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Abstract 
 

Selection of pigs has focussed on the improvement of lean growth with simultaneous 

reduction in fat tissue, due to the high economic importance of these traits. As a 

consequence, a large number of quantitative trait loci (QTL) have been reported for 

these traits. In contrast, very few QTL have been reported for chemical body 

composition (protein and lipid). Knowledge about the deposition rates of these 

components is important to accurately predict the nutritional requirements of pigs and to 

determine selection objectives for optimal development of body tissues and feed intake 

capacity. Therefore, the principle aims of this thesis were to investigate the genomic 

regulation of physical and chemical body composition as well as feed intake, feed 

efficiency and meat quality in a commercial pig population. 

 

Data for all analyses were derived from a three generation full-sib design created by 

crossing Pietrain sires with a crossbred dam line. In total, 386 animals were genotyped 

for 96 molecular markers covering 11 chromosomes. Phenotypic data were available for 

315 F2 animals for carcass characteristics measured at slaughter weight, chemical body 

composition measured at different target weights throughout growth, feed intake 

measured throughout growth, and meat quality traits collected post-slaughter. 

 

Individual QTL analyses of several autosomes and chromosome X uncovered a large 

number of QTL in different regions of the genome for physical body composition traits 

as well as novel QTL for chemical body composition and deposition. Associations 

between QTL for chemical and physical body composition were also detected. The 

results highlighted that different stages of growth are under different genomic 

regulation. Further QTL were detected for feed intake and feed efficiency and interesting 

causative biological reasons for QTL of feed efficiency were derived in associations 

with QTL for body composition and growth. Epistatic QTL analyses were performed to 

investigate the contribution of interactions (epistasis) to the genomic regulation of 

physical and chemical body composition as well as growth and feed intake. Epistasis 
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was found to contribute to the entire growth period, however, different epistatic QTL 

pairs contributed to different stages of growth. Epistatic QTL pairs mostly accounted for 

higher proportions of the phenotypic variance than QTL detected from individual QTL 

analyses. A large number of QTL were identified, which could not be detected from 

individual QTL analyses, mainly because these QTL did not express individually 

significant additive or dominance effects and only expressed their effects through 

interactions with other QTL. Individual and epistatic QTL analyses uncovered numerous 

QTL as well as epistatic interactions influencing meat quality traits, including pH, meat 

colour and conductivity, traits which influence the quality of pork.  

 

The work of this thesis gives substantial insight into the genomic regulation of 

economically important traits of pigs. The research highlights that the genomic 

regulation of growth and body composition, feed intake and meat quality is complex, 

involving numerous QTL located in different regions of the genome, controlled partly by 

imprinting effects, as well as a complex network of interactions between QTL. The 

results obtained in this study can be used in pig breeding to optimise breeding 

programmes and for marker assisted selection.  
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Chapter 1 
 
 

General introduction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1.1 Genetic improvement of livestock 
 

Animal breeding has effectively changed the genomic composition of livestock species 

for centuries. Artificial selection of superior animals, based on their phenotypes, has 

brought about considerable progress in the genetic improvement of animals for 

economically important traits, such as growth, body composition and carcass 

characteristics. This genetic improvement has occurred without knowledge of the 

underlying genetic regulation of these traits (Andersson 2001; Georges 2001; Weller 

2001; Dekkers and Hospital 2002). Selection of superior animals as parents for 

subsequent generations has brought about an increase in the frequency of favourable 

alleles as well as allelic combinations (Georges 2001).  

 

One main aim in pig breeding programmes has been to increase lean content and reduce 

fatness, as fat is a tissue associated with high feed energy cost and a low commercial 

return (Quiniou et al. 1999; Nagamine et al. 2003). The latter is largely due to consumer 

demand for lean pork meat (de Koning et al. 1999). Intensive artificial selection has seen 

an increase in loin muscle area and a reduction in backfat thickness, particularly in the 

last 50 years, an indication that body composition traits have high genetic determination 

(Andersson 2001; Roehe et al. 2003).  

 

However, this genetic improvement of pigs for high lean tissue has had some 

undesirable side effects. One of the most important side effects is the undesirable 

reduction in feed intake capacity of pigs, which may limit further genetic improvement 

of growth. Feed intake capacity is an important trait, particularly in the early stages of 

growth, as reduced feed intake capacity may prevent pigs from reaching their true 

genetic potential for growth (Schulze et al. 2002). Furthermore, the change in deposition 

of protein and lipid during growth may be the underlying cause of change in feed intake 

capacity (Schulze et al. 2002). Another side effect is that selection for increased lean 

tissue has been unfavourably associated with meat eating quality characteristics and 

subsequent consumer acceptability (Schwab et al. 2006). Therefore, in many pig 
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breeding lines, it has been recognised that the optimum fat content may have been 

reached and further reduction in backfat should be avoided, as it is likely to decrease 

feed intake capacity further and produce undesirable effects on meat eating quality and 

subsequently lower consumer acceptability (Kanis and De Vries 1992; Roehe et al. 

2003). 

 

 

1.2 Genome research 
 
Qualitative traits, such as coat colour and eye colour, are controlled by a small number 

of genes, each with large effect. However, quantitative traits which are of economic 

interest to livestock breeders, such as growth and body composition, are more complex 

and controlled by only few genes of large effect but mostly by a large number of genes 

with small effect (Hayes and Goddard 2001). Such quantitative traits are complex in 

both their biochemical and physiological properties (Geldermann 1975; Andersson 

2001). 

 

Genome research in farm animals is of great interest for our understanding of the genetic 

control of economically important traits (Andersson 2001). At present, our knowledge of 

the genetic regulation of quantitative traits is very limited (Nagamine et al. 2003). This 

means there is little knowledge of the number of genes involved, the effect of alleles at 

the genes, or the mode of inheritance of the genes (Casas-Carrillo et al. 1997; Nagamine 

et al. 2003). As genome research proceeds in livestock, it will lead to a better 

understanding of genetic regulation and physiological functions of quantitative traits 

(Clamp et al. 1992; Andersson 2001; Dekkers and Hospital 2002).  

  

One of the main aims within genome research of livestock is to identify regions of the 

genome which are associated with traits of economic interest (Knott et al. 1998; Wang et 

al. 1998; Andersson 2001; Roehe et al. 2003). This information can be incorporated into 

breeding programmes through marker assisted selection in order to improve product 
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quality and production efficiency (Walling et al. 1998; Andersson 2001; Ovilo et al. 

2002). The application of genomic research results may change the genetic improvement 

programmes of livestock in the future (Kappes 1999; Georges 2001; Malek et al. 2001a). 

This is expected to increase the efficiency of production and the quality of the market 

product (Andersson 2001). 

 

 

1.3 Quantitative trait loci 
 

Considerable progress has been made within molecular genetics in the past decade 

which has allowed for the detection of genes or segments of DNA, known as 

quantitative trait loci (QTL), which contribute to variation in quantitative traits 

(Andersson 2001; Hayes and Goddard 2001). In order to detect these QTL, mapping 

methods have been developed (e.g. Lander and Botstein 1989; Haley et al. 1994; Knott 

and Haley 1998). Such methods of scanning the genome for QTL have been made 

possible through the development of genetic markers and linkage maps (Rohrer et al. 

1994; Archibald et al. 1995; Rohrer et al. 1996). These maps provide a powerful tool to 

detect regions of the genome associated with variation in quantitative traits (Wada et al. 

2000; Milan et al. 2002). These methods of QTL mapping have been implemented in 

different software packages such as QTL Express (Seaton et al. 2002), which adopts a 

least squares regression method of QTL mapping, and QxPak (Perez-Enciso and Misztal 

2004), which adopts a maximum likelihood method of QTL mapping. Both software 

packages have been used in the studies reported in this thesis. 

 

 

1.3.1 Interval mapping 
 

In this thesis, QTL analysis was carried out using the interval mapping approach of 

QTL mapping, also known as flanking-marker analysis (Lynch and Walsh, 1998). In 

this type of analysis the intervals between each pair of flanking markers are investigated 
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for evidence of QTL at each putative position within the marker-bracket. Interval 

mapping offers an increase in power and more precise estimates of QTL effects and 

position compared to single marker analysis (Lynch and Walsh, 1998). Interval 

mapping was originally implemented using a maximum likelihood approach (Lander 

and Botstein, 1989). Regression based approaches to interval mapping have also been 

developed and have been shown to provide very similar estimates of QTL location and 

effect to those obtained using a maximum likelihood approach (Haley and Knott, 1992). 

 

 

1.3.2 QTL Express 
 
The least squares regression method of QTL mapping implemented in QTL Express was 

developed for inbred lines by Haley and Knott (1992) and extended for outbred lines by 

Haley et al. (1994). The analysis of QTL Express proceeds in two stages. In the first 

stage the data on marker positions as well as marker genotypes are used to calculate the 

probabilities of individuals inheriting one or two grandpaternal or grandmaternal alleles 

at positions throughout the genome and the parent-of-origin probability of the alleles. 

These probabilities are combined into additive and dominance coefficients in order to 

observe the information contents of the markers along the chromosome as well as 

segregation distortion. In the second stage, at every putative QTL position, least squares 

is used to regress the phenotypic value for each individual onto their individually 

calculated additive and dominance coefficients which then provides estimates of 

additive and dominance for that position. This is then repeated at each defined position 

on the chromosome and the best estimate of the QTL effects and position are obtained 

(at the position in which the residual sum of squares is minimised) where the F statistic 

is highest and estimates for additive and dominance effects are calculated at this position 

(Seaton  et al. 2002). 
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1.3.3 QxPak 
 

In the software QxPak, QTL analysis is implemented using mixed model equations and 

a maximum likelihood approach in order to estimate the location and effects of QTL. 

The analysis of QxPak proceeds in two main stages. In the first stage the probabilities of 

alleles being identical-by-descent are calculated using a Monte Carlo Markov Chain 

algorithm. In the second stage, the mixed model equations are built and the QTL 

estimates are obtained using a maximum likelihood approach (Perez-Enciso and Misztal 

2004). Using maximum likelihood trial values are assigned to the unknown parameters 

and an iterative procedure is used to find the likelihood for each value. The trial values 

which maximise the likelihood are therefore the maximum likelihood estimates of the 

unknown parameters (Falconer and Mackay 1996). In the QxPak software the maximum 

likelihood estimates are obtained via the expectation-maximisation algorithm. At each 

putative position the likelihood ratio is computed and the estimates for the parameters 

are those where the likelihood is highest. In this analysis the significance is tested with a 

likelihood ratio test which consists of computing minus twice the difference in log-

likelihoods between the alternative and the null models (Perez-Enciso and Misztal 

2004). 

 

 

1.3.4 QTL analysis in pigs 
 

QTL mapping studies have successfully identified QTL across the pig genome for a 

wide variety of traits. Of all species of livestock, the pig is one of the species where 

large genomic information has been reported (Hayes and Goddard 2001). The pig has 

numerous advantages for QTL mapping in comparison to other species of livestock, as 

diverse breeds exist, three generation resource populations for studies can be produced 

in a relatively short time period, and the porcine linkage map is well developed 

(Archibald et al. 1995; Rohrer et al. 1996; Walling et al. 1998). The first genome-wide 

scan for QTL in pigs was carried out by Andersson et al. (1994) in order to detect QTL 
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for growth and fatness using an F2 population derived from crosses of the European 

Wild Boar and the domesticated Large White. This study was the first to adopt the least 

squares regression method of interval mapping for outbred lines developed by Haley et 

al. (1994). Following on from the study by Andersson et al. (1994), interest in this area 

has increased substantially, and now results from QTL mapping experiments in the pig 

are widely available in the literature. To date, most QTL experiments have been 

performed using crosses of domestic breeds with either, the Meishan, Wild Boar or 

Iberian breed (Andersson-Eklund et al. 1998; Rohrer and Keele 1998ab; Rohrer 2000; 

Ovilo et al. 2002). This is because the power to detect QTL is much greater in crosses 

between largely divergent populations than crosses of commercial populations 

(Andersson 2001; Nagamine et al. 2003; Nagamine et al. 2004). Using divergent 

populations, there is a higher likelihood of segregation of alleles with large effects, the 

information content is higher due to the high marker heterozygosity, and higher 

heterozygosity at the QTL increases the statistical power (Andersson-Eklund et al. 1998; 

Andersson 2001). Commercial populations comprise of elite outbred populations which 

are produced through intense selection on performances defined in the breeding goal 

such as muscularity and lean content (e.g. Pietrain) and reproductive performance (e.g. 

Large White) (Nezer et al. 2002; Nagamine et al. 2003). Therefore, QTL detected from 

diverse ‘non-commercial’ populations may not be segregating within commercial breeds 

because of their selection history (Andersson-Eklund et al. 1998; Nagamine et al. 2004). 

Additionally, QTL identified in crosses of these divergent breeds may not be directly 

utilised in pig breeding due to the poor performance of the exotic breeds for traits of 

commercial interest (Malek et al. 2001a). It is therefore important to detect QTL using 

commercial populations in order to exploit the merit of these QTL within pig breeding 

programmes. Only more recently, QTL studies have started to incorporate the use of 

commercial breeds (e.g. Grindflek et al. 2001; Malek et al. 2001ab; Evans et al. 2003; 

Thomsen et al. 2004; Karlskov-Mortensen et al. 2006). QTL detected within 

commercial populations can be utilised within practical pig breeding through marker 

assisted selection (Walling et al. 1998; Karlskov-Mortensen et al. 2006).  
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1.4 QTL for physical body composition 
 

The earliest studies in pigs have focused around the identification of QTL for growth 

and fatness characteristics (e.g. Andersson et al. 1994; Casas-Carrillo et al. 1997; 

Marklund et al. 1999; Bidanel et al. 2001; Malek et al. 2001a). This is because of the 

high economic importance of improving growth and reducing fatness but also because 

these traits have shown moderate to high heritablities and therefore it is more likely to 

detect QTL for these traits than for traits with low heritability. A large number of QTL 

have been identified across the genome for valuable carcass cuts such as weights of ham, 

loin, and shoulder cuts (e.g. Milan et al. 2002; Beeckmann et al. 2003a; Cepica et al. 

2003a; Geldermann et al. 2003; Lee et al. 2003a; Yue et al. 2003a). In addition, QTL 

have been identified for dissected lean and fat tissue characteristics (e.g. Milan et al. 

2002; Beeckmann et al. 2003ab; Cepica et al. 2003ab; Dragos-Wendrich et al. 2003a; 

Geldermann et al. 2003; Lee et al. 2003a; Yue et al. 2003a; Karlskov-Mortensen et al. 

2006). These studies have already provided substantial information about the genomic 

control of carcass characteristics.  

 

The most important factors that influence carcass value are the lean and fat tissue 

content. It is important to have detailed information regarding the lean composition of 

specific carcass cuts in order to determine primal cut value (Tholen et al. 2003). 

Different techniques have been adopted in the past for measurement of the lean content 

of carcasses. The most common method is to use an optical probe to measure fat and 

lean meat depths and use these measurements to calculate lean meat percentage. This 

method is invasive, likely to cause damage and may increase the risk of contamination. 

Examples of manual grading equipments are the Fat-O-Meter device, and the Hennessy 

Grading Probe. Due to the risks associated with these methods and advances in 

technology, there is interest in identifying and incorporating non-invasive methods for 

grading of carcasses, such as electrical conductivity and ultrasound. In addition, 

computerised tomography (CT) and nuclear magnetic resonance can be used in reference 

studies as a replacement for dissection (Busk et al. 1999; Meat and Livestock 
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Commission 2004). Norsvin International are currently utilising CT within pig breeding 

in order to maximise progress in carcass traits, growth and feed efficiency. At Norsvin, 

data provided using CT is being utilised in BLUP-based breeding values. Furthermore, 

the expectations are to widen the application of this technique to different traits, not just 

for the optimisation of lean content (Norsvin International 2008; www.norsvin.com).  

 

One of the new and most promising methods of carcass grading is the AutoFom system, 

which is already well established in leading pig producing countries such as Denmark, 

Germany and the USA. The AutoFom carcass grading system is a non-invasive and fast 

method of grading carcasses and adopts a fully automatic ultrasound scanning technique 

to produce a three-dimensional image of the carcass. This device consists of 16 

ultrasound transducers which are positioned in a U-shaped frame 25mm apart. 

Individual pigs are passed over this U-shaped cradle with optimal contact with the 

transducers. Carcasses do not need to be position in the centre of the U-shaped cradle as 

transducers can easily determine the midline and position of the carcass (see Figure 1.1). 

Transducers send out waves which facilitate the measurement of carcass traits such as 

percentage of lean meat and lean meat content of primal cuts ham, loin, neck and 

shoulder. This device takes measurements at every 5mm of the carcass and every 

transducer can provide up to 200 measurements each; therefore a maximum of 3200 

measurements of the carcass can be provided. These measurements make it possible to 

form a three-dimensional image of the carcass. The data are processed for orientation of 

the carcass and noise reduction. After calibration, predicted measures of both fat and 

muscle depth are recorded. From the measurements, 127 variables are sufficient to 

describe the composition of the carcass and are then used in a regression model to 

predict carcass grading information such as percentage of lean, fat thickness and weights 

of primal cuts (Brondum et al. 1998; Busk et al. 1999; Tholen et al. 2003; Meat and 

Livestock Commission 2004). This is a fast method of carcass grading with the ability to 

measure 1250 carcasses per hour (Busk et al. 1999). 
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Figure 1.1  
Representation of the AutoFom carcass grading system. Source: Busk et al. (1999). 
 

 

It has been reported that the performance of this system is better than that of existing 

systems (Brondum et al. 1998). There are a number of benefits associated with the 

AutoFom method of carcass grading. Busk et al. (1999) has shown that AutoFom 

measurements can be used to predict the lean meat percentage of the carcass with 

accuracy. This is important and can assist producers to optimise the physical 

performance of their pigs allowing for optimal production and breeding goals. The 

detailed information regarding individual carcass composition provided by AutoFom 

allows for monitoring of desirable characteristics such as carcass quality. As a result, 

breeding companies can assess the performance of genotypes more accurately and better 

selection strategies can be developed in order to optimise the desired traits (Meat and 

Livestock Commission 2004). Furthermore, the AutoFom device measures depths of fat 

and meat at the start of the slaughter process, thereby eliminating errors that can arise 

from differences in the slaughter procedure. Operator error is also removed as the 

system is fully automatic and requires minimal human intervention (Busk et al. 1999). 

 

It is important to incorporate phenotypic measurements taken from current carcass 

grading systems, such as the AutoFom device, into QTL mapping experiments as this 

information can be used directly to improve carcass quality. In the present thesis 
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phenotypic measurements of the carcass at slaughter weight were recorded by dissection 

as well as using the AutoFom device. 

 

 

1.5 QTL for chemical body composition 
 

In contrast to the numerous QTL that have been identified for physical body 

composition traits, there is much less information in the literature for QTL associated 

with chemical body composition traits, such as protein and lipid deposition, or for the 

change in deposition of these components during growth (Roehe et al. 2003). QTL 

studies in this area may provide insight into the physiological and biological regulation 

of chemical body composition, by determining QTL affecting protein and lipid accretion 

and also other traits affected by these identified QTL (Rohrer and Keele 1998a). It is 

likely that protein and lipid deposition are regulated by a large number of genes in 

different regions on the genome and regulated differently at different stages of growth 

(Roehe et al. 2003). Using the phenotypic data of this study, a previous analysis of four 

chromosomes has reported QTL for protein and lipid contents as well as accretion rates 

of these components (Mohrmann et al. 2006a). QTL in different regions of the genome 

were found to be associated with chemical body composition and deposition at different 

growth stages. This indicates that chemical body composition is regulated by different 

QTL throughout growth. 

  

Reports of QTL for chemical body composition traits are limited because of the 

difficulty of collecting data on protein, lipid and ash contents in live animals. Most 

studies have used data collected from serial slaughter trials where pigs are slaughtered at 

specific weights or ages (Gu et al. 1992; Quiniou and Noblet 1995; Schinckel et al. 

1996; Wagner et al. 1999). Data collected from serially slaughtered animals does not 

give an accurate representation of the change in deposition of protein and lipid 

throughout growth. Phenotypic data of chemical body composition in the present study 

were measured in live animals with the deuterium dilution technique, an in vivo method 
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of determining chemical body composition based on body water. This technique 

determined the empty body water content, from which the percentage of the fat-free 

substance of the empty body was estimated. Protein and ash contents of the empty body 

were estimated from the percentage of the fat-free substance. Lipid content was the 

difference of the fat-free content from 1.0. The accuracy of the deuterium dilution 

technique has been verified using chemical analysis of serially slaughtered animals 

(Landgraf et al. 2006a) and magnetic resonance imaging (Mohrmann et al. 2006b). For 

estimating these chemical body components, equations were developed by Langraf et al. 

(2006b). 

 

The identification of QTL associated with both physical and chemical body composition 

of the pig is of substantial economic interest. It is important to know rates of deposition 

of these components to accurately estimate nutritional requirements of the pig and to 

optimise efficiency of pig production (Quiniou and Noblet 1995; Schinckel and de 

Lange 1996; Emmans and Kyriazakis 1997; Wagner et al. 1999). Furthermore, it is 

important to optimise the efficiency of nutrient utilisation in order to decrease the cost of 

food per unit gain as feed is one of the largest cost factors involved in pig production 

(Quiniou and Noblet 1995; Quiniou et al. 1999). Knowledge of both physical and 

chemical body composition is important to optimise the entire production system, 

characterise the population of interest, and within breeding systems to optimise food 

intake in relation to the deposition of chemical body components.  

 
 
1.6 QTL for feed intake and feed efficiency 
 

Fewer QTL have been reported in the literature for feed intake and feed efficiency, 

compared to carcass traits. Feed efficiency has a very high economic value in pig 

production and it is therefore one of the most important traits in pig breeding 

programmes. The undesirable reduction in feed intake capacity of pigs due to intensive 

selection on lean content makes it necessary to improve this trait in those lines in order 
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to obtain further improvement in growth rate. Additionally, the optimisation of feed 

intake capacity can be used to improve feed efficiency and body composition of pigs 

indirectly. More recently, however, interest in these traits has increased. The first QTL 

identified for feed intake was on SSC1 close to the melanocortin-4 receptor gene 

(MC4R) (Kim et al. 2000). A mutation in this gene is associated with feed intake as well 

as fatness and growth. Following on from this, QTL for feed intake have been detected 

throughout the genome (Beeckmann et al. 2003a; Cepica et al. 2003abc; Dragos-

Wendrich et al. 2003a; Geldermann et al. 2003; Lee et al. 2003b; Pierzchala et al. 2003; 

Houston et al. 2005). At present, only a small number of QTL across the genome have 

been identified for food conversion ratio (Beeckmann et al. 2003c; Cepica et al. 2003b; 

Dragos-Wendrich et al. 2003b; Yue et al. 2003a; Houston et al. 2005). 

 
 
1.7 Biological growth models and body composition 
 

The importance of biological growth models is widely described in the literature (De 

Vries and Kanis 1992; Schinckel and de Lange 1996; Emmans and Kyriazakis 1997; 

Wagner et al. 1999; de Lange et al. 2003; Knap et al. 2003; Moughan 2003; Pomar et al. 

2003; van Milgen and Noblet 2003). Biological growth models are important for 

predicting the response to changes in management and nutrition, for evaluation of 

optimal slaughter weights and for the development of appropriate selection strategies. 

Using a biological growth model, De Vries and Kanis (1992) outlined the importance of 

optimising feed intake of pigs to improve feed efficiency. They developed a biological 

growth model to examine the economic values of feed intake and outlined the influence 

of feed intake on production costs. Sub optimal feed intake increases production costs as 

pigs do not reach their full potential for protein deposition and therefore have to grow 

over a longer period which increases management and husbandry costs. Feed intake 

above optimum results in increased deposition of lipid tissue, which is associated with 

high feeding costs and represents a tissue of low commercial value. The implementation 

of pig growth models into breeding schemes is limited due to the lack of economical and 
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accurate methods to obtain the information required by growth models (Schinckel and 

de Lange 1996; Schinckel et al. 1996; Wagner et al. 1999). The importance of acquiring 

accurate estimates of the animals’ potential for protein accretion for pig growth models 

has been outlined (Schinckel and de Lange 1996). Doeschl-Wilson et al. (2007) 

developed a computational method of obtaining these estimates for a population of pigs 

based on phenotypic information about growth and backfat measures in an F1 

population. This method was based on population values rather than individual values. 

 
The need to optimise the feed intake curve with respect to lean tissue growth is an 

important goal in genetic improvement programmes. At present, feed intake during the 

early stages of growth is generally not sufficient to meet the pigs’ potential for protein 

deposition, whereas feed intake at later stages of growth is often too high and 

consequently results in the increased deposition of lipid tissue. The feed intake curve 

needs to be adapted by aiming to increase feed intake at early stages of growth, at which 

pigs are most efficient at lean tissue growth and should be limited at the later stages of 

growth to prevent extensive fat accretion (Schulze et al. 2002). One of the most 

important goals in pig breeding in the future should therefore be to optimise feed intake 

in relation to protein and lipid deposition. It has been suggested that breeding strategies 

should place emphasis on an optimal feed intake capacity depending on protein 

deposition considering a minimum fat/protein ratio (Kanis and De Vries 1992). QTL for 

feed intake and chemical body composition could provide additional information for 

these types of models. 

 

 

1.8 QTL and imprinting effects 
 

Genomic imprinting is a relatively uncommon genomic feature of placental mammals. 

Epigenetic effects of imprinting causes parent-of-origin-specific effects in the offspring, 

where the expression of imprinted genes depend on the parental origin of that gene i.e. 

whether it is inherited maternally or paternally, rather than by the DNA sequence. 
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Parent-of-origin-specific effects arise from modifications of the parental genomes during 

gametogenesis (de Koning et al. 2002; Hunter 2007). Genomic imprinting is controlled 

by sequence elements called control regions. At these regions, there is DNA methylation 

on one of the two parental alleles. In the majority of cases, the DNA methylation occurs 

during female gametogenesis and only at some control regions during spermatogenesis. 

The methylation marks at control regions are maintained throughout development and 

mediates the allelic expression of imprinted genes (Reik and Walter 2001; Delaval and 

Feil 2004; Feil and Berger 2007). 

 

The phenomenon of imprinting had been largely overlooked because of the influence of 

Mendel’s laws of inheritance, which maintain that the phenotype of an individual is 

determined by the underlying alleles and independent of other parental or environmental 

aspects (Hunter 2007). The discovery of imprinting complicates the subject of 

inheritance. 

 

In pigs, a region at the telomeric end of the p arm of chromosome 2 has been well 

characterised to contain imprinting effects. A paternally expressed (maternal imprinting) 

QTL affecting muscle growth and fatness has been mapped to be insulin-like growth 

factor 2 (IGF2) locus (Jeon et al. 1999; Nezer et al. 1999). Van Laere et al. (2003) 

showed that this QTL is caused by a nucleotide substitution in intron 3. Although not as 

well characterised as the IGF2 locus, other regions of the pig genome have been found 

to harbour maternal and paternal imprinting effects (e.g. de Koning et al. 2001a; Milan 

et al. 2002; Quintanilla et al. 2002; Thomsen et al. 2004; Rohrer et al. 2005).  

 

In other species of livestock, reports of QTL with significant imprinting effects are 

limited in the literature. In chickens, QTL with imprinting effects have been identified 

for body weight and conformation score (Rowe et al. 2009), white meat percentage, 

growth and carcass traits (McElroy et al. 2006), as well as egg production traits body 

weight and feed intake (Tuiskula-Haavisto et al. 2004). To date relatively few 

imprinting effects have been identified in cattle and sheep. In cattle imprinting effects 
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have been implicated in milk production traits (Kuehn et al. 2007), mammalian growth 

and development (Zhang et al. 2004) and ovulation rate (Allan et al. 2008). In sheep 

imprinting has been implicated in ovulation rate (Davis et al. 2001) as well as growth 

and development (Feil et al. 1998; McLaren and Montgomery 1999). An interesting 

parent-of-origin effect has been identified in sheep at a mutation in the callipyge gene. 

This mutation has been well characterised to influence carcass composition, muscle 

development and meat quality. The extreme muscling phenotype is caused by a parent-

of-origin effect called polar overdominance, where the phenotype only occurs in 

heterozygous individuals where the mutant allele is inherited from the sire and a normal 

allele is inherited from the dam. However, animals that inherit two copies of the mutant 

allele do not show extreme muscling (Freking et al. 2002; Georges et al. 2003). In 

contrast to livestock species there is much more evidence of genes with imprinting 

effects in humans as well as mice which can be seen in the geneimprint 

(www.geneimprint.com/site/genes-by-species) and MRC Harwell databases 

(http://www.har.mrc.ac.uk/mousebook/?search=chrregion~). These databases provide 

information about the location and effect of imprinted genes in human and mice. 

 

It is important to consider imprinting within QTL mapping studies, as some QTL may 

remain undetected. Identifying imprinting effects will provide a greater understanding of 

the genetic regulation of traits and can be used for specific crossbreeding systems. For 

example, the large effect of the paternally expressed IGF2 mutation on leanness makes it 

desirable to be exploited within pig breeding programmes. At this mutation, the allele 

inherited from the dam will have no effect on the phenotype of the offspring, as only the 

allele inherited from the sire is expressed. The advantage of this gene is therefore at the 

terminal sire (Buys 2003). Within breeding, imprinting effects can be exploited to 

develop sire lines which have extreme lean tissue content. These sire lines can be 

crossed with dam lines with average lean tissue content, as leanness is negatively 

associated with reproduction, to produce offspring with optimal lean content (Roehe et 

al. 2003). 
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1.9 Challenges associated with QTL studies 
 

QTL studies have provided some information about the genomic regulation of 

economically important traits. However, most studies have not accounted for the unique 

features provided by the sex chromosome. Furthermore, epistasis (gene interactions) has 

been largely ignored in these studies. Gene interactions are likely to play an important 

role in the genomic regulation of quantitative traits and therefore it is important to 

account for epistasis within QTL studies. 

 
 
1.9.1 Sex-linked QTL 
 

The majority of QTL have been identified on autosomes with fewer QTL reported on the 

sex chromosomes. One reason for this may be that the genomic analysis of the sex 

chromosomes is more challenging in methodology and modelling. Because of this, much 

less attention has been paid to the analysis of pig chromosome X. 

 

The sex chromosomes behave differently to autosomes. Males and females of mammals 

differ in their sex chromosomes, where females carry two X chromosomes and males 

carry one X and one Y chromosome. Consequently, female cells contain twice as many 

copies of X chromosome genes in comparison to male cells (Alberts et al. 2002). The 

mammalian X chromosome is much larger than the Y chromosome and contains many 

more genes. In humans, the X chromosome contains around 1000 genes, whereas the Y 

contains less than 100 genes (Alberts et al. 2002; Graves et al. 2006; Heard and Disteche 

2006). There is limited homology between chromosome X and Y, except for a small 

region called the pseudoautosomal region (Alberts et al. 2002; Perez-Enciso et al. 2002). 

Mammals have developed a mechanism to equalise the dosage of the X chromosome 

gene products between sexes, called the dosage compensation phenomenon. This is 

achieved by X-inactivation, a process whereby one of the two X chromosomes in female 

somatic cells is inactivated. The choice of which X chromosome is inactivated, whether 
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it has been inherited from the maternal or paternal parent, appears to be random (Alberts 

et al. 2002; Heard and Disteche 2006). 

 

Due to the lack of software implementing appropriate methodology and models for the 

QTL analysis of the sex chromosomes, most QTL studies have analysed males and 

females separately, thus decreasing the power to detect QTL (e.g. Knott et al. 1998; de 

Koning et al. 2001a; Geldermann et al. 2003). This approach does not allow for 

simultaneous estimation of the sex chromosomes, does not consider the 

pseudoautosomal region and does not account for the dosage compensation 

phenomenon. 

 

Methodology and models which accounts for the special challenges associated with the 

analysis of sex chromosomes has been incorporated into the software QxPak (Perez-

Enciso et al. 2002; Perez-Enciso and Misztal 2004). This increases accuracy and power 

for detecting QTL on chromosome X in comparison to single sex analysis. This 

methodology, based on mixed model techniques, is much more flexible. It includes all 

pedigree information and uses the maximum likelihood method to estimate the QTL 

effects. The methodology accounts for the heterogeneity of sex chromosomes, considers 

the pseudoautosomal region and accounts for the dosage compensation phenomenon. 

 

 

1.9.2 Epistasis 
 

To date, most QTL mapping studies have focussed on identifying the individual effects 

of QTL (additive, dominance and imprinting) in the absence of interactions between 

QTL (epistasis). It is hence assumed that the genetic background at other loci have no 

impact on the phenotypic expression of QTL (Lander and Botstein 1989; Carlborg and 

Haley 2004). Quantitative traits are in fact controlled by many QTL as well as a 

complex network of interactions between QTL, as has been identified in studies of mice 

and chickens (e.g. Routman and Cheverud 1997; Brockmann et al. 2000; Carlborg et al. 
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2003; Carlborg et al. 2004; Yi et al. 2004a; Wolf et al. 2006; Yi et al. 2006; Le Rouzic 

et al. 2008). The effect of a genotype at a particular locus on phenotypic expression is 

dependent on the genetic background at other loci. Therefore the phenotype of a given 

genotype cannot be determined from the sum of its single locus effects (Phillips 1998). 

In the simplest case, epistasis can be described as the interaction between a pair of loci, 

where the effect of one locus on a particular genotype depends on the genotype at a 

second locus. However, the situation is probably more complex, such that the effect of 

one locus on a particular phenotype is likely to depend on the genotypes at several other 

loci. 

 

Epistasis may cause the individual QTL effects (additive and dominance) to decrease or 

even totally cancel each other. QTL displaying this type of epistasis are hard to find 

using standard mapping (Carlborg 2006). Individual loci can remain undetected and the 

estimated effects of the detected QTL could be severely biased if epistatic interactions 

are not properly accounted for. Inaccurate QTL estimates can lead to invalid 

interpretations of the importance of these identified QTL, and also to problems of 

confirmation of QTL effects in further crosses. When attempts are made to use the QTL, 

for example in marker assisted selection, this will result in lower response and economic 

gain (Carlborg 2006). Even though epistatic QTL are difficult to identify, the interest in 

investigating epistasis is increasing. By accounting for gene-gene interactions within 

QTL mapping studies we can improve the power to detect novel loci which mainly 

exhibit their actions through interactions with other loci and provide greater insight into 

the biology of the traits under study (Carlborg 2006). 

 

The degree to which epistasis contributes to variation in complex traits is not known at 

present, but results from studies in different organisms indicates that epistasis is likely to 

be an important component of the genetic variance (Flint et al. 2004). Carlborg et al. 

(2003) found that epistasis was particularly important for early growth in an intercross 

between Jungle Fowl and White Leghorn chickens. This is the stage of development 

where the foundation for growth is established by the development of internal organs. 
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They found epistasis to be less important for later growth, which is the stage which 

involves the main deposition of body tissues. In a cross between a White Leghorn line 

and a commercial broiler line, Carlborg et al. (2004) found that epistasis was an 

important contributor to the genetic variance of growth, with the largest effects on body 

weight at 6 weeks of age and growth between 3 and 6 weeks of age. Carlborg et al. 

(2004) also reported evidence that genetic regulation of early and late growth in the 

chicken differs by identifying a discrete set of interacting loci involved in early growth. 

In addition to chickens, a large number of studies in mice indicate an important role of 

epistasis in the genomic regulation of growth and body composition. Routman and 

Cheverud (1997) identified a contribution of epistasis to the genomic control of adult 

body weight in mice. Brockmann et al. (2000) identified epistatic effects for serum 

concentrations of leptin, insulin and Insulin-like growth factor 1, body weight, 

abdominal fat weight and muscle weight in mice. This study provided evidence of co-

coordinated regulation of body and muscle weight by the interaction of two pairs of loci, 

which may contribute to the high correlation between muscle and body weight. In the 

same species, epistasis has also been reported to play an important role in controlling 

obesity (Yi et al. 2004a). In their study, the authors found that different groups of traits 

were influenced by different genetic architecture. Moreover, there are reports of epistatic 

QTL in mice for abdominal fat, body weight, kidney weight, spleen weight (Carlborg et 

al. 2005) as well as organ weights and limb length traits (Wolf et al. 2006). Yi et al. 

(2006) also reported that epistasis influenced fatness and organ weights in mice. In terms 

of growth traits, Yi et al. (2006) reported that epistasis had a more pronounced effect for 

body weight at later stages of growth in mice, which is a contrast to the results of 

Carlborg et al. (2003; 2004) in chickens. However, Ishikawa et al. (2005) identified that 

epistasis was more important in early stages of growth in mice. In other species evidence 

of epistatic QTL are extremely limited. In cattle, Barendse et al. (2007) investigated the 

importance of epistasis between putative causative mutations at the Calpain 1 gene and 

the Calpastatin gene influencing meat tenderness. These genes were chosen as their role 

in the post mortem tenderization of meat has been well characterised. From this study, 

significant epistasis was identified between SNPs at these genes. Further epistatic 
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interactions influencing fertility traits in cattle have been reported by Khatib et al. 

(2009) between genes involved in the POU1F1 pathway. In sheep there are currently no 

reports of epistatic QTL influencing economically important traits. At present, there are 

only a few reports of epistatic QTL in pigs. Epistatic effects have been reported for 

reproduction traits (Bidanel 1993; Rodriguez et al. 2005; Noguera et al. 2006), coat 

colour (Hirooka et al. 2002), meat quality traits (meat colour and intramuscular fat 

content) (Ovilo et al. 2002; Szyda et al. 2006) and muscle fibre traits (Estelle et al. 

2008). No epistatic QTL have been reported in pigs for body composition, such as entire 

carcass cuts, lean tissue and fat tissue characteristics or growth traits. 

 

 

1.10 Genomic effects on meat quality 
 

Intense selection for increased productivity has brought about an undesirable reduction 

in the meat eating quality characteristics and subsequent consumer acceptability 

(Schwab et al. 2006). Meat quality can be an important factor in the economics of pig 

production as the quality and consumer acceptability influences the price of the market 

product. Therefore, breeding goals should incorporate selection for meat quality as well 

as productivity (van Wijk et al. 2005).  

 

The quality of meat is influenced by a number of characteristics. Consumer satisfaction 

is influenced by traits associated with eating quality, such as texture, tenderness, flavour 

and juiciness as well as traits associated with appearance including colour, leanness, 

fatness, and amount of intramuscular fat tissue (Sellier 1998; Kanis et al. 2005). 

Intramuscular fat content has a favourable influence on the colour, flavour, tenderness 

and juiciness of the meat, however substantial levels can have detrimental effects on the 

aesthetic value and thus detrimental to consumer acceptability (de Koning et al. 1999; 

Ciobanu et al. 2004). In order to preserve meat quality the possibility of reducing 

subcutaneous fat without reducing, or more desirably, with an increase in intramuscular 

fat content has been suggested (Roehe et al. 2003). More technological aspects of meat 
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quality include properties such as water-holding capacity (e.g. drip loss during storage), 

intensity and homogeneity of colour, firmness, shelf-life, cooking loss and various 

processing yields (Sellier 1998; Otto et al. 2004; Kanis et al. 2005; Otto et al. 2006). 

Commonly used indicators of meat quality include measurements of pH at 45-60 

minutes post-mortem as well as 24 hours after slaughter, conductivity, reflectance values 

and meat colour scores.  

 

The unfavourable associations of breeding for leanness with meat eating quality has 

sparked an interest in understanding the genetic regulation of meat quality (Karlsson et 

al. 1993; De Vries et al. 1994; Knapp et al. 1997; Oksbjerg et al. 2000; Kanis et al. 

2005; Aaslyng et al. 2007). Because of the economic importance of these traits, reports 

of QTL for meat quality traits are increasing (de Koning et al. 2001b; Grindflek et al. 

2001; Ovilo et al. 2002; Nii et al. 2005; Vidal et al. 2005), and are likely to gain further 

attention in the near future (Otto et al. 2007a). 

 

 

1.11 Value and benefit of genome research 
 

Genome research in livestock has already provided some information which has had 

important practical implications. For example, the diagnostic test for the ryanodine 

receptor gene (RYR1) and rendement napole (RN) mutations have been widely used in 

practical pig breeding (Andersson 2001). Information obtained from QTL mapping 

studies may have additional input in breeding programmes by marker assisted selection, 

using superior genomic regions affecting traits of economic importance. At present, 

however, marker assisted selection has not had the success that was expected. The main 

focus of this research is on the basic genomic regulation of economically important traits 

in pig breeding. Information about QTL and epistatic interactions between QTL can be 

used to build up an understanding of the genomic networks influencing a biological 

system (Carlborg and Haley 2004) which can be used for breeding purposes. Pig 

breeding is driven by improvement in technologies and genetic selection based on 
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complex traits is becoming increasingly important (Lander and Kruglyak 1995; Knap et 

al. 2001). QTL identified for physical body composition traits can be used directly to 

improve carcass quality traits for the market of interest. As a result, there is potential to 

breed for different market demands at lower cost. QTL determined for chemical body 

composition traits may be used to optimise protein and lipid deposition as well as feed 

intake with the aim to decrease the amount (cost) of food per gain. This is economically 

beneficial, as food is the largest cost factor associated with pig production. It is 

important to determine the association between QTL influencing both physical and 

chemical body composition traits as well as meat quality in order to exploit the merit of 

all QTL effects efficiently thereby avoiding detrimental effects in a trait through 

selection for another. Therefore, knowledge of associations between QTL can be used in 

breeding programmes to maximise the overall improvement of all economically 

important traits.  

 
There is a requirement for further QTL studies, in order to increase information relating 

to the change in both physical and chemical body composition during growth. It is 

important to consider carcass information obtained from carcass grading systems, like 

the AutoFom system, within genome research as the information obtained from such 

studies can be directly used to improve the grading of carcasses. Furthermore, it is of 

great benefit to use commercial populations within QTL mapping studies in order to 

determine whether QTL detected in crossings of exotic and commercial breeds are also 

segregating in crossings of purely commercial breeds. The advantage of the use of the 

latter crossbred resource family is that information about QTL identified in commercial 

populations can be directly used in breeding programmes. Once the QTL is identified it 

is also important to identify the gene which is responsible for the effect (Rohrer 2000). 

The number of genes identified in livestock is still small compared to that of the human. 

However, several genes have already been identified that directly or indirectly affect 

body composition such as the RYR1 gene, also known as the halothane gene, which is 

responsible for malignant hyperthermia and porcine stress syndrome and is associated 

with increased lean content (Fujii et al. 1991), the porcine MC4R gene which is 
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associated with fatness, growth, and feed intake (Kim et al. 2000), and the RN mutation 

which is associated with increased glycogen content in the muscle of live animals, which 

results in substantial post-mortem degradation of glycogen and thus detrimental effects 

on pork quality such as pH, water holding capacity, colour and processing yield 

(Andersson 2001). It is not essential to identify genes in order to utilise QTL within 

livestock breeding programmes; however, it is much more efficient to use information of 

genes and mutations explaining substantial variation of economically important traits for 

selection. With decrease in cost of genotyping, it is likely that marker analysis will 

become a large scale industry (Kappes 1999; Andersson 2001). The development of 

large collections of single nucleotide polymorphisms (SNPs) is expected to more 

efficiently facilitate the identification of causative mutations underlying QTL. These can 

be identified using genome-wide association analyses with dense single SNP marker 

chips. This involves searching the genome for SNPs which are associated with a 

particular trait (Andersson 2008). Furthermore, it is important to gain further 

information about the interactions between QTL (epistatic effects) in order to gain a 

more accurate understanding of the genetic regulation of important traits. Furthermore, 

high density SNP chips can be used for genomic selection (Meuwissen et al. 2001; 

Goddard and Hayes 2007). 
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1.12 Thesis outline 
 

The overall aim of this study is to provide a better understanding of the genomic 

regulation of growth and body composition of pigs as well as feed intake, feed efficiency 

and meat quality traits in a commercial population. The objectives of the work presented 

in this thesis are: 

   

• to investigate QTL for chemical body composition and the associations with 

QTL for body tissues, growth and feed intake traits, 

• to investigate the role of chromosome X in the genomic regulation of growth and 

body composition as well as feed intake and feed efficiency using appropriate 

methodology of QTL mapping for this chromosome, 

• to explore the contribution of epistasis to the genomic regulation of physical and 

chemical body composition traits as well as feed intake and feed efficiency, 

• to investigate the genomic effects on meat quality traits including the 

contribution of epistasis. 

 

 

1.13 Project data 
 
The work of this thesis is based on data from a three generation full-sib design outlined 

in Figure 1.2. In the founder population (F0), seven unrelated Pietrain sires were mated 

to 16 sows from a crossbred dam line (Leicoma × (Landrace × Large White)) to produce 

160 animals of the F1 generation. Of these animals, 116 animals were used to test the 

methodologies of measuring chemical body composition in live animals. From the F1 

generation 8 boars were mated to 40 sows, whilst avoiding inbreeding, to produce two 

litters of the F2 generation comprising 315 animals in total. 
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7 Pietrain Boars 16 sows from 
crossbred dam line 

160 Piglets 

116 animals tested 
on station (1. Batch)

8 Boars mated to 
40 Sows 

F1 

F0 

147 animals 
(3. Batch) 

168 animals 
(2. Batch) 

F2 

 
 
Figure 1.2  
Diagram representing the three generation full-sib design of this project. 

 

 

Phenotypic data was available for physical body composition traits, including weights of 

valuable carcass cuts, lean tissue and fat tissue, collected from pigs slaughtered in a 

commercial abattoir at 140 kg body weight. These traits were collected by two methods, 

the AutoFom carcass grading system and by dissection of the right side of the carcass. 

This information allowed for the investigation into the genomic regulation of the lean 

and fat tissue composition of the carcass. In order to gain an accurate representation of 

the change in body composition throughout growth, phenotypic information of chemical 

body composition (protein and lipid content) was collected in live animals using the 

deuterium dilution technique at target body weights of 30, 60, 90, 120 and 140 kg. 

Information about the accretion rates of protein and lipid tissue were available for the 
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growth stages 30-60, 60-90, 90-120 and 120-140 kg body weights. Using this data, the 

genomic regulation of chemical body composition at different stages of growth and 

associations with physical body composition traits were investigated. Feed intake 

capacity and particularly feed efficiency traits are of great economic importance. 

Phenotypic measurements were available in this study for these traits measured at 

different growth stages (60-90, 90-120 and 120-140 kg body weights). Moreover, 

phenotypic measurements were available for a number of traits associated with meat 

quality collected at different times post-slaughter. 

 

The data were recorded within the research projects of Landgraf (2004) and Mohrmann 

(2005) at the official performance test station L.P.A. Achterwehr 

(Landwirtschaftskammer Schleswig-Holstein, Germany) in co-operation with the 

University of Kiel, Germany. The genotyping was carried out in two batches by Dr. Van 

Haeringen Laboratorium B.V., The Netherlands in 2003 and 2004. In the first batch 

chromosomes SSC1, SSC6, SSC7 and SSC13 were genotyped and in the second batch 

chromosomes SSC2, SSC4, SSC8, SSC9, SSC10, SSC14, SSCX were genotyped. 

 

The first stage of individual QTL analysis using the phenotypic data of the present study 

was carried out by Mohrmann et al. (2006) using genotypic data of four chromosomes, 

including SSC1, SSC6, SSC7 and SSC13. Individual QTL analysis of the present study 

considered seven different chromosomes, including SSC2, SSC4, SSC8, SSC9, SSC10, 

SSC14, SSCX in Chapters 2 and 3. Genotypic information of all eleven chromosomes 

was combined in the epistatic QTL analysis of Chapters 4 and 5 and the meat quality 

analysis of Chapter 6. 
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Chapter 2 
 

 

Quantitative trait loci for chemical body composition 
traits in pigs and their positional associations with body 

tissues, growth and feed intake 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



Abstract 
 

In this study, quantitative trait loci (QTL) for chemical and physical body composition, 

growth and feed intake in pigs were identified in a three generation full-sib population, 

developed by crossing Pietrain sires with a commercial dam line. Phenotypic data from 

315 F2 animals were available for protein and lipid deposition measured in live animals 

by the deuterium dilution technique at 30, 60, 90, 120 and 140 kg body weight. At 140 

kg body weight, carcass characteristics were measured by the AutoFOM grading system 

and after dissection. Three hundred and eighty six animals from 49 families were 

genotyped for 51 molecular markers covering chromosomes SSC2, SSC4, SSC8, SSC9, 

SSC10, and SSC14. Novel QTL for protein (lipid) content at 60 kg body weight and 

protein (lipid) accretion from 120 to 140 kg were detected on SSC9 near several 

previously detected QTL for lean and fat tissue in neck, shoulder and ham cuts. Another 

QTL for lipid accretion was found on SSC8, closely associated with a QTL for 

intramuscular fat content. QTL for daily feed intake were detected on SSC2 and SSC10. 

The favourable allele of a QTL for food conversion ratio (FCR) on SSC2 was associated 

with alleles for increased lean tissue and decreased fat tissue. Because no QTL for 

growth rate were found in the region, the QTL for FCR is most likely due to change in 

body composition. These QTL provide insight into the genomic regulation of chemical 

or physical body composition and its association with feed intake, feed efficiency and 

growth.  
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2.1 Introduction 
 

At present, a large number of quantitative trait loci (QTL) in pigs have been detected for 

physical body composition, which are associated with lean and fat tissue characteristics 

(e.g. Bidanel et al. 2001; Milan et al. 2002; Geldermann et al. 2003). In contrast, QTL 

associated with protein and lipid deposition and their change during growth have only 

been reported in one study analysing chromosomes 1, 6, 7 and 13 (Mohrmann et al. 

2006a). Knowledge of the deposition rates of chemical components is necessary to 

accurately estimate nutritional requirements of pigs during growth, to determine 

selection objectives for optimal development of body tissue growth and feed intake 

capacity and more generally, to provide parameters of a pig growth model that can be 

used to improve the efficiency of the entire pig production system (e.g. Schinckel and de 

Lange 1996; de Lange et al. 2003; Knap et al. 2003). Optimising the efficiency of 

nutrient utilisation is important to decrease the cost of food per unit gain, as feed is one 

of the largest cost factors involved in pig production (Quiniou and Noblet 1995; Quiniou 

et al. 1999). Additionally, the market price of the final product is based on carcass 

quality. Therefore, the association between chemical and physical body composition is 

of great economic interest.  

 

Most QTL studies have been based on crosses of domestic breeds with the Meishan, 

Wild Boar or Iberian breed (e.g. Andersson-Eklund et al. 1998; Rohrer and Keele 

1998ab; Rohrer 2000). Favourable QTL alleles found in these less-improved breeds 

cannot be directly exploited within pig breeding due to the poor performance of these 

exotic breeds for traits of commercial interest. Alternatively, there is potential to 

integrate QTL identified in commercial populations into existing pig breeding 

programmes.  

 

Information in the literature indicates that pig chromosomes 2, 4, 8, 9, 10 and 14 are 

associated with lean and fat tissue growth (e.g. Andersson et al. 1994; Malek et al. 

2001ab; Geldermann et al. 2003). These chromosomes were chosen in this study for 
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QTL analysis of physical and chemical body composition as well as feed intake, food 

conversion ratio (FCR) and growth rate in commercial breeds. 

 

 

2.2 Materials and methods 
 

2.2.1 Design and data  

 

QTL mapping was based on data from a three generation full-sib design. The resource 

family was created by mating seven unrelated Pietrain grandsires to 16 unrelated 

grandams from a crossbred dam line (Leicoma × (Landrace × Large White)). Pietrain 

sires were all heterozygous (Nn) at the ryanodine receptor 1 (RYR1) locus. Eight F1 

boars and 40 F1 sows were mated to produce 315 F2 pigs of 49 families across two 

litters. Of these F2 animals, 48 gilts and 46 barrows were housed individually in straw-

bedded pens. These pigs were fed manually, and feed consumption was recorded 

weekly. The remaining 117 gilts and 104 barrows were housed in straw-bedded pens in 

groups of up to 15 pigs of both sexes. Food was supplied to these pigs by an electronic 

feeding station (ACEMA 48), which recorded feed consumption at each visit. Pigs were 

provided with one of three pelleted diets containing 13.8 MJ ME/kg and 1.2% lysine, 

13.8 MJ ME/kg and 1.1% lysine, or 13.4 MJ ME/kg and 1.0% lysine for weight ranges 

30-60, 60-90 and 90-140 kg body weight, respectively. Pigs were able to reach maximal 

protein deposition by providing ad libitum access to diets, which were formulated 

slightly above requirement. For a more detailed description of the management of this 

project see Landgraf et al. (2006ab) and Mohrmann et al. (2006ab). 

 

 

 

 

 

 

 31



2.2.2 Physical body composition 

 

Phenotypic measurements of physical body composition were collected from pigs 

slaughtered in a commercial abattoir at 140 kg body weight. Measurements of valuable 

carcass cuts were obtained using the AutoFOM device, which uses an automatic 

ultrasound scanning technique to produce a three-dimensional image of the pig 

(Brondum et al. 1998). Using this device, measurements were obtained for average fat 

thickness, belly weight, lean content, lean content of the belly and weights of entire and 

trimmed shoulder, loin and ham without bones. The right carcass side of each pig was 

then dissected into primal carcass cuts neck, shoulder, loin, ham and belly weights. The 

former four carcass cuts were further dissected into lean and fat tissue. Moreover, 

weights of jowl, thick rib, flank, front as well as hind hock, tail and claw were recorded. 

Additional measurements were obtained from the cold left carcass side including carcass 

length; sidefat thickness; loin eye area, fat area and thinnest fat measure (fat degree B) at 

the 13th/14th rib interface; fat content and area of the belly. Additional information about 

the dissection of carcasses is presented by Landgraf et al. (2006b). 

 

  

2.2.3 Chemical body composition 

 
Protein, lipid and ash content of the empty body was determined at target body weights 

of 30, 60, 90, 120 and 140 kg using deuterium dilution technique, an in vivo method of 

determining chemical body composition based on body water. The accuracy of this 

technique has been verified in previous studies using magnetic resonance imaging on 

live animals (Mohrmann et al. 2006b) and chemical analysis of serially slaughtered 

animals (Landgraf et al. 2006a). The deuterium dilution method determined the empty 

body water content, from which the percentage of fat-free substance of the empty body 

was estimated. Protein and ash content of the empty body were estimated based on the 

percentage of fat-free substance. Lipid content was the deviation of the fat-free content 

from one. The equations for estimating these chemical components were developed in 
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the study of Landgraf et al. (2006a) using the same data that was analysed here. 

Accretion rates of protein and lipid were calculated as the difference between lipid or 

protein composition at two consecutive target weights divided by days of growth 

between target weights. Protein content of loin and intramuscular fat content (IMF) were 

measured in the musculus longissimus thoracis et lumborum using near-infrared 

reflectance spectroscopy. Mean values and standard deviations of traits analysed in the 

present study are shown in Tables 2.1 and 2.2. 
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Table 2.1 Means and standard deviations (SD) of carcass characteristics measured on pigs of 
the F2 generation 

Trait Mean SD Number of 
Records 

AutoFOM traits 
AF average fat thickness (mm) 22.295 4.989 313 
AF entire shoulder weight (kg) 6.176 0.406 313 
AF shoulder lean meat weight (kg) 4.577 0.408 313 
AF entire loin weight (kg) 6.265 0.396 313 
AF loin lean meat weight (kg) 3.764 0.352 313 
AF entire ham weight (kg) 13.573 0.814 313 
AF ham lean meat weight (kg) 9.511 1.052 313 
AF entire belly weight (kg) 9.168 0.548 313 
AF lean content (%) 50.509 6.403 313 
AF lean content of belly (%) 43.741 7.891 313 
Carcass characteristics – dissected carcass cuts 
Entire neck weight (kg) 5.316 0.505 306 
Neck weight without external fat (kg) 4.160 0.430 306 
External neck fat weight (kg) 1.156 0.285 306 
Entire shoulder weight (kg) 8.452 0.564 307 
Shoulder weight without external fat (kg) 5.910 0.584 307 
External shoulder fat weight (kg) 1.403 0.261 307 
Entire loin weight (kg) 9.163 0.730 308 
Loin weight without external fat (kg) 6.650 0.624 308 
External loin fat weight (kg) 2.513 0.645 308 
Entire ham weight (kg) 16.908 0.997 310 
Ham weight without external fat (kg) 11.568 1.087 310 
External ham fat weight (kg) 2.566 0.493 310 
Belly weight (kg) 6.461 0.655 308 
Jowl weight (kg) 1.914 0.284 306 
Thick rib (kg) 1.441 0.217 307 
Flank weight (kg) 1.789 0.407 308 
Front hock weight (kg) 1.139 0.189 307 
Hind hock weight (kg) 1.430 0.141 310 
Tail weight (kg) 0.429 0.134 310 
Hind claw (kg) 0.914 0.122 310 
Carcass characteristics – standard performance test 
Carcass length (cm) 107.947 49.296 310 
Sidefat thickness1 (cm) 3.847 0.866 315 
Thinnest fat measure1 (cm) 1.725 0.552 314 
Loin eye area M.l.t.l.1,2 (cm2) 54.160 6.767 314 
Fat area M.l.t.l.1,2 (cm2) 24.514 5.884 314 
Fat content of belly (%) 53.508 8.272 306 
Fat area of belly (cm2) 23.789 6.782 306 

1collected at the 13th/14th rib interface.  
2measured on musculus longissimus thoracis et lumborum. 
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Table 2.2 Means and standard deviations (SD) of chemical body composition, accretion rates, 
daily gain, daily feed intake and food conversion ratio measured on pigs of the F2 generation 

Trait Mean SD Number of 
Records 

Chemical body composition 
Intramuscular fat content (%) 1.343 0.542 313 
Protein content of loin (%) 24.215 2.066 313 
Protein content of FFS, 30 kg (%) 18.656 0.524 299 
Protein content of FFS, 60 kg (%) 20.115 0.419 305 
Protein content of FFS, 90 kg (%) 21.209 0.426 311 
Protein content of FFS, 120 kg (%) 21.960 0.506 302 
Protein content of FFS, 140 kg (%) 22.359 0.543 302 
Protein content of empty body, 30 kg (%) 16.643 0.065 310 
Protein content of empty body, 60 kg (%)  16.477 0.047 305 
Protein content of empty body, 90 kg (%) 16.359 0.045 311 
Protein content of empty body, 120 kg (%) 16.282 0.051 302 
Protein content of empty body, 140 kg (%) 16.242 0.053 302 
Lipid content of empty body, 30 kg (%) 10.845 2.920 310 
Lipid content of empty body, 60 kg (%) 18.045 2.000 305 
Lipid content of empty body, 90 kg (%) 22.832 1.773 311 
Lipid content of empty body, 120 kg (%) 25.813 1.926 302 
Lipid content of empty body, 140 kg (%) 27.308 1.987 302 
Chemical accretion rates 
DG, 30-60 kg (kg/day) 0.677 0.114 315 
DG, 60-90 kg (kg/day) 0.838 0.138 312 
DG, 90-120 kg (kg/day) 0.779 0.140 313 
DG, 120-140 kg (kg/day) 0.718 0.193 313 
PAR, 30- 60 kg (kg/day) 0.110 0.018 300 
PAR, 60-90 kg (kg/day) 0.135 0.023 300 
PAR, 90-120 kg (kg/day) 0.125 0.022 299 
PAR, 120-140 kg (kg/day) 0.115 0.031 292 
LAR, 30-60 kg (kg/day 0.168 0.040 300 
LAR, 60-90 kg (kg/day) 0.271 0.060 300 
LAR, 90-120 kg (kg/day) 0.274 0.069 301 
LAR, 120-140 kg (kg/day) 0.267 0.099 293 
Feed intake and food conversion traits 
DFI 60-90 kg (kg/day) 2.467 0.361 312 
DFI 90-120 kg (kg/day) 2.818 0.376 313 
DFI 120-140 kg (kg/day) 2.815 0.496 313 
FCR 60-90 kg (kg feed/kg gain) 2.975 0.379 312 
FCR 90-120 kg (kg feed/kg gain) 3.678 0.517 313 
FCR 120-140 kg (kg feed/kg gain) 4.214 1.975 313 

Definition of symbols: FFS, fat free substance; DG, daily gain; PAR, protein accretion rate; LAR, lipid 
accretion rate; DFI, daily feed intake; FCR, food conversion ratio. 
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2.2.4 Genotypic data 

 

Blood samples were collected from F0, F1 and F2 animals from the vena jugularis, and 

genomic DNA was isolated. All animals were genotyped for 51 informative 

microsatellite markers selected from the published USDA linkage map 

(http://www.marc.usda.gov; Rohrer et al. 1996), of which 9, 9, 8, 9, 9 and 7 genomic 

markers were located on SSC2, SSC4, SSC8, SSC9, SSC10 and SSC14, respectively 

(Table 2.3). Average distance between markers was 16.5, 16.3, 18.4, 17.3, 16.0, and 

17.4 cM and the largest gap between markers was 25.2, 26.5, 23.1, 21.7, 20.8, and 23.6 

cM on SSC2, SSC4, SSC8, SSC9, SSC10 and SSC14, respectively. 
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Table 2.3 Markers used in the present QTL mapping project, their relative map position using 
USDA pig map, number of different alleles and the information contents for the additive (a) and 
dominance (d) F2 coefficients and heterozygosity in the F1 generation (H) 

Information content of 
coefficients 

Marker SSC Position (cM) H Number of 
alleles 

a d 
SWR2516 2 0.0 0.67 5 0.59 0.47 
SW2623 2 9.8 0.68 5 0.53 0.32 
SWR783 2 23.7 0.51 3 0.40 0.23 
SW240 2 42.0 0.84 7 0.78 0.62 
SW1026 2 60.6 0.47 6 0.48 0.25 
SW1370 2 74.8 0.91 8 0.78 0.69 
SWR2157 2 89.2 0.78 8 0.59 0.47 
SWR345 2 114.4 0.87 8 0.86 0.73 
S0036 2 132.1 0.85 7 0.80 0.73 
SW2404 4 0.0 0.91 10 0.78 0.74 
SW489 4 8.0 0.66 5 0.71 0.42 
S0301 4 27.1 0.72 6 0.42 0.40 
S0001 4 41.8 0.66 6 0.50 0.26 
SW839 4 62.3 0.44 4 0.41 0.21 
S0214 4 79.3 0.80 6 0.56 0.48 
SW445 4 105.8 0.91 10 0.80 0.76 
MP77 4 120.0 0.87 8 0.77 0.61 
SW856 4 130.1 0.98 14 0.81 0.74 
SW2410 8 -1.3 0.42 4 0.61 0.25 
SW905 8 20.8 0.71 6 0.57 0.40 
SWR1101 8 38.3 0.88 12 0.15 0.04 
SW444 8 52.5 0.85 7 0.79 0.83 
S0086 8 62.2 0.69 6 0.64 0.50 
SW374 8 82.8 0.88 5 0.77 0.67 
SW1551 8 105.9 0.75 6 0.68 0.43 
S0178 8 127.7 0.54 7 0.58 0.34 
SW983 9 4.0 0.81 6 0.72 0.50 
SW21 9 15.1 0.65 5 0.45 0.16 
SW911 9 36.8 0.75 7 0.63 0.38 
SW2401 9 57.1 0.71 6 0.65 0.34 
SW2571 9 73.3 0.46 6 0.55 0.32 
S0019 9 86.4 0.75 6 0.58 0.33 
SW2093 9 103.6 0.90 6 0.89 0.75 
SW174 9 122.9 0.81 3 0.73 0.55 
SW1349 9 142.5 0.81 7 0.50 0.42 
SW830 10 0.0 0.67 7 0.54 0.31 
SWR136 10 7.6 0.77 6 0.64 0.45 
SW1894 10 23.2 0.65 4 0.58 0.35 
SW2195 10 44.0 0.48 3 0.34 0.16 
SW173 10 56.1 0.35 4 0.28 0.17 
SW1041 10 67.5 0.46 3 0.26 0.10 
SW2043 10 87.7 0.56 5 0.50 0.27 
SW1626 10 108.0 0.79 11 0.76 0.56 
SW2067 10 128.0 0.81 7 0.09 0.03 
SW857 14 7.4 0.87 9 0.81 0.87 
S0089 14 14.0 0.67 7 0.42 0.20 
SW245 14 32.0 0.77 7 0.63 0.50 
SW342 14 53.2 0.79 7 0.64 0.48 
SW1081 14 72.1 0.87 6 0.80 0.68 
SW1557 14 87.9 0.64 4 0.61 0.35 
SWC27 14 111.5 0.45 8 0.27 0.26 
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2.2.5 Statistical analysis 

 
The QTL analysis was performed with QTL Express (http://qtl.cap.ed.ac.uk; Seaton et 

al. 2002) using line-cross least squares multi-marker regression interval mapping for 

outbred lines (Haley et al. 1994). The analysis of QTL Express proceeds in two stages. 

In the first stage the data on marker positions as well as marker genotypes are used to 

calculate the probabilities of individuals inheriting one or two grandpaternal or 

grandmaternal alleles at positions throughout the genome and the parent-of-origin 

probability of the alleles. These probabilities are combined into additive and dominance 

coefficients in order to observe the information contents of the markers along the 

chromosome as well as segregation distortion. In the second stage, at every 1cM QTL 

position, least squares is used to regress the phenotypic value for each individual onto 

their individually calculated additive and dominance coefficients which then provides 

estimates of additive and dominance for that position. This is then repeated at each 

defined position on the chromosome and the best estimate of the QTL effects and 

position are obtained (at the position in which the residual sum of squares is minimized) 

where the F statistic is highest and estimates for additive and dominance effects are 

calculated at this position (Seaton  et al. 2002). 

 

In this analysis, the additive estimate is defined as half of the difference between pigs 

homozygous for alleles from the grandpaternal sire line and pigs homozygous for alleles 

from the grandmaternal dam line. A positive additive genetic value indicates that the 

allele originating from the grandpaternal sire line (Pietrain) showed a higher effect than 

the allele from the grandmaternal dam line and vice versa. The dominance effect is 

defined as deviation of heterozygous animals from the mean of both types of 

homozygous animals. A positive dominance value indicates an increase in the trait of 

interest as a result of a heterozygous genotype and vice versa. Moreover, traits were 

tested for QTL expressing paternal or maternal imprinting. In this analysis imprinting is 

defined as the difference between heterozygous genotypes when the Pietrain allele is 
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inherited from parents of the opposite sex. The individual QTL analysis was performed 

with the following models:  

 

Carcass characteristics measured at slaughter: 

,idaiiiii edCaCslwtbatchMHSsexy ++++++= β                                [1] 

 

Chemical body composition at each target weight: 

,idaiiiii edCaCwtbatchMHSsexy ++++++= β                                    [2] 

 

Chemical accretion rates (protein and lipid accretion): 

,idaiiiiii edCaCendwtstwtbatchMHSsexy +++++++= ββ    [3] 

 

Feed intake and food conversion ratio: 

,idaiiiiiii edCaCendwtstwthtbatchMHSsexy ++++++++= ββ   [4] 

 

where  is the i-th individual phenotype. Fixed effects of sex, ryanodine receptor 

genotype (MHS) and batch were fitted in the model for all traits. In addition, the effect 

of housing (ht: housing type) was significant for feed intake and FCR traits. For carcass 

characteristics and chemical body composition, linear regression on body weight at 

slaughter (slwt) and at each target weight (wt), respectively, was included in the model. 

Protein and lipid accretion, daily gain (DG), feed intake and FCR were adjusted for the 

small differences between target and actual body weight at the start (stwt) and end 

(endwt) of the considered weight range. Ca and Cd represent the additive and dominance 

coefficients, respectively, and a is the additive effect and d is the dominance effect. 

Traits were analysed individually and thresholds to determine chromosome-wide 

statistical significance levels were obtained by permutation test (Churchill and Doerge 

1994) under 10 000 iterations. 

iy
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2.3 Results  
 
In the genomic analysis, five QTL were identified for entire carcass characteristics, 13 

for lean tissue characteristics, seven for fat tissue characteristics, seven for chemical 

body composition and deposition and two each for DG, daily feed intake (DFI) and FCR 

(Table 2.4). QTL with significant imprinting effects were identified for 32 traits, of 

which 19 traits showed novel QTL not previously detected using the additive and 

dominance model (Table 2.5). 
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Table 2.4 Evidence for quantitative trait loci (QTL) for AutoFOM (AF) grading characteristics, carcass cuts, growth, feed intake and chemical 
body composition or deposition 

  Results of the present study Other studies confirming the QTL 
SSC Trait F-ratio Pos1 % 

Var2 
a ± SE3 d ± SE3 References4 

Carcass characteristics (lean and fat) 
8 Hind hock weight (kg) 5.29* 3.7 3.5 0.044 ± 0.014 0.011 ± 0.025 - 
8 Entire ham weight (kg) 11.43*** 11.7 7.2 0.351 ± 0.082 0.340 ± 0.149 de Koning et al. (2001a); Quintanilla et al. 

(2002) 
9 Entire shoulder weight (kg) 9.03** 65 5.8 0.182 ± 0.043 0.002 ± 0.077  - 
9 AF entire shoulder weight (kg) 7.53** 68 4.8 0.099 ± 0.030 -0.113 ± 0.053 - 
14 AF entire shoulder weight (kg) 5.15* 64.4 3.3 -0.100 ± 0.031 0.055 ± 0.050 - 
Lean tissue characteristics 

2 Loin weight without external fat (kg) 5.7* 10 3.7 0.166 ± 0.051 0.060 ± 0.077 
2 Ham weight without external fat (kg) 6.66* 15 4.3 0.333 ± 0.091 -0.018 ± 0.149 

Andersson-Eklund et al. (1998); Geldermann et 
al. (2003); Lee et al. (2003a) 

2 Shoulder weight without external fat (kg) 5.75* 92 3.8 0.014 ± 0.047 -0.252 ± 0.074 Geldermann et al. (2003); Lee et al. (2003a) 
4 AF lean content (kg) 5.62* 33 3.6 -1.213 ± 0.420 -1.262 ± 0.737 Cepica et al. (2003a); Geldermann et al. (2003); 

Edwards et al. (2006) 
8 AF loin lean meat weight (kg) 9.59** 5.7 6.0 0.089 ± 0.030 0.179 ± 0.055 
8 Loin weight without external fat (kg) 6.96* 15.7 4.5 0.106 ± 0.054 0.297 ± 0.093 
8 Ham weight without external fat (kg) 8.02** 12.7 5.2 0.304 ± 0.091 0.376 ± 0.163 
8 Loin eye area m.l.t.l.5 (cm2) 6.21* 11.7 4.0 1.734 ± 0.611 2.397 ± 1.105 

Andersson-Eklund et al. (1998); de Koning et al. 
(2001a); Quintanilla et al. (2002); Kim et al. 
(2005) 

8 Protein content of loin (%) 5.14* 37.7 3.3 -0.212 ± 0.076 0.210 ± 0.124 Beeckmann et al. (2003c); Geldermann et al. 
(2003) 

9 Shoulder weight without external fat (kg) 8.63** 73 5.6 0.184 ± 0.044  0.003 ± 0.075 
9 Neck weight without external fat (kg) 7.13* 86 4.7 0.115 ± 0.032 -0.072 ± 0.053 

- 

10 Protein content of loin (%) 6.17* 94 4.0 -0.193 ± 0.072 -0.279 ± 0.120 - 
14 AF ham lean meat weight (kg) 6.24* 68.4 4.0 -0.273 ± 0.083 0.174 ± 0.128 Dragis-Wendrich et al. (2003b); Geldermann et 

al. (2003) 
Fat tissue characteristics 

2 External neck fat weight (kg) 7.07* 6 4.6 -0.089 ± 0.027 -0.071 ± 0.041 
2 External ham fat weight (kg) 7.42** 11 4.8 -0.128 ± 0.041 -0.133 ± 0.063 

de Koning et al. (2001a); Milan et al. (2002); 
Kim et al. (2005); Sanchez et al. (2006); 

8 Intra muscular fat content (%) 5.19* 48.7 3.4 0.129 ± 0.046 -0.114 ± 0.069 Rohrer & Keele (1998a) 
9 Fat area of belly (cm2) 6.57* 30 4.3 -0.834 ± 0.573 3.440 ± 1.047 Rohrer & Keele (1998a) 
9 External ham fat weight (kg) 6.81* 86 4.4 -0.131 ± 0.036 0.064 ± 0.060 
9 External shoulder fat weight (kg) 7.48** 86 4.9 -0.047 ± 0.021 0.111 ± 0.034 

Karlskov-Mortensen et al. (2006) 

14 AF average fat thickness (cm) 5.53* 69.4 3.6 0.930 ± 0.391 -1.436 ± 0.599 Malek et al. (2001a); Dragos-Wendrich et al. 
(2003a); Geldermann et al. (2003) 



Table 2.4 continued 
  Results of the present study Other studies confirming the QTL 
SSC Trait F-ratio Pos1 % 

Var2 
a ± SE3 d ± SE3 References4 

Chemical body composition and deposition 
8 LAR 60-90 kg (kg/day) 5.42* 49.7 3.7 0.015 ± 0.005 0.005 ± 0.007 Rohrer & Keele (1998a); de Koning et al. 

(2001a); Malek et al. (2001a) 
9 PAR 120-140 kg (kg/day) 6.22* 92 4.3 -0.003 ± 0.003 0.014 ± 0.004 - 
9 LAR 120-140kg (kg/day) 5.37* 93 3.8 -0.017 ± 0.009 0.042 ± 0.015 - 
9 Protein cont empty body, 60 kg (%) 5.64* 115 3.7 0.002 ± 0.003 0.018 ± 0.006 - 
9 Protein cont FFSEB, 60 kg (%) 5.63* 116 3.7 -0.017 ± 0.029 -0.161 ± 0.048 - 
9 Lipid cont empty body, 60 kg (%) 5.63* 115 3.7 -0.072 ± 0.142 -0.785 ± 0.235 - 
10 PAR 90-120 kg (kg/day) 5.25* 4 3.6 -0.006 ± 0.002 0.001± 0.003 - 
Daily gain, feed intake and food conversion ratio 

2 FCR 90-120 kg (kg feed/kg gain) 5.95* 3 3.9 -0.143 ± 0.044   -0.076 ± 0.068  - 
2 DFI 120-140 kg (kg/day) 6.59* 79 4.3 -0.062 ± 0.040 0.214 ± 0.063  Rohrer (2000); Lee et al. ( 2003a) 
4 FCR, 90-120 kg (kg feed/kg gain) 6.07* 20 4.0 0.149 ± 0.043 0.013 ± 0.074 - 
9 DG 120-140 kg (kg/day) 6.5* 89 4.2 -0.020 ± 0.015 0.087 ± 0.025 - 
10 DFI 60-90 kg (kg/day) 7.3** 44 4.7 -0.108 ± 0.028 0.011 ± 0.046 Knott et al. (1998) 
10 DG 90-120 kg (kg/day) 5.08* 4 3.3 -0.037 ± 0.012 0.000 ± 0.018 - 
m.l.t.l., musculus longissimus thoracis et lumborum; LAR, lipid accretion rate; PAR, protein accretion rate; FFSEB, fat-free substance of the empty body; 
FCR, food conversion ratio calculated as kg feed / kg gain; DFI, daily feed intake; DG, daily gain. 
*, **, and *** implies significance at the 5%, 1% or 0.1% chromosome-wise levels, respectively. 
1Positions of the QTL in cM. 
2Percentages of F2 variance explained by the QTL calculated as the proportion of residual sum of squares due to the QTL effect on the residual sum of 
squares excluding the QTL effect: (residual sum of squares of reduced model – residual sum of squares of full model)/residual sum of squares of reduced 
model. 
3Estimated additive (a) and dominance (d) effects and their standard errors (SE). 
4References of other studies reporting QTL for similar traits in similar regions of the genome. 
5Measured at the 13th/14th rib interface. 
Values in bold represent significant additive or dominance effects. 
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Table 2.5 Evidence for quantitative trait loci (QTL) expressing imprinting effects on AutoFOM (AF) grading characteristics, carcass cuts, 
growth, feed intake and chemical body composition or deposition 

SSC Trait 
 

F-ratio Pos1 % var2 a ± SE3 d ± SE3 i ± SE3 

Carcass characteristics (lean and fat) 
2 Entire ham weight5 (kg) 4.44* 10 4.3 0.165 ± 0.078 -0.188 ± 0.116 0.182 ± 0.070 
4 Thick rib5 (kg) 5.27* 13 5.2 -0.025 ± 0.018 -0.075 ± 0.031 0.059 ± 0.020 
9 Entire shoulder weight (kg) 7.33** 73 7.0 0.159 ± 0.041 0.052 ± 0.069 0.099 ± 0.045 
10 Tail weight5 (kg) 4.29* 88 4.2 0.014 ± 0.013 -0.001 ± 0.020 0.040 ± 0.012 
14 AF entire shoulder weight (kg) 5.79** 73.4 5.5 -0.086 ± 0.029 0.041 ± 0.044 0.081 ± 0.028 
Lean tissue characteristics 

2 AF shoulder lean meat weight5 (kg) 8.36*** 0 7.8 0.007 ± 0.034 -0.041 ± 0.050 0.158 ± 0.032 
2 AF lean content5 (%) 5.52* 0 5.3 0.590 ± 0.411 0.148 ± 0.604 1.451 ± 0.387 
2 Loin eye area m.l.t.l.4,5 (cm2) 7.81*** 0 7.3 0.749 ± 0.540 -0.281 ± 0.792 2.316 ± 0.507 
2 Loin weight without external fat (kg) 11.01*** 2 10.2 0.153 ± 0.049 -0.002 ± 0.074  0.216 ± 0.046  
2 Ham weight without external fat (kg) 9.73*** 10 9.0 0.307 ± 0.083 -0.074 ± 0.124  0.297 ± 0.075  
8 AF lean content of belly5 (%) 4.38* 1.7 4.2 0.453 ± 0.619 3.300 ± 1.125 1.332 ± 0.655 
8 AF loin lean meat weight (kg) 7.78*** 7.7 7.3 0.090 ± 0.030  0.191 ± 0.056  0.061 ± 0.030  
9 Loin eye area m.l.t.l.4,5 (cm2) 5.25* 71 5.0 1.049 ± 0.519 -1.199 ± 0.908 1.698 ± 0.579 
9 Shoulder weight without external fat (kg) 8.52*** 73 8.1 0.176 ± 0.044  0.006 ± 0.074  0.135 ± 0.048  
9 AF lean content5 (%) 5.58** 115 5.3 0.493 ± 0.390 1.846 ± 0.641 1.093 ± 0.411 
10 Shoulder weight without external fat5 (kg) 4.46* 84 4.4 0.102 ± 0.052 -0.087 ± 0.086 0.132 ± 0.048 
14 AF lean content of belly5 (%) 5.4** 68.4 5.2 -1.591 ± 0.580 1.361 ± 0.901 1.407 ± 0.562 
14 AF ham lean meat weight (kg) 6.19** 71.4 5.9 -0.260 ± 0.078  0.151 ± 0.116  0.188 ± 0.076  
14 AF shoulder lean meat weight5 (kg) 4.44* 75.4 4.3 -0.090 ± 0.034 0.060 ± 0.054 0.081 ± 0.034 
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Table 2.5 continued 
SSC Trait 

 
F-ratio Pos1 % var2 a ± SE3 d ± SE3 i ± SE3 

Fat tissue characteristics 
2 External ham fat weight (kg) 11.28*** 0 10.3 -0.090 ± 0.038 -0.008 ± 0.056 -0.188 ± 0.036 
2 External loin fat weight5 (kg) 6.63** 0 6.4 -0.064 ± 0.052 -0.036 ± 0.076 -0.206 ± 0.049 
2 Thinnest fat measure4,5 (cm) 8.54*** 0 7.9 -0.067 ± 0.044 -0.009 ± 0.064 -0.196 ± 0.041 
2 Fat area m.l.t.l.4,5 (cm2) 6.2** 0 5.9 -0.670 ± 0.486 -0.461 ± 0.713 -1.824 ± 0.456 
2 Fat area of belly5 (cm2) 5.64** 0 5.5 -0.567 ± 0.556 0.264 ± 0.808 -2.029 ± 0.517  
9 External loin fat weight5 (kg) 7.62*** 75 7.3 -0.080 ± 0.048 -0.007 ± 0.084 -0.234 ± 0.054 
9 External ham fat weight (kg) 5.94** 86 5.7 -0.132 ± 0.036 0.061 ± 0.059 -0.077 ± 0.038 
9 Fat area of belly (cm2) 4.63* 87 4.6 -1.217 ± 0.516 -0.097 ± 0.843 -1.587 ± 0.543 
9 Sidefat thickness4,5 (cm) 6.12** 67 6.3 -0.149 ± 0.067 0.136 ± 0.122 -0.238 ± 0.075 
10 External loin fat weight5 (kg) 4.46* 0 4.4 -0.049 ± 0.050 -0.106 ± 0.080 -0.153 ± 0.049 
14 AF average fat thickness (mm) 5.27* 69.4 5.1 0.934 ± 0.389 -1.382 ± 0.596 -0.810 ± 0.377 
Chemical body composition and deposition 

9 LAR, 120-140 kg (kg/day) 5.4* 87 5.6 -0.018 ± 0.009 0.036 ± 0.014 -0.023 ± 0.009 
Daily gain, feed intake and food conversion ratio 

9 DG, 120-140 kg (kg/day) 6.83** 86 6.5 -0.022 ± 0.015 0.082 ± 0.025 -0.044 ± 0.016 
m.l.t.l., musculus longissimus thoracis et lumborum; LAR, lipid accretion rate; DG, daily gain. 
*, **, and *** implies significance at the 5%, 1% or 0.1% chromosome-wise levels, respectively. 
1Positions of the QTL in cM. 
2Percentages of F2 variance explained by the QTL calculated as the proportion of residual sum of squares due to the QTL effect on the residual sum of 
squares excluding the QTL effect: (residual sum of squares of reduced model – residual sum of squares of full model)/residual sum of squares of reduced 
model. 
3Estimated additive (a), dominance (d) and imprinting (i) effects and their standard errors (SE).  
4Measured at the 13th/14th rib interface. 
5New QTL only identified when the imprinting effect is included in the model. 
Values in bold represent significant additive, dominance or imprinting effects. 
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2.3.1 Carcass characteristics (lean and fat) 

 
QTL were identified for valuable carcass cuts on SSC8, SSC9 and SSC14. The QTL 

with the highest F-ratio significant at the 0.1% chromosome-wide level was identified 

on SSC8 for entire ham weight at 11.7 cM between SW2410 and SW905 and explained 

7.2% of the phenotypic variance. The additive genetic effect of the allele originating 

from the Pietrain grandpaternal breed was associated with 351 g higher ham weight and 

heterozygous animals showed 340 g higher ham weight due to dominance effects. In a 

similar region (3.7 cM), a QTL was identified for hind hock weight; it explained 3.5% of 

the phenotypic variance, but only showed significant additive genetic effects.  

 

QTL were detected on SSC9 between SW2401 and SW2571 for entire shoulder weight 

measured by the AutoFOM device (68 cM) and by dissection (65 cM), explaining 4.8% 

and 5.8% of the phenotypic variance, respectively. The allele originating from the 

Pietrain founder breed showed higher shoulder weight. A further QTL for shoulder 

weight measured by the AutoFOM system was detected on SSC14 at 64.4 cM between 

SW342 and SW1081. In this case, the Pietrain allele was associated with decreased 

shoulder weight. Furthermore, two QTL reaching the 5% chromosome-wide significance 

level were detected for entire shoulder weight measured by dissection on SSC9 at 23 cM 

and by the AutoFOM system on SSC14 at 37.4 cM (not shown in Table 2.4). 

 

 

2.3.2 Lean tissue characteristics 

 

QTL for lean tissue characteristics were detected on SSC2, SSC4, SSC8, SSC9, SSC10 

and SSC14. On SSC2, QTL were identified for carcass cuts loin, ham, and shoulder 

without external fat explaining 3.7%, 4.3% and 3.8% of the phenotypic variance, 

respectively. QTL for weights of trimmed carcass cuts loin and ham were located at 10 

and 15 cM respectively, close to SW2623. The allele originating from Pietrain founder 

parents was associated with higher lean tissue weights of both carcass cuts. The QTL for 



trimmed shoulder weight was located in a different region at 92 cM, close to SWR2157. 

Heterozygous animals were associated with significantly lower lean meat of the 

shoulder.  

 

On SSC4 a single QTL was identified for lean content measured by the AutoFOM 

system accounting for 3.6% of the phenotypic variance. Additive genetic effects at this 

QTL indicate that alleles from the grandpaternal Pietrain breed were associated with 

decreased lean content.  

 

QTL were identified on SSC8 for loin lean meat measured by the AutoFOM carcass 

grading system (5.7 cM) and dissection (15.7 cM), ham lean meat (12.7 cM) and loin 

eye area (11.7 cM). These QTL explained 6.0%, 4.5%, 5.2% and 4.0% of the phenotypic 

variance, respectively, and were located in the same region as QTL for entire ham 

weight and hind hock weight between SW2410 and SW905 (Figure 2.1). Dominance and 

additive effects for these QTL indicate that heterozygous animals and Pietrain alleles 

were associated with higher loin and ham lean meat weight and higher loin eye area.  
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Figure 2.1  
F-ratio curves for evidence of quantitative trait loci for carcass, AutoFOM (AF) and lean traits on 
SSC8.  Horizontal lines indicate the chromosome-wide significance levels. 
 

 

 

In a different region of SSC8 (37.7 cM), a QTL for protein content of loin was identified 

with additive effects only. 

 

On SSC9, QTL were detected for lean meat of the shoulder and neck cuts close to 

SW2571, explaining 5.6% and 4.7% of the phenotypic variance, respectively. At these 

QTL, the favourable allele originated from the Pietrain founder population.  

 

A QTL for protein content of loin was detected on SSC10, showing both additive and 

dominance effects. An additional QTL was detected for ham lean meat weight measured 

by the AutoFOM carcass grading system on SSC14 between SW342 and SW1081. The 

Pietrain allele for this QTL was associated with lower ham lean meat weight. 
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2.3.3 Fat tissue characteristics 

 

QTL were identified for fat tissue characteristics on SSC2, SSC8, SSC9 and SSC14. 

QTL were identified for external fat weights of ham and neck cuts explaining 4.8% and 

4.6% of the phenotypic variance, respectively, in the same region of SSC2 as QTL 

identified for lean weights of loin and ham cuts. The allele originating from the Pietrain 

grandpaternal breed was associated with significantly less external fat in both cuts. A 

QTL was identified on SSC8 for IMF at 48.7 cM between SWR1101 and SW444. The 

Pietrain allele at this QTL was associated with higher IMF. On SSC9, a QTL was 

identified for fat area of the belly at 30 cM, between SW21 and SW911, explaining 4.3% 

of the phenotypic variance. Heterozygous animals showed 3.44 cm2 larger fat area of the 

belly. In a different region of SSC9 (86 cM) close to S0019, QTL were identified for 

external fat weights of ham and shoulder cuts explaining 4.4% and 4.9% of the 

phenotypic variance, respectively. At these QTL, the Pietrain allele was associated with 

significantly less external fat in both cuts, but only the shoulder showed significantly 

more external fat in heterozygous animals. These QTL were in the same region as QTL 

for lean tissue characteristics. An additional QTL reaching 5% chromosome-wide 

significance was identified for external fat weight of the shoulder at 12 cM on SSC9 (not 

shown in Table 2.4).  

 

A QTL was detected for average fat thickness measured by the AutoFOM device in the 

same region as QTL on SSC14 for entire shoulder weight and ham lean meat weight 

measured by the AutoFOM device. Heterozygous animals showed a dominance effect of 

1.4 mm less average fat thickness, whereas the additive genetic effect of the Pietrain 

allele yielded in 0.9 mm higher average fat thickness than that from the crossbred dam 

line.  
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2.3.4 Chemical body composition and deposition 

 

QTL for protein accretion rate (PAR) from 90 to 120 kg was identified on SSC10. QTL 

for PAR for a later growth period (120-140 kg) was found on SSC9 at 92 cM explaining 

4.3% of the phenotypic variance. In the same region of SSC9, a QTL for lipid accretion 

rate (LAR) was identified for the same growth period. These were located in the same 

region of SSC9 as QTL for lean and fat tissue (Figure 2.2).  
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Figure 2.2  
F-ratio curves for evidence of quantitative trait loci for chemical body composition, lean and fat 
tissue on SSC9.  Horizontal lines indicate the chromosome-wide significance levels. DG, daily 
gain; LAR, lipid accretion rate; PAR, protein accretion rate. 
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A second QTL for LAR for an earlier growth period (60-90 kg) was identified on SSC8 

close to SW444, positioned very close to the QTL for IMF (Figure 2.3). Alleles from the 

Pietrain breed are associated with higher LAR between 60 and 90 kg and decreased PAR 

from 90 to 120 kg. Heterozygous animals were associated with higher PAR and LAR at 

the later growth stage (120-140 kg).  
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Figure 2.3  
F-ratio curves for evidence of quantitative trait loci for intramuscular fat content and lipid 
accretion 60-90 kg on SSC8.  Horizontal line indicates the chromosome-wide significance level. 
LAR, lipid accretion rate. 
 

 

QTL for protein and lipid content of the empty body and protein content of the fat-free 

substance at 60 kg body weight were identified on SSC9 between SW2093 and SW174. 

Heterozygous animals were associated with significantly higher protein content of the 
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empty body and significantly lower protein content of the fat-free substance and lipid 

content of the empty body at 60 kg body weight. 

 

 

2.3.5 Feed intake, daily gain and food conversion ratio 

 

A QTL for FCR from 90 to 120 kg was detected on SSC2 in the same region as QTL for 

lean and fat tissue characteristics between SWR2516 and SW2623 (Figure 2.4). The 

Pietrain allele was associated with higher feed efficiency, i.e. 143 g less food per one kg 

gain.  
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Figure 2.4  
F-ratio curves as evidence of quantitative trait loci for food conversion ratio, lean and fat tissue 
on SSC2.  Horizontal lines indicate the chromosome-wide significance levels. FCR, food 
conversion ratio. 
 

 51



An additional QTL for FCR from 90 to 120 kg was detected on SSC4 between SW489 

and S0301. In contrast, the Pietrain allele was associated with lower feed efficiency at 

this QTL. On SSC10, QTL for DFI for 60 to 90 kg was identified at the same position as 

SW2195, and for a later growth stage (120-140 kg) on SSC2 between SW1370 and 

SWR2157. Pietrain alleles were associated with 108 g less DFI at 60 to 90 kg body 

weight and heterozygous animals were associated with 214 g higher DFI at heavier 

weights. A QTL for DG (120-140 kg) was detected on SSC9 in the same region as QTL 

for PAR, LAR, lean and fat tissue (Figure 2.2). An additional QTL was detected on 

SSC10 for DG 90-120 kg at the same position as the QTL detected in this study for PAR 

at the same stage of growth. 

 

 

2.3.6 Imprinting 

 
For several carcass cuts, lean tissue and fat tissue characteristics, QTL expressing 

maternal imprinting effects were identified on SSC2 close to SWR2516 and SW2623. 

This indicates that only the paternal allele is expressed at these QTL. On SSC8, QTL 

expressing maternal imprinting were detected for lean tissue traits at 1.7 cM and 7.7 cM 

between SW2140 and SW905. SSC9 harboured a large number of QTL showing 

maternal imprinting for carcass characteristics, lean tissue, fat tissue, LAR and DG 

between SW2401 and S0019 or 67 cM and 87 cM. An additional QTL showing maternal 

imprinting effects for lean content was identified in a different region of SSC9 (115 cM). 

Furthermore, QTL with maternal imprinting effects associated with carcass 

characteristics and lean tissue were detected on SSC10 close to SW2043 and for fat 

tissue at the same position as SW830. For carcass characteristics, lean tissue and fat 

tissue measured by the AutoFOM device, QTL expressing paternal imprinting effects 

were detected on SSC14 close to SW1081. This indicates that only the maternal allele is 

expressed at these QTL. 

 
 

 52



2.4 Discussion 
 
Numerous QTL were identified in this study for important carcass cuts, lean and fat 

tissue characteristics and chemical body composition. QTL for chemical body 

composition and their associations with QTL for physical body composition will provide 

a better understanding of growth and body composition. 

 

QTL for important carcass cuts have high economic value and were identified in the 

present study on SSC8, SSC9 and SSC14. The most significant QTL detected in this 

study at the 0.1% chromosome-wide level was for entire ham weight on SSC8. QTL 

have been reported in the literature around this location for early growth rate and body 

weight (cited in Table 2.4). QTL for entire shoulder weight identified in this study on 

SSC9 and SSC14 have not been reported before in the literature. 

 

QTL have been reported for lean weights of carcass cuts shoulder, loin and neck as well 

as lean meat content measurements in the same region of SSC2 as the QTL detected for 

loin and ham lean meat weight in the present study (cited in Table 2.4). Additionally, 

QTL have been reported in this region for weight gain (Lee et al. 2003a; Thomsen et al. 

2004) as well as for carcass cuts and lean tissue characteristics around 0 cM (Milan et al. 

2002; Nezer et al. 2002; Sanchez et al. 2006). In a different region of SSC2, there is 

evidence in the literature (cited in Table 2.4) supporting the QTL identified in the 

present study for shoulder lean meat weight. Additional QTL have been reported in this 

region for weight gain (Malek et al. 2001a; Lee et al. 2003a).  

 

Numerous QTL were identified in this study between 5.7 cM and 15.7 cM on SSC8 for 

lean tissue characteristics in the same region as QTL were detected in the present study 

for entire ham weight and hind hock weight (Figure 2.1). This is supported with reports 

in the literature (cited in Table 2.4) for loin eye area, average daily gain, body weight 

and growth rate as well as bone/lean meat ratio in ham. A single QTL for protein content 

of loin was identified in a different region of SSC8 (37.7 cM). This QTL is supported by 
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reports in the literature for loin, neck, ham and shoulder meat weights (cited in Table 

2.4). QTL were also identified in this study for shoulder and neck lean meat weight in a 

region of SSC9 where no QTL for lean tissue have been reported. There is evidence in 

the literature (cited in Table 2.4) for QTL associated with lean meat of shoulder, loin, 

neck and ham in the same region of SSC14 as the QTL identified in the present study for 

ham lean meat weight measured by the AutoFOM device. 

 

Surprisingly, in the present F2 population only one QTL was detected for lean tissue on 

SSC4. In the literature, a large number of QTL have been reported for growth and 

fatness on SSC4 (e.g. Andersson et al. 1994; Marklund et al. 1999; Cepica et al. 2003a). 

Most QTL from these studies have been detected in F2 populations at least partly derived 

from exotic breeds. Therefore, these QTL may not be segregating within the commercial 

lines used in the present study. Nonetheless, there is evidence in the literature (cited in 

Table 2.4) to support the location of the QTL identified in the present study on SSC4 for 

lean content.  

 

QTL were identified for fat weights of carcass cuts neck and ham in the same region of 

SSC2 as QTL identified for lean meat weights of important carcass cuts in the present 

study. There is substantial evidence in the literature (cited in Table 2.4) for a QTL 

influencing fat tissue in this area. Additionally, a large number of QTL have been 

identified for backfat around 0 cM (e.g. Knott et al. 1998; Milan et al. 2002). In a 

similar region an imprinted QTL has been mapped to the insulin-like growth factor 2 

(IGF2) locus with large effects on fat deposition and muscle mass (Nezer et al. 1999).  

 

A novel QTL for IMF on SSC8 was identified in the present study. Although no QTL 

have been reported before for intramuscular fat in this genomic region, QTL have been 

reported for fat tissue (cited in Table 2.4). The Pietrain allele for this QTL is associated 

with increased IMF. This may have implications for meat quality as IMF is a major 

factor affecting meat quality and consumer satisfaction.  
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QTL were identified in the present study for external fat weights of carcass cuts ham and 

shoulder in the same region as QTL identified for lean meat weights of neck and 

shoulder on SSC9 (Figure 2.2). There is limited information supporting a QTL in this 

region for growth and fatness, however, a QTL has been reported for weight of fat in 

ham (cited in Table 2.4). In a different region of this chromosome, a QTL for fat area of 

the belly was identified in the present study in the same region as a QTL previously 

reported in the literature for leaf fat weight (cited in Table 2.4). Additionally, a QTL for 

average fat thickness measured by the AutoFOM system was identified in the present 

study in the same region of SSC14 as for ham lean meat weight and entire shoulder 

weight measured by the same device. There is a lot of evidence in the literature for a 

QTL influencing fatness in this region of SSC14 (cited in Table 2.4). As discussed, 

several genomic regions contained QTL for both leanness and fatness (SSC2, SSC9 and 

SSC14), indicating their close relationships when animals are slaughtered at almost the 

same finishing weight.  

 

From the present study, it was found that the allele originating from Pietrain founder 

parents was generally associated with increased lean and decreased fat as expected for a 

breed, which has been intensively selected for lean content. This was not the case for the 

QTL on SSC14 where the Pietrain allele (cryptic) was associated with decreased weight 

of ham lean meat and higher average fat thickness. It is also surprising to find that 

Pietrain alleles were associated with decreased lean content at the QTL identified on 

SSC4. 

 

The present study is the first to report QTL for PAR on SSC9 and SSC10 for different 

stages of growth. In conjunction with the study by Mohrmann et al. (2006a), QTL for 

PAR have now been detected for all observed growth periods (30-60 kg, SSC1; 60-90 

kg, SSC13; 90-120 kg, SSC1 and SSC10; 120-140 kg, SSC9). Novel QTL for LAR from 

60 to 90 kg was identified on SSC8. A further QTL for LAR was identified on SSC9 

around the same location as the QTL for PAR for the same growth period (120-140 kg). 

The QTL for PAR and LAR on SSC9 were identified around numerous QTL for lean 
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and fat tissue (Figure 2.2) where the Pietrain breed is associated with increased leanness 

and reduced fatness. Therefore, the reason for these QTL for PAR and LAR is likely to 

be change in body composition. The QTL for PAR on SSC10 was located around no 

other QTL than for DG, suggesting that the reason for this QTL is likely to be growth 

rate per se. In contrast to the QTL on SSC9 for LAR which was identified around QTL 

for subcutaneous fat, the QTL on SSC8 for LAR was positioned at the same location as 

the QTL for IMF detected in this study (Figure 2.3). QTL have been previously reported 

in this region for fat tissue, growth, weight gain and carcass weight (cited in Table 2.4). 

Additionally, this study is the first to report QTL for protein and lipid content on SSC9. 

In a previous study by Mohrmann et al. (2006a), QTL for protein and lipid content at 

early stages of growth (30, 60, and 90 kg) were detected in a different genomic region 

(SSC6). As QTL for chemical body composition and accretion rates were identified in 

different genomic regions for different growth stages, it is likely that these components 

are regulated by more than one genomic region and regulated differently throughout 

growth. 

 

QTL for FCR, DFI and DG were identified in the present study on SSC2, SSC4, SSC9 

and SSC10. The QTL for FCR identified on SSC2 is probably caused by a change in 

body composition, because it is positionally associated with QTL in which the Pietrain 

allele resulted in an increase in lean tissue and a decrease in fat tissue, and in this region, 

no growth QTL were detected (Figure 2.4). In contrast, the QTL for FCR from 60 to 90 

kg on SSC13 identified in the previous study by Mohrmann et al. (2006a) is probably 

caused by a QTL associated with protein accretion, which was located at the same 

chromosomal position. No reports confirm the QTL identified in the present study for 

FCR on SSC4, although QTL have been reported in a different region of SSC4 for food 

consumption and FCR (Cepica et al. 2003a). QTL for early body weight and weight gain 

have been reported in the same genomic region as the QTL identified in the present 

study for DFI on SSC2 (cited in Table 2.4). QTL have not been reported for DFI in this 

region, however significant and suggestive QTL for this trait have been found in two 

other genomic regions by Houston et al. (2005), one of which was located at the same 
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position as a QTL for DG reported by Lee et al. (2003a). No QTL have been reported 

confirming the QTL for DFI on SSC10; however, a QTL has been reported for daily 

gain in a similar region (cited in Table 2.4). At these QTL in the present study, Pietrain 

alleles are associated with lower DFI and heterozygous animals are associated with 

higher DFI. This is likely to be a result of long-term selection of the Pietrain breed for 

increased lean content and reduced backfat, known to have an unfavourable genetic 

association with feed intake (e.g. Roehe et al. 2003). At the QTL for DG on SSC9, 

heterozygous animals showed significantly higher daily gain (87 g/day) due to 

dominance, which is important because growth of purebred Pietrain are often restricted 

due to limited feed intake capacity (Roehe 2006). In contrast, the QTL identified on 

SSC10 for DG showed additive effects where Pietrain alleles are associated with 

decreased DG. 

 

In the present study, QTL for physical body composition traits were identified at the 

slaughter weight of 140 kg body weight, which is higher than would occur within 

commercial pig production. In this study animals were grown to a higher body weight in 

order to investigate QTL affecting growth traits beyond commercial slaughter weight. 

The QTL identified in the present study for physical body composition were in most 

cases confirmed by reports in the literature from animals slaughtered at lower 

commercial weights and therefore the QTL identified in the present study are of interest 

for breeding purposes. 

 

A large number of QTL with significant imprinting effects were identified in the present 

study, of which some QTL were not detected using an additive and dominance model. 

For several lean and fat tissue traits, QTL expressing maternal imprinting (paternal 

expression) were identified in the same region of SSC2 where an imprinted QTL has 

been mapped to the paternally expressed IGF2 locus (Nezer et al. 1999). Therefore the 

IGF2 locus is the most probable candidate for the effects detected in this study. A 

maternally expressed QTL for early growth has been detected close to the QTL showing 

maternal imprinting effects identified in the present study on SSC8 for lean tissue 
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characteristics (de Koning et al. 2001a). Milan et al. (2002) reported a QTL on SSC9 

expressing imprinting for (ham + loin)% near the QTL showing maternal imprinting in 

the present study for carcass characteristics, lean tissue, fat tissue, LAR and DG. 

Additionally on SSC9, QTL with imprinting effects for live weight, average daily gain 

and belly weight have been reported in the same region as the QTL for lean content 

showing maternal imprinting identified in the present study (Milan et al. 2002; 

Quintanilla et al. 2002). de Koning et al. (2001a) found a paternally expressed QTL for 

early growth rate on SSC10 in the same region as the QTL showing maternal imprinting 

detected in the present study for tail weight and shoulder lean meat weight. Thomsen et 

al. (2004) reported maternally expressed QTL on SSC10 for fat tissue and meat quality 

traits and a paternally expressed QTL for lean tissue in the same region as the paternally 

expressed QTL detected in the present study for external loin fat weight. On SSC14, a 

paternally expressed QTL for growth was detected by de Koning et al. (2001a) close to 

the QTL detected in the present study showing paternal imprinting effects for carcass, 

lean tissue and fat tissue characteristics. Additionally, Rohrer et al. (2005) identified 

paternally expressed QTL in this region for meat quality traits. Therefore, imprinting 

effects are likely to play an important role in the regulation of physical and chemical 

body composition. 

 

In the present study a large number of QTL with significant imprinting effects were 

identified. To date, there is limited evidence of imprinting effects in pigs and therefore 

many of the imprinting effects identified in the present study have not been reported 

before. On the other hand, there is a lot of evidence for imprinting effects in humans (see 

geneimprint, www.geneimprint.com). Investigation of the comparative regions of the 

human genome revealed imprinting effects which provide support for the imprinted QTL 

of the present study. Regions of human chromosomes 5 and 11 correspond to the region 

of SSC2 where QTL with significant maternal imprinting (paternal expression) effects 

were identified in the present study. Genes in these corresponding regions also show 

maternal imprinting, including Transmembrane protein 157 (Luedi et al. 2007) on 

human chromosome 5 and Insulin-like growth factor 2, Insulin-like growth factor 2 
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antisense, Insulin and Transient receptor potential cation channel, subfamily M, member 

5 on human chromosome 11 (Chao and D’Amore 2008, Prawitt et al. 2000). There is 

evidence for genes on human chromosome 8 which show paternal imprinting (maternal 

expression) including Potassium channel, subfamily K, member 9 and Glutamic-

pyruvate transaminase (Luedi et al. 2007). This region of human chromosome 8 is 

comparative to the region of SSC4 where a QTL was identified for thick rib showing 

paternal imprinting effects in the present study. Maternally imprinted genes have been 

identidied on human chromosome 11, including Kelch repeat and BTB domain 

containing 3 (Luedi et al. 2007) and Succinate dehydrogenase complex, subunit D, 

integral membrane protein (Hensen et al. 2004) which is comparative to the region of 

SSC9 where maternal imprinting effects were identified for lean and fat tissue. 

Furthermore, there is evidence for a maternally imprinted gene on human chromosome 4 

(Spondin 2, extracellular matrix protein) (Luedi et al. 2007) which is comaprative to the 

region of SSC8 where a maternally imprinted QTL has been identified in the present 

study for lean tissue. 

 

An important point to note is that in many cases the dominance and imprinting effects 

identified in the present study are higher than the additive effect and therefore the results 

should be interpreted with care. Therefore, these effects need to be confirmed in further 

studies. 
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physical body composition and deposition on pig 
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Abstract 
 

QTL analysis of pig chromosome X (SSCX) was carried out using a methodology which 

accounts accurately for the features of sex chromosomes such as their heterogeneity, 

pseudoautosomal region and dosage compensation phenomenon. A three-generation 

full-sib population of 386 animals was created by crossing Pietrain sires with a crossbred 

dam line. Phenotypic data for 72 traits were available for at least 292 and up to 315 F2 

animals, for chemical body composition measured in live animals at five target weights 

from 30 to 140 kg, daily gain and feed intake measured throughout growth, and carcass 

characteristics obtained at slaughter weight (140 kg body weight). In the 

pseudoautosomal region, QTL were identified for entire loin weight, which showed 

paternal imprinting. A suggestive QTL for feed intake was detected closely linked to 

SW2456, at which Pietrain alleles were associated with higher feed intake. This is 

unexpected for a breed known for its low feed intake capacity. At the telomeric end of 

the q arm of SSCX, QTL were identified for jowl weight and lipid accretion. 

Furthermore, suggestive QTL for chemical body composition at 30 kg body weight were 

identified. The results indicate that SSCX is important for physical and chemical body 

composition and accretion as well as feed intake regulation. 
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3.1 Introduction 
 

To understand the genetic control of economically important traits in pigs, a large 

number of studies have investigated quantitative trait loci (QTL) that contribute to 

variation in these traits (e.g. Rohrer and Keele 1998ab; Milan et al. 2002; Geldermann et 

al. 2003). Most QTL have been identified on autosomes with fewer QTL reported on the 

sex chromosomes. One reason may be that the sex chromosomes are of less importance 

for the genomic regulation of these traits. Another likely reason may be the previous 

lack of available software to model the specific features of the sex chromosome more 

appropriately. These features are due to the fact that the mammalian X chromosome is 

considerably larger than the Y and richer in gene content (Graves 2006; Graves et al. 

2006). In humans, for example, there are 1 250 known genes on the X chromosome and 

only 147 on the Y chromosome (Hubbard et al. 2007). As a result, female cells, which 

carry two copies of the X chromosome, contain twice as many X-linked genes than 

males. Mammals have developed a mechanism to equal the dosage of the X 

chromosome gene products between sexes, called the dosage compensation phenomenon 

(Alberts et al. 2002; Heard and Disteche 2006). Furthermore, there is limited homology 

between chromosomes X and Y, except for a small pseudoautosomal region (Graves et 

al. 1998). 

 

Due to previous unavailability of QTL mapping software accounting for the features of 

chromosome X, most studies have adopted a regression based approach analysing males 

and females separately, which decreases the power to detect QTL (e.g. Knott et al. 1998; 

de Koning et al. 2001a; Geldermann et al. 2003). Recently, Perez-Enciso and Misztal 

(2004) developed software using mixed model methodology and maximum likelihood 

approach, which enables modelling of the specific features of the X chromosome in a 

QTL analysis. 

 

Therefore, the aim of the present study was to investigate QTL on pig chromosome X 

(SSCX) for chemical and physical body composition and deposition using a 
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methodology which accounts accurately for the features associated with this 

chromosome. 

 

 

3.2 Materials and methods 
 

3.2.1 Animal resources 

 

This study was based on data from a three-generation full-sib design, developed from 

crossing seven unrelated Pietrain grandsires, all heterozygous (Nn) at the ryanodine 

receptor 1 (RYR1) locus, to 16 unrelated grand-dams from a three-way cross of Leicoma 

boars with Landrace x Large White dams. From the F1 generation, eight boars were 

mated to 40 sows to produce the F2 generation, comprising 315 pigs of 49 families 

across two litters. Forty eight gilts and 46 barrows of the F2 generation were housed in 

straw-bedded pens individually and fed manually with feed consumption recorded 

weekly. The remaining animals (117 gilts and 104 barrows) were housed in mixed sex 

groups of up to 15 pigs in straw-bedded pens. Group housed animals were fed with an 

electronic feeding station (ACEMA 48), which recorded feed consumption at each visit. 

One of three pelleted diets were provided for weight ranges 30-60, 60-90 and 90-140 kg 

body weight, containing 13.8 MJ ME/kg and 1.2% lysine, 13.8 MJ ME/kg and 1.1% 

lysine, or 13.4 MJ ME/kg and 1.0% lysine, respectively. Maximal protein deposition 

was reached by providing pigs with ad libitum access to diets, which were formulated 

slightly above requirement. For a more detailed description of the project management 

see Landgraf et al. (2006ab) and Mohrmann et al. (2006ab). 
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3.2.2 Physical body composition 

 

Pigs were slaughtered at 140 kg body weight in a commercial abattoir. Phenotypic 

measurements of 37 traits relating to physical body composition were collected by two 

methods, the AutoFOM device and dissection. The AutoFOM device used an automatic 

ultrasound scanning technique to produce a three-dimensional image of the pig 

(Brondum et al. 1998). Using this device, measurements of valuable carcass cuts were 

obtained, including average fat thickness, belly weight, lean content, lean content of the 

belly and weights of entire and trimmed shoulder, loin and ham without bones. The right 

side of each carcass was dissected into weights of the primal cuts, neck, shoulder, loin, 

ham and belly. The former four cuts were dissected into lean and fat tissue. Furthermore, 

records were obtained for weights of jowl, thick rib, flank, front as well as hind hock, 

tail and claw. From the cold left carcass side, further measurements were obtained for 

carcass length; sidefat thickness; fat content and area of the belly; as well as loin eye 

area, fat area, and thinnest fat measure (fat degree B) measured at the 13th/14th rib 

interface. Further information about the dissection of carcasses is presented by Landgraf 

et al. (2006b). 

 

  

3.2.3 Chemical body composition 

 

In total, phenotypic information was available for 25 traits relating to chemical body 

composition and deposition. Protein content of the loin and intramuscular fat content 

were measured by near-infrared reflectance spectroscopy in the musculus longissimus 

thoracis et lumborum. Using the deuterium dilution technique, an in vivo method of 

determining chemical body composition based on body water; protein, lipid and ash 

content of the empty body were determined at target body weights of 30, 60, 90, 120, 

and 140 kg. The accuracy of this technique has been verified in previous studies using 

magnetic resonance imaging on live animals (Mohrmann et al. 2006b) and chemical 

analysis of serially-slaughtered animals (Landgraf et al. 2006a). This method determined 
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the water content of the empty body, from which the percentage of fat-free substance of 

the empty body was estimated. Based on the percentage of the fat-free substance, protein 

and ash content of the empty body were estimated, and lipid content was the deviation of 

the fat-free content from one. The equations for estimating these chemical components 

were developed by Landgraf et al. (2006a) using the data of the F1 generation of the 

three generation full-sib population analysed in the present study. Protein and lipid 

accretion rates of four stages of growth were calculated as the difference between 

protein or lipid composition at two consecutive target weights divided by days of growth 

between the target weights. Furthermore, daily gain, feed intake and food conversion 

ratio were recorded at different stages of growth. Means and standard deviations of the 

72 traits analysed in the present study are presented in Tables 3.1 and 3.2. 
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Table 3.1 Means and standard deviations (SD) of carcass characteristics measured on pigs of 
the F2 generation 

Trait Mean SD Number of 
Records 

AutoFOM traits 
AF average fat thickness (mm) 22.295 4.989 313 
AF entire shoulder weight (kg) 6.176 0.406 313 
AF shoulder lean meat weight (kg) 4.577 0.408 313 
AF entire loin weight (kg) 6.265 0.396 313 
AF loin lean meat weight (kg) 3.764 0.352 313 
AF entire ham weight (kg) 13.573 0.814 313 
AF ham lean meat weight (kg) 9.511 1.052 313 
AF entire belly weight (kg) 9.168 0.548 313 
AF lean content (%) 50.509 6.403 313 
AF lean content of belly (%) 43.741 7.891 313 
Carcass characteristics – dissected carcass cuts 
Entire neck weight (kg) 5.316 0.505 306 
Neck weight without external fat (kg) 4.160 0.430 306 
External neck fat weight (kg) 1.156 0.285 306 
Entire shoulder weight (kg) 8.452 0.564 307 
Shoulder weight without external fat (kg) 5.910 0.584 307 
External shoulder fat weight (kg) 1.403 0.261 307 
Entire loin weight (kg) 9.163 0.730 308 
Loin weight without external fat (kg) 6.650 0.624 308 
External loin fat weight (kg) 2.513 0.645 308 
Entire ham weight (kg) 16.908 0.997 310 
Ham weight without external fat (kg) 11.568 1.087 310 
External ham fat weight (kg) 2.566 0.493 310 
Belly weight (kg) 6.461 0.655 308 
Jowl weight (kg) 1.914 0.284 306 
Thick rib (kg) 1.441 0.217 307 
Flank weight (kg) 1.789 0.407 308 
Front hock weight (kg) 1.139 0.189 307 
Hind hock weight (kg) 1.430 0.141 310 
Tail weight (kg) 0.429 0.134 310 
Hind claw (kg) 0.914 0.122 310 
Carcass characteristics – standard performance test 
Carcass length (cm) 107.947 49.296 310 
Sidefat thickness1 (cm) 3.847 0.866 315 
Thinnest fat measure1 (cm) 1.725 0.552 314 
Loin eye area M.l.t.l.1,2 (cm2) 54.160 6.767 314 
Fat area M.l.t.l.1,2 (cm2) 24.514 5.884 314 
Fat content of belly (%) 53.508 8.272 306 
Fat area of belly (cm2) 23.789 6.782 306 
1collected at the 13th/14th rib interface.   
2measured on musculus longissimus thoracis et lumborum. 
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Table 3.2 Means and standard deviations (SD) of chemical body composition, accretion rates, 
daily gain, daily feed intake and food conversion ratio measured on pigs of the F2 generation 

Trait Mean SD Number of 
Records 

Chemical body composition 
Intramuscular fat content (%) 1.343 0.542 313 
Protein content of loin (%) 24.215 2.066 313 
Protein content of FFS, 30 kg (%) 18.656 0.524 299 
Protein content of FFS, 60 kg (%) 20.115 0.419 305 
Protein content of FFS, 90 kg (%) 21.209 0.426 311 
Protein content of FFS, 120 kg (%) 21.960 0.506 302 
Protein content of FFS, 140 kg (%) 22.359 0.543 302 
Protein content of empty body, 30 kg (%) 16.643 0.065 310 
Protein content of empty body, 60 kg (%)  16.477 0.047 305 
Protein content of empty body, 90 kg (%) 16.359 0.045 311 
Protein content of empty body, 120 kg (%) 16.282 0.051 302 
Protein content of empty body, 140 kg (%) 16.242 0.053 302 
Lipid content of empty body, 30 kg (%) 10.845 2.920 310 
Lipid content of empty body, 60 kg (%) 18.045 2.000 305 
Lipid content of empty body, 90 kg (%) 22.832 1.773 311 
Lipid content of empty body, 120 kg (%) 25.813 1.926 302 
Lipid content of empty body, 140 kg (%) 27.308 1.987 302 
Chemical accretion rates 
DG, 30-60 kg (kg/day) 0.677 0.114 315 
DG, 60-90 kg (kg/day) 0.838 0.138 312 
DG, 90-120 kg (kg/day) 0.779 0.140 313 
DG, 120-140 kg (kg/day) 0.718 0.193 313 
PAR, 30- 60 kg (kg/day) 0.110 0.018 300 
PAR, 60-90 kg (kg/day) 0.135 0.023 300 
PAR, 90-120 kg (kg/day) 0.125 0.022 299 
PAR, 120-140 kg (kg/day) 0.115 0.031 292 
LAR, 30-60 kg (kg/day 0.168 0.040 300 
LAR, 60-90 kg (kg/day) 0.271 0.060 300 
LAR, 90-120 kg (kg/day) 0.274 0.069 301 
LAR, 120-140 kg (kg/day) 0.267 0.099 293 
Feed intake and food conversion traits 
DFI 60-90 kg (kg/day) 2.467 0.361 312 
DFI 90-120 kg (kg/day) 2.818 0.376 313 
DFI 120-140 kg (kg/day) 2.815 0.496 313 
FCR 60-90 kg (kg feed/kg gain) 2.975 0.379 312 
FCR 90-120 kg (kg feed/kg gain) 3.678 0.517 313 
FCR 120-140 kg (kg feed/kg gain) 4.214 1.975 313 
Definition of symbols: FFS, fat free substance; DG, daily gain; PAR, protein accretion rate; LAR, lipid 
accretion rate; DFI, daily feed intake; FCR, food conversion ratio. 
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3.2.4 Genotypic data 

 
Blood samples were collected from F0, F1 and F2 animals from the vena jugularis and 

DNA was isolated. SSCX was chosen for genotyping because of the likely associations 

with lean and fat carcass characteristics, indicated by reports in the literature (e.g. 

Rohrer and Keele 1998ab; Bidanel et al. 2001; Milan et al. 2002; Geldermann et al. 

2003; Perez-Enciso et al. 2005). All animals were genotyped for eight informative 

microsatellite markers. Markers and their distances were taken from the published 

USDA linkage map (http://www.marc.usda.gov; Rohrer et al. 1996), which provided all 

information relating to their positions and alleles (Table 3.3). The average distance 

between markers was 18.3 cM and the largest gap was 22.4 cM.  

 

 

 
Table 3.3 Markers used in the present QTL mapping project, their relative map position based 
on the USDA pig map, number of different alleles, heterozygosity in F1 generation (H) and 
polymorphic information content in the F2 generation (PIC) 

Marker Position (cM) 

 

Number 

of alleles 

H PIC 

SW949 0.0 6 0.65 0.53 

SW980 11.9 7 0.87 0.80 

SW1903 33.0 5 0.87 0.70 

SW2456 55.4 6 0.81 0.67 

SW259 74.4 5 0.89 0.70 

SW1943 87.4 5 0.70 0.70 

SW707 107.9 4 0.49 0.59 

SW2588 128.4 4 0.25 0.37 
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3.2.5 Statistical analysis 

 
QTL mapping was carried out using the software QxPak version 2.16 (Perez-Enciso and 

Misztal 2004). This program uses mixed models and the maximum likelihood method to 

estimate the QTL location and effects. The analysis of QxPak proceeds in two main 

stages. In the first stage the probabilities of alleles being identical-by-descent are 

calculated using a Monte Carlo Markov Chain algorithm. In the second stage, the mixed 

model equations are built and the QTL estimates are obtained using a maximum 

likelihood approach via the expectation-maximisation algorithm. At each putative 

position the likelihood ratio is computed and the estimates for the parameters are those 

where the likelihood is highest. In this analysis the significance is tested with a 

likelihood ratio test which consists of computing minus twice the difference in log-

likelihoods between the alternative and the null models (Perez-Enciso and Misztal 

2004). 

 

A fixed effects model was chosen for the QTL analysis, estimating additive and 

dominance effects. In cases where the dominance effect was not significant, the analysis 

was repeated with an additive only model. Maternal and paternal imprinting were tested 

for only in the pseudoautosomal region. In this analysis, the additive estimate is defined 

as half of the difference between animals homozygous for alleles from the grandpaternal 

sire line and those homozygous for alleles from the grandmaternal dam line. A positive 

additive genetic value indicates that the allele originating from the grandpaternal sire 

line (Pietrain) showed an increasing QTL effect compared to the allele from the 

grandmaternal dam line and vice versa. The dominance effect is defined as the deviation 

of heterozygous animals from the mean of both types of homozygous animals. In this 

analysis imprinting tested with models where only the allele of paternal origin is 

expressed (maternal imprinting) and only the allele of the maternal origin is expressed 

(paternal imprinting) i.e. setting the maternal or paternal coefficients to zero. The 

individual QTL analysis was applied with the following models: 
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Carcass characteristics measured at slaughter: 

,idaiiiii edCaCslwtbatchMHSsexy ++++++= β                                [1] 

 

Chemical body composition at each target weight: 

,idaiiiii edCaCwtbatchMHSsexy ++++++= β                                    [2] 

 

Chemical accretion rates (protein and lipid accretion): 

,idaiiiiii edCaCendwtstwtbatchMHSsexy +++++++= ββ    [3] 

 

Feed intake and food conversion ratio: 

,idaiiiiiii edCaCendwtstwthtbatchMHSsexy ++++++++= ββ   [4] 

 

where  is the i-th individual phenotype.  Fixed effects and covariates were fitted in the 

models depending on their significance for the trait. Sex, RYR1 (MHS) genotype and 

batch were included in the model for all traits. In addition, housing (ht: housing type) 

was included as a fixed effect for feed intake and food conversion ratio traits. Body 

weight at slaughter (slwt) was fitted in the model as a covariate for carcass 

characteristics measured at slaughter. For chemical body composition traits measured at 

different target weights, body weight at that target weight (wt) was fitted in the model as 

a covariate. Protein and lipid accretion, daily gain, feed intake and food conversion ratio 

were adjusted for the small differences between target and actual body weight at the start 

(stwt) and end (endwt) of the considered weight range. The additive (a) and dominance 

(d) effects were estimated by consideration of the coefficients of Ca and Cd, respectively. 

The coefficient Ca was calculated for each individual and position as the probability of 

the individual being homozygous for alleles of the grandpaternal sire line (QQ) minus 

the probability of pigs being homozygous for alleles from the grandmaternal dam line 

(qq). The coefficient Cd is the probability of the individual being at the chromosomal 

position heterozygous (Qq). 

iy
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The analysis provides the likelihood ratios under the models tested and associated 

nominal P-values. A previous study by Perez-Enciso et al. (2000) showed that nominal 

P-values 0.005 and 0.001 correspond to 5% and 1% chromosome-wide significant P-

values, respectively, based on the chi-squared distribution with two degrees of freedom. 

Therefore, in the present study, nominal P-values <0.001, 0.005 and 0.01 were treated as 

significant at the 1%, 5% and suggestive at the 10% chromosome-wide level, 

respectively. Table 3.3 provides information for the used markers and their positions, 

number of alleles, heterozygosity in the F1 generation and polymorphic information 

content in the F2 generation. 

 

 

3.2.6 Methodology 

 
The mixed model methodology applied in this study includes all pedigree information 

and uses the maximum likelihood method to estimate the QTL effects. The flexibility of 

the methodology allowed for the consideration of the pseudoautosomal region and to 

account for the heterogeneity and dosage compensation phenomenon of sex 

chromosomes. The methodology applied here is described in Perez-Enciso et al. (2002) 

and implemented in the programme QxPak. 

 

In more detail, the main issues relate to the modelling of the mammalian dosage 

compensation and computing the , sp sAρ  and sBρ  coefficients.  is the average 

probability for the ith individual of a gene within segment s being of breed A origin. 

sip

)',( iisAρ , is the probability of individuals i and i’ having received identical-by-descent 

(IBD) alleles of breed A, and )',( iisBρ  is the probability of individuals i and i’ having 

received identical-by-descent (IBD) alleles of breed B. 
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In the differential region of the X chromosome (the non-pseudoautosomal region) the 

male phenotype is expressed as: 

,2 egMM ++= μγ  

 

and the female phenotype as: 

,2,1
2211 edgg ggFF ++++= ψψμγ  

 

μ is sex mean; gi, the genetic origin, indicates the haplotype origin, 1 male and 2 female; 

ψh is the dosage compensation effect for hth haplotype allele effect and d is the 

dominance interaction. Interaction between alleles (dominance) can only be estimated in 

females in this case. The allele which contributes to the phenotype of the male is always 

of the mothers origin (g2). Parameters ψ1 and ψ2 should always add up to 1.  

 

The genetic covariances between two crossed individuals are calculated as: 

 

if i and i’ are both males  

,)Pr()Pr(),( 2
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2
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if i is a male and i’ is a female 
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if i and i’ are both females 
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where,  is the probability of alleles  and  being IBD and of breed 

origin A, and  is the probability of alleles  and  being IBD and 
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of breed origin B.  is the variance of the gene effects in breed A and  is the 

variance of the gene effects in breed B. We define  when i is a male 

and   a female. 

2
Agσ
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∑ =
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In addition the pseudoautosomal region of the X and Y chromosomes has been 

considered in which males only recombine (Perez-Enciso et al. 2002). 

 

 

3.3 Results 
 

From the genomic analysis, three significant QTL and five suggestive QTL were 

identified for carcass cuts, lean tissue characteristics, chemical body composition and 

deposition as well as daily feed intake. The additive and dominance effects of these QTL 

are presented in Table 3.4. Two QTL were identified with imprinting effects in the 

pseudoautosomal region which is shown in Table 3.5. 
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Table 3.4 Evidence for quantitative trait loci (QTL) for carcass cuts, chemical body composition, 
lipid accretion and feed intake on pig chromosome X 

Trait LR Pos1 % Var2 a ± SE3 d ± SE3 

Carcass characteristics – dissected carcass cuts 

Entire loin weight (g) 11.56** 7 3.7 283.8 ±  82.7 - 

Loin weight without external fat (g) 7.68a 11 2.5 184.5 ±  66.1 - 

Jowl weight (g) 17.91** 128.4 5.8 57.4 ±  37.6 216.9 ±  74.3 

Chemical body composition and accretion rates 

Lipid cont. empty body, 30 kg (%) 10.38a 83 3.3 -0.496 ± 0.259 1.705 ± 0.532 

Protein cont. empty body, 30 kg (%) 10.43a 83 3.8 0.011 ± 0.006 -0.038 ± 0.012 

Protein cont. FFSEB, 30 kg (%) 9.36a 82 3.1 -0.093 ± 0.046 0.285 ± 0.095 

LAR 90-120 g (g/day) 9.60* 128.4 3.2 26.7 ±  8.5 - 

Daily gain, feed intake and food conversion ratio 

DFI 120-140 g (g/day) 7.00a 56 2.3 101.6 ±  38.2 - 

LR, likelihood ratio; FFSEB, fat-free substance of the empty body; LAR, lipid accretion rate; DFI, daily 
feed intake. 
1Positions of the QTL in cM based on the USDA reference map. 
2Percentages of F2 variance explained by the QTL calculated as the proportion of residual variances due to 
the QTL effect on the residual variances excluding the QTL effect: (residual variance of model with no 
QTL effect - residual variance of model with QTL effect)/residual variance of model with no QTL effect. 
3Estimated additive (a) and dominance (d) effects and their standard errors (SE). 
Values in bold represent significant additive or dominance effects. 
a implies suggestive at the 10% chromosome-wide level. 
* and ** implies significance at the 5%, or 1% chromosome-wide levels, respectively. 
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Table 3.5. Evidence for quantitative trait loci (QTL) associated with imprinting effects in the 
pseudoautosomal region 

Trait LR Pos1 % Var2 a ± SE3 Imprinting  

Carcass characteristics (lean and fat) 

Entire loin weight (g) 10.07* 6 3.2 133.3 ± 41.6  Paternal 

Neck weight without external fat4 (g) 8.85* 1 2.8 374.0 ± 124.8  Maternal 

LR, likelihood ratio. 
1Positions of the QTL in cM based on the USDA reference map. 
2Percentages of F2 variance explained by the QTL calculated as the proportion of residual variances due to 
the QTL effect on the residual variances excluding the QTL effect: (residual variance of model with no 
QTL effect - residual variance of model with QTL effect)/residual variance of model with no QTL effect. 
3Estimated additive (a) effects and their standard errors (SE). 
4New QTL only identified when the imprinting effect is included in the model. 
Values in bold represent significant additive effects. 
* QTL significant at the 5% chromosome-wide level. 

 

 

3.3.1 Carcass characteristics 

 

A QTL significant at the 1% chromosome-wide level was identified for entire loin 

weight in the pseudoautosomal region of SSCX at 7 cM between SW949 and SW980, 

explaining 3.7% of the phenotypic variance. The significant additive effect at this QTL 

indicates that the grandpaternal Pietrain breed is associated with 284 g higher loin 

weight. In a similar location within the pseudoautosomal region at 11 cM a suggestive 

QTL was identified for loin weight without external fat explaining 2.5% of the 

phenotypic variance (Figure 3.1). The significant additive effect at this QTL indicates 

that the grandpaternal Pietrain breed is associated with 185 g higher lean meat weight of 

the loin cut.  
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Figure 3.1  
Likelihood ratio curves for evidence of quantitative trait loci for entire loin weight and loin lean 
meat weight in the pseudoautosomal region of SSCX. Horizontal lines indicate chromosome-
wide significance levels. 
 

 

At the telomeric end of the q arm of SSCX, at the same location as SW2588 (128.4 cM), 

a QTL significant at the 1% chromosome-wide level was identified for jowl weight 

accounting for 5.8% of the phenotypic variance. The significant dominance effect at this 

QTL indicates that heterozygous animals are associated with 217 g higher jowl weight.  
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3.3.2 Chemical body composition and accretion 

 
At the telomeric end of the q arm of SSCX, in the same location as the QTL for jowl 

weight and SW2588 (128.4 cM), a QTL significant at the 5% chromosome-wide level 

was identified for lipid accretion rate during the growth period from 90-120 kg (Figure 

3.2). This QTL accounts for 3.2% of the phenotypic variance and the significant additive 

effect indicates that the purebred Pietrain breed is associated with 27 g higher lipid 

accretion rate at this growth period.  
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Figure 3.2  
Likelihood ratio curves for evidence of quantitative trait loci for lipid accretion rate (LAR) 90-120 
kg and jowl weight at the telomeric end of the q arm of SSCX. Horizontal lines indicate 
chromosome-wide significance levels. 
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Suggestive QTL for protein content of the fat-free substance and protein and lipid 

content of the empty body were identified between SW259 and SW1943 at 82-83 cM 

explaining 3.1%, 3.8% and 3.3% of the phenotypic variance, respectively (Figure 3.3). 

These traits showed similar likelihood ratio profiles as they are closely correlated. At 

these QTL, Pietrain alleles are associated with decreased additive genetic effects of 

protein content of the fat-free substance and heterozygous animals showed dominance 

effects associated with increased lipid content of the empty body, decreased protein 

content of the empty body and increased protein content of the fat-free substance at 30 

kg body weight.   
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Figure 3.3  
Likelihood ratio curve for evidence of quantitative trait loci for chemical body composition at 30 
kg body weight. The horizontal line indicates the chromosome-wide significance level. 
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3.3.3 Daily gain, feed intake and food conversion ratio 

 

A single suggestive QTL was identified for daily feed intake at a late stage of growth 

(120-140 kg) in a region of SSCX (56 cM) where no other QTL were identified (Figure 

3.4). This QTL accounts for 2.3% of the phenotypic variance and the significant additive 

effect indicates that Pietrain alleles are associated with 102 g/day higher feed intake at 

this stage of growth. 
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Figure 3.4  
Likelihood ratio curve for evidence of quantitative trait loci for daily feed intake at 120-140 kg on 
SSCX. The horizontal line indicates the chromosome-wide significance level. 
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3.3.4 Imprinting in the pseudoautosomal region 

 

Two QTL with significant imprinting effects were identified in the pseudoautosomal 

region (Table 3.5). At 6 cM significant paternal imprinting effects were identified for 

entire loin weight, indicating that only the maternal allele is expressed at this QTL. A 

QTL with significant maternal imprinting effects was identified at 1 cM for neck weight 

without external fat, indicating that only the paternal allele is expressed at this QTL. 

This QTL for neck weight without external fat was only identified when imprinting was 

considered in the analysis. 

 

 

3.4 Discussion 

 
The aim of the present study was to investigate QTL on pig chromosome X for traits of 

carcass characteristics, chemical and physical body composition and accretion rates as 

well as daily gain, feed intake and food conversion ratio considering the specific features 

of the sex chromosomes. There is published evidence in the literature for QTL on pig 

chromosome X for carcass characteristics, lean tissue, growth and fatness (e.g. Rohrer 

and Keele 1998ab; Bidanel et al. 2001; Milan et al. 2002; Cepica et al. 2003b; Perez-

Enciso et al. 2005). In particular, the study by Milan et al. (2002) reported QTL on 

SSCX with the largest effects for leanness and fatness traits based on a cross between 

the French Large White and the Meishan breeds. In the present study, QTL were 

identified on SSCX for carcass characteristics (entire carcass cuts and lean tissue), 

chemical body composition, lipid accretion as well as feed intake. The QTL analysis is 

based on animals of the F2 full-sib design of crosses between Pietrain boars and 

crossbred commercial dams in order to reflect the commercial product of growing-

finishing pigs. Therefore, the dam founder QTL alleles may not in all cases be fixed 

which has to be considered in the interpretation of the results.   
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In pigs, the pseudoautosomal region lies at the telomeric end of the p arm of SSCX and 

is a short section (~ 11 cM) which is homologous to the Y chromosome. In the present 

study this region showed important associations with entire loin weight and lean meat of 

the loin cut (Figure 3.1). The purebred Pietrain breed is associated with higher loin 

weight (284 g) and lean meat weight of the loin cut (185 g). Within the pseudoautosomal 

region of SSCX, QTL for entire carcass cuts and lean tissue are also reported in the 

literature (Cepica et al. 2003b; Geldermann et al. 2003; Perez-Enciso et al. 2005). From 

previous genomic analysis of autosomes using the same phenotypic data as the present 

study (Mohrmann et al. 2006a; Duthie et al. 2008; Chapter 2), Pietrain alleles of QTL on 

SSC2, SSC6, SSC8, SSC9 and SSC13 are also associated with increased weights of 

carcass cuts and lean tissue. However, this was not the case on SSC14 where the Pietrain 

allele was associated with decreased weights of these characteristics, suggesting a 

cryptic gene in a breed selected over a long period for leanness. Pseudoautosomal 

regions also exist in other mammals; however the length and gene content seem to be 

variable, such that the mouse and human pseudoautosomal regions are completely non-

homologous. This region was considered to have an important role in meiotic pairing 

and male fertility, however the inconsistent gene contents of this region across species 

and the absence of this region in marsupials, suggests that this region may not be 

important for fertility in mammals (Graves et al. 1998). The results of the present study 

confirm that this region in pigs contains genes attributing to carcass characteristics.  

 

In regions of SSCX other than the pseudoautosomal region, there are reports of QTL for 

lean tissue characteristics (e.g. Rohrer and Keele 1998b; Milan et al. 2002; Geldermann 

et al. 2003). In the present study no QTL for lean tissue were identified. This may be 

because the favourable lean tissue alleles may already be fixed in the populations of this 

study. It is also surprising that no QTL were identified in the present study for fatness as 

there are numerous reports in the literature for fatness QTL on SSCX (e.g. Rohrer and 

Keele 1998a; Bidanel et al. 2001; Milan et al. 2002; Perez-Enciso et al. 2005; Rohrer et 

al. 2005). Most of these studies have been based on crosses of breeds characterised by 

their high leanness, with the Meishan, Wild Boar or Iberian breeds characterised by their 
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high fatness. Therefore, the QTL may not be segregating in the population of the present 

study, which have been selected for leanness over a long-term. 

 

It is likely that the genomic regulation of chemical body components and their accretion 

is a complex process involving more than one genomic region and regulated differently 

throughout growth. Measurements of chemical body composition in live animals are 

expensive. Therefore QTL associated with these traits are limited in the literature to two 

studies analysing the data of the present population across several autosomes 

(Mohrmann et al. 2006a; Duthie et al. 2008; Chapter 2). In the present study, a 

significant QTL was identified for lipid accretion rate at 90 to 120 kg on SSCX (Figure 

3.2). QTL for LAR have only been reported in the study by Duthie et al. (2008; Chapter 

2) (60-90 kg, SSC8; 120-140 kg, SSC9). Pietrain alleles are associated with increased 

lipid accretion rate at 60 to 90 kg (SSC8) and 90 to 120 kg (SSCX). A significant 

dominance effect was identified at the QTL for lipid accretion rate at 120 to 140 kg on 

SSC9; however no dominance effect was identified on SSCX. In the present study, the 

QTL for lipid accretion rate was identified in a region of no QTL for fat tissue, unlike 

the QTL detected from previous analysis, which were identified around numerous QTL 

for subcutaneous fat (SSC9) and a QTL for intramuscular fat (SSC8). This is surprising 

as a large number of QTL have been reported in the literature around this region of 

SSCX for fat tissue traits (Milan et al. 2002; Perez-Enciso et al. 2002; Rohrer et al. 

2005). At the same location as the QTL associated with lipid accretion rate a QTL for 

jowl weight was found (Figure 3.2). Heterozygous animals are associated with higher 

weight of the jowl cut. A QTL for jowl weight was also detected on SSC1 from previous 

analysis of the same phenotypic data of this study (Mohrmann et al. 2006a). In contrast, 

at this QTL heterozygous animals are associated with lower jowl weight. Furthermore a 

significant additive effect indicated that Pietrain alleles were associated with lower jowl 

weight on SSC1. There are no reports of QTL for this characteristic in the literature. 

 

Suggestive QTL were identified in the present study for chemical body composition at 

an early growth stage (30 kg body weight), in a region of SSCX where no other QTL 
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were identified (Figure 3.3). From previous analysis of the data, QTL for chemical body 

composition for early growth stages were also identified (30 kg, SSC6; 60 kg, SSC6 and 

SSC9) (Mohrmann et al. 2006a; Duthie et al. 2008; Chapter 2). At the QTL on SSC6 

and SSC9 for chemical body composition at 30 kg and 60 kg, respectively, significant 

dominance effects indicate that heterozygous animals are associated with decreased 

protein content of the fat-free substance and lipid content of the empty body, but 

increased protein content of the empty body. In contrast, on SSCX and SSC6 for 

chemical body composition at 30 kg and 60 kg, respectively, significant dominance 

effects indicate that heterozygous animals are associated with increased protein content 

of the fat-free substance and lipid content of the empty body, and decreased protein 

content of the empty body. The QTL likelihood ratio profile for protein content of the 

empty body is almost identical to the QTL for lipid content of the empty body. This is 

expected for traits changing proportionally in opposite directions. Around these QTL on 

SSCX for chemical body composition, a large number of QTL have been reported for 

lean and fat tissue as well as growth (e.g. Milan et al. 2002; Cepica et al. 2003b; Rohrer 

et al. 2005; Cepica et al. 2007). Therefore it is surprising that no QTL were identified in 

this study for physical body composition traits in this region of SSCX.  

 

Cepica et al. (2006) assigned seven genes between markers SW259 and SW1943, within 

the same region as the QTL for chemical body composition identified in the present 

study. Based on the location and role, Acyl-CoA synthetase long-chain 4 gene (ACSL4) 

is a potential positional candidate gene for the QTL for chemical body composition in 

the present study. ACSL4 has a key role in the metabolism of fatty acids and thus energy 

balance (Mercade et al. 2006). 

 

A suggestive QTL for daily feed intake for the growth stage 120 to 140 kg was 

identified in a region of SSCX where no other QTL were identified in the present study 

(Figure 3.4). In a previous study analysing the data of the present population across 

several autosomes, significant QTL for daily feed intake were identified for growth 

periods 60 to 90 kg on SSC6 and SSC10, 90 to 120 kg on SSC6 and 120 to 140 kg on 
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SSC2 (Mohrmann et al. 2006a; Duthie et al. 2008; Chapter 2). Pietrain alleles were 

associated with decreased feed intake at 60 to 90 kg (SSC10), as expected for a breed 

which has been intensively selected for lean content (Roehe et al. 2003; Roehe 2006). 

However, at the QTL detected on SSCX, Pietrain alleles (cryptic) are associated with 

102 g higher feed intake at 120 to 140 kg. This is unexpected, as the Pietrain breed is 

well known for its low feed intake capacity. Within the same marker bracket (SW2456-

SW259), Cepica et al. (2003b) reported a QTL for food consumption in a population 

derived from crossing Wild Boar and Meishan breeds. 

 

Imprinting can only be analysed for in the pseudoautosomal region of the X 

chromosome, where the X and Y chromosomes are homologous. Imprinting analysis is 

important to achieve a better understanding of the genetic control of important traits and 

to uncover QTL, which cannot be detected from the analysis considering only additive 

and dominance effects. In the present study, the QTL for entire loin weight showed 

paternal imprinting indicating that only the maternal allele is expressed at this QTL. 

Moreover, a QTL for neck weight without external fat was identified, which was not 

detected in the analysis without modelling imprinting. At this QTL, maternal imprinting 

was identified indicating that only the paternal allele is expressed. There is no 

information in the literature which has reported imprinting within the pseudoautosomal 

region of SSCX. 

 

The literature is sparse for QTL on chromosome X in other livestock species. In cattle 

and sheep, no QTL have been reported for similar traits on chromosome X. In cattle, 

only four QTL have been reported on chromosome X for reproduction and disease 

resistance traits (Kuhn et al. 2003; Zhang et al. 2004) and in sheep a single QTL has 

been reported for parasite resistance (Beraldi et al. 2007). There is limited evidence of 

QTL for production traits in these species and a concentrated effort to detect such QTL 

in these species is needed. The organization of the sex chromosomes in chickens is 

different to that of mammals, as females are the heterogametic sex (ZW) and males are 

the homogametic sex (ZZ) (Ellegren 2000). A large number of QTL for production traits 
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have been identified on the sex chromosome Z (e.g. Kerje et al. 2003; Ikeobi et al. 2004; 

Sasaki et al. 2004; Zhou et al. 2006).  

 

The results of the present study indicate that pig chromosome X is involved in the 

genomic regulation of physical and chemical body composition as well as growth and 

feed intake. Larger numbers of significant QTL were identified from previous analysis 

of the same data set across several autosomes (Mohrmann et al. 2006a; Duthie et al. 

2008; Chapter 2), indicating that SSCX likely plays a lesser role in the regulation of 

economically important traits in pig production. The QTL on SSCX did, however, 

account for similar proportions of the phenotypic variance. In summary, the results of 

the present study about sex-linked QTL influencing economically important traits, give 

further insight into their sex-related genomic regulation.  
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Chapter 4 
 

 

Epistatic quantitative trait loci affecting chemical body 
composition and deposition as well as feed intake and 
feed efficiency throughout the entire growth period of 

pigs 
 

 

 

 

 

 

 

 

 

 

 

 

 



Abstract 

 
A genomic scan for epistatic QTL was conducted on animals from a three generation 

full-sib population, created by crossing Pietrain sires with a crossbred dam line. All 

animals were genotyped for 88 molecular markers covering 10 autosomes. Phenotypic 

data was available for 315 F2 animals for chemical body composition measured in live 

animals, daily gain and feed intake. This study is the first to report epistatic QTL for 

these traits in pigs. Thirty two significant epistatic QTL pairs were identified 

contributing to the entire growth period (30 to 140 kg), four of which were between 

QTL which resided on the same chromosome. Epistatic effects were identified between 

QTL on all considered chromosomes except SSC9. In this study, different stages of 

growth were influenced by different pairs of epistatic QTL. The QTL pairs with the 

highest effect were for daily gain and protein accretion rate at 90 to 120 kg body weight 

between SSC1 and SSC2. These QTL explained large proportions of the phenotypic 

variance, at 10.3% and 10.2%, respectively. All types of epistatic effect were identified 

in this study, with the additive-by-additive effect being the most prevalent. This effect is 

heritable, providing an opportunity to exploit epistasis within breeding. 
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4.1 Introduction 
 

Most quantitative trait loci (QTL) mapping methods have focused on identifying the 

individual QTL effects (additive, dominance and imprinting) in the absence of 

interactions (epistasis). As a result, the genetic background at other loci has been 

assumed to have no impact on the phenotypic expression of these QTL (Lander and 

Botstein 1989; Carlborg and Haley 2004). In the simplest case, epistasis is defined as the 

interaction between one pair of loci, where the effect of one locus on a particular 

phenotype depends on the genotype at a second locus (Phillips 1998; Carlborg 2006). 

However, loci may interact in higher numbers and the interactions may be of different 

types (Falconer and Mackay 1996). Thus, the contribution of epistasis to the genomic 

control of complex traits is more complicated to detect than direct, individual gene 

effects.  

 

Epistasis may cause the individual QTL effects to decrease or even totally cancel each 

other. QTL displaying this type of epistasis are hard to find using standard mapping and 

are easily missed (Carlborg 2006). When epistasis is ignored, individual loci could 

remain undetected and the estimated effects of the detected QTL could be severely 

biased. Inaccurate QTL estimates can lead to invalid interpretations of the importance of 

QTL, and to problems of confirmation of QTL in further crosses. When attempts are 

made to use the QTL, for example in marker assisted selection, this will result in lower 

response and economic gain than predicted (Carlborg 2006). 

 

In order to gain a more accurate and unbiased understanding of the genetic background 

of economically important traits, epistatic effects need to be included in QTL mapping 

studies. Previous studies have already indicated that growth and body composition of 

pigs is regulated by numerous QTL located throughout the genome (Mohrmann et al. 

2006a; Duthie et al. 2008; Chapters 2 and 3). However, epistasis has been ignored in 

these studies. The aim of the present study is to investigate epistatic QTL for chemical 
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body composition traits, growth, feed intake and feed efficiency in a commercial pig 

population. 

 

 

4.2 Materials and methods 
 

4.2.1 Design and data  
 

This study was based on data from a resource family created using a three generation 

full-sib design. The founder generation comprised of seven unrelated Pietrain grandsires, 

which were all heterozygous (Nn) at the ryanodine receptor 1 (RYR1) locus, which were 

mated to 16 unrelated grandams from a crossbred dam line (Leicoma × (Landrace × 

Large White)). From the F1 generation, whilst avoiding inbreeding, eight boars were 

mated to 40 sows. The F2 generation comprised of 315 pigs of 49 families across two 

litters. From the F2 generation, 94 animals (49 gilts and 46 barrows) were housed 

individually in straw-bedded pens and 221 animals (117 gilts and 104 barrows) were 

housed in straw-bedded pens in groups of up to 15 pigs of mixed sex. Individually 

housed animals were fed manually with feed consumption recorded weekly. Group 

housed animals were supplied food by an electronic feeding station (ACEMA 48), which 

recorded feed consumption at each visit. All animals were provided with one of three 

diets which contained 13.8 MJ ME/kg and 1.2% lysine, 13.8 MJ ME/kg and 1.1% 

lysine, or 13.4 MJ ME/kg and 1.0% lysine for weight ranges 30-60 kg, 60-90 kg and 90-

140 kg body weight, respectively. Pigs were provided with ad libitum access to diets, 

formulated slightly above requirement, so as to reach maximal protein deposition. The 

studies of Landgraf et al. (2006ab) and Mohrmann et al. (2006ab) provide a more 

detailed description of the management of this project. 
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4.2.2 Chemical body composition in live animals 

 

At different target body weights throughout growth (30, 60, 90, 120 and 140 kg), 

protein, lipid and ash content of the empty body was determined using the deuterium 

dilution technique. This technique is an in vivo method of determining chemical body 

composition based on body water content. Using magnetic resonance imaging on live 

animals (Mohrmann et al. 2006b) and chemical analysis of serially-slaughtered animals 

(Landgraf et al. 2006a), the accuracy of this technique was previously verified. The 

deuterium dilution technique determined the empty body water content, from which the 

percentage of fat-free substance of the empty body was estimated. Based on the 

percentage of the fat-free substance, protein and ash content of the empty body were 

estimated. Lipid content was the deviation of the fat-free content from one. Using the F1 

data of the full-sib design, the equations for estimating these chemical body components 

were developed by Landgraf et al. (2006a). Protein and lipid accretion rates were 

calculated as the difference between protein and lipid, respectively, at two consecutive 

target weights divided by days of growth between these target weights. Means and 

standard deviations of the traits analysed in the present study are presented in Table 4.1 
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Table 4.1 Means and standard deviations (SD) of chemical body composition, accretion rates, 
daily gain, daily feed intake and food conversion ratio measured on pigs of the F2 generation 
Trait Mean SD Number of 

Records 
Chemical body composition 
Protein content of FFS, 30 kg (%) 18.656 0.524 299 
Protein content of FFS, 60 kg (%) 20.115 0.419 305 
Protein content of FFS, 90 kg (%) 21.209 0.426 311 
Protein content of FFS, 120 kg (%) 21.960 0.506 302 
Protein content of FFS, 140 kg (%) 22.359 0.543 302 
Protein content of empty body, 30 kg (%) 16.643 0.065 310 
Protein content of empty body, 60 kg (%)  16.477 0.047 305 
Protein content of empty body, 90 kg (%) 16.359 0.045 311 
Protein content of empty body, 120 kg (%) 16.282 0.051 302 
Protein content of empty body, 140 kg (%) 16.242 0.053 302 
Lipid content of empty body, 30 kg (%) 10.845 2.920 310 
Lipid content of empty body, 60 kg (%) 18.045 2.000 305 
Lipid content of empty body, 90 kg (%) 22.832 1.773 311 
Lipid content of empty body, 120 kg (%) 25.813 1.926 302 
Lipid content of empty body, 140 kg (%) 27.308 1.987 302 
Chemical accretion rates 
PAR, 30- 60 kg (kg/day) 0.110 0.018 300 
PAR, 60-90 kg (kg/day) 0.135 0.023 300 
PAR, 90-120 kg (kg/day) 0.125 0.022 299 
PAR, 120-140 kg (kg/day) 0.115 0.031 292 
LAR, 30-60 kg (kg/day 0.168 0.040 300 
LAR, 60-90 kg (kg/day) 0.271 0.060 300 
LAR, 90-120 kg (kg/day) 0.274 0.069 301 
LAR, 120-140 kg (kg/day) 0.267 0.099 293 
Daily gain, feed intake and food conversion traits 
DG, 30-60 kg (kg/day) 0.677 0.114 315 
DG, 60-90 kg (kg/day) 0.838 0.138 312 
DG, 90-120 kg (kg/day) 0.779 0.140 313 
DG, 120-140 kg (kg/day) 0.718 0.193 313 
DFI 60-90 kg (kg/day) 2.467 0.361 312 
DFI 90-120 kg (kg/day) 2.818 0.376 313 
DFI 120-140 kg (kg/day) 2.815 0.496 313 
FCR 60-90 kg (kg feed/kg gain) 2.975 0.379 312 
FCR 90-120 kg (kg feed/kg gain) 3.678 0.517 313 
FCR 120-140 kg (kg feed/kg gain) 4.214 1.975 313 
Definition of symbols: FFS, fat free substance; PAR, protein accretion rate; LAR, lipid accretion rate; DG, 
daily gain; DFI, daily feed intake; FCR, food conversion ratio. 
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4.2.3 Genotypic data 

 

Blood samples were collected from F0, F1 and F2 animals from the vena jugularis and 

their genomic DNA was isolated. Chromosomes SSC1, SSC2, SSC4, SSC6, SSC7, 

SSC8, SSC9, SSC10, SSC13 and SSC14 were chosen for genotyping because of their 

importance for growth and chemical body composition. All animals were genotyped for 

88 informative microsatellite markers. Of these genomic markers, 10, 9, 9, 9, 10, 8, 9, 9, 

8 and 7 were located on SSC1, SSC2, SSC4, SSC6, SSC7, SSC8, SSC9, SSC10, SSC13 

and SSC14, respectively. Genomic markers and their distances were selected from the 

published USDA linkage map (http://www.marc.usda.gov; Rohrer et al. 1996), which 

provided all information relating to their positions and alleles. The average distance 

between markers was 16.0, 16.5, 16.3, 20.6, 17.3 18.4, 17.3, 16.0, 18.0 and 17.4 cM and 

largest gaps between markers were 27.7, 25.2, 26.5, 28.7, 26.2, 23.1, 21.7, 20.8, 24.0 

and 23.6 cM on SSC1, SSC2, SSC4, SSC6, SSC7, SSC8, SSC9, SSC10, SSC13 and 

SSC14, respectively. Information relating to the markers used in the present study as 

well as their positions and alleles is presented in Table 4.2. 

 

 92



 93

Table 4.2 Markers used in the present QTL mapping project, their relative map position using 
USDA pig map, number of different alleles, polymorphic information content in the F2 generation 
(PIC) and heterozygosity in F1 generation (H) 

Marker SSC Position (cM) H Number of 
alleles 

PIC 

SW1514 1 0.0 0.79 8 0.75 
SW1515 1 16.4 0.67 8 0.68 
SW1332  1 29.2 0.63 4 0.37 
SW1851 1 44.6 0.73 4 0.53 
SW1430 1 58.5  0.81 6 0.76 
SWR982 1 86.2 0.88 7 0.77 
SW1311 1 100.8 0.58 6 0.62 
SW1828  1 118.5 0.90 7 0.69 
SW1301 1 140.5 0.83 5 0.67 
SW2512 1 144.0 0.77 6 0.55 
SWR2516 2 0.0 0.67 5 0.48 
SW2623 2 9.8 0.68 5 0.63 
SWR783 2 23.7 0.51 3 0.30 
SW240 2 42.0 0.84 7 0.78 
SW1026 2 60.6 0.47 6 0.55 
SW1370 2 74.8 0.91 8 0.69 
SWR2157 2 89.2 0.78 8 0.68 
SWR345 2 114.4 0.87 8 0.75 
S0036 2 132.1 0.85 7 0.80  
SW2404 4 0.0 0.91 10 0.81 
SW489 4 8.0 0.66 5 0.53 
S0301 4 27.1 0.72 6 0.56 
S0001 4 41.8 0.66 6 0.65 
SW839 4 62.3 0.44 4 0.45 
S0214 4 79.3 0.80 6 0.74 
SW445 4 105.8 0.91 10 0.77 
MP77 4 120.0 0.87 8 0.74 
SW856 4 130.1 0.98 14 0.84 
MP35 6 0.0 0.70 6 0.59 
SW2406 6 21.4 0.74 8 0.61 
SW1841 6 41.5 0.98 15 0.88 
S0087 6 62.8 0.75 5 0.59 
SW122 6 83.3 0.85 7 0.69 
S0228 6 105.2 0.69 6 0.68 
SW1881 6 121.1 0.96 8 0.76 
SW322 6 149.8 0.79 8 0.72 
SW2052 6 164.6 0.79 9 0.78 
SW2564 7 0.0 0.69 5 0.49 
SWR1343 7 12.2 0.83 4 0.53 
SW2155 7 32.9 0.67 4 0.48 
SW1369 7 48.2 0.77 8 0.68 
SW1856 7 61.5 0.69 5 0.48 
SWR2036 7 78.2 0.81 9 0.77 
SW632 7 104.4 0.77 6 0.67 
SWR773 7 117.3 0.56 3 0.46 
SW2537 7 139.5 0.69 7 0.63 
SW764 7 156.0 0.76 5 0.65 



Table 4.2 continued 

Marker SSC Position (cM) H Number of 
alleles 

PIC 

SW2410 8 -1.3 0.42 4 0.44 
SW905 8 20.8 0.71 6 0.71 
SWR1101 8 38.3 0.88 12 0.75 
SW444 8 52.5 0.85 7 0.76 
S0086 8 62.2 0.69 6 0.56 
SW374 8 82.8 0.88 5 0.63 
SW1551 8 105.9 0.75 6 0.66 
S0178 8 127.7 0.54 7 0.68 
SW983 9 4.0 0.81 6 0.61 
SW21 9 15.1 0.65 5 0.50 
SW911 9 36.8 0.75 7 0.68 
SW2401 9 57.1 0.71 6 0.68 
SW2571 9 73.3 0.46 6 0.61 
S0019 9 86.4 0.75 6 0.62 
SW2093 9 103.6 0.90 6 0.77 
SW174 9 122.9 0.81 3 0.51 
SW1349 9 142.5 0.81 7 0.75 
SW830 10 0.0 0.67 7 0.64 
SWR136 10 7.6 0.77 6 0.72 
SW1894 10 23.2 0.65 4 0.50 
SW2195 10 44.0 0.48 3 0.42 
SW173 10 56.1 0.35 4 0.39 
SW1041 10 67.5 0.46 3 0.41 
SW2043 10 87.7 0.56 5 0.72 
SW1626 10 108.0 0.79 11 0.68 
SW2067 10 128.0 0.81 7 0.69 
S0282 13 0.0 0.90 8 0.77 
SWR1941 13 14.1 0.87 7 0.71 
SW1407 13 27.2 0.88 11 0.83 
SW864 13 43.1 0.63 5 0.64 
S0068 13 62.2 0.78 9 0.72 
SW398 13 79.3 0.69 6 0.66 
SW2440 13 102.2 0.96 6 0.79 
S0291 13 126.2 0.83 8 0.79 
SW857 14 7.4 0.87 9 0.74 
S0089 14 14.0 0.67 7 0.71 
SW245 14 32.0 0.77 7 0.71 
SW342 14 53.2 0.79 7 0.71  
SW1081 14 72.1 0.87 6 0.65 
SW1557 14 87.9 0.64 4 0.49 
SWC27 14 111.5 0.45 8 0.41 

 94



4.2.4 Statistical analysis 

 

Due to the computational demand of a genomic scan for epistatic QTL, the analysis was 

performed in two stages, following Estelle et al. (2008). In the first stage, a 5 cM scan 

was carried out across all genomic positions in order to pre-select potential candidate 

regions with epistatic effects using, depending on the trait, the following models [1-3]:  

 

Chemical body composition measured at target body weights: 

,idddddadaadadaaaaiiiii eICICICICwtbatchMHSsexy ++++++++= β                   [1] 

 

Chemical accretion rates (protein and lipid accretion): 

,idddddadaadadaaaaiiiiii eICICICICendwtstwtbatchMHSsexy +++++++++= ββ                           

                                                                                                                                         [2] 

Feed intake and food conversion ratio: 

,i

dddddadaadadaaaaiiiiiii

e
ICICICICendwtstwthtbatchMHSsexy

+
+++++++++= ββ

                          

                                                                                                                                         [3] 

 

where yi is the i-th individual phenotype. Fixed effects and covariates were fitted in the 

model depending on their significance for the trait. Sex, RYR1 genotype (MHS) and 

batch were included in the model for all traits. In addition, housing type (ht: individual 

or group housed) was included as a fixed effect for feed intake and food conversion ratio 

traits. For chemical body composition traits measured at different target weights, β is the 

regression on small differences between body weight and target weight (wt). Protein and 

lipid accretion, daily gain, feed intake and food conversion ratio were adjusted for the 

small differences between target and actual body weight at the start (stwt) and end 

(endwt) of the considered weight range. Iaa, Iad, Ida and Idd are the additive x additive 

(AA), additive x dominance (AD), dominance x additive (DA) and dominance x 

dominance (DD) epistatic effects, respectively. These four epistatic effects were 
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estimated, following the Cockerham’s decomposition (Cockerham 1954), by regressing 

on a linear combination of the individual QTL origin probabilities: 

 

Caa = P1(QQ)P2(QQ) - P1(QQ)P2(qq) - P1(qq)P2(QQ) + P1(qq)P2(qq), 

Cad = P1(QQ)P2(Qq) - P1(qq)P2(Qq), 

Cda = P1(Qq)P2(QQ) - P1(Qq)P2(qq), 

Cdd = P1(Qq)P2(Qq), 

 

where P1 and P2 refers to the probability of QTL at location 1 and 2, respectively, and 

P(QQ) is the probability of being homozygous for the grandpaternal sire line (Pietrain), 

P(qq) is the probability of being homozygous for the grandmaternal dam line and P(Qq) 

is the probability of being heterozygous  (Varona et al. 2002). These models [1-3] were 

tested against a null model where no epistatic effects were estimated: 

 

Chemical body composition measured at target body weights: 

,iiiiii ewtbatchMHSsexy ++++= β                                                                            [4] 

 

Chemical accretion rates (protein and lipid accretion): 

,iiiiiii eendwtstwtbatchMHSsexy +++++= ββ                                                        [5]                

 

Feed intake and food conversion ratio: 

,iiiiiiii eendwtstwthtbatchMHSsexy ++++++= ββ                                                [6] 

 

Nominal P-values were obtained via maximum likelihood ratio tests. As in the study of 

Estelle et al. (2008), interacting QTL pairs with P-value < 0.001 were selected for 

further analyses.  
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In the second stage, a complete epistatic model including the individual QTL effects was 

applied using a 1 cM scan around the pre-selected positions. This included additive and 

dominance effects as well as epistatic effects, fixed effects and covariates as outlined in 

the description of stage one: 

 

Chemical body composition measured at target body weights: 

,
22112211

idddddada

adadaaaaddaaiiiii

eICIC
ICICdCdCaCaCwtbatchMHSsexy

++
++++++++++= β

                               

                                                                                                                                         [7] 

Chemical accretion rates (protein and lipid accretion): 

,
22112211

idddddadaadad

aaaaddaaiiiiii

eICICIC
ICdCdCaCaCendwtstwtbatchMHSsexy

++++
+++++++++= ββ

                             

                                                                                                                                         [8] 

Feed intake and food conversion ratio: 

,
22112211

idddddadaadadaaaa

ddaaiiiiiii

eICICICIC
dCdCaCaCendwtstwthtbatchMHSsexy

++++
++++++++++= ββ

                              

                                                                                                                                         [9] 

 

where a denotes the individual additive genetic effect and Ca represents the difference in 

probabilities of being homozygous for alleles of the grandpaternal sire line (QQ) and 

being homozygous for alleles from the grandmaternal dam line (qq). The effect d 

represents the individual dominance genetic effects and Cd gives the probability of being 

heterozygous (Qq). These models [7-9] were tested against a null model that contained 

only the individual QTL effects:  

 

Chemical body composition measured at target body weights: 

,22112211 iddaaiiiii edCdCaCaCwtbatchMHSsexy ++++++++= β                        [10] 

 

Chemical accretion rates (protein and lipid accretion): 

,22112211 iddaaiiiiii edCdCaCaCendwtstwtbatchMHSsexy +++++++++= ββ   [11]                         
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Feed intake and food conversion ratio: 

,22

112211

id

daaiiiiiii

edC
dCaCaCendwtstwthtbatchMHSsexy

+
+++++++++= ββ

                       

                                                                                                                                       [12] 

 

Epistatic interactions were reported as significant if they had a nominal P-value < 0.001. 

All analyses were performed with QxPak software (Perez-Enciso and Misztal 2004). 

This program uses mixed models and the maximum likelihood method to estimate the 

QTL location and effects. The analysis of QxPak proceeds in two main stages. In the 

first stage the probabilities of alleles being identical-by-descent are calculated using a 

Monte Carlo Markov Chain algorithm. In the second stage, the mixed model equations 

are built and the QTL estimates are obtained using a maximum likelihood approach via 

the expectation-maximisation algorithm. At each putative position the likelihood ratio is 

computed and the estimates for the parameters are those where the likelihood is highest. 

In this analysis the significance is tested with a likelihood ratio test which consists of 

computing minus twice the difference in log-likelihoods between the alternative and the 

null models (Perez-Enciso and Misztal 2004). 
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4.3 Results 

 
In total, 32 significant epistatic QTL pairs were identified from the genomic analysis, 11 

for growth traits (Table 4.3), six for daily feed intake (DFI) and food conversion ratio 

(FCR) traits (Table 4.4), and 15 for chemical body composition (Table 4.5). Epistatic 

interactions were identified between QTL on SSC1, SSC2, SSC4, SSC6, SSC7, SSC8, 

SSC10, SSC13 and SSC14. No epistatic QTL were identified on or with SSC9. Twenty 

eight of the significant QTL pairs were between QTL which resided on different 

chromosomes, whereas four were identified between QTL which resided on the same 

chromosome. All types of epistatic effect were identified (AA, AD, DA and DD), 

however the AA effect was the most prevalent. 
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Table 4.3 Evidence of epistatic interactions for growth traits 
Trait LR P value Q0 chr 

(pos)1 

Q1 chr 

(pos)1 

% 

var2 

Q0_a ± SE3 Q0_d ± SE3 Q1_a ± SE3 Q1_d ± SE3 Q01_aa ± SE4 Q01_ad ± SE4 Q01_da ± SE4 Q01_dd ± SE4 

Growth period 30-60 kg 

DG 21.39 2.7E-04 7 (79)  14 (89) 6.6 12.77 ± 17.55 -8.28 ± 29.96 -16.42 ± 17.01 -47.55 ± 32.99 -64.60 ± 16.54 -56.93 ± 32.16 47.49 ± 28.57 45.97± 52.41 

PAR 23.66 9.3E-05 7 (79) 14 (88) 7.6 1.74 ± 2.84 -3.93 ± 4.92 -3.77 ± 2.76 -8.54 ± 5.38 -10.24 ± 2.68 -7.89 ± 5.25 11.46 ± 4.73 10.84 ± 8.58 

Growth period 60-90 kg 

DG 22.33 1.7E-04 2 (2) 8 (94) 6.9 -32.22 ± 25.34 54.64 ± 35.40 2.14 ± 21.70 41.06 ± 45.37 85.53 ± 21.85 43.88 ± 44.88 63.52 ± 30.07 -112.50 ± 62.64 

PAR 21.73 2.3E-04 2 (4) 8 (93) 7.0 -4.47 ± 4.32 6.84 ± 6.31 -1.14 ± 3.73 7.21 ± 7.74 14.36 ± 3.77  6.40 ± 7.63 13.67 ± 5.40 -15.89 ± 11.04 

PAR 19.65 5.9E-04 8 (67) 14 (12.4) 6.3 -4.97 ± 3.87 -6.78 ± 7.08 1.74 ± 4.03 -13.13 ± 7.29 -11.16 ± 3.80 21.23 ± 6.54 -4.93 ± 6.79 16.65 ± 12.12 

Growth period 90-120 kg 

DG 33.68 8.7E-07 1 (119) 2 (46) 10.3 25.20 ± 17.24 78.74 ± 26.38 -11.69 ± 17.29 63.24 ± 26.94 3.83 ± 17.40 -121.00 ± 26.79 48.49 ± 26.27 -179.27 ± 41.43 

PAR 32.06 1.9E-06 1 (119) 2 (46) 10.2 3.83 ± 2.85 11.79 ± 4.31 -2.65 ± 2.85 9.61 ± 4.46 1.03 ± 2.89 -19.59 ± 4.42 8.89 ± 4.30 -28.61 ± 6.80 

Growth period 120-140 kg 

DG 23.77 8.9E-05 6 (84) 13 (27) 7.4 70.26 ± 25.11 38.92 ± 43.31 -28.24 ± 24.09 18.06 ± 37.63 82.47 ± 23.44 -156.10 ± 36.76 63.66 ± 41.79 -26.91 ± 65.26 

PAR 22.25 1.8E-04 6 (84) 13 (27) 7.4 12.11 ± 4.12 6.12 ± 7.09 -4.82 ± 3.97 5.08 ± 6.27 11.98 ± 3.84 -27.23 ± 6.13 9.82 ± 6.86 -6.12 ± 10.78 

LAR 18.74 8.8E-04 7 (27) 7 (51) 6.2 -4.71 ± 36.60 -5.43 ± 58.53 -40.46 ± 37.05 -88.80 ± 52.28 -121.77 ± 35.49 16.21 ± 50.63 138.65 ± 56.39 62.57 ± 78.16 

LAR 25.23 4.5E-05 7 (18) 10 (9) 8.3 21.10 ± 15.71 -40.40 ± 28.29 -33.21 ± 16.37 -65.97 ± 24.85 -44.45 ± 15.95 -41.12 ± 23.79 23.98 ± 27.63 182.74 ± 42.21 

Values in bold represent significant additive, dominance or epistatic effects. 
Definition of symbols: LR, likelihood ratio; DG, daily gain; PAR, protein accretion rate; LAR, lipid accretion rate. 
1Positions of the QTL in cM. 
2Percentages of F2 variance explained by the QTL calculated as the proportion of residual variances due to the QTL effect on the residual variances excluding the QTL 
effect: (residual variance of model with no epistatic effects - residual variance of model with epistatic effects)/residual variance of model with no epistatic effects. 
3Estimated additive (a) and dominance (d) effects and their standard errors (SE) of the individual QTL. 
4Estimated additive x additive (aa), additive x dominance (ad), dominance x additive (da) and dominance x dominance (dd) effects and their standard errors (SE). 
 

 

 

 



Table 4.4 Evidence of epistatic interactions for daily feed intake (DFI) and food conversion ratio (FCR) 
Trait LR P value Q0 chr 

(pos)1 

Q1 chr 

(pos)1 

% 

var2 

Q0_a ± SE3 Q0_d ± SE3 Q1_a ± SE3 Q1_d ± SE3 Q01_aa ± SE4 Q01_ad ± SE4 Q01_da ± SE4 Q01_dd ± SE4 

Growth period 60-90 kg 

FCR 27.67 1.5E-05 7 (49) 13 (2)  8.4 -0.057 ± 0.057 0.011 ± 0.087 -0.037 ± 0.059 -0.027 ± 0.083 0.244 ± 0.057 0.066 ± 0.080   0.201 ± 0.087 0.014 ± 0.125 

FCR 19.58 6.1E-04 8 (1) 7 (107) 6.1 0.096 ± 0.054 -0.160 ± 0.077 0.056 ± 0.050 -0.241 ± 0.097 0.192 ± 0.051 -0.193 ± 0.097 -0.005 ± 0.072 0.194 ± 0.138 

DFI 23.04 1.2E-04 10 (9) 13 (73) 7.1 -0.250 ± 0.051 -0.126 ± 0.087 0.168 ± 0.052 -0.081 ± 0.085 0.055 ± 0.050  0.329 ± 0.079 -0.294 ± 0.085 0.157 ± 0.134 

Growth period 90-120 kg 

FCR 26.76 2.2E-05 2 (38) 14 (99) 8.3 -0.277 ± 0.086 -0.019 ± 0.155 0.337 ± 0.086 0.012 ± 0.160 -0.275 ± 0.082 0.301 ± 0.155 -0.600 ± 0.144 0.235 ± 0.263 

FCR 22.06 2.0E-04 2 (1) 14 (85) 6.9 -0.325 ± 0.081 -0.204 ± 0.111 0.167 ± 0.076 -0.058 ± 0.146 -0.328 ± 0.074 0.358 ± 0.145 -0.167 ± 0.102 0.244 ± 0.196 

Growth period 120-140 kg 

DFI 19.52 6.2E-04 13 (7) 2 (6) 6.1 -0.083 ± 0.060 0.198 ± 0.091 0.016 ± 0.061 0.203 ± 0.094 -0.152 ± 0.059 0.259 ± 0.093 -0.157 ± 0.092 -0.302 ± 0.138 

Values in bold represent significant additive, dominance or epistatic effects. 
Definition of symbols: LR, likelihood ratio; FCR, food conversion ratio calculated as kg feed/kg gain; DFI, daily feed intake. 
1Positions of the QTL in cM. 
2Percentages of F2 variance explained by the QTL calculated as the proportion of residual variances due to the QTL effect on the residual variances excluding the QTL 
effect: (residual variance of model with no epistatic effects - residual variance of model with epistatic effects)/residual variance of model with no epistatic effects. 
3Estimated additive (a) and dominance (d) effects and their standard errors (SE) of the individual QTL. 
4Estimated additive x additive (aa), additive x dominance (ad), dominance x additive (da) and dominance x dominance (dd) effects and their standard errors (SE). 
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Table 4.5 Evidence of epistatic interactions for chemical body composition traits 
Trait LR P value Q0 chr 

(pos)1 

Q1 chr 

(pos)1 

% 

var2 

Q0_a ± SE3 Q0_d ± SE 3 Q1_a ± SE 3 Q1_d ± SE 3 Q01_aa ± SE 4 Q01_ad ± SE 4 Q01_da ± SE 4 Q01_dd ± SE 4 

Chemical body composition at 60 kg body weight 

LCEB 19.12 7.4E-04 7 (140) 6 (87) 6.0 0.681 ± 0.258 -0.006 ± 0.501 -0.259 ± 0.281 1.120 ± 0.493 0.450 ± 0.249 -1.802 ± 0.459 -0.234 ± 0.483 -0.160 ± 0.875 

PCFFS 19.74 5.6E-04 7 (140) 6 (87) 6.3 0.137 ± 0.053 -0.007 ± 0.101 -0.052 ± 0.057 0.235 ± 0.101 0.088 ± 0.051 -0.377 ± 0.094 -0.051 ± 0.097 -0.039 ± 0.178 

PCEB 18.93 8.1E-04 7 (140) 6 (87) 8.3 -0.016 ± 0.006 0.004 ± 0.012 0.006 ± 0.007 -0.026 ± 0.012 -0.010 ± 0.006 0.043 ± 0.011 0.005 ± 0.011 0.004 ± 0.021 

Chemical body composition at 90 kg body weight 

LCEB 22.82 1.4E-04 4 (130.1) 7 (100) 7.1 0.141 ± 0.247 0.567 ± 0.355 0.054 ± 0.226 0.136 ± 0.421 -1.080 ± 0.226 -0.019 ± 0.432 0.022 ± 0.324 -0.701 ± 0.666 

PCFFS 23.45 1.0E-04 4 (130.1) 7 (100) 7.3 0.035 ± 0.058 0.132 ± 0.083 0.012 ± 0.053 0.027 ± 0.099 -0.259 ± 0.054 -0.007 ± 0.102 0.008 ± 0.076 -0.163 ± 0.156 

PCEB 23.15 1.2E-04 4 (130.1) 7 (100) 7.3 -0.004 ± 0.006 -0.014 ± 0.009 -0.001 ± 0.006 -0.003 ± 0.011 0.027 ± 0.006 0.0004 ± 0.011 -0.001 ± 0.008 0.018 ± 0.017 

LCEB 24.84 5.4E-05 8 (105) 6 (32) 7.7 0.325 ± 0.343 0.440 ± 0.699 0.326 ± 0.354 1.153 ± 0.689 -1.515 ± 0.309 -0.557 ± 0.613 -0.919 ± 0.645 -1.579 ± 1.181 

PCFFS 24.51 6.3E-05 8 (105) 6 (32) 7.5 0.074 ± 0.082 0.088 ± 0.168 0.068 ± 0.085 0.262 ± 0.165 -0.360 ± 0.074 -0.124 ± 0.147 -0.201 ± 0.155 -0.359 ± 0.283 

PCEB 24.57 6.1E-05 8 (106) 6 (32) 7.7 -0.008 ± 0.009 -0.009 ± 0.017 -0.007 ± 0.009 -0.027 ± 0.017 0.038 ± 0.008 0.014 ± 0.015 0.021 ± 0.016 0.036 ± 0.029 

Chemical body composition at 120 kg body weight 

LCEB 21.20 2.9E-04 2 (43) 2 (63) 6.8 1.416 ± 0.682 -0.783 ± 0.906 -0.857 ± 0.682 -0.022 ± 0.877 -0.440 ± 0.684 -3.204 ± 0.878 0.903 ± 0.899 0.694 ± 1.100 

PCFFS 21.10 3.0E-04 2 (43) 2 (63) 6.7 0.379 ± 0.180 -0.196 ± 0.240 -0.235 ± 0.180 0.019 ± 0.231 -0.105 ± 0.181 -0.857 ± 0.232 0.255 ± 0.238 0.158 ± 0.291 

PCEB 20.99 3.2E-04 2 (43) 2 (63) 6.3 -0.037 ± 0.018 0.021 ± 0.024 0.023 ± 0.018 0.0002 ± 0.023 0.012 ± 0.018 0.085 ± 0.023 -0.025 ± 0.024 -0.018 ± 0.029 

Chemical body composition at 140 kg body weight 

LCEB 18.83 8.5E-04 4 (121) 14 (92) 6.0 -0.179 ± 0.322 -1.079 ± 0.482 0.042 ± 0.285 -0.987 ± 0.596 -0.817 ± 0.287 0.796 ± 0.610 0.051 ± 0.434 2.937 ± 0.884 

PCFFS 18.80 8.6E-04 4 (121) 14 (91) 6.0 -0.049 ± 0.086 -0.284 ± 0.129 0.018 ± 0.077 -0.259 ± 0.158 -0.217 ± 0.077 0.213 ± 0.162 0.003 ± 0.117 0.789 ± 0.235 

PCEB 18.88 8.3E-04 4 (121) 14(95) 5.0 0.005 ± 0.009 0.033 ± 0.014 -0.001 ± 0.008 0.027 ± 0.018 0.023 ± 0.008 -0.021 ± 0.018 -0.003 ± 0.012 -0.086 ± 0.026 

Values in bold represent significant additive, dominance or epistatic effects. 
Definition of symbols: LR, likelihood ratio; LCEB, lipid content of the empty body; PCEB, protein content of the empty body; PCFFS, protein content of the fat-free 
substance. 
1Positions of the QTL in cM. 
2Percentages of F2 variance explained by the QTL calculated as the proportion of residual variances due to the QTL effect on the residual variances excluding the QTL 
effect: (residual variance of model with no epistatic effects - residual variance of model with epistatic effects)/residual variance of model with no epistatic effects. 
3Estimated additive (a) and dominance (d) effects and their standard errors (SE) of the individual QTL. 
4Estimated additive x additive (aa), additive x dominance (ad), dominance x additive (da) and dominance x dominance (dd) effects and their standard errors (SE). 
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4.3.1 Growth 

 

Epistatic interactions were identified across all growth stages for protein accretion rate 

(PAR) and daily gain (DG). Epistatic interactions were identified for PAR and DG for 

the earliest growth stage from 30 to 60 kg body weight, between 79 cM of SSC7 and 88-

89 cM of SSC14 (AA effects for PAR and DG; DA effects for PAR). For the growth 

period from 60-90 kg, an interaction was identified between the telomeric end of the p 

arm of SSC2 at 2-4 cM and in the region of 93-94 cM of SSC8 for DG and PAR (AA 

and DA effects for DG and PAR). A further interaction influenced PAR for the same 

growth period, between SSC8 and SSC14 (AA and AD effects). For the growth period 

90-120 kg body weight, an interaction between SSC1 at 119 cM and SSC2 at 46 cM was 

identified for DG and PAR (AD and DD effects for DG and PAR; DA effects for PAR). 

At the late growth period of 120-140 kg body weight, an interaction was identified 

between SSC6 at 84 cM and SSC13 at 27 cM for DG and PAR (AA and AD effects for 

DG and PAR). Epistatic QTL were only identified for the final growth period (120-140 

kg) for lipid accretion rate (LAR). Interactions were identified in two different locations. 

The first interaction was identified between QTL at two locations of SSC7 (AA and DA 

effects). The second interaction was identified between SSC7 at 18 cM and SSC10 at 9 

cM (AA and DD effects).  

 

 

4.3.2 Daily feed intake and food conversion ratio 

 

For FCR at 60 to 90 kg body weight, two epistatic QTL pairs were identified. The first 

interaction was identified between QTL on SSC7 at 49 cM and the telomeric end of the 

p arm of SSC13 (AA and DA effects). The second pair was identified between the 

telomeric end of the p arm of SSC8 and SSC7 at 107 cM (AA and AD effects). For the 

same growth period a significant epistatic pair was identified for DFI between SSC10 at 

9 cM and SSC13 at 73 cM (AD and DA effects). For a later stage of growth from 90 to 

120 kg body weight, two epistatic pairs were identified between QTL on SSC2 and 



SSC14 for FCR. The first interaction was between a QTL at 38 cM of SSC2 and 99 cM 

of SSC14 (AA and DA effects) and the second between the telomeric end of the p arm 

of SSC2 (1 cM) and 85 cM of SSC14 (AA and AD effects). For the final growth period 

(120-140 kg) a single epistatic pair was identified between the telomeric p arms of 

SSC13 and SSC2 for DFI (AA, AD and DD effects).  

 

 

4.3.3 Chemical body composition 

 

For chemical body composition traits (protein and lipid content of the empty body and 

protein content of the fat free substance), significant epistatic QTL pairs were identified 

in different genomic locations for different target body weights. No significant epistatic 

QTL pairs were identified for chemical body composition at 30 kg body weight. At 60 

kg body weight, a significant interaction was identified between QTL on SSC7 at 140 

cM and on SSC6 at 87 cM (AD effects). At 90 kg body weight significant epistatic 

interactions were identified in two genomic locations. The first interaction was between 

QTL at the telomeric end of the q arm of SSC4 (130.1 cM) and at 100 cM on SSC7 (AA 

effects). The second interaction was identified between QTL on SSC8 at 105-106 cM 

and SSC6 at 32 cM (AA effects). At 120 kg body weight, a significant interaction was 

identified between QTL in two different locations of SSC2, at 43 cM and 63 cM (AD 

effects). For the final target weight of 140 kg body weight, a significant epistatic QTL 

pair was identified on SSC4 at 121 cM and SSC14 between 91 and 95 cM (AA and DD 

effects).  
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4.4 Discussion 
 

The present study is the first report to estimate epistatic interactions for chemical body 

composition (protein and lipid content measured in live animals), growth (daily gain, 

protein and lipid deposition), feed intake and feed efficiency in pigs. The results of this 

study confirmed the existence of previously detected QTL but also point to new loci of 

influence. 

 

Much research has focused on the identification of QTL and causative genes influencing 

complex traits. As a result large numbers of QTL have been reported for economically 

important traits in the pig, such as growth and body composition (e.g. Bidanel et al. 

2001; Milan et al. 2002; Geldermann et al. 2003; Karlskov-Mortensen et al. 2006; 

Sanchez et al. 2006). Studies of QTL for chemical body composition measured in live 

animals are limited in the literature because of the expense and difficulty associated with 

collecting such data. QTL for chemical body composition measured in live animals have 

been reported in two studies, which analysed the data of the present study (Mohrmann et 

al. 2006a; Duthie et al. 2008; Chapter 2) as well as Chapter 3 of this thesis. The 

hypothesis underlying the present study was that these economically important traits are 

not only influenced by numerous major QTL located throughout the genome, but by 

many interactions between QTL at two or more loci as well as many minor genes. 

 

Epistasis has been largely neglected when trying to dissect the genetic architecture of 

complex traits, with studies only considering the individual QTL effects (additive, 

dominance and imprinting), and not the interactions between QTL. Genomic analysis for 

epistatic QTL is computationally demanding, which is probably one reason for this 

neglect.  

 

By accounting for epistasis a large number of QTL were identified in the present study, 

which were not identified from previous QTL analysis on the same dataset which only 

considered the individual QTL effects. The majority of these “new” QTL did not show 



significant additive or dominance effects and therefore mainly exhibit their effects 

through interactions with other QTL. However, three of the epistatic QTL had been 

identified from previous analysis. The QTL identified on SSC6 for chemical body 

composition at 60 kg body weight, was previously identified from individual QTL 

analysis of this data by Mohrmann et al. (2006a). This QTL showed a significant 

dominance effect in both analyses. The QTL identified at the telomeric end of the p arm 

of SSC2 for FCR from 90 to 120 kg was previously identified in the study of Duthie et 

al. (2008; Chapter 2). In both analyses this QTL showed significant additive effects. The 

QTL identified on SSC1 for DG and PAR from 90 to 120 kg was previously identified 

by Mohrmann et al. (2006a). However in the present study this showed significant 

dominance effects, which was a contrast to the analysis of Mohrmann et al. (2006a) 

which showed significant additive effects. Furthermore, epistatic QTL pairs identified in 

the present study generally accounted for slightly higher proportions of the phenotypic 

variance than QTL identified from the individual QTL analyses. The proportions of 

phenotypic variance explained here by epistatic QTL pairs were approximately double 

that of the individual QTL identified from the individual QTL analysis (Duthie et al. 

2008; Chapter 2) and therefore may be simply the combination of two QTL. 

 

From previous analysis of the data used in the present study, it was particularly 

surprising that no QTL were identified on SSC7 and a few QTL on SSC4. These 

chromosomes have been shown to harbour many QTL associated with growth and body 

composition (e.g. Walling et al. 1998; Marklund et al. 1999; Walling et al. 2000; Cepica 

et al. 2003a; Yue et al. 2003b; Mercade et al. 2005; Sanchez et al. 2006). By accounting 

for epistasis, QTL have however been identified on these chromosomes, particularly 

SSC7. In the majority of cases, the QTL did not have significant additive or dominance 

effects, indicating why they were not identified from previous analysis. 

 

In pigs, epistatic QTL have been reported so far for reproduction traits (Bidanel 1993; 

Rodriguez et al. 2005; Noguera et al. 2006), coat colour (Hirooka et al. 2002), meat 
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quality traits (meat colour and intramuscular fat content) (Ovilo et al. 2002; Szyda et al. 

2006) and muscle fibre traits (Estelle et al. 2008).  

 

 

4.4.1 Chemical body composition 

 
From previous analysis of the data of this study, QTL have been identified for chemical 

body composition for early to mid stages of growth at body weights 30 kg (SSC6) and 

60 kg (SSC6 and SSC9) (Mohrmann et al. 2006a; Duthie et al. 2008; Chapter 2). In the 

present study, epistasis was found to contribute to the genomic control of chemical body 

composition at all target weights except for 30 kg body weight, the earliest stage 

considered in this study. Different epistatic QTL pairs were identified at each target 

weight, indicating that different epistatic QTL pairs contribute to different stages of 

growth. The QTL identified on SSC6 for chemical body composition measured at 60 kg 

body weight was previously reported by Mohrmann et al. (2006a) in this population and 

in both studies this QTL had a significant dominance effect. A large number of QTL 

have been reported in this location for lean and fat tissue characteristics (cited in Table 

4.6). Around this region of SSC6 a number of candidate genes are located, including the 

RYR1 gene (Rohrer et al. 1996), the heart fatty acid binding protein (FABP3) gene and 

the small heterodimer partner (SHP) gene (Arnyasi et al. 2006). A mutation at the RYR1 

locus is associated with malignant hyperthermia syndrome (Fujii et al. 1991) and RYR1 

is significantly associated with production traits in pigs (Kadarmideen 2008). FABP3 is 

important for fatty acid transport to sites of fatty acid utilisation. This gene is mainly 

expressed in skeletal and cardiac muscle (Veerkamp and Maatman 1995). SHP represses 

and inhibits the activity of the liver X receptor and retinoid X receptor both of which are 

involved in lipid homeostasis (Chawla et al. 2001; Brendel et al. 2002). Liver X receptor 

has been shown to influence endocrine homeostasis, lipid metabolism as well as protein 

metabolism (Stulnig et al. 2002). Therefore SHP is a candidate gene for lipid as well as 

protein deposition. The QTL identified on SSC7 for chemical body composition 

measured at 60 kg body weight was not identified from previous individual QTL 
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analysis; therefore, this QTL has only expressed its effects through AD interactions with 

SSC6. Around the same location of SSC4, at the telomeric end of the q arm, where QTL 

were identified for chemical body composition measured at 90 kg body weight, QTL 

have been previously reported for average daily gain and carcass weight (cited in Table 

4.6). In the marker interval of this QTL the transforming growth factor, beta receptor III 

(TGFBR3) gene is located. Transforming growth factor-beta is encoded by several genes 

including TGFBR3 and is involved in tissue development and repair processes (Johnson 

et al. 1995). Around the location of the QTL on SSC7 for the same body weight, QTL 

have been reported for belly percentage, carcass length and loin weight (cited in Table 

4.6). In this region of SSC7, the proteasome (prosome, macropain) activator subunit 1 

(PA28 alpha) (PSME1) and the proteasome (prosome, macropain) activator subunit 2 

(PA28 beta) (PSME2) genes are located. These genes encode proteasome activators 

PA28α and β subunits. These are two subunits of PA28 which is an activator of the 

proteosome which plays an important role in antigen presentation mediated by the major 

histocompatibility complex class I (Dubiel et al. 1992). Wang et al. (2004) reported 

evidence that a polymorphism in the PSME1 gene is associated with weaning weight in 

pigs. At these QTL on SSC4 and SSC7, no individual additive or dominance effects 

were identified, therefore these QTL mainly express their effects through AA 

interactions with each other. A further epistatic effect (AA) was identified between QTL 

on SSC8 and SSC6 for chemical body composition measured at 90 kg body weight. 

There are no reports of QTL around the same genomic location of SSC8. In the same 

marker interval as this QTL, the microsomal triglyceride transfer protein large subunit 

(MTP) gene is located (Estelle et al. 2005). MTP is involved in the transfer of lipids 

during lipoprotein assembly in the liver and intestine (Hussain 2000) and MTP 

expression has been shown to be influenced by fatty acids in pigs (Lu et al. 2002). 

Mohrmann et al. (2006a) reported QTL for chemical body composition at 30 kg body 

weight in a slightly different location of SSC6 than the QTL identified in this study. 

QTL have also been reported around this location of SSC6 for loin and ham percentage 

in the carcass, and intramuscular fat content (cited in Table 4.6). At both of these QTL 

no significant additive or dominance effects were identified, indicating that these QTL 
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mainly express their effects through an AA interaction with each other. An interaction 

was identified in the present study between two genomic locations of SSC2 for chemical 

body composition at 120 kg body weight. These QTL were not identified from previous 

analysis of this data, although there are reports of QTL for lean and fat tissue around 

both locations of SSC2 (cited in Table 4.6). For chemical body composition measured at 

the final weight (140 kg body weight), an interaction was identified between the 

telomeric end of the q arm of SSC4 and SSC14. In this location of SSC4 a QTL has been 

reported for carcass weight (cited in Table 4.6). This QTL lies in the same interval as the 

QTL for chemical body composition at 90 kg body weight as well as the candidate gene 

TGFBR3. On SSC14, QTL have been reported around this location for number of 

muscle fibres and loin weight (cited in Table 4.6). A candidate gene around this location 

includes the stearoyl-CoA desaturase gene (Ren et al. 2004). This gene has been 

implicated in adiposity in mice (Cohen et al. 2002; Ntambi et al. 2002) and therefore 

may be a potential candidate for fatness traits. 

 

 

4.4.2 Growth traits 

 

QTL were previously identified in this population for PAR and DG for all growth 

periods (Mohrmann et al. 2006a; Duthie et al. 2008; Chapters 2 and 3). In the present 

study epistatic QTL were found to influence PAR and DG for all growth periods (30-60, 

60-90, 90-120 and 120-140 kg body weight). PAR and DG are regulated by the same 

epistatic QTL pairs at each growth stage but epistatic QTL pairs differed between 

growth stages. The late stage of the growth period in pigs is associated with the 

deposition of fat tissue, which is costly to the pig producer as it is associated with higher 

feeding costs and a lower market value of the final product. Interestingly, epistatic QTL 

pairs were only found to influence the accretion of this tissue in the latest growth stage 

(120-140 kg). Apart from previous analyses of these data, there are no reports of QTL 

for accretion rates of protein or lipid. In the same location of SSC7 as QTL were 

identified for DG and PAR for early growth, a large number of QTL have been reported 
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for daily gain as well as carcass traits including lean and fat tissue (cited in Table 4.6). 

Candidate genes in this location include the PSME1 and PSME2 genes. At the QTL on 

SSC14 for DG and PAR from 30 to 60 kg, QTL have been reported around this location 

for fat cuts percentage, number of muscle fibres and loin weight (cited in Table 4.6). At 

the telomeric end of the p arm of SSC2, where QTL were identified for DG and PAR for 

60 to 90 kg body weight, QTL have been reported for a number of carcass 

characteristics, as well as lean and fat tissue (cited in Table 4.6). In this location, an 

imprinted QTL has been mapped to the insulin-like growth factor 2 (IGF2) locus with 

large effects on muscle mass and fat deposition (Nezer et al. 1999). Van Laere et al. 

(2003) showed that this was caused by a nucleotide substitution in intron 3 of IGF2. 

This region of SSC2 interacted with SSC8 in this study. No significant additive or 

dominance effects were identified at either QTL, indicating that they only express their 

effects through AA and DA interactions with each other. A further QTL was identified 

for PAR from 60 to 90 kg on SSC8 in a slightly different location. Around this location 

QTL have been reported for ham weight and belly weight (cited in Table 4.6). In the 

present study, this region of SSC8 interacted with a region of SSC14 where there are no 

reports of QTL in the literature. Again these QTL showed no significant individual QTL 

effects and therefore they mainly exert their effects through AA and AD interactions. 

For the growth period from 90 to 120 kg, a QTL was identified on SSC1 for DG and 

PAR with significant dominance effects. This QTL was already identified from previous 

analysis for both PAR and DG and in the same location for loin weight, however 

showed significant additive effects (Mohrmann et al. 2006a). Around the same genomic 

location, QTL have been reported for a number of lean and fat tissue characteristics, 

diameter of muscle fibres and average daily gain (cited in Table 4.6). This region 

interacted with a region of SSC2 where QTL have been reported for lean tissue and 

fatness (cited in Table 4.6). For the final growth stage (120-140 kg body weight) an 

interaction was identified between QTL on SSC6 and SSC13. On SSC6, the QTL was 

identified around the same genomic location as the RYR1 gene. A large number of QTL 

have been reported in this location for lean and fat tissue characteristics (cited in Table 

4.6). At the QTL on SSC13, QTL have been reported for ham weight and backfat (cited 
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in Table 4.6). The only QTL for LAR identified in this study was for the final growth 

stage (120-140 kg body weight) and was between QTL on two genomic locations of 

SSC7 (27 and 51 cM) and between SSC7 (18 cM) and SSC10. Around the QTL on 

SSC7 at 27 cM, QTL have been reported for abdominal fat and backfat (cited in Table 

4.6). On SSC7 around 51 cM, QTL have been reported for backfat, carcass length, 

shoulder meat weight and body weight (cited in Table 4.6). These QTL were not 

identified from previous analysis, and no individual QTL effects were identified in the 

present study, indicating that these QTL mainly express their effects through AA and 

DA interactions with each other. At the QTL at 18 cM, QTL have been reported for 

carcass length and external fat on shoulder (cited in Table 4.6). Around this location of 

SSC7 lies the Colipase gene. Colipase prevents pancreatic lipase activity being inhibited 

by surface active agents (Brown and Archibald 2002). This QTL had no significant 

additive or dominance effects in the present study and therefore mainly expressed its 

effects through interaction with SSC10. Around the QTL on SSC10, QTL have been 

reported for a number of lean and fat tissue as well as growth traits (cited in Table 4.6). 

The results of the present study indicate that the genomic regulation of chemical body 

composition and growth is a complex process which is affected by numerous QTL and 

gene interactions, which are turned on and off at different stages of growth. 

 

At present, no other studies have investigated the importance of epistasis to the genomic 

control of growth in pigs. There is however evidence in the literature for epistatic QTL 

pairs influencing growth in other species. Carlborg et al. (2003) investigated the 

contribution of epistasis to growth in a F2 intercross between Red Jungle Fowl and 

White Leghorn chickens. Epistasis was found to be particularly important for early 

growth, where the foundation for growth is established by the development of internal 

organs. Carlborg et al. (2003) reported that epistasis was not as important for later 

growth, which involves the main deposition of body tissues. Following on from this 

study, Carlborg et al. (2004) carried out analysis of a cross between a White Leghorn 

line and a commercial broiler sire line. From this study they found that epistasis was an 

important contributor to the genetic variance of growth, with the largest effects on body 
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weight at 6 weeks of age and growth between 3 and 6 weeks of age. They also indicate 

evidence for a discrete set of interacting loci involved in earlier growth, supporting that 

the genetic regulation of early and late growth in the chicken differs. The results of the 

present study differs by indicating that epistasis is not only important for early growth, 

but for the entire growth period. Our results do however agree that the genomic 

regulation of growth and body compositions differs at different stages of growth. 

 

There is a lot of evidence in the literature indicating that epistasis has a strong influence 

on growth and obesity in laboratory animals (e.g. Routman and Cheverud 1997; 

Brockmann et al. 2000; Cheverud et al. 2001; Brockmann et al. 2004; Ishikawa and 

Namikawa 2004; Yi et al. 2004a; Carlborg et al. 2005; Ishikawa et al. 2005; Yi et al. 

2006). In contrast to the results of Carlborg et al. (2003; 2004) in chickens, Yi et al. 

(2006) reported that epistasis had a more pronounced effect for body weight at later 

stages of growth in mice. In contrast, Ishikawa et al. (2005) found that epistatic effects 

were more pronounced in the early stages of growth in mice. Carrying on from the 

studies of Carlborg et al. (2003; 2004) in chickens, Le Rouzic et al. (2008) demonstrated 

that the effects of many genes are dependent on genetic interactions with other loci. 

They found that when comparing the epistatic QTL pairs, the loci overlapped to a large 

extent with those previously identified in a one-dimensional scan. In particular, the two 

loci with the most pronounced effects in the one-dimensional scan also showed the most 

interactions with other loci. In the present study, however, this was not the case.  

 

No data were available in the present study for chemical body composition or growth 

prior to 30 kg body weight. It would be interesting to know if epistasis is more important 

during the immediate post-natal period. 
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Table 4.6. Reports of similar QTL in the literature around similar locations as the QTL identified in the present study for chemical body composition 
and growth traits 

Trait SSC 
(position) 

Marker interval QTL reported in the same location in other studies 

Chemical body composition (protein and lipid content) 
120 kg body weight 2 (43) SW240 – SW1026 Lee et al. (2003a) 
120 kg body weight 2 (63) SW1026 – SW1370 Varona et al. (2002); Lee et al. (2003a); Wimmers et al. (2006)  
140 kg body weight 4 (121) MP77 – SW856 Malek et al. (2001a) 
90 kg body weight 4 (130.1) SW856 Malek et al. (2001a); Knott et al. (2002) 
90 kg body weight 6 (32) SW2406 – SW1841 de Koning et al. (2000); Milan et al. (2002) 
60 kg body weight 6 (87) SW122 – S0228 Rohrer (2000); Grindflek et al. (2001); Varona et al. (2002); Yue et al. (2003a); Edwards et 

al. (2008) 
90 kg body weight 7 (100) SWR2036 – SW632 Milan et al. (2002); Nezer et al. (2002); Sanchez et al. (2006) 
60 kg body weight 7 (140) SW2537 – SW764 - 
90 kg body weight 8 (105,106) SW1551 - 
140 kg body weight 14 (91-95) SW1557 – SWC27 Milan et al. (2002); Wimmers et al. (2006) 
Growth traits 
DG and PAR 90-120 kg 1 (119) SW1828 – SW1301 Beeckmann et al. (2003a); Geldermann et al. (2003); Kim et al. (2006); Wimmers et al. 

(2006) 
DG and PAR 60-90 kg 2 (2, 4) SWR2516 – SW2623 Milan et al. (2002); Kim et al. (2005); Sanchez et al. (2006); van Wijk et al. (2006) 
DG and PAR 90-120 kg 2 (46) SW240 – SW1026 Lee et al. (2003a) 
DG and PAR 120-140 kg 6 (84) SW122 – S0228 Rohrer (2000); Grindflek et al. (2001); Varona et al. (2002); Yue et al. (2003a); Edwards et 

al. (2006) 
LAR 120-140 kg 7 (18) SWR1343 – SW2155 Yue et al. (2003b) 
LAR 120-140 kg 7 (27) SWR1343 – SW2155 Yue et al. (2003b) 
LAR 120-140 kg 7 (51) SW1369 – SW1856 Rattink et al. (2000); Bidanel et al. (2001); Yue et al. (2003b); Sanchez et al. (2006) 
DG and PAR 30-60 kg 7 (79) SWR2036 – SW632 Malek et al. (2001b); Milan et al.(2002); Nezer et al.(2002); Geldermann et al. (2003); Yue 

et al. (2003b); Ponsuksili et al. (2005); Kim et al. (2006); Sanchez et al. (2006); Edwards 
et al. (2008)  

PAR 60-90 kg 8 (67) S0086 – SW374 Milan et al. (2002) 
DG and PAR 60-90 kg 8 (93, 94) SW374 – SW1551  
LAR 120-140 kg 10 (9) SWR136 – SW1894 Dragos-Wendrich et al. (2003c); Rohrer et al. (2005); Kim et al. (2006) 
DG and PAR 120-140 kg 13 (27) SWR1941 – SW1407 Malek et al. (2001b); van Wijk et al. (2006) 
PAR 60-90 kg 14 (12.4) SW857 – S0089 - 
DG and PAR 30-60 kg 14 (88, 89) SW1557 – SWC27 Nezer et al. (2002); Dragos-Wendrich et al., (2003a) 

Definition of symbols: DG, daily gain; PAR, protein accretion rate; LAR, lipid accretion rate. 
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4.4.3 Daily feed intake and food conversion ratio 

 

Understanding the genomic regulation of food intake and feed efficiency is of particular 

interest in pig production, particularly in commercial pig breeds where intense selection 

for increased lean content and reduced backfat thickness has had negative effects on 

food intake capacity, thus reducing the potential for maximal protein deposition. 

Therefore, it is of great economic benefit to understand the genomic regulation of these 

traits in order to optimise food intake based on maximal protein deposition. Previous 

analysis of the data of the present study by Mohrmann et al. (2006a) and Duthie et al. 

(2008; Chapter 2) have already provided some information about the genomic regulation 

of feed intake and feed efficiency. Regions of the genome were identified where Pietrain 

alleles were associated with reduced feed intake. Furthermore, regions were identified 

where Pietrain alleles were associated with increased feed intake (cryptic QTL). This 

may provide the opportunity to increase feed intake in this commercial breed. The 

results of the present study indicate that epistasis contributes to the genomic regulation 

of feed intake and feed efficiency throughout the entire growth period from 60 to 140 kg 

body weight. There are no reports in the literature for epistatic QTL influencing feed 

intake and feed efficiency. For the growth stage from 60 to 90 kg, AA and DA effects 

were identified between SSC7 and SSC13 for FCR. No QTL have been reported in this 

location of SSC7. The QTL on SSC13 was previously identified by Mohrmann et al. 

(2006a) in the same location as for PAR for the same growth period. In this location of 

SSC13, Houston et al. (2005) reported a suggestive QTL for DFI. A further interaction 

was identified between QTL on SSC8 and SSC7 for FCR from 60 to 90 kg, in a location 

where no QTL have been reported for FCR. Epistatic QTL were identified in this study 

for DFI from 60 to 90 kg, on SSC10 and SSC13. There are no reports in the literature for 

QTL for DFI in these locations. For a later growth period from 90 to 120 kg, two 

interactions were identified between SSC2 and SSC14. Houston et al. (2005) reported 

QTL for DFI around the same location as the QTL for FCR identified in the present 

study on SSC2. Houston et al. (2005) also reported suggestive QTL for feeding rate and 

FCR around the QTL identified on SSC14. Further QTL were identified for DFI from 



120 to 140 kg on SSC2 and SSC13 around the same locations as the suggestive QTL 

reported by Houston et al. (2005) for the same trait. 

 

 

Estelle et al. (2008) identified a number of epistatic QTL pairs for muscle fibre traits in 

pigs and reported that the interactions formed a network of connected epistatic QTL 

pairs. Carlborg et al. (2006) also reported a similar network system in chickens. The 

present study has shown that the genomic regulation of growth and chemical body 

composition is a complex process involving many QTL throughout the genome and 

interactions between QTL. Information about epistatic QTL is fundamental to obtaining 

a fuller understanding of the genomic networks influencing biological systems. In 

addition to information about the effect of individual QTL or genes, an understanding of 

the effect of interactions is important to build up a fuller understanding of the genomic 

networks which influence variation in biological systems (Carlborg and Haley 2004). 

 

In the present study epistatic QTL were analysed for on a trait by trait basis, however, 

the genomic control of growth and body composition is probably more complex, and 

interactions probably exist between traits. Investigating interactions between traits was 

not the objective of the present study.  

 

Epistasis has been found to be an important source of genetic variation of quantitative 

traits in crops, laboratory animals as well as livestock species (e.g. Carlborg et al. 2003; 

Carlborg et al. 2005; Xu and Jia 2007). Epistatic QTL in pigs have been reported so far 

for reproduction traits (Bidanel 1993; Rodriguez et al. 2005; Noguera et al. 2006), coat 

colour (Hirooka et al. 2002), meat quality traits (meat colour and intramuscular fat 

content) (Ovilo et al. 2002; Szyda et al. 2006) and muscle fibre traits (Estelle et al. 

2008) and in the present study for growth, feed intake, food conversion ratio and 

chemical body composition. Therefore, it may be of interest to exploit epistatic QTL 

within selection strategies. Particularly, the AA effect was found to be the most 

prevalent for the traits analysed in this study. These AA genetic effects have been shown 
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to be heritable (Goodnight 1988). Jannink (2003) studied the AA effects in response to 

selection and found that epistatic gene action may condition greater and more long-term 

response to selection than additive gene action. Furthermore, to optimise the use of QTL 

in breeding, e.g. in marker assisted selection, it is important to account for epistasis 

within QTL mapping, to prevent QTL remaining undetected, and to prevent the 

estimated effects of QTL being biased, leading to invalid interpretations of the 

importance of many QTL (Carlborg 2006). 

 

 116



 117

 
 
 
 
 
 

Chapter 5 
  
 

Epistatic quantitative trait loci analysis of carcass 
characteristics in pigs reveals genomic interactions of 

QTL including the locations of IGF-2 or MC4R 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



Abstract 
 

The present study focussed on the identification of epistatic QTL pairs for body 

composition traits (carcass cuts, lean tissue and fat tissue weights) measured at slaughter 

weight (140 kg body weight) in a three generation full-sib population developed by 

crossing Pietrain sires with a crossbred dam line. For the QTL analysis, 386 animals 

were genotyped for 88 molecular markers covering chromosomes SSC1, SSC2, SSC4, 

SSC6, SSC7, SSC8, SSC9, SSC10, SSC13 and SSC14. In total, 24 significant epistatic 

QTL pairs were identified with the additive-by-additive genetic interaction being the 

most prevalent. Epistatic QTL were identified across all chromosomes except for SSC13 

and epistatic QTL pairs accounted for between 5.8% and 10.2% of the phenotypic 

variance. Eight epistatic QTL pairs were between QTL which resided on the same 

chromosome and 16 between QTL which resided on different chromosomes. SSC1, 

SSC8, SSC9, SSC2, SSC6 and SSC4 harboured the highest number of epistatic QTL. 

The epistatic QTL pairs with the highest effects were for entire loin weight between two 

locations on SSC7, and for carcass length, between two genomic locations on SSC1, 

explaining 10.2% and 9.5% of the phenotypic variance, respectively. Epistatic 

associations were identified between regions of the genome which contain the IGF2 or 

MC4R genes with QTL residing in other genomic locations. QTL in the region of the 

MCR4 gene and on SSC7 showed significant positive dominance effects for entire belly 

weight, which were offset by negative dominance-by-dominance interactions between 

these QTL. In contrast, the QTL in the region of the IGF2 showed significant negative 

dominance effects for entire ham weight, which were largely overcompensated by 

positive additive-by-dominance genetic effects with a QTL on SSC9. The study shows 

that epistasis is of great important for the genomic regulation of body composition of 

pigs and contributes substantially to the variation in complex traits. 
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5.1 Introduction 
 

Numerous quantitative trait loci (QTL) have been reported for carcass characteristics in 

pigs (e.g. Geldermann et al. 2003; Karlskov-Mortensen et al. 2006; Liu et al. 2007). 

These studies have focused on identifying the individual QTL effects (additive, 

dominance and imprinting), without considering interactions between loci (epistasis). 

When epistasis is ignored, some QTL may remain undetected, and the effects of the 

identified QTL can be severely biased (Carlborg 2006). Furthermore, the inclusion of 

epistasis provides a better understanding of the genomic control of economically 

important traits. 

 

Evidence exists for epistatic QTL in pigs, for reproductive traits (Bidanel 1993; 

Rodriguez et al. 2005; Noguera et al. 2006), coat colour (Hirooka et al. 2002), meat 

quality (Ovilo et al. 2002; Szyda et al. 2006) and muscle fibre traits (Estelle et al. 2008). 

Studies in chickens have shown that epistasis is involved in the genomic regulation of 

growth traits (Carlborg et al. 2003; Carlborg et al. 2004). Also, studies in mice have 

identified epistatic QTL for growth and obesity (e.g. Brockmann et al. 2000; Yi et al. 

2004ab; Yi et al. 2006). Generally these studies suggest that different networks of 

interactions are involved in the genomic regulation of different groups of traits.  

 

Body composition of pigs may be controlled by a complex set of interactions; however, 

there is currently a lack of knowledge for epistatic QTL involved in the genomic 

regulation of lean and fat tissue of pigs. This is most likely because of the computational 

demand associated with this type of analysis, rather than epistasis not being important 

for the genomic regulation of these traits.  

 

In the present study, epistatic QTL pairs were investigated for a number of carcass cuts 

as well as lean and fat tissue traits in a commercial pig population, developed by 

crossing Pietrain sires with a crossbred dam line. 
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5.2 Materials and methods 
 

5.2.1 Design and data 
 

The QTL mapping experiment of this study was based on data from a resource family of 

a three generation full-sib design. The resource family was created by mating seven 

Pietrain grandsires, which were unrelated, to 16 grandams of a crossbred dam line 

(Leicoma × (Landrace × Large White)). The Pietrain sires were all heterozygous at the 

ryanodine receptor 1 (RYR1) locus. Eight boars and 40 sows of the F1 generation were 

mated to produce two litters of the F2 generation comprising of 315 pigs of 49 families. 

Animals of the F2 generation were either housed individually or in groups of up to 15 

pigs of mixed sex in straw-bedded pens. Individual housed pigs (48 gilts and 46 

barrows) were fed manually and feed consumption was recorded from these animals 

weekly. Group housed animals (117 gilts and 10 barrows) were supplied food by an 

electronic feeding station (ACEMA 48), which recorded feed consumption at every visit. 

All animals were provided with one of three pelleted diets containing 13.8 MJ ME/kg 

and 1.2% lysine, 13.8 MJ ME/kg and 1.1% lysine, or 13.4 MJ ME/kg and 1.0% lysine 

for weight ranges 30-60, 60-90 and 90-140 kg body weight, respectively. All animals 

were provided with ad libitum access to diets, which were formulated above requirement 

in order to reach maximal protein deposition. For a more detailed description of the 

management of this project see the studies of Landgraf et al. (2006ab) and Mohrmann et 

al. (2006ab). 
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5.2.2 Carcass composition 

 
Phenotypic data of body composition were collected from pigs slaughtered in a 

commercial abattoir at 140 kg body weight. Using the AutoFOM device, measurements 

of valuable carcass cuts were obtained. This device adopts an automatic ultrasound 

scanning technique to produce a three-dimensional image of the carcass (Brondum et al. 

1998). Using the AutoFOM device, measurements were obtained for average fat 

thickness, belly weight, lean content, lean content of the belly as well as weights of 

entire and trimmed shoulder, loin and ham without bones. Thereafter, the right carcass 

side of each pig was dissected into primal carcass cuts neck, shoulder, loin, ham and 

belly weights. Neck, shoulder, loin and ham cuts were further dissected into lean and fat 

tissue. Moreover, weights of jowl, thick rib, flank, front as well as hind hock, tail and 

claw were recorded. From the cold left carcass side, further measurements were obtained 

including carcass length, sidefat thickness; at the 13th/14th rib interface loin eye area, fat 

area, and thinnest fat measure (fat degree B); fat content and area of the belly. Protein 

content of loin and intramuscular fat content was measured in the musculus longissimus 

thoracis et lumborum using near-infrared reflectance spectroscopy. Additional 

information about the dissection of carcasses is presented in the study of Landgraf et al. 

(2006b). Table 5.1 outlines mean values and standard deviations of traits analysed in the 

present study. 
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Table 5.1 Means and standard deviations (SD) of carcass characteristics measured on pigs of 
the F2 generation 

Trait Mean SD Number of 
Records 

AutoFOM traits 
AF average fat thickness (mm) 22.295 4.989 313 
AF entire shoulder weight (kg) 6.176 0.406 313 
AF shoulder lean meat weight (kg) 4.577 0.408 313 
AF entire loin weight (kg) 6.265 0.396 313 
AF loin lean meat weight (kg) 3.764 0.352 313 
AF entire ham weight (kg) 13.573 0.814 313 
AF ham lean meat weight (kg) 9.511 1.052 313 
AF entire belly weight (kg) 9.168 0.548 313 
AF lean content (%) 50.509 6.403 313 
AF lean content of belly (%) 43.741 7.891 313 
Carcass characteristics – dissected carcass cuts 
Entire neck weight (kg) 5.316 0.505 306 
Neck weight without external fat (kg) 4.160 0.430 306 
External neck fat weight (kg) 1.156 0.285 306 
Entire shoulder weight (kg) 8.452 0.564 307 
Shoulder weight without external fat (kg) 5.910 0.584 307 
External shoulder fat weight (kg) 1.403 0.261 307 
Entire loin weight (kg) 9.163 0.730 308 
Loin weight without external fat (kg) 6.650 0.624 308 
External loin fat weight (kg) 2.513 0.645 308 
Entire ham weight (kg) 16.908 0.997 310 
Ham weight without external fat (kg) 11.568 1.087 310 
External ham fat weight (kg) 2.566 0.493 310 
Belly weight (kg) 6.461 0.655 308 
Jowl weight (kg) 1.914 0.284 306 
Thick rib (kg) 1.441 0.217 307 
Flank weight (kg) 1.789 0.407 308 
Front hock weight (kg) 1.139 0.189 307 
Hind hock weight (kg) 1.430 0.141 310 
Tail weight (kg) 0.429 0.134 310 
Hind claw (kg) 0.914 0.122 310 
Carcass characteristics – standard performance test 
Carcass length (cm) 107.947 49.296 310 
Sidefat thickness1 (cm) 3.847 0.866 315 
Thinnest fat measure1 (cm) 1.725 0.552 314 
Loin eye area M.l.t.l.1,2 (cm2) 54.160 6.767 314 
Fat area M.l.t.l.1,2 (cm2) 24.514 5.884 314 
Fat content of belly (%) 53.508 8.272 306 
Fat area of belly (cm2) 23.789 6.782 306 
Intramuscular fat content (%) 1.343 0.542 313 
Protein content of loin (%) 24.215 2.066 313 
1collected at the 13th/14th rib interface.   
2measured on musculus longissimus thoracis et lumborum. 
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5.2.3 Genotypic data 

 

From the F0, F1 and F2 animals, blood samples were collected from the vena jugularis 

and their genomic DNA was isolated. Chromosomes SSC1, SSC2, SSC4, SSC6, SSC7, 

SSC8, SSC9, SSC10, SSC13 and SSC14 were chosen for genotyping due to their likely 

associations with carcass cuts as well as lean and fat tissue. All pigs were genotyped for 

88 informative microsatellite markers of which 10, 9, 9, 9, 10, 8, 9, 9, 8 and 7 genomic 

markers were located on SSC1, SSC2, SSC4, SSC6, SSC7, SSC8, SSC9, SSC10, SSC13 

and SSC14, respectively. Based on the published USDA linkage map, markers and their 

distances were selected (http://www.marc.usda.gov; Rohrer et al. 1996). This linkage 

map provided all information relating to their position and alleles, outlined in Table 5.2. 

The average distance between markers was 16.0, 16.5, 16.3, 20.6, 17.3 18.4, 17.3, 16.0, 

18.0 and 17.4 cM and the largest gaps between markers were 27.7, 25.2, 26.5, 28.7, 

26.2, 23.1, 21.7, 20.8, 24.0 and 23.6 cM on SSC1, SSC2, SSC4, SSC6, SSC7, SSC8, 

SSC9, SSC10, SSC13 and SSC14, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 123



Table 5.2 Markers used in the present QTL mapping project, their relative map position using 
USDA pig map, number of different alleles, polymorphic information content in the F2 generation 
(PIC) and heterozygosity in F1 generation (H) 

Marker SSC Position 
(cM) 

H Number of 
alleles 

PIC 

SW1514 1 0.0 0.79 8 0.75 
SW1515 1 16.4 0.67 8 0.68 
SW1332  1 29.2 0.63 4 0.37 
SW1851 1 44.6 0.73 4 0.53 
SW1430 1 58.5  0.81 6 0.76 
SWR982 1 86.2 0.88 7 0.77 
SW1311 1 100.8 0.58 6 0.62 
SW1828  1 118.5 0.90 7 0.69 
SW1301 1 140.5 0.83 5 0.67 
SW2512 1 144.0 0.77 6 0.55 
SWR2516 2 0.0 0.67 5 0.48 
SW2623 2 9.8 0.68 5 0.63 
SWR783 2 23.7 0.51 3 0.30 
SW240 2 42.0 0.84 7 0.78 
SW1026 2 60.6 0.47 6 0.55 
SW1370 2 74.8 0.91 8 0.69 
SWR2157 2 89.2 0.78 8 0.68 
SWR345 2 114.4 0.87 8 0.75 
S0036 2 132.1 0.85 7 0.80 
SW2404 4 0.0 0.91 10 0.81 
SW489 4 8.0 0.66 5 0.53 
S0301 4 27.1 0.72 6 0.56 
S0001 4 41.8 0.66 6 0.65 
SW839 4 62.3 0.44 4 0.45 
S0214 4 79.3 0.80 6 0.74 
SW445 4 105.8 0.91 10 0.77 
MP77 4 120.0 0.87 8 0.74 
SW856 4 130.1 0.98 14 0.84 
MP35 6 0.0 0.70 6 0.59 
SW2406 6 21.4 0.74 8 0.61 
SW1841 6 41.5 0.98 15 0.88 
S0087 6 62.8 0.75 5 0.59 
SW122 6 83.3 0.85 7 0.69 
S0228 6 105.2 0.69 6 0.68 
SW1881 6 121.1 0.96 8 0.76 
SW322 6 149.8 0.79 8 0.72 
SW2052 6 164.6 0.79 9 0.78 
SW2564 7 0.0 0.69 5 0.49 
SWR1343 7 12.2 0.83 4 0.53 
SW2155 7 32.9 0.67 4 0.48 
SW1369 7 48.2 0.77 8 0.68 
SW1856 7 61.5 0.69 5 0.48 
SWR2036 7 78.2 0.81 9 0.77 
SW632 7 104.4 0.77 6 0.67 
SWR773 7 117.3 0.56 3 0.46 
SW2537 7 139.5 0.69 7 0.63 
SW764 7 156.0 0.76 5 0.65 
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Table 5.2 continued 
Marker SSC Position 

(cM) 
H Number of 

alleles 
PIC 

SW2410 8 -1.3 0.42 4 0.44 
SW905 8 20.8 0.71 6 0.71 
SWR1101 8 38.3 0.88 12 0.75 
SW444 8 52.5 0.85 7 0.76 
S0086 8 62.2 0.69 6 0.56 
SW374 8 82.8 0.88 5 0.63 
SW1551 8 105.9 0.75 6 0.66 
S0178 8 127.7 0.54 7 0.68 
SW983 9 4.0 0.81 6 0.61 
SW21 9 15.1 0.65 5 0.50 
SW911 9 36.8 0.75 7 0.68 
SW2401 9 57.1 0.71 6 0.68 
SW2571 9 73.3 0.46 6 0.61 
S0019 9 86.4 0.75 6 0.62 
SW2093 9 103.6 0.90 6 0.77 
SW174 9 122.9 0.81 3 0.51 
SW1349 9 142.5 0.81 7 0.75 
SW830 10 0.0 0.67 7 0.64 
SWR136 10 7.6 0.77 6 0.72 
SW1894 10 23.2 0.65 4 0.50 
SW2195 10 44.0 0.48 3 0.42 
SW173 10 56.1 0.35 4 0.39 
SW1041 10 67.5 0.46 3 0.41 
SW2043 10 87.7 0.56 5 0.72 
SW1626 10 108.0 0.79 11 0.68 
SW2067 10 128.0 0.81 7 0.69 
S0282 13 0.0 0.90 8 0.77 
SWR1941 13 14.1 0.87 7 0.71 
SW1407 13 27.2 0.88 11 0.83 
SW864 13 43.1 0.63 5 0.64 
S0068 13 62.2 0.78 9 0.72 
SW398 13 79.3 0.69 6 0.66 
SW2440 13 102.2 0.96 6 0.79 
S0291 13 126.2 0.83 8 0.79 
SW857 14 7.4 0.87 9 0.74 
S0089 14 14.0 0.67 7 0.71 
SW245 14 32.0 0.77 7 0.71 
SW342 14 53.2 0.79 7 0.71 
SW1081 14 72.1 0.87 6 0.65 
SW1557 14 87.9 0.64 4 0.49 
SWC27 14 111.5 0.45 8 0.41 
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5.2.4 Statistical analysis 

 

Because of the computational demand of a genomic scan for epistatic QTL, the analysis 

was performed in two stages, following Estelle et al. (2008). In the first stage, a 5 cM 

scan was carried out across all genomic positions in order to pre-select potential 

candidate regions with epistatic effects with the model: 

 

,idddddadaadadaaaaiiiii eICICICICslwtbatchMHSsexy ++++++++= β                [1] 

 

where yi is the i-th individual phenotype. Fixed effects and covariates were fitted in the 

model depending on their significance for the trait. For all traits sex, RYR1 genotype 

(MHS) and batch were included in the model and slaughter weight (slwt) was considered 

as covariate β. Iaa, Iad, Idd and Idd are the additive × additive (AA), additive × dominance 

(AD), dominance × additive (DA) and dominance × dominance (DD) epistatic effects, 

respectively. These four epistatic effects were estimated, following the Cockerham’s 

decomposition (Cockerham 1954), by regressing on a linear combination of the 

individual QTL origin probabilities: 

 

Caa= P1(QQ)P2(QQ) - P1(QQ)P2(qq) - P1(qq)P2(QQ) + P1(qq)P2(qq), 

Cad = P1(QQ)P2(Qq) - P1(qq)P2(Qq), 

Cda = P1(Qq)P2(QQ) - P1(Qq)P2(qq), 

Cdd = P1(Qq)P2(Qq), 

 

where P1 and P2 refers to the probability of QTL at location 1 and 2, respectively, and 

P(QQ) is the probability of being homozygous of the grandpaternal sire line (Pietrain) 

P(qq) is the probability of being homozygous of the grandmaternal dam line and P(Qq) 

is the probability of being heterozygous (Varona et al. 2002). This model [1] was tested 

against a null model where no epistatic effects were estimated: 
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,iiiiii eslwtbatchMHSsexy ++++= β                                                                         [2] 

 

Interacting QTL pairs with P-values < 0.001 were selected for further analyses.  

 

In the second stage, a complete epistatic model including the individual QTL effects was 

applied using a 1 cM scan around the pre-selected positions obtained in the first stage. 

This model included, besides all environmental effects, the individual additive and 

dominance genetic effects as well as epistatic genetic effects:  

 

,
22112211

idddddada

adadaaaaddaaiiiii

eICIC
ICICdCdCaCaCslwtbatchMHSsexy

++

++++++++++= β
                           

                                                                                                                                         [3] 

 

where a denotes the individual additive genetic effect and Ca represents the difference in 

probabilities of being homozygous for alleles of the grandpaternal sire line (QQ) and 

being homozygous for alleles from the grandmaternal dam line (qq). A positive additive 

genetic value indicates that the allele originating from the grandpaternal sire line 

(Pietrain) showed a higher effect than the allele from the grandmaternal dam line and 

vice versa. The effect d represents the individual dominance genetic effects and Cd gives 

the probability of being heterozygous. The dominance effect is defined as deviation of 

heterozygous animals from the mean of both types of homozygous animals. A positive 

dominance value indicates an increase in the trait of interest as a result of a heterozygous 

genotype and vice versa. This model [3] was tested against a null model that contained 

only the individual QTL effects: 

 

,22112211 iddaaiiiii edCdCaCaCslwtbatchMHSsexy ++++++++= β                       [4] 

 

Epistatic interactions were reported as significant if they had a nominal P-value < 0.001. 

All analyses were performed with QxPak software (Perez-Enciso and Misztal 2004). 
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This program uses mixed models and the maximum likelihood method to estimate the 

QTL location and effects. The analysis of QxPak proceeds in two main stages. In the 

first stage the probabilities of alleles being identical-by-descent are calculated using a 

Monte Carlo Markov Chain algorithm. In the second stage, the mixed model equations 

are built and the QTL estimates are obtained using a maximum likelihood approach via 

the expectation-maximisation algorithm. At each putative position the likelihood ratio is 

computed and the estimates for the parameters are those where the likelihood is highest. 

In this analysis the significance is tested with a likelihood ratio test which consists of 

computing minus twice the difference in log-likelihoods between the alternative and the 

ull models (Perez-Enciso and Misztal 2004). 

.3 Results and discussion 

plained a large proportion of the phenotypic variance, 

at 10.2% and 9.5%, respectively. 

n

 

 

5
 

In total, 24 significant epistatic QTL pairs were identified. Of these, ten epistatic QTL 

pairs were identified for entire carcass characteristics (lean and fat) (Table 5.3), seven 

for lean tissue characteristics (Table 5.4) and seven for fat tissue characteristics (Table 

5.5). Epistatic interactions were identified between QTL on SSC1, SSC2, SSC4, SSC6, 

SSC7, SSC8, SSC9, SSC10, and SSC14. No epistatic QTL were identified on or with 

SSC13. Epistatic QTL pairs explained between 6.2% and 10.2% of the phenotypic 

variance for entire carcass characteristics (lean + fat), between 5.9% and 8.4% for lean 

tissue characteristics, and between 5.8% and 6.8% for fat tissue characteristics. Eight of 

the significant epistatic QTL pairs were between QTL which resided on the same 

chromosome, on SSC1, SSC2, SSC4, SSC6, SSC7 and SSC8. All types of epistatic 

effect were identified (AA, AD, DA and DD) in this study, with the AA interaction the 

most prevalent. The epistatic QTL pairs with the highest effect were for entire loin 

weight between two locations on SSC7, and for carcass length between two genomic 

locations on SSC1. These QTL ex
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Table 5.3 Evidence of epistatic interactions for entire carcass characteristics (lean + fat) measured after dissection and by the AutoFom device (AF) 
Trait LR P value Q0 chr 

(pos)1 

Q1 chr 

(pos)1 

% 

var2 

Q0_a ± SE3 Q0_d ± SE3 Q1_a ± SE3 Q1_d ± SE3 Q01_aa ± SE4 Q01_ad ± SE4 Q01_da ± SE4 Q01_dd ± SE4 

 

Carcass length 

(cm) 

30.88 3.2E-06 1 (45) 1 (59) 9.5 -25.821 ± 

22.207 

87.477 ± 

27.611 

32.301 ± 

22.341 

18.625 ± 

25.921 

16.776 ± 

21.645 

33.960 ± 

26.596 

-103.698 ± 

28.612 

-90.181 ± 

31.885 

AF entire belly 

weight (kg) 

21.68 2.3E-04 1 (88) 7 (148) 6.7 -0.086 ± 0.075 0.309 ± 0.118 0.033 ± 0.070 0.663 ± 0.130 0.061 ± 0.069 -0.122 ± 0.130 -0.021 ± 0.108 -1.040 ± 0.212 

Hind hock 

weight (kg) 

22.52 1.6E-04 1 (35) 8 (107) 6.5 -0.035 ± 0.028 0.126 ± 0.053 0.036 ± 0.028 0.066 ± 0.052 0.120 ± 0.025 0.049 ± 0.050 -0.038 ± 0.048 -0.190 ± 0.091 

Hind claw (kg) 22.33 1.7E-04 1 (63) 9 (23) 7.1 0.031 ± 0.023 0.073 ± 0.038 0.010 ± 0.021 0.072 ± 0.042 -0.074 ± 0.021 -0.061 ± 0.040 -0.055 ± 0.035 -0.196 ± 0.068 

Entire ham 

weight (kg) 

23.51 1.0E-04 2 (10) 9 (66) 7.3 -0.213 ± 0.124 -0.408 ± 0.194 -0.177 ± 0.119 -0.369 ± 0.231 -0.242 ± 0.118 0.881 ± 0.225 0.436 ± 0.187 0.529 ± 0.345 

Belly weight 

(kg) 

27.93 1.3E-05 4 

(130.1) 

4 (31) 8.7 0.043 ± 0.085 -0.282 ± 0.127 -0.140 ± 0.084 -0.187 ± 0.143 -0.410 ± 0.083 -0.170 ± 0.142 0.170 ± 0.123 0.433 ± 0.209 

Entire neck 

weight (kg) 

21.50 2.5E-04 6 (71) 6 (86) 6.8 -0.876 ± 0.380 0.015 ± 0.457 0.844 ± 0.389 -0.191 ± 0.441 -0.450 ± 0.328 1.067 ± 0.473 -1.145 ± 0.503 -0.322 ± 0.565 

Entire loin 

weight (kg) 

33.11 1.1E-06 7 (77) 7 (86) 10.2 1.227 ± 1.537 2.197 ± 1.142 -1.451 ± 1.509 2.571 ± 1.353 2.954 ± 0.953 -0.524 ± 1.990 1.282 ± 1.779 -1.764 ± 1.467 

Flank weight 

(kg) 

19.90 5.2E-04 7 (88) 10 (23) 6.2 0.056 ± 0.067 0.086 ± 0.124 0.037 ± 0.069 0.121 ± 0.113 0.249 ± 0.066 -0.167 ± 0.106 -0.227 ± 0.118 -0.308 ± 0.197 

AF entire 

shoulder weight 

(kg) 

24.97 5.1E-05 8 (21) 8 (37) 7.7 0.849 ± 0.273 -0.491 ± 0.340 -0.729 ± 0.254 -0.699 ± 0.397 -0.684 ± 0.225 -0.991 ± 0.415 0.665 ± 0.343 0.484 ± 0.504 

Definition of symbols: LR, likelihood ratio; chr, chromosome. 
Values in bold represent significant additive, dominance or epistatic effects. 
1Positions of the QTL in cM. 
2Percentages of F2 variance explained by the QTL calculated as the proportion of residual variances due to the QTL effect on the residual variances excluding the 
QTL effect: (residual variance of model with no epistatic effects - residual variance of model with epistatic effects)/residual variance of model with no epistatic 
effects. 
3Estimated additive (a) and dominance (d) effects and their standard errors (SE) of the individual QTL. 
4Estimated additive x additive (aa), additive x dominance (ad), dominance x additive (da) and dominance x dominance (dd) effects and their standard errors (SE). 



Table 5.4 Evidence of epistatic interactions for lean tissue characteristics measured after dissection and by the AutoFom device (AF) 
Trait LR P value Q0 chr 

(pos)1 

Q1 chr 

(pos)1 

% 

var2 

Q0_a ± SE3 Q0_d ± SE3 Q1_a ± SE3 Q1_d ± SE3 Q01_aa ± SE4 Q01_ad ± SE4 Q01_da ± SE4 Q01_dd ± SE4 

 

Protein content 

of loin (%) 

21.64 2.4E-04 2 (93) 2 (117) 6.7 1.160 ± 0.323 1.208 ± 0.405 -1.225 ± 0.323 1.204 ± 0.402 1.378 ± 0.317 -1.142 ± 0.406 1.162 ± 0.408 -1.049 ± 0.504 

AF lean content 

of belly (%) 

21.87 2.1E-04 2 (9) 8 (55) 6.7 1.973 ± 1.168 5.305 ± 1.773 0.130 ± 1.057 4.762 ± 2.012 -3.022 ± 1.058 -1.582 ± 1.990 -3.089 ± 1.631 -10.239 ± 2.954 

Loin eye area 

M.l.t.l.5, 6 (cm2) 

27.71 1.4E-05 2 (22) 9 (136) 8.4 -2.565 ± 1.318 -4.516 ± 2.300 -1.856 ± 1.255 -3.497 ± 2.459 4.275 ± 1.170 6.658 ± 2.314 5.782 ± 2.110 11.189 ± 4.045 

Protein content 

of loin (%) 

19.69 5.7E-04 4 (121) 7 (1) 6.1 -0.149 ± 0.089 0.067 ± 0.128 0.142 ± 0.090 0.127 ± 0.127 -0.140 ± 0.089 0.522 ± 0.127 -0.145 ± 0.128 -0.036 ± 0.186 

Loin weight 

without 

external fat (kg) 

22.05 2.0E-04 4 (89) 14 (66) 6.9 0.088 ± 0.113 -0.358 ± 0.196 -0.226 ± 0.105 -0.022 ± 0.202 0.328 ± 0.102 0.034 ± 0.196 0.505 ± 0.178 0.508 ± 0.334 

Loin weight 

without 

external fat (kg) 

18.71 9.0E-04 6 (28) 8 (60) 5.9 0.094 ± 0.116 0.061 ± 0.213 -0.086 ± 0.108 0.335 ± 0.223 0.409 ± 0.101 -0.188 ± 0.207 0.271 ± 0.190 -0.468 ± 0.379 

Neck weight 

without 

external fat (kg) 

19.64 5.9E-04 6 (145) 9 (58) 6.3 -0.099 ± 0.070 0.323 ± 0.131 0.130 ± 0.071 0.431 ± 0.121 0.158 ± 0.065 0.249 ± 0.112 -0.047 ± 0.124 -0.776 ± 0.225 

Definition of symbols: LR, likelihood ratio; chr, chromosome. 
Values in bold represent significant additive, dominance or epistatic effects. 
1Positions of the QTL in cM. 
2Percentages of F2 variance explained by the QTL calculated as the proportion of residual variances due to the QTL effect on the residual variances excluding the QTL 
effect: (residual variance of model with no epistatic effects - residual variance of model with epistatic effects)/residual variance of model with no epistatic effects. 
3Estimated additive (a) and dominance (d) effects and their standard errors (SE) of the individual QTL. 
4Estimated additive x additive (aa), additive x dominance (ad), dominance x additive (da) and dominance x dominance (dd) effects and their standard errors (SE). 
5collected at the 13th/14th rib interface.   
6measured on musculus longissimus thoracis et lumborum. 
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Table 5.5 Evidence of epistatic interactions for fat tissue characteristics measured after dissection and by the AutoFom device (AF) 
Trait LR P value Q0 chr 

(pos)1 

Q1 chr 

(pos)1 

% 

var2 

Q0_a ± SE3 Q0_d ± SE3 Q1_a ± SE3 Q1_d ± SE3 Q01_aa ± SE4 Q01_ad ± SE4 Q01_da ± SE4 Q01_dd ± SE4 

 

External ham 

fat weight (kg) 

21.79 2.2E-04 1 (48) 1 (118) 6.8 -0.080 ± 0.071 0.168 ± 0.108 0.107 ± 0.072 -0.073 ± 0.101 -0.131 ± 0.072 -0.092 ± 0.100 -0.367 ± 0.106 -0.185 ± 0.150 

Intramuscular 

fat content (%) 

20.82 3.4E-04 1 (126) 4 (94) 6.4 0.257 ± 0.090 0.087 ± 0.151 0.102 ± 0.088 0.246 ± 0.154 -0.036 ± 0.085 -0.721 ± 0.150 -0.171 ± 0.142 -0.288 ± 0.258 

AF average fat 

thickness (mm) 

19.56 6.1E-04 1 (142) 6 (119) 6.1 -1.656 ± 0.672 -0.419 ± 0.988 0.217 ± 0.652 1.858 ± 1.159 2.293 ± 0.651 4.014 ± 1.153 -1.053 ± 0.956 0.248 ± 1.700 

External neck 

fat weight (kg) 

19.61 6.0E-04 4 (1) 4 (120) 6.1 0.015 ± 0.033 -0.075 ± 0.048 -0.050 ± 0.033 -0.056 ± 0.049 -0.139 ± 0.033 -0.031 ± 0.048 0.005 ± 0.048 0.130 ± 0.070 

Fat content of 

belly (%) 

19.54 6.2E-04 4 (106) 6 (12) 6.2 1.027 ± 1.069 0.734 ± 1.572 -0.478 ± 1.007 -0.788 ± 1.858 -4.737 ± 1.020 -2.345 ± 1.885 -0.796 ± 1.478 -0.003 ± 2.669 

Thinnest fat 

measure5 (cm) 

18.70 9.0E-04 6 (42) 8 (56) 5.8 -0.131 ± 0.088 -0.462 ± 0.145 -0.121 ± 0.079 -0.369 ± 0.155 -0.234 ± 0.078 0.112 ± 0.153 0.166 ± 0.134 0.789 ± 0.248 

External loin fat 

weight (kg) 

18.90 8.2E-04 6 (150) 9 (57) 6.0 0.130 ± 0.099 -0.115 ± 0.174 -0.078 ± 0.097 -0.336 ± 0.165 -0.235 ± 0.093 -0.325 ± 0.159 -0.023 ± 0.165 0.901 ± 0.299 

Definition of symbols: LR, likelihood ratio; chr, chromosome. 
Values in bold represent significant additive, dominance or epistatic effects. 
1Positions of the QTL in cM. 
2Percentages of F2 variance explained by the QTL calculated as the proportion of residual variances due to the QTL effect on the residual variances excluding the QTL 
effect: (residual variance of model with no epistatic effects - residual variance of model with epistatic effects)/residual variance of model with no epistatic effects. 
3Estimated additive (a) and dominance (d) effects and their standard errors (SE) of the individual QTL. 
4Estimated additive x additive (aa), additive x dominance (ad), dominance x additive (da) and dominance x dominance (dd) effects and their standard errors (SE) 
5collected at the 13th/14th rib interface.   
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5.3.1 Entire carcass characteristics 

 

Weights of important carcass cuts are economically important for the market value of 

the carcass. In the present study, ten epistatic interactions were identified for entire 

carcass cuts.  

 

Large DA and DD interactions were identified between two close genomic locations on 

SSC1 for carcass length. These QTL were not identified in previous individual QTL 

analyses. Around the location of these QTL there are numerous reports of QTL for entire 

carcass cuts, lean and fat tissue, as well as growth (cited in Table 5.6).  

 

A further DD interaction was identified between QTL on SSC1 and SSC7 for entire 

belly weight measured by the AutoFom device. The QTL on SSC1 was previously 

identified in individual QTL mapping analyses by Mohrmann et al. (2006a) and in both 

studies this QTL showed a significant dominance effect. Around this location of SSC1, 

numerous QTL have been reported for lean tissue and fat tissue (cited in Table 5.6). This 

QTL is in the vicinity of the melanocortin-4 receptor locus (MC4R) which is located 

close to SWR982 at 86 cM. This locus is important for controlling energy balance and 

body weight, and hence is a candidate gene for traits associated with feed intake and 

energy-homeostasis related traits (Meidtner et al. 2006). There are many reports of an 

association of MC4R with growth and fatness (Kim et al. 2000; Park et al. 2002; 

Houston et al. 2004; Meidtner et al. 2006). Meidtner et al. (2006) reported that MC4R 

could be a useful marker to increase growth of the slow-growing Pietrain breed by 

increasing feed intake. No QTL were identified in previous analysis on SSC7, which 

was surprising because there is strong evidence for QTL on SSC7 in the literature (e.g. 

Milan et al. 2002; Nezer et al. 2002; Yue et al. 2003b; Kim et al. 2005; Sanchez et al. 

2006). Therefore, the QTL identified on SSC7 has only expressed its effects through DD 

interactions with SSC1. 

 



A QTL on SSC1 showed an interaction with a QTL on SSC8 for hind hock weight. 

Neither of these QTL were identified in previous analyses of the present data, which 

may be expected because the negative interaction effect is almost as high as the sum of 

the individual QTL effects. Around the same location of SSC1 a QTL has been reported 

for growth rate (cited in Table 5.6). However there are no reports in the literature 

confirming the QTL on SSC8. 

 

A further location of SSC1 showed an interaction with SSC9 for weight of hind claw. 

These QTL were not identified in previous analyses. These QTL showed no significant 

additive or dominance effects and only expressed their effects through novel interactions 

between additive as well as dominance effects. The QTL on SSC1 for hind claw was 

around the same location as that for carcass length close to SW1430. Around this 

location of SSC1 the insulin-like growth factor-1 receptor (IGF1R) is located. Insulin-

like growth factor 1 (IGF-1) plays an important role in regeneration, metabolism and 

proliferation in a variety of cell types (Schweiger et al. 2005). In association with IGF-1, 

IGF1R regulates growth and differentiation of a variety of cells and controls body 

weight, not only after birth but also during the pre-natal stage (Kopecny et al. 2002). 

Many QTL for carcass traits have been identified around this location (cited in Table 

5.6) and therefore this is a candidate gene for growth and body composition.  

 

Several epistatic effects were identified between the telomeric end of the p arm of SSC2 

and 66 cM of SSC9 for entire ham weight. In the present study the QTL on SSC2 and 

SSC9 showed substantial interactions between additive and dominance effects which 

more than offset the negative effects associated with dominance and AA genetic effects. 

From previous analysis of these data, numerous QTL were identified around this 

location of SSC2 where Pietrain alleles were associated with increased lean tissue and 

reduced fatness (Duthie et al. 2008; Chapter 2). Whereas the QTL on SSC2 was affected 

by individual dominance effects, the QTL on SSC9 showed no significant individual 

QTL effects in the present study. However, from previous analysis, QTL were identified 

in this genomic location for entire shoulder weight and shoulder weight without external 
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fat (Duthie et al. 2008; Chapter 2). There are reports of QTL around this location of 

SSC2 for carcass traits, lean tissue and fat tissue and around the region of SSC9 for body 

weight (cited in Table 5.6). In the region of the QTL on SSC2, a paternally expressed 

QTL which affects growth and fat deposition has been mapped to the insulin-like growth 

factor 2 (IGF2) locus (Jeon et al. 1999; Nezer et al. 1999). Van Laere et al. (2003) 

showed that this QTL is caused by a nucleotide substitution in intron 3 of this gene.  

 

Interactions between additive or dominance effects were identified between two 

locations of SSC4, on the p arm (31 cM) and the telomeric end of the q arm (130.1 cM), 

for belly weight. The QTL on the p arm was not identified in previous individual QTL 

analysis of the data, whereas a QTL was identified for lean content at 33 cM, for which 

Pietrain alleles were associated with decreased lean tissue (Duthie et al. 2008; Chapter 

2). QTL have been reported around 31 cM for numerous carcass traits as well as lean 

and fat tissue, however only a single QTL has been reported at the telomeric end of the q 

arm for daily gain (cited in Table 5.6). The QTL at 31 cM is located between S0301 and 

S0001. Within this marker bracket lies the F-BOX protein 32 (FBXO32) gene (Yu et al. 

2005). Expression of this gene has been found to increase in myotubules during muscle 

atrophy, whereas mice deficient in FBXO32 were resistant to atrophy (Bodine et al. 

2001). This gene could be an important gene for muscle mass development (Glass 

2003). Moreover, between these markers is the exostoses (multiple) 1 gene which is 

located in the same position as S0301 (27.1) (Cepica et al. 2002). This is a candidate 

gene for growth related traits.  

 

For entire neck weight, AD and DA interactions were identified between two close 

genomic locations of SSC6 (71 and 86 cM). There are numerous reports in the literature 

for QTL associated with carcass traits, lean and fat tissue in these locations (cited in 

Table 5.6). No QTL were detected near 71 cM from previous individual QTL analyses 

of this data, but Mohrmann et al. (2006a) reported a large number of QTL around the 

QTL at 86 cM for several carcass cuts (lean + fat), fat tissue, lean tissue characteristics 

and chemical body composition, at which Pietrain alleles were associated with decreased 
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fat tissue and increased lean tissue. The significant additive effect identified at the QTL 

(86 cM) in the present study indicated that Pietrain alleles were associated with 

increased neck weight. This QTL is in the same genomic location as the RYR1 locus 

(Rohrer et al. 1996). A mutation at this locus is associated with malignant hyperthermia 

syndrome (Fujii et al. 1991). This locus is significantly associated with production traits 

in pigs (Kadarmideen 2008). 

 

A novel epistatic AA QTL pair was identified on two locations of SSC7 for entire loin 

weight. No individual QTL effects were identified at either of these QTL outlining why 

they were not identified from previous individual QTL analyses. There are reports of 

QTL around these locations for numerous carcass characteristics (cited in Table 5.6). 

The QTL at 86 cM is located between SWR2036 and SW632. Between these markers the 

proteasome (prosome, macropain) activator subunit 1 (PA28 alpha) (PSME1) and the 

proteasome (prosome, macropain) activator subunit 2 (PA28 beta) (PSME2) genes are 

located. PSME1 and PSME2 encode proteasome activators PA28α and β subunits which 

are two subunits of PA28 which is an activator of the proteosome and plays an important 

role in antigen presentation mediated by the major histocompatibility complex class I 

(Dubiel et al. 1992). Wang et al. (2004) reported that a polymorphism in the PSME1 

gene is associated with weaning weight. Therefore this may be a candidate gene for 

production traits in this location of SSC7. 

 

An AA interaction was identified between SSC7 and SSC10 for flank weight. Again, at 

these QTL no individual QTL effects were identified. The QTL on SSC7 was located 

around the same region as for entire loin weight in the present study. Around this 

location of SSC7 there are reports of QTL for leanness, fatness and growth, whereas 

around this location of SSC10 a QTL has been reported for backfat (cited in Table 5.6). 

 

For entire shoulder weight, AA and AD interactions were identified between two close 

genomic locations of SSC8 (21 and 37 cM). Duthie et al. (2008; Chapter 2) identified 

QTL at 37 cM for protein content of the loin, at which Pietrain alleles were associated 

 135



with less protein content. In this study, Pietrain alleles were associated with less 

shoulder weight at this QTL. The QTL at 21 cM was not identified before and therefore 

only exhibits effects through the interactions. QTL have been reported around these 

locations for numerous carcass traits, daily gain as well as lean tissue (cited in Table 

5.6).  

 

  

5.3.2 Lean tissue characteristics 

 

One of the main goals of commercial pig production has been to increase lean tissue. A 

large number of studies have investigated QTL for lean tissue (e.g. Rohrer and Keele 

1998b; Malek et al. 2001b; Geldermann et al. 2003) from individual QTL analysis. In 

the present study seven epistatic QTL pairs were identified for lean tissue characteristics.  

 

For protein content of the loin tissue all fitted interactions as well as all individual QTL 

effects were significant between two genomic locations on SSC2 (93 and 117). A QTL 

was previously identified at 92 cM for shoulder weight without external fat (Duthie et al. 

2008; Chapter 2). Around this location (93 cM), QTL have been reported for daily gain 

and backfat (cited in Table 5.6). 

 

At the telomeric end of the p arm of SSC2, additive as well as dominance interactions 

were detected with SSC8 for lean content of the belly. The QTL on SSC2 is again 

around the same location as the IGF2 gene, and numerous QTL were previously 

identified for lean and fat tissue QTL around this location of SSC2 (Duthie et al. 2008; 

Chapter 2). The dominance effects of the QTL on SSC8, however, were not detected in 

previous individual QTL mapping analyses of the data.  

 

A slightly different location of SSC2 (22 cM) showed further interactions of all fitted 

combinations with SSC9 for loin eye area. No individual QTL effects were identified at 

these QTL, however QTL were reported in this resource family for lean tissue at the 

 136



same location on SSC2 (Duthie et al. 2008; Chapter 2). Interestingly, all interactions 

were positive, and may thus be an explanation for heterosis of these crosses in lean 

content. Around this location of SSC2, QTL have been reported for lean tissue as well as 

backfat and on SSC9 for fatness, daily gain and body weight (cited in Table 5.6). 

 

In previous individual QTL mapping of the present resource family, no QTL were 

identified on SSC7 and only a few QTL were identified on SSC4. In the present study 

AD interactions were identified between these chromosomes for protein content of the 

loin. QTL have been reported around this location of SSC4 for carcass weight, body 

weight and liver weight (cited in Table 5.6). Transforming growth factor, beta receptor 

III (TGFBR3) is located around this location of SSC4. Transforming growth factor- beta 

is encoded by several genes including TGFBR3 and is involved in tissue development 

and repair processes (Johnson et al. 1995). 

 

Moreover, SSC4 showed positive interaction effects with SSC14 for loin weight without 

external fat. These positive interaction effects were almost four times as high as the 

negative additive genetic effects of the QTL on SSC14. These negative additive genetic 

effects at the QTL on SSC14 indicated that Pietrain alleles were associated with less 

lean meat of the loin. The QTL on SSC14 was at the same genomic location of SSC14 

as the reported QTL for ham lean meat weight (Duthie et al. 2008; Chapter 2), where 

Pietrain alleles were also associated with decreased lean tissue weight, interpreted as a 

cryptic allele. Around both of these QTL, there are reports in the literature for QTL 

associated with numerous carcass characteristics, including lean and fat tissue (cited in 

Table 5.6). Around this location of SSC4 lies the myocyte enhancer factor 2D gene 

which is a member of the myocyte enhancer binding factor 2 gene family (Wagenknecht 

et al. 2003). This gene is thought to be involved in myogenesis (Breitbart et al. 1993). 

The myelin protein zero gene is also located around this QTL (Wagenknecht et al. 

2005), in the same location as QTL for carcass traits (lean and fat mass) (Cepica et al. 

2003a). The lamin A/C locus is also identified in this region. This gene encodes lamins 

A and C (Wagenknecht et al. 2006). Sullivan et al. (1999) showed that mice lacking 
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lamins A have severely retarded postnatal growth and premature death and developed 

cardiac and skeletal myopathy. QTL for carcass traits were identified around this region 

of SSC4 (Cepica et al. 2003a) and therefore this is a candidate gene for muscle 

development and growth. Furthermore, thioredoxin-interacting protein gene is located in 

this region. This locus plays a crucial role in cell proliferation and growth (Yu et al. 

2007). Yu et al. (2007) found significant effects of this gene on a number of important 

growth traits including carcass weight as well as daily gain in pigs. By comparison of 

two groups (slow and fast growth), they found that the expression of this gene was 

significantly lower in the fast growth group. Their results suggest that this gene 

influences growth.  

 

A further interaction between additive genetic effects was identified between QTL on 

SSC6 and SSC8 for loin weight without external fat. No individual QTL effects were 

identified at these QTL, and these were not identified in previous analysis. Around the 

location of the QTL on SSC6, QTL have been identified for loin and ham percentage in 

the carcass and intramuscular fat content, and in the region of SSC8 QTL have been 

reported for a number of weights of carcass cuts and daily gain (cited in Table 5.6). 

 

SSC6 showed further epistatic effects with SSC9 for neck weight without external fat. 

At both individual QTL, heterozygous animals were associated with increased lean 

weight. Mohrmann et al. (2006a) reported, for the same resource family, QTL around 

this location of SSC6 for lean and fat tissue showing dominance effects, whereas the 

QTL on SSC9 was not previously identified. The negative DD effects may be the reason 

for not detecting the QTL on SSC9 in an individual QTL mapping approach. QTL have 

been reported around this location of SSC6 for carcass length and loin eye area, and on 

SSC9 for lean weight and loin eye area (cited in Table 5.6). The QTL on SSC9 was 

situated close to SW2401. A candidate gene which is situated close to this marker 

includes succinate dehydrogenase complex, subunit D (SDHD), one of the subunits of 

succinate dehydrogenase complex. Guimaraes et al. (2007) outlined that this gene is a 

candidate for production traits, because of its role in the SDHD complex in the process 
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of aerobic respiration. They reported that expression levels of this gene were associated 

with growth and meat quality traits in pigs. Furthermore, Zhu et al. (2005) reported an 

association of this gene with loin muscle area. 

  

 

5.3.3 Fat tissue characteristics 

 

Selection for reduced fatness has been an important goal within pig breeding over the 

last 50 years. Fat tissue has negative associations with consumer acceptability and the 

economic value of the carcass and is associated with waste and environmental impact. In 

the present study, epistatic interactions for seven traits associated with fatness were 

identified. 

 

Epistatic DA genetic effects were identified in two genomic locations of SSC1 for 

external ham fat weight (48 and 118 cM). This QTL for external ham fat weight at 48 

cM along with that for carcass length were identified close to SW185 on SSC1. In a 

previous individual QTL analysis of the data, Mohrmann et al. (2006a) reported QTL at 

119 cM of SSC1 for entire loin weight and external loin fat weight, attributed to 

dominance effects. The QTL on SSC1 for external ham fat weight at 118 cM is close to 

SW1828. At both of these QTL a large number of QTL have been reported for carcass 

traits, lean tissue, fat tissue and daily gain (cited in Table 5.6). 

 

SSC1 also showed an AD interaction with SSC4 for intramuscular fat content. 

Significant additive effects at the QTL on SSC1 indicated that the alleles from the 

Pietrain breed were associated with higher intramuscular fat content. However, this 

positive additive genetic effect were offset by an almost three times higher negative 

interaction effect with SSC4. The QTL on SSC1 and SSC4 were not identified in 

previous individual QTL mapping of the data. However, numerous QTL have been 

identified around both of these QTL for carcass characteristics, lean and fat tissue, as 

well as body weight (cited in Table 5.6). 

 139



 

Furthermore, SSC1 showed interactions with SSC6 for average fat thickness measured 

by the AutoFom device. The QTL on SSC6 was previously reported by Mohrmann et al. 

(2006a). However, they estimated a significant individual dominance effect, whereas in 

the present study it is shown that it is more likely due to an interaction between additive 

and dominance effects. Around this location of SSC1 there are a large number of reports 

for fat tissue, along with lean tissue and growth and around the location of SSC6 for 

fatness, leanness and growth (cited in Table 5.6). 

 

An AA genetic interaction was identified between the two telomeric ends of SSC4 for 

external neck fat weight. No individual QTL effects were identified at these QTL, and 

they were not identified in previous analysis of the data. At the telomeric end of the p 

arm, there are reports of QTL for fat tissue, as well as body weight and belly weight. At 

the telomeric end of the q arm however, there are no reports of QTL for fatness, but for 

carcass weight, body weight and liver weight (cited in Table 5.6). 

 

A different location of SSC4 showed AA genetic interactions with SSC6 for fat content 

of the belly. At these QTL no individual QTL effects were identified and they were not 

identified in previous analysis. Around this location of SSC4 no QTL have been 

reported for fat tissue, but there are reports of QTL for lean tissue. In the region of the 

QTL on SSC6 there is only one report of QTL for ham weight (cited in Table 5.6). 

 

For thinnest fat measure, additive or dominance interactions were identified between 

SSC6 and SSC8. In addition, significant dominance effects were identified at both QTL, 

indicating that heterozygous animals were associated with thinner fat at both QTL. An 

interaction was previously described in this study, for loin weight without external fat 

between SSC6 and SSC8. The QTL on SSC8 were both identified between SW444 and 

S0086. The QTL on SSC6 were not identified in the same marker bracket. At the 

location of the QTL on SSC6, Mohrmann et al. (2006a) found significant dominance 

effects influencing chemical body composition (protein and lipid content) measured at 
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30 kg body weight. At these QTL heterozygous animals were associated with less lipid 

and protein content of the empty body and less protein content of the fat-free substance. 

There are no reports of QTL in the literature for similar traits around either QTL. 

 

For external loin fat weight interactions were identified between similar genomic 

locations of SSC6 and SSC9 as that of neck weight without external fat. At the QTL on 

SSC9, heterozygous animals are associated with less fat weight of this carcass cut and 

increased lean. The QTL on SSC6 has been previously reported by Mohrmann et al. 

(2006a) for this resource family for many fat tissue characteristics. Furthermore, there 

are reports in the literature for fatness QTL around both QTL (cited in Table 5.6). 
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Table 5.6 Reports of QTL in the literature around similar locations as the QTL identified in the present study 

Trait SSC 
(position)3 

Marker interval Other studies confirming the QTL4 

Entire carcass characteristics (lean + fat) 
Hind hock weight (kg) 1 (35) SW1332 – SW1851  de Koning et al. (2001a) 
Carcass length (cm) 1 (45) SW1851 – SW1430  Malek et al. (2001a); Beeckmann et al. (2003a); Geldermann et al. (2003) 
Carcass length (cm) 1(59) SW1430 - SWR982  Beeckmann et al. (2003a) 
Hind claw (kg) 1 (63) SW1430 - SWR982 Beeckmann et al. (2003a) 
AF entire belly weight (kg) 1 (88) SWR982 - SW1311 Nezer et al. (2002); Beeckmann et al. (2003a); Karlskov-Mortensen et al. (2006) 
Entire ham weight (kg) 2 (10) SW2623 – SWR783 de Koning et al. (2001a); Milan et al. (2002); Geldermann et al. (2003); Lee et al. (2003a)  
Belly weight (kg) 4 (31) S0301 – S0001 Cepica et al. (2003a); Geldermann et al. (2003); Kim et al. (2006) 
Belly weight (kg) 4 (130.1) SW856 Knott et al. (2002) 
Entire neck weight (kg) 6 (71) S0087 – SW122 Yue et al. (2003a) 
Entire neck weight (kg) 6 (86) SW122 – S0228 Rohrer (2000); Grindflek et al. (2001); Varona et al. (2002); Yue et al. (2003a); Edwards et al. (2006) 
Entire loin weight (kg) 7 (77) SW1856 – SWR2036 Malek et al. (2001a); Milan et al. (2002); Geldermann et al. (2003); Yue et al. (2003b)  
Entire loin weight (kg) 7 (86) SWR2036 – SW632 Nezer et al. (2002); Kim et al. (2005); Ponsuksili et al. (2005); Edwards et al. (2008) 
Flank weight (kg) 7 (88) SWR2036 – SW632 Nezer et al. (2002); Kim et al. (2005); Ponsuksili et al. (2005); Edwards et al. (2008) 
AF entire belly weight (kg) 7 (148) SW2537 – SW764 - 
AF entire shoulder weight (kg) 8 (21) SW905 – SWR1101  Quintanilla et al. (2002); Sato et al. (2003) 
AF entire shoulder weight (kg) 8 (37) SW905 – SWR1101  Beeckmann et al. (2003c) 
Hind hock weight (kg) 8 (107) SW1551 – S0178 - 
Hind claw (kg) 9 (23) SW21 – SW911 - 
Entire ham weight (kg) 9 (66) SW2401 – SW2571  Cepica et al. (2003c) 
Flank weight (kg) 10 (23) SWR136 – SW1894  Quintanilla et al. (2002) 
Lean tissue characteristics 
AF lean content of belly (%) 2 (9) SWR2516 – SW2623  de Koning et al. (2001a); Milan et al. (2002); Geldermann et al. (2003); Lee et al.. (2003a) 
Loin eye area M.l.t.l.1,2 (cm2) 2 (22) SW2623 – SWR783  Lee et al. (2003a) 
Protein content of loin (%) 2 (93) SWR2157 – SWR345  Malek et al. (2001a); Lee et al. (2003a) 
Protein content of loin (%) 2 (117) SWR345 – S0036 - 
Loin weight without external fat (kg) 4 (89) S0214 – SW445 Perez-Enciso et al. (2000); Varona et al. (2002); Cepica et al. (2003a); Geldermann et al. (2003) 
Protein content of loin (%) 4 (121) MP77 – SW856 Malek et al. (2001a); Cepica et al. (2003a) 
Loin weight without external fat (kg) 6 (28) SW2406 – SW1841 de Koning et al. (2000); Milan et al. (2002) 
Neck weight without external fat (kg) 6 (145) SW1881 – SW322 Malek et al. (2001a); Edwards et al. (2008) 
Protein content of loin (%) 7(1) SW2564 – SWR1343 - 
AF lean content of belly (%) 8 (55) SW444 – S0086 - 
Loin weight without external fat (kg) 8 (60) SW444 – S0086  Casas-Carrillo et al. (1997); Milan et al. (2002); Kim et al. (2005) 
Neck weight without external fat (kg) 9 (58) SW2401 – SW2571  Rohrer et al. (2005) 
Loin eye area M.l.t.l.1,2 (cm2) 9 (136) SW174 – SW1349  Cepica et al. (2003c); Kim et al. (2006) 
Loin weight without external fat (kg) 14 (66) SW342 – SW1081  Dragos-Wendrich et al. (2003a); Geldermann et al. (2003); van Wijk et al. (2006) 

 



Table 5.6 continued 

Trait SSC 
(position)3 

Marker interval Other studies confirming the QTL4 

Fat tissue characteristics 
External ham fat weight (kg) 1 (48) SW1851 – SW1430  Malek et al. (2001a); Beeckmann et al. (2003a); Geldermann et al. (2003) 
External ham fat weight (kg) 1 (118) SW1311 – SW1828  Beeckmann et al. (2003a); Geldermann et al. (2003); Kim et al. (2006) 
Intramuscular fat content (%) 1 (126) SW1828 – SW1301  Rohrer and Keele (1998ab); Rohrer (2000); Beeckmann et al. (2003a); Edwards et al. (2008) 
AF average fat thickness (mm) 1 (142) SW1301 – SW2512  Rohrer and Keele (1998a); Bidanel et al. (2001); Quintanilla et al. (2002); Beeckmann et al. (2003a); 

Sanchez et al. (2006) 
External neck fat weight (kg) 4 (1) SW2404 – SW489  Marklund et al. (1999); Milan et al. (2002) 
Intramuscular fat content (%) 4 (94) S0214 – SW445  Perez-Enciso et al. (2000); Varona et al. (2002); Cepica et al. (2003a); Geldermann et al. (2003) 
Fat content of belly (%) 4 (106) SW445 – MP77  Cepica et al. (2003a); Geldermann et al. (2003) 
External neck fat weight (kg) 4 (120) MP77  Malek et al. (2001a); Cepica et al. (2003a) 
Fat content of belly (%) 6 (12) MP35 – SW2406  van Wijk et al. (2006) 
Thinnest fat measure1 (cm) 6 (42) SW1841 – S0087 - 
AF average fat thickness (mm) 6 (119) S0228 – SW1881  Varona et al. (2002); Sato et al. (2003); Kim et al. (2006); Edwards et al. (2008) 
External loin fat weight (kg) 6 (150) SW322 – SW2052  Kim et al. (2005) 
Thinnest fat measure1 (cm) 8 (56) SW444 – S0086 - 
External loin fat weight (kg) 9 (57) SW911 – SW2401  Rohrer et al. (2005) 

1collected at the 13th/14th rib interface.   
2measured on musculus longissimus thoracis et lumborum. 
3Positions of the QTL in cM. 
4References of other studies reporting QTL for similar traits in similar regions of the genome. 
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There are numerous reports of QTL in the literature for carcass characteristics, lean 

tissue and fat tissue in pigs in many genomic locations throughout the genome (e.g. 

Rohrer and Keele 1998ab; Bidanel et al. 2001; Milan et al. 2002; Geldermann et al. 

2003; Sanchez et al. 2006; Liu et al. 2007). Previous analysis of the phenotypic data 

from the commercial population (Pietrain sires x crossbred dam line) of the present 

study identified numerous QTL for entire carcass characteristics, as well as lean and fat 

tissue characteristics (Mohrmann et al. 2006a; Duthie et al. 2008; Chapter 2). However, 

in these studies the role of epistasis in the genomic regulation of body composition has 

not been considered. To date, there is limited evidence for epistatic QTL across all 

species of livestock. This is most likely because tools and methodologies have not been 

available for this type of research, and because of the computational demand associated 

with the analysis.  

 

In pigs, epistatic QTL have been reported so far, for reproductive traits (Bidanel 1993; 

Rodriguez et al. 2005; Noguera et al. 2006), coat colour (Hirooka et al. 2002), meat 

quality traits (meat colour and intramuscular fat content) (Ovilo et al. 2002; Szyda et al. 

2006) and muscle fibre traits (Estelle et al. 2008). No epistatic QTL have been reported 

for body composition, such as entire carcass cuts, lean tissue and fat tissue 

characteristics. The present study is the first report to estimate epistatic interactions for 

carcass characteristics measured at slaughter weight in the pig. 

 

Carlborg and Haley (2004) outlined the importance of a relatively large data set for the 

analysis of epistatic QTL. Small data sets will only detect epistatic QTL pairs with large 

effects. In the present study, a large number of epistatic QTL pairs were identified; this 

study is only the first step in understanding the contribution of epistasis to the genetic 

control of body composition in pigs. The present study has not covered the whole 

genome, therefore there are probably many more epistatic interactions involved in the 

genomic regulation of body composition.  

 



Estelle et al. (2008) identified numerous significant epistatic QTL pairs for muscle fibre 

traits in a pig population of Iberian × Landrace F2 cross, using a similar methodology as 

the present study. They identified all two-locus epistatic effect (AA, AD, DA, DD) but 

did not find that any particular epistatic effect was prevalent in their study. The 

interactions identified in the present study were at different genomic locations than those 

of Estelle et al. (2008). This may be because muscle fibre traits are under different 

genomic control, or due to breed differences as the study by Estelle et al. (2008) was 

based on an experimental cross between Iberian and Landrace pigs. They found that the 

epistatic interactions formed a network of connected pairs of epistatic QTL. They also 

indicated that this may be a common phenomenon as Carlborg et al. (2006) reported 

similar networks. Estelle et al. (2008) found that SSC10 and SSC11 behaved as hubs for 

this network. There is no clear evidence of this type of network in our study. However, 

SSC1, SSC8, SSC9, SSC2, SSC6 and SSC4 seemed particularly active with respect to 

epistasis. SSC10 did not seem as important in our study, with only one interaction being 

identified on SSC10, and SSC11 was not genotyped in the present study. 

 

Information about the involvement of epistatic QTL in the genomic regulation of body 

composition is limited in livestock. There is, however, some evidence of the 

involvement of epistasis in the genomic regulation of growth in chickens, particularly 

early growth (Carlborg et al. 2003; Carlborg et al. 2004). Furthermore, there is a lot of 

evidence indicating an important role for epistatic interactions in the genomic control of 

growth and obesity of mice. Routman and Cheverud (1997) reported epistatic QTL for 

adult body weight. Brockmann et al. (2000) reported epistatic effects for serum 

concentrations of leptin, insulin and IGF-1, body weight, abdominal fat weight and 

muscle weight. They reported co-coordinated regulation of body and muscle weight by 

the interaction of two pairs of loci, one of which also influenced serum concentration of 

lipid. They indicated that these interactions may contribute to the high genetic 

correlation between body and muscle weight. Yi et al. (2004a) also found that epistasis 

played an important role controlling obesity in mice. They reported that different groups 

of traits were influenced by different interactions, such that a different genetic 
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architecture was identified for obesity traits and total cholesterol. They also found that 

the total phenotypic variance explained by epistatic interactions was higher than those 

explained by main effects. The epistatic QTL pairs identified in the present study also 

contributed to higher proportions of the phenotypic variance than QTL identified from 

single QTL analysis. The proportions of phenotypic variance explained in the present 

study by epistatic QTL pairs were approximately double that of the individual QTL 

identified from the individual QTL analysis (Duthie et al. 2008; Chapter 2) and therefore 

may be simply the combination of two QTL. In a further study of mice, Yi et al. (2004b) 

reported an epistatic effect between mouse chromosomes 7 and 3 for hepatic lipase 

activity. The QTL on chromosome 7 was detected in non epistatic analysis in the same 

location. The QTL on chromosome 3 had a weak main effect on hepatic lipase activity 

and was not detected in the non epistatic analysis, however chromosome 3 was found to 

interact strongly with chromosome 7. Further studies in mice reported epistatic QTL 

pairs for abdominal fat percentage, abdominal fat weight, body weight, kidney weight 

and spleen weight (Carlborg et al. 2005) and organ weights and limb length traits (Wolf 

et al. 2006). Yi et al. (2006) found that epistasis was more important for body weight in 

mice at older ages, than younger ages in contradiction to Ishikawa et al. (2005) who 

found that epistasis was more important for early growth than late stages of growth in 

mice. Yi et al. (2006) also found that epistasis influenced fatness and organ weights. 

 

In the present study a large number of epistatic QTL pairs were identified which were 

involved in the regulation of many carcass traits, including lean and fat tissue weights in 

pigs. It is obvious from this study and from studies of poultry and mice that epistasis is 

important for the genomic regulation of growth and body composition. Information 

about epistatic interactions can add to our understanding of the genomic networks which 

form the fundamental basis of biological systems. In addition to knowledge about the 

individual QTL or genes which influence a biological system, information about the 

effect of interactions between genes will build on the understanding of the genomic 

networks which influence variation in biological systems (Carlborg and Haley 2004). 
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Future QTL analyses should therefore focus their attention on uncovering the role of 

epistasis in the genomic regulation of economically important traits. 
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Chapter 6 
 
 

Quantitative trait loci for meat quality traits in pigs 
considering imprinting and epistatic effects 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Abstract  
 

The aim of the research was to gain a better understanding of the genomic regulation of 

meat quality by investigating individual QTL and pairs of epistatic QTL in a three 

generation full-sib population (Pietrain x crossbred dam line). In total, 386 animals were 

genotyped for 96 markers covering several chromosomes. Analysed traits included pH at 

45 minutes (pH45) and 24 hours (pH24) post-mortem, reflectance value, conductivity and 

meat colour. Thirteen significant individual QTL were identified. The most significant 

QTL were detected on SSC1 and SSC9 for pH45 and pH24, respectively, on SSC4 for 

meat colour and on SSC8 for conductivity, accounting for between 3.4% and 4.7% of 

the phenotypic variance. Nine significant epistatic QTL pairs were detected accounting 

for between 5.7% and 10.9% of the phenotypic variance. The epistatic QTL pairs 

showing the largest effects were for reflectance value between two locations of SSC4, 

and for pH45 between SSC10 and SSC13, explaining 9.5% and 10.9% of the phenotypic 

variance, respectively. Furthermore, 10 significant QTL with imprinting effects were 

identified. This study indicates that meat quality traits are influence by a large number of 

QTL, expressed partly by imprinting, as well as a complex network of QTL interactions. 
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6.1 Introduction 
 

In the past 50 years, selection strategies in pigs have been mainly focussed on the 

genetic improvement of production traits such as growth rate, lean content, backfat 

thickness and feed efficiency (Roehe et al. 2003; Kanis et al. 2005; van Wijk et al. 

2005). There has been considerable progress in the genetic improvement of pigs through 

artificial selection of superior animals without knowledge of the underlying genomic 

regulation of these traits (Andersson 2001; Georges 2001; Weller 2001; Dekkers and 

Hospital 2002). Intensive artificial selection has resulted in a substantial increase in loin 

muscle area and reduction in backfat thickness, an indication that these body 

composition traits have high genetic determination (Andersson 2001; Roehe et al. 2003). 

This selection for increased leanness has however partly been unfavourably associated 

with meat eating quality characteristics (Schwab et al. 2006). Understanding the genetic 

regulation of meat quality is therefore becoming more important (Karlsson et al. 1993; 

De Vries et al. 1994; Knapp et al. 1997; Oksbjerg et al. 2000; Kanis et al. 2005; 

Aaslyng et al. 2007). 

 

Meat quality is a complex trait with several criteria involved from technological to 

subjective meat eating quality characteristics. Technological aspects of meat quality 

refer to properties such as water holding capacity (e.g. drip loss during storage), 

intensity and homogeneity of colour, firmness, shelf-life, cooking loss and various 

processing yields (Sellier 1998; Otto et al. 2004). Consumer satisfaction with the 

product is influenced by traits associated with appearance, such as colour, leanness, 

amount of fat tissue and water holding capacity (Otto et al. 2006). Commonly used 

indicators of meat quality are pH at 45-60 minutes post-mortem and pH at 24 hours after 

slaughter (Sellier 1998). Intramuscular fat content is considered as having a favourable 

influence on tenderness and juiciness of the meat, however too high levels may be 

detrimental and negatively influence consumer acceptability.  
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The market price of the final product should include both carcass composition and meat 

quality (Otto et al. 2007a). As a result, breeding goals should include meat quality as 

well as production traits (van Wijk et al. 2005). A large number of genomic studies have 

been devoted to growth and body composition traits (e.g.  Andersson et al. 1994; Rohrer 

and Keele 1998ab; Bidanel et al. 2001; de Koning et al. 2001a; Milan et al. 2002), 

however much less attention has been paid to meat quality traits. Recently, however, the 

interest in quantitative trait loci (QTL) associated with meat quality has increased (de 

Koning et al. 2001b; Grindflek et al. 2001; Paszek et al. 2001; Ovilo et al. 2002; Nii et 

al. 2005; Vidal et al. 2005). 

 

The aim of this study was to gain further insight into the genomic regulation of meat 

quality. For this reason QTL analysis of meat quality traits was carried out across several 

autosomes as well as chromosome X in a F2 pig population. The mode of inheritance 

was investigated as additive and/or dominance and the epigenetic effects of imprinting 

were tested. Furthermore a QTL scan for epistatic QTL pairs was carried out to examine 

the role of epistasis in the genomic regulation of meat quality. 
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6.2 Materials and methods 
 
6.2.1 Design and data  
 

The present study was based on data of a resource family of a three generation full-sib 

design. In the F0 generation, seven unrelated Pietrain sires, which were all heterozygous 

at the ryanodine receptor 1 (RYR1) were mated to 16 sows of a crossbred dam line 

(Leicoma × (Landrace × Large White)). Eight boars and 40 sows of the F1 generation 

were mated, whilst avoiding inbreeding, to produce the F2 generation which comprised 

49 families of 315 pigs across two litters. Animals of the F2 generation were either 

housed individually or in groups of up to 15 pigs of mixed sex in straw-bedded pens. 

Individual housed animals comprised of 48 gilts and 46 barrows. These animals were 

fed manually with feed consumption recorded on a weekly basis. Group housed animals 

comprised 117 gilts and 104 barrows. These animals were supplied food by an electronic 

feeding station (ACEMA 48), which recorded feed consumption at each visit. Pigs were 

provided with one of three pelleted diets containing 13.8 MJ ME/kg and 1.2% lysine, 

13.8 MJ ME/kg and 1.1% lysine, or 13.4 MJ ME/kg and 1.0% lysine for weight ranges 

30-60, 60-90 and 90-140 kg body weight, respectively. Pigs were provided with ad 

libitum access to diets, formulated slightly above requirement, so they were able to reach 

maximal protein deposition. For more detail about the management of this project see 

the studies of Landgraf et al. (2006ab) Mohrmann et al. (2006ab). 

 

 

6.2.2 Meat quality measurements  

 

Means and standard deviations of traits analysed in the present study are presented in 

Table 6.1. Following slaughter at 140 kg body weight, reflectance was measured 45 min 

post-mortem (reflectance45) simultaneously with the carcass grading information using 

the Fat-O-Meter device (FOM, SKF Technology, Herlev, Denmark) perpendicular to the 

longissimus muscle between the last 3rd and 4th rib. The pH was measured 45 minutes 

 152



post mortem (pH45 loin) on the intact carcass using a pH-STAR electrode (Matthäus, 

Nobitz-Klausa, Germany). The pH probe was inserted 4 cm deep into the musculus 

longissimus dorsi between the 13th and 14th thoracic vertebrae. Prior to the measurement, 

temperature was measured at the point the pH probe was placed and the pH was adjusted 

according to temperature. At 24 hours post-mortem, the carcass was cut between the 13th 

and 14th thoracic vertebrae and pH values (pH24 loin) were measured at the surface of 

musculus longissimus dorsi. After cleaning the cranial surface of the musculus 

longissimus dorsi, the colour of the muscle was measured by OPTO-STAR equipment at 

the same location (Matthäus, Nobitz-Klausa, Germany). The OPTO-STAR equipment 

measures the brightness of the meat sample whereby lower and higher values indicate 

paler and darker meat, respectively. At 24 hours post-mortem, the pH in the ham (pH24 

ham) was measured 4 to 6 cm above the Symphisis pelvis in the musculus 

semimembranosus inserting the pH probe to a depth of 2 cm. Conductivity was taken 24 

hours post mortem (conductivity24) using LF-STAR (Matthäus, Nobitz-Klausa, 

Germany) inserted between the 14th and 15th thoracic vertebrae to a depth of 6 cm. 

 

 
Table 6.1 Means and standard deviations (SD) of meat quality traits measured on pigs of the F2 
generation 

Trait 
 

Mean SD 

pH45 loin  6.242 0.399 
pH24 ham 5.553 0.188 
pH24 loin 5.448 0.132 
Reflectance45

1 24.781 4.602 
Conductivity24  4.813 2.212 
OPTO-STAR value 69.252 7.531 
1measured by the Fat-O-Metre device. 
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6.2.3 Genotypic data 

 

Blood samples were collected from all animals of the F0, F1 and F2 generations from the 

vena jugularis and their DNA was isolated. Chromosomes chosen for genotyping were 

SSC1, SSC2, SSC4, SSC6, SSC7, SSC8, SSC9, SSC10, SSC13, SSC14 and SSCX 

because of their likely associations with carcass characteristics and growth. All animals 

were genotyped for 96 informative microsatellite markers. Of these markers 10, 9, 9, 9, 

10, 8, 9, 9, 8, 7 and 8 genomic markers were located on SSC1, SSC2, SSC4, SSC6, 

SSC7, SSC8, SSC9, SSC10, SSC13, SSC14 and SSCX, respectively. Markers and their 

distances were selected from the published USDA linkage map 

(http://www.marc.usda.gov; Rohrer et al. 1996) which provided all information relating 

to their positions and alleles (Table 6.2). Average distance between markers is 16.0, 

16.5, 16.3, 21.0, 17.0, 18.4, 17.3, 16.0, 18.0, 17.4, and 18.3 cM and largest gaps between 

markers is 28.0, 25.2, 26.5, 29.0, 26.0, 23.1, 21.7, 20.8, 24.0, 23.6 and 22.4 cM on 

SSC1, SSC2, SSC4, SSC6, SSC7, SSC8, SSC9, SSC10, SSC13, SSC14 and SSCX, 

respectively. 
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Table 6.2 Markers used in the present QTL mapping project, their relative map position using 
USDA pig map, number of different alleles, polymorphic information content in the F2 generation 
(PIC) and heterozygosity in F1 generation (H) 

Marker SSC Position (cM) H Number of 
alleles 

PIC 

SW1514 1 0.0 0.79 8 0.75 
SW1515 1 16.4 0.67 8 0.68 
SW1332  1 29.2 0.63 4 0.37 
SW1851 1 44.6 0.73 4 0.53 
SW1430 1 58.5  0.81 6 0.76 
SWR982 1 86.2 0.88 7 0.77 
SW1311 1 100.8 0.58 6 0.62 
SW1828  1 118.5 0.90 7 0.69 
SW1301 1 140.5 0.83 5 0.67 
SW2512 1 144.0 0.77 6 0.55 
SWR2516 2 0.0 0.67 5 0.48 
SW2623 2 9.8 0.68 5 0.63 
SWR783 2 23.7 0.51 3 0.30 
SW240 2 42.0 0.84 7 0.78 
SW1026 2 60.6 0.47 6 0.55 
SW1370 2 74.8 0.91 8 0.69 
SWR2157 2 89.2 0.78 8 0.68 
SWR345 2 114.4 0.87 8 0.75 
S0036 2 132.1 0.85 7 0.80  
SW2404 4 0.0 0.91 10 0.81 
SW489 4 8.0 0.66 5 0.53 
S0301 4 27.1 0.72 6 0.56 
S0001 4 41.8 0.66 6 0.65 
SW839 4 62.3 0.44 4 0.45 
S0214 4 79.3 0.80 6 0.74 
SW445 4 105.8 0.91 10 0.77 
MP77 4 120.0 0.87 8 0.74 
SW856 4 130.1 0.98 14 0.84 
MP35 6 0.0 0.70 6 0.59 
SW2406 6 21.4 0.74 8 0.61 
SW1841 6 41.5 0.98 15 0.88 
S0087 6 62.8 0.75 5 0.59 
SW122 6 83.3 0.85 7 0.69 
S0228 6 105.2 0.69 6 0.68 
SW1881 6 121.1 0.96 8 0.76 
SW322 6 149.8 0.79 8 0.72 
SW2052 6 164.6 0.79 9 0.78 
SW2564 7 0.0 0.69 5 0.49 
SWR1343 7 12.2 0.83 4 0.53 
SW2155 7 32.9 0.67 4 0.48 
SW1369 7 48.2 0.77 8 0.68 
SW1856 7 61.5 0.69 5 0.48 
SWR2036 7 78.2 0.81 9 0.77 
SW632 7 104.4 0.77 6 0.67 
SWR773 7 117.3 0.56 3 0.46 
SW2537 7 139.5 0.69 7 0.63 
SW764 7 156.0 0.76 5 0.65 
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Table 6.2 continued 

Marker SSC Position (cM) H Number of 
alleles 

PIC 

SW2410 8 -1.3 0.42 4 0.44 
SW905 8 20.8 0.71 6 0.71 
SWR1101 8 38.3 0.88 12 0.75 
SW444 8 52.5 0.85 7 0.76 
S0086 8 62.2 0.69 6 0.56 
SW374 8 82.8 0.88 5 0.63 
SW1551 8 105.9 0.75 6 0.66 
S0178 8 127.7 0.54 7 0.68 
SW983 9 4.0 0.81 6 0.61 
SW21 9 15.1 0.65 5 0.50 
SW911 9 36.8 0.75 7 0.68 
SW2401 9 57.1 0.71 6 0.68 
SW2571 9 73.3 0.46 6 0.61 
S0019 9 86.4 0.75 6 0.62 
SW2093 9 103.6 0.90 6 0.77 
SW174 9 122.9 0.81 3 0.51 
SW1349 9 142.5 0.81 7 0.75 
SW830 10 0.0 0.67 7 0.64 
SWR136 10 7.6 0.77 6 0.72 
SW1894 10 23.2 0.65 4 0.50 
SW2195 10 44.0 0.48 3 0.42 
SW173 10 56.1 0.35 4 0.39 
SW1041 10 67.5 0.46 3 0.41 
SW2043 10 87.7 0.56 5 0.72 
SW1626 10 108.0 0.79 11 0.68 
SW2067 10 128.0 0.81 7 0.69 
S0282 13 0.0 0.90 8 0.77 
SWR1941 13 14.1 0.87 7 0.71 
SW1407 13 27.2 0.88 11 0.83 
SW864 13 43.1 0.63 5 0.64 
S0068 13 62.2 0.78 9 0.72 
SW398 13 79.3 0.69 6 0.66 
SW2440 13 102.2 0.96 6 0.79 
S0291 13 126.2 0.83 8 0.79 
SW857 14 7.4 0.87 9 0.74 
S0089 14 14.0 0.67 7 0.71 
SW245 14 32.0 0.77 7 0.71 
SW342 14 53.2 0.79 7 0.71  
SW1081 14 72.1 0.87 6 0.65 
SW1557 14 87.9 0.64 4 0.49 
SWC27 14 111.5 0.45 8 0.41 
SW949 X 0.0 0.65 6 0.53 
SW980 X 11.9 0.87 7 0.80 
SW1903 X 33.0 0.87 5 0.70 
SW2456 X 55.4 0.81 6 0.67 
SW259 X 74.4 0.89 5 0.70 
SW1943 X 87.4 0.70 5 0.70 
SW707 X 107.9 0.49 4 0.59 
SW2588 X 128.4 0.25 4 0.37 
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6.2.4 Statistical analysis 

 

All QTL analyses for individual QTL and epistatic QTL were performed with QxPak 

version 3.0 (Perez-Enciso and Misztal 2004). This program used the maximum 

likelihood method for estimation of the position and effect of the QTL. The analysis of 

QxPak proceeds in two main stages. In the first stage the probabilities of alleles being 

identical-by-descent are calculated using a Monte Carlo Markov Chain algorithm. In the 

second stage, the mixed model equations are built and the QTL estimates are obtained 

using a maximum likelihood approach via the expectation-maximisation algorithm. At 

each putative position the likelihood ratio is computed and the estimates for the 

parameters are those where the likelihood is highest. In this analysis the significance is 

tested with a likelihood ratio test which consists of computing minus twice the 

difference in log-likelihoods between the alternative and the null models (Perez-Enciso 

and Misztal 2004). 

 

The individual QTL genome scan was applied across all autosomes and the sex 

chromosome X, whereas the epistasis QTL genome scan was applied only to autosomes. 

 

 

6.2.4.1 Individual QTL analysis 

 

In the individual QTL analysis, only additive and dominance effects were estimated. In 

cases where the dominance effect was not significant, an additive only model was 

adopted. The individual QTL analysis of all traits was performed with the following 

model: 

 

,idaiiiiiii edCaCslwtsldathtbatchMHSsexy ++++++++= β                               [1] 

 

where yi is the i-th individual phenotype. Sex, RYR1 genotype (MHS), batch, housing 

type (ht: individual or group housed) and slaughter date (sldat) were fitted as fixed 
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effects in the model. Slaughter weight (slwt) was considered as a covariable β. The 

additive (a) and dominance (d) effects were estimated by consideration of the 

coefficients of Ca and Cd, respectively. The coefficient Ca was calculated for each 

individual and position as the probability of the individual being homozygous for alleles 

of the grandpaternal sire line (QQ) minus the probability of pigs being homozygous for 

alleles from the grandmaternal dam line (qq). The coefficient Cd is the probability of the 

individual being at the chromosomal position heterozygous (Qq). Moreover, traits were 

tested for QTL expressing paternal or maternal imprinting. In this analysis imprinting 

tested with models where only the allele of paternal origin is expressed (maternal 

imprinting) and only the allele of the maternal origin is expressed (paternal imprinting) 

i.e. setting the maternal or paternal coefficients to zero. 

 

The QTL scans were performed every cM. QxPak provides the log likelihood ratios 

under the models tested and the associated nominal P-values, which were obtained by 

removing the QTL effect in the model [1]. A previous study by Perez-Enciso et al. 

(2000) showed that nominal P-values of 0.001 and 0.005 correspond to 1% and 5% 

chromosome-wide significance level, respectively. Therefore in the present study, 

nominal P-values of <0.0001, 0.001, 0.005 and 0.01 were treated as significant at the 

0.1%, 1%, 5% and suggestive at the 10% chromosome-wide level, respectively. 

 

 

6.2.4.2 Epistasis QTL analysis 

 

Due to the substantial computational demand of a genomic scan for epistatic QTL, the 

analysis was performed in two stages, following Estelle et al. (2008). In the first stage, a 

5 cM scan was carried out across all genomic positions in order to pre-select potential 

candidate regions of QTL expressing epistatic effects with the model: 

 

,idddd

dadaadadaaaaiiiiiii

eIC
ICICICslwtsldathtbatchMHSsexy

++
++++++++= β

                [2] 
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where Iaa, Iad, Idd and Idd are the additive × additive (AA), additive × dominance (AD), 

dominance × additive (DA) and dominance × dominance (DD) epistatic effects, 

respectively. These four epistatic effects were estimated, based on Cockerham’s 

decomposition (Cockerham 1954), by regressing on a linear combination of the 

individual QTL origin probabilities: 

 

Caa = P1(QQ)P2(QQ) - P1(QQ)P2(qq) - P1(qq)P2(QQ) + P1(qq)P2(qq), 

Cad = P1(QQ)P2(Qq) - P1(qq)P2(Qq), 

Cda = P1(Qq)P2(QQ) - P1(Qq)P2(qq), 

Cdd = P1(Qq)P2(Qq), 

 

where P1 and P2 refers to the probability of QTL at location 1 and 2, respectively 

(Varona et al. 2002). This model [2] was tested against a null model where no epistatic 

effects were estimated. Interacting QTL pairs with P-values of < 0.001 were selected for 

further analyses.  

 

In the second stage, the complete epistatic model [2] including the individual QTL 

effects was applied using a 1 cM scan around the pre-selected positions detected in the 

first stage. Again, this model was tested against a null model in which no epistatic 

effects were fitted. Epistatic interactions were reported as significant if they had a 

nominal P-value of < 0.001. 

 

 

6.3 Results 
 

6.3.1 Individual QTL Analysis 

 

From the individual QTL analysis, 13 significant QTL were identified. The additive and 

dominance effects of these QTL are presented in Table 6.3. 
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Table 6.3 Evidence for quantitative trait loci (QTL) for meat quality characteristics using model 
with adjustment for RYR1 genotypes. 

SSC Trait 
 

LR Pos1 % Var2 a ± SE3 d ± SE4 

1 pH45 loin 14.88** 45 4.7 -0.098 ± 0.025 - 
2 pH45 loin 11.65* 21 3.7 -0.083 ± 0.031 0.115 ± 0.052 
2 pH24 loin 10.62* 28 3.4 0.037 ± 0.011 -  
4 pH45 loin 7.60a 128 2.4 -0.068 ± 0.024 - 
4 pH24 ham 10.39a 58 3.2 0.010 ± 0.015 -0.083 ± 0.026 
4 OPTO-STAR value 12.35** 119 3.9 -2.083 ± 0.587 - 
6 pH45 loin 11.38* 93 3.5 -0.058 ± 0.033 0.171 ± 0.060 
7 pH45 loin 9.11* 47 3.0 -0.090 ± 0.030 5.912 ± 0.470 
7 pH24 loin 9.62a 44 3.4 0.006 ± 0.011 0.057 ± 0.020 
8 pH24 ham 9.34a 1 2.6 -0.024 ± 0.012 0.041 ± 0.018 
8 Conductivity24 10.96** 107 3.4 0.535 ± 0.160 - 
9 Reflectance45 8.11* 138 2.6 1.160 ± 0.404 - 
9 pH45 loin 11.58* 142.5 3.7 -0.026 ± 0.031 -0.186 ± 0.055 
9 pH24 ham 12.00** 11 3.7 -0.050 ± 0.014 - 
10 pH24 ham 10.35a 21 3.2 0.011 ± 0.014 -0.077 ± 0.024 
13 pH45 loin 6.79a 43 2.2 0.066 ± 0.025 - 
13 Conductivity24 10.39a 62 3.3 -0.219 ± 0.138 0.680 ± 0.239 
14 Reflectance45 9.32* 40 3.0 -1.247 ± 0.405 - 
14 pH24 ham 7.34a 111.5 2.1 0.052 ± 0.019 - 
X pH24 ham 9.05* 13 2.6 -0.039 ± 0.013 - 
X pH24 loin  9.38a 33 3.4 0.011 ± 0.010 0.045 ± 0.021 
X OPTO-STAR value 10.92* 43 3.5 -0.317 ± 0.731 4.851 ± 1.516 

Values in bold represent significant additive or dominance effects. 
Definition of symbols: LR, likelihood ratio. 
1Positions of the QTL in cM. 
2Percentages of F2 variance explained by the QTL calculated as the proportion of residual variances due to 
the QTL effect on the residual variances excluding the QTL effect: (residual variance of model with no 
QTL effect - residual variance of model with QTL effect)/residual variance of model with no QTL effect. 
3Estimated additive (a) and dominance (d) effects and their standard errors (SE) of the individual QTL. 
a implies suggestive at the 10% chromosome-wide level. 
* and ** implies significance at the 5%, or 1% chromosome-wide levels, respectively. 
 

 

6.3.1.1 Measurement of pH at 45 minutes post-mortem 

 

Five significant QTL were identified for pH45 loin. The QTL with the highest effect was 

identified on SSC1 close to SW1851 explaining 4.7% of the phenotypic variance (Figure 

6.1). A significant additive effect at this QTL indicates that Pietrain alleles are 

associated with lower pH45 loin.  
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Figure 6.1 
Likelihood ratio curve for evidence of quantitative trait loci for pH measured at 45 minutes post-
mortem on SSC1. The horizontal line indicates the chromosome-wide significance level. 
 

 

Further QTL, significant at the 5% chromosome-wide level, were identified on SSC2, 

SSC6, SSC7 and SSC9. The QTL identified on SSC2 was located close to SWR783 at 21 

cM and accounted for 3.7% of the phenotypic variance. At this QTL the grandpaternal 

Pietrain breed was associated with lower pH45 loin and a significant dominance effect 

indicated that heterozygous animals are associated with higher pH45 loin. On SSC6, 

between SW122 and S0228, a QTL was identified at 93 cM explaining 3.5% of the 

phenotypic variance. A significant dominance effect at this QTL indicates heterozygous 

animals are associated with higher pH45 loin. A further QTL was identified on SSC7 

close to SW1369 at 47 cM, explaining 3.0% of the phenotypic variance. At this QTL 

Pietrain alleles are associated with reduced pH45 loin and heterozygous animals are 

associated with increased pH45 loin. The QTL on SSC9 was located at the telomeric end 

of the q arm and accounted for 3.7% of the phenotypic variance, with heterozygous 

animals associated with reduced pH45 loin. 

 161



6.3.1.2 Measurement of pH at 24 hours post-mortem 

 

Three significant QTL were identified for pH24. The QTL with the highest significance, 

at the 1% chromosome-wide level, was identified at the telomeric end of the p arm of 

SSC9 for pH24 ham explaining 3.7% of the phenotypic variance (Figure 6.2). A 

significant additive effect at this QTL indicated that Pietrain alleles are associated with 

decreased pH24 ham.  
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Figure 6.2 
Likelihood ratio curves for evidence of quantitative trait loci for pH measured at 45 minutes and 
24 hours post-mortem and reflectance value on SSC9. Horizontal lines indicate the 
chromosome-wide significance levels. 
 

 

 

 

 

 162



Further QTL, significant at the 5% chromosome-wide level were identified on SSC2 and 

SSCX. In the same region of SSC2 as the QTL for pH45 loin (Figure 6.3), between 

SWR783 and SW240, a QTL significant at the 5% chromosome-wide level was identified 

for pH24 loin explaining 3.4% of the phenotypic variance. A significant additive effect at 

this QTL indicated that Pietrain alleles are associated with higher pH24 loin. 
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Figure 6.3 
Likelihood ratio curves as evidence of significant QTL for pH measured at 45 minutes and 24 
hours post-mortem in the loin cut on SSC2. The horizontal line indicates the chromosome-wide 
significance level. 
 

 

At 13 cM of SSCX close to SW980 a significant QTL was identified for pH24 ham. This 

QTL explained 2.6% of the phenotypic variance and a significant additive effect 

indicates that the grandpaternal Pietrain breed is associated with decreased pH24 ham. 
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6.3.1.3 Meat colour 

 

For meat colour in the spectrum from pale to dark, two significant QTL were identified. 

The QTL with the highest effect, significant at the 1% chromosome-wide level, was 

identified on SSC4 at the telomeric end of the q arm for OPTO-STAR value, explaining 

3.9% of the phenotypic variance (Figure 6.4). A significant additive effect indicates that 

Pietrain alleles are associated with reduced OPTO-STAR value indicating paler meat at 

this QTL.  
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Figure 6.4 
Likelihood ratio curve as evidence of significant QTL for meat colour (OPTO-STAR value) on 
SSC4. The horizontal line indicates the chromosome-wide significance level. 
 

 

A further QTL for OPTO-STAR value was identified on SSCX, significant at the 5% 

chromosome-wide level. This QTL explained 3.5% of the phenotypic variance and a 
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significant dominance effect indicated that heterozygous animals are associated with 

higher OPTO-STAR value. 

 

 

6.3.1.4 Conductivity 24 hours post-mortem 

 

A single QTL was identified for conductivity24 on SSC8 around no other QTL. This 

QTL explained 3.4% of the phenotypic variance and a significant additive effect 

indicated Pietrain alleles are associated with increased conductivity in the musculus 

longissimus dorsi. 

 

 

6.3.1.5 Reflectance value (FOM) 

 

A QTL for reflection value, significant at the 5% chromosome-wide level, was identified 

on SSC9 around a similar location as pH measured at 45 minutes post-mortem in the 

loin at the telomeric end of the q arm (Figure 6.2). This QTL was identified between 

SW174 and SW1349 and accounted for 2.6% of the phenotypic variance. A significant 

additive effect indicated that at this QTL the Pietrain breed was associated with higher 

reflection value. A further QTL for this trait was identified on SSC14 at 40 cM between 

SW245 and SW342. This QTL was significant at the 5% chromosome-wide level and 

accounted for 3.0% of the phenotypic variance. A significant additive effect indicates 

that the grandpaternal Pietrain breed is associated with a lower reflectance value at this 

QTL. 
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6.3.1.6 Influence of adjustment for RYR1 genotypes 

 

All results were adjusted for RYR1 genotype (Tables 6.3, 6.5 and 6.6). However without 

adjustment, highly significant QTL at the 0.1% chromosome-wide level around the 

location of the RYR1 gene for pH45 loin and conductivity24 were revealed, with 

likelihood ratios of 42.07 and 36.25, respectively. These QTL explained high 

proportions of the phenotypic variance at 12.7% and 10.9%, respectively (see Table 6.4). 

 

 
 
Table 6.4 Evidence for quantitative trait loci (QTL) for meat quality characteristics using model 
without adjustment for RYR1 genotypes. 

SSC Trait 
 

LR Pos1 % Var2 a ± SE3 d ± SE3 

1 pH45 loin 10.71* 45 3.4 -0.110 ± 0.033 - 
2 pH24 loin 10.76* 30 3.4 0.037 ± 0.011 - 
4 pH45 loin 13.55* 124 4.3 -0.085 ± 0.033 0.129 ± 0.051 
4 Conductivity24 10.61* 124 3.3 0.338 ± 0.179 -0.723 ± 0.276 
4 OPTO-STAR value 14.30** 121 4.5 -2.292 ± 0.599 - 
6 pH45 loin 42.07*** 87 12.7 -0.225 ± 0.036 0.155 ± 0.064 
6 Reflectance45 7.11a 83 2.3 1.035 ± 0.386 - 
6 Conductivity24 36.25*** 84 10.9 1.182 ± 0.191 - 
6 OPTO-STAR value 10.53* 84 3.3 -2.245 ± 0.686 - 
7 pH24 loin 10.78* 44 3.4 0.007 ± 0.011 0.060 ± 0.020 
8 pH45 loin 9.46a 106 3.0 -0.115 ± 0.043 -0.159 ± 0.077 
8 Conductivity24 13.16** 106 4.1 0.831 ± 0.227 - 
9 pH24 ham 10.68* 12 3.1 -0.048 ± 0.015 - 
10 pH24 ham 10.55a 19 3.1 0.014 ± 0.015 -0.078 ± 0.025 
14 Reflectance45 6.77a 38 2.2 -1.136 ± 0.434 - 
14 pH24 ham 7.13a 111 2.1 0.052 ± 0.019 - 
X OPTO-STAR value 12.25* 34 3.9 0.691 ± 0.672 3.864 ± 1.422 
X pH24 ham 8.99* 13 2.6 -0.039 ± 0.013 - 

Values in bold represent significant additive or dominance effects. 
Definition of symbols: LR, likelihood ratio. 
1Positions of the QTL in cM. 
2Percentages of F2 variance explained by the QTL calculated as the proportion of residual variances due to 
the QTL effect on the residual variances excluding the QTL effect: (residual variance of model with no 
QTL effect - residual variance of model with QTL effect)/residual variance of model with no QTL effect. 
3Estimated additive (a) and dominance (d) effects and their standard errors (SE) of the individual QTL. 
a implies suggestive at the 10% chromosome-wide level. 
* and ** implies significance at the 5%, or 1% chromosome-wide levels, respectively. 
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6.3.2 Imprinting 

 

There is evidence for 10 significant QTL with imprinting effects across several 

autosomes (Table 6.5). On SSC1 a QTL with paternal imprinting was identified for 

reflectance45, indicating that only the maternal allele is expressed at this QTL. A highly 

significant QTL at the 0.1% chromosome wide level was identified on SSC2 for pH45 

loin with maternal imprinting effects, indicating that only the paternal allele is expressed 

at this QTL. Maternal imprinting effects were identified on SSC7 for reflectance45 at 20 

cM. Paternal imprinting effects were also identified on two different genomic locations 

of SSC7 for pH45 loin at 43 cM and for conductivity24 at 153 cM. At the telomeric end of 

the p arm of SSC8, paternal imprinting effects were identified for meat colour, and in a 

second genomic location (53 cM) maternal imprinting effects were identified for 

reflectance45. Maternal imprinting effects were identified at the telomeric end of the p 

arm of SSC10 for pH24 loin. Further maternal imprinting effects were identified on 

SSC14 between 40 and 44 cM for reflectance45 and pH45 loin.  

 
Table 6.5 Evidence for quantitative trait loci (QTL) with imprinting effects for meat quality 
characteristics with adjustment for RYR1 genotypes. 

SSC Trait 
 

LR Pos1 % Var2 a ± SE3 Imprinting 

1 Reflectance45 8.90* 129 2.8 -0.794 ± 0.264 Paternal 
2 pH45 loin 15.94*** 42 4.7 -0.077 ± 0.019 Maternal 
7 Reflectance45 10.11* 20 3.2 -0.881 ± 0.275 Maternal 
7 pH45 loin 12.87** 43 4.1 -0.069 ± 0.019 Paternal 
7 Conductivity24 8.43* 153 2.7 0.292 ± 0.100 Paternal 
8 OPTO-STAR value 11.25** 3 3.6 1.351 ± 0.399 Paternal 
8 Reflectance45 11.66** 53 3.7 0.765 ± 0.222 Maternal 
8 pH45 loin 7.46a 55 2.4 -0.062 ± 0.023 Paternal 
10 pH24 loin 9.15* 1 3.4 0.018 ± 0.006 Maternal 
14 Reflectance45 10.51* 40 3.3 -0.921 ± 0.282 Maternal 
14 pH45 loin 8.01* 44 2.5 0.050 ± 0.017 Maternal 
14 OPTO-STAR value 6.87a 15 2.2 1.269 ± 0.481 Maternal 
Values in bold represent significant additive or dominance effects. 
Definition of symbols: LR, likelihood ratio. 
1Positions of the QTL in cM. 
2Percentages of F2 variance explained by the QTL calculated as the proportion of residual variances due to 
the QTL effect on the residual variances excluding the QTL effect: (residual variance of model with no 
QTL effect - residual variance of model with QTL effect)/residual variance of model with no QTL effect. 
3Estimated additive (a) effects and their standard errors (SE) of the individual QTL. 
a implies suggestive at the 10% chromosome-wide level. 
* and ** implies significance at the 5%, or 1% chromosome-wide levels, respectively. 
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6.3.3 Epistasis 

 

In total, 9 significant epistatic QTL pairs were identified (Table 6.6). Two epistatic QTL 

pairs were identified for pH45 loin, two for pH24, one for reflectance45, three for meat 

colour and one for conductivity24. Epistatic interactions were identified between QTL on 

SSC4, SSC6, SSC7, SSC8, SSC9, SSC10, SSC13 and SSC14. No epistatic QTL were 

identified on SSC1 and SSC2. Epistatic QTL pairs accounted for between 5.7% and 

10.9% of the phenotypic variance. One of the significant epistatic QTL pairs was 

between QTL which resided on the same chromosome, on SSC4. All types of two-locus 

epistatic effects were identified, including AA, AD, DA and DD. The most significant 

epistatic QTL pairs (p value < 0.00001) were for reflectance45 between two genomic 

locations of SSC4, and for pH45 loin between the telomeric end of the p arm of SSC10 

and the telomeric end of the q arm of SSC13. These epistatic QTL pairs explained large 

proportions of the phenotypic variance, at 9.5% and 10.9%, respectively. 
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Table 6.6 Evidence of epistatic interactions for meat quality traits 
Trait LR P value Q0 chr 

(pos)1 

Q1 chr 

(pos)1 

% 

var2 

Q0_a ± SE3 Q0_d ± SE 3 Q1_a ± SE 3 Q1_d ± SE 3 Q01_aa ± SE 4 Q01_ad ± SE 4 Q01_da ± SE 4 Q01_dd ± SE 4 

Reflectance45 30.91 3.20E-06 4 (23) 4 (130.1) 9.5 0.873 ± 0.511 0.562 ± 0.867 -1.866 ± 0.532 -0.140 ± 0.741 -0.825 ± 0.514 -2.083 ± 0.735 4.414 ± 0.893 -0.475 ± 1.216 

OPTO-STAR 

value 

18.81 8.56E-04 4 (120) 6 (160) 5.9 -2.533 ± 1.146 -3.617 ± 1.548 2.401 ± 1.118 -5.542 ± 1.963 3.122 ± 1.073 0.766 ± 1.987 -3.052 ± 1.562 6.908 ± 2.804 

OPTO-STAR 

value 

19.80 5.50E-04 4 (8) 9 (76) 6.2 0.938 ± 1.026 2.296 ± 1.601 0.896 ± 0.953 3.190 ± 1.877 3.944 ± 0.930 0.506 ± 1.882 -0.425 ± 1.481 -4.534 ± 2.930 

OPTO-STAR 

value 

22.37 1.69E-04 4 (130.1) 14 (101) 7.0 -4.778 ± 1.376 4.412 ± 2.099 -0.432 ± 1.174 1.445 ± 2.605 4.734 ± 1.183 6.676 ± 2.574 0.954 ± 1.823 -8.050 ± 3.895 

pH24 loin 23.34 1.08E-04 6 (91) 9 (135) 7.0 0.045 ± 0.023 0.100 ± 0.045 0.024 ± 0.023 0.122 ± 0.045 0.036 ± 0.021 -0.140 ± 0.041 -0.052 ± 0.039 -0.269 ± 0.080 
pH24 ham 19.40 6.55E-04 7 (49) 9 (11) 5.7 -0.013 ± 0.026 0.143 ± 0.043 0.024 ± 0.027 0.038 ± 0.047 0.081 ± 0.026 0.038 ± 0.045 -0.136 ± 0.042 -0.130 ± 0.071 

pH45 loin 27.23 1.78E-05 7 (75) 14 (65) 8.4 0.108 ± 0.056 0.099 ± 0.097 -0.118 ± 0.052 0.203 ± 0.099 0.083 ± 0.051 -0.251 ± 0.098 0.340 ± 0.088 -0.408 ± 0.164 
Conductivity24 20.59 3.82E-04 8 (53) 10 (0) 6.4 0.073 ± 0.209 0.235 ± 0.365 0.005 ± 0.224 0.238 ± 0.307 0.788 ± 0.201 0.231 ± 0.284 -0.142 ± 0.365 -0.954 ± 0.500 

pH45 loin 35.52 3.63E-07 10 (2) 13 (122) 10.9 0.056 ± 0.041 0.174 ± 0.058 -0.016 ± 0.039 0.238 ± 0.065 -0.185 ± 0.039 0.015 ± 0.067 0.060 ± 0.055 -0.325 ± 0.095 

Values in bold represent significant additive, dominance or epistatic effects. 
Definition of symbols: LR, likelihood ratio; DG, daily gain; PAR, protein accretion rate; LAR, lipid accretion rate. 
1Positions of the QTL in cM. 
2Percentages of F2 variance explained by the QTL calculated as the proportion of residual variances due to the QTL effect on the residual variances excluding the QTL 
effect: (residual variance of model with no epistatic effects - residual variance of model with epistatic effects)/residual variance of model with no epistatic effects. 
3Estimated additive (a) and dominance (d) effects and their standard errors (SE) of the individual QTL. 
4Estimated additive x additive (aa), additive x dominance (ad), dominance x additive (da) and dominance x dominance (dd) effects and their standard errors (SE). 
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6.4 Discussion 
 

Intense selection of pigs for increased productivity, including increased leanness and 

reduced fatness, has been negatively associated with meat eating quality characteristics. 

In order to prevent a further decline in meat quality, it is important to gain an 

understanding of the genetic regulation of these traits and their associations with 

production traits. QTL analysis of physical and chemical body composition, daily gain, 

feed intake and feed efficiency in the same population of the present study have been 

previously reported (Mohrmann et al. 2006a; Duthie et al. 2008; Chapter 2). 

 

Measurements of pH at 45 minutes and 24 hours post-mortem are commonly used 

indicators of meat quality. The rate of pH change post slaughter is one of the most 

important factors influencing meat quality. Abnormal rate of decline in pH is associated 

with three distinct abnormalities, PSE (pale, soft, exudative), dark, firm, dry, and acid 

meat (Sellier 1998; Klont 2005). Low pH is also associated with low water holding 

capacity and high drip loss (Otto et al. 2004; Otto et al. 2006). Ultimate pH also affects 

characteristics such as tenderness, juiciness and taste (Klont 2005). 

 

A large number of QTL were identified in the present study for pH measured at different 

locations and times post slaughter. On SSC1, a QTL for pH45 loin was identified. There 

are no reports of QTL for pH around this location, however there are reports of QTL for 

pH in other locations of SSC1 (Ponsuksili et al. 2005). But, there are reports of QTL in 

the literature for carcass characteristics, including leanness and fatness around this 

location of SSC1 (e.g. Malek et al. 2001a; Beeckmann et al. 2003a; Geldermann et al. 

2003).  

 

QTL for pH45 and pH24 were identified on SSC2 at 21 and 28 cM, respectively. These 

were identified between SW2623 and SWR783 and between SWR783 and SW240, 

respectively. No QTL have been reported in these locations of SSC2 for pH, however 

QTL have been reported in similar locations for drip loss and intramuscular fat content 



(de Koning et al. 1999; van Wijk et al. 2006; Liu et al. 2007). In the same region as the 

QTL on SSC2 for pH, QTL have been reported in the literature for growth traits, lean 

and fat tissue characteristics (Rattink et al. 2000; Geldermann et al. 2003; Lee et al. 

2003a) as well as feed intake (Houston et al. 2005). 

 

A mutation at the RYR1 gene, also known as the halothane gene, is associated with 

malignant hyperthermia syndrome (porcine stress syndrome) (Fujii et al. 1991). The 

stress susceptibility allele is associated with a fast rate of post-mortem decline in pH and 

pigs carrying this allele produce more PSE meat. The incidence of PSE meat is greater 

in breeds that exhibit extreme muscling (e.g. Pietrain) and has increased as a result of the 

intense selection for leanness (Clutter and Brascamp 1998). The RYR1 gene is associated 

with improved leanness of carcasses and superior food conversion ratio (Clutter and 

Brascamp 1998), however this has been detrimental to meat quality, with a higher 

incidence of  PSE meat (Clutter and Brascamp 1998; Garnier et al. 2003). In the present 

study, with no adjustment for the RYR1 genotypes, QTL were detected in the vicinity of 

the RYR1 gene, known to reside in the S0087–SW122 marker interval at 63–83 cM of 

SSC6 (Rohrer et al. 1996), for meat colour, conductivity, reflectance value and pH, with 

likelihood ratios as high a 42.07 explaining proportions of the phenotypic variance up to 

12.7% (Table 5). QTL have been reported in similar locations in the literature for pH, 

conductivity, marbling, meat colour and intramuscular fat content (Grindflek et al. 2001; 

Geldermann et al. 2003; Yue et al. 2003a; Edwards et al. 2008). From previous analysis 

of the data of the present study (Mohrmann et al. 2006a), QTL were identified for 

carcass cuts, lean and fat tissue as well as chemical body composition around this region 

of the RYR1 gene. Pietrain alleles are associated with increased lean and decreased fat as 

well as decreased pH45, indicating that selection for lean tissue has resulted in a decline 

in meat pH which is detrimental to meat quality. There is also published evidence for 

QTL for carcass cuts, lean and fat tissue in this region of SSC6 (Rohrer 2000; Varona et 

al. 2002; Geldermann et al. 2003; Yue et al. 2003a; Edwards et al. 2008). 
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On SSC7 a single significant QTL was identified for pH45 loin. Ovilo et al. (2002) 

reported a QTL for meat colour in a similar location. de Koning et al. (2001b) also 

reported a QTL for cooking loss (%) around this location of SSC7. 

 

On SSC9, QTL were identified for pH24 ham. There are no reports of QTL for pH 

around this region of SSC9, however a QTL has been reported in this region for 

intramuscular fat content (Sato et al. 2003). In a second location of SSC9, at the 

telomeric end of the q arm, a significant QTL was identified for pH45 loin. Edwards et al. 

(2008) reported a suggestive QTL for meat colour in a slightly different location of this 

chromosome. 

 

On SSCX, a QTL was identified for pH24 ham at 13 cM. At the telomeric end of the p 

arm of SSCX, QTL have been reported for conductivity (Cepica et al. 2003b), off 

flavour score (Rohrer et al. 2005) and moisture content (Edwards et al. 2008). 

 

In the present study, at the QTL on SSC1, one on SSC2, SSC4, SSC9 and one QTL on 

SSCX, Pietrain alleles are associated with decreased pH, an indication that selection for 

leanness has negatively affected pH and thus meat quality. At one QTL on SSC2, 

Pietrain alleles are associated with higher pH at 24 hours post mortem. These QTL were 

identified in a region where no QTL were identified for body composition traits from 

previous analysis of this data, therefore providing the possibility of selecting for 

improved meat quality without affecting body composition traits. 

 

Meat colour has an important impact on consumers’ decisions and is therefore 

economically important. Most consumers prefer a reddish-pink colour in fresh pork. 

Meat cuts that are too dark, pale, or variable in colour may lower the consumer’s 

perception of quality. QTL were identified in the present study for meat colour on SSC4 

and SSCX. The grandpaternal Pietrain breed was associated with paler meat at the QTL 

on SSC4. There are reports of QTL for meat colour around this location of SSC4 by 

Ovilo et al. (2002) and Malek et al. (2001b). Reflectance value is another measure of 
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meat colour. There are very limited QTL for reflectance value in the literature with only 

one reported on SSC2 (Jeon et al. 1999), probably because this trait has not been 

explored widely within QTL mapping studies. In the present study, QTL were identified 

for reflectance value on SSC9 and SSC14. At a similar location of SSC9, Edwards et al. 

(2008) reported a suggestive QTL for meat colour. In a similar location of SSC14, QTL 

have been reported for cooking loss (Malek et al. 2001b) and meat colour (de Koning et 

al. 2001b). Pietrain alleles are associated with increased reflectance values on SSC9 and 

reduced reflectance value on SSC14. 

 

It has been recognised that optimal fat content in pigs may have been reached and 

further reductions in fatness is likely to negatively affect meat quality, therefore efforts 

to reduce backfat further by selection may not be desirable (Sellier 1998; Roehe et al. 

2003). Intramuscular fat content is considered to have a positive influence on meat 

quality characteristics such as appearance, colour, tenderness, flavour and juiciness (de 

Koning et al. 1999; Roehe et al. 2003; Ciobanu et al. 2004). Pork with higher 

intramuscular fat content is expected to be more desirable with less variable eating 

quality than pork with lower intramuscular fat content. In order to preserve meat quality 

the possibility of reducing subcutaneous fat without reducing, or more desirably, with an 

increase in intramuscular fat content has been recognised (Roehe et al. 2003). 

Intramuscular fat content was not analysed in the present study, however a QTL was 

identified from previous analysis of the population of the present study by Duthie et al. 

(2008; Chapter 2) on SSC8. This QTL was identified close to a QTL for lipid accretion 

and in a region of no QTL for subcutaneous fat. This suggests there is potential to 

improve intramuscular fat without increasing subcutaneous fat. 

 

There is evidence in this study for a number of imprinting effects throughout the genome 

which influence meat quality traits. Some of these were not identified using an additive 

and dominance only model. From previous analysis of the population in the present 

study, maternal imprinting was identified for fat tissue in the same location of SSC10 as 

maternal imprinting for pH was identified in the present study (Duthie et al. 2008; 
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Chapter 2). de Koning et al. (2000) reported maternal imprinting on SSC2 for backfat 

thickness, i.e. paternal expression, in the same location as a QTL with paternal 

expression (i.e. maternal imprinting) was identified in the present study for pH45 loin. In 

a similar location of SSC10, where a QTL with maternal imprinting (paternal 

expression) for pH24 loin was identified in this study, Thomsen et al. (2004) reported a 

QTL with maternal expression for backfat and marbling score. 

 

There is more evidence for imprinting effects in humans (see geneimprint, 

www.geneimprint.com) than has been reported in the pig. Investigation of the 

comparative regions of the human genome revealed imprinting effects which provide 

support for the imprinted QTL of the present study. A region of human chromosome 4 

corresponds to the region of SSC8 where paternal imprinting effects (maternal 

expression) were identified for OPTO-STAR value. In this comparative region of the 

human genome there is evidence for genes also showing paternal imprinting effects 

including Fibroblast growth factor receptor-like 1 and KIAA1530 (Luedi et al. 2007). 

Further genes showing paternal imprinting effects have been reported in a region of 

human chromosome 9 including FLJ46321 protein, LIM homeobox transcription factor 

1, beta and Phosphohistidine phosphatase 1 (Luedi et al. 2007). This region of human 

chromosome 9 is comparative to the region of SSC1 where paternal imprinting was 

identified for reflectance value. The Wilms tumor 1 gene has been shown to have 

maternal imprinting effects (paternal expression) (Pal et al. 1990; Nordenskjöld et al. 

1994) and resides in a location of human chromosome 11 which is comparative to the 

region of SSC2 where maternal imprinting effects were identified for pH45 of the loin 

tissue. Furthermore, paternal imprinting effects have been identified on genes which are 

located on human chromosome 19 (Myeloid zinc finger 1) (Luedi et al. 2007) and human 

chromosome 14 (Delta-like 1 homolog) (da Rocha et al. 2008). These regions are 

comparative to the region of SSC7 where a QTL with paternal imprinting was identified 

for conductivity in the present study. 
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In pigs, epistatic QTL have been reported so far for reproductive traits (Bidanel 1993; 

Rodriguez et al. 2005; Noguera et al. 2006), coat colour (Hirooka et al. 2002), meat 

quality traits (meat colour and intramuscular fat content) (Ovilo et al. 2002; Szyda et al. 

2006) and muscle fibre traits (Estelle et al. 2008). From analysis of the data of the 

present study, a large number of epistatic interactions for carcass cuts, lean and fat tissue 

weights, chemical body composition and growth traits have been identified (Chapters 4 

and 5). In the present study numerous epistatic QTL pairs for meat quality traits were 

identified. From previous analysis of the same population of the present study (Chapter 

5), a similar interaction was identified for belly weight and external neck fat weight as 

was identified between two genomic locations of SSC4 for reflectance value in the 

present study. In a similar location to the epistatic QTL pair identified between SSC4 

and SSC14 for meat colour, a similar interaction was previously identified for chemical 

body composition at 140 kg body weight (protein and lipid content) (Chapter 4). In the 

present study, an interaction was identified between SSC7 and SSC14 for pH45 loin. A 

similar interaction was previously identified for daily gain and protein accretion rate 

from 30-60 kg body weight (Chapter 4). Estelle et al. (2008) identified numerous 

significant epistatic QTL pairs for muscle fibre traits in a pig population of Iberian x 

Landrace F2 cross, using a similar methodology as the present study. Estelle et al. (2008) 

suggest that the epistatic interactions they detected for muscle fibre traits formed a 

network of connected pairs of epistatic QTL. This may be a common phenomenon as 

Carlborg et al. (2006) reported similar networks. Estelle et al. (2008) found that SSC10 

and SSC11 behaved as hubs for this network. The results of the present study indicate 

that SSC4 and SSC9 behaved as hubs for this activity. From the epistasis analysis in the 

present study, only two of the QTL were identified in the individual QTL analysis, on 

SSC4 for OPTO-STAR value, and on SSC9 for pH24 ham. These were two of the most 

significant QTL identified from the individual QTL analysis. Therefore there are 

numerous QTL which only express their effects through interaction with other loci, and 

these QTL cannot be detected from individual QTL analyses. It is therefore essential to 

consider epistasis within these QTL studies, to gain a fuller understanding of the 

genomic regulation of meat quality traits. 
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A large number of QTL were identified in the present study for meat quality traits. The 

positional associations of these QTL with QTL for body composition traits and their 

gene effects provide us with further insight into the genetic regulation of meat quality. 

Furthermore numerous epistatic QTL pairs influencing these traits were identified, 

indicating that the genomic control of meat quality is a complex process involving 

numerous QTL as well as a complex network of gene interactions. Knowledge about 

epistatic interactions is important for obtaining a thorough understanding of the genomic 

networks which form the basis of biological systems influencing meat quality traits 

(Carlborg and Haley 2004). Knowledge about the individual QTL or genes which 

influence variation in these systems is increasing. However, in order to build up a fuller 

understanding of the genomic networks which influence important biological systems, it 

is essential to uncover the role of epistasis and how the interaction between genes 

influences the variation in biological systems. 
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This Chapter will review the most significant findings of the previous Chapters and 

discuss their relevance to commercial pig production. Selection strategies based solely 

on phenotypic information of pigs have been a successful method of improving lean 

content and reducing fatness. This has been achieved with limited knowledge of the 

underlying genetic architecture of these economically important traits (Andersson 2001; 

Georges 2001; Weller 2001; Dekkers and Hospital 2002). As a consequence of this 

selection strategy, pig breeding has observed unfavourable changes in feed intake 

capacity as well as meat eating quality characteristics. Reduced feed intake capacity will 

limit the pigs’ potential for maximal protein deposition and meat eating quality affects 

the commercial value of the market product. Therefore, it is essential to prevent further 

undesirable developments in these traits or even improve these traits. Furthermore, 

improving feed efficiency is becoming increasingly important within commercial pig 

production, particularly in light of growing feed costs. Consequently, the aim of this 

thesis was to investigate the genomic regulation of economically important traits in pig 

production, such as growth, body composition, feed intake, feed efficiency, carcass 

characteristics and meat quality.  

 

The first objective was to gain insight into the genomic control of growth and body 

composition traits by using genomic scans for individual quantitative trait loci (QTL) 

across the autosomes. This work was reported in Chapter 2. A large number of QTL 

located throughout the genome were identified for physical body composition traits, 

including important carcass cuts (lean + fat tissue), lean tissue weights and fat tissue 

weights. These QTL were mostly confirmed by previous reports in the literature of QTL 

for similar traits. However, to the best of my knowledge there are currently no studies 

which have analysed phenotypic measurements taken from recent carcass grading 

techniques, such as the AutoFom device which is an automatic ultrasound scanning 

technique. This system achieves a faster and more accurate grading of the carcass 

(Brondum et al. 1998; Busk et al. 1999). In Chapter 2, a number of QTL were identified 

for measurements taken by the AutoFom device. These QTL are particularly interesting 
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as the information can be directly used to improve carcass quality defined by the market 

of interest.  

 

In contrast to the large amount of information available in the literature for QTL 

associated with physical body composition, QTL for chemical body composition, such 

as protein and lipid content and change in the deposition of these components 

throughout growth, have only been reported in one study (Mohrmann et al. 2006a). 

Information about the deposition rates of protein and lipid tissue is important to 

accurately estimate the nutritional requirements of pigs, for the improvement of feed 

efficiency, to optimise the entire production system, to characterise the population of 

interest and within breeding to optimise feed intake capacity to allow maximal protein 

deposition. Even though this information is of great importance to pig production, 

studies have neglected the genomic control of chemical body composition, most likely 

because of the expense and difficulty associated with collecting these types of 

measurements in live animals. The use of the deuterium dilution technique, as a method 

of measuring chemical body composition based on total body water, has allowed for the 

collection of these data at different target weights in live animals in the resource 

population of this study (Landgraf et al. 2006a; Mohrmann et al. 2006b). From previous 

analysis of the data of this study across other chromosomes, Mohrmann et al. (2006a) 

firstly reported QTL for chemical body composition (protein and lipid contents) and 

deposition rates of these components based on the analysis of four chromosomes. 

Chapters 2 and 3 have added substantially to our understanding of the genomic 

regulation of chemical body composition traits. Different regions of the genome showed 

associations with protein and lipid contents as well as accretion rates of protein and lipid 

tissue. Chapters 2 and 3 also outlined that the genomic architecture underlying the 

regulation of chemical body composition and deposition differs between growth stages, 

such that different QTL seem to be switched on and off throughout growth.  

 

The market price of the final product is based on carcass quality, therefore the 

association between chemical and physical body composition is of great economic 
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interest. Associations were identified between QTL for chemical body composition and 

deposition with QTL for physical body composition. For example, QTL for protein 

accretion (PAR) and lipid accretion (LAR) were identified in the same region as many 

QTL for lean and fat tissue where the Pietrain breed was associated with increased lean 

tissue and reduced fatness. The reason for these QTL for PAR and LAR is likely to be 

change in body composition. A further QTL for PAR was identified in a location of no 

other QTL than for daily gain, suggesting that growth rate per se is the likely reason for 

this QTL. QTL for LAR have been identified around different types of fat tissue, in one 

location around QTL for subcutaneous fat, and in another around only a QTL for 

intramuscular fat. Chapters 2 and 3 has provided further information about the genomic 

regulation of physical and chemical body composition and has outlined some important 

associations between these traits. 

 

There is some indication in the literature that chromosome X is involved in the genomic 

regulation of growth and body composition of pigs (e.g. Knott et al. 1998; de Koning et 

al. 2001a; Cepica et al. 2003b; Geldermann et al. 2003). However, the methodologies 

and models applied in the majority of these studies were often not entirely appropriate 

for the analysis of this chromosome, which may have led to inaccurate estimates of QTL 

and some QTL remaining undetected. This is because accurate methodology for the 

analysis of chromosome X has previously not been available. However, Perez-Enciso et 

al. (2002) have developed methodologies which account more accurately for the unique 

features associated with chromosome X. This methodology has been implemented in the 

program QxPak (Perez-Enciso and Misztal 2004). The aim of Chapter 3 was to further 

elucidate the role of chromosome X in the genomic regulation of economically 

important traits. A particularly interesting finding was that the pseudoautosomal region, 

the region of chromosome X which is homologous to the Y chromosome, showed 

important associations with loin tissue characteristics. In this region the Pietrain breed 

was associated with higher weights of loin tissue characteristics. Within the 

pseudoautosomal region both maternal and paternal imprinting effects were identified 

for different traits. Paternal imprinting was identified for entire loin weight indicating 

 180



that only the maternal allele is expressed at this QTL. A QTL for neck weight without 

external fat showed maternal imprinting effects indicating that only the paternal allele is 

expressed at this QTL. This QTL for lean tissue of the neck was only identified when 

imprinting was accounted for and would otherwise have been missed with an additive 

and dominance only model. This outlines the importance of investigating imprinting. In 

the differential part of chromosome X, the region which is not homologous to the Y 

chromosome, a further QTL for LAR was identified. However, in this instance this was 

in a location of no QTL for fatness. There are many reports of QTL for fatness and 

leanness in this region of chromosome X (Milan et al. 2002; Perez-Enciso et al. 2002; 

Rohrer et al. 2005), thus it was particularly surprising that no QTL for these traits were 

identified in this study. This could be because lean tissue alleles are already fixed in 

these founder populations and that QTL reported in the literature for fat and lean tissue 

are not segregating in these commercial lines. This outlines the need to investigate QTL 

within commercial populations as the QTL identified in crosses of obese breeds such as 

the Meishan, Iberian or Wild Boar, may not be segregating in commercial populations, 

and therefore cannot be exploited within practical pig breeding programmes. The results 

of Chapter 3, however, confirm that chromosome X is involved in the genomic 

regulation of growth and body composition, however to a lesser extent than the 

autosomal chromosomes. 

 

An undesirable consequence of selection for increased leanness has been a reduction in 

feed intake capacity of pigs, which limits the potential of pigs for maximal growth. In 

view of this, there is a requirement to improve feed intake capacity of pigs, without 

adverse effects on body composition. In Chapters 2 and 3, QTL were identified for daily 

feed intake (DFI). In general Pietrain alleles were associated with lower DFI, as 

expected, which is likely to be the result of long-term selection of this breed for 

increased leanness. In contrast, however, a QTL was identified on chromosome X, 

where the Pietrain breed was associated with increased feed intake at a late growth stage 

(120-140 kg body weight). This may provide an opportunity to improve feed intake 

capacity of this breed. This is important because growth of Pietrain is generally 
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restricted due to limited feed intake capacity. It is of particular interest to improve feed 

intake capacity at early stages of growth in the pig, when the pig is most efficient, and 

limit feed intake at later stages of growth to prevent extensive fat deposition which is 

associated with higher feed costs and lower commercial value of the market product. 

 

One of the key goals within pig breeding programmes is to improve feed efficiency of 

pigs, particularly in light of increasing feed costs. In Chapter 2, a number of QTL for 

food conversion ratio (FCR) were identified. To date the reason for QTL for FCR have 

generally been unknown, however the results of Chapter 2 provide an interesting 

explanation for some of these QTL. On SSC2 the QTL for FCR was identified in a 

region of many QTL for body composition traits where the Pietrain breed was associated 

with increased lean tissue and reduced fatness. Therefore, indicating that in this location 

the reason for this QTL for FCR is change in body composition (increased leanness and 

reduced fatness). From previous analysis of these data, Mohrmann et al. (2006a) 

reported a QTL for FCR in a similar genomic location as QTL for PAR, indicating the 

reason for this particular QTL was lean growth per se. A further QTL for FCR was also 

identified in a region of no other QTL for growth and body composition, which may 

indicate that this QTL may be due to lower maintenance requirements of those animals. 

 

An added complication to understanding the genomic control of economically important 

traits is the existence of interactions between QTL (epistasis). Epistasis has been largely 

ignored when trying to dissect the genetic regulation of economically important traits, 

even though quantitative geneticists have been aware of the likely contribution of 

epistasis for a long time. The main reason for this lack of attention is the unavailability 

of appropriate methodologies and software for this type of analysis. In order to further 

elucidate the genomic architecture underlying body composition, growth, feed intake 

and feed efficiency, Chapters 4 and 5 aimed to uncover the role of epistasis in the 

genomic regulation of these traits. Developments in methodology and available software 

allowed for the investigation of epistasis. There are no reports in the literature for 

epistatic QTL for the analysed traits in pigs and therefore the results of Chapters 4 and 5 
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are the first to report such effects. A large number of QTL were identified which were 

not identified from the individual QTL analysis of Chapter 2. The reason for this is 

because these QTL do not exhibit individual QTL effects (additive, dominance and 

imprinting), and mainly express their effects through interactions with other QTL. The 

epistatic QTL pairs identified in these Chapters also accounted for much higher 

proportions of the phenotypic variance than the QTL identified from the individual QTL 

analysis. In comparing the same QTL which were obtained from both individual QTL 

analysis and the epistasis analysis, in some cases slightly different estimates arose 

indicating that not accounting for epistasis may lead to inaccurate estimates of QTL. For 

example, the epistasis analysis of Chapter 4 identified QTL for daily gain and PAR with 

significant dominance effects. This was in contrast to results from previous individual 

QTL analysis which reported significant additive effects at these QTL (Mohrmann et al. 

2006a). In turn this leads to wrong interpretations of the importance of QTL and lower 

response and economic gain when exploiting the QTL within breeding. Furthermore, 

interactions were identified between QTL of regions of the genome which are known to 

harbour genes, such as the insulin-like growth factor 2 (IGF2) or melanocortin-4 

receptor (MC4R) genes, with QTL residing on other regions of the genome. The 

interaction between QTL in the region of the MC4R gene (SSC1) and SSC7 showed 

significant positive dominance effects for entire belly weight, which were offset by 

negative dominance-by-dominance interactions between these QTL. In contrast, the 

QTL in the region of the IGF2 gene showed significant negative dominance effects for 

entire ham weight, which were largely overcompensated by positive additive-by-

dominance effects with a QTL on SSC9. Although very little attention has been paid to 

epistatic QTL in the pig, there are a small number of reports for epistatic interactions 

influencing different groups of traits in the literature, such as reproductive traits (Bidanel 

1993; Rodriguez et al. 2005; Noguera et al. 2006), coat colour (Hirooka et al. 2002), 

meat quality traits (meat colour and intramuscular fat content) (Ovilo et al. 2002; Szyda 

et al. 2006) and muscle fibre traits (Estelle et al. 2008). However, from a comparison of 

these studies it seems that different groups of traits are influenced by a different network 

of interactions. In different species of livestock evidence of epistatic QTL influencing 
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economically important traits is also limited. In cattle, evidence of epistatic interactions 

have been reported for meat tenderness between mutations at the Calpain 1 gene and the 

Calpastatin gene (Barendse et al. 2007) and for fertility traits between genes involved in 

the POU1F1 pathyway (Khatib et al. 2009). At present there are no reports of epistatic 

QTL in sheep. In Chickens, epistasis has been shown to be particularly important for 

early growth in an intercross between Jungle Fowl and White Leghorn chickens 

(Carlborg et al. 2003). In a cross between a White Leghorn line and a commercial 

broiler line, epistasis has been found to be an important contributor to the genetic 

variance of growth, with the largest effects on body weight at 6 weeks of age and growth 

between 3 and 6 weeks of age (Carlborg et al. 2004). In contrast to livestock species, a 

large number of studies in mice indicate an important role of epistasis in the genomic 

regulation of growth and body composition. Routman and Cheverud (1997) identified a 

contribution of epistasis to the genomic control of adult body weight in mice. 

Brockmann et al. (2000) identified epistatic effects for serum concentrations of leptin, 

insulin and Insulin-like growth factor 1, body weight, abdominal fat weight and muscle 

weight in mice. In the same species, epistasis has also been reported to play an important 

role in controlling obesity (Yi et al. 2004a). Moreover, there are reports of epistatic QTL 

in mice for abdominal fat, body weight, kidney weight, spleen weight (Carlborg et al. 

2005) as well as organ weights and limb length traits (Wolf et al. 2006). Yi et al. (2006) 

also reported that epistasis influenced fatness and organ weights in mice. Yi et al. (2006) 

reported that epistasis had a more pronounced effect for body weight at later stages of 

growth in mice, whereas Ishikawa et al. (2005) identified that epistasis was more 

important in early stages of growth in mice. Chapters 4 and 5 have confirmed the 

importance of epistasis in the genomic control of the considered traits, and outlined the 

importance of accounting for epistasis as not doing so leads to inaccurate estimates of 

QTL, and many QTL remaining undetected. 

 

In addition to the traits discussed in this Chapter so far, meat quality traits are of great 

interest for pig breeding. The quality of the market product influences consumer 

satisfaction and subsequently the commercial value (Schwab et al. 2006). There has 
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been a reduction in the meat eating quality of pork, due to the intense selection for 

increased leanness. Measuring meat eating quality traits is expensive, difficult and can 

only be done after slaughter. Furthermore, the low heritability of these traits makes meat 

quality difficult to improve by selection (Gao et al. 2007). To date there is limited 

knowledge of the genes and interactions involved in the genomic regulation of meat 

quality. The first step in uncovering the underlying genetic architecture is to identify 

chromosomal regions influencing meat quality. Once the genetic regulation of meat 

quality traits is better understood, the information can be applied in breeding through 

marker assisted selection. Chapter 6 focussed on exploring the genomic regulation of a 

number of meat quality traits including pH measurements at different times after 

slaughter, meat colour measurements, reflectance values and conductivity. A large 

number of QTL were identified throughout the genome for meat quality traits as well as 

a complex network of QTL interactions. Similarly, as observed in Chapters 4 and 5, 

many QTL were not identified in the individual QTL analysis and only uncovered when 

epistasis was accounted for. This indicates that many QTL only exert their effects 

through interactions with other loci. Thus it is of great benefit to account for epistasis to 

gain a fuller and more accurate understanding of the genetic architecture underlying 

important traits. One of the main goals within breeding has been to reduce fat content. 

Intramuscular fat content is particularly important for meat quality (Sellier 1998; Roehe 

et al. 2003). Subcutaneous fat is however an undesirable characteristic which negatively 

influences the value of the commercial product. However, the opportunity for reducing 

subcutaneous fat, without reducing or even with an increase in intramuscular fat content 

has been recognised (Roehe et al. 2003). In Chapter 2 of this thesis, a QTL for lipid 

accretion was identified close to a QTL for intramuscular fat in a region of no QTL for 

subcutaneous fat. This suggests an opportunity to improve intramuscular fat without 

increasing subcutaneous fat. 

 

A concern within the present study is multiple testing and the risk of false positive 

results, particularly with respect to the epistatic QTL analysis where a large number of 

tests were carried out. As research surrounding epistatic QTL analysis is in a preliminary 
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stage, an appropriate threshold has not been established. In order to minimise the risk of 

false positive results in the present study a more stringent threshold was applied to the 

epistatic QTL analysis than for the individual QTL analysis. Furthermore, it is important 

that the results of this study are verified by further research. 

 

In animal breeding programs, the breeding goal is based on a number of traits in order to 

improve the genetic merit of a population (Dekkers 2004). Advances in molecular 

genetics provide tools which will provide opportunities to improve the genetic merit of 

livestock, through considerable changes to selection practices (Kennedy et al. 1990; 

Kappes 1999). Molecular genetics cannot replace traditional breeding strategies, but 

should be integrated in order to achieve the optimum improvement and the resulting 

economic benefits (Lande and Thompson 1990). The results of Chapters 2 and 3 have 

outlined that growth and body composition as well as feed intake and feed efficiency are 

influenced by several QTL located throughout the genome. As a result, selection 

strategies have to be developed to improve the overall genetic merit of these traits. 

Furthermore, it is essential that these strategies are flexible so as to adapt to different 

market demands. The use of molecular genetic information within breeding would 

achieve the most response and economic gain, if the underlying genetic architecture of 

economically important traits was completely clear and the number, position and effect 

of all genes was understood. However, at the present time this is far from reality as 

molecular and quantitative genetics can only partly explain the underlying genetic 

control of these traits. However, in conjunction with phenotypic information, breeding 

programs can be constructed which include genetic information (Dekkers and Hospital 

2002). This will allow for a more accurate prediction of breeding values and therefore 

achieve a higher response and economic gain. 

 

Information about most QTL reported in the literature is from crosses of lean with obese 

exotic breeds and cannot be used within commercial pig breeding. This is because the 

QTL identified in these crosses may not be segregating within the commercial 

populations which have been subjected to intense selection for improved growing-
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finishing and carcass characteristics. The QTL identified in the present study can be 

directly exploited within pig breeding as they were identified within commercial 

populations. 

 

Information about identified QTL can be used to improve the genetic improvement 

through marker assisted selection (Dekkers and Hospital 2002; Ovilo et al. 2002). 

Marker assisted selection can be used to optimise traits of economic importance by 

exploiting the linkage between QTL and genetic markers (Hayes and Goddard 2003). 

The large number of QTL mapping studies in livestock has been partly facilitated by the 

possible opportunities to exploit the identified QTL in marker assisted selection (Nezer 

et al. 2002). There is a lot of emphasis in the literature about the benefits that can be 

achieved using marker assisted selection, however the implementation of this technique 

has been limited and has not yet achieved the expected response (Dekkers 2004). 

 

The general conclusion from investigations of the practical usefulness of marker assisted 

selection, is that it may be useful in achieving advances in genetic improvement, 

particularly in low heritability and sex-limited traits (Lande and Thompson 1990; 

Spelman and Bovenhuis 1998). Genetic improvement of meat quality traits are difficult 

using traditional selection strategies as these traits can only be measured on animals after 

slaughter, therefore, for selection purposes only information on relatives can be used 

(Otto et al. 2007b). Due to the difficulty in measuring meat quality traits and the fact 

that they mainly show low heritability, marker assisted selection may be particularly 

valuable for the improvement of meat quality traits (Dekkers and Hospital 2002; Gao et 

al. 2007; Otto et al. 2007b). In order to incorporate molecular genetic information within 

animal breeding will require a complete redesign of breeding strategies in order to make 

the most efficient use of the information (Dekkers and Hospital 2002).  

 

The availability of markers associated with traits of economic interest in pig production 

is increasing steadily and will play an important role in selection strategies thereby 

increasing selection accuracy and thus improve genetic progress (Villanueva et al. 
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2002). The economics of using molecular genetics within animal breeding is the key 

determinant to its practical application (Dekkers and Hospital 2002). One of the most 

important questions is whether the benefits achieved from marker assisted selection are 

cost-effective.  

 

There is also an opportunity to exploit information about epistasis within breeding. A 

large number of additive-by-additive effects were identified in Chapters 4, 5 and 6, 

thereby providing an opportunity to exploit this information within breeding. The 

additive-by-additive component provides the most opportunity as this component has 

been shown to be heritable (Goodnight 1988). This particular component has also been 

shown to generate greater and more long-term response to selection in comparison to 

additive gene action (Jannink 2003). Therefore, there is a potential benefit from 

understanding the role of epistasis, particularly the additive-by-additive component. 

Information about the use of the additive-by-additive component specifically within 

animal breeding is limited. Animal breeding focuses around the improvement of the 

additive genetic component, thereby ignoring non-additive effects, including epistasis. 

Based on the idea that interacting genes are often organised in physically linked gene 

clusters, Fury et al. (2006) investigated the use of a model which combines the additive-

by-additive genetic effects and the additive genetic effect and reported that extra genetic 

gains can be achieved in the short-term but this is not sustainable in the long-term. 

 

In conclusion, this thesis has provided a fuller understanding of the genetic regulation of 

growth and body composition of pigs. Chapter 2 outlined numerous QTL located 

throughout the genome and uncovered many “novel” QTL for chemical body 

composition and accretion rates of protein and lipid tissue. Furthermore, Chapter 2 

provided insight into the biological reason underlying QTL for feed efficiency, which is 

of great economic benefit as improving feed efficiency is one of the most important 

traits in the breeding goal. Chapter 3 confirmed that chromosome X is involved in the 

genomic regulation of growth and body composition by applying accurate methodology 

for the analysis of this chromosome. Furthermore, Chapters 4 and 5 outlined the 
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complex nature of interactions involved in the genomic regulation of growth and body 

composition, and indicated the great benefits that can be achieved by accounting for 

these effects. Finally, Chapter 6 provided insight into the genomic architecture 

underlying meat quality traits. As these QTL were identified in a resource population of 

commercial breeds, they can be directly exploited within practical pig breeding 

programmes. 

 

This study has provided substantial information about the genomic regulation of 

economically important traits in pig production. However, knowledge of the entire 

genomic regulation of these traits is still limited. Many of the QTL identified in this 

thesis have not been previously reported in the literature, particularly those for chemical 

body composition and deposition. Therefore it is important to confirm these QTL in 

other studies and to investigate whether they exist in other commercial breeds. This 

thesis also confirmed the importance of epistasis in the genomic regulation of growth, 

body composition and meat quality. However, epistatic QTL could only be investigated 

on an individual trait basis. The situation is probably much more complex and epistasis 

is likely to exist between traits. Unfortunately this could not be investigated in this 

thesis, as methodologies are unavailable at present. For the purpose of the research 

covered in this thesis, genotypic information was only available for markers on 11 of the 

19 pig chromosomes. Therefore, there will be many more QTL which contribute to the 

genomic regulation of the traits considered in this study. The remaining chromosomes 

have not been genotyped in the present study because of restriction in the budget. It may 

be more cost-effective to genotype using the recently available single nucleotide 

polymorphisms (SNPs) marker chips.  

 

Following on from the identification of QTL is the identification of the causative 

mutations underlying these QTL. The identification of these mutations is challenging in 

domestic animals due to the poor resolution of QTL studies. The confidence intervals 

surrounding QTL can be as high as 20 mega base pairs, a region which may contain up 

to hundreds of genes (Andersson 2008). A method of tackling this is genome-wide 
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association analysis using dense SNP marker chips. This method involves searching the 

genome for SNPs to be associated with the trait of interest. This method has become 

possible by the development of large collections of SNPs as well as effective methods 

for analysis (Andersson 2008). Therefore, further investigations with SNPs and genome-

wide association is a promising method of investigating the underlying causative 

mutations of the QTL identified in the present study. 

 

Utilizing QTL information in animal breeding is moving away from the approach of 

marker assisted selection and towards genomic selection, a strategy which was 

introduced by Meuwissen et al. (2001). In the simplest sense genomic selection is a 

genome-wide form of marker assisted selection (Meuwissen 2007). This approach 

utilises information about the association of large number of SNP markers located 

throughout the entire genome with phenotypic information. This has become feasible 

due to the availability of large numbers of SNP markers and the development of the 

porcine SNP chip. There are two main stages involved in genomic selection. In the first 

stage the effects of SNPs on traits of interest are estimated in a reference population. In 

this reference population genotypic information as well as phenotypic information is 

available for all animals. In the second stage these marker estimates are utilised to obtain 

the genetic value of animals which have only genotypic information available and no 

phenotypic information. As a result genomic selection can allow for breeding 

information to be obtained in a larger number of animals, therefore providing an 

opportunity to optimise genetic improvement by achieving a faster and more accurate 

rate of genetic gain (Goddard and Hayes 2007). This strategy has great potential for the 

genetic improvement of traits which are difficult to improve by traditional selection 

methods, including meat quality and feed efficiency. 
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