Rees's
method has been criticized for not including n, as en economic variable,

it seems reasoneble in the absence of any prior knowledge of ° to perform

a small standard sized experiment on all proposed varieties and to include

it as a fixed cost by increesing c. #n advantoge of the absence of a prior
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results as iz the resultent estimate of 7.
In order te test the wvoriation of the recommended wvalue of n2 under

rather different circumst:nces, Crundy, Healy and T'ees calculated its

value for the case in wi there is a prior distribution of " with mean O

n
ifon,, fopio
2

ond variance h"q"/ni. The result 1 were very close

to taose found when no prior distribution was used, g in all previous

wodifications the nomoysram used by the authors for calculation of n, in the
1 s | 1

simplest case was uscd, with slight modifications to the definition of

the prrameters, to calculate 1, for the normal prior distribution of 7.

Cne dilfieulty in applying Crundy, Healy and Rees's schere to selection

frem a populotion of verieties is the fact that therc is no upper limit
to the number of verieties recomrended Tor acceptence; what is usually
desired is to accept the voriety with the minimum risk, or possibly to
accept & fixed maximum number of the verieties which promise to be most
rrofitable. As lonz 2s we heve the reguired number there is no loss (or
gain) ascocisted with rejecting (or accepting) a variety which is good
but less profitable than the rest. The necessity in Grundy, Healy and
Recs's schene of differentiating between varicus profitable varieties
raises another question: how are we to decide between two varieties when
their estimated means are very similar but when one estimeted mean has
anssociated with it a much lirger error variance than the other? Special
rules depending on the experimenter's requirements would need to be
introduced to solve these problems.

A

% useful serecning schenme mipght possibly result from a combination
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of the approach taken by Grundy, Healy and Hees with that studied in this
thesis., ¥inney (1958a) pointed cut that his approach is concerncd with the
second of three phases of selection; the third phase will usually involve a
very inlensive study of o very few varieties. .. recozmendetion as to the

size of this third phuse cuuld be made by using the results from tne second

rhase as though they were the preliminary results of & program like that
studied by Crundy, dealy cnd Tees. “that this is appropriale cen be seen

fr m the fact that our progrom is of fixed totel size and results in a few
vorieties each with en estiwnied yield end vuriance, JIince the economic

- - =

asnects of a screcning progre . are very difiicull to specify until

e virieties in question, and since resources
for initial investigotions ol 2 larpe nunber of unknown virieties are likely
to be limited and beyond the conlrol of the experinmenter, this should prove
o very practical combination of the two approaclhies.

The externzl economy of the type of procedure studied in this thesis
ves investigated by Tinney (1960b) and extended by Curmow (1961). In
these papers a study was made of the balance between the total cost of
experimentation and the net ;ain to the nutional interest of the resulting
incresse in yield., The costc included thc cost of breeding new varieties
for study (varying II) end tie cost of changin: the experimental area A.
Both these variables affccet the statistical variebility of the program and
rence the potential goin. Tinney celculated t'c optimum choice of variables

for 1-stage selection for vorious ascumed monetary values of cost and gain.

)
3
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1=

ler study of 2-stuge selection, found the total

o
r
=

Curnow, in a

4

expect=d gains to be 15 to 20 percent higher than for 1-stuge selection.



Optimel " was th: same for both 1-stage and 2-stage vrograms but optimal
N was much larger in the latter case. Curnow suggested that more than two
stoges would be unlikely to produce much additional gain, He discussed
in 7Jetail some of the disadvantages of having & large number of stages.

The diffic 1ty of evaluating the real monetary effect of the factors
involved is the reason for our not considering the external economy of
sclection in more detail in this thesis., In nractice an external study
is alveys internal to a larger problem. 'ventually one runs up arainst some
limit on funds whether it bhe the budget of one's department, the research
budget of the company or the total income of the compeny. These
factors and many others are reclated and obviously the relationship is a
very complicated one, In any situation it is necessary to consider how the
roney could otherwise hove been spent had it not been allocated to the
program under study; without this consideration the total resources of the
economy would soon be entirely used up.

tnother problem is the fact that the exact value of an increase in
yield is difficult to assess. Any change in a marketable product in a
competitive society changes the entire market, making the situation
decidedly non-linear, The same problem in another context is very effectively
stated by Kinz (1963) when he says, "The problem of attaching a numerical
vilue to the discovery of a cure for & disease is exceedingly nasty".

The above is not to say that we should not use the external economy
aporoach; rather that we should put very great care into any such formulation
a3 therec are a lot of factors involved and the results of decisions can be

far reaching. The immense difficulty of the problem does not let the
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statistician off thc hook; no problem of this nature will ever be truly
solved until we come to grips with these broader issues. fny investigation
is of great velue even if it only brings to light the large number of

implicit assurmptions involved in the economics of research projects.

1.4e3 ifnother approach to sereening

Another aprroach to screening, although primarily concerned with
correctly renking (aecording to some predetermined system) 21l individuals,
and hence somewhat difflerent in its goal from this thesis, has been
recommended for similer situations and considered by & number of authors
therefore it will be discussed briefly here., Since Bechhofer (1954)
descridbed the theme in some detail and included a number of intercsting
veriations, this discussion will be based on the formulation and notation
of his paper.

Bechhofer was primerily concerned with dividing, in one stage, k
variables (varieties) into s (s < k) classes. In Bechhofer's procedure

the experimenter was asked to specify in advance the nurber of wvariables,

ka ( 351]‘ Jzk), to go into each olass_. The procedure then enabled caloulation
of the number of obumtioﬁs N; to be made on each variable i. The result
was an estimate ;i of the true (but unknown) population mean uyq of the
veriezble i, It was assumed that

Ry~ ;J(ui,ai/l‘ii).
The variables were then ranked according to the estimates of their true

means, the lowest k, being put into the first class, the next k2 into the
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second and so on until exactly k_ were left for uppermost class. o
)
importance was placed on order within a class. .. summary of Bechhofer's

notation along with owr equivalent (when one exists) is given in table

1 rj.l—.1 -
TABL 1441
4 comparison of the notation used in this thesis with that
used by Bechhofer (195.).
Tiis thesis Becihhofer
(finite case) (1954.)
True yield ¥ "y
"stimated yield y *;
Veriance of Vnﬁwi_1 e
estimated yield = T
f i 'S i
Fopulation size Pn”ﬁ k
llo. stages eow 4 1
lo. categories 2 (good end bad) s<k
No. accepted into
top category n ks

£lthough a large number of situations (unequ:l variances ﬁg, two-way
classifications, more than two classes) were mentioned by Bechhofer, they
result in so many difficulties and are so different to the problem of this
thesis that this discussion will be limited to the division of k variables
with equal variances into 2 classes (s = 2), This case corresponds closely

with what we are trying to do and is the case which Bechhofler studied in



most detail.

A number of differences arise between "inney's approach and Bechhofer's
in the method of tackling the problem. Bechhofer set as his goul the
determination of the minimum sam le size N recuired to give & minimum
probability F* of piacing the varieties into the correct classes when
the true means of the varieties in the two classes differ by at least
& > 0. Both P* and " were assumed to have been specified by the
experimenter in advance. In order to calculate the sample size, some
assumption had to be made about the conf'iguration of the true means.
Bechhofer assumed a "least favourable" configuration of population means;
that is to say he chose k1 (the number of varieties to go in the lower
class) of the means equal to zero and the remsining k2 equal to +7.
Based on this assumption (rether like a minimax procedure), he gave a
table of the values of /N 2%/s required to achieve various values of P°
for certain values of k2 and populations as large as k = 1k, Since the
Iy will usually be much morc widely scattered, Bechhofer's procedure will
recommend a larger sample size than is actuzlly reguired to achieve the
value P° for a given 2", 1In this sense it is inefficient.

Partly as a result of this difficulty, Dunnett (1960) suggested a
number of modifications for choosing the "best" of k varieties. He
devised a procedure in which a prior estimate Ui of' the population mean
vy wes used., It was assumed that

Uy Nl g ,ng) .

In 2ddition to studying the procedures suggested by Bechhofer, Dunnett
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relexed his conditions slightly in that he reguired ™ to be the probability
of choosing a population whose true mean is within 3% of the largest
population mean. The dezree of the resulting multivariate integral was

such that, with existing tebles, calculations could be made only for

k = 2. In order to overcome the rather arbitrary nature of P* and »*,
Dunnett also introduced methods for calculating them based on economic
considerations.

It would be interesting to study Dumnnett's procedures for larger
values of k, especially if the Ui were obtained from a small first stage
experiment, The advantage, in such a situation, of letting the recommended
value of Ni vary accoerding to the value of Ui for each individual variety
would also be an interesting study. The paper by Grundy, llealy and ilees
(1956) discussed in the last scction was concerned with this sort of thing.
An even simpler case would be to have Ni = 0 for all varieties with Ui less
than some specified amount, and all other values of Ny equal to some constant
. Since in practice we are often interested in the absolute gain, or at
least the gain relative to existing varieties or procedures, it might be
usef'ul to add a control,

The advantage of Dunnett's and Bechhofer's approcch is thet it is
concerned with the finite case. 0(n the other hand, the algebra is just as
intractable as thaet met by Finney (196&) in his study of the finite case
and progress will be very dif{ficult,

Cne of the difficulties with the precedinz work is that it is only
concerned with 1-stage selecticn wiile a nurber of authors (e.g. Davies,

1958; Finney, 1958a, 1966) have shown that 2-stope or even “-stage work



makes more efficient use of resources. Bechhofer (1558) supgested

2-stage and sequential procedures based on the same formulation as his
1-stage work. These procedures did not allow for rejection of uninteresting
items at intermediate stages. In addition, although gueranteed of stopping,
his sequentiszl procedure could take a considerable number of stages
(Bechhofer 1966) to reach & decision. The large number of uninteresting
varieties usually involved, and the long wait before experimental results
from a given stage become aveilable, make the use of Bechhofer's multi-stage

procedures inadvisable for the sort of problems considered here.
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T 2, THE INPINITE CASE

Introduction

In this part of the thesis, we will study selection from & population
assumed large enough to be represented by a continuous frequency function,
In particular, we must assume that both Pyli,, the number of varieties
initially present, and n, the number of varieties accepted after the final
stage, are large. Just how large they must be will be investigated in
part 3 as part of a general comparison of the finite case with the infinite.

Although exact expressions have been derived for the mean (Cochran,
1951; Curnow, 1959) and the other moments (Curnow, 1959) of the distribution
of x after 2-stege selection from an infinite normal population, their
use has been made difficult by the lack of adequate tables for the bivariatc
normal distribution; prior to this study, no simple exact expressions were
available for the gain from more than two stuges of selection from a normal
population, or from more than one stage from non-normal populations. /s a
result, deteiled study (Finney, 1958a; Curnow, 1961) of selection in more
than one stage has been limited to the use, at each stage of the selection
program, of series expansions for the first four (Finney, 1956, 1961) or five
(Curnow, 1961) moments of the distribution of x,

The dependence of screening studies on these series has involved a
number of sources of error of unknown magnitude., OSince there is, in
general, no Justification for assuming that high order cumulants will
decrease in magnitude, there is certainly a real denger in ignoring them,
inother aspect of the danger of ignoring them is illustrated by a theorem of

llarcinkiewicz to which Curnow (1961) drew attention., This theorem states



that there are no distributions other than the normal that have only a
finite number of non-zero cumulants. £ince we are cdealing, after the

first stage, with the tails of distributions, where it is known that
cumulants do not, in general, decrease quickly, this theorem most certeinly
applies. To add to the difficulties, the exact cumulants were known only
for the distribution of x after one stage of selection from a normal
distribution., This meant that accurzcy suffered not only from the fact
that high order cumulants were ignored, but also from inaccurzecies in the
lower order cumulants. In addition, Curnow pointed out that convergence
would be particularly bad when the intensity of selection is very high

and when the variance fector V is very small., The dependence, in screening
studies, of the moments of the distribution of x (and hence its cumulants)
at any stage on its cumulants at the previous stage means that the errors
Jjust discussed will accumulate as the number of stages increases,

The accuracy of the results found when using cumulant expansions to
caelculate the pain when selecting from non-normal distributions was even
more questionable; in that case the exact cumulants were usuelly not even
knovn for the distribution of x after one stage of selection. Additional
problems were also intrcduced by the fact that higher order cumulants
increase in importance the further the distribution departs from normality.
That these problems exist on a practical scale can be seen from the fact
that Curnow (1961) ran into convergence problems in 2-stuge selection as
soon as his parent distributions departed very far from symmetry.

The main advantage of the work in this part of the thesis is the fact

thet exact expressions for the gein and variance, after any number of stages



of selection, have been “erived and subsegquently used (with the aid of
numerical integration and a2 computer) for a wide nurber of selection

schemes with both normel (up to four stages) and non-normal (up to three
stiges) perent distributions. Another useful feature is that these
expressions permit the use, at any stage, of 21l previous information on

a variety in the estimate of its yield. This means that the decision to
accept or reject can be based on all availuble information on the variety in
guestion. History has not been taken into account in any of the previous
detailed studies,

The inclusion of historical information in our calcul.ztions raises the
guestion of now much weight to attech to the results of each stage. In the
case in which the veriances at each stage are known exactly, a well known
result is that the weighted mezn will have minimum variance when it is
calculated by weighting cuch result on a variety inversely to its error

g . i . . : S
variance, This means that we must choose the weipght applied at the p

stage, to the inforration from the g stage, to be

&5 = - - W (2 4)

The resulting estimate of x is then

z = el d (2.4.2)

ot
ite)

and its error variance is

R R, (2.1.3)



Since the exclusion of properly weighted information on the yield of
a variety at previous stages seems to mean that valusble information is
being ignored, and since, when the variances at esch stage are known
exactly, the inclusion of this information will obviously improve the
expected yield, it will, unless specifically stated, always be included
in calculations in this thesis. The practicel value of this procedure will
be discussed in detail as we go along.

Practical dif'{iculties arise in using historical information when
the error variances (or at least their relative values) are not known
exactly. Yates and Cochran (1928) pointed out that the weighted mean
loses greatly in efficiency when the error variances are estimated from
a small number of degrees of freedom. They also pointed out that further
losses in the efficiency of the weighted mean will occcur when there is
variation in the true yield from stage to stege. ~“uch stege-to-stage
variation in true yield will occur when there is a viriety by year inter-
action. The procedure to follow in such a situation will depend very much
on what is desired of the verieties selected, The guestion of appropriate
weights will be discussed Turthcr in chapter 2.5 during consideration of
an idealized version of the operation of a selection program when interaction

is present.
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The Derivation and Calculation of the "xact !foments

2.2.1 The derivation of the moments

In the derivation in this section, direct use will be made of the

cut-off points T

; rather than the proportions Py used by Timnney in his

work. This is done ocut of mecessity and not necessarily out of preference,
Tortunately, seleccting all varieties yielding above a certain fixed cut-off
point “i is, in the infinite case, exactly the same as accepting a fixed
proportion of the varietier. In fact, even though the expressions are
derived in terms of the My, the P, are still, for the sake of' ease of
comperison of different systems, the basic parameters; the “i are calculated
{rom the Pi. The effect of various other acceptance rules on the finite
gain will be studied in part 3.

At stage 1 we will accept a veriety if our estimate z, of its true

i
yield is greater than the cut-off point hi’ otherwise the variety will be
completely discarded from further consideration, is a result, a variety
will reach a specific stage j if and only if

z >0,
i

for all i < j. This means that the probability cof a veriety's surviving

the entire k stages of the program is

3(x)=Pr(z1“”1,zéﬁ“z,...,zk“*k'x),

where x is the variety's true yield. 5(x) has been called the selection
function (Curnow, 1961) and is closely related to the operating character-
istic of acceptance sampling. Jince, for specified values of the parameters

Pys Vy vy and "y (1 = 1<k), 3(x) completely describes the sereening progran
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it could, in a sense, be thought of as the "operating characteristic" of
the screening program. It can be seen that when it is desired to accept
all varieties whose true yield is greater than some constant TO’ perfect
selection will occur when
5(x)
S(x) 0).

When using S(x) it must be kept in mind that, for specified values of the

1 (x‘ ?0)’

0 (x<m

n

P;, the values of the T; are functions of the shape of the assumed parent
population, The result is that S(x) is not independent of the shape of the
parent distribution. The properties of S(x) will be discussed further, and
put to use in the assessment of the merit of different screening progrems,
at the end of the next chapter.
If we make use of the fact that
z~ N(x,%%),

and make the transformation

we can express the selection function in the form

N,=x TN _=x T
1 2 k
8(x) = I( A3 eses 3 R.)
07 T T
Tex
= I(=%=5 Ry), (2.2.1)

where I denotes the k=variate normal probability integral

[ ] - ]

=mRy) = T ees [ exp(- %11R0-1U')/[(2n)klnol]’1’m eeodu . (2.2.2)
=x V=

[
g k




The matrix R, is the kxk variance-covariance matrix of the variables ui
WS

of the row vector u; has elements r In the case in which only the
A

3"

current inflormation on 2 variety is used in the decision to accept or
3 p

reject it, we have

;s =¥y
and
ﬁi = G 4
This means that
rs=1 (3= 3),
and (2.:2:3)
i ® 0 €L # .3

This is the situation studied by Finney (1956, 1958) and Curnow (1759,
1961). ‘hen properly weighted historical information is used (see equations

2.1.1, 2.1.2 and 2.1.3%), we heve

(a]
i s o
riJ = -.f:—: (l""n})s
J
= ) i 22l
and
r.. =1 ;

since the minimum variance estimate of x is being used, Pi+1 Z 04 end the
above correlation will always be < 1.
Curnow (1960) and, with different notation, Cochran (1951) studied the

use of history briefly for 2-stage selection.



The correlationsjust stated zre correct only if' the errors in measuring
thie yield of & varicty at one stage are uncorrelated with those at any other
stage. In practice a number of factors may invalidate this assumption:
the samples chosen to represent a particular chemical compound (variety)
may, particularly if they are from one particular supplier, be unusually
uniform; the inability to choose years (stages) truly at random may result
in unknown correlation; the use of the same sites to represent a variety
et different stages mey cause unknown correlation. The action of these
factors is diff{icult to formulate mathemetically but the comments in
chapter 2.5 may have some relevance to their effect.

"hen it is desired to select a proportion F of an infinite population
of varieties that are initially distributed according to a freqguency function
h(x), the frequency function g(x) of the varieties left after the PR stage

of selection will be given by

g(x) = s(x)n(x)/P (2.2.5)
where
+n9
P = l3(x)h(x)dx.

This is true for any distribution h(x) so, in theory, the problem of
calculating the moments of the distribution of x after selection is now

solved in that all moments can be calculated directly from the relationship

g n
= P x g(x)ax.

P aal

This integral is not usually easily integrable; even when using numerical

integration a large mumber of points and hence & lot of labour, or computer



s Uil =
time, will be required. Ior lack of a better rmethed it will, however, be
used in snecial cases in chapters 2.) and 2,6 when a simpler method is not
svailable,

Fortunately considerable simplifieccotion is possible whnen gselecting

from the normal distribution. ¥rom this point on in this chapter it

perent population

h(x) = @(x) = ,11: exp(= 2x7). (2.2.6)
Vi

The assumed mean of zero and variance of one can always be easily achieved,
without loss of generality, by a location and scale transformation. The
advantage of making this trensformation is that the gain is automatically
calculated as a fraction of the parent populaticn standard deviation and
so is scale invariant under any linear transforration of the units of
mcasurement.

The following method of deriving the gain and the variance of x after
k stages of selection is similar to that used by Curnow (1960) when he
calculated the exact moments of the distribution of x after two stages of
selection from a normal population., From 2.2.1, 2.2.5 and 2,2.6 we obtain

the moment generating function of x

1

2 xt = .
() 1T ) ax/

L gal

mx( t)

'é't: 4“["', A\ T‘—X /1
e ﬂ(x-t;I(T;Ro)d_X/l .

-—r)



Putting x = t+s we get

:x(t} =

If we now transform our variables from Uy to vi

where

we get
Mx(t) =

with the result that

42
mx{t) = %" I(T(t);R)/P;

T(t) is considered to be a

1.9
=t r If“—t—s_w N, g
€ s, VTTHY a8y BRI e

-

such that

g
T T o
m;:_ = 1+n§: s
1_t:- +>
e [ g(s)I("(t);R)ds/P ,
-

(2.2.7)

k-element row vector with elements

M=t
1
m

ri(t) =

i

I always, unless specifically stated to the contrary, is taken to represent
VS P J Vs P

a k-variste normal probability integral of the form of 2,2.2.

The

elements of the kxk wvariance covariance matrix 1. arc

0.
1J

2T |
i i

= ALA 5.

",

1]

<hen no historical information is used, they reduce to



and, when optimally weighted historical information is used, to

’!\i

nij = "'3 (i > J) ’
and
m
ng=d e,

In both cases the variance is given by 044 = 1. An immediate result of
2,2,7 is that

P ==&} = 1(7/n;R). (2.2.8)

The gain after k stages can now be calculated, but first some new

notation must be introduced, In 2.2.7 the row vector

v = (v,l ,vz,...,vk),
where k is as usual the number of stages, is implicit in the integral I.
We now introduce the modified k-1 element vector

m m _m m m I
v = (v1,v2.0..,vm-4,vm+1’...’vk)’

where v? represents the transformation

V=0, V
Ve Amm ook, but im); (2.2.9)
R

vy and v, are elements of the vector v and nim their correlation. The

vector v is similar to the vector v except that the elements are transformed

th

according to 2.,2.,9 and the m~ element is missing. The correlation

coefficient of two transformed variables v];_l and v? is given by
Dy 4=0s D
e - L (i%3), (2.2.10)

nij =



where 1 € 1,J < k, but 1i,j#mn. It can be seen the 044 is equsl to o, . _, the
J ig+m
partiel correlation oi' the variables i and j af'ter m has been eliminated.

.m. i r’ Y L - . A - a -
I is the corresponding (i-1)x(k-1) variance-covariance metrix. As with

m 3 L — . . : m .

v and v, R is similar to i except that it has elements ﬁ{j instead of
; th . ; 3 e —

nij end the m™ row anc column have been removed. PFinally we def'ine the

k~1 variate normal integral

TH(E)5RT) = T () Mp(8) seeas ™oy (£),10 4 (8) 4000, T (£)5RT),  (2.2.11)

* m+1
where
Tem -0, M "\.-t("\ -0 . '“.)
?m(+\ _dm immi m im 1
# RO L Py
ij im

J/e can now culculate the gain from the relationship

N ¥
(} =7 x-.x\t)
t=
and equation 2.,2.7. "he result is
148 142
B(x) = %[tezt 1("(t)5R)+e2" Se(n(t) ;1)) . (2.2.12)

=0
Calculating the derivative in the elbove expression according to the method

of appendix 1 (equation 1.3) and substituting t=0 we cet

k : .
. e P ] R | 5 ™
Blx) = i‘:1;5('fi)1 (7~(0) ;R )/(wsP), (2.2.13)
where Ti = mi'“i' iny vesueness in the notation arising when k=1 will be

cleared up immediately aftcr the following derivation of Ti(x").



In order to derive the second moment of the distribution of x in the
selected population in a concise form, some logical extensions must be
made to the preceding notation. No., keeping in mind that 1 < i,j <k

and i,j#m,n, we let Moh o

v - WtV (2.2.14)
v 1-({31
n
represent the ith of the k=2 elements of the vector v of transformed

variables. As a result of this transformation

m
ot (3£
R CALCEC L

will be the (13)th correlation coefficient in the (k=2)x(k-2) variance
covariance matrix R™" of the variables v?n; as usual 0. = 1. Still

following the previous notation we define the k-2 variate normal integral

TUHNIR(E) SR = T(TYT(E) 5000, o (£) 7000 (£) 500 0T, (£) M0 (1),

' m+1

eonsT ™Mg) ™, (2.2.15)

where

S i P

The pattern developing in the notation is obvious and extension to calculation
of any moment is, as far as notation is concerned, easy; for the nth moment
the largest number of superscripts involved will be equal to n,

#hile on the topic of superscripts it should be pointed out that if



N

the number of superscripts is equal to the number of stages ow vectors
have k=k = 0 elements; in this case we define

i ’i,-.,n-oi
I L = k(l'.) -1

hen k = 1 we have, for example,

1]

1(T(8)38) = ?t);a(v)av By (4)

1

angd
1,1
(" (t)sR) =13
for the case k = 2, I("(t);R) is the bivariate normal distribution and
1R te3()n) = 1.
‘hen the number of superscripts is greater than the number of stages, I is

def'ined to be equal to zero.

Returning to the problem at hand, we now have adegquate notation to
calculate the second moment of x in the selected population. From the
relationship

44 d d 3
E(x”) = sx[=gi (t)] )
and 2,2.12, it can be seen that

)t & (e”ﬁz[ﬂc“(t);}-->+.3§1¢<g(t))Ii(*icta;re:"-)/“i]) ; (2.2.16)

t=u
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Now, using equetion /6 from appendix 1 and setting t = O, we have

k $ s ;
(«)=t+ & i;:,pﬁ(trimi[rirlcﬁl(.n ) /g

k
iy, =y Yoo o -v-l 1d 'ﬂld l«]
J7i

Therefore

k - .
1 m "'h ~ -_l\ o
HCOER ;-[2 T A1 ) (0) 572) /o

k e PE=2n, T, T, ; :
o o Wy L w24 BYY Sl En S S At 1 d ig 1 J LIdrddremy onddy
*jni(z "3 hij( i+ Y7L i3 & ¢ ij)ﬂ o ( (J), )
Pij
(2.2.17)
x k
where izj represents summation over all (2) peirs of i and j. The

variance of x in the selected population can, of course, be calculated fronm

Var(x) = B(x®)-1(x)".
The following specific expressions for !'(x) and "(x*) after one to

three stages of selection have bren derived from equsotions 2,2.13 and

2.217:
one stage,

L 1 m o on 3
gain = 1(x) = 7:'1"53‘(:1), (2.2.18)

B(x") = 1*9- p2y) 5 (2.2.19)



i(x) = -1-[1 g )@( 1 (2,03 —,—E—ﬁ-—f : (2.2.20)

12 = =72

E(x")= 1+-, wm& ------ o o= B ~}@
- ‘I‘_'
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The preceding excmples not only illustrate the use of the notation,
but alse the pattern developing in both the expression for ¥(x), where the
only change recquired for additional stages 1s an increase in the degree of
the integral I and one additional term per stage, and in the expression for
7(x*), where we have a change similer to the above in the first part of the
expression and an increase in the degree of I and in the number of terms
(to (g)) in the second part. It is clear that the expressions for E(x)
and F(x”) after any number of stzges can be easily obtceined. In this
thesis, the only eguation needed in addition to those alrcady derived is
that for the gain after four stages; because of its length and its obvious
form, it will not be given here,

The expression for :(x) after one stage arrees with that found by
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various authors previously. It is more interesting to note that the
expressions for both (x) end E(x®) after two stages of selection agree
with those derived by Curnow (1959 even though, once he found Mx(t),
he used a different method of derivation, I have not found exact
expressions for the moments after three or more stages of selection
anywhere else in the literature.

By using the obvious notation,

mn
VP i ipp

nmn_omnomn
mp _ dj ip .ip_

4T ATE Ao

mn
() = M ,

and

I P(rP(6) 3R T) = I3 () yeee Mg (£) )T T() soee, Moo (£) 41 F(£) e

mnp mnp mnp mnp
TRCE) PERCE) oo TR (1) 27,

the third moment, E(xj), can be obtained by taking the derivative of 2.2.16
by the method of appendix 1. Higher order moments can be obtained in a

similar manner. Although “i (t) and 01 P pecome rather complicated by

J
the time they are simplified into expressions containing only the original
values M, (t) and %3 (1 <1,3 2 k), they are fairly simple in logical

construction and routines for handling them could easily be written for an
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electronic computer. The same is true of the expressions for higher order
moments. This means that as long as (x) can be calculuted, as many higher
order moments as desired can also be calculated. The algebra involved in
taking the required derivatives is tedious, but no more so then that
involved in calculating cumulent expansions for the same moments; the

resulting expressions have the advantage of being exact.

2.2+2 Calculation of the moments

Since untabulated high order integrals are invelved, the caleculation
of the moments after selection is not free from difficulty. In order to
calculate the nth moment after selection in k stages it is, for k>n,
necessary to calculate a (k-n)=variate normel probability interralj;
fortunately if k = n a function of @(x) is all thal needs to be evaluated,
In addition, if

P = I(T1 ,T2,...,Tk;}-1)

is not known for the desired cut-off points, it must also be calculated.
In this thesis I have used Owen's (1956) expression for evaluction of the
bivariate normel integral and .teck's (1958) expression for the trivariate
normal integral.

A 8light difficulty was encountered in using Steck's method in
conjunction with Owen's in tiiat the expresszion

B=i+C
A S1=C

occurs in both methods but is treated slightly differently in each. The

difference arises in the definition of the sign of the expression when 4=0,



iJteck always used a positive sign while Owen used the sign of B. Once
one is aware of this difference it presents no problem. 3ince C is a
correlation coefi'icient and since the troublescme expression was not
used when C = #1, the difficulty did not arise tnere.

Although Tteck suggested a method of calculating a Lf-variate normal
integral, he did aot give any results. TFor this reason the relatively

inefficient method ci calculating

f -0,, V To=t v T

- P)ﬁ(vh)l( 14 ll- 2 22-5- ‘}+’ _5"-4- Lt- )-I-)dv

4 i S - -4 1 -n"
El. 2£I- 5"I

I(T1 ,T2,T3,1‘!+;I-,)

by means of Gaussian guadrature was used in the calculation of the
L-stage gain. Oince only a few calculations were made for four stages
this method proved adequate., Iiigher order integrals, although easily
found by an extension of the above method or, more efficiently, by an
extension of Steck's method, would be very time consuming to calculate
and were not attempted.

Gaussian gquadrature was always used wien numerical integraticn was
required in this thesis. This was done since it is the most efficient
of the common methods of numerical integration. It is exact for a
polynomial of degree 2n-1 (n being t.e nurmber of points or nodes used);
other methods such as Simpson's rule are exact only for a polynomial
of degree n-1., Krylov (1962) gave an excellent study of this inte;ration
technique., Ixtensive tables, for various weighting functions, were
provided by Stroud and Seerest (19656). rflthough one of Stroud and

Secrest's tables was applicanle for infinite limits of integration and a
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seighting function eguel to @(x), integration using the points in this
table was found to be less cfficient (i.e. more points vere required)

than using the points for finite limits of integration and a weighting
funetion of 1, even though slightly more calculetion was involved per
point, GSince one or both limits of integration were in fact infinite

on & number of occasions, it was necessary to choose {inite upper and lower
limits which were f{ar enough from zero that the answer was, to the desired
accuracy, unaffected. Comparison with known results indicated accuracy to
gix decimals for probabilities and at least four figures for gains. /n
additional advantage of Gaussian guadrature is that, when known values are
not available f'or comparison, there are methods of calculating error

bounds,

2.2.3 Calculation of the cut-off points for given values of Pi

It can be seen from the rreceding discussion that, given the values
ﬁi‘ it is fairly straightforward to calculete the moments after selection
from a normal distribution in four stages or less, The catch is the
fact that comparisons of dif{'ferent screening programs are only possible
if' both schemes end up accepting the same overall proportion of the
population. This necessitates the study of screening programs that
accept known proportions at euch stage rether than unknown proportions
based on cut-off points. /lthough the two melhods are equivalent in
the infinite case, the nature of the problem forces us to calculate the
cut-off points T. corresponding to fixed proportions 7y rather than the other

1

way round, The absence of adequate tables for ecalculating *i as a function
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of Py (except for the normal distribution) leaves us with a problem. This
problem was overcome by using Newton's method to iterate to the value of
M; corresponding to a given P

Let P, and P,P, be the desired proportions of the population left

1 12

after one and two stages respectively., "e then let

£,(ng) = 1(", k),
where T  is an estimate of the value ", required to give f, (T‘.’) = Py.
Similarly, we let

£,(Me! ) = (N ,"giR,)5
T‘-e is now an estimate of the value ‘nz required to give fz('nz'“,l) = P1P2;
'T‘1 is assumed to have been calculated by iterative methods from the
earlier expression. Using the notation
b = 2— T) 4

£0) = &= 103my)

and

23! ) = G 1(.TgiRy),
e

we can get an improved estimate T?; of M, from

£ (‘ne)-P1
e e f‘{(ﬂe)

N owf -

in the usual manner. Once we have found ""1 to the desired accuracy, ""2 can

be found from |
17
52T "y) =Py Py

° % gt
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If desired, ond 7, can be found from similar expressions.
}.

U

Zince the correlations are usually relatively small in the situations
stidded in this thesis, the initial estirate was taken to be the easily
calculated value of Ti required when all correlations between variable i

and th. remaining varieblez are zero. [Irior to iteration this estimate

wes tested egainst the sufficient condition

(0" (7)
TN

(see page 203, Seurborough, 1958) for the convergence of lewton's method;
satisfaction of this condition led to an immediate commencement of iteration
by Newton's method; otherwise a simple bisection procedure was used until
a value satisfying the condition was found; Hewton's metiiod was then used,
/1though more efficient methods of iteration exist, their convergence is
nore sensitive to deviations of the initial estimate {rom the final
result and, considering the relatively low accurscy required, they were not
conaidered further,

Using this technique, the gain for a 2-stage process cen be found on
the K/ F=9 in % second, that for a 3-stege irocess in § seconds, and for a
Lh-gtage process in 3=/ minute: (all accurate to four figures). One
redeeming factor of using this rather tedious technigue is that, once the
cut-of'f' points are known, noments of as high order as cesired can be f'ound
very quickly. The reason for this is that the most time consumirg aspect
cf the program is thc calculation of the cut-off points, Another advantage

is that the higher the order of thec desired moment the lower the order of
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the integrals involved and the faster the calculation.

2.2.4 lore complicated selection schemes

In certain cases it may be desired to truncate at upper limits as
well as lower limits at some or all of the stages. This would happen if,
for instance, we wanted to select for some specific value of gain rather
than the maximum value. Another example would be the case in which we
wanted to accept varieties completely, not only after the Yo stage, but
after some intermediate stages as well. The modifications necessary when

using upper cut-off points 211 follow neturally if S(x) in 2.2.1 (and 2.2,2)

is replaced by 11-x I S
g n
1 k
s(x) = T e T exp(= gurGh)/[(2n) 1R ! P2au, . adu, s
T‘1-x TTk-x
a. A
1 k

the 11 represent the upper cut-off points. The modifications necessary
when using upper acceptance points are similar and will be outlined in
chapter 2,5 where, in addition, some calculations will be made to indicate

the advantage of such a system,

2.2.5 A functional statement of & generaliz.d selection problem

In view of the necessity of a computer when studying more than one
stage of selection, and especially of the time required on the computer for
the calculation of the required values of T, a more straightforward
formulation of the selection problem would be very useful., A general

functional statement of the possible line a simplified formulation might



take will be given in this section.
ot v T ¥ g s 5 . .th :
If we define the distribution of x after the i stage of selection

to be gi(x}, 5,(x) being the original distribution of x prior to any

selection, and if we define¢ the selection function of x between the (i—1}th
1 .th I 1 : ]
and the i stages to be Si8%), we then have, following the methed outlined

earlier in this chapter, the relationship

gi(x) = :'}i(x)gi-‘l(x)/Pi .
In the previous derivation we were immediately in trouble since the

distribution of x after the kth stage was given by the complex expression

k

and very little simplificaticn was possible. If, however, we were able to
find a family of curves approxirmately satisfying the general characteristics
of our populetion (e.g. continuous, monotone increasing from zero to a hump
in the middle and then monctone decreasing back to zero) such that gi(x) was
simply a more extreme member of the family than 31”1(x), the analysis would
be much simpler, especially if the family used were tabulated, or if
tables could easily be calculated on a computer. /n appropriate notation
would be to take

gy(x) = nxp ") ,
where i represents one or more parameters defining the particular member
of the fam!ly of curves appropriate to stage i. ‘het is desired then is to

choose this family so that

i o
n(xp ) = s, (mgep Fhy/e,



A1though they would not be likely to wark in this problem, families like
the v7=distribution (where » would egual the desrees of freedom) and the
c=distribution (where 3 would represent the two parzmeters p and q) are
the sort of families thot are needed. Apart from the fact that the values
of the relevant paremeters & depend in some way on the values yae! and
the selection function Si(x), the distribution h(x;li) would be independent
of the results at earlier stages. In all other ways the scheme would be
similar to the one studied in this thesis,

If it would mzke calculation of h(x;ii) & Si(x)h(x;li-1)/Pi easier,
and especially if it meant the availability of a good furmily of curves, a
reasonable non-normal error distribution might be worth considering. In
view of Davies' (1964) results with a double exponential error distribution,
o non-normal error might prove to be & good guide to the situation when
there is a normally distributed error. urther study of this is needed.

L solution to this more genersl formulation of the screening problem
would not only sirplify the calculations, but also the stage-by-stage
study of the problem. lore generally, in view of the robustness (found
later in the thesis) of the area of maximum gein to the operating conditions,
a study of the sort outlined in this section should be a very good guide

to the results of selecting from many other distributions.
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The Investipation of Zelecticn from a Mormal “istribution

et General comments

Tdeally, now thet we have an expression for the gain after any number
of stages, we would proceed to derive expressions for the values of the
paraneters ny and P, necessary to achicve maximum gein for speeified values
of ™ and V. This is, however, obviously impossible with the expression
derived in the last section, On the other hand, it would not be too
difficult to calculate the appropriate values numerically, especially when
routines have already been written for the necessary multivariate normal

integrals. For given ™ and V we would have to find the values “1,...,“k,

=1
a A A A e S 3 = = 4T v ) i ¥
end vy yeee,% g (keeping in mind that M = 1=3T,~;) that, subject to the
restriction that
1 k

T = ——— nann ®
- I('l‘. L Rl e )’
' k

would result in meximum gain., This meximization could easily be achieved
by using Lagrange multipliers and a stendard iterative technigue such as
that used by #isher (1959) to caleculate meximum likelihood estimates of
unknown parameters, The appropriate walues of the o3 and the b, could, for
two or three stages of selection, be calculated for specified V and ™ in
at most two or three minutes of computing time. The algebra necessary to
write the program would be tedious but not impossible.

The many assumptions involved in the formulation of the problem (the
distribution shape, the value of V, the value of ™) meke the calculation
of the exact optimum selection scheme of relatively little value; as long

as we have zn idec of the approximate location of the optimum scheme, our
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main econcern is wit: the nature of the variation of gain as the o3 and

! m

the P, vary in the region of the optimum location. This is the approach
L

used by “inney (1958a, 1960) and Curnow (1961) in their studies and it

will be used here. Perticulor em

T
e

hasis will be placed on how close
Finney's suggested symmetriccl operating conditions come to achieving
maximum gain when history 1s used.

Frior to a detailcd study of the factors that have a specific
influence on gain, it is worth noting that, when using history, the
gain is very flat in the region of optimum selection. Finney and Curnow
have already shown that this is true for the gain when historicel information
is not used. The flatness of the optimum area when history is used is
illustrated in figures ™, F2 and #3* in which contours of constant gain
are plotted against oy and P1 for two stage selection from a normal

distribution with ™ = 0,01 and V

0.1, 1.0 and 10 respectively. In these
figures the gain is expressed as a percentage of the terget of 2.665¢

(the maximum possible gain). The fact that the surface is even flatter
when historical information is used is indicated by the relatively large
rain as nH*1 and P1~1; the large amount of information ignored in the same
area when historical information is not used rosults in very low gains.

/s with the graph presented by rinney (1958a), the contours resemble
ellipses whose major axis is tilted upwards towards the corner that

represents light selection in stage 1 (P1~1) and correspondingly light

Tables and figures with numbers preceded by a letter (table ™, figure ™)

are found at the rear of the thesis; all other tables and figures are located

in the text close to where they are cited.
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replication ("'1—*\.-} .

One other generazl obeervation worth mentioning at this point is the
fact that the minimum variance of x in the selected population is ususlly
very close in megnitude to the veriance both at symrmetry and at the
location of maximum gain, Teble T1 gives the variance of x for = = 0.01
and V = 1. The minimum varicnce of 0.2270% occurs at % = O.k and Py = 0,050,
The varience at symmetry is only 0,2580% and that at the approximate position
(-“'1 = 0.6 By = 0.07) of maximum gain is 0.24957. Obviously the small
dif'ference between these three values is of little practical consequcnee,
Because this same general pattern was found for all values of V, 7 and k,
and because of the difficulty of interpreting the varian;e of a skewed
distribution, no further comments will be made,

One interesting point in passing is that the 143 values in table T1
and the corresponding gains both with and without historical information

5

were calculated in 2 minutes., Calculation of the next three moments would

not take more than a few additional seconds,

2.3.2 The influernce of V on the gain

For V=1 and 7 = 0,01, maximum gain in 2-stege selection f'rom a
normal distribution is approximately 2.353¢ or 88.3 of the target of
2.6650; this gain cccurs at M = 0.575 and Fﬁ = 0.08. 3ince the gain at

the syumetrical specifications is 2,3507 or only about 0.1y lower®, it

* Percentage increases are given by 100(L-8)/S and percentage decreases
by 100(L=-3)/L, wherc L represents the larger value and 3 the smeller.
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cun be seen that litile will be lost in using symwetry as an approximation
Lo the optlimum specif'icatlons. Figure 72 illustrates the wide range of
operating conditions resulting in & gain very close to the maximum
attainable gain, It can, {or instance, be seen from this graph that
operation in the region u.3<ﬂafo.d and O.U&f;"u.z results in a gain of
nore than 86 of target or within about 2. of the meximum. It can also be
seen that, if it is necessar, tc move from symmetry, it is advisable

(when V = 1) to move in the direction of both slightly heavier replication
and slightly heavier selection in stage one., Figure ™ for V = 0,1 and

7 = 0,01 displays the sane characteristics and an even flatter surface.

In particular, the maximum gein of 2.6470 occurs at Wy = 0.55 and

11 = 0.05 and is only 0.2). greater than the gain at symmetry. Obviously
as V=0 the surface will become perfectly flat with a gain of 100j of
target.

It is only as V gets large the! the maximum gain departs much in
magnitude from the gein at symmetry. Figure I3 showing the gain for V = 10
and m = 0,01 exhibits the characteristically flat suwrface, but this time
the ridge of maximum gain occurs for lower values of vy and slightly lower
values of Fye In addition, the surface has been pushed down considerably
in magnitude: the maximum is 88,3 for V = 1 and only 53.5/ for V = 10,
The maximum galn now occurs at Yy = 0«35 and FH = 0.u7 and is 4.2,  higher
than the gain at the symmetrical specification,

The entries in table 2.3.1 indicate that the same general pattern of

behaviour with variation in V occurs over a wide range of values of T,

The figures in the table suggest that the percentage advantage of maximum



gain over symetrical guin increases slightly as V decreases from 1,

but it is only fur increasing V that there is & morked advantage.

TABLE 2.%.1

. comparison cf' the 2-stege gain at the symmetrical operating
conditions with the maximum gain for various V and —.

m v G/o at Approximate maximum /o
symmetry .. increase Location
”ﬁ=0'5 P1=/% over symmetry " P1
0.0625 O 1.968 - - -
1 1.605 O 0.5 0,23
5 1.039 1.1 0.5 0.21
60 0,349 L8 05 0.2
1 24350 0.1 0.575 0,08
5 14706 0.0 0.4 041
60 0047 175 0.2  0.044
0.0 0 3.367 - = -
1 3123 045 J.65 0,03
5 2,321 U.0 0.5 0.032
60 1.229 20.3 Udlb 0,01L
0.0 0] 5.959 = bl -
1 3‘.?55 1 .3 0.? Oa01 jI-
60 2.029 9.0 0.2 0,006

In view of all the assumptions made in the formulation of the problem,
the increases in gzain of one percent or less achieved by moving from
syrmme try when V <~ 5 will not be worth considering in ovractice so we should
usually be very safe in operating at the symmetrical specifications; only
Tor very large values of V will it be necessary to consider other operating

conditions. This agreecs with a suggestion made by Curnow (1961) for the



case when historiecal information is not used., Tor large V it appears that
ve should ure smraller than symmetricel values of both vy and Sy

Migures P4, 75 and 76 illustrate the dependence of gain (G/0) on
log(V) (0.4 < V < 10,000) 2t the symmetricsl specifications for
+ = 0.0625, 0.01, and 0,000 respectively. It can be seen that very
nearly perfect selection is achieved for all values of = when V = 0.1,
This is followed by an almost linear drop in mid range to very nearly no
gain when V = 10,000, Obvicusly the gain will be O in the limit as V= =»
and 100)) of target in the limit as V= 0.

If it is assumed that 21l additional resources go to increasing the
number of replicates per voriety, these graphs cen be used to study the
ef'f'ect of increasing or decreasing the total resources A while maintaining
the same values vy (1 < i< k). Toubling the value of A would have the
effect of doubling the replication and halving V, It can be seen from
figure FL for 7 = 00,0625 that, in moving from V = 2 to V = 1, we get an
increase in gain from approximately 1.3%80 to 1.6 or about 16, ; doubling
replication should result in approximately this increase in gain. This

technique should be useful when trying to balance the cost of additional

experimentation with the benefit of that experirentation.

2.3.3 The influence of = on the gain

Returning to figure ¥ &nd table 2.3.1, it can be seen that the surface
of gain remains very flat for various values of ™; it is only when V is
lerge that the maximum gain departs very much in magnitude from the gain at

symmetry. For a given V it appears that there may be a slight reduction



in this 2%fect o5 7 deeroases to very small veluces: for ¥V = 60 the optimum
is only 9.6 bettor than the syrmetricnl gain for = = 0.0001 while it is
17.5" and 20,3 botter for ~ = 0,01 and ™ = 0,001 respectively, In the
more realistic range 0.2 2 V < 5 the differences between optimum and

gymretrical aln are much smeller. /St m = 0.25, for example, the aymmetrical
gein is within C.1 of the maximum and is located very close to symmetry. As
-~ decreases, the location of the optimum begin: to move slowly to values
of 4 and E} larger then the symretrical values., /At ™ = 0,0001 and 7 = 1,
for instance, the maximum gain occurs at vy ® C.7 and Py = 0.014; the
surface is still, howev' r, very flat and the symretricel gain is within
1.% of the maximum. Clearly, the gain at the symmetriczl specifications
is very close to the maximum gain over a wide range of values of ™,

‘ince, for a given number of stages, & specific valuve of V ensures
thet the first stage replication is constant inlependent of v we have,

since ™3 ='% at symretry,

L

g e

e
independent of 7. ..t a later stege (stuge J sey) we have

ey = Wk, 4

where Moy = (")(5-1)/k. It czn be seen that, in all stages but the first,
the variance becomes smeller as the selection becomes more intense. The
reason for this is the fact that, as a result of the very intense selection,
there will be relatively fewer vericties around at each stage after the
first and, since the resources are fixed independent of —, there will be

more resources per variety. s a result of the increased asccuracy in the



estinetion ol the true yields of the individual wvirieties for siall
values of ~, we cuui vxpeeol, Ior & given V, gains closer to target. This
increuse. wccu wcy may wlso be the reason for thc observed increase in
tie optimuwn values ol botu g Shd oy over tioe values {ound for aigher
values of —o It can be secen f'rom the above equation {or eij that, as
» decreuses, the _ater the stage the greater the increase in accuracy;
it seems logical tlat il might be preferable to spread this increase in
accuracy more evenly over all stages, and to keep more varieties arounc
longer before discarding them; this can be done by increasing rvi and Pi
in the early stages. .s& ™ decreases for constunt V we might then expect
operation at the location
':'-1“;_'2“r-.oo““i'k

and

P e T ™ ~,

ce s
to result in improved gain., This effect can be seen to occur for low
values of V in table 2.3.,1. /4t higher values of V the effect is less
obvious because of the overpowering effect of V.

The improved preecision for small velues of — is illustrated in {igures
P4, F5 and I'c where it can be seen that, for a fixed V, the percent of
target achieve! increases as 7 decreases, For 2-slage selection at V = 60,
for instance, we achieve 4.l of target for = = 0.0625 end 16.2 of target
for ™ = 0,0001, Obviously in the limit as ™ = 1 we will approach 100, of
target again since the tsrget approaches zero. The same effect is illustrated

more vividly in figures "7, "6 und ¥9 where the gein is plotted against m
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for V = 0.2, 1, and 5 respectively., ron figure 78 we have, for 2-stage
selection, 79.5 of target achieved at = = 0.1, 88.27 at ™ = 0.04,

92.8" at ™ = 0,001 and 9..57 at 7 = 0,0001.

s can be seer from the graphs, the effect described ubove does

ot occur for 1-stige selection, In fact, for 1-stage selection with a
riven value of V and no initial random discard, the gain achieved is

o fixed percentage of thc target independent of w. This can be seen
by caleculating the gain from eguation 2.2,18 and dividing by the target

(given by the same equetion with V = 0). The result is that, for one

stage of selection and P 2 g ER

Gain 1

1
Terget = "y i’ T+Vo"
This is a function only of V. ﬂhsn.PO # 1 the simplification is not

possible,

Z¢3.4 Multiple-stagc screening and its effect on gain

In the preceding sections very little ref'erence has been made to the
number of stages involved; the conclusions on the flatness of the optimum
area and the adequacy of the symmetrical specifications have, in fact, been
based on only 2-stage selection. In view of this, of the remark by Finney
(1958a), "In the practice of plant selection reliance on a single stage of
selection is unlikely", and of the remarks of various authors (see the
comments of Finney (1964), King (1963) and Davies (1958) in section 1.4.1)
to the effect that sereening in more than two or three stages is unlikely

to be of much value, it will be interesting to look at multiple-stage



gcreening in some detuil.

The ilatness f the optimal area for 2-st.ge sclection has been
establisned. Curnow (1901), using 53 combinations of the ﬂ‘i's and E-'i's
around the symmwelrical specificalions, found thu swurface to be very flat
for 3-stuge selection withoul history for ™ = C,001 and V = 1, 4, and 10,
in cach of these three cases the maximum gain was less than 0.7 greater
than the symwetricel sain.

4Ls Gurnow pointed out, 1t is wvery difficult to discuss the shape of
the swfoece of the gain Tor three stages of selection. Solution for the
exact location of the maxdmum gain would be more valucble here (because
of the complexity of the surface) but would, elthough possible, involve
numerical evaluatlon both of the five parameters *‘1 ,""2,"“3,1'*.'1 and Mo
and of the Lagrange multiplier required to incorporate the restriction on
the proportion accepted.

Because of the difficulty of exact evaluation, a number of surveys of
& similar nature to those madec by Curnow have been performed for 3-stage

selection when history is included. Table T2 gives the gain for 3-stage

i

selection with V = 5 for both m = 0.0001 (the upper table) and » = 0.01
(the lower teble). These tables are set up in a manter similer to that
used by Curnow in that selcction becomes more intense in the early stages
as you move down in the table, and replication becomes heavier in the early
stages as you move from left to right across the teble. In addition, the
average yield for each set of the I''s or ~'s is included at the end of the

appropriate row or column, Jince the paremeters range over a wide area,

and since the ninimum tebuleted gein is, in both cases, more than 85, of
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the mazimun tabulated poin (85,67 for= = 0.01 and 80,77 for m = 0,0001),

it ean be secn thoet the surface is quite flat in the optimum area. Jince

P o=p, =m/3

the maximum pein occurs at symmetry for = = 0,01, and at 7, = D, 2
: - 1 2 3
: 1 - 15 s i ; : _
and &, = = m, =~ == for ~ = 0,0001 (resultin: in an increase over
il 2 2 2 G '
symmetrical zein of only 0.97), the symmetricel specifications again seem

T/BUF 24562

Values of /0 for h-stage symmetrical selection from a normel

distribution.
Values of V
i Target Uel 1 5
0.0001 %4959 54958 3.877 34601
0,001 3.367 34359 24258 2,886
0.01 2.665 2.640 2.472 1.946
0.0625 1.968 1.913 1.677 1.138

to be adeguate. These conclusions are in keeping with Curnow's results and
other tables (V = 1 with m = 0.0625, 0.01 and 0.001) calculated by myself
but not, for the sake of brevity, included here., Ilince the best results
occur in the upper right hant corner for = = 0.0001 (in keeping with the
comments made for very intensive selection in section 2.3.3) and in the
centre to lower left hand corner for ™ = 0,01, no general conclusion can
be drewn on the movement of the optimum area as a function of k.

Because it is far more time consuming to find the L4-stage gain thsn
the 3~-stage gain, far fewer results have been calculated. Some of these
results are reproduced in table Z.3.2. /e are so close to perfect

sclection at V = 0.2 thet 1little can be expected to be guined by moving
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from the symmetrical specifications. This is not so obvious for V > 1.
In order to get a (very) rough ides whether or not the gain acts in the
same manner in 4-stage selection a. it did in 2-stage and 3-stage selection,

a few values of the parameters other than the symmetrical specifications

TABLE 2,343
Values of G/o for 4-stage selection from a normel distribution
With V = 5.
m 2 @y oy ), P, P, Py P, G/o
0.0001 0.333 0.280 0,230 04157 0.120 0.111 0.090 0.083 34641
0.300 0,277 0.233 0,190 0.100 0.100 0.100 0,100 3,624
0.250 0.250 0.250 0.250 0,100 0.100 0.100 0.100 3.601
0,200 0.233 0.277 0.290 0.083 0.090 0.111 0.120 34515
0,01 04300 04277 0.233 0,190 0.450 0.380 0.263 0.222 1.857
0.250 0,250 0.250 0,250 0,215 0.215 0.215 0.215 1.946
0.200 04233 04277 0.290 06222 0,263 0.380 0.450 1.934

were tried for m = 0,01 and ™ = 0.,0001 with V = 5. These values are

presented in table 2,3.3. Obviously no general conclusions can be drawn

from these results but 7+ is interesting to note that, as with 2-stage and
3=-stage procedures when selection is very intense, better gains are obtained
for ™ = 0,0001 when there is heavier than symmetrical replication and slightly
less intense than symmetrical selection in the early stages. The results
also suggest that the maximum gain for m = 0,01 will occur at symmetry or
with slightly lighter replication and possibly slightly heavier selection

in the early stages. This is again very similar to the result for J>-stage
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selection., There is certainly nothing to suggest radical departure from the
results of 3-stage selection, nor is there any general pattern emerging

that would indicate any variation in the location of maximum gain with k;
what changes do occur seem to be the usual functions of V and m (as discussed
in section 2,3.2 and 2.3.3). In general, unless V is very large or m very
small, symmetry still seems to be an extremely good guide to obtaining nearly

maximum gain for 4-stage selection.

TA.ELE 2.:-#

The percent improvement over one less stage of selection for
various values of m and V.

™ 0.062§ Q.01 0,001 0.0001
Number of
stages: 2 3 L 2 3 4 2 5 L 2 3 L
\'s
0.2 5.2 0,9 04 8.2 0.8 0.3 9.2 04 0.1 9.4 0.2 0.1
1.0 153 3.2 1.3 29,4 3.2 1.4 35.5 3.2 1.0 37«4 2.5 0.8
5.0 29,3 6,5 2.8 72.3 9.8 3.8 103.2 9.9 3.3 117.4 8.7 2.5

It can be seen from the graphs already studied (figures F4 - F9) that
the pattern of variation of galn at symmetry with V and 7 for 3-stage and
L-stage soreening is the same as that for 1-stage and 2-stage screening;
only the actual value of using additional stages varies., Table 2.3.4
indicates the percentage improvement over one less stage of selection for
various values of m and V at symmetry. From this table and from the graphs
just mentioned it can be seen that, as is to be expected, the value of
each additional stage decreases as k increases, It seems unlikely that it

will be beneficial to use values of k much greater than 4. Although the
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percentage increase due to additional stages increases with V in the range
shown, the actual magnitude of the increase can be seen in figures F4, F5
and 76 to start to decrease at around 100<V<1000 depending on the value of
. For V<1, L stages and probably even 3 stages will rarely be worthwhile,
Information on the magnitude of the gain due to additional stages for the
range 4»7»J.0001 can be obtained from figures F7, F8 and F9. More than
2-stage selection can be seen to be rarely necessary for m0,1; it is in
the range n<0.1 that larger values of k will be most useful, especially if
V is large.

In all this discussion it should, however, be remembered that the
real value of additional stages will depend on the economics of the situation;
since a profitable return is often a matter of a one or two percent improvement,
extra stages may often be exactly what is required. On the other hand, the

delay involved may be prohibitive.

2.3.5 The value of the use of historical information

The work done in the previous three sections has, with the exception
of the L4=-stage calculations, been very similer to the studies done by Finney
(1958a) and Curnow (1961), There is one major difference: historical
information has been used throughout, Little, however, has been said about
the effect of historical information on the size and variation of the gain,
Obviously, since the conclusions are very similar to those made by Finney
and Curnow, the gain changes very little in the optimum erea.

Table T3, ;iving the percentage increase in gain when selecting in two

stages with m = 0.01 and V = 1, indicates that, in the optimum arez, history
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is of little value (0.27 at symmetry); it is only when @, and P, are
large that history is of much value (27.3% when %, = 0.8 and P, = 0.5).
The reason for this is obvious on looking at the ratio of the current
weight to the weight applied to the information from previous stages.

In the case being considered here we have, from equation 2.1.1,

2
a2__f12.=a2
—_—= ==
81 2 h

since ™ = 0,01 this means that, at symmetry, 8,,/854 = 10.0. Vhen the
estimate of yield from the second stage is 10 times as accurate as that
from the first, it is obvious that little improvement will result from
the inclusion of the first stage information in the estimate 3, of x.
At @, = 0.8 and P, = 0.5, hovever, a22/a21 = 0,5 and, as has already been
seen, a 27,3% increase in yield results from the use of the first stage
information.

Table 2.3.5 gives a summary of the value of history for 3-stage
selection with V = 1 for bothm = 0,001 and ™ = 0,0625. The lower third
of the table gives, for m = 0.0625, the ratio of the weight a5 (applied

in the third stage to the third stage information), to the weights a,, and

32
83 (epplied in the same stage to the second and first stage information
respectively), The same behavior found with 2-stage selection can be seen
to occur: heavy replication and light selection in early stages cause more
nearly equal weights and a corresponding increase in the importance of
historical information, When history is used in this region the gain levels
off for all values of V and m and the surface becomes fairly flat., This

can be contrasted with the fact that, when history is not used, the gain
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approaches zero as Fy - 1 and By = 1.

TABLE 2,3,

The percent increase in gain due to the use of historical information
when selecting in 3 stages with V = 1, The ratiosz of the weights
applied to historical information in the third stage are (for = =
0.0625) given in the lower third of the table.

Values of Values of (ﬂ' o n‘3)
n g B By %iinereaae (/6 1/ 1/2) (1/3 1/3 1/3) (2/5 2/5 1/5)
n gain
0.001  0.14 0.4 0,051 0.1 0.3 0.7
0010 O 10 0.10 0|O5 001 005
0.071 0.071 0.196 0.03 0.0k 0.1
0.0625 0.5 0.5 0.25 2.4 4.5 8.5
0.391 0.4 0.4 1 2,9 3.9
0.281 0,389 0.571 .8 1.2 2.4
ratio of a,, a a,, @ a a
weluhin 33 23 _33 Eéé 23
839 &35 831 83 3123

000625 .5 0.5 0.25
391 O Q44

.281 0.389 0.571

-
co&oco
w O
~\u\n F
_l.:-bo
0 O\
L]
DO
w i
L ]
oD

The value of the inclusion of history vories considerably with . VWhen
operating at symmetry, the ratio of the weight applied to the yield of the

finel stage k, to the weight applied to th~ yield of any other stage j, is

given by

e%‘?

b
%5 % (n )‘k' N
where, of course, k> j. For any possible value of j this ratio increases

rapidly as selection becomes more intense (7 decreases) and, as a result,
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history decreases rapidly in importance. This effect can be seen for
V = 5 in figure F10. In 3-stage selection this figure shows history
to increase the gain by 5.1% for 7 = 0.1 but only 0.3 for ™ = 0,001,

The above expression also illustrates the fact that the weights
applied to intermediate stages are more nearly equal for large values
of k. As a result, at symmetry, the importance of historical information
increases as the number of stages increases, The resultant increase in
the value of history with k can be seen for fixed V in figure F10, and for
fixed m in figure M1. At V = 5 and 7 = 0,1, for example, only 2.3 is
gained in 2 stages while 5.1% is gained in 3 steges,

The importance of history also increases as V increases, Figure F11
for m = 0,0625 shows that its value increases rapidly in the range
0.01<V<10 and then flattens out as V increases further. The same effect
is present, to a lesser degree, for smaller values of m.

Since the inclusion of history always gives some additional gein it
should, if the correct weights are known accurately and unless the
administrative cost is high, always be included in estimating x. Vhen
the weights are not known, or if they can only be estimated with a few
degrees of freedom, problems arise., Yates and Cochran have suggested
that equal weighting may be preferable if this is the case. Because of
the large increase in accuracy in later stages in the sort of screening
procedures considered here it will, however, probably be preferable to
ignore historical information completely rather than weight it equally.

Further comments on weighting will be made in section 2.5.1.
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2.%5,6 The use of an initial random discard

Finney (1958a) introduced the idea of an initial random discard
represented by P0’1. Although this resulted in large increases in gain
for k = 1, he found much less improvement when k = 2, In that case he
suggested that an initial random discard would not be worthwhile unless
V was very large or m very small,

The reason for the advantage, in some instances, of an initial random
discard is that, by discarding some varieties without experimentation,
more resources are made available for each of the remaining varieties
with the result that their yields can be determined more accurately. This
increased accuracy will often more than offset the fact that a few good

verieties have been discarded and, when this happens, increased gains will

occur. Mathematically the effect is to change V to V' = P.V and 7 to

0
n = %r + If additional varieties can be assumed to be available and
0

drawn randomly from the same parent distribution, this idea ocan be
extended to taeke into account P6>1. This would represent a situation in
which the resources available could be used more efficiently by experimenting
less intensely on more varieties, In this case, the increased probability
of there being really high yielding varieties in the population more than
off'sets the decrease in accuracy.

Wthen increased gain can be achieved by randomly discarding some
verieties (optimum Py<1) there is obviously an inefficiency in the system
in that 1=F, of the varieties have been developed in vain. It may, on the

other hand, be impossible for economic or other practical reasons to come

up with more varieties in order to take advantage of the increase in gain
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that will result when optimum P031 . Despite these difficulties, a brief
discussion of this aspect of screening will, for sake of completeness,
be presented here.

Since the only change is in V and ~, the earlier remarks on flatness
and optimality will epply. As a result, all calculations in this section

1/k
will be done at symmetry. This means that we will use P:,: =(w‘)1/k = (%—-) :
0

Figure F12 gives, as a function of ™V, the value of PO that will result
in maximum gain. It can, for example, be seen that if m = 0,002 and V = 5,
maximum gain occurs for PO = 0.1, 0.35 and 0.7 for 1=, 2=~ and 3-stage
selection respectively; for V = 1 and 0.,0001<m<1, maximum gain occurs for
P0s>1 for both 3-stage and 2-stage screening. The actual gains achieved
for Poaﬂ for more than 1-stage screening can be seen, from table 2.3.6,
to be small unless m is large. Since the expected gain is O when ™ = 1,
taking P0‘~1 and ~° = ;—5 will always result in an infinite increase in gain
there.

The actual gain achieved when using optimum P is given in figure F13
as a function of "V, The great advantage of varying the initial number of
varieties (PO#) in 4-stage selection is emphasized by how much closer the
curve for k = 1 is to the curves for k = 2 and k = 3 in figure ¥13 than it
was for P, = 1 in, for instance, figure F8.

As Finney suggested, it is for k = 1 that increasing or decreasing the
initial number of varieties will be of most value. The difficulty of
balancing plots and varieties for small changes in the number of varieties,
and the difficulty of developing new varieties will quickly negate any

advantage that might arise in most instances when k > 2, The larger gains
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achieved by using an initial random discard when k > 2 and V is very large

can be explained by the fact that, as we have already seen, the optimum

moves from symmetry both in location and in megnitude when V is large.

Little increased gain results from an initiel random discard if we move

to the region of optimum gain when V is large.

TABLE 2.3.6

The recommended value of P% and the resulting increase

in gain for 1-, 2~ and 3-stage symmetrical selection
with V=1 and V = 5.

Stages: 1 2 3
Value of V: 1 5 1 5 1 5
™

% inc. 23 89 0 3 1.6 O
0,001 Fb 0.2 0,07 1.3 0.3 Leb 1

;. ine. 20 67 0.2 3 2.9 0]
0001 PO 0.45 0016 1 t? OGLI' 3.? 1

% inc. 8.8 33 1 246 et O
0'1 PO 1 005 2‘5 1.1 403 1 t6

% inc. 0] 5 6 003 10-3

2.3.7 Other descriptive and comparative technigues

In the preceding sections we have been coicerned with the gain, in

perticular with its maximum value and its variation in the area of that

maximum, We now turn to other descriptive and comparative techniques that

can usefully be employe? in the study of screening programs.

Finney (1964)
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used both operating characteristic (0C) curves (giving the probability of
selection of a variety as a function of its true yield x) and the frequency
distribution of the selected varieties, to illustrate the operation of
various screening systems. Figure P4 (top) gives both these curves for
selection in two and three stages from a normal parent population at the
symme tricael specifications for V = 1 and m = 0.001, Perfect selection for

7 = 0,001 would mean selection of all varieties with true yield greater than

X

3.0900; this value is represented by & small vertical arrow in the figures.
The operating characteristic S(x) (see equation 2.2.1) is plotted in
the upper left hand corner of figure FML4. From it we can see that both
2-stage and 3-stage screening result in a very steep rise in the probability
of selection in the area of x = 3.09, but that 3-stage screening results

in a rather steeper rise. This is illustrated by the fact that at x = 2,70
the 2-stage procedure will accept 6% of all varieties and the 3-stage only
2%, while at x = 3.5 the 2-stage procedure accepts only 57% of all varieties
while the 3-stage accepts 70%. It is interesting to note that at about

x = 6,250 the probability of selection under the 3-stage system drops below
that in the 2-stage system. Since both systems accept over 987 of

all varieties with true yields in this region this drop will not usually

be of much practical importance, Finney found the same rather curious

result in comparing 1-stage (PO = 1) and 2-stage systems. Inspection of the
frequency distribution (g(x)) after selection (right hand corner of figure
7)) confirms the advantages of 3-stage screening over 2-stage screening,
With 3-stage selection g(x) is more highly peaked and it falls off much

more rapidly as x decreases from 3.090,
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Both the graphs described in the previous paragraph are very useful if
the experimenter is particularly interested in a speecial range of values
of x. From the OC-curve it can be seen that we are better off in the
region 30-x<5c with 3-stage screening; if, however, we are particularly
interested in values of x50, and if there is a real possibility of getting
such high values, it may not be worth our going to 3 stages; if we only
want varieties for which x>6.250, 3-stage screening is actually the poorer
of the two. Referring to the frequency distribution g(x), we can see that
if, for instance, items yielding less than 2,50 result in a loss, we will
be much better off using 3-stage screening. Obviously these two graphical
techniques are very useful in describing a given system.

A somewhat more quantitative method of comparing two systems is to

take the ratio
85(x)  S5(0n(x)  S5(x)

8,(x) ~ S,(x)A(x) ~ S,(x)

ROC =

(the subseripts refer to the number of stages used). This relative operating
characteristic (ROC) curve provides, for a given parent population h(x),

the relative probability of selecting a variety with a given true yield x.

If the ROC value is greater than 1, the 3-stage system (in this case) is

more likely to accept a variety with the yield in question; if less than 1,
it is less likely to accept it. A graph of this function on & log scale

for the situation under consideration (m = 0,001, V = 1, at symmeiry) is
presented in the lower part of figure F14, Since neither this graph nor,

for that matter, the OC-curve specifically take into account the parent

distribution of the varieties under consideration, a graph of the relevant
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tail of the normal distribution is plotted in the same figure against the
same scale of x/o,

It can be seen from this graph that the 3~-stage system is only
slightly better, relatively speaking, than the 2-stage at selecting
varieties with yields greater than 3.09c. At x = 3,20, for example, the
3-stage system is only 1.33 times more likely to accept a variety than the
2-gtage system, It is also slightly more likely to accept the presumably
undesirable items in the range 2.930<x3.090. It is the much greater
probability of rejection by the 3-stage system in the range x-2.,93¢ that
makes it the better of the two. At x = 2,750 the 3-atage system is twice
as likely to reject an item Gwif—ss—3tikelyr—toceaccept—itr. The extremely
rapid increase in the relative probability of rejection as x decreases
is emphasized by the fact (not shown on the graph) that at x = 2.30 the
3=stage system is 200 times as likely to reject an item, The large
probability of there being a variety in the region x < 2.30 (relative to
Pr(x>2.90)), as illustrated by the graph of N(0,1) on the same scale,
emphasizes the desirability of this characteristic. The sharp drop in
g(x) after three stages as x decreases from 3,097 is a result of this
rapid decrease in the relative probability of selection. This aspect of
the difference between the two systems is not as well illustrated by Jjust
the 0C=-curve. In fact, the reliance on the vertical difference between the
two OC-curves for comparison may be misleading because of the very small
vertical difference in the important lower range of x and the large vertical
difference in the upper.

For the sake of better illustrating the nature of the improvement due
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to history, the ROC-curve of the ratio of the probability of selection when
history is included versus the probability when it is not is given in
figure F5 for 3-stage selection at symmetry when = = 0,0625 and V = 1,
The relevant tail of the normal distribution is again, for convenience,
plotted on the same scale of x/o. The relatively small value of the inclusion
of history is well illustrated by the slow increase in the relative
probability of rejection for x less than the target of 1.534c. For this
comparison the ROC-curve is particularly useful since the OC-curves and the
two curves of g(x) are almost indistinguishable on a reasonably sized graph.
It has already been mentioned that it is necessary to consider the
distribution of the parent population when discussing 0C-curves and ROC-
curves and, for this reason, a graph of the parent population is included
with both ROC-curves. The necessity for this consideration is aptly
illustrated by the fact that a selection system which is 100 times as
good as another for x > x, is of little value if P(x> xo) « 10719,
Another slightly more subtle difficulty arises from the fact that the cut-off
points used in evaluating the OC-curves are calculated to accept fixed
proportions from a specified parent distribution and will vary considerably
as a function of the parent distribution. As a result, the O0C-curve,
which at first glance appears to depend only on the error distribution,
is a function of the parent distribution. If, on the other hand, ore has
determined desirable cut-off points for some other reason, or wants to find
cut-off points to give an almost vertical rise in the probability of
selection in the region of some specified value of x, these curves are

icularly useful in that, for specified 7M., they describe the operation
i
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of the selection scheme independently of the parent population. The
proportions accepted will, of course, vary as a function of the cut-off points
and the parent population., In general though, whether or not the distribution
of the parent population is known, the use of these three curves will add
greatly to the understanding of the operation of a selection program,

especially if more knowledge is desired than just the gain,
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2.4 Modified Selection Schemes

2.441 Acceptance prior to the final stage

One of the conclusions of the previous chapter is that two or more
stages are usually necessary for effective screening. One obvious
drawback of multistage varietal screening is the long delay involved in
passing through the k stages of the program. A possible improvement over
the basic system would be to accept a few of the most promising varieties
immediately after the first stage of experimentation rather than wait
until the final stage. This would not only allow certain varieties to
get into general use earlier but would also allow more intensive study
of the remaining varieties. As has already been pointed out in the discussion
of 0C-curves, the probability (when V =1 and m = 0,01) of selecting a
variety with a very high yield (x > 5.90; Finney, 196L) is greater for
1-stage selection than for 2-stage. The unrealistically high value of x
at which this higher probability of selection occurs is not too promising
but it does indicate the theoretical possibility of an advantage in gain
arising out of acceptance of unusuelly high yielding varieties prior to
the final stage. It should also be remembered that getting an improved
variety into general usage one or more years early may balance even a
small decrease in the theoretically expected overall gain,

In order to investigate the result of early acceptance, we will look
briefly at the result of accepting a small proportion of varieties
immediately after the firat of two stages of selection from a normal
distribution. If we take ", as the first stage acceptance point and if we

reject, as before, all varieties yielding below “1 in the first stage or



nz in the second we have

S(x) = Pr(y1>Tu'x)+Pr(“‘;y1>n1 ,y2>'92‘x) .

Following exactly the same procedure used in chapter 2.2, and letting

it
u
o

I(My17,Mp50) = [ Mexp(~ Z(uZ+v=20uv)/(1=0%))/(27 /1=0%)duav ,

" T2

we have
2| =t T -t T -t
E(x) =-g'-€ ‘- ‘E‘P— r jﬂ(u)du-pI(_l : 1: s 2 HE ] H
o m
m,-t 1 1

fl\1

teking the derivative and simplifying we have

-
() %’-f;ﬂffﬂ@[@z-ﬂ-. ) 1= ] %zﬂth)@[(w,-owz)/ml
+ %13’5(%)@[(oTu-Tz)//F-o’]- ;T;Z;J(sz[(mu-pwz)/f"ﬂ-o ]l (2.401)

where T = “u/"1‘ At first glance, this expression appears to be the gain
after two stages (for a given value of T2 and without an upper acceptance
point) plus a correction factor. That this is not true arises from the

fact that it is now unnecessary to study some of the varieties (all those
yielding above ﬂu) that would normelly have been studied in the second
stage. This causes more resources to be available for each of the remaining

varieties in stage 2 and ag is reduced to

2 _ Yo
2 = o, (Py=Py) »

where P = @(Tu). Obviously the system only mekes sense if P.<m (note that
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EH*"). Since eg changes, T, = “2ﬁc2 must also change if it is still desired
to accept a fixed proportion of the varieties. As a result of these changes,
the first two terms in the above expression are quite different from the
corresponding terms without upper acceptance.

In order to study the advantage of early acceptance, the gain has been

calculated for a number of values of ™ using various values of “u calculated

TABLE 2.4..1

Values of G/o for 2~stage symmetrical selection showing the
advantage of accepting some varieties at stage 1.

¢/ at Maximum gain NMeximum P without loss

v ™ P, =0 By G/o B G/o

1 0.5 04573 0.3 0.586 04375 0.573
1 0425 0.956 0,05 0.962 0.1 0,956
2 0,125  1.563  0.03 1.565 0,04 14563
1 0.125 1.292 0.003 1.293 0,003 1,293
5 0.125 0.803 0 0.803 0.003 0.803
1 0.0625 1,605 0 1.605 0.001 1.605
1 0.01 2,350 loss in gain even at P, s 0.0001

for specific values of Pu. The calculations were made for the same value
of F1 appropriate for symmetrical screening without early acceptance;
other values might give slightly higher gains but these were not studied.
The results of these computations are given in table 2.4.1. In this
table both the gain for P =0 (no acceptance prior to stege 2) and the
maximum gain are given. The largest value of Pu for which the gain is
still approximately as lerge as the symmetrical gain for P, * O is also

given.
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It can be seen from the table thet it is only for very large values of
=~ that any increase in gain is achieved by early acceptance and even then
the maximum improvement is only about 2,37 at = = 0.5. Virtually no
improvement occurs at ™ = 0.125.

The calculations for V = 0.2 at m = 0,125 suggest that a slight
improvement may occur as V decreases.

Since the first and second stage error variances are very nearly equal
for large values of w, the relative increase in the information on a variety
due to the second stage is much less than for intense selection., It is
therefore less likely that a variety with an exceptionally high first stage
yield will be rejected at the second stage. This no doubt explains the
increased value of accepting some varieties immediately after the first
stage (deo) for large m. Clearly, however, the main advantage of early
acceptance lies in whatever advantage may arise from skipping the final
stage rather than from an increase in gain. It would also appear that
if for some reason it were necessary to experiment with equel intensity at

all stages, the advantage of early acceptance would be greater.

2,442 Variable replication

In the previous section we have used the value of ¥y to decide
whether to reject, to accept, or to experiment further on a given variety.
Obviously this concept can be extended in such a manner that the amount
of resources allocated in the second stage to a given variety is a continuous
function A,(y,) of its first stage yield Y4+ In view of the results of

the previous section, such an elaborate scheme cannot be expected to result
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in much of an increase in gain, It does, however, point to an interesting
general theoretical problem that probably has wider application than just
to screening. In generel terms, the problem is to find a functional form
f(u) that, subjeect to certain conditions, maximizes or minimizes a second
function involving f(u). In order to meke the nature of this general
problem clearer it will be illustrated in this chapter in terms of the
screening problem,

In the terminology of this thesis, the problem is to find the function
Az(yﬁ) that maximizes the gain. Since the first stage resources 4, are

distributed equally over all varieties, the total resources A are given by

ki
A=A+ A d
™ 2(3’1) Yy s
or, in terms of the proportion of the total resources allocated to each
stage, by
ﬂ"1"' «? az(.V1)dy1 =1, (2-4'3)

-l

where O<r,<1. Since, as pointed out by Grundy, Healy and Rees (1956), a
small amount of second stage experimentation is never economically
advisable, we can expect there to be values y, and y  such that mz(yi) =0
for y,<y; and y,>¥, ¢ Re jection at stage 1 is implied by ¥4, and

acceptance by Y4 Ty If, as usual,

By
N

_SI
-

2

1

e

-

the proportion of varieties accepted into the second stage is, as in the

previous section, given by
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By = [ exp(~ dyj/m3) /(v ) ay,
o
The resulting value of eg is
i VU8P1
e‘é = w) ®

In addition to 2.4.3, we can expect the function ﬂz(y,‘) to satisfy
other conditions. It will, for instance, probably be continuous with
possibly a discontinuous slope, There will, of course, be a jump to zero
if either or both of the values y a and y, ere appropriate. The function
will probably also be monotone increasing to a hump in the middle and then
monotone decreasing, but will not necessarily be symmetrical,

Since the problem of finding the function ~é(y1) (and its parameters
o4 ¥ and yu) to maximize the expected value of x in the selected population
is extremely difficult, and probably only solvable numerically, it is not,
considering the assumptions involved and the size of the likely gains,
worth pursuing very far. The corresponding general problem of a functional
answer to an optimization problem is, on the other hand, of both theoretical
and practical interest and is certainly worth investigation. The general
problem is, however, beyond the scope of this thesis and will not be
considered further.

It is of interest at this point to mention that Grundy, Healy and Rees
(1956) have solved a problem very similar to the one just formulated. They
found a nomogram that gives the amount of second stage replication required
to minimize the economic value of the "integral risk" in a selection

program in which the first steage replication is taken as given (see section
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1.4.2 for a more complete discussion). In a situation in which the external
economy is known, their paper is extremely useful; it may also give clues
to the solution of the problem stated in this section.

Out of curiosity, the result of using a rather arbitrary replication
technigue is investigated in this chapter. The technique consists of
replicating each variety in proportion to the probability, based on the
first stage results, of meking an "incorrect decision" on that variety. An
incorrect decision is, in this study, defined as rejecting (or accepting) a
variety when it is (or is not) among the top m percent of the varieties
being considered. In order to calculate the probability that x is in a

specified interval, the linear regression of x on y, with regression

coefficient
c’%a? My

and variance ﬁef (see, for example, Finney, 1956), is used to construct the
function

e(xly;)ax = -7}-2.-5 exp[-~ H(x=y,/02)7(e3/m2) Jax 3

for a particular value of y,, this function gives the probability that the

true value of x is in the interval dx. The value X where

n= fgwa,
%

is teken as the division between desiraoble (x 2 x;) and undesirable (x<x,)

varieties. Another arbitrary decision is made in using Yo = '“2 (the

second stage cut-off point) as the break-point for yy: for y1<‘n2 replication
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1s made proportional to Tr{x > x ly=y and Tor y, ~ 7. to Pri{xex. ' v=v,)
des L o L s s I .)‘1.1.’ "01_ ) LN 03511'
In order to prevent & rather illogical jump in the amount of replication

as y moves from below ”2 to above it, the replicetion for y < T2 is
nultiplied by

.- Pr(xfxg'y=“2) .
Verieties yielding below y, = 7, are rejected, without replication,
immediately after the first stage. TFinally, the function wz(y1) is

obtained by dividing the recommended proportion of replication by

JU

- [‘ T
R = d QPr(x > xo'y1)dy1+ ; Pr(x’xo'y1)dyﬁ ’
i o

in order to satisfy the condition 2.,4.3. The resulting function ﬂz(ya) is

given by
”2(y1) =0 (y1.p"!"1)’
"’2(3{1) 3= (1"""”1) ; QS(X‘M‘)M (ﬁ1’y1<yo)s
(0]
and xo
olyy) = (1) T ey 3y -
-m

Obviously this is all rether arbitrary but the graph of recommended
replication as a function of yy does have roughly the same shape as that
recommended by Grundy, lealy and Hdees and, even more interestingly, it
has the effect of flattening the graph of the expected value of G/o versus

~, and Pyo To illustrate this point, the gain achieved under this modified



system is given for nine peirs of values of ~, and .1 in table 2.4.2. The

increase in gain over that for constant replication -"-'2 = 1-""1) is given
in brackets beside each velue of G/~. "The only major difference between
the two systems can be seen to be a fairly large increase in gain for

arge values of P,., The resulting ettenins of the surface end broadening
lorge values of Py. The result flattening of ti ace &l oadeni

E{EBIJE 2 " }-i- . 2

Velues of G/7 for varisble replication in the second stage (’é = Wz(y1))
for V=1 and ™ = 0.0625 (bracketed figures represent the loss or gain
over the case wien ~, is a constant equal to 1-rv1).

oy 2 0.2 0.5 0.8
p1
0125 1.355 (0%) 1.540 (+0.19)  1.564 (+0.17)
0.250 1.504  (=0.15) 1.602 (=0,27) 1.5 (+0,5%)
0.875 1473 (+3624) 14528 (47.9%) 1.504 (+7.4%)

of the optimum area is certainly desirable. The reason for this effect is
the low replication recommended for the least promising varieties coming
iron stage one,

The calculations for table 2...2 were made directly from S(x) and en
equation of the form 2.2.5; ’1 and ?2 were caelculated by iteration and the
gain by numerical integration. The values of G/o are accurate to the number
of figures given.

The example just described gives some idea of the sort of replication

system that might be inve ' -ated in attempting to improve the gain, The



use of some sort of "hill climbing" technigue in conjunction with variation
of Yo Xg» and the variance of the function g(x) would probably result in
still further improvement. Small changes in X, and Yo did, in fact, result
in slightly improved gains. In view of the small expected increase in
gain, no further work was done, It is, however, hoped that this brief
outline has indicated the nature of the more interesting general problem

mentioned earlier in this section.
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2.5 Two Assumptions Affeecting Error Variance

2.5.1 Interaction

In all the previous work we have assumed no interaction effect; as
stated by Curnow (1961), this is the most unrealistic of all our assumptions.
That interaction is important in crop screening was pointed out by
Sprague and Federer (1951) who, using actual results from corn yield trials,
discussed in detail the practical problems resulting from variety by year
(vxy) and variety by site (vxs) interactions. For convenience, this study
is in the terminology of a variety x year interaction.

A rough idea of the effect of interaction on the average true yield or
gain after selection can be obtained theoretically. To do this we must
assume that we have & random sample of years and that the interaction is
normally distributed with mean zero and variance G:y’ independent of the
variety in question. Obviously both these assumptions are dubious. Two or
three successive years do not form a random sample and, in addition, the
size of the interaction is not likely to be independent of the true yield
of the variety in question or, for that matter, normally distributed.
Investigation using these assumptions should, however, result in some idea
of the magnitude of the reduction in gain due to the effect of interaction,
and of the direction in which operating conditions should be moved to
minimize this effect.

If the essumptions are accepted, the only difference from the situation
studied in previous chapters is the addition of a constant term Uﬁy’ invariant
from stage to stage, to the error variance ei. As a result, we define the

modified "error" variance e{ﬂ at stage i to be
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ei“=ei+f!vyo

It should be mentioned that the term ﬁay need not, if all the assumptions
are satisfied, apply only to a vxy interaction; it may either contain
components corresponding to other interactions or correspond to an entirely
different interaction.

The expression for gain derived previously can now be used, with the
modified error variance, to calculate the gain when (idealized) interaction
is present, There are, however, important differences between this situation
and the one that occurs when there is no interaction. The major difference

is that the error variance eiz is now bounded below by ”zy

and cannot
decrease indefinitely as it could in the previous simplified model. As a
result, we can expect the magnitude and probably even the location of the
optimum gain to be affected in a menner dependent on the magnitude of Uzy'
In addition, the weights necessary to give the minimum variance estimate of
x change, Since, under the idealized model, the interaction acts simply

as an increased error term, the minimum variance estimate of the mean yield
can be obtained by weighting the yield from each stage inversely according
to the modified error variance ei”. This however, even if the idealized
model is appropriate, is usually not advisable since it is rare to have an
estimate of nﬁy that is based on more than a few degrees of freedom; Yates
and Cochran (1938) have cautioned that, under these circumstances, the
weighted meen loses greatly in efficiency. This problem is not likely to
occur when there is no interaction present since, in that case, we usually

know the number of replicates per stage, and the observations can be

weighted accordingly (as long as plot size remains constant).
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In the study done for this chapter, three systems are used for the
weighting of historical information: firstly, 84 = 1/(e§+o§y) is used
since, when accurate information is available, it will give the minimum
variance estimate; secondly, 835 = 1/1 is used since it can be expected
to be a reasonably good estimate, especially if replication does not
vary too much from stage to stage or if the interaction is large; lastly,
the gain is calculated using aij=<3 (i#3) and a;; = 1, thus ignoring all
historical information.

As far as the magnitude of the interaction studied is concerned,
various values of ﬂsy in the range 0.01 < G:y < 100 are used since this
range nicely spans the change from & rather insignificant to a rather
overpowering interaction effect. It also brackets both o:y/’o2 =1
(6® =1 is, as usual, the variance of the parent population) and the range
suggested by the values of the ratios a:y/bz and 0%/e® given by Sprague
and Federer (1951).

It can be seen from table T4 for 3-stage symmetrical selection from a
normal distribution that, even for very low values of G:y’ interaction has
a marked effect on gain, By the time c:y = 1 we are, when using equal
weighting, losing between 14.4% (for ™ = 0.0625) and 20.5% (for m = 0,001)
of the gain achieved when G:y = 0, It is at this point (osy = 1) that
equal weighting starts to show an improvement over using only the information
from the most recent stages. For very large falues of ”sy (c:y = 100)
we are losing about 80% of the gain achieved when there is no interaction.
At this point equal and inverse variance weighting are equally good (to the

accuracy of the figures shown). The reason for this is the fact that the
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interaction is so large at this point that it dominates and the inverse
variance weights are, in fact, very nearly equal, For such a large value of
o"‘?_y, equal weighting gives a 7.7% (7 = 0.001) to 11.7% (7 = 0.0625) increase
over the use of only the information from the most recent stage. All through
the table it can be seen that inverse variance weighting gives, as expected,
maximum gain.

Table T4 provides a good idea both of the approximate effect of interaction
and of the advisability of different weighting systems when operating at
symmetry. It can, however, be seen from the survey of gains in table TS5 that
maximum gain is not, at least for ™ = 0,01 and equal weighting, achieved
at symmetry. In all these cases (wa = 0.1, 1.0, 10,0) larger gains are
achieved by using heavier than symmetrical replication (of.‘ > o, > 0'3) in
early stages. The values of optimum Py, P, and P3 vary from lighter than
symmetrical in early stages for U:y = 10, to heavier than symmetrical in
early stages for c:y = 0.4, Vhenw = 0,01, V =1 and cr:y = 1 the approximate

maximum gain occurs at Py =P, = P3 and o, = 0.6, o, = 0.3 and 7, = 0.1,

3
The improvement over the gain at symmetry is 3.3%. As can be expected
because of the increased replication in early stages and the presence of
a reasonably large value of "’iy’ the use of equal weighting gives a better
(by 4.5%) result than the use of only the information from the most recent
stage., It is also reassuring to note that equal weighting gives a gain
only 1,2/ lower than the maximum gain found for inverse variance weighting
(at P. = P, = Py and o = 0.5, 7, = 0,333 and 3 = 0.167). It can be seen
that c:y is already beginning to dominate, The same characteristics are

found when U:-y = 10, only to & greater degree (13.5% better than no history
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and only 0.1% lower than the maximum gein with inverse variance weighting).
then nﬁy is small (n:y = 0.1) the maximum gain for equal weighting is 2.0%
lower then the meximum gain found when history is ignored. Since equal
weights are far removed from the optimum weights for such a small interaction,

this is not a swrprise.

TABLE 2.5.1

Values of G/n for equal weighting when interaction is present in 3-stage
selection from a normal distribution with V=1 and P, = P, = P, = ﬂ1/3

1 2 3
Values of (n302~3)
11 1 " 6 1 1 1
" o:y ('3'! "3" "'3') 20? Tg: '2'8) (ﬁs Té’ Tﬁ) ( I 523 Ta)

0.0625  O** 1.656 1.618 1.594 1.585
0.1 1,560* 1.5 1.594 1.567

1.0 1417 10444 1433 1.428

10.0 0.860 0.869 0.867 0.866

0.001 OF* 3,226 3.236 3,216 3,216
0.1 2.839* 2.974* 2,989* 2.998*

1.0 2,566 2,664 2.677 2,683

10,0 1.518 1541 1.544 1.546

* indicates that the gain for ay 5= o (i£3), a;; = 1 is higher,
i

*h 85 = %g j§1 %g (inverse variance) weighting used for n:y = 0,

J

In order to test the theory that larger gains are obtained for heavier
replication in earlier stages, the entries in table 2.5.1 were calculated.
Although not sufficient to prove a general theory, this table and table T5
both suggest that when equal weighting is appropriate, increased gain can
be obtained over a wide range of velues of 7 by increasing replication in

the early stages. It also appears that the more intense the selection the
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further one should move in this direction. This agrees with comments made
earlier (section 2,3.2) on intense selection. It can also be seen that
equal weighting should probably not be used when c:y is much below 1.
In this range the interaction has relatively little effect and it may, as
suggested earlier for the case when there was no interaction, be better
to ignore historical information unless the optimum weights are known
accurately. A few similar calculations were made for V = 0,2 and V = 5,
They did not indicate any major differences in behaviour other than those
normally expected for variation in V,

On account of all the assumptions involved, caution is necessary in
the interpretation of these results. Two conclusions can, however, be
made with safety: the optimality of the symmetrical operating conditions
certainly depends on the absence of interaction, and historical information
is much more important than usual when o:y > 0°« The fact that the optimum
weights are nearly equal when csy > o® means that equal weighting is (as
born out by the calculations in this section) better than ignoring historical

information; it is, in fact, nearly as good as optimum weighting.

2.5.2 Plot size

So far it has been assumed that any change in our experimental resources
(4) can be directly translated into a change in replication. In practice,
however, a small change in A will rarely be easily translated into the exact
number of plots needed to balance replication. As a result, it may not be
possible to operate at symmetry; it may not even be possible to achieve

the desired plot size. In experiments of the type considered in this thesis
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it will of'ten be necessary to change plot size as we progress through the
stages of the experiment. For m = 0.001 and symmetrical 3-stage selection
;" = V~"e3 and eg = Vo”3+0.01) that

we have 100 times as much replication in stage 3 as in stage 1; this seems

we are, in effect, assuming (since e

rether unlikely. The very large number of varieties in stage 1 will
probably force us to use a plot size that is uneconomically smell; much of
the additional area per variety in later stages will then have to go to
increasing the plot to an economical size rather than to replication.
Finney (1966) suggested using a rule originated by Smith (1938) to
handle problems arising out of changes in plot size., Smith, based on

empirical evidence from 39 experiments, suggested the approximate rule that

where e: is the error variance of the yield for a plot of size x, and ei
is the error variance for a plot of size u. Smith found the power p to
vary in the range EJ(S-(- Pz -12%. Obviocusly, according to this rule, it will
be best to take as small plots as are consistent with other requirements,
In order to apply this rule to screening it is necessary to use the
variance under certain specific cirzumstances as a standard. If we let

the variance

[
'
l..a

at stage J be the standard, and if we assume that there are n‘1 replicates

at stege J, the variance at any other stage will be given by
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Vo2
2 "1 1 1
e, = B .o ] . .
i ”j ng rwiﬁl_1n.j§ .

That this is so can be seen from the fact that, in Smith's terminology, u is

given by

and x by

The ratio -ﬁ is then

<3 B

O‘i"'f 1_1 n 1

Ty
If we take as standard the variance in a 1-stage program that studies
all the varieties and uses all the resources (e® = Vo®), and if changes in
area brought about by additional stages affect only plot size and not

replication, this rule reduces to that studied by Finney (1966). Specifically,
]p

Clearly, the use of the modified variance rule involves so many

we have

ei = Vo? r"i;1

assumptions about the experimental situation that detailed calculations
would be of little value without some specific situation in mind. Finney
(1966) suggested that the modified rule would not affect the optimum very much

either in location or in magnitude,
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2.6 Non-Normal Parent Distributions

2.6.1 General comments

A major criticism that applies to all the work done so far in this
thesis is that it is entirely based on the assumption of a normal
distribution of the parent population; this will rarely be exactly true;
in many instances the normal <istribution will not even approximate the
true parent distribution. Cochran (1951) pointed out that even if the main
body of the distribution looks very normal the tail shape may be very
different and, when selecting small fractions of the total population, it
is the tail that is important. In this chapter, selection from a wide
range of parent populations will be studied in order to determine the
robustness of the suggested optimum selection programs to departures from
normality and, in particular, to a wide variety of shapes of tails,

Curnow (1961), using Finney's cumulant series, made some calculations
for 2-stage selection from non-normel distributions but encountered
convergence diff'iculties when the departure from normality was at all
pronounced, Curnow's convergence difficulties are avoided in this chapter

by the use of numerical integration in conjunction with the expression

BE(x) = ¥F xS (x)h(x)dx. (2.6.1)

-
As long as enough integration points are used, this method enables exact
calculation of the desired value of gain for a very wide variety of parent
distributions, skewed and otherwise, Unfortunately 2.6.1 can rarely be

simplified.
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Four types of parent distribution are studied: the famil& of curves
used by Box and Tiao (1962) is taken as representative of a wide range of
symmetrical distributions; the P-distribution is used to study the effect
of positive skew (long tail towards positive values of x) and negative
skew (long tail towards negative values of x); the sum of two normal
distributions with differins mesan values is studied to determine the
effect of bimodality; and, finally, the 2-point distribution suggested
by Davies (1958) is studied to complete the survey. It is felt that the
wide variety of tail shapes covered by the various members of the families
of curves just mentioned should give a good idea of the robustness of the
symmetrical selection scheme, Further details on the characteristics of

the various families of curves are given in the appropriate sections.

2.6.,2 Symmeirical distributions: +the Box and Tiao family of curves

In their 1962 paper, Box and Tiao studied the robustness of a certain
situation (that need not concern us) by means of varying the parameter ® in

the distribution

hxi?) = —t— exp |- 3 (o) @71
r()2°p

where

n = 1+3(f+1),

and the function T(») is the gamma function. For consistency with other

work, the mean will be chosen to be zero and g will be chosen to give a
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variance of 1 for all values of ? studied. Although the family was not
originated by Box and Tiao it will, for the sake of convenience, be called
the Box and Tiao distribution. Its usefulness lies in the fact that, as

a function of ?, it varies through not only a wide variety of symmetrical
distributions but also a correspondingly wide variety of tail shapes.

In this section, four representative curves are chosen from the family.
They cover the range from a very long (exponential) tail at R = +1 to an
almost rectangular tail at ® = -0,9999. In addition to the extremes, the
curves corresponding to ? = *0.5 are also studied since they result in
curves midway between the extremes and normality. Information on the
normal distribution (® = 0) from previous chapters is also included for
reference.

Table T6 summarizes, for a variety of situations, the variation in
gain for ™ = 0,01, V = 1,0 and selection for the five values of ? just
mentioned, The most interesting information in this table is that giving
the location and increase over symmetry of the approximate maximum gain,
Symmetry still seems to be a very good approximation both to the location
and magnitude of maximum gain; it is only when selecting from the (rather
unrealistic) rectangular parent population corresponding to f = =0,9999
that there is much difference in location (P1 = 0,04 as opposed to P, = 0.1
at symmetry) but even then the increase in gain is only 1.3%. Although
the recommended values of P, are consistently only slightly lower than
symmetry, the recommended values of 7y seem to decrease gradually as A/
decreases (the tail becomes shorter); the corresponding increases in gain

are, however, negligible, Figure 6 for ? = 0.5, V=1 and m = 0.01 gives
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the dependence of the gain (as a percent of target) on @, and P,. Although
this chart is for a distribution with longer and more gradually decreasing
tail than the normal distribution, it can be seen (upon comparison with
figure F2) that the only difference in the surface is that it is slightly

flatter and slightly higher.

TABLE 2.6.1

The variation of gain (as a percent of target) with V for
symmetrical 2-stage selection from the Box and Tiao family
ﬁth = 0001a

i -0.5 0 0.5
‘ (short tail) (long tail)
v
0.2 95.8 98.0 98.9
1 84.6 88,2 9.6
5 65.6 64,0 65.6
Target: 2.189 2.665 5.093

Further perusal of table T6 indicates that the value of history and
of additional stages is similar to that found in the normal distribution
throughout the entire range of 2. There is, however, some variation in
the recommended amount of initial random discard. It appears that with
tails longer than normel (2 > 0), little (1-stage selection) or no
(2-stage selection) initial rendom discard is required (possibly Py > 1 may
be useful in this region). On the other hand, a fairly heavy discard is
recommended as ° = -1 even for 2-stage selection. Since the increase in gain
for 2 stages is only 1.2 (less than the increase achieved by operating at
optimum), Py < 1 is not, however, likely to be of value unless selection is

being performed in one stage.
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Table 2.6.1 gives the variation of gain (as a percent of target)
with V for three values of ” and 2-stage selection with ™ = 0.,01. Once
azain there is no indication of any major departure from the behaviour
found when selecting from the normal distribution, Similar results for
other values of ® and other types of selection (P, #0, 1-stage and 3-stage

selection) did nothing to weaken this belief. The only apparent differences

TABLE 2,6,2

The variation of G/o with 7 for symmetrical 2-stage selection
from the Box and Tiao family with V = 1 (bracketed figures give
percent of target).

=0.5 0

0.5
B (short tail) (long tail)

™

0.0625  1.445 (80.4) 1.605 (81.6) 1.733 (82.83
0.01 1.851 (BL.6) 2.350 (88.2) 2,833 (91.6
0.001 2.236 (88.8) 3.125 (92.8) 4,074 (91.3)

were those minor ones already mentioned in connection with table T6.
The same conclusion applies when the intensity of selection is
varied. Teble 2,6.2 giving G/c and the corresponding percent of target
achieved bears this out. The only possible conclusion that can be made
from tables 2.6.1 and 2.6.2 is that there may be a slight increase in the
percent of target achieved as R increases from low values to high values
and even then the results for R = =0,9999 with V = 1 (table T6) and
R =0 with V = 5 (table 2.6.1) show that there are exceptions to this rule.
In conclusion, it certainly seems that the results of screening from

a normal distribution will be a very good guide to selection from a wide
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range of symmetrical distributions.

2.6.,3 Skewed distributions: the f-distribution

In crder to determine the effect of departure from symmetrical parent
populations on the gain and other selection properties, selection from

various members of the "-distribution
Axipsa) = greg) ¥ (10 (0zxg),
’ flp,q - ..

will be studied in this section, Since the °-distribution is defined
on a limited range (0 < x = 1), and since it can be either very strongly
positively or negatively skewed, it also provides a good contrast to

the shape of the tail area of the symmetrical Box and Tiao family which,
with the exception of the curve corresponding to ° = =0.9999, covered an
infinite range.

The nine members of the beta family that will be studied in this
section vary from a positively skewed curve (p = 10, g = 30) through a
symmetrical curve (p = @ = 10) to a number of curves with varying degrees
of negative skew, Since a number of examples of distributions with long
upper tails (normal end Box and Tiao with / > 0) have already been studied
and since, as will be shown even more clearly in this section, the selection
properties of a distribution depend mainly on its tail shape I have, to
save computer time, limited this study to only the one example of positive
skew (p = 10, q = 30).

A1l calculations in this section were made using equation 2,6.1.

A1l the results are given in terms of standard deviation units from the

mean of the parent distribution (i.e. gain = (E(x) - u)/c where v is the
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mean and o the variance of the parent f=distribution),

A summary of the results for V=1 and m = 0,01 is given in table T7.
Once again symmetry is seen to give very neerly maximum gain. Only when
the upper tail drops off very quickly (p = 10, 30 or 50 with g = 3) is any
additional gain achieved by moving from symmetry and then it is only about

1 to 1.5 percent. It is worth noting that, in agreement with the results

TABLE 2.6.3

The variation of gain (as a percent of target) with V for
symmetricel 2-stage selection from the f-distribution with
R = 0,01,

Values of (p,q)

(30, 10) (10, 10) (10, 30)
(short upper (long upper
\'A tail tail)
0.2 96 9745 98.6
1 84..5 87.2 90.6
5 6245 6L4e5 66.9
Target: 2,227 2,523 2,964

of the previous section, the optimum value of o, gradually decreases

(0.6 to 0.4) as we move from a long upper tail through inoreasingly
shorter and more rapidly decreasing upper tails. Optimum P1, although
always less (more intense selection) than symmetry also tends to decrease
slightly. This same general effect also occurs for various other values
of ™ and V. The fact that the gain is still very flat in the optimum area,
even when selecting {rom a parent distribution with a much shorter tail

than the normal, is illustrated in figure 7 for p = 50, ¢ = 3, 7™ = 0,01
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and V = 1, Apart from the slightly greater departure of the optimum from
symmetry elready described and a slightly lower percent of target achieved,
the figure is very similer to those already discussed for the normal (¥F2)
and the Box and Tiao (F16) distributions with the same velues of 7 and V,

Returning to teble T7 we see that, as usual, history is of little

value, It is interesting to note that, to four figure accuracy in the

TABLE 2.6.4

The variation of (E(x)-t)/c with ™ for symmetrical 2-stage
selection from the f=distribution with V = 1 (bracketed
figures give percent of target).

Values of (p,q)

(30, 10) (10, 10) (10, 30)
(short upper (long upper
™ tail) tail
0.,0625 1.388 (78.7 1.571 (81.2) 1.788 (83,9
0.01 1.880 (84.5) 2.199 a?.2; 2.686 590.6
0,001 2.336 (89.4 2,781 (91.6 3.611 (94.8

gains, this value does not vary with p or q. In all cases the second stage

gives an increase of more than 20% over the first, and the third an increase

of approximately 4% over the second,

This is very similar to the behaviour

for the normal and Box and Tiao distributions.

As was the case with the

Box and Tiao distribution, the value of an initial random discard seems to

increase as the upper tail becomes shorter.

skewed distributions (short upper tails) that

It is only for very negatively

Fy < 1 gives any increase in

gain for 2-stage selection and even then the increase is only 1 to 1.5%.

The variation of gain with V (as a percent of target) is given for
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negatively skewed (p = 30, ¢ = 10) symmetrical (p = g = 10) and positively
skewed (p = 10, q = 30) members of the beta family in table 2.6.3 (note
that as you move from left to right the changes in upper tail shape for
table 2,6.3 and 2.6.4 are similar i those for tables 2.6.1 and 2.6.2 for
the Box and Tiao distribution). Although the actual gain varies slightly
in magnitude from the entries in the corresponding table (2.,6.1) for the
Box and Tiao distribution, the gain expressed as a percent of target is
surprisingly similar in magnitude. The same can be seen to be true as ™ is
varied in table 2.6.4. As in the equivalent tables in the previous section,
there seems to be a slight increase in the percent of target achieved in
both tables as the upper tail increases in length. Similar results for
1-stege and 3-stage selection and variation in Py only served to emphasize
these points,

The great similarity between the behaviour under selection of the
beta and Box and Tiao families, even though they are very different in
shape, suggests that the basic shape of the upper tail is far more important
in determining the location and magnitude of the gain than the overall
distribution shape. This is emphasized by the fact that the location of
the optimum for the one relatively long tailed distribution (p = 10 and
g = 30) studied in this chapter is almost exactly the same as the location
for the normal. The relatively minor changes over a wide variation in tail
shape also suggests that the procedures are fairly robust even to major
changes in tail shape. For these reasons no further examples of unimodal
parent populations will be studied.

In conclusion, especially considering the veriation expected in the
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finite case (Finney, 1966), symmetrical operating conditions should give
very nearly optimum results for a very wide range of unimodal parent

populations.

2.6.4 Bimodel distributions: +the sum of two normals

In this section, the effect of screening from a distribution with a
lump in the upper tail will be studied. Barnard, in a comment to Curnow's
1961 paper, suggested the possibility of a bimodal parent population,

He felt that consideration of history might be more important in such a
situation. The calculations in this section were made not only with

this in mind, but also to test the operation of screening programs when the
tall of the parent population departs radically from the smooth monotone
decreasing tails already studied.

For simplicity, and on account of the robustness of the system to
individual tail shapes, a bimodal distribution consisting of a weighted
sum of two nmormal distributions is used. The lower distribution (with mean
O and variance 1) is given weight W and the upper (with mean D and variance

VE) weight 1-i. The resulting parent population has the form
1
h(x) = == [Mexp(- ")+ (1-1)oxp(- H(x-DI*/VE/Y,]
2”' u u L]

To calculate the gain, the cut-off points ﬂi corresponding to a given set
of P; values are found iteratively in the usual manner, Once these points
have been found, the proportions of varieties chosen from each of the two
normel distributions making up the parent population are easily found.

Using the notation of chapter 2.2 and equation 2.2.8 it can be seen that T
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the proportion of varieties chosen from the lower population, is given by

mn n
1.k

“'1 = I( !";'1-,-0. mk;R) -

Using equation 2.2.13, the mean wvaliue ty of the varietics selecteda from
the lower population can be seen to be

k 1 i
vy = "71'; 15y BI)THHO) R g

Since the overall proportion of varieties selected is fixed, the proportion
of varieties a chosen from the upper population can be calculated from the

expression

If we consider the verieties from the upper population to be represented

by the variable u~ N(D,V:), and if we make the transformation
u’ = (u-D)/Vu »

we can calculate Us the mean value of the selected u’ varieties, from
equation 2,2.13 in the same manrer as U, was calculated. The weighted

average

G = nlwu.lmuﬁ =) (u.uvu-rD)

gives the overall gein. For consistency in presentation all gains discussed

in this section are standardized to the form
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where
tw = (1-W)D
is the mean of h(x), and

&2 = "UF x2h(x) dx~[ (1=W)D]?

-

= W (1-4)VE+(1=7)WD?

its variance,

The results of the bimodal calculations are given in table T8. This
table is divided into six sections: section A gives the results for
selection from a normal distribution and sections B to F the results for
selection from a bimodal, In each of these latter sections one of the
relevant parameters D, W, Vi, V and m is varied; for ease in comparison,
the middle entry in each section repeats the case taken as standard
(D=4, W=0.99, Vi = 01, V=1 andm = 0.01),

The reason flor the choice of such a large value of D as standard can
be seen in a comparison of selection from a normal distribution with
selection from a bimodal with D = 3 (section A with the top row of section B).
In all respects (advantage of additional stages, recommended PO, value of
history) these two situations are very similar; even the percentage of
target achieved in 2-stage symmetrical selection for the bimodal (91.9%)is
only slightly greater than that for the normal (88.27). The similarities
are even greater for smaller values of D, reaching equality when D = O.

Inspection of a graph of h(x) for D = 3 shows the reason for the similarity
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in the two cases just described: the hump is barely visible even on a
very large scale. The hump becomes much more obvious as D is increased
and, as this happens, we move very rapidly to almost perfect selection
(for W = 0,99 and V; = 041). At 7 = 5, for instance, we achieve 89,97
of target in only one stage and 98.9% in two steges (at symmetry).
Obviously a value of D much greater than 4 would be just as unacceptable
as a standard as a value much smaller than 4.

The only major difference between the standard case and the normal
distribution is that 96.2 of target is achieved in 2-stage symmetrical
selection (versus 88.27), Other minor differences include a higher
recommended value of P, in 1-stage selection (0495 Ve8e 0.5) and a
slightly higher recommended value of @, (0.7 v.s. 0.575) for optimum
second stage gain. Since the improvement of optimum over symmetrical gain
is only 0,3%:, the slight change in optimum location is of little interest,
Comparison of optimum gain with symmetrical gain once again reaffirms our
belief in the flatness of the surface and the adequacy of the symmetrical
specifications. It is also interesting to note that PO < 1 is not, for
2-stage selection, advisable in any of the cases studied. History, although
slightly more valuable for D = 5 is, as usual, hardly worth including in
2-stage selection.

One reason for the behaviour mentioned above is the choice of the
weighting factor W. W = 0.99 is used mainly because we are choosing a
proportion ™ = 0.01 of the population: by giving the weight 1-W = 0.01
to the upper population, perfect selection is nearly equivalent to choosing

all the upper population and rejecting all the lower. Section C of the
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teble shows the effect of varying W, In all situations studied for both
W= 0,9 and ¥ = 0,999 the target, the absolute gain, and the percent of
target achieved decrease from the corresponding values for ™ = 0.99. Obviously
as W= 1 we will approach the resul : for selection from the normal
distribution. This is already becoming evident when W = 0,999. The same
happens (as far as percent of target achieved is concerned) in the limit as
W= 0. That this is happening, although rather slower then in the other
direction, can be seen from the figures for WV = 0.9. The major difference
between the figures for W = 0.9 and those for both normelity and W = 0.99
is the lower recommended value of % (wa = O.4). The increase in gain over
symmetry is still, however, only 0.8/.

Changes in Vﬁ can, from section D, be seen to have little effect in
any of the situations studied., Sections E and F for variations in V and
™ respectively exhibit only the behaviour usually found for variation in
these two parameters.,

Obviously, a study in which the various pertinent parameters are varied
together in the manner of & factorial experiment would be better than the
above study; there would, however, be considerable difficulty in presenting
and interpreting the results; statistical significance, since the results
are exact, would not be relevant. In view of both these difficulties, and
especially because of the required computer time, this study was limited
to the information in table T8, The results in table T8 do, however,
indicate that it is very unlikely that anything would turn up to cast much
doubt on the conclusions already reached in previous sections on the

behaviour of the optimum area,
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2.6.,5 The two-point distribution

In order to round out this study and particularly in view of the
studies made by Davies (see, for example, Davies, 1958), selection from a
2-point distribution will be studied in this section. Davies suggested
this distribution in connection with problems in the drug industry. In
this study the distribution is defined to have two possible yields: the
lower, with yield O, occurs with probability " and the upper, with yield 1
occurs with probability 1-7.

Following the notation of chapter 2.2, the proportion of varieties

selected can be seen to be

™ = WeI(M/e3Ry)+(1=W) <I(("=1)/e;R;)
The values of M can be found by iteration in the usual manner. If no
history is used, the matrix Ry is the unit matrix and the integrals in the
above expression are just products of normal frequency functions. In this
simplified case, the velues of T can easily be iteratively found from
existing tables. Once the "'s have been found the gain is, since the lower

mean is O, automatically given by
E(x) = 1+(1=1) “I(5 L3R ) /7

Standardization of the gain is, since there are only two possible values of
x in the parent population, felt to be confusing and is not used. In
addition, the variance of the parent population is dropped from the expression

for the error variance so that, in this section only,
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For reasons given in the previous section, the basic weight is again
chosen to be W = 0,99. The basic value of the variance factor is V = 0.2,
This value is used (somewhat arbitrarily) because it gives a medium-sized
gain.

The main results of the study are presented in table T9 in three
sections; section A showing the effect of varying W, section B of
verying V and section C of varying m. As in table T8, the middle entry in
each section is a repeat of the case (7 = 0.01, V = 0.2 and W = 0.,99) taken
as standard.,

There are a number of very interesting differences between the results
in this table and all the preceding results. The most striking of these
differences is the fact, apparent from the 2-stage results, that the
symmetrical specifications no longer result in gains within a percent or so
of the corresponding meximum 2-stage gains., This treit, except where
2-gtage symmetrical gain is already nearly 100% of target, is present
throughout the table: at ™ = 0,01, V = 0,2 and W = 0,99 the optimum
gain is 197 higher than the symmetrical gain; at m = 0.0625, V = 0.2 and
W= 0,99 it is 7.67 higher. In all instances where a marked increase
occurs, it occurs at approximately a, = 0.6 and at a P, which is 1.5 to
2 times as large as the symmetrical value, The only similarity between
this location and the results in previous chapters is the larger than
symmetrical value of ¥y approximately the same value of ", was recommended
in nearly all cases in the study of selection from the (somewhat similer)
bimodal distributions in section 2.6.4.

Figure ™8, showinz the variation in gain (as a percent of target) for
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2-stage selection from a 2-point distribution with W = 0.99, V = 0.2 and

m = 0.01, strikingly illustrates the differences just mentioned. Comparison
of this figure with any of the earlier figures (F2, 76, etec.) shows that

it has narrower and longer contours in the optimum area and that this
optimum area is shifted in the direction of heavier first stage replication

and lighter first stage selection.

TABLE 2,6.5

An indication of the improvement in gain resulting from increased

early replication (Q1 = 04435, @, = 0,333 end oy = 0.234) and

lighter than symmetrical early selection when selecting from a
2-point distribution.

% inorease ¢ increase
over max., over 3-stage

w 7 ¥ PH P2 ?3 Gain 2-atage symmetrical
0.99 0,01 Ok 04316 0.215 0,146  0.547 19.7 15.2
0.99 0.01 0.2 0,316 0,215 0.446 0.787 9.8 17.8
0.99 0.0 0el 0316 0.215 04146  0.939 1.4
0.99 0.0625 0.2 0.450 0,397 0.350 0.139 94 7.8
0.999 0.01 0.2 0,36 0,215 0.146 0,0798 3.5 18.0

The fact that the symmetrical 3-stage gain is frequently lower than
the meximum 2-stage gain (6.8% lower at m = 0,01, V = 0,2 and W = 0.99)
suggests that the same sort of behaviour continues on into 3-stage selection,
In order to test this theory, the values in table 2.6.5 were calculated.
Although the locations of the test cases in the table were more or less
arbitrarily chosen in the expected optimum area, all cases result in
considerable inoreases over the symmetrical 3-stage results, Except for

™ = 0,01, V=0, and W = 0,99 (where we are already at 94% of target),
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they also result in larger than usual increases over the meximum 2-stage
results, A brief survey of the gain at various locations for 7 = 0.01,

V = 0,2 and W = 0,99 resulted in a further increase of 1.67 (at oy = 0.5,

vy = 0.35, W} 0.15 and the same set of values of P as in table 2.6.5).
No doubt surveys for the other parent distributions would also lead to
additional increases. Since it is obvious from the results of the table
that this general area is preferable, no further surveys were made.

In addition to the change in the manner in which gain varies with
the oy and Py values, and the larger than usual improvement due to the
use of a third stage, there are also other differences for selection from
a 2=point distribution.

Section B of teble T9 indicates that the optimum 2-stage gain changes
much more rapidly than usual as V is varied, moving from 467 of target
at V = 0.1 to 727 at V = 0,2 and 93% at V = O.4. Although optimum P‘l
decreases slightly as V increases, optimum % does not change.

The importance of the difference between 1=W and ™ is indicated by
the results in section A for ™ = 0,01, Yhen there are far more varieties
with true yield equal to 1 than are required (1-W > m), we get very good
results, At 1= = 0,1 and 7 = 0,01, for instance, perfect selection
occurs everywhere except for 1-stage selection with Po = 1., On the other
hand, when 1= < 7, the maximum 2-stage gain varies from 77% of target
at 1=W = 0,001 to only 72% at 1=W = 0,01 (both for m = 0.01)., The same
sort of behaviour is found in section C of the table when ™ is varied
for constant 1-W = 0,01: when ™ > 1-W the gains are in the range 72%

(m = 0.01) to 86% (7 = 0.0625) of target; when™ = 0,001, it is only
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when V is inoreased to 1.0 (from 0.2) that perfect selection is not
achieved in two stages and even then optimum 2-stage gain is 98% of target.
Although the results quoted in table 19 are not sufficient to prove a
general rule, it appears that the gain (expressed as a percent of target)
must reach a minimum somewhere in the region of m/(1-i¥) = 1 and then
increase both when 7/(1-%) = O and when 7/(1=7) = ®, Obviously 100% of
target must be achieved in the limit in both directions.

Once again, history is seen to be of little value; the same is true
of Fy < 1 (except for 1-stage selection). Apart from the general increased
sensitivity of gain to changes in any of the parameters, no other important
effects are evident.

In view of the results of this section, it would obviously be a
mistake to automatically use symmetrical operating conditions when selecting
from a 2-point distribution. If no method of analysis is available,
operation in the area of the 2-stage and 3-stoge optima found in this
section should, because of their consistency in location, result in an
improvement over symmetry. Since history is of little or no value, and
since the optimum occurs in very nearly the same location both with and
without using historical information, a rough study of the optimum area
should be possible using only tables of the normal distribution. The reason
for this is the fact, mentioned earlier, that both the values of T‘i and the
gain can be calculated, for any number of stages, in terms of only the

univariate normal distribution when history is not used.,



- 120 -

2.7 Concluding Remarks

In closing, it is worth mentioning once again that the symmetrical
operating conditions usually give very nearly optimum results. It is only
when selecting from a very extreme distribution shape like the 2-point
distribution that any marked increase in gain occurs for non-symmetrical
operation, If, on the other hand, it is impossible to operate at symmetry,
or if it is suspected that the distribution resembles the 2-point
distribution, operation at values of P, close to the symmetrical values but
with increased replication in the early stages (v = 0.6) should, unless
V is very large, result in optimum or near optimum gain for a very wide
range of parent populations, even the 2-point.

One other general comment worth mention is the wide wvariation in
absolute gain ((G-t)/0) that occurs for the different parent distributions,
The fact that the gain is fairly constant when expressed as a percent of
target could tend to be a bit misleading on this point. In view of the
many distribution shapes studied, this variation is not very surprising.
It does however suggest that, for given values of V and o®, the
theoretically expected value of gain resulting from a screening program
will, if based on a fixed break-even point calculated from a specific
assumed parent distribution, depend heavily on that distribution.

Tables T6, T7 and T8 indicate the large differences that occur in absolute
gain when a fixed proportion of varieties is accepted, even though, in
many cases, there are only subtle differences in tail shape; in a program
involving long term profit (or other forms of gain) the observed

differences could be disastrous, Careful study of the robustness of the
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results of economically based studies to various parent distributions is
therefore advisable, On the other hand, we have seen that the gain reacts
very consistently to variation in the operating conditions, the use of
history, the use of additional stages and other selection parameters for a
wide range of parent distributions. The conclusions on optimum operation
should, therefore, be a good guide to the mechanics of setting up any
selection program. In view of the small inoreases in gain found in many
instances, it should also be mentioned that the difference between success

and failure in any operation is frequently as small or smaller,
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Pi o THE FINITE CASE

Introduction

As is frequently the case in statistical work, the preceding discussion
suffers from the weekness of being only asymptotically correct. To make
the most of the information in part 2 of the thesis it is therefore
important to determine how closely the finite case follows the infinite, in
particular, to determine how large N, and n (remember n = N ,) must be
for the finite and infinite cases to be, for practical purposes, indistinguish-
able. In general, for all values of N, and n, it is also important to know
whether optimum gain is still located at symmetry and whether it is robust
to changes in operating conditions.

Finney (1966) studied this subject in detail for selection when
historical information is not used, and when fixed proportions are accepted
at each stage. He found that, although overestimating the gain, the
infinite case is in all other respects a very good guide to the finite
case., In chapter 3.4 a similar study is made for the case when history
is used. In chapter 3,5, we study the effect on gain of schemes that are,
in & sense, somewhat more flexible than those studied by Finney. The
increased flexibility is achieved by replacing schemes based on accepting
fixed proportions at each stage with schemes that accept all varieties
yielding above fixed cut-off points at each stage; combimtions of these
two acceptance rules are also studied.

A major difference between the finite and infinite cases is the
variation in quality between different cohorts., It is, in fact, in order

to determine whether we can take advantage of this variation that we
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study the above-mentioned "flexible" selection schemes. The reason for

the variation in quelity is the assumption, necessary for a study of the
finite case, that N, is a random sample from an infinite continuously
distributed population. Obviously, in practice, the overall average true
yield will vary from cohort to cohort and so the assumption is, in part

at least, reasonable. Another and perhaps less reasonable aspect of the
assumption is that the parent distribution is N(0,1). It has already

been indicated that the mean of O and the variance of 1 can be achieved
without loss of generality; if the robustness (found in chapter 2,6) of

the infinite screening results to variations in parent population carries
over to the finite case, the reliance on a normal parent should not be
limiting either., I see no reason why this should not be the case, especially
in view of the close similarity found between the infinite and finite cases
in chapters 3.4 and 3.5; study of finite selection from non-normal parent

distributions is, however, necessary.
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3«2 Theoretical Considerations

The difference, arising in the finite case, between using cut-off
points and using fixed proportions to define our acceptance rules has
already been mentioned; an even more important difference, as far as
finding the gain is concerned, is that we are now forced to base all our

calculations on order statistics rather than on tails of distributions.

TABLE 3.2.1

A comparison of the infinite target (normal tail) with the
finite target for m = 1/16 and various values of N, = Nye

0
N‘ = No n Target

16 1 1.7660

32 2 1.858¢0

6L L 1.9110

128 8 1.9390

256 16 1.9530
Limit (normal tail) 1.968c

ithen accepting fixed proportions this means that the finite target is the
mean of the top n values of the order statistics appropriate to a sample of
N, numbers from the normal distribution., 1In comtrast, the infinite target
is the mean value of the corresponding proportion of the upper tail of
the normal distribution. The effect on the finite target that results
from using cut-off points is indicated in chapter 3.4.

Some indication of the difference between the finite case and the
infinite case is given in table 3.2.1. This table is reproduced from

Finney (1966). It shows the finite target for constant m = n/N, = 1/16,



but for various values of N, and n. It can be seen that the decrease of the
finite target from the infinite is not very great: for N1 = 16 and n = 1
it is only 10.3%; for N, = 256 and n = 16 it is down to a drop of only 0.87.
Obviously the approach to the infinite case is rapid.
When error is introduced into the system, the necessity of dealing

with order statistics makes analysis difficult. Finney (1966) worked
out expressions for the expected value of the gain (©®(G)), and of the
variance (E[Var(G)])of the gain between selections from completely
independent cohorts. Letting, as usual,

VN;A >

ef = NAy

we have, for 1-stage selection,

VN,
= m— T

17T,

and, as a result, we get Finney's expression,

5(6) = [N/, V) 1% og(, 1),
for the gain, The function g(N ’NZ) is the expectation of the mean of the

top N, values in a random sample of N, members from a N(0,1) parent
population, Its value can (for N, < N, < 400) be found from the entries

in Harter's (1960) tables. Finney also found the expression
E[Var(g)] = [NO/(N0+N1V) Jo®[h(N ,N2)+N1V/N0]

for the variance. The function h(N1 sN5) in this expression represents the

expectation of the variance of the mean of the lergest N2 values in a random



sample of N, members from N(0,1). Its velue can be obtained from

1
Teichroew's (1956) tables of expected squares and products of the first,

second, ... lergest valucs in random samples of N& < 20 from N(0,1).

"hen Iy =1, that is to say N, = N,, the preceding two expressions
reduce to
1
B(6) = (14V)" % og(N, ,N,) (34241)
and
E[Var(6)] = (1+¥) ™' o*[n(N, ,N,)+V] . (3.2.2)

Since Finney studied the use of an initial random discard in finite 1-stage
and 2-stage selection and did not find any unusual differences from the
infinite case, and since the use of history has been seen to have no
significant effect on the value of an initial random discard, we will use
Nb = N& throughout this study.

In moving to 2-stage selection, the above expressions can be modified
to calculate the gain at the margins (N.l =0 or1, and P, = 1 or 7)., When

history is used and m, =1, for example,

5(6) = (441)"Z g,y

E[Var(G)] = (1+v)‘1a5[h(n ,N3)+V] 5

independent of N,. The same expressions apply when Né = N1 independent
of Oy e For either Né = N3 or o, = 0 the use of history has no effect and
the expressions derived by Finney (1966) apply: for N, = Ny, E(G) and

E[Var(G)] can be calculated from the 1-stage expressions by inserting /o
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for V3 for @ = O they can be calculated by replacing NH by N,, and N2 by
NB in the 1-stage expressions. FExpressions can also be calculated for
similar marginal situations for higher order selection procedures but,
since selection under these conditions is equivalent to 1-stage selection,
it is unlikely in practice and the expressions are of little interest.

General expressions for the finite gain after any number of stages
are possible, but are so complex that numerical integration would almost
certainly be necessary. The expression

o
E(X(r)) = (n—r)llzé—r\—ﬂ—! -r X[F(x) ]n-l‘[1-F(x) ]r-"f(x)dx A

for the expected value of the rth highest order statistic in a sample
of n members from & distribution f(x) where
X
F(x) = rf(x)dx s
-0

gives some idea of what would be involved. In a screening study

£(x) = s(x)s(x) ,
where S(x) is the selection function (a k=variate normal distribution
function). Obviously numerical evaluation of the order statistics, under
these circumstances, would be very time consuming; this approach was not

attempted and, in its place, the alternative method of simulation was used.
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3.3 Simulation Technique

Although the basic simulation technique used in this thesis is nearly
the same as that used by Finney (1966), it is so important to the study
that it is described in deteil in this section. The computer used for the
simulations, and indeed for all calculations in this thesis, was the
University of Edinburgh KIF-9,

Pseudo-random deviates from a N(0,1) population were generated on the

computer in independent pairs (, ’“2) by means of the relationships

n1 = (=2 log 5-1)%005(2“{2))

and

", = (=2 log '.71)%3111(2”52) H

£, and ¥, are uniform random deviates in the interval (0,1). The uniform
pseudo-random deviates were generated by a standard sub-routine, This
method of generating random N(0,1) deviates is due to Box and Muller (1953);
fester methods are available but, in nearly all the cases studied, the
generation of the pseudo-random numbers took only a small portion of the
progrem time so this method was used to save program storage space, Since
both the error and the parent population are normally distributed, there
was no need for a separate store of deviates for each. Xach new deviate
was, of course, taken directly from the store as required,

In a given computer run, a large number (usually between 6000 and 7000)
of pseudo-random N(0,1) deviates was generated. Multiple usage of up to
ten per deviate was achieved by regarding the numbers as being in a

continuous loop in storage and continuing around the loop until the maximum
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permissible number of usages had been made. Then the required number of
runs for e given set of selection specifications was complete, the next

set of specifications was read in and studied without the necessity of
generating additional numbers unless, of course, the numbers had alrecady
been used the permitted number of times. Similarly, if necessary, a new
set of pseudo-rendom numbers could be generated in the middle of a series
of runs for a given set of specifications. The chance of patterns of usage
was decreased by always using a prime number of deviates, In order to
prevent any two selections being based on nearly the same set of deviates,
the interval between the position in store of any two deviates was increased
in a manner dependent on the total number of usages made of each of the
deviates: adjacent deviates were used until every deviate had been used
once and then every second deviate until all had been used twice and so on
until new deviates were required,

In a given selection, Ny deviates were chosen to represent the true
yields of the parent population; to these were added another N1 deviates,
this time multiplied by the experimental error e,; the results were taken to
be the first stage yields. From these results the highest yielding N,

2
varieties were chosen and N, random deviates (this time multiplied by e

2)
were added to the true yields of the selected varieties. At this point,
since history was being used, the estimate Zp of the true yield was
calculated according to equation 2.,1.2, and the N3 highest yielding varieties
were chosen for study in stage 3. The same procedure was followed until

the entire k stages had been completed. The mean value of the chosen n

varieties was then calculated and its first four powers were accumulated.
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The process was then repeated with another set of deviates., At the end of
the reguired number of runs the average gain and the variance of this

gain between the independent runs (Var(G)) were calculated, as were the third
and fourth cumulants of the frequency distribution of G.

At any stage i, the bulk of computer time consumed was used in sorting
to find the N4 highest yielding varieties from the Ny varieties being
studied. Since methods were available from the work in part 2 for
caleculating theoretical cut-off points corresponding to the desired
proportions, it was possible to increase efficiency over the method used
by Finney. The method used was to divide the varieties into two categories
immediately after adding e; and calculating 243 those for which z, < ﬂi
went into the lower category (tentatively rejected) and all the rest into
the upper (tentatively accepted). If selection was based on cut-off points,
the stage was then complete and it was possible to proceed directly to the
next stage; obviously this resulted in a very large saving of time. If, on
the other hand, exactly N; , varieties were desired, sorting was still
necessary, but only of relatively few varieties., This sorting was done by
first calculating 8 = n -N; , (nu represents the number of varieties
tentatively accepted); when d > O (too many varieties accepted) the
Ny ,4 highest yielding varieties were found by first arranging any d of
the n varieties in order; the highest yielding variety of these @ ordered
varieties was thon compared with each of the remaining nu-a = Ny oo varieties
until one with a lower yield had been found; the two were interchanged and
the lower yielding variety placed in its proper order among the 3 ordered

varieties; the procedure was continued from where we left off in the Nj 4
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varieties in the same manner until the ® lowest yiclding varieties of the

n, tentatively accepted had been placed in the ordered group., The °

varieties were than discarded and we were left with the required Ni+1

highest yielding varieties., A similar procedure wes followed when

A < 0. ‘then d = 0, as often happened, no sorting at all was required.

This method saved considerablc time, not only over sorting all the varieties,

but also over sorting all members of the category that had too many varieties.
In view of the natural variation of the average parent population from

one set of runs to another, it was decided to standardize the gain. The

technigue used was that of Finney (1966): in each run for a given set of

selection specifications a "target" value (the average true yield of the

2n best varieties in the population) was calculated; when the set was

completed the regression of the gain in a given run ageinst the corresponding

target in that run was calculated over all runs in the set; this regression

was used to calculate the gain G_ that would have resulted had the average

R
"target" been the average of the top 2n order statistics in a sample of N,
members from a N(0,1) population, This gain was frequently checked against
the gain found by an alternative standardization technique (also suggested
by Finney); agreement was always very good. Because of the slight effect of
history on the gain, it uas assumed that the linearity of regression found
by Finney in his work would still apply; no reason arose during the study

to cast doubt on this assumption. Since the regression seemed to standardize
the mean very well, and since the variance of the adjusted regression

gain, G,, was considerably lower than the variance of the mean gain G, it

Rl
was used in all situations in this thesis in which exactly n varieties were



accepted in each run. In order to have a true measure of the variability
of performance, Var(G) was not adjusted for the regression but was always
taken to be the actual variance of G between the independent runs,

Vhen a final cut-off point was used, GR was not, however, thought to
be appropriate and was not used. This decision was token in view of the
fact that, although the number of varieties in the target was, of necessity,
fixed at the number originally chosen (say 2n), the number of verieties
accepted in a given run varied considerably depending on the experimental
error and on the guality of the varieties in the cohort. As a result,
although the target moved up and down as a function of the best 2n varieties,
the average gain remained relatively steble since all the varieties yielding
above the fixed cut-off point were chosen: in a poor cohort with only one good
variety, it would frequently be the only variety chosen and, although the
target was low, the gain would be reasonably high; in a cohort in which all
the varieties were very good, the target would be very high but, because
many more varieties were chosen and mistekes were more frequent, the
average gain was not usually particularly high. The regression was expected
to be rather poor under these circumstances, In pddition, it was not
known how to take intoc account the fact that, on many occasions, all the
varieties in a cohort were rejected. This, plus the difficulty of taking
into account the variation in the number of varieties making up the average
gain in a given selection, made it impossible to take into account all
available information in calculating the regression. /flthough, for the
above reasons, GR was not used, the use of & final cut-off point had the

effect of standardizing the gain to quite an extent and, for a given
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number of runs, there was little difference between the standard errors
of GR for fixed n and of G for varying n.

In order to investigate the possibility of a further reduction in
error variance, selection from a population consisting of N, varieties
with true yields equel to the appropriate N, order statistics was studied.
This procedure was found to be inadvisable for two reasons: first, for a
given number of runs, the variance of the resulting mean gain was almost
identical with the variance of the regression estimate; second, and even
more important, the estimate was biased.

Both the technigue and, in particular, the bias are illustrated by
the following example of 1-stage selection (with V = 1) of one variety
from a population of two. ‘hen selecting from a population of two
varieties whose true yields are independently N(0,1) distributed, the
expected 1-stage finite gain is 0.399 (see equation 3.,2.1). ¥hen selecting
from a population of two varieties, one with true yield +0.5642 and the
other with true yield -0.5642 (the order statistics appropriate to a N(0,1)

population of size two), the expected finite gain can be calculated from
Pr(y; > y,) = Pr(yy-y, > 0),

where y, is the yield (with error) of the variety with the lower true yield

and y. the yield of the other. Since V =1, we have
e:‘;:\f62=1

and

yl"yufv N( -1 .1 28#,2) .
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This means that

Pr(z > 1.,128,//2)

Pr(y,-y, > 0)
= 0.,2125.
This gives the proportion of times the variety with true yield equal to
=~0¢5642 is chosen. Since the variety with true yield equal to +0.5642
is the only other one that can be chosen, the expected value of the
finite gain can be seen to be

E(G) = 0.5642(1=0.2145) = 0.5642(0.2145)

]

0.325,
a considerably lower value than that calculated by equation 3.2.1. This
is not to say the value is incorrect, it is just not the one we are looking
for. Out of curiosity, & simulation of 10,000 runs was made on a parent
population consisting of the two order statistics: +the result was a gain
of 0,324*0,005., A similar simulation on a population consisting of two
independent values from an N(0,1) distribution resulted in a gain of
0.405%+0.,006. It can be seen that the agreement with the theoretical
values is very close,
The negative bias was found to persist vhen selecting 1 variety from
16 in two stages with V = 1, 1In that case, the gain was found to be
1.339%0,007 in a simulation of 6000 runs on a population comprising the
16 order statistics and 1.401%0.,004 in a simulation of 12,000 runs on
random samples of 16 from & normal distribution. In view of these results,
selection from the order statistics was abandoned and use of GR adopted.
In closing, it should be pointed out that Var(G) is a very important

part of the results of these simulations; in most instances the experimenter
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will be very interested in the variation of' the gain between independent
runs, perhaps even more than in the varience of the mean gein, E, or the
regression gain, GR’ over a very large number of runs., Any estimation
technique that does not provide this value will be considerably less

valuable than one that does,



Sk
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The Effect of the Use of Historical Information

34441 The overall gain and the approach to the infinite case

Teble T1 illustrates, for V = 1 and 2-stage selection of 1 variety
from a population of 16, the fact that there is very little variation in
the finite gain (both with and without the use of history) in the
optimum region. i’hen history is used, it can be seen that even in the
large region in the neighbourhood of symmetry covered by the 19 most
accurately determined gains (marked with single asterisks) the minimum
gain (1.358 at N, = b, oy = 0.8) is only 3.2% lower than the maximum
(1.402 at N, = 4, o, = 0.7); since Var(G)/c® varies between 0,533 and
04579 (about 407 of gain) in this region, this variation in gein will not
be very important. Keeping in mind that approximately 414,000 runs have
been made to calculate each of these 19 gains, and that the corresponding
standard error is about *0.004, it can be seen that operation anywhere
in the region 3 < N, < 6 and 0.4 < ¥y £ 0.7 should give very nearly optimum
results,

Another reassuring fact comes to light on comparison of the upper half
of table T11 with table T10 giving the equivalent figures for the gain with
history in the infinite case. The similarity in the variation of the gain
is illustrated by the fact that the finite gain is consistently at a
level of about 85-91 percent of the infinite gain; there is a slight
falling off in the region of light replication and heavy selection in early
stages but even then only one figure falls below 80% of the corresponding
infinite gain., Considering the number of figures involved, and the fact

that most of them have a standard error of 1.5 to 2 percent of the finite
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gein, this can be seen to be very consistent behaviour., Table 3.4.1,
giving the percent of infinite gain achieved (when history is used) by
the finite gain when N, = 100, Ny = 1 and V = 1,0, indicates that this
same consistency exists for ™ = 0,01. The fact that the variation in

the figures is far from smooth is explained by the fact that the standard

TABLE J¢4.1

The percent of infinite gain achieved in the finite case for
Ny =100, Ny =1 (7 = 0.01), V = 1.0 and 2-stage selection

from a normal distribution.

N&: L 5 10 20 25
i

Ok 91.2 9.3 90.1 92.8 941
0.5 38.0 90'2 91 .8 92.5 93.0
0.6 90-0 92l7 911'.8 93.7 95'5
0.7 90.5 91.3 b o 96 .1 95.5

errore of the finite regression gains are, in most cases, in the region
0,035 to *0.040, or sbout 1,5( of the gain. Similar calculations for
V =02 and V = 5,0 for both ™ = 0.01 and ™ = 0,0625 indicated the same
consistent behaviour in the range of 85 to 93 percent of the infinite
gain. Every indication is that the infinite case will be a very good
guide to the behaviour in the finite case,

The value of the use of history in the finite case is brought out in
a comparison of the upper and lower halves of table T11. As in the infinite
case, history is of little value in the optimum region; the same is true in

the region corresponding to light replication and heavy selection in the
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first stage; only when first-stage replication is heavy and the corresponding
selection light is history of any real value. As usual, the correspondence
between the behaviour in the finite and infinite cases is very close.

Out of curiosity, 14,000 runs were made both with and without history at
the symmetrical specifications for N, = 16, N3 =1 and V =1: the
regression gain was 1.3920 without history and 1.401c with history (using
a completely new set of random numbers). Since the standard error of the
regression mean was *0,005 in the former case and *0,004 in the latter,

it can be seen that there is little to choose between the two, even after
14,000 selections. Selection with = = 0.01 and with V = 0.2 and 5.0

gave results similer to those already mentioned,

The variance of the gain between independent runs at the same
specifications (Var(G)/o®) is given in table T12., It can be seen that this
variance is very mearly constant at its minimum velue in the optimum region.
Not only is this behaviour very similer to that found when history was not
used, but the actual values of Ver(G)/"" are very similar: at symmetry
(and after 14,000 runs each) Var(G)/c® = 0,555 with history and 0.553
without. Comparison of table T12 with the corresponding table (table 2)
in Finney's 1966 paper indicates that it is only in the region of light
first-stage selection and heavy first-stage replication that the use of
history results in a decrease in Var(G)/o®.

The third and fourth cumulants of the frequency function of G after
2-stage selection with N, = 16, N3 =1 and V = 0.2 are given in table T45.
In sharp contrast with the reasonably smoothly varying values of G and Var(G)

in tables T11 and T2, the entries in table T15 show little or no pattern
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at all, Similar behaviour was found for other values of V and . The
reason is, no doubt, the combination of a large sampling error with the

relatively small values of the cumulants,

TABLE 3.4.2

The approach at the symmetrical specifications (rv.‘ =, = 0.5,
N2/N1 =N N2) of the finite gain to the infinite gain both with
and without the use of history (™ = 0.0625, V = 1),

Gp/0 var(€)/o® E(6)/o

N1 N2 N3 without with with with
history history history V=0,0

16 L 1 1.392%0.005 1.401%0.004 0.555 1.766
32 8 2 1.484+0,012* 1.492%0.010 0.278 1.858
64 16 L 1.517%0.00E*% 1.554L20.009 0143 1.911
128 32 8 1.558+0,012* 1,575%0,008 0.074 1.933
256 64 16  1.,57220.014* 1.595%0.007 0,028 1.953
» limit 1.590 1,605 0,000 1.968

* Finney's 1966 results.

The manner in which the finite galn approaches the infinite gain when
N, is increased for constant - is illustrated, and compared with Finney's
(1966) results, in table 3.4.2. Although the gain with history is always
slightly greater than the gain without, there is no discernible difference
in the rate with which the two systems approach the infinite case. The
same conclusion applies to the rate with which E(G)/c approaches the
infinite 1imit when V = 0,0. The variance of the gain between runs was
so similar in the two cases that the non-historical results were not
included. Similer results for = = 0.01 indicated only a slight decrease

(as expected) in the value of history; in ell other ways they resembled
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the behaviour of the results in table 3.4.2.

The results of this section certainly suggest that history has little
effect on the finite gain other than that already found in the infinite
case, In a broader sense, the preceding results confirm Finney's conclusions
that the finite gain behaves in a very similar manner to the infinite gain

and that the finite gain approaches the infinite quite rapidly.

TABLE 3-&-2
The finite gain (with and without history) as a function of V
for symmetrical selection (rv1 =, = 0.5, Nz/N.l = N3/N2) from
a normal population with N, = 16, Nj =1 and V=1.0,

E(G)/o for
GR/U** Var(G)/o® infinite model
with with
v without history with history history history
0 1.766 1.766 0 1.968
570 1.755:0.006*  1.759%0.009 0.306 1.965
572 1.740%0.007*  1.739%0.008 0.29% 1.952
571 1.674%0.009*  1.6840.004 0037k 1.889
52 1,564%0,013* 1.567420.010 0.426 1.789
1,0 1.39220.005 1.401+0,004 0.556 1.605
52 14136%0,022* 1.16240,009 0.686 1.340
5 0.915+0,025* 0.888+0,006 0.793 1.039
52 0.454%0.030*  0.467:0.010 0.948 0.529
57 0.21520.,029*  0.22530.011 0.941 0.244
5% 0.0700.031*  0,095%0.012 04990 0.110

* Finney's (1966) results,
** From at least 1000 runs each.
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3.4.2 Variation in the value of history with V and m

It can be seen from table 3.4.3, showing the gain both with and without
history over a wide range of values of V, that there is very little
variation in the value of history with V; there is probably a slight
increase in its value as V is increased but, considering the errors

involved, even this is not very obvious. The error was, in fact, so large

TABLE 3.4,

Variation of GF/H in the optimum region for V = 60, N, = 16
and N, = 1 (based on 3000 runs each; error of *0.018).

3
N,t 3 4 5 6
%
0.3 0.303 0,270 0,303 0.309
0.4 0.285 0.316 0.289 0.269
0.5 0.267 0.295 04301 0.317
0.6 0314 0.318 04269 0.281

relative to the value of history that the gain with history was often
lower than the gain without; this occurred frequently throughout the
simulation study. There was no discernible pattern to the difference
between Var(G)/~® with and without history.

Considering the errors involved, the fact that GR/G is consistently
in the range 86-90 percent of the infinite gain over the entire range of V
indicates a very close adherence to the infinite case; for this reason
it is probably safe to say that the variation in the value of history as a

function of V is also very close to that found in the infinite case (see

figure F11).
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The fact that symmetry is still, for very large velues of V, a very
good approximation to the location of optimum gain is illustrated in table
3.l o4 showing the gain at verious locations in the region of symmetry for

m = 0,0625 and V = 60, Considering the errors involved, operation at

TABLE 3.4,

The finite gain (with and without history) as a function of N,
for N; = 1 and near-symmetrical selection (nf1 =0, = 0.5) from
a normal population with V = 1,

E(G) /o
Gp/o Var(G)/o® for infinite
N1 N without with with model with Finite
history history history history target
11 0 0 1.0 o} 0

h 2 0.7/190,013  0.744%0.010 04744 0.956 1.029

9 3 1.127:0.014* 1.131#0.013 0.646 14347 1..85
16 4  1.392%0.005 1 .401 0,004 04551 1.605 1.766
32 6 1.72120.023* 1.69720.013 0464 1.898 2.070
64 8 1,975%0.027* 1.969*C.01L 04395 2479 2,344
100 10 2.128%0.014%* 2.158+0.014 04360 2.350 2,508
128 11 2,290*0.028* 2,270*0,016 0.382 242 2.595
256 16  2,491%0,034* 2.489%0,015 0.328 2.687 2,827
512 23 2,753%0.033* 2,767*0.011 0.273 2.918 3,044

* Finney's 1966 results.

either 7 = 0.3, N, = 3 (the approximate location of the infinite optimum)

or at symmetry should give very nearly optimum gain, Similar studies for

7 = 0,01 and various values of V gave results similar to those just described.
“2e results in table 3.4.5 foar the gein both with and without history,

over a wide range of values of N, (N3 = 1), indicate that, once again, the

infinite case is a very good model. In this case, however, the percent of

infinite gain achieved by the finite gain appears to vary slightly as a
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function of Ny: at N, = 4 (m = 1/4) we achieve 78/ of the infinite gain;

at N, = 512 (" = 1/512) we achieve 957 of the infinite gain., Although

masked by the simulation error in GR/O', this trend seems to occur consistently
over the entire range of N,. This, no doubt, is a result of the fact that,

as N, increases, we gradually approach the infinite case even though N5 stays
constant at 1.

The variation with m of the value of history is, because of the fact
that the error in G—R/O' is of the same order of magnitude, harder to
determine; the closeness with which the finite case (both with and without
history) follows the infinite suggests that the behaviour found in the
infinite case (figure F10) is probably still an adequate guide. The fact
that history resnlts in a 3,5% increase in gain when Ny =4, Ny = 2 and
N, = 1 does not, at least, contradict this; little more, however, can be
said.

Calculations similar to the above for V = 0.2 and V = 5 only served to

add weight to the comments already made.

3e443 The value of history in multi-stage selection

It was seen in part 2 that the value of historical information increases
with the number of stages; it will be seen in this section that the same is
true in the finite case.

Table T3 gives the gain with and without history for multiple-stage
finite selection with V = 1. It can be seen that there is a marked increase
in the value of history as k increases and that the value seems to be about

the same for both N

4 = 64 and for N, = 16 (both for ™ = 0.0625). Comparison
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with corresponding figures for the infinite case suggests that the value
of history is as great if not greater in the finite case: in four stages

we have, in the finite case, an increase of 5.37 with N, = 16 and 4.6% with

TABLE 3.4.6

Values of gain and the use of histary for multiple-stage
near-symmetrical screening with Ny = 100, n =1 and V = 1.0.

- Var(G)/o®
GR/G (finite target=2.508) % value when % value of
Intermediate with without of using history in
k Ny history history history history infinite case
1 - 1.773 1.773 - 0.580 0
2 10 2.15820,014  2,12820.,014* +1 o4 04360 0.2
3 22,5 2,238%0,012 2.227+0.017% +0.5 0.339 0.6
L 30,10,3 2.282%0,012  2.294%0,016* -0.5 04359 1.0
5 140,16,6,3 2.28720.012  2.26620.015% 40,9 0.327
6 46,21,10,5,2 <,303*0.011 2424120.,011 +2.8 0.291
8 56,32,18,10,
6,3,2 2,318+0,011 2.,2L5%0.,011 +3¢3 0.312
10 63,40,25,16,
10,6,4,3,2 2.27420,011  2.220:0.018*%  +2.4 0.283

* Finney's (1966) results.
** Not available for k > 4.

N, = 64 in the infinite case the increase is down to 3.4 (for m = 0.0625).
Because of the error involved, these results are not conclusive, but the
fact that the finite values are consistently larger than the infinite does
give strong support to the argument.

Inspection of table 3.4.6 showing similar figures for ™ = 0.01 with
N, = 100 and V = 1,0, indicates that the decrease in the value of history

1
found for decreasing ™ in the infinite case carries over into the finite,
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In view of the low (around 1¢7) value of history for k - 5 and the relatively
higher value (2-3 percent) for k ~ 5 it appears that the expected increase
in the value of history with increasing k does occur, but the values are

so small that no more can be said.

Unfortunately, since infinite results are not available for the gain
when using history for k > 4, little more can be said of the similarity
between the finite and infinite cases. As far as the tables go, especially
considering how close the error is to the value of additional stages, there
is no reason to doubt that the similarity between the infinite and the finite
cases continues. Finney (1966) calculated the infinite gain for larger
values of k without the use of history; his results support this conclusion,

As far as Var(G) is concerned, neither history nor the number of stages
scem to have much effect.

Obviously, since ihe (k-1)-stage gain cen always be expressed as a
special case of the k-stage gain, the optimum gain must be a non-decreasing
function of k. The fact that this is true for the finite gain up to
reasonably large velues of k in both table 3.4.6 and table ™3, and that
we are getting quite close to the maximum gain (only 8% below for B8-stage
selection in table 3.4.6), suggests that we are, at least, close to the
optimum location. In order to test this theory, the finite 3-stage gain was
calculated at nine locations eagh for ™ = 0.0625 and V = 1 with Ny = 16
end N, = 64, The accuracy was about 0,011 (500 runs) for N, = 64, N3 =4
and about *0,008 (4000 rums) for N, = 16, Ny = 1. The observed differences
in the results at the different locations could easily have been due to the

experimental errors; because of the obvious flatness in the surface and of
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the time consumed to get the required accuracy, no further 3-stage work
was done,

The only other survey work done was for V = 1 and 10-stage selection
with Nﬁ = 100 and NB = 1. This number of stages was chosen because of the
fact thaet symmetrical GR/G appears to have decreased on moving from 8
stages to 10 (2.318%0,011 to 2.274+0.011) suggesting that the optimum has
moved from symmetry. The results of this brief study appear in table T4,
Because of the time consumed in calculating the gain to the desired
accuracy, and the very large number of possible specifications, only a few
calculations were made. In view of the relatively large number of varieties
(37) being discarded with very little replication at the symmetrical
specifications (column 2 of table T1L4), the gain was calculated for heavier
than symmetric early replication and lighter than symmetric early selection,

that is to say for

10 (3.441)

Py 2 Py 2 eee 2Py o (34442)

Table T1L4 shows that the simulated gain achieved under these circumstances
was always as great as, or greater than the symmetric gain; the one value
of gain calculated for movement in the opposite direction (column 1) was
quite a bit lower than the symmetric gain, With this in mind, it appears
that movement in the direction of 3.4.1 and perhaps 3.4.2 will probably do
no harm; it may even be beneficial. As usual, the surface is so flat, and
the error (after a reasonable number of runs) so large with respect to the

possible improvement in gain, that the results cannot prove anything;
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they are, however, suggestive of the nature of the variation of gain with
operating conditions.

If it were desired to locate the optimum operating conditions accurately,
a technique that might be useful would be to compile stage by stage
statistics on the places at which varieties with desirable true yields were
being rejected; if it turned out that a disproportionate number were being
rejected at one or two specific stages, replication in those stages could
be increased and/or selection made less intense; by spreading the change
evenly over all other stages this approach should help to locate the
optimum. The use of a simulation program designed on statistical experimental
design principles might also be helpful if very accurate location of the
optimum finite gain were desired. In view of the obvious proximity of the
symmetrical gain to the optimum, and of the computer time that would be

required for such a si.’y, no such attempt was mede here,
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3.5 Kodified Acceptance Rules

2.5.1 Cut=off points throughout

It was pointed out in part 2 that accepting fixed proportions at each
stage is, in the infinite case, equivalent to using cut-off points; in
the finite case, the use of cut-off points results in variation from
cohort to cohort in the number of varieties accepted at a given stage
and the similarity is destroyed. Since, in the previous chapter, the
finite (fixed proportion) gain was usually found to be quite a bit smaller
than the infinite gain it was decided to study the advantage of the use of
cut-off points at all stages. For consistency, the cut-off points were
chosen to be the values of ?i that correspond to the values of Pi used
in the infinite case (and in the previous chapter).

Variation in the number of varieties accepted into a given stage
creates a new problem: how are we to replicate these varieties? One
method of mainteining consistency is to leave A fixed at the level used
in previous chapters, splitting it, as usual, among the various stages
according to the values oy = Ai/A and calculating the error variance for

stage i from the standard formula

iy
1= N O

A difference from previous work now arises: the difference is that ei
is no longer fixed but fluctuates from cohort to cohort as & function

of Ni. The fluctuations in Ni may also create practical difficulties in

maintaining the desired plot size while at the same time using all the
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cvoilable resources and replicating each variety equally. The variation
in cg causes the correlation between two specific stages to vary from

cochort to cohort; the variation in both e; and nij’ in turn, causes
the value of ﬂi necessary to achieve the desired average value of Py to
vary from cohort to cohort.

fnother possible scheme, also consistent in its way, is to fix the
value of ei at the desired level (by replicating each variety at the
previous fixed proportion level) and to vary the total number of plots
eccording to the number of varieties being studied. This will create

fluctuation in the velues of £y (and, as a result, ) from cohort to cohort,

but eg will remain fixed at the wvalue

where 7. _, is, as usuc., the long term (infinite casse) average value of
ﬂi/N}. This approach will create considerable administrative difficulties
in that the experimental resources recuired at stage i are unknown until the
end of stage i-1; this may be a very important consideration if the experimenter
hes & number of experiments (cohorts) under study and is limited by a fixed
total amount of resources; less difficulty will arise if the experiments
are rapidly completed and if there is a very large supply of the required
experimental meterial.

Obviously the increased gain resulting from the use of one or the other
of the above methods must be balanced with the difficulty of using it.
Both schemes are studied in this part of the thesis: the first is called

the variable replication scheme and the second the fixed replication scheme.
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One comment that should be made with respect to the actual simulation
of the two replication schemes is that they were, in order to save computer
time, both tested on the same populations and, in addition, the first stage
results were made common to both; the results in later stages were also
based on the same random numbers but, of course, the error variance was
modified according to whether fixed or variable replication was being used,
This approach tended to make the results of the two systems more alike
than if they had been based on entirely diffcrent sets of random numbers.
Arguments could be put forward in support of either wethod of simulation
but, especially in view of the saving in computer time, *he one used here
was felt to be adequate,

For a given set of selection specifications the variation of n from
cohort to cohort forces a redefinition of G and Var(G). Since all values
of n< NH are now possible, the mean value of ell varieties accepted, E,
is used in place of Gps the variance of the gein (Var(G)) is replaced
by the variance (over all runs at a given set of specifications) of all
the varieties accepted; and finally, letting Nt represent the total number
of varieties accepted in a given set of runs, the variance of the mean
gain is Var(G)/Nt. Although not entirely satisfactory, these redefined
values, in conjunction with the average value of n (n) over all runs for
a given set of specifications, permit adequate comparison of the different
screening systems.

It can be seen from table 3.5.,1 that, for V = 1,0, the finite gain is
very nearly equal to the infinite gain over a wide range of values of =

when cut-off points are used at all stages. In addition, judging from the
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results of the table, it appears that leaving the amount of replication

per variety (and hence ei) fixed at the infinite case levels may result in

a slight additional increase in gain.

It is, however, very difficult,

based only on the results of the table, to say whether either of the

TABLE

2241

The variation in 2-stage finite gain (V = 1,0, oy = 0.5) with
- (N1) using cut-off points throughout (the cut-off points are

made to correspond to near-symmetrical specifications and

N, =1

5= 1.

E(G)/c for Variable replication Fixed replication
infinite s - -

N, case G/o* n Var(G)/o® G/~* var(G) /o®
L 0.956 0.922 0.9%46 0.536 0.950 0.922 0,515
9 1.347 1.328 0,972 0.510 1.371 0,936  0.491
16 1.605 1.574 0,966 0,411 1.610 0,937 0.403
32 1.898 1.869 1,065 04334 1.891 1,045 0,318
6L 2.179 2,21, 0,907 0.302 2,222 0,893 0.295
128 2442 2,369 0.940 0,210 2.386 0,929 0,200
256 2.687 2,675 1.056 0.190 2.691 1.041 0.182
512 2.918 2,93 1.000 0,161 2,930 1.012 0.160

above statements is true due to the fact (as usual) that the standard error

* A1l values of mean gain accurate to a
standard deviation of approximately *0.016.

of the mean gain (approximately *0.015) is of the order of the observed

difference; the difficulty of comparison is increased further by the fact

that n very rarely equals "N1.

Table 3.5.2, showing the same results for various values of V with N

1

16

and ™ = 0,0625, suggests the same two conclusions; again, for the same reasons,

it is impossible to make them with certainty.

In any case, the same general
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behaviour does appear to occur over a very wide range of both~ and V,

As can be expected with the errors involved, surveys of the optimum
region (for = = 0.01 and 0.0625 with V = 0e2, 1.0, and 5.0) did not
indicate any reason to doubt the optimality of the use of symmetrical
specifications as the framework for the operation of the cut-off selection
scheme,

TABLE 3,5.2
The variation in 2-stage finite gain (n% = 0,5) with V for N, = 16

g =
and using cut-off points corresponding to N, = 4 and NS = 1,

E(G)/c for Variable replication Fixed replication

infinite -
V____ case G/o* Avg.n Var(G)/oc® G/o* Ave.. Var G/o®
572 1.965  1.978 1.045  0.147 1.980 1.043  0.146
572 1.952  1.966 1.0  C.179 1,970 1.037  0.178
5"11 1.829  1.898 0.985  0.230 1.903 0.988  0.227
572 1,789 1.782  1.055  0.330 1.796 1.046  0.318
1 1.605  1.57% 0.966  0.411 1.610 0.937 0,403
5% 1.30  1.338 1.010  0.628 1,380 0.951  0.613
5 1,039  1.025 0.996  0.748 1,072 0.930 0,722
52 0.529  0.531 1.023  0.912 04563 0,932  0.919
52 0.2k 0.246 1.00h  0.989 0.214  0.936  0.990
5% 0.00  0.104 0.997 (1.007) 0.113  0.901  0.99%
%

All values of mean gain accurate to a standard deviation of
approximately 0,015,

Similar, but necessarily briefer, studies of the same scheme for 3-stage

selection with N1 = 64 and 7 = 0,0625, and with Na

for V = 1.0 suggested similar conclusions: at symmetry, the gain with

= 100 and 7 = 0.01, both

constant replication was, in the former case, 1.672%0,016 versus an infinite
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gain of 1,657 and, in the latter case, 2,39920.015 versus an infinite gain
of 2.439. Once again, there is no reason to doubt that very nearly
infinite gain will be achieved by using cut-off points throughout.

Although it is impossible to reach definite conclusions based only on
the preceding results, it can be seen from consideration of what is actually
happening that we must approach the infinite case. This is so because the
idea of a cohort becomes less relevant when using cut-off point: since, in
& sense, varieties are no longer being assessed on their merit relative
to other varieties in a given cohort but on their merit relative to an
absolute standard. In our study, this standard is chosen to accept approximately
the fraction m of all the varieties studied in all runs at a2 given set of
operating conditions., The result is that, in effect, we are selecting from
one very large cohort with IJ; = the number of runs x the number of varieties
studied per run and, correspondingly, n’= --rN{. In view of the size of Iy
and n°, and of the rapid approach to the infinite results as N, end n are
increased (see table 3.4.2), it is obvious that we will, over the long run,
achieve nearly infinite gain when using cut-off points. 'e cen also expect
the gain to be slightly larger when using a level of replication fixed at
the level found to be optimum in the infinite case (the symmetrical level),
than when A and Ai are left fixed and replication is varied to accommodate
the variation in Ny; the slight increase in gain will, however, rarely be
worth the trouble,

When the sbove considerations and the previous results are both taken
into account, it can be seen that we are safe in concluding that very

nearly infinite gain will be achieved in the finite case if cut-off points
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are used instead of fixed proportions. This in turn means that, for small

N,

gain than is achieved by always accepting fixed proportions. The comparisons

and especially small n, we will achieve much higher long-term finite

of finite (fixed proportion) gain with infinite gain in chapter 3.4 indicate
the size of the increases that should be achieved.

The use of cut-off points is, however, not without its difficulties,
The fact that 30 to 40 percent of the individual runs result in the rejection
of all the varieties will cause problems if it is very important to come up
with something quickly. On the other hand, many runs recsult in the acceptance
of many more than the desired fraction'"N#; this may crcate practical
difficulties if the follow-up facilities are limited. A scheme in which a
maximum of some fixed number of verieties is accepted provided each yields
above some fixed cut-off point might solve some of these problems, It
would, however, not usually, unless the cut-off point were chosen by some
method beyond the scope of this thesis, result in the desired long term
fraction ™ of the varieties being studied; comparison with other selection
schemes would therefore be difficult.

In addition to the difficulties outlined above, it will frequently be
difficult to establish the desired cut-off points. Although we have seen
thet the infinite gain doe: not, as a percent of target, change much with
variation in the parent distribution, the cut-off points are very much
functions of the parent distribution. This means that they will rarely be
available, One exception to this is that the use of a standard, or even
the experimenter's knowledge of the situation, may make a final cut-off

point reasonable.
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If, however, the main purpose of the selection program is to achieve
overall maximum gain rather than maximum average gain for each cohort, one
should, in spite of these difficulties, do one's best to establish
appropriate cut-off points rather than use fixed proportions. This
approach will be particularly important if varieties are presented for
study one at a time, In view of the obvious difficulties in the creation
and use of such schemes, the next two chapters will investigate modified

schemes based partly on fixed proportions and partly on cut-off points.

352 Intermediate cut-off points with n fixed

Because of the possibility of limited follow-up facilities, selection
schemes will be studied in this section in which n is fixed but which use
cut-of f points at all intermediate stages. Since n is fixed in every
cohort, the original definitions of gain (GR/b) and Var(G) will be used
rather than the modified definitions of the previous chapter. As in the
previous chapter, both constant and variable replication will be employed.

The results in table 3.5.3 for 2-stage selection with V = 1 and
various values of N, (n fixed at 1) suggest that, when a fixed proportion
is accepted from the final stage, there is very little to choose between
using a cut-off point at the end of stage one and accepting a fixed
proportion at the end of stage one.

In order to determine whether this result depends on the size of n,
selection was performed for m = 0,0625 and ™ = 0,01 with various values of
N1 for each. Once again, the results were very close to similar studies

for selection when fixed proportions are accepted throughout (see table 3.L.2
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for m = 0.0625).

The results for N, = 16 and n = 1 in table 3.5.4 suggest that the two

1
acceptance schemes are also similar over a wide range of values of V.
Surveys of the optimum area for various values of m and V only served to

confirm this similarity.

TABLE 3.5,

The variation in 2-stage finite gain (v, = 0.5, V = 1.0) with
m (N;) for n = 1, but with a cut-off point (made to correspond
with the value of N, closest to Py = Jr) at stage 1.

E(G) /o Fixed proportions Cut-off at stage 1
for at both stages variable fixed
infinite replication replication
N, case GR/U Var(G)/c*® G /o* Ver(G)/o° Gp/0* Var(G)/o°

L 1.956 0,745%0.010 O0.74k 0.739 0.715  0.75% 0.708
9 1.37 1.430,013 0,646 1.415 0,700  1.135 0,692
16 1.605 1.401+0,004 0.551 1,37,  0.566  1.386 0.566
32 1.898 1.697+0.,013 0,464 1.685 0471 1.688 0.481

6L 2,179 1.969%0.014 0.395 1.978  O.4hl 1973  O.454
128 2,442 2,270%0,016 0,382 2,235 0,308 2,235 0314
256 2.687 2.489%0.015 0.328 2,497 0.283 2,499 0.289
512 2,918 2.767%0.011 0,273 2,777 0.2%1 2,762 0,260

* Mean gein accurate to a standard deviation of approximately *0,01Lk.

In order to get some idea whether the same conclusions apply for more
than two stages of selection, a brief study was made of 3-stage selection
in which n is fixed end intermediate cut-off points used. The results were
almost identical to the results of 3-stage selection in which fixed
proportions are used throughout.

In both tables in this section (as with the two tables in the previous
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section) there is little to choose between fixed and variable replication*,

Once again the gain for fixed replication does seem to be slightly higher

TABLE 3.5.4

The variation in 2-stage finite gain (v, = 0.5) with V for N, = 16

and NS = 1 but with a cut-off point corresponding to N2 = L at stage 1.
E(G)/o Fixed proportions Cut-off at stage 1
for at both stages variable fixed
infinite replication replication
v case GR/G Var(G) GE?G‘ Var(G)/o" G;?C* Var(G)/o"

573 4.965  1.75920.009 0.306  1.764 0.323  1.764 0.321
572 1,952  1.739%0.008 0.294 1,746  0.351 1.4k 0.352
57! 1,889  1.68420.00L 0.37h  1.680 0.399  1.686 0.396
52 4,789 1.567+0.010  0.426 1.562 0.498 1.564  0.498
1 1.605  1.40120.00h 0.556  1.37% 0.566 1,386  0.566

5% 1.3,0  1.16280.009 0.686  1.126 0.743  1.457  0.757
5 1.039 0.,888£0,006 0,793 C.857 0.840 0,876 0.735
52 0,529  0.467:0.010 0.948  0.452 0.926  0.47h  0.921
57 0.244  0.225:0.011  0.941  0.218 0.994  0.211  1.000
5% 0.100  0.095:0.012 0.990  0.093 1.010  0.090 0.998
* Mean gein accurate to a standard deviation of approximately *0.012.

than that for variable replication but the difference, if it does in fact
exist, is so slight that it is not worth consideration.

In keeping with all the above comments, comparison of the values of

# Keep in mind that, because of the system used for simulation, the gains
and variances in comparisons of fixed and variable replication will always
be more alike than the gains and variances in comparison of the two first-
stage acceptance rules,
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Var(G)/s® in tables 3.5.3 and 3.5.4 does nothing to indicate any difference
between the use of cut-off points and the use of fixed proportions at the
end of the first stage, nor is there any apparent difference between fixed
and variable replication,

In view of the results of this section it seems safe, when it is
necessary to accept a fixed number of varieties from the final stage,
to recommend the acceptance of a fixed number of varieties at each
intermediate stage as well, The extreme difficulty of establishing

appropriate intermediate cut-off points makes this conclusion a welcome one,

3.5.3 Cut=off point at the final stage only

Because of the ease of operation of systems based on accepting fixed
proportions, and of the fact that it will freguently be possible, by
using a standard or by some sort of economic analysis, to establish a
final cut-off point, the operation of a selection system using a cut-off
point at the last stage and accepting fixed proportions at all intermediate
stages will be studied in this section., As in section 3.5.1, we use t
rather than GR since n varies from cohort to cohort as a result of the

reliance on a cut~off point. In addition, we define the quantity'; = n/Nﬁ;
by calculating the infinite gain corresponding to a selection fraction 7,
we compensate for inflation or deflation of the finite gain resulting from
values of n smaller or larger (respectively) than target. This permits
comparisons to be made on & more equal basis,

Table 3.5.5, showing the gain achieved for various values of N1 when

accepting approximately N, = /N, varieties after stage 1, indicates that
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close to infinite gain is achieved under this modified system. That the
same is true over a wide range of values of V (for Ny = 16, N, = 4 end
7y = 0.5) cen be seen in table 3.5.6. Although the infinite (modified)
géin is very close to the finite gain in all cases in both tables, it

appears that the finite gain may be slightly lower; this, however, is far

TABLY 3,505
The effeot on the 2-stage finite gain of using a cut-off point
at the final stage, for verious values of N, () and V = 1 (the
cut-off point was chosen to correspond to a long term average

of ; = 1) .
Finite
Infinite case Final cut—off fixed proportio
E(G)/c for 0575 for
N N, F=WN, B0 Var(c)/-* & fixed n=1 Var()/o®
2 0.958 0.922+0,011 0.568 0,996 0.74420,010 0,74
3 1.359 1..32340,011 0,495 0,973 1.43120,013  0.646
L 1.608 1.61520,007 0.425 0,994 1.40120,004 0,551
6 1,901 1.88120,011 0331 0,992 1.69720.013  0.464
8 2,202 2.15920,011 0e274 0,940 1.969:0.014 0,395
1 2,428 2.44240,012 0.255 1,039 2,27020,016 0.322
16 2,673 2.63720,013 0176 1.042 2,489%20,015 0,328

N =
-
ABER rws

from certain when the magnitude of the standard deviation of the mean

gain is considered. 1In any case, it is obvious from both tables that the
gain under the modified system is much larger than that achieved when
accepting fixed proportioms atboth stages., It can also be seen thet, unless
V is large, Var(G)/o® is smaller in the new system than in the original
fixed proportion system. There is, however, the drawback that 30~35 »ercent

of all pelsctions result in no varieties being recommended for acceptuance,
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The same sort of behaviour is found in 3-stage selection when fixed
proportions are accepted at the end of the first and second stages and a

cut-off point used at the finel stage. In this case, symmetrical selection

TABLE 3,5.6
The effeot on the 2-stage finite gain of using a cut-off point at
the last stage for N, = 16, N, = 4, ® = 0.5 and various values
of V (the cut-off point was chosen to correspond to a long term
average of n = 1),

Finite

Infinite case Final cut-off d proportio

E(G)/o for - _ o for
v T = 3/N1 G/o Var(G)/c® n fixed n=1 Var(G)/c®
57 1.962  1.93840.015  0:133 1.007 1.75920.009  0.306
572 4.988 1.94520.013  0.465 0.919 1.739#0.008  0.294
571 41.918 1.92020.019  0.247 0.934 1.68420.004 0,374
5% 4791 1.77580.014  0.280 0.997  1.56740.010  0.426
1 1.608 1.33820.015  0.593 0.99% 1.40120.004 0.551
55' 1512 1.338+0.015 0.593 1.077 1.162$+0,009 0,686
5! 1,039  0.98320.016  0.741 0.998 0.888£0.006 0.793
52 0.529  0.51820.015  0.921 1.002 0.467£¢0.010  0.948

55 0.246 0.25440.014  0.993 0.977 0.225¢0,011  0.941
5% 0,13 0.12520.013  0.998 0.916 0.095$0.012  0.990

for V=1 and N, = 100 (target value of m = 0,01) resulted in a finite
gain of 2.42620.012 versus an infinite gain (for 7 = -l'-)/N1 = 1.004/100) of
2,436, Other 3-stage results (for various values of V and ) also agreed
very closely with the infinite case.

Comparison of the results of this section with those of sections 3.5.1
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and 3.5.2 indicates that the main damage is done to the gain when a fixed
proportion of varieties is accepted from the final stage; what is done at
intermediate stages seems to be of much less importance., In view of this,

and of the difficulty that will likely be met in establishing the intermediate
cut-off points that correspond to the desired symmetrical selection specifi-
cations, the most acceptable selection procedure will probably be the system
investigated in this section. Special circumstances may, of course, dictate
the necessity of accepting some varieties from every cohort thus prohibiting

the use of this modified scheme.,

3.5.4 Final acceptance prior to the {inal stage

In section 2.4.1 we found that little or no increase in gain occurs
in the infinite case if some varieties are accepted, without further study,
immediately after the first stage. There is however the advantage,
especially if m is small, of getting a few varieties into service, or into
the next phase of the study, without any corresponding decrease in gain,

For this reason a very brief study was made, for small values of w, of
early acceptance in finite selection.

Selection in which a relatively large rnumber of varieties is desired
was chosen for the study simce, for very small values of n, early acceptance
mekes little or no sense. In any case, early acceptance from all but
extremely large populations must, if it is to be of value, be based on
cut=-off points rather than fixed proportions and, when using cut-off points,
the idea of a cohort has been seen to lose its significance. In thi:s study,

the early acceptance was based on a cut-off point while both the number of
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varieties rejected at the first stage, and the total mumber of varieties
finally accepted were fixed.

Teble 3.5.7 gives the results for N, = 100 (™ = 0.25) and for
N, = 256 (7 = 0.,0625). In both cases, the populations are so large that

the finite gain is very nearly as large as the infinite gain. As was the

TABLE 3.5.

The gain when some varieties are accepted immediately after
the first stage in 2-stage selection for V.= 1, o, = 0.5.

100 = 50 = 25 256 — 64 —= 16
No.accepted No.accepted
early finite infinite early finite infinite
Targ. Actual gain* gain Targ. Actual gain* gain
0 0O 0.937 0.956 0O O 159 1.605
1 1.027 0.950 0.958 1 0.828 1.574 1.603
2 1.838 0.942  0.959 2 2.028 1.585  1.596
4L 3.965 0.949 0.961 L 4,028 1,566 1.575
5 4.950 0,948 0,962 5 4,788 1,551 1.560
6 6,080 0,942 0.962 6 5.972 1.537 1.542
10 9.572 0.933 0.956 7  7.060 1.498 1.522
12 11.605 0.930 0.948 8 8.228 1.471 1.500

* Standard error of mean gain < 0.009.

case in the infinite study when using large values of m, early acceptance
of a large number of varieties did not seem to result in much of a decrease
in gain: for ™ = 0.25, early acceptance of 12 varieties, or nearly half
the total desired number, resulted in a finite gain of 0.9300, only a few
units lower than the gein (0.9370) with no early acceptance. It can also
be seen that there may even be an increase in gain when 3-4 varietie: are

accepted early., The results for m = 0,0625 illustrate the rapid decrease
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in the value of early acceptance as ™ decreases: early acceptance of
more than 2-3 varieties in this case appears to result in a decrease in
gain. hen the size of the standard error is considered, there is no
reason to suspect that the behaviour in the finite case departs very much
from the infinite case.

Various other combinations of cut-off points and fixed proportions
could be studied but, in view of the results of previcus sections and of
the close correspondence between the finite and the infinite case in this

section, nothing very startling can be expected.
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3,6 Concluding Remarks

It is apparent from both the preceding work and Finney's 1966 paper
that, although the gains frequently differ in magnitude, the infinite and
finite cases are very similar in behaviour.

Because of the inconclusive results in chapter 3.4 on the value of
history it is worth pointing out that properly weighted history will,
for obvious reasons, always result in some improvement in gain. If,
however, special circumstances make the use of history difficult or
costly, we have seen that it can, at the optimum operating specifications,
usually be ignored with little effeot on the finite gain. Caution is,
however, necessary in view of the increased importance of history under
non-ideal circumstances (see section 2.5.1 on the effect of interaction).
In general then, onc should do the obvious and carefully consider any great
changes in the yield of a specific variety from stage to stage; in addition,
if accurate estimates of the optimum weights are available, history should
be included in the estimate of x throughout,

The work of chapter 3.5 has shown that when cut-off points are used
(even if only at the final stage), the infinite case is a good guide to
the actual magnitude of the average finite gain. This means that there
will be a large increase in the expected finite gain when N1 and the target
value of n are relatively small., This fact is most certainly worth taking
into account when designing a selection program.

One general recommendation that seems very safe, especially in view of
the magnitude of Var(G)/o® (relative to G/0), is the use of the symmc'rical

selection specifications; they should give very nearly optimum gein in
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finite selection from & normal population under all circumstances. <The
cloce proximity found in chapter 2.6 between the results of selection from
infinite normal and (continuous) infinite non-normal distributions, and

in the last two chapters between the finite and the infinite cases,
sugpests thet this recommendation will also apply to a wide range of other
distributions. In view of the differences between the infinite 2-point
distribution and the other distributions studied, simulation of that case
should be done; once again the infinite case will probably be a good guide

to the finite.
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APPENDIX 1

The calculation of the derivatives of a multivariate

normal probability integral

The derivative

1 ot ] ; 1
T, [ e [emle 3T )/LE) TR o ey
ot

fﬂ1 {l!k

plays a very important part in chapter 2,2 in the derivation of the nth

rmcment of the distribution of x after k steges of screening., Since I have
not found an expression for this derivative in any standard text I will
give its derivation here.

Using the notation of chapter 2.2, particularly expressions 2.,2.2 and

2,2.11, it can be seen that

i (t)ﬂn1m?m P ﬂm-1(t)-°

o n (t)=o
. TR m, 1 ’ , 1
SOES SN N

v 7
m=im m m+ m+im'm

»

x /1202 S1=0? /1=0%_—

im m-1m m+im

11l‘(t)“ﬂ}““v"‘-Rm)d\r
LR Y H n
J1—nim
and hence that,
GTCLRL o g(m (£))1%("™(£) 587 (a1)
m

Keeping this in mind and remembering, from elementary calculus, that the

derivative of a composite function,

us= u(x"(t) ,.oo’xn(t)) ’
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is given by
du B 3y dxi(t)

at "~ i=1 Txg(t) at ’ (h2)
we have, from A1 and A2,
ar(n(e);r] _ % azfr(e)r] FalM
dt 1=t T ATt at
k L ¢
= T8 (8)1 (U (8) 5% ) /mye (43)

In order to show the pattern that is developing, the second derivative
will also be found. keferring again tc the terminology of 2.2, especially

2.2.14, we have
I™(®(t) ;5™ = T ﬂ(vﬁ)lm(“m(ti\f:)iﬂm) G-V: (ofm),  (24)
(t)
n

where "‘-m(t;vm)is teken to be a k-2 element vector with element 1 equal to

th

("m(t)-ﬂinvm)/ 1=(ny,)" end with o™ and n*" elements missing. This time

we have

m,,.m m
SI;{;(_SE).M = (M(£))TT(AT(£)3RTT)  (ngm). (45)
n

Making use of the previcus methed and equation 43, we have,

2

Lo 1nR] = & (580, ()i ad) g

k I -
= 354 (‘ﬂrt)ﬁ(“i(t))ll(”i(t) 2/ ".’?

k ypd(nd ¢ (t)
+ TPy (8))/y ﬁ;‘ La%é;).ﬂ‘.) at
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L0 () /ng] (06T (0E(8) 388 /2

Ly 1) w2, )

fll

k
+ j?__‘-‘ﬁ(ﬂj(t))(:;'
i
Keeping in mind the fact that

11 se e 11 see iiolo 5
Wt ey 2] L

in other words the fact that the result is 1 when the number of superscripts
(the number of integrals left out) is equal to the order of the integral,
higher order derivatives can be calculated using extensions of the basic

notation. They are not used in this thesis and so will not be developed

here.
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PIGURT F10. Dependence on m of percent increase in pain due to the use of
historical information for symmetrical selection from a normal distribution,
V=25,
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TIGURY 1. Dependence on V of percent increase in gain due to the use of
historical information for symmetrical selection from a normael distribution,
m = 0.0625,
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YIGUR® T12., Variation of value of POV required to achieve maximum gain with

nV for symmetrical selection from a normal distribution.

10000 —
i
G000 F

i
L4000 1!—
|

2000 |
1000 —
600 -

|
L00 -

li 1 ll_ll_l el L ...I i l'uli 1 Illl 1 |l|i 1 lIII

-4

0.
0.0001 0.001 0.01 0.1 1 10 100 1000

Scale of mV



- 185 =

FIGURE F13. Maximum gain achieved by using P0 # 1 for symmeirical selection

from & normal distribution.
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FIGURT ™M5. The use of an ROC-curve to compare the gain with history to that
without history for 3j-stoge selection from & normal distribution (m = 0,0625 and

V= 1). The arrow marks x = 1.5340, the boundary bet.een the correct classes.
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= = 0,0625
”’1 = nf2 = nj
P1 = :‘2 = ")
- = 0.01

,,1 = -‘2 = .’v5
5= }"2 = ;-'3
= §3.001
i rb = ~3
P1 = F2 = J"j

The cffect

NGl -

selection from a4 n

]
Ll

of* interaction (revresented by ";y) on the gain in

gl distribution with V = 1.

eigiitings system

o inverse equal
vy variance weight no history
0.00 1.0656 1.579 1.620
0.401 1.653 1.577 1.616
0.03 1.647 1.573 1.610
U.10 1.628 1560 1.587
= 1;’3 \J-:u 1 03?3 1 0521':— 1 0528
1.0U 1.046 147 1377
=0.%9685 3.00 1.214 1.204 1.130
10.00 0.862 0.:60 0.78h
3400 0,557 U556 0,501
100,00 2. 3519 9 0.266
2.0G 2540 24220 2,425
0.1 24433 2.226 2.047
0.03 2420 220 2,402
0.10 2,579 22N 24354
=355 U630 2.285 2.149 2,252
1.00 2.060 991 1,985
=C.21544 3,00 1,700 1.679 1 604
10.00 1.190 1.186 1.402
40,00 0.764 C.76l 0,701
100.00 U.437 el 37 Q.400
e 3.226 2487 3.223
J 131 3 -21 }1- 2 08?3 : .209
0.03% 2.193 2.563 3,184
i,;,10 ,{-’015\4 21an 51-16?
= A/3 0.30 24995 2.772 2.942
1.00 2.682 2.566 2.592
= 044 3,00 2.192 2.157 2.085
1\.}.00 1 053-35 1 0518 1 025~28
30,80 C.974 0.973 0.207
10:.).”0 4055? o -557 0051?
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TABLE M4, Values of 10-stage finite gain for KH =100, n=1 and V = 1.

Gn_/c 2.2.620,011 2,27420.,011% 2,28810.010  2,289%0,010 2.274%0.,011

N, 100 100 100 100 100
N, 63 63 €3 63 72
N3 LO L0 L0 50 L7
I, 25 25 25 25 30
N5 16 16 16 16 19
Ne 10 10 10 10 12
N? 6 6 6 6 7
N L L 4 L b
I 3 3 3 3 3
10 2 2 2 2 2
n 1 1 1 1 1
o 0.05 0.1 0415 0.17 0417
@, 0.0625 0.1 041375 041475 0.1475
g 0.075 041 0.125 0.135 04135
) 0.0875 01 0.4125 0.,1225 0.1225
”5 0.1 0.1 01 0.1 0.1
%% 0.1 0.1 0.1 0.1 0.1
“? 0.1125 0.1 0,0875 0.0875 0.,0875
“g 0.125 0.4 0.075 0.065 0.065
09 0.1375 Uel 0.0625 0.0525 0.0525
% 0.15 oK | 0.05 0.02 0.02

* this column corresponds to near-symmetrical selection.
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