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Summary of Thesis

Frequently one is faced with the problem of determining the one or

more best entities in a group presented for study. An example of such a

situation is the choice, from a group of chemical compounds that may be

active against cancer, of those worth further intensive study, or even

adoption for general use. The design of the selection (or screening)

procedure to be used in such a situation has considerable influence on

the efficiency with which the best entities are chosen. The efficiency of

various selection procedures, and the robustness of these procedures to a

variety of operating conditions will be studied in this thesis for selection

from both infinite and finite populations.

Ffert 1 of the thesis describes the problem in detail and gives a few

of the many possible applications. The appropriate notation and terminology

are given in chapter 1.3 and, at the same time, the many assumptions involved

are described. Chapter 1.4 is the literature survey. The first section of

the chapter surveys the field, emphasizing the literature relevant to the

formulation of the problem used in this thesis; the last two sections

describe and discuss two of the many other formulations.

Part 2 of the thesis is concerned with various aspects of selection

from an infinite population. After an introduction to the topic in

chapter 2.1, exact expressions are derived in chapter 2.2 for the mean and

variance of the distribution of the true yield of the selected varieties

after any number of stages of selection from an infinite normal distribution.

Methods for using these expressions and for calculating higher order moments

are then described. The chapter closes with a description of an alternative

formulation of the problem that might simplify the analysis. The next chapter
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ia a detailed study of the influence of various factors on the infinite

gain; emphasis is on the value of the inclusion of all previous results on a

specific variety in the estimation of its true yield. Various methods for

assessing the merit of different screening programs are discussed in the

final section of the chapter. Chapter 2.4 looks briefly at selection schemes

in which acceptance is allowed prior to the final stage of the program. A

complicated scheme in which second stage replication is based on the first

stage results is also discussed. An investigation into the effect on gain of

the presence of interaction is made in the next chapter. Finally, in chapter

2.6, the robustness of the recommended selection scheme to departures from

normality is studied by selecting from various symmetric, skewed, and bimodal

distributions.

The last part of the thesis is concerned with selection from finite populations.

After a few theoretical considerations and general comments on the importance

of study of the finite case, the simulation technique is described. Chapter 3.4

consists of a comparison, for a -variety of selection parameter,., of the finite

case with the infinite. The comparison is based on the acceptance (at every

stage) of fixed proportions of the varieties being studied; emphasis is on

the value of history. The next chapter investigates the use of cut-off points

rather than fixed proportions in the definition of the acceptance miles.

Combinations of the two types of acceptance rules are also studied. The

chapter closes with a brief investigation of the value of accepting some

varieties prior to the final stage.
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PART 1. INTRODUCTION

1 .1 Screening

A problem often encountered is that of choosing from a number of

entitles presented for study those most suitable for some specific purpose.

Usually one wishes to choose those entities having the largest value of

some quantitative measurement of merit. Since in most instances the merit

of the individual in question is not measurable exactly but has associated

with it an experimental error, the design of schemes for best achieving the

desired result is statistical in nature.

As pointed out by a number of authors (Yates, 1950; Bechhofer, 195'+;

Finney, 1960a, 196/+) , the traditional tests of significance are not adequate

to make the decisions that are necessary in such problems. Significance

tests have in fact little relevance since, in a screening program, one

generally knows in advance that the items under study are different; all

that is necessary to show significance is very intensive experimentation.

This of course may be very wasteful. Since the total amount of experimentation

is usually limited in some manner beyond the control of the experimenter,

it is necessary to balance the desire to achieve statistical significance

with the desire to test as many new entities as possible. An extreme

example of what can happen is the interesting result by Curnow (1959) that,

under certain conditions in 1-stage selection from a normally distributed

population, it never pays to select from fewer than five individuals. This

agrees with a result of Dunnett (i960) and Finney (1958a). In screening

work there is a real risk of missing a breakthrough by concentrating too

much on certain items and, as a result, not getting around to testing

others (Dunnett, 1961). hat is really desired then is the most efficient



method of identifying the required number of suitable items without regard

to statistical significance. This is not to belittle the role of experimental

design in screening. On the contrary, blocking, replication, and other

error reducing techniques are of prime importance,

In addition to the design of the experiment, the statistician is

concerned with the number of entities that should be studied and the best

use of the resources at the experimenter's disposal. He must advise whether

to perform one large experiment or a series of smaller experiments at

each of which the number of entities is decreased and the replication

increased. This in turn raises the question of how many entities to retain

at each stage and how much replication to use. These questions will be

studied here.

It is not my purpose to produce a fixed technique that will replace the

intuition of an experienced experimenter, but rather to outline a broad

general approach that will guide him in his work. The robustness of the

suggested approach to certain initial conditions and to the assumption of

an infinite population will also be studied. It is felt that, although the

terminology is drawn from plant breeding, the ideas will be applicable to a

much wider range of problems.



1 ,2 Gone Applications

In order to indicate where the results of this thesis may be useful, a

few examples of fields in which screening of one sort or another has been

performed In the past will be given in this section. An indication of the

very wide interest in screening procedures is given by the large number

of different types of journals cited in Federer's (1963) survey of the

field.

One of the most widely publicized applications of screening procedures

is drug screening. In this field the experimenter is presented with a

large number of chemical compounds from which he must choose those active

(or showing the most promise of being active) against some disease.

Davies (1953) gave an example of screening for drugs active against

tuberculosis. In a later paper (1964), he described the use of screening

in improving the yield of antibiotics. Dunnett (1961) gave an example of

procedures useful in isolating anti-cancer drugs. He pointed out that

about 3000 compounds were handled per year in his company's laboratories

and that very few had the desired activity.

A rather different application of screening was given by Nissen-Meyer

(1962,). He was concerned with the effective use of tests in those instances

in medical diagnosis where preliminary tests are used to determine those

people who should undergo more definitive tests that are both more expensive

and more distressing to the person involved. It was Nissen-Meyer's desire

to balance the extra cost and inconvenience with the very important goal

of detecting as many people with the disease In question as possible,

ince it is important in medical diagnosis to correctly classify all



individuals, special care is needed; medical diagnosis has, however,

many characteristics in common with other types of screening.

Perhaps the most familiar of all screening processes is that which

is performed on students in our educational system. The large number of

tests, or screening stages, involved, and the fact that it is important

that each individual be placed in a scholastic environment appropriate

to his own particular talent, make this a very complex system. Finney

(1962b) used a 2-stage model (a modified form of the model used in this

thesis) and some approximate correlations to focus attention on the nature

of the problem and the assumptions (both statistical and, educational)

involved. Both the qualitative and quantitative aspects of his paper and

the discussion that followed it are of interest and point to a number of

challenging problems for the statistician.

Cronbach and Gleser (l965) considered the related problem of screening

for employment and other purposes by use of psychological tests. The

nature of these scx*eening px^ograms differs from educational screening in

that a large series of tests can be given rapidly. Although the approach

taken by Cronbach and Gleser is very different from the other examples

cited in this section, the problem is most certainly related.

A major difficulty in the previous two examples is the definition of

what is meant by inherent ability and, subsequently, the calculation of the

magnitude of the correlation between the test results and this ability.

Finney (1962b) emphasized the caution necessary in such studies.

Although industrial problems are frequently a matter of optimizing on

a continuous scale, it is also common to have to decide on the most



desirable of a number of distinct items. The result is a screening problem.

The sort of thing one meets varies from the choice of the best of a

number of different formulations of soap for marketing, to the choice of the

best individual technique to give maximum yield in some manufacturing-

process. The examples of drug screening already mentioned give a good

idea of the sort of problem often met, particularly in the chemical industry.

In general, the basic purpose will be to maximize some aspect of profit.

Another rather similar application is the choice of the best (one or

more) of a number (usually large) of varieties put forward by a plant

breeder for testing. Finney (1958b) discussed in detail the sort of

problem one meets in this field. Sprague and Federer (1951) described the

screening of new varieties of corn. As this thesis is written in terms of

plant selection no more will be said here about this particular application.

Obviously, with such a broad spectrum of applications, no one

mathematical theory can hope to be completely adequate to them all. In

any specific instance the experience of the experimenter will play a very

important part in modifying the rules appropriately. It is felt, however,

particularly in view of the robustness of the suggested plans to a wide

range of parent distributions, that the guidelines suggested in this

dissertation will apply to a wide range of applications.
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1.3 Terminology - Notation - Assumptions

As was indicated in the last section, the terminology used in this

thesis has, for the main part, been borrowed from the plant selection

problem as formulated by Finney (see, for example, Finney, 1958a), 1

detailed outline of this terminology and the appropriate symbolic notation

will be given in this section. In addition, where appropriate, the assumptions

involved will be indicated and discussed.

The term VARIETY will be used to refer to a specific entity undergoing

testing. Although originally intended to refer to one specific strain of

the plant being studied,there is no reason for its not being extended to

represent one formulation of a new drug, one animal, or even one specific

manufacturing process. It will be assumed that each variety can be

repi-esented by a single property x that does not change over the history

of the variety; we will call this property the TRUE YIELD. The purpose

of the screening program 'will be assumed to be the selection of the variety

(or varieties) with the maximum true yield(s). The modifications necessary

if the minimum yield is desired are very simple. Modifications necessary

for certain other purposes will be suggested at appropriate places in the

main body of the thesis.

It should perhaps be pointed out here that in the sort of screening

being considered individuality is not regarded as important. As long as

we get the required number of good varieties it does not matter that we

have discarded other varieties just as good as, or possibljr even slightly

better than those chosen. On the other hand, as has been mentioned earlier,

it is very important when dealing with human beings to categorize each



individual correctly. Refusing the advantage of higher education to a

genius is not only a loss to the community but also very unfair to the

genius; speaking of being "unfair" to an individual variety of wheat is

to miss the real purpose of the investigation.

Returning to the discussion at hand, it will be assumed that varieties

with such basic faults as susceptibility to disease or insect infestation

have been discovered and discarded during preliminary investigations

prior to the major screening program being considered here. It will also

be assumed that there is no other prior1 information on individual varieties .

Under these conditions, yield will often be completely determined by a

single characteristic such as the weight per unit area of the chief product

of the variety. There is, however, no reason vyhy x should not refer

to some overall assessment of the variety derived from a number of

individual characteristics. In an industrial context, the cost of a

catalyst and the increased output resulting from its use would be compounded

to give the "yield" of the catalyst. In instances where many character¬

istics are involved it will usually be necessary to use some sort of

index. The use of indices in selection programs was discussed by Cochran

(1951) and Finney (1 6\;. Complications will also arise if a characteristic

of interest is qualitative. In any case, it will be assumed here that we

can somehow represent the true merit of our variety by a single value x

called it3 true yield.

Our screening process will consist of k (ty fc sequential

experiments called STAG-US. In a specific stage i (1 < i < k), the true yield
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of each variety is estimated by the average

y.=x+ e,Jx 1

of the actual yield of all replications of that variety in that stage.

Associated with the value yu is the normally and randomly distributed

error e. where
x

e^/\zN(0}ey).

This error is assumed to be independent of both the value of x for the

variety in question and the errors of all the other varieties.

At stage i the decision to accept or reject a variety will be based

on an estimate z. of its true yield x. The variance of z. is taken to be
x ' x

In the simplest case, where only information from the most recent

stage is used to estimate x,

-nd

z. = y. ,
x Jx5

n": = e :.
x x

then a number of stages are involved it will, however, be best to include

all available information from previous stages in any estimate of the

true yield x. If, at stage i, the weight attached to stage j is a..(j^i)i1

then
i

z. = a. .y .,
i 0=1 10 0

and

i
= r a:.ea;

i j=1 10 J

it is assumed that, at stage i,
i

Tha. . = 1 .

0-1 10
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Any two estimates and z ^ of x from two different stages i and j will
usually be correlated; this correlation will be a function of the weights

used. The use of information from previous stages, vdth appropriate

weights, will be called the use of HISTORICAL IRFORHATION and will be

discussed in more detail in part 2.

The purpose of the screening process will be taken to be the selection

of the most promising n of the N varieties submitted for study;

_ nn =

N„
j

may be termed the selection fraction. The N varieties are considered, to

be a random sample from a continuously distributed PAKKHT POPULATION with

mean zero (this oan be achieved without loss of generality by a linear

location transformation) and variance cr" . In this study we are not concerned

with the order of the n selected varieties.

The' selection of the fixed fraction n of the varieties often meets vdth

criticism as being too rigid. In any theoretical comparison such a

restriction is necessary if different screening procedures are to be

compared on a fair basis. More flexible schemes will be suggested later.

A practical justification of this constraint is the fact that there will

often be a limit to the number of varieties desired (or capable of being

handled) in the final phase of selection in which detailed study is made

and stocks are multiplied for commercial use,

The choice of the fined n varieties is achieved as follows: prior to

experimentation a random sample is made in which varieties are chosen

from the Nq originally present; at each subsequent stage i (1 i ^ k)
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an experiment it performed on the N. varieties present, the N. . varietiesi x+1

with the largest estimated yields being passed on to the (i+1 stage

for more intensive study, and tne remaining (th-Ih ,) varieties being

discarded oozapleteiy from further study. After the k^n stitge we will

have the required ,=n varieties. The values N. define a series ofKf 1 X

selection fractions

• p ~ ' 3.4 y ' i 1 ~ w » 1

where

rr = PqI1 h2'..Ak •

At first glance it nay seen strange that we should randomly reject

(1-Fq)Nq varieties prior to the first experimental stage. On the otiier
hand, unless the total amount of experirertation we can do is unlimited,

some balance must be achieved bet .een maximizing the probability of there

being an exceptionally good item in the original population (by having

N. as large as possible) and maximizing the probability of finding the

best variety present (by more accurate assessment of fewer varieties).

Normally, of course, the discard will not be completely random in that any

hints of poor performance will be taken into account. This practical

consideration cannot, however, be formulated mathematically. P^.'l docs,
of course, point to an inefficiency in the system; certainly (1-Pq)Nq of
the varieties have been developed by the plant breeders in vain. There is

also the possibility that PT*1 indicating that, to make most efficient use

of the experimental resources, it would be better to have more varieties

than the NT with which we have been provided. In practice a small
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variation from Pq = 1 will be of little value since it will probably
create difficulties in balancing the number of replicates with the number

of varieties.

The decision to accept a fixed number of varieties from each stage

is also questionable. Often it may be preferred to accept all varieties

which yield above a certain fixed value or CUT-OFF point 71 ^ at stage i.
When considering selection from an infinite population this amounts to

accepting a fixed proportion from each stage so there is no difference in

the two approaches. In the finite case, however, differences do arise;

these will be considered in part 3. As has been said before, the rules

are meant to be modified depending on an experienced assessment of the

promise, or lack of promise, of a particular group of varieties.

Another major assumption is that the total area of land available

for experimentation, A, is fixed. We will refer to A as our RESOURCES.

These resources must be split up between stages in some manner so we will

consider the proportion

c. = A./A
k

of the total to be allocated to stage ij A^ = A) represents the
resources allooated to stage i. The assumption of a fixed value of A is

again restrictive but necessary if it is desired to compare different

systems on a fair basis. In practice an experimenter must often work

within this sort of framewoi-k due to a decision which is beyond hi3

control. In a continuing program there will often be k streams or

COHORTS under test, one at each stage of selection. Under these

circumstances, especially when there is a fixed total area of land
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available, it may be necessary to fix the area of land allotted to each

stage and to fix the number of varieties in each stage. The advantages

of different systems of allocation of resources will be considered in

part 3.

Having defined the framework of our screening system, it is now

necessary to consider how the error variance e? changes with variations

in and IA . Since an increase in the number of varieties for a fixed

will mean less experimentation on each variety, we might expect e;

to be a strictly increasing function of N.. In the same manner, we might

expect to be a strictly decreasing function of A^. If it is further
assumed that all changes in and Ih affect only replication, and that

the change in replication is spread evenly over all varieties, it seems

reasonable to write
AN.

e; = V —-i
a Vi

V is a dimensionless constant called the VARIANCE FACTOR; it connects the

experimental error with the variance of the parent population. The

constants A and Nq are included so as to enable us to simplify the
expression to

VTT^-1p X t o
e. = cr
l rv.

i

where

_ D p D
i ~ 0 1 * * i *

The constants also serve, when considering a finite number of varieties,

to remind U3 that the expression is consistent for different overall

schemes only if they start with the same number of varieties, Nq, and the
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same total resources A. This method of calculating the error variance

was suggested by Finney (1958a).

The magnitude of the variance factor plays a very important role in

a screening program. Ml other things being equal, very close determination

of the best n varieties will be possible when a small V is appropriate;

the choice will, on the other hand, be very nearly random when a large V

is appropriate. The actual magnitude of V will be affected by the

efficiency of our experimental design. This aspect of selection will not

be considered here.

In most of the work in this thesis it will be assumed that there is no

variety by stage (that is to say variety by year) or variety by experimental

site interaction. This assumption will be discussed in more detail in

part 2.

Finally we must decide hov, we are to compare screening programs using

different values of on and Id . Obviously, the merit of any screening

procedure must be based on a comparison of those varieties selected with

those originally put forward for consideration. Since the value of an

item will usually be more or less linearly proportional to its yield, we

will take as our criterion the mean value of the tine yields of the n

selected varieties. In other words, we will attempt to maximize the GAIN

or expected value of x, <(x), in the selected population. In certain

cases, higher order moments of x may be of interest. In particular, we

may wish to minimize the variance of x or, in order to increase the chance

of finding a really spectacular variety, we may wish to make both the

variance and the positive skew of the selected varieties as large as
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possible. The difficulty of interpretation of higher order moments makes

criteria of this nature extremely complicated to handle, liven the variance

(for non-normal distributions) tells us little about our distribution other

than that it is (or is not) very spread out; it does not tell us how or

where the spread takes place.

Other authors leave of course used other criteria; Davies (1958)

suggested maximizing the proportion of "good" varieties selected. Since

ravies was considering his varieties to be either "good" or "bad", his

criterion is equivalent to ours. That this is so ca.n be seen by letting

the proportion of good varieties selected be q and transforming (this can

be done without loss of generality) to let the true yield of the bad

varieties be 0; the true yield of the "good" varieties can be any fixed,

value g; the gain can be seen to be gq. Since g is fixed the maximization

of q will also maximize the gain. If, on the other hand, there are degrees

of "goodness" it would be unusual not to want to take this fact into

account. It is difficult to imagine a criterion that v/ill be as widely

applicable as the maximization of gain so it will be used here.
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1 .4 The Literature

1 .4.1 General survey

In 1963 Federer published a very broad survey of work done on statistical

screening. His paper included an extensive bibliography not only of papers

specifically concerned with screening, but also with a number of associated

subjects such as truncated distributions. emphasis was placed on the

importance of interchange of ideas between workers in different areas of

application. Federer also mentioned some experimental designs useful in

selection programs.

A survey of work mare directly related to this thesis was given by

Finney (1964). After a detailed description of the general screening

problem, Finney discussed, with examples, variations which are met in

practice. He commented on the methods used by various other authors in

investigating the screening problem and suggested techniques which might be

useful in extending the theory. Although presented in the terminology of

varietal selection, Finney's basic approach and computations would seem to

apply to a more general class of screening problems.

The first paper within whose framework the bulk of the work in this

thesis falls is that of Cochran (1951). In his paper, Cochran set as his

objective the maximization of the mean value of true yield subject, for the

sake of comparison of different screening plans, to a fixed total outlay

of resources and a fixed average proportion of varieties accepted. Cochran

showed that if the cumulative distribution function of the regression r(y)

of x on y (using the notation of this thesis) is assumed to be continuous

and strongly monotone, the optimum selection rule is to select all

varieties for which rqy)>T! where 71 is chosen to satisfy the desired
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frequency of selection. Assuming a normal parent population, he calculated

exact expressions for the mean of the selected population after 1-stage

and (using properly weighted historical information) 2-stage selection.

lie used these expressions to calculate a few examples. Although hindered

in his 2-stage calculations by the limited nature of tables of the bivariate

normal distribution, Cochran found that the specifications for maximum gain
e'J

did not change very much for various values of the ratio —>-» This, and
a

the fact that maximum gain occurred near P, = fn, foreshadowed Finney's

suggested symmetrical specification for optimal selection. Cochran went on

to discuss at some length the use of selection indices in screening programs

and the complications that arise when they are derived from a sample.

The selection problem was attacked in a. different manner in a series

of papers which began with Finney's 1956 publication. In this paper,

Finney derived the cumulants for the distribution of the true yield x after

1-stage selection from a normal distribution with normally distributed

error. These cumulants were expressed in terms of the proportion selected.

He also derived the first few terms of the infinite series for each of the

first four moments of x after selection with normal error from a general

distribution. These expansions were in terms of the cumulants of the

distribution of x prior to selection.

In the next paper in the series, Finney (1952a) gave a detailed

description of his formulation of the problem (the same formulation used in

this thesis) and the assumptions involved. Using the formulae of his 1956

paper, he studied the effect of variation of the parameters for 1-stage and

2-stage selection from a normal parent population. In 1-stage selection,
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Finney found that an initial random discard (FV<1) cculd considerably

increase the expected pain, especially for either fairly intensive selection

or a large value of V. Based on the small variation of gain in the optimum

region he found in 2-stage selection schemes, he suggested a general rule

of taking

iy - 1 ,

l
-• = and
i v '

as the approximate location of maximum gain in a k-stage program.

Finney's generalization in 1961 of his earlier (1956) results enabled

calculation, for any error distribution, of the first four moments after

selection; this was done in terms of the preselection cumulants (assuming

they exist). Two series were derived for each of these moments: one in

terms of an arbitrary cut-off value T! and the other in terms of the proportion

selected. Repeated applications of the appropriate series for the moments

enabled the study of multiple-stage screening. An investigation of this

sort would, of course, be limited to the first four moments and to the

assumption, at each stage, that higher order moments were of negligible

magnitude.

Curnow (i960) derived, as functions of the cut-off point r, exact

expressions for the moments of the distribution of true yield after 1-stage

selection, with normally distributed measurement error, from certain

specific non-normal distributions. These expressions were given in terms of

tabulated functions. They were useful in that they enabled the robustness
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of screening programs to the assumption of normality of the parent

population to be tested. 'ihey could also be used, in conjunction with

Finney's results, to attempt a study of multi-stage screening from non-

normal distributions.

Following the notation used by Finney (1956) for the first four'

moments after selection, Curnow (1961) gave an expression for the fifth

moment. He proceeded to use the resulting increase in accuracy to study

•1-stage and 2-stage selection from specific non-normal distributions, and

2-stage and 3-stage selection from normal distributions. Because of the

increasing magnitude of higher order moments with increasing skew, the

study of non-normal distributions was limited to distributions closely

resembling the normal. In this region, Curnow found that the symmetrical

selection scheme suggested by Finney for the normal distribution still

resulted in gains near the maximum. In 2-stage and 3-stage selection from

a normal parent, Finney's symmetrical scheme also gave results very near

the maximum gain. Curnow pointed out that, in Cochran's example (Cochran,

1951)5 the use of first stage information in the second stage did not result

in very large increases in gain.

In addition to a presentation of most of the results of the previous

two papers, Curnow (1959) derived finite series for the exact cumulants

after 2-stage selection from a normal distribution. A similar method is

used in this thesis to derive exact expressions for the mean and variance

of the distribution of the true yield after k-stage selection. Curnow also

discussed the problems arising in the assessment of more than one character

in a screening program.
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Extension of methods for calculating cumulants after truncation was

made to multi-variate distributions by Finney (1962a, 1963).

The question of how seleotion programs deduced from infinite population

considerations applied to finite populations was investigated by Finney

(1966), In this paper, by use of order statistics, exact results were

obtained for 1-stage selection with error from finite normal populations.

Multi-stage selection was studied by numerical simulation. Historical

information was not used. Although, as expected, the infinite oase

considerably overestimated the gain actually achieved, it appeared to be a

good guide to the sort of variation of gain with operatir^ conditions found

in the finite case. In particular, the symmetrical specifications suggested

by Finney for near-maximum gain in the infinite case also resulted in

near-maximum finite gain. As a result of the work in this paper Finney also

suggested that (with fixed total resources) little would be gained by going

beyond three or four stages.

Davies (1958) presented a slightly different approach to the study of

selection. He suggested that a good approximation to the distribution of

true yield in experiments in the drug industry was a 2-point distribution;

inactivity being represented by zero mean and activity by a positive mean.

Davies suggested criteria based on the maximisation of the number of good

drugs in those accepted. The analogy between screening and acceptance

sampling was indicated and use was made of the operating characteristic

curve of acceptance sampling in the comparison of different screening

programs. Davies suggested that multiple-stage screening would be

advantageous.



In a later paper, avion (1964) studied selection from a distribution

whose shape was derived from past results. Upper and lower confidence

limits to the distribution were introduced in order that the dependence of

results on the distribution shape might be studied. A simulation study of

multi-stage selection from a finite population distributed in this non-normal

manner led to optimum screening specifications very much in accord, with those

suggested by Curnow and Finney for normal populations. The author felt that

only rarely would it be advantageous to go beyond 2-stage selection. He also

found that the optimum location changed very little when a double-exponential

error distribution was used.

Dunnett (1961) elaborated on the approach suggested by Davies (1958).

Graphs were provided which gave the required cut-off points for 2-stage

and 3~stage selection from a 2-point distribution for specified values of

rv (the probability of accepting a bad drug) and n (the risk of rejecting

a good drug). Equal replication was assumed at each stage. Formulae were

provided for calculation of the expected number of stages required to

reach a decision. Although <y and 0 specify the entire operating character¬

istic for a 2-point distribution, Dunnett pointed out that their choice

depends solely on a rather arbitrary personal decision. To get around

this weakness, he suggested a number of alternative criteria based on

economic considerations.

Although possibly valid for a 2-point distribution, it may be dangerous

to base a scheme for selection from a continuous distribution on two points

of the operating characteristic; these curves often vary considerably between

the two fixed points (Finney, 1964) and, as a result, there may be
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considerable variation in the nature of the screening achieved.

King (1963, 1964), using restrictions similar to those used by Finney

and Curnow, investigated conditions that would maximize the "proportion

interesting" (meaning the proportion of varieties with activity above a

certain level) in those varieties accepted from a drug screening program.

Although selecting from distributions considerably removed from those

studied by Finney and Curnow (the 2-point distribution and the negative

exponential), King's conclusions were very similar. The largest discrepancy

was in the allocation of resources. He, too, suggested that the advantage

of using more than three stages would likely be very slight.

1External economy

In the previous sections, and indeed throughout this thesis, we are

concerned with what Finney (in the discussion following Grundy, Healy and

Rees, 1956) has termed the "internal economy" of selection. Very briefly,

this term refers to the optimization of a selection program, or any other

procedure, within a fixed framework. Since, in our case, we are attempting

to maximize the gain for a fixed total amount of experimental resources

our work falls into this category.

An extended scheme in which the objec. is to decide upon the total

experimentation required to maximize the net gain to society, or equivalently

to minimize the net risk to society, has been advocated by a number of

authors. Finney has called this approach the "external economy" of selection.

Many of the authors whose papers were reviewed in the previous section have

considered this broader formulation of the problem. Due to the greater
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generality of thin approach, in that it takes into account the costs of the

program as me1" as the gains from it, some of the pertinent literature will

he discussed in this section.

In a very inter-sting and useful paper, Grundy, Healy and Rees (1956)

calculated the amount of experimentation necessary to minimize the economic

risk associated with each individual variety in the screen. The fact that

they considered the varieties individually makes their approach rather

different than ours but, with certain simple modifications (many of which

were mentioned by the authors), their approach can be usefully employed

in a study of the external economics of a problem similar to ours. This,

and the fact that they were essentially concerned with the finite case,

makes consideration of their paper profitable,

frundy, Tiealy and fees assumed an initial experiment of replicates

resulting in an estimate (with variance rr"/) of the true but unknown

mean ^ of the variety in question. At this point the economic parameters

k, the cost per unit of additional experimentation, and k', the gain

(or loss) due to unit increase (or decrease) in yield, were introduced.

This permitted calculation of the risk associated with accepting a variety

with a specific yield and specific second stage replication n,?. The

"integral risk" was then found by integrating the risk over the fiducial

distribution of ° based on and rr' /n^ . The amount of second stage
replication n„ ^ 0 was chosen to minimize this integral risk.

The authors also indicated the rather simple modifications necessary

when k was a function of n0 or when k' was a function of the amount of

delay involved when a second stage of experimentation was recommended.



The value = 0 was taken to indicate tliat the variety was to be rejected

or accepted immediately based on x. and the associated risk.

An interesting fact arising out of the calculation of was that a

small amount of addit."onal experimentation was never advisable. This ..as

due to the fact that a certain minimum of information was necessary to

alter the decision that would have been made with no additional experiment¬

ation. The robustness of the procedure was indicated by the fact that small

changes in near the optimum altered the integral risk only slightly. It

is interesting to note that the ratio of maximum second stage to first

stage replication n„/n. is roughly of the same order of magnitude as the

ratios recommended by Finney and Curnow in their formulation of the

problem.

Although the authors based their decision to accept or reject a

variety on the sign of the mean yield

(n.,+n2)

they pointed out that other economic factors such as changeover costs could,

without difficulty, be included by replacing x, and by y^ = x^-c, and

y~2 = Xg-c respectively throughout their calculations. Presumably the cost
of initial development and the cost of the first stage of experimentation

could also be included in this manner. Although Grundy, liealy and Rees's

method has been criticized for not including as an economic variable,

it seems reasonable in the absence of any prior knowledge of ° to perform

a small standard sized experiment on all proposed varieties and to include

it as a fixed cost by increasing c. An advantage of the absence of a prior
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assumption as to the nature of 0 is that is based entirely on the experimental

results as is the resultant estimate of ".

In order to test the variation of the recommended value of n, under

rather different circumstances, Grundy, Mealy and fees calculated its

value for the case in which there is a prior distribution of * with mean 0

- nd variance r/PTp/n^ . The resultant values of n^ for = 1 were very close
to those found when no prior distribution was used, as in all previous

modifications the nomogram used by the authors for calculation of in the

simplest case was used., with slight modifications to the definition of

the parameters, to calculate n^ for the normal prior distribution of
One difficulty in applying Grundy, Ilealy and Rees's scheme to selection

from a population of varieties is the fact that there is no upper limit

to the number of varieties recommended for acceptance; what is usually

desired is to accept the variety with the minimum risk, or possibly to

accept a fixed maximum number of the varieties which promise to be most

profitable. As long as we have the required number there is no loss (or

gain) associated with rejecting (or accepting) a variety which is good

but less profitable than the rest. The necessity in Grundy, Iiealy and

Rees's scheme of differentiating between various profitable varieties

raises another question: how are we to decide between two varieties when

their estimated means arc very similar but when one estimated mean has

associated with it a much larger error variance than the other? Special

rules depending on the experimenter's requirements would, need to be

introduced to solve these problems.

A useful screening scheme might possibly result from a combination
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of the approach taken by Grundy, Healy and Rees with that studied in this

thesis. Finney (1958a) pointed cut that his approach is concerned with the

second of three phases of selection; the third phase will usually involve a

very intensive study of a very few varieties. A recommendation as to the

size of this third phase could be made by using the results from the second

phase as though they were the preliminary results of a program like that

studied by Grundy, Healy and ees. that this is appropriate can be seen

from the fact that our program is of fixed total size and results in a few

varieties each with an estimated yield and variance• since the economic

aspects of a screening program are very difficult to specify until

something is known about the v: rieties in question, and since resources

for initial investigations of a large number of unknown varieties are likely

to be limited and beyond the control of the experimenter, this should prove

a very practical combination of the two approaches.

The external economy of the type of procedure studied in this thesis

was investigated by Finney (1960b) and extended by Curnow (1961). In

these papers a study was made of the balance between the total cost of

experimentation and the net gain to the national interest of the resulting

increase in yield. The costs included the cost of breeding new varieties

for study (varying W) and the cost of changing the experimental area A.

Both these variables affect the statistical variability of the program and

hence the potential gain. Finney calculated the optimum choice of variables

for 1-stage selection for various assumed monetary values of cost and gain.

Curnow, in a similar study of 2-stage selection, found the total

expected gains to be 15 to 20 percent higher than for 1-stage selection.
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Optimal A was the same for both 1-stage and 2-stage programs but optimal

N was much larger in the latter case. Curnow suggested that more than two

stages would be unlikely to produce much additional gain. He discussed

in detail some of the disadvantages of having a large number of stages.

The difficulty of evaluating the real monetary effect of the factors

involved is the reason for our not considering the external economy of

selection in more detail in this thesis. In practice an external study

is always internal to a larger problem. Eventually one runs up against some

limit on funds whether it be the budget of one's department, the research

budget of the company or the total income of the company. These

factors and many others are related and obviously the relationship is a

very complicated one. In any situation it is necessary to consider how the

money could otherwise have been spent had it not been allocated to the

program under study; without this consideration the total resources of the

economy would soon be entirely used up.

Another problem is the fact that the exact value of an increase in

yield is difficult to assess. Any change in a marketable product in a

competitive society changes the entire market, making the situation

decidedly non-linear. The same problem in another context is very effectively

stated by King (1963) when he says, "The problem of attaching a numerical

value to the discovery of a cure for a disease is exceedingly nasty".

The above is not to say that we should not use the external economy

approach; rather that we should put very great care into any such formulation

as there are a lot of factors involved and the results of decisions can be

far reaching. The immense difficulty of the problem does not let the
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statistician off the hook; no problem of this nature will ever be truly-

solved until we cone to crips with these broader issues. Any investigation

is of great value even if it only brings to light the large number of

implicit assumptions involved in the economics of research projects.

1.4.3 Another approach to screening

Another approach to screening, although primarily concerned with

correctly ranking (according to some predetermined system) all individuals,

and hence somewhat different in its goal from this thesis, has been

recommended for similar situations and considered by a number of authors

therefore it will be discussed briefly here, fince Bechhofer (1954)

described the theme in some detail and included a number of interesting

variations, this discission will be based on the formulation and notation

of his paper.

Bechhofer was primarily concerned with dividing, in one stage, k

variables (varieties) into s (s < k) classes. In Bechhofer's procedure

the experimenter was asked to specify in advance the number of variables,

j«k), to go into each class. The procedure then enabled calculation
of the number of observations to be made on each variable i. The result

was an estimate x^ of the true (but unknown) population mean of the
variable i. It was assumed that

The variables were then ranked according to the estimates of their true

means, the lowest k^ being put into the first olass, the next kg into the
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second and so on until exactly k were left for uppermost class. No
o

importance was placed on order within a class. A summary of Bechhofer's

notation along with our equivalent (v/hen one exists) is given in table

1 .4.1 .

TABL 1.4.1

A comparison of the notation used in this thesis with that
used by Bechhofer (1954).

This thesis Bechhofer

(finite case) (1954)

True yield x

Estimated yield y x^

Variance of Vo^tt
^

estimated yield. —-——— —
<v. N.

1 1

Population size P„N,, kL 0 U

No. stages k ^ 1 1

No. categories 2 (good and bad) s < k

No. accepted into
top category n kg

Although a large number of situations (unequal variances cv, two-way

classifications, more than two classes) were mentioned by Bechhofer, they

result in so many difficulties and are so different to the problem of this

thesis that this discussion will be limited to the division of k variables

with equal variances into 2 classes (s = 2). This case corresponds closely

with what we are trying to do and is the case which Bechhofer studied in
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most detail.

A number of differences arise between Finney's approach and Bechhofer's

in the method of tackling the problem. Bechhofer set as his goal the

determination of the minimum sample size N required to give a minimum

probability P* of placing the varieties into the correct classes when

the time means of the varieties in the two classes differ by at least

5T 0. Both P" and 9* were assumed to have been specified by the

experimenter in advance. In order to calculate the sample size, some

assumption had to be made about the configuration of the true means.

Bechhofer assumed, a "least favourable" configuration of population means;

that is to say he chose k. (the number of varieties to go in the lower

class) of the means equal to zero and the remaining kg equal to +9"'.
Based on this assumption (rather like a minimax procedure), he gave a

table of the values of /ft 9 /a required to achieve various values of P;:

for certain values of k0 and populations as large as k = 14. Since the

will usually be much more widely scattered, Bechhofer's procedure will

recommend a larger sample size than is actually required to achieve the

value P for a given 9". In this sense it is inefficient.

Partly as a result of this difficulty, Dunnett (i960) suggested a

number of modifications for choosing the "best" of k varieties. He

devised a procedure in which a prior estimate Ik of the population mean

was used. It was assumed that

Ui~N(ui,fTg).
In addition to studying the procedures suggested by Bechhofer, Dunnett
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relaxed his conditions slightly in that he required P* to be the probability

of choosing a population whose true mean is within o* of the largest

population mean. The degree of the resulting multivariate integral was

such that, with existing tables, calculations could be made only for

k = 2. In order to overcome the rather arbitrary nature of P" and <V ,

Dunnett also introduced methods for calculating them based on economic

considerations.

It would be interesting to study Dunnett's procedures for larger

values of k, especially if the LL were obtained from a small first stage

experiment. The advantage, in such a situation, of letting the recommended

value of vary according to the value of th for each individual variety

would also be an interesting study. The paper by Grundy, Healy and Rees

(1956) discussed in the last section -was concerned with this sort of thing.

An even simpler case would be to have N. = 0 for all varieties with U. less
1 1

than some specified amount, and all other values of Th equal to some constant

N. Since in practice we are often interested in the absolute gain, or at

least the gain relative to existing varieties or procedures, it might be

useful to add a control.

The advantage of Dunnett's and Bechhofer's approach is that it is

concerned with the finite case. On the other hand, the algebra is just as

intractable as that met by Finney (i960) in his study of the finite case

and progress will be very difficult.

One of the difficulties with the preceding work is that it is only

concerned with 1-stage selection while a number of authors (e.g. Davies,

1958; Finney, 1958a, 1966) have shown that 2-stage or even J.-stage work
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makes more efficient use of resources, Bechhofer (1958) suggested

2-stage and sequential procedures based on the same formulation as his

1-stage work. These procedures did. not allow for rejection of uninteresting

items at intermediate stages. In addition, although guaranteed of stopping,

his sequential procedure could take a considerable number of stages

(Bechhofer 1966) to reach a decision. The large number of uninteresting

varieties usually involved, and the long wait before experimental results

from a given stage become available, make the use of Bechhofer's multi-stage

procedures inadvisable for the sort of problems considered here.



FA.-. T 2. TIP: INFINITE CASE

Introduction

In this part of the thesis, we will study selection from a population

assumed large enough to be represented by a continuous frequency function.

In particular, we must assume that both PqNq, the number of varieties
initially present, and n, the number of varieties accepted after the final

stage, are large. Just how large they must be will be investigated in

part 3 as part of a general comparison of the finite case with the infinite.

Although exact expressions have been derived for the mean (Cochran,

1951 J Curnow, 1959) and the other moments (Curnow, 1959) of the distribution

of x after 2-stage selection from an infinite normal population, their

use has been made difficult by the lack of adequate tables for the bivariatc

normal distribution; prior to this study, no simple exact expressions were

available for the gain from more than two stages of selection from a normal

population, or from more than one stage from non-normal populations. As a

result, detailed study (Finney, 1958a; Curnow, 1961) of selection in more

than one stage has been limited to the use, at each stage of the selection

program, of series expansions for the first four (Finney, 1956, 1961) or five

(Curnow, I96I) moments of the distribution of x.

The dependence of screening studies on these series has involved a

number of sources of error of unknown magnitude. Since there is, in

general, no justification for assuming that high order cumulants will

decrease in magnitude, there is certainly a real danger in ignoring them.

Another aspect of the danger of ignoring them is illustrated by a theorem of

Karcinkiewicz to which Curnow (1961) drew attention. This theorem states



that there are no distributions other than the normal that have only a

finite number of non-zero cumulants. Since we are dealing, after the

first stage, with the tails of distributions, where it is known that

cumulants do not, in genera]., decrease quickly, this theorem most certainly

applies. To add to the difficulties, the exact cumulants were known only

for the distribution of x after one stage of selection from a normal

distribution. This meant that accuracy suffered not only from the fact

that high order cumulants were ignored, but also from inaccuracies in the

lower order cumulants. In addition, Curnow pointed out that convergence

would be particularly bad when the intensity of selection is very high

and when the variance factor V is very small. The dependence, in screening

studies, of the moments of the distribution of x (and hence its cumulants)

at any stage on its cumulants at the previous stage means that the errors

just discussed will accumulate as the number of stages increases.

The accuracy of the results found when using cumulant expansions to

calculate the gain when selecting from non-normal distributions was even

more questionable; in that case the exact cumulants were usually not even

known for the distribution of x after one stage of selection. Additional

problems were also introduced by the fact that higher order cumulants

Increase in importance the further the distribution departs from normality.

That these problems exist on a practical scale can be seen from the fact

that Curnow (196I) ran into convergence problems in 2-stage selection as

soon as his parent distributions departed very far from symmetry.

The main advantage of the work in this part of the thesis is the fact

that exact expressions for the gain and. variance, after any number of stages
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of selection, have been derived and. subsequently used (with the aid of

numerical integration and a computer) for a wide number of selection

schemes with both normal (up to four stages) and non-normal (up to three

stages) parent distributions. Another useful feature is that these

expressions permit the use, at any stage, of all previous information on

a variety in the estimate of its yield. This means that the decision to

accept or reject can be based on all available information on the variety in

question. History has not been taken into account in any of the previous

detailed studies.

The inclusion of historical information in our calculations raises the

question of how much weight to attach to the results of each stage. In the

case in which the variances at each stage are known exactly, a well known

result is that the weighted mean will have minimum variance when it is

calculated by weighting each result on a variety inversely to its error

• "fcli
variance. This means that we must choose the weight applied at the p

stage, to the information from the i^*1 stage, to be

1/e.
api = * (2.1.1)

• A, 1/e .J=1 J

The resulting estimate of x is then

z =
P P

and its error variance is

c-

P

1=1 yi/ei
f (2.1.2)

. VelJ=1 J

(2.1 .3)
Ve'..1=1 J



Since the exclusion of properly weighted information on the yield of

a variety at previous stages seems to mean that valuable information is

being ignored, and since, when the variances at each stage are known

exactly, the inclusion of this information will obviously improve the

expected yield, it will, unless specifically stated, always be included

in calculations in this thesis. The practical value of this procedure will

be discussed in detail as we go along.

Practical difficulties arise in using historical information when

the errox* variances (or- at least their relative values) are not known

exactly, fates and Cochran (193&) pointed out that the weighted mean

loses greatly in efficiency when the error variances are estimated from

a small number of degrees of freedom. They also pointed out that further

losses in the efficiency of the weighted mean will occur when there is

variation in the true yield from stage to stage. Such stage-to-stage

variation in true yield will occur when there is a variety by year inter¬

action. The procedure to follow in such a situation will depend very much

on what is desired of the varieties selected. The question of appropriate

weights will be discussed further in chapter 2.5 during consideration of

an idealized version of the operation of a selection program when interaction

is present.
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2 The Derivation and Calculation of the xact Moments

2.2.1 The derivation of the moments

In the derivation in this section, direct use will be made of the

cut-off points ih rather than the proportions 1\ used by Finney in his

work. This is done out of necessity and not necessarily out of preference.

Fortunately, selecting all varieties yielding above a certain fixed cut-off

point T. is, in the infinite case, exactly the same as accepting a fixed

proportion of the varieties. In fact, even though the expressions are

derived in terms of the Tb , the P. are still, for the sake of ease ofx' 1 '

comparison of different systems, the basic parameter:-; the ~h are calculated

from the P.. The effect of various other acceptance rules on the finite

gain will be studied in part 3•

At stage i we will accept a variety if our estimate z^ of its true
yield is greater than the cut-off point Th , otherwise the variety will be

completely discarded from further consideration. As a result, a variety

will reach a specific stage j if and only if

Z.<".
X X

for all i ^ j. This means that the probability of a variety's surviving

the entire k stages of the program is

S(x)=Pr(zJ|^Tl1 ,22k>"2 ,.. • ,2k^rk' x) ,

where x is the variety's true yield. .'(>:)• has been called the selection

function (Curnow, 1961) and is closely related to the operating character¬

istic of acceptance sampling. Since, for specified values of the parameters

Pq, V, on and ^ (1 i < k) , 3(x) completely describes the screening program
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it could, in a sense, be thought of as the "operating characteristic" of

the screening program. It can be seen that when it is desired to accept

all varieties whose true yield is greater than some constant ^q, perfect
selection will occur when

V/hen using S(x) it must be kept in mind that, for specified values of the

P^, the values of the 7]^ are functions of the shape of the assumed parent
population. The result is that S(x) is not independent of the shape of the

parent distribution. The properties of S(x) will be discussed further, and

put to use in the assessment of the merit of different screening programs,

at the end of the next chapter.

If we make use of the fact that

S(x) = 1 (x>Tq),
S(x) = 0 (x < Tq).

z~N(x,ct2) }

and make the transformation

Ui = —

we can express the selection function in the form

1 2 k

= !(-?> Kq)* (2.2.1)

where I denotes the k-variate normal probability integral

ro *

" r ••• r e*p(- iup0"1u')/[(2")k' ftQ1 ]^du1 . (2.2.2)
V* \-x
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The matrix R_ is the kxk variance-covariance matrix of the variables u.
0 x

of the row vector u; Rq has elements r. ... In the case in which only the
cm-rent information on a variety is used in the decision to accept or

reject it, we have

z. = y. ,
x J i'

and

0 — 0
i 1

This means that

and

rii = 1

r. .

10

(i = j) ,

(i t j) •

(2.2.3)

This is the situation studied by Finney (1956, 1958) and Curnow (1959,

1961). hen properly weighted historical, information is used (see equations

2.1.1, 2.1.2 and 2.1.3), we have

ij

ij

J
r\

_

(5>j) >

(i^o), (2.2.4)

and

r.. = 1 :
xx '

since the minimum variance estimate of x is being used, . < n, and the^ ' x+1 — x

above correlation will always be ^ 1 .

Curnow (i960) and, with different notation, Cochran (1951) studied the

use of history briefly for 2-stage selection.



The correlations just stated are correct only if the errors in measuring

the yield of a variety at one stage arc uncorrelated with those at any other

stage. In practice a number of factors may invalidate this assumption:

the samples chosen to represent a particular chemical compound (variety)

may, particularly if they are from one particular supplier, be unusually

uniform.; the inability to choose years (stages) truly at random may result

in unknown correlation; the use of the same sites to represent a variety

at different stages may cause unknown correlation. The action of these

factors is difficult to formulate mathematically but the comments in

chapter 2.5 may have some relevance to their effect.

When it is desired to select a proportion P of an infinite population

of varieties that are initially distributed according to a frequency function

h(x) , the frequency function g(x) of the varieties left after the k^'1 stage

of selection will be given by

g(x) = S(x)h(x)/P (2.2.5)

whe re

P = f*S(x)h(x)dx.
—<Y>

This is true for any distribution h(x) so, in theory, the problem of

calculating the moments of the distribution of x after selection is now

solved in that all moments can be calculated directly from the relationship

% = f x g(x)dx.

This integral is not usually easily integrable; even when using numerical

integration a large number of points and hence a lot of labour, or computer
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time, will be require*. For lack of a bettor method it will, however, be

used in special cases in chapters 2,K and 2.6 when a simpler method is not

available.

Fortunately considerable simplification is possible when selecting

from the normal distribution. From this point on in this chapter it

rill be assumed that selection is being performed on the normally distributed

parent population

The assumed mean of zero and variance of one can always be easily achieved,

without loss of generality, by a location and scale transformation. The

advantage of making this transformation is that the gain is automatically

calculated as a fraction of the parent population standard deviation and

so is scale invariant under any linear transformation of the units of

measurement.

The following method of deriving the gain and the variance of x after

k stages of selection is similar to that used by Curnow (i960) when he

calculated the exact moments of the distribution of x after two stages of

selection from a normal population. From 2.2.1 , 2.2.5 and 2.2.6 we obtain

the moment generating function of x

h(x) = fl(x) = —exp(- ibr ). (2.2.6)

Mx( t) = VCt0( x) I (-?;R0) cix/P

e jtf(x-t)l(^;R0)dx/P .
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Putting x = t+s we get

4x(t) = e^t' r JZ5(s)l(^=SjR0)ds/P

If we now transform our variables from u. to v. such that
1 i

jui+s
vi - '

i

where

we get

0 , o

M) . = 1 + . »

1 1 '

with the result that

1

Kx(t) = e2 f 0(s)l(f(t)jR)ds/P ,

M (t) = e2t'l(^(t) }R)/P; (2.2.7)

r (t) = —1 ff) •

'(t) is considered to be a k-element row vector with elements

-t

i

I always, unless specifically stated to the contrary, is taken to represent

a k-variate normal probability integral of the form of 2.2.2. The

elements of the kxk variance covariance matrix It are

0; , = tilj (i t 3) ■2.3

Vhen no historical information is used, they reduce to

1
o. . =

XJ ■'
i J
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and, when optimally weighted historical information is used, to

i (i»«.
01 j

0. . =
1J j

and
<»,

° « - = r* (i < J) •i j ~

In both cases the variance is given by o^. = 1. An immediate result of
2.2,7 is that

P ■■ Mx(Q) = I(r/0.R). (2.2.8)
The gain after k stages can now be calculated, but fir3t some new

notation must be introduced. In 2.2.7 the row vector

v = (▼1,T2,...,Tk),
where k is as usual the number of stages, is implicit in the integral I.

We now introduce the modified k-1 element vector

m / m m mm m\
V = (V1,vnH-1 »*",Vk'»

m
where represents the transformation

v? = \ ^ m (1 Z. i £ k, but Vm)i (2.2.9)
lm

v. and v are elements of the vector v and o, their correlation. The
l m 1m

vector vm is similar to the vector v except that the elements are transformed
"fell

according to 2.2.9 and the m element is missing. The correlation

coefficient of two transformed variables v™ and v® is given by

m 1J~ im j» (Mj) , (2.2.10)
1*' j\ 2 /*■" 'g

im jm



and

n. . = 1
11

• / m
where 1 < i,j < k, but i,i*ra. It can be seen the o . . is equal to n, . , the

— — ' ,or ij 1 ij*ni

partial correlation of the variables i and j after m has been eliminated.

f1" is the corresponding (k-1 )x(k-l) variance-covariance matrix. As with

v3 and v, Rm is similar to R except that it has elements of. instead of
ij

"til
o.. and the m row and column have been removed. Finally we define the

J

k-1 variate normal integral

rm/vsm/, \ .„m\ , \ _m
I ("n (t) ;R ) = I (gj( t), If!)(t),... ,T^_1 (t) ,TT+1 (t),... ,T£( t) ;R ), (2.2.11)

where

ri(t)
V .n) -0. Tl M\.-t(r0 —C. n), )
i m lm m l m it i'

'.!) .fll /1ffT"
1 j IE

Ve can now calculate the gain from the relationship

■sw - Ie iyt)
t=0

and equation 2.2.7. The result is

E(x) = ^[te^ iCXt) ;R)+e^t' |^l(H(t) ;R) ]
t=0

(2.2.12)

Calculating the derivative in the above expression according to the method

of appendix 1 (equation A3) and substituting t=0 we get

k

ifx) = T1^(T.)ll(^:L(0);R:L)/(-iP), (2.2.13)

where lh = . Any vagueness in the notation arising when k=1 will be

cleared up immediately after the following derivation of E(xr).
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In order to derive the second moment of the distribution of x in the

selected population in a concise form, some logical extensions must be

made to the precedirg notation. Nov., keeping in mind that 1 < i,j £ k

and i,j^m,n, we let „ „ m

v?-o? v

vf1 = 1 in n (2.2.14)
1

in'

t li ma
represent the i of the k-2 elements of the vector v of transformed

variables. As a result of this transformation

m mm

___ (i/j)13 )»/l-(n? Yv in' jn'
XU

will be the (ij) correlation coefficient in the (k-2)x(k-2) variance

covariance matrix R™1 of the variables v^j as usual = 1. Still
following the previous notation we define the k-2 variate normal integral

imn^mn^mn) = ^mn^ ^ # # (±) ><pjnn (t) ^ _ ^mn (t) (t) ^

....^(t)*""), (2.2.15)
where

T™(t) =

The pattern developing in the notation is obvious and extension to calculation
til

of any moment is, as far as notation is concerned, easy; for the n moment

the largest number of superscripts involved will be equal to n.

While on the topic of superscripts it should be pointed out that if
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the number of superscripts is equal to the number of stages our vectors

have k-k = 0 elements; in this case we define

"1 ' 2!

hen k = 1 we have, for example,

k /

(...) = 1 .

l(r(t) ;R) = r yS(v)dv = $(^(t))
^(t)

and

I1(f (t);E) - 1;

for the case k - 2, l(*t1(t);R) is the bivariate normal distribution and

I1'2(f1,2(t);k) = 1 .

Vhen the number of superscripts is greater than the number of stages, I is

defined to be equal to zero.

Returning to the problem at hand, we now have adequate notation to

calculate the second moment of x in the selected population. From the

relationship

t=G

and 2.2.12, it can be seen that

E(x*)4 ft (4^ [«(^(t);R)+J-,0(Vt))t) jr1)/"!]j (2.2.16)
t=U
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Now, using equation A6 from appendix 1 and setting t - 0, we have

(xr)=1+ P i^(Ti)/- r.i1(T!i(o) pR1)/-).i " X ' ' " X

+ .r.(m.-i .o. .)/('"•'" pT-n. .)0( .(0))l J("J=1x 1 J 1J;/ x 1 ,1 1J'^V Jv ''
j/'i

Therefore

n(x>>1+ 1
k

'T".+T'.-2o . .T.T.\2
A_J ALAA

1-o? .

10

^ J (T^ j ( C\\ • T} 0 \I J(T J(0);

(2.2.17)

where ^7. represents summation over all ()j) pairs of i and j. The

variance of x in the selected population can, of course, he calculated from

Var(x) = E(x*)-E(x)K.

The following specific expressions for f(x) and P(xK) after one to

three stages of selection have been derived from equations 2.2.13 a*id

2.2.17:

one stage,

gain = E(x) = ~~~ 0(1^) ,
1

JJ

E(x-) = 1+p7? 0(T );-

1

(2.2.18)

(2.2.19)
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y

E(x) = -

12 12

(2.2.20)

l |T -n ,.T
E(x»)= 1+ ijrf 0(T1)$l-^^lj+ 3 0(t2)$

1,

■"I'i 757
T®+T!-2p12T.,T2I2

1 ~°1 2

(2.2.21)

three stages,

E(x) = |P r jZl(T1)l
1

T _p f T -n T
_j212 1 ^ 13 1 .

p _n - ./1 -n ~
12 13

'23-11

23*1 1

+1 JLaxj.! '
2 ' I ' 1 -n . 0 1-n'12

13*2)

23 V 13*2 1

- 0(T,)I
l T T -n T /1

1 13 3 2 p23 3.'

' -o
13

1 Q V1 2* 3

'1-nrn23 V12-3 1

(2.2.22)

E(xk) = 1+ - — 0(T,)I
"l

T -n T T -p T / 1
22 1_2 1 3 13 1 1
'Pz r1 «'

13

23-11

2 3-1 1

? I T-l_0-l 9T9 TX~°0-vTO /I
♦ -4™ •; 13*21

/1-h
12

,/T-o
23 '°13-2 1
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T — n T P — "> TX1 13 3 ~2 23 3.
""

5 _ >4 0(T )I .
;

| 1"°i 3 "1~ri23

1 n
12-

\'"12-3 1

^"1"-12(V"2)0 r1+ff 2*"2° 12T1 j I /"12 " 3 ^ T3 "r1 1 2" ° 2^2'° 1 3'r1+n12 ^ n 2 3T1 +° 1 3T2^
-'H ™ ^ ' \ 1-°h ') ^ 'E,iy^

-f-J ./5? ^

/,
TK+TS—2n T T \2) l\\ "•< '•> (T 'T-VNr _n T -i T +" fo T +o T 11

1 3 13 1 "3\ (x/ 1 2 3 2 13 12 1 23 3 13k 23"! 12 3';* 1 J u ' 1 11 v
1~n13 I) 1 ,E'2/T-»13

2'
+■ '"2"'3"n23^"2+",3';^J"1"2 3(-f1 ' 1~"'23~n 1 212~" 1 3T3+n23(^1 2T3+P1 £2^ ^

(I 1^5 / j V ~"]
(2.2.23)

The preceding examples not only illustrate the use of the notation,

but also the pattern developing in both the expression for i'(x), where the

only change required for additional stages is an increase in the degree of

the integral I and one additional term per 3tage, and in the expression for

E(xfc), where we have a change similar to the above in the first part of the

expression and an increase in the degree of I and in the number of terms
k ,

(to (,,)) in the second part. It is clear that the expressions for E(x)

and E(xa) after any number of stages can. be easily obtained. In this

thesis, the only equation needed in addition to those already derived is

that for the gain after four stages; because of its length and its obvious

form, it will not be given here.

The expression for h(x) after one stage agrees with that found by
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various authors previously. It is more interesting to note that the

expressions for both E(x) andE(xp) after- two stages of selection agree

with those derived by Curnow (.1959) even though, once he found Mx(t),
he used a different method of derivation. I have not found exact

expressions for the moments after three or more stages of selection

anywhere else in the literature.

By using the obvious notation,

mn mn mn

Ti -VP

mn mn mn

innp n i .j*"n ipn .jp0

JBP(t) . 1 k It ' ,1

and

Cfw-CiW,,

^mnp(t, >Tmnp(t)

the third moment, E(x ), can he obtained by taking the derivative of 2.2.16

by the method of appendix 1. Higher order moments can be obtained in a

similar manner. Although ^(t) and become rather complicated by

the time they are simplified into expressions containing only the original

values T (t) and o., (1 < i,J < k), they are fairly simple in logical
i-J """ """

construction and routines for handling them could easily be written for an
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electronic computer. The same is true of the expressions for higher order

moments. This means that as long as (x) can be calculated, as many higher

order moments as desired can also be calculated. The algebra involved in

taking the required derivatives is tedious, but no more so than that

involved in calculating cumulant expansions for the same moments; the

resulting expressions have the advantage of being exact.

2.2.2 Calculation of the moments

Since untabulated high order integrals are involved, the calculation

of the moments after selection is not free from difficulty. In order to
"bll •

calculate the n moment after selection in k stages it is, for k">n,

necessary to calculate a (k-n)-variate normal probability integral;

fortunately if k < n a function of jZ5(x) is all that needs to be evaluated.

In addition, if

P = ,T2,...,TkjR)
is not known for the desired cut-off points, it must also be calculated.

In this thesis I have used Owen's (1956) expression for evaluation of the

bivariate normal integral and dteck's (195b) expression for the trivariate

normal integral,

A slight difficulty was encountered in using Stock's method in

conjunction with Owen's in that the expression

3-A'C

A r1-Cr

occurs in both methods but is treated slightly differently in each. The

difference arises in the definition of the sign of the expression when A=0,
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Steck always used a positive sign while Owen used the sign of B» Once

one is aware of this difference it presents no problem. Since C is a

correlation coefficient and since the troublesome expression was not

used when C = ±1 , the difficulty did not arise there.

Although Steck suggested a method of calculating a 4-variate normal

integral, he did not give any results. For this reason the relatively

inefficient method ox' calculating

I(T T T T4il0 = Ityv )ikVV4

by means of Gaussian quadrature was used in the calculation of the

4-stage gain. Since only a few calculations were made for four stages

this method proved adequate. Higher order integrals, although easily

found by an extension of the above method or, more efficiently, by an

extension of Steck's method, would be very time consuming to calculate

and were not attempted.

Gaussian quadrature was always used wnen numerical integration was

required in this thesis. This was done since it is the most efficient

of the common methods of numerical integration. It is exact for a

polynomial of degree 2n-1 (n being the number of points or nodes used):

other methods such as Simpson's rule are exact only for a polynomial

of degree n-1. Krylov (1962) gave an excellent study of this integration

technique. Extensive tables, for various weighting functions, were

provided by Stroud and Secrest (1966). Although one of Stroud and

Secrest's tables was applicable for infinite limits of integration and a

,\ > l(

.ev v.V
;:", /

,

1 vk"'
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weighting function equal to jl5(x), integration using the points in this

table was found to be less efficient (i.e. more points were required)

than using the points for finite limits of integration and a weighting

function of 1, even though slightly more calculation was involved per

point. Since one or both limits of integration were in fact infinite

on a number of occasions, it was necessary to choose finite upper and lower

limits which were far enough from zero that the answer was, to the desired

accuracy, unaffected-. Comparison with known results indicated accuracy to

si:; decimals for probabilities and at least four figures for gains. An

additional advantage of Gaussian quadrature is that, when known values are

not available for comparison, there are methods of calculating error

bounds.

2.2.3 Calculation of the cut-off points for given values of

It can be seen from the preceding discussion that, given the values

Tl , it is fairly straightforward to calculate the moments after selection

from a normal distribution in four stages or less. The catch is the

fact that comparisons of different screening programs are only possible

if both schemes end up accepting the same overall proportion of the

population. This necessitates the study of screening programs that

accept known proportions at each stage rather than unknown proportions

based on cut-off points. Although the two methods are equivalent in

the infinite case, the nature of the problem forces us to calculate the

cut-off points fu corresponding to fixed proportions P. rather than the other

way round. The absence of adequate tables for calculating ^. as a function
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of (except for the normal distribution) leaves us with a problem. This

problem was overcome by using Newton's method to iterate to the value of

corresponding to a given P^.
Let P.j and be the desired proportions of the population left

after one and two stages respectively. e then let

W -

where T) is an estimate of the value required to give f^.
Similarly, we let

f2<W =

is now an estimate of the value required to give *2^2 e P1P2*
is assumed to have been calculated by iterative methods from the

earlier expression. Using the notation

fi<V - It
e

and

f2^e'^ = W~ ,Ve*R2^ *
e

we can get an improved estimate V of Tl frome i

fhV-piTT a 7| -
e e

in the usual manner. Once we have found to the desired accuracy, can

be found from

f2(VV-pips
= v -

e e
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If desired, "% and can be found from similar expressions.
J n-

Cince the correlations are usually relatively small in the situations

studied in this thesis, the initial estimate was taken to be the easily

calculated value of r. required when all correlations between variable i

and th. remaining variables are zero. Prior to iteration this estimate

was tested against the sufficient condition

fcyfcy
[f'Cri)Y

(see page 203, Scarborough, 1956) for the convergence of Newton's method;

satisfaction of this condition led to an immediate commencement of iteration

by Newton's method; otherwise a simple bisection procedure was used until

a value satisfying the condition was found; Newton's method was then used.

11though more efficient methods of iteration exist, their convergence is

more sensitive to deviations of the initial estimate from the final

result and, considering the relatively low accuracy required, they were not

considered further.

Using this technique, the gain for a 2-stage process can be found on

the K'F-9 in ■§■ second, that for a 3-stage process in 6 seconds, and for a

4-stage process in 3-4 minutes (all accurate to four figures). One

redeeming factor of using this rather tedious technique is that, once the

cut-off points are known, momenta of as high order as desired can be found

very quickly. The reason for this is that the most time consuming aspect

of the program is the calculation of the cut-off points. Another advantage

is that the higher the order of the desired moment the lower the order of
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the integrals involved and the faster the calculation.

2.2.4 More complicated selection schemes

In certain cases it may be desired to truncate at upper limits as

well as lower limits at some or all of the stages. This would happen if,

for instance, we wanted to select for some specific value of gain rather

than the maximum value. Another example would be the case in which we

i/h
wanted to accept varieties completely, not only after the k stage, but

after some intermediate stages as well. The modifications necessary when

using upper cut-off points all follow naturally if S(x) in 2.2.1 (and 2.2.2)

is replaced by X^-x X^-x
—tr -7—

1 k

s(x) = f ... r exp(- ^uR^1u')/[(2n)klR ' ]¥du. ...dUj!
Vx V*

n n
1 k

the X^ represent the upper cut-off points. The modifications necessary
when using upper acceptance points are similar and will be outlined in

chapter 2.5 where, in addition, some calculations will be made to indicate

the advantage of such a system.

2.2.5 A functional statement of a generalized selection problem

In view of the necessity of a computer when studying more than one

stage of selection, and especially of the time required on the computer for

the calculation of the required values of Ti^,, a more straightforward
formulation of the selection problem would be very useful. A general

functional statement of the possible line a simplified formulation might



take will be given in this section.

If we define the distribution of x after the i^*1 stage of selection

to be g^(x), Sq(x) being the original distribution of x prior to any
tli

selection, and if we define the selection function of x between the (i-1)

and the i^"1 stages to be S^(x), we then have, following the method outlined
earlier in this chapter, the relationship

6i(x) = Si(x)gi_1(x)/Pi .

In the previous derivation we were immediately in trouble since the

distribution of x after the stage was given by the complex expression

k

fifcCx) = ini3i(x)g0(x)/Pi ,

and very little simplification was possible. If, however, we were able to

find a family of curves approximately satisfying the general characteristics

of our population (e.g. continuous, monotone increasing from aero to a hump

in the middle and then monotone decreasing back to zero) such that g^(x) was

simply a more extreme member of the family than 6^_^(x)> bhe analysis would
be much simpler, especially if the family used were tabulated, or if

tables could easily be calculated on a computer. An appropriate notation

would be to take

%(*) = hCx;*1) ,

where * 1 represents one or more parameters defining the particular member

of the family of curves appropriate to stage i. '.'hat is desired then is to

choose this family so that

h(xr X) = S.(x)h(x;> 1-1 )/P. .
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Although they would not be likely to work in this problem, families like

the y5-distribution (where >, would equal the degrees of freedom) and the

°-distribution (where \ would represent the two parameters p and q) are

the sort of families that are needed. Apart from the fact that the values
i . i-1

cf the relevant parameters depend in some way on the values 1 and

the selection function S^(x), the distribution h(x;>. ) would be independent
of the results at earlier stages. In all other ways the scheme would be

similar to the one studied in this thesis.

i • i '1 /

If it would make calculation of h(x;"> ) = 3^(x)h(x;> )/?i eas^erJ
and especially if it meant the availability of a good family of curves, a

reasonable non-normal error distribution might be worth considering. In

view of Davies' (1964) results with a double exponential error distribution,

a non-normal error might prove to be a good guide to the situation when

there is a normally distributed error. Further study of this is needed.

A solution to this more general formulation of the screening problem

would not only simplify the calculations, but also the stage-by-stage

study of the problem. More generally, in view of the robustness (found

later in the thesis) of the area of maximum gain to the operating conditions,

a study of the sort outlined in this section should be a very good guide

to the results of selecting from many other distributions.
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2.3 The Investigation of Selection from a Normal "distribution

2.3.1 General comments

Ideally, now that we have an expression for the gain after any number

of stages, we would proceed to derive expressions for the values of the

parameters ou and necessary to achieve maximum gain for specified values

of rr and V. This is, however, obviously impossible with the expression

derived in the last section. On the other hand, it would not be too

difficult to calculate the appropriate values numerically, especially when

routines have already been written for the necessary multivariate normal

integrals. For given " and V we would have to find the values ^.,...,1^,
k-1

and
-j (keeping in mind that = 1 — ^ > subject to the

restriction that
*n "n

rr - if—l —•B.)-H,,, 9 ) 9
1 k

would result in maximum gain. This maximisation could easily be achieved

by using Lagrange multipliers and a standard iterative technique such as

that used by Fisher (1959) to calculate maximum likelihood estimates of

unknown parameters. The appropriate values of the o\ and the Ih could, for

two or three stages of selection, be calculated for specified V and n in

at most two or three minutes of computing time. The algebra necessary to

write the program would be tedious but not impossible.

The many assumptions involved in the formulation of the problem (the

distribution shape, the value of V, the value of w) make the calculation

of the exact optimum selection scheme of relatively little value; as long

as we have an idea, of the approximate location of the optimum scheme, our
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main concern is with the nature of the variation of gain as the r/. and

the Ih vary in the region of the optimum location. This is the approach

used by itxney (1958a, 1966) and Curnow (1961) in their studies and it

will be used here. Particular emphasis will be placed on how close

Finney's suggested symmetrical operating conditions come to achieving

maximum gain when history is used.

Prior to a detailed study of the factors that have a specific

influence on gain, it is worth noting that, when using history, the

gain is very flat in the region of optimum selection. Finney and Curnow

have already shown that this is true for the gain when historical information

is not used. The flatness of the optimum area when history is used is

illustrated in figures F1, P2 and ?3* in which contours of constant gain

ore plotted against and P. for two stage selection from a normal

distribution with tt = 0.01 and V = 0.1 , 1 .0 and 10 respectively. In these

figures the gain is expressed as a percentage of the target of 2.6650

(the maximum possible gain). The fact that the surface is even flatter

when historical information is used is indicated by the relatively large

gain as c.-*1 and P^-*1 ; the large amount of information ignored in the same
area when historical information is not used results in very low gains.

As with the graph presented by Finney (1958a), the contours resemble

ellipses whose major axis is tilted upwards towards the corner that

represents light selection in stage 1 (F^-'l) and correspondingly light

* Tables and figures with numbers preceded by a letter (table T1, figure 1 }
are found at the rear of the thesis; all other tables and figures are located
in the text close to where they are cited.
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replication .

One other general observation worth mentioning at this point is the

fact that the minimum variance of x in the selected population is usually

very close in magnitude to the variance both at symmetry and at the

location of maximum gain. Table T1 gives the variance of x for -t = 0.01

and V = 1 . The minimum variance of 0.227rs occurs at = 0,4 and P. = 0.050.

The variance at symmetry is only 0.258ct2 and that at the approximate position

(~gj = 0.6 = 0.07) of maximum gain is 0.249"^. Obviously the small
difference between these three values is of little practical consequence#

Because this same general pattern was found for all values of V, n and k,

and because of the difficulty of interpreting the variance of a skewed

distribution, no further comments will be made.

One interesting point in passing is that the 143 values in table T1

and the corresponding gains both with and without historical information

were calculated in 2 minutes. Calculation of the next three moments would

not take more than a few additional seconds,

2.3.2 The influence of* V on the gain

For V = 1 and tt = 0.01 , maximum gain in 2-stage selection from a

normal distribution is approximately 2,353^ or 88.3;' of the target of

2,665^; this gain occurs at = 0.575 and igj = 0.08, Since the gain at
the symmetrical specifications is 2.350r or only about 0.1,. lower*, it

* Percentage increases are given by 100(L-S)/S and percentage decreases
by 100(L-8)/L, where L represents the larger value and 3 the smaller.



- 61 -

can be seen that little will be lost in using symmetry as an approximation

to the optimum, specifications. Figure 12 illustrates the wide range of

operating conditions resulting in a gain very close to the maximum

attainable gain. It can, for instance, be seen from this graph that

operation in the region J.3^c.<0.8 and 0.0VP^0.2 results in a gain of
more than 86; of target or within about 2/. of the maximum. It can also be

seen that, if it is necessary to move from symmetry, it is advisable

(when V = 1) to move in the direction of both slightly heavier replication

and slightly heavier selection in stage one. Figure F1 for V = 0.1 and

v = 0.01 displays the same characteristics and an even flatter surface.

In particular, the maximum gain of 2.647c occurs at n>. = 0.55 and

P. = 0.05 and is only 0.2,'' greater than the gain at symmetry. Obviously

as V-»0 the surface will become perfectly flat with a gain of 10O;c of

target.

It is only as V gets large that the maximum gain departs much in

magnitude from the gain at symmetry. Figure F3 showing the gain for V = 10

and c = 0.01 exhibits the characteristically flat surface, but this time

the ridge of maximum gain occurs for lower values of and slightly lower

values of . In addition, the surface has been pushed down considerably

in magnitude: the maximum is 88.3, for V = 1 and only 53.5/ for V = 10.

The maximum gain now occurs at ^ = 0.35 and = 0.07 and is 4.2, higher
than the gain at the symmetrical specification.

The entries in table 2.3.1 indicate that the same general pattern of

behaviour with variation in V occurs over a wide range of values of v.

The figures in the table suggest that the percentage advantage of maximum
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gain over symmetrical gain increases slightly as V decreases from 1,

but it is only for increasing V that there is a marked advantage.

TfnL-- 2.1.1

A comparison of the 2-stage gain at the symmetrical operating
conditions with the maximum gain for various V and rr.

V G/cr at Approximate maximum G/<?
symmetry % increase Location

^ =0.5 =/tt over symmetry

0.0625 0 1.968 - - -

1 1.605 0.1 0.5 0.23
5 1.039 1.1 0.5 0.21

60 0.349 4.8 0.3 0.2

0.01 0 2.665 — — —

1 2.350 0.1 0.575 0.08
J 1 .706 0.8 0.4 0.1

60 0.647 17.5 0.2 0.044

0.001 0 3.367 — — _

1 3.123 0.5 0.65 0.03
5 2.321 0.0 0.5 0.032

60 1.229 20.3 0.15 0.014

0.0001 0 3.959 — - —

1 3.753 1.3 0.7 0.014
5 3.230 0.8 0.55 0.014

60 2.029 9.0 0.2 0.006

In view of all the assumptions made in the formulation of the problem,

the increases in gain of one percent or less achieved by moving from

symmetry when V ^ 5 will not be worth considering in practice so we should

usually be very safe in operating at the symmetrical specifications; only

for very large values of V will it be necessary to consider other operating

conditions. This agrees with a suggestion made by Curnow (1961) for the



case when historical information is not used. For large V it appears that

we should u e smaller than symmetrical values of both m and .

Figures ?A, F5 and ?6 illustrate the dependence of gain (G/a) on

log(V) (0.1 <_ V ^ 10,000) at the symmetrical specifications for
-T = 0.0625, 0.01 , and 0.0001 respectively. It can be seen that very

nearly perfect selection is achieved for all values of rr when V = 0.1 .

This is followed by an almost linear drop in mid range to very nearly no

gain vlien V = 10,000. Obviously the gain will be 0 in the limit as V -*

and. 100} of target in the limit as V - 0.

If it is assumed that all additional resources go to increasing the

number of replicates per variety, these graphs can be used to study the

effect of increasing or decreasing the total resources A while maintaining

the same values on (1 i < k) . Doubling the value of A would have the

effect of doubling the replication and halving V. It can be seen from

figure F4 for tt = 0.0625 that, in moving from V = 2 to V = 1 , we get an

increase in gain from approximately 1 .3&J to 1 ,6rr or a.bout 16A:; doubling

replication should result in approximately this increase in gain. This

technique should be useful when trying to balance the cost of additional

experimentation with the benefit of that experimentation.

2.3.3 The influence of -r on the gain

Returning to figure F1 and table 2.3.1, it can be seen that the surface

of gain remains very flat for various values of "j it is only when V is

large that the maximum gain departs very much in magnitude from the gain at

symmetry. For a given V it appears that there may be a slight reduction



in this effect us ~ decrease:) to very small values: for V = 60 the optimum

is only °.6v better than the symmetrical gain for ** = 0.0001 while it is

17.5* and 20.3;' better for - = 0.01 and " = 0.001 respectively. In the

mere realistic range 0.2 ^ V ^ 5 the differences between optimum and

Symmetrical rain : ro much smaller. At " ~ 0.25, for example, the symmetrical

gain in within 0.1 of the maximum and is located very close to symmetry. As

- decreases, the location of the optimum begins to move slowly to values

of <y and. larger than the symmetrical values. At " = 0.0001 and 7 = 1,

for instance, the maximum gain occurs at ^ = 0.7 and = 0.014; the
surface is still, hesevr, very flat and the symmetrical gain is within

1.3; of the maximum. Clearly, the gain at the symmetrical specifications

is very close to the maximum gain over a wide range of values of 'T.

fince, for a given number of stages, a specific value of V ensures

that the first stage replication is constant independent of" we have,

since ^ = r at symmetry,
= Vk"£'

independent of ". At a later stage (stage j say) we have

e:. = 7k«!?rr. . ,
J 1-1 '

where
-j = (")^~ . It con be seen that, in all stages but the first,

the variance becomes smaller as the selection becomes more intense. The

reason for this is the fact that, as a result of the very intense selection,

there will be relatively fewer varieties around at each stage after the

first and, since the resources are fixed independent of", there will be

more resources per variety. As a result of the increased accuracy in the



estimation of the true fields of the individual varieties for small

v-.i.{iue3 ox 5 we c*-Ui expoo u , * or a gr von v ^ gums o-i-Qsor to target» xnus

increased accu. acy may also be the reason for the observed increase in

tie optimum values oi' both . and r^ over the values found for higher
values of It can be soon from the above equation for e:. that, as

J

rr decreases, the mter the stage the greater the increase in accuracy;

it seems logical that it might be preferable to spread this increase in

accuracy more evenly over all stages, and to keep more varieties around

longer before discarding them; this can be done by increasing and

in the early stages. / s w decreases for constant V we night then expect

operation at the location

• ^ k

and

/V *> f\* N •*> rv

1 2 * * * k

to result in improved gain. This effect can be seen to occur for low

values of V in table 2.3.1. At higher values of V the effect is less

obvious because of the overpowering effect of V.

The Improved preoision for small values of " is illustrated in figures

F4, F5 and Fo where it can be 3een that, for a fixed V, the percent of

target achieved increases as *r decreases. For 2-stage selection at V « 60,

for instance, we achieve 4.4/ of target for « = 0.0625 and 16.21 of target

for 17 = 0.0001 . Obviously in the limit as " — 1 we will approach 100/' of

target again since the target approaches zero. The same effect is illustrated

more vividly in figures ?7, F8 and F9 where the gain is plotted against n
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for V - 0.2, 1 , and 5 respectively. from figure P8 we have, for 2-stage

selection, 79.5," of target achieved at n = 0.1 , 88.2,* at n = 0.01 ,

92.8,' at TT = 0.001 and 94.at tt = 0.0001 .

As can be seen from the graphs, the effect described above does

not occur for 1-stage selection. In fact, for 1-stage selection with a

given value of V and no initial random discard, the gain achieved is

a fixed percentage of the target independent of t. This can be seen

by calculating the gain from equation 2.2.18 and dividing by the target

(given by the same equation with V = 0). The result is that, for one

stage of selection and = 1,

Gain 1 1

Target ~ ~ /l+yya '

This is a function only of 7. 'When / 1 the simplification is not

possible.

2.3.4 Multiple-stage screening and its effect on gain

In the preceding sections very little reference has been made to the

number of stages involved; the conclusions on the flatness of the optimum

area and the adequacy of the symmetrical specifications have, in fact, been

based on only 2-stage selection. In view of this, of the remark by Finney

(,1958a), "In the practice of plant selection reliance on a single stage of

selection is unlikely", and of the remarks of various authors (see the

comments of Finney (1966), King (1963) and Davies (1958) in section 1.4.1)

to the effect that screening in more than two or three stages is unlikely

to be of much value, it will be interesting to look at multiple-stage
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screening in some detail.

The flatness of the optimal area for 2-stc.ge selection has been

established. Curnow ^1901) , using 53 combinations of the <y. ' s and P.'s

arouna the symmetrical specifications, found the surface to be very flat

for 3-stage selection without history for ~ = 0.001 and V = 1 , 4, and 10.

lii each of these three cases the maximum gain was less than 0.7, greater

than the symmetrical gain.

As Curnow pointed out, it is very difficult to discuss the shape of

the surface of the gain for three stages of selection. Solution for the

exact location of the maximum gain would be more valuable here (because

of the complexity of the surface) but would, although possible, involve

numerical evaluation both of the five parameters an<3 r'2*
and of the Lagrange multiplier required to incorporate the restriction on

the proportion accepted.

Because of the difficulty of exact evaluation, a number of surveys of

a similar nature to those made by Curnow have been performed for 3-stage

selection when history is included. Table T2 gives the gain for 3-stage

selection with V = 5 for both tt = 0.0001 (the upper table) and rr = 0.01

(the lower table). These tables are set up in a manner similar to that

used by Curnow in that selection becomes more intense in the early stages

as you move down in the table, and replication becomes heavier in the early

stages as you move from left to right across the table. In addition, the

average yield for each set of the P's or rv's is included at the end of the

appropriate row or column. Jince the parameters range over a wide area,

and since the minimum tabulated gain is, in both cases, more than 05, of
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the maximum tabulated gain (85.6; ^or ^ = 0.01 and 86.7f* for tt = 0.0001),

it can be seen that the surface is quite flat in the optimum area. Since
4 /7

the maximum fain occurs at symmetry for ^ = 0.01 , and at r\ - P0 = P, = ^ /1 <L j)
1 1

and = <r - — for - - 0.0001 (resulting in an increase over1 2' 2 5 4

symmetrical gain of only 0.9'; ') , the symmetrical specifications again seem

T.'1 BLF. 2.3.2

Values of G/c for 4-stage symmetrical selection from a normal
distribution.

Values of V

TT Target 0.2 1 5

0.0001 3.959 3.958 3.877 3.601
0.001 3.367 3.359 3.258 2.886
0.01 2.665 2.640 2.472 1.946
0.0625 1.968 1.913 1 .677 1.1 38

to be adequate. These conclusions are in keeping with Curnow's results and

other tables (V = 1 with tt = 0.0625, 0.01 and 0.001) calculated by myself

but not, for the sake of brevity, included here. Since the best results

occur in the upper right hand corner for t = 0.0001 (in keeping with the

comments made for very intensive selection in section 2.3.3) and in the

centre to lower left hand corner for tt = 0.01, no general conclusion can

be drawn on the movement of the optimum area as a function of k.

Because it is far more time consuming to find the 4-stage gain than

the 3-stage gain, far fewer results have been calculated. Some of these

results arc reproduced in table 2.3.2. 1Ye are so close to perfect

selection at V = 0.2 that little can be expected to be gained by moving
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from the symmetrical specifications. This is not so obvious for V *> 1.

In order to get a (very) rough idea whether or not the gain acts in the

same manner in 4-stage selection as it did in 2-stage and 3-stage selection,

a few values of the parameters other than the symmetrical specifications

TABLE 2.3.3

Values of G/c for 4-stage selection from a normal distribution
with V = 5.

0.0001

0.01

"1 <ry2 "3 *4 P1 P2 p3 P4 G/CT

0.333
0.300
0.333

0.280
0.277
0.280

0.230
0.233
0.230

0.157
0.190
0.157

0.120
0.120
0.100

0.111
0.111
0.100

0.090
0.090
0.100

0.083
0.083
0.100

3.644
3.639
3.632

0.300
0.250
0.200

0.277
0.250
0.233

0.233
0.250
0.277

0.190
0.250
0.290

0.100
0.100
0.083

0.100
0.100
0.090

0.100
0.100
0.111

0.100
0.100
0.120

3.624
3.601
3.515

0.300
0.250
0.200

0.277
0.250
0.233

0.233
0.250
0.277

0.190
0.250
0.290

0.450
0.215
0.222

0.380
0.215
0.263

0.263
0.215
0.380

0.222
0.215
0.450

1.857
1.946
1.934

were tried for " = 0.01 and n - 0.0001 with V = 5. These values are

presented in table 2,3.3. Obviously no general conclusions can be drawn

from these results but it is interesting to note that, as with 2-stage and

3-stage procedures when selection is very intense, better gains are obtained

for ^ = 0.0001 when there is heavier than symmetrical replication and slightly

less intense than symmetrical selection in the early stages. The results

also suggest that the maximum gain for t = 0.01 will occur at symmetry or

with slightly lighter replication and possibly slightly heavier selection

in the early stages. This is again very similar to the result for 3-8tage
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selection. There is certainly nothing to suggest radical departure from the

results of 3-stage seleotion, nor is there any general pattern emerging

that would indicate any variation in the location of maximum gain with k;

what changes do occur seem to be the usual functions of V and tt (as discussed

in section 2.3.2 and 2.3.3). In general, unless V is very large or n very

small, symmetry still seems to be an extremely good guide to obtaining nearly

maximum gain for 4-stage selection.

TABLE 2.3.4

The percent improvement over one less stage of selection for
various values of n and V.

rr: 0,0625 0.01 0.001 0.0001
Number of

stages: 2 3 4 2 3 4 2 3 4 2 3 4

V
0.2 5.2 0.9 0.4 8.2 0.8 0.3 9.2 0.4 0.1 9.4 0.2 0.1
1.0 15.3 3.2 1.3 29.4 3.2 1.4 35.5 3.2 1.0 37.4 2.5 0.8
5.0 29.3 6.5 2.8 72.3 9.8 3.8 103.2 9.9 3.3 117.4 8.7 2.5

It can be seen from the graphs already studied (figures F4 - F9) that

the pattern of variation of gain at symmetry with V and tt for 3-stage and

4-stage screening is the sane as that for 1-stage and 2-stage screening;

only the actual value of using additional stages varies. Table 2.3.4

indicates the percentage improvement over one less stage of selection for

various values of tt and V at symmetry. From this table and from the graphs

just mentioned it can be seen that, as is to be expected, the value of

each additional stage decreases as k increases. It seems unlikely that it

will be beneficial to use values of k much greater than 4. Although the
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percentage increase due to additional stages increases with V in the range

shown, the actual magnitude of the increase can be seen in figures F4, F5

and F6 to start to decrease at around 100'V<'1000 depending on the value of

tt. For V<1, 4 stages and probably even 3 stages will rarely be worthwhile.

Information on the magnitude of the gain due to additional stages for the

range 1>tt>J.0OO1 can be obtained from figures F7, F8 and F9. More than

2-stage selection can be seen to be rarely necessary for rr>0.1; it is in

the range n<0.1 that larger values of k will be most useful, especially if

V i3 large.

In all this discussion it should, however, be remembered that the

real value of additional stages will depend on the economics of the situation;

since a profitable return is often a matter of a one or two percent improvement,

extra stages may often be exactly what is required. On the other hand, the

delay involved may be prohibitive.

2.3»5 The value of the use of historical information

The work done in the previous three sections has, with the exception

of the 4-stage calculations, been very similar to the studies done by Finney

(1958a) and Curnow (1961). There is one major difference: historical

information has been used throughout. Little, however, has been said about

the effect of historical information on the size and variation of the gain.

Obviously, since the conclusions are very similar to those made by Finney

and Curnow, the gain changes very little in the optimum area.

Table T3, giving the percentage increase in gain when selecting in two

stages with rr = 0.01 and V = 1, indicates that, in the optimum area, history
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is of little value (0.2$. at symmetry); it is only when and are

large that history is of much value (27.y/» when = 0.8 and = 0.5).

The reason for this is obvious on looking at the ratio of the current

vfeight to the weight applied to the information from previous stages.

In the case being considered here we have, from equation 2.1.1,

a22 ®1 °2
a2i = -q * ^ J

since tt - 0.01 this means that, at symmetry, ^22^a21 = 10,0# Vl?hen the
estimate of yield from the second stage is 10 times as accurate as that

from the first, it is obvious that little improvement will result from

the inclusion of the first stage information in the estimate z2 of x.
At = 0.8 and P^ = 0.5, however, a22>/a2i = 0,5 and, as has already been
seen, a 21 ,J/o increase in yield results from the use of the first stage

information.

Table 2.3.5 gives a summary of the value of history for 3-stage

selection with V = 1 for both tt = 0.001 and tt = 0.0625. Hie lower third

of the table gives, for tt = 0.0625, the ratio of the weight a^ (applied
in the third stage to the third stage information), to the weights a^2 and
aj-j (applied in the same stage to the second and first stage information
respectively). The same behavior found with 2-stage selection can be seen

to occur: heavy replication and light selection in early stages cause more

nearly equal weights and a corresponding increase in the importance of

historical information. When history is used in this region the gain levels

off for all values of V and tt and the surface becomes fairly flat. This

can be contrasted with the fact that, when history is not used, the gain
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approaches zero as F,| -> 1 and ^ -» 1 .

TABLE 2.3.5

The percent increase in gain due to the use of historical information
when selecting in 3 stages with V = 1. The ratios of the weights
applied to historical information in the third stage are (for rr =
0.0625) given in the lower third of the table.

Values of Values of

F1 P2 P3 % increase (1/4 1/4 1/3) (1/3 1/3 1/3) (2/5 2/5 1/5)

0.001 0.14 0.14 0.051
0.10 0.10 0.10
0.071 0.071 0.196

0.0625 0.5 0.5 0.25
0.391 0.4 0.4
0.281 0.389 0.571

xn gain
0.1 0.3 0.7
0.05 0.1 0.3
0.03 0.04 0.1

2.4 4.5 8.5
1 .4 2.2 3.9
0.3 1.2 2.1

0.0625 0.5 0.5 0.25
0.391 0.4 0.4
0.281 0.389 0.571

ratio of

weights hi hi hi a33 hi himmSmSm

a31 a32 a31 a32 a31 a32

8.0 4.0 4.0 2.0 2.0 1 .0
12.8 5.1 6.4 2.6 3.2 1.3
18.3 7.1 9.2 3.6 4.6 1.8

The value of the inclusion of history varies considerably withT. When

operating at symmetry, the ratio of the weight applied to the yield of the

final stage k, to the weight applied to the yield of any other stage ,j, is

given by

!l 1
"kj " °k " (r)(k"3)A '

where, of course, k > j. For any possible value of j this ratio increases

rapidly as selection becomes more intense (rr decreases) and, as a result,
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history decreases rapidly in importance. This effect can be seen for

V = 5 in figure P10. In 3-stage selection this figure shows history

to increase the gain by 5.1/1 for t = 0.1 but only Q.% for TT = 0.001.

The above expression also illustrates the fact that the weights

applied to intermediate stages are more nearly equal for large values

of k. As a result, at symmetry, the importance of historical information

increases as the number of stages increases. The resultant increase in

the value of history with k can be seen for fixed V in figure P10, and for

fixed tt in figure F11. At V = 5 and rr = 0.1, for example, only 2.3& is

gained in 2 stages while 5*1% is gained in 3 stages.

The importance of history also increases as V increases. Figure F11

for rr = 0.0625 shows that its value increases rapidly in the range

0.01<V<*10 and then flattens out as V increases further. The same effect

is present, to a lesser degree, for smaller values of tt.

Since the inclusion of history always gives some additional gain it

should, if the correct weights are known accurately and unless the

administrative cost is high, always be included in estimating x. When

the weights are not known, or if they can only be estimated with a few

degrees of freedom, problems arise. Yates and- Cochran have suggested

that equal weighting may be preferable if this is the case. Because of

the large increase in accuracy in later stages in the sort of screening

procedures considered here it will, however, probably be preferable to

ignore historical information completely rather than weight it equally.

Further comments on weighting will be made in section 2.5.1.
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2.3*6 The use of an initial random discard

Finney (1958s.) introduced the idea of an initial random discard

represented by Pq<1. Although this resulted in large increases in gain
for k = 1, he found much less improvement when k = 2. In that case he

suggested that an initial random discard would not be worthwhile unless

V was very large or rr very small.

The reason for the advantage, in some instances, of an initial random

discard is that, by discarding some varieties without experimentation,

more resources are made available for each of the remaining varieties

with the result that their yields can be determined more accurately. This

increased accuracy will often more than offset the fact that a few good

varieties have been discarded and, when this happens, increased gains will

occur. Mathematically the effect is to change V to V' = P^V and tt to
tt' = ~ . If additional varieties can be assumed to be available and

0

drawn randomly from the same parent distribution, this idea can be

extended to take into account Pq>1• This would represent a situation in
which the resources available could be used more efficiently by experimenting

less intensely on more varieties. In this case, the increased probability

of there being really high yielding varieties in the population more than

offsets the decrease in accuracy.

When increased gain can be achieved by randomly discarding some

varieties (optimum Pq<1) there is obviously an inefficiency in the system
in that 1-Pq of the varieties have been developed in vain. It may, on the
other hand, be impossible for economic or other practical reasons to come

up with more varieties in order to take advantage of the increase in gain
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that will result when optimum Pq>1. Despite these difficulties, a brief
discussion of this aspect of screening will, for sake of completeness,

be presented here.

Since the only change is in V and tt, the earlier remarks on flatness

and optimal!ty will apply. As a result, all calculations in this section
n 1/k

will be done at symmetry. This means that we will use Pj =("r') - (*r-) .

0

Figure F12 gives, as a function of ttV, the value of Pq that will result
in maximum gain. It can, for example, be seen that if tt = 0.002 and V = 5,

maximum gain occurs for PQ - 0.1, 0.35 and 0.7 for 1-, 2- and 3-stage
selection respectively; for V = 1 and 0.0001<TT<<1 , maximum gain occurs for

Pq>1 for both 3-stage and 2-stage screening. The actual gains achieved
for P-y^l for more than 1-stage screening can be seen, from table 2.3.6,
to be small unless tt is large. Since the expected gain is 0 when " = 1,

taking P_>1 and ~ will always result in an infinite increase in gainU *0
there.

The actual gain achieved when using optimum Pq is given in figure F13
as a function of ttV. The great advantage of varying the initial number of

varieties (Pq^1) 1-stage selection is emphasized by how much closer the
curve for k = 1 is to the curves for k = 2 and k = 3 in figure F13 than it

was for Pq = 1 in, for instance, figure F8.
As Finney suggested, it is for k = 1 that increasing or decreasing the

initial number of varieties will be of most value. The difficulty of

balancing plots and varieties for small changes in the number of varieties,

and the difficulty of developing new varieties will quickly negate ary

advantage that might arise in most instances when k > 2. The larger gains
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achieved by using an initial random discard when k > 2 and V is very large

can be explained by the fact that, as we have already seen, the optimum

moves from symmetry both in location and in magnitude when V is large.

Little increased gain results from an initial random discard if we move

to the region of optimum gain when V is large.

TABLE 2.3.6

The recommended value of Pq and the resulting increase
in gain for 1-, 2- and 3-stage symmetrical selection

with V = 1 and V = 5.

Stages: 1 2

Value of V: 1 5 1 5 1 ?

TT

0.0CQ1 PQ 0.2 0.4 1 0.3 6.3 1

% inc. 23 89 0 3 1.6 0

0.001 P0 °'2 0.07 1.3 0.3 4.6 1

% inc. 20 67 0.2 3 2.9 0

0.01 p0 0.45 0.16 1.7 0.4 3.7 1

% inc. 8.8 33 1 2.6 4.1 0

0.1 P0 1 0.5 2.5 1.1 4.3 1.6

% inc. 0 5 6 0.3 10.3 3

2.3.7 Other descriptive and comparative techniques

In the preceding sections we have been co-ucerned with the gain, in

particular with its maximum value and its variation in the area of that

maximum. We new turn to other descriptive and comparative techniques that

can usefully be employed in the study of screening programs. Finney (1964)



- 78 -

used both operating characteristic (OC) curves (giving the probability of

selection of a variety as a function of its true yield x) and the frequency

distribution of the selected varieties, to illustrate the operation of

various screening systems. Figure F14 (top) gives both these curves for

selection in two and three stages from a normal parent population at the

symmetrical specifications for V = 1 and it = 0.001. Perfect selection for

rr s 0.001 would mean selection of all varieties with true yield greater than

x = 3.090ct; this value is represented by a small vertical arrow in the figures.

The operating characteristic S(x) (see equation 2.2.1) is plotted in

the upper left hand corner of figure F14. From it we can see that both

2-stage and 3-stage screening result in a very steep rise in the probability

of selection in the area of x = 3>09n, but that 3-stage screening results

in a rather steeper rise. This is illustrated by the fact that at x = 2.7<r

the 2-stage procedure will accept 6% of all varieties and the 3-stage only

2%t while at x = 3*5? the 2-stage procedure accepts only 97% of all varieties

while the 3-stage accepts 70fo. It is interesting to note that at about

x = 6.25<? the probability of selection under the 3-stage system drops below

that in the 2-3tage system. Since both systems accept over 98% of

all varieties with true yields in this region this drop will not usually

be of much practical importance. Finney found the same rather curious

result in comparing 1-stage (Pq = 1) and 2-stage systems. Inspection of the
frequency distribution (g(x)) after selection (right hand corner of figure

F14) confirms the advantages of 3-stage screening over 2-stage screening.

With 3-3tage selection g(x) i3 more highly peaked and it falls off much

more rapidly as x decreases from 3.09^.
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Both the graphs described in the previous paragraph are very useful if

the experimenter is particularly interested in a special range of values

of x. Prom the OC-curve it can be seen that we are better off in the

region with 3-stage screening; if, however, we are particularly

interested in values of x>5^» and if there is a real possibility of getting

such high values, it may not be worth our going to 3 stages; if we only

want varieties for which x>6.25n, 3-stage screening is actually the poorer

of the two. Referring to the frequency distribution g(x), we can see that

if, for instance, items yielding less than 2.5<? result in a loss, we will

be much better off using 3-stage screenir^. Obviously these two graphical

techniques are very useful in describing a given system.

A somewhat more quantitative method of comparing two systems is to

take the ratio

(the subscripts refer to the number of stages used). This relative operating

characteristic (ROC) curve provides, for a given parent population h(x),

the relative probability of selecting a variety with a given true yield x.

If the ROC value is greater than 1, the 3-stage system (in tliis case) is

more likely to accept a variety with the yield in question; if less than 1,

it is less likely to accept it. A graph of this function on a log scale

for the situation under consideration (tt = 0.001, V = 1, at symmetry) is

presented in the lower part of figure P1R. Since neither this graph nor,

for that matter, the OC-curve specifically take into account the parent

distribution of the varieties under consideration, a graph of the relevant

ROC =
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tail of the normal distribution is plotted in the same figure against the

same scale of x/a.

It can be seen from this graph that the 3-stage system is only

slightly better, relatively speaking, than the 2-stage at selecting

varieties with yields greater than 3»09a. At x = 3.2a, for example, the

3-stage system is only 1.33 times more likely to accept a variety than the

2-stage system. It is also slightly more likely to accept the presumably

undesirable items in the range 2.93a<x<"3.09a. It is the much greater

probability of rejection by the 3-stage system in the range x-"2.93a that

makes it the better of the two. At x = 2.75a the 3-stage system is twice

as likely to reject an item (half as likely to accept it). The extremely

rapid increase in the relative probability of rejection as x decreases

is emphasized by the fact (not shown on the graph) that at x = 2.3a the

3-stage system is 200 times as likely to reject an item. The large

probability of there being a variety in the region x < 2.3a (relative to

Pr(x>2.9a)), as illustrated by the graph of N(0,1) on the same scale,

emphasizes the desirability of this characteristic. The sharp drop in

g(x) after three stages as x decreases from 3.09a is a result of this

rapid decrease in the relative probability of selection. This aspect of

the difference between the two systems is not as well illustrated by just

the OC-curve. In fact, the reliance on the vertical difference between the

two OC-curves for comparison may be misleading because of the very small

vertical difference in the important lower range of x and the large vertical

difference in the upper.

For the sake of better illustrating the nature of the improvement due



to history, the ROC-curve of the ratio of the probability of selection when

history is included versus the probability when it is not is given in

figure F15 for 3-stage selection at symmetry when n = 0.0625 and V = 1.

The relevant tail of the normal distribution is again, for convenience,

plotted on the same scale of x/o. The relatively small value of the inclusion

of history is well illustrated by the slow increase in the relative

probability of rejection for x less than the target of 1.534c. For this

comparison the EQC-curve is particularly useful since the OC-curves and the

two curves of g(x) are almost indistinguishable on a reasonably sized graph.

It has already been mentioned that it is necessary to consider the

distribution of the parent population when discussir^ OC-ourves and ROC-

curves and, for this reason, a graph of the parent population is included

with both RQC-curves. The necessity for this consideration is aptly

illustrated by the fact that a selection system which is 100 times as

—10
good as another for x > Xq is of little value if P(x > x^) =10 .

Another slightly more subtle difficulty arises from the fact that the cut-off

points used in evaluating the OC-curves are calculated to accept fixed

proportions from a specified parent distribution and will vary considerably

as a function of the parent distribution. As a result, the OC-curve,

which at first glance appears to depend only on the error distribution,

is a function of the parent distribution. If, on the other hand, one has

determined desirable cut-off points for some other reason, or wants to find

cut-off points to give an almost vertical rise in the probability of

selection in the region of some specified value of x, these curves are

particularly useful in that, for specified TU , they describe the operation
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of the selection scheme independently of the parent population. The

proportions accepted will, of course, vary as a function of the cut-off points

and the parent population. In general though, whether or not the distribution

of the parent population is known, the use of these three curves will add

greatly to the understanding of the operation of a selection program,

especially if more knowledge is desired than just the gain.
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2.4 Modified Selection Schemes

2.4.1 Acceptance prior to the final stage

One of the conclusions of the previous chapter is that two or more

3tages are usually necessary for effective screening. One obvious

drawback of multistage varietal screening is the long delay involved in

passing through the k stages of the program. A possible improvement over

the basic system would be to accept a few of the most premising varieties

immediately after the first stage of experimentation rather than wait

until the final stage. This would not only allow certain varieties to

get into general use earlier but would also allow more intensive study

of the remaining varieties. As has already been pointed out in the discussion

of OC-curves, the probability (when V = 1 and n = 0.01) of selecting a

variety with a very high yield (x > 5»9^i Finney, 1964) is greater for

1-stage selection than for 2-stage. The unrealistically high value of x

at which this higher probability of selection occurs is not too promising

but it does indicate the theoretical possibility of an advantage in gain

arising out of acceptance of unusually high yielding varieties prior to

the final stage. It should also be remembered that getting an improved

variety into general usage one or more years early may balance even a

small decrease in the theoretically expected overall gain.

In order to investigate the result of early acceptance, we will look

briefly at the result of accepting a small proportion of varieties

immediately after the first of two stages of selection from a normal

distribution. If we take as the first stage acceptance point and if we

reject, as before, all varieties yielding below in the first stage or
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T- in the second we have

S(x) = Er(y1>Tutx)+Pr(^l>>r1>^1,y2>'n2!x)
Following exactly the same procedure used in chapter 2.2, and letting

n
u

«

jT> ,t!9;p) = f ^exp(- ^(u2+v1'J-2puv)/(l-o£))/(2rT / 1-o*)dudv ,l u <£
ri T

1 2

we have

\

e2° \ " K-t \~t V -t .r 0(u) du+l( ; , j o)
t=0

taking the derivative and simplifying we have

E(x) = |[10(Ti)$[(V0Ti)//^3+ 1 0(t2)$[(t1-pt2)//ThF]

+ ^(Tu)$[(PVT2)/CT^ J ^(T2)|[(Tu-pT2)//T=^]], (2.4.1)
where Tu = . At first glance, this expression appears to be the gain
after two stages (for a given value of Tg and without an upper acceptance
point) plus a correction factor. That this is not true arises from the

fact that it is now unnecessary to study some of the varieties (all those

yielding above ti } that would normally have been studied in the second

stage. This causes more resources to be available for each of the remaining

varieties in stage 2 and e| is reduced to

*2 = If <VP»> >

where = $(Tu). Obviously the system only makes sense if Pu<rr (note that
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P.jT). Since changes, = "^2/^2 must a-"-so change if it is still desired
to accept a fixed proportion of the varieties. As a result of these changes,

the first two terms in the above expression are quite different from the

corresponding terms without upper acceptance.

In order to study the advantage of early acceptance, the gain has been

calculated for a number of values of tt using various values of T1u calculated

TABLE 2J;,1

Values of G/cr for 2~stage symmetrical selection showing the
advantage of accepting some varieties at stage 1.

V rr

G/rr at

Pu = °

Maximum gain

r-u

Maximum

Pu
Pu without loss

G/a

1 0.5 0.573 0.3 0.586 0.375 0.573
1 0.25 0.956 0.05 0.962 0.1 0.956

2 0.125 1.563 0.03 1.565 0.04 1.563
1 0.125 1.292 0.003 1.293 0.003 1.293
5 0.125 0.803 0 0.803 0.003 0.803
1 0.0625 1.605 0 1.605 0.001 1.605
1 0.01 2.350 loss in gain even at P = 0.0001

for specific values of Pu» The calculations were made for the same value
of appropriate for symmetrical screening without early acceptance;

other values might give slightly higher gains but these were not studied.

The results of these computations are given in table 2.4.1. In this

table both the gain for Pu = 0 (no acceptance prior to stage 2) and the
maximum gain are given. The largest value of P^ for which the gain is
still approximately as large as the symmetrical gain for Pu = 0 is also
given.
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It can be seen from the table that it is only for very large values of

v that any increase in gain is achieved by early acceptance and even then

the maximum improvement is only about 2.3^ at *T = 0.5. Virtually no

improvement occurs at t = 0.125.

The calculations for V = 0.2 at rr = 0.125 suggest that a slight

improvement may occur as V decreases.

Since the first and second stage error variances are very nearly equal

for large values of rr, the relative increase in the information on a variety

due to the second stage is much less than for intense selection. It is

therefore less likely that a variety with an exceptionally high first stage

yield will be rejected at the second stage. This no doubt explains the

increased vai.ue of accepting some varieties immediately after the first

stage (P^O) for large tt. Clearly, however, the main advantage of early
acceptance lies in whatever advantage may arise from skipping the final

stage rather than from an increase in gain. It would also appear that

if for some reason it were necessary to experiment with equal intensity at

all stages, the advantage of early acceptance -would be greater.

2.4.2 Variable replication

In the previous section we have used the value of y^ to decide
whether to reject, to accept, or to experiment further on a given variety.

Obviously this concept can be extended in such a manner that the amount

of resources allocated in the seoond stage to a given variety is a continuous

function Ag(y^) of its first stage yield y^. In view of the results of
the previous section, such an elaborate scheme cannot be expected to result
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in much of an increase in gain. It does, however, point to an interesting

general theoretical problem that probably has wider application than just

to screenir^. In general terms, the problem is to find a functional form

f(u) that, subject to certain conditions, maximizes or minimizes a second

function involving f(u). In order to make the nature of this general

problem clearer it will be illustrated in this chapter in terms of the

screening problem.

In the terminology of this thesis, the problem i3 to find the function

Ag(yi) that maximizes the gain. Since the first 3tage resources are
distributed equally over all varieties, the total resources A are given by

or, in terms of the proportion of the total resources allocated to eaoh

stage, by

where 0<vy.<1. Since, as pointed out by Grundy, Healy and Rees (1956), a

small amount of second stage experimentation is never economically

advisable, we can expect there to be values y^ and y^ such that (yi) = 0
for y1<'yl and y^>yu» Rejection at stage 1 is implied by y^y^ and
acceptance by y^>yu* If» as usual,

e* - ZSlL
1 " ^ *

the proportion of varieties accepted into the second stage is, a3 in the

previous section, given by

A = A.j+ f A2(y1)dy1 ,

(2.4.3)
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*u
^

P1 = exp(- («y 2wW .
y1

The resulting value of e| is
Vrr2P.

. £> 1
e2 " ^7) •

In addition to 2.4.3, we can expect the function ^(y^ ) to satisfy
other conditions. It will, for instance, probably be continuous with

possibly a discontinuous slope. There will, of course, be a jump to zero

if either or both of the values y^ and y^ are appropriate. The function
will probably also be monotone increasing to a hump in the middle and then

monotone decreasing, but will not necessarily be symmetrical.

Since the problem of finding the function ^(y^ ) (and its parameters
o>., y^ and yu) to maximize the expected value of x in the selected population
is extremely difficult, and probably only solvable numerically, it is not,

considering the assumptions involved and the size of the likely gains,

worth pursuing very far. The corresponding general problem of a functional

answer to an optimization problem is, on the other hand, of both theoretical

and practical interest and is certainly worth investigation. The general

problem is, however, beyond the scope of this thesis and will not be

considered further.

It is of interest at this point to mention that Grundy, Healy and Rees

(1956) have solved a problem very similar to the one just formulated. They

found a nomogram that gives the amount of second stage replication required

to minimize the economic value of the "integral risk" in a selection

program in which the first stage replication is taken as given (see section
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1.4.2 for a more complete discussion). In a situation in which the external

econorqy is known, their paper is extremely U3ef\ilj it may also give clues

to the solution of the problem stated in this section.

Out of curiosity, the result of using a rather arbitrary replication

technique is investigated in this chapter. The technique consists of

replicating each variety in proportion to the probability, based on the

first stage results, of making an "incorrect decision" on that variety. An

incorrect decision is, in this study, defined as rejecting (or accepting) a

variety when it is (or is not) among the top rr percent of the varieties

beii^ considered. In order to calculate the probability that x is in a

specified interval, the linear regression of x on y, with regression

coefficient

P = JL
a£+e| <H1

and variance Be| (see, for example, Finney, 1956), is used to construct the
function

g(x!y1)dx = 1- exp[- K*-y1/®*)^(e®/»?)3d* J
2tt

for a particular value of y^, this function gives the probability that the
true value of x is in the interval dx. The value Xq where

no

rr = T^(u)du,
X0

is taken as the division between desirable (x > Xq) and undesirable (x<Xq)
varieties. Another arbitrary decision is made in using yQ = (the
second stage cut-off point) as the break-point for y^: for y<|<^2 rePlication



is made proportional to 3 r(x ^ y=y.j), and for y^ __ ^ to Pr(x--'x^,y-y-|) •

In order to prevent a rather illogical jump in the amount of replication

as y moves from below r2 above it, the replication for y < r2 is
multiplied by

Pr(x<x0' y=r2)
v - rr(x>x0'y='n2)

Varieties yielding below y. - are rejected, without replication,

immediately after the first stage. Finally, the function ^..(y^) is
obtained by dividing the recommended proportion of replication by

R = ^ QF>r(x ^ xQ! y1)^ ^ PtCx^Xq' y^ ) dy^ ,'

*0

in order to satisfy the condition 2.4.3* The resulting function ^(y^) is
given by

p'2(y<|) = 0 ^1^1)»
m

"2(ii) = 0~V r yg(x'y1)4x/^ (v^y^<yQ),
xo

and Xq

^(y-i) = r s(x'y^fo/R (y^o) *

Obviously this is all rather arbitrary but the graph of recommended

replication as a function of y^ does have roughly the same shape as that
recommended by Grundy, Healy and hees and, even more interestingly, it

has the effect of flattening the graph of the expected value of G/rr versus

ry^ and P.. To illustrate this point, the gain achieved under this modified
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system is given for nine pairs of values of ^ and in table 2.4.2. the
increase in gain over that for constant replication is given

in brackets beside each value of G/o. The only major difference between

the two systems can be seen to be a fairly large increase in gain for

large values of . The resulting flattening of the surface and broadening

TABLE 2,4.2

Values of C7/rr for variable replication in the second stage { ' = ^(y^))
for V = 1 and n = 0.0625 (bracketed figures represent the loss or gain

over the case when is a constant equal to 1).

: 0.2 0.5 0.8

P1
0.125 1 .355 (Q.) 1.540 (+0.1?=) 1.564 (+0.1?=)

0.250 1 .541 (-O.1/0 1 .602 (-0.2;') 1 .514 (+O.55S)

0.875 1 .473 (+3.2;.') 1 .528 (+7.9?) 1.504 (+7.4;Q

of the optimum area is certainly desirable. The reason for this effect is

the low replication recommended for the least promising varieties coining

from stage one.

The calculations for table 2.4.2 were made directly from S(x) and an

equation of the form 2.2.5? and f were calculated by iteration and the

gain by numerical integration. The values of G/cr are accurate to the number

of figures given.

The example just described gives some idea of the sort of replication

3ystem that might be investigated in attempting to improve the gain. The
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use of some sort of "hill climbing" technique in conjunction with variation

of yQ, Xq, and the variance of the function g(x) would probably result in
still further improvement. Small changes in and y^ did, in fact, result
in slightly improved gains. In view of the small expected increase in

gain, no further work was done. It is, however, hoped that this brief

outline has indicated the nature of the more interesting general problem

mentioned earlier in this section.
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Two Assumptions Affecting Error Variance

2.5.1 Interaction

In all the previous work we have assumed no interaction effect; as

stated by Curnow (1961), this is the most unrealistic of all our assumptions.

That interaction is important in crop screening was pointed out by

Sprague and Federer (1951) who, using actual results from corn yield trials,

discussed in detail the practical problems resulting from variety by year

(vxy) and variety by site (vxs) interactions. For convenience, this study

is in the terminology of a variety x year interaction.

A rough idea of the effect of interaction on the average true yield or

gain after selection can be obtained theoretically. To do this we must

assume that we have a random sample of years and that the interaction is

normally distributed with mean zero and variance cr2 , independent of the

variety in question. Obviously both these assumptions are dubious. Two or

three successive years do not form a random sample and, in addition, the

size of the interaction is not likely to be independent of the true yield

of the variety in question or, for that matter, normally distributed.

Investigation using these assumptions should, however, result in 3ome idea

of the magnitude of the reduction in gain due to the effect of interaction,

and of the direction in which operating conditions should be moved to

minimize this effect.

If the assumptions are accepted, the only difference from the situation

studied in previous chapters is the addition of a constant term rr^., invariant
from stage to stage, to the error variance e|. As a result, we define the
modified "error" variance e/E at stage i to be
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' !? f S1
e." = ef + 0^ .

x 1 vy

It should be mentioned that the term 0^ need not, if all the assumptions
are satisfied, apply only to a vxy interaction; it may either contain

components corresponding to other interactions or correspond to an entirely

different interaction.

The expression for gain derived previously can now be used, with the

modified error variance, to calculate the gain when (idealized) interaction

is present. There are, however, important differences between this situation

and the one that occurs when there is no interaction. The major difference

is that the error variance e's is now bounded below by and cannot1 vy

decrease indefinitely as it could in the previous simplified model. As a

result, we can expect the magnitude and probably even the location of the

optimum gain to be affected in a manner dependent on the magnitude of

In addition, the weights necessary to give the minimum variance estimate of

x change. Since, under the idealized model, the interaction acts simply

as an increased error term, the minimum variance estimate of the mean yield

can be obtained by weighting the yield from each stage inversely according

to the modified error variance This however, even if the idealized

model is appropriate, is usually not advisable since it is rare to have an

estimate of 0^. that is based on more than a few degrees of freedom; Yates
and Cochran (1938) have cautioned that, under these circumstances, the

weighted mean loses greatly in efficiency. This problem is not likely to

occur when there is no interaction present since, in that case, we usually

know the number of replicates per stage, and the observations can be

weighted accordingly (as loi^j as plot size remains constant).
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In the study done for this chapter, three systems are used for the

weighting of historical information: firstly, a., = 1/(eI?.+aE ) is used
j-j J vy

since, when accurate information is available, it will give the minimum

variance estimate; secondly, a^ = 1/i is used since it can be expected
to be a reasonably good estimate, especially if replication does not

vary too much from stage to stage or if the interaction is large; lastly,

the gain is calculated using 0 an& a^j, = 1> thus ignoring all
historical information.

As far as the magnitude of the interaction studied is concerned,

various values of aE in the range 0.01 < cte <100 are used since this
vy — vy —

range nicely spans the change from a rather insignificant to a rather

overpowering interaction effect. It also brackets both cr^/a2 = 1
(<rs = 1 is, as usual, the variance of the parent population) and the range

suggested by the values of the ratios cr^/e2 and crp/ep given by Sprague
and Federer (1951)•

It can be seen from table T4 for 3-stage symmetrical selection from a

normal distribution that, even for very low values of as . interaction has
vy*

a marked effect on gain. By the time s 1 we are, when using equal

weighting, losing between 14.4% (for ^ = 0.0625) and 20.5% (for rt = 0.001)
of the gain achieved when a2 = 0. It is at this point (a2 =1) that

vy vy

equal weighting starts to show an improvement over using only the information

from the most recent stages. For very large values of (<72 = 100)

we are losing about 80% of the gain achieved when there is no interaction.

At this point equal and inverse variance weighting are equally good (to the

accuracy of the figures shown). The reason for this is the fact that the
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interaction is so large at this point that it dominates and the inverse

variance weights are, in fact, very nearly equal. For such a large value of

a2 , equal weighting gives a 7*1% = 0.001) to 11.7^ (tt = 0.0625) increase
vy

over the use of only the information from the most recent stage. All through

the table it can be seen that inverse variance weighting gives, as expected,

maximum gain.

Table T4 provides a good idea both of the approximate effect of interaction

and of the advisability of different weighting systems when operating at

symmetry. It can, however, be seen from the survey of gains in table T5 that

maximum gain is not, at least for t = 0.01 and equal weighting, aohieved

at symmetry. In all these cases (o^ = 0.1, 1.0, 10.0) larger gains are
achieved by using heavier than symmetrical replication (o^ > <y^ > ty^) in
early stages. The values of optimum and vary from lighter than

symmetrical in early stages for c2 = 10, to heavier than symmetrical in

early stages for a2 =0.1. When rr = 0.01, V = 1 and rrz =1 the approximate
yy Ty

maximum gain occurs at Pj = Pg = P^ and or^ = 0.6, ^ = 0*3 and rr = 0.1 •
The improvement over the gain at symmetry is 3.3%. As can be expected

because of the increased replication in early stages and the presence of

a reasonably large value of the use of equal weighting gives a better

(by 4.5$) result than the use of only the information from the most recent

stage. It is also reassuring to note that equal weighting gives a gain

only 4 ,2f0 lower than the maximum gain found for inverse variance weighting

(at P. = Pg = P^ and = 0.5, Og = °*333 and ^ = 0.167). It can be seen
that o2 is already beginning to dominate. The same characteristics are

J

found when ct2 =10, only to a greater degree (13»5$ better than no history
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and only 0.1 ft lower than the maximum gain with inverse variance weighting).

When is small (c^L. = 0.1) the maximum gain for equal wei^iting is 2,OF/l
lower than the maximum gain found when history is ignored. Since equal

weights are far removed from the optimum weights for such a small interaction,

this is not a surprise.

TABLE 2.5.1

Values of G/o- for equal weighting when interaction is present in 3-stage
selection from a normal distribution with V = 1 and

Values of a
2

TT a2
_vy

(i 1 i)Ky y 3) (11 JL A)^20' 10* 20;
( 6 -1
MO' 10* 10; (11 JL A)V20* 20' 10;

0.0625 0** 1.656 1.618 1.594 1.585
0.1 1.560* 1.591 1.594 1.567
1.0 1.417 1.444 1.433 1.428

10.0 0.860 0.869 0.867 0.866

0.001 0** 3.226 3.236 3.216 3.216
0.1 2.839* 2.974* 2.989* 2.998*
1.0 2.566 2.664 2.677 2.683

10.0 1.518 1.541 1.544 1.546

* indicates that the gain for a. .= 0 (V<J)> a*.s =1 is higher.
1 A 1** a? i * ~T? T (inverse variance) weighting used for rrE = 0.U eyj=1 ej vy

In order to test the theory that larger gains are obtained for heavier

replication in earlier stages, the entries in table 2.5.1 were calculated.

Although not sufficient to prove a general theory, this table and table T5

both suggest that when equal weighting is appropriate, increased gain can

be obtained over a wide range of values of n by increasing replication in

the early stages. It also appears that the more intense the selection the
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further one should move in this direction. This agrees with comments made

earlier (section 2,3.2) on intense selection. It can also be seen that

equal weighting should probably not be used when <7^. is much below 1.
In this range the interaction has relatively little effect and it may, as

suggested earlier for the case when there was no interaction, be better

to ignore historical information unless the optimum weights are known

accurately. A few similar calculations were made for V = 0.2 and V = 5»

They did not indicate any major differences in behaviour other than those

normally expected for variation in V.

On account of all the assumptions involved, caution is necessary in

the interpretation of these results. Two conclusions can, however, be

made with safety: the optimality of the symmetrical operating conditions

certainly depends on the absence of interaction, and historical information

is much more important than usual when ct^, *> a2. The faot that the optimum
weights are nearly equal when > rr2 means that equal weighting is (as

born out by the calculations in this section) better than ignoring historical

information; it is, in fact, nearly as good as optimum weighting.

2.5.2 Plot size

So far it has been assumed that any change in our experimental resources

(A) can be directly translated into a change in replication. In practice,

however, a small change in A will rarely be easily translated into the exact

number of plots needed to balance replication. As a result, it may not be

possible to operate at symmetry; it may not even be possible to achieve

the desired plot size. In experiments of the type considered in this thesis
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it will often be necessary to change plot size as we progress through the

stages of the experiment. For rr = 0.001 and symmetrical 3-stage selection

we are, in effect, assuming (since e® = l/h53*3 and e^ = Vcrp*3*0.0l) that
we have 100 times as much replication in stage 3 as in stage 1; this seems

rather unlikely. The very large number of varieties in stage 1 will

probably force U3 to use a plot size that is uneconomically small; much of

the additional area per variety in later stages will then have to go to

increasing the plot to an economical size rather than to replication.

Finney (1966) suggested using a rule originated by Smith (1938) to

handle problems arising out of changes in plot size. Smith, based on

empirical evidence from 39 experiments, suggested the approximate rule that

e2
= -»•1

(*>vu'

where e2 is the error variance of the yield for a plot of size x, and e2

is the error variance for a plot of size u. Smith found the power p to
1 17

vary in the range ^ < p < 7^. Obviously, according to this rule, it will
be best to take as small plots as are consistent with other requirements.

In order to apply this rule to screening it is necessary to use the

variance under certain specific circumstances as a standard. If we let

the variance

.3.
cv.

J

at stage j be the standard, and if we assume that there are replicates

at stage j, the variance at any other stage will be given by
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That this is so can be seen from the fact that, in Smith's terminology, u is

given by

u = <L »

and x by

The ratio ^ is then

Ai
x =

"ini

x W.i
u ~ A.N.n.

j i l

(V .rr. n.

. 1 J-1 ■> .

Yw-i
If we take as standard the variance in a 1-stage program that studies

all the varieties and uses all the resources (e2 = Vc2), and if changes in

area brought about by additional stages affect only plot size and not

replication, this rule reduces to that studied by Finney (1966). Specifically,

we have

r-kiT.rv ->
e? = Vcr2 i —1 r'i

Clearly, the use of the modified variance rule involves so many

assumptions about the experimental situation that detailed calculations

would be of little value without some specific situation in mind. Finney

(1966) suggested that the modified rule would not affect the optimum very much

either in location or in magnitude.
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2.6 Non-Normal Parent Distributions

2.6.1 General comments

A major criticism that applies to all the work done so far in this

thesis is that it is entirely based on the assumption of a normal

distribution of the parent population; this will rarely be exactly true;

in many instances the normal distribution will not even approximate the

true parent distribution. Cochran (1951) pointed out that even if the main

body of the distribution looks very normal the tail shape may be very

different and, when selecting small fractions of the total population, it

is the tail that is important. In this chapter, selection from a wide

range of parent populations will be studied in order to determine the

robustness of the suggested optimum selection programs to departures from

normality and, in particular, to a wide variety of shapes of tails.

Curnovf (1961), using Finney's cumulant series, made some calculations

for 2-stage selection from non-normal distributions but encountered

convergence difficulties when the departure from normality was at all

pronounced. Curnow's convergence difficulties are avoided in this chapter

by the use of numerical integration in conjunction with the expression

-K°

E(x) = P xS(x)h(x)dx. (2.6.1)

As long as enough integration points are used, this method enables exact

calculation of the desired value of gain for a very wide variety of parent

distributions, skewed and otherwise. Unfortunately 2.6.1 can rarely be

simplified.
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Four types of parent distribution are studied: the family of curves

used by Box and Tiao (1962) is taken as representative of a wide range of

symmetrical distributions; the P-distribution is used to study the effect

of positive skew (long tail towards positive values of x) and negative

skew (long tail towards negative values of x); the sum of two normal

distributions with differing mean values is studied to determine the

effect of bimodality; and, finally, the 2-point distribution suggested

by Deviea (1958) is studied to complete the survey. It is felt that the

wide variety of tail shapes covered by the various members of the families

of curves just mentioned should give a good idea of the robustness of the

symmetrical selection scheme. Further details on the characteristics of

the various families of curves are given in the appropriate sections.

2.6.2 Symmetrical distributions: the Box and Tiao family of curves

In their 1962 paper, Box and Tiao studied the robustness of a certain

situation (that need not concern us) by means of varying the parameter B in

the distribution

h(x;fi) = —1 " exp 1 - (x-p)/0!2/^1+R)] ,

r(-)2f0

where

-1 < P < 1,

ro = 1+^(P+1 ) ,

and the function r(rp) is the gamma function. For consistency with other

work, the mean will be chosen to be zero and ft will be chosen to give a
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variance of 1 for all values of P studied. Although the family was not

originated by Box and Tiao it will, for the sake of convenience, be called

the Box and Tiao distribution. Its usefulness lies in the fact that, as

a function of p, it varies through not only a wide variety of symmetrical

distributions but also a correspondingly wide variety of tail shapes.

In this section, four representative curves are chosen from the family.

They cover the range from a very long (exponential) tail at P = +1 to an

almost rectangular tail at a = -0.9999. In addition to the extremes, the

curves corresponding to a = ±0.5 are also studied since they result in

curves midway between the extremes and normality. Information on the

normal distribution (R = 0) from previous chapters is also included for

reference.

Table T6 summarizes, for a variety of situations, the variation in

gain for 17 = 0.01, V = 1.0 and selection for the five values of a just

mentioned. The most interesting information in this table is that giving

the location and increase over symmetry of the approximate maximum gain.

Symmetry still seems to be a very good approximation both to the location

and magnitude of maximum gain; it is only when selecting from the (rather

unrealistic) rectangular parent population corresponding to B = -0.9999

that there is much difference in location (P^ = 0.04 as opposed to = 0.1
at symmetry) but even then the increase in gain is only 1.3^. Although

the recommended values of are consistently only slightly lower than

symmetry, the recommended values of seem to decrease gradually as R

decreases (the tail becomes shorter); the corresponding increases in gain

are, however, negligible. Figure F16 for R = 0.5, V = 1 and it = 0.01 gives
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the dependence of the gain (as a percent of target) on ot^ and . Although
this chart is for a distribution with longer and more gradually decreasing

tail than the normal distribution, it can be seen (upon comparison with

figure F2) that the only difference in the surface is that it is slightly

flatter and slightly higher.

TABLE 2.6.1

The variation of gain (as a percent of target) with V for
symmetrical 2-stage selection from the Box and Tiao family

with it = 0.01.

fl. -0.5 0 0.5
(short tail) (long tail)

V

0.2 95.8 98.0 98.9
1 84.6 88.2 91.6
5 65.6 64.0 65.6

Target; 2.189 2.665 5.093

Further perusal of table T6 indicates that the value of history and

of additional stages is similar to that found in the normal distribution

throughout the entire range of «• There is, however, some variation in

the recommended amount of initial random discard. It appears that with

tails longer than normal (" > 0), little (1-stage selection) or no

(2-stage selection) initial random discard is required (possibly Pq > 1 may
be useful in this region). On the other hand, a fairly heavy discard is

recommended as n -» -1 even for 2-stage selection. Since the increase in gain

for 2 stages is only 1,2% (less than the increase achieved by operating at

optimum), Pq < 1 is not, however, likely to be of value unless selection is
being performed in one stage.
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Table 2.6.1 gives the variation of gain (as a percent of target)

with V for three values of P and 2-stage selection with " = 0.01. Once

again there is no indication of any major departure from the behaviour

found when selecting from the normal distribution. Similar results for

other values of P and other types of selection (PQ /0, 1-stage and 3-stage
selection) did nothing to weaken this belief. The only apparent differences

TABLE 2.6.2

The variation of G/cr with tt for symmetrical 2-stage selection
from the Box and Tiao family with V = 1 (bracketed figures give

percent of target)•

p. -0.5 0 0.5
(short tail) (long tail)

tt

0.0625 1.445 (80.4) 1.605 (81.6) 1.733 (82.8)
0.01 1.651 (84.6) 2.350 (88.2) 2.833 (91.6)
0.001 2.236(88.8) 3.125(92.8) 4.074(91.3)

were those minor ones already mentioned in connection with table T6,

The same conclusion applies when the intensity of selection is

varied. Table 2.6.2 giving G/cr and the corresponding percent of target

achieved bears this out. The only possible conclusion that can be made

from tables 2.6.1 and 2.6.2 is that there may be a slight increase in the

peroent of target achieved as p increases from low values to high values

and even then the results for R = -0.9999 with V = 1 (table T6) and

p s 0 with V = 5 (table 2.6.1) show that there are exceptions to this rule.

In conclusion, it certainly seems that the results of screening from

a normal distribution will be a very good guide to selection from a wide
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range of symmetrical distributions.

2.6.3 Skewed distributions; the ^-distribution

In order to determine the effect of departure from symmetrical parent

populations on the gain and other selection properties, selection from

various members of the ^-distribution

p(*;p,q) = ft(p,q) *P"1(l-x)q~1 (0<X<1),
will be studied in this section. Since the 13-distribution is defined

on a limited range (0 < x < 1) , and since it can be either very strongly

positively or negatively skewed, it also provides a good contrast to

the shape of the tail area of the symmetrical Box and Tiao family which,

with the exception of the curve corresponding to P s -0.9999, covered an

infinite range.

The nine members of the beta family that will be studied in this

section vary from a positively skewed curve (p = 10, q = 30) through a

symmetrical curve (p = q = 10) to a number of curves with varying degrees

of negative skew. Since a number of examples of distributions with long

upper tails (normal and Box and Tiao with B > 0) have already been studied

and since, as will be shown even more clearly in this section, the selection

properties of a distribution depend mainly on its tail shape I have, to

save computer time, limited this study to only the one example of positive

skew (p = 10, q = 30).

All calculations in this section were made using equation 2,6.1.

All the results are given in terms of standard deviation unit3 from the

mean of the parent distribution (i.e. gain = (E(x) - u)/ct where u is the
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mean and et the variance of the parent "-distribution).

A summary of the results for V = 1 and rr = 0.01 is given in table 17.

Once again symmetry is seen to give very nearly maximum gain. Only when

the upper tail drops off very quickly (p = 10, 30 or 30 with q = 3) is any

additional gain achieved by moving from symmetry and then it is only about

1 to 1.5 percent. It is worth noting that, in agreement with the results

TABLE 2.6.3

The variation of gain (as a percent of target) with V for
symmetrical 2-stage selection ffrom the P-distribution with

P = 0.01.

Values of (p,q)
(30, 10) (10, 10) (10, 30)

(short upper (long upper
V tail) tail)

0.2 96.4 97.5 98.6
1 84.5 87.2 90.6
5 62.5 64.5 66.9

Target! 2.227 2.523 2.964

of the previous section, the optimum value of gradually decreases

(0.6 to 0.4) as we move from a long upper tail through increasingly

shorter and more rapidly decreasing upper tails. Optimum , although

always less (more intense selection) than symmetry Slso tends to decrease

slightly. This same general effect also occurs for various other values

of t and V. The fact that the gain is still very flat in the optimum area,

even when selecting fiom a parent distribution with a much shorter tail

than the normal, is illustrated in figure F17 for p = 50, q = 3, " = 0.01
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and V = 1. Apart from the slightly greater departure of the optimum from

symmetry already described and a slightly lower percent of target achieved,

the figure is very similar to those already discussed for the normal (F2)

and the Box and Tiao (F16) distributions with the same values of n and V.

Returning to table T7 we see that, as usual, history is of little

value. It is interesting to note that, to four figure accuracy in the

TABLE 2.6.4

The variation of (E(x)-tt)/a with " for symmetrical 2-stage
selection from the B-distribution with V = 1 (bracketed

figures give percent of target).

Values of (p,q)
(30, 10) (10, 10) (10, 30)

(short upper (long upper
tt tail) tail)

0.0625 1.388 (78.7) 1.571 (81.2) 1.788 (83.9)
0.01 1.880 (84.5) 2.199 (87.2) 2.686 (90.6)
0.001 2.336 (89.4) 2.781 (91.6) 3.611 (94.8)

gains, this value does not vary with p or q. In all cases the second stage

gives an increase of more than over the first, and the third an increase

of approximately 4f° over the second. This is very similar to the behaviour

for the normal and Box and Tiao distributions. As was the case with the

Box and Tiao distribution, the value of an initial random discard seems to

increase as the upper tail becomes shorter. It is only for very negatively

skewed distributions (short upper tails) that Pq < 1 gives any increase in
gain for 2-stage selection and even then the increase is only 1 to 1 .5$>.

The variation of gain with V (as a percent of target) is given for
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negatively skewed (p = 30, q = 10) symmetrical (p = q = 10) and positively

skewed (p = 10, q = 30) members of the beta family in table 2.6.3 (note

that as you move from left to right the changes in upper tail shape for

table 2.6.3 and 2.6.4 are similar to those for tables 2.6.1 and 2.6.2 for

the Box and Tiao distribution). Although the actual gain varies slightly

in magnitude from the entries in the corresponding table (2,6.1) for the

Box and Tiao distribution, the gain expressed as a percent of target is

surprisingly similar in magnitude. The same can be seen to be true as " i3

varied in table 2.6.4. As in the equivalent tables in the previous section,

there seems to be a slight increase in the percent of target achieved in

both tables as the upper tail increases in length. Similar results for

1-stage and 3-stage selection and variation in P„ only served to emphasize

these points.

The great similarity between the behaviour under selection of the

beta and Box and Tiao families, even thou^i they are very different in

shape, suggests that the basic shape of the upper tail is far more important

in determining the location and magnitude of the gain than the overall

distribution shape. This is emphasized by the fact that the location of

the optimum for the one relatively long tailed distribution (p = 10 and

q = 30) studied in this chapter is almost exactly the same as the location

for the normal. The relatively minor changes over a wide variation in tail

shape also suggests that the procedures are fairly robust even to major

changes in tail shape. For these x^easons no further examples of unimodal

par-ent populations will be studied.

In conclusion, especially considering the variation expected in the
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finite case (Finney, 1966), symmetrical operating conditions should give

very nearly optimum results for a very wide range of unimodal parent

populations.

2.6.4 Bimodal distributions: the sum of two normals

In this section, the effect of screening from a distribution with a

lump in the upper tail will be studied# Barnard, in a comment to Curnow's

1961 paper, suggested the possibility of a bimodal parent population.

He felt that consideration of history might be more important in such a

situation. The calculations in this section were made not only with

this in mind, but also to te3t the operation of screening programs when the

tail of the parent population departs radically from the smooth monotone

decreasing tails already studied.

For simplicity, and on account of the robustness of the system to

individual tail shapes, a bimodal distribution consisting of a weighted

sum of two normal distributions is used. The lower distribution (with mean

0 and variance 1) is given weight Yl and the upper (with mean D and variance

VE) weight 1-W. The resulting parent population has the form

h(x) = — [Wexp(- ^icE)+(l-W)exp(- i(x-D)e/V®)/V ]
/2tt u u .

To calculate the gain, the cut-off points T). corresponding to a given set

of values are found iteratively in the usual manner. Once these points

have been found, the proportions of varieties chosen from each of the two

normal distributions making up the parent population are easily found.

Using the notation of chapter 2.2 and equation 2.2.b it can be seen that



the proportion of varieties chosen from the lower population, is given by

T) T!

^ = ^ ^riR) •
1 k

Using equation 2.2.13, the mean value of the varieties selected from

the lower population can be 3een to be

U1 " "w" ill ^(Ti)liC^i(°) JR1)/'"! .

Since the overall proportion of varieties selected is fixed, the proportion

of varieties n chosen from the upper population can be calculated from the

expression

w = Ww1 + (1 -W)tt .

If we consider the varieties from the upper population to be represented

by the variable u^N(D,V®), and if we make the transformation

u' = (u-D)Au ,

we can calculate u , the mean value of the selected u' varieties, fromu' *

equation 2.2.13 in the same manner as tt^ was calculated. The weighted
average

G = n1Vw1+TTu(l-w)(uuVu+D)

gives the overall gain. For consistency in presentation all gains discussed

in this section are standardized to the form
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where

u = (1-W)D

is the mean of h(x), and

+<■»

cr£ = r xsh(x)dx-[(l-W)l)]E

= ¥+ (1 -¥)V®+(1 -W) TO8

its variance.

The results of the bimodal calculations are given in table T8. This

table is divided into six sections: section A gives the results for

selection from a normal distribution and sections B to P the results for

selection from a bimodal. In each of these latter sections one of the

relevant parameters D, W, V®, V and rr i3 varied; for ease in comparison,

the middle entry in each section repeats the case taken as standard

(D = 4, W = 0.99, V® = 0.1, V = 1 and rr = 0.01).

The reason for the choice of such a large value of D as standard can

be seen in a comparison of selection from a normal distribution with

selection from a bimodal with D = 3 (section A with the top row of section B).
In all respects (advantage of additional 3tages, recommended Pq, value of
history) these two situations are very similar; even the percentage of

target achieved in 2-stage symmetrical selection for the bimodal (91.9^)is

only slightly greater than that for the normal (88.2;$). The similarities

are even greater for smaller values of D, reaching equality when D = 0.

Inspection of a graph of h(x) for D = 3 shows the reason for the similarity
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in the two cases just described: the hump is barely visible even on a

very large scale. The hump becomes much more obvious as D is increased

and, as this happens, we move very rapidly to almost perfect selection

(for W = 0.99 and V" = 0.1). At D = 5, for instance, we achieve 89.9^

of target in only one stage and 98*9^ in two stages (at symmetry)•

Obviously a value of D much greater than 4 would be just as unacceptable

as a standard as a value much smaller than 4.

The only major difference between the standard case and the normal

distribution is that 96.2/t of target is achieved in 2-stage symmetrical

selection (versus 88.2$). Other minor differences include a higher

recommended value of Pq in 1-stage selection (0.95 v.s. 0.5) and a

slightly higher recommended value of ^ (o.7 v.s. 0.575) for optimum
second stage gain. Since the improvement of optimum over symmetrical gain

is only 0.>/;, the slight change in optimum location is of little interest.

Comparison of optimum gain with symmetrical gain once again reaffirms our

belief in the flatness of the surface and the adequacy of the symmetrical

specifications. It is also interesting to note that Pq < 1 is not, for
2-stage selection, advisable in any of the cases studied. History, although

slightly more valuable for D = 5 is, as usual, hardly worth including in

2-stage selection.

One reason for the behaviour mentioned above is the choice of the

weighting factor W. W = 0.99 is used mainly because we are choosing a

proportion t = 0.01 of the population: by giving the weight 1-W = 0.01

to the upper population, perfect selection is nearly equivalent to choosing

all the upper population and rejecting all the lower. Section C of the
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table shows the effect of varying In all situations studied for both

\"i = 0.9 and iV = 0.999 the target, the absolute gain, and the percent of

target achieved decrease from the corresponding values for "" = 0.99. Obviously

as W -» 1 we will approach the result s for selection from the normal

distribution. This is already becoming evident when W = 0.999. The same

happens (as far as percent of target achieved is concerned) in the limit as

W -* 0. That this is happening, although rather slower than in the other

direction, can be seen from the figures for W = 0.9. The major difference

between the figures for W = 0.9 and those for both normality and W = 0.99

is the lower recommended value of v,j (or = 0.4). The increase in gain over

symmetry is still, however, only 0.8^.

Changes in can, from section D, be seen to have little effect in

any of the situations studied. Sections E and F for variations in V and

tt respectively exhibit only the behaviour usually found for variation in

these two parameters.

Obviously, a study in which the various pertinent parameters are varied

together in the manner of a factorial experiment would be better than the

above study; there would, however, be considerable difficulty in presenting

and interpreting the results; statistical significance, since the results

are exact, would not be relevant. In view of both these difficulties, and

especially because of the required computer time, this study was limited

to the information in table T8. The results in table T8 do, however,

indicate that it is very unlikely that anything v,*ould turn up to cast much

doubt on the conclusions already reached in previous sections on the

behaviour of the optimum area.
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2.6.5 The two-point distribution

In order to round out this study and particularly in view of the

studies made by Davies (see, for example, Davies, 1958), selection from a

2-point distribution will be studied in this section. Davies suggested

this distribution in connection with problems in the drug industry. In

this study the distribution is defined to have two possible yields: the

lower, with yield 0, occurs with probability V." and the upper, with yield 1 ,

occurs with probability 1-77.

Following the notation of chapter 2.2, the proportion of varieties

selected can be seen to be

rr = W.l(Ve;E0)+(1"V/)*l((TWl)/eiR0) *

The values of T can be found by iteration in the usual manner. If no

history is used, the matrix is the unit matrix and the integrals in the

above expression are just products of normal frequency functions. In this

simplified case, the values of can easily be iteratively found from

existing tables. Once the T»s have been found the gain is, since the lower

mean is 0, automatically given by

E(x) = 1 *(Jl-V,')*l(~-iii0)/rT .

Standardization of the gain is, since there are only two possible values of

x in the parent population, felt to be confusing and is not used. In

addition, the variance of the parent population is dropped from the expression

for the error variance so that, in this section only,
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For reasons given in the previous section, the basic weight is again

chosen to be W = 0.99. The basic value of the variance factor is V = 0.2.

This value is used (somewhat arbitrarily) because it give3 a medium-sized

gain.

The main results of the study are presented in table T9 in three

sections* section A showing the effect of varying W, section B of

varying V and section C of varying tt. As in table T8, the middle entry in

each section is a repeat of the case (w = 0.01, V = 0.2 and W = 0.99) taken

as standard.

There are a number of very interesting differences between the results

in this table and all the preceding results. The most striking of these

differences is the fact, apparent from the 2-stage results, that the

symmetrical specifications no longer result in gains within a percent or so

of the corresponding maximum 2-stage gains. This trait, except where

2-stage symmetrical gain is already nearly 100^ of target, is present

throughout the table: at w = 0.01, V = 0.2 and W = 0.99 the optimum

gain is 19fo higher than the symmetrical gain; at n = 0.0625, V = 0.2 and

W = 0.99 it is 7.6^ higher. In all instances where a marked increase

occurs, it occurs at approximately = 0.6 and at a which is 1 .5 to

2 times as large as the symmetrical value. The only similarity between

this location and the results in previous chapters is the larger than

symmetrical value of : approximately the same value of was recommended

in nearly all cases in the study of selection from the (somewhat similar)

bimodal distributions in section 2.6.4.

Figure F18, showing the variation in gain (as a percent of target) for
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2-stage selection from a 2-point distribution with W = 0.99, V = 0.2 and

t = 0.01, strikingly illustrates the differences just mentioned. Comparison

of this figure with any of the earlier figures (P2, P16, etc.) shows that

it ha3 narrower and longer contours in the optimum area and that this

optimum area is shifted in the direction of heavier first stage replication

and lighter first stage selection.

TABLE 2.6,5

An indication of the improvement in gain resulting from increased

early replication = 0.4-33, ^ = °«333 and ct^ = 0.234) and
lighter than symmetrical early selection when selecting from a

2-point distribution.
f> increase fa increase

w TT V P1 p2 P5 Pain
over max.

2-stage
over 3-stage
symmetrical

0.99 0.01 0.4 0.316 0.215 0.146 0.547 19.7 15.2
0.99 0.01 0.2 0.316 0.215 0.146 0.787 9.8 17.8
0.99 0.01 0.1 0.316 0.215 0.146 0.939 1.3 11.4

0.99 0.0625 0.2 0.450 0.397 0.350 0.139 9.4 7.8
0.999 0.01 0.2 0.316 0.215 0.146 0.0798 3.5 18.0

The fact that the symmetrical 3-stage gain is frequently lower than

the maximum 2-stage gain (6,8f lower at tt = 0.01, V = 0.2 and W = 0.99)

suggests that the same sort of behaviour continues on into 3-stage selection.

In order to test this theory, the values in table 2.6.5 were calculated.

Although the locations of the test cases in the table were more or less

arbitrarily chosen in the expected optimum area, all cases result in

considerable increases over the symmetrical 3-stage results. Except for

tt = 0.01, V = 0.1 and W = 0.99 (where we are already at 94/2 of target),
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they also result in larger than usual increases over the maximum 2-stage

results. A brief survey of the gain at various locations for ** = 0.01,

V = 0.2 and W = 0.99 resulted in a further increase of 1 »6% (at o'1 =0.5,
^2 = °»35, = 0.15 and the same set of values of P as in table 2.6.5).
No doubt surveys for the other parent distributions would also lead to

additional increases. Since it is obvious from the results of the table

that this general area is preferable, no further surveys were made.

In addition to the change in the manner in which gain varies with

the <v^ and values, and the larger than usual improvement due to the
use of a third stage, there are also other differences for selection from

a 2-point distribution.

Section B of table T9 indicates that the optimum 2-stage gain changes

much more rapidly than usual as V is varied, moving from h-6%, of target

at V = 0.1 to 72$£ at V = 0.2 and 93?^ at V = 0.4. Although optimum P^
decreases slightly as V increases, optimum does not change.

The importance of the difference between 1-W and " is indicated by

the results in section A for tt = 0.01. When there are far more varieties

with true yield equal to 1 than are required (1-W > tt), we get very good

results. At 1-W = 0.1 and tt = 0.01, for instance, perfect selection

occurs everywhere except for 1-stage selection with Pq = 1. On the other
hand, when 1-W< n, the maximum 2-stage gain varies from 77% of target

at 1-W = 0.001 to only 72!% at 1-W = 0.01 (both for rr = 0.01). The same

sort of behaviour is found in section C of the table when tt is varied

for constant 1-W = 0.01: when tt > 1-w the gains are in the range 72%;

(tt = 0.01) to 86'% (tt = 0.0625) of target; when tt = 0.001, it is only
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when V is increased to 1.0 (from 0.2) that perfect selection is not

achieved in two stages and even then optimum 2-stage gain is 98% of target.

Although the results quoted in table T9 are not sufficient to prove a

general rule, it appears that the gain (expressed as a percent of target)

must reach a minimum somewhere in the region of rr/(l-W) = 1 and then

increase both when t/(1-W) -» 0 and when n/(l -W) -* B0. Obviously 100% of

target must be achieved in the limit in both directions.

Once again, history is seen to be of little value; the same is true

of Pq < 1 (except for 1-stage selection). Apart from the general increased
sensitivity of gain to changes in any of the parameters, no other important

effects are evident.

In view of the results of this section, it would obviously be a

mistake to automatically use symmetrical operating conditions when selecting

from a 2-point distribution. If no method of analysis is available,

operation in the area of the 2-stage and 3-3tage optima found in this

section should, because of "their consistency in location, result in an

improvement over symmetry. Since history is of little or no value, and

since the optimum occurs in veiy nearly the same location both with and

without usir^r historical information, a rough study of the optimum area

should be possible using only tables of the normal distribution. The reason

for this is the fact, mentioned earlier, that both the values of TU and the

gain can be calculated, for any number of stages, in terms of only the

univariate normal distribution when history is not used.
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In closing, it is worth mentioning once again that the symmetrical

operating conditions usually give very nearly optimum results. It is only

when selecting from a very extreme distribution shape like the 2-poirrt

distribution that any marked increase in gain occurs for non-symmetrical

operation. If, on the other hand, it is impossible to operate at symmetry,

or if it is suspected that the distribution resembles the 2-point

distribution, operation at values of close to the symmetrical values but

with increased replication in the early stages (<v = 0.6) should, unless

V is very large, result in optimum or near optimum gain for a very wide

range of parent populations, even the 2-point.

One other general comment worth mention is the wide variation in

absolute gain ((G—tt)/cr) that occurs for the different parent distributions.

The fact that the gain is fairly constant when expressed as a percent of

target could tend to be a bit misleading on this point. In view of the

many distribution shapes studied, this variation is not very surprising.

It does however suggest that, for given values of V and ct£, the

theoretically expected value of gain resulting from a screening program

will, if based on a fixed break-even point calculated from a specific

assumed parent distribution, depend heavily on that distribution.

Tables T6, T7 and T8 indicate the large differences that occur in absolute

gain when a fixed proportion of varieties is accepted, even though, in

many cases, there are only subtle differences in tail shape; in a program

involving long term profit (or other forms of gain) the observed

differences could be disastrous. Careful study of the robustness of the
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results of economically based studies to various parent distributions is

therefore advisable. On the other hand, we have seen that the gain reacts

very consistently to variation in the operating conditions, the use of

history, the use of additional stages and other selection parameters for a

wide range of parent distributions. The conclusions on optimum operation

should, therefore, be a good guide to the mechanics of setting up any

selection program. In view of the small increases in gain found in many

instances, it should also be mentioned that the difference between success

and failure in any operation is frequently as small or smaller.
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PART 3. THE FINITE CASE

3.1 Introduction

As is frequently the case in statistical work, the preceding discussion

suffers from the weakness of being only asymptotically correct. To make

the most of the information in part 2 of the thesis it is therefore

important to determine how closely the finite case follows the infinite, in

particular, to determine how large and n (remember n = ) must be

for the finite and infinite cases to be, for practical purposes, indistinguish¬

able. In general, for all values of and n, it is also important to know

whether optimum gain is still located at symmetry and whether it is robust

to changes in operating conditions.

Finney (1966) studied this subject in detail for selection when

historical information is not used, and when fixed proportions are accepted

at each stage. He found that, although overestimating the gain, the

infinite case is in all other respects a very good guide to the finite

case. In chapter }.!+ a similar study is made for the case when history

is used. In chapter 3.5> we study the effect on gain of schemes that are,

in a sense, somewhat more flexible than those studied by Finney. The

increased flexibility is achieved by replacing schemes based on accepting

fixed proportions at each stage with schemes that accept all varieties

yielding above fixed cut-off points at each stage; combinations of these

two acceptance rules are also studied.

A major difference between the finite and infinite cases is the

variation in quality between different cohorts. It is, in fact, in order

to determine whether we can take advantage of this variation that we
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study the above-mentioned "flexible" selection schemes. The reason for

the variation in quality is the assumption, necessary for a 3tucfcr of the

finite case, that is a random sample from an infinite continuously

distributed population. Obviously, in practice, the overall average true

yield will vary from cohort to cohort and so the assumption is, in part

at least, reasonable. Another and perhaps less reasonable aspect of the

assumption is that the parent distribution is N(0,1). It has already

been indicated that the mean of 0 and the variance of 1 can be achieved

without loss of generality; if the robustness (found in chapter 2.6) of

the infinite screening results to variations in parent population carries

over to the finite case, the reliance on a normal parent should not be

limiting either. I see no reason why this should not be the case, especially

in view of the close similarity found between the infinite and finite cases

in chapters 3*4 and 3*5J study of finite selection from non-normal parent

distributions is, however, necessary.
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Theoretical Considerations

The difference, arising in the finite case, between using cut-off

points and using fixed proportions to define our acceptance rules has

already been mentioned; an even more important difference, as far as

finding the gain is concerned, is that we are now forced to base all our

calculations on order statistics rather than on tails of distributions.

TABLE 3.2.1

A comparison of the infinite target (normal tail) with the
finite target for rr = 1/16 and various values of « Nq.

Target

16 1 1.766a
32 2 1 ,858a
64 4 1.911®

128 8 1,939a
256 16 1.953®

Limit (normal tail) 1.968a

When accepting fixed proportions this means that the finite target is the

mean of the top n values of the order statistics appropriate to a sanple of

numbers from the normal distribution. In oontrast, the infinite target

is the mean value of the corresponding proportion of the upper tail of

the normal distribution. The effect on the finite target that results

from using cut-off points is indicated in chapter 3.4.

Some indication of the difference between the finite case and the

infinite case is given in table 3.2.1. This table is reproduced fVom

Finney (1966). It shows the finite target for constants = ry'N.j = 1 /16,
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but for various values of and n. It can be seen that the decrease of the

finite target from the infinite is not very great: for = 16 and n = 1

it is only 10.3^J for = 256 and n = 16 it is down to a drop of only 0.8^.

Obviously the approach to the infinite case is rapid.

When error is introduced into the system, the necessity of dealing

with order statistics makes analysis difficult. Finney (1966) worked

out expressions for the expected value of the gain (e(G)), and of the

variance (E[Var(&) ]) of the gain between selections from completely

independent cohorts. Letting, as usual,

VN.A
.2 - 1 nzei '

we have, for 1-stage selection,

VN.
e* = 1 rrs®1 Nq

and, as a result, we get Finney's expression,

E(G) = [Nq/CNQ+^V) ]* agC^ ,N2) ,

for the gain. The function g(N^,Ng) is the expectation of the mean of the
top Ng values in a random sample of members from a N(0,1) parent
population. Its value can (for Ng < < 400) be found from the entries
in Harter's (i960) tables. Finney also found the expression

E[Var(0)] = [N0/(N0+N1V)]crg[h(N1,N2)+N1VA0]
for the varianoe. The function h(N^,Ng) in this expression represents the
expectation of the variance of the mean of the largest values in a random
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sample of members from N(0,1). Its value can be obtained from

Teichroew's (1956) tables of expected squares and products of the first,

second, ... largest values in random samples of < 20 from N(0,1).

When Pq = 1, that is to say Nq = , the preceding two expressions
reduce to

E(G) = (l+vr^ogCN^Ng) (5.2.1)
and

E[Var(&) ] = (l+V)"1cr«[h(H|,N2)+V] . (3.2.2)

Since Finney studied the use of an initial random discard in finite 1-stage

and 2-stage selection and did not find any unusual differences from the

infinite case, and since the use of history has been seen to have no

significant effect on the value of an initial random discard, we will use

Nq = Nl throughout this study.
In moving to 2-stage selection, the above expressions can be modified

to calculate the gain at the margins (o^ = 0 or 1, and =1 or t), When
history is used and ^ = 1 , for example,

E(G) = (l+V)"^ag(N1,N3) ,

and

E[Var(&) ] = (l+V)"1a2[h(N1,N3)+V] ,

independent of Ng. The same expressions apply when Ng = independent
of a^ . For either Ng = N3 or ^ =0 the use of history has no effect and
the expressions derived by Finney (1966) apply: for Ng = Nj, E(G) and
E[Var(G)] can be calculated from the 1-stage expressions by inserting V/o^
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for Vj for ^ = 0 they can be calculated by replacing by Ng, and Ng by
N, in the 1-stage expressions. Expressions can also be calculated for

similar marginal situations for higher order selection procedures but,

since selection under these conditions is equivalent to 1-stage selection,

it is unlikely in practice and the expressions are of little interest.

General expressions for the finite gain after any number of stages

are possible, but are so complex that numerical integration would almost

certainly be necessary. The expression

-to

E(x(r)) = (n-r)?(r-1 )T [ x[?(x)]n"r[1-P(x)]r"1f(x)dx ,
"fch

for the expected value of the r highest order statistic in a sample

of n members from a distribution f(x) where

x

F(x) = ff(x)dx ,

gives some idea of what vrould be involved. In a screening study

f(x) = S(x)g(x) ,

where S(x) is the selection function (a k-variate normal distribution

function). Obviously numerical evaluation of the order statistics, under

these circumstances, would be very time consuming; this approach was not

attempted and, in its place, the alternative method of simulation was used.
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Simulation Technique

Although the basic simulation technique used in this thesis is nearly

the same as that used by Finney (1966), it is so important to the study

that it is described in detail in this section. The computer used for the

simulations, and indeed for all calculations in this thesis, was the

University of Edinburgh KIT-9•

Pseudo-random deviates from a N(Q,1) population were generated on the

computer in independent pairs (h^ ,«2) by means of the relationships

k1 = (-2 log ^1)?cos(2tt?2),
and

*2 a (-2 log )^sin(2rr?2) ;

and are uniform random deviates in the interval (0,1). The uniform

pseudo-random deviates were generated by a standard sub-routine. This

method of generating random N(0,1) deviates is due to Box and Muller (1953) J

faster methods are available but, in nearly all the oases studied, the

generation of the pseudo-random numbers took only a small portion of the

program time so this method was used to save program storage space. Since

both the error and the parent population are normally distributed, there

was no need for a separate store of deviates for each. Each new deviate

was, of course, taken directly from the store as required.

In a given computer run, a large number (usually between 6000 and 7000)
of pseudo-random N(0,1) deviates was generated. Multiple usage of up to

ten per deviate was achieved by regarding the numbers as being in a

continuous loop in storage and continuing around the loop until the maximum



- 129 -

permissible number of usages had been made. "Tien the required number of

runs for a given set of selection specifications was complete, the next

set of specifications was read in and studied without the necessity of

generating additional numbers unless, of course, the numbers had already

been used the permitted number of times. Similarly, if necessary, a new

3et of pseudo-random numbers could be generated in the middle of a series

of run3 for a given set of specifications. The chance of patterns of usage

was decreased by always using a prime number of deviates. In order to

prevent any two selections being based on nearly the same set of deviates,

the interval between the position in store of any two deviates was increased

in a manner dependent on the total number of usages made of each of the

deviates: adjacent deviates were used until every deviate had been used

once and then every second deviate until all had been used twice and so on

until new deviates were required.

In a given selection, deviates were chosen to represent the true

yields of the parent population; to these were added another deviates,

this time multiplied by the experimental error ; the results were taken to

be the first stage yields. From these results the highest yielding Ng
varieties were chosen and Ng random deviates (this time multiplied by eg)
were added to the true yields of the selected varieties. At this point,

3ince history was being used, the estimate z^ °f "the true yield was

calculated according to equation 2.1.2, and the highest yielding varieties

were chosen for study in stage 3. The same procedure was followed until

the entire k stages had been completed. The mean value of the ohoaen n

varieties was then calculated and its first four powers were accumulated.
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The process was then repeated with another set of deviates. At the end of

the required number of runs the average gain and the variance of this

gain between the independent runs (Var(G)) were calculated, as were the third

and fourth cumulants of the frequency distribution of G.

At any stage i, the bulk of computer time consumed was used in sorting

to find the highest yielding varieties from the varieties being

studied. Since methods were available from the work in part 2 for

calculating theoretical cut-off points corresponding to the desired

proportions, it was possible to increase efficiency over the method used

by Finney. The method used was to divide the varieties into two categories

immediately after adding and calculating z^j those for which z^ < "H
went into the lower category (tentatively rejected) and all the rest into

the upper (tentatively accepted). If selection was based on cut-off points,

the stage was then complete and it was possible to proceed directly to the

next stagej obviously this resulted in a very large saving of time. If, on

the other hand, exactly varieties were desired, sorting was still

necessary, but only of relatively few varieties. This sorting was done by

first calculating 3 » nu"*Ni+-| (nu represents the number of varieties
tentatively accepted)j when 3 > 0 (too maqy varieties accepted) the

Wi+1 highest yielding varieties were found by first arranging any 3 of
the ny varieties in order; the highest yielding variety of these 3 ordered
varieties was thon compared with each of the remaining n^-3 = varieties
until one with a lower yield had been found; the two were interchanged and

the lower yielding variety placed in its proper order among the 3 ordered

varieties; the procedure was continued from where we left off in the Nj_+1
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varieties in the same manner until the 9 lowest yielding varieties of the

nu tentatively accepted had been placed in the ordered group. The >
varieties were than discarded and we were left with the required N* ^

highest yielding varieties. A similar procedure was followed when

9 < 0. 'hen 9=0, as often happened, no sorting at all wa3 required.

This method saved considerable time, not only over sorting all the varieties,

but also over sorting all members of the category that had too many varieties.

In view of the natural variation of the average parent population from

one set of runs to another, it was decided to standardize the gain. The

technique used was that of Finney (1966): in each run for a given set of

selection specifications a "target" value (the average true yield of the

2n best varieties in the population) was calculated; when the set was

completed the regression of the gain in a given run against the corresponding

target in that run was calculated over all runs in the set; this regression

was used to calculate the gain d that would have resulted had the averageK.

"target" been the average of the top 2n order statistics in a sample of

members from a N(0,1) population. This gain was frequently checked against

the gain found by an alternative standardization technique (also suggested

by Finney); agreement was always very good. Because of the slight effect of

history on the gain, it was assumed that the linearity of regression found

by Finney in his work would still apply; no reason arose during the study

to cast doubt on this assumption. Since the regression seemed to standardize

the mean very well, and since the variance of the adjusted regression

gain, G-^, was considerably lower than the variance of the mean gain G-, it
was used in all situations in this thesis in which exactly n varieties were
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accepted in each run. In order to have a true measure of the variability

of performance, Var(G) was not adjusted for the regression but vfas always

taken to be the actual variance of G between the independent runs.

■Then a final cut-off point was used, G7) was not, however, thought to

be appropriate and was not used. This decision was taken in view of the

fact that, although the number of varieties in the target was, of necessity,

fixed at the number originally chosen (say 2n), the number of varieties

accepted in a given run varied considerably depending on the experimental

error and on the quality of the varieties in the cohort. As a result,

although the target moved up and down as a function of the best 2n varieties,

the average gain remained relatively stable since all the varieties yielding

above the fixed cut-off point were chosen: in a poor cohort with only one good

variety, it would frequently be the only variety chosen and, although the

target was low, the gain would be reasonably high; in a cohort in which all

the varieties were very good, the target would be very high but, because

many more varieties were chosen and mistakes were more frequent, the

average gain was not usually particularly high. The regression was expected

to be rather poor under these circumstances. In addition, it was not

known how to take into account the fact that, on many occasions, all the

varieties in a cohort were rejected. This, plus the difficulty of taking

into account the variation in the number of varieties making up the average

gain in a given selection, made it impossible to take into account all

available information in calculating the regression. Although, for the

above reasons, Gn was not used, the use of a final cut-off point had theit

effect of standardizing the gain to quite an extent and, for a given
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number of runs, there was little difference between the standard errors

of for fixed n and of G for varying n,it

In order to investigate the possibility of a further reduction in

error variance, selection from a population consisting of varieties

with true yields equal to the appropriate order statistics was studied.

This procedure was found to be inadvisable for two reasons: first, for a

given number of runs, the variance of the resulting mean gain was almost

identical with the variance of the regression estimate; second, and even

more important, the estimate was biased.

Both the technique and, in particular, the bias are illustrated by

the following example of 1-stage selection (with V = 1) of one variety

from a population of two. When selecting from a population of two

varieties whose true yields are independently N(0,1) distributed, the

expected 1-stage finite gain is 0.399 (see equation 3«2.1). When selecting

from a population of two varieties, one with true yield +0.5642 and the

other with true yield -0.5642 (the order statistics appropriate to a N(0,1)

population of size two), the expected finite gain can be calculated from

Pr(y1 > yu) = Pr(y1-yu > 0),
where y^ is the yield (with error) of the variety with the lower true yield
and yu the yield of the other. Since V = 1, we have

e| = Vcr2 = 1

and

y^y^NC-i .1284,2).
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This means that

Pr(y1~yu > 0) = Pr(z > 1.1284/^2)
= 0.2125.

This gives the proportion of times the variety with true yield equal to

-0.56/(2 is chosen. Since the variety with true yield equal to +0.5642

is the only other one that can be chosen, the expected value of the

finite gain can be seen to be

E(G) = 0.5642(1-0.2145) - 0.5642(0.2145)

= 0.325,

a considerably lower value than that calculated by equation 3,2.1. This

is not to say the value is incorrect, it is just not the one we are looking

for. Out of curiosity, a simulation of 10,000 runs was made on a parent

population consisting of the two order statistics: the result was a gain

of 0.324±0.005. A similar simulation on a population consisting of two

independent values from an N(Q,1) distribution resulted in a gain of

0.405±0.006. It can be seen that the agreement with the theoretical

values is very close.

The negative bias was found to persist when selecting 1 variety from

16 in two stages with V = 1. In that case, the gain was found to be

1.339±0.007 in a simulation of 6000 runs on a population comprisirg the

16 order statistics and 1.401±0.004 in a simulation of 12,000 runs on

random samples of 16 from a normal distribution. In view of these results,

selection from the order statistics was abandoned and use of G^ adopted.
In closing, it should be pointed out that Var(&) is a very important

part of the results of these simulations; in most instances the experimenter
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will be very interested in the variation of the gain between independent

runs, perhaps even more than in the variance of the mean gain, G, or the

regression gain, G_, over a very large number of runs. Any estimation

technique that does not provide this value will be considerably less

valuable than one that does.
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The Effect of the Use of Historical Information

3.4.1 The overall gain and the approach to the infinite case

Table T11 illustrates, for V = 1 and 2-stage selection of 1 variety

from a population of 16, the fact that there is very little variation in

the finite gain (both with and without the use of history) in the

optimum region. "vThen history is used, it can be seen that even in the

large region in the neighbourhood of symmetry covered by the 19 most

accurately determined gains (marked with single asterisks) the minimum

gain (1.356 at Kg = 4, <Xj - 0.8) is only 3.2$ lower than the maximum
(1.402 at Kg = 4, ^ a 0.7); since Var(G-)/o2 varies between 0.533 and
0.579 (about 40^ of gain) in this region, this variation in gain will not

be very important. Keeping in mind that approximately 14,000 runs have

been made to calculate each of these 19 gains, and that the corresponding

standard error is about ±0.004, it can be seen that operation anywhere

in the region 3 < Kg < 6 and 0.4 < ^ <0.7 should give very nearly optimum
results.

Another reassuring fact comes to light on comparison of the upper half

of table T11 with table T10 giving the equivalent figures for the gain with

history in the infinite case. The similarity in the variation of the gain

is illustrated by the fact that the finite gain is consistently at a

level of about 85-91 percent of the infinite gain; there is a slight

falling off in the region of light replication and heavy selection in early

stages but even then only one figure falls below 80fu of the corresponding

infinite gain. Considering the number of figures involved, and the fact

that most of them have a standard error of 1.5 to 2 percent of the finite
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gain, this can be seen to be very consistent behaviour. Table 3.4.1,

giving the percent of infinite gain achieved (when history is used) by

the finite gain when = 100, Nj = 1 and V = 1,0, indicates that this
same consistency exists for tt = 0,01. The fact that the variation in

the figures is far from smooth is explained by the fact that the standard

TABLE 3.4.1

The percent of infinite gain achieved in the finite case for

N.j = 100, Nj = 1 (rr = 0.01), V = 1 ,0 and 2-stage selection
from a normal distribution.

H,: 4 5 1 0 20 25

0.3 92.3 93.4 91.4 92.5 92.7
0.4 91.2 91.3 90.1 92.8 94.1
0.5 88.0 90.2 91.8 92.5 93.0
0.6 90.0 92.7 94.8 93.7 95.5
0.7 90.5 91.3 94.4 96.1 95.5

errors of the finite regression gains are, in most cass3, in the region

±0.035 to ±0.040, or about 1.5$ of the gain. Similar calculations for

V = 0.2 and V = 5.0 for both ^ = 0.01 and n = 0.0625 indicated the same

consistent behaviour in the range of 85 to 93 percent of the infinite

gain. Every indication is that the infinite case will be a very good

guide to the behaviour in the finite case.

The value of the use of history in the finite case is brought out in

a comparison of the upper and lower halves of table T11. As in the infinite

case, history is of little value in the optimum region; the same is true in

the region corresponding to light replication and heavy selection in the
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first stage; only when first-stage replication is heavy and the corresponding

selection light is history of any real value. As usual, the correspondence

between the behaviour in the finite and infinite cases is very close.

Out of curiosity, 14,000 runs were made both with and without history at

the symmetrical specifications for = 16, Nj = 1 and V = 1: the
regression gain was 1 .392<r without history and 1.401c with history (using

a completely new set of random numbers). Since the standard error of the

regression mean was ±0.005 in the former case and ±0.004 in the latter,

it can be seen that there is little to choose betv/een the two, even after

14,000 selections. Selection with t = 0.01 and with V = 0.2 and 5.0

gave results similar to those already mentioned.

The variance of the gain between independent runs at the same

specifications (Aar(&)/a2) is given in table T12. It can be seen that this

variance is very nearly constant at its minimum value in the optimum region.

Not only is this behaviour very similar to that found when history was not

used, but the actual values of Var(G)/4TE are very similar: at symmetry

(and after 14,000 runs each) Var(&)/<"r" = 0.555 with history and 0.553

without. Comparison of table T12 with the corresponding table (table 2)

in Finney's 1966 paper indicates that it is only in the region of light

first-stage selection and heavy fir3t-stage replication that the use of

history results in a decrease in Var(&)/crE.

The third and fourth cumulants of the frequency function of & after

2-stage selection with = 16, = 1 and V = 0.2 are given in table T15.

In 3harp contrast with the reasonably smoothly varying values of G and Var(G)
in tables T11 and T12, the entries in table T15 3how little or no pattern
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at all. Similar behaviour1 was found for other values of V andrr. The

reason is, no doubt, the combination of a large sampling error with the

relatively small values of the cumulants.

TABLE 3.4.2

The approach at the symmetrical specifications (<Xj = "g = 0.5,
Ng/lij = Ny'Ng) of the finite gain to the infinite gain both with

and without the use of history (" = 0.0625, V = 1),

VCT Var(G)/n2 E (&)/<r
N1 n2 N3 without with with with

1 c. j
history history history V=0.0

16 4 1 1.392+0.005 1.401+0.004 0.555 1.766
32 8 2 1.484+0.012* 1 .49210.010 0.278 1.858
64 16 4 1.517+0.008* 1.55440.009 0.143 1.911

128 32 8 1.558+0.012* 1.575±0.008 0.074 1.933
256 64 16 1.57210.014* 1,595±0.007 0.028 1.953

«*> limit 1.590 1.605 0.000 1.968

* Finney's 1966 results.

The manner in which the finite gain approaches the infinite gain when

is increased for constant n is illustrated, and compared with Finney's

(1966) results, in table 3*4.2. Although the gain with history is always

slightly greater than the gain without, there is no discernible difference

in the rate with which the two systems approach the infinite case. The

same conclusion applies to the rate with which E(G)/ct approaches the

infinite limit when V = 0.0. The variance of the gain between runs was

so similar in the two cases that the non-historical results were not

included. Similar results for t = 0.01 indicated only a slight decrease

(as expected) in the value of history; in all other ways they resembled
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the behaviour of the results in table 3*4.2.

The results of this section certainly suggest that history has little

effect on the finite gain other than that already found in the infinite

case. In a broader sense, the preceding results confirm Finney's conclusions

that the finite gain behaves in a very similar manner to the infinite gain

and that the finite gain approaches the infinite quite rapidly.

TABLE 3.4.3

The finite gain (with and without history) as a function of V
for symmetrical selection (o^ = = 0.5, = Ny^) from

a normal population with = 16, = 1 and V = 1.0.

Gp/<7**
without history with history

Var(G)/nrs
with

history

E(G)/cr for
infinite model

with
history

r3
.-2
?

.-1

1.766

1 .755±0.006*
1.74040.007*

1.67440.009*
1.56440.013*

1.766

1.75940.009

1.73940.008

1.68440.004

1.56740.010

0

0.306

0.294

0.374

0.426

1.968

1.965
1.952

1.889

1.789

1.0
1

5a

1 .39240.005

1.13640.022*

0.91540.025*

0.45440.030*

0.21540.029*

0.07040.031*

1 .40140.004

1.16240.009
O.888+O.OO6

0.46740.010

0.22540.011

0.09540.012

0.556
0,686

0.793

0.948

0.941

0.990

* Finney's (1966) results.
** From at least 1000 runs each.

1.605
1.340

1.039

0.529

0.244

0.110
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3.4.2 Variation in the value of history with V and n

It can be seen from table 3.4.3, showing the gain both with and without

history over a wide range of values of V, that there is very little

variation in the value of history with V; there is probably a slight

increase in its value as V is increased but, considering the errors

involved, even this is not very obvious. The error was, in fact, so large

TABLE 3.4.4

Variation of &j/n in the optimum region for V = 60, =16
and Nj = 1 (based on 3000 runs each; error of ±0.018).

N2; 3 4 5 6

0.3 0.303 0.270 0.303 0.309
0.4 0.285 0.316 0.289 0.269
0.5 0.267 0.295 0.301 0.317
0.6 0.314 0.318 0.269 0.281

relative to the value of history that the gain with history was often

lower than the gain without; this occurred frequently throughout the

simulation study. There was no discernible pattern to the difference

between Var(G)/t2 with and without history.

Considering the errors involved, the fact that G^/cr is consistently
in the range 86-90 percent of the infinite gain over the entire range of V

indicates a verj close adherence to the infinite case; for this reason

it is probably safe to say that the variation in the value of history as a

function of V is also very close to that found in the infinite case (see

figure F11).
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The fact that symmetry is still, for very large values of V, a very

good approximation to the location of optimum gain is illustrated in table

3.4.4 showing the gain at various locations in the region of symmetry for

rr = 0.0625 and V = 60. Considering the errors involved, operation at

TABLE 3.4.5

The finite gain (with and without history) as a function of
for = 1 and near-symmetrical selection (ry^ = = 0.5) from

a normal population with V = 1.

V0 Var(&)/cr2
E(&)/a

for infinite

N1 N without with with model with Finite
C.

history history history history target

1 1 0 0 1.0 0 0
4 2 0.719^0.01 3* 0.744+0.010 0.744 0.956 1.029
9 3 1 .12710.014* 1.131 ±0.013 0.646 1.347 1.485

16 4 1.392+0.005 1.401 ±0.004 0.551 1.605 1.766
52 6 1.721±0.023* 1 ,697±0.013 0.464 1.898 2.070

64 8 1.975±0.027* 1 .969±0.014 0.395 2.179 2.344
100 10 2.128+0.014* 2.15810.014 0.360 2.350 2.508
128 11 2.290+0.028* 2.27010.016 0.382 2.442 2.595
256 16 2.491+0.034* 2.48910.015 0.328 2.687 2.827
512 23 2.753±0.033* 2.76710.011 0.273 2.918 3.044

* Finney's 1966 results.

either ^ = 0.3, Ng = 3 (the approximate location of the infinite optimum)
or at symmetry should give very nearly optimum gain. Similar studies for

= 0.01 and various values of V gave results similar to those just described,

"he results in table 3.4.5 for the gain both with and without history,

over a wide range of values of Ilj (N^ = 1), indicate that, once again, the
infinite case is a very good model. In this case, however, the percent of

infinite gain achieved by the finite gain appears to vary slightly as a
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function of : at = 4 (" = 1/4) we achieve 78/ of the infinite gain;

at = 512 (t = 1/512) we achieve 95/ of the infinite gain. Although

masked by the simulation error in G^/cr, this trend seems to occur consistently
over the entire range of . This, no doubt, is a result of the fact that,

as inoreases, we gradually approaoh the infinite case even though stays

constant at 1.

The variation with u of the value of history is, because of the fact

that the error in &g/<7 is of the same order of magnitude, harder to
determine; the oloseness with which the finite case (both with and without

history) follows the infinite suggests that the behaviour found in the

infinite case (figure F10) is probably still an adequate guide. The fact

that history results in a 3.5/ increase in gain when = 4, Ng = 2 and
= 1 does not, at least, contradict this; little more, however, can be

said.

Calculations similar to the above for V = 0.2 and V = 5 only served to

add weight to the comments already made.

3.4.3 The value of history in multi-stage selection

It was seen in part 2 that the value of historical information increases

with the number of stages; it will be seen in this section that the same is

true in the finite case.

Table T13 gives the gain with and without history for multiple-stage

finite selection with V = 1. It can be seen that there is a marked increase

in the value of history as k increases and that the value seems to be about

the same for both = 64 and for = 16 (both for t* = 0.0625). Comparison



- 144 -

with corresponding figures for the infinite case suggests that the value

of history is as great if not greater in the finite case: in four stages

we have, in the finite case, an increase of 5*3$ with = 16 and 4.6?? with

TABLE 3.4.6

Values of gain and the use of history for multiple-stage
near-symmetrical screening with = 100, n = 1 and V = 1.0.

<yg (finite target=2.508) % yalue $ value of«
Intermediate with without of using history in

N. history history history history infinite oase

1 - 1.773 1.773 - 0.580 0
2 10 2.158+0.014 2.12810.014* +1.4 0.360 0.2
3 22,5 2.238+0.012 2.22710.017* +0.5 0.339 0.6
4 30,10,3 2.282+0.012 2.29410.016* -0.5 0.359 1.0
5 40,16,6,3 '.28710.012 2.266+0.015* +0.9 0.327
6 46,21,10,5,2 30310,011 2.24110.011 +2.8 0.291

8 56,32,18,10,
6,3,2 2.31810.011 2.24510.011 +3.3 0.312

0 63,43,25,16,
10,6,4,3,2 2.274+0.011 2.22010.018* +2.4 0.283

* Finney's (1966) results.
** Not available for k > 4.

= 64j in the infinite case the increase is down to 3.4/? (for rr = 0.0625).

Because of the error involved, these results are not conclusive, but the

fact that the finite values are consistently larger than the infinite does

give strong support to the argument.

Inspection of table 3*4.6 showing similar figures for n* = 0.01 with

=100 and V = 1.0, indicates that the decrease in the value of history

found for decreasing rr in the infinite case carries over into the finite.
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In vievr of the low (around 1/j) value of history for k 5 and the relatively

higher value (2-5 percent) for k ^ 5 it appears that the expected increase

in the value of history with increasing k does occur, but the values are

so small that no more can be said.

Unfortunately, since infinite results are not available for the gain

when using history for k ^ 4, little more can be said of the similarity

between the finite and infinite cases. As far as the tables go, especially

considering how close the error is to the value of additional stages, there

is no reason to doubt that the similarity between the infinite and the finite

cases continues. Finney (1966) calculated the infinite gain for larger

values of k without the use of history J his results support this conclusion.

As far as Var(&) is concerned, neither history nor the number of stages

seem to have much effect.

Obviously, since Ihe (k-1)-stage gain can always be expressed as a

special case of the k-stage gain, the optimum gain must be a non-decreasing

function of k. The fact that this is true for the finite gain up to

reasonably large values of k in both table 3.4.6 and table T13, and that

we are getting quite close to the maximum gain (only 8°/o below for 8-stage

selection in table 3.4.6), suggests that we are, at least, close to the

optimum location. In order to test this theory, the finite 3-atage gain was

calculated at nine locations each for ^ = 0.0625 and V = 1 with = 16

and = 64. The accuracy was about ±0.011 (500 runs) for = 64, = 4

and about ±0.008 (4000 runs) for N,j=16, N, = 1, The observed differences
in the results at the different locations could easily have been due to the

experimental errors; because of the obvious flatness in the surface and of
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the time consumed to get the required accuracy, no further 3-stage work

was done.

The only other survey work done was for V = 1 and 10-stage selection

with =100 and N, = 1. This number of stages was chosen because of the

fact that symmetrical CL/fT appears to have decreased on moving from 8

stages to 10 (2.318+0.011 to 2.274±0.011) suggesting that the optimum has

moved from symmetry. The results of this brief study appear in table T14.

Because of the time consumed in calculating the gain to the desired

accuracy, and the very large number of possible specifications, only a few

calculations were made. In view of the relatively large number of varieties

(37) being discarded with very little replication at the symmetrical

specifications (column 2 of table T14), the gain was calculated for heavier

than symmetric early replication and lighter than symmetric early selection,

that is to 3ay for

^ ^ c2 > ... v or10 (3.4.1)
and

P1 ~ p2 - "• - P10 * (3.4.2)
Table T14 shows that the simulated gain achieved under these circumstances

was always as great as, or greater than the symmetric gain; the one value

of gain calculated for movement in the opposite direction (column 1) was

quite a bit lower than the symmetric gain. With this in mind, it appears

that movement in the direction of 3.4.1 and perhaps 3.4.2 will probably do

no harm; it may even be beneficial. As usual, the surface is so flat, and

the error (after a reasonable number of runs) 30 large with respect to the

possible improvement in gain, that the results cannot prove anything;
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they are, however, suggestive of the nature of the variation of gain with

operating conditions.

If it were desired to locate the optimum operating conditions accurately,

a technique that might be useful would be to compile stage by stage

statistics on the places at which varieties with desirable true yields were

being rejected; if it turned out that a disproportionate number were being

rejected at one or two specific stages, replication in those stages could

be increased and/or selection made less intense; by spreading the change

evenly over all other stages this approach should help to locate the

optimum. The use of a simulation program designed on statistical experimental

design principles might also be helpful if very accurate location of the

optimum finite gain were desired. In view of the obvious proximity of the

symmetrical gain to the optimum, and of the computer time that would be

required for such a study, no such attempt was made here.
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Modified Acceptance Rules

3.5.1 Cut-off points throughout

It was pointed out in part 2 that accepting fixed proportions at each

stage is, in the infinite case, equivalent to using cut-off points; in

the finite case, the use of cut-off points results in variation from

cohort to cohort in the number of varieties accepted at a given stage

and the similarity is destroyed. Since, in the previous chapter, the

finite (fixed proportion) gain was usually found to be quite a bit smaller

than the infinite gain it was decided to study the advantage of the use of

cut-off points at all stages. For consistency, the cut-off points were

chosen to be the values of Th that correspond to the values of used

in the infinite case (and in the previous chapter).

Variation in the number of varieties accepted into a given stage

creates a new problem: how are we to replicate these varieties? One

method of maintaining consistency is to leave A fixed at the level used

in previous chapters, splitting it, as usual, among the various stages

according to the values cv^ = A,/A and calculating the error variance for
stage i from the standard formula

TO,
2 1 2

ei " ^ CT *
A difference from previous work now arises: the difference is that e|
is no longer fixed but fluctuates from cohort to cohort as a function

of N^. The fluctuations in may also create practical difficulties in
maintaining the desired plot size while at the same time using all the
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available resources and replicating each variety equally. The variation

in. e? causes the correlation between two specific stages to vary from

cohort to cohort: the variation in both e? and n. ., in turn, causes
x xj' '

the value of necessary to achieve the desired average value of P. to

vary from cohort to cohort.

Another possible scheme, also consistent in its way, is to fix the

value of e? at the desired level (by replicating each variety at the

previous fixed proportion level) and to vary the total number of plots

according to the number of varieties being studied. This will create

fluctuation in the values of A. (and, as a result, A) from cohort to cohort,

but eV will remain fixed at the value

Vtt.

ei = T 17 »
i

where ".is, as usual, the long term (infinite case) average value of

Ih/Ni» This approach will create considerable administrative difficulties
in that the experimental resources required at stage i are unknown until the

end of stage i-1 ; this may be a very important consideration if the experimenter

has a number of experiments (cohorts) under study and is limited by a fixed

total amount of resources; less difficulty will arise if the experiments

are rapidly completed and if there is a very large supply of the required

experimental material.

Obviously the increased gain resulting from the use of one or the other

of the above methods must be balanced with the difficulty of using it.

Both schemes are studied in this part of the thesis: the first is called

the variable replication scheme and the seoond the fixed replication scheme.
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One comment that should be made with respect to the actual simulation

of the two replication schemes is that they were, in order to save computer

time, both tested on the same populations and, in addition, the first stage

results were made common to both; the results in later stages were also

based on the same random numbers but, of course, the error variance was

modified according to whether fixed or variable replication was being used.

This approach tended to make the results of the two systems more alike

than if they had been based on entirely different sets of random numbers.

Arguments could be put forward in support of either method of simulation

but, especially in view of the saving in computer time, the one used here

wa3 felt to be adequate.

For a given set of selection specifications the variation of n from

cohort to cohort forces a redefinition of G and Var(G). Since all values

of n < are now possible, the mean value of all varieties accepted, G,

is used in place of G^; the variance of the gain (Var(G)) is replaced
by the variance (over all runs at a given set of specifications) of all

the varieties accepted; and finally, letting represent the total number

of varieties accepted in a given set of runs, the variance of the mean

gain is Var(G)/N^., Although not entirely satisfactory, these redefined
values, in conjunction with the average value of n (n) over all runs for

a given set of specifications, permit adequate comparison of the different

screening systems.

It can be seen from table 3«5.1 that, for V = 1,0, the finite gain is

very nearly equal to the infinite gain over a wide range of values of tt

when cut-off points are used at all stages. In addition, judging from the
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results of the table, it appears that leaving the amount of replication

per variety (and hence e|) fixed at the infinite case levels may result in
a slight additional increase in gain. It is, however, very difficult,

based only on the results of the table, to say whether either of the

TABLE 3.5.1

The variation in 2-stage finite gain (V = 1.0, <y^ - 0.5) with
tt (N^) using cut-off points throughout (the cut-off points are
made to correspond to near-symmetrical specifications and = 1).

E(G)/ct for Variable replication Fixed replication
infinite

N1 case G/o-* n Var(G)/crs Tx/r* n Var(&)/rre
4 0.956 0.922 0.946 0.536 0.950 0.922 0.515
9 1.347 1.328 0.972 0.510 1.371 0.936 0.491

16 1.605 1.574 0.966 0.411 1.610 0.937 0.403
32 1.898 1.869 1.065 0.334 1.891 1.045 0.318
64 2.179 2.214 0.907 0.302 2.222 0.893 0.295

128 2.442 2.369 0.940 0.210 2.386 0.929 0.200
256 2.687 2.675 1.056 0.190 2.691 1.041 0.182
512 2.918 2.935 1 .000 0.161 2.930 1.012 0.160

* All values of mean gain accurate to a
standard deviation of approximately ±0.016.

above statements is true due to the fact (as usual) that the standard error

of the mean gain (approximately ±0.015) is of the order of the observed

difference; the difficulty of comparison is increased further by the fact

that n very rarely equals •

Table 3»5.2, showing the same results for various values of V with = 16

and tt - 0.0625, suggests the same two conclusions; again, for the same reasons,

it is impossible to make them with certainty, in any case, the same general
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behaviour does appear to occur over a very wide range of both and V,

As can be expected with the errors involved, surveys of the optimum

region (for ^ = 0.01 and 0.0625 with V = 0.2, 1.0, and 5.0) did not

indicate ary reason to doubt the optimality of the use of symmetrical

specifications as the framework for the operation of the cut-off selection

scheme.

TABLE 3.5.2

The variation in 2-stage finite gain (o^ = 0.5) with V for = 16
and using cut-off points corresponding to Ng = 4 and = 1.

E(G)/ct for Variable replication Fixed replication
infinite

V case G/cr* Avg.n Var(G)/as G/o* Avg.u Var G/o®
5~5 1.965 1.978 1.045 0.147 1.980 1.043 0.146

5~2 1.952 1.966 1.041 0.179 1.970 1.037 0.178

5~1 1.889
1

1.898 0.988 0.230 1.903 0.988 0.227

5~2 1.789 1.782 1.055 0.330 1.796 1.046 0.318

1 1.605 1.574 0.966 0.411 1.610 0.937 0.403

5* 1.540 1.338 1.010 0.628 1.380 0.951 0.613
5 1.039 1.025 0.996 0.748 1.072 0.930 0.722

52 0.529 0.531 1.023 0.912 0.563 0.932 0.919

53 0.244 0.246 1.004 0.989 0.214 0.936 0.990

54 0.100 0.104 0.997 (1.007) 0.113 0.901 0.994
* All values of mean gain accurate to a standard deviation of

approximately ±0.015.

Similar, but necessarily briefer, studies of the same scheme for 3-stage

selection with = 64 and rr = 0.0625, and with = 100 and n = 0.01, both

for V = 1.0 suggested similar conclusions: at symmetry, the gain with

constant replication was, in the former case, 1.672+0.016 versus an infinite
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gain of 1.657 and, in the latter case, 2.399±0.015 versus an infinite gain

of 2.439. Once again, there is no reason to doubt that very nearly

infinite gain will be achieved by using cut-off points throughout.

Although it is impossible to reach definite conclusions based only on

the preceding results, it can be seen from consideration of what is actually

happening that we must approach the infinite case. This is so beoause the

idea of a cohort becomes less relevant when using cut-off points since, in

a sense, varieties are no longer being assessed on their merit relative

to other varieties in a given cohort but on their merit relative to an

absolute standard. In our study, this standard is chosen to accept approximately

the fraction tt of all the varieties studied in all runs at a given set of

operating conditions. The result is that, in effect, we are selecting from

one very large cohort with = the number of runs x the number of varieties

studied per run and, correspondingly, n'= rrN^. In view of the size of
and n', and of the rapid approach to the infinite results as and n are

increased (see table 3.4.2), it is obvious that we will, over the long run,

achieve nearly infinite gain when using cut-off points. Y.e can also expect

the gain to be slightly larger when using a level of replication fixed at

the level found to be optimum in the infinite case (the symmetrical level),

than when A and A^ are left fixed and replication is varied to accommodate
the variation in N^J the slight increase in gain will, however, rarely be
worth the trouble.

When the above considerations and the previous results are both taken

into account, it can be seen that we are safe in concluding that very

nearly infinite gain will be achieved in the finite case if cut-off points
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are used instead of fixed proportions. This in turn means that, for small

and especially small n, we will achieve much higher long-term finite

gain than is achieved by always accepting fixed proportions. The comparisons

of finite (fixed proportion) gain with infinite gain in chapter 3.4 indicate

the size of the increases that should be achieved.

The use of cut-off points is, however, not without its difficulties.

The fact that 30 to 40 percent of the individual runs result in the rejection

of all the varieties will cause problems if it is very important to come up

with something quickly. On the other hand, many runs result in the acceptance

of many more than the desired fraction j this may create practical

difficulties if the follow-up facilities are limited. A scheme in which a

maximum of some fixed number of varieties is accepted provided each yields

above some fixed cut-off point might solve some of these problems. It

would, however, not usually, unless the cut-off point were chosen by some

method beyond the scope of this thesis, result in the desired long term

fraction ** of the varieties being studied; comparison with other selection

schemes would therefore be difficult.

In addition to the difficulties outlined above, it will frequently be

difficult to establish the desired cut-off points. Although we have seen

that the infinite gain does not, as a percent of target, change much with

variation in the parent distribution, the cut-off points are very much

functions of the parent distribution. This means that they will rarely be

available. One exception to this is that the use of a standard, or even

the experimenter's knowledge of the situation, may make a final cut-off

point reasonable.
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If, however, the main purpose of the selection program is to achieve

overall maximum gain rather than maximum average gain for each cohort, one

should, in spite of these difficulties, do one's best to establish

appropriate cut-off points rather than use fixed proportions. This

approach will be particularly important if varieties are presented for

study one at a time. In view of the obvious difficulties in the creation

and use of such schemes, the next two chapters will investigate modified

schemes based partly on fixed proportions and partly on cut-off points.

3.5*2 Intermediate out-off points with n fixed

Because of the possibility of limited follow-up facilities, selection

schemes will be studied in this section in which n is fixed but which use

cut-off points at all intermediate stages. Since n is fixed in every

cohort, the original definitions of gain (GR/a) and Var(G) will be used
rather than the modified definitions of the previous chapter. As in the

previous chapter, both constant and variable replication will be employed.

The results in table 3*5.3 for 2-stage selection with V = 1 and

various values of (n fixed at 1) suggest that, when a fixed proportion

is accepted from the final stage, there is very little to choose between

using a cut-off point at the end of stage one and accepting a fixed

proportion at the end of stage one.

In order to determine whether this result depends on the 3ize of n,

selection was performed for tt = 0.0625 and t = 0.01 with various values of

for each. Once again, the results were very close to similar studies

for selection when fixed proportions are accepted throughout (see table 3.4.2
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for tt = 0.0625) •

The results for = 16 and n = 1 in table 3.5*4 suggest that the two

acceptance schemes are also similar over a wide range of values of V.

Surveys of the optimum area for various values of tt and V only served to

confirm this similarity.

TABLE 3.5.3

The variation in 2-stage finite gain (o^ = 0.5, V = 1.0) with
tt (n^ ) for n = 1, but with a cut-off point (made to correspond

with the value of NR closest to Pj = /tt) at stage 1.

N1

E(G)/a
for

infinite
case

Fixed proportions
at both stages

Gg/cr Var(G)/cr2

Cut-off at stage 1
variable fixed

replication replication

&// Var(G)/a5 &R/o* Var<&)/crS
4 1.956 0.744±0.010 0.744 0.739 0.715 0.754 0.708
9 1.347 1.131 ±0.013 O.646 1.115 0.700 1.135 0.692

16 1.605 1.401±0.004 0.551 1.374 0.566 1.386 0.566
32 1.898 1 .697±0.013 0.464 1.685 0.471 1.688 0.481

64 2.179 1.969+0.014 0.395 1.978 0.444 1.973 0.454
128 2.442 2.27010.016 0.382 2.235 0.308 2.235 0.314
256 2.687 2.489+0.015 0.328 2.497 0.283 2.499 0.289
512 2.918 2.76710.011 0.273 2.777 0.251 2.762 0.260

* Mean gain accurate to a standard deviation of approximately ±0.014.

In order to get some idea whether the same conclusions apply for more

than two stages of selection, a brief study was made of 3-stage selection

in which n is fixed and intermediate cut-off points used. The results were

almost identical to the results of 3-stage selection in which fixed

proportions are used throughout.

In both tables in this section (as with the two tables in the previous
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section) there is little to choose between fixed and variable replication1".

Once again the gain for fixed replication does seem to be slightly higher

TABLE 3*5.4

The variation in 2-stage finite gain = 0.5) with V for = 16
and Nj s 1 but with a cut-off point corresponding to Ng « 4 at stage 1

E (&)/<?
for

infinite
V case

Fixed proportions
at both stages

Cut-off at stage 1

V'a Var(&)

variable fixed
replication replication

Gr/o* Var(G)/aK &R/cr* Var(G)/crE

-2

-1

1.968
1.965
1.952

1.889

1.789

1.605

1.766

1.759*0.009

1.759*0.008

1.684*0.004

1.567*0.010

1.401+0.004

1.340 1.162+0.009
1.039 0.888+0.006

0.529 0.467*0.010
0.244 0.225*0.011

0,100 0.095*0.012
* Mean gain accurate to a

0.306
0.294

0.374

0.426

0.556

0.686

0.793

0.948

0.941

0.990

standard

1 .766

1.764

1.746

1.680

1.562
1.374

1.126

0.857

0.452

0.218

0.093

0.323

0.351

0.399

0.498

0.566

0.743

0.84)

0.926

0.994

1.010

1.766

1.764

1.744

1.686

1.564
1.386

1.157

0.876

0.474

0.211

0.090

0.321

0.352

0.396
0.498

0.566

0.757

0.735

0.921

1.000

0.998

deviation of approximately ±0.012,

than that for variable replication but the difference, if it does in fact

exist, is so slight that it is not worth consideration.

In keeping with all the above comments, comparison of the values of

* Keep in mind that, because of the system used for simulation, the gains
and variances in comparisons of fixed and variable replication will always
be more alike than the gains and variances in comparison of the two first-
stage acceptance rules.
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Var(G-)/cs in tables 3.5.3 and 3.5.4 does nothing to indicate any difference

between the use of cut-off points and the use of fixed proportions at the

end of the first stage, nor is there any apparent difference between fixed

and variable replication.

In view of the results of this section it seems safe, when it is

necessary to aocept a fixed number of varieties from the final stage,

to reoommend the acceptance of a fixed number of varieties at each

intermediate stage as well. The extreme difficulty of establishing

appropriate intermediate cut-off points makes this conclusion a welcome one.

3.5.3 Cut-off point at the final stage only

Because of the ease of operation of systems based on accepting fixed

proportions, and of the fact that it will frequently be possible, by

using a standard or by some sort of economic analysis, to establish a

final cut-off point, the operation of a selection system using a cut-off

point at the last stage and accepting fixed proportions at all intermediate

stages will be studied in this section. As in section 3.5.1 , we use G

rather than GR since n varies from cohort to cohort as a result of the
reliance on a cut-off point. In addition, we define the quantity n = lyfyj j
by calculating the infinite gain corresponding to a selection fraction n,

we compensate for inflation or deflation of the finite gain resulting from

values of n smaller or larger (respectively) than target. This permits

comparisons to be made on a more equal basis.

Table 3.5.5, showing the gain achieved for various values of when

accepting approximately Ng = varieties after stage 1, indicates that
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olose to infinite gain is achieved under this modified system, 'That the

same is true over a wide range of values of V (for = 16, N_ a 4 and

= 0.5) can be seen in table 3.5.6. Although the infinite (modified)

gain is very close to the finite gain in all cases in both tables, it

appears that the finite gain may be slightly lower; this, however, is far

TABLl-: 3.5.5

The effeot on the 2-atage finite gain of using a cut-off point
at the final stage, for various values of (n) and V a 1 (the
cut-off point was chosen to correspond to a long term average

of n = 1).
Finite

Infinite case Final cut-off fixed proportions

N1 N2
E(&)/fr for

T? = G/t Var(&)A*E n

Gg/a for
fixed n»1 Var(&)/rr!

4 2 0.958 0.922+0.011 0.568 0.996 0.74410.010 0.744
9 5 1.359 1.32310.011 0.495 0.973 1,13110.013 0.646

16 4 1.608 1.61510.007 0.425 0.994 1.40110.004 0.551

32 6 1.901 1.88110.011 0.331 0.992 1.69710.013 0.464
64 8 2.202 2.15910.011 0.274 0.9W 1.96910.014 0.395

128 11 2.428 2.44210.012 0.255 1.039 2.27010.016 0.322
256 16 2.673 2.63710.013 0.176 1.042 2.48910.015 0.328

from certain when the magnitude of the standard deviation of the mean

gain is considered. In any oase, it is obvious from both tables that the

gain under the modified system is much larger than that achieved when

accepting fixed proportions at both stages. It can also be seen that, unless

V is large, Var(G)/rrc Is smaller in the new system than in the original

fixed proportion system. There is, however, the drawback that 30-35 percent

of all selections result in no varieties being recommended for acceptance.
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The same sort of behaviour is found in 3-stage selection when fixed

proportions are accepted at the end of the first and second stages and a

cut-off point used at the final 3tage. In this case, symmetrical selection

TABLE 3.5.6

The effect on the 2-stage finite gain of using a cut-off point at
the last stage for = 16, = 4, ^ =0.5 and various values
of V (the cut-off point was chosen to correspond to a long term

average of n = 1).
Finite

Infinite case Final cut-off fixed nronortions

V
E(G)/ct for

t? = Or/a Var(G)/cr2 n
GE/a for
fixed n=1 Var(G)/x

5~3 1 .962 1.93810.015 0.133 1.007 1.75940.009 0.306
5"2 1.988 1.945±0.013 0.165 0.919 1.73940.008 0.294

5-1
5-*

1.918 1.92010.019 0.247 0.934 1.68440.004 0.374

1.791 1.775±0.014 0.280 0.997 1.56710.010 0.426

1 1.608 1.33810.015 0.593 0.994 1.40110.004 0.551

5* 1.312 1.33810.015 0.593 1.077 1.16210.009 0.686

51 1.039 0.98340.016 0.741 0.998 0.88810.006 0.793

52 0.529 0.51810.015 0.921 1.002 0.46710.010 0.948

53 0.246 0.25440.014 0.993 0.977 0.22510.011 0.941

54 0.113 0.12540.013 0.998 0.916 0.09540.012 0.990

for V = 1 and = 100 (target value of tt = 0.01) resulted in a finite

gain of 2.42610.012 versus an infinite gain (for n = ry'N^ = 1.004/100) of
2.436. Other 3~stage results (for various values of V and") also agreed

very closely with the infinite case.

Comparison of the results of this section with those of sections 3.5.1
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and 3»5»2 indicates that the main damage is done to the gain when a fixed

proportion of varieties is accepted from the final stage; what is done at

intermediate stages seems to be of much less importance. In view of this,

and of the difficulty that will likely be met in establishing the intermediate

cut-off points that correspond to the desired symmetrical selection specifi¬

cations, the most acceptable selection procedure will probably be the system

investigated in this section. Special circumstances may, of course, dictate

the necessity of accepting some varieties from every cohort thus prohibiting

the use of this modified scheme.

3.5.4 Final acceptance prior to the final stage

In section 2.4.1 we found that little or no increase in gain occurs

in the infinite case if some varieties are accepted, without further study,

immediately after the first stage. There is however the advantage,

especially if tt is small, of getting a few varieties into service, or into

the next phase of the study, without arjy corresponding decrease in gain.

For this reason a very brief study was made, for small values of n, of

early acceptance in finite selection.

Selection in which a relatively large number of varieties is desired

was chosen for the study since, for very small values of n, early acceptance

makes little or no sense. In any case, early acceptance from all but

extremely large populations must, if it is to be of value, be based on

cut-off points rather than fixed proportions and, when using cut-off points,

the idea of a cohort has been seen to lose its significance. In this study,

the early acceptance was based on a cut-off point while both the number of
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varieties rejected at the first stage, and the total number of varieties

finally accepted were fixed.

Table 3*5.7 gives the results for = 100 (rr = 0.25) and for

= 256 (t = 0.0625)* In both cases, the populations are so large that

the finite gain is very nearly as large as the infinite gain. As was the

TABLE 3.5.7

The gain when some varieties are accepted immediately after
the first stage in 2-stage selection for V = 1, 0^ = 0.5.

100 - 50 - 25 256 - 64 -* 16
No.accepted No.accepted

early finite infinite early finite infinite

Targ. Actual gain* gain Targ. Actual gain* gain
0 0 0.937 0.956 0 0 1.591 1.605
1 1.027 0.950 0.958 1 0.828 1.574 1.603
2 1.838 0.942 0.959 2 2.028 1.585 1.596
3 2.945 0.957 0.961 3 2.690 1.583 1.587
4 3*965 0.949 0.961 4 4.028 1.566 1.575

5 4.950 0.948 0.962 5 4.788 1.551 1.560
6 6.080 0.942 0.962 6 5.972 1.537 1.542

10 9.572 0.933 0.956 7 7.060 1.498 1.522
12 11.605 0.930 0.943 8 8.228 1.471 1.500

* Standard error of mean gain < 0.009 •

case in the infinite study when using large values of n, early acceptance

of a large number of varieties did not seem to result in much of a decrease

in gain: for ^ = 0.25, early acceptance of 12 varieties, or nearly half

the total desired number, resulted in a finite gain of 0.930<7, only a few

units lower than the gain (0.937cr) with no early acceptance. It can also

be seen that there may even be an increase in gain when 3-4 varieties ore

accepted early. The results for " = 0.0625 illustrate the rapid decrease



in the value of early acceptance as r decreases; early acceptance of

more than 2-3 varieties in this case appears to result in a decrease in

gain. V.'hen the size of the standard error is considered, there is no

reason to suspect that the behaviour in the finite case departs very much

from the infinite case.

Various other combinations of cut-off points and fixed proportions

could be studied but, in view of the results of previous sections and of

the close correspondence between the finite and the infinite case in this

section, nothing very startling can he expected.
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3.6 Concluding Remarks

It is apparent from both the preceding work and Finney's 1966 paper

that, although the gains frequently differ in magnitude, the infinite and

finite cases are very similar in behaviour.

Because of the inconclusive results in chapter 3.4 on the value of

history it is worth pointing out that properly weighted history will,

for obvious reasons, always result in some improvement in gain. If,

however, special circumstances make the use of history difficult or

costly, we have seen that it can, at the optimum operating specifications,

usually be ignored with little effeot on the finite gain. Caution is,

however, necessary in view of the increased importance of history under

non-ideal circumstances (see section 2.5.1 on the effect of interaction).

In general then, one should do the obvious and carefully consider ary great

changes in the yield of a specific variety from stage to stagej in addition,

if accurate estimates of the optimum weights are available, history should

be inoluded in the estimate of x throughout.

The work of chapter 3.5 has shown that when cut-off points are used

(even if only at the final stage), the infinite case is a good guide to

the actual magnitude of the average finite gain. This means that there

will be a large increase in the expected finite gain when Nj and the target
value of n are relatively small. This fact is most certainly worth taking

into account when designing a selection program.

One general recommendation that seems very safe, especially in view of

the magnitude of Var(G)/rr2 (relative to G/a), is the use of the symmetrical

selection specifications; they should give very nearly optimum gain in
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finite selection from a normal population under all circumstances, 1'he

close proximity found in chapter 2.6 between the results of selection from

infinite normal and (continuous) infinite non-normal distributions, and

in the last two chapters between the finite and the infinite cases,

suggests that this recommendation will also apply to a wide range of other

distributions. In view of the differences between the infinite 2-point

distribution and the other distributions studied, simulation of that case

should be done; once again the infinite case will probably be a good guide

to the finite.
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APPENDIX 1

The calculation of the derivatives of a multivariate

normal probability integral

The derivative

(ft) „ ^ **%. ^vR"1v')/[(2rr)klRl ]l?dv1»..d»k*--t vt
"'1 !l'k

"til
plays a very important part in chapter 2.2 in the derivation of the n

moment of the distribution of x after k stages of screening. Since I have

not found an expression for this derivative in any standard text I will

give its derivation here.

Using the notation of chapter 2.2, particularly expressions 2.2.2 and

2.2.11 , it can be seen that

<5 _ (t)-n, V v * (t)-o , v T_A.(t)-n ,, V
I[D(t) ;R]= r 0(v ^ i ( ls_£, * * *, —, ^ m+im m,m

/1-C? ,j/1-0® . '/l"nLlmm Tin m—1m m+1m

T, (t)-o, vkv ' km m ^M\„
-;R )dv'

"ST"1 -p:
km

and hence that,

(A1)

Keeping this in mind and remembering, from elementary calculus, that the

derivative of a composite function,

u = u(x1(t),...,xn(t)),



is given by
du ? is (A2)

Mih-liXL- £ ?>lf-n(OtRl iii!1
dt i=1 r\(t) dt

dt i=1 Sx^t) dt '

we have, from A1 and A2,
* "

? VMQfi
i=i ^(tj

- J,0<Vt) )11 (T1 (t) |R V»r (A3)
In order to show the pattern that is developing, the second derivative

will also be found. Referring again to the terminology of 2.2, especially

2.2.14, we have

I>E(t)iJln) - f 0(v")t;vE);n°°)3v° (^m), (A4)
*Jt>

. ... th , th

where ^ (tjvn)is taken to be a k-2 element vector with element i equal to

(^™(t)-Oj_nv^)/ -'1-(r»"w) and with m and n elements missing. This time
we have

s5?ili^--0('';(t))i™(Tmn(t),kBn) (v»). ca5)
<(t)

Making vise of the previous method and equation A3, have,

I[1»(t)|R] « i^(\(t))li(Tli(t)jRi)/»1
■ Jl

r ^V^jR1) fji?+ v rfh.f+H/n r ?.*. vrviq../ —i,+ i=l^ i J«1 .ri,.v dt
vi aTa(t)
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+ • (A6)
3A J 1

Keeping in mind the fact that

Il1l2*,,ik["<nili2,**ik(t) _ 1

in other words the fact that the result is 1 when the number of superscripts

(the number of integrals left out) is equal to the order of the integral,

higher order derivatives can be calculated using extensions of the basic

notation. They are not used in this thesis and so will not be developed

here.
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FIG-URE F10. Dependence on tt of percent increase in rain due to the use of
historical information -for symmetrical selection from a normal distribution,

V = 5.
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P11, Dependence on V of percent increase in gain due to the use of
historical information for symmetrical selection from a normal distribution,

tt = 0.0625.
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FIGURE F12. Variation of value of P V required to achieve maximum gain with
rrV for symmetrical selection from a normal distribution.
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FIGURE F13. Maximum gain achieved by using P f 1 for symmetrical selection
from a normal distribution.
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FIGURE F15. The use of an ROC-curve to compare the gain with history to that
without history for 3-stage selection from a normal distribution (rr = 0.0625 ana

V = 1). The arrow marks x = 1.534cr, the boundary between the correct classes.
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TABLET1.Valuesofthevarianceof-™~~intheselectedpopulationwith 2-stageselectionfromanormaldistributionwithV=1andt=0.01.
*1: v.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 .0

1

1 .0

0.549

0.549

0.549

0.549

0.549

0.549

0.549

0.54°

0.549

0.549

0.549

0.7

0.473

0.477

0.483

0.490

0.497

0.505

0.513

0.521

0.530

0.539

0.549

0.5

0.407

0.413

0.422

0.432

0.445

0.458

0.473

0.490

0.507

0.527

0.549

0.33

0.340

0.345

0.353

0.365

0.380

0.397

0.418

0.443

0.472

0.507

0.549

0.22

0.291

0.293

0.299

0.309

0.323

0.341

0.363

0.393

O.43O

0.480

0.549

0.15

0.260

0.259

O.262

0.269

0.279

0.295

0.316

0.345

0.387

0.149

0.549

0.1

0.245

0.239

0.233

0.241

0.247

0.258

0.275

0.300

0.341

0.410

0.549

0.07

0.244

0.235

0.230

0.229

0.231

0.237

0.249

0.270

0.306

0.375

0.549

0.05

0.256

0.243

0.234

0.229

0.227

0.229

O.236

0.251

0.280

0.344

0.549

0.033

0.289

0.271

0.257

0.247

0.240

0.237

0.238

0.245

0.265

0.316

0.549

0.022

0.353

CO

CM

N~\

«

O

0.308

0.292

0.279

0.270

0.265

0.265

0.273

0.308

0.549

0.015

0.475

0.439

0.409

0.334

0.363

0.347

0.333

0.325

0.322

CO

N~\

•

0

0.549

0.01

1.000

0.913

0.845

0.787

0.738

0.695

0.658

J.625

0.595

0.569

0.549



TABLET2.ValuesofG/crwhenusinghistorical Valuesof
P1

P2

p.

=0.0001 .215

.046

.010

.046

.215

.010

.022

.215

.022

.215

.022

.022

.215

.010

.04-6

.046

.046

.046

.010

.215

.046

.100

,'010

.100

.010

.100

.100

.046

.010

.215

.010

.046

.215

vera

ges

=0.01 .464

.215

.100

.215

.464

.100

.147

.464

.147

.464

.147

.147

.464

.100

.215

.215

.215

.215

.100

.4-64

.215

.316

.Ic/0

.316

,100

.316

.516

,215

.100

.464

.100

.215

.464

verages

3.428

3.486

3.476

3.454-

3,334

3.314

3.404

3.238

5.229

3.377

3.482

3.502

3.24-7

3.400

3.442

3.489

3.427

3.425

3.279

3.077

3.073

3#2->6

-3.410

3.448

5.252

3.091

3,088

.266

3«349

3.376

3.281

3.096

3.096

351'

CO

0

«

3.315

1.735

1.to7

1.733

1.772

1.766

1 .742

1.829

1 .797

1 .778

1.776

1 ,819

1 .796

1.770

1.826

1 .820

1.847

1 .874

1 .862

1.5'2

1 .779

1 ,766

1.760

1.837

1.846

1.844

1 .807

1 .801

1.707

1 .300

1 .824-

1.706

1 .794

1 .002

1.780

1.806

1.797

informationin3-stageselectionfromanormaldistributic withV=5» Valuesof»°2***3)
(*151i1\{̂f'»̂\̂J1N,f1S1J1\«i51\/1,1,1\(" " 3;2^3(" 2V(244}(j'2^~23~ -veragfcS 3.477 3.406 3.351 3.480 3.395 3.513 3.220 3.433 3.238 3.410 3.243 3.379 1.724 1.760 1.818 1.783 1.799 1.874 1.829 1.826 1.858 1.806 1.843 1 .811

3.415 3.452 3.428 3•386 3.268 3.512 3.319 3.291 3.336 3.299 3.326 3.366
1 .691 1 .736 1.007 1.744 1.753 1.831 1 .835 1 .758 1.847 1.718 1.801 1.775

3.455 3.339 3.285 3.508 3.464 3.4-72 3.149 3.489 3.267 3.433 3.177 3.358 1.683 1.728 1.781 1.753 1.790 1.501 1.787 1.839 1.825 1.839 1.834 1.792

3.419 3.419 3.410 3.438 3.355
; .545 3.311 3.403 3.333 3.409 3.338 3.398 1.649 1.707 1.786 1.714 1 .742 1.828 1 .824 1 .773 1.856 1.771 1 .841 1.772

3.385 3.330 3.310 3.482 j•<\-yj 3.204 3.513 3.225 3.474 3.259 1.605 1.692 1 .761 1.678 1.727 1.310 1.736 1.801 1.824 1 .828 1 .841 1.759

3.365 3•364 3.383 3.44-3 3.404 3.542 3.298 3.470 3.325 3.471 5.338 3.400
1 .578 1.664 1.751 1 .650 1.696 1.791 1 .797 1 .763 1.038 1 .786 1.846 1.742

3.433 3.379 3.338 3.455 3.382 3.491 3-214 3.413 3.233 3.388 3.237 1.685 1.729 1.790 1 ."746 1.769 1 .841 1.805 1.801 1.833 1.787 1.821



TABLET3.Thepercentageincreaseingainduetotheuseofhistoricalinformationin2-stage agaagefaacaiselectionfromanormaldistributionwithrr=0.01andV=1.
V

°1 .0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 .0

0 2.7 6.0 10.1 15.4 22.3 32.1 46.9 72.8 133.6

0.7 0

1 .1 2.8 5.1 8.3 12.7 18.9 28.4 44.4 78.6 267.7

0.5 0 0.5 1.3 2.5 4.3 6.8 10.7 16.8 27.3 49.8 158.5

0.3 0
0.1 0.4 0.8 1.4 2.5 4.1 7.0 12.4 25.0 88.7

0.17 0 0 0.1 0.2 0.4 0.7 1.3 2.3 4.5 10.6 50.8

0.1

0.07

0.05

0.03

0.02

0.01

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.1

0

0

0

0

0

0.1

0.1

0

0

0

0

0.2

0.1

0

0

0

0

0.4

0.2

0.1

0

0

0

0.7

0.3

0.1

0

0

0

1.6

0.7

0.3

0.1

0

0

4.2

2.1

1 .0

0.3

0.1

0

29.8

20.0

13.1

6.0

1 .3

0

vO
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TABLE T4. The effect of interaction (represented by <"4) on the gain in

3-stage symmetrical selection from a n-. rmal distribution with 7=1.

eig .ting system

= 0.0625

= ov

P1 = P2

= 0.01

P. =

= 0.001

p.

p.

= p

p, =

n

(~T
inverse equal

VJ variance weight no history

0.00 1 .656 1 .579 1 .620
0.01 1 .653 1.577 1.616
0.03 1.647 1.573 1 .610
0.10 1 .628 1.560 1.587

= 1/3 0.30 1.578 1.524 1.528
1 .00 1 .446 1.417 1.377

=0.39685 3*00 1.214 1.204 1.130
10.00 0.862 O.c 60 0.784
30.00 0.557 0'.556 0.501

100.00 0.319 .319 0.286

0.00 2.440 a .228 2.425
0.01 2.433 2.226 2.417
0.03 2.420 .220 2.402
0.10 2.379 2.201 2.354

= 1/3 0.30 2.285 2.149 2.242
1 .00 2.060 1 .991 1 .985

=0.21544 3.00 1 .100 1 .679 1.604
10.00 1 .190 1.188 1 .102
30.00 0.764 0 • --j C\ 0.701

100.00 0.437 - .437 0.400

0 .v-0 3.226 2.674 3.223
0,01 3.214 2.870 3.209
0.03 3.193 2.063 3.184
0.10 3.130' 2.839 3.107

= 1/3 0.30 2.995 2.772 2.942
1 .00 2.682 2.366 2.592

= 0.1 3.00 2.192 2.157 2.085
10.00 1.323 1 .510 1 .428
30.00 0.974 0.973 0.907

100.00 0.557 0.557 0.517



TABLET5.ThevariationofG/ctwheninteraction(cr^.)ispresentin3-stageselectionfromanormal distributionwithV=1andtt=0.01(whenthereisnointeractionthemaximumgainis2.444/7and occursatapproximatelyP1=0.21,P2=0.19,P3=0.25,0^=0.45,=0.25and=0.3). Valuesof(0^,^,0/^)

p.p0p,(44»l)(14'-)(I'l'i)44»1)(i'l»l)(i'i'h(—>—>—)rii,2,ju123̂32jv3̂2;^33yKiZy^55yv3Z}l25ioj41010''^20520^
,=0.1 0.464

0.464

0.046

1

.932

2.029

2.111

2.083

2.133

2.138

2.091

2.088

1 .966

0.464

0.215

0.100

1

.945

2.044

2.137

2.108

2.179

2.193

2.179

2.174

2.116

0.215

0.464

0.100

1

.983

2.142

2.188

2.218

2.223

2.249

2.223

2.238

2.157

0.215

0.215

0.215

1

.990

2.150

2.201

2.232

2.246

2.279

2.270

2.286

2.244

0.100

0.464

0.215

1

.973

2.166

2.191

2.261

2.235

2.278

2.264

2.294

2.239

0.100

0.215

0.464

1

.971

2.155

2.185

2.255

2.235

2.282

2.278

2.307

2.276

2 =1.0 0.464

0.464

0.046

1.795

1 .872

1

.936

1.914

1.953

1 .956

1.920

1.918

1.823

0.464

0.215

0.100

1.805

1 .883

1

.955

1.933

1.987

1 .997

1.987

1.984

1.940

0.215

0.464

0.100

1.829

1 .953

1

.986

2.010

2.013

2.033

2.014

2.026

1.965

0.215

0.215

0.215

1 .828

1.952

1

.991

2.015

2.025

2.049

2.044

2.056

2.027

0.100

0.464

0.215

1.799

1.949

1

.966

2.021

2.000

2.033

2.023

2.046

2.001

0.100

0.215

0.464

1.764

1.918

1

.940

1.995

1.979

2.016

2.014

2.038

2.018

2 =10.0 0.464

0.464

0.046

1 .165

1 .186

1 .201

1.197

1

.206

1 .207

1

.198

1

.198

1

.174

0.464

0.215

0.100

1 .164

1.185

1 .202

1.198

1

.210

1.213

1

.211

1

.210

1

.201

0.215

0.464

0.100

1 .156

1 .190

1.197

1.204

1

.203

1 .209

1

.205

1

.208

1

.195

0.215

0.215

0.215

1.145

1.179

1 .188

1.195

1

.196

1 .202

1

.202

1

.205

1

.199

0.100

0.464

0.215

1 .113

1.156

1 .159

1.173

1

.167

1.175

1

.174

1

.179

1

.172

0.100

0.215

0.4-64

1 .081

1.125

1.129

1.143

1

.139

1.147

1

.147

1

.153

1

.146



TABLET6.Thevariationin&/.tforselectionfrom5membersoftheBoxandTiaofamilyvdthV=1and. -1.01(allpercentincreasesanddecreasesrelativeto2-stagesymmetricalgains). 1-stage2-stage3-stage Approx.G/natApprox.optimumP-"1at.-,—4oloS3
,,/maximumsymmetry...,v„,G/~ fp./_0clocationsymmetryin&/ atiff10 without "0a1W"1^=0.1)pine.̂?1

TargetFft=1PftG/<?P1=0.1)inc.It,%inc.phistory&/-inc.
-0.9999

1.715

1.354

0.2

1.454

1.518

1.3

0.5

0.04

1 .2

0.3

0.2

1.553

2.3

-0.5

2.189

1.520

0.3

1 .^53

1.851

0.5

0.5

0.08

0.2

0.8

»1—

1.926

4.1

U90

2.665

1 .885

0.5

1.977

2.350

0.1

0.6

0.08

0.0

1.0

"vO

2.439

3.8

0.5

3.093

2.329

0.7

2.355

2.833

0.2

0.6

0.08

0.0

1 .0

0

2.913

2.£

1 .0

3.471

2.775

1.0

2.775

3.263

0.3

0.6

0.08

0.0

1.0

0.1

3.328

2.0



TABLET7.Thevariationin(G-u)/cforselectionfromvariousnumbersofthebetadistributionwithV=1 andrr=0.01(allpercentincreasesanddecreasesrelativeto2-stagesymmetricalgains). r*—y'i*xocaiionwithout;v
pqTargetPq=1PqP^O.1)%inc.P^<f0inc.Pqhistorŷinc. 10302.9642.2030.62.2612.6860.20.60.0750.01.000.22.7703.1

10102.5231.7670.41.8852.1990.10.50.0850.01.000.22.2o64.0
1062.2381.5260.31.6681.9000.40.50.0750.10.850.21.9814.31031.7951.2120.21.3631.4781.20.40.0601.1Q.500.21.5384.130102.2271.4970.31.6401.8800.30.50.0750.10.950.21.9644.53031.6361.0890.21.2341.3271.30.40.0551.50.400.21.3814.150302.5111.7400.41.8552.1810.10.50.0850.01.000.22.2704.150102.1521.4330.31.5791.8020.40.50.0750.10.900.21.8834.55031.6011.0630.21.2071.2941.50.40.0601.60.400.21.3474.1



TABLET8.Thevariationin(G—u)/<7forselectionfromthesumoftwonormaldistributions(lowervariance alwaysequals1andlowermeanu.=0;allpercentincreasesanddecreasesrelativeto2-stngesymmetrical gains).
1-stage

2-stagg*

D

u

target

G-U
a

at

P=1o

Approx. maximum forPD"1 ;—H
' O(7

U—•lr,+•—g-Approx.optimum symmetry

3-stage

(^=0.5! A^=5/T?)

mc.n.
location 1

%loss
ingain without history

G—u
a

A

inc.

SectionA 011 SectionB 30.9900.1 4
5 SectionC 40.9990.1 0.99 0.9

SectionD 40.990.01
0*1

1 .0

SectionE 40.990.1 SectionF 40.990.1
0.2

1 .0 5.0

0.01 0.01 0.01 0.01 0.01 0.001 0.01 0.0625

2.6651.8850.51.977 2.979 3.705 4.449 2.805 3.705 2.711 3.705 3.792 3.705 3.705 3.705 4.212 3.705 2.156

2.2200.62.291 3.0100.953.011 3.9981.03.998 2.041 3.010 2.451

3.6972
986

0.6 0.95 0.5

3.010 3.1841
.0

5.624 3.010 1.557 3.766 3.010 1.669

2.077 3.011 2.464

0.9 0.95

2.992 3.011 3.184

1.0 0.95 0.3 0.4 0.95 1.0

3.624 3.011 1.884 3.842 3.011 1.669

2.3500.10.60.080.2 2.739 3.565 4.401 3.566 4.082 3.565

0.2 0.3 0.3

0.6 0.7 0.7

0.5 0.3

0.075 0.075 0.075

2.5050.10.60.075 3.5650.30.70.075 2.5590.80.40.055 0.20.70.075
3.5650.30.70.075 3.635OA0.70.075 3.6970.10.60.032 3.5650.30.70.075 2.5470.20.60.100 0.6 0.7

0.01 0.075

0.2 0.2 0.5 0.2 0.2 0.2 0.1 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.7

2.4393.8 2.820 3.619 4.413 2.591 3.619 2.589 3.619 3

e

3.0 1.5 0.3 3.4 1.5 1 .2

3.622 665

1.6 1.5 1.4 0.1 1.5

2.80710.2701 .619 4.137 3.619 1.900

1 .4 1.5 2.3

*In2-stagesymmetricalselectionPQ<1alwaysresultedinaloss



TABLET9.Thevariationingainforselectionfromadistributioninwhichx=0withprobabilityWand x=1withprobability1-W(allpercentincreasesanddecreasesrelativeto2-stagesymmetricalgains). 1-stage

W

V

Target

Gain at

P=1o

Approx. maximum forP<1
o

PGain

Gainat symmetry(^=0.5,
)

2-stage* Approx.optimum

3-stage

&

loss

Gain

/° inc.

location

ingain without

l1

1

of

A

historyGaininc.

SectionA 0.999

0.2

0.01

0.1

0.0452

0.8

0.0471

0.0613

0.0771

25.8

0.6

0.21

0

0.0676

10.3

0.990

1 .0

0.388

0.7

0.420

0.602

0.717

19.0

0.6

0.17

0

0.668

10.9

0.900

1 .0

0.979

0.2

1 .000

1 .000

1 .000

—

0

1 .000

—

SectionB 0.990

0.1

0.01

1.0

0.669

1.0

0.669

0.817

U.927

13.2

0.6

0.21

0

0.843

3.1

0.2

0.308

0.7

0.420

0.602

0.717

19.0

0.6

0.17

0

0.668

10.9

0.4

0.196

0.4

0.257

0.413

0.457

11.0

0.6

0.13

0.2

0.475

15.1

SectionC 0.990

0.2

0.0625

0.16

0.116

1 .0

0.116

0.127

0.137

7.6

0.6

0.35

0.3

0.129

1.8

0.2

0.01

1 .0

0.388

0.7

0 .420

0.602

0.717

19.0

0.6

0.17

0

0.668

10.9

0.2

0.001

1 .0

0.847

0.2

1 .000

1 .000

1.000

-

0

1 .000

-

1 .0

0.001

1 .0

0.154

0.1

O.669

0.975

0.975

0

0.5

0.032

0.1

1 .000

2.5

For2-stagesymmetricalselectionPq<1resultedinalossinallcasesstudiedexcepttt=0.001with V=1wherePq=0.2resultedinagainof2.5fo»



TABLE710.G/crfor2-stageselectionfrommainfinitepopulation withP-0.0625andV-1.0(infinitetarget=1.968).
F1:

1

TS

1

8

it

1

4

it

1
2

5
b

4

I

0.0 0.1 0.2 0.3 0.4 0-5 C.6 0.7 0.8 0.9
1 .0

0.000 0.598 0.808 0.949 1.056 1.140 1 .2Co 1 .266
1 .315 1.357 1 .391

0.753 .213 .355 .442 .501 .540 .563 .572 .563 .522 .391

1.006 1.583 1.490 1.550 1.584 1.601 1.604 1.592
1 .562 1.504 1 .391

1.141 1 .461 1.543 1.563 1.602 1.605 1.596 1.573 1.536 1.479 1.391

1.225 1.499 1.561 1.588 1.595 1.590 1.57- 1.547 1.510 1.459 1.391

1.282
1 .516 1.563 1.579 1.579 1.568 1.549 1.522 1.487 1.444 1.391

1.347 1.517 1.541 1.54-? 1.536 1.521 1.502 1.479 1.453 1.424 1.391

1.379 1.496 1.506 1.502 1.492 1.479 1.464 1.448 1.430 1.412 1.391

.392
.65 .467 .461 4-53 .444 .434 .424 •414 .4-03

1.595 1.429
1 .428 1.424 1 .420 1 .615 1.411 1.406 1.401 1.396

.3911.391
.391 .391 .391 .391 .391 .391 .391 .391 .391 .391 .391



'ABLET11.Cr,,/^forthefinitemodelwithV=1.0,k=2, (finitetarget=1.766).
16andN,=1

3

N

2'

10

12

14

16

withhistory
0.0 0.1 0.2 0.3 0.4

0.000 0.532 0.721 0.843 0.944

0.532 0.965 1.106 1.173 1.273

0.777 1.156 1.255 1.302 1.361

0.921 1.232 1.284 1.378 1.349*

1.015 1.309 1.343 1.384* 1.396*

1 .081 1.312 1.371 1.388* 1.392*

1.162 1.348 1.390 1.373* 1.377

1.207 1.312 1.324 1.335 1.334

1.232 1.296 1.209 1.306 1.283

1.244 1.304 1.304 1.263 1.270

1 .249 1.249 1.249 1.249 1 .249

0.5 0.6 0.7
O

►'O

0.9 1.0

1.020 1 .081 1.133 1.177 1.215 1.24-9

1.277 1.323 1.357 1.340 1.361 1.249

1.383* 1.384* 1.2+00* 1.377* 1.370 1.24-9

1.401* 1.397* 1.242* 1.358* 1.34-3 1.24-9

1.399* 1.395* 1.379* 1.341 1.269 1 .21,0

1.390* 1.377* 1.323 1.298 1 .24-2 1.249

1.380 1.332 1.321 1.296 1 .2°5 1.24-9

1 .340) 1.293 1.293 1.290 1.237 1 .22-9

1 .308 1 .273 i .295 1 .300 1.256 1 .249

1.217 1 .260 1.269 1 .22,3 1.251 1 .24-3

1.24) 1 .22,9 1.22:9 1 .24-9

IV

o

.24

withouthistory*'1 0.0

0.000

0.532

0.777

0.921

1.0151.081

0.1

0.532

0.994

1.159

1.234

1.2671.334

0.2

0.721

1.063

1.238

1.305

1.34-51.379

0.3

0.848

1.161

1.326**
1.358**
1.393**1.399

0.4

0.944

1.236

1.365**
1.377**
1.387**1.404

0.5

1.020

1.317

1.390**
1.370**
1.380**1.381

0.6

1.081

1.325

1.417**
1.402**
1.359**1.267

0.7

1.133

1.313

1.385**
1.338**
1.306**1.286

0.3

1.177

1.354

1.898

1.289

1.3131.220

0.9

1.215

1.317

1.257

1.234

1.0891.042

1.0

1.22,9

1.079

0.9"2

0.82,9

0.7600.680
1.162 1.341 1.365 1 .353 1.341 1.250 1.228 1.216 1.162 0.944 0.538

1.207 1.366 1.303 1.873 1.287 1.254 1.107 1.098 0.982 0.808 0.2.1-08

1.232 1.291 1.26 1.266 1.213 1.165 1.109 1.091 0.925 0.702, 0.283

1.244 1.232 1 .201 1.225 1.155 1.131 0.946 0.938 0.790 0.677 0.154

1.24-9 1.215 1.177 1.133 1.081 1 .020 0.944- 0.84-8 0.721 0.532 0.000

Allentrieshaveastandarderrorofapproximately±0.025to±0.030,exceptthatthemarginsareexact,
*indicatesastandarderrorofapproximately±0.004and

**indicatesastandarderrorofapproximately±0.012,.
***ThishalfofthetableistakenfromTable1inFinney's1966paper.



TABLET12,EstimatesofVar(&)/rrEfor2-stageselectionfroma finitepopulationwith=16,N,=1,and7=1.
123456810121416

°1 0.0

1 .000

0.717

0.629

0.593

0.579

0.575

0.582

0.597

0.614

O.631

0

e

ON

CD

0.1

0.936

0.590

0.550

0.550

0.602

0.541

0.510

0.493

0.529

0.616

0.648

0.2

O.883

0.588

0.579

0.549

0.603

0.596

0.586

O.566

0.583

0.375

0.648

0.3

0.837

0.520

0.545

0.548

0.566*

0.566*

0.556*

0.533

0.596

O.669

0.648

0.4

0.799

0.655

0.526

0.535*

0.545*

0.548*

0.626

0.576

0.648

0.581

0.648

0.5

0.765

0.575

0.547*

0.555*

0.551*

0.576*

0.679

0.591

0.615

0.6/1-6

0.648

0.6

0.736

O.608

0.556*

0.533*

0.565*

0.577*

0.628

0.571

0.660

0.718

0.648

0.7

0.710

0.605

0.563*

0.573*

0.555"

0.550

0.617

0.592

O.663

0.628

0.648

0.8

0.687

0.546

Q.55T

0.579*

0.522

0.551

0.569

0.570

0.655

0.685

0.648

0.9

0,666

0.580

0.560

0.611

0.553

0.614

0.562

0.663

O.656

0.622

0.648

1.0

0.648

0.648

0.648

0.648

0.648

0.6if8

0.648

0.648

O.648

0.648

0.648

Allentriesarefrom500runsexceptforthemarginswhichareexact,andtheitemsmarked
* whicharefromapproximately14,000runs.



TABLET13.Thevalueofhistoryfornear-symmetricalmultiple-stagefiniteselection withV=1andtt=0.0625.
N.=16(finitetarget=1.766)
Nj=64(finitetarget=1.911)

VCT

/binc. ingainVar(&)/crE

V

Percent

%inc.inc.due
ingainVar(G)/o-2tohistory

without

with

dueto

with

without

with

dueto

with

ininfini

k

history

history

history

history

history

history

history

history

case**

1

1.249

1 .249

-

0.640

1.351

1.351

-

0.173

-

2

1.392+0.004
1.401±0.004
0.6

0.555

1.51710.008*
1.554+0.008
2.4

0.143

1 .0

3

1.388+0.016*
1.44210.008
3.9

0.561

1.541+0.018*
1.59810.010
3.7

0.131

2.2

4

1.380+0.017*
1.45310.011
5.3

0.533

1.53910.019*
1.61010.011
4.6

0.122

3.4

5

1.354+0.017*
1.427+0.011
5.4

0.548

1.55410.020*
1.59210.011
2.5

0.139

6

1.385±0.017*
1.436+0.011
5.6

0.541

1.53210.018
1.62710.010
6.2

0.131

8

1.296±0.019*
1.426+0.011
2.2

0.550

1.49810.022*
1 .60610.010
7.2

0.125

10

1.50510.021*
1.60710.009
6.8

0.149

12

1.43810.021*
1 .581±0.010
9.9

0.115

20

1.33210.026*
1.54310.009
15.8

0.132

*Finney's(1966)results.
**Exactinfinitevaluesnotavailablefork>4.
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TABLE T14. Values of 10-stage finite gain for N.j = 100, n = 1 and V = 1.

G^/cr 2.246*0.011 2.274±0.011* 2.288+0.010 2.289+0.010 2.274+0.011

N1
N2

100 100 100 100 100

63 63 63 63 72

w3 40 40 40 40 47

N,
<+

N5
25

16

25

16

25

16

25

16

30

19

n6 10 10 10 10 12

N7 6 6 6 6 7

N8 4 4 4 4 4

N9
N10

3 3 3 3 3

2 2 2 2 2

n 1 1 1 1 1

^ 0.05 0.1
<y 0.0625 0.1

0'5 0.075 0.1
0.0875 0.1

^ 0.1 0.1
0.1 0.1

a7 0.1125 0.1
aQ 0.125 0.1
a9 0.1375 0.1
o'm 0.15 0.1

* this column corresponds to near'

0.15 0.17 0.17

0.1375 0.1475 0.1475

0.125 0.135 0.135

0.1125 0.1225 0.1225

0.1 0.1 0.1

0.1 0.1 0.1

0.0875 0.0875 0.0875

0.075 0.063 0.065
0.0625 0.0525 0.0525

0.05 0.02 0.02

symmetrical selection.



TABLET15.Valuesofthethirdandfourthcumulantsaftersimulated2-stageselection fromafinitepopulationwithN.=16,N,=1,andV=0.2(350runseachexceptthat *indicatesatleast1000runs)•
V

fV

1

2

3

4

5

6

8

10

12

14

16

1

thirdcumulant 0.0

0.1463

0.1269

0.1775

O.O842

0.0623

0.1069

0.0602

0.0118

0.0623

0.0722

-0.0298

0.1

-0.0316

0.0781

0.0890

0.0166

0.0572

0.0046

0.1634

0.0215

0.0731

0.0159

0.0360

0.2

0.0668

0.0763

0.0029

0.0655

0.0921

0.0495

0.1459

-0.0032

0.0488

0.0183

0.0880

0.3

0.0387

0.0861

0.1402*

0.0510*

0.0713*

0.0687

0.1171

0.1442

0.0204

0.0276

0.0273

0.4

0.0728

0.1002

0.0499*

0.0186*

0.0876*

0.0400

0.1016

0.1400

0.1275

0.0802

0.0916

0.5

0.0602

0.0688

0.0355*

0.0493*

0.0663*

0.0710

0.0646

0.1221

0.0986

0.0258

0.0401

0.6

0.0994

0.1002

0.0433*

O.O464*

0.0127*

0.0386

0.0818

0.1421

0.1295

0.0348

0.0397

0.7

0.1508

0.0432

0.0659

0.0098*

O.O640*

0.0321

0.0776

0.0249

0.0920

0.0719

0.0303

0.8

0.1472

0.0309

0.0301

0.0816

0.0785

0.0150

0.0437

0.0735

0.0624

0.0345

0.0259

0.9

0.0811

0.0793

0.0316

0.0850

0.1078

0.0449

0.0827

0.0381

0.1166

0.0450

0.0284

1.0

0.1883

0.0578

0.0122

0.0548

0.0413

0.0351

0.0659

0.0506

0.0989

0.0083

0.0651

fourthcumulant 0.0

-0.0067
0.1

-0.0206
0.2

-0.0411
0.3

-0.0978
0.4

0.0561
0.5

0.0274
0.6

O.O630
0.7

0.2318
0.8

0.0971
0.9

0.1276
1.0

0.2072

0.06640.0491 0.12940.0689 0.13590.1082 0.07170.1383* 0.0961-0.0085* 0.0032-0.0062* 0.0107-0.0071* -0.00930.0103 0.01010.0075 -0.07930.0185 0.1218—0.0460
0.0470-0.0534 0.0218-0.0520 -0.0270-0.0095 -0.0219*-0.0130* -0.0107*0.0911* 0.0197*0.0166* 0.0166*-0.0290* -0.0458*0.0098* 0.02300.0501 0.05490.1357 0.02900.0992
0.0631O.O489 0.01150.1934 0.00920.1062 -0.02440.1142 -0.00100.0370 -0.01880.0340 —0.06350.0446 -0.03290.0162 -0.0260-0.0626 -0.04510.0417 -0.0109-0.0378

-0.07150.0117 -0.09650.0311 -0.07300.0165 0.20890.0118 0.14750.0345 0.09140.0108 0.22360.0628 -0.03450.0639 -0.00850.0924 -0.01850.0308 0.00980.0304
0.06950.1022 -0.0032-0.0211 -0.03630.0251 0.04010.0296 0.03110.0086 -0.0439-O.O644 -0.0369-0.0726 0.0265-0.0728 0.0611-0.0327 -0.0155-0.0616 -0.0510-0.0347


