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Abstract 
Adsorption in porous materials plays a significant role in industrial separation 

processes. Here, the host-guest interaction and the pore shape influence the 

distribution of products. Metal-organic frameworks (MOFs) are promising materials 

for separation purposes as their diversity due to their building block synthesis from 

metal corners and organic linker gives rise to a wide range of porous structures. The 

selectivity differs from MOF to MOF as the size and shapes of their pores are 

tuneable by altering the organic linkers and thus changing the host-guest interactions 

in the pores.  

 

Using mainly molecular simulation techniques, this work focuses on three types of 

separations using MOFs. Firstly, the experimental incorporation of calix[4]arenes in 

MOFs as a linker to create additional adsorption sites is investigated. For a mixture 

of methane and hydrogen, it is shown that in the calix[4]arene-based MOFs, methane 

is adsorbed preferentially over hydrogen with much higher selectivities compared to 

other MOFs in the literature. Remarkably, it was shown that extra voids created by 

calix[4]arene-based linkers, were accessible to only hydrogen molecules. Secondly, 

the strong correlation between different pore sizes and shapes in MOFs and their 

capabilities to separate xylene isomers were investigated for a number of MOFs. 

Finally, the underlying molecular mechanism of enantioseparation behaviour in a 

homochiral MOF for a number of chiral diols is presented. The simulation results 

showed good agreement with experimental enantioselectivity values. It was observed 

that high enantioselectivity occurs only at high loadings and when a perfect match in 

terms of size and shape exists between the pore size and the adsorbates.  

 

Ultimately, the information obtained from molecular simulations will further our 

understanding of how network topology, pore size and shape in MOFs influence their 

performance as selective adsorbents for desired applications. 
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Chapter 1 Introduction 
Adsorptive storage and separation is widely used in industry. Porous adsorbents such 

as zeolites, activated carbons and silica gels play a pivotal role for adsorptive 

separation processes, as different interactions of adsorbates with the internal surfaces 

determines the separation performance (Li et al. (2009)). This performance is 

directly related to adsorption kinetics and equilibrium characteristics. Increasing 

demand for more economic, efficient, and environmentally friendly adsorptive 

processes has lead to development of numerous novel adsorbents. Among these, 

metal-organic frameworks (MOFs) have attracted a great attention recently (Ma 

(2009)). MOFs are built in a self-assembly process from a combination of metal 

clusters and organic linkers and can be highly porous. Due to the numerous 

structures, pore shapes, sizes and topologies formed by different building blocks, it is 

possible to target the synthesis of a MOF for a particular application. The pore size 

and shape in MOFs can be controlled through for example changing the metal 

cluster, linker length, or functionalising the organic linker to tailor the pore surface 

chemistry for desired applications. Therefore, the pores created in these structures 

provide a great deal of opportunities for new functional materials especially in gas 

adsorption and separation applications (Schröder (2010)).  

 

Since a large number of MOFs has already been synthesised and many more are 

possible, experimental analysis and screening for appropriate applications becomes a 

formidable task. As a different approach, molecular simulations can provide 

molecular level information and theoretical guidelines that are not often accessible or 

difficult to obtain in experiments. Molecular simulations are well suited to study 

interactions between adsorbates and MOFs. From simulation results, useful 

information such as adsorption isotherms, favourable adsorption sites, interaction 

energies, selectivities as well as dynamical properties such as diffusion coefficients 

can be obtained and compared with experimental data where available. In this regard, 

computational screening of MOFs in different process conditions can be investigated 

by means of molecular simulations (Greathouse et al. (2010)) even for hypothetical 

materials (Wilmer et al. (2012)) without the need for expensive and time consuming 
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experiments. Ultimately, the simulation results will be used to predict target 

structures with optimal properties for different separation purposes. The objective of 

this research is to investigate how the pore space and therefore adsorption and 

diffusion of adsorbates in MOFs is affected by the size, shape and surface functional 

groups of the ligands using molecular simulations. The obtained information 

provides atomistic insight into the performance of different MOFs for the separation 

of three mixtures: hydrogen / methane, xylene isomers and different enantiomeric 

diols. 

 

1.1 Outline of the thesis 

This thesis is divided into six chapters and is structured as follows:  

Chapter 2 gives an overview to porous materials and MOFs and describes why 

MOFs are promising adsorbents for storage and separation applications. 

 

In Chapter 3, MOFs containing tert-butylcalix[4]arene-based ligands are introduced. 

These MOFs, which have been synthesised as part of this work, are hierarchically-

porous materials with two levels of porosity associated with both the ligand and the 

structural framework itself. The synthesised MOFs are carefully characterised using 

both experimental and computational methods. Additionally, molecular simulation of 

competitive adsorption and diffusion of methane and hydrogen is investigated. 

 

In Chapter 4, a number of MOFs are assessed for their potential for the separation of 

xylene isomers. The MOFs are categorised according to their pore diameters into 

large, medium and small pore MOFs and each category is tested for preferential 

adsorption of xylene isomers using grand canonical Monte Carlo simulations. The 

influence of pore size as well as ligands and functional groups on selectivity is also 

presented. 
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In Chapter 5, the enantioselectivity of a homochiral metal-organic framework [Ni2(L-

asp)2(bipy)] for a number of chiral diol molecules is probed and the results are 

compared to experimental data from the literature. Racemic mixture adsorption and 

single component isotherms are studied using configurational-biased grand canonical 

Monte Carlo simulations. The relationship between enantioselectivity and size and 

shape of the chiral diols are examined. In addition, the influence of the framework 

channel size on enantioselectivity is reported. 

 

The closing chapter, Chapter 6, contains a summary of this work, conclusions, and 

suggestions for future work. 

 

1.2 Publications and presentations 

Parts of this thesis have been reported in the following publications and 

presentations: 

 

Publications 

P. Z. Moghadam and T. Düren “Origin of Enantioselectivity in A Chiral Metal-

Organic Framework: A Molecular Simulation Study”, Journal of Physical Chemistry 

C, 116 (39), 20874-20881, 2012 

 
S. P. Bew, A. D. Burrows, T. Düren, M. F. Mahon, P. Z. Moghadam, V. M. 

Sebestyen, S. Thurston “Calixarene-based Metal-Organic Frameworks: Towards 

Hierarchically Porous Materials”, Chemical Communications, 48, 4824-4826, 2012 

 
F. Vermootele, M. Maes, P. Z. Moghadam, M. J. Lennox, F. Ragon, M. Boulhout, S. 

Biswas, K. G. M. Laurier, I. Beurroies, R. Denoyel, M. Roeffaers, N. Stock, T. 

Düren, C. Serre, D. E. De Vos, “p-Xylene Selective Metal-Organic Frameworks: A 

Case of Topology-Directed Selectivity”, Journal of American Chemical Society, 133 

(46), 18526-18529, 2011 
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Conference presentations: 

3rd International Conference on Metal-Organic Frameworks and Open Framework 

Compounds; Edinburgh, UK. September 2012, Poster presentation “Origin of 

Enantioselectivity in A Chiral Metal-Organic Framework: A Molecular Simulation 

Study” P. Z. Moghadam and T. Düren 

 
35th Annual British Zeolite Association Conference. Chester, UK. August 2012, 

Poster presentation, “Origin of Enantioselectivity in A Chiral Metal-Organic 

Framework: A Molecular Simulation Study” P. Z. Moghadam and T. Düren 

 
34th Annual British Zeolite Association Conference. Edinburgh, UK. April 2011, 

Oral presentation, “Molecular Simulation Studies of Xylene Separation in Metal-

Organic Frameworks” P. Z. Moghadam, M. J. Lennox and T. Düren 

 
2nd International Conference on Metal-Organic Frameworks and Open Framework 

Compounds; Marseille, France. September 2010, Poster presentation “Molecular 

Simulation Studies of Liquid Adsorption in Metal-Organic Frameworks” P. Z. 

Moghadam and T. Düren 

 
CECAM Workshop “Gas separation and gas storage using porous materials”, 

Lausanne, Switzerland. May 2010, Poster presentation “Catalytic Applications of 

Metal-Organic Frameworks” P. Z. Moghadam and T. Düren 
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Chapter 2 Materials and Methodology 

Porous materials with large internal surface areas serve as a host for different 

applications, for example; gas storage, mixture separation and catalysis ((Dunne and 

Manos (2009), Čejka (2012)). Guest-host interactions in porous materials decisively 

influence the molecular transport and adsorption mechanisms occurring in the pores. 

This is why controlling the pores size, shape and assembly of their building blocks is 

one of the most challenging areas in chemistry of these materials. Porous materials 

are classified by their pore size according to the International Union of Pure and 

Applied Chemistry (IUPAC) (Rouquerol et al. (1994)): 

• Microporous materials have pore diameters of less than 20 Å 

• Mesoporous materials have pore diameters between 20 and 500 Å 

• Macroporous materials have pore diameters greater than 500 Å 

The pore size can play a crucial role in the adsorption and diffusion of adsorbates and 

consequently on their final separation performance. In micropores, where the 

adsorbate size and pore size is comparable, van der Waals and electrostatic 

interactions of guest molecules and pore walls as well as guest-guest interactions 

become significant making them good candidates for gas storage and separation 

applications. In these conditions, preferential adsorption, steric hindrance and 

molecular sieving effects can all contribute to the separation of different adsorbate 

molecules. In mesopores, interactions between adsorbates occur more frequently 

compared to weaker interactions between adsorbates and the framework walls but 

high adsorption capacity is still achievable. In macropores, the specific surface area 

is very small and they hardly play a role in adsorption. 

 

One class of novel porous materials that has attracted interest in both academia and 

industry is metal-organic frameworks (MOFs). Currently, MOFs are being 

extensively studied to exploit their unique properties and compared with traditional 

materials such as zeolites that are widely used in industry. 
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2.1 Metal-organic Frameworks  
Metal-organic frameworks (MOF) or coordination polymers are a rather new class of 

porous materials that have attracted considerable attention. MOFs are comprised of 

metal clusters linked together with organic linkers (Figure 2-1) that form periodic 

porous structures with often high porosities (up to 90 %), large surface area (up to 

6500 m2/g) and various geometries (Xuan et al. (2012), Pham et al. (2011)). By 

choosing from a wide range of organic linkers and metals, MOFs can – in principle – 

be designed for specific applications making them for example size and shape 

selective. This type of pore structure flexibility is absent from more traditional 

microporous materials such as zeolites or activated carbons which have been in use 

for a long time in many industrial applications such as separation and catalysis 

(Kulprathipanja (2010)). Moderate heat of adsorption in MOFs also allows for 

regeneration and thermal desorption of MOF-based adsorbents. In comparison to 

zeolites which have pure inorganic, robust structures, MOFs may not be well suited 

for separation processes under extreme industrial conditions due to their relatively 

lower hydrothermal stability (Lee et al. (2009)). The stability in MOFs is affected by 

the composition of the metal clusters as well as its coordination with the organic 

linker that can define its thermal stability. Flexibility and chemical functionality of 

the linkers can also influence the structural stability in MOFs (Kang et al. (2011)). 

Under milder conditions MOFs unique properties can target separations in gas and 

liquid phase, more valuable reactions such as the production of chiral chemical 

compounds and delicate materials used as feedstocks for pharmaceutical and fine 

chemical industries (Huxford et al. (2010), Seo et al. (2000), Xie et al. (2011)).  

 

 

 

+ = 

Figure 2-1: Schematic representation of metal-organic frameworks with metal clusters (spheres) 

and organic linkers (rods). 
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MOFs are normally synthesised by solvothermal syntheses, where metal salts are 

treated with the corresponding organic linkers in a suitable solvent at high 

temperature as well as lower temperatures (i.e. room temperature) (Tranchemontagne 

et al. (2008)). For many potential applications in MOFs, it is necessary that the pores 

or channels are present and accessible to guest molecules after synthesis. However, 

some MOFs are prone to partial or full collapse of their structures upon the removal 

of guest molecules such as solvents. Therefore, the available surface area and 

adsorption performance in MOFs is highly influenced by the synthesis and activation 

methods (Hafizovic et al. (2007)). This is also why care should be taken into 

consideration when experimental results are compared with simulation results where 

solvent-free perfect rigid crystals are often used to study the adsorption in MOFs (Li 

et al. (2012)). 

While much of the research on MOF applications has focused on gas storage 

(Murray et al. (2009), Konstas et al. (2012)) and CO2 capture (Yazaydin et al. 

(2009), Xiang et al. (2012)) by selective adsorption, more recently there has been 

interest in variety of other separation applications and catalytic properties (Wee et al. 

(2011), Dhakshinamoorthy et al. (2012), Li et al. (2009), Schröder (2010)). Owing to 

their tuneable functionalities, in the past few years, MOFs have been also studied for 

chiral separation (Xie et al. (2011)), as well as biological and medical applications 

such as drug delivery (McKinlay et al. (2010)) and delivery of biologically active 

gases like nitric oxide (Hinks et al. (2010)). In this regard, finding innovative, 

theoretical strategies for optimal usage of existing MOFs and smart synthesis of new 

MOFs for different applications is very attractive. 

 

Understanding the guest-host interaction in MOFs is the key to targeted design of 

sorption and separative properties and applications in molecular recognition systems. 

Molecular simulations can provide not only reliable and fast predictions of 

adsorption and diffusion of guest molecules in porous materials, but also give 

detailed molecular-level insight into different structural information and interaction 

mechanisms that are impossible to obtain by experiments alone.  
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2.2 Molecular Simulations 

2.2.1 Statistical Mechanics 
A principal aim of molecular simulation is to calculate the macroscopic behaviour of 

a system based on microscopic interaction models between molecules. Statistical 

mechanics relates these microscopic properties to macroscopic properties. A basic 

concept in statistical mechanics is the ensemble. An ensemble is the collection of all 

possible microstates of a N  body system. A microstate or snapshot of a system 

contains complete information about the positions and momenta of all molecules and 

atoms. On the macroscopic level, the system is characterised by averages across the 

ensemble. It is common to refer to an ensemble by the set of thermodynamic 

constraints that define its macroscopic state. Some important ensembles are:  

• Microcanonical ensemble (NVE): the system is isolated with fixed number of 

molecules, volume and energy 

• Canonical ensemble (NVT): the system is connected to a heat bath with fixed 

number of molecules, volume and temperature 

• Isothermal-isobaric ensemble (NPT): where the number of molecules, 

pressure and temperature are constant 

• Grand-canonical ensemble ( VTµ ): where the number of molecules is allowed 

to fluctuate while the chemical potential, volume and temperature are kept 

constant 

 

Equilibrium thermodynamic observables can be measured by averaging the 

properties of an ensemble. In a molecular dynamics simulation, each microstate is 

obtained from the previous one by solving the equations of motion and the 

microstates are averaged over time. In Monte Carlo simulations, large numbers of 

microstates in the phase space that correspond to the same macroscopic system are 

averaged defining the ensemble average. The fundamental hypothesis of statistical 

mechanics states that the ensemble exhibits the same average properties in space as a 

single system exhibits in time. Consequently, the time-average and the ensemble-

average are the same and the system is “ergodic” (Hill (1960)). 
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A given macroscopic observable A  can be calculated by summing up the 

corresponding microstate property Ai for all possible states weighted with the 

probability of observing the system in a microstate Pi : 

∑= ii PAA  2-1 

Where ...  denotes the ensemble average. In the canonical ensemble where the 

number of molecules N , volume V  and the temperature T  are constant the 

probability of a microstate i  to occur with energy E  in a system is given by: 

)(1
iE

NVT
i e
Q

P β−=  2-2 

with β = 1
kBT

, where Bk  is the Boltzmann constant and NVTQ  
is the partition 

function for the canonical ensemble which is defined as the sum over all microstates 

in the system with N
 
particles: 

∑ −=
Ni

E
NVT

ieQ
,

)( β  2-3 

Substituting equation 2-2  into equation 2-1 gives: 

∑ −=
Ni

E
i

NVT
NVT

ieA
Q

A
,

)(1 β  2-4 

The classical equivalent of the above quantum Boltzmann distribution (the 

exponential term in equation 2-4) for a system becomes an integral over all positions 

and momenta where a point in the phase space corresponds to a microstate. The total 

energy E  can be separated into the kinetic energy which depends on the momenta, 

and the potential energy which depends on the positions of the particles, so that 

equation 2-4 becomes: 

UNN

N
N

N

NVT
NVT

erAdrV
NQ

A β−∫∑
Λ

= )(
!
11

3
 2-5 

where Λ  is the De Broglie wave length which is derived from the integration of the 

momentum part of partition function for a monatomic gas and is given by:  
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m
h

π
β

2
2

=Λ  2-6 

where h  is Planck’s constant and m  is the mass of the molecule.  

The calculation of equation 2-5 is not straight forward as numerical integration is not 

feasible for large systems. Monte Carlo methods are therefore employed. 

 

2.2.2 Monte Carlo simulations 
A Monte Carlo integration in its simplest form samples the microstates uniformly. 

This means that the sampling points are evenly spread over the integration and their 

contribution to the integral value is unweighted. However, most randomly generated 

configurations will have negligible Boltzmann weight )( Ue β−  for example due to 

particle overlap which is not energetically favourable. Hence, to improve the 

efficiency of this approach, it would be preferable if computational time is not spent 

on low-probability states that do not contribute to the average and focus sampling on 

important configurations instead, which make significant contributions to the 

partition function and ensemble averages. This is called importance sampling. To 

visit states with the correct frequency, the Metropolis Monte Carlo algorithm is used 

(Metropolis et al. (1953)). In this algorithm, a Markov chain of configurations/states 

is constructed. A Markov chain is a sequence of trials that satisfies two conditions: 

• The outcome of each trial belongs to a finite set of outcomes. 

• The outcome of each trial depends only on the outcome of the trial that 

immediately precedes it. 

 

An important property of such a Markov chain of trials is that it can be generated in 

such a way that its limiting distribution tends towards a fixed distribution. The 

Metropolis method produces the same result as a simple Monte Carlo integration, but 

it is much faster when the average properties of systems with large number of 

accessible states are calculated. For example in an NVT  ensemble, a starting (old) 

configuration is drawn from a Boltzmann distribution. A new configuration (n) is 

created by randomly moving a randomly selected particle from the old state (o). The 
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resulting change in potential energy ΔU  is calculated. This move is always accepted 

unconditionally if the new state results in lower potential energy. Otherwise, the 

move is accepted or rejected with a probability defined by the Boltzmann factor: 

),1min()( Uenoacc Δ−=→ β  2-7 

If a trial move is rejected, the system retains its old configuration.  

 

The move probabilities consist of trial probability and acceptance probability. The 

trial probability of different moves must ensure efficient sampling of the system. The 

acceptance probability depends on the energy difference between the old and the new 

state governed by detailed balance rules that guarantees desired equilibrium 

probability distribution of generated configurations (Frenkel and Smit (2002)). 

 

The ensemble used in adsorption studies is the grand-canonical ensemble, where the 

chemical potential is constant and the number of molecules is allowed to change and 

the corresponding Monte Carlo method is called grand-canonical Monte Carlo 

(GCMC) method. Therefore, the simulation of this ensemble must permit trial 

insertions and deletions of the molecules to yield configurations according to GCMC 

probabilities. 

 

2.2.3 Grand-canonical Monte Carlo simulation of adsorption 
For a system where a fluid is adsorbing in a porous material, the grand-canonical 

Monte Carlo technique is used to determine the equilibrium properties where the 

chemical potentialµ , volume V and temperature T  are kept fixed while the number 

of molecules fluctuates to mimic adsorption experiments where the adsorbed phase is 

in equilibrium with the bulk phase. The configurations are generated by creating 

random moves inside the simulation box according to probabilities, just as in the case 

of MC in the canonical ensemble, based on statistical mechanics. These trial moves 

include particle insertion, deletion, translation, and rotation. After the equilibrium is 

reached, the thermodynamical properties are computed as averages over a large 
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number of configurations in the simulation. Equation 2-5 for the VTµ ensemble 

becomes: 

)(
3 )(

!
11 UNNN

N
N

N

VT
VT

erAdrV
N

A −∫∑
ΛΞ

= µβ

µ
µ

 2-8 

Where the partition function ΞµVT  in the grand-canonical ensemble is defined as the 

sum of all possible microstates: 

∑=Ξ
N

N
NVTVT eQ µβ

µ  2-9 

Here the chemical potential, µ, is related to the fugacity of the bulk phase, f, which is 

normally used as input for GCMC simulations, by:  

)ln(1 3Λ= fβ
β

µ  2-10 

When the canonical partition function in equation 2-9 is expanded, the ratio of 
3Λ

βµe  

gives the activity z . 

z = e
βµ

Λ3  2-11 

As mentioned earlier, in GCMC simulations, to impose constant chemical potential, 

fluctuations in the number of molecules N  are required. This is achieved by random 

particle insertions or deletions. When a particle is inserted, the number of molecules 

increases from N  to N +1  with an acceptance probability of: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
=

+
=→

Δ−

)1()(
)1(,1min)(

N
zVe

Np
Npnoacc

Uβ

 
2-12 

Similarly, when a particle is deleted, the number of molecules decreases from N  to 

N −1  with an acceptance probability of: 

⎟⎟
⎠

⎞
⎜⎜
⎝
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=

−
=→

Δ−

zV
Ne

Np
Npnoacc

Uβ

)(
)1(,1min)(  

2-13 
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The acceptance probability of conventional insertion/deletion moves becomes very 

low for larger flexible molecules and normal GCMC becomes time consuming and 

unfeasible. Therefore, in order to efficiently create trial configurations of flexible 

chain molecules, the configurational-bias grand-canonical Monte Carlo (CBGCMC) 

is applied to simulate the adsorption of these systems. In this method, the molecular 

conformation is grown segment by segment biasing the growth towards energetically 

favourable conformations. When CBGCMC is used, the energy of segments and their 

so-called Rosenbluth weights are calculated and are used instead of Boltzmann factor 

when the new configuration is compared with the old configuration in the acceptance 

rules. For a more complete discussion about this technique and other molecular 

simulation techniques used in this work, the reader is referred to standard textbooks 

on molecular simulations such as Allen and Tildesley (1989), Rapaport (1995), Haile 

(1997), Frenkel and Smit (2002). 

 

2.2.4 Molecular Dynamics 
The motion of atoms in the porous materials is an inherent property to all physical 

and chemical properties such as temperature and pressure. Molecular dynamics is a 

deterministic computational technique used to estimate equilibrium and transport 

properties, generating successive configurations by solving the classical equations of 

motion for a molecular many-body system. Like Monte Carlo, the system interacts 

through a pair potential function but allows prediction of dynamic properties by 

calculating the points in the ensemble sequentially in time. 

 

Molecular dynamics proceeds iteratively by calculating the force simply according to 

classical Newton’s equation of motion:  

2

2 )(
dt
trd

mamF i
iiii ==  2-14 

Where ))(),(),(()( tztytxtr iiii =  is the position vector of the i-th atom, iF  is the 

force acting upon i-th atom at time t, im  is the mass of the atom, and ia  is the 

acceleration which is the second derivative of position with respect to time. The 
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force is calculated for each atom from the gradient of the potential energy )( NrU  

with respect to the change in their positions. 

)( N

i
i rU

r
F

∂

∂
−=  2-15 

The interaction energies are calculated using force fields (see section 2.2.6). The 

trajectory of a molecule is computed through the course of simulation (i.e. in the 

order of picoseconds (10-12 seconds)) by successively solving the equations of 

motions using a specified time step tΔ  which is typically in the order of 

femtoseconds (10-15 seconds). Numerical methods such as Verlet, velocity-Verlet and 

leapfrog algorithms have been developed to integrate the equations of motion and 

calculate the trajectories. All these algorithms approximate the positions, velocities 

and accelerations by Taylor series expansions. The simulation has to run for a certain 

time until the system has equilibrated. After equilibration, the final step of the 

simulation is to run the simulation in the production period for the desired length of 

time. It is during this period that thermodynamic properties are averaged. Similar to 

Monte Carlo simulations, molecular dynamics simulations can be run in different 

ensembles. For example in an NVT  ensemble, a heat bath is used in a way that the 

motion of particles is coupled to a thermostat in order to conserve the average kinetic 

energy. The Nosé-Hoover thermostat is one of the main temperature coupling 

methods and is thoroughly discussed in molecular dynamics textbooks (Rapaport 

(1995)).  

 

As discussed before, during a molecular dynamics simulation the positions of the 

molecules are calculated as a function of time. During this process, desired 

parameters such as the mean-squared-displacement (MSD) can be calculated. From 

these data, elementary mechanisms of diffusion on a microscopic scale can be 

reliably calculated. 

 

According to Fick’s law of diffusion the macroscopic flux of species is related to the 

negative gradient of macroscopic loading or concentration with the transport 
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diffusivity coefficient (Krishna (2009), Kärger and Ruthven (1992)). While for this 

type of diffusivity a gradient of chemical potential is necessary, self-diffusion is an 

equilibrium process. Self-diffusivity ( sD ) measures the travelled distance of a 

labelled species when the system is in equilibrium i.e. it describes Brownian motion. 

According to the Einstein equation (Equation 2-16) in a three-dimensional system 

such as a crystal, sD  can be related to the mean square displacement (MSD) of the 

labelled species.  

∑ =>=< tDtr
N

tr si 6))((1)( 22  2-16 

Where >< )(2 tr is the ensemble average of the MSD. Figure 2-2 shows that the self-

diffusion coefficient can be derived from MSD versus time curves. At short times the 

non-linear part of the graph is associated with the so-called ballistic regime that 

occurs before particles experience collision. The self-diffusion coefficient measures 

the linear growth of MSD and can be derived from the slope of the MSD versus time 

curves at long times and equilibrium. 

 

	
  

2r

t

Slope=6Ds	
  

 
Figure 2-2: Plot of time vs. square of travelled distance 

 
  

2.2.5 Periodic boundary conditions 
Molecular simulations are run to predict and study the macroscopic properties of real 

systems. Therefore, it is desired to treat the system in a way that molecules 

experience forces as if they were in a bulk environment rather than simulating a 

small number of molecules in an isolated simulation cell with a few nanometres of 

length. Periodic boundary conditions (PBC) enable this by replicating the simulation 

cell throughout the phase space to form an infinite lattice. This means that any 
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molecule in the primary simulation cell can interact not only with molecules in its 

own cell, but also with those positioned in neighbouring cells as long as they are 

within the interaction cut-off distance. One condition that is combined with the PBC 

idea is the “minimum image convention”. This condition states the simulation cell 

must be at least twice as large as the cut-off distance which ensures that each particle 

only interacts with its nearest neighbour image. Figure 2-3 illustrates the concept of 

periodic boundary condition in a two-dimensional system with the primary unit cell 

surrounded by another eight image cells. The implementation of periodic boundary 

conditions avoids finite size effects and reduces the computation costs considerably. 

 

 

 
 

 

 

 

2.2.6 Potentials 
In order to perform molecular simulations to measure adsorptive or diffusive 

properties of various adsorbates in MOFs, force fields defining interactions between 

the adsorbate and the framework and the adsorbate molecules themselves are 

required. For this purpose, general-purpose force fields such as the universal force 

field (UFF) (Rappe et al. (1992)), the DREIDING force field (Mayo et al. (1990)) 

and OPLS (Jorgensen (1986)) are normally used to represent the interactions 

between the MOFs and adsorbates. In the literature, there are also reports where 

Figure 2-3: Schematic showing periodic boundary condition for a two dimensional system.  The 

primary simulation cell is coloured in blue which is surrounded by 8 of its images. When a 

particle leaves a simulation box, it appears from the opposite side of the box. The “minimum 

image convention” concept is shown with the circle.  Each particle only interacts with its nearest 

neighbour image within the cut-off radius (rc).  

rc 
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force field parameters are refined to match simulation predictions with experimental 

measurements. These calculations should be considered with caution though, as the 

accuracy of experimental data is affected by defects of the synthesised MOFs and 

incomplete activation of samples (Liu et al. (2007), Keskin and Sholl (2009)). 

Quantum mechanical calculations are also used to provide more accurate potential 

parameters (i.e. Wang (2012), Tafipolsky et al. (2010)).  

Some MOFs are relatively rigid and some exhibit framework flexibility. None of the 

MOFs considered in this thesis exhibit extreme modes of flexibility such as breathing 

(Serre et al. (2002), Ramsahye et al. (2007)) or gate opening (Nijem et al. (2012)) 

but can be considered as rigid with limited flexibility such as rotational flexibility of 

the linkers. Some computational studies in the literature show that such lattice 

dynamics have a considerable effect on the diffusion of guest molecules in MOFs 

(Amirjalayer et al. (2007)). Nevertheless, in many cases, good agreement between 

simulation and experimental adsorption results were obtained when the framework is 

considered as rigid (Düren et al. (2009), Keskin et al. (2009)). In other studies the 

effects of framework flexibility on adsorption were found to be nominal unless for 

the structures with breathing or gating effects (Greathouse et al. (2009), Ford et al. 

(2009)). In this work as in most simulation studies, MOFs are considered rigid 

frameworks hence only the interactions between the adsorbate and framework atoms 

are taken into account. This assumption also reduces significantly the computation 

time as the inclusion of framework flexibility becomes computationally expensive.  

 

The force field parameters are typically divided into bonded and non-bonded 

interactions. Bonded interactions include bond stretching, bond bending and torsion. 

Non-bonded interactions include pairwise potentials of van der Waals attraction and 

repulsion, and Coulombic interactions (Figure 2-4). The total energy of a system is 

calculated by:  

Φtotal = ΦLJ +
pairs
∑ Φcoul +

pairs
∑ Φbond +

bonds
∑ Φangles +

angles
∑ Φtorsion

torsions
∑  2-17 
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Figure 2-4: Illustration of bonded and non-bonded interactions in a force field. 

2.2.6.1 Non-Bonded potentials 

One of the most widely used pair potentials for describing van der Waals interactions 

is the Lennard-Jones (LJ) potential. 
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where )( ijrU  is the intermolecular energy, 

€ 

rij  is the distance between molecules i  

and j , ijε  is the depth of potential well and ijσ  is the hard sphere diameter. In this 

thesis, the adsorbate molecules are represented by explicit and also united atom 

interaction sites. In the united-atom model, for example methane molecules or 

methyl groups in xylenes are modelled as one LJ site. The models and interaction 

sites for each adsorbate is described in the simulation section of each chapter. LJ 

parameters for mixed interactions are obtained from the Lorentz-Berthelot mixing 

rules:  

)(5.0 jiij σσσ +=  2-19 

jiij εεε =  2-20 

In molecular simulation, the contribution of distant atoms can be neglected as the 

potential approaches zero very quickly for larger separation distances. Therefore, a 

Bond stretching 

Electrostatics 

Angle bending Torsion  

van der Waals  

+ - 
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cut-off radius is defined and pair interactions beyond the cut-off are neglected for 

computational efficiency. 

 

The long-ranged electrostatic interactions of species are represented by point 

charges. Using the Ewald summation technique (Frenkel and Smit (2002)), the 

intermolecular electrostatic interaction for a system containing point charges is 

modelled using Coulomb’s law: 

∑ ∑
= +=

=
N

i

N

ij ij

ji
Coul r

qq
U

1 1 04πε
 2-21 

Where ε0 is the permittivity in vacuum, qi and qj are the charges on atoms i and j, 

respectively, and ijr  is the interatomic distance between atoms i  and j . In this work, 

the values for the point charges in MOFs are obtained from a first principles 

calculation method called density functional theory (DFT) (Sholl and Steckel (2009)) 

either from literature or calculated directly using Gaussian 09 package (Frisch et al. 

(2009)). 

 

2.2.6.2 Bonded interactions 

For flexible molecules, one has to account for coupling between stretching and 

bending in adjacent bonds along with torsional potential between different molecular 

planes (three consecutive bond vectors). The bonded interactions used in this thesis 

are taken from the OPLS-AA force field (Jorgensen et al. (1996)). The contributions 

of bonded interactions are calculated using the following equations: 

 

Bond stretching: The bond stretching potential describes the change in energy as the 

bond stretches and contracts. It can be described with the harmonic potential 

according to Hook’s law: 

Ustretch =
1
2
Kstretch (r − req )

2  2-22 
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where stretchK   is the bond force constant controlling the stiffness of the bond spring, 

eqr  is the equilibrium (reference) bond length and r  is the distance between the two 

bonded atoms. It has been shown that replacing stretching potential with fixed bond 

lengths have no significant effect in Monte Carlo simulations (Chen et al. (2001)). 

 

Bending potential: A harmonic potential is also used to describe bond bending in 

the angle formed by bonded triplet of atoms (θ ). The energy associated with bending 

around the equilibrium bond angle ( eqθ ), bendU  is given by: 

Ubend =
1
2
Kbend (θ −θeq )

2  2-23 

where bendK  is the bending force constant. 

 

Torsion potential: Torsion energy, Utorsion, is calculated from a periodic function 

that describes the out-of-plane angles of four atoms (The middle bond of three bonds 

formed by four atoms). 

)3cos1(
2

)2cos1(
2

)cos1(
2

432
1 φφφ ++−+++=

KKK
KUtorsion  2-24 

where iK  are the dihedral force constants and φ is the dihedral angle.  

 

Using the models and simulation techniques discussed in this chapter, in the 

remainder of this thesis the underlying adsorption and separation mechanisms of 

different mixtures in MOFs are studied. In the next chapter the separation of methane 

and hydrogen in calix[4]arenes and MOFs with calix[4]arene-based linkers is 

investigated. 
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Chapter 3 Calix[4]arene-based MOFs 
In this Chapter, MOFs with tert-butylcalix[4]arene-based (TBC4) ligands and two 

levels of porosity associated with both the ligand and the structural framework are 

studied. As part of the collaboration with the groups of Andrew Burrows, materials 

chemistry, and Sean Bew, organic chemistry, laboratory synthesis of the MOFs and 

their linkers were carried out at the Universities of Bath and East Anglia, 

respectively. Here, firstly, TBC4 and its incorporation in MOFs as linkers is 

introduced. In Section 3.2, details of the molecular dynamics and GCMC models are 

given. Section 3.3 reports simulation results of dynamic properties and adsorption of 

methane and hydrogen in TBC4 itself. Section 3.4 deals with the synthesis of calix-

based linkers by functionalising the upper- and lower-rims of TBC4 prepared at the 

University of East Anglia. Section 3.5 focuses on characterisation as well as 

molecular simulation studies of the prepared MOFs with the synthesised calix-based 

linkers. Finally, the conclusions are given in Section 3.6. 

 

3.1 Introduction 
As discussed in chapter 2, MOFs are built from metal clusters and organic linkers. 

The linkers of a MOF cannot only act for example as a catalytically active centre 

(Farrusseng et al. (2009), Isaeva and Kustov (2010)) but also provide extra 

adsorption sites for example by using structures from the calix[4]arene family 

(Figure 3-1).  

 
Figure 3-1: Schematic figure of metal-organic frameworks with metal clusters and linkers.  The 

structure of calix[4]arene which is a potential linker is shown on the right. 

 

The cavity between the upper- and lower-rims in calix[4]arenes can host a variety of 

molecules and can be functionalised to be selective towards specific molecules for 

various applications such as gas separation and storage ((Atwood et al. (2005); 



 

  22 

Thallapally et al. (2005), Enright et al. (2003), Thallapally et al. (2007)). Organic 

linkers based on tert-butylcalix[4]arene (TBC4) are attractive MOF linkers as they 

offer additional adsorption sites in the linker itself. The TBC4 molecule is a cup-

shaped (Figure 3-2a) cyclic polyphenol and is composed of four phenyl rings 

connected by methylene linkers as shown in Figure 3-2a. Depending on the crystal 

phase, the structure may be open or filled with the tert-butyl moiety from the 

opposite layer (Ripmeester et al. (2006)). In this work, only the low density open 

form is studied. This conformation creates ABCD repeating layers along the z axis of 

the unit cell (Alavi et al. (2006), Alavi and Ripmeester (2008)) (Figure 3-2b).  

 
Figure 3-2: a) Cup-shape structure of tert-butylcalix[4]arene (TBC4). b) The structure of TBC4 

in its open low density phase consisting of ABCD rows. The red spheres represent oxygen atoms. 

Hydrogen atoms are not shown for clarity. 

 

Calixarene-based frameworks have been the subject of some reports in the literature 

because of their unique structure. For example, coordination networks have been 

prepared by p-sulfonated functionalisation of the upper-rims of calix[4]arenes 

(Dalgarno et al. (2004)) and calix[6]arenes (Dalgarno et al. (2004), Liu et al. (2009)). 

Similarly, structures with lower-rim modifications containing pyridine groups 

(Olguin et al. (2009)) and calixarene analogues with sulphur-bridged aryl groups 

(Chen et al. (2009)) have been also reported. Other functionalised calix[4]arenes 

such as p-octanoyl-calix[4]arenes have also been synthesised and tested for their gas 

sorption properties (Ananchenko et al. (2008)). Carboxylates are one of the most 

b) 
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commonly used groups in constructing MOFs, however there are very few reports of 

metal coordinated frameworks with calix[4]arene-based polycarboxylates. The study 

carried out by Kennedy et al. (2010) showed that dimeric upper-rim p-

carboxylatocalix[4]arenes self-assemble into infinite hydrogen-bonded nanotubes, 

whereas p-carboxylatocalix[4]arenes-O-methyl ethers generate nanocapsules.  

 

In this work, it is demonstrated how the upper- and lower-rim of TBC4 can be 

functionalised to form the 1,3-dicarboxylic acid H2caldc (Figure 3-3). The free 

carboxylic acids were chosen to connect ligands to the metal building blocks in the 

MOF synthesis. The functionalisation of TBC4 was carried out by me in the organic 

chemistry lab at the University of East Anglia. The synthesised H2caldc were then 

used to prepare MOFs containing copper, cobalt and cadmium at the University of 

Bath.  

 

 

 

 

  
Figure 3-3: Modification of upper and lower rim of tert-butylcalix[4]arene (left structure) to 

synthesise H2caldc (right structure) which can be used as a MOF linker. 

As both TBC4 and the calix-based MOF can act as hosts for small molecules, the 

adsorptive/separative and dynamical properties of hydrogen and methane are studied 

in both. Growing demand for hydrogen in various fields such as fuel cells and 

petrochemical industries has lead to finding innovative strategies for hydrogen 

separation and purification. Hydrogen purification is commonly carried out by steam 

OO OO
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reforming of methane (Herm et al. (2012)). An energy-efficient method to separate 

CH4/H2 is to use adsorptive separation in a packed bed of porous materials. Unlike 

other impurities in H2 stream (i.e. CO, CO2) methane has no permanent dipole or 

quadrupole moment and is difficult to remove due to its weaker interactions with the 

adsorbent. CH4/H2 separation is also important in refinery off gas processing where 

equimolar CH4/H2 mixture is separated between 5-10 bar (Wu et al. (2012)). In this 

chapter, after introducing the simulation details in section 3.2, first the simulation 

results for TBC4 will be presented followed by a description of the synthesis of the 

calix-based MOFs and the simulation results in these structures.  

 

3.2 Simulation details 
Molecular simulations of methane and hydrogen in calixarenes and calixarene-based 

MOFs were computed using molecular dynamics (MD) and GCMC simulations 

implemented in the RASPA simulation package (Dubbeldam et al. (2008)). Self-

diffusion was studied using equilibrium MD in the NVT ensemble using the Nosé-

Hoover thermostat. The equations of motion were integrated with a time step of 

0.5 fs using the velocity-Verlet algorithm (Frenkel and Smit (2002)). For the 

calculation of both the guest-guest and the guest-framework interactions, the 

Lennard-Jones (LJ) potential was used with a cut-off radius of 12.8 Å. The LJ 

parameters for the frameworks were taken from the Dreiding force field (Mayo et al. 

(1990)) except for metal atoms which were taken from UFF force field (Rappe et al. 

(1992)). The potential parameters for methane were taken from Goodbody et al. 

(1991). In this model, the methane molecule is modelled as a single sphere. 

Hydrogen was modelled as a two site LJ molecule (Yang and Zhong (2006)). The 

Lorenz-Berthelot mixing rules were used to calculate mixed LJ parameters. The LJ 

potential parameters used in this work are listed in Table 3-1.  
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Table 3-1: Lennard-Jones parameters. 

 

 

 

 

 

 

 

 

Adsorption isotherms were calculated using GCMC simulations where molecules are 

randomly inserted, deleted, and translated and in the case of non-spherical molecules 

such as hydrogen also rotated. For binary mixtures, identity swap moves were also 

used for faster equilibration times. For all pure component isotherms, 1×105 

equilibration and 2×105 production cycles were used for each point whereas for 

mixtures as many as 3×105 cycles were used for each equilibration and production 

run. Here, a cycle is defined as one MC move per molecule. Each simulation cell 

consisted of eight (2×2×2) unit cells with 25.44×25.44×25.17 Å3 dimensions to 

allow for good statistics. The unit cell parameters for the synthesised MOFs are 

shown in Table 3-2. All frameworks are considered as rigid and their atoms were 

kept fixed at their crystallographic positions. The input fugacities for the GCMC 

simulations, which are related to the chemical potential by an equation of state, were 

calculated from the Peng-Robinson equation of state. It is noteworthy to mention that 

at sufficiently low pressures (i.e. less than 1 bar), methane behaves like an ideal gas 

and fugacity and pressure are similar. At higher pressures the fugacity deviates from 

pressure to essentially account for the non-ideality of the system.  All results are 

reported as absolute amount adsorbed.  

 

 

 

Species Site σ (Å) ε kB
-1 (K) Reference 

MOF Cu 3.11 2.56 Rappe et al. (1992) 
 Co 2.55 7.04 Rappe et al. (1992) 

 Cd 2.53 114 Rappe et al. (1992) 
 O 3.03 48.19 Mayo et al. (1990)  

 C 3.47 47.86 Mayo et al. (1990) 
 H 2.85 7.65 Mayo et al. (1990) 

Methane CH4 3.73 148 Goodbody et al. (1991) 
Hydrogen H2 2.72 10 Yang and Zhong (2005) 
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3.3 Adsorption and diffusion in tert-butyl-
calix[4]arene 

 

3.3.1 GCMC simulations of adsorption in tert-butyl-
calix[4]arene 

To examine the adsorption properties of TCB4, GCMC simulations of pure 

component and mixtures were carried out for methane and hydrogen. Figure 3-4 

compares pure component adsorption isotherms for methane and hydrogen at 300 K. 

The isotherm for methane shows that methane is adsorbed more strongly than 

hydrogen and reaches the saturation plateau of ~ 3 molec/uc at 200 bar. At ~ 0.5 bar, 

the simulation results agree well with the experiments carried out by Atwood et al. 

(2005) where each unit cell is occupied by two molecules of methane. The largest 

difference between the two isotherms occurs between 0.5 to 10 bar where the 

adsorption enthalpy of methane (25.3±0.4 kJ/mol) is much larger compare to 

hydrogen (9.7±0.1 kJ/mol) as the strongest adsorption sites are occupied at low 

pressures. In the case of the less strongly adsorbed component, hydrogen, the amount 

adsorbed is much smaller compare to methane and substantial pore filling occurs 

only at higher pressures.  
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Figure 3-4: Single component isotherms for methane (closed squares) and hydrogen (open 

circles) at 300 K in TBC4. The experimental point is shown with the open triangle (Atwood et al. 

(2005)).  
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To obtain a visualisation of favourable adsorption sites, snapshots for both methane 

and hydrogen at 200 bar and 300 K are shown in Figure 3-5. The equilibrium 

adsorption sites in the cavities are the same for both molecules. The saturation 

loading of 3 molec/uc for methane corresponds to configurations where two 

molecules are adsorbed in the TBC4 cages in addition to another methane sitting in 

the interstitial site. However, in the case of the less strongly adsorbing hydrogen, the 

occupancy for these sites is lower by about 1 molec/uc. 

 

 
Figure 3-5: Snapshots of methane (green) and hydrogen (blue) adsorption in TBC4 at 200 bar 

and 300 K. Corresponding peaks in the RDF (Figure 3-6) are marked with r1, r2, r3. 

The distribution of adsorbates in TBC4 was also examined by calculating the radial 

distribution functions (RDF) for methane and hydrogen. The radial distribution 

function (RDF) or pair correlation function characterises how different atoms 

correlate with each other with increasing separation distance. As shown in Figure 

3-6, RDF is a measure of probability of finding atoms in each shell dr (see red 

atoms) at a particular distance r  from reference atom (blue atom) providing 

information about spatial distribution of atoms. 

r1 r2 

r3 
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The RDF results for methane-methane and hydrogen-hydrogen at 200 bar are plotted 

in Figure 3-7.  
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Figure 3-7: Radial distribution functions for the centre of mass CH4-CH4 (solid line) and H2-H2 

(dashed line) at 200 bar and 300 K. 

The first peak for methane lies in the repulsive region of the LJ methane-methane 

interaction potential around 3.7 Å and corresponds to the TBC4 cage and interstitial 

adsorption sites as marked with r1 in Figure 3-5. This means that up to 2 methane 

molecules per cage can interact with each other. The two other long-range peaks 

correspond to the separation of methane molecules in the next nearest neighbours in 

adjacent TBC4 cages as shown by r2 and r3. Similar adsorption sites were observed 

for hydrogen although the peaks are broader indication that the hydrogen molecules 
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r 

Figure 3-6: Evaluation of radial distribution function used to extract the structural information 

from simulations 
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are less localised than the methane molecules. The first peak describing the 

separation of two hydrogen molecules in the cage of the TBC4 cage occurs at ~ 2.8 

Å due to the smaller size of the hydrogen atoms.  

 

Competitive adsorption simulations were also performed for mixtures of methane 

and hydrogen at 300 K. In accordance with the trend seen in pure component results, 

equimolar mixture simulations also show that only methane adsorbs preferentially up 

to 5-10 bar due to its better size match with calix bowls. Hydrogen only adsorbs at 

higher pressures with average methane selectivity values of ~37.0 in a range of 10 to 

180 bar. 

 

3.3.2 Molecular dynamics simulations of methane and 
hydrogen in tert-butyl-calix[4]arene 

Molecular dynamics is a powerful tool to follow the evolution of molecules 

interacting through intermolecular forces and it has been used to study various guest-

host properties such as diffusivity, sites of interaction and spatial information 

(Rodríguez-Ropero et al. (2008), Alavi et al. (2010)). Alavi and Ripmeester (2008) 

compared multiple calix occupancies of a number of adsorbates and found higher 

guest inclusion energies for xenon > carbon dioxide > methane > hydrogen. In other 

studies carried out by Alavi et al. (2006) and Daschbach et al. (2009), the structural 

properties for a number of guest molecules and carbon dioxide inside TBC4 were 

investigated using molecular dynamics simulations where no guest-guest interactions 

were found at loadings below 2 molecule per unit cell of TBC4. To get a better 

understanding of the guest-host behaviour in our synthesised calix-based MOFs 

discussed in section 3.5, in this work, a similar but more detailed molecular 

dynamics simulation study is carried out for two different loadings of 2 and 4 

molec/uc for hydrogen and methane. As each unit cell consists of two TBC4 cages, 

these loadings correspond to 1 and 2 molecules per TBC4 cage respectively. The 

occupancy probability of hydrogen and methane measured for the centre of mass at 

the two loadings is depicted in Figure 3-8. As it can be seen, at the loading of 

2  molec/uc the favourable locations are positioned inside the TCB4 cages and the 
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area between opposite neighbours of butyl tails becomes more accessible at 

4 molec/uc loading for both molecules. The density distribution figure for hydrogen 

shows that hydrogen molecules are more mobile and are exchanged between the two 

sites especially at 4 molec/uc. This was also observed by the visualisation of 

trajectories. In contrast to hydrogen, methane sits tightly inside the cages without any 

significant movement. This is consistent with the RDF results obtained from the 

GCMC simulations where sharper peaks were observed for methane molecules. 

 

 
Figure 3-8: Probability density distribution of a) hydrogen (blue) and b) methane (orange) in 

TBC4 at 300 K and loadings of  2 molec/uc (top) and 4 molec/uc (bottom). Each unit cell consists 

of two TBC4 cages. Hydrogen atoms of the framework are not shown for clarity. 

 

a) b) 
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In order to investigate the underlying nature of the dynamical motion of methane and 

hydrogen in calix cages, the mean square displacement (MSD) and velocity 

autocorrelation function (VACF) were determined at the loading of 2 molec/uc. As 

mentioned in chapter 2, the MSD is computed from the positions of a molecule 

averaged over all configurations and the slope of the MSD over time yields the self-

diffusion coefficient. The VACF is normally calculated for the analysis of vibrational 

or diffusive motion of molecules and it relates the velocity of a particle at a certain 

time to the velocity of the same particle at a later time during the course of 

simulation. If the velocity vector of a molecule is )(tv , then the VACF, )(tZv  can be 

written as: 

)0()0(
)()0(

)(
vv
tvv

tZv ⋅

⋅
=  3-1 

where, )(tv  is the velocity of the centre of mass of the molecule. As shown in Figure 

3-9, methane and hydrogen tend to form an oscillatory pattern in both the MSD and 

VACF curves. Normally, by assuming that the molecules move according to a 

random walk, it is shown that for long times, the MSD changes linearly with time 

according to Einstein relation (chapter 2, equation 2.16). In this system, the small-

amplitude fluctuations of both MSD and VACF curves are indicative of the fact that 

molecules are confined to the TBC4 cages and they do not show diffusive motion. 

The results from the VACF curves show that the velocity of the molecules is self-

correlating in a periodic fashion caused by the calix[4]arene walls. The periods of 

MSD and VACF motions are smaller for methane molecules than the ones observed 

for hydrogen. Similar periodic motion to methane was also observed for xenon and 

nitrogen guest molecules at the same loading (Alavi et al. (2006)). This suggests that 

hydrogen molecules are more mobile in the calix framework. This was expected 

because methane is larger and interacts more strongly with the calix cages in 

comparison to the smaller hydrogen molecules that are able to move and rotate more 

freely.  
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Figure 3-9: a) Mean square displacement (MSD) and b) Velocity autocorrelation function 

(VACF) for methane (solid line) and hydrogen (dotted line) for the loading of 2 molec/uc. 

 

In accordance with the previous results suggesting a tighter fit for the methane 

molecules, the analysis of the guest-framework interactions shows stronger affinity 

for methane compared to hydrogen. At the loading of 2 molec/uc, the average 

methane potential energy is -23.6 ± 0.1 kJ/mol, whereas in the case of hydrogen this 

value is much lower at around -6.4 ± 0.09 kJ/mol. It is also observed that the 

interaction between both methane-methane and hydrogen-hydrogen is negligible at 

this loading due to the large separation between them. At higher loadings of 2 

a) 

b) 
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molecules per cage of TBC4 (corresponding to 4 molec/uc), the guest-guest 

interaction energies become repulsive but are still very low compare to guest-

framework energies. 

 

The molecular dynamics and GCMC simulation results presented here along with 

other studies in the literature (Ripmeester et al. (2006)), suggest that TBC4 displays 

interesting adsorptive characteristics. These properties make these materials good 

candidates for adsorptive and separation purposes. This is why the idea of harnessing 

these properties in addition to the intrinsic characteristics of MOFs is very interesting. 

To achieve this goal, the synthesis of the organic linker based on TBC4 was carried 

out and is reported in the next section. The MOFs build from the synthesised linkers 

were then characterised and tested for their adsorption capabilities. 

  

3.4 Synthesis of calix[4]arene-based linker 
In order to synthesise the calix[4]arene based linker, tert-butylcalix[4]arene pre-

synthesised at the University of East Anglia following the method reported by 

Gutsche (1998) was used (Figure 3-10). In order to incorporate the new linker into 

MOFs, it was necessary to functionalise the lower- and upper-rims of TBC4. In this 

section, the synthesis of the new linker based on the upper rim appended 1,3-

dicarboxylate acid, 25,26,27,28-tetrapropoxycalix[4]arene-5,17-dicarboxylic acid 

(H2caldc) is described step-by-step.  
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Figure 3-10: Schematic of the synthesis of 25,26,27,28-tetrapropoxycalix[4]arene-5,17-

dicarboxylic acid (H2caldc) (right) from 5,11,17,23-tetra-tert-butyl-25,26,27,28-

hydroxycalix[4]arene (TBC4) (left). 

 

The synthesis of H2caldc from tert-butylcalix[4]arene was carried out in six steps at 

the organic chemistry lab at the University of East Anglia following a method 

developed by Dr. Sean Bew’s group. At the end of each step, the structures were 

confirmed by proton nuclear magnetic NMR (HNMR) spectroscopy. HNMR is a 

powerful method used in the determination of structure of organic compounds. The 

HNMR spectrum of an organic compound provides information about the number of 

different types of hydrogens, relative number of different hydrogens and the 

electronic environment of the different types of hydrogens. The HNMRs were 

recorded on Oxford 300 MHz spectrometer machines and samples were prepared as 

solutions of CDCL3. Chemical shifts are reported in parts per million (ppm) (δ). The 

coupling constant JHH are given in Hz. Higher quality NMRs and Figure 3-11 are 

taken from Viorica Sebestyen from the University of Bath who was my lab partner 

during the synthesis of H2caldc. A detailed schematic of the synthesis process is 

given in Figure 3-11.  

 

OO OO

HO2C CO2H

H2caldc
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Figure 3-11: Synthesis of H2caldc (25,26,27,28-tetrapropoxycalix[4]arene-5,17-dicarboxylic acid 

(8) from TBC4(2)). 

 

Step 1: Synthesis of 25,26,27,28-tetrahydroxycalix[4]arene (3) (Removal of the tert-

butyl moiety). 

 

In order to functionalise p-tert-butylcalix[4]arenes (2) at the lower rim, it is 

necessary to remove the tert-butyl moiety from the component’s upper rim, 

generating (3). This was achieved by adding 50 mL of anhydrous toluene to a round-

bottom flask charged with 12 g of p-tert-butyl-calix[4]arene under nitrogen at room 

temperature. Phenol (2.59 g) was added in one portion and the reaction mixture was 

stirred for 10 minutes. Phenol acts as an acceptor tert-butyl cation generated from the 

Step 1 

Step 2 

Step 3 Step 4 

Step 5 

Step 6 

(3) 

(4) (5) (6) 

(7) (8) 

(2) (1) 
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reaction. Aluminium chloride (12 g) was slowly added to the mixture and further 

stirred for three hours before being poured onto crushed ice (100 g) to quench the 

reaction. Aluminium chloride is used as a Lewis acid, to remove the tert-butyl 

moiety from the calix[4]arene. The reaction flask was rinsed with ice followed by 

dichloromethane (50 mL). These washings were added to the mixture before being 

transferred to a 1 L separating funnel. The aqueous phase was further extracted with 

dichloromethane (100 mL) and the combined organic phases were washed 

successively with a 1 M aqueous solution of hydrochloric acid (3×200 mL) and water 

(2×200 mL). The solvent was then removed in vacuo to afford an orange solid. 

Diethyl ether was added to the solid with subsequent cooling to -15 ºC for one hour. 

The obtained precipitate was collected by vacuum suction filtration to give a bright 

white powder (6.07 g). Analysis of the NMR revealed the tert-butyl moiety was 

successfully removed and compound (3) was obtained (Figure 3-12). 1H NMR 

(400MHz, CDCl3): δ 10.16 (s, 4H, OH), 7.02 (d, 8H, m-HOArH, J = 7.54 Hz ), 6.70 

(t, 4H, p-HOArH, J = 7.54 Hz), 4.23 (broad, 4H, ArCHaxHeqAr, J = 13.6 Hz), 3.51 

(broad, 4H, ArCHaxHeqAr, J = 13.6 Hz). As mentioned before, phenol acts as the 

acceptor of tert-butyl moiety and therefore, this reaction produces 2,4,6-tert-

butylphenol as the by-product. 
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Figure 3-12: HNMR spectrum of 25, 26, 27, 28-tetrahydroxycalix[4]arene (3) in CDCl3. 

 

Step 2: Synthesis of 25,27-dipropoxy-26,28-dihydroxycalix[4]arene (4). 

 

In order to functionalise calix[4]arene’s upper-rim, it is necessary to first selectively 

protect the lower rim hydroxyl groups to deactivate the arene group. This was 

achieved by alkylating the opposing hydroxyl groups by 1-iodopropane. To do this, a 

100 mL round-bottom flask was charged with a solution of (3) (4.31 g) in anhydrous 

acetonitrile (50 mL) at room temperature. In addition, 2.3 equivalent of potassium 

carbonate (3.20g) was used to selectively de-protonate opposing hydroxyl groups. 1-

iodopropane (6.55 mL) was then added. The mixture was heated under reflux for 16 

hours. The reaction mixture was then cooled to room temperature and the solvent 

was removed in vacuo. The solid was redissolved in dichloromethane (50 mL). The 

dichloromethane solution was washed with a 1 M hydrochloric acid (2×200 mL) 

followed by brine (50 mL) in a separating funnel. The organic layer was then filtered 

and concentrated in vacuo to give a white powder. HNMR confirmed the structure to 

be 25,27-dipropoxy-26,28-dihydroxycalix[4]arene (4) (Figure 3-13). 1H NMR 

(300MHz, CDCl3): δ 8.22 (s, 2H, OH), 6.98 (d, 4H, m-HOArH, J = 7.35 Hz), 6.85 
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(d, 4H, m-PrOArH, J = 7.54 Hz), 6.67 (t, 2H, p-HOArH, J = 7.35 Hz), 6.57 (t, 2H, p-

PrOArH, J = 7.54 Hz), 4.25 (4H, ArCHaxHeqAr, J = 14.00 Hz), 3.91 (t, 4H, 

ArOCH2CH2CH3, J = 14.00 Hz), 3.29 (4H, ArCHaxHeqAr, J = 14.00 Hz), 2.061.95 

(sextet, 4H, ArOCH2CH2CH3, J = 14.00 Hz), 1.25 (t, 6H, ArOCH2CH2CH3, 3J = 

14.00 Hz). 

 

 
Figure 3-13: HNMR spectrum of 25,27-dipropoxy-26,28-dihydroxycalix[4]arene (4) in CDCl3 . 

 

Step 3: Synthesis of 5,17-diformyl-25,27-dipropoxy-26,28-dihydroxycalix[4]arene 

(5). 

 

A 250 mL round-bottom flask charged with a solution of (4) (2.9 g) in anhydrous 

chloroform (75 mL) under an atmosphere of nitrogen was cooled to -20 °C. Tin (IV) 

chloride (6.7 mL) was added in one portion via syringe, followed by 1,1-

dichloromethyl methyl ether (1.4 mL). The mixture was then stirred at -20 °C for 30 

minutes. The solution was then allowed to reach room temperature and stirred for 
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another three hours. After the reaction was complete, it was quenched with water (40 

mL). Following transferral to a separating funnel, the organic phase was washed with 

brine (2×40 mL). The product was dried over magnesium sulfate and filtered under 

vacuum. Purification of the residue with methanol gave a purple solid (3.0 g). 

HNMR analysis revealed the solid to be (5) (Figure 3-14). 1H NMR (300MHz, 

CDCl3): δ 9.72 (s, 2H, OH), 9.21 (s, 2H, CHO), 7.57 (s, 4H, m-HOArHCOH), 6.91 

(d, 4H, m-PrOArH, J = 7.56 Hz), 6.74 (t, 2H, p-PrOArH, J = 7.56 Hz), 4.24 (d, 4H, 

ArCHaxHeqAr, J = 14.32 Hz), 3.95 (t, 4H, ArOCH2CH2CH3, J = 14.32 Hz), 3.44 (d, 

4H, ArCHaxHeqAr, J = 14.32 Hz), 2.081.96 (sextet, 4H, ArOCH2CH2CH3, J = 14.32 

Hz), 1.27 (t, 6H, ArOCH2CH2CH3, J = 14.32 Hz). 

 
Figure 3-14: HNMR spectrum of 5,17-diformyl-25,27-dipropoxy-26,28-dihydroxycalix[4]arene 

(5) in CDCl3. 

 

Step 4: Synthesis of 5,17-dimethoxy-25,27-dipropoxy-26,28-dihydroxycalix[4]arene 

(6). 

A 250 mL round-bottom flask charged with a solution of (5) (3.22 g) and methanol 

(80 mL) was stirred under an atmosphere of nitrogen. P-toluene sulfonic acid 
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(0.074 g) was added to the mixture and stirred for 5 minutes. Trimethyl orthoformate 

(12.5 mL) was added via syringe and the reaction mixture was heated under reflux 

overnight under stirring. The resulting mixture was then allowed to cool to room 

temperature. 40 mL of NaHCO3 was then added to the mixture and stirred for 15 

minutes. The solution was extracted with dichloromethane (3×30 mL) and washed 

with of water (2×30 mL) and brine (2×40 mL). Finally, the solvent was removed and 

the mixture was filtered in vacuo to afford a white powder (3.2 g). The powder was 

confirmed by HNMR to be the structure of (6). 1H NMR (250 MHz, CDCl3): δ 8.36 

(s, 2H, OH), 7.05 (s, 4H, m-HOArH(OCH3)2), 6.88 (d, 4H, m-PrOArH, J = 7.36 Hz), 

6.68 (t, 2H, p-PrOArH, J = 7.36 Hz), 5.21 (s, 2H, p-HOArH(OCH3)2) 4.24 (d, 4H, 

ArCHaxHeqAr, J = 12.80 Hz), 3.90 (t, 4H, ArOCH2CH2CH3, J = 11.20 Hz), 3.33 (d, 

4H, ArCHaxHeqAr, J = 12.80 Hz), 2.071.93 (sextet, 4H, ArOCH2CH2CH3, J = 11.20 

Hz), 1.25 (t, 6H, ArOCH2CH2CH3, J = 11.20 Hz). 

 

 
Figure 3-15: HNMR spectrum of 5,17-dimethoxy-25,27-dipropoxy-26,28-dihydroxycalix[4]arene 

(6) in CDCl3. 
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Step 5: Synthesis of 5,17-diformyl-25,26,27,28-tetrapropoxycalix[4]arene (7). 

 

Sodium hydride (0.71 g) was washed with hexane (2×15 mL) in a round-bottom 

flask. Dimethylformamide (40 mL) was added to the solution and stirred for 20 

minutes while cooling to 0 °C. (6) (1.95 g) is then added slowly over 10 minutes. The 

solution is stirred for another 30 minutes and let to warm to room temperature. n-

propyl iodide (1.45 mL) is then added via syringe and the reaction mixture is further 

stirred overnight at room temperature. The solution is cooled again to 0 °C and 

quenched with 1M HCl (30 mL) (added very slowly and stirred for 30 minutes). The 

solution was then extracted with (3×40 mL) of dichloromethane and subsequently 

the organic phase was washed with 1M HCl (50 mL) and sodium thiosulphate (2×30 

mL). The product was then washed with water (3×40 mL) and brine (2×40 mL) 

followed by drying with magnesium sulphate. The resulting solid was collected by 

suction filtration in vacuo to afford a pale yellow solid (1.5 g). HNMR revealed the 

structure to be the desired structure of (7) (Figure 3-16). 1H NMR (250 MHz, 

CDCl3): δ 9.39 (s, 2H, CHO), 6.93 (s, 4H, m-ArHCHO), 6.716.62 (m, 6H, p-ArH), 

4.40 (d, 4H, ArCHaxHeqAr, J = 13.6 Hz), 3.853.78 (m, 8H, ArOCH2CH2CH3), 3.16 

(d, 4H, ArCHaxHeqAr, J = 13.6 Hz), 1.921.77 (m, 8H, ArOCH2CH2CH3), 0.990.87 

(m, 12H, ArOCH2CH2CH3). 
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Figure 3-16: HNMR spectrum of 5,17-diformyl-25,26,27,28-tetrapropoxycalix[4]arene (7) in 

CDCl3. 

 

Step 6: Synthesis of 25,26,27,28-tetrapropoxycalix[4]arene-5,17-dicarboxylic acid 

(H2caldc) (8). 

 

In the final step, a 250 mL round-bottom flask charged with a solution of (7) (0.623 

g),  acetone and chloroform (40 mL) was cooled to 0 °C and stirred for 30 minutes. 

Sulfamic acid (0.560 g) was added to the mixture and stirred for another 30 minutes. 

Sodium chlorite (0.522 g) dissolved in 2 mL of water was then added in one portion 

and the reaction mixture was warmed to room temperature. The organic phase was 

removed under reduced pressure. The resulting mixture was extracted from water 

and HCl with ethyl acetate (4×50 mL). The combined organics were then washed 

with water (3×40 mL) and brine (2×40 mL). The organic phase was dried over 

magnesium sulphate followed by filtration to afford a pale yellow powder. HNMR 

analysis revealed the solid to be the desired title compound (8) (Figure 3-17). 1H 

NMR (250 MHz, CDCl3): δ 12.89 (s, 2H, COOH), 7.11 (d, 4H, m-ArH, J = 7.4 Hz), 
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6.96 (t, 2H, p-ArH, J = 7.4 Hz), 6.69 (s, 4H, m-ArHCOOH), 4.35 (d, 4H, 

ArCHaxHeqAr, J = 13.6 Hz), 3.92 (t, 4H, ArOCH2CH2CH3, J = 8.5 Hz), 3.59 (t, 4H, 

HOOCArOCH2CH2CH3, J = 6.5 Hz), 3.08 (d, 4H, ArCHaxHeqAr, J = 13.6 Hz), 1.80 

(m, 8H, ArOCH2CH2CH3), 1.03 (t, 6H, ArOCH2CH2CH3, J = 7.4 Hz), 0.79 (t, 6H, 

HOOCArOCH2CH2CH3, J = 7.4 Hz). 

 

 
Figure 3-17: HNMR spectrum of 25,26,27,28-tetrapropoxycalix[4]arene-5,17-dicarboxylic acid 

(H2caldc) (8) in CDCl3. 

 

3.5 MOFs with calixarene-based linkers 
The synthesised linker, H2caldc was used to prepare a number of MOFs at the 

University of Bath in the group of Dr. Andrew Burrows. The MOFs were prepared 

from the reaction of the metal (II) salts (Cu, Co and Cd) with H2caldc in DMF under 

solvothermal conditions. It is worth mentioning that the small-scale production of the 

H2caldc is due to the complexity of the reactions that makes it difficult and costly to 

scale up. Therefore, extended MOFs based on the synthesized linkers were also 

prepared in small scales. Details about the synthesis of the MOFs can be found in our 
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work (Bew et al. (2012)). The crystallographic information (CIF) files were used for 

further simulation studies in Edinburgh. In the remainder of this chapter, details of 

geometrical characterisation and building units of these MOFs along with molecular 

simulation studies of adsorption and diffusion of methane and hydrogen are 

discussed. All water and solvent molecules were removed from the MOFs prior to 

characterisation and simulations.  

 

3.5.1 Building units and geometric characterisation  
Characterisation of MOFs is of great importance as it provides useful information for 

example to understand better the adsorption behaviour in MOFs. Here, the pore size 

distribution (PSD), the surface area and pore volume measurements are reported. 

 
The PSDs for the Cu-, Co-, and Cd-MOF are shown in Figure 3-18 and were 

obtained by the method described by Gelb and Gubbins (1998) which determines the 

diameter of the largest sphere that can fit in the cavities without overlapping with 

framework atoms. To understand better the complex pore shape of these structures, a 

probe molecule with an arbitrary diameter of 2.75 Å was inserted randomly in the 

pore space and tested for overlap with the framework atoms as described by Sarkisov 

and Harrison (2011). Figure 3-19 shows the vdW representation of successful 

insertions for all three structures illustrating the accessible pore space.  
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Figure 3-18: Pore size distribution for Cu-MOF (dashed black line), Cd-MOF (dotted blue line) 

and Co-MOF (solid red line). 
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Figure 3-19: Schematic view of the pore space for a) Cu-MOF, b) Cd-MOF and c) Co-MOF 

calculated with a probe size of 2.75 Å. The orange aperture shows the available pore space in the 

vdW representation. Metal clusters are shown in transparent blue spacefill representation. Pore 

diameters obtained from the pore size distribution are marked with green and red circles for 

large and small pores, respectively. 

 

The structure of the Cu-MOF consists of paddle wheel Cu2(O2)4 metal clusters linked 

by the calix-dicarboxylates into three-dimensional network of sheets. The pore size 

distribution for this structure revealed pores with a diameter close to 4.9 Å. This peak 

corresponds to the area between linkers of adjacent metal clusters as marked in 

Figure 3-19a. The space between the linkers is fairly jammed due to the presence of 

propyl groups. The Cd-MOF contains square Cd2(O2)8 metal clusters connected to 

H2caldc linkers forming chains of three-dimensional sheets. Three peaks can be 

identified for Cd-MOF in the PSD. The largest at 4.8 Å corresponds to the void 

a) b) 

c) 
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between repeating metal clusters along the x axis (see the green circle in Figure 

3-19b). The other two peaks correspond to the empty space between the caldc linkers 

as illustrated by the red circles in Figure 3-19b. The Co-MOF has Co4(OH)2(O2)6 

units, that are linked together by single cobalt centres into chains with the propyl 

groups of each caldc protruding in the centre of the sheets. The space encountered 

between metal clusters along the y axis (green circle) and the channel-like pores (red 

circle) form the two pores in Co-MOF as shown in Figure 3-18 and Figure 3-19c. 

 

Table 3-2 shows a comparison between the surface areas and geometric void 

fractions for the MOFs studied. The accessible surface area is a geometric surface 

area mapped out with the centre of a probe rolled across the surface of the framework 

atoms. Nitrogen and hydrogen probes were used in this study with sizes of 3.68 Å 

and 2.95 Å respectively. The accessible surface area measured with the nitrogen-

sized probe molecule in general compares well with experimental BET surface areas 

(Brunauer et al. (1938)) for activated samples and therefore can provide an indication 

about the quality of the sample and the activation procedure (Düren et al. (2009), 

Düren et al. (2007)). 

 

The void fraction is the empty space of a structure divided by the total volume. To 

calculate the free volume, a 0 Å sized probe is randomly inserted in the unit cell and 

tested for overlap with the framework atoms. The pore volume is then calculated by 

multiplying the void fraction (ratio of successful insertions to the total number of 

insertions) by the unit cell volume.   
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Table 3-2: Geometric characterisation and unit cell dimensions of calix-based MOFs studied. 

 
Cd-MOF Co-MOF Cu-MOF 

N2 H2 N2 H2 N2 H2 

Accessible 
surface area 

(m2/g) 
 

   410 913 441 792 190 393 

Geometric void 
fraction 

 
0.46 0.43 0.38 

Unit cell 
dimensions (Å3) 15.6×24.9×25.3 13.8×16.0×22.3 9.5×26.3×17.6 

 

The simulated accessible surface area and void fraction data for these MOFs are 

relatively modest with larger values for the Cd- and Co-MOFs. It is noteworthy to 

mention that the data shown in Table 3-2 are calculated from perfect crystal 

structures of MOFs. This means that all solvent molecules were removed prior to 

these calculations. The experimental surface area values obtained for all three 

structures were also insignificant as after the activation treatment, the MOFs were 

shown to have poor crystallinity. Moreover, powder X-ray diffraction and 

thermogravimetric analysis data obtained from our experimental collaborators at the 

University of Bath suggest that upon removal of solvent DMF molecules, the 

structures show some degree of framework collapse and therefore loss of porosity is 

observed (Bew et al. (2012)).  

 

3.5.2 Single component adsorption isotherms 
To examine computationally the guest sorption capabilities of these three MOFs 

containing bowls of H2caldc as linkers, molecular simulations of methane and 

hydrogen adsorption were performed for all three structures. All solvent molecules 

were removed before carrying out the simulations assuming perfectly activated 

frameworks. Figure 3-20 shows simulated adsorption isotherms for methane at 300 K 

for all three calix-based MOFs. Although the shape of the isotherms is similar, the 

amount of methane adsorbed in Cd-MOF and Co-MOF is higher than that in the Cu-
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MOF throughout the whole pressure range. The adsorption isotherm for the Cu-MOF 

has a less steep slope and reaches the adsorption plateau at 5 bar. This difference in 

adsorption can be attributed to the presence of multiple adsorption sites in the Cd- 

and Co-MOFs. 
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Figure 3-20: Pure component adsorption isotherms for methane at 300 K. Cd-MOF (open 

squares), Co-MOF (closed circles) and Cu-MOF (open triangles). 

  

In order to examine the reasons for the significantly different adsorption properties of 

these rather similar MOFs, the snapshots for methane at 20 bar are given in Figure 

3-21 for all three frameworks. In most MOFs, preferential adsorption occurs around 

the metal clusters. Similarly, in the case of the Cu-MOF, the preferential adsorption 

position for methane is close to the paddle-wheel metal units. The arrangement of the 

propyl groups does not allow methane molecules to fully occupy the region between 

the linkers as is also shown in Figure 3-19. As most of the adsorption takes place 

near this region (Figure 3-21a), the void between metal clusters becomes quickly 

saturated. In contrast, in the Cd-MOF and the Co-MOF several favourable adsorption 

sites can be identified. In the Cd-MOF, at lower pressures, methane molecules sit in 

two preferential regions in the space between the metal clusters and the neighbouring 

calix bowls as shown by the blue circle in Figure 3-21b. The third site gets occupied 

at higher methane loadings and corresponds to the space between the linker tails 
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where there is less propyl group entanglement as shown by dashed red circles in 

Figure 3-21b. These three sites correspond well with the three types of pores found in 

Figure 3-18 and Figure 3-19. Similar adsorption sites were observed for the case of 

the Co-MOF. In the Co-MOF, at lower pressure, the region between the calix linkers 

and close to the metal cluster is the most favourable site (see blue circle in Figure 

3-21c). The second area corresponds to the void between the sheets where propyl 

group are protruding towards the centre as marked with the dashed red circle. It is 

important to note that the metal sites in all structures were shielded by the organic 

ligands and surrounding oxygens and therefore were not exposed in the pore space 

average distance of 5-7 Å between methane and adsorption sites near metal clusters.   

 
Figure 3-21: Snapshots for methane adsorbed in a) Cu-MOF (3), b) Cd-MOF (2) and c) Co-

MOF (1) at 20 bar and 300 K. The green methane molecules are shown in CPK representation; 

metal clusters are shown in transparent blue spheres. Note that in all three cases, the 

calix[4]arene bowls are inaccessible to methane. 

Site I&II 
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Site III 

Site I 
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The adsorption isotherms for hydrogen at 77 K for three structures are shown in 

Figure 3-22.  Similar to the trend observed for methane adsorption, the amount of 

hydrogen adsorbed is higher in the Cd-MOF followed by the Co- and Cu-MOF. The 

slope of the curve in the low-pressure region is less sharp for the Cu-MOF and the 

isotherm reaches its plateau at lower loadings. 
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Figure 3-22: Pure component adsorption isotherms for hydrogen at 77 K. Cd-MOF (open 

squares), Co-MOF (closed circles) and Cu-MOF (open triangles). 

 

Figure 3-23 shows snapshots of hydrogen molecules in all three frameworks at 77 K 

and 20 bar. Although the number of hydrogen molecules packed together is higher 

than methane due to their smaller size, the adsorption sites for hydrogen are similar 

to those seen for methane. However, interestingly, an additional adsorption site is 

observed in the Cd-MOF. As illustrated in Figure 3-23b in the case of the Cd-MOF 

framework, the bowl structure of the calix[4]arene linker provides extra site for 

hydrogen molecules in addition to the ones observed for methane (Figure 3-21). This 

is in agreement with the structural data that shows only the Cd-MOF exhibits an 

open conformation of the caldc bowl. 
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Figure 3-23: Snapshots for hydrogen adsorbed in a) Cu-MOF, b) Cd-MOF and c) Co-MOF at 

20 bar and 77 K. Hydrogen is represented by orange spheres, metal clusters are shown in 

transparent blue spheres. Note that only in the Cd-MOF the calix[4]arene bowl is accessible to 

hydrogen as illustrated by the dashed red circles. 

 

3.5.3 Mixture adsorption simulations 
For the methane and hydrogen adsorption in a gas mixture, not only the total amount 

adsorbed is important but also the selectivity of one component over the other. To 

further investigate how well these MOFs perform in separating methane and 

hydrogen, molecular simulation of equimolar mixtures were carried out over the 

entire pressure range at 300 K. 

 

 

a) b) 

c) 
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For binary mixtures, the equilibrium selectivity is defined as:  

24

24

/
/

2/4
HCH

HCH
HCH yy

xx
S =  3-2 

where xi denotes the mole fractions of the component i in the adsorbed phase and yi 

the mole fraction in the gas phase. Values greater than unity mean that methane is 

more strongly adsorbed than hydrogen. Figure 3-24 compares the selectivity of 

methane over hydrogen for the MOFs studied with other MOFs in the literature. The 

simulation results show that all three structures demonstrate better methane 

selectivities varying between 110 to 150 at 1 bar and between 40 to 50 at 20 bar. 

These values are higher than simulated selectivities observed in other MOFs reported 

in the literature ranging from ~5 to 30 (Yang and Zhong (2006), Gallo and 

Glossman-Mitnik (2009)). These other MOFs contained simple and large pores, thus 

at the studied pressure range they are not yet saturated. Therefore, the packing effects 

are insignificant and resulting in rather low selectivities. As shown in Figure 3-24, 

the selectivities observed in the calix MOFs are in the same order of magnitude of 

what is observed in a MOF called Zn(tbip) (tbip = 5-tert-butylisophthalate) where the 

selectivity varies between 125 to 180 (Liu and Johnson (2009)). This high selectivity 

was determined to be mainly due to narrow pore size of Zn(tbip) cavities. The MOFs 

studied in this thesis have also comparable pore sizes to the diameter of methane 

molecules that leads to higher selectivity values. This means that hydrogen 

adsorption is significantly affected by the presence of methane (the more strongly 

adsorbing molecule). At high pressures, hydrogen exhibits more substantial pore 

fillings and packing effects become significant for hydrogen, leading to a decrease in 

methane selectivity with further increasing pressure.  
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Figure 3-24: Adsorption selectivity for CH4 over H2 at 300 K for an equimolar mixture of 

methane and hydrogen (Yang and Zhong (2006), Gallo and Glossman-Mitnik (2009), Liu and 

Johnson (2009)). 

 

To calculate various diffusivities as a function of the concentration of methane and 

hydrogen, and to understand better the dynamics of the molecules in these three 

MOFs, molecular dynamics simulations in the canonical ensemble were performed. 

The technical details of such calculations have been discussed in chapter 2. The MD 

simulations used a time step of 0.5 fs and were performed using the Nosé-Hoover 

thermostat and velocity-Verlet algorithm to calculate molecules trajectories. Self- 

diffusivities for methane and hydrogen were calculated from the slope of the MSD 

curves of the molecules after equilibrium (see the Einstein equation 2-16) and are 

presented in Figure 3-26 as a function of concentration. Figure 3-25 shows an 

example of MSD curves as a function of time used to calculate self-diffusion at long 

times for the loading of 10 molec/uc for both methane and hydrogen.  
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Figure 3-26: Self-diffusion coefficients obtained from molecular dynamics simulations for a) 

methane and b) hydrogen at different loadings and 300 K. Cd-MOF (open squares), Co-MOF 

(closed circles) and Cu-MOF (open triangles). 
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Examination of trajectories for methane molecules in Cu-MOF showed that the pore 

space is too small for the methane molecules to exhibit diffusional behaviour (as the 

space between propyl entanglements is not accessible to methane), hence the 

dynamics of these molecules are mostly vibrational. Therefore, the MSD curves 

resembles the ones obtained for TBC4 structures and do not change linearly with 

time. This suggests that methane molecules are localised in the Cu-MOF pores and 

their motion is influenced significantly by the pore’s tightly confined environment.  

In contrast, multiple inter-connecting pores in the Cd- and Co-MOFs (see Figure 

3-19) give rise to molecular motion. However, because of the relatively small pore 

volume of these MOFs, the saturation capacity is reached at lower loadings when 

compared to those of MOFs with larger pores. Therefore, the diffusion coefficients 

are rather small. For example in a MOF with large pores and windows like IRMOF-

1, even at high loadings of 100 molec/uc of methane, the diffusivities are much 

larger with a range of ~ 10-7 to 10-8 m2/s (Skoulidas and Sholl (2005)). In the three 

MOFs studied here, at higher loadings, steric hindrance effects cause a further 

lowering of the molecules motion and self-diffusivities drop to 10-10 to 10-11 m2/s as 

shown in Figure 3-26a. In the case of hydrogen, the magnitude of the self-

diffusivities is larger than methane. This was expected as the smaller hydrogens have 

more room in the pore cavities to move around freely. The concentration dependence 

of self-diffusivity shows a moderate decrease in the case of the Cd-MOF. This 

decrease is more prominent for the Co-MOF. This concentration dependence in self-

diffusivity is common in porous materials, as the guest-guest interactions become a 

dominant factor at higher loadings and lower mobility of guests are observed. In the 

Cu-MOF, the movement of hydrogen molecules is again strongly affected by the 

pore confinement and therefore the self-diffusivity values are very low compared to 

the ones for the Cd- and Co-MOFs. To further analyse if adsorbates interact with the 

metal sites in all three MOFs, radial distribution function of hydrogen and methane 

centre of mass with all MOFs metal atoms were also calculated and are shown in 

Figure 3-27. It can be seen that the first peaks for hydrogen and methane occurs at 

distances larger than 4 and 5 Å respectively. In consistence with GCMC simulation 

results, this further proves that the adsorbates are positioned slightly apart from the 

shielded metal sites due to the presence of surrounding oxygen atoms. 
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3.6 Conclusions 
In this Chapter, molecular simulation of adsorption and diffusion were employed to 

study tert-butylcalix[4]arene (TBC4) compounds. It was shown that TBC4 cages are 

capable of forming host-guest systems with molecular recognition behaviour with 

preferential adsorption towards methane over hydrogen. A close examination of 

MSD and VACF revealed vibrational mobility of both methane and hydrogen in the 

TBC4 cages and showed stronger interaction energies for methane.  

 

Using the combination of synthesis, molecular simulations and experimental 

approaches, MOFs with TBC4-based linkers were produced. The synthesis of the 

calix-based linkers was carried out in a six-step procedure to form an upper-rim 

functionalised calixarene-dicarboxylate before being used in the MOF synthesis. A 

unique characteristic of the produced MOFs lies in the two types of porosity 

associated with both linker and the structural framework. Molecular simulation of 

adsorption and diffusion showed high selectivity values of preferential methane 

adsorption over hydrogen. The high selectivity values were largely dictated by the 

pore size selectivity as the energetic effects favours methane. This suggests that the 

characteristics of these MOFs can lead to general design strategies for synthesising 

news MOF adsorbents with desired methane selective properties. Remarkably, it was 

shown that the TBC4 bowl in the Cd-MOF is accessible to only smaller hydrogen 
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Figure 3-27: Radial distribution functions for a) H2 and b) CH4 in Cu-MOF (black solid), Co-

MOF(green dotted-dashed) and Cd-MOF (red dashed) at 10 molec/uc and 300K. 
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molecules (Figure 3-28). This, in principle, could also be further exploited for 

selective adsorptive separations. Despite the fact that it has not been possible to 

activate the MOFs studied without some degrees of structure collapsing, the 

simulations suggested that these three MOFs, display interesting gas adsorption 

behaviour and selectivity.  

 
Figure 3-28: Snapshot of hydrogen adsorption (grey spheres) in Cd-MOF, showing adsorption 

into the calix[4]arene bowl (dashed red circles). 

Further simulations with various calix-based linkers and different functionalisations 

on upper- and lower-rims of TBC4 should be the subject of future study to better 

understand their effect on pore size, topology and ultimately their adsorptive 

behaviour. The simulation results should provide a platform for optimized design 

patterns for future experimental work to minimise trial-and-error scanning of these 

complex MOFs properties. In an industrial context, calix-based MOFs with better 

chemical stability should be considered by adding neutral bridging co-ligands in 

order to prevent the formation of structures with coordinated solvent linkers and 

using more rigid calixarene ligands. Simultaneous higher adsorption capacity and 

high selectivity as well as economically viable scale-up costs must also be assessed. 
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Chapter 4 Molecular Simulation Studies of 
Xylene Separation in Metal-Organic 
Frameworks 
In this chapter, MOFs are assessed for the separation of xylene isomers using 

molecular simulations in MOFs with various pore sizes and shapes. First, it is 

explained why the separation of xylene isomers is of importance in petrochemical 

industries and then some of the existing industrial separation mechanisms are briefly 

reported. Next, the simulation details are given. The strong correlation between pore 

size in MOFs and their capability to select one isomer over the other is examined in 

the following sections. Section 4.3 examines low xylene selectivity in MOFs 

containing large pores. Section 4.4 investigates oX selectivity in MOFs with medium 

range pore sizes. Section 4.5 provides detailed analysis of competitive adsorption of 

xylene molecules in MOFs with smaller pores with a particular focus on MIL-125 

and MIL-125-NH2. Finally, the conclusions are given in Section 4.7. 
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4.1 Introduction 
Xylenes are aromatic compounds with a single benzene ring and two methyl groups 

at the 1,2, 1,3 and 1,4 positions forming ortho-xylene (oX), meta-xylene (mX) and 

para-xylene (pX), respectively. Xylenes are important industrial raw chemicals and 

are produced in mixtures from primary distillation of petroleum. In order to use each 

xylene in its pure form and relevant application, it is necessary to separate them. The 

most valuable feedstock is pX which is oxidised to form terephthalic acid and is 

widely used in the polyester and clothing  industry (Scheirs and Long (2005)). mX 

and oX are used to produce phthalic anhydride and isophthalic acid, respectively 

(Moreira et al. (2012)). The detection of individual xylene isomers is also of great 

importance in air monitoring (Yassaa et al. (2006)) and blood analysis (Hattori et al. 

(1998), Gu and Yan (2010)).  

 

 

 

 

 

 

 

 
Figure 4-1: Characteristics of xylene isomers. Xylenes show similar boiling points (bp) and 

different melting points (mp).   

 

The separation of xylene isomers is challenging. Because xylenes are isomers and 

have similar physiochemical properties, it is very difficult and costly to separate 

them using classic methods such as distillation due to their close boiling points (see 

Figure 4-1). On the other hand, their crystallisation temperatures are sufficiently 

different that it can be used to separate xylene isomers on an industrial scale. In 

crystallisation, the process is operated at the triple point at which the xylene mixture 
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is simultaneously vaporised and crystallised due to the three-point equilibrium. This 

process is continued until the liquid phase is removed and pure crystals remain in the 

feed (Shiau et al. (2008), Weissermel and Arpe (2008)). This process was widely 

used to separate pX from mixed xylene streams until the 1970s with a 60-70 % pX 

recovery (Weissermel and Arpe (2008)). 

 

In later years, more efficient separation methods using porous solids as adsorbents 

have emerged. Different modes of interaction between xylenes and the porous solids 

are the driving force to discriminate between xylene isomers. For example, the 

PAREX process developed by UOP is used to separate pX from the other isomers. In 

this method, a pX selective zeolite (i.e. MFI and Zeolite X and Y with Na+, K- and 

Ba2+ as extraframework cations) are used in a packed bed adsorption column in a 

simulated moving bed (SMB) to separate pX from the other isomers (Kurup et al. 

(2005)). The selective adsorption in zeolites of one isomer over another depends 

mainly on the nature and the number of extraframework cations (Lachet et al. 

(1999)) and molecular sieving effects (Guo et al. (2000)). This method yields better 

pX selectivity than crystallisation (95% pX recovery compared to 60-70%) and is 

more economical (Minceva and Rodrigues (2005)). Currently, about 60% of pX 

produced worldwide is based on adsorption technology (Bárcia et al. (2012)). 

 

Porous MOFs have shown remarkable potential for various separation purposes due 

to versatile structures (Li et al. (2009)). Unlike zeolites, the pores in MOFs can be 

systematically built from numerous choices of metal clusters and organic linkers 

suitable for more efficient xylene separation. Given the great number of MOFs 

reported so far in the literature, it is advantageous to computationally narrow down 

the search to only the most promising structures. In what follows the performance of 

a number of MOFs for their selectivity towards a particular xylene isomer is 

examined by looking at interaction energies, packing and molecular sieving effects. 
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4.2 Simulation Details 
The adsorption isotherms of xylene isomers were computed using grand canonical 

Monte Carlo (GCMC) simulations. These simulations were carried out in the 

Multipurpose-Simulation-Code, Music (Gupta et al. (2003)). Monte Carlo moves for 

xylenes included insertion, deletion, translation and rotation. In the case of binary 

mixtures, identity swap moves were also used for faster equilibration times. The 

simulations consisted of 150-200×106 equilibrium steps followed by an additional 

100-150 ×106 production steps.  

 

The input fugacities for the GCMC simulations were calculated from the Peng-

Robinson equation of state. The simulation cell consisted of eight (2×2×2) unit cells 

for all MOFs investigated except for MIL-53 where 32 unit cells were used for better 

statistics. The framework atoms of all MOFs studied were kept fixed at their 

crystallographic positions. 

 

The Lennard-Jones potential was used to calculate the energy of interactions with a 

cut-off distance of 15 Å. The interaction parameters for the MOFs were taken from 

the Universal Force Field (UFF) by Rappe et al. (1992). The OPLS force field was 

used to model the xylene isomers (Jorgensen and Nguyen (1993)). In this model, all 

atoms are defined explicitly except for the CH3 groups which were modelled as a 

single sphere. Lorenz-Berthelot mixing rules were applied for atom pair interactions. 

The Ewald summation method (Dufner et al. (1997)) was used to calculate the 

electrostatic interactions between the xylenes and the frameworks, while xylene-

xylene interactions were estimated using the technique described by Wolf et al. 

(1999). Partial charges for the frameworks, derived from density functional theory 

(DFT) calculations were obtained from the literature (Farrusseng et al. (2009), 

Yazaydin et al. (2009)). Partial charges for MIL-125 and MIL-125-NH2 were 

obtained from Guillaume Maurin’s group at the University of Montpellier II in 

France. 
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4.3 MOFs with large pores (d > 9 Å) 
In this section, MOFs with relatively large pores are studied for the separation of 

xylene isomers. Five large pore MOFs with pore diameters larger than 9 Å were 

chosen which are all illustrated in Figure 4-2. CPO-27 has one-dimensional 

hexagonal pores. In contrast, CuBTC has a cubic structure containing three different 

pores. Three members of isoreticular MOF family (i.e. IRMOF-1, IRMOF-3 and 

IRMOF-7) were also studied. These frameworks have rather similar pore sizes and 

topologies with different organic linkers which enables understanding subtle effects 

of linkers on the xylene separation characteristics of these MOFs. Framework 

topologies, pore sizes and linkers of all MOFs studied in this section are summarised 

in Figure 4-2. 

 

 
Figure 4-2: MOFs containing large pores studied in this work. Pore diameters and 

corresponding organic linkers are shown under each framework. 

 

4.3.1 CPO-27(Ni) and CuBTC 
The CPO-27(Ni) structure comprises helical chains of nickel octahedral linked 

together by the 2,5-dihydroxyterephthalate linkers. This combination forms one-

dimensional hexagonal channels with a diameter of 11 Å.  Complete desolvation of 

CPO-27 leads to formation of open metal sites pointing toward the channels. In order 

to investigate the adsorption strength of different xylenes in the large pores of CPO-
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27, pure component and mixture adsorption simulations were carried at 300 K. The 

adsorption isotherms for pure component xylenes are shown in Figure 4-3. 
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Figure 4-3: Pure component adsorption isotherms for xylene isomers at 300 K for CPO-27(Ni). 

pX (open circles), oX (closed squares) and mX (open triangles). 

 

As shown in the isotherms, in CPO-27, more oX is adsorbed at low loadings but the 

saturation capacity is similar for all xylenes. At low pressures unsaturated open metal 

sites in CPO-27 may affect the adsorption that can be better predicted using force 

fields derived from DFT calculations (Chen et al. (2012)). These sites become 

quickly saturated as the amount adsorbed is increased where generic force fields are 

useful for predicting adsorption. To examine how CPO-27 performs for selective 

adsorption, equimolar binary simulations were carried out at 300 K and different 

loadings which are shown in Figure 4-4. The results show overall low selectivities 

for this framework. The pX/mX mixture has an average selectivity of 1.03 meaning 

that neither isomer is adsorbed preferentially. In the case of oX/pX and oX/mX 

mixtures, oX is adsorbed preferentially with average low selectivities of ~1.4-1.5. 

This low selectivity does not change with the loading indicating that packing effects 

do not play an important role in large pores of CPO-27. 
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Figure 4-4: oX/pX , pX/mX and oX/mX equimolar mixture selectivities in CPO-27(Ni) at 

different pressures and 300 K. 

 

In general, the adsorption snapshot presented in Figure 4-5 shows a low degree of 

order in the pores for xylenes for a mixture of oX/pX. This indicates that the large 

channels in CPO-27 do not impose a great deal of confinement on xylene molecules. 

Thus, the xylene isomers still leave some free space in the channels meaning that 

reorganization can occur relatively easily within the channels and no isomer is 

strongly favored over the other. 

 
Figure 4-5: Mixture snapshot for oX (blue) / pX (green) at 1 kPa and 300 K in CPO-27(Ni). The 

hydrogen atoms on the xylene molecules are removed for clarity. 
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CuBTC (Cu3(BTC)2 with BTC = benzene-1,3,5-tricarboxylate) has a three-

dimensional cubic structure with three types of cages with sizes of 5 , 10 and 12 Å. 

The large cages are connected to tetrahedral shaped pockets through triangular 

windows of 3.5 Å. 

 

Predicted pure component isotherms for CuBTC for all xylene isomers at 300 K are 

shown in Figure 4-6. The amount of xylenes adsorbed is very similar throughout the 

entire isotherm with mX adsorbed least at lower loadings. Of all xylenes, the 

adsorbed amount for oX is higher than mX by only ~ 1.5 molec/uc at higher 

loadings. 
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Figure 4-6: Pure component adsorption isotherms for xylene isomers at 300 K for CuBTC. pX 

(open circles), oX (closed squares) and mX (open triangles). 

 

Equimolar mixture simulations were also carried out at various loadings (1, 10, 100 

and 1000 Pa). Figure 4-7 shows that the selectivity is almost negligible at different 

loadings for the pX/oX mixture. The selectivity is slightly greater than unity for the 

pX/mX mixture and oX is slightly preferred in the oX/mX mixture with the average 

low selectivities of 1.3 and 1.2 for the pressure range studied. This rather constant 
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low selectivity with the degree of pore filling points to the fact that, similar to CPO-

27, molecular packing does not play an important role.  
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Figure 4-7: pX/oX , pX/mX and oX/mX equimolar mixture selectivities in CuBTC at different 

pressures and 300 K. 

 

The density distribution of a pX/oX mixture giving the centre of mass locations of 

xylene molecules from thousands of configurations is shown in Figure 4-8. These 

locations show that the xylene molecules are adsorbed in a rather disordered fashion 

in the large cages with no strong preference for a particular isomer. The snapshot at 

high loading also shows that the smallest pores in Cu-BTC are not accessible to 

xylene isomers as marked with the red circle in Figure 4-8.  
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Figure 4-8:  a) Snapshot and b) density distribution for a mixture of oX/pX at high loading and 

300 K. pX isomers are shown in blue and oX in green. The small pores in Cu-BTC (marked by 

the red circle) are not accessible to xylene molecules. 

 

4.3.2  IRMOF1, IRMOF-3 and IRMOF-7 
IRMOFs comprise 3D periodic networks with cubic topologies formed by primary 

(metal cluster) and secondary (organic linker) building units. IRMOF-1 consists of 

Zn4O metal clusters interconnected by six 1,4-benzenedicarboxylate (BDC) linkers. 

Other members of the IRMOF family are formed by substitution of the organic linker 

with different BDC derivatives or functionalisation of hydrogens or carbons of the 

linker. These manipulations result in changes in the pore size and shape of IRMOFs 

cubic lattice. For example, IRMOF-3 has the same Zn4O clusters but the BDC linker 

is substituted with aminobenzenedicarboxylate (ABDC). Similar to IRMOF-1, the 

alternating orientation of these linkers inside and outside of the pores results in the 

formation to two peaks for their pore size distribution (Figure 4-9). In the case of 

IRMOF-7 the BDC linker is substituted with naphthalenedicarboxylate (NDC) 

resulting in only one pore type as they are orienting in the same way. In this section, 

these three MOFs (i.e. IRMOF-1, IRMOF-3 and IRMOF-7) are examined for their 

xylene selectivity behaviour. As these structures share rather similar pore topology, 

these MOFs allow investigating the influence of different organic linkers on 

preferential adsorption towards a specific isomer. The pore size distribution of the 

these MOFs are shown in Figure 4-9 and are calculated by the method described by 

Gelb and Gubbins (1998). 

a) b) 
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Figure 4-9: Pore size distribution calculated for IRMOF-1, IRMOF-3 and IRMOF-7 calculated 

by the method described by Gelb and Gubbins (1998). 

 

In order to understand better the pore and window shape of these MOFs, a probe 

molecule with a diameter of 4 Å was inserted randomly in the pore space and tested 

for overlap with the framework atoms as described by Sarkisov and Harrison (2011). 

Figure 4-10 shows the vdW representation of successful insertions for IRMOF-1, 

IRMOF-3 and IRMOF-7 illustrating the accessible pore space. As can be seen, 

IRMOF-1 and IRMOF-3 contain large square windows (red dashed marks) 

connecting cubic pores. The diameter of the largest sphere that can percolate through 

IRMOF-1 and IRMOF-3 is 7 and 6 Å, respectively. In IRMOF-7 framework, the 

available pore space is restricted by the protruding NDC linker making the 

framework windows narrower with a rectangular shape and only spheres with a 

diameter up to 4 Å can percolate through the structure (see the dashed blue rectangle 

in Figure 4-10). 
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Figure 4-10: Schematic view of the available pore space in IRMOF-1 (left) , IRMOF-3 (middle) 

and IRMOF-7 (right) calculated with a probe size of 4 Å by a method described by Sarkisov and 

Harrison (2011). The rectangular windows in IRMOF-1 and IRMOF-3 are marked in red, while 

the one in IRMOF-7 is marked in blue. 

 

4.3.2.1 Pure component adsorption isotherms 

Simulated pure component adsorption isotherms of xylene isomers in IRMOF-1, 

IRMOF-3 and IRMOF-7 are shown in Figure 4-11. In IRMOF-1, xylenes start to 

adsorb at ~ 10 Pa. In IRMOF-3, the adsorption occurs at lower pressures at around 

4 Pa which is due to the smaller pore size and therefore stronger interaction of the 

xylene molecules with the amino functionalised linkers. In comparison to IRMOF-3, 

in IRMOF-7, xylenes start filling the pores at lower pressures of slightly above 1 Pa. 

This is due to stronger adsorption strength with IRMOF-7’s NDC linkers and its 

smaller pore size.  

 

 

 



 

  70 

0.1 1 10 100 1000
0

10

20

30

40

50

60

Lo
ad

in
g 

(m
ol

ec
 / 

uc
)

Pressure (Pa)  

0.1 1 10 100 1000
0

10

20

30

40

50

60

Lo
ad

in
g 

(m
ol

ec
 / 

uc
)

Pressure (Pa)  

0.1 1 10 100 1000
0

10

20

30

40

50

60

Lo
ad

in
g 

(m
ol

ec
 / 

uc
)

Pressure (Pa)  
Figure 4-11: Single component adsorption isotherms for xylene isomers in a) IRMOF-1, b) 

IRMOF-3 and c) IRMOF-7. pX (open circles), oX (closed squares) and mX (open triangles). 

a) 

b) 

c) 
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As it can be seen from the isotherms, the amount adsorbed for all xylene isomers are 

rather similar throughout the entire isotherms for these three MOFs. In IRMOF-1 and 

IRMOF-3, oX fills the pores first but the isotherms level off at higher pressures. 

Only in IRMOF-7 marginally stronger affinity for pX was observed in the pressure 

range of 2-100 Pa but again at high loadings the amount adsorbed is very similar. 

These results indicate that the order of preferential adsorption is not related to better 

packing arrangements of a specific xylene at high pore filling.  

 

4.3.2.2 Mixture adsorption simulations 
Figure 4-12, compares the selectivities for equimolar mixtures of pX/mX and pX/oX 

at different loadings for the IRMOFs studied. In IRMOF-1, almost no preference was 

observed for the pX/mX binary mixture at different loadings. The lack of preference 

towards either xylenes in IRMOF-1 is in agreement with four component (EB, pX, 

mX and oX) vapor-phase breakthrough experiments reported by Gu et al. (2009) 

where xylene isomers were eluted at the same time at 250 °C and pre-column 

pressure of 120 kPa. At very low pressure in the Henry region (1 Pa), where the 

molecules are adsorbed close to the framework and xylene-framework interactions 

dominate, the selectivity is nearly 1 for all mixtures meaning that all xylene isomers 

interact with the framework in a similar way. At higher loadings adsorbate-adsorbate 

interactions play a more important role in selective adsorption but again the large 

pores are unable to induce significant confinement effects. For this reason, packing 

effects are insignificant and the selectivity remains close to 1 even at high loadings. 
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Figure 4-12: a) pX/mX and b) pX/oX equimolar selectivities in IRMOF-1, IRMOF-3 and 

IRMOF-7 at different pressures and 300 K. 

 

IRMOF-3 is a bit more oX selective with average selectivities of 0.75 for the 

separation of pX/oX mixture at different pressures. This rather larger preference for 

oX seems to arise from higher interaction energies between oX-oX molecules 

compared to the ones of pX-pX. This is illustrated in Figure 4-13 where the 

interaction energies are broken down into xylene-framework and xylene-xylene for a 

a) 

b) 
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mixture of pX/oX. The energy difference between oX-oX and pX-pX is higher than 

the ones seen for xylene / IRMOF-1 hence the oX preference is slightly higher. The 

interaction energies are higher for the functionalized IRMOFs, IRMOF-3 and 

IRMOF-7, but both pX and oX interact similarly with the different IRMOF 

frameworks with energy differences of 0.5-1 kJ/mol. However, the adsorbate-

adsorbate interaction energies become a dominant factor in favour of oX with a 4-5 

kJ/mol difference between the two isomers in IRMOF-1 and IRMOF-3. 
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Figure 4-13: adsorbate-adsorbate and adsorbate-framework potential energy interactions for 

IRMOF-1, IRMOF-3 an dIRMOF-7 for an equimolar mixture of pX/oX at 1 kPa and 300 K. 

In contrast to IRMOF-1 and IRMOF-3, IRMOF-7 demonstrates better pX selectivity 

in pX/oX mixture although the selectivity for a mixture of pX/mX is almost 

negligible. Even though little difference in adsorption capacity of pure component 

xylene isotherms was observed, in the case of pX/oX mixtures, IRMOF-7 shows a 

preferable adsorption for pX over the other isomers as shown in Figure 4-12. The 

interaction energy for pX-pX is 3 kJ/mol higher than that of oX-oX (see Figure 

4-13). pX-framework interactions are higher by less than 1 kJ/mol that arises from 

the Coulombic interactions with the framework atoms. Simulation snapshot for a 

mixture of pX/oX reveal that pX molecules are sitting in the positions corresponding 

to high energetic interactions allowing better vdW interactions with each other and 

the framework. As shown in Figure 4-14 these positions are located in the narrow 

rectangular shaped windows of IRMOF-7 created by the naphthalene rings (see 
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Figure 4-10). This window is less attractive for oX and to some extent for mX as 

they have larger waist diameters.  

 

 
Figure 4-14: Snapshot of a 50/50 mixture of pX (blue) and oX (orange) in IRMOF-7 at 1 kPa 

and 300 K. The framework is shown in vdW representation. The preferred locations of pX in 

the windows are marked by dashed circles. 

 

To obtain more details about the interaction between the frameworks and the xylenes 

molecules, the influence of electrostatic interactions on selectivity was also studied 

by switching off the fluid / framework Coulombic interactions. Repetition of the 

simulations at 1 kPa and 300 K showed a general decrease in selectivity towards oX 

in IRMOF-1 and IRMOF-3 and in the case of IRMOF-7 towards pX for all mixtures 

studied. This decrease is more prominent for the functionalised IRMOF-3 and 

IRMOF-7 and no significant effect was observed for IRMOF-1. In IRMOF-1 the 

selectivity for pX/mX and pX/oX decreased by an average of only 4 % whereas in 

the case of IRMOF-3 and IRMOF-7, 17 % and 14 % reductions were seen 

respectively.  
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The results so far demonstrate that although the functionalised IRMOFs studied 

exhibit a mild preference towards a specific xylene isomer depending on their linker 

the large pores in these MOFs are again too large to provide a sterically confined 

environment or exhibit molecular sieving properties. Therefore, xylene molecules 

occupy a large number of favourable positions in the frameworks resulting in low 

selectivity values. 

 

4.4 o-xylene selective MOFs (6 Å < d < 8.5 Å) 
MOFs with medium pore diameters (i.e 6 Å < d < 8.5 Å) were also examined for 

their xylene separation capability. Here, MIL-53 is discussed in detail. MIL-53 

(Serre et al. (2002)) is a highly flexible framework and consists of one-dimensional 

diamond shaped channels with a diameter of 8.5 Å in its open conformation (Figure 

4-15). The channels are formed by infinite chains of coordinated metals with 

terephthalate and OH groups i.e. XO4(OH)2 with X=Al, Cr, Fe, Ga. These channels 

are not interconnected. 

 
Figure 4-15: View of the MIL-53 channels at room temperature closed form (left) and the open 

form (right). 

 

Here, only the Al open form of MIL-53 is studied and the framework is considered to 

have a perfect rigid lattice. This assumption is considered to be reasonable for the 

purpose of this screening study as the adsorption capacity and selectivity 

comparisons are discussed mainly at saturation loadings where MIL-53 exhibits its 

open structure. The single component adsorption isotherms for xylenes are shown in 

8.5 Å 
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Figure 4-16. The amount adsorbed of oX is higher throughout the entire isotherm and 

maximum amount adsorbed is 3.12 molec/uc while the maximum amount adsorbed 

for pX and mX is 3.06 and 3 molec/uc, respectively.   
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Figure 4-16: Pure component adsorption isotherms for xylene isomers in MIL-53(Al) at 300 K. 

pX (open circles), oX (closed squares) and mX (open triangles). 

 

The simulation predictions agree well with the order of xylenes adsorbed (oX > pX 

and mX) in MIL-53 experimentally. These experiments were carried out in gas phase 

and batch liquid phase adsorption by Finsy et al. (2009) and Alaerts et al. (2008) at 

383 and 300 K respectively. There is also a very good agreement between the 

saturation capacities obtained from simulations and the above gas phase experiments 

with maximum capacities of 3.3 (sim. 3.12), 2.95 (sim. 3.06) and 3.0 (sim. 3.0) 

molec/uc for oX, pX and mX, respectively (Finsy et al. (2009)).  

 

It should be noted that in the gas phase experiments, the MIL-53 framework changes 

its phase from the closed form at low loading to the open form at high loading 

whereas in our simulations, only the open form of MIL-53 is studied and the 

framework atoms are fixed at their crystallographic positions. Therefore the effects 

of framework flexibility are not accounted for in the simulations. The framework 
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flexibility also provides an explanation why the simulated saturation values for oX 

are slightly underpredicted: Alaerts et al. (2008) observed experimentally that oX 

isomers distort MIL-53 to a greater extent than mX at saturation uptake. In 

agreement with the experimental findings, the xylene-framework interaction energies 

shown in Table 4-1 are larger for oX.  

  
Table 4-1: Interaction energies for equimolar xylene mixtures of oX/mX and oX/pX at 1 kPa 
and 300 K in MIL-53. 

 

In the competitive adsorption simulations, oX/mX showed the highest oX selectivity 

value of 3.6 at 1 kPa and 300 K. This selectivity value is much higher than those seen 

for MOFs with large pores shown in the previous section with average selectivities of 

1-1.5. oX is also preferred in the oX/pX mixture with a selectivity of 1.63. The 

selectivity observed in favour of oX is not caused by shape-selective effects in the 

MIL-53 channels as oX has not the smallest dimensions of the xylene isomers (see 

Figure 4-1). The adsorption preference was found to be driven by both energetic and 

steric effects. From the energy values broken down into adsorbate-adsorbate and 

adsorbate-framework energies in Table 4-1, it can be seen that the oX-MIL-53 

interactions are larger by 1-2 kJ/mol than the mX- and pX-MIL53 interactions. 

Similar to larger MOFs presented in the previous section, but more prominent, the 

difference in the adsorbate-adsorbate interactions between oX and mX becomes 

more evident. oX-oX interactions are larger by 6.5 kJ/mol compared to mX-mX 

interactions in the mixture. This higher interaction energy shows that oX molecules 

are able to interact more strongly with each other thus enhancing the selectivity. 

 

The snapshots presented in Figure 4-17: show that at maximum loading two 

conformations can be found for oX. In the first conformation, oX molecules are 

stacked together in two rows parallel to the channel with a slight angle with the pore 

 Potential energy (kJ/mol) 
 oX mX oX pX 

adsorbate-adsorbate -9.95 -3.3 -8.06 -5.42 
adsorbate-framework -73.64 -71.93 -73.37 -72.59 
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walls. In the other conformation, both methyl groups in oX are facing towards the 

framework’s carboxylate linker and can interact with it. In contrast to this in pX the 

molecules are arranged in such a way that their methyl groups are facing the metal 

clusters. mX are located parallel to the walls with no perpendicular conformations. 

This also explains the experimental observation that mX has lower interaction with 

the framework and does not distort the framework as much as oX. The distance 

between xylene molecules was calculated to be smaller for oXs (7.5±0.72 Å) than for 

mX (8.76±0.7 Å) and pX (8.9±0.8 Å). This indicates that oX molecules can pack 

more efficiently within the highly confined channels of MIL-53. Furthermore, the 

packing effects also explain the increase in oX selectivity in the oX/pX mixture from 

1.17 at 0.001 Pa to 1.64 at 1000 Pa as the channel confinement plays a beneficial role 

for the adsorption entropy by allowing oX to adopt a larger number of favourable 

configurations in the adsorbed phase. 
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Figure 4-17: Single component adsorption snapshots at high loading and 300 K in MIL-53 for 

oX, pX and mX.  

 

In order to investigate the influence of Coulombic interactions on the selectivity, 

mixture simulations were repeated, once with the xylene-xylene and once with the 

xylene-framework Coulombic interactions switched off. Allowing the Coulombic 

interaction between only the framework and xylenes but not between the xylene 

molecules led to an increase in selectivity for oX/pX from 1.64 to 1.92 and more 

considerably for the oX/mX mixture from 3.6 to 6.2. This indicates that the 

o-xylene 

p-xylene 

m-xylene 
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electrostatic interactions hinder the oX molecules to get closer to each other leading 

to a lower selectivity value. On the other hand, neglecting the electrostatic interaction 

between the framework and xylenes but not between the xylene molecules, results in 

a minor decrease in the selectivity (i.e. from 3.6 to 3.45 for the oX/mX mixture and 

from 1.64 to 1.58 for oX/pX mixture). This suggests that Coulombic interactions 

with the framework slightly favours oX. Although the contribution from the 

electrostatic interaction is much lower compared with the vdW interactions, the 

Coulombic interaction energy for oX (-1.12 kJ/mol) is approximately twice as large 

as for mX and pX. In both cases, the total amount adsorbed is increased when the 

electrostatic interactions are switched off. This increase is more pronounced for oX 

meaning that they can pack more efficiently inside MIL-53 channels.  

 

A rather similar trend of oX affinity was observed for another MOF with diamond-

shaped one-dimensional channels: MIL-47 (Barthelet et al. (2002)). With a pore 

diameter of 7.5 Å, the channels in MIL-47 are about 1 Å smaller than in MIL-53. 

This structure was studied in great detail both experimentally and computationally by 

Alaerts et al. (2008), Finsy et al. (2009) and Castillo et al. (2009), Ghysels et al. 

(2012) respectively. It was found that oX molecules can stack better together in the 

more sterically confining channels of MIL-47 resulting in high oX selectivities at 

high loading. The reader is referred to the above references for more details. 
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4.5 p-xylene selective MOFs (4.2 Å < d < 5.5 Å) 
From the screening process, a number of MOFs with a pore size range of 4.2 Å – 

5.5 Å emerged as potential candidates for pX selectivity. These MOFs show pX 

selectivity as their channels are accessible to para-xylene but not to oX or mX 

depending on the pore topology. In this section, the most promising pX selective 

MOFs namely MIL-68, MIL-125 and cobalt oxalate MOF are discussed in detail.  

 

4.5.1 MIL-68 
MIL-68 (V) (Barthelet et al. (2004)) is built from infinite chains of vanadium 

octahedral metal clusters connected to each other through 1,4-benzenedicarboxlyate 

(terephthalate) ligands. This network forms two distinct, one-dimensional hexagonal 

and triangular channels with 13.5 Å and 4.7 Å diameters respectively as shown in 

Figure 4-18.   

 
Figure 4-18: The structure of MIL-68 (V) showing large hexagonal and small triangular 

channels. 

 

Simulated adsorption isotherms of pure xylene isomers in MIL-68 are shown in 

Figure 4-19. The adsorption of all three xylenes is rather similar up to 10 Pa as the 

adsorption occurs mainly in the large pores. At higher pressures, pX adsorbs more 

strongly; and near saturation, mX adsorption shows the same uptake as pX while the 

amount adsorbed of oX at high loadings is approximately 2 molec/uc.  
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Figure 4-19: Pure component adsorption isotherms of pX (open circles), oX (closed squares) and 

mX (open triangles) in MIL-68 at 300 K. 

 

The analysis of the adsorption snapshots shown in Figure 4-20 for pure component 

xylenes at high loadings shows that while the large hexagonal pores are first filled, 

only pX and mX are adsorbed in the small triangular pores and oX is excluded due to 

its larger waist diameter. Figure 4-21 shows that pX and mX adsorbed differently in 

the small triangular pores: in the case of pX, the molecules are located parallel to the 

benzene rings of the small pore with the methyl groups positions alongside the 1-D 

channels as they have the smallest waist diameter. For mX, the 1,3-conformation of 

the methyl groups causes the molecules to rotate ~ 90 degrees and the methyl groups 

are positioned close to the benzene rings of the linkers with the rest of the molecule 

pointing towards the channel corner.  
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Figure 4-20: Snapshots of single component adsorption of pX (left), oX (middle) and mX (right) 

in MIL-68 at 300 K and 1 kPa. Methyl groups are shown in yellow. Note that o-xylene cannot 

access the smaller triangular channels. 

 

 

Figure 4-21: Side view of pX and mX arrangement in small triangular channels of MIL-68. 

 

As shown above, only pX and mX fit inside the triangular channels while oX is 

excluded. However, one has to keep in mind that the LJ parameters in force fields 

such as UFF were not specifically developed for MOFs. In order to probe the 

sensitivity of the molecular sieving effect on slightly increased channel size, the hard 

sphere diameter of the LJ potential of the framework atoms was reduced by 10 %. 

p-xylene o-xylene m-xylene 

pX 

mX 
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This also provides a crude way to assess the influence of framework flexibility due to 

slight rearrangement of the linkers upon adsorption (as opposed to the large 

breathing flexibility observed in MIL-53). The simulations repeated at high loading 

showed that even at high pressure and after further reduction of the hard sphere 

diameters of the framework atoms by 10%, no oX molecules were observed in the 

small channels.  

 

The equimolar mixture simulations confirm the trend observed from the single 

component isotherms and show preferential adsorption of pX. The selectivities for 

pX/oX and pX/mX mixtures are ~1.1-1.2 in the Henry region (1 Pa) where xylenes 

are only adsorbed in the hexagonal channels. pX selectivity increases to ~ 1.4 at 

higher loading (1 kPa) as triangular pores get preferentially occupied by pX 

molecules. The selectivity values are relatively small as the contribution of the 

triangular small pores to the total amount adsorbed is very low compared to the 

larger hexagonal pores. Furthermore, as explained in the previous section the 

hexagonal pores in MIL-68 are too large to allow significant preferential adsorption 

of one xylene isomer over the other. This is important because experimental 

synthesis of MIL-68 is not always straightforward as it is difficult to fully activate 

the small triangular pores making them inaccessible to xylenes. Therefore, in these 

conditions, the contribution of only large pores to the adsorption process should be 

considered (Yang et al. (2012)). 

 

4.5.2 MIL-125 
MIL-125 comprises two different pores: larger octahedral pores and smaller 

tetrahedral pores that are connected through triangular windows (Figure 4-22a). 

These pores are formed from cyclic octamers of TiO5(OH) connected with 

terephthalate linkers (Dan-Hardi et al. (2009)). The large octahedral pores and the 

small tetrahedral pore have accessible diameters of 11.8 Å and 5.5 Å, respectively. 

Amino-functionalisation of the benzene linker yields MIL-125-NH2 (Figure 4-22b 

and d). As shown in the pore size distribution in Figure 4-22c, due to the protrusion 
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of the amino groups in the pore space, both the small and the large pores in MIL-

125-NH2 are about 1 Å smaller than in MIL-125.  

 

  

Figure 4-22: a) vdW representation of MIL-125 and its functionalised form b) MIL-125-NH2. 

The large octahedral pores and the small tetrahedral pores are shown in dashed pink and solid 

blue respectively. c) Pore size distribution for MIL-125-NH2 (pink) is about 1 Å smaller than in 

MIL-125 (blue). d) stick representation of MIL-125-NH2. 

 

4.5.2.1 Pure component adsorption isotherms 

GCMC simulations of pure component adsorption of xylene isomers in both MIL-

125 and its functionalised form were performed at 300 K. As shown in Figure 4-23a, 

in MIL-125, pX molecules adsorb more strongly at lower pressures followed by oX 

and mX whereas at higher pressures all three isomers show rather similar loadings. 
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Figure 4-23: Pure component isotherms for pX (open circles), oX (closed squares) and mX (open 

triangles) in a) MIL-125 and b) MIL-125-NH2 at 300 K. 

 

To examine the impact of functionalisation, the calculations for the pure component 

adsorption isotherms were repeated for the amino-functionalised form of the 

structure, MIL-125-NH2. At lower pressures the uptake of oX and to a much higher 

extent of mX are lower in MIL-125-NH2. Figure 4-23b shows that, similar to MIL-

125 but more prominent, pX adsorbs at lower pressure and shows a higher uptake 

throughout the whole isotherm compared to oX and mX. Interestingly, compared to 

a) 

b) 
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MIL-125, the maximum uptake of oX and specifically mX is much lower in MIL-

125-NH2 and these values are lower than those of pX. Compared to MIL-125, in the 

functionalised form all three isomers start filling the pores at lower pressures due to 

higher interaction energies between xylene molecules and the large octahedral pores. 

In order to understand better the role of the tetrahedral and the octahedral pores in 

adsorption, the breakdown of pure component xylene isomers for the small 

tetrahedral and the large octahedral pores is given in Figure 4-24.  
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Figure 4-24: Pure component adsorption isotherms for pX (circles), oX (squares) and mX 

(triangles) at 300 K in a) MIL-125 and b) MIL-125-NH2 split into adsorption in the large 

octahedral pores (open symbols) and small tetrahedral pores (closed symbols). 

a) 

b) 
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As it can be seen, in both structures, at lower pressures, only pX and to a lower 

extent oX enter the small tetrahedral pores. mX occupies the small pores only at high 

pressures in MIL-125 and in the case of MIL-125-NH2 hardly any mX enters these 

pores. The values for the maximum loading shows that the adsorption capacity in the 

octahedral and tetrahedral pores does not differ significantly for the isomers in MIL-

125 whereas in the amino functionalised structure pX adsorbs more strongly over the 

whole pressure range in both tetrahedral and octahedral cages particularly at low 

pressures.  

 

In order to explain the difference in the amount adsorbed, representative simulation 

snapshots are given in Figure 4-25 to Figure 4-27 comparing pure component mX, 

oX and pX adsorption in MIL-125 and MIL-125-NH2 at 1 kPa and 300 K. In 

agreement with the adsorption isotherms, the snapshot for mX clearly demonstrates 

that while mX molecules occupy the small pores (marked by the blue circle) in MIL-

125 at higher loadings, they are completely excluded from the small tetrahedral pores 

of MIL-125-NH2. Therefore, the saturation loading decreases from 15.5 molec/uc in 

MIL-125 to 12 molec/uc in MIL-125-NH2.  
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Figure 4-25: Snapshots of single component mX in a) MIL-125 and b) MIL-125-NH2 at 1 kPa 

and 300 K. Methyl groups in xylenes are shown in yellow. Small tetrahedral pores are marked 

with blue circles. The boxes at the bottom are enlargements of the tetrahedral pores. 

The snapshots for oX are shown in Figure 4-26. The proportion of oX molecules in 

the small pores decreases from ~24% to ~12% in the functionalised framework. 

Additionally, as illustrated by the pink circles the oX molecules are much less 

ordered in MIL-125-NH2 and are also no longer adsorbed close to the octahedral 

pore walls at the windows towards the smaller, tetrahedral pores as was observed for 

MIL-125. The consequence of this becomes very clear when looking at the pure 

component adsorption isotherms where oX shows considerably less uptake in MIL-

125-NH2.  

a) b) 
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Figure 4-26: Snapshots of single component oX in a) MIL-125 and b) MIL-125-NH2 at 1 kPa 

and 300 K. The large octahedral and small tetrahedral pores are marked by pink and blue 

circles, respectively. The boxes at the bottom show enlargements of the marked pores. 

 

Unlike mX and to some extent oX, in the case of pX, the fraction of molecules 

occupying the small pore does not change significantly in the functionalised form as 

pX occupies the tetrahedral pores relatively more easily. Figure 4-27 shows that pX 

fits tightly in the tetrahedral pores due to its smaller kinetic diameter. 

 

a) b) 
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Figure 4-27: Snapshots of single component pX in a) MIL-125 and b) MIL-125-NH2 at 1 kPa 

and 300 K. The small tetrahedral pores are marked with blue and the box at the bottom shows 

an enlargement of the snapshot in this area.  

 

It is worth mentioning that the pore sizes reported earlier are calculated from the 

biggest spheres that could be inserted in the centre of the pore following the method 

described by Gelb and Gubbins (1998). However, in reality, the pore shape is more 

complex. The tetrahedral cages have a cruciform cross section as illustrated in Figure 

4-28. This aperture allows for a better fit of pX molecules compared to oX; and mX 

molecules do not fit inside the pore as illustrated in Figure 4-28. This is why there is 

an energy penalty for oX to occupy the tetrahedral cages, which is even larger for 

mX leading to a near complete exclusion of mX from the small pores of MIL-125-

NH2. 

 

 

 

a) b) 
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Figure 4-28: Illustration of the pore shape (yellow) in the small tetrahedral pores (top). 

Schematic illustration of how pX fits easily into the cross-shaped pore space while there is some 

overlap for oX. mX does not fit into the pore space at all. 

  

4.5.2.2 Influence of the small tetrahedral pores on adsorption 

In order to investigate the role of the large octahedral pores on the amount adsorbed 

and eliminate the effects of xylenes adsorbed in the small pores, the single 

component simulations in MIL-125 and MIL-125NH2 were repeated with the small 

pores blocked. As shown in Figure 4-29a, in MIL-125, pX adsorbs slightly better at 

low loadings but at around 100 Pa and above, the difference in adsorption is not 

prominent. In the case of MIL-125-NH2 (Figure 4-29b) the maximum amount 

adsorbed for pX decreases by 4 molec/uc from 16 to 12 molec/uc when the small 

pores no longer contribute to adsorption. The decrease of the maximum amount 

adsorbed for oX is less pronounced (decrease from 15 to 12 molec/uc) as the small 

pores are energetically not favourable for these molecules.  In the case of mX, the 

maximum adsorption capacity shows no drop when the small pores are blocked and 

the saturation capacity remains at ~ 12 molec/uc. This was expected, as mX isomers 

do not fit into the small pores.  
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Remarkably, the results indicated that again pX molecules were preferentially 

adsorbed in the octahedral pores at lower loadings in both structures and even at 

saturation capacity in MIL-125-NH2. This finding shows that the preference towards 

pX originates from both small and large pores and the level of pX preference 

becomes more significant in MIL-125-NH2. 
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Figure 4-29: Pure component isotherms for pX (open circles), oX (closed squares) and mX (open 

triangles) in a) MIL-125 and b) MIL-125-NH2 at 300 K with small pores blocked. 

 

a) 

b) 
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4.5.2.3 Adsorption of xylene mixtures  
Figure 4-30 compares the simulated 50/50 binary mixtures isotherms of pX and oX 

in MIL-125 and MIL-125-NH2 at 300 K broken down into the amount adsorbed in 

large and small pores. In both cases, pX is adsorbed preferentially over the entire 

pressure range. pX molecules have higher interaction energies with the large pore of 

the framework and are adsorbed first in both structures. The small pores in MIL-125 

are 1 Å larger than those of the functionalised form and pX molecules start to fill 

them at lower pressures as shown by the hatched areas (Figure 4-30). Similar to the 

results obtained for the pure component isotherm, it is also apparent in the mixture 

simulations that the small pores in both structures are exclusively filled by pX 

molecules indicating that there is an energy penalty for both oX and mX to enter the 

small pores. The para-selectivity of MIL-125 can therefore be explained with the 

accessibility of the small pores and large pores combined. The small tetrahedral 

pores in MIL-125-NH2 get filled with pX molecules at loadings above 10 Pa. Once 

more, higher interaction energies for pX causes them to pack more efficiently in the 

large pores of MIL-125-NH2 resulting in an overall selectivity of 3.4 and 2.84 for 

pX/mX and pX/oX mixtures at 1 kPa and 300 K as shown in Figure 4-31.  These 

simulation values for the selectivity correspond well with values determined from 

liquid phase breakthrough experiments which showed selectivities of 3 and 2.2 for 

pX/mX and pX/oX mixtures (Vermoortele et al. (2011)). 
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Figure 4-30: Isotherms of 50/50 mixture of pX and oX in a) MIL-125 and b) MIL-125-NH2. pX 

(circles) and oX (squares). The open symbols show the total amount adsorbed and the closed 

ones shows the amount adsorbed in the large pores. The difference between open and closed 

symbols (hatched area) shows the number of molecules adsorbed in small tetrahedral pores. 

a) 

b) 
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Figure 4-31: Selectivities for 50/50 mixtures of pX/mX (circle) and pX/oX (square) at different 

loadings for MIL-125 (closed symbols) and MIL-125-NH2 (open symbols). 

 

As shown in Figure 4-31, the extent of selectivity towards pX increases as the uptake 

increases in the mixture isotherms in both structures but to a greater extent for MIL-

125-NH2. This indicates that at low loadings (i.e. 1 Pa) where the adsorbate-

framework interactions have a dominant impact on preferential adsorption, the 

selectivity is driven by the higher interactions of pX molecules in the large pores as 

shown in Figure 4-30b. At loading above 10 Pa, the exclusive presence of pX in the 

small pores boosts the selectivity specifically in MIL-125-NH2. For example, at high 

loadings oX can hardly enter the small pore with only 0.4 molec/uc whereas these 

pores are preferentially filled with 3.4 molec/uc of pX in the competitive adsorption 

simulation. This is further illustrated by the blue circles in the snapshots taken from 

the equimolar mixture of pX and oX in Figure 4-32.  
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Figure 4-32: Snapshots of 50/50 mixture of pX (green) and oX (blue) in a) MIL-125 and b) MIL-

125 -NH2. 

 

Again similar to the pure component oX adsorption, in MIL-125 oX is located in the 

four sides of the triangular windows between the small and large pores, but in the 

functionalised structure both oX and mX molecules are located in the centre of the 

large pore in a rather disordered way as illustrated in Figure 4-32. As discussed for 

the single component adsorption isotherms, the adsorption of xylene isomers is 

energetically less favourable in the tetrahedral pores than the large octahedral pores. 

This effect is more pronounced in MIL-125-NH2. The comparison between 

adsorbate-adsorbate and adsorbate-framework interaction energies for equimolar 

xylene mixtures of pX-oX and pX-mX shows that not only the pX-pX interaction is 

larger than for the other isomers, but also it maximises its energy with both 

frameworks as shown in Table 4-2. This difference is more pronounced in MIL-125-

NH2.  

b) a) 
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Table 4-2: Interaction energies for equimolar xylene mixtures of pX/oX and pX/mX at 1 kPa 

and 300 K in MIL-125 and MIL-125-NH2. 

 

4.5.2.4 The importance of electrostatic interactions 
One way to understand better the adsorbate-framework interactions is to look at 

electrostatic and vdW energies separately. To do this, the average potential energies 

of single xylene isomers were calculated using molecular dynamics simulations in 

the NVT ensemble at 300 K and the interaction energies were split into vdW and 

Coulombic interactions. It was found that the presence of the amino groups in MIL-

125-NH2 leads to an average increase of ~ 34 % in Coulombic interactions and ~ 5 % 

for van der Waals interactions for all xylene isomers as shown in Figure 4-33.  
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Figure 4-33: Potential energy comparison of xylene isomers in MIL-125 and MIL-125-NH2 

obtained by performing molecular dynamics of one molecule inside the pore. 

 

                                Potential energy (kJ/mol) 
 pX oX pX mX 

MIL-125     
adsorbate-adsorbate -9.28 -7.97 -10.92 -6.17 

adsorbate-framework -50.76 -46.38 -50.53 -43.76 
MIL-125-NH2     

adsorbate-adsorbate -18.84  -12.1 -18.95 -11.65 
adsorbate-framework -51.75  -48.3 -51.7 -48.32 

Coulombic 

vdW 

Coulombic 

vdW 

MIL-125 MIL-125-NH2 
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Overall, pX shows higher vdW and electrostatic interactions with the framework in 

comparison to oX and mX. Although these calculations provide information 

regarding general change in the vdW and electrostatic interactions of xylenes in both 

structures, drawing firm conclusions in terms of electrostatic effects on adsorption 

requires more study. Thus, as described for other structures in previous sections, the 

adsorption simulations were repeated by neglecting all Coulombic interactions 

between adsorbates and framework. Figure 4-34 compares the pure component 

isotherms for xylenes with and without the Coulombic interactions between 

adsorbates and MIL-125-NH2. 

0.1 1 10 100 1000
0
2
4
6
8

10
12
14
16

Lo
ad

in
g 

(m
ol

ec
 / 

uc
)

Pressure (Pa)  
Figure 4-34: Comparison between the single component adsorption isotherms for pX (open 

circles), oX (closed squares) and mX (open triangles) in MIL-125-NH2 at 300 K. Isotherms 

shown as lines represent isotherms where xylene-framework Coulombic interactions are 

neglected. pX (red dashed), oX (blue dotted dashed) and mX (green dotted).  

 

At low pressure, weaker xylene-framework interactions result in the isotherms to 

shift towards the right meaning that the xylenes enter the octahedral pores at rather 

higher pressure. The effects of electrostatic interactions are more significant in the 

small tetrahedral pores. It can also be seen from Figure 4-34 that since mX molecules 

do not occupy the small pores, switching the electrostatic interactions off does not 

significantly affect its adsorption. However, in the case of pX, the lack of 
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electrostatic interactions lowers significantly the saturation uptake from 4 molec/uc 

when the Coulombic interactions are included to just 1 molec/uc when the 

electrostatic interactions are switched off. As the contribution of small pores to 

adsorption reduces significantly, mixture simulations also show that the pX/oX 

selectivity drops from 2.84 to 1.85 at 1 kPa and 300 K when the electrostatic 

interactions of xylenes and the framework atoms are neglected. 

 

 

4.5.3 Cobalt oxalate MOF 
To find out if the pore range found to be pX selective in the MOFs investigated so far 

is transferable to other MOFs, another framework named cobalt oxalate (Hao et al. 

(2010)) was tested for its xylene selectivity. This MOF comprises two types of 

channels.  The large channel (A) consists of two cobalt clusters and two ligands 

(Figure 4-35a). Note that the hydroxyl groups on the middle of the wall divide the 

pore into two channels. Channel (B) is best viewed along the b-axis as presented in 

Figure 4-35(b). These channels have diameters of 4.3-4.5 and 5.1 Å respectively and 

are interconnected as shown with the orange aperture in Figure 4-35. For a mixture 

of pX/oX, this MOF shows selectivity of 5.5 the highest para-selectivtiy for any of 

the MOFs investigated so far. 

 
Figure 4-35: The structure of cobalt oxalate MOF when viewed (a) along the a-axis with 

channels A and (b) along the b-axis with channels B. Co: purple; O: red; N: blue and C: grey. 

The hydrogens are removed for clarity. Schematic view of the available pore space is shown in 

orange. 

a) b) 

A B 
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The snapshots at high pressure of the 50/50 pX/oX mixture (Figure 4-36) show that 

the p-xylene molecules adsorb inside the framework channels in an ordered pattern 

with pXs preferably adsorbed in both A and B channels. Two energetically 

favourable positions can be identified for pX molecules. The first location is the 

empty void in the A channels where pXs are positioned in the centre of the channels 

with their methyl groups pointing to the opposite linkers (red circle). The second 

accessible site exclusively occupied by pX molecules is the space between the two 

linkers where pXs are positioned parallel to each other with one methyl group facing 

channel A and the other in channel B (dashed green circle).  

 

 
Figure 4-36: Snapshots of 50/50 mixture of pX (red) and oX (blue) in cobalt oxalate MOF. 

Preferential adsorption of pX in A and B channels are marked in red and dashed green circles, 

respectively. 

It should be noted that these results were achieved without taking electrostatic 

interactions into account, which will change the results slightly. This MOF also 

shows a gating effect and it is unclear how this will affect the performance for the 

separation of xylene mixtures. Despite this, another promising MOF within the range 

of pX selective pore size MOFs is found that can be targeted by experimental 

synthesis to investigate its selective performance further. 

 

4.6  MOFs with smaller pores (d < 4 Å) 
MOFs comprising of pores with diameters less than ~ 4.0 Å were also tested for 

xylene isomers separation. These pores are too small to accommodate xylene 

molecules inside their pores and do not adsorb xylenes. As shown in Figure 4-37, the 



 

  102 

three structures tested for xylene adsorption are Sc-BDC (Perles et al. (2005), Miller 

et al. (2005)), Cobalt(II)-Glutarate (Won et al. (2002)) and Cu(INA)2 (Pichon et al. 

(2006)) with pore diameters of 3.1, 3.9 and 4 Å respectively. 

 
Figure 4-37: MOFs with smaller pore diameters. From left to right Sc-BDC (Perles et al. (2005), 

Miller et al. (2005)), Cobalt(II)-Glutarate (Won et al. (2002)), Cu(INA)2 (Pichon et al. (2006)). 

Hydrogens are removed for clarity. 

 

4.7 Conclusions 
In this chapter, single component adsorption isotherms and mixture simulations were 

presented for xylene isomers in MOFs with various pore sizes and shapes. 

Simulations were performed in the vapour phase and compared with experimental 

data, where available. The results showed that computational screening approaches 

can help to narrow down the large number of existing porous MOFs to a few 

promising able to separate a particular xylene isomer. It was found that MOFs with 

pores larger than 9 Å show relatively low selectivity as their pores are unable to 

impose significant confinement effects (Figure 4-38). For this reason, depending on 

their pore/window shape and functional groups, these MOFs slightly favour a 

specific xylene isomer over the other as was illustrated for IRMOF-3 and IRMOF-7. 

The separation of xylenes in MOFs with smaller pores, from ~ 6 to 8.5 Å is more 

challenging as the competition between energetic and entropic effects decides which 

isomer is preferentially adsorbed. oX isomers were proven to benefit the most in this 

range of pore sizes as was shown for MIL-53 and MIL-47. In these structures, 

molecular packing plays an important role with pronounced preference for the ortho-

isomer. MOFs with pore sizes between 4.2 and 5.5 Å exhibit a clear preference for 

pX isomers, as the lower waist diameter of pX allows for molecular sieving 

separation as was shown in the small pores of MIL-125-NH2. These findings are very 
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important in an industrial context as the pore size criteria allows for a quick 

identification of promising MOFs which can then be investigated in more detail for 

practical applications such as PAREX process. Clearly, for an industrial adsorbent, 

characteristics such as stability and regenerability under process conditions must also 

be considered to compete with their zeolitic rivals.  
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Figure 4-38: pX/oX (diamonds) and pX/mX (stars) equimolar mixture selectivities for the MOFs 

studied at 1 kPa and 300 K. The diameter (d) shows MOFs with corresponding range of pore 

diameters. 

The reported simulation results can build a platform to help experimentalist 

synthesise new MOFs (i.e. by choosing the appropriate building blocks) for the 

separation of xylene isomers from the infinite number of possible structures. For 

further investigations, frameworks such as ZIFs containing large pores and narrow 

windows of the right size for pX selectivity should be studied to account for the 

rather low adsorption capacity of smaller MOFs while achieving high selectivity. 
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Chapter 5 Origin of Enantioselectivity in a 
Chiral Metal-Organic Framework 
This chapter investigates the nature of enantioselectivity behaviour of the homochiral 

metal-organic framework [Ni2(L-asp)2(bipy)] for a number of chiral diol molecules 

and compares the results to experimental data available in the literature. Competitive 

adsorption for racemic mixtures and single component isotherms are studied using 

configurational biased grand canonical Monte Carlo simulations. The relationship 

between enantioselectivity and size and shape of the chiral diols is examined. In 

order to identify various guest-framework interactions, detailed geometric analysis 

such as radial distribution functions and histograms along with simulation snapshots 

are presented. In addition, the influence of framework size on enantioselectivity is 

investigated through simulation. 

  

5.1 Introduction 
Many natural and synthetic compounds are chiral, which means they can exist in left- 

or right-handed forms that are mirror images of each other. Chirality is important in 

the production of, for example, drugs as usually only one of the two possible forms 

of drug molecules is biologically active depending on the configuration of their 

stereocenteres. As the physical properties of chiral molecules are very similar, 

classical separation methods are not suited for enantioseparation and methods such as 

chromatography, crystallisation and stereosynthesis have been developed for this 

task during the past two decades (Hare and Gilav (1979), Hyun et al. (2003), Mikami 

and Matsukawa (1997), Rekoske (2001), Sheldon (1993)). In chromatography, 

different interactions between enantiomers with the chiral receptor are the driving 

force for enantioseparation but limited scalability and lack of diversity of the 

receptors are the main disadvantages of this method (Gübitz and Schmid (2001)).  
 

Porous materials such as zeolites are commonly used for separation purposes, but 

among them only a handful exhibit chiral frameworks (Tang et al. (2008)). With the 

rising industrial demand and emergence of various enantiopure drugs, there has been 

growing interest in developing novel enantioseparative methods. As shown in 
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previous chapters, metal-organic frameworks (MOFs) are promising materials for 

separation purposes as the size and the shape of their pores are tuneable, thus 

providing access to a wide range of porous structures including chiral cavities for 

enantioselective separation purposes. Due to this versatility, the design of homochiral 

MOFs has received great attention as they have potential for chiral separation 

applications. In the literature, a number of chiral MOFs have been examined for 

asymmetric catalysis and enantioselectivity ranging from mesoporous isoreticular 

frameworks to microporous networks with thin films (Seo et al. (2000), Padmanaban 

et al. (2011), Bradshaw et al. (2004), Sun et al. (2007), Dybtsev et al. (2006), Liu et 

al. (2012), Ma et al. (2010)) but studies on the molecular level using simulations are 

still very scarce (Bao et al. (2009), Bao et al. (2010)). Recently, Bao et al. (2012) 

used molecular simulations to screen eight homochiral MOFs for 19 chiral 

compounds and concluded that enantioselectivity is highly correlated with a close 

match between the pore size and the size of the sorbate, although there is a small 

possibility of obtaining no enantioselectivity even when a close match exists between 

the two. 
 

There are only a limited number of studies available in the literature that report not 

only the synthesis and structure of a chiral MOF but also the successful separation of 

more than one chiral mixture. The work by Vaidhyanathan et al. (2006) therefore 

emerged as an ideal case study as the homochiral MOF [Ni2(L-asp)2(bipy)] (1) 

exhibits a whole range of enantioselectivities for a total of nine different chiral diols 

considered.  
 

This MOF allows to study the sensitivity of enantioseparation on subtle changes of 

pore size in detail and provides insight how the pore topology and therefore guest-

framework recognition in the pore is influenced by the distribution/shape of these 

closely related chiral diols. Using molecular simulations, the significant role of 

packing effects at high loadings that could not be explained experimentally is also 

demonstrated. 
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5.2 Diols and MOF structures 
In this thesis, five shorter chiral diols out of the nine in the experimental work by 

Vaidhyanathan et al. (2006) were studied: (S,R)-1,2-propanediol, (S,R)-1,2-

butanediol, (S,R)-1,3-butanediol, (S,R)-1,2-pentanediol and, (S,R)-2,4-pentanediol 

(Figure 5-1). These diols were selected to keep the computational costs down while 

allowing to study the effect of chain length and the different positions of hydroxyl 

groups (i.e, 1,2- or 1,3-) on the carbon chains in detail.  

 

 
Figure 5-1: The structure of chiral diols studied. The chiral centres are shown with R and S. The 

oxygens in the hydroxyl groups are presented as red spheres. 

 

1,2-propanediol 

1,2-butanediol 1,3-butanediol 

1,2-pentanediol 2,4-pentanediol 
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The structure of [Ni2(L-asp)2(bipy)] (1) (Figure 5-2a) consists of one-dimensional 

channels with an approximate diameter of 3.85 Å formed by Ni (L-aspartic acid) 

clusters connected by the length of 4,4’-bipyridine (bipy) ligands. This pillared 

structure creates pockets on each side of the channel creating a screw-like 

homochiral void as illustrated by the red circles in Figure 5-2b. The structure also 

contains protrusions in the upper rims of the bipy layers running along the y-axis 

(Figure 5-2c). 

 

 
Figure 5-2: Schematic view of the channel in 1 determined by a method described by Sarkisov 

and Harrison (2011). a) front view of [Ni2(L-asp)2(bipy)] framework. C cyan, O red, N blue, H 

white and Ni green. b) Illustration of the channel void with pockets highlighted by red circles 

and c) view along the y axis of the channel with protrusions highlighted by green circles. 

a) 

b) 

c) 
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5.3 Simulations and models 
The adsorption isotherms and mixture simulations of the diols studied in 1 were 

obtained by performing grand canonical Monte Carlo (GCMC) simulations 

implemented in the RASPA simulation package (Dubbeldam et al. (2008)). The 

molecules were randomly translated and rotated with equal probability. To speed up 

configuration sampling, configurational biased (CB) insertions and deletions, 

regrowth and partial regrowth and in the case of binary mixtures the identity swap 

were used again with equal probability. The ratio of the CB moves to the traditional 

MC moves was 5:1 for single component simulations and 10:1 for mixture 

simulations ensuring that the acceptance ratio of each move was above ~ 0.1-0.2 % 

during the production cycles. Furthermore, each simulation was run at least five 

times with different random numbers to ensure proper sampling of the phase space. 

For single component isotherms, 1.2×105 equilibration and 1.3×105 production 

cycles were used for each point of the isotherm whereas for the mixtures 1×106 

cycles were used of which the first half were used for equilibration and rest for 

sampling the averages. Here, a cycle is defined as one MC move per molecule. 

Partial pressures were used as the input for the GCMC simulations. All simulations 

were run at 278 K, the temperature used in the experiments by Vaidhyanathan et al. 

(2006)). The racemic mixture simulations were carried out at maximum loading to 

replicate the experimental liquid phase enantiomeric excess values where the pore 

channels are filled with adsorbate molecules. The simulation cell included 16 

(2×4×2) unit cells with dimensions of 22.245 Å × 6.790 Å × 7.738 Å for each unit 

cell.  The framework atoms were kept rigid at their crystallographic positions.  
 

The standard 12-6 Lennard-Jones (LJ) potential, truncated and shifted at a cut-off 

distance of 15 Å, was used for all guest-guest and guest-framework interactions. The 

LJ parameters for the framework atoms were taken from the Universal Force Field 

(UFF) by Rappe et al. (1992), while the OPLS-AA (Jorgensen et al. (1996), 

Jorgensen (1986)) force field was used to model diols. Lorenz-Berthelot mixing rules 

were used to calculate mixed LJ parameters. Angle bending and dihedral torsion 

were taken into account to describe the intramolecular interactions of the diols. Fixed 

bond lengths were used to increase the efficiency of simulations. It has been shown 



 

  109 

that replacing fixed bond lengths with stretching potentials has no substantial effect 

in Monte Carlo simulations of adsorption (Chen et al. (2001). LJ parameters along 

with bending and torsion parameters are listed in Table 5-1 to Table 5-3.  
 

Table 5-1: Lennard-Jones and partial charges parameters used for 1 and diols. 

 

 
Table 5-2: Bond bending potential parameters for diols (Jorgensen et al. (1996)). 

 

 

 

 

 

 

 

 

Species Site σ (Å) ε kB
-1 (K) charge (e) Reference 

MOF Ni 2.5 7.5 Table 5-4 (Rappe et al. (1992)) 
 O 3.1 30.2   

 N 3.2 34.7   
 C 3.4 52.8   

 H 2.5 22.1   
C_RCH3  3.5 33.2 -0.180 (Jorgensen et al. (1996)) 

C_RCH2OH  3.5 33.2 0.145  
C_R2CH2  3.5 33.2 -0.120  

C_R2CHOH  3.5 33.2 0.205  
H_RH  2.5 15.09 0.06  

O_H  3.1 85.5 -0.683  
H_O  0 0 0.418  

Site Site Site 
K	
  

(kcal mol-1 rad-2) 

Ө	
  eq	
  
 (°) 

C C C 58.35 112.7 
C C OH 50.0 109.5 
C C HC 37.50 110.7 

C OH HO 55.0 108.5 
HC C OH 35.0 109.5 

HC C HC 33.0 107.8 
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Table 5-3: Torsion potential parameters for diols (Jorgensen et al. (1996)). 

 

The Ewald summation technique was used for long range electrostatic interactions 

for both guest-guest and guest-framework interactions. The partial charges of the 

metal-organic framework 1 were determined from density functional theory (DFT) 

calculations on a representative cluster isolated from the MOF’s unit cell 

crystallographic positions and the resulting uncoordinated atoms were terminated by 

hydrogen atoms as shown in Figure 5-3.  DFT calculations were used with B3LYP 

level of theory and 6-31G* basis set. B3LYP is normally applied for MOFs as it 

provides good description of transition metals (Li et al. (2011)). The calculations 

were carried out with the Gaussian 09 package (Frisch et al. (2009)) using a grid in 

ChelpG method (Breneman and Wiberg (1990)). Table 5-4 shows the resulting 

partial charges that were used in the GCMC simulations. 

Site Site Site Site 
V1	
  

(kcal mol-1) 

V2	
  

(kcal mol-1) 

V3	
  

(kcal mol-1) 

V4	
  

(kcal mol-1) 

HC C C HC 0 0 0.3 0 
HC C C C 0 0 0.3 0 

C C C C 1.3 -0.05 0.2 0 
HC C OH HO 0 0 0.3524 0 
HC C C OH 0 0 0.468 0 

C C C OH 1.711 -0.5 0.663 0 
C C OH HO -0.356 -0.174 0.492 0 
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Figure 5-3: Representative cluster used for obtaining partial charges in [Ni2(L-asp)2(bipy)] 

framework (1). 

Table 5-4 : Atomic partial charges in 1 obtained from DFT calculations. 

 

 

 

 

 

 

 

 

 

5.4 Racemic mixture adsorption results 
In order to validate the simulated enantiomeric excess trends with the ones obtained 

experimentally, GCMC simulations of racemic mixtures for the chiral diols in 1 were 

performed. The racemic mixture simulations were carried out at high loading and 

278 K. These conditions were chosen to replicate the experimental enantiomeric 

excess (ee) values which were measured in liquid phase where the pore channels are 

nearly filled with adsorbate molecules. The enantiomeric excess is commonly used to 

determine the excess of one enantiomer over the other and is calculated from the 

binary mixture using:  

atom type charge (e) atom type charge (e) 

Ni 0.92 C3 0.2 
O -0.63 H3 0.03 

N1 -0.44 C4 0.08 
H1 0.32 H4 0.14 

N2 -0.05 C5 -0.22 
C1 0.79 H5 0.15 

C2 -0.29 C6 0.16 
H1 0.10   

N1 
Ni 

O 

H1 
N2 

C1 

C2 

C3

1 

H2 

H3 

C4 
H4 

C5 

H5 

C6 
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100×
+

−
=

SR
SRee  5-1 

where R and S are the amount of right- and left-handed enantiomers adsorbed, 

respectively. In this definition any value of ee greater than zero represents 

preferential adsorption towards the R-form. 

 
Table 5-5: The enantiomeric excess (ee) values for the diols adsorbed in 1 at 278 K. The 

experimental values are taken from Vaidhyanathan et al. (2006). 

 ee ee (exp.) 
1,2-propanediol 7.1 ± 6.9 5.35 
1,2-butanediol 14.4 ± 7.4 5.07 
1,3-butanediol 34.3 ± 6.7 17.93 
1,2-pentanediol 42.8 ± 5.8 13.9 
2,4-pentanediol 21.2 ± 9.8 24.5 

 

Table 5-5 summarises the ee values obtained from the simulations together with the 

experimental data by Vaidhyanathan et al. (2006). The simulation results are in fairly 

good agreement with the available experimental data (especially considering that no 

error bars are reported for the experimental data) demonstrating that the simulations 

are not only able to reproduce the general preference of this MOF synthesized with 

L-aspartate linkers to take up R-enantiomers preferentially but also to reproduce the 

more subtle trends. The degree of ee changes with hydrocarbon chain length and 

more interestingly with the relative position of hydroxyl groups on a fixed chain 

length. In the case of the shortest diol, 1,2-propanediol, very low enantioselectivity is 

observed. For the butanediols, the enantioselectivity in 1 is larger for a mixture of 

1,3-butanediol enantiomers (ee = 34.3) than 1,2-butanediol (ee = 14.4) in agreement 

with experimental data. However, for the longer chain pentanediol molecules, the 1,3 

and 1,2-conformations (i.e., hydroxyl groups on non-adjacent and adjacent carbons) 

do not follow the same descending ee trend seen in butanediol and experimentally, 

with larger ee values observed for 1,2-pentanediol (ee = 42.8) rather than 2,4-

pentanediol (ee = 21.2). It is worth to mention that the simulations were carried out 

in a perfect enantiopure crystal of 1 with all solvent molecules removed. However, 

the samples of 1 used in experiments were only verified to be greater than 95 % 
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enantiopure. Lower enantiopurity proved to reduce ee values in experiments for all 

cases. 

 

5.5 Single component adsorption results 
In order to investigate if the enantioseparation behaviour observed in 1 is driven by 

energy differences between chiral enantiomers and the framework, Monte Carlo 

simulations of isolated enantiomers were performed in the simulation cell of 1.  

Table 5-6 summarises the diol-framework potential energies for pair R- and S-

enantiomers. 

 
Table 5-6: The potential energies obtained from Monte Carlo simulations for one molecule in 1 

at 278 K. 

 R (kJ/mol) S (kJ/mol) 
1,2-propanediol -99.8 ± 7.9 -86.5 ± 6.3 
1,2-butanediol -112.1 ± 0.5 -97.5 ± 9.1 
1,3-butanediol             -108.8 ± 11.8 -110.7 ± 8.1 
1,2-pentanediol -120.3 ± 9.6 -96.0 ± 12.8 
2,4-pentanediol -123.8 ± 5.0 -129.7 ± 0.12 

   

A general trend can be deduced from Table 5-6. Higher interaction energies with the 

framework are observed for R-enantiomers except for diols with 1,3-conformation 

(i.e. 1,3-butanediol and 2,4-pentanediol) where the S-enantiomer has slightly 

stronger interaction. However, considering reported error bars, there is only a small 

difference between the interaction energies of the enantiomers, in agreement with the 

quantum mechanical calculations carried out by Vaidhyanathan et al. (2006). 

However, experimental ee results show that the R-enantiomer is preferred in all cases 

with even higher ee values for 1,3-conformation diols. This implies that the 

adsorption mechanism and enantioselectivity is not necessarily energy driven and 

likely occurs by entropic effects at higher loadings (i.e. liquid phase).  For this reason 

and in light of the good agreement of the obtained computational ee values with the 

experiments showing preference for R-enantiomers for all diols studied and to further 

examine the adsorption mechanism of diols enantiomers in 1 at different loadings, 

the pure component adsorption isotherms were computed using GCMC simulations 
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at 278 K and are illustrated in Figure 5-4. For all diols except 1,2-propanediol, the 

single component isotherms show a higher maximum uptake of the R-form than the 

S-form. For the butanediols, it can be seen from the Henry (i.e. low pressure) region 

of the pure component isotherms in Figure 5-4b and c, that the 1,3-form of 

butanediol is adsorbed more strongly in comparison to 1,2-butanediol enantiomers. 

The favourable nature of 1,3-conformation of diol functionalities at low loading was 

further confirmed by conducting additional mixture simulations of (S)-1,3- and (S)-

1,2-butanediols, and (R)-1,3- and (R)-1,2-butanediols at 1 Pa which showed excess 

values of the 1,3-conformation over the 1,2-conformation of 49 % and 36 %, 

respectively. 

 



 

  115 

 

Figure 5-4 Single component adsorption isotherms in 1 at 278 K for a) 1,2-propanediol, b) 1,2-

butanediol c) 1,3-butanediol, d) 1,2-pentanediol and e) 2,4-pentanediol (R: red circles and S: 

black squares). The insets show the respective diol molecule with the OH groups highlighted in 

red. 

 

The adsorption isotherms of the two diols with 1,3-conformations, 1,3-butanediol 

and 2,4-pentanediol are illustrated in Figure 5-4c and Figure 5-4e, respectively. In 

agreement with higher interaction energies obtained for S-1,3-conformations in 

Table 5-6, for 1,3-butanediol the S-form adsorbs marginally stronger at low loadings 
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while at higher loadings the R-enantiomer adsorbs preferentially when the uptake 

exceeds ~1 molecule / uc. This means that the two enantiomers interact differently 

with the framework and with each other at various loadings. Figure 5-5 compares the 

average total diol-diol and diol-framework potential energies and shows higher 

interaction energies for (R)-1,3-butanediol at maximum loading. Similar but stronger 

affinity for the S-enantiomer at low loading is also observed for the other 1,3-

conformation investigated, the longer chain diol 2,4-pentanediol (Figure 5-4e and 

Figure 5-5). The saturation loading for both (R)- and (S)-2,4-pentanediol is 1 

molecule / uc. This saturation loading is almost half of the loading seen for shorter 

diols such as propanediols and butanediols.  
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Figure 5-5: Average total potential energies for pure component diols at their maximum loading 

and 278 K. Potential energies and maximum uptake are shown with columns and diamonds, 

respectively. 

 

In diols with 1,2-conformation, the extent of preference in 1 towards R-enantiomers 

reduces and again becomes dependent on the hydrocarbon chain length in shorter 

chain diols i.e. propanediol and butanediol. For example, in the case of the shortest 

diol, 1,2-propanediol, both enantiomers show rather similar uptake for the entire 

isotherm (Figure 5-4a). Thus, the concentration dependence of the preference and 
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hence the extent of enantioselectivity lowers as the two enantiomers are small 

enough to interact in a similar fashion with the framework and exhibit no significant 

packing effects as will be shown later. In 1,2-butanediol (Figure 5-4b), over the 

entire loading range, the R-enantiomer is preferentially adsorbed especially at higher 

loading up to 2 molecules / uc due to better packing and higher guest-guest and 

guest-framework interactions (see Figure 5-5). On the other hand, for the longest 

diol, 1,2-pentanediol (Figure 5-4d), although R is preferred in particular at lower 

loadings, the maximum uptake goes slightly above the loading of 1 molecule / uc 

leading to better R-enantioselectivity. 

 

5.6 Structural Analysis of diols at high loadings 
In order to study the adsorption mechanism and the nature of enantioselective 

discrimination in more detail, structural information such as pair atom distance 

histograms, radial distribution functions and simulation snapshots were compared for 

each pure component diol enantiomers at maximum loading and 278 K. 

 

5.6.1 (S,R)-1,2-propanediol 
As was shown in Table 5-5, the extent of ee is very low in both experiments and 

simulations for the smallest diol, 1,2-propanediol and both enantiomers approach the 

saturation plateau of 2 molecules / uc at 1 Pa in the pure component isotherms (see 

Figure 5-4a). Figure 5-6 shows the snapshots and detailed structural analysis for 1,2-

propanediol. The histograms shown in Figure 5-6a are the average intramolecular 

oxygen-oxygen (O(H)-O(H)) distances of the hydroxyl groups calculated during the 

production run of simulations for enantiomers adsorbed in 1. As it can be seen, both 

enantiomers exhibit two peaks which are more prominent for the R-form. These 

peaks correspond to the conformations where both OH groups are in the vicinity of 

pockets with CH3 group in the channel centre, and where one OH stays close to the 

pocket leaving CH3 group in the vicinity of the opposite pocket (Figure 5-6b). As 

discussed in chapter 3, the radial distribution function (RDF) is a powerful tool to 

study various configurations of adsorbate atoms with respect to other adsorbates and 

the adsorbent framework providing a spatial distribution of atoms. In Figure 5-6c, the 
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nickel atom in the RDF represents an atom inside the pockets, therefore providing a 

measure for the relative distance between the hydroxyl groups of the diols with the 

framework pockets. The CH3-CH3 RDF (Figure 5-6d) illustrates relative distances 

between the adsorbate molecules. The differences between enantiomers in both 

RDFs are negligible. The first peak in the OH-Ni RDF shows that the OH groups in 

R-enantiomers get marginally closer to the pockets while the number of OH groups 

close to the pocket in the S-form is higher. The peaks in the CH3-CH3 RDF are rather 

similar (The R-form CH3 groups show slightly closer distance) meaning that 1,2-

propanediol enantiomers sit in the framework channels with similar arrangements. 

Although the R-form exhibits more conformations in the channel, the small size of 

the molecules leads to poorer enantioseparation cancelling packing effects as shown 

in Figure 5-6b.  

 

 

 

 



 

  119 

 

2.0 2.5 3.0 3.5 4.0 4.5
0

10

20

30

40

50

Fr
eq

ue
nc

y 
(%

)

O-O distance (Å)

 (S)-1,2-propanediol
 (R)-1,2-propanediol

2 4 6 8 10 12
0

1

2

3

4

g 
N

i-O
 (r

)

r (Å)

 (S)-1,2-propanediol
 (R)-1,2-propanediol

2 4 6 8 10 12
0

1

2

3

4

g 
C

H
3-C

H
3 
(r

)

r (Å)

 (S)-1,2-propanediol
 (R)-1,2-propanediol

Figure 5-6 a) Histograms of intramolecular oxygen-oxygen (O(H)-O(H)) distance for 1,2-

propanediol enantiomers. b) Pure component snapshots for 1,2-propanediol enantiomers: R 

(red), S (green). Hydroxyl groups are shown in spacefill representation. The pore space with 

pockets is shown in orange in the middle. c) nickel-oxygen radial distribution function, d) 

methyl-methyl radial distribution functions. All figures are obtained for 1,2-propanediol 

enantiomers adsorbed in 1 from pure component GCMC simulations at maximum loading and 

278 K. 

 

5.6.2 (S,R)-1,3-butanediol 
Figure 5-7 shows the detailed analysis for 1,3-butanediol where high ee value of 34.3 

was observed from the simulations. In (S)-1,3-butanediol, 86 % of the O(H)-O(H) 

distance lies between 3.9 to 5.1 Å, maximizing its interaction energy with the 

framework by positioning both OH groups in very close proximity to the channel 

pockets between the two neighbouring 4,4’-bipyridine ligands as shown in Figure 

5-7b by the green circles. This range of O(H)-O(H) distance is 20 % higher than that 

seen for the R- form. This stretched O(H)-O(H) conformation also explains the 

higher uptake and higher guest-framework interaction energies for S-enantiomers at 

a) 

c) d) 

b) 
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lower loading in the isotherm (Figure 5-4c). However, this extended configuration 

becomes unfavourable for S-molecules at higher loadings as the bulky CH3 groups 

sit in the centre of the channel making them pack less efficiently as no further 

molecule can be positioned in the immediate vicinity of the CH3 group. Thus, a 

lower maximum uptake is observed for (S)-1,3-butanediol. In (R)-1,3-butanediol, 

although the adsorption sites are similar to the ones of the S-enantiomers, various 

configurations are formed as multiple distinct peaks show in the O(H)-O(H) 

histogram in Figure 5-7a. The first peak (3.1 Å) corresponds to OH groups 

positioned closely together with the middle OH group tilted towards the protrusions 

of the channel occupying the accessible cavity volume (see Figure 5-2). The opposite 

pocket is occupied by the CH3 group as marked by the dashed red circle in Figure 

5-7b. The larger peak (4.9 Å) corresponds to a conformation similar to the extended 

form of the S-enantiomer with both hydroxyl groups located in opposite pockets. 
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Figure 5-7 a) Histograms of intramolecular oxygen-oxygen (O(H)-O(H)) distance for 1,3-

butanediol enantiomers. b) Pure component snapshots for 1,3-butanediol enantiomers: R (red), 

S (green). Hydroxyl and methyl groups in 1,3-butanediol molecules are marked with solid green 

and dashed-red circles, respectively. Hydroxyl groups are shown in spacefill representation. The 

pore space with pockets is shown in orange in the middle. c) Nickel-methyl radial distribution 

functions, d) nickel-oxygen radial distribution functions. All figures were obtained for 1,3-

butanediol enantiomers adsorbed in 1 from pure component GCMC simulations at maximum 

loading and 278 K. 

 

The first peak in Figure 5-7d is larger for the S-enantiomer. This shows the closer 

proximity of OH groups of the S-enantiomer to the pockets. It further demonstrates 

the favourable extended conformation with both hydroxyl groups in the pocket for 

the S-enantiomer as shown in Figure 5-7b. This configuration also favours the 

formation of hydrogen bonds between the alcohol groups and the carboxylate or 

amine group of the aspartic acid. The first two larger peaks detected in the CH3-Ni 

a) b) 

c) d) 
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radial distribution function in Figure 5-7c also confirms the better packing 

mechanism of R-enantiomers where the bulky methyl groups are in closer proximity 

to the pockets than for the S-enantiomer. By adopting these configurations, R-

molecules can pack more effectively in the framework’s chiral environment at high 

loading compared to their S rivals as illustrated in Figure 5-7b. This is in agreement 

with the simulated ee values and the experimental data for mixtures in liquid phase 

where the framework channels are filled with guest molecules and R is preferentially 

adsorbed. 
 

At low loadings, the simulation results match well with the molecular mechanics 

docking studies performed by Vaidhyanathan et al. (2006)) at low loadings. 

However, their simulations - in contrast to this work - were unable to explain the R-

enantioselectivity of the diols observed in the liquid phase i.e. at higher loading. The 

reason for this is that they studied the guest-framework interaction of isolated 

molecules thus neglecting the entropic contribution and packing dependency of 

enantioselectivity at high loadings. The results obtained in this work clearly show 

that in order to explain the enantioselectivity observed experimentally in the liquid 

phase, the simulations need to be performed at high loadings to account for packing 

effects. 
 

5.6.3 (S,R)-1,2-butanediol 
The ee values for 1,2-butanediol are lower than 1,3-butanediol in both experiments 

and simulations (Table 5-5). As it can be seen from Figure 5-8a, the distribution of 

O(H)-O(H) distance exhibits two distinct peaks for (R)-1,2-butanediol which 

corresponds to the conformations where one OH-group remains close to the pocket 

with the other OH group oriented towards the protrusions along the channel (Figure 

5-8b). The first peaks in the radial distribution function for CH3-Ni show closer 

proximity of the methyl group in R-enantiomer to the pockets leaving more space for 

the adjacent molecule as illustrated in Figure 5-8c. On the other hand, for the S-

enantiomer, although the adsorption sites are located between the two neighbouring 

4,4’-bipyridine ligands, similar to those for R-enantiomer, the bulky methyl groups 

are oriented towards the centre of the channel. This orientation causes steric 
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hindrance for the immediate neighbouring molecule in the channel preventing methyl 

tails of adjacent molecules to face each other (see Figure 5-8b). This can be further 

demonstrated in the CH3-CH3 radial distribution function between 1,2-butanediol 

molecules in Figure 5-8d. The height of the first peak at (3.7 Å) is larger due to 

stronger correlations among adjacent neighbours for R-enantiomers. This means that 

they can fit more effectively in the inner pore space by positioning their methyl 

groups close to the pockets which in turn leads to better packing for (R)-1,2-

butanediols. 
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Figure 5-8 a) Histograms of intramolecular oxygen-oxygen (O(H)-O(H)) distance for 1,2-

butanediol enantiomers. b) Pure component snapshots for 1,2-butanediol enantiomers: R (red), 

S (green). Methyl groups in (S)- and (R)-1,2-butanediol molecules are marked with solid green 

and dashed-red circles, respectively. Hydroxyl groups are shown in spacefill representation. The 

pore space with pockets is shown in orange in the middle. c) Nickel-methyl radial distribution 

functions, d) methyl-methyl radial distribution functions. All figures were obtained for 1,2-

butanediol enantiomers adsorbed in 1 from pure component GCMC simulations at maximum 

loading and 278 K. 

 

a) b) 

c) d) 
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5.6.4 (S,R)-2,4-pentanediol 
The adsorption behavior of 2,4-pentanediol enantiomers is similar to what is seen in 

1,3-butanediol with preferential uptake of S-enantiomers and a maximum loading of 

~ 1 molecule / uc. The reason for the low saturation uptake is that the S-enantiomers 

have both their OH groups sitting in the pockets with an O(H)-O(H) equilibrium 

distance of ~ 4.2 Å as shown in Figure 5-9a. This stretched form results in both 

bulky methyl groups being located in the centre of the channel as illustrated in Figure 

5-9b. Unlike shorter diols where higher interaction energies were found for the R-

form at maximum loading, this extended conformation for (S)-2,4-pentanediol is 

energetically more favourable at 1 molecule / uc as shown previously in Figure 5-5. 

With both OH groups close to the pockets (Figure 5-9c), both bulky methyl groups 

are located in the centre of the channel. This means that the immediate neighbouring 

adsorption sites remain empty as no further molecule fits in the gap between the tails 

of neighbouring molecules (see the shaded area in Figure 5-9b). Therefore, the 

maximum uptake for the S-enantiomer is 1 molecule / uc. R-enantiomers can adopt 

more conformations with their methyl groups close to the pockets which promotes 

better packing for the neighbouring molecules as shown in Figure 5-9b and d. 

Although this adaptability is similar to those seen for shorter diols, the longer chain 

and the presence of bulky methyl group in the centre of the channel creates an 

entropic penalty at high loadings over 1 molecule / uc. Thus, with a maximum 

loading of 1.06 molecules / uc, the enantiomers are too far apart to experience 

significant guest-guest interactions.  
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Figure 5-9 a) Histograms of intramolecular oxygen-oxygen (O(H)-O(H)) distance for 2,4-

pentanediol enantiomers. b) Pure component snapshots for 2,4-pentanediol enantiomers: R 

(red), S (green). Hydroxyl and methyl groups in 2,4-pentanediols are marked with solid green 

and dashed-red circles, respectively. Hydroxyl groups are shown in spacefill representation. The 

pore space with pockets is shown in orange in the middle. c) Nickel-oxygen radial distribution 

functions and d) methyl-methyl radial distribution functions. All figures were obtained for 2,4-

pentanediol enantiomers adsorbed in 1 from pure component GCMC simulations at maximum 

loading and 278 K. 

 

5.6.5 (S,R)-1,2-pentanediol 
Unlike 2,4-pentanediol, in the case of 1,2-pentanediol, the R-enantiomer is 

preferentially adsorbed over the whole pressure range and especially at low loadings 

as shown in Figure 5-4d. Similar to the diols studied so far, higher interaction 

energies and closer proximities for both OH and CH3 groups to the pockets were 

observed for the R-enantiomer (Figure 5-10) suggesting better R-enantioselectivity 

a) b) 

c) d) 
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whereas in the case of S-enantiomer normally one OH group is placed towards the 

protrusions of the channel with their CH3 groups in middle of the pocket.  
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Figure 5-10 a) Histograms of intramolecular oxygen-oxygen (O(H)-O(H)) distance for 1,2-

pentanediol enantiomers. b) Pure component snapshots for 1,2-pentanediol enantiomers: R 

(red), S (green). Hydroxyl and methyl groups in (R)-1,2-pentanediols are marked with solid 

green and dashed-red circles, respectively. Hydroxyl groups are shown in spacefill 

representation. The pore space with pockets is shown in orange in the middle. c) Nickel-oxygen 

radial distribution function, d) methyl-methyl radial distribution functions. All figures were 

obtained for 1,2-pentanediol enantiomers adsorbed in 1 from pure component GCMC 

simulations at maximum loading and 278 K. 

 

However, both enantiomers show low pore fillings of ~1.1 molecule / uc with 

slightly higher loadings than those seen in 2,4-pentanediol (1 molecule / uc) thereby 

resulting in a rather unexpectedly high ee value of ~ 42.8. This high ee value shows 

that despite the good agreement between the experimental and simulation results for 

the butanediols, with a clearly larger ee value for 1,3-butanediol in comparison to 

a) b) 

c) d) 
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1,2-butanediol, the same ascending order of ee trend for the 1,2- and 1,3- 

conformation of the longest chain diol, pentanediol was not observed (simulated ee 

value of 42.8 (exp. ~ 13.9) and 21.2 (exp. ~ 24.5) for 1,2- and 2,4-pentanediol, 

respectively). As mentioned earlier, 2,4- and 1,2-pentanediol enantiomers can reach a 

maximum uptake of slightly over 1 molecule / uc in contrast to the shorter diols 

which show a saturation uptake of 2 molecules / uc. The change in the order of ee 

values in 1,2- and 2,4-pentanediols can be assigned to the fact that upon inclusion of 

larger guest molecules the framework of 1 may undergo small structural changes 

whereas in the simulations the framework is considered as rigid. This may hinder the 

favourable R-packing mechanism and steric effects to manifest as clearly as was 

observed for the shorter diols which showed loadings up to 2 molecules / uc. 
 

The results so far indicate that the level of enantioselectivity and the difference in 

uptake of the two enantiomers become more evident at high loadings (i.e. loadings 

exceeding ~1 molecule / uc) due to closer packing of the R-enantiomers in the 

framework. Therefore, in order to investigate if promoting higher adsorption uptake 

for pentanediols, would lead to larger ee values for 2,4-pentanediol in comparison 

with 1,2-pentanediol, as was observed experimentally, the hard sphere diameter of 

the LJ potential of the framework atoms was reduced by 10% and the simulations 

were repeated for the pure component and mixture simulations of 2,4- and 1,2-

pentanediol enantiomers at high loading. The reduction in the hard sphere diameter 

results in an increase of the pore diameter from 3.85 Å to 4.05 Å as shown in Figure 

5-11 (Note, that such a change might occur experimentally due to framework 

flexibility).  
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Figure 5-11: Larger channel space in 1 when the hard sphere diameter of LJ potential for all 

framework atoms is reduced by 10 % (shaded area). The resulting pore diameters measured by 

the largest sphere that can fit in the framework without overlapping are before and after 

reduction are shown by the red and dashed blue circle, respectively.  

 

As the available channel space becomes larger, no significant increase in the single 

component uptake of S-2,4 pentanediol is observed, whereas the R-uptake increased 

from 1 molecule / uc to 1.25 molecules / uc. The ee value also increased from ~ 21.2 

to ~ 41 in the racemic mixture simulation. Following the lower enantioselectivity 

observed for 1,2-conformations in butanediols in comparison to 1,3-conformations, 

in the case of 1,2-pentanediol, the reduction of the hard sphere diameter leads to a 

decrease in the ee value from ~ 42.8 to ~ 33. Notably, this descending ee trend from 

2,4- to 1,2-pentanediol racemic mixtures follows a similar trend of ee values 

observed experimentally. This drastic change in enantioselectivity caused by subtle 

changes in framework structure is further confirmation that enantioselectivity 

depends strongly on the perfect match between guest-framework size and shape. 

 

d=3.85 Å 

d=4.05 Å 
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5.7 Conclusions 
In this chapter, the adsorption mechanism of a number of chiral diols in the chiral 

metal organic framework [Ni2(L-asp)2(bipy)] (1) has been investigated by molecular 

simulation. For each case, the simulations were able to reproduce the preferred R-

enantioselectivity observed experimentally in framework 1 derived from L-asp. 

Depending on the nature of the chiral diol, different modes of interaction and 

different ee values were obtained at various loadings even for diols with fixed chain 

length. Good agreement for the order of enantiomeric excess between experimental 

and simulation results was observed for propanediol and butanediol enantiomers. The 

reported simulation results complement the available experimental data on the 

molecular level and explain the role of packing effects at high loadings on the ee 

values obtained in 1. It was also demonstrated how subtle changes in the framework 

pore size lead to drastic changes in the magnitude and order of enantioselectivity 

between 2,4- and 1,2-pentanediol enantiomers due to better packing of R-1,3-

conformation. 
 

In conclusion, it is not only the chiral environment and the channel surface chemistry 

which favour the uptake of either the left- or right-handed form but a more important 

factor for obtaining high enantioselectivities and guest-host recognition is the perfect 

match in terms of size and shape between the framework and guest molecules. Under 

these circumstances the enantioselectivity manifests itself in higher ee-values when 

packing effects at high loadings become a significant factor in favour of the more 

adaptable enantiomer.  
 

Developing a flexible force field capable of reproducing subtle rearrangements of the 

linkers in response to the adsorption of specifically larger guest molecules should be 

the subject of future work. It is also interesting to repeat the simulations using 

framework 1 derived from enantiopure R-asp linkers instead of L-asp and a racemic 

phase with both L,D-asp linkers to investigate the effects of framework’s chirality on 

enantioseparation.  
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Chapter 6 Summary and Conclusions 
Metal-organic frameworks (MOFs) are multifunctional materials with potential 

applications from gas storage, separation of gases and liquids to biological 

applications such as drug delivery (Meek et al. (2011)). The use of MOFs for size 

and shape selectivity has made a great progress during the past few years that may 

open doors towards industrial selective adsorption and catalytic applications, as their 

versatile pores are highly tuneable. Understanding the distribution of products 

influenced by the highly confined pore environments provides valuable information 

for further development of their applications. Molecular simulations provide rapid 

guidelines and necessary links between synthetic chemistry and engineering by 

exploiting underlying molecular interactions of various components inside the 

confined pores of MOFs.  

 

Extended structures containing calixarenes have attracted attention as the cavities in 

calixarene structure can act as extra adsorption sites. In a collaborative effort 

between chemistry and chemical engineering, three MOFs with two degrees of 

porosity corresponding to both structural and calix[4]arene based linkers were 

synthesised. Using molecular simulations their potential for the separation of 

methane and hydrogen mixtures were explored in Chapter 3. The mixture 

simulations showed high methane selectivity over hydrogen for all three structures 

mainly due to the better size match between methane and the pores leading to higher 

adsorption energies. Remarkably, additional adsorption sites accessible to only 

hydrogens were observed computationally in the Cd-MOF structure. These extra 

adsorption sites are located in the porosity formed by calix[4]arene-based bowl-

shaped linkers. This observation can be in principle further exploited for separation 

applications even for larger calixarenes i.e calix[6]arene. One of the challenges in the 

synthesis of calix-based linker is to selectively functionalise the lower and upper 

rims of TBC4 in a way to obtain conformationally rigid structures. Although lower 

rim propyl chains in our synthesised H2caldc keep the calix bowl structure rigid, its 

inclusion as a MOF linker blocks most of the pore space. Therefore, finding synthetic 

strategies involving less bulky groups while maintaining calix stability should be the 
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focus for future research. In addition, further molecular simulations should focus on 

different functional linkers based on TBC4 testing them for both adsorptive and 

separative abilities. 

 

The separation of xylene isomers is challenging due to their similar physical 

properties. In industry, different modes of interaction between xylenes and zeolites 

are used as the driving force to separate xylene isomers.  In Chapter 4 of this thesis, 

the suitability of MOFs for xylene separation was assessed using molecular 

simulations. The influence of mainly pore size on preferential adsorption towards 

each xylene isomer was studied through computational screening. It has been shown 

that MOFs with large pores (d>9 Å) are unable to impose significant steric hindrance 

in the pores hence low selectivity values were observed for these MOFs. MOFs with 

medium size of pores (6<d<8.5 Å) proved to favour o-xylene molecules as they pack 

more efficiently at high pore fillings. Smaller pores in MOFs (4.2<d<5.5 Å) exhibit 

molecular sieving effects separating p-xylene molecules from the other isomers due 

to its lower waist diameter. In line with experiments, the simulations showed that the 

functionalisation of MIL-125 further enhances the p-xylene preference as bulkier m-

xylene and to some extent oX get excluded from the small tetrahedral pores. This 

finding can be further explored in structures like ZIFs that contain optimum window 

size and provide higher adsorption capacities to account for the lower adsorption of 

MOFs with smaller pores. This is the first time that such comprehensive 

computational work has been carried out for the potential of MOFs for xylene 

separation. Clearly, in an industrial context characteristics such as regenerability 

along with chemical and mechanical stability under actual process conditions must 

be considered before these MOFs can be considered as zeolitic rivals.  

 

One other potential niche application of MOFs is their capability to selectively 

recognise chiral enantiomers. There are very few reports in the literature exploring 

the enantioselectivty capability of chiral MOFs and even fewer are computational.   

In Chapter 5, the enantioselectivity mechanism for a number of chiral diols in the 

chiral MOF [Ni2(L-asp)2(bipy)] was investigated by molecular simulations. The 



 

  132 

simulations not only reproduced the preferential R-form adsorption observed in 

experiments from the framework derived from L-asp structure but also captured 

more subtle trends. The strong role of packing effects at high pore fillings on the 

better enantiomeric excess values for 1,3-butanediol in comparison with 1,2-

butanediol and 1,2-propanediol was established. It was also demonstrated how subtle 

changes in the framework pore size lead to drastic changes in the magnitude and 

order of enantioselectivity of longer diol enantiomers (i.e. pentanediols).  It was 

concluded that not only the chiral environment and the channel surface chemistry 

favour the uptake of one of the enantiomers but that a more prominent factor for 

obtaining high adsorption preference and guest-host recognition is the perfect match 

in terms of size and shape between the framework and guest molecules. These 

characteristics perfectly fit the synthetic flexibility in MOFs that enables 

considerable control over pore size and pore shape. This level of diversity is absent 

from traditional chiral separation techniques such as chiral receptors in 

chromatography. Developing rapid computational screening techniques using a 

library of chiral ligands (i.e. amino acid based) for the separation of target chiral 

molecules should be the focus of future work. 

 

In this work, it was shown how the network topology and pore size in MOFs 

influence the distribution of mixtures in the adsorbed phase by means of molecular 

simulations. The reported preferential adsorption and selectivity along with 

underlying molecular interaction predictions can be used to further tailor MOFs for 

targeted applications. Finally, the results in this work provide valuable information 

for experimentalists and industrialists to develop and better assess the intriguing 

characteristics of MOFs as potential adsorbents for separation purposes. 
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Nomenclature 

Roman letters  

ia  acceleration of i-th atom 

A  macroscopic property 

iA  property A in microstate i 

〉〈A
 ensemble average for macroscopic property A 

sD  self-diffusion 

E  energy 

iE  energy of microstate i 

f  fugacity 

iF  force acting upon i-th atom 

h  Planck’s constant 

K  force constants (bond stretching, bending and torsion) 

Bk  Boltzmann constant 

m  mass of a molecule 
n  new configuration 
N  number of molecules 

adsn  amount adsorbed 

o  old configuration 

P  pressure 

P  probability 

iP  probability of microstate i 
q  point charge 
Q

 partition function for the canonical ensemble 

r  position 
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r  distance between bonded atoms 

)(2 tr  
mean square displacement 

ijr  distance between interaction sites i and j 

cr  cut-off radius 

eqr  equilibrium distance between bonded atoms 

S  selectivity 
t

 time 

T  temperature 
U  potential energy 

ijU  potential between two interaction sites i and j 

V  volume 

ix  mole fraction of component i in the adsorbed phase 

iy  mole fraction of component i in the bulk phase 

z  activity 
 

Greek Letters  

Λ  de Broglie wave length 

Ξ  partition function of the grand canonical ensemble 

β  1)( −TkB  

ε    potential well depth 

ijε    potential well depth for sites i and j 

0ε    permittivity in vacuum 

θ    bond angle 

eqθ    equilibrium bond angle 

µ    chemical potential 

σ    Lennard-Jones diameter 

ijσ    Lennard-Jones diameter for sites i and j 

φ    torsion angle 

Φ
 

energy of a system 
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