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'The best of science doesn't consist of mathematical models and experiments, as textbooks 

make it seem. Those come later. It springs fresh from a more primitive mode of thought, 

wherein the hunter's mind weaves ideas from old facts and fresh metaphors and the 

scrambled crazy images of things recently seen. To move forward is to concoct new patterns 

of thought, which in turn dictate the design of the models and experiments. Easy to say, 

difficult to achieve' 

Edward 0. Wilson 

The diversity of life 
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ABSTRACT 

Treatment of human diseases, study of evolutionary mechanisms, and artificial selection of 

domestic breeds will benefit from a deeper understanding of the genetic architecture of traits. 

The chromosomal regions harbouring gene(s) underlying continuous traits are known as 

quantitative trait loci (QTL). QTL have been mapped analysing marker-trait linkage within 

families, although with wide confidence intervals. Better QTL mapping resolution, i.e. 

detecting tighter linkage, is possible utilising population-wide linkage disequilibrium (LD). 

LD is the correlation between alleles at different linked loci. LD is influenced by 

evolutionary factors such as drift, selection and mutation. Population admixture and/or 

stratification can generate widespread spurious disequilibrium (disequilibrium without 

linkage) that may lead to false positive results, e.g. when comparing cases versus unrelated 

controls. The transmission disequilibrium test (TDT) is a LD-based method robust to the 

confounding effects of admixture/stratification. Originally, the TDT was designed to detect 

segregation distortion of alleles transmitted to affected progeny from heterozygous parents. 

The power of QTL detection was studied both empirically and deterministically for several 

methods. TDT was more powerful than a linkage test, but less powerful than a pure 

association test. There were no great differences in power between TDTs. One of the TDTs 

was implemented in BLUP (Best Linear Unbiased Prediction) to study the effect of a 

candidate gene, the 4th  melanocortin receptor (MC4R), on growth, appetite and fatness in 

pigs. We found significant effects on growth and fatness but not on appetite. TDT uses 

within families genetic variation. A novel parameter to estimate gene effects using between 

families genetic variation was also included. If there is no spurious disequilibrium both 

estimates should be identical, otherwise only the within-families estimator is unbiased. When 

there was no parental information, it was more powerful to simulate missing parental 

genotypes with Gibbs Sampling than analysing data with sib-ship TDTs, i.e. ignoring 

parents. TDT was also used in a genome-wide search for markers associated with bovine 

spongiform encephalopathy (BSE). TDT was implemented using logistic regressions, more 

amenable to statistical modelling than the original form. Marker loci near the Prion Protein 

gene did not show any association with BSE, however, markers located on chromosomes 5, 

10 and 20, did. A second study that focused on these three chromosomal regions confirmed 

the association for the marker on chromosome 5. 
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TDT has shown reasonable power and exceptional robustness when mapping QTL in 

structured populations. Therefore TDT should be part of the gene cartographers' 

continuously evolving arsenal of tools for gene mapping. However, previously published 

TDTs were developed for analysing human populations, whereas domestic/wild populations 

have different structures and histories that may require alternative statistical analyses. Linked 

gene flow (LGF) theory can be used for predicting identity-by-descent (IBD) probabilities 

between individuals. IBD probabilities are at the core of mixed model equations for mapping 

QTL in outbred populations via variance components estimation. In this thesis, LGF theory 

was used for determining inbreeding within each individual and chromosomal location using 

multi-marker information, hence paving the way for further developments. 
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CHAPTER 1 

1. Literature review 

1.1 INTRODUCTION 

There are two Mendelian laws in genetics: 1) the gene is the unit of inheritance, and 2) genes 

segregate independently (Mendel 1866). Sturtevant (1913) and Payne (1918) first reported 

violations of the second law by demonstrating that some genes are arranged linearly in 

defined linkage groups. Hence, linkage could explain, for example, the association between 

seed size and colour in the common bean (Sax 1923), and its absence the lack of association 

between seed colour and shape in the common pea (Mendel 1866). 

Shortly after discovering that the physical structure of genes was a long spiral molecule of 

deoxyribonucleic acid (DNA) (Avery et al. 1944, Heshey and Chase 1952, Watson and Crick 

1953), geneticists found that most of the mammalian DNA contained no genes. The fraction 

of gene-free DNA was called, rather misleadingly, 'redundant' and 'junk' DNA. We know 

now that the whole human genetic make-up consists of approximately 31,000 genes, 

distributed among 23 pairs of chromosomes, constructed with only —5% of the total 3.2 

Gigabases of our genome (Baltimore 2001). 

Given this scenario, the task of finding and characterising individual genes may look 

daunting. Nonetheless, new breakthroughs in statistics and genotyping are allowing us to 

unravel the puzzles that millennia of evolution have assembled in the form of complex 

genetic architectures, which are partially responsible for all the observed phenotypic 

variation. 

The best approach in gene mapping consists in comparing the inheritance pattern of a trait 

with the inheritance pattern of chromosomal regions (Lander and Schork 1994). These 

chromosomal regions can be identified with DNA markers that act as point labels. Ideally, a 

DNA marker should be polymorphic, abundant, neutral and codominant (Falconer and 

Mackay 1996). Marker-based methods have largely superseded marker-free methods, e.g. 

complex segregation analysis (Elston 1990, Knott et al. 1991a,b), because the former are 

more powerful and robust than the latter. 
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The estimate of a gene location is usually a more or less wide chromosomal segment that is 

likely to contain that gene. When studying continuously distributed traits, these 

chromosomal segments are called quantitative trait loci (QTL). This thesis focuses on a class 

of statistical techniques, based on population-wide linkage disequilibrium, which have been 

able to provide high precision (very narrow) estimates of QTL location under certain 

conditions. 

1.2 LINKAGE DISEQUILIBRIUM MAPPING 

Linkage disequilibrium (LD) mapping is the study of marker(s)-trait association across 

families, as opposed to the study of such associations within families, known as linkage 

mapping (Hoeschele et al. 1997). In the context of human diseases, Risch and Merikangas 

(1996) demonstrated that LD mapping could be more powerful than linkage at finding 

disease genes, especially when the effects are modest, and the disease predisposing allele is 

at low frequency. On the other hand, Terwilliger and Weiss (1998) argued that LD mapping 

had worked well for rare and recessive monogenic diseases but that was not likely to work as 

well for complex traits. 

Complex traits are those in which a clear Mendelian segregation pattern between markers 

and the causal mutation cannot be detected because of factors such as incomplete penetrance, 

phenocopies, genetic heterogeneity, pleiotropy, epistasis, polygenic inheritance and/or gene 

by environment interactions (Lander and Schork 1994, Ott 1996, Kruglyak 1997, Schork et 

al. 1998). Moreover, in addition to Mendelian inheritance, other forms of genetic inheritance 

may have to be considered, e.g. genetic imprinting (gene effect depends on parental origin), 

mitochondrial inheritance (genes inherited via maternal lineage), and anticipation (e.g. 

Huntington's disease becomes more severe as a pedigree develops due to a triplet codon 

repeat expansion) (Lander and Schork 1994). 

One of the main drawbacks of some LD-based tests is that a marker-trait association can 

arise due to population structure rather than to linkage when using unrelated controls. The 

transmission-disequilibrium tests (TDTs) overcome this problem by using intra-familial 

controls (see Zhao 2000 for a review). 

The key parameter in LD mapping is the extent of LD in the population. Although it is not 

necessary to estimate LD in order to map genes, it is useful to know what is LD and how can 

it be measured. 
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1.3 FACTORS AFFECTING LINKAGE DISEQUILIBRIUM 

Neither the optimal marker density nor the most appropriate study design can be accurately 

decided without knowing the patterns of LD in the population. LD patterns vary across 

populations because the different forces shaping LD have probably acted with different 

intensities across populations. These forces are: genetic drift, population demography, 

admixture/migration, population structure, selection, recombination, mutation, and gene 

conversion (Ardlie et al. 2000). Table 1.1 summarises the most important factors 

determining LD patterns in populations. 

Table 1.1 Main factors influencing patterns of linkage disequilibrium 

Factor Main features Example references 

Drift Creates LD at random Terwilliger et al. 1998 
Hill and Weir 1994 

Founder effect 
LD is greater in small isolates than in large Wright et al. 1999 

populations due to inbreeding. Lonjou et al. 1999 

Population structure New LD is created by migrations followed by Cavalli-Sforza et al. 1993 
population admixture. Stephens et al. 1994 

Selection LD is maintained by epistasis and hitchhiking. Zhu et al. 2001  
Charlesworth et al. 1993 

Recombination Main factor eroding LD Goldstein 2001  
Johnson et al. 2001 

Mutation Creates new LD Hill 1975 
Gene conversion Reduces LD due to chromatid exchanges Przeworski and Wall 2001 

1.3.1 Genetic drift 

Genetic drift is the random change of allele frequencies over generations in a population 

(Falconer and Mackay 1996). Drift is more intense in small populations, and increases LD 

through loss of haplotype diversity. Terwilliger et al. (1998) proposed to identify genes 

underlying common diseases by drift mapping, i.e. mapping in old populations of small size 

where LD is more likely to have been produced by drift than by a founder effect. Slatkin 

(1994) showed that drift mapping may be practicable with the current marker map densities, 

i.e. extensive LD permits using sparser marker maps. On the contrary, gene mapping using 

LD methods will not be so effective in large, old, and stable populations where drift is 

negligible because most of the long-range LD will have disappeared, hence maximum 

likelihood surfaces for LD will be flat, i.e. uninformative (Hill and Weir 1994). 
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1.3.2 Population history 

Population isolates (e.g. Saami, Inuit) are expected to be genetically more homogeneous than 

open populations (e.g. New Yorkers) (Jorde 1995, Wright et al. 1999). Genetic homogeneity 

implies a reduction in residual genetic variation (i.e. genetic variation not caused by the gene 

under study) and, as a consequence, increases the relative risk ratio or heritability of a 

candidate gene. The work of Hästbacka et al. (1992, 1994) exemplifies the success of gene 

mapping in isolated populations. However, population isolates tend to be small, and 

consequently, there are fewer affected cases, less opportunity for replication, and more 

stochastic variation than in large populations (Lonjou et al. 1999). Moreover, some studies 

have reported no differences in the amount of LD between isolates and cosmopolitan 

populations (Lonjou et al. 1999, Eaves et al. 2000, Boehnke 2000). Population isolates may 

not be as genetically homogeneous as previously thought with regard to common traits 

(Terwilliger et al. 1998), and although it can be possible to find even more extremely 

isolated groups, e.g. Kuusamo community in northeast Finland (Hovatta et al. 1997, Hovatta 

et al. 1998), their high level of relatedness can easily lead to false positive results, i.e. large 

chromosomal regions are shared among individuals of that community so any comparison 

with external controls will almost always show significant differences. 

The type of mutations that can be mapped in population isolates also depends on the 

population history. For example, population isolates that have expanded after a founder 

event may be more suitable for mapping new mutations, and population isolates that have 

remained with a constant, and small, size may be more suitable for mapping older mutations 

(Laan and Piiäbo 1997). One could also estimate the age of the mutation (e.g. Guo 1997). 

The effect of population expansion is to attenuate the effect of drift and to ensure that the 

pattern of LD is mainly shaped by recombination (Slatkin 1999). 

Genetic epidemiological studies are benefiting from the vast amount of data generated by the 

human genome project, inasmuch as it is used to quantify and describe genetic variation 

between and within populations (Harding and Sajantila 1998). Comparative studies across 

populations are useful to unveil genetic heterogeneity, detect gene by environment 

interactions, and choosing the most homogeneous populations for each specific gene 

mapping study, especially when they utilise historical, ecological and genetic information 

(Merriman et al. 1997, Valdes et al. 1997, Stengard et al. 1998, Szabo and King 1997). 



1.3.3 Population structure, admixture and migration 

An extreme hypothetical case will exemplify well the effect of population structure in 

association studies. Let M and m be alleles at a neutral marker, and Q and q alleles at a QTL 

where Q increases the value of a trait and q decreases it. Assume the marker and the QTL are 

unlinked, and that there are two populations of equal size, one fixed for alleles M and Q, the 

other fixed for alleles m and q. In the absence of admixture, disregarding this population split 

will result in a positive association between allele M and allele Q, even though they are 

completely unlinked. 

Migration is very common in human history (Baiter 2001, Gibbons 2001), and leads to 

population admixture or stratification. Admixture can be observed worldwide in the form of 

dines, i.e. genetic variation on geographical gradients (Semino et al. 1996, Underhill et al. 

1996, Jin et al. 1999). At least 5 clear genetic dines have been discovered across Europe. 

The strongest dine is East-West bound, probably created by the agricultural expansion from 

the Middle East 10,000 years ago. The second strongest dine is North-South bound, 

probably created by the retreat of ice sheets 12,000 years ago followed by re-colonisation 

(Cavalli-Sforza et al. 1993). 

Admixture can generate widespread LD. In the first generation after admixture, and 

assuming random mating, LD is proportional to the allele frequency differences between the 

parental populations, and independent of genetic distance. Thereafter, LD decays at a rate of 

(1 - c) per generation in a large population, where c is the recombination rate between loci. 

Hence, spurious disequilibrium, i.e. disequilibrium between unlinked loci, is expected to 

halve each generation. Stephens et al. (1994) concluded that the best scenario for gene 

mapping in a population created by admixture 3 to 10 generations ago are: 1) markers spaced 

10 to 20 cM apart, 2) minimum allele frequency difference between populations of 0.4, 3) 

not admixture before 3 generations ago so that the level of spurious disequilibrium is low, 

and 4) minimum sample size of 300 individuals. These conditions can be realistically 

fulfilled. For example, Wilson and Goldstein (2000) studied the Lemba from South Africa, 

which claim mixed Bantu and Semitic origin, and found sufficiently strong LD spanning —20 

cM. Dean et al. (1994) used a panel of 257 evenly spaced RFLPs in a comparative study 

between Caucasian, African American, Asian (Chinese), and American Indian (Cheyenne), 

and found allele frequency differences ranging from 0.15 to 0.20. 
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The major concern for gene cartographers that work with admixed populations is the 

potentially high level of spurious disequilibrium. For example, Knowler et al. (1988) found 

the Gm haplotype associated with non-insulin-dependent Diabetes Mellitus in a case-control 

study among Pima and Tohono O'odham native Indians from Arizona. Later, Hanson et al. 

(1995) demonstrated that Gm was actually indicating Caucasian ancestors, for which the 

incidence of diabetes is much lower than among native Indians. 

Different risk alleles can be associated with different marker alleles across different 

populations. For example, D'Errico et al. (1996) found extensive evidence in the literature of 

ethnic differences in association between metabolic gene polymorphisms and various 

cancers. Finally, high level of inbreeding increases the extent of LD and, hence, makes it 

more difficult to map with high resolution (Nordborg et al. 2002). 

1.3.4 Selection 

Selection can increase LD in several ways, e.g. through epistasis, which favours particular 

combinations of alleles (Zhu et al. 2001), through hitchhiking effect, which sweeps up the 

frequency of haplotypes containing an allele that increases fitness (Parsch et al. 2001), and 

through selection against deleterious variants, which reduces haplotype diversity 

(Char!esworth et al. 1993). 

1.3.5 Recombination 

The rate of recombination varies across the human genome (Yu et al. 2001) as well as in 

other taxa (Begun and Aquadro 1992, Tanksley et al. 1992, Nachman and Churchill 1996, 

Copenhaver et al 1998). Although most gene mapping studies assume a ratio between 

physical and genetic maps of 1 Mb/cM, in reality this ratio varies from 0 to 9 across the 

human genome (Yu et al. 2001, Lonjou et al. 1998). Recombination events are highly 

localised on chromosomal hotspots, separated by regions of low recombination. This 

phenomenon generates a mosaic-like pattern of LD in humans (Goldstein 2001). For 

example, Jeffreys et al. (2001) found blocks of conserved LD spanning 60-90 kb within a 

216 kb segment in the class II major histocompatibility complex (MHC), and Rioux et al. 

(2001) found blocks of 10-100 Kb within a region of 500 kb on chromosome 5. 

On one hand, this mosaic-like pattern of LD can help association studies because most of the 

haplotype diversity within blocks can be explained with very few, although carefully chosen, 

polymorphic markers (Johnson et al. 2001, Daly et al. 2001, Patil et al. 2001). On the other, 



it may hinder the localisation of causal mutations because several polymorphisms within a 

block share similar levels of LD (Svejgaard and Ryder 1994, Rieder et al. 1999, Farrall et al. 

1999). 

A common assumption is that the locations of different crossovers are independent and 

identically distributed. Although this assumption may be correct for long distances, chiasma 

interference is increasingly important in higher resolution mapping studies (Speed et al. 

1992). Chiasma interference has been incorporated into mapping functions in different ways, 

but there is variation in intensity of interference within and between chromosomes, and 

between species (Crow 1990). 

Noor et al. (2001) demonstrated that, in D. melanogaster, variation in recombination rate and 

non-random distribution of genes produces biased results when searching for QTL5, e.g. 

strong QTL effects were more likely to be detected in regions with low recombination rate 

and/or high gene density than in regions with low recombination and/or low gene density. 

Because of this bias, the authors considered that results from QTL studies should be used as 

hypotheses to be tested by additional genetic methods, particularly in species for which 

detailed genetic and physical maps are not available. 

1.3.6 Mutation 

Hill (1975) showed that recurrent mutation at two linked loci increases the observed level of 

LD when C = 4NeC is small, but have negligible effects when C is large. In general, the 

higher the mutation rate, the more LD will be generated per generation. However, highly 

mutable loci such as microsatellites and CpG dinucleotides are expected to show low levels 

of LD, even in the absence of historical recombinations (Ardlie et al. 2002). Mutation seems 

to be a less important cause of LD than gene history, which includes factors such as 

selection, recombination, and demographic history (Reich et al. 2002). 

1.3.7 Gene conversion 

Gene conversion is the transfer of very short DNA segments between sister chromatids 

during meisosis. It would be equivalent to a very tight double recombination event. Its high 

rate in humans may explain why low levels of LD are sometimes found on regions where 

only a few recombination events have been observed (Ardlie et al. 2001, Przeworski and 

Wall 2001). 
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1.4 MEASURES OF LINKAGE DISEQUILIBRIUM 

1.4.1 Linkage disequilibrium D 

Let A and a be alleles at one neutral locus, with population frequencies p and (l-p), 

respectively, and B and b alleles at another neutral locus, with population frequencies q, and 

(1-q), respectively. If alleles A and a segregate independently from alleles B and b, then 

alleles A and B will be sampled together with an expected frequency of p times q. Hence, the 

deviation from expectation is D = PAB - p q, where PAB  is the observed joint frequency of 

alleles AB. D and other commonly used measures of LD are summarised in Table 1.2. In this 

thesis, linkage disequilibrium (LD) denotes non-zero D between linked loci, and spurious 

disequilibrium denotes non-zero D between unlinked loci (see Falconer and Mackay 1996, 

Lynch and Walsh 1998). LD is useful for QTL mapping purposes, whereas spurious 

disequilibrium may cause false positive results. 

Table 1.2. Measures of linkage disequilibrium 
Measure Main features Example references 

D Difference between observed and expected haplotype Falconer and Mackay 1996 
frequencies Weir and Cockerham 1989 

D as a proportion of its maximum attainable value Lewontin 1988 

r, r2  Correlation and squared correlation between allele frequencies Hill and Robertson 1968 
Weir 1996 

CT  2 
 

Expected , Ohta and Kimura 1969 
Weir and Hill 1986 

Q Probability of 11313at one locus given IBD at another locus Sved 1971 
Sved and Feldman 1973 

C Combines population size with recombination rate Ardlie et al. 2002 
Kaplan and Weir 1992 

ö Robust measure, less sensitive to allele frequencies Guo 1997 
Morton et al. 2001 

Higher-order LD measures involving alleles at three or more loci have also been developed, 

although their calculation becomes rapidly cumbersome (e.g. Weir 1996). One weakness of 

D as a measure of LD is that the values it can take depend on allele frequencies, thus D is not 

adequate for comparing LD between populations with different allele frequencies. 

1.4.2 Standardised linkage disequilibrium D' 

An alternative parameter is the standardised D (D'), which is the ratio of the observed D to 

its maximum possible value D,, where D,, = mm (p (1-q), (l-p) q) if D > 0, or Dm 	mm 

(p (l-p), q (1-q)) if D < 0 (Lewontin 1988). D' ranges from -1 to 1 in all populations 
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regardless of allele frequencies, however two populations with identical D' may nevertheless 

reflect different levels of LD (N.B. D,,,, may be very different in each population). 

Moreover, D' estimates can be biased in small samples (Ardlie et al. 2002). 

1.4.3 Linkage disequilibrium in finite populations C 

Ardlie et al. 2002 suggested using C = 4NeC as a measure of LD because it is not based on 

pairwise allelic measures, thus it facilitates the comparison between chromosomal regions. 

However, in practice, C is difficult to measure, partly because Ne depends on certain 

evolutionary assumptions that are difficult or impossible to prove. Furthermore, the 

distribution of C is not yet fully understood. 

1.4.4 Squared correlation coefficient r 2  

A better measure of LD is the correlation between alleles in different loci 

r = D/ ..,/p(l-p)q(1-q) , because it is less dependent on allele frequencies and less sensitive 

to small sample size (Hill 1977). The squared correlation coefficient r2  ranges from 0 to a 

maximum value of p(i - q)/(q(1 - p)), which is 1 only when p = q (Weir and Cockerham 

1978). Furthermore, the squared correlation 1-2  is directly related to the amount of 

information provided by one locus about the other. For example, it is necessary to increase 

the sample size —hr2  to have the same power to detect association at a marker locus as to 

detect association directly on the susceptibility locus (Ardlie et al. 2002). As a rule of thumb, 

r2  > 1/3 has been suggested as indicating sufficient LD for gene mapping. However, two 

tightly linked markers may have very different r2  values with a third one, and hence r2  is not 

necessarily proportional to genetic distance between loci. 

A problem with r2  is that its distribution is not well characterised. Hudson (1985) studied the 

distribution of the population parameters D, D', r and r2, and their corresponding sample 

statistics, 	via 	coalescent 	trees 	(Kingman 	1982), 	and 	found 	that 	the 

EID 2 1 
approximation E[r2] 0.j, 	w here o = r 	

L 	
\1' was valid conditioning on 

Ep1 - p)q1 - qjj 

polymorphic markers. Moreover, conditioning on minimum levels of polymorphism had two 

other positive effects on LD measures: 1) they became independent from recurrent mutation, 

and 2) the likelihood profile of C became more informative. However, Hudson warned that 

there was not enough information in a sample of two-marker haplotypes to make inferences 

about C, and Hill (1977) and Hill and Weir (1988, 1994) stated that, for instance, the use of 
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r2  to distinguish neutral evolution from selection (Avery and Hill 1979) is questionable due 

to the large variance caused by evolutionary factors. 

Another approximation to E[r2] was Q, defined as the probability of sampling identical-by- 

descent (IBD) alleles at one locus given that IBD alleles had been sampled at another locus 

(Sved 1971, Sved and Feldman 1973) 

-it 
I _y  

E]= 	
- 

1+ (2Ne - 1)c(2 - c) 
1— exp{— (4NeC  + 1 )t/2Ne  } 

4Ne C+1 

where t is the number of generations separating the current population from the founders. 

The approximation on the right hand side is valid only when c is small and Ne large. As 

before, letting t -) co so that LD reaches a stable equilibrium between recombination and 

drift, E[Q] = i/(i + c). Hill (1977) derived the following approximation 

E[r2] o —So 
_E[p(1__ p )q(1_ q)D 2 ] 	E[p 2 (1_ p )2 q 2 (1_ q ) 2 ] 

l E[p(1 - p)q(i - q)]E[D2 I - E [p(1 - p)q(1 - q )} 

which performed better than either O or Q (S is the probability that a population is 

segregating). 

1.4.5 Robust linkage disequilibrium measure: 5 

In the context of mapping genes for rare diseases, Devlin and Risch (1995) investigated the 

statistical properties of five LD measures (D', r2 , ô, Yule's coefficient and the proportional 

difference d (Kaplan and Weir 1992)) and concluded that the best one 

was S = DI Pd p, p2 , , where Pd 15 the frequency of the disease predisposing allele, p, the 

frequency of the normal allele, and P2n  the frequency of normal haplotypes with marker 

allele 2. Morton et al. (2001) reached the same conclusion: ö is the measure of LD most 

directly related to recombination rate and the least sensitive to variation in allele frequencies. 

Nevertheless, all five measures were correlated among themselves because they were all 

functions of ô. Guo (1997) studied the properties of all five measures in the presence of 

recurrent mutation and incomplete initial LD in the ancestral population. He also found that 

among all LD measures, 6 showed the strongest robustness to changes in allele frequencies, 

with the proviso that mutation rates were comparatively smaller than recombination rates. 

However, only with complete initial LD and no mutation is ö uniquely determined by the 
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recombination fraction, and either high mutation rates or partial LD in the founders reduced 

the accuracy of prediction of LD in all measures. 

1.4.6 Applications of some linkage disequilibrium measures 

Chakravarti et al. (1984) used E[Q(t - co)] to show that the recombination rate within the 

human 3-globin gene cluster was not uniform, and that the gene was split in two by a 

recombination hotspot. A number of RFLPs within the gene were genotyped to calculate 

pairwise r2  values, which, under the assumption of no mutation and constant population size, 

were equated to E[Q(t -) co)] to estimate C. Finally, the C estimates were regressed onto 

physical distance (kb) to obtain 4Nek, where k is the recombination rate per kb. It was on the 

basis of the observed variability in k that Chakravarti et al. (1984) claimed non-uniform 

recombination rates. However, Weir and Hill (1986) pointed out some potential flaws with 

the approach of equating an approximated expectation, which is only valid for populations in 

equilibrium without mutation, to the observed values obtained with small samples, from 

population that may not be in equilibrium, where mutation cannot be disregarded, and where 

the possibility of correlated pairwise values of r2  is high due to the tight linkage between 

loci. Weir and Hill suggested that one could try to account for the variation due to small 

samples by adding 1/n to E[Q(t - co)], where n is the number of chromosomes in the 

sample, or alternatively, using the following formula 

E1r j21 
= 	 1+ 

io+c 	(3 + C)(12 + 12C +  C2) 
 

22+13C+C2 	n(22+13c+c2 )2  

to which Chakravarti et al. (1986) replied that, under the conditions of their study, and 

especially when C> 2, the previous equation was well approximated by 

121 	1 	1 
Er j 	+—. 2+C n 

Finally, Chakravarti et al. (1986) pointed out that other empirical studies agreed with their 

conclusions (e.g. Gerhard et al. 1984). 

Hill and Weir (1994) also criticised the work of Hästbacka et al. (1992) because the latter 

estimated c between a marker and the DTD gene (human dwarfism) based on the expectation 

of LD, regardless of its distribution. Nevertheless, Hastbacka et al. (1994) cloned the DTD 

gene and showed that their previous theoretical estimate was only 6 kb wrong. 
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Finally, Kaplan et al. (1995) argued that these two studies (Chakravarti et al. 1984, 

Hästbacka et al. 1992) may have just been the 'lucky' ones, and many more studies could 

have been led astray by inaccurate theoretical approaches. 

1.5 THE TRANSMISSION DISEQUILIBRIUM TEST (TDT) 

1.5.1 Precursors of TDT 

Association between a marker and a disease locus can be detected with a case/control study 

(Schork et al. 2001). Under the null hypothesis (H0) of no association, the distribution of 

allele frequencies (or genotype frequencies) is expected to be the same in both groups. The 

main problem with this type of studies is that a significant association could be spurious if 

controls are not chosen from within the same genetic group as cases. One solution to this 

problem is to create internal controls by taking the two marker alleles transmitted to an 

affected offspring to form a case genotype, and the non-transmitted alleles to form a control 

genotype (matched tests). Table 1.3 summarises the main features of some TDT precursors. 

Table 1.3. Main precursors of the Transmission-Disequilibrium Test 

Test Main features References 

MGRR Compares transmitted and not transmitted genotypes to an 
individual  Rubinstein et al. 1981 

GHRR Compares genotypes between cases and controls Falk and Rubinstein 1987 

HHRR Compares alleles between cases and controls Terwilliger and Ott 1992  
Thompson 1995 

McNemar Compares alleles transmitted and not transmitted to an 
individual  

Terwilliger and Ott 1992 

Rubinstein et al. (1981) and Falk and Rubinstein (1987) designed the matched genotype 

relative risk (MGRR) to test whether the frequency of a marker allele M differed 

significantly between case and control genotypes, N.B. controls are created with the two 

alleles no transmitted to cases, they are not real individuals. For example, if parents have the 

genotypes Mm and mm and the case has the genotype Mm, then the conrrol is mm. There is 

no distinction between a case (or a control) possessing one or two copies of M, and hence 

homozygote MM and heterozygote Mm cases are given equal weight (Schaid and Sommer 

1994). The data for the MGRR is outlined in Table 1.4. Another possibility is to use the 

genotype-based haplotype relative risk (GHRR) (Table 1.5), where cases and controls are 

unmatched, i.e. comparing the total number of genotypes with at least one M allele among 

cases versus that number among controls. Note that entries in Tables 1.4 and 1.5 with the 
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same notation correspond to the same quantity, and that N denotes the number of nuclear 

families with single progeny. 

B C 
MGRR=' " - / 

B+C 

GHRR= 2N(W-Y) 2  = 	(B-c) 2  

(w+Y)(x+z) (2A+B+c)(B+c+2D)/2N 

Table 1.4. Table for the matched analysis of transmitted and no transmitted genotypes 
(MGRR)  

Case 
Control 

Total M present M absent 
M present A B W=A+B 
M absent C D X=C+D 

Total Y=A+C Z=B+D N 

Table 1.5. Table for the unmatched analysis of transmitted and no transmitted genotypes 
(GHRR) 

M present M absent Total 
Case W X N 

Control Y Z N 
Total W+Y X+Z 2N 

The difference between MGRR and GHRR is the estimate of the variance of B-C. When 

alleles are independent and the sample is homogeneous with regard to ethnicity, the variance 

estimated by the unmatched analysis is appropriate and uses more information than the 

matched analysis, giving a more powerful statistical test. 

The problem with MGRR and GHRR is that homozygotes MM and heterozygotes Mm are 

grouped together, a procedure that losses information. In order to improve the analyses, 

Terwilliger and Ott (1992) proposed to follow the transmission of alleles, rather than 

genotypes, from heterozygous parents to affected offspring. Tables 1.6 and 1.7 represent 

counts for matched and unmatched analyses, respectively (as before, the same entry in both 

tables corresponds to the same quantity). For example, if a heterozygous parent Mm 

transmits allele M to an affected progeny then 1 is added to the b score of Table 1.6. Again, 

the McNemar test is used to analyse the matched data, and the haplotype-based haplotype 

relative risk (HHRR), also called AFBAC by Thompson (1995), for the unmatched data. The 

HHRR test is 
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HHRR= 4n(w—y) 2  = 	(b—c) 2  

(w+y)(x+y) (2a + b + c)(b + c + 2d)/4n 

\ 

McNemar 
= I - C)

2 

 
b+c 

Table 1.6. Table for the matched analysis of transmitted and no transmitted alleles 
(McNemar) 

Transmitted 
Non-transmitted 

Total M m 
M a b w=a+b 
M c d x=c+d 

Total y=a+c z=b+d 2N 

Table 1.7. Table for the unmatched analysis of transmitted and no transmitted alleles 
(HHRR)  

Alleles M m Total 
Transmitted w x 2N 

Non-transmitted  z 2N 
Total w+y x+z 4N 

Similarly to the MGRR and GHRR tests, the McNemar and the HHRR tests differed in the 

estimation of the variance of b-c, and the unmatched design was more powerful than the 

matched one for testing candidate genes or markers in the absence of spurious 

disequilibrium. 

1.5.2 TDT for dichotomous traits 

Terwilliger and Ott (1992) recommended the use of HHRR over the McNemar test because 

the former was theoretically more powerful than the latter. However, they failed to 

appreciate that the McNemar test is the only valid test in structured populations. A test is 

valid when it has the correct nominal significance level under H0. Spielman et al. (1993) 

referred to the McNemar test as TDT, and were the first to notice its robustness. Ewens and 

Spielman (2001) showed that the TDT is a valid test for both linkage and association when 

studying independent family trios, and that it is only valid for testing linkage when studying 

multiplex families. This is so because even when there is not association at population level, 

there will be association within multiplex families when marker and disease locus are linked. 

Table 1.8 summarises some of the main TDTs for dichotomous traits. 
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Table 1.8. Transmission-Disequilibrium Tests for dichotomous traits 
Test Main features References 
TDT McNemar test in Table 1.3 Spielman et al. 1993 

Testing the symmetry of cell counts in a multiallelic Bickeboller and Clerget- 
TDTC  

version of Table 1.5 Darpoux 1995 
Sham and Curtis 1995 

Trpj,et 
Testing the symmetry of marginal subtotals in a 

Spielman and Ewans 1996 multiallelic version of Table 1.5  
T, Improved version of T,,,., et  Sham 1997 

Miscellaneous: allelic risk, maximum likelihood, Clayton and Jones 1999 
Log-tests log-linear models Zhao 2000 

Schaid and Rowland 2000 
S Rao's efficient score statistic Schaid 1996 

maxTDT Similar to Ts  and Tmhet with unknown MOl Morris et al. 1997a, b 

Z 1 , Z. 
TDT for sibship data and two or more alleles, Ewens and Spielman 199

Z.. respectively Laird et al. 1998 

RC-TDT TDT for sibship data and reconstructed parental Knapp 1999 genotypes  

SDT Sign test TDT for sibship data and multiallelic Horvath and Laird 1998 
markers Curtis et al. 1999 

zc  Maximum discordant sib pair TDT Curtis 1997 
AC2  Sibship TDT Boenhke and Langefeld 1998 

TMSTDT 
Uses unaffected sibs as surrogates for missing 

Monks et al. 1998  parental data  
PDT TDT for extended pedigrees Martin et al. 2000 

Originally, TDT was developed for testing linkage in cases where disease association had 

already been found. The TDT compares the number of times a marker allele is transmitted 

from a heterozygous parent to her/his affected child versus the number of times it is not 

transmitted. Under the H0  of no linkage E[b] = E[c] (Table 1.6), and TDT is distributed as a 

x2 with 1 degree of freedom. Zhao (1999) re-interpreted the TDT in terms of allele risk 

ratios, when considering a single parent, or in terms of genotype (multiplicative) penetrance 

ratios, considering both parents. 

Several extensions of the TDT have been proposed for analysing multi-allelic markers. 

Sethuraman (1997) derived the probability for each cell in a multi-allelic version of Table 

1.6 as 

I(p 1 711  + 	 + D,)—c(mD, —mD)J+) IK  
L(PI12 + P2' 'r22 )[m(mp2 + D1 )- c(mD 1  - mD 

where Pi, P2, m, are the frequencies of alleles Q and q at the disease locus, and allele i at the 

marker locus, respectively; ?r, Z12, 7r22 are the penetrances of disease genotypes QQ, Qq and 

qq, respectively; K = 	+ 2p1p2r12 
+P 

2 7r22  is the prevalence of the disease in the 
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population; D, is the linkage disequilibrium between marker allele i and disease allele Q. The 

same expressions were used by Sham and Curtis (1995) in their logistic model, and by 

Morris et al. (1997 b) in their likelihood ratio tests. 

Spielman and Ewens (1996) proposed to test for marginal homogeneity with the statistic 

T 
- m —1 	(, 1  - n• )2  

.het - 
m j1  n1  + 

where n 1•  =n, , and n.j = 	n,, , are marginal subtotals in a multiallelic extension of 

Table 1.6 where the diagonal has been set to zero. Under H 0  of no linkage Tmiiet  should be 

distributed as a x2  with rn-i degrees of freedom, where m is the number of marker alleles. 

However, Sham (1997) showed that Tmiet  does not always follow the reference x2  distribution 

by deriving its asymptotic variance and demonstrating that it exceeds 2(m-1) when the 

frequencies of different heterozygous genotypes in the parents are not the same (N.B. if 

U - 
X 2 	 2 

 T = 2v). Instead of Tmhet,  which can be anticonservative, Sham (1997) 

proposed to use Stuart's score test T (Stuart 1955). The Stuart's score test is T = d'V'd, 

where d' = [d1 .. .dmj ], and di  = n. - n.e, excluding one allele to avoid aliasing. The co-variance 

structure of T is V, with diagonal elements v ii  = n. + n. - 	and off-diagonal elements v 0  = 

-flu . 

Bickeboller and Clerget-Darpoux (1995) tested also the symmetry of the transmission/non-

transmission table with the following statistic 

( 

TDTC = 
	n fl ) 

d 	ii 

which, under H0, follows a x2  with m(m-1)/2 degrees of freedom. 

Sham and Curtis (1995) expressed both T s  and TDTC  with logistic regressions, which allow 

more flexibility in statistical modelling than the original tests. However, Miller (1997) found 

that the distribution of p-values was not uniform under H 0, and proposed a Monte Carlo 

method to evaluate significant levels. Nonetheless, the flexibility of logistic regressions has 

appealed to other researchers as well (un et al. 1994, Harley et al. 1995, Rice et al. 1995, 

Waldman et al. 1999). 
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Schaid (1996) used a conditional likelihood to model offspring genotype as a function of 

parental genotypes and offspring disease status as follows: 

P(gIg,gj,D)= P(DIg,g,g
1  )P(gIg m ,g 1  )P(g,g j ) 

p(Dg*,g,gj)p(g*g,g1 )P(gm,g1) 

g€G 

where D denotes disease status, g, g, and g1 are the marker genotypes of the affected 

offspring, mother and father, respectively, and 
g* 

 is one of the four possible genotypes G of 

the child conditional on parental genotypes. Given P(DIg,g 1,g) = P(Dg), then the 

above equation reduces to 

P(gcIg,gj,D)= r(g) 
r(g *) 

gEG 

where r(g) is the relative risk of disease for genotype g. If g consists of two haplotypes i and 

j, and assuming a multiplicative model, then log r(g) = log r(i,j) =,8i  + ,8j  (Zhao 2000), 

and, more generally h[r(i,j)] = 8, + ,8 j  = -- {h[r(i,i)]+ h[r(i,i)]} (Clayton and Jones 1999), 

where h is an unspecified monotone increasing function. 

Schaid (1996) proposed the following model 

log r(g)= X'3 

where X is the coded vector for the observed genotype g. The H 0  of no association, i.e. /3 = 0, 

can be tested with Rao's efficient score statistic 

S =U'V - 'U 

Ia 2 lfl L alnL 
where U 

= 	
1/3=0 and 	= —

E Lafl,afl1 
/3=0 

When the mode of inheritance is unknown, two statistics, the T discussed above and the 

maxTDT statistic defined as 

nwxTDT = max _(n - )
2 

, = 
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were powerful alternatives specified by the relative risks of marker genotypes (Morris et al. 

1997 a). 

All previous TDTs require parental genotype information. The following TDTs were 

designed to analyse diseases for which parental genotypes may not be available, e.g. late-

onset diseases such as Alzheimer's or Parkinson's. The minimum unit of information per 

family is a pair of discordant sibs with different marker genotypes. 

Ewens and Spielman (1998) developed a sib-TDT that was as powerful as the original TDT 

when there were equal numbers of affected and unaffected progeny per sibship, and less 

powerful otherwise. For a biallelic marker, this TDT was named Z j , and for multiallelic 

markers Z,,,., = max JZj I , where j = 1. . . k, and k is the total number of marker alleles. The 

statistic Z,, for marker allele j, can be found as follows. Let N be the number of sibships, and 

within each sibship let r be the number of marker genotypes jj, s the number of marker 

genotypes zj (i j), a the number of affected progeny, u the number of unaffected progeny, 

and t the size of the sibship (t = a + u). Hence, using a continuity correction, the Z for allelej 

can be written as 

Y. — A. —% 
j - 
 

FVJ 

where Yj  is the total number of marker alleles j in the data set, A = 	[(2r + s)a/t]1 , and 

= 	[au(4r(t - r - s)+ s(t - s))/(t2 (t - 1))] i  , where f is the number of sibships in the 

sample. Asymptotically, Zj  is normally distributed. Significant thresholds can be obtained 

with permutations for both Zj  and Zmax . 

A sample is likely to consist of different type of families, some with and some without 

parental information. Spielman and Ewens (1998) showed how to combine the original TDT 

and Zj  in a unique statistic, although not for Z,. Finally, Spielman and Ewens (1998) and 

Laird et al. (1998) discussed the similarities and differences of this combination of statistics 

with the Mantel-Haenszel test, which is commonly used in the joined analysis of several x2  
contingency tables. 

Another way of analysing data without parental genotypes is reconstructing them from 

genotypes of their progeny. However, this procedure may introduce an error (Curtis 1997, 

Spielman and Ewens 1998, Knapp 1999). Knapp (1999) developed the reconstruction 
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combined TDT (RC-TDT), providing necessary and sufficient conditions for the observed 

marker genotypes in the offspring to allow reconstruction of parental genotypes, and showed 

that RC-TDT was more powerful than Z 1  and Z,. Parental genotypes could also be 

reconstructed stochastically via Gibbs Sampling. 

Bias can also be introduced when one parental genotype is missing and ambiguous families 

are discarded (e.g. when the parent and the child have the same Mm genotype). Under this 

circumstance, Curtis and Sham (1995) proposed discarding progeny with genotypes MM, 

Mm and mm, when the only known parental genotype is Mm. Sun et al. (1998, 1999) 

proposed two new tests to analyse families with one missing parental genotype. The power 

of these tests was roughly equal to Z 1  and Z,na ,, when one affected and one unaffected sibs 

were sampled, and both needed approximately twice as much records as TDT (Wang and 

Sun 2000). 

All methods described so far are based on comparing affected and unaffected sibs. Teng and 

Risch (1999) suggested that there is additional information available in the sample from the 

relative frequency of the different sibship genotype constellations. They showed that two 

unaffected sibs without parents requires approximately 50% more families than when parents 

are available, however their strategy of grouping records by combinations of progeny 

genotypes may be sub-optimum (Zhao 2000). 

Horvath and Laird (1998) developed the SDT (sibship disequilibrium test) to analyse 

families without parental information. Let us assume two alleles, M and m, and let mA and 

mu denote the average number of M alleles in affected and unaffected progeny, respectively. 

For biallelic markers, the SDT is the following nonparametric sign test on differences d, 

where d = MA - mu, 

SDT= (b—c)2 

b+c 

where b is the number of sibships for which d> 0, and c is the number of sibships for which 

d < 0. For a marker with k> 2 alleles, the sign test is 

T=S'W'S 

where S'= [s'. . .s'], and s i 
	

sgn(d/) summing across all n sibships, the sign being 1, 0 

or —1 when d > 0, d = 0 or d < 0, respectively, and W is a matrix with elements 
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w1 :-- 
	

sgn(d/) s gn(d 1'). Under H0  the expectation of S is 0 and T is asymptotically 

distributed as a x2  with k-i degrees of freedom. The SDT can be combined with the TDT 

when the data consist of a mixture of families with and without parental information, both 

for biallelic markers (Horvath and Laird 1998) and for multiallelic markers (Curtis et al. 

1999). 

Curtis (1997) proposed to choose one affected progeny at random, and then select one 

unaffected offspring whose marker genotype maximally differs from the affected one. Each 

marker allele in the affected child is compared against his/her sibs, and if both alleles are the 

same then they are ignored, but if they are different then ½ is added to T 1 , where i denotes 

the allele from the affected child and j the allele from the unaffected one. For biallelic 

markers, the test is 

1 2 —(N 2 +N1 /2) 
C 	

jN2+N1/4 

where Ni is the number of sibships that increase the test statistic of either T12  or T21  by i. For 

multiallelic markers Curtis used a likelihood model such as in Sham and Curtis (1995), 

however Monks et al. (1998) found a poor approximation of the likelihood ratio test to the x2 

distribution. 

For markers with k> 2 alleles, Boenhke and Langefeld (1998) constructed 2 x k contingency 

tables where the rows represented disease status. The most powerful way of analysing these 

tables was ignoring alleles shared between affected and unaffected sibs and only focusing in 

those alleles from which sibs differed using the following statistic: 

AC 2 
 = (n - n2 

)2  

j=I 	iJ  + fl 2  

where nj and n2j are counts of marker allele j in affected and unaffected sibs, respectively. 

Significant thresholds were obtained permuting affection status among sibs. 

Monks et al. (1998) proposed the TMSTDT and compared it with Z (Curtis 1997), Z 1  and Zmax  

(Spielman and Ewens 1998) and AC 2  (Boehnke and Langefeld 1998). They found that, for 

biallelic markers, these TDTs had similar power, however differences arose when testing 

multiallelic markers. In general, AC 2  and TMSTDT  had similar power in all scenarios; Zm was 

more powerful than the previous two TDTs when one of the marker alleles was more 
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strongly associated with the disease allele than the rest of the alleles, and was less powerful 

when all marker alleles were equally associated with the disease allele; and finally, Z was 

the least powerful test in all situations. 

Martin et al. (2000) developed the pedigree disequilibrium test (PDT) as a valid test for 

linkage disequilibrium when the sample consists of multiple related nuclear families. PDT is 

based on the average measure of LD calculated across all triads and discordant sib pairs. 

PDT was more powerful than Z 1  and Z,,, (Spielman and Ewens 1998) and SDT (Horvath 

and Laird 1998). PDT gives larger weight to larger sibships and nuclear families within a 

pedigree, but equal weights to all pedigrees. It may be better to give more weight to more 

informative pedigrees over less informative ones. PDT also gives equal weight to triad and 

discordant sib-pairs, however if unaffected sibs may have been misclassified then it would 

be a better approach to give higher weight to triad than sib-pairs. 

Schaid and Rowland (2000) developed a general method for simultaneously estimating 

linkage and LD based on logistic regressions in multiplex families. This method can detect 

linkage without LD, but the presence of LD increases the power of detecting linkage because 

it contains information on parental phases, i.e. haplotypes. The probability of transmitting 

allele 1 in phase with the disease allele conditional on the phenotype of y of the progeny, e.g. 

affected, is 

a0 +a 1 y 
, 	 e 

a(aLy)= 
1 + ea0) 

where a is a vector with linkage parameters a 0  and a 1 , which are measures of log-odds of 

transmission to unaffected and affected progeny, respectively. Under H 0, no linkage, a(a I 

= ½, otherwise a(a I y) > ½. The logit function log a 
aJ= 

log it = a 0  + a 1  y can include 
[l— 

additional regressors to model age of onset and other covariates. This method can be used 

also to analyse quantitative and categorical traits. A likelihood function for detecting linkage 

in a multiplex family can be constructed for each allele of a heterozygous parent. These 

likelihoods are then weighed by the probability of being in phase with the disease allele 

(using LD information) and a composite likelihood can be constructed by multiplying all 

marginal likelihoods across all heterozygous parents. Schaid and Rowland (2000) warned 

that when allele action is not multiplicative, a residual correlation may arise between the 

paternal and maternal alleles transmitted to affected progeny, in which case, a correction 

based on robust covariance matrix estimation is necessary. 
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1.5.3 Summary of TDT for dichotomous traits 

TDT analyses the association between disease occurrence in progeny and transmission of a 

particular marker allele from parents. Further extensions of the TDT have allowed the 

analysis of multiallelic markers and/or missing parental genotypes (i.e. sib-TDTs). For 

biallelic markers, a TDT using parental information can be combined with a sib-TDT. 

Extended pedigrees can also be analysed after decomposing them into nuclear family units. 

Although several TDTs have been developed as contingency tables, alternative 

parameterisations based on linear and log-linear models offer greater flexibility (e.g. 

correcting simultaneously for fixed effects). Finally, some tests allow for the joint estimation 

of association and linkage. 

1.5.4 TDT for quantitative traits 

Many human diseases, e.g. obesity, osteoporosis, and most agricultural traits of interest, e.g. 

growth, fatness, are continuously distributed. In order to analyse these traits several 

quantitative TDTs have been developed. Table 1.9 summarises the main TDTs in this 

section. 

Table 1.9. Transmission-Disequilibrium Tests for quantitative traits 
Test Main features References 

TDTQI.Q5 Tests with and without prior phenotypic 
Allison 1997 ascertainment.  

Multiple regression Miscellaneous tests involving multiple George et al. 1999 
Xiong et al. 1998 linear regressions. 
Yang et al. 2000 

TDTR  Correlation between allele transmission 
Rabinowitz 1997  and trait  

TQp, TQS, TQPS TDT, sib-TDT and TDT that uses sib and 
Monks and Kaplan 2000  parent _information, _respectively  

TDTG Contrast between group means regarding Xiong et al. 1998 
transmitted allele Szyda et al. 1998 

S Permutation-based TDT Allison et al. 1999 

Variance-component TDT Estimates between and within QTL Fulker et al. 1999  
Sham et al. 2000 variances 

Abecasis et al. 2000 

b, bpD 
Estimation of between and within (i.e. Janss (pers. comm.) 

TDT) QTL fixed effects Hernández-Sánchez et al. 2002 

Allison (1997) developed five different quantitative TDTs to analyse samples of family trios. 

Tests TDTQ I  to TDTQ4 required trios with a single heterozygous parent, and whereas TDTQ I  

and TDTQ3 assumed random sampling of trios regarding the trait value, TDTQ2 and TDT 

24 



were analysed extreme phenotypic samples. The preferred test was TDT Q5  because: 1) it had 

a consistently high power under all modes of inheritance, 2) it analysed together families 

with either one or two heterozygous parents, and 3) statistical modelling was facilitated by 

the multiple linear regression approach of TDT Q5 . 

In the TDTQ5, the quantitative trait was first regressed to a dummy variable indicating the 

type of informative parental genotype combination (i.e. MM x Mm, Mm x Mm, or mm x 

Mm), and secondly, regressed to the same explanatory variable plus two additional variables 

encoding allele transmission (one for modelling additive effects, the other dominant effects). 

TDTQ5  is an F-test for comparing how much phenotypic variation is explained with the 

extended model over the reduced one. 

Multiple regression techniques for studying marker-trait associations have also been applied 

by Xiong et al. (1998), George et al. (1999), Yang et al. (2000), and Zhu and Elston (2001). 

George et al. (1999) developed a regression model that analysed linkage and association 

between a marker and a trait using arbitrary family structures. All TDT methods test for 

linkage in the presence of association, therefore George et al. (1999) suggested testing for 

linkage only after a significant association had been detected. This method was more 

powerful than any TDT proposed by Allison (1997). The correlation structure among 

pedigree members was accounted for by assuming that the residual random effect is 

composed by two additive and independent random components: a familial effect and an 

individual-specific residual effect. The familial effect was assumed to lead to a correlation 

structure such as would be expected, under random mating, from polygenic inheritance. 

Thus, the residual correlation between a pair of jthdegree  relatives is taken to be of the form 

2 

J'/2j, where f2 = 2g 2 and 	is the common sibship variance due to polygenes, and 
U +O e  

ore is the individual residual variance. Zhu and Elston (2001) proposed an alternative 

regression model, and compared the power of these two regression approaches using 

simulations. 

Yang et al. (2000) estimate the association between a candidate gene and a quantitative trait 

using linear regression models without adjusting for confounding effects due to population 

stratification/admixture, and augmented the model with additional regressors that accounted 

for such confounding effects when estimating the form and strength of the association. 
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Rabinowitz (1997) developed a TDT based on the correlation between a quantitative trait 

and the transmission of a particular allele from heterozygous parents to progeny. For a 

 nij  
biallelic marker this TDT wasT/a , where  = (Y —kXX6 + X 	where Yjj  the 

ij=1 

phenotype of the jth  sib in the ith  family, X, (X,) a variable encoding for the transmission 

of alleles from the mother (father) to the jth  sib in the ith  family, and k a constant (e.g. 

population or sibship mean). The denominator is the standard deviation of T. Under the H 0  of 

no linkage and/or no association, this statistic has a t-distribution with 	n. —1 degrees of 

freedom, where n. denotes the number of sibs in the ith  family. Rabinowitz also considered 

multiplex families and multiple alleles per marker. This method was generalised to include 

families with missing parental information (Sun et al. 2000). 

When testing a marker with multiple alleles, a researcher could use the maximal TDT to 

compare the effect of each allele against the overall effect of all others, and focus on the 

highest score statistic. However, this approach suffers from two drawbacks. First, the 

number of false positives may increase due to multiple testing. Second, some significant 

alleles may be missed due to a 'swamping' effect, when they are compared against the 'all 

others' category that includes both high and low risk alleles (Schaid 1996). Moreover, the 

maximal TDT has an unknown distribution under the H 0  of no linkage and/or association. 

Nevertheless, Betensky and Rabinowitz (2000) developed a deterministic method for 

calculating the upper bound for type I error rates and p-values for the maximal TDT, which 

was less conservative than the Bonferroni's correction. 

Schaid and Rowland (1999) reformulated Rabinowitz's TDT using linear regression and 

extended it to simultaneously analyse families with and without parental genotype 

information. L. Janss (pers. comm.) used Rabinowitz's TDT to estimate allele effects within 

and between families using linear regression. The former estimate was robust to spurious 

association, and the latter was sensitive to spurious association, hence providing the basis for 

a test of spurious disequilibrium (Hernández-Sánchez et al. 2002). 

In order to use all available information, Monks and Kaplan (2000) proposed to calculate 

three statistical tests: TQP, TQS, and TQPS.  The TQP  uses parental genotype information and is 

identical to the test proposed by Rabinowitz (1997). When no parental information is 

available, the TQS is calculated using families with at least two sibs having different 

genotypes. The third statistic, TQPS,  combines both TQP  and TQS. When different family 
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structures provided unequal amount of information to these statistics, a permutation 

procedure was suggested for obtaining p-values. For multiallelic markers, Monks and Kaplan 

followed the approach of Rabinowitz (1997), and suggested to calculate a maximal statistical 

test. 

Xiong et al. (1998) and Szyda et al. (1998) developed independently the same TDT, called 

TDTG by the former authors TDTG is an extension of the TDTQ I  (Allison 1997) for 

multiallelic markers, being as follows: 

TDTG m_1t (. _7ii2  
M j1 	a1 

where m is the number of alleles, Yi. (Y e.) is the mean phenotype of the progeny receiving 

(not receiving) allele i from a heterozygous parent, and a, is the variance of the i th  difference 

in the numerator. Deng et al. (2001) used simulations to conclude that polygenes can 

increase the power of TDTG . However, this result was an artefact of their simulations as they 

fixed the total phenotypic variance (the sum of residual, polygenic and QTL variances) so 

that when the polygenic variance was increased, and assuming a constant QTL variance, the 

residual variance decreased. Instead, if only the residual and QTL variances are assumed 

constant, increasing the polygenic variance may reduce the power. 

Allison et al. (1999) proposed two statistics for testing the H0 of no linkage using sibship 

data. The first statistic was based on the following mixed linear model: 

jk =f1+a +fl +(a/3), +eUk 

where Y,1k denotes the phenotype of the kth  sib with the Jth  allele in the ith  sibship, 1u is the 

overall mean, a 1  is a random effect corresponding to the i1h  sibship, 83  is the fixed effect 

corresponding to the j h  allele, and the interaction (a,8), is also modelled as random. The 

second statistic was based on permutations and is 

)- 2 

k 

I i=1 1=1 

k j=1 	
Vii 
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where P&  and V13  are the mean and variance, from the jth  sibship and j th  allele, respectively. 

The permutation-based statistic showed, in general, more power than the statistic based on a 

mixed-linear model, and has the extra advantage of being distribution-free. 

Fulker et al. (1999) used variance component methods to test for both linkage and 

association of markers and QTL in sibships. They partitioned the sibship variation in 

between and within sib-pair components, and constructed a robust test with the latter 

component of variation. Sham et al. (2000) concluded that the power of detecting association 

with this method was proportional to the QTL heritability and the square of LD, and the 

power of detecting linkage was proportional to the square of the QTL heritability. Therefore, 

confirming the idea that, when LD is strong, testing for association is more powerful than 

testing for linkage. Abecasis et al. (2000) extended this method to accommodate any number 

of sibs, with or without parental genotypes. 

1.5.5 Summary of TDT for continuous traits 

Continuously distributed traits can be analysed with TDT. Multiple regression techniques 

have been widely used for this purpose. This statistical framework allows studying general 

pedigrees (e.g. accounting for the correlation structure among sibs), simultaneous estimation 

of association and linkage, sibship data, and multiple hypotheses testing. Moreover, TDTs 

formulated more rigidly (e.g. Rabinowitz 1997) have been re-formulated with multiple 

regressions (e.g. Schaid and Rowland 1999, L Janss (pers. comm.)). As in the case of 

dichotomous traits, TDTs that use parental information or just sib information can be 

combined together in complex pedigrees with several nuclear family structures. Finally, 

comparing the power across TDTs has become crucial in order to discriminate among such a 

prolific bibliography. 

1.6 LINKAGE DISEQUILIBRIUM MAPPING VIA MODELLING 

POPULATION HISTORY 

Methods of analysis that do not take into account evolutionary variances and covariances, 

particularly when studying large and heterogeneous populations, may be overoptimistic. For 

example, Terwilliger (1995) developed a maximum likelihood (ML) method to obtain 

recombination rate estimates between a marker locus and the hypothetical location of a 

disease gene by measuring the excess frequency of a marker allele in a sample of affected 

individuals with respect to the frequency in the whole population. Moreover, this ML 



combined information from multiple, and multiallelic, markers per chromosomal region. 

However, Devlin and Risch (1995) pointed out that, notwithstanding the similarities with the 

approach of Kaplan et al. (1995), this ML did not explicitly model the evolutionary variance 

in the population and, as a result, the likelihood profile was too sharp and the confidence 

intervals for gene location too narrow. 

Using historical information in gene mapping studies has been crucial in some cases. For 

example, the most striking result of gene mapping by LD methods has been the mapping of 

the Distrophy Dysplasia gene (DTD) (Hästbacka et al. 1992). DTD is a rare and recessive 

condition characterised by dwarfism, which has a relatively high prevalence in Finland. A 

previous linkage analysis had located the DTD gene within a broad region of chromosome 5. 

A finer location of the DTD gene was not possible via linkage analysis because the sample 

size could not be easily increased. Instead, estimates of recombination rates between markers 

and the potential DTD locus were obtained by modelling the Finnish demographic history. 

They assumed the current population had been steadily growing from a small group of 

individuals that arrived in Finland 100 generations ago. A single copy of the DTD 

predisposing allele was probably introduced then, and, therefore most of the DTD alleles 

must be its direct descendents. Affected individuals not only inherited two copies of the 

same DTD allele, but also common background haplotypes. The Finnish history was 

modelled using the approach of Luria and Deibruck (1943), which was originally designed to 

study the exponential growth phase of bacteria. The results were encouraging: the DTD gene 

was predicted to lie within 70 Kb from the CSF1R marker. Finally, the DTD gene was 

physically mapped at 64 kb from CSF1R (Hästbacka et al. 1994). 

Despite this success, Hill and Weir (1994), Kaplan et al. (1995), and Kaplan and Weir (1995) 

argued that Hästbacka and co-workers underestimated the upper confidence intervals for the 

location of DTD. Instead, they modelled the evolution of the haplotype containing the DTD 

allele as a Poisson branching process, assuming the frequency of normal haplotypes 

remained constant over generations. The maximum likelihood (ML) estimator of the upper 

confidence interval was twice as large as that obtained by Hästbacka et al. (1992). Although 

ML estimators are preferable to point estimators, the Poisson branching model was still 

based on population assumptions that are difficult to verify. Moreover, explicit derivations of 

these likelihood functions are very difficult, and the authors used computationally 

demanding Monte Carlo simulations. 
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Xiong and Guo (1997) suggested the following approximated likelihood for estimating the 

recombination rate between a marker and a disease locus, c, assuming the frequency of 

normal haplotypes (p a) constant over generations, and modelling the variation in disease 

haplotypes (Pd), 

L(p,c) = L(pfl, ,7)+ !Tr[L'(pfl, 7r)Var(pd)] 

where E[p] = 7t, and L"(p d  ,t) is the matrix of second derivatives. Xiong and Guo 

(1997) compared this approximated likelihood with a first order approximation, consisting of 

the first term alone, which ignores stochastic changes in the frequency of disease haplotypes 

over time. The first order approximation coincided with other deterministic methods 

(Hästbacka et al. 1992, Terwilliger 1995). Moreover, Xiong and Guo (1997) showed how to 

use information from several linked markers, multiple alleles per marker, and mutations at 

both markers and disease loci. 

Devlin et al. (1996) developed a composite maximum likelihood method (CML) based on 

maximising the likelihood of —log((5), where S 	I122 	1221 = 	 and Jrjj  is the frequency of 

haplotypes with marker allele i and disease allele j (j = 1 is the disease-predisposing allele), 

for each marker, given the recombination rate between marker and disease locus, and 

multiplying across all markers. Although Devlin and colleagues were able to re-map 

accurately genes underlying simple monogenic diseases, e.g. cystic fibrosis, DTD, on the 

basis of published data, there were two main problems with their approach. First, all markers 

were assumed independent, and second, they assumed a Gamma distribution for —log(ö), 

which will produce a consistent estimator of variance only if the shape of the distribution is 

correctly specified (Clayton 2000). 

Collins and Morton (1998) and Lonjou et al. (1998) applied the Malecot model, originally 

derived to describe kinship as a function of distance between populations, to gene mapping, 

where distance is between marker and disease locus. The decay of association (p) between 

marker i and disease locus over generations is predicted with the Malecot model 

as p1  = (i - L)Me" + L, where p, = E[r1], L denotes the level of spurious association, M 

denotes the probability of monophyletic origin of the disease gene, d, is the assumed genetic 

distance between marker i and the disease locus, and sd = tc 1  where t is the number of 

generations since the disease locus entered the population, and c, and d, are the 
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recombination rate and the physical distance between marker i and the disease locus, 

respectively. Information from multiple linked markers was combined in a composite 

likelihood that was a function of the joint distribution of p (assuming values for L, M, r), and 

the allele frequencies at the marker and disease locus. The Malecot model re-mapped 

accurately major genes, e.g. hemochromatosis, Huntington disease and cystic fibrosis, 

although it was not tested with complex traits. 

The coalescent process (Kingman 1982) has also been used to model the history of a sample 

of haplotypes either in the context of diseases (Rannala and Slatkin 1998, Thompson and 

Neel 1997, Graham and Thompson 1998) or quantitative traits (Zhang and Zhao 2001). In 

the coalescent, a sample of haplotypes is brought backwards in time, allowing the histories 

of pairs of haplotypes to meet (a coalescent event), and eventually reaches the single 

common haplotype from which all the current ones descended. Each coalescence event 

represents either a recombination or a mutation event. 

1.7 HAPLOTYPE ANALYSIS AND GENE CLONING 

Positional cloning has been defined as the isolation of a gene solely on the basis of its 

chromosomal location (Lander and Schork 1994). The observed mosaic-like pattern of LD 

may render association studies powerless for mapping the causal mutation, because long 

stretches of conserved LD means that several polymorphisms can be strongly associated with 

a trait. For example, the most studied polymorphism in the gene encoding angiotensin 

converting enzyme (ACE), which hypothetically contributes to cardiovascular disease 

(CVD) by controlling blood pressure, has been a 287 bp intronic insertion/deletion called 

Alu. However, the effects of Alu on CVD have been contradictory (Schmidt et al. 1993, 

Barley et at. 1996). There is absolute LD between Alu and 17 polymorphic SNPs in a region 

covering exons 13 to 18 of the gene (Rieder et al. 1999). If a causal mutation were in that 

area then an association study would find it very difficult to pinpoint it. Farrall et al. (1999) 

discarded exons 1 to 5 from harbouring the causal mutation by demonstrating that from the 3 

monophyletic Alu-deletion haplotypes, 2 were associated with similar ACE level in plasma, 

and hence, the causal mutation was unlikely to be in the region differing between these two 

clades. This region was studied by Zhu et at. (2001) and found that a SNP located upstream 

from the 5' end of the ACE encoding gene explained 6% of the variance of ACE 

concentration in plasma. In the same study, a second SNP located within exon 17, very close 

to the Alu site, explained 19% of the variance of ACE concentration. The best model for 

analysing marker-trait linkage included these two loci and an additive x additive interaction 
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between them. These two loci were significantly associated with blood pressure, although no 

evidence for linkage was found. This study highlighted two things, 1) association studies can 

be more powerful than linkage in regions of high LD, although mapping the causal mutation 

may still be very difficult, and 2) that interactions (e.g. epistasis, genetic x environment) may 

play an important role in mapping genes underlying complex traits such as hypertension. 

A rare and recessive form of progressive epilepsy may be caused by a single mutation in the 

ausosomal gene EPM1 (epilepsy mioclonus) (Lehesjoki et al. 1993). EPM1 was first located 

on chromosome 21q22.3 with linkage analysis. Subsequently, more data were collected and 

the region potentially locating EPM1 was narrowed down to 7 cM. Further resolution was 

achieved by studying LD. A haplotype that included alleles from 4 tightly linked marker 

loci, spanning —3 Kb, was found in 60% of the cases and only 1% of the controls. That 

region was embedded within a slightly larger region of conserved LD. Although LD was 

helpful for narrowing down the resolution of location estimates, physical cloning of EPM1 

will need a more direct approach, e.g. sequencing all bases along the 3 kb region. 

Even though several other studies (e.g. Copeman et al. 1995, Watkins et al. 1994, Snarey et 

al. 1994, Yu et al. 1994) used LD for gene mapping in a similar way as shown in the 

aforementioned studies (e.g. EPM1 and ACE), the physical localisation of causal mutations 

is still a major undertaking (e.g. Kerem et al. 1989, MacDonald et al. 1991, HDCRG 1993). 

Nevertheless, the study of haplotypes, as opposed to single markers, may help refining the 

location of a causative SNP (Lynch and Walsh 1998). Templeton (1995) suggested creating 

cladograms, or evolutionary tree, with the observed haplotypes. The rationale is that the 

closer two haplotypes are, the higher the chance of them sharing the same QTL and, hence, 

of having similar phenotypic effects. Meuwissen and Goddard (2000) compared the expected 

covariances between haplotype effects given a postulated QTL position to the covariances 

found in the data. These expected covariances were proportional to the probability that the 

QTL is IBD given the marker haplotype information, and were calculated stochastically (i.e. 

genedropping). This stochastic method was subsequently substituted by deterministic theory 

based on Sved (1971) (Meuwissen and Goddard 2001). In one application of this method, a 

QTL for twinning rate in Norwegian cattle was mapped within a 1.3 cM region on 

chromosome 15, which is substantially narrower than the usual results reported from 

standard linkage analysis. 

Haplotypes are more informative than single markers, for example in obtaining IBD 

estimates at specific point locations. However, the analysis of haplotypes brings new 



problems, e.g. phase construction, high diversity, and optimal haplotype length. Ultimately, 

the aim of LD mapping must be to estimate as far as possible the ancestry of chromosomes 

carrying the gene of interest in the current sample, and to place marker mutations and 

recombinations on this (Clayton 2000). 

The total number of SNPs in the human genome exceeds 1.69 million (Chakravarti 1998, 

Miller and Kwok 2001, The international SNP map working group 2001), accessible at 

NCBI (www.ncbi.nlm.nih.gov/SNP)  and ENSEMBL (www.ensembl.org ). Most of these 

SNPs may be redundant for characterising blocks of conserved LD. Patil et al. (2001) 

developed a strategy for selecting a minimum number of informative SNPs that could 

explain most of the haplotype diversity on chromosome 21. They found that from a total of 

35,989 SNPs identified in a sample of 20 chromosomes, 2793 SNPs sufficed to identify 

common blocks, which covered 81% of the 32.4 Mb of chromosome 21. Concentrating in a 

much smaller region of 135 Kb, but with a much larger sample size than the previous study, 

and focusing on known genes rather than anonymous regions, Johnson et al. (2001), 

managed to explain most of the haplotype variation observed with a total of 122 SNPs with 

just 34 of them. In the future, optimisation algorithms may be developed to facilitate 

researchers choosing among available SNPs a minimum number that contains most (e.g. 

95%) of the LD information, hence reducing statistical thresholds due to multiple testing, 

diminishing the level of complexity in haplotype analyses, and facilitating the interpretation 

of results in association studies. 

1.8 EXPERIMENTAL DESIGN 

There has been a lot of debate about what marker densities, what family structures, what 

traits, and what populations are ideal for LD mapping in humans. These issues have not been 

explored yet in an agricultural context. 

Based on simulations and assuming a constant demographic expansion since humans left 

Africa 100,000 years ago, Kruglyak (1999) predicted that LD would be rare beyond -.3 kb. If 

this was confirmed, at least 500,000 SNPs would be needed in genome-wide scans. On the 

other hand, Ott (2000) criticised Kruglyak's assumptions, predicting LD over longer 

distances, and reducing to 30,000 the minimum number of SNPs needed in genome-wide 

scans. Finally, Jeffreys et al. (2001) speculated that if the pattern of LD on the MHC region 

(i.e. LD blocks flanked by recombination hotspots) was the norm, then the human genome 

could be a mosaic of about 40,000 recombinationally suppressed segments of DNA. In this 
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case, genome-wide association scans would be feasible with 80,000-200,000 SNPs, or an 

average of 2 to 5 per LD domain. 

Brown (1975) showed that relatively large samples were needed to detect LD, however 

Konig et al. (2001) suggested that it was possible to reduce sample sizes by up to 20% using 

optimised group sequential study designs, leading to considerable reductions in cost and 

time. There are two ways in which a sequential study can be practised: 1) a genome-wide 

analysis is performed with sparse marker maps, and only those promising regions are 

followed up by adding new markers, and 2) the sample size is increased sequentially, starting 

off with a few probands or cases, and increasing the sample only if results are not entirely 

conclusive in either rejecting or accepting H 0 . 

Olson and Wijsman (1994) and Chapman and Wijsman (1998) showed that the best scenario 

for detecting an association between marker and disease loci was the following: 1) perfect 

haplotype data, 2) 6-8 alleles per marker, especially for weak associations, 3) equal 

frequency for all alleles at a marker, 4) equal number of cases and controls in case-control 

studies, 5) rare, recessive, and monophyletic Mendelian diseases, 6) selected samples within 

genetically homogeneous populations, and 7) young mutations, e.g. not older than 20 

generations. 

Goidgar and Easton (1997) studied the power for detecting association between a marker and 

a disease locus A, under a two disease loci model (A and B). They considered different 

nuclear family structures, and levels of information with respect to locus B, taking into 

account all experimental costs in each scenario. Their conclusions were: 1) family trios (both 

parents and a single child) were the best family structures to sample, 2) knowing the causal 

polymorphism at locus B enhanced the chances of detecting locus A, and 3) recessive loci 

were easier to map than dominant loci. 

Finally, the power of QTL detection depends on the values for the QTL, polygenic and 

residual variances, for instance polygenic variation can increase the power of association 

studies when multiple sibs are sampled (Deng et al. 2001). Selection can maintain different 

patterns of LD, which will impact upon the observed levels of polygenic variance of a trait 

(Lynch and Walsh 1998). For instance, polygenic variation can be partially hidden, 

compared to the level expected under random segregation of alleles, when selection favours 

repulsive disequilibria, i.e. positive and negative alleles alternate on haplotypes (Bulmer 

1971, 1976), or it can be increased when selection favours coupling disequilibria, i.e. 

haplotypes contain either positive or negative alleles (Lynch and Deng 1994). 
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1.9 QUANTITATIVE TRAIT LOCI MAPPING IN LIVESTOCK 

USING LINKAGE DISEQUILIBRIUM 

The animal breeding industry is being revolutionised by the new advances in genomics, as it 

has already happened in medicine and plant breeding. The advanced stage of research in 

model organisms (e.g. Saccaromices cerevisiae, Caenorhabditis elegans, Drosophila 

melanogaster, Mus musculus and Arabidopsis thaliana) is now benefiting genomic studies in 

the main livestock species (e.g. pig, cattle, sheep and poultry) for example in terms of high 

throughput genotyping technology and comparative mapping (Georges 2001). 

The list of monogenic traits being characterised is continuously increasing 

(www.angis.org.au/Databases/BIRX/omia  or 

http://probe.nalusda. gov:  8300/ani mal/omia.html) but the real challenge lies in characterising 

complex traits affected by numerous genes interacting with each other as well as with the 

environment. Although linkage analysis is well established among gene cartographers 

interested in livestock populations (Haley 1995, Bovenhuis et al. 1997), this approach has 

rendered very poor resolution (Baret and Hill 1997). On the other hand, LD mapping has 

already been successful in high-resolution mapping of QTL, albeit sporadically (Farnir et al. 

2000, Bink et al. 2000, Kim et al. 2002). 

We agree with Baret and Hill (1997) in that 'the transposition of (LD) methods developed in 

human genetics to livestock is dependent on the choice of studied populations and on 

knowledge of their genetic history' but disagree in that 'potential applications in livestock 

are limited to discrete traits in specific populations'. First, nowadays any trait can be studied 

from a LD perspective. Second, most modern livestock populations originated from a past 

hybridisation event between very distinct (pure?) breeds, potentially creating extensive LD. 

Since then, animal breeders have kept some of these populations rather isolated (i.e. 

genetically homogeneous) and moderately inbred (i.e. low Ne). Recombination, drift, and 

selection, the latter in a more localised fashion, have shaped current LD patterns. 

Theoretically, this population history can maintain levels of LD so that medium density 

marker maps allow genome-wide scans (e.g. at least one order of magnitude less number of 

markers would be required as in comparable human studies). Moreover, general guidelines 

(Stephens et al. 1994) and notation (Ewens and Spielman 1995) have been developed in the 

context of admixture-based gene mapping. 
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Finally, the rate of genetic progress that can be achieved through selection is determined by 

four factors: genetic variation, selection accuracy, selection intensity, and generation interval 

(Falconer and Mackay 1996). Molecular knowledge of QTL can favourably affect each of 

these factors through MAI (marker assisted introgression; van Heelsum 1997a,b), MAS 

(marker assisted selection; Hospital et al. 1992, Whittaker et al. 1995), and GAS (gene 

assisted selection; Pong-Wong and Woolliams 1999). 

In conclusion, we believe that LD mapping is a necessary tool for fine mapping QTL in 

livestock populations that will improve current selection programs. However, the 

applications of LD mapping have been limited to few theoretical (Du et al. 2002, Grapes et 

al. 2002, Nsengimana and Baret 2002) and even fewer practical studies (Meuwissen and 

Goddard 2002, Kim et al. 2002, Hernández-Sánchez et al. 2002) in animal breeding. 

Nevertheless, we forecast a brighter future for LD mapping in livestock: LD mapping is here 

to stay. 

1.10 OBJECTIVES OF THE THESIS 

This thesis focuses on the study and development of statistical tools for high resolution 

mapping of QTL and disease genes. Linkage disequilibrium (LD) underlies population-wide 

marker-trait association that can be utilised for fine mapping. The transmission-

disequilibrium test (TDT) is a single-marker test of population association that is robust to 

spurious association (i.e. without linkage). Chapter two compares the power and robustness 

of three TDTs and two ANOVAs for testing marker-trait association at population level. 

Power was obtained by means of deterministic formulae and validated with stochastic 

simulations. Chapter three explores how to implement a TDT within the BLUP-REML 

framework, which is a more appropriate way of analysing livestock data. Moreover, in 

Chapter three, allele substitution effects are estimated using within family variation, i.e. with 

TDT, and between family variation, and shows how statistical differences between these two 

estimators provide evidence of spurious association. Chapter four uses TDTs in a genome-

wide search for genes related to susceptibility to BSE in Holstein-Friesian cattle. Chapter 

five sets the basis of a novel approach for high-resolution QTL mapping that combines 

Linked Gene Flow (LGF) theory with IBD-based variance component methods. The LGF 

theory provides a framework from which to obtain linkage disequilibrium information under 

the assumption of a common history of the population. 
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CHAPTER 2 

Power of association tests to detect 

Quantitative Trait Loci using Single Nucleotide 

Polymorphisms 

2.1 INTRODUCTION 

Geneticists have been successful in mapping genes underlying rare, monogenic disorders 

showing a clear pattern of Mendelian inheritance (e.g. Kerem et al. 1989, Hastbäcka et al. 

1992, 1994). However, mapping genes underlying complex traits, such as common 

multifactorial diseases, has been more difficult (Terwilliger and Weiss 1998, Schork et al. 

1998). Two broad strategies are currently employed in gene mapping: linkage and 

association. Although both strategies exploit the cosegregation of markers and phenotypes, 

there are some striking differences between them. For example, scanning the human genome 

searching for significant associations could require between 30,000 to 500,000 single 

nucleotide polymorphisms (SNPs) (Kruglyak 1999, Ott 2000), whereas significant linkage 

may be detected with just 200 to 400 microsatellites (Neale et al. 1999). The main 

disadvantage regarding linkage analysis is that the confidence intervals on location estimates 

of a gene are usually wide (Boehnke 1994), whereas the main disadvantage regarding 

association analysis is that some tests are not robust to genetic heterogeneity (Wright et al. 

1999). Moreover, theoretical work suggested that a genome wide association scan employing 

every polymorphic marker in the human genome may have greater power to detect complex 

disease causing polymorphisms than a genome wide linkage scan, even after compensating 

for the increased number of false positives expected from testing such a large number of 

markers (Risch and Merikangas 1996). In deriving this conclusion, the authors assumed that 

the causative polymorphism (or a marker in complete association with it) was one of the 

markers tested. 

Despite being less powerful, family-based association tests, such as the 

transmissionldisequilibrium test (TDT) (Spielman et al. 1993), have been favoured, over 

non-family-based association tests, e.g. case-control (Clayton 2001, Schork et al. 2000), 

because the former are robust to spurious disequilibrium generated by population 
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stratification, or recent admixture. TDT gives the researcher confidence that an observed 

SNP/phenotype association is not simply a population artefact and, therefore, it would be 

prudent to confirm any population-level association with a TDT-type statistical test (Long 

and Langley 1999). 

Many epidemiological investigations of the common chronic diseases have focused on 

continuously distributed risk factors of disease (e.g. ACE concentration levels and blood 

pressure (Zhu et al. 2001)). Power studies of association tests for quantitative traits will aid 

to elucidate statistical properties of these tests, to set appropriate experimental designs, and 

to choose the most powerful, given the conditions of the experiment, among available tests. 

Allison (1997) proposed five different TDTs for analysing quantitative traits under different 

ascertainment conditions. We included the most powerful of these tests, named TDT Q5 , in 

this study, and show how its power can be increased with respect to the original 

implementation. Long and Langley (1999) studied the power of five non-family based 

association tests and the TDT Q5  proposed in Allison (1997). They showed that TDTQ5  was 

always less powerful than non-family based tests, and that, among the latter tests, it was 

more powerful to analyse genotypes than either alleles or haplotypes. Nevertheless, these 

authors also acknowledged that under genetically heterogeneous conditions, such as when 

population stratification is present, the type-I error rate of non-family based tests can rise 

above that nominally set for the experiment. Xiong et al. (1998) extended TDT QI  (see 

Allison 1997), to accommodate any number of sibs per family, any number of heterozygous 

parents, and any number of alleles at the marker locus, naming it TDT G  (see Szyda et al. 

1998 for an application of TDTG  in a cattle population). TDTG  was always more powerful, 

sometimes substantially so, than TDT Q1 , the Haseman-Elston linkage test (Haseman and 

Elston 1972), and an extreme discordant sib pair test. However, TDT QI  is less powerful than 

TDTQ5  (Allison 1997), which is the test chosen to be studied here. Sham et a! (2000) 

developed approximations for the non-centrality parameters of linkage and association tests 

in the context of variance-components analysis when data consist of large sib-ships, 

randomly sampled with regards to a normally distributed trait. They concluded that, for a 

given experimental design, there could be more power to detect associations within sib-ships 

than to detect linkage when the effect of the quantitative trait locus (QTL) is small. (N.B. It 

is also possible to estimate associations between sib-ships, but they are not robust to spurious 

associations due to population stratification and/or admixture). Page and Amos (1999) 

compared different TDTs in terms of power via simulations. They showed that, in a 

population where as much disequilibrium is being created by drift as it is being lost by 



recombination, sampling from both extremes of the trait distribution greatly increases the 

power of another test, the truncated measured allele (TMA). However, when corrected for 

admixture, the TMA was less powerful than TDTQ3 (see Allison 1997). 

Finally, TDT is valid for testing jointly linkage and association (i.e. linkage-disequilibrium) 

when analysing independent family trios, where 'valid' denotes that the statistical 

distribution of the test under H 0  is known. However, when multiplex families are analysed, 

TDT is not a valid test of association because of the sibs' lack of independence (Ewens and 

Spielman 2001). Martin et al. (1997) considered the set of transmissions to affected sibs in 

the whole family, rather than the transmissions to each child separately, thus retaining the 

necessary independence property. Other studies have also investigated the properties of more 

sophisticated TDTs when sampling multiplex families (e.g. Monks and Kaplan 2000), or 

extended pedigrees (e.g. George et al. 1999, Martin et al. 2000). Nevertheless, simpler TDTs 

may still prove valid for testing association if permutation testing is used, instead of standard 

statistical distributions, for setting significant thresholds (e.g. Doerge and Churchill 1996). 

In summary, we have developed a deterministic approximation to predict power of several 

association tests, and simulations have been used to validate its accuracy. This methodology 

is sufficiently general to be used in predicting power of other association tests. In this study, 

several tests of association, and for some also of linkage, (Table 2.1) have been compared in 

terms of power, both empirically and deterministically. 

Table 2.1. Main features of tests compared in this study 

Abbreviation Testing a  H0  Reference 

One-way Genotype effects Association Sokal and Rohlf (1995) 

Genotype effects after 
Linkage and TDTQ5  correcting for family Allison (1997) 

effects association 

TDTR  Allele-phenotype Linkage and 
Rabinowitz (1997) correlation association 

TDT0 Allele means Linkage and Xiong et al. (1998), 
difference association Szyda et al. (1998) 

Nested Genotype effects Association within 
Sokal and Rohif (1995) within family type family type  

a  The null hypothesis (H0) for TDT is linkage and association when testing simplex families, but only 
linkage when testing multiples families (Ewens and Spielman 2001). 
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2.2 MATERIAL AND METHODS 

2.2.1 Tests 

The power of five tests to detect both linkage and population-wide association between a 

marker locus and a QTL was studied empirically (via simulations) and deterministically. 

These tests were the one-way analysis of variance (one-way), the nested analysis of variance 

(nested), the TDT Q5  of Allison (1997), the TDT R  of Rabinowitz (1997), and the TDT G  

proposed independently by Xiong et al. (1998) and Szyda et al. (1998) (Table 2.1). A general 

deterministic method for predicting power at a linked marker is proposed in this study, and 

implementation examples are given for one-way, TDT R  and TDTQ5 . 

One-way ANOVA. The one-way contrasts marker genotype means among all progeny. This 

is the simplest and most powerful test of association (Long and Langley 1999), although it is 

prone to high rates of false positive results (type-1 errors) in the presence of spurious 

association, viz, disequilibrium without linkage. This is so because the null hypothesis (H 0) 

being tested by one-way is no association, independently of linkage. Therefore H0  could still 

be rejected when testing unlinked marker loci (c = ½) if there was a sufficiently strong 

population wide (spurious) association (D : ~ 0). This lack of robustness is a drawback 

common to tests that do not use intra-familial controls, e.g. case-control studies (Shork et al. 

2000) although some theoretical solutions to this problem have been proposed (Clayton 

2001). 

Nested ANOVA. A way of overcoming this problem with one-way is contrasting marker 

genotype means among progeny within mating types, thus using a nested design. Mating 

type represents the particular combination of parental marker genotypes within a family. 

Thus, the H0  being tested by nested is no association within mating types. Nested is expected 

to be robust to spurious associations created between families. There are six possible mating 

types regarding a biallelic marker locus (Table 2.2). Nested uses only those families with at 

least one heterozygous parent (referred to as informative families in what follows) because 

there must be at least two progeny with different marker genotypes within each mating type 

for there to be a contrast. This family ascertainment applies to all TDTs as well. However, 

this type of ascertainment will reduce the number of residual degrees of freedom (residual 

df) available for testing H 0, and, consequently, a loss of power is expected compared to one-

way. 
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TDTQS. The original statistic for TDT Q5 
 is (SS' - SS R 

 )/2 (Allison 1997), where SS R  is 
(1 —SS F )/(n —5) 

the sum of squares explained by a reduced model fitting an overall mean and mating type as 

fixed factors, hence, at most, estimating three parameters (e.g. the overall mean and two 

mating type means), and SS F  is the sum of squares explained by a full model fitting the 

reduced model plus two more factors, one to estimate additive gene effects, and the other to 

estimate dominant gene effects (hence, at most, estimating five parameters). The total 

number of informative families is n. Hence, TDT Q5  is testing whether a significant amount of 

phenotypic variation can be explained by marker genotypes in the progeny, over and above 

the variation already explained by mating type. When the residuals are normally distributed 

and H0 is true, TDTQ5  follows a F2 _5  distribution. The TDTQ5 is equivalent to a two-way 

cross-classified design analysis of variance (two-way) where the factors are mating type and 

progeny marker genotype (Appendix c). 

TDTR. The TDTR  is calculated as T/cYT  when the marker is biallelic, where T measures the 

strength of the covariance between the transmission of an arbitrarily chosen allele from 

heterozygous parents to progeny and the phenotype of these progeny, and U T  is the standard 

deviation of T. We will next describe TDT R  in detail, as this information will be needed later 

for further statistical developments. The numerator, T, is (y 1  —y)w , where y j  is the 

phenotype of the i1h  child, 7  is a constant (usually the overall mean, or the mean among 

informative families), and w, are weights for each trio given in Table 2.2. The sum is over all 

n informative trios, assuming them unrelated and having been drawn at random with respect 

i n  
to the phenotype from a wider population. The variance of T is c4 = _I (y1 - y)2  H 1  

where H, is the number of heterozygous parents in a family (Table 2.2). When Ho is true, 

TDTR  follows a t-distribution with n-i degrees of freedom (Rabinowitz 1997). 

TDTG. The last test being considered is TDTG, that for a biallelic marker is 

	

(Y) 2 	 - 	 - M 	m 	, where 'M  and m  are the means among progeny having inherited allele 

( lM 	flm) 

M or m from heterozygous parents, respectively, nM and n m  are the number of times such 
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parents transmits allele M or m, respectively, and+ 	is the variance of 
( M 	fl m) 

Ym - 
"mS 

Assuming the trait is normally distributed, and the sample size is large, TDT 0  

follows a x2  with 1 df (Xiong et al. 1998, Szyda et al. 1998). 

2.2.2 Empirical power 

Power was empirically calculated as the proportion of significant results out of 1000 

analyses of independent data sets generated under specific combinations of parameter values. 

Genotypes were generated for all individuals, and phenotypes only in the progeny. We 

considered a single QTL with alleles Q and q, and frequencies PQ  and i.  The difference 

between both homozygous genotype means was 2a, and there was no dominance effect. The 

residual variance was set to unity, and the polygenic variance to zero (no other QTLs were 

simulated). A single biallelic marker with alleles M and m, and frequencies PM  and Pm,  was 

simulated linked to the QTL with a recombination rate c. The level of association 

(correlation) between alleles Q and M was given by the standardised linkage disequilibrium 

parameter D' (Lewontin 1988). The total number of phenotypic records was n. The specific 

set of parameter values used will be given in the Results section for each simulation. 

Family trios (i.e. father, mother, child), also known as simplex families, are classified with 

respect to particular combinations of marker genotypes in all three family members. 

Although the basic unit of information was a family trio, we also investigated the effect on 

power of including more progeny per family, and varying the number of families. All 

informative families are treated as independent. Even if multiplex families are decomposed 

into several simplex families, TDTs are still valid as tests for linkage, although not for 

association (see Introduction). 

2.2.3 Deterministic power 

We have developed a compound method with two parts for predicting power of association 

tests deterministically. The first part consisted in calculating the expected 'apparent' effect of 

marker genotypes as functions of underlying QTL genotypes, conditional on population 

parameters and family type. Family type was defined as each particular combination of 

marker genotypes within family trios. The second part consisted in calculating the non-

centrality parameters (X) as functions of specific genotypic contrasts in each test. The first 

part of the method can be used to predict power in other association tests, in addition to the 
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ones in this study. The second part of the method is test-specific, hence needs being 

calculated in each test. 

2.2.4 Expected marker effects 

Every family trio can be classified regarding the marker genotypes of its members. For 

example, there are 10 different types of trios at a biallelic marker (Table 2.2). Let X be a 

vector with the marker genotypes of child, father, and mother in the j1h  trio, e.g. X 1 =[MM, 

MM, MM] (see Table 2.2). Let G 1  denote the ith  QTL genotype of the child, i.e. G 1  = QQ, G 

= Qq, and G3  = qq. Assuming a biallelic QTL with an additive effect of allele substitution 

equal to a, and no dominance, the expected phenotype (Y) of a child given the ith  trio is 

	

E[YIX1]=a[P(G1 1X 1 )—P(G 3 	1x 1 )] 	 [11 

The conditional probabilities P(G 1 jX1) and P(G31X)  can be calculated using Tables A1-A4 in 

Appendix A (Jayakar 1970, Hill 1975). For example, the probability of QTL genotype QQ 

given X1 is 

	

22 	2 
P(G1I XI) _1 ( 1)_hu1)M _h 1  

- 	 - 
P 4 	2 

	

M 	p4 

where P(G 1 flX 1 ) is the joint probability of QTL genotype QQ in the child, and marker 

genotype MM in all members of the family, P(X 1 ) is the probability of trio type 1, and h 1  is 

the probability of drawing haplotype QM from the population, which assuming random 

mating and no segregation distortion, is h 1  = h QM  = PQPM + DQM  (N.B. DQM = D' Dmax, 

and if D' > 0 then D max  = flMfl{PqPM, PQPm} (Weir 1996)). The joint probability P(G 1 flX 1 ) can 

be obtained from Table 2.A4 by multiplying the third and the sixth columns and adding all 

up. All the conditional probabilities P[G1lX],  for i=1, 2, 3 and j =1... 10, are summarised in 

Table 2.3. 
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Table 2.2. Variables and probabilities used in TDT R , and expected 
marker genotype effects within each type of trio. 

Parents Child Probability t w het Effect 

MM x MM MM PM4 * 0 0 b 

MMxMm 
MM 2PM3Pm 1 ½ 1 b2  

Mm 2PM3Pm  0 -½ 1 b3  

MM x mm Mm 2PM2Pm2 * 0 0 b 

Mm x Mm 

MM PM2Pm2  1 1 2 b5  

Mm 2PM2Pm2 * 0 2 b6  

mm PM2Pm2  0 -1 2 b7  

Mm x mm 
Mm 2PMPm3  1 ½ 1 b8  

mm 2PMPm3  0 ½ 1 b9  

mm x mm mm Pm4 * 0 0 b 10  

PM, Pm Frequencies of marker alleles M and m, respectively. 
t: Transmission indicator (1 if a parent Mm transmits M, 0 otherwise) 
w: Weight per trio, w = I het . (t - 1/2), summing over both parents. 

het: Heterozygosity indicator (1 if a parent is Mm, 0 otherwise) 
Effect: Expected marker genotype effects (b) of progeny within trios 
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Table 2.3. Conditional QTL genotype probabilities in a child, given marker genotypes in the trio, and 
population parameters D, C, PM, Pm, pQ, and ic. 

QTL gentoype in child 
 Father Mother Child 

QQ Qq qq 

MM MM MM h1 2/pM2  2 hIh3/pM2  h32/pM2  

MM Mm 

MM li(li iPm CD)/PM2Pm 
[2hih3pm+(hi 
h3)CD]/PM2Pm  h3(h3Pm+CD)/PM2Pm 

Mm h 1  (h2PM+CD)/PM2Pm 
[PM (h1h4+h2h3)+CD(h3- 

h1)]/PM2Pm 
h3(h.4PMCD)/PM2Pm 

MM mm Mm h I h2/PMPm  (hIh4+h2h3)/PMPm h3h4/PMPm  

MM [(hIPmCD)/(PMPm)]2 2[hih3pm2+CD(h1 
h3)pm C2D2]/_(PMP m)2  [(h3Pm+CD)/(PMPm)]2  

Mm Mm Mm lh2PMPm+1D2 h1' [(h l h4+h2h3)PMPm 2C(1 [h3h4PMPm+C(1C)D2]/ 
______ (PMPm)2  c)D2]/ (PMPm) 2  (PMPm)2  

mm 
7___________________ 

[(h2PM+CD)/(PMPm)]2 2[h2h4pM2+CD(h4— 
h2)PM—C2D2]/_(PMPm)2  (h4PM CD)2/(PMPm) 2  

Mm mm 

Mm h2(hIPmCD)/(PMPm2) 
[(hih4+h2h3)pm+CD(h2 

h4)]/ (PMPm2) 
h4(h3Pm+CD )/(PMPm2) 

mm h2(h2PM+CD)/(PMPm2) 
[2pMh2h4-(h2—h4)CD]/ 

(PMPm2) 
h4(h4pM CD)1(P MPm2) 

mm mm mm h22/Pm2  2h2h41Pm2  h42/Pm2  
D: Linkage disequilibrium 

c: Recombination rate 
PM, Pm Frequencies of marker alleles M and m, respectively 

Q,  pq Frequencies of QTL alleles Q and q, respectively 
h 1 , h2, h3 , h4 : Frequencies of haplotypes QM, Qm, qM, and qm, respectively, where 

hl=pQpM+D; h2=pQpm-D; h3pqpMD; h4pqpm+D 
Note that, for example, to calculate the second row of probabilities we divide by p m  pm instead of by 

2PM2Pm  (see Table 2.2) as we consider one mating type, MM x Mm, but not the reciprocal, Mm x MM 
(the first genotype corresponds to the father and the second to the mother). 

2.2.5 Non-centrality parameters (A) 

The non-centrality parameter for the one-way ANOVA (X0) can be obtained applying 

formula (81) in Searle (1971, pl 01 ), 

B'X'XB  = [2]. 

The sum in equation [2] is over all 3 genotype classes MM, Mm and mm, the vector B' 

contains the three marker genotype means 6 MM ,  11  MM '11mm]' and X'X is a matrix with 

diagonal elements [nMM,nMm,nmm]  and zeroes elsewhere, where n i  is the sample size 
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corresponding to marker genotype i. Equation [2] represents the sum of squares due to both 

the marker locus and the sample mean. The appropriate X o  can be obtained after correcting 

[2] for the sum of squares due to the sample mean (pt), i.e. N1t 2, where 

N = n 4M  + n Mm  + n. In doing so, we are assessing how much variation is explained by a 

model fiting an overall mean and genotypes as fixed factors over and above a model fiting 

only the overall mean. When testing the QTL (i.e. conditioning on c = 0, D' = 1, and p = 

PM), and assuming no dominance, equation [2] simplifies to 

N 

	

A0  = 	'2 	 [3] 
cY 

where CY 2 = 2p Q pq a 2  (Falconer and Mackay 1996). 

In Appendix C, we have shown that TDT Q5  is equivalent to a two-way ANOVA analysis, 

where data are modelled fitting mating type and genotype as fixed factors, in addition to .t. 

Taking this equivalence into account, the non-centrality parameter XQ5, derived in Appendix 

B, is 

	

10 	 6 

	

= 
	

[4] 

where b1  is the marker genotype effect in the progeny of class i trios (see Table 2.2), n, is the 

number of class i trios, is an indicator variable that takes the value 1 when the trio is 

informative (viz, at least one heterozygous parent), and 0 otherwise, F is the mean value of 

the jth  family class, and f the number of these families (see Appendix B). Equation [4] 

measures, in o units, the amount of total sum of squares explained by the marker, after 

subtracting the family effect. When testing the QTL, equation [4] reduces to 

2 
Q 

XQ5_.NTL - 2 _--- 	 [5]. 

The non-centrality parameter for TDT R  (XR) is approximately 

	

XR[p
2 

	

	 2 (b 2 b3)+PMPm(b5  —b 7 )+p(b 8  _b 9 )1/_NPMPm 	 [6] 
+ 

Cy  2 
QTL 

	

(Appendix D). 	When 	testing 	the 	QTL, 	equation 	[6] 	simplifies 	to 

I_NPQPq 	

2+2/TL 	
[7]. 2 	2 

\I a+ Qu  

ms 



Finally, the non-centrality parameter for TDT G  (XG) is 

N
_[(1-2C)Da]2  

PMPm( +) 
[8] 

where D is the usual measure of linkage disequilibrium (Xiong et al. 1998). When testing the 

QTL in family trios, the appropriate non-centrality parameter is 

N - 	 NQTL
XG 	

- 1+(2/) 	
[9] 

(equation 10 in Xiong et al. 1998). 

2.3 RESULTS 

2.3.1 Empirical power 

Empirical power was studied using combinations of three parameter values: allele 

frequencies at the marker (PM)  and the QTL (pa) (p = pQ  = PM 0.5, 0.3, 0.11, standardised 

linkage disequilibrium (D') (1, 0.5, 01, and a range of recombination rates (c) from 0 to 0.5, 

in steps of 0.05. Each parameter combination was analysed 1000 times in each test. Two 

hundred unrelated family trios were randomly sampled with respect to phenotypes and 

genotypes. The difference between QTL homozygotes was 2a, and there was no dominance. 

Table 2.4a shows power of the tests for a given c, whilst averaging across values of D' and p. 

The most powerful test was one-way ANOVA, followed by TDT Q5  (N.B. Employing all 

family trios), TDT0, TDTR, and nested ANOVA. The last row in Table 2.4a (where marker 

and QTL were unlinked, i.e. c = ½) corresponds to the empirical proportion of false positive 

results, or type-I error, for each test. The empirical error was expected to be —5% in all tests. 

The one-way ANOVA was the only test for which the empirical error exceeded expectations 

(e.g. —20%, averaged across D' and p), a fact that has also been documented elsewhere (e.g. 

Long and Langley 1999). On the basis of this result, one-way ANOVA is not a valid test of 

association when spurious association (D': ~ 0 and c = ½) is present in the population. As 

expected, power declined steadily as c increased, because the amount of cm  explained a 

marker decreases as inter-loci distance increases. The ranking of tests regarding power was 

maintained across all c values. 

Table 2.4b shows power given D', whilst averaging across values of p and c. When D' = 1, 

the power of one-way ANOVA reached —72% compared to just —39% for the second most 
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powerful test (TDTQ5). Undoubtedly, if spurious association is not an issue, significant extra 

power can be obtained through testing genotype differences directly, as opposed to using 

robust tests. In the absence of disequilibrium (D' = 0, last row in Table 2.4b), all tests, 

including one-way ANOVA, showed —5% false positive results. 

Finally, Table 2.4c shows power given p, whilst averaging across values of c and D'. Power 

decays as allele frequency becomes more extreme because 1) the number of informative 

families diminishes, and 2) from these informative families, the proportion with one 

heterozygous parent increases, whilst the proportion with two decreases, and the within 

family variation, which is the variation exploited by TDT, is expected to be lower in the 

former than in the latter type of family, these factors mean that, for a fixed QTL effect, (YQTL  

decreases (the trait becomes less genetic). Allison (1997) showed that, for dominant and 

additive modes of inheritance, power increases as PM  decreases. Note that Allison kept c 
QTL 

constant, so when PM  -* 1 (or PM  4 0) the additive genetic effect (a) of the QTL must 

increase, rendering greater mean differences between marker genotypes, and hence, more 

powerful contrasts. 



Table 2.4. Empirical power (%) of tests per single parameter. 

2.4a. Averaging across D' and p 

c Oneway TDTQ5  TDT0  TDTR  Nested 

o 46.5 39.2 38.4 39.7 28.5 

0.05 44.6 35.1 33.8 32.5 24 

0.1 42.8 31.4 29.3 28.4 20.7 

0.15 10.4 26.4 24.7 23.3 16.8 

0.2 37.6 22.4 19.2 19.6 13.5 

0.25 35.6 17.6 16.1 14.8 10 

0.3 33.3 13.5 11.8 10.9 8.4 

0.35 30.2 10.4 9.1 8.4 6.4 

0.4 26.7 7.8 6.8 6.4 6.1 

0.45 23.5 5.8 6 4.8 5.4 

0.5 20.5 5.5 5.4 4.8 4.9 

2.4b. Averaging across c and p 

D' Oneway TDT05  TDTG  TDTR Nested 

1 71.9 38.6 35.5 34.1 25 

0.5 27.2 15 14 13.1 9.2 

0 5 5.1 5.2 4.7 5.2 

2.4c. Averaging across D' and c 

p Oneway TDTQ5  TDTG  TDTR  Nested 

0.5 41.4 23.6 21.9 21.4 15.8 

0.3 38.6 21.7 19.9 19.5 14.1 

0.1 24.1 13.3 12.9 11.1 9.6 

C: Recombination rate 
D': Standardised Linkage Disequilibrium 

p: Frequency of alleles Q and M (assumed equal) 
Oneway: Oneway ANOVA 

TDTQ5 : TDT in Allison (1997); analysis across all trios. 
TDTG: TDT in Xiong et al. (1998) 
TDTR: TDT in Rabinowitz (1997) 

Nested: Nested ANOVA 

The set of parameters given in Allison (1997) was also used to compare the power of these 

tests when analysing a QTL. Table 2.5 shows simulation results across 	(as aQTL 

proportion of the total phenotypic variance), pQ (frequency of the positive effect allele), and 

N (number of informative trios). 

49 



Table 2.5. Power when analysing the QTL, using parameters for which TDTQ5  
was reported to achieve 80% power (Allison 1997). 

a 
3/0 

a 
1 	/0 

a 
13 /0 

PQ 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 

N 114 219 247 56 105 118 36 67 75 

One-way 85.5 91.7 89.9 86.2 88.3 89.9 85.4 89.1 89.9 

TDTR  85.8 85.7 84.5 83.6 84.8 87.2 79.8 83.4 85.9 

TDTQ5  79 85.2 79.5 75 76.6 77.4 75.9 77.1 78.8 

TDT0  80.5 81 70 79.2 72 71.4 75.8 71 69.5 

Nested 70.8 77 67.6 67.1 64.1 68 68.7 66.2 67.5 
a Percentage of total variation explained by the QTL 

pQ : Frequency of QTL allele Q 
N: Number of informative trios 

In Table 2.5, one can observe that one-way ANOVA and TDT R  have similar power, likewise 

TDTQ5  and TDTG. The nested ANOVA was always the least powerful test. In our analysis, 

TDTQ5  was slightly less powerful than predicted by Allison (1997), who obtained 80% 

power for the same parameters used in Table 2.5. 

2.3.2 Empirical versus deterministic power 

We developed formulae to obtain the non-centrality parameters of one-way ANOVA ().), 

TDTQS  (X 5) when using only informative trios, and TDT R  (XR). Once these X's are obtained, 

power can be calculated from the appropriate non-central distributions. The equation for 

calculating the non-centrality parameter of TDTG (X Q) can be found in Xiong et al. (1998). 

Figure 2.1 shows that predictions of power using our deterministic method (lines) match 

very well the empirical power (points) obtained via simulations. Power is shown as a 

function of c for 3 different allele frequencies (0.5, 0.3 and 0.1), denoted with circles (red), 

triangles (blue), and squares (green), respectively, averaging out D' and p. The non-

centrality parameter for nested ANOVA (X N) can also be calculated following this method 

(all necessary elements are given in Appendix B and Table 2.3). In addition to the close 

match between deterministic and empirical power, two other features in Figure 2.1 are worth 

mentioning. First, power decayed more when p was dropped from 0.3 to 0.1, than when it 

was dropped from 0.5 to 0.3. Second, TDTQ5  was less powerful than TDTR, whereas the 

contrary was true in Table 2.4. This can be explained by the fact that, in Figure 2.1, TDT Q5  

was implemented as in Allison (1997), where only informative trios are used, and additive 
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2.3.3 Effect of sampling strategy on power 

Different sampling strategies can result in the same number of phenotypes and/or genotypes 

being collected yet have radically different effects on power. For instance, one may sample 

many and small unrelated families, as when studying humans, or few and large, frequently 

related, families, as when studying domestic plants or animals. Which sampling strategy 

conveys more power to detect marker-QTL association with TDTs? 

For a fixed number of progeny, there are fewer parents sampled with the latter strategy (few 

and large families) than with the former. The link between power and number of parents 

resides in the relationship between linkage disequilibrium in the parents (D pen ) and linkage 

disequilibrium in the progeny (Dprogeny). In a large population, where drift can be assumed 

negligible, Dprogeny  = Dparents  (1-c), thus, if Dparents = 0 then there will be no association 

between loci. However, the variance of D is proportional to 1/2N (Weir 1996), therefore, 

even if D = 0 the actual value of D in any small sample is likely to be different from zero. 

The effect of sampling strategy on power was studied via simulations. Assume a biallelic 

marker completely linked (c = 0), and in linkage equilibrium (D' = 0), with a biallelic QTL 

that explains 15% of the total phenotypic variance. Moreover, let us compare two very 

different sampling schemes: 1) each one of two unrelated males is mated to two unrelated 

females, and 75 progeny are born in each full-sib family (this mating system may be thought 

of as resembling a cattle breeding program), and 2) there are 150 nuclear families with 2 

progeny each. In both cases 300 progeny were phenotyped and genotyped. In the former case 

only six parents were genotyped, whereas in the latter 300 parents were genotyped. 

Furthermore, assume that at least one parent in each family is heterozygous (i.e. all families 

are informative). 

Table 2.6. Effect of sampling strategy on power of TDT 

Strategy One-way TDTR  TDTQS  TDTG 

I 49.1 64.5 42.9 42.3 

II 6.2 5.1 5.6 5.5 

Strategy I: Two unrelated males, each mated to 2 unrelated females, and 75 progeny per family 
Strategy II: 150 nuclear families, and 2 progeny per family 

Parameters: pM=pQ=0.5, c=0, D'=O and a QTL effect explaining 15% of the phenotypic variance 

Table 2.6 shows striking power differences in each test that can be explained by the 

sampling strategy. It is expected that association tests will not detect significant effects at a 
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marker locus if the population is in linkage equilibrium (i.e. D' = 0), even if this marker is 

completely linked (i.e. c = 0) to a gene that explains as much as 15% of the total phenotypic 

variance. However, there was a 10-fold increase in power when 6 parents where sampled 

(i.e. sampling 2 half-sib families twice), compared to the power when 300 parents were 

sampled (i.e. 150 full-sib families). The variance of linkage disequilibrium in the parental 

population, D , where x is the number of parents sampled, was —50 times greater when 

x = 6 than when x = 300, e.g. a2 (D6parents ) - 1/6 and c 2  (D 3parents ) 1/300, thus 

a 2  (D6parents )/(y2 	
) - 50. A large a2 06pareflts ) meant that in any particular replicate 

values of D 6 parents very different from zero were likely, and hence, the sample analysed with 

TDT was no longer in linkage equilibrium. 

The second striking feature in Table 2.6 is the different ranking of tests in terms of power. 

When only informative trios were analysed, TDT R  was the most powerful test, even ahead of 

one-way ANOVA. It is now clear that most of the advantage in power of one-way ANOVA 

with respect to TDT is that the latter cannot use families with two homozygous parents, and 

therefore analyse less data than one-way ANOVA after ascertainment has taken place. In 

Table 2.5, TDTQ5  was parameterised as in Allison (1997). However, such parameterisation is 

slightly less powerful than the one we proposed above and, hence, any power difference 

between TDTQ5  and TDT0  or TDTR  disappeared. 

2.4 DiscussioN 

Complex traits, such as obesity and osteoporosis, are determined by multiple genetic factors 

(also known as quantitative trait loci or QTL), environmental factors, and potential 

interactions between both. These complex traits can be studied measuring quantitative 

intermediate risk factors such as blood pressure, cholesterol level, or bone mineral density. 

The greatest burden, both economically and in terms of human workload, for national health 

services is due to multifactorial disorders, such as infectious and parasitic diseases (23.4% of 

world-wide burden), neuropsychiatric disorders (11.5%) and cardiovascular diseases 

(10.3%), for which a polygenic component is usually hypothesized (The World Health 

Report 1999). On the other hand, monogenic diseases, although rare in humans, are 

comparatively less problematical to study from a genetic standpoint. For example, the most 

common monogenic disease among Caucasians is cystic fibrosis, affecting approximately 

0.5-0.6 births every 1000, followed probably by phenylketonuria, which affects 0.2-0.5 

births every 1000, all other monogenic diseases are even rarer (Underwood 1996). 
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Zhao (2000) comprehensively reviewed the family-based association methodology 

developed in the 1990s, providing more than 60 references of association tests for diseases 

caused by a single gene with clear pattern of Mendelian inheritance, and approximately six 

time less references of association tests for complex (i.e. quantitative) traits. It is rather 

paradoxical that most of the latest advances in statistical theory for gene mapping have 

focused on a relatively rare group of diseases in humans (e.g. Hastbäcka et al. 1992). 

The transmission disequilibrium test (TDT) is a test for linkage and/or linkage 

disequilibrium that is being increasingly used to identify QTL5 underlying complex diseases 

(Schaid 1998). TDT can be more powerful than other tests, e.g. affected-sib-pair linkage 

analysis, when markers are very close to responsible QTLs (Risch and Merikangas 1996). In 

addition, TDT is robust to spurious associations (Stephens et al. 1994) generated by common 

demographic events such as population stratification and/or admixture (e.g. Wilson and 

Goldstein 2000, Reich et al. 2001). 

In this study, we have compared the power of three TDTs and two ANOVAs (analysis of 

variance) in detecting association between a marker and a QTL. We have assumed that both 

loci were biallelic, and shared the same allele frequencies. Moreover, we considered a 

continuously distributed trait genetically determined by a single additive QTL, without a 

polygenic component and no dominance. This simplistic scenario was chosen to facilitate the 

derivation of deterministic equations for predicting power. Nonetheless, we recognise that in 

order to get a more comprehensive picture of the properties of these TDTs, more realistic 

situations will have to be explored. For example, Page and Amos (1999) and Deng et al. 

(2001) concluded that polygenes have a negligible effect on power when using family trios. 

The latter authors concluded that, when using multiplex families, polygenes increase the 

power of TDTG, and that the larger the family, the more the power of TDT G  increases 

compared to a case without polygenes. However, the change in power due to the presence of 

polygenic variance depends on the assumptions made regarding the size of the variance 

components, and their distribution within and between families. For example, assume a 

model where the phenotypic variance is the sum of QTL, polygenic, and residual variances, 

i.e. 	= cY QTL  + + . Then, for the sake of simplifying mathematical modelling, for a 

fixed value of cTL  one can fix either 	or o. Fixing 	, as in Deng et al. (2001), leads 

to the conclusion that polygenes increase power of TDT. If, for example, we sampled 

unrelated families with multiple progeny, then c would be equally distributed within and 
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between families, and a would reduce by 	to keep c constant. Hence, the residual 

variance used in TDT analyses, i.e. the within family variance unexplained by the QTL, 

would be 	- 	. If there are no polygenes acting on the trait then the power of TDT 

reduces because the residual variance used in TDT analyses will be 	as opposed to 

- . However, if , instead of , is fixed, the presence of polygenic variance will 

lead to a reduction of the power of TDT because the residual variance used in TDT analyses 

will be + , as opposed to when there is no polygenic variance. 

Power was predicted via empirical simulations and deterministic equations, and both 

methods rendered very similar answers. The advantages of deterministic methods over 

stochastic ones are 1) ease of implementation, 2) instant predictions, and 3) direct 

appreciation of the relationship between population parameters and power. However, in 

complex scenarios where deriving deterministic methods becomes cumbersome, empirical 

simulations may be invaluable. The deterministic method proposed in this study consists in 

deriving non-centrality parameters (),'s) as functions of marker genotype contrasts specific to 

each test. These X's can subsequently be used as input in computer routines to obtain power. 

A common feature across all X's was the use of expected marker genotype means, 

conditional on family information, under the assumptions of random mating and no 

segregation distortion. These marker effects were functions of the standardised linkage 

disequilibrium (D'), the recombination rate (c), the allele frequencies (pQ, PM), and the 

additive gene effect (a). Allison (1997) derived a prediction of X for TDT Q5, simulation 

shows that this derivation can be considerable less accurate than that derived here. 

Rabinowitz (1997) derived X for TDT R  although using parameters not included in his 

simulations, leading to some confusion in terms of interpretation and calculation of X. 

We have shown that our method is accurate and reliable, and that it contains a general part 

(Table 2.3) that can be used to calculate X for other association tests. Moreover, our method 

can readily include dominant QTL effects, and a polygenic component. Extensions to cope 

with multiallelic markers are theoretically possible, however, future association studies in 

human populations are more likely to employ vast arrays (e.g. microarrays) of biallelic single 

nucleotide polymorphisms (SNPs) rather than multiallelic markers (Risch and Merikangas 

1996, Weiss and Terwilliger 2000, Miller and Kwok 2001). Therefore, we think further 
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developments of this method ought to be directed, for instance, to cope with the problem of 

simultaneous testing of several loci (e.g. Goidgar and Easton 1997), and the study of 

haplotypes, rather than extending it to use multi-allelic loci. 

The one-way ANOVA was usually the most powerful way of testing population association, 

followed by the TDTs and, finally, by the nested ANOVA. However, one-way ANOVA was 

also the only test having higher than expected levels of false positive results in the presence 

of spurious association (i.e. association without linkage). The TDTs were very similar in 

terms of power. However, the power of TDT Q5  was slightly improved by analysing all 

families, regardless of the number of heterozygous parents, without altering the type-I error 

rate in the presence of spurious association. In doing so, more data can be used to estimate 

the error mean squares, thus augmenting the residual degrees of freedom of the test. A 

further improvement in the power of TDT Q5  was still possible by dropping dominant effects 

off the model (e.g. when they seem negligible), and estimating only additive gene effects. In 

doing so, the numerator degrees of freedom of the test were reduced from 2 to 1. Although 

Xiong et al. (1998) showed that TDT G  is more powerful than TDT QI  (Allison 1997), we 

considered that it would be fairer to compare TDT 0  versus TDTQ5  because, as Allison 

pointed out, TDTQ5  is more powerful than TDTQI , and because, as we have shown, the power 

of TDTQ5  can be easily increased. In addition, Deng et al. (2001) noticed that analytical 

power results showed in Tables 1-3 in Xiong et al. (1998) were overestimates, although their 

deterministic formulae were correct. 

Power was also affected by family structure. For a fixed number of phenotyped progeny, 

sampling multiplex families reduces the number of parents available for genotyping 

compared to sampling simplex families (i.e. trios). Imprecise estimates of parental linkage 

disequilibrium (Dparents) are expected when very few families are sampled because the 

variance of Dparent,  is inversely proportional to twice the number of genotyped parents (viz. 

linkage disequilibrium, D, extends further chromosomal distances within families than 

across the entire population). This means that even when the population is in linkage 

equilibrium, single families may still show high (or low) D parents  levels. Given a sufficiently 

large number of progeny D progeny  = Dparents  (1c), and Dprogeny  is a key parameters determining 

the power of TDT. Hence, even though power may increase, the mapping resolution is likely 

to decrease, i.e. a QTL may be equally associated with close and distant markers. Indeed, 

linkage analysis, a gene mapping method known to have low resolution (Boehnke 1994), is 

the limiting case where associations are investigated only within families. In our simulations, 

markers were found in association with a QTL when four large multiplex families were 
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sampled, despite having simulated a population in equilibrium. The same association was not 

detectable when 150 simplex families were sampled from the same population. 

In summary, a new and accurate method has been developed for obtaining deterministic 

predictions of power of ANOVAs and TDTs for quantitative traits. We have shown that 

TDTQ5  is equivalent to a two-way ANOVA, where mating type and progeny genotype are 

the two factors in the model, and how a simple modification of TDT Q5  can increase power. 

Finally, we have shown that TDTR may be the test of choice in certain circumstances, e.g. 

when the sample consists of multiplex families. 
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2.5 APPENDIX A: PROBABILITY OF QTL GENOTYPES OF A 

CHILD GIVEN MARKER GENOTYPES IN THE FAMILY TRIO 

Table 2.A1. Probabilities of 4 parental haplotypes and expected frequency of QTL genotypes in 
progeny given Mm and Mm parents and MM, Mm or mm progeny. 

Parents Child- MM Mm mm 

Mm Mm Prob QQ Qq qq QQ Qq qq QQ Qq qq 

QQ QQ h 1 2  h2  1 0 0 1 0 0 1 0 0 

QQ Qq h 1 2h2h4  1-c c 0 ½ ½ 0 c 1-c 0 

QQ qQ h 1 h22h3  c 1-c 0 ½ ½ 0 1-c c 0 

QQ qq h 1 h2h3h4  0 1 0 0 1 0 0 1 0 

Qq QQ h 1 2h2h4  1-c c 0 ½ ½ 0 c 1-c 0 

Qq Qq h 1 2h42  (1-c) 2  2c(1-c) c2  c(1-c) c2+(1-c) 2  c(1-c) c2  2c(1-c) (1-c) 2  

Qq qQ h 1 h2h3h4  c(1- 
c) 

c2+(1-c) 2  c(1- 
 c) 

½ [c2+(1- 
c) 2 ] 

2c(1-c) ½ [c2+(1- 
 c)2] 

c(1- 
c) 

c2+(1-c) 2  c(1- 
 c) 

Qq qq h 1 h3h42  0 1-c c 0 ½ ½ 0 c 1-c 

qQ QQ h 1 h22h3  c 1-c 0 ½ ½ 0 1-c c 0 

qQ Qq h 1 h2h3h4  c(1- 
c) 

c2+(1-c) 2  c(1- 
 c) 

½ [c2-i-(1- 
c )2] 

2c(1-c) ½ [c2+(1- 
 c)2] 

c(1- 
c) 

c2+(1-c)2  c(1- 
 c) 

qQ qQ h22h32  c2  2c(1-c) (1-c) 2  c(1-c) c2+(1-c) 2  c(1-c) (1-c) 2  2c(1 -c) c2  

qQ qq h2h3 2h4  0 c 1-c 0 ½ ½ 0 1-c c 

qq QQ h 1 h2h3h4  0 1 0 0 1 0 0 1 0 

qq Qq h 1 h3h42  0 1-c c 0 ½ ½ 0 c 1-c 

qq qQ h2h32h4  0 c 1-c 0 ½ ½ 0 1-c c 

qq qq h32h42  0 0 1 0 0 1 0 0 1 
Prob: Joint probability of 2 maternal and 2 paternal haplotypes under random mating 

M & m: Marker alleles 
Q & q: QTL alleles 

c: Recombination rate 
h, h2, h3 , h4 : Frequencies of haplotypes QM, Qm, qM, and qm, respectively, where 

h l=pppM+D; h2popm D; h3=pQpM-D; h4ppp m+D 
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Table 2.A2. Probabilities of 4 parental haplotypes and expected frequency of QTL genotypes in 
progeny given MM and Mm parents and MM or Mm progeny. 

Parents Child - MM Mm 

MM Mm Prob QQ Qq qq QQ Qq qq 

QQ QQ h 3 h2  1 0 0 1 0 0 

QQ Qq h 1 3 h4  1-c c 0 c 1-c 0 

QQ qQ h 1 2 h2 h3  c 1-c 0 1-c c 0 

QQ qq h 1 2 h3 h4  0 1 0 0 1 0 

Qq QQ h 1 2 h2 h3  ½ ½ 0 ½ ½ 0 

Qq Qq h 1 2 h3 h4  ½(1-c) ½ ½c ½c ½ ½(1-c) 

Qq qQ h 1 h2 h3 2  ½c ½ ½(1-c) ½(1-c) ½ ½c 

Qq qq h 1 h32 h4  0 ½ ½ 0 ½ ½ 

qQ QQ h 1 2 h2 h3  ½ ½ 0 ½ ½ 0 

qQ Qq h 1 2 h3 h4  ½(1-c) ½ ½c ½c ½ ½(1-c) 

qQ qQ h 1 h2 h3 2  ½c ½ ½(1-c) ½(1-c) ½ ½c 

qQ qq h 1 h32 h4  0 ½ ½ 0 ½ ½ 

qq QQ h 1 h2 h3 2  0 1 0 0 1 0 

qq Qq h 1 h3 2 h4  0 1-c c 0 c 1-c 

qq qQ h2  h3 3  0 c 1-c 0 1-c c 

qq qq h3 3 h4  0 0 1 0 0 1 

Prob: Joint probability of 2 maternal and 2 paternal haplotypes under random mating 
M & m: Marker alleles 

Q & q: QTL alleles 
C: Recombination rate 

h 1 , h2 , h3 , h4 : Frequencies of haplotypes QM, Qm, qM, and qm, respectively, where 
hI=pppM+D; h2pop m D; h3=pQpM-D; h4P Q Pm+D 
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Table 2.A3. Probabilities of 4 parental haplotypes and expected frequency of QTL genotypes in 
progeny given MM and MM, or mm and mm, or MM and mm parents and the marker genotype in 

their progeny. 

Parents 
Prob Child 

MM, MM mm, mm MM, mm QQ Qq qq 

QQ QQ h, 4 h24  h 1 2  h22  1 0 0 

QQ Qq h, 3 h3  h23 h4  h, 2 h2 h4  ½ ½ 0 

QQ qQ h, 3 h3  h23 h4  h 1 2 h2 h4  ½ ½ 0 

QQ qq h, 2  h32  h22  h42  h 1 2  h42  0 1 0 

Qq QQ h, 3 h3  h2 3 h4  h,h22 h3  ½ ½ 0 

Qq Qq h 1 2  h32  h22  h42  h, h2  h3  h4  '/i ½ ¼ 

Qq qQ h, 2  h32  h22  h42  h, h2  h3  h4  ¼ ½ ¼ 

Qq qq h, h33  h2  h43  h, h3  h42  0 ½ '/2 

QQ QQ h, 3 h3  h23 h4  h,h22 h3  ½ ½ 0 

QQ Qq h, 2  h32  h22  h42  h, h2  h3  h4  ¼ ½ ¼ 

QQ qQ h,2  h32  h22  h42  h, h2  h3  h4  ¼ ½ 14 

QQ qq 	- h, h3 3  h2  h43  h, h3  h42  0 ½ ½ 

Qq QQ h, 2  h32  h22  h42  h22  h32  0 1 0 

Qq Qq h, h33  h2  h43  h2  h3 2  h4  0 ½ ½ 

Qq qQ h, h3 3  h2  h43  h2  h32  h4  0 ½ ½ 

Qq qq h34  h44  h3 2  h42  0 0 1 

Prob: Joint probability of 2 maternal and 2 paternal haplotypes under random mating 
M & m: Marker alleles 

Q & q: QTL alleles 
C: Recombination rate 

h,, h2 , h3 , h4 : Frequencies of haplotypes QM, Qm, qM, and qm, respectively, where 
h,=pppM+D; h2=pppm-D; h3=p QpM-D; h49 iPm+D 

2.6 APPENDIX B: NON-CENTRALITY PARAMETER FOR A 

TWO-WAY ANOVA 

The non-centrality parameter ()) of two-way can be expressed as (Searle 197 1) 

= (K'B)'[K'(x'x)'Kt'(K'B) 
2 
e 

[1311. 

Let Cy  be unity. Let B' be the vector [jt,f 1 ,f2 ,f3 ,g 1 ,g 2 ,g 3 ] of parameters in the model, 

where t is the sample mean, f1  is the mean of the family type, and gj the mean of the jth 
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marker genotype across all family types. Let K be a matrix of parameter contrasts reflecting 

the H0  being tested, for example if H 0 : 91 = 92 and  92 = 93, then 

ro o o o 1 —1 o 
K'=I 

[0 0 0 0 0 1 —1 

The matrix X'X is 

'i.. n   n 2. 3. . l  n .2  n 3 

fl u.  fl u.  0 0 fill n ,2 n ,3 

'2. 0 n 2.  0 n 21  n 22  n 23  

n 3.  0 0 n 3•  n 31  n 32  

fl .1  fl11 '2l 3I  .l  0 0I 

fl .2  fl 12  fl 22  fl 32  0 n 2  0 

.3 i3 23  33  0 0 n 3  

where nij  is the number of records in the i °' family and j h  marker genotype class. x'x is a 

matrix of order 7 and rank 5, hence, there are 7 unknowns, and only 5 degrees of freedom 

(i.e. once 5 parameters are estimated, the remaining 2 become known). An appropriate 

generalisation of X'X is obtained deleting the first row and column, hence setting R = 0, and 

the last row and column, hence setting 93 = 0 (Searle 1971, p264). Let G be the reduced X'X 

matrix. This G matrix can be partitioned as follows 

fl u.  0 0 n 11  n 12  

G11 	
Gl21 

0 n 2.  0 n 21  n 22  

IG 21 

G= 
	G22j 

0 0 n 3.  n 31  n 32  

'' ''ii n 2l  n 3l  fl .1  0 

fl 12  22  32  0 '.2 

Then, if c = G', K*  is the matrix K' with the first and last columns deleted, and B*  is the 

vector B with the first and last elements deleted, then 

= (K*'B *)'c-u K*'B * 
22 [B2] 

where C 22  = K*'CK* = 
(G22 — G 21 G II'G 12 

)', and (K*'B*)'= [g1 9 21921. 

When testing the QTL, equation [B2] gives 
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3 	

j ni. 
	 [B3] 

where the first part of [B3] corresponds to the sum of squares due to genotype, and the 

second part of [B3] corresponds to the sum of squares due to mating type. 

However, usually it is a linked marker, rather than the QTL, what is being tested. Thus, 

equation [B3] needs to accommodate this fact. Using Table 2.2 in the Materials and Methods 

section, the new X can be written as 

10 	 6 

X=bn 1 I 1 	F2 f I 
	

[B4] 

where b 1  is the expected (progeny) marker genotype effect in the ith  trio class, n1  the number 

of trios in class i, Ij  an indicator variable equal to 1 if the trio is informative (i.e. having at 

least one heterozygous parent), and 0 otherwise. Table 2.13 1 shows F, the mean value of the 
th family class, and f, the number of these families 

Table 2.B. Family mean (F) and 
- 	 number (f) 

F, fi 

1 b n 1  

2 (b2 -i-b 3)/2 fl2+fl3 

3 b n4  

4 b6/2 +(b5 -- b7)/4 n5 +n6 +n7  

5 (b8 +b9)12 n8 +n9  

6 b 10  n 10  

It is also possible to use all trios, thus setting 	= 1 for all i (j), without increasing the type-I 

error rate. By doing so, power increases slightly, through augmenting the residual degrees of 

freedom, and ascertainment of informative families becomes unnecessary. 

This method of obtaining X can be applied to derive the non-centrality parameter for nested 

ANOVA, however the algebra becomes more tedious. Although a simpler method for 

obtaining X0 was given in the Materials and Methods section, the same equation [3] was 

obtained when applying the method described here. 
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2.7 APPENDIX C: TDTQ5  AS A TWO-WAY ANOVA 

Let us consider two fixed effects, a and I, where a could represent the factor mating type (or 

family type), and 13 could represent the genotype of the progeny. Thus, the model can be 

written as Yij = j.i + a 1  + P i  + e 1  which corresponds to a two-way ANOVA model without 

interaction. We will now show that the original statistic F 2 , N-5  for TDTQ5  (Allison 1997), is 

equivalent to the F-ratio for testing the effects of 13 after having corrected for the effects due 

to t and a, using the previous model. 

For a constant k = 2 , we can see that 
N-5 

2,n-5 = SS
F  —SSR - (ss +SS a  +SS —SS SSj/SST - SSpia 

l — SS F 	 a  - 	i—(SS +SS +SSD)/SST 	- SS, 
[Cl] 

where SS a  and SS Iap are the sum of squares explained by a model that fits t and a, and by a 

model that fits t, a and 13, respectively. The null hypothesis of interest is whether factor 13 
explains a significant amount of phenotypic variance over and above the amount explained 

by ji and a jointly. The F-ratio that appropriately reflects this null hypothesis is given in 

equation [C 1]. 

2.8 APPENDIX D: NON-CENTRALITY PARAMETER FOR TDTR 

Let assume I is a random variable following a t-distribution, and let YT be the standard 

deviation of T. A first order Taylor's approximation for X is ? = q
T 	E[T] (Kendall 
T) E[(y1] 

and Stuart 1963, Lynch and Walsh 1998). In order to derive E[T] and E{T],  we used the 

probabilities of the 10 different types of trios and the expected effects of marker genotypes in 

the progeny contained in Table 2.2. Hence, conditional on PM pQ, c, and D', 

E[T] = E[( i  - Y)w i ] and because all family trios are unrelated (i.e. independent) then 
 in  

E[T] = NE[(y - )w], where y, the phenotype, and w, a weighting factor (see Materials and 

Methods), are expectations for a single trio. Thus, the expected value of the numerator of 

TDTR  is approximately E[T]= NPMPm[(b2 b3)+PMPm(b5 —b 7 )+p(b 8  -b 9 )]. 
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When analysing the QTL, and assuming no dominance, the previous equation simplifies to 

E[T] = Np Q p q a. 

The expected variance of T, E[ c4 ], is the same regardless whether the locus being tested is 

the QTL or a marker. Equation A1.23a in Lynch and Walsh (1998) is 

	

-3/2 	 _________ 
E[/] IjIi - 	, which reduces to E [1JJ jE[c4j if the second term is 

ignored. Hence, E[c]= E[ 	
(Y  - ) 2 

H 1 ] = 	- 
y)2  H] and, as the expectation of 

a random variable X given another random variable Y is E[X] = E[E[X I Yfi (Casella and 

Berger 1990), then E[(y - ) 2 
H]= 	HPHE(y - 
	

= PMPm( + 	Finally, 

dividing 	E[T] 	by 	 /E[cj 	we 	obtain 

E[TDTR]=?R =[p (b2 b3)+PMPm(b5  —b 7 )+p(b 8  — b 9 )t/_NPMPm  
V (Ye GQTL 
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CHAPTER 3 

Candidate gene analysis for quantitative traits 

using the transmission-disequilibrium test: the 

example of the Melanocortin 4-Receptor in pigs 

3.1 INTRODUCTION 

Population-wide associations between loci due to linkage disequilibrium can be used in high 

resolution mapping of quantitative trait loci (QTL). Spurious associations between markers 

and QTL can also arise as a consequence of population stratification, for example due to 

admixture of two different populations. Associations between a genotype and a trait have 

been frequently tested, after corrections, with simple one-way ANOVA models, e.g. testing 

mean genotype differences directly. However, these types of analyses are prone to false 

positive results due to confounding effects of population stratification/admixture (e.g. Deng 

et al. 2001). Spielman et al. (1993) developed an allele-trait association test called 

Transmission Disequilibrium Test (TDT) that is robust to these confounding effects. 

Different TDTs have since been developed for dichotomous traits (Schaid 1996, Horvath and 

Laird 1998, Martin et al. 2000, Lunetta et al. 2000, Zhao et al. 2000), and for quantitative 

traits (Allison 1997, Rabinowitz 1997, Szyda 1998). However, most of these TDTs have 

been formulated in a rather rigid form, hence reducing the scope for further statistical 

modelling. 

This work describes the use of a TDT (Rabinowitz 1997) to obtain robust estimates of 

genetic effects within the statistically more flexible mixed linear model context. This 

approach allows maximum likelihood estimates of genetic effects to be obtained via REML. 

Additive allele substitution effects were estimated within (b ID  for Transmission 

Disequilibrium) and between families (bp D  for Population Disequilibrium) with two 

independent regression coefficients. Moreover, the rejection of the null hypothesis bTD = bpD 

provides evidence for stratification/admixture and hence can be used to guard against false 

positive results. 

The analysis of the MC4R locus on pig chromosome 1 constitutes a practical demonstration 

of this method. The interaction between melanocortins and their receptors (MC3R and 



MC4R) at the hypothalamus is one of the main neuro-endocrinological pathways controlling 

energy balance (Wardlaw 2001). In humans, different allelic variants of both MC4R and 

MC3R have been associated with obesity (Vaisse et al. 1998, Yeo et al. 1998, Hinney et al. 

1999, Li et al. 2000). In pigs, the seventh transmembrane region of the MC4R locus contains 

a mutation at codon 298 that causes a change of aspartic acid for asparagine, i.e. Asp298Asn 

(Kim et al. 1999). This region is highly conserved across all four types of melanocortin 

receptors in humans (Gantz et al. 1993), and it is also very conserved between pigs and 

humans (Kim et al. 2000). The Asp298Asn mutation has been associated with fatter and 

faster growing pigs, having significant effects on backfat, days to 110 kg, test daily gain and 

daily food intake in a study involving four different commercial pig lines from nucleus 

breeding farms (Kim et al. 1999, 2000). However, the original analyses were performed with 

methods that are potentially biased in the presence of population stratification. Here we 

analyse an augmented data set using the new methodology to confirm and extend the original 

findings. 

3.2 MATERIAL AND METHODS 

3.2.1 Data 

Performance traits were recorded on four different commercial PlC pig lines in the same 

farm over a five year period (1993-1998). The traits were lifetime daily gain (LDG), test 

daily gain (TDG), daily food intake (DFI) and backfat depth (BF) at the 10th  rib. All pigs 

were performance tested for growth over a fixed period of 12 weeks, during which they were 

fed ad lib and weighed at the beginning (on-test) and at the end (off-test) of that period. TDG 

was calculated as off-test weight minus on-test weight divided by the number of days on test. 

LDG was calculated as off-test weight minus one (assumed the average birth weight) divided 

by the age of the pig (in days) at off-test. BF was measured ultrasonically in real time at off-

test, and it was normalised with the natural log transformation. DPI was electronically 

recorded for some pigs over the testing period. The sample sizes by line and sex are given in 

Table 3.1. In this data set, there were 726 extra records of BF, 574 of TDG and 44 of DFI, 

with respect to the data set analysed by Kim et al. (2000). The Asp298Asn substitution 

mutation is located within a TaqI restriction enzyme recognition site (Kim et al. 1999), 

which was used to generate a codominant restriction fragment length polymorphism (RFLP) 

to distinguish all three genotypic classes (Kim et al. 2000). 



Table 3. 1. Number of pigs' (males/females/total) used in the analyses within each trait (BF, TDG, 
LDG or DFI), line (A, B, c or D) and MC4R genotype (11, 12 or 22). 

MC4R LINE A LINE B LINE C LINE D All lines 

Test Daily Gain (TDG) 

11 3/22/25 27/28/55 89/349/438 155/25/180 274/424/698 

12 9/146/155 38/79/117 11/177/188 152/44/196 210/446/656 

22 9/245/254 12/57/69 0/32/32 37/22/59 58/356/414 

Total 21/413/434 77/164/241 100/558/658 344/91/435 542/1226/1768 

Lifetime Daily Gain (LDG) and Backfat at 10th  rib (BF) 

11 3/37/40 27152/79 89/504/593 155/25/180 274/618/892 

12 9/266/275 38/145/183 11/250/261 152/44/196 210/705/915 

22 9/392/401 12/117/129 0/50/50 37/22/59 58/581/639 

Total 21/695/716 77/314/391 100/804/904 344/91/435 542/1904/2446 

Daily Food Intake (DFI) 

11 3/0/3 27/0/27 87/0/87 21/0/21 138/0/138 

12 9/0/9 38/0/38 10/0/10 44/0/44 101/0/101 

22 9/0/9 12/0/12 0/0/0 15/0/15 36/0/36 

Total 21/0/21 77/0/77 97/0/97 80/0/80 275/0/275 
a Line A is a Landrace-based population. Line B is a Large White-based population. Line c is a 

synthetic population based on Duroc and Large White. Line D is a synthetic line based on several 
different populations including Landrace, Large White, Duroc, and Pietrain. 

3.2.2 Methods 

The effects of the Asp298Asn mutation on pig production traits were estimated with the 

models used in Kim et al. (2000), which are not robust to population stratification/admixture, 

and with new robust models. The latter models were a combination of the former models and 

a TDT (Rabinowitz 1997). 

ANOVA. The original models included sex, batch, line and genotype as fixed factors, and 

sire as random effect. Backfat (BF) records were analysed both in the original scale and in 

the log-transformed scale. The skewness and kurtosis of the untransformed distribution of 

BF were 0.88 (± 0.049) and 1.96 (± 0.099), respectively. After transformation the 

distribution of BF became more normal (skewness = -0.03 ± 0.049, kurtosis = 0.32 ± 0.099). 

All two-way interactions between fixed factors were also included in the analyses. Non-

significant factors were dropped out from the models using a backwards elimination 

procedure. The coefficients for genotypes can be found in the column with the heading A in 
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Table 3.2. The analyses were performed with the REML procedure in GENSTAT 

(GENSTAT 4.2, 5th  edition, 2000). This method of estimating allele effects is not robust to 

stratification/admixture (Hernández-Sánchez et al. 2002b). We will refer to this method as 

the ANOVA method. 

Batches as random. There were 54 batch means to estimate when they were fitted as fixed 

effects in the models. In order to avoid this unnecessary loss of degrees of freedom, batches 

were fitted as a random term where direct comparisons were being made with the TDT, and 

their effect accounted for with cubic splines. This procedure was feasible because all trait 

means followed a yearly cycle when plotted against batches. The correction uses up only two 

degrees of freedom: one in fitting a linear regression across all batches, and a second in 

estimating the residual variance around the previous line. The software used to run models 

with batch as random splines was ASREML (Gilmour et al. 2001). This approach was also 

implemented in the TDT analyses (see below). 

TDT. A robust analysis of the Asp298Asn mutation was performed with the same models 

but substituting genotype for two independent fixed covariates. One of these two covariates 

was based on a TDT (Rabinowitz 1997). Given a biallelic marker, each individual's 

genotype received a coefficient equal to H (Tr-1/2) + H9 (T9-1/2); where He = 1 if the 

individual's sire was heterozygous, or 0 otherwise; Te = 1 if the sire had transmitted allele 1 

to the individual, or 0 otherwise; and likewise, H9 and T9 for the individual's dam. These 

coefficients can be found in the column TD in Table 3.2. The slope of this covariate, bTD  (TD 

for Transmission Disequilibrium), is a robust estimate of additive substitution effects of 

alleles at the locus. Allelic effects were also estimated via a second regression coefficient 

sensitive to the effects of population structure, bpD (PD for Population Disequilibrium) (L. L. 

G. Janss personal communication). The appropriate coefficients to estimate bpD were 

obtained subtracting the column A from the column TD in Table 3.2. We will refer to this 

method as the TDT method. 



Table 3.2. Parameterisation of covariates A, TD, and 
PD given family genotypes.  

Gf  Gm  Go  A TD PD 

11 11 11 1 0 1 

11 12 
11 1 '/2 ½ 

12 0 -½ ½ 

11 22 22 0 0 0 

11 1 1 0 

12 0 0 0 12 12 

22 -1 -1 0 

12 0 ½ -½ 
12 22 

22 -1 -½ -½ 

22 22 22 -1 0 1 

Of: Paternal genotype 
Gm  Maternal genotype 
G: Offspring genotype 

One-way ANOVA 
A = 1, 0, -1 if Go = 11, 12, 22, respectively 

TDT 
TD = H (T-1/2) + H9 (T9-1/2) 

where He 	= 1 if Gf(m) = 12 and 0 otherwise 
Td (9) = 1 if offspring receives allele 1 from a 12 father 

(mother) and 0 otherwise 
PD = A - TD 

Generating parental genotype data. The TDT method requires parental genotype data, 

which in the MC4R data set were mostly missing. Nevertheless, missing parental genotypes 

could be generated using Gibbs sampling (e.g. Wang et al. 1994, Sorensen 1996). Gibbs 

sampling was equivalent to integrating over all genotype probabilities of parents with 

missing genotypes. Missing parental genotypes were sampled conditional on genotypes of 

progeny and other relatives. Convergence was reached after 10 3  realisations after a burn-in 

period of 100 realisations (see Appendix A). The autocorrelation in Gibbs sampling was 

minimised by sampling one realisation every 50 consecutive ones, hence a total of 50 x 10 4  

realisations were generated. The actual integration over missing genotype probabilities was 

carried out by analysing the MC4R data set after each sampled realisation and averaging 

results (i.e. p-values) across all realisations. 

Simulation. A simulation study was carried out to investigate the properties of bpD and b10. 

Population stratification was generated sampling from two separated populations with 

different allele frequencies, and analysing the data jointly. Each population was characterised 



by: 1)15 unrelated full-sib families, and 4 offspring per family (60 progeny in total), 2) 

random mating, 3) a quantitative trait locus (QTL) and a linked neutral marker, both biallelic 

and with allele frequency fixed to 0.9 in one population, and frequencies, at both loci, of 0.9, 

0.7, 0.5, 0.3 and 0.1 in the other population 4) the recombination rate between loci was c = 0 

or ½, 5) the standardised linkage disequilibrium in parents (D' = DfDm , Lewontin 1988) 

was either 0 or 1, 6) the residual variance was 1 and the polygenic variance 0, and 7) the 

QTL explained 5% (and in some cases 10%) of the total phenotypic variance. There were no 

inter-population matings and all analyses were performed at the marker locus. 

3.3 RESULTS 

3.3.1 Properties of bpD and bID in analyses of simulated data 

The power of estimating genetic effects through bpD and bTD  in the simulated data is shown 

in Figure 3.1, where F-ratios are plotted against the level of stratification S (allele frequency 

difference between populations) across 4 different scenarios. Each dot in Figure 3.1 is the 

average of 100 replicates. The significance threshold is based on the tabulated nominal 5% 

threshold and is shown as a straight line. Figure 3.1a shows the results after analysing a 

marker totally unlinked (c = ½) and with no association in the population (D' = 0) to a QTL. 

In this situation, any significant effect is a type I error or due to bias. The FTD  (i.e. the F-ratio 

testing whether a significant amount of the total variation is explained by bTD)  is 

approximately 1 across all S values, which indicates that the marker did not have a 

significant effect on the trait. On the contrary, FPD (i.e. the corresponding F-ratio test for bpD) 

appeared positively correlated to the level of S. The effect was significant when S ~! 0.6. In 

this case, spurious disequilibrium increases as stratification increases, and bpD cannot 

distinguish between this sort of disequilibrium and disequilibrium due to linkage. 

Figure 3.1b shows the results after analysing a marker totally unlinked (c = 0.5) but in 

complete disequlibrium (D' = 1) in the parents. Here, FPD is always greater than FID, and this 

difference increases with S. Moreover, the value of FPD was greater than 1 (approximately 2) 

even without stratification (S = 0). This can be explained by considering that, on average, the 

level of disequilibrium among offspring was ½, because D' is expected to be halved every 

generation assuming no linkage and random mating. This feature suggests that bpD could 

detect an effect given sufficient linkage disequilibrium between a marker and a QTL, even if 

these two loci are totally unlinked, whereas bTD  needs the joint occurrence of linkage and 

linkage disquilibrium in order to estimate an effect. 
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Figure 3.1c shows how FPD rapidly increases for S > 0.4, whilst F-rD remains constant and 

equal to one regardless of S. The marker was totally linked to the QTL locus in this set of 

simulations (c = 0). Despite having simulated no linkage disequilibrium (D' = 0) within each 

population, mixing two populations with different allele frequencies will cause haplotype 

frequencies to depart from the expected equilibrium frequencies. In this simple scenario, the 

fact that FTD = 1 across all values of S even when c = 0 demonstrates the robustness of the 

test based on b-rn. 

Finally, Figure 3.1d shows the effect of effectively analysing the QTL itself (D' = 1 and c = 

0). The power of estimating bpD increases monotonically with S, a fact consistently observed 

in all previous graphs. However, the power of estimating b TD  reaches its maximum at 

intermediate levels of S. This is so because intermediate allele frequencies (e.g. at 0.5, 

represented by S = 0.9 (population 1) - 0.5 (population 2) = 0.4 in graph ld) are associated 

with a higher proportion of heterozygous parents, providing better information to estimate 

bTD. 

Figure 3.1 F-ratios when testing b 0  (blue squares) or bTD (dark triangles) given parental linkage 
disequilibrium (D'), recombination rate (c) and level of stratification (S). Threshold is shown in red. 
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3.3.2 Analyses of MC4R data 

ANOVA method. Results were obtained from analyses of the data from the four lines 

separately and from an overall analysis of the combined data from all lines. Striking 

differences between genotypes were detected for BF (p<Z0.001), TDG (p<O.00l) and LDG 

(p<0.001) in the overall (i.e. all lines together) analysis (Table 3.3). Batches were treated as 

fixed effects in these analyses in order to be able to compare results directly with the 

findings of Kim et al. (2000). Genotypic differences within all pig lines were confirmed for 

BF (ranging from p<O.00I in lines A and c to p<0.02 in line B), and also within some lines 

for TDG (ranging from p<0.001 in line c to p>0.8 in line B) and LDG (ranging from p<O.Ol 

in line c to p>0.5 in line D). No significant effect of the Asp298Asn substitution mutation on 

DFI was found in this analysis, in spite of the significant difference of 0.17 kg between both 

homozygotes (p<0.01) reported by Kim et al. (2000). In this study, the estimated difference 

in DFI between the two homozygous genotypes, although not significant, was in the same 

direction as that previously reported at 0.1 kg (sed = 0.063) in the overall analysis. 
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Table 3.3. Means by genotype class within and across lines (overall). The models were as in Kim et al. 
(2000), although containing only significant terms. 

Trait G LINE A LINE B LINE c LINE D Overall 

11 960.8 852.1 942.3 895.0 910.5 

12 913.3 859.3 913.6 873.3 888.9 

9 22 898.5 851.6 889.3 877.8 878.6 
0 

sed 13.88 14.6 14.14 14.61 6.41 

P 0.002 0.819 0.001 0.165 <0.001 

11 626.1 660 692.5 696.4 698.1 

03 12 613.4 656.9 681 677.6 685.4 

9 22 606.2 651.3 670 676.7 679.5 
0 

sed 7.4 7.3 7.3 9.2 3.4 

P 0.043 0.522 0.005 0.022 <0.001 

11 1.88 1.94 1.89 1.79 * 1.89 

12 1.81 1.84 1.83 1.8 * 1.82 

? 22 2 1.69 n.a. 1.74 * 1.79 

sed 0.298 0.108 0.126 0.105 * 0.063 

P 0.705 0.1 0.655 0.861 * 0.202 

11 2.55 2.55 2.55 2.44 2.49 

12 2.46 2.50 2.48 2.36 2.42 

22 2.41 2.46 2.43 2.30 2.37 

sed 0.03 0.028 0.027 0.039 0.013 

P <o.00i 0.017 <0.001 0.002 <0.001 

11 12.8 12.8 12.8 11.5 12 

(12.3-13.2) (12.4-13.1) (12.4-13.2) (11.1-11.9) (11.8-12.2) 

12 11.8 11.9 12.2 10.6 11.2 

(11.3-12.2) (11.6-12.2) (11.8-12.5) (10.2-11) (11-11.4) 

22 11.2 11.3 11.7 9.9 10.7 

(10.8-11.6) (11.1-11.6) (11.4-12.1) (9.6-10.3) (10.5-10.8) 

G: Genotypes, 1 - Asp and 2 - Asn at codon 298 of the porcine MC4R 
sed: Standard error of the difference between any pair of genotypic means 

P: p-values 
* Regarding DFI, only these analyses included sire as a random effect 

+ The confidence intervals around BF means on the back-transformed scale are asymmetric, thus they are 
shown within brackets 
n.a.: data not available 

TDT method. Only results from the overall analyses of the combined data set are shown. 

The estimation of bTD  and bpD via REML was done on the basis of 10 3  replications, where 
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each replicate used a different population of parental genotypes generated with Gibbs 

sampling. The average p values across these analyses are shown in Table 3.4. The ASREML 

software does not perform hypothesis testing for fixed effects in the model although it 

provides t-values and residual degrees of freedom. The p-values associated with genotypic 

contrasts were obtained from the t-distribution. There were two independent null hypotheses 

of interest: H: bPD = 0 and H 2 : bTD = 0, both were rejected for all traits except DFI (H: 

BF p<0.0001, TDG p<O.Ol, LDG p<O.Ol and DPI p>0.5; H: BF p<0.0001, TDG p<0.001, 

LDG p<O.Ol and DFI p>0.2). For the sake of comparison, Table 3.4 also incorporates results 

from the ANOVA method (reported as regression coefficients rather than genotype means as 

in Table 3.3). Both, the ANOVA and the TDT methods yielded similar results, although the 

former was a slightly more powerful analysis (the standard errors were generally smaller). 

Results in Tables 3 and 4 are of similar magnitude. 

Table 3.4. Average effect of allele substitution for each trait using TDT (PD, TD) 
and ANOVA. Cycle was treated as random. 

Trait Estimation b s.e.(b) T DF p-value 

TDG 

PD 16.1 5.84 2.76 

2430 

<0.01 

TD 14.1 4.45 3.17 <0.01 

ANOVA 14.8 3.66 4.05 <0.0001 

LDG 

PD 9.1 3.31 2.75 

2423 

<0.01 

TD 8.8 2.38 3.69 <0.001 

ANOVA 8.9 2.01 4.42 <0.0001 

BF 

PD 0.07 0.013 5.14 

2423 

<0.0001 

TD 0.06 0.009 6.7 <0.0001 

ANOVA 0.06 0.009 8.11 <0.0001 

DR 

PD 0.03 0.047 0.64 

272 

> 0.5 

TD 0.08 0.061 1.26 > 0.2 

ANOVA 	1  0.05 0.037 1.28 >0.2 

PD: Population Disequilibrium (between families gene effect) 
ID: Transmission-Disequilibrium (within families gene effect) 

ANOVA: Genotype substituted covariates PD and ID 
b: allele substitution effect 
s.e. (b): standard error of b 

T: t-statistic from testing b=0 vs. b#0 
DF: Nominal residual degrees of freedom 

p-value: the N(0,1) was used as an approximation to the t-distribution for TDG, 
LDG and BF 
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3.4 DiscussioN 

The study demonstrated that the mean additive effect of allele substitution calculated with a 

one-way ANOVA model can be decomposed into the within and the between family effects. 

These two effects can be estimated via a flexible REML analysis (Patterson and Thompson 

1971) as the regression coefficients b TD  and bpD,  respectively, using a mixed linear model 

that can also incorporate other fixed and random effects. 

Parental genotypes are needed to estimate bTD  and bpD.  This information was not available 

for the MC4R data analysed, and was generated via Gibbs sampling (1000 realisations). The 

new methodology was tested via simulation and real data analysis of the effect of the MC4R 

gene on pig production traits. 

The simulation results can be summarised in three main points. First, bTD  extracts 

information from the within and the bpD from the between family genetic variances, O,F  

and OF  respectively. Second, bTD  is robust and bpD is biased in the presence of population 

admixture/stratification. Third, there is generally more power to detect a significant bpD :~ 0 

than a significant bTD : ~ 0. 

Population stratification/admixture increases aF  and not 0WF•  As a consequence, 

estimates of bpD may be biased in the presence of stratification/admixture, whereas estimates 

of bTD  are not as the simulation results demonstrate. Tests such as the TDT are robust 

because they only exploit °WF.  However, the one-way ANOVA model uses both °F 

and aBF,  from which a pooled estimate between bpD and bTD  is obtained, and because of the 

latter component of variance, this pooled estimate of allelic effects may be biased if there is 

population admixture/stratification. In spite of this potential bias producing false positive 

results (e.g. Figures la and lb), robust methods such as the TDT have seldom been used in 

animal breeding (some exceptions are Bink et al. 2000, and Hernández-Sánchez et al. 

2002b). 

The fact that b TD  and bpD exploit different sources of information can be intuitively 

appreciated by inspecting the coefficients in Table 3.2. First, the coefficients required in the 

estimation of bTD  are weights given to all individuals with records (e.g. offspring) according 

to their genotypes and to the genotypes of their parents (i.e. family type). Hence, b TD  is the 

slope of the regression of phenotypes onto explanatory variables that combine both 
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offspring's genotypes and family type. Second, the coefficients required in the estimation of 

bpD can alternatively be obtained as 	, where G ij  = ½, 0 or —½ if the genotype of the j b  

parent in the ith  family is 11, 12 or 22, respectively. Therefore bpD is the slope of the 

regression of phenotypes onto family type. 

More explicitly, let us model yj,  the phenotype of the j th  individual having the i t1' QTL 

genotype, as y = 1u + g. + a, + e ii  where p is the population mean, g, the effect of the i h  

QTL genotype on the j th  offspring, and a 11  and eij  are the polygenic and residual random terms 

drawn from two independent normal distributions with zero means and variances O and 

o, respectively. Let there be random mating, no population stratification, and only additive 

genetic effects at the QTL locus. Under these circumstances, the total additive genetic 

variance splits equally between and within families, therefore E[c7F ]= cT. 12, and 

E[a ,F j= c + a /2, where o = 	+ o, and 	is the variance due to the QTL. If a 

statistical model explains all cT then the additive genetic effects of the QTL will be fully 

accounted for. However, if the model estimates additive effects only through either bTD  or 

bpD then U 2 will only be partially explained. For example, if bTD  is the only estimator of 

QTL effect then E[o,F 
]=C2 +U2 

 /2 and E[aF ]=u'12, as only within-family 

variation can be used to estimate bTD.  If, on the other hand, bpD is the only estimator of QTL 

effect then E[o, ]= o + o 12 and E[o ] = o 12, as only between-family variation 

can be used to estimate bpD.  These changes in the within and between family variances due 

to estimation of bTD  or bpD were validated via computer simulations (data not shown). 

The situation is more complex when there is stratification within a population. Appendix B 

shows how the proportion of the total phenotypic variation explained fitting a linear 

regression, differed when either bTD or bpD was estimated in the presence of population 

stratification. 

Simulation results showed that testing the null hypothesis bpD = 0 tends to produce higher F-

ratios when it is not true than testing bpT = 0 (Figure 3.1). Nevertheless, the analysis of real 

data showed the opposite effect (i.e. t-tests for bTD  were always higher than those for bpD in 

Table 3.4). This result is possible when there is no admixture/stratification, because b TD  is 

expected to be equivalent to bpD.  Moreover, in simulations, the only between family 

component was ½ of the total QTL variance, whereas in reality other factors (e.g. litter and 
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sow effects) may also increase 08F•  The analysis of real data showed that b TD  was very 

similar to b 0  across all traits, and furthermore, that both estimates were also similar to 

allelic effects obtained with ANOVA (Table 3.4). This suggests that there was no significant 

stratification/admixture in the population, and that there were equivalent amounts of genetic 

information between and within families. 

Where estimates of bTD  and bpD differ, a t-test could be used to test the null hypothesis bTD = 

bpD. If no evidence to reject the null hypothesis were found then a more powerful one-way 

ANOVA model could be safely implemented, i.e. there would be no evidence for 

admixture/stratification in the population. Otherwise, robust approaches such as the one 

proposed here, i.e. estimating bTD,  or other TDTs, should be considered as the only reliable 

methods of analysis. 

A complication of this approach applied to many real data sets, including the MC4R data 

used as an example, will be generating missing parental genotypes. Nevertheless, a Gibbs 

sampling technique with 10 3  replications was simple to implement (and we know they were 

accurate enough because 10 times more replicates did not affect the outcome) in this simple 

scenario, i.e. a single biallelic marker, a maximum of three generations, few missing data. 

Other robust tests that do not require parental genotypes, e.g. sib-TDTs (e.g. Schaid and 

Rowland 1999, Spielman and Ewens 1998), were found to be less powerful than the method 

outlined here in additional analyses of simulated data, e.g. FSIb = 5.5 vs. FTDPD = 7.7 (based 

on 1000 replicates). Analysing more complex or unbalanced data sets will probably demand 

more realisations of the Gibbs sampler and it will present an additional problem: testing 

fixed effects in REML, because the asymptotic properties of t-test or Wald test could not be 

guaranteed (see Kenward and Roger 1997, Welham and Thompson 1997, Elston 1998). 

This approach was also tested with real data. There is strong evidence that the substitution-

mutation Asp298Asn in the MC4R gene affects production traits in the pig, e.g. backfat 

(BF), growth (TDG, LDG), and appetite (DPI) (Kim et al. 2000). These effects were re-

estimated with extra records with respect to the original work. Significant effects were found 

for BF, TDG and LDG across all lines (p  <0.001), although not for all pig lines (ranging 

from p < 0.001 to p> 0.8). DFI was the only trait not significant in this study (p > 0.2), even 

after using the models described in Kim et al. (2000). 

The lack of effect on DFI was unexpected given previously reported results (p  <0.01), and 

other reported associations of MC4R with appetite and feeding behaviour in macaques 
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(Koegler et al. 2001), rats (Todd et al. 1997), mice (Butler et al. 2001), and layer chicks 

(Tachibana et al. 2001). One possible explanation for not detecting an effect on DFI is the 

lack of power due to a small data set (n=275). Although there were less data (n=231) in the 

study of Kim et al. (2000) than in this study, the difference is small and additional statistical 

noise may have been introduced through factors such as data structure and/or chance. An 

independent study that used a larger data set (n=619), found a significant (p<0.05) additive 

gene effect of 0.075 kg/day on DEl (G. Plastow, personal communication). Further 

experiments are needed in order to ascertain whether the Asp298Asn substitution mutation at 

the MC4R locus is causative. 

This study demonstrates that TDT can be implemented within the REML framework. As a 

guideline, one should test associations with ANOVA only after having checked that bTD  and 

bpD are not significantly different from each other, i.e. making sure no false positive results 

are being caused by population stratification. 

3.5 	Appendix A: Gibbs sampling convergence when generating missing 

parental genotypes 

Each missing parental genotype was stochastically generated with Gibbs sampling 

conditioning on genotypes of his/her relatives. A total of 50 x 10 4  consecutive realisations 

were obtained and only one every 50 was saved to reduce the autocorrelation of the chain. 

The traits backfat (BF), test daily gain (TDG), lifetime daily gain (LDG) were analysed with 

a TDT (Rabinowitz 1997) using the remaining 10 4  (independent) sets of parental genotypes. 

For each trait a distribution of log-transformed p-values was obtained (dist-0). Three 

different samples of size 10 3  were obtained from dist-0, they were: dist-1 containing the 

initial 103  log-p-values, dist-2 containing the last 10 3  log-p-values, and dist-3 containing 10 3  

log-p-values evenly spaced in the chain (one every 10 consecutive ones). The distributions 

dist- 1, 2, and 3 were compared against dist-0 with the non-parametric Kolmogorov-Smirnoff 

test (KOLMOG2 procedure in GENSTAT 4.1), which obtains the maximum absolute 

difference between two cumulative density functions. If the two distributions are the same, 

this difference follows a Z 2  distribution. There were no significant differences (Table 3.A) 

between Dist-1, 2 or 3 and Dist-0 in any trait at a significance level of 0.017 (Bonferroni 

correction for 3 comparisons within trait). These results ensure that 10 3  out of the 104  

independent sets of parental genotypes provide an unbiased sample, and that if convergence 

was reached after 104  realisations, then it was also reached after 10 3  realisations. 
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Table 3.A. P-values of the Kolmogorov-Smimoff test for 
differences between Dist-0 and Dist-1, 2, or 3 

aBF 11TDG CLDG 
dDistl 0.02 0.13 0.66 
eDist2 0.36 0.23 0.42 
Dist-3 0.05 0.51 0.20 

a Backfat 
b Test Daily Gain 

' Lifetime Daily Gain 
d The first 10 3  log-p-values from Dist-0 

The last 103  log-p-values from Dist-0 
103  log-p-values from Dist-0, sampling 1 every 10 consecutive ones 

Significant level = 0.05 / 3 = 0.017 (Bonferroni correction) 

3.6 	Appendix B: Impact of stratification on bID and bpD 

Population stratification affects both the estimation of the effect via bpD and the power of that 

estimation (s.e. bpD).  We will assume the simplest scenario where a population is divided 

into two subpopulations of equal size, where mating is at random within each subpopulation, 

and there is no matings across subpopulations. 

The expected mean square of a linear model that regresses Y onto a single explanatory 

variable X is E[MSR] =07  + B2  1(x - x 
)2 

, where B is the expected regression 

parameter, and o the residual variance (Sokal and Rohif 1995). When n phenotypes (Y) are 

simulated with gene effect (B) and cTe2  equal to one, then 

E[MsR] = 1 + E[ (x 
- )2 

 ]= 1 + n{E[X2 ]- (E[X ])2 }. Let us assume p1 is the frequency 

of allele i at the trait locus in subpopulation 1, and q 1  the equivalent frequency in 

subpopulation 2. Furthermore, let us assume PIt = (P 1)2 is the frequency of genotype 11 in 

subpopulation 1, and qii  the frequency of the equivalent genotype in subpopulation 2. Hence, 

it can be shown that E[PD] = (Pi - P2 + qj - q) / 2, and that 

E[PD2 ] = 0.5(p + p + + q ) + O.25(p 11  (i - p 11  ) + q1 , (i - q11  )). The same process 

is followed to develop the expected mean squares when using TD, thus 

E[TD2 1= (p + q )14, and E[TD] = 0. These two predictions were very similar to 

simulation results (not shown). We can see the effect of stratification on E[MSR]TD  and 

E[MSR]pD for n=100 in Figures 3.bl and 3.b2. Figure 3.bl takes a hill-type shape (seen from 

above) where the highest point is at the centre, and gradually decays in all directions away 

from the centre. Figure 3.b2 takes a valley-type shape (seen from above) where the lowest 

points are on the diagonal (in fact Figures 3.bl and 3.b2 are identical on the diagonal) and 
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quickly rising away from the diagonal. If there is no stratification, e.g. on the diagonal 

passing through points p i  = q 1 , then E[MSR]p = E[MSR]pD, thus both regression lines are 

identical. However, when there is stratification (e.g. p 1  ;d q 1 ), E[MSR]pD  increases, and 

E[MSRJ TD  decreases. The effect on E[MSR]TD  is not due to stratification itself but rather to a 

reduction of the information content due to a decrease in the frequency of heterozygous 

genotypes. Although, we have shown the effect of analysing the trait locus itself, this effect 

is transferred to a marker as a function of linkage disequilibrium between both loci. 

Figure 3.bl Expected mean squares (EMS) for bTD  
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Figure 3.b2 Expected mean squares (EMS) for bpD  
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CHAPTER 4 

Genome-wide search for markers associated 

with Bovine Spongiform Encephalopathy 

4.1 INTRODUCTION 

Bovine Spongiform Encephalopathy (BSE) is a slowly progressing, inevitably fatal, 

neurodegenerative disorder characterised by deposition of an abnormal form of the host 

pnon protein (PrP) in neurones, leading to a widespread sponge-like vacuolation of the 

brain (Hunter 1999, www.bseinciuirv.gov.uklindex.htm). BSE belongs to a family of diseases 

known as Transmissible Spongiform Encephalopathies (TSE5) that include scrapie, in sheep, 

and Creutzfeldt-Jakob Disease (CJD), in humans. The prevailing hypothesis is that BSE is 

not a genetic disease, but that there could be a genetic component conferring resistance to the 

infectious agent (Ferguson et al. 1997, Donnelly et al. 1997). BSE can be experimentally 

transmitted across species via an isoform of the prion protein found in scrapie-affected sheep 

(PrPS) (Bruce et al. 1994) and it appears that the bovine form of PrPSC  is also responsible for 

a new variant of CJD (vCJD) (Bruce et al. 1997, Almond and Pattison 1997). 

There is strong evidence that different polymorphisms in the PrP gene cause variable 

incubation periods (IP) and, possibly, degrees of resistance to scrapie in sheep (Goldmann et 

al. 1990, Goldmann et al. 1996) and to CJD in humans (Palmer et al. 1991). In particular 

codons 136, 154 and 171 in the PrP gene are strongly associated with incidence of scrapie 

(Goldmann et al. 1994). In humans, individuals homozygous at codon 129 of the PrP gene 

are over-represented in CJD cases, whereas heterozygous individuals seem to be more 

resistant to CJD (Palmer et al. 1991). All vCJD cases to date are homozygous for methionine 

at this codon (Bruce et al. 1997). 

The PrP gene is less polymorphic in cattle than in sheep or humans. So far, only two 

polymorphisms, a variable number of an octapeptide repeat and an RFLP, have been found 

in the coding region of the bovine PrP gene (Goldmann et al. 1991b, Ryan and Womack 

1993). Two case-control studies (Hunter et al. 1994b, Neibergs et al. 1994) found no 

association between the octapeptide-repeat and BSE, and only the latter study found a 

significant association between BSE and the RFLP. 
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Recently, there has been evidence of genes other than PrP affecting susceptibility to an 

experimental prion disease in mice. Stephenson et al. (2000) found Quantitative Trait Loci 

(QTL) partially accounting for differences of IP in F 2  mice, derived from a cross between 

two different parental strains with the same PrP gene, on Chr 9 and 11 using mouse-derived 

PrPSC inocula. In a similar experiment, Lloyd et al. (2001) found significant evidence for 

QTL influencing IP in mice on Chr 2, 11 and 12 plus suggestive evidence for QTL on Chr. 6 

and 7. Manolakou et al. (2001) backcrossed Fl animals with their parental lines, identical 

only at the PrP locus, and used PrPSC  inocula from cattle. They reported QTL influencing IP 

in mice on Chr 2, 4, 8 and 15, plus significant host environment factors (i.e. the age of the 

host's mother, the age of the host at infection, and an X-cytoplasm interaction in the host). 

The purpose of the study reported here was to perform a genome wide scan for BSE 

susceptibility/resistance alleles in cattle through their associations with markers. The amount 

of association between two linked loci is a function of the underlying linkage disequilibrium 

(LD). In large and panmictic populations the expected range of LD for relatively old mutants 

is very short, and simulation studies have predicted that between 30,000 and 500,000 

biallelic markers would be required in genome-wide QTL scans (Ott 2000, Kruglyak 1999). 

However, Riquet et al. (1999) predicted conserved chromosomal segments spanning 4.5-5 

cM in one Holstein cattle population, and Farnir et al. (2000) found significant LD even 

between markers up to 50 cM apart. These results were probably due to a recent history of 

intensive artificial selection leading to high levels of inbreeding (Bradley and Cunningham 

1999) and to a low effective population size (Roughsedge et al. 1999) leading to strong drift 

effects. Hence, relatively sparse marker maps may still be sufficient for genome-wide QTL 

scans in Holstein cattle. 

Transmission-Disequilibrium Tests (TDTs) are tests for linkage in the presence of LD 

between a marker and a trait locus that are robust to spurious associations (i.e. association 

without linkage) due to population stratification. TDTs identify preferential transmission of 

particular alleles from heterozygous parents to affected offspring across a sample of families. 

Such a pattern of transmission is also known as segregation distortion, because alleles do not 

segregate at random. Although the original TDT (Spielman et al. 1993, Terwilliger and Ott 

1992) and its extensions for multiple alleles (Bickeboller and Clerget-Darpoux 1995) are 

conceptually simple and easy to implement, more versatile TDTs have been developed based 

on logistic regressions (Sham and Curtis 1995, Waldman et al. 1999). In this paper, we use 

TDTs to assess the association between BSE and markers spanning the Holstein genome in 

half-sib families. 



4.2 MATERIAL AND METHODS 

4.2.1 Samples and genotyping 

Blood samples were obtained from a total of 358 BSE-affected and 172 BSE-unaffected 

half-sib offspring from 4 Holstein sires throughout the UK (Table 4.1). Animals in both 

disease categories were sampled at the same time from the same farms and were age and 

sex-matched. None of the controls were recorded in the BSE case database of DEFRA at a 

later date. Micro-satellite markers were selected from the published bovine linkage maps 

(http://spinal.tag.csiro.au/ and http://www.marc.usda.gov ) to give uniform coverage of all 

bovine chromosomes at approximately 20 centimorgan (cM) intervals. The markers were 

tested across a limited number of samples to estimate heterozygosity in the sires (DNA was 

not available from all sires). Markers with low heterozygosity were rejected and replaced by 

adjacent markers when available. A final panel of 166 markers was chosen for the study. 

These markers were genotyped on all samples using an AB1373 DNA sequencer and 

genotypes of the sires were inferred from the daughters' genotypes (genotyping was 

conducted by GeneSeek Inc., Nebraska, USA). Sires used in this study were found not to be 

heterozygous for 20 of the markers, therefore the total number of markers analysed was 146. 

The genotypes of the dams were unknown. Sex-linked loci could not be analysed with TDT 

in this study because the probability of allele transmission from sires to daughters assuming 

no association with BSE (i.e. under H 0) was a function of the recombination rate between 

Chr X and Chr Y at every specific locus. 

Table 4.1. Total number of BSE-affected offspring and controls per 
sire 

Sire 1 2 3 4 Total 

BSE-Affected 124 88 93 53 358 

Control 44 44 56 28 172 

Only data that conformed to specific criteria could be analysed with TDT. First, only 

families with heterozygous sires for a marker are informative for that marker. Second, 

progeny with the same genotype as the sire were excluded from the analysis because it was 

ambiguous which allele had been transmitted (Sham et al. 2000). And third, estimated 

segregation ratios are biased when alleles within a locus have different frequencies, one 

parental genotype is missing and only offspring sharing the known parental genotype are 



excluded from the analysis (Curtis and Sham 1995). In these circumstances, homozygous 

offspring were excluded from the analysis. 

4.2.2 Statistical tests 

The statistical tests used in this study derived from the McNemar-type TDT proposed by 

Spielman et al. (1993) adapted for multi-allelic loci (Bickeböller and Clerget-Darpoux 1995) 

and re-parameterisations of those TDTs within a logistic regression framework (Sham and 

Curtis 1995, McCullagh and Nelder 1983). The latter procedure was further extended for 

testing the interaction between transmission rate and disease status. Allelic transmission 

probabilities can be studied within and across genotypes. The genotypic-TDT statistic, g-

TDT, assesses departures from random segregation of alleles within genotypes. Data from 

sires with identical genotypes is pooled together. The g-TDT is asymptotically distributed as 

a X 2
distribution with degrees of freedom (dO equal to the number of different 

heterozygous sires. The allelic-TDT statistic, a-TDT, is used to test departures from random 

segregation of alleles across genotypes. Asymptotically, a-TDT follows a X distribution df 

with df = a - 1, where a is the number of different alleles across all sires in the sample. Both 

a-TDT and g-TDT were also implemented using logistic regressions for parameter estimation 

and log-likelihood ratios for hypothesis testing assuming data to be binomially distributed. 

These tests were named log-LR a  and log-LR g , respectively. All likelihood ratios under H 0  are 

distributed as 	with df equal to the difference between the number of parameters 

estimated under H 1  (i.e. number of transmission probabilities estimated from data) and H 0  

(i.e. no parameters estimated because all transmission probabilities are assumed to be ½). 

The use of theoretical reference distributions (i.e. x2) for obtaining p-values was empirically 

validated through simulations for all markers and two TDTs, g-TDT and log-LRa. For each 

marker and each sire family, a particular allele was sampled from a binomial B (n, p), where 

n was the total number of BSE-affected offspring within a sire family and p = ½, then both 

TDTs analysed the sample and the process was repeated 1,000 times. 

Logistic regressions could not be solved when a particular allele was not transmitted to any 

offspring. Paradoxically, such observations are the most conclusive signals supporting a 

BSE-marker association. In order to analyse that valuable information, an ad hoc solution 

was to use 0.5 rather than 0 for an allele never transmitted to offspring, and N-0.5 rather than 

N for the allele always transmitted to offspring (N is the number of B SE-affected offspring 

in the analysis) (Cox 1970). 



The basic tests described above only looked at transmission of sire alleles to affected 

progeny. Therefore, an interaction test was constructed to compare allele transmission rates 

to BSE affected and control offspring within the framework of logistic regression. If a 

marker allele was truly associated with a disease susceptibility allele then it should be over-

transmitted to affected individuals and under-transmitted to control individuals. A log-

likelihood ratio test for an interaction can be written as 

log— LR 1 . = 21 N, k  ln(I Jk  /P0 ) 
	

[1] 
ijk 

where a sire with genotype ij (i # j) transmits allele i Nip times to B SE-affected offspring and 

Nu2 times to B SE-unaffected offspring, the probabilities of allele transmission within each 

disease category are Puk  (obtained after solving logistic regressions) and the overall 

transmission probability across both disease categories is 

Pu = (N1. 1  + N,, 2  )/(N1 + N 11  + N 2  + N 2 ). The interaction test assumes that the 

transmission rate for a given marker is the same for both affected and control animals and, 

hence, a significant interaction indicates that the transmission rate differs between the two 

classes as might occur if a resistance/susceptibility locus in linked, and in LD, to the marker 

in question. 

This would prevent false positive results from arising if there when there is a BSE-unrelated 

population-wide segregation distortion if both disease categories are equally distorted, as it 

could be the case testing only BSE affected individuals. 

All statistical thresholds were adjusted using the Bonferroni' s correction for multiple tests. 

However, this correction was rather conservative as it assumed all tests were independent, 

i.e. unlinked marker loci. 

4.3 RESULTS 

In selecting the appropriate data for the TDT some data were lost for all loci. This data loss 

caused a reduction of statistical power for detecting marker-BSE associations and was severe 

for 9 markers, which were removed from the analysis. The criterion for excluding a marker 

from the analysis was a non-significant g-TDT statistic when testing the most extreme allele 

distribution compatible with the data. Such an extreme distribution was obtained within each 

marker simulating a data set of the same size where only one allele was transmitted from 

sires. The list of markers used in this study is available in Table 4.A (Appendix). 



Three marker loci (BM315, INRA107 and INRA36 on Chr 5, 10 and 20, respectively) 

showed a significant segregation distortion in BSE-affected individuals across all tests 

(Table 4.2). The log-L& and log-LR g  tests gave equivalent results and are shown as a single 

column in Table 4.2. The strongest evidence for segregation distortion across all tests was 

for marker INRA107. This marker was also the only one showing a significant departure 

from random segregation of alleles when analysing control individuals on their own with 

TDT. 

Table 4.2. P-values of significant marker loci using a Bonferroni's threshold for 137 tests 

Marker g-TDT a-TDT Log-L& Log-LR 11  Chromosome 

BM315 1.1x10 1.6x10 5  4x1€15  0.99 5 

INRA107 1.4x10' °  1.2x10 9  1.3xl0" 0.39 10 

INRA36 3.4x10 5x10-4 1.6xl0 0.39 20 
g-TDT: TDT based on the genotype model 

a-TDT: TDT based on the allele model 
log-L&: log-likelihood ratio based on the allelic model (similar results obtained with log-LR 8) 

log-LR 1 ,: log-likelihood ratio for interaction 

In order to validate these results, two markers flanking each of the markers in Table 4.2 were 

genotyped. Marker BMS1658, at an estimated 2 cM from BM315 on Chr 5, was significant 

at a 0.01 level (Bonferroni's threshold set for 5 independent tests). The other flanking marker 

at this locus (BM8230) was uninformative because none of the sires was heterozygous. The 

results for the flanking markers are shown in Table 4.3. 

Table 4.3. P-values of new markers closely linked to markers in Table 4.2 

Old Markers (cM) New Markers g-TDT a-TDT Log-LR Log-LR, 1  cm 
BM315 (100.1) Chr5 BMS1658 0.0033 0.0019 0.0013 0.91 103.5 

INRA 107 (47) Chr 10 
BM875 0.61 0.32 0.31 0.96 46.5 

BM888 0.83 0.52 0.52 0.99 50.4 

INRA36 (59*)  Chr 20 
BMS2361 0.87 0.7 0.7 0.35 46 

AGLA29 0.57 0.49 0.35 0.72 51 
g-TDT: TDT based on the genotype model 

a-TDT: TDT based on the allele model 
log-LR: log-likelihood ratio based on the allelic model (similar results obtained with log-LR g) 

log-LR 1,,: log-likelihood ratio for interaction 
All distances have been obtained from the USDA98 map (http://www.marc.usda.gov ) except (*) that was obtained 

from the Barendse97 map (httix//Iocus.jouy.inra.fr ) 



Sample sizes and allele distribution among BSE-affected and control offspring for the 3 

selected markers and their flanking markers are shown in Table 4.4. 

Table 4.4. Counts of the number of times a particular allele (A or B) is transmitted from heterozygous sires to 
BSE-affected and control daughters for markers in Table 4.3 

BM875 INRA 107 BM888 

Genotype BSE Control Genotype BSE Control Genotype BSE Control 

Sire A/B A B A B A/B A B A B A/B A B A B 

1 127/127 ? ? ? ? 180/179 39 3 13 0 192/190 20 18 4 6 

2 127/127 ? ? ? ? 180/179 29 8 9 1 192/190 12 13 10 6 

3 127/127 ? ? ? ? ? ? ? ? 196/192 13 8 2 1 

4 127/125 3 6 1 3 ? ? ? ? 192/190 12 10 7 4 

BMS2361 INRA36 AGLA29 

Genotype BSE Control Genotype BSE Control Genotype BSE Control 

Sire MB A B A B A/B A B A B A/B A B A B 

1 146/146 ? ? ? ? 210/188 8 11 1 3 178/170 31 19 7 11 

2 150/142 26 30 13 6 210/188 9 6 4 5 178/166 20 22 10 6 

3 144/140 23 24 5 9 190/188 27 5 10 1 174/170 27 23 5 4 

4 148/140 13 19 9 4 210/188 7 1 0 4 174/166 13 15 8 4 

BM8230 BM315 BMS1658 

Genotype BSE Control Genotype BSE Control Genotype BSE Control 

Sire MB A B A B A/B A B A B MB A B A B 

1 ? ? ? ? 142/124 25 30 10 9 102/94 0 19 0 8 

2 ? ? ? ? ? ? ? ? ? 106/102 28 23 7 7 

3 ? ? ? ? ? 138/126 30 5 7 1 102/94 9 12 1 1 

4 ? ? ? ? ? ? ? ? ? 92/92 ? ? ? ? 

MB genotype of sire 
A number of transmissions of allele A 
B number of transmissions of allele B 

? data not available because sire was either homozygote or had not been genotyped 

Similar results were obtained using either theoretical x2  or empirical distributions as 

reference distributions (results not shown). None of the 137 markers showed any significant 

interaction between transmission and disease status. 
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4.4 DiscussioN 

The objective of this study was to identify markers associated with BSE by screening the 

entire bovine genome in a population of UK Holstein cows. TDTs were used because they 

are robust to spurious associations due to population stratification or admixture (Warren and 

Spielman 1995, Schork et al. 2001). A marker is associated with BSE when alleles at that 

marker did not segregate at random in a sample of affected individuals. Segregation 

distortion was tested within and across genotypes with g-TDT and a-TDT, respectively. 

These two tests gave similar results, and were equivalent when none of the sires had alleles 

in common. Both tests were also implemented within a logistic regression framework 

because this facilitated statistical modelling. For instance, logistic regressions were extended 

to analyse interactions between allele transmission rates and disease status. Moreover, 

additional variables such as age and farm could be more easily incorporated in logistic 

regressions than in g-TDT or a-TDT. In principle, logistic regressions would also allow 

testing loci on Chr Y, however the estimation of allelic transmission probabilities under H 0  

would have been inaccurate because genetic distances were not estimated in this study and 

vary from population to population (Leach 1996). 

Asymptotically, all these TDTs follow x2  distributions. However, there was a reduction in 

sample size because, in this study, TDTs could only be used to analyse heterozygous 

offspring from sires with a different heterozygous genotype. Therefore, the use of x2  as 

reference distribution was verified through simulations for g-TDT and log-LRa. The p-values 

obtained from empirical distributions in both TDTs were similar to p-values obtained from 

x2  distributions (data not shown). It was not necessary to check a-TDT and log-LRg because 

they are alternative parameterisations of log-LRa and g-TDT, respectively. 

Three marker loci showed significant departures from random allelic segregation in BSE-

affected individuals and were selected for further study. The strongest evidence (lowest p-

value) came from marker INRA107 on Chr 10. Two sires with the same genotype were 

informative at this locus and the same allele was over-represented in their affected offspring. 

Furthermore, two candidate genes linked to INRA107 have homologues located on a region 

of mouse Chr 9 that showed suggestive evidence of QTL affecting IP following an 

experimental scrapie challenge (Stephenson et al. 2000). The homology data for this paper 

were obtained from the Mouse Genome Database (MGD). One of these genes encodes for 

the enzyme hexosaminidase A (HEXA), which is related to a progressive and lethal 

neurodegenerative human disorder called Tay Sachs (Bach et al. 2001). Whether variation in 



the HEXA gene is partly responsible for controlling IP of a PrPSCinduced  disorder in mice 

has yet to be tested, however the phenotypic effects on target tissues for TSEs makes it a 

candidate for further study. 

INRA107 was also the only marker for which a significant segregation distortion was found 

in the control group, with the same allele being over-represented in both disease groups. 

Thus, there may be a common underlying cause of segregation distortion affecting both 

BSE-affected and control individuals, which may arise from sampling bias unrelated to BSE. 

Indeed, the second linked gene from the mouse study is the cytochrome P450 family XIX 

(CYP19). This gene is implicated in several human disorders such as reduced fertility and 

sexual organ development (Genissel and Carreau 2001, Carreau 2001), neonatal 

hypothyroidism (Ando et al. 2001), slow bone maturation and shorter adult height (Wickman 

et al. 2001), and breast cancer (Kuerer et al. 2001). It is possible that alleles at the CYP19 

locus have a detrimental effect on fitness, leading to differential survival and, hence, give a 

spurious association of INRA 107 with BSE. 

Two flanking markers were genotyped, at an estimated 1.5 and 3.4 cM from INRA107, but 

neither was significantly associated with disease status (Table 4.3). These latter results were 

unexpected, considering that the probability of a recombination event between INRA 107 and 

either of the two flanking markers in one generation is small. However, this apparent 

inconsistency can be explained by the fact that different families, different individuals within 

families and, hence, different sample sizes within a family, were used in the analysis of each 

of the markers. It should also be noted that the flanking markers were selected from the 

published genetic maps, and in some cases the position of markers was estimated between 

different maps. Thus, it is possible that the flanking markers were in fact further from the 

original marker than the estimated distance. 

A similar inconsistency was observed between the marker INRA36 on Chr 20 and its two 

flanking markers. Despite a significant segregation distortion at the INRA36 locus, alleles at 

both flanking markers segregated at random. Again, the fact that different individuals were 

informative for the three loci may explain this discrepancy. Several QTL influencing milk 

traits have already been mapped on Chr 20 (Arranz et al. 1998) and low productivity is an 

important reason for culling, only second to reproduction problems (Young et al. 1983). 

Therefore the observed distortion at INRA36 could be through culling and selecting within 

herds favouring higher yielding individuals, rather than by association with BSE. 
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Two closely linked marker loci flanking the third significant locus, BM3 15 on Chr 5, were 

also genotyped on the samples. One of the markers was totally uninformative, but the other, 

at an estimated 2 cM from BM315, showed a significant effect at a 0.01 level. The number 

of homologies between the bovine Chr 5 and the murine Chr 6 (reported by Lloyd et al. 

2001) and Chr 15 (reported by Manolakou et al. 2001) are 5 and 3, respectively (MGD). 

However, none of these genes seem to be functionally associated to BSE. Moreover, these 

genes are outside the 95% confidence interval for the location of QTLs in the mouse studies, 

and their distances from BM315 and BMS1658 cannot be precisely estimated as they only 

appear in cytogenetic cattle maps. However the confirmation of an association with two 

linked markers makes this chromosomal region worthy of further study. 

As the PrP locus is involved in IP and development of TSEs in other species it is surprising 

that none of the markers genotyped on Chr 13, where the PrP gene is located, were 

associated with incidence of BSE in this analysis. To date there is little evidence that PrP 

polymorphisms are involved in BSE susceptibility, and the lack of significant results on Chr 

13 in this study also suggests that the PrP alleles present in cattle do not add variation to BSE 

susceptibility. 

It is necessary to interpret results obtained with TDT with care. TDTs cannot distinguish 

between a marker associated with a disease and a marker where alleles segregate non-

randomly for other reasons. Indeed, if a marker is associated with a disease locus then its 

alleles will show a segregation distortion within a sample of affected individuals. Such 

distortion is entirely due to sample bias (testing only affected individuals) and needs not 

exist at population level. However, if distortion exists at population level then we 

recommend testing for an interaction because, unlike only testing affected individuals, it 

would be an unbiased test if the same degree of disease-independent segregation distortion 

was present in both affected and control individuals. It should be noted that although affected 

animals had evidently been exposed to PrPSC in sufficient quantities to induce BSE, controls 

may either be genetically resistant to BSE or may have not received sufficient challenge to 

become infected despite being age, sex and cohort matched sibs from the same farms as 

affected samples. The controls may also include animals with longer IP for the disease. We 

checked the BSE case database at a later date and did not identify any of the controls being 

reported as BSE cases. However, animals may have been culled for management reasons 

prior to the onset of BSE. This uncertainty may have reduced the power for detecting 

interaction effects in this study. Additionally, the total sample size of controls was smaller 
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than that of BSE-affected individuals, and neither more BSE-affected or more control 

individuals in these families could be sampled due to the retrospective nature of this study. 

We have demonstrated that TDTs can be used in QTL genome scans with low-density 

marker maps. However, the success of the search depends, among other things, on having a 

minimum marker coverage, e.g. at least one marker per region of relatively constant LD 

(Goldstein 2001), and on the experimental design. Firstly, the minimum number of markers 

needed in genome-wide QTL analyses is still unclear (e.g. Lander and Schork 1994, Risch 

and Merikangas 1996, Chakravarti 1998, Terwilliger and Weiss 1998, Johnson et al. 2001) 

but it certainly depends on the LD pattern in the population. Secondly, this study sheds light 

on how the experimental design may impact on statistical power of TDTs, for example, not 

knowing maternal genotypes restricted the amount of information that could be used. We are 

also currently developing new statistical tests that use more of the information than TDTs, 

and studying the level of LD in this cattle population. 

In conclusion, 3 marker loci (Chr 5, 10 and 20) were associated with BSE in the TDT 

analysis of a low-density genome scan. When these loci were tested further using flanking 

markers one locus closely linked to BM315 on Chr 5 also showed significant association 

with BSE. Neither of the loci on Chr 10 or 20 were confirmed by analysing flanking 

markers. However these three loci should be studied in more detail by increasing the density 

of markers in the regions of interest, and by examining transmission distortion in haplotypes. 
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4.5 APPENDIX A: ADDITIONAL DATA 

Table 4.A1. List of all tested markers 

Locus a  Cr b  cm Locus a  Cr b  cm Locus a  Cr b  cm 

TGLA49 1 1.9 DIK106* 8 47 BM1233 17 98.6 

TGLA57 1 46.2 TGLA13 8 51.4 INRA25 17 110 

INRA128* 1 82 HEL9 8 76.7 IDVGA31 18 0 

CSSM32 1 88.2 D1K74 8 77 INRA121 18 31.8 

BM864 1 88.2 CSSM47 8 110.5 ABS13* 18 38 

TGLA130 1 98.2 HUJ174* 8 121 HAUT14 18 44.8 

CSSM19 1 108.3 BM757 9 0.6 ILSTS2 18 55.9 

BM1824 1 108.6 ETH225 9 8.1 D1K67 18 70 

BM3205 1 113.8 BM2504 9 25.2 AFL361 19 7 

MAF46 1 118.1 UWCA9 9 44.9 HELlO 19 15.9 

TGLA431 2 9.1 INRA84 9 84.3 CSSM65 19 65.7 

CSSM42 2 34.4 MM12E6** 9 87 ETH3 19 81.5 

BM4440 2 55 TGLA131 10 19.3 IDVGA44 19 90 

TGLA226 2 80 BM875 10 46.5 BM3517 20 0 

BM2113 2 106.2 INRA107 10 47 BMS2361 20 45.5 

IDVGA2 2 118 BM888 10 50.4 AGLA29 20 50.6 

ILSTS96 3 29.7 TGLA327 11 36.8 DIK15** 20 59 

D1K69 3 33.7 ILSTS100 11 55.9 INRA36** 20 59 

INRA123 3 66.2 TGLA272 11 86.8 BM5004 20 64.3 

IDVGA35 3 102.9 CSSM46 11 92.9 HEL5 21 13 

10BT250* 3 104 CSRM60* 11 116 TGLA337 21 56.3 

IDVGA27 3 123 TGLA36 12 6.8 IDVGA39 21 75.1 

RM188 4 24.7 BM6108 12 15.8 CSSM26 22 0 

MAF50 4 47.4 RM162 12 46 INRA26 22 2.9 

INRA37 4 69.9 BM6404 12 56 INRA130** 22 23 

D1K26* 4 87 IDVGA3 12 76.9 BM3628 22 44.5 

RM88 4 94.8 HUJV174 12 85.4 UWCA49* 22 93 

MGTBG4B* 4 128 L6003 13 20 10BT528 23 0 

BM6026 5 6.7 RM178 13 23.5 CSSM5 23 7.2 

RM103 5 28.6 HUJ616 13 43.8 UWCA1 23 22.1 

BR2936 5 64.3 INRA5 13 83.1 DRB3 23 43 

ETH10 5 70 INRA209* 13 125 BM1905 23 64.3 
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BM1819 5 77.6 D1K93* 13 144 TGLA351 24 8.6 

BM8230 5 88.4 CSSM66* 14 17 CSSM23 24 18.4 

BM315 5 100.1 RM11 14 27.7 INRA90 24 53.2 

BMS1658 5 102 BM4630 14 30.1 BM4005 25 12.3 

ETH2 5 108.5 PZ271** 14 59 TGLA40* 25 25 

BM2830 5 113.5 D1K54** 14 81 1NRA222* 25 56 

ILSTS93 6 0 ABS1O* 14 114 ABS12* 26 0 

BM1329 6 35.5 BR3510 15 1 HEL11 26 20.7 

D1K82* 6 67 JAB  15 20.8 RM26 26 37.3 

RM28 6 74.3 IDVGA1O**  15 52 BM4505 26 39.7 

AFR227 6 90.4 FSHB 15 59.9 RM209 27 15 

BM2320 6 120.7 BM4513 15 62.5 BM203 27 64.1 

BM7160 7 0 TGLA53 16 40.6 BP23 28 4.7 

BP41 7 13.9 ETH11 16 56.5 IDVGA29 28 8.7 

BM1853 7 85 BM719 16 78 JAB5* 29 0 

ILSTS6 7 116 HUJ625 89.8 RM44 29 23.3 

INRA53 7 123.5 PZ510  16 TGLA86* 29 25 

IDVGA11 8 8.8 TGLA231* 

d17 

50 

BM4006 8 41.7 IDVGA40 67 
a  Chromosome 

b  CentiMorgans 
Primary sources of information were http://sDinal.tag.csiro.au/ and http://www.marc.usda.gov , and 

secondary sources of information were http://www.thearkdb.org  (*) and http://locus.jouy.inra.fr  (**) 

Table 4.A2. Marker losses due to TDT data restrictions 

Locus aCr  b cM 

TGLA49 1 1.9 

BM3205 1 113.8 

BP41 7 13.9 

TGLA13 8 51.4 

BM2504 9 52.2 

L6003* 13 20 

ETH11 16 56.5 

UWCA1 23 22.1 

INRA30** X 183 

See Table 4.A for a definition of: a, b, "c ,  ** 
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Table 4.A3. Marker losses due to lack of informativeness 

Locus a Cr b  cm 
HUJ117 3 87 

AGLA293 5 32 

BP7 6 91.2 

CSSM29** 7 86 

INRAMTT180 8 67 

BM716 11 9.5 

INRA177 11 26 

TGLA6** 13 12 

ETH7 13 54.4 

URB48 17 0 

CSSM33 17 75 

BM1225 20 8 

TGLA126 20 31.2 

ETH131 21 32 

ILSTS1O1 24 34 

BM226 24 75 

BM3507 27 0 

CSSM43 27 34 

HAU37** X 116 

See Table 4.A for a definition of: a, b, 	, ** 
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CHAPTER 5 

Prediction of Identity By Descent based on 

Marker Information and Linked Gene Flow 

Theory: Potential Applications for Fine Mapping 

Quantitative Trait Loci 

5.1 INTRODUCTION 

The linkage disequilibrium (LD) framework has become the new paradigm for fine 

quantitative trait loci (QTL) mapping (Terwilliger and Weiss 1998, Cardon and Bell 2001, 

Ardlie et al. 2002). Within this framework, families that are unrelated by a common pedigree 

are assumed to share common ancestors in the past. Hence, in LD mapping, historical 

recombination events are tracked down in the form of population-wide associations. In 

contrast, in QTL mapping via linkage analysis, only those recombination events recorded 

within known pedigrees are used (Hoeschele et al. 1997). As a consequence, linkage signals 

can spread over long chromosomal distances, whereas association signals are expected only 

over much shorter distances. 

Meuwissen and Goddard (2000a) developed an original methodology for fine mapping QTL 

by modelling the history of haplotypes, assuming a genetically homogeneous population 

evolving by drift. They estimated the variance of QTL (a TL) using mixed linear models 

(e.g. Grignola et al. 1996, George et al. 2000). The novelty of their approach was to model 

the covariance due to the QTL as oTLHP,  where H is a matrix of IBD probabilities 

between all pairs of haplotypes at point p, estimated using identity-by-state (IBS) 

information from surrounding markers. Although H was initially obtained stochastically, 

Meuwissen and Goddard (2001) have also derived H deterministically based on Sved 

(1971). Meuwissen and Goddard (2000b) put this method in practice and were able to map a 

QTL for twinning rate in Norwegian cattle within a 1.3 cM region on chromosome 5, which 

is considerably more precise than would have been expected with a linkage analysis 

(Boehnke 1994). 
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The strengths of the method of Meuwissen and Goddard can be used together with a novel 

and more flexible way of estimating IBD probabilities based on linked gene flow (LGF) 

theory. This theory is an extension of the long-term genetic contributions theory used for 

predicting genetic gain when practising artificial selection whilst restricting rates of 

inbreeding (Bijma 2000). 

In this work, we tested new developments in LGF theory with simulations, proved them 

worth pursuing, and applied them to calculate inbreeding at a particular genomic location i 

for a particular individual j (F,3). A multiple regression equation allowed us to use 

neighbouring marker information when estimating F,3 . We also demonstrated that the 

utilisation of linked markers for predicting F,3  increases the accuracy of prediction. 

5.2 MATERIALS AND METHODS 

5.2.1 Joint Inbreeding (Fj) 

Approach I. Under the assumption of a constant effective population size (Ne) over 

generations, the rate of accumulation of inbreeding per generation is AF = 
	

(equation 
2 N, 

 

[4.1] in Falconer and Mackay 1996). The average level of inbreeding in the population at 

generation t can be calculated as (equation [3.12] in Falconer and Mackay 1996) 

F(t)=1— (1 — Z1F) [1] 

Alternatively, Woolliams and Bijma (2000) expressed F(t) in terms of genetic contributions 

(r1 ) and Mendelian sampling terms (a 1) of ancestors, as follows: 

F(t) = 	 - 1)r, 0 (f,t —1)A 120  + 	 (m,t —1)r, (f,t — 1)a, 	[2] 
alleles i 	 alleles u=1 i 

where the first sum is over all alleles present at generation 0 (2N assuming unrelated 

founders, where N is the number of founders), A 0  is the frequency of each allele present at 

generation 0 within the i h  founder (e.g. for allele 1, A, o  = ½ for one founder and zero for all 

other individuals), 1 0 (s,t —1) is the genetic contribution of founder ito parents of sex s at 

generation t-1 (s = m,f denoting mother and father, respectively), and a i ' U  is the Mendelian 

sampling term of ancestor i at generation u ~! 1, i.e. a i,u  = A1  - .! (A m  + A 1 ). Nevertheless, 



the choice of the founder generation is arbitrary as long as it is a distant one, and therefore, 

without loss of generality, we can let the population at generation 1 be the founders, and 

hence equation [2] simplifies to 

1-2 

F(t-1)= 
alleles u=O 

and taking expectations 

E[F(t_1)]=E[ 	
r2]U=O

E[ 	 [3] 
i 	alleles u=O 	alleles i 	 i 	u=O 

Note that: 1) under random mating and no selection, an ancestor is expected to contribute the 

same proportion of genes to both parents, i.e. E[r (m,t - i)] = E[r (f,t - i)], 2) at any 

given generation u, genetic contributions r iu  are independent from Mendelian sampling 

terms aj, 3) the long-term genetic contributions of any ancestor are constant, i.e. 

tim i = P. 	AF =
1 	2 , I Pi  and 4) see Appendix A for a demonstration of 
4. 

E[ 

	

	a] = - (i - AF). Finally, equation [3] simplifies to 
alleles i 

F(t)= /1F(1_z1F)u 	 [4] 

which is identical to equation [ 1 ] (using 	x = 
	x 	

). The term (i - ZIF)u represents 
i=O 	 1—x 

the proportion of Mendelian sampling variance remaining at generation u. 

The previous derivations apply to a single locus system. The study of a 2-loci system 

requires modelling the co-segregation of alleles on haplotypes due to linkage. The term 

(i - 2c)t models the proportion of Mendelian sampling variance of haplotypes explained by 

linkage (c is the recombination rate between the loci). Equation [4] can be extended as 

follows 

u—I F (t) = 1 r2  (i - AFr (i - 2c) = AF[I-(]- 
 AF (i - 2 c )t 1 

1— (i - AF)(1 - 2c) j 	
[5] 
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where F(t) is the joint inbreeding at generation t. Formally, FAt) is the probability of 

sampling two haplotypes (i.e. gametes) in generation t containing alleles that were originally 

together on the same founder haplotype. This probability includes only founder haplotypes, 

i.e. those that have not recombined since the founding of the population or have recombined 

with other IBD haplotypes. Founder-like haplotypes may have also appeared at any 

generation u, where 0 < u < t, due to recombination, although these are not included in the 

probability calculations. The relative importance of the latter type of haplotypes will be 

discussed in the light of simulation results. 

Of particular interest is the steady-state equilibrium, i.e. where F(t) = F(t - i) for any 

sufficiently large t. Letting t go to infinity we obtain (using 	
= 1 

when —1 <x < 1) 
i=O 	1—x 

F(t-3oo)= 	
1 	 1 	

[6] 
1+4Ne C2C 1 + 4 N e C 

where the approximation holds when c is small and Ne large. Equation [6] has already been 

derived previously (e.g. Sved 1971). The parameter space of F (t —* is bounded 

between AF and 1, for c = ½ and c = 0, respectively. 

Approach II. Alternatively, Sved (1971) defined Q as the conditional probability of joint 

IBD at two loci, given that one of them is IBD, moreover Q = E[r2 ], where r2  is the square 

correlation between allele frequencies at two loci (Hill 1975). Sved clearly stated that he 

considers only founder haplotypes, those without historical recombinations. This model is an 

adaptation of a recurrent formula for predicting inbreeding at a locus under the assumption 

of an infinite allele mutational model, i.e. neutral alleles are generated at a constant rate p 

each generation, and each allele is different from all previous alleles (Hartl and Clark 1997 

p175, Falconer and Mackay 1996 p79). The model is 

Q(t) = (i - zlF)(1 - c)2  Q(t — i) + ziF(1 - 	 [7] 

where AF is equivalent to the probability of sampling twice the same haplotype, (1 - AF)Q(t- 

1) is the probability of sampling two different haplotypes that were identical in the previous 

generation, and (1-c)2  is the probability of zero or an even number of recombination events 



in both haplotypes. Equation [6] can also be written as 

t-1 	
21 	 1 11(1 z11')(l 	2 1 

	

Q(t)F(1_c)2(1_F)(_c) j 	 - - 
	c) 

 
u=O 	 1—(1—AF)(1—c) 2  

At the steady-state equilibrium, equation [7] is 

Q(t-400)= 	
(1—c) 2 	- 	1 

2N eC(2C)+(1C)2 1 +4Ne C 
 

Hence, both approaches predict the same equilibrium point when c is small and Ne large 

(equations [6] and [8]). However, the parameter space of Q is bounded between 	
1 

6N e  +1 

and 1, for c = ½ and c = 0, respectively, hence slightly differing from F 

5.2.2 Simulations 

We checked the validity of equation [5] via computer simulations. We followed the flow of 

haplotypes through generations in an ideal population, and counted how many times two 

haplotypes identical to a haplotype at generation t = 0 were inherited by an individual at 

generation t, considering independently both ancestral (without historical recombinations) 

and ancestral-like haplotypes (with historical recombinations). 

Let us consider two neutral loci and unrelated founders, so that the first founder had 

haplotypes {1,1} and {2,2}, the second founder haplotypes (3,3} and {4,4), etcetera. At 

each generation, haplotypes were allowed to recombine before sampling among them at 

random to create the parents for the next generation. Selfing was also permitted. The 

population size (Ne) remained constant over time, and the generations were discrete. We 

explored different combinations of parameters c and Ne , each one being replicated 1000 

times. 



5.2.3 Inbreeding per individual and locus 

Two alleles that look alike but descend from different founders are said to be Identical-by-

state (IBS). The joint probability of two loci containing IBS alleles is (denoted by the area 

shared between the circles in Figure 5.1) 

'1BS =F +(F1  —F)P 21  +(F2  —F1 )P2,+(1—F1  —F2 	 [10] 

where Fj  is the probability of joint inbreeding, Fi  is the inbreeding coefficient at locus i 

calculated with equation [1], p1j is the frequency of allele j at locus i, and  P
ii is the 

observed homozygosity at locus i. Equation [3] can be simplified as, on average, F1  = F2  = F, 

and using 11. = p 

= F, +(F—F)(rI1  4-H2 )-f-(1-2F+F)]1,]12 	 [11] 

Figure 5.1. Different classes within homozygous genotypes at 
two loci. The area within the square excluding both circles denotes 
the 'IBS but not IBD' class. The area within the left (right) circle 
only, denotes IBD at locus 1 (locus 2) only. The area common to 
both circles denotes IBD at both loci. Within this area there are 
three subclasses: 1) Joint Inbreeding (F '), or the probability of 
sampling twice the same ancestral (non-recombinant) haplotype, 
2) Pseudo Joint Inbreeding (Ps), or the probability of sampling 
twice the same recombinant haplotype that is IBS with an 
ancestral haplotype, and 3) Disjoint Inbreeding (F 0), or the 
probability of sampling twice the same recombinant haplotype 
that is not IBS with an ancestral haplotype. 

The covariance matrix between two loci in terms of IBD and IBS is given in Table 5.1 (see 

derivation in Appendix B). The inbreeding at locus i (i.e. the probability of IBD alleles at 

locus i) in the j 1h  individual is F, and can be predicted using IBS information from 

neighbouring marker loci via a multiple regression technique (e.g. Draper and Smith 1966). 

The linear model is 

nk 

F; =F+bk (IBSkJ —IBSk)+eJ  [12] 

where F is the average expected inbreeding in the population (equation [1]), flk  is the number 

of segregating marker loci for which IBS (i.e. homozygosity) is known, IBSk is 1 if 
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individual j is homozygous at locus k, or 0 otherwise, IBSk is the observed mean IBS at 

locus k in the population, or alternatively, its expectation: E[IBSk ] = F + (1- F)JJk ), and 

bk the regression coefficient relating IBS at locus k with IBD at locus i. If IBS information 

comes from a single marker in the regression coefficient would be 

b = lBD(i),IBS(m) - 	(F1 - F2 ) 

im 	
IBS(m) - ( 1F)(F+(1F)Hm ) 

	 [13] 

For k markers, the vector fi with regression coefficients bk (k = 1. . . fl,) can be calculated as '8 

= V'G, where V 1  is the inverse of the variance-covariance matrix of IBS among markers, 

i.e. bottom right quadrant in Table 5.1, and G is a vector containing the covariances (F - 

F2)(141,), forj = 1. ..k, linking IBS at locus  with IBD at locus i. 

Table 5.1. Co-variance matrix of IBD and IBS between and within two loci 

IBD IBS 

Locus 1 2 1 2 

IBD 
1 F(1—F) Fr-F2  F(1—F)(l-f1 1 ) (F—F2)(1-11 2) 

2 Fr-F2  F(I—F) (F—F2)(l-11 1 ) F(1-17)(1-1T12) 

IBS 
1 F( l—F)(l-[1 1 ) (F1—F2)( l-112) (l—F)( 1 -11 1 )(F+( 1—F)11 1 ) (F—F2)(l-fl 1 -f12+f1 1 f12) 

2 (F—F2)( 1 -[T i ) F( 1—F)( 1-11 2) (F—F2 )( 1 41r112+lll[l2) (1F)( 1 fl2)(F+( lF)11 2 ) 

IBD: Identity By Descent 
IBS: Identity By State 

F: Inbreeding coefficient within a locus, equation [1] 
Fj : Joint inbreeding at 2 loci, equation [2] 

111 : Homozygosity at locus j 

5.2.4 Prediction error variance of Fij 

The prediction error variance of F, PEV(F1), was obtained via simulations. IBS was 

simulated labelling alleles 0 or 1 at random in the founder population. Regarding IBS, the 

founder population was in linkage equilibrium, i.e. D = 0. The frequency of allele 1 at u = 0 

was ½, and the changes in IBS and IBD throughout generations were recorded. IBD was 

predicted at locus i in each generation using equation [11]. The PEV was calculated as 

(Fi fr/C)2  

PEV(F.ii  )= k=1 
	

[14] 
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where Zr  = 1000 were the number of replicates, J was the observed and 	the predicted 

value of F, in the kth  replicate, respectively. 

5.3 RESULTS 

5.3.1 Validating Fj 

F1  has been defined as the probability of sampling two identical founder haplotypes at any 

given generation. At equilibrium, Fj  can be also interpreted as the probability that a 

population is fixed for any founder haplotype. Changes of F1  over generations were 

monitored for different combinations of parameters, Ne  = [5, 50, 100] and C = [0.01, 0.0001]. 

There were 1000 replicates per parameter combination (Figure 5.2). Deterministic 

predictions of F1  using formula [5] were closer to empirical results during early generations 

with low c. The greatest difference between deterministic and empirical F1  occurs when 

equilibrium is reached. 

Figure 5.2. Changes of Fj  over generations, results with equation [5] shown in grey, simulation 
results shown in black. 
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5.3.2 Impact of marker information on the PEV(F11) 

The amount of information to predict F(t)  at locus i within individual j at generation t, 

abbreviated as F,, increases with the number of genotyped markers, providing that they 

segregate in the population, and with the degree of linkage between markers and locus i. The 

prediction error variance of F1 , PEV(F,J) (Equation [14]), is a measure of how much 

information is available for predicting F,,, e.g. large PEV(F,J) values correspond to little 

information and vice-versa. In the absence of markers F,, is predicted by equation [1], and 

with marker information F, is predicted by equation [5]. Note that F, may be outside the 

range [0,1] when using marker information, however, rejecting those replicates in which F, 

> 1 did not have a serious impact on PEV(F,J). Figure 5.3 shows the changes in PEV(F,J) 

across 100 generations when using 0, 1 or 4 markers. In these simulations, the locus i was 

surrounded by four markers, two on each side, with c values between each marker and locus 

i equal to 0.2, 0.01, 0.001, and 0.1, from left to right, respectively. There were 1000 

replicates per generation. 

We always observed the same general pattern of changes in PEV(F,) over generations, 

regardless of the number of markers used. At generation u = 0 PEV(F,J) = 0 because none of 

the individuals in the population were inbred. For u > 0, PEV(F,J) increases until reaching a 

peak, and steadily decreasing thereafter (Figure 5.4). The height of the peak depends on the 

number of markers. In the long run, e.g. u - , PEV(F,J) = 0, as all individuals become 
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eventually inbred. It is important to notice that, except at the extremes (u = 0 or u - oc, 

PEV(F) showed always the lowest curve when using 4 marker loci, and the highest when 

using no markers. The relative drop in PEV(F) was larger when a single tightly linked 

marker (c = 0.001) was used compared to a situation without marker information, than when 

three markers, loosely linked to locus i (c = 0.01, 0.1, 0.2), were added to a system that 

already contained a marker tightly linked (c = 0.001) to locus i. This result is highlighting the 

fact that not only marker density is important for predicting F, but also tight linkage. 

Figure 5.3. PEV(Fy) over generations, using none, one (c = 0.001) or four 
markers (c = 0.001, 0.0 1, 0. 1, 0.2) 
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5.4 DiscussioN 

The linked gene flow (LGF) theory provides information on identity-by-descent (IBD) in a 

simple deterministic fashion. In this study we extend the existing theory based on Woolliams 

et al. (1999), to encompass a finite number of linked loci. This methodology is the only 

methodology that has predicted gene flows accurately over multiple generations in selected 

populations. Bijma et al. (1999) demonstrated its accuracy and Bijma and Woolliams (2000) 

demonstrated the weakness of a previous gene flow model (Hill 1974) to cope with gene 

flow with selection. The gene flow model (Woolliams and Bijma 2000) has an added benefit 

in that it naturally decomposes the population into genetic contributions and Mendelian 

sampling terms. The former are sufficient statistics for IBD arising through pedigree 

development, and are independent from the Mendelian sampling terms. Therefore it is a 

natural choice as a basic model since it has the ability to grow with the development of the 

applications. 

This study demonstrates the accuracy of LGF theory in predicting IBD at a locus using 

neighbouring marker information, for a typical range of parameters (e.g. t < 100), under 
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random mating conditions. We have, nevertheless, observed that when t - 	certain 

parameter combinations, e.g. Ne  = 100 and c = 0.005, empirical and deterministic predictions 

of Fj  are much more similar than for other parameter combinations, e.g. Ne  = 5 and C = 0.01. 

Although the theory predicts Fj  better when c is small, the nature of this apparent 

discrepancy between theory and simulations in certain situations requires further study. Fj  is 

explaining the proportion of Mendelian sampling variance due to allelic co-segregation via 

linkage. However, genetic drift can generate allelic co-segregation independently from 

linkage, by means of reducing the Mendelian sampling variance. We think that the inability 

of the current theory in predicting Fj  when c is large is solvable by developing another term 

to take into account co-segregation due to drift. Meanwhile, Fj  predicted with formula [5] 

coincides with Q predicted with formula [8] when c is small, and both are very close to 

simulation results. Yet, neither approach is satisfactory when c > 0.1. 

An advantage of LGF theory over the theory used by Meuwissen and Goddard is that it 

provides the framework from which more complete models can be developed, e.g. including 

selection and/or mutation. For example, Wall et al. (2002) used LGF theory to estimate a 

multivariate Mendelian sampling term to predict IBD in the course of gene introgression on 

both QTL carrier and non-carrier chromosomes. Although introgression considers only 

relatively short pedigrees it is nevertheless a process of selection based upon markers. We 

wish to develop a linkage disequilibrium mapping method that utilizes the strengths of 

Meuwissen and Goddard (2000) by complementing it with the strengths of LDF theory. 

Hence, the basic mixed model methodology of George et al. (2000) will be extended to use a 

haplotype model with an IBD covariance matrix at its heart, derived from LGF theory. 

Additionally, we will extend the methodology to rapid calculation of IBD matrices in 

complex pedigrees using the methodology of Pong-Wong et al. (2001). 

We have shown how the prediction error variance (PEV) of estimates of point IBD within an 

individual decreases as more marker information is used. Most of the information for 

predicting Fij  comes from tightly linked markers, although elucidating the optimum number 

and distances to locus i needs further work. Given optimum marker coverage, accurate 

multipoint IBD predictions along a chromosome (or genome) can be obtained. This 

information could be used, for instance, to investigate the impact of selection in determining 

patterns of localised inbreeding, and to increase the accuracy of estimation of average 

relationship matrices. 
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The power of this novel methodology will be compared against the power of existing QTL 

mapping methods, especially that proposed by Meuwissen and Goddard (2000), when 1) 

QTL genotypes are known, and 2), QTL genotypes are unknown but the current haplotypes 

surrounding the QTL are known. The robustness of the methodology will be assessed when 

assumptions are not fulfilled, and new theoretical enhancements will allow modelling more 

realistic situations, e.g. including mutation, migration and/or selection. Finally, we envisage 

LGF theory could aid the estimation of genetic relationships between individuals in natural 

populations where pedigrees are not recorded. 

5.5 APPENDIX A: Co-VARIANCE OF IBD-IBS 

The co-variance matrix of IBD-IBS, between and within loci, will be derived next. Let x and 

y be two variables representing IBS and IBD, respectively. The following procedure applies 

to both x and y, so let us consider x alone. Let x be 1 if two alleles chosen at random from a 

locus within an individual are IBS, and 0 otherwise. The variance of x within any locus is 

(x), and the covariance of IBS between loci i and j will be denoted as 	The 

variance of x can be obtained from cy2 (x) = E[x2 ]_ (E[x])2 , where 

E[x] = E[x2] = P(x = o). 0 + P(x = 1).] = P(x = i), which is the probability of IBS 

within a locus, hence 

	

o 2 (x)=P(x=1).(1-P(x=1)) 	 [Al] 

The covariance of IBS between loci i and j is cr(x1,x3)= E[x1x]-E[x1]E[x1], where 

= m n xj  =n).m.n=P(x =lnx1  =i) 
m=On=O 

and hence, 

	

=lnx3  =1)-P(x1  = ]).P(x. =i) 	 [A2] 

Likewise, the variance of IBD within a locus is 

	

= P(y = i). (i - P(y = 1)) 
	

[A3] 

and the covariance of IBD between loci is 

	

(y1,y)=P(y =iny =i)-(y =i).(y =i) 	 [A4] 
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The covariance between IBD and IBS is 

a(x1 y)=P(x, =iny3  =1)— P(x, =]).(y =i) 	 [A5] 

where j, j = 1, 2. 

In what follows, we will drop '= 1' in equations [Al] to [A5] for clarity, as we are interested 

in either IBS or IBD events, and not in the events non-IBS or non-IBD. Let us calculate the 

following probabilities P(y), P(x), P(x1  nx3 ), P(y1  n y) and P(x1  n 	where i :~ I. 

Figure 5.1 may help appreciating the following derivations. 

The probability that alleles at a locus are IBD is precisely the inbreeding coefficent (F), 

hence P(y) = F. At a locus, IBD alleles are also IBS alleles, although the opposite is not 

necessarily true. Hence, the probability of simultaneous IBD and IBS at a locus is 

P(x1  n y1 ) = F. The probability of IBS alleles at a locus is the probability of that locus 

being homozygous. Two mutually exclusive events can generate homozygosity at a locus: 

either alleles are IBD, so they are automatically IBS, or alleles are not IBD although they are 

IBS. Hence P(x) = F + (i - F)H, where H = 	, and p, is the frequency of allele i. 

The probability of joint IBD at two loci is P(y1,y 
) 
= F , for i # j, where F) is given in 

equation [5]. 

We have now all the necessary elements for calculating the co-variances between and within 

loci for IBD and IBS, and they have been summarised in Table 5.A. 
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Table 5.A. IBD and IBS variances and covariances 
between and within loci. 

ci2 (9 = (1— F). (1—H). (F + (1— F)H) 

a2 (y)=F.(1—F) 

a(y11y2 ) = F - F2  

cr(xj ,x2 )=(Fj  _F2).(1_H1 —H2+171. H2) 

a(x1,y2)=(F1 F2).(1TI2) 

Variable for IBS 
Variable for IBD 

F: Population inbreeding, equation [1] 
Fj: Joint inbreeding, equation [5] 

H: Homozygosity at locus i 

5.6 APPENDIX B: VARIANCE OF MENDELIAN TERMS 

Assume the frequency of allele b in the i1h  individual is the breeding value of that individual 

(B). Let B, take the value 1, ½ or 0 if the genotype of individual i is bb, b or ",respectively 

( represents any allele other than b). The Mendelian sampling term of individual i can be 

calculated as M i = B - (B 1  + B m  )12, where f and m stand for father and mother of i, 

respectively. 

Table 5.B. Mendelian sampling terms 

Parents Progeny 

Genotypes a p bb b p b b p •. b p 

bbxbb p4  0 1 

bbxb 2p3q 1/4 ½ -¼ ½ 

bbx" p2q2  0 1 

frxb 4p q2 ½ ¼ 0 ½ -½ ¼ 

"xb 2pq3  ¼ ½ -¼ ½ 

q4  0 1 
a  Probability of joint parental genotypes 

b  Probability of progeny genotypes 
p Frequency of allele b, and q = 1 - p 



The variance of Mi is v(M 1 ) = E[Mi ]- E[M1 
]2 

= E[Mfl, as the expectation of the 

individual Mendelian sampling term is zero. Hence, E[Mj= fJE[MIJ  I j] where j5 is 

the probability of the jth  set of parents and E[M,J 
2 
Ij] is the expected square Mendelian 

sampling term of individual i conditional on the th  set of parents (Table 5.B). Finally, 

V[M 1  ] = R9., if there is no inbreeding, otherwise v[M1] = R9. (I - AF), where (1 - AF) 

reflects the decay of Mendelian sampling variance in one generation. When considering all 

alleles together VIM ]= L [PJ Pk J(1_ AF) 
= (i F) ,as the number of alleles is 

large, i.e. j is large, J( Pj 1: Pk 
k*j 	) 
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CHAPTER 6 

6.1 Discussion 

Genetics is revolutionising the breadth and depth of agriculture, basic biology, biomedicine 

and biotechnology. The accelerated rate of gene discovery is allowing geneticists to unravel 

the genetic architecture of traits. This goal usually involves four steps: 1) localisation of 

chromosomal regions likely to contain the gene of interest, 2) positional cloning of this gene, 

3) the study of functional polymorphisms within the gene, and 4) the study of gene products. 

Steps 1 and 2 comprise the area of gene mapping; steps 3 and 4 are the realm of genomics, 

proteomics and physiology. 

The benefits of one decade of gene mapping can already be seen, for example, in health care, 

where mapping the cystic fibrosis gene (Kerem et al. 1989) has led to the development of 

gene therapy treatments (e.g. Blair et al. 1998), and where drug design is now taking into 

account both human evolutionary adaptations (Hofbauer and Huppertz 2002) and genetic 

differences between individuals (Ensom et al. 2001). In agriculture, food production has 

increased, diversified and become more efficient because of artificial selection based mainly 

on individual performance (e.g. Bichard 2002, Khush 1999, Conway and Toenniessen 1999). 

However, performance records can be difficult, time consuming and costly to collect, and the 

accuracy of selection is reduced when environmental and genetic effects are confounded. 

Hence, faster genetic gains are expected by direct selection of favourable combinations of 

genes. 

The scope of this thesis falls into step number one mentioned above, i.e. the localisation of 

chromosomal regions likely to contain genes of interest. Specifically, we were interested in 

the study and development of statistical techniques for refining the location of genes within 

these chromosomal regions. 

Genome-wide linkage analyses have rendered evidence for chromosomal regions harbouring 

genes of interest, albeit with broad confidence intervals (CI) for their location estimates. Fine 

mapping is concerned with reducing these Cl in order to facilitate positional cloning of 

genes. One of the strategies in fine gene mapping is searching for population-wide 

associations between markers and traits. This approach relies on the existence of sufficiently 

strong LD between neutral and causal polymorphisms. However, errors in association studies 
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have led in many cases to lack of reproducible results. The commonest errors are: small 

sample size, subgroup analysis, multiple testing, poorly matched control group, failure to 

attempt study replication, failure to detect LD with adjacent loci, overinterpreting results, 

positive publication bias, and unwarranted 'candidate gene' declaration after identifying 

association in an arbritrary region (Cardon and Bell 2001). 

In this thesis, we have focused our attention on a group of related statistics known as 

trans mission-disequilibrium tests (TDT5), for which errors due to poorly matched control 

groups do not occur. TDTs are tests for linkage in the presence of association. If the sample 

consists of family trios, or sib-pairs, TDTs are also tests for linkage disequilibrium (LD), i.e. 

joint linkage and association. LD is the non-random association of alleles at different loci on 

the same haplotype. The original TDT (Terwilliger and Ott 1992, Spielman et al. 1993) was 

designed to detect segregation distortion in alleles transmitted from heterozygous parents to 

affected progeny. Later, new TDTs were developed to analyse quantitative traits, sibships, 

and extended pedigrees. The most attractive feature of TDTs is their robustness in the 

presence of spurious disequilibrium, i.e. disequilibrium without linkage, which can produce a 

high rate of false positive results in other tests, e.g. case-control studies. This robustness 

derives from the fact that TDTs contrast different transmitted alleles within families, i.e. 

family-based controls, rather than using external controls. 

The four main areas of research in this thesis were the following: 

1. 	A comparative study of the power between different association tests both 

empirically and deterministically. Given the myriad of association tests currently 

available in the literature, studying their statistka1 properties, mainly power and 

robustness, is essential in order to make the best choice. We compared five different 

tests: a) a pure association test based on one-way classification analysis of variance 

(one-way ANOVA), where progeny genotype was the only classification factor, and 

b) four different TDTs, three of which were obtained from the literature (Rabinowitz 

1997, Allison 1997, Szyda et al. 1998, Xiong et al. 1998), whilst the fourth was 

based on a nested design analysis of variance (nested ANOVA), where progeny 

genotypes were nested within mating types. The one-way and the nested ANOVAs 

were the most and the least powerful tests across all scenarios, respectively. The 

other TDTs shared a similar power and ranked between the two ANOVAs. The one-

way ANOVA was the only non-robust test in the presence of population 

stratification, i.e. the rate of false positives was greater than the nominal 5% under 
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the null hypothesis of no linkage in the presence of association. All deterministic 

predictions of power were validated empirically. 

The estimation, using TDT (Rabinowitz 1997), of the effect of a point mutation 

within the melanocortin 4-receptor on production traits in pigs. Data had to be pre-

corrected for environmental influences such as sex and month of birth prior to use of 

the TDT. However, it is more efficient to estimate all parameters simultaneously. 

Hence, a set of dummy variables was extracted from the TDT to model the 

covariance between the mutation and each trait. In order to model this covariance, 

parental genotypes were required, but as most of them were missing, a Gibbs 

sampling technique was used to recover them. This covariance was estimated within 

a sire mixed linear model that also included other fixed and random factors, and, 

under an additive genetic model, it provided a direct estimate of allelic effects. This 

estimator uses only within-family genetic variation. A complementary estimator of 

allelic effects that uses between-family genetic variation was also developed and 

included in the model. Under the null hypothesis of neither linkage nor association, 

both estimators should be the same. Population stratification, a factor that generates 

association without linkage, increases the between-family genetic variation, and 

therefore has a proportional effect on the estimator that uses it. The within-family 

variation is unaffected by the presence of population stratification, and therefore the 

estimator that uses it remains robust to spurious association. Finally, we suggested 

relying on the robust estimator only, if spurious association was detected, otherwise, 

both estimators should be combined together in an overall and more powerful 

estimator (e.g. derived from a one-way ANOVA model). There was no evidence for 

admixture/stratification in this population, however this possibility should always be 

checked to avoid spurious association results. 

A genome-wide search of markers associated with bovine spongiform 

encephalopathy (BSE) using TDTs. Humans that had been infected with the agent 

that induces BSE, the presumptive prion protein, developed a lethal, early onset 

variant of the Creutzfeldt-Jakob disease. Although it has been suggested that 

association tests should be used mainly for testing candidate genes (as in the case of 

MC4R), or for fine mapping within a chromosomal region for which there is prior 

evidence of linkage, because of the large number of markers that would be required 

otherwise, we have demonstrated here that a successful genome-wide scan with a 

sparse marker map is also possible. The data were analysed with several different 
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TDTs (Sham and Curtis 1995, Bickeböller and Clerget-Darpoux 1995, Waldman et 

al. 1999), and the same profile of p-values was obtained when using either reference 

distributions (i.e. appealing to the asymptotic properties of these TDTs) or 

permutation testing. We found a significantly higher risk of BSE associated with 

three markers (on chromosomes 5, 10 and 20). In a subsequent and independent 

study, a new marker adjacent to the one on chromosome 5 was also found 

significantly associated with incidence of BSE. These promising results are currently 

being used at the Roslin Institute and other research groups to pinpoint the genes 

associated with BSE susceptibility. 

4. 	A multiple regression technique was developed to predict identity-by-descent (IBD) 

at specific chromosomal locations, within each individual, using marker information. 

The regression coefficients were obtained using the theory of long-term genetic 

contributions (Bijma 2000) and its extensions as linked gene flow (LOP) theory, 

which takes into account the history of a population. It is reassuring that, in the 

simplest case of a population evolving solely due to drift, LGP theory coincides with 

classical quantitative theory (e.g. Sved 1971). Nevertheless, the benefit of using LGF 

theory is that it provides a solid framework in which to explore the effects of 

mutation and selection in estimating IBD. This work sprang from two key papers 

(Meuwissen and Goddard 2000, 2001) in which a novel method for fine mapping 

quantitative trait loci (QTL) utilising haplotype information was proposed. At the 

core of this methodology there is the estimation of IBD by means of modelling the 

history of a population under simplifying conditions. This section of the thesis could 

be viewed as a successful preliminary study that encourages us to pursue this venture 

even further. 

Overall, this thesis covers the contemporary area of research encompassing gene mapping 

via studying population-wide association, and explores in detail interesting statistical issues 

ranging from power and robustness to evolutionary modelling, all within the context of fine 

gene mapping. It is likely that the success of TDT as a LD-based method for gene mapping 

has been due to its reputed robustness in the presence of population stratification/admixture, 

and to its simplicity, which has facilitated understanding and prompted further 

developments, e.g. including quantitative traits and any family structure. Despite the relative 

success of LD methods in dealing with simple traits, complex multi-factorial traits have been 

much more challenging. Therefore, as Terwilliger and Weiss (1998) put it, it may be possible 

that "too many people are concentrating on simple mathematically tractable models that 
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assume the only difference between simple disease and complex disease is related to effect 

size of a single allele per locus, whereas there is a looming danger that there is also a 

substantial increase in complexity in both allelic and non-allelic heterogeneity, gene by 

environment interactions, epistasis, pleiotropy, and variable expressivity of different alleles 

in the same gene" 

Despite this pessimistic view, agricultural populations may still be more amenable to LD 

mapping than human populations for several reasons. Firstly, most of the current 

breeds/strains with economic interest have been recently created after hybridising local ones 

(e.g. Jones 1998), which is an ideal population history for LD mapping (e.g. Stephens et al. 

1994). Secondly, the large population sizes and controlled mating designs in agriculture 

provide greater power to detect meaningful associations than nuclear families in human 

studies. 

Notwithstanding the advantages of TDT, one of its problems continues to be the single-

marker analysis approach, which requires corrections, sometimes too conservative, to 

account for multiple testing. In theory, TDT can be extended to analyse haplotype 

transmission rates, e.g. Zhao et al. (2000) developed a TDT for multiple markers completely 

linked. However, in the absence of complete linkage, the number of haplotype classes 

increases geometrically, up to a maximum equal to the product of the number of alleles 

across all loci. In order to keep the problem tractable, one could consider two markers at a 

time, and look for preferential transmission of a joint pair of alleles over other pairs. In 

principle, this approach should provide a better estimate of QTL location compared to a 

single marker analysis, because the QTL could be located within two neighbouring markers. 

The downside of testing haplotypes, as opposed to single markers, is the potential reduction 

in power due to the increase in number of possible contrasts for a fixed sample size. One 

option could be detecting significant markers using a single-marker TDT, followed by a 

haplotype TDT analysis to discern which side the QTL is more likely to be. 

Another problem is that TDT restricts its use of available information, e.g. discarding 

families without heterozygous parents, in order to exploit only within-family variation, the 

keypoint of the robustness of TDT. I have suggested in Chapter 3 a more powerful analysis, 

instead of TDT, unless significant spurious disequilibrium is detected. 

The theoretical limit of resolution of TDT, and of any other statistical method that relies on 

population-wide LD, is a region with conserved maximum LD that includes the causative 

mutation. For this reason, although still able to render higher mapping resolution than 
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linkage tests, LD-based tests may have difficulties differeciating between a causative 

polymorphism and a marker in complete LD with it. Moreover, without information about 

genetic diversity across populations and levels of usable LD across genomes, testing 

population-wide associations may not be robust, and results can be hard to interpret. 

The patterns of LD, e.g. measured as the chromosomal region in which LD between a locus 

and other loci dacays to half the maximum value, vary within chromosomal regions across 

populations, and across chromosomal regions within populations. Expected levels of LD 

have been calculated assuming a uniform recombination rate across the genome, over 

generations. However, phenomena such as non-uniform recombination rates, drift, ethnic 

diversity, population admixture, and mating structures cause LD patterns to diverge from 

their expectation. Therefore, it is preferable to assess LD empirically in each chromosomal 

region within each population before carrying out a disease-mapping study, rather than 

extrapolating from other chromosomal regions and/or experiments. 

New molecular approaches (e.g. comparing the phenotypes between inbred mice lines 

genetically different only at the QTL region, or the molecular activity between cell strains 

with different candidate genes in the QTL region) and biotechlological advances (e.g. low 

density microsatellite maps, medium and high density SNP maps, radiation hybrid maps, 

expression sequence tags (EST) and cDNA transcript maps, yeast and bacterial artificial 

chromosomes (YAC and BAC) libraries, microarrays, and fluorescent in sity hybridisation 

(FISH)) are currently available for dissecting QTL into individual genetic components. 

Even without a full dissection of a QTL into individual loci components, information on 

QTL position and effect can be used for practical purposes. For example, in artificial 

selection, QTL information has been incorporated in selection indeces as genetic scores that 

assess the genetic value of prospective parents. This is particularly useful when phenotypic 

data are difficult to collect, e.g. disease resistance, or the phenotype is not expressed in the 

candidate, e.g. milk yield in bulls. Some areas in which partial QTL information has been 

utilised are marker assisted selection (MAS), marker assisted introgression (MAI), 

conservation programs, product identification, and crossbred performance prediction. Some 

successful examples genes being used in animal breeding programs are the KIT gene (white 

coat colour in pigs), the RYR1 or halothane gene (high lean tissue growth and maligna 

hypertermia), the RN- gene (high lean tissue growth and poor quality of processed meat), the 

IGF2 gene (an imprented gene responsible for high lean tissue growth), the callipyge gene 

(double muscling in sheep), the miostatin gene (double muscling in cattle), the Inverdale 
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gene (increased ovulation rate in sheep), and the Booroola gene (increased ovulation rate and 

litter size in sheep) (Anderson 2001). 

However, at this early stage of application of molecular information into animal and plant 

breeding programs, Dekkers and Hospital (2002) recommend 'cautious optimism', because 

phenotypic information will still be the most important factor in selection decisions, and 

because imprecise estimates of QTL locations and effects can diminish the response to 

selection. Undoubtedly, a better knowledge of the genetic basis of traits will lead to a more 

efficient design of breeding programs. 

Finally, the future of statistical gene mapping may not lie within the mathematical domain of 

TDT, but rather in more sophisticated statistical approaches for analysing complex traits 

using genomic information, although QTL results should be confirmed using several 

independent methods and experiments, and rely less on single statistical analyses (Makcay 

2000). There are several pitfalls in QTL mapping (e.g. Flint and Mott 2001, Doerge 2002) 

but genomic information is increasing both quantitatively and qualitatively as individual 

genotyping becomes less costly thanks to high throughput DNA sequencing technology. This 

has led to the accumulation of hundreds of thousands of polymorphisms publicly available to 

be used in searching for associations and causal mutations (Ellsworth et al. 1997, Collins et 

al. 1998). 

Chapter 5 of this thesis explores the basis of a novel and promising venture, where a multi-

marker approach will be integrated together with evolutionary models to maximise the use of 

all available information. However, this methodology is yet to be thoroughly assessed, 

especially with regard to robustness to spurious association and power of QTL detection. 
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